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Preface

This book is an introduction to the differential geometry of curves and
surfaces, both in its local and global aspects. The presentation differs from
the traditional ones by a more extensive use of elementary linear algebra
and by a certain emphasis placed on basic_geametrical facts, rather than
on machmery or random details.

We have tried to build each chapter of the book around some simple
and fundamental idea. Thus, Chapter 2 develops around the concept of a
regular surface in R*; when this concept is properly developed, it is prob-
ably the best model for differentiable manifolds. Chapter 3 is built on the
Gauss normal map and contains a large amount of the local geometry of
surfaces in R3. Chapter 4 unifies the intrinsic geometry of surfaces around
the concept of covariant derivative; again, our purpose was to prepare the
reader for the basic notion of connection in Riemannian geometry. Finally,
in Chapter 5, we use the first and second variations of arc length to derive
some global properties of surfaces. Near the end of Chapter 5 (Sec. 5-10),
we show how questions on surface theory, and the experience of Chapters 2
and 4, lead naturally to the consideration of differentiable manifolds and
Riemannian metrics.

To maintain the proper balance between ideas and facts, we have
presented a large number of examples that are computed in detail. Further-
more, a reasonable supply of exercises is provided. Some factual material
of classical differential geometry found its place in these exercises. Hints or
answers are¢ given for the exercises that are starred.

The prerequisites for reading this book are linear algebra and calculus.
From linear algebra, only the most basic concepts are needed, and a

v



vi Preface

standard undergraduate course on the subject should suffice. From calculus,
a certain familiarity with calculus of several variables (including the state-
ment of the implicit function theorem) is expected. For the reader’s con-
venience, we have tried to restrict our references to R. C. Buck, Advancd
Calculus, New York: McGraw-Hill, 1965 (quoted as Buck, Advanced
Calculus). A certain knowledge of differential equations will be useful but
it is not required.

This book is a free translation, with additional material, of a book and
a set of notes, both published originally in Portuguese. Were it not for the
enthusiasm and enormous help of Blaine Lawson, this book would not
have come into English. A large part of the translation was done by Leny
Cavalcante. I am also indebted to my colleagues and students at IMPA
for their comments and support. In particular, Elon Lima read part of the
Portuguese version and made valuable comments.

Robert Gardner, Jiirgen Kern, Blaine Lawson, and Nolan Wallach read
critically the English manuscript and helped me to avoid several mistakes,
both in English and Mathematics. Roy Ogawa prepared the computer pro-
grams for some beautiful drawings that appear in the book (Figs. 1-3, 1-8,
1-9, 1-10, 1-11, 3-45 and 4-4). Jerry Kazdan devoted his time generously
and literally offered hundreds of suggestions for the improvement of the
manuscript. This final form of the book has benefited greatly from his
advice. To all these people—and to Arthur Wester, Editor of Mathematics

Meemsnd:nn LTAT1 SR B 4 O A5 N Pt —x TRATY A b d .- 1 - IR PR |
Frentce-rdll, and wilson Uoes dt 1viFA—]1 €XI€nd my sincere tnanks.

Rio de Janeiro Manfredo P. do Carmo



Some Remarks on
Using This Book

e = -

We tried to prepare this book so it could be used in more than one type of
differential geometry course. Each chapter starts with an introduction that
describes the material in the chapter and explains how this material will be
used later in the book. For the reader’s convenience, we have used footnotes
to point out the sections (or parts thereof) that can be omitted on a first
reading.

Although there is enough material in the book for a full-year course (or
a topics course) we tried to make the book suitable for a first course on

differential geometry for students with some background in linear algebra

Qﬂf‘ ’Jf‘li‘)ﬂf‘ﬂf‘ f‘01f‘|1]110
Ll Ad Y alivvd wolivuiud.

For a short one-quarter course (10 weeks), we suggest the use of the
following material: Chapter 1: Secs. 1-2, 1-3, 1-4, 1-5 and one topic of
Sec. 1-7-—2 weeks. Chapter 2: Secs. 2-2 and 2-3 (omit the proofs), Secs.
2-4 and 2-5—3 weeks. Chapter 3: Secs. 3-2 and 3-3—2 weeks. Chapter 4:
Secs. 4-2 (omit conformal maps and Exercises 4, 13-18, 20), 4-3 (up to
Gauss theorema egregium), 4-4 (up to Prop. 4; omit Exercises 12, 13, 16,
18-21), 4-5 (up to the local Gauss-Bonnet theorem; include applications
(b) and (f))—3 weeks.

The 10-week program above is on a pretty tight schedule. A more re-
laxed alternative is to allow more time for the first three chapters and to
present survey lectures, on the last week of the course, on geodesics, the
Gauss theorema egregium, and the Gauss-Bonnet theorem (geodesics can
then be defined as curves whose osculating planes contain the normals to
the surface).

In a one-semester course, the first alternative could be taught more

vii



viii Some Remarks on Using this Book

leisurely and the instructor could probably include additional material (for
instance, Secs. 5-2 and 5-10 (partially), or Secs. 4-6, 5-3 and 5-4).

Please also note that an asterisk attached to an exercise does not mean
the exercise is either easy or hard. It only means that a solution or hint is
provided at the end of the book. Second, we have used for parametrization
a bold-faced x and that might become clumsy when writing on the black-
board. Thus we have reserved the capital X as a suggested replacement.

Where letter symbols that would normally be italic appear in italic con-
text, the letter symbols are set in roman. This has been done to distinguish
these symbols from the surrounding text.



1 Curves

71-1. Introduction

The differential geometry of curves and surfaces has two aspects. One, which
may be called classical differential geometry, started with the beginnings of
calculus. Roughly speaking, classical differential geometry is the study of
local properties of curves and surfaces. By local properties we mean those
properties which depend only on the behavior of the curve or surface in the -
neighborhood of a point, The methods which have shown themselves to be
adequate in the study of such properties are the methods of differential
calculus. Because of this, the curves and surfaces considered in differential
geometry will be defined by functions which can be differentiated a certain
number of times.

The other aspect is the so-called global differential geometry. Here one
studies the influence of the local properties on the behavior of the entire
curve or surface. We shall come back to this aspect of differential geometry
later in the book.

Perhaps the most interesting and representative part of classical differen-
tial geometry is the study of surfaces. However, some local properties of
curves appear naturally while studying surfaces. We shall therefore use this
first chapter for a brief treatment of curves.

The chapter has been organized in such a way that a reader interested
mostly in surfaces can read only Secs. 1-2 through 1-5. Sections 1-2 through
1-4 contain essentially introductory material (parametrized curves, arc
length vector product) which will probably be known from other courses

savmlir A ad hhawn Far Aanmrmlatac oo Aatio V& 10 tha haonet ~F tha Alvastas
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2 Curves

and contains the material of curves needed for the study of surfaces. For
those wishing to go a bit further on the subject of curves, we have included
Secs. 1-6 and 1-7.

1-2. Parametrized Curves

We denote by R? the set of triples (x, y, z) of real numbers. Qur goal is to
characterize certain subsets of R® (to be called curves) that are, in a certain
sense, one-dimensional and to which the methods of differential calculus
can be applied. A natural way of defining such subsets is through differenti-
able functions. We say that a real function of a real variable is differentiable
(or smooth) if it has, at all points, derivatives of all orders (which are automa-
tically continuous). A first definition of curve, not entirely satisfactory but
sufficient for the purposes of this chapter, is the following.

DEFINITION. A4 parametrized differentiable curve is a differentiable
map o.: I — R3 of an open interval I = (a, b) of the real line R into R3.1

The word differentiable in this definition means that ¢ is a correspondence
which maps each ¢ € I into a point a(t) = (x(¢), y(t), z(t)) € R? in such a
way that the functions x(¢), y(¢), z(¢) are differentiable. The variable ¢ is called
the parameter of the curve. The word interval is taken in a generalized sense,
so that we do not exclude the cases ¢ = —o0, b = o0,

If we denote by x'(¢) the first derivative of x at the point ¢ and use similar
notations for the functions y and z, the vector (x'(¢), y'(t), 2’(t)) = a’(t) € R?
is called the tangent vector (or velocity vector) of the curve o at ¢. The image
set (/) « R?is called the trace of a. As illustrated by Example 5 below, one
should carefully distinguish a parametrized curve, which is a map, from its
trace, which is a subset of R®.

A warning about terminology. Many people use the term “infinitely
differentiable” for functions which have derivatives of all orders and reserve
the word “differentiable” to mean that only the existence of the first deriva-
tive is required. We shall not follow this usage.

Example 1. The parametrized differentiable curve given by
a(t) = (acos t, asin t, bt), t € R,

has as its trace in R? a helix of pitch 2zb on the cylinder x2 + y? = @2, The
parameter ¢ here measures the angle which the x axis makes with the line
joining the origin 0 to the projection of the point a(f) over the xy plane (see
Fig. 1-1).

+In italic context, letter symbols will not be italicized so they will be clearly distin-
guished from the surrounding text.



Parametrized Curves
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Figure 1-1 Figure 1-2

Example 2. The map a: R — R? given by a(f) = (¢*,¢%), t € R, is a
parametrized differentiable curve which has Fig. 1-2 as its trace. Notice that

! — . - . n
a’(0) = (0, 0); that is, the velocity vector is zero for ¢+ = 0.

Example 3. The map «:R - R? given by aft) = (£* — 4t, 12 — 4),
t € R, is a parametrized differentiable curve (see Fig. 1-3). Notice that
a(2) = a(—2) = (0, 0); that is, the map o is not one-to-one.

v

- X
0 Y
— X
0
Figure 1-3 Figure 1-4

Example 4. The map a: R — R? given by a(f) = (z,|¢]), € R, is not a
parametrized differentiable curve, since |¢| is not differentiable at # =0
(Fig. 1-4).

Example 5. The two distinct parametrized curves

o(t) = (cos t, sin ¢),
B(#) = (cos 2t, sin 2f),



4 Curves

where t € (0 — €, 27 + €), € > 0, have the same trace, namely, the circle
x2 + y* = 1. Notice that the velocity vector of the second curve is the
double of the first one (Fig. 1-5).

SN s

I

\/ﬂm
Figure 1-5

We shall now recall briefly some properties of the inner (or dot) product
of vectors in R*. Let u = (u,, u,, u;) € R® and define its norm (or length) by

u| = ~ui + ui +ui.

Geometrically, |u#] is the distance from the point (u,, u,, #;) to the origin
0 = (0, 0, 0). Now, let ¥ = (u,, u,,u;)and » = (v,, v,, v;) belong to R3, and
let 8, 0 < 8 < 7, be the angle formed by the segments O and 0v. The inner
product u+v is defined by (Fig. 1-6)

u-v = lu|lv|cos 0.

AN |

Figure 1-6

The following properties hold:

I. Assume that # and v are nonzero vectors. Then u#.-v = 0 if and
only if u is orthogonal to ».



Regular Curves,; Arc Length 5

2. uv = v
3. Au-v) = Au-v = u-Av.
4 u-(v+w)=u-v+ u-w.

A useful expression for the inner product can be obtained as follows.
Lete, =(1,0,0), ¢, = (0, 1,0), and e, = (0, 0, 1). It is easily checked that
¢-e; = 11f i = j and that e;-e; = 0 if i 7= j, where i,j =1, 2, 3. Thus, by
writing

U == U e, + Ue, + Usze,, v =ve; + Ve, + Vi€,
and using properties 3 and 4, we obtain
UV = ul?)l + uzvz + u3‘l)3.

From the above expression it follows that if u(r) and »(¢), ¢ € I, are
differentiable curves, then u(¢)-v(¢) is a differentiable function, and

’g;(u(t)v(f)) = u' (Y- v(t) + w(t)+v'(¢).

1. Find a parametrized curve ¢.(r) whose trace is the circle x2 - 2 = 1 such that
o(¢) runs clockwise around the circle with «(0) = (0, 1).

2. Let 0i(?) be a parametrized curve which does not pass through the origin. If %(z,)

is the point of the trace of & closest to the origin and o&'(#,) # 0, show that the
position vector oi(¢,) is orthogonal to &'(z,).

3. A parametrized curve (¢) has the property that its second derivative o”’(¢) is
identically zero. What can be said about & ?

4, Leta: I — R3 bea parametrized curve and let v € R? be a fixed vector. Assume
that a’(r) is orthogonal to » for all + & I and that 6.(0) is also orthogonal to v,
Prove that ¢(z) is orthogonal to » for ail t € L

5. Let o.: 1 — R? be a parametrized curve, with &’(r) 7= 0 for all r € 1. Show that
| &(t) | is a nonzero constant if and only if &.(¢) is orthogonal to &'(¢) for all ¢ € I.

1-3. Regular Curves; Arc Length
Let a: I — R?® be a parametrized differentiable curve. For each ¢ € I where

a'(f) = O, there is a well-defined straight line, which contains the point a(z)
and the vector o'(¢). This line is called the tangent line to a at t. For the study
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of the differential geometry of a curve it is essential that there exists such a
tangent line at every point. Therefore, we call any point # where o'(f) = 0
a singular point of o and restrict our attention to curves without singular
points. Notice that the point # = 0 in Example 2 of Sec. 1-2 is a singular
point.,

DEFINITION. A parametrized differentiable curve o.: 1 — R3 is said to
be regular if a'(t) == 0 for all t € 1.

From now on we shall consider only regular parametrized differentiable
curves (and, for convenience, shall usually omit the word differentiable).

Given t € I, the arc length of a regular parametrized curve o: 7 — R3,
from the point ¢,, is by definition

s() = f (| dt,

' ()] = V') + G0 + (@O

is the length of the vector «'(¢). Since a'(t) = O, the arc.length s is a differen-
tiable function of ¢ and ds/dt = |a'(t)|.

In Exercise 8 we shall present a geometric justification for the above
definition of arc length.

It can happen that the parameter ¢ is already the arc length measured from
some point. In this case, ds/di = 1 = | &/(¢)|; that is, the velocity vector has
constant length equal to 1. Conversely, if |a'(f) | = 1, then

t
fo

i.e., t is the arc Iength of & measured from some point.

To simplify our exposition, we shall restrict ourselves to curves para-
metrized by arc length; we shall see later (see Sec. 1-5) that this restriction is
not essential. In general, it is not necessary to mention the origin of the arc
length s, since most concepts are defined only in terms of the derivatives of
a(s).

It is convenient to set still another convention. Given the curve ¢ para-
metrized by arc length s € (a, b), we may consider the curve # defined in
(—b, —a) by B(—s) = a(s), which has the same trace as the first one but is
described in the opposite direction. We say, then, that these two curves
differ by a change of orientation.
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EXERCISES

1. Show that the tangent lines to the regular parametrized curve &(¢) = (3¢, 2t2,
2¢3) make a constant angle with the liney = 0, z = x.

2. A circular disk of radius 1 in the plane xy rolls without slipping along the x
axis. The figure described by a point of the circumference of the disk is called a
cycloid (Fig. 1-7).

S

iz ,

NS AV

Figure 1-7. The cycloid.

*a, Obtain a parametrized curve &: R — R? the trace of which is the cycloid,
and determine its singular points.

b. Compute the arc length of the cycloid corresponding to a complete rotation
of the disk.

3. Let 04 = 2a be the diameter of a circle S and 0Y and 4V be the tangents to S'!
at 0 and A, respectively. A half-line » is drawn from 0 which meets the circle S'!
at C and the line AV at B. On 0B mark off the segment O0p = CB. If we rotate r
about 0, the point p will describe a curve called the cissoid of Diocles. By taking
04 as the x axis and 0Y as the y axis, prove that

a. The trace of

t € R,

2at? 2ar3
o) = (1 +:3 1+ tz)’
is the cissoid of Diocles (¢ = tan @; see Fig. 1-8).
b. The origin (0, 0) is a singular point of the cissoid.

c. As t — oo, 0(¢) approaches the line x = 24, and ®’(#) — (2a, 0). Thus, as
t — oo, the curve and its tangent approach the line x = 2a; we say that
x = 2a is an asymptote to the cissoid.

4. Let o.: (0, 1) — R?2 be given by
o) = (cos t, cos t + log tan —é—),

where ¢ is the angle that the y axis makes with the vector ¢(r). The trace of & is
called the fractrix (Fig. 1-9). Show that
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Yy

T

—> X 1
™t aflt)
s! - X
0 ] /(
\ /
Figure 1-8. The cissoid of Diocles. Figure 1-9. The tractrix.

a. @ is a differentiable parametrized curve, regular except at + = 7/2,
b. The length of the segment of the tangent of the tractrix between t the point of

A Ailgtia 1Ll JLWI S LY sCaigdit Ml 23

tangency and the y axis is constantly equal to 1.

. Let at: (—1, 4-o0) ~— R2 be given by

Jat 3at?
) = (217 i )

Prove that:

a. For r = 0, o is tangent to the x axis.

b. As ¢t —» +oo, &t} — (0, 0) and &’(t) — (0, 0).

¢. Take the curve with the opposite orientation. Now, as ¢t — —1, the curve
and its tangent approach the line x -y + a = 0.
The figure obtained by completing the trace of o in such a way that it

becomes symmetric relative to the line y = x is called the folium of Descartes
(see Fig. 1-10).

. Let a(r) = (ae™ cos t, aet sin¢), t € R, a and & constants, a > 0, & < 0, be a
parametrized curve.
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a 1
\

A
\
AN
N

Figure 1-10. Folium of Descartes.

a. Show that as + — oo, a(z) approaches the origin O, spiraling around it
(because of this, the trace of & is called the logarithmic spiral; see Fig. 1-11).

b. Show that &’(¢) — (0, 0) as ¢ — +co and that

lim | let’(r)| dt

f— oo

Figure 1-11. Logarithmic spiral.



10

Curves

7. Amap &: I —— R* is called a curve of class C* if each of the coordinate func-

tions in the expression a() = (x(#), ¥(¢), z(¢)) has continuous derivatives up to
order k. If o is merely continuous, we say that & is of class C°. A curve & is
called simple if the map « is one-to-one. Thus, the curve in Example 3 of Sec. 1-2
is not simple.

Leto: I-— R b
tangent at t = t, < Iif the line determined by o(f, + A) and 0(¢,) has a limit
position when # — 0. We say that & has a strong fangent at ¢ = ¢, if the line
determined by (¢, 4 #) and ®(¢; - &) has a limit position when A, k — O.

Show that

T <7 0
¢ a simple curve of class C°. We say that & has a weak

a. @(r) = (3,1, t € R, has a weak tangent but not a strong tangent at ¢ = 0.

*h. If o0: I — R3 is of class C! and regular at ¢ = t,, then it has a strong tangent
at = to.

¢. The curve given by

"

is of class C'! but not of class C2. Draw a sketch of the curve and its tangent
vectors.

*8. Let o0; I — R? be a differentiable curve and let [a, ] = I be a closed interval.
e

artition
a=1ty, <t < - <t =25

of [a, b], consider the sum 3.7, |a(,) — &(t;—1)| = I(¢t, P), where P stands
for the given partition. The norm | P | of a partition P is defined as

lPl =maX(ff h—ti"-l):i= ]., [ (B
Geometrically, /(¢t, P) is the length of a polygon inscribed in &([a, b]) with

vertices in o(#;) (see Fig. 1-12). The point of the exercise is to show that the arc
length of &([a, b}) is, in some sense, a limit of lengths of inscribed polygons.

olt;)
o
oltn-1) )
y o
alty) a(nM

Figure 1-12
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9. a.

Prove that given € > 0 there exists ¢ > 0 such that if | P| < § then

Ubitx’(t)!dt _ l(oa,P)ll <€

Let a: I — R? be a curve of class C? (cf. Exercise 7). Use the approximation
by polygons described in Exercise 8 to give a reasonable definition of arc
length of a.

(A Nonrectifiable Curve.) The following example shows that, with any reason-
able definition, the arc length of a C° curve in a closed interval may be un-
bounded. Let o: [0, 1] — R? be given as a(f) = (¢, ¢ sin(z/1)) if ¢ = 0, and
0(0) = (0, 0). Show, geometrically, that the arc length of the portion of the

curve corresp mAandin 1!/»- Iy 1 lu |c at ]pr:mi- ')/fu 1. 1\ TTea thic tA
Curve CoIrresponaing 1o A\l T 1) = 7§ = i1/fi Zf " 3). WSC this to

show that the length of the curve in the interval 1/N < ¢ < 1 is greater than
23N, 1/(n + 1), and thus it tends to infinity as N — oo,

10. (Straight Lines os Shorfest.y Let & 1 — R? be a parametirized curve. Let {a, b}

e

a.

b.

1-4.

I and set a(a) = p, 0(b) = q.
Show that, for any constant vector », |¢| = 1,

(q — p)ev = f" 0(t) v dt < J:|a'(:)| dt.

Set
q—Dp
lg —pl|

U fremmd
and show that

joct) — @) < [ o) dt

that is, the curve of shortest length from o(a) to &(b) is the straight line join-
ing these points.

The Vector Product in R?

In this section, we shall present some properties of the vector product in R?,
They will be found useful in our later study of curves and surfaces.
It is convenient to begin by reviewing the notion of orientation of a vector

space.

Two ordered bases e = {e;}and f = {f},i = 1, ..., n, of an n-dimen-

sional vector space V have the same orientation if the matrix of change of
basis has positive determinant. We denote this relation by e ~ f. From ele-
mentary properties of determinants, it follows that e ~ fis an equivalence

relation: i.e.. if satisfies

LVIGVINAL, Loy 20 SRAVASAIWD

e~ e.
If e ~ f, then f ~ e.
Ife~f,f~ g thene ~ g.
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The set of all ordered bases of V is thus decomposed into equivalence classes
(the elements of a given class are related by ~) which by property-3 are
disjoint. Since the determinant of a change of basis is either positive or
negative, there are only two such classes.

Each of the equivalence classes determined by the above relation is called
an orientation of V. Therefore, V" has two orientations, and if we fix one of
them arbitrarily, the other one is called the opposite orientation,

In the case V = R3, there exists a natural ordered basis e, = (1, 0, 0},
e, = (0, 1,0), e; = (0, 0, 1), and we shall call the orientation corresponding
to this basis the positive orientation of R3, the other one being the negative

Arienfatinn /r\F course thic qnnhac pnna"v urn" fr\ any D"\ Wae for\ say th a
Wi rii i vie \.4’ Llllo ut’ L% ) \1 Yy J T W I.-I-A J uL o

given ordered basis of R? is positive (or negatzve) if 1t belongs to the positive
(or negative) orientation of R*. Thus, the ordered basis e, ¢;, ¢, is a negative
U&SiS, since the matrix which ch langes is basis into €y, €3, €3 has determinant
equal to —1.

We now come to the vector product. Let u, v € R3. The vector product

of u and v (in that order) is the unique vector u A v € R’ characterized by
(v A v)-w = det(u, v, w) forall w € R3.

Here det(u, v, w) means that if we express v, v, and w in the natural basis {e,},

u=>y u e, v=>Y v e,
w= 3w e, i=1,2,3,
then
\uy  wy  uy |
det(u, v, w) = |v, v, vs3|s

w W, w

| 4 41 Wa
1 i 1 2 |

where | g;;| denotes the.determinant of the matrix (g,;). It is immediate from
the definition that

=
)

U, U, U,

uNov= e, -+

i V3 |

€. 1

) ) . T

i Y2

o
)

o

]

1 3 |

Remark. 1t is also very frequent to write # A v as u X v and refer to it-as
the cross product.

The following properties can easily be checked (actually they just express
the usual properties of determinants):

l. u A v = —v A u (anticommutativity}.
2. u A vdepends linearly on « and »; i.e., for any real numbers a, b,
we have
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(au +-bw) A v =au A v+ bw A .

3. u A v=0if and only if » and v are linearly dependent.
4. (u A v)eu=0,(u A v)-v=0.

It follows from property 4 that the vector product u A v == 0 is normal to
a plane generated by v and v. To give a geometric interpretation of its norm
and its direction, we proceed as follows.

First, we observe that (u A v)-(u A v) = [u A v[? > 0. This means that
the determinant of the vectors u, v, u A v is positive; that is, fu,v,u A vlisa
positive basis.

Next, we prove the relation

U-x vV-x

Uy vy

(uAv)(xAy)=

>

where #, v, x, y are arbitrary vectors. This can easily be done by observing
that both sides are linear in u, v, x, y. Thus, it suffices to check that

ei'ek ej‘ek

(e; Nep(ex Ne)=

ei'e} e_,-'e_,

for all 4,7, k, I =1, 2, 3. This is a straightforward verification.
It follows that

lu /\v;zzfu'“ U JuP (o = cos? B) = A2,
U-P

Vv

where 8 is the angle of ¥ and v, and 4 is the area of a parallelogram generated
by u and ».

In short, the vector product of » and v is a vector # A v perpendicular to
a plane generated by » and v, with a norm equal to the area of a parallelogram
generated by v and » and a direction such that {v, v, ¥ A v} isa positive basis
(Fig. 1-13).

Figure 1-13
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The vector product is not associative. In fact, we have the following
identity:

(uAv)Aw=@wv— (v-wu, (p))

which can be proved as follows. First we observe that both sides are linear
in u, v, w; thus, the identity will be true if it holds for all basis vectors. This
last verification is, however, straightforward; for instance,

(e, Ney) Ne —e, = (er-e)e, — (e;-e1)e;.

Finally, let u(t) = (u,(t), u5(t), u5(£)) and o(f) = (v.(1), v,(2), v5(¢)) be
differentiable maps from the interval (a, b) to R, ¢t € (a, b). It follows im-
mediately from Eq. (1) that u(r) A »(r) is also differentiable and that

Ly po®) =% A o) + u(e) 1 L.

Vector products appear naturally in many geometrical constructions.
Actually, most of the geometry of planes and lines in R® can be neatly ex-
pressed in terms of vector products and determinants. We shall review some
of this material in the following exercises.

EXERCISES

1. Check whether the following bases are positive:
a. The basis {(1, 3), (4, 2)} in R2.
b. The basis {(1, 3, 5), (2, 3, 7), (4, 8, 3)} in R3.

*2. A plane P contained in R3 is given by the equation ax + by + cz -+ d = 0.
Show that the vector v = (a, b, ¢} is perpendicular to the plane and that
|d|/n/a* + b2 + ¢% measures the distance from the plane to the origin (0, 0, 0).

*3. Determine the angle of intersection of the two planes 5x + 3y + 2z — 4 =0
and 3x + 4y — 7z = 0.

*4, Given two planes a;x + b,y -+ ¢,z +d; = 0, i = 1, 2, prove that a necessary
and sufficient condition for them to be parallel is

where the convention is made that if a denominator is zero, the corresponding

Tl 0 4L 2ol A fon
1 LICY CIUKT (ulll-

At dryreo amla PO

numerator is also zero (we say that two planes are parallel i
cide or do not intersect).

5. Show that the equation of a plane passing through three noncolinear points
Dy = (x1, ¥1, 21), p2 = (X2, ¥2, 22), 73 = (X3, V3, z3) is given by
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*6.

*1.

*8.

10.

P@—p)AN@—p){p—p)=0,

where p = (x, p, z) is an arbitrary point of the plane and p — p4, for instance,
means the vector (x — x, ¥y — ¥, 2 — z¢).

Given two nonparallel planes a;x + b;y + ¢,z +d; =0, i = 1, 2, show that
their line of intersection may be parametrized as

X — Xo = Uyl Y — Yo = Ual, Z — Zo = usl,

where (x;, ¥o, zo) belongs to the intersection and # = (u,, u,, #3) is the vector
pI'OdUCt U = o /\ Vy, V; = (a,—, bi, Ci), i= ]., 2.

Prove that a necessary and sufficient condition for the plane
ax + by +cz +d=0
and the line x — xo = ut, ¥y — yo = uyt, z — zy = U3t to be parallel is
] = {.

rey I ) ey
dity T Oy T Clj

Prove that the distance p between the nonparallel lines

X — Xo = iy, Y — Yo = Uzt Z — Zg = Ust,
x — Xy = ¥, ¥ — Y1 = v, z—:zl=vgt
is given by
o Lol
lu A vl

where u = (uy, uy, t3), v = (vy, v2, v3), ¥ = (Xo — X1, Yo — Y1, Zo — Z1)-

Determine the angle of intersection of the plane 3x + 4y + 7z + 8 = 0 and
thelinex —2=3,y —3=5t,z—5 =09t

The natural orientation of R? makes it possible to associate a sign to the area 4
of a parallelogram generated by two linearly independent vectors u, v € R2. To

LRGSR BUAAL QA U S I R R e e <y

do this, let {¢]}, i = 1,2, be the natural ordered basis of RZ2 and write
U = u1e, + e, v = vi1€; + v16,. Observe the matrix relation

(U'u u"U) (tl1 L[z)(l«[] ’Ul)
v-u v-v vy P/ \Uz Uy

uy upl?

A2 =

U] 7}2

Since the last determinant has the same sign as the basis {«#, v}, we can say that 4
is positive or negative according to whether the orientation of {«, v} is positive
or negative. This is called the oriented area in R2.
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11. a. Show that the volume ¥V of a parallelepiped generated by three linearly inde-
pendent vectors u, », w € R3isgiven by V = [(u A v)-w/|, and introduce an
oriented volume in R3.

b. Prove that
U uv Uw
Vi=|veu wv-v wvwl|

w-u wW-v W-w

12. Given the vectors » = 0 and w, show that there exists a vector « such that
u A v = wif and only if » is perpendicular to w. Is this vector « uniquely deter-

mined ? If not, what is the most general solution?

13. Let u(r) = (u, (1), uz(t), us(9)) and »(t) = (v1(t), v2(t), vs(r)) be differentiable
maps from the interval (a, ) into R3. If the derivatives «'(z) and v'(¢) satisfy the
conditions

u(t) = au(t) + bu(r), v'(t) = cu(t) — av(t),

where @, b, and ¢ are constants, show that «(¢} A »(¢) is a constant vector.

14. Find all unit vectors which are perpendicular to the vector (2, 2, 1) and parallel
to the plane determined by the points (0, 0, 0), (1, -2, 1), (—1, 1, 1).

7-5. The Local Theory of Curves
Parametrized by Arc Length

This section contains the main results of curves which will be used in the
later parts of the book.

Let o: 1 = (a, b) — R*® be a curve parametrized by arc length 5. Since
the tangent vector a'(s) has unit length, the norm | &’'(s) | of the second deriva-
tive measures the rate of change of the angle which neighboring tangents make
with the tangent at s. |a''(s)| gives, therefore, a measure of how rapidly the
curve pulls away from the tangent line at s, in a neighborhood of s (see

Fig. 1-14). This suggests the following definition.

DEFINITION. Let o1 — R? be a curve parametrized by arc length
s € I. The number |a''(s)| = k(s) is called the curvature of g at s.

If o is a straight line, a(s) = us + v, where u and » are constant vectors
(Ju| = 1), then k = 0. Conversely, if kK = |a&"'(s)| = 0, then by integration
o(s) = us + », and the curve is a straight line.

Notice that by a change of orientation, the tangent vector changes its
direction; that is, if f(—s) = a(s), then
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—
all(s)
) 4
A—‘ “
/ TR )
«’'(s)
an(s)
Figure 1-14

Therefore, a''(s) and the curvature remain invariant under a change of
orientation.

At points where k(s) = 0, a unit vector x(s) in the direction o’(s) is well
defined by the equation a'’(s) = k(s)n(s). Moreover, a’(s) is normal to a'(s),
because by differentiating a'(s)-a’(s) = I we obtain a’(s)-'(s) = 0. Thus,
n(s) is normal to a’(s) and is called the normal vector at s. The plane deter-
mined by the unit tangent and normal vectors, &'(s) and #n(s), is called the
osculating plane at s. (See Fig. 1-15.)

At points where k(s) = 0, the normal vector {(and therefore the osculating
plane) is not defined (cf. Exercise 10). To proceed with the local analysis of
curves, we need, in an essential way, the osculating plane. It is therefore

Figure 1-15
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convenient to say that s € I'is a singular point of order 1 if o"’(s) = 0 (in this
context, the points where o'(s) = 0 are called singular points of order 0).

In what follows, we shall restrict ourselves to curves parametrized by arc
length without singular points of order 1. We shall denote by #(s) = a'(s)
the unit tangent vector of a at s. Thus, #'(s) = k(s)n(s).

The unit vector b(s) = #(s) A n(s) is normal to the osculating plane and
will be called the binormal vector at s. Since b(s) is a unit vector, the length
| b'(s) | measures the rate of change of the neighboring osculating planes with
the osculating plane at s; that is, &'(s) measures how rapidly the curve pulls
away from the osculating plane at s, in a neighborhood of s (see Fig. 1-15).

To compute b'(s)} we observe that, on the one hand, &'(s) is normal to b(s)
and that, on the other hand,

| R A - A oat A 3

PP PR A TPY RN PR Y Y NI
@)=t NS+ Is) \NH{S)=H5) N\ A5,

that is, b'(s) is normal to #(s). It follows that b'(s) is parallel to n(s), and we
may write

b'(s) = 1(s)n(s)

for some function 7(s). (Warning: Many authors write —7(s) instead of our

7(s).)

DEFINITION. Let a:1 - R? be a curve parametrized by arc length s
such that a''(s) #= 0, s € 1. The number 7(s) defined by b'(s) = z(s)n(s) is called
the torsion of o at s.

If o is a plane curve (that is, (/) is contained in a plane), then the plane
of the curve agrees with the osculating plane; hence, 7 = 0. Conversely, if
7 == 0 (and k = 0), we have that b(s) = b, = constant, and therefore

(a(8)+bo) = a'(s)-by = 0.

It follows that a(s)- b, = constant; hence, a(s) is contained in a plane normal
to b,. The condition that k s 0 everywhere is essential here. In Exercise 10
we shall give an example where 7 can be defined to be identically zero and
yet the curve is not a plane curve.

In contrast to the curvature, the torsion may be either positive or nega-
tive. The sign of the torsion has a geometric interpretation, to be given later
(Sec. 1-6).

Notice that by changing orientation the binormal vector changes sign,
since b =t A n. It follows that b’(s), and, therefore, the torsion, remains
invariant under a change of orientation.
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Let us summarize our position. To each value of the parameter s, we have
associated three orthogonal unit vectors #(s), n(s), b(s). The trihedron thus
formed is referred to as the Frenet trikedron at s. The derivatives ¢'(s) = kn,
b'(s) = tn of the vectors #(s) and b(s), when expressed in the basis {z, n, b},
yield geometrical entities (curvature k and torsion 7) which give us infor-
mation about the behavior of a in a neighborhood of s.

The search for other local geometrical entities would lead us to compute
n'(s). However, since n = b A f, we have

n'(s) = b'(s) A t(s) + b(s) A t'(s) = —1b — ki,

and we obtain again the curvature and the torsion.
For later use, we shall call the equations

t' = kn,
n = —kt — 1b,
b’ =1n

the Frenet formulas (we have ommited the s, for convenience). In this context,
the following terminology is usual. The ¢b plane is called the rectifying plane,
and the nb plane the normal plane. The lines which contain n(s) and b(s) and
pass through a(s) are called the principal normal and the binormal, respecti-
vely. The inverse R = 1/k of the curvature is called the radius of curvature at
s. Of course, a circle of radius » has radius of curvature equal to r, as one can
easily verify.

Physically, we can think of a curve in R? as being obtained from a straight
line by bending (curvature) and twisting (torsion). After reflecting on this
construction, we are led to conjecture the following statement, which, roughly
speaking, shows that k and 7 describe completely the local behavior of the
curve,

FUNDAMENTAL THEOREM OF THE LOCAL THEORY OF
CURVES. Given differentiable functions k(s) >0 and t(s),s € I, there
exists a regular parametrized curve o.: I — R? such that s is the arc length, k(s)
is the curvature, and t(s) is the torsion of o.. Moreover, any other curve &,
satisfying the same conditions, differs from o by a rigid motion; that is, there
exists an orthogonal linear map p of R3, with positive determinant, and a vector
c such that & = poo 4 c.

The above statement is true. A complete proof involves the theorem of
existence and uniqueness of solutions of ordinary differential equations and

L o o
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rigid motions, of curves having the same s, k(s), and 7(s) is, however, simple
and can be given here,.

Proof of the Uniqueness Part of the Fundamental Theorem. We first remark
that arc length, curvature, and torsion are invariant under rigid motions;
that means, for instance, that if M: R?® — R3 1s a rigid motion and o = a(?)
1s a parametrized curve, then

‘dt—f ld(MO“)ldt

That is plausible, since these concepts are defined by using inner or vector
products of certain derivatives (the derivatives are invariant under transla-
tions, and the inner and vector products are expressed by means of lengths
and angles of vectors, and thus also invariant under rigid motions). A careful
checking can be left as an exercise (see Exercise 6).

Now, assume that two curves ¢ = ¢(s) and & = d&(s) satisfy the conditions
k(s) = k(s) and 1(s) = 7(s), s € I Let to, ny, b, and 7,, Ai,, b, be the Frenet tri-
hedrons at s = s, € I of o and &, respectively. Clearly, there is a rigid motion
which takes &(s,) into a(s,) and 7,, fi,, b, into ., n,, b,. Thus, after perform-
ing this rigid motion on &, we have that &(s,) = a(s,) and that the Frenet
trihedrons #(s), n(s), b(s) and #(s), i(s), b(s) of & and &, respectively, satisfy
the Frenet equations:

dt

dt e
d—s-:kn E—kn
dn dn .- -
db db
EE_Tn d——;—’fﬂ,

with  #(s,) = #(s,), n(s,) = Als,), b(sy) = E(So)°
We now observe, by using the Frenet equations, that

1 _ _ -
5ot — 7P - |n — AP +16 — b}

= —0t —f> b —bb —b>+n—nan —iD
=kt —Fn—a>+1b—bn—i>—kin—n,t —1)
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§ = 8, it is identically zero. It follows that #(s) = #(s), n(s) = #(s), b(s) = b(s)
for all s € 1. Since

&E
I
I
A}
I
&

we obtain (d/ds) (« — &) == 0. Thus, a(s) = &(s) + a, where a is a constant
vector. Since a(s,) = &(s,), we have a == 0; hence, o(s) = &(s) forall s € I.
Q.E.D.

Remark 1. In the particular case of a plane curve a: I — R2, it is possible
to give the curvature k a sign. For that, let {e,, e,} be the natural basis (see
Sec. 1-4) of R* and define the normal vector u(s), s € I, by requiring the basis
{(s), n(s)} to have the same orientation as the basis {e,, e,}. The curvature k
is then defined by

dr
E—_kn

and might be either positive or negative. It is clear that [k | agrees with the
previous definition and that k& changes sign when we change either the
orientation of o or the orientation of R? (Fig. 1-16).

e!l

——

k>0

Figure 1-16

It should also be remarked that, in the case of plane curves (r = 0), the
proof of the fundamental theorem, refered to above, is actually very simple
(see Exercise 9).

Remark 2. Given a regular parametrized curve o: 7 — R® (not neces-
sarily parametrized by arc length), it is possible to obtain a curve f:J — R?
parametrized by arc length which has the same trace as a. In fact, let



22 Curves

s = s(f) = fr |a'()] dt, tt, € L

Since ds/dr = |&'(£)| 5= 0, the function s = s(¢) has a differentiable inverse
t =1H(s).s € s(I) =J, where, by an abuse of notation, ¢ also denotes the
inverse function s-! of 5. Now set f = goz:J — R®. Clearly, p(J) = a(1)
and | '(s)| = |a'(¢)-(dt/ds)| = 1. This shows that § has the same trace as g
and is parametrized by arc length. It is usual to say that f is a reparametriza-
tion of a(l) by arc length.

This fact allows us to extend all local concepts previously defined to
regular curves with an arbitrary parameter. Thus, we say that the curvature

-’.’(1\ nFN I—) p3 r_\f f = JFic tha enrvatnra nf a ranaramatrizatinn R+ T _ s D3
£ 1o elC Ldivatuiv U a iCpdlativuizauion p.v Fid

of a(I) by arc length at the corresponding point s = s(z). This is clearly
independent of the choice of # and shows that the restriction, made at the
end of Sec. 1-3, of considering only curves parametrized by arc length is not
essential.

In applications, it is often convenient to have explicit formulas for the
geometrical entities in terms of an arbitrary parameter; we shall present some
of them in Exercise 12.

EXERCISES

Unless explicity stated, 0.: 1 —> R? is a curve parametrized by arc length s, with
curvature k(s) = 0, for all s € 1.

1. Given the parametrized curve (helix)
0(s) = (a cos >, a sin >, bﬁ—), s € R,
c ¢’ ¢

where ¢? = a? | p2,

a. Show that the parameter s is the arc length.
b. Determine the curvature and the torsion of ¢.
c. Determine the osculating plane of &.
d

. Show that the lines containing n(s) and passing through ¢.(s) meet the z axis
under a constant angle equal to 7/2.

e. Show that the tangent lines to & make a constant angle with the z axis.

*2. Show that the torsion 7 of & is given by

o'(s) A a{s)-a”'(s) )

o | (s) |2
3. Assume that &(7) = RZ(i.e., & is a plane curve) and glve k a sign as in the text,
rancenATE The Vastmra ¢ o) manallal o 4l atvronlcrme Se ot cxrnxr 4lend dlin el e
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*4,

*T.

t(s) agree with the origin of R?; the end poinfs of #(s) then describe a parame-
trized curve s — 1(s) called the indicatrix of rangents of &. Let 0(s) be the angle
from e, to t(s) in the orientation of R2. Prove (a) and (b) (notice that we are
assuming that & % 0).

a. The indicatrix of tangents is a regular parametrized curve.
b. di/ds = (d8/ds)n, that is, k = d8)ds.

Assume that all normals of a parametrized curve pass through a fixed point.
Prove that the trace of the curve is contained in a circle.

A regular parametrized curve o has the property that all its tangent lines pass
through a fixed point.

a. Prove that the trace of o is a (segment of a) straight line.

b. Does the conclusion in part a still hold if & is not regular?

A translation by a vector v in R3 is the map A: R? — R? that is given by
A(p) =p + v, p € R3. A linear map p: R? — R? is an orthogonal fransfor-
mation when pu- pv — u-v for all vectors u, v € R*. A rigid motion in R? is the
result of composing a translation with an orthogonal transformation with posi-
tive determinant (this last condition is included because we expect rigid motions
to preserve orientation).

a. Demonstrate that the norm of a vector and the angle 8 between two vectors,
0 < 0 < =, are invariant under orthogonal transformations with positive
determinant.

b. Show that the vector product of two vectors is invariant under orthogonal
transformations with positive determinant. Is the assertion still true if we
drop the condition on the determinant?

c. Show that the arc length, the curvature, and the torsion of a parametrized
curve are (whenever defined) invariant under rigid motions.

Let 0:: I — R? be aregular parametrized plane curve (arbitrary parameter), and
define # = n(t) and k = k(¢) as in Remark 1. Assume that k() %0, r € 1. In
this situation, the curve

By = aqe) -+ %t)n(o, tel,

is called the evolute of o (Fig. 1-17).
a. Show that the tangent at ¢ of the evolute of & is the normal to « at .

b. Consider the normal lines of & at two neighboring points ¢4, 75, #; 7 f2. Let
¢, approach ¢, and show that the intersection points of the normals converge
to a point on the trace of the evolute of o.

. The irace of the parametrized curve (arbitrary parameter)

o(f) = (¢, cosh ), t € R,

is called the carenary.



N
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Figure 1-17
a. Show that the signed curvature (cf. Remark 1) of the catenary is
1
o) = —

g A
LUMLLT

b. Show that the evolute (cf. Exercise 7) of the catenary is
B(#) = (¢t — sinh £ cosh ¢z, 2 cosh ).

9. Given a differentiable function k(s), s € I, show that the parametrized plane
curve having k(s) = k as curvature is given by

o(s) = ( f cos O(s) ds -+ a, f sin 0(s) ds + b),
where

8(s) = [ k) ds + o,

and that the curve is determined up to a translation of the vector (g, b} and a

rotation of the angle ¢.

10. Consider the map
(1,0, e~ 1/%%), t>0

o) = <(t, e~ 174, 0), r<0
©, 0, 0, r=20

a. Prove that & is a differentiable curve.

b. Prove that & is regular for all # and that the curvature k(¢) -~ 0, for t 5% 0,
t = 4 A/2/3, and k(0) = 0.
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11.

12.

13.

14.

¢. Show that the limit of the osculating planes as r — 0, £ > 0, is the plane
y = 0 but that the limit of the osculating planes as t — 0, # < 0, is the plane
z = 0 (this implies that the normal vector is discontinuous at r = 0 and
shows why we excluded points where & = 0).

d. Show that 7 can be defined so that T = 0, even though & is not a plane curve.
One often gives a plane curve in polar coordinates by p = p(@), a << 8 < b.

a. Show that the arc length is
b -
R XA

where the prime denotes the derivative relative to 0.

b. Show that the curvature is

€N — pp”’ 2
®) = X ™

Let &: I — R3 be a regular parametrized curve (not necessarily by arc length)
and let fi: J — R3 be a reparametrization of o(f) by the arc length s = s(z),

miananrad fram ¢ ~ Ti{can Ramnrle M T at + — #c) ha the invarcea foanetinn Af o
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and set dot/dr = o', d*0/dt? = &, etc. Prove that
a. di/ds = 1/|&’|, d?t/ds* = —(o" -0 [|ad"]*).
b. The curvature of ¢ at ¢ € I'is

al al}
k(t) = ’ |.{§|3 1
10
¢. The torsionof o atz « [Iis
(al A al/).mill
T(t) = — |a/ A mulz )

d. If oo: 7 — R?is a plane curve 0(t) = (x(¢), y(t)), the signed curvature (see
Remark 1) of & at ¢ is

KO = G T o

Assume that 7(s) # 0 and k’(s) = 0 for all s € 1. Show that a necessary and
sufficient condition for a.() to lic on a sphere is that

R2 + (R)2T? = const.,

where R = 1/k, T = 1/7, and R’ is the derivative of R relative to s.

Let a: (a, b) -—— R? be a regular parametrized plane curve. Assume that there
exists tg, @ < to << b, such that the distance | ot(¢)] from the origin to the trace of
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o will be a maximum at ¢,. Prove that the curvature k of o at #, satisfies
|k(te)] = 1/jou(to) -

*15. Show that the knowledge of the vector function & = b(s) (binormal vector) of a
curve o, with nonzero torsion everywhere, determines the curvature k(s) and the
absolute value of the torsion 7(s) of 0.

*16. Show that the knowledge of the vector function #n = s(s) (normal vector) of a
curve o, with nonzero torsion everywhere, determines the curvature k(s) and the
torsion 7(s) of o,

17. In general, a curve o is called a helix if the tangent lines of o¢ make a constant
angle with a fixed direction. Assume that 7(s) # 0, s € I, and prove that:

*a, o is a helix if and only if k/7 = const.

*b. o is a helix if and only if the lines containing n(s) and passing through o(s)
are paralle! to a fixed plane.

*¢. o is a helix if and only if the lines containing b(s) and passing through o(s)
make a constant angle with a fixed direction.

2
~
-

o(s) = (% J sin 8(s) ds, —‘CI— f cos 0(s) ds, —?—s),

where a? = b2 + ¢2, is a helix, and that K/t = b/a.

*18. Let o: { — R3 be a parametrized regular curve (not necessarily by arc length)
with A(t) 0, 7(¢) # 0, t € I. The curve & is called a Bertrand curve if there
exists a curve &: I — R3 such that the normal lines of & and & at ¢t [ are
equal. In this case, & is called a Bertrand mate of o, and we can write

() = ot) + ra().
Prove that
a. r is constant.
b. a is a Bertrand curve if and only if there exists a linear relation

Ak(t) -+ Bt() = 1, t el

where A, B are nonzero constants and £ and 7 are the curvature and torsion
of o, respectively.

c. If & has more than one Bertrand mate, it has infinitely many Bertrand mates.
This case occurs if and only if & is a circular helix.
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7-6. The Local Canonical Formft

One of the most effective methods of solving problems in geometry consists
of finding a coordinate system which is adapted to the problem. In the study
of local properties of a curve, in the neighborhood of the point s, we have a
natural coordinate system, namely the Frenet trihedron at s. It is therefore
convenient to refer the curve to this trihedron.

Let a: / — R*® be a curve parametrized by arc length without singular
points of order 1. We shall write the equations of the curve, in a neighborhood
of s,, using the trihedron #(s,), n(s,), b(s,) as a basis for R*. We may assume,
without loss of generality, that s, = 0, and we shall consider the (finite)
Taylor expansion

a(s) — af0) -+ se’(0) + %2.&”(0) + 00 + R,

0'"’(0) = (kn) = k'n + kn' = k'n — k?t — kb,

we obtain

. I T s

ﬂﬂ—am=pﬁ%§y+6;+%_

)n — Srktb + R,

where all terms are computed at s = 0.

Let us now take the system Oxyz in such a way that the origin O agrees
with a(0) and that + =(1,0,0), n =(0,1,0),5 = (0,0, 1). Under these
conditions, a(s) = (x(s), ¥(s), z(s)) is given by

2a3
xs)=s—FE IR,

’e3
yo) =55+ E8 1, )
2(s) = —’%’ss R,

where R = (R,, R,, R,). The representation (1) is called the local canonical
form of a, in a neighborhood of s = 0. In Fig. 1-18 is a rough sketch of the

.
3ot ~ - - #12 +h A mh ol
projections of the trace of «, for s small, in the #s, tb, and nb planes,

1This section may be omitted on a first reading.
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b l/

Projection over the plane tn

/

AN

N

Projection over the plane ¢ b o
Projection over the plane né

Figure 1-18

Below we shall describe some geometrical applications of the local can-
onical form. Further applications will be found in the Exercises.

A first application is the following interpretation of the sign of the torsion.
From the third equation of (1) it follows that if 7 << 0 and s is sufficiently

small. then 7(9\ increases with 5. Let us make the convention of calline the

e e ] FLw3 3 3 AALIOESLS WWIALLL AxAAC VAL WMLV IRLAVAL MRS

“positive 51de of the osculating plane that side toward which b is pointing.
Then, since z(0) = 0, when we describe the curve in the direction of increasing
arc length, the curve will cross the osculating plane at s = 0, pointing toward
the positive side (see Fig. 1-19). If, on the contrary, 7 > 0, the curve (described
in the direction of increasing arc length) will cross the osculating plane

~ N I R =

pointing to the side opposite the positive side.

Negative torsion Positive torsion

Figure 1-19
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The helix of Exercise 1 of Sec. 1-5 has negative torsion. An example of a
curve with positive torsion is the helix

s .S s
ofs) = (a cos —, a sin —, —b—)
c ¢ c

obtained from the first one by a reflection in the xz plane (see Fig. 1-19).

Remark. 1t is also usual to define torsion by b’ = —1n. With such a
definition, the torsion of the helix of Exercise 1 becomes positive.

Another consequence of the canonical form is the existence ot a neighbor-
hood J <= I of 5 = 0 such that &(J) is entirely contained in the one side of the
rectifying plane toward which the vector # is pointing (see Fig. 1-18). In fact,
since k > 0, we obtain, for s sufficiently small, y(s) = 0, and y(s) = 0 if and
only if s = 0. This proves our claim.

As a last application of the canonical form, we mention the following
property of the osculating plane. The osculating plane at s is the limit position
of the plane determined by the tangent line at s and the point a(s -+ #) when
h — 0. To prove this, let us assume that s = 0. Thus, every plane containing
the tangent at s = 0 is of the form z == ¢y or y = 0. The plane y = 0 is the
rectifying plane that, as seen above, contains no points near «(0) (except

(0} itself) and that may therefore be discarded from our considerations. The

(‘nnr‘ﬂ‘lr\n Fr\r f‘]ﬂn h]qnn Z = 1 y £y Nnass f]'n' noh ¢ —L- h 18 ((‘ — ﬂ\
WATLALA LA I} AL — L v _tj LiiL 511. vy
k
3
— T + P
c— z(h) 6 .

TORN PP

Letting # — 0, we see that ¢ — 0. Therefore, the limit position of the plane
z(s) = c(h)y(s) is the plane z = 0, that is, the osculating plane, as we wished.

EXERCISES

¥1. Let otz I — R3 be a curve parametrized by arc length with curvature k(s) == 0,
s € I. Let P be a plane satisfying both of the following conditions:

nnnnnnn 41 L_“mn“J

1 I' LUllldlllb tnc tangeni

line
2. Given any neighborhood J < I of s, there exist points of &(J) in both
sides of P.

o+
Il

a

Prove that P is the osculating plane of o at s.

2. Let a: I — R3 be a curve parametrized by arc length, with curvature k(s) # 0,
s € 1. Show that
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*a. The osculating plane at s is the limit position of the plane passing through
0i(s), 0(s + hy), G(s - hy) when hy, iy, — 0.

b. The limit position of the circle passing through a(s), (s + hy), 0(s + h,)
when h,, h; — 0 is a circle in the osculating plane at s, the center of which is
on the line that contains n(s) and the radius of which is the radius of curvature
1/k(s); this circle is called the osculating circle at s.

3. Show that the curvature k(r) 7= 0 of a regular parametrized curve o: 1 -— R3 is

the curvature at ¢ of the plane curve oo, where 7 is the normal projection of o

over the osculating plane at z.

1-7. Global Properties of Plane Curvest

T thi +1 + 4~ A ilan g that kal~ tn th Taland
1l Tinis sCction we want to aesCrinpe sOIme resuilts tnat ociong to tne Da

differential geometry of curves. Even in the simple case of plane curves, the
subject already offers examples of nontrivial theorems and interesting
questions. To develop this material here, we must assume some plausible
facts without proofs; we shall try to be careful by stating these facts precisely.
Although we want to come back later, in a more systematic way, to global
differential geometry (Chap. 5), we believe that this early presentation of the
subject is both stimulating and instructive.

This section contains three topics in order of increasing difficulty: (A)
the isoperimetric inequality, (B) the four-vertex theorem, and (C) the Cauchy-
Crofton formula. The topics are entirely independent, and some or all of
them can be omitted on a first reading.

A differentiable function on a closed interval [a, b] is the restriction of a
differentiable function defined on an open interval containing [a, b).

A closed plane curve is a regular parametrized curve «: [a, b] — R? such
that & and all its derivatives agree at a and b; that is,

o(a) = o(b), o'(@) = a'(b), o''(@) =a"'(b),....

The curve a 1s simple if it has no further self-intersections; that is, if
t, t, € [a,b), t, # t,, then a(t,) = a(t,) (Fig. 1-20).

We usually consider the curve ¢: [0, /] — R? parametrized by arc length
5; hence, / is the length of o. Sometimes we refer to a simple closed curve C,
meaning the trace of such an object. The curvature of o will be taken with a
sign, as in Remark 1 of Sec. 1-5 (see Fig. 1-20).

We assume that a simple closed curve C in the plane bounds a region of
this plane that is called the interior of C. This is part of the so-called Jordan



Global Properties of Plane Curves
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(%

(a) A simple closed curve (b) A (nonsimple) closed curve

Figure 1-20

Interior of C

\ 777777 .

(a) A simple closed curve C on a
torus 7, C bounds no region on T (b) Cis positively oriented

Figure 1-21

curve theorem (a proof will be given in Sec. 5-6, Theorem 1), which does not
hold, for instance, for simple curves on a torus (the surface of a doughnut;
see Fig. 1-21(a)). Whenever we speak of the area bounded by a simple closed
curve C, we mean the area of the interior of C. We assume further that the
parameter of a simple closed curve can be so chosen that if one is going along
the curve in the direction of increasing parameters, then the interior of the
curve remains to the left (Fig. 1-21(b)). Such a curve will be called positively
oriented.

A. The Isoperimetric Inequality

This is perhaps the oldest global theorem in differential geometry and is
related to the following (isoperimetric) problem, Of all simple closed curves
in the plane with a given length I, which one bounds the largest area? In this
form, the problem was known to the Greeks, who also knew the solution,
namely, the circle. A satisfactory proof of the fact that the circle is a solution
to the isoperimetric problem took, however, a long time to appear. The main
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reason seems to be that the earliest proofs assumed that a solution should
exist. It was only in 1870 that K. Weierstrass pointed out that many similar
questions did not have solutions and gave a complete proof of the existence
of a solution to the isoperimetric problem. Weierstrass’ proof was somewhat
hard, in the sense that it was a corollary of a theory developed by him to
handle problems of maximizing (or minimizing) certain integrals (this theory
15 called calculus of variations and the isoperimetric problem is a typical
example of the problems it deals with). Later, more direct proofs were found.
The simple proof we shall present is due to E. Schmidt (1939). For another
direct proof and further bibliography on the subject, one mfay consult
Reference [10] in the Bibliography.

We shall make use of the following formula for the area 4 bounded by a
positively oriented simple closed curve a(z) = (x(¢), y(¢)), where ¢ € [a, b]
1s an arbitrary parameter:

A== [ soxoa= [ xyea = [ @ —pra @

Notice that the second formula is obtained from the first one by observing

that
J-Z xy' dt = j: (xy) dt — Jt x'y dt = [xy(b) — xy(a)] — jz x'y dt
== J-b x'ydt,

since the curve is closed. The third formula is immediate from the first two.

To prove the first formula in Eq. (1), we consider initially the case of
Fig. 1-22 where the curve is made up of two straight-line segments paraliel
Y

[ t=a t=bh

Figure 1-22

to the ) axis and two arcs that can be written in the form

o

y=£f() and y=£E), X E [xoxl fi >
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Clearly, the area bounded by the curve is

a=["1xdx — | fulx)dx.

Since the curve is positively oriented, we obtain, with the notation of Fig. 1-22,

a= ="y a— [ yox 0 = [ yox o,

since x'(¢) = 0 along the segments parallel to the y axis. This proves Eq. (1)

for this case.
To prove the general case, it must be shown that it is possible to divide

tha racginn honndad by tha ~n intn a Anita naumhar Af raginne nf tha alava
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type. This is clearly possible (Fig. 1-23) if there exists a straight line E in the

Y4

pl1)
1)

(| /

Figure 1-23

plane such that the distance p(t) of a(t) to this line is a function with finitely
many critical points (a critical point is a point where p’(#) = 0). The last
assertion is true, but we shall not go into its proof. We shall mention, how-
ever, that Eq. (1) can also be obtained by using Stokes’ (Green’s) theorem in
the plane (see Exercise 15).

THEOREM 1 (The Isoperimetric Inequality). Let C be a simple closed
plane curve with length 1, and let A be the area of the region bounded by C. Then

I — 4zA = 0, 2

and equality holds if and only if C is a circle.
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Proof. Let E and E’ be two parallel lines which do not meet the closed
curve C, and move them together until they first meet C. We thus obtain two
parallel tangent lines to C, L and L, so that the curve is entirely contained in
the strip bounded by L and L’. Consider a circle St which is tangent to both
L and L’ and does not meet C. Let O be the cepter of S! and take a coordinate
system with origin at O and the x axis perpendicular to  and L’ (Fig. 1-24),

E L L E

Figure 1-24

Parametrize C by arc length, a(s) = (x(s), y()), so that it is positively oriented
and the tangency points of L and L’ are s =: 0 and s = s,, respectively.
We can assume that the equation of S ig

a(s) = (x(s), ¥(5)) = (x(s), 3(s)), s € [0, 1]

\xlhprp 2ris the d qunne between [ and T/ et T AN pon A A ot A
CALNW WELOLELLIN wr LYY Wwildl I/ BALANL 22 o Hy ubl[ g Eq kl) d lu uclloll[ g Uy
A the area bounded by S*, we have
l I
A=1| xy'ds, A= gr? —fyxa’s
0

Thus,
rl
A+at=| (o —J?x')dsgj Ve

< flo NG+ ) )ds = f N ET A PR ds )
= Ir.
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We now notice the fact that the geometric mean of two positive numbers is
smaller than or equal to their arithmetic mean, and equality holds if and only
if they are equal. It follows that

N AN T 34 A+ 7rt) < L. @

Therefore, 47Ar* < I%¢%, and this gives Eq. (2).

Now, assume that equality holds in Eq. (2). Then equality must hold
everywhere in Egs. (3) and (4). From the equality in Eq. (4) it follows that
A = qr*®. Thus, I = 2gr and r does not depend on the choice of the direction
of L. Furthermore, equality in Eq. (3) implies that

(xy" = Fx')P = (& + 7)Y 4+ (')

or
(xx" 4+ v = 0;
that is,
x _F N

Thus, x = Lry’. Since r does not depend on the choice of the direction of
L, we can interchange x and y in the last relation and obtain y = +rx’. Thus,

X2 4 p2 = (x4 (P)) = 2
and Cis a circle, as we wished. Q.E.D.

Remark 1. 1t is easily checked that the above proof can be applied to
C! curves, that is, curves a(t) = (x(t), y(t)), t & [a, b], for which we require
only that the functions x(#), y(z) have continuous first derivatives (which, of
course, agree at @ and b if the curve is closed).

Remark 2. The isoperimetric inequality holds true for a wide class of
curves. Direct proofs have been found that work as long as we can define arc
length and area for the curves under consideration. For the applications, it is
convenient to remark that the theorem holds for piecewise C! curves, that is,
continuous curves that are made up by a finite number of C! arcs. These
curves can have a finite number of corners, where the tangent is discontinu-
ous (Fig. 1-25).

A\/ﬂ

A piecewise C! curve Figure 1-25
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B. The Four-Vertex Theorem

We shall need further general facts on plane closed curves.

Let &:[0, /] - R% be a plane closed curve given by a(s) = (x(s), y(s)).
Since s is the arc length, the tangent vector #(s) = (x'(s), »'(s)) has unit
length. It is convenient to introduce the tangent indicatrix t: [0, ]] — R that is
given by #(s) == (x'(s), y'(s)); this is a differentiable curve, the trace of whichis
contained in a circle of radius 1 (Fig. 1-26). Observe that the velocity vector

yi f t "(5) = kn
L 'P
0 e
t(s)
Figure 1-26

of the tangent indicatrix is

A — (x"(), y7(s)

where n is the normal vector, oriented as in Remark 2 of Sec. 1-5, and k is
the curvature of a.

Let 8(s), 0 << 8(s) < 2z, be the angle that #(s) makes with the x axis; that
is, x'(s) = cos 8(s), y'(s) = sin B(s). Since

_ ¥(s).
f(s) = arc tan << GY

8 = 0(s) is locally well defined (that is, it is well defined in a small interval
about each s) as a differentiable function and

dt d
T E—(cos@ sin &)

— §'(—sin 8, cos 8) = §'n.
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This means that 8'(s) = k(s) and suggests defining a global differentiable
function §:]0, /] — R by

0(s) — j 0 k(s) ds.
Since

0 =k=xy"—x"y = (arc tan Q;-CT) ,

this global function agrees, up to constants, with the previous locally defined
6. Intuitively, 6(s) measures the total rotation of the tangent vector, that is,
the total angle described by the peoint ¢(s) on the tangent indicatrix, as we run
the curve & from O to s. Since « is closed, this angle is an integer multiple 7
of 2z ; that is,

j: k(s) ds — 0(I) — 6(0) — 2xl.

Tha intagar g 11
The integer 1
In Fig. 1-27 are some examples of curves with their rotation indices.
Observe that the rotation index changes sign when we change the orientation
of the curve. Furthermore, the definition is so set that the rotation index of a
positively oriented simple closed curve is positive.
An important global fact about the rotation index is given in the following

theorem, which will be proved later in the book (Sec. 5-6, Theorem 2).

1PVIO A
uiryvywe K.

THE THEOREM OF TURNING TANGENTS., The rotation index of a
simple ciosed curve is +1, where the sign depends on the orientation of the
curve.

A regular, plane (not necessarily closed) curve a: [a, 8] — R? is convex
if, for all 1 € [a, b}, the trace a([a, b]) of a lies entirely on one side of the closed
half-plane determined by the tangent line at ¢ (Fig. 1-28).

A vertex of a regular plane curve «:{a, b] — R? is a point ¢t & [a, b]
where k(#) = 0. For instance, an ellipse with unequal axes has exactly four
- vertices, namely the points where the axes meet the ellipse (see Exercise 3).
It is an interesting global fact that this is the least number of vertices for all
closed convex curves.

THEOREM 2 (The Four-Vertex Theorem). A simple closed convex
curve has at least four vertices.

Before starting the proof, we need a lemma.

LEMMA. Let :[0,1] — R? be a plane closed curve parametrized by arc
length and let A, B, and C be arbitrary real numbers. Then
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Tangent indicatrix

Figure 1-27

i=-1
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/Y \ J )
AN/ (s

Convex curves

S =

Nornconvex curves

Figure 1-28
! dk
(Ax + By + C)a— ds = 0, ()
where the functions X = x(s3), y = y(s) are given by a(s) = (x(s), y(s)), and k is
the curvature of a.

Proof of the Lemma. Recall that there exists a differentiable function
: [0, /] — R such that x'(s) = cos 8, y'(s) = sin 8. Thus, k(s) = 0'(s) and

x” — ___kyl’ yl.’ — kxl.

Therefore, since the functions involved agree at 0 and /,
7
J kK'ds =0,
0
4 I I
k'ds = —| kx'dx = — "ds =0,
fo xk' ds fo x"dx f{, y'ds
I ! i
J. yk'ds = —J ky'ds = J x"ds = 0. Q.E.D.
0 1] 0

Proof of the Theorem. Parametrize the curve by arc length, a: [0, /] — R2.
Since & = k(s) is a continuous function on the closed interval [0, ], it reaches
a maximum and a minimum on [0, I] (this is a basic fact in real functions; a
proof can be found, for instance, in the appendix to Chap. 5, Prop. 10).
Thus, o has at least two vertices, a(s;) = p and w«(s,) = g. Let L be the
straight line passing through p and ¢, and let § and y be the two arcs of C
which are determined by the points p and g.



40 Curves

We claim that each of these arcs lies on a definite side of L. Otherwise, it
meets L in a point r distinct from p and ¢ (Fig. 1-29(a)). By convexity, and
since p, g, r are distinct points on C, the tangent line at the intermediate
point, say p, has to agree with L. Again, by convexity, this implies that L is
tangent to C at the three points p, ¢, and ». But then the tangent to a point

r

\

(b)

Figure 1-29

near p (the intermediate point) will have g and  on distinct sides, unless the
whole segment rg of L belongs to C (Fig. 1-29(b)). This implies that k = 0
at p and g. Since these are points of maximum and minimum for k, kK = 0 on
C, a contradiction.

Let Ax + By + C =0 be the equation of L. If there are no further
vertices, k'(s) keeps a constant sign on each of the arcs § and y. We can then
arrange the sign of all the coefficients 4, B, C so that the integral in Eq. (5)
is positive. This contradiction shows that there is a third vertex and that
k'(s) changes sign on f or y, say, on f. Since p and g are points of maximum

wice on l@ Thnc there is a fourth vertex.

Q.E.D.

A 1
and minimum, k’(s) changes sign

Lapad

The four-vertex theorem has been the subject of many investigations. The
theorem also holds for simple, closed (not necessarily convex) curves, but the
proof is harder. For further literature on the subject see Reference [10].

Later (SEC. 5-6, PTOP 1) we shall prove that uyturu: closed curve is convex
if and only if it is simple and can be oriented so that its curvature is positive or
zero. From that, and the proof given above, we see that we can reformulate
the statement of the four-vertex theorem as follows. The curvature function
of a closed convex curve is (nonnegative and) either constant or else has at least
two maxima and two minima. It is then natural to ask whether such curvature
functions do characterize the convex curves. More precisely, we can ask the
following question. Let k: [a, b)) — R be a differentiable nonnegative function
such that k agrees, with all its derivatives, at a and b. Assume that k is either
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constant or else has at least two maxima and two minima. Is there a simple
closed curve o.: [a, b) — R?* such that the curvature of o at t is k(t)?

For the case where k(¢) is strictly positive, H. Gluck answered the above
question affirmatively (see H. Gluck, “The Converse to the Four Vertex
Theorem,” L’ Enseignement Mathématigue T. XVI1, fasc. 3-4 (1971), 295-309).
His methods, however, do not apply to the case k == 0.

C. The Cauchy-Crofton Formula

Our last topic in this section will be dedicated to finding a theorem which,
roughly speaking, describes the following situation. Let C be a regular curve
in the plane. We look at all straight lines in the plane that meet C and assign
to each such line a multipliciry which is the number of its interesection points
with C (Fig. 1-30).

n=3

g /e N\t
n=72 C \

Figure 1-30. n is the multiplicity of the Figure 1-31 [ is determined
corresponding straight line. by p and 6.

We first want to find a way of assigning a measure to a given subset of
straight lines in the plane. It should not be too surprising that this is possible.
After all, we assign a measure (area) to point subsets of the plane. Once we
realize that a straight line can be determined by two parameters (for instance,
p and @ in Fig. 1-31), we can think of the straight lines in the plane as points
in a region of a certain plane. Thus, what we want is to find a “reasonable”
way of measuring “areas” in such a plane.

Having chosen this measure, we want to apply it and find the measure of
the set of straight lines (counted with multiplicities) which meet C. The result
is quite interesting and can be stated as follows.

