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Preface

Purpose of this Book
This book is the second in a pair of books which together are intended to bring
the reader through classical differential geometry into the modern formulation of
the differential geometry of manifolds. The first book in the pair, by Banchoff and
Lovett, entitled Differential Geometry of Curves and Surfaces [6], introduces the
classical theory of curves and surfaces, only assuming the calculus sequence and
linear algebra. This book continues the development of differential geometry by
studying manifolds – the natural generalization of regular curves and surfaces to
higher dimensions. Though a background course in analysis is useful for this book,
we have provided all the necessary analysis results in the text. Though [6] provides
many examples of one- and two-dimensional manifolds that lend themselves well to
visualization, this book does not rely on [6] and can be read independently.

Taken on its own, this book provides an introduction to differentiable manifolds,
geared toward advanced undergraduate or beginning graduate readers in mathemat-
ics, retaining a view toward applications in physics. For readers primarily interested
in physics, this book may fill a gap between the geometry typically offered in under-
graduate programs and that expected in physics graduate programs. For example,
some graduate programs in physics first introduce electromagnetism in the context
of a manifold. The student who is unaccustomed to the formalism of manifolds
may be lost in the notation at worst or, at best, be unaware of how to do explicit
calculations on manifolds.

What is Differential Geometry?
Differential geometry studies properties of and analysis on curves, surfaces, and
higher dimensional spaces using tools from calculus and linear algebra. Just as the
introduction of calculus expands the descriptive and predictive abilities of nearly
every scientific field, so the use of calculus in geometry brings about avenues of
inquiry that extend far beyond classical geometry.

Though differential geometry does not possess the same restrictions as Euclidean
geometry on what types of objects it studies, not every conceivable set of points
falls within the purview of differential geometry. One of the underlying themes

vii



viii Preface

of this book is the development and description of the types of geometric sets on
which it is possible to “do calculus.” This leads to the definition of differentiable
manifolds. A second, and somewhat obvious, theme is how to actually do calculus
(measure rates of change of functions or interdependent variables) on manifolds. A
third general theme is how to “do geometry” (measure distances, areas and angles)
on such geometric objects. This theme leads us to the notion of a Riemannian
manifold.

Applications of differential geometry outside of mathematics first arise in me-
chanics in the study of the dynamics of a moving particle or system of particles.
The study of inertial frames is in common to both physics and differential geome-
try. Most importantly, however, differential geometry is necessary to study physical
systems that involve functions on curved spaces. For example, just to make sense of
directional derivatives of the surface temperature at a point on the earth (a sphere)
requires analysis on manifolds. The study of mechanics and electromagnetism on
a curved surface also requires analysis on a manifold. Finally, arguably the most
revolutionary application of differential geometry to physics came from Einstein’s
theory of general relativity, in which spacetime becomes curved in the presence of
mass/energy.

Organization of Topics
A typical calculus sequence analyzes one variable real functions (R→ R), paramet-
ric curves (R→ Rn), multivariable functions (Rn → R) and vector fields (R2 → R2

or R3 → R3). This does not quite reach the full generality necessary for the defi-
nition of manifolds. Chapter 1 presents the analysis of functions f : Rn → Rm for
any positive integers n and m.

Chapter 2 discusses the concept and calculus of variable frames. Variable frames
arise naturally when using curvilinear coordinates, in the differential geometry of
curves (see Chapters 1, 3, and 8 of [5]), and, in physics, in the mechanics of a mov-
ing particle. In special relativity, of critical importance are momentarily comoving
reference frames (MCRFs), which are yet other examples of variable frames. Im-
plicit in our treatment of variable frames is a view toward Lie algebras. However,
to retain the chosen level of this book, we do not develop that theory here.

Chapter 3 defines the category of differentiable manifolds. Manifolds serve as the
appropriate and most complete generalization to higher dimensions of regular curves
and regular surfaces. The chapter also introduces the definition for the tangent space
on a manifold and attempts to provide the underlying intuition behind the abstract
definitions.

Before jumping into the analysis on manifolds, Chapter 4 introduces some neces-
sary background in multilinear algebra. We focus on bilinear forms, dual spaces, au-
tomorphisms of nondegenerate bilinear forms, and tensor products of vector spaces.

Chapter 5 then develops the analysis on differentiable manifolds, including the
differentials of functions between manifolds, vector fields, differential forms, and
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integration.

Chapter 6 introduces Riemannian geometry without any pretention of being
comprehensive. One can easily take an entire course on Riemannian geometry, the
proper context in which one can do both calculus and geometry on a curved space.
The chapter introduces the notions of metrics, connections, geodesics, parallel trans-
port and the curvature tensor.

Having developed the technical machinery of manifolds, in Chapter 7 we apply
our the theory to a few areas in physics. We consider the Hamiltonian formulation
of dynamics, with a view toward symplectic manifolds; the tensorial formulation of
electromagnetism; a few geometric concepts involved in string theory, namely the
properties of the world sheet which describes a string moving in a Minkowski space;
and some fundamental concepts in general relativity.

In order to be rigorous and still only require the standard core in most under-
graduate math programs, three appendices provide any necessary background from
topology, calculus of variations, and a few additional results from multilinear alge-
bra. The reader without any background in analysis would be served by consulting
Appendix A on point set topology before Chapter 3.

A Comment on Using the Book

Because of the intended purpose of the book, it can serve well either as a textbook
or for self-study. The conversational style attempts to introduce new concepts in
an intuitive way, explaining why we formulate certain definitions as we do. As a
mathematics text, this book provides proofs or references for all theorems. On the
other hand, this book does not supply all the physical theory and discussion behind
the all the application topics we broach.

Each section concludes with an ample collection of exercises. Problems marked
with (*) indicate difficulty which may be related to technical ability, insight, or
length.

As mentioned above, this book only assumes prior knowledge of multivariable
calculus and linear algebra. A few key results presented in this textbook rely on
theorems from the theory of differential equations but either the calculations are all
spelled out or a reference to the appropriate theorem has been provided. Therefore,
except in the case of exercises about geodesics, experience with differential equations
is helpful though not necessary.

From the perspective of a faculty person using this as a course textbook, the
author intends every section to correspond to one 60-minute lecture period. With
the assumption of a 16-week semester, a course using this book should find the time
to cover all main sections and the appendices on topology. If a faculty knows that
his or her students have enough analysis or topology, Chapter 1 or Appendix A can
be skipped.
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Notation
It has been said jokingly that “differential geometry is the study of things that are
invariant under a change of notation.” A quick perusal of the literature on differ-
ential geometry shows that mathematicians and physicists usually present topics in
this field in a variety of different ways. One could argue that notational differences
have contributed to a communication gap between mathematicians and physicists.
In addition, the classical and modern formulations of many differential geometric
concepts vary significantly. Whenever different notations or modes of presentation
exist for a topic (e.g. differentials, metric tensor, tensor fields), this book attempts
to provide an explicit coordination between the notation variances.

As a comment on vector and tensor notation, this book consistently uses the
following conventions. A vector or vector function in a Euclidean vector space is
denoted by ~v, ~X(t) or ~X(u, v). Vectors in an arbitrary vector space, curves on
manifolds, tangent vectors to a manifold, vector fields or tensor fields have no over-
right-arrow designation and are written, for example, as v, γ, X or T . A fair
number of physics texts use a bold font like g or A to indicate tensors or tensor
fields. Therefore, when discussing tensors taken from a physics context, we also use
that notation.

Different texts also employ a variety of notations to express the coordinates of a
vector with respect to a given basis. In this textbook, we regularly use the following
notation. If V is a vector space with an ordered basis B = (e1, e2, . . . , en), then the
coordinates of a vector v ∈ V with respect to B are denoted by [v]B. More precisely,

[v]B =


v1

v2

...
vn

 if and only if v = v1e1 + v2e2 + · · ·+ vnen.

As a point of precision, when discussing coordinates we must use an ordered basis
since the order of vectors in the n-tuple matters for associating the correct coordi-
nate.

Beginning in Chapter 2, we switch from this typical notation to writing the in-
dices of coordinates in a superscript. So we will refer to the coordinates of v ∈ V
with respect to B as (vi). This switch in notation from that developed in intro-
ductory linear algebra courses is standard in differential geometry and multilinear
algebra. The reason for this switch is explained fully in Section 4.1. In this context,
the superscript is not a power but an index. This modified notation is particularly
useful to recognize the difference between a (contravariant) vector and a dual vector
(also called covector) and then to use Einstein’s summation convention. This new
notation is standard in differential geometry, including applications in physics.

For linear transformations and their associated matrices, this book uses the
following convention. Suppose also that W is a vector space with a basis B′ and
that T is a linear transformation T : V →W . Then we denote by [T ]B

′

B the matrix
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representing T with respect to the basis B on V and the basis B′ on W . We recall
that this matrix is defined as the matrix such that

[T (v)]B′ = [T ]B
′

B [v]B

for all v ∈ V .

The authors of [6] chose the following notations for certain specific objects of
interest in differential geometry of curves and surfaces. Often γ indicates a curve
parametrized by ~X(t) while writing ~X(t) = ~X(u(t), v(t)) indicates a curve on a
surface. The unit tangent and the binormal vectors of a curve in space are written
in the standard notation ~T (t) and ~B(t) but the principal normal is written ~P (t),

reserving ~N(t) to refer to the unit normal vector to a curve on a surface. For a

plane curve, ~U(t) is the vector obtained by rotating ~T (t) by a positive angle of π/2.
Furthermore, we denote by κg(t) the curvature of a plane curve to identify it as the
geodesic curvature of a curve on a surface. When these concepts occur in this text,
we use the same conventions as [6].

Occasionally, there arise irreconcilable discrepancies in habits of notation, e.g.,
how to place the signs on a Minkowski metric, how one defines θ and φ in spherical
coordinates, what units to use in electromagnetism, etc. In these instances the text
makes a choice that best suits its purpose and philosophical leanings, and indicates
commonly used alternatives.

Changes in the Second Edition
The second edition of this text arose from feedback from students and faculty using
this book and the author seeing room for improvement of his personal experience
teaching from it.

As a first major change to benefit faculty using this book, the second edition
commits that each section should correspond to one 60-minute lecture period. Con-
sequently, some of the sections in the first edition were split in two. Part of the
reorganization required the creation of a few new sections to cover topics, which
the author felt had been too compressed in the first edition, e.g., orientability of
manifolds, the Lie derivative of vector fields, applications of integration.

The centrality of multilinear algebra in this text’s approach encouraged us to
take that content out of the appendices in the first edition to become Chapter 4
in the current edition. This may feel like an interlude between Chapter 3, which
defines manifolds and differentiable maps between them, and Chapter 5, which stud-
ies the analysis on manifolds. Nonetheless, hopefully the location on this content
makes sense since it first becomes necessary in Chapter 5. Having a regular chapter
on multilinear algebra allows for a more natural introduction to tensors and the
notation for tensor component notation.

Woven throughout, the second edition attempts to improve the presentation
style and better foreshadow certain topics. For example, Equation (2.11) about
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how to decompose the partial derivatives in a frame of vector fields augurs the
definition of a connection on a manifold.

Most of the exercises remained the same, though we improved the statements of
some and modified the challenge level of the computations for others. In addition,
we added a few new interesting problems.
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CHAPTER 1

Analysis of Multivariable Functions

Manifolds provide a generalization to the concept of a curve or a surface, objects
introduced in the usual calculus sequence. Parametrized curves into Rn are con-
tinuous functions from an interval of R to Rn; parametrized surfaces in R3 involve
continuous functions from R2 to R3. In order to generalize the study of curves and
surfaces to the theory of manifolds, we need a solid foundation in the analysis of
multivariable functions f : Rn → Rm.

1.1 Functions from Rn to Rm

Let U be a subset of Rn and let f : U → Rm be a function from U to Rm. Writing
the input variable as

~x = (x1, x2, . . . , xn),

we denote the output assigned to ~x by f(~x) or f(x1, . . . , xn). Since the codomain
of f is Rm, the images of f are m-tuples so we can write

f(~x) = (f1(~x), f2(~x), . . . , fm(~x))

= (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)) .

The functions fi : U → R, for i = 1, 2, . . . ,m, are called the component functions
of f .

We sometimes use the notation ~f(~x) to emphasize the fact that the codomain
Rm is a vector space and that any operation on m-dimensional vectors is permitted
on functions ~f : Rn → Rm. Therefore, some authors call such functions vector
functions of a vector variable.

In any Euclidean space Rn, the standard basis is the set of vectors written as

1
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{~e1, ~e2, . . . , ~en}, where

~ei =



0
...
1
...
0


with the only nonzero entry 1 occurring in the ith coordinate. If no basis is explicitly
specified for Rn, then it is assumed that one uses the standard basis.

At this point, a remark is in order concerning the differences in notations between
calculus and linear algebra. In calculus, one usually denotes an element of Rn as an
n-tuple and writes this element on one line as (x1, x2, . . . , xn). On the other hand,
in order to reconcile vector notation with the usual manner we multiply a matrix
by a vector, in linear algebra we denote an element of Rn as a column vector

~x =


x1

x2

...
xn

 .

At first pass, we might consider these differences of notation as an unfortunate result
of history. However, the difference between column vectors and row vectors is not a
mere variance of notation: one represents the coordinates of an element in a vector
space V with respect to some basis, while the other represents the coordinates of an
element in the dual vector space V ∗, a concept which we develop later. In the rest
of this book, we will write the components of a vector function on one line as per
the n-tuple notation, but whenever a vector or vector function appears in a linear
algebraic context, we write it as a column vector.

In the typical calculus sequence, we encounter vector functions or vector-valued
functions in the following contexts.

Example 1.1.1 (Curves in Rn). A parametrized curve into n-dimensional space is a
continuous function ~x : I → Rn, where I is some interval of R. Parametrized curves
are vector functions of a single variable. We can view the independent variable as
coming from a one-dimensional real vector space.

Example 1.1.2 (Nonlinear Coordinate Changes). A general change of coordinates
in R2 is a function F : U → R2, where U is the subset of R2 in which the coor-
dinates are defined. For example, the change from polar coordinates to Cartesian
coordinates is given by the function F : R2 → R2 defined by

F (r, θ) = (r cos θ, r sin θ).

Example 1.1.3. In a multivariable calculus, we encounter functions F : Rn → R,
written as F (x1, x2, . . . , xn). All such functions are just examples of vector functions
of a vector variable with a codomain of R.
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Example 1.1.4. As an example of a function from R2 to R3, consider the function

F (u, v) =
( 2v(1− u2)

(1 + u2)(1 + v2)
,

4uv

(1 + u2)(1 + v2)
,

1− v2

1 + v2

)
.

Notice that the component functions satisfy

F 2
1 + F 2

2 + F 2
3 =

4v2(1− u2)2 + 16u2v2 + (1 + u2)2(1− v2)2

(1 + u2)2(1 + v2)2

=
4v2(1 + u2)2 + (1 + u2)2(1− v2)2

(1 + u2)2(1 + v2)2

=
(1 + u2)2(1 + v2)2

(1 + u2)2(1 + v2)2
= 1.

Thus, the image of F lies on the unit sphere S2 = {(x, y, z) ∈ R3 |x2 +y2 + z2 = 1}.
Note that F does not surject onto S2. Assuming x2 + y2 + z2 = 1, if F (u, v) =

(x, y, z), then in particular

z =
1− v2

1 + v2
⇐⇒ v =

√
1− z
1 + z

which implies that −1 < z ≤ 1, and hence, the point (0, 0,−1) is not in the range
of F . Furthermore, since

z2 +
( 2v

1 + v2

)2

= 1, and thus
2v

1 + v2
=
√

1− z2,

for any fixed z, we have

x =
1− u2

1 + u2

√
1− z2 and y =

2u

1 + u2

√
1− z2.

But then, if y = 0, it is impossible to obtain x = −
√

1− z2. Consequently, the
image of F is

F (R2) = S2 − {(x, y, z) ∈ S2 |x = −
√

1− z2 with z < 1}.

Figure 1.1 shows the image of F over the rectangle (x1, x2) ∈ [−2, 5]× [0.5, 5].

There are a few different ways to visualize functions, particularly when n and
m are less than or equal to 3. Recall that the graph of a function f : Rn → Rm is
the subset of Rn × Rm = Rn+m defined by

{(x1, . . . , xn, y1, . . . , ym) ∈ Rn+m | (y1, . . . , ym) = f(x1, . . . , xn)}.

We can visualize this explicitly when m+ n ≤ 3 with a three dimensional graphic.
When m = 1, we recover the usual method to depict functions f : R → R and
f : R2 → R.
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xy

z

Figure 1.1: Portion of the image for Example 1.1.4.

For functions F : R2 → R (respectively F : R3 → R), another way to attempt to
visualize F is by plotting together (or in succession if one has dynamical graphing
capabilities) a collection of level curves (respectively surfaces) defined by F (x, y) =
ci (respectively F (x, y, z) = ci) for a discrete set of values ci. This is typically called
a contour diagram of F . Figure 1.2 depicts a contour diagram of 2y/(x2 + y2 + 1)
with c = 0,±0.2,±0.4,±0.6,±0.8.

In multivariable calculus or in a basic differential geometry course ([5]), one

typically uses yet another technique to visualize functions of the form ~f : R→ Rm,
for m = 2 or 3. By plotting the points that consist of the image of ~f we see a plane
or space curve. In doing so, we lose visual information about how fast one travels
along the curve. Figure 1.3 shows the image of the so-called space cardioid , given
by the function

~f(t) =
(
(1− cos t) cos t, (1− cos t) sin t, sin t

)
.

Similarly, in the study of surfaces, it is common to depict a function ~F : R2 → R3

by plotting its image in R3. (The graph of a function of the form R2 → R3 is a
subset of R5, which is quite difficult to visualize no matter what computer tools one
has at one’s disposal!)

We define the usual operations on functions as expected.

Definition 1.1.5. Let ~f and ~g be two functions defined over a subset U of Rn with
codomain Rm. Then we define the following functions:

1. (~f + ~g) : U → Rm, where (~f + ~g)(~x) = ~f(~x) + ~g(~x).
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x

y

Figure 1.2: A contour diagram.

x

y

z

Figure 1.3: A space curve.

2. (~f · ~g) : U → R, where (~f · ~g)(~x) = ~f(~x) · ~g(~x).

3. If m = 3, (~f × ~g) : U → R3, where (~f × ~g)(~x) = ~f(~x)× ~g(~x).

Definition 1.1.6. Let ~f be a function from a subset U ⊂ Rn to Rm, and let ~g
be a function from V ⊂ Rm to Rs. If the image of ~f is a subset of V , then the
composition function ~g ◦ ~f is the function U → Rs defined by

(~g ◦ ~f)(~x) = ~g
(
~f(~x)

)
.

Out of the vast variety of possible functions one could study, the class of linear
functions serves a fundamental role in the analysis of multivariable functions. We
remind the reader of various properties of linear functions.

Definition 1.1.7. A function F : Rn → Rm is called a linear function if

F (~x+ ~y) = F (~x) + F (~y) for all ~x, ~y ∈ Rn,
F (k~x) = kF (~x) for all k ∈ R and all ~x ∈ Rn.

If a function F : Rn → Rm is linear, then

F (~0) = F (~0−~0) = F (~0)− F (~0) = ~0,

and hence F maps the origin of Rn to the origin of Rm.
If B = {~f1, ~f2, . . . , ~fn} is a basis of Rn, then any vector ~v ∈ Rn can be written

uniquely as a linear combination of vectors in B as

~v = c1 ~f1 + c2 ~f2 + · · ·+ cn ~fn.
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One often writes the coefficients in linear algebra as the column vector

[~v]B =


c1
c2
...
cn

 .

If the basis B is not specified, one assumes that the coefficients are given in terms
of the standard basis. If F is a linear function, then

F (~v) = c1F (~f1) + · · ·+ cnF (~fn),

hence, to know all outputs of F one needs to know the coefficients of [~v]B and the
output of the basis vectors of B. Suppose also that B′ = {~w1, ~w2, . . . , ~wm} is a basis
of Rm. If the B′-coordinates of the outputs of the vectors in B are

[F (~f1)]B′ =


a11

a21

...
am1

 , [F (~f2)]B′ =


a12

a22

...
am2

 , · · · , [F (~fn)]B′ =


a1n

a2n

...
amn

 ,

then the image of the vector ~v ∈ Rn is given by

[F (~v)]B′ = c1


a11

a21

...
am1

+ c2


a12

a22

...
am2

+ · · ·+ cn


a1n

a2n

...
amn

 =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn



c1
c2
...
cn

 .

The matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


is called the B,B′-matrix representing the linear function F and is denoted by [F ]BB′ .
Therefore,

[F (~v)]B′ = [F ]BB′ [~v]B

for all ~v ∈ Rn.
Given a linear function F : Rn → Rm, one calls the image of F the set ImF =

F (Rn), also called the range. The kernel of F is the zero set

kerF = {~u ∈ Rn |F (~u) = ~0}.

The image ImF is a vector subspace of the codomain Rm and the kernel is a
subspace of the domain Rn. The rank of F is the dimension dim(ImF ) and can



1.1. Functions from Rn to Rm 7

be shown to be equal to the size of the largest nonvanishing minor of any matrix
representing F , which is independent of the bases. The image of F cannot have a
greater dimension than either the domain or the codomain, so

rankF ≤ min{m,n},

and one says that F has maximal rank if rankF = min{m,n}. It is not hard to
show that a linear function F : Rn → Rm is surjective if and only if rankF = m
and F is injective if and only if rankF = n.

The rank is also useful in determining the linear dependence between a set of
vectors. If {~u1, ~u2, . . . , ~un} is a set of vectors in Rm, then the matrix

A =
(
~u1 ~u2 · · · ~un

)
,

where the ~ui are viewed as column vectors, represents a linear function F : Rn →
Rm, with

ImF = Span{~u1, ~u2, . . . , ~un}.

Thus, the set of vectors {~u1, ~u2, . . . , ~un} is linearly independent if and only if
rankF = n.

In the case of n = m, the determinant provides an alternative characterization
to linear independence. If F is a linear function from Rn to itself with associated
matrix A, then |detA| is the n-volume of the image under F of the unit n-cube.
Consequently, if the columns of A are not linearly independent, the n-volume of
this parallelopiped will be 0. This leads one to a fundamental summary theorem in
linear algebra.

Theorem 1.1.8. For a linear function F : Rn → Rn with associated square matrix
A, the following statements are equivalent:

1. rankF = n.

2. detA 6= 0.

3. ImF = Rn.

4. kerF = {~0}.
5. The column vectors of A are linearly independent.

6. The column vectors of A form a basis of Rn.

7. The column vectors of A span Rn.

8. F has an inverse function.

We remind the reader that matrix multiplication is defined in such a way so
that if A is the matrix for a linear function F : Rn → Rm and B is the matrix for
a linear function G : Rp → Rn, then the product AB is the matrix representing the
composition F ◦G : Rp → Rm. In other words,

[F ◦G]AC = [F ]BC [G]AB ,
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where A, B and C are bases on Rp, Rn, and Rm respectively. Furthermore, if
m = n and rankF = n, then the matrix A−1 is the matrix that represents the
inverse function of F .

A particularly important case of matrices representing linear transformations is
the change of basis matrix . Let B and B′ be two bases on Rn. The change of basis
matrix from B to B′ coordinates is M = [id]BB′ , where id : Rn → Rn is the identity
transformation. In other words, for all ~v ∈ Rn,

[~v]B′ = M [~v]B.

If B = {~f1, ~f2, . . . , ~fn}, then M =
(

[~f1]B′ [~f2]B′ · · · [~fn]B′
)

.

Problems

1.1.1. Consider the function F in Example 1.1.4. Prove algebraically that if the domain
is restricted to R× (0,+∞), it is injective. What is the image of F in this case?

1.1.2. Let F : R2 → R2 be the function defined by F (s, t) = (s2 − t2, 2st), and let
G : R2 → R2 be the function defined by G(u, v) = (2u2 − 3v, uv + v3). Calculate
the component functions of F ◦G and of G ◦ F .

1.1.3. Show that the function ~X : [0, 2π]× [0, π]→ R3, with

~X(x1, x2) = (cosx1 sinx2, sinx1 sinx2, cosx2),

defines a mapping onto the unit sphere in R3. Which points on the unit sphere
have more than one preimage?

1.1.4. Consider the function F from R3 to itself defined by

F (x1, x2, x3) = (x1 + 2x2 + 3x3, 4x1 + 5x2 + 6x3, 7x1 + 8x2 + 9x3).

Prove that this is a linear function. Find the matrix associated to F (with respect
to the standard basis). Find the rank of F , and if the rank is less than 3, find
equations for the image of F .

1.1.5. Consider a line L in Rn traced out by the parametric equation ~x(t) = t~a + ~b.
Prove that for any linear function F : Rn → Rm, the image F (L) is either a line
or a point.

1.1.6. Let F : Rn → Rm be a linear function, and let L1 and L2 be parallel lines in Rn.
Prove that F (L1) and F (L2) are either both points or both lines in Rm. If F (L1)
and F (L2) are both lines, prove that they are parallel.

1.1.7. Let F : Rn → Rm be a linear function represented by a matrix A with respect
to a basis B on Rn and a basis B′ on Rm. Prove that F maps every pair of
perpendicular lines in Rn to another pair of perpendicular lines in Rm if and only
if ATA = λIn for some nonzero real number λ.

1.1.8. Let ~ω be a nonzero vector in Rn. Define the function F : Rn → R as

F (~x) = ~ω · ~x.

Prove that F is a linear function. Find the matrix associated to F (with respect
to the standard basis).
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1.1.9. Let ~ω be a nonzero vector in R3. Define the function F : R3 → R3 as

F (~x) = ~ω × ~x.

Prove that F is a linear function. Find the matrix associated to F (with respect
to the standard basis). Prove that rankF = 2.

1.2 Continuity, Limits, and Differentiability
Intuitively, a function is called continuous if it preserves “nearness.” A rigorous
mathematical definition for continuity for functions from Rn to Rm is hardly any
different for functions from R→ R.

In calculus of a real variable, one does not study functions defined over a discrete
set of real values because the notions behind continuity and differentiability do not
make sense over such sets. Instead, one often assumes the function is defined over
some interval. Similarly, for the analysis of functions Rn to Rm, one does not study
functions defined from any subset of Rn into Rm. One typically considers functions
defined over what is called an open set in Rn, a notion we define now.

Definition 1.2.1. The open ball around ~x0 of radius r is the set

Br(~x0) =
{
~x ∈ Rn : ‖~x− ~x0‖ < r

}
.

A subset U ⊂ Rn is called open if for all ~x ∈ U there exists an r > 0 such that
Br(~x) ⊂ U .

Intuitively speaking, the definition of an open set U in Rn implies that at every
point p ∈ U it is possible to “move” in any direction by at least a little amount ε and
still remain in U . This means that in some sense U captures the full dimensionality
of the ambient space Rn. This is why, when studying the analysis of functions from
Rn to Rm, we narrow our attention to functions F : U → Rm, where U is an open
subset of Rn.

The reader is encouraged to consult Subsection A.1.2 in Appendix A for more
background on open and closed sets. The situation in which we need to consider
an open set U and a point ~x0 in U is so common that another terminology exists
for U in this case.

Definition 1.2.2. Let ~x0 ∈ Rn. Any open set U in Rn such that ~x0 ∈ U is called
an open neighborhood , or more simply, a neighborhood, of ~x0.

We are now in a position to formally define continuity.

Definition 1.2.3. Let U be an open subset of Rn, and let F be a function from U
into Rm. The function F is called continuous at the point ~x0 ∈ U if F (~x0) exists
and if, for all ε > 0, there exists a δ > 0 such that for all ~x ∈ R,

‖~x− ~x0‖ < δ =⇒ ‖F (~x)− F (~x0)‖ < ε.

The function F is called continuous on U if it is continuous at every point of U .
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With the language of open balls, one can rephrase the definition of continuity
as follows. Let U be an open subset of Rn. A function F : U → Rm is continuous
at a point ~x0 if for all ε > 0 there exists a δ > 0 such that

F (Bδ(~x0)) ⊂ Bε(F (~x0)). (1.1)

Sections A.1.2 and A.1.4 in Appendix A provide a comprehensive discussion
about open sets in a metric space, a generalization of Rn, and continuity of functions
between metric spaces. We point out that using the language of open sets, Definition
1.2.3 can be rephrased once more in a manner that lines up with the definition of
continuity of functions between topological spaces.

Proposition 1.2.4. Let F : U → Rm be a function, where U ⊂ Rn is open. The
function F is continuous if and only if F−1(V ) is open for all open sets V ∈ Rm.

Proof. Suppose the function F is continuous. Let V be open in Rm and let ~x0 ∈
F−1(V ), which means that F (~x0) ∈ V . Since V is open, there exists ε > 0 such that
Bε(F (~x0)) ⊂ V . By (1.1), there exists δ > 0 such that F (Bδ(~x0)) ⊂ Bε(F (~x0)).
This means that Bδ(~x0) ⊆ F−1(V ), which, since ~x0 was arbitrary in V , implies that
F−1(V ) is open.

Conversely, suppose that F−1(V ) is open for all open sets V ⊂ Rm. Let ~x0 ∈ U
be any point and let ε > 0 be a real number. Consider the open ball Bε(F (~x0)). By
hypothesis, F−1(Bε(F (~x0))) is open in Rn. Since ~x0 ∈ F−1(Bε(F (~x0))), we deduce
that there exists δ > 0 such that Bδ(~x0) ⊂ F−1(Bε(F (~x0))). This is equivalent to
(1.1), so the proposition follows.

Example 1.2.5. Consider the function F : Rn → Rn defined by

F (~x) =

{
~x/‖~x‖, if ~x 6= ~0,
~0, if ~x = ~0.

This function leaves ~0 fixed and projects the rest of Rn onto the unit sphere. If
~x 6= ~0, then

‖F (~x)− F (~x0)‖ =
∥∥∥ ~x

‖~x‖
− ~x0

‖~x0‖

∥∥∥ ≤ ∥∥∥ ~x

‖~x‖
− ~x

‖~x0‖

∥∥∥+
∥∥∥ ~x

‖~x0‖
− ~x0

‖~x0‖

∥∥∥.
However,∥∥∥ ~x

‖~x‖
− ~x

‖~x0‖

∥∥∥ =
∣∣∣ 1

‖~x‖
− 1

‖~x0‖

∣∣∣ ‖~x‖ = ‖~x‖ | ‖~x0‖ − ‖~x‖ |
‖~x‖ ‖~x0‖

≤ 1

‖~x0‖
‖~x− ~x0‖,

and thus,

‖F (~x)− F (~x0)‖ ≤ 2

‖~x0‖
‖~x− ~x0‖.
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Consequently, given any ε > 0 and setting

δ = min
(
‖~x0‖,

1

2
ε‖~x0‖

)
,

we know that ~x 6= ~0 and also that ‖F (~x)− F (~x0)‖ < ε. Hence, F is continuous at
all ~x0 6= ~0.

On the other hand, if ~x0 = ~0, for all ~x 6= ~x0,

‖F (~x)− F (~0)‖ = ‖F (~x)−~0‖ = ‖F (~x)‖ = 1,

which can never be less than ε if ε ≤ 1.

Example 1.2.6. As a contrast to Example 1.2.5, consider the function

F (~x) =

{
~x, if all components of ~x are rational,
~0, otherwise.

The function F is obviously continuous at ~0, with δ = ε satisfying the requirements
of Definition 1.2.3. On the other hand, if ~x0 6= ~0, then in Bδ(~x0), for any δ > 0,
one can always find an ~x that has either all rational components or has at least one
irrational component. Thus, if ε < ‖~x0‖, for all δ > 0, we have

F (Bδ(~x0)) 6⊂ Bε(F (~x0)).

Thus, F is discontinuous everywhere except at ~0.

The following theorem implies many other corollaries concerning continuity of
multivariable functions.

Theorem 1.2.7. Let U be an open subset of Rn, let F : U → Rm be a function, and
let Fi, with i = 1, . . . ,m, be the component functions. The function F is continuous
at the point ~a ∈ U if and only if, for all i = 1, . . . ,m, the component function
Fi : U → R is continuous at ~a.

Proof. Suppose that F is continuous at ~a. Thus, for all ε > 0, there exists a δ > 0
such that ‖~x− ~a‖ < δ implies ‖F (~x)− F (~a)‖ < ε. Since

‖F (~x)− F (~a)‖ =
√

(F1(~x)− F1(~a)1)2 + · · ·+ (Fm(~x)− Fm(~a))2

≥ |F (~x)i − F (~a)i|,

then for all ε > 0, having ‖~x− ~a‖ < δ implies that

|Fi(~x)− Fi(~a)| ≤ ‖F (~x)− F (~a)‖ < ε

for any i. Hence, each function Fi : U → R is continuous at ~a.
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Conversely, suppose that all the functions Fi are continuous at ~a. Thus, for any ε
and for all i, there exist δi > 0 such that ‖~x−~a‖ < δi implies |Fi(~x)−Fi(~a)| < ε/

√
m.

Then taking δ = min(δ1, . . . , δm), if ‖~x− ~a‖ < δ, then

‖F (~x)− F (~a)‖ =
√
|F1(~x)− F1(~a)|2 + · · ·+ |Fm(~x)− Fm(~a)|2

≤
√
ε2

m
+ · · ·+ ε2

m
= ε.

Thus F is continuous.

If U is an open set containing a point ~a, then the set U − {~a} is called a
deleted neighborhood of ~a. If a function F is a function into Rm defined on a deleted
neighborhood of a point ~a ∈ Rn, it is possible to define the limit of F at ~a. The limit
of F at ~a is the value ~L such that if F (~a) were ~L, then F (~a) would be continuous
at ~a. We make this more precise as follows.

Definition 1.2.8. Let ~a ∈ Rn. Let F be a function from an open subset U−{~a} ⊂
Rn into Rm. The limit of F at ~a is defined as the point ~L, and we write

lim
~x→~a

F (~x) = ~L,

if for all ε there exists a δ such that

F (Bδ(~a)− {~a}) ⊂ Bε(~L).

We point out right away that a function F : U → Rm, where U is open in Rn is
continuous at ~a ∈ U if and only if

lim
~x→~a

F (~x) = F (~a).

Key results in calculus and analysis are the limit laws along with their implications
for continuity.

Theorem 1.2.9. Let U be an open set in Rn, let ~a ∈ U , and let F and G be
functions from U − {~a} to Rm and w : U − {~a} → R. Suppose that the limits of F ,
G, and w at ~a exist. Then

lim
~x→~a

(F (~x) +G(~x)) =

(
lim
~x→~a

F (~x)

)
+

(
lim
~x→~a

G(~x)

)
lim
~x→~a

(w(~x)F (~x)) =

(
lim
~x→~a

w(~x)

)(
lim
~x→~a

F (~x)

)
lim
~x→~a

(F (~x) ·G(~x)) =

(
lim
~x→~a

F (~x)

)
·
(

lim
~x→~a

G(~x)

)
(dot product)

lim
~x→~a
‖F (~x)‖ =

∥∥∥∥ lim
~x→~a

F (~x)

∥∥∥∥ .
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t

(1, 2)

~u

F

D~uF (−1, 2)

s = ±1
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=
±2

t
=
±

2
t = ±1

Figure 1.4: Example 1.2.12.

Proof. (Left as an exercise for the reader.)

Theorem 1.2.10. Let U be an open set in Rn, let F and G be functions from U
to Rm, let w : U → R, and suppose that F,G, and w are all continuous at ~a ∈ U .
Then the functions ‖F‖, F +G, wF , and F ·G are also continuous at ~a. If m = 3,
then the vector function F ×G is also continuous at ~a.

Proof. (Left as an exercise for the reader.)

Similar to most multivariable calculus courses, before addressing partial deriva-
tives, we introduce the notion of a directional derivative, which measures the rate
of change of a function in a given direction.

Definition 1.2.11. Let F be a function from an open subset U ⊂ Rn into Rm, let
~x0 ∈ U be a point, and let ~u be a unit vector. The directional derivative of F in
the direction ~u at the point ~x0 is

D~uF (~x0) = lim
h→0

F (~x0 + h~u)− F (~x0)

h

whenever the limit exists.

Another way to understand this definition is to consider the curve ~γ : (−ε, ε)→
Rm, for some ε > 0, defined by ~γ(t) = F (~x0 + t~u). Then D~uF (~x0) is equal to the
derivative ~γ ′(0).

We note that though F is a multivariable function, the definition of D~uF (~x0)
reduces to a single variable, vector-valued function before taking a derivative.
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Example 1.2.12. Consider the function F (s, t) = (s2 − t2, 2st) from R2 to itself.
We will calculate the directional derivative of F at ~x0 = (1, 2) in the direction of
~u = (1/2,−

√
3/2).

We can picture this kind of function by plotting a discrete set of coordinate
lines mapped under F (see Figure 1.4). However, for functions like F that are not
injective, even this method of picturing F can be misleading since every point in
the codomain can have multiple preimages.

Now,

F (~x0 + t~u) =
(

(1 +
1

2
t)2 − (2−

√
3

2
t)2, 2(1 +

1

2
t)(2−

√
3

2
t)
)

=
(
− 3 + (2 + 4

√
3)t− 2t2, 4 + (4− 2

√
3)t− 2

√
3t2
)
,

so

D~uF (~x0) =
(
(2 + 4

√
3)− 4t, (4− 2

√
3)− 4

√
3t
)∣∣∣
t=0

= (2 + 4
√

3, 4− 2
√

3).

Figure 1.4 shows the curve F (~x0 + t~u) and illustrates the directional derivative
as being the derivative of F (~x0 + t~u) at t = 0. The figure shows that though ~u must
be a unit vector, the directional derivative is usually not.

Let F be a function from an open set U ⊂ Rn to Rm. For any point ~x0 ∈ U ,
the directional derivative of F in the direction ~uk at ~x0 is called the kth partial
derivative of F at ~x0. The kth partial derivative of F is itself a vector function
possibly defined on a smaller set than U . Writing

F (~x) =
(
F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)

)
,

some common notations for the kth partial derivative D~ukF are

Fxk ,
∂F

∂xk
, DkF, F,k.

In the last notation, the comma distinguishes the derivative operation from an
index. It is not hard to show that

∂F

∂xk
(~x) =

(∂F1

∂xk
(x1, . . . , xn), . . . ,

∂Fm
∂xk

(x1, . . . , xn)
)
.

Example 1.2.13. Consider the real-valued function f(x1, x2) defined by

f(x1, x2) =


x1x

2
2

x2
1 + x4

2

, if (x1, x2) 6= (0, 0),

0, otherwise.

See Figure 1.5. We study the behavior of f near ~x = ~0.
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Figure 1.5: Graph of the function in Example 1.2.13.

Let ~u = (u1, u2) be a unit vector, with u1 6= 0. Then

D~uf(~0) = lim
h→0

f(~0 + h~u)− f(~0)

h
= lim
h→0

h3u1u
2
2

h(h2u2
1 + h4u4

2)

= lim
h→0

u1u
2
2

(u2
1 + h2u4

2)
=
u2

2

u1
.

If u1 = 0, then f(~0 + h~u) = 0 for all h, so D~uf(~0) = 0. Thus, the directional
derivative D~uf(~0) is defined for all unit vectors ~u.

On the other hand, consider the curve ~x(t) = (t2, t). Along this curve, if t 6= 0,

f(~x(t)) =
t4

t4 + t4
=

1

2
.

Thus,

f(~x(t)) =

{
1
2 , if t 6= 0,

0, if t = 0,

which is not continuous. Notice that this implies that f as a function from R2 to
R is not continuous at ~0 since taking ε = 1

4 , for all δ > 0, there exist points ~x (in
this case, points of the form ~x = (t2, t)) such that ‖~x‖ < δ have |f(~x)| > ε.

Therefore, the function f is defined at ~0, has directional derivatives in every
direction at ~0, but is not continuous at ~0.

Example 1.2.13 shows that it is possible for a vector function to have directional
derivatives in every direction at some point ~a but, at the same time, fail to be
continuous at ~a. The reason for this is that the directional derivative depends only
upon the behavior of a function along a line through ~a, while approaching ~a along
other families of curves may exhibit a different behavior of the function.
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Example 1.2.13 also illustrates that even if all the partial derivatives of a function
F exist at a point, we should not yet consider it as differentiable there. A better
approach is to call a function differentiable at some point if it can be approximated
by a linear function.

Definition 1.2.14. Let F be a function from an open set U ⊂ Rn to Rm and
let ~a ∈ U . We call F differentiable at ~a if there exist a linear transformation
L : Rn → Rm and a function R defined in a neighborhood V of ~0 such that for all
~h ∈ V ,

F (~a+ ~h) = F (~a) + L(~h) +R(~h),

with

lim
~h→~0

R(~h)

‖~h‖
= ~0.

If F is differentiable at ~a, the linear transformation L is denoted by dF~a and is
called the differential of F at ~a.

Notations for the differential vary widely. Though we will consistently use dF~a
for the differential of F at ~a, some authors write dF (~a) instead. The notation in
this text attempts to use the most common notation in differential geometry texts
and to incorporate some notation that is standard among modern linear algebra
texts.

If bases B and B′ are given for Rn and Rm, then we denote the matrix for dF~a
by [

dF~a
]B′
B .

Assuming we use the standard bases for Rn and Rm, we write the matrix for dF~a
as
[
dF~a

]
.

If F is differentiable over an open set U ⊂ Rn, the differential dF (not evaluated
at any point) is a function from U to Hom(Rn,Rm), the set of linear transformations
from Rn to Rm. Its associated matrix

[
dF
]

is a matrix of functions, each defined
over U , and we call [dF ] the Jacobian matrix of F .

If m = n, the determinant of the Jacobian matrix is simply called the Jacobian
of F . The Jacobian of F is a function U → R and some common notations include

J(F ),
∂(F1, . . . , Fn)

∂(x1, . . . , xn)
, det

(∂Fi
∂xj

)
, and det(dF ).

Differentiability at a point is a strong condition that implies both continuity
and the existence of directional derivatives. In the propositions in the rest of the
section, F is a function from an open set U ⊂ Rn to Rm and ~a is any point in U .

Proposition 1.2.15. If F is differentiable at ~a, then F is continuous at ~a.

Proof. Suppose we have the condition of Definition 1.2.14. From Theorem 1.2.7,
since each component function of a linear transformation is a polynomial in the input
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variables, we deduce that the linear transformation L is continuous everywhere.
Hence,

lim
~h→~0

L(~h) = ~0.

The condition on R also implies that lim~h→~0R(~h) = ~0. Hence,

lim
~x→~a

F (~x) = lim
~h→~0

F (~a+ ~h) = F (~a) + lim
~h→~0

(L(~h) +R(~h)) = F (~a).

Hence, F is continuous at ~a.

Proposition 1.2.16. If F is differentiable at ~a, then it has a directional derivative
in every direction at ~a. Furthermore, D~uF (~a) = dF~a(~u).

Proof. (Left as an exercise for the reader.)

Since the differential dF~a is a linear function from Rn to Rm, for a vector ~v =
(v1, v2, . . . , vn) with coordinates given with respect to the standard basis, at any
point ~a we have

dF~a(v1~u1 + · · ·+ vn~un) = v1dF~a(~u1) + · · ·+ vndF~a(~un)

= v1
∂F

∂x1

∣∣∣
~a

+ · · ·+ vn
∂F

∂xn

∣∣∣
~a
,

where the second line follows from the last part of Proposition 1.2.16. Finally,
viewing each partial derivative ∂F

∂xi
(~a) as a column vector, we have

dF~a(~v) =

(
∂F

∂x1
(~a)

∂F

∂x2
(~a) · · · ∂F

∂xn
(~a)

)
~v.

This proves the following proposition.

Proposition 1.2.17. Writing F = (F1, F2, . . . , Fm) in component functions, at
any point where F is differentiable, the Jacobian matrix of F is

[
dF
]

=

(
∂F

∂x1

∂F

∂x2
· · · ∂F

∂xn

)
=


∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xn

∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xn

...
...

. . .
...

∂Fm
∂x1

∂Fm
∂x2

· · · ∂Fm
∂xn

 , (1.2)

where in the middle expression we view ∂F/∂xi as a column vector.

Example 1.2.13 shows that the implication statement in Proposition 1.2.16 can-
not be replaced with an equivalence statement. Therefore, one should remember
the caveat that the Jacobian matrix may exist at a point ~a without F being differ-
entiable at ~a, but in that case, dF~a does not even exist.
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Example 1.2.18. Consider a function f from an open set U ⊂ Rn to R. The
differential df has the matrix

[df ] =

(
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

)
,

which is in fact the gradient of f , though viewed as a row vector.

Example 1.2.19. As a simple example of calculating the Jacobian matrix, consider
the function

F (x1, x2) =
(
3x1 + x2

2, x1 cosx2, e
x1−2x2 + 2x2

)
.

It is defined over all R2. The Jacobian matrix is
∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2

∂F3

∂x1

∂F2

∂x2

 =

 3 2x2

cosx2 −x1 sinx2

ex1−2x2 −2ex1−2x2 + 2

 .

If, for example, ~a = (2, π/2), then the matrix for dF~a is

[dF~a] =

 3 π
0 −2

e2−π −2e2−π + 2

 .

If, in addition, ~v = (3,−4) with coordinates given in the standard basis, then

dF~a(~v) =

 3 π
0 −2

e2−π −2e2−π + 2

( 3
−4

)
=

 9− 4π
8

11e2−π − 8

 .

To calculate the directional derivative in the direction of ~v, we must use the unit
vector ~u = ~v/‖~v‖ = (0.6,−0.8) and

D~uF (~a) = dF~a(~u) =

 1.8− 0.8π
1.6

2.2e2−π − 1.6

 .

Problems

1.2.1. Let F (x, y) = (3x− 2y+ 4xy, x4− 3x3y2 + 3xy+ 1). Determine the domain of the
function, explain why or why not the function is continuous over its domain, and
find all its (first) partial derivatives.

1.2.2. Repeat Problem 1 with F (x, y) =
(x− y
x+ y

, y lnx
)

.

1.2.3. Repeat Problem 1 with F (x, y, z) = (tan(x/y), x3ey+3z,
√
x2 + y2 + z2).

1.2.4. Let F (x, y, z) =
(

cos(4x+ 3yz), xz/(1 + x2 + y2)
)
. Calculate Fxx, Fyz and Fxyz.
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1.2.5. Let F : Rn → R be a function defined by F (~x) = e~u·~x, where ~u is a unit vector in
Rn. Prove that

∂2F

∂x2
1

+
∂2F

∂x2
2

+ · · ·+ ∂2F

∂x2
n

= F.

1.2.6. If F is a linear function, show that F is continuous.

1.2.7. Show that the following function is continuous everywhere

F (u, v) =

{
x1 sin

(
1
x2

)
+ x2 sin

(
1
x1

)
, if x1x2 6= 0,

0, if x1x2 = 0.

1.2.8. Find the directional derivative of F (s, t) = (s3 − 3st2, 3s2t − t3) at (2, 3) in the
direction ~u = (1/

√
2, 1/
√

2).

1.2.9. Find the directional derivative of F (x1, x2, x3) = (x1 + x2 + x3, x1x2 + x2x3 +
x1x3, x1x2x3) at (1, 2, 3) in the direction of ~u = (1/

√
2, 1/
√

3, 1/
√

6).

1.2.10. Let F : R2 → R2 be defined by F (u, v) = (u2 − v2, 2uv). Calculate the Jacobian
matrix of F . Find all points in R2 where J(F ) = 0.

1.2.11. Define F over R2 by F (x, y) = (ex cos y, ex sin y). Calculate the partial derivatives
Fx and Fy. Show that the Jacobian J(F ) is never 0. Conclude that Fx and Fy
are never collinear.

1.2.12. Let F (u, v) = (cosu sin v, sinu sin v, cos v) be defined over [0, 2π] × [0, π]. Show
that the image of F lies on the unit sphere in R3. Calculate dF(u,v) for all (u, v)
in the domain.

1.2.13. Define F : R3 → R3 by

F (u, v, w) =
(
(u3 + uv) cosw, (u3 + uv) sinw, u2).

Calculate the partial derivatives Fu, Fv, and Fw. Calculate the Jacobian J(F ).
Determine where F does not have maximal rank.

1.2.14. Define F over the open set {(x, y, z) ∈ R3 |x > 0, y > 0, z > 0} by F (x, y, z) =
(x · yz, y · zx, z · xy). Calculate the partial derivatives Fx, Fy, and Fz. Calculate
the Jacobian J(F ).

1.2.15. Let F : Rn → Rm be a linear function, with F (~v) = A~v for some m × n matrix
A. Prove that the Jacobian matrix is the constant matrix A and that for all ~a,
dF~a = F .

1.2.16. Let F (u, v) = (u cos v, u sin v, u) defined over R2. Show that the image of F is
a cone x2 + y2 − z2 = 0. Calculate the differential, and determine where the
differential does not have maximal rank.

1.2.17. Prove the limit laws listed in Theorem 1.2.9.

1.2.18. Prove Theorem 1.2.10.

1.2.19. Prove Proposition 1.2.16. [Hint: Using Definition 1.2.14, set ~v = h~u, where ~u is a
unit vector.]

1.2.20. Prove that if a function F is differentiable at ~a, then F is continuous at ~a.
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1.2.21. Mean Value Theorem. Let F be a real-valued function defined over an open set
U ∈ Rn and differentiable at every point of U . If the segment [~a,~b] ⊂ U , then

there exists a point ~c in the segment [~a,~b] such that

F (~b)− F (~a) = dF~c(~b− ~a).

1.2.22. (*) Let n ≤ m, and consider a function F : U → Rm of class C1, where U is an
open set in Rn. Let p ∈ U , and suppose that dFp is injective.

(a) Prove there exists a positive number Ap such that ‖dFp(~v)‖ ≥ Ap‖~v‖ for
~v ∈ Rn.

(b) Use part (a) and the Mean Value Theorem to show that F is locally injective
near p, i.e., there exists an open neighborhood U ′ of p such that F : U ′ →
F (U ′) is injective.

1.3 Differentiation Rules; Functions of Class Cr

In a single-variable calculus course, one learns a number of differentiation rules.
With functions F from Rn to Rm, one must use some caution since the matrix

[
dF
]

of the differential dF is not a vector function but a matrix of functions. (Again, we
remind the reader that our notation for evaluating the matrix of functions

[
dF
]

at

a point ~a is
[
dF~a

]
.)

Theorem 1.3.1. Let U be an open set in Rn. Let F and G be functions from U
to Rm, and let w : U → R be a scalar function. If F , G, and w are differentiable
at ~a, then F +G and wF are differentiable at ~a and

1. d(F +G)~a = dF~a + dG~a;

2.
[
d(wF )~a

]
= w(~a)

[
dF~a

]
+
[
F (~a)

] [
dw~a

]
.

Proof. The proof for both parts follows from Proposition 1.2.17. Explicitly for the
second part, the ij-entry of

[
d(wF )~a

]
is

∂(wFi)

∂xj
= w(~a)

∂Fi
∂xj

(~a) +
∂w

∂xj
(~a)Fi(~a).

The first term on the right side is the ij-entry of w(~a)
[
dF~a

]
while the second term

is the ij-entry of
[
F (~a)

] [
dw~a

]
, which is the product of a columns by a row vector.

The result follows.

Note that in Theorem 1.3.1(2), [F (~a)] is a column vector of dimension m, while
[dw~a] is a row vector of dimension n. Hence

[
F (~a)

] [
dw~a

]
is an m × n matrix of

rank 1.
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Example 1.3.2. Let F (u, v) = (u2−v, v3, u+2v+1), and let w(u, v) = u3 +uv−2.
The differentials of F and w are

[
dF
]

=

2u −1
0 3v2

1 2

 and [dw] =
(
3u2 + v u

)
.

According to Theorem 1.3.1, the Jacobian matrix of wF is

[d(wF )] = w
[
dF
]

+
[
F
] [
dw
]

= (u3 + uv − 2)

2u −1
0 3v2

1 2

+

 u2 − v
v3

u+ 2v + 1

(3u2 + v u
)

=

2u(u3 + uv − 2) −(u3 + uv − 2)
0 3v2(u3 + uv − 2)

(u3 + uv − 2) 2(u3 + uv − 2)

+

 (u2 − v)(3u2 + v) u(u2 − v)
v3(3u2 + v) uv3

(u+ 2v + 1)(3u2 + v) u(u+ 2v + 1)


=

 5u4 − v2 − 4u −2uv + 2
3u2v4 + v4 3u3v2 + 4uv3 − 6v2

4u3 + 6u2v + 3u2 + 2uv + 2v2 + v − 2 2u3 + u2 + 4uv + u− 4

 .

If we had to find
[
d(wF )(1,2)

]
, we could simplify the work and do

[d(wF )(1,2)] = w(1, 2)
[
dF(1,2)

]
+
[
F (1, 2)

] [
dw(1,2)

]
= 1

2 −1
0 12
1 2

+

−1
8
6

(5 1
)

=

2 −1
0 12
1 2

+

−5 −1
40 8
30 6

 =

−3 −2
40 20
31 8

 .

We now consider the composition of two multivariable functions. Let F be a
function from a set U ⊂ Rn to Rm, and let G be a function from a set V ⊂ Rp to
Rn such that G(V ) ⊂ U . The composite function F ◦G : V → Rm, depicted by the
diagram

V (⊂ Rp) U(⊂ Rn) RmG F

is the function such that, for each ~a ∈ V ,

(F ◦G)(~a) = F
(
G(~a)

)
.

As a consequence of a general theorem in topology (see Proposition A.1.28), we
know that the composition of two continuous functions is continuous. The same
is true for differentiable functions, and the chain rule tells us how to compute the
differential of the composition of two functions.
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Theorem 1.3.3 (The Chain Rule). Let F be a function from an open set U ⊂ Rn
to Rm, and let G be a function from an open set V ⊂ Rp to Rn such that G(V ) ⊂ U .
Let ~a ∈ V . If G is differentiable at ~a and G is differentiable at G(~a), then F ◦G is
differentiable at ~a and

d(F ◦G)~a = dFG(~a) ◦ dG~a. (1.3)

The Jacobian matrices satisfy the matrix product[
d(F ◦G)~a

]
=
[
dFG(~a)

] [
dG~a

]
. (1.4)

Before proving this theorem, we establish a lemma.

Lemma 1.3.4. Let A be an m × n matrix. For all ~v ∈ Rn, with ‖~v‖ = 1, the
length ‖A~v‖ is less than or equal to the square root of the largest eigenvalue λ1 of
A>A. Furthermore, if ~u1 is a unit eigenvector of A>A corresponding to λ1, then
‖A~u1‖ =

√
λ1.

Proof. Assuming that we use standard bases in Rn and Rm, then

‖A~v‖2 = (A~v) · (A~v) = (A~v)>(A~v) = ~v>A>A~v.

By the Spectral Theorem from linear algebra, since A>A is a symmetric matrix,
it is diagonalizable, has an orthonormal eigenbasis (i.e., a basis of eigenvectors of
A>A) {~u1, . . . , ~un}, and all the eigenvalues are real. Assume ~ui has eigenvalue λi.
Note that

λi = ~ui · (λi~ui) = ~ui · (A>A~ui) = ~u>i A
>A~ui = ‖A~ui‖2,

so λi ≥ 0. We also suppose that the eigenvalues are labeled so that λ1 ≥ λ2 ≥ · · · ≥
λn.

If ~v has unit length, we can write ~v = x1~u1 + · · ·+xn~un, with x2
1 + · · ·+x2

n = 1.
Then

‖A~v‖2 = ~v>A>A~v = λ1x
2
1 + · · ·+ λnx

2
n.

A simple calculation using Lagrange multipliers shows that ‖A~v‖2, subject to the
constraint ‖~v‖ = 1, is maximized when λ = λ1 and (x1, . . . , xn) = (1, 0, . . . , 0). The
lemma follows.

We call
√
λ1 in the above lemma the matrix norm of A and denote it by |A|.

Note that for all ~v ∈ Rn, ‖A~v‖ ≤ |A| ‖~v‖.

of Theorem 1.3.3. Let F and G be functions as defined in the hypotheses of the
theorem. Then there exist an m× n matrix A and an n× p matrix B such that

G(~a+ ~h) = G(~a) +B~h+R1(~h),

F (G(~a) + ~k) = F (~g(~a)) +A~k +R2(~k),
(1.5)
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with

lim
~h→~0

R1(~h)

‖~h‖
= ~0 and lim

~k→~0

R2(~k)

‖~k‖
= ~0. (1.6)

Then for the composition (F ◦G)(~a+ ~h), we have

(F ◦G)(~a+ ~h) = F (G(~a)) +AB~h+AR1(~h) +R2(B~h+R1(~h)). (1.7)

Note that ‖AR1(~h)‖ ≤ |A| ‖R1(~h)‖, so

0 ≤ lim
~h→~0

‖AR1(~h)‖
‖~h‖

≤ lim
~h→~0
|A| ‖R1(~h)‖

‖~h‖
.

By the Squeeze Theorem, since lim~h→~0 ‖R1(~h)‖/‖~h‖ = 0, we deduce that

lim
~h→~0

AR1(~h)

‖~h‖
= ~0.

Also because lim~h→~0 ‖R1(~h)‖/‖~h‖ = 0, for any ε > 0, there exists a δ > 0 such

that if ~h ∈ Rn, with ‖~h‖ < δ, then ‖R1(~h)‖ < ε‖~h‖. In particular, pick ε = 1 and

let δ0 be the corresponding value of δ. Then if ‖~h‖ < δ0, we have

‖B~h+R1(~h)‖ ≤ ‖B~h‖+ ‖R1(~h)‖ ≤ (|B|+ 1)‖~h‖.

This leads to

0 ≤ ‖R2(B~h+R1(~h))‖
‖~h‖

≤ (|B|+ 1)
‖R2(B~h+R1(~h))‖
‖B~h+R1(~h)‖

. (1.8)

However, by Equation (1.6), one concludes that

lim
~h→~0

‖R2(B~h+R1(~h))‖
‖B~h+R1(~h)‖

= 0

and consequently, by Equation (1.8),

lim
~h→~0

‖R2(B~h+R1(~h))‖
‖~h‖

= 0.

Setting R3(~h) = AR1(~h)+R2(B~h+R1(~h)), we have lim~h→~0R3(~h)/‖~h‖ = ~0, so from
Equation (1.7), we see that all parts of the theorem hold.

Example 1.3.5. Consider the functions F (r, θ) = (r cos θ, r sin θ) and G(s, t) =
(s2 − t2, 2st). Calculating the composition function directly, we have

(G ◦ F )(r, θ) = (r2 cos2 θ − r2 sin2 θ, 2r2 cos θ sin θ) = (r2 cos 2θ, r2 sin 2θ).
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Thus,

[d(G ◦ F )(r,θ)] =

(
2r cos 2θ −2r2 sin 2θ
2r sin 2θ 2r2 cos 2θ

)
.

On the other hand, we have

[dG(s,t)] =

(
2s −2t
2t 2s

)
and [dF(r,θ)] =

(
cos θ −r sin θ
sin θ r cos θ

)
.

Using the right-hand side of the chain rule, we calculate

[dGF (r,θ)] [dF(r,θ)] = [dG(r cos θ,r sin θ)] [dF(r,θ)]

=

(
2r cos θ −2r sin θ
2r sin θ 2r cos θ

)(
cos θ −r sin θ
sin θ r cos θ

)
=

(
2r cos 2θ −2r2 sin 2θ
2r sin 2θ 2r2 cos 2θ

)
= [d(G ◦ F )(r,θ)]

as expected.

The style of presentation of the chain rule in Theorem 1.3.3 is often attributed
to Newton’s notation. Possible historical inaccuracies aside, Equation (1.3) is com-
monly used by mathematicians. In contrast, physicists tend to use Leibniz’s nota-
tion, which we present now.

Suppose that the vector variable ~y = (y1, . . . , yn) is given as a function of a
variable ~x = (x1, . . . , xp) (this function corresponds to ~g in Equation (1.3)) and
suppose that the vector variable ~z = (z1, . . . , zm) is given as a function of the

variable ~y (this function corresponds to ~f). With Leibniz’s notation, one writes the
chain rule as

∂zi
∂xj

=

n∑
k=1

∂zi
∂yk

∂yk
∂xj

for all i = 1, . . . ,m and j = 1, . . . , p. (1.9)

When evaluating ∂zi/∂xj at a point ~a ∈ Rp, one should understand the chain rule
in Equation (1.9) explicitly as

∂zi
∂xj

∣∣∣
~a

=
n∑
k=1

∂zi
∂yk

∣∣∣
~y(~a)

∂yk
∂xj

∣∣∣
~a
.

Suppose a function F is differentiable over an open set U ⊂ Rn to Rm. Then for
any unit vector ~u ⊂ Rn, the directional derivative D~uF is itself a vector function
from U to Rm, and we can consider the directional derivative D~v(D~uF ) along some
unit vector ~v. This second-order directional derivative is denoted by D2

~v~uF . Higher-
order directional derivatives are defined in the same way.
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If Rn is given a basis, then one can take higher-order partial derivatives with
respect to this basis. Some common notations for the second partial derivative
∂

∂xj

( ∂F
∂xi

)
are

∂2F

∂xj∂xi
, ∂j∂iF , DjDiF , Fxixj , F,i,j

and notations for third partial derivatives are

∂3F

∂xk∂xj∂xi
, ∂k∂j∂iF , DkDjDiF , Fxixjxk , F,i,j,k .

Most advanced physics texts use the notation ∂iF for the partial derivative ∂F/∂xi.

In that case, the second and third partial derivatives are ∂j∂i ~f and ∂k∂j∂iF , as
indicated above.

Note that the order of the indices or subscripts is important since it is possible
that

∂2F

∂x1∂x2
6= ∂2F

∂x2∂x1
,

though we will see momentarily a condition that implies their equality.
We conclude this section with two theorems from analysis and a comment on

the Cr notation.

Theorem 1.3.6. Let U be an open set in Rn, let F : U → Rm be a function, and
let ~a ∈ U . Suppose that for each i = 1, 2, . . . , n, the partial derivative ∂F/∂xi exists
in a neighborhood of ~a and is continuous at ~a. Then F is differentiable at ~a.

Proof. (See Theorem 8.23 in [15].)

Theorem 1.3.7 (Clairaut’s Theorem). Let U be an open set in Rn, let F : U → Rm
be a function, and let ~a ∈ U . Suppose that

∂F

∂xi
,
∂F

∂xj
, and

∂2F

∂xj∂xi

exists in a neighborhood of ~a and that ∂2F/∂xj∂xi is continuous at ~a. Then
∂2F/∂xi∂xj(~a) exists and

∂2F

∂xi∂xj
(~a) =

∂2F

∂xj∂xi
(~a).

Proof. (See Theorem 8.24 in [15].)

Theorems 1.3.6 and 1.3.7 illustrate that certain nice properties occur when we
not only assume that partial derivatives exist but that they are continuous at a
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particular point. For this reason, if U is an open set in Rn, we say that a function
F : U → Rm is of class C1 if all of its partial derivatives exist and are continuous.
By Theorem 1.3.6, a function of class C1 is differentiable. We denote by C1(U,Rm)
the set of such functions.

More generally, we say that the function F is of class Cr, or write F ∈ Cr(U,Rm),
if all of its first rth partial derivatives exist and are continuous. By Clairaut’s The-
orem, we see that for a function of class Cr all the mixed partial derivatives up to
order r involving the same number of the same index of variable are equal. To be
consistent with this notation, we say that F is of class C0 if it is continuous and
we say that it is of class C∞ if all of its higher partial derivatives exist and are
continuous. Functions of class C∞ are called smooth.

Finally, we say that a function F : U → Rm is analytic if for all ~a ∈ U , there
exists an open ball Bδ(~a) ⊆ U such that over Bδ(~a) the Taylor series of F centered at
~a converges to F (~x) in Bδ(~a). If F : U → Rm is analytic, we write F ∈ Cω(U,Rm).
This is a stronger condition than smooth since in order for a function to be analytic
at ~a, all of its partial derivatives must exist at ~a.

There is a natural chain of containment among these classes of functions

Cω(U,Rm) ⊂ C∞(U,Rm) ⊂ · · · ⊂ Cr(U,Rm) ⊂ · · · ⊂ C0(U,Rm).

Theorem 1.3.8 (First-Order Taylor Series). Let ~a ∈ Rn and let U = Br(~a) be the
open ball of radius r and center ~a. Suppose that f ∈ Ck(U,R) for k ≥ 1. Then

f(~x) = f(~a) +
n∑
i=1

∂f

∂xi
(~a)(xi − ai) +

n∑
i=1

gi(~x)(xi − ai) (1.10)

for some functions g1, g2, . . . , gn ∈ Ck−1(U,R) such that gi(~a) = 0.

Proof. Let ~x be any element in the ball U . The Fundamental Theorem of Calculus
gives

f(~x)− f(~a) =

∫ 1

0

d

dt
f(~a+ t(~x− ~a)) dt.

By the chain rule

f(~x)− f(~a) =

∫ 1

0

n∑
i=1

∂f

∂xi
(~a+ t(~x− ~a))(xi − ai) dt

and since ∂f/∂xi(~a)(xi − ai) is constant with respect to t, we have

f(~x)−f(~a) =
n∑
i=1

∂f

∂xi
(~a)(xi−ai)+

n∑
i=1

(xi−ai)
∫ 1

0

(
∂f

∂xi
(~a+ t(~x− ~a))− ∂f

∂xi
(~a)

)
dt.

Setting

gi(~x) =

∫ 1

0

(
∂f

∂xi
(~a+ t(~x− ~a))− ∂f

∂xi
(~a)

)
dt,
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we obtain (1.10). We note that gi(~a) = 0. Furthermore, it is possible to differentiate
each gi(x) by passing the differentiation with respect to any xi variable underneath
the integral with respect to t. Hence, we see that gi ∈ Ck−1(U,R) for all i =
1, 2, . . . , n.

Problems

1.3.1. Prove Theorem 1.3.1.

1.3.2. Suppose that ~f and ~g are differentiable at ~a ∈ Rn. Prove that the function ~f · ~g
is differentiable at ~a and that

d(F ·G)~a = F (~a) · dG~a +G(~a) · dF~a

are linear functions.

1.3.3. Let F (r, θ, φ) = (r cos θ sinφ, r sin θ sinφ, r cosφ). Calculate the Jacobian matrix.
Prove that the Jacobian is the function r2 sinφ.

1.3.4. Let {
z1 = 2y1 + 3y2,

z2 = y1y
2
2 ,

and

{
y1 = ex1 + x2 + x3,

y2 = ex2−x3 + x1.

Use the chain rule to calculate the partial derivatives
∂zi
∂xj

for i = 1, 2 and j =

1, 2, 3.

1.3.5. Let F be a differentiable function from an open set U ⊂ Rn to Rn, and let G be
a differentiable function from an open set V ⊂ Rn to U . Prove that J(F ◦ G) =
J(F )J(G).

1.3.6. Suppose that U and V are open sets in Rn and that F is bijective from U to V .
Suppose in addition that F is differentiable on U and F−1 is differentiable on V .
Prove that for all ~a ∈ U , the linear function dF~a is invertible and that

(dF~a)−1 = dF−1
F (~a).

Conclude that J(F−1) = 1/J(F ).

1.3.7. Let F be a function from U ⊂ R2 to R3 such that dF~x has rank 2 for all ~x ∈ U .
Let ~α be a regular curve from an interval I to U . Show that

(a) the function ~β(t) = F (~α(t)) is a regular curve in R3;

(b) the speed of ~β satisfies∥∥∥∂~β
∂t

∥∥∥2

=
∥∥∥ ∂F
∂x1

∥∥∥2(dα1

dt

)2

+ 2
( ∂F
∂x1
· ∂F
∂x2

)dα1

dt

dα2

dt
+
∥∥∥ ∂F
∂x2

∥∥∥2(dα2

dt

)2

.

1.3.8. Repeat part (b) of Problem 1.3.7, but prove that

‖~β′(t)‖2 = (~α′(t))>
[
dF
]>[

dF
]
~α′(t).

[Hint: Recall that we view the vectors ~a,~b ∈ Rn as column vectors and ~a ·~b = ~a>~b
as a matrix product.]
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1.3.9. Let F (s, t) = (s2t+t3, tes+set), and let ~u be the unit vector in the direction (1, 1)
and ~v be the unit vector in the direction (2, 3). Calculate the second directional
derivative function D2

~v~uF . [Hint: This is a function of (s, t).]

1.3.10. Let F be a function from an open set U ⊂ Rn to Rm. Let ~v and ~u be two unit
vectors in Rn. Prove that

D2
~v~uF =

n∑
i,j=1

∂2F

∂xi∂xj
viuj .

1.3.11. Let F (r, θ) = (r cos θ, r sin θ). Calculate all the second partial derivatives of F .
Prove that F is of class C∞ over all of R2.

1.3.12. Let F (u, v) = (u2 + ve2u, v + tan−1(u + 3), sin v). Find the domain of F . Cal-
culate all of its second partial derivatives. Calculate the following third partial
derivatives: Fvvu, Fvuv, and Fuuv.

1.3.13. If (w1, w2) =
(
e−x1+x22 , cos(x2 + x3)

)
, calculate

∂2w1

∂x1∂x3
,
∂2w1

∂x3∂x2
, and

∂3w2

∂x1∂x2∂x3
.

1.3.14. Let the function f : R2 → R be defined by

f(s, t) =


2st(s2 − t2)

s2 + t2
, if (s, t) 6= (0, 0),

0, if (s, t) = (0, 0).

Show that f is of class C1. Show that the mixed second partial derivatives fst
and fts exist at every point of R2. Show that fst(0, 0) 6= fts(0, 0).

1.4 Inverse and Implicit Function Theorems
In single- and multivariable calculus of a function F : Rn → R, one defines a critical
point as a point ~a = (a1, . . . , an) such that the gradient of F at ~a is ~0, i.e.,

∇F (~a) =

(
∂F

∂x1
(~a), . . . ,

∂F

∂xn
(~a)

)
= ~0.

At such a point, F is said to have a flat tangent line or tangent plane, and, according
to standard theorems in calculus, F (~a) is either a local minimum, local maximum,
or a “saddle point.” This notion is a special case of the following general definition.

Definition 1.4.1. Let U be an open subset of Rn and F : U → Rm a differentiable
function. We call q ∈ U a critical point of F if F is not differentiable at q or if
dFq : Rn → Rm is not of maximum rank, i.e., if rank(dFq) < min(m,n). If q is a
critical point of F , we call F (q) a critical value. If p ∈ Rm is not a critical value of
F (even if p is not in the image of F ), then we call p a regular value of F .
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We point out that this definition simultaneously generalizes the notion of a
critical point for functions F : U → R, with U an open subset of Rn, and the
definition for a critical point of a parametric curve in Rn (Definition 3.2.1 in [5]).
If m = n, the notion of a critical point has a few alternate equivalent criteria.

Proposition 1.4.2. Let U be an open subset of Rn, F : U → Rn a differentiable
function, and q a point in U such that F is differentiable at q. The following are
equivalent:

1. q is a critical point of U .

2. J(F )(q) = 0.

3. The set of partial derivatives
{
∂F/∂x1(q), . . . , ∂F/∂xn(q)

}
is a linearly de-

pendent set of vectors.

4. The differential dFq is not invertible.

Proof. These all follow from Theorem 1.1.8.

More generally, when n is not necessarily equal to m, linear algebra gives the
following equivalent statements for when q is a critical point.

Determining for what values of q in the domain U the differential dFq does not
have maximal rank is not easy if done simply by looking at the matrix of functions[
dFq

]
. The following proposition provides a concise criterion.

Proposition 1.4.3. Let F : U → Rm be a function where U is an open subset of
Rn. Let q ∈ U such that F is differentiable at q. Then the following are equivalent:

1. q is a critical point of F .

2. The determinants of all the maximal square submatrices of [dFq] are 0.

3. The sum of the squares of the determinants of all the maximal square subma-
trices of [dFq] is 0.

Furthermore, if n ≥ m and A = [dFq], then q is a critical point of F if and only if
det(AA>) 6= 0.

Proof. To prove 1 ⇔ 2, note that by definition, q is a critical point if dFq does
not have maximal rank, which means that the set of column vectors or the set of
row vectors of [dFq] is linearly dependent. This is equivalent to the determinants
of all maximal submatrices of A (sometimes referred to as the maximal minors of
A) being 0 since, if one such determinant were not 0, then no nontrivial linear
combination of the columns of [dFq] or of the rows of [dFq] would be 0, and hence,
this set would be linearly independent.

The equivalence 2⇔ 3 is trivial.
To prove the last part of the proposition, assuming that n ≥ m, recall that

if {~v1, . . . , ~vm} are vectors in Rn, the m-volume of the parallelepiped formed by
{~v1, . . . , ~vm} is √

det(B>B),
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where B is the n ×m matrix, with the ~vi as columns (see [14, Fact 6.3.7]). Now
the m-volume of this parallelepiped is 0 if and only if {~v1, . . . , ~vm} are linearly
dependent. Thus, taking B = A> and taking the ~vi as the columns of A> establishes
the result.

By referring to some advanced linear algebra, it is possible to prove directly
that, if n > m, Condition 3 in the above proposition implies that det(AA>) 6= 0. In
fact, even more can be said. If A is an m × n matrix with n > m, then det(AA>)
is equal to the sum of the squares of the maximal minors of A. (See Proposition
C.1.2 in Appendix C.)

Example 1.4.4. For example, consider the function F : R3 → R2 defined by
F (x, y, z) = (x2 + 3y + z3, xy + z2 + 1). The Jacobian matrix for this function is

[
dF
]

=

(
2x 3 3z2

y x 2z

)
.

In this case, the easiest way to find the critical points of this function is to use the
second equivalence statement in Proposition 1.4.3. The maximal 2× 2 submatrices
are (

2x 3
y x

)
,

(
2x 3z2

y 2z

)
,

(
3 3z2

x 2z

)
,

so since critical points occur where all of these have determinant 0, the critical
points satisfy the system of equations

2x2 − 3y = 0,

4xz − 3yz2 = 0,

6z − 3xz2 = 0.

This is equivalent to
y = 2

3x
2,

4xz − 2x2z2 = 0,

z(2− xz) = 0,

⇐⇒


y = 2

3x
2,

xz(2− xz) = 0,

z(2− xz) = 0.

Thus, the set of critical points of F is{(
x,

2

3
x2,

2

x

)
∈ R3

∣∣∣x ∈ R− {0}
}
∪
{(

x,
2

3
x2, 0

)
∈ R3

∣∣∣x ∈ R
}
.

The set of critical values is then{(
3x2 +

8

x3
,

2

3
x3 +

4

x2
+ 1

)
∈ R2

∣∣∣x ∈ R− {0}
}
∪
{(

3x2,
2

3
x3 + 1

)
∈ R2

∣∣∣x ∈ R
}
.
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One important aspect of critical points already arises with real functions. With a
real differentiable function f : [a, b]→ R, if f ′(x0) = 0, one can show that f does not
have an inverse function that is differentiable over a neighborhood of x0. Conversely,
if f ′(x0) 6= 0, the function f has a differentiable inverse in a neighborhood of x0,
with

(f−1)′(y0) =
1

f ′(f−1(y0))
.

A similar fact holds for multivariable functions and is called the Inverse Function
Theorem.

The proof of the Inverse Function Theorem and the following Implicit Function
Theorem are quite long and not necessary for the purposes of this book, so we refer
the reader to a book on analysis for a proof (see, for example, Section 8.5 in [15]).
Instead, we simply state the theorems and present a few examples.

Theorem 1.4.5 (Inverse Function Theorem). Let F be a function from an open
set U ⊂ Rn to Rn, and suppose that F is of class Cr, with r ≥ 1. If q ∈ U is not a
critical point of F , then dFq is invertible and there exists a neighborhood V of q such
that F is one-to-one on V , F (V ) is open, and the inverse function F−1 : F (V )→ V
is of class Cr. Furthermore, for all p ∈ F (V ), with p = F (q),

d(F−1)p = (dFq)
−1.

In many situations, it is impossible to explicitly calculate the inverse function
F−1. The following example illustrates the Implicit Function Theorem in a situation
in which we can calculate the inverse function.

Example 1.4.6. Consider the function F (s, t) = (s2− t2, 2st) and q = (2, 3). Note
that F is defined on all U = R2. The Jacobian matrix is(

2s −2t
2t 2s

)
,

so the Jacobian is the function J(F )(s, t) = 4(s2 + t2). By Proposition 1.4.2, the
only critical point of F is (0, 0), so F satisfies the conditions of the Inverse Function
Theorem at q.

Now with q = (2, 3), by the Inverse Function Theorem, since p = F (q) =
(−5, 12), we have[

dFq
]

=

(
4 −6
6 4

)
and

[
d(F−1)p] =

[
dFq

]−1
=

1

26

(
2 3
−3 2

)
.

For simplicity, let us assume V = {(s, t) ∈ R2 | s > 0, t > 0} and note that
q ∈ V . Setting (x, y) = F (s, t) and solving for (s, t), we find that F (V ) = {(x, y) ∈
R2 | y > 0} and that the inverse of F is given by

s =

√√
x2 + y2 + x

2
and t =

√√
x2 + y2 − x

2
.
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Calculating the partial derivative ∂s/∂x, we have

∂s

∂x
=

1

2
√

2
√√

x2 + y2 + x

(
x√

x2 + y2
+ 1

)

=
1

2
√
x2 + y2

√√
x2 + y2 + x

2
,

and similarly, the Jacobian matrix of F−1 is

[
dF−1

]
=

1

2
√
x2 + y2

 √√
x2+y2+x

2

√√
x2+y2−x

2

−
√√

x2+y2−x
2

√√
x2+y2+x

2

 .

Plugging in p = (−5, 12) = F (q), we calculate directly that

[
dF−1

F (q)

]
=

1

2
√

(−5)2 + 122

 √√
(−5)2+122−5

2

√√
(−5)2+122+5

2

−
√√

(−5)2+122+5

2

√√
(−5)2+122−5

2


=

1

26

(
2 3
−3 2

)
= [dFq]

−1,

thereby illustrating the Inverse Function Theorem.

Another important theorem about functions in the neighborhood of a point p
that is not critical, is the fact that the level set through p, can be parametrized by
(is the image of) an appropriate function. This is the Implicit Function Theorem.

Theorem 1.4.7 (Implicit Function Theorem). Let F be a function from an open
set U ⊂ Rn to Rm, with n > m, and suppose that F is of class Cr, with r ≥ 1. Let
q ∈ U , and let Σ be the level set of F through q, defined as

Σ = {~x ∈ Rn |F (~x) = F (q)}.

If q ∈ U is not a critical point, then the coordinates of Rn can be relabeled so that

n−m m

dFq =
(

S
∣∣∣ T

)
m,

with T an m × m invertible matrix. Then there exist an open neighborhood V of
q in Rn, an open neighborhood W of a = (q1, . . . , qn−m) in Rn−m, and a function
g : W → Rm that is of class Cr such that Σ ∩ V is the graph of g, i.e.,

Σ ∩ V = {(~s, g(~s)) |~s ∈W}.

Furthermore, the Jacobian matrix of g at a is[
dga
]

= −T−1S.
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Example 1.4.8. Let F : R3 → R1 be a function. If c is some constant, we expect
that the solution set Σ to the equation F (x, y, z) = c is a surface in R3. Suppose
that around some point p that satisfies the equation, we could consider Σ as the
graph of a function z = f(x, y). If it is not tractable to exactly solve for z and get
f(x, y) implicitly, then f is called an implicit function. By chain rule we have

∂F

∂x

∂x

∂x
+
∂F

∂y

∂y

∂x
+
∂F

∂z

∂z

∂x
= 0 and

∂F

∂x

∂x

∂y
+
∂F

∂y

∂y

∂y
+
∂F

∂z

∂z

∂y
= 0.

Hence,
∂F

∂x
+
∂F

∂z

∂z

∂x
= 0 and

∂F

∂y
+
∂F

∂z

∂z

∂y
= 0,

so
∂z

∂x
= −∂F

∂x

/∂F
∂z

and
∂z

∂y
= −∂F

∂y

/∂F
∂z

.

This work is called implicit differentiation. Organizing this last line into a matrix
of a differential, we have

[df ] = −
(
∂F

∂z

)−1(
∂F

∂x

∂F

∂y

)
= −T−1S,

where [dF ] = ( S | T ) as in the Implicit Function Theorem. In this example, we
began by assuming that a neighborhood of p ∈ Σ could be viewed as the graph of
z = f(x, y) and proceeded from there without knowing that we were allowed to do
so. The Implicit Function Theorem gives a condition in which we are allowed to
proceed as we did. In this specific case, the theorem states that we can make this
assumption when ∂F/∂z 6= 0, which is precisely what is required for our calculations
to have meaning.

Example 1.4.9. We use the Implicit Function Theorem to tell us something about
the set

Σ = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1 and x+ y + z = 1}.

This is the intersection between a sphere and a plane, which is a circle lying in R3.
(In Figure 1.6, Σ is the circle shown as the intersection of the sphere and the plane.)
Consider the point q =

(
4
13 ,−

3
13 ,

12
13

)
∈ Σ. To study Σ near q, consider the function

F : R3 → R2 defined by F (x, y, z) = (x2 + y2 + z2, x+ y+ z). The Jacobian matrix
of F is [

dF
]

=

(
2x 2y 2z
1 1 1

)
,

and so the critical points of F are points (x, y, z) ∈ R3 such that x = y = z. Thus,
q is not a critical point and

[
dFq

]
=

(
8
13 − 6

13
24
13

1 1 1

)
.
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Figure 1.6: Example 1.4.9.

Writing

S =

(
8
13
1

)
and T =

(
− 6

13
24
13

1 1

)
,

since T is invertible, F and q satisfy the criteria of the Implicit Function Theorem.
Thus, there exist an open neighborhood V of q in R3, an open interval W around
a = 4

13 in R, and a function g : W → R2 such that the portion of the circle Σ ∩ V
is the graph of g. Also, the Jacobian matrix of g at a (the gradient of g at a) is

dga = ~∇g
( 4

13

)
= −T−1S = −

(
− 13

30
24
30

13
30

6
30

)(
8
13
1

)
=

(
− 8

15

− 7
15

)
. (1.11)

One can find Σ by first noting that the subspace x + y + z = 0 has {(0,−1, 1),
(−2, 1, 1)} as an orthogonal basis. Thus, the plane x+y+z = 1 can be parametrized
by

~X(u, v) =

(
1

3
,

1

3
,

1

3

)
+ u(0,−1, 1) + v(−2, 1, 1),

and all vectors in this expression are orthogonal to each other. The additional
condition that x2 + y2 + z2 = 1 be equivalent to ~X · ~X = 1 leads to 2u2 + 6v2 = 2

3 .
This shows that the set Σ can be parametrized by

x = 1
3 −

2
3 sin t,

y = 1
3 −

1√
3

cos t+ 1
3 sin t,

z = 1
3 + 1√

3
cos t+ 1

3 sin t.
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However, this parametrization is not the one described by the Implicit Function The-
orem. But by using it, one can find that in a neighborhood of q = (4/13,−3/13, 12/13),
Σ is parametrized by(

x,
1− x

2
− 1

2

√
1 + 2x− 3x2,

1− x
2

+
1

2

√
1 + 2x− 3x2

)
,

and thus the implicit function g in Theorem 1.4.7 is

g(x) =

(
1− x

2
− 1

2

√
1 + 2x− 3x2,

1− x
2

+
1

2

√
1 + 2x− 3x2

)
.

From here it is not difficult to verify Equation (1.11) directly.

Example 1.4.9 illustrates the use of the Implicit Function Theorem. However,
though the theorem establishes the existence of the implicit function g and provides
a method to calculate

[
dga
]
, the theorem provides no method to calculate the

function g. In fact, unlike in Example 1.4.9, in most cases, one cannot calculate g
with elementary functions.

Problems

1.4.1. Find the critical points of the following R → R functions: (a) f(x) = x3, (b)
g(x) = sinx, and (c) h(x) = x3 − 3x2 + x+ 1.

1.4.2. Find all the critical points of the function F (x, y) = (x3−xy+ y2, x2− y) defined
over all R2.

1.4.3. Let F : R3 → R3 be defined by F (x, y, z) = (z2 − xy, x3 − 3xyz, x2 + y2 + z2).

(a) Find an equation describing the critical points of this function. (If you have
access to a computer algebra system, plot it.)

(b) Prove that if (x0, y0, z0) is a critical point of F , then any point (λx0, λy0, λz0),
with λ ∈ R, is also a critical point. (That is, if (x0, y0, z0) is a critical point,
then any point on the line through (0, 0, 0) and (x0, y0, z0) is also critical.
We say that the equation for the critical points is a homogeneous equation.)

1.4.4. Let F : R3 → R2 be defined by F (x, y, z) = (exy, z cosx). Find all the critical
points of F .

1.4.5. Consider the function f : R3 → R3 defined by

f(x1, x2, x3) = (x1 cosx2 sinx3, x1 sinx2 sinx3, x1 cosx3).

Find the critical points and the critical values of f .

1.4.6. Let F : R2 → R2 be the function defined by F (s, t) = (s3−3st2, 3s2t− t3), and let
q = (2, 3). Find the critical points of F . Prove that there exists a neighborhood
V of q such that F is one-to-one on V so that F−1 : F (V ) → V exists. Let
p = F (q) = (−46, 9). Find d(F−1)(−46,9).
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1.4.7. Let F : R2 → R2 be defined by F (x, y) = (y2 sinx+ 1, (x+ 2y) cos y). Show that
(0, π/2) is not a critical point of F . Show that F is a bijection from a neighborhood
U of (0, π/2) to a neighborhood V of (1, 0). If G : V → U is the inverse function
G = F−1, then find the matrix of dG(1,0).

1.4.8. Consider the function F : (1,+∞)2 → (1,+∞)2 defined by F (x, y) = (xy, yx).

(a) Find the set of critical points of F .

(b) Show that on a neighborhood V of q = (2, 3) the function F is one-to-one.

(c) Calling F :−1: F (V )→ V the inverse function near q, use the Inverse Func-
tion Theorem to determine d(F−1)(8,9).

1.4.9. Consider the function

f(x1, x2, x3) =
( x2 + x3

1 + x1 + x2 + x3
,

x1 + x3

1 + x1 + x2 + x3
,

x1 + x2

1 + x1 + x2 + x3

)
defined over the domain U = R3 − {(x1, x2, x3) | 1 + x1 + x2 + x3 = 0}.

(a) Show that no point in the domain of f is a critical point. [Hint: Prove that
J(f) = 2/(1 + x1 + x2 + x3)4.]

(b) Prove that f is injective.

(c) Find
[
df−1

]
in terms of (x1, x2, x3) at every point using the Inverse Function

Theorem.

(d) Show that the inverse function is

f−1(y1, y2, y3) =
( −y1 + y2 + y3

2− y1 − y2 − y3
,

y1 − y2 + y3

2− y1 − y2 − y3
,

y1 + y2 − y3

2− y1 − y2 − y3

)
.

(e) Prove that f is a bijection between U = R3−{(x1, x2, x3) | 1+x1 +x2 +x3 =
0} and V = R3 − {(x1, x2, x3) | 2− x1 − x2 − x3 = 0}.

1.4.10. Verify all the calculations of Example 1.4.9.

1.4.11. Let Σ be the curve in R3 defined by{
4x2 + 5y2 + z2 = 33

x2 + 4y2 + 2z2 = 35.

Using the Implicit Function Theorem, show that near the point q = (1, 2, 3),
Σ can be parametrized by (x, g1(x), g2(x)). Find [dg1] and use this to give a
parametrization of the tangent line to Σ at q.

1.4.12. Let Σ be the level set in R4 defined by{
x2 + 2y2 + 3z2 + 4w2 = 24

x3w − 2y2z2 + w3 = 20.

Let F (x, y, z, w) = (x2 + 2y2 + 3z2 + 4w2, x3w − 2y2z2 + w3).

(a) Prove that q = (3, 2, 1, 1) is not a critical point of F and observe that q ∈ Σ.
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(b) Using the Implicit Function Theorem, show that there is an open neigh-
borhood W of a = (3, 2) in R2 and a function g : W → R2 such that a
neighborhood of q in Σ is the graph of g.

(c) Calculate [dg] over W .

(d) Use this to provide a parametrization of the tangent plane to Σ at q.
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CHAPTER 2

Variable Frames

The strategy of choosing a particular coordinate system or frame to perform a
calculation or to present a concept is ubiquitous in both mathematics and physics.
For example, Newton’s equations of planetary motion are much easier to solve in
polar coordinates than in Cartesian coordinates. In the differential geometry of
curves, calculations of local properties are often simpler when carried out in the
Frenet frame associated to the curve at a point. (See [5, Chapter 3].) This chapter
introduces general coordinate systems on Rn and the concept of variable frames in
a consistent and general manner.

2.1 Frames Associated to Coordinate Systems
Many problems in introductory mechanics involve finding the trajectory of a particle
under the influence of various forces and/or subject to certain constraints. The first
approach uses the coordinate functions and describes the trajectory as

~r(t) = (x(t), y(t), z(t)) = x(t)~ı+ y(t)~+ z(t)~k.

Newton’s equations of motion then lead to differential equations in the three coor-
dinate functions x(t), y(t), and z(t). The velocity function is the derivative, namely

~r ′(t) =
d

dt
(x(t)~ı) +

d

dt
(y(t)~) +

d

dt
(z(t)~k)

= x′(t)~ı+ x(t)
d

dt
(~ı) + y′(t)~+ y(t)

d

dt
(~) + z′(t)~k + z(t)

d

dt
(~k)

= x′(t)~ı+ y′(t)~+ z′(t)~k,

because d
dt~ı = 0, d

dt~ = 0, and d
dt
~k = 0. This last remark shows that the frame

(~ı,~,~k) associated to the Cartesian coordinate systems is a constant frame.
As we discuss variable frames, we introduce a nice way to describe the rate

of change of a variable frame. Suppose that {~u1, ~u2, ~u3} is a basis of R3 and let

~a and ~b be two other vectors with components ~a = a1~u1 + a2~u2 + a3~u3 and ~b =

39
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b1~u1 + b2~u2 + b3~u3. Assuming that all vectors are column vectors, we can write
these component definitions of ~a and ~b in the matrix expression

(
~a ~b

)
=
(
~u1 ~u2 ~u3

)a1 b1
a2 b2
a3 b3

 .

Using this notation, we can express the relationships d
dt~ı = 0, d

dt~ = 0, and d
dt
~k = 0

by

d

dt

(
~ı ~ ~k

)
=
(
~ı ~ ~k

)0 0 0
0 0 0
0 0 0

 . (2.1)

This notation appears trivial but it will become important as we study the behavior
of frames associated to other natural coordinate systems.

Using cylindrical coordinates, we locate a point in R3 using the distance r be-
tween the origin and the projection of the point onto the xy-plane, the angle from
the positive x-axis θ, and the height z above the xy-plane. See Figure 2.1. We
have the following relationship between Cartesian coordinates and cylindrical coor-
dinates: 

x = r cos θ,

y = r sin θ,

z = z,

←→


r =

√
x2 + y2,

θ = tan−1
(
y
x

)
,

z = z.

(2.2)

Of course, by the expression tan−1
(
y
x

)
, one must understand that we assume that

x > 0. For x ≤ 0, one must adjust the formula to obtain the appropriate corre-
sponding angle. Using cylindrical coordinates, one would locate a point in space
by

~r = (r cos θ, r sin θ, z).

We define the natural frame with respect to this coordinate system as follows.
To each independent variable in the coordinate system, one associates the unit
vector that corresponds to the directions of change with respect to that variable.
For example, with cylindrical coordinates, we have the following three unit vectors:

~er =
∂~r

∂r

/∥∥∥∂~r
∂r

∥∥∥, ~eθ =
∂~r

∂θ

/∥∥∥∂~r
∂θ

∥∥∥, and ~ez =
∂~r

∂z

/∥∥∥∂~r
∂z

∥∥∥. (2.3)

These formulas give us explicitly

~er = (cos θ, sin θ, 0) = cos θ~ı+ sin θ~,

~eθ = (− sin θ, cos θ, 0) = − sin θ~ı+ cos θ~, (2.4)

~ez = (0, 0, 1) = ~k.
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Using this new frame, the position vector of a point with cylindrical coordinates
(r, θ, z) is

~r = r~er + z~ez, (2.5)

As opposed to the fixed frame (~i,~j,~k), many frames associated to non-Cartesian
coordinates often depend on the position of the base point p of the frame. In this
case, the frame (~er, ~eθ, ~ez) associated to cylindrical coordinates depends explicitly
on the coordinates (r, θ, z) (in this case, only on θ) of the frame’s origin point.

To see how this frame varies with respect to any parameter, consider a space
curve parametrized by ~r : I → R3, where I is an interval of R. We can attach
the frame (~er, ~eθ, ~ez) to each point ~r(t) of the curve, but, unlike with the fixed
Cartesian frame, the frame (~er, ~eθ, ~ez) is not constant. As we study motion in the
new coordinate system, we are led to take higher derivatives of ~r(t) and express
them with components in the frame associated to the particular coordinate system.

If ~r(t) is a space curve, then r, θ, and z are functions of t. Therefore, taking the
derivative with respect to t, we get

~r ′ =
d

dt
(r~er) +

d

dt
(z~ez) = r′~er + r

d

dt
~er + z′~ez + z

d

dt
~ez.

Thus, in order to write equations of motion in cylindrical coordinates, we must
determine d

dt~er,
d
dt~eθ, and d

dt~ez. We obtain

~e ′r =
d

dt
(cos θ, sin θ, 0) = (−θ′ sin θ, θ′ cos θ, 0) = θ′~eθ,

~e ′θ =
d

dt
(− sin θ, cos θ, 0) = (−θ′ cos θ,−θ′ sin θ, 0) = −θ′~er,

~e ′z =
d

dt
(0, 0, 1) = ~0.

Following the same method of presentation as in (2.1) the change of the cylin-
drical coordinates frame can be expressed as

d

dt

(
~er ~eθ ~ez

)
=
(
~er ~eθ ~ez

)0 −θ′ 0
θ′ 0 0
0 0 0

 . (2.6)

An application of the cylindrical frame and its rate of change arises when de-
scribing the velocity vector and acceleration vector:

~r ′ = r′~er + rθ′~eθ + z′~ez,

~r ′′ = r′′~er + r′θ′~eθ + r′θ′~eθ + rθ′′~eθ + r(θ′)2(−~er) + z′′~ez

=
(
r′′ − r(θ′)2

)
~er + (2r′θ′ + rθ′′)~eθ + z′′~ez.

If we restrict ourselves to polar coordinates, the above formula would still hold but
with no z-component. In the study of trajectories in the plane, the first four terms
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x y

z

r

z

θ

Figure 2.1: Cylindrical coordinates.

x y

z

ρ
ϕ

θ

Figure 2.2: Spherical coordinates.

in the last expression have particular names (see [22, Section 5.2]). We call

r′′~er the radial acceleration,

−r(θ′)2~er the centripetal acceleration,

2r′θ′~eθ the Coriolis acceleration, and

rθ′′~eθ the component due to angular acceleration.

Example 2.1.1. Using spherical coordinates, we locate a point P in R3 as follows.
Let P ′ be the projection of P onto the xy-plane. Use the distance from the origin
ρ = OP , longitude θ (i.e., the angle from the positive x-axis to the ray [OP ′)),
and the angle ϕ, which is the angle between the positive z-axis and the ray [OP ).
See Figure 2.2. Elementary geometry gives the relationship between Cartesian
coordinates and spherical coordinates:


x = ρ cos θ sinϕ,

y = ρ sin θ sinϕ,

z = ρ cosϕ,

←→


ρ =

√
x2 + y2 + z2,

θ = tan−1
(
y
x

)
,

ϕ = cos−1
(

z√
x2+y2+z2

)
,

(2.7)

with the same caveat for θ as discussed with cylindrical coordinates. With spherical
coordinates, we usually assume that ρ ≥ 0, 0 ≤ θ < 2π, and 0 ≤ ϕ ≤ π.

We leave it as an exercise for the reader to determine the frame associated to a
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spherical coordinate system as

~eρ =
∂~r

∂ρ

/∥∥∥∂~r
∂ρ

∥∥∥ = (cos θ sinϕ, sin θ sinϕ, cosϕ),

~eθ =
∂~r

∂θ

/∥∥∥∂~r
∂θ

∥∥∥ = (− sin θ, cos θ, 0),

~eϕ =
∂~r

∂ϕ

/∥∥∥ ∂~r
∂ϕ

∥∥∥ = (cos θ cosϕ, sin θ cosϕ,− sinϕ).

In contrast to Cartesian coordinates, where the position vector of a point is ~r =
x~i+ y~j + z~k, and in contrast to cylindrical coordinates where the position vector is
given by (2.5), in spherical coordinates, the position vector is simply

~r = ρ~eρ.

To discuss how the frame associated to spherical coordinates changes, consider
a parametric curve ~r : I → R3 and calculate how ~eρ, ~eθ and ~eϕ change as t changes.
Again, we leave it as an exercise for the reader to show that

d

dt

(
~eρ ~eθ ~eϕ

)
=
(
~eρ ~eθ ~eϕ

) 0 −θ′ sinϕ −ϕ′
θ′ sinϕ 0 θ′ cosϕ
ϕ′ −θ′ cosϕ 0

 . (2.8)

All the coordinate systems we have considered thus far, though curvilinear,
are examples of orthogonal coordinate systems; the basis vectors associated to the
coordinate system form an orthogonal basis of Rn. In general, this is not the case.
We point out that, as shown in (2.4), both mathematicians and physicists make the
traditional choice when they impose that the frames associated to the cylindrical
and spherical coordinate systems be composed of unit vectors. As useful as this is
for calculations involving distances or angles, this choice has some drawbacks.

We now consider general coordinate systems in Rn. Already in polar, cylindri-
cal, and spherical coordinates, we encounter some challenges in bringing together
practical application and precision. For example, polar coordinates (r, θ) do locate
points uniquely in the plane and for every point p in the plane, there do exist some
(r0, θ0) that correspond to p. However, the assignment p = f(r, θ) is not injective.

Let S be an open set in Rn. A continuous surjective function f : U → S, where
U is an open set in Rn, defines a coordinate system on S by associating to every
point P ∈ S an n-tuple x(P ) = (x1(P ), x2(P ), · · · , xn(P )) such that f(x(P )) = P .
In this notation, the superscripts do not indicate powers of a variable x but the ith
coordinate for that point in the given coordinate system. Though a possible source
of confusion at first, differential geometry literature uses superscripts instead of the
usual subscripts in order to mesh properly with subsequent tensor notation. As
with polar coordinates where (r0, θ0) and (r0, θ0 +2π) correspond to the same point
in the plane, in practice the n-tuple need not be uniquely associated to the point
P . However, it is not uncommon for the sake of proofs to restrict f to a smaller
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domain V ⊂ U so that f
∣∣
V

is a bijection with the corresponding x : f(V ) → V as

the inverse. Note that in this latter case, we call x = (x1, x2, . . . , xn) the coordinate
functions, or the coordinate system

Let (x1, x2, . . . , xn) be a coordinate system in Rn. Since Rn is a vector space,
we can talk about position vectors of points in Rn. To say that the n-tuple
(x1, x2, . . . , xn) gives coordinates of a point p means that p has a position vector
~r that is a function in the n variables (x1, x2, . . . , xn). In our present formulation,
the position function ~r(x1, x2, . . . , xn) is precisely the function f .

Definition 2.1.2. Let x : S → U be a coordinate system on an open subset
S ⊂ Rn. If p is not a critical point of x, then the frame (or basis) associated to this
coordinate system at p is the set of vectors{ ∂~r

∂x1

∣∣∣
p
,
∂~r

∂x2

∣∣∣
p
, . . . ,

∂~r

∂xn

∣∣∣
p

}
. (2.9)

If there is no cause for confusion, we drop the |p but understands from context that

derivatives are evaluated at a point p. We say that the components of a vector ~A
at p in this system of coordinates are (A1, A2, . . . , An) if we can write

~A =
n∑
i=1

Ai
∂~r

∂xi
. (2.10)

Note that since p is not a critical point of x, then dxp is invertible with inverse
(dxp)

−1 = dfx(p). Hence, the columns of [dfx(p)], which are precisely these vectors
∂~r/∂xi|x(p), form a linearly independent set. In general, this condition of linear
independence is all we can assume from a frame associated to a general coordinate
system at p, namely, it need not be an orthogonal set of vectors or consist of unit
vectors. If the set of vectors (2.9) is an orthogonal set, then the system of coordinates
is called an orthogonal coordinate system.

Definition 2.1.3. Let x : S → U be an orthogonal coordinate system on an open
subset S ⊂ Rn. The scale factors of this coordinate system at point p that is not a
critical point are hx1 , hx2 , . . . , hxn , where

hxi =

∥∥∥∥ ∂~r∂xi
∥∥∥∥ .

When a coordinate system (x1, x2, . . . , xn) is orthogonal, it is common to di-
vide the basis vectors ∂~r/∂xi by the scale factors to obtain an orthonormal basis
associated to the coordinate system. This is precisely what we did with both the
cylindrical and spherical coordinate systems.

Another interesting aspect to using frames associated to coordinate systems in-
volves how to consider rates of change of a vector field when expressed with respect
to a variable frame. Let U be an open subset of Rn. Let {~u1, ~u2, . . . , ~un} be a vari-
able frame defined over U , i.e., each vector ~ui is a vector function ~ui(x

1, x2, . . . , xn)
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that is differentiable on U and for each (x1, x2, . . . , xn) the collection of vectors is

linearly independent. Let ~V be a vector field defined on U . At each point p ∈ U ,
the vector ~V (p) can be decomposed into components V i(p) as

~V (p) = V 1(p)~u1(p) + V 2(p)~u2(p) + · · ·+ V n(p)~un(p).

More concisely, ~V = V 1~u1 +V 2~u2 + · · ·+V n~un, where we understand each V j to be
a function on U . (Again, the superscripts are indices and not powers. We explain
this convention in more detail when we discuss multilinear algebra in Chapter 4.)

When we take partial derivatives of the vector field ~V , we can express these
derivatives in terms of the local frame {~u1, ~u2, . . . , ~un}. We have

∂~V

∂xi
=

∂

∂xi

 n∑
j=1

V j~uj

 =
n∑
j=1

∂V j

∂xi
~uj +

n∑
j=1

V j
∂~uj
∂xi

.

In order to proceed and find the component functions of ∂~V /∂xi, we need to de-
compose ∂~uj/∂x

i into its components with respect to {~u1, ~u2, . . . , ~un}. This leads
to the collection of n3 functions Γkij defined as

∂~uj
∂xi

=
n∑
k=1

Γkij~uk.

Then

∂~V

∂xi
=

n∑
j=1

∂V j

∂xi
~uj +

n∑
j=1

V j
∂~uj
∂xi

=
n∑
j=1

∂V j

∂xi
~uj +

n∑
j=1

V j

(
n∑
k=1

Γkij~uk

)

=
n∑
k=1

∂V k

∂xi
~uk +

n∑
k=1

n∑
j=1

ΓkijV
j~uk =

n∑
k=1

∂V k
∂xi

+
n∑
j=1

ΓkijV
j

 ~uk.

Hence, because we work in variable frames, the kth component of the vector field
∂~V /∂xi is not just ∂V k/∂xi, but rather(

∂~V

∂xi

)k
=
∂V k

∂xi
+

n∑
j=1

ΓkijV
j . (2.11)

Equation (2.11) will reappear in a more general context in the analysis on man-
ifolds. In that context, the collection of functions Γijk are called the components of
a connection.

Example 2.1.4 (Spherical Coordinates, 1). We illustrate how to calculate the
Γijk functions for the normalized spherical coordinate frame. Consider the variable
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frame {~eρ, ~eθ, ~eϕ} and use (2.8) where instead of t, we use ρ, θ, and ϕ successively
for the derivatives, i.e., for i = 1, 2, 3. Thus, with k representing the row and j
representing the column, we have

Γk1j =

0 0 0
0 0 0
0 0 0

 , Γk2j =

 0 − sinϕ 0
sinϕ 0 cosϕ

0 − cosϕ 0

 , Γk3j =

0 0 −1
0 0 0
1 0 0

 .

Example 2.1.5 (Spherical Coordinates, 2). The previous example used the nor-
malized frame for spherical coordinates. We could also use the basis described by
(2.9), which consists of the three vectors

~u1 =
∂~r

∂ρ
= (cos θ sinϕ, sin θ sinϕ, cosϕ)

~u2 =
∂~r

∂θ
= (−ρ sin θ sinϕ, ρ cos θ sinϕ, 0)

~u3 =
∂~r

∂ϕ
= (ρ cos θ sinϕ, ρ sin θ cosϕ,−ρ sinϕ).

Calculating the Γkij components requires us to take derivatives of each of the above
vector functions with respect to each of the coordinates and then decompose back
into the basis {~u1, ~u2, ~u3}. Because these three vectors are orthogonal, though not
unit vectors we find the components of a vector in this frame by

~v =
~v · ~u1

~u1 · ~u1
~u1 +

~v · ~u2

~u2 · ~u2
~u2 +

~v · ~u3

~u3 · ~u3
~u3.

The calculations are straightforward and we leave it as an exercise to prove that

Γk1j =

0 0 0
0 1

ρ 0

0 0 1
ρ

 Γk2j =

0 −ρ sin2 ϕ 0
1
ρ 0 cotϕ

0 − sinϕ cosϕ 0

 Γk3j =

0 0 −ρ
0 cotϕ 0
1
ρ 0 0

 .

We have chosen to list the functions with fixed i since this is the variable with
respect to which we take the derivative. However, it is interesting to organize the
functions into three matrices, each corresponding to a fixed k. We get

Γ1
ij =

0 0 0
0 −ρ sin2 ϕ 0
0 0 −ρ

 Γ2
ij =

0 1
ρ 0

1
ρ 0 cotϕ

0 cotϕ 0

 Γ3
ij =

0 0 1
ρ

0 − sinϕ cosϕ 0
1
ρ 0 0

 ,

each of which is a symmetric matrix.

Problems

2.1.1. Prove Equation (2.8) for the rate of change of the spherical coordinates frame.
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Figure 2.3: Coordinate planes for parabolic coordinates.

2.1.2. Let ~r : I → R3 be a smooth curve in space. Express ~r ′ and ~r ′′ in terms of
functions of spherical coordinates ρ(t), θ(t), ϕ(t), and the local frame {~eρ, ~eθ, ~eϕ}.

2.1.3. Calculate the Γkij functions for the spherical coordinate frame as decribed in Ex-
ample 2.1.5.

2.1.4. Fix a positive real number a. Elliptic coordinates on R2 consists of the pair (µ, ν)
with µ ≥ 0 and 0 ≤ ν < 2π, connected to Cartesian coordinates by{

x = a coshµ cos ν

y = a sinhµ sin ν.

(a) Prove that the curves of constant µ form ellipses; and that curves of constant
ν form hyperbolas.

(b) Calculate ∂~r/∂µ and ∂~r/∂ν and observe that the elliptic coordinate system
is an orthogonal system.

(c) Show that the scale factors are hµ = hν = a
√

cosh2 µ− cos2 ν and calculate
~eµ and ~eν .

(d) Calculate the eight connection functions Γijk for i, j, k = 1, 2 associated to
the frame {~eµ, ~eν}.
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2.1.5. The parabolic coordinates system of R3 consists of the triple (u, v, θ), with u ∈
[0,+∞), v ∈ [0,+∞), and θ ∈ [0, 2π) with equations

x = uv cos θ,

y = uv sin θ,

z = 1
2
(u2 − v2).

.

These equations are also called the transition functions from parabolic to Carte-
sian coordinate. (Figure 2.3 shows the three coordinate “planes” for parabolic
coordinates in R3 passing through the point P ∈ R3 with coordinates (u, v, θ) =
(1, 1/2, π/4).)

(a) Find the basis vectors for the associated frame according to (2.9) and show
that the parabolic coordinate system is an orthogonal coordinate system.

(b) Consider also the basis {~eu, ~ev, ~eθ} given by

~eu =
∂~r

∂u

/∥∥∥ ∂~r
∂u

∥∥∥, ~ev =
∂~r

∂v

/∥∥∥∂~r
∂v

∥∥∥, ~eθ =
∂~r

∂θ

/∥∥∥∂~r
∂θ

∥∥∥.
Calculate the rate of change matrix for this frame similar to (2.8) as done
for spherical coordinates.

(c) Calculate the Γijk connection functions associated to the {~eu, ~ev, ~eθ} frame
of parabolic coordinates.

2.1.6. Toroidal coordinates in R3 are denoted by the triple (στ, φ) and transform into
Cartesian coordinates via 

x =
sinh τ

cosh τ − cosσ
cosφ

y =
sinh τ

cosh τ − cosσ
sinφ

z =
sinσ

cosh τ − cosσ

typically used with −π < σ ≤ π, 0 ≤ τ , and 0 ≤ φ < 2π.

(a) Show that surfaces of constant σ are spheres of center (0, 0, cotσ) and radius
cscσ; that surfaces of constant τ are tori with the z-axis as the axis of
rotation; and that surfaces of constant φ are planes through the z-axis.

(b) Find the frame associated to this coordinate system and show that this
coordinate system is an orthogonal system.

(c) Show that scale factors are hσ = hτ = 1/(cosh τ − cosσ), and hφ = sinh τ/
(cosh τ−cosσ); and calculate the associated orthonormal frame {~eσ, ~eτ , ~eφ}.

(d) Calculate the rate of change matrix for {~eσ, ~eτ , ~eφ} similar to (2.8) as done
for spherical coordinates.

2.1.7. Consider the coordinate system on R2 that employs the pair (s, α) ∈ [0,+∞) ×
[0, 2π) to represent the point on the ellipse

x2

4
+ y2 = s2

that lies on the ray from the origin and through (cosα, sinα).
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(a) Determine change of coordinate system equations from and to Cartesian
coordinates.

(b) Find the set B of basis vectors for the associated frame according to Equation
(2.9).

(c) Prove that
∂~r

∂s
· ∂~r
∂α

=
3

8
s sin(2α) and conclude that this coordinate system

is not orthogonal.

(d) Calculate the rate of change matrix associated to this frame B.

2.2 Frames Associated to Trajectories
In the study of trajectories, whether in physics or geometry, it is often convenient
to use a frame that is different from the Cartesian frame. Changing types of frames
sometimes makes difficult integrals tractable or makes certain difficult differential
equations manageable. In the particular context of special relativity, one talks about
a momentarily comoving reference frame, abbreviated to MCRF.[50]

In the study of plane curves, it is common to use the frame {~T , ~U} to study

the local properties of a plane curve ~x(t). (See [5, Chapter 1].) The vector ~T (t)

is the unit tangent vector ~T (t) = ~x′(t)/‖~x′(t)‖, and the unit normal vector ~U(t),

is the result of rotating ~T (t) by π/2 in the counterclockwise direction. This is a
moving frame that is defined in terms of a given regular curve ~x(t) and, at t = t0,
is viewed as based at the point ~x(t0). To compare with applications in physics, it

is important to note that the {~T , ~U} frame is not the same as the polar coordinate
frame {~er, ~eθ}. From Equation (2.4) (and ignoring the z-component), we know that

~er = (cos θ, sin θ) and ~eθ = (− sin θ, cos θ).

Assuming that x, y, r, and θ are functions of t and since x = r cos θ and y = r sin θ,
we have

~x ′(t) = (x′(t), y′(t)) = (r′ cos θ − rθ′ sin θ, r′ sin θ + rθ′ cos θ) = r′~er + rθ′~eθ.

We then calculate the speed function to be

s′(t) = ‖~x′(t)‖ =
√

(r′)2 + r2(θ′)2

and find the unit tangent and unit normal vectors to be

~T =
1√

(r′)2 + r2(θ′)2

(
r′~er + rθ′~eθ

)
,

~U =
1√

(r′)2 + r2(θ′)2

(
− rθ′~er + r′~eθ

)
.
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Therefore, the orthogonal matrix

1√
(r′)2 + r2(θ′)2

(
r′ −rθ′
rθ′ r′

)

is the transition matrix between the {~T , ~U} basis and the {~er, ~eθ} basis.

Parenthetically, it is now not difficult to obtain a formula for the plane curvature
of ~x(t) in terms of the functions r(t) and θ(t). We use either of the formulations

κg(t) =
1

s′(t)
~T ′ · ~U =

1

(s′(t))3
(~x′ × ~x′′) · ~k,

and we find that

κg(t) =
−rr′′θ′ + r2(θ′)3 + 2(r′)2θ′ + rr′θ′′(

(r′)2 + r2(θ′)2
)3/2 . (2.12)

In general, a frame F in R3 that varies with respect to a parameter t consists of
a quadruple of vector functions (~α(t), ~e1(t), ~e2(t), ~e3(t)). The vector function ~α(t)
is a curve that traces out the motion of base (or origin) of the frame F and the
set of vector functions {~e1(t), ~e2(t), ~e3(t)} are linearly independent for all t. We
are not constrained to only consider frames in which {~e1(t), ~e2(t), ~e3(t)} form an
orthonormal set for all t, but we will make that assumption for the remainder of
this section and we will assume in addition that this basis is a positively oriented
basis, i.e., it satisfies ~e1 × ~e2 = ~e3. Now for all t,

~ei · ~ej =

{
1, if i = j,

0, if i 6= j,

so by a dot product rule,

~e ′i · ~ej =

{
0, if i = j,

−~ei · ~e ′j , if i 6= j.
(2.13)

Let F = (~α,~e1, ~e2, ~e3) be a moving positive orthonormal frame. Consider the

vector function ~Ω(t) defined by

~Ω = (~e ′2 · ~e3)~e1 + (~e ′3 · ~e1)~e2 + (~e ′1 · ~e2)~e3. (2.14)

Using (2.13), it is easy to check that ~e ′i = ~Ω× ~ei for all i and for all t.

Definition 2.2.1. The vector function ~Ω(t) is called the angular velocity vector of
the moving frame F .
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We now consider a particle following a trajectory ~x : I → R3 and we propose to
determine the perceived position, velocity, and acceleration vectors in the moving
frame F in terms of the true position, velocity, and acceleration. Label (~x)F , (~x′)F ,
and (~x′′)F as the perceived position, velocity, and acceleration vectors. First,

(~x)F = ~x− ~α. (2.15)

However, the perceived velocity and acceleration of ~x are obtained by taking the
derivatives of the components of (~x)F in {~e1, ~e2, ~e3}. More explicitly,

(~x)F = ((~x− ~α) · ~e1)~e1 + ((~x− ~α) · ~e2)~e2 + ((~x− ~α) · ~e3)~e3,

(~x ′)F =
d

dt

(
(~x− ~α) · ~e1

)
~e1 +

d

dt

(
(~x− ~α) · ~e2

)
~e2 +

d

dt

(
(~x− ~α) · ~e3

)
~e3, (2.16)

(~x ′′)F =
d2

dt2

(
(~x− ~α) · ~e1

)
~e1 +

d2

dt2

(
(~x− ~α) · ~e2

)
~e2 +

d2

dt2

(
(~x− ~α) · ~e3

)
~e3.

We can now relate the perceived position, velocity, and acceleration in the mov-
ing frame F to the actual position, velocity, and acceleration. By (2.15),

~x = (~x)F + ~α.

Then for the velocity,

~x ′ =
d

dt
(~x)F + ~α ′

=
( 3∑
i=1

d

dt
((~x− ~α) · ~ei)~ei

)
+
( 3∑
i=1

((~x− ~α) · ~ei)~e ′i
)

+ ~α ′ (2.17)

= (~x ′)F +
( 3∑
i=1

((~x− ~α) · ~ei)~Ω× ~ei
)

+ ~α ′

= (~x ′)F + ~Ω× (~x)F + ~α ′.

For the acceleration,

~x ′′ =
d

dt
(~x ′)F +

d

dt

(
~Ω× (~x)F

)
+ ~α ′′

=
d

dt

( 3∑
i=1

((~x− ~α) · ~ei)~ei
)

+
d~Ω

dt
× (~x)F + ~Ω× d

dt
(~x)F + ~α ′′

=
( 3∑
i=1

d2

dt2
((~x− ~α) · ~ei)~ei

)
+
( 3∑
i=1

d

dt
((~x− ~α) · ~ei)~e ′i

)
+ ~Ω ′ × (~x)F + ~Ω× d

dt
(~x)F + ~α ′′

= (~x ′′)F + ~Ω× (~x ′)F + ~Ω× (~x)F + ~Ω×
(
(~x ′)F + ~Ω× (~x)F

)
+ ~α ′′,
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where the second-to-last term follows from Equation (2.17). Thus,

~x ′′ = (~x ′′)F + 2~Ω× (~x ′)F + ~Ω ′ × (~x)F + ~Ω×
(
~Ω× (~x)F

)
+ ~α ′′. (2.18)

All of the above terms have names in physics (see [22, p. 118]):

• (~x ′′)F is called the perceived acceleration or acceleration with respect to F ;

• 2~Ω× (~x ′)F is the Coriolis acceleration;

• ~Ω×
(
~Ω× (~x)F

)
is the centripetal acceleration;

• ~Ω ′ × (~x)F is sometimes called the transverse acceleration because it is per-
pendicular to the perceived position vector (~x)F ;

• ~α ′′ is the translational acceleration of the frame.

The above discussion described the moving frame F in terms of some abso-
lute (unmoving) frame. Though an absolute frame arises naturally in the mental
framework of Cartesian coordinates, to assume the existence of an absolute frame
in physical systems poses serious challenges. We may think of a point fixed to the
Earth as the origin for an absolute frame, but taking into account that the Earth
moves around the Sun, and the Sun moves around the galaxy and so on should
disqualify this choice. Using Newton’s second law of motion as a reference, classical
mechanics defines an inertial frame as one in which the motion of a particle not
subject to any forces travels in a straight line.

Now suppose that we have identified one inertial frame F1 and we consider
another (moving) frame F2. From (2.18), F2 will also be an inertial frame if and

only if (~x ′′)F1
= (~x ′′)F2

for all trajectories ~x(t). This implies that ~Ω = ~0 and that
~α ′′ = ~0, expressed in reference to F1. Hence the unit vectors in F2 do not move
with reference to the basis vectors of F1 and the origin of F2 moves with a constant
velocity vector in reference to the frame F1.