THEOREM 3 (The Cauchy-Crofton Formula). Let C be a regular plane
curve with length I, The measure of the set of straight lines (counted with
multiplicitiesy which meet C is equal to 21.
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Before going into the proof we must define what we mean by a reasonable
measure in the set of straight lines in the plane. First, let us choose a conve-
nient system of coordinates for such a set. A straight line L in the plane is
determined by the distance p > 0 from L to the origin O of the coordinates
and by the angle 8, 0 < @ < 27z, which a half-line starting at 0 and normal to
L makes with the x axis (Fig. 1-31). The equation of L in terms of these param-
eters is easily seen to be

xcos @ + ysin@ = p.

Thus we can replace the set of all straight lines in the plane by the set
£={(p,0)e R*; p=>0,0<6 < 2n}.

We will show that, up to a choice of units
measure in this set.

To decide what we mean by reasonable, let us look more closely at the
usual measure of areas in R?. We need a definition.

A rigid motion in R® is a map F: R? — R? given by (%, 7) — (x, ),
where (Fig. 1-32)

ioure 1.12
ogure 1-54

x=a-+ Xcosgp —ysing

S AT ©)
y =25+ Xxsing + ¥ cos g.

Now, to define the area of a set S « R? we consider the double integral

.”S dx dy;

that is, we integrate the “element of area” dx dy over S. When this integral
exists in some sense, we say that S is measurable and define the area of § as
the value of the above integral. From now on, we shall assume that all the
integrals involved in our discussions do exist.

Notice that we could have chosen some other element of area, say,
xy? dx dy. The reason for the choice of dx dy is that, up to a factor, this is
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the only element of area that is invariant under rigid motions. More precisely,
we have the following proposition.

PROPOSITION 1. Let f(x, y) be a continuous function defined in R*. For
any set S < R?, define the area A of S by

A®S) = [ _f(x,y)dxdy
(of course, we are considering only those sets for which the above integral

exists). Assume that A is invariant under rigid motions; that is, if S is any set
and S = F~1(8S), where F is the rigid motion (6), we have

AB) = j f (% 9)dxdy = j f f(x,y) dxdy = A(S).

Then f(x, y) = const.
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Here, x = x(x, ¥}, y = y(%, y) are functions with continuous pa_rtial deriva-
tives which define the transformation of variables 7: R* — R?, § = T71(S),
and

ox dx
d(x,y) (9% ‘9}7‘
0(x y) dy dy

6% ar

is the Jacobian of the transformation 7. In our particular case, the transfor-
mation is the rigid motion (6) and the Jacobian is

d(x,y) |coseg —sing|
it Sl I = 1.
oHx, V) ‘ sin @ cos ¢

By using this fact and Eq. (7), we obtain

[[ 7, 30, p5 5 dz a5 = [ [_fiz,5)di .

Since this is true for all S, we have
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We now use the fact that for any pair of points (x, p), (%, y) in R? there
exists a rigid motion F such that F(x¥, ) = (X, »). Thus,

fx, ) = (foF)%, ) = f(%, §),

" £ Y — onngc shad
Cu.,

ain _/.&,y}uuuuu,aawcw s1 E.D.

Fa ;e
-

Remark 3. The above proof rests upon two facts: first, that the Jacobian
of a rigid motion is 1, and, second, that the rigid motions are transitive on
points of the plane; that is, given two points in the plane there exists a rigid
motion taking one point into the other.

With these preparations, we can finally define a measure in the set £. We
first observe that the rigid motion (6) induces a transformation on £. In
fact, Eq. (6) maps the line x cos§ |- y sin @ = p into the line

xcos(@ — o) +ysin(@ —p)=p — acos@ — bsin 6.

This means that the transformation induced by Eq. (6) on £ is

p=p-—acosl — bsinb,
§=0—og.

It is easily checked that the Jacobian of the above transformation is 1 and
that such transformations are also transitive on the set of lines in the plane.

A7 4linen A ofinan dhhm v mmciarn b o ot
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In the same way as in Prop. 1, we can then prove that this is, up to a constant
factor, the only measure on £ that is invariant under rigid motions. This
measure is, therefore, as reasonable as it can be.

We can now sketch a proof of Theorem 3.

Sketch of Proof of Theorem 3. First assume that the curve Cis a segment
of a straight line with length /. Since our measure is invariant under rigid
motions, we can assume that the coordinate system has its origin O in the
middle point of C and that the x axis is in the direction of C. Then the measure
of the set of straight lines that meet C is (Fig. 1-33)

27 {cos @1 (1/2) 2r l
([apao= | ([ dp)d@z f Llcos01d0 = 2.



Global Properties of Plane Curves 45

v,

777N

Next, let C be a polygonal line composed of a finite number of segments
C; with length Z, (3 ], == I). Let n = n(p, @) be the number of intersection
points of the straight line (p, #) with C. Then, by summing up the results for
each segment C,, we obtain

andpd@zZZi]li:?.l, 6)

which is the Cauchy-Crofton formula for a polygonal line.
Finally, by a limiting process, it is possible to extend the above formula to
any regular curve, and this will prove Theorem 3. Q.E.D.

It should be remarked that the general ideas of this topic belong to a
branch of geometry known under the name of integral geometry. A survey
of the subject can be found in L. A. Santald, “Integral Geometry,” in
Studies in Global Geometry and Analysis, edited by S. S. Chern, The Mathe-
matical Association of America, 1967, 147-193.

The Cauchy-Crofton formula can be used in many ways. For instance,
if a curve is not rectifiable (see Exercise 9, Sec. 1-3) but the left-hand side of
Eq. (8) has a meaning, this can be used to define the “length” of such a curve.
Equation (8) can alsc be used to obtain an efficient way of estimating lengths
of curves. Indeed, a good approximation for the integral in Eq. (8) is given
as follows.t Consider a family of parallel straight lines such that two con-
secutive lines are at a distance ». Rotate this family by angles of n/4, 2n/4,
37/4 in order to obtain four families of straight lines. Let # be the number of
intersection points of a curve C with all these lines. Then

1 =

e
r

274

I want to thank Robert Gardner for suggesting this application and the example that
follows.
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is an approximation to the integral

1 07
é__” ndp df = length of C

good this estimate can be, let us work out an example.

Example. Figure 1-34 is a drawing of an electron micrograph of a
circular DNA molecule and we want to estimate its length. The four families
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Figure 1-34. Reproduced from H. Ris and B. C. Chandler, Cold Spring Harbor
Symp. Quant. Biol. 28, 2 (1963), with permission. :

X
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of straight lines at a distance of 7 millimeters and angles of z/4 are drawn
over the picture (a more practical way would be to have this family drawn
once and for all on transparent paper). The number of interesection points

ie fannd +
e

Fa kn 1<Q Th!‘(‘
15 20Ul 10 OC 105, i1iusS,

I 1 3.14

Since the reference line in the picture represents 1 micrometer (= 1075 meter)
and measures, in our scale, 25 millimeters, » = %2, and thus the length of
this DNA molecule, from our values, is approximately

60(?) ~ 16.6 micrometers.

The actual value is 16.3 micrometers.
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*1.

*2.

*4,

*S.

EXERCISES

Is there a simple closed curve in the plane with length equal to 6 feet and bound-
ing an area of 3 square feet?

Let AB be a segment of straight line and let / - length of AB. Show that the
curve C joining 4 and B, with length /, and such that together with 48 bounds
the largest possible area is an arc of a circle passing through A4 and B (Fig. 1-35),

1% LI A LIl 3 (28 8 ARG F2 QAL D2 A0S

%q_J\ ~

< —d—
P

Figure 1-35 Figure 1-36
Compute the curvature of the ellipse

X = acost, y =bhsint, t e [0,2n], a+ b,
and show that it has exactly four vertices, namely, the points (g, 0), (—a, 0),
(O: b)a (0: _b)
Let C be a plane curve and Iet T be the tangent line at a point p ¢ C. Draw a
line L parallei to the normai line at p and at a distance d of p (Fig. 1-36). Let / be

the length of the segment determined on L by C and T (thus, # is the “height” of
C relative to T). Prove that

. 2h
k()| = lim 7,
where k(p) is the curvature of C at p.

If a closed plane curve C is contained inside a disk of radius r, prove that there
exists a point p € C such that the curvature & of C at p satisfies | k]| > 1/r.

. Let &(s), s € [0, ] be a closed convex plane curve positively oriented. The curve

Bs) = a(s) — rns),
where r is a positive constant and » is the normal vector, is called a parallel
curve to & (Fig. 1-37). Show that
a. Length of § = length of & + 27r.
b. A(f) = A(®) + r] + 7r2.
c. ky(s) = k(s)/(1 + r).
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*9,

10.

*11.

B Figure 1.37

For (a)-{c), A( ) denotes the area bounded by the corresponding curve, and
k., k are the curvatures of & and JB, respectively.

Let o0: R — R? be a plane curve defined in the entire real line R. Assume that ¢
does not pass through the origin 0 = (0, 0) and that both

lim [a(r)| = oo and lim |a(z)| = co.

t—+wo

a. Prove that there exists a point f, & R such that |&(z,)] << |d(z)| for all
re R

b. Show, by an example, that the assertion in part a is false if one does not as-
sume that both lim,_,, .. |0(t)| = oo and lim,___, |&(z)| = oo.

*a. Let a(s), s € [0, [], be a plane simple closed curve., Assume that the curva-
ture k(s) satisfies 0 < k(s) << ¢, where ¢ is a constant (thus, & is less curved
than a circle of radius 1/¢). Prove that

b. In part a replace the assumption of being simple by “a has rotation index

N.” Prove that

length of &t > 210]! .

A set K © R2?is convex if given any two points p, g € K the segment of straight
line pq is contained in K (Fig. 1-38). Prove that a simple closed convex curve
bounds a convex set.

Let C be a convex plane curve. Prove geometrically that C has no self-intersec-
tions.

Given a nonconvex simple closed plane curve C, we can consider its convex hull
H (Fig. 1-39), that is, the boundary of the smallest convex set containing the
interior of C. The curve H is formed by arcs of C and by the segments of the
tangents to C that bridge “the nonconvex gaps” (Fig. 1-39). It can be proved
that H is a C! closed convex curve. Use this to show that, in the isoperimetric
problem, we can restrict ourselves to convex curves.
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Figure 1-38 Figure 1-39

*12. Consider a unit circle S! in the plane. Show that the ratio M /M, = 1, where
M, is the measure of the set of straight lines in the plane that meet S! and M, is
the measure of all such lines that determine in S! a chord of length > /3.
Intuitively, this ratio is the probability that a straight line that meets S! deter-
mines in S! a chord longer than the side of an equilateral triangle inscribed in
Si (Fig. 1-40).

A P
I 6\ . p r

Figure 1-40 Figure 1-41

13. Let C be an oriented plane closed curve with curvature k£ > 0. Assume that C
has at least one point p of self-intersection. Prove that

a. There is a point p° € C such that the tangent line 7~ at p’ is parallel to some
tangent at p.

b. The rotation angle of the tangent in the positive arc of C made up by pp’p is
> 7 (Fig. 1-41).

¢. The rotation index of Cis > 2.
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14.

15.

Curves

a. Show that if a straight line I meets a closed convex curve C, then either L is
tangent to C or L intersects C in exactly two points.

b. Use part a to show that the measure of the set of lines that meet C (without
multiplicities) is equal to the length of C.

Green’s theorem in the plane is a basic fact of calculus and can be stated as
follows. Let a simple closed plane curve be given by o(r) = (x(¢), ¥(t), t = [a, b].
Assume that ¢ is positively oriented, let C be its trace, and let R be the interior
of C. Letp = p(x, ¥),q = g{(x, y) be real functions with continuous partial deriv-
atives py, Py, 4x, 4y. Then

| —raxar= | (oG +a)an, ©®

where in the second integral it is understood that the functions p and g are
restricted to & and the integral is taken between the limits t = g and ¢ = b. In
parts a and b below we propose to derive, from Green’s theorem, a formula for
the area of R and the formula for the change of variables in double integrals
(cf. Egs. (1) and (7) in the text).

a. Setg = x and p = —y in Eq. (9) and conclude that

o ([ B 1 ey dy o dx\ .

A(R) JJ dx dy = .J \XW) o — y(t)Ft) dt.
b. Let f(x, y) be a real function with continuous partial derivatives and T
R2 — R2? be a transformation of coordinates given by the functions
x = x(u, v), y = y(u, v), which also admit continuous partial derivatives.

Choose in Eq. (9) p = 0 and g so that g, = f. Apply successively Green’s
theorem, the map 7, and Green’s theorem again to obtain

J J S ) dx dy = L q dy = ”T o @ DL @) + y'(0)) dt

= LN
B ffT—I(R) {au((q T)yy) a?)((q T)yu)} du dv.
Show that

9 (a(xt, v), v, ) — I-(a(xlu, v), (i, w)y,)
ou ov

= fx(u, 2), Yt ) (5uyy — X)) = f ggﬁ 5)) '

Put that together with the above and obtain the transformation formula for
double integrals:

U S e, y) dx dy = f F(x(, 0), ¥(w, 1)) a(("’ y; du dbv,
R T-1(R) u,



2 Regular
Surfaces

2-1. Introduction

In this chapter, we shall begin the study of surfaces. Whereas in the first
chapter we used mainly elementary calculus of one variable, we shall now
need some knowledge of calculus of several variables. Specifically, we need
to know some facts about continuity and differentiability of functions and
maps in R? and R3. What we need can be found in any standard text of
advanced calculus, for instance, Buck Advanced Calculus; we have included
a brief review of some of this material in an appendix to Chap. 2.

In Sec. 2-2 we shall introduce the basic concept of a regular surface in
R?. In contrast to the treatment of curves in Chap. 1, regular surfaces are
defined as sets rather than maps. The goal of Sec. 2-2 is to describe some
criteria that are helpful in trying to decide whether a given subset of R® is a
regular surface.

In Sec. 2-3 we shall show that it is possible to define what it means for a
function on a regular surface to be differentiable, and in Sec. 2-4 we shall
show that the usual notion of differential in R* can be extended to such func-
tions. Thus, regular surfaces in R* provide a natural setting for two-dimen-
sional calculus.

Of course, curves can also be treated from the same point of view, that is,
as subsets of R*® which provide a natural setting for one-dimensional calculus.
We shall mention them briefly in Sec., 2-3.

Sections 2-2 and 2-3 are crucial to the rest of the book. A beginner may
find the proofs in these sections somewhat difficult. If so, the proofs can be
omitted on a first reading.

)
~3
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In Sec. 2-3 we shall introduce the first fundamental form, a natural instru-
ment to treat metric questions (lengths of curves, areas of regions, etc.) on a
regular surface. This will become a very important issue when we reach Chap.
4.

Sections 2-6 through 2-8 are optional on a first reading. In Sec. 2-6, we
shall treat the idea of orientation on regular surfaces. This will be needed
in Chaps. 3 and 4. For the benefit of those who omit this section, we shall
review the notion of orientation at the beginning of Chap

2-2. Regular Surfaces;
Inverse Images of Regular Valuest

£ mm P,

Tem 1% 1. ~ A o evit Vo
alcvgu 1ar suriace 111 .ﬂ. I\U Ugll'

In this section we shall i
ly speaking, a regular surface in R3 is obtamed by taking pieces of a plane,
deforming them, and arranging them in such a way that the resulting figure
has no sharp points, edges, or seif-intersections and so that it makes sense to
speak of a tangent plane at points of the figure. The idea is to define a set
that is, in a certain sense, two-dimensional and that also is smooth enough
s0 that the usual notions of calculus can be extended to it. By the end of Sec.
2-4, it should be completely clear that the following definition is the right one.

DEFINITION 1. A subset S — R? is a regular surface if, for each p € S,
there exists a neighborhood V in R3 and a map x: U — V N S of an open set
U c R?onto VN S « R? such that (Fig. 2-1)

1. x is differentiable. This means that if we write
x(u, v) = (x(u, v), ¥(u, v), z(u, v)), (u,v) € U,

the functions x(u, v), y(u, v), z(u, v) have continuous partial derivatives
of all orders in U, ‘

2. X is a homeomorphism. Since x is continuous by condition 1, this
means that X has an inverse x™*: V. N S — U which is continuous;
that is, X~ is the restriction of a continuous map F: W — R? — R?
defined on an open set W containing V N S.

3. (The recularitv condition) For each a = U. the
J. (fne regu Iy congifion.) bor eacil g e Y, lhe

dx,: R* — R3 is one-to-one.t
We shall explain condition 3 in a short while.
+Proofs in this section may be omitted on a first reading.

iln italic context, letter symbols are roman so they can be distinguished from the sur-
rounding text.



The mapping x is called a parametrization or a system of (local) coordinates
in (a neighborhood of) p. The neighborhood ¥ " S of pin § is called a coor-
dinate neighborhood,

To give condition 3 a more familiar form, let us compute the matrix of the
linear map dx, in the canonical bases e; = (1,0), e, = (0, 1) of R? with
coordinates (#, ») and f; = (1,0,0), f, = (0, 1,0), /5 = (0, 0, 1) of R3, with
coordinates (x, p, z).

Letg = (uo, vy). The vector e; is tangent to the curve u — (u, v,) whose

uud.gc UHUCI X lb lﬂe CUrve

u > (x(u, vo), YU, v,), z(u, v,)).

This image curve (called the coordinate curve v = »;) lies on S and has at
x(gq) the tangent vector (Fig. 2-2)

(82,0 0) o

ou’ du’ du/  du’

where the derivatives are computed at (1, v,) and a vector is indicated by its
components in the basis { f,, f2, f5}. By the definition of differential (appendix
to Chap. 2, Def. 1),

dx_(e.,\=(£?_ -V i\
AU \d 6 /

Q‘!

76u

Similarly, using the coordinate curve u = u, (image by x of the curve
v — (ug, ¥)), We obtain

_ (9% 9y 05\ _ox
dxe;) = (dv’ v’ Gv) ¥ rh
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Figure 2-2

Thus, the matrix of the linear map dx, in the referred basis is

dx dx

ou oJv
__|dy 9y
dxq—— 'a—u' 0?) .
(?_z dz

\6u ﬁvl

Condition 3 of Def. 1 may now be expressed by requiring the two column
vectors of this matrix to be linearly independent; or, equivalently, that the
vector product dx/du A dx/dv % 0; or, in still another way, that one of the

minors of order 2 of the matrix of dx .. that is. one of the an determi-

Azgiaiis a3 A iws A UL Al LAAGNA SN R WJRgy vAALD 23, LT v 2 uu, u Vel Aixi

nants

ix o

a(xs y) . du v 6(.]7’ Z) d(xa z)

0w, v)  |gy dy ’ du, v)’ o(u, v)’°
ldu dv|

be different from zero at q.

Remark 1. Definition 1 deserves a few comments. First, in contrast to our

treatment of curves in Chap. 1, we have defined a surface as a subset S of
R3, and not as a map. This is achieved by covering S with the traces of

parametrizations Wthh satisfy conditions 1, 2, and 3.
Condition 1 is very natural if we expect to do some differential geometry
on S. The one-to-oneness in condition 2 has the purpose of preventing self-
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intersections in regular surfaces. This is clearly necessary if we are to speak
about, say, the tangent plane at a pointp € S (see Fig. 2-3(a)). The continuity
of the inverse in condition 2 has a more subtle purpose which can be fully

understood only in the next section. For the time being, we shall mention
that this condition is essential to proving that certain objects defined in terms

LAIGL 220 LUIARIALINAAL 20 LOSTAILIAL WS VAl Praft LLARGAAL Vg s LALALIR A AR

of a parametrization do not depend on thls parametrization but only on the
set S itself. Finally, as we shall show in Sec. 2.4, condition 3 will guarantee
the existence of a “tangent plane” at all points of S (see Fig. 2-3(b)).

EI.

(a) (b}

Figure 2-3. Some situations to be avoided in the definition of a regular surface.
Example 1. Let us show that the unit sphere
S?={(x,py,2) € R®; x* + p* 4 22 = 1}

is a regular surface.
We first verify that the map x,: U < R* — R? given by

(6, 0) = (x,y, +4/T =+ yY),  (y) e U,

where R? = {(x,y,2z) € R*;z=0}and U ={(x,y) € R?*; x* +y? < 1}, is
a parametrization of S2. Observe that x,(U) is the (open) part of S% above the
xy plane.

Since x2 -+ y? < 1, the function -+-+/1 — (x* + y*) has continuous
partial derivatives of all orders. Thus, x, is differentiable and condition 1
holds.

Condition 3 is easily verified, since

0. y) |
3o v)

To check condition 2, we observe that x, is one-to-one and that x7! is
the restriction of the (continuous) projection z(x, y, z) = (x, y) to the set
x(U). Thus, x;! is continuous in x,{U).
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We shall now cover the whole sphere with similar parametrizations as
follows. We define x,: U = R? — R? by

Xz(xs y) = (xa ¥s “/\/l - (x2 +y2))5

{(x,y,2) € R¥;x* +y* =1,z = 0}.

Then, using the xz and zy planes, we define the parametrizations

X5(x,z) = (x, +4/1 — (x* + z?), 2),
X4(x, 2) = (x, —/1T — (x? - 23), z),
Xs(y, 2) = (-FA/1 — (* + 2%, 3, 2),
Xs(y, 2) = (—A/1 — (¥* -+ 2%), 3, 2),

which, together with x, and x,, cover §? completely (Fig. 2-4) and show that

S? is a regular surface.

\

P . TN
/N N
X Y
]
Figure 2-4

For most applications, it is convenient to relate parametrizations to the
geographical coordinates on S2. Let V' ={(0,¢);0 <0 <z,0 < ¢ < 2z}
and let x: ¥ — R? be given by

x(8, ¢) = (sin @ cos ¢, sin 0 sin ¢, cos G).

Clearly, x(V) — S2. We shall prove that x is a parametrization of S2. 8 is
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Figure 2-5

usually called the colatitude (the complement of the latitude) and ¢ the
longitude (Fig. 2-5).

It is clear that the functions sin @ cos ¢, sin § sin ¢, cos § have continuous
partial derivatives of all orders; hence, x is differentiable. Moreover, in order
that the Jacobian determinants

gg;: .;3 = COS 9 sin 9:
gg’ Z% — sin? 0 cos @,
d(x, z)

o — sin? @ sin ¢

cos? B sin? @ + sin* @ cos? ¢ + sin* @ sin? p = sin* @ = 0.

This does not happen in ¥, and so conditions 1 and 3 of Def. 1 are satisfied.
Next, we observe that given (x, y, z) € 8 — C, where C is the semicircle

C= {(x:ys Z) = Sz:y = O,XZO},

@ is uniquely determined by § = cos™! z, since 0 << 8 << z. By knowing 8,
we find sing and cos¢ from x =sinfcosep, y =sin@sin g, and this
determines ¢ uniquely (0 << ¢ < 2x). It follows that x has an inverse x~'.
To complete the verification of condition 2, we should prove that x7! is
continuous. However, since we shall soon prove (Prop. 4) that this verifica-
tion is not necessary provided we already know that the set S'is a regular sur-
face, we shall not do that here. » )

We remark that x(V) only omits a semicircle of S? (including the two
poles) and that S? can be covered with the coordinate neighborhoods of two
parametrizations of this type.
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In Exercise 16 we shall indicate how to cover S? with another useful set
of coordinate neighborhoods.

Example 1 shows that deciding whether a given subset of R? is a regular
surface directly from the definition may be quite tiresome. Before going into
further examples, we shall present two propositions which will simplify this
task. Proposition 1 shows the relation which exists between the definition of a
regular surface and the graph of a function z = f(x, ). Proposition 2 uses
the inverse function theorem and relates the definition of a regular surface
with the subsets of the form f{x, y, z) — constant.

PROPOSITION 1. If f: U — R is a differentiable function in an open
set U of R2, then the graph of I, that is, the subset of R® given by (x, y, f(X, y))
Jor (x,¥) € U, is a regular surface.

Proof: Tt suflices to show that the map x: U — R® given by

X(u: ’U) - (ua v, f(us 'U))

is a parametrization of the graph whose coordinate neighborhood covers
every point of the graph. Condition 1 is clearly satisfied, and condition 3
also offers no difficulty since d(x, y)/d(u, ¥) = 1. Finally, each point (x, y, z)
of the graph is the image under x of the unique point (i, v) = (x, y) € U.
X is therefore one-to-one, and since x~! is the restriction to the graph of f
of the (continuous) projection of R* onto the xy plane, x™! is continuous.

Q.E.D.

Before stating Prop. 2, we shall need a definition.

DEFINITION 2. Given a differentiable map F: U < R™ — R™ defined in
an open set U of R" we say that p € U is a critical point of F if the differential
dF,: R®» — R™ is not a surjective (or onto) mapping. The image F(p) € R™
of a critical point is called a critical value of F. A point of R™ which is not a
critical value is called a regular value of F.

The terminology is evidently motivated by the particular case in which
f:U < R— Ris a real-valued function of a real variable. A pointx, € U
is critical if f'(x,) = 0, that is, if the differential df,, carries all the vectors in
R to the zero vector (Fig. 2-6). Notice that any point a ¢ f(U) is trivially a

regular value of f.
Iff:0c RP—R is a differentiable function, then df applied

JLLICTCIILiaAlNG oS YU p Yt

to t
vector (1,0, 0) is obtained by calculating the tangent vector at f(p) to the
curve

h

[¢]

X ~—> f(x, Yo Zo)-
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Figure 2-6

It follows that
4r(1,0,0) = L xy, ygy 2) = f.
and analogously that
df(0,1,0) =f,,  df(0,0,1)=f..

We conclude that the matrix of df, in the basis (1, 0, 0), (0, 1, 0), (0, 0, 1) is
given by

A, = (forfir f.).

< P \SxMS Sz

Note, in this case, that to say that df, is not surjective is equivalent to
saying that f, =f, =f, =0 at p. Hence, a € f(U) is a regular value of
f: U< R* — Rif and only if f,, f,, and £, do not vanish simultaneously at
any point in the inverse image

f @) = {(x,y,2) € U: f(x,y, 2) = a}.

PROPOSITION 2. If f: U < R? — R is a differentiable function and
a € f(U) is a regular value of f, then £ ~(a) is a regular surface in R3.

Proof. Let p = (x4, Vo, Z,) be @ point of f~1(a). Since a is a regular value
of £, it is possible to assume, by renaming the axis if necessary, that f, == 0 at
p. We define a mapping F: U < R® — R* by

F(x,p,2) = (%, 9, f(x, 9, 2)s

and we indicate by (4, #, t) the coordinates of a point in R*® where F takes its
values. The differential of F at p is given by
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1 0 0
dF,=|0 1 0}
\fs £y [

whence
det(dF,)) =f, + 0.

We can therefore apply the inverse function theorem (cf. the appendix to
Chap. 2), which guarantees the existence of neighborhoods ¥ of p and W of
F(p) such that F: V — W is invertible and the inverse F~': W - V 1s differ-
entiable (Fig. 2-7). It follows that the coordinate functions of F 1, i.e., the
functions

X = u, y=u, z = g(u, v, t), (w,v, 1)y e W,

-1
ri@ny rea

z /1'—*'/—711/ ‘t /T—/_—‘?W

y e G

Figure 2-7

are differentiable. In particular, z = g(u, », a) = h(x, y) is a differentiable
function defined in the projection of V onto the xy plane. Since

F(f " \aanV)=Wn{uwv?),;t=a},

we conclude that the graph of s f~*(a) N V. By Prop. 1, (@) N Vis a
coordinate neighborhood of p. Therefore, every p € f~!(a) can be covered
by a coordinate neighborhood, and so f~!(a) is a regular surface. Q.E.D.

Remark 2. The proof consists essentially of using the inverse function
theorem “to solve for z” in the equation f(x, y, z) = a, which can be done

in a neighborhood of p if f,(p) == 0. This fact i1s a special case of the general
implicit function theorem, which follows from the inverse function theorem

and 1g¢ 1n fact aanivalant tn it
ang 1s, 1n iact, equivaient 1o i,
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Example 2. The ellipsoid
x2 2 22
atpta—!

is a regular surface. In fact, it is the set f~!(0) where

2 2 2
flx.p,2) — 2 X 2 g
J NTFR S35, az,l bz.' c&

1s a differentiable function and 0 is a regular value of f. This follows from the
fact that the partial derivatives f, = 2x/a?, f, = 2y/b*, f, = 2z/c* vanish
simultaneously only at the point (0, 0, 0), which does not belong to f~1(0).
This example includes the sphere as a particular case (a =b = ¢ = 1).

The examples of regular surfaces presented so far have been connected
subsets of R3. A surface S — R? is said to be connected if any two of its points
can be joined by a continuous curve in S. In the definition of a regular surface
we made no restrictions on the connectedness of the surfaces, and the follow-
ing example shows that the regular surfaces given by Prop. 2 may not be con-
nected.

Example 3. The hyperboloid of two sheets —x* —p2 + 22 =1 is a
regular surface, since it is given by S = f~!(0), where 0 1s a regular value of
f(x,py,z) = —x* — y* + z2 — 1 (Fig. 2-8). Note that the surface S is not
connected ; that is, given two points in two distinct sheets (z > 0 and z << 0)
it 1s not possible to join them by a continuous curve a(f) = (x(¢), y(¢), z(t))
contained in the surface; otherwise, z changes sign and, for some ¢,, we have
=(t,) = 0, which means that a(t,) ¢ S.

Us 3 e

Incidentally, the argument of Example 3 may be used to prove a property
of connected surfaces that we shall use repeatedly. If f:S c R3-»> R isa

nonzero continuous function defined on a connected surface S, then f does not
change sign on S.

To prove this, we use the intermediate value theorem (appendix to Chap.
2, Prop. 4). Assume, by contradiction, that f(p) >0 and f(g) <0 for
some points p,g € S. Since § is connected, there exists a continuous curve
2:[a, b} — S with a(a) = p, a(b) = g. By applying the intermediate value
theorem to the continuous function f o & : [a, b] — R, we find that there exists
¢ € (a, b) with f o a(c) = 0; that is, f is zero at «(c), a contradiction.

Example 4. The torus T is a “surface” generated by rotating a circle S*
of radius r about a straight line belonging to the plane of the circle and at a
distance a > r away from the center of the circle (Fig. 2-9}.
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Figure 2-8. A nonconnected surface:
—y2 — x2 4 g2 =1,

Let S* be the circle in the yz plane with its center in the point (0, a, 0).
Then S' is given by (y — a)* + z? == r2, and the points of the figure T" ob-
tained by rotating this circle about the z axis satisfy the equation

Therefore, T is the inverse image of r? by the function

flx,p,2) =22 + (V/x* +y? —a)

This function is differentiable for (x, y)} == (0, 0), and since

o _,. O _2/FIy-a)

e -_— 2> '!

A X+ pt
of _ 2x(/x*+y*—a)
ox A/x24-v

r? is a regular value of f. It follows that the torus 7 is a regular surface.

Proposition 1 says that the graph of a differentiable function is a regular
surface. The following proposition provides a local converse of this; that is,

anv reonlar surface is locallv the oranh of a differentiable function,

Ly WHWAGA SLLIGMVY 30 AURQELY AV BIGPHEE VU Q MILVIVULMIGR VIV L eiiveita



Figure 2-9

PROPOSITION 3. Let S < R? be aregular surface and p € S. Then there
exists a neighborhood V of p in S such that V is the graph of a differentiable
Sfunction which has one of the following three forms: z = {(x,y), y = g(x, z),
x = h(y, z).

Proof. Let x: U — R* — § be a parametrization of § in p, and write
x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) € U. By condition 3 of Def. 1, one
of the Jacobian determinants

ox,y), 0,z dzx)
d(u, v) o(u, v) o(u, v)

1s not zero at x~!'(p) =g¢.

Suppose first that (d(x, y)/d(u, v))(¢) == 0, and consider the map z o x:
U— R?, where r is the projection z(x, y, z) = (x, ¥). Then 7z o x(u, v) =
(x(u, ©), y(u, v)), and, since (d(x, y)/d(u, v))(g) = 0, we can apply the inverse

function theorem to guarantee the existence of npighhﬂrhnndq V. ofag, V., of

AR LAAURIINRL WK MO GAILTT VALY SAZILVURILG VL LIS UV AIVORAS i Mryy 72

7 o x(q) such that z o x maps V, diffeomorphically onto V, (Fig. 2-10). It fol-
lows that z restricted to x(¥;) = Vis one-to-one and that there is a differenti-
able inverse (z o x)~*: V, — V. Observe that, since x is a homeomorphism,
V is a neighborhood of pin S. Now, if we compose the map (mo x)"!: (x,y)—
(u(x, ¥), v(x, y)) with the function (u, v) — z(u, v), we find that ¥ is the graph
of the differentiable function z = z{(u(x, y), »(x, ¥)) = f(x, ), and this settles
the first case.

The remaining cases can be treated in the same way, yielding x = A(y, z)

and y = g(x, z). Q.E.D.

The next proposition says that if we already know that S is a regular
surface and we have a candidate x for a parametrization, we do not have to
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<

(e ’”'1\ p Vs

Figure 2-10

check that x~! is continuous, provided that the other conditions hold. This
remark was used in Example 1.

PROPOSITION 4. Let p € S be a point of a regular surface S and ler
x: U © R? — R? be amap withp € x(U) such that conditions 1 and 3 ofDef
1 hold. Assume that X is one-to-one. Then X~ is continuous.

Proof. The first part of the proof is similar to the proof of Prop. 3. Write
x(u, v) = (x(u, v), y(u, v), z(4, v)), (v, v) € U, and letqg € U. By conditions 1
and 3 we may assume, interchanging the coordinate axis of R? if necessary,
that (G(x »/dw, v))(q) #= 0. Let z: R* — R? be the projection n(x, y, 2y =

{v 1 Fram tha invarce firnetinn thanram wa nhtn hhanavrlbhnanda T7 AF 4
X, y} CIrom tne INverse iunclicn tneorem, we golain uulsulJULuuuua ¥ 01 q

in U and V, of n o X(g) in R® such that z - x maps V, diffeomorphically onto
V,.
Assume now that x is one-to-one. Then, restricted to x(V)),

X !=(moX)lon

(see Fig. 2-10). Thus, x~! is continuous as a composition of continuous
maps. Since g is arbitrary, x~! is continuous in x(U). Q.E.D.

Example 5. The one-sheeted cone C, given by

z=+/x*+y%,  (x,y) € R,

is not a regular surface. Observe that we cannot conclude this from the fact
alone that the “natural” parametrization

1S vt A;#nrr\ul- nalklac thara n11lAd ha Athar maramateirafi~ang cotiofitaa TYaf
13 Mot Ui Citiauiv, Livic CUuid ue ULl yalauu..u 1LLalivii aaua;yu[ L/7C1 i
To show that this is not the case, we use Prop. 3. If C were a regular

surface, it would be in a neighborhood of (0,0, 0) € C, the graph of a
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differentiable function having one of three forms: y = h(x, z), x = g(y, z),
= = f(x,y). The two first forms can be discarded by the simple fact that the
projections of C over the xz and yz planes are not one-to-one. The last form
would have to agree, in a neighborhood of (0, 0, 0), with z = +./x* + y2,
Since z = +,/x* -+ »* is not differentiable at (0, 0), this is impossible.

Example 6. A parametrization for the torus T' of Example 4 can be given

v (Eia .00
Y \rig. £-5)
X(u, v) = ((r cos u + a) cos v, (r cos u + a) sin v, r sin u),

where 0 < u < 27z, 0 < v << 27.

Condition 1 of Def. 1 is easily checked, and condition 3 reduces to a
straightforward computation, which is left as an exercise. Since we know that
T'is a regular surface, condition 2 is equivalent, by Prop. 4, to the fact that x
1s one-to-one.

To prove that x is one-to-one, we first observe that sin ¥ = z/r; also, if
VX yr<a, then /2 < u < 3m/2, and if ./x* + y® > a, then either
0 <wu< 72 or 37/2 << u < 2x. Thus, given (x, y, z), this determines u,
0 < w < 2m, uniquely. By knowing u, x, and y we find cos # and sin ». This
determines » uniquely, 0 << v < 2z. Thus, x is one-to-one.

EXERCISEST

1. Show that the cylinder {(x, y, z) € R3; x% -+ y2 = 1} is a regular surface, and
find parametrizations whose coordinate neighborhoods cover it.

2. Is the set {{x, y, z) € R¥; z = O and x2 -}- y2 < 1} a regular surface? Is the set
{{x,y,2) € R}; z =0, and x* 4 y2 < 1} a regular surface?

3. Show that the two-sheeted cone, with its vertex at the origin, that is, the set
{(x,y,2) € R¥; x2 -+ y2 — z2 = (}, is not a regular surface.

1. Let f(x, y, z) = z2. Prove that 0 is not a regular value of f and yet that f~1(0) is
a regular surface.

*5. Let P = {(x, y,2) € R?; x = y}(aplane) and letx: U < R?> — R3 be given by
X(H, U) = (H.' + v, i + v, MU)’

where U = {(u, v) € R%;u > »}. Clearly, x(UU) < P. Is x a parametrization of
P?

tThose who have omitted the proofs in this section should also omit Exercises 17-19,
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6. Give another proof of Prop. 1 by applying Prop. 2to A(x, y, z) = f(x, y) — z.

7. Let f(x,y,2) =(x +y +z — 1)~
a. Locate the critical points and critical values of f.
b. For what values of ¢ is the set f(x, ¥, z) = ¢ a regular surface?
c. Answer the questions of parts a and b for the function f(x, y, z) = xyz2.

8. Let x(«#, v) be as in Def. 1. Verify that dx,: R2 — R3 is one-to-one if and only if
dx , ox
— A = 7= 0.
3u " o7
9, Let ¥ be an open set in the xy plane. Show that the set
{(x,y,2) € R®;z=0and (x,y) € V}

is a regular surface.

10. Let C be a figure “8” in the xy plane and let S be the cylindrical surface over C
(Fig. 2-11); that is,

S={x,y,2) € R%(x,y) € C}

Is the set .S a regular surface ?

W

| r:ﬁﬁ 17
| o

11. Show that the set S = {(x, y, z) ¢ R3®;z = x2 — y2} is a regular surface and
check that parts a and b are parametrizations for S

Figure 2-11

a. x(u,v) = (u + v, u — v, 4uv), (1, v) € R2,
*b. x(u, v) = (u cosh », u sinh v, u?), (4, v) € R2, u + 0.
Which parts of S do these parametrizations cover?

12, Show thatx: U < R? — R3 given by
x(u, v) = (@ sin « cos v, bsin u sin v, ¢ cos #), a, b, c + 0,

where 0 << u < 7, 0 < v < 2m, is a parametrization for the ellipsoid
x2  yr z2
aTEta—1

Describe geometrically the curves # = const. on the ellipsoid.
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*13.

14.

*15.

16.

Find a parametrization for the hyperboloid of two sheets {(x, y, z) € R?;

42 2 22— 11
AT TOYT T 4T — 1.

A half-line [0, co) is perpendicular to a line E and rotates about E from a given
initial position while its origin 0 moves along E. The movement is such that
when [0, o) has rotated through an angle @, the origin is at a distance
d = sin2(@/2) from its initial position on E. Verify that by removing the line E
from the image of the rotating line we obtain a regular surface. If the movement
were such that d = sin(@/2), what else would need to be excluded to have a
regular surface?

Let two points p(f) and g(¢f) move with the same speed, p starting from (0, 0, 0)
and moving along the z axis and g starting at (a, 0, 0), a #= 0, and moving par-
allel to the y axis. Show that the line joining p(t)} to g(¢) describes a set in R®
given by y(x — a) + zx = 0. Is this a regular surface?

One way to define a system of coordinates for the sphere S2, given by
x2 4+ y2 + (z — 1)2 =1, is to consider the so-called stereographic projection
m: S% ~ {N}-— R? which carries a point p = (x, y, z) of the sphere 52 minus
the north pole N = (0, 0, 2) onto the intersection of the xy plane with the
straight line which connects N to p (Fig. 2-12). Let (&, v} = 7z (x, y, z), where
(x,y,2) € §2 ~ {N}and (4, v) € xy plane.

a. Show that #~1: R* — S2is given by

ro 4u
R R

-1y 4o
<.<ymuz+ﬁ2+4’
2w 0%
SRR

x - (p) —=

Figure 2-12. The stereographic projection.
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b. Show that it is possible, using stereographic projection, to cover the sphere
with two coordinate neighborhoods.

17. Define a regular curve in analogy with a regular surface. Prove that

a. The inverse image of a regular value of a differentiable function
fiUc RE—R

is a regular plane curve. Give an example of such a curve which is not con-
nected.

b. The inverse image of a regular value of a differentiable map
F.:Uc R3— RZ

is a regular curve in R3, Show the relationship between this proposition and
the classical way of defining a curve in R? as the intersection of two surfaces.

*¢. The set C = {(x, ¥} € R2%; x> = y?}is not a regular curve.

*18. Suppose that f(x, y, z) = u = const., g(x,y, z) = v = const,,

o

h(x, y, ) = w = const.,

describe three families of regular surfaces and assume that at (xo, y,, zo) the
Jacobian

Prove that in a neighborhood of (x,, y,, z,) the three families will be described
by a mapping F(u, v, w) = (x, », z) of an open set of R3 into R3, where a local
parametrization for the surface of the family f(x, y, z) = u, for example, is
obtained by setting # = const. in this mapping. Determine F for the case where
the three families of surfaces are

flx, y,2) = x2 4 y2 + z2 = u = const.; {(spheres with center (0, 0, 0));
glx,y,2) = % = p = const., (planes through the z axis);

2 2
hix,y,z) = %y_ = w = const., (cones with vertex at (0, 0, 0)).

Let %: (—3,0) — R?2 be defined by (Fig. 2-13)

=0, —(+ +2)), ifte (-3, 1),
= regular parametrized curve joining p = (0, —1)tog = (71{, 0) ,

) tee(-1—1)

— (—z, —sin i), ifre (—i, 0).
t T
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qg=(1/7,0)
Ny ¢ = LU

0 x

p=(0,-1)
Horizontal scale distinct from vertical scale

Figure 2-13

It is possible to define the curve joining p to g so that all the derivatives of & are
continuous at the corresponding points and @ has no self~intersections. Let C

be the trace of 0.

a. Is C a regular curve?

b. Let a normal line to the plane R? run through C so that it describes a “cylin-
der” S. Is S a regular surface?

2-3 Chang of Parameters

N L fnrnsrdin Ay P 1_- .......... Ciradmmnn +
Uun::n::uuau: i nuuuna ori ou”abual

Differential geometry is concerned with those properties of surfaces which
depend on their behavior in a neighborhood of a point. The definition of a
regular surface given in Sec. 2-2 is adequate for this purpose. According to
this definition, each point p of a regular surface belongs to a coordinate
neighborhood. The points of such a neighborhood are characterized by their
coordinates, and we should be able, therefore, to define the local properties
which interest us in terms of these coordinates.

For example, it is important that we be able to define what it means for a
function f: S -- R to be differentiable at a point p of a regular surface S.
A natural way to proceed is to choose a coordinate neighborhood of p, with
coordinates u, », and say that f is differentiable at p if its expression in the
coordinates # and v admits continuous partial derivatives of all orders.

The same point of S can, however, belong to various coordinate neigh-
borhoods (in the sphere of Example 1 of Sec. 2-2 any point of the interior of
the first octant belongs to three of the given coordinate neighborhoods).

13 Ly ~lnpmi

I‘UOTE‘:OVE‘:T other coordinate Systems could D€ Cnosen ina uclg[lDurIluuu of P
(the points referred to on the sphere could also be parametrized by geo-

tProofs in this section may be omitted on a first reading.
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graphical coordinates or by stereographic projection; cf. Exercise 16, Sec.
2-2). For the above definition to make sense, it is necessary that it does not
depend on the chosen system of coordinates. In other words, it must be shown
that when p belongs to two coordinate neighborhoods, with parameters
(u, v} and (&, n), it is possible to pass from one of these pairs of coordinates
to the other by means of a differentiable transformation.

The following proposition shows that this is true.

PROPOSITION 1 (Change of Parameters). Let p be a point of a regular
surface S, and let x: U < R2 — §, y: V < R? — 8§ be two parametrizations
of S such that p € x(U) N y(V) = W. Then the “change of coordinates”
h=x"1oy:y W) — x Y(W) (Fig. 2-14) is a diffeomorphism; that is, h is
differentiable and has a differentiable inverse h™1.

X yl(w)

Figure 2-14

In other words, if x and y are gtven by

X(u, 7-)) - (x(u, ’U): y(u: ’U)s Z(u: 7)))’ (u’ 'U) e U,
Y(éa 77) = (x(fa ﬂ)’ y(f: ”)’ Z(éa ”))’ (és 7.7) eV,

then the change of coordinates %, given by

u= u(é: ﬂ): v = U(é, ), (fa RS y_l(W)s
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has the property that the functions « and » have continuous partial derivatives
of all orders, and the map # can be inverted, yielding

{=C¢wv), n=1n@Wv), (v)ex (W),

where the functions ¢ and # also have partial derivatives of all orders. Since

0, v) I, m) _ |
3Em " 3, )

this implies that the Jacobian determinants of both # and ~2~! are nonzero
everywhere.

Proof of Prop. 1. h = x"toy 1s a homeomorphism, since it is composed
of homeomorphisms (cf. the appendix to Chap. 2, Prop. 3). It is not possible
to conclude, by an analogous argument, that A is differentiable, since x~! is
defired in an open subset of S, and we do not yet know what is meant by a
differentiable function on S.

We proceed in the following way. Let r € y" (W) and set ¢ = h(r).
Since x(u, v) = (x(«, v), ¥(u, v), z(4, v)) is a parametrization, we can assume,
by renaming the axis if necessary, that

1

a(x, y)
3, v)(q) = 0.

We extend x to a map F: U X R — R?® defined by
F(u, v, 1) = (x(u, v), y(u, v), 2(u, v) + 1), (u,v) e U,t € R.

Geometrically, F maps a vertical cylinder C over U into a “vertical cylinder”
over x(U) by mapping each section of C with height ¢ into the surface x(u, v)
-+ te,, where e, is the unit vector of the z axis (Fig. 2-14).

It is clear that F is differentiable and that the restriction F| U X {0} = x.
Calculating the determinant of the differential dF,, we obtain

dx dx

g o5 °

dy Iy i _ 9x,»

du 3 = a0
gz 9z |

du v

Itis possible therefore to apply the inverse function theorem, which guaran—

am w1 L1 AN LS 2l -1 T—1 fedo e
tees Lﬂe CX]b[CHLC Ul a uc1g11001 OQ /M OI th) lll ﬂ bl.lbll tnat r CXIStS dIlU

1s differentiable in M.
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By the continuity of y, there exists a neighborhood N of r in ¥ such that
y(N) < M (appendix to Chap. 2, Prop. 2). Notice that, restricted to N,
h|N = F~' o y| N is acomposition of differentiable maps. Thus, we can apply
the chain rule for maps (appendix to Chap. 2, Prop. 8) and conclude that 4
is differentiable at #. Since r is arbitrary, 4 is differentiable on y~!(¥).

Exactly the same argument can be applied to show that the map A1 is
differentiable, and so 4 is a diffeomorphism. Q.E.D.

We shall now give an explicit definition of what is meant by a differentiable
function on a regular surface.

DEFINITION 1. Let f:V < S — R be a function defined in an open
subset V of a regular surface S. Then f is said to be differentiable at p € V if,
for some parametrization x: U < R? - S with p € x(U) < V, the composi-
tionf o x: U o R* — Risdifferentiable ar x~'(p). f is differentiable in V if it is
differentiable at all points of V.

It follows immediately from the last proposition that the definition given
does not depend on the choice of the parametrization x. In fact, if
y: V <« R? — Sisanother parametrization with p € x(V), and if 4 = x 1oy,
then fo y = f o x o his also differentiable, whence the asserted independence.

Remark 1. We shall frequently make the notational abuse of indicating
fand f o x by the same symbol f(x, v), and say that f(u, v} is the expression
of f in the system of coordinates x. This is equivalent to identifying x(U)
with U and thinking of (u, »), indifferently, as a point of U and as a point of
x(U) with coordinates (u, »). From now on, abuses of language of this type
will be used without further comment.

Example 1. Let S be a regular surface and V' < R® be an open set such
that S < V. Let f: V< R3— R be a differentiable function. Then the
restriction of f to S is a differentiable function on S. In fact, forany p € S
and any parametrization x: U < R> — S in p, the functionf o x: U— R is
differentiable. In particular, the following are differentiable functions:

1. The height function relative to a unit vector v € R} h: S — R,
given by A(p) = p-v, p € S, where the dot denotes the usual inner
product in R*. A(p)is the height of p € S relative to a plane normal to
v and passing through the origin of R3 (Fig. 2-15).

2. The square of the distance from a fixed point p, € R3, f(p) =
|p — pol? p € S. The need for taking the square comes from the
fact that the distance |p — p,| is not differentiable at p = p,.

Remark 2. The proof of Prop. 1 makes essential use of the fact that the
inverse of a parametrization is continuous. Since we need Prop. 1 to be able
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A= o

Figure 2-15

to define differentiable functions on surfaces (a vital concept), we cannot
dispose of this condition in the definition of a regular surface (cf. Remark 1
of Sec. 2-2).

The definition of differentiability can be easily extended to mappings
between surfaces. A continuous map ¢: V, < S, — S, of an open set V;
of a regular surface S, to a regular surface S, is said to be differentiable at
p € V, if, given parametrizations

XI:UICRZ'—'——)SI XZ:UZCRZ—*SZ,
with p € x,(U) and ¢(x,(U,)) < x,(U,), the map
X;logpox: U, —> U,

is differentiable at g = x7'(p) (Fig. 2-16).

/ﬁ\
}Vl x2'10¢ox3

° |

Figure 2-16

3
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In other words, ¢ is differentiable if when expressed in local coordinates
as p(u,, v,) = (@,(u;, v1), p,(t, v,)) the functions ¢, and ¢, have continuous
partial derivatives of all orders.

The proof that this definitions does not depend on the choice of para-
metrizations is left as an exercise.

We should mention that the natural notion of equivalence associated with
differentiability is the notion of diffeomorphism. Two regular surfaces S,
and S, are diffeomorphic if there exists a differentiable map ¢: S; — S, with
a differentiable inverse p~1: S; — S,;. Such a ¢ is called a diffeomorphism
from S, to §,. The notion of diffeomorphism plays the same role in the study
of regular surfaces that the notion of isomorphism plays in the study of
vector spaces or the notion of congruence plays in Euclidean geometry. In
other words, from the point of view of differentiability, two diffeomorphic
surfaces are indistinguishable.

Example 2. If x: U < R? — § is a parametrization, x !:x(U) — R?
is differentiable. In fact, for any p € x(U) and any parametrization
y:V < R?— Sinp,wehavethat x™! o y: y {(W) — x (W), where

W=x(U) N y(V),

is differentiable. This shows that U and x(U) are diffeomorphic (i.e., every
regular surface is locally diffeomorphic to a plane) and justifies the identi-
fication made in Remark 1.

Example 3. Let S, and S, be regular surfaces. Assume that §; < ¥V < R?,
where V is an open set of R?, and that ¢: V' — R® is a differentiable map such
that p(S;) < ;. Then the restriction ¢ |S,: S, — 3, is a differentiable map.
In fact, given p € S, and parametrizations x,: U, -— S|, x,: U; — S,, with
P € x,(U,) and p(x,(U,)) = x,(U,), we have that the map

x;lopox U —> U,
is differentiable. The following are particular cases of this general example:

1. Let S be symmetric relative to the xy plane; that is, if (x, y, z) €
S, then also (x, y, —z) € S. Then the map o: S — S, which takes
p € S into its symmetrical point, is differentiable, since it is the
restriction to S of g: R®* — R?, o(x, y, z) = (x, y, —z). This, of
course, generalizes to surfaces symmetric relative to any plane of R3.
2. Let R, 4: R® — R*® be the rotation of angle 8 about the z axis, and
let S < R?® be a regular surface invariant by this rotation; i.e., if
p € S, R, o(p) € S. Then the restriction R, q: S — S is a differen-

tiable map.
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3. Let p: R® — R?® be given by ¢p(x, y, z) = (xa, yb, zc), where a, b,

and ¢ are nonzero real numbers. ¢ is clearly differentiable, and the

restriction ¢ | S is a differentiable map from the sphere
S ={(x,y,z) € R*; x* + y? + 22 = 1}

into the ellipsoid
) xZ 2 ZZ
R R il

(cf. Example 6 of the appendix to Chap 2).

Remark 3. Proposition 1 implies (cf. Example 2) that a parametrization
x: U c R* — Sis a diffeomorphism of U onto x(U). Actually, we can now
characterize the regular surfaces as those subsets S < R* which are locally
diffeomorphic to R?; that is, for each point p € S, there exists a neighbor-
hood V of p in S, an open set U = R?, and a map x: U — V, which is a
diffeomorphism. This pretty characterization could be taken as the starting
point of a treatment of surfaces (see Exercise 13).

At this stage we could return to the theory of curves and treat them from
the point of view of this chapter, i.e., as subsets of R*. We shall mention only
certain fundamental points and leave the details to the reader.

The symbol 7 will denote an open interval of the line R. A regular curve
in R? is a subset C = R® with the following property: For each point p € C
there is a neighborhood ¥ of p in R?® and a differentiable homeomorphism
o:l = R— V n C such that the differential dx, is one-to-one for each
t € I (Fig. 2-17).

It is possible to prove (Exercise 15) that the change of parameters is given
(as with surfaces) by a diffeomorphism. From this fundamental result, it is
possible to decide when a given property obtained by means of a parametriza-
tion is independent of that parametrization. Such a property will then be a
local property of the set C.

For example, it is shown that the arc length, defined in Chap. 1, is inde-
pendent of the parametrization chosen (Exercise 15) and is, therefore, a
property of the set C. Since it is always possible to locally parametrize a
regular curve C by arc length, the properties (curvature, torsion, etc.) deter-
mined by means of this parametrization are local properties of S. This shows
that the local theory of curves developed in Chap. 1 is valid for regular curves.

Sometimes a surface is defined by displacing a certain regular curve in a
specified way. This occurs in the following example.
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I C
Figure 2-17. A regular curve.

Example 4 (Surfaces of Revolution). Let S < R® be the set obtained by
rotating a regular plane curve C about an axis in the plane which does not
meet the curve; we shall take the xz plane as the plane of the curve and the
z axis as the rotation axis. Let

x = f(v), z = g(v), a<v<b, [J)>0,

be a parametrization for C and denote by u the rotation angle about the z

avie Thie wa nhtainn o tan
aAld, LUUd, WL UULdlild a lllap

x(u, v) = (f(v) cos u, f(v)sinu, g(»))

from the open set U = {(u,v) € R*; 0 < u < 2m, a < v < b} into § (Fig.
2-18).

We shall soon see that x satisfies the conditions for a parametrization in
the definition of a regular surface. Since S can be entirely covered by similar
parametrizations, it follows that S is a regular surface which 1s called a
z axis is the rotation axis of S. The circles described by the points of C are
called the parallels of S, and the various positions of C on S are called the
meridians of S.

To show that x is a parametrization of S we must check conditions 1,
2, and 3 of Def. 1, Sec. 2-2. Conditions 1 and 3 are straightforward, and we
leave them to the reader. To show that x is a homeomorphism, we first show
that x is one-to-one. In fact, since (f(v), g(»)) is a parametrization of C,
given z and x? + y* = (f(v))?, we can determine » uniquely. Thus, x is one-
to-one.
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(F(), g(v)

Parallel

x ) Figure 2-18. A surface of revolution,

We remark that, again because (f(v), g(v)) is a parametrization of C, »
is a continuous function of z and of ./x* - y> and thus a continuous func-
tion of (x, y, z).

To prove that x~! is continuous, it remains to show that u is a continuous
function of (x, y, z). To see this, we first observe that if u = z, we obtain,
since f(v) == 0,

sin X 2 sin % cos £ .
tan X _ 2 2 2 _ _ sinu
2—cos—u—* 2 cos? = I+ cosu
2 2
Y
__ S y___ .
1 X X 4+ x4+ yE
+f(v)
hence,
= 2tan"! 4 .
. x -+ A/x* -+ y?

Thus, if « # z, u is a continuous function of (x, y, z). By the same token,
if # is in a small interval about z, we obtain

y = 2cotan~!

y :
—x + /X2 4y

Thus, u is a continuous function of (x, p, z). This shows that x~! is con-
tinuous and completes the verification.

Remark 4. There is a slight problem with our definition of surface of
revolution. If C = R? is a closed regular plane curve which is symmetric

ealative 0 an avige » ~F P3 ting £ ahnant 7,
101dailyC LU adll aAld § VUL Iy L L
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which can be proved to be regular and should also be called a surface of
revolution (when C is a circle and r contains a diameter of C, the surface is a
sphere). To fit it in our definition, we would have to exclude two of its points,
namely, the points where » meets C. For technical reasons, we want to main-
tain the previous terminology and shall call the latter surfaces extended
surfaces of revolution.

A final ¢ en_ should now be made on our definition of surface. We
have chose ne a (regular) surface as a subset of R3. If we want to
consider global as well as local, properties of surfaces, this is the correct

gettineg. The reader mioght have \x;nnﬂprpr] hn“m\'mr- “rhv we have not defined

O bbilis. v VAUV g udyv YZualubvi v, uuvy v UG Tw AUy Uwiiiivu

surface simply as a parametrized surface, as in the case of curves. This can
be done, and in fact a certain amount of the classical literature in differential
geometry was presented that way. No serious harm is done as long as only
local properties are considered. However, basic global concepts, like orienta-
tion (to be treated in Secs. 2-6 and 3-1), have to be omitted, or treated inade-
quately, with such an approach.

In any case, the notion of parametrized surface is sometimes useful and
should be included here.

DEFINITION 2. A parametrized surface x: U < R?* — R? is a differ-
entiable map X from an open set U < R? into R3. The set x(U) < R3 is called
the trace of x. x is regular if the differential dx : R* — R3 is one-to-one for all
q € U (i.e., the vectors dx/du, dx/dv are linearly independent for all @ € U).
A point p € U where dx, is not one-to-one is called a singular point of X.

Observe that a parametrized surface, even when regular, may have self-
intersections in its trace.

Example 5. Let o: I — R? be a regular parametrized curve. Define
x(t, v) = a(t) + vo'(1), (t,v) € I x R.

x is a parametrized surface called the tangent surface of o (Fig. 2-19).
Assume now that the curvature k(¢), t € I, of & is nonzero for all ¢t € I,
and restrict the domain of x to U= {(t, v) € I X R; v % 0}. Then

ox

B () + o @, =)

ot
and

(;’t‘ gﬁ v (A= 0, (t,v) e U,
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Figure 2-19. The tangent surface,

since, for all ¢, the curvature (cf. Exercise 12 of Sec. 1-5)

e A ()]
KO = T

1s nonzero. It follows that the restriction x: & — R® is a regular parametrized
surface, the trace of which consists of two connected pieces whose common
boundary is the set a(l).

The following proposition shows that we can extend the local concepts
and properties of differential geometry to regular parametrized surfaces.

PROPOSITION 2. Iet x: U < R? —R? .be a regular parametrized
surface and let q € U. Then there exists a neighborhood V of q in R? such
that x(V) < R3 is a regular surface.

Proof. This is again a consequence of the inverse function theorem. Write
X(u, v) = (x(u, v), Y, v), 21, v)).

By regularity, we can assume that (d(x, y)/d(u, v))(g) # 0. Define a map
F:UX R-— R?by

F(u, v, ) = (x(u, v), y(u, v), z(u, v) + 1), (u,v) € U,t € R.
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Then

det(dF, g%%@#O

By the inverse function theorem, there exist neighborhoods W, of g and W,
of F(q) such that F: W, — W, is a diffeomorphism. Set ¥V = W, n U and
observe that the restriction F|V = x|V. Thus, x(V) is diffeomorphic to ¥,
and hence a regular surface. Q.E.D.

EXERCISEST

1. Let S2 ={(x,y,2) € R?; x2 + y2 + z2 =1} be the unit sphere and let
A:52 — S? be the (antipodal) map A(x, y, z2) = (—x, —y, —z). Prove that A4
is a diffeomorphism.

N

p € § into its orthogonal projection over R? =
differentiable ?

3. Show that the paraboloid z = x2 4 »2is diffeomorphic to a plane.

. Let S « R3 be a regular surface and 7: .S — R2 be
{

4. Construct a diffeomorphism between the ellipsoid
xz 2 ZL
atpta=]

and the sphere x2 4 y2 + z2 =1,

*5. Let S © R? be aregular surface, andlet d: S — Rbegiven by d(p) = |p — pol,
where p € S, py, € R3, py ¢ S; thatis, dis the distance from p to a fixed point
Po Dot in S, Prove that d is differentiable.
6. Prove that the definition of a differentiable map between surfaces does not
depend on the parametrizations chosen.

7. Prove that the relation “S; is diffeomorphic to S,” is an equivalence relation in
the set of regular surfaces.

*8. Let S2={(x,y,2) € R¥;x24+y2+z2=1} and H =/{(x,» 2) € R?;
x2 + y2 — z2 =1}, Denote by N = (0,0, 1) and § = (0, 0, —1) the north and
south poles of S'2, respectively, and let F: $2 — {N} U {S§} — H be defined as
follows: For each p € §2 — {N} U {S] let the perpendicular from p to the z
axis meet 0z at g. Consider the half-line [ starting at ¢ and containing p. Then
F(p) =1 n H (Fig. 2-20). Prove that Fis differentiable.

9. a. Define the notion of differentiable function on a regular curve. What does
one need to prove for the definition to make sense? Do not prove it now. If

1Those who have omitted the proofs of this section should also omit Exercises 1316,
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Figure 2-20
you have not omitted the proofs in this section, you will be asked to do it in

Exercise 15.
b. Show that the map E: R — S! = {(x, ») € R?; x2 + y2 = 1} given by

E(t) = (cos ¢, sin 1), t € R,

1s differentiable (geometrically, E “wraps” R around S'1).

10. Let C be a plane regular curve which lies in one side of a straight line » of the
plane and meets ¢ at the points p, g (Fig. 2-21). What conditions should C sat-
isfy to ensure that the rotation of C about r generates an extended (regular)
surface of revolution?

r
)
r? H
C
g
Figure 2-21

11. Prove that the rotations of a surface of revolution .S about its axis are diffeo-
morphisms of S.

12. Parametrized surfaces are often useful to describe sets X which are regular sur-
faces except for a finite number of points and a finite number of lines. For in-
stance, let C be the trace of a regular parametrized curve & : (a, b)) — R* which
does not pass through the origin O = (0, 0, 0). Let Z be the set generated by the
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*13.

14.

15.

*16.

Regular Surfaces

\w

0 Figure 2-22

displacement of a straight line / passing through a moving point p € C and the
fixed point O (a cone with vertex 0; see Fig. 2-22).

a. Find a parametrized surface x whose trace is Z.
b. Find the points where x is not regular.

c. What should be removed from X so that the remaining set is a regular sur-
face?

Show that the definition of differentiability of a function /> ¥V <« § — R given
in the text (Def. 1) is equivalent to the following: f is differentiable in p € Vif
it is the restriction to ¥ of a differentiable function defined in an open set of R3
containing p. (Had we started with this definition of differentiability, we could
have defined a surface as a set which is locally diffeomorphic to R2; see Remark
3.)

Let A — S5 be a subset of a regular surface S. Prove that A is itself a regular
surface if and only if 4 is open in §; thatis, 4 = U N S, where U is an open set
in R3.

Let C be a regular curve and leta: I < R — C, f:J = R — C be two para-
metrizations of C in a neighborhood of p € () N f(I) = W. Let

h=o"tof: f~1(W)—> a (W)

be the change of parameters. Prove that

PRV VPN RV

a. fi is a diffeomorphism.
b. The absolute value of the arc length of C in W does not depend on which
parametrization is chosen to define it, that is,

U; lm’(t)ldtl = ”:u 1B () |dt|, t=4kr)tecl 1l

Let R? = {(x, y,z) € R%; z = —1} be identified with the complex plane C by
setting (x, ¥y, =) =x + iy ={  C. Let P: C — C be the complex polyno-
mial
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PO =alr+alm1+---4+a, a#0aqecCi=1...,n

Denote by =, the stereographic projection of §2 ={(x,y,z) € R3;
x% 4 y2 + z2 = 1} from the north pole N = (0, 0, 1) onto R2. Prove that the
map F: §2 — 82 given by

F(py=ny' o Pomy(p), ifpe S?—{N},
F(N)=N

is differentiable.

;) Tlern Toserere = Dlnsan
o=4., 111G 1aQliycrit riailic ,

The Differential of a Map

In this section we shall show that condition 3 in the definition of a regular
surface §' guarantees that for every p € S the set of tangent vectors to the
parametrized curves of S, passing through p, constitutes a plane.

By a tangent vector to S, at a point p € S, we mean the tangent vector
a’'(0) of a differentiable parametrized curve a: (—¢, €) — S with a(0) = p.

PROPOSITION 1. Ler x: U< R* — S be a parametrization of a
regular surface S and let q € U. The vector subspace of dimension 2,

dx,(R?) < R3,
coincides with the set of tangent vectors to S at x(qQ).

Proof. Let w be a tangent vector at x(gq), that is, let w = a'(0), where
a:(—e, €) — x(U) < S is differentiable and a(0) = x(g). By Example 2 of
Sec. 2-3, the curve § = x ' o a: (—¢, €) — U is differentiable. By definition
of the differential (appendix to Chap. 2, Def. 1), we have dx,(f'(0)) = w.
Hence, w € dx (R?) (Fig. 2-23).

On the other hand, let w = dx(v), where v € R2. It is clear that v is the
velocity vector of the curve p: (—e¢, €) — U given by

() =t +q, t € (—¢,e€).

By the definition of the differential, w = a’(0), where & = x o p. This shows
that w is a tangent vector. Q.E.D.

By the above proposition, the plane dx,(R?), which passes through x(q) =
p, does not depend on the parametrization X. This plane will be called the
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Figure 2-23

tangent plane to S at p and will be denoted by T,(S). The choice of the
parametrization x determines a basis {(9x/du(q), (0x/dv)(q)} of T,(S), called
the basis associated to x. Sometimes it is convenient to write dx/du = X,
and dx/dv = x,.

The coordinates of a vector w € T,(S) in the basis associated to a
parametrization x are determined as follows. w is the velocity vector a'(0)
of a curve o =x o f§, where f: (—e, €) — U is given by B(r) = (u(r), v(t)),
with B(0) = ¢ = x !(p). Thus,

20 = Lix o f0) = Lx(u), o))
= X(q'(0) + xg)'(0) = w.

Thus, in the basis {x,(9), x,(¢)}, w has coordinates (x'(0), v'(0)), where
(u(1), v(r)) is the expression, in the parametrization x, of a curve whose velocity

vector at £ = 0 1s w.
With the notion of a tangent plane, we can talk about the differential of a

(differentiable) map between surfaces. Let .§; and S, be two regular surfaces
and let ¢: V' < S, — S, be a differentiable mapping of an open set V7 of §,

into S,. If p € ¥V, we know that every tangent vector w € T,(S,) is the veloc-

ity vector ¢'(0) of a differentiable parametrized curve o: (—e¢, €) — V with
a(0) = p. The curve f = ¢ o & is such that §(0) = @(p), and therefore §'(0) is
a vector of T,,(S,) (Fig. 2-24).

PROPOSITION 2. In the discussion above, given w, the vector B'(0) does
not depend on the choice of o.. The map dg,: T,(S;) — T,,(S,) defined by
dg,(w) = B'(0) is linear.
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dop(w)

| [
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S.l SZ
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n

<

/i

Figure 2-24

Proof. The proof is similar to the one given in Euclidean spaces (cf.
Prop. 4, appendix to Chap. 2). Let x(u, ), X(i, ¥) be parametrizations in
neighborhoods of p and ¢(p), respectively. Suppose that ¢ is expressed in
these coordinates by

and that ¢ is expressed by
a(r) = (u(1), W), 1 € (—¢, €.

Then B(t) = (@,(u(r), v(t)), @, (u(?), v(7))), and the expression of f'(0) in the
basis {X,, X,} is

BO = (%200 + %2v'©), 22u(0) + %20 (0)).

The relation above shows that £'(0) depends only on the map ¢ and the
coordinates (#'(0), ¥'(0)) of w in the basis {x,, x,}. f'(0) is therefore indepen-
dent of &. Morcover, the same relation shows that

dg, 0o\ (.,
az'u1 v u'(0)

v

ﬂ@_ww)( - :

09 9pa|}

du  ov } \v (O)I

that is, dg, is a linear mapping of T,(S,) into T,,,(S;) whose matrix in the

bases {x,, x,} of T,(S,) and {X,, X,} of T,,,(S,) is just the matrix given above,
Q.E.D.

The linear map dp, defined by Prop. 2 is called the differential of ¢ at
p € §;. In a similar way we define the differential of a (differentiable) func-
tion f: U c S— Ratp € Uas alinear map df,: T,(S) — R. We leave the
details to the reader.
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Example 1. Let v € R? be a unit vector and let #: S — R, A(p) = v-p,
p € S, be the height function defined in Example 1 of Sec. 2-3. To compute
dh,(w), w € T,(S), choose a differentiable curve a.: (—e, €) — S with a(0) =
p, &'(0) = w. Since A(a(r)) = a(t)-v, we obtain

dh (w) = %h(cx(t)) ey = 0/(0) 0 = w-o.

D2 L
AU

N
&

SP={x, ) e R, x>+ y*+ =1}

and Iet R, ,: R® — R? be the rotation of angle § about the z axis. Then R, ,
restricted to S? is a differentiable map of S? (cf. Example 3 of Sec. 2-3). We
shall compute (dR, ), (W), p € 8%, w &€ T(5?). Let a: (—¢,€) — S* bea
differentiable curve with «(0) = p, a’(0) = w. Then, since R, , is linear,

(4R 0),(#) = (R 5 0 6(1) = Ro o' (0) = R..ow).

Observe that R, , leaves the north pole N = (0, 0, 1) fixed, and that
(dR. 9w Ta{S) — Tx(S) is just a rotation of angle & in the plane T'y(S).

In retrospect, what we have been doing up to now is extending the notions
of differential calculus in R* to regular surfaces. Since calculus is essentially
a local theory, we defined an entity (the regular surface) which locally was a
plane, up to diffeomorphisms, and this extension then became natural. It
might be expected therefore that the basic inverse function theorem extends
to differentiable mappings between surfaces.

We shall say that a mapping ¢: U < S; — S, is a local diffeomorphism
at p € U if there exists a neighborhood ¥V < U of p such that ¢ restricted to
V is a diffeomorphism onto an open set p(}) — S,. In these terms, the
version of the inverse of function theorem for surfaces is expressed as follows.

PROPOSITION 3. If S, and S, are regular surfacesand p:U < S, — S,
is a differentiable mapping of an open set U < S, such that the differential
dg, of ¢ at p € U is an isomorphism, then ¢ is a local diffeomorphism at p.

The proof is an immediate application of the inverse function theorem in
R? and will be left as an exercise.

Of course, all other concepts of calculus, like critical points, regular
values, etc., do extend naturally to functions and maps defined on regular
surfaces.
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The tangent plane also allows us to speak of the angle of two intersecting
surfaces at a point of intersection.

Given a point p on a regular surface S, there are two unit vectors of R?
that are normal to the tangent plane T,(S); each of them is called a unit
normal vector at p. The straight line that passes through p and contains a
unit normal vector at p is called the normal line at p. The angle of two inter-
secting surfaces at an intersection point p is the angle of their tangent planes
(or their normal lines) at p (Fig. 2-25).

Figure 2-25

By fixing a parametrization x: U < R?* — S at p € §, we can make a
definite choice of a unit normal vector at each point ¢ € x(U) by the rule

N(g) = 83 @).

Thus, we obtain a differentiable map N: x(U) — R3. We shall see later (Secs.
2-6 and 3-1) that it is not always possible to extend this map differentiably
to the whole surface S.

Before leaving this section, we shall make some observations on questions
of differentiability.

The definition given for a regular surface requires that the parametriza-
tions be of class C~, that is, that they possess continuous partial derivatives
of all orders. For questions in differential geometry we need in general the
existence and continuity of the partial derivatives only up to a certain order,
which varies with the nature of the problem (very rarely do we need more
than four derivatives).

For example, the existence and continuity of the tangent plane depends
only on the existence and continuity of the first partial derivatives. It could
happen, therefore, that the graph of a function z = f(x, y) admits a tangent
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plane at every point but is not sufficiently differentiable to satisfy the defini-
tion of a regular surface. This occurs in the following example.

Example 3. Consider the graph of the function z = J/(x? + y?)3?,
generated by rotating the curve z — x*3 about the z axis. Since the curve is
symmetric relative to the z axis and has a continuous derivative which van-
ishes at the origin, it is clear that the graph of z = .7/ (x> + y?)? admits the
xy plane as a tangent plane at the origin. However, the partial derivative z_,
does not exist at the origin, and the graph considered is not a regular surface
as defined above (see Prop. 3 of Sec. 2-2).

We do not intend to get involved with this type of question. The hypothe-
sis C~ in the definition was adopted precisely to avoid the study of the
minimal conditions of differentiability required in each particular case.
These nuances have their place, but they can eventually obscure the geometric
nature of the problems treated here.

EXERCISES

*1. Show that the equation of the tangent planc at (xg, yo, 2o) of a regular surface
given by f(x, y, z) = 0, where 0 is a regular value of £, is

Fx(x0, Yo, Zo)(x — Xo) +fy(x0: Yo, Zo)(V — ¥o) -+ fo(xo, Vo, 20Xz — 2p) = 0.

2. Determing the tangent planes of x? - y? — z2 =1 at the points (x, y, 0) and
show that they are all parallel to the z axis.

3. Show that the equation of the tangent plane of a surface which is the graph of a
differentiable function z = f(x, ), at the point p, = (xo, ¥,), is given by

z = f(xg, ¥o) + fulxo, Yo)(x — x0) + £,(x0, ¥o)¥ — ¥o)-

Recall the definition of the differential df of a function f; R? — R and show that
the tangent plane is the graph of the differential df,. '

*4, Show that the tangent planes of a surface given by z = xf(y/x), x %= 0, where fis
a differentiable function, all pass through the origin (0, 0, 0),

5. If a coordinate neighborhood of a regular surface can be parametrized in the
form

X(”: U) - a’l(u) + “2(’0)3

whara # and A ara ramilar mararaater
YYllviv Wi dlivd Wi div 1wvisuldl pr.u.cu LL

-~ 171%7 h +
along a fixed coordinate curve of this neighborhood are all parallel to a line.

S~1IIrvac ahny
WL YO, JLAUYY

6. Leta: I —> R3 be a regular parametrized curve with everywhere nonzero curva-
ture. Consider the tangent surface of & (Example 5 of Sec. 2-3)
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10.

11.

13,

x(f, v) = ot) + vat'(2), te lLLv#0.

Show that the tangent planes along the curve x(¢, const.) are all equal.

Let /.S — Rbe given by f(p) =|p — po|?, where p € S and p, is a fixed point
of R3 (see Example 1 of Sec. 2-3). Show that df,(w) = 2w - (p — po),
w e T,(S).

Prove that if L: R® — R? is a linear map and S < R?® is a regular surface
invariant under L, i.e., L(S) < S, then the restriction L| S is a differentiable map
and

de(W) = L(w), peES, we TP(‘S)~

. Show that the parametrized surface

x(u, v) = (vcos u, v sin u, au), a0,

is regular. Compute its normal vector N(u, v) and show that along the coordi-
nate line ¥ = u, the tangent plane of X rotates about this line in such a way that
the tangent of its angle with the z axis is proportional to the distance
v (= 4/x% + ¥?) of the point x(u,, v) to the z axis.

(Tubular Surfaces.) Let & I — R3 be a regular parametrized curve with nonzero
curvature everywhere and arc length as parameter. Let

X(s, v) = a(s) -+ r(n(s) cos v + b(s) sin v), r=const. 20,5 € I,

be a parametrized surface (the tube of radius r around &), where # is the normal
vector and b is the binormal vector of &. Show that, when x is regular, its unit
normal vector is

N(s, v) = —(n(s) cos » - b(s) sin v).
Show that the normals to a parametrized surface given by
x(u, v) = (f(u) cos v, f(u)sinv, g(w),  [(@)# 0,8 0,

all pass through the z axis.

. Show that each of the equations (a, b, ¢ #= 0)

x? 4y 4 2% = ax,
x2 + y* + 22 = by,
x* 4 y2 422 =cz

define a regular surface and that they all intersect orthogonally.

A critical point of a differentiable function /> S — R defined on a regular sur-
face S is a point p & S such that df, = 0.

*a, Let f+ S — R be given by f(p) =|p — pol, P € S, po ¢ S (cf. Exercise 5,
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Y
*.

15.

16.

*17.

18.

19.

*20.

Regular Surfaces

Sec. 2-3). Show that p € S'is a critical point of fif and only if the line joining
p to py is normal to § at p.

h. Let 2: S — R be given by A(p) = p-», where » € R3? is a unit vector (cf.
Example 1, Sec. 2-3). Show that p = §'is a critical point of fif and only if v is
a normal vector of § at p.

f the three coordinate planes x =0, y =0, z = 0. Let

p=(0,y,2)c R — 0.

a. Show that the equation in ¢,

T ood 7Y Lo 4L oot un
LCL L/ UC LG UuUiiL O

xz
a’.—

y2 z 1 b 0
Pt == fO=1 a>b>c>0,
has three distinct real roots: ¢4, #,, 1.

b. Show that for each p € R3 — Q, the sets givenby f(t;) —1 =0, f(t;) — 1
= 0, f(#;) — 1 = 0 are regular surfaces passing through p which are pairwise
orthogonal.

Let w be a tangent vector to a regular surface S at a point p € S and let x(, v)
and x(iz, 7) be two parametrizations at p. Suppose that the expressions of w in
the bases associated to x(u, v) and x(&, ¥) are

W = Gx',lxu + dzxy
and

W = ﬁliﬁ + ﬁzi,}.

Show that the coordinates of w are related by

. oa ou
181—051%1“12%
_ o 07 09
ﬁz*ala;-’r“za;’

where & = a(u, v) and ¢ = o(u, v) are the expressions of the change of coordi-
nates.

Two regular surfaces S; and S, intersect transversally if wheneverp € §; N S,
then T,(S;) # T,(S:). Prove that if S, intersects .S, transversally, then §; N S,
is a regular curve.

Prove that if a regular surface § meets a plane P in a single point p, then this
plane coincides with the tangent plane of .S at p.

Let S — R3 be a regular surface and P < R3 be a plane. If all points of .S are on
the same side of P, prove that P is tangent to .S at all points of P N S.

Show that the perpendicular projections of the center (0, 0, 0) ot the ellipsoid



=

a2 - 1b2 +
onto its tangent planes constitute a regular surface given by

{(x,5,2) € R?; (x2 + p? + z2)2 = a2x2 + b2y + 222} — {(0, 0, 0)}.

. Let f+ S -— R be a differentiable function on a connected regular surface S.

Ac +l-m+ A — N far al C Durera v odamdt A
ASSUme tnat yp — VvIUL a.uy £ D, rrgve Lua.t_/ m COilStaiit Uil 5.

. Prove that if all normal lines to a connected regular surface S meet a fixed

straight line, then S'is a surface of revolution.

Prove that the map F: §2 — S2 defined in Exercise 16 of Sec. 2-3 has only a
finite number of critical points (see Exercise 13).

(Chain Rule.) Show thatif@: §;, — §, and y —» S5 are differentiable maps

and p € Sy, then
dy < @), = AW, p) © d@5.

Prove that if two regular curves C, and C, of a regular surface S are tangent at
apoint p € §, and if ¢: S — Sis a diffeomorphism, then ¢(C;) and ¢(C,) are
regular curves which are tangent at g(p).

. Show that if p is a point of a regular surface 8, it is possible, by a convenient

choice of the (x, y, z) coordinates, to represent a neighborhood of pin S in the
form » = f(v 1:\ so that f(ﬂ ﬂ\ — 0, £.(D ﬂ\ = ﬂ f(ﬂ ﬂ\ = {, (’T‘hm is nqnnrn_

ANFAALL & T F xshe ¥ 5 O waailie s JX\Vy ¥V '\

lent to takmg the tangent plane to S at p as the xy plane.)

. (Theory of Contact.) Two regular surfaces, S and S, in R3, which have a point p

in common, are said to have contact of order > 1 at p if there exist parametriza-
tions with the same domain x(u, v), X(&, v) at p of .S and S, respectively, such
that x, = x, and x, = X, at p. If, moreover some of the second partial deriva-

tivag nra
L3 AW ] Cl.].\-f

that
a. The tangent plane TP(S) of a regular surface S at the point p has contact of

UIUCI' / 1 WlLll lllt; bl.ll].d.bt‘, d.ip

b. If a plane has contact of order > 1 with a surface S at p, then this plane coin-
cides with the tangent plane to S at p.

d iffarant at n tha ~rant t

P 7] ha Afavdar ovantly saual +0 1 DPrava
BUAWLALIL QL LG LIEdLE i [

- UJ viwcr CAuDllr’ Cljuub vV 1., 4L 1LUYW

c¢. Two regular surfaces have contact of order >> 1 if and only if they have a
common tangent plane at p, i.e., they are tangent at p.

d. If two regular surfaces S and .S of R? have contact of order > 1 at p ztnd if
F: R?® — R3is a diffeomorphism of R3, then the images F(.S)} and F(S) are
regular surfaces which have contact of order > 1 at f(p)(that is, the notion of
contact of order > 1 is invariant under diffeomorphisms).

e. If two surfaces have contact of order >> 1 at p, then lim, ., (d/r) = 0, where
d is the length of the segment which is determined by the intersections with
the surfaces of some parallel to the common normal, at a distance r from this
normal.
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28. a. Define regular value for a differentiable function /- § — R on a regular sur-
face S.

b. Show that the inverse image of a regular value of a differentiable function on
a regular surface S is a regular curve on S.

2-5, The First Fundamental Form; Area

So far we have looked at surfaces from the point of view of differentiability.
In this section we shall begin the study of further geometric structures carried
by the surface. The most important of these is perhaps the first fundamental
form, which we shall now describe.

The natural inner product of R?* = § induces on each tangent plane
T,(S) of a regular surface S an inner product, to be denoted by { , >,:1If
wi, Wy € T,(S) < R3, then {w,, w,>, is equal to the inner product of w, and
w, as vectors in R®. To this inner product, which is a symmetric bilinear
form (i.e., {wy, w,» = (w,, w,» and {w,, w,> is linear in both w, and w,),
there corresponds a quadratic form 7,: T,(S) — R given by

Lw)=<{w, wy, =|w|* >0, §))]

DEFINITION 1. The quadratic form 1, on T (S), defined by Eq. (1), is
called the first fundamental form of the regular surface S = R3 ar p € 8.

Therefore, the first fundamental form is merely the expression of how the
surface S inherits the natural inner product of R3. Geometrically, as we shall
see in a while, the first fundamental form allows us to make measurements
on the surface (lengths of curves, angles of tangent vectors, areas of regions)
without referring back to the ambient space R® where the surface lies.

We shall now express the first fundamental form in the basis {x,, x,}
associated to a parametrization x(u, v) at p. Since a tangent vector w € T,(S)

15 the tangent vector to a narametrized curve pvff\ == X (), = [ —e. &)
nge a paralnCiilzo AL f, i jf, 0 & (T &, €Y,

with p = a(0) = x(u,, v,), we obtain

F (o' (0N
AU,

\VJ/p
— + x,0, X0’ + x,07),
= <xu, X (') + 2 X0 0’V -+ (X, X0, (V')
= E@')? - 2Fu'v’ 4 G(v')?,

Joa'OY, ' (D
WV &
I

where the values of the functions involved are computed for # = 0, and

E(u07 vD) = <Xu9 xu>p$
Fl1: o \ — /v

— w N\
*AMDy YO N2ur *p/p3

G(u()’ 'UD) = <xv’ xv>p
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are the coefficients of the first fundamental form in the basis {x,, x,} of
T,(S). By letting p run in the coordinate neighborhood corresponding to
x(u, v) we obtain functions E(u, v), F(u, v), G(u, v) which are differentiable
in that neighborhood.

From now on we shall drop the subscript p in the indication of the inner
product { , >, or the quadratic form 7, when it is clear from the context

which point we are referring to. It will also be convenient to denote the
natiral imner nr r‘h!nf of R3 hy tha ecame Umbn] v N rather than tha

Q
gitui Ll Aliliwi P U e WL an U LJ.IU DCLlllw 0]111. TR \ ) / l.ubll\tl. Lllul‘. Litw

previous dot.

Example 1. A coordinate system for a plane P — R*® passing through
Po = (X0, Vo, 2,) and containing the orthonormal vectors w, = (a,, a,, @),
w, = (b,, b,, bs) is given as follows:

x(u, v) = py + uw, + vw,, (u, v) € R2,

To compute the first fundamental form for an arbitrary point of P we observe
that x, = w,, X, = w,; since w, and w, are unit orthogonal vectors, the

W
functions E, F, G are constant and given by
E=1, F=0, G =1

In this trivial case, the first fundamental form is essentially the Pythagorean
theoremin P;i.e., the square of the length of a vector w which has coordinates
a, b in the basis {X,, X,} is equal to a® + b2.

Example 2. The right cylinder over the circle x* 4+ p? =1 admits the
parametrization x: U — R3, where (Fig. 2-26)

x(u, ») = (cos u, sin u, v),
U= {(u, v) € R%; 0 <u<2nm, —oo < p < o0},

/ — \
x Figure 2-26
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To compute the first fundamental form, we notice that
X, = (—sin u, cos u, 0), x, = (0,0, 1),
and therefore
E=sin*u -+ cos?u=1, F=0, G=1.

We remark that, although the cylinder and the plane are distinct surfaces,
we obtain the same result in both cases. We shall return to this subject later
(Sec. 4-2).

Example 3. Consider a helix that is given by (see Example 1, Sec. 1-2)
(cos u, sin v, au). Through each point of the helix, draw a line parallel to
the xy plane and intersecting the z axis. The surface generated by these lines
is called a helicoid and admits the following parametrization:

X(u, v) = (v cos u, v sin u, au), 0 <u<2m, —oo < v < 00,

x applies an open strip with width 2z of the ww plane onto that part of the
helicoid which corresponds to a rotation of 2z along the helix (Fig. 2-27).

Figure 2-27. The helicoid.

The verification that the helicoid is a regular surface is straightforward and
left to the reader.
Ty mmsamimizdomdamen L4l . O _*_ _ ot Ll _ o~ o T
1IC CONILPpULAUIvIl U1 116 COCHICICIILS U1 LIC 150 1Uliadinel
above parametrization gives

ital form in the

Eu, v) = v* + a?, Flu, v) =0, G(u, v) = 1.
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As we mentioned before, the importance of the first fundamental form 7
comes from the f fact that U_y nuuwuxg { we can treat metric qucauuub on a
regular surface without further references to the ambient space R3. Thus,

the arc length s of a parametrized curve «: I — S is given by

s(f) — jo @) de = [ 0 STE®) d.

In particular, if a(t) = x(u(z), v(¢)) is contained in a coordinate neighborhood

corresponding to the parametrization x(u, v), we can compute the arc length
of & between say, 0 and thv

W VY Wwiwiag e T Y LT Y

s(t) = | 0 JEWYE T 2Fuiv + G dt. '3

Also, the angle 8 under which two parametrized regular curves a: 7 — S,
B: I Sintersect at t = ¢, is given by

C(t), B>
EABIAD)

In particular, the angle ¢ of the coordinate curves of a parametrization
x(u, v) is

cos @ =

Xy X, _ _F
[xITx,|  JEG’

cos ¢ =

it follows that the coordinate curves of a parametrization are orthogonal if
and only if F(u,v) = 0 for all (u,v). Such a parametrization is called an
orthogonal parametrization. .

Remark. Because of Eq. (2), many mathematicians talk about the “ele-
ment” of arc length, ds of S, and write

ds®* = Edu® + 2F du dv -+ G dv?,

meaning that if a(z) = x(u(?), »(t)) is a curve on S and s = s(¢) is its arc

length, then
(@) = 5() + g G+ (@)

Example 4. We shall compute the first fundamental form of a sphere at
a point of the coordinate neighborhood given by the parametrization (cf.
Example 1, Sec. 2-2)

x(0, ¢) = (sin @ cos ¢, sin 8 sin ¢, cos §).
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First, observe that

Hence,
E(0, 9) = {xp, Xp = 1,
F(0, ) = (x5, X,) = 0,
G0, p) = <{x,, x,) = sin* .

Thus, if w is a tangent vector to the sphere at the point x(6, ¢), given in the
basis associated to x(#, ¢) by

W = ax, + bxX,,

then the square of the length of w is given by

lais 12 — s — L'A2 _| "iF | L2 — A2 | K2 L2 4
W — \w) — L T &L —|— u——u T U 11u

As an application, let us determine the curves in this coordinate neigh-
borhood of the sphere which make a constant angle P with the meridians
¢ = const. These curves are called loxodromes (rhumb lines) of the sphere.

We may assume that the required curve a(f) is the image by x of a curve
(0(t), (1)) of the B¢ plane. At the point x(f, ¢) where the curve meets the

meridian ¢ = const., we have

_ (Zp d0) 0
s =T la®] ~ VO T 7 en’e

since in the basis {x,, x,} the vector a’(¢) has coordinates (6, ¢') and the
vector X, has coordinates (1, 0). It follows that

(B2 tan? B — (m' )2 cin2 A — 0
. \V } L= T N ’.I \lfl } I1l1 v A¥
or
9’ ¢f
sin @ tan g

whence, by integration, we obtain the equation of the loxodromes
] 9) =
og tan(f = 4(¢ + ¢) cotan B,

where the constant of integration ¢ is to be determined by giving one point
x(0,, @,) through which the curve passes.
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Another metric question that can be treated by the first fundamental
form is the computation (or definition) of the area of a bounded region of a
regular surface S. A (regular) domain of S is an open and connected subset of
S such that its boundary is the image of a circle by a differentiable homeo-
morphism which is regular (that is, its differential is nonzero) except at a
finite number of points. A region of S is the union of a domain with its
boundary (Fig. 2-28). A region of S < R? is bounded if it is contained in some
ball of R®.

Boundary of R

Figure 2-28

We shall consider bounded regions R which are contained in a coordinate
neighborhood x(U) of a parametrization x: U < R* — §. In other words,
R is the image by x of a bounded region Q = U.

The function |x, A x,|, defined in U, measures the area of the parallelo-

gram generated by the vectors x, and x,. We first show that the integral
f |x, A X, dudv
Yo

does not depend on the parametrization x.

In facg, let X: U = R? — S be another parametrization with R < i((? )
and set O = x"!'(R). Let d(u, v)/d(i, 7) be the Jacobian of the change of
parameters # = x~! o X. Then

d(u, v)

” 1%, /\x;dud@—” x A x ][ 3D
=Jfg|x,,/\x,,|dudv,

where the last equality comes from the theorem of change of variables in
multiple integrals (cf. Buck Advanced Calculus, p. 304). The asserted indepen-
dence is therefore proved and we can make the following definition.

du dv
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DEFINITION 2. Let R < S be a bounded region of a regular surface con-
tained in the coordinate neighborhood of the parametrization Xx: U — R? — §.
The positive number

[l s axldidv=A®),  Q=x"®)
is called the area of R,
There are several geometric justifications for such a definition, and one

of them will be presented in Sec. 2-8.
It is convenient to observe that

2,

xz; lzB

|xu /\ Xv [2 + <xu’ x‘u>2 = Ixu
which shows that the integrand of A(R) can be written as

|x, A X,| =/ FG — F2.

u fN Py

We should also remark that, in most examples, the restriction that the
region R is contained in some coordinate neighborhood is not very serious,
because there exist coordinate neighborhoods which cover the entire surface
except for some curves, which do not contribute to the area.

Example 5. Let us compute the area of the torus of Example 6, Sec. 2-2.

X(u, v) = ((a + r cos u) cos v, (@ + r cos u) sin v, r sin u),
0 <u < 2m, 0 <wv<2m,

which covers the torus, except for a meridian and a parallel. The coefficients
of the first fundamental form are

E=r, F=0, G = (rcosu + a)*;
hence,
~EG — F* = r(rcosu + a).

Now, consider the region R, obtained as the image by x of the region
0. (Fig. 2-29) given by (¢ > 0 and small),

O ={w, ) e R0+ e<<u<2n—¢6 0+ e<v<2m—e)
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v ¢
€ N
, N\
)
y
0,
' X
/ X 2¢ 2e
“N
i, -1
0] \, 2
Figure 2-29

ARR) = HQ r(r cos u + a) du dv

2n—¢ oA . 2n—¢ ,
= | (r* cos u + ra) du | dv
O0+e 0+e

= r}(2rn — 2eXsin(2r — €) — sin €) + ra(2n — 2¢)2.
Letting € -— 0 in the above expression, we obtain

A(T) = lim A(R,) = 4n’ra.
e—0

This agrees with the value found by elementary calculus, say, by using the
theorem of Pappus for the area of surfaces of revolution (cf. Exercise 11).

EXERCISES

a. x(u, v) = (asin ucos v, b sin u sin », ¢ cos u); ellipsoid.

b. x(u, v) = (au cos v, bu sin v, u2); elliptic paraboloid.

¢. x(u, ) = (qu cosh v, bu sinh », u2); hyperbolic paraboloid.

d. x(u, v) = (asinh u cos v, b sinh u sin », ¢ cosh v); hyperboloid of two sheets.

2. Let x(u, v) = (sin @ cos @, sin @ sin @, cos @) be a parametrization of the unit
sphere S2. Let P be the plane x = z cotan &, 0 < & < 7, and B be the acute
angle which the curve P N §? makes with the semimeridian ¢ = ¢,. Compute

cos .

3. Obtain the first fundamental form of the sphere in the parametrization given by
stereographic projection (cf. Exercise 16, Sec. 2-2).
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4. Given the parametrized surface

. /A i
x(u, v) = (u cos v, u sin v, log cos v + u), —5 < v < ok

show that the two curves x(u,, »), X(i;, v) determine segments of equal lengths
on all curves x{u, const.).

5. Show that the area A of a bounded region R of the surface z = f(x, ) is

a=[[ NTFTEFT3 axay,

where Q is the normal projection of R onto the xy plane.
6. Show that

x(#, v) = (u sin & cos v, u sin & sin v, # COS &)
0 <u << oo, 0<w»v<2n, o =const.,

is a parametrization of the cone with 2« as the angle of the vertex. In the corre-
sponding coordinate neighborhood, prove that the curve

x(c exp(v sin & cotan f), v), ¢ = const., § = const.,

intersects the generators of the cone (v = const.) under the constant angle ﬂ .

7. The coordinate curves of a parametrization x(u, v) constitute a Tchebyshef net if
the lengths of the opposite sides of any quadrilateral formed by them are equal.
Show that a necessary and sufficient condition for this is

oE _ 3G _,
dv du )

*8. Prove that whenever the coordinate curves constitute a Tchebyshef net (see
Exercise 7) it is possible to reparametrize the coordinate neighborhood in such a
way that the new coefficients of the first quadratic form are

E=1, F=cos?, G =1,

where @ is the angle of the coordinate curves.

*9, Show that a surface of revolution can always be parametrized so that
E = E(v), F=0, G =1.

10, Let P = {(x, y, z2) € R3; z = 0} be the xy plane and let x: U — P be a para-
metrization of P given by

x(p, 0) = (pcos G, psin ),
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11.

12

13.

14.

where
U={p,0) € R2; p> 0,0 <8 <2r}.

Compute the coefficients of the first fundamental form of P in this parametriza-
tion.

Let .S be a surface of revolution and C its generating curve (cf. Example 4, Sec.
2-3). Let s be the arc length of C and denote by p = p(s) the distance to the rota-
tion axis of the point of C corresponding to s.

a. (Pappus’ Theorem.) Show that the area of § is
2n Jl p(s)ds,
0

where / is the length of C.
b. Apply part a to compute the area of a torus of revolution.

Show that the area of a regular tube of radius r around a curve a (cf. Exercise
10, Sec. 2-4) is 27r times the length of «.

(Generalized Helicoids.) A natural generalization of both surfaces of revolution
and helicoids is obtained as follows. Let a regular plane curve C, which does not
meet an axis E in the plane, be displaced in a rigid screw motion about E, that
is, so that each point of C describes a helix (or circle) with E as axis. The set S
generated by the displacement of C is called a genemlized helicoid with axis E

ponopntaor £ T4l anras 1maratatinn alhnnt B Cic a arirfacrs ~F

ouxu ACrcriueivr ., Ij_ LLIC D\.JCVV' ljJUl.lUlJ. ID a puxc J.Ulﬂl-lULi auuut Lig 1D 13 A UL LUNS U]
revolution; if C is a straight line perpendicular to E, S is (a piece of) the stan-
dard helicoid (cf. Example 3).

Choose the coordinate axes so that Ei

1 n
IOUSE LG COOTaInNale axes A 4 x £ i 13 is i ¥ i

Prove that

a. If (f(s), g(s)) is a parametrization of C by arclength s,a < s < b, f(s) > 0,
then x: U — §, where

U={(,u e R;a <5s<b0<u<2n}

x(s, u) = (f(s) cos u, f(s)sin u, g(s) + cu), ¢ = const.,

is a parametrization of S. Conclude that S is a regular surface.

b. The coordinate lines of the above parametrization are orthogonal (ie.,
F = 0) if and only if x(U) is either a surface of revolution or (a piece of) the
standard helicoid.

(Gradient on Surfaces.) The gradient of a differentiable function f: § — Ris a
differentiable map grad f: § — R3 which assigns to each point p € .§ a vector
grad f(p) € T,(S) = R3 such that

{grad f(p), v>, = df,(v) forall v € T,(S).
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Show that

a. If E, F, G are the coefficients of the first fundamental form in a parametriza-
tionx: U « R? — §, then grad fon x(U) is given by

"G — f,F LE — f,
grad f = ——fEG —J;'z X+ pog —fFr % 11;2

In particular, if S = R? with coordinates x, y,

grad f = fie; + fyez,

where {e,, e,} is the canonical basis of R, (thus, the definition agrees with the
usual definition of gradient in the plane).
b. If you let p € S be fixed and v vary in the unit circle |»| = 1 in T,(s), then

df (» is maximum if and onlv if » = erad f/l erad f'[ (fhrnv orad f'{n\ oives

Gy pAb ] A0 RLISALILINGILL 1L Qiald Ly SEGN J/ ] mafiNE g | \piivbd 3 SO FRP ) HrYrES

the divection of maximum variation of f at p).
c. If grad f== 0 at all points of the level curve C = {

thaon 7 ig o ragiilar ctirve an Cond orad £1a v\nmnl ten
tnén € is a reguiar curve on o ana slau_] 1d nvliiial v

15. (Orthogonal Families of Curves.)
a. Let E, F, G be the coeflicients of the first fundamental form of a regular sur-
face S in the parametrization x: U < R? — S. Let ¢(u, v) — const. and
w(u, v) = const. be two families of regular curves on x(U) — S (cf. Exercise
28, Sec. 2-4). Prove that these two families are orthogonal (i.e., whenever two
curves of distinct families meet, their tangent lines are orthogonal) if and
only if

E¢va - F(%'//v + (ﬂv'//u) + G‘;Duv/u =0

b. Apply part a to show that on the coordinate neighborhood x(U) of the heli-

cnid of Eyvamnle 3 the two familise nf reonlar curves

WAL WL A G RIAV O LAV BT L AGQIILIIVS VL IVEUIRE WL YV

are orthogonal.

2-6. Orientation of Surfacest

In this section we shall discuss in what sense, and when, it is possible to orient
a surface. Intuitively, since every point p of a regular surface S has a tangent
plane T ,(S), the choice of an orientation of T ,(S) induces an orientation in a
neighborhood of p, that is, a notion of positive movement along sufficiently

1This section may be omitted on a first reading.
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small closed curves about each point of the neighborhood (Fig. 2-30). If it is
possible to make this choice for each p € S so that in the intersection of any
two neighborhoods the orientations coincide, then S is said to be orientable.
If this is not possible, S is called nonorientable.

Figure 2-30

We shall now make these ideas precise. By fixing a parametrization x(u, v)
of a neighborhood of a point p of a regular surface S, we determine an
orientation of the tangent plane T,(S), namely, the orientation of the asso-
ciated ordered basis {x,, x,}. If p belongs to the coordinate neighborhood of
another parametrization X(&, 7), the new basis {X;, X;} is expressed in terms of
the first one by

. du dv

iﬁ —_ Xuﬁ ""I_ Xva—a)

du dv

X; = xu% -+ x”d—ﬁ’

where u = u(#, ) and v = v(iZ, ¥) are the expressions of the change of coor-
dinates. The bases {x,, x,} and {X;, X,} determine, therefore, the same orienta-
tion of T,(S) if and only if the Jacobian

d(u, v)
a(u, v)

of the coordinate change is positive.

DEFINITION 1. A regular surface S is called orientable if it is possible
to cover it with a family of coordinate neighborhoods in such a way that if a
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point p € S belongs to two neighborhoods of this family, then the change of
coordinates has positive Jacobian at p. The choice of such a family is called an
orientation of S, and S, in this case, is called oriented. If such a choice is not
possible, the surface is called nonorientable.

Example 1. A surface which is the graph of a differentiable function
(cf. Sec. 2-2, Prop. 1) is an orientable surface. In fact, all surfaces which can
be covered by one coordinate neighborhood are trivially orientable.

Example 2. The sphere is an orientable surface. Instead of proceeding to
a direct calculation, let us resort to a general argument. The sphere can be
covered by two coordinate neighborhoods (using stereographic projection;
see Exercise 16 of Sec. 2-2), with parameters (u, v) and (#, 9), in such a way
that the intersection W of these neighborhoods (the sphere minus two points)
is a connected set. Fix a point p in W. If the Jacobian of the coordinate change
at p is negative, we interchange # and v in the first system, and the Jacobian
becomes positive. Since the Jacobian is different from zero in W and positive
at p € W, it follows from the connectedness of ¥ that the Jacobian is every-
where positive. There exists, therefore, a family of coordinate neighborhoods

satisfying Def. 1, and so the sphere is orientable.

By the argument just used, it is clear that if a regular surface can be covered
by two coordinate neighborhoods whose intersection is connected, then the
surface is orientable.

Before presenting an example of a nonorientable surface, we shall give a
geometric interpretation of the idea of orientability of a regular surface in R®.

As we have seen in Sec. 2-4, given a system of coordinates x(u, v) at p, we
have a definite choice of a unit normal vector N at p by the rule

Nm—lﬁﬁﬁl() (1)

Taking another system of local coordinates X(i, v) at p, we see that

%o A Ko = (%, A X )5%; v§ 2)
where d(u, v)/d(i, 0) is the Jacobian of the coordinate change. Hence, N will
preserve its sign or change it, depending on whether d(u, v)/d(#, ¥) is positive
or negative, respectively.

By a differentiable field of unit normal vectors on an open set U — S, we
shall mean a differentiable map N: U — R* which associates to eachg € U
a unit normal vector N(g) € R3 to S atgq.
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PROPOSITION 1. A regular surface S = R3 is orientable if and only if
there exists a differentiable field of unit normal vectors N: S — R? on S.

Proof. If S is orientable, it is possible to cover it with a family of coor-
dinate nmohhnrhnndﬁ S0 that in the intersection of any two of them. the

change of coordinates has a positive Jacobian. At the points p = x(u, v)
of each neighborhood, we define N(p) = N(u, v) by Eq. (1). N(p) is well
defined, since if p belongs to two coordinate neighborhoods, with parameters
(4, ») and (@, ©), the normal vector N(u, v) and N(i, ©) coincide by Eq. (2).
Moreover, by Eq. (1), the coordinates of N(u, v) in R® are differentiable
functions of (u, v), and thus the mapping N: S — R® is differentiable, as
desired.

On the other hand, let N: § — R? be a differentiable field of unit normal
vectors, and consider a family of connected coordinate neighborhoods cover-
ing S. For the points p = x(u, v) of each coordinate neighborhood x(U),
U < R?,itis possible, by the continuity of ¥ and, if necessary, by interchang-
ing 4 and v, to arrange that

Np) = Xe N X
X, A X, |

In fact, the inner product

(Mpy ZOE) = f(p) = 1

is a continuous function on x(U). Since x(U) is connected, the sign of fis
constant. If f == —1, we interchange » and v in the parametrization, and the

nccartinn fallawe
LI LIVIL LUVLIVYY D,

Proceeding in this manner with all the coordinate neighborhoods, we have
that in the intersection of any two of them, say, x(u, v) and X(ii, v), the
Jacobian

d(u, v)
d(u, v)

is certainly positive; otherwise, we would have

X, N X, _ :_iu/\i,j:_N
[x, A\ X,| Np) |X; A X, (P)

which is a contradiction. Hence, the given family of coordinate neighborhoods
after undergoing certain interchanges of u# and v satisfies the conditions of
Def. 1, and S is, therefore, orientable. Q.E.D.
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Remark. As the proof shows, we need only to require the existence of a
continuous unit vector field on § for S to be orientable. Such a vector field
will be automatically differentiable.

Example 3. We shall now describe an example of a nonorientable surface,
the so-called Mdbius strip. This surface is obtained (see Fig. 2-31) by consider-
ing the circle S* given by x? 4 y? = 4 and the open segment AB given in the

mlanna | — a wvie a ~ranfar A A~ alae ey oy 1IN
1 — 9 | 1 A7 +h £ AR al 'l A+
_}/4 pialiiv U_y J/ _— L, | <} =~ 1. ¥¥\u MiOoVe i CCNICI ¢ O1 AD AIULIE W2 aliv Lulll

AB about ¢ in the ¢z plane in such a manner that when ¢ has passed through
an angle , AB has rotated by an angle u/2. When ¢ completes one trip around
the circle, 4B returns to its initial position, with its end points inverted.

Pz

A

B 4

e

11’/4 N

(\
e

X

Figure 2-31

From the point of view of differentiability, it is as if we had identified the
opposite (vertical) sides of a rectangle giving a twist to the rectangle so that
each point of the side 4B was identified with its symmetric point (Fig. 2-31).

It is gpnmph-mn“v evident that the Mabing qfﬂp Mis a f-pgn]qr non-

walls FURSS ¥

orientable surface. In fact, if M were orientable, there would exist a differen-
tiable field N: M -~ R? of unit normal vectors. Taking these vectors along
the circle x2 4 y?* = 4 we see that after making one trip the vector N returns
to its original position as — N, which is a contradiction.

We shall now give an analytic proof of the facts mentioned above.

A system of coordinates x: U — M for the Mobius strip is given by

x{(u, v)—{(Z—vsm—\ sin u, {Z—z’sm \cosu,vcos A\

where 0 << u << 27 and —1 << » <C 1. The corresponding coordinate neigh-
borhood omits the points of the open interval u = 0. Then by taking the



Orientation of Surfaces 707

origin of the #’s at the x axis, we obtain another parametrization X(#, 9)
given by

X = {2 — ﬁsin(%:— + %)} oS i,
y:—{2~6 (%+—g—)}smu
7 = 5 oos(Z + £
STUY\g T2 )

whose coordinate neighborhood omits the interval ¥ = /2. These two
coordinate neighborhoods cover the Mobius strip and can be used to show
that it is a regular surface.

Observe that the intersection of the two coordinate neighborhoods is not
connected but consists of two connected components:

W, = {x(u, rz;):% <u< 2-:},
W, = {x(u, v):0<u <%}
The change of coordinates is given by
- L
U —=— U — —
2 in w,,
V=9
and
u = §£ -+ y] ]
2 mw,.
D= —0
It follows that
000 _1>0  inw,
I, v)

and that

o, v) _ -
W w) 1<0 1nW,.

To show that the Mobius strip is nonorientable, we suppose that it is
possible to define a differentiable field of unit normal vectors N: M — R3.
Interchanging u and v if necessary, we can assume that

X, N\ X,

N = A=)
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for any p in the coordinate neighborhood of x(u, »). Analogously, we may
assume that

i >4|

bql ,‘pql
<

z N\
N(p) = =22
P =R A%]
at all points of the coordinate neighborhood of X(iz, ©). However, the Jacobian
of the change of coordinates must be —1 in either W, or W, (depending on
what changes of the type u — v, # — ¢ has to be made). If p is a point of
that component of the intersection, then N(p) = —N(p), which is a contradic-

tion.

We have already seen that a surface which is the graph of a differentiable
function is orientable. We shall now show that a surface which is the inverse
image of a regular value of a differentiable function is also orientable. This is
one of the reasons it is relatively difficult to construct examples of non-
orientable, regular surfaces in R3.

PROPOSITION 2. If a regular surface is given by S = {(x,y,z) € R3;
f(x,y,z) = a}, where f: U c R® — R is differentiable and a is a regular
value of f, then S is orientable.

Proof. Given a point (x,, vy, z,) =p € S, consider the parametrized
curve (x(1), y(2), z(¢)), t € I, on S passing through p for ¢+ =1¢,. Since the
curve is on S, we have

SO0, p(1), 2(0)) = a

for all ¢+ € I. By differentiating both sides of this expression with respect to
t, we see that at t = ¢,

L% +10)(%) +1o(G) =0

fo

This shows that the tangent vector to the curve at ¢ = ¢, is perpendicular to
the vector (f,,f,,f.) at p. Since the curve and the point are arbitrary, we
conclude that

N(x’ ¥, Z) — ( fx f f )
NIEF I+ N+ A+ A+ i+ T2
s a differentiable field of unit normal vectors on S. Together with Prop. 1,
thls implies that S is “rient-“ble as desired. Q.E.D.

A final remark. Orientation is definitely not a local property of a regular
DUJ. fa\/C LU\/CI-.lly, cv61_y J.Csuld.l aulfa\,c is dlﬁ‘culllull}lllb LU CLU. U]:}UU. DUL lu. Lhc

plane, and hence orientable. Orientation is a global property, in the sense
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that it involves the whole surface. We shall have more to say about global
r in this book (Chap. 5).

EXERCISES

1. Let S be a regular surface covered by coordinate neighborhoods ¥, and ¥,.
Assume that F; N ¥, has two connected components, ¥, W,, and that the
Jacobian of the change of coordinates is positive in ¥, and negative in W,. Prove
that .S is nonorientable.

2. Let S; be an orientable regular surface and ¢: §, — S, be a differentiable map

which is a local diffeomorphism at every p € S;. Prove that S| is orientable.

3. Is it possible to give a meaning to the notion of area for a Mobius strip ? If so, set
up an integral to compute it.

4. Let S be an orientable surface and let {U,} and { ¥V} be two families of coordinate
neighborhoods which cover S (that is, |_J U, = § = () V}) and satisfy the condi-
tions of Def. 1 (that is, in each of the families, the coordinate changes have posi-
tive Jacobian). We say that {U,} and {V,} determine the same orientation of S if
the union of the two families again satisfies the conditions of Def. 1.

Prove that a regular, connected, orientable surface can have only two dis-
tinct orientations.

5. Let ¢: S, — S, be a diffeomorphism.

a. Show that S, is orientable if and only if S, is orientable (thus, orientability is
preserved by diffeomorphisms),

b. Let S, and S, be orientable and oriented. Prove that the diffeomorphism ¢
induces an orientation in S,. Use the antipodal map of the sphere (Exercise 1,
Sec. 2-3) to show that this orientation may be distinct (cf. Exercise 4) from the
initial one (thus, orientation itself may not be preserved by diffeomorphisms;
note, however, that if S, and S, are connected, a diffeomorphism either preserves
or “reverses” the orientation).

6. Define the notion of orientation of a regular curve C = R3, and show that if Cis
connected, there exist at most two distinct orientations in the sense of Exercise 4
(actually there exist exactly two, but this is harder to prove).

7. Show that if a regular surface .§ contains an open set diﬁ'eomorphic‘ to a Mdobius
strip, then S is nonorientable.

2-7. A Characterization
of Compact Orientable Surfacest

The converse of Prop. 2 of Sec. 2-6, namely, that an orientable surface in R3
is the inverse image of a regular value of some differentiable function, is true

1This section may be omitted on a first reading.
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and nontrivial to prove. Even in the particular case of compact surfaces
(defined in this section), the proof is instructive and offers an interesting
example of a global theorem in differential geometry. This section will be
dedicated entirely to the proof of this converse statement.

Let S — R® be an orientable surface. The crucial point of the proof
consists of showing that one may choose, on the normal line through p € S,
an open interval /, around p of length, say, 2¢, (¢, varies with p) in such a
way that if p£g € S, then I, N I, =¢. Thus, the union | I, p € S,
constitutes an open set ¥ of R?, which contains S and has the property that
through each point of ¥ there passes a unique normal line to S; V is then

SRS 'S [N, TP I UV i B RO AU SR o o B & s T, To 2N
called a {douar neignoornood V1L D \Klg. 4=24).

€(p)
)

Iy £(q)
Figure 2-32, A tubular neighborhood.

Let us assume, for the moment, the existence of a tubular neighborhood
V of an orientable surface S. We can then define a function g: ¥ — R as
follows: Fix an orientation for S. Observe that no two segments 7, and I,
p # g, of the tubular neighborhood V intersect. Thus, through each point
P € V there passes a unique normal line to S which meets S at a point p; by
definition, g(P) is the distance from p to P, with a sign given by the direction
of the unit normal vector at p. If we can prove that g is a differentiable func-
tion and that O is a regular value of g, we shall have that S = g='(0), as we
wished to prove.

We shall now start the proof of the existence of a tubular neighborhood
of an orientable surface. We shall first prove a local version of this fact; that
is, we shall show that for each point p of a regular surface there exists a
neighborhood of p which has a tubular neighborhood.

PROPOSITION 1. Let S be a regular surface and x: U — S be a para-
metrization of a neighborhood of a point p = x(u,, vy) € S. Then there exists
a neighborhood W — x(U) of p in S and a number € > 0 such that the segments
of the normal lines passing through points q € W, with center at q and length
2¢, are disjoint (that is, W has a tubular neighborhood).

Proof. Consider the map F: U X R -— R? given by

F(u, v; t) = x(u, v) + tN(u, v), (u, v) € U, t € R,
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where N(u, v) = (N,, N,, N,) is the unit normal vector at

X(u, v) = (x(u, v), y(u, v), z(u, v)).

Geometrically, F maps the point (u, v; ¢t) of the “cylinder” U X R in the
point of the normal line to S at a distance ¢ from x(u, v). F is clearly differ-
entiable and its Jacobian at ¢t = 0 is given by

dx dy 9z
du odu du
ox 8y dz|=|% AX,|#0.
dv dv dv
N, N, N.

By the inverse function theorem, there exists a parallelepiped in U X R,
say,

Uy — 0 < u < uy, + 0, vy — 0 <v<<w,+ 0, —e€ <t <<€,

restricted to which Fis one-to-one. But this means that in the image W by F
of the rectangle

g — 0 <u<uy -8, v,—F<wv<w,+ 8
the segments of the normal lines with centers ¢ € W and of length < 2¢ do
not meet. Q.E.D.

At this point, it is convenient to observe the following. The fact that the

3 Amn £ a 11lo

1 o V. P Aafirned alain o agerimmicng tha avict ~ frilaasl,
function g. ¥ — n, QEILIEa avove UY assuming tne eXisience o1 a tuouliar

neighborhood V;, is differentiable and has 0 as a regular value is a local fact
and can be proved at once.

PROPOSITION 2. Assume the existence of a tubular neighborhood
V < R? of an orientable surface S < R?3, and choose an orientation for S. Then
the function g: V — R, defined as the oriented distance from a point of V to
the foot of the unique normal line passing through this point, is differentiable
and has zero as a regular value.

Proof. Let us look again at the map F: U X R — R? defined in Prop. 1,
where we now assume that the parametrization x is compatible with the
given orientation. Denoting by x, y, z the coordinates of F(u, v, {) = x(u, v)
+ tN(u, v) we can write

Flu, v, 1) = (x(u, v, 1), y(u, v, 1), 2(u, v, 1)).
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Since the Jacobian d(x, y, 2)/0(u, v, t) is different from zero at = 0, we can
invert F in some parallelepiped Q,

Uy — O0<u <uy -+ 94, vy — 0 < v <<+ 0 —€ <t <<é€,
to obtain a differentiable map
Fli(x, y, 2) = (ux, y, 2), ¥(x, y, z), €{x, ¥, 2)),

where (x, y, z) € F(Q) = V. But the function g: V' — R 1n the statement of
Prop. 2 is precisely ¢ = t(x, y, z). Thus, g is differentiable. Furthermore, 0
is a regular value of g; otherwise

+ S A,
X oy g

ot t
_9t_ 0t

[\

for some point where ¢ = 0; hence, the differential dF ' would be singular
for ¢t = 0, which is a contradiction. Q.E.D.

To pass from the local to the global, that is, to prove the existence of a
tubular neighborhood of an entire orientable surface, we need some topo-
logical arguments. We shall restrict ourselves to compact surfaces, which we
shall now define.

Let A4 be a subset of R3. We say that p € R31s alimit point of A if every
neighborhood of p in R? contains a point of A distinct from p. A is said to be
closed if it contains all its limit points. A4 is bounded if it is contained in some
ball of R3. If A4 is closed and bounded, it is called a compact set.

The sphere and the torus are compact surfaces. The paraboloid of revolu-
tion z = x? -} 2, (x, ¥) € R?, is a closed surface, but, being unbounded, it
is not a compact surface. The disk x* + y? < 1 in the plane and the M&bius
strip are bounded but not closed and therefore are noncompact.

We shall need some properties of compact subsets of R?, which we shall

now state. The distance between two points p,g € R® will be denoted by
d(, q).

PROPERTY 1 (Bolzano-Weierstrass). Let A — R3 be a compact set.
Then every infinite subset of A has at least one limit point in A.

PROPERTY 2 (Heine-Borel). Let A — R® be a compact set and {U,}
be a family of open sets of A such that | ), U, = A. Then it is possible to choose
a finite number U, Uy, . .., U, of U, such that | JU, = A, i—=1,...,n

PROPERTY 3 (Lebesgue). Let A « R® be a compact set and {U } a family
1 n f

st A Py A AT TT Tlin
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(the Lebesgue number of the family {U,}) such that whenever two points
P.q € A are at a distance d(p, q) < d then p and q belong to some U,.

Properties 1 and 2 are usually proved in courses of advanced calculus. For
completeness, we shall now prove Property 3. Later in this book (appendix to
Chap. 5), we shall treat compact sets in R” in a more systematic way and shall
present proofs of Properties 1 and 2.

Proof of Property 3. Let us assume that there is no § > 0 satisfying the
conditions in the statement; that is, given 1/n there exist points p, and ¢,
such that d(p,, ¢q,) << 1/n but p, and g, do not belong to the same open set of
the family {U,}. Setting » = 1, 2, ..., we obtain two infinite sets of points
{p.} and {g,} which, by Property 1, have limit points p and g, respectively.

Qines A n AY o 1/ we mav chnance thace limit nainte in crich a wavy that
JLUNG G\ Ppy ) ™ 1j7t, VWU Llay LCIIUUSL (lLoL alilil PULTTIW 11 sulidl a yay uiat

p=gq.Butp e U, for some a, because p € 4 = J, U,, and since U, is an
open set, there is an open ball B.( p), with center in p, such that B (p) < U,.
Since ¥4 is a limit puuu of U),,j and 1q,,j, there eXiSL, for n aumCzt‘:nu_y 1argc,

points p, and g, in B.(p) = U,; that is, p, and g, belong to the same U,,
which is a contradiction. Q.E.D.

Using Properties 2 and 3, we shall now prove the existence of a tubular
neighborhood of an orientable compact surface.

PROPOSITION 3. Let S = R? be a regular, compact, orientable surface.
Then there exists a number € > 0 such that whenever p, q € S the segments of
the normal lines of length 2¢, centered in p and q, are disjoint (that is, S has a
tubular neighborhood).

Dol Doe heemn 1 Lo e o . 1 LL,.L_H.:I 17
Proof. By Prop. 1, for t:dulp S there exists a uclguuu nooa w,

number €, > 0 such that the proposition holds for points of W, with € = €,.
Letting p run through S, we obtain a family {W} with | J,.c W, = S. By
compactness (Property 2), it is possible to choose a finite number of the
W,’s, say, Wi, ..., W, (corresponding to €,, .. ., €) such that [_J W, = S,
i =1,...,k. Weshall show that the required ¢ is given by

I,
na a

m
=

€ < min(fl, coes €gy ‘%)5

where & is the Lebesgue number of the family {W;} (Property 3).

In fact, let two points p, g & S. If both belong tosome W, i =1,...,k,
the segments of the normal lines with centers in p and ¢ and length 2¢ do not
meet, since € < €,. If p and g do not belong to the same W, then d(p, g) = J;
were the segments of the normal lines, centered in p and g and of length 2e,
to meet at point Q & R3, we would have
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2e > d(p, Q)+ dQ, 9 = d(p, 9) = 5,
which contradicts the definition of e. Q.E.D.

Putting together Props. 1,2, and 3, we obtain the following theorem,
which is the main goal of this section.

THEOREM. Let S = R? be a regular compact orientable surface. Then
there exists a differentiable function g: V — R, defined in an open set V < R3,
with V o S (precisely a tubular neighborhood of S), which has zero as a regular
value and is such that S = g~*(0).

Remark 1. 1t is possible to prove the existence of a tubular neighborhood
of an orientable surface, even if the surface is not compact; the theorem is
true, therefore, without the restriction of compactness. The proof is, however,
more technical. In this general case, the e€(p) > 0 is not constant as in the
compact case but may vary with p.

Remark 2. 1t is possible to prove that a regular compact surface in R? is
orientable; the hypothesis of orientability in the theorem (the compact case)

1o thawafres 1zmivannoo ariy A vennl AP tlic Farnt nam o Frzzmd 30 1T Qasmaaleoni
15 UICIVIUVIC UTHICLOO>AL Y. A PIUUL UL LIS 1dbl Ldll UC 1vuliu 111 1. Odallielsull,

“Qrientability of Hypersurfaces in R*,” Proc. A.M.S. 22 (1969), 301-302,

2-8. A Geometric Definition of Area’

In this section we shall present a geometric justification for the definition of
area given in Sec. 2-5. More precisely, we shall give a geometric definition of
area and shall prove that in the case of a bounded region of a regular surface
such a definition leads to the formula given for the area in Sec. 2-5.

To define the area of a region R = § we shall start with a partition @ of
R into a finite number of regions R,, that is, we write R = |_J; R, where the
intersection of two such regions R, is either empty or made up of boundary
points of both regions (Fig. 2-33). The diameter of R, is the supremum of the
distances (in R®) of any two points in R;; the largest diameter of the R’s of a
given partition @ is called the norm u of ®. If we now take a partition of each
R,;, we obtain a second partition of R, which is said to refine @.

Given a nartition

Wil & PR vAvAVL

R - U Rl'
of R, we choose arbitrarily points p, € R, and project R, onto the tangent

1This section may be omitted on a first reading.
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Figure 2-33

plane at p, in the direction of the normal line at p,; this projection is denoted
by R, and its area by A(R,). The sum Y, A(R,) is an approximation of what
we understand intuitively by the area of R.

If, by choosing partitions ®,,...,®,, ... more and more refined and
such that the norm g, of @, converges to zero, there exists a limit of 3, A(R,)
and this limit is independent of all choices, then we say that R has an area
A(R) defined by

A(R) = limo 3 A(R).
el U

An instructive discussion of this definition can be found in R. Courant,
Differential and Integral Calculus, Vol. II, Wiley-Interscience, New York,
1936, p. 311.

We shall show that a bounded region of a regular surface does have an
area. We shall restrict ourselves to bounded regions contained in a coordinate
neighborhood and shall obtain an expression for the area in terms of the
coefficients of the first fundamental form in the corresponding coordinate
System.

PROPOSITION. Let x: U — S be a coordinate system in a regular
surface S and let R = x(Q) be a bounded region of S contained in x(U). Then
R has an area given by

A(R) =”Q;xu A x,]du dv.

Proof. Consider a partition, R =|_J; R;, of R. Since R is bounded and
closed (hence, compact), we can assume that the partition is sufficiently
refined so that any two normal lines of R, are never orthogonal. In fact,
because the normal lines vary continuously in S, there exists for each p € R
a neighborhood of p in S where any two normals are never orthogonal,;
these neighborhoods constitute a family of open sets covering R, and consid-
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ering a partition of R the norm of which is smaller than the Lebesgue number
of the covering (Sec. 2-7, Property 3 of compact sets), we shall satisfy the
required condition.

Fix a region R; of the partition and choose a point p, € R, = x(Q,). We
want to compute the area of the normal projection R, of R, onto the tangent
plane at p,. To do this, consider a new system of axes p,¥jZ in R?, obtained
from Oxyz by a translation Op,, followed by a rotation which takes the z
axis into the normal line at p, in such a way that both systems have the same

orientation (Fig. 2-34). In the new axes, the parametrization can be written
X(u, v) = (X(u, v), Ju, v), Z(u, v)),

where the explicit form of X(#, v) does not interest us; it is enough to know
that the vector X(w, v) is obtained from the vector x(u, v) by a translation
followed by an orthogonal linear map.

We observe that d(x, ¥)/d(u, v) == 0 in Q,; otherwise, the Z component of
some normal vector in R, is zero and there are two orthogonal normal lines
in R,, a contradiction of our assumptions.

Figure 2-34

The expression of A(R)) is given by
AR) = ”R d% dj.

Since 6(32 ﬁ)/c?(u v) % 0, we can consider the change of coordinates X =
into

vlu aa\ Vo= 1;(11 Y and transform the above exnressio
£ss1o

SR Py P 4 Yy @iale wx
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We remark now that, at p,, the vectors X, and X, belong to the Xy plane;
therefore,

0z 0z .
5—12:_7)_0 atpi:
hence,
o(x, p)| _jox , dx
o | =15 G e
It follows that
[=T8 Sy | A o
=5 A ol =e .
D FENB e, @moeo

where €, v) is a continuous function in @, with ¢,(x~*(p,)) = 0. Since the
length of a vector is preserved by translations and orthogonal linear maps, we
obtain

ax
oy

Jx|

0x
6u /\ o

| ou

3|~ B — e .

Now let M; and m; be the maximum and the minimum of the continuous
function €,(¢, v) in the compact region Q,; thus,

ox , oOx

Jax, |
m = J o(u, v) Ju A oy = M
hence,
mff du dv << A(R) — ff du/\gx dudeMfff du dy.
o] (o1 Q;

Doing the same for all R, we obtain

”

S mAQ) < T AR) — [[ 1% A X[ dudo <3 MAQ).

Now, refine more and more the given partition in such a way that the
norm g — 0. Then M, — m;. Therefore, there exists the limit of >, A(R),

given by
am = | f

which is clearly independent of the choice of the partitions and of the point
p, in each partition. Q.E.D.

du dy,

/\a




Appendix A Brief Review

of Continuity and

Differentiability

R* will denote the set of n-tuples (x4, . . ., x,) of real numbers. Although we
use only the cases R! = R, R?, and R?, the more general notion of R" unifies
the definitions and brings in no additional difficuities; the reader may think
in R? or R?, if he wishes so. In these particular cases, we shall use the follow-
ing more traditional notation: x or ¢ for R, (x, y) or (i, v) for R?, and (x, y, z)
for R3.

A. Continuity in R*

We start by making precise the notion of a point being e-close to a given
point p, € R".

A ball (or open ball) in R* with center p, = (x4, ..., x?) and radius € > 0
is the set

BApo) = {(Xs .5 x,) € R (g — XD+ -+ (x, — x) < €2

Thus, in R, B.(p,) is an open interval with center p, and length 2¢; in R2,
B.(p,) is the interior of a disk with center p, and radius €; in R3, B.(p,) 1s the
interior of a region bounded by a sphere of center p, and radius € (see Fig.
A2-1).

A set U < R*is an open set if for each p € U there is a ball B.(p) = U,
intuitively this means that points in U are entirely surrounded by points of U,
or that points sufficiently close to points of U still belong to U.

For instance, the set

f(x,y)€ER};a<x<h c<y<d}

bl
—y
Qo
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\_

R3

Figure A2-1

is easily seen to be open in R2. However, if one of the strict inequalities, say
x << b, is replaced by x <C b, the set is no longer open; no ball with center at
the point (b, (d 4 ¢)/2), which belongs to the set, can be contained in the set
(Fig. A2-2).

It is convenient to say that an open set in R* containing a point p € R”
is a neighborhood of p.

From now on, U < R" will denote an open set in R”.

We recall that a real function f: U = R-— R of a real variable is con-
tinuous at x, € U if given an € > 0 there exists a § > 0 such thatif

|x — x,| < d, then

| f() — fxo)| <.

Figure AZ-Z
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Similarly, a real function f: U < R? — R of two real variables is continuous
at (x,, y,) € U if given an € > 0 there exists a § > 0 such that if

(x — x0)* + (y — yo)? < 62, then
|f(xsy) —f(xoay())] < €.

The notion of ball unifies these definitions as particular cases of the following
general concept:

A map F: U = R" — R™ is continuous at p U if given € > 0, there
exists a § > O such that

F(By(p)) < B{F(p))-

In other words, F is continuous at p if points arbitrarily close to F(p) are
images of points sufficiently close to p. It is easily seen that in the particular
cases of n = 1, 2 and m = 1, this agrees with the previous definitions. We
say that F is continuous in U if F is continuous for all p € U (Fig. A2-3).

R?
F(Bg(p))

Be(F(p))
R3

Figure A2-3

Given a map F: U < R* — R™, we can determine m functions of n
variables as follows. Let p = (x;,...,x,) € U and f(p) = (¥, -5 Vm)-
Then we can write
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Example 1 (Symmetry). Let F: R®* — R?® be the map which assigns to
each p € R? the point which is symmetric to p with respect to the origin
O € R?. Then F(p) = —p, or

F(x: Vs Z) = (_x’ Vs _Z)9

and the component functions of F are

fl(x’ Vs Z) = —X, fz(x, Vs Z) = —), fg(x, Vs Z) = —7Z.

Example 2 (Inversion). Let F: R* — {(0, 0)} —— R? be defined as follows.
Denote by fnJ the distance to the oriein (0. 0 — O of a noint p € R By

L% LV} Sy VAA rAdwGiiiv 2w VRApAxL \Vy V) L S

definition, F( p), p #= 0, belongs to the half-line Op and is such tha_t \F(p)|-|p |
== 1. Thus, F(p) = p/|p|*, or

ECx )= (xz jCry""x‘* -J;yz)’ (x, ) # (0, 0),

and the component functions of F are

fi(x, y) = faolx, y) =

xz+yz’ x2+y

Example 3 (Projection). Let n: R* —— R* be the projection zn(x, y, z) =
(x, ). Then fi(x, », 2) = x, fa(x, ¥, 2) = y.

The following proposition shows that the continuity of the map F is
equivalent to the continuity of its component functions.

PROPOSITION 1. F: U = R* — R™ is continuous if and only if each
component function f: U c R* - R, 1 =1, ..., m, is continuous.

Proof. Assume that F is continuous at p € U. Then given € > 0, there
exists § > 0 such that F(B,(p)) < B.(F(p)). Thus, if g € B,(p), then

F(g) € B.(F(p)),
that 1s,

(flg) — f1(p))* + -+ -+ (falg) — f(D))? < €2,

which implies that, for each i =1,...,m, ]| f(q) — f{p)] < e. Therefore,
given € > 0 there exists § > 0 such that if g € S;(p), then | fi(g) — f.(p)| <e€.

FaiL A2y O - Ul/

Hence, each f; is continuous at p.
Conversely, let f,, i = 1,..., m, be continuous at p. Then given € > 0

there exists 8, > 0 such that if ¢ € S;(p), then | fi(q) — fi(p)| < €[~/ m . Set
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d < min §; and let ¢ € S;(p). Then

(filg) — @) + -+ + (flg) — Fp)P < €%,

and hence, the continuity of F at p. Q.E.D.
It follows that the maps in Examples 1, 2, and 3 are continuous.
Example 4. Let F: U = R— R™. Then

F(r) = (x(0), ..., x,(1)), te U.

This is usually called a vector-valued function, and the component functions

of F are the components of the vector F(f) € R™ When F is continuous, or,
pqnumlpnﬂv the functions x.(f. 7 =1 m, are continuous, we say that

LY CPAWIELE VALY A GLINRIVILD Ak fg & T Ly o » v g iTEy viii Lildht

F is a continuous curve in R”.

In most applications, it is convenient to express the continuity in terms of
neighborhoods instead of balls.

PROPOSITION 2. 4 map F: U — R* — R™ js continuous at p < U if
and only if, given a neighborhood V of F(p) in R™ there exists a neighborhood
W.of p in R® such that F(W) c V.

Proof. Assume that Fis continuous at p. Since V'is an open set containing
F(p), it contains a ball B (F(p)) for some € > 0. By continuity, there exists a

n s

ball B,(p) = W such that
FW) = F(B{p)) = B(F(p)) = V,

and this proves that the condition is necessary.

Conversely, assume that the condition holds. Let ¢ > 0 be given and set
V = B.(F(p)). By hypothesis, there exists a neighborhood W of p in R” such
that F(W) < V. Since W is open, there exists a ball B;(p) = W. Thus,

and hence the continuity of F at p. Q.E.D.

The composition of continuous maps yields a continuous map. More
precisely, we have the following proposition.

PROPOSITION 3. Let F:Uc R*—R™ and G:V <« R®™ — R¥ be

continuous maps, where U and V are open sets such that F(U) < V. Then
{?.nl:‘_IT,—Dn Rk ; NANFIIIIAIIC WA

— Flrd s 80 P
— - I\ h) u LU ELLILUALS LD FTIELEES .
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Proof. Let p € U and let V be a neighborhood of G o F(p) in R*. By
continuity of G, there is a neighborhood @ of F(p) in R™ with G(Q) < V.
By continuity of F, there is a neighborhood W of p in R* with F(W)} < Q.
Thus,

GoF(W)c G(Q) <V,
and hence the continuity of G o F. Q.E.D.

It is often necessary to deal with maps defined on arbitrary (not neces-
sarily open) sets of R". To extend the previous ideas to this situation, we shall

Let F: A « R* — R™ be a map, where A is an arbitrary set in R*. We say
that F is continuous in A if there exists an open set U < R", U > A4, and a
continuous map F: U -— R™ such that the restriction F|4 = F. In other
words, F1s continuous in 4 if it is the restriction of a continuous map defined
in an open set containing A.

It is clear that if F: 4 < R* — R™ is continuous, given a neighborhood
V of F(p) in R, p € A, there exists a neighborhood W of p in R” such that
F(W N A) < V. For this reason, it is convenient to call the set W\ 4 a
neighborhood of p in A (Fig. A2-4).

WnNA

w\.' \A ‘/\
=N \i—

Figure A24

xZ 2 ZZ
E—{ny eG4 5=1

be an ellipsoid, and let #: R* — R? be the projection of Example 3. Then the
restriction of z to E is a continuous map from E to R?.

We say that a continuous map F: A < R*-— R" is a homeomorphism
onto F(A4) if Fis one-to-one and the inverse F ': F(4) © R"-— R" is continu-
ous. In this case A and F(A4) are homeomorphic sets.
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Example 6. Let F: R* — R? be given by
F(x, y, ) = (xa, yb, zc).
Fis clearly continuous, and the restriction of F to the sphere
S? ={(x,y,z) € R; x>+ y? + z* = 1}

is a continuous map F: S - R®. Observe that F(S?) = E, where E is the
ellipsoid of Example 5. It is also clear that F is one-to-one and that

~1 — (X X ZY.
F(x,y,z)—(a,b,c)
Thus, F-! = F~1|E is continuous. Therefore, F is a homeomorphism of the

sphere S onto the ellipsoid E.

Finally, we want to describe two properties of real continuous functions
defined on a closed interval [aq, 5],

{a, b] = {x € R; a <\ x < b}

(Props. 4 and 5 below), and an important property of the closed interval
[a, b] itself. They will be used repeatedly in this book.

PROPOSITION 4 (The Intermediate Value Theorem). Les f: [a, b] — R
be a continuous function defined on the closed interval [a, b]. Assume that
f(a) and f(b) have opposite signs; that is, f(a)f(b) < 0. Then there exists a
point ¢ € (a, b) such that f(c) = 0.

PROPOSITION 5. Ler f: [a, b] be a continuous function defined in the
closed interval [a, b]. Then f reaches its maximum and its minimum in [a, b];
that is, there exist points X4, X, € [a, b] such that f(x,) < {(x} < {(x;) for all
x € [a, b].

PROPOSITION 6 (Heine-Borel). Let [a, b] be a closed interval and let
L., & € A, be a collection of open intervals in [a, b] such that | ), 1, = [a, b].
Then it is possible to choose a finite number 1., Ly,, ..., I, of 1, such that
UL, =Li=1,...,n.

These propositions are standard theorems in courses on advanced
calculus, and we shall not prove them here. However, proofs are provided in
the appendix to Chap. 5 (Props. 6, 13, and 11, respectively).
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B. Differentiability in R"

Letf: U © R — R. The derivative f'(x,) of fat x, € U is the limit (when
it exists)

f'(xo)zlhimf(x“Jrh;)lﬁf(xO), X, -+ h e U.

When f has derivatives at all points of a neighborhood ¥V of x,, we can
consider the derivative of f': V- R at x,, which is called the second derivative
f"(x,) of f at x,, and so forth. f is differentiable at x, if it has continuous
derivatives of all orders at x,. fis differentiable in U if it is differentiable at
all points in U.