Admittedly, the problem in practice of finding one inertial frame leads to a
vicious circle. How do we know we have found a body free of external forces? We
can only content ourselves with finding a frame in which Newton’s laws of motion
hold to a “satisfactory” degree.[21]

As an example of the application of differential geometry of curves to physics,
we consider the notion of centripetal acceleration of a curve and its relation to the
Frenet frame.

Example 2.2.2 (Centripetal Acceleration of Curves). One first encounters cen-
tripetal acceleration in the context of a particle moving around on a circle with
constant speed v, and one defines it as the acceleration due to the change in the
velocity vector. Phrasing the scenario mathematically, consider a particle moving
along the trajectory with equations of motion

~x(t) = (R cos(ωt), R sin(ωt)),
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where R is the radius of the circle and ω is the (constant) angular speed. The
velocity, speed and acceleration are, respectively,

~x ′(t) = (−Rω sin(ωt), Rω cos(ωt)),

s′(t) = v = Rω,

~x ′′(t) = (−Rω2 cos(ωt),−Rω2 sin(ωt)).

Hence, the acceleration is

~x ′′(t) = −ω2~x(t) = −ω2R~er = −v
2

R
~er, (2.19)

where ~er is the unit vector in the radial direction (see Equation (2.4)). This is the
centripetal acceleration for circular motion, often written ~ac.

The angular velocity vector ~Ω is the vector of magnitude ω that is perpendicular
to the plane of rotation and with direction given by the right-hand rule. Thus,
taking ~k as the direction perpendicular to the plane, we have in this simple setup
~Ω = ω~k. Setting the radial vector ~R = r~er, it is not hard to show that for this
circular motion,

~ac = ~Ω× (~Ω× ~R),

as expected from Equation (2.18).
Now consider a general curve in space ~x : I → R3, where I is an interval of

R. We recall a few differential geometric properties of space curves. The derivative
~x ′(t) is called the velocity and s′(t) = ‖~x ′(t)‖ is called the speed. The curve ~x(t)
is called regular at t if ~x ′(t) 6= ~0. At all regular points of a curve, we define the

unit tangent as ~T (t) = ~x ′(t)/‖~x ′(t)‖. Because ~T (t) is a unit vector for all t, ~T ′(t)

is perpendicular to ~T (t).
The curvature of the curve is the unique nonnegative function κ(t) such that

~T ′(t) = s′(t)κ(t)~P (t) (2.20)

for some unit vector ~P (t). The vector function ~P (t) is called the principal normal

vector. Finally, we define the binormal vector function ~B(t) by ~B = ~T × ~P . In so

doing, we have defined an orthonormal set {~T , ~P , ~B} associated to each point of the

curve ~x(t). This set {~T , ~P , ~B} is called the Frenet frame.

It is not hard to show that, by construction, the derivative ~B ′(t) is perpendicular

to ~B and to ~T . We define the torsion function τ(t) of a space curve as the unique
function such that

~B ′(t) = −s′(t)τ(t)~P (t). (2.21)

Finally, from Equations (2.20) and (2.21) that

~P ′(t) = −s′(t)κ(t)~T (t) + s′(t)τ(t) ~B(t). (2.22)
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Figure 2.4: Center of curvature and osculating circle.

We summarize (2.20), (2.21) and (2.22) as

d

dt

(
~T ~P ~B

)
=
(
~T ~P ~B

) 0 −s′κ 0
s′κ 0 −s′τ
0 s′τ 0

 . (2.23)

(The above paragraphs only give the definitions of the concepts we will use
below. A full treatment of these topics can be found in [5, Chapter 3].)

Since a space curve is not necessarily circular, one cannot use Equation (2.19)
to determine the centripetal acceleration of ~x. Instead, we view ~x in relation to
an appropriate moving frame in which centripetal acceleration makes sense. The
osculating circle is the unique circle of maximum contact with the curve ~x(t) at any
point t, and hence, the appropriate frame F is based at the center of curvature

~α(t) = ~x(t) +
1

κ(t)
~P (t)

and has the vectors of the Frenet frame {~T , ~P , ~B} as its basis. Figure 2.4 depicts
a space curve along with the center of curvature ~α(t) and the osculating circle
associated to a point ~x(t) on the curve.

By Equation (2.14), the angular velocity vector of F is

~Ω = (~P ′ · ~B)~T + ( ~B ′ · ~T )~P + (~T ′ · ~P ) ~B = s′τ ~T + s′κ~B.
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The relative position vector for the curve ~x with reference to its center of curvature
is ~R = (~x)F = − 1

κ
~P . Therefore, the centripetal acceleration is

~ac = ~Ω× (~Ω× ~R) = ~Ω×
(

(s′τ ~T + s′κ~B)× (− 1

κ
~P )
)

= (s′τ ~T + s′κ~B)× (s′ ~T − s′ τ
κ
~B) = (s′)2κ~P + (s′)2 τ

2

κ
~P

= (s′)2κ
2 + τ2

κ
~P . (2.24)

It is interesting to note that if a curve happens to be planar, then τ = 0, and
the centripetal acceleration becomes ~ac = (s′)2κ~P , which matches Equation (2.19)
exactly since s′ = v and κ is the reciprocal of the radius of curvature, 1/R. However,
Equation (2.24) shows that, for a curve in space, the “corkscrewing” effect, measured
by τ , produces a greater centripetal acceleration than does simply rotating about
the same axis. (Hence, on a rollercoaster a rider will experience more centrifugal
force – the force that balances out centripetal acceleration – if the rollercoaster
corkscrews than when it simply rotates around with the same radius of curvature.)

We finish this section with a classical example of how using a useful moving
frame renders equations of motion tractable.

Example 2.2.3 (Radial Forces). As an application of cylindrical coordinate sys-
tems, we can study Newton’s equation of motion applied to a particle under the
influence of a radial force. By definition, a force is called radial if ~F (~r) = f(r)~er,
that is, if the force only depends on the distance from an origin and is parallel to the
position vector ~r. (The force of gravity between two point objects and the electric
force between two charged point objects are radial forces, while the magnetic force
on a charged particle is not.)

Newton’s law of motion produces the following vector differential equation:

m~r ′′ = f(r)~er.

In order to solve this differential equation explicitly, one needs the initial position
~r0 and the initial velocity ~v0.

For convenience, choose a plane P that goes through the origin and is parallel
to both ~r0 and ~v0. (If ~r0 and ~v0 are not parallel, then this information defines a
unique plane in R3. If ~r0 and ~v0 are parallel, then any plane parallel to these vectors
suffices.) Consider P to be the xy-plane, choose any direction for the ray [Ox) and
now use cylindrical coordinates in R3.

For radial forces, Newton’s law of motion written in the cylindrical frame as
three differential equations is

~er : m(r′′ − r(θ′)2) = f(r),

~eθ : m(2r′θ′ + rθ′′) = 0,

~ez : 0 = 0.

. (2.25)
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Obviously, since ~r0 and ~v0 lie in the plane through the origin and parallel to ~er and
~eθ, the equations show that ~r(t) never leaves the xy-plane. Thus z(t) = 0.

We can now solve the second differential equation in the above system to obtain
a relationship between the functions r and θ. First write

2r′

r
= −θ

′′

θ′
.

Integrating both sides with respect to t, we then obtain 2 ln |r| = − ln |θ′|+C, where
C is some constant of integration. Taking the exponential of both sides, one obtains
the relationship r2θ′ = h where h is a constant. In terms of the initial conditions,
we have

~r × ~r ′ = r2θ′~ez

and therefore, for all time t, we have

h = (~r0 × ~v0) · ~ez.

Thus, we conclude that the quantity ~L = ~r × (m~v) = m(~r × ~v), which is called the
angular momentum and in general depends on t, is a constant vector function for
radial forces.

Finally, to solve the system in Equation (2.25) completely, it is convenient to
substitute variables and write the first equation in terms of u = 1/r and θ. Since
r = 1/u, we have

dr

dt
= − 1

u2

du

dt
= − 1

u2

dθ

dt

du

dθ
= −hdu

dθ
.

The second derivative of r gives

d2r

dt2
= −h d

dt

(du
dθ

)
= −hd

2u

dθ2

dθ

dt
= −h2u2 d

2u

dθ2
,

where the last equality follows from fact that r2θ′ is the constant h. The first part
of Equation (2.25) becomes

d2u

dθ2
+ u = − 1

mh2u2
f(u−1). (2.26)

If the radial force in question is an inverse-square law (such as the force of gravity
and the electrostatic force caused by a point charge), then the radial force is of the
form

f(r) = − k

r2
= −ku2.

In this case, Equation (2.26) becomes

d2u

dθ2
+ u =

k

mh2
.
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Techniques from differential equations show that the general solution to this equa-
tion is

u(θ) =
k

mh2
+ C cos(θ − θ0),

where C and θ0 are constants of integration that depend on the original position
and velocity of the point particle under the influence of this radial force. In polar
coordinates, this gives the equation

r(θ) =
1

k
mh2 + C cos(θ − θ0)

. (2.27)

Problems

2.2.1. Provide the details for the proof of Equation (2.12).

2.2.2. Prove that Equation (2.14) is the correct vector to satisfy ~e ′i = ~Ω× ~ei for all i.

2.2.3. Determine the transition matrix between the cylindrical coordinate frame and the
Frenet frame.

2.2.4. Calculate the curvature and torsion of a space curve defined by the functions, in
cylindrical coordinates, (r, θ, z) = (r(t), θ(t), z(t)).

2.2.5. Determine the transition matrix between the spherical coordinate frame and the
Frenet frame.

2.2.6. Calculate the curvature and torsion of a space curve defined by the functions, in
spherical coordinates, (r, θ, φ) = (r(t), θ(t), φ(t)).

2.2.7. Determine the transition matrix between the parabolic coordinate frame and the
Frenet frame (see Problem 2.1.5).

2.2.8. Consider the solution r(θ) in Equation (2.27). Determine h, C, and θ0 in terms
of some initial conditions for position and velocity ~r(0) and ~v(0). Prove that
for different initial conditions and different values of the constants, the locus of
Equation (2.27) is a conic. State under what conditions the locus is a circle,
ellipse, parabola, and hyperbola.

2.2.9. (ODE) Find the locus of the trajectory of a particle moving under the effect of
a radial force that is an inverse cube, i.e., f(r) = −k/r3. [Hint: There are three
separate cases depending on whether mh2 > k, mh2 = k, or mh2 < k.]

2.3 Variable Frames and Matrix Functions
In the preceding sections, we often described the rate of change of variable frames
using a matrix function. Equations (2.1), (2.6), (2.8), and (2.23) established a
matrix formula to describe the rate of change of the frame vectors for Cartesian,
cylindrical, spherical, and Frenet frames respectively. This section generalizes this
perspective for variable frames.
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By a matrix function, we mean a function F : U → Mm×n(R), where U is
an open subset of Rp. Identifying the set of m × n matrices Mm×n(R) with
the Euclidean space Rmn, the analysis on multivariable functions developed in
Chapter 1 applies. A single variable matrix function can be viewed as a curve
γ : I → Mm×n(R), where I is an interval of R. As with any parametrized curve,
the derivative γ′(t) is the m × n matrix of derivatives of component functions of
γ(t).

Proposition 2.3.1. Let γ1(t) and γ2(t) be matrix functions defined over an interval
I, and let A be any constant matrix. Assuming the operations are defined, the
following identities hold:

1. d
dt (A) is the 0-matrix of the same dimensions of A.

2. d
dt (Aγ1(t)) = Aγ′1(t) and d

dt (γ1(t)A) = γ′1(t)A.

3. d
dt (γ1(t) + γ2(t)) = γ′1(t) + γ′2(t).

4. d
dt

(
γ1(t)>

)
= (γ′1(t))>.

5. d
dt (γ1(t)γ2(t)) = γ′1(t)γ2(t) + γ1(t)γ′2(t).

6. If γ1(t) is invertible for all t, then d
dt

(
γ1(t)−1

)
= −γ1(t)−1γ′1(t)γ1(t)−1.

Proof. (Left as exercises for the reader.)

A particularly useful matrix function involves the exponential of matrices. Let
A be a p × p matrix and let ~v ∈ Rp. Consider the sequence {~xn}∞n=0 of vectors
defined by

~xn =
n∑
k=0

1

k!
An~v,

where by A0, we mean the identity matrix I. We prove that this sequence is a
Cauchy sequence. Denoting |A| by the matrix norm of A, we have

‖~xn − ~xm‖ =

∥∥∥∥∥
n∑

k=m+1

1

k!
Ak~v

∥∥∥∥∥ ≤
n∑

k=m+1

1

k!

∥∥Ak~v∥∥
≤

n∑
k=m+1

1

k!
|A|k ‖~v‖ ≤

∞∑
k=m+1

1

k!
|A|k ‖~v‖ ,

where the last inequality follows since all the terms are nonnegative. Then since
(k −m− 1)!/k! ≤ 1/(m+ 1)!, we have

‖~xn − ~xm‖ ≤ |A|m+1‖~v‖
∞∑

k=m+1

(k −m− 1)!

k!

1

(k −m− 1)!
|A|k−m−1

≤ |A|
m+1

(m+ 1)!
‖~v‖

∞∑
j=0

1

j!
|A|j ≤ |A|

m+1

(m+ 1)!
‖~v‖e|A|,
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where we substituted j = k −m − 1. For any positive real number |A|, the limit
of |A|m+1/(m+ 1)! as m→∞ is 0. Hence, for any positive ε, there exists N large
enough so that m,n ≥ N implies that

‖~xn − ~xm‖ ≤
|A|m+1

(m+ 1)!
‖~v‖e|A| ≤ ε.

This establishes that the sequence {~xn}∞n=0 is a Cauchy sequence. Since Rp is a
complete metric space, we conclude that this sequence converges. Since the sequence
of vectors converges for all ~v, we conclude that series of matrices in the following
definition converges.

Definition 2.3.2. Let A be an n× n matrix. We define the exponential of A as

eA =
∞∑
k=0

1

k!
Ak.

Proposition 2.3.3. Let A and B be two matrices that commute, i.e., satisfying
AB = BA. Then

eA+B = eAeB .

Proof. (Left as an exercise for the reader.)

This proposition allows us to conclude the following interesting result.

Proposition 2.3.4. For all A ∈Mn×n(R), the exponential matrix eA is invertible.

Proof. The matrices A and −A commute. Hence, by Proposition 2.3.3, eAe−A =
eA−A = e0 = I. Thus eA has an inverse.

Now let A ∈ Mn×n(R) and consider the matrix function γ(t) = eAt. Note first
that γ(0) = I. The derivative of γ(t) is

γ′(t) =
d

dt

( ∞∑
k=0

1

k!
Aktk

)
=
∞∑
k=0

1

k!

d

dt
(Aktk) =

∞∑
k=1

1

k!
Akktk−1

=

∞∑
k=1

1

(k − 1)!
Aktk−1 = A

( ∞∑
k=1

1

(k − 1)!
Aktk−1

)
= AeAt.

In particular γ′(0) = A.
We now connect these concepts to moving frames.
Any frame F of Rn consists of an origin and a basis (~u1, ~u2, . . . , ~un) of Rn. Since

the basis consists of n linearly independent vectors, the matrix

M =

 | | |
~u1 ~u2 · · · ~un
| | |

 ,
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where the ith column is the vector ~ui, is an invertible matrix. Similarly, for any
invertible n×n matrix M , the columns form a basis of Rn. If F is a moving frame,
we can view the vectors of this moving frame as a matrix function M(t) where M(t)
is invertible for all t. More precisely, M is a matrix function M : I → GLn(R),
where I is an interval of R and GLn(R) = {A ∈ Mn×n(R) | det a 6= 0} is the set of
invertible matrices, also called the general linear group.

For any moving frame F with basis vectors (~u1(t), . . . , ~un(t)), we can express
each derivative ~u ′i (t) as a linear combination of these same basis vectors at a given
t. As we did with Equations (2.1), (2.6), (2.8), and (2.23), if we consider the matrix
function M(t) =

(
~u1(t) . . . ~un(t)

)
, then this decomposition can be expressed as

M ′(t) = M(t)A(t)

for some matrix A(t).

Proposition 2.3.5. Let B ∈Mn×n(R) be arbitrary. There exists a variable frame
with matrix function M : I → GLn(R) with rate of change matrix A(t) satisfying
M ′(t) = M(t)A(t) such that A(t0) = B for some t0 ∈ I.

Proof. Consider M(t) = eB(t−t0) = eBte−Bt0 . We note that M(t0) = e0 = In.
By the differentiation property of the matrix exponential, M ′(t) = BeBte−Bt0 =
BeB(t−t0). Thus A(t0) = M(t0)A(t0) = M ′(t0) = Be0 = B.

Many of the examples that we discussed in the previous section involved or-
thonormal variable frames. An orthonormal basis in Rn is any n-tuple of vectors
(~u1, ~u2, . . . , ~un) such that

~ui · ~uj =

{
1, if i = j,

0, if i 6= j.
. (2.28)

Then using as usual M =
(
~u1 ~u2 · · · ~un

)
, we note that the ijth entry of M>M

is precisely the dot product ~ui · ~uj . Consequently, the vectors form an orthonormal
frame if and only if M>M = In, i.e., M is an orthogonal matrix.

Since det(M>) = det(M), an orthogonal matrix M satisfies det(M) = ±1. An
orthonormal basis (~u1, ~u2, . . . , ~un) is called positively oriented if det(M) = 1 and
negatively oriented if det(M) = −1. The set of orthogonal n×n matrices is denoted
by O(n), and the set of positive orthogonal matrices is denoted by

SO(n) = {M ∈ O(n) | det(M) = 1 }.

Both O(n) and SO(n) have a group structure, a property not discussed in this book,
and are respectively called the orthogonal group and special orthogonal group.

(Note that the order of the basis vectors in the n-tuple (~u1, ~u2, . . . , ~un) matters
since a permutation of these vectors may change the sign of the determinant of the
corresponding matrix M . Consequently, we must talk about an n-tuple of vectors
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as opposed to just a set of vectors. One should also be aware that a permutation
of vectors in the basis B = (~u1, ~u2, . . . , ~un) would lead to another basis B′ which
consists of the same set of vectors but has a coordinate transition matrix which is
a permutation matrix.)

We can therefore view an orthonormal moving frame in Rn as a map M : I →
O(n), where I ⊂ R is an interval. In this case, if M is continuous, then det(M(t))
is a continuous function from I to {−1, 1}. Consequently, det(M(t)) is either 1
or −1 for all t. When det(M(t)) = 1, we say that M corresponds to a positive
orthonormal moving frame, and we view M as a function M : I → SO(n). The sets
of matrices O(n) and SO(n) have the subset topology induced from the Euclidean

topology on Rn2

. Consequently, the notions of continuity and differentiability of a
moving frame are familiar notions.

Proposition 2.3.6. Let I ⊂ R be an interval, and let M : I → O(n) be a differen-
tiable function. Then the matrix function A(t) defined by

M ′(t) = M(t)A(t)

is antisymmetric for all t ∈ I. Furthermore, for any antisymmetric matrix B, there
exists a matrix function M : I → O(n) such that A(t0) = B for some t0 ∈ I.

Proof. Since M(t) ∈ O(n), we have M(t)>M(t) = In for all t, and similarly
M(t)M(t)> = In. Hence, using the differentiation rules,

0 = M ′(t)M(t)> +M(t)
d

dt
(M(t)>) = M ′(t)M(t)> +M(t)(M ′(t))>.

ThusM(t)(M ′(t))> = −M ′(t)M(t)> so after multiplying on the right by
(
M(t)−1

)>
and on the left by M(t)−1, we get

(M ′(t))>
(
M(t)−1

)>
= −M ′(t)M(t)−1

=⇒
(
M(t)−1M ′(t)

)>
= −M(t)−1M ′(t).

However, from the definition of the matrix functionA(t), we haveA(t) = M(t)−1M ′(t).
Hence, we deduce that A(t)> = −A(t) and therefore that A(t) is antisymmetric.

For the second part of the proof, let B be antisymmetric, i.e., B> = −B, and
consider the matrix function M(t) = eB(t−t0). Then

M(t)> =

( ∞∑
k=0

1

k!
Bk(t− t0)k

)>
=
∞∑
k=0

1

k!
(B>)k(t− t0)k

=
∞∑
k=0

1

k!
(−1)k(B)k(t− t0)k =

∞∑
k=0

1

k!
(B)k(t0 − t)k

= eB(t0−t) = M(t)−1.
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Hence, M(t) is orthogonal for all t ∈ I. Then M ′(t) = BeB(t−t0) = BM(t) so

M ′(t0) = BM(t0) = BI = B,

and the result follows.

The four cases that motivated this section, namely Equations (2.1), (2.6), (2.8),
and (2.23), illustrate the first part of Proposition 2.3.6. In all of those examples,
the A(t) matrix function was an antisymmetric matrix for all t.

Problems

2.3.1. Prove Proposition 2.3.3.

2.3.2. Let J be a constant n × n matrix and let γ : (−ε, ε) → GLn(R) be a differen-
tiable matrix function, where ε > 0. Suppose that γ(0) = In and suppose that
γ(t)>Jγ(t) = J for all t ∈ (−ε, ε). Prove that the matrix γ′(0) satisfies

γ′(0)>J = −Jγ′(0).

2.3.3. Find an example of an n×n-matrix function γ(t) such that f ′(t) is never 0, where
f(t) = det(γ(t)), but such that det(γ′(t)) = 0 for all t.

2.3.4. Let γ : I → Rm×n be a differentiable matrix function, and let f : J → I be a
differentiable function. Prove the chain rule for matrix functions, namely,

d

dt

(
γ(f(t))

)
= γ′(f(t)) f ′(t).

2.3.5. Let A(t) and B(t) be two n× n matrix functions defined over an interval I ⊂ R.

(a) Suppose that A(t) and B(t) are similar for all t ∈ I. Prove that A′(t) and
B′(t) are not necessarily similar.

(b) Suppose that A(t) and B(t) are similar for all t ∈ I and that A(t0) = λI.
Prove that A′(t0) and B′(t0) are similar.

(c) Suppose that A(t) and B(t) are similar in that B(t) = SA(t)S−1 for some
fixed invertible matrix S. Prove that A′(t) and B′(t) are similar.

2.3.6. Prove Proposition 2.3.1.

2.3.7. Suppose that γ : I → GLn(R) be a matrix function and let A(t) = eγ(t). Is it true
that A′(t) = eγ(t)γ(t).

2.3.8. Let A be a diagonalizable matrix with A = PDP−1, where D is diagonal with

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

and λi ∈ R for all i. Prove that

eAt = P


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
. . .

...

0 0 · · · eλnt

P−1.
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2.3.9. Show that if

A =

(
0 −ω
ω 0

)
then

eAt =

(
cosωt − sinωt
sinωt cosωt

)
.

2.3.10. Let ~ω ∈ R3 be a nonzero vector.

(a) Show that for any ~x ∈ R3, we can write the cross product as the matrix
product

~ω × ~x =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ~x.

(b) Call W the 3 × 3 matrix in the above expression. Prove that eWt is the
matrix of rotation about the axis with direction ~ω and with angle ‖~ω‖t.

2.3.11. We define SLn(R) = {A ∈ Mn×n(R) | det(A) = 1} and call this set the special
linear group. Suppose that M : (−ε, ε) → SLn(R) with M(0) = In, the identity
matrix, and suppose that M ′(t) = M(t)A(t) for all t ∈ (−ε, ε). Prove that the
trace of A(0) is TrA(0) = 0. [Recall that the trace of a matrix is the sum of its
diagonal elements. Hint: Use the definition of the determinant that if M = (mij),
then

det(M) =
∑
σ∈Sn

(signσ)m1σ(1)m2σ(2) · · ·mnσ(n),

where Sn is the set permutations on n elements.]

2.3.12. This exercise gives an interesting property about the derivative of determinants
of square matrices of functions. Let A = (aij(t)) be an n× n matrix of functions.

(a) Use the formula for the determinant given in the previoius exercise to show
that

d

dt
(detA) =

n∑
i=1

n∑
j=1

(−1)i+j det(Aij)
daij
dt

,

where Aij is the ijth minor of A.

(b) Conclude that if A is a symmetric matrix, then

d

dt
(detA) = (detA)

n∑
i,j=1

aij
daij
dt

,

where the aij are the entries of the inverse matrix A−1.
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CHAPTER 3

Differentiable Manifolds

In previous geometry or calculus courses, we studied curves and surfaces as subsets
of some ambient Euclidean space Rn. We defined parametrizations as vector func-
tions of one (for a curve) or two (for a surface) variables into R2 or R3, without
pointing out that many of our constructions relied on the fact that R2 and R3 are
topological vector spaces. That we have only studied geometric objects that are
subsets of R3 does not belie our intuition since the daily reality of human experi-
ence evolves (or at least appears to evolve) completely in three dimensions that we
feel are flat. However, both in mathematics and in physics, one does not need to
take such a large step in abstraction to realize the insufficiency of this intuition.

In geometry, one can easily define natural point sets that cannot be properly
represented in only three dimensions. For example, the real projective plane RP2

can be defined as the set of equivalence classes of lines through the origin in R3 or
also as the set of equivalence classes of points in R3−{(0, 0, 0)} under the equivalence
relation

(x0, x1, x2) ∼ (y0, y1, y2) if and only if

(y0, y1, y2) = (λx0, λx1, λx2) for some λ ∈ R− {0}.

The projective plane plays a fundamental role in geometry, and also in topology
and algebraic geometry. From the above construction, it appears that the projec-
tive plane (as its name suggests) should be a two-dimensional object since, from
a topological viewpoint, it is the identification space (see Definition A.2.44) of a
three-dimensional object by a one-dimensional object. Both in classical geometry
and in algebraic geometry, there exist natural methods to study curves on the pro-
jective plane, thereby providing a language to “do analysis” on the projective plane.
Nonetheless, it is not hard to show that no subset of R3 is homeomorphic to RP2.
There does exist a subset of R4 that is in fact homeomorphic to RP2 but this fact
is not obvious from the definition of the projective plane. Consequently, to pro-
vide definitions that include projective spaces and other more abstract geometric
objects, we must avoid referring to some ambient Euclidean space.

65



66 3. Differentiable Manifolds

In physics, the need for eliminating a Euclidean ambient space boasts a more
colorful history. Inspired by evidence provided by scientists like Toricelli, explorers
of the 15th and 16th centuries debunked the flat-earth theory by circumnavigating
the globe. Though the normal Euclidean geometry remained valid on the small
scale, namely, doing geometry on a flat surface (sheet of paper or plot of land), such
methods no longer sufficed when considering the geometry of the earth as a whole.
In particular, the science of cartography suddenly became far more mathemati-
cal in nature as navigators attempted to represent, with some degree of accuracy,
coastlines of continents on a flat sheet of paper.

No less revolutionary was Einstein’s theory of general relativity in which both
space and time are connected as a single, four-dimensional space-time entity that
could itself be curved. In fact, following from the postulate that nothing with mass
travels faster than the speed of light, Einstein’s theory purports that mass must
distort space-time.

The practical need to do geometry or do physics in continuous point-set spaces
that are not Euclidean leads us to generalize our concepts of curves and surfaces
to higher-dimensional objects. We will call these objects of study differentiable
manifolds. We will then define maps between manifolds and establish an analysis
of maps between differentiable manifolds. Our definitions, which may seem a little
weighty, attempt to retain sufficient restrictions to ensure that doing calculus on
the sets is possible, while preserving enough freedom to incorporate the rich variety
of geometric objects to which we wish to apply our techniques.

3.1 Definitions and Examples
As a motivating example for differentiable manifolds, we recall the definition of a
regular surface in R3 (see [5, Chapter 5] for more background).

Definition 3.1.1. A subset S ⊂ R3 is a regular surface if for each p ∈ S, there
exists an open set U ⊂ R2, an open neighborhood V of p in R3, and a surjective
continuous function ~X : U → V ∩ S such that

1. ~X is differentiable: if we write ~X(u, v) = (x(u, v), y(u, v), z(u, v)), then the
functions x(u, v), y(u, v), and z(u, v) have continuous partial derivatives of all
orders;

2. ~X is a homeomorphism: ~X is continuous and has an inverse ~X−1 : V ∩S → U
such that ~X−1 is continuous;

3. ~X satisfies the regularity condition: for each (u, v) ∈ U , the differential

d ~X(u,v) : R2 → R3 is a one-to-one linear transformation.

This definition already introduces many of the subtleties that are inherent in
the concept of a manifold. In the above definition, each function ~X : U → V ∩ S is
called a parametrization of a coordinate neighborhood .

Now, as we set out to define differentiable manifolds and remove any reference
to an ambient Euclidean space, we begin from the context of topological spaces.
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(Appendix A gives a brief introduction to topological spaces.) Not every topo-
logical space can fit the bill of usefulness for differential geometry, so we require
some additional properties of what types of topological spaces we will consider.
We first impose the requirement of having a cover of open sets, each of which is
homeomorphic to an open set in a Euclidean space.

Definition 3.1.2. A topological manifold of dimension n is a Hausdorff topological
space M with a countable base such that for all x ∈ M , there exists an open
neighborhood of x that is homeomorphic to an open set of Rn.

The reader is encouraged to refer to Section A.2 in the appendices for defini-
tions and discussions about the base of a topology and the Hausdorff property. A
topological space that has a countable base is called second countable. The techni-
cal aspect of this definition attempts to define a category of objects as general as
possible, while still remaining relevant for geometry that generalizes that on Rn.

In the definition of a topological manifold, a given homeomorphism of a neigh-
borhood of M with a subset of Rk provides a local coordinate system or coordinate
patch. As one moves around on the manifold, one passes from one coordinate patch
to another. In the overlap of coordinate patches, there exist change-of-coordinate
functions that, by definition, are homeomorphisms between open sets in Rn (see
Figure 3.1). However, in order to define a theory of calculus on the manifold, these
functions must be differentiable. We make this clear in the following definition.

Definition 3.1.3. A differentiable manifold M of dimension n is a topological
manifold along with a collection of functions A = {φα : Uα → Rn}α∈I with Uα
open in M called charts, satisfying

1. For each chart, φα(Uα) = Vα is open in Rn and φα : Uα → Vα is a homeomor-
phism;

2. The collection of sets Uα, called coordinate patches, cover M , i.e.,

M =
⋃
α∈I

Uα;

3. For any pair of charts φα and φβ , the change-of-coordinates

φαβ
def
= φα ◦ φ−1

β |φβ(Uα∩Uβ) : φβ(Uα ∩ Uβ) −→ φα(Uα ∩ Uβ),

called the transition function, is a function of class C1 between open subsets
of Rn.

The collection of functions A = {φα}α∈I satisfying the above conditions is called
an atlas.

A differentiable manifold is called a Ck manifold, a smooth manifold, or an
analytic manifold if all the transition functions in the atlas are respectively Ck,
C∞, or analytic.
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φ1

V1

U1

M

φ1(U1 ∩ U2)

φ2 ◦ φ−1
1

φ2(U1 ∩ U2)

φ2

U2

V2

Figure 3.1: Change-of-coordinate maps.

A few comments about notation are in order here. Mimicking the notation
habits for common sets (Euclidean space Rn, or the n sphere as Sn), if M is an n-
dimensional differentiable manifold, we sometimes shorten the language by referring
to the “differentiable manifold Mn.” Also, though technically a chart is a function
φ : U → Rn, where U is an open subset of the manifold M , one sometimes refers to
the chart (U, φ) to emphasize the letter to be used for the domain of φ. Though we
use a single letter to designate a differentiable manifold, the atlas A is an essential
part of the definition; consequently, we sometimes refer to the differentiable manifold
as the pair (Mn,A) to indicate the letter we are using to designate the atlas.
Finally, since the domains Uα of the charts cover M , they satisfy the condition of
a topological manifold that each x ∈ M must have an open neighborhood that is
homeomorphic to an open set in Rn.

At first pass, the definition of a differentiable manifold may seem unnecessarily
complicated. However, this definition removes any reference to an ambient space,
a feature whose virtues we discussed in the introduction to this chapter. After all,
from a geometric perspective, this is the safe thing to do: a priori we do not know
whether a given manifold can be described as a subset of an ambient Euclidean
space. The application to general relativity also gives a compelling reason: in
general relativity, the universe is a spacetime whole that is not Euclidean, sometimes
called “curved.” However, it would be misleading to think of this curved spacetime
as a subset of a larger Euclidean space. Removing any reference to an ambient space
is the proper approach to presenting a mathematical structure that appropriately
models a non-Euclidean space in which we wish to do calculus. The above definition
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Figure 3.2: Stereographic projection.

and subsequent constructions have proven general enough and structured enough
to be useful in geometry and in physics.

Many properties of manifolds that arise in analysis are local properties, in that
we only need to know information about the manifold M in some neighborhood of
a point p ∈M . When this is the case, we can restrict our attention to a single coor-
dinate chart φα : Uα → Rn, where p ∈ Uα. Saying that the coordinates of a point p
(with respect to this chart) are (x1, x2, . . . , xn) means that φα(p) = (x1, x2, . . . , xn).
For reasons that will only become clear later, it is convenient to follow the tensor
notation convention of using superscripts for coordinates. This makes writing poly-
nomial functions in the coordinates more tedious but this notation will provide a
convenient way to distinguish between covariant and contravariant properties.

Example 3.1.4 (Sphere). Consider the unit sphere S2 = {(x, y, z) ∈ R3 |x2 + y2 +
z2 = 1} and call N = (0, 0, 1) the North pole and call S = (0, 0,−1) the South
pole. We define the stereographic projection from the North pole N as the function
πN : S2 − {N} → R2, where πN (p) is the intersection of the line (Np) with the
xy-plane. (See Figure 3.2). The definition for πS , the stereographic projection from
the South pole, is similar.

In Exercise 3.1.1, we prove the following results. The formula for stereographic
projection:

1. from the north pole is πN (x, y, z) =
( x

1− z
,

y

1− z

)
, and

2. from the south pole is πS(x, y, z) =
( x

1 + z
,

y

1 + z

)
.
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The inverses of stereographic projection are not hard to find either. In particular,

π−1
N (u, v) =

( 2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
, and

π−1
S (u, v) =

( 2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,−u

2 + v2 − 1

u2 + v2 + 1

)
The domain of πN is UN = S2 − {N} and the domain of πS is US = S2 − {S}, so
these domains do cover the sphere S2. As fractions of polynomials, πN and π−1

N are
both continuous, so πN is a homeomorphism. The same holds for πS .

For the transition function πs◦π−1
N , we note first that the domain is πN (UN∩US).

Since πN (S) = (0, 0), we have πN (UN ∩US) = R2−{(0, 0)}. Furthermore, it is not
hard to show that

πS ◦ π−1
N (u, v) =

( u

u2 + v2
,

v

u2 + v2

)
. (3.1)

By repeated application of the quotient rule, any repeated partial derivative of
either component function of πS ◦ π−1

N is a polynomial in u and v divides by a
power of u2 + v2. Since the domain of πS ◦ π−1

N is R2 − {(0, 0)}, all of these partial
derivatives exist and are continuous. Thus, πS ◦π−1

N is C∞. The same thing occurs
for πN ◦ π−1

S . Hence, the set {πN , πS} provides an atlas that equips S2 with the
structure of a smooth manifold.

Example 3.1.5 (Sphere with Another Atlas). We can prove that the unit sphere
S2 is a smooth two-dimensional manifold using another atlas, this time using rect-
angular coordinates for the parametrizations.

Consider a point p = (x, y, z) ∈ S2, and let V = {(u, v) |u2 + v2 < 1}. If

z > 0, then the mapping ~X(1) : V → R3 defined by (u, v,
√

1− u2 − v2) is clearly

a bijection between V and S2 ∩ {(x, y, z)|z > 0}. ~X(1) is also a homeomorphism

because it is continuous and its inverse ~X−1
(1) is simply the vertical projection of

the upper unit sphere onto R2, and since projection is a linear transformation, it is
continuous.

We cover S2 with the following parametrizations ~X(i) : V → R3:

if z > 0, ~X(1)(u, v) = (u, v,
√

1− u2 − v2),

if z < 0, ~X(2)(u, v) = (u, v,−
√

1− u2 − v2),

if y > 0, ~X(3)(u, v) = (u,
√

1− u2 − v2, v),

if y < 0, ~X(4)(u, v) = (u,−
√

1− u2 − v2, v),

if x > 0, ~X(5)(u, v) = (
√

1− u2 − v2, u, v),

if x < 0, ~X(6)(u, v) = (−
√

1− u2 − v2, u, v).

Figure 3.3 depicts an expanded view of these coordinate patches. The inverses for
each of these parametrizations give coordinate charts φi = ~X−1

(i) : Ui → Vi, which

together form an atlas on the sphere.
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~X(1)

~X(2)

~X(3)

~X(4)

~X(5)

~X(6)

Figure 3.3: Six coordinate patches on the sphere.

We notice in this case that all Vi = {(u, v) |u2 + v2 < 1}. Also, not all Ui
overlap; in particular, U1 ∩ U2 = ∅, U3 ∩ U4 = ∅, and U5 ∩ U6 = ∅. To show that
the sphere equipped with this atlas is a differentiable manifold, we must show that
all transition functions are C1. We illustrate this with φ31 = φ3 ◦ φ−1

1 .
The identification (ū, v̄) = φ3 ◦ φ−1

1 (u, v) is equivalent to

(ū,
√

1− ū2 − v̄2, v̄) = (u, v,
√

1− u2 − v2).

This leads to

φ1(U1 ∩ U3) = {(u, v) |u2 + v2 < 1 and v > 0},
φ3(U1 ∩ U3) = {(ū, v̄) | ū2 + v̄2 < 1 and v̄ > 0},

and

φ31(u, v) = (u,
√

1− u2 − v2).

It is now easy to verify that φ31 is of class C1 over φ1(U1 ∩ U3). In fact, higher
derivatives of φ31 involve polynomials in u and v possibly divided by powers of√

1− u2 − v2. Hence, over φ1(U1 ∩ U3), the function φ31 is of class C∞. It is
not hard to see that all other transition functions are similar. Thus, this atlas
A = {φi}6i=1 equips S2 with the structure of a smooth manifold.

Example 3.1.6 (Projective Space). The n-dimensional real projective space RPn
is defined as the set of lines in Rn+1 through the origin. No two lines through the
origin intersect any place else and, for each point p in Rn, there exists a unique line
through the origin and p. Therefore, one can describe RPn as the set of equivalence
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classes of points in Rn+1 − {(0, 0, . . . , 0)} under the equivalence relation

(x0, x1, . . . , xn) ∼ (y0, y1, . . . , yn) if and only if

(y0, y1, . . . , yn) = (λx0, λx1, . . . , λxn) for some λ ∈ R− {0}.

We designate the equivalence class of a point (x0, x1, . . . , xn) by the notation (x0 :
x1 : . . . : xn). The set RPn is a topological space with the quotient topology coming
from the quotient map π : Rn+1 − {0} → RPn given by π(x0, x1, . . . , xn) = (x0 :
x1 : . . . : xn). Since Rn+1 − {0} is second countable (has a countable base, namely
the open balls in Rn+1−{0} of rational radius with centers of rational coordinates),
the quotient space RPn inherits a countable base.

General theorems in topology quickly establish that RPn is Hausdorff but we give
a direct proof here. Call O = (0, 0, . . . , 0) in Rn+1. For α > 0 and A ∈ Rn+1 − {0},
define Cα(A) as the double open cone

Cα(A) = {B ∈ Rn+1 |∠AOB < α or ∠AOB > π − α},

with axis of revolution (OA) and opening angle of 2α. For all α, the cone Cα(A) is
an open subset of Rn+1.

Let p, q ∈ RPn be distinct points. Let p1 ∈ π−1(p) and let q1 ∈ π−1(q) such that
∠p1Oq1 ≤ π/2. Since p 6= q, the angle ∠p1Oq1 is positive. Define α to be an angle
with 0 < α < 1

2∠p1Oq1. Then Cα(p1) ∩ Cα(q1) = ∅.
Call U = π(Cα(p1)) and V = π(Cα(q1)). Since Cα(p1) and Cα(q1) are open, the

topology on RPn is defined so that U and V are open in RPn. Furthermore, p ∈ U
and q ∈ V . Also,

π−1(U ∩ V ) = π−1(U) ∩ π−1(V ) = Cα(p1) ∩ Cα(q1) = ∅,

where the middle equality holds because we used cones, namely unions of lines
through O. However, the function π is surjective, so we deduce that U ∩ V = ∅.
Since p and q were arbitrarily chosen, we deduce that RPn is Hausdorff.

We can define an atlas on RPn as follows. Note that if (x0, x1, . . . , xn) ∼
(y0, y1, . . . , yn), then for any i, we have xi = 0 if and only if yi = 0. For i ∈
{0, 1, . . . , n}, define Ui = {(x0 : x1 : . . . : xn) ∈ RPn |xi 6= 0} and define φi : Ui →
Rn by

φi(x0 : x1 : . . . : xn) =
(x0

xi
,
x1

xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)
,

where the â notation indicates deleting that entry from the (n + 1)-tuple. It is
easy to see that each φi is a homeomorphism between Ui and Rn. Furthermore,
U0 ∪ · · · ∪ Un includes all ratios (x0 : . . . : xn) for which not all xi = 0. Thus,
U0 ∪ · · · ∪ Un = RPn.

So far, we have established that RPn has the structure of a topological manifold
and we have given it natural charts. We need to show that the transition functions
between coordinate patches are differentiable.
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Assume without loss of generality that i < j. Then φi(Ui∩Uj) = {(a1, . . . , an) ∈
Rn | aj 6= 0} and φj(Ui ∩ Uj) = {(a1, . . . , an) ∈ Rn | ai+1 6= 0}. (The apparent
difference comes from i < j.) Then the change-of-coordinate function φj ◦ φ−1

i is

φj ◦ φ−1
i (a1, a2, . . . , an) = φj(a1 : a2 : . . . : ai : 1 : ai+1 : . . . : an)

=
(a1

aj
,
a2

aj
, . . . ,

ai
aj
,

1

aj
,
ai+1

aj
, . . . ,

âj
aj︸︷︷︸

(j+1)th

, . . . ,
an
aj

)
.

Note that we remove the (j + 1)th entry from an (n+ 1)-tuple labeled, whose first
index is 1.

It is not hard to see that φj ◦ φ−1
i is indeed a bijection between φi(Ui ∩ Uj)

and φj(Ui ∩ Uj). Furthermore, all higher partial derivatives of φj ◦ φ−1
i exist over

φi(Ui ∩ Uj).
The same reasoning works if i > j. Therefore, this atlas satisfies the condition

required to equip RPn with the structure of a smooth manifold.
We point out that it is possible to define RPn in a slightly different way. Consider

the unit sphere Sn as a subset of Rn+1 and consider the antipodal function A :
Sn → Sn defined by A(p) = −p. We can define RPn as Sn where antipodal points
are identified. In other words, projective space is the set of equivalence classes of
antipodal points

RPn = {{p,−p} | p ∈ Sn}.

We define the projection π : S2 → RP2 as the function π(p) = [p], where [p] =
{p,−p} is the equivalence class. This function helps define the topology on RP2

(see Section A.2.3) but it is not as simple to define the manifold structure of RP2

from this quotient map.

Before providing more examples, we must emphasize a technical aspect of the
definition of a differentiable manifold. If M is a topological manifold not inherently
defined as the subset of a Euclidean space, we do not study whether M is or is not a
differentiable manifold, but rather, we discuss whether it is possible to equip M with
an atlas that equips it with the structure of a differentiable manifold. Also, as we
saw in the above examples, since the domains of the charts cover M , these domains
provide the open neighborhoods for each point that occur in the last condition of a
topological manifold.

Definition 3.1.7. Two differentiable (respectively, Ck, smooth, analytic) atlases
{φα} and {ψi} on a topological manifold M are said to be compatible if the union
of the two atlases is again an atlas on M in which all the transition functions are
differentiable (respectively, Ck, smooth, analytic).

Interestingly enough, not all atlases are compatible in a given category. It is also
possible for the union of two atlases of class Ck to form an atlas of class Cl, with
l < k. The notion of compatibility between atlases is an equivalence relation, and
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an equivalence class of differentiable (respectively, Ck, smooth, analytic) atlases is
called a differentiable (respectively, Ck, smooth, analytic) structure. Proving that a
given topological manifold has a unique differentiable structure or enumerating the
differentiable structures on a given topological manifold involves techniques that
are beyond the scope of this book. For example, in [29], published in 1963, Kervaire
and Milnor prove that S7 has exactly 28 nondiffeomorphic smooth structures.

Example 3.1.8. We point out that for any integer n ≥ 1, the Euclidean space Rn
is an n-dimensional manifold. (The standard atlas consists of only one function,
the identity function on Rn.)

Example 3.1.9. A manifold M of dimension 0 is a set of points with the discrete
topology, i.e., every subset of M is open. The notion of differentiability is vacuous
over a 0-dimensional manifold.

Note that this example indicates that a manifold is not necessarily connected
but may be a union of connected components, each of which is a manifold in its
own right.

Example 3.1.10 (An Alternate Smooth Structure on R). Let M = R and consider
the function ψ : M → R defined by ψ(x) = x3. The function ψ is a homeomorphism
so the singleton set {ψ} forms an atlas on R. The standard structure on R, as
described in Example 3.1.8, uses the atlas {φ}, where φ : M → R is φ(x) = x.
However, though {φ} and {ψ} define smooth structures on R, these two atlases are
incompatible. Consider the function φ ◦ ψ−1(x) = 3

√
x. It is a homeomorphism but

it is not differentiable at 0. Hence, {φ, ψ} is not a differentiable atlas, let alone a
smooth one.

Example 3.1.11 (Open Subsets of Manifolds). Let Mn be a differentiable manifold
with atlas A = {φα : Uα → Rn}α∈I . Let V be an open subset of M . Consider the
set of functions A′ = {φα|V : Uα ∩ V → Rn}α∈I . We have

⋃
α∈I

Uα ∩ V =

(⋃
α∈I

Uα

)
∩ V = M ∩ V = V.

Hence Uα ∩ V , for α ∈ I, cover V . Because φα is a homeomorphism with its image
φα(Uα), then φα(Uα∩V ) is open in Rn and φα|V is also a homeomorphism. Finally,

φα|V ◦ (φβ |V )−1
∣∣
φβ(Uα∩Uβ∩V )

= φα ◦ φ−1
β

∣∣
φβ(Uα∩Uβ∩V )

,

which is the same class of function as φα ◦ φ−1
β . Hence, if V is any open subset of

M , then it inherits the same class of structure of M .

When working with examples of manifolds that are subsets of Rk, it is often
easier to specify coordinate charts x : U ⊂ Mn → Rn by providing a parametriza-
tion x−1 : x(U) → Mn that is homeomorphic with its image. Since the chart is a
homeomorphism, this habit does not lead to any difficulties.
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Figure 3.4: A square as a differentiable manifold.

Example 3.1.12. Consider a trefoil knot K in R3. One can realize K as the image
of the parametric curve

γ(t) =
(
(2 + cos(3t)) cos(2t), (2 + cos(3t)) sin(2t), sin(3t)

)
for t ∈ R. We can choose an atlas of K as follows. Set one coordinate patch on
K to be U1 = γ

(
(0, 2π)

)
and another patch to be U2 = γ

(
(π, 3π)

)
. Use as charts

the functions φ1 and φ2, which are the inverse functions of γ : (0, 2π) → K and
γ : (π, 3π)→ K, respectively. Now

φ2(U1 ∩ U2) = (π, 2π) ∪ (2π, 3π) and φ1(U1 ∩ U2) = (0, π) ∪ (π, 2π),

and the coordinate transition functions are

φ1 ◦ φ−1
2 (t) =

{
t, if t ∈ (π, 2π),

t− 2π, if t ∈ (2π, 3π),

φ2 ◦ φ−1
1 (t) =

{
t+ 2π, if t ∈ (0, π),

t, if t ∈ (π, 2π).
.

Both of these transition functions are differentiable on their domains. This shows
that K, equipped with the given atlas, is a 1-manifold.

From the previous example, it is easy to see that any regular, simple, closed
curve in Rk can be given an atlas that gives it the structure of a differentiable 1-
manifold. Our intuition might tell us that, say, a square in the plane should not be
a differentiable 1-manifold because of its corners. This idea, however, is erroneous,
as we shall now explain.

Example 3.1.13. Consider the square with unit length side, and define two chart
functions as follows. The function φ1 measures the distance traveled as one travels
around the square in a counterclockwise direction, starting with a value of 0 at
(0, 0). The function φ2 measures the distance traveled as one travels around the
square in the same direction, starting with a value of 1 at (1, 0) (see Figure 3.4).
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Figure 3.5: Not a bijection.

p

p

q

q

Figure 3.6: The Klein bottle.

The functions φ1 and φ2 are homeomorphisms, and the coordinate transition
function is

φ1 ◦ φ−1
2 : (1, 4) ∪ (4, 5)→ (0, 1) ∪ (1, 4),

with

φ1 ◦ φ−1
2 (x) =

{
x, if x ∈ (1, 4),

x− 4, if x ∈ (4, 5).

This transition function (and its inverse, the other transition function) is differen-
tiable over its domain. Therefore, the atlas {φ1, φ2} equips the square with the
structure of a differentiable manifold.

This example shows that, in and of itself, the square can be given the structure
of a differentiable 1-manifold. However, this does not violate our intuition about
differentiability and smoothness because one only perceives the “sharp” corners
of the square in reference to the differential structure of R2. Once we have the
appropriate definitions, we will say that the square is not a submanifold of R2

with the usual differential structure (see Definition 3.6.1). In fact, the atlases in
Examples 3.1.12 and 3.1.13 bear considerable similarity, and, ignoring the structure
of the ambient space, both the square and the knot resemble a circle. We develop
these notions further when we consider functions between manifolds.

It is not hard to verify that a regular surface S in R3 (see Definition 3.1.1) is
a differentiable 2-manifold. The only nonobvious part is showing that the proper-
ties of coordinate patches of a regular surface imply that the coordinate transition
functions are differentiable. We leave this as an exercise for the reader (see Problem
3.1.6).

Parametrized surfaces that are not regular surfaces provide examples of geomet-
ric sets in R3 that are not differentiable manifolds. For example, with the surface
in Figure 3.5, for any point along the line of self-intersection, there cannot exist an
open set of R2 that is in bijective correspondence with any given neighborhood of
p. However, the notion of a regular surface in R3 has more restrictions than that of
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a 2-manifold for two reasons. Applying the ideas behind Example 3.1.13, a circular
(single) cone can be given the structure of a differentiable manifold even though it
is not a regular surface. Furthermore, not every differentiable 2-manifold can be
realized as a regular surface or even as a union of such surfaces in R3. A simple
example is the Klein bottle, defined topologically as follows. Consider a rectangle,
and identify opposite edges according to Figure 3.6. One pair of sides is identified
directly opposite each other (in Figure 3.6, the horizontal edges), and the other pair
of sides is identified in the reverse direction.

It is not hard to see that the Klein bottle can be given an atlas that makes it
a differentiable 2-manifold. However, it turns out that the Klein bottle cannot be
realized as a regular surface in R3.

We end the section by defining the product structure of two manifolds.

Definition 3.1.14. LetMm andNn be two differentiable (respectively, Ck, smooth,
analytic) manifolds. Call their respective atlases {φα}α∈I and {ψβ}β∈J . Consider
the set M×N that is equipped with the product topology. If φ : U → Rm is a chart
for M and ψ : V → Rn is a chart for N , then define the function φ× ψ : U × V →
Rm+n by φ×ψ(p1, p2) = (φ(p1), ψ(p2)). The collection {φα ×ψβ}(α,β)∈I×J defines

a differentiable (respectively, Ck, smooth, analytic) structure on M ×N , called the
product structure.

Consider, for example, the circle S1 with a smooth structure. The product
S1×S1 is topologically equal to a (two-dimensional) torus, and the product structure
defines a smooth structure on the torus. By extending this construction, we define
the 3-torus as the manifold T 3 = S1 × S1 × S1 and inductively the n-torus as
Tn = Tn−1 × S1.

Problems

3.1.1. Stereographic Projection. One way to define coordinates on the surface of the
sphere S2 given by x2 + y2 + z2 = 1 is to use the stereographic projection of
π : S2 − {N} → R2, where N = (0, 0, 1), defined as follows. Given any point
p ∈ S2, the line (pN) intersects the xy-plane at exactly one point, which is the
image of the function π(p). If (x, y, z) are the coordinates for p in S2, let us write
π(x, y, z) = (u, v) (see Figure 3.2).

(a) Prove that πN (x, y, z) =
(

x
1−z ,

y
1−z

)
.

(b) Prove that

π−1
N (u, v) =

( 2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

(c) Show that πS ◦ π−1
N (u, v) =

(
u

u2 + v2
,

v

u2 + v2

)
.

3.1.2. Consider the n-dimensional sphere Sn = {(x1, . . . , xn+1) ∈ Rn+1 |x2
1+· · ·+x2

n+1 =
1}. Exhibit an atlas that gives Sn the structure of a differentiable n-manifold.
Explicitly show that the atlas you give satisfies the axioms of a manifold.
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3.1.3. Let V be an open set in Rk, and let f : V → Rm be a continuous function. Find
an atlas that equips the graph of f , defined as the subset

G = {(x, f(x)) ∈ Rk+m |x ∈ V },

with the structure of a smooth k-manifold.

3.1.4. Describe an atlas for the 3-torus T 3 = S1 × S1 × S1. Find a parametric function
X : U → R4, where U is a subset of R3, such that the image of X is a 3-torus.

3.1.5. We revisit Example 3.1.10. Let φ0(x) = x be the identity map on R. The atlas
{φ0} equips R with its usual differentiable structure. Let φ1 : R → R defined by
φ1(x) = x3 + x. Prove that φ1 is a homeomorphism and conclude that {φ1} is a
differentiable atlas on R. Prove that {φ0} and {φ1} are compatible atlases.

3.1.6. Prove that a regular surface in R3 (see Definition 3.1.1) is a differentiable 2-
manifold.

3.1.7. Consider the following two parametrizations of the circle S1 as a subset of R2:

X1(t) = (cos t, sin t) for t ∈ (0, 2π),

Y1(u) =
(1− u2

1 + u2
,

2u

1 + u2

)
for u ∈ R.

Find functions X2 and Y2 “similar” to X1 and Y1 respectively, to make {X1, X2}
and {Y1, Y2} atlases that give S1 differentiable structures. Show that these two
differentiable structures are compatible.

3.1.8. Consider the real projective plane RP2. The atlas described for RP2 has three co-
ordinate charts. Calculate explicitly all six of the coordinate transition functions,
and verify directly that φij = φ−1

ji .

3.1.9. Consider S2 to be the unit sphere in R3. Consider the parametrizations

f : (0, 2π)× (0, π)→ S2, with f(u, v) = (cosu sin v, sinu sin v, cos v),

g : (0, 2π)× (0, π)→ S2, with g(ū, v̄) = (− cos ū sin v̄, cos v̄, sin ū sin v̄).

We have seen that f is injective and so is a bijection onto its range.

(a) Find the range U of f and the range V of g.

(b) Determine f−1(x, y, z) and g−1(x, y, z), where (x, y, z) ∈ S2.

(c) Show that the set of functions {(U, f−1), (V, g−1)} forms an atlas for S2 and
equips S2 with a differentiable structure.

3.1.10. Let Mn be a topological manifold and let D(M) be the collection of atlases on M
that equip M with a differentiable structure. Prove that the relation of compati-
bility is an equivalence relation. [Recall that two atlases A and B are compatible
when A ∪ B ∈ D(M).]

3.1.11. Let Mn be a topological manifold and let D(M) be the collection of atlases on
M that equip M with a differentiable structure. Consider the partial order of
containment ⊂ on D(M). Show that every chain (totally ordered subsets) of
D(M) has an upper bound. Use Zorn’s Lemma to conclude that (D(M),⊂) has
maximal elements. [Some authors reserve the expression differentiable structure
for these maximal elements in D(M).]
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Figure 3.7: Differentiable map between manifolds.

3.2 Differentiable Maps between Manifolds
From a purely set-theoretic perspective, it is easy to define functions between man-
ifolds. Since differentiable manifolds are topological manifolds to begin with, we
can discuss continuous functions between manifolds just as we do in the context
of topology. However, a differential structure on a manifold expressed by a spe-
cific atlas, allows us to make sense of the notion of differentiable maps between
manifolds.

Definition 3.2.1. Let Mm and Nn be differentiable (respectively, Ck, smooth,
analytic) manifolds. A continuous function f : Mm → Nn is said to be differentiable
(respectively, Ck, smooth, analytic) if for any chart y : V → Rn on N and for any
chart x : U → Rm on M , the map

y ◦ f ◦ x−1 : x(U ∩ f−1(V )) ⊂ Rm −→ y(V ) ⊂ Rn (3.2)

is a differentiable (respectively, Ck, smooth, analytic) function. (See Figure 3.7.)
We denote by Ck(Mm, Nn) the set of Ck-differentiable maps from M to N .

In the above definition, the domain and codomain of y ◦ f ◦ x−1 may seem
complicated, but they are the natural ones for this composition of functions.

It follows from this definition that a function between two manifolds cannot
have a stronger differentiability property than do the manifolds themselves. (See
Exercise 3.2.9.) In particular, ifM andN are Ck-differentiable manifolds, we cannot
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discuss functions of class Ck+1 or higher between them. Restricting attention to
smooth manifolds, removes this concern.

In linear algebra, we do not care about all functions between vector spaces but
only linear transformations because, in an intuitive sense, linear transformations
“preserve the structure” of vector spaces. Furthermore, two vector spaces V and W
are considered the same (isomorphic) if there exists a bijective linear transformation
between the two. In the same way, in the category of differentiable manifolds where
we only consider differentiable (or perhaps Ck or smooth) maps between manifolds,
we consider two manifolds the same if they are diffeomorphic.

Definition 3.2.2. Let M and N be two differentiable manifolds. A diffeomorphism
(respectively, Ck diffeomorphism) between M and N is a bijective function F :
M → N such that F is differentiable (respectively, Ck) and F−1 is differentiable
(respectively, Ck). If a diffeomorphism exists between M and N , we say that M
and N are diffeomorphic.

Example 3.2.3. Consider the projection map π : S2 → RP2 that identifies antipo-
dal points on the unit sphere

π(x, y, z) = (x : y : z)

for any (x, y, z) ∈ S2. For S2, we use the atlas {πN , πS} as presented in Exam-
ple 3.1.4, and for RP2, we use the atlas in Example 3.1.6, namely, φi : Ui → R2 for
0 ≤ i ≤ 2, with

φ0(x0 : x1 : x2) =

(
x1

x0
,
x2

x0

)
, φ1(x0 : x1 : x2) =

(
x0

x1
,
x2

x1

)
, (3.3)

and φ2(x0 : x1 : x2) =

(
x0

x2
,
x1

x2

)
. (3.4)

For each pairing of coordinate charts we have

φi ◦ π ◦ π−1
N (u, v) = φi

( 2u

u2 + v2 + 1
:

2v

u2 + v2 + 1
:
u2 + v2 − 1

u2 + v2 + 1

)
and

φi ◦ π ◦ π−1
S (ū, v̄) = φi

( 2ū

ū2 + v̄2 + 1
:

2v̄

ū2 + v̄2 + 1
:

1− ū2 − v̄2

ū2 + v̄2 + 1

)
.

For example,

φ0 ◦ π ◦ π−1
N (u, v) =

(
v

u
,
u2 + v2 − 1

2u

)
,

with domain {(u, v) ∈ R2 |u 6= 0}. In all six cases, the resulting functions are
differentiable on their domains and in fact smooth. This shows that the projection
map π : S2 → RP2 is smooth.



3.2. Differentiable Maps between Manifolds 81

Example 3.2.4. Similar to the real projective space RPn, we can also define the
complex projective space CPn as follows. Define the relation ∼ on nonzero (n+ 1)-
tuples in Cn+1 by (z0, z1, . . . , zn) ∼ (w0, w1, . . . , wn) if and only if there exists
nonzero λ ∈ C such that wi = λzi for 0 ≤ i ≤ n. This relation is an equivalence
relation, and the complex projective space CPn is the set of equivalence classes,
written as CPn =

(
Cn+1 − {(0, . . . , 0)}

)
/ ∼ in the notation of quotient sets. We

write (z0 : z1 : · · · : zn) for the equivalence class of (z0, z1, . . . , zn).

The stereographic projection πN of the sphere onto the plane sets up a homeo-
morphism h : CP1 → S2 defined by

h(z0 : z1) =

{
π−1
N (z1/z0), if z0 6= 0,

(0, 0, 1), if z0 = 0.
.

Note that if z0 6= 0, then there is a unique z′ such that (z0 : z1) = (1, z′), namely,
z′ = z1/z0, and that if z0 = 0, then (z0 : z1) = (0 : z) for all z 6= 0. Therefore, one
sometimes says that CP1 is the complex plane C with a “point at infinity,” where
this point at infinity corresponds to the class of (0 : z1). The function h is a bijection
that maps the point at infinity to the north pole of the sphere, but we leave it as
an exercise for the reader to verify that this function is indeed a homeomorphism.

Complex analysis studies holomorphic (i.e., analytic) functions. This notion is
tantamount to differentiable in the complex variable. Any holomorphic function
f : C→ C defines a map pf : S2 → S2 by identifying R2 with C and

pf (q) =

{
π−1
N ◦ f ◦ πN (q) if q 6= (0, 0, 1)

(0, 0, 1) if q = (0, 0, 1)
.

(That pf must send (0, 0, 1) to (0, 0, 1) follows from a theorem in complex analysis,
namely Liouville’s Theorem.)

Consider S2 as a differentiable manifold with atlas {πN , πS}, with coordinates
(u, v) and (ū, v̄) respectively, as described in Example 3.1.4. It is interesting to
notice that, according to Example 3.1.4, the change-of-coordinates map πS ◦ π−1

N

corresponds to z 7→ 1/z̄ over C− {0}, where z̄ is the complex conjugate of z.

Take for example f(z) = z2. The associated function pf leaves (0, 0,−1) and
(0, 0, 1) fixed and acts in a nonobvious manner on S2. According to Definition
3.2.1, in order to verify the differentiability of pf as a function S2 → S2, we need to
determine explicitly the four combinations

(πN or πS) ◦ pf ◦ (πN or πS)−1

and show that they are differentiable on their appropriate domains.

Setting z = u + iv, we have z2 = (u2 − v2) + (2uv)i. Since we are using the
stereographic projection from the north pole to define pf in the first place, we have
πN ◦ pf ◦ π−1

N (u, v) = (u2− v2, 2uv). Determining the other three combinations, we
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find that

πN ◦ pf ◦ π−1
N (u, v) = (u2 − v2, 2uv),

π̄S ◦ pf ◦ π−1
N (u, v) =

( u2 − v2

(u2 + v2)2
,

2uv

(u2 + v2)2

)
,

πN ◦ pf ◦ π−1
S (ū, v̄) =

( ū2 − v̄2

(ū2 + v̄2)2
,

2ūv̄

(ū2 + v̄2)2

)
,

πS ◦ pf ◦ π−1
S (ū, v̄) = (ū2 − v̄2, 2ūv̄).

It is not hard to show that, with f(z) = z2, the corresponding natural domains of
these four functions are R2, R2−{(0, 0)}, R2−{(0, 0)}, and R2. Then it is an easy
check that all these functions are differentiable on their domain and, hence, that pf
is a differentiable function from S2 to S2.

Since R is a one-dimensional manifold, if M is a differentiable manifold, we can
discuss whether a real-valued function f : M → R is differentiable by testing it
against Definition 3.2.1. Suppose also that p is a point of M and that x : U → Rm
is a coordinate chart of a neighborhood of p. Then f ◦x−1 is a differentiable function
from the open set x(U) in Rm to R. Then we define the partial derivative of f at
p in the xi coordinate as

∂f

∂xi

∣∣∣∣
p

def
=

∂(f ◦ x−1)

∂xi

∣∣∣∣
x(p)

. (3.5)

The notation on the left-hand side is defined by the partial derivative on the right-
hand side, which is taken in the usual multivariable calculus sense.

The notion of a differentiable map between differentiable manifolds also allows
us to easily define what we mean by a curve on a manifold.

Definition 3.2.5. Let M be a differentiable manifold. A differentiable curve on
M is a differentiable function γ : (a, b)→M , where the interval (a, b) is understood
as a one-dimensional manifold with the differential structure inherited from R. A
closed differentiable curve on M is a differentiable function γ : S1 → M , where S1

is the circle manifold.

Problems

3.2.1. Consider the antipodal identification map described in Example 3.2.3. Explicitly
write out all six functions φi ◦ f ◦ π−1

N and φi ◦ f ◦ π−1
S . Prove that each one is

differentiable on its natural domain.

3.2.2. In Example 3.2.4, with f(z) = z2, consider points on the unit sphere S2 with
coordinates (x, y, z) ∈ R3. Express pf on S2 − {(0, 0, 1)} in terms of (x, y, z)-
coordinates by calculating π−1

N ◦ f ◦ πN (x, y, z).



3.2. Differentiable Maps between Manifolds 83

3.2.3. Consider the torus T 2 in R3 parametrized by

X(u, v) =
(
(2 + cos v) cosu, (2 + cos v) sinu, sin v

)
for (u, v) ∈ [0, 2π]2. Consider the Gauss map of the torus n : T 2 → S2 that sends
each point of the torus to its outward unit normal vector as an element of S2. Using
the stereographic projection of the sphere, explicitly show that this Gauss map is
differentiable.

3.2.4. Consider the torus T 2 parametrized in the same way as in the previous exercise.
The function X, restricted to (0, 2π)2, gives a homeomorphism

(a) Prove that the function X, restricted to (0, 2π)2, gives a homeomorphism
between an open subset of this torus and an open square in R2. Define
φ1 = X−1.

(b) Show that if we defined φ2 as the inverse of (u, v)→ X
(
u+ π

2
, v + π

2

)
over

(0, 2π)2, and φ3 as the inverse of (u, v) → X (u+ π, v + π) over (0, 2π)2,
then {φ1, φ2, φ3} is an atlas for the torus T 2. Show that no subset of this
atlas is also an atlas of T 2.

(c) Define f : T 2 → S2 in reference to the φ1 chart as

f(u, v) = (cosu sin v, sinu sin v, cos v).

Show that f is well-defined and can be continued continuously over all of
T 2.

(d) Use the stereographic projection atlas {πN , πS} of S2 to calculate dfp for
(y1, y2) = πN ◦ f ◦ φ−1

1 .

3.2.5. Consider the (unit) sphere given with the atlas defined by stereographic projection
A = {πN , πS} as in Example 3.1.4. Consider the function f : S2 → R given by
f(x, y, z) = z in terms of Cartesian coordinates.

(a) Show that for points in the sphere in the coordinate chart of πN , a formula
for the partial derivatives of f is

∂f

∂u
=

4u

(u2 + v2 + 1)2
and

∂f

∂v
=

4v

(u2 + v2 + 1)2
.

(b) Writing the coordinates on the πS chart as (ū, v̄), find a formula for the

partial derivatives
∂f

∂ū
and

∂f

∂v̄
over the coordinate chart πS .

(c) Explain in what sense these partial derivatives are equal over S2, with the
poles {(0, 0, 1), (0, 0,−1)} removed. [Hint: Use the chain rule and the Jaco-
bian matrix from Equation (3.22).]

3.2.6. Consider the function f : RP3 → RP2 defined by

f(x0 : x1 : x2 : x3) =

(
x0x3 − x1x2 : x2

0 − 10x1x2 : x2
3 cos

(
x2

1

x2
0 + x2

1 + x2
2 + x2

3

))
.

Prove that f is a well-defined function. Prove also that f is a differentiable map.

3.2.7. Consider the 3-sphere described by S3 = {(z1, z2) ∈ C2 | |z1|2 +|z2|2 = 1}. Consider
the function h : S3 → S2 defined by h(z1, z2) = (z1 : z2) where we identify S2 with
CP1 as in Example 3.2.4. (This function is called the Hopf map.)
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(a) Suppose that z1 = x2 + iy1 and z2 = x2 + iy2. Find an explicit formulation
of h(x1, y2, x2, y2).

(b) Prove that this function is a smooth map S3 → S2. [Hint: Use atlases based
on stereographic projection.]

3.2.8. Let f : Rn+1−{0} → Rm+1−{0} be a differentiable map. Let d ∈ Z, and suppose
that f is such that f(λx) = λdf(x) for all λ ∈ R−{0} and all x ∈ Rn+1−{0}. Such
a map is said to be homogeneous of degree d. For any x ∈ Rk+1 − {0}, denote by
x̄ the corresponding equivalence class in RPk. Show that the map F : RPn → RPm
defined by F (x̄) = f(x) is well defined and differentiable.

3.2.9. Let f : Mm → Nn be differentiable map between differentiable manifolds. Let
(U1, x) and (U2, x̄) be overlapping coordinate charts on M and let (V1, y) and
(V2, ȳ) be overlapping coordinate charts on N . Since we can write

ȳ ◦ f ◦ x̄−1 = (ȳ ◦ y−1) ◦ (y ◦ f ◦ x−1) ◦ (x ◦ x̄−1),

show why in order for a function f : M → N to be of class Ck, both manifolds
must be Ck-differentiable manifolds.

3.3 Tangent Spaces
In the local theory of regular surfaces S ⊂ R3, the tangent plane plays a particularly
important role. We define the first fundamental form on the tangent plane as the
restriction of the dot product in R3 to the tangent. From the coefficients of the first
fundamental form, one obtains all the concepts of intrinsic geometry, which include
angles between curves, areas of regions, Gaussian curvature, geodesics, and even the
Euler characteristic (see references to intrinsic geometry in [5]). The definition of a
real differentiable manifold, however, makes no reference to an ambient Euclidean
space, so we cannot imitate the theory of surfaces in R3 to define a tangent space
to a manifold as a vector subspace of some Rn.

From a physical perspective, we often think of a tangent vector to a surface
S ⊂ R3 as the velocity vector at p of some curve on S through p. We understand
this velocity vector to be an element in R3. Since we define manifolds without
reference to an ambient Euclidean space, simply imagining the notion of a tangent
vector poses serious conceptual challenges.

The reader can anticipate that to circumvent this difficulty, we must take a
step in the direction of abstraction. We identify a tangent vector as a directional
derivative at a point p of a real-valued function on a manifold M . Furthermore,
since we cannot use vectors in an ambient Euclidean space to describe the notion
of direction, we use curves on M through p to provide a notion of direction. The
following construction makes this precise.

Definition 3.3.1. Let Mm be a differentiable manifold and let p be a point on M .
Let ε > 0, and let γ : (−ε, ε) → M be a differentiable curve on M with γ(0) = p.
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For any real-valued differentiable f defined on some neighborhood of p, we define
the directional derivative of f along γ at p to be the number

Dγ(f) =
d

dt
(f(γ(t)))

∣∣∣
t=0

. (3.6)

The operator Dγ is called the tangent vector to γ at p.

If γ1 and γ2 are two curves satisfying the conditions in the above definition,
then Dγ1 = Dγ2 if these operators have the same value at p for all differentiable
functions defined in open neighborhoods of p.

Note that f ◦ γ is a function (−ε, ε)→ R, so the derivative in Equation (3.6) is
taken in the usual sense. It is also interesting to observe that the above definition
does not explicitly refer to any particular chart on U . However, in order to calculate
Dγ(f) it may be necessary to refer to a chart around p.

The above definition of a tangent vector may initially come as a source of mental
discomfort since it presents tangent vectors as operators instead of as the geometric
objects with which we are used to working. However, any tangent vector (defined
in the classical sense) to a regular surface S in R3 naturally defines a directional
derivative of a function S → R so Definition 3.3.1 generalizes the usual notion of a
tangent vector (see [5, Section 5.2]).

As the name “tangent vector” suggests, the set of all tangent vectors forms a
vector space, a fact that we show now.

Let U be an open neighborhood of p in M . Call C1(U,R) the set (vector space)
of all differentiable functions from U to R. A priori, the set of tangent vectors Dγ

at p on M is a subset of all operators W = {C1(U,R)→ R}. By the differentiation
properties

Dγ(f + g) = Dγ(f) +Dγ(g) and Dγ(cf) = cDγ(f),

so Dγ is a linear transformation from C1(U,R) to R. For readers who are familiar
with the dual of a vector space, this latter result shows that Dγ is in the dual vector
space C1(U,R)∗. (We discuss the dual of a vector space in Section 4.1.) We would
like to show that the set of tangent vectors is a subspace of C1(U,R)∗, i.e., closed
under addition and scalar multiplication.

Let γ : (−ε, ε) → M be a differentiable curve with γ(0) = p. If we define
γ1(t) = γ(at), where a is some real number, then using the usual chain rule for any
differentiable function f ∈ C1(U,R), we have

Dγ1(f) =
d

dt
(f(γ(at)))

∣∣∣
t=0

= a
d

dt
(f(γ(t)))

∣∣∣
t=0

= aDγ(f).

This shows that the set of tangent vectors is closed under scalar multiplication.
In order to prove that the set of tangent vectors is closed under addition, we

make reference to a coordinate chart x : U → Rm, where U is an open neighborhood
of p. Without loss of generality, we assume that x(p) = (0, 0, . . . , 0). We rewrite
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the composition f ◦ γ = f ◦ x−1 ◦ x ◦ γ where x ◦ γ : (−ε, ε) → Rm and f ◦ x−1 :
x(U) ⊂ Rm → R. By the chain rule in multivariable analysis, Theorem (1.3.3), we
have

Dγ(f) =
d

dt
(f(γ(t)))

∣∣∣
t=0

=
d

dt
(f ◦ x−1(x ◦ γ(t)))

∣∣∣
t=0

= d(f ◦ x−1)~0d(x ◦ γ)
∣∣
t=0

,

where we evaluate d(f ◦ x−1) at ~0 = (0, 0, . . . , 0) because x(p) = ~0.
Let α and β be two differentiable curves on M such that α(0) = β(0) = p. Over

the intersection of the domains of α and β, define the curve γ by

γ(t) = x−1
(
x ◦ α(t) + x ◦ β(t)

)
.

Note that γ(0) = x−1(x(α(0)) +x(β(0))) = x−1(~0 +~0) = x−1(~0) = p. Furthermore,
for any function f : U → R, we have

Dα(f) +Dβ(f) = d(f ◦ x−1)0d(x ◦ α)|t=0 + d(f ◦ x−1)~0d(x ◦ β)|t=0

= d(f ◦ x−1)~0
(
d(x ◦ α)|t=0 + d(x ◦ β)|t=0

)
= d(f ◦ x−1)~0d(x ◦ α+ x ◦ β)

∣∣
t=0

= Dγ(f).

Thus, the set of tangent vectors is closed under addition. This brings us in a position
to prove the following foundational fact.

Proposition 3.3.2. Let M be a differentiable manifold of dimension m, and let
p be a point of M . The set of all tangent vectors to M at p is a vector space
of dimension m with basis {∂/∂xi | i = 1, . . . ,m}, where (x1, x2, . . . , xm) are the
coordinates on some chart around p.

Definition 3.3.3. The vector space of tangent vectors is called the tangent space
of M at p and is denoted by TpM .

Proof of Proposition 3.3.2. The prior discussion has shown that the set TpM is a
vector space. It remains to be shown that it has dimension m.

Let x : U → Rm be a system of local coordinates at p. Write x(q) = (x1(q), . . .,
xm(q)), and define the coordinate line curve vi : (−ε, ε)→M by vi(t) = x−1(0, . . . , 0,
t, 0, . . . , 0) where the t occurs in the ith place. Then

Dvi(f) =
d

dt

(
f ◦ x−1(0, . . . , 0, t, 0, . . . , 0)

)∣∣
t=0

=
∂f

∂xi

∣∣∣
p

according to the notation given in Equation (3.5). We can therefore write, as

operators, Dvi =
∂

∂xi

∣∣∣
p
.
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For any differentiable curve γ on M with γ(0) = p, we can then write in coor-
dinates x ◦ γ(t) = (γ1(t), . . . , γm(t)), where γi = xi(γ(t)). Then

Dγ(f) =
d

dt
f ◦ x−1(γ1(t), . . . , γm(t))

∣∣
t=0

=
m∑
i=1

∂f

∂xi

∣∣∣
p

dγi

dt

∣∣∣
t=0

.

This presents the operator Dγ as a linear combination of the operators ∂/∂xi
∣∣
p
.

It is also a trivial matter to show that for 1 ≤ i ≤ m, the operators ∂/∂xi
∣∣
p

are

linearly independent. Consequently, they form a basis of TpM , which proves that
dimTpM = m.

Because the operators ∂/∂xi occur so often in the theory of manifolds, one often
uses an abbreviated notation. Whenever the coordinate system is understood by
context, where one uses x = (x1, . . . , xn) or another letter, we write

∂i
def
=

∂

∂xi
, (3.7)

whose explicit meaning is given by Equation (3.5). This notation shortens the
standard partial derivative notation and makes it easier to write it in inline formulas.

From our definition of tangent vectors, if the manifold is of class C2 we can give
an alternate characterization of the tangent space TpM .

Definition 3.3.4. A function from X : C1(M,R) → R is called a derivation of
C1(M,R) at p if it satisfies

1. Linearity: X(af + bg) = aX(f) + bX(g) for all f, g ∈ C1(U,R) and a, b ∈ R;

2. Leibniz’s rule: X(fg) = X(f)g(p) + f(p)X(g) for all f, g ∈ C1(U,R).

Note that Ck(M,R) is an algebra that is, a vector space equipped a “multipli-
cation” operation that is bilinear over the vector space. So, if k ≥ 1, a derivation
on Ck(M,R) at p is a linear transformation from the algebra of Ck(M,R) to R,
satisfying additionally what is tantamount to a product rule.

Proposition 3.3.5. Let X be derivation of C1(M,R) at p and f a constant function
on M . Then X(f) = 0.

Proof. (Left as an exercise for the reader.)

Theorem 3.3.6. Let Mm be a C2-differentiable manifold. The tangent space TpM
is the set of derivations of C2(M,R) at p.

Proof. We have already seen that every tangent vector is derivation so TpM is vector
subspace of the set of derivations of C2(M,R) at p.
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Conversely, let X be a derivation of C1(M,R) at p. Let U be a coordinate
neighborhood of p with coordinates x = (x1, x2, . . . , xm) and suppose that the
coordinates of p are x(p) = (a1, a2, . . . , am). Without loss of generality, suppose
that x(U) is an open ball in Rm with radius x(p). For i = 1, . . . ,m, let X(xi) = vi.

By Theorem 1.3.8, for any function f ∈ C2(M,R), setting

ci = ∂f/∂xi(p) = ∂(f ◦ x−1)/∂xi
∣∣
~a
,

the first-order Taylor series of f at p is

f ◦ x−1(x1, x2, . . . , xm) = (f ◦ x−1)(~a) +
m∑
i=1

ci(x
i − ai)

+
m∑
i=1

(gi ◦ x−1)(x1, x2, . . . , xm)(xi − ai),

where gi ∈ C1(U,R) with (gi ◦ x−1)(~a) = 0. Since gi are of class C1, we can take a
derivation of it. Then by linearity and the Leibniz rule,

X(f) = X(f(p)) +
m∑
i=1

(X(ci)(x
i − ai) + ci(X(xi)−X(ai)))

+
m∑
i=1

X(gi)(x
i − ai)|p + gi(p)(X(xi)−X(ai)).

Then by Proposition 3.3.5 and the assumption that X(xi) = vi,

X(f) =
m∑
i=1

civ
i +

m∑
i=1

(X(gi)0 + 0vi) =
m∑
i=1

civ
i.

Thus X = v1∂1 + v2∂2 + · · ·+ vm∂m. Since ∂i ∈ Tp(M), we deduce that the set of
derivations of C2(M,R) at p is also a subspace of TpM . The result follows.

Example 3.3.7 (Tangent Space of Rn). We consider the tangent space for the
manifold Rn itself. We assume the standard differential structure.

Let p be a point in Rn, and let v = (v1, . . . , vn) be a vector. Consider the line
traced out by the curve γ(t) = p + tv. We wish to find the coordinates of the
tangent vector Dγ with respect to the standard basis of TpM , namely, {∂/∂xi} or,
according to the notation of Equation (3.7), {∂i}. For any real function f defined
over a neighborhood of p, we have

Dγ(f) =
d

dt
f(p1 + tv1, . . . , pn + tvn)

∣∣∣
t=0

=
n∑
i=1

∂f

∂xi

∣∣∣
p
vi

So with respect to the basis {∂/∂xi}, the coordinates of Dγ are (v1, . . . , vn). There-
fore, at each p ∈ Rn, the map v 7→ Dγ sets up an isomorphism between the vector
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spaces Rn and Tp(Rn) by identifying ∂i with the ith standard basis vector. It is
common to abuse the notation and view the tangent space Tp(Rn) as equal to Rn.

Note that if ~v is a unit vector, the Dγ is equal to the directional derivative
operator in the direction of ~v.

More generally, for any differentiable curve γ : (−ε, ε) → Rn with γ(0) = p, we
have

Dγ(f) =
n∑
i=1

∂f

∂xi

∣∣∣
p
γ′i(0).

Hence, as an operator, we can write

Dγ =

n∑
i=1

γ′i(0)
∂

∂xi

∣∣∣
p
,

which illustrates Dγ as a vector with the same components of the usual velocity
vector γ′(0) given with respect to the basis

{
∂/∂xi

}
.

Example 3.3.8 (Regular Surfaces). Let S be a regular surface in R3. In Chapter
5 of [5], the authors define the tangent plane to S at p as the subspace of R3

consisting of all vectors γ′(0), where γ(t) is a curve on S with γ(0) = p. The
correspondence γ′(0)↔ Dγ identifies the tangent space for regular surfaces with the
tangent space of manifolds as defined above. This shows that the present definition
directly generalizes the previous definition as a subspace of the ambient space Rn.

In multivariable calculus, one shows that given a parametrization ~X : V ⊂ R2 →
R3 of a coordinate patch of a regular surface, if p = ~X(u0, v0), then a basis for TpS
is {

~Xu(u0, v0), ~Xv(u0, v0)
}
.

The definition of the tangent plane given in calculus meshes with Definition 3.3.1
and Proposition 3.3.2 in the following way. A tangent vector in the classical sense,
~w ∈ TpM , is a vector such that ~w = ~γ′(t0), where ~γ(t) is a curve on S with ~γ(t0) = p.

Write ~γ(t) = ~X(α(t)), with α(t0) = (u0, v0). Writing α(t) = (u(t), v(t)), we have

~w = u′(t0) ~Xu(u0, v0) + v′(t0) ~Xv(u0, v0). (3.8)

Now the corresponding coordinate chart x on S in the language of manifolds
is the inverse of the parametrization x = ~X−1 defined over U = ~X(V ) ⊂ S. The
tangent vector (in the phrasing of Definition 3.3.1) associated to γ at p is

Dγ(f) =
d

dt

(
f(~γ(t))

)∣∣∣
t0

=
d

dt

(
f
(
~X(α(t))

))∣∣∣
t0

=
d

dt

(
f ◦ x−1(α(t))

)∣∣∣
t0

= u′(t0)
∂f

∂u

∣∣∣
p

+ v′(t0)
∂f

∂v

∣∣∣
p

(3.9)



90 3. Differentiable Manifolds

where the partial derivatives
∂f

∂u

∣∣∣
p

and
∂f

∂v

∣∣∣
p

are in the sense of Equation (3.5). We

can write as operators

Dγ = u′(t0)
∂

∂u

∣∣∣
p

+ v′(t0)
∂

∂v

∣∣∣
p
. (3.10)

Therefore, we see that the correspondence between the definition of the tangent
space for manifolds and the definition for tangent spaces to regular surfaces in R3

identifies ~Xu(u0, v0) with
∂f

∂u

∣∣∣
p

and similarly for the v-coordinate.

Obviously, the bases for TpM described in Proposition 3.3.2 are dependent on
the coordinate charts. The following proposition shows how to change coordinates.

Proposition 3.3.9. Let Mn be a differentiable manifold; let (U1, φ1) and (U2, φ2)
be overlapping coordinate charts; and let p ∈ U1 ∩ U2. Denote by (xi) the co-
ordinates of φ1 and by (x̄j) the coordinates of φ2 Let B = {∂1, ∂2, . . . , ∂n} and
B̄ = {∂̄1, ∂̄2, . . . , ∂̄n} be the two bases for TpM defined by Proposition 3.3.2 with
respect to the coordinate systems (where by ∂̄j we mean ∂/∂x̄j). The coordinate
change matrix from B to B̄ coordinates on TpM is d(φ2 ◦ φ−1

1 ), the differential of
the transition function. In other words, for all X ∈ TpM , if

[X]B =


v1

v2

...
vn

 and [X]B̄ =


v̄1

v̄2

...
v̄n

 , then v̄j =
n∑
i=1

∂x̄j

∂xi
vi.

Proof. (Left as an exercise for the reader.)

Problems

3.3.1. Let M be a differentiable manifold. Let p ∈M and let X ∈ TpM . Prove that if f
is a constant function, then X(f) = 0.

3.3.2. Prove Proposition 3.3.9.

3.3.3. Consider RP2 with the usual atlas {φ0, φ1, φ2}. Let (u1, u2) be coordinates cor-
responding to φ0 and (v1, v2) coordinates corresponding to φ1. Let p ∈ U0 ∩ U1.
Calculate the change of coordinate matrix on Tp(RP2) from u-coordinates to v-
coordinates.

3.3.4. Let M be a differentiable manifold. A class Ck (resp. smooth) function element on
M is a pair (f, U) where U is an open subset of M and f : U → R that is of class
Ck (resp. smooth). Recall that we cannot discuss functions of class Ck unless M
is a Ck-differentiable manifold. Given a point p ∈M , define the relation ≡ on the
set of function elements with (f, U) ≡ (g, V ) whenever p ∈ U ∩ V and there is a
neighborhood W of p in U ∩ V such that f |W = g|W , i.e., the restrictions of f and
g to W are equal as functions.
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(a) Fix a k and a point p ∈ M . Prove that ≡ is an equivalence relation. [The
equivalence class [(f, U)] of some element (f, U), where p ∈ U is called a
germ at p. The set of all germs at p of class Ck functions is denoted by
Ckp (M,R).]

(b) Prove that the following addition and scalar multiplication

[(f, U))] + [(g, V )]
def
= [(f + g, U ∩ V )] and c[(f, U)] = [(cf, U)]

are well-defined and make Ckp (M,R) into a vector space.

(c) Prove that the multiplication on Ckp (M,R)

[(f, U))][(g, V )]
def
= [(fg, U ∩ V )]

is associative, has an identity, and distributes over the addition. [This makes
Ckp (M,R) into an associative algebra.]

(d) Let γ : (−ε, ε)→M be a curve onM with γ(0) = p. Prove thatDγ([(f, U)])
def
=

Dγf is well-defined, i.e., that if (f, U) ≡ (g, V ), then Dγf = Dγg.

3.4 The Differential of a Differentiable Map
Having established the notion of a tangent space to a differentiable manifold at a
point, we are in a position to define the differential of a differentiable map f : M →
N . Recall that in multivariable real analysis, we call a function F : Rm → Rn
differentiable at a point ~p ∈ Rm if there exists an n×m matrix A such that

F (~p+ ~h) = F (~p) +A~h+R(~h),

where R(~h) is a continuous function defined around ~0 such that ‖R(~h)‖/‖~h‖ → 0

as ‖~h‖ → 0. We refer to the matrix A as the differential dF~p. Surprisingly, given
our definition of the tangent space to a manifold, there exists a more natural way
to define the differential.

Definition 3.4.1. Let F : Mm → Nn be a differentiable map between differentiable
manifolds. We define the differential of F at p ∈ M as the linear transformation
between vector spaces

dFp : TpM −→ TF (p)N,

Dγ 7−→ DF◦γ .

The differential dFp is also denoted by F∗ with p is understood by context. If
X ∈ TpM , then F∗(X) is also called the push-forward of X by F .

From this definition, it is not immediately obvious that dFp is linear, but, as the
following proposition shows, we can give an equivalent definition of the differential
that makes it easy to show that the differential is linear. Figure 3.8 depicts the
differential of a map between manifolds.
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M N

p

F (p)

F

TpM TF (p)N

Dγ

DF◦γ
dFp

Figure 3.8: The differential of a map between manifolds.

Proposition 3.4.2. Let F : M → N be a differentiable map between manifolds.
Then at each p ∈M , the function F∗ = dFp satisfies

F∗(X)(g) = X(g ◦ F )

for every vector X ∈ TpM and every function g from N into R defined in a neigh-
borhood of F (p). Furthermore, F∗ is linear.

Proof. Let X ∈ TpM , with X = Dγ , for some curve γ on M with γ(0) = p. For all
real-valued function g defined in a neighborhood of F (p) on N ,

F∗(X)(g) = dFp(Dγ)(g) = DF◦γ(g)

=
d

dt
(g ◦ F ◦ γ)(t)

∣∣∣
p

= Dγ(g ◦ F ) = X(g ◦ F ).

To show linearity, let X,Y ∈ TpM and a, b ∈ R. Then

F∗(aX + bY )(g) = aX(g ◦ F ) + bY (g ◦ F ) = aF∗(X)(g) + bF∗(Y )(g),

which shows that F∗ is linear.

Note that this definition is independent of any coordinate system near p or
F (p). However, given specific coordinate charts x : U → Rm and y : V → Rn whose
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domains are, respectively, neighborhoods of p in M and F (p) in N , with F (U) ⊂ V ,
we can define a matrix that represents dFp. Set vi as the coordinate line for the
variable xi in the chart x. In the usual basis of TpM , we have

F∗(Dvi) = F∗

( ∂

∂xi

)
= DF◦vi .

However, for any smooth function g : N → R,

DF◦γ(g) =

n∑
j=1

∂g

∂yj
d(yj ◦ F ◦ γ)

dt

∣∣∣
t=0

(3.11)

=
n∑
j=1

∂g

∂yj

(
m∑
i=1

∂(yj ◦ F )

∂xi
dγi

dt

∣∣∣
t=0

)
, (3.12)

where γi = xi ◦ γ. Therefore, in terms of these coordinate patches, the matrix for
F∗ with respect to the standard bases {∂/∂xi} on TpM and {∂/∂yj} on TF (p)N is

[
dFp

]
=
(∂F j
∂xi

)
p
, with 1 ≤ i ≤ m, and 1 ≤ j ≤ n, (3.13)

by which we explicitly mean

∂F j

∂xi

∣∣∣∣
p

def
=

∂(yj ◦ F ◦ x−1)

∂xi

∣∣∣∣
x(p)

. (3.14)

Example 3.4.3 (Curves on a Manifold). We used the notion of a curve on a
manifold to define tangent vectors in the first place. However, we can now restate
the notion of a curve on a manifold as a differentiable map γ : I → M , where I
is an open interval of R and M is a differentiable manifold. The tangent vector
Dγ ∈ Tγ(t0)M to the curve γ can be understood as

Dγ = γ∗

( d
dt

∣∣∣
t0

)
. (3.15)

Matching with notation from calculus courses, this tangent vector is sometimes
denoted as γ′(t0). Then this tangent vector acts on differentiable functions f :
M → R by

γ′(t0)(f) = γ∗

( d
dt

∣∣∣
t0

)
(f) =

d(f ◦ γ)

dt

∣∣∣
t0
. (3.16)

Example 3.4.4 (Gauss Map). Consider a regular oriented surface S in R3 with
orientation n : S → S2. (Recall from calculus that the orientation is a choice of a
unit normal vector to S at each point such that n : S → S2 is a continuous function.)
In the local theory of surfaces, the function n is often called the Gauss map. The
differential of the Gauss map plays a central role in the differential geometry of
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surfaces. In that context, we define the differential of the Gauss map dnp at a point
p ∈ S in the following way.

A parametrization ~X(u, v) of a coordinate patch U around p amounts to the

inverse ~X = x−1 of a chart x : U → R2. Similarly, on S2, the parametrization
~N = n ◦ ~X is the inverse of a chart y on S2 of a neighborhood of n(p). Since
~N : U → R3 is a unit vector, by the comments in Section 2.2, we know that ~Nu
and ~Nv are perpendicular to ~N and hence are in the tangent space TpS. Hence, we

often identify TpS = Tn(p)(S2). Let ~X(t) = ~X(~α(t)) be any curve on the surface

such that ~X(0) = p. Then dnp is the transformation on TpS that sends a tangent

vector ~X ′(0) ∈ Tp(S) to d
dt (

~N(~α(t)))
∣∣∣
t=0

.

Via the association of γ′(0) → Dγ between the classical and the modern def-
inition of the tangent space, we see that the classical definition of the differential
of the Gauss map is precisely Definition 3.4.1. (Note that Figure 3.8 specifically
illustrates the differential of the Gauss map.)

Over some neighborhood of n(p), the function ~N : x(U)→ S2 gives a parametriza-
tion of a coordinate neighborhood of n(p) on S2. Write the coordinate functions
as x(q) = (x1(q), x2(q)) and similarly for y. Then the associated bases on TpS and
Tn(p)(S2) are { ∂

∂x1
,
∂

∂x2

}
identified as { ~Xu, ~Xv} and{ ∂

∂y1
,
∂

∂y2

}
identified as { ~Nu, ~Nv}.

Thus, with respect to the coordinate charts x and y as described here, the matrix
for dnp is [

dnp
]

=
(
aij
)
, where ~Nj = a1

j
~X1 + a2

j
~X2,

where by ~Xi, we mean ∂ ~X/∂xi. It is not hard to show that(
a1

1 a1
2

a2
1 a2

2

)
= −

(
g11 g12

g21 g22

)−1(
L11 L12

L21 L22

)
, (3.17)

where gij = ~Xi · ~Xj and Lij = ~Xij · ~N . In classical differential geometry, this matrix
equation for the coefficients aij is called the Weingarten equations. Equation (3.17)
is written as

aij = −
n∑
k=1

gikLkj ,

where gij are the components of the inverse matrix (gkl)
−1.

Corollary 3.4.5 (The Chain Rule). Let M , N , and S be differentiable manifolds,
and consider F : M → N and G : N → S to be differentiable maps between them.
Then

(G ◦ F )∗ = G∗ ◦ F∗ .
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More specifically, at every point p ∈M ,

d(G ◦ F )p = dGF (p) ◦ dFp .
Proof. By Proposition 3.4.2, for all functions h from a neighborhood of G(F (p)) on
S to R and for all X ∈ TpM , we have

(G ◦ F )∗(X)(h) = X(h ◦G ◦ F ) = (F∗(X))(h ◦G)

= (G∗(F∗(X)))(h) = (G∗ ◦ F∗)(X)(h).

Definition 3.4.1 for the differential avoids referring to any coordinate neighbor-
hood on M . In contrast to the matrix for the differential introduced in Chapter 1,
the matrix for the differential dfp of maps between manifolds depends on the co-
ordinate charts used around p and f(p), according to Equations (3.13) and (3.14).
We can, however, say the following about how the matrix of the differential changes
under coordinate changes.

Proposition 3.4.6. Let f : M → N be a differentiable map between differentiable
manifolds. Let x = (x1, . . . , xm) and x̄ = (x̄1, . . . , x̄m) be two coordinate systems in
a neighborhood of p, and let y = (y1, . . . , yn) and ȳ = (ȳ1, . . . , ȳn) be two coordinate
systems in a neighborhood of f(p). Let [dfp] be the matrix for dfp associated to the
x- and y- coordinate systems and let [df̄p] be the matrix of the differential of f but
expressed in x̄-coordinates in the domain and ȳ-coordinates in the codomain. Then

[df̄p] =
( ∂ȳi
∂yj

∣∣∣
f(p)

)
[dfp]

(∂xk
∂x̄l

∣∣∣
p

)
.

Proof. (The proof is left as an exercise for the reader.)

Problems

3.4.1. Let F : Rm → Rn be a linear transformation. Show that under the identification
of Tp(Rk) with Rk as described in Example 3.3.7, F∗ is identified with F .

3.4.2. Consider a differentiable manifold Mm and a real-valued, differentiable function
h : Mm → R. Apply Proposition 3.4.2 to show that h∗(X) corresponds to the
differential operator

h∗(X) = X(h)
d

dt
on functions g : R→ R, where we assume we use the variable t on R.

3.4.3. Let T 2 be the torus given as a subset of R3 with a parametrization

~X(u, v) =
(
(2 + cos v) cosu, (2 + cos v) sinu, sin v

)
.

Consider the sphere S2 given as a subset of R3, and use the stereographic atlas
{πN , πS} as the coordinate patches of S2. Consider the map f : T 2 → S2 defined
by

x 7→ x

‖x‖ .

Explicitly calculate the matrix of the differential dfp, with p given in terms of
(u, v)-coordinates for (u, v) ∈ (0, 2π)2 and using the stereographic atlas on the
sphere.
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3.4.4. Let S3 be the 3-sphere given in R4 by S3 = {u ∈ R4 : ‖u‖ = 1}, and let S2 be the
unit sphere in R3, where we use coordinates (x1, x2, x3). Consider the Hopf map
h : S3 → S2 given by

h(u1, u2, u3, u4) =
(
2(u1u2 + u3u4), 2(u1u4 − u2u3), (u2

1 + u2
3)− (u2

2 + u2
4)
)
.

(Note: the description of h is equivalent to the one given in Problem 3.2.7.)

(a) Show that this map indeed surjects S3 onto S2.

(b) Show that the preimage h−1(q) of any point q ∈ S2 is a circle on S3. [Using
the notation of 3.2.7, show that h−1(1 : z2) is the circle in C2 parametrized
by γ(t) = (Reit, Rz2e

it) with R = 1/
√

1 + |z2|2 and h−1(0 : 1) is the circle
in |C2 parametrized by (0, eit).]

(c) For a coordinate patch of your choice on S3 and also on S2, calculate the
differential dhp for points p on S3.

3.4.5. Consider the map F : RP3 → RP2 defined by

F (x : y : z : w) = (x3 − y3 : xyz − 2xw2 + z3 : z3 + 2yz2 − 6y2z − w3).

This function is homogeneous, and the result of Problem 3.2.8 ensures that this
map is differentiable. Let p = (1 : 2 : −1 : 3) ∈ RP3.

(a) After choosing standard coordinate neighborhoods of RP3 and RP2 that
contain, respectively, p and F (p), calculate the matrix of dFp with respect
to these coordinate neighborhoods.

(b) Choose a different pair of coordinate neighborhoods for p and F (p) and
repeat the above calculation.

(c) Explain how these two matrices are related.

3.4.6. Let f : U → R be a function of class C2 over an open set U ⊂ R2. Use the
coordinates (u, v) that arise from the parametrization of the graph by (u, v, f(u, v)).
Define n : M → S2 to be the function that returns that upward pointing unit
normal vector of M , as a subset of R3.

(a) Find the matrix of dnp for an arbitrary point p ∈M where we use the atlas
{πN , πS} for charts on S2.

(b) Find the matrix of dnp for an arbitrary point p ∈M where we use the inverse
of the parametrization ~N(u, v) as a coordinate chart for the image set n(U)
in S2.

3.4.7. Example 3.1.6 shows that if we give R3 the coordinates (x0, x1, x2), there is a
natural surjection f : R3 − {(0, 0, 0)} → RP2 via π(x0, x1, x2) = (x0 : x1, x2).
Consider the unit sphere S2 (centered at the origin), and consider the map g :
S2 → RP2 given as the restriction of f to S2. Using the oriented atlas on the
sphere given in Example 3.7.3 and the coordinate patches for RP2 as described in
Example 3.1.6, give the matrix for dgp between the north pole patch πN and U0.
Do the same between the north pole patch and U1 and explicitly verify Proposition
3.4.6.

3.4.8. Prove Proposition 3.4.6.
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H~a

∂H~a

Figure 3.9: Open subsets in a half-space of R2.

3.4.9. LetM1 andM2 be two differentiable manifolds, and consider their product manifold
M1 ×M2. Call πi : M1 ×M2 → Mi for i = 1, 2 the projection maps. Show that
for all points p1 ∈M1 and p2 ∈M2, the linear transformation

S : T(p1,p2)(M1 ×M2) −→ Tp1M1 ⊕ Tp2M2,

X 7−→ (π1∗(X), π2∗(X))

is an isomorphism.

3.5 Manifolds with Boundaries
Despite the flexibility of the definition of a differentiable manifold, it does not allow
for a boundary. In many applications, it is useful to have the notion of a manifold
with a boundary. This notion relies on the concept of a Euclidean half-space.

Definition 3.5.1. Let ~a be a unit vector in Rn, i.e., ~a ∈ Sn. The half-space H~a is

H~a = {~x ∈ Rn | ~x · ~a ≥ 0}.

The boundary of the half-space is ∂H~a = {~x ∈ Rn | ~x · ~a = 0}.

Note that for distinct unit vectors ~a and ~b, the half-spaces H~a and H~b are not
equal.

Since the topology on H~a is the subset topology inherited from Rn, a set is open
in H~a if and only if it is equal to U ∩ H~a for some open set U ⊂ Rn. Figure 3.9
depicts a Euclidean half-space of of R2 along with two open subsets. One open set
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arises as an open square which is already a subset of H~a and so does not include any
point of its boundary. The other open set arises as the intersection of an open disk
with H~a. This intersection includes the segment along ∂H~a, the line perpendicular
to ~a.

Definition 3.5.2. A differentiable n-manifold M with boundary has the same def-
inition as in Definition 3.1.3 except that the ranges for the charts are open subsets
of a half-space H of Rn. The boundary of the manifold, written ∂M , is the set of
points p such that in some coordinate chart φ : U → H, where H is a half-space,
φ(p) ∈ ∂H.

The most commonly used Euclidean half-spaces in Rn are the upper half-space
and the lower half-space, defined respectively as

Rn+ = {(x1, x2, . . . , xn) ∈ Rn |xn ≥ 0} = H(0,...,0,1)

Rn− = {(x1, x2, . . . , xn) ∈ Rn |xn ≤ 0} = H(0,...,0,−1).

For any unit vector ~a, define the projection function π~a : H~a → ∂H~a as

π~a(~x) = ~x− proj~a ~x = ~x− (~a · ~x)~a. (3.18)

Since ∂H~a is a (n−1)-dimensional subspace of Rn, assigning coordinates to elements
of ∂H~a gives an isomorphism (and homeomorphism) between Rn−1 and ∂H~a.

Proposition 3.5.3. Let M be a differentiable (respectively, Ck, smooth, analytic)
n-manifold with boundary. Its boundary ∂M is a differentiable (respectively, Ck,
smooth, analytic) (n− 1)-manifold without boundary.

Proof. Let A = {φα}α∈I be an atlas for M . Let I ′ be the subset of the indexing set
I such that the domain of φα contains points of ∂M . For α ∈ I ′ with φα : Uα → H
for some half-space H, we consider the projection π : H → ∂H as a mapping into
Rn−1.

By definition, the restricted function ψα = (π ◦ φα)
∣∣
∂M

is a bijection. It is
continuous, as the restriction of the composition of two continuous maps. The
projection function π is an open function, so maps open sets to open sets. Hence,
since φ−1

α is continuous and maps open sets to open sets, then so does ψα. This
shows that ψα is a homeomorphism from Uα ∩ ∂M to its image.

Furthermore, the domains of ψα for α ∈ I ′ cover ∂M .
Finally, consider two overlapping charts φα : Uα → H~a and φβ : Uβ → H~b with

α, β ∈ I ′. Consider the transition function

ψα ◦ ψ−1
β = π~a ◦ (φα ◦ φ−1

β ) ◦ π−1
~b

: π~b ◦ φα(Uα ∩ Uβ)→ π~a ◦ φβ(Uα ∩ Uβ).

Then π−1
~b

: π~b ◦ φα(Uα ∩ Uβ) → φα(Uα ∩ Uβ) is a smooth injection and π~a :

φα(Uα ∩ Uβ) → Rn−1 is a smooth projection. Hence, the differentiability class of
ψα ◦ ψ−1

β is the same as the differentiability class of φα ◦ φ−1
β .

This shows that the collection A′ = {ψα}α∈I′ equips ∂M with the same differ-
ential (respectively, Ck or smooth) structure as M .
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Example 3.5.4 (Closed Interval). Let M = [a, b] be a closed and bounded real
interval. Define φ1 : [a, b) → R+ by φ1(x) = x − a and φ2 : (a, b] → R− as
φ2(x̄) = x̄− b. The set {φ1, φ2} equips [a, b] with the structure of a manifold with
boundary. Note that the boundary ∂M = {a, b} is a discrete manifold, consisting
of exactly two points.

Example 3.5.5 (Closed Ball). Example 3.1.5 inspires a relatively easy way to equip
the closed unit ball B3 = {(x, y, z) ∈ R3 |x2 + y2 + z2 ≤ 1} with the structure of a
manifold with boundary. Consider first the function φ1 : B3 ∩ {(x, y, z) ∈ R3 | z >
0} → R3 defined by

φ1(x, y, z) = (x, y,
√

1− x2 − y2 − z).

We can visualize in Figure 3.3 the domain of this function as the portion of the
closed ball inside the dome corresponding to ~X(1). Since z ≤

√
1− x2 − y2 in the

domain of φ1, then the codomain of φ1 is R3
+. Furthermore, φ1(x, y, z) ∈ ∂R3

+

if and only if
√

1− x2 − y2 − z = 0, which is precisely the portion of the unit
sphere in {(x, y, z) ∈ R3 | z > 0}. It is easy to see that φ1 is continuous and also a
homeomorphism with its image.

We can create in a similar manner charts φ2, φ3, φ4, φ5, and φ6 corresponding
to ~X(2), ~X(3), ~X(4), ~X(5), and ~X(6).

As constructed, the union of the domains of φi for i = 1, 2, . . . , 6 is not all of B3

but only B3−{(0, 0, 0)}. To remedy this situation, it suffices to enlarge the domains
of at least one of the φi functions to include (0, 0, 0). For example, using as the
domain of φ1 as the set

U1 = B3 ∩ {(x, y, z) ∈ R3 |x2 + y2 + (z − 1)2 < 2}

suffices. The open set U1 in B3 includes the same portion of the manifold’s boundary
as the open set B3 ∩ {(x, y, z) ∈ R3 | z > 0}, but also includes (0, 0, 0).

We leave it as an exercise for the reader to show that the transition functions
between coordinate charts are differentiable. Therefore, the atlas {φ1, φ2, . . . , φ6},
equips the closed ball B3 with the structure of a manifold with boundary. The
boundary ∂B3 is the unit sphere S2.

Example 3.5.6. As an example of a manifold with boundary, consider the half-
torus in R3 given as the image of ~X : [0, π]× [0, 2π]→ R3, with

~X(u, v) =
(
(2 + cos v) cosu, (2 + cos v) sinu, sin v

)
.

The image of ~X is a half-torus M with y ≥ 0, which, to conform to Definition 3.5.2,
is easily covered by four coordinate patches. The boundary ∂M is the manifold
consisting of two connected components:

R+ = {(x, y, z) | (x+ 2)2 + z2 = 1, y = 0},
R− = {(x, y, z) | (x− 2)2 + z2 = 1, y = 0}.
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We leave it as an exercise for the reader to decide on precise patches that make this
half-torus into a manifold with boundary. (See Exercise 3.5.2.)

Since manifolds with boundaries are topological spaces, the concept of a con-
tinuous map between them is still the same as Definition A.2.26. Furthermore, the
concept of a continuous or differentiable map between manifolds with or without
boundaries remains essentially the same the original Definition 3.2.1 but with one
clarification.

Let f : Mm → Nn be a continuous function from a manifold M with boundary
to any other manifold. Deciding the limit or the differentiability of f a point p ∈M
that is not on the boundary ∂M is the same as always. However, suppose that
p ∈ ∂M , with (U, x) where x has for codomain a half-space of Rn, a coordinate
neighborhood of p, where H is a half-space of Rm, and (V, y) a coordinate neigh-
borhood of f(p). Then the function y ◦ f ◦x−1 described in Definition 3.2.1 has the
domain x(U ∩ f−1(V )), which is an open subset of a half-space H. Since p ∈ ∂M ,
then x(p) ∈ ∂H. In order to decide on the differentiability of y ◦ f ◦ x−1 at x(p),

we only consider the condition and the limit in Definition 1.2.14 for ~h such that
x(p) + ~h ∈ H. This is a restricted limit, which generalizes a one-sided limit from
calculus of a single variable.

The concept of a manifold with boundary, allows us to generalize the notion of
a curve on a manifold.

Definition 3.5.7. A differentiable curve on a manifold M , possibly with boundary,
is a differentiable function γ : J → M , where J is any interval of the real line and
is understood as a one-dimensional manifold, possibly with boundary.

This definition allows for curves with endpoints on a manifold.
Since curves on manifolds served an essential role in defining the tangent space

to a manifold at a point, curves with endpoints help us define the tangent space
to a manifold with boundary M at any point p, even if p ∈ ∂M . We now restate
Definition 3.3.1 to accommodate manifolds with boundary.

Definition 3.5.8. Let Mm be a differentiable manifold (possibly with boundary)
and let p be a point on M . Let J be some interval of R containing 0 and let γ : J →
M be a differentiable curve on M with γ(0) = p. For any real-valued differentiable
f defined on some neighborhood of p, we define the directional derivative of f along
γ at p to be the number

Dγ(f) =
d

dt
(f(γ(t)))

∣∣∣
t=0

, (3.19)

where this derivative is understood as a one-sided derivative, if 0 is an endpoint of
the interval J . The operator Dγ is called the tangent vector to γ at p.

Though this definition adds nothing new for points p ∈ M that are not on the
boundary ∂M , including curves with endpoints allows us to consider curves whose
endpoints are on the boundary.
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p

M γ

γ′(0)

Figure 3.10: Tangent vectors to point on the boundary.

Figure 3.10 depicts a manifold with boundary M , specifically a half sphere, along
with a curve γ : [−1, 0]→M such that γ(0) = p. The figure illustrates what occurs
in regular calculus, visualizing a tangent vector as a vector in R3. However, even in
this context, the tangent vector γ′(0) must be understood as a one-side derivative,
namely,

γ′(0) = lim
h→0−

1

h
(γ(h)− γ(0)).

It is not surprising then that in the more abstract setting of manifolds with bound-
ary, (3.19) should involve a one-sided derivative.

Section 3.3 showed that the set of tangent vectors to a manifold M at a point p
is a vector space.

It takes a little more work to show that set of tangent vectors to M at p, even
when p ∈ ∂M , is a vector space. For example, showing that the set of tangent
vectors is closed under scalar multiplication breaks into two cases. Suppose that
ε > 0 and that γ : [−ε, 0] → M is a curve on M with γ(0) = p. Then if a ∈ R+,
defining γ1 : [−ε/a, 0] → M by γ1(t) = γ(at) will give Dγ1 = Dγ . However, if
a ∈ R−, defining γ2 : [0, ε/a] → M by γ2(t) = γ(t) leads to Dγ2 = Dγ . The issue
here is that we needed to change the domain of γ2 when a < 0. However, combining
cases, we see that the set of tangent vectors is closed under scalar multiplication.

We leave as an exercise for the reader the technical details for the following
proposition.

Proposition 3.5.9. Let M be a manifold with boundary ∂M and suppose that
p ∈ ∂M . The set of tangent vectors to M at p forms a vector space.

As with manifolds without boundary, we call the set of tangent vectors to M at
p the tangent space to M at p and denote it by TpM .
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With the notions developed in this section, Definition 3.4.1 for the differential
of a map between manifolds does not need to change for the generalized context of
manifolds with boundary.

Problems

3.5.1. Explicitly show that the solid ball Bn = {(x1, . . . , xn) ∈ Rn |x2
1 + · · ·+x2

n ≤ 1} is a
smooth n-manifold with boundary and show that its boundary is the sphere Sn−1.

3.5.2. Referring to the parametrization ~X(u, v) in Example 3.5.6, give four coordinate
patches that equip the half-torus with the structure of a manifold with boundary.

3.5.3. Prove that all the transition functions in Example 3.5.5 are differentiable.

3.5.4. This exercise shows how to equip the closed ball B3 = {(x, y, z) ∈ R3 | z2 + y2 +
z2 ≤ 1} with the structure of a manifold with boundary in a manner inspired
by stereographic projection. Let N = (0, 0, 1) and define the function ΠN : B3 −
{N} → R3

+ as follows. For all A ∈ B3−{N}, let B be the intersection of the line
←→
AN

with the unit sphere S3. The ΠN (A) = (πN (B), λ) where πN is the stereographic

projection as in Example 3.1.4 and where as vectors
−→
BA = λ

−−→
BN .

(a) Calculate ΠN (x, y, z) explicitly.

(b) Show that the third component of ΠN (x, y, z) is equal to 0 if and only if
(x, y, z) ∈ S2 − {N}.

(c) Show that ΠN is a homeomorphism between B3 − {N} and {(x, y, z) ∈
R3 | 0 ≤ z < 1}.

(d) Let S = (0, 0,−1) and define ΠS in a similar fashion as ΠN . If we call
(ū, v̄, w̄) = ΠS ◦Π−1

N (u, v, w), show that

(ū, v̄, w̄) =

(
u(1− w)

u2 + v2 + w
,
v(1− w)

u2 + v2 + w
,
w(1− w)

u2 + v2 + w

)
,

and deduce that ΠS ◦Π−1
N is differentiable on its domain.

[These steps show that the atlas {ΠN ,ΠS} equips B3 with the structure of a dif-
ferentiable manifold with boundary.]

3.5.5. Show that if M is a compact manifold, then so is ∂M . [Hint: See Definition A.2.51.]

3.5.6. Modify the approach in Section 3.3 to prove Proposition 3.5.9.

3.6 Immersions, Submersions, and Submanifolds
The linear transformation F∗, which is implicitly local to p, and the associated
matrix [dFp] allow us to discuss the relation of one manifold to another. A number
of different situations occur frequently enough to warrant their own terminologies.

Definition 3.6.1. Let F : M → N be a differentiable map between differentiable
manifolds.
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Figure 3.11: Double cone. Figure 3.12: Enneper’s surface.

1. If F∗ is an injection at all points p ∈M , then F is called an immersion.

2. If F∗ is a surjection at all points p ∈M , then F is called a submersion.

3. If F is an immersion and one-to-one, then the pair (M,F ) is called a subman-
ifold of N .

4. If (M,F ) is a submanifold and F : M → F (M) is a homeomorphism for the
topology on F (M) induced from N , then F is called an embedding and F (M)
is called an embedded submanifold .

It is important to give examples of the above four situations. Clearly, every
embedded submanifold is a submanifold and every submanifold is an immersion.
In fact, in the theory of differentiable manifolds, it is only in the context of Def-
inition 3.6.1 that we can discuss how a manifold “sits” in an ambient Euclidean
space by considering a differentiable function f : M → Rn, where Rn is viewed as
a manifold with its usual differential structure.

These three categories represent different situations that we addressed when
studying regular surfaces in R3. The cylinder S1×R is a differentiable manifold. We
can consider the double cone in Figure 3.11 as the image of a map f : S1×R→ R3

given by

f(u, v) = (v cosu, v sinu, v),

where we use u as an angle. We note that

[df ] =

−v sinu cosu
v cosu sinu

0 1

 .
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p
f

Figure 3.13: Not a homeomorphism.

Clearly, at all points (u, 0) ∈ S1 × R, the differential dfp is not injective. Thus, the
cone is not an immersion in R3.

Enneper’s surface (see Figure 3.12) is the locus of the parametrization

~X(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
for (u, v) ∈ R2. (3.20)

Enneper’s surface can be considered a differentiable map of ~X : R2 → R3. It is not
hard to check (Exercise 3.6.1) that according to Definition 3.6.1, Enneper’s surface

is an immersion, but because ~X is not one-to-one, the surface is not a submanifold.
(In Figure 3.12, the locus of self-intersection of the parametrized surface is indicated
in thick black or thick white.)

To illustrate the idea of a submanifold that is not an embedded submanifold,
consider the ribbon surface in Figure 3.13. We can consider this surface to be a
function between manifolds in the following sense. Consider the two-dimensional
manifold without boundary M = (0, 5) × (0, 1) with the natural product topology
and differential structure inherited from R2. Then the ribbon surface can be viewed
as the image of a differentiable map f : (0, 5) × (0, 1) → R3 between manifolds.
One of the (open) ends of the ribbon comes arbitrarily close to the surface of the
ribbon (“touching” but not intersecting). The pair (M,f) is a submanifold but not
an embedded submanifold because, as Figure 3.13 shows, open sets on M might
not be open sets on f(M) with the topology induced from R3. Note that no open
set V of R3 around f(p) can intersect f(M) in to obtain the set f(U), where U is
the open neighborhood around p that is depicted by a darker gray circle.

Some authors (usually out of sympathy for their readers) introduce the theory of
“manifolds in Rn.” By this we mean manifolds that are embedded submanifolds of
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Rn. Though not as general as Definition 3.6.1, that approach has some merit as it
more closely mirrors Definition 3.1.1 for regular surfaces in R3. However, our current
approach is more general. Admittedly, it might seem strange to call a differentiable
map a submanifold, but, as the above examples show, this tactic generalizes the
various situations of interest for subsets of R3. Furthermore, this approach again
removes the dependence on an ambient Euclidean space. Consequently, it is not at
all strange to discuss submanifolds of RPn or any other space of interest.

We now wish to discuss specifically embedded submanifolds of a differentiable
manifold since they occupy an important role in subsequent sections and allow us
to quickly determine certain classes of manifolds.

Proposition 3.6.2. Let Mm be a differentiable manifold. An open subset S of M
is an embedded submanifold of dimension m.

Proof. Let {φi : Ui → Rm}i∈I be the atlas of M . Equip S with the atlas {φi|S}i∈I .
The inclusion map ι : S → M is a one-to-one immersion. The topology of S is
induced from M , so S, with the given atlas, is an embedded submanifold of M .

Example 3.6.3. Consider the set Mn×n of n × n matrices with real coefficients.