Remark. We use the word differentiable for what is sometimes called
infinitely differentiable (or of class C*). Our usage should not be confused

with the nsace of elementary r‘q]mﬂnq where a function is called differentiable
age ry whe lled difterentiable

if its first derivative exists,

Let F: U < R?* -— R. The partial derivative of f with respect to X at
(x0, ¥o) € U, denoted by (df/0x)x,, ¥o), is (when it exists) the derivative at
x, of the function of one variable: x — f(x, y,). Similarly, the partial deriva-
tive with respect to y at (x,, yo), (9f/0y)(x,, ¥,), 1s defined as the derivative at
¥y, of y— f(x4, ¥). When fhas partial derivatives at all points of a neighbor-
hood V of (x,, y,), we can consider the second partial derivatives at (x,, y,):

d (af\ _ 9 9 (9f\ _ 9
ﬁi(d_x) ax?’ 0x (9}) T oxady’
9 (of\ _ 0 Iy _ 9

dy (dx) dy ox’ dy (dy) vz’

and so forth. fis differentiable at (x,, y,) If it has continuous partial derivatives
of all orders at (x,, y,). fis differentiable in U 1f it is differentiable at all points
of U. We sometimes denote partial derivatives by

f f f 9 a f
fx’ fy’ fxx’ ax dy fxy’ fy}

It is an important fact that when fis differentiable the partial derivatives
of f are independent of the order in which they are performed; that is,

a*f _ 9 o0f _ __9f

gxdy —dyox  oxdy  dxayar o©
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The definitions of partial derivatives and differentiability are easily extend-
ed to functions f: U < R* — R. For instance, (df/dx3)(x}, x3, . . ., x%) is the
derivative of the function of one variahle

Xy —> f(x0, X3, X3, X85 ..., X9

A further important fact is that partial derivatives obey the so-called
chain rule. For instance, if x = x(u, v}, y = y(u, v), z = z(u, v) are real differ-
entiable functionsin U < R? and f(x, y, z) is a real differentiable function in
R3, then the composition f(x(«, v), y(u, v), z{u, v)) is a differentiable function
in U, and the partial derivative of f with respect to, say, # is given by

of _9fdx  dfdy  dfdz
9u_oxdu “dyou "

We are now interested in extending the notion of differentiability to maps
F. U < R*-— R™ We say that F is differentiable at p € U if its component
functions are differentiable at p; that is, by writing

F(xli"'9xn):(f1(x15 ...,X,.,), '--’fm(xla ""xn))9

the functions f,,i =1, , m, have continuous partial derivatives of all
orders at p. F is dzﬁerentzable in U if it is differentiable at all points in U.

For the case m = 1, this repeats the previous definition. For the case
n = 1, we obtain the notion of a (parametrized) differentiable curve in R™,
In Chap. 1, we have already seen such an object in R*. For our purposes,
we need to extend the definition of tangent vector of Chap. 1 to the present
situation. A tangent vector toamap ¢: U « R-— R" att, € U is the vector
in R

&' (to) = (X'1(Zo)s -+ -5 Xpulto))-

Example 7. Let F: U = R? — R? be given by

F(u, v) = (cos u cos v, cos u sin v, cos? v), (u,v) € U.
rr1 PSR Y o IS . P o o R 1
1NeE COlL lpUHC IL TUIICLLOILS UL O, uamcly,

fi{u, v) = cos u cos v, Sfa(u, v) = cos u sin v, fi(u, v) = cos? v

have continuous partial derivatives of all orders in U. Thus, Fis differentiable
in U.

Example 8. Leta: U = R -— R* be given by

f\ (14 13 2 £ + = I
(¢} (s, 1, 15, 1) = U,
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Then « is a differentiable curve in R+, and the tangent vector to « at 7 is
&'(f) = (4¢3, 312, 2t, 1).

Example 9. Given a vector w € R™ and a point p, € U < R™, we can
always find a differentiable curve a.: (—¢, €) — U with a(0) = p, and a'(0) =
w. Simply define a(¢) = p, + tw, t € (—¢€, €). By writing p, = (x4, ..., x2)
and w = (w4, ..., W,), the component functions of & are x,(t) = x} + tw,
i=1,...,m. Thus, « is differentiable, a(0) = p, and

a'(0) = (x40, ..., x,(0) = (wy, ..., wp) = w.

We shall now introduce the concept of differential of a differentiable
map. It will play an important role in this book.

DEFINITION 1. Let F: U < R®» — R™ be a differentiable map. To each
p € U we associate a linear map dF: R® -—— R™ which is called the differential
of F at p and is defined as follows. Let w € R" and let a: (—e,€) — U be a
differentiable curve such that a(0) = p, &'(0) = w. By the chain rule, the curve
B =Fou: (—e, €)-— R™ is also differentiable. Then (Fig. A2-5)

dF,(w) = B'(0).

6\/ dF p(w)
¥4
A
F(p)
/ v _F .
w
N
ey
P Foa=§
\ u
X

Figure A2-5

PROPOSITION 7. The above definition of dF, does not depend on the
choice of the curve which passes through p with tangent vector w, and dF is,
in fact, a linear map.

Proof. To simplify notation, we work with the case F: U < R* -— R3,
Let (u, v} be coordinates in R? and (x, y, z) be coordinates in R®. Let
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e, =(1,0), e, = (0, 1) be the canonical basis in R* and f; = (1,0, 0),
f.=(0,1,0), f5; = (0,0, 1) be the canonical basis in R®. Then we can write
AlEY e (18N (NN 2 — (e £)
ey = i) i), 1 € (€ €)

«'(0) = w = u'(0)e; + v'(Oey,
F(u, v) = (x(u, v), y(, v), z(#, v)), and
B(D) = F o a(t) = (x(u(®), v(£)), y(u(®), v(1)), (1), (1)))-

Thus, using the chain rule and taking the derivatives at 1 = 0, we obtain

e (Ox du | dx dv dydu | dydv
FO) = (0u dr - o dt)f1 + (Gu dt + dv dt)f

dzdu 0z dv
- (c?u 7 9 dt)f3

dx ¢
/5_1)5 ﬂf\ /df\

ay
du

\% &I\%

This shows that dF, is represented, in the canonical bases of R* and R3,
by a matrix which depends only on the partial derivatives at p of the com-
ponent functions x, y, z of F. Thus, 4F, is a linear map, and clearly dF,(w)
does not depend on the choice of e.

The reader will have no trouble in extending this argument to the more
general situation. Q.E.D.

= dF (w).

SIS

The matrix of dF,: R" — R™ in the canonical bases of R and R™, that
is, the matrix (0f;/ox)), i=1,...,m, j=1,..., n, is called the Jacobian
matrix of F at p. When n = m, this is a square matrix and its determinant is
called the Jacobian determinant, it is usual to denote it by

o) = ey

Remark. There 1s no agreement in the literature regarding the notation
for the differential. It is also of common usage to call dF, the derivative of
F at p and to denote it by F'(p).

Example 10. Let F: R? — R? be given by

111}
7

Fix. )= (x2 _ 2 (x. 1
K V) =& — J% 2X)) (G
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F is easily seen to be differentiable, and its differential dF, at p = (x, y) is

2x —~2y)

dF, = (
2y 2x

For instance, dF ,,(2, 3) = (—2, 10).

One of the advantages of the notion of differential of a map is that it
allows us to express many facts of calculus in a geometric language. Consider,
for instance, the following situation: Let F: U <« R* — R3,G: V < R? — R?
be differentiable maps, where U and V are open sets such that F(U) < V.
Let us agree on the following set of coordinates,

Uc R? f.ve R % R
(u, v) (x,y, z) & n
and let us write

F(u, v) = (x(u, v), »(u, ?)), 2(u, v)),

G(x, y, z) = ({(x, ¥, 2), n(x, ¥, z)).
Then

G o F(u, v) = (&(x(u, v), y(u, v), 2(u, v)), 1(x(u, v), ¥(u, v), 2u; v))),

and, by the chain rule, we can say that G o F is differentiable and compute the
partial derivatives of its component functions. For instance,

0f dEox [ dEady  do:z
9% _Os0x OO0 £5 02,
du oOxdu ' dydu ' 0z du

Now, a simple way of expressing the above situation is by using the fol-
lowing general fact.

PROPOSITION 8 (The Chain Rule for Maps). Let F: U — R* — R™
and G:V < R™ — R* be differentiable maps, where U and V are open sets
such that F(U) < V. Then G o F: U — Rk is a differentiable map, and

d(G o F), =dGgy, o dF,, pe U

Proof. The fact that G o F is differentiable is a consequence of the chain
rule for functions. Now, let w, € R* be given and let us consider a curve
o (—e,, €;) — U, with a(0) = p, ¢’(0) = w,. Set dF ,(w,) = w, and observe
that dGp,(w2) = (d/dt)(G o F o a}|,_,. Then

d(G e F)p(wl) = %(G oFo “)zzo = dGF(p)(WZ) = dGF(P) © de(wl)'

ONN
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Notice that, for the particular situation we were considering before, the
relation d(G o F), = dGy,, o dF, is equivalent to the following product of
Jacobian matrices,

(s 96 jdc 9& 9L, Ox Ox,
du ov dx dy o= du ov
_ dy 9y

ou dv

an dy on dn dnfldz o:

du Jv dx dy dz/ ‘du dv

which contains the expressions of all partial derivatives d&/du, d&/dv, 0n/du,
0n/dv. Thus, the simple expression of the chain rule for maps embodies a
great deal of information on the partial derivatives of their component func-

tions.

An important property of a differentiable function f: (a,6) <« R — R
defined in an open interval (a, 6) is that if f'(x) = 0 on (a, b), then fis con-
stant on (a, b). This generalizes for differentiable functions of several variables

aq f‘nyn“m

[= A RV

We say that an open set U < R" is connected if given two points p,qg € U
there exists a continuous map «: [a, b] -—— U such that a(@) = p and a(b) = q.
This means that two points of U can be joined by a continuous curve in U or
that U is made up of one single “piece.”

PDNADNACTTINN O T+ £. 77 — Dn . B hs a4 AiFowomfinkh
L RNELVASLLAINIIN 7, L6 1. U — IN 77 1IN Ve o ijjororibivdy

J
defined on a connected open subset U of R". Assume that df;: R* — R is zero
at every point p € U. Then f is constant on U.

Io  farnm
[4

Proof. Let p € U and let By(p) — U be an open ball around p and con-
tained in U. Any point ¢ € B.(p) can be joined to p by the “radial” segment
B:10,1] — U, where B(¢) =tg 4 (1 — t)p, t € [0, 1] (Fig. A2-6). Since U
is open, we can extend fto (0 — e, 1 4 €). Now, fof: (0 —¢,1 +€)— R
is a function defined in an open interval, and

d(f o )= (df o df). = 0,
since df = 0. Thus,

d
E(fOﬁ)=0

for all 1t € (0 —¢,1 4 €), and hence (f o B) = const. This means that
J(BO) = f(p) = f(B(1)) = f(g); thatis, fis constant on By(p).

Thite tha nranacitinn 10 wravad lacrallye tha + lo aarh naint Af T hag a
Lilua, LUV pPEUPUSILIVLL 1o quvuu Jvaliy s, tilat 1o, wdwil Pl nt ¢f U pas a
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Figure A2-6

neighborhood such that fis constant on that neighborhood. Notice that so
far we have not used the connectedness of U. We shall need it now to show
that these constants are all the same.

Let r be an arbitrary point of U. Since U is connected, there exists a
continuous curve d&:[a, b] — U, with a(a) =p, a(b) = r. The function
foa:[a, b] — R is continuous in [a, b]. By the first part of the proof, for
each ¢ € [qa, b], there exists an interval 7,, open in [a, 6], such that fo & is
constant on I,. Since (_J, I, = [a, b], we can apply the Heine-Borel theorem
(Prop. 6). Thus, we can choose a finite number 7,, . . ., I, of the intervals I,
so that { J; I, =[a,b], i=1,...,%k We can assume, by renumbering the
intervals, if necessary, that two consecutive intervals overlap. Thus, fo & is
constant in the union of two consecutive intervals. It follows that f'is constant
on [a, b]; that is,

fa)) = f(p) = flub) = f(r).
Since r is arbitrary, f is constant on U. Q.E.D.

One of the most important theorems of differential calculus is the so-
called inverse function theorem, which, in the present notation, says the
following. (Recall that a linear map A is an isomorphism if the matrix of A
is invertible.)

INVERSE FUNCTION THEOREM. Let F: U — R* — R*® be a differ-
entiable mapping and suppose that at p € U the differential dF,: R* — R* is
an isomorphism. Then there exists a neighborhood V of p in U and a neigh-
borhood W of F(p) in R® such that F:V — W has a differentiable inverse
F-1:W -V,

A differentiable mapping F: ¥ < R"— W < R", where ¥ and W are open
sets, is called a diffeomorphism of V with W if F has a differentiable inverse.
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The inverse function theorem asserts that if at a point p € U the differential
dF, is an isomorphism, then F is a diffeomorphism in a neighborhood of p.
In other words, an assertion about the differential of F at a point implies a
similar assertion about the behavior of F in a neighborhood of the point.

This theorem will be used repeatedly in this book. A proof can be found,
for instance, in Buck, Advanced Calculus, p. 285.

Example 11. Let F: R? — R? be given by
F(x, y) = (e* cos y, e* sin y), (x, ¥) € R~

The component functions of F, namely, u(x, y) =e* cos y, v(x,y) = e*
sin y, have continuous partial derivatives of all orders. Thus, F is differenti-
able.

It is instructive to see, geometrically, how F transforms curves of the
xy plane. For instance, the vertical line x = x, is mapped into the circle
u = e cos y, v = e¢>sin y of radius e*, and the horizontal line y =y, is
mapped into the half-line v = e* cos y,, v = e sin y, with slope tan y,. It
follows that (Fig. A2-7)

| ¥
y I=X0
1(0,1)
0 dF(xy yo N1
Yy =), Yo
(x0,¥9) (1,0 -
0 / u
0 o

Figure A2-7

d x X a7
dF(xo,yo)(l’ 0) = ?E(e COs Yg, €7 81N y0)|x=xo
= (e™ cOos Yo, €*° sin y;),
d, . Y
dF...,.(1, 0) = @(e °COs ¥, €% sin ¥) |,y

= (—e* sin yg, € cos yg).

This can be most easily checked by computing the Jacobian matrix of F,
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au au x e pX o1
P a——x* d—y e Cos Yy e sy
(x.% — - ?
a’U av X X
a—x ay e sy € Cos y

and applying it to the vectors (1, 0) and (0, 1) at (x,, y,)-

We notice that the Jacobian determinant det(dF,,,,) = ¢* # 0, and thus
dF,is nonsingular for all p = (x, y) € R? (this is also clear from the previous
geometric considerations). Therefore, we can apply the inverse function
theorem to conclude that F is locally a diffeomorphism.

Observe that F(x, y) = F(x, y -+ 2r). Thus, F 1s not one-to-one and has
no global inverse. For each p € R?, the inverse function theorem gives
neighborhoods ¥V of p and W of F(p) so that the restriction F: V' — W is a
diffeomorphism. In our case, ¥ may be taken as the strip {—oco < x < oo,
0 <y << 2z} and W as R* — {(0, 0)}. However, as the example shows, even
if the conditions of the theorem are satisfied everywhere and the domain of
definition of F is very simple, a global inverse of ¥ may fail to exist.



3 The Geometry
of the Gauss Map

3-1. Introduction

As we have seen in Chap. 1, the consideration of the rate of change of the
tangent line to a curve C led us to an important geometric entity, namely, the
curvature of C. In this chapter we shall extend this idea to regular surfaces;
that is, we shall try to measure how rapidly a surface S pulls away from the
tangent plane T ,(S) in a neighborhood of a point p € S. This is equivalent to
measuring the rate of change at p of a unit normal vector field N on a neigh-
borhood of p. As we shall see shortly, this rate of change is given by a linear
map on 7,(S) which happens to be self-adjoint (see the appendix to Chap. 3).
A surprisingly large number of local properties of S at p can be derived from
the study of this linear map.

In Sec. 3-2, we shall introduce the relevant definitions (the Gauss map,
principal curvatures and principal directions, Gaussian and mean curvatures,
etc.) without using local coordinates. In this way, the geometric content of the
definitions is clearly brought up. However, for computational as well as for
theoretical purposes, it is important to express all concepts in local coordi-
nates. This is taken up in Sec. 3-3.

Sections 3-2 and 3-3 contain most of the material of Chap. 3 that will be
used in the remaining parts of this book. The few exceptions will be explicitly
pointed out. For completeness, we have proved the main properties of self-
adjoint linear maps in the appendix to Chap. 3. Furthermore, for those who
have omitted Sec. 2-6, we have included a brief review of orientation for
surfaces at the begmnmg of Sec. 3-2.

Section 3-4 contains a proof of the fact that at each point of a r

134
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surface there exists an orthogonal parametrization, that is, a parametrization
such that its coordinate curves meet orthogonally. The techniques used here
are interesting in their own right and yield further results. However, for a
short course it might be convenient to assume these results and omit the
section.

In Sec. 3-5 we shall take up two interesting special cases of surfaces,
namely, the ruled surfaces and the minimal surfaces. They are treated inde-
pendently so that one (or both) of them can be omitted on a first reading,

and Its Fundamental Properties

We shall begin by briefly reviewing the notion of orientation for surfaces.

As we have seen in Sec. 2-4, given a parametrization x: U < R? — Sof
a regular surface S at a point p € S, we can choose a unit normal vector at
each point of x(U) by the rule

_ X, AKX,
N(q) = m@), q € x(U).

Thus, we have a differentiable map N: x(U) — R® that associates to each
g € x(U) a unit normal vector N(g).

More generally, if ¥ < Sis an open set in S and N: V' — R? is a differ-
entiable map which associates to each ¢ € ¥ a unit normal vector at ¢, we
say that N is a differentiable field of unit normal vectors on V.

It is a striking fact that not all surfaces admit a differentiable field of unit

normal vectors defined on the whole surface. For instance, on the Mgbius
n 1 Or ofined on the wnole surface. bor instance, on the Mobius

i daaks

strip of Fig. 3-1 one cannot define such a field. This can be seen intuitively by

Figure 3-1. The Mbbius strip.
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going around once along the middle circle of the figure: After one turn, the
vector field N would come back as —N, a contradiction to the continuity of
N. Intuitively, one cannot, on the Mobius strip, make a consistent choice of
a definite “side”; moving around the surface, we can go continuously to the

. .
“athar e1r]n writhont lasving tha enrfaca
A LLAWi FYLRAAV/ WL AWl vllls Vil I AW

We shall say that a regular surface is orientable if it admits a differentiable
field of unit normal vectors defined on the whole surface; the choice of such
a field N is called an orientation of S.

For instance, the M&bius strip referred to above is not an orientable sur-
face. Of course, every surface covered by a single coordinate system (for
instance, surfaces represented by graphs of differentiable functions) is triv-
ially orientable. Thus, every surface is locally orientable, and orientation is
definitely a global property in the sense that it involves the whole surface.

An orientation N on S induces an orientation on each tangent space
T,(S), p € S, as follows. Define a basis {v, w} € T,(S) to be positive if
{v AN w, N is positive. It is easily seen that the set of all positive bases of
T,(S)is an orientation for T,(S) (cf. Sec. 1-4).

Further details on the notion of orientation are given in Sec. 2-6. How-
ever, for the purpose of Chaps. 3 and 4, the present description will suffice.

Throughout this chapter, S will denote a regular orientable surface in
which an orientation (i.e., a differentiable field of unit normal vectors N) has
been chosen; this will be simply called a surface S with an orientation N.

DEFINITION 1. Let S « R? be a surface with an orientation N. The map
N: S — R3 takes its values in the unit sphere

The map N: S — 82, thus defined, is called the Gauss map of S (Fig. 3-2).1

It is straightforward to verify that the Gauss map is differentiable. The

differential dV, of N at p € S is a linear map from T,(S) to Ty, (S?). Since
T (Q\ and T (S? \ are nnmll 1 planes, n’N can be looked upon as a linear

allil I aidl 1e ia il UG S LBpVLL a9

map on T’ p(S).

The linear map dN,: T,(S) — T,(S) operates as follows. For each para-
metrized curve a(z) in S with «(0) = p, we consider the parametrized curve
Noa(t) = N(r) in the sphere S?; this amounts to restricting the normal vector
N to the curve (7). The tangent vector N'(0) = dN («'(0)) is a vector in T,(5)
(Fig. 3-3). It measures the rate of change of the normal vector N, restricted to
the curve a(s), at £ = 0. Thus, dN, measures how N pulls away from N(p) in

1In italic context, letter symbols set in roman rather than italics.
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N(p)

N/'\___/

2
N(p) S

1Y
O
A

Figure 3-2. The Gauss map.

N@ N(p) ,
a(Q)y=vy

all) N

V\/ Figure 3-3

a neighborhood of p. In the case of curves, this measure is given by a number,
the curvature. In the case of surfaces, this measure is characterized by a
linear map.

Example 1. For a plane P given by ax - by - ¢z -+ d = 0, the unit
normal vector N = (a, b, ¢)//a* + b* + ¢* is constant, and therefore
dN = 0 (Fig. 3-4).

Example 2. Consider the unit sphere
S? ={(x,y,z) € R; x* -} y? - z2 =1}
If o) = (x(¢), y(£), z(¢)) is a parametrized curve in S2, then
2xx’ + 2y’ -+ 222" =0,

which shows that the vector (x, y, z) is normal to the sphere at the point
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Figure 3-4. Plane: dN, = 0.

(x, y, z). Thus, N = (x, y, z) and N = (—x, —y, —z) are fields of unit nor-

mal vectors in S2. We fix an orientation in $? by choosing N = (—x, —y, —z)

as a normal field. Notice that N points toward the center of the sphere.
Restricted to the curve a(t), the normal vector

N(@) = (—x(@1), —y(1), —z(1))
is a vector function of ¢, and therefore
dN(X'(), y'(0), 2'(1)) = N'(t) = (—x'(t), —y' (D), —2'(1));

that is, dN,(v) = —v for all p € S? and all v € T(S?). Notice that with the
choice of N as a normal field (that is, with the opposite orientation) we would
have obtained dN (v) = v (Fig. 3-5).

Example 3. Consider the cylinder {(x, y,z) € R?; x% -+ y2 = 1}. By an
argument similar to that of the previous example, we see that N = (x, y, 0)

Figure 3-5. Unit sphere: dN () = .
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and N = (—x, —y, 0) are unit normal vectors at (x, y, z). We fix an orienta-
tion by choosing N = (—x, —y, 0) as the normal vector field.

By considering a curve (x(r), y(t), z(¢r)) contained in the cylinder, that
is, with (x(1))* 4 (p(#)* = 1, we are able to see that, along this curve,
N(@) = (—x(t), —»(),0) and therefore

dN(x'(0), y' (1), 2 (1) = N'() = (—=x'()), —»"()), 0).

We conclude the following: If v is a vector tangent to the cylinder and
parallel to the z axis, then

dN(v) = 0 = Ov;

if w is a vector tangent to the cylinder and parallel to the xy plane, then
dN(w) = —w (Fig. 3-6). It follows that the vectors » and w are eigenvectors
of dN with eigenvalues 0 and — 1, respectively (see the appendix to Chap. 3).

| - W
/ '

Figure 3-6

Example 4. Let us analyze the point p = (0,0, 0) of the hyperbolic
paraboloid z = y? — x%. For this, we consider a parametrization x(u, v)
given by

x(u, v) = (u, v, V> — u?),
and compute the normal vector N(u, v). We obtain successively

x, = (1,0, —2u),
x, = (0, 1, 2v),

N=( - — 1 )
N AN AN T

Notice that at p = (0, 0, 0) x, and x, agree with the unit vectors along the x
and y axes, respectively. Therefore, the tangent vector at p to the curve
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a(t) = x(u(r), v(z)), with o(0) = p, has, in R*, coordinates (u'(0), v'(0), 0)
(Fig. 3-7). Restricting N(u, v) to this curve and computing N’(0), we obtain

N'(0) = (2'(0), —2v'(0), 0),

Figure 3-7
and therefore, at p,
dN (1/'(0), v'(0), 0) = (2/(0), —22(0), 0).

It follows that the vectors (1, 0, 0) and (0, 1, 0) are eigenvectors of N, with
eigenvalues 2 and —2, respectively.

Example 5. The method of the previous example, applied to the point
p =1(0,0,0) of the paraboloid z = x% + ky?, k > 0, shows that the unit
vectors of the x axis and the y axis are eigenvectors of dN,, with eigenvalues
2 and 2k, respectively (assuming that N is pointing outwards from the region
bounded by the paraboloid).

An important fact about dN, is contained in the following proposition.

PROPOSITION 1. The differential dN,: T (S) — T,(S) of the Gauss
map is a self-adjoint linear map (cf. the appendix to Chap. 3).

Proof. Since dN, is linear, it suffices to verify that {dN (w,), w,) =
{wy, dN (w,)) for a basis {w,, w,} of T(S). Let x(, v) be a parametrization of
S at p and {x,, x,} the associated basis of T,(S). If a(t) = x(u(2), »(?)) is a
parametrized curve in S, with a(0) = p, we have

dN ('(0)) = dN (x,u'(0) + x,2'(0))
d i o oo
= gV, v0)|
= Nu'(0) + N,v'(0);

in particular, dN (x,) = N, and dN(x,) = N,. Therefore, to prove that d¥,
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15 self-adjoint, it suffices to show that

N X, = {x,, N,

To see this, take the derivatives of (N, x,> = 0 and (N, x,> = 0, relative
to v and u, respectively, and obtain

< v u>+<N Xm)>_0
< us xv> + <N3 sz> = O
Thus,

(N, %,) = —{N, X,,0 = {N,, x,>. Q.E.D,

The fact that dN,: T,(S) — T,(S) is a self-adjoint linear map allows us
to associate to dN, a quadratic form Q in T,(S), given by Q(v) = {dN,(v), v>,
v € T,(S)(cf. the appendix to Chap. 3). To obtain a geometric interpretation
of this quadratic form, we need a few definitions. For reasons that will be
clear shortly, we shall use the quadratic form — Q.

DEFINITION 2. The quadratic form 11, defined in T,(S) by I (v)
= —{dN(v), v) is called the second fundamental form of S at p.

DEFINITION 3. Let C be a regular curve in S passing throughp € S,k
the curvature of C at p, and cos 8@ = {n, N, where n is the normal vector to
C and N is the normal vector to S at p. The number k, = k cos @ is then called
the normal curvature of C < S at p.

In other words, &, is the length of the projection of the vector kn over the
m the s

irface at D, unﬂ"l a mnﬂ a-nrr-\n hy t hv orie ntut on A]\'T Of S at

”::
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Figure 3-8
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Remark. The normal curvature of C does not depend on the orientation
of C but changes sign with a change of orientation for the surface.

To give an interpretation of the second fundamental form I7,, consider a
regular curve C < S parametrized by afs), where s is the arc length of C, and
with a(0) = p. If we denote by N(s) the restriction of the normal vector ¥ to
the curve a(s), we have (N(s), a'(s)> = 0. Hence,

(N(s), @"'(8)) = —<N'(s), &'(s)).
Therefore,

IAT £t 2NN

'(0)) = —<dN (&'(0)), «'(0)
= —(N'(0), «'(0)) = {N(0), «'(0)
= (N, knp(p) = k(p).

In other words, the value of the second fundamental form I7, for a unit
vector v € T,(S) is equal to the normal curvature of a regular curve passing
through p and tangent to ». In particular, we obtained the following result.

PROPOSITION 2 (Meusnier). All curves [ying on a surface S and having
at a given point p € S the same tangent line have at this point the same normal
curvatures.

The above proposition allows us to speak of the normal curvature along
a given direction at p. It is convenient to use the following terminology. Given
a unit vector v € T,(5), the intersection of .S with the plane containing v and
N(p) is called the normal section of S at p along v (Fig. 3-9). In a neighborhood
of p, a normal section of S at p is a regular plane curve on S whose normal

sk e {1\ ~r zar~ PR o tln A ~Ta

. +h
vector u at p is Iu\y} Or ZC1o, its curvature is therefore cqua.l to the absolute

value of the normal curvature along v at p. With this terminology, the above

Figure 3-9. Meusnier theorem: C and

Cr have the same normal curvature at
Normal section at p along v p along »,
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proposition says that the absolute value of the normal curvature at p of a
curve a(s) 1s equal to the curvature of the normal section of S at p along a’(0).

Example 6. Consider the surface of revolution obtained by rotating the
curve z = y* about the z axis (Fig. 3-10). We shall show that at p = (0, 0, 0)
the differential dN, — 0. To see this, we observe that the curvature of the
curve z = y* at p 1s equal to zero. Moreover, since the xy plane is a tangent
plane to the surface at p, the normal vector N(p) is parallel to the z axis.
Therefore, any normal section at p is obtained from the curve z = p* by
rotation; hence, it has curvature zero. It follows that all normal curvatures
are zero at p, and thus dN, = 0.

\ L

X Figure 3-10

Example 7. In the plane of Example 1, all normal sections are straight
lines; hence, all normal curvatures are zero. Thus, the second fundamental
form is identically zero at all points. This agrees with the fact that dN = 0.

Tiv thao cnhare 2 AfDwvaniinla D th AT ae (riami tha mavrmial cantiaaa
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through a point p € S§? are circles with radius 1 (Fig. 3-11). Thus, all normal
curvatures are equal to 1, and the second fundamental form is I7,(v) = 1
foralip € S*and aliv € 1 p(b).

Figure 3-1i. Normal sections on a sphere.
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In the cylinder of Example 3, the normal sections at a point p vary from
a circle perpendicular fo the axis of the cylinder to a straight line parallel to
the axis of the cylinder, passing through a family of ellipses (Fig. 3-12). Thus,
the normal curvatures varies from 1 to 0. It is not hard to see geometrically
that 1 is the maximum and 0 is the minimum of the normal curvature at p.

Figure 3-12. Normal sections on a
cylinder.

However, an application of the theorem on quadratic forms of the appendix
to Chap. 3 gives a simple proof of that. In fact, as we have seen in Example 3,
the vectors w and » (corresponding to the directions of the normal curvatures

1 and O, respectively) are eigenvectors of dN, with eigenvalues —1 and 0,
respectively. Thus, the second fundamental form takes up its extreme values

in these vectors, as we claimed. Notice that this procedure allows us to check
that such extreme values are 1 and 0.

Wa leaye 1t +n tha raadar tn analuza +
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p = (0,0, 0) of the hyperbolic paraboloid of Example 4.

Let us come back to the linear map dN,. The theorem of the appendix to
Chap. 3 shows that for each p € S there exists an orthonormal basis {e,, e,}
of T,(S) such that dN(e,) = —k,e;, dN,(e;) = —k,e,. Moreover, k, and
I - ~ I Y nano tha wmaavimaiiinrs amd mimtmniimm ~F the canmpnd Frrndanmiamtal
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form II, restricted to the unit circle of 7,(S); that is, they are the extreme
values of the normal curvature at p.

DEFINITION 4. The maximum normal curvature k, and the minimum
normal curvature k, are called the principal curvatures at p, the corresponding
directions, that is, the directions given by the eigenvectors e, ¢,, are called
principal directions at p.
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tions. The same happens with a sphere. In both cases, this comes from the
fact that the second fundamental form at each point is constant (c¢f. Example
7); thus, all directions are extremals for the normal curvature.

In the cylinder of Example 3, the vectors » and w give the principal direc-

nnnnn ~ ata iy e [PURTS. V. P e Y et O

tions at p, corresponding to the principal curvatures 0 and 1, respectively.
In the hyperbolic paraboloid of Example 4, the x and y axes are along the
principal directions with principal curvatures —2 and 2, respectively.

DEFINITION 5. If a regular connected curve C on S is such that for all
p € C the tangent line of C is a principal direction at p, then C is said to be a
iine of curvature of C.

PROPOSITION 3 (Olinde Rodrigues). 4 necessary and sufficient condi-
tion for a connected regular curve C on S to be a line of curvature of S is that

N'(t) = A(t)' (1),

for any parametrization a(t) of C, where N(t) = Noa(t) and A(t) is a differen-
tiable function of t. In this case, — A(t) is the (principal) curvature along a'(t).

Proof. It suffices to observe that if a'(¢) is contained in a principal direc-
tion, then a'(¢) is an eigenvector of d¥ and

dN(@'(1)) = N'(t) = Ao’ (). .
The converse is immediate. Q.E.D.

The knowledge of the principal curvatures at p allows us to compute easily
the normal curvature along a given direction of 7,(S). In fact, let v € T,(S)
with [#| = 1. Since e, and e, form an orthonormal basis of T,($), we have

v =-¢,cos0 + e,sinB,

where @ is the angle from e, to » in the orientation of 7,(S). The normal
curvature k, along v is given by

k, = IL,(v) = —<dN (o), v
= —{dN (e, cos @ + e, sin@), e, cos § + e, sin 8>
= {e.k, cos @ + e,k,sinf, e; cos @ + e, sin§>
=k, cos? @ + k, sin? .

The last expression is known classically as the Euler formula; actually, it is
just the expression of the second fundamental form in the basis {e,, e,}].
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Given a linear map A: V' — V of a vector space of dimension 2 and given
a basis {v,, v,} of V, we recall that

determinant of 4 = a;,a,, — a,4a;i, trace of 4 = a,, + a,,,

where (a,;) is the matrix of 4 in the basis {v,, v,}. It is known that these
numbers do not depend on the choice of the basis {»,, »,} and are, therefore,
attached to the linear map A.

In our case, the determinant of dN is the product (—k ) (—k,) = kk, of
the principal curvatures, and the trace of dN is the negative —(k, + k,) of
the sum of principal curvatures. If we change the orientation of the surface,
the determinant does not change (the fact that the dimension is even is
essential here); the trace, however, changes sign.

DEFINITION 6. Let p € S and let AN, T,(S) — T(S) be the differ-
ential of the Gauss map. The determinant of AN is the Gaussian curvature K
of S at p. The negative of half of the trace of AN, is called the mean curvature
H of S at p.

In terms of the principal curvatures we can write

K = kk,, H=@-

DEFINITION 7. A point of a surface S is called

1. Elliptic if det(dN,) > 0.

2. Hyperbolic if det(dN,) < 0.

3. Parabolic if det(dN_) = 0, with AN, == 0.
4. Planar if AN, = 0.

It is clear that this classification does not depend on the choice of the
orientation.

At an elliptic point the Gaussian curvature is positive. Both principal
curvatures have the same sign, and therefore all curves passing through this
point have their normal vectors pointing toward the same side of the tangent
plane. The points of a sphere are elliptic points. The point (0, 0, 0) of the
paraboloid z = x2 4 ky?, k > 0 (cf. Example 5), is also an elliptic point.

At a hyperbolic point, the Gaussian curvature is negative. The principal
curvatures have (/)gp,osite signs, and therefore there are curves through p
whose normal vectors at p point toward any of the sides of the tangent plane
at p. The point (0, 0, 0) of the hyperbolic paraboloid z = y* — x? (cf. Exam-
ple 4) is a hyperbolic point.

At a parabolic point, the Gaussian curvature is zero, but one of the prin-
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cipal curvatures is not zero. The points of a cylinder (cf. Example 3) are
parabolic points.

Finally, at a planar point, all principal curvatures are zero. The points of
a plane trivially satisfy this condition. A nontrivial example of a planar point
was given in Example 6.

DEFINITION 8. Ifatp = S, k, = k,, then p is called an umbilical point
of S, in particular, the planar points (K, = k, = 0) are umbilical points.

All the points of a sphere and a plane are umbilical points. Using the
method of Example 6, we can verify that the point (0, 0, 0) of the paraboloid
- = x* 4+ y*is a (nonplanar) umbilical point.

We shall now prove the interesting fact that the only surfaces made up
entirely of umbilical points are essentially spheres and planes.

PROPOSITION 4. If all points of a connected surface S are umbilical

points, then S is either contained in a sphere or in a plane.

Proof. Let p € S and let x(v, ) be a parametrization of S at p such that
the coordinate neighborhood ¥V is connected.
Since each ¢ € ¥V is an umbilical point, we have, for any vector w =

a,X, + a,x, in T(S),
dN(W) = Aq)w,
where 4 = A(q) is a real differentiable function in V.

We first show that A(g) is constant in V. For that, we write the above
equation as

Na L Na, — MHx a, X a.):
Na, + Na, — Ax,a, +Xa,);
hence, since w is arbitrary,
NH = Axu:
N, = 2x,.

Differentiating the first equation in # and the second one in » and subtract-
ing the resulting equations, we obtain

luxu - Avxu =0.
Since x, and x, are linearly independent, we conclude that
l,=4,=0

for all ¢ € V. Since V is connected, A is constant in V, as we claimed.



148 The Geometry of the Gauss Map

If A=0, N, =N, =0 and therefore N = N, = constant in V. Thus,
(x(u, v), Nop, = <x(t, v), No», = 0; hence,

{x(u, v), No» = const.,
and all points x{i, v) of V" belong to a plane.

If 2 = 0, then the point x(u, v) — (1/A)N(¥, v) = y(u, ») is fixed, because

(X(ts ) = NGt ), = (x(a, v) — NGt 0), = 0.

Since

1
| x(u, v) — y[* = oK

all points of V are contained in a sphere of center y and radius 1/| 4|.

This proves the proposition locally, that is, for a neighborhood of a point
p € S. To complete the proof we observe that, since S is connected, given
any other point r € S, there exists a continuous curve a: [0, 1] — S with
a{0) = p, a(1) =r. For each point a(f) € S of this curve there exists a
neighborhood V, in § contained in a sphere or in a plane and such that
a~!(V,) is an open interval of [0, 1]. The union | Ja~!(V)), t € [0, 1], covers
[0, 1] and since [0, 1] is a closed interval, it is covered by finitely many ele-
ments of the family {a~1(V})} (cf. the Heine-Borel theorem, Prop. 6 of the
appendix to Chap. 2). Thus, ¢([0, 1]) is covered by a finite number of the
neighborhoods V..

If the points of one of these neighborhoods are on a plane, all the others
will be on the same plane. Since r is arbitrary, all the points of S belong to

thic nlane

Liil0 pradiiiiv,.

If the points of one of these neighborhoods are on a sphere, the same
argument shows that all points on S belong to a sphere, and this completes
the proof. Q.E.D.

DEFINITION 9. Let p be a point in S. An asymptotic direction of S at p
is a direction of T,(S) for which the normal curvature is zero. An asymptotic
curve of S is a regular connected curve C = S such that for each p € C the
tangent line of C at p is an asymptotic direction.

It follows at once from the definition that at an elliptic point there are no
asymptotic directions.

A useful geometric interpretation of the asymptotic directions is given by
means of the Dupin indicatrix, which we shall now describe.

Let p be a point in S. The Dupin indicatrix at p is the set of vectors w of
T,(S) such that II,(w) = 41.
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To write the equations of the Dupin indicatrix in a more convenient
form, let (£, 7) be the cartesian coordinates of 7,(S) in the orthonormal
basis {e,, e,}, where e, and e, are eigenvectors of dN,. Given w € T,(S), let
p and @ be “polar coordinates” defined by w = py, with |»| =1 and v =

a N Tl [ Tn
& cos @ + €, sin v, if pF= U uy’ Euler’s 1ormiuia,

+1 = I (w) = p*II(v)
= k,p?cos* 0 + k,p*sin* @
- klfz + k2’72’

where w = e, + #je,. Thus, the coordinates (£, ) of a point of the Dupin
indicatrix satisfy the equation

k(&* + kam? = 41, (1N

ie =3 \=/

hence, the Dupin indicatrix is a union of conics in 7,(S). We notice that the
normal curvature along the direction determined by w is k,(v) = II,(v)
= +(1/p%).

For an elliptic point, the Dupin in d1catr1 is an ellipse (k, and k, have
the same qwn\ this e]lmqp deopnpra_ es into a circle if the n nl tis um

nonplanar pomt (k, =k, £ 0).

For a hyperbolic point, &, and k, have opposite signs. The Dupin indica-
trix is therefore made up of two hyperbolas with a common pair of asymptotic
lines (Fig. 3-13). Along the directions of the asymptotes, the normal curva-
ture is zero; they are therefore asymptotic directions. This justifies the
terminology and shows that a hyperbolic point has exacily two asymptotic
directions.

o

n

b o) | (LIS, L R
Elhptic point

Figure 3-13. The Dupin indicatrix.

For a parabolic point, one of the principal curvatures is zero, and the
Dupin indicatrix degenerates into a pair of parallel lines. The common direc-
tion of these lines is the only asymptotic direction at the given point.

In Example 5 of Sec. 3-4 we shall show an interesting property of the
Dupin indicatrix.

Closely related with the concept of asymptotic direction is the concept of
conjugate directions, which we shall now define.
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DEFINITION 10. Let p be a point on a surface S. Two nonzero vectors
wy, Wy € T,(S) are conjugate if (AN (w,), w,> = {w;, AN _(W,)> = 0. Two
directions 1, 1, at p are conjugate if a pair of nonzero vectors wW,, w, paral-
lel to v, and r,, respectively, are conjugate.

It is immediate to check that the definition of conjugate directions does
not depend on the choice of the vectors w, and w, on r, and r,.
It follows from the definition that the principal directions are conjugate

and that an acymntatic directinn i eanincate ta ifealf Furtharmaore at a
AlivE VAL L ALL “UJ]LLFL\ILJ.V AL WV LALTLL av v\ll,l.Ju& [ =3 S "4 A IWw il A WL Lllvl,l.,l.,lul.v’ (%3 " (9

nonplanar umbilic, every orthogonal pair of directions is a pair of conjugate
directions, and at a planar umbilic each direction is conjugate to any other
direction.

Let us assume that p € S is not an umbilical point, and let {e,, e,} be the
orthonormal basis of 7,(S) determined by dN,(e,) = —k,e,, dN,(e;) =
—k,e,. Let § and ¢ be the angles that a pair of directions r, and r, make with
e,. We claim that », and r, are conjugate if and only if

k, cos @ cos p = —k, sin @ sin . (2)
In fact, r, and r, are conjugate if and only if the vectors
w, = ¢, cos @ + e, sin @, W, = e, cos ¢ + ¢, sin @
are conjugate. Thus,
0 = {dN,(w,), w,» = —k, cos 8 cos ¢ — k, sin & sin ¢.

Hence, condition (2) follows.
When both &, and &, are nonzero (i.e., p is either an elliptic or a hyperbolic
point), condition (2) leads to a geometric construction of conjugate directions

r
) 4y
\’: “62

q




Definition of the Gauss Map 15171

in terms of the Dupin indicatrix at p. We shall describe the construction at an

elliptic point, the situation at a hyperbolic point being similar. Let r be a
\trqlohf line fhrnnoh the nr‘lmn of T ((’\ and consider the intersection prnnfe

4., 9, of r with the Dupin mdlcatrlx (Flg. 3-14). The tangent lines of the
Dupin indicatrix at ¢, and ¢, are parallel, and their common direction r’ is
conjugate to r. We shall leave the proofs of these assertions to the Exercises
(Exercise 12).

EXERCISES

1. Show that at a hyperbolic point, the principal directions bissect the asymptotic
directions.

2. Show that if a surface is tangent to a plane along a curve, then the points of this
curve are either parabolic or planar.

3. Let C = S be a regular curve on a surface S with Gaussian curvature X > 0.

wr; Al nt ¢l n Ir A€ Mt e antiaGac
DHUW tiat uie cur VCLI.LUC /K Oi © at F Sallslicy

k= min( k|, |k,

where k, and k, are the principal curvatures of .S at p.
4. Assume that a surface S has the property that |k, ] < 1, | k,| < 1 everywhere.
Is it frue that the curvature & of a curve on S also satisfies |k| << 1?

5. Show that the mean curvature H at p € S is given by
1 b4
H = EJ k,(0) db,
0

where k,(6) is the normal curvature at p along a direction making an angle £
with a fixed direction,

ChAawr that tha ciym nf the 1
» 010V Lad UIC SUlll U1 UIC GUIial Lul'va

tions, at a point p € S, is constant.

=

)
3
§
2
2
d

7. Show that if the mean curvature is zero at a nonplanar point, then this point has
two orthogonal asymptotic directions.

8. Describe the region of the unit sphere covered by the image of the Gauss map of
the following surfaces:

a. Paraboloid of revolution z = x2 + y2,
b. Hyperboloid of revolution x2 4 y2 — z2 = 1.
¢. Catenoid x2 + y2 = cosh2z

9. Prove that
a. The image Noo by the Gauss map N: S — S? of a parametrized regular
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10.

11.

12,

*13.

*14,

15.

*16.
17.
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curve &: I — S which contains no planar or parabolic points is a para-
metrized regular curve on the sphere 2 (called the spherical image of o).

b. If C = a(l} is a line of curvature, and k is its curvature at p, then
k =\k,kyl,

where k, is the normal curvature at p along the tangent line of C and ky is the
curvature of the spherical image N(C) = S? at N(p).

Assume that the osculating plane of a line of curvature C < S, which is no-
where tangent to an asymptotic direction, makes a constant angle with the
tangent plane of .S along C. Prove that Cis a plane curve.

Let p be an elliptic point of a surface S, and let r and r” be conjugate directions
at p. Let r vary in T,(S) and show that the minimum of the angle of r with r’ is
reached at a unique pair of directions in 7,(S) that are symmetric with respect
to the principal directions.

Let p be a hyperbolic point of a surface S, and let r be a direction in 7T,(S).
Describe and justify a geometric construction to find the conjugate direction r?
of r in terms of the Dupin indicatrix (cf. the construction at the end of Sec. 3-2).
(Theorem of Beltrami-Enneper.) Prove that the absolute value of the torsion 7 at
a point of an asymptotic curve, whose curvature is nowhere zero, is given by

7] =~ —K,

where K is the Gaussian curvature of the surface at the given point,

If the surface S, intersects the surface S, along the regular curve C, then the
curvature k of C at p € Cis given by

k?sin2 @ = A% + A2 — 24,4, cos @,

where A, and A, are the normal curvatures at p, along the tangent line to C, of
Sy and S, respectively, and 8 is the angle made up by the normal vectors of .S,
and S, at p.

(Theorem of Joachimstahl) Suppose that S; and S, intersect along a regular
curve C and make an angle 8(p), p € C. Assume that C is a line of curvature of
S,. Prove that 8(p) is constant if and only if Cis a line of curvature of S,.

Show that the meridians of a torus are lines of curvature.

Show that if H = 0 on § and S has no planar points, then the Gauss map
N:§ — 52 has the following property:

(AN (wy), dN ,(w2)) = —K(p)wy, wa)

for all p € S and all w,, w, € T,(S). Show that the above condition implies
that the angle of two intersecting curves on S* and the angle of their spherical
images (cf. Exercise 9) are equal up to a sign.
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*18. Let 4;,..., 4, be the normal curvatures at p = § along directions making
angles 0, 2n/m, . . ., (m — 1)2n/m with a principal direction. Prove that

ll—i_"' +lm:mHs

where H is the mean curvature at p.

*19. Let C = S be a regular curve in S. Let p € C and ¢(s) be a parametrization of
C in p by arc length so that a(0) = p. Choose in T,(S) an orthonormal positive
basis {t, 4}, where ¢t = ®’(0). The geodesic torsion T, of C < S at p is defined by

r. = {0 1),
F 4 \ds\/, /

Prove that

a. T, = (k; — k) cos ¢ sin @, where ¢ is the angle from e, to 1.

b. If 7 is the torsion of C, n is the (principal) normal vector of C and cos @
= (N, n), then

=T — T,

M

¢. The lines of curvature of § are characterized by having geodesic torsion
identically zero.

*20. (Dupin’s Theorem.) Three families of surfaces are said to form a triply orthogonal
system in an open set U < R?3 if a unique surface of each family passes through
each point p € U and if the three surfaces that pass through p are pairwise
orthogonal. Use part ¢ of Exercise 19 to prove Dupin’s theorem: The surfaces of
a iriply orthogonal system intersect each other in lines of curvature. ‘

3-3. The Gauss Map
in Local Coordinates

In the preceding section, we introduced some concepts related to the local
behavior of the Gauss map. To emphasize the geometry of the situation,
the definitions were given without the use of a coordinate system. Some
simple examples were then computed directly from the definitions; this pro-
cedure, however, is inefficient in handling general situations. In this section,
we shall obtain the expressions of the second fundamental form and of the
differential of the Gauss map in a coordinate system. This will give us a
systematic method for computing specific examples. Moreover, the general
expressions thus obtained are essential for a more detailed investigation of
the concepts introduced above.

All parametrization x: U < R? — § considered in this section are
assumed to be compatible with the orientation & of S; that is, in x(U),
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N: Xu/\xu .
| X, A X,

Let x(u, ) be a parametrization at a point p € § of a surface S, and let
a(t) = x(u(t), v(r)) be a parametrized curve on S, with a(0) = p. To simplify
the notation, we shall make the convention that all functions to appear below
denote their values at the point p.

The tangent vector to a(s) at p is &’ = x,u -+ X,v" and

dN(a') = N'(u(t), v(0)) = Nu' + N’
Since N, and N, belong to 7T,(S), we may write

Nu = ailxu + aZIXw (1)
N — .

and therefore,

dN(a') = (a, w4 a,00)%, + (a4 + a,,0)%,;

u' a,;, a u'
av(3) =G 2 G)
v adsq a2 v
This shows that in the basis {x,, x,}, dN is given by the matrix (a;,),
i,j = 1,2. Notice that this matrix is not necessarily symmetric, unless
{X,, X,} 18 an orthonormal basis.

On the other hand, the expression of the second fundamental form in the
basis {xX,, X,} is given by

hence,

II(a) = —{dN(@), &> = — Ny + N2, xu + X207
= e(u')’ + 2fu'v’ + g(v')%
where, since (N, x,> = (N, x,» =0,

e = —N,X,) =N, X,
f = _<Nw Xu> - <N, Xuv> = <N’ Xvu> - _<Nus xv>’
g= —<{Ny X0 =N, X,

s 7 7R TR T IR N S R T S SRS L T - = S-S £
YV € 5iidll nOow OoD14In LNE vaiuces ol a,-j in oIS oL e COCLUCienes &, f, g.

From Eq. (1), we have
—f =Ny X, = a F + a,,G,
—f = {N,,X,) = a,E + ay,F,
—e =<{N,X,> =a,,E+ a,,F,
—g =N, X,p = a,F + 4,0,

)
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where E, F, and G are the coefficients of the first fundamental form in the
basis {x,, x,} (cf. Sec. 2-5). Relations (2) may be expressed in matrix form by

SV R [t ®
S g a;, 4/ \F G

(‘111 au) o (e f) (E F)_l

diy Qi f g \F G|’
where ( )"' means the inverse matrix of ( ). It is easily checked that

E -1 B 1 G —

(F G *EG*FZ(—F E)

whence the following expressions for the coefficients (g,,) of the matrix of
dN in the basis {x,, x,}:

hence,

a :j———-AF—eG9
U= FG — F*?
- gF—-fG
‘12T FG — F?

_eF—fE
@ = g ~ F3

_fF—gE
e =FG ~ B2

For completeness, it should be mentioned that relations (1), with the above
values, are known as the equations of Weingarten.
From Eq. (3) we immediately obtain

K = det(a,) = L= @)

I Fal)
L r

To compute the mean curvature, we recall that —k,, —k, are the eigenvalues

£ AN Thaoat I- and I- atiefrr +ha amgiiatia
Ol aiv. 11nCreiOIe, K ana x, satisiy inc ¢quation

dN(p) = —ky = —kly for some v € T,(S), v = 0,

where I is the identity map. It follows that the linear map dN + &I is not
invertible; hence, it has zero determinant. Thus,

det(a”_l_k a;s ):0
az; a,, + k

or
k* 4 k(a,, + az,) + ay,az; — a0y, = 0.
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Since k, and k&, are the roots of the above quadratic equation, we conclude
that

1 1 1 eG —2fF E
sz(kl‘f‘kz):_—2—(411+azz):7e EG{;F_tg s )]

hence,
k* —2Hk + K =0,
and therefore,
k=H+ /H* —K. (6)
From this relation, it follows that if we choose k,(q) > k,(¢9), q € S,
then the functions &, and &£, are continuous in S. Moreover, k, and &k, are
differentiable in S, except perhaps at the umbilical points (2 = K) of S.

In the computations of this chapter, it will be convenient to write for
short

u A v,w)=(u,v,w) foranyu, v,w e R.

We recall that this is merely the determinant of the 3 X 3 matrix whose
columns (or lines) are the components of the vectors u, », w in the canonical
basis of R3.

Example 1. We shall compute the Gaussian curvature of the points of
the torus covered by the parametrization (cf. Example 6 of Sec. 2-2)

x(u, v) = ((a 4 r cos u) cos v, (@ + r cos u) sin y, 7 sin ),
0 < u< 27, 0 <y < 2nm.

putation of the coefficients ¢, f, g, we need t

[
=~
=
=]
=
<
~
jael
=
=

X, = (—7r sin # cos v, —F sin & sin v, ¥ COS u),

x, = (—(a + r cos w) sin v, (@ + r cos u) cos v, 0),
X,, = (—F cos u cos v, —r CO8 u sin v, —r sin u),
X,, = (r sin u sin y, —r sin # cos v, 0),

X,, = (—(a + r cos u) cos v, —(a + r cos u) sin v, 0).
From these, we obtain

E=<{x,x,> =r?, F=<{&,x> =0,
G = {x,, X,y = (a + rcos u)>.
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g,—_<x"/\X” X>_(xu,xv,xw ﬁrz(a+rcosu):r
|x, A X, JEG —F*  #a+ rcosu)

Similarly, we obtain

f — (Xu, X, xuv} =0,
Ha - r cos u)
g = (X Xo» Xpp) __ cos u(a + r cos u).

" rla + rcosu)
Finally, since K = (eg — f?)/(EG — F?*), we have that

o cos u .
r(a + r cos u)

From this expression, it follows that K = 0 along the parallels ¥ = 7/2
and u = 3z/2; the points of such parallels are therefore parabolic points.
In the region of the torus given by n/2 << u <C 3r/2, K is negative (notice that
r > 0 and a > r); the points in this region are therefore hyperbolic points.
In the region given by 0 << w << #/2 or 3n/2 < u << 2x, the curvature is
positive and the points are elliptic points (Fig. 3-15).

As an application of the expression for the second fundamental form in
coordinates, we shall prove a proposition which gives information about the
position of a surface in the neighborhood of an elliptic or a hyperbolic point,
relative to the tangent plane at this point. For instance, if we look at an
elliptic point of the torus of Example 1, we find that the surface lies on one
side of the tangent plane at such a point (see Fig. 3-15). On the other hand,
if p is a hyperbolic point of the torus Tand V < T'is any neighborhood of p,

we can find points of ¥ on both sides of T,(S), however small ¥ may be.

Rotation
axis
Generating
circie
K<0

Figure 3-15
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This example reflects a general local fact that is described in the following
proposition.

PROPOSITION 1. Let p = S be an elliptic point of a surface S. Then
there exists a neighborhood NV of p in S such that all points in V belong to the
same side of the tangent plane T,(S). Let p € S be a hyperbolic point. Then

in each neighborhood of p there exist points of S in both sides of T (S).

Proof. Let x(u, v) be a parametrization in p, with x(0, 0) = p. The dis-
tance d from a point ¢ = x(%, v) to the tangent plane 7,(S) is given by (Fig.
3-16)

d = {X(u, v) — x(0, 0), N(p)).

T,(S)
Figure 3-16
Since x(u, v) is differentiable, we have Taylor’s formula:

x(, v) = x(0,0) + xu + xv + $(x,2* + 2x,uv + x,0%) + R,
where the derivatives are taken at (0, 0) and the remainder R satisfies the
condition

R

(u,2)—~(0,0) U v

It follows that

d = {x(u, v) — %(0, 0), N(p)>
= %{(\qu’ N(p)>u2 _l_ 2<Xm=! N(p)>u7] + <xuy.’ N(.p)>102} + R
— Jew? + 2fuv + gv¥) + R = }IL,(w) + R,

where w = x4 + X, v, R = <R, N(p)), and lim,,_, (Rfjw]*) = 0.
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For an elliptic point p, II,(w) has a fixed sign. Therefore, for all (v, v)
sufficiently near p, d has the same sign as /,(w); that is, all such (u, v) belong
to the same side of 7',(S).

For a hyperbolic point p, in each neighborhood of p there exist points
(v, v) and (%, ©) such that II,(w/|w}) and I1,(w/| w]) have opposite signs (here
w = X, # + x,7); such points belong therefore to distinct sides of T,(S).

Q.E.D.

No such statement as Prop. 1 can be made in a neighborhood of a para-
bolic or a planar point. In the above examples of parabolic and planar points
(cf. Examples 3 and 6 of Sec. 3-1) the surface lies on one side of the tangent
plane and may have a line in common with this plane. In the following exam-
ples we shall show that an entirely different situation may occur.

Example 2. The “monkey saddle” (see Fig. 3-17) is given by
X =u, y =y, z = u® — 3p%u.

A direct computation shows that at (0, 0) the coefficients of the second
fundamental form are e = f = g = 0; the point (0, 0) is therefore a planar
point. In any neighborhood of this point, however, there are points in both
sides of its tangent plane.

-
4

bl
AV

Figure 3-17 Figure 3-18

——

Example 3. Consider the surface obtained by rotating the curve z = y7,
—1 < z < 1, about the line z = 1 (see Fig. 3-18). A simple computation
shows that the points generated by the rotation of the origin O are parabolic
points. We shall omit this computation, because we shall prove shortly
(Example 4) that the parallels and the meridians of a surface of revolution
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are lines of curvature; this, together with the fact that, for the points in
question, the meridians (curves of the form y = x?) have zero curvature and
the parallel is a normal section, will imply the above statement.

Notice that in any neighborhood of such a parabolic point there exist
points in both sides of the tangent plane.

The expression of the second fundamental form in local coordinates is
particularly useful for the study of the asymptotic and principal d1rect1ons
We first look at the asymptotic directions.

Let x(u, ») be a parametrization at p € S, with x(0,0) = p, and let
e(u,v) —e, f(u,v) =f, and g(u, v) = g be the coefficients of the second
fundamental form in this parametrization.

We recall that (see Def. 9 of Sec. 3-2) a connected regular curve C in the
coordinate neighborhood of x is an asymptotic curve if and only if for any
parametrization o(f) = x(u(t), v(¢)), t € I, of C we have II(a'(¢)) = 0, for
all ¢t € [, that is, if and only if

e + 2fu'yv’ + g(@’)? =0, t e I @)

Because of that, Eq. (7) is called the differential equation of the asymptotic
curves. In the next section we shall give a more precise meaning to this
expression. For the time being, we want to draw from Eq. (7) only the follow-
ing useful conclusion: A necessary and sufficient condition for a parametriza-
tion in a neighborhood of a hyperbolic point (eg — 2 < 0) to be such that the
coordinate curves of the parametrization gre asymptotic curves is that e = g
= 0.

In fact, if both curves u — const., ¥ = »(f) and u == u(t), v = const.
satisfy Eq. (7), we obtain e = g = 0. Conversely, if this last condition holds
and f 5= 0, Eq. (7) becomes fu'y’ = 0, which is clearly satisfied by the coordi-
nate lines.

We shall now consider the principal directions, maintaining the notations
alr auy established.

A connected regular curve C in the coordinate neighborhood of x is a
line of curvature if and only if for any parametrization a(r) = x(u(?), v(2)) of
C, t € I, we have (cf. Prop. 3 of Sec. 3-2)

dN(@' (1)) = A()e' ().
It follows that the functions «'(¢), +'(¢) satisfy the system of equations

fF—eG , , gF—fG ,
oY TEg = — M

eF—fE ,  fF—gE » .,
EG—J;”U_}_{EG e = W
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By eliminating A in the above system, we obtain the differential equation of
the lines of curvature,

(fE — eF)W) + (gE — eGu'v’ + (gF — fG)(v')* =0,

which may be written, in a more symmetric way, as

@)y —uwv @)
E F G |=0. (8)
e f g

Using the fact that the principal directions are orthogonal to each other,
it follows easily from Eq. (8) that a necessary and sufficient condition for the
coordinate curves of a parametrization to be lines of curvature in a neighbor-
hood of a nonumbilical point is that F = f = 0.

Example 4 (Surfaces of Revolution). Consider a surface of revolution
parametrized by (cf. Example 4 of Sec. 2-3; we have changed f and g by ¢
and , respectively)

x(u, v} = (p(v) cos u, p(v) sin u, w(v)),
0 < u < 2m, a<<wv<hb, o(v) = 0.

The coefficients of the first fundamental form are given by
E=¢* F=0, G=(¢)+ W)

It is convenient to assume that the rotating curve is parametrized by arc
length, that is, that

@)+ @y =G6=1.

The computation of the coefficients of the second fundamental form is
straightforward and yields

—@sinu @' cosu —@cosu
_— (Xuﬂ Xv’ qu _ 1

¢= EG —F* .JEG — F?

pcosu @' sinu —@sinu
0 w’ 0
= —oy’

f=0

g=veo" —y'y.

Since F = f =0, we conclude that the parallels (v = const.) and the
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meridians (¥ = const.) of a surface of revolution are lines of curvature of
such a surface (this fact was used in Example 3).
Because
k—e&—/ _ vwe' —y"y)

~ EG — F? o

and ¢ is always positive, it follows that the parabolic points are given by
either ' = 0 (the tangent line to the generator curve is perpendicular to the
axis of rotation) or ¢'w"" — '’ = 0 (the curvature of the generator curve
1s zero). A point which satisfies both conditions is a planar point, since these
conditions imply that ¢ = f =g = 0.

It is convenient to put the Gaussian curvature in still another form. By

differentiating (¢')* + (y')> = 1 we obtain ¢'¢"" = —y’'w"". Thus,
K = __Wr(ngo” —y'9) _ _(W’)2¢’ "+ (9)e" _ _Q_”_ 9
¢ ¢ ¢

Equation (9) 1s a convenient expression for the Gaussian curvature of a
surface of revolution. It can be used, for instance, to determine the surfaces
of revolution of constant Gaussian curvature (cf. Exercise 7).

To compute the principal curvatures, we first make the following general
observation: If a parametrization of a regular surface is such that F = f = 0,
then the principal curvatures are given by e/E and g/G. In fact, in this case,
the Gaussian and the mean curvatures are given by (cf. Eqs. (4) and (5))

1l eG — gE

-——-e—-& T e——
K H=75"c

~ EG’
Since K is the product and 2H is the sum of the principal curvatures, our

assertion follows at once.
Thus, the principal curvatures of a surface of revolution are given by

i__ W(D W ﬁ.: ton oo, 1
E - e P G v Yo, (10

hence, the mean curvature of such a surface 1s

—i_w1+¢(wr¢u_y/u¢l).
H=— 2 (11)

Example 5. Very often a surface is given as the graph of a differentiable
function (cf. Prop. 1, Sec. 2-2) z = A(x, y), where (x, y) belong to an open set
U < R:. It is, therefore, convenient to have at hand formulas for the relevant
concepts in this case. To obtain such formulas let us parametrize the surface
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by
x(u, v) = (u, v, K(u, v)), (u, v) € U,
where 4 = x, v = y. A simple computation shows that
xu - (1’ 09 hu)a xu - (09 13 hz})! xuu == (07 09 huu)’
X, =(0,0,h,), x,=(0,0,4,).

Thus
h.,—h,l
N(x,y) = n( T LI %.2\1)/2.
L S el 1 o ol 1 0|

is a unit normal field on the surface, and the coefficients of the second fun-
damental form in this orientation are given by

e —_ hxx
TR B

_ b,
I orE Ty

By

TaTE T

From the above expressions, any needed formula can be easily computed.
For instance, from Eqs. (4) and (5) we obtain the Gaussian and mean
curvatures:

hyosh,y — B2,
T+ hTR?
_ (L Bk, — 28 bk, + (L BDh,,
(e TR

K=

given by z = h(x, y). It comes from the fact that locally any surface is the
graph of a differentiable function (cf. Prop. 3, Sec. 2-2). Given a point p of a
surface S, we can choose the coordinate axis of R so that the origin O of the
coordinates is at p and the z axis is directed along the positive normal of §
at p (thus, the xy plane agrees with T,(S)). It follows that a neighborhood of
p in § can be represented in the form z == A(x, ), (x,y) € U < R?*, where U
is an open set and /4 is a differentiable function (cf. Prop. 3, Sec. 2-2), with
h(0, 0) = p, A (0,0) =0, A0, 0) =0 (Fig. 3-19).

The second fundamental form of § at p applied to the vector (x, y) € R*
becomes, in this case,

h,. (0, 0)x* + 2h, (0, Mxy + A, (0, O)y2.
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Figure 3-19. Each point of § has
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z z = h(x, y).

i

In elementary calculus of two variables, the above quadratic form is known
as the Hessian of h at (0, 0). Thus, the Hessian of 4 at (0, 0) is the second
fundamental form of S at p.

Let us apply the above considerations to give a geometric interpretation
of the Dupin indicatrix. With the notation as above, let € > 0 be a small
number such that

C ={(x,y) € TAS); h(x,y) = €}

is a regular curve (we may have to change the orientation of the surface to
achieve € > 0). We want to show that if p is not a planar point, the curve Cis
“approximately” similar to the Dupin indicatrix of S at p (Fig. 3-20).

T enn thic laf 110 accrima firthar that tha v and v avag ara diractad alana
LV OV LD, IV WD AOS UL TULLIILT Lldt LD A QLU Y aabd div Guviiivud airliyg

the principal directions, with the x axis along the direction of maximum
principal curvature. Thus, f = 4,,(0,0) =0 and

k(p) =5 = hol0:,0)  ku(p) =& = h,(0,0).

By developing A(x, y) into a Taylor’s expansion about (0, 0), and taking into
account that 4.(0, 0) = 0 = A,(0, 0), we obtain

h(x, y) = 5(h,.(0, 0)x* + A, (0, O)xy + h,(0,0p*) + R
= ‘%(klxz + k) + R,
where

R
en—(0,00 X2 + y?

Thus, the curve C is given by

kix*+ k,y* + 2R = 2e.



The Gauss Map in Local Coordinates 165

A plane parallel to Tp(S)

Figure 3-20

Now, if p is not a planar point, we can consider k;x? 4 k,»? = 2¢ as
a first-order approximation of C. By using the similarity transformation,

X = %J/2€, ¥ =26,
we have that k,x* + k,y? = 2¢ is transformed into the curve
kX + k3t =

which is the Dupin indicatrix at p. This means that if p is a nonplanar point,
the intersection with S of a plane parallel to T(S) and close to p is, in a first-
order approximation, a curve similar 1o the Dupin indicatrix at p.

If p is a planar point, this interpretation is no longer valid (cf. Exercise
11).

shall give ical
Gaussian curvature in terms of the Gauss map N 'S — S
was how Gauss himself introduced this curvature.
To do this, we first need a definition.
Let S and § be two oriented regular surfaces. Let ¢: S — § be a differ-
entiable map and assume that for some p € S, dy, is nonsingular, We say

that ¢ is orientation-preserving at p if given a positive basis {w, w,}in T,(S),

™
g’}
[
fes]
=,
(@]
=]
Q
=
':"

To conclude this section we

r.n
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[1]
O
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then {dg (w,), dp,(w,)] is a positive basis in T,,(S). If {dgp,(w,), dp(w,)}
is not a positive basis, we say that ¢ is orientation-reversing at p.

We now observe that both S and the unit sphere S? are embedded in R?,
Thus, an orientation N on S induces an orientation N in S2. Let p € S be
such that 4N, is nonsingular. Since for a basis {w,, w,} in T,(S)

dNP(wl) /\ dNF(WZ) - det(de)(wl /\ Wz) — le /\ WZ,

the Gauss map N will be orientation-preserving at p € S if K(p) > 0 and
orientation-reversing at p € S if K(p) < 0. Intuitively, this means the follow-
ing (Fig. 3-21): An orientation of 7,(S) induces an orientation of small
closed curves in S around p; the image by N of these curves will have the
same or the opposite orientation to the initial one, depending on whether p
is an elliptic or hyperbolic point, respectively.

To take this fact into account we shall make the convention that the
area of a region contained in a connected neighborhood ¥V, where K + 0,
and the area of its image by N have the same sign if X > 01in V, and opposite
signs if K << 0 in ¥V (since ¥ is connected, K does not change sign in V).

Figure 3-21. The Gauss map preserves orientation at an elliptic point and reverses

it at Therinavle ~15 A «A'.‘t
.

it av a nyperoaiic poin
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Now we can state the promised geometric interpretation of the Gaussian
curvature K, for K £ 0.

PROPOSITION 2. Let p be a point of a surface S such that the Gaussian
curvature K(p) # 0, and let V be a connected neighborhood of p where K does
not change sign. Then

. A
=1 .
K(p) = lim 7
where A is the area of a region B < V containing p, A’ is the area of the image
of B by the Gauss map N: S — 82, and the limirt is taken through a sequence of
regions B, that converges to p, in the sense that any sphere around p contains
all B, for n sufficiently large.

Proof. The area A of B is given by (cf. Sec. 2-5)
A= du dv,
IIRIX,‘ A X, | du dy
where Xx(u, v) is a parametrization in p, whose coordinate neighborhood
contains V (¥ can be assumed to be sufficiently small) and R is the region in
the »v plane corresponding to B. The area A’ of N(B)is
f = N, \ N, dv.
A JL IN, A\ N,| dudv
Using Eq. (1), the definition of X, and the above convention, we can write
A’ :” K|x, A x,|du dp. (12)
R

Going to the limit and denoting also by R the area of the region R, we obtain

e 1m (YR [ KIx, A x, ) dudv

lim £ = lim 2175 = &0 LR

a0 A won AIR i 1Ry ([ 130 A x| dedi
R—0 R

:Kixu /\ xv] :K
X, A X,

(notice that we have used the mean value theorem for double integrals), and
this proves the proposition. Q.E.D.

Remark. Comparing the proposition with the expression of the curvature

k=1

15
cq‘Q



168 The Geometry of the Gauss Map

of a plane curve C at p (here s is the arc length of a small segment of C
containing p, and ¢ is the arc length of its image in the indicatrix of tangents;

o P nmmtams Y AL Qo 1 &Y iim cmm dhhad #las £l ot o PRSI TS
Cl, DACICIOC O UL OUCC, 1-0), WO SCU Llal LG dUssidll CUlvatulc N Iy UIC dlld-

logue, for surfaces, of the curvature k& of plane curves.

EXERCISES

Py ) -

[} SRR S PR TN, S-S 7 o U s WY s S URNSUY . PR M [P, P L | 1 b 2 -
1. DIIOW LUdl dl UNC Origlil (v, U, U) O ¢ 1yperooliold z = axy we ndve A = —a«
and H = 0.

*2. Determine the asymptotic curves and the lines of curvature of the helicoid
X = vCOs 4,y = vsin u, z = cu, and show that its mean curvature is zero.

*3, Determine the asymptotic curves of the catenoid
x(u, v) = (cosh v cos u, cosh » sin u, v).

4. Determine the asymptotic curves and the lines of curvature of z = xy.

5. Consider the parametrized surface (Enneper’s surface)

u3 v3
x(u, v) = (u -3t uv?, v — 5 ot u ——'02)

and show that

a. The coefficients of the first fundamental form are
E=G=( + u? +v?)?, F =0,
b. The coefficients of the second fundamental form are
e =2, g = —2, f=0.

¢. The principal curvatures are

~ ~

ky = = ky = — = :
1_(1 + u? 4 v2)2’ 2 (1 + w2 + v2)2

d. The lines of curvature are the coordinate curves.
e. The asymptotic curves are ¥ + v = const., ¥ — » = const.

6. (A Surface with K = --1; the Pseudosphere.)

*a. Determine an equation for the plane curve C, which is such that the segment
of the tangent line between the point of tangency and some line r in the plane,
which does not meet the curve, is constantly equal to 1 (this curve is called
the tractrix; see Fig. 1-9).

b. Rotate the tractrix C about the line r; determine if the “surface” of revolution
thus obtained (the pseudosphere;, see Fig. 3-22) is regular and find out a para-
metrization in a neighborhood of a regular point.
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Rotation

axis c<1

Figure 3-22. The pseudosphere. Figure 3-23

¢. Show that the Gaussian curvature of any regular point of the pseudosphere is
—1.

7. (Surfaces of Revolution with Constant Curvature.) (¢(v) cos u, ¢(v) sin u, W (v))
is given as a surface of revolution with constant Gaussian curvature K. To
determine the functions ¢ and , choose the parameter » in such a way that
@)? + (w)? = 1 (geometrically, this means that » is the arc length of the gen-
erating curve (p(v), ¥(v))). Show that

a. @ satisfies ¢ + K@ =0 and y is given by w = [5/1 — (¢")2dv; thus,
0 < u < 2m, and the domain of » is such that the last integral makes
sense.

b. All surfaces of revolution with constant curvature X = 1 which intersect per-
pendicularly the plane xOy are given by

@(v)= Ccos v, w() = JW; A1 —C?%sm?vdy,

where C is a constant (C = @(0)). Determine the domain of » and draw a
rough sketch of the profile of the surface in the xz plane for the cases C = 1,
C > 1, C < 1. Observe that C = 1 gives a sphere (Fig. 3-23).

c¢. All surfaces of revolution with constant curvature K = —1 may be given by
one of the following types:

1. p(v) = C cosh »,
w(v) = fﬂ T — CZsinbz odv.
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d.

e.
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2. ¢(v)} = C sinh v,
wv) = JU /1 — C2 cosh? vdv.
0

3. pv) = e,
W(v) = f C T .
0
Determine the domain of v and draw a rough sketch of the profile of the sur-
face in the xz plane.
The surface of type 3 in part ¢ is the pseudosphere of Exercise 6.

The only surfaces of revolution with K = 0 are the right circular cylinder,
the right circular cone, and the plane.

8. (Contact of Order = 2 of Surfaces.) Two surfaces S and S, with a common point

D,

have contact of order > 2 at p if there exist parametrizations x(u, ») and

%(u, v) in p of S and S, respectively, such that

at p. Prove th

*a.

*b.

*d.

f.

X, = iu: Xy = iv, X = iuu: Xpw = ium Xww = Xy

Let S and .S have contact of order > 2 atp;x: U— Sand x: U-— S be
arbitrary parametrizations in p of § and S, respectively; and f: ¥ = R3 — R
be a differentiable function in a neighborhood ¥ of p in R3. Then the partial
derivatives of order <C 2 of fo X: U — R are zero in X~1(p) if and only if the
partial derivatives of order << 2 of fc x: U — R are zero in x~!(p).

Let S and S have contact of order > 2 at p. Let z = f(x,»), z = f(x,)) be the
equations, in a neighborhood of p, of § and S, respectively, where the
xy plane is the common tangent plane at p = (0, 0). Then the function
flx, ») — fix, ¥) has all partial derivatives of order <C 2, at (0, 0), equal to
zero.

Let p be a point in a surface § = R3. Let Oxyz be a cartesian coordinate sys-
tem for R? such that O = p and the xy plane is the tangent plane of .S at p.
Show that the paraboloid

z = 3(x? fox+ 2x3 foy + V2 i) (%)
obtained by neglecting third- and higher-order terms in the Taylor devel-
opment around p = (0, 0), has contact of order > 2 at p with § (the surface

() is called the osculating paraboloid of S at p).

If a paraboloid (the degenerate cases of plane and parabolic cylinder are
included) has contact of order > 2 with a surface S at p, then it is the osculat-
ing paraboloid of § at p.

If two surfaces have contact of order > 2 at p, then the osculating parabo-
ioids of § and S at p coincide. Conciude that the Gaussian and mean curva-
tures of .S and S at p are equal.

The notion of contact of order > 2 is invariant by diffeomorphisms of R3;



The Gauss Map in Local Coordinates 171

10.

11.

12.

that is, if .§ and .S have contact 9f order > 2 at p and ¢: R® — R? is a dif-
feomorphism, then @(.S) and ¢(S) have contact of order > 2 at ¢(p).

g. If Sand S have contact of order > 2 at p, then
i

= {
r2 ’

qh—.n
on

where d is the length of the segment cut by the surfaces in a straight line
normal to T,(S) = T,(S), which is at a distance r from p.

. (Contact of Curves.) Define contact of order = n (n integer > 1) for regular

curves in R? with a common point p and prove that
a. The notion of contact of order >> n is invariant by diffeomorphisms.
b. Two curves have contact of order > 1 at p if and only if they are tangent at p.

(Contact of Curves and Surfaces.) A curve C and a surface .S, which have a com-
mon point p, have contact of order > n (n integer = 1) at p if there exists a
curve C — S passing through p such that C and € have contact of order > n at
p. Prove that

a. If f(x,y,z) =0 is a representation of a neighborhood of p in § and
o) = (x(1), y(¢), z(1)) is a parametrization of C in p, with &(0) = p, then C
and S have contact of order > » if and only if

_ ar _ arf _
f(x(o)a y(0)7 Z(O)) - O’ E — 07 ceey BF - 05

where the derivatives are computed for 7 =

. If a plane has contact of order

lating plane of C at p.

Y &Y T S P-4
AULVE L dl g, UICIL L

i

2with a

=
l\/

c. If a sphere has contact of order >> 3 with a curve C at p, and 0i(s) is a para-
metrization by arc length of this curve, with a(0) = p, then the center of the
sphere is given by

o (0) —|— ="t kaTb

Such a sphere is called the osculating sphere of C at p.

Consider the monkey saddle .S of Example 2. Construct the Dupin indicatrix at
p = (0,0, 0) using the definition of Sec. 3-2, and compare it with the curve
obtained as the intersection of § with a plane parallel to T,(S) and close to p.
Why are they not “approximately similar” (cf. Example 5 of Sec. 3-3)? Go
through the argument of Example 5 of Sec. 3-3 and point out where it breaks
down.

Consider the parametrized surface

x(u, v) = (sm 1 cos %, Sin ¥ sin v, cos ¥ + log tan + w(vﬂ
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where @ is a differentiable function. Prove that

a. The curves v = const. are contained in planes which pass through the z axis
and intersect the surface under a constant angle @ given by

’

_ @ _
cos B = T

Conclude that the curves » = const. are lines of curvature of the surface.

b. The length of the segment of a tangent line to a curve v = const., determined
by its point of tangency and the z axis, is constantly equal to 1. Conclude
that the curves v = const. are tractrices (cf. Exercise 6).

13. Let F: R? -—— R? be the map (a similarity) defined by F(p) =cp,p e R*, ca
positive constant. Let S — R? be a regular surface and set F(S) = 5. Show that
S is a regular surface, and find formulas relating the Gaussian and mean curva-

tures, K and H, of S with the Gaussian and mean curvatures, K and H, of S.

14. Consider the surface obtained by rotating the curve y = x3, —1 < x < I,
about the line x = 1. Show that the points obtained by rotation of the origin

fn n\ Ffl‘\n curve are nlanar nninte af the euirfars
vy O1 1ir LVOC ale Plalial puliite Ul uiv Suliais.,

*15. Give an example of a surface which has an isolated parabolic point p (that is, no
other parabolic point is contained in some neighborhood of p).

*16. Show that a surface which is compact (i.e., it is bounded and closed in R?) has an
elliptic point.

17. Define Gaussian curvature for a nonorientable surface. Can you define mean
curvature for a nonorientable surface?

18. Show that the Mo6bius strip of Fig. 3-1 can be parametrized by
. 2] . . U U
x(u, v) = ((2 — v 8in —2—-) sin u, (2 — v sin 7) CoS Ui, v COS 7)
and that its Gaussian curvature is

o 1 :
S vt £ (2 — wsin (#/2)))2

*19. Obtain the asymptotic curves of the one-sheeted hyperboloid x2 + y2 — z2
= 1.

*20, Determine the umbilical points of the elipsoid

2

x2 2z
St mta=1

[y

Let S be a surface with orientation N, Let IV — § be an open set in .§ and
f+ ¥V = 8§ — R be any nowhere-zero differentiable function in V. Let v, and v,
be two differentiable (tangent) vector fields in ¥ such that at each point of V,

vy and », are orthonormal and v, A v, =

-~

e
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a. Prove that the Gaussian curvature K of ¥ is given by

& — U@ A dUNY@), fN.
f3

The virtue of this formula is that by a clever choice of f we can often
simplify the computation of K, as illustrated in part b.

b. Apply the above result to show that if £is the restriction of
Xz, y*  z2
VEtR 4L

xZ yZ z2
atEtah

to the ellipsoid

then the Gaussian curvature of the ellipsoid is

i 1
K= pa e
22. (The Hessian). Let h: S — R be a differentiable function on a surface S, and let

p € S be a critical point of # (i.e., dh, = 0). Let w € T,(S) and let
o:(—€,€6) — 8
be a parametrized curve with (0) = p, &’(0) = w. Set

d?(hott)

th(W) = dr? r:()-

2 T ok =ra TT Pl P T
d. LCL U — o DO d pdldlliCil
is t i

o
=
=
=
o
v
&
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jou ]
=
=
=
S
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X:
a critical poin
Hph(u'xy + v'X0) = hu(p)')? + 2h,(p)u'v” + ho(p)(@')2.

Conclude that H,h: T,(S) — R is a well-defined (i.c., it does not depend on
the choice of o) quadratic form on T,(S). H,h is called the Hessian of h at p.

b. Let h: § — R be the height function of § relative to T,(S); that is, k(g)
= {g — p, N(p)>, g € S. Verify that p is a critical point of 4 and thus that
the Hessian H,4 is well defined. Show that if w € T,(S), |w|j =1, then

H,h(w) = normal curvature at p in the direction of w.

Conclude that the Hessian at p of the height function relative to T(8S) is the
second fundamental form of S at p.

23. (Morse Functions on Surfaces.) A critical point p € S of a differentiable function
h: S — R is nondegenerate if the self-adjoint linear map A4,k associated to the
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24.

quadratic form H 4 (cf. the appendix to Chap. 3) is nonsingular (here H 4 is the
Hessian of 4 at p; cf. Excercise 22). Otherwise, p is a degenerate critical point. A
differentiable function on S is a Morse function if all its critical points are non-
degenerate. Let 4,: § < R® — R be the distance function from Sto r; i.e.,

hig)=+/g—r,qg—ry, q€8 rekR, r¢s

a. Show that p € S is a critical point of 4, if and only if the straight line pr is
normal to S at p.

b. Let p be a critical point of &,: S— R. Let w € T,(S), |w| =1, and let
o.:(—€,€) — S be acurve parametrized by arc length with o(0) = p, &'(s) = w.
Prove that

Hh(W) = 7t — kn

h(p)

where k, is the normal curvature at p along the direction of w. Conclude that
the orthonormal basis {e;, €,}, where ¢, and e, are along the principal direc-
tions of T,(S), diagonalizes the self-adjoint linear map A,4,. Conclude fur-
ther that p is a degenerate critical point of 4, if and only if either 4,(p) = 1/k;
or h.(p) = 1/k,, where k, and k, are the principal curvatures at p.

¢. Show that the set

B = {r € R3; h, is a Morse function}

is an open and dense set in R?; here dense in R means that in each neigh-
borhood of a given point of R? there exists a point of B (this shows that on
any regular surface there are “many” Morse functions).

(Local Convexity and Curvature). A surface S « R3 is locally convex at a point
p € Sif there exists a neighborhood V' — S of p such that V' is contained in one
of the closed half-spaces determined by T,(S) in R3. If, in addition, ¥ has only
one common point with T,(S), then S is called strictly locally convex at p.

a. Prove thatSis strictlylocallyconvex at p if the principal curvatures of S at p
are nonzero with the same sign (that is, the Gaussian curvature K(p) satisfies
K(p) > 0).

b. Prove thatif S'is locally convex at p, then the principal curvatures at p‘do not
have different signs (thus, K(p) = 0).

¢. To show that K > 0 does not imply local convexity, consider the surface

f(x, ) = x3(1 + y?), defined in the open set U = {(x, y) € R?; y2 < 1}.

Show that the Gaussian curvature of this surface is nonnegative on U and yet

the surface is not locally convex at (0, 0) € U (a deep theorem, due to R.

Sacksteder, implies that such an example cannot be extended to the entire

R? if we insist on keeping the curvature nonnegative; cf. Remark 3 of Sec.
5-6).

*d. The example of part c is also very special in the following local sense. Let p

be a point in a surface .S, and assume that there exists a neighborhood ¥ = §

oy i% 223 S



Vector Fields 175

of p such that the principal curvatures on V do not have different signs (this
does not happen in the example of part ¢). Prove that .S is locally convex at p.

3-4. Vector Fieldst

In this section we shall use the fundamental theorems of ordinary differential
equations (existence, uniqueness, and dependence on the initial conditions)
to prove the existence of certain coordinate systems on surfaces.

If the reader is willing to assume the results of Corollaries 2, 3, and 4 at
the end of this section (which can be understood without reading the section),
this material may be omitted on a first reading.

We shall begin with a geometric presentation of the material on differ-
tial eauations that we intend to use.

‘.....- S GaeiilS LAl VY ALiFWAANE w

A vector field in an open set U — R? is a map which assigns to each
g € U a vector w(q) € R2. The vector field w is said to be differentiable if
writing ¢ = (x, y) and w(g) = (a(x, ¥), b(x, ¥)), the functions a and b are
differentiable functions in U.

Geometrically, the definition corresponds to assigning to each point
(x, ¥) € U a vector with coordinates a(x, y) and b(x, y) which vary differ-
entiably with (x, y) (Fig. 3-24).

——

(x, y) )
/f\\ (a G, ), bCx,2))

In what follows we shall consider only differentiable vector fields.

T“ E;ﬁ ’2 qq AT A ﬂvﬂm“]nﬂ Ap ",ﬂﬁ"t‘\“ 'ﬁﬂ]f‘n [ of=} nl‘\r\“‘ln
11l Cig. 5-43 SOMNE CXAMPies OF VeCI0I U8iGs aiC snown.

~

T . ~ A
Figure 3-24

0O
v

Given a vector field w, it is natural to ask whether there exists a trajectory
of this field, that is, whether there exists a differentiable parametrized curve
a(t) = (x(r), ¥(1)), t € I, such that a’'(¥) = w(a(z)).

For instance, a trajectory, passing through the point (x,, y,), of the
vector field w(x, y) = (x, y) is the straight line a(f) = (x,€', yoe'), t € R,
and a trajectory of w(x, y) = (y, —x), passing through (x,, ¥,), is the circle
B() = (rsint, recost), t € R, r? = x§ + yi.

+This section may be omitted on a first reading.
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w=(y,~x) w=(x,y)

Figure 3-25

I !
field w determines a system of differential equations,

dx ., .

i a(x, y), O
dy _

T b(x, ),

and that a trajectory of w is a solution to Eq. (1).

The fundamental theorem of (local) existence and uniqueness of solutions
of Eq. (1) is equivalent to the following statement on trajectories (in what
follows, the letters I and J will denote open intervals of the line R, containing
the origin 0 € R).

THEOREM 1. Let w be a vector field in an open set U < R2. Given
p € U, there exists a trajectory a: 1 — U of w (i.e., a'(ty = w(a(t)), t € T)
with a(0) = p. This trajectory is unique in the following sense: Any other
trajectory B:J — U with B(0) = p agrees witho in I N J.

An important complement to Theorem 1 is the fact that the trajectory
passing through p “varies differentiably with p.” This idea can be made
precise as follows.

THEOREM 2. Let w be a vector field in an open set U < R2. For each
p € U there exist a neighborhood V < U of p, an interval I, and a mapping
o:V X I — U such that

1. For a fixed q € V, the curve a(q, t), t € 1, is the trajectory of w
passing through q, that is,

@0 =g  %q 1 = wala, 1)



Vector Fields 177

2. o is differentiable.

Geometrically Theorem 2 means that all trajectories which pass, for
t =0, in a certain neighborhood ¥V of p may be “collected” into a single
differentiable map. It is in this sense that we say that the trajectories depend
differentiably on p (Fig. 3-26).

Figure 3-26

The map o is called the (Jocal) flow of w at p.

Theorems 1 and 2 will be assumed in this book; for a proof, one can
consult, for instance, W. Hurewicz, Lectures on Ordinary Differential Equa-
tions, M.L.T. Press, Cambridge, Mass., 1958, Chap. 2. For our purposes, we
need the following consequence of these theorems.

LEMMA. Let w be a vector field in an open set U  R*> and let p € U
be such that w(p) #= 0. Then there exist a neighborhood W < U of p and a
differentiable function f: W — R such that { is constant along each trajectory
of wand df == O for all @ € W.

Proof. Choose a cartesian coordinate system in R? such that p = (0, 0)
and w(p) is in the direction of the x axis. Let o.: V' X I — U be the local flow
atp, V< U, t € I, and let & be the restriction of ¢ to the rectangle

VxDn{xyt) e R;x =0}

(See Fig. 3-27.) By the definition of local flow, d&, maps the unit vector
of the ¢ axis into w and maps the unit vector of the y axis into itself. There-
fore, d&, is nonsingular. It follows that there exists a neighborhood W < U
of p, where &1 is defined and differentiable. The projection of & !(x, y)
onto the y axis is a differentiable function £ = f(x, y), which has the same
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(x.»)
Figure 3-27

value ¢ for all points of the trajectory passing through (0, £). Since d&, is
nonsingular, W may be taken sufficiently small so that df, -+ 0 for all
g € W. fis therefore the required function. Q.E.D.

The function f of the above lemma is called a (local) first integral of w
in a neighborhood of p. For instance, if w(x, y) = (y, —x) is defined in R?,
a first integral /= R* — {(0, 0)} — R is f(x, y) = x* + y%

Closely associated with the concept of vector field is the concept of field
of directions.

A field of directions r in an open set U — R? is a correspondence which
assigns to each p € U a line r(p) in R? passing through p. r is said to be
differentiable at p = U if there exists a nonzero differentiable vector field w,
defined in a neighborhood ¥V < U of p, such that for each ¢ € V, w(g) = 0
is a basis of r(q); r 1s differentiable in U if it is differentiable for every p © U.

To each nonzero differentiable vector field win U «— R2, there corresponds
a differentiable field of directions given by r(p) = line generated by w(p),
pe U

By its very definition, each differentiable field of directions gives rise,
locally, to a nonzero differentiable vector field. This, however, is not true
globally, as is shown by the field of directions in R* — {(0, 0)} given by the
tangent lines to the curves of Fig. 3-28; any attempt to orient these curves in
order to obtain a differentiable nonzero vector field leads to a contradiction.

A regular connected curve C = U is an integral curve of a field of direc-
tions r defined in U < R? if r(g) is the tangent line to C at g for allge C.

By what has been seen previously, it is clear that given a differentiable

fAald Af dirasfinng » 1n an Anan cat T/ — DZ there naccee for earch 4 = Tf an
].-l\llu VL VRALWWLAVALD T 111 ghi1 UHVLL [o L W) Pa o Y I\ PLliw ]l W l—’u\’uvu L3/ 1 WAVl ‘j — L= 3 ¥ 3

integral curve C of r; C agrees locally with the trace of a trajectory through q
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/—A\ Figure 3-28. A nonorientable field of

directions in R2 — {(0, 0)}.

of the vector field determined in U by r. In what follows, we shall consider
only differentiable fields of directions and shall omit, in general, the word
differentiable.

A natural way of describing a field of directions is as follows. We say
that two nonzero vectors w, and w, atq € R? are equivalent if w, = Aw, for
some 4 € R, A # 0. Two such vectors represent the same straight line pass-
ing through ¢, and, conversely, if two nonzero vectors belong to the same
straight line passing through ¢, they are equivalent. Thus, a field of directions
r on an open set U — R? can be given by assigning to each g € U a pair of
real numbers (r,, r,} (the coordinates of a nonzero vector belonging to r),
where we consider the pairs (ris rs Yand (Ar,, dr, ), A £ 0, as equivalent.

In the language of dlﬁ'erentlal equatlons, a ﬁeld of directions r is usually
given by

alx, )% + b )Y =0, @)

which simply means that at a point g = (x, y) we associate the line passing
through g that contains the vector (b, —a) or any of its nonzero multiples
(Fig. 3-29). The trace of the trajectory of the vector field (b, —a) is an integral
curve of r. Because the parametrization plays no role in the above considera-
tions, it is often used, instead of Eq. (2), the expression

adx +bdy =0

with the same meaning as before.

The ideas introduced above belong to the domain of the local facts of
R?, which depend only on the “differentiable structure” of R?. They can,
therefore, be transported to a regular surface, without further difficulties, as
follows.

DEFINITION 1. A vector field w in an open set U < S of a regular surface
S is a correspondence which assigns to each p € U a vector w(p) € T,(S).
The vector field w is differentiable at p € U if, for some parametrization
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An integral p
curve

FEIETAY
~ W,y

Figure 3-29. The differential equation adx + bd} =0,
x(u, v) at p, the functions a(u, v) and b(u, v) given by
w(p) = a(u, v)x, + b(u, v)x,

are differentiable functions at p; it is clear that this definition does not depend
on the choice of X.

We can define, similarly, trajectories, field of directions, and integral
curves. Theorems 1 and 2 and the lemma above extend easily to the present
situation; up to a change of R* by S, the statements are exactly the same.

Example 1. A vector field in the usual torus 7 is obtained by parametriz-
ing the meridians of T by arc length and defining w(p) as the velocity vector
of the meridian through p (Fig. 3-30). Notice that [w(p)| =1 forallp € T.
It is left as an exercise (Exercise 2) to verify that w 1s differentiable.

Example 2. A similar procedure, this time on the sphere S? and using the
semimeridians of S?, yields a vector field w defined in the sphere minus the

Figure 3-30
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two poles N and S. To obtain a vector field defined in the whole sphere,
reparametrize all the semimeridians by the same parameter ¢, —1 <t < 1,
and define w(p) — (1 — £2)w(p) forp € S — {N} U {S} and o(N) = (S) =0
(Fig. 3-31).

Figure 3-31

Al 4

Example 3. Let S ={(x, »,2) € R*;z = x*» — y*} be the hyperbolic
paraboloid. The intersection with S of the planes z = const. %= 0 determines
a family of curves {C,} such that through each point of § — {(0, 0, 0)} there
passes one curve C,. The tangent lines to such curves give a differentiable
flield of directions r on § — {(0, 0, 0)}. We want to find a field of directions
r' on § — {(0, 0, 0)} that is orthogonal to r at each point and to determine
the integral curves of r’. r’ is called the orthogonal field to r, and its integral
curves are called the orthogonal family of r (cf. Exercise 15, Sec. 2-5).

We begin by parametrizing S by

x{u, v) = (4, v, u* — v7), u=Xx, v = y.

The family {C,} is given by #* — v* = const. # 0 (or rather by the image
under x of this set). If #'x, + v'x, Is a tangent vector of a regular parametriza-
tion of some curve C,, we obtain, by differentiating > — »? = const.,

2uu’ — 2vv’ = 0.

Thus, (v, v') = (—v, —u). It follows that r is given, in the parametrization
X, by the pair (v, u) or any of its nonzero multiples.

Now, let {(a(u, v), b(u, »)) be an expression for the orthogonal field »/, in
the parametrization x. Since

E =1+ 42, F = —4u, G =1+ 4v?,

and »’ is orthogonal to r at each point, we have
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Eav + F(bv + au) + Gbu =0
or
(1 + 4u)av — 4uv(bv + au) + (1 + 40*)bu = 0.

It follows that
va + ub = 0. 3

This determines the pair (a, &) at each point, up to a nonzero multiple, and
hence the field »’.

To find the integral curves of #/, let u'x, + v'x, be a tangent vector of
SO“‘u‘: regular parametrization of an integral curve of r'. Then (', v') satisfies

q. (3); that is,
v - w' =0

uv = const,

It follows that the orthogonal family of {C,} is given by the intersections with
S of the hyperbolic cylinders xy = const. == 0.

The main result of this section is the following theorem.

THEOREM. Let w, and w, be two vector fields in an open set U < S,
which are linearly independent at some point p € U, Then it is possible to
parametrize a neighborhvod V < U of p in such a way that for each q € V
the coordinate lines of this parametrization passing through q are tangent to
the lines determined by w,(q) and w,(q).

rrr

Proof. Let W be a neighborhood of p where the first integrals f, and f,
of w, and w,, respectively, are defined. Define a map ¢: W -— R2 by

rr

o(q) = ([(9)s /@), g W.
Since f, is constant on the trajectories of w; and (df,) = 0, we have at p
dp (W) = ((df1)(w1), (df2) (W) = (0, a),

where a = (df,),(w,) # 0, since w, and w, are linearly independent, Similarly,
d¢p(w2) = (b: O)s

where b = (df;),(w,) == 0.
It follows that dp, is nonsingular, and hence that ¢

e iorn Thara avicte tharafAvrs o I-\.-\- h v~
PLIJD]J.I. LIICTC M AJOLD, LJJ\#LUIUJV, 4 JIUJSJIUUI EUUAL

a local diﬂ"eomor—
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mapped diffeomorphically by x = ¢! onto a neighborhood ¥ = x(U) of
p; that is, x is a parametrization of S at p, whose coordinate curves

fi(g) = const., f2(q) = const.,

are tangent at g to the lines determined by w,(g), w,(q), respectively. Q.E.D.

It should be remarked that the theorem does not imply that the coor-
dinate curves can be so parametrized that their velocity vectors are w,(q)
and w,(q). The statement of the theorem applies to the coordinate curves as
regular (point set) curves; more precisely, we have

COROLLARY 1. Given two fields of directions r and 1" in an open set
U < S such that at p € U, 1(p) 5= 1'(p), there exists a parametrization X in

a neighborhood of p such that the coordinate curves of X are the integral curves
of r and 1’

A first application of the above theorem is the proof of the existence of
an orthogonal parametrization at any point of a regular surface.

COROLLARY 2. For all p € S there exists a parametrization X(u, v) in
a neighborhood V of p such that the coordinate curves u = const., v = const.
intersect orthogonally for each q € V (such an X is called an orthogonal
parametrization).

Proof. Consider an arbitrary parametrlzatlon %: U — S at p, and define
two vector fields w, = %,, w, = —(F/E)X, + %, in X(T), where E, F, G are
the coeflicients of the first fundamental form in %. Since w,(g), w,(q) are
orthogonal vectors, for each ¢ € X(U), an application of the theorem yields

the required parametrization. Q.E.D.

A second application of the theorem (more precisely, of Corollary 1) is
the existence of coordinates given by the asymptotic and principal directions.
As we have seen in Sec. 3-3, the asymptotic curves are solutions of

e(w)? + 2fu'v + g(v)* =0.

In a neighborhood of a hyperbolic point p, we have eg — f2 < 0, and the

% s w0 o PR,

i(‘.‘ll IldJJ.U blUC Ul. L[lC d.UUVC cquauuu cail UU UCbUHL})UbCU lul.U two distinct
linear factors, yielding

(Au' + Bv"Y(Au' 4 Dv') =0, @
where the coefficients are determined by

A* = e, A(B + D) = 2f, BD =g.
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The above system of equations has real solutions, since eg — f2 << 0, Thus,
Eq. (4) gives rise to two equations:

Au’ - Bv' =0, (4a)
D 0

ALY
)

Each of these equations determines a differentiable field of directions (for

nnnnnnn A Adatarminnae tha diractinn 1+ whirh annfaine the nAanoorn
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vector (B, —A)), and at each point of the neighborhood in question the
directions given by Eqs. (4a) and (4b) are distinct. By applying Corollary 1,
we see that it is possible to parametrize a neighborhood of p in such a way
that the coordinate curves are the integral curves of Egs. (4a) and (4b). In
other words,

COROLLARY 3. Let p € S be a hyperbolic point of’ S. Then it is possible
to parametrize a neighborhood of p in such a way that the coordinate curves of
this parametrization are the asymptotic curves of S.

Example 4. An almost trivial example, but one which illustrates the
mechanism of the above method, is given by the hyperbolic paraboloid z =
x* — y*. As usual we parametrize the entire surface by

x(u, v) = (u, v, u*> — v?).
A simple computation shows that

e = 2 f=0 - 2 :
IO e 2 U L S § Ry ey e e

Thus, the equation of the asymptotic curves can be written as

2
(1 + 4u? + 4

2)1/2((”’)2 — @) =0,

which can be factored into two linear equations and give the two fields of
directions:

ri: uw -+ =0,
1‘22 u, —_— 'U’ = 0
The integral curves of these fields of directions are given by the two families
of curves:
Fy: U -+ v = const.,

r,: W — v = const.
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Now, the functions f,(u, v) =u + v, fo(u, v) = u — v are clearly first
integrals of the vector fields associated to r, and r,, respectively. Thus, by
setting

we obtain a new parametrization for the entire surface z = x2 — p? in which
the coordinate curves are the asymptotic curves of the surface.

In this particular case, the change of parameters holds for the entire
surface. In general, it may fail to be globally one-to-one, even if the whole
surface consists only of hyperbolic points.

Similarly, in a neighborhood of a nonumbilical point of S, it is possible
to decompose the differential equation of the lines of curvature into distinct
linear factors. By an analogous argument we obtain

COROLLARY 4. Let p € S be a nonumbilical point of S. Then it is possi-
ble to parametrize a neighborhood of p in such a way that the coordinate curves
of this parametrization are the lines of curvature of S.

EXERCISES

1. Prove that the differentiability of a vector field does not depend on the choice of
a coordinate system.

[ 390

. Prove that the vector field obtained on the torus by parametrizing all its merid-
ians by arc length and taking their tangent vectors (Example 1) is differentiable.

3. Prove that a vector field w defined on a regular surface S — R3 is differentiable
if and only if it is differentiable as a map w: § — R3.

4. Let S be a surface and x: U — S be a parametrization of S. Then
alu, v)u' 4 b(u, vy’ = 0,

where a and b are differentiable functions, determines a field of directions r on
x(U), namely, the correspondence which assigns to each x(«, ») the straight line
containing the vector x, — ax,. Show that a necessary and sufficient condition
for the existence of an orthogonal field »* on x(U) (cf. Example 3) is that both
functions

Eb — Fu, Fb — Ga

are nowhere simultaneously zero (here E, F, and G are the coefficients of the first
fundamental form in x) and that »’ is then determined by

- ’

£ I NS n
L0 — ra)u =\,

1 i ot} 7N
+ (Fb — Gajv
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5. Let S be a surface and x: U - § be a parametrization of S. If ac — b2 < 0,
show that

a(u, v)(u)? + 2b(u, v)u"v' + clu, v)@): =0

can be factored into two distinct equations, each of which determines a field of

directions on x({/) — S. Prove that these two fields of directions are orthogonal
if and only if

Ec — 2Fb + Ga =0,

6. A straight line r meets the z axis and moves in such a way that it makes a con-
stant angle o = 0 with the z axis and each of its points describes a helix of pitch
¢ # 0 about the z axis, The figure described by r is the trace of the parametrized

surface (see Fig. 3-32)
x(u, v) = (v sin & cOS u, v sin & sin &, v COs & -+ cu).

x is easily seen to be a regular parametrized surface (cf. Exercise 13, Sec. 2-5).
Restrict the parameters (x, v) to an open set U so that x(U) = § is a regular
surface (cf. Prop. 2, Sec. 2-3).

a. Find the orthogonal family (cf. Example 3) to the family of coordinate curves
1 = const.

b. Use the curves # = const. and their orthogonal family to obtain an orthog-
onal parametrization for S. Show that in the new parameters (&, 7) the coef-
ficients of the first fundamental form are

G=1, F=0, E={c?-+ (¢ — ciicosa)?]sin?a.

—

/ S T
¥ Figure 3-32

7. Define the derivative w(f) of a differentiable function f: U < S — R relative toa
vector field w in U by

Wi = S (fom| . aeU,

where o: I — Sis a curve such that a(0) = g, 0'(0) = w(q). Prove that
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8

9

a. wis differentiable in U if and only if w(f) is differentiable for all differentiable
fin U.
b. Let A and g be real numbers and g: U = S — R be a differentiable function
on U; then
wdf + uf) = Aw(f) + uw(f),
w(/g) = w(f)g + fw(g).

. Show that if w is a differentiable vector field on a surface .S and w(p) % 0 for
some p € S, then it is possible to parametrize a neighborhood of p by x(u, v)
in such a way that x, = w.

. a. Let A: V—— W be a nonsingular linear map of vector spaces V and W of
dimension 2 and endowed with inner products {, > and ( , ), respectively. A4
is a similitude if there exists a real number A == 0 such that (Avy, Av,)
= vy, v, for all vectors v, v, € V. Assume that A is not a similitude and
show that there exists a unigue pair of orthonormal vectors e, and e, in V
such that Ae,, Ae, are orthogonal in 1.

b. Use part a to prove Tissot’s theorem: Let ¢: U, = §,; — S; be a diffeomor-
phism from a neighborhood U, of a point p of a surface S into a surface §;.
Assume that the linear map d¢ is nowhere a similitude. Then it is possible to
parametrize a neighborhood of p in S| by an orthogonal parametrization
X;: U -— §, insuch a way that ¢ o x; = x,: U — S is also an orthogonal
parametrization in a neighborhood of g(p) € S..

10. Let 7 be the torus of Example 6 of Sec. 2-2 and define a map ¢: R* — T by

*
[Ty
[y

*12

@(u, v) = ((r cos u + a) cos v, {r COS u - @) sin v, r sin u),

where u and v are the cartesian coordinates of R2. Let u — at, v = bt be a
straight line in R2, passing by (0,0) € R2, and consider the curve in T
o(t) = g(at, bt). Prove that

a. @ is a local diffeomorphism.

b. The curve a(z) is a regular curve; o.(¢) is a closed curve if and only if b/ais a
rational number.

*c. If b/a is irrational, the curve 0i(2) is dense in T; that is, in each neighborhood
of a point p € T there exists a point of 0(z).

. Use the local uniqueness of trajectories of a vector field win I/ = S to prove the
following result. Given p € U, there exists a unique trajectory 0: / — U of w,
with a(0) = p, which is maximal in the following sense: Any other trajectory

B:J — U,with B(0) = p, is the restriction of & to J (i.e., J = Tand a|J = ).

. Prove that if w is a differentiable vector field on a compact surface § and &(¢) is
the maximal trajectory of w with a(0) = p € S, then a(r) is defined for all
t e R

13. Construct a differentiable vector field on an open disk of the plane (which is not

compact) such that a maximal trajectory &(t) is not defined for all ¢ € R (this
shows that the compactness condition of Exercise 12 is essential).
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3-5. Ruled Surfaces
and Minimal Surfacest

In differential geometry one finds quite a number of special cases (surfaces
of revolution, parallel surfaces, ruled surfaces, minimal surfaces, etc.) which
may either become interesting in their own right (like minimal surfaces),
or give a beautiful example of the power and limitations of differentiable
methods in geometry. According to the spirit of this book, we have so far
treated these special cases in examples and exercises.

It might be useful, however, to present some of these topics in more
detail. We intend to do that now. We shall use this section to develop the
theory of ruled surfaces and to give an introduction to the theory of minimal
surfaces. Throughout the section it will be convenient to use the notion of
parametrized surface defined in Sec. 2-3.

If the reader wishes so, the entire section or one of its topics may be
omitted. Except for a reference to Sec. A in Example 6 of Sec. B, the two
topics are independent and their results will not be used in any essential way
in this book.

A. Ruled Surfaces

1y of (straight) lin (), w(n)} is a
correspondence that assigns to each ¢ € I a point a(f) € R® and a vector
w(r) € R?, w(f) # 0, so that both a(f) and w(f) depend differentiably on ¢
For each ¢ € I, the line L, which passes through a(z) and is parallel to w(¢)
is called the line of the family at t.

Given a one-parameter family of lines {a(r), w(r)}, the parametrized

surface

x(t, v) = a(r) 4 ow(z), tel v e R,

is called the ruled surface generated by the family {a(?), w(s)}. The lines L,
are called the rulings, and the curve a(¢) is called a directrix of the surface x.
Sometimes we use the expression ruled surface to mean the trace of x. It
should be noticed that we also allow x to have singular points, that is, points
(¢, v) where x, A x, = 0.

Example 1. The simplest examples of ruled surfaces are the tangent
surfaces to a regular curve (cf. Example 4, Sec. 2-3), the cylinders and the
cones. A c¢ylinder is a ruled surface generated by a one-parameter family of
lines {&(2), w(1)3, t € I, where a(1) is contained in a plane P and w(¢) is parallel

+This section may be omitted on a first reading.
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to a fixed direction in R? (Fig. 3-33(a)). A cone is a ruled surface generated by
a family {o(?), w()}, t € I, where a({) = P and the rulin p

a point p ¢ P (Fig. 3-33(b)).

) * W)

alf)
/P o) /,

Figure 3-33

Example 2, Let S? be the unit circle x? + y? = 1 in the xy plane, and let
x(s) be a parametrization of S! by arc length. For each s, let w(s) = a'(s) + e3,
where e, is the unit vector of the z axis (Fig. 3-34). Then

X(s, v) = a(s) + v(@'(s) + e3)

z

2 X

x2+})2-—z2:l

Figure 3-34, x2 4 y2 — z2 =1 as a ruled surface.
is a ruled surface. It can be put into a more familiar form if we write
x(s, v) = (cos § — v sin s, sin s + v cos s, v)

and notice that x? + y% — z2 = 1 4 ¢ — ¢ = 1. This shows that the trace
of x is a hyperboloid of revolution.
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It is interesting to observe that if we take w(s) = —a'(s) + e;, we again
obtain the same surface. This shows that the hyperboloid of revolution has
two sets of rulings.

We have defined ruled surfaces in such a way that allows the appearance
of singularities. This is necessary if we want to include tangent surfaces and
cones. We shall soon show, at least for ruled surfaces that satisfy some
reasonable condition, that the singularities of such a surface (if any) will
concentrate along a curve of this surface.

We shall now start the study of general ruled surfaces. We can assume,
without loss of generality, that (w(r)| = 1, # € I. To be able to develop the
theory, we need the nontrivial assumption that w'(¢) = 0 for all ¢ € I. If the
zeros of w'(f) are isolated, we can divide our surface into pieces such that
the theory can be applied to each of them. However, if the zeros of w'(¢)
have cluster points, the situation may become complicated and will not be
treated here.

The assumption w'(¢) == 0,te I is ‘dsua}ly expressed oy aa_yiug that the
ruled surface x is noncylindrical.

Unless otherwise stated, we shall assume that

x(t, v) = a(t) + vw(s) (1)

is a noncylindrical ruled surface with |w(f)| = 1, r € I. Notice that the
assumption | w(f)| = 1 implies that {w(?), w'(z)> =0 for all z € L.
We first want to find a parametrized curve f(¢) such that {f'(®), w'(¢)>

noos [, TN L R T S ST
= Ut c l, d110U p{[) 11€S O1 UIiC 1rdace O1 X, LIidl 1S,
B = alt) + u(Ow(?), 2

for some real-valued function u = u(f). Assuming the existence of such a
curve ff, one obtains

B =o 4+ u'w - uw';
hence, since {w, w> =0,
0={f,w>={a",w>-I uw,wH.
It follows that u = u(?) is given by

y— _SEW ©)

IR
NWo W/

Thus, if we define B(¢) by Eqgs. (2) and (3), we obtain the required curve.
We shall now show that the curve # does not depend on the choice of the
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directrix o for the ruled surface. § is then called the line of striction, and its
points are called the central points of the ruled surface.
To prove our claim, let & be another directrix of the ruled surface; that
is, let, for all (¢, v),
x(t, v) = of) + ow(t) = &(r) + swl1) @

for some function s = s(¢). Then, from Egs. (2) and (3) we obtain

- _ <al _ d!, wl>
n = — T s
B—F—=( ) + AT
where f is the line of striction corresponding to &. On the other hand, Eq.
(4) implies that
o — & = (s — V)w().
Thus,
v — sw', w’>\w _0
<wl, w/> i )
since {w, w"> = 0. This proves our claim.
We now take the line of striction as the directrix of the ruled surface and
write it as follows:

ﬁ'*l?Z{(s—vH—

x(t, u) = B(1) + uw(?). (3
With this choice, we have

X, = f' + uw, X, =W
and

X, ANX, = Aw+uw A w
Since (w', w> =0 and (W', B> =0, we conclude that ' A w = Aw’

for some function 4 = A(¢). Thus,
(X, A X, 2= [Aw" + uw’ A wi?
= A2 |w P+ utw P = (A ) w R
It follows that the only singular points of the ruled surface (5) are along the

line of striction u = 0, and they will occur if and only if A{r) = 0. Observe
also that

1 Bww),

[’ [?

where, as usual, (#’, w, w') 1s a short for (" A w, w'>.
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Let us compute the Gaussian curvature of the surface (5) at its regular
points. Since

Ke
I
=
+
=
E\
>

®
I
E\
¥
§
Il
Ao

- (%, %o %) (B, ).
£=0  f=TNT T AP

hence (since g = 0 we do not need the value of e to compute K),

_eg—fr __ Awt A2
K= EG—F2~ ~(Frulw A+ ur)e 2)2 (6)

This shows that, at regular points, the Gaussian curvature K of a ruled surface
satisfies K < 0, and K is zero only along those rulings which meet the line of
striction at a singular point.

Equation (6) allows us to give a geometric interpretation of the (regular)
central points of a ruled surface. Indeed, the points of a ruling, except perhaps
the central point, are regular points of the surface. If A == 0, the function
| K(u)| is a continuous function on the ruling and, by Eq. (6), the central
point is characterized by the fact that | K(x)| has a maximum there.

For another geometrical interpretation of the line of striction see Exer-
cise 4.

We also remark that the curvature K takes up the same values at points
on a ruling that are symmetric relative to the central point (this justifies the
name central).

The function A(?) is called the distribution parameter of x. Since the line
of striction is independent of the choice of the directrix, it follows that the
same holds for A. If x 1s regular, we have the following interpretation of A.
The normal vector to the surface at (z, u) is

X AX, M Luw Aw
N(t,U)— 1xt /\xul — ,\/).2—{~u2]w'[

On the other hand (1 == 0),

w
Nt 0)= —
Wl
Thovafare 18 0 ic tha anale farmaad b Afr ) and Nif M
lherefore, 1t ¥ 1S the angie formed by /V{?, ¥) ana iv{Z, U),

tan @ = —i{- @)
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Thus, if 0 is the angle which the normal vector at a point of a ruling makes
with the normal vector at the central point of this ruling, then tan @ is propor-
tional to the distance between these two points, and the coefficient of propor-
tionality is the inverse of the distribution parameter.

Example 3. Let S be the hyperbolic paraboloid z = kxy, k == 0. To show
that S is a ruled surface, we observe that the lines y = z/tk, x = ¢, for each
t = 0 belong to S. If we take the intersection of this family of lines with the
plane z = 0, we obtain the curve x = ¢, y = 0, z = 0. Taking this curve as
directrix and vectors w(f) parallel to the lines y = z/tk, x = t, we obtain

af) = (50,0),  w() ~ (o, 715 r).

This gives a ruled surface (Fig. 3-35)
x(t, v) = oaft) + ww(r) = (I, —?_“, vt), te R,v € R,
VK

the trace of which clearly agrees with S.

z |

X

Figure 3-35. z = xy as a ruled surface.

Since a'() = (1, 0, 0), we obtain that the line of striction is « itself. The
distribution parameter is

242
PR il

7.3
K

We also remark that the tangent of the angle 8 which w(f) makes with
w(0) is tan 8 = tk.
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The last remark leads to an interesting general property of a ruled surface.
If we consider the family of normal vectors along a ruling of a regular ruled
surface, this family generates another ruled surface. By Eq. (7) and the last
remark, the latter surface is exactly the hyperbolic paraboloid x = kxy,
where 1/k is the value of the distribution parameter at the chosen ruling.

Among the ruled surfaces, the developables play a distinguished role.
Let us start again with an arbitrary ruled surface (not necessarily non-
cylindrical)

x(#, v) = a(®) + vw(r), (8)

generated by the family {a(?), w(¢)} with | w(r)| = 1. The surface (8) is said to
be developable if

(w, w,a’) = 0. )

To find a geometric interpretation for condition (9), we shall compute the
[— I . ¥ [P I e T

Gaussian curvature of a devuupublt‘: surfacc at a u;:gxﬂ'cu point. A coiniputa-
tion entirely similar to the one made to obtain Eq. (6) gives

_ _ (w,wha)
¢=0 TERRRE
By condition (9), f= 0; hence,
_es—f
K= EG— F* ™ 0.

This implies that, at regular points, the Gaussian curvature of a developable
surface is identically zero.

For another geometric interpretation of a developable surface, see Exer-
cise 6.

We can now distinguish two nonexhaustive cases of developable surfaces:

1. w(t) A w'(f) = 0. This implies that w'(z) == 0. Thus, w(¢) is con-
stant and the ruled surface is a cylinder over a curve obtained inter-
secting the cylinder with a plane normal to w(z).

2. w(t) A w'(t) = Oforall 7z € I. In this case w'(¢) == 0 forall € L.

work. Thus, we can determine the line of striction (2) and check that
the distribution parameter

A= Bww) (10)
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Therefore, the line of striction will be the locus of singular points of
the developable surface. If #(¢) == O for all ¥ < I, it follows from Eq.
(10) and the fact that {f’, w'> = 0 that w is parallel to 8’. Thus, the
ruled surface 1s the tangent surface of g. If 8'(¥) =0 for all ¢ € I,

then the line of striction is a point, and the ruled surface is a cone
with vertex at this poinf

Yasda Vo L0 LI2230 pAWVIALLL.

Of course, the above cases do not exhaust all possibilities. As usual, if
there is a clustering of zeros of the functions involved, the analysis may
become rather complicated. At any rate, away from these cluster points, a
developable surface is a union of pieces of cylinders, cones, and tangent
surfaces.

As we have seen, at regular points, the Gaussian curvature of a develop-
able surface is identically zero. In Sec. 5-8 we shall prove a sort of global
converse to this which implies that a regular surface S < R® which is closed
as a subset of R? and has zero Gaussian curvature is a cylinder.

Exampie 4. (The Envelope of the Family of Tangent Pianes Aiong a Curve
of a Surface). Let S be a regular surface and & = a(s) a curve on S para-
metrized by arc length. Assume that « is nowhere tangent to an asymptotic
direction. Consider the ruled surface

x(s, v) = a(s) + UN(‘T{,\,/,\( S])Vl,(s)’ 1n

where by N(s) we denote the unit normal vector of S restricted to the curve
2(s) (since &'(s) is not an asymptotic direction, N'(s) == 0 for all 5s). We shall
show that x is a developable surface which is regular in a neighborhood of
» = 0 and is tangent to S along v = 0. Before that, however, let us give a
geometric interpretation of the surface x.

Consider the family {T,,,(S)} of tangent planes to the surface S along the
curve a(s). If As is small, the two planes 7, ,(S) and 7, ,,,(S) of the family
will intersect along a straight line parallel to the vector

N(s) A N(s + As)
As

If we let As go to zero, this straight line will approach a limiting position
parallel to the vector

N(s) A iV(s + As) lim N(s) A (N(s + As) — N(s))
s

lim
As—Q 5

As—0

= N(s) A N'(s).
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This means intuitively that the rulings of x are the limiting positions of the
intersection of neighboring planes of the family {7, ,(S)}. x is called the
envelope of the family of tangent planes of S along a(s) (Fig. 3-36).

(x(x+A.r) )

/39»7

N(sYAN(s+ As)

Figure 3-36

For instance, if o is a parametrization of a parallel of a sphere S2, then
the envelope of tangent planes of S along « is either a cylinder, if the parallel
is an equator, or a cone, if the parallel is not an equator (Fig. 3-37).

‘N\—-__—-/(’ Nonequatorial
// (___\\\ paraliel N %
//Equator \\ /
NIy
N /
\\""--—.._____._/’J) ehe—

Figure 3-37. Envelopes of families of tangent planes along parallels of a sphere.

To show that x is a developable surface, we shall check that condition (9)
holds for x. In fact, by a straightforward computation, we obtain
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N AN’ N A NY ,>_<N/\N’ (N AN'Y ,>
<!N1A(W1»“__IMIA N
=TV |2<<N A N,N'>N,a>=0.
This proves our claim.
We shall now prove that x is regular in a neighborhood of v = 0 and
that it is tangent to S along «. In fact, at ¥ = 0, we have

B (NANY _ onr o N 5

),
[N

TN

where k, = k,(s) is the normal curvature of a. Since k,(s) is nowhere zero,
this shows that x is regular in a neighborhood of » = 0 and that the unit

normal vectorof x at x va ﬂ\ aorees with N(o\ Thne x is taneent to S alone
norma agr X 18 tangent {C¢ S along

v = 0, and this completes the proof of our assertlons.

We shall summarize our conclusions as follows. Let a(s) be a curve para-
metrized by arc length on a surface S and assume that o is nowhere tangent to
an gsymptotic direction. Then the envelope (9) of the family of tangent planes
to S along a is a developable surface, regular in a neighborhood of o(s) and
tangent to S along afs).

B. Minimal Surfaces

A regular parametrized surface is called minimal if its mean curvature
vanishes everywhere. A regular surface S < R3 is minimal if each of its
parametrizations is minimal.

To explain why we use the word minimal for such surfaces, we need to
introduce the notion of a variation. Let x: U < R*— R® be a regular
parametrized surface. Choose a bounded domain D < U (cf. Sec. 2-5) and a
differentiable function #: D — R, where D is the union of the domain D
with its boundary dD. The normal variation of x(D), determined by #, is
the map (Fig. 3-38) given by,

¢:D X (¢, €) —> R
o(u, v, 1) = x(u, v) + th(w, YN, v),  (u,v) € D, 1 & (—¢,€).

For each fixed ¢ € (—e¢, €), the map x": D — R?

x'(u, v) = @, v, )
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(x +thNXD)  / ]
x(D) l
(x — thN)(D) Figure 3-38. A normal variation of x(D).

is a parametrized surface with

%’-g = X, + thN, + th,N,
ox’
G0 = X, + thN, + th,N.

Thus, if we denote by F*, F*, G* the coefficients of the first fundamental form
of x*, we obtain

E = E + th((x,, N> + (x,, N>) + kN, N,> + *h,h,,
F' = F + th({x,, Ny» + (X,, N)) + £2h*(N,, N> + t*h,h,,
G = G + th((x,, N> + (x,, NY) + 1*h*(N,, N> + £*h,h,.

By using the fact that
<Xm Nu> =6 <xu= Nv> + <Xv: Nu> — __2.}‘; <Xa= Nv> 4
and that the mean curvature H is (Sec. 3-3, Eq. (5))

1 Eg — 2fF + Ge,

H= EG — F?

we obtain

EG — (F)* = EG — F* — 2th(Eg — 2Ff + Ge) + R
= (EG — F3)(1 — 4thH) + R,

where lim,_,, (R/t) = 0.
It follows that if € is sufficiently small, x* is a regular parametrized sur-
face. Furthermore, the area A(t) of x'(D) is

LiiLXIIY LAL alva 72 IR
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At = f NEG = (FY dudy

:LA/I — 4thH + R ~/EG — F* du dv,

where R —= R/(EG — F?). 1t follows that if € is small, 4 is a differentiable
function and its derivative at + = 0 is

A0y = — f _2hH/EG — F? du dy (12)

We are now prepared to justify the use of the word minimal in connection
with surfaces with vanishing mean curvature.

PROPOSITION 1. Let x: U - R? be a regular parametrized surface
and let D < U be a bounded domain in U. Then x is minimal if and only if
A'(0) = 0 for all such D and ail normal variations of x(D).

Proof. 1f x 1s minimal, H =0 and the condition is clearly satisfied.
Conversely, assume that the condition is satisfied and that H(g) == 0 for some
g € D. Choose h: D — R such that h(g) = H(g) and # is identically zero
outside a small neighborhood of 4. Then A4'(0) < 0 for the variation deter-
mined by this %, and that is a contradiction. Q.E.D.

Thus, any bounded region x(D) of a minimal surface x is a critical point
for the area function of any normal variation of x(D). It should be noticed
that this critical point may not be a minimum and that this makes the word
minimal seem somewhat awkward. It is, however, a time-honored termi-

nology which was introduced hv Lagrange (u;hn first defined a minimal

ARSI 5 Y ¥ ALANsAL ALALR W 1w Liv AAxOL Aewldliwns (v LEiagAA

surface) in 1760.

Minimal surfaces are usually associated with soap films that can be
obtained by dipping a wire frame into a soap solution and withdrawing it
carefully. If the experiment is well performed, a soap film is obtained that
has the same frame as a boundary. It can be shown by physical considerations
that the film will assume a position where at its reguiar points the mean
curvature is zero. In this way we can “manufacture” beautiful minimal
surfaces, such as the one in Fig. 3-39.

Remark 1. Tt should be pointed out that not all soap films are minimal
surfaces according to our definition. We have assumed minimal surfaces to
be regular (we could have assumed some isolated singular points, but to go
beyond that would make the treatment much less elementary). However,
soap films can be formed, for instance, using a cube as a frame (Fig. 3-40),
that have singularities along lines.
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Figure 3-39

Figure 3-40

Remark 2. The connection” between minimal surfaces and soap films
motivated the celebrated Plateau’s problem (Plateau was a Belgian physicist
who made careful experiments with soap films around 1850). The problem
can be roughly described as follows: ro prove that for each closed curve
C < R? there exists a surface S of minimum area with C as boundary. To

make the nroblem nrecise (which curves and surfaces are allowed and what

B A o d 2 S o T e A et ) Cvians: Juridhiuwd CLLi VY W dLaisns YY LL

is meant by C being a boundary of §) is itself a nontrivial part of the prob-
lem. A version of Plateau’s problem was solved simultaneously by Douglas
and Rad¢ in 1930. Further versions (and generalizations of the problem for
higher dimensions) have inspired the creation of mathematical entities which
include at least as many things as soap-like films. We refer the interested

reader to the Chap. 2 of Lawson [20] (references are at the end of the book)
for further details and a recent bibliography of Plateau’s problem.

It will be convenient to introduce, for an arbitrary parametrized regular
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surface, the mean curvature vector defined by H = HN. The geometrical
meaning of the direction of H can be obtained from Eq. (12). Indeed, if we
choose h = H, we have, for this particular variation,

A0 =2 _(HH)/EG — F? dudy < 0.

This means that if we deform x(D) in the direction of the vector H, the area
is initially decreasing.

The mean curvature vector has another interpretation which we shall
now pursue, since it has important implications for the theory of minimal
surfaces.

A regular parametrized surface x = x(u, v) is said to be isothermal if
(X, X,» = {(X,, X,» and {x,, x,> = 0.

PROPOSITION 2. Let x = x(u, v) be a regular parametrized surface
and assume that X is isothermal. Then

Xuu + Xyy = leHa

differentiation, we obtain
<xuu9 xu> = <x1)u5 Xv> - <xu5 vv
Thus,
<xuu + xuva XU> - O'
Similarly

<X:m + x‘uv: xv> = 0

It follows that x,, + X,, is parallel to N. Since x is isothermal,

H= 85t
Thus,
2H =g+ e =N, X, + X,,);
hence,

X, + x,, = 2A*H. Q.E.D.

The Laplacian Af of a differentiable function f: U < R? — R is defined
by Af = (0*f/9u?) + (8%f]dv?), (u, v) € U. We say that fis harmonicin U if
Af = 0. From Prop. 2, we obtain
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COROLLARY: Let x(u, v) = (x(u, v), y(u, v), z(u, v)) be a parametrized
surface and assume that X is isothermal. Then X is minimal if and only if its
coordinate functions X, y, Z are harmonic.

Example 5. The catenoid, given by

x{(u, v) = (a cosh v cos u, a cosh » sin u, av),
0 <u<2gm, —oo < gy < oo,

This is the surface generated by rotating the catenary y = a cosh(z/a) about
the z axis (Fig. 3-41). It is easily checked that £ = G = a? cosh? v, F =0,
and that x,, -} x,, = 0. Thus, the catenoid is a minimal surface. It can be
characterized as the only surface of revolution which is minimal.

[
r vy =a cosh{z/a)
t— d ]
-y
x Figure 3-41
a lact aceartinon can he nravad ac faollowe Wea want +a Aind a nrya
A LIV AP L oA LAV W AL U YLUVVU R AN LINT VY L. Y YYQriiu LV Aliavd v WUl vVu
v = f(x) such that, when rotated about the x axis, it describes a minimal

surface. Smce the parallels and the meridians of a surface of revolution are
AF mrrrrratiira ~F thha 1vFamna fiCam 2.2 Eyvarmmla AV r1ia taeizo e

llll_CD O1 Curvature o1 l.llCr suriace \L)Cb JEI, LAaIllplC “I'}, we lllubl. lld.VC U.ld-l Lllc

curvature of the curve y = f(x) is the negative of the normal curvature of

the circle generated by the point f(x) (both are principal curvatures). Since

the curvature of y = f(x) is

1y

Y
CENCHORE

and the normal curvature of the circle is the projection of its usual curvature
(= 1/y) over the normal N to the surface (see Fig. 3-42), we obtain

yll
T+ 0P
But —cos ¢ = cos 8 (see Fig. 3-42), and since tan 8 = y’, we obtain

y” _ 1 1
T+ 07y A+ )P

as the equation to be satisfied by the curve y = f(x).

= —icosga
" )
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%4 y=5x)

Clearly, there exists a point x where f'(x) % 0. Let us work in a neighbor-
hood of this point where f’ = 0. Multiplying both members of the above
equation by 2y’, we obtain,

4

zyltyf _ 2—y-.
1+ vy

Setting 1 4+ (")? = z (hence, 2y"y’ = z’), we have

2y’,

r
Z _
z Y

which, by integration, gives (k is a constant)

log z = log y* 4 log k% = log(yk)*

or
1 L (N2 — » — (1,12
L)y =z=0k)
The last expression can be written
k dy
= k dx,
(k) —1

which, again by integration, gives (c is a constant)

cosh™'(yk) =kx 4 ¢
or

y = % cosh(kx + ¢).

Thus, in the neighborhood of a point where f’ = 0, the curve y = f(x)
is a catenary. But then y’ can only be zero at x = 0, and if the surface is to
be connected, it is by continuity a catenoid, as we claimed.
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Example 6 (The Helicoid). (cf. Example 3, Sec. 2-5.)
x(#, v) = (a sinh v cos u, a sinh  sin , au).

It is easily checked that £ = G = a%cosh?y, F =0, and x,, + x,, = 0.
Thus, the helicoid is a minimal surface. It has the additional property that it
is the only minimal surface, other than the plane, which is also a ruled
surface.

We can give a proof of the last assertior if we assume that the zeros of
the Gaussian curvature of a minimal surface are isolated (for a proof, see,
for instance, the survey of Osserman quoted at the end of this section, p. 76).
Granted this, we shall proceed as follows.

Assume that the surface is not a plane. Then in some neighborhood W
of the surface the Gaussian curvature K is strictly negative. Since the mean
curvature is zero, ¥ is covered by two families of asymptotic curves which
intersect orthogonally. Since the rulings are asymptotic curves and the sur-
face is not a plane, we can choose a point ¢ € W such that the asymptotic
curve, other than the ruling, passing through ¢ has nonzero torsion at gq.
Since the osculating plane of an asymptotic curve is the tangent plane to the
surface, there is a neighborhood ¥V «— ¥ such that the rulings of V are prin-
cipal normals to the family of twisted asymptotic curves (Fig. 3-43). It is an
interesting exercise in curves to prove that this can occur if and only if the
twisted curves are circular helices (cf. Exercise 18, Sec. 1-5). Thus, V'is a part
of a helicoid. Since the torsion of a circular helix is constant, we easily see
that the whole surface is part of a helicoid, as we claimed.

Nonrectilinear
asymptotic curves q

Figure 3-43
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The helicoid and the catenoid were discovered in 1776 by Meusnier, who
also proved that Lagrange’s definition of minimal surfaces as critical points
of a variational problem is equivalent to the vanishing of the mean curva-
ture. For a long time, they were the only known examples of minimal sur-
faces. Only in 1835 did Scherk find further examples, one of which is described
in Example 8. In Exercise 14, we shall describe an interesting connection
between the helicoid and the catenoid.

Example 7 (Enneper’s Minimal Surface). Enneper’s surface is the para-
metrized surface

3 3
X(u, v) = (u — %— +uvt, v — _??3_ + vu?, ut — vz), (u, v) € R?,
which is easily seen to be minimal (Fig. 3-44). Notice that by changing (u, v)
into (—v, u) we change, in the surface, (x, y, z) into (—y, x, —z). Thus, if
we perform a positive rotation of z/2 about the z axis and follow it by a
symmetry in the xy plane, the surface remains invariant,

Figure 3-44. Enneper’s surface. Reproduced, with modifications, from K. Leicht-
weiss, “Minimalflichen im Grossen,” Uberblicke Math. 2 (1969), 7-49, Fig. 4,

with permission,
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An interesting feature of Enneper’s surface is that it has self-intersections.
This can be shown by setting u = p cos 8, 9 = psin# and writing

3 3
x(p, 0) = (p cos 0 — % cos 36, p sin 8 4 % sin 38, p? cos 20)-

Thus, if x(p,, 0,) = x(p,, 0,), a straightforward computation shows that

Hence, since pi cos? 28, = pj} cos? 20,, we obtain
pr+ G =p -+ B

which implies that p, = p,. It follows that cos 26, = cos 26,.
If, for instance, p, = p, and 6, = 2x — #,, we obtain from

y(p15 01) = y(ps, 0;)

that y = —y. Hence, y = 0; that is, the points (p,,8,) and (p,,8,)
belong to the curve sin § + (p#/3) sin 3@ = 0. Clearly, for each point (p, )
belonging to this curve, the point (p, 2z — €) also belongs to it, and

x(p, @) = x(p, 2n — 0), z(p, 0) = z(p, 2r — 6).

Thus, the intersection of the surface with the plane y = 0 is a curve along
which the surface intersects itself.

Similarly, it can be shown that the intersection of the surface with the
plane x = 0 is also a curve of self-intersection (this corresponds to the case
p1 = P2, 8, =1 — @,). It is easily seen that they are the only self-intersec-
tions of Enneper’s surface.

I want to thank Alcides Lins Neto for having worked out this example in
order to draw a first sketch of Fig. 3-44.

Before going into the next example, we shall establish a useful relation
between minimal surfaces and analytic functions of a complex variable. Let
€ denote the complex plane, which is, as usual, identified with R? by setting
{=ut+iv, e @, (1!, v) € R?2. We recall that a function /- U <« C—C

Adwwisis viilv FRES VLMLV
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is analytic when, by writing

f(C) :fl(u: 'U) + l:fl(ua 'U):
the real functions f; and f, have continuous partial derivatives of first order
which satisfy the so-called Cauchy-Riemann equations:

o _ 9,  ofi _ _9dfs.

du v’ dv~ du

Now let x: U < R* — R? be a regular parametrized surface and define
complex functions ¢, ¢,, g3 by

$ =G —ige  pO=G T 00 =5 i

where x, y, and z are the component functions of x.

LEMMA. x is isothermal if and only if @3 4+ @3 -+ @} = 0. If this last
condition is satisfied, x is minimal if and only if ¢,, ©,, and @; are analytic
Sfunctions.

Proof. By a simple computation, we obtain that
o1 + 03+ 93 = E— G+ 2F,

whence the first part of the lemma. Furthermore, x,, + x,, = 0 if and only if
é_(@_X) _ _i(t’_x),
Ju\dv v \dv
9 (5__J’) - i(@),
Ju\du) dv\dv
_5_(0_2) _ _i(ﬁ),
du\du/ =~ dv\dv
which give one-half of the Cauchy-Riemann equations for ¢, ¢,, ;. Since

the other half is automatically satisfied, we conclude that x,, -+ x,, = 0 if
and only if ¢,, ¢,, and @, are analytic. Q.E.D.

Example 8 (Scherk’s Minimal Surface). This is given by

b))

x(u, v} = (argg T Z argg + 1 » log

{# 41,0 41,

where { = u + iv, and arg { is the angle that the real axis makes with (.
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We easily compute that

(il _qgp1 24
argC_z, tan R — |
(+1 -1 —2v
argz—:-T__tan e —

C2+I _L (ul_v2+1)2+4u2,v2-
IOg,Cz — 1] 2 k)g(u2 — p? — 1)2 4 dup?’
hence,
_dx  dx 2 . 2i .
T e T Ty TTT- PTI-T

Since p? + 9% + ¢} =0 and ¢,, ¢,, and @, are analytic, x is an isothermal
parametrization of a minimal surface.
It is easily seen from the expressions of x, y, and z that

This representation shows that Scherk’s surface is defined on the chess-
board pattern of Fig. 3-45 (except at the vertices of the squares, where the
surface is actually a vertical ling).

Minimal surfaces are perhaps the best-studied surfaces in differential
geometry, and we have barely touched the subject. A very readable introduc-
tion can be found in R. Osserman, 4 Survey of Minimal Surfaces, Van
Nostrand Mathematical Studies, Van Nostrand Reinhold, New York, 1965.
The theory has developed into a rich branch of differential geometry in
which interesting and nontrivial questions are still being investigated. It
has deep connections with analytic functions of complex variables and
partial differential equations. As a rule, the results of the theory have the
charming quality that they are easy to visualize and very hard to prove. To
convey to the reader some flavor of the subject we shall close this brief account
by stating without proof one striking result.

THEOREM (Osserman). Let S < R?® be a regular, closed (as a subset of
R3) minimal surface in R*® which is not a plane. Then the image of the Gauss
map N:S — S? js dense in the sphere S? (that is, arbitrarily close to any
point of S? there is a point of N(S) — S2).

A proof of this theorem can be found in Osserman’s survey, quoted
above. Actually, the theorem is somewhat stronger in that it applies to com-
plete surfaces, a concept to be defined in Sec. 5-3.
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Figure 3-45. Scherk’s surface.

EXERCISES

208

1. Show that the helicoid (c¢f. Example 3, Sec. 2-5) is a ruled surface, its line of

striction is the z axis, and its distribution paramster is constant.