We can equip Mn×n with a Euclidean topology by identifying Mn×n with Rn2

.
In particular, Mn×n is a differentiable manifold. Consider the subset GLn(R) of
invertible matrices in Mn×n. We claim that, with the topology induced from Mn×n,
GLn(R) is an embedded submanifold. We can see this by the fact that an n × n
matrix A is invertible if and only if detA 6= 0. However, the function det : Mn×n →
R is continuous, and therefore,

GLn(R) = det−1(R− {0})

is an open subset of Mn. Proposition 3.6.2 proves the claim.

The proof of Proposition 3.6.2 is deceptively simple. If S ⊂ M , though the
inclusion map ι : S → M is obviously one-to-one, one cannot use it to show that
any subset is an embedded submanifold. Consider the subset S of R2 defined by
the equation y2 − x3 = 0 (see Figure 3.14). The issue is that in order to view S as
a manifold, we must equip it with an atlas. In this case, the atlas of R2 consists of
one coordinate chart, the identity map. The restriction of the identity map id|S is
not a homeomorphism into an open subset of R or R2 so cannot serve as a chart.
In fact, if we put any atlas {φi} of coordinate charts on S, the inclusion ι : S → R2

is such that ι ◦ φi will be some regular reparametrization of t 7→ (t2, t3), i.e.,

ι ◦ φi(t) = (g(t)2, g(t)3),

where g′(t) 6= 0. Hence,

[dιt] =

(
2g(t)g′(t)
3g(t)2g′(t)

)
,
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x

y

y2 − x3 = 0

Figure 3.14: Not an embedded submanifold of R2.

and thus dιt fails to be an immersion at the point where g(t) = 0, which corresponds
to (0, 0) ∈ S, the cusp of the curve.

Having a clear definition of the differential of a function between manifolds, we
can now imitate Definition 1.4.1 to give a definition for regular points and for critical
points of functions between manifolds.

Definition 3.6.4. Let f : Mm → Nn be a differentiable map between differentiable
manifolds. Then any point p ∈M is called a critical point if rank(f∗) < min(m,n),
i.e., dfp is not of maximal rank. If p is a critical point, then the image f(p) is called
a critical value. Furthermore, any element q ∈ N that is not a critical value is called
a regular value (even if q /∈ f(M)).

We remind the reader that this definition for critical point directly generalizes all
the previous definitions for critical points of functions (see the discussion following
Definition 1.4.1). The only novelty here from the discussion in Chapter 1 was to
adapt the definition for functions from Rm to Rn to functions between manifolds.

Our main point in introducing the above definition is to introduce the Regular
Value Theorem. A direct generalization to a similar theorem for regular surfaces (see
Proposition 5.2.13 in [5]), the Regular Value Theorem provides a class of examples
of manifolds for which it would otherwise take a considerable amount of work to
verify that these sets are indeed manifolds. However, we need a few supporting
theorems first.

Theorem 3.6.5. Let f : Mm → Nn be a differentiable function between differen-
tiable manifolds, and assume that dfp is injective. Then there exist charts φ around
p and ψ around f(p) that are compatible with the respective differential structures
on M and N and such that f̄ = ψ ◦ f ◦ φ−1 corresponds to the standard inclusion

(x1, . . . , xm) 7−→ (x1, . . . , xm, 0, . . . , 0)

of Rm into Rn.
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Proof. Let φ and ψ be charts on M and N , respectively, for neighborhoods of p
and f(p). If necessary, translate φ and ψ so that φ(p) and ψ(f(p)) correspond to
the origin ~0. Then, with respect to these charts, as matrices [df ]p = [df̄ ]~0, so df̄~0
is injective by assumption. The image of the linear transformation df̄~0 : Rm → Rn
is a subspace of Rn. Thus, by a rotation in Rn (applied to the chart ψ), we can
assume that Im(df̄~0) is {(x1, . . . , xm, 0, . . . , 0) ∈ Rn}.

We wish to change coordinates on Rn via some diffeomorphism h : Rn → Rn
that would make f̄ the standard inclusion. We view Rn as Rm × Rn−m and define
the function h : Rn → Rn by

h(x, y) = (f̄(x)) + (0, . . . , 0, y) = (π ◦ f̄(x), y), (3.21)

where π is the orthogonal projection of Rn onto the subspace of its firstm-dimensional
components. Note that the differential of h at ~0 is dh~0 = df̄~0 ⊕ id or, as matrices,

[
dh~0
]

=

(
[df̄~0] 0

0 In−m

)
.

Since df̄~0 is injective, we see that dh~0 is invertible.
Now, by the Inverse Function Theorem (Theorem 1.4.5), there exists some open

neighborhood V of ~0, such that h is injective on V , h(V ) is open, and the inverse
function h−1 exists and is differentiable. Thus, h is a diffeomorphism between open
neighborhoods of the origin in Rn. We reparametrize the neighborhood of f(p) with
the chart h−1 ◦ ψ. By Equation (3.21), replacing ψ with ψ′ = h−1 ◦ ψ leads to an
atlas that is compatible with the atlas on N . Furthermore, by construction, the
new f̄ satisfies

f̄ ′(x) = ψ′ ◦ f ◦ φ−1(x) = h−1 ◦ f̄(x) = (x, 0, . . . , 0)

as desired.

The functional relationship discussed in the above proof is often depicted using
the following diagram:

Mm Nn

Rm Rn

φ

f

f

ψ

We say that the diagram is commutative if, when one takes different directed paths
from one node to another, the different compositions of the corresponding functions
are equal. In this simple case, to say that the above diagram is commutative means
that

ψ ◦ f = f̄ ◦ φ .



108 3. Differentiable Manifolds

These kinds of diagrams are often used in algebra and in geometry as a schematic
to represent the kind of relationship illustrated by Figure 3.7.

Theorem 3.6.5 offers a strategy to prove a number of theorems about embedded
submanifolds. We mention a few of these here and leave some others for the reader
to prove.

Corollary 3.6.6. Let Mm be a differentiable manifold, and let S ⊂M . The subset
S is an embedded submanifold of M of dimension k if and only if, for all p ∈ S,
there is a coordinate neighborhood (U, φ) of p compatible with the atlas on M such
that

φ(U ∩ S) = {(x1, . . . , xk, xk+1, . . . , xm) ∈ φ(U) |xk+1 = · · · = xm = 0}.

Proof. The implication (⇒) follows immediately from Theorem 3.6.5.
For the converse (⇐), assume that for all p ∈ S, there is a coordinate neighbor-

hood (U, φ) in M compatible with the atlas of M satisfying the condition for U ∩S.
We cover S with a collection of such open sets {Uα ∩ S}α∈I . Let π : Rm → Rk
be the projection that ignores the last m − k variables. Then on each coordinate
neighborhood, ψα = π ◦ φα : Uα ∩ S → Rk is a coordinate chart for S. Since
φα : Uα → φα(Uα) is a homeomorphism and since

φα(Uα ∩ S) ⊂ {(x1, . . . , xk, xk+1, . . . , xm) ∈ Rm |xk+1 = · · · = xm = 0},

then π ◦φα is a homeomorphism onto its image. By definition, φβ ◦φ−1
α is differen-

tiable for any pair of indices α and β. However, ψβ ◦ψ−1
α = π ◦ (φβ ◦φ−1

α )
∣∣
Rk and so

is differentiable as well. Consequently, {(Uα ∩ S, ψα)}α∈I forms an atlas on S that
gives S the structure of a differentiable manifold. Furthermore, the inclusion map
satisfies all the requirements of an embedded submanifold.

The following theorem is similar to Theorem 3.6.5 but applies to local submer-
sions.

Theorem 3.6.7. Let f : Mm → Nn be a differentiable map such that f∗ : TpM →
Tf(p)N is onto. Then there are charts φ at p and ψ at f(p) compatible with the
differentiable structures on M and N such that

ψ ◦ f = π ◦ φ,

where π is the standard projection of Rm onto Rn by ignoring the last m−n variables.

Proof. (The proof mimics the proof of Theorem 3.6.5 and is left to the reader.)

Theorem 3.6.8 (Regular Value Theorem). Suppose that m ≥ n, let f : Mm → Nn

be a differentiable map, and let q be a regular value of f . Then f−1(q) is an embedded
submanifold of M of dimension m− n.
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Proof. Since m ≥ n and q is a regular value, then for all p ∈ f−1(q), dfp has rank
n.

We first prove that the set of points p ∈ M , where rank dfp = n is an open
subset of M . Let {(Uα, φα)} be an atlas for M . For all α, define gα : Uα → R, with
gα(p) as the sum of squares of all n × n minors of [dfp]. Note that there are

(
m
n

)
minors in [dfp] and that, for all α, each function gα is well defined on the coordinate
patch Uα. The functions gα need not induce a well defined function g : M → R.
(We would need gα|Uα∩Uβ = gβ |Uα∩Uβ for all pairs (α, β).) The equation gα(p) = 0
holds if and only if all the maximal minors of [dfp] are 0, which is equivalent to
rank dfp. However, rank dfp is independent of any coordinate system, so regardless
of choices made in the construction of of gα, we have g−1

α (0) ∩ Uβ = g−1
β (0) ∩ Uα.

Define Vα = g−1
α (R− {0}). Since each gα is continuous, Vα is open and the set

V =
⋃
α∈I

Vα

is an open subset of M . By construction, V is precisely the set of points in which
rank dfp = n. Since V is open in M , by Proposition 3.6.2, V is an embedded
submanifold of dimension m.

We consider now the differentiable map f |V : V → N . Let p ∈ f−1(q). By
construction of V , the differential dfp is surjective for all p ∈ V . Applying Theorem
3.6.7, we can assume that there is a coordinate chart (U, φ) of p with coordinates
(x1, . . . , xm) and a chart ψ of q such that ψ ◦ f = π ◦ φ, where π is the projection
of Rm onto Rn by ignoring the last m − n coordinates. Furthermore, by taking
a translation if necessary, we can assume that ψ(q) = (0, 0, . . . , 0). Consequently,
ψ(q) = π ◦ φ(p) and, so in coordinates,

f−1(q) ∩ U = {(x1, . . . , xn, xn+1, . . . , xm) |x1 = · · · = xn = 0}.

By Corollary 3.6.6, f−1(q) is an embedded submanifold of M .

The Regular Value Theorem is also called the Regular Level Set Theorem be-
cause any subset of the form f−1(q), where q ∈ N , is called a level set of f .

Example 3.6.9 (Spheres). With the Regular Value Theorem at our disposal, it is
now easy to show that certain objects are differentiable manifolds. We consider the
sphere Sn as the subset of Rn+1, with

(x1)2 + (x2)2 + · · ·+ (xn+1)2 = 1.

The Euclidean spaces Rn+1 and R are differentiable manifolds with trivial coordi-
nate charts. Consider the differentiable map f : Rn+1 → R defined by

f(x) = ‖x‖2.
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In the standard coordinates, the differential of f is

[dfx] =


2x1

2x2

...
2xn+1

 .

We note that the only critical point of f is (0, . . . , 0) and that the only critical value
is 0. Thus, Sn = f−1(1) is an embedded submanifold of Rn+1, and hence, Sn is a
differentiable manifold in its own right when equipped with the subspace topology
of Rn+1. Notice that this establishes S2 as an embedded submanifold of R3 without
reference to any charts.

Problems

3.6.1. Prove that [d ~X](u,v) for the parametrization of Enneper’s surface in (3.20) is
injective for all (u, v) ∈ R2. [This confirms that the parametrization of Enneper’s
surface is an immersion of R2 in R3.]

3.6.2. Let M be a differentiable manifold, and suppose that f : M → R is a differentiable
map. Prove that if f∗ = 0 at all points of M , then f is constant on each connected
component of M .

3.6.3. Let Mm×n be the set of m × n matrices. Show that the subset of M + m× n of
matrices of rank less than or equal to r is an embedded submanifold.

3.6.4. Show that the square as described in Example 3.1.13 is not an embedded sub-
manifold of R2.

3.6.5. Show that the function f : R2 → R3 defined by f(u, v) = (u3 + u+ v, u2 + uv, v3)
is smooth and injective but is not an immersion.

3.6.6. Let N be an embedded submanifold of a differentiable manifold M . Prove that
at all points p ∈ N , the space TpN is a subspace of TpM .

3.6.7. Let Mm be a differentiable manifold that is embedded in Rn. By Exercise 3.6.6,
TpM is a subspace of Tp(Rn) ∼= Rn.) Let f : Rn → R be a differentiable function
defined in a neighborhood of p ∈ M . Show that if f is constant on M , then
f∗(v) = 0 for all v ∈ TpM . Conclude that, viewed as a vector in Tp(Rn), the
differential dfp is perpendicular to TpM .

3.6.8. Let M be a differentiable manifold, and let U be an open set in M . Define
ι : U → M as the inclusion map. Prove that for any p ∈ U , the differential
ι∗ : TpU → TpM is an isomorphism.

3.6.9. Let M and N be k-manifolds in Rn, in the sense that they are both embedded sub-
manifolds. Show that the set M ∪N is not necessarily an embedded submanifold
of Rn. Give sufficient conditions for M ∪N to be a manifold.

3.6.10. Suppose that the defining rectangle of the Klein bottle, as illustrated in Figure 3.6
or 3.16, is [0, 2π] × [0, 2π]. It is a well-known fact that it is impossible to embed
the Klein bottle in R3. Show that the parametrization

X(u, v) =
(
(2 + cos v) cosu, (2 + cos v) sinu, sin v cos(u/2), sin v sin(v/2)

)
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gives an embedding of the Klein bottle in R4. (Remark: This parametrization is
similar to the standard parametrization of the torus in R3 as the union of circles
traced in the normal planes of a planar circle of larger radius. A planar circle in
R4 admits a normal three-space. The parametrization X is the locus of a circle
in the normal three-space that rotates in the fourth coordinate dimension by half
a twist as one travels around the circle of larger radius.)

3.6.11. Define O(n) as the set of all orthogonal n× n matrices.

(a) Prove that O(n) is a smooth manifold of dimension 1
2
n(n− 1).

(b) Consider the tangent space to O(n) at the identity matrix, TI(O(n)), as a
subspace of the tangent space to Mn×n (which is Mn×n itself). Prove that
A ∈Mn×n is a tangent vector in TI(O(n)) if and only if A is skew-symmetric,
i.e., AT = −A.

3.6.12. Prove Theorem 3.6.7.

3.6.13. Let Mm and Nn be embedded submanifolds of a differentiable manifold Ss, and
suppose that m + n > s. Let p ∈ M ∩ N . We say that M and N intersect
transversally at p in S if TpM + TpN = TpS, viewed as subspaces of TpS by
virtue of Problem 3.6.6. In this exercise, you will show that if M and N intersect
transversally at each point of M ∩N , then M ∩N is a differentiable manifold.

(a) Let p ∈ M ∩ N . Prove that there is a coordinate chart (U, φ) of p and a
function f1 : U → Rs−m such that U ∩M = f−1

1 (~0). [This also shows that
there is a coordinate chart (V, ψ) of p and a function f2 : V → Rs−n such
that V ∩N = f−1

2 (~0).]

(b) Consider the function F : U ∩ V → Rs−m × Rs−n defined by F (x) =
(f1(x), f2(x)). Prove that (~0,~0) is a regular value.

(c) Deduce that M ∩N is an embedded submanifold of S.

3.7 Orientability
In the final section in this chapter we introduce the notion of orientability. We
usually first encounter this notion with the example of the Möbius strip M . See
Figure 3.15. Consider the Möbius strip as a 2-manifold with boundary embedded in
R3, and consider trying to assign a unit normal vector to every point on the Möbius
strip in a continuous fashion. Such an assignment corresponds to a continuous
function n : M → S2. It is not hard to see that this is impossible: Once a unit
normal vector goes around the strip once, it will be pointing in the other direction.

Since manifolds do not necessarily exist in some ambient Euclidean space, we
cannot talk about unit normal vectors to generalize the notion of orientability.
The Klein bottle gives us another way of visualizing non-orientability. Consider a
curve on the Klein bottle as shown in Figure 3.16. We point out that the depicted
curve is differentiable: In this diagram for the Klein bottle, at the point p, the
“vertical” orientation changes as the curve passes through the vertical boundary of
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Figure 3.15: Möbius strip.

p

p

q

q

a

Figure 3.16: The Klein bottle.

the diagram. Attached to the curve, we show a unit tangent vector to the curve and
a unit normal as well, which form a variable frame. As we move along the curve
from left to right starting from the point a, the unit tangent and the unit normal
change continuously. As we cycle around the diagram of the Klein bottle, passing
through the vertical boundary on the right, vectors (and directions) are reflected
vertically. returning to the point a, we do not recover the frame we started with,
but one with opposite orientation. We point out the we did not have to use a this
particular frame involving a unit tangent and a unit normal to the curve, or even
an orthonormal one; this observation would remain the same with any frame.

Suppose that γ(t) continuously parametrizes the curve on the Klein bottle. If

we call ~T (t) and ~U(t) the tangent and normal vectors in this diagram, we see that

det(~T (t) ~U(t)), which measures the sign of the angle swept from ~T (t) to ~U(t) is
not a continuous function; it must change sign in a discontinuous fashion. This
observation gives us another way to think about orientability without reference to
an ambient space. However, this still is not quite enough to motivate a definition.
Notice that if we had done the same construction with a vertical line connecting
the two instances of q in the diagram, the same function det(~T (t) ~U(t)) would be
continuous along the curve.

The key to the notion of orientability that we do consider from the example of
the Klein bottle is that of variable frames on the manifold whose determinant does
not change sign.

Definition 3.7.1. Let Mn be a differentiable n-manifold equipped with an atlas
A = {φα}α∈I . Suppose that for any two charts φα and φβ of the atlas A, the
Jacobian of the transition function φβα = φβ ◦ φ−1

α is positive at all points in its
domain. Then (M,A) is called an oriented manifold .

As we saw in Proposition 3.3.9, at any point p ∈M the matrix of the differential
[dφβα] coordinate change matrix on TpM between the basis derived from the φα
coordinate charts and the basis derived from the φβ chart. As a coordinate change
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matrix, [dφβα] is invertible and hence, its determinant is never 0.

At present, in our development of the theory of manifolds, we do not have a
way to connect a tangent space at one point to the tangent space at some other
nearby point of the manifold. Consequently, we cannot (currently) think of the the
bases on TpM derived from the φα coordinates as a variable frame, since each basis
is in a different vector space. Nonetheless, the function det(dφβα) is defined over
φα(Uα ∩ Uβ).

Definition 3.7.2. Let Mn be a differentiable n-manifold equipped with an atlas A.
Then M with A is called orientable if there is an atlas B on M that is compatible
with A such that M equipped with B is an oriented manifold.

Example 3.7.3. Consider Example 3.1.4 of the sphere, with the atlasA = {πN , πS}
of stereographic projection from the North and South poles. From the change of
coordinates (ū, v̄) = πS ◦ π−1

N (u, v) in (3.1), we find that

det(d(πS ◦ π−1
N )) =

∂(ū, v̄)

∂(u, v)
=

∣∣∣∣∣∣∣∣
−u2 + v2

(u2 + v2)2
− 2uv

(u2 + v2)2

− 2uv

(u2 + v2)2

u2 − v2

(u2 + v2)2

∣∣∣∣∣∣∣∣
=

(−u2 + v2)(u2 − v2)− 4u2v2

(u2 + v2)4
= − 1

(u2 + v2)2
.

Consequently, the atlas {πN , πS} on S2 does not equip S2 with the structure of an
oriented manifold.

Consider instead the atlas B = {πN , π̄S}, where π̄S is the composition of πS
with the reflection (u, v) 7→ (u,−v) so that π̄S(x, y, z) =

(
x

1+z ,−
y

1+z

)
. It is easy to

tell that {πN , π̄S} is an atlas for S2 that it is compatible with {πN , πS}. Thus this
atlas gives S2 the same differentiable structure as the original atlas. Furthermore,
writing (ũ, ṽ) = π̄S ◦ π−1

N (u, v), we get

ũ =
u

u2 + v2
and ṽ = − v

u2 + v2
.

We easily find that the Jacobian is

∂(ũ, ṽ)

∂(u, v)
=

∣∣∣∣∣∣∣∣
u2 − v2

(u2 + v2)2
− 2uv

(u2 + v2)2

2uv

(u2 + v2)2

u2 − v2

(u2 + v2)2

∣∣∣∣∣∣∣∣ =
1

(u2 + v2)2
. (3.22)

This shows that the atlas {πN , π̄S} gives the sphere the structure of an oriented
smooth manifold. So though (S2,A) is not an oriented manifold, it is orientable,
and (S2,B) is an oriented manifold.
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Uα
Vα1

Vα2

Vα3

Vα4

Vα5

Figure 3.17: Sequence in the proof of Proposition 3.7.5.

In the study of surfaces in R3, an orientation of an orientable surface meant
choosing one of the two possible directions for a unit normal vector function that is
continuous over the whole surfaces. With manifolds, this notion of choice is more
subtle but still exists.

Lemma 3.7.4. Let M be a connected differentiable manifold with atlas
A = {(Uα, φα)}α∈I . For any pair α, α′ ∈ I, there exists a finite sequence α =
α1, α2, . . . , αn = α′ of indices in I such that Uαi ∩Uαi+1 6= ∅, for i = 1, 2, . . . , n−1.

Proof. If Uα∩Uα′ 6= ∅, then we are done. However, this need not be true. Let Cα be
the set of indices α′′ ∈ I such that there exists a finite sequence α = α1, α2, . . . , αn =
α′′ such that Uαi ∩ Uαi+1

6= ∅, for i = 1, 2, . . . , n− 1. Then

U =
⋃
a∈C

Ua and V =
⋃

b∈I−C

Ub

are both open as union of open sets and U ∪ V = M by definition of an atlas. We
claim that U ∩ V = ∅. If not, if x ∈ U ∩ V , then there exists x ∈ Ua ∩ Ub for some
a ∈ C and b ∈ I−C. But this is a contradiction because in this case whatever finite
sequence of indices that gave a chain of nonempty intersections from Uα to Ua can
be extended by one more so that b ∈ C and not in I − C. Since M is connected
(see Definition A.2.62), V = ∅ and C = I and the result follows.

Proposition 3.7.5. Let Mn be an orientable connected differentiable manifold and
let A = {(Uα, φα)}α∈I and B = {(Vβ , ψβ)}β∈J be two compatible atlases on M both
of which separately make M into an oriented manifold. Then either det(d(ψβ ◦
φ−1
α )) > 0 for all (α, β) ∈ I × J or det(d(ψβ ◦ φ−1

α )) < 0 for all (α, β) ∈ I × J such
that ψβ ◦ φ−1

α have nonempty domains.
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Proof. Let α ∈ I be arbitrary and let β ∈ J . Then, as a continuous function,
det(d(ψβ ◦φ−1

α )) is either always positive or always negative on its domain. Suppose
that det(d(ψβ ◦φ−1

α )) > 0 and let β′ ∈ J . By Lemma 3.7.4, there is a finite sequence
β = β1, β2, . . . , βn = β′ such that Vβi ∩ Vβi+1

6= ∅. Furthermore, because we can
think of Uα as a submanifold of M , we can assume that Vβi ∩ Uα 6= ∅ for all Vβi in
the sequence. (See Figure 3.17.)

Since B equipsM with an oriented differentiable manifold structure, then det(d(ψβi+1◦
ψ−1
βi

)) > 0 for all i = 1, 2, . . . , n− 1. By the chain rule,

det(d(ψβ′ ◦ ψ−1
α ))

= det(d(ψβn ◦ ψ−1
βn−1

) ◦ · · · ◦ d(ψβ2 ◦ ψ−1
β1

) ◦ d(ψβ1 ◦ φ−1
α ))

= det(d(ψβn ◦ ψ−1
βn−1

)) · · · det(d(ψβ2 ◦ ψ−1
β1

)) det(d(ψβ ◦ φ−1
α ))

> 0.

Suppose alternatively that det(d(ψβ ◦φ−1
α )) < 0. Then the same composition holds

but the product of determinants leads to det(d(ψβ′ ◦ φ−1
α )) < 0. The result follows.

Definition 3.7.6. Let Mn be an orientable connected differentiable n-manifold.
Two compatible atlases A = {φα}α∈I and B = {ψβ}β∈J are said to have equivalent
orientations if the atlas A∪ B also makes M an oriented manifold. An equivalence
class of oriented atlases is called an orientation.

Proposition 3.7.5 shows that on a connected differentiable maniofld there can
only be two orientations. More generally, if M is a manifold with c connected
components, there are 2c possible orientations on M . This includes the degenerate
case of 0-manifolds that correspond to a set of points equipped with the discrete
topology. In this case, each point can have an orientation of +1 or −1.

Definition 3.7.7. Let Mn be an oriented manifold and let p ∈ M . Any ordered
basis on TpM is called positively oriented if its change of coordinate matrix with
(∂1, ∂2, . . . , ∂n) has positive determinant.

We now discuss how orientations on manifolds with boundary M induce orien-
tations on the boundary manifold ∂M . We must make a choice in how to induce an
orientation on the boundary but do so to conform with Green’s Theorem, Stokes’
Theorem, the divergence theorem, and even the fundamental theorem of calculus.
Recall that Green’s Theorem states that for a compact region R ⊂ R2 with a
boundary ∂R that consists of a finite number of regular curves∫∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫
∂R

~F · d~r,

for any differentiable vector field ~F = (F1, F2) on R. The integral on the right
breaks into the sum of k integrals if ∂R has k boundary components. Furthermore,
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R

Figure 3.18: Orientation of the boundary of a plane region.

we require that each boundary component be oriented so that as “someone travels
along the curve” the interior of the region is to the left. Another way to state this
choice of orientation of the boundary components is that the ordered pair of vectors
consisting of an outward pointing normal and the direction of travel along the curve
is a positive frame for R2. (See Figure 3.18.)

Let Mn be an oriented differentiable manifold with boundary. Let p ∈ ∂M ,
and let (U, φ) be a coordinate neighborhood of p with coordinates (x1, x2, . . . , xn).
Recall that since p ∈ ∂M , the coordinate chart φ is a homeomorphism onto an open
subset of half-space H~a of Rn. If ~a = (a1, a2, . . . , an) ∈ Rn, the tangent vector

X~a = a1∂1 + a2∂2 + · · ·+ an∂n,

where ∂i = ∂/∂xi, is in TpM but not in Tp(∂M). We say that X~a is a tangent vector
that points inward from ∂M , while −X~a is outward pointing. The induced coordi-
nate chart on ∂M is π~a ◦ φ : U ∩ ∂M → Rn−1 with coordinates (u1, u2, . . . , un−1).

Definition 3.7.8. Then the ordered basis (∂/∂u1, . . . , ∂/∂un−1) of Tp(∂M) gives
the induced orientation on ∂M if(

X~a,
∂

∂u1
, . . . ,

∂

∂un−1

)
is positively oriented on TpM .

If the coordinate chart of a point on the boundary of an oriented manifold is
φ : U → Rn+, i.e., with ~a = (0, . . . , 0, 1), then −∂n = −∂/∂xn is a tangent vector
that points outward from ∂M . The ordered basis (∂1, . . . , ∂n−1) of Tp(∂M) gives
the induced orientation on ∂M if (−∂n, ∂1, . . . , ∂n−1) is positively oriented on TpM .

Example 3.7.9. Consider the half-torus M shown in Figure 3.19. The boundary
∂M has two components. The point q is a generic point in a neighborhood that
contains the boundary component where p is. If (x1, x2) is a coordinate system in a
neighborhood of p, the boundary component that contains p is given by x2 = 0. The
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∂M

M

p

− ∂
∂x2

∂
∂x1

q ∂
∂x1

∂
∂x2

Figure 3.19: Half-torus with boundary.

figure depicts the ordered basis (∂1, ∂2) at the generic point q and also the ordered
basis (−∂2, ∂1) at p. Since these two bases have the same orientation (imagine
moving the standard basis at q over to p), then ∂1 determines the induced orientation
on ∂M (as opposed to −∂1).

For the other boundary component, the reasoning is the same except that we
must use at least one other coordinate chart (x̄1, x̄2) where the boundary is given by
x̄2 = 0 and the portion of M that is not on ∂M has x̄2 > 0. Intuitively speaking, in
order for (x̄1, x̄2) to have an orientation compatible with (x1, x2), one must switch
the direction of the basis vector ∂/∂x̄2 (from what one would obtain from moving
∂/∂x2 over along a line of x1 =const.). We must then also switch the sign of ∂/∂x1

to get the equivalent ∂/∂x̄1 in order to keep a positively oriented atlas. The induced
orientation on the second boundary component is shown with an arrow.

Example 3.7.10 (Closed Interval). We set a convention for use later concerning
1-manifolds. Let γ : [a, b]→M be a 1-manifold with two boundary points p1 = γ(a)
and p2 = γ(b). Example 3.5.4 gives two coordinate charts that explicitly define [a, b]
as a manifold with boundary. If p ∈ [a, b), then the basis on TpM with respect to
the chart φ1 is {d/dx}, while if p ∈ (a, b], then the basis on TpM with respect to
the chart φ2 is {d/dx̄}. It is easy to tell that for all p ∈ (a, b), on TpM , we have
d/dx = d/dx̄. Clearly, [a, b] with the atlas {φ1, φ2} is an oriented manifold.

The outward pointing vector at p2 is in the same orientation as d/dx, so we say
that p2 is equipped with a positive orientation. In contrast, the outward pointing
vector at p1 is −d/dx̄, which is negative with respect to the induced orientation.

−1

p1

+1

p2

This association of −1 and +1 to the endpoints as shown above is, by convention,
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the induced orientation of γ onto ∂γ.

Problems

3.7.1. Prove that a manifold that has a single chart is orientable.

3.7.2. Prove that every one-dimensional manifold is orientable.

3.7.3. Let M be a differentiable manifold of dimension 2 or greater that has an atlas of
exactly 2 charts. Prove that M is orientable.

3.7.4. Show that the closed ball B3 equipped with the atlas {ΠN ,ΠS} described in Exer-
cise 3.5.4 does not make B3 into an oriented manifold. Modify the atlas to explicitly
show that B3 is orientable. Sketch the ball and indicate with a frame in the tan-
gent plane to a point on the surface, the orientation that is induced on the surface
S2 = ∂B3.

3.7.5. Prove that ifM is an orientable manifold with boundary, then ∂M is also orientable.

3.7.6. Show that RP2 is not orientable.

3.7.7. Let M and N be two orientable differentiable manifolds. Show that M ×N with
the product structure is an orientable manifold.



CHAPTER 4

Multilinear Algebra

Many of the objects of interest in differential geometry on manifolds are expressed
properly in the context of multilinear algebra. Consequently, this chapter introduces
linear algebraic concepts that are not commonly included in a first linear algebra
course. The underlying field for all objects outside this chapter is the set of reals R,
but this chapter introduces the concepts for an arbitrary field K of characteristic 0
(e.g., Q, R, or C).

Before jumping in, we mention our habit of notation for components associated
to certain linear algebraic objects. Let V be a vector space over K with dimV = n.
If B = (e1, e2, . . . , en) is an ordered basis of V , the coordinates of v ∈ V with respect
to B are

[
v
]
B =


v1

v2

...
vn

 , where v = v1e1 + v2e2 + · · ·+ vnen.

If the basis of V is understood from the problem or if we use a standard basis of
V , we write

[
v
]
. It is common to abuse the notation and say that a vector is equal

to the n× 1 matrix of its coordinates but we must always be careful to understand
that components are given with respect to some basis.

If V is a vector space of dimension n and if B = {e1, e2, . . . , en} and B′ =
{f1, f2, . . . , fn} are two bases, there is an n × n matrix PBB′ that converts the B-
coordinates of a vector to B′-coordinates. In particular, for all v ∈ V ,

[v]B′ = PBB′ [v]B. (4.1)

This matrix is found by PBB′ =
(
[e1]B′ [e2]B′ · · · [en]B′

)
. Writing the compo-

nents of PBB′ as (pij), where i is the row index and j is the column index, and the B′
coordinate of v as (v̄i), we can write (4.1) as

v̄i =

n∑
j=1

pijv
j . (4.2)

119
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As we introduce constructions in multilinear algebra and refer to how the compo-
nents of objects change under a change of basis, we will refer to (4.2) repeatedly to
see appropriate generalizations.

4.1 Hom Space and Dual
Definition 4.1.1. Let V and W be two vector spaces over K. Denote the set of
linear transformations from V to W by HomK(V,W ), or simply Hom(V,W ) if the
field K is understood by context.

We can define addition and multiplication by a K-scalar on Hom(V,W ) in the
following way. If T1, T2 ∈ Hom(V,W ), then T1 + T2 is the linear transformation
given by

(T1 + T2)(v)
def
= T1(v) + T1(v) for all v ∈ V.

Also, if λ ∈ K and T ∈ Hom(V,W ), define the linear transformation λT by

(λT )(v)
def
= λ(T (v)) for all v ∈ V.

These definitions lead us to the following foundational proposition.

Proposition 4.1.2. Let V and W be vector spaces over K of dimension m and
n, respectively. Then Hom(V,W ) is a vector space over K, with dim Hom(V,W ) =
mn.

Proof. We leave it to the reader to check that Hom(V,W ) satisfies all the axioms
of a vector space over K.

To prove that dim Hom(V,W ) = mn, first choose an ordered basis
B = (e1, e2, . . . , em) of V and an ordered basis B′ = (f1, f2, . . . , fn) of W . De-
fine Tij ∈ Hom(V,W ) as the linear transformations defined by

Tij(ek) =

{
fi, if j = k,

0, if j 6= k,

and extended by linearity over all V . We show that the set
{
Tij
}

for 1 ≤ i ≤ m
and 1 ≤ j ≤ n forms a basis of Hom(V,W ).

Because of linearity, any linear transformation L ∈ Hom(V,W ) is completely
defined given the knowledge of L(ej) for all 1 ≤ j ≤ m. Suppose that for each j,
there exist mn constants aij in K, indexed by i = 1, 2, . . . ,m and j = 1, 2, . . . , n,
such that

L(ej) =
n∑
i=1

aijfi. (4.3)

Then

L =
n∑
i=1

m∑
j=1

aijTij ,
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and hence, {Tij} spans Hom(V,W ). Furthermore, suppose that for some constants
cij

n∑
i=1

m∑
j=1

cijTij = 0,

the trivial linear transformation. Then for all 1 ≤ k ≤ m,

n∑
i=1

m∑
j=1

cijTij(ek) = 0⇐⇒
n∑
i=1

cikfi = 0.

However, since {f1, f2, . . . , fn} is a linearly independent set, given any k, we have
cik = 0 for all 1 ≤ 1 ≤ m. Hence, for all i and j, the constants cij = 0, which shows
that the linear transformations Tij are linearly independent.

We conclude that the set {Tij | for 1 ≤ i ≤ n and 1 ≤ j ≤ m}, forms a basis of
Hom(V,W ). Consequently, dim Hom(V,W ) = mn.

The proof of Proposition 4.1.2 provides the set of linear transformations {Tij} as

a standard basis of Hom(V,W ). Furthermore, with respect to these bases,
[
Tij
]B
B′ =

Eij , the n × m matrices where the entries are all 0 except for a 1 in the (i, j)th
entry.

Recall that the matrix (aij) described in (4.3), where i is the row index and j is
the column index, is called matrix representing L with respect to B and B′. Using

the notation from this chapter’s introduction, we denote this by
[
L
]B
B′ = (aij). A

standard result from linear algebra is that

[
L
]B
B′ =

(
[L(e1)]B′ [L(e2)]B′ · · · [L(em)]B′

)
.

Clearly, the matrix that represents a linear transformation with respect to cer-
tain bases will change if the ordered bases change. Let T : V → W be a linear
transformation. Suppose that dimV = m and dimW = n. Let A and A′ be two
bases of V , and let P = PAA′ be the change of coordinate matrix from A to A′.
Let B and B′ be two bases of W and let Q = QBB′ be the corresponding change of
coordinate matrix from B to B′. We point out that the process of taking, say, the A
coordinates of V is a linear transformation [ ]A : V → Rm. With this in mind, the
following diagram depicts how the linear transformations, coordinates, and matrix
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multiplications are all related.

V W

Rm

Rm

Rn

Rn

T

[ ]A

[ ]A′

[ ]B

[ ]B′

[T ]AB

[T ]A
′

B′

PAA′ QBB′ (4.4)

In particular, we read off the matrix relationship

[T ]A
′

B′ = QBB′ [T ]ABP
A′
A = QBB′ [T ]AB

(
PAA′

)−1
. (4.5)

To write this relationship as a sum similar to (4.2), we suppose that P−1 = (p̌ij),

Q = (qij), [T ]AB = (aij) and [T ]A
′

B′ = (āij), then

āk` =
m∑
i=1

n∑
j=1

qkj a
j
i p̌
i
`. (4.6)

In the particular case of a linear transformation T : V → V , we always as-
sume that the same basis change occurs simultaneously on both the domain and
codomain. Hence, P = Q. The relationship in (4.5) becomes

[T ]A
′

A′ = PAA′ [T ]AA
(
PAA′

)−1
,

making [T ]AA and [T ]A
′

A′ similar matrices, and (4.6) changes to

āk` =
m∑
i=1

m∑
j=1

pkj p̌
i
`a
j
i . (4.7)

Though a particular case of a Hom-space, the dual to a vector space plays a
critical role in multilinear algebra. We devote the remainder of this section to the
dual space.

Definition 4.1.3. Let V be a vector space over K. The vector space HomK(V,K)
is called the dual space to V and is denoted by V ∗. Elements of V ∗ are called
covectors to V .
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By Proposition 4.1.2, if V is finite-dimensional, then dimV ∗ = dimV and, by
well-known facts from linear algebra, V and V ∗ are isomorphic. Knowing that two
vector spaces are isomorphic may seem like there is not much difference between
them. However, the difference in how coordinates of covectors change versus how
coordinates of vectors change under a basis change is of foundational importance
with implications reaching into many areas of mathematics.

Proposition 4.1.4. If B = (e1, e2, . . . , en) is an ordered basis for V , then the linear
functions e∗i : V → K, with 1 ≤ i ≤ n such that

e∗i(v) = vi, whenever [v]B =

v
1

...
vn

 , (4.8)

form a basis of V ∗. In particular, dimV = dimV ∗.

Proof. This follows from the basis of HomK(V,W ) exhibited in Proposition 4.1.2.

We can give an alternate characterization of the functions e∗i. They are linear
and satisfy the property that

e∗i(ej) = δij =

{
1 if i = j

0 otherwise.

This δij symbol is called the Kronecker delta. The Kronecker delta appears repeat-
edly in multilinear algebra and represents the components of the identity matrix.

We point out that the map ϕ : V → V ∗ that sends ei to e∗i for all 1 ≤ i ≤ n
(and that is completed by linearity) provides an explicit isomorphism between V
and V ∗. This isomorphism depends on the choice of ordered basis.

Definition 4.1.5. The ordered basis B∗ = (e∗1, . . . , e∗n) is called the dual basis or
cobasis to B = (e1, e2, . . . , en).

It is important to remember that each e∗i depends on the whole basis B. There
is no canonical (without reference to a basis of V ) way to define a function v∗ ∈
Hom(V,K) in reference to a single vector v ∈ V .

Proposition 4.1.6. Let V be a vector space with two bases A and B and sup-
pose that λ ∈ V ∗ has coordinates (λi) with respect to the dual basis A∗ and has
coordinates (λ̄i) with respect to B∗. If Q = QAB then

λ̄i =
n∑
j=1

q̌jiλj ,

where q̌ji are the components of the inverse matrix Q−1.
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Proof. This is a particular case of (4.5) and (4.6).

In the context of a dual space, it is possible to give a natural interpretation
of the transpose of a matrix. Suppose that V and W are two vector spaces over
K and that T ∈ HomK(V,W ). There is a natural way to define an associated
linear transformation W ∗ → V ∗ as follows. Given a linear function g ∈ W ∗, the
composition v 7→ g(T (v)) is an element of V ∗. Therefore, we call T ∗ : W ∗ → V ∗

the transformation such that T ∗(g) is the unique element of V ∗ that satisfies

T ∗(g)(v) = g(T (v)). (4.9)

As the composition of linear transformations, T ∗ is again linear, and hence, T ∗ ∈
Hom(W ∗, V ∗). This transformation T ∗ is called the dual of T .

Proposition 4.1.7. Let V and W be finite-dimensional K-vector spaces with or-
dered bases A and B, respectively. Let T : V →W be a linear transformation. The
matrix representing the dual T ∗ : W ∗ → V ∗ with respect to the cobases B∗ and A∗
is the transpose of the matrix representing T with respect to A and B. In other
words,

[T ∗]
B∗
A∗ =

(
[T ]
A
B

)>
.

Proof. Suppose that A = (e1, e2, . . . , em) and B = (f1, f2, . . . , fn), respectively, and
let A = (aij) be the matrix representing T with respect to these bases, so that

T (ei) =
n∑
k=1

aki fk.

For all v ∈ V , we can write v as v = v1e1 + v2e2 + · · ·+ vmem. Then

T ∗(f∗j)(v) = f∗j(T (v)) = f∗j

(
T

(
m∑
i=1

viei

))

= f∗j

(
m∑
i=1

viT (ei)

)
= f∗j

(
m∑
i=1

vi
n∑
k=1

aki fk

)

=
m∑
i=1

vi

(
n∑
k=1

aki f
∗j(fk)

)
=

m∑
i=1

vi

(
n∑
k=1

aki δ
j
k

)

=
m∑
i=1

viaji =
m∑
i=1

ajie
∗i(v).

Thus, as covectors,

T ∗(f∗j) =
m∑
i=1

ajie
∗i.
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Hence, the (i, j)-entry of the matrix representing T ∗ with respect to B∗ and A∗ is
(aji ), which is the same of the matrix representing T , but with the role of rows and
columns reversed. The result follows.

In the previous paragraphs, we emphasized the role of a basis in establishing an
isomorphism between V and V ∗. Operations on a vector space that can be described
without reference to any particular basis are called canonical . For example, the
definition of the dual of a vector space and the definition of a dual of a linear
transformation in (4.9) are canonical definitions. On the other hand, when a vector
space V has an ordered basis B, the isomorphism ϕ : V → V ∗ defined in (4.8) is
not canonical.

We now consider the double-dual of V , namely the dual of V ∗. Given any vector
v ∈ V , we define the co-covector λv ∈ V ∗∗ = Hom(V ∗,K) by

λv(f) = f(~v). (4.10)

This defines a function Λ : V → V ∗∗ by Λ(v) = λv.

Proposition 4.1.8. The function Λ defined by (4.10) is an injective linear transfor-
mation. Furthermore, if V is finite-dimensional, then Λ is a canonical isomorphism
between a vector space V and its double dual V ∗∗.

Proof. We defined Λ without reference to any basis so it is canonical.
We first prove that Λ is a linear transformation. Let v, w ∈ V , and let c ∈ K.

For all f ∈ V ∗,

Λ(v + w)(f) = λv+w(f) = f(v + w) = f(v) + f(w) = λv(f) + λw(f),

= Λ(v)(f) + Λ(w)(f), (4.11)

so as co-covectors, Λ(v + w) = Λ(v) + Λ(w). Similarly,

Λ(cv)(f) = λcv(f) = f(cv) = cf(v) = cλv(f) = cΛ(v)(f), (4.12)

so again, as co-covectors, Λ(cv) = cΛ(v).
Next, we show that Λ is injective. Let u1, u2 ∈ V be vectors, and suppose

that Λ(u1) = Λ(u2). Thus, f(u1) = f(u2) for all f ∈ Hom(V,K). Therefore,
f(u1 − u2) = 0 for all f ∈ V ∗, hence u1 − u2 = 0, and thus, u1 = u2, proving that
Λ is injective.

Finally, we prove that if V is finite-dimensional, then Λ is an isomorphism. Since
dimW = dimW ∗ for all finite dimensional vector spaces, we also have dimV =
dimV ∗∗. Since Λ is injective, by the Rank-Nullity Theorem, dim(Im Λ) = rank Λ =
dimV = dimV ∗∗. Thus Λ is surjective. Hence, Λ is an isomorphism.

We point out that requiring V to be finite-dimensional for V and V ∗∗ to be
canonically isomorphic is not a limitation of the above proof. There exist infinite-
dimensional vector spaces V with a basis B such that a basis of V ∗ has a strictly
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greater cardinality than |B|. This suffices to show that V and V ∗ and by extension
V ∗∗ cannot be isomorphic.

However, the benefit of the existence of a canonical isomorphism between V and
V ∗∗ when V is finite dimensional arises especially in regards to how coordinates
change under a change of basis. Proposition 4.1.6 shows that coordinates of covec-
tors change by the inverse of the coordinate change matrix under a basis change on
V . However, since there is a canonical isomorphism between V and V ∗∗ coordinates
of co-covectors change by the regular coordinate change matrix and hence behave
as regular vectors under a basis change on V .

As the reader has hopefully noticed, it is standard to use superscripts for the
index of coordinates of a vector with respect to a basis B and to use subscripts
for the index of coordinates of a covector with respect to B∗. Superscript indices
are called contravariant indices and subscript indices are called covariant indices.
Proposition 4.1.8 shows that we do not need three or worse, a countable number
of, types of index. This distinction between types of indices dovetails with our
habits of matrix notation: we write coordinates of a vector as a column matrix and
coordinates of a covector as a row matrix.

We can now introduce the Einstein summation convention, which shortens cal-
culations involving components of objects in multilinear algebra. In any expression
involving the product of components of vectors or matrices (or eventually tensors),
we will assume that we sum over any index that is repeated in the superscript and
in the subscript. For example, if 1 ≤ j ≤ n, then

aijv
j means

n∑
j=1

aijv
j .

This equation shows the components of a matrix-vector multiplication, Av. Also if
(ci) are real numbers and (ei) is a list of vectors, then under the Einstein summation
convention

ciei means the linear combination c1e1 + c2e2 + · · ·+ cnen.

As a third example, we could rewrite (4.7) using Einstein summation convention as

āk` = qkj q̌
i
`a
j
i .

Except for summations involving Tij in the proof of Proposition 4.1.2, we prop-
erly used superscript and subscript indices in every equation in this section so that
the summation symbol could be removed and the expression be correct using the
Einstein summation convention. Through the remainder of the book, we will use
the Einstein summation convention, and occasionally write (ESC) to remind the
reader of this convention.

We conclude this section with a brief comment about the direct sum of two
vector spaces. Though not immediately connected to the Hom-space or dual space,
we mention this construction here since some exercises involve the direct sum.
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Definition 4.1.9. Let V and W be two vector spaces over a field K. The direct
sum V ⊕W consists of the set V ×W equipped with operations of addition and
scalar multiplication defined as:

1. (v1, w1) + (v2, w2)
def
= (v1 + v2, w1 + w2).

2. c · (v, w)
def
= (cv, cw) for all c ∈ K.

It is a simple exercise to show that V ⊕W is a vector space over K. In the
direct sum V ⊕W , the subset {(v, 0) | v ∈ V } is a subspace isomorphic to V and the
subset {(0, w) |w ∈W} is a subspace isomorphic to W . By an abuse of terminology,
we will often say that V and W are subspaces of V ⊕W , with V and W identified
according to these natural isomorphisms.

Problems

4.1.1. Let V be a vector space with basis {e1, e2, . . . , en}. Clearly prove that the set of
functions {e∗1, e∗2, . . . , e∗n} defined in (4.8) form a basis of V ∗.

4.1.2. Prove that dim(V ⊕W ) = dimV + dimW .

4.1.3. Let U , V , and W be vector spaces over a field K. Prove that there exist canonical
(vector space) isomorphisms

Hom(U ⊕ V,W ) ≈ Hom(U,W )⊕Hom(V,W ), (4.13)

Hom(U, V ⊕W ) ≈ Hom(U, V )⊕Hom(U,W ). (4.14)

4.1.4. Let V1, V2, W1, and W2 be vector spaces over a field K. Suppose that L : V1 → V2

and T : W1 → W2 are linear transformations with respect to given bases. Define
the function

f : V1 ⊕W1 → V2 ⊕W2

(v, w) 7−→ (L(v), T (w)).

Suppose that A1, A2, B1, and B2 are ordered bases on V1, V2, W1, and W2

respectively. Prove that the matrix of f with respect to the basis A1 ∪ B1 on
V1 ⊕W1 and to the basis A2 ∪ B2 on V2 ⊕W2 is block diagonal

4.1.5. Let V and W be finite-dimensional vector spaces over a field K with dimensions
m and n, respectively, and let f : V → W be a linear transformation. Define the
linear transformation

T : V ⊕W → V ⊕W
(v, w) 7−→ (v, f(v) + w).

(a) Prove that the only eigenvalue of T is 1 (with multiplicity m+ n).

(b) Prove that the eigenspace of 1 is E1 = Ker f ⊕W , and conclude that the
geometric multiplicity of 1 is m+ n− rank f .

4.1.6. Let T : V → V be a linear transformation and suppose that T with respect
to some basis B of V , it has the matrix A = (aij). Using Einstein summation
convention, prove that aii, which is the trace Tr(A) of A, is independent of the
basis.
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4.1.7. Let V be a vector space with an ordered basis B. Let v ∈ V and let f ∈ V ∗. Sup-
pose that the coordinates of v with respect to B are (vi) and that the coordinates
of f with respect to B∗ are (fi). Prove that f(v) is equal to fiv

i (ESC) and show
that this quantity is independent of the basis.

4.1.8. Let U , V , and W be vector spaces. Prove that ψ : Hom(U,Hom(v,W )) →
Hom(V,Hom(U,W )) defined by ψ(T ) = L, where for all u ∈ U and for all v ∈ V
the linear transformation L satisfies L(v)(u) = T (u)(v), is a canonical isomor-
phism.

4.1.9. Let V = C0([a, b],R) be the vector space of continuous real valued functions
defined on the interval [a, b]. For all f ∈ C0([a, b],R), define λf as the covector
satisfying.

λf (g) =

∫ b

a

f(x)g(x) dx for all g ∈ C0([a, b],R).

(a) Prove that Λ : V → V ∗ defined by Λ(f) = λf is an injective linear transfor-
mation.

(b) Let c ∈ [a, b] and define the evaluation at c as evc(g) = g(c). Prove that
evc ∈ V ∗.

(c) Prove that there does not exist f ∈ C0([a, b],R) such that λf = evc. [This
shows that Λ is strictly injective.]

4.1.10. Let V be a vector space, and let W be a subspace. Define the relation ∼ on
vectors of V by

v1 ∼ v2 ⇐⇒ v1 − v2 ∈W.

(a) Prove that ∼ is an equivalence relation.

(b) Denote by V/W the set of equivalence classes. Prove that V/W has the

structure of a vector space under the operations: [v1] + [v2]
def
= [v1 + v2] and

c · [v]
def
= [cv].

(c) Suppose that V is finite-dimensional. Prove that dimV/W = dimV −
dimW .

(The vector space V/W is called the quotient vector space of V with respect to
W .)

4.2 Bilinear Forms and Inner Products
4.2.1 Bilinear Forms on V ×W

Definition 4.2.1. Let V and W be vector spaces over a field K. A bilinear form
〈·, ·〉 on V ×W is a function V ×W → K such that for all v ∈ V , w ∈ W , and
λ ∈ K,

〈v1 + v2, w〉 = 〈v1, w〉+ 〈v2, w〉, 〈λv,w〉 = λ〈v, w〉, (4.15)

〈v, w1 + w2〉 = 〈v, w1〉+ 〈v, w2〉 〈v, λw〉 = λ〈v, w〉. (4.16)

If V = W , then we say 〈·, ·〉 is a bilinear form on V .
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We can restate this definition to say that for any fixed w0 ∈ W , the function
x 7→ 〈x,w0〉 is in V ∗ (corresponding to (4.15)) and that for any fixed v0 ∈ V , the
function x 7→ 〈v0, x〉 is in W ∗ (corresponding to (4.16)).

The notation used for a bilinear form varies widely in the literature because
of the many areas in which it is used. In terms of function notation, we might
encounter the functional notation f : V ×W → K or perhaps ω : V ×W → K for a
bilinear form and 〈·, ·〉 or (·, ·) for the “product” notation. If V = W , we sometimes
write the pair (V, f) to denote the vector space V equipped with the bilinear form
f .

Example 4.2.2. In elementary linear algebra, the most commonly known example
of a bilinear form on Rn is the dot product between two vectors defined in terms of
standard coordinates by

~v · ~w = v1w1 + v2w2 + · · ·+ vnwn.

The following functions Rn × Rn → R are also bilinear forms:

〈~v, ~w〉1 = v1w2 + v2w1 + v3w3 · · ·+ vnwn,

〈~v, ~w〉2 = 2v1w1 + v2w2 + · · ·+ vnwn + v1wn, (4.17)

〈~v, ~w〉3 = v1w2 − v2w1.

Despite the variety depicted in the above example, bilinear forms on finite di-
mensional vector spaces can be completely characterized by a single matrix.

Proposition 4.2.3. Let V and W be finite-dimensional vector spaces, with dimV =
m and dimW = n. Let 〈·, ·〉 be a bilinear form on V ×W . Given ordered bases A
of V and B of W , there exists a unique m× n matrix M such that

〈v, w〉 = [v]>A C [w]B.

Furthermore, if A = (e1, e2, . . . , em) and B = (u1, u2, . . . , un), then the entries of C
are cij = 〈ei, uj〉 for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. Let v ∈ V and w ∈W be vectors with coordinates

[
v
]

=

 v1

...
vm

 and
[
w
]

=

w
1

...
wn

 .

Then since 〈·, ·〉 is bilinear,

〈v, w〉 =
〈
viei, w

juj
〉

= viwj〈ei, uj〉. (ESC) (4.18)

Setting cij = 〈ei, uj〉 and the matrix C = (cij), for 1 ≤ i ≤ m, we have 〈ei, uj〉wj (ESC),
which are the coordinates of C[w]. Then (4.18) shows that 〈v, w〉 = [v]>C[w], where
[v]> means the coordinates of v are written in a row vector as opposed to a column
vector.
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Definition 4.2.4. The mn constants (cij) described in Proposition 4.2.3 are called
the components of 〈·, ·〉 with respect to the ordered bases A and B.

We emphasize that it is appropriate to use two subscript indices for (cij) in
light of the comments at the end of the previous section about contravariant and
covariant indices. Using the Einstein summation convention, we would write the
evaluation of 〈v, w〉 as

〈v, w〉 = cijv
iwj .

This hints that both indices are covariant. This is the content of the following
proposition.

Example 4.2.5. Let V = Rn, use the standard basis, and consider the bilinear
forms in Example 4.2.2. First, note that the matrix for the dot product is just the
identity matrix

~v · ~w = ~v> ~w = ~v>In ~w.

For the other forms, it is easy to see that

〈~v, ~w〉1 = ~v>


0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 ~w

〈~v, ~w〉2 = ~v>


2 0 · · · 1
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ~w

〈~v, ~w〉3 = ~v>


0 1 0 · · · 0
−1 0 0 · · · 0
...

...
. . .

...
0 0 0 · · · 0

 ~w

Proposition 4.2.6. Let V and W be finite-dimensional vector spaces. Suppose
that A and A′ are ordered bases on V and that B and B′ are ordered bases on W .
Let P = PAA′ be the coordinate change matrix on V from A and A′ and let Q = QBB′
be the coordinate change matrix on W from B and B′. Let 〈·, ·〉 be a bilinear form
on V ×W with components (cij) with respect to A and B and with components (c̄kl)
with respect to A′ and B′. Then

c̄k` = p̌ikq̌
j
`cij ,

where (p̌ik) are the components of P−1 and (q̌j` ) are the components of Q−1.
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Proof. (The proof is left as an exercise for the reader.)

Definition 4.2.7. Let V and W be vector spaces over K, and let 〈·, ·〉 be a bilinear
form on V ×W . Then 〈·, ·〉 is called

1. nondegenerate on the left if for all nonzero v ∈ V , there exists w ∈ W such
that 〈v, w〉 6= 0;

2. nondegenerate on the right if for all nonzero w ∈ W , there exists v ∈ V such
that 〈v, w〉 6= 0;

3. nondegenerate if it is nondegenerate on the right and on the left.

Furthermore, the rank of 〈·, ·〉 is the rank of its associated matrix with respect to
any basis on V and W .

Basic facts about the rank of a matrix imply that if a form is nondegenerate on
the left, then the number of rows of its associated matrix C is equal to the rank
of the form. If a form is nondegenerate on the right, then the number of columns
of C is equal to the rank of the form. Hence, a form can only be nondegenerate if
dimV = dimW .

4.2.2 Bilinear Forms on V

Many applications of bilinear forms involve a bilinear form 〈·, ·〉 on V .

When we consider the components of a bilinear form on V with respect to bases,
we always assume that A = B. The components (cij) described in Proposition 4.2.3
can be written as an n × n matrix. In Proposition 4.2.6, we also suppose that
A′ = B′ so that change of coordinate matrices are equal, P = Q. Then

c̄k` = p̌ikp̌
j
`cij .

The matrices of components (cij) and (c̄k`) are not necessarily similar. If they
were, they would satisfy (4.7). Consequently, though we do depict the components
of a bilinear form according to Proposition 4.2.3, the matrix does not behave under
coordinate changes like a matrix that represents a linear transformation. We leave
it as an exercise for the reader to prove that

C = (P−1)>CP−1, (4.19)

where C is the matrix (cij) and C is the matrix with components (c̄k`). Hence, C
and C are similar only if P is orthogonal.

Definition 4.2.8. A bilinear form 〈·, ·〉 on a vector space V is called

1. symmetric if 〈y, x〉 = 〈x, y〉 for all x, y ∈ V ; and

2. antisymmetric (or skew-symmetric) if 〈y, x〉 = −〈x, y〉 for all x, y ∈ V .
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From Proposition 4.2.3, we see that 〈·, ·〉 is symmetric if and only if its component
matrix C is symmetric, and is antisymmetric if and only if C is antisymmetric.

By way of example, referring to the three bilinear forms on Rn in Example 4.2.2,
〈·, ·〉1 is symmetric and nondegenerate; 〈·, ·〉2 is nondegenerate but neither symmet-
ric nor antisymmetric; 〈·, ·〉3 is antisymmetric and degenerate.

Proposition 4.2.10 below gives a key characterization of both symmetric and
antisymmetric bilinear forms. Its proof repeatedly uses the notion of a perpendicular
subspace.

Definition 4.2.9. Let V be a vector space with a bilinear form 〈·, ·〉. If W is a
subspace of V , the set

W⊥ = {v ∈ V | 〈v, w〉 for all w ∈W}

is called the 〈·, ·〉-orthogonal subspace to W .

Proposition 4.2.10. Let 〈·, ·〉 be a bilinear form on a vector space V with dimV =
n. Let Ik denote the k × k identity matrix.

1. If 〈·, ·〉 is symmetric, there exists a basis B relative to which the component
matrix is Ip 0 0

0 −Iq 0
0 0 0

 , (4.20)

for some nonnegative integers p and q.

2. If 〈·, ·〉 is antisymmetric, there exists a basis B relative to which the component
matrix is  0 Ik 0

−Ik 0 0
0 0 0

 . (4.21)

Proof. (1) It is easy to check that a symmetric form 〈· · · , ·〉 satisfies

〈v, w〉 =
1

4
(〈v + w, v + w〉 − 〈v − w, v − w〉) . (4.22)

Consequently, whenever the restriction 〈·, ·〉
∣∣
W

to a subspace W is not trivial, there
is a w ∈W with 〈w,w〉 6= 0.

Suppose that 〈·, ·〉
∣∣
V
6= 0. Then there exists e′1 ∈ V with 〈e′1, e′1〉 6= 0. Defining

e1 = e′1/
√
|〈e′1, e′1〉|, we have ε1 = 〈e1, e1〉 = ±1. Let V1 = Span(e1) and W1 = V ⊥1 .

Then W1 is a subspace with V1 ∩W1 = {0}. Furthermore, for all v ∈ V , we have
v − ε1〈v, e1〉e1 ∈ W1, so V1 + W1 = V . Hence, V1 and W1 are complementary
subspaces.

If 〈·, ·〉
∣∣
W1

is not trivial, then there exists some e2 ∈W1 with ε2 = 〈e2, e2〉 = ±1.

We then define V2 = Span(e1, e2) andW2 = V ⊥2 . By the same reasoning as above, V2



4.2. Bilinear Forms and Inner Products 133

and W2 are complementary subspaces. We repeat this process until 〈·, ·〉 restricted
to some Wk is trivial.

Let B be an ordered basis consisting of (e1, e2, . . . , ek) permuted so that all the
vectors with εi > 0 come first, followed by any basis of Wk. With respect to B, the
form has the matrix described in (4.20).

(2) Since 〈·, ·〉 is antisymmetric 〈v, v〉 = 0 for all v ∈ V . If 〈·, ·〉 is not trivial
on V , there exist two linear independent vectors e1, u1 such that 〈e1, u1〉 6= 0. By
rescaling one of them, we can assume that 〈e1, u1〉 = 1. Define V1 = Span(e1, u1).
The matrix of 〈·, ·〉|V1

with respect to the ordered basis (e1, u1) is(
0 1
−1 0

)
.

Define W1 = V ⊥1 . We note that V1 ∩W1 = {0}. Clearly, for all v ∈ V ,

v − 〈v, u1〉e1 + 〈v, e1〉u1 ∈W1.

Thus V1+W1 = V , so since V1∩W1 = {0}, V1 and W1 are complementary subspaces
in V .

As in part (1), if 〈·, ·〉 restricted to W1 is not trivial, then we can repeat the
procedure on W1 and construct e2 and u2 such that 〈e2, u2〉 = 1, and so forth.
We repeat this until 〈·, ·〉 restricted to Wk is trivial. Then define B as the ordered
basis consisting first of (e1, . . . , ek, u1, . . . , uk), followed by an basis of Wk. Then
the matrix of 〈·, ·〉 with respect to B is (4.21).

Three specific types of bilinear forms play important roles in this text: inner
products, symplectic forms, and Minkowski metric. Each leads to a different kind
of geometry. We mention them here together to show their similar origins.

Definition 4.2.11. Let V be a vector space over R. An inner product on V is a
bilinear form 〈·, ·〉 on V that is symmetric and positive-definite, i.e., 〈v, v〉 > 0 for
all v ∈ V − {0}. We call the pair (V, 〈·, ·〉) an inner product space.

Inner products are often introduced in elementary linear algebra courses. We
remind the reader that from any inner product space (V, 〈·, ·〉), we can generalize
geometric concepts that originally arise in connection to the dot product on Rn.

• We defined the magnitude of an elements v ∈ V as ‖v‖ =
√
〈v, v〉.

• The Cauchy-Schwartz inequality holds: |〈v, w〉| ≤ ‖v‖ ‖w‖ for all v, w ∈ V .

• The angle between two vectors is θ, satisfying 0 ≤ θ ≤ π and

cos θ =
〈v, w〉
‖v‖ ‖w‖

.

• Two elements v and w are orthogonal to each other if 〈v, w〉 = 0.
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• We can perform Gram-Schmidt orthonormalization on V .

• If we define the function d : V ×V → R≥0 by d(x, y) = ‖x−y‖, then d satisfies
the triangle inequality and is a metric on V , making (V, d) into a metric space.
(See Section A.1.)

Definition 4.2.12. Let V be a vector space over R. A symplectic form on V is a
nondegenerate, antisymmetric bilinear form.

Definition 4.2.13. Let V be a finite-dimensional vector space over R. A Minkowski
metric, sometimes called a Lorentz metric, on V is a symmetric bilinear form for
which there exists a basis that has a component matrix of either

−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 or


1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 .

4.2.3 Signature of a Symmetric Bilinear Form

Theorem 4.2.14 (Sylvester’s Law of Inertia). Let 〈·, ·〉 be a symmetric bilinear
form on V with dimV = n. Setting r = n − (p + q), the triple of nonnegative
integers (p, q, r) arising in (4.20) is independent of the basis.

Proof. Let B = (e1, e2, . . . , en) be an ordered basis of V with respect to which the
component matrix of 〈·, ·〉 is given in (4.20). The rank of 〈·, ·〉, which is independent
of any basis, is p+ q.

Let V1 be a subspace of V of maximal dimension such that 〈·, ·〉 restricted to
V1 is positive-definite. Then dimV1 = p′ ≥ p because 〈·, ·〉 is positive-definite over
Span(e1, . . . , ep). By Proposition 4.2.10, there is a basis B1 of V1 with respect to
which that matrix of the form is Ip′ .

Let V2 be a subspace of V of maximal dimension such that 〈·, ·〉 restricted to V1 is
is negative-definite, i.e., for all v ∈ V2 − {0}, 〈v, v〉 < 0. Over Span(ep+1, . . . , ep+q),
the form is positive-definite, so dimV2 = p′ ≥ p. By Proposition 4.2.10, there is a
basis B2 of V2 with respect to which that matrix of the form is −Iq′ .

Clearly, V1 ∩ V2 = {0} so the subspace V1 + V2 has dimension p′ + q′. Assume
that p′ > p or q′ > q. Then with respect to B1∪B2, the restriction of 〈·, ·〉 to V1 +V2

is (
Ip′ 0
0 −Iq′

)
,

which implies that the rank of 〈·, ·〉 on V is greater than p+q. This is a contradiction.
We deduce that dimV1 = p and dimV2 = q. Since V1 and V2 were defined without
reference to a basis, the theorem follows.
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The traditional statement of Sylvester’s Law of Inertia is slightly different: If
A is a symmetric matrix and S is any invertible matrix such that D = SAS> is
diagonal, then the number of negative elements in D is the same regardless of S.

Definition 4.2.15. Let 〈·, ·〉 be a symmetric bilinear form on a finite-dimensional
real vector space. The triple of nonnegative integers (p, q, r) is called the signature
of 〈·, ·〉.

We point out the following properties and their relation to the signature (p, q, r).
A symmetric bilinear form is:

• nondegenerate if and only if r = 0;

• an inner product if and only if (p, q, r) = (n, 0, 0).

• a Minkowski metric if (p, q, r) is either (n− 1, 1, 0) or (1, n− 1, 0).

Problems

4.2.1. Prove Proposition 4.2.6.

4.2.2. Prove Equation (4.19).

4.2.3. Prove that every inner product on a real vector space is nondegenerate.

4.2.4. Let 〈·, ·〉 be a bilinear form on V . Fix v ∈ V and define iv ∈ V ∗ as the element
such that iv(w) = 〈v, w〉. Let B = {e1, e2 . . . , en} be a basis of V , and let B∗ =
{e∗1, e∗2 . . . , e∗n} be the cobasis of V ∗.

(a) Prove that ψ : V → V ∗ defined by ψ(v) = iv is a linear transformation.

(b) Prove that in coordinates
[
iv
]
B∗ = CT

[
v
]
B, where cjk = 〈ej , ek〉. [Comment

on notation: we think of
[
iv
]
B∗ as a column vector, whereas we think of[

iv
]
B as a row vector with

[
iv
]
B =

([
iv
]
B∗
)>

.]

(c) Prove that ψ is invertible if and only if 〈·, ·〉 is nondegenerate.

[If 〈·, ·〉 is an inner product, we denote iv by v[ since it lowers the indices of the
components of v, i.e., turns a vector into a covector. The components of v[ with
respect to B∗ are cjkv

k.]

4.2.5. Let 〈·, ·〉 be a nondegenerate bilinear form on V and refer to the previous exercise
for notations. Let C be the component matrix of 〈·, ·〉 with respect to some basis
B. Define the function 〈·, ·〉∗ on V ∗ by 〈iu, iv〉∗ = 〈v, u〉, or in other words 〈η, τ〉∗ =
〈i−1(τ), i−1(η)〉.

(a) Prove that 〈·, ·〉∗ with respect to B∗ is a bilinear form on V ∗. Prove also
that if 〈·, ·〉 is an inner product, then so is 〈·, ·〉∗.

(b) Prove that the component matrix of 〈·, ·〉∗ with respect to B∗ is C−1.

(c) Define Ψλ : V ∗ → V ∗∗ by Ψλ(µ) = 〈λ, µ〉∗. Under the canonical isomor-
phism between V and V ∗∗, show that Ψiv = v for all v ∈ V .
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[In parallel with the previous exercise, if 〈·, ·〉 is an inner product, we denote Ψλ

by λ] since it raises the indices of the components of λ, i.e., turns a covector into a
vector. Writing (cjk) as the components of C−1, the components of λ] with respect
to B are cjkλk.]

4.2.6. Let 〈·, ·〉 be a bilinear form on V . Let W be a subspace of V . Consider the
orthogonal subspace from Definition 4.2.9.

(a) Prove that W⊥ is indeed a subspace of V .

(b) Prove that W ⊂W⊥ if and only if the form 〈·, ·〉 restricted to W is identically
0. [When this is holds, W is called an isotropic subspace of V .]

(c) Prove that if 〈·, ·〉 is symmetric, then W⊥ ∩W = {0}.
(d) Prove that if 〈·, ·〉 is antisymmetric, it is not necessarily true that W⊥∩W =
{0}.

4.2.7. Let V with dimV = 2k be equipped with a symplectic form. A Lagrangian sub-
space of V is one in which L⊥ = L. Prove that dimL = k.

4.2.8. Let 〈·, ·〉 be a bilinear form on V and let W , W1 and W2 be subspaces of V . Prove
the following.

(a) W1 ⊂W2 implies W⊥2 ⊂W⊥1 .

(b) (W1 +W2)⊥ = W⊥1 ∩W⊥2 .

(c) (W1 ∩W2)⊥ = W⊥1 +W⊥2 .

(d) If 〈·, ·〉 is nondegerate, then (W⊥)⊥ = W .

4.2.9. Let V be a vector space over C. An inner product 〈·, ·〉 over V is a function
V × V → C that is (1) conjugate symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ; (2)
linear in the first entry; (3) positive-definite. Prove that there is a basis B of V
with respect to which, for all x, y ∈ V ,

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn,

where [x]B = (xi) and [y]B = (yi).

4.3 Adjoint, Self-Adjoint, and Automorphisms
In applications of bilinear forms to geometry, linear transformations that preserve
the form play a key role.

Suppose that V is a finite dimensional vector space and B is a basis. Let 〈·, ·〉
be a nondegenerate bilinear form with component matrix C with respect to B. If
L : V → V is a linear transformation with [L]BB = A, then

〈L(v), w〉 = (A[v])>C[w] = [v]>A>C[w].

There exists a unique linear transformation L† : V → V such that

〈L(v), w〉 = 〈v, L†(w)〉 for all v, w ∈ V .
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We find the associated matrix A† of L† by remarking that if

[v]>A>C[w] = [v]>C(A†[w])

for all v, w ∈ V , then A>C = CA† as matrices. Hence,

A† = C−1A>C. (4.23)

Definition 4.3.1. The linear transformation L† such that 〈L(v), w〉 = 〈v, L†(w)〉
for all v, w ∈ V is called the adjoint operator to L with respect to 〈·, ·〉.

More generally, let V and W be vector spaces equipped with nondegenerate
bilinear forms 〈·, ·〉V and 〈·, ·〉W . Let L : V →W be a linear transformation. Then
there exists a unique linear map L† : W → V such that

〈L(v), w〉W = 〈v, L†(w)〉V .

We also call L† the adjoint of L with respect to these forms. If C1 is the matrix
corresponding to 〈·, ·〉V and C2 is the matrix corresponding to 〈·, ·〉W with respect
to specific bases on V and W , and if A is the matrix representing L, then the adjoint
matrix A† of L† is

A† = C−1
1 A>C2.

Example 4.3.2. Let L : Rn → Rm be a linear transformation between Euclidean
spaces, with matrix A with respect to the standard bases. For all ~v, ~w ∈ Rn,

L(~v) · ~w = (A~v) · ~w = (A~v)> ~w = ~v>A> ~w = ~v · (A> ~w).

Therefore, the transpose A> is the matrix corresponding to the adjoint of L when
we assume Rn and Rm are equipped with the usual dot product.

Proposition 4.3.3. Let V , W , and U be vector spaces equipped with nondegenerate
bilinear forms. Then the following formulas hold for the adjoint:

1. (L1 + L2)† = L†1 + L†2 for all L1, L2 ∈ Hom(V,W ).

2. (cL)† = cL† for all L ∈ Hom(V,W ) and all c ∈ K.

3. (L2 ◦ L1)† = L†1 ◦ L
†
2 for all L1 ∈ Hom(V,W ) and all L2 ∈ Hom(W,U).

Proof. (Left as an exercise for the reader.)

We are often lead to consider two particular types of linear transformations
associated to the adjoint: automorphisms with respect to the form and self-adjoint
transformations. We describe these in the following paragraphs.

Definition 4.3.4. Let V be a vector space with a nondegenerate bilinear form
f = 〈·, ·〉. A linear transformation L : V → V is called self-adjoint with respect to
this form if L = L†. We use the same term for the matrix representing L.
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Example 4.3.5. Consider V = Rn equipped with the dot product. A matrix A is
self-adjoint with respect to the dot product if A = A>, hence it is symmetric.

Because of this example, some authors refer to L† as defined above as the trans-
pose of L with respect to a form (or forms) and use the word adjoint of a linear
transformation only in the cases when V and W are vector spaces over C and when
the form 〈·, ·〉 is sesquilinear. (A sesquilinear form on a complex vector space is one
that satisfies conditions (1) and (2) in Exercise 4.2.9. See [31] for a discussion on
sesquilinear forms.)

Definition 4.3.6. Let V be a vector space with a nondegenerate bilinear form f =
〈·, ·〉. An automorphism of (V, f) is an invertible linear transformation L : V → V
such that

〈L(v1), L(v2)〉 = 〈v1, v2〉 for all v1, v2 ∈ V . (4.24)

The property (4.24) shows that automorphisms preserve the bilinear form. This
condition is equivalent to 〈v1, L

†(L(v2))〉 = 〈v1, v2〉 for all v1, v2 ∈ V . Since f is
nondegenerate, then L† ◦ L = idV , where idV is the identity on V . This gives the
following proposition.

Proposition 4.3.7. A linear transformation L : V → V is an automorphism of
(V, f) if and only if L is invertible with L† ◦ L = idV .

If V is a finite dimensional vector space, we could simplify Definition 4.3.6.
Suppose the V is finite dimensional and that L is a linear transformation satisfying
(4.24). We can still conclude that L† ◦ L = idV . By properties of functions,
we deduce that L is injective. By the Rank-Nullity Theorem, an injective linear
transformation between vector spaces of the same finite dimension is invertible.
Hence, when V is finite dimensional condition (4.24) implies that L is invertible.

Proposition 4.3.8. Let (V, f) be a vector space equipped with a nondegenerate
bilinear form. Then the set S of automorphisms of (V, f) satisfies the following:

1. S is closed under composition: L1 ◦ L2 ∈ S for all L1, L2 ∈ S.

2. The identity idV is in S.

3. If L ∈ S, then L is invertible and L−1 ∈ S.

Proof. We have already discussed the first property, and the second is obvious. For
the third property, note that for all L ∈ S, we have L† ◦L = id and L is invertible.
Thus L−1 = L† so L ◦ L† = idV as well. Furthermore, for all v, w ∈ V ,

〈L†(v), L†(w)〉 = 〈L ◦ L†(v), L ◦ L†(w)〉 because L is an automorphism
=〈v, w〉 .

Thus, L† is an automorphism.



4.3. Adjoint, Self-Adjoint, and Automorphisms 139

(Using the language of modern algebra, Proposition 4.3.8, along with the asso-
ciativity of linear transformations, shows that the set of automorphisms of (V, f) is
a group. This group is denoted by Aut(V, f).)

If for a vector space V has an ordered basis B = {e1, e2, . . . , en}, then (4.23)
leads to a characterization of matrices of automorphisms. Let C be the matrix
associated to the bilinear form f , and let A be the matrix of a linear transformation
L : V → V in reference to B. Then by Proposition 4.3.7, L is an automorphism if
and only if

A−1 = C−1A>C. (4.25)

Example 4.3.9. Example 4.2.5 indicates that the dot product is a symmetric,
nondegenerate bilinear transformation with associated matrix In, and Example 4.3.2
shows that the transpose of a matrix is the adjoint of a matrix with respect to the
dot product. However, consider the symmetric bilinear forms f1 and f2 on R4 given
by the matrices

M1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and M2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

Then a simple calculation using (4.23) shows that the adjoint of A = (aij) with
respect to f1 is

A† =


a22 a12 a32 a42

a21 a11 a31 a41

a23 a13 a33 a43

a24 a14 a34 a44

 ,

and the adjoint of A with respect to f2 is

A† =


a44 a34 a24 a14

a43 a33 a23 a13

a42 a32 a22 a12

a41 a31 a21 a11

 .

Now just consider 〈·, ·〉1, the matrix A correspond to a self-adjoint linear transfor-
mation if

A =


a b c d
e a f g
f c h i
g d i j

 .

A matrix A corresponds to an automorphism if and only if A†A = I4, which is a
system of 16 quadratic equations in the 16 variables of the entries of A. Many of
these equations will be redundant.
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Proposition 4.3.10. If (V, 〈·, ·〉) is a vector space with a nondegenerate symmetric
form, then L†† = L for all L ∈ Hom(V, V ).

Proof. By definition, 〈L(v), w〉 = 〈v, L†(w)〉 for all v, w ∈ V . Since the form is
symmetric, 〈L(v), w〉 = 〈w,L(v)〉. Thus,

〈w,L(v)〉 = 〈v, L†(w)〉 = 〈L†(w), v〉 = 〈w,L††(v)〉.

Since these equalities hold for all v, w ∈ V and since 〈·, ·〉 is nondegenerate, we
conclude that L = L††.

Example 4.3.11. Consider V = Rn and consider the dot product as a symmetric
bilinear form. We know from elementary linear algebra that an n× n matrix is an
automorphism (of the dot product) if A> = A−1, i.e., if A is orthogonal. The set
of n × n orthogonal matrices is denoted by O(n). This is the set of isometries of
Rn that fix the origin. The special orthogonal group SO(n) defined in Section 2.3,
which are all orthogonal matrices with determinant 1, is the set of rotations in Rn.
In particular, if n = 2, all orthogonal matrices have the form(

cos θ −ε sin θ
sin θ ε cos θ

)
,

for some angle θ and some ε = ±1. Such a matrix is in SO(2) when ε = 1.

Example 4.3.12 (Lorenztian Transformations). Minkowski spacetime is R4

equipped with the Minkowski metric. It is common to denote Minkowski space
by R3,1. Points are located by the quadruple (x0, x1, x2, x3), with (x1, x2, x3) serv-
ing as space variables and x0 represents time.

With respect to the standard basis of R4, the Minkowski metric is

g((x0, x1, x2, x3), (y0, y1, y2, y3)) = −x0y0 + x1y1 + x2y2 + x3y3,

so the representing matrix is

C =

(
−1 0
0 I3

)
.

Note that C−1 = C.
We propose to study the automorphisms of the Minkowski metric. Using block

diagonal properties, it is not hard to see that any linear transformation with matrix(
1 0
0 R

)
,

where R ∈ O(3), is an automorphism of this form. This corresponds to an orthogo-
nal transformation in the space variables. Also using block diagonal properties, we
can see that (

±1 0
0 I3

)
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are the only two matrices corresponding to automorphism that fix all the space
variables.

To understand automorphisms that intermingle the space and time variables,
we consider the situation on R2 where the Minkowski metric has the matrix(

−1 0
0 1

)
.

For a generic matrix A, the adjoint with respect to this bilinear form is

A† = C−1A>C =

(
−1 0
0 1

)(
a b
c d

)(
−1 0
0 1

)
=

(
a −c
−b d

)
.

The matrix A represents an automorphism when A†A = I2, which is equivalent to
a2 − c2 = 1

ab− cd = 0

−b2 + d2 = 1.

As the first equation parametrizes a hyperbola, there exist ε1 = ±1 and u ∈ R such
a = ε1 coshu and c = sinhu. By the second equation, we deduce that b = cd/a =
dε1 tanhu. Then from −b2 + d2 = 1, we deduce that

−d2 tanh2 u+ d2 = d2 sech2 u = 1,

so d = ε2 coshu for some ε3 = ±1, from which we also deduce b = ε1ε2 sinhu.
Hence, the matrix A has the form

A =

(
ε1 coshu ε1ε2 sinhu

sinhu ε2 coshu

)
.

This gives uniquely the all the matrices representing automorphisms of the Minkowski
metric on R1,1. The set of automorphisms on R3,1 is the smallest subset of GL4(R)
closed under multiplication and taking inverses that includes every matrix of the
form ε1 coshu ε1ε2 sinhu

sinhu ε2 coshu
0

0 I2

 and

(
1 0
0 R

)
,

where R ∈ O(3). This describes all automorphisms on R3,1.
To apply this to special relativity, set t = x0 and x = x1. We imagine that

one observer O has frame axes t and x, and a second observer O with axes t̄ and
x̄ travels with respect to O along the x-axis with velocity v. In the t̄x̄-frame, the
t̄-axis, namely x̄ = 0, is the trajectory of O, namely the line with equation vt = x
in the O frame. Thus, there are nonzero constants λ and µ such that

µ

(
1
0

)
=

(
ε1 coshu ε1ε2 sinhu

sinhu ε2 coshu

)(
λ
λv

)
= λ

(
ε1 coshu+ ε1ε2v sinhu

sinhu+ ε2v coshu

)
.
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From the x̄ component, we deduce that v = −ε2 tanhu. Since sech2 u = 1−tanh2 u,
we get coshu = 1/

√
1− v2 and sinhu = −ε2v/

√
1− v2. Using the variable v, we

have

A =


ε1√

1− v2
− ε1v√

1− v2

− ε2v√
1− v2

ε2√
1− v2

 . (4.26)

Since the range of tanhu is (−1, 1), we still have all the automorphisms of the
Minkowski metric, assuming that ε1 = ±1, ε2 = ±1, and v ∈ (−1, 1). In GL2(R2),
the subset of matrices of this form consists of 4 connected components, each being
a curve parametrized by v ∈ (−1, 1) and designated by the four possible values of
the pair (ε1, ε2).

Returning to the full context of Minkowski space R3+1, the automorphisms
include

Λ(v) =


ε1√

1− v2
− ε1v√

1− v2
0 0

− ε2v√
1− v2

ε2√
1− v2

0 0

0 0 1 0
0 0 0 1

 . (4.27)

This is an example of a Lorentz transformation associated to the vector (0, v, 0, 0)>.
It is also clear that the Minkowski metric is invariant under any orthogonal transfor-
mation in the (x1, x2, x3) variables. The group of automorphisms of the Minkowski
metric is called the Lorentz group and, as a subset of GL4(R), consists of any fi-
nite product of matrices of the form (4.27) and orthogonal matrices in the space
variables. We denote the Lorentz group by SO(3, 1).

Generalizing (4.27), if ~v is some vector in the space variables with ‖~v‖ < 1, then
the Lorentz transformation associated to ~v is the linear map R4 → R4 that has the
matrix Λ(~v) obtained by the composition MΛ(‖v‖)M−1, where M is some rotation
matrix that sends the unit x-direction vector to ~v/‖~v‖. Exercise 4.3.9 gives the
exact value of this matrix.

As in the case of Minkowski space R1,1, the freedom of choosing values of ε1

and ε2 implies that O(3, 1) has 4 connected components. Only the component
corresponding to ε1 = ε2 = 1 contains the identity matrix I4. This subset is called
the restricted Lorentz group and is denoted SO+(3, 1). Matrices in the restricted
Lorentz group are called Lorentz transformations. As we will see in Section 7.2,
Lorentz transformations play a central role in special relativity.

Problems

4.3.1. Let 〈·, ·〉 be a nondegenerate bilinear form on a finite vector space V . Prove that
the set of self-adjoint linear transformations is a vector subspace of Hom(V, V ).

4.3.2. Let 〈·, ·〉 be a nondegenerate form on V and let L ∈ Hom(V, V ). Let C be the
component matrix of 〈·, ·〉 with respect to a basis B and let A be the matrix
representing L. Determine the matrix representing L†† and conclude that if 〈·, ·〉
is not symmetric, then it is not necessarily true that L†† = L.
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4.3.3. Let (V, f) be a vector space equipped with a nondegenerate bilinear form. Prove
that the set of automorphisms is not closed under addition.

4.3.4. Let (V, f) be a vector space equipped with a nondegenerate bilinear form. Prove
that the set of self-adjoint transformations is closed under composition.

4.3.5. Let L be an automorphism of an inner product space. Prove that the eigenvalues
of L are 1 or −1.

4.3.6. Let V and W be finite vector spaces over a field K. Suppose that V and W are
equipped with nondegenerate bilinear forms denoted by 〈 , 〉V and 〈 , 〉W , respec-
tively. Let L : V → W be a surjective linear transformation, and let L† be its
adjoint, namely, L† : W → V satisfies

〈L(v), w〉W = 〈v, L†(w)〉V

for all v ∈ V and w ∈W .

(a) Show that L† is injective.

(b) Assume in addition that for all v ∈ V with v 6= 0, 〈v, v〉V 6= 0. Then show
that KerL and ImL† are orthogonal complements in V , that is:

(i) KerL ∩ ImL† = {0};
(ii) for all v1 ∈ KerL and v2 ∈ ImL†, we have 〈v1, v2〉V = 0; and

(iii) all v ∈ V can be written as v = v1+v2, where v1 ∈ KerL and v2 ∈ ImL†.
[Hint: Let φ = L ◦ L† : W → W . Show that φ is invertible. For all
v ∈ V , let v2 = (L† ◦ φ−1 ◦ L)(v) and set v1 = v − v2; show that
v1 ∈ KerL.]

4.3.7. The definition for an isometry on Rn is any function f : Rn → Rn satisfying
d(f(~x), f(~y)) = d(~x, ~y) for all ~x, ~y ∈ Rn. Prove that any isometry on Rn that
fixes the origin is an orthogonal transformation. [Hint: If f is an isometry, first
prove that f preserves the dot product between any two vectors; prove that f maps
parallelograms to parallelograms; deduce that f is linear.]

4.3.8. Let ~u = (0, u, 0, 0)> and ~v = (0, v, 0, 0)> be two vectors in Minkowski spacetime
R1+3. The matrix Λ(v)Λ(u) represents the Lorentz transformation from an observer
O to O′′ in which O′′ moves relative to an observer O′ along the x-axis with velocity
v and O′ moves relative to an observer O along the x-axis with velocity u. Prove
that

Λ(v)Λ(u) = Λ

(
u+ v

1 + uv

)
.

[This is the velocity addition law in special relativity.]

4.3.9. Consider the velocity vector ~v in R1+3 with ~v = (0, v1, v2, v3)> and v = ‖~v‖ < 1.
Call γ = 1/

√
1− v2 and let ~u = ~v/‖~v‖ = (0, u1, u2, u3). Show by direct verification

that

Λ(~v) =


γ −v1γ −v2γ −v3γ
−v1γ 1 + u2

1(γ − 1) u1u2(γ − 1) u1u3(γ − 1)
−v2γ u1u2(γ − 1) 1 + u2

2(γ − 1) u2u3(γ − 1)
−v3γ u1u3(γ − 1) u2u3(γ − 1) 1 + u2

3(γ − 1)


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is an automorphism of the Minkowski metric, has Λ(~0) = I4, and satisfies

Λ(~v)


1
v1

v2

v3

 = µ


1
0
0
0

 for some µ ∈ R.

This is the matrix described at the end of Example 4.3.12.

4.4 Tensor Product
So far in this chapter, we have studied the dual of a vector space, the Hom-space, and
bilinear forms on vector spaces. This section generalizes those constructions through
what is called the tensor product. The order of presentation clearly betrays this
book’s mathematical bias in contrast to a physicist’s approach: We first present the
structure of a tensor product abstractly and only in the subsequent section discuss
the components of a tensor and how they change under a change of basis.

(The following construction is a little abstract. The casual reader may feel free
to focus attention on the explanations and propositions following Definition 4.4.2.)

Let U , V and W be vector spaces over a field K. Recall that a function f :
V ×W → U is called a bilinear transformation if f is linear in both of its input
variables. More precisely, f satisfies

f(v1 + v2, w) = f(v1, w) + f(v2, w), f(λv,w) = λf(v, w),

f(v, w1 + w2) = f(v, w1) + f(v, w2), f(v, λw) = λf(v, w),

for all v1, v2, v ∈ V , for all w1, w2, w ∈W , and all λ ∈ K.
It is crucial to point out that a bilinear transformation V × W → U is not

equivalent to a linear transformation V ⊕ W → U . A linear transformation T :
V ⊕W → U satisfies

T (v1, w) + T (v2, w) = T ((v1, w) + (v2, w)) = T (v1 + v2, 2w).

for all v1, v2 ∈ V and w ∈ W . The differs from the first axiom of a bilinear
transformation. This observation motivates the following important proposition,
which leads to the concept of tensor product.

Proposition 4.4.1. Let U , V , and W be vector spaces over a field K. There exists
a unique vector space Z over K and a bilinear transformation ψ : V ×W → Z such
that for any bilinear transformation f : V ×W → U , there exists a unique linear
transformation f̄ : Z → U such that f = f̄ ◦ ψ.

Proof. We first prove the existence of the vector space Z. Consider the set Z̄ of
formal finite linear combinations

c1(v1, w1) + c2(v2, w2) + · · ·+ cl(vl, wl),
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where vi ∈ V , wi ∈ W , and ci ∈ K for 1 ≤ i ≤ l. It is not hard to see that Z̄ is
a vector space over K. Consider now the subspace Z̄lin spanned by vectors of the
form

(v1 + v2, w)− (v1, w)− (v2, w), (λv,w)− λ(v, w),

(v, w1 + w2)− (v, w1)− (v, w2), (v, λw)− λ(v, w).
(4.28)

Define Z as the quotient vector space Z = Z̄/Z̄lin. The elements of Z are equivalence
classes of elements of Z̄ under the equivalence relation u ∼ v if and only if v − u ∈
Z̄lin. (See Exercise 4.1.10 for a description of the vector space quotient.)

Define ψ : V ×W → Z as the composition ψ = π ◦ i, where π : Z̄ → Z is the
canonical projection and i : V ×W → Z̄ is the inclusion. The space Z̄lin is defined
in such a way that the canonical projection π turns ψ into a bilinear transformation.

Now given any bilinear transformation f : V ×W → U , we can complete f by
linearity to define a linear transformation f̃ from Z̄ to U via

f̃
(
c1(v1, w1) + · · ·+ cl(vl, wl)

)
= c1f(v1, w1) + · · ·+ clf(vl, wl).

If z0 ∈ Z̄lin, then z0 is a linear combination of elements of the form in Equation
(4.28). However, every element of the form given in Equation (4.28) maps to 0 under
f̃ , so f̃(z0). Therefore, if z1, z2 ∈ Z̄ are such that z1 ∼ z2, then z1 − z2 = z0 ∈ Z̄lin,
so f̃(z1 − z2) = 0 and f̃(z1) = f̃(z2). Hence, f̃ induces a function f̄ : Z̄/Z̄lin → U .
It is easy to check that f̄ is a linear transformation and that f = f̄ ◦ ψ. Since the
image of ψ spans Z̄/Z̄lin, it follows that the induced map f̄ is uniquely determined.
This proves the existence of Z.

To prove uniqueness of Z, suppose there is another vector space Z ′ and a bilinear
transformation ψ′ : V ×W → Z ′ with the desired property. Then there exist ψ̄ and
ψ̄′ such that ψ′ = ψ̄′ ◦ ψ and ψ = ψ̄ ◦ ψ′. Then we have ψ = ψ̄ ◦ ψ̄′ ◦ ψ. However,
ψ = idZ ◦ ψ, and since we know that ψ factors through Z with a unique map, then
ψ̄ ◦ ψ̄′ = idZ . Similarly, we can show that ψ̄′ ◦ ψ̄ = idZ′ . Thus, Z ∼= Z ′, and so Z is
unique up to a canonical isomorphism.

As a first comment about the proof, we observe that Z̄ is a “large” vector space;
its basis consists of every pair (v, w) with v ∈ V and w ∈ W , so has cardinality
|V ×W |.

We can depict the functional relationships described in this proposition by the
following commutative diagram.

V ×W Z

U

ψ

f
f̄



146 4. Multilinear Algebra

Observe that f and ψ are bilinear transformations while f̄ is linear. Consequently,
though a bilinear transformation V ×W → U is not equivalent to a linear transfor-
mation V ⊕W → U , it is equivalent to a linear transformation Z → U .

Definition 4.4.2. The vector space Z in the above proposition is called the tensor
product of V and W and is denoted by V ⊗W . The element ψ(v, w) in V ⊗W is
denoted by v ⊗ w.

Elements of V ⊗W are linear combinations of vectors of the form v ⊗ w, with
v ∈ V and w ∈W . With this notation, the following identities hold:

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, (λv)⊗ w = λ(v ⊗ w),

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, v ⊗ (λw) = λ(v ⊗ w).
(4.29)

Definition 4.4.3. Any element of V ⊗W is often simply called a tensor. A tensor
in V ⊗W that can be written as v⊗w for v ∈ V and w ∈W is called a pure tensor .

From the identity c(v ⊗ w) = (cv) ⊗ w, a linear combination of pure tensors is
just a sum of pure tensors. We remind the reader that even if V and W are not
finite dimensional, linear combinations always consist of a finite number of terms.
So every tensor in V ⊗W is a finite sum of pure tensors.

Definition 4.4.4. The rank of a tensor t ∈ V ⊗W is the least integer r such that

t = v1 ⊗ w1 + v2 ⊗ w2 + · · ·+ vr ⊗ wr

for some vi ∈ V and wi ∈W .

Example 4.4.5. Let V = R3. Let t ∈ V ⊗V be t =~ı⊗~+~ı⊗~k. Though currently
written as a sum of two pure tensors, it is in fact not a tensor of rank 2 but is a
pure tensor because t =~ı⊗ (~+ ~k).

Proposition 4.4.6. A pure tensor v ⊗ w in V ⊗W is the 0 tensor if and only if
v = 0 or w = 0.

Proof. By linearity 0 = 0(v′⊗w) = (0v′)⊗w so 0⊗w = 0 and the same is true for
if w = 0.

Conversely, assume that v 6= 0 and w 6= 0. Let B1 be a basis of V containing v
and let B2 be a basis of W containing w. Consider the function f : V ×W → K
defined by f(x, y) = v∗(x)w∗(y), where v∗ ∈ V ∗ is the dual basis vector to v in B∗1
and similarly for w∗. The function f is bilinear and nontrivial since f(v, w) = 1.
Using the construction from the proof of Proposition 4.4.1, f̄ : V ⊗W → K satisfies
f̄(v ⊗ w) = f(v, w) = v∗(v)w∗(w) = 1. Hence, v ⊗ w is not the 0 element in
V ⊗W .

Proposition 4.4.7. Let U , V , and W be three vector spaces over a field K. There
exists a unique isomorphism

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W )
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such that

(u⊗ v)⊗ w 7→ u⊗ (v ⊗ w)

for all u ∈ U , v ∈ V , and w ∈W .

Proof. By the identities (4.29) in

(u1 ⊗ v1 + u2 ⊗ v2)⊗ w = (u1 ⊗ v1)⊗ w + (u2 ⊗ v2)⊗ w,

so every tensor in (U ⊗ V )⊗W is the sum of tensors of the form (u⊗ v)⊗ w with
u ∈ U , v ∈ V and w ∈ W . Hence any linear transformation from (U ⊗ V ) ⊗W is
uniquely determined by how it maps tensors of the form (u⊗ v)⊗ w.

Define the function f : (U ⊗ V )×W → U ⊗ (V ⊗W ) by

f

(
s∑
i=1

(ui ⊗ vi), wi

)
=

s∑
i=1

ui ⊗ (vi ⊗ wi).

By distributivity properties of finite sums, it is easy to see that this is bilinear. By
Proposition 4.4.1, there exists a unique linear transformation f̄ : (U ⊗ V ) ⊗W →
U ⊗ (V ⊗W ) satisfying

f̄

((
s∑
i=1

(ui ⊗ vi)

)
⊗ wi

)
=

s∑
i=1

ui ⊗ (vi ⊗ wi).

Clearly, f̄((u⊗ v)⊗ w) = u⊗ (v ⊗ w).

We can construct the inverse linear transformation f̄−1 in the same way. We
already showed uniqueness, but this establishes the existence of an isomorphism
satisfying the desired property.

In light of Proposition 4.4.7, the notation U ⊗ V ⊗W without parentheses is
uniquely defined. More generally, this allows us to consider the tensor product
V1 ⊗ V2 ⊗ · · · ⊗ Vk of k vector spaces V1, V2, . . . , Vk over the same field. In this
general context, we call a pure tensor in V1⊗ V2⊗ · · · ⊗ Vk any element of the form
v1 ⊗ v2 ⊗ · · · ⊗ vk. Again all elements of V1 ⊗ V2 ⊗ · · · ⊗ Vk are finite sums of pure
tensors. We also denote by V ⊗k the k-fold tensor product of a vector space V with
itself.

Proposition 4.4.8. Let V and W be two vector spaces over a field K. There exists
a unique isomorphism

V ⊗W ∼= W ⊗ V

such that v ⊗ w 7→ w ⊗ v for all v ∈ V and w ∈W .

Proof. (Left as an exercise for the reader.)
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Proposition 4.4.9. If V and W are finite-dimensional vector spaces over a field
K. If B1 = {e1, . . . , em} is a basis of V and B2 = {f1, . . . , fn} is a basis of W , then

B = {ei ⊗ fj | 1 ≤ i ≤ m and 1 ≤ j ≤ n}

is a basis of V ⊗W and therefore dim(V ⊗W ) = (dimV )(dimW ).

Proof. For every pure tensor v ⊗ w ∈ V ⊗W , using the coordinates of v and of w,
we have

v ⊗ w = (v1e1 + · · ·+ vmem)⊗ w = v1(e1 ⊗ w) + · · ·+ vm(em ⊗ w)

= v1(e1 ⊗ (w1f1 + · · ·+ wnfn)) + · · ·+ vm(em ⊗ (w1f1 + · · ·+ wnfn))

= viwjei ⊗ fj (ESC).

Thus, B spans V ⊗W .
Now suppose that (using ESC), cijei ⊗ fj = 0. Let B∗2 = {f∗1, . . . , f∗n} be

the cobasis of V ∗ associated to B2. For each j with 1 ≤ j ≤ n, the function
ϕj : V ×W → V defined by ϕj(v, w) = f∗j(w)v is bilinear so uniquely defines a
linear transformation ϕ̄j : V ⊗W → V satisfying ϕ̄j(v ⊗ w) = f∗j(w)v on all pure
tensors. Since cijei ⊗ fj = 0, then for all j0,

0 = ϕ̄j0(cijei ⊗ fj) = cijf∗j0(fj)eic
ijδj0j ei = cij0ei

as an element of V . Since B is a basis of V , then cij0 = 0 for all i, and this is for
all j0. We conclude that B is linearly independent in V ⊗W . Hence, B is a basis of
V ⊗W and so dim(V ⊗W ) = mn.

Because of Proposition 4.4.9, if t ∈ V ⊗W , it is common to use two indices to
index the components of t with respect to the basis B = {ei ⊗ fj}. Saying that the
tensor t has components (cij) with respect to B means that

t =
m∑
i=1

n∑
j=1

cijei ⊗ fj .

We have used the superscript notation for the components of t to be consistent with
the Einstein summation convention.

The next propositions illustrate how the tensor product construction directly
generalizes the Hom space and the space of bilinear forms.

Proposition 4.4.10. Let V and W be finite-dimensional vector spaces over a field
K. The space V ∗ ⊗W is canonically isomorphic to Hom(V,W ).

Proof. Consider the function ϕ : V ∗ × W −→ Hom(V,W ) defined by ϕ(λ,w) =
(v 7→ λ(v)w). Since it is bilinear, by Proposition 4.4.1 there is a unique linear
transformation ϕ̄ : V ∗ ⊗W → Hom(V,W ) that maps the pure tensor λ⊗ w to the
linear transformation v 7→ λ(v)w.
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The kernel of ϕ consists of all linear combinations λ1⊗w1 + · · ·+λm⊗wm such
that the function in Hom(V,W ) defined by

λ1(·)w1 + · · ·+ λm(·)wm

is identically 0. By the identities (4.29), we can assume that {w1, . . . , wm} is a
linear independent set of vectors in W . Thus for each v ∈ V , we have λi(v) = 0
for all 1 ≤ i ≤ m. Hence each λi is the 0-map in V ∗. From this we conclude that
Kerϕ = {0}.

To show surjectivity, let T ∈ Hom(V,W ). Let {v1, . . . , vn} be a basis of V , and
consider the linear functions {v∗1 , . . . , v∗n} (see Equation (4.8) and the subsequent
explanation). Then the element

n∑
i=1

v∗i ⊗ T (vi)

maps to T under ϕ. Therefore, ϕ is also surjective.

Proposition 4.4.11. Let V and W be vector spaces over a field K. The set of
bilinear forms on V ×W is a vector space with

(ω1 + ω2)(v, w)
def
= ω1(v, w) + ω2(v, w)

(cω)(v, w)
def
= cω(v, w),

for all bilinear forms ω1, ω2, and ω and for all c ∈ K. Furthermore, the vector
space of bilinear forms on V ×W is canonically isomorphic to V ∗ ⊗W ∗.

Proof. (The proof is left as an exercise for the reader.)

Problems

4.4.1. Let V be a vector space over a field K. Let v1, v2 ∈ V . Show that in V ⊗ V , we
have v1 ⊗ v2 = v2 ⊗ v1 if and only if v1 and v2 are collinear.

4.4.2. Let V be a vector space over the field K. Prove that V ⊗ K is canonically
isomorphic to V .

4.4.3. Let V and W be finite dimensional vector spaces over a field K with respective
bases B = {e1, . . . , en} and B′ = {f1, . . . , fm}. Let T : V → W be a linear
transformation with matrix A with respect to the bases B and B′. T determines
a linear transformation T⊗2 : V ⊗ V →W ⊗W defined on pure tensors by

T⊗2(v1 ⊗ v2) = T (v1)⊗ T (v2)

and completed for other elements of V ⊗ V by linearity.
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(a) If V = W = R2 and the matrix of a linear transformation T with respect to
the standard basis is

A =

(
2 3
5 7

)
,

find the matrix of T⊗2.

(b) In general, for any finite dimensional vector spaces V and W and linear
transformation T , if the coefficients of A are (aij), find the coefficients of the
matrix for T⊗2.

4.4.4. Let V andW be vector spaces over C, and let S : V → V and T : W →W be linear
transformations. Consider the linear transformation S ⊗ T : V ⊗W −→ V ⊗W
defined on pure tensors by

(S ⊗ T )(v ⊗ w) = S(v)⊗ T (w).

(a) Suppose that dimV = 2 and that dimW = 3, with bases {e1, e2} and {f1, f2, f3},
respectively. Suppose also that with respect to these bases, the matrices for
S and T are (

1 3
5 2

)
and

−1 0 2
1 3 −2
0 1 4

 .

Find the matrix for S ⊗ T with respect to the basis for V ⊗W defined in
Proposition 4.4.9.

(b) Suppose that S and T are diagonalizable with eigenvalues λ1, . . . , λm and
µ1, . . . , µn, respectively. Prove that S ⊗ T is diagonalizable and that the
eigenvalues of S ⊗ T are λiµj for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

4.4.5. Let V be a vector space over C, and let T : V → V be a linear transformation.

(a) Suppose that the Jordan canonical form of T is J = λI. Find the Jordan
canonical form of T⊗2.

(b) Suppose that the Jordan canonical form of T is

J =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


Find the Jordan canonical form of T⊗2.

4.4.6. Prove Proposition 4.4.8.

4.4.7. Let V , W1, and W2 be finite dimensional vector spaces over a field K. Show that
there exists a canonical (independent of a given basis) isomorphism

V ⊗ (W1 ⊕W2) ∼= (V ⊗W1)⊕ (V ⊗W2).
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4.4.8. Prove Proposition 4.4.11. [Hint: Call Bil(V,W ) the set of bilinear forms on V ×W .
Show that Ψ : V ∗⊗W ∗ → Bil(V,W ) defined on pure tensors by Ψ(λ⊗µ)(v, w) =
λ(v)µ(w) gives the canonical isomorphism.]

4.4.9. Let U , V , and W be vector spaces over a field K. Prove that V ∗ ⊗W ∗ ⊗ U is
canonically isomorphic to the vector space of bilinear transformations V ×W → U .

4.4.10. In the identification V ∗ ⊗W ∼= Hom(V,W ) described in Proposition 4.4.10, show
that tensors of rank r in V ∗ ⊗W ∗ precisely correspond to linear transformations
in Hom(V,W ) of rank r.

4.4.11. Consider the linear transformation Tr : V ∗ ⊗ V → K defined on pure tensors by
Tr(λ ⊗ v) = λ(v). Under the isomorphism Hom(V, V ) ∼= V ∗ ⊗ V , show that Tr
corresponds to the trace of a linear transformation.

4.5 Components of Tensors over V
Let V be a vector space over a field K. Many applications of multilinear algebra,
in particular to differential geometry, involve tensor products in

V ⊗r ⊗ V ∗⊗s def
=

r times︷ ︸︸ ︷
V ⊗ V ⊗ · · · ⊗ V ⊗

s times︷ ︸︸ ︷
V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗ .

For example, Hom(V, V ) is V ⊗ V ∗ and the vector space of bilinear forms on V is
V ∗⊗2. We will see in Section 4.7 that the set (vector space) of all bilinear products
on V is V ⊗ V ∗⊗2.

Definition 4.5.1. A tensor over V of type (r, s) is an element of V ⊗r ⊗ V ∗⊗s. A
scalar in K is called a tensor of type (0, 0).

Suppose that V has an ordered basis B = (e1, e2, . . . , en) and that the associated
ordered cobasis is B∗ = (e∗1, e∗2, . . . , e∗n). By Proposition 4.4.9 the basis of V ⊗r ⊗
V ∗⊗s associated to B consists of all the pure tensors

ei1 ⊗ · · · ⊗ eir ⊗ e∗j1 ⊗ · · · ⊗ e∗js

for ik = 1, . . . n and j` = 1, . . . n, for all 1 ≤ k ≤ r and 1 ≤ ` ≤ s. This basis confirms
that dim(V ⊗r⊗V ∗⊗s) = (dimV )r+s. The components of a tensor A ∈ V ⊗r⊗V ∗⊗s
with respect to B are the nr+s values

Ai1i2···irj1j2···js ∈ K (4.30)

such that

A = Ai1i2···irj1j2···jsei1 ⊗ ei2 ⊗ · · · ⊗ eir ⊗ e
∗j1 ⊗ e∗j2 ⊗ · · · ⊗ e∗js . (ESC) (4.31)

Note that this formula involves summations over r + s indices, all from 1 to n.
Following the explanation at the end of Section 4.1, the superscript indices are
called contravariant indices, while the subscript indices are called covariant indices.
As in the contrast between a vector space and its dual, the difference between
contravariant and covariant indices lies in how they affect the transformation of
components of a tensor under a change of basis on V .
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4.5.1 Coordinate Changes

Proposition 4.5.2. Let B and B′ be two bases on a finite dimensional vector space
V . Let (apq) be the components of the coordinate change matrix A from B to B′ and

let (ǎαβ) be the components of A−1. Let T i1i2···irj1j2···js be the components of a tensor of

type (r, s) with respect to B, and let T̄ i1i2···irj1j2···js be the components of the same tensor
T with respect to B′. Then

T̄ k1k2···kr`1`2···`s = ak1i1 a
k2
i2
· · · akrir ǎ

j1
`1
ǎj2`2 · · · ǎ

jr
`r
T i1i2···isj1j2···jr . (4.32)

Proof. Suppose that B = (e1, e2, . . . , en) and B′ = (f1, f2, . . . , fn). By definition of
the coordinate change matrix, ei = aki fk for all i and by Proposition 4.1.6 e∗j =

ǎj`f
∗`. Thus

T̄ k1k2···kr`1`2···`s fk1 ⊗ fk2 ⊗ · · · ⊗ fkr ⊗ f
∗`1 ⊗ f∗`2 ⊗ · · · ⊗ f∗`s

= T i1i2···irj1j2···jsei1 ⊗ ei2 ⊗ · · · ⊗ eir ⊗ e
∗j1 ⊗ e∗j2 ⊗ · · · ⊗ e∗js

= T i1i2···irj1j2···js(a
k1
i1
fk1)⊗ (ak2i2 fk2)⊗ · · · (akrir fkr )⊗ (ǎj1`1f

∗`1)⊗ (ǎj2`2f
∗`2)⊗ · · · (ǎjs`sf

∗`s)

=
(
ak1i1 a

k2
i2
· · · akrir ǎ

j1
`1
ǎj2`2 · · · ǎ

js
`s
T i1i2···irj1j2···js

)
fk1 ⊗ fk2 ⊗ · · · ⊗ fkr ⊗ f∗`1 ⊗ f∗`2 ⊗ · · · ⊗ f∗`s .

By identifying coordinates, the proposition follows.

Physicists often introduce tensors by saying that an nr+s set of quantities in-
dexed as in (4.30) that change according to (4.32) under a basis change on V “form
the components of a tensor.” This perspective may be sufficient for various calcu-
lations but it does not elucidate what a tensor over V is.

We comment now on the linear algebraic meaning of a few common operations
on tensors, when viewed from their components’ perspective.

If Ai1i2···irj1j2···js form the components of a (r, s)-tensor A and Bi1i2···irj1j2···js form the
components of a (r, s)-tensor B, then the term-by-term addition

Ci1i2···irj1j2···js = Ai1i2···irj1j2···js +Bi1i2···irj1j2···js .

also satisfies (4.32), so form the components of a tensor. This operation corresponds
to the usual addition of A and B as elements in the vector space V ⊗r ⊗ V ∗⊗s.
Similarly, given the components Ai1i2···irj1j2···js of a tensor of type (r, s), the operation of
multiplying all the components by a given scalar c in the base field K corresponds
to multiplying the tensor A by the scalar c again as an operation in the vector space
V ⊗r ⊗ V ∗⊗s.

It is not hard to check that if Si1i2···irj1j2···js and T k1k2···ktl1l2···lu are components of tensors
of type (r, s) and (t, u), respectively, then the quantities obtained by multiplying
these components

W i1i2···irk1k2···kt
j1j2···jsl1l2···lu = Si1i2···irj1j2···jsT

k1k2···kt
l1l2···lu
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form the components of another tensor but of type (r + t, s + u). This operation
called tensor multiplication or the product of two tensors, corresponds to the bilinear
transformation

V ⊗r ⊗ V ∗⊗s × V ⊗t ⊗ V ∗⊗u −→ V ⊗(r+t) ⊗ V ∗⊗(s+u),

defined by (α, β) 7→ α⊗β. Therefore, this tensor multiplication utilizes the isomor-
phism

(V ⊗r ⊗ V ∗⊗s)⊗ (V ⊗t ⊗ V ∗⊗u) ∼= V ⊗r+t ⊗ V ∗⊗s+u.

Finally, the contraction operation on the components of a tensor

B
i1i2···ir−1

j1j2···js−1
= A

i1i2···ir−1k
j1j2···js−1k

corresponds to setting one contravariant and one covariant index to be the same
and then summing over that index. (The contraction operation does not have to
occur on the last indices as in the above equation.) On the indices involved, this
corresponds to the linear transformation C : V ⊗V ∗ −→ K defined on a pure tensor
by v⊗ λ 7−→ λ(v). Exercise 4.4.11 showed that the contraction operation is similar
to the operation of taking the trace of a matrix along certain specified indices.

If v ∈ V is a vector and A ∈ V ⊗r ⊗ V ∗s⊗ be a tensor of type (r, s) with s ≥ 1,
then some writers use the symbol

vyA

to indicate the (r, s− 1) tensor that corresponds to the contraction along the index
of v and the first covariant index of A.

4.5.2 Examples

Example 4.5.3 (Cross Product). Consider V = R3. The cross product between
two vectors is a bilinear transformation × : V ×V → V , so is a linear transformation
V ⊗V → V . In this way of considering it, the cross product is a particular element
of V ∗⊗V ∗⊗V . We can describe it through its components expressed in reference to
the standard ordered basis E = (~ı,~,~k). We write its components as Cijk satisfying

C3
12 = 1, C1

23 = 1, C2
31 = 1,

C3
21 = −1, C1

32 = −1, C2
13 = −1,

and all other components are 0. Suppose that B = (u1, u2, u3) is some other ordered
basis with the change of coordinate matrix P = P EB with components (pij), then the
cross product expressed with respect to B has the components

C̄rst = pri p̌
j
sp̌
k
tC

i
jk.

Example 4.5.4 (Inverse of a (0, 2)-Tensor). As a more involved example, consider
the components Cij of a (0, 2)-tensor over V with respect to some basis B. Recall
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that a (0, 2)-tensor represents a bilinear form 〈·, ·〉 on V . Suppose in addition that
〈·, ·〉 is nondegenerate. This is equivalent to the fact that if the Cij are organized into
an n×n matrix, then this matrix is invertible. Denote by Cij the coefficients of the
inverse matrix of (Cij). We prove that Cij form the components of a (2, 0)-tensor.

Let P = (pij) be a coordinate change matrix from B-coordinates to some other

system of coordinates. If (C̄rs) are the components of the same object with respect
to the other basis, then

CijCjk = δik, and C̄rsC̄st = δrt . (4.33)

Equation (4.33) gives C̄rsp̌isp̌
j
tCij = δrt . Multiplying both sides by ptα and summing

over t, we obtain

C̄rsp̌isp̌
j
tCijp

t
α = δrt p

t
α =⇒ C̄rsp̌isδ

j
αCij = C̄rspisCiα = prα.

Multiplying both sides by Cαβ and then summing over α, we get

C̄rspisδ
β
i = C̄rspβs = prαC

αβ .

Finally, multiplying the rightmost equality by psβ and summing over β, we conclude
that

C̄rs = prαp
s
βC

αβ .

This shows that the quantities Cij satisfy Proposition 4.5.2 and hence form the
components of a (2, 0)-tensor.

We should ask ourselves whether we can understand this tensor in a coordinate-
independent way. In fact, we already presented this object in Exercise 4.2.5. The
components Cij represent the bilinear form 〈·, ·〉∗ on V ∗ defined in that exercise.
Using notations from there, we see that the components of λu are Ciju

i and the
components of λv are Ck`v

k. Then

Ciju
iCj`Ck`v

k = δ`iu
iCk`v

k = u`Cklv
k.

This last expression are the components of 〈v, u〉, which confirms that Exercise 4.2.5
Cj` are the components of 〈·, ·〉∗.

4.5.3 Numerical Tensors

Definition 4.5.5. A numerical tensor is a tensor that is not a scalar whose com-
ponents are the same given with respect to any basis.

As a first example, consider the Kronecker delta

δij =

{
1, if i = j,

0, if i 6= j.
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Under a coordinate change with matrix (pij) it transforms according to

δ̄rs = pri p̌
j
sδ
i
j = pri p̌

i
s.

Since this last expression represents the product of a matrix with its inverse, the
we see that again δ̄rs is 1 if r = s and 0 otherwise. This should make sense because
δij represents the identity function on a vector space, and with respect to any basis

the components of the identity transformation is the identity matrix. Therefore, δij
is a (1, 1)-tensor in a tautological way.

The generalized Kronecker delta of order r is a tensor of type (r, r), with com-
ponents denoted by δi1···irj1···jr defined as the following determinant:

δi1···irj1···jr =

∣∣∣∣∣∣∣∣∣
δi1j1 δi1j2 · · · δi1jr
δi2j1 δi2j2 · · · δi2jr
...

...
. . .

...

δirj1 δirj2 · · · δirjr

∣∣∣∣∣∣∣∣∣ . (4.34)

For example, the components of the generalized Kronecker delta of order 2 as

δijkl = δikδ
j
l − δ

i
lδ
j
k,

which presents δijkl as the difference between two (2, 2)-tensors, which shows that δijkl
is indeed a tensor. More generally, expanding out Equation (4.34) by the Laplace
expansion of a determinant gives the generalized Kronecker delta of order r as a sum
of r! components of tensors of type (r, r), proving that δi1···irj1···jr are the components
of an (r, r)-tensor.

Properties of the determinant imply that δi1···irj1···jr is antisymmetric in the su-
perscript indices and also antisymmetric in the subscript indices. Equivalently,
δi1···irj1···jr = 0 if any of the superscript indices are equal or if any of the subscript
indices are equal, and the value of a component is negated if any two superscript
indices are interchanged and similarly for subscript indices. We also note that if
r > n, where we assume δi1···irj1···jr are the components of a tensor over an n-dimensional

vector space, then δi1···irj1···jr = 0 for all choices of indices since at least two superscript
(and at least two subscript) indices would be equal.

We introduce one more symbol that is commonly used in calculations with tensor
components, the permutation symbol. Define

εi1···in = δi1···in1···n ,

εj1···jn = δ1···n
j1···jn .

(4.35)

Note that the maximal index n in Equation (4.35) as opposed to r is intentional.
Recall that a permutation of {1, 2, . . . , n} is a bijection on that set and a trans-

position is a permutation that interchanges to elements and leaves the rest fixed.
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A fact in modern algebra (see [25, Theorem 5.5]) states that given a permutation σ
on {1, 2, . . . , n}, if we have two ways to write σ as a composition of transpositions,
e.g.,

σ = τ1 ◦ τ2 ◦ · · · ◦ τa = τ ′1 ◦ τ ′2 ◦ · · · ◦ τ ′b ,

then a and b have the same parity.

Definition 4.5.6. We call a permutation even (respectively odd) if this common
parity is even (respectively odd) and the sign of σ is

sign(σ) =

{
1, if σ is even,

−1, if σ is odd.

Because of the properties of the determinant, it is not hard to see that

εi1···in = εi1···in =


1, if (i1, . . . , in) is an even permutation of (1, 2, . . . , n),

−1, if (i1, . . . , in) is an odd permutation of (1, 2, . . . , n),

0, if (i1, . . . , in) is not a permutation of (1, 2, . . . , n).