2, Show that on the hyperboloid of revolution x2 4 y2 — z2 = 1, the parallel of
least radius is the line of striction, the rulings meet is under a constant angle, and

the distribution parameter is constant,
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3. Leto: I — § < R3 be a curve on a.regular surface .S and consider the ruled
surface generated by the family {0(z), N(r)}, where N(¢) is the normal to the
surface at 0i(¢). Prove that al(I) < S is a line of curvature in S if and only if this
ruled surface is developable.

4. Assume that a noncylindrical ruled surface
x(t,0) = a(f) +ow(®),  |w| =1,

is regular. Let w(¢,), w(f;) be the directions of two rulings of x and let x(¢,, »1),

x(#2, v3) be the feet of the common perpendicular to these two rulings. As

t, — ty, these points tend to a point x(t{, ©). To determine (¢,, #) prove the

following:

a. The unit vector of the common perpendicular converges to a unit vector
tangent to the surface at (¢4, ). Conclude that, at (¢, v),

W A w,N>=0.
b. v = _(<“,’ W,>/<W’, wl>)-

Thus, (¢;, ) is the central point of the ruling through ¢,, and this gives
another interpretation of the line of striction (assumed nonsingular).

th

A right conoid is a ruled surface whose rulings L, intersect perpendicularly at
fixed axis r which does not meet the directrix &: I — R3.

a. Find a parametrization for the right conoid and determine a condition that
implies it to be noncylindrical.

b. Given a noncylindrical right conoid, find the line of striction and the distri-
bution parameter.

6. Let
x(¢, v) = oty + vw(r)

be a developable surface. Prove that at a regular point we have
(Ny, Xpp = {Np, X0 = 0.

Conclude that the tangent plane of a developable surface is constant along (the
regular points of) a fixed ruling.

7. Let S be a regular surface and let C = § be a regular curve on S, nowhere tan-
gent to an asymptotic direction. Consider the envelope of the family of tangent
planes of § along C. Prove that the direction of the ruling that passes through a
point p € Cis conjugate to the tangent direction of C at p.

8. Show that if C < S§2is a parallel of a unit sphere S2, then the envelope of tan-
gent planes of S2 along C is either a cylinder, if C is an equator, or a cone, if C
is not an equator.

et L]
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are lines of curvature (if U is small, this is no restriction. cf. Corollary 4, Sec.
3-4). The parametrized surfaces

where p, = 1/k,, pa» = 1/k,, are called focal surfaces of x(U) (or surfaces of
centers of x(U); this terminology comes from the fact that y(x, v), for instance,
is the center of the osculating circle (cf. Sec. 1-6, Exercise 2) of the normal sec-
tion at x(u, v) corresponding to the principal curvature k,). Prove that

a IF(L Y aad 7L o N
Qe 11 \W1jy anl \Wajpy ail Lo

surfaces.
b. At the regular points, the directions on a focal surface corresponding to the

principal directions on x{U) are conjugate. That means, for instance, that
y. and y, are conjugate vectors in y(U) for all (¥, v) € U.

c. A focal surface, say y, can be constructed as follows: Consider the line of
curvature x(u, const.) on x(U), and construct the developable surface gener-
ated by the normals of x(U) along the curve x(u, const.) (cf. Exercise 3). The
line of striction of such a developable lies on y(U), and as x(w, const.)

T <7 TTN rry osre AN

describes x(U), this line describes y(U) (Fig. 3-46).

y(u,v)

S Figure 3-46. Construction of a focal surface.
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10. Example 4 can be generalized as follows. A one-parameter differentiable family
of planes {oc(t) N} is a correspondence which assigns to each ¢t € I a point
() € R* and a unit vector N{¢) € R? in such a way that both & and N are
differentiable maps. A family {&(r), N()}, ¢ € [, is said to be a family of tangent
planes if &'(t) = 0, N'(¢t) # 0, and {&’(¢), N(1)> = 0forallt € I
a. Give proof that a differentiable one-parameter family of tangent planes

fa(t), N(} determines a differentiable one-parameter family of lines
fou(s), (N A N')/| N’{} which generates a developable surface

x(t, v) = o) + UNU/:J ]f,- (%)

The surface (*) is called the envelope of the family {0(2), N(£)}.
b. Prove that if a’(r) A (N(t) A N'(1)) # 0 for all ¢t € I, then the envelope (%)

is regular in a neighborhood of » = 0, and the unit normal vector of x at

(t, 0) is N(r).

¢. Let & = d(s) be a curve in R3 parametrized by arc length. Assume that the
curvature k{s) and the torsion 7(s) of & are nowhere zero. Prove that the
family of osculating planes {0((s), b(s)} is a one-parameter differentiable

family of tangent planes and that the envelope of this family is the tangent
surface to o() fr‘f-' Example 5. Sec. 2- 'ﬂ

WL AG v WV « AaGAlipaS oy

11. Let x = x(u, v) be a regular parametrized surface. A parallel surface to X is a
parametrized surface

y(u, v) = x(u, v) + aN(u, v),

.
whara ~1c a AN
¥YYdiwlie L 1D O WUl

a. Prove that y, A ¥, = (1 — 2Ha + Ka®)(x. A X,), where K and H are the
Gaussian and mean curvatures of x, respectively.

b. Prove that at the regular points, the Gaussian curvature of y is

K
1 —2Ha + Ka?
and the mean curvature of y is
H — Ka _
1 — 2Ha + Ka?

¢. Let a surface x have constant mean curvature equal to ¢ # 0 and consider
the parallel surface to x at a distance 1/2¢. Prove that this parallel surface has
constant Gaussian curvature equal to 4c2.

12. Prove that there are no compact (i.e., bounded and closed in R?) minimal sur-
faces.
13. a. Let S be a regular surface without umbilical points. Prov that S is a mini-

ol i lomm ] T, Vo P o C
mal Surtace il ainda o1 ll_y ll I.UC LId Ubdd> llldp 1\’ S R S ]



Ruled Surfeces and Minimal Surfeces 213

and all wy, wy, € T,(S),

<de(WI)9 de(w2)>N(p) = Af(p)<w1a W2>Ps

where A(p) # 0 is a number which depends only on p.

b. Let x: U — S? be a parametrization of the unit sphere S2 by (8, §) < U,
where 8 is the colatitude (cf. Example 1, Sec. 2-2) and @ is the arc length of
the parallel determined by 8. Consider a neighborhood ¥ of a point p of the
minimal surface § in part a such that N: .5 — 52 restricted to V is a diffeo-
morphism (since K(p) = det(dN,) # 0, such a V exists by the inverse func-
tion theorem). Prove that the parametrization y = N"!'ox: U — S is
isothermal (this gives a way of introducing isothermal parametrizations on
minimal surfaces without planar points).

14. When two differentiable functions f, g: U < R? — R satisfy the Cauchy-Rie-
mann equations

J0f dg df _ _Jdg

= — =

du v dv  du

they are easily seen to be harmonic; in this situation, / and g are said to be
harmonic conjugate. Let x and y be isothermal parametrizations of minimal
surfaces such that their component functions are pairwise harmonic conjugate;
then x and y are called conjugate minimal surfaces. Prove that

a. The helicoid and the catenoid are conjugate minimal surfaces.

b. Given two conjugate minimal surfaces, x and y, the surface
z = (cos £)x + (sin )y (*)

is again minimal for all # € R.

¢. All surfaces of the one-parameter family (%) have the same fundamental
form: E = {Xu, X,) = 0 ¥o), F =0, G = X, X,> = Vo, Yu)-

Thus, any two conjugate minimal surfaces can be joined through a one-

parameter family of minimal surfaces, and the first fundamental form of this

family is independent of z.



Appendix Sel/f-Adjoint Linear Maps

and Quadratic Forms

In this appendix, V will denote a vector space of dimension 2, endowed with
an inner product { , >. All that follows can be easily extended to a finite
n-dimensional vector space, but for the sake of simplicity, we shall treat
only the case n = 2.

We say that a linear map A: V — V'is self-adjoint if {Av, w> = {v, Aw)>
forall v, w € V.

Notice that if {e,, e,} is an orthonormal basis for ¥ and (x,)), i,/ = 1, 2,

is the matrix of A relative to that basis, then

23 axzlori r LI AVAGBLA i

<A€i, €j> == MU — <ei’ A€j> — <A€j, el> _ CC_,-;;

that is, the matrix («,,) is symmetric.
To each self-adjoint linear map we associate a map B: V' X ¥ —» R defined
by
B(v, w) = {Av, w.

B is clearly bilinear; that is, it is linear in both v and w. Moreover, the fact
that A4 is self-adjoint implies that B(v, w) = B(w, v); that is, B is a bilinear
symmetric form in V.

atric form in V. we can define
NelrlC Iorm 1n ¥, we can demnne

pnh‘TPTCn]\f 1{" R 1€ A ]‘\1] ar svm
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map A: V— ¥V by {4v, w> = B(v, w) and the symmetry of B implies that 4
1s self-adjoint.

On the other hand, to each symmetric, bilinear form B in ¥, there corre-
sponds a quadratic form Q in V given by

O(v) = B(w, v), v eV,

214



Appendix : Lineer Meps end Quedratic Forms 215

and the knowledge of Q determines B completely, since

B(u, v) = 1[Q@u 4+ v) — Q) — Q)]

Thus, a one-to-one correspondence is established between quadratic
forms in ¥ and self-adjoint linear maps of V.

The goal of this appendix is to prove that (see the theorem below) given
a self-adjoint linear map A4: V — V, there exists an orthonormal basis for
¥ such that relative to that basis the matrix of A is a diagonal matrix. Fur-
thermore, the elements on the diagonal are the maximum and the minimum
of the corresponding quadratic form restricted to the unit circle of V.

LEMMA. If the function Q(x,y) = ax® + 2bxy - cy?, restricted to the
unit circle X* + y* = 1, has a maximum at the point (1, 0), then b = 0.

Proof. Parametrize the circle x*--y2 =1 by x =cost, y =sint,
t € (0 — €, 27 + €). Thus, Q, restricted to that circle, becomes a function
of t:

O(f) = acos®>t + 2bcos tsint -+ ¢sin? ¢.

Since Q has a maximum at the point (1, 0) we have

Hence, b = 0 as we wished. Q.E.D.

PROPOSITION. Given a quadratic form Q in V, there exists an orthonor-
mal basis {e,, e,} of V such that if v € V is given by v = xe, -+ ye,, then

Q(v) = 4,x* + 4.7,

Proof. Let 4, be the maximum of Q on the unit circle |[v| = 1, and let e,
be a unit vector with Q{e,) = 4,. Such an e, exists by continuity of Q on the
compact set 9] = 1. Let e, be a unit vector that is orthogonal to e,, and
set 4, = QOf(e,). We shall show that the basis {e,, e,} satisfies the conditions
of the proposition.

Let B be the symmetric bilinear form that is associated to Q and
set v = xe, - ye,. Then

Q) = B(v, v) = B(xe, + ye,, xe; + ye,)
= A, x* + 2bxy + 4,07,
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where b = B(e,, e,). By the lemma, b = 0, and it only remains to prove that
A, is the minimum of @ in the circle | | = 1. This is immediate because, for
any v = xe, + ye, with x* 4 y? = 1, we have that

O() = 4, x> 4 1,3* = A(x* + y?) = 4,,
since 4, << 4. Q.E.D.

We say that a vector v 7= 0 is an eigenvector of a linear map 4: V — V
if Ay = Av for some real number A; 4 is then called an eigenvalue of A.

THEOREM. Let A:V — V be q self-adjoint iinear map. Then there
exists an orthonormal basis {e,, e,} of V such that A(e,) = A,e,, Ale,) = A,e,
(that is, e, and e, are eigenvectors, and 2,, A, are eigenvalues of A). In the
basis {e,, e,}, the matrix of A is clearly diagonal and the elements A,, A,,
A = Ay, on the diagonal are the maximum and the minimum, respectively, of

the quadratic form Q(v) = {Av, v on the unit circle of V.

Proof. Consider the quadratic form Q(») = {Aw, v». By the proposition
above, there exists an orthonormal basis {e,, e,} of ¥, with Q(e,) — 4,,
QO(e,) = 4, << A;, where A, and A, are the maximum and minimum, respec-
tively, of Q in the unit circle. It remains, therefore, to prove that

A(e,) = 4,64, A(e;) = Ay(e,).

Since B(ey, e;) = {Aey, e,> = 0 (by the lemma) and ¢, == 0, we have that
either Ae, 1s parallel to e, or Ae; = 0. If Ae, is parallel to e,, then Ae, — ae,,
and since (Ae;, e,;> = A; =<ae;, ;> =, we conclude that Ade, = A,¢e,;
if Ade; =0, then 4, =<{4e,;,e;» =0, and Ae, =0 = 1,e,. Thus, we have
in any case that de, = 4,¢,.

Now using the fact that

B(e,, e,) = {Ae,, e,y =0
and that
<Aezs eZ> = Aza

we can prove in the same way that de, = A,e,. Q.E.D.

Remark. The extension of the above results to an n-dimensional vector
space, # > 2, requires only the following precaution. In the previous proposi-
tion, we choose the maximum 4; = Q(e,) of Q in the unit sphere, and then
show that Q restricts to a quadratic form Q, in the subspace ¥, orthogonal
to e;. We choose for 1, = Q,(e,) the maximum of Q, in the unit sphere of

V,, and so forth.



4 The Intrinsic
Geometry of Surfaces

4-1. Introduction

In Chap. 2 we introduced the first fundamental form of a surface S and
showed how it can be used to compute simple metric concepts on .S (length,
angle, area, etc.). The important point is that such computations can be made
without “leaving” the surface, once the first fundamental form is known.
Because of this, these concepts are said to be intrinsic to the surface S.

The geometry of the first fundamental form, however, does not exhaust
itself with the simple concepts mentioned above. As we shall see in this
chapter, many important local properties of a surface can be expressed only
in terms of the first fundamental form. The study of such properties is called
the intrinsic geometry of the surface. This chapter is dedicated to intrinsic
geometry.

In Sec. 4-2 we shall define the notion of isometry, which essentially makes
precise the intuitive idea of two surfaces having “the same” first fundamental
forms.

In Sec. 4-3 we shall prove the celebrated Gauss formula that expresses
the Gaussian curvature K as a function of the coefficients of the first funda-
mental form and its derivatives. This means that K is an intrinsic concept,
a very striking fact if we consider that K was defined using the second funda-

mental form.
In Sec, 4-4 we shall start a svstem udy of intrinsic geometry, It turns
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out that the subject can b unified through the concept of covariant deriva-
tive of a vector field on a surface. This is a generalization of the usual deriva-
tive of a vector field on the plane and plays a fundamental role throughout
the chapter.
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Section 4-5 is devoted to the Gauss-Bonnet theorem both in its local and
global versions. This is probably the most important theorem of this book.
Even in a short course, one should make an effort to reach Sec. 4-5.

In Sec. 4-6 we shall define the exponential map and use it to introduce two
special coordinate systems, namely, the normal coordinates and the geodesic
polar coordinates.

In Sec. 4-7 we shall take up some delicate points on the theory of geodesics
which were left aside in the previous sections. For instance, we shall prove the
existence, for each point p of a surface S, of a neighborhood of p in § which
is a normal neighborhood of all its points (the definition of normal neigh-

borhood ig glvpn in Sec. 4- ﬁ\ This result and a related one are used in (“hﬂp

WAl v v e 1S

5; however, it is probably convenlent to assume them and omit Sec. 4-7 on a
first reading. We shall also prove the existence of convex neighborhoods,
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4-2. Isometries; Conformal Maps

Examples 1 and 2 of Sec. 2-5 display an interesting peculiarity. Although the
Lyunut‘:r and the pld.[lt: are distinct surfaces, their first fundamental forms are
“equal” (at least in the coordinate neighborhoods that we have considered).
This means that insofar as intrinsic metric questions are concerned (length,
angle, area), the plane and the cylinder behave locally in the same way.
(This is intuitively clear, since by cutting a cylinder along a generator we may
unroll it onto a part of a plane.) In this chapter we shall see that many other
important concepts associated to a regular surface depend only on the first
fundamental form and should be included in the category of intrinsic con-
cepts. It is therefore convenient that we formulate in a precise way what is
meant by two regular surfaces having equal first fundamental forms.

S and § will always denote regular surfaces.

DEFINITION 1. A diffeomorphism ¢:S — S is an isometry if for all
p € S and all pairs w,, w, € T,(S) we have

<W13 W2>p = <d¢p(wl)9 d¢p(W2)>¢(P)‘
The surfaces S and S are then said to be isometric.

In other words, a diffeomorphism ¢ is an isometry if the differential d¢
preserves the inner product. It follows that, d¢ being an isometry,

Ip(w) = <W3 w>p = <d§0p(w)7 d¢p(w)>¢(p) - Iw(p)(dqop(w))
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fundamental form, that is,

L(w) = Li(dp,(w))  forall w e T,(S),
then

2wy, wap = L{w, 4 wy) — L{w,) — I(w,)
= Lp(de (Wi + w2)) — Liy(de(w,)) — Li(de {w,))
= 2<d¢p(w1)’ d¢p(w2)>’

and ¢ 1s, therefore, an isometry.

DEFINITION 2. 4 map ¢:V — S of a neighborhood V of p € S is a
local isometry at p if there exists a neighborhood V of o(p) € S such that
@:V — V is an isometry. If there exists a local isometry into Sateveryp € 8,
the surface S is said to be locally isometric t0 S. § and S are locally isometric
if S is locally isometric to S and S is locally isometric to S.

It is clear that if p: § — § is a diffeomorphism and a local isometry for
every p € S, then g is an isometry (globally). It may, however, happen that
two surfaces are locally isometric without being (globally) isometric, as shown
in the following example.

Example 1. Let ¢ be a map of the coordinate neighborhood x(U) of the
cylinder given in Example 2 of Sec. 2-5 into the plane x(R?*) of Example 1 of
Sec. 2-5, defined by ¢ = x o x~! (we have changed x to X in the parametriza-
tion of the cylinder). Then ¢ is a local isometry. In fact, each vector w, tangent
to the cylinder at a point p € X(U), is tangent to a curve %(u(?), »(¢)), where
(u(t), v(?)) is a curve in U = R2. Thus, w can be written as

w=Xu -+ X
On the other hand, de(w) is tangent to the curve
pX(u(t), v())) = X(u(®), v(z)).
Thus, de(w) = x,u’ + x,0'. Since E = E,F=F G = G, we obtain
I{w) = E(u')* + 2Fu'v' + G(v')?
= Eu')? + 2Fu'v' + G(')* = L, (do (w)),

The isometry cannot be extended to the entire cylinder because the
cylinder is not even homeomorphic to a plane. A rigorous proof of the last
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assertion would take us too far afield, but thé following intuitive argument
may give an idea of the proof. Any simple closed curve in the plane can be
shrunk continuously into a point without leaving the plane (Fig. 4-1). Such a
property would certainly be preserved under a homeomorphism. But a paral-
lel of the cylinder (Fig. 4-1) does not have that property, and this contradicts
the existence of a homeomorphism between the plane and the cylinder.

&/ a

p

N~

Figure 4-1. C c P can be shrunk continuously into p without leaving P. The
same does not hold for C' = S.

Before presenting further examples, we shall generalize the argument
given above to obtain a criterion for local isometry in terms of local coordi-
nates.

PROPOSITION 1. Assume the existence of parametrizations x: U — S
and%: U —Ssuch that E =E,F =F, G = G in'U. Then the map ¢ = Xox~':
x{U) — S is a local isometry.

Proof. Let p € x(U) and w € T,{S). Then w is tangent to a curve x(x(?))
at t = 0, where a(t) = (u(t), v(t)) is a curve in U; thus, w may be written
(¢ = 0)

w = x# + X0

By definition, the vector dg,(w) is the tangent vector to the curve
x ox 'ox(a(r)), i.e., to the curve x{a(z)) at ¢ = 0 (Fig. 4-2). Thus,

do (w) = X + X2
I(w) = E@')* + 2Fu'v’ + G(')’,
Lo(dp,w) = B@'Y: + 2B’ ~ Gy,

we conclude that 7,(w) = I, (dg (w)) for all p € x(U) and all w € T,(S);
hence, ¢ is a local isometry. Q.E.D.
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Figure 4-2

Example 2. Let S be a surface of revolution and let

x(v, v) = (f(v) cos u, f(v) sin u, g(v)),
a<<vp<b, 0 <u<2nm, fw) >0,

be a parametrization of S (cf. Example 4, Sec. 2-3). The coefficients of the
first fundamental form of S in the parametrization x are given by

E=(fw): F=0, G=("0)+ g@).
In particular, the surface of revolution of the catenary,
X = g cosh v, z = av, —oo < p < co,
has the following parametrization:

x(#, v) = (a cosh v cos u, a cosh v sin u, av),
0 <u<2m, —oo0 < g < oo,

relative to which the coefficients of the first fundamental form are
E = @? cosh? p, F=0, G = a*(1 + sinh? v) = a? cosh? ».

This surface of revolution is called the catenoid (see Fig. 4-3). We shall show
that the catenoid is locally isometric to the helicoid of Example 3, Sec. 2-5.
A parametrization for the helicoid is given by

) <7 Do,
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Figure 4-3. The catenoid.

Let us make the following change of parameters:
u = i, ? = g sinh v, 0 <w<<2m, —oo << p < oo,
which is possible since the map is clearly one-to-one, and the Jacobian

o(d, o)
d(u, v)

= gcosh v

is nonzero everywhere. Thus, a new parametrization of the helicoid is
X(u, v) = (a sinh v cos u, a sinh p sin u, au),

relative to which the coefficients of the first fundamental form are given by

E == a* cosh? v, F=0, G = a* cosh? v.
Using Prop. 1, we conclude that the catenoid and the helicoid are locally
isometric.
Figure 4-4 gives a geometric idea of how the isometry operates; it maps
“one turn” of the helicoid (coordinate neighborhood corresponding to
0 < u < 2x) into the catenoid minus one meridian.

Remark 1. The isometry between the helicoid and the catenoid hasalready
appeared in Chap. 3 in the context of minimal surfaces; cf. Exercise 14, Sec.
3-5.
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Example 3. We shall prove that the one-sheeted cone (minus the vertex)

z=+ky/x*+ % (xy)=(0,0)

is locally isometric to a plane. The idea is to show that a cone minus a genera-
tor can be “rolled” onto a piece of a plane.
Let U — R* be the open set given in polar coordinates (p, §) by

0 < p < co, 0 <@ < 2zsina,

! 1]

()

L7
ey
I
o

BTN,
4".\‘f‘\\§§§\\
N

TRNY

(d)

Figure 4-4. Isometric deformation of helicoid to catenoid. (a) Phase 1.
(b) Phase 2 . (c) Phase 3, (d) Phase 4+
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(f)
(e)

Figure 4-4. (¢) Phase 5. (f) Phase 6. (g) Phase 7.

where 200 (0 << 200 << ) is the angle at the vertex of the cone (i.e., where
cotan o = k¢, and let F: U — R3 be the map (Fig. 4-5)

Fp, 0) = (p sin & cos (-S%&-), psin o sin (s_ihg_oc)’ p cos a).
It is clear that F(U) is contained in the cone because

k/x* + y* = cotana./p* sin? o« = p cos o = z.

Furthermore, when § describes the interval (0, 2z sin ), 8/sin o describes the
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b4

Figure 4-5

mnterval (0, 2z). Thus, all points of the cone except the generator § — 0 are
covered by F(U).

It is easily checked that F and dF are one-to-one in U; therefore, Fis a
diffeomorphism of U onto the cone minus a generator.

We shall now show that F 1s an isometry. In fact, U may be thought
of as a regular surface, parametrized by
no.

~ et } LN ¥

X(p, ) =(pcos B, psinB, 0), 0 < p<<oo, 0B <2xsin
The coefficients of the first fundamental form of U in this parametrization

are

A» ) PP, B P,

he other hand, the coefficientes of the form

Y PRPEPRY o NS, R R | Y R ~
Ull L LITSL TUNAAINCIELdL 1111 O 11€ Cone

in the parametrization FoXx are
E =1, F =0, G = p2.
From Prop. 1 we conclude that Fis a local isometry, as we wished.

Remark 2. The fact that we can compute lengths of curves on a surface
S by using only its first fundamental form allows us to introduce a notion of
“Intrinsic” distance for points in S. Roughly speaking, we define the (intrin-
sic) distance d(p, q) between two points of S as the infimum of the length of
curves on S joining p and g. (We shall go into that in more detail in Sec. 5-3.)
This distance is clearly greater than or equal to the distance||p — ¢ || of p to
q as points in R® (Fig. 4-6). We shall show in Exercise 3 that the distance 4
is invariant under isometries; that is, if ¢: 5 — S is an isometry, then

d(p,q) = d(e(p), (@), p,q € S.
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Figure 4-6

The notion of isometry is the natural concept of equivalence for the
metric properties of regular surfaces. In the same way as diffeomorphic

Fammn asa o [ AR o~ P

surfaces are equivalent from the point of view of differentiability, so isometric
surfaces are equivalent from the metric viewpoint.

It is possible to define further types of equivalence in the study of surfaces.
From our point of view, diffeomorphisms and isometries are the most
important. However, when dealing with problems associated with analytic
functions of complex variables, it is important to introduce the conformal

equivalence, which we shall now discuss briefly.

DEFINITION 3. 4 diffeomorphism ¢: S — S is called a conformal map
if forall p € S and all v, v, € T,(S) we have

{dpy(vy), dpy(v,)y = A2(P){¥1, V2)ps

where A* is a nowhere-zero differentiable function on S; the surfaces S and S
are then said to be conformal. 4 map ¢: V — S of a neighborhood V of p € S
into S is a local conformal map at p if there exists a neighborhood V of ¢(p)
such that 9 : V — ¥V is a conformal map. If for eachp € S, there exists a local
conformal map at p, the surface S is said to be locally conformal 7o S.

The geometric meaning of the above definition is that the angles (but
not necessarily the lengths) are preserved by conformal maps. In fact, let

le @ at+ =0is
cos@zl-fz,—ﬁ?— 0< 8@ <m.

A conformal map ¢: S —» § maps these curves into curves goa:l — S,
pofi: I — S, which intersect for # = 0, making an angle § given by

(o), de(BY>  AKa B>
08 = Tap@)1de(pr] = 121a’ (1 p] <O
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as we claimed. It is not hard to prove that this property characterizes the
locally conformal maps (Exercise 14).

The following proposition is the analogue of Prop. 1 for conformal maps,
and its proof is also left as an exercise.

PROPOSITION 2. Let x: U — S and X: U — S be parametrizations
such that E = A*E, F = A*F, G = 1*G in U, where )J* is a nowhere-zero
differentiable function in U. Then the map ¢ = %ox ': x(U) — S is a local
conformal map.

Local conformality is easily seen to be an equivalence relation; that is,
if S, is locally conformal to S, and S, is locally conformal to S;, then S,
is locally conformal to S;.

The most important property of conformal maps is given by the following

theorem, which we shalil not prove.

I—IFOPE A !

Avy
ARnany ALY Re SA0L T

The proof is based on the possibility of parametrizing a neighborhood of
any point of a regular surface in such a way that the coefficients of the first
fundamental form are

(H,U)>G, F:G: G:;L

Such a coordinate system is called isothermal. Once the existence of an
isothermal coordinate system of a regular surface S is assumed, S is clearly
locally conformal to a plane, and by composition locally conformal to any
other surface.

The proof that there exist isothermal coordinate systems on any regular
surface is delicate and will not be taken up here. The interested reader may
consult L. Bers, Riemann Surfaces, New York University, Institute of Mathe-
matical Sciences, New York, 1957-1958, pp. 15-35.

Remark 3. Isothermal parametrizations already appeared in Chap. 3 in
the context of minimal surfaces; cf. Prop. 2 and Exercise 13 of Sec. 3-5.

EXERCISES

L] T - . Trr — 2
1. Let F; U < R? — R? be given by

F(u, v) = (u sin & COs v, u sin & sin v, u COs &),
(u,v) € U={(u,v) € R}; u> 0}, o = const.
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a. Prove that Fis a local diffeomorphism of U onto a cone C with the vertex at
the origin and 20 as the angle of the vertex.

b. Is F a local isometry?

2. Prove the following “converse” of Prop. 1: Let ¢: § — S be an isometry and
x;:U—Sa parametrlzatlon atp € §; then X = @ox is a parametrization at
p(p)and E=E,F=F, G =G.

*3, Show that a diffeomorphism @: S — S is an isometry if and only if the arc
length of any parametrized curve in S is equal to the arc length of the image
curve by ¢.

4. Use the stereographic projection (cf. Exercise 16, Sec. 2-2) to show that the

mhare 10 lacally canfarmal +a o nlona

SyllULU ) .l\JUall_y bUlllULlJlal W a piaiiv,

5. Letoy: I— R3, o, I — R? be regular parametrized curves, where the para-
meter is the arc length. Assume that the curvatures k; of & and &, of «, satisfy
ki(s) = ko(5)= 0,5 € I Let

X1(s, v) = %y(s) + vt (s),
X, (5, v} = 0a(s) + vath(s)

be their (regular) tangent surfaces (cf, Example 5, Sec. 2-3) and let ¥ be a neigh-
borhood of (¢, 5¢) such that x,(V) < R?, x,(¥) < R? are regular surfaces (cf.
Prop. 2, Sec. 2-3). Prove that x; o x5 !: x,(V) — x,(V) is an isometry.

*6., Let &: 1 — R3 be a regular parametrized curve with k() %0, £ € 1. Let
x(z, v) be its tangent surface. Prove that, for each (s, v¢) € I X (R — {0}),
there exists a neighborhood V of (¢,, v,) such that x(¥) is isometric to an open
set of the plane (¢hus, tangent surfaces are locally isometric to planes).

7. Let ¥V and W be (finite-dimensional) vector spaces with inner products denoted
by {, > and let F: ¥ — W be a linear map. Prove that the following conditions
are equivalent:

a. (F(vy), F(vy)) = (v, vy for all vy, v, € V.

b. |F(v)| = |v|forallv € V.

¢e. If {vy,...,v,} is an orthonormal basis in V, then {F(v,), ..., F(v,)} is an
orthonormal basis in W.

d. There exists an orthonormal basis {v,, ..., ,} in V such that
{F(vy), ..., F(v,)} 1s an orthonormal basis in W.

If any of these conditions is satisfied, F is called a linear isometry of V into W.
(When W = V, a linear isometry is often called an orthogonal transformation.)

*8. Let G: R?* — R3 be a map such that

|G(p) — G(g)|=1p —¢q| forallp,q € R

(that is, G is a distance-preserving map). Prove that there exists p, € R¥*and a
linear isometry (cf. Exercise 7) F of the vector space R? such that

G(p) =F(p) + po forallp e R3.
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9.

10.

*11.

*12.

13.

14.

15.

Let Sy, S,, and S5 be regular surfaces. Prove that
a. Ifp: S, — S, is an isometry, then ¢~1: .5, -— S, is also an isometry.

b. If ¢: S, — S, ¥: S, — §; are isometries, then ¥ - @: §; — 83 is an
isometry.

This implies that the isometries of a regular surface S constitute in a natural way
a group, called the group of isometries of S.

Let S be a surface of revolution. Prove that the rotations about its axis are
isometries of S.

a. Let S — R3? be a regular surface and let F: R3 — R3 be a distance-pre-
F ve that the restric-

—~
tn

S’
N
n
)
=
o)

tion of F to S is an isometry of S.

b. Use part a to show that the group of isometries (see Exercise 10) of the unit
sphere x2 + y2 + z2 =1 is contained in the group of orthogonal linear
transformations of R3 (it is actually equal; see Exercise 23, Sec. 4-4).

c. Give an example to show that there are isometries ¢: §; — S, which cannot
be exiended into distance-preserving maps F: R® -— R3.
Let C ={(x,»,2z) € R3; x2 - y2 = 1} be a cylinder. Construct an isometry

@: C — C such that the set of fixed points of @, i.e., the set {p € C; @(p) = p},
contains exactly two points,

Let Vand W be (finite-dimensional) vector spaces with inner products ¢ , >. Let
G: V — W bea linear map. Prove that the following conditions are equivalent:

a. There exists a real constant 4 == 0 such that
(G(@), Gva)) = A% vy, v,y forallvy, v, € V.

b. There exists a real constant A > 0 such that

£ vz
1

W al AW M 1 s 11
1Giv)) = Alw| ralv €

c. There exists an orthonormal basis {v(,...,v,} of ¥V such that
{G(v1), ..., G(v,)} is an orthogonal basis of W and, also, the vectors
Gy, i =1,...,n, have the same (nonzero) length.

If any of these conditions is satisfied, G is called a linear conformal map (or a
similitude).

We say that a differentiable map ¢: S1 — S, preserves angles when for every
p € S, and every pair »;, v, € T,(5,) we have

cos(vy, v} = cos(d@(v1), d@,(v3)).
Prove that ¢ is locally conformal if and only if it preserves angles.

Let ¢: R — R2 be given by @(x, ») = (u(x, ), v(x, y)), where u and v are dif-
ferentiable functions that satisfy the Cauchy-Riemann equations

Uy = vy, Uy = —Vx.
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Show that ¢ is a local conformal map from R?2 - Q into R? where
Q =1{(x,») € R uz + u} =0}.

16. Let x: U < R? — R3, where

Il

R%0<80 <m0 <@ <27},

nF)n qin B sin @ cos H\
n @, cosl)

sin VoSl

G
(e<

be a parametrization of the unit sphere S2. Let
logtan 10 = 4, @ = v,

and show that a new parametrization of the coordinate neighborhood x(U) =
can be given by

y{u, v) = (sech u cos v, sech u sin v, tanh #).

Prove that in the parametrization y the coefficients of the first fundamental
form are

E = G = sech? u, F=0,

Thus, y™!: ¥ < §2 — R? is a conformal map which takes the meridians and
parallels of .52 into straight lines of the plane. This is called Mercator’s pro-
Jection.

*17. Consider a triangle on the unit sphere so that its sides are made up of segments

of foxodromes (i.e., curves which make a constant angle with the meridians; cf,
Example 4, Sec. 2-5), and do not contain poles. Prove that the sum of the interior

angles of such a triangle is 7.

18. A diffeomorphism ¢: S -— S is said to be area-preserving if the area of any
region R < Sis equal to the area of ¢(R). Prove that if ¢ is area-preserving and
conformal, then ¢ is an isometry.

19, Let S%={(x,y,2z) € R3; x2 + y2 + z2 =1} be the unit sphere and C
={(x,y,2) € R?; x* + y% = 1} be the circumscribed cylinder. Let
(ﬂ: SZ — {(0,0, 1) U (05 Os _1)} =M — C

be a map defined as follows. For each p € M, the line passing through p and
perpendicular to 0z meets 0z at the point ¢. Let / be the half-line starting from ¢
and containing p (Fig. 4-7). By definition, p(p) = C N 1.

Prove that ¢ is an area-preserving diffeomorphism.

20, Letx: U © R? — S be the parametrization of a surface of revolution S:

x(u, v) = (f(v) cos u, f(v) sinu, g(v)),  f(v) >0,

U={uv)ec R0 <u<2n,a<v<bl

a. Show that the map ¢: U — R2 given by
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=

F(p)
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Figure 4-7

— AV (f()? + (g'(v))*
¢(”’ ?)) (uy f(l)) d’f))

is a local diffeomorphism.

b. Use part a to prove that a surface of revolution § is locally conformal to a
plane in such a way that each local conformal map @: ¥V — S — R? takes the
parallels and the meridians of the neighborhood ¥V into an orthogonal sys-
tem of straight lines in @(¥) = R2. (Notice that this generalizes Mercator’s
projection of Exercise 16.)

c. Show that the map ¥ : U -—— R? given by

v, o) = (i, | ST+ GEP d)

is a local diffeomorphism.

d. Use part c to prove that for each point p of a surface of revolution § there
exists a neighborhood ¥ = S and a map #: ¥ — RZ of V into a plane that
is area-preserving.

4-3. The Gauss Theorem and the Equations

of Compatibility

The properties of Chap. 3 were obtained from the study of the variation of

the tangent plane in a neighborhood of a point. Proceeding with the analogy

with curves, we are going to assign to each point of a surface a trihedron (the

analogue of Frenet’s trihedron) and study the derivatives of its vectors.
S will denote, as usual, a regular, orientable, and oriented surface. Let

x: U = R? — S be a parametrization in the orientation of S. It is possible

to assign to each point of x(U) a natural trihedron given by the vectors x,,

x,, and N. The study of this trihedron will be the subject of this section.
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By expressing the derivatives of the vectors x,, x,, and N in the basis
{x,, X,, N}, we obtain

X, = I':x, +T'Hx, -+ LN,

X,, = I'l2x, + T'hx, + L,N,

X,, = I'}iX, + T'%,x, + L,N, ey
X,, = I'3,X, + I'3,X, ++ L3N,

N, = a, X, + a,X,

N, = a;;X, + aX,

where the g, i,/ = 1, 2, were obtained in Chap. 3 and the other coeffici-
ents are to be determined. The coefficients T'Y, 7, j, k = 1, 2, are called the
Christoffel symbols of S in the parametrization x. Since x, = X,,, We
conclude that T}, = T'}, and T'?, = TI'3,; that is, the Christoffel symbols are
symmetric relative to the lower indices.

By taking the inner product of the first four relations in (1) with N, we
immediately obtain L, = e, L, =L, =f, L, =g, where e, f, g are the
coefficients of the second fundamental form of S.

To determine the Christoffel symbols, we take the inner product of the
first four relations with x, and x,, obtaining the system

LWE 4+ THF = (X X, = 3E,,
{ 1F 4 I'hG = X, X,) = F, — }E,,
THLE+ ThF = Xy X, = 3E,,
{I‘%ZF + ThG = x., x,) = 1G,,
T5E + THF = <{X,, X,» = F, — 3G,
{FEQ_F +I'56 = Xy X, = ZI'Gv‘

¢

Note that the above equations have been grouped into three pairs of equa-
tions and that for each pair the determinant of the system is EG — F? == 0.
Thus, it is possible to solve the above system and to compute the Christaffel
symbols in terms of the coefficients of the first fundamental form, E, F, G, and
their derivatives. We shall not obtain the explicit expressions of the I'E, since
it is easier to work in each particular case with the system (2). (See Example
1 below.) However, the following consequence of the fact that we can solve
the system (2) is very important: All geometric concepts and properties ex-
pressed in terms of the Christoffel symbols are invariant under isometries.

Example 1. We shall compute the Christoffel symbols for a surface of
revolution parametrized by (cf. Example 4, Sec. 2-3)
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x(u, v) = (f(v)cos u, f(v)sinu, gv)), f(») = 0.
Since

E=(fw)? F=0, G=(fr-+Ew)?

we obtain
Eu = 03 Ev - fo”
F,=F,=0, G,=0,
G, =2ff"+g'g")

where prime denotes derivative with respect to ¢. The first two equations of
the system (2) then give

i1 =0, %1 = _Tff—f—z'
(fP+ &)
Next, the second pair of equations in system (2) yield

r.-4. Th-o

Finally, from the last two equations in system (2) we obtain

Moo, Th-LfLsE
e 2@
As we have just seen, the expressions of the derivatives of x,, x,, and N
in the basis {x,, x,, ¥} involve only the knowledge of the coefficients of the

first and second fundamental forms of S. A way of obtaining relations
between these coefficients is to consider the expressions

(qu)v - (Xuv)u - 09
(Xw)u - (Xvu)v = 0’ (3)
N, — N, = 0.

uv

By introducing the values of (1), we may write the above relations in the
form

AIXI‘ + le.v + ClN = O,
A,x, -+ B,x, + C,N = 0, (3a)

A;x, + B,x, + C,N =0,

where 4, B, C, i =1,2,3, are functions of E, F, G, e, f,g and of their
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derivatives. Since the vectors X, X,, N are linearly independent, (3a) implies
that there exist nine relations:

A, =0, B, =0, C, =0, i=1,2,3.

13

As an example, we shall determine the relations 4, =0, B, =0, C, = 0.
By using the values of (1), the first of the relations (3) may be written

}lxuu + F%lxvv + eNy + (ril)vxu + (F%I)vxv + ez:N

4
= Fizxuu + r%vau + fNu + (F%Z)uxu + (F%Z)uxv +fuN' ( )

By using (1) again and equating the coefficients of x,, we obtain

riri + F%IF%Z + ea,; (r%l)u
= I'l,I't, + LI, + fa,, + (F%Z)u'

Introducing the values of g,; already computed (cf. Sec. 3-3) it follows that

(T2, — (T, + Tl + Tl —THEE, — I

_ peg— f*
= g —F
— —EK. 5)

At this point it is convenient to interrupt our computations in order to
draw attention to the fact that the above equation proves the following
theorem, due to K. F. Gauss.

THEOREMA EGREGIUM (Gauss). The Gaussian curvature K of a
surface is invariant by local isometries.

In factif x: U = R? — Sis a parametrization at pe Sand if p: V = S — S,
where V' < x(U) is a neighborhood of p, is a local isometry at p, theny = xo@
is a parametrization of S at ¢(p). Since ¢ is an isometry, the coefficients of the
first fundamental form in the parametrizations x and y agree at corresponding
points ¢ and ¢(q), g € V; thus, the corresponding Christoffel symbols also agree.
By Eq. (5), K can be computed at a point as a function of the Christoffel symbols
in a given parametrization at the point. It follows that K(q) = K(p(g)) for all

ge V.
The above expression, which yields the value of X in terms of the coeffici-

ents of the first fundamental form and its derivatives, i1s known as the Gauss

Sformula. 1t was first proved by Gauss in a famous paper [1].
The Gauss theorem is considered, by the extension of its consequences,
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one of the most important facts of differential geometry. For the moment we
shall mention only the following corollary.

As was proved in Sec. 4-2, a catenoid is locally isometric to a helicoid. It
follows from the Gauss theorem that the Gaussian curvatures are equal at
corresponding points, a fact which is geometrically nontrivial.

Actually, it is a remarkable fact that a concept such as the Gaussian
curvature, the definition of which made essential use of the position of a
surface in the space, does not depend on this position but only on the metric
structure (first fundamental form) of the surface.

We shall see in the next section that many other concepts of differential
geometry are in the same setting as the Gaussian curvature; that is, they
depend only on the first fundamental form of the surface. It thus makes sense
to talk about a geometry of the first fundamental form, which we call intrinsic
geometry, since it may be developed without any reference to the space that
contains the surface (once the first fundamental form is given).

TWith an eye to a further geometrical result we come back to our com-
putations, By equating the coeflicients of x, in (4), we see that the relation
A, = 0 may be written in the form

T2, — (T, + ri;.ri, —1i1ri, = FK (5a)

By equating also in Eq. (4) the coefficients of N, we obtain C; = 0 in the
form

A
1+ \w

Observe that relation (5a) is (when F 7= 0) merely another form of the
Gauss formula (5).

By applying the same process to the second expression of (3), we obtain
that both the equations 4, = 0 and B, = 0 give again the Gauss formula (5).
Furthermore, C, = 0 is given by

fo— g, =elh, + f(T}, —T1) — gl (6a)

Finally, the same process can be applied to the last expression of (3), yielding
that C, = 0 is an identity and that 4; — 0 and B, = 0 are again Eqs. (6) and
(6a). Equations (6) and (6a) are called Mainardi-Codazzi equations.

The Gauss formula and the Mainardi-Codazzi equations are known
under the name of compatibility equations of the theory of surfaces.

+The rest of this section will not be used until Chap. 5. If omitted, Exercises 7 and 8
should also be omitted.
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A natural question is whether there exist further relations of compatibility
between the first and the second fundamental forms besides those already
obtained. The theorem stated below shows that the answer is negative. In
other words, by successive derivations or any other process we would obtain
no further relations among the coefficients E, F, G, e, f, g and their deriva-
tives. Actually, the theorem is more explicit and asserts that the knowledge
of the first and second fundamental forms determines a surface locally. More
precisely,

THEOREM (Bonnet). Let E, F, G, e, f, g be differentiable functions,
defined in an open set V < R2, with E > 0 and G > 0. Assume that the given
Sfunctions satisfy formally the Gauss and Mainardi-Codazzi equations and that
EG — F? > 0. Then, for every q € V there exists a neighborhood U — V of
q and a diffeomorphism x: U — x(U) < R?® such that the regular surface
xX(U) = R has E, F, G and ¢, {, g as coefficients of the first and second funda-
mental forms, respectively. Furthermore, if U is connected and if

%: U — %(U) < R?

is another diffeomorphism satisfying the same conditions, then there exist a
translation T and a proper linear orthogonal transformation p in R3 such
that X =T o pox.

A proof of this theorem may be found in the appendix to Chap. 4.

For later use, it is convenient to observe how the Mainardi-Codazzi
equations simplify when the coordinate neighborhood contains no umbilical
points and the coordinate curves are lines of curvature (FF = 0 = f). Then,
Egs. (6) and (6a) may be written

e,=el'l, — g%, g, =gl — el

By taking into consideration that F = 0 implies that

1
r%l - __é _%s r%z - _‘2 —‘%’
1 1G
Fézz-‘ 2GEH’ F%ZZ——Z -—-Gu’

ey=2(5+ &), ™

a=5(5+5) (72)
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1.

4‘.

EXERCISES

Show that if x is an orthogonal parametrization, that is, F = 0, then

K———L _)f E_) _E__) :
2 EG i (JEG T («/EG "
Show that if x is an isothermal parametrization, that is, E = G = A(u, v) and
F =0, then
_ 1
22

K = A(log A),

where Ag denotes the Laplacian (@2@/du?) + (d2¢/dv?) of the function ¢, Con-
clude that when F = G = (12 -+ »2 + ¢)"2 and F = 0, then K = const, = 4c.

2223 [= DL v iy

Verify that the surfaces

x(u, v) = (u cos v, u sin v, log u),

x(u, v) = (1 cos v, u sin v, v),

have equal Gaussian curvature at the points x(x, v) and X(«, ») but that the map-
ping X o x~! is not an isometry. This shows that the “converse” of the Gauss
theorem is not true.

Show that no neighborhood of a point in a sphere may be isometrically mapped
into a plane.

If the coordinate curves form a Tchebyshef net (cf. Exercises 7 and 8, Sec. 2-5),
then E = G = 1 and F = cos 8. Show that in this case

0.

K= —Ju,
sin @

Use Bonnet’s theorem to show that there exists no surface x(u, ») such that

[ n I B S -~ BN s GO [T S 1 £ n
L=U=1, rFr=vanage=1,g= —1,f =0,

Does there exist a surface x = x(u, v) with E=1, F=0, G = cos?2u and
e=¢co82u, f=0¢g=1?

Compute the Christoffel symbols for an open set of the plane

a. In cartesian coordinates.

b. In polar coordinates.
Use the Gauss formula to compute K in both cases.

Justify why the surfaces below are not pairwise locally isometric:
a. Sphere,

b. Cylinder.

c. Saddle z = x2 — 2,
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4-4. Parallel Transport. Geodesics.

We shall now proceed to a systematic exposition of the intrinsic geometry.
To display the intuitive meaning of the concepts, we shall often give defini-
tions and interpretations involving the space exterior to the surface. However,
we shall prove in each case that the concepts to be introduced depend only on
the first fundamental form.

We shall start with the definition of covariant derivative of a vector field,
which is the analogue for surfaces of the usual differentiation of vectors in
the plane. We recall that a (fangent) vector field in an open set U — S of a
regular surface S is a correspondence w that assigns to each p € U a vector
w(p) € T,(S). The vector field w is differentiable at p if, for some parame-
trization x(u, ») in p, the components ¢ and b of w = ax, + bX, in the basis
fx,, X,} are differentiable functions at p. w is differentiable in U if it is differen-
tiable for every p € U.

DEFINITION 1. Let w be a differentiable vector field in an open set
U Sandp € U. Lety € T,(S). Consider a parametrized curve

o:(—e, ) — U,

with a(0) = p and a'(0) =y, and let w(t), t € (—€, €), be the restriction
of the vector field w to the curve a. The vector obtained by the normal pro-
Jection of (dw/dt)(0) onto the plane T (S) is called the covariant derivative
at p of the vector field w relative to the vector y. This covariant derivative is
denoted by (Dw/dt)(0) or (D,w)(p) (Fig. 4-8).

Figure 4-8. The covariant derivative.
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The above definition makes use of the normal vector of S and of a particu-
lar curve q, tangent to y at p. To show that covariant differentiation is a
concept of the intrinsic geometry and that it does not depend on the choice
of the curve o, we shall obtain its expression in terms of a parametrization
X(u, v) of Sin p.

Let x(1(1), (1)) () be the expression of the curve g and let

Y\ s/ '\/

w(t) = a(u(t), v(t))X, -+ b(u(®), v(t))x,
= a(1)x, + b()X,,

be the expression of w(r) in the parametrization X(, »). Then

%}tﬂ - a(xﬁuu’ + Xlﬂ)v’) + b(xvuu’ + XI)I),U’) _’I_ alxlv + b’XIﬂ

where prime denotes the derivative with respect to ¢.

Since Dw/dt is the component of dw/dt in the tangent plane, we use the
expressions in (1) of Sec. 4-1 for x,,, x,,, and Xx,, and, by dropping the normal
component, we obtain

l;,:v (" +Tliauw' + Tlzav' + Tibu’ - T'hLby)x, (1)
+ (&' 4+ Tiau + Tiav' + I'Lbu' - I'2by)x,.

4 22

Expression (1) shows that Dw/dr depends only on the vector (v, »") =y

and not on the curve g, Furthermore, the surface makes its appearance in

LU S N vl SRl w2 LA ALV, AR QRRIXGARN AAIGALO 2o [+ gauy L

Eq. (1) through the Christoffel symbols, that is, through the first fundamental
form. Our assertions are, therefore, proved.

1f in par u\,u}:u Sisa piauc, we know that it is pGSS ble to find a paramc-
trization in such a way that E = G = 1 and F = 0. A quick inspection of the
equations that give the Christoffel symbols shows that in this case the I'§;
become zero. In this case, it follows from Eq. (1) that the covariant derivative
agrees with the usual derivative of vectors in the plane (this can also be seen
geometrically from Def. 1), The covariant derivative is, therefore, a genera-
lization of the usual derivative of vectors in the plane.

Another consequence of Eq. (1) is that the definition of covariant deriva-
tive may be extended to a vector field which is defined only at the points of a
parametrized curve. To make this point clear, we need some definitions.

DEFINITION 2. A parametrized curve o: [0, [] — S is the restriction to

[0, I] of a differentiable mapping of (0 — €,1 4+ €),€ > 0, into S. If a(0) = p
ﬂqr rfrv (f\—#ﬂfnrf = rﬂ /1

N r] (N =— 0 we cqgv thatf 7 10INe 1 o ]‘("
e l \IJV

AT EvE J - \1’ Fri IJM)/ Lkt WJV!AJJ t’ L4 q

N
W
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In what follows it will be convenient to use the notation [0, /] = I whenev-
er the specification of the end point [ is not necessary.

DEFINITION 3. Leto: 1 — S be a parametrized curve in S. A vector field
w along o is a correspondence that assigns to each t € 1 a vector

w(t) € T, (S).

The vector ﬁp!r] w is differentia iahle gr t,. = 1 if for

uuuuu Chlilwl Wl

x(u, v) in aft,) the components a(t), b(t) of w(t) = ax, + bx, are dzﬂerenrzable
functions of t at t,. w is differentiable in I if it is differentiable for every
t el

An example of a (differentiable) vector field along o is given by the field
o'(¢) of the tangent vectors of o (Fig. 4-9).

\ <o ) /

olt)

Figure 4-9. The field of tangent vectors along a curve a.

DEFINITION 4. Let w be a differentiable vector field along o2 1 - S.
The expression (1) of (Dw/dt)(t), t € 1, is well defined and is called the covariant
derivative of w at t.

From a point of view external to the surface, in order to obtain the
covariant derivative of a field w along oc: I — S at ¢+ & I we take the usual
derivative (dw/df)(f) of w in ¢ and project this vector orthogonally onto the
tangent plane 7,,,(S). It follows that when two surfaces are tangent along a
parametrized curve o the covariant derivative of a field w along & is the same
for both surfaces.

If a(¢) is a curve on S, we can think of it as the trajectory of a point which
is moving on the surface. a’(¢) is then the speed and o'’(¢) the acceleration of
.. The covariant derivative Do’/dt of the field a'(¢) is the tangential compo-

nent of tha acceleration ~ (f\ Tnhnfﬂm]w Dy’ /r]f 1s the acceleration of the

LIWEEL Wi Lilw Gvewiawi Guivvin AILLURLLL i QBvuviaividuivil Uy 11y

point a(r) “as seen from the surface S.”
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DEFINITION 5. A vector field w along a parametrized curve o,: 1 — S
is said to be parallel if Dw/dt = O for every t € L.

In the particular case of the plane, the notion of parallel field along a
parametrized curve reduces to that of a constant field along the curve; that
is, the length of the vector and its angle with a fixed diraction are constant
(Fig. 4-10). Those properties are partially reobtained on any surface as the
following proposition shows.

N
\\\\\ \\\2/
P

PROPOSITION 1. Let w and v be parallel vector fields along a: 1 — S.
Then {w(t), v(t)> is constant. In particular, | w(t)| and | v(t)| are constant, and
the angle between v(t) and w(t) is constant.

Figure 4-10

is normal to he pla e which is t ngent to

On the other hand, »'(¢) is also normal to the tangent plane at a(7). Thus,

{u(e), w(t)y' = {'(@), w(@)> + {uft), w'()> = 0;
that is, (v(t), w(f)> = constant, Q.E.D.

Of course, on an arbitrary surface parallel fieids may look strange to our
R? intuition. For instance, the tangent vector field of a meridian (parametrized
by arc length) of a unit sphere S2 is a parallel field on S2 (Fig. 4-11). In fact,
since the meridian is a great circle on S§2, the usual derivative of such a field
is normal to S2. Thus, its covariant derivative is zero.

232 UYL ISIIL AN

The following proposition shows that there exist p rallel vector fields

Y and +h
along a parametrized curve a(7) and tha

their values at a point ¢,.

t tl-\ xr nNTa nf\mf\ Aatarrmaiaa

A Ty A
LICy alv iipic 1y ucticligica Uy
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Figure 4-11. Parallel field on a sphere.

PROPOSITION 2. Let a: I -— S be a parametrized curve in S and let
wo € To0,(S), to € 1. Then there exists a unique parallel vector field w(t)
along a(t), with w(t,) = w,.

An elementary proof of Prop. 2 will be given later in this section. Those
who are familiar with the material of Sec. 3-6 will notice, however, that
the proof is an immediate consequence of the theorem of existence and
uniqueness of differential equations.

Proposition 2 allows us to talk about parallel transport of a vector along
a parametrized curve.

DEFINITION 6. Leto: I — S be a parametrized curve and w, € T,,,(S),
t, € L. Let w be the parallel vector field along o, with w(t,) = w,. The vector
w(t,), t; € L, is called the parallel transport of w, along o at the point t,.

It should be remarked that if o: 7 — S, ¢ € I, is regular, then the parallel
transport does not depend on the parametrization of o(/). As a matter of fact,
if g:J— 8, ¢ € J is another regular parametrization for a(/), it follows
from Eq. (1) that

g—: = %%, te Lo L
Since dt/dg + 0, w(t) is parallel if and only if w(e) is parallel.

Proposition 1 contains an interesting property of the parallel transport.
Fix two points p,g = S and a parametrized curve a: I — S with a(0) = p,
o{l1) =¢q. Denote by P,:T,S)— T,S) the map that assigns to each
v € T,(S) its parallel transport along o at g. Proposition 1 says that this map
is an isometry.
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Another interesting property of the parallel transport is that if two sur-
faces S'and S are tangent along a parametrized curve ¢ and w, is a vector of
Toie(S) = Toiy(S), then w(?) is the parallel transport of w, relative to the
surface S if and only if w(f) is the parallel transport of w, relative to S.
Indeed, the covariant derivative Dw/dr of w is the same for both surfaces.
Since the parallel transport is unique, the assertion follows.

The above property will allow us to give a simple and instructive example

P e T Tt

Q
="
o
I
—
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o
[y
o=+
-
=
2
g
&
g'-+~

Example 1. Let C be a parallel of colatitude ¢ (see Fig. 4-12) of an

riantad nnit cnhara and lat 1 ha a n1nif varfnr fangant fa 7 af cnma naind
LiVIItwAL WilL op/divid v Al 1L g UL G Wit yuwlul, Lallé\vllb LU L Al Sulliv PUILLL

f C. Let us determine the parallel transport of w, along C, parametrized
arc length s, with s = 0 at p.

‘) orientation

27 sin Y

wi(s)

Figure 4-12 Figure 4-13

Consider the cone which is tangent to the sphere along C. The angle i at
the vertex of this cone is given by v = (n/2) — g. By the above property, the
problem reduces to the determination of the parallel transport of w,, along
C, relative to the tangent cone.

The cone minus one generator is, however, isometric to an open set
U < R? (cf. Example 3, Sec. 4-2), given in polar coordinates by

0<p<-oo, 0<O<2rxsiny.

Since in the plane the parallel transport coincides with the usual notion.
we obtain, for a displacement s of p, corresponding to the central angle 8
(see Fig. 4-13) that the oriented angle formed by the tangent vector #(s) with
the parallel transport w(s) is given by 2z — 6.

Tt is sometimes convenient to introduce the notion of a “broken curve,”
which can be expressed as follows.
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DEFINITION 7. A map «.: [0, ] — S is a parametrized piecewise regular

curve if o is continuous and there exists a subdivision
0:t0<t1 < .- <tk<tk+l :—l

of the interval [0, I] in such a way that the restriction a.|[t,, t,,],1 =0, ..., k,
is a parametrized regular curve. Each o |[t;, t;, ] is called a regular arc of «.

The notion of paralle] transport can be easily extended to parametrized
piecewise regular curves. If, say, the initial value w, lies in the interval
[t, t;..], we perform the parallel transport in the regular arc a|f¢, ¢,.,] as
usual; if 7, ; 7 I, we take w(z,,,) as the initial value for the parallel transport
in the next arc a|[¢,.1, t,.,], and so forth.

Example 2.t The previous example is a particular case of an interesting
geometric construction of the parallel transport. Let C be a regular curve on
a surface S and assume that C is nowhere tangent to an asymptotic direction.
Consider the envelope of the family of tangent planes of S along C (cf.
Example 4, Sec. 3-5). In a neighborhood of C, this envelope is a regular
surface ¥ which is tangent to S along C. (In Example 1, ¥ can be taken as a
ribbon around C on the cone which is tangent to the sphere along C.) Thus,
the parallel transport along C of any vector w € T,(S), p € S, is the same
whether we consider it relative to S or to X. Furthermore, X is a developable
surface; hence, its Gaussian curvature is identically zero.

Now, we shall prove later in this book (Sec. 4-6, theorem of Minding)
that a surface of zero Gaussian curvature Is locally isometric to a plane.
Thus, we can map a neighborhood ¥V < X of p into a plane P by an isometry
¢: V' — P. To obtain the parallel transport of w along ¥V N C, we take the
usual parallel transport in the plane of dg (w) along ¢(C) and pull it back to
2 by do (Fig. 4-14).

This gives a geometric construction for the parallel transport along small
arcs of C. We leave it as an exercise to show that this construction can be
extended stepwise to a given arc of C. (Use the Heine-Borel theorem and
proceed as in the case of broken curves.)

The parametrized curves y: I -— R? of a plane along which the field of
their tangent vectors y'(r) is parallel are precisely the straight lines of that
plane. The parametrized curves that satisfy an analogous condition for a

svfara avra ~allad gondagis

surraCc arce Cauca geoaclsics.

1This example uses the material on ruled surfaces of Sec. 3-5.
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d¢,(W)

S
&(V) #(p)
Figure 4-14. Parallel transport along C.
DEFINITION 8. A nonconstant, parametrized curve y. X — 8 is said to be

geodesic at t € 1 if the field of its tangent vectors y'(t) is parallel along y at
t; that is,
Dy't) _ .
dt ’
N
y is a parameirized geodesic if it is geodesic for ali t € 1.

By Prop. 1, we obtain immediately that |y’(r)] = const. = ¢ == 0. There-
fore, we may introduce the arc length s = ¢t as a parameter, and we conclude
that the parameter ¢ of a parametrized geodesic y is proportional to the arc
length of y.

Observe that a parametrized geodesic may admit self-intersections.
(Example 6 will illustrate this; see Fig. 4-20.) However, its tangent vector is
never zero, and thus the parametrization is regular.
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The notion of geodesic is clearly local. The previous considerations allow
us to extend the definition of geodesic to subsets of S that are regular curves.

DEFINITION 8a. A regular connected curve Cin S is said to be a geodesic
if, for every p € S, the parametrization 6,s) of a coordinate neighborhood of
p by the arc length s is a parametrized geodesic; that is, 0'(s) is a parallel
vector field along o(s).

Observe that every straight line contained in a surface satisfies Def. 8a.

From a point of view exterior to the surface S, Def. 8a is equivalent to
saying that a”’(s) = kn is normal to the tangent plane, that is, parallel to the
mmvmial a4 tha crirfana T Afthas graerde a vsagnlae ciroa 7 — O £ M 30 o
Il liidl 1V LUT suliavi, Ll ULl wulld, d 1CEWRIAl VUL yYyD o o 9 \I\« -— V) i> a
geodesic if and only if its principal normal at each point p € C is parallel to
the normal to S at p.

The above property can be used to identify some geodesics geometrically,
as shown in the examples below.

Example 3. The great circles of a sphere S? are geodesics. Indeed, the
great circles C are obtained by intersecting the sphere with a plane that
passes through the center O of the sphere. The principal normal at a point
p € Clies in the direction of the line that connects p to O because C is a circle
of center O. Since S? is a sphere, the normal lies in the same direction, which
verifies our assertion.

Later in this section we shall prove the general fact that for each point
p € S and each direction in 7,(S) there exists exactly one geodesic C < §
passing through p and tangent to this direction. For the case of the sphere,
through each point and tangent to each direction there passes exactly one
great circle, which, as we proved before, is a geodesic. Therefore, by unique-

] yAlid L VEL ULIVIL

ness, the great circles are the only geodesics of a sphere.

Example 4. For the right circular cylinder over the circle x* -+ y2 =1, it
is clear that the circles obtained by the intersection of the cylinder with
planes that are normal to the axis of the cylinder are geodesics. That is so
because the principal normal to any of its points is parallel to the normal to
the surface at this point.

On the other hand, by the observation after Def. 8a the straight lines of
the cylinder (generators) are also geodesics.

To verify the existence of other geodesics on the cylinder C we shall

consider a parametrization (cf. Example 2, Sec. 2-5)

x(u, v) = (cos u, sin u, v)
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a neighborhood of p in C is expressed by x(u(s), v(s)), where s is the arc
length of C. As we saw previously (cf. Example 1, Sec. 4-2), x is a local
isometry which maps a neighborhood U of (0, 0) of the uv plane into the
cylinder. Since the condition of being a geodesic is local and invariant by

isometries, the curve (u(s), v(s)) must be a geodesic in U passing through

(0, 0). But the geodesics of the plane are the straight lines. Therefore, exclud-
ing the cases already obtained,

u(s) = as, v(s) = bs, at+ bt =1.

JEErY T

l[ IUllUWb tnat WHCH a [CgUld.f curve Lz \WHICH lS nel[ner a Cerle or a lllle)
is a geodesic of the cylinder it is locally of the form (Fig. 4-15)

(cos as, sin as, bs),

and thus it is a helix. In this way, all the geodesics of a right circular cylinder
are determined.

——

(0,0 X

Local
isometry

™ Geodesic

Figure 4-15. Geodesics on a cylinder,

Observe that given two points on a cylinder which are not in a circle
parallel to the xy plane, it is possible to connect them through an infinite
number of helices. This fact means that two points of a cylinder may in
general be connected through an infinite number of geodesics, in contrast to
the situation in the plane. Observe that such a situation may occur only with

Adacirg that malra a “~rAamnlata fr1en c'lnr-n tha crvlindar minne a oanaratnr
geuueo]uo tlai dlaiv @ CULLLPIVIC tulll, St Uidv vyl 1INGer minus a SLliviaiul

is isometric to a plane (Fig. 4-16).

Proceeding with the analogy with the plane, we observe that the lines,
that is, the geodesics of a plane, are also characterized as regular curves of
curvature zero. Now, the curvature of an oriented plane curve is given by
the absolute value of the derivative of the unit vector field tangent to the
curve, associated to a sign which denotes the concavity of the curve in
relation to the orientation of the plane (cf. Sec. 1-5, Remark 1). To take the
sign into consideration, it is convenient to introduce the following definition.
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Figure 4-16. Two geodesics on a cylinder joining p and q.

DEFINITION 9. Let w be a differentiable field of unit vectors along a

parametrized curve o.: 1 — S on an oriented surface S. Since w(t), t € 1, is a
unit vector field. (dwfﬂﬂff\ is normal to “f(ﬂ and therefore

CLeUT jeliis, LS AN Fovmis v LAY g

Dw _
The real number A = A(t), denoted by {Dw/dt], is called the algebraic value of
the covariant derivative of w at t.

Observe that the sign of [Dw/dt] depends on the orientation of S and that
[Dw/dt] = {dw/dt, N A w).

We should also make the general remark that, from now on, the orienta-
tion of § will play an essential role in the concepts to be introduced. The
careful reader will have noticed that the definitions of parallel transport and
geodesic do not depend on the orientation of S. In constrast, the geodesic
curvature, to be defined below, changes its sign with a change of orientation
of S.

We shall now define, for a curve in a surface, a concept which is an ana-
logue of the curvature of plane curves.

DEFINITION 10. Let C be an oriented regular curve contained on an
oriented surface S, and let w(s) be a parametrization of C, in a neighborhood

afn = S hvy the are lonoth ¢ The aloohraie valie af the sovariamt f’nv:’nnﬁ"yn

¥
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[Da'(s)/ds] =k, of &'(s) at p is called the geodesic curvature of C at p.

o

The geodesics which are regular curves are thus characterized as curves
whose geodesic curvature is zero.

From a point of view external to the surface, the absolute value of the
geodesic curvature &k, of C at p is the absolute value of the tangential com-
ponent of the vector &'’(s) = kn, where k is the curvature of C at p and n
is the normal vector of C at p. Recalling that the absolute value of the normal

COI’i’ipGﬁE‘:ﬁL Ul Luc vector nn is Lut: auatnuu:: leut: 01 Luc JJ.UIIIld.J. curvature
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Figure 4-17

k,of C < S in p, we have immediately (Fig. 4-17)

kr = k2 + k2

Sne

For instance, the absolute value of the geodesic curvature &, of a parallel
C of colatitude ¢ in a unit sphere S? can be computed from the relation (see
Fig. 4-18)
sin? ¢ = k2 + ki = sin* ¢ + kZ;
that is,
k% = sin? ¢(1 — sin? ) = % sin? 2¢.
The sign of k£, depends on the orientations of S* and C.

A further consequence of that external interpretation is that when two
surfaces are tangent along a regular curve C, the absolute value of the geodesic
curvature of C is the same relatively to any of the two surfaces.

—

= kg | = Isin ¢ cos gl
c _-="" sin ¢

\
Y
A

Tf2—¢

)

\

Figure 4-18. Geodesic curvature of a
parallel on a unit sphere.
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Remark. The geodesic curvature of C' < S changes sign when we change
the orientation of either C or S.

We shall now obtain an expression for the algebraic value of the covariant
derivative (Prop. 3 below). For that we need some preliminaries.

Let v and w be two differentiable vector fields along the parametrized
curve ¢: I-— S, with |9(¢)| = |w()| = 1, t € 1. We want to define a differ-
entiable function ¢: 7 — R in such a way that (), t = 7, is a determination
of the angle from »(f) to w(?) in the orientation of S. For that, we consider
the differentiable vector field # along ¢, defined by the condition that
{o(?), ¥(¢)} is an orthonormal positive basis for every ¢ € 1. Thus, w(f) may
be expressed as

w(t) = alth(1) + H(Bya(D),

where a and b are differentiable functions in I and a? 4 % = 1.

Lemma 1 below shows that by fixing a determination ¢, of the angle from
v(?,) to w(t,) it is possible to “extend it” differentiably in 7, and this yields the
desired function.

TOLRANAA 1 T o o e d L L
LIVVLIYIA L. L8014 diid O D

and @, be such that a(t,)
function

. SR siretle A2 1 L2 1
Junciony n 1 wiini T U7 = |

0= 9, + jt (ab’ — ba’) dt
is such that cos @(t) = a(t), sin @(t) = b(t), t € I, and p(t,) = @,.
Proof. It suffices to show that the function
(@ — cos @)? + (b — sinp)* =2 — 2(acos ¢ + b sin p)
is 1dentically zero, or that
A=acosgp -+ bsing = 1.
By using the fact that aa’” = —bb’ and the definition of ¢, we easily obtain

A" = —a(sin p)p’ + blcos ¢)p’ -+ a’cos ¢ + b'sin g
= —b'(sin p)a® + b*) — a'(cos pXa* + b*)
+ a'cosg + b sing = 0.

Therefore, A(¢f) = const., and since A(¢,) = 1, thelemmais proved. Q.E.D.

‘X’A YY) MMy v
Yy o LJ.I.(-I-J iy L

a curve t
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LEMMA 2. Let v and w be two differentiable vector fields along the curve
o: I — S, with|w(t)| =|v(t)| =1,t € 1. Then

[EE _ [P_V] do,

dt dt dt’

where @ is one of the differentiable determinations of the angle from v to w,
as given by Lemma 1.

Proof. We introduce the vectors ¢ =N A v and w =N A w. Then
w = (cos @)v -+ (sin @)7, 0))

w=NAw=(cos@)N Av+(sing)N A @
= {cos p)? — (sin g)v. 3)

By differentiating (2) with respect to ¢, we obtain
w' = —(sinp)p'v + (cos g + (cos p)p'? + (sin )",

By taking the inner product of the last relation with W, using (3), and
observing that (v, o) = 0, (v, "> = 0, we conclude that

w's Wy = (sin® @)g’ + (cos® pXv', 7y 4 (cos? @)’ —(sin® pX#', v
= ¢’ + (cos? p)v', )y — (sin? p)¥', v).
On the other hand, since (v, #> = 0, that is,

<’U’, ’17> = —<’U, '5'>a

we conclude that
w', Wy = ¢ + (cos® g + sin® p)v', 7> = ¢’ + (v, D).

It follows that

Dw . ) = Dy
==+ =3+ T
since
y o= [dw w
w', Wy = T <N/\w,w>
which concludes the proof of the lemma. Q.E.D.
An immediate consequence of the above lemma is the following observa-

tion. Let C be a regular oriented curve on S, a(s) a parametrization by the
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arc length s of Catp € C, and »(s) a parallel field along a(s). Then, by taking

w(s) = a'(s), we obtain
Da'(s)
els) = l: ds ] ds

In other words, the geodesic curvature is the rate of change of the angle
that the tangent to the curve makes with a parallel direction along the curve.
In the case of the plane, the parallel direction is fixed and the geodesic curva-
ture reduces to the usual curvature.

We are now able to obtain the promised expression for the algebraic
value of the covariant derivative. Whenever we speak of a parametrization of
an oriented surface, this parametrization is assumed to be compatible with
the given orientation.

PROPOSITION 3. Let x(u, v) be an orthogonal parametrization (that
is, F = 0) of a neighborhood of an oriented surface S, and w(t) be a differen-
tiable field of unit vectors along the curve x{(u(t), v(t)). Then

Dw 1 dv
["dt_j = 2¢E{G“Hf ”dt} Tde
where @(t) is the angle from X, to w(t) in the given orientation.

Proof. Let e, =%,/ E, e; =x,/~/ G be the unit vectors tangent to
the coordinate curves. Observe that e; A ¢, = N, where N is the given
orientation of S. By using Lemma 2, we may write

Dw?| [ De, dy
[W] - [Tt] T
where e,(t) = e,(u(?), v(1)) is the field e, restricted to the curve x(u(?), ().
Now

[2e]= (E N e = (G ea) = el )T + e e

On the other hand, since F = 0, we have

<qu’ Xu> - _%E

and therefore

<(el)u9ez> <(«/E) j >=_%4/E£‘G.

Similarly,

e ez = 7 T

~

Esl_
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By introducing these relations in the expression of [Dw/dt], we finally
obtain

Dwl] 1 dy
[W] ~2/EG {G“dt th} T
which completes the proof. Q.E.D.

As an application of Prop. 3, we shall prove the existence and uniqueness
of the parallel transport (Prop. 2).

Proof of Prop. 2. Let us assume initially that the parametrized curve
o: I — S is contained in a coordinate neighborhood of an orthogonal para-
metrization x(x, »). Then, with the notations of Prop. 3, the condition of
parallelism for the field w becomes

dp_ _ _1_fgdo_ g _
dt —  2./EG G. dt E, dt B().

Denoting by g, a determination of the oriented angle from x, to w,, the field
w is entirely determined by

0=+ | BOdL,

which proves the existence and uniqueness of w in this case.

If fo\ is not contained in a coordinate nmrﬂ-\hnrhnnd we shall use the

A LA Sailean

compactness of I to divide a(7) into a finite number of parts each contained
in a coordinate neighborhood. By using the unlqueness of the first part of

tha mranf im tha 1AnmAanTn ..4.,\.. ,\,.4 intma ~fthacn v\-nr‘nc\ it 1a anay 0 avtond tha
LllC PL O01 il lllC uuuculyty J.llLC CLLIVIID UL LLICOU PICALD, it lD CCI.D)’ LY CALLCILIV Lll\.a
result to the present case. Q.E.D.

A further application of Prop. 3 is the following expression for the geode-
sic curvature, known as Liowville’s formula.

PROPOSITION 4 (Liouville). Let a(s) be a parametrization by arc length
of a neighborhood of a point p € S of a regular oriented curve C on an oriented
surface S. Let x(u, v) be an orthogonal parametrization of S in p and ¢(s) be the
angle that X, makes with o'(s) in the given orientation. Then

k, = (k;); cos g + (kp); sing +

where (k,), and (k;), are the geodesic curvatures of the coordinate curves
v = const. and u = const. respectively.
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Proof. By setting w = a’(s) in Prop. 3, we obtain

1 dv du do
= ____IG qal | 99,
ks ZJEG{ o B+ T
Along the coordinate curve v — const. u = u(s), we have dyp/ds = 0 and
dul/ds = 1/ ; therefore
E,
(kg)l - 2E,\/—G—

Similarly,

G,
(kg)?. - ZG/\/E'

By introducing these relations in the above formula for k,, we obtain

k, = (k) E 2 SR (ASVELCNE S

Since

JEdu <oc(S)N/ >“cos¢ and JG_—31n¢,

we finally arrive at
k, = (k)i cos @ + (k,), sin g + %ﬂ,
as we wished. Q.E.D.

We shall now introduce the equations of a geodesic in a coordinate
neighborhood. For that, let y: I — S be a parametrized curve of S and let
x(u, v) be a parametrization of S in a neighborhood V of p(z,), t, € I. Let
J < I be an open interval containing ¢, such that y(J) < V. Let x(u(?), v(?)),
t € J, be the expression of p:J-— S in the parametrization x. Then, the
tangent vector field y'(z), t € J, is given by

W = u'(O)x, + v (DX,

Therefore, the fact that w is parallel is equivalent to the system of differential
equations
“)

L AT L 200N
v" ‘1—111\’4} + 21’y + T2 AU

u" + T1i(')* + 20 'y + Tia(v')* = 0,
G

obtained from Eq. (1) by making a = «" and b = ¢, and equating to zero
the coefficients of x, and x,.
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In other words, y: I — Sis a geodesic if and only if system (4) is satisfied
for every interval J — I such that p(J) is contained in a coordinate neighbor-
hood. The system (4) is known as the differential equations of the geodesics of
S.

An important consequence of the fact that the geodesics are characterized
by the system (4) is the following proposition.

PROPOSITION 5. Given a point p € S and a vector w € T, (S), w £ 0,
there exist an € > 0 and a unique parametrized geodesic y: (—e, €) — S such

that y(0) = p, 7'(0) = w.

In Sec. 4-5 we shall show how Prop. 5 may be derived from theorems on
vector fields.

Remark. The reason for taking w %0 in Prop. 5 comes from the fact
that we have excluded the constant curves in the definition of parametrized
geodesics (cf. Def. 8).

We shall use the rest of this section to give some geometrical applications

Papory e

of the differential equauons \'-r) This material can be UllllLLCU. if Luc reader
wants to do so. In this case, Exercises 18, 20, and 21 should also be omitted.

Example 5. We shall use system (4) to study. locally the geodesics of a
surface of revolution (cf. Example 4, Sec. 2-3) with the parametrization

F(3) sin u - ola)
— J\u)nlil i, “ 8\

By Example 1 of Sec. 4-1, the Christoffel symbols are given by

F{l———O, hi_(f'TJZ‘CW, riZfo“‘f;’
i2=0, I.=0, 3 _f’f"—rg’g"'

BTG EY

(4)
”_—f](‘f— ~ ffﬂ_l_fl I 2_
T e e

We are going to obtain some conclusions from these equations.

First, as expected, the meridians ¥ == const. and » = v(s), parametrized
by arc length s, are geodesics. Indeed, the first equation of (4a) is trivially
satisfied by ¥ = const. The second equation becomes
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M fff N + g/gll Ny
v _|_ ¥ ! ('U ) - 0‘
Y+ (g)

Since the first fundamental form along the meridian u = const. » = »(s)
yields

we conclude that

(?)’)2 = ,_;TI_/T
J)rr@gy

Therefore, by derivation,

o AL 88" AL+ 88" s
WY = O T @) Ty o)

or, since »" % 0,

v [T+ 88" na.
e T A CO L

that is, along the meridian the second of the equations (4a) is also satisfied,
which shows that in fact the meridians are geodesics.

Now we are going to determine which parallels » = const. ¥ = u(s),
parametrized by arc length, are geodesics. The first of the equations (4a)

agives 17/ — ronet and the cee
&lvvu & T WwWUllo b !

b
e
[«
(3
-
=
C
o
C

In order that the parallel v = const., u = u(s) be a geodesic it is necessary
that " 5= 0. Since (f")? + (g')* = 0 and f 5= 0, we conclude from the above
equation that f' = 0.

In other words, a necessary condition for a parallel of a surface of revolu-
tion to be a geodesic is that such a parallel be generated by the rotation of a
point of the generating curve where the tangent is parallel to the axis of
revolution (Fig. 4-19). This condition is clearly sufficient, since it implies
that the normal line of the parallel agrees with the normal line to the surface
(Fig. 4-19).

We shall obtain for further use an interesting geometric consequence
from the first of the equations (4a), known as Clairaut’s relation. Observe
that the first of the equations (4a) may be written as

(fzur), — fzu/r _I_ forurvr — 0;
hence,
f*u’" = const. =c.
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1
i
I
Geodesic !
I

Not a
geodesic

Geodesic

Figure 4-19

On the other hand, the angle 8, 0 << 0 << 7/2, of a geodesic with a parallel
that intersects it is given by

cos 0 =

[ Xt + X070 ] _ ),
[%,]

where {x,, x,} is the associated basis to the given parametrization. Since
f =r is the radius of the parallel at the intersection point, we obtain

. .
' laivant’ec volatin -
bt bl O TCIHLEUTE .

r cos f = const. =|c|.

In the next example we shall show how useful this relation is. See also
Exercises 18, 20, and 21.

Finally, we shall show that system (4a) may be integrated by means of
primitives. Let u = u(s), » = »(s) be a geodesic parametrized by arc length,
which we shall assume not to be a meridian or a parallel of the surface. The
first of the equations (4a) is then written as f2u’ = const, = ¢ == 0.

Observe initially that the first fundamental form along (u(s), v(s)),

~
L
S’

together with the first of the equations (4a), is equivalent to the second of the
equations (4a). In fact, by substituting f?u’ = ¢ in Eq. (5), we obtain



258 Intrinsic Geometry of Surfaces

_@ 2 N2 INDNY __ci -
(&) @y +En=—F+1
hence, by differentiating with respect to s,

5 dv d? 2 2 " om@ _ 2ffc*d
2RERS Y @R+ () @rr v e g = EL,

which is equivalent to the second equation of (4a), since (u(s), v(s)) is not a
parallel. (Of course the geodesic may be tangent to a parallel which is not a
geodesic and then ¢'(s) = 0. However, Clairaut’s relation shows that this
happens only at 1solated points.)

On the other hand, since ¢ = 0 (because the geodesic is not a meridian),
we have u'(s) = 0. It follows that we may invert # = u(s), obtaining s = s(u),
and therefore v = v(s(v)). By multiplying Eq. (5) by (ds/du)?, we obtain

(ds\ — (Y + (g ')zw(d”ds\
\du/

or, by using the fact that (ds/du)?* = f*/c?,

fr=ct+ cz(f )+ (& )z(dv)

f? du
that is,
@ — if fP—=c*
de ¢ NP+ ()2’
J S | Ao J
hence,

u—cff (f)ZJr(g)z dy -+ const. 6

which is the equation of a segment of a geodesic of a surface of revolution
which is neither a parallel nor a meridian.

Example 6. We are going to show that any geodesic of a paraboloid of
revolution z = x% 4 y? which is not a meridian intersects itself an infinite

number of times.

Let p, be a point of the paraboloid and let P, be the parallel of radius r,
passing through p,. Let y be a parametrized geodesic passing through p,
and making an angle 8, with P,. Since, by Clairaut’s relation,

r cos @ = const. = |c], Ogegg—,

we conclude that @ increases with r.
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Therefore, if we follow in the direction of the increasing parallels,
increases. It may happen that in some revolution surfaces y approaches
asymptotically a meridian. We shall show in a while that such is not the case
with a paraboloid of revolution. That is, the geodesic y intersects all the
meridians, and therefore it makes an infinite number of turns around the
paraboloid.

On the other hand, if we follow the direction of decreasing parallels,
the angle 6 decreases and approaches the value 0, which corresponds to a
parallel of radius |¢| (observe that if @, = 0, |c| < r). We shall prove later
in this book that no geodesic of a surface of revolution can be asymptotic to
a parallel which 1s not itself a geodesic (Sec. 4-7). Since no parallel of the
paraboloid is a geodesic, the geodesic y is actually tangent to the paraliel of
radius | c] at the point p,. Because 1 is a maximum for cos 8, the value of »
will increase starting from p,. We are, therefore, in the same situation as
before. The geodesic will go around the paraboloid an infinite number of
turns, in the direction of the increasing r’s, and it will clearly intersect the
other branch infinitely often (Fig. 4-20).

~ MALLIL A A

Figure 4-20

Observe that if 8, = 0, the initial situation is that of the point p,.

It remains to show that when r increases, the geodesic y meets all the
meridians of the paraboloid. Observe initially that the geodesic cannot be
tangent to a meridian. Otherwise, it would coincide with the meridian by the
uniqueness part of Prop. 5. Since the angle @ increases with r, if ¥ did not cut
all the meridians, it would approach asymptotically a meridian, say M.

Let us assume that this is the case and let us choose a system of local
coordinates for the paraboloid z = x? + y?, given by

X = p COS u, y = p sin u, z =92,

G -

P T
< U << T0©9,

[aw}
A
g
A
NI
)
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in such a way that the corresponding coordinate neighborhood contains M
as u = u,. By hypothesis ¥ — u, when y — co. On the other hand, the equa-
tion of the geodesic y in this coordinate system is given by (cf. Eq. (6),
Example 5 and choose an orientation on y such that ¢ > 0)

u = cfi,\/l—z——}lfﬂ; dv + const. >cf@+const.,
v Ve —c v

1 -+ 4p?
g

It follows from the above inequality that as » — oo, u increases beyond
any value, which contradicts the fact that y approaches M asymptotically.

s ) T L NP SR | P R SN PR NSRS SUP I T L RPN JIPR I
1HCICIUIG, y IIICISOCLS all LG 1UCHUIALly, dIIU WD COLupIcies tiue ploul ul ule

assertion made at the beginning of this example.

EXERCISES

. a. Show that if a curve C « §'is both a line of curvature and a geodesic, then C
is a plane curve.

[y

b. Show that if a (nonrectilinear) geodesic is a plane curve, then it is a line of
curvature.

¢. Give an example of a line of curvature which is a plane curve and not a
geodesic.

2. Prove that a curve C < §'is both an asymptotic curve and a geodesic if and only
if C is a (segment of a) straight line.

3. Show, without using Prop. 5, that the straight lines are the only geodesics of a
plane.

4. Let » and w be vector fields along a curve &: I — S. Prove that

0, w ) = (2 w0) + (w0, B2

5. Consider the torus of revolution generated by rotating the circle
(x—a)?-tz2=r2,y=0,

about the z axis (@ > r > 0). The parallels generated by the points (a - r, 0),
(a — r, 0), {a, r) are called the maximum parallel, the minimum parallel, and the
upper parallel, respectively. Check which of these parallels is

a. A geodesic.
b. An asymptotic curve.

o
e

[

Y
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*6. Compute the geodesic curvature of the upper parallel of the torus of Exercise 5.

7. Intersect the cylinder x2 + y2? = 1 with a plane passing through the x axis and
making an angle @ with the xy plane.

a. Show that the intersecting curve is an ellipse C.

b. Compute the absolute value of the geodesic curvature of Cin the cylinder at
the points where C meets their axes.

*8. Show that if all the geodesics of a connected surface are plane curves, then the
surface is contained in a plane or a sphere.

*9. Consider two meridians of a sphere C, and C, which make an angle ¢ at the

naint p Take fon: narallal fv-r:nohr\rf nf the tanocent vnr\fr\r W nf alane (7
poéint p,. 1axg i yu;uuux alidvspuly Ul UL wallgllil YOLwUL g Ul U, LiCng i

and C,, from the initial point p, to the point p, where the two meridians meet
again, obtaining, respectively, w, and w,. Compute the angle from w, to w,.

*10. Show that the geodesic curvature of an oriented curve C < Satapointp € C
is equal to the curvature of the plane curve obtained by projecting C onto the
tangent plane T,(S) along the normal to the surface at p.

11, State precisely and prove: The algebraic value of the covariant derivative is
invariant under orientation-preserving isometries.

*
o
]

. We say that a set of regular curves on a surface S is a differentiable family of

at a S5 sl LG50 e R 108 § Us LS NS B N ] aa 2e82IT

curves on S if the tangent lines to the curves of the set make up a differentiable
field of directions (see Sec. 3-4). Assume that a surface S admits two differen-
tiable orthogonal families of geodesics. Prove that the Gaussian curvature of S
is zero.

*13. Let V' be a connected neighborhood of a point p of a surface S, and assume that

lllC pa[adm uauapuu UCLWCCU d.l.ly LWU pUlllLb Ul Y dUCB U.UI. UClJCI.ld Ol l.hC Ccurve
joining these two points. Prove that the Gaussian curvature of Vis zero.

14. Let S be an oriented regular surface and let &: I — S be a curve parametrized
by arc length. At the point p = 0(s) consider the three unit vectors (the Darboux
trihedron) T(s) = a’(s), N(s) = the normal vector to S at p, V(s) = N(s) A T().

Show that
%]—1—0-%- aV + bN,
-tiz = —aT -+ 0 + ¢N,
ds ’
aN
?S__ bT CV+0,

where a = a(s), b = b(s), ¢ = c(s), s € I. The above formulas are the ana-

logues of Frenet’s formulas for the trihedron 7, ¥, N. To establish the geomet-

rical meaning of the coefficients, prove that

a. ¢ = —<{dN/ds, V>; conclude from this that &(J) < S is a line of curvature if
and only if ¢ = 0 (c is called the geodesic torsion of & ; cf. Exercise 19, Sec,
3-2).
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b. b is the normal curvature of (/) — S at p.
¢. a is the geodesic curvature of a(l) < S at p.

15. Let p, be a pole of a unit sphere §2 and g, r be two points on the corresponding

*1

17.

*1

equator in such a way that the meridians p,q and p,r make an angle 8 at p,.
Consider a unit vector » tangent to the meridian pyq at p,, and take the parallel
transport of » along the closed curve made up by the meridian p.q, the parallel
gr, and the meridian rp, (Fig. 4-21).

6.

8.

ya

\_/ Figure 4-21

a. Determine the angle of the final position of » with .

b. Do the same thing when the points p, ¢ instead of being on the equator are
taken on a parallel of colatitude ¢ (cf. Example 1).

Let p be a point of an oriented surface S and assume that there is a neighborhood
of p in S all points of which are parabolic. Prove that the (unique) asymptotic

crirva thranoh ON Aran et Af o gtraioht 11 F @21 nmnla 1A chne
CUrve unrougn g is an Open segmeiit 01 a straignt 11ne. Uive an exampic o Snow

that the condition of having a neighborhood of parabolic points is essential.

Let o.: I — .S be a curve parametrized by arc length s, with nonzero curvature.
Consider the parametrized surface (Sec. 2-3)

x(s, v) = 0(s) + vb(s), sel, —€e<v <€ €>0,

where 5 is the binormal vector of &. Prove that if € is small, x(I x (—€,€)) =S
is a regular surface over which &(7) is a geodesic (thus, every curve is a geodesic
on the surface generated by its binormals).

Consider a geodesic which starts at a point p in the upper part (z > 0) of a
hyperboloid of revolution x? - y2 — 22 = 1 and makes an angle 0 with the
parallel passing through p in such a way that cos @ = 1/r, where r is the distance
from p to the z axis. Show that by following the geodesic in the direction of
decreasing parallels, it approaches asymptotically the parallel x2 - y2 =1,

z = ( (Fig. 4-22).

- [ SRy F & ) P . P e~

Show that when the differential Cquations \"U of th CEg odesics are re
the arc length then the second equation of (4) is, except for the coordinate
curves, a consequence of the first equation of (4).
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Figure 4-22

*20. Let T be a torus of revolution which we shall assume to be parametrized by (cf.

Example 6, Sec. 2-2)
X(u, v) = ((r cos u + a) cos v, (r cos u + a) sin v, r sin u).
Prove that

a. If a geodesic is tangent to the parallel ¥ = n/2, then it is entirely contained
in the region of T given by

F(4 F(1

b. A geodesic that intersects the parallel ¥ = 0 under an angle @ (0 < 8 < 7/2)
also intersects the parallel ¥ = 7 if

a-—r

c059<a+r-

21. Surfaces of Liouville are those surfaces for which it is possible to obtain a system
of local coordinates x(«, v) such that the coefficients of the first fundamental
form are written in the form

where U = U(u) is a function of « alone and V = V(v) is a function of v alone.
Observe that the surfaces of Liouville generalize the surfaces of revolution and
prove that (cf. Example 5)

a. The geodesics of a surface of Liouville may be obtained by primitivation in
the form
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du dv
fi/u‘_—c—iJT—m““

where ¢ and ¢, are constants that depend on the initial conditions.

b. If 8, 0 << 8 < m/2, is the angle which a geodesic makes with the curve
» = const,, then

Usin2 68 — Vcos2 8 = const.

(Notice that this is the analogue of Clairaut’s relation for the surfaces of
Liouville.)

22. Let S2 = {(x,y,z) € R¥;x* + y> + z2 = 1} and let p £ S2. For each piece-

wise regular parametrlzed curve o: [0,1] — S? with a(0) = o(l) = p, let
P,: T,(S%) — T,(S?) be the map which assigns to each v € T,(S?) its parallel
transport along & back to p. By Prop. 1, P, is an isometry. Prove that for every
rotations R of T,(S) there exists an & such that R = P,.

23. Show that the isometries of the unit sphere
= {(‘xs ¥,z) € R3; x2 4+ y2 4+ z2 = 1}

are the restrictions to S2 of the linear orthogonal transformations of R3.

4-5. The Gauss~-Bonnet Theorem
and Its Applications

consequences. The geometry involved in this theorem is fairly simple, and the
difficulty of its proof lies in certain topological facts. These facts will be
presented without proofs.

The Gauss-Bonnet theorem is probably the deepest theorem in the differ-
ential geometry of surfaces. A first version of this theorem was presented by
Gauss in a famous paper [1] and deals with geodesic triangles on surfaces
(that is, triangles whose sides are arcs of geodesics). Roughly speaking, it
asserts that the excess over # of the sum of the interior angles ¢, ¢,, p; of a
geodesic triangle T is equal to the integral of the Gaussian curvature K over
7T'; that is (Fig. 4-23),

For instance, if K = 0, we obtain that 3] ¢, = 7, an extension of Thales’
theorem of high school geometry to surfaces of zero curvature. Also, if
K=1, we obtain that Y ¢, — n = area (T') > 0. Thus, on a unit sphere, the
sum of the interior angles of any geodesic triangle is greater than z, and the
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Geodesic

Geodesic

Geodesic — —~t—
S
Figure 4-23. A geodesic triangle.

excess over 7 is exactly the area of 7. Similarly, on the pseudosphere (Exercise
6, Sec. 3-3) the sum of the interior angles of any geodesic triangle is smaller
than n (Fig. 4-24). ‘

The extension of the theorem to a region bounded by a nongeodesic
simple curve (see Eq. (1) below) is due to O. Bonnet. To extend it even further,
say, to compact surfaces, some topological considerations will come into
play. Actually, one of the most important features of the Gauss-Bonnet

theorem is that it provides a remarkable relation between the topology of a

compact surface and the integral of its curvature (see Corollary 2 below).

K=-1,%¢; < K=1,Z¢;>7

Figure 4-24

We shall now begin the details of a local version of the Gauss-Bonnet
theorem. We need a few definitions.

Let «:[0,/] — S be a continuous map from the closed interval [0, /]
into the regular surface S. We say that « is a simple, closed, piecewise regular,
parametrized curve if

1. o(0) = a(l).
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2. t, # 1y, 1, t, € [0, 1), implies that a(z,) = a(?,).

3, There exists a subdivision
Oztg<t1 < e <tk<tk+1 :l,

of [0, /] such that a is differentiable and regular in each [z, ¢,.,],
i=0,...,k

Intuitively, this means that ¢ is a closed curve (condition 1)} without self-
intersections (condition 2), which fails to have a well-defined tangent line
only at a finite number of points (condition 3).

The points «(z,), i =0, .. ., k, are called the vertices of o and the traces
o({t;, t;.1]) are called the regular arcs of 4. It is usual to call the trace ([0, /])
of o a closed piecewise regular curve.

By the condition of regularity, for each vertex o(z,) there exist the limit
from the left, i.e., for t < ¢,

Iim oa'(¢) = a'(z; — 0) £ 0,

i1

and the limit from the right, i.e., for r > ¢,

lim a'(#) = a'(¢; -+ 0) = 0.

Assume now that S is oriented and let [8,], 0 < |8,| < 7, be the smallest
determination of the angle from «'(s, — 0) to a’(z, + 0). If |6;| == =, we give
0, the sign of the determinant (a'(¢; — 0), at(¢;, - 0), N). This means that if
the vertex a(z;) is not a “cusp” (Fig. 4-25), the sign of §, is given by the
orientation of S. The signed angle 8,, —n << 8, < =&, is called the external

mnals ot tha vartas afs))
Hhgic al LU YRL WA W)

In the case that the vertex a(z;) is a cusp, that is, |8,| = &, we choose the
sign of @, as follows. By the condition of regularity, we can see that there
exists a number €’ > 0 such that the determinant (a'(z, — €), &'(¢; + €), N)

- \<> 0

Figure 4-25
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) )
Oi'(tj +¢€)
o)

ot~ €)

\a'(t,' +€) oc(t}-) \

o'(r; — €}
6;=-m O;=mn

Figure 4-26. The sign of the external angle in the case of a cusp.

does not change sign for all 0 < ¢ < ¢’. We give 0, the sign of this determi-
nant (Fig. 4-26).

Let x: U = R?* — S be a parametrization compatible with the orientation
of §. Assume further that U is homeomorphic to an open disk in the plane.

Let a: [0, /]— x(U) < S be a simple closed, piecewise regular, para-
metrized curve, with vertices a(¢,) and external angles §,,{ =0, ..., k.

Let ¢,: [t t;,,] — R be differentiable functions which measure at each
t € [t, t,+,] the positive angle from x, to a’(¢) (cf. Lemma 1, Sec. 4-4).

The first topological fact that we shall present without proof is the follow-
ing.

k k
_;0: (ptin ) — @i(t)) + ;; 6, = +2x,
where the sign plus or minus depends on the orientation of .

The theorem states that the total variation of the angle of the tangent
vector to o with a given direction plus the “jumps™ at the vertices is equal to
27.

An elegant proof of this theorem has been given by H. Hopf, Compositio
Math. 2 (1935), 50-62. For the case where o has no vertices, Hopf’s proof can
be found in Sec. 5-7 (Theorem 2) of this book.

Before stating the local version of the Gauss-Bonnet theorem we still
need some terminology

Fat Clan ad aiiefana A roasion D A Anavmantad
,LJCL O O¢ 4l UllCllLCu aulldavie, i lbslUll. an & .L.) \ulllUll 01 4 Coniccica

set with its boundary) is called a simple region if R is homeomorphic to a disk
and the boundary dR of R is the trace of a simple, closed, piecewise regular,
parametrized curve o: ] — S. We say then that a is positively oriented if

e
opin
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for each a(f), belonging to a regular arc, the positive orthogonal basis

{o'(£), h(1)} satisfies the condition that A(¢) “points toward” R; more precisely,
for anv curve R I R with R(ﬂ\ — N(f) and B0 =£ N'(t\ we have that

AL Sy wua Vo YVALLL prv — QLI V) T ow Yvw xale ¥ LiAaCE L

{B'(0),A(H)> > 0. Intuitively, this means that if one is walklng on the curve
o in the positive direction and with one’s head pointing to N, then the region
R remains to the left (an '-r—/-/) It can be shown that one of the two

possible orientations of & makes it positively oriented.

Figure 4-27. A positively oriented boundary curve.

Now let x: U < R* — § be a parametrization of S compatible with its
orientation and let R < x(U) be a bounded region of S. If fis a differentiable
function on S, then it is easily seen that the integral

III-I(R) S, )~/ EG — F* du dv

does not depend on the parametrization X, chosen in the class of orientation
of x. (The proof is the same as in the definition of area; cf. Sec. 2-5.) This
integral has, therefore, a geometrical meaning and is called the integral of f
over the region R. It 1s usual to denote it by

”Rfda.

With these definitions, we now state the

GAUSS-BONNET THEOREM (Local). Let x: U — S be an orthogonal
parametrization (that is, F = 0), of an oriented surface S, where U = R? is

haomeomorphic to an open disk and x iv compatible with the orientation of S
"'u"b‘lv"'u' LR b ELS WAL ll-tl %2} 3 WWUI\I Iy A D UV"T“‘-‘UIU Frefie itC Ui b ritaL s Ul VJ [
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Let R < x(U) be a simple region of S and let o.: Y — S be such that 3R = o(]).
Assume that o is positively oriented, parametrized by arc length s, and let
o(sg), - - ., 06(8,) and B, . . ., 8, be, respectively, the vertices and the external
angles of o.. Then

gf::”kg(S)dSJr”RKda+gei:2n, )

where K,(s) is the geodesic curvature of the regular arcs of oo and K is the
Gaussian curvature of S.

Remark. The restriction that the region R be contained in the image set
of an orthogonal parametrization is needed only to simplify the proof. As
we shall see later (Corollary 1 of the global Gauss-Bonnet theorem) the
above result stilf tiolds for any simiple region of a regular surface. This is
quite plausible, since Eq. (1) does not involve in any way a particular para-

metrization.t

Proof. Let u = u(s), v = v(s) be the expression of « in the parametriza-
tion x. By using Prop. 3 of Sec. 4-4, we have

k() = 5= {6, 20 — £, 3] . 2o,
£ 2/EG | "as as § as

where ¢, = @(s) is a differentiable function which measures the positive
angle from x, to a'(s) in [s, 5,,,]. By integrating the above expression in
every interval [s,, 5;5,] and adding up the results,

— e — e —

k[ ( G, dv __E, du)
2/EGds  2/EGds

ﬁ; ks)ds = 33

k Si+1 d¢i
+ ,ZL_":) fﬂ ?I'_S- dS.

Now we use the Gauss-Green theorem in the wv plane which states the
following: If P(u, v) and Q(u, v) are differentiable functions in a simple region
4 < R?, the boundary of which is given by u = u(s), v = v(s), then

i;,w [‘M (P% + Q%) ds = {.[- (“(;—g — %) du dv.

= v o5 5\ bt iy o v oA v~ I

+If the truth of this assertion is assumed, applications 2 and 6 given below can be pre-
sented now.
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It follows that

8 koo [ (o), ()

L [l 1251 dqo,
I

i=0

From the Gauss formula for F = 0 (cf. Exercise 1, Sec. 4-3), we know that

I )~

JJ i (N2

)}dudv=~” K./ EG du dv

J x~1(R)

=—“RKda.

On the other hand, by the theorem of turning tangents,

Stel

3| Beds— 3 plsin) — 050

Fi

"

. - N
= Al — ;.

1=

0

Since the curve o is positively oriented, the sign should be plus, as can
easily be seen in the particular case of the circle in a plane.
By putting these facts together, we obtain

Zo J ks)ds + || Kdo+ 2, b; = 2. Q.ED.

Lo i tam 2k P R P L Loy ~F o Ry P,

Before going into a global version of the Gauss-Bonnet theorem, we
would like to show how the techniques used in the proof of this theorem may
also be used to give an interpretation of the Gaussian curvature in terms of
parallelism.

To do that, let x: U -—— S be an orthogonal parametrization at a point
p € S, and let R = x(U) be a simple region without vertices, containing p
in its interior. Let a: [0, /] — x(U) be a curve parametrized by arc Ilength s
such that the trace of ¢ is the boundary of R. Let w, be a unit vector tangent
to S at a(0) and let w(s), s € [0, /], be the parallel transport of w, along &
(Fig. 4-28). By using Prop. 3 of Sec. 4-4 and the Gauss-Green theorem in the
wv plane, we obtain
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w(s)
w(l)

Figure 4-28

= —IL K do -+ o(I) — ¢(0),

where ¢ = @(s) is a differentiable determination of the angle from x, to w(s).
It follows that (/) — @(0) = Ag is given by

Ap = ij Kdo. 2)

Now, Ag does not depend on the choice of w,, and it follows from the
expression above that Ap does not depend on the choice of a(0) either. By
taking the limit (in the sense of Prop. 2, Sec. 3-3)

L Ap
}gl: /T(m = K(p),

where A(R) denotes the area of the region R, we obtain the desired interpreta-
tion of K.

To globalize the Gauss-Bonnet theorem, we need further topological
preliminaries.

Let S be a regular surface. A region R — S is said to be regular if R is
compact and its boundary @R is the finite union of (simple) closed piecewise
regular curves which do not intersect (the region in Fig. 4-29(a) is regular,
but that in Fig. 4-29(b) is not). For convenience, we shall consider a compact
surface as a regular region, the boundary of which is empty.

A simple region which has only three vertices with external angles o, 7= 0,
i=1,2,3,is called a triangle.

A triangulation of a regular region R «— S is a finite family J of triangles

T o __ 1 N FOVE R
Ll = 1, ..., 1, SULIL LIlAL

. Uz":l T, =R
2. BT, N T, # ¢, thenT, N T, is either 2 common edge of T, and T,
or a common vertex of T; and T,.

Given a triangulation 3 of a regular region R < S of a surface S, we shall
denote by F the number of triangles (faces), by E the number of sides (edges),
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®

Figure 4-29
and by V the number of vertices of the triangulation. The number
F—E+V=y

is called the Euler-Poincaré characteristic of the triangulation.

The following propositions are presented without proofs. An exposition
of these facts may be found, for instance, in L. Ahlfors and L. Sario, Riemann
Surfaces, Princeton University Press, Princeton, N.J., 1960, Chap. 1.

PROPOSITION 1. Every regular region of a regular surface admits a
triangulation.

PROPOSITION 2. Let S be an oriented surface and {x,},00 € A, a
family of parametrizations compatible with the orientation of S. Let R < S
be a regular region of S. Then there is a triangulation 3 of R such that every
triangle T € 3 is contained in some coordinate neighborhood of the family
{x,}. Furthermore, if the boundary of every triangle of 3 is positively oriented,

adjacent triangles determine opposite orientations in the common edge (Fig.
4-30).

'y
w‘.\/ Figure 4-30

PROPOSITION 3. IfR < S is a regular region of a surface S, the Euler-

Poincaré characteristic does not depend on the triangulation of R. It is con-

wonront thowsfnws tn AdAsmnts 1+ hy (DY
VEFUETELy LICTCJUNC,y LU UCHULIC 1L )y L1\ ).
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The latter proposition shows that the Euler-Poincaré characteristic is a
topological invariant of the regular region R. For the sake of the applications
of the Gauss-Bonnet theorem, we shall mention the important fact that this
invariant allows a topological classification of the compact surfaces in R®.

It should be observed that a direct computation shows that the Euler-
Poincaré characteristic of the sphere is 2, that of the torus (sphere with one
“handle”; see Fig. 4-31) is zero, that of the double torus (sphere with two

Sphere X =2 Sphere with one handle X=0  Sphere with two handles X = -2

Figure 4-31

handles) is —2, and, in general, that of the n-torus (sphere with » handles) is
—2(n — 1).

The following proposition shows that this list exhausts all compact
surfaces in R3. ’

PROPOSITION 4. Let S <= R3 be a compact connected surface; then one
ol tls weaTine N " ~. EP T B S N A U ; YL N 4
Uy ne VAiluey 4L, VU, T4, ...y Ll o0 e W WNUHITIEN Uy LNe LUICr-rotrncuare
characteristic x(S). Furthermore, if ' < R3 is another compact surface and
x(S) = x(5"), then S is homeomorphic to S'.

In other words, every compact connected surface § — R® is homeomor-
phic to a sphere with a certain number g of handles. The number

S &

1s called the genus of S.

Finally, let R < S be a regular region of an oriented surface S and let J
be a triangulation of R such that every triangle 7, € 3, j=1,...,k, is
contained in a coordinate neighborhood x{U,) of a family of parametriza-
tions {x,}, « € A4, compatible with the orientation of S. Let f be a differen-
tiable function on S. The following proposition shows that it makes sense to
talk about the integral of f over the region R.
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PROPOSITION 5. With the above notation, the sum
S R T =7
]EI ij_l(m f(u, v)»/E,G; — F? du, dv,

does not depend on the triangulation 3 or on the family {x;} of parametriza-
tions of S.

ually d noted by

oo

We are now in a position to state and prove the

GLOBAL GAUSS-BONNET THEOREM. [et R = S be a regular
region of an oriented surface andlet C,, . . ., C, be the closed, simple, piecewise
regular curves which form the boundary dR of R. Suppose that each C, is
positively oriented and let 8, . . . , 0, be the set of all external angles of the
curves C,, ..., C,. Then

5[ k@ ds+ [ Kdo+ 3 6= 2mx(R),

where s denotes the arc length of C,, and the integral over C, means the sum of
integrals in every regular arc of C..

Proof. Consider a triangulation J of the region R such that every triangle
T, is contained in a coordinate neighborhocd of a family of orthogonal
parametrizations compatible with the orientation of S. Such a triangulation
exists by Prop. 2. Furthermore, if the boundary of every triangle of J is
positively oriented, we obtain opposite orientations in the edges which are
common to adjacent triangles (Fig. 4-32).

By applying to every triangle the local Gauss-Bonnet theorem and adding

up the results we obtain, using Prop. 5 and the fact that each “interior”

SiAv Aol MURAL, Lalllp 4 AV adals Liiv 1Gw vallve wiliwis

Slde is described twice in opposite orientations,

> Jrc k(s)ds Jr Jr K d 8, = 2nF,

H

TM‘E

.r',

where F denotes the number of triangles of 3, and 8,,, 8,,, 8,; are the external
angles of the triangle T,.

We shall now introduce the interior angles of the triangle 7, given by
@i =7 — 0,.. Thus,

ik R34
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Figure 4-32

E, = number of external edges of 3,
E; = number of internal edges of 3J,
V., = number of external vertices of
vV

3F =2E, + E,
and therefore that
20 =2nE, + nE, — 3] Dk
- 5E
We observe now that the external vertices may be either vertices of some curve
C; or vertices introduced by the triangulation. We set V, = V,.+ V..,
where V., is the number of vertices of the curves C, and V.. 1s the number of

external vertices of the triangulation which are not vertices of some curve C.,.
Since the sum of angles around each internal vertex is 27, we obtain

Zejk — Zn‘E'z + nEe - ZT[V: — anr - Z(TE - 91)-
ik ]

By adding nE, to and subtracting it from the expression above and taking
into consideration that £, = V,, we conclude that

; 0« = 2nE, + 2rE, — 27V, — aV, — aV,, — V.. + 2.0,
= 27IE — 27IV+ 29;.
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By putting things together, we finally obtain

z; fc k(s)ds + HRKda + fia, = 27(F — E~+ V)
= 22X(R). Q.E.D.

Since the Euler-Poincaré characteristic of a simple region is clearly 1,
we obtain (cf. Remark 1)

COROLLARY 1. If R is a simple region of S, then

i Jﬂ ky(s) ds + JJF Kde -+ iz’:,]@i = 271.

By taking into account the fact that a compact surface may be considered
as a region with empty boundary, we obtain

COROLLARY 2. Let S be an orientable compact surface; then

}-L K do = 2nx(S).

Corollary 2 is most striking. We have only to think of all possible shapes
of a surface homeomorphic to a sphere to find it very surprising that in each
case the curvature function distributes itself in such a way that the “total
curvature,” i.e., [[ K do, is the same for all cases.

We shall present some applications of the Gauss-Bonnet theorem below.
For these applications (and for the exercises at the end of the section), it is
convenient to assume a basic fact of the topology of the plane (the Jordan
curve theorem) which we shall use in the following form: Every piecewise
regular curve in the plane (thus without self-intersections) is the boundary of a
simple region.

1. A compact surface of positive curvature is homeomorphic to a sphere.
The Euler-Poincaré characteristic of such a surface is positive and the

sphere is the only compact surface of R? which satisfies this condition.

2. Let S be an orientable surface of negative or zero curvature. Then two
geodesics y, and y, which start from a point p € S cannot meet again at a
point q € S in such a way that the traces of y, and y, constitute the boundary

n'fn (‘anlﬂ VD!T'II')VI p ﬂ{‘q
UJ o IJI'JIFP ~ J’\—éiv ¢y AN VJ T

Assume that the contrary is true. By the Gauss-Bonnet theorem (R is
simple)

”RKaraJr 0, + 0, = 2r,
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where §, and 0, are the external angles of the region R. Since the geodesics
y, and y, cannot be mutually tangent, we have &, << @, i = 1, 2. On the other
hand, K < 0, whence the contradiction.

When 8, = 6, = 0, the traces of the geodesics y, and yp, constitute a
simple closed geodesic of S (that is, a closed regular curve which is a geodesic).
It follows that on a surface of zero or negative curvature, there exists no
simple closed geodesic which is a boundary of a simple region of S.

3. Let S be a surface homeomorphic to a cylinder with Gaussian curvature
K << 0. Then S has at most one simple closed geodesic.

Suppose that S contains one simple closed geodesic I'. By application 2,
and since there is a homeomorphism ¢ of S with a plane P minus one point
g € P, p(I") is the boundary of a simple region of P containing g.

Assume now that .S contains another simple closed geodesic I"'. We claim
that I’ does not intersect I'. Otherwise, the arcs of ¢(I') and ¢(I'") between
two “consecutive” intersection points, r, and r,, would be the boundary of a

cimimle ragian crntradicting ammnlicatinn 2 (cee Fip v the shave arou
blulplc chlUll, \/U]Jtl adlbtll}s a.pphb'atluu 2 (DUU F15- 4_33). By thc abuvc atgu-

¢(T'")

Figure 4-33

ment, ¢(I"’) is again the boundary of a simple region R of P containing g,
the interior of which is homeomorphic to a cylinder. Thus, y(R) = 0. On the
other hand, by the Gauss-Bonnet theorem,

j j o K o = 2mx(R) = 0,

which is a contradiction, since K < 0.

4. If there exist two simple closed geodesics I’y and T, on a compact surface
S of positive curvature, then Iy and T, intersect.

By application 1, S is homeomorphic to a sphere. If T'; and I'; do not
intersect, then the set formed by I'; and I', is the boundary of a region R,
the Euler-Poincaré characteristic of which is y(R) = 0. By the Gauss-Bonnet
theorem,



278 Intrinsic Geometry of Surfaces

JJR Kdo = 0,

which is a contradiction, since X > 0.

S. We shall prove the following result, due to Jacobi: Let ¢: I — R3 be
a closed, regular, parametrized curve with nonzero curvature. Assume that the
curve described by the normal vector n(s) in the unit sphere S? (the normal

nqr’lr-nfwv\ is ormn]o 'T'Iqan n(h finn/]ac' S in rwo recions with eaual areas
lllllllll e ll A VEE F e LD [ Ri4%4 'CSDU’LD—' rvieefi C%W“l’ Ml Cide

We may assume that ¢ is parametrized by arc length. Let § denote the arc
length of the curve n = n(s) on S2. The geodesic curvature k, of n(s) is

k, = {i,n A 1,
where the dots denote differentiation with respect to §. Since

. dn ds ds

z 2

and
&) =%
d§ - kZ + 12’

we obtain

Fy = <n poiy iy = Bkb — w0, i = (BY (kv — ko)
£ ds \7)
Tk — kt'ds d. . T)ds
= Tere s @& \E)E

Thus, by applying the Gauss-Bonnet theorem to one of the regions R
bounded by #(]) and using the fact that X = 1, we obtain

27 = LKda + LREg ds = Lda = area of R.

Since the area of S? is 4nx, the result follows.

6. Let T be a geodesic triangle (that is, the sides of T are geodesics) in an
oriented surface S. Let 8,, 8,, 8, be the external angles of 7 and let ¢, =
n—0, ¢9,=n—0,, p; ==n — 05 be its interior angles. By the Gauss-
Bonnet theorem,

3
([ Kdo+ 3 8,=2n

v v T
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Thus,

”Tmz m-3 @ p)= -t e

1S

1. Equal to nt if K = 0.
2. Greater than 7 if K > 0.
3. Smaller than 1 if K < 0.

Furthermore, the difference >} | ¢, — 7 (the excess of T) is given pre-
cisely by _” Kdo. If K == 0 on T, this is the area of the image N(T) of T by
T

the Gauss map N: S — §? (cf. Eq. (12), Sec. 3-3). This was the form in which
Gauss himself stated his theorem: The excess of a geodesic triangle T is
equal to the area of its spherical image N(T).

The above fact is related to a historical controversy about the possibility
of proving Euclid’s fifth axiom (the axiom of the parallels), from which it
foliows that the sum of the interior angles of any triangie is equal to z. By
considering the geodesics as straight lines, it is possible to show that the
surfaces of constant negative curvature constitute a (local) model of a geome-
try where Euclid’s axioms hold, except for the fifth and the axiom which
guarantees the possibility of extending straight lines indefinitely. Actually,
Hilbert showed that there does not exist in R?® a surface of constant negative
curvature, the geodesics of which can be extended indefinitely (the pseudo-
sphere of Exercise 6, Sec. 3-3, has an edge of singular points). Therefore, the
surfaces of R® with constant negative Gaussian curvature do not yield a
model to test the independence of the fifth axiom alone. However, by using
the notion of abstract surface, it is possible to bypass this inconvenience and
to build a model of geometry where all of Euclid’s axioms but the fifth are
valid. This axiom is, therefore, independent of the others.

In Secs. 5-10 and 5-11, we shall prove the result of Hilbert just quoted and

shall describe the abstract model of a noneuclidean geometry.

7. Vector fields on surfaces.t Let v be a differentiable vector field on an
oriented surface S. We say that p € S is a singular point of v if 2(p) = 0.
The singular point p is isolated if there exists a neighborhood ¥ of p in S such
that v has no singular points in ¥ other than p.

To each isolated singular point p of a vector field v, we shall associate an

1This application requires the material of Sec. 3-4. If omitted, then Exercises 6-9 of this
section should also be omitted.
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integer, the index of », defined as follows. Let x: U — S be an orthogonal
parametrization at p = x(0, 0) compatible with the orientation of §, and let
o: [0, /] -— S be a simple, closed, piecewise regular parametrized curve such
that ([0, /]) = x(U) is the boundary of a simple region R containing p as its
only singular point. Let v = v(¢), ¢ € [0, ], be the restriction of » along «,
and let ¢ = ¢(¢) be some differentiable determination of the angle from x,
to »(7), given by Lemma 1 of Sec. 4-4 (which can easily be extended to piece-
wise regular curves). Since & is closed, there is an integer I defined by

22l = o) — p(0) = f Eéit” d.

0

I is called the index of v at p.

We must show that this definition is independent of the choices made,
the first one being the parametrization x. Let w, € T, ,,(S) and let w(¢) be the
parallel transport of w, along a. Let w(¢) be a differentiable determination of
the angle from x, to w(¢). Then, as we have seen in the interpretation of K in
terms of parallel transport (cf. Eq. (2)),

v()—y(©) = [| Kdo.

By subtracting the above relations, we obtain

([ Kdo—2n1=(y —p)) — (v — X = Ay —9) ()

Since y — ¢ does not depend on x,, the index [ is independent of the parame-
trization x.

The proof that the index does not depend on the choice of & is more
technical (although rather intuitive) and we shall only sketch it.

Let o, and &, be two curves as in the definition of index and let us show
that the index of v is the same for both curves. We first suppose that the traces
of o, and o, do not intersect. Then there is a homeomorphism of the regior
bounded by the traces of ¢, and o, onto a region of the plane bounded by twc
concentric circles C, and C, (a ring). Since we can obtain a family of concen-
tric circles C, which depend continuously on ¢ and deform C, into C,, we
obtain a family of curves a,, which depend continuously on ¢ and deform
o, into a, (Fig. 4-34). Denote by I, the index of v computed with the curve
o,. Now, since the index is an integral, I, depends continuously on ¢, ¢ € [0, 1].
Being an integer, [, is constant under this deformation, and 7, = 7,, as we
wished. If the traces of «, and a, intersect, we choose a curve sufficiently
small so that its trace has no intersection with both a, and «, and then apply
the previous result,
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U
¢ X
C.C :
™1 O(O a
x(U)
hY

Figure 4-34

It should be noticed that the definition of index can still be applied when
p is not a singular point of ». It turns out, however, that the index is then
zero. This follows from the fact that, since I does not depend on x,, we can
choose x, to be v itself; thus, ¢(¢) = 0.

In Fig. 4-35 we show some examples of indices of vector fields in the xy
plane which have (0, 0) as a singular point. The curves that appear in the
drawings are the trajectories of the vector fields.

v=(xy) =(—x ») v=(0x,—y) =( 2 —y2 2xy)
=1 - [=-1 =

o . k;\)/«.:
AN AN

Figure 4-35

T\Tnu; let §$ < R? be an oriented. commnact surface and 2 a ﬂlﬁ’prpnhah]r-\
Uv Gl Viiviivea, an

npac
vector ﬁeld with only isolated singular points. We remark that they are finite
in number. Otherwise, by compactness (cf. Sec. 2-7, Property 1), they have a
limit point which is a nonisolated singular point. Let {x,} be a family of
orthogonal parametrizations compatible with the orientation of S. Let 3 be
a triangulation of S such that

I. Every triangle T € J is contained in some coordinate neighbor-
hood of the family {x,}.

2. varv T < 1 contains a

mos

=
»3
&
w
.
=

at most one singu
3. The boundary ofevery T € 3¢ ntams
positively oriented.

|
no s 1ngular points and is

If we apply Eq. (1) to every triangle 7 € 3, sum up the results, and take

into account that the edge of each T € J appears twice with opposite orienta-

tiane wa ~htain
ti011S, WC O0oLdlil
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k
jj Kdo — 213 1, =0,
Ry i=1
where I, is the index of the singular point p,, i = 1, . .., k. Joining this with
the Gauss-Bonnet theorem (cf. Corollary 2), we finally arrive at

Zfi:%tffsfcda:x(sy

Thus, we have proved the following:

POINCARE’S THEOREM. The sum of the indices of a differentiable
vector field v with isolated singular points on a compact surface S is equal to
the Euler-Poincaré characteristic of S.

This is a remarkable result. It implies that >, 7, does not depend on v
but only on the topology of S. For instance, in any surface homeomorphic to
a sphere, all vector fields with isolated singularities must have the sum of
their indices equal to 2. In particular, no such surface can have a differentiable
vector field without singular points.

EXERCISES

1. Let .S < R? be a regular, compact, orientable surface which is not home-
omorphic to a sphere. Prove that there are points on .S where the Gaussian curva-
ture is positive, negative, and zero.

2. Let T be a torus of revolution. Describe the image of the Gauss map of T and
show, without using the Gauss-Bonnet theorem, that

[{ xdo—o.

Compute the Euler-Poincaré characteristic of T"and check the above result with
the Gauss-Bonnet theorem.

'

Let § — R3 be a regular surface homeomorphic to a sphere. Let I' = S be a
t

a common boundary. Let N: § — .52 be the Gauss map of S. Prove that N(A)
and N(B) have the same area.

4, Compute the Euler-Poincaré characteristic of
a. An ellipsoid.
*b. The surface S = {(x, y,z) € R?; x2 4 y* + 26 = 1}.

5. Let C be a parallel of colatitude ¢ on an oriented unit sphere ,S2, and let w, be
a unit vector tangent to C at a point p € C (cf. Example 1, Sec. 4-4). Take the
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parallel transport of w, along C and show that its position, after a complete
turn, makes an angle Ap = 2a(1 — cos @) with the initial position w,. Check
that

lim A—? = 1 = curvature of S2,
R—p A

where A is the area of the region R of §2 bounded by C.

6. Show that (0, 0) is an isolated singular point and compute the index at (0, 0) of

the following vector fields in the plane:
*a. v = (x, ).
b. v = (—x, y).
c. v =(x, —y).
*do v = (x2 — y2, —2xyp).
e. v = (x? — 3xy2, p* — 3x2y).
7. Can it happen that the index of a singular point is zero ? If so, give an example.

8. Prove that an orientable compact surface § — R? has a differentiable vector field
without singular points if and only if .S is homeomorphic to a torus.

9. Let C be a regular closed curve on a sphere S2. Let v be a differentiable vector
field on 82 such that the trajectories of » are never tangent to C. Prove that each
of the two regions determined by C contains at least one singular point of ».

4-6. The Exponential Map.
o _ _ . _T_ M _f__ M~ _ _ I . _
O eoUueSIC roijar Looramiares

In this section we shall introduce some special coordinate systems with an
eye toward their geometric applications. The natural way of introducing such
coordinates is by means of the exponential map, which we shall now describe.

As we learned in Sec. 4-4, Prop. 5, given a point p of a regular surface S
and a nonzero vector v € T,(S) there exists a unique parametrized geodesic
y:(—e€, €) — S, with y(0) = p and '(0) = v. To indicate the dependence of
this geodesic on the vector v, it is convenient to denote it by p(f, v) = y.

LEMMA 1. If the geodesic y(t, V) is defined for t € (—¢, €), then the

}/'(t, A-V) - }’(}.t, v).

Proof. Let o:(—€/A,€/1) — S be a parametrized curve defined by
a(t) = p(Ar). Then a(0) = »(0), «'(0) = Ay’(0), and, by the linearity of D (cf.
Eq. (1), Sec. 4-2),

Dy (t) = A*Dyiyy'(t) = 0.
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If follows that a is a geodesic with initial conditions y(0), Ay’(0), and by
uniqueness

a(®) = y(t, Av) = p(it, v) Q.E.D.

Intuitively, Lemma 1 means that since the speed of a geodesic is constant,
we can go over its trace within a prescribed time by adjusting our speed
appropriately.

We shall now introduce the following notation. If v = T(S), v = 0, is
such that y(Jv |, v/|v]) = (1, v) is defined, we set

eXPP(U) - }’(1, U) and expp(o) =p

Geometrically, the construction corresponds to laying off (if possible)
a length equal to |v| along the geodesic that passes through p in the direction
of v; the point of S thus obtained is denoted by exp,(v) (Fig. 4-36).

Tp(S)

Figure 4-36 Figure 4-37

For example, exp,(v) is defined on the unit sphere S? forevery v € T,(S5?).
The points of the circles of radii #, 3z, ..., (27 + 1)z are mapped into the
point g, the antipodal point of p. The points of the circles of radii 2z,
4n, ..., 2nm are mapped back into p.

On the other hand, on the regular surface C formed by the one-sheeted
cone minus the vertex, exp,(v) is not defined for a vector v € T,(C) in the
direction of the meridian that connects p to the vertex, when |v| > d and d
is the distance from p to the vertex (Fig. 4-37).

If, in the example of the sphere, we remove from S? the antlpod 1 point

than avrm (Y 1a dafinad anly 1n tha intarine A'P A3 ] AF T (Q AF radiig -
\Jl 1}, Lllcll \rAlJ \U} 13 uUllllUu Ullly 111 LllD 11 Lelivil Ul ul Vi oq p\ j Vi1 1ALl Ji

and center in the origin.
The important point is that exp, is always defined and differentiable in
some neighborhood of p.
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PROPOSITION 1. Given p € S there exzsts
of a dis

Aotined and A # #iahla in L. interior n
GEJINER dita uL_/Jcl ERtiaoie in thne interior . 0 G di J

center in the origin.

Proof. 1t is clear that for every direction of T,(S) it is possible, by Lemma
1, to take v sufficiently small so that the interval of definition of y(z, v) con-
tains 1, and thus (1, v) = exp,(v) is defined. To show that this reduction can

hp maﬂn uniformlv in all directions. we need the theorem of the denendence
ALLLA W Aillllnva J.IJ.IJ lllll L AT QW , T A1lWwiyyil Lilw Liil WLSLNLLL UL C1l% uut’vlluv AWy

of a geodesic on its initial conditions (see Sec. 4-7) in the following form:
Given p € S there exist numbers €, > 0,€, > 0 and a differentiable map

y:(—€5€2) X B, — 8

such that, for v € B, v # 0,t € (—e€,, €,), the curve y(t, v) is the geodesic
of S with (0, p) = p, Y (0, v) = v, and for v =0, y(t,0) =p.

From this statement and Lemma 1, our assertion follows. In fact, since
y(t,v) 1s defined for |f| < €,, |v| < €,, we obtain, by setting 1 = ¢,/2 in
Lemma 1, that p(z, (€,/2)v) is defined for |#| < 2, |v| < €,. Therefore, by
taking a disk B, < T,(S), with center at the origin and radius ¢ < €,¢,/2,
we have that y(1, w) =exp, w, w € B,, is defined. The differentiability of
exp, in B, follows from the differentiability of p. Q.E.D.

An important complement to this result is the following:

PROPOSITION 2. exp,: B, <« T,(8) — S is a diffeomorphism in a
neighborhood U < B, of the origin 0 of T,(S).

Proof. We shall show that the differential d(exp,) is nonsingular at
0 e T,(S). To do this, we identify the space of tangent vectors to T,(S) at
0 with 7,(S) itself. Consider the curve a(f) =, v € T,(S). It is obvious
that «(0) = 0 and &'0) = ». The curve (exp, o a)(¥) = exp,(tv) has at r =0
the tangent vector

Lo,y = Low) =v.

It follows that
(d exp,)o(v) =,

which shows that d exp, is nonsingular at 0. By applying the inverse function
theorem (cf. Prop. 3, Sec. 2-4), we complete the proof of the proposition.
Q.E.D.

It is convenient to call ¥V < S a normal neighborhood of p € S if V is the
image ¥ = exp,(U) of a neighborhood U of the origin of T,(S) restricted to
which exp, is a diffeomorphism.
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Since the exponential map at p € S is a diffeomorphism on U, it may be
used to introduce coordinates in V. Among the coordinate systems thus
introduced, the most usual are

e normal coordinates which correspond to a system of rectan-
agnilar rnanrdimatan 1311 tha tancant mlana T CY
5u1a.1 LUULALLLIALCY [11 LUilC LallEGllL lJlClllC y p\*—’}'

2. The geodesic polar coordinates which correspond to polar coordi-
nates in the tangent plane 7,(S) (Fig. 4-38).

expp (p,0)
A

A geodesic
circle

A radial
/ geodesic

Tp(S)

Figure 4-38 Polar coordinates.

We shall first study the normal coordinates, which are obtained by
choosing in the plane T,(S), p € S, two orthogonal unit vectors ¢, and e,.
Since exp,: U — V < Sis a diffeomorphism, it satisfies the conditions for a
parametrization inp. If ¢ € V, theng = exp,(w), where w = we, 4 ve, € U,
and we say that g has coordinates (u, v). It is clear that the normal coordinates
thus obtained depend on the choice of ¢,, e,.

In a system of normal coordinates centered in p, the geodesics that pass

through p are the images by exp, of the lines # = at, v = bt which pass
through the origin of T (S). Observe also that at p the coefficients of the first

LA L 222 2 L p R e N QIS Liial &b L% RAULAL

fundamental form in such a system are given by E(p) = G(p) =1, F(p) =0.

Now we shall proceed to the geodesic polar coordinates. Choose in the
plane 7,(S), p € S, a system of polar coordinates (p, &), where p is the polar
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radius and 6, 0 < § < 2g, is the polar angle, the pole of which is the origin
0 of T,(S). Observe that the polar coordinates in the plane are not defined in
the closed half-line / which corresponds to 8 = 0. Set exp,(/) = L. Since
exp,: U —1-— V — L is still a diffeomorphism, we may parametrize the
points of V' — L by the coordinates (p, ), which are called geodesic polar
coordinates.

We shall use the following terminology. The images by exp,: U — V of
circles in U centered in 0 will be called geodesic circles of V, and the images
of exp, of the lines through 0 will be called radial geodesics of V. In V — L
these are the curves p = const. and # = const., respectively.

We shall now determine the coefficients of the first fundamental form in a
system of geodesic polar coordinates.

PROPOSITION 3. Let x: U —/—V — L be a system of geodesic
polar coordinates (p, 8). Then the coefficients E = E(p, 0), F = F(p, 0), and
G = G(p, 0) of the first fundamental form satisfy the conditions

E=1, F=0, 1ImG=0 Ilm/G), =1
p—0 p—0

Proof. By definition of the exponential map, p measures the arc length
along the curve = const. It follows immediately that £ = 1.

By introducing in the differential equation of a geodesic (Eq. (4), Sec. 4-4)
the fact that @ = const. is a geodesic, we conclude that '}, = 0. By using the
first of the relations (2) of Sec. 4-3 that define the Christoffel symbols, we
obtain

OZ%EPZ F%IE-: F%l'

By introducing this relation in the second of the equations (2) of Sec. 4-3, we
conclude that F, = 0, and, therefore, F(p, ) does not depend on p.

For each ¢ € V', we shall denote by a(o) the geodesic circle that passes
through g, where ¢ € [0, 27] (if ¢ = p, a(o) is the constant curve a(o) = p).
We shall denote by p(s), where s is the arc length of p, the radial geodesic that
passes through ¢g. With this notation we may write

The coefficient F(p, §) is not defined at p. However, if we fix the radial
geodesic § = const., the second member of the above equation is defined for
every point of this geodesic. Since at p, a(o) = p, that is, da/da = 0, we
obtain

- im0
i 100 i (2 )~

Together with the fact that F does not depend on p, this implies that F = 0.
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To prove the last assertion of the proposition, we choose a system of
normal coordinates (i, #) in p in such a way that the change of coordinates is

given bv

~ii Y

U= pcosB, 7 = psin @, p#0, 0<0 <2n.

By recalling that

o(i, v)
3(p, 0)’

where (i1, 7)/d(p, @) is the Jacobian of the change of coordinates and
E, F, G, are the coefficients of the first fundamental form in the normal
coordinates (u#, v), we have

JEG — F: — N EG — F?

G =pJEG —F, p=0. (1)

Since at p, E = G = 1, F = 0 (the normal coordinates are defined at p), we
conclude that
lim,/G =0, 1lm(/G), =1,

p—0

p=0
which concludes the proof of the proposition. Q.E.D.

Remark 1. The geometric meaning of the fact that F = 0 is that in a
normal neighborhood the family of geodesic circles is orthogonal to the
family of radial geodesics. This fact is known as the Gauss lemma.

We shall now present some geometrical applications of the geodesic
polar coordinaies.

First, we shall study the surfaces of constant Gaussian curvature. Since in
a polar system £ = 1 and F = 0, the Gaussian curvature K can be written

WG,
K= =l

This expression may be considered as the differential equation which
~/ G(p, 8) should satisfy if we want the surface to have (in the coordinate
neighborhood in question) curvature K(p, ). If K is constant, the above
expression, or, equivalently,

(~G),, + KJG =0, )

THEOREM (Minding). Any two regular surfaces with the same constant

)ITVI I’1l!‘1)ﬂf'lv/) ﬂl/’/) ’I‘Iﬁﬂ]l‘) 1(‘I'Im/)f}‘l‘ﬁ ﬂ/fnro nvornoo’u ]/)f q q h/) f141)
FUETE U MT Pl M 4 voprr. Lra U Fiolesey, iCE Wpe g 0 LIV
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regular surfaces with the same constant curvature K. Choose points p, € S,,
P, € S,, and orthonormal basis {e,,e,} € Ty (Sy), {f1, 2} € Tp(S;). Then
there exist neighborhoods V, of p,, V, of p, and an isometry w: V, — V, such
that dy(e,) =f,, dy(e,) =f,.

Proof. Let us first consider Eq. (2) and study separately the cases (1)
K=0,(2) K>0,and (3) K< 0.

1. IfK =0, (/G),, = 0. Thus, (+/G ), = g(), where g(8) is a function
of #. Since

lim (/G), = 1,

p—0

we conclude that (,/G), = 1. Therefore, ./G = p -+ f(f), where f(@) is
a function of 6. Since

1(8) = lim /G =0,

0

we finally have, in this case,
E=1, F =0, G(p, §) = p*.
2. If K> 0, the general solution of Eq. (2) is given by
VG = 4®) cos(x/K p) + B®) sin(x/ K p),

where A(8) and B(f) are functions of . That this expression is a solution
of Eq. (2) is easily verified by differentiatioj.

Cimnn e 777 — N wre obtain 4(8) = 0. Thus
WIS l.UJ.J. /\/ Jo— Vv, WO U uLaill /'I\U} J.iluD,
o0

(W G), = BO)W K cos(~/ K p),
and since lim (/G ), = 1, we conclude that
2—0

PO
VK

Therefore, in this case,

E—-1, F=0 G- 71( sin?(y/ K p).

3. Finally, if K < 0, the general solution of Eq. (2) is
/G = A(f) cosh(/—~Kp) - B() sinh(/—Kp).
By using the initial conditions, we verify that in this case

E—=1, F=0, G = —1-1{ sinh?(./— K p).



290 Intrinsic Geometry of Surfaces

We are now prepared to prove Minding’s theorem. Let ¥, and V, be
normal neighborhoods of p, and p,, respectively. Let ¢ be the linear isometry
of T, (S,) onto T, (S,) given by g(e,) = f,, ¢(e;) =f,. Take a polar coordi-
nate system (p, @) in 7,(S,) with axis / and set L, =exp,(/), L, =
exp,, (p(l)). Lety: V, - ¥V, be defined by

W = expy, o @ ° expy/-

Wa ~Alatm +thot vy 10 tha s
yv e ciaim tnat W 18 lie requirca isoincuy.

In fact, the restriction ¥ of w to ¥V, — L, maps a polar coordinate
neighborhood with coordinates (p, @) centered in p, into a polar coordinate
neighborhood with coordinates (p, 8) centered in p,. By the above study of
Eq. (2), the coefficients of the first fundamental forms at corresponding points
are equal. By Prop. 1 of Sec. 4-2, ¥ is an isometry. By continuity, y still
preserves inner products at points of L, and thus is an isometry. It 1s imme-
diate to check that dy(e,) = fi, dw(e;) = f3, and this concludes the proof.

Q.E.D.

Remark 2. In the case that K is not constant but maintains its sign, the
expression /G K = —(,/G),, has a nice intuitive meaning. Consider the
arc length L(p) of the curve p = const. between two close geodesics 8 = 8,
and 8 = 40,:

Lp=| /G, 8) do.

Assume that K << 0. Since

linol WGaG),=1 and (VG),,= —K/G >0,
ps
the function L(p) behaves as in Fig. 4-39(a). This means that L(p) increases
with p; that is, as p increases, the geodesics @ = 8, and § = @, get farther
and farther apart (of course, we must remain in the coordinate neighborhood
in question).

On the other hand, if X > 0, L(p) behaves as in Fig. 4-39(b). The geodesics

L Lip) L

] / / ’

Lip)
|
0 0
o o
(a) K<0 by K>0
Figure 4-39. Spreading of close geodesics in a normal neighborhood.
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6 =8, and § = 0, may (case I) or may not (case II) come closer together
after a certain value of p, and this depends on the Gaussian curvature. For
instance, in the case of a sphere two geodesics which leave from a pole start
coming closer together after the equator (Fig. 4-40).

Figure 4-40

In Chap. 5 (Secs. 5-4 and 5-5) we shall come back to this subject and shall
make this observation more precise.

Another application of the geodesic polar coordinates consists of a
geometrical interpretation of the Gaussian curvature K.

To do this, we first observe that the expression of K in geodesic polar
coordinates (p, ), with center p € S, is given by

K — — (’\/ @pp,
G
and therefore

WG . Ty el
—%3_ - K(N/G)p p(\/G)

Thus, recalling that
lim /G =0,

p—0
we obtain
k) — fim 82/ G
K(p) = 11_1}01 W

On the other hand, by defining ./ G and its successive derivatives with
respect to p at p by its limit values (cf. Eq. (1)), we may write
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< G0 8) = J/TO,0) + p/T)0. 0) + 21(/G),00,0)
+ 20,00, 6) + R(p, 6)

where

lim 220 _ ¢,
p—0

uniformly in @. By substituting in the above expression the values already
known, we obtain

NG (p,6)= p— £1K(p) + R.