The permutation symbol is an example for which, despite the apparently proper
notation, the collection of quantities is not a numerical tensor. Instead, we have
the following proposition.

Proposition 4.5.7. Let B and B′ be two bases on a finite dimensional vector space
V . Let A = (aij) be the components of the coordinate change matrix from B to B′
coordinates. The permutation symbols transform according to

det(A)ε̄j1···jn = aj1i1a
j2
i2
· · · ajnin ε

i1···in ,

(det(A))−1ε̄k1···kn = ǎh1

k1
ǎh2

k2
· · · ǎhnkn εh1···hn .

Proof. (Left as an exercise for the reader.)

The generalized Kronecker delta has a close connection to determinants which,
we will elucidate here. Note that if the superscript indices are exactly equal to the
subscript indices, then δi1···irj1···jr is the determinant of the identity matrix. Thus, the

contraction over all indices, δj1···jrj1···jr counts the number of permutations of r indices
taken from the set {1, 2, . . . , n}. Thus,

δj1···jrj1···jr =
n!

(n− r)!
. (4.36)

Another property of the generalized Kronecker delta is that

εj1···jnεi1···in = δj1···jni1···in ,
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the proof of which is left as an exercise for the reader (Problem 4.5.5). Now let aij
be the components of a (1, 1)-tensor, which we can view as the matrix of a linear
transformation from Rn to Rn. By definition of the determinant,

det(aij) = εj1···jna1
j1 · · · a

n
jn .

Then, by properties of the determinant related to rearranging rows or columns, we
have

εi1···in det(aij) = εj1···jnai1j1 · · · a
in
jn
.

Multiplying by εi1···in and summing over all the indices i1, . . . , in, we have

εi1···inε
i1···in det(aij) = δj1···jni1···in a

i1
j1
· · · ainjn ,

and since εi1···inε
i1···in counts the number of permutations of {1, . . . , n}, we have

n! det(aij) = δj1···jni1···in a
i1
j1
· · · ainjn . (4.37)

4.5.4 Tensor Fields

Later in this book, tensor fields on manifolds will play a key role in describing
structures of interest on manifolds. Before facing that full generality, we briefly
consider tensor fields on Rn from the component perspective.

Let U be an open region of Rn equipped with two coordinate systems (x1, x2, . . . , xn)
and (x̄1, x̄2, . . . , x̄n) and let p ∈ U . For this section, we think of a tensor field
over U as expressed by a collection of components T i1i2···irj1j2···js , where each of these
is a function U → R. At a given point p ∈ U , these are tensors over the vec-
tor space TpRn. The ordered basis associated to the (x1, x2, . . . , xn) coordinates is
(∂/∂x1, . . . , ∂/∂xn), while the ordered basis associated to the (x̄1, x̄2, . . . , x̄n) co-
ordinates is (∂/∂x̄1, . . . , ∂/∂x̄n). The change of coordinate matrix between these
is (

∂x̄i

∂xj

∣∣∣
p

)
Example 4.5.8 (Gradient). Let f : U → R be a differentiable function and consider
the gradient ∇fp. It has components ∂f/∂xi, evaluated at p. This is a tensor of
type (0, 1) because in the (x̄1, x̄2, . . . , x̄n) coordinates, its components are

∂f̄

∂x̄j
=

∂f

∂x̄j
=

∂f

∂xi
∂xi

∂x̄j
,

by the chain rule. This satisfies (4.32) for a (0, 1). Consequently, in the expression
∂f/∂xi, though the i appears as a superscript index of the variable, we understand
it as a covariant index instead of a contravariant index because it appears on the
“denominator” of a partial derivative.

The following example illustrates some of the subtlety required when working
with tensor fields in component form.
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Example 4.5.9. Let Bi be the components of a covariant vector field. We prove
that the collection of functions

Aij =
∂Bi
∂xj
− ∂Bj
∂xi

form the components of a (0, 2)-tensor. In the (x̄1, x̄2, . . . , x̄n) coordinates, we have

Āk` =
∂B̄k
∂x̄`

− ∂B̄`
∂x̄rk

=
∂

∂x̄`

(
∂xi

∂x̄k
Bi

)
− ∂

∂x̄k

(
∂xj

∂x̄`
Bj

)
=

∂2xi

∂x̄`∂x̄k
Bi +

∂xi

∂x̄k
∂Bi
∂x̄`
− ∂2xj

∂x̄k∂x̄`
Bj −

∂xj

∂x̄`
∂Bj
∂x̄k

. (4.38)

Because we sum over variables repeated in superscript and the subscript, the first
and third terms cancel out. So applying the chain rule on ∂Bi/∂x̄

` and similarly in
the fourth term,

Āk` =
∂xi

∂x̄k
∂Bi
∂xu

∂xu

∂x̄`
− ∂xj

∂x̄`
∂Bj
∂xv

∂xv

∂x̄k

=
∂xi

∂x̄k
∂xj

∂x̄`
∂Bi
∂xj
− ∂xj

∂x̄`
∂xi

∂x̄k
∂Bj
∂xi

by setting u = j and v = i

=
∂xi

∂x̄k
∂xk

∂x̄`
Aij .

We should also observe that the component functions ∂Bi/∂x
j do not describe a

tensor field of type (0, 2) because of the mixed second partial derivative that appears
(4.38).

Problems

4.5.1. Prove that (a) δijδ
j
kδ
k
l = δil ; (b) δijδ

j
kδ
k
i = n.

4.5.2. Let T i1i2···irj1j2···js be a tensor of type (r, s). Prove that the quantities T ii2···irij2···js , obtained
by contracting over the first two indices, form the components of a tensor of type
(r − 1, s− 1). Explain in a coordinate-free way why we still obtain a tensor when
we contract over any superscript and subscript index.

4.5.3. Let Sijk be the components of a tensor, and suppose they are antisymmetric in
{i, j}. Find a tensor with components Tijk that is antisymmetric in j, k satisfying

−Tijk + Tjik = Sijk.

4.5.4. Prove Proposition 4.5.7.

4.5.5. Prove that εi1···inεj1···jn = δi1···inj1···jn .
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4.5.6. Let Aij be the components of an antisymmetric (i.e., Aji = −Aij) tensor field of
type (0, 2), and define the quantities

Brst =
∂Ast
∂xr

+
∂Atr
∂xs

+
∂Ars
∂xt

.

(a) Prove that Brst are the components of a tensor of type (0, 3).

(b) Prove that the components Brst are antisymmetric in all their indices.

(c) Determine the number of independent components of antisymmetric tensors
of type (0, 3) over Rn.

(d) Would the quantities Brst still be the components of a tensor if Aij were
symmetric?

4.5.7. Let aij be the components of a (1, 1)-tensor, or in other words the matrix of a linear
transformation from Rn to Rn given with respect to some basis. Recall that the
characteristic equation for the matrix is

det(aij − λδij) = 0. (4.39)

Prove that Equation (4.39) is equivalent to

λn +

n∑
r=1

(−1)ra(r)λ
n−r = 0,

where

a(r) =
1

r!
δi1···irj1···jra

i1
j1
· · · airjr .

[Hint: The solutions to Equation (4.39) are the eigenvalues of the matrix (aij).]

4.5.8. Moment of Inertia Tensor. Suppose that R3 is given a basis that is not necessar-
ily the standard one. Let gij be the components of the standard inner product
corresponding to this basis, which means that the scalar product between two
(contravariant) vectors Ai and Bj is given by

~A · ~B = gijA
iBj .

In the rest of the problem, call (x1, x2, x3) the coordinates of the position vector ~r.

Let S be a solid in space with a density function ρ(~r), and suppose that it rotates
about an axis ` through the origin. The angular velocity vector ~ω is defined as the
vector along the axis `, pointing in the direction that makes the rotation a right-
hand corkscrew motion with magnitude ω = ‖~ω‖ that is equal to the radians per
second swept out by the motion of rotation. Let (ω1, ω2, ω3) be the components of
~ω in the given basis. The moment of inertia of the solid S about the direction ~ω is
defined as the quantity

I` =

∫∫∫
S

ρ(~r)r2
⊥ dV,

where r⊥ is the distance from a point ~r with coordinates (x1, x2, x3) to the axis `.

The moment of inertia tensor of a solid is often presented using cross products, but
we define it here using a characterization that is equivalent to the usual definition
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but avoids cross products. We define the moment of inertia tensor as the unique
(0, 2)-tensor with components Iij such that

1

2
Iijω

iωj =
1

2
I`ω

2. (4.40)

Note that this the kinetic energy of the rotating object.

(a) Prove that

r2
⊥ = gijx

ixj − (gklω
kxl)2

grsωrωs
.

(b) Prove that, using the metric gij , the moment of inertia tensor is given by

Iij =

∫∫∫
S

ρ(x1, x2, x3)(gijgkl − gikgjl)xkxl dV. (4.41)

(c) Show that
(gijgkl − gikgjl)xkxl = gipgqlδ

pq
jkx

kxl,

where δpqjk is the generalized Kronecker delta of order 2.

(d) Prove that Iij = Iji for all 1 ≤ i, j ≤ n.

(e) Prove that if the basis of R3 is orthonormal (which means that (gij) is the
identity matrix), we recover the following familiar formulas:

I11 =

∫∫∫
S

ρ((x2)2 + (x3)2) dV, I12 = −
∫∫∫
S

ρx1x2 dV, (4.42)

I22 =

∫∫∫
S

ρ((x1)2 + (x3)2) dV, I13 = −
∫∫∫
S

ρx1x3 dV, (4.43)

I33 =

∫∫∫
S

ρ((x1)2 + (x2)2) dV, I23 = −
∫∫∫
S

ρx2x3 dV. (4.44)

(We took the relation in (4.40) as the defining property of the moment of inertia
tensor because of the theorem that I`ω is the component of the angular moment

vector along the axis of rotation that is given by (Iijω
i)ω

j

ω
. See [22] p. 221–222

and, in particular, Equation (9.7) for an explanation.

The interesting point about this approach is that it avoids the use of an orthonormal
basis and provides a formula for the moment of inertia tensor when one has an affine
metric tensor that is not the identity.)

4.6 Symmetric and Alternating Products
In the tensor product V ⊗V , in general v1⊗ v2 6= v2⊗ v1. It is sometimes useful to
have a tensor-like product that is either commutative or anticommutative.

For example, we have seen that every bilinear form on V is an element of V ∗⊗V ∗.
However, in geometry, many useful applications involve symmetric bilinear forms.
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If Aij are the components of an element in A ∈ V ∗ ⊗ V ∗ with respect to a given
basis on V , then the condition that A be a symmetric bilinear form means that
Aij = Aji for all 1 ≤ i, j ≤ dimV . The set of symmetric bilinear forms is a linear
subspace of V ∗⊗2. Other applications may involve a higher type of tensor and have
symmetry across more than two indices.

Let V be a vector space of dimension n. Let Sk be the set of permutations on
k elements (i.e., bijections on {1, 2, . . . , k}). This set of permutations acts on V ⊗k

by doing the following on pure tensors:

σ · (v1 ⊗ v2 ⊗ · · · ⊗ vk) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(k) (4.45)

and extending by linearity on nonpure tensors. (Taking σ−1 on the indices means
that σ sends the vector in the ith position in the tensor product v1 ⊗ v2 ⊗ · · · ⊗ vk
to the σ(i)th position.)

Definition 4.6.1. We say that tensor α ∈ V ⊗k is symmetric (resp. antisymmetric)
if σ · α = α, (resp. σ · α = sign(σ)α) for all σ ∈ Sk.

4.6.1 Symmetric Product

Definition 4.6.2. Let α ∈ V ⊗k. We define the symmetrization of α to be

S(α) =
∑
σ∈Sk

σ · α.

Example 4.6.3. Let V be a vector space. We consider tensors in V ⊗ V ⊗ V . We
will consider permutations in S3, which has 3! = 6 elements.

S(e1 ⊗ e2 ⊗ e3) = e1 ⊗ e2 ⊗ e3 + e2 ⊗ e1 ⊗ e3 + e3 ⊗ e2 ⊗ e1

+ e1 ⊗ e3 ⊗ e2 + e2 ⊗ e3 ⊗ e1 + e3 ⊗ e1 ⊗ e2.

In contrast,

S(e1 ⊗ e1 ⊗ e2) = e1 ⊗ e1 ⊗ e2 + e1 ⊗ e1 ⊗ e2 + e2 ⊗ e1 ⊗ e1

+ e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e1

= 2
(
e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1

)
.

By construction, the symmetrization S defines a linear transformation S : V ⊗k →
V ⊗k.

Definition 4.6.4. The subspace of V ⊗k given as the image of S : V ⊗k → V ⊗k is
called the kth symmetric product of V and is denoted by Symk V .

Proposition 4.6.5. The subspace Symk V is invariant under the action of Sk on
V ⊗k.
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Proof. Let τ ∈ Sk be a permutation. Then on any pure tensor vi1 ⊗ vi2 ⊗ · · · ⊗ vik ,
the action of τ on S(vi1 ⊗ vi2 ⊗ · · · ⊗ vik) gives

τ · S(vi1 ⊗ vi2 ⊗ · · · ⊗ vik) = τ ·

(∑
σ∈Sk

σ · vi1 ⊗ vi2 ⊗ · · · ⊗ vik

)
=
∑
σ∈Sk

τ ·
(
σ · vi1 ⊗ vi2 ⊗ · · · ⊗ vik

)
=
∑
σ∈Sk

(τσ) · vi1 ⊗ vi2 ⊗ · · · ⊗ vik

=
∑
σ′∈Sk

σ′ · vi1 ⊗ vi2 ⊗ · · · ⊗ vik = S(vi1 ⊗ vi2 ⊗ · · · ⊗ vik),

where we obtain the second-to-last line because as σ runs through all the permu-
tations in Sk, for any fixed τ ∈ Sk, the compositions τσ also run through all the
permutations of Sk.

Corollary 4.6.6. For all symmetric tensors α ∈ Symk V , we have S(α) = k!α.

Proof. This follows immediately from Proposition 4.6.5 and Definition 4.6.2.

Proposition 4.6.7. Let {e1, e2, . . . , en} be a basis of V . Then the set

{S(ei1 ⊗ ei2 ⊗ · · · ⊗ eik) | 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n}

is a basis of Symk V .

Proof. Define T (k, n) = {(i1, i2, . . . , ik) ∈ Nk | 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik}. For this

proof, if i = (i1, i2, . . . , ik) ∈ {1, 2, . . . , n}k, denote ei
def
= ei1 ⊗ ei2 ⊗ · · · ⊗ eik . In

the action of Sk on {1, 2, . . . , n}k defined by

σ · (i1, i2, . . . , ik) = (iσ−1(1), iσ−1(2), . . . , iσ−1(k))

the set T (k, n) contains exactly one representative from each orbit of this action.
This implies that {S(ei) | i ∈ T (k, n)} spans Im S = Symk V .

Now we show that {S(ei) | i ∈ T (k, n)} is linearly independent. For any σ ∈ Sk
and for any i ∈ T (k, n), the permuted pure tensor σ · ei is another pure tensor with
the same number of ei basis vectors of a given index i. For any j ∈ {1, 2, . . . , n}k let
g(j) be the same k-tuple j, but reorganized into nondecreasing order. If the k-tuple
j consists of m1 1s, m2 2s, and so on, define f(j) = m1!m2! · · ·mn!. As the above
examples illustrate, for all i ∈ T (k, n),

(S)(ei) = f(i)
∑

j∈{1,...,n}k : g(j)=i

ej.

Thus, in a linear combination

0 =
∑

i∈T (k,n)

ciS(ei) =
∑

j∈{1,...,n}k
cg(j)f(j)ej
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we have cg(j)f(j) = 0 for all j ∈ {1, . . . , n}k because {ej | j ∈ {1, . . . , n}k} is a basis

of V ⊗k. However, f(j) ≥ 1, so we deduce that cg(j) = 0 for all j ∈ {1, . . . , n}k. In
particular, ci = 0 for all i ∈ T (k, n). This establishes the linear independence.

We conclude that {S(ei) | i ∈ T (k, n)} is a basis of Symk V .

Corollary 4.6.8. Let V be a vector space of dimension n. Then

dim Symk V =

(
n+ k − 1

k

)
.

Proof. From Proposition 4.6.7, dim Symk V is the cardinality of T (k, n). This par-
ticular enumeration problem, of counting the number of nondecreasing sequences of
length k with values in {1, 2, . . . , n}, has a standard solution. Consider n+ k slots.
We have a bag of n Xs and k Ys. Put an X in the first slot. Fill the remaining
slots with Xs and Ys. Because we insist on an X in the first slot, there are

(
n+k−1

k

)
ways to fill the slots. However, the set of fillings as described is in bijection with
our desired set of sequences in the following way. For any filling, let it be the num-
ber of Xs that occur before the t’th Y. With this definition, the resulting k-tuple
(i1, i2, . . . , ik) is nondecreasing with 1 ≤ it ≤ n. (Placing an X in the first slot
ensured that it ≥ 1.) Conversely, any nondecreasing sequence (i1, i2, . . . , ik) leads
to a unique filling of slots that satisfies our parameters. The result follows.

Given α ∈ Symk V and β ∈ Syml V , the tensor product α ⊗ β is of course an
element of V ⊗(k+l) but is not necessarily an element of Symk+l V . However, it is
possible to construct a new product that satisfies this deficiency.

Definition 4.6.9. Let α ∈ Symk V and β ∈ Syml V . Define the symmetric product
between α and β as

αβ =
1

k! l!
S(α⊗ β).

Note that if α and β are tensors of rank 1, then the product αβ is precisely the
symmetrization of α⊗ β. However, a few other properties, which we summarize in
Proposition 4.6.11, of this symmetric product also hold. We need a lemma first.

Lemma 4.6.10. Let α ∈ V ⊗k. If S(α) = 0, then S(α ⊗ β) = S(β ⊗ α) = 0 for all
tensors β. Furthermore, if S(α) = S(α′), then S(α⊗ β) = S(α′ ⊗ β) for all tensors
β.

Proof. We first prove that if S(α) = 0, then S(α ⊗ β) = 0 for all tensors β of rank
l, and the result for S(β ⊗ α) follows similarly.

Let Sk be the subset of permutations in Sk+l that only permute the first k
elements of {1, 2, . . . , k + l} and leave the remaining l elements unchanged. Define
the relation ∼ on Sk+l as τ1 ∼ τ2 if and only if τ−1

2 τ1 ∈ Sk. Since Sk is closed under
taking inverse functions and composition of functions, it is easy to see that ∼ is an
equivalence relation on Sk+l.
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Let C be a set of representatives of distinct equivalence classes of ∼. Then we
have

S(α⊗ β) =
∑

σ∈Sk+l

σ · (α⊗ β) =
∑
τ∈C

∑
σ′∈Sk

τσ′ · (α⊗ β)

=
∑
τ∈C

τ ·
(( ∑

σ′∈Sk

σ′ · α
)
⊗ β

)
=
∑
τ∈C

τ · ((Sα)⊗ β) = 0.

For the second part of the lemma, suppose that S(α) = S(α′). Then S(α−α′) =
0. Thus, for all tensors β we have S((α−α′)⊗β) = 0. Hence, S(α⊗β)−S(α′⊗β) = 0
and the result follows.

Proposition 4.6.11. Let V be a vector space of dimension n. The following hold:

1. The symmetric product is bilinear: for all α, α1, α2 ∈ Symk V , for all
β, β1, β2 ∈ Syml V , and λ in the base field,

(α1 + α2)β = α1β + α2β, (λα)β = λ(αβ),

α(β1 + β2) = αβ1 + αβ2, α(λβ) = λ(αβ).

2. The symmetric product is commutative: for all α ∈ Symk V and β ∈ Syml V ,

αβ = βα.

3. The symmetric product is associative: for all α ∈ Symr V , β ∈ Syms V , and
γ ∈ Symt V , as an element of Symr+s+t V , we have

(αβ)γ = α(βγ) =
1

r! s! t!
S(α⊗ β ⊗ γ).

Proof. We leave part 1 of the proposition as an exercise for the reader.
For part 2, by Proposition 4.6.5, S(α⊗ β) is invariant under the action of Sk+l.

Consider the permutation σ0 ∈ Sk+l that maps the n-tuple (1, 2, . . . , k + l) to
(k+ 1, . . . , k+ l, 1, . . . , k). In each pure tensor in an expression of α⊗ β, the action
σ0(α ⊗ β) moves (and keeps in the proper order) the vector terms coming from β
in front of the terms coming from α. Hence, we see that σ0(α⊗ β) = β ⊗ α. Thus,
we conclude that

βα = σ0(αβ) = σ0

(
1

k! l!
S(α⊗ β)

)
=

1

k! l!
S(α⊗ β) = αβ.

Thus, the symmetric product is commutative.
For part 3, by Corollary 4.6.6, since αβ is symmetric,

S(αβ) = (r + s)!αβ =
(r + s)!

r! s!
S(α⊗ β).
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Therefore, by Lemma 4.6.10, for all tensors γ of rank t,

S(αβ ⊗ γ) = S

(
(r + s)!

r! s!
(α⊗ β)⊗ γ

)
.

Consequently,

(αβ)γ =
1

(r + s)! t!
S(αβ ⊗ γ) =

1

(r + s)! t!

(r + s)!

r! s!
S
(
(α⊗ β)⊗ γ

)
=

1

r! s! t!
S(α⊗ β ⊗ γ).

It is easy to follow the same calculation and find that

α(βγ) =
1

r! s! t!
S(α⊗ β ⊗ γ),

which shows that (αβ)γ = α(βγ) for all tensors α, β, and γ.

By virtue of associativity, the symmetrization of a pure tensor S(v1⊗v2⊗· · ·⊗vk)
is in fact

v1v2 · · · vk.

We think of this element as a commutative “product” between vectors, which is
linear in each term. With this notation in mind, one usually thinks of Symk V as a
vector space in its own right, independent of V ⊗k, with basis

{ei1ei2 · · · eik | 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n}.

Furthermore, analogous to polynomials in multiple variables where the monomial
xyx2z3y = x3y2z3, any symmetric product vector ei1ei2 · · · eik is equal to another
expression on which the particular vectors in the product are permuted.

4.6.2 Alternating Product

We turn now to the alternating product, also called the wedge product. Many of
the results for the alternating product parallel the symmetric product.

Let V be a vector space of dimension n and let us continue to consider the action
of Sk on V ⊗k as described in Equation (4.45). Recall the sign of a permutation
described in Definition 4.5.6.

Definition 4.6.12. Let α ∈ V ⊗k be a tensor. We define the alternation of α to be

A(α) =
∑
σ∈Sk

sign(σ)(σ · α).
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Example 4.6.13. Let V be a vector space. We consider tensors in V ⊗ V ⊗ V .
We will consider permutations in S3, which has 3! = 6 elements. The identity
permutation has a sign of 1, permutations that interchange only two elements have
a sign of −1, and the permutations that cycle through the three indices have a sign
of 1.

A(e1 ⊗ e2 ⊗ e3) = e1 ⊗ e2 ⊗ e3 − e2 ⊗ e1 ⊗ e3 − e3 ⊗ e2 ⊗ e1

− e1 ⊗ e3 ⊗ e2 + e2 ⊗ e3 ⊗ e1 + e3 ⊗ e1 ⊗ e2

In contrast,

A(e1 ⊗ e1 ⊗ e2) = e1 ⊗ e1 ⊗ e2 − e1 ⊗ e1 ⊗ e2 − e2 ⊗ e1 ⊗ e1

− e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e1 = 0

Proposition 4.6.14. Let v1⊗ v2⊗ · · · ⊗ vk be a pure tensor in V ⊗k. If vi = vj for
some pair (i, j), where i 6= j, then

A(v1 ⊗ v2 ⊗ · · · ⊗ vk) = 0.

Proof. Suppose that in the pure tensor v1 ⊗ v2 ⊗ · · · ⊗ vk, we have vi = vj for some
pair i 6= j. Let f ∈ Sk be the permutation that interchanges the ith and jth entry
and leaves all others fixed. This permutation f is a transposition so sign(f) = −1.
Define the relation ∼ on Sk by σ ∼ τ if and only if τ−1σ ∈ {1, f}. Note that
f2 = f ◦ f = 1 is the identity permutation, and hence, f = f−1. Because of these
properties of f , we can easily check that the relation ∼ is an equivalence relation
on Sk.

Let C be a set of representatives for all of the equivalence classes of ∼. If
α = v1 ⊗ v2 ⊗ · · · ⊗ vk, then f · α = α because vi = vj . Thus,

A(α) =
∑
σ∈C

(
sign(σ)(σ · α) + sign(σf)((σf) · α)

)
=
∑
σ∈C

(
sign(σ)(σ · α)− sign(σ)(σ · (f · α))

)
=
∑
σ∈C

(
sign(σ)(σ · α)− sign(σ)(σ · α)

)
= 0

By construction, the alternation A defines a linear transformation A : V ⊗k →
V ⊗k.

Definition 4.6.15. The subspace of V ⊗k given as the image of A : V ⊗k → V ⊗k is
called the kth alternating product or the kth wedge product of V and is denoted by∧k

V .

Proposition 4.6.16. The subspace
∧k

V is skew-invariant under the action of Sk
on V ⊗k, i.e., for all σ ∈ Sk and for all tensors α ∈

∧k
V , we have σ ·α = sign(σ)α.
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Proof. (Left as an exercise for the reader.)

Corollary 4.6.17. For all alternating tensors α ∈
∧k

V , we have A(α) = k!α.

Proof. By Proposition 4.6.16,

A(α) =
∑
σ∈Sk

sign(σ)σ · α =
∑
σ∈Sk

sign(σ)2α = k!α.

Proposition 4.6.18. Let {e1, e2, . . . , en} be a basis of V . Then the set

{A(ei1 ⊗ ei2 ⊗ · · · ⊗ eik) | 1 ≤ i1 < i2 < · · · < ik ≤ n}

is a basis of
∧k

V .

Proof. (The proof of this proposition is similar to the proof of Proposition 4.6.7
with the exception that A(ei1 ⊗ ei2 ⊗ · · · ⊗ eik) = 0 if is = it for some s 6= t. We
leave the proof as an exercise.)

Corollary 4.6.19. Let V be a vector space of dimension n. Then

dim
k∧
V =

(
n

k

)
.

Proof. The proof of this corollary is similar to that of Corollary 4.6.8. However, we
need to devise a counting argument that enumerates all strictly increasing sequences
of length k with entries in {1, 2, . . . , n}. Consider the scenario where we have n slots
and a bag of n− k Xs and k Ys. There are

(
n
k

)
ways to fill n slots with the Xs and

Ys, by choosing the slots in which we put Ys. However, there is a bijection between
such fillings and our desired set of increasing sequences. For a given filling, define it
as the number of Xs or Ys before or including the tth Y. This is clearly an increasing
sequence with entries in {1, 2, . . . , n}. Furthermore, any such increasing sequence
gives us a unique filling of the slots with Xs and Ys. The result follows.

As in the case of the symmetric product, it is not hard to see that the tensor
product of alternating tensors is, in general, not another alternating tensor. How-
ever, it is possible to define a product between alternating tensors that produces
another alternating tensor.

Definition 4.6.20. Let V be a vector space, and let α ∈
∧k

V and β ∈
∧l

V . We
define

α ∧ β =
1

k! l!
A(α⊗ β)

so that α ∧ β ∈
∧k+l

V . We call this operation α ∧ β the exterior product or the
wedge product of α and β.

Similar properties hold for the exterior product as for the symmetric product.
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Proposition 4.6.21. Let V be a vector space of dimension n. The following hold:

1. The exterior product is bilinear: for all α, α1, α2 ∈
∧k

V , β, β1, β2 ∈
∧l

V ,
and λ in the base field,

(α1 + α2) ∧ β = α1 ∧ β + α2 ∧ β, (λα) ∧ β = λ(α ∧ β),

α ∧ (β1 + β2) = α ∧ β1 + α ∧ β2, α ∧ (λβ) = λ(α ∧ β).

2. The exterior product is anticommutative in the sense that for all α ∈
∧k

V

and β ∈
∧l

V ,
β ∧ α = (−1)klα ∧ β.

3. The exterior product is associative: for all α ∈
∧r

V , β ∈
∧s

V , and γ ∈
∧t

V ,
as an element of

∧r+s+t
V , we have

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) =
1

r! s! t!
A(α⊗ β ⊗ γ).

Proof. Again we leave part 1 as an exercise for the reader.
For part 2, by Proposition 4.6.16, A(α ⊗ β) is skew-invariant under the action

of Sk+l. As in the proof of Proposition 4.6.11, consider the permutation σ0 ∈ Sk+l

that maps the n-tuple (1, 2, . . . , k + l) to (k + 1, . . . , k + l, 1, . . . , k). In each pure
tensor in an expression of α ⊗ β, the action σ0 · (α ⊗ β) moves (and keeps in the
proper order) the vector terms coming from β in front of the terms coming from
α. Hence we see that σ0 · (α ⊗ β) = β ⊗ α. Also, it is not difficult to see how σ0

can be expressed using kl transpositions (permutations that interchange only two
elements), and therefore, sign(σ0) = (−1)kl. Thus, we conclude that

β ∧ α =
1

k! l!
A(β ⊗ α) =

1

k! l!
A(σ0 · (α⊗ β))

= sign(σ0)
1

k! l!
A(α⊗ β) = (−1)klα ∧ β.

Part 3 follows in a similar manner to the proof of Proposition 4.6.11 with appro-
priate modifications, including an adaptation of Lemma 4.6.10 and using Corollary
4.6.17.

By virtue of the associativity of the exterior product, the alternation of a pure
tensor A(v1 ⊗ v2 ⊗ · · · ⊗ vk) is denoted by

v1 ∧ v2 ∧ · · · ∧ vk,

where we often think of this element as an anticommutative “product” between
vectors. This means that

v1 ∧ v2 ∧ · · · ∧ vk
interchange i,j

= −v1 ∧ v2 ∧ · · · ∧ vk (4.46)
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and also that for all σ ∈ Sk,

σ · (v1 ∧ v2 ∧ · · · ∧ vk) = sign(σ)v1 ∧ v2 ∧ · · · ∧ vk. (4.47)

With this notation in mind, we often think of
∧k

V as a vector space in its own
right, independent of V ⊗k, with basis

{ei1 ∧ ei2 ∧ · · · ∧ eik | 1 ≤ i1 < i2 < · · · < ik ≤ n}.

Example 4.6.22. Let V = R3, and let

~v =

 1
−1
2

 and ~w =

3
0
2


be vectors in R3. Recall that dim

∧2
V = 3. With respect to the standard basis in∧2

V , we have

~v ∧ ~w = (~e1 − ~e2 + 2~e3) ∧ (3~e1 + 2~e3)

= 3~e1 ∧ ~e1 + 2~e1 ∧ ~e3 − 3~e2 ∧ ~e1 − 2~e2 ∧ ~e3 + 6~e3 ∧ ~e1 + 4~e3 ∧ ~e3

= 2~e1 ∧ ~e3 + 3~e1 ∧ ~e2 − 2~e2 ∧ ~e3 − 6~e1 ∧ ~e3

= −4~e1 ∧ ~e3 + 3~e1 ∧ ~e2 − 2~e2 ∧ ~e3.

For the symmetric product, recall that dim Sym2 V = 6. With respect to the
standard basis in Sym2 V , we have

~v ~w = (~e1 − ~e2 + 2~e3)(3~e1 + 2~e3)

= 3~e1~e1 + 2~e1~e3 − 3~e2~e1 − 2~e2~e3 + 6~e3~e1 + 4~e3~e3

= 3~e2
1 + 4~e2

3 − 3~e1~e2 + 8~e1~e3 − 2~e2~e3.

Proposition 4.6.23. Let V be an n-dimensional vector space over a field. Let vi
for i = 1, . . . ,m be m vectors in V where m ≤ n. Let wj for j = 1, . . . ,m be another
set of vectors, with wj ∈ Span(vi) given by wj =

∑
i cjivi. Then

w1 ∧ w2 ∧ · · · ∧ wm = (det cji)v1 ∧ v2 ∧ · · · ∧ vm.

Proof. This is a simple matter of calculation, as follows:

w1∧w2∧· · ·∧wm =

(
m∑
i1=1

c1i1vi1

)
∧

(
m∑
i2=1

c2i2vi2

)
∧· · ·∧

(
m∑

im=1

cmimvim

)
. (4.48)

In any wedge product, if there is a repeated vector, the wedge product is 0. There-
fore, when distributing out the m summations, the only nonzero terms are those
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in which all the i1, i2, . . . , im are distinct. Furthermore, by Equation (4.47), any
nonzero term can be rewritten as

vi1 ∧ vi2 ∧ · · · ∧ vim = sign(σ) v1 ∧ v2 ∧ · · · ∧ vm,

where σ is the permutation given as a table by

σ =

(
1 2 · · · m
i1 i2 · · · im

)
.

Furthermore, by selecting which integer is chosen for each ik in each term on the
right side of Equation (4.48), we see that every possible permutation is used exactly
once. Thus, we have

w1 ∧ w2 ∧ · · · ∧ wm =

 ∑
σ∈Sm

sign(σ)c1σ−1(1)c2σ−1(2) · · · cmσ−1(m)

 v1 ∧ v2 ∧ · · · ∧ vm.

The content of the parantheses in the above equation is precisely the determinant
of the matrix (cij) and the proposition follows.

Example 4.6.24. Let V = Rn with standard basis ei, where i = 1, 2, . . . , n. By
Proposition 4.6.23, we have

~v1 ∧ ~v2 ∧ · · · ∧ ~vn = det

 | | |
~v1 ~v2 · · · ~vn
| | |

~e1 ∧ ~e2 ∧ · · · ∧ ~en.

By a standard result, the determinant det
(
~v1 ~v2 · · · ~vn

)
is the volume of the

parallelepiped spanned by {~v1, ~v2, · · · , ~vn}.
Furthermore, if we consider the element ~e∗1∧· · ·∧~e∗n ∈

∧n
V ∗ as an alternating

multilinear function on V , we have

~e∗1 ∧ · · · ∧ ~e∗n(~v1, . . . , ~vn) =

(∑
σ∈Sk

sign(σ)σ · (~e∗1 ⊗ · · · ⊗ ~e∗n)

)
(~v1, . . . , ~vn)

= det

 | | |
~v1 ~v2 · · · ~vn
| | |

 .

Therefore, the element ~e∗1 ∧ · · · ∧ ~e∗n is often called the signed volume form on V .
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Problems

4.6.1. Let V = R3, and consider the linear transformation T : V → V given by

T (~v) =

1 2 3
4 5 6
7 8 9

~v
with respect to the standard basis of R3.

(a) Prove that the function S :
∧2 V →

∧2 V that satisfies

S(~v1 ∧ ~v2) = T (~v1) ∧ T (~v2)

extends to a linear transformation.

(b) Determine the matrix of S with respect to the associated basis {~ı1 ∧ ~,~ ∧
~k,~k ∧~ı}.

4.6.2. Repeat the above exercise but with Sym2 V and changing the question accordingly.

4.6.3. Prove Proposition 4.6.16.

4.6.4. Prove Proposition 4.6.18.

4.6.5. Prove part 1 of Proposition 4.6.11.

4.6.6. Let V be a vector space over C of dimension n, and let T be a linear transformation
T : V → V with eigenvalues λi, where 1 ≤ i ≤ n. Let S :

∧2 V →
∧2 V be defined

by S(v1 ∧ v2) = T (v1) ∧ T (v2).

(a) Prove that the eigenvalues of S are λiλj for 1 ≤ i < j ≤ n.

(b) Prove that detS = (detT )n−1.

(c) Prove that the trace of S is

1

2

(( n∑
i=1

λi
)2

−
n∑
i=1

λ2
i

)
.

4.6.7. Let V be a vector space over C of dimension n, and let T be a linear transformation
T : V → V with eigenvalues λi, where 1 ≤ i ≤ n. Let S : Sym2 V → Sym2 V be
defined by S(v1v2) = T (v1)T (v2).

(a) Prove that the eigenvalues of S are λiλj for 1 ≤ i ≤ j ≤ n.

(b) Prove that detS = (detT )n+1.

(c) Prove that the trace of S is

1

2

(( n∑
i=1

λi
)2

+

n∑
i=1

λ2
i

)
.
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4.7 Algebra over a Field
We conclude this chapter by introducing the concept of an algebra over a field.
If the reader is not familiar with the technical term of “algebra,” she has already
encountered this algebraic structure both in this book and in previous study. The
reader surely is familiar with the word “algebra” used in a variety of contexts; the
precise definition for an algebra aligns with the casual use of the word. Furthermore,
introducing this notion here allows us to give a broader perspective on multilinear
algebra. In addition, we present the concept of a derivation, which plays a central
role in analysis on manifolds.

4.7.1 Algebras

Definition 4.7.1. Let K be a field. An algebra over K is a vector space A over K
equipped with a bilinear transformation A × A → A. The bilinear transformation
is usually called a product.

It is not uncommon to change the terminology slightly and refer to an algebra
on A. We say that an algebra is commutative (resp. associative) depending on
whether the product is commutative (resp. associative). Note that the bilinear
property implies that the product distributes over the addition.

A few common vectors spaces are in fact algebras. We consider a few examples.

Example 4.7.2. One of the first nontrivial examples of an algebra that mathemat-
ics students encounter is the vector space of R3 equipped with the cross product.
The properties that

(~u+ ~v)× ~w = ~u× ~w + ~v × ~w (c~u)× ~w = c(~u× ~w)

~u× (~v + ~w) = ~u× ~v + ~u× ~w ~u× (c~w) = c(~u× ~w)

for all ~u,~v, ~w ∈ R3 and for all c ∈ R establish that the cross product × is a bilinear
transformation. This algebra is neither commutative nor associative.

Example 4.7.3. In linear algebra, the operations of addition and scalar multipli-
cation on the set Mn(R) of n× n matrices with coefficients in R makes it a vector
space. However, the operation of matrix multiplication on Mn(R) is bilinear in each
entry, giving Mn(R) the stucture of an algebra. This algebra is not commutative
but it is associative.

Example 4.7.4. The set of polynomials of degree n or less, or more generally the
set R[x] of all polynomials with coefficients in R, equipped with scalar multiplica-
tion, addition, polynomial multiplication, is an algebra. That is why the expression
“polynomial algebra” makes sense. Polynomial algebra over a field is both commu-
tative and associative.

Example 4.7.5. Let I be an interval of R. The set of continuous function C0(I,R),
and more generally the set of functions of any differentiability class, forms a vector
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space when we consider scalar multiplication and addition of functions. However,
by virtue of distributivity, multiplication of functions equips these sets with the
structures of an algebra over R.

The concept of an algebra allows us to recast some of our constructions con-
cerning tensor products into a broader perspective that will be useful later on. We
introduce the tensor, symmetric and alternating algebra on a vector space in tan-
dem. Let V be a vector space over a field K. In all the following cases, the product
of an element in K with anything else corresponds to scalar multiplicaiton.

1. The tensor algebra on V , denoted T •V is the infinite direct sum

T •V =

∞⊕
j=0

V ⊗j = K ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

with the bilinear product on T •V induced from ⊗ : V ⊗s × V ⊗t → V ⊗(s+t)

and extended by linearity.

2. The symmetric algebra on V , denoted SymV , is the infinite direct sum

SymV =

∞⊕
j=0

Symj V = K ⊕ V ⊕ Sym2 V ⊕ Sym3 V ⊕ · · ·

with the bilinear product on Sym• V induced from · : Syms V × Symt V →
Syms+t described in Definition 4.6.9 and extended by linearity.

3. The alternating algebra on V , denoted
∧
V , is the infinite direct sum

∧
V =

∞⊕
j=0

j∧
V = K ⊕ V ⊕

2∧
V ⊕

3∧
V ⊕ · · ·

with the bilinear product on
∧•

V induced from the exterior product (Defini-
tion 4.6.20) ∧ :

∧s
V ×

∧t
V →

∧s+t
V and extended by linearity.

As long as V is a nontrivial vector space, T •V and SymV are infinite dimen-
sional. However, if V is finite dimensional with dimV = n, then

∧k
V is trivial for

k > n and

dim
∧
V =

n∑
j=0

dim

j∧
V =

n∑
j=0

(
n

j

)
= 2n.

The tensor, symmetric and alternating algebras on a vector space are associative.
However, only the symmetric algebra is commutative.

Example 4.7.6. As an example of operations in T •V , suppose that V = R3 with
basis {~ı,~,~k}. Let α = 4 + 2~ı− 3~ı⊗~k and let β = 7 + 3~ı−~k. The addition of α and
β on T •V , after collecting like terms, is

α+ β = 11 + 5~ı− ~k − 3~ı⊗ ~k.
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The product follows from distributivity by

α⊗ β = (4 + 2~ı− 3~ı⊗ ~k)⊗ (7 + 3~ı− ~k)

= 28 + 12~ı− 4~k + 14~ı+ 6~ı⊗~ı− 2~ı⊗ ~k − 21~ı⊗ ~k

− 9~ı⊗ ~k ⊗~ı+ 3~ı⊗ ~k ⊗ ~k

= 28 + 26~ı− 4~k + 6~ı⊗~ı− 23~ı⊗ ~k − 9~ı⊗ ~k ⊗~ı+ 3~ı⊗ ~k ⊗ ~k.

The tensor, symmetric and alternating algebras associated to a vector space are
examples of graded algebras, graded by N.

Definition 4.7.7. An N-graded algebra is a vector space expressed as

V =
⊕
j∈N

Vj

where Vj is a vector space for all j ∈ N and in which, for and j, k ∈ N, the product
· has Vj · Vk ⊆ Vj+k.

4.7.2 Generating Subsets

Recall that in linear algebra, if S is a nonempty subset of a vector space V , the
span of S consists of all linear combinations of elements in S, namely,

Span(S) = {c1u1 + c2u2 + · · ·+ cnun |n ∈ N∗, c1, . . . , cn ∈ K, and u1, . . . , un ∈ S}.

It is an easy exercise in linear algebra to show that for any nonempty set S, the set
Span(S) is a subspace of V . We say that S spans V is Span(S) = V .

In contrast for algebras, if S is a subset of an algebra A, we define the subset
of A generated by S as the smallest subset T of A that contains S, is closed under
multiplication by any scalar, closed under addition, and closed under the algebra
product. By distributivity of scalar multiplication, associativity of addition, and
distributivity of the product, the subset generated by S is a subalgebra of A. We
say that A is generated by the subset S if the subalgebra generated by S is all of
A.

Example 4.7.8. Consider the set K[x] of all polynomials of scalars from a field
K and consider the subset {1, x}. Using the product of x with itself produces the
infinite set {x, x2, x3, . . .}. By taking any finite sum of scalar multiples of elements
in {1, x, x2, . . .} gives every polynomial. Consequently, {1, x} generates K[x] as an
algebra.

Example 4.7.9. Let V be a vector spaces with basis {u1, u2, . . . , un}. It is not
hard to see that, using their respective products, the tensor algebra, the symmetric
algebra and the alternating algebra on V are all generated by {1, u1, u2, . . . , un}.
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4.7.3 Derivations

Among the examples of algebras that we presented above, consider the algebra
C∞(I,R) of differentiable real-valued functions over an interval I of R. The deriva-
tive operator D on C∞(I,R) is a linear transformation. The derivative of a product
is not the product of derivatives but the derivative satisfies the product rule, also
called Leibniz’s law.

Definition 4.7.10. Let A be an algebra over a field K. A derivation on A is a
linear transformation D : A→ A that satisfies Leibniz’s law,

D(ab) = D(a)b+ aD(b), for all a, b ∈ A.

The set of all derivations on A is denoted by DerK(A).

Example 4.7.11. Let K[x] be the polynomial algebra. Define D : K[x] → K[x]
by

D(anx
n + · · ·+ a1x+ a0) = nanx

n + (n− 1)an−1x
n−1 + · · ·+ a1x.

We recognize this as x times the derivative of the polynomial. We prove directly
that this is a derivation.

It is easy to see that D is a linear transformation. We need to check the Leibniz
rule. Let a(x) = anx

n + · · ·+ a1x+ a0 and b(x) = bmx
m + · · ·+ b1x+ b0. Assuming

ai = 0 if i < 0 or i > n and similarly for the coefficients of b(x), then we can write
the product as

a(x)b(x) =
m+n∑
k=0

 ∑
i+j=k

aibj

xk.

So

D(a(x)b(x)) =
m+n∑
k=1

 ∑
i+j=k

kaibj

xk =
m+n∑
k=1

 ∑
i+j=k

(i+ j)aibj

xk

=
m+n∑
k=1

 ∑
i+j=k

iaibj

xk +
m+n∑
k=1

 ∑
i+j=k

jaibj

xk

= D(a(x))b(x) + a(x)D(b(x)).

This shows that D is a derivation.

Proposition 4.7.12. Suppose that an algebra A is generated by a subset S. Then
two derivations D1 and D2 are equal if and only if they agree on all elements of S.

Proof. By Problem 4.7.8, the set of derivations DerK(A) is a subspace of HomK(A,A).
In particular D1−D2 is a derivation. So D1 and D2 are equal as derivations if and
only if D = D1−D2 is the trivial function. So it suffices to prove that a derivation
is trivial if and only if it maps all elements of S to 0.



176 4. Multilinear Algebra

If D is trivial, it obviously maps all elements of S to 0. We need to prove the
converse. Suppose that D maps all elements of the subset S to 0. For all a ∈ A,
0a = 0 = a0, where 0 is the zero vector of A. So

∀u ∈ S, ∀c ∈ K, D(cv) = cD(v) = c0 = 0,

∀u, v ∈ S, D(u+ v) = D(u) +D(v) = 0 + 0 = 0,

∀u, v ∈ S, D(uv) = D(u)v + uD(v) = 0v + u0 = 0.

Since D is trivial on all S and since having a 0 derivation is preserved with the
three operations that define A recursively from S, then D is trivial on all of A. The
proposition follows.

Problems

4.7.1. Let K be a field and let Mn(K) be the set of n × n matrices with coefficients in
K. Define the bracket operation on Mn(K) by [A,B] = AB −BA.

(a) Prove that Mn(K) equipped with [ , ] is an algebra.

(b) Prove that this algebra is neither commutative nor associative.

4.7.2. Prove the set of bilinear products on V is a vector space and show a canonical
isomorphism between the set of bilinear products on V and V ⊗ V ∗ ⊗ V ∗.

4.7.3. Let V be a vector space over a field K. Prove that the direct sum of all tensor
products of type (r, s),

∞⊕
r=0

∞⊕
s=0

V ⊗r ⊗ V ∗⊗s, where V ⊗0 = K and K ⊗K = K,

is an algebra with the usual tensor product ⊗ as the bilinear product.

4.7.4. Let V be a 2-dimensional vector space of K with basis {e1, e2}. Suppose that
S : V → V is a linear transformation. Define

∧
S :
∧
V →

∧
V as

(
∧
S)(c1 + c2e1 + c3e2 + c4e1 ∧ e2) = c1 + c2S(e1) + c3S(e2) + c4S(e1) ∧ S(e2).

(a) Prove that ∧S is a linear transformation.

(b) Suppose that with respect to the ordered basis (e1, e2) on V , the matrix

of S is

(
a b
c d

)
. Find the matrix of ∧S with respect to the ordered basis

(1, e1, e2, e1 ∧ e2) on
∧
V .

4.7.5. Repeat the previous exercise assuming that V is a vector space of dimension 3.

4.7.6. Let I be an interval of R and consider the vector space C∞(I,R). Show that the
second derivative D2 is not a derivation.

4.7.7. Let I be an interval of R. Consider the vector space C∞(I,R) and let D be the
derivative operator on C∞(I,R). Let g : I → I be a differentiable function.
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(a) Prove that D1 : C∞(I,R) → C∞(I,R) defined by D1(f) = g · D(f) is a
derivation.

(b) Explain why D2 : C∞(I,R)→ C∞(I,R) defined by D2(f) = D(f ◦ g) is not
a derivation.

4.7.8. Prove that DerK(A) is a vector subspace of HomK(A,A).

4.7.9. Let A be an algebra. Prove that DerK(A) is an algebra when equipped with the
bilinear transformation

[D1, D2] = D1 ◦D2 −D2 ◦D1.

[Hint: Use Problem 4.7.8.]

4.7.10. Let U be an open subset of Rn and consider the algebra C∞(U,R) of smooth func-
tions on U . Let ai(x1, x2, . . . , xn) be smooth functions over U for i = 1, 2, . . . , n.
Prove that

a1(x1, x2, . . . , xn)
∂

∂x1
+ · · ·+ an(x1, x2, . . . , xn)

∂

∂xn

is a derivation on C∞(U,R).
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CHAPTER 5

Analysis on Manifolds

In Chapter 3, we introduced the concept of a differentiable manifold as motivated by
a search for topological spaces over which it is possible to do calculus and ultimately
dynamics. The idea of having a topological space locally homeomorphic to Rn drove
the definition of a differentiable manifold. Subsequent sections in that chapter
discussed differentiable maps between manifolds and the differentials of such maps.
We used these to introduce the important notions of immersions, submersions, and
submanifolds as qualifiers of how manifolds may relate to one another.

The astute reader might observe that we have not so far made good on our
promise to do physics on a manifold, no matter how amorphous that expression may
be. As an illustrative example, consider Newton’s second law of motion applied to,
say, simple gravity, as follows:

m~x ′′(t) = m~g, (5.1)

where m is constant and ~g is a constant vector. the parametrized curve ~x(t) in R3

is called the trajectory and its acceleration vector ~x ′′(t) is also a vector function
in R3. In order for (5.1) to have meaning, it is essential that the quantities on
both sides of the equation exist in the same Euclidean space. Applying this type of
equation to the context of manifolds poses a variety of difficulties.

First, note that a curve in a manifold M is a submanifold γ : I → M , where I
is an open interval of R, whereas the velocity vector of a curve at a point p is an
element of the tangent plane to M at p. Second, the discussion of differentials in
Chapter 3 does not readily extend to a concept of second derivatives for a curve in
a manifold. It is not even obvious in what space a second derivative would exist.
Consequently, it is not at all obvious how to transcribe equations of curves in R3

that involve ~x, ~x ′, and ~x ′′ to the context of manifolds.
Another difficulty arises when we try to express in the context of differentiable

manifolds the classical local theory of surfaces in R3 (as presented in [5, Chapter 5]).
It is not difficult to define the first fundamental form as a bilinear form on TpM .
However, since we do not view a given manifold M as a subset of any Euclidean
(vector) space, the concept of normal vectors does not exist. Therefore, there is no

179



180 5. Analysis on Manifolds

equivalent of the second fundamental form, and all concepts of curvature become
problematic to define (see Chapter 6 in [5]).

This chapter does not yet discuss how to do physics on a manifold, but it does
begin to show how to do calculus. We study in greater detail the relationship be-
tween the tangent space to a manifold M at p. Also, in order to overcome the
conceptual hurdles mentioned above, we introduce the formalism of vector bun-
dles on a manifold, discuss vector (and tensor) fields on the manifold, develop the
calculus of differential forms, and end by considering integration on manifolds.

In Chapter 4 we commented how geometers and physicists both use tensors but
usually with very different notations (usually called coordinate-free or coordinate-
dependent). This difference continues here as we use tensor fields on manifolds. If a
reader is already familiar with one or the other habits of notation, it is very useful
to recognize both as representing the same kind of object. However, we must begin
by introducing the vector bundle formalism.

5.1 Vector Bundles on Manifolds
A vector bundle over a manifold is a particular case of a fiber bundle over a topo-
logical space. As we do not need the full generality of fiber bundles in this book, we
refer the interested reader to [53] or [12] and present instead the specific formalism
of vector bundles.

Chapter 3 discussed tangent spaces to manifolds. To each point p ∈ M , we
associated a tangent space. The elements of the tangent space are differential op-
erators of differentiable functions f : M → R. Despite their slightly more abstract
definition, such differential operators properly model the role of tangent vectors.
Since M is not a subset of some Euclidean space, the tangent spaces TpM are not
subspaces of any ambient space either. A manifold equipped with tangent spaces
at each point motivates the idea of “attaching” a vector space to each point p of a
manifold M . Furthermore, from an intuitive perspective, we would like to attach
these vector spaces, in some sense, continuously. The following definition formalizes
this perspective.

Definition 5.1.1. Let Mn be a differentiable manifold with atlas A =
{(Uα, φα)}α∈I , and let V be a finite-dimensional, real, vector space. A vector bundle
over M of fiber V is a Hausdorff topological space E with a continuous surjection
π : E → M (called a bundle projection) and a collection Ψ of homeomorphisms
(called trivializations) ψα : Uα × V → π−1(Uα), satisfying

1. π ◦ ψα(p, v) = p for all (p, v) ∈ Uα × V and Ep
def
= π−1(p) is homeomorphic

to V ;

2. if Uα ∩Uβ 6= ∅, then ψ−1
β ◦ψα : (Uα ∩Uβ)×V → (Uα ∩Uβ)×V is of the form

ψ−1
β ◦ ψα(p, v) = (p, θβα(p)v),
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where θβα(p) : Uα ∩ Uβ → GL(V ) is a continuous map into the general linear
group (i.e., the set of invertible transformations from V to V ).

The vector bundle is called differentiable (respectively, Ck or smooth) if M is dif-
ferentiable (respectively, Ck or smooth) and if all the maps θβα are differentiable
(respectively, Ck or smooth) as maps between manifolds.

We point out that when V is a finite dimensional vector space of dimension n,
we can identify GL(V ) as an open subset of the set Rn2

. Hence, GL(V ) naturally
carries the structure of a differentiable manifold. It is in this sense that the functions
θβα can be differentiable maps between manifolds.

A vector bundle whose fiber is one-dimensional is called a line bundle.

Vector bundles are often denoted by a single Greek letter ξ or η. The topological
space E is called the total space and denoted by E(ξ) while the manifold M is called
the base space and denoted by B(ξ).

Example 5.1.2 (The Trivial Bundle). Let Mn be a manifold with atlas A = {φα},
and let V be a real vector space. The topological space M × V is a vector bundle
over M . The trivialization maps ψα are all the identity maps on Uα × V and the
maps θβα are the identity linear transformation.

Example 5.1.3 (Infinite Möbius Strip). Consider the circle S1 as a manifold with
the atlas {(U1, φ1), (U2, φ2)} defined by:

φ1 : U1 = S1 − {(1, 0)} → (0, 2π), with φ1(cosu, sinu) = u,

φ2 : U2 = S1 − {(−1, 0)} → (π, 3π), with φ2(cosu, sinu) = u.

So φ1 uses as a coordinate the angle around S1 from (1, 0), while φ2 also uses as a
coordinate the angle around S1 starting (1, 0) but, with the value of the angle taken
in (π, 3π). The transition map between these two charts is

φ21 = φ2 ◦ φ−1
1 : (0, π) ∪ (π, 2π)→ (π, 2π) ∪ (2π, 3π)

u 7→

{
u+ 2π if 0 < u < π,

u if π < u < 2π.

Now define the vector bundle ξ of fiber R over S1 as a total space E with the
surjective map π : E → S1 defined by homeomorphisms ψi : Ui × R→ π−1(Ui) for
i = 1, 2, such that ψ−1

2 ◦ ψ1 : (U1 ∩ U2)× R→ (U1 ∩ U2)× R is given by

ψ−1
2 ◦ ψ1(p, v) = (p, θ21(p)(v))

where

θ21(p) =

{
−1, if 0 < φ1(p) < π,

1, if π < φ1(p) < 2π.
(5.2)
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Note that θ21 : U1∩U2 → GL(R) = R−{0} is constant on the connected components
of U1 ∩ U2 = S1 − {(1, 0), (−1, 0)} and hence is continuous and also smooth. The
function θ12 is the inverse function of θ21 so has the same properties.

We will show that the image M of the parametrized surface in R4 described by

Y (u, t) =
(

cosu, sinu, t cos
(u

2

)
, t sin

(u
2

))
, with (u, t) ∈ [0, 2π]× R

realizes this vector bundle ξ. The function π : M → S1 defined by projection
onto the first two coordinates in R4. Note that above each point p ∈ S1, i.e., the
points of π−1(p) are lines in R4. Furthermore, it is not hard to see that π−1(Ui) is
homeomorphic to Ui × R for i = 1, 2, each of which we can visualize as an infinite
strip. If we define ψi : Ui × R→ π−1(Ui) as

ψi(p, t) = Y (φi(p), t),

then
ψ2(p, t) = Y (φ2(p), t) = Y (φ21(φ1(p)), t).

Since φβα(u) is always u + 2πk for k ∈ {−1, 0, 1} and cosx and sinx are periodic
2π, then

π(ψi(p, t)) = π(Y (φi(p), t)) = p.

Furthermore, if 0 < φ1(p) < π,

ψ2(p, t) = Y (φ1(p) + 2π, t)

= (cos(φ1(p)), sin(φ1(p)), t cos(φ1(p) + π), t sin(φ1(p) + π))

= (cos(φ1(p)), sin(φ1(p)),−t cos(φ1(p)),−t sin(φ1(p))) = ψ1(p,−t),

while, if π < φ1(p) < 2π, we have ψ2(p, t) = Y (φ1(p), t) = ψ1(p, t). Consequently,

ψ−1
2 ◦ ψ1(p, t) = (p, θ21(p)(t))

for the transition functions θ21 defined in (5.2).
The subset M is evidently not the cylinder S1 × R. Furthermore, one can get

an intuition for this set as a Möbius band of infinite width.

The intuitive stance behind Definition 5.1.1 is that a vector bundle is not just a
manifold with a vector space V associated to each point but that the vector spaces
“vary continuously.”

Consider now a differentiable manifold, and consider also the disjoint union of
all the tangent planes to M at points p ∈M , i.e.,∐

p∈M
TpM = {(p,X) | p ∈M and X ∈ TpM}.

The identity map i : M → M is certainly differentiable, and we calculate its dif-
ferential at a point p ∈ Uα ∩ Uβ in overlapping charts. Label the coordinate charts
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x = φα and x̄ = φβ . According to (3.13), the matrix of the differential of the
identity map is [

dip
]

=

(
∂x̄j

∂xi

∣∣∣
p

)
,

and the reader should recall that the explicit meaning of this partial derivative is
given in (3.14). Given any pair of overlapping coordinate charts, this differential is
invertible so it is an element in GLn(R) and corresponds to the maps θβα.

We can arrive at this same result in another way. Consider the coordinate
systems defined by x̄ and x over Uα ∩ Uβ . The chain rule gives, as operators,

∂

∂x̄j

∣∣∣
p

=
n∑
i=1

∂xi

∂x̄j

∣∣∣
p

∂

∂xi

∣∣∣
p
. (5.3)

(The subscript |p becomes tedious and so in the remaining paragraphs, we under-
stand the differential operators and the matrices as depending on p ∈ M .) Recall
that by the chain rule (∂xi/∂x̄j) and (∂x̄j/∂xi) are inverse matrices to each other,
so, in particular,

n∑
i=1

∂xi

∂x̄j
∂x̄k

∂xi
= δkj , (5.4)

where δkj is the Kronecker delta. Note that (5.4) follows from (5.3) by applying

∂/∂x̄j to x̄k.
Let X ∈ TpM be a vector in the tangent space. Suppose that the vector X has

coordinates aj in the basis (∂/∂xj) and coordinates āj in the basis (∂/∂x̄j). Using
Einstein summation convention, we have X = āj∂/∂x̄j . Then

X = āj
(
∂xi

∂x̄j
∂

∂xi

)
= ai

∂

∂xi
so ai = āj

∂xi

∂x̄j
.

Multiplying by
∂x̄k

∂xi
and summing over i, we obtain

∂x̄k

∂xi
ai = āj

∂xi

∂x̄j
∂x̄k

∂xi
= āj

(
∂xi

∂x̄j
∂x̄k

∂xi

)
=
∂x̄k

∂xi
ai = ājδkj = āk.

This leads to the change-of-coordinates formula

āk =
∂x̄k

∂xi
ai. (5.5)

The above calculations are important in their own right, but in terms of vector
bundles, they lead to the following proposition.

Proposition 5.1.4. Let Mn be a differentiable manifold. The disjoint union of all
the tangent planes to M ∐

p∈M
TpM,

is a vector bundle with fiber Rn over M .
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Proof. An element of TM is of the form (p,Xp), where p ∈ M and Xp ∈ TpM .
We point out first that the bundle projection π : TM → M is simply the function
π(p,Xp) = p.

We have already seen that for each p ∈M , the matrix
(
∂x̄k/∂xi

∣∣
p

)
is invertible.

It remains to be verified that this matrix varies continuously in p ∈M over Uα∩Uβ ,
where x is the coordinate system over Uα and x̄ is the coordinate system over Uβ .

However,
(
∂x̄k/∂xi

∣∣
p

)
is the matrix of the differential of x̄ ◦ x−1 and the fact that

this is continuous is part of the definition of a differentiable manifold (see Definition
3.1.3).

Definition 5.1.5. The vector bundle in Proposition 5.1.4 is called the tangent
bundle to M and is denoted by TM .

There is an inherent difficulty in visualizing the tangent bundle, and more gen-
erally any vector bundle, to a manifold. Consider the tangent bundle to a circle.
The circle S1 is a one-dimensional manifold that we typically visualize as the unit
circle as a subset of R2. Viewing the tangent spaces to the circle as subspaces of R2

or even as the geometric tangent lines to S1 at p, we should view the union
⋃
p TpM

as a subset of R2. This is not what is meant by the definition of TM . The spaces
TpM and TqM do not intersect if p 6= q. At best, if M is an embedded submani-
fold of Rn, then TpM may be viewed as a subspace of a different Euclidean space.
Thus, for example, for the circle S1, the tangent bundle T (S1) can be realized as an
embedded submanifold of R4. In fact, we can parametrize T (S1) by

Y (u, t) = (cosu, sinu,−t sinu, t cosu) for (u, t) ∈ [0, 2π]× R.

Therefore, even in this simple example, visualizing the tangent bundle requires more
than three dimensions. Nonetheless, it is not uncommon to illustrate the tangent
bundle over a manifold by a picture akin to Figure 5.1.

Proposition 5.1.6. If Mm is a differentiable manifold of dimension m, and V is
a real vector space of dimension n, then a differentiable vector bundle of fiber V
over M is a differentiable manifold of dimension m+ n.

Proof. Let E be a vector bundle of fiber V over a differentiable manifold M with
the data described in Definition 5.1.1. Since V is isomorphic to Rn, without loss of
generality, let us take V = Rn. On each open set π−1(Uα) in the vector bundle E,
consider the function τα defined by the composition

τα : π−1(Uα)
ψ−1
α−−−−→ Uα × Rn φα×id−−−−→ Rm × Rn = Rm+n,

where by φα × id we mean the function (φα × id)(p, v) = (φα(p), v). We prove
that the collection of functions {(π−1(Uα), τα)} is an atlas that equips E with the
structure of a differentiable manifold.
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Figure 5.1: Intuitive picture for a tangent bundle.

Since π is continuous, π−1(Uα) is open and, by construction, the collection of
open sets π−1(Uα) cover E. The function φα : Uα → Vα is a homeomorphism, where
Vα is an open subset of Rm. Therefore, it is easy to check that for each α ∈ I,

φα × id : Uα × Rn → Vα × Rn

is a homeomorphism. Thus, since ψα is a homeomorphism by definition, then
τα = (φα × id) ◦ ψ−1

α is also a homeomorphism.
Let (y, v) ∈ φβ(Uα ∩ Uβ) × Rn, and let (p, v) = (φβ × id)−1(y, v) so that (p, v)

is in the domain of the trivialization for ψβ . Then we calculate that

(τα ◦ τ−1
β )(y, v) =

(
(φα × id) ◦ ψ−1

α ◦ ψβ ◦ (φ−1
β × id)

)
(y, v)

=
(
φα ◦ φ−1

β (y), θαβ(p)v
)

because ψ−1
α ◦ ψβ(p, v) = (p, θαβ(p)v) by definition of a vector bundle.

At this stage, we must use the fact that θαβ is a differentiable map between
the differentiable manifolds M and GL(Rn). Since GL(Rn) inherits its manifold

structure as an embedded submanifold of Rn2

, the following quantities exist as
n× n matrices:

∂(θαβ ◦ φ−1
β )

∂yi
for 1 ≤ i ≤ m.

To simplify notations, we set F = θαβ ◦ φ−1
β . Then a simple calculation for the

function τα ◦ τ−1
β as a function from Rm+n into itself gives the following differential

as a block matrix:

[d(τα ◦ τ−1
β )(y,v)] =

 [d(φα ◦ φ−1
β )y] 0

∂F

∂y1
v · · · ∂F

∂ym
v F (y)

 .
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Furthermore, each of the entries in the above matrix is continuous. This shows
that all the transition functions τα ◦ τ−1

β are of class C1, establishing that the
differentiable vector bundle is indeed a differentiable manifold.

It is not hard to see that by adapting the above proof, we can also show that
a Ck (respectively, smooth) vector bundle is a Ck (respectively, smooth) manifold.
However, we point out the following consequence for tangent bundles to a manifold.

Corollary 5.1.7. If M is a manifold of class Ck and dimension m, then TM
is a manifold of class Ck−1 and dimension 2m. Furthermore, if M is a smooth
manifold, then TM is a smooth as well.

Proof. This follows from the proof of the above proposition and the fact that the
linear transformation θαβ is (∂x̄j/∂xi), where (x̄j) are the coordinates with respect
to φβ and (xi) are the coordinates with respect to φα. Therefore, in order for the
functions θαβ to be of class Cl, the transition functions φβ ◦ φ−1

α must be of class
Cl+1.

The second claim of the corollary follows immediately.

Example 5.1.8 (Tangent Bundle of Rn). As we saw in Example 3.3.7, the tangent
plane to any point p in Rn is again Rn. However, we can now make the stronger
claim that the tangent bundle of Rn is T (Rn) = Rn×Rn. We can see this from the
fact that Rn is a manifold that can be equipped with an atlas of just one coordinate
chart. Then, from Definition 5.1.1, there is only one trivialization map. Thus, the
tangent bundle is a trivial bundle.

Chapter 4 introduced various constructions associated to a vector space V ,
namely the dual V ∗, the space V ⊗p ⊗ V ∗⊗q, the symmetric product Symk V , and
the alternating product

∧k
V . Also, if we are given a vector space W of dimension

n, the direct product V ⊕W and the tensor product V ⊗W are new vector spaces.
In each case, if V and W are equipped with bases, there exist natural bases on the
new vector spaces.

Constructions on vector spaces carry over to vector bundles over a differentiable
manifold M in the following way. Let ξ be a vector bundle over M with fiber V ,
and let η be a vector bundle over M with fiber W . It is possible to construct the
following vector bundles over M in such a way that their bundle data are compatible
with the data for ξ and η and the properties of the associated fiber:

• The dual bundle ξ∗. The fiber is the vector space V ∗.

• The direct sum ξ ⊕ η. The fiber is the vector space V ⊕W . The direct sum
is also called the Whitney sum of two vector bundles.

• The tensor product ξ ⊗ η. The fiber is the vector space V ⊗W .

• The symmetric product Symk ξ for some positive integer k. The fiber is the
vector space Symk V .
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• The alternating product
∧k

ξ for some positive integer k. The fiber is the

vector space
∧k

V .

Each of the above situations requires careful construction and proof that they
are in fact vector bundles over M . We omit the details here but refer the reader to
Chapter 3 in [40] for a careful discussion of how to get new vector bundles from old
ones.

One of the first useful bundles constructed from the tangent bundle is the cotan-
gent bundle, TM∗, the dual to the tangent bundle. Recall that if p ∈Mm, U is an
open neighborhood of p in M , and x : U → Rm is a coordinate chart for U , then
the operators

∂1, . . . , ∂m
def
=

∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xm

∣∣∣
p

form the associated basis of TpM . The cobasis for the dual bundle TpM
∗ is denoted

by
dx1, dx2, . . . , dxm, (5.6)

defined as the linear functions on TpM → R such that

dxi(∂j) = dxi
( ∂

∂xj

∣∣∣
p

)
= δij =

{
1 if i = j,

0 if i 6= j.
(5.7)

The dependence on the point p ∈M is understood by context.

Example 5.1.9. Consider a regular surface M in R3. M is an embedded two-
dimensional submanifold of R3. Consider the bundle TM∗ ⊗ TM∗ over M . Via
a comment after Proposition 4.5.2, we identify TM∗ ⊗ TM∗ as the vector bundle
over M such that each fiber at a point p ∈M corresponds to the vector space of all
bilinear forms on TpM .

The formalism of vector bundles over manifolds may initially appear unneces-
sarily pedantic. However, since in general a manifold need not be given as a subset
of an ambient Euclidean space, it is only in the context of the tangent bundle on a
manifold that we can make sense of tangent vectors to M at various points p ∈M .
We discussed how to obtain new bundles from old ones so that it would be possible
to discuss other linear algebraic objects associated to the tangent bundle, such as
bilinear forms on TM , as in Example 5.1.9.

The value for physics is that in order to study the motion of a particle or a
system of particles that is not in Rn, then the ambient space for this system would
be a manifold. Without the structure of a differentiable manifold, we cannot talk
about differentiability at all. However, on a differentiable manifold, any kind of
differentiation will be given in reference to the tangent bundle. It is not hard
to imagine the need to do physics on a sphere, say when studying global earth
phenomenon but only looking at the surface of the earth. In some natural problems,
the configuration space (the space in which the variables of interest exist) is not
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a Euclidean space, and in this context, the equations of dynamics must take into
account the fact that the ambient space is a manifold. Perhaps the most blatant
examples of the need for manifolds come from cosmology, in which it is now well
understood that our universe is not flat. Therefore, doing cosmological calculations
(calculations on large portions of the universe) requires the manifold formalism.

Problems

5.1.1. Consider the unit sphere S2 equipped with the oriented stereographic atlas {πN , π̄S}
described in Examples 3.7.3 and 3.1.4. Explicitly describe an atlas for the tangent
bundle T (S2) as a manifold and write down the transition functions for this atlas.

5.1.2. Normal Bundle. Consider a regular surface S in R3. At each point p ∈ S, let N(p)
be the set of all normal vectors. Explicitly show that the points in S, along with
its normal vectors at corresponding points, form a vector bundle (in fact a line
bundle). Suppose that for each coordinate patch Uα parametrized by ~X(u, v) we
define ψα : Uα× R→ π−1(Uα) as

ψα(p, t) = p+ t ~Xu(u0, v0)× ~Xv(u0, v0),

where p = ~X(u0, v0). Determine the functions θβα between different trivialization
maps. (This vector bundle is called the normal bundle.)

5.1.3. Normal Bundle. Let Mm be a differentiable manifold embedded in Rn where
m < n. For all p ∈ M , let Np be the orthogonal complement to TpM in Rn.
Prove that the disjoint union of all Np subspaces is a vector bundle over M . (This
vector bundle is called the normal bundle to M and generalizes the situation in the
previous exercise.)

5.1.4. In the study of dynamics of a particle, one locates the position of a point in R3

using its three coordinates. Therefore, the variable space is R3. Explain why the
variable space for a general solid object (or system of particles rigidly attached to
each other) is R3 × SO(3). In particular, explain why we require six variables to
completely describe the position of a solid object in R3.

5.1.5. Provide appropriate details behind the construction of the Whitney sum of two
vector bundles.

5.1.6. Consider the real projective space M = RPn. We view RPn as the set of one-
dimensional subspaces of Rn+1. Consider the set {(V, ~u) ∈ RPn × Rn+1 | ~u ∈ V }.

(a) Show that this is a line bundle.

(b) Show that this line bundle is not the trivial bundle.

(This bundle is called the canonical line bundle on RPn.)

5.1.7. Consider the following parametrization for a torus S1 × S1 as a subset of R3

~X(u, v) =
(
(2 + cosu) cos v, (2 + cosu) sin v, sinu

)
,

for (u, v) ∈ [0, 2π] × [0, 2π]. Using ~X, given the associated parametrization of the
manifold T (S1 × S1) as a subset of R6.
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5.2 Vector and Tensor Fields on Manifolds
5.2.1 Vector and Tensor Fields

Definition 5.2.1. Let ξ be a vector bundle over a manifold M with fiber V , with
projection π : E(ξ)→ M . A global section of ξ is a continuous map s : M → E(ξ)
such that π ◦ s = idM , the identity function on M . The set of all global sections
is denoted by Γ(ξ). Given an open set U ⊆ M , we call a local section over U a
continuous map s : U → E(ξ) such that π ◦ s = idU . The set of all local sections
on U is denoted by Γ(U ; ξ).

Note that sections of a vector bundle (whether local or global) can be added
or multiplied by a scalar in the following sense. If s1, s2 ∈ Γ(U ; ξ), then for each
p ∈ U ⊆ M , s1(p) and s2(p) are vectors in the same fiber π−1(p). Consequently,
for any scalars a, b ∈ R, the linear combination as1(p) + bs2(p) is well defined as an
element in π−1(p).

Definition 5.2.2. Let M be a differentiable manifold. A global section of TM is
called a vector field on M . In other words, a vector field associates to each p ∈ M
a vector X(p) (also denoted by Xp) in TpM . The set of all vector fields on M is
denoted by X(M). A vector field X is said to be of class Ck if X : M → TM is a
map of class Ck between manifolds.

We point out that if U is a open subset of a smooth manifold M , then a vector
field X ∈ X(U) is a derivation on C∞(U,R).

Example 5.2.3 (Metric Tensor of a Surface). Let M be a regular surface in R3. In
the local theory of regular surfaces in R3, the first fundamental form (alternatively
called the metric tensor) is the bilinear product g = Ip(·, ·) on TpM obtained as the
restriction of the dot product in R3 to the tangent plane TpM . Therefore, with the
formalism of vector bundles and using Example 5.1.9, the first fundamental form
is a section of TM∗ ⊗ TM∗. In fact, since Ip(·, ·) is symmetric and defined for all
p, independent of any particular basis on TM∗ ⊗ TM∗, then the metric tensor is a
global section of Sym2 TM∗.

Let p be a point of M , and let U be a coordinate neighborhood of p with
coordinates (x1, x2). This coordinate system defines the basis

dx1 ⊗ dx1, dx1 ⊗ dx2, dx2 ⊗ dx1, dx2 ⊗ dx2

on TpM
∗ ⊗ TpM∗. Furthermore, each basis vector is a local section in Γ(U, TM∗ ⊗

TM∗). The coefficient functions gij of the metric tensor are functions such that, as
an element of Γ(U, TM∗ ⊗ TM∗), the metric tensor can be written as

g = g11dx
1 ⊗ dx1 + g12dx

1 ⊗ dx2 + g21dx
2 ⊗ dx1 + g22dx

2 ⊗ dx2.

Definition 5.2.4. A tensor field of type (r, s) is a global section of the vector
bundle TM⊗r ⊗ TM∗⊗s. The index r is called the contravariant index, while the
index s is called the covariant index.
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Let A be a tensor field of type (r, s) on a manifold Mn. Over a coordinate patch
U of M with coordinates (x1, x2, . . . , xn), we write the components of A as Ai1i2···irj1j2···js .

This means that Ai1i2···irj1j2···js are nr+s functions U → R such that with respect to the

basis on TpM
⊗r ⊗ TpM∗⊗s,

A = Ai1i2···irj1j2···js
∂

∂xi1
⊗ ∂

∂xi2
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ dxj2 ⊗ · · · ⊗ dxjs .

If U ′ is another coordinate patch on M with coordinates (x̄1, x̄2, . . . , x̄n), we
label the components of A in reference to this system as Āk1k2···krl1l2···ls . Again, these
components are a collection of nr+s functions U ′ → R. On the intersection U ∩U ′,
both sets of components describe the same tensor but in reference to different bases.
By Proposition 4.5.2, the components of A change according to

Āk1k2···krl1l2···ls =
∂x̄k1

∂xi1
∂x̄k2

∂xi2
· · · ∂x̄

kr

∂xir
∂xj1

∂x̄l1
∂xj2

∂x̄l2
· · · ∂x

js

∂x̄ls
Ai1i2···irj1j2···js . (5.8)

As anticipated by the comments in Section 4.5.4, we have generalized the notion
of tensors in Rn to tensor fields over a manifold M .

As a point of terminology, a vector field on a manifold is a tensor field of type
(1, 0). In contrast, a tensor field of type (0, 1) is often called a covariant vector field,
or shorter, a covector field. We call any tensor field of type (r, 0) a contravariant
tensor field, and any tensor field of type (0, s) is called a covariant tensor field.

5.2.2 Operations of Tensor Fields

Referring to the multilinear algebra developed in Section 4.4, there exist a number
of natural operations on tensor fields. Let M be a differentiable manifold. Let A
be a tensor field of type (r, s) and let B be a tensor field of type (k, `) on M . We
define the tensor product of A and B as the tensor field of type (r+k, s+ `) defined
by

(A⊗B)p = Ap ⊗Bp for p ∈M.

In this sense, the ⊗ operator is a bilinear transformation

⊗ : Γ(TM⊗r ⊗ TM∗⊗s)× Γ(TM⊗k ⊗ TM∗⊗`)→ Γ(TM⊗(r+k) ⊗ TM∗⊗(s+`)).

Let X ∈ X(M) be a differentiable vector field on a manifold M and let A ∈
Γ(TM⊗r⊗TM∗⊗s) be a tensor field on M . Then the contraction operation between
X and A is the linear transformation

X(M)⊗ Γ(TM⊗r ⊗ TM∗⊗s)→ Γ(TM⊗r ⊗ TM∗⊗(s−1))

defined by contraction on the first covariant index of A. This is also denoted by
iXA, where we view iX as a linear transformation Γ(TM⊗r⊗TM∗⊗s)→ Γ(TM⊗r⊗
TM∗⊗(s−1)).
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5.2.3 Push-Forwards of Vector Fields

We remind the reader that a tangent vector field X on a manifold M is such
that, at each point p ∈M , we have a differential operator on real-valued functions
Xp : C1(M,R)→ R. So a vector field is a function of both p ∈M and f ∈ C1(M,R).
If we apply X to the function f first, then we can think of a vector field as a mapping
X : C1(M,R)→ C0(M,R) via the identification

Xf = (p 7→ Xp(f)). (5.9)

Over a coordinate chart U of M with coordinate system (x1, x2, . . . , xn), we write

Xp =

n∑
i=1

Xi(p)∂i,

so the real-valued function Xf on M is defined by

(Xf)(p) =
n∑
i=1

Xi(p)
∂f

∂xi

∣∣∣
p
.

Recall from the definition of the differential, if F : M → N is a differentiable
map and X is a vector field on M , then for each point p ∈M we define the vector
F∗Xp = dFp(Xp) ∈ TF (p)N as the push-forward of X by F . Unfortunately, this does
not in general define a vector field on N . If F is not surjective, there is no natural
way to define a vector field associated to X on N−F (M). (Even proposing to define
the push-forward vector field to 0 on N−F (M) would not ensure a continuous vector
field on N .) Furthermore, if F is not injective and if p1 and p2 are preimages of
a point q ∈ F (M), then nothing guarantees that F∗(Xp1) = F∗(Xp2). Thus, the
push-forward is not well defined in this case either. However, we can make the
following definition.

Definition 5.2.5. Let M and N be differentiable manifolds, let F : M → N be a
differentiable map, let X be a vector field on M , and let Y be a vector field on N .
We say that X and Y are F -related if F∗(Xp) = YF (p) for all p ∈M .

With this terminology, the above comments can be rephrased to say that if X
is a vector field on M and F : M → N is a differentiable map, then there does not
necessarily exist a vector field on N that is F -related to X.

Proposition 5.2.6. Let F : M → N be a differentiable map between differentiable
manifolds. Let X ∈ X(M) and Y ∈ X(N). The vector field X is F -related to Y if
and only if for every open subset U of N and every function f ∈ C1(U,R) we have

X(f ◦ F ) = (Y f) ◦ F.
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Proof. For any p ∈ M and any f ∈ C1(U,R), where U is a neighborhood of F (p),
by Proposition 3.4.2 we have

X(f ◦ F )(p) = Xp(f ◦ F ) = dFp(Xp)(f) = F∗(Xp)(f).

On the other hand,

((Y f) ◦ F )(p) = (Y f)(F (p)) = YF (p)f.

Thus, X(f ◦ F ) = (Y f) ◦ F is true for all f if and only if F∗(Xp) = YF (p) for all
p ∈M . The proposition follows.

Though in general vector fields cannot be pushed forward via a differentiable
map, we show one particular case in which push-forwards for vector fields exist.

Proposition 5.2.7. Let X ∈ X(M) be a vector field, and let F : M → N be a
diffeomorphism. There exists a unique vector field Y ∈ X(N) that is F -related to
X. Furthermore, if X is of class Ck and F is a diffeomorphism of class Ck, then
so is Y .

Proof. In order for X and Y to be F -related, we must have F∗Xp = YF (p). There-
fore, we define Yq = F∗(XF−1(q)). Since F is a diffeomorphism, the association
q 7→ Yq is well defined. However, we must check this association is continuous
before we can call it a vector field.

If (xi) is a coordinate system on a neighborhood of p = F−1(q) and if (yj) is a
coordinate system on a neighborhood of q, then the coordinates of Yq are

Yq =
∂F j

∂xi

∣∣∣
F−1(q)

Xi
F−1(q)

∂

∂yj

∣∣∣
q
.

Finally, if F−1 and X are of class Ck, then by composition and product rule, the
global section N → TN defined by q 7→ (q, Yq) is of class Ck.

Definition 5.2.8. If X ∈ X(M) and F : M → N is a diffeomorphism, then the
vector field Y in Proposition 5.2.7 is called the push-forward of X by F and is
denoted by F∗X.

5.2.4 Integral Curves and Flows

As we promised in the introduction to this chapter, vector bundles on a manifold
allow for the possibility of doing physics on a manifold. We begin to see this through
the existence of trajectories in what we might view as a velocity vector field.

Let δ > 0, and let γ : (−δ, δ)→M be a differentiable curve on Mm. Recall that
we must understand γ as a differentiable function between manifolds. Let X be a
vector field on M so that for each p ∈M , Xp is a tangent vector in TpM . Referring
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to Example 3.4.3 for notation, the curve γ is called a trajectory of X through p if
γ(0) = p and

γ′(t)
def
= γ∗

(
d

dt

∣∣∣
t

)
= Xγ(t) (5.10)

for all t ∈ (−δ, δ). A trajectory is also called an integral curve of the vector field X
because it solves the differential equation represented in (5.10).

If x : U → Rn is a coordinate patch of M around p, it is by definition a
diffeomorphism with x(U). Hence, the push-forward x∗(X) is a vector field on

x(U). Call this ~G, so x∗X = ~G : x(U) → Rm. Call ~c : (−δ, δ) → x(U), the curve
with ~c(t) = (x ◦ γ)(t). Then applying x∗ to (5.10) gives

x∗γ∗

(
d

dt

∣∣∣
t

)
= (x∗X)x◦γ(t) ⇐⇒

d~c

dt
= ~G(~c(t)).

Consequently, (5.10) is equivalent (locally) to an ordinary differential equation in
Rm. Theorems of existence, uniqueness, and continuous dependence on initial con-
ditions for ordinary differential equations carry over to the context of differentiable
manifolds. (See for example Sections 7 and 35 in [3] for the classic results in this
area.) Instead of proving the difficult theorems behind the following application to
differentiable manifolds, we restate [52, Theorem 5, Chapter 5].

Theorem 5.2.9. Let M be a differentiable manifold of class Ck with k ≥ 2, and let
X be a vector field on M of class Ck. Let p ∈M . There exists an open neighborhood
V ⊂ M of p and a positive real δ > 0 such that there is a unique collection of
diffeomorphisms ϕt : V → ϕt(V ) for |t| < δ with the following properties:

1. ϕ0 = idV , i.e., ϕ0(q) = q for all q ∈ V .

2. ϕ : (−δ, δ)× V →M , defined by ϕ(t, q) = ϕt(q), is Ck.

3. If |s| < δ, |t| < δ, and |s + t| < δ, and both q, ϕt(q) ∈ V , then ϕs+t(q) =
ϕs ◦ ϕt(q).

4. If q ∈ V then
∂ϕ

∂t
= Xϕ(t,q); (5.11)

in other words, for ε small enough, the curve γ : (−ε, ε) → M defined by
γ(t) = ϕt(q) is a trajectory of X, i.e., satisfies γ′(0) = Xq.

Definition 5.2.10. The function ϕ : (−δ, δ) × U → M is called the flow of X on
M near p.

Figure 5.2 depicts a vector field X on two-dimensional manifold M (embedded
in R3). The black curve is a particular trajectory since every tangent vector to the
curve at p (a point on the curve) is parallel to Xp. To be precise, the shown curve
is only the locus of the trajectory since the trajectory itself is a curve parametrized
in such a way that the velocity vector at each point p is exactly Xp.
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Figure 5.2: A vector field on a manifold.

According to Definition 3.3.1, the last condition of Theorem 5.2.9 means that
Xq = Dγ . Thus, for all real-valued differentiable functions f on a neighborhood of
q,

(Xf)(q) = Xq(f) = Dγ(f) =
d

dt
(f(γ(t)))

∣∣
t=0

= lim
h→0

f(ϕh(q))− f(q)

h
. (5.12)

This equation simplifies many calculations, as we will soon see.

Example 5.2.11. As an example of a flow using this differential geometry notation,
consider the Euclidean plane M = R2 and the vector field X = −y∂x + x∂y. Recall
that the notation ∂ϕ/∂t means ϕ∗(∂/∂t). Furthermore, ϕ : (−δ, δ)×R2 → R2 and,
with respect to the standard basis on the tangent plane of R2 the matrix of ϕ∗ is

[ϕ∗] =


∂ϕ1

∂t

∂ϕ1

∂x

∂ϕ1

∂y
∂ϕ2

∂t

∂ϕ2

∂x

∂ϕ2

∂y

 .

The vector ∂/∂t is the first basis vector of that tangent space to a point of (−δ, δ)×
M . Thus, (5.11) means in components with respect to the basis {∂x, ∂y},∂ϕ

1

∂t
∂ϕ2

∂t

 =

(
−y ◦ ϕ
x ◦ ϕ

)
=

(
−ϕ2

ϕ1

)
.

This implies that
∂2ϕ1

∂t2
= −∂ϕ

2

∂t
= −ϕ1.
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Using techniques to solve linear second order differential equations with constant
coefficients, we see that ϕ1(t, x, y) = A cos t+B sin t, where A and B are functions
of x and y. Since ϕ2 = −∂ϕ1/∂t, we have ϕ2(t, x, y) = A sin t − B cos t. However,
the condition that ϕ0(q) = q for all q ∈M means for this function that A = x and
B = −y. Thus, we find that

ϕ(t, x, y) =

(
x cos t− y sin t
x sin t+ y cos t

)
.

It is not hard to check that the trajectories for the flow of this vector field X consists
of circles centered at the origin.

Problems

5.2.1. Let M = S2 be the unit sphere and let U be the coordinate patch parametrized by

x−1(u1, u2) = (cosu1 sinu2, sinu1 sinu2, cosu2)

with (u1, u2) ∈ (0, 2π) × (0, π). Let X = cosu1 sinu2∂1 + sinu1 sinu2∂2, Y = ∂1,
and Z = sinu2∂1 be vector fields over U .

(a) Show that X and Z can be extended continuously to vector fields over all of
M .

(b) Show that Y cannot be extended continuously to a vector field in X(M).

5.2.2. Let S be a regular surface in R3, and let X be a vector field on R3. For every
p ∈ S, define Yp as the orthogonal projection of Xp onto TpS. Show that Y is a
vector field on S.

5.2.3. Suppose that M is the torus that has a dense coordinate patch parametrized by

x−1(u, v) =
(
(3 + cos v) cosu, (3 + cos v) sinu, sin v

)
.

Consider the vector field X = −z∂/∂x+ x∂/∂z ∈ R3. In terms of the coordinates
(u, v), calculate the vector field on M induced from X by orthogonal projection,
as described in the previous exercise.

5.2.4. Let M = S1 × S1 × S1 be the 3-torus given as an embedded submanifold of R4 by
the parametrization

x−1(u, v, w) 7→
((

4 + (2 + cosu) cos v
)

cosw,
(
4 + (2 + cosu) cos v

)
sinw, (2 + cosu) sin v, sinu

)
.

Consider the radial vector field in R4 given by Z = x1∂1 + x2∂2 + x3∂3 + x4∂4. In
terms of the coordinates (u, v, w), calculate the vector field X on M induced from
Z by orthogonal projection of Zp onto TpM for all p ∈M .

5.2.5. Find a vector field on S2 that vanishes at one point. Write down a formula expres-
sion for this vector field in some coordinate patch of S2.
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5.2.6. Referring to Problem 5.2.1, prove that the flow of Z is

ϕt(u1, u2) =

(
u1 + t sinu2

u2

)
.

5.2.7. Prove that TS1 is diffeomorphic to S1 × R.

5.2.8. Let M be any differentiable manifold. Show that X(M) is an infinite-dimensional
vector space.

5.3 Lie Bracket and Lie Derivative
5.3.1 Lie Bracket

Consider a C2-manifold M and let X be a differentiable vector field over M . Recall
that to call a vector field differentiable it means that the function X : M → TM is
a differentiable map, or equivalently over any coordinate chart, the corresponding
components Xi of X are differentiable functions M → R. With the above interpre-
tation of a vector field on M , we can talk about the functions Y (Xf) or X(Y f),
where X and Y are two differentiable vector fields on M . However, neither of the
composition operations XY or Y X leads to another vector field.

Letting X = Xi∂i and Y = Y j∂j , for any function f ∈ C2(M,R), we have

X(Y f) = X(bj∂jf) = Xi∂i(Y
j∂jf) = Xi∂iY

j∂jf +XiY j∂i(∂jf). (5.13)

Thus, we see that f 7→ X(Y f)(p) is not a tangent vector to M at p since it involves
a repeated differentiation of f . Nonetheless, we do have the following proposition.

Proposition 5.3.1. Let M be a C2-manifold, and let X and Y be two vector fields
of class C1. Then the operation f 7→ (XY − Y X)f is another vector field.

Proof. Since the second derivatives of f are continuous, then the mixed partials
with respect to the same variables, though ordered differently, are equal. By using
Equation (5.13) twice, we find that

(XY − Y X)f =
(
Xi∂iY

j∂jf
)
−
(
Y j∂jX

i∂if
)

=
(
Xi∂iY

j − Y i∂iXj
) ∂f
∂xj

.

Since for all j = 1, . . . , n the expressions in the above parentheses are continuous
real-valued functions on M , then (XY − Y X) has the structure of a vector field.

We leave it as an exercise for the reader to show that the coordinates of (XY −
Y X) change contravariantly under a basis change in TpM .

Definition 5.3.2. The vector field defined in Proposition 5.3.1 is called the Lie
bracket of X and Y and is denoted by [X,Y ] = XY − Y X. If X and Y are of class
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Cn with n ≥ 1, then [X,Y ] is of class Cn−1. Also, if X and Y are smooth vector
fields, then so is [X,Y ]. More precisely,

[X,Y ]p(f) = Xp(Y f)− Yp(Xf) (5.14)

for all p ∈M and all f ∈ C2(M,R).

The proof of Proposition 5.3.1 shows that, in a coordinate neighborhood, if
X = Xi∂i and Y = Y j∂j , the Lie bracket is

[X,Y ] =
(
Xi∂iY

j − Y i∂iXj
)
∂j . (5.15)

This formula gives a coordinate-dependent definition of the Lie bracket, while (5.14)
is a coordinate-free definition.

Example 5.3.3. Consider the manifold R3 − {(x, y, z)|z = 0}, and consider the
two vector fields

X = xy
∂

∂x
+

1

z

∂

∂y
− 3yz3 ∂

∂z
,

Y =
∂

∂x
+ (x+ y)

∂

∂z
.

The one iterated derivation is

XY f =
(
xy

∂

∂x
+

1

z

∂

∂y
− 3yz3 ∂

∂z

)(∂f
∂x

+ (x+ y)
∂f

∂z

)
= xy

∂2f

∂x2
+ xy

∂f

∂z
+ xy(x+ y)

∂2f

∂x∂z
+

1

z

∂2f

∂y∂x
+

1

z

∂f

∂z

+
1

z
(x+ y)

∂2f

∂y∂z
− 3yz3 ∂2f

∂z∂x
− 3yz3(x+ y)

∂2f

∂z2
.

The expression Y Xf has exactly the same second derivative expressions for f , and
upon subtracting, we find that

[X,Y ] = (XY − Y X) = −y ∂
∂x

+
1

z2
(x+ y)

∂

∂y
+
(
xy +

1

z
+ 9yz2(x+ y)

) ∂
∂z
.

The Lie bracket has the following algebraic properties.

Proposition 5.3.4. Let X, Y , and Z be differentiable vector fields on a differen-
tiable manifold M . Let a, b ∈ R, and let f and g be differentiable functions M → R.
Then the following hold:

1. Anticommutativity: [Y,X] = −[X,Y ].

2. Bilinearity: [aX+bY, Z] = a[X,Z]+b[Y,Z] and similarly for the second input
to the bracket.

3. Jacobi identity: [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0.

4. [fX, gY ] = fg[X,Y ] + fX(g)Y − gY (f)X.

Proof. (The proofs of these facts are straightforward and are left as exercises for
the reader.)
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5.3.2 Lie Derivative of Vector Fields

A key concept in analysis is the ability to take derivatives. We have studied differ-
ential operators of functions f : M → R. However, a central theme of analysis on
manifolds pertains to defining operators on vector fields and tensor fields that be-
have like derivatives. Though we begin this theme here, we revisit it in Section 5.6
and in Section 6.2.

Suppose that f is a differentiable function on some open set U of Rn, let p ∈ U
and let V be a vector in Rn. In calculus, assuming that v is a unit vector, we define
the directional derivative of f along v at p by

d

dt
(f(p+ tv))

∣∣
t=0

= lim
h→0

1

h
(f(p+ hv)− f(p)),

We can extend this concept to vector fields in a natural way. If X is a differentiable
vector field on U , then the directional derivative of X at p along v is

d

dt
(X(p+ tv))

∣∣
t=0

= lim
h→0

1

h
(X(p+ hv)−X(p)),

For each vector V , this defines a new vector field on Rn. If the Cartesian coordinate
functions of X are Xi, then the ith component of the directional derivative is

d

dt
(Xi(p1 + tv1, . . . , pn + tvn))

∣∣
t=0

=
∂Xi

∂xj

∣∣∣
p
vj .

This notion does not easily generalize to manifolds because the Euclidean space
is both a manifold and a vector space. Furthermore, identifying TpRn with Rn for
all p allows the expression X(p+tv)−X(p) to have meaning. In a general manifold,
Xp+tv and Xp are in different tangent spaces, so taking their difference makes no
sense. However, using the push-forward of a “backwards flow” we can propose an
operation that makes sense.

Definition 5.3.5. Let M be a C2-manifold and let X ∈ X(M) be a C2 vector field
on M and let ϕt be the flow of X on M .

1. If f ∈ C1(M,R), we define the Lie derivative of f by X as the function

LXf
def
= Xf .

2. If Y ∈ X(M) is another differentiable vector field, we define the Lie derivative
of Y by X as the vector field LXY with

(LXY )p
def
=

d

dt
(ϕ−t)∗(Yϕt(p))

∣∣
t=0

= lim
h→0

1

h
(((ϕ−h)∗Y )p − Yp). (5.16)

Figure 5.3 illustrates the definition of the Lie derivative by depicting the trajec-
tory of X through p as well as the trajectories of Y through p and ϕt(p).

By Theorem 5.2.9, the flow exists for small t 6= 0 and (ϕ−t)∗Yϕt(p) is a vector
in TpM so the difference of vectors in (5.16) is well-defined. To clarify notation,
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ϕ(t, p)
p

ϕh(p)

Yp

Yϕh(p)

(ϕ−h)∗(Yϕh(p))

(ϕ−h)∗

Figure 5.3: Illustration of (5.16).

(ϕ−t)∗(Yϕt(p)) is the differential of ϕ−t applied to the tangent vector Yϕt(p), while
((ϕ−t)∗Y )p is the push-forward of the vector field Y by the diffeomorphism ϕ−t,
then evaluated at p. The above definition claimed that LXY is a vector field; we
need to prove it.

Proposition 5.3.6. Let M be a manifold of class Ck and let X be a vector field of
class Ck on M and Y a vector field of class C` on M . Then LXY is a vector field
on M of class Cr, where r = min(k− 2, `− 1). If the manifold and vector fields are
smooth, then so is LXY .

Proof. Let ϕ be the flow of X on M . By Theorem 5.2.9(2), the flow ϕ : (−δ, δ) ×
M → M is of class Ck. Let p ∈ M and let (U, x) be a coordinate chart of a
neighborhood of p. There exists a domain (−ε, ε) × U0 with p ∈ U0 such that ϕ
maps (−ε, ε)×U0 into U . Write ϕi = xi ◦ϕ as the component functions of the flow
in U . The components of the matrix of the differential (ϕ−t)∗ : Tϕt(p)M → TpM
are

∂ϕi(−t, ϕ(t, p))

∂xj
. (5.17)

Consequently, if Y = Y j∂j over U , then

(ϕ−t)∗Yϕt(p) =
∂ϕi(−t, ϕ(t, p))

∂xj
Y j(ϕ(t, p))

∂

∂xi

∣∣∣
p
. (5.18)

We obtain LXY by taking the derivative of the component functions in (5.18) with
respect to t and setting t = 0. The functions Y j are of class C`, ϕ(t, p) of class Ck

and ∂ϕi/∂xj of class Ck−1, so taking the derivative with respect to t decreases the
differentiability class by 1. The result follows.

Example 5.3.7. As a specific example of using (5.16), let us revisit Example 5.2.11,
where M = R2 and X = −y∂x+x∂y. In standard coordinates with respect to these
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bases,

ϕ−t(x, y) =

(
x cos t+ y sin t
−x sin t+ y cos t

)
and (ϕ−t)∗ =

(
cos t sin t
− sin t cos t

)
.

This example is particularly simple because (ϕ−t)∗ is independent of (x, y). Hence,
the matrix in (5.17) is the same as (ϕ−t)∗ expressed here. Then for a vector field
Y , with component functions Y 1(x, y) and Y 2(x, y), using (5.18) we get

(ϕ−t)∗(Yϕt(x,y)) =

(
cos t sin t
− sin t cos t

)(
Y 1(x cos t− y sin t, x sin t+ y cos t)
Y 2(x cos t− y sin t, x sin t+ y cos t)

)
.

There are a few other natural ways we can bring two nearby vectors into the
same tangent space in order to perform a limiting difference. However, they turn
out to be equal to that given in (5.16). We leave it as an exercise to the reader to
prove the following proposition.

Proposition 5.3.8. If X and Y are differentiable vector fields on a C2-manifold,
then

(LXY )p = lim
h→0

1

h

(
Yp − (ϕh)∗(Yϕ−h(p))

)
= lim
h→0

1

h

(
Yϕh(p) − (ϕh)∗(Yp)

)
.

We usually understand an operator on functions to be a differential operator if
it is linear and satisfies an appropriate Leibniz rule (product rule). The following
proposition shows this is the case for the Lie derivative.

Proposition 5.3.9. Let X, Y , and Z be vector fields on a differentiable manifold
M and let f : M → R be a differentiable function. Then

1. LX(Y + Z) = LXY + LXZ;

2. LX(fY ) = (LXf)Y + f(LXY ).

Proof. Part (1) follows immediately from the linearity properties of (ϕ−t)∗ and of
the derivative operator d/dt.

For Part (2), if ϕt is the flow of X on M , then

LX(fY ) = lim
h→0

1

h
((ϕ−h)∗((fY )ϕh(p))− (fY )p)

= lim
h→0

1

h
((ϕ−h)∗(f(ϕh(p))Yϕh(p))− f(p)Yp)

= lim
h→0

1

h
(f(ϕh(p))(ϕ−h)∗(Yϕh(p))− f(p)Yp).

Then using the typical trick to prove the product rule gives

LX(fY ) = lim
h→0

1

h

(
f(ϕh(p))(ϕ−h)∗(Yϕh(p))− f(ϕh(p))(Yp)

)
+ lim
h→0

1

h
(f(ϕh(p))(Yp)− f(p)Yp)

=

(
lim
h→0

f(ϕh(p))

)
lim
h→0

1

h
((ϕ−h)∗(Yϕh(p))− Yp) +

(
lim
h→0

1

h
(f(ϕh(p))− f(p))

)
Yp

= f(p)(LXY )p + (Xf)(p)Yp.
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The formula follows from the definition LXf = Xf .

With the identities of Proposition 5.3.9, we can calculate the coordinate-dependent
formula for the Lie derivative, which leads to the following interesting result.

Theorem 5.3.10. Let X and Y be C2 vector fields on a C2-manifold M . Then

LXY = [X,Y ].

Proof. Let p ∈ M and let (U, x) be a coordinate chart on a neighborhood of p.
Suppose that X = Xi∂i and Y = Y i∂i in coordinates over this chart and let ϕt(x)
be the flow of X over U .

We point out two facts about the flow of X. First, since limh→0 ϕh(x) = x for
all x ∈ U , then

lim
h→0

∂ϕih
∂xj

= δij (5.19)

for all i, j, so in particular,

lim
h→0

∂ϕi−h
∂xj

(ϕh(x))− δij = 0.

This leads to our second observation: we claim that

lim
h→0

1

h

(
∂ϕi−h
∂xj

(ϕh(x))− δij

)
= −∂X

i

∂xj
. (5.20)

To see this, note that by definition of differentiability in t, the component functions
ϕit(x) satisfy

ϕit(x) = xi +
dϕit(x)

dt

∣∣∣
t=0

t+ tRi(t, x) = xi +Xi(x)t+ tRi(t, x)

for remainder functions Ri : (−ε, ε)× U → R such that limt→0R
i(t, x) = 0. Then

∂ϕi−h
∂xj

(x) = δij −
∂Xi

∂xj
(x)h− h∂R

i

∂xj
(−h, x).

This gives

lim
h→0

1

h

(
∂ϕi−h
∂xj

(ϕh(x))− δij

)
= lim
h→0

1

h

(
−∂X

i

∂xj
(ϕh(x))h− h∂R

i

∂xj
(−h, ϕh(x))

)
= lim
h→0

(
−∂X

i

∂xj
(ϕh(x))− ∂Ri

∂xj
(−h, ϕh(x))

)
= −∂X

i

∂xj
(ϕ0(x))− ∂

∂xj

(
lim
h→0

Ri(−h, ϕh(x))

)
= −∂X

i

∂xj
(x).
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We can now calculate the Lie derivative in components. By definition of differ-
entiability near t = 0, we can write the component functions of Yϕt(x), which we
express for now by Y (ϕt(x)), as

Y j(ϕt(x)) = Y j(x) +
d

dt
(Y j(ϕt(x)))

∣∣
t=0

t+ tSj(t, x),

for some remainder functions Sj(t, x) that satisfy limt→0 S
j(t, x) = 0. Then

Y j(ϕt(x)) = Y j(x) +

[
∂Y j

∂xk
(ϕt(x))

dϕkt
dt

(x)

]
t=0

t+ tSj(t, x)

= Y j(x) +
∂Y j

∂xk
(x)Xk(x)t+ tSj(t, x).

By (5.18) the components of (ϕ−t)∗Yϕt(p) are

∂ϕi−t
∂xj

(ϕt(p))

(
Y j(p) +

∂Y j

∂xk
(p)Xk(p)t+ tSj(t, p)

)
,

so the components of LXY are

(LXY )i(p) = lim
h→0

1

h

(
∂ϕi−h
∂xj

(ϕh(p))Y j(p) + h
∂ϕi−h
∂xj

(ϕh(p))
∂Y j

∂xk
(p)Xk(p)

+h
∂ϕi−h
∂xj

(ϕh(p))Sj(h, p)− Y i(p)

)

= lim
h→0

(
1

h

(
∂ϕi−h
∂xj

(ϕh(p))Y j(p)− Y i(p)

)

+
∂ϕi−h
∂xj

(ϕh(p))
∂Y j

∂xk
(p)Xk(p) +

∂ϕi−h
∂xj

(ϕh(p))Sj(h, p)

)
so by (5.19),

(LXY )i(p) = lim
h→0

(
1

h

(
∂ϕi−h
∂xj

(ϕh(p))− δij

)
Y j(p) + δij

∂Y j

∂xk
(p)Xk(p) + δijS

j(h, p)

)

= −∂X
i

∂xj
(p)Y j(p) +

∂Y i

∂xk
(p)Xk(p)

where the last equality holds by (5.20). After replacing the summation variable k
with j, we recover the component description of the Lie bracket given in (5.15).

We mention this first corollary simply to reinterate the coordinate-dependent
expression for the Lie derivative.
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c(t)

t

t

−t

−t

X

Y

XY

p

Figure 5.4: The curve paths defining c(t).

Corollary 5.3.11. Let X and Y be vector fields on a C2-manifold M . Suppose
that over a coordinate patch (U, x) of M we have X = Xi∂i and Y = Yi∂i in
components. Then the components of the Lie derivative are

(LXY )i = Xj ∂Y
i

∂xj
− ∂Xi

∂xj
Y j .

Theorem 5.3.10 immediately leads to the following interesting corollary.

Corollary 5.3.12. Let X, Y , and Z be differentiable vector fields on M and let
f ∈ C1(M,R). Then

1. LYX = −LXY .

2. L(X+Y )Z = LXZ + LY Z.

This is rather striking because of the following observation. The linearity rules
of the Lie derivative LX as described in Proposition 5.3.9 followed easily from
the linearity of (ϕ−t)∗ and a product rule. However, proving that L(X+Y )Z =
LXZ+LY Z from the definition would be intractable because there is no immediately
obvious connection between the sum of two vector fields and their flows on the
manifold.

Theorem 5.3.10 implies a number of nonobvious properties for the Lie derivative,
the proofs of which we leave as exercises for the reader.

Proposition 5.3.13. Let X, Y , and Z be differentiable vector fields on M , and let
F : M → N be a diffeomorphism between manifolds. Then

1. LX [Y,Z] = [LXY,LXZ].

2. L[X,Y ]Z = LXLY Z − LY LXZ.

3. F∗(LXY ) = LF∗X(F∗Y ).

In Section 5.6, we will expand the definition of the Lie derivative to tensor fields
of all types, and not just functions and tangent vector fields.
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Besides the algebraic properties, the Lie bracket also carries a more geometric
interpretation. The bracket [X,Y ] measures an instantaneous path dependence
between the integral curves of X and Y . To be more precise, for sufficiently small
t ∈ (−ε, ε), consider the curve c(t) that

• starts at a point c(0) = p;

• follows the integral curve of X starting at p for time t;

• starting from there, follows the integral curve of Y for time t;

• then follows the integral curve of X backwards by time −t;

• then follows the integral curve of Y backwards by time −t.

See Figure 5.4. If ϕt is the flow for X and ψt is the flow for Y , then this curve
c : (−ε, ε)→M is

c(t) = ψ−t(ϕ−t(ψt(ϕt(p)))).

Two properties are obvious. If t approaches 0, then c(t) approaches p. Also, if x
is a system of coordinates on a patch U of M and if X = ∂1 and Y = ∂2, then the
above steps for the description of c(t) travel around a “square” with side t based at
p, and thus c(t) is constant. Other properties are not so obvious, and we refer the
reader to [52, Proposition 5.15, Theorem 5.16] for proofs.

Proposition 5.3.14. Defining the curve c(t) as above,

1. c′(0) = 0;

2. if we define c′′(0) as the operator satisfying c′′(0)(f) = (f ◦ c)′′(0), then c′′(0)
is a derivation and hence an element of TpM ;

3. c′′(0) = 2[X,Y ]p.

Consequently, from an intuitive perspective, the Lie bracket [X,Y ] is a vector
field that at p measures the second-order derivation of c(t) at p. Since the first
derivative c′(0) is 0, then c′′(0) = 2[X,Y ]p gives the direction of motion of c(t) out
of p as a second-order approximation.

Problems

5.3.1. Let M = R2. Calculate the Lie bracket [X,Y ] for each of the following pairs of
vector fields:

(a) X = x
∂

∂x
+ y

∂

∂y
and Y = −y ∂

∂x
+ x

∂

∂y
.

(b) X = sin(x+ y)
∂

∂x
+ cosx

∂

∂y
and Y = cosx

∂

∂x
+ sin y

∂

∂y
.

5.3.2. Let M = R3. Calculate the Lie bracket [X,Y ] for each of the following pairs of
vector fields:
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(a) X = z2 ∂

∂x
+ xy

∂

∂z
and Y = (x+ y3)

∂

∂y
+ yz

∂

∂z
.

(b) X = yz
∂

∂x
+ xz

∂

∂y
+ xy

∂

∂z
and Y = x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
.

(c) X = ln(x2 + 1)
∂

∂y
+ tan−1(xy)

∂

∂z
and Y =

∂

∂x
.

5.3.3. Consider Exercise 5.2.1, calculate the components of [X,Z] over U .

5.3.4. Prove that Equation 5.15 that comes out of Proposition 5.3.1 changes contravari-
antly, as a vector, under a change of coordinates on TpM .

5.3.5. Referring to Example 5.3.7, use Definition 5.3.5 to calculate LXY for an arbitrary
vector field on R2. Calculate the Lie bracket [X,Y ] directly. [Hint: They should
be equal.]

5.3.6. Prove Proposition 5.3.8.

5.3.7. Prove Proposition 5.3.4.

5.3.8. Let F : M → N be a differentiable map. Let X1, X2 ∈ X(M), and let Y1, Y2 ∈
X(N). Suppose that Xi is F -related to Yi. Prove that [X1, X2] is F -related to
[Y1, Y2].

5.3.9. Prove Proposition 5.3.13.

5.3.10. Let X and Y be differentiable vector fields on a C2 manifold M . Let ϕ be the
flow of X on M . Prove that LXY = 0 everywhere if and only if Y is invariant
under the flow of X (i.e., Yϕt(p) = (ϕt)∗Yp).

5.4 Differential Forms
We now consider a particular class of tensor fields called differential forms. As we
will see, differential forms have many uses in geometry and in physics, in partic-
ular for integration on manifolds. We introduced the linear algebra necessary for
differential forms in Section 4.6.

Though it would be possible to continue the discussion with manifolds and func-
tions of class Ck, we will restrict our attention to smooth manifolds for simplicity.

5.4.1 Definitions

Definition 5.4.1. Let Mn be a smooth manifold. A differential form ω of type
r on M (or more succinctly, r-form) is a smooth global section (tensor field) of∧r

(TM∗).

Intuitively, for each p ∈ M , we associate ωp ∈
∧r

(TpM
∗) in such a way that

ωp varies smoothly with p. The tensor ωp is an alternating r-multilinear function
TpM

⊗r → R. Hence, a differential form is a particular type of covariant tensor field
and that 1-forms are simply covector fields. A differential form of type 0 is simply
a smooth real-valued function on M .
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Let U be a coordinate neighborhood of M with coordinates x = (x1, x2, . . . , xn).
Define I(r, n) as the set of all increasing sequences of length r with values in
{1, 2, . . . , n}. For example, (2, 3, 7) ∈ I(3, 7) because there are three elements in the
sequence, they are listed in increasing order, and their values are in {1, 2, . . . , 7}.
By Proposition 4.6.18, over the coordinate patch U , an r-form ω can be written in
a unique way as

ω =
∑

I∈I(r,n)

aI dx
I ,

where each aI is a smooth function, and where we denote dxI = dxi1 ∧ · · · ∧ dxir
when I is the r-tuple I = (i1, . . . , ir). Recall that the symbol dxi is defined in
Equations (5.6) and (5.7) and that this wedge product is defined as the alternation

dxi1 ∧ · · · ∧ dxir = A(dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxir ). (5.21)

Alternatively, in reference to a coordinate system, a differential form is a smooth
covariant tensor field ω = ωi1,i2,...,irdx

i1 ⊗ dxi2 ⊗ · · · ⊗ dxir such that component
functions satisfy

ωi−1
σ (1),i−1

σ (2),...,i−1
σ (r) = sign(σ)ωi1,i2,...,ir

for any permutation σ ∈ Sr of the indices.

Definition 5.4.2. If U is an open subset of M , we denote by Ωr(U) the set of all
differential forms of type r on U .

We remark that, similar to Problem 5.2.8, for each r, the set Ωr(U) is an infinite-
dimensional vector space. In particular, if ω, η ∈ Ωr(U) and λ ∈ R, then ω + η ∈
Ωr(U) and λω ∈ Ωr(U), where by definition

(ω + η)p = ωp + ηp and (λω)p = λωp in

r∧
TM∗.

Not only is each Ωr(U) closed under scalar multiplication, but it is closed under
multiplication by a smooth function. More precisely, for all smooth functions f :
U → R, we have fω ∈ Ωr(U), where (fω)p = f(p)ωp for all p ∈ U .

Finally, similar to the alternating products of a fixed vector space, for ω ∈ Ωr(U)
and η ∈ Ωs(U), we define the exterior product ω ∧ η ∈ Ωr+s(U) as the differential
form defined by (ω ∧ η)p = ωp ∧ ηp for all p ∈M .

Example 5.4.3. Consider the sphere S2, and let U be the coordinate neighbor-
hood with a system of coordinates x defined by the parametrization x−1(u, v) =
(cosu sin v, sinu sin v, cos v) defined on (0, 2π)× (0, π). Let

ω = (sin2 v) du+ (sin v cos v) dv

η = cosu sin v du+ (sinu cos v − sin v) dv

be two 1-forms on S2. Remarking that du ∧ du = dv ∧ dv = 0, we calculate

ω ∧ η = sin2 v(sinu cos v − cosu cos v − sin v)du ∧ dv.
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5.4.2 Exterior Differential

Let f be a smooth real-valued function on a smooth manifold M , and let X ∈ X(M)
be a vector field. Viewing f : M → R as a differential map between manifolds, the
differential df is such that, at each point p ∈ M , it evaluates dfp(Xp) to a tangent
vector in Tf(p)(R). However, the tangent space Tf(p)(R) is equal to R, so dfp(Xp)
is just a real number. Hence, dfp ∈ TpM

∗, and since all of the operations vary
smoothly with p, then df ∈ Ω1(M). If x = (x1, . . . , xn) is a coordinate system on
an open set U ⊆M , then in coordinates we have

df =
n∑
i=1

∂f

∂xi
dxi. (5.22)

Since C∞(U,R) = Ω0(U), the differential d defines a linear transformation d :
Ω0(U)→ Ω1(U). We now generalize this remark by the following definition.

Definition 5.4.4. Let ω =
∑
I aI dx

I be a smooth differential r-form over U . The
exterior differential of ω is the (r + 1)-form written as dω and defined by

dω =
∑

I∈I(r,n)

(daI) ∧ dxI . (5.23)

Example 5.4.5. Revisiting Example 5.4.3, we calculate dω and dη. First, for dω
we have

dω = (d(sin2 v)) ∧ du+ (d(sin v cos v)) ∧ dv
=
(
2 sin v cos v dv

)
∧ du+

(
(cos2 v − sin2 v) dv

)
∧ dv

= (−2 sin v cos v) du ∧ dv.

For dη, we calculate

dη = (d(cosu sin v)) ∧ du+ (d(sinu cos v − sin v)) ∧ dv
=
(
(− sinu sin v) du+ (cosu cos v) dv

)
∧ du

+
(
(cosu cos v) du+ (− sinu sin v − cos v) dv

)
∧ dv

= (cosu cos v) dv ∧ du+ (cosu cos v) du ∧ dv = 0.

The differential form η has the unexpected property that dη = 0. We will say that
η is a closed 1-form (see Definition 5.4.7).

Proposition 5.4.6. Let M be a smooth manifold, and let U be an open subset of
M . The exterior differential satisfies the following:

1. For each 0 ≤ r ≤ n− 1, the operator d : Ωr(U)→ Ωr+1(U) is a linear map.

2. If ω ∈ Ωr(U) and η ∈ Ωs(U), then

d(ω ∧ η) = dω ∧ η + (−1)rω ∧ dη.
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3. For all ω ∈ Ωr(U), we have d(dω) = 0.

Proof. For Part 1, set ω =
∑
I aI dx

I , where the summation is over all I ∈ I(r, n)
and aI are smooth real-valued functions on M . Then from Equation (5.23), each
daI is a 1-form, so obviously the summation is over (r + 1)-forms.

Now let η =
∑
I bI dx

I be another r-form, and let λ, µ ∈ R. Then

d(λω + µη) =
∑
I

d(λaI + µbI) ∧ dxI

=
∑
I

 n∑
j=1

(
λ
∂aI

∂xj
+ µ

∂bI

∂xj

)
dxj

 ∧ dxI
= λ

∑
I

 n∑
j=1

∂aI

∂xj
dxj

 ∧ dxI + µ
∑
I

 n∑
j=1

∂bI

∂xj
dxj

 ∧ dxI
= λdω + µdη.

This proves linearity of d.

For Part 2, again let ω be as above, and let η ∈ Ωs(U) expressed as η =∑
J bJ dx

J , where the summation in J runs over I(s, n). By the linearity of the
wedge product, we can write

ω ∧ η =
∑
I

∑
J

aIbJ dx
I ∧ dxJ .

Note that for various combinations of I and J , the wedge products dxI ∧ dxJ will
cancel if I and J share any common indices. Then

d(ω ∧ η) =
∑
I

∑
J

(
n∑
k=1

∂aIbJ
∂xk

dxk

)
∧ dxI ∧ dxJ

=
∑
I

∑
J

(
n∑
k=1

(
∂aI
∂xk

bJ + aI
∂bJ
∂xk

)
dxk

)
∧ dxI ∧ dxJ

=
∑
I

∑
J

(
n∑
k=1

∂aI
∂xk

bJ dx
k

)
∧ dxI ∧ dxJ

+
∑
I

∑
J

(
n∑
k=1

aI
∂bJ
∂xk

dxk

)
∧ dxI ∧ dxJ .

But by the properties of wedge products, dxk ∧ dxI ∧ dxJ = (−1)rdxI ∧ dxk ∧ dxJ
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(see Proposition 4.6.21). Thus,

d(ω ∧ η) =
∑
I

n∑
k=1

∑
J

∂aI
∂xk

bJ dx
k ∧ dxI ∧ dxJ

+ (−1)r
∑
I

∑
J

n∑
k=1

aI
∂bJ
∂xk

dxI ∧ dxk ∧ dxJ

=

(∑
I

n∑
k=1

∂aI
∂xk

dxk ∧ dxI
)
∧ η

+ (−1)rω ∧

(∑
J

n∑
k=1

∂bJ
∂xk

dxk ∧ dxJ
)

= dω ∧ η + (−1)rω ∧ dη.

To prove Part 3, we first show that d(df) = 0 for a smooth function f on M .
We have

d(df) = d

(
n∑
i=1

∂f

∂xi
dxi

)
=

n∑
i=1

n∑
j=1

∂2f

∂xj∂xi
dxj ∧ dxi

=
∑

I∈I(2,n)

( ∂2f

∂xi1∂xi2
− ∂2f

∂xi2∂xi1

)
dxI ,

where we assume I = (i1, i2). However, since the function f is smooth, by Clairaut’s
Theorem on mixed partials each component function is 0. Thus d(df) = 0.

Now for any r-form ω =
∑
I aI dx

I we have

d(dω) = d

(∑
I

d(aI) ∧ dxI
)

=
∑
I

d(d(aI) ∧ dxI)(by linearity)

=
∑
I

(
d(daI) ∧ dxI − daI ∧ d(dxI)

)
(by part 2)

= 0,

where the last line follows because d(daI) = 0 and d(dxI) = 0 for all I.

It is illuminating to compare the exterior differential to differential operators on
vector fields in Rn. We emphasize three particular cases.

First, let f be a smooth real-valued function on Rn. Then

df =
n∑
i=1

∂f

∂xi
dxi.
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Thus, df has exactly the same components as the gradient, defined in multivariable
calculus as

grad f = ~∇f =
(
∂1f, ∂2f, . . . , ∂nf

)
.

Therefore, in our presentation, the gradient of a function f is in fact a covector
field, i.e., a vector field in TM∗ = (Rn)∗.

In calculus courses, we do not distinguish between vectors and covectors, i.e.,
vectors in Rn or in (Rn)∗, since these are isomorphic as vector spaces. However, as
we saw in (4.2) and Proposition 4.1.6, vector fields and covector fields have different
transformational properties under changes of coordinates. Example 4.5.8 showed
that the gradient of a function transforms covariantly, but it is also instructive to
see how this plays out in common formulas. For example, the chain rule for paths
states that if ~c(t) is a differentiable curve in Rn and f : Rn → R is differentiable,
then

d

dt
f(~c(t)) = ~∇f~c(t) · ~c ′(t).

However, from the perspective of multilinear algebra, we should understand the dot
product in this context as the contraction map V ∗⊗V → R defined by λ⊗~v 7→ λ(~v).
Since by definition ~c ′(t) is a tangent vector to Rn at ~c(t), then we should view the

gradient ~∇f as a covector in (Rn)∗.

As a second illustration, consider (n − 1)-forms over Rn. For each 1 ≤ j ≤ n,
define the (n− 1)-forms ηj as

ηj = (−1)j−1dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn. (5.24)

For each p ∈M , the set {ηjp}nj=1 is a basis for
∧n−1

(TpRn)∗. So any (n− 1)-form ω

can be written as ω =
∑n
j=1 ajη

j for functions aj : M → R. Note that having the

(−1)j−1 factor in the definition of ηj leads to the identity

dxi ∧ ηj =

{
0, if i 6= j,

dx1 ∧ dx2 ∧ · · · ∧ dxn, if i = j.
(5.25)

Thus, for the differential of ω, we have

dω =
n∑
i=1

n∑
j=1

∂aj
∂xi

dxi ∧ ηj =

(
n∑
i=1

∂ai
∂xi

)
dx1 ∧ dx2 ∧ · · · ∧ dxn.

Hence, for the case of (n − 1)-forms, the exterior differential d operates like the

divergence operator div = ~∇· on a vector field (a1, . . . , an) in Rn.

In the case of R3, the exterior differential carries another point of significance.
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Let ω ∈ Ω1(R3), and write ω =
∑n
i=1 ai dx

i. Then

dω =
n∑
i=1

n∑
j=1

∂ai
∂xj

dxj ∧ dxi

=

(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2 +

(
∂a3

∂x1
− ∂a1

∂x3

)
dx1 ∧ dx3

+

(
∂a3

∂x2
− ∂a2

∂x3

)
dx2 ∧ dx3

=

(
∂a3

∂x2
− ∂a2

∂x3

)
η1 +

(
∂a1

∂x3
− ∂a3

∂x1

)
η2 +

(
∂a2

∂x1
− ∂a1

∂x2

)
η3,

which is precisely the curl of the vector field (a1, a2, a3).
It is particularly interesting to note that the property d(dω) in Proposition 5.4.6

summarizes simultaneously the following two standard theorems in multivariable
calculus:

curl grad f = ~0 ([55, Theorem 17.3]),

div curl ~F = 0 ([55, Theorem 17.11]),

where f : Rn → R is a function of class C2 and ~F : R3 → R3 is a vector field of
class C2.

We point out that the forms ηj defined in (5.24) are instances of the Hodge star
operator ? which we discuss in Appendix C.3. The Hodge star operator exists in the
general context of a vector space equipped with an inner product (a bilinear form
that is symmetric and nondegenerate). In the above situation, we have V = Rn
and the inner product 〈 , 〉 is the standard Euclidean dot product. Then according
to Proposition C.3.3, we have

ηj = ?dxj .

5.4.3 Closed and Exact Forms

Definition 5.4.7. Let M be a smooth manifold. A differential form ω ∈ Ωr(M)
is called closed if dω = 0 and is called exact if there exist η ∈ Ωr−1(M) such that
ω = dη.

Example 5.4.8. As an example, consider the explicit covector fields ω and η on
S2 described in Examples 5.4.3 and 5.4.5. In Example 5.4.5 we showed that dη = 0,
meaning that η is closed. If

η = cosu sin v du+ (sinu cos v − sin v) dv

is exact, then there exists a 0-form, i.e., differentiable function, f : S2 → R such
that η = df . Thus

∂f

∂u
= cosu sin v and

∂f

∂v
= sinu cos v − sin v.
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By integrating with respect to u, we must have f(u, v) = sinu sin v + g(v). Then
differentiating with respect to v, gives ∂f/∂v = sinu cos v+g′(v) = sinu cos v−sinv.
Thus, g(v) = cos v +C for some constant C. Thus f(u, v) = sinu sin v + cos v +C.
A priori, this is only defined for (u, v) ∈ (0, 2π)× (0, π). However, f(u, 0) = 1 and
f(u, π) = −1, regardless of u ∈ R and for v ∈ (0, π), we also have f(u + 2π, v) =
f(u, v). Hence, f extends continuously to a well-defined function on all of S2. (We
also note that with respect to the typical embedding of S2 in R3, the function f is
equal to y + z + C restricted to S2.

Our calculations show that η = df , so η is an exact.

This shows that not just any pair of smooth functions a1(u, v) and a2(u, v) allow
the 1-form

ω = a1(u, v) du+ a2(u, v) dv

to extend over S2 to create a smooth 1-form on S2. For example, not even u dv,
defined on the same coordinate chart described in the above example, extends con-
tinuously to a 1-form on all of S2. This restriction shows that Ω1(S2) is affected by
the global geometry of S2. The principle behind this example is true in general: the
vector spaces Ωr(M), though infinite-dimensional, depend on the global structure
of M .

The identity d(dω) = 0 for any differential form means that every exact form is
closed. The converse is not true in general, and it is precisely this fact that leads to
profound results in topology. In the language of homology, the sequence of vector
spaces and linear maps

Ω0(M)
d−−−−→ Ω1(M)

d−−−−→ Ω2(M)
d−−−−→ · · · d−−−−→ Ωn(M)

satisfying the identity d ◦ d = 0 is called a complex . To distinguish between types,
we often write dr for the differential d : Ωr(M) → Ωr+1(M). The fact that every
exact form is closed can be restated once more by saying that Im dr−1 is a vector
subspace of ker dr. The quotient vector space

ker dr/ Im dr−1 = ker(d : Ωr(M)→ Ωr+1(M))/ Im(d : Ωr−1(M)→ Ωr(M))

is called the rth de Rham cohomology group of M , denoted Hr
dR(M). The de Rham

cohomology groups are in fact global properties of the manifold M and are related
to profound topological invariants of M . This topic exceeds the scope of this book,
but we wish to point out two ways in which one can glimpse why the groups Hr

dR(M)
are global properties of M .

In Example 5.4.8 we observed that defining a form on all of S2 carries some
restrictions. Hence, the space of functions carries information about the global
structure of M . Similarly, Problem 5.4.13 gives an example of a 1-form on R2 −
{(0, 0)} that is closed but not exact.

As a second example, we determine H0
dR(M) for any manifold. Of course, d−1

does not exist explicitly so we set, by convention, Ω−1(M) = 0, i.e., the zero-
dimensional vector space. Then Im d−1 = {0} is the trivial subspace in Ω0(M).
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Furthermore, since Ω0(M) is the space of all smooth real-valued functions on M ,
the 0th cohomology group is

H0
dR(M) = ker(d : C∞(M)→ Ω1(M))/{0} = ker(d : C∞(M)→ Ω1(M)),

namely, the subspace of all smooth functions on M whose differentials are 0. In
other words, H0

dR(M) is the space of all functions that are constant on each con-
nected component of M . Thus, H0

dR(M) = R`, where ` is the number of connected
components of M , a global property.

5.4.4 Algebra of Differential Forms

We conclude this section with a brief comment about the algebra of differential
forms. Not unlike the tensor algebra or the alternating algebra over a vector space
V defined in Section 4.7, we define the algebra of smooth differential forms over a
smooth m-dimensional manifold M as

Ω•(M) =
m⊕
k=0

Ωk(M) = C∞(M,R)⊕ Ω1(M)⊕ · · · ⊕ Ωn(M),

equipped with the exterior product ∧ as the bilinear product.

Problems

5.4.1. Let M be a smooth manifold. Let ω ∈ Ωr(M) be a nonzero r-form. Characterize
the forms η ∈ Ωs(M) such that ω ∧ η = 0.

5.4.2. Let M = R3. Find the exterior differential of the following:

(a) x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy.

(b) xy2z3 dx+ y sin(xz) dz.

(c)
dx ∧ dy + x dy ∧ dz
x2 + y2 + z2 + 1

.

5.4.3. LetM = Rn. Let ω = x1 dx1+· · ·+xn dxn and η = x2 dx1+· · ·+xn dxn−1+x1 dxn.

(a) Calculate dω and dη.

(b) Calculate ω ∧ η and d(ω ∧ η).

(c) Calculate the exterior differential of x1η1 + x2η2 + · · · + xnηn, where the
forms ηi are defined as in Equation (5.24).

5.4.4. Let M = S1 × S1 be the torus in R3 that has a coordinate neighborhood (U, x)
that can be parametrized by

x−1(u, v) 7→
(

(3 + cosu) cos v, (3 + cosu) sin v, sinu
)

for (u, v) ∈ (0, 2π)2.

Consider the two differential forms ω and η, given over U by ω = cos(u+ v) du+
2 sin2 u dv and η = 3 sin2 v du− 4 dv.
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(a) Show why ω and η extend to differential forms over the whole torus.

(b) Calculate ω ∧ ω and ω ∧ η.

(c) Calculate dω and dη.

5.4.5. Consider the manifold RP3 with the standard atlas described in Example 3.1.6.
Consider also the 1-form that is described in coordinates over U0 as ω = x1 dx1 +
x2(x3)3 dx2 + x1x2 dx3.

(a) Write down a coordinate expression for ω in U1, U2, and U3.

(b) Calculate dω and ω ∧ ω in coordinates over U0.

(c) Calculate dω in coordinates over U1 and show explicitly that the coordinates
change as expected over U0 ∩ U1.

5.4.6. Set ω = x1x2 dx2 + (x2 + 3x4x5) dx3 + ((x2)2 + (x3)2) dx5 as a 1-form over R5.
Calculate dω, ω ∧ dω, ω ∧ ω, and dω ∧ dω ∧ ω.

5.4.7. Consider the spacetime variables (x0, x1, x2, x3) = (ct, x, y, z) in R1+3 and consider
the two 2-forms α and β defined by

α = −
3∑
i=1

Ei dx
0 ∧ dxi +

3∑
j=1

Bjη
j and β =

3∑
i=1

Bi dx
0 ∧ dxi +

3∑
j=1

Ejη
j ,

where the forms ηj are the 2-forms defined in Equation (5.24) over the space
variables, i.e., η1 = dx2 ∧ dx3, η2 = −dx1 ∧ dx3, and η3 = dx1 ∧ dx2.

(a) Writing ~E = (E1, E2, E3) and ~B = (B1, B2, B3) as time-dependent vector
fields in R3, show that the source-free Maxwell’s equations

∇× ~E = −1

c

∂ ~B

∂t
, ∇ · ~E = 0,

∇× ~B =
1

c

∂ ~E

∂t
, ∇ · ~B = 0,

can be expressed in the form

dα = 0 and dβ = 0.

(b) If we write the 1-form λ = −φdx0 + A1 dx
1 + A2 dx

2 + A3 dx
3, show that

dλ = α if and only if

~E = −∇φ− 1

c

∂ ~A

∂t
and ~B = ∇× ~A.

5.4.8. In the theory of differential equations, if A(x, y) and B(x, y) are functions of x
and y, an integrating factor for an expression of the form M dy

dx
+N is a function

I(x, y) such that

I(x, y)

(
A(x, y)

dy

dx
+B(x, y)

)
=

d

dx
F (x, y)

for some function F (x, y). If M is a smooth manifold and ω ∈ Ω1(M), we call an
integrating factor of ω a smooth function f that is nowhere 0 on M and such that
fω is exact. Prove that if such a function f exists, then ω ∧ dω = 0.
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5.4.9. Let ω = (1 + xy2)exy
2

dx + 2x2yexy
2

dy be a 1-form on R2. Show that dω = 0.
Then find a function f : R2 → R such that ω = df .

5.4.10. Let ω = yz dx ∧ dz + (−y + xz) dy ∧ dz be a 2-form on R3. Show that dω = 0.
Then find a 1-form λ such that ω = dλ.

5.4.11. Suppose that ω ∈ Ω1(M) for some smooth manifold M . Suppose that over each
coordinate chart of M , if we write ω in components as ω = ωi dx

i and if the
component functions have the property that ∂jωi = ∂iωj , then ω is a closed form.

5.4.12. Let ω and η be forms on a smooth manifold M .

(a) Show that if ω and η are closed, then so is ω ∧ η.

(b) Show that if ω and η are exact, then so is ω ∧ η.

5.4.13. Consider the manifold M = R2 − {(0, 0)} with the structure inherited from R2

and let
ω =

y

x2 + y2
dx− x

x2 + y2
dy.

Prove that ω is closed but not exact. [Note: In this case, there does exist a
differentiable function ψ such that dψ = ω on {(x, y) ∈ R2 |x > 0} but not on all
of M . This particular form ω shows that dimH1

dR(M) ≥ 1.]

5.4.14. Let M be a manifold of dimension m ≥ 4. Let ω be a 2-form on M , and let {α, β}
be a set of linearly independent 1-forms. Show that

ω ∧ α ∧ β = 0

if and only if there exist 1-forms λ and η such that

ω = λ ∧ α+ η ∧ β.

5.4.15. Consider the manifold GLn(R) of invertible matrices, and consider the function
det : GLn(R)→ R as a function between manifolds.

(a) Prove that for all X ∈ GLn(R), the tangent space is TXGLn(R) ∼= Rn×n,
the space of n× n matrices.

(b) Writing the entries of a matrix X ∈ GLn(R) as X = (xij), prove that

∂ det

∂xij
(X) = (detX)(X−1)ij .

(c) Prove that the differential of the determinant map can be written as

d(det)X(A) = (detX) Tr(X−1A),

where TrM =
∑
im

i
i is the trace of the matrix.

5.4.16. This exercise presents the interior product of k-forms on a smooth manifold M .
The interior product of a k-form with k ≥ 1 is defined as the contraction of
the form with a vector field. More precisely, if X is vector field of M we define
iX : Ωk(M)→ Ωk−1(M) such that for all p ∈M

(iXω)p(v1, v2, . . . , vk−1) = ωp(Xp, v1, . . . , vk−1),

for all v1, . . . , vk−1 ∈ TpM . Prove the following properties of the interior product.
Let X be a smooth vector field over M . Suppose that over a coordinate patch
(U, x), the vector field is written in components as Xi∂i.
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(a) Prove that iX(dx1∧dx2∧dx3) = X3dx2∧dx3−X2dx1∧dx3 +X1dx2∧dx3.
[Hint: Refer to (5.21).]

(b) Suppose I = (i1, i2, . . . , ir) with i1 < i2 < · · · < ir. Prove that

iX(dxI) =

r∑
j=1

(−1)j−1Xijdxi1 ∧ · · · ∧ d̂xij ∧ · · · ∧ dxir ,

where the d̂xi means to remove that term.

(c) If α is an r-form and β an s-form, then iX(α∧β) = (iXα)∧β+(−1)rα∧(iXβ).
[Hint: Using coordinates, first prove this result on α = dxI and β = dxJ

with I ∈ I(r, n) and J ∈ I(s, n).]

(d) If Y is another vector field, then iX iY ω = −iY iXω.

5.5 Pull-Backs of Covariant Tensor Fields
In this section we define the notion of a pull-back of a covariant tensor fields by
a smooth function between manifolds. Though the construction of pull-backs is
interesting in its own right, in subsequent sections we will see a few applications of
the pull-back, including how to integrate differential forms over a manifold.

Definition 5.5.1. Let f : Mm → Nn be a smooth map between two smooth
manifolds, and let α ∈ Γ(TN∗⊗s) be a covariant tensor field on N . Define the pull-
back of α by f , written f∗α, by the multilinear function on TpM that is defined
by

(f∗α)p(v1, v2, . . . , vr) = αf(p)(dfp(v1), dfp(v2), . . . , dfp(vr)), (5.26)

where vi are tangent vectors in TpM .

According to this definition, (f∗α)p ∈ TpM∗⊗s, so f∗α is a global section from
M into the vector bundle TM∗⊗s. Furthermore, it is not hard to see that if ω is a
differential form in Ωs(N), then (f∗ω)p is also an alternating multilinear function
on TpM , so f∗ω is a differential form in Ωs(M).

The above definition is coordinate-free. We now work to express the pull-back
of a covariant tensor field in terms of coordinates. Let x be a local coordinate
system on M and y is a coordinate system on N . Suppose that over a coordinate
neighborhood (V, y) of N , the covariant tensor field α is written as

α = αi1i2···isdy
i1 ⊗ dyi2 ⊗ · · · ⊗ dyis ,

where αi1i2···is is a smooth function of V for each s-tuple (i1, i2, . . . , is). Then
locally, for every v ∈ TpM , expressed in terms of coordinates we have dfp(v) =
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∑m
i=1 ∂if

jvi for j = 1, . . . , n, where the functions f j are the components f j =
yj ◦ f : M → R. Then

(f∗(dyi1 ⊗ dyi2 ⊗ · · · ⊗ dyis))p(v1, . . . , vs)

= (dyi1 ⊗ dyi2 ⊗ · · · ⊗ dyis)(dfp(v1), . . . , dfp(vs))

= dyi1(dfp(v1))⊗ dyi2(dfp(v2))⊗ · · · ⊗ dyis(dfp(vs))
= df i1(v1)⊗ df i2(v2)⊗ · · · ⊗ df is(vs)
= (df i1 ⊗ df i2 ⊗ · · · ⊗ df is)p(v1, v2, . . . , vs).

We conclude that in coordinates, as a covariant tensor field over M ,

f∗α = (αi1i2···is ◦ f) df i1 ⊗ df i2 ⊗ · · · df is (5.27)

= (αi1i2···is ◦ f)
∂f i1

∂xj1
∂f i2

∂xj2
· · · ∂f

ir

∂xjr
dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxir . (5.28)

If ω happens to be a differential form of type s, then in coordinates

f∗ω = f∗

 ∑
I∈I(r,m)

aI dy
I

 =
∑

I∈I(r,m)

(aI ◦ f) df i1 ∧ · · · ∧ df ir , (5.29)

where we are writing I = (i1, i2, . . . , ir).

Example 5.5.2. Let M = R and let Nn be a differentiable manifold. Consider an
immersion γ : R → N , which we can understand as a regular curve on N . Let ω
be a 1-form on N such that over a coordinate neighborhood of N with coordinate
y = (y1, y2, . . . , yn), we write

ω = ω1dy
1 + ω2dy

2 + · · ·+ ωndy
n.

Using t as the coordinate of R, we write in coordinates

(γ∗ω)t = ω1(γ(t))
dγ1

dt
dt+ ω2(γ(t))

dγ2

dt
dt+ · · ·+ ωn(γ(t))

dγn

dt
dt.

As we will see in the section, this pull back is related to calculating line integrals.

Example 5.5.3. Consider the unit sphere S2 and let (θ, ϕ) be the usual longitude-
latitude coordinate patch. The typical embedding of f : S2 → R3 corresponds to
the functions

f(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ).

The dot product on R3 corresponds to a covariant tensor field of type 2, expressed
in usual coordinates (x, y, z) by

ω = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz.
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With respect to the given coordinate systems, the pull-back of ω is

f∗ω = (− sin θ sinϕdθ + cos θ cosϕdϕ)⊗ (− sin θ sinϕdθ + cos θ cosϕdϕ)

+ (cos θ sinϕdθ + sin θ cosϕdϕ)⊗ (cos θ sinϕdθ + sin θ cosϕdϕ)

+ (− sinϕdϕ)⊗ (− sinϕdϕ)

= (sin2 θ sin2 ϕ+ cos2 θ sin2 ϕ)dθ ⊗ dθ
+ (− sin θ cos θ sinϕ cosϕ+ sin θ cos θ sinϕ cosϕ)dθ ⊗ dϕ
+ (− sin θ cos θ sinϕ cosϕ+ sin θ cos θ sinϕ cosϕ)dϕ⊗ dθ
+ (cos2 θ cos2 ϕ+ sin2 θ cos2 ϕ+ sin2 ϕ)dϕ⊗ dϕ

= sin2 ϕdθ ⊗ dθ + dϕ⊗ dϕ.

As we will see, this is the standard metric tensor on the sphere with longitude-
latitude coordinate system.

Example 5.5.4. As an another example, whose details we leave as an exercise
(Problem 5.5.5), we deduce the following fundamental formula. Let M and N be
smooth manifolds of the same dimension n, and f a smooth map between them. In
reference to a coordinate chart (U, x) on M and a chart (V, y) on N , for all p ∈ U ,

f∗(dy1 ∧ dy2 ∧ · · · ∧ dyn)p = (det dfp)dx
1 ∧ dx2 ∧ · · · ∧ dxn. (5.30)

We notice that if M = N = Rn, then det dfp is the Jacobian of the function f at
the point p.

The pull-back of covariant tensor fields satisfies a few properties. The proofs are
straightforward so we leave them as exercises.

Proposition 5.5.5. Let f : Mm → Nn be a smooth map between smooth manifolds.
Let α and β be covariant tensor fields on N .

1. The pull-back f∗ : Γ(TN∗⊗s)→ Γ(TM∗⊗s) is a linear function.

2. If a : N → R is a smooth function, then f∗(aα) = (a ◦ f)f∗α.

3. f∗(α⊗ β) = f∗(α)⊗ f∗(β).

4. id∗N (α) = α.

Proof. (Left as an exercise for the reader. See Exercise 5.5.2.)

The pull-back of r-forms satisfies a few more properties.

Proposition 5.5.6. Let f : Mm → Nn be a smooth map between smooth manifolds.
The following hold for all r ≤ min(m,n):

1. Considering Ωs(N) as a subspace of Γ(TN∗⊗s), then f∗(Ωs(N)) ⊆ Ωs(M).

2. For all ω ∈ Ωr(N) and η ∈ Ωs(N), f∗(ω ∧ η) = (f∗ω) ∧ (f∗η).

3. For all ω ∈ Ωr(N) with r < min(m,n), f∗(dω) = d(f∗ω).



5.5. Pull-Backs of Covariant Tensor Fields 219

Figure 5.5: The curve on S2 in Example 5.5.8.

Proof. Part 1 follows immediately from the functional definition in Equation (5.26).
Part 2 is an easy application of Equation (5.29). Finally, for part 3, note that
d(df i1 ∧ · · · ∧ df ir ) = 0 by a repeated use of Proposition 5.4.6(2) and the fact that
d(df i) = 0. Then if ω =

∑
I aIdx

I , Equation (5.29) gives

d(f∗ω) =
∑

I∈I(r,m)

d
(
(aI ◦ f) df i1 ∧ · · · ∧ df ir

)
=

∑
I∈I(r,m)

d(aI ◦ f) ∧ df i1 ∧ · · · ∧ df ir + (aI ◦ f)d(df i1 ∧ · · · ∧ df ir )

=
∑

I∈I(r,m)

d(aI ◦ f) ∧ df i1 ∧ · · · ∧ df ir =
∑

I∈I(r,m)

d(aI ◦ f) ∧ f∗(dxI)

= f∗(dω).

Proposition 5.5.7. Let f : M → N and g : U → M be smooth functions between
smooth manifolds. Then (f ◦ g)∗ = g∗ ◦ f∗.

Proof. (Left as an exercise for the reader.)

Example 5.5.8. As a slightly more involved example, we revisit Example 5.4.3,
where M = R and N = S2. Let V be the coordinate neighborhood on S2 with a sys-
tem of coordinates y defined by the parametrization x−1(u, v) = (cosu sin v, sinu sin v, cos v)
defined on (0, 2π)× (0, π). We consider the 1-form

ω = (sin2 v) du+ (sin v cos v) dv.
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Consider the function f : R→ S2 defined in coordinates by (u, v) = f(t) = (3t, 1 +
1
2 sin t). The image of this immersion is depicted in Figure 5.5. Defined in this way,
we see that f1(t) = 3t and f2(t) = 1 + 1

2 sin(t). Then

(f∗ω)t = sin2

(
1 +

1

2
sin(t)

)
3 dt

+ sin

(
1 +

1

2
sin(t)

)
cos

(
1 +

1

2
sin(t)

)(
1

2
cos t

)
dt.

Problems

5.5.1. Prove that (5.29) follows from (5.27).

5.5.2. Prove Proposition 5.5.5.

5.5.3. let f : M → N be a differentiable map of manifolds. Prove that if α is a global
section Symk(TN∗), then f∗α is a global section of Symk(TM∗).

5.5.4. Prove Proposition 5.5.7.

5.5.5. Prove the formula mentioned in Example 5.5.4.

5.5.6. Prove the product rule for the Lie derivative of the product between a function
and a covariant tensor field: Let M be a smooth manifold, let f ∈ C1(M,R), let X
be a differentiable vector field on M , and let α be a differentiable covariant tensor
field on M . Prove that LX(fα) = (LXf)α + f(LXα). [Hint: Use a coordinate-
dependent approach.]

5.5.7. This exercises generalizes Example 5.5.3. Let S be a parametrized surface in R3,
which we can think of as an immersion of 2-manifold in R3. Let (u, v) be a coordi-
nate patch of S and suppose that the immersion of S in R3 is given by a function
F (u, v). Let

ω = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz
be the usual dot product on (the tangent spaces of) R3. Prove that

F ∗ω = (Fu · Fu)du⊗ du+ (Fu · Fv)du⊗ dv + (Fv · Fu)dv ⊗ du+ (Fv · Fv)dv ⊗ dv,

where by Fu ·Fu, we mean the dot product of the vector Fu with itself, and so on.

5.5.8. Let M = RP2 be the manifold of the real projective plane. (Recall Example 3.1.6.)
We use the homogeneous coordinates (x : y : z) with (x, y, z) 6= 0 to locate points
in RP2. Define the three open sets U1 = {(x : y : z) ∈ RP2 |x 6= 0} and similarly
U2 and U3 where y 6= 0 and z 6= 0 respectively. We define the coordinate maps
φ1 : U1 → R2 as φ1(x : y : z) = (y/x, z/x), and similarly for φ2 and φ3. Use
coordinates (u, v) for the (U3, φ3) chart and (r, s) for the (U2, φ2) chart.

(a) Setting (u, v) = φ32(r, s), show that φ32(r, s) = (r/s, 1/s) and determine
dφ32.

(b) Consider the function f : RP2 → R defined by f(x : y : z) = 3yz/(x2 +2y2 +
z2). Show that this function is well-defined on all of RP2.

(c) Show that over U3 we have

(φ−1
3 )∗(df) =

6uv

(u2 + 2v2 + 1)2
du+

3(u2 − 2v2 + 1)

(u2 + 2v2 + 1)2
dv.



5.6. Lie Derivative of Tensor Fields 221

(d) Determine the expression of df in the U2 coordinate chart, namely determine
(φ−1

2 )∗(df), and then show directly that

(φ−1
3 )∗(df) = φ∗32((φ−1

2 )∗(df)).

5.6 Lie Derivative of Tensor Fields
As promised in earlier sections, we want to develop the notion of a type of derivative
on tensor fields. Now that we have the notion of a pull-back of a covariant tensor
field at our disposal, we can extend Definition 5.3.5 of the Lie derivative to tensors
of any type. We start with Lie derivatives of covariant tensor fields.

Definition 5.6.1. Let M be a C2-manifold and let X ∈ X(M) be a differentiable
vector field on M and let ϕt be the flow of X on M . If α ∈ Γ(TM∗⊗s) is a smooth
covariant tensor field on M , we define the Lie derivative of α by X as the covector
field given by

(LXα)p
def
=

d

dt
(ϕt)

∗(α)p
∣∣
t=0

= lim
h→0

1

h
((ϕ∗h)p(αϕh(p))− αp). (5.31)

We emphasize that for all h near 0, the difference (ϕ∗h)p(αϕh(p))−αp is a differ-
ence of elements in TpM

∗⊗s so it makes sense. This is a coordinate-free description
of the Lie derivative.

Proposition 5.6.2. Let (U, x) be a coordinate chart on a manifold M , let X be a
differentiable vector field on M and let α be a covariant tensor field of type (0, s).
Suppose that with respect to the coordinate chart (U, x), the components of X are Xi

and the components of α are αj1j2···js . Then the components of the Lie derivative
of α are given by

(LXα)j1j2···js = Xk ∂αj1j2···js
∂xk

+
∂Xk

∂xj1
αkj2···js

+
∂Xk

∂xj2
αj1k···js + · · ·+ ∂Xk

∂xjs
αj1j2···js−1k.

Proof. Let p ∈ U and let v1, v2, . . . , vs be s arbitrary vectors in TpM . Then

(LXα)p(v1, v2, . . . , vs) =
d

dt
(ϕ∗tα)p(v1, v2, . . . , vs)

∣∣
t=0

=
d

dt
αϕt(p)((dϕt)p(v1), (dϕt)p(v2), . . . , (dϕt)p(vs))

∣∣
t=0

=
d

dt

(
αj1j2···js(ϕt(p))

∂ϕj1t
∂x`1

v`11

∂ϕj2t
∂x`2

v`21 · · ·
∂ϕjst
∂x`s

v`s1

)∣∣∣
t=0

.
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This expression corresponds to s summations and on each term we involve a product
rule with s + 1 functions in the parameter t. Using (5.19) and (5.20), the product
rule gives

(LXα)p(v1, v2, . . . , vs)

=

(
∂αj1j2···js
∂xk

dϕkt
dt

∣∣∣
t=0

δj1`1 · · · δ
js
`s

+ αj1j2···js(ϕ0(p))
∂Xj1

∂x`1
δj2`2 · · · δ

js
`s

+ · · ·

+ αj1j2···js(ϕ0(p))δj1`1 · · · δ
js−1

`s−1

∂Xjs

∂x`s

)
v`11 v

`2
2 · · · v`ss .

After relabeling the indices of summation as necessary, we find that

(LXα)p(v1, v2, . . . , vs) =

(
∂αj1j2···js
∂xk

Xk +
∂Xk

∂xj1
αkj2···js + · · ·+ ∂Xk

∂xjs
αj1j2···js−1k

)
vj11 v

j2
2 · · · vjss ,

with all component functions evaluated at p. The proposition follows.

So far we have defined the Lie derivative on (a) functions on M , (b) vector fields
on M , and (c) covariant tensor fields on M . The latter case includes covector fields
and k-forms. Before we give a complete definition for the Lie derivative, we consider
how the Lie derivative interacts with various operations on tensors or forms that
we have introduced so far.

Problem 5.5.6 generalizes to contraction of a vector field with any covariant
tensor field. This establishes the following proposition.

Proposition 5.6.3. Let X be a vector field on M and let α be any covariant
tensor field of rank (0, s). Then if Y1, Y2, . . . , Ys are s vector fields on M , then the
Lie derivative of the contraction is

LX(α(Y1, . . . , Ys)) = (LXα)(Y1, . . . , Ys) + α(LXY1, Y2, . . . , Ys)+

· · ·+ α(Y1, Y2, . . . ,LXYs).

Finally, let f ∈ C2(M,R) be a differentiable function onM . Then the differential
df is a 1-form, i.e., a smooth covariant vector field.

Proposition 5.6.4. For any differentiable vector field X on M , the operators LX
and d commute on C2(M,R). In other words

LX(df) = d(LXf).

Proof. (Left as an exercise for the reader. See Problem 5.6.1.)

Before defining the Lie derivative for a general tensor field, we list a few results we
have established so far. Let M be a differentiable manifold, let f be a differentiable
function on M , let X,Y, Z, Y1, . . . , Ys be vector fields on M , and let α be a covariant
tensor field of type (0, s) on M .
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1. Definition 5.3.5: LXf = X(f).

2. Theorem 5.3.10: LXY = [X,Y ].

3. Linearity. Proposition 5.3.9: LX(Y + Z) = LXY + LXZ.

4. Product rule. Proposition 5.3.9: LX(fY ) = (LXf)Y + f(LXY ).

5. Contraction. Proposition 5.6.3:

LX(α(Y1, . . . , Ys)) = (LXα)(Y1, . . . , Ys)

+ α(LXY1, . . . , Ys) + · · ·+ α(Y1, . . . ,LXYs).

6. Proposition 5.6.4: LX ◦ d = d ◦ LX on functions.

We can now present a definition of the Lie derivative on tensors of type (r, s)
with r ≥ 2 or with r = 1 and s > 0.

Definition 5.6.5. Let X be a differentiable vector field on a manifold M . For all
pairs (r, s) of nonnegative integers, we define the Lie derivative LX as the linear
transformation on the vector space Γ(TM⊗r ⊗ TM∗⊗s) of tensor fields satisfying
Definition 5.3.5 for vector fields, Defintion 5.31 for covector fields, as well as the
product rule

LX(S ⊗ T ) = (LXS)⊗ T + S ⊗ (LXT ) (5.32)

for any tensor fields S and T .

It is not hard to show that the full Definition 5.31 for any covariant tensor field
satisfies the product rule (5.32) applied to tensor products of covariant tensor fields.
By virtue of the properties already established, imposing this additional product
rule allows us to define the Lie derivative on any tensor field.

We took a coordinate-free approach to defining the Lie derivative. This is es-
sential to know that this construction has mathematical meaning. The following
proposition gives the coordinate dependent description of the the Lie derivative.
The proof of this proposition is left as an exercise. Furthermore, this proposition
gives a coordinate dependent way to show that the Lie derivative of a tensor field
of type (r, s) is again a tensor field of type (r, s). (See Problem 5.6.3.)

Proposition 5.6.6. Let M be a smooth manifold and let X ∈ X(M). Let A ∈
Γ(TM⊗r ⊗ TM∗⊗s) be a smooth tensor field of type (r, s). Suppose that over some
coordinate chart (U, x) of M , the components of X are Xk and that the components
of A are Ai1,i2,...,irj1,j2,...,js

. Then the components of LXA are

(LXA)i1i2···irj1j2···js = Xk
∂Ai1i2···irj1j2···js

∂xk
− ∂Xi1

∂xk
Aki2···irj1j2···js · · · −

∂Xir

∂xk
A
i1i2···ir−1k
j1j2···js

+
∂Xk

∂xj1
Ai1i2···irkj2···js + · · ·+ ∂Xk

∂xjs
Ai1i2···irj1j2···js−1k

. (5.33)
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Intuitively speaking, the Lie derivative of a tensor field generalizes the concept
of a directional derivative in Rn to any manifold and applied to any tensor field.

We finish this section with the Cartan formula, also called the Cartan magic
formula. The result is interesting in itself but the proof is interesting as well since it
affords us the opportunity to use some of the more algebraic techniques presented
in Section 4.7.

In Problem 5.4.16 we discussed the interior product of a vector field X with an
r-form ω, written iXω. This interior product is essentially the contraction of X
with the first component of the r-form but we must remember that for an r-tuples
of indices, i1 < i2 < · · · < ir,

dxi1 ∧ · · · ∧ dxir = A(dxi1 ⊗ · · · ⊗ dxir ).

Proposition 5.6.7 (Cartan Formula). Let X be a differentiable vector field on a
smooth manifold M . Then as operators Ω•(M)→ Ω•(M),

LX = d ◦ iX + iX ◦ d.

Before proving the Cartan formula, we point out one of the reasons this result
might be surprising. The operators involved are shown in the following diagram.

Ωs(M) Ωs+1(M)

Ωs−1(M) Ωs(M)

iX

d

d

iX

This diagram is not commutative, i.e., that generally iX ◦d is not equal to d◦iX .
However, it is interesting to see the Lie derivative LX , decomposes into a part that
goes through Ωs+1(M) and another part that goes through Ωs−1(M).

Proof of Cartan formula. By definition of the Lie product, since it obeys the Leibniz
rule, LX is a derivation on the algebra of differential forms Ω•(M).

Now let ω ∈ Ωr(M) and η ∈ Ωs(M). Then using the result of Problem 5.4.16,

(d ◦ iX + iX ◦ d)(ω ∧ η)

= d(iX(ω ∧ η)) + iX(d(ω ∧ η))

= d((iXω) ∧ η + (−1)rω ∧ (iXη)) + iX(dω ∧ η + (−1)rω ∧ dη)

= d(iXω) ∧ η + (−1)r−1(iXω) ∧ (dη) + (−1)r(dω) ∧ (iXη)

+ (−1)2rω ∧ (d(iXη)) + (iX(dω)) ∧ η + (−1)r+1(dω) ∧ (iXη)

+ (−1)r(iXω) ∧ (dη) + (−1)2rω ∧ (iX(dη))

= (d(iXω) + iX(dω)) ∧ η + ω ∧ (d(iXη) + iX(dη)).
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Thus, the operation d ◦ iX + iX ◦ d is a derivation on Ω•(M).
We prove the Cartan formula by using Proposition 4.7.12 and observing that

over every coordinate chart (U, x) of M , as an algebra, Ω•(U) is generated by
Ω0(U) = C∞(U,R) and the 1-forms dxi.

We first prove that LX and d◦ iX + iX ◦d are equal on C∞(U,R). By definition,
LXf = X(f) for all f ∈ C∞(M,R). With respect to a coordinate system, X(f) =
Xi∂if . On the other hand iXf = 0 by definition so in coordinates

(iX ◦ d+ d ◦ iX)(f) = iX(df) = iX
(
∂jfdx

j
)

= Xj∂jf.

This shows that LX and iX ◦ d+ d ◦ iX agree on the set of differentiable functions.
Considering the 1-forms dxi, by Proposition 5.6.6, LX(dxi) = ∂Xi/∂xjdxj and

(d ◦ iX + iX ◦ d)(dxi) = d(iX(dxi)) = d(Xi) =
∂Xi

∂xj
dxj .

Thus, LX and iX ◦ d+ d ◦ iX agree also on dxi for all i = 1, 2, . . . , n.
We have shown that for any coordinate chart U of M , the operations LX and

iX ◦d+d◦ iX are derivations on Ω•(U) that agree on a generating set of Ω•(U). By
Proposition 4.7.12, they are equal on Ω•(U) . Since this is true for any coordinate
chart, LX = (iX ◦ d+ d ◦ iX) on Ω•(M).

Problems

5.6.1. Prove Proposition 5.6.4. [Hint: Use a coordinate dependent approach.]

5.6.2. Prove Proposition 5.6.6.

5.6.3. Let Xi represent the components of a vector field on a manifold and let Ai1i2···irj1j2···js
be the components of a tensor field of type (r, s). Following a similar coordinate-
dependent approach as taken in Example 4.5.9, prove that the collection of func-
tions defined on the right hand side of (5.33) form the components of a tensor field
of type (r, s).

5.6.4. Let X and Y be vector fields and let T be any tensor field. Prove that L[X,Y ]T =
LXLY T − LY LXT . consequently, we can write as operators L[X,Y ] = LXLY −
LY LX .

5.7 Integration on Manifolds - Definition
The sections in the chapter so far discussed vector fields and tensor fields on mani-
folds, and two methods that provide a sort of derivative, namely the exterior differ-
ential on r-forms and the Lie derivative by a vector field. The remaining sections
present the theory of integration on manifolds. This section develops the definition
of integration, Section 5.8 presents calculations and applications with integration,
and finally Section 5.9 discusses Stokes’ Theorem.

The theory of integration on manifolds must generalize all types of integration
introduced in the usual calculus sequence. This includes
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• integration of a one-variable, real-valued function over an interval;

• integration of a multivariable, real-valued function over a domain in Rn;

• line integrals of functions in Rn;

• line integrals of vector fields in Rn;

• surface integrals of a real-valued function defined over a closed and bounded
region of a regular surface;

• surface integrals of vector fields in R3.

One of the beauties of differential forms is that they will allow for a single concise
description that does generalize all of these types of integrals.

Readers may be aware of the difference between Riemannian integration, the
theory introduced in the usual calculus sequence, and Lebesgue integration, which
relies on measure theory. The theory developed here does not inherently depend
on either of these theories of integration but could use either. The definitions for
integration on a manifold use the fact that a manifold is locally diffeomorphic to an
open subset in Rn and define an integral on a manifold in reference to integration
on Rn. Therefore, we can presuppose the use of either Riemannian integration,
Lebesgue integration, or any other theory of integration of functions over Rn.

5.7.1 Partitions of Unity

The basis for defining integration on a smooth manifold Mn relies on relating the
integral on M to integration in Rn. However, since a manifold is only locally
homeomorphic to an open set in Rn, one can only define directly integration on a
manifold over a coordinate patch.

We begin this section by introducing a technical construction that makes it
possible, even from just a theoretical perspective, to piece together the integrals of
a function over the different coordinate patches of the manifold’s atlas.

Definition 5.7.1. Let M be a manifold, and let V = {Vα}α∈I be a collection of
open sets that covers M . A partition of unity subordinate to V is a collection of
continuous functions {ψα : M → R}α∈I that satisfy the following properties:

1. 0 ≤ ψα(x) ≤ 1 for all α ∈ I and all x ∈M .

2. ψα(x) vanishes outside a compact subset of Vα.

3. For all x ∈M , there exists only a finite number of α ∈ I such that ψα(x) 6= 0.

4.
∑
α∈I ψα(x) = 1 for all x ∈M .

The summation in the fourth condition always exists since, for all x ∈ M , it is
only a finite sum by the third criterion. Therefore, we do not worry about issues
of convergence in this definition. The terminology “partition of unity” comes from
the fact that the collection of functions {ψα} add up to the constant function 1 on
M .
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Figure 5.6: f(x) = e−1/x if x > 0 and 0 if x ≤ 0.

Theorem 5.7.2 (Existence of Partitions of Unity). Let M be a smooth manifold
with atlas A = {(Uα, φα)}α∈I . There exists a smooth partition of unity of M
subordinate to A.

For the sake of space, we forgo a complete proof of this theorem and refer the
reader to [33, pp. 54–55], [49, Theorem 10.8], or [15, Section 14.1]. The proof relies
on the existence of smooth real-valued functions that are nonzero in an open set
U ⊂ Rn but identically 0 outside of U . Many of the common examples of partitions
of unity depend on the following lemma.

Lemma 5.7.3. The function f : R→ R defined by

f(x) =

{
0, if x ≤ 0,

e−1/x, if x > 0,

is a smooth function. (See Figure 5.6.)

The proof for this lemma is an exercise in calculating higher derivatives and
evaluating limits. Interestingly enough, this function at x = 0 is an example of a
function that is smooth, i.e., has all its higher derivatives, but is not analytic, i.e.,
equal to its Taylor series over a neighborhood of x = 0.

The function f(x) in Lemma 5.7.3 is useful because it passes smoothly from
constant behavior to nonconstant behavior. This function f(x) also leads immedi-
ately to functions with other desirable properties. For example, f(x − a) + b is a
smooth function that is constant and equal to b for x ≤ a and then nonconstant for
x > a. In contrast, f(a − x) + b is a smooth function that is constant and equal
to b for x ≥ a and then nonconstant for x < a. More useful still for our purposes,
if a < b, the function g(x) = f(x− a)f(b− x) is smooth, identically equal to 0 for
x /∈ (a, b), and is nonzero for x ∈ (a, b). We can call this a bump function over (a, b)
(see Figure 5.7). Also, the function

h(x) =
f(b− x)

f(x− a) + f(b− x)
(5.34)
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Figure 5.7: Bump function.
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Figure 5.8: Cut-off function.

is smooth, is identically equal to 1 for x ≤ a, identically equal to 0 for x ≥ b,
and strictly decreasing over (a, b). The function h(x) is sometimes called a cut-off
function (see Figure 5.8).

We will illustrate how to construct partitions of unity over a manifold with the
following two simple examples.

Example 5.7.4. Consider the real line R as a 1-manifold, and consider the open
cover U = {Ui}, where Ui = (i − 1, i + 1). In this open cover, we note that if n
is an integer, then n is only contained in one set, Un, and if t is not an integer,
then t is contained in both Ubtc and Ubtc+1. Consider first the bump functions
gi(x) = f(x− (i− 0.9))f((i+ 0.9)− x) which has

gi(x) =


0, if x ≤ i− 0.9,

e 1.8/(x−i+0.9)(x−i−0.9), if i− 0.9 < x < i+ 0.9,

0, if x ≥ i+ 0.9,

where we use the function f as defined in Lemma 5.7.3. It is not hard to show
that these functions are smooth. Furthermore, by definition, gi(x) = 0 for x /∈
[i − 0.9, i + 0.9] = Ki, which is a compact subset of Ui. For any i ∈ Z, the only
functions that are not identically 0 on Ui are gi−1, gi, and gi+1. Now define

ψi(x) =
gi(x)

gi−1(x) + gi(x) + gi+1(x)
.

We claim that the collection {ψi}i∈Z forms a smooth partition of unity subordinate
to U. Again, ψi(x) 6= 0 for x ∈ Ki and ψi(x) = 0 for x /∈ Ki. Furthermore, the only
functions ψk that are not identically 0 on Ui are ψi−1, ψi, and ψi+1. If x = n is an
integer, then

∑
i∈Z

ψi(x) = ψn(n) =
gn(n)

gn−1(n) + gn(n) + gn+1(n)
=
gn(n)

gn(n)
= 1.



5.7. Integration on Manifolds - Definition 229

Figure 5.9: Example 5.7.5.

If instead x is not an integer, then when we set n = bxc, we have∑
i∈Z

ψi(x) = ψn(x) + ψn+1(x)

=
gn(x)

gn−1(x) + gn(x) + gn+1(x)
+

gn+1(x)

gn(x) + gn+1(x) + gn+2(x)

=
gn(x)

gn(x) + gn+1(x)
+

gn+1(x)

gn(x) + gn+1(x)
= 1

since gn−1(x) = gn+2(x) = 0 for x ∈ Un ∩ Un+1.

Example 5.7.5. Consider the unit sphere S2 given as a subset of R3. Cover S2

with two coordinate patches (U1, x) and (U2, x̄), where the coordinate functions
have the following inverses:

x−1(u, v) = (cosu sin v, sinu sin v, cos v)

x̄−1(ū, v̄) = (− cos ū sin v̄,− cos v̄,− sin ū sin v̄)

for (u, v) ∈ (0, 2π)× (0, π).
Define now the bump functions

g1(u, v) = f(u− 0.1)f(6− u)f(v − 0.1)f(3− v),

g2(ū, v̄) = f(ū− 0.1)f(6− ū)f(v̄ − 0.1)f(3− v̄),

where f is the function in Lemma 5.7.3. These functions are smooth and vanish
outside [0.1, 6]× [0.1, 3] = K, which is a compact subset of (0, 2π)× (0, π). Define
also the bump functions hi : S2 → R by

h1(p) =

{
g1 ◦ x(p), if p ∈ U1,

0, if p /∈ U1,
and h2(p) =

{
g2 ◦ x̄(p), if p ∈ U2,

0, if p /∈ U2.
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By construction, these functions are smooth on S2 and vanish outside a compact
subset of U1 and U2, namely, x−1(K) and x̄−1(K) respectively. In Figure 5.9, the
half-circles depict the complements of U1 and U2 on S2, and the piecewise-smooth
curves that surround the semicircles show the boundary of x−1(K) and x̄−1(K).

Finally, define the functions ψi : S2 → R by

ψi(p) =
hi(p)

h1(p) + h2(p)
.

These functions are well defined since h1 and h2 are nonzero on the interior of
x−1(K) and x̄−1(K), respectively, and these interiors cover S2. The pair of functions
{ψ1, ψ2} is a smooth partition of unity that is subordinate to the atlas that we
defined on S2.

An object that recurs when dealing with partitions of unity is the set over which
the function is nonzero. We make the following definition.

Definition 5.7.6. Let f : M → R be a real-valued function from a manifold M .
The support of f , written Supp f , is defined as the closure of the non-zero set, i.e.

Supp f = {p ∈M | f(p) 6= 0}.

A function is said to have compact support if Supp f is a compact set.

With this terminology, the second criterion concerning functions in a partition
of unity {ψα}α∈I subordinate to a given atlas is that each function has a support
that is compact and in an open set of the atlas.

5.7.2 Integrating Differential Forms

We are now in a position to define integration of n-forms on a smooth n-dimensional
manifold. We must begin by connecting integration of forms in Rn to usual inte-
gration.

Definition 5.7.7. Let ω be a differential n-form over Rn. Let K be a compact
subset of Rn. If

ω = f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn,
then we define the integral∫

K

ω
def
=

∫
K

f(x1, . . . , xn) dx1 dx2 · · · dxn =

∫
K

f dV,

where the right-hand side represents the usual Riemann integral.

(As pointed out at the beginning of this section, we can also use the Lebesgue
integral instead of the Riemann integral.) Also, if ω is a form that vanishes outside
a compact set K, which is a subset of an open set U , then we define

∫
U
ω =

∫
K
ω.

In order to connect the integration on a manifold Mn to integration in Rn, we
must first show that this can be done independent of the coordinate system.
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Lemma 5.7.8. Let Mn be a smooth, oriented manifold with atlas A = {(Ui, φi)}i∈I .
Let K be a compact set with K ⊆ U1 ∩ U2, and let ω be an n-form that vanishes
outside of K. Setting Vi = φi(Ui) for i = 1, 2, then the following integrals are equal∫

V1

(φ−1
1 )∗(ω) =

∫
V2

(φ−1
2 )∗(ω).

Proof. Using the standard notation for transition functions, write Vαβ = φα(Uα ∩
Uβ) and φ21 = φ2 ◦ φ−1

1 , a homeomorphism from V12 to V21. We use coordinates
(x1, . . . , xn) on the chart (U1, φ1) and (y1, . . . , yn) on the patch (U2, φ2). We write

(φ−1
1 )∗(ω) = f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn

(φ−1
2 )∗(ω) = f̄(y1, . . . , yn) dy1 ∧ · · · ∧ dyn

as n-forms in Rn, which by hypothesis are zero outside of V12 and V21 respectively.
According to Definition 5.7.7,∫

V12

(φ−1
1 )∗(ω) =

∫
f(x1, . . . , xn) dx1 · · · dxn∫

V21

(φ−1
2 )∗(ω) =

∫
f̄(y1, . . . , yn) dy1 · · · dyn

We note that φ−1
2 = φ−1

1 ◦ φ12 so (φ−1
2 )∗ = φ∗12 ◦ (φ−1

1 )∗. Hence

f̄(y1, . . . , y
n) dy1 ∧ · · · ∧ dyn = (φ−1

2 )∗(ω) = φ∗12

(
(φ−1

1 )∗ω
)

= φ∗12(f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn)

= (f ◦ φ12)(y1, . . . , yn)(det dφ12)dy1 ∧ · · · ∧ dyn,

where the last equality follows from (5.30). Since the manifold is oriented, det dφ12 >
0. Consequently, we have∫

V21

(φ−1
2 )∗(ω) =

∫
V21

(f ◦ φ12)(y1, . . . , yn)(det dφ12) dy1 · · · dyn

=

∫
V21

(f ◦ φ12)(y1, . . . , yn)|det dφ12| dy1 · · · dyn

=

∫
V12

f(x1, . . . , xn) dx1 · · · dxn =

∫
V12

(φ−1
1 )∗(ω),

where the second to last equality holds by the usual substitution-of-variables formula
for integration.

This lemma justifies the following definition in that it is independent of the
choice of coordinate system.
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Definition 5.7.9. Let M be an oriented, smooth n-dimensional manifold. Let ω
be an n-form that vanishes outside of a compact subset K of M , and suppose that
K is also a subset of a coordinate neighborhood (U, φ). Then we define the integral
as ∫

M

ω =

∫
φ(U)

(φ−1)∗(ω),

where the right-hand side is an integral over Rn given by Definition 5.7.7.

This definition explains how to integrate an n-form when it vanishes outside a
compact subset of a coordinate patch. If this latter criterion does not hold, we use
partitions of unity to piece together calculations that fall under Definition 5.7.9.

If a manifold M is not orientable, then for any atlas there will exist two co-
ordinate charts φα and φβ such that det(d(φβ ◦ φ−1

α )) < 0. From the proof of
Lemma 5.7.8 integrating a form over the intersection of these two coordinate charts,
with respect to one chart versus the other, will give a difference of signs. Then Def-
inition 5.7.9 is not well-defined. Consequently, it is impossible to define integration
over a non-orientable manifold. On the other hand, if M is non-orientable and
U is an open subset of M , it may be possible that U is orientable. In this case,
Definition 5.7.9 applies.

Definition 5.7.10. Let Mn be an oriented, smooth manifold, and let ω be an
n-form that vanishes outside a compact set. Let {ψi}i∈I be a partition of unity
subordinate to the atlas on M . Define∫

M

ω =
∑
i∈I

∫
M

ψiω

where we calculate each summand on the right using Definition 5.7.9.

The summation only involves a finite number of nonzero terms since ω vanishes
outside a compact set. The reader may wonder why we only consider forms that
vanish outside of a compact subset of the manifold. This is similar to restricting
one’s attention to definite integrals in standard calculus courses. Otherwise, we face
improper integrals and must discuss limits. As it is, many manifolds we consider
are themselves compact; in the context of compact manifolds, the requirement that
ω vanish outside a compact subset is superfluous.

The next proposition outlines some properties of integration of n-forms on n-
dimensional manifolds that easily follow from properties of integration of functions
in Rn as seen in ordinary calculus. However, we first give a lemma that restates the
change-of-variables rule in integration over Rn.

Lemma 5.7.11. Let A and B be compact subsets of Rn. Let f : A→ B be a smooth
map whose restriction to the interior A◦ is a diffeomorphism with the interior B◦.
Then on A◦, f is either orientation-preserving or orientation-reversing on each
connected component. Furthermore,∫

B

ω = ±1

∫
A

f∗ω,
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where the sign is +1 (respectively, −1) if f is orientation-preserving (respectively,
orientation-reversing) over A.

Proof. By the Inverse Function Theorem, f−1 is differentiable at a point f(p) if
and only if dfp is invertible and if and only if det dfp 6= 0. Since each component
function in the matrix of dfp is continuous, then det dfp is a continuous function from
A to R. By the Intermediate Value Theorem, det dfp does not change signs over
any connected component of A◦. Thus, f is orientation-preserving or orientation-
reversing on each connected component of A◦.

Let (x1, x2, · · · , xn) be coordinates on A ⊂ Rn and (y1, y2, · · · , yn) coordinates
on B ⊂ Rn. Then we can write ω = αdy1 ∧ · · · ∧ dyn for a smooth function
α : Rn → R. By Problem 5.5.5,

f∗ω = α ◦ f(det df) dx1 ∧ · · · ∧ dxn.

Furthermore, according to the change-of-variables formula for integration in Rn (see
[55, Section 16.9, Equations (9) and (13)]) in the usual calculus notation, we have∫

B

αdy1 dy2 · · · dyn =

∫
A

α ◦ f |det df | dx1 dx2 · · · dxn.

Therefore, if f is orientation-preserving on A,∫
B

ω =

∫
B

αdy1 dy2 · · · dyn =

∫
A

α ◦ f |det df | dx1 dx2 · · · dxn

=

∫
A

α ◦ f(det df) dx1 dx2 · · · dxn =

∫
A

f∗ω.

If f is orientation-reversing, the above reasoning simply changes by |det df | =
−det df and a −1 factors out of the integral.

Proposition 5.7.12 (Properties of Integration). Let M and N be oriented, smooth
manifolds with or without boundaries. Let ω and η be smooth forms that vanish
outside of a compact set on M .

1. Linearity: For all a, b ∈ R,

∫
M

(aω + bη) = a

∫
M

ω + b

∫
M

η.

2. Orientation change: If we denote by (−M) the manifold M but with the op-
posite orientation, then ∫

(−M)

ω = −
∫
M

ω.

3. Substitution rule: If g : N →M is an orientation-preserving diffeomorphism,∫
M

ω =

∫
N

g∗ω.
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Proof. Part 1 is left as an exercise for the reader.
If M is an oriented manifold with atlas {(Uα, φα)}α∈I , then equipping M with an

opposite orientation means giving a different atlas {(Vβ , φ̃β)}β∈J such that det d(φ̃β◦
φ−1
α ) < 0 whenever φ̃β ◦ φ−1

α is defined. Following the proof of Lemma 5.7.8, one
can show from the reversal in orientation that∫

(−K)

ω = −
∫
K

ω

for any compact set K in any intersection Uα ∩ Vβ . Hence, by using appropriate
partitions of unity and piecing together the integral according to Definition 5.7.10,
we deduce part 2 of the proposition.

To prove part 3, assume again that ω is compactly supported in just one co-
ordinate chart (U, φ) of M . Otherwise, using a partition of unity, we can write
ω as a finite sum of n-forms, each compactly supported in just one coordinate
neighborhood. Without loss of generality, suppose that g−1(U) is a subset of a
coordinate chart (V, ψ) on N . Saying that g is orientation-preserving means that
det(φ ◦ g ◦ψ−1) > 0. Since g−1(U) ⊂ V , then V contains the support of g∗ω. Now,
by applying Lemma 5.7.11 to the diffeomorphism φ ◦ g ◦ ψ−1, we have∫
M

ω =

∫
φ(U)

(φ−1)∗ω =

∫
ψ(V )

(φ ◦ g ◦ ψ−1)∗(φ−1)∗ω =

∫
ψ(V )

(φ−1 ◦ φ ◦ g ◦ ψ−1)∗ω

=

∫
ψ(V )

(g ◦ ψ−1)∗ω =

∫
ψ(V )

(ψ−1)∗(g∗ω) =

∫
N

g∗ω.

In calculus we defined line integrals along piecewise-smooth curves or surface
integrals on piecewise-smooth surfaces. Though we have not, to this point, defined
piecewise-smooth manifolds, we can do so in a way that allows us to give a definition
of the integral over a piecewise-smooth manifold.

Definition 5.7.13. A piecewise-smooth manifold M is a topological manifold that
is the finite union of smooth manifolds M1,M2, . . . ,Mk that intersect only on their
boundaries. A piecewise-smooth manifold is oriented if each manifold Mi is oriented
in such a way that if Mi and Mj intersect along a boundary component C, then the
orientation induced on C from Mi is opposite the orientation induced from Mj .

Definition 5.7.14. Let Mn be a piecewise-smooth manifold as in Definition 5.7.13.
Let ω be an n-form that is smooth on each piece Mi. Then we defined the integral∫

M

ω =

∫
M1

ω + · · ·+
∫
Mk

ω.

Problems

5.7.1. Prove that a function f : R → R that is identically 0 for x ≤ 0 and positive for
x > 0 cannot be analytic.
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5.7.2. The manifold RP3 is orientable. Let Ui = {(x1 : x2 : x3 : x4) ∈ RP3 |xi 6= 0} be
the coordinate open set as described in Example 3.1.6. Use A = {(Ui, φi)}4i=1 as
the atlas for RP3. Define

f(x : y : z : w) =

{
e−w

2/(4w2−x2−y2−z2) if x2 + y2 + z2 < 4w2

0 otherwise.

Define also h1(x1 : x2 : x3 : x4) = f(x2 : x3 : x4 : x1), h2(x1 : x2 : x3 : x4) = (x3 :
x4 : x1 : x2) and similarly for h3 and h4. Finally define

ψi(x
1 : x2 : x3 : x4) =

hi(x
1 : x2 : x3 : x4)∑n

j=1 hj(x
1 : x2 : x3 : x4)

.

(a) Prove that f (and hence ψi for i = 1, 2, 3, 4) is a well-defined function on
RP3.

(b) Prove that f is smooth.

(c) Prove that {ψ1, ψ2, ψ3, ψ4} is a smooth partition of unity of RP3 subordinate
to A.

5.7.3. Prove that Proposition 5.7.12 holds for oriented piecewise-smooth manifolds.

5.8 Integration on Manifolds - Applications
The reader might have noticed the impracticality of n-forms on an n-dimensional
manifold from the definition. By virtue of the structure of a manifold, simply to
provide a consistent definition, we are compelled to use a formula similar to that
presented in Definition 5.7.10. On the other hand, integrals involving terms such as
e−1/x or bump functions as described in Example 5.7.5 are intractable to compute
by hand.

The following useful proposition gives a method to calculate integrals of forms
on a manifold using parametrizations while avoiding the use of an explicit partition
of unity. The proposition breaks the calculation into integrals over compact subsets
of Rn, but we need to first comment on what types of compact sets we can allow.
We will consider compact sets C ⊂ Rn whose boundary ∂C has “measure 0.” By
“measure 0,” we mean

∫
∂C

1 dV = 0. More intuitively, we do not want C to be
strange enough that its boundary ∂C has any n-volume.

Proposition 5.8.1. Let Mm be a smooth, oriented manifold with or without bound-
ary. Suppose that there exists a finite collection {Ci}ki=1 of compact subsets of Rm,
each with boundary ∂Ci of measure 0, along with a collection of smooth functions
Fi : Ci → M such that: (1) each Fi is a diffeomorphism from the interior C◦i
onto the interior Fi(Ci)

o and (2) any pair Fi(Ci) and Fj(Cj) intersect only along
their boundary. Then for any n-form ω on M , which has a compact support that is
contained in F1(C1) ∪ · · · ∪ Fk(Ck),∫

M

ω =
k∑
i=1

∫
Ci

F ∗i ω. (5.35)
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Proof. We need the following remarks from set theory and topology. Recall that
for any function f : X → Y and any subsets A,B of Y , we have f−1(A ∪ B) =
f−1(A) ∪ f−1(B) and f−1(A ∩ B) = f−1(A) ∩ f−1(B). For general functions, the
same equalities do not hold when one replaces f with f−1. However, if f is bijective,
the equality does hold in both directions.

Let A = {(Uα, φα)}α∈I be the atlas given on M . Let K be the support of ω.
Note that since each Fi is continuous, then Fi(Ci) is compact.

Suppose first that K is a subset of a single coordinate chart (U0, φ). Since
K ⊂ F1(C1) ∪ · · · ∪ Fk(Ck),

K = K ∩
(
F1(C1) ∪ · · · ∪ Fk(Ck)

)
= (F1(C1) ∩K) ∪ · · · ∪ (Fk(Ck) ∩K),

and, again, because φ is a bijection,

φ(K) =
(
φ ◦ F1(C1) ∩ φ(K)

)
∪ · · · ∪

(
φ ◦ Fk(Ck) ∩K

)
. (5.36)

Since φ is a homeomorphism and since any pair Fi(Ci) and Fj(Cj) intersect only
along their boundaries, then the same holds for any pair K∩Fi(Ci) and K∩Fj(Cj)
and also for any pair φ(K) ∩ (φ ◦ Fi)(Ci) and φ(K) ∩ (φ ◦ Fj)(Cj).

By definition of integration of n-forms over a coordinate chart, i.e., Definition
5.7.9, ∫

M

ω =

∫
φ(U)

(φ−1)∗ω =

∫
φ(K)

(φ−1)∗ω.

By Equation (5.36) and the theorem on subdividing an integral by nonoverlapping
regions in Rn (see [55, Section 16.3, Equation (9)] for the statement for integrals
over R2), ∫

M

ω =
k∑
i=1

∫
φ(K)∩(φ◦Fi)(Ci)

(φ−1)∗ω.

Note that this is precisely where we need to require that the Ci have boundaries of
measure 0.

The setup for the proposition was specifically designed to apply Lemma 5.7.11
to the function φ ◦ Fi : Ci → (φ ◦ Fi)(Ci) for each i ∈ {1, . . . , k}. We have∫

φ(K)∩φ◦Fi(Ci)
(φ−1)∗ω =

∫
F−1
i (K)∩Ci

(φ ◦ Fi)∗(φ−1)∗ω

=

∫
F−1
i (K)∩Ci

F ∗i ω =

∫
Ci

F ∗i ω,

and the proposition follows for when K is a subset of a single coordinate chart.
If K is not a subset of a single coordinate chart, we use a partition of unity

subordinate to the atlas of M . In this case, the proposition again follows, using
Proposition 5.5.6(2), so that for each partition-of-unity function ψj , we have

F ∗i (ψjω) = (ψj ◦ Fi)F ∗i ω.
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With this proposition at our disposal, we are finally in a position to present
some examples of integration of n-forms on a smooth n-manifold.

Example 5.8.2. Consider the 2-torus M = T2 = S1 × S1. We choose an atlas on
M so that one of the coordinate functions is φ : M → (0, 2π)2 corresponding to
pairs of angles going around each S1. It should be clear by now that in order to
express an n-form explicitly, we need a coordinate-depend description. Let ω be a
2-form on M such that

(φ−1)∗(ω) = (3 + cos v)2 cos v du ∧ dv.

Then from Proposition 5.8.1 we calculate that∫
M

ω =

∫ 2π

0

∫ 2π

0

(3 + cos v)2 cos v du dv

= 2π

∫ 2π

0

3 cos v + 6 cos2 v + 9 cos3 v dv = 12π2.

This example illustrates a special case of a particular situation. We often think
of the torus as an embedded submanifold of R3. This motivates the following
definition.

Definition 5.8.3 (Integration on Submanifolds). If M is an immersed submanifold
of dimension m with the immersion f : Mm → Nn and if ω ∈ Ωm(N), then we
define ∫

f(M)

ω =

∫
M

f∗ω. (5.37)

This definition applies in particular to embedded submanifolds.

Example 5.8.4. We revisit Example 5.8.2 to show how it relates to Definition 5.8.3.
Suppose that we embed the torus in R3 using the parametrization

F (u, v) =
(
(3 + cos v) cosu, (3 + cos v) sinu, sin v

)
for (u, v) ∈ [0, 2π]2.

Notice that this parametrization is described by F = f ◦ φ−1, where φ is the coor-
dinate chart described in Example 5.8.2 and f : M → R3 is the actual embedding
function of the torus into R3.

Consider the 2-form on R3 defined by η = −y dx ∧ dz + x dy ∧ dz. We calculate
that

F ∗(dx ∧ dz) = d((3 + cos v) cosu) ∧ d(sin v)

= − sinu cos v(3 + cos v) du ∧ dv,
F ∗(dy ∧ dz) = d((3 + cos v) sinu) ∧ d(sin v)

= cosu cos v(3 + cos v) du ∧ dv.
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Thus,

F ∗η = −(3 + cos v) sinuF ∗(dx ∧ dz) + (3 + cos v) cosuF ∗(dy ∧ dz)
= (3 + cos v)2 cos v du ∧ dv.

So F ∗η = (φ−1)∗(ω) from the previous example. Since F ∗ = (φ−1)∗ ◦ f∗, we see
that the form ω chosen in Example 5.8.2 is f∗η. So by Definition 5.8.3, we connect
these integrations by∫

f(M)

η =

∫
M

f∗η =

∫
M

ω =

∫
[0,2π]2

(φ−1)∗(ω)

=

∫
[0,2π]2

(3 + cos v)2 cos v du dv = 12π2,

which we calculated in Example 5.8.2.

Example 5.8.5. As another example, consider the unit sphere S2 in R3 covered
by the six coordinate patches described in Example 3.1.5. Adjusting notation to
F1 = ~X(1) and F2 = ~X(2), we observe that if we use the compact set C1 = C2 as
the closed unit disk {(u, v) |u2 +v2 ≤ 1}, then the sphere can be covered by F1(C1)
and F2(C2). Thus, we have k = 2 in the setup of Proposition 5.8.1.

Consider the 2-form ω = xz3 dy ∧ dz on S2, with the x, y, z representing the
coordinates in R3. We have

F1(u, v) = (u, v,
√

1− u2 − v2) and F2(u, v) = (u, v,−
√

1− u2 − v2),

so we calculate that

F ∗1 ω = u(1− u2 − v2)3/2 dv ∧
(
− u√

1− u2 − v2
du− v√

1− u2 − v2
dv
)

= u2(1− u2 − v2) du ∧ dv,

and similarly, F ∗2 ω = u2(1− u2 − v2) du ∧ dv. Then by Proposition 5.8.1,∫
S2
ω =

∫
C1

F ∗1 ω +

∫
C2

F ∗2 ω = 2

∫
C1

u2(1− u2 − v2) du dv.

Putting this in polar coordinates, we get∫
S2
ω = 2

∫ 2π

0

∫ 1

0

r2 cos2 θ(1− r2)r dr dθ

2

(∫ 2π

0

cos2 θ dθ

)(∫ 1

0

r3 − r5 dr

)
=
π

6
.

An important case of integration on submanifolds is the line integral over a
curve.
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Definition 5.8.6. Let γ : [a, b]→M be a smooth curve, and let ω be a 1-form on
M . We define the line integral of ω over γ as∫

γ

ω =

∫
[a,b]

γ∗ω.

In addition, if γ is a piecewise-smooth curve, we define∫
γ

ω =
k∑
i=1

∫
[ci−1,ci]

γ∗ω,

where [ci−1, ci], with i = 1, . . . , k, are the smooth arcs of γ.

At the beginning of this section, we proposed to find a definition of integration
that generalizes many common notions from standard calculus. We explain now
how the above two definitions generalize the concepts of line integrals in Rn and
integrals of vector fields over surfaces.

Consider first the situation of line integrals in R3. (The case for Rn is identical
in form.) In vector calculus (see [55, Definition 17.2.13]), one considers a continuous

vector field ~F : R3 → R3 defined over a smooth curve ~γ : [a, b]→ R3. Then the line
integral is defined as ∫

~γ

~F · d~r =

∫ b

a

~F (~γ(t)) · ~γ′(t) dt.

To connect the classical line integral to the line integral in our present formulation,
set ω = F1 dx + F2 dy + F3 dz, where ~F = (F1, F2, F3). If we write γ(t) = ~γ(t) =
(γ1(t), γ2(t), γ3(t)), then

γ∗ω = F1(γ(t))d(γ1) + F2(γ(t))d(γ2) + F3(γ(t))d(γ3)

=
(
F1(γ(t))(γ1)′(t) + F2(γ(t))(γ2)′(t) + F3(γ(t))(γ3)′(t)

)
dt

= ~F (~γ(t)) · ~γ′(t) dt.

Thus, we have shown that the classical and modern line integrals are equal via∫
γ

ω =

∫ b

a

γ∗ω =

∫
~γ

~F · d~r.

Second, consider the situation for surface integrals. In vector calculus (see [55,

Definitions 17.7.8 and 17.7.9]), one considers a continuous vector field ~F : R3 → R3

defined over an oriented surface S parametrized by ~r : D → R3, where D is a
compact region in R2. If (u, v) are the variables used in D, then∫∫

S

~F · d~S =

∫∫
D

~F (~r(u, v)) · (~ru × ~rv) dA.
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To demonstrate the connection with the modern formulation, if we write ~F =
(F1, F2, F3), then set

ω = F1η
1 + F2η

2 + F3η
3,

where ηj are the 2-forms described in Equation (5.24). Set also f(u, v) = ~r(u, v),
and write f = (f1, f2, f3) as component functions in R3. Then

f∗ω = F1(f(u, v))f∗η1 + F2(f(u, v))f∗η2 + F3(f(u, v))f∗η3. (5.38)

We calculate f∗η1 as

f∗(dx2 ∧ dx3) = df2 ∧ df3 =
(∂f2

∂u
du+

∂f2

∂v
dv
)
∧
(∂f3

∂u
du+

∂f3

∂v
dv
)

=
(∂f2

∂u

∂f3

∂v
− ∂f2

∂v

∂f3

∂u

)
du ∧ dv.

Repeating similar calculations for f∗η2 and f∗η3 and putting the results in Equation
(5.38), we arrive at

f∗ω = ~F (~r(u, v)) · (~ru × ~rv) du ∧ dv.

Using Definition 5.8.3 for the integration on a submanifold, we conclude that∫
S

ω =

∫
D

f∗ω =

∫∫
S

~F · d~S,

thereby showing how integration of 2-forms on a submanifold gives the classical
surface integral.

It is interesting to observe how the integration of forms on manifolds and on
submanifolds of a manifold generalizes simultaneously many of the integrals that
are studied in classic calculus, which are in turn studied for their applicability to
science. However, the reader who has been checking off the list at the beginning of
this section of types of integration we proposed to generalize might notice that until
now we have not provided generalizations for path integrals

∫
C
f ds or integrals of

scalar functions over a surface
∫
S
f dA. The reason for this is that these integrals

involve an arclength element ds or a surface area element dA. However, given a
smooth manifold M without any additional structure, there is no way to discuss
distances, areas, or n-volumes on M . Riemannian manifolds, which we introduce in
the next chapter, provide a structure that allows us to make geometric calculations
of length and volume. In that context, one can easily define generalizations of path
integrals and integrals of scalar functions over a surface.

Before moving on to applications to physics, we mention a special case where
the line integral is easy to compute.

Theorem 5.8.7 (Fundamental Theorem for Line Integrals). Let M be a smooth
manifold, let f : M → R be a smooth function, and let γ : [a, b]→M be a piecewise-
smooth curve on M . Then ∫

γ

df = f(γ(b))− f(γ(a)).
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Proof. By Proposition 5.5.6(3), γ∗(df) = d(γ∗f), so we have

γ∗(df) = d(γ∗f) = d(f ◦ γ) = (f ◦ γ)′(t) dt,

where t is the variable on the manifold [a, b]. Thus,∫
γ

df =

∫
[a,b]

γ∗(df) =

∫ b

a

(f ◦ γ)′(t) dt = f(γ(b))− f(γ(a)).

5.8.1 Conservative Vector Fields

We now wish to look at a central topic from elementary physics through the lens of
our theory of integration on a manifold.

In elementary physics, one of the first areas studied is the dynamics of a particle
under the action of a force. We remind the reader of some basic facts from physics.
Suppose a particle of constant mass m is acted upon by a force ~F (which may
depend on time and space) and follows a trajectory parametrized by ~r(t). Writing
~v = ~r ′ for the velocity and v = ‖~v‖ for the speed of the particle, we define the kinetic
energy by T = 1

2mv
2. Furthermore, since m is constant for a particle, according to

Newton’s law of motion, ~F = m~v ′. Finally, as the particle travels for t1 ≤ t ≤ t2,
we define the work done by ~F as the line integral

W =

∫ t2

t1

~F · d~r.

The kinetic energy depends on time and we have

dT

dt
=

d

dt

(1

2
m~v · ~v

)
= m

d~v

dt
· ~v = ~F · ~v. (5.39)

Thus, as a particle moves along ~r(t) for t1 ≤ t ≤ t2, the change in kinetic energy is

T2 − T1 = T (t2)− T (t1) =

∫ t2

t1

~F · ~v dt =

∫
γ

~F · d~r = W, (5.40)

where the last integral is a line integral over γ, the curve traced out by the trajectory
~r(t) of the particle. Thus, the change in kinetic energy is equal to the work done
by the external forces. This result is often called the Energy Theorem. A force is
called conservative if it does not depend on time and, if, as a particle travels over
any closed, piecewise, smooth curve the kinetic energy does not change.

Though in physics one simply speaks of vectors or vector fields, from the per-
spective of manifold theory, certain objects may be vectors or covectors, depending
on their use or their transformational properties under coordinate systems. Some
objects viewed as vector fields in classical physics should even be understood as a
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p1

p2

γ1

γ2

Figure 5.10: Two paths between p1 and p2.

2-form; this possible confusion arises from the fact that over a smooth manifold
3-manifold, for each p ∈ M ,

∧1
TpM

∗,
∧2

TpM
∗, and TpM are all isomorphic as

vector spaces.
Because of how it appears in the Energy Theorem (5.40), a force field should be

viewed as a 1-form ω defined in R3. Then the Energy Theorem for the trajectory
of a particle can be written as∫

γ

ω = T (γ(t2))− T (γ(t1)).

At any given point p along the trajectory of the particle, the velocity of the particle
is a tangent vector v ∈ TpR3. Then the instantaneous change of energy in (5.39) is
simply the contraction ω(v)p.

Definition 5.8.8. A 1-form (covector field) on a smooth manifold M is called
conservative if ∫

γ

ω = 0

for all closed, piecewise-smooth curves γ on M .

This definition has a different and perhaps more useful characterization. If γ1

and γ2 are two piecewise-smooth paths from points p1 to p2, then the path γ1•(−γ2)
defined by first traveling from p1 to p2 along γ1 and then traveling backwards from
p2 to p1 along γ2 is a closed, piecewise-smooth curve (see Figure 5.10). It is not
hard to show that for any 1-form ω,∫

γ1•(−γ2)

ω =

∫
γ1

ω +

∫
(−γ2)

ω =

∫
γ1

ω −
∫
γ2

ω.

Hence, a covector field ω is conservative if and only if the integral of ω between any
two points p1 and p2 is independent of the path between them.

A smooth 1-form has another alternative characterization, whose proof we leave
as an exercise for the reader.
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Theorem 5.8.9. Let M be a smooth, oriented manifold. A 1-form ω ∈ Ω1(M) is
conservative if and only if ω is exact.

Returning to physics in Euclidean R3, according to the Energy Theorem from
Equation (5.40), a force is conservative if and only if the work done over a piecewise-
smooth path between any two points p1 and p2 is independent of the path chosen.
Thus, if ~F is conservative, one defines the potential energy by

V (x, y, z) = −
∫ (x,y,z)

(x0,y0,z0)

~F · d~r.

where (x0, y0, z0) is any fixed point. Obviously, the potential energy of ~F is a
function that is well-defined only up to a constant that corresponds to the selected
origin point (x0, y0, z0). It is easy to check that

~F = −∇V.

For a conservative force ~F with potential energy V , the work of ~F as the particle
travels along ~r(t) for t ∈ [t1, t2] is

W =

∫ t2

t1

~F · d~r = −
∫ t2

t1

∇V · d~r = −
(
V (~r(t2))− V (~r(t1))

)
= −(V2 − V1).

Hence, the Energy Theorem can be rewritten as

T1 + V1 = T2 + V2.

The sum T + V of kinetic and potential energy is often referred to simply as the
energy or total energy of a particle. This justifies the terminology “conservative”:
the total energy of a particle moving under the action of a conservative force is
conserved along any path.

As further examples of applications of manifold theory to physics, Problems 5.8.9
through 5.8.11 discuss conservative properties and calculations of flux across sur-
faces for inverse square forces.

Problems

5.8.1. Let γ be the curve in R4 parametrized by γ(t) = (1 + t2, 2t − 1, t3 − 4t, 1
t
) for

t ∈ [1, 3]. Let ω = x dy + (y2 + z) dz + xw dw. Calculate the line integral
∫
γ
ω.

5.8.2. Calculate the line integral
∫
γ
ω, where γ is the triangle in R3 with vertices (0, 1, 2),

(1, 2, 4) and (−3, 4,−2) and where ω is the 1-form given in R3 by

ω = (2xy + 1) dx+ 3x dy + yz dz.

5.8.3. Evaluate
∫
M
ω, where M is the portion of paraboloid in R3 given by z = 9−x2−y2

above the xy-plane and where ω is the 2-form ω = y2 dx∧dy+z2 dx∧dz+2 dy∧dz.
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5.8.4. Let T2 be the torus embedded in R4 that is given by the equations x2 + y2 =
z2 + w2 = 1. Note that the flat torus can be parametrized by

F (u, v) = (cosu, sinu, cos v, sin v)

for appropriate u and v. Compute the integral
∫
T2 ω, where ω is the 2-form in R4

given by

(a) ω = x3 dy ∧ dw;

(b) ω = x3z dy ∧ dw;

(c) ω = (x2yz + 1) dx ∧ dz + exyz dy ∧ dw.

5.8.5. Consider the unit sphere M = S2 embedded in R3. Let

ω =
z2 dx ∧ dy + x dx ∧ dz + xy dy ∧ dz

x2 + y2 + z2

be a 2-form pulled back to S2. Calculate directly the integral
∫
M
ω using:

(a) the latitude-longitude parametrization;

(b) the stereographic parametrizations {πN , π̄S} defined in Problem 3.2.5 and
Example 3.7.3. [Hint: Use two coordinate patches.]

5.8.6. Consider the 3-torus described in Problem 5.2.4. Calculate
∫
M
ω, where

(a) ω =
(

cos2 v +
1 + sinw

2 + cosu

)
du ∧ dv ∧ dw given in local coordinates;

(b) ω = x1 dx1 ∧ dx2 ∧ dx3 + x2 dx2 ∧ dx3 ∧ dx4 in coordinates in R4.

5.8.7. Let T2 = S1 × S1 be the 2-torus where we use a pair of angles (θ, ϕ) ∈ (0, 2π)2

as one of the coordinate charts and complete it in the natural manner to cover
the whole torus. Show that ω expressed as 3 cos2 θ sinϕdθ + (2 + cos2 ϕ) dϕ over
the given coordinate chart extends to a 1-form over the whole torus. Consider
the curve C on T2 given as a submanifold γ : [0, 2π] → T2 expressed over this
coordinate chart as (θ, ϕ) = γ(t) = (2t, 3t). Calculate the integral

∫
γ
ω.

5.8.8. Prove part 1 of Proposition 5.7.12.

5.8.9. The force exerted by an electric charge placed at the origin on a charged particle
is given by the force field ~F (~r) = K~r/‖~r‖3, where K is a constant and ~r = (x, y, z)
is the position vector of the charged particle. Write this force field as the covector

ω =
Kx

(x2 + y2 + z2)3/2
dx+

Ky

(x2 + y2 + z2)3/2
dy +

Kz

(x2 + y2 + z2)3/2
dz

over the manifold R3.

(a) Calculate the work exerted by the force on a charged particle that travels
along the straight line from (3,−1, 2) to (4, 5,−1).

(b) Prove that ~F is a conservative force, i.e., that ω is a conservative covector
field.

(c) Prove that ω = df where f(x, y, z) = −K/r = −K/(x2 + y2 + z2)1/2.
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5.8.10. This exercise continues Problem 5.8.9. Consider the sphere of radius R and center
0 as an embedded submanifold f : S2 → R3. Prove that∫

f(S2)

?ω = −4πK.

[Hint: Use the longitude-latitude coordinate system with (u, v) ∈ [0, 2π]× [0, π].]

5.8.11. Let T2 be the 2-torus embedded in R3, using the function f : T2 → R3 given in
Example 5.8.4. Show by direct calculation that∫

f(T2)

?ω = 0

where ω is the 2-form described in Problem 5.8.9.

5.8.12. Let M be a smooth, oriented manifold. Referring to Example 5.8.9, prove that a
smooth (co)vector field ω on M is conservative if and only if ω is exact.

5.9 Stokes’ Theorem
In the last section of this chapter, we present Stokes’ Theorem, a central result in
the theory of integration on manifolds.

In multivariable calculus, one encounters a theorem by the same name. What
is called Stokes’ Theorem for vector fields in R3 states that if S is an oriented,
piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth
curve C, then for any C1 vector field ~F defined over an open region that contains
S, ∫

C

~F · d~r =

∫
S

(∇× ~F ) · d~S.

(See [55, Section 17.8].)

It is a striking result that the generalization of this theorem to the context of
manifolds simultaneously subsumes the Fundamental Theorem of Integral Calculus,
Green’s Theorem, the classical Stokes’ Theorem, and the Divergence Theorem.

Before giving the theorem, we state a convention for what it means to inte-
grate a 0-form on an oriented, zero-dimensional manifold. If N is an oriented zero-
dimensional manifold, then N = {p1, p2, . . . , pc} is a discrete set of points equipped
with an association of signs si = ±1 for each i = 1, . . . , c. Then by convention for
any 0-form f (i.e., a function on N),∫

N

f =
c∑
i=1

sif(pi). (5.41)



246 5. Analysis on Manifolds

Theorem 5.9.1 (Stokes’ Theorem). Let Mn be a piecewise-smooth, oriented man-
ifold with or without boundary, and let ω be an (n− 1)-form that is compactly sup-
ported on M . Equipping ∂M with the induced orientation, the following integrals
are equal ∫

M

dω =

∫
∂M

ω, (5.42)

where on the right side we take ω to mean the restriction of ω to ∂M . If ∂M = ∅,
we understand the right side as 0.

Proof. We first treat the case where n > 1. Furthermore, we first prove Stokes’
Theorem when M is a smooth manifold.

Suppose first that ω is compactly supported in a single coordinate chart (U, φ).
Then by the definition of integration and by Proposition 5.5.6,

∫
M

dω =

∫
Rn+

(φ−1)∗dω =

∫
Rn+
d
(
(φ−1)∗ω

)
.

Using the (n− 1)-forms ηj defined in Equation (5.24) as a basis for Ωn(Rn+), write
(φ−1)∗ω =

∑n
j=1 ωjη

j . Then, for the exterior differential, we have

d
(
(φ−1)∗ω

)
=

n∑
j=1

(
n∑
i=1

∂ωj
∂xi

dxi

)
∧ ηj =

(
n∑
i=1

∂ωi
∂xi

)
dx1 ∧ · · · ∧ dxn,

where the second equality follows from Equation (5.25).

Since ω is compactly supported in U , then for large enough R, the component
functions ωi(x

1, . . . , xn) vanish identically outside the parallelepiped

DR = [−R,R]× · · · × [−R,R]︸ ︷︷ ︸
n−1

× [0, R].

Therefore, we remark that for all i = 1, . . . , n− 1, we have

∫ R

−R

∂ωi
∂xi

dxi =
[
ωi(x)

]xi=R
xi=−R = 0. (5.43)
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Consequently, we deduce that∫
M

dω =

∫ R

0

∫ R

−R
· · ·
∫ R

−R

(
n∑
i=1

∂ωi
∂xi

)
dx1 · · · dxn−1 dxn

=
n∑
i=1

∫ R

0

∫ R

−R
· · ·
∫ R

−R

∂ωi
∂xi

dx1 · · · dxn

=

n−1∑
i=1

∫ R

0

∫ R

−R
· · ·
∫ R

−R

(∫ R

−R

∂ωi
∂xi

dxi

)
dx1 · · · d̂xi · · · dxn

+

∫ R

−R
· · ·
∫ R

−R

(∫ R

0

∂ωn
∂xn

dxn

)
dx1 · · · dxn−1

=

∫ R

−R
· · ·
∫ R

−R

[
ωn(x)

]xn=R

xn=0
dx1 · · · dxn−1 by Equation (5.43)

= −
∫ R

−R
· · ·
∫ R

−R
ωn(x1, . . . , xn−1, 0) dx1 · · · dxn−1, (5.44)

where the last equality holds because ωn(x1, . . . , xn−1, R) = 0. Note that if the
support of ω does not meet the boundary ∂M , then ωn(x1, . . . , xn−1, 0) is also
identically 0 and

∫
M
ω = 0.

To understand the right-hand side of Equation (5.42), let i : ∂M → M be the
embedding of the boundary into M . The restriction of ω to ∂M is i∗(ω). Further-
more, in coordinates in (U, φ), i∗(dxk) = dxk if k = 1, . . . , n − 1 and i∗(dxn) = 0.
Hence, i∗(ηj) = 0 for all j 6= n. Thus, in coordinates,

i∗(ω) = ωn(x1, · · · , xn−1, 0)ηn

= (−1)n−1ωn(x1, · · · , xn−1, 0) dx1 ∧ · · · ∧ dxn−1.

However, by Definition 3.7.8 for the orientation induced on the boundary of a man-
ifold, we have∫

∂M

a(x) dx1 ∧ · · · ∧ dxn−1 = (−1)n
∫
Rn−1

a(x) dx1 · · · dxn−1

for the (n− 1)-form a dx1 ∧ · · · ∧ dxn−1. Thus,∫
∂M

ω =

∫
∂M

i∗(ω)

=

∫
DR∩{xn=0}

(−1)n−1ωn(x1, · · · , xn−1, 0) dx1 ∧ · · · ∧ dxn−1

= −
∫ R

−R
· · ·
∫ R

−R
ωn(x1, . . . , xn−1, 0) dx1 · · · dxn−1,
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which, by (5.44), is equal to
∫
M
dω. This proves (5.42) for the case when ω is

supported in a compact subset of a single coordinate patch.
Suppose now that ω is supported over a compact subset K of M that is not

necessarily a subset of any particular coordinate patch in the atlas A = {(Uα, φα)}
for M . Then we use a partition of unity {ψα} that is subordinate to A. Since K is
compact, we can cover it with a finite collection of coordinate patches {(Ui, φi)}ki=1.
Then ∫

∂M

ω =
k∑
i=1

∫
∂M

ψiω =
k∑
i=1

∫
M

d(ψiω)

by application of Stokes’ Theorem for each form ψiω that is supported over a com-
pact set in the coordinate patch Ui. But d(ψiω) = dψi ∧ ω + ψidω, so

∫
∂M

ω =
k∑
i=1

∫
M

(
dψi ∧ ω + ψidω

)
=

k∑
i=1

∫
M

dψi ∧ ω +
k∑
i=1

∫
M

ψidω

=

∫
M

d

(
k∑
i=1

ψi

)
∧ ω +

k∑
i=1

∫
M

ψidω

=

∫
M

d(1) ∧ ω +
k∑
i=1

∫
M

ψidω = 0 +
k∑
i=1

∫
M

ψidω =

∫
M

dω.

This establishes Stokes’ Theorem for n > 1 and M a smooth manifold.
Let n > 1 and suppose now that M is a piecewise-smooth, oriented manifold,

consisting of smooth submanifolds M1,M2, . . . ,M`. By definition of integration on
piecewise-smooth manifolds, if ω is a compactly supported (n− 1)-form, then∫

M

dω =

∫
M1

dω + · · ·+
∫
M`

dω =

∫
∂M1

ω + · · ·+
∫
∂M2

ω,

where the second equality follows by Stokes’ Theorem on smooth, oriented mani-
folds. By the definition of an orientation on an oriented, piecewise-smooth man-
ifold, if Mi and Mj share a boundary component, then these components have
induced opposite orientation. Consequently, the boundary components in the set
{∂M1, . . . , ∂M`} which do not cancel out precisely form the components of the
boundary ∂M . Hence, we again recover∫

M

dω =

∫
∂M

ω.

Now consider the case of a 1-manifold M . The boundary ∂M is a 0-dimensional
manifold. The 0-form ω is simply a real-valued function on M . For a compact set
K contained in a coordinate system φ : U → R+ on M , the intersection K ∩ ∂M is
either empty or consists of a single point {pi}. Thus, with the assumption that ω
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is supported over a compact set contained in a coordinate patch of M , we conclude
that ∫

M

df = f(pi)si

by the usual Fundamental Theorem of Integral Calculus. By the convention in
(5.41) for integration on a zero-dimensional manifold, we also have

∫
∂M

f = f(pi)si.
Utilizing a partition of unity when ω is not assumed to be supported in a single
coordinate patch, one also immediately recovers Stokes’ Theorem.

Two cases of Stokes’ Theorem occur frequently enough to warrant special em-
phasis. The proofs are implicit in the above proof of Stokes’ Theorem.

Corollary 5.9.2. If M is a smooth manifold without boundary and ω is a smooth
(n− 1)-form, then ∫

M

dω = 0.

Corollary 5.9.3. If M is a smooth manifold with or without boundary and ω is a
smooth (n− 1)-form that is closed (i.e., dω = 0), then∫

∂M

ω = 0.

The convention for integrating 0-forms on a zero-dimensional manifold allows
Stokes’ Theorem to directly generalize the Fundamental Theorem of Calculus in
the following way. Consider the interval [a, b] as a one-dimensional manifold M
with boundary with orientation of displacement from a to b. Then ∂M = {a, b}
with an orientation of −1 for a and +1 for b. A 0-form on M is a smooth function
f : [a, b]→ R. Then Theorem 5.9.1 simply states that∫

[a,b]

df =

∫ b

a

f ′(x) dx = f(b)− f(a),

which is precisely the Fundamental Theorem of Calculus.
The reader might remark that, as stated, Stokes’ Theorem on manifolds only

generalizes the Fundamental Theorem of Calculus (FTC) when f is a smooth func-
tion, whereas most calculus texts only presuppose that f is C1 over [a, b]. The
history behind the FTC is long and we encourage the reader to consult [13] for
an excellent historical account of the work on defining integrals properly. Since we
restricted our attention to smooth manifolds and smooth functions, these technical
details are moot.

Problems

5.9.1. Explicitly show how Stokes’ Theorem on manifolds generalizes Stokes’ Theorem
and the Divergence Theorem from standard multivariable calculus.
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5.9.2. Use Stokes’ Theorem to evaluate
∫
S
dω, where S is the image in R4 of the parametriza-

tion
r(u, v) = (1− v)(cosu, sinu, sin 2u, 0) + v(2, cosu, sinu, sin 2u)

and where ω = x2 dx1 + x3 dx2 + x4 dx3 − x1 dx4.

5.9.3. Let M be the hypercube in R4 consisting of the 16 vertices (±1,±1,±1,±1). This
is a manifold with boundary embedded in R4. Let ω = x dy ∧ dz ∧ dw+ (3 sin(y +

z) + ex
2

) dx ∧ dz ∧ dw be a 3-form in R3, which we consider as a 3-form on the
surface of the hypercube ∂M . Use Stokes’ Theorem to calculate

∫
∂M

ω.

5.9.4. Let B4 = {x ∈ R4 | ‖x‖ ≤ 1} be the unit ball in R4, and note that ∂B4 = S3. We
use the coordinates (x, y, z, w) in R4 and hence in B4. Use Stokes’ Theorem to
evaluate ∫

S3
(exy cosw dx ∧ dy ∧ dz + x2z dx ∧ dy ∧ dw).

[Hint: After applying Stokes’ Theorem, consider symmetry across the w = 0 plane,
then use a combination of Cartesian and spherical coordinates integration.]

5.9.5. Let M be a compact, oriented, n-manifold, and let ω ∈ Ωj(M) and η ∈ Ωk(M),
where j+k = n−1. Suppose that η vanishes on the boundary ∂M or that ∂M = ∅.
Show that ∫

M

ω ∧ dη = (−1)j−1

∫
M

dω ∧ η.

5.9.6. Let M be a compact, oriented n-manifold. Let ω and η be forms of type j and k
respectively, such that j + k = n− 2. Show that∫

M

dω ∧ dη =

∫
∂M

ω ∧ dη.

Explain how this generalizes the well-known result in multivariable calculus that∫
C

(f∇g) · d~r =

∫∫
S

(∇f ×∇g) · d~S,

where S is a regular surface in R3 with boundary C and where f adn g are real-
valued functions that are defined and have continuous second derivatives over an
open set containing S.

5.9.7. Integration by Parts on a Curve. LetM be a compact and connected one-dimensional
smooth manifold. Let f, g : M → R be two smooth functions on the curve M . Show
that ∂M consists of two discrete points {p, q}. Suppose that M is oriented so that
the orientation induced on ∂M is −1 for p and +1 for q. Show that∫

M

f dg = f(q)g(q)− f(p)g(p)−
∫
M

g df.

5.9.8. Let M be an embedded submanifold of Rn of dimension n − 1. Suppose that M
encloses a compact region R. Setting ω = 1

n
(
∑n
i=1 x

iηi), where the ηj are defined
by Equation (5.24), show that the n-volume of R is

∫
M
ω.

5.9.9. Consider M = Rn − {(0, . . . , 0)} as a submanifold of Rn, and let Sn−1 be the unit
sphere in Rn centered at the origin.

(a) Show that if ω ∈ Ωn−1(M) is exact, then
∫
Sn−1 ω = 0.

(b) Find an example of a closed form ω ∈ Ωn−1(M) such that
∫
Sn−1 ω 6= 0.



CHAPTER 6

Introduction to Riemannian Geometry

To recapitulate what we have done in the past two chapters, manifolds are topo-
logical spaces that are locally homeomorphic to a Euclidean space Rn in which one
could do calculus. Chapter 5 introduced the analysis on manifolds by connecting
it to analysis on Rn via coordinate charts. However, the astute reader might have
noticed that our presentation of analysis on manifolds so far has not recovered one
of the foundational aspects of Euclidean calculus: the concept of distance. And
related to the concept of distance are angles, areas, volumes, curvature...

In the local theory of regular surfaces S in R3, the first fundamental form (see
Example 5.2.3) allows one to calculate the length of curves on a surface, the angle
between two intersecting curves, and the area of a compact set on S (see [5, Section
6.1] for details). This should not be surprising: we defined the first fundamental
form on S as the restriction of the usual Euclidean dot product in R3 to the tangent
space Tp(S) for any given point p ∈ S, and the dot product is the basis for measures
of distances and angles in R3.

In general, manifolds are not given as topological subspaces of Rn so one does
not immediately have a first fundamental form as we defined in Example 5.2.3.
Furthermore, from the definition of a differentiable manifold, it is not at all obvious
that it has a metric (though we will see in Proposition 6.1.8 that every smooth
manifold has a metric structure). Consequently, one must equip a manifold with
a metric structure, which we will call a “Riemannian structure.” Applications of
manifolds to geometry and curved space in physics will require this additional metric
structure.

As in many mathematics texts, our treatment of manifolds and Riemannian
metrics does not emphasize how long it took these ideas to develop nor have the
previous two chapters followed the historical trajectory of the subject. After the
discovery of non-Euclidean geometries (see [11] for a good historical discussion), by
using only an intuitive notion of a manifold, it was Riemann [47, Section II] in 1854
who first proposed the idea of a metric that varied at each point of a manifold.
During the following 50 or more years, many mathematicians (Codazzi, Beltrami,
Ricci-Curbastro, Levi-Civita, Klein to name a few) developed the theories of cur-
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vature and of geodesy for Riemann spaces. However, the concept of a differential
manifold as presented in Chapter 3 did not appear until 1913 in the work of H. Weyl
[59, I.§4]. According to Steenrod [53, p. v], general definitions for fiber bundles and
vector bundles, which we introduced in part in Chapter 5, did not appear until the
work of Whitney in 1935–1940.

Turning to physics, general relativity, one of the landmark achievements in sci-
ence of the early 20th century, stands as the most visible application of Riemann
manifolds to science. Starting from the principle that the speed of light in a vac-
uum is constant regardless of reference frame [20, p. 42], Einstein developed the
theory of special relativity, defined in the absence of gravity. The “interpretation”
of the law that “the gravitational mass of a body is equal to its inertial mass” [20,
p. 65] and the intention to preserve the principle of the constancy of the speed of
light led Einstein to understand spacetime as a curved space where “the geomet-
rical properties of space are not independent, but [...] determined by matter” [20,
p. 113]. Riemannian metrics, curvature, and the associated theorems for geodesics
gave Einstein precisely the mathematical tools he needed to express his conception
of a curvilinear spacetime.

The reader should be aware that other applications of manifolds to science do
not (and should not) always require a metric structure. Applications of manifolds
to either geometry or physics may require a different structure from or additional
structure to a Riemann metric. For example, in its properly generalized context,
Hamiltonian mechanics require the structure of what is called a symplectic manifold.

6.1 Riemannian Metrics
6.1.1 Definitions and Examples

Definition 6.1.1. Let M be a smooth manifold. A Riemannian metric on M is a
tensor field g in Sym2 TM∗ that is positive definite. In more detail, at each point
p ∈ M , a Riemannian metric determines an inner product on TpM . A smooth
manifold M together with a Riemannian metric g is called a Riemannian manifold
and is denoted by the pair (M, g).

Over a coordinate patch of M with coordinate system (x1, . . . , xn), as a section
of TM∗⊗2, one writes the metric g as

gij dx
i ⊗ dxj ,

where gij are smooth functions on M . (In this chapter, we regularly use Einstein’s
summation convention.) Since at each point, g is a symmetric tensor, gij = gji
identically. Furthermore, using the notation from Section 4.6, since g is a section
of Sym2 TM∗, we write

gij dx
i dxj . (6.1)

The square root of the expression in Equation (6.1) is called the line element ds
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associated to this metric. Many texts, in particular, physics texts, give the metric
in reference to the line element by writing ds2 = gij dx

i dxj .
For vectors X,Y ∈ TpM , we sometimes use the same notation as the first

fundamental form ([6, Section 6.1]) and write 〈X,Y 〉p for gp(X,Y ), and it is also
common to drop the subscript p whenever the point p is implied by context. By
analogy with the dot product, the Riemannian metric allows one to define many
common notions in geometry.

Definition 6.1.2. Let (M, g) be a Riemannian manifold. Suppose that X,Y are
vectors in TpM .

1. The length of X, denoted ‖X‖, is defined by ‖X‖ =
√
g(X,X).

2. The angle θ between X and Y is defined by

cos θ =
g(X,Y )

‖X‖ ‖Y ‖
.

3. X and Y are called orthogonal if g(X,Y ) = 0.

Whenever one introduces a new mathematical structure, one must discuss func-
tions between any two instances of them and when two structures are considered
equivalent. In the context of Riemannian manifolds, one still studies any smooth
functions between two manifolds. However, two Riemannian manifolds are consid-
ered the same if they have the same metric. The following definition makes this
precise.

Definition 6.1.3. Let M and N be two Riemannian manifolds. A diffeomorphism
f : M → N is called an isometry if for all p ∈M ,

〈X,Y 〉p = 〈dfp(X), dfp(Y )〉f(p) for all X,Y ∈ TpM.

Two Riemannian manifolds are called isometric if there exists an isometry between
them.

From an intuitive perspective, an isometry is a transformation that bends (which
also includes rigid motions) one manifold into another without stretching or cut-
ting. Problem 6.1.6 asks the reader to show that the catenoid and the helicoid are
isometric. Figure 6.1 shows intermediate stages of bending the catenoid into the
helicoid. Though one might think this transformation incorporates some stretching
because the longitudinal lines straighten out, the twist created in the helicoid strip
“balances out” the flattening of the lines in just the right way so that one only
needs to bend the surface.

Many examples of Riemannian metrics arise naturally as submanifolds of Rie-
mannian manifolds.

Definition 6.1.4. Let (N, g̃) be a Riemannian manifold and M any smooth mani-
fold. Let f : M → N be an immersion of M into N , i.e., f is differentiable and dfp
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Figure 6.1: Bending the catenoid into the helicoid.

is injective for all p. The metric g on M induced by f (or “from N”) is defined as
the pull-back g = f∗g̃. In other words,

〈X,Y 〉p = 〈dfp(X), dfp(Y )〉f(p) for all p ∈M and X,Y ∈ TpM.

The property that dfp is injective ensures that 〈 , 〉p remains positive definite
when induced on M .

Example 6.1.5 (Euclidean Spaces). Consider the manifold M = Rn, where
Tp(Rn) = Rn is naturally equipped with a Riemannian metric: the usual dot prod-
uct. In particular,

g (∂i, ∂j) = δij =

{
1, if i = j,

0, if i 6= j.

This metric is called the Euclidean metric.

Example 6.1.6 (First Fundamental Form). A regular surface S is a 2-manifold
embedded in R3, where the embedding map is simply the injection i : S → R3. The
first fundamental form (see Example 5.2.3) is precisely the metric on S induced by
i from the Euclidean metric on R3. This connection gives us immediately a whole
host of examples of Riemannian 2-manifolds that we take from the local theory of
regular surfaces.

Proposition 6.1.7. Let M be an m-dimensional manifold embedded in Rn. If
~F (u1, . . . , um) is a parametrization of a coordinate patch of M , then over this co-
ordinate patch, the coefficients of the metric g on M induced from Rn are

gij =
∂ ~F

∂ui
· ∂

~F

∂uj
.

Proof. Let (x1, . . . , xn) be the coordinates on Rn. Suppose that a coordinate patch
(U, φ) of M has coordinates (u1, . . . , um) and that a parametrization of this coordi-

nate patch is ~F (u1, . . . , um) = φ−1(u1, . . . , um). By Equation (3.14) the matrix of
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d~F in the given coordinate systems is(
∂F i

∂uj

)
,

where ~F = (F 1, . . . , Fn).
Set 〈 , 〉 as the usual dot product in Rn. Then at each point in U , the coefficients

gk` of the metric g satisfy

gk` = g

(
∂

∂uk
,
∂

∂u`

)
=

〈
d~F

(
∂

∂uk

)
, d ~F

(
∂

∂u`

)〉
=
∂F i

∂uk
∂F j

∂u`

〈 ∂

∂xi
,
∂

∂xj

〉
=
∂F i

∂uk
∂F j

∂u`
δij =

∂ ~F

∂uk
· ∂

~F

∂u`
.

We should emphasize at this point that a given manifold can be equipped with
nonisometric Riemannian metrics. Problem 6.1.2 presents two different metrics on
the 3-torus, each depending on a different embedding into some Euclidean space.
In both cases, the 3-torus can be equipped with the same atlas, and so in both
situations, the 3-torus is the same as a smooth manifold.

As another example, already in his seminal dissertation [47], Riemann introduced
the following metric on the open unit ball in Rn:

gii =
4

(1− ‖x‖2)2
and gij = 0 if i 6= j. (6.2)

As we will see, this is not isometric with the open unit ball equipped with the
Euclidean metric.

Example 6.1.5 could be misleading in its simplicity. The reader might consider
the possibility of defining a metric on any smooth manifold M by taking 〈 , 〉p as
the usual dot product in each TpM with respect to the coordinate basis associated
to a particular coordinate system. The problem with this idea is that it does not
define a smooth section in Sym2 TM∗ over the whole manifold. Nonetheless, as the
proof of the following proposition shows, we can use a partition of unity and stitch
these bilinear forms together.

Proposition 6.1.8. Every smooth manifold M has a Riemannian metric.

Proof. Let M be a smooth manifold with atlas A = {(Uα, φα)}α∈I . For each α ∈ I,
label 〈 , 〉α as the usual dot product with respect to the coordinate basis over Uα.
Let {ψα} be a partition of unity that is subordinate to A. For each p ∈ M , define
the bilinear form 〈 , 〉p on TpM by

〈X,Y 〉p
def
=
∑
α∈I

ψα(p)〈X,Y 〉αp (6.3)

for any X,Y ∈ TpM .
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Since for each p ∈ M , only a finite number of α ∈ I have ψα(p) 6= 0, then
the sum in Equation (6.3) is finite. It is obvious by construction that 〈X,Y 〉p is
symmetric. To prove that 〈 , 〉p is positive definite, note that each 〈X,Y 〉αp is. Let
I ′ be the set of all indices α ∈ I such that ψα(p) 6= 0. By definition of a partition
of unity, 0 < ψα(p) ≤ 1. Thus, for all X ∈ TpM , clearly 〈X,X〉p ≥ 0. Furthermore,
if 〈X,X〉p = 0, then at least one summand in∑

α∈I′
ψα(p)〈X,X〉αp

is 0. (In fact, all summands are 0.) Thus, there exists an α ∈ I with 〈X,X〉αp =
0. Since 〈 , 〉αp is positive definite, then X = 0. Hence, 〈X,X〉p itself is positive
definite.

Though Equation (6.3) presents a Riemannian metric on any smooth manifold
M , this is not in general easy to work with for specific calculations since it uses a
partition of unity, which involves functions that are usually complicated. At any
given point p ∈ M , Equation (6.3) does not involve one coordinate system around
p but all of the atlas’s coordinate neighborhoods of p.

More importantly, the Riemannian metric constructed in the above proof might
not have any natural meaning.

Example 6.1.9 (Projective Space). There is a natural metric on projective space
RPn that is induced from the Euclidean metric on Rn+1. First, let g be the metric
on Sn induced from Euclidean Rn as an embedded submanifold. Recall that the
projection map π : Sn → RPn as presented for n = 2 in Example 3.2.3 is a smooth
function between manifolds. Define the metric g̃ on RPn by

g̃π(p)(v, w) = gp
(
(dπp)

−1(v), (dπp)
−1(w)

)
, (6.4)

for all v, w ∈ Tπ(p)RPn. Note first that for all p ∈ Sn, the linear transformation
dπp is surjective between spaces of the same dimension, so is invertible. More
importantly, g̃ is well-defined: If A : Sn → Sn is the antipodal map A(p) = −p,
then π ◦A = π. Hence, dπp = d(π ◦A)p = dπ−p ◦ dAp. Hence

gp
(
(dπp)

−1(v), (dπp)
−1(w)

)
= gp

(
(dAp)

−1((dπ−p)
−1(v)), (dAp)

−1((dπ−p)
−1(w))

)
= g−p((dπ−p)

−1(v), (dπ−p)
−1(w)),

where the second equality follows becauseA : Sn → Sn is an isometry. Consequently,
in (6.4), the choice of p or −p for the pre-image of π(p) in RPn is irrelevant.

6.1.2 Arclength and Volume

Using integration, the Riemannian metric allows for formulas that measure nonlocal
properties, such as length of a curve and volume of a region on a manifold.
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For example, consider a C1 curve γ : [a, b] → M on a Riemannian manifold
(M, g). At each point γ(t) in M , the vector γ′(t) = dγ

dt is a tangent vector, called
the velocity vector . The Riemannian metric g = 〈 , 〉 allows one to calculate the
length ‖γ′(t)‖, which we call the speed . This motivates the following definition.

Definition 6.1.10. Let γ : [a, b]→M be a curve on a Riemannian manifold M of
class C1. The arclength of the curve γ is

`(γ) =

∫ b

a

√〈dγ
dt
,
dγ

dt

〉
γ(t)

dt.

Proposition 6.1.11. Let (M, g) be an oriented Riemannian manifold of dimension
n. There exists a unique n-form, denoted dV , such that at all p ∈ M , it satisfies
dVp(e1, . . . , en) = 1 for all bases (e1, . . . , en) in TpM that are orthonormal with
respect to gp( , ). Furthermore, over any coordinate patch U with coordinates x =
(x1, . . . , xn),

dV =
√

det(gij) dx
1 ∧ · · · ∧ dxn, (6.5)

where gij = g(∂i, ∂j) = 〈∂/∂xi, ∂/∂xj〉.

Proof. The content of this proposition is primarily linear algebra. By Proposition
C.2.1, on each coordinate patch Uα, the form dV |Uα = ωα exists on each TpM and
is given by Equation (6.5). The existence of this n-form ω with the desired property
explicitly requires that gp be an inner product on TpM . In order to define the form
dV on the whole manifold, we refer to a partition of unity {ψα} subordinate to the
atlas on M and define

dV =
∑
α

ψαωα.

Definition 6.1.12. The form dV described in Proposition 6.1.11 is called the vol-
ume form of (M, g) and is denoted dVM if there is a chance of confusion about the
manifold. If Mm is a compact manifold, then the m-volume of M is the integral

Vol(M) =

∫
M

dV. (6.6)

If i : Mm → Nn is an embedded submanifold of a Riemannian manifold (N, g̃)
then we can also calculate the m-volume of the submanifold M by equipping M with
the metric g = i∗g̃, i.e., the metric induced from N . The reader should be aware
that the volume form on M is not necessarily i∗(dVN ). In particular, if m < n, then
i∗(dVN ) would be an n-form on M , but there are no n-forms on M . We illustrate
this with a few examples.

Example 6.1.13 (Arclength). Definition 6.1.10 should actually be a corollary of
Proposition 6.1.11 and Definition 6.1.12. Let (M, g̃) be a Riemannian manifold and



258 6. Introduction to Riemannian Geometry

let γ : [a, b]→M be a curve of class C1 on M . The induced metric g on γ is defined
by

gt(v, w) = g̃γ(t)

(
dγ

dt
v,
dγ

dt
w

)
.

However, since a curve is one dimensional, both tangent vectors v and w are scalars.
So

gt(v, w) = g̃γ(t)((dγ/dt), (dγ/dt))vw.

In the coordinate t on [a, b], the domain of γ, the metric tensor can be represented
by a 1 × 1 matrix (g̃γ(t)((dγ/dt), (dγ/dt))). Thus, the volume form on γ from the
metric induced from M , is

dV =
√
g̃γ(t)((dγ/dt), (dγ/dt)) dt.

Definition 6.1.10 follows as a corollary.

Example 6.1.14 (Volume form on Sn). Consider the unit n-sphere Sn as a Rie-
mannian manifold, equipped with the metric induced from its usual embedding in
Rn+1.

Consider the usual longitude-latitude parametrization of the sphere S2:

~X(u, v) = (cosu sin v, sinu sin v, cos v) for (u, v) ∈ [0, 2π]× [0, π].

Note that if we restrict the domain to (0, 2π)×(0, π), we obtain a dense open subset
of S2. By Proposition 6.1.7, with respect to this coordinate system, the coefficients
of the metric tensor are

gij =

(
sin2 v 0

0 1

)
.

Since sin v ≥ 0 for v ∈ [0, π], the volume form on S2 with respect to this
coordinate system is dV = sin v du ∧ dv. By Proposition 5.8.1, the volume of the
sphere is calculated by

V =

∫
S2
dV =

∫ π

0

∫ 2π

0

sin v du dv = 2π
[
− cos v

]π
0

= 4π.

We now calculate the volume form on Sn using an alternate approach. By
Example 4.6.24, we see that the volume form on Rn+1 is

e∗1 ∧ · · · ∧ e∗(n+1),

where {e1, . . . , en+1} is the standard basis on Rn+1. Furthermore, recall that as an
alternating function,

e∗1 ∧ · · · ∧ e∗(n+1)(v1, . . . , vn+1) = det
(
v1 · · · vn+1

)
for any (n+ 1)-tuple of vectors (v1, . . . , vn+1).
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x

v1

v2

Figure 6.2: Volume form on the sphere.

Define a form ω ∈ Ωn(Rn+1), where for each x ∈ Rn+1 and for any vectors ui

ωx(u1, . . . , un) = det
(
x u1 · · · un

)
.

This is in fact, the same construction as the inner product on forms ixω, but where
we are taking advantage of the identification of Rn+1 with its own tangent space.
By the properties of the determinant, for each x, ωx is an alternating n-multilinear
function on Rn+1, so ω is indeed an n-form. Using the Laplace expansion of the
determinant, it is easy to show that

ω =
n+1∑
i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1, (6.7)

where the ̂ notation means to exclude the bracketed term. Using the forms ηj

introduced in Equation (5.24), we can write ω =
∑
j x

jηj .
Now if x ∈ Sn, then from the geometry of the sphere, x is perpendicular to TxSn

as a subspace of Rn+1 (equipped with the Euclidean metric). Thus, if {v1, . . . , vn}
forms a basis of TxSn, then {x, v1, . . . , vn} forms a basis of Rn+1. See Figure 6.2.
Furthermore, if the n-tuple (v1, . . . , vn) is an orthonormal, positively-oriented basis
of TxSn, then (x, v1, . . . , vn) is an orthonormal, positively-oriented basis of Rn+1.
But then the restriction of ω to Sn has the properties described in Proposition
6.1.11. Hence, if f : Sn → Rn+1 is the usual embedding of the sphere in Euclidean
space, then we obtain the volume form of Sn as

dVSn = ω
∣∣
Sn = f∗(ω).

In Section 5.7, we attempted to generalize with the single technique of inte-
gration on manifolds all the types of integration introduced in a standard calculus
sequence. However, there were two types of integrals in the list at the beginning of
the section that did not fit in the formalism we had developed for the integration
of n-forms on n-dimensional smooth manifolds, namely:
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• Line integrals of functions in Rn.

• Surface integrals of a real-valued function defined over a closed and bounded
region of a regular surface in R3.

Both of these types of integrals fit into the theory of integration volume forms on
manifolds in the following ways.

For the line integral of functions in Rn over a piecewise-smooth curve C, let
γ : [a, b] → Rn be a parametrization of C. Let 〈 , 〉 be the Euclidean form on
Rn (i.e., the dot product). Then each smooth piece of γ is a one-dimensional
submanifold of Rn, equipped with the metric induced from Rn. The volume form
on γ is dVγ so that for any smooth function f defined on a neighborhood of C,∫

γ

f dVγ =

∫ b

a

f(t)

√〈dγ
dt
,
dγ

dt

〉
γ(t)

dt =

∫
C

f ds. (6.8)

For surface integrals of a function f on a compact regular surface S ⊂ R3, it
is not hard to show (see Problem 6.1.1) that dS = dVS , where dVS is the volume
form on S equipped with the metric induced from the Euclidean metric. Thus,
connecting the classical notation with the notation introduced in this section,∫

S
f dS =

∫
S
f dVS . (6.9)

6.1.3 Raising and Lowering Indices

One interesting property of metrics on manifolds is that they give us a natural way
to go back and forth between vectors and covectors.

Recall from Section 4.1 that for any real vector space V , the dual vector space
V ∗ consists of all linear transformations V → R. If V is a vector space equipped
with any bilinear form 〈 , 〉, then this form defines a linear transformation into the
dual V ∗ by

i : V −→ V ∗,

v 7−→ iv = (w 7→ 〈v, w〉).

If V is finite-dimensional and the bilinear form 〈 , 〉 is nondegenerate, then the
mapping (v 7→ iv) is an isomorphism. We will assume from now on that 〈 , 〉 is
an inner product. The positive-definite implies the bilinear form is nondegenerate
so the above mapping is an isomorphism. This isomorphism allows us to define a
natural bilinear form 〈 , 〉∗ on V ∗ by

〈η, τ〉∗ = 〈i−1(η), i−1(τ)〉.

Then 〈 , 〉∗ is an element of V ⊗ V , so is a tensor of type of (2, 0). Furthermore,
if the components of 〈 , 〉 are cjk, then the components of 〈 , 〉∗ with respect to
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the associated basis are denoted by cjk, where these are the entries of the inverse
matrix C−1, where C = (cjk). (See Exercises 4.2.4 and 4.2.5 for where we prove
these results.)

In coordinates, let B = {u1, . . . , un} be a basis of V and let B∗ = {u∗1, . . . , u∗n}
be the associated cobasis. Let C = (cjk) be the matrix of 〈 , 〉 with respect to B,
viz., cjk = 〈uj , uk〉. Then

〈v, w〉 = [v]TBC[w]B = cjkv
jwk. (6.10)

This gives the coordinates of iv with respect to B∗ as cjkv
j . Note that the indices

for the components of iv arise naturally as subscripts, consistent with our notation.
Similarly, if λ ∈ V ∗ is a functional on V , then λ = λiu

∗i. If λ = iv for some v ∈ V ,
then

ck`λk = ck`ajkv
j = cjka

k`vj = δ`jv
j = v`. (6.11)

We say that the process of mapping v to iv “lowers the indices,” while mapping λ
to i−1(λ) “raises the indices.”

Now consider a Riemannian manifold (M, g). If X ∈ X(M) is a vector field on
M , we define the covector field X[ by

X[(Y )
def
= g(X,Y )

for all vector fields Y ∈ X(M). On a coordinate patch, X has coordinates Xi.
By the process described in the previous paragraphs, X[ has components gijX

i.
Mimicking musical notation, the function Γ(TM) → Γ(TM∗) that sends X 7→ X[

is call the flat, since it lowers the indices of the vector field X.
As we saw, a metric g∗ on M also induces an inner product in Sym2 TpM defined

by g∗(η, τ) = g(i−1(η), i−1(τ)) for any η, τ ∈ TpM∗. So if ω ∈ Ω1(M) is a covector
field on M , we define the vector field ω] by

η(ω])
def
= g∗(η, ω)

for all covector fields η ∈ Ω1(M). On a given coordinate patch, ω has component
functions ωi and the components of ω] are gijωi. Keeping the musical analogy, we
denote call this vector field the sharp of ω since the process raises the indices.

More generally, if T is any tensor field of type (p, q) on M , then

giαkT
i1···ip
j1···jq and gjβlT

i1···ip
j1···jq

define tensors fields of type (p − 1, q + 1) and type (p + 1, q − 1), respectively. It
is common to still use the [ and ] notation, here T [ and T ], but one must indicate
upon which index one performs the lowering or raising operations.

Recall that the trace of a matrix A is defined as the sum of the diagonal elements.
If A has components Aij , then the trace is just Aii, using the Einstein summation
convention of summing along i. Now A corresponds to a linear transformation
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T (~v) = A~v on a vector space V . Since the trace TrA is also the sum of the
eigenvalues, the trace remains unchanged under a change in basis in V .

Now, if A is a symmetric (0, 2)-tensor, then A] is a (1, 1)-tensor, and the trace
TrA is defined in its usual linear algebraic sense. This process is common enough
that we define the trace with respect to g of A to be

Trg A
def
= TrA]. (6.12)

In coordinates, Trg A = gijAij .

Problems

6.1.1. Recall the following formula from calculus. Let K be a compact set on a regular
surface S in R3. Suppose that S is parametrized by ~r(u, v) and that under this
parametrization, K = ~R(D) for some compact region D. Then the surface area
of K on S is ∫∫

K

dS =

∫∫
D

‖~ru × ~rv‖ du dv.

Consider the regular surface S as a 2-manifold embedded in the Riemannian mani-
fold of R3, equipped with the dot product as its usual metric. The parametrization
~r(u, v) describes the embedding of S in R3 in reference to the coordinates in a
chart of S. Prove that the volume form on S of metric on S induced from the dot
product in R3 is

dVS = ‖~ru × ~rv‖ du ∧ dv.
This establishes the familiar surface area integral from Definition 6.1.12.

6.1.2. Consider the 3-torus T3 = S1 × S1 × S1. Calculate the induced metrics for the
following two embeddings:

(a) Into R6 as the image of the parametrization

~F (u1, u2, u3) =
(
cosu1, sinu1, cosu2, sinu2, cosu3, sinu3) .

(b) Into R4 as the image of the parametrization ~F (u1, u2, u3) given by(
(c+ (b+ a cosu1) cosu2) cosu3, (c+ (b+ a cosu1) cosu2) sinu3,

(b+ a cosu1) sinu2, a sinu1) ,
where b > a > 0 and c > a+ b.

(c) Prove that these two Riemannian manifolds are not isometric.

[Hint: This gives two different metrics on the 3-torus that can be equipped with
the same atlas in each case.]

6.1.3. We consider an embedding of S1×S2 in R4 by analogy with the embedding of the
torus S1 × S1 in R3. Place the sphere S2 with radius a at (0, 0, b, 0) (where b > a)
as a subset of the x1x2x3-subspace, and rotate this sphere about the origin with
a motion parallel to the x3x4-axis. Call this submanifold M and equip it with the
metric induced from R4.
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(a) Show that the described manifold M is an embedding as claimed.

(b) Find a parametrization F : D → R4 where D ⊂ R3 such that, as sets of
points F (D) = M , and F (D◦) is an open subset of M that is homeomorphic
to D◦. (D◦ is the interior of the set D.)

(c) Calculate the coefficients gij of the metric on M in the coordinate patch
defined by the above parametrization.

6.1.4. Let (M1, g1) and (M2, g2) be two Riemannian manifolds, and consider the product
manifold M1 ×M2 with a (0, 2)-tensor field defined by

g(X1 +X2, Y1 + Y2) = g1(X1, Y1) + g2(X2, Y2).

(a) Show that g defines a metric on M1 ×M2.

(b) Let (x1, . . . , xn) be local coordinates on M1 and (xn+1, . . . , xn+m) be local
coordinates on M2 so that (x1, . . . , xm+n) are local coordinates on M1×M2.
Determine the components of the metric g on M1 ×M2 in terms of g1 and
g2.

6.1.5. Repeat Problem 6.1.3 with S1 × S, where S is a regular surface in R3 that does
not intersect the plane z = x3 = 0.

6.1.6. Consider the following two regular surfaces in R3. The catenoid parametrized by

F (ū1, ū2) = (ū2 cos ū1, ū2 sin ū1, cosh−1 ū2) for (ū1, ū2) ∈ [0, 2π)× [1,+∞)

and the helicoid parametrized by

F (u1, u2) = (u2 cosu1, u2 sinu1, u1) for (u1, u2) ∈ [0, 2π)× R.

Prove that the helicoid and catenoid are isometric, and find an isometry between
them.

6.1.7. Let M be a hypersurface of Rn (submanifold of dimension n−1), and equip M with
Riemannian structure with the metric induced from Rn. Suppose that an open
set U of M is a graph of an (n− 1)-variable function f , i.e., the parametrization
of U is

x1 = u1, . . . , xn−1 = un−1, xn = f(u1, . . . , un−1), .

for (u1, . . . , un−1) ∈ D.

(a) Find the coefficients of the metric tensor g onM , and conclude that a formula
for the (n− 1)-volume of U is∫

D

√
1 + ‖grad f‖2 dV.

(b) Use this result to calculate the 3-volume of the surface in R4 given by w =
x2 + y2 + z2 for x2 + y2 + z2 ≤ 4.

6.1.8. Let M , N , and S be Riemannian manifolds, and let f : M → N and h : N → S
be isometries.

(a) Show that f−1 is an isometry.
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(b) Show that h ◦ f is an isometry.

(c) If you have seen some group theory, show that the set of isometries on a
Riemannian manifold M forms a group.

6.1.9. Two metrics g and g̃ on a smooth manifold M are called conformal if there exists
a smooth function f ∈ C∞(M,R) such that g̃ = fg. Prove that for all p ∈M and
for all X,Y ∈ TpM , the angle between X and Y with respect to g̃ is the same as
the angle with respect to g.

6.1.10. Let (M, g) and (N, g̃) be Reimannian manifolds. A diffeomorphism f : M → N
is called a conformal mapping if f∗g̃ is conformal to g. Repeat Problem 6.1.8 but
replacing “isometry” with ”conformal mapping.” (See Problem 6.1.9.)

6.1.11. Let γ be a curve on a Riemannian manifold (M, g). Show precisely how the
induced metric on γ generalizes Definition 6.1.10.

6.1.12. Poincaré ball . The Poincaré Ball is the open ball BnR in n dimensions of radius R
equipped with the metric

4R4

(R2 − ‖x‖2)2

(
(dx1)2 + · · ·+ (dxn)2) .

Note that this metric is conformal with the metric (see Problem 6.1.9) induced
from the Euclidean metric in Rn+1.

(a) Set n = 2 and R = 1. (This choice of parameters is called the unit Poincaré
disk.) Calculate the area of the region R defined by ‖x‖ ≤ 1

2
and 0 ≤ θ ≤

π/2.

(b) Set n = 3 andR = 2. Calculate the length of the curve γ(t) = (cos t, sin t, t/10)
in the Poincaré ball for 0 ≤ t ≤ 4π.

6.1.13. Divergence Theorem. Let (M, g) be an oriented, compact, Riemannian manifold
with boundary. Given any vector field X ∈ X(M) and any tensor field T of type
(p, q), with q ≥ 1, we define the contraction of X with T , denoted iXT , as the
tensor field of type (p, q − 1) that over any coordinate chart has components

XlT
i1···ip
lj2···jq .

We define the divergence operator div : X(M)→ C∞(M) implicitly by

d(iX dV ) = (divX) dV.

Prove the Divergence Theorem, which states that for any X ∈ X(M)∫
M

divX dV =

∫
∂M

g(X,N) dṼ ,

where N is the outward unit normal to ∂M and dṼ is the volume form associated
to the metric on ∂M induced from M .

6.1.14. We consider the sphere S3 of radius R as a submanifold in R4 with the induced
Euclidean metric.
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(a) Show that

F (u1, u2, u3) = (R cosu1 sinu2 sinu3, R sinu1 sinu2 sinu3, R cosu2 sinu3, R cosu3),

where (u1, u2, u3) ∈ [0, 2π] × [0, π]2 gives a parametrization for S3 that is
homeomorphic to its image when restricted to the open set V = (0, 2π) ×
(0, π)2.

(b) Calculate the components of the metric tensor on the coordinate patch
F (V ) = U .

(c) Use part (b) to calculate the volume of a 3-sphere of radius R.

(d) Leaving R unspecified, consider the function f(x1, x2, x3, x4) = (x1)2 +

(x2)2 + (x3)2 and calculate the volume integral

∫
S3
f dV . (Note that this

integral would give the radius of gyration of the spherical shell of radius R
about a principal axis – if such a thing existed in R4!)

6.1.15. Calculate the 5-volume of the 5-sphere S5 of radius R as a submanifold of R6.

6.1.16. (ODE) A loxodrome on the unit sphere S2 is a curve that makes a constant angle
with all meridian lines. We propose to study analogues of loxodromes on S3.
Consider the unit 3-sphere S3 with the parametrization from Problem 6.1.14. Set
R = 1. We will call a loxodrome on S3 any curve γ such that γ′ makes a constant

angle of α2 with
∂

∂u2
and a constant angle of α3 with

∂

∂u3
.

(a) Find equations that the components of γ must satisfy.

(b) Solve the differential equations we get in part (a). [Hint: Obtain u1 and u2

as functions of u3. You might only be able to obtain one of these functions
implicitly.]

6.1.17. Consider the function r : Rn+1 − {0} → Sn given by r(x) = x/‖x‖.

(a) Using Example 6.1.14, prove that

ω̃ = r∗(dVSn) =
1

‖x‖n+1

n+1∑
j=1

xjηj .

(b) Show that ω̃ is closed but not exact in Rn+1 − {0}.

(c) Use dVSn to show that

Vol(Sn) = (n+ 1)Vol(Bn+1),

where Bn+1 is the unit ball in Rn+1.

6.1.18. Let M be a Riemannian manifold, and let f : M → M be an isometry on M .
Prove that f∗(dVM ) = ±dVM . (The isometry f is called orientation-preserving if
f∗(dVM ) = dVM and orientation-reversing if f∗(dVM ) = −dVM .)



266 6. Introduction to Riemannian Geometry

6.1.19. Suppose that J and K are disjoint, compact, oriented, connected, smooth subman-
ifolds of Rn+1 whose dimensions are greater than 0 and such that dim J+dimK =
n. Define the function Ψ by

Ψ : J ×K −→ Sn

(x, y) 7−→ y − x
‖y − x‖ .

The linking number between J and K is defined as

link(J,K) =
1

Vol(Sn)

∫
J×K

Ψ∗(dVSn).

Prove Gauss’s Linking Formula for the linking number of two closed space curves:

link(C1, C2) =
1

4π

∫
I

∫
J

det(~α(u)− ~β(v), ~α′(u), ~β′(v))

‖~α(u)− ~β(v)‖3
du dv. (6.13)

[Note that a closed curve is homeomorphic to a circle S1 so J×K is homeomorphic
to a torus. Hence, we can view Ψ as a function T2 = S1 × S1 → S2.]

The following exercises involve the Hodge star operation, which is introduced in Appendix C.3.

6.1.20. Let (M, g) be an oriented Riemannian manifold. Section C.3 defines the Hodge
star operator on inner product spaces. Given a form η ∈ Ωk(M), at each p ∈M ,
the Hodge star operator defines an isomorphism ? :

∧k TpM∗ → ∧n−k TpM∗.
(a) Show that the Hodge star operator ? is a vector bundle map

∧k TM∗ →∧n−k TM∗ that leaves every base point fixed and that varies smoothly.

(b) Show that for all functions f : C∞(M), the Hodge star operator is given by
?f = fdVg.

6.1.21. Consider Rn as a manifold with the standard Euclidean metric.

(a) Calculate ?dxi for any i = 1, . . . , n.

(b) Set n = 4, and calculate ?(dxi ∧ dxj).

6.1.22. Let (M, g) be an oriented Riemannian manifold. Prove the following identities for
any vector field X ∈ X(M).

(a) divX = ? d ? X[, where div is the divergence operator defined in Problem
6.1.13.

(b) iXdVg = ?X[.

6.1.23. Let (M, g) be a Riemannian manifold. Consider the operation that consists of
?d ? d.

(a) Show that ?d ? d is an R-linear operator Ωk(M)→ Ωk(M) for k < dimM .

(b) Let MRn be a standard Euclidean space. Recalling that Ω0(M) = C∞(M),
show that for any smooth function f ,

?d ? df = ∇2f,

where ∇2 is the usual Laplacian ∇2 =
∂2

∂(x1)2
+ · · ·+ ∂2

∂(xn)2
.
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(c) Find an expression in coordinates of ?d?df for smooth functions f : S2 → R,
express in (u, v) longitude-latitude coordinates as used in Example 6.1.14.

6.2 Connections and Covariant Differentiation
6.2.1 Motivation

Despite all the “heavy machinery” we have developed in order to create a theory of
analysis on manifolds, we are still unable to calculate or even define certain things
that are simple in Rn.

For example, if γ : [a, b]→M is a smooth curve on a smooth manifold, we have
no way at present to talk about the acceleration of γ. Let p ∈ M , with γ(t0) = p.
In Definition 3.3.1, we presented the tangent vector γ′(t0) at p as the operator
Dγ : C1(M)→ R that evaluates

Dγ(f) =
d

dt
f(γ(t))

∣∣∣
t0
.

In Section 3.3, we developed the linear algebra of expressions Dγ for curves γ
through p. The vector space of such operators is what we called the tangent space
TpM .

Mimicking what one does in standard calculus, one could try to define the ac-
celeration vector γ′′(t0) at p as a limiting ratio as t→ t0 of γ′(t)−γ′(t0) with t− t0.
However, what we just wrote does not make sense in the context of manifolds be-
cause γ′(t) and γ′(t0) are not even in the same vector spaces and so their difference
is not defined.

Another attempt to define the acceleration might follow Definition 3.3.1 and try

to define γ′′(t0) at p as the operator D
(2)
γ : C2(M)→ R, where

D(2)
γ (f) =

d2

dt2
f(γ(t))

∣∣
t0
.

This operator is well defined and linear. However, D
(2)
γ does not satisfy Leibniz’s

rule, and therefore, there does not exist another curve γ̃, with γ̃(t0) = p such that

D
(2)
γ = Dγ̃ . Hence, D

(2)
γ /∈ TpM . We could study properties for operators of the

form D
(2)
γ but, since the operators do not exist in any TM⊗p ⊗ TM∗⊗q, this is not

the direction the theory of manifolds developed.
Another lack in our current theory is the ability to take partial derivatives or,

more generally, directional derivatives of a vector field. Over Rn, it is easy to define
∂ ~F/∂xj , where ~F is a vector field, and, under suitable differentiability conditions,

∂ ~F/∂xj is again another vector field. In contrast, if X is a vector field over a smooth
manifold M and U is a coordinate neighborhood of p ∈M , one encounters the same
problem with defining a vector ∂iXp as one does in defining the acceleration of a
curve.
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A more subtle attempt to define partial derivatives of a vector field X on M in a
coordinate chart would be to imitate the exterior differential of forms (see Definition
5.4.4) and set as a differential for X the quantity(

∂Xi

∂xj
dxj
)
⊗ ∂i =

∂Xi

∂xj
∂i ⊗ dxj .

However, this does not define a tensor field of type (1, 1) on M . It is easiest to see
this by showing how the components violate the transformational properties of a
tensor field. Let x̄ = (x̄1, . . . , x̄n) be another system of coordinates that overlaps
with the coordinate patch for x = (x1, . . . , xn). Call X̄ the components of the vector
field X in the x̄ system. We know that

X̄j(x̄) =
∂x̄j

∂xi
Xi(x).

Taking a derivative with respect to x̄k and inserting appropriate chain rules, we
have

∂X̄j

∂x̄k
=

∂

∂x̄k

(
∂x̄j

∂xi

)
Xi +

∂x̄j

∂xi
∂Xi

∂x̄k
=

∂2x̄j

∂xl∂xi
∂xl

∂x̄k
Xi +

∂x̄j

∂xi
∂xl

∂x̄k
∂Xi

∂xl
. (6.14)

The presence of the first term on the right-hand side shows that the collection of
functions ∂jX

i do not satisfy the coordinate change properties of tensors given in
(5.8).

6.2.2 Connection on a Vector Bundle

To solve the above conceptual problems, we need some coordinate-invariant way to
compare vectors in tangent spaces at nearby points. This is the role of a connection.
A connection on a smooth manifold is an additional structure that, though we
introduce it in this chapter, is entirely independent of any Riemannian structure.
We can in fact define a connection on any vector bundle over M . Since we require
this generality for our applications, we introduce connections in this manner.

Definition 6.2.1. Let M be a smooth manifold, and let ξ be a vector bundle
over M . Let E(ξ) denote the subspace of Γ(ξ) of smooth global sections of ξ. A
connection on ξ is a map

∇ : X(M)× E(ξ)→ E(ξ),

written ∇XY instead of ∇(X,Y ), that satisfies the following:

1. For all vector fields Y ∈ E(ξ), ∇( , Y ) is linear over C∞(M), i.e., for all
f, g ∈ C∞(M),

∇fX+gX̃Y = f∇XY + g∇X̃Y.
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2. For all vector fields X ∈ X(M), ∇(X, ) is linear over R, i.e., for all a, b ∈ R,

∇X(aY + bỸ ) = a∇XY + b∇X Ỹ .

3. For all vector fields X ∈ X(M), ∇(X, ) satisfies the product rule

∇X(fY ) = (Xf)Y + f∇XY

for all f ∈ C∞(M).

The vector field ∇XY in E(ξ) is called the covariant derivative of Y in the direction
of X.

The symbol ∇ is pronounced “del.” The defining properties of the covariant
derivative are modeled after the properties of directional derivatives of vector fields
on Rn (see Problem 6.2.1). Intuitively, the connection explicitly defines how to take
a partial derivative in E(ξ) with respect to vector fields in TM . In fact, Problems
6.2.3 and 6.2.4 show that ∇XY depends only on the values of Xp in TpM and the
values of Y in a neighborhood of p on M . Therefore ∇XY

∣∣
p

is truly a directional

derivative of Y at p in the direction Xp. Hence, we often write ∇XpY instead of
∇XY

∣∣
p
.

For the applications in differential geometry, we will usually be interested in
using connections on vector bundles of the form ξ = TM⊗r⊗TM∗⊗s. As it will turn
out, connections on these vector bundles are closely related to possible connections
on TM . Therefore, we temporarily restrict our attention to connections

∇ : X(M)× X(M)→ X(M).

Over a coordinate patch U of M , the defining properties are such that ∇ is com-
pletely determined once one knows its values for X = ∂i and Y = ∂j . Since ∇∂i∂j
is another vector field in M , we write

∇∂i∂j = Γkij∂k. (6.15)

The components Γkij are smooth functions M → R.

Definition 6.2.2. The functions Γkij in Equation (6.15) are called the Christoffel
symbols of the connection ∇.

As it turns out, there are no restrictions besides smoothness on the functions
Γkij .

Proposition 6.2.3. Let Mn be a smooth manifold, and let U be a coordinate patch
on M . There is a bijective correspondence between connections on X(U) and col-
lections of n3 smooth functions Γkij defined on U . The bijection is given by the
formula

∇XY = (Xi∂iY
k + ΓkijX

iY j)∂k. (6.16)
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Proof. First, suppose that ∇ is a connection on X(U) and let X,Y ∈ X(U). Then
by the relations in Definition 6.2.1,

∇XY = ∇(Xi∂i)(Y
j∂j) = Xi∇∂i(Y j∂j)

= Xi(∂iY
j)∂j +XiY j∇∂i∂j = Xi(∂iY

j)∂j +XiY jΓkij∂k.

Equation (6.16) holds by changing the variable of summation from j to k in the
first term of the last expression. Conversely, if Γkij are any smooth functions on U
and if we define an operator X(U)×X(U)→ X(U) by Equation (6.16), it is quick to
check that the three criteria of Definition 6.2.1 hold. Thus, Equation (6.16) defines
a connection on X(U).

At a first pass, the definition of a connection may seem rather burdensome
and unintuitive. However, the component description given in (6.16) has the same
format of something we have already seen. We encountered the same formula in
(2.11) in the context of calculating partial derivatives of the components of a vector
field expressed in reference to a variable frame in Rn. In (2.11), the component
functions Γkij precisely play the role described in (6.15). Consequently, in developing
the concept of connections on the tangent bundle to a manifold, we could have
started from (6.15) and worked back to the properties listed in Definition 6.2.1.
Definition 6.2.1 is therefore simply a coordinate-free description of (6.16), which
arose from a relationship that first appears in the analysis of moving frames in Rn.

It is important to point out that the Lie derivative is not a connection because
it violates the first criterion in Definition 6.2.1, namely the Lie derivative LXY is
only R-linear in X as opposed to C∞(M)-linear.

Example 6.2.4 (The Flat Connection on Rn). In Rn, the vector fields ∂i are
constant, and we identify them with the standard basis vector ~ei. According to
Proposition 6.2.3, a connection exists for any collection of n3 functions. However,
if Y = Y j∂j is a vector field in Rn, our usual way of taking partial derivatives of
vector fields is

∇∂iY =
∂Y j

∂xi
∂j ,

which takes partial derivatives componentwise on Y . By (6.16), we see that Γijk =
0 for all choices of the indices. A connection with this property is called a flat
connection over the coordinate patch.

Even though the symbols Γijk resemble our notation for the components of a
(1, 2)-tensor, a connection is not a tensor field. The reason derives from the fact
that ∂jX

i is not a (1, 1)-tensor field. In fact, from (6.14) and the transformational
properties of a vector field between overlapping coordinate systems on M , we can
deduce the transformational properties of the component functions of a connection.

Proposition 6.2.5. Let ∇ be a connection on X(M). Suppose that U and Ū are
overlapping coordinate patches, and denote by Γijk and Γ̄lmn the component functions
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of ∇ over these patches, respectively. Then over U ∩ Ū , the component functions
are related to each other by

Γ̄lmn =
∂xj

∂x̄m
∂xk

∂x̄n
∂x̄l

∂xi
Γijk −

∂xj

∂x̄m
∂xk

∂x̄n
∂2x̄l

∂xj∂xk
.

Proof. (Left as an exercise for the reader.)

The astute reader might have noticed already from Definition 6.2.1 that a con-
nection is not a tensor field of type (1, 2). If an operator F : X(M)×X(M)→ X(M)
were a tensor field in TM ⊗ TM∗⊗2, then F (X, ) would be linear in C∞(M) and
would not satisfy the third property in Definition 6.2.1.

Example 6.2.6 (Polar Coordinates). We consider the connection ∇ on R2 that
is flat over the Cartesian coordinate system. We calculate the components of ∇
with respect to polar coordinates. We could calculate the Christoffel symbols from
Proposition 6.2.3, but instead, we use Proposition 6.2.5. Set x1 = x, x2 = y, x̄1 = r,
and x̄2 = θ, and denote by Γijk = 0 the Christoffel symbols for the flat connection

on R2 and let Γ̄lmn denote the Christoffel symbols for ∇ in polar coordinates.
By direct calculation,

Γ̄2
12 = −

2∑
j,k=1

∂xj

∂x̄1

∂xk

∂x̄2

∂2x̄2

∂xj∂xk

= −
(
−r cos θ sin θ

∂2θ

∂x2
+ r2 cos2 θ

∂2θ

∂x∂y
− r sin2 θ

∂2θ

∂y∂x
+ r sin θ cos θ

∂2θ

∂y2

)
= −

(
−r sin θ cos θ

2xy

(x2 + y2)2
+ r(cos2 θ − sin2 θ)

y2 − x2

(x2 + y2)2
− r sin θ cos θ

2xy

(x2 + y2)2

)
=

1

r

(
2 sin2 θ cos2 θ + (cos2 θ − sin2 θ)2 + 2 sin2 θ cos2 θ

)
=

1

r
.

It is not hard (though perhaps a little tedious) to show that

Γ̄1
11 = 0, Γ̄1

12 = Γ̄1
21 = 0, Γ̄1

22 = −r,

Γ̄2
11 = 0, Γ̄2

12 = Γ̄2
21 =

1

r
, Γ̄2

22 = 0.

We now wish to extend our discussion of connections on TM to connections on
any tensor bundle TM⊗r ⊗ TM∗⊗s in a natural manner for any pair (r, s). Two
situations are settled: (1) if f ∈ TM0 = C∞(M), then we want ∇Xf = X(f), the
expected directional derivative; and (2) if X ∈ TM , then the connection should
follow the properties described in Definition 6.2.1 and Proposition 6.2.3.

Lemma 6.2.7. Let M be a smooth manifold, and let ∇ be a connection on TM .
For each pair (r, s) ∈ N2, there exists a unique connection on the tensor bundle
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TM⊗r ⊗ TM∗⊗s, also denoted ∇, given by the following conditions for any vector
field X:

1. Consistency: ∇ is equal to the connection given on TM .

2. Directional derivative: ∇Xf = X(f) for all f ∈ C∞(M) = TM0.

3. Contraction product rule: for all covector fields ω and vector fields Y

∇X(ω(Y )) = (∇Xω)(Y ) + ω(∇XY ).

4. Tensor product rule: for all tensor fields A and B of any type,

∇X(A⊗B) = (∇XA)⊗B +A⊗ (∇XB).

We omit the proof of this lemma since it is merely constructive. Property 3
determines uniquely how to define ∇Xω for any covector field and then Property 4
extends the connection to all other types of tensors.

Definition 6.2.8. Let M be a smooth manifold. We call ∇ an affine connection
on TM⊗r ⊗ TM∗⊗s if it satisfies the conditions of Lemma 6.2.7.

6.2.3 Covariant Derivative

Let ∇ be an affine connection on a smooth manifold M . Let F be a tensor field
of type (r, s). Then the mapping ∇F that maps a vector field X to ∇XF is a
C∞(M)-linear transformation from X(M) to the space of tensor fields of type (r, s).
Thus, for each p ∈M , ∇F

∣∣
p

is a linear transformation TpM → TpM
⊗r ⊗ TpM∗⊗s,

so by Proposition 4.4.10,

∇F
∣∣
p
∈ Hom(TpM,TpM

⊗r ⊗ TpM∗⊗s) = TpM
⊗r ⊗ TpM∗⊗(s+1).

Furthermore, since∇F
∣∣
p

varies smoothly with p, then∇F is a smooth section of the

tensor bundle TpM
⊗r ⊗ TpM∗⊗s+1, and hence, it is a tensor field of type (r, s+ 1).

Definition 6.2.9. Let M be a smooth manifold equipped with an affine connection
∇. If F is a tensor field of type (r, s), then the tensor field ∇F of type (r, s+ 1) is
called the covariant derivative of F .

Proposition 6.2.10. Let F be a tensor field of type (r, s) over a manifold M . Sup-
pose that F has components F i1···irj1···js over a coordinate chart U . Then the components
of the covariant derivative ∇F are

F i1···irj1···js;k
def
=

∂F i1···irj1···js
∂xk

+
r∑

α=1

ΓiαkµF
i1···iα−1µiα+1···ir
j1···js

−
s∑

β=1

ΓµkjβF
i1···ir
j1···jβ−1µjβ+1···js . (6.17)
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(Some authors use the notation F i1···irj1···js|k for the components of the covariant

derivative.) The notation in Equation (6.17) is a little heavy, but it should be-
come clear with a few examples. If ω is a 1-form, then ∇ω is a 2-form with local
components given by

∇ω = ωj;kdx
j ⊗ dxk, where ωj;k = ∂kωj − Γµkjωµ.

Similarly, if Aijk are the components of a (2, 1)-tensor field A, then ∇A is a (2, 2)-
tensor field with local components given by

∇A = Aijk;l∂i ⊗ ∂j ⊗ dx
k ⊗ dxl, where Aijk;l =

∂Aijk
∂xl

+ ΓilµA
µj
k + ΓjlµA

iµ
k − ΓµlkA

ij
µ .

6.2.4 Levi-Civita Connection

Proposition 6.2.3 gives considerable freedom in choosing the components of a con-
nection. In the context of Riemannian geometry, it is natural to wish for a con-
nection that is in some sense “nice” with respect to the metric on the manifold.
The following theorem is motivated by results in classical differential geometry of
surfaces discussed in [5, Section 7.2] but is so central to Riemannian geometry that
it is sometimes called the “miracle” of Riemannian geometry [45].

Theorem 6.2.11 (Levi-Civita Theorem). Let (M, g) be a Riemannian manifold.
There exists a unique affine connection ∇ that satisfies the following two conditions:

1. Compatibility: ∇g is identically 0.

2. Symmetry: for all X,Y ∈ X(M), [X,Y ] = ∇XY −∇YX.

A few comments are in order before we prove this theorem. The condition that
∇g = 0 intuitively says that ∇ is flat with respect to the metric. We say that ∇
is compatible with the metric. We leave it as an exercise for the reader (Problem
6.2.12) to show that if we write g = 〈 , 〉, then ∇g is identically 0 (i.e., gij;k = 0 in
local coordinates) if and only if

∇X(〈Y, Z〉) = 〈∇XY, Z〉+ 〈Y,∇XZ〉. (6.18)

Hence, if ∇ is compatible with the metric g, then it satisfies a product rule with
respect to the metric.

By Problem 6.2.14, condition 2 implies that over any coordinate patch of the
manifold, the Christoffel symbols Γijk of the connection ∇ satisfy Γijk = Γikj , which
justifies the terminology of a symmetric connection.

Definition 6.2.12. The connection ∇ described in Theorem 6.2.11 is called the
Levi-Civita connection or the Riemannian connection with respect to the metric g
on M .
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Proof of Theorem 6.2.11. Let X,Y, Z ∈ X(M), and denote g = 〈 , 〉. Since 〈X,Y 〉
is a smooth function on M , then we write ∇Z(〈X,Y 〉) = Z〈X,Y 〉.

Now suppose that such a connection ∇ exists. Then

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉, (6.19)

Y 〈Z,X〉 = 〈∇Y Z,X〉+ 〈Z,∇YX〉, (6.20)

Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉. (6.21)

Adding Equations (6.19) and (6.20) and subtracting Equation (6.21), using the
symmetry of the metric, we get

X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉
= 〈∇XY −∇YX,Z〉+ 〈∇XZ −∇ZX,Y 〉+ 〈∇Y Z −∇ZY,X〉+ 2〈Z,∇YX〉

Using the fact that ∇ is symmetric, we have

X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉
= 〈[X,Y ], Z〉+ 〈[X,Z], Y 〉+ 〈[Y, Z], X〉+ 2〈Z,∇XY 〉,

and thus

〈Z,∇XY 〉 =
1

2
(X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉

−〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y,Z], X〉) . (6.22)

Now a connection on any coordinate patch is uniquely determined by its Christoffel
symbols. However, setting X = ∂i, Y = ∂j and Z = ∂k, (6.22) gives a method
to obtain the Christoffel symbols of ∇ strictly in terms of the metric. Hence, if a
connection as described in the theorem exists, then it is unique.

To show that such a connection exists, simply start by defining ∇ using the
identity in (6.22). Then it is not hard to show that the connection is both symmetric
and compatible with g.

Proposition 6.2.13. Let (Mn, g) be a smooth Riemannian manifold. Then over a
coordinate patch of M with coordinates (x1, . . . , xn), the Christoffel symbols of the
Levi-Civita connection are given by

Γijk =
n∑
l=1

1

2
gil
(
∂gkl
∂xj

+
∂glj
∂xk

− ∂gjk
∂xl

)
, (6.23)

where gij are the entries to the inverse matrix of (gkl).

Proof. Set g = 〈 , 〉, and let X = ∂i, Y = ∂j , and Z = ∂k. By the Levi-Civita
connection defined in (6.22), we have〈

∂k,

n∑
l=1

Γlij∂l

〉
=

1

2
(∂i〈∂j , ∂k〉+ ∂j〈∂k, ∂i〉 − ∂k〈∂i, ∂j〉

− 〈[∂i, ∂j ], ∂k〉 − 〈[∂i, ∂k], ∂j〉 − 〈[∂j , ∂k], ∂i〉).
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However, the smoothness condition implies that [∂i, ∂j ] = 0 for any indices i, j.
Furthermore, by definition, gij = 〈∂i, ∂j〉, so by the linearity of the metric on the
left-hand side,

n∑
l=1

gklΓ
l
ij =

1

2
(∂igjk + ∂jgki − ∂kgij) .

The proposition follows by multiplying (and contracting) by gkl, the components of
the inverse of (gkl).

The reader who is familiar with the differential geometry of surfaces has already
seen Proposition 6.2.13 but in a more limited context. In Section 7.2 of [5], the
authors talk about Gauss’s equations for a regular surface over a parametrization
~X. In that section, one sees that even though the normal vector to a surface is
not an intrinsic property, ~Xij · ~Xk is intrinsic and in fact is given by the Christoffel
symbols of the first kind, which are precisely those in Equation (6.23), though with
n = 2. This is not a mere coincidence. In defining the Levi-Civita connection,
that we might want ∇ to be compatible with g made intuitive sense. However, the
stipulation that we would want ∇ to be symmetric may have seemed somewhat
artificial at the time. It is very interesting that the two conditions in Theorem
6.2.11 lead to Christoffel symbols that match those defined for surfaces in classical
differential geometry.

It is possible to develop a theory of embedded submanifolds Mm of Rn following
the theory of regular surfaces in R3. Mimicking the presentation in [5, Section 7.2],

if ~X is a parametrization of a coordinate patch of M , then, by setting

∂2 ~X

∂xi∂xj
=

m∑
k=1

Γkij
∂ ~X

∂xk
+ (Normal component),

the components Γkij are again the Christoffel symbols of the second kind, given
by the same formula in (6.23). This shows that for submanifolds of a Euclidean
space, the Levi-Civita connection on a Riemannian manifold is essentially the flat
connection on Rn restricted to the manifold.

One of the beauties of the condition that ∇g = 0 is that the process of raising
and lowering indices commutes with taking the covariant derivative associated to the
Levi-Civita connection. In components, this means for example that if Aij = gilAjl,
then

Aij;k = gilAjl;k.

This follows because in components ∇g = 0 identically means that gij;k = 0 for the
Levi-Civita covariant derivative. Then since gijg

jl = δli is a numerical tensor, we
have

0 = δli;k = gij;kg
jl + gijg

jl
;k = gijg

jl
;k,

which implies that gjl;k since gij is invertible. Thus, in our specific example,

Aij;k = gij;kAjl + gijAjl;k = gijAjl;k.
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In this example we raised the index, but it is clear from the product rule and the
fact that ∇g = 0 and ∇g−1 = 0, that this property holds for all tensors.

6.2.5 Divergence Operator

We finish this section with a comment on the divergence operator on tensors intro-
duced in Problem 6.1.13. We will show in Problem 6.2.16 that, using the Levi-Civita
connection, the divergence operator on a vector field X ∈ X(M) can be written as

divX = Xi
;i. (6.24)

This motivates, first, the definition of the divergence of any tensor T of type (r, s),
with r ≥ 1, on a Riemannian manifold. If T has components T i1···irj1···js in a coordinate
system, then the divergence of T , written div T or ∇ · T , is the tensor field of type
(r − 1, s) with component functions

Tαi2···irj1j2···js ;α = ∇∂αT
αi2···ir
j1···js .

Similarly, we can take the divergence with respect to any contravariant index but
we must specify which index. If the index is not specified, we assume the divergence
is taken with respect to the first index.

We can also define the divergence of a covariant index by raising that index first.
Thus, for example, if ω is a 1-form, then

divω = (gijωj);i. (6.25)

Problem 6.2.16 shows that whether one raises the index before or after the covariant
derivative is irrelevant.

Problems

6.2.1. Consider the special case of the manifold M = R3. Let X be the constant vector
field ~v, and let X(R3) be the space of vector fields R3 → R3. Show that the usual
partial derivative D~v applied to X(R3) satisfies conditions 2 and 3 of Definition
6.2.1.

6.2.2. Recall the permutation symbol defined in (4.35). Let M be a three-dimensional
manifold equipped with a symmetric affine connection. Let A and B be vector
fields on M . Show that

εijkAj;i = εijk
∂Aj
∂xi

and that
(εijkAjBk);i = εijkAj;iBk − εijkAkBj;i.

If M = R3, explain how the latter formula is equivalent to ~∇ · ( ~A × ~B) = (~∇ ×
A) · ~B − ~A · (~∇× ~B).

6.2.3. Let ∇ be a connection on a vector bundle ξ over a smooth manifold M . Prove
that if X = X̃ and Y = Ỹ over a neighborhood of p, then

∇XY
∣∣
p

= ∇X̃ Ỹ
∣∣
p
.
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6.2.4. Let ∇ be a connection on a vector bundle ξ over a smooth manifold M . Use the
result of Problem 6.2.3 to show that ∇XY

∣∣
p

depends only on Xp and the values

of Y in a neighborhood of p.

6.2.5. Prove Proposition 6.2.5.

6.2.6. Prove that the Levi-Civita connection for the Euclidean space Rn is such that
∇XY = X(Y k)∂k.

6.2.7. Consider the open first quadrant U = {(u, v) ∈ R2 |u > 0, v > 0}, and equip U
with the metric

(gij) =

 1 1√
u2+v2

1√
u2+v2

1
u2

 .

Calculate the Christoffel symbols for the associated Levi-Civita connection.

6.2.8. Let M be a two-dimensional manifold, and suppose that on a coordinate patch
(x1, x2), the metric is of the form

g =

(
f(r) 0

0 f(r)

)
, where r2 = (x1)2 + (x2)2.

Find the function f(r) that gives a flat connection.

6.2.9. Consider the cylinder in S2 × R in R4 given by the parametrization

F (u1, u2, u3) = (cosu1 sinu2, sinu1 sinu2, cosu2, u3)

and equip it with the metric induced from R4. Over the open coordinate patch
U = (0, 2π) × (0, π) × R, calculate the metric coefficients and the Christoffel
symbols for the Levi-Civita connection.

6.2.10. Consider the unit sphere S3 as a submanifold of R4 with the induced metric.
Consider the coordinate patch on S3 given by the parametrization in 6.1.14(a).
Calculate one nonzero Christoffel symbol Γijk. (It would be quite tedious to calcu-
late all of the symbols since there could be as many as 27 of them.) [Hint: Show
that the conditions of Problem 6.2.13 apply to this coordinate patch and use the
result.]

6.2.11. Finish calculating directly the Christoffel symbols in Example 6.2.6.

6.2.12. Let (M, g) be a Riemannian manifold. Prove that a connection ∇ satisfies ∇g = 0
identically if and only if (6.18) holds where g = 〈 , 〉.

6.2.13. Let (M, g) be a Riemannian manifold and let U be an orthogonal coordinate patch,
i.e., gij = 0 if i 6= j over U . Let ∇ be the Levi-Civita connection on M .

(a) Prove that on U the Christoffel symbols Γkij = 0 unless k = i, i = j, or k = j.

(b) Show that ∇ can be specified on U by 2n2 − n smooth functions, i.e., there
are at most that many distinct nonzero Christoffel symbols.

(c) Show that

Γkii = ±1

2
gkk

∂gii
∂xk

, and Γkik =
1

2
gkk

∂gkk
∂xi

where there is no summation in either of these formulas and where the sign
of ± is +1 if i = k and −1 if i 6= k.
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6.2.14. Let M be a smooth manifold, and let ∇ be a connection on TM . Define a map
τ : X(M)× X(M)→ X(M) by

τ(X,Y ) = ∇XY −∇YX − [X,Y ].

(a) Show that τ is a tensor field of type (1, 2). This is called the torsion tensor
associated to the connection ∇.

(b) Prove that the components of τ with respect to a basis are τkij = Γkij − Γkji.

(c) The connection ∇ is called symmetric if its torsion vanishes identically. De-
duce that ∇ is symmetric if and only if over every coordinate patch U , the
component functions satisfy Γkij = Γkji.

6.2.15. Let ∇ be an affine connection on M . Prove that ∇ + A is an affine connection,
where A is a (1, 2)-tensor field. Conversely, prove that every affine connection is
of the form ∇+A for some (1, 2)-tensor field A.

6.2.16. Consider the divergence operator introduced in Problem 6.1.13 and discussed at
the end of this section.

(a) Show from the definition in Problem 6.1.13 that

divX = Xi
;i,

where we’ve used the Levi-Civita connection to take the covariant derivative.

(b) Consider the definition in (6.25) for the divergence on a 1-form. Show that

divω = (gijωj);i = gijωj;i.

6.2.17. Let f ∈ C∞(M) be a smooth function on a manifold M equipped with any affine
connection ∇. Show that

f;j;i − f;i;j = −τkijf;k,

where τ is the torsion tensor from Exercise 6.2.14. Conclude that if ∇ is symmet-
ric, then f;i;j = f;j;i.

6.2.18. Let M be a smooth manifold, let η ∈ Ω2(M) be a 2-form, and let ∇ be any
symmetric connection on M . Show that in any coordinate system,

cαβγ = ηαβ;γ + ηβγ;α + ηγα;β = ∂γηαβ + ∂αηβγ + ∂βηγα. (6.26)

Show that if we write η = 1
2
ηαβdx

α ∧ dxβ , then the left-hand side of (6.26) is the

component of dη in the basis dxα ∧ dxβ ∧ dxγ in the sense that

dω = cαβγdx
α ∧ dxβ ∧ dxγ ,

where we sum over all α, β, γ = 1, . . . , n.

6.2.19. Let (M, g) be a Riemannian metric with Levi-Civita connection ∇. Show that
over every coordinate patch,

∂(ln
√

det g)

∂xk
= Γjjk,

where one sums over j on the right-hand side. [Hint: Use a result in Problem
2.3.12.]
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6.2.20. Let ∇ be an affine connection on M , and let U be a coordinate patch on M .

(a) Show that there exists a unique matrix of 1-forms ωji defined on U such that

∇X∂i = ωji (X)∂j

for all X ∈ X(M). (The matrix ωji is called the connection 1-forms for this
coordinate system.)

(b) Suppose that (M, g) is a Riemannian manifold. Show that ∇ is compatible
with the metric g if, over any coordinate system U ,

gjkω
k
i + gikω

k
j = dgij .

6.3 Vector Fields along Curves; Geodesics
Suppose we think of the trajectory of a particle on a manifold M . One would
describe it as curve γ(t) on M . Furthermore, in order to develop a theory of
dynamics on manifolds, one would need to be able to make sense of the acceleration
of the curve or of higher derivatives of the curve. In this section, we define vector
fields on curves on manifolds. Once we define a covariant derivative of a vector
field on a curve, we can then discuss parallel vector fields on the curve and the
acceleration field along the curve. We then show that defining a geodesic as a curve
whose acceleration is identically 0 leads to the classical understanding of a geodesic
as a path of minimum length in some sense.

6.3.1 Vector Fields along Curves

Definition 6.3.1. Let M be a smooth manifold, and let γ : I → M be a smooth
curve in M , where I is an interval in R. We call V a vector field along γ if for each
t ∈ I, V (t) is a tangent vector in Tγ(t)M and if V defines a smooth map I → TM .
We denote by Xγ(M) the set of all smooth vector fields on M along γ.

A vector field along a curve is not necessarily the restriction of a vector field
on M to γ(I). For example, whenever a curve self-intersects, γ(t0) = γ(t1), with
t0 6= t1, but since V (t0) 6= V (t1) there exists no vector field Y on M such that
V (t) = Yγ(t) for all t ∈ I (see Figure 6.3). If V is the restriction of a vector field Y ,
then we say that V is induced from Y or that V extends to Y .

Proposition 6.3.2. Let M be a smooth manifold with an affine connection ∇,
and let γ : I → M be a smooth curve on M . There exists a unique operator
Dt : Xγ(M)→ Xγ(M) (also denoted by d

dt) such that:

1. Dt(V +W ) = DtV +DtW for all V,W ∈ Xγ(M).

2. Dt(fV ) = df
dtV + fDtV for all V ∈ Xγ(M) and all f ∈ C∞(I).
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γ

Figure 6.3: A nonextendable vector field on a curve.

3. If V extends to a vector field Y ∈ X(M), then DtV = ∇γ′(t)Y .

Note that the last condition makes sense by the fact that ∇XY
∣∣
p

only depends

on the values of Y in a neighborhood of p and on the value of Xp (see Exercise
6.2.4).

Before proving Proposition 6.3.2, we introduce the dot notation for derivatives.
The only purpose is to slightly simplify our equations’ notation. If x(t) is a real-
valued function of a real variable, we write

ẋ(t)
def
= x′(t) =

dx

dt
and ẍ(t)

def
= x′′(t) =

d2x

dt2
.

The dot notation is common in physics in the context of taking derivatives with
respect to time. Therefore, ẋ is usually used when one uses the letter t as the only
independent variable for the function x.

Proof of Proposition 6.3.2. Let us first suppose that an operator Dt with Properties
1–3 exists. Let U be a coordinate patch of M with coordinates x = (x1, . . . , xn).
For any V ∈ Xγ(M), write V = vi∂i where vi ∈ C∞(I) are smooth functions over
I. By Conditions 1 and 2 we have

DtV = v̇j∂j + vjDt(∂j).

Now if we write γ(t) = (γ1(t), . . . , γn(t)) for the coordinate functions of γ over U ,
then γ′(t) =

∑n
i=1 γ̇

i∂i. Thus, by Condition 3,

Dt(∂j) = ∇γ′(t)∂j =
n∑
i=1

γ̇i∇∂i∂j = γ̇iΓkij∂k.

Hence, we deduce the following formula for DtV in coordinates over U :

DtV =

(
dvj

dt
∂j

)
+

(
Γkij

dγi

dt
vj∂k

)
=
(
v̇k + Γkij γ̇

ivj
)
∂k. (6.27)
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Equation (6.27) shows that if there does exist an operator satisfying Conditions
1–3, then the operator is unique. To prove existence over all of M , we define Dα

t by
(6.27) on each coordinate chart Uα. However, since Dα

t is unique on each coordinate

chart, then Dα
t = Dβ

t over Uα ∩Uβ if Uα and Uβ are overlapping coordinate charts.
Hence, as α ranges over all coordinate charts in the atlas, the collection of operators
Dα
t extends to a single operator Dt over all of M .

Note that Equation (6.27) in the above proof gives the formula for Dt over a
coordinate patch of M . In particular, the expression in the parentheses on the right
gives the component functions (in the index k) for DtV .

Definition 6.3.3. The operator Dt : Xγ(M)→ Xγ(M) defined in Proposition 6.3.2
is called the covariant derivative along γ.

In the context of Riemannian manifolds, the covariant derivative along a curve
has the following interesting property.

Proposition 6.3.4. Let γ be a smooth curve on a Riemannian manifold (M, g)
equipped with the Levi-Civita connection. Write g = 〈 , 〉. Let V and W be vector
fields along γ. Then

d

dt
〈V,W 〉 = 〈DtV,W 〉+ 〈V,DtW 〉.

Proof. (Left as an exercise for the reader. See Problem 6.3.9.)

The notion of a vector field along a curve (in a manifold M) leads us immediately
to two useful notions: parallel transport and acceleration.

Definition 6.3.5. Let M be a smooth manifold with an affine connection ∇, and
let γ : I →M be a smooth curve on M . A vector field V along γ is called parallel
if DtV = 0 identically.

The existence of parallel vector fields on a curve amounts to the solvability of a
system of differential equations.

Proposition 6.3.6 (Parallel Transport). Let M be a smooth manifold with an
affine connection ∇, and let γ : I → M be a smooth curve on M where I, is a
compact interval of R. Let t0 ∈ I, set p = γ(t0), and let V0 be any vector in TpM .
There exists a unique vector field of M along γ that is parallel and has V (t0) = V0.

Proof. Suppose first that M is a manifold that is covered with a single coordinate
system x = (x1, . . . , xn). By (6.27), the condition DtV = 0 means that

v̇k + Γkij γ̇
ivj = 0 for all k = 1, . . . , n. (6.28)

The values Γkij depend on the position of γ(t) as do the derivatives γ̇i(t), but nei-

ther of these depend on the functions vi(t). Hence, (6.28) is a system of linear,
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p

V0

q

Figure 6.4: Path dependence of parallel transport.

homogeneous, ordinary, differential equations in the n functions vi(t). By a stan-
dard result of ordinary differential equations (see [18, Appendix A] or [3, Section
8]), given an initial value t = t0 and initial conditions vi(t0) = vi0, there exists a
unique solution to the system of equations satisfying these initial conditions. (The
particular form of the nonautonomous system from (6.28) and the hypothesis that I
is compact imply that the system satisfies the Lipschitz condition, which establishes
the uniqueness of the solutions.) Hence V exists and is unique.

Now suppose that M cannot be covered by a single coordinate chart. We only
need to consider coordinate charts that cover γ(I). But since γ(I) is compact, we
can cover it with only a finite number of coordinate charts. However, on each of
these charts, we have seen that there is a unique parallel vector field, as described.
By identifying the vector fields over each coordinate chart, we obtain a single vector
field over all of γ that is parallel to V0.

Definition 6.3.7. The vector field V in Proposition 6.3.6 is called the parallel
transport of V0 along γ.

It is important to note that the parallel transport of V0 from a point p to a
point q along two different paths generally results in different vectors in TqM . In
Figure 6.4, the tangent vector V0 at p produces different tangent vectors at q when
transported along the black curve versus along the gray curve. One says that parallel
transport is nonintegrable. However, it is not hard to see, either geometrically or
by solving Equation (6.28), that in Rn parallel transport does not depend on the
path. Therefore, this nonintegrability of parallel transport characterizes the notion
of curvature, as we will see in the following section.
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As a second application of the covariant derivative along a curve, we finally
introduce the notion of acceleration of a curve on a manifold.

Definition 6.3.8. Let M be a smooth manifold with an affine connection and let
γ : I → M be a smooth curve on M . For all t ∈ I, we define the acceleration of γ
on M as the covariant derivative Dtγ

′(t) of γ′(t) along γ.

Example 6.3.9. With the definition of the acceleration, we are in a position to be
able to phrase Newton’s second law of motion on a manifold. In R3, Newton’s law
states that if a particle has constant mass m and is influenced by the exterior forces
~Fi, then the particle follows a path ~x(t) that satisfies

∑
i
~Fi = m~x′′. Translated into

the theory of manifolds, if a force (or collection of forces) makes a particle move
along some curve γ, then writing F as the vector field along γ that describes the
force, γ must satisfy

mDtγ
′(t) = F (t).

The acceleration is itself a vector field along the curve γ so the notions of all the
higher derivatives are defined as well.

6.3.2 Geodesics

Intuitively speaking, a geodesic on a manifold is a curve that generalizes the notion
of a straight line in Rn. This seemingly simple task is surprisingly difficult. Only
now do we possess the necessary background to do so. Though everyone has an
intuitive sense of what a straight line is, even Euclid’s original definitions for a
straight line do not satisfy today’s standards of precision. We introduce geodesics
using two different approaches, each taking a property of straight lines in Rn and
translating it into the context of manifolds.

Definition 6.3.10. Let M be a smooth manifold with an affine connection ∇.
A curve γ : I → M is called a geodesic if its acceleration is identically 0, i.e.,
Dtγ

′(t) = 0.

Note that this definition does not require a metric structure on M , simply an
affine connection. We should also observe that this definition relies on a specific
parametrization of γ. The definition is modeled after the fact that the natural
parametrization of a straight line in Rn by ~γ(t) = ~p+ t~v for constant vectors ~p and
~v satisfies ~γ ′′(t) = ~0. However, the curve ~x(t) = ~p + t3~v traces out the same set
of points but ~x ′′(t) = 3t2~v, which is not identically 0. Despite this, we can leave
Definition 6.3.10 as it is and keep in mind the role of the parametrization.

Proposition 6.3.11 (Geodesic Equations). Let M be a smooth manifold equipped
with an affine connection, and let x = (x1, . . . , xn) be a system of coordinates on
a chart U . A curve γ is a geodesic on U if and only if the coordinate functions
γ(t) = (γ1(t), . . . , γn(t)) satisfy

d2γi

dt2
+ Γijk(γ(t))

dγj

dt

dγk

dt
= 0 for all i. (6.29)
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Proof. This follows immediately from (6.27).

Equation (6.29) for a geodesic is a second-order system of ordinary differential
equations in the functions γi(t). Setting vi(t) = γ̇i, we can write (6.29) as a first-
order system in the 2n functions γi and vi by{

γ̇i = vi,

v̇i = −Γijk(γ(t))vjvk.
(6.30)

This system is now first-order and non-linear but autonomous (does not depend
explicitly on t). Standard theorems in differential equations [3, Theorems 7.3, 7.4]
imply the following foundational result.

Theorem 6.3.12. Let M be a manifold with an affine connection. For any p ∈M ,
for any V ∈ TpM , and for any t0 ∈ R, there exists an open interval I containing t0
and a unique geodesic γ : I →M satisfying γ(t0) = p and γ′(t0) = V .

This theorem shows the existence of the curve γ by solving (6.29) over a coordi-
nate neighborhood. In this case, the interval I may be limited by virtue of the fact
that γ(I) ⊂ U . It may be possible to extend γ over other coordinate patches. If
γ(t1) for some t1 ∈ I is in another coordinate patch Ū , then we can uniquely extend
the geodesic over Ū as going through the point γ(t1) with velocity γ′(t1). We define
a maximal geodesic as a geodesic γ : I → M whose domain interval cannot be
extended. If γ is a maximal geodesic with γ(t0) = p and γ′(t0) = V for some t0 ∈ I,
we call γ the geodesic with initial point p and initial velocity V ∈ TpM , and we
denote it by γV .

Another defining property of a straight line in Rn is that the shortest path
between two points is a straight line segment. If we use the concept of distance, we
need a metric. Let (M, g) be a Riemannian metric equipped with the Levi-Civita
connection, and let γ be a geodesic on M . By Proposition 6.3.4,

d

dt
〈γ′(t), γ′(t)〉 = 2〈Dtγ

′(t), γ′(t)〉 = 0,

so we can conclude the following initial result.

Proposition 6.3.13. A geodesic on a Riemannian manifold has constant speed.

Now on a Riemannian manifold, an alternate approach to defining geodesics
is to call a geodesic a path of shortest length between two points. However, this
definition is not quite good enough, as Figure 6.5 indicates. Both curves connecting
p and q are geodesics, but one is shorter than the other. To be more precise, we call
γ a geodesic connecting p1 and p2 if there is an interval [t1, t2] such that γ(t1) = p1,
γ(t2) = p2, and γ minimizes the arclength integral

L =

∫ t2

t1

√
gij(γ(t))γ̇i(t)γ̇j(t) dt. (6.31)
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p

q

Figure 6.5: Two geodesics on a cylinder.

Techniques of calculus of variations discussed in Appendix B produce the differ-
ential equations for the curve γ that minimizes the arclength. However, similar to
optimization methods in regular calculus, the solutions we obtain are local minima,
which means in our case that there are no small deviations of γ that produce a
shorter path between p and q. It is tedious to show, but Theorem B.3.1 implies
that a curve γ that minimizes the integral in (6.31) must satisfy

d2γi

ds2
+ Γijk

dγj

ds

dγk

ds
= 0, (6.32)

where s is the arclength of γ. Proposition 6.3.11 and Proposition 6.3.13 show
that defining a geodesic as having no acceleration is equivalent to defining it as
minimizing length in the above sense.

Example 6.3.14 (Sphere). Consider the parametrization of the sphere given by

~X(x1, x2) = (R cosx1 sinx2, R sinx1 sinx2, R cosx2),

where x1 is the longitude θ in spherical coordinates and x2 is the angle ϕ down
from the positive z-axis. In Example 6.1.14, we determined the coefficients of the
metric tensor. Then it is easy to calculate the Christoffel symbols Γijk for the sphere.
Equations (6.32) for geodesics on the sphere become

d2x1

ds2
+ 2 cot(x2)

dx1

ds

dx2

ds
= 0,

d2x2

ds2
− sin(x2) cos(x2)

(
dx1

ds

)2

= 0.

(6.33)
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A geodesic on the sphere is now just a curve ~γ(s) = ~X(x1(s), x2(s)) where
x1(s) and x2(s) satisfy the system of differential equations in (6.33). Taking a first
derivative of ~γ(s) gives

~γ′(s) = R

(
− sinx1 sinx2 dx

1

ds
+ cosx1 cosx2 dx

2

ds
,

cosx1 sinx2 dx
1

ds
+ sinx1 cosx2 dx

2

ds
,− sinx2 dx

2

ds

)
,

and the second derivative, after simplification using (6.33), is

d2~γ

ds2
= −

[
sin2(x2)

(
dx1

ds

)2

+

(
dx2

ds

)2 ]
~γ(s).

However, the term R2

(
sin2(x2)

(
dx1

ds

)2

+
(
dx2

ds

)2
)

is the sphere metric applied to

((x1)′(s), (x2)′(s)),

which is precisely the square of the speed of ~γ(s). However, since the geodesic
is parametrized by arclength its speed is identically 1. Thus, (6.33) leads to the
differential equation

~γ′′(s) +
1

R2
~γ(s) = 0.

Standard techniques with differential equations allow one to show that all solutions
to this differential equation are of the form

~γ(s) = ~a cos
( s
R

)
+~b sin

( s
R

)
,

where ~a and ~b are constant vectors. Note that ~γ(0) = ~a and that ~γ′(0) = 1
R
~b.

Furthermore, to satisfy the conditions that ~γ(s) lie on the sphere of radius R and

be parametrized by arclength, we deduce that ~a and ~b satisfy

‖~a‖ = R, ‖~b‖ = R, and ~a ·~b = 0.

Therefore, we find that ~γ(s) traces out a great arc on the sphere that is the inter-
section of the sphere and the plane through the center of the sphere spanned by
~γ(0) and ~γ′(0).

There are many properties of lines that no longer hold for geodesics on manifolds.
For example, lines in Rn are (“obviously”) simple curves, i.e., they do not intersect
themselves. In Example 6.3.14, we showed that the geodesics on a sphere are arcs
of great circles (equators). In this case, a maximal geodesic is a whole circle that,
as a closed curve, is still simple. In contrast, Figure 6.6 of a distorted sphere shows
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Figure 6.6: A nonclosed geodesic on a manifold.

only a portion of a geodesic that is not closed and intersects itself many times. The
problem of finding closed geodesics on surfaces illustrates how central the study of
geodesics is in current research: in 1917, Birkhoff used techniques from dynamical
systems to show that every deformed sphere has at least one closed geodesic [10];
in 1929, Lusternik and Schnirelmann improved upon this and proved that there
always exist three closed geodesics on a deformed sphere [37]; and in 1992 and
1993, Franks and Bangert ([23] and [7]) proved that there exist an infinite number
of closed geodesics on a deformed sphere. However, a proof of the existence of a
closed geodesic would not necessarily help us construct one for any given surface.

We end this section by presenting the so-called exponential map. Theorem 6.3.12
allows us to define a map, for each p ∈ M , from the tangent plane TpM to M by
mapping V to a fixed distance along the unique geodesic γV .

Definition 6.3.15. Let p be a point on a Riemannian manifold (M, g). Let Dp be
the set of tangent vectors V ∈ TpM such that the geodesic γV , with γV (0) = p, is
defined over the interval [0, 1]. The exponential map, written expp, is the function

expp : Dp −→M,

V 7−→ γV (1).

Lemma 6.3.16 (Scaling Lemma). Let V ∈ TpM , and let c ∈ R>0. Suppose that
γV (t) is defined over (−δ, δ), with γV (0) = p. Then γcV (t) is defined over the
interval (−δ/c, δ/c), and

γcV (t) = γV (ct).

Proof. (Left as an exercise for the reader. See Problem 6.3.10.)

By virtue of the scaling lemma, we can write for the geodesic through p along
V ,

γV (t) = expp(tV ). (6.34)
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Proposition 6.3.17. For all p ∈M , there exists a neighborhood U of p on M and
a neighborhood D of the origin in TpM such that expp : D → U is a diffeomorphism.

Proof. The differential of expp at 0 is a linear transformation d(expp)0 : T0(TpM)→
TpM . However, since TpM is a vector space, then the tangent space T0(TpM) is
naturally identified with TpM . Thus, d(expp)0 is a linear transformation on the
vector space TpM . The proposition follows from the Inverse Function Theorem
(Theorem 1.4.5) once we show that d(expp)0 = (expp)∗ is invertible.

We show this indirectly using the chain rule. Let V be a tangent vector in
V ∈ TpM , and let f : (−δ, δ)→ TpM be the curve f(t) = tV . The function expp ◦f
is a curve on M . Then

d(expp ◦f)0 =
d expp(tV )

dt

∣∣∣
t=0

=
dγV (t)

dt

∣∣∣
t=0

= V.

However, by the chain rule, we also have

d(expp ◦f)0 = d(expp)0df0 = (expp)∗V.

Hence, for all V ∈ TpM , we have (expp)∗V = V . Hence, (expp)∗ is in fact the
identity transformation so it is invertible, and the proposition follows.

Now if {eµ} is any basis of TpM , the exponential map sets up a coordinate
system on a neighborhood of p on M defined by

expp(X
µeµ).

We call this the normal coordinate system at p with respect to {eµ}. If q is a point
in the neighborhood U , as in Proposition 6.3.17, then q is the image of a unique
tangent vector Xq under expp. The coordinates of q are Xµ

q .
Interestingly enough, the coefficients of the Levi-Civita connection vanish at p

in the normal coordinate system Xµ at p. Consider a geodesic on M from p to q
given by c(t) = expp(tX

µ
q eµ), which in coordinates is just Xµ(t) = tXµ

q . From the
geodesic equation,

d2Xµ

dt2
+ Γµλν

dXλ

dt

dXν

dt
= Γµλν(tXi

q)X
λ
qX

ν
q .

Setting t = 0, we find that Γµλν(0)Xλ
qX

ν
q = 0 for any q. Thus, by appropriate choices

of q, we determine that Γµλν(0) = 0, which are the components of the Levi-Civita
connection at p in the normal coordinate system.

The exponential map allows us to redefine some common geometric objects in
Rn in the context of Riemannian manifolds. Notice first that by Proposition 6.3.13,
the arclength from p to expp(V ) along γV (t) is ‖V ‖p. Now, let r > 0 be a positive
real number and Br(0) be the open ball of radius r centered at the origin in TpM . If
r is small enough that Br(0) is contained in the neighborhood U from Proposition



6.3. Vector Fields along Curves; Geodesics 289

6.3.17, then we call expp(Br(0)) the geodesic ball of radius r centered at p. If
the sphere Sr(0) of radius r centered at 0 in TpM is contained in U , then we call
expp(Sr(0)) the geodesic sphere of radius r centered at p.

Problems

6.3.1. Let S be a regular surface in R3, and let ~X be a parametrization of a coordinate
chart U of S. Let ∇ be the Levi-Civita connection on S with respect to the
first fundamental form metric. Let ~γ(t) = γ(t) be a curve on S. Prove that the
acceleration Dtγ

′(t) is the orthogonal projection of ~γ′′(t) onto the tangent plane
to S at γ(t).

6.3.2. Consider the torus parametrized by

~X(u, v) = ((a+ b cos v) cosu, (a+ b cos v) sinu, b sin v),

where a > b. Show that the geodesics on a torus satisfy the differential equation

dr

du
=

1

Cb
r
√
r2 − C2

√
b2 − (r − a)2,

where C is a constant and r = a+ b cos v.

6.3.3. Find the differential equations that determine geodesics on a function graph z =
f(x, y).

6.3.4. If ~X : U → R3 is a parametrization of a coordinate patch on a regular surface S
such that g11 = E(u), g12 = 0, and g22 = G(u), show that

(a) the u-parameter curves (i.e., over which v is a constant) are geodesics;

(b) the v-parameter curve u = u0 is a geodesic if and only if Gu(u0) = 0;

(c) the curve ~x(u, v(u)) is a geodesic if and only if

v = ±
∫

C
√
E(u)√

G(u)
√
G(u)− C2

du,

where C is a constant.

6.3.5. Pseudosphere. Consider a surface with a set of coordinates (u, v) defined over the
upper half of the uv-plane, i.e., on H = {(u, v) ∈ R2 | v > 0}, such that the metric
tensor is

(gij) =

(
1 0
0 e2v

)
.

Prove in this coordinate system that all the geodesics appear in the H as vertical
lines or semicircles with center on the u-axis.

6.3.6. Let (M, g) be a two-dimensional Riemannian manifold. Suppose that on a co-
ordinate patch U with coordinates x = (x1, x2), the metric is given by g11 = 1,
g22 = (x2)2, and g12 = g21 = 0. Show that the geodesics of M on U satisfy the
existence and uniqueness of

x1 = a sec(x2 + b).
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Figure 6.7: Mercator projection.

6.3.7. The Mercator projection used in cartography maps the globe (except the north
and south poles, S2−{(0, 0, 1), (0, 0,−1)}) onto a cylinder, which is then unrolled
into a flat map of the earth. However, one does not necessarily use the radial
projection as shown in Figure 6.7. Consider a map f from (x, y) ∈ (0, 2π)× R to
the spherical coordinates (θ, φ) ∈ S2 of the form (θ, φ) = f(x, y) = (x, h(y)).

(a) Recall that the usual Euclidean metric on S2 is

g =

(
sin2 φ 0

0 1

)
.

The Mercator projection involves the above function f(x, y), such that h(y)
gives a pull-back f∗(g) that is a metric with a line element of the form ds2 =
G(y)dx2 + G(y)dy2. Prove that h(y) = 2 cot−1(ey) works, and determine
the corresponding function G(y).

(b) Show that the geodesics on R2 equipped with the metric obtained from this
h(y) are of the form

sinh y = α sin(x+ β)

for some constants α and β.

6.3.8. Consider the Poincaré ball BnR from Problem 6.1.12. Prove that the geodesics
in the Poincaré ball are either straight lines through the origin or circles that
intersect the boundary ∂BnR perpendicularly. (The Poincaré ball is an example of
a hyperbolic geometry. In this geometry, given a “straight line” (geodesic) L and
a point p not on L, there exists a nonempty continuous set of lines (geodesics)
through p that do not intersect L.)

6.3.9. Prove Proposition 6.3.4. [Hint: Use (6.27) and the fact that since the Levi-Civita
connection is compatible with g, then gij;k = 0.]

6.3.10. Prove Lemma 6.3.16.

6.3.11. Consider the usual sphere S2 of radius R in R3. In the coordinate patch where
(θ, φ) ∈ (0, 2π) × (0, π), the Christoffel symbols are given in (6.33) of Example



6.4. Curvature Tensor 291

BnR

Figure 6.8: A few geodesics in the Poincaré disk.

6.3.14, where we use the coordinates (θ, φ) = (x1, x2). Consider a point p on
the sphere given by P = (θ0, φ0). Let V0 be a vector in TpS2 with coordinates
(V 1

0 , V
2
0 ).

(a) Show that the stated Christoffel symbols used in (6.33) are correct.

(b) Calculate the coordinates of the parallel transport V (t) of V0 along the curve
γ(t) = (θ0, t), using the initial condition t0 = φ0. Show that the length of
the tangent vectors V (t) does not change.

(c) Calculate the coordinates of the parallel transport V (t) of V0 along the curve
γ(t) = (t, φ0), using the initial condition t0 = θ0. Show that ‖V (t)‖2 is
constant.

6.3.12. Show that the locus of a geodesic on the n-sphere Sn (as a submanifold of Rn+1)
is the intersection of Sn with a 2-plane that passes through the sphere’s center.

6.4 Curvature Tensor
In the study of curves and surfaces in classical differential geometry, the shape
operator and the curvature tensor play a central role. We approach the notion of
curvature on Riemannian manifolds in two different but equivalent ways.

6.4.1 Coordinate-Dependent

The first approach to curvature involves investigating mixed, partial, covariant
derivatives. For smooth functions in Rn, mixed, second-order partial derivatives
are independent of the order of differentiation. Problem 6.2.17 showed that if a
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connection ∇ on M is not symmetric, the same result is no longer true for the
mixed, covariant, partial derivatives of smooth functions on a manifold. We found
that if f : M → R, then over a given coordinate path U , one has

f;j;i − f;i;j = −τkijf;k,

where τ is the torsion tensor associated to ∇ (see Problem 6.2.14), and the coordi-
nate components are

τkij = Γkij − Γkji. (6.35)

If we repeat the exercise with a vector field instead of a smooth function, a new
phenomenon appears.

Proposition 6.4.1. Let M be a smooth manifold equipped with an affine connection
∇. Let U be a coordinate patch on M and let X be a vector field defined over U .
Then, in components, the mixed covariant derivatives satisfy

X l
;j;i −X l

;i;j = Kl
ijkX

k − τkijX l
;k

where

Kl
ijk =

∂Γljk
∂xi

− ∂Γlik
∂xj

+ ΓhjkΓlih − ΓhikΓljh. (6.36)

Proof. This is a simple matter of calculation. Starting from X l
;i = ∂X l/∂xi+ΓlihX

h,
we obtain

X l
;i;j =

∂X l
;i

∂xj
+ ΓljkX

k
;i − ΓkjiX

l
;k

=
∂

∂xj

(
∂X l

∂xi
+ ΓlikX

k

)
+ Γljk

(
∂Xk

∂xi
+ ΓkimX

m

)
− ΓkjiX

l
;k

=
∂2Xi

∂xk∂xj
+
∂Γlik
∂xj

Xk + Γljk
∂Xk

∂xi
+ ΓljmΓmikX

k − ΓkjiX
l
;k

After collecting and canceling like terms, we find that

X l
;j;i −X l

;i;j =

(
∂Γljk
∂xi

− ∂Γlik
∂xj

+ ΓhjkΓlih − ΓhikΓljh

)
Xk − (Γkij − Γkji)X

l
;k.

The proposition follows.

This result is particularly interesting because of the following proposition.

Proposition 6.4.2. The collection of functions Ki
jkl defined in Equation (6.36)

form the components of a tensor of type (1, 3).

Proof. (This proposition relies on the coordinate-transformation properties of the
component functions Γijk given in Proposition 6.2.5. The proof is left as an exercise
for the reader.)
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The functions Ki
jkl are the components of the so-called curvature tensor asso-

ciated to the connection ∇.

The components of the curvature tensor came into play when we considered
the mixed, covariant, partial derivatives of a vector field instead of just a smooth
function. It is natural to ask whether some new quantity appears when one considers
the mixed covariant partials of other tensors. Surprisingly, the answer is no.

Theorem 6.4.3 (Ricci’s Identities). Let T i1···irj1···js be the components of a tensor field
of type (r, s) over a coordinate patch of a manifold equipped with a connection ∇.
Then the mixed, covariant, partial derivatives differ by

T i1···irj1···js;k;h − T
i1···ir
j1···js;h;k =

r∑
α=1

Kiα
hkmT

i1···iα−1miα+1···ir
j1···js

−
s∑

β=1

Km
hkjβ

T i1···irj1···jβ−1mjβ+1···js − τ
m
hk T

i1···ir
j1···js;m.

Over the coordinate patch U , the components of the curvature tensor satisfy the
Bianchi identities.

Proposition 6.4.4 (Bianchi Identities). With Ki
jkl defined as in (6.36) and τ ijk

defined as in Equation (6.35), then

Kl
ijk +Kl

jki +Kl
kij = −τ lij;k − τ ljk;i − τ lki;j − τ lim τmjk − τ ljm τmki − τ lkm τmij

and

Kl
ijk;h +Kl

ikh;j +Kl
ihj;k = −τmjkKl

imh − τmkhKl
imj − τmhj Kl

imk.

The second Bianchi identity is also called the differential Bianchi identity.

Proof. (Left as an exercise for the reader.)

In particular, if ∇ is a symmetric connection, the Bianchi identities reduce to

first identity: Kl
ijk +Kl

jki +Kl
kij = 0, (6.37)

second identity: Kl
ijk;h +Kl

ikh;j +Kl
ihj;k = 0 (6.38)

for any values of any of the indices.

(We need to mention at this point that some texts vary in how they assign mean-
ing to the various indices of the Riemann curvature tensor and tensors associated
to it. Because of the antisymmetry properties of the curvature tensor, the variances
only lead to a possible difference in sign between component functions alternately
defined. Fortunately, the coordinate-free definition for the curvature tensors seems
to be uniformly accepted across the literature.)
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6.4.2 Coordinate-Free

A second and more modern approach to curvature on a Riemannian manifold (M, g)
defines the curvature tensor in a coordinate-free way, though still from a perspective
of analyzing repeated covariant differentiation. If X, Y , and Z are vector fields on
M , the difference in repeated covariant derivatives is

∇X∇Y Z −∇Y∇XZ. (6.39)

Even with general vector fields in Rn, (6.39) does not necessarily cancel out. How-
ever, by Problem 6.2.6, ∇X∇Y Z = X(Y (Zk))∂k, so

∇X∇Y Z −∇Y∇XZ = ∇[X,Y ]Z. (6.40)

This equality might not hold for all vector fields X,Y, Z on a manifold equipped
with a connection ∇. This fact motivates defining the quantity

R(X,Y )Z
def
= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (6.41)

The notation R(X,Y )Z emphasizes the understanding that for each vector field X
and Y , R(X,Y ) is an operator acting on Z. At first glance, R(X,Y )Z is just a
smooth mapping X(M) × X(M) × X(M) → X(M), smooth because the resulting
vector field is smooth. However, more is true.

Proposition 6.4.5. The function R(X,Y )Z defined in Equation (6.41) is a tensor
field of type (1, 3), which is antisymmetric in X and Y .

Proof. The antisymmetry property follows immediately from [Y,X] = −[X,Y ]
and Definition 6.2.1. To prove the tensorial property, we need only to show that
R(X,Y )Z is multilinear over C∞(M) in each of the three vector fields. We show
linearity for the X variable, from which linearity immediately follows for the Y
variable. We leave it as an exercise for the reader to prove linearity in Z.

Let f1, f2 ∈ C∞(M). Then

R(f1X1 + f2X2, Y )Z = (f1∇X1
+ f2∇X2

)∇Y Z
−∇Y (f1∇X1

+ f2∇X2
)Z −∇[f1X1,Y ]+[f2X2,Y ]Z.

By Proposition 5.3.4(4), [fiXi, Y ] = fi[Xi, Y ]− Y (fi)Xi. Thus,

R(f1X1 + f2X2, Y )Z

= f1∇X1
∇Y Z + f2∇X2

∇Y Z − f1∇Y∇X1
Z − Y (f1)∇X1

Z

− f2∇Y∇X2
Z − Y (f2)∇X2

Z −∇f1[X1,Y ]−Y (f1)X1
Z −∇f2[X2,Y ]−Y (f2)X2

Z

= f1∇X1
∇Y Z − f1∇Y∇X1

Z − f1∇[X1,Y ]Z + f2∇X2
∇Y Z − f2∇Y∇X2

Z − f2∇[X2,Y ]

− Y (f1)∇X1
Z − Y (f2)∇X2

Z + Y (f1)∇X1
Z + Y (f2)∇X2

Z

= f1R(X1, Y )Z + f2R(X2, Y )Z.
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Definition 6.4.6. The tensor field R of type (1, 3) satisfying

R(X,Y )(Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

is called the curvature tensor associated to the connection ∇. Occasionally, this is
denoted R∇ to explicitly indicate which connection.

We connect this approach to the coordinate-dependent Definition 6.36 as follows.
Let x be a coordinate system on a coordinate patch of M . By the C∞(M)-linearity,

R(X,Y )Z = XiY jZk R(∂i, ∂j)∂k

where X = Xi∂i and similarly for Y and Z. The components of R in local coordi-
nates are Rlijk, where

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
= Rlijk

∂

∂xl
.

Now since [∂i, ∂j ] = 0,

R(∂i, ∂j)∂k = ∇∂i∇∂j∂k −∇∂j∇∂i∂k
= ∇∂i

(
Γhjk∂h

)
−∇∂j

(
Γhik∂h

)
= Γhjk∇∂i∂h +

∂Γhjk
∂xi

∂h − Γhik∇∂j∂h −
∂Γhik
∂xj

∂h

=

(
ΓhjkΓlih − ΓhikΓljh +

∂Γljk
∂xi

− ∂Γlik
∂xj

)
∂l,

from which we obtain

Rlijk =
∂Γljk
∂xi

− ∂Γlik
∂xj

+ ΓhjkΓlih − ΓhikΓljh,

which recovers exactly the coordinate-dependent Definition 6.36.

6.4.3 Riemannian Curvature

Our presentation of the curvature tensor so far applies to any affine connection. We
turn to the specific example of a Riemannian manifold (M, g).

Definition 6.4.7. The curvature tensor associated to the Levi-Civita connection
associated to the metric g is called the Riemann curvature tensor, denoted R.

As above, we denote the components of the curvature tensor by Rlijk. Since
∇ is symmetric, the torsion tensor τ associated to the Levi-Civita connection is



296 6. Introduction to Riemannian Geometry

identically 0. In coordinate-free expression, the Bianchi identities for the Riemann
tensor are

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 (6.42)

∇WR(X,Y )Z +∇ZR(X,W )Y +∇YR(X,Z)W = 0 (6.43)

By contracting with the metric tensor g, we obtain a tensor field of type (0, 4),
which in components is

Rijkl = gmlR
m
ijk. (6.44)

We define this tensor also in a coordinate-free way.

Definition 6.4.8. If R is the Riemann curvature tensor on a Riemannian mani-
fold (M, g), then R[, which is commonly denoted Rm, is the Riemann covariant
curvature tensor. In other words, for all vector fields, X,Y, Z,W on M ,

Rm(X,Y, Z,W ) = g(R(X,Y )Z,W ).

We write the components of Rm with respect to a basis as Rijkl.

Not all the component functions of Rlijk or of Rijkl are independent. We now
wish to determine the number of independent component functions in Rijkl, which
will be the same number of independent component functions of Rlijk.

By the definition from (6.36), we see that Rlijk = −Rljik and, therefore, that

Rijkl = −Rjikl. (6.45)

Furthermore, the first Bianchi identity gives

Rijkl +Rjkil +Rkijl = 0. (6.46)

The compatibility condition of the Levi-Civita connection is expressed in coordi-
nates as gij;k = 0 as functions for all indices i, j, k. This leads to another relation.
Theorem 6.4.3 and the compatibility condition imply that

0 = gkl;j;i − gkl;i;j = −Rmijkgml −Rmijlgkm (6.47)

which is tantamount to

Rijkl = −Rijlk. (6.48)

Equations (6.45) and (6.48) show that the covariant curvature tensor is skew-
symmetric in the first two indices and also in the last two indices. Furthermore,
this skew-symmetry relation combined with the identity in (6.46) leads to

Rijkl = Rklij . (6.49)
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We can see from the following calculation, starting with the Bianchi identity, and
using again in the middle:

0 = Rikjl +Rkjil +Rjikl = −Riklj −Rkjli +Rjikl

= Rklij +Rlikj +Rjlki +Rlkji +Rjikl

= 2Rklij −Rlijk −Rjlik +Rjikl from (6.48) and (6.45)

= 2Rklij +Rijlk +Rjikl = 2Rklij − 2Rijkl

Equation (6.49) follows.
We can now count the number of independent functions given the relations

in (6.45), (6.46) and (6.48). There are five separate cases depending on how many
indices are distinct. By virtue of (6.45), the cases when all indices are equal or when
three of the indices are equal lead to identically 0 functions for the components of
the covariant tensor. If there are two pairs of equal indices, then we must have
Riijj = 0 while the quantities Rijij could be nonzero. In this case, the identities in
(6.45), (6.46) and (6.49) explicitly determine all other possibilities with two pairs
of equation indices from Rijij . There are

(
n
2

)
ways to select the pair {i, j} to define

Rijij . If the indices have one pair of equal indices and the other two indices are
different, then by (6.45) and (6.48), the only nonzero possibilities can be determined
by Rijik (where i, j, and k are all distinct). Hence, there are n

(
n−1

2

)
choices of

independent functions here. Lastly, suppose that all four indices are distinct. All
the functions for combinations of indices can be obtained from the relations, given
the functions for Rijkl and Riljk. Thus, there are 2

(
n
4

)
independent functions in

this case. In total, the covariant curvature tensor is determined by(
n

2

)
+ n

(
n− 1

2

)
+ 2

(
n

4

)
=

1

12
n2(n2 − 1)

independent functions.

Example 6.4.9. It is interesting to note that for manifolds of dimension n =
2, there is only one independent function in the curvature tensor, namely, R1212.
Equation (7.47) in [5] shows that the Gaussian curvature of the surface at any point
is equal to

K = −R1212/det(gij). (6.50)

Because of cancellations for repeated indices, an elegant way to rewrite this gives
us the components of the Riemann covariant curvature tensor:

Rijkl = K(gilgjk − gikgjl). (6.51)

Properties of the Riemann covariant curvature tensor presented in a coordinate-
dependent manner have equivalent expressions in a coordinate-free formulation.

Proposition 6.4.10. The covariant curvature tensor Rm satisfies the following
symmetry properties for vector fields X, Y , Z, W , and T :
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Figure 6.9: Geometric interpretation of
the torsion tensor.
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r (xµ + εµ)
s (xµ + δµ + εµ)

Z

A′′Z

A′Z

Figure 6.10: Geometric interpretation of
the curvature tensor.

1. Rm(X,Y, Z,W ) = −Rm(Y,X,Z,W ).

2. Rm(X,Y, Z,W ) = −Rm(X,Y,W,Z).

3. Rm(X,Y, Z,W ) = Rm(Z,W,X, Y ).

4. Bianchi’s first identity:

Rm(X,Y, Z,W ) +Rm(Y, Z,X,W ) +Rm(Z,X, Y,W ) = 0.

5. Bianchi’s differential identity:

∇Rm(X,Y, Z,W, T ) +∇Rm(X,Y,W, T, Z) +∇Rm(X,Y, T, Z,W ) = 0.

6.4.4 Geometric Interpretation

Until now, we have not given an interpretation for the geometric meaning of the
curvature or torsion tensors.

Consider first the torsion tensor. (Of course, by definition, the Levi-Civita
connection is symmetric and so the torsion is 0, but we give an interpretation for
any affine connection.) We will use a first-order approximation discussion, following
the presentation in [44, Section 7.3.2]. This reasoning differs slightly from a rigorous
mathematical explanation, but we include it for the sake of familiarity with physics-
style reasoning.

Let p ∈ M , with coordinates xµ in a coordinate system on M . Let X = δµ∂µ
and Y = εµ∂µ be two vectors in TpM . Let γX(t) be the curve with coordinate
functions δµt and let γY (t) be the curve with coordinate functions εµt. Consider
the parallel transport of the vector X along γY (t). The coordinates of the resulting
vector are δµ + Γµλνδλεν . The coordinates of p′, the tip of the parallel transport of
X, are

p′ : δµ + εµ + Γµλνδλεν
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If we take the parallel transport of Y along γX(t), the coordinates of the resulting
vector are εµ + Γµλνελδν . The coordinates of p′′, the tip of the parallel transport of
Y , are

p′′ : δµ + εµ + Γµλνελδν .

The difference between these two parallel transports is (Γµλν − Γµνλ)δλεν , which is
τµλνδλεν . Therefore, intuitively speaking, the torsion tensor gives a local measure of
how much the parallel transport of two noncollinear directions with respect to each
other fails to close a parallelogram (see Figure 6.9).

The curvature tensor, on the other hand, measures the path dependence of
parallel transport. In the coordinate-free definition of the curvature tensor from
(6.41), the expression ∇X∇Y Z is a vector field that measures the rate of change
of parallel transport of the vector field Z along an integral curve of Y and then a
rate of change of parallel transport of this ∇Y Z along an integral curve of X. The
expression ∇Y∇XZ reverses the process.

As discussed in Section 5.2 in the subsection on Lie brackets (see also Figure 5.4),
the successive flows of a distance h along the integral curves of Y and then along the
integral curves of X do not in general lead one to the same point if one follows the
integral curves of X and then of Y . Proposition 5.3.14 shows that [X,Y ] is a sort of
measure for this nonclosure of integral paths in vector fields. Subtracting ∇[X,Y ]Z
from ∇X∇Y Z − ∇Y∇XZ eliminates the quantity of path dependence of parallel
transport on a manifold that is naturally caused by the nonclosure of “square” paths
of integral curves in vector fields.

Another perspective is to consider a vector Z based at p with coordinates xµ

and look at the path dependence of the parallel transport along two sides of a
“parallelogram” based at p and spanned by directions δµ and εµ. Locally, i.e.,
when δµ and εµ are small, the parallel transport of Z from p to q = (xµ + δµ) to
s = (xµ + δµ + εµ) produces a vector A′Z. Similarly, the parallel transport of Z
from p to r = (xµ + εµ) to s = (xµ + δµ + εµ) produces a vector A′′Z (see Figure
6.10). The difference Z 7→ A′′Z − A′Z is a linear transformation defined locally at
p that depends on the directions δµ and εµ. In fact, it is not hard to show that, in
coordinates, the first order approximation in the variables δ and ε is

(A′′Z −A′Z)i = Rijklδ
jεkZl.

Problems

6.4.1. Calculate the 16 component functions of the curvature tensor for the sphere S2 in
the standard (θ, φ) coordinate system.

6.4.2. Prove Proposition 6.4.2.

6.4.3. (a) Prove the first Bianchi identity in Proposition 6.4.4 using a coordinate-
dependent approach.

(b) Prove the first Bianchi identity in Proposition 6.4.10 using a coordinate-free
approach.
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6.4.4. (a) Prove the second Bianchi identity in Proposition 6.4.4 using a coordinate-
dependent approach.

(b) Prove the second (differential) Bianchi identity in Proposition 6.4.10 using
a coordinate-free approach. [Hint: This can be long and tedious if done
directly. Instead, since ∇Rm is C∞(M)-multilinear, choose X,Y, Z,W, T
to be coordinate basis vector fields. Also, to make the computations even
easier, use the normal coordinate system.]

6.4.5. Prove that the quantity R(X,Y )Z defined in (6.41) is C∞(M)-linear in the Z
variable.

6.4.6. A smooth family of smooth curves is a function c : (−ε, ε) × [a, b] → M such
that cs(t) = c(s, t) is a smooth curve in M for each s ∈ (−ε, ε). Note that by
symmetry, ct(s) is also a smooth curve for each t ∈ [a, b]. A vector field along c
is a smooth map V : (−ε, ε) × [a, b] → TM such that V (s, t) ∈ Tc(s,t)M for each
(s, t). Define the vector fields S and T on c by S = ∂sc and ∂tc, i.e., the tangent
vectors to c in the indicated direction. Show that for any vector field V on c,

DsDtV −DtDs = R(S, T )V.

(This gives another geometric interpretation of the curvature tensor.)

6.4.7. The Jacobi Equation. This exercise considers variations along a geodesic γ. A
variation through geodesics along γ is a smooth family of smooth curves c (defined
in Problem 6.4.6) such that for each s, the curve cs(t) = c(s, t) is a geodesic and
c(0, t) = γ(t). The variation field V of a variation through geodesics along γ is
the vector field along γ defined by V (t) = (∂sc)(0, t). Show that V satisfies the
Jacobi equation

D2
tV +R(V, γ̇)γ̇ = 0. (6.52)

6.4.8. Consider the 3-sphere S3, and consider the coordinate patch given by the parame-
trization described in Problem 6.1.14. Calculate the curvature tensor, the Ricci
curvature tensor, and the scalar curvature.

6.4.9. Calculate the curvature tensor, the Ricci curvature tensor, and the scalar curva-
ture for the Poincaré ball. (See Problem 6.1.12.)

6.4.10. Consider the 3-torus described in Problem 6.1.2(b) with the metric induced from
R4. Calculate all the components of the curvature tensor, the Ricci tensor, and
the scalar curvature, given in the coordinates defined by the parametrization given
in Problem 6.1.2(b).

6.4.11. Consider the metric associated to spherical coordinates in R3, given by

g = dr2 + r2 sin2 φdθ2 + r2dφ2.

(Note, we have used the mathematics labeling of the longitude and latitude angles.
Physics texts usually have the θ and φ reversed.) Prove that all the components
of the curvature tensor are identically 0.

6.4.12. Consider the Riemannian manifold of dimension 2 equipped with the metric g =
f(u+ v)(du2 + dv2) for some function f . Solve for which f lead to Rjklm = 0.
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6.4.13. Let R be the Riemann curvature tensor (defined with respect to the Levi-Civita
connection). Prove that

Rijkl =
1

2

(
∂2gik
∂xj∂xl

− ∂2gjk
∂xi∂xl

− ∂2gil
∂xj∂xk

+
∂2gjl
∂xi∂xk

)
+ gλµ

(
ΓλikΓµjl − ΓλilΓ

µ
jk

)
.

Conclude that in normal coordinates centered at p, the following holds at p:

Rijkl =
1

2
(∂j∂lgik − ∂i∂lgjk − ∂j∂kgil + ∂i∂kgjl).

6.4.14. The Killing Equation. Let (M, g) be a Riemannian manifold and let X ∈ X(M).
Consider the function fε : M →M defined by

fε(p) = γ(ε)

where γ is the integral curve of X through p. Thus, the linear approximation of
fε for small ε maps p = (xi) to the point with coordinates xi + εXi(p). Suppose
that fε is an isometry for infinitesimal ε.

(a) Use a linear approximation in ε on the change-of-coordinates formula for the
metric g to show that g and X satisfy the Killing equation:

∂gij
∂xk

Xk +
∂Xl

∂xi
glj +

∂Xl

∂xj
gil = 0. (6.53)

(b) Let ∇ be the Levi-Civita connection. Show that the Killing equation is
equivalent to the condition that (∇X)[ is antisymmetric. In components
related to a coordinate system, this means that

Xi;j +Xj;i = 0, (6.54)

where Xi = gikX
k.

6.4.15. Consider a covector field ω on a Riemannian manifold (M, g). Suppose that ω
satisfies the covariant Killing equation (see (6.54)), i.e,. ωi;j +ωj;i = 0. Show that
along any geodesic γ(s) of M , ω(γ̇) is a nonzero constant.

6.4.16. Show that if Rijkl + Rljki = 0, then the covariant curvature tensor is identically
0.

6.5 Ricci Curvature and Einstein Tensor
We finish this chapter with a brief section on various tensors associated to the
Riemann curvature tensor.

Since tensors of type (1, 3) or (0, 4) are so unwieldy, there are a few common
ways to summarize some of the information contained in the curvature tensor.

One of the most common constructions is the Ricci curvature tensor, denoted
by Rc or Ric. We tend to write Rij instead of Rcij for the components of this
tensor with respect to a coordinate system. The Ricci curvature tensor is TrR, or
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the trace (with respect to the first indices) of the Riemann curvature tensor. In
coordinates, the components are defined by

Rij = Rkkij = gkmRkijm.

By the symmetries of the curvature tensor, Rij can be expressed equivalently as

Rij = Rkkij = −Rkikj = −gkmRikjm = −gkmRjmki.

Proposition 6.5.1. The Ricci tensor Rc is symmetric.

Proof. We prove this within the context of a coordinate system. Since Rij = Rkkij ,
then

Rij =
∂Γkij
∂xk

−
∂Γkkj
∂xi

+ ΓhijΓ
k
kh − ΓhkjΓ

k
ih. (6.55)

In this expression, since the connection is symmetric, the first and third terms of
the right-hand side are obviously symmetric in i and j. The fourth term ΓhkjΓ

k
ih

is also symmetric in i and j by a relabeling of the summation variables h and k.
Surprisingly, the second term in (6.55) is also symmetric.

By Problem 6.2.19,
∂(ln
√

det g)

∂xj
= Γkjk.

Thus,
∂Γkjk
∂xi

=
∂2

∂xi∂xj
(ln
√

det g) =
∂2

∂xj∂xi
(ln
√

det g) =
∂Γkik
∂xj

.

Hence, all the terms in (6.55) are symmetric in i and j, so Rij = Rji and the result
follows.

Definition 6.5.2. The scalar curvature function R is defined as the trace of the
Ricci tensor with respect to g, i.e.,

S = Trg Rc = gijRij . (6.56)

Sometimes, texts use the letter R to denote the scalar curvature, but we have
opted for the other common notation of S so as not to be confused with the curvature
tensor symbol.

Example 6.5.3 (Ricci Tensor of a Surface). We observed in Example 6.4.9 that
the covariant Riemann curvature Rm tensor for a 2-manifold depends on only
one function, R1212. Symmetry and antisymmetry properties of the tensor de-
termine all the component functions from this one. Furthermore, we observed that
R1212 = −K det(gij), where K is the Gaussian curvature of the surface, that arises
in classical differential geometry. We can write this as

Rijkl = K(gilgjk − gikgjl).
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By definition of the Ricci tensor,

Rij = gkmRkijm = Kgkm(gkmgij − gkjgim)

= K(gmkgkmgij − gmkgkjgim = K(δmmgij − δmj gim)

= K(2gij − gij) = Kgij .

Hence, the Ricci curvature tensor is (locally) proportional to the metric tensor, by
the factor of the Gaussian curvature. Furthermore, this implies that

S = Kgijgij = 2K.

So for all surfaces, whether embedded in R3 or not, the scalar curvature function is
twice the Gaussian curvature.

The scalar curvature function allows us to define the Einstein tensor, which is
of fundamental importance.

Definition 6.5.4. On any Riemannian manifold (M, g) the Einstein tensor G is
the tensor of type (0, 2) described in coordinates by

Gµν = Rµν −
1

2
gµνS, (6.57)

where S is the scalar curvature.

Since the Ricci curvature tensor and the metric tensor are symmetric, i.e., in
Sym2(TM∗), then the Einstein tensor field is also symmetric. As we will see in
Section 7.5, the Einstein tensor is of central importance in general relativity. From
a purely geometric perspective, the Einstein tensor has the following important
property.

Proposition 6.5.5. Let G be the Einstein tensor on a Riemannian manifold. Then,
using (6.25),

divG = 0.

In coordinates, this reads Gαµ;α = (gανGµν);α = gναGµν;α = 0.

Proof. The proof of this proposition follows from the differential Bianchi identity.
For the Riemann curvature tensor, by Proposition 6.4.10(5), we have

Rijkl;m +Rijlm;k +Rijmk;l = 0.

Taking the trace with respect to g over the variable pair (i, l),

Rjk;m −Rjm;k + gilRijmk;l = 0,

where the trace operator commutes with the covariant derivative because of the
compatibility condition of the Levi-Civita connection. Multiplying by gjk and con-
tracting in both indices gives

S;m − gjkRjm;k − gilRim;l = 0.



304 6. Introduction to Riemannian Geometry

Relabeling summation indices and using the symmetry of g and Rc, we deduce that

S;m − 2gjkRmj;k = 0. (6.58)

But Gαµ = gανGµν = gανRµν − 1
2δ
α
µS, so

Gαµ;α = gανRµν;α −
1

2
δαµS;α = gανRµν;α −

1

2
S;µ,

and the vanishing divergence follows from (6.58). The last claim in the proposition
follows from Problem 6.2.16.

Of particular interest in Riemannian geometry and in general relativity are man-
ifolds in which the Ricci curvature is proportional to the metric tensor. The corre-
sponding metric is called an Einstein metric and the manifold is called an Einstein
manifold . More precisely, a Riemannian manifold (M, g) has an Einstein metric if

Rc = kg (6.59)

for some constant k ∈ R. Taking the trace with respect to g of (6.59) and noting
that Trg g = dimM , we find that k must satisfy

k =
S

dimM
. (6.60)

This leads to the following interesting property.

Proposition 6.5.6. If (M, g) is an Einstein manifold, then the scalar curvature is
constant on each connected component of M .

In part because of Proposition 6.5.6, Einstein metrics continue to remain an
active area of research not only because of their applications to physics but more
so because of their application to possible classification theorems for diffeomorphic
manifolds. The Uniformization Theorem, a fundamental result in the theory of sur-
faces, establishes that every connected 2-manifold admits a Riemannian metric with
constant Gaussian curvature. This in turn leads to a classification of diffeomorphism
classes for surfaces.

One could hope that, in parallel with surfaces, all connected higher-dimensional
manifolds (dimM > 2) would possess an Einstein metric that would in turn lead to
a classification theorem of diffeomorphism classes of manifolds. This turns out not
to be the case. There do exist higher-dimensional compact manifolds that admit
no Einstein metric ([9]). Nevertheless, in attempts to reach a generalization to the
Uniformization Theorem for higher-dimensional manifolds, Einstein metrics play a
vital role.
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Problems

6.5.1. Suppose that on a Riemannian manifold (M, g), the curvature tensor satisfies
divR = 0, or in coordinates Rijkl;i = 0 for all j, k, l. Show that the following
also hold:

(a) Rij;h = Rih;j ;

(b) S;j = 0;

(c) gmlRijklRmh + gmlRikhlRmj + gmlRihjlRmk = 0.

6.5.2. Some authors define an Einstein manifold to be Riemannian manifold such that
the Ricci curvature tensor is proportional to the metric tensor in the sense that
Rc = λg, where λ : C∞(M,R) is a smooth function on M . (The definition given
in the text requires the λ be a constant.) Prove that if the manifold has dimension
n ≥ 3, then this alternate definition of an Einstein manifold also implies that the
scalar curvature is constant on all connected components of the manifold. [Hint:
Show that S;h = 0.]

6.5.3. Let Gij = gikGjk, where Gjk are the components of the Einstein tensor, and define
Riljk = glmRijkm. Prove that

Gij = −1

4
δiνκjλµR

λµ
νκ ,

where we have used the generalized Kronecker symbol defined in (4.34).
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CHAPTER 7

Applications of Manifolds to Physics

In the previous chapters, we set forth the goal of doing calculus on curved spaces as
the motivating force behind the development of the theory of manifolds. Occasion-
ally, we showcased applications to physics either in examples or exercise problems.
Having developed a theory of manifolds, we now present five applications to physics
that utilize this theory. Consequently, throughout this chapter, the motivation for
topics is inverted as compared to the rest of the book: instead of starting from a
mathematical structure and looking for applications to physics, we begin with con-
cepts from physics and see how the theory of manifolds can provide a framework
for the idea. Each section shows just the tip of the iceberg on very broad areas of
active investigation.

Section 7.1 explores how Hamiltonian’s equations of motion motivate the notion
of symplectic manifolds. Because of these applications and fascinating properties,
symplectic geometry has become a significant field. Historically, it was the Hamil-
tonian formulation of dynamics that lent itself best to quantization and hence to
Schrödinger’s equation in quantum mechanics.

In special relativity, Einstein’s perspective of viewing spacetime as a single unit,
equipped with a modified notion of metric, is properly modeled by Minkowski
spaces. Section 7.2 discusses this, along with its natural generalization to pseudo-
Riemannian manifolds.

A few exercises in this text have dealt with the theory of electromagnetism. In
Section 7.3, we gather together some of the results we have seen in the theory of
electromagnetism and rephrase them into the formalism of a Lorentzian spacetime.

We also discuss a few geometric concepts underlying string theory. Between
1900 and 1940, physics took two large steps in opposite directions of the size scale,
with quantum mechanics describing the dynamics of the very small scale and gen-
eral relativity describing the very large scale. These theories involve very different
types of mathematics, which led physicists to look for reformulations or generaliza-
tions that could subsume both theories. However, despite extensive work to find
a unifying theory, the task has proven exceedingly difficult, even on mathematical
grounds. String theory is a model for the structure of elementary particles that
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currently holds promise to provide such a unification. We wish to mention string
theory in this book because, at its core, the relativistic dynamics of a string involve
a two-dimensional submanifold of a Minkowski space.

Finally, Einstein’s theory of general relativity, introduced in Section 7.5, stands
as a direct application of Riemannian manifolds. In fact, general relativity mo-
tivated some of the development and helped proliferate the notions of Rieman-
nian (and pseudo-Riemannian) geometry beyond the confines of pure mathematics.
Many of the “strange” (non-Newtonian) phenomena that fill the pages of popular
books on cosmology occur as consequences of the mathematics of this geometry.

This chapter assumes that the reader has some experience in physics but no more
than a first college course (calculus-based) in mechanics. All the other material will
be introduced as needed. We do not discuss issues of quantization as those exceed
the scope of this book.

7.1 Hamiltonian Mechanics
7.1.1 Equations of Motion

The classical study of dynamics relies almost exclusively on Newton’s laws of motion,
in particular, his second law. This law states that the sum of exterior forces on a
particle or object is equal to the rate of change of momentum, i.e.,∑

~Fext =
d~p

dt
, (7.1)

where ~p = md~x/dt and ~x(t) is the position of the particle at time t. If m is constant,
(7.1) reduces to ∑

~Fext = m
d2~x

dt2
. (7.2)

Furthermore, by a simple calculation, (7.1) directly implies the following law of
motion for angular momentum about an origin O:

d~L

dt
=
∑

~τext, (7.3)

where ~L = ~r × ~p is the angular momentum of a particle or solid, where ~r is the
position vector of the particle or center of mass of the solid, and where

∑
~τext is

the sum of the torques about O. (Recall that the torque about the origin of a force
~F is τ = ~r × ~F .)

Though (7.1) undergirds all of classical dynamics, the value of ancillary equa-
tions, such as (7.3), arises from the fact that these other equations may elucidate
conserved quantities or produce more tractable equations when using different vari-
ables besides the Cartesian coordinates. For example, when describing the orbits
of planets around the sun, polar (cylindrical) coordinates are far better suited than
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Cartesian coordinates. In particular, as shown in Example 2.2.3, the angular mo-
mentum is a conserved quantity for a particle under the influence of forces that are
radial about some origin.

It turns out that in many cases (in particular when the forces are conservative),
either (7.2) or (7.3) follows from a specific variational principle that has extensive
consequences. Suppose that the state of a physical system is described by a system
of coordinates qk, with k = 1, 2, . . . , n. Hamilton’s principle states that the motion
of a system evolves according to a path P parametrized by (q1(t), . . . , qn(t)) between
times t1 and t2 so as to minimize the integral

S =

∫
P
Ldt =

∫ t2

t1

Ldt (7.4)

where L is the Lagrangian function. The integral S is called the action of the
system. When the system is under the influence of only conservative forces, the
Lagrangian is L = T − V , where T is the kinetic energy and V is the potential
energy. Recall that for a conservative force ~F , its potential energy V , which is a
function of the position variables alone, satisfies

~F = −~∇V = −gradV.

Intuitively speaking, in the case of conservative forces, Hamilton’s principle states
that a system evolves in such a way as to minimize the total variation between
kinetic and potential energy. However, even if a force is not conservative, it may
still possess an associated Lagrangian that produces the appropriate equation of
motion. (See Problem 7.1.8 for such an example.)

We consider the Lagrangian L as an explicit function of t, the coordinates qk, and
their time derivatives q̇k = dqk/dt. According to Theorem B.3.1 in Appendix B,
the Lagrangian must satisfy the Euler-Lagrange equation in each coordinate qk,
namely,

∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
= 0. (7.5)

This is called Lagrange’s equations of motion. Though this system of equations
moves away from the nice vector expression of (7.2), it has the distinct advantage
of expressing equations of motion in a consistent way for any choice of coordinates.

Example 7.1.1. Consider a ball (or cylinder) of radius R rolling down a plane
inclined with angle α, as depicted in Figure 7.1. Because the object rolls instead of
sliding, the rotation about its center leads to an additional kinetic energy amount
of 1

2Iθ̇
2, where θ̇ is the rate of rotation about its center. However, because there is

no slipping, we deduce that ẋ = Rθ̇, where x is the coordinate of the distance of the
center of mass of the object up the incline. Thus, the Lagrangian of this system is

L =
1

2
Iθ̇2 +

1

2
mv2 −mgh,

L(x, ẋ) =
I

2R2
Iẋ2 +

1

2
mẋ2 −mgx sinα.
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α

h
x

Figure 7.1: A round object rolling downhill.

The Euler-Lagrange Equation (7.5) gives

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= −mg sinα− (I/R2 +m)ẍ = 0,

which leads to the equation of motion

d2x

dt2
= − g sinα

I
mR2 + 1

,

a well-known result from classical mechanics.

Though Example 7.1.1 involves a variable x that is essentially taken from R,
physical systems in general may typically be described by other types of variables.
When studying the motion of a simple pendulum (Figure 7.2), we use as a variable
the angle θ of deviation of the pendulum from the vertical. A system that is a
double pendulum (see Figure 7.3) involves two angles.

If a physical system can be described by using n locally independent variables,
then we say the system has n degrees of freedom. The set of all possible states of a
physical system is a real manifold Q of dimension n, called the configuration space
of the system. The variables (qk) that locate a point on (a coordinate chart of) the
manifold Q are called the position variables. (Note, we will use the subscript indices
for the position variables to conform to physics texts and literature on symplectic
manifolds, though one should remember at this stage that they are contravariant
quantities.) For example, the configuration space of the system in Example 7.1.1
is simply Q = R, while the configuration space for the simple pendulum is Q = S1

and the configuration space of the double pendulum is the torus Q = S1 × S1.
The time development of a system corresponds to a curve γ : t 7→ (qk(t)) on the

manifold, and the functions q̇1, . . . , q̇n are the coordinates of a tangent vector along
γ in the tangent space TQ.

Now the Euler-Lagrange Equation (7.5) is a system of second-order, ordinary,
differential equations. We would like to change this into a system of first-order
differential equations for two reasons: (1) many theorems on differential equations
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θ

Figure 7.2: Simple Pendulum.

θ1

θ2

Figure 7.3: Compound Pendulum.

are stated for systems of first-order equations and (2) it is easier to discuss first-order
equations in the context of manifolds. We do this in the following way.

Define the generalized momenta functionally by

pk =
∂L

∂q̇k
. (7.6)

The quantities pk are the components of the momentum vector, which is in fact an
element of Tγ(t)Q

∗. We can see this as follows. Let W be an n-dimensional vector
space, and let f : W → R be any differentiable function. Then the differential df~v
at a point ~v ∈ W is a linear transformation df~v : W → R. Thus, by definition of
the dual space, df~v ∈ W ∗. Consequently, the differential df gives a correspondence
df : W →W ∗ via

~v 7−→ df~v =
n∑
i=1

∂f

∂xi

∣∣∣
~v
dxi.

Taking W as the vector space Tγ(t)Q, the momentum at the point γ(t) is the vector
dL(q̇k) ∈ Tγ(t)Q

∗. Hence, we can think of the momentum vector p as a covector
field along the curve γ given at each point by dL(q̇k).

Consider now the Hamiltonian function H defined by

H =
n∑
k=1

pkq̇k − L(q1, . . . , qn, q̇1, . . . , q̇n, t).

Since we can write the quantity q̇k in terms of the components pk, we can view the
Hamiltonian as a time-dependent function on TQ∗. Given any configuration space
Q, we define the cotangent bundle TQ∗ as the phase space of the system. If Q is
an n-dimensional manifold, then TQ∗ is a manifold of dimension 2n.

The variables q̇i are now functions of the independent variables

(t, q1, . . . , qn, p1, . . . , pn).
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Taking derivatives of H, we find that

∂H

∂pi
= q̇i +

n∑
k=1

pk
∂q̇k
∂pi
−

n∑
k=1

∂L

∂q̇k

∂q̇k
∂pi

= q̇i +
n∑
k=1

(
pk −

∂L

∂q̇k

)
∂q̇k
∂pi

= q̇i,

where each term of the summation is 0 by definition of pk. Furthermore, note that
Lagrange’s equation reduces to ∂L/∂qi = ṗi. Thus, taking derivatives with respect
to qi, we get

∂H

∂qi
=

n∑
k=1

pk
∂q̇k
∂qi
−

(
∂L

∂qi
+

n∑
k=1

∂L

∂q̇k

∂q̇k
∂qi

)

= − ∂L
∂qi

+
n∑
k=1

(
pk −

∂L

∂q̇k

)
∂q̇k
∂qi

= − ∂L
∂qi

= −ṗi.

Therefore, given the definition in Equation (7.6), the Euler-Lagrange Equation (7.5)
is equivalent to

q̇k =
∂H

∂pk
,

ṗk = −∂H
∂qk

.

(7.7)

This system of equations is called Hamilton’s equations of motion. They consist
of 2n first-order, ordinary, differential equations in n unknown functions, each in-
volving 2n variables, whereas Lagrange’s equations of motion consisted of n second-
order, ordinary, differential equations in n unknown functions.

For simple dynamic systems, the kinetic energy T is a homogeneous quadratic
function in the variables q̇k. If this is the case, then it is not hard to show that

n∑
k=1

q̇kpk = 2T, (7.8)

where T is the kinetic energy. If in addition, the forces acting on the system are
conservative, then

H = 2T − (T − V ) = T + V,

which is the total energy of the system.

Example 7.1.2 (The Spherical Pendulum). As a longer example that compares the
Lagrange and the Hamilton equations of motion, consider the spherical pendulum
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Figure 7.4: Spherical pendulum.

as shown in Figure 7.4. This classical problem consists of a point mass that is
hanging from a string and is free to move not just in a vertical plane but in both its
natural degrees of freedom. We label the mass of the object at the end of the string
as m and the length of the string as l. For simplicity, we assume that the mass
of the string is negligible and that there is no friction where the string attaches at
a fixed point. This scenario is called the spherical pendulum problem because the
same equations govern the motion of an object moving in a spherical bowl under
the action of gravity and with no (negligible) friction.

We use a Cartesian frame of reference, in which the origin is the fixed point to
which the string is attached and the z-axis lines up with the vertical axis that the
string makes when at rest and hanging straight down. Furthermore, we orient the
z-axis downward. With this setup, the degrees of freedom are the usual angles θ
and ϕ from spherical coordinates. To obtain the Lagrange equations of motion, we
need to first identify the kinetic energy T and potential energy V .

The velocity vector for the particle moving at the end of the string is

~v = l(ϕ̇ cosϕ cos θ − θ̇ sinϕ sin θ, ϕ̇ cosϕ sin θ + θ̇ sinϕ cos θ,−ϕ̇ sinϕ),

so after simplifications, the kinetic energy is

T =
1

2
ml2(ϕ̇2 + θ̇2 sin2 ϕ).

The potential energy is V = mgl(1− cosϕ), so the Lagrangian is

L =
1

2
ml2(ϕ̇2 + θ̇2 sin2 ϕ)−mgl(1− cosϕ).

The Lagrange equations of motion are

d

dt

(∂L
∂θ̇

)
=
∂L

∂θ
and

d

dt

(∂L
∂ϕ̇

)
=
∂L

∂ϕ
,
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which in this specific example give the system of differential equations
d

dt

(
ml2θ̇ sin2 ϕ

)
= 0

d

dt

(
ml2ϕ̇

)
= ml2θ̇2 sinϕ cosϕ−mgl sinϕ.

As we try to extract a more convenient set of equations that govern this system,
we could take the derivative on the left hand side of the first equation. However,
it is more useful to see that pθ = ∂L/∂θ̇ = ml2θ̇ sin2 ϕ is a constant. This is the
θ-momentum. Then we can write the second equation as

ϕ̈ = sinϕ(θ̇2 cosϕ− g

l
).

Since pθ is a constant, we can solve for θ̇ in terms of pθ and write the second equation
only in terms of ϕ to get the following system of equations:pθ = ml2θ̇ sin2 ϕ,

ϕ̈ =
p2
θ

m2l4
cosϕ

sin3 ϕ
− g

l
sinϕ.

(7.9)

These are still essentially the Lagrange equations of motion, with the understanding
the pθ is constant.

It might appear that the sin3 ϕ in the denominator in the second equation in
(7.9) could be a cause for concern at ϕ = 0 but it is not, as we now explain. Recall
that pθ is constant. If pθ = 0, then the second equation in (7.9) does not possess a
singularity at ϕ = 0. On the other hand, if pθ 6= 0, then sinϕ 6= 0 so ϕ is never 0.

In order to solve the equations of motion, we first solve the equation that involves
only ϕ(t). Once we know ϕ(t), we find θ(t) by integrating

θ̇ =
pθ

ml2 sin2(ϕ(t))
,

using the fact that pθ is a constant.
To establish Hamilton’s equations of motion, we first find the generalized mo-

menta of the coordinates as pθ = ml2θ̇ sin2 ϕ and pϕ = ml2ϕ̇. To get the Hamilto-

nian of this system, we first point out that the momenta give us values for θ̇ and ϕ̇.
Hence

H = pθ θ̇ + pϕϕ̇− L

=
p2
θ

ml2 sin2 ϕ
+

p2
ϕ

ml2
− 1

2
ml2

(( pϕ
ml2

)2

+

(
pθ

ml2 sin2 ϕ

)2

sin2 ϕ

)
+mgl(1− cosϕ)

=
p2
θ

2ml2 sin2 ϕ
+

p2
ϕ

2ml2
+mgl(1− cosϕ).
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In this example, we see that the Hamiltonian is indeed the total energy T + V .
Then Hamilton’s equations (7.7) for this system are

ṗθ = 0

ṗϕ = −mgl sinϕ+
p2
θ cosϕ

ml2 sin3 ϕ

θ̇ =
pθ

ml2 sin2 ϕ

ϕ̇ =
pϕ
ml2

.

7.1.2 Symplectic Manifolds

We now introduce the notion of a symplectic manifold and show how Hamilton’s
equations of motion arise naturally in this context. The theory of symplectic geome-
try is a branch of geometry in and of itself so we do not pretend to cover it extensively
here. Instead, we refer the reader to [8] or [1] for a more thorough introduction. In
this section, we simply illustrate how the theory of manifolds, equipped with some
additional structure, is ideally suited for this area of mathematical physics.

Definition 7.1.3. Let W be a vector space over a field K. A symplectic form is a
bilinear form

ω : V × V → K

that is:

1. antisymmetric: ω(v, v) = 0 for all v ∈W ;

2. nondegenerate: if ω(v, w) = 0 for all w ∈W , then v = 0.

The pair (V, ω) is called a symplectic vector space.

Proposition 7.1.4. Let (V, ω) be a finite-dimensional, symplectic vector space.
There exists a basis B of V relative to which the matrix of ω is

[ω]B =

(
0 In
−In 0

)
.

where In is the n× n identity matrix. In addition, V has even dimension.

Proof. (Left as an exercise for the reader. See Problem 7.1.4.)

Since the form ω is antisymmetric and bilinear, then ω ∈
∧2

V . Suppose that
V has a basis B = {e1, . . . , e2n}, and let B∗ = {e∗1, . . . , e∗2n} be the associated dual
basis (see Section 4.1). Then in coordinates, we can write ω as

ω =
∑

1≤i<j≤n

ωije
∗
i ∧ e∗j .

However, from Proposition 7.1.4 follows immediately a nice corollary.
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Corollary 7.1.5. Let (V, ω) be a symplectic vector space of dimension 2n. Then
there exists a basis B = {e1, . . . , e2n} such that ω can be written as

ω =
n∑
i=1

e∗i ∧ e∗n+i.

The expression in Corollary 7.1.5 is called the canonical form of the symplectic
form ω.

Definition 7.1.6. A symplectic manifold (M,ω) is a smooth manifold M equipped
with a 2-form ω that is closed (dω = 0) and nondegenerate. In other words, M is a
smooth manifold such that for each p ∈M , TpM is a symplectic vector space with
symplectic form ωp and ωp varies smoothly with p.

By Proposition 7.1.4, one sees that a symplectic manifold has even dimension.

Definition 7.1.7. If (M,ω) and (M̃, ω̃) are two symplectic manifolds, then a
smooth map F : M → M̃ is called symplectic if

F ∗ω̃ = ω.

We say that F preserves the symplectic structure. If in addition, F−1 is also a
smooth symplectic map, then F is called a symplectomorphism.

Darboux’s Theorem, a fundamental result in the theory of symplectic manifolds,
establishes that given any two symplectic forms ω and ω̃ such that ωP = ω̃P at
some point P ∈ M , there exists a neighborhood U of P and a diffeomorphism
F : U → F (U) ⊂ M such that F (P ) = P and F ∗ω̃ = ω. (We refer the reader
to [8, Section 2.2] for a proof.) Darboux’s Theorem is equivalent to the following
formulation.

Theorem 7.1.8. Let (M,ω) be a symplectic manifold. For each point P ∈ M ,
there exists an open neighborhood U of P and a symplectomorphism F of U onto
F (U) ⊂ R2n such that (F−1)∗ω takes the canonical form in R2n.

As a consequence of this theorem, at every point P ∈M , there exists a coordi-
nate neighborhood U of P with coordinates x in which

ω =
n∑
i=1

dxi ∧ dxn+i.

The formalism of symplectic manifolds applies to Hamiltonian mechanics in the
following way. Consider the configuration space Q for a physical system. Sup-
pose that Q is a manifold of dimension n. The cotangent bundle M = TQ∗ is a
manifold in itself of dimension 2n. If U is a coordinate neighborhood of Q with
coordinates (q1, . . . , qn), then Ũ = π−1(U) is a coordinate neighborhood for the
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manifold TQ∗, where π : TQ∗ → Q is the bundle projection map. The quantities
(q1, . . . , qn, p1, . . . , pn) of position coordinates and corresponding generalized mo-
menta form a coordinate system on Ũ . By the identification of TpRn ∼= Rn, it is
not hard to show that TM = T (TQ∗) ∼= TQ⊕ TQ∗.

Proposition 7.1.9. The 2-form defined over a particular coordinate patch π−1(U)
by

ω =
n∑
i=1

dqi ∧ dpi (7.10)

extends to a 2-form ω ∈ Ω2(TQ∗) over the whole phase space TQ∗. Furthermore,
it is defined in exactly the same way as in Equation (7.10) over every coordinate
patch on TQ∗ obtained as π−1(Ū), where Ū is any other coordinate patch of Q.
Consequently, the form ω endows TQ∗ with the structure of a symplectic manifold.

Proof. Let F : U ∩ Ū → U ∩ Ū be a coordinate transformation from (qi) to (q̄i)
coordinates, and let G : π−1(U ∩ Ū)→ π−1(U ∩ Ū) be the corresponding coordinate
transformation from (qi, pi) to (q̄i, p̄i) on TQ∗. Since pi are coordinates in the
cotangent space, the differential of G has coordinate functions

[dG] =


∂q̄i
∂qj

0

0
∂qk
∂q̄l

 =

(
[dF ] 0

0 [dF ]−1

)
.

In particular, we deduce that

dq̄i =
∂q̄i
∂qj

dqj and dp̄i =
∂qk
∂q̄i

dpk.

Thus,

n∑
i=1

dq̄i ∧ dp̄i =
n∑
i=1

( ∂q̄i
∂qj

dqj

)
∧
(∂qk
∂q̄i

dpk

)
=

n∑
j=1

n∑
k=1

(
n∑
i=1

∂q̄i
∂qj

∂qk
∂q̄i

)
dqj ∧ dpk

=
n∑
j=1

n∑
k=1

δjkdqj ∧ dpk =
n∑
j=1

dqj ∧ dpj .

The Hamiltonian function H is a smooth function TQ∗ → R. We define the
Hamiltonian vector field XH as the unique vector field that satisfies

iXHω = dH, (7.11)

where iXH is the contraction operator iXH , which on forms is equivalent to the
interior product (see Problem 5.4.16). Specifically in this case, iXHω is the 1-form
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R

θ

Figure 7.5: A point mass sliding off a hemisphere.

defined by iXHω(Y ) = ω(XH , Y ) at all P ∈M and for all Y ∈ X(M). It is not too
hard to show that in coordinates of T (TQ∗), the vector field XH is

XH =

n∑
i=1

∂H

∂pi

∂

∂qi
−

n∑
i=1

∂H

∂qi

∂

∂pi
. (7.12)

Proposition 7.1.10. A curve γ on the phase space TQ∗ is an integral curve of
the vector field XH if and only if in each coordinate system the components γ(t) =
(qk(t), pk(t)) satisfy Hamilton’s equations of motion from Equation (7.7).

Proof. As a vector field on the curve γ, the derivative γ̇(t) is written in coordinates
as

γ̇(t) =
n∑
i=1

q̇i
∂

∂qi
+

n∑
i=1

ṗi
∂

∂pi
. (7.13)

By Equation (7.12), the Hamiltonian vector field XH at points along the curve is
expressed in coordinates as

(XH)γ(t) =
n∑
i=1

∂H

∂pi

∣∣∣
γ(t)

∂

∂qi
−

n∑
i=1

∂H

∂qi

∣∣∣
γ(t)

∂

∂pi
. (7.14)

The proposition follows by identification of Equations (7.13) and (7.14).

In other words, Proposition 7.1.10 states that a solution to Hamilton’s equations
of motion corresponds to a curve γ(t) in the phase space TQ∗ such that

γ̇(t) = (XH)γ(t).

Because of the importance of this formulation, it has its own terminology. If (M,ω)
is a symplectic manifold and H ∈ C∞(M), then with XH defined by Equation
(7.11), the triple (M,ω,XH) is called a Hamiltonian system.

Problems

7.1.1. The special orthogonal group in R3, denoted SO(3), consists of all 3× 3 matrices
that are orthogonal and have a determinant of 1. Explain why the configuration
space of the position and orientation of a general solid in Euclidean three-space
is Q = R3 × SO(3). Explain why SO(3) is diffeomorphic to RP3.
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7.1.2. Determine the Lagrangian, Lagrange’s equations of motion, and Hamilton’s equa-
tion of motion for a point mass m sliding off a hemisphere of radius R. (See
Figure 7.5.)

7.1.3. Determine the Lagrangian, Lagrange’s equations of motion, and Hamilton’s equa-
tions of motion for an elastic pendulum: a particle of mass m attached to a
(massless) elastic string of elasticity constant k and unstretched length `.

7.1.4. Determine the Lagrangian, Lagrange’s equations of motion, and Hamilton’s equa-
tion of motion for the coupled harmonic oscillations depicted below:

m1 m2
k1 k2 k3

x1 x2

Use x1 and x2 as the displacement from where the masses labeled m1 and m2 are
in equilibrium. Assume that there is no friction on the ground. For simplicity,
also assume that when the masses are in equilibrium, all three springs are relaxed.

7.1.5. Consider the motion of the earth around the sun. Placing the sun at the origin, use
polar coordinates (r, θ) to locate the center of the earth with respect to the sun.
The force of gravity of the sun acting on the earth has a potential energy function
of V (r) = −GMSME/r, where G is Newton’s universal constant of gravity, MS

is the mass of the sun and ME is the mass of the earth. Take into account the
fact that the earth rotates on its own axis. Use the additional angle ψ to orient
the earth around its axis. Write down the Hamiltonian function for this system,
taking into account earth’s rotation. Show that, despite the fact that the rotation
of the earth affects the Hamiltonian, the rotation does not affect the motion of
the earth around the sun.

7.1.6. Suppose that Q is the configuration space for a physical system involving a particle
of mass m, and suppose that Q is a Riemannian manifold with metric g = 〈 , 〉.
Then the kinetic energy of a particle traveling along a curve γ(t) is

T =
1

2
m〈γ̇(t), γ̇(t)〉.

(a) Consider the sphere S2 of radius R, and use the coordinates (θ, φ). Write
down the Lagrangian, the Hamiltonian, and Hamilton’s equations of motion
of a particle of mass m affected by a potential V = f(θ, φ).

(b) Let Q be any Riemannian manifold with metric g and with the associated
Levi-Civita connection. Show that if the potential V is constant, then a
solution to Hamilton’s equations of motion defines a geodesic on Q.

7.1.7. Friction is a non-conservative force. Suppose that an object of mass m with
motion in one space variable x(t) is affected by conservative forces with a combined
potential energy function V (x, t) and the force of friction of F = −γẋ, where γ is
a positive constant. Prove that

L = etγ/m
(

1

2
mẋ2 − V

)
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is such that the Euler-Lagrange equation (7.5) leads to the correct equation of
motion. Calculate the Hamiltonian associated with this Lagrangian, and write
down Hamilton’s equations of motion.

7.1.8. Classical electromagnetism. Consider a charged particle of mass m and charge e
under the influence of a static electric field ~E and magnetic field ~B. The non-
relativistic theory of electromagnetism [46] states that the force applied to the
particle is

~F = e( ~E +
1

c
~v × ~B),

where ~v = d~x/dt is the velocity vector of the particle and c is the speed of light.
(The presence of c is a mere scaling factor due to the choice of units.) The electric
field is induced from an electric potential φ so that ~E = −~∇φ. The magnetic
force, however, is not a conservative force. Show that the Lagrangian

L =
1

2
mv2 + eφ+

e

c
~v · ~A

yields Newton’s equation of motion from Equation (7.2), where ~A is the vector
potential satisfying ~B = ~∇× ~A. Show that the Hamiltonian of this system given
in coordinates (xi, pi) is

H(~x, ~p) =
1

2m
(p2

1 + p2
2 + p2

3)− eφ(~x)− e

mc
(p1A1 + p2A2 + p3A3).

7.1.9. Prove Proposition 7.1.4.

7.1.10. Let V be a vector space of dimension 2n, and let ω be any bilinear form on V .
Show that ω is nondegenerate if and only if ωn = ω ∧ · · · ∧ ω is nonzero.

7.1.11. Let (V, ω) be a real symplectic vector space. Let B = {e1, · · · , e2n} be a basis of
V that gives ω a canonical form.

(a) Show that if a linear transformation T : V → V leaves the form invariant,
i.e.,

ω(T (~v), T (~w)) = ω(~v, ~w) for all ~v, ~w ∈ V,

then the matrix A of T with respect to the basis B satisfies

ATJA = J, where J =

(
0 In
−In 0

)
.

(b) Suppose that T leaves ω invariant. Show that if λ is an eigenvalue of T with
multiplicity k, then 1λ, λ̄, and 1/λ̄ are also eigenvalues of T with multiplicity
k.

7.1.12. An alternative way to define the Hamiltonian vector field XH involves using the
process of raising indices as defined in Equation (6.11) in Section 6.1. Show that
XH = dH], relative to the canonical form ω on TQ∗.

7.1.13. Prove Equation (7.12). [Hint: Use the embedding of ∧2TQ∗ in TQ∗ ⊗ TQ∗ given
by dqi ∧ dpi = dqi ⊗ dpi − dpi ⊗ dqi.]
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7.1.14. Let Q be a configuration space and let M be the associated phase space M =
TQ∗. Let π : TQ∗ → Q be the canonical projection. Define the Liouville form
ϑ ∈ Ω1(M) by

ϑm(X)
def
= λq

(
dπm(X)

)
for any point m = (q, λq) of the phase space M and for any vector X ∈ TmM .

(a) Using the standard coordinates on π−1(U) in TQ∗, where U is a coordinate
patch of Q, show that the Liouville form has the expression

ϑ =

n∑
i=1

pi dqi.

(b) Conclude that the canonical symplectic form on TQ∗ satisfies ω = −dϑ.

7.1.15. Poisson Bracket. Consider the phase space M = TQ∗ for a configuration space
Q. Define the Poisson bracket { , } on the function space C∞(TQ∗) by

{f, g} =

n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

(a) Show that { , } is a differential in each entry, i.e., {f1f2, g} = {f1, g}f2 +
f1{f2, g} and similarly for the second entry.

(b) Prove that { , } gives C∞(TQ∗) the structure of a Lie algebra, i.e., { , }
satisfies the first three items of Proposition 5.3.4.

(c) Show that Hamilton’s equations of motion from Equation (7.7) are equivalent
to

q̇k = {qk, H} and ṗk = {pk, H} for k = 1, . . . , n.

7.2 Special Relativity; Pseudo-Riemannian Manifolds
7.2.1 Concepts from Special Relativity

In Chapter 2 we discussed why, in classical mechanics, it is not proper to assume
the existence or the possibility of finding an absolutely fixed frame. However, one
of the foundation principles of classical physics, namely the principle of inertia, also
known as Newton’s First Law of Motion, affirms that a body with no net force
acting on it moves with constant velocity (or stays at rest, which corresponds to
zero velocity). However, if an observer is in a moving frame, by virtue of that
movement, the observer may see a particle with no net force have an acceleration.
Some authors refer to this effect as inertial forces, which are not true forces but
only exist because of the motion of the observer. This leads to the concept of an
inertial frame as one in which a particle with no net force acting on it appears to
move in a straight line.

The “principle of relativity” in classical mechanics states that the laws of dy-
namics are the same in all inertial frames. We saw in Section 2.2 that if a frame
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F = (O,~e1, ~e2, ~e3) is inertial, then another frame F ′ = (O′, ~f1, ~f2, ~f3) is also inertial

if the origin of F ′ travels along a line ~b + ~vt in reference to F and where the or-
thonormal set of vectors of F is a fixed rotation from the orthonormal set of vectors
in F . It is a standard result in geometry that a direct isometry f : R3 → R3 has
the form f(~x) = A~x +~b, where A ∈ SO(3) and ~b is any fixed vector in R3. This

direct isometry corresponds to
−−→
OO′ = ~b and ~fi = A~ei for i = 1, 2, 3. Consequently,

the frame F ′ differs from F by a fixed direct isometry composed with a translation
by ~vt, which corresponds to movement along a fixed velocity vector, which could be
~0 if F ′ is stationary.

Of particular interest, the change of coordinates

x′ = x− vt, y′ = y, z′ = z, (7.15)

where v is a constant velocity, preserves the inertial property of frames. This is
called the Galilean transformation. It corresponds to an observer in the frame
F ′ moving at a constant speed v along the x-axis. with all other basis vectors
between frames staying the same. The laws of mechanics expressed in one system
of coordinates will be the same when expressed in the other. If P1 and P2 are two
points in space with coordinates (x1, y1, z1) and (x2, y2, z2) in the frame F then the
coordinates in the frame F ′ are (x′1, y

′
1, z
′
1) and (x′2, y

′
2, z
′
2), which could very well

be different. The coordinates with respect to a frame are not a physical quantity
in that no law of mechanics will depend on the specific value of the coordinates.
However, if we denote ∆x = x2 − x1 and likewise for the other coordinates, then
the distance P1P2 is preserved between inertial frames:

∆s
def
=
√

(∆x)2 + (∆y)2 + (∆z)2 =
√

(∆x′)2 + (∆y′)2 + (∆z′)2 (7.16)

So distance ∆s between points is a physical quantity, independent of inertial refer-
ence frame.

Consider the situation of passengers on a plane. When the plane is sitting
stationary on the tarmac the passengers will observe all the laws of physics to be
the same as if they were not on the plane. At that point, a frame F ′ fixed to the
plane is an inertial frame since we will assume that a frame F fixed to the Earth
is inertial. When the plane is at altitude and cruising speed, and not effected by
turbulence, except for the sound of the engines, there is no experiment that can be
done internal to the plane that would allow a passenger to discern that it is moving.
However, while the plane accelerates during take-off it is not an inertial frame: if a
passenger drops an object, it will not fall straight toward the ground even though
the only non-negligible force acting on it is gravity, which is vertical.

Classical mechanics implicitly treats the notion of time as absolute and inde-
pendent of any frame. For centuries, no one could imagine anything different. To
be more precise, in order to record events in different frames, we must use the space
variables which come from the geometric frames but also a time variable. So we
must imagine a clock attached to each frame. By calling time absolute, we mean
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that the only possible difference between clocks in classical frames is that they may
have t = 0 corresponding to different points in time. In particular, suppose we use
t and t′ as the time variables in the frames F and F ′. If events P1 and P2 occurs
as t1 and t2 in frame F and at t′1 and t′2 in frame F ′, then

∆t = ∆t′.

So though the recorded point in time is not a physical quantity, an interval of time
∆t is. In modern explanations of the Galilean transformation (7.15) it is common
to add the equation t = t′, though physicists working before special relativity would
never thought of needing to write this.

Through the 19th century, experiments on the nature of space, light, electro-
magnetism, and ether (the hypothetical medium through which it was thought that
light propagates like sound through air) produced unexpected results that began
to call into question even these fundamental perspectives on the nature of space
and time. Einstein’s theory of special relativity resolved these observations by us-
ing modern developments in mathematics by reformulating the notion of spacetime
according to two postulates:

Postulate 1 The laws of electrodynamics and optics are valid in all reference
frames in which the laws of mechanics hold (inertial frames).

Postulate 2 Light is always propagated in empty space with a definite velocity c
that is independent of the motion of the emitting body.

These principles bear out the surprising but experimentally observed fact that
distance ∆s as defined in (7.16) and ∆t change between inertial frames and this
change is particularly evident when v is large. Suppose that we locate an event in
a frame F using (t, x, y, z) time and space variables and similarly for another frame
F ′. Using work by Minkowski, Lorentz and others, Einstein showed that Postulate
2 implies that if F ′ is moving at a constant speed in the direction of the x-axis
of F and if the unit basis vectors in each frame are the same, then the Galilean
transformation should be replaced with

t′

x′

y′

z′

 =


γ −γv

c2
0 0

−vγ γ 0 0
0 0 1 0
0 0 0 1



t
x
y
z

 , where γ =
1√

1− v2

c2

. (7.17)

We sometimes write γ(v) to indicate the dependence of γ on the magnitude of the
velocity. In general, a Lorentz transformation is any change of coordinates from
(t, x, y, z) to (t′, x′, y′, z′) that consists of compositions of transformations in (7.17)
and rotations in the space variables.

Here are a few surprising consequences.
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• Contraction of length. Suppose that P1 = (t1, x1, y1, z1) and P2 = (t2, x2, y2, z2)
are two events in frame F with t1 = t2, y1 = y2, and z1 = z2. Then the length
P1P2 is ∆x and P1P2 is a segment along the direction of travel. Then (7.17)
implies that

∆x′ = x′2 − x′1 = (γx2 − vγt2)− (γx1 − vγt1) = γ∆x.

Then ∆x′ is the length between P1 and P2 as seen in the frame F ′. So while
an observer in frame F ′ sees as a segment of length L0 = ∆x′, the observer
in frame F will it see as having length

∆x =
∆x′

γ
= L0

√
1− v2

c2
.

• Loss of simultaneity. Consider the same two points as above. In frame F they
are simultaneous because t1 = t2. However,

∆t′ = t′2 − t′1 =
(
γt2 −

vγ

c2
x2

)
−
(
γt1 −

vγ

c2
x1

)
= −vγ

c2
∆x.

Thus, an observer in frame F ′ does not view P1 and P2 as occurring simulta-
neously.

• We do also note that if P1 and P2 were events with only a difference in their
y coordinates, with the relative motion still along the x-axis, then ∆y′ =
∆y. Hence, there is no observed contraction of length perpendicular to the
direction of motion.

• Finally, the formulas for the Lorentz transformation imply that no particle
can move faster than the speed of light c.

Though distances and time intervals are not preserved across inertial frames,
the Minkowski line element given by

(∆s)2 def
= −c2(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 (7.18)

is preserved by any Lorentz transformation. Consequently, the postulates of special
relativity require us to jettison the assumption that time and space coordinates are
independent of each other. This perspective leads to the mental model of spacetime.
A point in this spacetime is called an event and we use coordinates (t, x, y, z) with
respect to some frame.

Scaling the right-hand side of (7.18) by any factor still gives us a quantity that
is preserved by Lorentz transformations. The choice of signs reflects the fact that
if ∆t = 0 in some frame, then ∆s is precisely the usual distance between points in
that frame. The proper time interval ∆τ between two events in spacetime is

(∆τ)2 def
= −(∆s)2 =

1

c2
(c2(∆t)2 − (∆x)2 − (∆y)2 − (∆z)2).
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Figure 7.6: Light cone.

In this context, it is not as natural to talk about the “trajectory” of a particle,
since this term usually assumes that the space variables are expressed as a function
of time. In contrast, we can still model the motion of a particle by parametric
equations ~x(λ) = (t(λ), x(λ), y(λ), z(λ)) for some parameter λ.

Definition 7.2.1. If a particle has the property that for all λ in some interval
[λ1, λ2], the particle exists in space time at ~x(λ), then the image of this curve is
called the world line of the particle.

If we wish λ to carry some sense of moving forward in time, we simply impose
the assumption that dt/dλ > 0. Then the rate of change dτ/dλ of the particle’s
proper time with respect to λ satisfies(

dτ

dλ

)2

=

(
dt

dλ

)2

− 1

c2

(
dx

dλ

)2

− 1

c2

(
dy

dλ

)2

− 1

c2

(
dz

dλ

)2

.

Using chain rules so that da/dλ = (da/dt)(dt/dλ) and simplifying by dt/dλ, we get(
dτ

dt

)2

= 1− 1

c2

((
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
)
.

So if in a frame F a particle has a velocity vector function of ~v(t), then

dτ =

√
1− v2

c2
dt and

dt

dτ
= γ(v). (7.19)
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The quantity dτ is the proper time differential and the function

τ =

∫ λ

0

dτ (7.20)

is called the proper time of the particle traveling on its world line.
Proper time plays a central role in the theory of relativity since it is the same for

all inertial observers, i.e., unchanged by any Lorentz transformation. Furthermore,
this reminds us of the habit in elementary differential geometry to consider the
parametrization of a curve by arclength: since (7.20) defines a function τ(λ) such
that dτ/dλ > 0 so an inverse λ(τ) exists; using this function we can reparametrize
a particle’s world line by proper time. The proper time function defined in (7.20)
also emphasizes that the proper time between two events is the time ticked off by
a clock which actually passes through both events.[50]

Suppose we have two events with a given Minkowski metric ∆s2 between them.
They are called

• timelike separated if ∆s2 < 0. This means that ∆τ2 > 0. Clearly, for two
timelike separated events time must have elapsed. Also, since a particle cannot
travel faster than the speed of light, any two events on the world line of a
particle must be timelike separated. From another perspective, two events
are called timelike separated if a particle can travel between them (without
moving faster than the speed of light).

• lightlike separated if ∆s2 = 0. Only a particle traveling in a straight line at
the speed of light can connect two lightlike separated events.

• spacelike separated if ∆s2 > 0. No particle can have a world line that connects
two spacelike separated events. [60, Section 2.2]

The light cone based at an event P is the set of all events that are lightlike separated
from P . Figure 7.6 shows the light cone for the origin, though we can only display
the variables (t, x, y).

7.2.2 Minkowski Spacetime

Euclidean geometry takes place in the inner product space (Rn, ·), where the inner
product is the dot product. In Chapter 4 we considered properties of vector spaces
equipped with other bilinear forms. In particular, in Example 4.3.12 we already
saw the following space.

Definition 7.2.2. We define (n + 1)-Minkowski spacetime as a real vector space
with coordinates (x0, x1, . . . , xn) equipped with the bilinear form η defined by

η = ηijdx
i ⊗ dxj



7.2. Special Relativity; Pseudo-Riemannian Manifolds 327

with coefficients

η00 = −1, ηii = 1 if i > 0, ηij = 0 if i 6= j.

The bilinear form η is called the Minkowski metric. We denote the Minkowski
spacetime by Rn,1.

For simplicity of notation, we will write ~a ·~b instead of η(~a,~b).
This vector space is suited for special relativity because we can set

(x0, x1, x2, x3) = (ct, x, y, z). (7.21)

Then under this coordinate change, the Minkowski line element in (7.18) corre-
sponds to

η(~a,~a), where ~a =


c∆t
∆x
∆y
∆z

 .

We can think of the difference between the (t, x, y, z) coordinates and the (x0, x1, x2, x3)
coordinates as a change of units, so that in the (xi) system the speed of light is 1.

On the other hand, because of the centrality of the speed of light, especially since
we postulate that it is the same for every observer, we might as well use a system
of units in which it is 1. Many people are familiar with the light-year: applied to
time a light-year is a usual year and when applied to distance, it means the distance
traveled by light in a year. Or we could use the unit of meter: when applied to
time, 1 m of time refers to how long it takes for light to travel 1 meter. Since in the
SI (international system) c = 3 × 108m/s, the conversion between a meter of time
and a second of time is

1 m =
1

3× 108
s.

This convention of units is common among specialists in general relativity but is
not universal throughout other branches of physics. Consequently, this text refrains
from using this convention of units. So when applying Minkowski space to special
relativity, we continue to assume x0 = ct. (In doing so, we hope that specialists will
not be put off and that non-specialists will not be confused.)

In Example 4.3.12, we determined the automorphisms of the Minkowski metric.
When c = 1, we had found precisely the format of Lorentz transformations as
in (7.17), except that in (4.26) we had found a few possible differences of signs
in ε1 = ±1 and ε2 = ±1. These signs do not appear in (7.17). Consequently,
the allowed transformations between inertial frames in special relativity, namely
Lorentz transformations, correspond to the restricted Lorentz transformation group
discussed in Example 4.3.12. Over Minkowski space, this group of transformations
plays a parallel role to the group of direct isometries in Euclidean geometry.

An inner product space, defined in Definition 4.2.11, generalizes the Euclidean
space of Rn equipped with the dot product. All the geometry of angles, lengths,
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volumes that we can define in Euclidean space have identical definitions in any
inner product space. Sylvester’s Law of Inertia (Theorem 4.2.14) affirms that for
any symmetric bilinear form, the signature is independent of the basis. Hence, we
can generalize the notion of the Minkowski spacetime to the following.

Definition 7.2.3. A vector space V of dimension n+1 is called a Minkowski space
if it is equipped with a bilinear form 〈 , 〉 that has signature (1, n, 0) or (n, 1, 0).

From the perspective of bilinear forms, the difference between an inner product
space and a Minkowski space appears minor. However, as we already saw in the
previous subsection, there are significant differences between the geometry of an
inner product space and a Minkowski space. Most notably, for a vector v ∈ V , it
is not always true that 〈v, v〉 ≥ 0 or that 〈v, v〉 = 0 implies that v = 0. In an inner
product space we define the length of a vector as

√
〈v, v〉 but this notion of length

does not exist in the same way. Instead, just as when we discussed the difference
between timelike, lightlike and spacelike separated points above, in any Minkowski
space, there are regions in which 〈v, v〉 is positive, 0, or negative. If we do define
distances, we must do so differently in each of these regions.

For applications to special relativity, we usually use a Minkowski space with
signature (n, 1, 0). However, the difference between the geometry of vector spaces
with bilinear forms of signature (1, n, 0) versus (n, 1, 0) is immaterial, mostly a
matter of terms.

The concept of a light cone from special relativity inspires the following defini-
tion.

Definition 7.2.4. Let (V, 〈 , 〉) be a Minkowski space. The null cone is the collec-
tion of points ~x = (x0, x1, . . . , xn)> such that 〈~x, ~x〉 = 0.

In an arbitrary Minkowski space, the null cone is a generalized cone with apex
at the origin in that for all ~x in the null cone, λ~x is also in the cone. The null cone
separates the space into components in which 〈~x, ~x〉 > 0 or 〈~x, ~x〉 < 0. In special
relativity, we called these regions spacelike and timelike separated.

7.2.3 Physical Quantities in Special Relativity

Let ~x(λ) be a parametric curve that traces out the world line of a particle. We
define the four-velocity of the particle as the vector

~U =
d~x

dτ
=

(
c
dt

dτ
,
dx

dτ
,
dy

dτ
,
dz

dτ

)
. (7.22)

This vector is tangent to the world line.
In the geometry of curves in Euclidean space, the derivative d~x/ds, where s is

the arclength parameter, is the unit tangent vector. This is geometrically signifi-
cant since the arclength function is independent of any regular reparametrization
and independent of the position and orientation of the curve in space. Similarly,
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the four-velocity is a vector whose identity is independent of the observer’s frame.
However, its components will change between frames by the corresponding Lorentz
transformation.

We point out that

~U · ~U = −c2
(
dt

dτ

)2

+

(
dx

dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2

=

(
−c2 +

(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
)(

dt

dτ

)2

= (−c2 + v2)γ(v)2

= −c2.

The four-momentum vector is defined as

~p = m~U, (7.23)

where m is the rest mass of the particle. In a frame F , the components of the
four-momentum vector are

[~p]F =


p0

p1

p2

p3

 =


E/c

mdx/dt
mdy/dt
mdz/dt

 , (7.24)

where E = p0c is the energy of the particle in the frame F and (p1, p2, p3) are the
components of its spatial momentum.

The four-acceleration is

~a =
d~U

dτ
. (7.25)

Since ~U · ~U is constant, then ~a · ~U = 0.
Special relativity requires careful study to develop an effective intuition. This

text has not provided any of the historical developments or experimental results that
support this theory. We refer the reader to [24, 21, 42], each offering a comprehensive
treatment of the subject.

7.2.4 Pseudo-Riemannian Manifolds

The definition of a Riemannian manifold arose from assuming a smooth manifold
came equipped with an inner product on every tangent space, that varied smoothly
across the manifold. The usefulness of Minkowski space for special relativity illus-
trates that an inner product is not always what we might want for certain applica-
tions. This inspires the following definition.
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Definition 7.2.5. A pseudo-Riemannian metric on a smooth manifold M is a
symmetric tensor field g of type (0, 2) on M that is nondegenerate at every point.
The pair (M, g) is called a pseudo-Reimannian manifold.

In more detail, g is a global section of Sym2 TM∗ such that at each point p ∈
M , we can have gp(X,Y ) = 0 for all Y ∈ TpM if and only if X = 0 in TpM .
This definition is looser than that of a Riemannian manifold since it has removed
the positive-definite condition of inner products. Some authors refer to g on a
pseudo-Riemannian manifold as a metric, whereas other authors prefer the term
pseudometric to emphasize that g is not positive definite.

From Sylvester’s Law of Inertia (Theorem 4.2.14), the signature of a symmetric
bilinear form on a vector space is independent of the basis. More can be said for
pseudo-Riemannian manifolds.

Proposition 7.2.6. Let (M, g) be a pseudo-Riemannian manifold. Then on every
connected component of M , the signature of g is the same.

Proof. Recall that if 〈 , 〉 is a symmetric bilinear form on a vector space V of di-
mension n, then 〈 , 〉 is nondegenerate if and only if the signature (s, t, r) has r = 0.
This condition is also equivalent to the coefficient matrix of 〈 , 〉 with respect to
some basis having a nonzero determinant.

For each p ∈ M , we consider the symmetric bilinear form gp. By definition,
g : M → Sym2 TM∗ is a continuous function. The coefficients of the characteristic
polynomial of a matrix are polynomials, and therefore continuous, in the entries of
a matrix. By the Spectral Theorem, since the bilinear form gp is symmetric, its
matrix with respect to any basis is diagonalizable and all its eigenvalues are real.
Consequently, we can order the eigenvalues of gp as functions λ1(p) ≥ λ2(p) ≥ · · · ≥
λn(p). It is a well known result that the zeros of a polynomial vary continuously with
the coefficients, even over C. [38, p.3]. Hence, the eigenvalue functions λi : M → R
are continuous.

However, det(gp) = λ1(p)λ2(p) · · ·λn(p) is continuous and never 0. Hence,
λi(p) 6= 0 for all p ∈ M . From the proof of (Theorem 4.2.14), in the signature
(s, t, r), the value s represents the number of eigenvalues that are positive, while t
represents the number of eigenvalues that are negative. Since the eigenvalue func-
tions are continuous and never 0, the number of eigenvalues that are positive and
the number that are negative stays constant over any connected component.

Definition 7.2.7. The signature of a pseudo-Riemannian manifold is the pair (s, t)
of (M, g), where (s, t, 0) is the signature of gp for each p ∈M .

As we will see in Section 7.5, the theory of general relativity requires a model
of space that is not flat but nonetheless behaves locally like Minkowski spacetime.
Gravitational effects will cause the Lorentz metric to vary through space. A pseudo-
Riemannian manifold of signature (3, 1) models this well.



7.2. Special Relativity; Pseudo-Riemannian Manifolds 331

A review of the proof of the Levi-Civita Theorem shows that the proof only
used the symmetry and the nondegenerate (invertibility of the (gij) matrix) aspect
of the metric. Consequently, the following holds.

Theorem 7.2.8. The Levi-Civita Theorem, Theorem 6.2.11, also holds for pseudo-
Riemannian manifolds. The coefficients for the Levi-Civita connection are also
given by the Christoffel symbols defined in Proposition 6.2.13.

Despite this theorem, a few relevant changes arise in the following contexts:

• We can no longer define the length of a tangent vector if gp(V, V ) < 0.

• We cannot define the arclength of a curve γ if gγ(σ)(γ
′(σ), γ′(σ)) < 0 for some

σ ∈ I.

• We might not be able to define the volume of a region R of M .

Despite these possible obstructions, the equations for geodesics still satisfy the exis-
tence and uniqueness properties of Theorem 6.3.12. Furthermore, like Proposition
6.3.13, geodesics on pseudo-Riemannian manifolds have a constant 〈γ′(σ), γ′(σ)〉.
Thus, geodesics come in three categories depending on the sign of 〈γ′(σ), γ′(σ)〉 =
gij γ̇

i(σ)γ̇j(σ).
In the context of a Minkowski spacetime R3,1, where the metric g has signature

(3, 1), we say that a geodesic is

• a timelike geodesic if g(γ′(σ), γ′(σ)) < 0;

• a null geodesic if g(γ′(σ), γ′(σ)) = 0;

• a spacelike geodesic if g(γ′(σ), γ′(σ)) > 0.

Problems

7.2.1. Use the interpretation of the four-momentum in (7.24) to recover the energy-
momentum relation E2 = m2c4 + p2c2.

7.2.2. Action for a Relativistic Point Particle. The action of a free (no external forces)
non-relativistic particle traveling between t = t1 and t = t2 is simply

S =

∫ t2

t1

1

2
mv2 dt =

∫ t2

t1

1

2
m
∥∥∥d~x
dt

∥∥∥2

dt,

and thus the Lagrangian is L = T = 1
2
mv2. To give a relativistic formulation for

the action of a free particle, let us first assume we are in the context of a Minkowski
space with coordinates described in Equation (7.21). We must describe the action
in a way that is invariant under a Lorentz transformation. Therefore, we cannot
directly use the particle velocity since the velocity is not a Lorentz invariant. This
exercise seeks to justify the definition of the action of a relativistic point particle
with rest mass of m0 as

S = −mc2
∫
P
dτ, (7.26)
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where we integrate over a world line P of the particle. According to (7.19), the
action in (7.26) has an associated Lagrangian of

L = −mc2
√

1− v2

c2
. (7.27)

(a) Calculate the 6th-order Taylor expansion of
√

1− x2, and show that the
quadratic approximation to L is

L ∼= −mc2 +
1

2
mv2. (7.28)

(b) Using Equation (7.27), show that the generalized momentum vector ~p and
the Hamiltonian H satisfy

~p =
m~v√
1− v2

c2

and H =
mc2√
1− v2

c2

.

(This formula for H conforms with the formula [24, (1-16)] for the total
energy of a free relativistic particle.)

7.2.3. Let (M, g) be a four-dimensional manifold with a Lorentzian metric that over a
particular coordinate system (t, x, y, z) has the matrix

gij =


k2 − g2t2 0 0 gt

0 1 0 0
0 0 1 0
gt 0 0 1

 .

Show that the geodesics that have the initial condition (x, y, z, t) = (0, 0, 0, 0) when
s = 0 satisfy

x = at, y = bt, and z = −1

2
gt2 + ct.

Use this to give a physical interpretation of this metric.

7.2.4. Let M be a pseudo-Riemannian manifold of dimension 3 with the line element

ds2 = −dt2 +
1

1− λr2
dr2 + r2dθ2,

where we assume r2 < 1/λ. Show that the null geodesics satisfy the relationship(
dr

dθ

)2

= r2(1− λr2)(Cr2 − 1),

where C is a constant. Use the substitution u = 1/r2 to solve this differential
equation, and show that the solutions are ellipses if we interpret r and θ as the
usual polar coordinates.

7.2.5. Let g > 0 be a positive constant. Let M be a pseudo-Riemannian manifold of
dimension 4 that has a line element of

−ds2 = (1− 2gx)dt2 − 1

1− 2gx
dx2 − dy2 − dz2,

Show that the curve defined by (1 − 2gx) cosh2(gt) = 1, y = z = 0 is a geodesic
passing through the origin.
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Figure 7.7: Stereographic projection from a hyperboloid.

7.2.6. Determine the geodesics in a pseudo-Riemannian manifold that has the line element
metric

ds2 = −xdt2 +
1

x
dx2 + dy2 + dz2.

7.2.7. Consider a Lorentzian metric given by ds2 = −dt2 + f(t)2dx2, where f(t) is any
smooth function of t. Show that the Einstein tensor is identically 0.

7.2.8. Let Hn
R be the upper half of the two-sheeted hyperboloid in Rn+1, defined by

(x1)2 + · · ·+ (xn)2 − (xn+1)2 = R2 and xn+1 > 0.

Equip Hn
R with the metric g = i∗η, where i : Hn

R → Rn+1 is the inclusion map and
η is the Minkowski metric expressed as

η = (dx1)2 + · · ·+ (dxn)2 − (dxn+1)2.

Define the manifold BnR as the n-dimensional open ball in the xn+1 = 0 hyperplane
of Rn+1 with center at the origin and radius R. Equip BnR with the metric g̃ defined
in Problem 6.1.12, namely

g̃ =
4R4

(R2 − ‖x‖2)2

(
(dx1)2 + · · ·+ (dxn)2) .

We define the stereographic projection π : Hn
R → BnR such that π(p) = q is the

unique point in BnR on the line segment Sp, where S = (0, 0, . . . , 0,−R). Figure 7.7
depicts this projection for n = 2.

(a) Prove that π(x1, . . . , xn, xn+1) =
R

R+ xn+1
(x1, . . . , xn).

(b) For u ∈ BnR ⊂ Rn, show that π−1(u) =

(
2R2u

R2 − ‖u‖2 ,
R(R2 + ‖u‖2)

R2 − ‖u‖2

)
.
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(c) Show that (π−1)∗g = g̃.

(d) Deduce that (Hn
R, g) is a Riemannian manifold (even though the metric is

a pull-back from a pseudo-Riemannian metric) and that π is an isometry
between Riemannian manifolds.

7.3 Electromagnetism
7.3.1 Maxwell’s Equations

The goal of this section is to summarize the dynamics of a charged particle moving
under the influence of an electric field ~E and a magnetic field ~B, both of which are
time and space dependent. In no way does this brief section attempt to encapsulate
all of the theory of electromagnetism. Rather we show how to pass from a classical
formulation of a few of the basic laws of electromagnetism to a modern formulation
that uses Minkowski metrics and the language of forms. (Note: all formulas in this
section use CGS units, i.e., centimeters-grams-seconds units. In this system, force is
measured in dyne, energy in erg, electric charge in esu, electric potential in statvolt,
and the magnetic field strength in gauss.)

The mathematical theory relies on the model (based on experiment) that point
charges exist, i.e., particles of negligible size with charge. For example, the electron
and the proton fit this bill. In contrast, magnetic monopoles – point-like particles
with a magnetic charge – do not (appear to) exist. The observation of a single mag-
netic monopole would change the rest of the theory (by adding an extra magnetic
charge density and magnetic current) but even this “would not alter the fact that in
matter as we know it, the only sources of the magnetic field are electric currents.”
[46, p. 405]

Coulomb’s law of electrostatic force states that the force between two point
charges is inversely proportional to the square of the distance between them, namely,

~F =
q1q2

r2
r̂, (7.29)

where q1 and q2 are the respective charges of the particles, r is the distance between
them, and r̂ is the unit vector pointing from the location of the point charge 1 to
the point charge 2. One then considers systems of charges, modeled by a charge
density ρ(x, y, z), acting on a point particle with charge q. The electric field of a

charged system is the vector field ~E(x, y, z) = 1
q
~F where ~F is the force the system

would exert on a particle of charge q at position (x, y, z). It is calculated by

~E =

∫∫∫
R3

ρ(x′, y′, z′)
(x− x′, y − y′, z − z′)

((x− x′)2 + (y − y′)2 + (z − z′)2)3/2
dx′ dy′ dz′, (7.30)

If the charge density ρ depends on time t as well, the ~E is a time dependent vector
field ~E(x, y, z, t). An application of Gauss’s Theorem from vector calculus gives
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Gauss’s Law for electrostatics, i.e.,

div ~E = 4πρ, (7.31)

where the divergence is only taken in the space variables.

Consider the following function defined in terms of the charge density ρ:

ϕ(x, y, z, t) =

∫∫∫
R3

ρ(x′, y′, z′, t)√
(x− x′)2 + (y − y′)2 + (z − z′)2

dx′ dy′ dz′. (7.32)

By taking the gradient with respect to the space variables (x, y, z) passing under
the integral, we see that

~E = −~∇ϕ. (7.33)

This shows that ~E is a conservative vector field. The function ϕ is called the electric
potential . The potential energy of the electric force field acting on a particle with
charge q is V = qϕ. If the system of electrical charges is moving, then ~E, ϕ, and ρ
are also functions of time, but (7.30) and (7.33) still hold with the caveat that the
integration and the gradient only involve the space variables.

A system of time-dependent current density also induces what are called elec-
trical currents. The current density is the vector field ~J that at each point (x, y, z)
measures the direction of the current and how much current is passing per area and
per time. A direct application of Gauss’s Theorem from vector calculus gives

div ~J = −∂ρ
∂t
. (7.34)

At the heart of electromagnetism lies an interdependence between magnetic
fields and electric fields. A charged particle that is moving in the presence of a
current experiences a force perpendicular to its velocity. That force acting on the
particle is called the magnetic force. The magnetic field of a system of charges is
the field ~B defined implicitly by

~F = q( ~E +
1

c
~v × ~B). (7.35)

This overall effect on a particle with charge q is called the electromagnetic force.
It is no longer conservative due to the presence of ~v. Nonetheless, we define the
magnetic vector potential ~A by

~A(x, y, z) =
1

c

∫∫∫
R3

~J(x′, y′, z′, t)√
(x− x′)2 + (y − y′)2 + (z − z′)2

dx′ dy′ dz′. (7.36)

Furthermore, Faraday discovered that not only does a time-dependent distribu-
tion of charge induce a magnetic field, a variable magnetic field similarly affects
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the electric field. The relationship between the electric and magnetic fields can be
summarized by two separate sets of equations: Faraday’s law for potential, i.e.,

~E = −~∇ϕ− 1

c

∂ ~A

∂t
~B = ~∇× ~A, (7.37)

and the celebrated Maxwell’s equations, i.e.,

~∇ · ~E = 4πρ, ~∇ · ~B = 0,

~∇× ~E = −1

c

∂ ~B

∂t
, ~∇× ~B =

1

c

∂ ~E

∂t
+

4π

c
~J.

(7.38)

Maxwell’s equations stand as a crowning achievement in electromagnetism. They
encapsulate the interdependent phenomena of induction and the static source of the
various fields. Furthermore, solving the equations for empty space (i.e., ρ = 0 and
~J = ~0) leads to an interpretation of light as an electromagnetic wave.

Hidden in Maxwell’s equations lie relativistic effects. If a charged particle travels
fast (a non-trivial fraction of the speed of light), then due to relativistic effects, its
electric field appears distorted to a stationary observer. Lorentz transformations
in (7.17) describe how the electric and magnetic fields look different in different
moving frames of reference.

7.3.2 Covariant Formula of Electromagnetism

Having developed considerable analytical machinery in the previous chapters, we
are in a position to reformulate the theory of electromagnetism in a more concise
way. We work in a four-dimensional Minkowski spacetime, which means we use the
pseudometric g = η, as defined in Section 7.2.2. As before, we label the coordinates
as x0 = ct, x1 = x, x2 = y, and x3 = z.

Define the 4-vector potential A as the covector (1-form) with components

Ai = (−ϕ,A1, A2, A3). (7.39)

We call the electromagnetic tensor F the 2-form

F = −
3∑
i=1

Eidx
0 ∧ dxi +

3∑
i=1

Bi(?̃dx
i)

= −E1 dx
0 ∧ dx1 − E2 dx

0 ∧ dx2 − E3 dx
0 ∧ dx3

+B1 dx
2 ∧ dx3 −B2 dx

1 ∧ dx3 +B3 dx
1 ∧ dx2,

where by ?̃ we mean the Hodge star operator acting only on the space variables. If
we exhibit the components of F in an antisymmetric matrix, we write

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 . (7.40)
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(As always, we use the convention that in Fµν , the index µ corresponds to the row
and ν corresponds to the column of the representing matrix.) In Problem 5.4.7, we
showed that Faraday’s law for potential from Equation (7.37) can be expressed as

Fαβ = ∂αAβ − ∂βAα. (7.41)

Example 4.5.9 showed that a collection of component functions defined this way in
terms of a covariant field A does define a tensor field of type (0, 2).

We also define the 4-current vector by J = (cρ, J1, J2, J3), where ρ is the

charge density and (J1, J2, J3) = ~J is the classic current density vector. Using
the Minkowski metric η, recall that by Fαβ we mean the raising-indices operation
Fαβ = ηαµηβνFµν and similarly for the lowering operation Jα = ηαβJ

β . Recall
that we write J[ for the covector associated to J. In coordinates, we have

Fαβ =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 and Jα = (−cρ, J1, J2, J3).

With this setup, it is not hard to show that Maxwell’s equations can be written in
tensor form as

∂αF
βα =

4π

c
Jβ , and εαβγδ(∂γFαβ) = 0, (7.42)

where the last equation holds for all δ = 0, 1, 2, 3. The second equation in (7.42)
can be written equivalently as

εαβγδ(∂γFαβ) = ∂γFαβ + ∂αFβγ + ∂βFγα = 0. (7.43)

Using 4-vectors, one can describe the potential between the current 4-vector and
the potential 4-vector. First, we define the D’Alembertian operator as

� =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2
. (7.44)

We point out that the D’Alembertian is equivalent to the Laplacian in the (x0, x1, x2, x3)
with the Minkowski metric. Since x0 = ct, we have

∂

∂x0
=

1

c

∂

∂t
.

So ∇ = (1/c∂t, ∂x, ∂y, ∂z). The Laplacian is ∇2 = ∇ · ∇ so

∇2 = − ∂2

∂(x0)2
+

∂2

∂(x1)2
+

∂2

∂(x2)2
+

∂2

∂(x3)2

Since ∂/∂x0 = 1
c∂/∂t, we see that the D’Alembertian operator is the same as the

Laplacian for this context.
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Applying Equation (7.34) to Equations (7.36) and (7.32), one can show that
~∇ · ~A = − 1

c∂ϕ/∂t. Thus, taking the divergence of ~E expressed in Equation (7.37),
we obtain

�ϕ = −4πρ. (7.45)

Using similar calculations, we can also show that

�Ai = −4π

c
Ji for i = 1, 2, 3. (7.46)

7.3.3 Electromagnetism Expressed in Differential Forms

Much of the reformulation of Faraday’s and Maxwell’s equations in the previous
paragraphs can be expressed in even simpler terms using differential forms. We still
work under the assumption that we work in Minkowski space R3,1. Faraday’s law,
expressed classically as (7.37) and in covariant components in 7.41, simply means

dA = F. (7.47)

Interestingly enough, this formula does not refer to any metric but simply claims
that the electromagnetic tensor F is an exact 2-form.

Since F is exact, it is also closed with dF = 0. This property again has nothing
to do with a metric. It is easy to check that it corresponds to the second and third
Maxwell equations in (7.38). In Section 6.2.5, we mentioned the divergence operator
on any tensor field over a Riemannian manifold. In order to take the divergence
on a covariant index, we first need to raise that index. If we take the divergence
operator of F in the first index, by (6.25) in components it is

(gijFjβ);i = gijFjβ;i,

where we are using the covariant derivative associated to the Levi-Civita connection.
It is straightforward to prove that Maxwell’s first and fourth equations are equivalent

to divF =
4π

c
J[. Hence, we can write Maxwell’s equations as

div F =
4π

c
J[ and dF = 0. (7.48)

This formulation of Faraday’s equation and Maxwell’s equations lends itself to
generalization from Minkowski space to a pseudo-Riemannian manifold of signature
(3, 1). In fact, dF = 0 follows immediately from F = dA but the divergence operator
in the first equation in the above pair depends on the metric of the manifold.

Problems

7.3.1. Suppose we are in R3+1, and let F be the standard reference frame. Suppose that
another frame F ′ keeps the x-, y-, and z-axes in the same orientation but has an
origin O′ that travels at velocity v along the x-axis of F . Let ~E and ~B be joint



7.3. Electromagnetism 339

electric and magnetic force fields with coordinates (E1, E2, E3) and (B1, B2, B3)
as observed in F . Use the electromagnetic tensor from Equation (7.40) and the
coordinate transformation described in (7.17) to show that in F ′ the components
of the same vector fields are observed as having the components

E′1 = E1, E′2 = γ(E2 − βB3), E′3 = γ(E3 + βB2),

B′1 = B1, B′2 = γ(B2 + βE3), B′3 = γ(B3 − βE2).
(7.49)

(This result conforms to standard results of special relativistic effects in electro-
magnetism. [46, (58) Chap. 6].)

7.3.2. Show that (7.42) is equivalent to (7.38).

7.3.3. Let f be a smooth function defined over the Minkowski space R3,1. As always, set
x0 = ct, x1 = x, x2 = y, and x3 = z. Prove that

d(?(df)) = c�fdt ∧ dx ∧ dy ∧ dz.

7.3.4. Suppose we are in Minkowski spacetime.

(a) Prove that 1
2
FαβFαβ = ‖ ~E‖2 − ‖ ~B‖2. Conclude that ‖ ~E‖2 − ‖ ~B‖2 is pre-

served under any Lorentz transformation.

(b) Prove that − 1
4
ηij(?F )jkηilFlk = ~E · ~B. Conclude that ~E · ~B is preserved

under any Lorentz transformation.

7.3.5. Recall ? as the Hodge star operator. Show that in Minkowski spacetime with the
metric η, the operator ?d? is the same as the divergence operator div over the first
index. Conclude that Maxwell’s equations equations can be expressed as

dF = 0

?d ? F =
4π

c
J[.

(7.50)

7.3.6. Let M be any pseudo-Riemannian manifold. Consider the operation that consists
of the compositions ?d ? d.

(a) Show that ?d ? d is an R-linear operator Ωk(M)→ Ωk(M) for k < dimM .

(b) Let MRn be a standard Euclidean space. Recalling that Ω0(M) = C∞(M),
show that for any smooth function f ,

?d ? df = ∇2f,

where ∇2 is the usual Laplacian ∇2 = ∂2

∂(x1)2
+ · · ·+ ∂2

∂(xn)2
.

(c) Suppose we are in Minkowski space. Show that � = ?d ? d, and conclude
that Equations (7.45) and (7.46) can be summarized by

?d ? dA =
4π

c
J[.
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7.3.7. In [60, (5.38)], the author states that “the full action for the electrically charged
point particle is”

S = −m0c

∫
P
dτ +

q

c

∫
P
Aµ dx

µ, (7.51)

where dτ is given by (7.19) and Aµ are the components of the potential covec-
tor given in Equation (7.39). Suppose a charged particle travels along a path
(x1(t), x2(t), x3(t)).

(a) Write the action in Equation (7.51) as an integral of time t alone.

(b) Determine the Lagrangian for this system, and write down Lagrange’s equa-
tions of motion.

(c) Write down Hamilton’s equations of motion.

7.4 Geometric Concepts in String Theory
What is generically understood in physics as string theory is a collection of theories
called superstring theories. The name of these models derives from the fact that
in many of the first proposed theories, elementary particles were viewed as strings.
Since then, theories have been formulated in terms of points or surfaces. The string
can be either open on the ends or be a closed loop. For theoretical reasons, the length
of the strings should be on the order of the Planck length, `P = 1.6162× 10−35 m.
This size is so small as to render it impossible to directly observe the string structure
with present technology or, so it would seem, with technology that will be available
in the near future. In this model, observed properties of the particle, such as mass
or electric charge, arise as specific properties of the vibration of the string.

A string in common day occurence is made of some material like thread or
wire. One could ask what these strings are made of, i.e., what is the nature of
the “thread.” This type of question is, however, vacuous because the string is not
made up of any constituent parts. One should rather think of the particle-wave
duality that drew considerable debate during the inception of quantum mechanics.
In this duality, under different circumstances, a particle would exhibit behavior like
a billiard ball while in other circumstances it would display a wave-like behavior.
While some physicists discussed the fundamental nature of particles, many simply
emphasized the fact that growing experimental evidence supported the probability
wave function model, without worrying about the ontology.

As a refinement to the Standard Model of quantum mechanics, string theory
bears a similar duality in that one thinks of the particle as having a string nature as
well as a probability wave nature. The space of the “state” functions (i.e., functions
that describe the state of the particle) is the same, but there are more operators
than in the point-particle theory. In practice, instead of debating the nature of the
string, the theories work out mathematical consequences of this formulation in the
hope that the resulting theory agrees with experimental observations and unifies
without irreparable inconsistencies with previously established theories.
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x y
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S

Figure 7.8: The world sheet of a (nonrelativistic) closed string.

Our goal in this section is to introduce a few of the geometric notions that un-
derlie the relativistic dynamics of a string. Issues of quantization of these dynamics
exceed the scope of this book.

We first consider the nonrelativistic dynamics of a string of length L in Euclidean
Rn. If the string is open, we can pick an end of the string and use the arclength
parameter to locate a point on the string. If it is closed, we pick a specific point on
the string and locate other points on the string using the same arclength parameter.
The position of the string in space at time t is described by a smooth function
X : [0, L]× R→ Rn, where X(s, t) is the location of the point of position s on the
string at time t. Therefore, while the trajectory of a classic particle is described by
a curve in Rn, the “trajectory” of a string is a surface (see Figure 7.8). In keeping
with the terminology of “world line” for a relativistic point particle, the surface S
is called the world sheet of the string.

To study the dynamics of a relativistic string, we must work in the context of
a Lorentzian spacetime. (This can be curved or flat and can have any number of
space dimensions but only one time dimension. In other words, the pseudometric
on the space has index 1.) As always, the coordinates in the spacetime are xµ =
(x0, x1, · · · , xd), with d being the number of space dimensions and x0 = ct.

One can no longer parametrize the world sheet S with the time parameter t since
x0 = ct is one of the coordinates in the target space. Nonetheless, the world sheet
requires two parameters, say ξ1 and ξ2. Furthermore, we can no longer give the
same definition of the domain of X as in the nonrelativistic description of moving
strings. One refers to the domain of X as the parameter space for the world sheet.

Now we encounter something new in Lorentzian spacetime that we never en-
countered in the study of Riemannian manifolds. The world sheet S must be such
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that at each point there exists at least one spacelike tangent vector and at least one
timelike tangent vector (recall Section 7.2.4 for the definitions). It is not hard to
see the need for a spacelike tangent vector. Any point in time corresponds to a slice
of x0. Intersecting such a slice with S gives the locus of the string at a given time.
Any point on the string in this slice will have a tangent vector that is a spacelike
vector. On the other hand, if there did not exist a timelike tangent vector at some
point on S, one would interpret that as that point not having any evolution through
time. This is not a physical situation. Hence, at each point P of S, the tangent
space has both a timelike direction and a spacelike direction. This is the criterion
for motion of the string.

If g is the pseudo-Riemannian metric of the spacetime target space, then the
induced metric g̃ on the tangent bundle TS is defined by

g̃ij = g
(∂X
∂ξi

,
∂X

∂ξj

)
.

The criterion of motion for the string is equivalent to g̃ having index 1 at all points
of S.

Proposition 7.4.1. Let X(ξ1, ξ2) be a parametrization for a surface S in Lorentzian
space with metric g such that at each point of S, X has at least one nontrivial space-
like tangent vector and at least one nontrivial timelike vector. Then

det(g̃ij) = det
(
g
(∂X
∂ξi

,
∂X

∂ξj

))
< 0 (7.52)

at all points of S.

Proof. Let p be a point on S, and let V (α) be the vector in TpS defined by

V (α) = cosα
∂X

∂ξ1
+ sinα

∂X

∂ξ2

for α ∈ [0, 2π]. Then

‖V (α)‖2 = cos2 α g
(∂X
∂ξ1

,
∂X

∂ξ1

)
+ 2 sinα cosα g

(∂X
∂ξ1

,
∂X

∂ξ2

)
+ sin2 α g

(∂X
∂ξ2

,
∂X

∂ξ2

)
= cos2 α g̃11 + 2 sinα cosα g̃12 + sin2 α g̃22. (7.53)

The property of tangent vectors of being timelike or spacelike is independent of the
length or sign of the vector. Thus, for some α1, there exists a vector V (α1) such
that ‖V (α1)‖2 < 0, and for some α2 there exists a V (α2) such that ‖V (α2)‖2 > 0.
Furthermore, ‖V (αi + π)‖2 = ‖V (αi)‖2. Hence, since ‖V (α)‖2 changes sign twice
over α ∈ [0, π], it must have at least two distinct roots. Therefore, Equation (7.53)
leads to quadratic equations in tanα or cotα. Either way, according to the quadratic
formula, the equation for tanα or for cotα has two distinct roots if and only if

g̃2
12 − g̃11g̃22 > 0.

The proposition follows immediately.
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It is customary to parametrize S with two variables labeled σ and τ defined
in such a way that for all points in the parameter space, ∂X/∂σ is a spacelike
tangent vector and ∂X/∂τ is a timelike tangent vector. The parameters σ and τ no
longer directly represent position along the string or time, respectively. One could
say that σ and τ approximately represent position and time along the world sheet.
In fact, with the sole exception of the endpoints, when considering the motion of
open strings, one cannot know the movement of individual points on the string. In
general, σ ranges over a finite interval [0, σ1], while τ ranges over all of R.

The derivatives ∂X/∂σ and ∂X/∂τ occur often enough that it is common to use
the symbols X ′ and Ẋ for them, respectively. In components, we write

X ′µ =
∂Xµ

∂σ
and Ẋµ =

∂Xµ

∂τ
.

The area element of the world sheet in this Lorentzian space is defined as

dA =
√
−det g̃ =

√
g(Ẋ,X ′)2 − g(Ẋ, Ẋ)g(X ′, X ′). (7.54)

We finish this section by briefly discussing the Nambu-Goto action for a free
relativistic string and the resulting equations of motion for the string.

Definition 7.4.2. Let g = 〈 , 〉 be a pseudometric of signature (1, 1). The Nambu-
Goto action of the string is defined as

S
def
= −T0

c

∫∫
S
dA = −T0

c

∫ τ2

τ1

∫ σ1

0

√
−det g̃αβ dσ dτ

= −T0

c

∫ τ2

τ1

∫ σ1

0

√
〈Ẋ,X ′〉2 − ‖Ẋ‖2 ‖X ′‖2 dσ dτ, (7.55)

where T0 is called the string tension and c is the speed of light.

Before proceeding, we must give some justification for this definition. First of
all, it mimics the action for a free relativistic particle given in (7.26). The difference
is that instead of defining the action as a multiple of the length of the path in the
ambient Minkowski space, we define it as a multiple of the area of the world-sheet.
Furthermore, this action is obviously invariant under reparametrization since the
area is a geometrical quantity.

As a more convincing argument, we consider a classical vibrating string of length
`. Using Figure 7.9 as a guide, we model the motion of the string by a function
y(x, t) that measures the deviation of the string from rest at horizontal position
x and at time t. If the string has constant density µ0 and tension T0, then the
differential equation of motion for a string with small deviations is

µ0
∂2y

∂t2
= T0

∂2y

∂x2
.
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Figure 7.9: A vibrating string.

The fraction µ0/T0 has the units of time2/length2 and is in fact equal to 1/c2, where
c is the speed of propagation of the wave. It is not hard to reason that at any point
in time t, the total kinetic energy of the string is

T =

∫ `

0

1

2
µ0

(∂y
∂t

)2

dx,

and that the total potential energy is

V =

∫ `

0

1

2
T0

(∂y
∂x

)2

dx.

Thus the Lagrangian of the system is

L =

∫ `

0

1

2
µ0

(∂y
∂t

)2

− 1

2
T0

(∂y
∂x

)2

dx. (7.56)

The integrand of Equation (7.56) is called the Lagrangian density and is denoted
by L. It is explicitly a function of ∂y/∂t and ∂y/∂x. The action of the system for
t ∈ [t1, t2] is

S =

∫ t2

t1

∫ `

0

1

2
µ0

(∂y
∂t

)2

− 1

2
T0

(∂y
∂x

)2

dx dt. (7.57)

Now assume that we are in a Minkowski space R1,2 with the flat pseudometric
−ds2 = −(dx0)2 + (dx1)2 + (dx2)2, where x0 = ct, x1 = x, and x2 = y. After some
manipulation, we can rewrite that string action as

S = −T0

c

∫ ct2

ct1

∫ `

0

1

2

(
−
( ∂y
∂x0

)2

+
( ∂y
∂x1

)2
)
dx1 dx0. (7.58)

The motion of the string can be parametrized in R1,2 by ~f(x0, x1) = (x0, x1, y(x0, x1)).



7.4. Geometric Concepts in String Theory 345

With the inner product induced by this metric, the area element becomes√√√√−(〈 ∂ ~f
∂x0

,
∂ ~f

∂x0

〉〈 ∂ ~f
∂x1

,
∂ ~f

∂x1

〉
−
〈 ∂ ~f
∂x0

,
∂ ~f

∂x1

〉2
)

=

√
1−

( ∂y
∂x0

)2

+
( ∂y
∂x1

)2

∼= 1 +
1

2

(
−
( ∂y
∂x0

)2

+
( ∂y
∂x1

)2)
.

Adjusting for x0 = ct, the Lagrangian associated to Equation (7.58) differs from
the linear approximation to the Nambu-Goto action

−T0

∫ `

0

1 +
1

2

(
−
( ∂y
∂x0

)2

+
( ∂y
∂x1

)2)
dx1

by

−T0

∫ `

0

1 dx1 = −T0` = −µ0`c
2 = −mc2.

Similar to the linear approximation to the Lagrangian for the free relativistic parti-
cle in Equation (7.28), this difference is precisely the negative of the rest energy mc2

of the string. Since this is a constant, it leaves the Euler-Lagrange equations un-
changed. This shows how the classic Lagrangian of a wave is a linear approximation
for the Lagrangian associated to the Nambu-Goto action.

We now wish to obtain the equations of motion associated to the Nambu-Goto
action. The Lagrangian density in Equation (7.55) is

L(Ẋµ, X ′µ) = −T0

c

√
〈Ẋ,X ′〉2 − ‖Ẋ‖2 ‖X ′‖2. (7.59)

This is an explicit function of the eight variables X ′µ and Ẋµ for µ = 0, 1, 2, 3.
Hamilton’s principle states that the system will evolve in such a way as to minimize
the action. According to a generalization of the Euler-Lagrange Theorem in the
calculus of variations (see Problem 7.4.2), the Nambu-Goto action is minimized if
and only if the Xµ(s, t) satisfy

d

dσ

( ∂L
∂X ′µ

)
+

d

dτ

( ∂L
∂Ẋµ

)
= 0

for all µ. These are the equations of motion for a relativistic string, whether open
or closed. More explicitly, the equations of motion read

∂

∂σ

 〈Ẋ,X ′〉gµνẊν − ‖Ẋ‖2gµνX ′ν√
〈Ẋ,X ′〉2 − ‖Ẋ‖2 ‖X ′‖2

+
∂

∂τ

 〈Ẋ,X ′〉gµνX ′ν − ‖X ′‖2gµνẊν√
〈Ẋ,X ′〉2 − ‖Ẋ‖2 ‖X ′‖2

 = 0

(7.60)
for µ = 0, 1, 2, 3. At first glance, these equations are incredibly complicated. They
involve a system of four second-order partial differential equations of four functions
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each in two variables. A remarkable fact among the basic results of string theory
is that it is possible to solve Equation (7.60) once one makes a suitable choice of σ
and τ .

Using the notion of generalized momenta defined in Equation (7.6), we define
two momenta densities Pσ and Pτ that are cotangent vectors on the world sheet
with components

Pσµ
def
= −T0

c

〈Ẋ,X ′〉gµνẊν − ‖Ẋ‖2gµνX ′ν√
〈Ẋ,X ′〉2 − ‖Ẋ‖2 ‖X ′‖2

,

Pτµ
def
= −T0

c

〈Ẋ,X ′〉gµνX ′ν − ‖X ′‖2gµνẊν√
〈Ẋ,X ′〉2 − ‖Ẋ‖2 ‖X ′‖2

.

(7.61)

(One should note that in this case the superscript σ and τ in Pσµ and Pτµ are not
indices but are parameter indicators.) Then the equations of motion read

∂Pσµ
∂σ

+
∂Pτµ
∂τ

= 0. (7.62)

This is all we will say about the underlying geometry in string theory. String
theory extends well beyond the scope of this book, and we encourage the reader to
consult [60] for an artful and accessible introduction to the subject.

Problems

7.4.1. Show that at some point on the world-sheet of a string, if the point moves at the
speed of light, there is no timelike direction.

7.4.2. Use the methods of calculus of variations provided for the proof of Theorem B.3.1
to prove the following result. Let x1(s, t), . . . , xn(s, t) be n twice-differentiable
functions in two variables. Denote derivatives by x′i = dxi/ds and ẋi = dxi/dt.
Suppose that a function f is given explicitly in terms of xi, x′i, ẋi, s, and t. Show
that the integral∫ t2

t1

∫ s2

s1

f(x1, . . . , xn, x′1, . . . , x′1, ẋ1, . . . , ẋn, s, t) ds dt

is optimized when

∂f

∂xi
− d

ds

( ∂f
∂x′i

)
− d

dt

( ∂f
∂ẋi

)
= 0 for all i = 1, . . . , n.

7.4.3. Consider a free relativistic string with σ-length σ1. The Hamiltonian for the system
is

H =

∫ σ1

0

PτµẊµ − L dσ.

(a) Recover the equations of motion as in Equation (7.62) from Hamilton’s equa-
tions of motion.

(b) Show that H vanishes identically for all τ .
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(c) Let L be as in Equation (7.59). Consider the matrix with entries
∂2L

∂Ẋµ∂Ẋν
.

Show that this matrix has two 0 eigenvalues, with eigenvectors Ẋ and X ′.
Deduce the following conditions on the momentum Pτ :

iX′(Pτ ) = PτµX ′µ = 0,

‖Pτ‖2 +
T 2

0

c2
‖X ′‖2 = gµνPτµPτν +

T 2
0

c2
gµνX

′µX ′ν = 0.

7.4.4. Show that according to the relativistic string equations of motion, the endpoints
of an open string move with the speed of light.

7.4.5. Consider a relativistic string in Minkowski space Rd,1 but only consider the history
of the string in the real space. We parametrize this history as ~X(σ, τ). (We use the
vector superscript to indicate vectors in the Euclidean R part of the spacetime.)
Define s(σ) to be the length of the string along [0, σ], so that s(0) = 0 and s(σ1) is
the length of the string. Also set t = τ .

(a) Prove that
∂ ~X

∂s
is a unit vector.

(b) Define the vector ~v⊥ as the component of the velocity vector
∂ ~X

∂t
that is

perpendicular to the string. Thus,

~v⊥ =
∂ ~X

∂t
−
(∂ ~X
∂t
· ∂

~X

∂s

)∂ ~X
∂s

,

where we use the usual dot product. Prove that one can write the Nambu-
Goto string action as

S = −T0

∫ t2

t1

∫ σ1

0

ds

dσ

√
1−

v2
⊥
c2

dσ dt

7.4.6. (*) The Nambu-Goto Bubble Action. Suppose that instead of considering particles
as strings, we model them as bubbles. Then a world sheet S is given by a function
X(σ, σ̄, τ) into a pseudo-Riemannian manifold M with signature (2, 1).

(a) Explain why it still makes sense to define the action of the free motion of
the relativistic bubble for τ1 ≤ τ ≤ τ2 by

S = −T0

c

∫∫∫
S

√
−det g̃αβ dσ dσ̄ dτ,

where T0 is now a surface tension and g̃ is the metric induced from M on S.

(b) Write down the equations of motion associated to this action.
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Q

~n T (~n)

dA

Figure 7.10: Stress tensor: an area element in a continuous medium.

7.5 Brief Introduction to General Relativity
As with the previous sections, the reader might consider it outlandish that we only
allow one section to discuss general relativity. General relativity is a vast subject
with contributions from a host of scientists and mathematicians, and it stands
alongside quantum mechanics as one of the most revolutionary ideas in physics of
the 20th century.

On the other hand, most textbooks on general relativity take a considerable
amount of time to develop the techniques of analysis on manifolds, in particu-
lar, pseudo-Riemannian manifolds. However, these are precisely the mathematical
methods we have developed in the previous chapters, so we are in a position to
introduce some differential geometric concepts in general relativity as applications.

From the perspective of mathematical structures, general relativity builds on
special relativity. The postulates of special relativity brought us to the notion of
spacetime, which is a Minkowski space R3,1. In general relativity, we will want
to consider our space as locally Minkowski , meaning that each tangent space is a
Minkowski space. Hence, we model the universe as a pseudo-Riemannian manifold
with signature (3, 1). More importantly, the Einstein field equations propose a
relationship between the presence of energy and the curvature of this spacetime
manifold.

7.5.1 Stress-Energy Tensor

In the mechanics of elastic media, one encounters the concept of a stress tensor,
which is a tensor-valued function defined at each point within the body or medium.
Suppose the body is in equilibrium but subject to external forces and/or body forces
(i.e., forces that act through the whole body). Then there must exist internal forces.
Let Q be a point, ~n a vector based at Q, and consider the area element ∆A that
is in the plane perpendicular to ~n and has area equal to ‖~n‖ (see Figure 7.10). Let

∆~F be the overall internal forces distributed over the area element ∆A. The stress



7.5. Brief Introduction to General Relativity 349

vector through the area element ∆A is the vector

~T (~n) = lim
∆A→0

∆~F

∆A
. (7.63)

It is not hard to show that the function ~T (~n) is a linear function.[56, Section 10.6]
Thus the stress tensor with respect to an orthogonal basis B based at the point Q
is the matrix σ such that

~T (~n) = σ
[
~n
]
B.

Consider now a small rectangular parallelepiped with sides parallel to the coordinate
planes. The stress acts on each face as depicted in Figure 7.11. Then the columns
of σ are given by

σ~ei = T (~ei) =

σi1σi2
σi3

 .

Minimal assumptions that are logical for physics (angular momentum in a medium
cannot grow to be infinite at a point) imply that the stress tensor σ is symmetric.

As a simple example, in an ideal fluid, the stress on any small area element
is composed only of pressure, and there is no shearing force. Consequently, the
stress tensor is σ = P I, where P is the pressure and I is the 3× 3 identity matrix.
(This restates the claim given in calculus texts on the applications of integration
to hydrostatics when one says that “at any point in a liquid the pressure is the
same in all directions.”[55, p. 576]) The stress tensor arises also in the dynamics of
viscous fluids where it is no longer necessarily diagonal. The stress tensor at a point
“may be a function of the density and temperature, of the relative positions and
velocities of elements near [the point], and perhaps also the previous history of the
medium.”[56, p. 434] This characterization describes the stress tensor as a function
of many ambient quantities, but the reference to “relative positions” indicates that
the stress tensor need not be diagonal.

Einstein’s equation in general relativity involves the so-called stress-energy ten-
sor . This tensor is different from the stress tensor but is based on the same concept.
We assume that we are in a Minkowski space with metric g of signature (3, 1).

As in special relativity, the four-velocity of a particle on a world line P parame-
trized by ~x is the tangent vector along P given by

~U =
d~x

dτ
, (7.64)

where, the proper time τ of an object along its world line is given in (7.20). From
the theory of special relativity, by (7.22), the four-velocity is

~U = (U0, U1, U2, U3) = (γc, γvx, γvy, γvz), (7.65)



350 7. Applications of Manifolds to Physics
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~e1

T (~e1)

~e2

T (~e2)

~e3

T (~e3)

Figure 7.11: Action of stress on an infinitesimal coordinate cube.

where γ = (1− v2/c2)−1/2 and ~v = (dx/dt, dy/dt, dz/dt). In (7.23), we defined the
momentum 4-vector of a particle of rest mass m by ~p = m~u. Equally useful is the
four-momentum covector given by

p = ~p[. (7.66)

In special relativity where the metric g = η is the standard Minkowski metric, the
components of the momentum covector are

(p0, p1, p2, p3) =

(
−E
c
, px, py, pz

)
, (7.67)

where (px, py, pz) = m0γ(v1, v2, v3) is the relativistic 3-vector momentum.
Underlying the assumptions that define the stress-energy tensor, we assume that

“spacetime contains a flowing river of 4-momentum”[41, p.130]. Any mass that is
moving or anything with energy contributes to the 4-momentum. We could think of
an individual particle, in which case the 4-momentum would only be defined on the
particle’s world line, or we could consider a system of many particles carrying this
4-momentum. In the latter case, we should think of the 4-momentum as a covector
field on the spacetime manifold M , that is, as a 1-form.

Let n be any 1-form on M . Then at each point Q ∈ M , nQ is perpendicular
(using g = 〈 , 〉 at Q) to a three-dimensional subspace of TQM . This subspace can
be spanned by vectors AQ, BQ, and CQ such that

nQ(u) = −Volg(u,AQ, BQ, CQ), (7.68)

where on the right-hand side we mean the 4-volume (with respect to g) of the
4-parallelepiped spanned by u,AQ, BQ, CQ ∈ TQM . Then the 3-volume of the 3-
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parallelepiped AQ, BQ, CQ is the length ‖n‖. In this way, every 1-form represents
a volume element in R4.

We define the stress-energy tensor T of type (2, 0) by T(p,n) being the flux of
the momentum covector p across a volume element represented by n. At each point
Q ∈M , we have

T(p,n) = 〈p,n〉g. (7.69)

Over any coordinate chart (xi), the components of T are

Tαβ = T(dxα, dxβ)

to represent that flux of unit four-momentum in direction dxα across a volume-
element of constant β.

The stress-energy tensor T is also called the energy-momentum tensor because
it contains information pertaining to the momentum flowing through space and
the presence of static or moving energy in space. The name “stress-energy tensor”
is commonly used since it is modeled off the stress tensor in mechanics of elastic
media.

The following gives a summary of the information included in the stress-energy
tensor. Assuming j, k > 0,

T 00 = density of energy (including mass), (7.70)

T j0 = jth component of the momentum density, (7.71)

T 0k = kth component of the energy flux, (7.72)

T jk = (j, k)th component of the momentum stress (7.73)

= kth component of the flux of the jth component of momentum.

The notion of flux in this context refers to a similar limit as in Equation (7.63) but
in the situation where one is concerned with the movement of something (energy,

fluid momentum, heat,...) through the infinitessimal area element d ~A. In fact,
with this particular concept of flux, one can define the stress-energy tensor in short
by saying that T kj is the kth component of the flux of the jth component of the
4-momentum.

We now state two facts about the stress-energy tensor that we do not fully justify
here.

Proposition 7.5.1. The (contravariant) stress-energy tensor T is symmetric.

The symmetry in the components 1 ≤ i, j ≤ 3 follows from the same physical
reasoning for why the stress tensor in fluid dynamics is symmetric.

Proposition 7.5.2 (Einstein’s Conservation Law). The conservation of energy is
equivalent to the identity

div T = Tαβ;β = 0.
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Proof Sketch. Suppose that energy is conserved in a certain region of M . In other
words, though energy and mass may move around, no energy or mass is created or
annihilated in M . Then given any four-dimensional submanifold V with boundary
∂V, the total flux of 4-momentum passing through ∂V must be 0. We can restate
this as ∫∫∫

∂V
T · dV(3) = 0,

where dV(3) is the 3-volume element with direction along the outward-pointing
normal vector to ∂V. (We can view this as a volume 1-form.) By the product · we
mean the contraction of T with the volume 1-form element dV(3). Stokes’ Theorem
applied to pseudo-Riemannian manifolds gives∫∫∫∫

V
div TdV (4) =

∫∫∫
∂V

T · dV(3) = 0.

Since this is true for all V as described above, using a limiting argument similar
to that used to show Gauss’ Law that div ~E = 0 for an electric field, a limiting
argument establishes div T = 0 everywhere.

Example 7.5.3 (Perfect Fluid Stress-Energy Tensor). A perfect fluid is a fluid in
which the pressure p is the same in any direction. The fluid must be free of heat
conduction and viscosity and any process that can cause internal sheers. Using the
interpretation of T from Equations (7.70)–(7.73), we see that T jk = 0 if j 6= k and
0 < j, k. Furthermore, since the pressure is the same in all directions, T jj = p for
j = 1, 2, 3. For components involving j = 0 or k = 0, we first have T 00 = ρ, the
energy density. This quantity includes mass density but also other types of energy
such as compression energy. For the remaining off diagonal terms T 0j = T j0, these
are 0 because of the assumption that there is no heat conduction in the perfect
fluid. Thus, the stress-energy tensor has components

Tαβ =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (7.74)

If we suppose that an observer is in the Lorentz frame that is at rest with respect
to the movement of the fluid, then the velocity has components uα = (1, 0, 0, 0).
With respect to the Minkowski metric η, we can write (7.74) as

Tαβ = (ρ+ p)uαuβ + pηαβ .

We can rewrite this in a coordinate-free way in any metric as

T = pg−1 + (p+ ρ)u⊗ u, (7.75)

where we have written g−1 for the contravariant tensor of type (2, 0) associated to
the metric tensor g.
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Example 7.5.4 (Electromagnetic Stress-Energy Tensor). Directly using the inter-
pretation of T given in Equations (7.70)–(7.73) and results from electromagnetism,
which we do not recreate here, one can determine the components of the stress-
energy tensor for the electromagnetic field in free space. If Fµν are the components
of the electromagnetic field tensor, then

Tαβ =
1

µ0

(
FαµgµνF

βν − 1

4
gαβFµνFµν

)
in SI units (7.76)

=
1

4π

(
FαµgµνF

βν − 1

4
gαβFµνFµν

)
in CGS units (7.77)

where µ0 = 4π × 10−7 N/A−2 is a constant sometimes called the vacuum perme-
ability.

As the context requires, we may need the stress-energy tensor to be of type (2, 0)
as defined, of type (1, 1) or of type (0, 2). To pass between any of these, we raise or
lower the indices as needed using the metric.

7.5.2 Einstein Field Equations

The Einstein field equations (EFE) are the heart of general relativity. They stem
from the juxtaposition of the two following principles:

1. Every aspect of gravity is a description of the spacetime geometry.

2. Mass (energy) is the source of gravity.

The metric tensor g encapsulates all the information about the geometry of
the spacetime. The metric g has the associated Levi-Civita connection ∇, the
Riemann curvature tensor R of type (1, 3), the Ricci curvature tensor Rc, and
the scalar curvature function R, defined in Chapter 6. (Note: In math texts on
Riemannian geometry, one often denotes by S the scalar curvature while texts on
general relativity invariably denote it by R. Using the bold font R to indicate the
curvature tensor alleviates any confusion between the scalar and tensor curvature.)

On the other hand, the stress-energy tensor describes the spacetime content
of mass-energy. In fact, any observer with 4-velocity ~U measures the density of
mass-energy as

ρ = u ·T · u = Tαβu
αuβ .

In order to put together the two above principles, we should be able to write
the tensor T exclusively in terms of the components of the metric tensor g. The
conservation of energy states that div T = 0. Also, if T is to serve as a measure
of the curvature of spacetime, we propose that it should explicitly involve only
components of R and of g (no derivatives of any of these terms) and it should be
linear in the components of R. It turns out that under these restrictions, there are
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only a few options for a geometric description of T. In Problem 7.5.2, we show that
for purely mathematical reasons, these constraints impose that

Tαβ = C

(
Rαβ −

1

2
Rgαβ + Λgαβ

)
, (7.78)

where Rαβ are the components of the Ricci curvature tensor, R is the scalar curva-
ture, and Λ and C are real constants. This leads to Einstein’s field equations.

Let G be the Einstein curvature tensor described in Definition 6.5.4. General
relativity is summarized in this following equation. The presence of mass-energy
deforms spacetime according to

G + Λg =
8πG

c4
T in SI units, (7.79)

where G = 6.67×10−11 m3s−2kg−1 is the gravity constant and Λ is the cosmological
constant . If we assume that empty (devoid of energy) spacetime is flat, then

G =
8πG

c4
T. (7.80)

Equation (7.80) is called collectively the Einstein field equations (EFE), and the
formulas in (7.79) are the Einstein field equations with cosmological constant. These
equations are as important in astrophysics as Newton’s second law of motion is in
classic mechanics. Though we do not give the calculation here, the constant 8πG/c4,
called Einstein’s constant is chosen so that (1) when the gravitational field is weak
and (2) velocities are small compare to the speed of light, the theory reduces to the
Newtonian theory of gravitation in approximation.

In Equation (2) of Einstein’s original paper on general relativity [19], Einstein
made the assumption that G vanishes when spacetime is empty of mass-energy.
This corresponds to the mathematical assumption that Λ = 0. However, Equation
(7.80) predicts a dynamic universe. This result did not appeal to Einstein and,
at the time, there existed no astronomical evidence to support this. In 1917, he
introduced the constant Λ because it allows for a static universe. Physically, Λ 6= 0
would imply the presence of an otherwise unexplained force that counteracts gravity
or a sort of negative pressure.

When Hubble discovered that the universe is expanding, the cosmological con-
stant no longer appeared to be necessary and many physicists did away with it. In
fact, in his autobiography, George Gamow relays that Einstein told Gamow that
he considered the introduction of the cosmological constant as “the biggest blunder
of my life.” [26] However, the possibility of a small nonzero Λ has resurfaced and
regularly enters into the conversations around the current most vexing problems
in physics, namely, the nature of dark energy and the effort to unify gravity and
quantum mechanics.

We should note the Einstein field equations (EFE) are very complicated. Finding
a solution to the EFE means finding the metric tensor g that satisfies (7.80), which
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consists of 10 second-order, nonlinear, partial differential equations of 10 functions
gij(x

0, x1, x2, x3), with 0 ≤ i ≤ j ≤ 3. Then, determining the trajectory of a particle
or of radiation amounts to determining the geodesics in this metric. Surprisingly,
under some circumstances, especially scenarios that involve a high level of symmetry,
it is possible to provide an exact solution.

Whole books have been written about consequences of solutions to (7.80) or
(7.79) that deviate from Newtonian mechanics. After the introduction of general
relativity, some scientists balked at such mathematical complexity. Yet experiment
has repeatedly confirmed predictions in favor of general relativity over Newtonian
mechanics. The approach taken here to justify the Einstein field equations cited
mathematical esthetics, the condition of being divergence-free, and linear in the
components of the curvature tensor R. During the 20th century, scientists arrived
at (7.79) from other, more physical principles. Of note, in [36], Lovelock showed
that the Einstein field equations arise as the unique second-order equations that can
follow from the Euler-Lagrange equations of a Lagrange density involving gij and its
derivatives up to second order. Furthermore, there exist natural generalizations to
Einstein’s theory of general relativity. However, any theory that can unify gravity
and quantum mechanics should be able to derive (7.79) as an approximation.

7.5.3 Schwarzschild Metric

We finish this section with one of the earliest proven consequences of general rel-
ativity, i.e., the Schwarzschild metric which is an exact solution to Einstein’s field
equations. Instead of simply showing that the Schwarzschild metric satisfies EFE,
we show how the metric was discovered.

One of the main contexts in which one can expect to see the effects of general
relativity against Newtonian mechanics is in the context of astronomy. The simplest
dynamical problem in astronomy involves calculating the orbit of a single planet
around the sun. One can hope that the EFE for the effect of the sun on the space
around it will become simple under the following two assumptions (approximations):

1. The sun is a spherically symmetric distribution of mass-energy density.

2. Outside of the sun, the stress-energy tensor should vanish.

The spherical symmetry implies that the components of the metric tensor should be
given as functions of x0 and r alone, where r2 = (x1)2 + (x2)2 + (x3)2. Since we are
looking only for solutions outside the sun, we are looking for solutions in a vacuum.
Thus T = 0, from which we deduce that G = 0. Thus, Trg G = 0. However,

Trg G = Trg

(
Rc− 1

2
Rg

)
= R− 1

2
R · 4 = −R,

where this follows from (6.56) and the fact that Trg g = dimM = 4. Thus, R = 0
and the fact that G = 0 implies that we are looking for spherically symmetric
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solutions to the equation
Rαβ = 0. (7.81)

Since we are looking for solutions in a vacuum, it seems as though we have lost
information, but, as we shall see, that is not the case.

The following derivation follows the treatment in [54]. We leave some of the
details as exercises for the reader.

A judicious choice of coordinates and a few coordinate transformations will
simplify the problem. We first start with the coordinates

(x̄0, x1, x2, x3) = (x̄0, r̄, θ, ϕ),

where x̄0 = ct for some timelike variable t, r̄2 = (x1)2 + (x2)2 + (x3)2 and where θ
and ϕ are given in the physics style of defining spherical coordinates, i.e., so that ϕ is
the longitudinal angle and θ is the latitude angle measured down from a “positive”
vertical direction. We know that the standard line element in spherical coordinates
is

ds2 = dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ2.

Though we are not working with the Euclidean metric, spherical symmetry does
imply that the metric tensor in the space coordinates is orthogonal and that no
perpendicular direction to the radial direction is singled out. Thus, the metric
tensor has the form

gαβ =


g00(x̄0, r̄) g01(x̄0, r̄) g02(x̄0, r̄) g03(x̄0, r̄)
g10(x̄0, r̄) g11(x̄0, r̄) 0 0
g20(x̄0, r̄) 0 f(x̄0, r̄)2 0
g30(x̄0, r̄) 0 0 f(x̄0, r̄)2 sin2 θ

 , (7.82)

where f is any smooth function. We actually have some choice on θ and ϕ because
they are usually given in reference to some preferred x-axis and z-axis. We choose
θ and ϕ (which may change over time with respect to some fixed Cartesian frame)
so that g20 = g30 = 0, and then the metric looks like

gαβ =


g00(x̄0, r̄) g01(x̄0, r̄) 0 0
g10(x̄0, r̄) g11(x̄0, r̄) 0 0

0 0 f(x̄0, r̄)2 0
0 0 0 f(x̄0, r̄)2 sin2 θ

 . (7.83)

We make the coordinate transformation r = f(x̄0, r̄) and all the other coordinates
remain the same. In this coordinate system, the metric looks like

gαβ =


g00(x̄0, r) g01(x̄0, r) 0 0
g10(x̄0, r) g11(x̄0, r) 0 0

0 0 r2 0
0 0 0 r2 sin2 θ

 . (7.84)
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Finally, we can orthogonalize the metric tensor by a suitable coordinate transfor-
mation of x0 = ct = h(x̄0, r), with r staying fixed (see Problem 7.5.4). Since we
know that the metric has signature (3, 1), we can write the metric in the coordinate
system (x0, r, θ, ϕ) as

gαβ =


−eν(x0,r) 0 0 0

0 eλ(x0,r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , (7.85)

where λ and ν are smooth functions. The metric in Equation (7.85) is an orthogonal
metric that is spherically symmetric in the space variables.

Using the notation u̇ = ∂u/∂x0 and u′ = ∂u/∂r, we can show (see Problem 7.5.5)
that the independent nonzero Christoffel symbols for the Levi-Civita connection are

Γ0
00 =

1

2
ν̇, Γ0

01 =
1

2
ν′, Γ0

11 =
1

2
λ̇eλ−ν , Γ1

00 =
1

2
ν′eν−λ, (7.86)

Γ1
01 =

1

2
λ̇, Γ1

11 =
1

2
λ′, Γ1

22 = −re−λ, Γ1
33 = −r sin2 θe−λ, (7.87)

Γ2
12 =

1

r
, Γ2

33 = − sin θ cos θ, Γ3
13 =

1

r
, Γ3

23 = cot θ. (7.88)

Though it is a little long to calculate (see Problem 7.5.6), we then determine that
the only nonzero components of the Ricci tensor are

R00 = eν−λ
(ν′′

2
+

(ν′)2

4
− ν′λ′

4
+
ν′

r

)
− λ̈

2
− λ̇2

4
+
λ̇ν̇

4
,

R01 = R10 =
λ̇

r
,

R11 = −ν
′′

2
− (ν′)2

4
+
ν′λ′

4
+
λ′

r
+ eλ−ν

( λ̈
2

+
λ̇2

4
− λ̇ν̇

4

)
,

R22 = −e−λ
(

1 +
r

2
(ν′ − λ′)

)
+ 1,

R33 = sin2 θ R22.

(7.89)

Since we are trying to solve Rαβ = 0, we obtain conditions on the functions λ

and ν. Since R01 = 0, we deduce immediately that λ̇ = 0, which means that λ is a
function of r alone. Also, since ∂R22/∂t = 0, we find that ∂ν′/∂t = 0. Therefore,
we can write the function ν as

ν = ν(r) + f(t)

for some function f(t).
We now make one final coordinate change. In the metric line element, t appears

only in the summand eνd(x0)2 = eν(r)ef(t)d(ct)2. So by choosing the variable t̄ in
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such a way that
dt̄

dt
= ef(t)/2

and then renaming t̄ to just t, we obtain a metric which is independent of any
timelike variable. (The variable t̄, relabeled as t, is not necessarily time anymore so
we cannot necessarily call a solution with t = 0 as a solution static.)

We can now assume there is no t dependence. Simplifying the expression R00 +
eν−λR11 leads to

1

r
(λ′ + ν′) = 0.

This implies that λ(r) = −ν(r)+C for some constant C. Without loss of generality,
we can assume that C = 0 since we have not specified λ or ν. Thus, we set
λ(r) = −ν(r). Then R22 = 0 in (7.89) implies that

e−λ(1− rλ′) = 1.

Now setting h(r) = e−λ(r), this last equation becomes

h′ +
h

r
=

1

r
.

This is a linear, first-order, ordinary, differential equation whose general solution is

h(r) = e−λ(r) = 1− 2M

r
,

where M is a constant of integration. One can verify directly that R11 = R00 = 0
in Equation (7.89) are satisfied by this solution and therefore give no additional
conditions. Therefore, the spherically symmetric vacuum solution to the EFE gives
a metric with line element

ds2 = −
(

1− 2M

r

)
c2dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2. (7.90)

This is called the Schwarzschild metric. This metric provided the first exact solution
to the Einstein field equations. Though it is still complicated, this metric can be
compared in fundamental importance to the solution in mechanics to the differential
equations d2~x/dt2 = −m~g. Many of the verifiable predictions of general relativity
arise from this metric.

In order to understand (7.90), we need to have some sense of the meaning of the
constant M . Obviously, if M = 0, then the Schwarzschild metric is simply the flat
Minkowski metric for spacetime.

To derive an interpretation for M 6= 0, we study some consequences of (7.90)
for small velocities. If the velocity v is much smaller than the speed of light, i.e.,
v � c, then special relativity tells us that proper time is approximately coordinate
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time τ ∼= t = x0/c. Furthermore, from (7.65) we can approximate the velocity of

any particle as ~U = (c, 0, 0, 0). Plugging these into the geodesic equation

d2xi

dτ2
= −Γijk

dxj

dτ

dxk

dτ
,

we obtain the approximate relationship

d2xi

dt2
= −Γi00c

2 =
c2

2
gil
∂g00

∂xl
, (7.91)

where the second equality follows from the formula for Christoffel symbols and the
fact that the functions gij are not x0 dependent. However, since g is diagonal and
g00 depends only on r, we find that the only nonzero derivative is

d2r

dt2
= −c

2

2

(
1− 2M

r

)
∂

∂r

(
1− 2M

r

)
= −Mc2

r2

(
1− 2M

r

)
.

We must compare this to the formula for gravitational attraction in Newtonian
mechanics, namely,

d2r

dt2
= −GMS

r2

where MS is the mass of the attracting body (and G is the gravitational constant).
Thus, we find as a first approximation that the constant of integration M is

M ∼=
GMS

c2
. (7.92)

Hence, M is a constant multiple of the mass of the attracting body. The constant
2M has the dimensions of length, and one calls rG = 2M the Schwarzschild radius.
The formula for it is

rG =
2G

c2
·MS = (1.48× 10−27 m/kg)MS .

The Schwarzschild radius is 2.95 km for the sun and 8.8 mm for the Earth. Evi-
dently, for spherically symmetric objects that one encounters in common experience,
the Schwarzschild radius is much smaller than the object’s actual radius. In fact, if
a spherically symmetric object has radius RS and mass MS , then

rG < RS ⇐⇒
2G

c2
MS < RS .

A sphere with rG > RS would need to have an enormous density. Furthermore,
this situation would seem to be physically impossible for the following reason. It is
understood that the Schwarzschild metric holds only in the vacuum outside of the
body (planet or star). However, if rG > RS , then the Schwarzschild radius would
correspond to a sphere outside of the spherical body where the Schwarzschild metric



360 7. Applications of Manifolds to Physics

has a singularity g11 = 1/0. For this reason, some physicists initially claimed this
to be a result of the successive approximations or simply a physically impossible
situation.

The history of science has occasionally shown that singularities in the equations
do not immediately imply that the scenario is impossible. The possibility of travel-
ing at the speed of sound was thought to be impossible because of the consequences
for the Doppler effect equation. Now, military jets regularly fly faster than the speed
of sound. Similarly, in recent decades, physicists regularly study objects considered
to be so dense that 2GMS/c

2 > RS . Such objects are called black holes. For a
time, the existence of black holes remained in the realm of hypothesis, but now as-
tronomers are convinced they have observed many such objects, and astrophysicists
have worked out many of their dynamic properties.

Problems

7.5.1. Show that we can rephrase the explanation for Equation (7.68) by saying that for
any three vectors A, B, and C in TPM ,

(?nP )(A,B,C) = Volg(n]P , A,B,C),

where Volg is the volume form with respect to the metric g.

7.5.2. Let L be a symmetric tensor of type (0, 2) consisting of components that are con-
structible from those of R and Tg and are linear in the components of the Riemann
curvature tensor R.

(a) Show that L can only have the form

Lαβ = aRαβ + bRgαβ + λgαβ ,

where Rαβ are the components of the Ricci curvature tensor, R is the scalar
curvature, and a, b, and λ are real constants. [Hint: Consider Bianchi
identities.]

(b) Show that divL = 0 if and only if b = − 1
2
a.

(c) If g = η, the standard Minkowski metric, show that L = 0 if and only if
λ = 0.

7.5.3. Calculate the curvature tensor and the Ricci curvature tensor for the Schwarzschild
metric.

7.5.4. Find the “suitable” coordinate transformation h that allows one to pass from Equa-
tion (7.84) to Equation (7.85).

7.5.5. Prove that Equation (7.87) is correct.

7.5.6. Prove Equation (7.89).

7.5.7. Light Propagation in the Schwarzschild Metric. In the Schwarzschild metric, light
travels along the null-geodesics, i.e., where ds2 = 0.

(a) Explain why setting θ = 0 does not lose any generality to finding the null-
geodesics.
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R0

ϕ∞

r = RS/ sinϕ

Figure 7.12: Deviation of light near a massive body.

(b) Prove that if one sets u = 1/r, then ds2 = 0 implies that

d2u

dϕ2
+ u = 3Mu2. (7.93)

(c) Deduce that in the vicinity of a black hole, light travels in a circle precisely
at the radius r = 3

2
rG.

(d) Solve Equation (7.93) for M = 0. This corresponds to empty space (no mass
present). Call this solution u0(ϕ).

(e) Now look for general solutions u to Equation (7.93) by setting u = u1 + u0.
Then u1(ϕ) must satisfy

d2u1

dϕ2
+ u1 =

3M

R0
sin2(ϕ− ϕ0).

Solve this differential equation explicitly, and find the complete solution to
Equation (7.93).

(f) In the complete solution, show that M = 0 (empty space) corresponds to
traveling along a straight line u = 1

R0
sin(ϕ− ϕ0), where R0 is the distance

from the line to the origin.

(g) Show that the general solution to Equation (7.93) is asymptotically a line.

(h) We now consider Eddington’s famous experiment to measure the deviation
of light by the sun. Consider a geodesic G in the Schwarzschild metric
that passes right alongside the sun, i.e., passes through the point r = RS
and ϕ = 0. Define ϕ∞ as the limiting angle of deviation between the line
r = RS/ sinϕ and the geodesic G (see Figure 7.12). The sun bends the light
away from the straight line by a total of 2ϕ∞. Using (at a judicious point)
the approximation that sinϕ ∼= ϕ, prove that the total deviation of light is

2ϕ∞ =
4GMS

RSc2
,

where MS is the mass of the sun and RS is the sun’s radius.
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7.5.8. Consider the metric with line element ds2 = −e2axdt2 + dx2 + dy2 + dz2.

(a) From the geodesic equation associated to this metric, show that at ev-
ery point in this spacetime, a free particle experiences an acceleration of
d2x/dτ2 = −a.

(b) Show that the only nonzero Christoffel symbols for this metric are Γ0
10 =

Γ0
01 = a and Γ1

00 = ae2ax.

(c) Show that the only nonzero components of the (0, 4) curvature tensor are
R0101 and its permutations. Calculate R0101.

(d) Find the Ricci curvature tensor and notice that it is diagonal.



APPENDIX A

Point Set Topology

Though mathematicians, when developing a new area of mathematics, may define
and study any object as they choose, the “natural” notion of a surface in R3 requires
a rather intricate definition (Definition 3.1.1). Though at first somewhat unwieldy,
this definition and also the definition for a differentiable manifold are necessary to
appropriately generalize calculus and geometry to non-Euclidean spaces.

On the other hand, numerous concepts from geometry and calculus can be gen-
eralized not by formulating more constrained definitions but by expanding the con-
text in which we define these concepts. The first wider context presented in this
appendix is that of a metric space, a set equipped with some notion of distance.
Many concepts from Euclidean geometry, including continuity, have natural gen-
eralizations to metric spaces. As it turns out, many useful concepts for analysis,
like continuity, limit of sequences, or connectedness, arise in the yet more general
context of topological spaces, where instead of a distance function, we have a looser
notion of “nearness.”

Though topology is a vast branch of mathematics, this appendix presents just
the basic notions that support this book’s presentation of differential geometry. A
reader might encounter many of these concepts in a typical analysis course. We
refer the reader to [27] for a gentle but thorough introduction to point set topology
and to [43] and [2] for an introduction to topology that includes homology, the
fundamental group, algebraic topology, and the classification of surfaces.

A.1 Metric Spaces
A.1.1 Metric Spaces: Definition

A metric space is a set that comes with the notion of “distance” between two
points, where this distance function involves a few numerical conditions that mimic
geometry in Euclidean spaces.

Definition A.1.1. Let X be any set. A metric on X is a function D : X×X → R≥0

such that

363
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1. equality: D(x, y) = 0 if and only if x = y;

2. symmetry: D(x, y) = D(y, x) for all x, y ∈ X;

3. triangle inequality: D(x, y) +D(y, z) ≥ D(x, z) for all x, y, z ∈ X.

A pair (X,D) where X is a set with a metric D is called a metric space.

Example A.1.2 (Euclidean Spaces). The Euclidean space Rn is a metric space
where D is the usual Euclidean distance formula between two points, namely, if
P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn), then

D(P,Q) =

√√√√ n∑
i=1

(qi − pi)2.

Many notions in usual geometry (circles, parallelism, midpoint...) depend vitally
on this particular distance formula. Furthermore, if n = 1, this formula simplifies
to the usual distance formula on the real line R, namely,

d(x, y) = |y − x|.

To prove that (Rn, D) is indeed a metric space, we must verify the three axioms
in Definition A.1.1. The first holds because

D(P,Q) = 0⇐⇒
n∑
i=1

(qi − pi)2 = 0,

which is equivalent to (qi − pi)2 = 0 for all 1 ≤ i ≤ n, and hence qi = pi for all
1 ≤ i ≤ n. The second obviously holds, and we prove the third axiom as follows.

The Cauchy-Schwarz inequality on the vectors
−−→
PQ and

−−→
QR gives

−−→
PQ ·

−−→
QR ≤

−−→
PQ ·

−−→
QR| ≤ ‖

−−→
PQ‖ ‖

−−→
QR‖

so

2

n∑
i=1

(qi − pi)(ri − qi) ≤ 2

√√√√ n∑
i=1

(qi − pi)2

√√√√ n∑
i=1

(ri − qi)2.

Using the property that 2ab = (a + b)2 − a2 − b2 with a = qi − pi and b = ri − qi,
we get

n∑
i=1

(ri − pi)2 ≤ 2

√√√√ n∑
i=1

(qi − pi)2

√√√√ n∑
i=1

(ri − qi)2 +
n∑
i=1

(qi − pi)2 +
n∑
i=1

(ri − qi)2.

Hence,

n∑
i=1

(ri − pi)2 ≤

√√√√ n∑
i=1

(qi − pi)2 +

√√√√ n∑
i=1

(ri − qi)2

2
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from which it follows that D(P,Q) +D(Q,R) ≥ D(P,R).
Of course, the triangle inequality is used in Definition A.1.1 precisely because it

is one of the fundamental properties of the Euclidean distance function. However, we
needed to verify the triangle inequality based on the formula given for the Euclidean
metric, and the example illustrates what is required in order to establish the three
axioms.

Example A.1.3. There exists a variety of other metrics on Euclidean space, and we
illustrate a few of these alternate metrics for R2. Let P = (x1, y1) and Q = (x2, y2).
We leave to the reader the proofs that the following functions are metrics on R2:

D1(P,Q) = |x2 − x1|+ |y2 − y1|,

D3(P,Q) = 3
√
|x2 − x1|3 + |y2 − y1|3,

D∞(P,Q) = max
{
|x2 − x1|, |y2 − y1|

}
.

Example A.1.4 (Six Degrees of Kevin Bacon). A humorous example of a metric
space is the set of syndicated actors A equipped with the function D defined as
follows. Consider the graph whose set of vertices is A and has an edge between
two actors a1 and a2 if they acted in a movie together. Define D(a1, a2) as 0 if
a1 = a2 and, otherwise, as the minimum number of edges it takes to create a path
connecting a1 and a2. The pair (A,D) is a metric space.

The party game called “Six Degrees of Kevin Bacon” asks players to findD(a1, a2)
given any pair (a1, a2).

Having a notion of distance in a set, we may want to consider the subset of all
points that are within a certain distance of a fixed point.

Definition A.1.5. Let (X,D) be a metric space, and let p ∈ X be a point. We
define the open ball of radius r around p as the set

Br(p) = {y ∈ X |D(p, y) < r}.

The reader who is new to topology should note that the terminology “open ball”
might be initially misleading since the set Br(p) only takes the shape of an actual
ball (disk, sphere, etc.) in the case of the Euclidean metric on Rn.

Example A.1.6. Consider the metric D1 from Example A.1.3 above, and let O =
(0, 0). The ball of radius 1 around the origin O using the metric D1 is the set

B1(O) = {(x, y) ∈ R2 | |x|+ |y| < 1}.

Notice that the equation |x|+ |y| = 1 has a locus that is symmetric about the x-axis
and about the y-axis. So to determine its locus we only need to see what happens
in the first quadrant. In the first quadrant, the equation |x| + |y| = 1 becomes
x+ y = 1, which is a line segment from (1, 0) to (0, 1). Thus, the open ball B1(O)
is the open square with corners at {(1, 0), (0, 1), (−1, 0), (0,−1)}.
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x

y

a b

f(x)

Figure A.1: Example A.1.7: a collar around f(x).

Example A.1.7. Metric spaces can encompass a much wider range than the above
examples have illustrated so far. Let X = C0([a, b]) be the set of continuous real
functions defined on the closed interval [a, b], or let X = Fbounded([a, b]) be the set
of all bounded functions on interval [a, b]. (A theorem of calculus tells us that any
function f continuous over [a, b] is bounded so C0([a, b]) ⊂ Fbounded([a, b]).) Define
the function D : X ×X → R≥0 as

D(f, g) = lub{|g(x)− f(x)| : x ∈ [a, b]},

where lub refers to the least upper bound of a subset of reals.
The open ball of radius r around a function f is the set of all the functions

g ∈ X such that |f(x)− g(x)| < r for all x ∈ [a, b], or in other words,

f(x)− r < g(x) < f(x) + r for all x ∈ [a, b].

In this context, we call the region f(x) − r < y < f(x) + r with a ≤ x ≤ b the
r-collar of f(x). See Figure A.1.

Above, we introduced the notion of an open ball in any metric space. Though
this appendix introduces notions that primarily support an overview of point-set
topology, the notion of distance between two points allows us to generalize concepts
from geometry to any metric space (X,D). We list here below a few of these
concepts, which exist in any metric space but do not generalize further to topological
spaces.

• A point C ∈ X is said to be between two points A and B if D(A,B) =
D(A,C) + D(C,B). When D is the Euclidean metric on Rn, this equality
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occurs for a degenerate triangle and only in the case when C lies on the
segment AB. It is in this sense that this definition directly generalizes the
notion of betweenness from Euclidean geometry.

• The bisector of two points A and B is the set of points

{P ∈ X |D(P,A) = D(P,B)}.

This is the usual definition for the segment bisector in Euclidean geometry
but in other metric spaces this set may look quite different.

• If A,B ∈ X and c ∈ R with 2c > D(A,B), then the set of points

{M ∈ X |D(A,M) +D(B,M) = 2c}

is the ellipse with foci A and B and with half axis c.

• Let S ⊂ X be a subset. We define the diameter of S to be

diam S = lub{D(x, y) |x, y ∈ S}.

• A subset S of X is called bounded if diam S <∞.

• Let S1 and S2 be two subsets of the metric space X. Then the distance
between S1 and S2 is

D(S1, S2) = glb{D(x, y) |x ∈ S1, y ∈ S2},

where glb is the greatest lower bound. The distance between a point x ∈ X
and a subset A ⊂ X is D({x}, A). We observe that this definition of distance
between subsets does not establish a metric on P(X), the set of subsets of X.
Indeed, for any two subsets S1 and S2 in X such that S1 6= S2 and S1∩S2 6= 0,
the distance between them is D(S1, S2) = 0, and hence, even the first axiom
for metric spaces fails. However, in geometry, the notion of distance between
sets, especially disjoint sets, is quite useful.

A.1.2 Open and Closed Sets

In the study of real functions, we often use the notions of open intervals and closed
intervals. In this context, we simply say that a bounded interval is open if it does
not include its endpoints and closed if it includes both of them; a similar definition
is given for an unbounded interval. Then a subset of R is called open if it is a
disjoint union of open intervals. In contrast, in Rn or in a metric space, given the
wide range of possibilities for the shape of sets, we cannot legitimately talk about
endpoints, though we could attempt to make sense of the concept of “including its
boundary points.” Regardless, a different definition for openness and closedness is
required.
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Definition A.1.8. Let (X,D) be a metric space. A subset U ⊆ X is called open
if for all p ∈ U there exists r > 0 such that the open ball Br(p) ⊂ U . A subset

F ⊆ X is called closed if the complement F c
def
= X − F is open.

Intuitively, this definition states that a subset U of a metric space is called open
if around every point there is an open ball, perhaps with a small radius, that is
completely contained in U . Note that we may wish to consider more than one
metric at the same time on the same set X. In this case, we will refer to a D-open
set.

Proposition A.1.9. Let (X,D) be a metric space. Then

1. X and ∅ are both open;

2. the intersection of any two open sets is open;

3. the union of any collection of open sets is open.

Proof. For part 1, if p ∈ X, then any open ball satisfies Br(p) ⊂ X. Also, since ∅
is empty, the criteria for openness holds trivially for ∅.

To prove part 2, let U1 and U2 be two open sets and let p ∈ U1 ∩ U2. Since U1

and U2 are open, there exist r1 and r2 such that Br1(p) ⊂ U1 and Br2(p) ⊂ U2.
Take r = min(r1, r2). Then Br(p) ⊆ Br1(p) ⊂ U1 and Br(p) ⊆ Br2(p) ⊂ U2 so
Br(p) ⊂ U1 ∩ U2. Thus, U1 ∩ U2 is open.

Finally, consider a collection of open sets Uα where α is an index taken from
some indexing set I, which is not necessarily finite. Define

U =
⋃
α∈I

Uα .

For any p ∈ U , there exists some α0 ∈ I such that p ∈ Uα0
. Since Uα0

is open, there
exists r such that Br(p) ⊂ Uα0 , and thus, Br(p) ⊂ U . Consequently, U is open.

Using Proposition A.1.9(2), it is easy to show that any intersection of a finite
number of open sets is again open. In contrast, part 3 states that the union of any
collection of open subsets of X is again open, regardless of whether this collection
is finite or not. This difference between unions and intersections of open sets is
not an insufficiency of this proposition but rather a fundamental aspect of open
sets in a metric space. In fact, as the following simple example shows, the infinite
intersection of open sets need not be open.

Example A.1.10. For each integer n ≥ 1, consider the open intervals In =
(
0, 1 +

1
n

)
, and define

S =
∞⋂
n=1

In .

Obviously, In+1 ( In, and so the intervals form a decreasing, nested chain. Since
limn→∞

1
n = 0, we expect S to contain (0, 1), but we must determine whether it
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p

Figure A.2: Example A.1.11.

p

Figure A.3: Example A.1.12.

contains anything more. If r > 1, then if n is large enough so that 1
n < r − 1, we

have r /∈ In. On the other hand, for all n ∈ Z≥1, 1
n > 0, so 1 < 1 + 1

n . Hence,
1 ∈ In for all n ∈ Z≥1, and thus, 1 ∈ S. Thus, we conclude that S = (0, 1]. This
shows that the infinite intersection of open sets need not be open.

Example A.1.11. As a more down-to-earth example, we wish to show that ac-
cording to this definition, the set S = {(x, y) ∈ R2 | 0 < x < 1 and 0 < y < 1} is
open in R2 equipped with the Euclidean metric. Let p = (x0, y0) be a point in S.
Since p ∈ S, we see that x0 > 0, 1 − x0 > 0, y0 > 0, and 1 − y0 > 0. Since the
closed distance from a point p to any line L is along a perpendicular to L, then the
closest distance between p and any of the lines x = 0, x = 1, y = 0, and y = 1 is
min{x0, 1− x0, y0, 1− y0}. Consequently, if r is any positive real number such that

r ≤ min{x0, 1− x0, y0, 1− y0},

then Br(p) ⊂ S. (See Figure A.2.)

Example A.1.12. In contrast to the previous example, consider the set

T = {(x, y) ∈ R2 | 0 ≤ x < 1 and 0 < y < 1},

where again we assume R2 is equipped with the Euclidean metric. The work in
Example A.1.11 shows that for any point p = (x0, y0), with 0 < x0 < 1 and
0 < y0 < 1, there exists a positive radius r such that Br(p) ⊂ S ⊂ T . Thus,
consider now points p ∈ T with coordinates (0, y0). For all positive r, the open ball
Br(p) contains the point (−r/2, y0), which is not in T . Hence, no open ball centered
around points (0, y0) is contained in T , and hence T , is not open. (See Figure A.3.)

It is very common in proofs and definitions that rely on topology to refer to an
open set that contains a particular point. Here is the common terminology.
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Definition A.1.13. Let p be a point in a metric space (X,D). An open neighbor-
hood (or simply neighborhood) of p is any open set of X that contains p.

Closed sets satisfy properties quite similar to those described in Proposition
A.1.9, with a slight but crucial difference.

Proposition A.1.14. Let (X,D) be a metric space. Then

1. X and ∅ are both closed;

2. the union of any two closed sets is closed;

3. the intersection of any collection of closed sets is closed.

Because a set is defined as closed if its complement is open and because of
DeMorgan laws for sets, this proposition is actually a simple corollary of Proposition
A.1.9. Therefore, we leave the details of the proof to the reader.

Note that in any metric space, the whole set X and the empty set ∅ are both
open and closed. Depending on the particular metric space, these are not necessarily
the only subsets of X that are both open and closed.

Proposition A.1.15. Let (X,D) be a metric space, and let x ∈ X. The singleton
set {x} is a closed subset of X.

Proof. To prove that {x} is closed, we must prove that X − {x} is open. Let y be
a point in X −{x}. Since x 6= y, by the axioms of a metric space, D(x, y) > 0. Let
r = 1

2D(x, y). The real number r is positive, and we consider the open ball Br(y).
Since D(x, y) > r, then x /∈ Br(y), and hence, Br(y) ⊂ X − {x}. Hence, we have
shown that X − {x} is open and thus that {x} is closed.

The notion of distance between sets provides an alternate characterization of
closed sets in metric spaces. Recall that for any subset A ⊂ X, x ∈ A implies that
D(x,A) = 0. The following proposition shows that the converse holds precisely for
closed sets.

Proposition A.1.16. Let (X,D) be a metric space. A subset F is closed if and
only if D(x, F ) = 0 implies x ∈ F .

Proof. Suppose first that F is closed. If x /∈ F , then x ∈ X − F , which is open,
so there exists an open ball Br(x) around x contained entirely in X − F . Hence,
the distance between any point a ∈ F and x is greater than the radius r > 0, thus,
D(x, F ) > 0, and in particular, D(x, F ) 6= 0. Thus, D(x, F ) = 0 implies that x ∈ F .

We now prove the converse. Suppose that F is a subset of X such that D(x, F ) =
0 implies that x ∈ F . Then for all x ∈ X − F , we have D(x, F ) > 0. Take the
positive number r = 1

2D(x, F ), and consider the open ball Br(x). Let p be any
point in F and a any point in Br(x). Form the triangle inequality

D(p, x) ≤ D(p, a) +D(a, x)⇐⇒ D(p, a) ≥ D(p, x)−D(a, x).
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The least possible value for D(p, a) occurs when D(p, x) is the least possible and
when D(a, x) is the greatest possible, that is when D(p, x) = D(x, F ) and D(a, x) =
r. Thus, we find that D(p, a) ≥ r > 0. Hence, for all a ∈ Br(x), we have D(F, a) > 0
and thus Br(x) ∩ F = ∅. Therefore, Br(x) ⊂ X − F so X − F is open and F is
closed.

Proposition A.1.16 indicates that given any subset A of a metric space X, one
can obtain a closed subset of X by adjoining all the points with 0 distance from A.
This motivates the following definition.

Definition A.1.17. Let (X,D) be a metric space, and let A ⊂ X be any subset.
Define the closure of A as

ClA = {x ∈ X |D(x,A) = 0}.

Proposition A.1.18. Let (X,D) be a metric space and A any subset of X. ClA
is the smallest closed set containing A. In other words,

ClA =
⋂

A⊂F, F closed

F .

Proof. (Left as an exercise for the reader. See Problem A.1.20.)

A.1.3 Sequences

In standard calculus courses, one is introduced to the notion of a sequence of real
numbers along with issues of convergence and limits. The definition given in such
courses for when we say a sequence converges to a certain limit formalizes the idea
of all terms in the sequence ultimately coming arbitrarily close to the limit point.
Consequently, since limits formalize a concept about closeness and distance, the
natural and most general context for convergence and limits is in a metric space.

Definition A.1.19. Let (X,D) be a metric space and let {xn}n∈N be a sequence
in X. The sequence {xn} is said to converge to the limit ` ∈ X if for all ε ∈ R>0

there exists N ∈ N such that if n > N , then D(xn, `) < ε (i.e., xn ∈ Bε(`)). If {xn}
converges to `, then we write

lim
n→∞

xn = `.

Note that we can restate Definition A.1.19 to say that {xn} converges to ` if for
all positive ε ∈ R>0, only finitely many elements of the sequence {xn} are not in
the open ball Bε(`).

Example A.1.20. Consider the sequence {xn}n≥1 in R3 given by xn = (3, 1
n+2 ,

2n
n+1 ).

We prove that {xn} converges to (3, 0, 2). We know that as sequences of real num-
bers,

lim
n→∞

1

n+ 2
= 0 and lim

n→∞

2n

n+ 1
= 2.
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Pick any positive ε. Choose N1 such that n > N1 implies that 1
n+2 < ε√

2
, and

choose N2 such that n > N2 implies that
∣∣∣ 2n
n+1 − 2

∣∣∣ < ε√
2
. Using the Euclidean

distance

D(xn, (3, 0, 2)) =

√
(3− 3)2 +

( 1

n+ 2
− 0
)2

+
( 2n

n+ 1
− 2
)2

,

one sees that if n > N = max(N1, N2), then

D(xn, (3, 0, 2)) <

√
ε

2
+
ε

2
= ε.

This proves that limxn = (3, 0, 2).
Note that we could have proved directly that limxn = (3, 0, 2) by considering

the limit of D(xn, (3, 0, 2)) as a sequence of real numbers and proving that this
converges to 0.

Example A.1.21. Consider the set X of bounded, real-valued functions defined
over the interval [0, 1] equipped with the metric defined in Example A.1.7. For
n ≥ 1, consider the sequence of functions given by

fn(x) =

{
1− nx, for 0 ≤ x ≤ 1

n ,

0, for 1
n ≤ x ≤ 1.

Figure A.4 shows the functions for n = 1, 2, 3. One might suspect that the limit of
this sequence fn(x) would be the function

f(x) =

{
1, if x = 0,

0, for x > 0,

but this is not the case. Let r = 1
4 , and consider the r-collar around f(x). There

is no n such that fn(x) lies within the 1
4 -collar around f(x). (See Figure A.5.)

Consequently, fn(x) does not converge to f(x) in the metric space (X,D). Note,
however, that for all x ∈ [0, 1], as sequences of real numbers limn→∞ fn(x) = f(x).
We say that fn(x) converges pointwise.

Proposition A.1.22. Let (X,D) be a metric space. Any sequence {xn} can con-
verge to at most one limit point.

Proof. Suppose that

lim
n→∞

xn = ` and lim
n→∞

xn = `′.

Let ε be any positive real number. There exists N1 such that n > N1 implies that
D(xn, `) <

ε
2 , and there exists N2 such that n > Ns implies that D(xn, `

′) < ε
2 .

Thus, taking some n > max(N1, N2), we deduce from the triangle inequality that

D(`, `′) ≤ D(xn, `) +D(xn, `
′) ≤ ε

2
+
ε

2
= ε.
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1

1

fn(x)

n
=

1

n
=

2

n
=

3

Figure A.4: Sequence of functions.

1

1

fn(x)

Figure A.5: 1
4 -collar around f(x).

Thus, sinceD(`, `′) is less than any positive real number, we deduce thatD(`, `′) = 0
and hence that ` = `′.

In any metric space, there are plenty of sequences that do not converge to any
limit. For example, the sequence {an}n≥1 of real numbers given by an = (−1)n+ 1

n
does not converge toward anything but, in the long term, alternates between being
very close to 1 and very close to −1. Referring to the restatement of Definition
A.1.19, one can loosen the definition of limit to incorporate the behavior of such
sequences as the one just mentioned.

Definition A.1.23. Let (X,D) be a metric space, and let {xn} be a sequence in
X. A point p ∈ X is called an accumulation point of {xn} if for all real ε > 0, an
infinite number of elements xn are in Bε(p). The accumulation set of {xn} is the
set of all accumulation points.

Example A.1.24. Consider again the real sequence an = (−1)n+ 1
n . Let ε be any

positive real number. If n > 1
ε and n is even, then an ∈ Bε(1). If n > 1

ε and n is
odd, then an ∈ Bε(−1). Hence, 1 and −1 are accumulation points. However, for
any r different than 1 or −1, suppose we choose a ε such that ε < min(|r−1|, |r+1|).
If n is large enough, then

1

n
<
∣∣min(|r − 1|, |r + 1|)− ε

∣∣,
and for such n, we have an /∈ Bε(r). Thus, 1 and −1 are the only accumulation
points of {an}. In the terminology of Definition, A.1.23, the accumulation set is
{−1, 1}.
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A.1.4 Continuity

For the same reason as for the convergence of sequences, the notion of continuity,
first introduced in the context of real functions over an interval, generalizes naturally
to the category of metric spaces. Here is the definition.

Definition A.1.25. Let (X,D) and (Y,D′) be two metric spaces. A function
f : X → Y is called continuous at a ∈ X if for all ε ∈ R>0, there exists δ ∈ R>0

such that D(x, a) < δ implies that D(f(x), f(a)) < ε. The function f is called
continuous if it is continuous at all points a ∈ X.

Example A.1.26. As a first example of Definition A.1.25, consider the function
f : R2 → R given by f(x, y) = x+ y, where we assume R2 and R are equipped with
the usual Euclidean metrics. Consider some point (a1, a2) ∈ R2. Let ε > 0 be any
positive real number. Choosing δ = ε

2 will suffice, as we now show. First note that

D((x, y), (a1, a2)) =
√

(x− a1)2 + (y − a2)2 <
ε

2

implies that

|x− a1| <
ε

2
and |y − a2| <

ε

2
.

But if this is so, then

|f(x, y)− f(a1, a2)| = |x+ y − (a1 + a2)| < |x− a1|+ |y − a2| <
ε

2
+
ε

2
= ε.

Thus, f is continuous.

Example A.1.27. Definition A.1.25 allows one to study the continuity of functions
in much more general contexts, as we show with this example. Let X be a proper
subset of Rn, and let ~p be a point in Rn − X. We view X as a metric space by
restricting the Euclidean metric to it. Let Sn−1 be the unit sphere in Rn also with
its metric coming from the Euclidean one in Rn. Define a function f : X → Sn−1

by

f(~x) =
~x− ~p
‖~x− ~p‖

.

We will show that f is continuous.
Let ~a ∈ X. The Euclidean metric is D(~x,~a) = ‖~x− ~a‖. Hence

D(f(~a), f(~x)) =
∥∥∥ ~a− ~p
‖~a− ~p‖

− ~x− ~p
‖~x− ~p‖

∥∥∥
=

√( ~a− ~p
‖~a− ~p‖

− ~x− ~p
‖~x− ~p‖

)
·
( ~a− ~p
‖~a− ~p‖

− ~x− ~p
‖~x− ~p‖

)
=

√
2− 2

(~a− ~p) · (~x− ~p)
‖~a− ~p‖ ‖~x− ~p‖

=
√

2− 2 cosα,
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where α is the angle between the vectors (~a − ~p) and (~x − ~p). However, from the
trigonometric identity sin2 θ = (1− cos 2θ)/2, we deduce that

D(f(~a), f(~x)) = 2 sin
(α

2

)
.

If ~x and ~a are close enough, then (~a−~p) and (~x−~p) form an acute angle, and hence,
if d is the height from ~a to the segment between ~p and ~x, we have

D(f(~x), f(~a)) = 2 sin
(α

2

)
≤ 2 sinα = 2

d

‖~p− ~a‖
≤ 2
‖~x− ~a‖
‖~p− ~a‖

.

Therefore, choosing δ small enough so that the angle between (~a − ~p) and (~x − ~p)
is acute and δ < 1

2‖~p− ~a‖ ε, we conclude that

‖~x− ~a‖ < δ =⇒ D(f(~x), f(~a)) < ε,

proving that f is continuous at all points ~a ∈ X.

Proposition A.1.28. Let (X,D), (Y,D′), and (Z,D′′) be metric spaces. Let f :
X → Y and g : Y → Z be functions such that f is continuous at a point a ∈ X
and g is continuous at f(a) ∈ Y . Then the composite function g ◦ f : X → Z is
continuous at a.

Proof. Since f is continuous at a, for all ε1 ∈ R>0, there exists δ1 ∈ R>0 such
that D(x, a) < δ1 implies that D(f(x), f(a)) < ε1. Since g is continuous at f(a),
for all ε2 ∈ R>0, there exists δ2 ∈ R>0 such that D(y, f(a)) < δ2 implies that
D
(
g(y), g(f(a))

)
< ε2. Therefore, given any ε > 0, set ε2 = ε and choose ε1 so that

ε1 < δ2. Then

D(x, a) < δ1 ⇒ D(f(x), f(a)) < ε1 < δ2 ⇒ D
(
g(f(x)), g(f(a))

)
< ε,

showing that g ◦ f is continuous at a.

Using the concepts of open sets, we can give alternate formulations for when a
function between metric spaces is continuous.

Proposition A.1.29. Let (X,D) and (Y,D′) be two metric spaces, and let f :
X → Y be a function. The function f is continuous if and only if for all open
subsets U ⊂ Y , the set

f−1(U) = {x ∈ X | f(x) ∈ U}

is an open subset of X.

Proof. First suppose that f is continuous. Let U be an open subset of Y , and let x
be some point in f−1(U). Of course f(x) ∈ U . Since U is open, there exists a real
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ε > 0 such that Bε(f(x)) ⊂ U . Since f is continuous, there exists a δ > 0 such that
y ∈ Bδ(x) implies that f(y) ∈ Bε(f(x)). Hence,

f(Bδ(x)) ⊂ Bε(f(x)) ⊂ U,

and thus, Bδ(x) ⊂ f−1(U).
Conversely, suppose that f−1(U) is an open set in X for every open set U in Y .

Let f(x) be a point in U , and let ε be a positive real number. Then

f−1
(
Bε(f(x))

)
is an open set in X. Since x ∈ f−1

(
Bε(f(x))

)
is open, there exists some δ such

that Bδ(x) ⊂ f−1
(
Bε(f(x))

)
. Thus, f(Bδ(x)) ⊂ Bε(f(x)), and therefore, f is

continuous.

The following proposition is an equivalent formulation to Proposition A.1.29 but
often more convenient for proofs.

Proposition A.1.30. Let (X,D) and (Y,D′) be two metric spaces and let f : X →
Y be a function. The function f is continuous if and only if for all open balls Br(p)
in Y , the set f−1(Br(p)) is an open subset of X.

Proof. (Left as an exercise for the reader. See Problem A.1.27.)

Much more could be included in an introduction to metric spaces. However,
many properties of metric spaces and continuous functions between them hold sim-
ply because of the properties of open sets (Proposition A.1.9) and the characteriza-
tion of continuous functions in terms of open sets (Proposition A.1.29). This fact
motivates the definition of topological spaces.

Problems

A.1.1. Prove that D1, D3, and D∞ from Example A.1.3 are in fact metrics on R2.

A.1.2. In the following functions on R2×R2, which axioms fail to make the function into
a metric?

(a) D1((x1, y1), (x2, y2)) = |x1|+ |x2|+ |y1|+ |y2|.

(b) D2((x1, y1), (x2, y2)) = −
(
(x2 − x1)2 + (y2 − y1)2

)
.

(c) D3((x1, y1), (x2, y2)) = |x2 − x1| · |y2 − y1|.

(d) D4((x1, y1), (x2, y2)) = |x2
2 − x2

1|+ |y2 − y1|.

A.1.3. Let (X1, D1) and (X2, D2) be metric spaces. Consider the Cartesian product
X = X1 ×X2. Prove that the following function is a metric on X:

D((p1, p2), (q1, q2)) = D(p1, q1) +D(p2, q2).
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A.1.4. Let X = Pfin(Z) be the set of all finite subsets of the integers. Recall that the
symmetric difference between two sets A and B is A4B = (A − B) ∪ (B − A).
Define the function D : X ×X → R≥0 by

D(A,B) = |A4B|,

the cardinality of A4B. Prove that D is a metric on X.

A.1.5. In Euclidean geometry, the median line between two points p1 and p2 in R2 is
defined as the set of points that are of equal distance from p1 and p2, i.e.,

M = {q ∈ R2 |D(q, p1) = D(q, p2)}.

What is the shape of the median lines in R2 for D1, D2, and D∞ from Example
A.1.3?

A.1.6. Prove that if (X,D) is any metric space, then D(x, y)n where n is any positive
integer, is also metric on X.

A.1.7. Let (X,D) be a metric space, and let S be any subset of X. Prove that (S,D) is
also a metric space. (The metric space (S,D) is referred to as the restriction of
D to S.)

A.1.8. Let S2 be the unit sphere in R3, i.e.,

S2 = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1}.

Sketch the open balls on S2 obtained by the restriction of the Euclidean metric to
S2 (see Problem A.1.7). Setting the radius r < 2, for some point p ∈ S2, describe
Br(p) algebraically by the equation x2 + y2 + z2 = 1 and some linear inequality
in x, y, and z.

A.1.9. Prove that Example A.1.7 is in fact a metric space.

A.1.10. Consider the metric space (R2, D1), where D1 is defined in Example A.1.3.

(a) Let A and B be two points in R2. Prove that the set of points between A
and B is the rectangle with vertical or horizontal edges with A and B as
opposite corners.

(b) Determine the bisector of the points A and B in this metric.

A.1.11. Find the distance between the following pairs of sets in R2:

(a) A = {(x, y) |x2 + y2 < 1} and B = {(x, y) | (x− 3)2 + (y − 2)2 < 1}.
(b) A = {(x, y) |xy = 1} and B = {(x, y) |xy = 0}.
(c) A = {(x, y) |xy = 2} and B = {(x, y) |x2 + y2 < 1}.

A.1.12. Prove that a subset A of a metric space (X,D) is bounded if and only if A ⊂ Br(p)
for some r ∈ R≥0 and p ∈ X.

A.1.13. Infinite Intersections and Unions. Let An = [n,+∞) and let Bn = [ 1
n
, sinn].

Find

(a)

∞⋃
n=0

An, (b)

∞⋂
n=0

An, (c)

∞⋃
n=2

Bn. (A.1)
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A.1.14. Define the metric D on R2 as follows. For any p = (px, py) and q = (qx, qy), let
D(p, q) =

√
4(px − qx)2 + (py − qy)2. Prove that this is in fact a metric. What is

the shape of a unit ball Br
(
(x, y)

)
? What is the shape of the “median” between

two points? [Hint: see Problem A.1.5.]

A.1.15. Are the following subsets of the plane (using the usual Euclidean metric) open,
closed, or neither:

(a) {(x, y) ∈ R2 : x2 + y2 < 1}.
(b) {(x, y) ∈ R2 : x2 + y2 ≥ 1}.
(c) {(x, y) ∈ R2 : x+ y = 0}.
(d) {(x, y) ∈ R2 : x+ y 6= 0}.
(e) {(x, y) ∈ R2 : x2 + y2 ≤ 1 or x = 0}.
(f) {(x, y) ∈ R2 : x2 + y2 < 1 or x = 0}.
(g) The complement Ac where A = {(x, y) ∈ R2 |x = 0 and − 1 ≤ y ≤ 1}.

A.1.16. Let L be a line in the plane R2. Prove that R2−L is open in the Euclidean metric
and in the three metrics presented in Example A.1.3.

A.1.17. LetX = R2, and defineD2 as the Euclidean metric andD1 asD1((x1, y1), (x2, y2)) =
|x2 − x1|+ |y2 − y1|. Prove that any D2-open ball contains a D1-open ball and is
also contained in a D1-open ball. Conclude that a subset of R2 is D2-open if and
only if it is D1-open.

A.1.18. Prove that the set { 1
n
|n ∈ Z>0} is not closed in R whereas the set { 1

n
|n ∈

Z>0} ∪ {0} is.

A.1.19. Consider a metric space (X,D), and let x and y be two distinct points of X.
Prove that there exists a neighborhood U of x and a neighborhood V of y such
that U ∩ V = ∅. (In general topology, this property is called the Hausdorff
property , and this exercise shows that all metric spaces are Hausdorff.)

A.1.20. Prove Proposition A.1.18.

A.1.21. Let A be a subset of a metric space (X,D). Suppose that every sequence {xn} in
A that converges in X converges to an element of A. Prove that A is closed.

A.1.22. Let {xn}n∈N be a sequence in a metric space (X,D). Prove that the closure of
the set of elements {xn} is {xn |n ∈ N} together with the accumulation set of the
sequence {xn}.

A.1.23. Using Definition A.1.25, prove that the real function f(x) = 2x− 5 is continuous
over R.

A.1.24. Using Definition A.1.25, prove that

(a) the real function f(x) = x2 is continuous over R;

(b) the real function of two variables f(x, y) = 1/(x2 +y2 +1) is continuous over
all R2 (using the usual Euclidean metric).

A.1.25. Let (X,D) and (Y,D′) be metric spaces, and let f : X → Y be a continuous
function. Prove that if a sequence {xn} in X converges to a limit point `, then
the sequence {f(xn)} in Y converges to f(`).
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A.1.26. Let f : X → Y be a function from the metric space (X,D) to the metric space
(Y,D′). Suppose that f is such that there exists a positive real number λ, with

D′(f(x1), f(x2))

D(x1, x2)
≤ λ for all x1 6= x2,

i.e., that the stretching ratio for f is bounded. Show that f is continuous.

A.1.27. Prove Proposition A.1.30.

A.1.28. Let X = Rm and Y = Rn equipped with the usual Euclidean metric. Prove that
any linear transformation from X to Y is continuous.

A.2 Topological Spaces
A.2.1 Definitions and Examples

Definition A.2.1. A topological space is a pair (X, τ) where X is a set and where
τ is a set of subsets of X satisfying the following:

1. X and ∅ are in τ .

2. For all U and V in τ , U ∩ V ∈ τ .

3. For any collection {Uα}α∈I of sets in τ , the union
⋃
α∈I Uα is in τ .

The elements in τ are called open subsets of X and a subset F ⊂ X is called closed
if X − F is open, i.e., if X − F ∈ τ .

As an alternate terminology we talk about τ satisfying the above three properties
as a topology on X. In the introduction to this appendix, we promised that topology
attempts to provide a mental model that generalizes the notion of nearness. The
following concept is key to this way of thinking.

Definition A.2.2. Let (X, τ) be a topological space and let x ∈ X. Any U ∈ τ
such that x ∈ U is called a neighborhood of x.

If we work with more than one topology on the same underlying set X, we refer
to τ -open and τ -closed subsets to avoid ambiguity.

As with the properties of open sets in metric spaces, in criterion (3) of Definition
A.2.1, the indexing set I need not be countable, and hence, we should not assume
that the collection {Uα}α∈I can be presented as a sequence of subsets.

Example A.2.3. According to Proposition A.1.9, if (X,D) is a metric space, it is
also a topological space, where we use the topology τ to be the open sets as defined
by Definition A.1.8. Historically, it was precisely Proposition A.1.9 along with the
discovery by mathematicians that collections of sets with the properties described
in this proposition arise naturally in numerous other contexts that led to the given
definition of a topological space.
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Example A.2.4 (Euclidean topology). Consider the metric space (R2, D), where
D is the Euclidean metric. The topology induced on Rn according to Example A.2.3
is called the Euclidean topology.

Example A.2.5 (Discrete topology). Let X be any set. Setting τ = P(X) to be
the set of all subsets of X is a topology on X called the discrete topology on X. In
the discrete topology, all subsets of X are both closed and open.

Example A.2.6 (Trivial topology). On the opposite end of the spectrum from,
setting τ = {X, ∅} also satisfies the axioms of a topology, and this is called the
trivial topology on X. These two examples represent the largest and the smallest
possible examples of topologies on a set X.

Example A.2.7. Let X = {a, b, c} be a set with three elements. Consider the set
of subsets τ = {∅, {a}, {a, b}, X}. A simple check shows that τ is a topology on X,
namely that τ satisfies all the axioms for a topology. Notice that {a} is open, {c} is
closed (since {a, b} is open) and that {b} is neither open nor closed. By Proposition
A.1.15, there is no metric D on X such that the D-open sets of X are the open sets
in the topology of τ . We say that (X, τ) is not metrizable.

It is not always easy to specify a subset of P(X) that satisfy the axioms for a
topology on X. The concept of a basis makes this possible and Proposition A.2.9
gives a practical characterization of a basis.

Definition A.2.8. Let (X, τ) be a topological space. A collection of open sets
B ⊂ τ is called a basis of the topology if every open set is a union of elements in
B ⊂ τ .

Proposition A.2.9. Let (X, τ) be a topological space, and suppose that B is a basis.
Then:

1. the elements of B cover X;

2. if B1, B2 ∈ B, then for all x ∈ B1 ∩ B2 there exists B3 ∈ B such that x ∈
B3 ⊂ B1 ∩B2.

Conversely, if any collection B of open sets satisfies the above two properties, then
there exists a unique topology on X for which B is a basis. (This topology is said to
be generated by B.)

Proof. (Left as an exercise for the reader.)

This characterization allows one to easily describe topologies by presenting a
basis of open sets.

Example A.2.10. By Definition A.1.8, in a metric space, the topology associated
to a metric has the set of open balls as a basis.
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Example A.2.11. Let X = R2, and consider the collection B of sets of the form

U = {(x, y) ∈ R2 |x > x0 and y > y0},

where x0 and y0 are constants. This collection B satisfies both of the criteria in
Proposition A.2.9, hence there exists a unique topology τ on R2 with B as a basis.
It is easy to see that τ is different from the usual Euclidean topology. Note that for
any open set U ∈ τ , if (a, b) ∈ U , then the half-infinite ray

{(a+ t, b+ t) | t ≥ 0}

is a subset of U . This is not a property of the Euclidean topology on R2, so this
gives a topology different from the Euclidean topology.

Proposition A.2.12. Let (X, τ) be a topological space. Then the following are true
about the τ -closed sets of X:

1. X and ∅ are closed.

2. The union of any two closed sets is closed.

3. The intersection of any collection of closed sets is closed.

Proof. Part 1 is obviously true since both X and ∅ are open.
For part 2, let F1 and F2 be any two closed subsets of X. Then F1

c and F2
c are

open sets. Thus F1
c ∩ F2

c is open. However, by the DeMorgan laws,

F1
c ∩ F2

c = (F1 ∪ F2)
c
.

Thus, since F1 ∪ F2
c is open, F1 ∪ F2 is closed.

For part 3, let {Fα}, where α is in some indexing set I, be a collection of closed
subsets. The collection {Fαc} is a collection of open sets. Therefore,

⋃
α Fα

c is
open. Thus, ⋂

α∈I
Fα =

(⋃
α∈I

Fα
c

)c
is closed.

A converse to this proposition turns out to be useful for defining certain classes
of topologies on sets.

Proposition A.2.13. Let X be a set. Suppose that a collection C of subsets of X
satisfies the following properties:

1. X and ∅ are in C.

2. The union of any two sets in C is again in C.

3. The intersection of any collection of sets in C is again in C.

Then the set of all complements of sets in C form a topology on X.
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Proof. (Left as an exercise for the reader.)

Example A.2.14. Let X be any set. Consider the collection C of subsets of X
that include X, ∅, and all finite subsets of X. The collection C satisfies all three
criteria in Proposition A.2.13, so X, ∅, and the complements of finite subsets of X
form a topology on X. This is often called the finite complement topology.

We now present a topology on Rn that has more open sets than the finite
complement topology but fewer than the usual Euclidean topology.

Example A.2.15. Let X = Rn. Let C be the collection of all finite unions of
affine subspaces of Rn, where by affine subspace we mean any set of points that
is the solution set to a set of linear equations in x1, x2, . . . , xn (i.e., points, lines,
planes, etc.). Taking the empty set of linear equations or an inconsistent set of
linear equations, we obtain X and ∅ as elements of C. Since the union operation
of sets is associative, a finite union of finite unions of affine spaces is again just a
union of affine spaces.

To establish that the third criterion in A.2.13 holds for C, we must prove that
the intersection of any collection of finite unions of affine spaces is a finite union
of affine spaces. Note first that if the intersection of two affine subspaces A1 and
A2 is a strict subspace of both A1 and A2, then dimA1 ∩ A2 is strictly less than
dimA1 and dimA2. Let {Fα}α∈I be a collection of sets in C, and let {αi}i∈N be a
sequence of indices. Given the sequence {αi}, create a sequence of “intersection”
trees according to the following recursive definition. The tree T0 is the tree with a
base node, and an edge for each Aα0,j in

Fα0
=
⋃
j

Aα0,j ,

with a corresponding leaf for each Aα0,j . For each tree Ti, construct Ti+1 from Ti
as follows. Writing

Fαi =
⋃
j

Aαi,j ,

for each leaf F of Ti and for each j such that F ∩Aαi,j 6= F , adjoin an edge labeled
by Aαi,j to F and label the resulting new leaf by F ∩Aαi,j .

As constructed, for each k, the leaves of the tree Tk are labeled by intersections
of affine spaces so that

k⋂
i=0

Fαi

is the union of the leaves of Tk. Since only a finite number of edges gets added to
every leaf, for all i ≥ 0, there can be only a finite number of vertices at a fixed
distance from the base node. Furthermore, since any nontrivial intersection A ∩B
of affine spaces has dimension

dim(A ∩B) ≤ min(dimA,dimB)− 1
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and since the ambient space is Rn, each branch (descending path) in any tree Ti
can have at most n + 1 edges. In conclusion, for all Ti, there can only be a finite
number of leaves. Thus,

∞⋂
i=0

Fαi

is a finite union of intersections of affine spaces. Since this holds for all sequences
{αi} in I, this then proves that ⋂

α∈I
Fα

is a finite union of intersections of affine spaces.
This rather lengthy proof shows that the collection C of finite unions of affine

spaces in Rn satisfies the criteria of Proposition A.2.13. Consequently, the set τ
of subsets of Rn that are complements of a finite union of affine spaces forms a
topology on Rn.

Example A.2.15, along with the result of Problem A.2.3, shows that given a set
X, it is possible to have two topologies τ and τ ′ on X such that τ ( τ ′, or in other
words, that every τ -open set in X is τ ′-open but not vice versa. This leads to a
useful notion.

Definition A.2.16. Let X be a set and let τ and τ ′ be two topologies on X. If
τ ⊆ τ ′, then we say that τ ′ is finer than τ and that τ is coarser than τ ′. If in
addition τ 6= τ ′, we say that τ ′ is strictly finer than τ and that τ is strictly coarser
than τ ′.

As a few examples, consider X = Rn. Then the finite complement topology
(Example A.2.14) is coarser than the topology defined in Example A.2.15, which is
in turn coarser than the Euclidean topology.

In Section A.1.2, Proposition A.1.18 proved that the closure of a subset A (as
defined by Definition A.1.17) of a metric space (X,D) is the intersection of all
closed subsets of X containing A. This formulation of the closure of a set does not
rely explicitly on the the metric D and carries over without changes to topological
spaces. The closure of a subset A ⊂ X is an example of a topological operator, three
of which we mention here.

Definition A.2.17. Let (X, τ) be a topological space and A a subset of X. We
define

1. the closure of A, written ClA, as the intersection of all closed sets in X
containing A;

2. the interior of A, written A◦, as the union of all open sets of X contained in
A;

3. the frontier of A, written FrA, as the set of all x ∈ X such that for every
neighborhood U of x intersects A and Ac nontrivially, i.e., U ∩ A 6= ∅ and
U ∩Ac 6= ∅.
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We leave some of the basic properties of the above topological operators to the
exercises but present one common characterization of closed sets.

Proposition A.2.18. Let (X, τ) be a topological space, and let A be any subset of
X. The set A is closed if and only if A = ClA.

Proof. If A is closed, then A is among the closed sets F ⊂ X that contain A, and
there is no smaller closed subset containing A. Hence A = ClA. Conversely, if
A = ClA, then since the intersection of any collection of closed sets is closed, ClA
is closed, so A is closed.

Another useful characterization of closed sets relies not on a topological operator
but on properties of its limit points.

Definition A.2.19. Let A be any subset of a topological space (X, τ). A limit point
of A is any point p ∈ X such that U ∩ (A− {p}) ne∅ for every open neighborhood
U of p.

In the vocabulary of sequences in a metric space, if the subset A is a sequence
{xn}, then in Definition A.1.23, we would call the limit points of A the accumu-
lation points of A. For this reason, some authors use the alternate terminology
of accumulation point for limit points of a subset A in a topological space. The
discrepancy in terminology is unfortunate, but in topology, the majority of authors
use the vocabulary of Definition A.2.19.

Proposition A.2.20. Let A be a subset of a topological space X. The set A is
closed if and only if it contains all of its limit points.

Proof. Assume first that A is closed. The complement X −A is open and hence is
a neighborhood of each of its points. Therefore, there is no point in X − A that is
a limit point of A. Hence, A contains all its limit points.

Assume now that A contains all of its limit points. Let p ∈ X−A. Since p is not
a limit point of A, there exists an open neighborhood U of p such that U ∩ A = ∅.
Thus, X − A is a neighborhood of each of its points, and hence, it is open. Thus,
A is closed.

Finally, we mention one last term related to closures.

Definition A.2.21. Let (X, τ) be a topological space. A subset A of X is called
dense in X if ClA = X.

By Proposition A.2.20 a set A is dense in X if every point of X is a limit point
of A. We give a few common examples of dense subsets.

Example A.2.22. Let I = [a, b] be a closed interval in R, and equip I with the
topology induced from the Euclidean metric on R. The open subsets in this topology
on I are of the form U ∩ I, where U is an open subset of R. Furthermore, the open
interval (a, b) is dense in I.
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Proposition A.2.23. The set Q of rational numbers is dense in R.

Proof. A precise proof of this statement must rely on a definition of real numbers,
as constructed from the rationals. One may find this definition in any introductory
analysis text. However, using a high school understanding of real numbers as num-
bers with an infinite decimal expansion that is not periodic, we can supply a simple
proof of this fact.

Let x0 ∈ R be any real number, and let U be an open neighborhood of x0. By
definition, there exists a positive real ε > 0 such that (x0 − ε, x0 + ε) ∈ U . Let
N = 1−blog10 εc. Consider q the fraction that represents the decimal approximation
of x0 that stops at N digits after the decimal period. Then, q ∈ Q and q ∈ U . Hence,
x0 is a limit point of Q.

Knowing that Q is a countable and dense subset of R, we can introduce a
property of the Euclidean topology that is a key part of the definition of a topological
manifold.

Definition A.2.24. A topological space (X, τ) is called second countable if there
exists a basis of τ that is countable.

Example A.2.25. The Euclidean space Rn is second countable. Consider the
collection B of open balls whose centers have rational coordinates and of rational
radius. This collection is in bijection with Qn×Q>0. Since the Cartesian product of
countable sets is countable, B is countable. It is not hard to see that this collection
satisfies the conditions of Proposition A.2.9, so this B is a countable basis of Rn.

A.2.2 Continuity

When working with topological spaces (X, τ) and (Y, τ ′), we are usually not inter-
ested in studying the properties of just any function between f : X → Y because
a function without any special properties will not necessarily relate the topology
on X to that on Y or vice versa. In Section A.1.4, Proposition A.1.29 provided a
characterization of continuous functions between metric spaces only in terms of the
open sets in the metric space topology. This motivates the definition of continuity
for functions between topological spaces.

Definition A.2.26. Let (X, τ) and (Y, τ ′) be two topological spaces, and let f :
X → Y be a function. We call f continuous (with respect to τ and τ ′) if for every
open set U ⊂ Y , the set f−1(U) is open in X.

Example A.2.27. Proposition A.1.29 shows that any function called continuous
between two metric spaces (X,D) and (Y,D′) is continuous with respect to the
topologies induced by the metrics on X and Y .

In previous contexts (e.g., functions from Rn to Rm, and functions between
metric spaces), we first defined the notion of continuity at a point and then expanded
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to continuous over a domain. In this case, as in all texts on topology, we first defined
continuity over a whole domain. However, there is a natural definition for continuity
at a point.

Definition A.2.28. Let f : X → Y be as in the previous definition. We call f
continuous at x ∈ X, if for every neighborhood V of f(x), there is a neighborhood
U of x with f(U) ⊂ V .

The following proposition shows why this definition of continuity at a point is
natural.

Proposition A.2.29. Let (X, τ) and (Y, τ ′) be topological spaces, and let f : X →
Y be a function. Then f is continuous if and only if f is continuous at all x ∈ X.

Proof. First, suppose that f is continuous. Then for all f(x) ∈ Y and for all open
neighborhoods V of f(x), f−1(V ) is open in X. Furthermore, x ∈ f−1(V ) so
f−1(V ) is an open neighborhood of x. Also, since f(f−1(V )) = V for any set, we
see that setting U = f−1(V ) proves one direction.

Second, assume that f is continuous at all x ∈ X. Let V be any open set in Y . If
V contains no image f(x), then f−1(V ) = ∅, which is open in X. Therefore, assume
that V contains some image f(x). Let W = f−1(V ). According to the assumption,
for all x ∈W there exists open neighborhoods Ux of x such that f(Ux) ⊂ V . Since
f(Ux) ⊂ V , then Ux ⊂ f−1(V ) = W . But then

W ⊂
⋃
x∈W

Ux ⊂W ◦,

and since W ◦ ⊂W always, we conclude that W = W ◦, which implies (see Problem
A.2.7) that W is open. This shows that f is continuous.

Proposition A.2.30. Let (X, τ), (Y, τ ′), and (Z, τ ′′) be three topological spaces. If
f : X → Y and g : Y → Z are continuous functions, then g ◦ f : X → Z is also a
continuous function.

Proof. (Left as an exercise for the reader.)

For metric spaces, a continuous function is one that preserves “nearness” of
points. Though topological spaces are not necessarily metric spaces, a continuous
function f : X → Y between topological spaces preserves nearness in the sense that
if two images f(x1) and f(x2) are in the same open set V , then there is an open
set U that contains both x1 and x2, with f(U) ⊂ V .

In set theory, we view two sets as “the same” if there exists a bijection between
them: they are identical except for how we label the specific elements. For topo-
logical spaces to be considered “the same,” not only do the underlying sets need to
be in bijection, but this bijection must preserve the topology. This is the concept
of a homeomorphism.
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Definition A.2.31. Let (X, τ) and (Y, τ ′) be two topological spaces, and let f :
X → Y be a function. The function f is called a homeomorphism if

1. f is a bijection;

2. f : X → Y is continuous;

3. f−1 : Y → X is continuous.

If there exists a homeomorphism between two topological spaces, we call them
homeomorphic.

Example A.2.32. Any two squares S1 and S2, as subsets of R2 with the Euclidean
metric, are homeomorphic. For i = 1, 2, let ti be the translation that brings the
center of Si to the origin, Ri a rotation that makes the edges of ti(Si) parallel to the
x- and y-axes, and let hi be a scaling (homothetie) that changes Ri ◦ ti(Si) into the
square with vertices {(−1,−1), (−1, 1), (1, 1), (1,−1)}. It is easy to see that transla-
tions are homeomorphisms of R2 to itself. Furthermore, by Problem A.1.28, we see
that Ri and hi are continuous, and since they are invertible linear transformations,
their inverses are continuous as well. Thus, Ri and hi are homeomorphisms. Thus,
the function

f = t−1
2 ◦R

−1
2 ◦ h

−1
2 ◦ h1 ◦R1 ◦ t1

is a homeomorphism of R2 into itself that sends S1 to S2. Thus, S1 and S2 are
homeomorphic.

P

Q

O

Figure A.6: A homeomorphism between a circle and a square from Example A.2.33.

Example A.2.33. Any circle and any square, as subsets of R2, are homeomorphic.
We must present a homeomorphism between a circle and a square. By Example
A.2.32 we see that any two squares are homeomorphic. By a similar argument, any
two circles are homeomorphic. So without loss of generality, consider the consider
the unit circle S and the unit square T , both with center (0, 0). (See Figure A.6.)
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Let f : T → S be the function defined by f(x) = x/‖x‖, where x is viewed
as a point in R2. It is clear that this is a continuous function on its domain,
R2 − {(0, 0)} so it is continuous on the subset T . For θ ∈ R, consider the function
g(θ) = max(| sin θ|, | cos θ|) and then the curve γ : [0, 2π] → R2 parametrized by
γ(t) = (cos(t)/g(t), sin(t)/g(t)). It is not hard to verify that this curve traces out
the unit square T . Identifying a point on the circle with its angle, we can think of
γ as a function S → T . It is not hard to see that g is continuous and that γ is as
well. Furthermore, (f ◦ γ)(p) = p for all p ∈ S and also (γ ◦ f)(q) = q for all q ∈ T .
Hence, f is a homeomorphism between the unit square and the unit circle.

Figure A.6 shows corresponding points P and Q as well as corresponding neigh-
borhoods of these points.

Example A.2.34. The above two examples only begin to illustrate how different
homeomorphic spaces may look. In this example, we prove that any closed, simple,
parametrized curve γ in Rn is homeomorphic to the unit circle S1 (in R2). Let
~x : [0, l]→ Rn be a parametrization by arclength for the curve γ such that ~x(t1) =
~x(t2) implies that t1 = 0 and t2 = l, assuming t1 < t2. The function f : γ → S1

defined by

f(P ) =
(

cos
(2π

l
~x−1(P )

)
, sin

(2π

l
~x−1(P )

))
(A.2)

produces the appropriate homeomorphism. Note that ~x−1 is not well defined only at
the point ~x(0) because ~x−1(~x(0)) = {0, l}. However, using either 0 or l in Equation
(A.2) is irrelevant.

Example A.2.35. In contrast to the previous example, consider the closed, regular
curve γ parametrized by ~x : [0, 2π]→ R2 with

~x(t) = (cos t, sin 2t).

The curve γ traces out a figure eight of sorts and is not simple because ~x(π/2) =
(0, 0) = ~x(3π/2) (and ~x ′(π/2) 6= ~x ′(3π/2)). We show that it is not homeomorphic
to a circle S1. Call P = (0, 0).

P
g

Q

Figure A.7: Figure eight not homeomorphic to a circle.

There does exist a surjective continuous map f of γ onto the circle S1, namely,
using the parametrization ~x(t),

f(~x(t)) = (cos 2t, sin 2t)
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which amounts to folding the figure eight back onto itself so that the circle is covered
twice. However, there exists no continuous bijection g : γ → S1. To see this, call
Q = g(P ), and let U be a small open neighborhood of Q. If g is a bijection, it
has exactly one preimage for every element x ∈ U . Thus, g−1(U) is the image
of a nonintersecting parametrized curve. However, every open neighborhood of P
includes two segments of curves. Thus, the circle and γ are not homeomorphic.

P
f

0 1a

Figure A.8: Figure eight not homeomorphic to a segment.

Example A.2.36. Consider the same regular, closed parametrized curve as in the
previous example. The function f : (0, 1) → γ2 defined by f(t) = ~x

(
2πt − π

2

)
is a

bijection. Furthermore, f is continuous since it is continuous as a function (0, 1)→
R2. However, the inverse function is not continuous and in fact no continuous
bijection g : (0, 1)→ γ2 can have a continuous inverse.

Let a ∈ (0, 1) be the real number such that f(a) = P , the point of self-
intersection on γ2. Take an open segment U around a. The image f(U) is a portion
of γ2 through P (see the heavy lines in Figure A.8). However, this portion f(U)
is not an open subset of γ2 since every open neighborhood of P includes f((0, ε1))
and f((1− ε2, 1)). Thus there exists no homeomorphism between the open interval
and the figure eight.

We conclude this section on continuity by mentioning one particular result, the
proof of which exceeds the scope of this appendix.

Theorem A.2.37. The Euclidean spaces Rn and Rm are homeomorphic if and
only if m = n.

This theorem states that Euclidean spaces can only be homeomorphic if they
are of the same dimension. This might seem obvious to the casual reader but this
fact hides a number of subtleties. First of all, the notion of dimension of a set
in topology is not at all a simple one. Secondly, we must be careful to consider
space-filling curves, such as the Peano curve, which is a continuous surjection of
the closed interval [0, 1] onto the closed unit square [0, 1]× [0, 1]. (See [28], Section
3-3, for a construction.) The construction for space-filling curves can be generalized
to find continuous surjections of Rn onto Rm even if n < m. However, Theorem
A.2.37 implies that no space-filling curve is bijective and has a continuous inverse.
That Euclidean spaces of different dimensions are not homeomorphic means that
they are distinct from the perspective of topology.
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A.2.3 Derived Topological Spaces

Given any topological space (X, τ), there are a number of ways to create a new
topological space. We present two common ways – subset topology and quotient
spaces – which are used throughout this book.

Definition A.2.38. Let (X, τ) be a topological space, and let S be any subset of
X. We define the subset topology τ ′ on S by calling a subset A ⊂ S open if and
only if there exists an open subset U of X such that A = S ∩ U .

The subset topology is sometimes called the topology induced on S from X.
There is an alternate way to characterize it.

Proposition A.2.39. Let (X, τ) be a topological space, and let S ⊂ X. Let i : S →
X be the inclusion function. The subset topology on S is the coarsest topology such
that i is a continuous function.

Proof. Given any subset A of X, we have i−1(A) = A ∩ S. If i is continuous, then
for all open subsets U ⊂ X, the set i−1(U) = U ∩S is open. However, according to
Definition A.2.38, the subset topology on S has no other open subsets and therefore
is coarser than any other topology on S, making i continuous.

Example A.2.40. Consider R equipped with the usual topology. Let S = [a, b]
be a closed interval. If a < c < b, in the subset topology on S, the interval [a, c) is
open. To see this, take any real d < a. Then

[a, c) = (d, c) ∩ [a, b],

and (d, c) is open in R.

A second and often rather useful way to create new topological spaces is to
induce a topology on a quotient set.

Definition A.2.41. Let X be a set, and let R be an equivalence relation on X.
The set of equivalence classes of R is denoted by X/R and is called the quotient set
of X by R.

The concept of a quotient set arises in many areas of mathematics (congruence
classes in number theory, quotient groups in group theory, quotient rings in ring
theory, etc.) but also serves as a convenient way to define interesting objects in
topology and geometry. We provide a few such examples before discussing topologies
on quotient sets.

Example A.2.42 (Real Projective Space). The typical construction of the real
projective space is given in Example 3.1.6. We present two other equivalent con-
structions.

Let X be the set of all lines in Rn+1, and let R be the equivalence relation of
parallelism on X. We can therefore discuss the set of equivalence classes X/R. Each
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line in X is uniquely parallel to a line that passes through the origin, and hence,
X/R may be equated with the set of lines passing through the origin. This set is
called the real projective space of dimension n and is usually denoted by RPn.

As an alternate characterization for RPn, consider the unit n-sphere Sn in Rn+1

and centered at the origin. Each line through the origin intersects Sn at two antipo-
dal points. Therefore, RPn is the quotient set of Sn with respect to the equivalence
relation, in which two points are called equivalent if they are antipodal (form the
ends of a diameter through Sn).

Example A.2.43 (Grassmannian). Let Xr be the set of all r dimensional vec-
tor subspaces in Rn, and let R be the equivalence relation of parallelism between
hyperplanes. The set of equivalence classes is called a Grassmannian and is de-
noted G(r, n). Again, since each r-dimensional hyperplane is uniquely parallel to
one hyperplane through the origin, G(r, n) is the set of r-hyperplanes through the
origin.

Of particular interest to geometry is the question of how to give a topology to
X/R if X is equipped with a topology. Proposition A.2.39 illustrates how to make
a reasonable definition.

Definition A.2.44. Let (X, τ) be a topological space and let R be an equivalence
relation onX. Define f : X → X/R as the function that sends an element inX to its
equivalence class; f is called the quotient map (or sometimes identification map).
We call quotient topology (or identification topology) on X/R the finest topology
that makes f continuous.

The above definition for the quotient topology does not make it too clear what
the open sets of X/R should be. The following proposition provides a different
characterization.

Proposition A.2.45. Let (X, τ) be a topological space, let R be an equivalence
relation on X and let f be the quotient map. The quotient topology on X/R is

τ ′ = {U ∈ P(X/R) | f−1(U) ∈ τ}.

Proof. Let τ ′ be a topology on X/R such that f : X → X/R is continuous. Then
for all open sets U ∈ τ ′, we must have f−1(U) be open in X. Note first that
f−1(∅) = ∅ and f−1(X/R) = X, which are both open in X.

From basic set theory, for any function F : A → B and any collection C of
subsets of B, we have

F−1
( ⋃
S∈C

S
)

=
⋃
S∈C

F−1(S) and F−1
( ⋂
S∈C

S
)

=
⋂
S∈C

F−1(S).

(See Section 1.3 in [48].) Therefore, if U1 and U2 are such that f−1(U1)∩f−1(U2) is
open, then f−1(U1 ∩ U2) is open. Also, for any collection of sets {Uα}α∈I in X/R,

f−1
( ⋃
α∈I

Uα

)
=
⋃
α∈I

f−1(Uα)
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0.4

0.4

{0, 1}

Figure A.9: Open set around {0, 1}.

so if the right-hand side is open, then so is the left-hand side. Consequently, the
collection of subsets B of X/R such that U ∈ B if and only if f−1(U) ∈ τ is a
topology on X/R. However, any finer topology on X/R would include some subset
S ⊂ X/R such that f−1(S) would not be open in X and, hence, would make f not
continuous.

Example A.2.46 (Circles). Let I be the interval [0, 1] equipped with the topology
induced from R. Consider the equivalence relation that identifies 0 with 1, and
everything else inequivalent. The identification space I/R is homeomorphic to a
circle. We may use the function f : I/R→ S1 defined by

f(t) = (cos 2πt, sin 2πt),

which is well-defined since f(0) = f(1), so whether we take 0 or 1 for the equivalence
class {0, 1}, we obtain the same image. This function f is clearly bijective.

To prove that f is continuous, let P ∈ S1, and let x ∈ I/R. If P 6= (1, 0), then
any open neighborhood U of P contains an open interval of angles θ1 < θ < θ2,
where 0 < θ1 < θ2 < 2π and the angle θ0 corresponding to P satisfies θ1 < θ0 < θ2.
Then

f
( θ1

2π
,
θ2

2π

)
contains P and is a subset of U . On the other hand, if P = (1, 0), any open
neighborhood U ′ of P in S1 contains an open arc of angles θ1 < θ < θ2, with
θ1 < 0 < θ2. Then if g : I → I/R is the quotient map,

f ◦ g
([

0,
θ2

2π

)
∪
(

1− θ1

2π
, 1

])
contains P and is contained in U ′. Furthermore, by definition, g([0, θ2/2π) ∪ (1 −
θ1/2π, 1]) is open in I/R since [0, θ2/2π) ∪ (1 − θ1/2π, 1] is open in the subset
topology of [0, 1]. By Proposition A.2.29, f is continuous.

Using a similar argument, it is not hard to show that f−1 is continuous, con-
cluding that I/R is homeomorphic to S1.
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p

p

Figure A.10: Möbius strip.

Example A.2.47. Consider the real projective space RPn given as the quotient
space Sn/ ∼ where ∼ is the equivalence relation on Sn where p1 ∼ p2 if and only
if they are antipodal to each other, i.e., form a diameter of the sphere. The unit
sphere Sn naturally inherits the subspace topology from Rn+1. Definition A.2.44
provides the induced topology for RPn.

Example A.2.48 (Möbius Strip). Let I = [0, 1] × [0, 1] be the unit square with
the topology induced from Rn. Define the identification (equivalence relation ∼)
between points by (0, y) ∼ (1, 1 − y), for all y ∈ [0, 1] and no other points are
equivalent to any others. The topological space obtained is called the Möbius strip.
In R3, the Möbius strip can be viewed as a strip of paper twisted once and with
ends glued together. Figure A.10 shows an embedding of the Möbius strip in R3,
as well as a diagrammatic representation of the Möbius strip. In the diagrammatic
representation, the arrows indicate that the opposite edges are identified but in
inverse direction. The shaded area shows a disk around a point p on the identified
edge.

A.2.4 Compactness

In any calculus course, we encounter the Extreme Value Theorem, a result in anal-
ysis that forms an essential ingredient to Rolle’s Theorem, hence the Mean Value
Theorem, and therefore the Fundamental Theorem of Calculus.

Theorem A.2.49 (Extreme Value Theorem). Let f : [a, b] → R be a continuous
real-valued function. Then f attains a maximum and a minimum over the interval
[a, b].

As topology developed, a variety of attempts were made to generalize the idea
contained in this fact. In the context of metric spaces, the key properties that
would allow for a generalization are that the interval [a, b] is closed and bounded.
Though closed is a concept in topology, the notion of being bounded does not
have an equivalent notion. It turns out that in topological spaces, the notion of
compactness provides this desired generalization.
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Definition A.2.50. Let (X, τ) be a topological space. Let U = {Ui}i∈I be a
collection of open sets in X. We call U an open cover of X if

X =
⋃
i∈I

Ui.

If J ⊂ I, the collection V = {Vj}j∈J is called a subcover of U if V is itself an open
cover of X.

Definition A.2.51. A topological space (X, τ) is called compact if every open cover
of X has a finite subcover.

Remark A.2.52. A subset A of X is called compact if it is compact when equipped
with the subspace topology induced from (X, τ). This is equivalent to the property
that whenever there exists a collection of U = {Ui}i∈I of open sets with A ⊂

⋃
i∈I Ui,

there exists a finite subset J ⊂ I with A ⊂
⋃
i∈J Uj .

Some examples of compact spaces are obvious, such as that any finite subset of
a topological space is compact. However, the following theorem justifies, at least in
part, the given definition of compactness.

Theorem A.2.53 (Heine-Borel). A closed and bounded interval [a, b] of R is com-
pact.

Proof. (A variety of proofs exist for the Heine-Borel Theorem. The following proof
is called the “creeping along” proof.)

Let U = {Uα}α∈I be an open cover of [a, b]. Define the subset of [a, b] by

E = {x ∈ [a, b] | [a, x] is contained in a finite subfamily of U}.

Obviously, E is an interval, but a priori we do not know whether it is open or closed
or even nonempty. We will show that b ∈ E to establish the theorem.

Now a ∈ E because there exists some Uα0 such that a ∈ Uα0 . Let c = lub E.
Clearly a ≤ c ≤ b. Suppose that c < b. Since U covers [a, b], there exists some index
β such that c ∈ Uβ , and therefore there exists ε such that (c− ε, c+ ε) ⊂ Uβ . Since
c is the least upper bound of E, any x ∈ (c− ε, c) is in E. Therefore, there exists a
finite set {α1, α2, . . . , αn} such that

[a, x] ⊂
n⋃
i=1

Uαi .

But then the finite union of open sets

(c− ε, c+ ε) ∪
n⋃
i=1

Uαi

contains the point c+ ε/2, contradicting the assumption that c < b and c = lub E.
Thus c = b, and b ∈ E.
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Compactness is an important property of topological spaces, and we refer the
reader to Chapter 3 in [2], Section 6.6 in [15], or Chapter 7 in [27] for complete
treatments. For the purposes of this book however, we are primarily interested
in two results, namely Theorem A.2.57 and Theorem A.2.58, and a few necessary
propositions to establish them. We will not prove Theorem A.2.57 completely but
again refer the reader to the above sources.

Proposition A.2.54. Let (X, τ) be a topological space, and let K be a compact
subset of X. Every closed subset of K is compact.

Proof. Let F ⊂ K be a closed set. Then X −F is open. If U is an open cover of F ,
then U ∪ {X − F} is an open cover of K. Since K is compact, U ∪ {X − F} must
admit a finite subcover of K. This finite subcover of K is of the form U ′∪{X−F},
where U ′ is a finite subcover of U of F . Thus, F is compact.

Problem A.1.19 established the fact that two distinct points p1 and p2 in a metric
space possess, respectively, open neighborhoods U1 and U2 such that U1 ∩ U2 = ∅.
This type of property is called a separation property of a topological space because
it gives some qualification for how much we can distinguish points in the topological
space. There exists a variety of separation axioms, but we only present the one that
is relevant for differential geometry.

Definition A.2.55. A topological space (X, τ) is called Hausdorff if given any two
points p1 and p2 in X, there exist open neighborhoods U1 of p1 and U2 of p2 such
that U1 ∩ U2 = ∅.

Proposition A.2.56. If (X, τ) is a Hausdorff topological space, then every compact
subset K of X is closed.

Proof. Let K be compact. Since X is Hausdorff, for every x ∈ X −K and y ∈ K,
there exist open sets Uxy and Vxy, with x ∈ Uxy and y ∈ Vxy, such that Uxy∩Vxy = ∅.
For each x ∈ X −K,

{Vxy | y ∈ K}

is an open cover of K, so it must possess a finite subcover that we index with a
finite number of points y1, y2, . . . , yn. But then for each x,

Ux =
n⋂
i=1

Uxyi

is open since it is a finite intersection of open sets. Since K ⊂
⋃n
i=1 Vxyi , we conclude

that K ∩ Ux = ∅ for all x ∈ X −K. Thus, X −K is a neighborhood of all of its
points and hence it is open. Thus, K is closed.

Theorem A.2.57. Let A be any subset of Rn (equipped with the Euclidean topol-
ogy). The set A is compact if and only if it is closed and bounded.
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Proof. (We only prove =⇒.)
Suppose that A is compact. Since by Problem A.1.19 any metric space is Haus-

dorff, Proposition A.2.56 allows us to conclude that A is closed. Since every open
set in a metric space is the union of open balls, any open cover of A can be viewed as
an open cover of open balls. If A is compact, it is contained in only a finite number
of such open balls {Bri(pi)}mi=1. There exists an open ball Br(p) that contains all
the Bri(pi). The radius r will be less than (m−1) max{d(pi, pj)}+2 max{ri}. Then
K ⊂ Br(P ), and hence, K is bounded.

(The proof of the converse is more difficult and uses other techniques that we
do not have the time to develop here.)

Theorem A.2.57 establishes that we might view closed and bounded subsets of
Rn as the topological analog to [a, b] ⊂ R in Theorem A.2.49. We now complete
the generalization to topological spaces.

Theorem A.2.58. Let f : X → Y be a continuous function between topological
spaces X and Y . If X is a compact space, then f(X) is compact in Y .

Proof. Let U be an open cover of f(X). Since f is continuous, each f−1(U) is open
and the collection {f−1(U) |U ∈ U} is an open cover of X. Since X is compact,
there exists a finite set {U1, U2, . . . , Un} ⊂ U such that

X =
n⋃
i=1

f−1(Ui).

Since for any functions f(f−1(A)) ⊂ A always and f(
⋃
λAλ) =

⋃
λ f(Aλ), then

f(X) = f
( n⋃
i=1

f−1(Ui)
)

=
n⋃
i=1

f(f−1(Ui)) ⊂
n⋃
i=1

Ui .

Thus, f(X) is compact.

Corollary A.2.59. Let X be a compact topological space, and let f : X → R be a
real-valued function from X. Then f attains both a maximum and a minimum.

Proof. By Theorem A.2.58, the image f(X) is compact. By Theorem A.2.57, f(X)
is a closed and bounded subset of R. Hence, lub {f(x) |x ∈ X} and glb {f(x) |x ∈
X} are both elements of f(X) and hence are the maximum and minimum of f over
X.

Corollary A.2.60. Let (X, τ) and (Y, τ ′) be topological spaces, and let f : X → Y
be a continuous function onto Y . If X is compact, then so is Y .

Corollary A.2.61. Let X be a compact topological space. If a space Y is homeo-
morphic to X, then Y is compact.
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A.2.5 Connectedness

We end this overview of point set topology with a discussion of connectedness.
The concept of connectedness is rather natural. We simply mean that we cannot
subdivide the topological space into two “parts, ” i.e., nonempty disjoint open
subsets.

Definition A.2.62. A nonempty topological space (X, τ) is called connected if
whenever X = U ∪ V , where U and V are open and disjoint, then either U = ∅ or
V = ∅.

As we will see, when proving results concerning connectedness, it is often useful
to assume the set is not connected and prove a contradiction. Consequently, we
present a definition and terminology for the negation of connectedness.

Definition A.2.63. Let (X, τ) be a nonempty topological space. A separation of
X is a pair (U, V ) of nonempty open subsets such that U ∩ V = ∅ and U ∪ V = X.
If (X, τ) has a separation then we say it is disconnected.

Proposition A.2.64. Let (X, τ) be a topological space. A subset Y if connected if
and only if there does not exist a pair of open subsets U, V ∈ τ such that U∩V ∩Y = ∅
and Y ⊂ U ∪ V .

Proof. The subspace Y is connected if and only if there exists a pair (U ′, V ′) of open
subsets in (the subspace topology of) Y such that U ′∪V ′ = Y and U ′∩V ′ = ∅. By
definition of the subspace topology, U ′ = Y ∩ U and V ′ = Y ∩ V for sets U, V ∈ τ .
Since

Y = U ′ ∪ V ′ = (Y ∩ U) ∪ (Y ∩ V ) = Y ∩ (U ∪ V ),

then Y ⊂ U ∪ V . Similarly, since U ′ ∩ V ′ = ∅, then U ∩ V ∩ Y = ∅.

Proposition A.2.65. Let X be a topological space and let Y1 and Y2 be two con-
nected subsets such that Y1 ∩ Y2 6= ∅. Then Y1 ∪ Y2 is a connected subspace.

Proof. Assume the contrary, that Y1∪Y2 is disconnected. Let (U, V ) be a separation
of Y1 ∪ Y2. Then either Y1 ⊂ U or Y1 ⊂ V ; otherwise (U ∩ Y1, v ∩ Y1) forms a
separation of Y1, which is a contradiction since Y1 is connected. Similarly, Y2 ⊂ U
or Y2 ⊂ V . If Y1 ⊂ U and Y2 ⊂ V or if Y1 ⊂ V and Y2 ⊂ U , then Y1 ∩ Y2 = ∅, a
contradiction. If Y1 ⊂ U and Y2 ⊂ U or if Y1 ⊂ V and Y2 ⊂ V , then either V = ∅
or U = ∅, both contradictions. Hence, Y1 ∪ Y2 is not disconnected.

The following proposition gives one of the key examples of connected topological
spaces.

Theorem A.2.66. Any interval I of R with the subspace topology is connected.
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Proof. Assume that there exists a separation (U, V ) of I. Let a ∈ U and b ∈ V ,
and without loss of generality suppose that a < b. By definition of an interval, we
have [a, b] ⊂ I. Calling A = U ∩ [a, b] and B = V ∩ [a, b], we see that [a, b] = A ∪B
and that A ∩B = ∅.

Let c = supA. We show that c is in neither A nor B, which leads to a contra-
diction since, by construction, c ≤ b and c ≥ a, and hence c ∈ [a, b].

Assume that c ∈ A. Then c 6= b so c < b. Since A is open in [a, b], there exists
an interval [c, c+ε), with c+ε < b, contained in A. Then c+ε/2 ∈ A, contradicting
the hypothesis that c = supA.

Assume that c ∈ B. Then c 6= a, so either c = b or c ∈ (a, b), the open interval.
Since B is open, there is some interval (c−ε, c] in B. If c = b, then c−ε/2 is greater
than any element in A, contradicting c = supA. If c < b, then (c.b] ⊂ B and thus
[c, b] ⊂ B. Since B is open in I, then (c− ε, b] ⊂ B so again c− ε/2 is greater than
any element in A, contradicting c = supA.

The theorem holds by contradiction.

Definition A.2.67. Let (X, τ) be a topological space. A connected open subset U
is called a connected component of X if U = X or if (U,X − U) is a separation of
X.

Clearly, every topological space is a union of its connected components.

There is another common way to formulate a precise definition for the intuitive
notion of being connected, namely, deciding where it is possible to “get there from
here.”

Definition A.2.68. A topological space (X, τ) is called path-connected if for any
two points p, q ∈ X, there exists a continuous map γ : [0, 1]→ X such that γ(0) = p
and γ(1) = q.

Proposition A.2.69. If a topological space is path-connected, then it is connected.

Proof. Let (X, τ) be path-connected and assume that X has a separation (U, V ).
Let p, q ∈ X with p ∈ U and q ∈ V , and let γ : [0, 1] → X be a continuous curve
connecting p and q. Then

γ−1(U) ∩ γ−1(V ) = γ−1(U ∩ V ) = γ−1(∅) = ∅.

On the other hand,

γ−1(U) ∪ γ−1(V ) = γ−1(U ∪ V ) = γ−1)(X) = [0, 1].

By Proposition A.2.66, [0, 1] is connected so this gives a contradiction because
γ−1(U) and γ−1(V ) would form a separation of [0, 1]. We deduce that X is con-
nected.
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Figure A.11: Connected but not path-connected.

This proposition allows us to quickly conclude that Rn and open balls Br(p) in
Rn are connected topological spaces.

Though path-connected implies connected, the reverse is not true. This means
that connected and path-connected are not equivalent concepts. The following
example describes a subset of R2 that is connected but not path-connected.

Example A.2.70. Let X be the subset of R2 that is the union of the unit circle
and the image of the curve γ : [1,∞)→ R2 with

γ(t) =

((
1− 1

t

)
cos(2πt),

(
1− 1

t

)
cos(2πt)

)
.

See Figure A.11. The subspace X is not path-connected since there is no path
connecting a point p ∈ γ([1,∞)) to a point on the unit circle: any path from p
staying on γ([1,∞)) moving toward the unit circle has infinite length, never reaching
the unit circle.

On the other hand, we claim that X is connected. The set γ([1,∞)) is clearly
path-connected and hence, by Proposition A.2.69, connected, as is the unit circle.
Assume there is a separation (U, V ) of X, then γ([1,∞)) is in either U or V .
Without loss of generality, suppose that γ([1,∞)) ⊂ U . Then the unit circle is in
V . However, any open neighborhood of any point p on the unit circle intersects
γ([1,∞)). Hence, U ∩ V 6= ∅. This contradicts the assumption that X has a
separation and we conclude that X is connected.

Problems

A.2.1. Prove Proposition A.2.13.
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A.2.2. Find all the topologies on the set {a, b, c}. How many different topologies exist
on a set of four elements?

A.2.3. Consider the topology τ constructed in Example A.2.15. Prove that every open
set in τ is also open in the topology τ ′ induced from the Euclidean metric. Give
an example of an open set in τ ′ that is not τ -open. (When these two facts hold,
one says that τ ′ is a strictly finer topology than τ .)

A.2.4. Let τ be the set of all subsets of R that are unions of intervals of the form [a, b).
Prove that τ is a topology on R. Is τ the same topology as that induced by the
absolute value (Euclidean) metric?

A.2.5. Prove that in a topological space (X, τ), a set A is open if and only if it is equal
to its interior.

A.2.6. Prove Proposition A.2.9.

A.2.7. Let (X, τ) be a topological space, and let A and B be any subsets of X. Prove
the following:

(a) (A◦)◦ = A◦.

(b) A◦ ⊂ A.

(c) (A ∩B)◦ = A◦ ∩B◦.
(d) A subset U ⊂ X is open if and only U = U◦.

A.2.8. Find an example that shows that (A ∪B)◦ is not necessarily equal to A◦ ∪B◦.
A.2.9. Let (X, τ) be a topological space, and let A and B be any subsets of X. Prove

the following:

(a) Cl(ClA) = ClA.

(b) A ⊂ ClA.

(c) Cl(A ∪B) = ClA ∪ ClB.

(d) A subset F ⊂ X is closed if and only ClF = F .

A.2.10. Find an example that shows that Cl(A∩B) is not necessarily equal to ClA∩ClB.

A.2.11. Let (X, τ) be a topological space, and let A be any subset of X. Prove the
following:

(a) ClA = A◦ ∪ FrA.

(b) ClA− FrA = A◦.

(c) FrA = Fr(X −A).

A.2.12. Show that every open subset of R is the union of disjoint open intervals.

A.2.13. Let (X,D) be any metric space, and let A be any subset of X. Consider the
function f : X → R≥0 defined by D(x,A), where R≥0 is equipped with the usual
topology. (Note that [0, a) is open in this topology on R≥0.) Prove that f is
continuous. (The set f−1([0, r)) is sometimes called the open r-envelope of A.)

A.2.14. Let (X,D) be any metric space, and let A and B be closed subsets of X. Use the
previous exercise to construct a continuous function g : X → R such that g(a) = 1
for all a ∈ A and g(b) = −1 for all b ∈ B.
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A.2.15. Let S2 be the two-dimensional unit sphere in R3. Give S2 the topology of a metric
induced on S2 as a subset of R3. Suppose we locate points on S2 using (θ, φ) in
spherical coordinates. Let fα : S2 → S2 be the rotation function such that

f(θ, φ) = (θ + α, φ).

Prove that f is continuous.

A.2.16. Let X be a topological space, and let f : X → R be a continuous function. Prove
that the set of zeroes of f , namely {x ∈ X | f(x) = 0}, is closed.

A.2.17. Prove Proposition A.2.30.

A.2.18. Let (X, τ) and (Y, τ ′) be topological spaces, and let f : X → Y be a function.
Prove that F is continuous if and only if for all closed sets F ⊂ Y , the set f−1(F )
is closed in X.

A.2.19. Let R be the set of real numbers equipped with the absolute value topology. Prove
the following:

(a) Any open interval (a, b) is homeomorphic to the open interval (0, 1).

(b) Any infinite open interval (a,+∞) is homeomorphic to (1,∞).

(c) Any infinite open interval (a,+∞) is homeomorphic to (−∞, a).

(d) The open interval (0, 1) is homeomorphic to the set of reals R. [Hint: Use
f(x) = tanx.]

(e) The interval (1,∞) is homeomorphic to (0, 1).

Conclude that all open intervals of R are homeomorphic.

A.2.20. Prove that a circle and a line segment are not homeomorphic.

A.2.21. Finish proving that the function f in Example A.2.34 is a homeomorphism.

A.2.22. Consider Z and Q as subsets of R equipped with the absolute value metric. Decide
whether Z and Q are homeomorphic.

A.2.23. Let (X, τ) and (Y, τ ′) be topological spaces, and suppose that there exists a con-
tinuous surjective function f : X → Y . Define the equivalence relation on X
by

x ∼ y ⇐⇒ f(x) = f(y).

Prove that X/ ∼ is homeomorphic to (Y, τ ′).

A.2.24. Find a quotient space of R2 homeomorphic to each of the following: (a) A straight
line; (b) A sphere; (c) A (filled) rectangle; (d) A torus.

A.2.25. Describe each of the following spaces:

(a) A finite cylinder with each of its boundary circles identified to a point.

(b) The sphere S2 with an equator identified to a point.

(c) R2 with points identified according to (x, y) ∼ (−x,−y).

A.2.26. Find an open cover of the following sets that does not contain a finite subcover:
(a) R; (b) [0, 1); (c) (0, 1).
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A.2.27. Let K be a subset of a metric space (X,D). Prove that K is compact if and only
if every sequence in K has an accumulation point in K.

A.2.28. Let K be a compact subset of a metric space (X,D). Show that the diameter
of K is equal to D(x, y) for some pair x, y ∈ K. Prove that given any x ∈ X,
D(x,A) is equal to D(x, y) for some y ∈ K.

A.2.29. Let X be a compact topological space, and let {Kn}∞n=1 be a sequence of nonempty
closed subsets of X, with Kn+1 ⊂ Kn for all n. Prove that

⋂∞
n=1 Kn is nonempty.

A.2.30. Prove that the union of finitely many compact spaces is compact. Is the intersec-
tion of two compact sets necessarily compact?

A.2.31. Prove that the set R equipped with the finite complement topology (see Example
A.2.14) is not Hausdorff.

A.2.32. Prove Corollary A.2.60.

A.2.33. Let f : X → Y be a continuous map between topological spaces. Show that if X
is connected, then f(X) is connected in Y .

A.2.34. Decide with proof if A = {(x, y) ∈ R2 |x > 0 and (y = 0 or y = 1/x)}, with the
subset topology from R2, is connected or disconnected.

A.2.35. Show that the Cartesian product of two connected topological spaces is again
connected.

A.2.36. Show that as subsets of R2, the union of two open balls X = B1(−1, 0)∪B1(1, 0)
is disconnected but that Y = X ∪ {(0, 0)} is connected.



APPENDIX B

Calculus of Variations

B.1 Formulation of Several Problems
One of the greatest uses of calculus is the principle that extrema of a continuous
function occur at critical points, i.e., at real values of the function, where the first
derivative (partial derivatives when dealing with a multivariable function) is (are
all) 0 or not defined. In practical applications, when we wish to optimize a certain
quantity, we write down a function describing said quantity in terms of relevant
independent variables, calculate the first partials, and solve the equations obtained
by setting the derivatives equal to 0 or undefined.

Many other problems in math and physics, however, involve quantities that do
not just depend on independent variables but on an independent function. Some
classic examples are problems that ask us to find the shortest distance between
two points, the shape with fixed perimeter enclosing the most area, and the curve
of quickest descent between two points. Calculus of variations refers to a general
method to deal with such problems.

Let [x1, x2] be a fixed interval of real numbers. For any differentiable function
y : [x1, x2]→ R, the definite integral

I(y) =

∫ x2

x1

f(x, y, y′) dx (B.1)

is a well defined quantity that depends only on y(x) when the integrand f is a
function of the arguments x, y, and y′. We can view the above integral I as a
function from C1([x1, x2],R), the set of all continuously differentiable functions
from [x1, x2], to R. The problem is to find all functions y(x) for which I(y) attains
a minimum or maximum value for all y ∈ C1([x1, x2],R). Unlike optimization
problems in usual multivariable calculus that involve solving algebraic equations,
this initial problem in the calculus of variations involves a second-order differential
equation for which the constants of integration are fixed once we set y(x1) = y1 and
y(x2) = y2.

403
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Many generalizations to this first problem exist. For example, similar to opti-
mization problems in multiple variables, we may impose certain conditions so that
we consider only a subset of functions in C1([x1, x2],R) among those to optimize
I(y). In another direction, we may seek to optimize the double integral

I(w) =

∫∫
D
f
(
x, y, w,

∂w

∂x
,
∂w

∂y

)
dA

where D is a region of R2 and w is a two-variable function. The solution would be
a function w ∈ C1(D,R) that produces the maximum or minimum value for the
integral. Of course, we can consider situations where the unknown function w is a
function of any number of variables. As a third type of generalization, we consider
the integral

I(x, y) =

∫ t2

t1

f
(
t, x,

dx

dt
, y,

dy

dt

)
dt,

where I(x, y) involves two unknown functions of one independent variable t.
Finally, we may then consider any number of combinations to the above gen-

eralizations. For example, the isoperimetric problem – the problem of finding the
shape with a fixed perimeter and maximum area – involves finding parametric
equations x(t) and y(t) that produce a simple closed curve that maximizes area
(a one-variable integration by Green’s Theorem), subject to the condition that the
perimeter is some fixed constant.

The following sections follow the excellent presentation given in [58].

B.2 Euler-Lagrange Equation
B.2.1 Main Theorem

Many problems in calculus of variations amount to solving a particular differential
equation called the Euler-Lagrange equation and variants thereof. However, all the
theorems that justify the use of the Euler-Lagrange equation hinge on one lemma
and its subsequent generalizations.

Lemma B.2.1. Let G be a continuous real-valued function on an interval [x1, x2].
If ∫ x2

x1

η(x)G(x) dx = 0 (B.2)

for all continuously differentiable functions η(x) that satisfy η(x1) = η(x2) = 0,
then G(x) = 0 for all x ∈ [x1, x2].

Proof. We prove the contrapositive, namely, if G is not identically 0 then there
exists some function η(x) on [x1, x2] that does not satisfy Equation (B.2). If we
assume that G is not identically 0, then there exists c ∈ [x1, x2] such that G(c) 6= 0.
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By continuity, there exist a, b such that xa ≤ a < c < b ≤ x2 and G(x) 6= 0 for all
x ∈ [a, b]. Now consider the function

η(x) =


0, for x1 ≤ x ≤ a,
G(c)(x− a)2(x− b)2, for a ≤ x ≤ b,
0, for b ≤ x ≤ x2.

The function η(x) is continuously differentiable, and we have∫ x2

x1

η(x)G(x) dx =

∫ b

a

G(c)G(x)(x− a)2(x− b)2 dx.

The integrand on the right is nonnegative since G(x) has the same sign as G(c) and,
by construction, equal to 0 only at x = a and x = b. Consequently, the integral on
the right is positive. This proves the lemma.

Let us consider the first problem in the calculus of variations, in which we wish
to optimize the integral in Equation (B.1), with the only condition that y(x1) = y1

and y(x2) = y2. The general tactic proceeds as follows. Assume y(x) is a function
that optimizes I(y). Let η(x) be an arbitrary continuously differentiable function
on [x1, x2], with η(x1) = η(x2) = 0. Define the one-parameter family of functions
Yε by

Yε(x) = y(x) + εη(x).

Obviously, for all ε, we have Yε(x1) = y(x1) = y1 and Yε(x2) = y(x2) = y2. For
shorthand, we define

I(ε) = I(Yε) =

∫ x2

x1

f(x, Yε, Y
′
ε ) dx.

With this notation, we see that I(0) = I(y), and since y(x) is an optimizing function,
then

I ′(0) = 0 (B.3)

no matter the choice of arbitrary function η(x).
To calculate the derivative in Equation (B.3), we obtain

I ′(ε) =

∫ x2

x1

( ∂f
∂Y

∂Y

∂ε
+

∂f

∂Y ′
∂Y ′

∂ε

)
dx =

∫ x2

x1

( ∂f
∂Y

η +
∂f

∂Y ′
η′
)
dx,

where ∂f
∂Y means explicitly ∂f

∂y (x, Yε(x), Y ′ε (x)) and similarly for ∂f
∂Y ′ . Setting Equa-

tion (B.3) then becomes

I ′(0) =

∫ x2

x1

(∂f
∂y
η +

∂f

∂y′
η′
)
dx = 0.
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Integrating the second term in this integral by parts, we obtain

I ′(0) =
[ ∂f
∂y′

η(x)
]x2

x1

+

∫ x2

x1

∂f

∂y
η − d

dx

( ∂f
∂y′

)
η dx

=

∫ x2

x1

(
∂f

∂y
− d

dx

( ∂f
∂y′

))
η dx = 0.

Applying Lemma B.2.1 to the above equation proves the following theorem.

Theorem B.2.2. Let y : [x1, x2]→ R be a function that optimizes

I(y) =

∫ x2

x1

f(x, y, y′) dx.

Then y satisfies the differential equation

∂f

∂y
− d

dx

( ∂f
∂y′

)
= 0, (B.4)

which is called the Euler-Lagrange equation.

Just as a solution x0 to f ′(x) = 0 is not necessarily a maximum or minimum,
a function that satisfies this equation is not necessarily an optimizing function.
Consequently, we call a solution to Equation (B.4) an extremizing function. Un-
derstanding that ∂f

∂y′ means fy′(x, y(x), y′(x)), we notice that the Euler-Lagrange
equation is a second-order differential equation of y in terms of x.

Since Equation (B.4), and in particular the left-hand side of this equation, occurs
frequently, we define it as the Lagrangian operator L on a function f(x, y, y′), where
y is a function of x, by

L(f) =
∂f

∂y
− d

dx

( ∂f
∂y′

)
.

This L(f) is a differential operator on functions y in C2([x1, x2],R) because for any
given y(x) function, L(f)(y) is a continuous function over [x1, x2]. Note that L is
a linear transformation in f . On the other hand, whether the differential equation
L(f) = 0 is a linear operator in y(x) depends on f .

B.2.2 Brachistochrone Problem

At the turn of the 18th century, Johann Bernoulli posed the problem of finding the
path in space that a particle will take when travelling under the action of gravity
between two fixed points but taking the shortest amount of time. To be precise, the
problem assumes no friction, a simple constant force of gravity mg (where m is the
mass of the particle and g the gravity constant), and an initial velocity v1 that is
not necessarily 0. This problem became known as the “brachistochrone” problem,
the roots of which come from the Greek words brachistos (shortest) and chronos
(time).
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We suppose the two fixed points A and B lie in a vertical plane that we can
label as the xy-plane, with the y-axis directed vertically upward and the x-axis
oriented so that passing from A to B means an increase in x. Let A = (x1, y1)
and B = (x2, y2) so that any curve y(x) connecting A and B satisfies y(x1) = y1

and y(x2) = y2. Note that though the shape of a curve from A to B is a function
y(x), a particle moving along this curve under the action of gravity travels with
nonconstant speed.

The speed along the curve is given by v = ds
dt , where the arclength function s(x)

satisfies
ds

dx
=

√
1 +

(
y′(x)

)2
.

The total time T of descent along the path y(x) is given by the integral

T =

∫ x=x2

x=x1

1, dt =

∫ x2

x1

ds

v
=

∫ x2

x1

√
1 + (y′)2

v
dx.

Since there is no friction and since gravity is a conservative force, the sum of the
kinetic energy and potential energy remains constant, namely,

1

2
mv2

1 +mgy1 =
1

2
mv2 +mgy.

Solving for v we obtain

v =
√
v2

1 + 2gy1 − 2gy =
√

2g
√
y0 − y,

where y0 = y1 + (v2
1/2g) is the height from which the particle descended from rest

to reach v1 at height y1. The time of travel is

T =
1√
2g

∫ x2

x1

√
1 + (y′)2

√
y0 − y

dx, (B.5)

and finding the path with the shortest time of travel amounts to finding a function
y(x) that minimizes this integral.

Applying the Euler-Lagrange equation, we label the integrand in Equation (B.5)
as

f(x, y, y′) =

√
1 + (y′)2

√
y0 − y

. (B.6)

Notice that this problem has one simplification from the general Euler-Lagrange
equation: f does not depend explicitly on x. This fact allows us to make a useful
simplification. The chain rule gives

df

dx
=
∂f

∂x
+ y′

∂f

∂y
+ y′′

∂f

∂y′
= y′

∂f

∂y
+ y′′

∂f

∂y′
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since f does not depend directly on x. However,

d

dx

(
y′
∂f

∂y′

)
= y′′

∂f

∂y′
+ y′

d

dx

( ∂f
∂y′

)
,

so
df

dx
=

d

dx

(
y′
∂f

∂y′

)
+ y′

(
∂f

∂y
− d

dx

( ∂f
∂y′

))
=

d

dx

(
y′
∂f

∂y′

)
,

where the second term in the middle expression is identically 0 due to the Euler-
Lagrange equation. Integrating both sides with respect to x we obtain

y′
∂f

∂y′
− f = C

for some constant C. Using the specific function in Equation (B.6), we obtain

(y′)2√
(y0 − y)(1 + (y′)2)

−
√

1 + (y′)2

√
y0 − y

= C.

Solving for y′ = dy
dx , we obtain

dy

dx
=

√
C−2 − (y0 − y)√

y0 − y
,

which, upon taking the inverse and integrating with respect to y, becomes

x =

∫ √
y0 − y√

C−2 − (y0 − y)
dy. (B.7)

Using the substitution

y0 − y =
1

C2
sin2 θ

2
, (B.8)

the integral in Equation (B.7) becomes

x = − 1

C2

∫
sin2 θ

2
dθ = − 1

2C2

∫
1− cos θ dθ =

1

2C2
(sin θ − θ) + x0, (B.9)

where x0 is some constant of integration. Rewriting Equation (B.8), setting a =
1/(2C2), and substituting t = −θ, we obtain the equations{

x = x0 + a(t− sin t),

y = y0 − a(1− cos t).

Obviously, these equations do not give y as an explicit function of x but do show
that the path with most rapid descent is in the shape of an upside-down cycloid.
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B.3 Several Dependent Variables
B.3.1 Main Theorem

A first generalization to the basic problem in the calculus of variations is to find n
twice-differentiable functions x1(t), . . . , xn(t) defined over the interval [t1, t2] that
optimize the integral

I =

∫ t2

t1

f(x1, . . . , xn, x
′
1, . . . , x

′
n, t) dt. (B.10)

We follow the same technique as in Section B.2. Label x1(t), . . . , xn(t) as the actual
optimizing functions and define corresponding one-parameter families of functions
by

Xi(t) = xi(t) + εξi(t),

where ξi(t) are any differentiable functions with

ξi(t1) = ξi(t2) = 0 for 1 ≤ i ≤ n.

With the one-parameter families Xi, we form the integral

I(ε) =

∫ t2

t1

f(X1, . . . , Xn, X
′
1, . . . , X

′
n, t) dt.

Then I(0) = I, and since by assumption the functions x1, . . . , xn are the optimizing
functions, we must also have I ′(0) = 0.

Taking the derivative of I(ε) and using the chain rule, we have

I ′(ε) =

∫ t2

t1

∂f

∂X1
ξ1 + · · ·+ ∂f

∂Xn
ξn +

∂f

∂X ′1
ξ′1 + · · ·+ ∂f

∂X ′n
ξ′n dt,

where by ∂f/∂Xi we mean the partial derivative to f with respect to the variable
that we evaluate to be the one parameter of functionsXi. Regardless of the arbitrary
functions ξi, setting ε = 0 replaces the family of functions Xi with the function xi.
Using the same abuse of notation for ∂f/∂xi, we have

I ′(0) =

∫ t2

t1

∂f

∂x1
ξ1 + · · ·+ ∂f

∂xn
ξn +

∂f

∂x′1
ξ′1 + · · ·+ ∂f

∂x′n
ξ′n dt = 0.

Since this equation must hold for all choices of the functions xi, we can in particular
set ξj = 0 for all indices j 6= i. Then we deduce that∫ t2

t1

∂f

∂xi
ξi +

∂f

∂x′i
ξ′i dt = 0 for all i.



410 B. Calculus of Variations

Integrating the second term in the above integral by parts and using the fact that
ξi(t1) = ξi(t2) = 0, we obtain∫ t2

t1

( ∂f
∂xi
− d

dt

( ∂f
∂x′i

))
ξi dt = 0.

Then using Lemma B.2.1, we deduce the following theorem.

Theorem B.3.1. Consider the integral

I =

∫ t2

t1

f(x1, . . . , xn, x
′
1, . . . , x

′
n, t) dt,

where f is a continuous function and each xi(t) is a twice-differentiable function
defined over [t1, t2]. Then the functions x1, x2, . . . , xn optimize the integral I if and
only if

∂f

∂xi
− d

dt

( ∂f
∂x′i

)
= 0 for all 1 ≤ i ≤ n.

Here again, if f is a function as defined in the above theorem, we define the
Lagrangian operator Li or Lxi as

Li(f) =
∂f

∂xi
− d

dt

( ∂f
∂x′i

)
.

B.4 Isoperimetric Problems and Lagrange Multipliers
B.4.1 Main Theorem

In this section, we approach a new class of problems in which we desire not only to
optimize a certain integral but to do so considering only functions that satisfy an
additional criterion besides the usual restriction of continuity. In all the problems
we consider, the criteria consist of imposing a prescribed value on a certain integral
related to our variable function. More precisely, we will wish to construct a function
x(t) defined over an interval [t1, t2] that optimizes the integral

I =

∫ t2

t1

f(x, x′, t) dt, (B.11)

subject to the condition that ∫ t2

t1

g(x, x′, t) dt = J (B.12)

for some fixed value of J . It is assumed that f and g are twice-differentiable func-
tions in their variables. Such a problem is called an isoperimetric problem.
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Following the same approach as in Section B.2, we label x(t) as the actual op-
timizing function to the integral in Equation (B.11), which we assume also satisfies
Equation (B.12), and we introduce a two-parameter family of functions

X(t) = x(t) + ε1ξ1(t) + ε2ξ2(t),

where ξ1(t) and ξ2(t) are any differentiable functions that satisfy

ξ1(t1) = ξ2(t1) = ξ1(t2) = ξ2(t2) = 0. (B.13)

The condition in Equation (B.13) guarantees that X(t1) = x(t1) = x1 and X(t2) =
x(t2) = x2 for all choices of the parameters ε1 and ε2. We use the family of functions
X(t) as a comparison to the optimizing function x(t), but in contrast to Section
B.2, we need a two-parameter family, as we shall see shortly.

We replace the function x(t) with the family X(t) in Equations (B.11) and (B.12)
to obtain

I(ε1, ε2) =

∫ t2

t1

f(X,X ′, t) dt

and

J(ε1, ε2) =

∫ t2

t1

g(X,X ′, t) dt.

The parameters ε1 and ε2 cannot be independent if the family X(t) is to always
satisfy Equation (B.12). Indeed, since J is constant, ε1 and ε2 satisfy the equation

J(ε1, ε2) = J (a constant). (B.14)

Since x(t) is assumed to be the optimizing function, then I(ε1, ε2) is optimized with
respect to ε1 and ε2, subject to Equation (B.14) when ε1 = ε2 = 0, no matter the
particular choice of ξ1(t) and ξ2(t).

Consequently, we can apply the method of Lagrange multipliers, usually pre-
sented in a multivariable calculus course. Following that method, I(ε1, ε2) is opti-
mized, subject to Equation (B.14), when

∂I

∂εi
= λ

∂J

∂εi
, for i = 1, 2, and

J(ε1, ε2) = J,
(B.15)

where λ is a free parameter called the Lagrange multiplier. In order to apply this
to Euler-Lagrange methods of optimizing integrals, define the function

f∗(x, x′, t) = f(x, x′, t)− λg(x, x′, t).

Then the first two equations in Equation (B.15) are tantamount to solving

∂f∗

∂εi
= 0.

Following a nearly identical approach as in Section B.2, the details of which we
leave to the interested reader, we can prove the following theorem.
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Theorem B.4.1. Assume that f and g are twice-differentiable functions R3 → R.
Let x : [t1, t2]→ R be a function that optimizes

I =

∫ t2

t1

f(x, x′, t) dt,

subject to the condition that

J =

∫ t2

t1

g(x, x′, t) dt

remains constant. Then x satisfies the differential equation

∂f∗

∂x
− d

dt

(∂f∗
∂x′

)
= 0, (B.16)

where f∗ = f − λg. Furthermore, the solution to Equation (B.16) produces an
expression for x(t) that depends on two constants of integration and the parameter
λ and, if a solution to this isoperimetric problem exists, then these quantities are
fixed by requiring that x(t1) = x1, x(t2) = x2, and J be a constant.

Many generalizations extend this theorem, but rather than presenting in great
detail the variants thereof, we present an example that shows why we refer to the
class of problems presented in this section as isoperimetric problems.

B.4.2 Problem of Maximum Enclosed Area

Though simple to phrase and yet surprisingly difficult to solve is the classic question,
“What closed simple curve of fixed length encloses the most area?” Even Greek
geometers “knew” that if we fix the length of a closed curve, the circle has the
largest area, but no rigorous proof is possible without the techniques of calculus of
variations.

To solve this problem, consider parametric curves ~x = (x(t), y(t)) with t ∈
[t1, t2]. We assume the curve is closed so that ~x(t1) = ~x(t2) and similarly for all
derivatives of ~x. The arclength formula for this curve is

S =

∫ t2

t1

√
(x′)2 + (y′)2 dt,

and by a corollary to Green’s Theorem, the area of the enclosed region is

A =

∫ t2

t1

xy′ dt.

Therefore, we wish to optimize the integral A, subject to the constraint that the
integral S is fixed, say S = p.
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Following Theorem B.4.1 but adapting it to the situation of more than one
dependent variable, we define the function

f∗(x, x′, y, y′, t) = xy′ − λ
√
x′2 + y′2,

and conclude that the curve with the greatest area satisfies{
Lx(f∗),

Ly(f∗).
(B.17)

Taking appropriate derivatives, Equation (B.17) becomes
y′ + λ

d

dt

(
x′√

x′2 + y′2

)
= 0,

d

dt

(
x− λ y′√

x′2 + y′2

)
= 0,

and integrating with respect to t, we obtain
y + λ

x′√
x′2 + y′2

= C1,

x− λ y′√
x′2 + y′2

= C2.

From this, we deduce the relation

(x− C2)2 + (y − C1)2 = λ2, (B.18)

which means that the curve with a given perimeter and with maximum area lies
on a circle. Since the curve is closed and simple, the parametric curve ~x(t) is an
injective function (except for ~x(t1) = ~x(t2)), and the image is in fact a circle, though
there is no assumption that ~x travels around the circle at a uniform rate. That the
Lagrange multiplier appears in Equation (B.18) is not an issue because, since we
know that the perimeter is fixed at p, we know that λ = p/2π.
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APPENDIX C

Further Topics in Multilinear Algebra

Chapter 4 offers only a brief introduction to multilinear algebra. This appendix
supplies a few more short topics with close connections to k-volume formulas in Rn.

C.1 Binet-Cauchy and k-Volume of Parallelepipeds
The article [30] develops the connection between the wedge product of vectors in
Rn and analytic geometry. Most important for applications to differential geometry
is a formula for the volume of a k-dimensional parallelepiped in Rn. The authors
of [30] give the following definition.

Definition C.1.1. The dot product of two pure antisymmetric tensors in
∧k Rn is

(~a1 ∧ ~a2 ∧ · · · ∧ ~ak) · (~b1 ∧~b2 ∧ · · · ∧~bk) =

∣∣∣∣∣∣∣∣∣
~a1 ·~b1 ~a1 ·~b2 · · · ~a1 ·~bk
~a2 ·~b1 ~a2 ·~b2 · · · ~a2 ·~bk

...
...

. . .
...

~ak ·~b1 ~ak ·~b2 · · · ~ak ·~bk

∣∣∣∣∣∣∣∣∣ .
It turns out that this definition is equivalent to the usual dot product on

∧k Rn
with respect to its standard basis, namely,

{~ei1 ∧ ~ei2 ∧ · · · ∧ ~eik}, with 1 ≤ i1 < i2 < · · · < ik ≤ n.

The equivalence of these two definitions is a result of the following combinatorial
proposition.

Proposition C.1.2 (Binet-Cauchy). Let A and B be two n × m matrices, with
m ≤ n. Call I(m,n) the set of subsets of {1, 2, . . . , n} of size m and for any
S ∈ I(m,n) ,denote AS as the m×m submatrix consisting of the rows of A indexed
by S (and similarly for B). Then

det(B>A) =
∑

S∈I(m,n)

(
det(BS)

)(
det(AS)

)
.

415
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Proof. Let A = (aij) and B = (bij), with 1 ≤ i ≤ n and 1 ≤ j ≤ m. The matrix
B>A is an m×m-matrix with entries

n∑
j=1

bjiajk,

indexed by 1 ≤ i, k ≤ m. Therefore, the determinant of BTA is

det(B>A) =
∑
σ∈Sm

sign(σ)
( n∑
j1=1

bj11aj1σ(1)

)( n∑
j2=1

bj22aj2σ(2)

)
· · ·
( n∑
jm=1

bjmmajmσ(m)

)
,

where Sm is the set of permutations on the set {1, 2, . . . ,m}. Then, after rearranging
the order of summation, we have

det(B>A) =
∑
σ∈Sm

n∑
j1=1

n∑
j2=1

· · ·
n∑

jm=1

sign(σ)bj11bj22 · · · bjmmaj1σ(1)aj2σ(2) · · · ajmσ(m)

=

n∑
j1=1

n∑
j2=1

· · ·
n∑

jm=1

bj11bj22 · · · bjmm
( ∑
σ∈Sm

sign(σ)aj1σ(1)aj2σ(2) · · · ajmσ(m)

)
.

Because of the sign of the permutation, any term in the summation where not all
the jl are distinct is equal to 0. Therefore, we only need to consider the summation
over sets of indices j = (j1, j2, . . . , jm) ∈ {1, . . . ,m}n, where all of the indices are
distinct. We can parametrize this set in an alternative manner as follows. Let
I(m,n) be the set of indices in increasing order, i.e.,

I(m,n) =
{

(j1, j2, . . . , jm) ∈ {1, . . . , n}m | 1 ≤ j1 < j2 < · · · < jm ≤ n
}
. (C.1)

The set I(m,n)× Sm is in bijection with the set of all m-tuples of indices that are
distinct via

(j, σ) 7→ (jσ(1), . . . , jσ(m)).

We can now write

det(B>A)

=
∑

j∈I(m,n)

∑
τ∈Sm

bjτ(1)1bjτ(2)2 · · · bjτ(m)m

( ∑
σ∈Sm

sign(σ)ajτ(1)σ(1)ajτ(2)σ(2) · · · ajτ(m)σ(m)

)
=

∑
j∈I(m,n)

∑
τ∈Sm

bjτ(1)1bjτ(2)2 · · · bjτ(m)m sign(τ)
( ∑
σ′∈Sm

sign(σ′)aj1σ′(1)aj2σ′(2) · · · ajmσ′(m)

)
=

∑
j∈I(m,n)

∑
τ∈Sm

sign(τ)bjτ(1)1bjτ(2)2 · · · bjτ(m)m detAj,
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where Aj is the m×m submatrix obtained from A by using only the rows given in
the m-tuple index j. Then we conclude that

det(B>A) =
∑

j∈I(m,n)

∑
τ∈Sm

sign(τ)bj1τ−1(1)bj2τ−1(2) · · · bjmτ−1(m) detAj

=
∑

j∈I(m,n)

(
detB>j

)(
detAj

)
,

and the proposition follows since det(C>) = det(C) for any square matrix C.

Corollary C.1.3. Definition C.1.1 is equivalent to the dot product on
∧k Rn with

respect to the standard basis.

Proof. If ~a1,~a2, . . . ,~ak is a k-tuple of vectors in Rn, call A the n × k-matrix that
has the vector ~ai as the ith column. Define P (n, k) as in Proposition C.1.2. For
any subset S of {1, 2, . . . , n} of cardinality k, define

~eS = ~es1 ∧ ~es2 ∧ · · · ∧ ~esk ,

where S = {s1, s2, . . . , sk}, with the elements listed in increasing order. It is not
hard to check that

~a1 ∧ ~a2 ∧ · · · ∧ ~ak =
∑

S∈P (n,k)

(det(AS))~eS . (C.2)

The corollary follows immediately from Proposition C.1.2.

As with a usual Euclidean vector space Rn, we define the Euclidean norm in the
following way.

Definition C.1.4. Let a = ~a1 ∧ ~a2 ∧ · · · ∧ ~ak ∈
∧k Rn. The (Euclidean) norm of

this vector is

‖~a1 ∧ ~a2 ∧ · · · ∧ ~ak‖ =
√
a · a.

Corollary C.1.5. The k-dimensional volume of a parallelepiped in Rn spanned by
k vectors ~v1, ~v2, . . . , ~vk is given by

‖~v1 ∧ ~v2 ∧ · · · ∧ ~vk‖.

Proof. It is a standard fact in linear algebra (see [14, Fact 6.3.7]) that the k-volume
of the described parallelepiped is

√
det(A>A), where A is the matrix that has

the vector ~vi as the ith column. The corollary follows from Definitions C.1.1 and
C.1.4.
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Problems

C.1.1. Use the results of this section to calculate the surface of the parallelogram in R3

spanned by

~v =

 1
−3
7

 and ~w =

 4
5
−2

 .

C.1.2. Calculate the 3-volume of the parallelepiped in R4 spanned by

~a =


0
−2
2
1

 , ~b =


3
1
−1
0

 , and ~c =


5
1
−2
−3

 .

C.1.3. Using the same vectors ~a, ~b, and ~c in the previous exercise, determine all vectors
~x such that the four-dimensional parallelepiped spanned by ~a, ~b, ~c, and ~x has
dimension 0.

C.1.4. Verify the claim in Equation (C.2).

C.1.5. A Higher Pythagorean Theorem. Let ~a, ~b, and ~c be three vectors in Rn that are
mutually perpendicular.

(a) Prove that

‖~a ∧~b+ ~a ∧ ~c+~b ∧ ~c‖2 = ‖~a ∧~b‖2 + ‖~a ∧ ~c‖2 + ‖~b ∧ ~c‖2.

(b) Consider the tetrahedron spanned by ~a, ~b, and ~c. Let SC be the face spanned

by ~a and ~b, SB be the face spanned by ~a and ~c, SA be the face spanned by
~b and ~c, and let SD be the fourth face of the tetrahedron. Deduce that

S2
A + S2

B + S2
C = S2

D.

C.2 Volume Form Revisited
In Example 4.6.24, we introduced the volume form on Rn in reference to the stan-
dard basis. This is not quite satisfactory for our applications because the standard
basis has internal properties, namely that it is orthonormal with respect to the dot
product. The following proposition presents the volume form on a vector space in
its most general context.

Proposition C.2.1. Let V be an n-dimensional vector space with an inner product
〈 , 〉. Then there exists a unique form ω ∈

∧n
V ∗ such that ω(~e1, . . . , ~en) = 1

for all oriented bases (~e1, . . . , ~en) of V that are orthonormal with respect to 〈 , 〉.
Furthermore, if (~u1, . . . , ~un) is any oriented basis of V , then

ω =
√

detA~u∗1 ∧ · · · ∧ ~u∗n,

where A is the matrix with entries Aij =
(
〈~ui, ~uj〉

)
.
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Proof. Let (~u1, . . . , ~un) be any basis of V and let ~v =
∑
i a
i~ui and ~w =

∑
i b
i~ui be

two vectors in V along with their coordinates with respect to (~u1, . . . , ~un). Then
by the linearity of the form,

〈~v, ~w〉 =
n∑

i,j=1

aibj〈~ui, ~uj〉 = ~v>A~w.

We remark that detA 6= 0 because otherwise there would exist some nonzero vector
~v such that A~v = 0 and then 〈~v,~v〉 = 0, which would contradict the positive-definite
property of the form.

The existence of an orthonormal basis with respect to 〈 , 〉 follows from the
Gram-Schmidt orthonormalization process. If (~e1, . . . , ~en) is an orthonormal basis
with respect to 〈 , 〉, then the associated matrix (〈~ei, ~ej〉) is the identity matrix.

Given an orthonormal ordered basis E = (~e1, . . . , ~en), let (~e∗1, . . . , ~e∗n) be the
cobasis of V ∗. Set ω = ~e∗1 ∧ · · · ∧ ~e∗n. Obviously, ω(~e1, . . . , ~en) = 1. Now, if
B = (~u1, . . . , ~un) is any other orthonormal basis of V with the same orientation of
(~e1, . . . , ~en), then det(M>M) = 1, where M is the transition matrix from coordi-
nates in (~e1, . . . , ~en) to coordinates in (~u1, . . . , ~un). Hence, det(M)2 = 1, and the
assumption that (~u1, . . . , ~un) has the same orientation as (~e1, . . . , ~en) means that
det(M) is positive. Thus, detM = 1.

By Proposition 4.1.6, the transition matrix from coordinates in (~e∗1, . . . , ~e∗n)
to coordinates in (~u∗1, . . . , ~u∗n) is M−1. However, by Proposition 4.6.23, we then
conclude that

ω = ~e∗1 ∧ · · · ∧ ~e∗n = det(M)−1 ~u∗1 ∧ · · · ∧ ~u∗n = ~u∗1 ∧ · · · ∧ ~u∗n.

Since ~e∗1 ∧ · · · ∧ ~e∗n(e1, . . . , en) = 1, then ω evaluates to 1 on all bases of V that
are orthonormal and have the same orientation as {~e1, . . . , ~en}.

Suppose now that {~u1, . . . , ~un} is any basis of V , not necessarily orthonormal.
Again let M be the coordinate change matrix as above. By definition [~ui]E = M~ei.
Then we can calculate the coefficients of A by

Aij = 〈~ui, ~uj〉 =
[
~ui
]
E ·
[
~uj
]
E = (M~ei)

>(M~ej) = ~e>i M
>M~ej .

Hence, we have shown that A = M>M . We conclude that

ω = det(M) ~u∗1 ∧ · · · ∧ ~u∗n =
√

detA~u∗1 ∧ · · · ∧ ~u∗n.

Definition C.2.2. Let (V, 〈·, ·〉) be an inner product space of dimension n. Then
the element ω ∈

∧n
V ∗ defined in Proposition C.2.1 is called the volume form of V .

C.3 Hodge Star Operator
We conclude this section by introducing an operator on wedge product spaces

∧k
V .

In this subsection, we assume throughout that (V, 〈·, ·〉) is a finite dimensional inner
product space.
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Exercise 4.2.4 introduced the bijection ψ : V → V ∗ defined by ψ(v) = λv, where
λv(w) = 〈v, w〉 for all w ∈ V . Exercise 4.2.5 gave steps to extend the inner product
〈·, ·〉 to an inner product 〈·, ·〉∗ on V ∗ by defining

〈λv, λw〉∗ = 〈w, v〉 = 〈v, w〉,

since 〈·, ·〉 is symmetric. In other words, for all η, τ ∈ V ∗,

〈η, τ〉∗ = 〈ψ−1(η), ψ−1(τ)〉. (C.3)

From now on in this section, we drop the superscript ∗ on the inner product extended
to the dual.

Proposition C.3.1. Let η1, . . . , ηk, τ1, . . . , τk ∈ V ∗. Setting

〈η1 ∧ . . . ∧ ηk, τ1 ∧ . . . ∧ τk〉 = det(〈ηi, τj〉)

defines an inner product on
∧k

V ∗.

Proof. (Left as an exercise for the reader. See Problem C.3.3.)

Definition C.3.2. Let (V, 〈·, ·〉) be an inner product space of dimension n, and
let ω ∈

∧n
V ∗ be the volume form. The Hodge star operator is the operator

? :
∧k

V ∗ →
∧n−k

V ∗ that is uniquely determined by

〈?η, τ〉ω = η ∧ τ

for all τ ∈
∧n−k

V ∗.

The Hodge star operator has the following nice properties, which we leave as
exercises.

Proposition C.3.3. Let (V, 〈·, ·〉) be an inner product space. Let B = {e1, . . . , en}
be a basis that is orthonormal with respect to 〈·, ·〉, and let B cobasis of V ∗. Set ω
as the volume form with respect to 〈·, ·〉.

1. The Hodge star operator ? is well defined and linear.

2. Viewing 1 as an element of R =
∧0

V , then ?1 = ω.

3. For any k < n, then ?(e∗1 ∧ · · · ∧ e∗k) = e∗(k+1) ∧ · · · ∧ e∗n.

4. For any k-tuple (i1, . . . , ik) of increasing indices,

?(e∗i1 ∧ · · · ∧ e∗ik) = (signσ) e∗j1 ∧ · · · ∧ e∗jn−k ,

where the jl indices are such that {i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n} and σ
is the permutation that maps the n-tuple (i1, . . . , ik, j1, . . . , jn−k) to (1, 2, . . . , n).
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Example C.3.4. This Proposition allows us to easily calculate the Hodge star
operator of any (0, k)-tensor over V . For example, suppose that V = R4 is equipped
with the usual dot product and that (e1, e2, e3, e4) is the standard basis. Then using
the above Proposition, we calcualte that

?(e∗1 + 2e∗2 + 8e∗4) = e∗2 ∧ e∗3 ∧ e∗4 − 2e∗1 ∧ e∗3 ∧ e∗4 − 8e∗1 ∧ e∗2 ∧ e∗3.

The following proposition gives a formula for the coordinates of the ?η in terms
of the coordinates of η.

Proposition C.3.5. Let (V, 〈·, ·〉) be an inner product space. Let B = {u1, . . . , un}
be any basis of V , and denote by {u∗1, . . . , u∗n} its cobasis in V ∗. Let A be the
matrix with entries aij = (〈ui, uj〉), and label aij as the components of the inverse

A−1. If η ∈
∧k

V ∗, with coordinates ηi1···ik , so that

η =
∑

1≤i1<···<ik≤n

ηi1···ik u
∗i1 ∧ · · · ∧ u∗ik ,

then the components of ?η with respect to B∗ are

(?η)j1···jn−k =

√
detA

k!
εi1···ikj1···jn−ka

i1h1 · · · aikhkηh1···hk , (C.4)

where εh1···hn is the permutation symbol defined in (4.35).

Proof. By a calculation similar to the one in the proof of Proposition C.2.1 and
using the definition of the inner product on 1-forms given in Equation (C.3), we
determine that

〈u∗i, u∗j〉 = aij ,

i.e., the (i, j)th entry of the the inverse A−1.
As above, denote by ω the volume form on V associated to 〈·, ·〉.
A few preliminary notations will render the rest of the proof shorter. Recall the

set I(m,n) defined in Equation (C.1). For any sequence i = (i1, . . . , ik) ∈ I(k, n),
we denote by u∗i the wedge product

u∗i = u∗i1 ∧ · · · ∧ u∗ik .

Denote also by i′ the increasing sequence of length n − k such that {i, i′} =
{1, 2, . . . , n}. We call i′ the complement of i. We define the permutation σi ∈ Sn by
the permutation that maps the sequence (1, 2, . . . , n) to the sequence (i, i′). Note
that the sign of the permutation satisfies

signσi = εi1···iki′1···i′n−k .

Consider the kth wedge product u∗i . According to Definition C.3.2,

〈?u∗i, τ〉ω = u∗i ∧ τ. (C.5)
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We know that {u∗j} for j ∈ I(n − k, n) forms a basis of
∧n−k

V ∗. Thus, we can
write

?u∗i =
∑

j∈I(n−k,n)

cju
∗j

for some constants cj. However, Equation (C.5) imposes that 〈?u∗i, u∗j〉 = 0 unless

j = i′. We denote K = 〈?u∗i, u∗i′〉.
By Definition C.3.2, 〈?u∗i, u∗i′〉ω = u∗i ∧ u∗i′ so by Proposition C.2.1,

〈?u∗i, u∗i
′
〉
√

detAu∗1 ∧ · · · ∧ u∗n = (signσi)u
∗1 ∧ · · · ∧ u∗n,

which implies that
〈?u∗i, u∗j〉 = (signσi)/

√
detA δj,i′ ,

where δj,i′ = 1 if j = i′ and equals 0 otherwise. On the other hand,

〈?u∗i, u∗j〉 =
∑

l∈I(n−k,n)

cl〈u∗l, u∗j〉 =
∑

l∈I(n−k,n)

cl det((A−1)lj),

where by Alj we mean the minor of A consisting of the rows l = (l1, . . . , ln−k) and
columns j = (j1, . . . , jn−k). So, we conclude that∑

l∈I(n−k,n)

cl det((A−1)lj) =
signσi√

detA
δj,i′ . (C.6)

To find the values of cj for a given i, we need to invert the matrix product
in Equation (C.6), or more precisely, find the inverse of the

(
n
k

)
×
(
n
k

)
matrix

det((A−1)lj). Though a little tedious to show, the following formula generalizes
the Laplace expansion formula for determinants. For any n × n matrix B, with
notations as above,

detB =
∑

j∈I(k,n)

(signσi)(signσj) detBij detBi′j′ . (C.7)

A slightly stronger result gives

∑
j∈I(k,n)

detBij(signσh)(signσj) detBh′j′ =

{
detB if h = i,

0 otherwise,
(C.8)

for all h ∈ I(k, n). Now multiplying Equation (C.6) by

(signσh)(signσj) det(A−1)h′j′ ,

summing the result over j ∈ I(n− k, n), and taking into account δj,i′ , we obtain

det(A−1)ch =
signσi√

detA
(signσh)(signσj′) det(A−1)h′i,
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which implies that
ch = (signσh)

√
detA det(A−1)h′i.

From this we deduce that

?(u∗i1 ∧ · · · ∧ u∗ik) =
n∑

j1=1

· · ·
n∑

jn=1

√
det a

(n− k)!
εj1···jna

j1i1 · · · ajkik(u∗jk+1 ∧ · · · ∧ u∗jn),

(C.9)
and the proposition follows by linearity of the Hodge star operator.

We point out that one can loosen the conditions on the bilinear form 〈·, ·〉 and
still define the Hodge star operator and obtain many of the same results. If we only
assume that 〈·, ·〉 is symmetric and nondegenerate, then all the above propositions
hold except that one must replace detA with |detA| in Proposition C.3.5.

Problems

C.3.1. Let V = R4 equipped with dot product and let (e1, e2, e3, e4) be the standard
basis. Calculate

(a) ?(2e∗1 ∧ e∗2 ∧ e∗4 + 5e∗2 ∧ e∗3 ∧ e∗4);

(b) ?(17e∗1 ∧ e∗2 − 3e∗1 ∧ e∗4 + 4e∗2 ∧ e∗4).

C.3.2. Let V = R3 equipped with dot product and let (e1, e2, e3) be the standard basis.
Let (u1, u2, u3) with coordinates with respect to the standard basis as

u1 =

2
1
1

 , u2 =

1
2
1

 , u3

1
1
2

 .

Use Proposition C.3.5 to calculate:

(a) ?(4u∗1 − 7u∗2 + 5u∗3);

(b) ?(2u∗1 ∧ u∗2 − 3u∗1 ∧ u∗3).

C.3.3. Prove Proposition C.3.1.

C.3.4. Prove Proposition C.3.3.

C.3.5. Let (V, 〈·, ·〉) be an inner product space. Prove that the composition ? ◦ ? :∧k V ∗ → ∧k V ∗ is tantamount to multiplication on
∧k V ∗ by (−1)k(n−k). Sup-

pose that 〈·, ·〉 is a symmetric and nondegenerate bilinear form with signature
(p, q, 0). Prove that in this case ? ◦ ? :

∧k V ∗ → ∧k V ∗ is tantamount to multipli-
cation on V ∗ by (−1)k(n−k)(−1)p+q.
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acceleration
angular, 42
centripetal, 42, 52
Coriolis, 42, 52
on a Riemannian manifold, 283
radial, 42
translational, 52
transverse, 52

accumulation point, 373, 384
action

of a physical system, 309
adjoint operator, 137
algebra, 87

alternating, 173
graded, 174
symmetric, 173

algebra, over a field, 172
algebraic topology, 363
alternating algebra, 173
alternating product, 165
alternation, 165
angle

on a Riemannian manifold, 253
angular momentum, 56, 308
angular velocity, 50
arclength, 257
associated basis

to a coordinate system, 44
atlas, 67
automorphism, 138

Bacon, Kevin, 365
base space, 181

basis
of a topology, 380

Bernoulli, Johann, 406
between, 366
Bianchi identities, 293, 298, 299
bilinear form, 128

antisymmetric, 131
skew-symmetric, 131
symmetric, 131, 252

Binet-Cauchy Theorem, 415
binormal vector, 53
bisector, 367
black holes, 360
boundary

of a manifold, 98
brachistochrone problem, 406
bundle

cotangent, 187
normal, 188
tangent, 184
vector, 180

calculus of variations, 403–413
canonical properties, 125
catenoid, 253, 263
center of curvature, 54
chain rule, 22, 62, 94
change of basis matrix, 8
chart, 67
Christoffel symbols

of a connection, 269
circle, 392
class Cr, 26
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closure, 371, 383
cobasis, 123
collar, 366
commutative diagram, 107
compact, 394
compact support, 230
compatible

connection with a metric, 273
differentiable structures, 73

complementary subspaces, 132, 143
complex

homology, 212
component functions, 1
components of a tensor, 151
cone, 19
configuration space, 310
conformal, 264
connected, 397
connected component, 398
connection, 45, 268

1-forms, 279
affine, 272
Levi-Civita, 273, 319, 353
Riemannian, 273
symmetric, 278

conservative
covector field, 242
force, 241, 243, 335

continuity
of a vector function, 9
of functions between metric spaces,

374
continuous, 9

between topological spaces, 385
continuous at a point, 386
contour diagram, 4
contraction, 153, 190, 264
contravariant, 126, 189

index, 151
convergence

pointwise, 372
coordinate neighborhood, 66
coordinate patch, 67

coordinate system
normal, 288
on a manifold, 67
orthogonal, 43

coordinates
curvilinear, 39
cylindrical, 40
elliptic, 47
orthogonal, 44
parabolic, 48
polar, 41
spherical, 42
toroidal, 48

cosmological constant, 354
Coulomb’s law, 334
covariant, 126, 189

index, 151
covariant curvature tensor, 296
covariant derivative, 269, 272

along a curve, 281
covector, 122
critical value, 28, 106
cross product, 153
curl, 211
current density, 337
curvature

of a space curve, 53
scalar, 302, 353
tensor, 293, 295

Ricci, 301
curvature tensor

covariant, 296
curve, 100

closed, 82
integral, 193
on a manifold, 82, 93

cusp, 106

D’Alembertian, 337
de Rham cohomology, 212
∂i, 87
dense, 384
derivation, 87, 175
diameter, 367
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diffeomorphism, 80
differentiable

function between manifolds, 79
structure, 74
vector function, 16

differentiable structure, 78
differential, 16, 91

exterior, 207
differential form, 205

closed, 211
exact, 211

direct sum, 127
directional derivative, 85, 100

second-order, 24
disconnected, 397
divergence

of a vector field, 210
of tensors, 276
of vector fields, 264, 266

Divergence Theorem, 264
dot notation, 280
dot product

of antisymmetric tensors, 415
dual

transformation, 124
dual basis, 123
dual space, 122

Einstein field equations, 353
Einstein manifold, 304
Einstein metric, 304
Einstein summation convention, 126
Einstein’s conservation law, 351
Einstein’s constant, 354
Einstein, Albert, 252
electric charge, 337
electric potential, 335
electromagnetic force, 335
electromagnetism, theory of, 320, 334–

338, 353
embedding, 103
energy

kinetic, 241
potential, 243

energy-momentum relation, 331
energy-momentum tensor, 351
Enneper’s surface, 104
ESC (Einstein summation convention),

126, 129, 148
Euclidean space, 363
Euler-Lagrange equation, 309, 345, 406
exponential map, 287
exponential of a matrix, 59
exterior differential, 207
exterior product, 167

of forms, 206

Faraday’s law, 336
fiber

of a vector bundle, 180
first fundamental form, 84, 189, 254
flow, 193
flux, 351
four-velocity, 328
frame

inertial, viii
with respect to a coordinate sys-

tem, 40
F -related, 191
Frenet frame, 53
frontier, 383
function

analytic, 26
bounded, 366
bump, 227
cut-off, 228
differentiable, 16
extremizing, 406
holomorphic, 81
linear, 5
smooth, 26

function graph, 3, 78
fundamental group, 363
Fundamental Theorem

of Calculus, 245
of Line Integrals, 240

Gauss map, 93
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Gauss’s Linking Formula, 266
general linear group, 60
general relativity, 66, 348–360
generating subset

of an algebra, 174
geodesic, 283, 319

null, 331
spacelike, 331
timelike, 331

geodesic ball, 289
geodesic sphere, 289
graded algebra, 174
gradient, 18, 210
Grassmannian, 391
group, 139

half-space, 97
Hamilton’s principle, 309
Hamiltonian

function, 311
vector field, 317

Hamiltonian mechanics, 308–315
Hamiltonian system, 318
Hausdorff, 67, 378, 395
Heine-Borel Theorem, 394
helicoid, 253, 263
Hodge star operator, 266, 420
Hom space, 120
homeomorphism, 66, 387
homogeneous, 96

map, 84
homology, 363
homothetie, 387
Hopf map, 83, 96

identification map, 391
image

of a linear transformation, 6
immersion, 103
Implicit Function Theorem, 32
induced

vector field, 279
inertial frame, 52
inner product, 133

inner product space, 133, 419
integrating factor, 214
integration

of forms, 232
interior, 383
interior product, 215, 317
Inverse Function Theorem, 31
isometry, 143, 253

direct, 322
isoperimetric problem, 410
isotropic, 136

Jacobi equation, 300
Jacobi identity, 197
Jacobian, 16
Jacobian matrix, 16, 17

kernel
of a linear transformation, 6

Killing equation, 301
kinetic energy, 407
Klein bottle, 76, 112
Kronecker delta, 123

generalized, 155

Lagrange’s equations of motion, 309
Lagrangian, 309

density, 344
operator, 406, 410

Laplacian, 266, 337, 339
least upper bound, 366
Leibniz notation, 24
length, 253
level curves, 4
level set, 109
level surfaces, 4
Lie bracket, 196
Lie derivative, 198, 221
light cone, 326
light-year, 327
lightlike, 326
limit

of a vector function, 12
point, 384
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line bundle, 181
line element, 252
line integral, 239, 260
linear, 5
linear algebra

review of, 5–8
linking number, 266
Liouville form, 321
local maximum, 28
local minimum, 28
locally injective, 20
locally Minkowski, 348
Lorentz group, 142
Lorentz metric, 134
Lorentz transformation, 140–142, 323
lower half-space, 98
lower the index, 135, 260
loxodrome, 265

magnetic force, 335
manifold

Ck, 67
analytic, 67
differentiable, 67
of dimension 0, 74
orientable, 113
oriented, 112, 234
piecewise-smooth, 234
pseudo-Riemannian, 330
Riemannian, 252
smooth, 67
topological, 67
with boundary, 98

matrix function, 58
Maxwell’s equations, 336
Mean Value Theorem, 20
Mercator projection, 290
metric

Euclidean, 254
induced, 254
pseudo-Riemannian, 330
Riemannian, 252

metric function, 363
metric space, 134, 363

metric tensor, 353
metrizable, 380
Minkowski metric, 134
Minkowski space, 328
Minkowski spacetime, 140, 326
Möbius strip, 181, 393
moment of inertia, 159
momentarily comoving reference frame,

viii, 49
momentum, 308

4-vector, 350
generalized, 311

Nambu-Goto action, 343
negatively oriented, 60
neighborhood, 9, 370, 379

deleted, 12
Newton’s laws of motion, 241, 308
nondegenerate, 131
norm

Euclidean, 417
matrix, 22

normal vector, 49
null cone, 328

open ball, 9, 365
open cover, 394
orientation, 93

induce on boundary, 116
of a manifold, 115
on a boundary, 116

orientation-preserving, 265
orientation-reversing, 265
orthogonal, 132, 133, 253
orthogonal group, 60, 140

parallel
vector field, 281

parallel transport, 282
parametrization, 66
partial derivative, 14

on manifolds, 82
partition of unity, 226
path-connected, 398
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Peano curve, 389
perfect fluid, 352
permeability, 353
permutation

even, 156
odd, 156
sign of, 156, 165

phase space, 311
Poincaré ball, 264, 333
point

critical, 28, 106
Poisson bracket, 321
polar coordinates, 271
positive definite, 133
positively oriented, 60
potential energy, 407
principal normal vector, 53
principle of inertia, 321
principle of relativity

classical, 321
product

alternating, 186
symmetric, 186
wedge, 167

projective plane, 65
projective space

complex, 81
real, 71, 214, 390

proper time, 324, 326
pseudo-Riemannian manifold, 330
pseudometric, 330
pseudosphere, 289
pull-back, 216
push-forward, 91, 191

quotient map, 391
quotient set, 390
quotient topology, 391
quotient vector space, 128

radial force, 55
raise the index, 136
rank, 131

of a tensor, 146

regular surface, 254
regular value, 28, 106
Regular Value Theorem, 108
regularity condition, 66
restricted Lorentz group, 142
Ricci identities, 293
Riemann, Bernhard, 251, 252, 255

saddle point, 28
scale factors, 44
Schwarzschild metric, 358
Schwarzschild radius, 359
second countable, 67, 385
section, 189

global, 189
local, 189

separation, 397
separation property, 395
sequence, 371
sesquilinear form, 138
set

bounded, 367
closed, 368, 379
compact, 394
open, 368, 379

in Rn, 9
signature, 135
Six Degrees of Kevin Bacon, 365
space cardioid, 4
space-filling curve, 389
spacelike, 326
spacetime, 324
special linear group, 63
special orthogonal group, 60, 140
special relativity, 331
speed, 53, 257
sphere, 69, 109, 113, 258, 285
spherical pendulum, 312
standard basis, 1
stereographic projection, 69, 77, 83
Stokes’ Theorem, 245
stress-energy tensor, 349, 351
string theory, 340–346
subcover, 394
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submanifold, 103
embedded, 103

submersion, 103
subspace

Lagrangian, 136
support, 230
surface

regular, 66, 89
surface integral, 260
symmetric algebra, 173
symmetric product, 161
symmetrization, 161
symplectic

form, 315
manifold, 316
map, 316
vector space, 315

symplectomorphism, 316

tangent space, 86, 101
of Rn, 88

tangent vector, 49
on manifolds, 85, 100

tensor, 146
curvature, 293
Einstein, 303, 354
electromagnetic field, 336
field, 189
metric, 353
multiplication, 153
numerical, 154
product, 186
pure, 146
Ricci, 301, 353
stress-energy, 349

tensor algebra, 173
tensor product, 146, 153, 190
timelike, 326
topological operator, 383
topological space, 379
topology, 363, 379

coarser, 383
discrete, 74, 380
Euclidean, 61

finer, 383
finite complement, 382
induced on a subset, 390
point set, 363
quotient, 391
subset, 390
trivial, 380

Toricelli, 66
torque, 308
torsion tensor, 278, 292
torus, 195, 237, 262, 289

n-torus, 77
total space, 181
trace, 127, 262
trajectory, 193
transformation

linear, 5
transition function, 67
transpose, 138
transversal intersection, 111
triangle inequality, 134, 364
trivial bundle, 181
trivialization, 180

Uniformization Theorem, 304
upper half-space, 98

variation
field, 300
through geodesics, 300

vector
angular velocity, 50
binomal, 53
field, 189
principal normal, 53
unit tangent, 53

vector field
along a curve, 279

velocity, 53
vector, 257

volume
of a Riemannian manifold, 257

volume form, 170, 257, 419



436 Index

wedge product, 167
Weingarten equations, 94
Whitney sum, 186
work, 241
world line, 325
world sheet, 341
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