With this value for ./ G, we compute the arc length L of a geodesic circle
of radius p = r:

2n—¢

L =1im ~G(r, ) df = 2ar — —ﬂr3K(p) + R,
€0.J o+e
where
lim %1 = 0.
r—0 ¥

It follows that

b

_3_2nr—L

.'"3

K(p) = I

&8

which gives an intrinsic interpretation of K(p) in terms of the radius r of a
geodesic circle S,(p) around p and the arc lengths L and 2zr of S,(P) and
exp, '(S,(p)), respectively.

An interpretation of K(p) involving the area of the region bounded by

S fn\ 1q pacn]v n]‘\fnnqt-\ﬂ Tr“r the above nrocess (sea varnmn '2\
Uf\t’ 1111111 AW ALY W l.IL\JV\nJu \L‘J\i\d At MR N L N

As a last application of the geodesic polar coordinates, we shall study
some minimal properties of geodesics. A fundamental property of a geodesic
1s the fact that, locally, it minimizes arc length. More precisely, we have

PROPOSITION 4. Let p be a point on a surface S. Then, there exists a
neighborhood W < S of p such that if y: 1 — W is a parametrized geodesic with
§(0) =p, ;) =q, t; € I, and &:[0, t,] — S is a parametrized regular curve

joinine v fo a. we have
JUHILEILS | PV Mo

ly g la’

where I, denotes the length of the curve a. Moreover, if I, = 1,, then the trace
of o coincides with the trace of o between p and q.
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Proof. Let V be a normal neighborhood of p, and let W be the closed
region bounded by a geodesic circle of radius r contained in V. Let (p, 8) be
geodesic polar coordinates in W — L centered in p such thatg € L.

Suppose first that a((0, t,)) < W — L, and set a(t) = (p(?), 6()).
Observe initially that

NP+ GO = /()

and equality holds if and only if 8" = 0; that is, § = const. Therefore, the
lIength /,(¢) of o between ¢ and ¢, — € satisfies

1(€) = J:HE SV F GO dr > Ll_s (P dt
> (" pra=1,— 2,

and equality holds if and only if § = const. and p’ > 0. By making € — 0
in the expression above, we obtain that /, > /, and that equality holds if and
only if e is the radial geodesic § = const. with a parametrization p = p(),
where p’(f) > 0. It follows that if /, = I, then the traces of & and y between
p and g coincide.

Suppose now that oc((O t,)) intersects L, and assume that this occurs for

7 ] lan
the first time at, say, WU 2} 1h€u, oy the prev ious argmumu, l, = [ between iy

and #,, and /, = [ implies that the traces of & and y coincide. Since a([0, 7,])
and L are compact, there exists a > ¢, such that either a(?) is the last point
where a{(0, #,)) intersects L or a{[7, #,]) < L (Fig. 4-41). In any case, applying
the above case, the conclusions of the proposition follow.

o~ DK
QY
N

Figure 4-41 Figure 4-42

Suppose finally that «(][0, £,]) is not entirely contained in W. Let
t, € [0, t,] be the first value for which a(z,) = x belongs to the boundary
of W. Let 7 be the radial geodesic px and let & be the restriction of the curve
o to the interval [0, £,]. It is clear then that [, >> /, (see Fig. 4-42). )
By the previous argument, /, > /.. Since g is a point in the interior of W,
I, > I.. We conclude that /, > I, which ends the proof. Q.E.D.
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Remark 3. For simplicity, we have proved the proposition for regular
curves. However, it still holds for piecewise regular curves (cf. Def. 7, Sec.
4-4); the proof is entirely analogous and will be left as an exercise.

Remark 4. The proof also shows that the converse of the last assertion of
Prop. 4 holds true. However, this converse does not generalize to piecewise

regular curves.

The previous proposition is not true globally, as is shown by the example
of the sphere. Two nonantipodal points of a sphere may be connected by two
meridians of unequal lengths and only the smaller one satisfies the conclu-
sions of the proposition. In other words, a geodesic, if sufficiently extended,
may not be the shortest path between its end points. The following proposi-
tion shows, however, that when a regular curve is the shortest path between
any two of its points, this curve is necessarily a geodesic.

PROPOSITION 5. Let o.: 1 — S be a regular parametrized curve with a
parameter proportional to arc length. Suppose that the arc length of o between
any two points t, T € 1, is smaller than or equal to the arc length of any regular
parametrized curve joining oa(t) to a(t). Then o is a geodesic.

Proof. Let t, € I be an arbitrary point of I and let W be the neighbor-
hood of aft,) = p given by Prop. 4. Let ¢ = a(f,) € W. From the case of
equality in Prop. 4, it follows that « Is a geodesic in (¢,, #,). Otherwise o
would have, between 7, and t;, a length greater than the radial geodesic
joining a(t,) to a(t,), a contradiction to the hypothesis. Since ¢ is regular, we
have, by continuity, that ¢ still is a geodesicin ¢,. Q.E.D.

EXERCISES

1. Prove that on a surface of constant curvature the geodesic circles have constant
geodesic curvature.
2. Show that the equations of the geodesics in geodesic polar coordinates (E = 1,

" N\ Ao oirroes ey
£ = U) alC BivVeil Uy

P — G0 =0

L G,

2 Sy =o.

9// _I_%Epzel _]_

if p 1s a point of a regutar surface S, prove that

W

K(p) = ]iml_ZTc____rZ — A,

r—0 T r4
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*8.

where K(p) is the Gaussian curvature of Sat p,r is the radius of a geodesic circle
S,(p) centered in p, and A is the area of the region bounded by S.(p).

Show that in a system of normal coordinates centered in p, all the Christoffel
symbols are zero at p.

For which of the pair of surfaces given below does there exist a local isometry ?
a. Torus of revolution and cone.
b. Cone and sphere.

AAAAA A fim A

~n o A P
L UUHC alld LYLILMLL,

Let S be a surface, let p be a point of S, and let S1(p) be a geodesic circle around
p, sufficiently small to be contained in a normal neighborhood. Let » and s be
two points of S!(p), and C be an arc of S!(p) between r and s. Consider the
curve exp;'(C) < T,(S). Prove that S(p) can be chosen sufficiently small so
that :

a. If K > 0, then I(exp,'(C)) > I(C), where I( ) denotes the arc length of the
corresponding curve.

b. If K < 0, then I(exp;{C)) < I(C).

. Let(p, 0) beasystem of geodesic polar coordinates (E = 1, F = 0) on a surface,

and let p(p(s), 8(s)) be a geodesic that makes an angle ¢(s) with the curves
@ = const. For definiteness, the curves € = const. are oriented in the sense of
increasing p’s and ¢ is measured from @ = const. to y in the orientation given by
the parametrization (p, #). Show that

(Gauss Theorem on the Sum of the Internal Angles of a “Small” Geodesic Tri-
angle.) Let A be a geodesic triangle (that is, its sides are segments of geodesics)
on a surface S. Assume that A is sufficiently small to be contained in a normal
neighborhood of some of its vertices. Prove directly (i.e., without using the
Gauss-Bonnet theorem) that

([ Kda=(3 a)—=
Js \& %)%

where K is the Gaussian curvature of S, and 0 < &; < 7w, [/ = 1, 2, 3, are the
internal angles of the triangle A.

. (A Local Isoperimetric Inequality for Geodesic Circles.) Let p € S and let S,(p)

be a geodesic circle of center p and radius r. Let L be the arc length of S,(p) and
A be the area of the region bounded by S.(p). Prove that

AmA — L2 = n24K(p) - R,

where K(p) is the Gaussian curvature of S at p and
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el
[

11.

12,

13.

Thus, if K(p) > 0 (or < 0) and r is small, 44 — L? > 0 (or < 0). (Compare
the isoperimetric inequality of Sec. 1-7.)

. Let .S be a connected surface and let ¢, : S — S be two isometries of S.

Assume that there exists a point p € § such that @(p) = w(p) and dg,(v)
= dy ,(v) for all v € T,(S). Prove that ¢(q) = w(q) foralig € S.

(Free Mobility of Small Geodesic Triangles.) Let S be a surface of constant
Gaussian curvature. Choose points py, p) < S and let V, V' be normal neigh-

borhoods of p,, p', respectively. Choose geodesic triangles p¢, p,, p; in V
S

—
(geodesic means that the sides p, p,, p2P3, P31 are geodesic arcs) and p', p3, Ps
in V' in such a way that

l(pla pZ) = l(prlsp‘rZ):
(P31, P3) = I(p%, P3),

I(n Y= I p ')
\P3. P1J Wl3, P1J

(here / denotes the length of a geodesic arc). Show that there exists an isometry
f: V — ¥’ which maps the first triangle onto the second. (This is the local ver-
sion, for surfaces of constant curvature, of the theorem of high school geometry
that any two triangles in the plane with equal corresponding sides are con-
gruent.)

A diffeomorphism ¢: S; — S, is said to be a geodesic mapping if for every

geodesic C — S| of S, the regular curve ¢(C) < S, is a geodesicof S,. If Uisa

neighborhood of p € S, then ¢: U — §; is said to be a local geodesic map-

ping in p if there exists a neighborhood V of ¢(p) in S, such that ¢: U — V'is

a geodesic mapping.

a. Show that if ¢: .S, — S, is both a geodesic and a conformal mapping, then
@ is a similarity; that is,

S, wy, = Kdo,©), dp,(w)y,  p € Si,v,w € T,(S)),

where A is constant,

b. Let S2={(x,y,2) € R¥®; x2 + y2 +z2=1} be the unit sphere, S~
={(x,y,2) € S2;z < 0} be its lower hemisphere, and P be the plane
z == —1. Prove that the map (central projection) ¢: S~ — P which takes a
point p € S~ to the intersection of P with the line that connects p to the cen-
ter of S2is a geodesic mapping.

*¢. Show that a surface of constant curvature admits a local geodesic mapping
into the plane for every p € S.

(Beltrami’s Theorem.) In Exercise 12, part ¢, it was shown that a surface S of

conctant enrvatiire K admite a laecal cendecie mar\nrnn- in fhn nlane for every
WwAL/EIOVHLAL Wil YOLLVUWIL W 23 QUATIILLILY 4 AU WLl E\ruu\rol\— llluyl-/ iy 1 A pAAG I AVW/L WY Wl Y

p € S. To prove the converse (Beltrami’s theorem)—If a regular connected sur-

face S admits for every p € S a local geodesic mapping into the plane, then S has
constant curvature, the following assertions should be proved:
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14.

a. If v = »(4) is a geodesic, in a coordinate neighborhood of a surface para-
metrized by (4, »), which does not coincide with ¥ = const., then

d? dv\ 2
duz rzz(du) + @I'i2 — T3y (d—z) + (T, — 21‘%2)% —TI'%

*b. If S admits a local geodesic mapping ¢: ¥V — R2 of a neighborhood V of a
point p € S into the plane R?, then it is possible to parametrize the neigh-
]‘\n‘r']'\nnr] 'f ]’\w (22 ) in cnn'h o urnv that

[ S G PL0 LS VY Ay U LAx SWuiad &b vaalaw

i, =r% =0, I3, =2T1s, 't =2I%;.

*¢. If there exists a geodesic mapping of a nejghborhood V of p € S into a
plane, then the curvature K in V satisfies the relations

KE =TIt — (Tt (@)
KF =T1,I'(2 — Tt )
KG =T 1.I'l; — Ti2, (©
KF =T1.I't2 — (F%Z)u (d)

*d. If there exists a geodesic mapping of a neighborhood Vof pe Sintoa

= AL dawav v::l.uwu JoETANARLRICLL VAR 8 e ) 5 YR

plane, then the curvature K in V is constant.

e. Use the above, and a standard argument of connectedness, to prove Belt-
rami’s theorem:.

(The Holonomy Group.) Let § be a regular surface and p € . For each piece-
wise regular parametrized curve o: [0,/] — § with ®(0) = &(]) = p, let
P,: T,(S) — T,(S)be the map which assigns to each v € 7,(S)its parallel trans-
port along & back to p. By Prop. 1 of Sec. 4-4, P, is a linear isometry of T,(S).
If B: 1, []is another piecewise regular parametrized curve with 8(1) = () = p,
define the curve B o a: [0, 7 -- [1 — S by running successively first & and then
B; thatis, B o a(s) = a(s) if s € [0, 7], and B = a(s) = B(s)if s € [, I].

a. Consider the set
H ,(S) = [P,: T,(S) — T,(S); all & joining p to p},

where o is piecewise regular. Define in this set the operation PpoP, =Py
that is, P, o P, is the usual composition of performing first P, and then P,.

Prove that, with this operation, H,(S) is a group (actually, a subgroup of the
group of linear isometries of T, (S)). FT (S) is called the holonomy group of §

at p.

b. Show that the holonomy group at any point of a surface with K = 0 reduces
to the identity.

¢. Prove that if .S is connected, the holonomy groups H,(S) and H,(S) at two
arbitrary points p, ¢ € S are isomorphic. Thus, we can talk about the
(abstract) holonomy group of a surface.
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d. Prove that the holonomy group of a sphere is isomorphic to the group of
2 x 2 rotation matrices (cf. Exercise 22, Sec. 4-4).

4-7. Further Properties of Geodesics;

Convex Neighborhoodst

In this section we shall show how certain facts on geodesics (in particular,
Prop. 5 of Sec. 4-4) follow from the general theorem of existence, uniqueness,

and dependence on the initial condition of vector fields.
The geodesics 1n a parametrization x(u, v) are given by the system

w4+ TH@') -+ 2050’y + T =0,

1
v" + r%l(u’)z + 2T {u'v" + r%z(”’)z = 0, @

where the I'5 are functions of the local coordinates u and v. By setting
u' = & and v’ = 7, we may write the above system in the general form

5, — Fl(us rv: é: ”)3
?.1, _ Fz(us rva é! 1,1)7
u' = F3y(u, v, &, i),
v = F4(u’ v, éa ﬂ)’

(2

Where F3(U, v, 6, ﬂ) = és F4(ll, rvs és ”) - ”

It is convenient to use the following notation: (i, v, £, #) will denote a
point of R* which will be thought of as the cartesian product R* = R? x R?;
(4, v) will denote a point of the first factor and (&, #) a point of the second
factor.

The system (2) is equivalent to a vector field in an open set of R* which
is defined in a way entirely analogous to vector fields in R? (cf. Sec. 3-4). The
theorem of existence and uniqueness of trajectories (Theorem 1, Sec. 3-4)
still holds in this case (actually, the theorem holds for R*; cf. S. Lang, Analy-
sis 1, Addison-Wesley, Reading, Mass., 1968, pp. 383-386) and is stated as
follows:

Given the system (2} in an open set U < R* and given a point
(Ug, Vo, Eou 1p) € U
there exists a unique Itrajectory a: (—¢€, €) — U of Egq. (2), with
a(0) = (g, Vo, Eos Ho)-

+This section may be omitted on a first reading. Propositions 1 and 2 (the statements of
which can be understood without reading the section) are, however, used in Chap., 5,
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To apply this result to a regular surface S, we should observe that, given
a parametrization x(, v) in p € S, of coordinate neighborhood V, the set
of pairs (g, ¥), g € V, v € T,(S), may be identified to an open set V' X R* =
U < R*. For that, we identify each T,(S),q € V, with R* by means of the
basis {x,, X,}. Whenever we speak about differentiability and continuity in
the set of pairs (g, v} we mean the differentiability and continuity induced by
this identification.

Assuming the above theorem, the proof of Prop. 5 of Sec. 4-4 is trivial.
Indeed, the equations of the geodesics in the parametrization x(u, v) in
p € Syield a system of the form (2) in U « R*. The fundamental theorem
implies then that given a point g = (%,, ¥,) € ¥ and a nonzero tangent vector
v = (&y, 7o) € T,(S) there exists a unique parametrized geodesic

=moa:(—e, ) — V

in ¥V (where n(g, v) = ¢ is the projection V X R* — V).

The theorem of the dependence on the initial conditions for the vector
field defined by Eq. (2) is also important. It is essentially the same as that for
the vector fields of R%: Given a point p = (U, Vo, o, o) € U, there exist a
neighborhood V = V| X V, of p (where V, is a neighborhood of (u,, v,) and
V, is a neighborhood of (&,, 1)), an open interval 1, and a differentiable
mapping o:1 X V, X V, — U such that, fixed u,v,& ) =(q,v) eV,
then a(t, q, v), t € 1, is the trajectory of (2) passing through (q, v).

To apply this statement to a regular surface S, we introduce a parametri-
zation in p € S, with coordinate neighborhood ¥, and identify, as above,
the set of pairs (g, ), ¢ € V,v € T,(S), with ¥ x R?. Taking as the initial
condition the pair (p, 0), we obtain an interval (—e¢,, €,), a neighborhood
V, < Vofpin S, aneighborhood ¥V, of the origin in R?, and a differentiable

map

P:i(—€,€) XV, X V,—V

such that if (g, v) € V, X V,, v # 0, the curve

is the geodesic of S satisfying y(0, g, v) = ¢, 9'(0, g, v) = v, and if v = 0, this
curve re drvirac tn tha r\1ﬂf Haovra vt — = o where o 01\ — i7 1< tha nraiec-
curve requces 1o il l}v J.Al.l.:l Livic p i &, WAEre i\, vy & 43 dlie pPrUjiu

tion U =V x R* — V and « is the map given above.
Back in the surface, the set ¥, X V, is of the form

{(g.v)p € Vv € V(0) = T(S)}
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y to (—e€,,€,) X {p} X V,, we can choose {p} x V, = B, < T,(S), and
obtain

THEOREM 1. Given p € S there exist numbers €, > 0,€, > 0 and a
differentiable map

P:(—€2,6) X B, — S, B, < T,S)

such that for v € B.,v=0,t € (—e,,€,) the curve t— p(t,v) is the
geodesic of S with (0, v) = p, y'(0, v} = v, and for v = 0, p(t, 0) = p.

This result was used in the proof of Prop. 1 of Sec. 4-6.

The above theorem corresponds to the case where p is fixed. To handle the
general case, let us denote by B,(g) the domain bounded by a (small) geodesic
circle of radius r and center g, and by B,(g) the union of B,(g) with its bound-
ary.
Let € > 0 be such that B.(p) = V,. Let B;,,(0) = ¥ (0) be the largest
open disk in the set ,(0) formed by the union of ¥,(0) with its limit points,
and set €; = inf 8(g), g € B.(p). Clearly, €, > 0. Thus, the set

U ={(g,v); 9 € Bdp), v € B.,(0) < T,(S)}
is contained in V, X V,, and we obtain

THEOREM 1a. Given p € S, there exist positive numbers €, €,, €, and a
differentiable map

y: (—62: 62) X U — S,
where
U ={(q, v);q € B.p),v € B,(0) = T,(S)},

such that y(t, q, 0) = q, and for v 5= 0 the curve
t— Y(ta q, V)s t e (__62: 62)
is the geodesic of S with (0, q, v) = q, y'(0, g, v) = V.

Let us apply Theorem 1a to obtain the following refinement of the exist-
ence of normal geodesics.

PROPOSITION 1. Given p € S there exist a neighborhood W of p in S
and a number & > 0 such that for every q € W, exp, is a diffeomorphism on
B;(0) = T,(S) and exp, (B0)) = W; that is, W is a normal neighborhood

nf All ifo npinte
UJ AP b tlUlvllszo
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Proof. Let V be a coordinate neighborhood of p. Let ¢, ¢€,,€, and
7:(—€3, €) X U — V be as in Theorem la. By choosing €, < €,, we can
make sure that, for (g, v) € U, exp,(v) = p(v|, ¢, v) is well defined. Thus,

re 1tndi, 10r (4 AV LI £

we can define a differentiable map ¢: U — ¥V x V by

3 U

ola. v) = (g. ex
TN\ Vs i

We first show that dg is nonsingular at (p, 0). For that, we investigate
how ¢ transforms the curves in U given by

[ —> (p’ tw): [ —> (O!(t), 0):

where w € T,(S) and a(?) is a curve in S with a(0) = p. Observe that the
tangent vectors of these curves at t = 0 are (0, w) and («’(0), 0), respectively.
Thus,

pir.of0, ) = 5(p. expw)| | = (0,w),
dper.@ (), 0) = Z(00) exp.oO)| | = @(0), 2/0)),

and dg, ,, takes linearly independent vectors into linearly independent vec-
tors. Hence, dg,, o) 1s nonsingular.

It follows that we can apply the inverse function theorem, and conclude
the existence of a neighborhood U of (p, 0) in U such that ¢ maps U diffeo-
morphically onto a neighborhood of (p, p) in ¥V X V. Let U < B.(p) and
J > 0 be such that

V={gv)e U;qc Uv e B(0) = T(S)}.

Finally, let W < U be a neighborhood of p such that W x W < (V).

We claim that ¢ and W thus obtained satisfy the statement of the theorem.
In fact, since ¢ is a diffeomorphism in U, exp, is a diffeomorphism in B,(0),
q € W. Furthermore, if g € W, then

e(lq} < Bx0) = {q} x W,
and, by definition of ¢, exp,(B;(0)) o W. Q.E.D.

Remark 1. From the previous proposition, it follows that given two
points g, g, € W there exists a unique geodesic y of length less than §
joining ¢, and ¢,. Furthermore, the proof also shows that y “depends differ-
entiably” on ¢, and ¢, in the following sense: Given (¢,,9.) € W X W, a
unique v € 7,,(S)is determined (precisely, the » given by ¢ (¢4, ¢.) = (g:, )
which depends differentiably on (q,, ¢,) and is such that y’(0) = ».
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One of the applications of the previous result consists of proving that a
curve which locally minimizes arc length cannot be “broken.” More precisely.
we have

PROPOSITION 2. Let : 1 — S be a parametrized, piecewise regular
curve such that in each regular arc the parameter is proportional to the arc
length. Suppose that the arc length between any two of its points is smaller
than or equal to the arc length of any parametrized regular curve joining these
points, Then o is a geodesic; in particular, o, is regular everywhere.

Proof. LetQ =¢, <<t < ..+ < t, < t,,; = [ be a subdivision of [0, /]
= I'in such a way that «|[t, .., i =0, ..., k, 1s regular. By Prop. 5 of
Sec. 4-6, o is geodesic at the points of (¢, t;,,). To prove that « is geo-

desic in ¢, consider the neighborhood W, oiven hv Pron. 1. of fvff\ 1et

MLy IR By MULIGIRLL Wb ddligHiuvii iV P e SiY VAL S ’ j i g

g, = olt; — €),9, = a(t; + €), € > 0, be two points of W, and let y be the
radial geodesic of By(q,) joining ¢, to ¢, (Fig. 4-43). By Prop. 4 of Sec.
4-6, extended to the piecewise regular curves, /(y) < /(o) between g, anc
q;. Together with the hypothesis of the proposition, this implies tha:
I(y) = le). Thus, again by Prop. 4 of Sec. 4-6, the traces of p and «

&Y ik oY

coincide. Therefore, o is geodesic in #,, which ends the proof. Q.E.D.

Figure 4-43 Figure 4-44
In Example 6 of Sec. 4-4 we have used the following fact: A4 gwde_uc
v(t) of a surface of revolution cannot be asymptotic to a arallel P, which is not

itself a geodesic. As a further application of Prop. 1, we shall sketch a proof
of this fact (the details can be filled in as an exercise).

Assume the contrary to the above statement, and let p be a point in the
parallel P,. Let W and & be the neighborhood and the number given by
Prop. 1, and let ¢ € P, N W, g #% p. Because p(¢) is asymptotic to P,, the
point p is a limit of points p(z,), where {#;} — oo, and the tangents of y at ¢,
converge to the tangent of P, at p. By Remark 1, the geodesic #(r) with length
smaller than & joining p to ¢ must be tangent to P, at p. By Clairaut’s relation



Further Properties of Geodesics 303

(cf. Example 5, Sec. 4-4), a small arc of #(¢) around p will be in the region of
W where y(¢) lies. It follows that, sufficiently close to p, there is a pair of
points in W joined by two geodesics of length smaller than & (see Fig. 4-44).
This is a contradiction and proves our claim.

One natural question about Prop. 1 is whether the geodesic of length less
than ¢ which joins two points q,, g, of W is contained in W. If this is the
case for every pair of points in W, we say that W is convex.

We say that a parametrized geodesic joining two points is minimal if its
length is smaller than or equal to that of any other parametrized piecewise
rpmﬂzr curve 1mmno these two nmnfc

SARRVT e

When W is convex, we have by Prop. 4 (see also Remark 3) of Sec. 4-6
that the geodesic y joining g, € Wtogq, € W is minimal. Thus, in this case,

t a twn natnte Af I ara intnad k m'ﬂimrJ
WEe may Say thau aily iWO PGS O1 r¢ al€ JOIUINEa u)’ a uuui miiimai

in W. In general, however, W is not convex.

We shall now prove that W can be so chosen that it becomes convex. The
crucial point of the proof is the following proposition, which is interesting
in its own right. As usual, we denote by B,(p) the interior of the region bound-
ed by a geodesic circle S,(p) of radius r and center p.

PROPOSITION 3. For each point p € S there exists a positive number
€ with the following property: If a geodesic y(t) is tangent to the geodesic circle
S.(p), r < €, at y(0), then, for t == 0 small, y(t) is outside B,(p) (Fig. 4-45).

Sy(p) P ¥(Q)

Br(p)

\ Figure 4-45

Proof. Let W be the neighborhood of p given by Prop. 1. For each pair
(g,v),q € W,v e T,(S), |v| =1, consider the geodesic y(z, g, v) and set.
for a fixed pair (g, v) (Fig. 4-46),

exp, ! p(t, g, v) = u(t),
K1, g, 0) = 1)) = F().

Thus, for a fixed (g,v), F(f) is the square of the distance of the point
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u'(r)

e 7
- ¥
exp (¥ (1))
0 & {
S
——
T,(5) expy (q) eXpp
Figure 4-46

y(t, g, v) to p. Clearly, F(t, q, v) is differentiable. Observe that F(t, p, v) =
| ot 2,
Now denote by U! the set

U ={(g,v), g € W,v € TS),[v] =1},
and define a function Q: U! — R by

2
g, v) = %f

t=0

Since F is differentiable, Q is continuous. Furthermore, since

08 — 2, '),

%;_'" = 2u(t), u"(D)> + 24D, W),

and at (n. )
a3 at J

u'(t) =v, (@) =0,

we obtain
Olp,v) =2v|*=2>0 forallv € T,5),|v| = 1.

It follows, by continuity, that there exists a neighborhood V < W such
that (g, v) > Oforallg € Vandv € T,(S) with|v| = 1. Let € > 0 be such
that B.(p) = V. We claim that this € satisfies the statement of the proposition.

In fact, let r < € and let y(¢, g, v) be a geodesic tangent to S,(p) at p(0) =
g. By introducing geodesic polar coordinates around p, we see that
{u(0), #'(0)> = 0 (sce Fig. 4-47). Thus, dF/dt+(0) = 0. Since F(0,q,v) = r?,
and (02F/dt*)(0) > 0, we have that F(z) > r? fort 7= 0 small; hence, y(¢) is
outside B,(p). Q.E.D.
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u (0)/

H(O)

expp

Tp(S)

Figure 4-47
We can now prove

PROPOSITION 4 (Existence of Convex Neighborhoods). For each point
p € S there exists a number ¢ > 0 such that B(p) is convex, that is, any two
points of Bp) can be joined by a unique minimal geodesic in B(p).

Proof. Let € be given as in Prop. 3. Choose § and W in Prop. 1 in such a
way that d < €/2. Choose ¢ <C § and such that B (p) = W. We shall prove
that B.(p) is convex.

Let q,,9, € B.(p) and let y: I — S be the geodesic with length less that
0 << €/2 joining q, to q,. y(I) is clearly contained in B.(p), and we want to
prove that y(f) is contained in B,(p). Assume the contrary. Then there is a

point m € B(p) where the maximum distance v of p(I) to p is attained

A_AQY Ta thharhand ~AF e 4lan N A
\l. 15 o= "I'U} in a uclsuuuuxuuu 01 I.'I, l.llC PUIU.LD UJ. }1\1 ) Wili D€ lll .l)r\p} DUL Llll.b
contadicts Prop. 3. Q.E.D.
T

‘ E
W Figure 4-48

EXERCISES

*1. Let y and w be differentiable vector fields on an open set U = S. Let p € S and
let o:7— U be a curve such that a(0) = p, @'(0) = y. Denote by P,,:
T 0)(S) — T, »(S) the parallel transport along & from 0(0) to a(z), ¢t € I. Prove
that
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D)D) = (PLIw )| s

where the second member is the velocity vector of the curve P;Y{(w(e(r))) in
T,(S)at ¢t = 0. (Thus, the notion of covariant derivative can be derived from the
notion of parallel transport.)

2. a. Show that the covariant derivative has the following properties. Let », w, and
» be differentiable vector fields in U = S, f: U — R be a differentiable func-
tion in S, y(f) be the derivative of fin the direction of y (cf. Exercise 7, Sec.
3-4), and 4, u be real numbers. Then

. Dy(Av 4 pw) = AD,(») + uD,(W); Dy (W) = AD(w) + uD,(w).
D(fo) = Y + Dyv); Dy®) = ID, ().

LYo, W) = Dy, ) + <v, D).

4. D, x, = DgXx,, where x(u, v) is a parametrization of S.

*b. Show that property 3 is equivalent to the fact that the parallel transport along
a given piecewise regular parametrized curve &: I — S joining two points
P, g € S is an isometry between 7,(S) and T,(S). Show that property 4 is
equivalent to the symmetry of the lower indices of the Christoffel symbols.

*¢. Let O(U) be the space of (differentiable) vector fields in U < § and let
D0 x V- V(where we denote D(y,»)= D,(v)) be a map satisfying properties
1-4. Verify that D,(v) coincides with the covariant derivative of the text. (In
general, a D satisfying properties 1 and 2 is called a connectionin U. The point
of the exercise is to prove that on a surface with a given scalar product there
exists a unique connection with the additional properties 3 and 4).

*3, Let o¢: I = [0, /] — S be a simple, parametrized, regular curve. Consider a unit
vector field »(¢) along &, with {&t'(¢), »(¢)> = 0 and a mapping x: R x I— § given
by

xX(s, 1) = exXpq(n (sv(1)), seE R, t el

a. Show that x is differentiable in a neighborhood of /in R x [ and that dx is
nonsingular in (0, 7), ¢t € L

b. Show that there exists € > O such that x is one-to-one in the rectangle ¢t € I,
|s] < €.

¢. Show that in the open set r € (0, /), |s| < €, x is a parametrization of S, the
coordinate neighborhood of which contains &((0, /)). The coordinates thus
obtained are called geodesic coordinates (or Fermi’s coordinates) of basis .
Show that in such a system F = 0, E = 1. Moreover, if & is a geodesic para-
metrized by the arc length, G(0, t) = 1 and G,(0, ) = 0.

d. Establish the following analogue of the Gauss lemma (Remark 1 after Prop. 3.
Sec. 4-6). Let ot: I — S be a regular parametrized curve and let y,(s), € 7, be
a family of geodesics parametrized by arc length s and given by; y(0) = o(r).
{y0), &’(1)} is a positive orthogonal basis. Then, for a fixed §, sufficiently
small, the curve 1 — p(5), t € I, intersects all y, orthogonally (such curves
are called geodesic parallels).



Further Properties of Geodesics 307

4. The energy E of a curve &: [a, b] — S is defined by

b
E(@) = J o)) dr.

A

(b — DE@®)
proportional to the arc length.

b. Conclude from part a that if y: {a, 8] —— Sis a minimal geodesic with y(a) =
y(b) =g, then for any curve &; [aq, ] — S, joining p to g, we have
E(y) < E(«) and equality holds if and only if & is a minimal geodesic.

5. Let y: [0, /] — § be a simple geodesic, parametrized by arc length, and denote by
« and » the Fermi coordinates in a neighborhood of ([0, /]) which is given as
u = Q (cf. Exercise 3). Let u = y(v, r) be a family of curves depending on a param-
eter ¢, —€ < ¢t < €, such that y is differentiable and

0,0 =y0) =p, plho=yD=¢q @0 =7y@)=0.

Such a family is called a variation of y keeping the end points p and g fixed. Let
E(z) be the energy of the curve y(v, r) (cf. Exercise 4); that is,

E(f) = J: (%%(v, t))2 dv.

E'(0) = 0,

L) = [ {dm? _ gnal g
20 0= | N\g) AT

where n(v) = dy/dt|,_,, K = K(v) is the Gaussian curvature along 7y, and ’
denotes the derivative with respect to ¢ (the above formulas are called the
first and second variations, respectively, of the energy of y; a more complete
treatment of these formulas, including the case where ¥ is not simple, will be
given in Sec. 5-4).

b. Conclude from part a that if K <C 0, hen any simple geodesic y: [0, []— S'is

minimal relativelv to the curves “ﬂj ntly close to Y and joining 1’(0\ to y(I).

A1ARRAARZAGL AAGQLIVRAY LU LIAL Se LAUSL LY ails guviilllles WA PR

6. Let Sbethecone z = ka/x2 - 32, k > 0, (x, ») #~ (0, 0), and let ¥V = R2 be the
open set of R? given in polar coordinates by 0 < p < oo, 0 < 8 < 2znsin f,
where cotan f# = k and 7 is the largest integer such that 2zn sin f < 2@ (cf.
Example 3, Sec. 4-2). Let ¢: V' — S be the map

fi]

o(p,0) = (p sin B cos (sm ﬁ) p sin f sm ) p cos ﬂ)
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*h.

*c.
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Letg  S. Assume that f < /6 and let k be the largest integer such that
27tk sin § < ;. Prove that there exist at least & geodesics that leaving from ¢
return to ¢. Show that these geodesics are broken at ¢ and that, therefore, none
of them is a closed geodesic (Fig. 4-49).

(0.e+2nsinf) = r

(P,E) =ry

Under the conditions of part b, prove that there are exactly &k such geodesics.

7. Let &: { — R3 be a parametrized regular curve. Foreach s € 7, let P(t) = R? be
a plane through 0(t) which contains &(#). When the unit normal vector N(¢) of
P(1) is a differentiable function of ¢ and N'(r) = 0, ¢t € I, we say that the map
t — {0(2), N()} is a differentiable family of tangent planes. Given such a family,
we determine a parametrized surface (cf. Def. 2, Sec. 2-3) by

N() p NG,

The parametrized surface x is called the envelope of the family {a(r), N(t)}

(cf. Example 4, Sec. 3-5).

a.

Let S be an oriented surface and let y: 7 — S be a geodesic parametrized by
arc length with k(s) == 0 and 7(s) # 0, s € I. Let N(s) be the unit normal
vector of S along y. Prove that the envelope of the family of tangent planes
{v(s), N(s)} is regular in a neighborhood of y, has Gaussian curvature K = 0,
and is tangent to S along y. (Thus, we have obtained a surface locally isometric
to the plane which contains y as a geodesic.)

Let ot: / — R3 be a curve parametrized by arc length with &(s) = 0 and
T(s) 7= 0, s € I, and let {a(s), n(s)} be the family of its rectifying planes. Prove
that the envelope of this family is regular in a neighborhood of &, has Gaussian
curvature X = 0, and contains & as a geodesic. (Thus, every curve is a geodesic
in the envelope of its rectifying planes,; since this envelope is locally isometric to
the plane, this justifies the name rectifying plane.)



Appendix Proofs of the

Fundamental Theorems of the

Local Theory of Curves and Surfaces

In this appendix we shall show how the fundamental theorems of existence
and uniqueness of curves and surfaces (Secs. 1-5 and 4-2) may be obtained
from theorems on differential equations.

Proof of the Fundamental Theorem of the Local Theory of Curves (cf. state-
ment in Sec. 1-5). The starting point is to observe that Frenet’s equations

dt
7 = kn,

dn
ds
db
ds

| ~L
— AL —/ Y,

~~
—
-’

= 1THn

may be considered as a differential system in 7 X R®,

¢, _
ds

4, _
ds

f1(s: & 0005 &)

Jo(8: 81005 o) )

25 s € I, (1a)

Where (619 625 63) = t: (645 655 66) = n: (675 583 59) - bs and.f;'a l = 15 ce e s 9>

are linear functions (with coeflicients that depend on s) of the coordinates &,.

309



370 Intrinsic Geometry of Surfaces

In general, a differential system of type (la) cannot be associated to a
“steady” vector field (as in Sec. 3-4). At any rate, a theorem of existence and
uniqueness holds in the following form:

Given initial conditions sq € 1, (o, . - ., (Eo)o, there exist an open interval
I = I containing s, and a unique differentiable mapping o: J — R®, with

“(50) = ({(&1)os - -+ s (€s)o) and 05,(5) =({y,..., f5),

where each T;,1 =1, ..., 9, is calcuiated in (s, a(s)) € J x R®. Furthermore,
if the system is linear, J =1 (cf. S. Lang, Analysis 1, Addison-Wesley,
Reading, Mass., 1968, pp. 383-386).

It follows that given an orthonormal, positively oriented trihedron
{tos Moy Do} In R?* and a value s, € I, there exists a family of trihedrons
{t(s), n(s), b($)}, s = I, with t(sg) = tq, n(Se) = 1y, b(sg) = by.

We shall first show that the family {#(s), n(s), b(s)} thus obtained remains
orthonormal for every s € I In fact, by using the system (1) to express the
derivatives relative to s of the six quantities

my,  Lby, <nmb), {t, £, {n,ny, <bb>

as functions of these same quantities, we obtain the system of differential
equations

%a, > = kim n> — k<, £ — 11, b,
L, by =k, by + 7t m,

L by = — k<1, by — 1, by + 7,
5%@ £ = 2k{t, m,

%@, n> = —2kn, 1> — 2en, b>,

E%a), b = 2¢¢b, n.

It is easily checked that

{,ny =0, (b,b>=0, {n, b>=0,
tt=1Ln=15n=1,

is a solution of the above system with initial conditions 0,0, 0, 1, 1, 1. By
uniqueness, the family {(s), n(s), b(s)} is orthonormal for every s € I, as we

Tatma
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From the family {(s), n(s), b(s)} it is possible to obtain a curve by setting

o(s) = J-t(s) ds, s € I

\‘uhpl‘n hy f"‘\p intagral Af a yvar
YYALGA W Uy ik diL MeALOL Vi 4 YW

by integrating each component. It is clear that a'(s) = #(s) and that &"'(s) =
kn. Therefore, k(s) is the curvature of & at s. Moreover, since

o'"'(s) =k'n + kn' = k'n — k*t — k1b,

the torsion of & will be given by (cf. Exercise 3, Sec. 1-5)

' Na’,a'> e Nkn (—k*+ k'n— ktb)y
- ) = - 72 =1,
o is, therefore, the required curve.

We still have to show that a is unique up to translations and rotations of
R3. Let &: I — R3 be another curve with &(s) = k(s) and 7(s) = 7(s), s € 1,
and let {f,, i, by} be the Frenet trihedron of & at s,. It is clear that by a
translation 4 and a rotation p it is possible to make the trihedron {7,, 72y, b,}
coincide with the trihedron {z,, n,, b,} (both trihedrons are positive). By
applying the uniqueness part of the above theorem on differential equations,
we obtain the desired result. Q.E.D.

Proof of the Fundamental Theorem of the Local Theory of Surfaces (cf. state-
ment in Sec. 4-3). The idea of the proof is the same as the one above; that
is, we search for a family of trihedrons {x,, x,, N}, depending on  and v,
which satisfies the system

%o = ThiXe+ THx, + e,

X, = X, + Tiex, + fN = x,,

X, = I'32X, + I'32x, + gN, (2
N, = an X, + X,

Nv — alzxu "{_ azzxm

where the coeflicients T¥, a,, i, j = 1, 2, are obtained from E, F, G,e,f, g
as if it were on a surface.
The above equations define a system of partial differential equations in

V' x R?,
€=, v, 81h .5 Co),

(2a)
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where & =(C1,¢083) =X, = (80 &5 86 =X, €= (1,86 ¢ ) =N,
and f; = 1, ..., 15, are linear functions of the coordinates £,, j = 1, , 9,
with coeflicients that depend on » and v.
In contrast to what happens with ordinary differential equations, a system
of type (Za) is not integrable in general. For the case in question, the condi-
Ph jiefniess AL o Tanal ol

LlU[lb Wlllbll EudldlllUC LllU CAIDLCUL«U ana utliyjuciicss UL a 10Cai bUluLlUll LU_[

given initial conditions, are

fuv - é'vw nuv — ﬂvu! Cuv = Cvu'

A proof of this assertion is found in J. Stoker, Differential Geometry, Wiley-
Interscience, New York, 1969, Appendix B.

As we have seen in Sec. 4-3, the conditions of integrability are equivalent
to the equations of Gauss and Mainardi-Codazzi, which are, by hypothesis,

P | araf oot rRp

oot T
SALISIICU. 1IICICIULC, LUU bybLUlll \Ld.) Ib lllLCgldUlC

Let{&, n, {} be a solution of (2a) defined in a neighborhood of (i,, v,) € V,
with the initial conditions &(u,, 2o) = o, 71U, ¥o) = Ho, {(Ug, ¥6) = {,.
Clearly, it is possible to choose the initial conditions in such a way that

&8 = E(ug, o)
”% - G(LIO, ’UO)’
oo 0 = Fug, vo), 3)
G=1,
<fo, £oo = {10, Loy = 0.

With the given solution we form a new system,

x, = ¢,

X, =1,

(4

which is clearly integrable, since &, = #,. Let x: ¥ — R® be a solution of
(4), defined in a neighborhood ¥ of (i, #,), with X(i,, ¥,) = po € R®. We
shall show that by contracting ¥ and interchanging v and u, if necessar
x(V) is the required surface.

We shall first show that the family {¢, #, {}, which 1s a solution of (2a).
has the following property. For every (v, ») where the solution is defined, we

have

&= E
nt =G,

&ny=F 5
=

& =<1, (> = 0.
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Indeed, by using (2) to express the partial derivatives of

¢y 8 s GO DD

as functions of these same 6 quantitics, we obtain a system of 12 partial
differential equations:

(&%), = B4 % ..., <0, D),
(52)” - Bz(ézs ”23 e <7T= C>):
' (6)

0y = B(&4n%, ..., <, D).

Since (6) was obtained from (2a), it is clear (and may be checked directly)
that (6) is integrable and that

{*=E,
=G,
Fm EN T
N %/ 4
CZ =1,

&O=40=0

is a solution of (6), with the initial conditions (3). By uniqueness, we obtain
our claim.
It follows that

1%, A X, [F = X33 — (%, X,)* — EG — F* > 0,
Therefore, if x: ¥ — R? is given by
x(u, v) = (x(u, v), y(u, ), z(u, v)), (u, v) € 173

one of the components of x, A x,, say d(x, y)/d(u, v), is different from zero
in (u,, v,). Therefore, we may invert the system formed by the two first com-
ponent functions of x, in a neighborhood U < ¥V of (u,, v,), to obtain a
map F(x, y) = (u, ). By restricting x to U, the mapping x: U — R? is one-
to-one, and its inverse x ! = F o 7 (where 7 is the projection of R® on the x)
plane) is continuous. Therefore, x: U — R? is a differentiable homeomor-
phism with x, A x, # 0; hence, x(U) < R? is a regular surface.

From (5) it follows immediately that E, F, G are the coefficients of the
first fundamental form of x(U) and that { is a unit vector normal to the
surface. Interchanging » and w, if necessary, we obtain

_ XUAX’U —
‘= [x, A X, ]| .
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From this, the coefficients of the second fundamental form of x(u, v)
are computed by (2), yielding

<C’ Xu) = €, <C’ X, =/, &, x,) =g

which shows that those coefficients are e, f, g and concludes the first part of
the proof.

It remains to show that if U is connected, x is unique up to translations
and rotations of R*. To do this, let X: U -— R® be another regular surface
with E=E,F=F,G=G,é =e,f —f, and § — g. Since the first and
second fundamental forms are equal, it is possible to bring the trihedron

X (u0s V), X, (1, V), N(um vo)}
into coincidence with the trihedron
{Xu(uus Vo), X,(Ug, V), N(ug, 'Uo)}

by means of a translation 4 and a rotation p.
The system (1a) is satisfied by the two solutions.

Since both solutions coincide in (u,, ©,), we have by uniqueness that

X, =X x, = X,, N:]\_f, )]

i’

in a neighborhood of (i, v,). On the other hand, the subset of U where (7)
holds is, by continuity, closed. Since U is connected, (7) holds for every
(u,v) € U.

From the first two equations of (7) and the fact that U is connected, we
conclude that

x(u, v) = X(u, v) - C,

where C'is a constant vector. Since x(u,, v4)= X(u,, v,), we have that C = 0,
which completes the proof of the theorem. Q.E.D.



5 Global
Differential Geometry

5-1. Introduction

The goal of this chapter is to provide an introduction to global differential
geometry. We have already met global theorems (the characterization of
compact orientable surfaces in Sec. 2-7 and the Gauss-Bonnet theorem in
Sec. 4-5 are some examples). However, they were more or less encountered
in passing, our main task being to lay the foundations of the local theory of
regular surfaces in R3. Now, with that out of the way, we can start a more
systematic study of global properties.

Global differential geometry deals with the relations between local and
global (in general, topological) properties of curves and surfaces. We tried to
minimize the requirements from topology by restricting ourselves to subsets
of euclidean spaces. Only the most elementary properties of connected and
compact subsets of euclidean spaces were used. For completeness, this
material is presented with proofs in an appendix to Chap. $.

In using this chapter, the reader can make a number of choices, and with
this in mind, we shall now present a brief section-by-section description of
the chapter. At the end of this introduction, a dependence table of the
various sections will be given.

In Sec. 5-2 we shall prove that the sphere is rigid; that is, if a connected,
compact, regular surface S < R? is isometric to a sphere, then S is a sphere.
Except as a motivation for Sec. 5-3, this section is not used in the book.

In Sec. 5-3 we shall introduce the notion of a complete surface as a
natural setting for global theorems. We shall prove the basic Hopf-Rinow
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theorem, which asserts the existence of a minimal geodesic joining any two
points of a complete surface.

In Sec. 5-4 we shall derive the formulas for the first and second variations
of arc length. As an application, we shall prove Bonnet’s theorem: A com-
plete surface with Gaussian curvature positive and bounded away from zero
iIs compact.,

In Sec. 5-5 we shall introduce the important notion of a Jacobi field along
a geodesic y which measures how rapidly the geodesics near y pull away
from y. We shall prove that if the Gaussian curvature of a complete surface
S is nonpositive, then exp,: T,(S) — S 1s a local diffeomorphism.

This raises the question of finding conditions for a local diffeomorphism
to be a global diffeomorphism, which motivates the introduction of covering
spaces in Sec. 5-6. Part A of Sec. 5-6 is entirely independent of the previous
sections. In Part B we shall prove two theorems due to-Hadamard: (1) If §
is complete and simply connected and the Gaussian curvature of S is non-
positive, then S is diffeomorphic to a plane. (2) If S is compact and has
positive Gaussian curvature, then the Gauss map N: S -— S? is a diffeomor-
phism; in particular, S is diffeomorphic to a sphere.

In Sec. 5-7 we shall present some global theorems for curves. This section
depends only on Part A of Sec. 5-6.

In Sec. 5-8 we shall prove that a complete surface in R?® with vanishing
Gaussian curvature is either a plane or a cylinder.

In Sec. 5-9 we shall prove the so-called Jacobi theorem: A geodesic arc
1s minima} relative to neighboring curves with the same end points if and
only if such an arc contains no conjugate points.

In Sec. 5-10 we shall introduce the notion of abstract surface and extend
to such surfaces the intrinsic geometry of Chap. 4. Except for the Exercises,
this section is entirely independent of the previous sections. At the end of
the section, we shall mention possible further generalizations, such as differ-
entiable manifolds and Riemannian manifolds.

In Sec. 5-11 we shall prove Hilbert’s theorem, which implies that there
exists no complete regular surface in R® with constant negative Gaussian
curvature.

In the accompanying diagram we present a dependence table of the
sections of this chapter. For instance, for Sec. 5-11 one needs Secs. 5-3, 5-4.
5-5, 5-6, and 5-10; for Sec. 5-7, one needs Part A of Sec. 5-6; for Sec. 5-8 one
needs Secs. 5-3, 5-4, and 5-5 and Part A of Sec. 5-6.
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For Sec.
5-2 53 54 55 56A56B57 58 59 510 5-11

5-3

54

5-5

5-6.A

5-6,B

5-7 -

One needs Sec.

5-8

5-9

5-10

5-11

5-2. The Rigidity of the Sphere

It is perhaps convenient to begin with a typical, although simple, example of
a global theorem. We choose the rigidity of the sphere.

We shall prove that the sphere is rigid in the following sense. Let
¢:X-— S be an isometry of a sphere £ = R® onto a regular surface
S = @(X) < R®. Then § is a sphere. Intuitively, this means that it is not
possible to deform a sphere made of a flexible but inelastic material.

Actually, we shall prove the following theorem.

THEOREM 1. Let S be a compact, connected, regular surface with con-
stant Gaussian curvature K. Then S is a sphere.

The rigidity of the sphere follows immediately from Theorem 1. In fact,
let ¢: X -— S be an isometry of a sphere ¥ onto S. Then ¢(X) = S has con-
stant curvature, since the curvature is invariant under isometries. Further-
more, p(X¥) =S is compact and connected as a continuous image of the
compact and connected set T (appendix to Chap. 5, Props. 6 and 12). It
follows from Theorem 1 that S is a sphere.

The first proof of Theorem 1 is due to H. Liebmann (1899). The proof we
shall present here is a modification by S. S. Chern of a proof given by D.
Hilbert (S.S. Chern, “Some New Characterizations of the Euclidean
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Sphere,” Duke Math. J. 12 (1945), 270-290; and D. Hilbert, Grundlagen der
Geometrie, 3rd ed., Leipzig, 1909, Appendix 5).

Remark 1. It should be noticed that there are surfaces homeomorphic
to a sphere which are not rigid. An example is given in Fig. 5-1. We replace
the plane region P of the surface S in Fig. 5-1 by a “bump” inwards so that
the resulting surface S” is still regular. The surface S’* formed with the
“symmetric bump” is isometric to S’, but there is no linear orthogonal
transformation that takes S’ into §”’. Thus, §’ is not rigid.

Figure 5-1

We recall the following convention. We choose the principal curvatures
k, and k, so that k,(q) > k,(q) for every ¢ € S. In this way we obtain k,
and &, as continuous functions in S which are differentiable except, perhaps,
at the umbilical points (k; = k,) of S.

The proof of Theorem 1 is based on the following local lemma, for which
we shall use the Mainardi-Codazzi equations (Sec. 4-3).

LEMMA 1. Let S be a regular surface and p € S a point of S satisfying
the following conditions:

1. K(p) > 0; that is, the Gaussian curvature in p is positive.

2. pis simultaneously a point of local maximum for the function k, an
a point of local minimum for the function kX, (k; > k,).

Then p is an umbilical point of S.

Proof. Let us assume that p is not an umbilical point and obtain a con-
tradiction.

If p is not an umbilical point of S, it is possible to parametrize a neighbor-
hood of p by coordinates (u, v) so that the coordinate lines are lines of
curvature (Sec. 3-4). In this situation, F = f = 0, and the principal curvatures
are given by e/E, g/G. Since the point p is not umbilical, we may assume, by
Interchanging  and v if necessary, that in a neighborhood of p
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k,— %, kzzg- m

In the coordinate system thus obtained, the Mainardi-Codazzi equations are
written as (Sec. 4-3, Eqgs. (7) and (7a))

e, =Stk 1 ko), @

g = ek, + ko) 3

By differentiating the first equation of (1) with respect to » and using Eq. (2),
we obtain

_E,,
Bk, — Bk, + k). @
Cimilarly hy Aiffarantiatineg tha cannnd anna trnty AF C1N th rageman + 4 nrd
AJALLLILICLELY o U Y ULLIVIWLIIVRGLLIIES L1 OWVULIWGL \rLiua-L.l 11 v \J.} Yy iill lCDPCUL LW i Gl

Glky), = Gty — ko). )

On the other hand, when F = 0, the Gauss formula for K reduces to
(Sec. 4-3, Exercise 1)

K= ’w%; {(A/EEE) N (J%G)u};
hence,
—2KEG = E,, + G,, + ME, + NG,, ©

where M = M(u, v) and N = N(u, v) are functions of (1, v), the expressions
of which are immaterial for the proof. The same remark applies to M, N,

M, and N, to be introduced below.
From Eas. (4\ and (§\ we obtain expr

LR e | v UG bl uu

ssions for E, and G, which, after
being dlﬁ'erentlated and mtroduced in Eq. (6), yield

hence,
—(k, — ky)KEG = —2E(k,),, + 2G(k,),, + M(k)), + N(ky),. (D

Since K > 0 and k, > k, at p, the first member of Eq. (7) is strictly nega-
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tive at p. Since k, reaches a local maximum at p and k, reaches a local mini-
mum at p, we have

(kl)u - 0: (kZ)u = 05 (kl)vv g 09 (kz)uu 2. O

at p. However, this implies that the second member of Eq. (7) is positive or
zero, which is a contradiction. This concludes the proof of Lemmal. Q.E.D.

it should be observed that no contradiction arises in the proof if we
assume that 4, has a local minimum and k, has a local maximum at p. Actu-

ally, such a situation may happen on a surface of positive curvature without
p being an umbilical point, as shown in the following exampie.

Example 1. Let S be a surface of revolution given by (cf. Sec. 3-3, Exam-
ple 4)

x = @(v) cos u, vy = @(v) sin u, z = w(w), 0 <u<<2nm,

where
¢(v) = C cos v, C>1,

w(v) = fMl —Cfsinfody,  w(0)=0.

We take |»| << sin™!'(1/C), so that w(») is defined.
By using expressions already known (Sec. 3-3, Example 4), we obtain

E = C?cos? v,
F=0,
G=1,
e = —Ccos v(n/1 — C¥sin? p),
F=0,
C cos v

E= T~ Cenio’

hence,

Ccosw

kw_q___,\/l—Czsmv ko= &
T PTG 1T —C?sin?p

E Ccos v

Therefore, S has curvature K = kk, =1 > 0, positive and constant (cf.
Exercise 7, Sec. 3-3).

It is easily seen that k&, > k, everywhere in S, since C > 1. Therefore, S
has no umbilical points. Furthermore, since k; = —(1/C) for » = 0, and
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Ccoswv C

Y o )
kI:——“/l C” sin LS 1 for » = 0,

we conclude that &, reaches a minimum (and therefore k, reaches a maxi-
mum, since K == 1) at the points of the parallel y = 0.

Incidentally, this example shows that the assumption of compactness in
Theorem 1 is essential, since the surface S (see Fig. 5-2) has constant positive
curvature but is not a sphere.

~ T

Figure 5-2

In the proof of Theorem 1 we shall use the following fact, which we
establish as a lemma.

LEMMA 2. A regular compact surface S < R? has at least one elliptic
point.

Proof. Since S is compact, S is bounded. Therefore, there are spheres of
R3, centered in a fixed point O € R?, such that S is contained in the interior
of the region bounded by any of them. Consider the set of all such spheres.
Let r be the infimum of their radii and let £ < R3 be a sphere of radius r
centered in O. It is clear that ¥ and S have at least one common point, say p.

The tangent plane to X at p has only the common point p with S, in a neigh-
borhood of p. Therefore, ¥ and § are tangent at p. By observmo the normal

sections at p, it is easy to conclude that any normal curvature of S at p is
greater than or equal to the correspondmg curvature of ¥ at p. Therefore,
e wished O.ED

lub, 45 we wisned. AT VY B
Proof of Theorem 1. Since S is compact, there is an elliptic point, by
Lemma 2. Because K is constant, K > 0 in S.

By compactness, the continuous function &, on S reaches a maximum at
a point p € S (appendix to Chap. 5, Prop. 13). Since K = k,k, is a positive



322 Global Differential Geametry

constant, k, is a decreasing function of k,, and, therefore, it reaches a mini-
mum at p. It follows from Lemma 1 that p is an umbilical point; that is,
ki(p) = ky(p).

Now let g be any given point of S. Since we assumed k,(g) > k,(q),
we have that

ki(p) = ki(q) = ky(q) = ky(p) = k(D).

Therefore, k,(q) = k,(q) for every g € S.
It follows that all the points of § are umbilical points and, by Prop. 5
of Sec. 3-2, S is contained in a sphere or a plane. Since K > 0, S is con-

taimad 1 a X Dyr ~Aa;man Caig rlacad 1 nAd o Cic aracgilar
Lalllbu lll a- Dyll\rl\r PN D'y \JU]J].}JCEUL]J.\:OD, w2 13 \leDCU ll]. Ay allu Dlll\/\v M 1o a lvsuial

surface, S'is open in X. Since X is connected and S is open and closed in X,
S = X (appendix to Chap. 5, Prop. 5).

[ nt PR S a1 . o B S T T
LICICiore, tne surrdce oS 15 a splcre. V..,

Observe that in the proof of Theorem 1 the assumption that K = k k&,
is constant is used only to guarantee that k, is a decreasing function of ;.
The same conclusion follows if we assume that the mean curvature H =
3(k; + k,) is constant. This allows us to state

THEOREM 1a. Let S be a regular, compact, and connected surface with
Gaussian curvature K > 0 and mean curvature H constant. Then S is a sphere.

The proof is entirely analogous to that of Theorem 1. Actually, the
argument applies whenever k, = f(k,), where fis a decreasing function of

I( More nrpmqplu’ we have

ivie aVaAA FRWLES P LW }

THEOREM 1b. Let S be a regular, compact, and connected surface of
positive Gaussian curvature. If there exists a relation k, = f(k,) in S, where f
is a decreasing function of ky, k; > k,, then S is a sphere.

Remark 2. The compact, connected surfaces in R? for which the Gaussian
curvature K > 0 are called ovaloids. Therefore Theorem la may be stated as
follows: An ovaloid of constant mean curvature is a sphere.

On the other hand, it is a simple consequence of the Gauss-Bonnet theo-
rem that an ovaloid is homeomorphic to a sphere (cf. Sec. 4-5, application 1).
H. Hopf proved that Theorem 1la still holds with the following (stronger)
statement: A regular surface of constant mean curvature that is homemorphic
to a sphere is a sphere. A theorem due to A. Alexandroff extends this result
further by replacing the condition of being homeomorphic to a sphere by
compactness: 4 regular, compact, and connected surface of constant mean
curvature is a sphere.

An exposmon of the above-mentioned results can be found in Hopf [11].
1t

2,
)
-+
rl
b
o
R~
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Remark 3. The rigidity of the sphere may be obtained as a consequence
of a general theorem of rigidity on ovaloids. This theorem, due to Cohn-
Vossen, states the following: Two isometric ovaloids differ by an orthogonal
linear transformation of R3. A proof of this result may be found in Chern [10].

Theorem 1 is a typical result of global differential geometry, that is,
information on local entities (in this case, the curvature) together with weak
global hypotheses (in this case, compactness and connectedness) imply strong
restrictions on the entire surface (in this case, being a sphere). Observe that
the only effect of the connectedness is to prevent the occurrence of two or
more spheres in the conclusion of Theorem 1. On the other hand, the hypoth-
esis of compactness is essential in several ways, one of its functions being to
ensure that we obtain an entire sphere and not a surface contained in a
sphere.

EXERCISES

1. Let S = R? be a compact regular surface and fix a point p, € R3, py, ¢ S. Let
d: § — R be the differentiable function defined by d(q) = §|g — pol%, g € S.
Since S is compact, there exists g, € S such that d(g,) > d(q) for all ¢ € S.
Prove that g, is an elliptic point of .S (this gives another proof of Lemma I).

2. Let S < R3 be a regular surface with Gaussian curvature K > 0 and without
umbilical points. Prove that there exists no point on S where H is a maximum and
K 1s a minimum.

3. (Kazdan-Warner’s Remark.) Let S — R3 be an extended compact surface of revo-
lution (cf. Remark 4, Sec. 2-3) obtained by rotating the curve

a(s) = (0, p(s), w(s)),

parametrized by arc length s € [0, /], about the z axis. Here ¢(0) = ¢(I) = 0
and ¢@(s) > 0 for all s € [0, /]. The regularity of .S at the poles implies further
that ’(0) = 1, ¢’(!) = —1 (cf. Exercise 10, Sec. 2-3). We also know that the
Gaussian curvature of Sis given by K = —¢”(s)/9(s) (cf. Example 4, Sec. 3-3).

*a, Prove that

!
, . ,_dK
fngazds—O, K_ds

b. Conclude from part a that there exists no compact (extended) surface of revolu-
tion in R3 with monotonic increasing curvature,

The following exercise outlines a proof of Hopf’s theorem: A regular surface
with constant mean curvature which is homeomorphic to a sphere is a sphere (cf.
Remark 2). Hopf’s main idea has been used over and over again in recent work.

relom e iaseme Qaetimie @l ey L ndo an cim i mtne AL AT A arialalac
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4. Let U < R? be an open connected subset of R? and let x: U — S be an isother-
mal parametrization (i.e., £ = G, F = 0; cf. Sec. 4-2) of a regular surface S. We
identify R? with the complex plane C by setting v + iv = {, (u,») € R2, { e C.
{ is called the complex parameter corresponding to x. Let ¢p: x(U) — C be the
complex-valued function given by

$O) = b v) =255 —if = ¢, + igs,

where e, f, g are the coefficients of the second fundamental form of S.

a. Show that the Mainardi-Codazzi equations (cf. Sec. 4-3) can be written, in the
isothermal parametrization x, as

(£5) cnmrm. (55, s —n

and conclude that the mean curvature H of x(U) < § is constant if and only
if ¢ is an analytic function of { (i.e., (1), = (o), (1), = —(P2))-
b. Define the “complex derivative”

and prove that ¢({) = —2{x,, N>, where by x,, for instance, we mean the
vector with complex coordinates

Xr =

c. Letf: U = €C — ¥V < C be a one-to-one complex function given by f(x + i)
= x + iy = 5. Show that (x, y) are isothermal parameters on S (i.c., 7 is a
complex parameter on .S) if and only if fis analytic and f({) % 0, { € U. Let
y =xof~1 be the corresponding parametrization and define w(n) =
—2{y,, N,». Show that on x(U) N y(V),

$) — w(n)(j—’g)z- ()

d. Let S2 be the unit sphere of R3. Use the stereographic projection (cf. Exercise
16, Sec. 2-2) from the poles N = (0,0, 1) and S = (0,0, —1) to cover §2 by
the coordinate neighborhoods of two (isothermal) complex parameters, { and
n, with {(S) = 0 and #(N) = 0, in such a way that in the intersection W of
these coordinate neighborhoods (the sphere minus the two poles) ## = {~1.
Assume that there exists on each coordinate neighborhood analytic functions
@({), () such that () holds in W. Use Liouville’s theorem to prove that

@({) = 0 (hence, w(n) = 0).
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e. Let S — R?® bearegular surface with constant mean curvature homeomorphic
to a sphere. Assume that there exists a conformal diffeororphismg: § — §?2
of S onto the unit sphere $2 (this is a consequence of the uniformization theo-
rem for Riemann surfaces and will be assumed here). Let ¢ and 7 be the com-
plex parameters corresponding under ¢ to the parameters { and 57 of S2 given
in part d. By part a, the function ¢(C) = ((e — g)/2) — if is analytic. The
similar function w(#) is also analytic, and by part c they are related by ().
Use part d to show that ¢({) = 0 (hence, w(#f) = 0). Conclude that S is made
up of umbilical points and hence is a sphere. This proves Hopf’s theorem.

5-3. Complete Surfaces.
Theorem of Hopf-Rinow

All the surfaces to be considered from now on will be regular and connected,
except when otherwise stated.

- A ~Af Q 1 4L T thhnt 3 -
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obtain global theorems we require, besides the connectedness, some global
hypothesis to ensure that the surface cannot be “extended” further as a
regular surface. It is clear that the compactness serves this purpose. How-
ever, it would be useful to have a hypothesis weaker than compactness which
could still have the same effect. That would allow us to expect global theorems
in a more general situation than that of compactness.

A more precise formulation of the concept that a surface cannot be
extended is given in the following definition.

DEFINITION 1. 4 regular (connected) surface S is said to be extendable
if there exists a regular (connfcted) surface S such that S < S as a proper
Subset. If there exists no such S, S said to be nonextendable.

Unfortunately, the class of nonextendable surfaces is much too large to
allow interesting results. A more adequate hypothesis is given by

DEFINITION 2. A4 regular surface S is said to be complete when for every
point p € S, any parametrized geodesic y:[0,€) — S of S, starting from
p = y(0), may be extended into a parametrized geodesic ¥: R — S, defined
on the entire line R.

In other words, S is complete when for every p € S the mapping exp,:
T,(S) — S (Sec. 4-6) is defined for every v € T,(S).

We shall prove later (Prop. 1) that every complete surface is nonextend-
able and that there exist nonextendable surfaces which are not complete
(Example 1). Therefore, the hypothesis of completeness 1s stronger than that
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of nonextendability. Furthermore, we shall prove (Prop. 5) that every closed
surface in R? is complete; that is, the hypothesis of completeness is weaker
than that of compactness.

The object of this section is to prove that given two points p, g € S of a
complete surface S there exists a geodesic joining p to ¢ which is minimal
(that is, its length is smaller than or equal to that of any other curve joining
p to g). This fundamental result was first proved by Hopf and Rinow (H.

Hanf W Rinow “TT]‘\DT den RaorifF der valletindicen Aifferantialoanmetri_
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schen Flichen,” Comm. Math. Helv. 3 (1931), 209-225). This theorem is the
main reason the complete surfaces are more adequate for differential geome-
try than the nonextendable ones.

Let us now look at some examples. The plane is clearly a complete sur-
face. The cone minus the vertex is a noncomplete surface, since by extending
a generator (which is a geodesic) sufficiently we reach the vertex, which does
not belong to the surface. A sphere is a complete surface, since its para-
metrized geodesics (the traces of which are the great circles of the sphere)
may be defined for every real value. The cylinder is also a complete surface
since its geodesics are circles, lines, and helices, which are defined for all real
values.

On the other hand, a surface S — {p} obtained by removing a point p
from a complete surface S is not complete. In fact, a geodesic y of .5 should
pass through p. By taking a point g, nearby p on y (Fig. 5-3), there exists a
parametrized geodesic of S — {p} that starts from ¢ and cannot be extended
through p (this argument will be given in detail in Prop. 1). Thus, a sphere
minus a point and a cylinder minus a point are not complete surfaces.

Figure 5-3
PROPOSITION 1. A complete surface S is nonextendable.

Proof. Let us assume that S is extendable and obtain a contradiction. To
say that S is extendable means that there exists a regular (connected) surface
S with § < §. Since S is a regular surface, S is open in S. The boundary
(appendix to Chap. 5, Def. 4) Bd S of S'in S is nonempty; otherwise § —
S U (§ — S) would be the union of two disjoint open sets § and § — S,
which contradicts the connectedness of S (appendix to Chap. 5, Def. 10).
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Therefore, there exists a point p € Bd S, and since S is open in §, p ¢ S.

Let ¥ < S be a neighborhood of p in S such that every ¢ € ¥ may be
joined to p by a unique geodesic of S (Sec. 4-6, Prop. 2). Since p € Bd§,
some g, € V belongs to S. Let 7:[0, 1] —— § be a geodesic of S, with 5(0)
= p and §(1) = q,. It is clear that «: [0, €) — S, given by a(t) = (1 — 1), is
a geodesic of S, with a(0) = ¢,, the extension of which to the line R would
pass through p for t = 1 (Fig. 5-4). Since p ¢ S, this geodesic cannot be
extended, which contradicts the hypothesis of completeness and concludes
the proof. Q.E.D.

Figure 5-4 Figure 5-5
The converse of Prop. 1 is false, as shown in the following example.

Example 1. When we remove the vertex p, from the one-sheeted cone
given by

ZZ/\/.)CZ’{‘“_]JZ, (x,y)ERZ,

we obtain a regular surface S. S is not complete since the generators cannot
be extended for every value of the arc length without reaching the vertex.
Let us show that § is nonextendable by assuming that § < S, where
S # S is a regular surface, and by obtaining a contradiction. The argument
consists of showing that the boundary of .S in § reduces to the vertex p, and

that there exists a neighborhood W of p, in § such that W — {p,} = S. But
this contradicts the fact that the cone (vertex p, included) is not a regular

surface in p, (Sec. 2-2, Example 5).

First, we observe that the only geodesic of S, starting from a point p € §.
that cannot be extended for every value of the parameter is the meridian
(generator) that passes through p (see Fig. 5-5). This fact may easily be seen
by using, for example, Clairaut’s relation (Sec. 4-4, Example 5) and will be
left as an exercise (Exercise 2).
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Now let p € Bd S, where Bd S denotes the boundary of S in § (as we
have seen in Prop. 1, Bd S # ¢). Since S is an open set in S,p¢ S LetV
be a neighborhood of P in S such that every point of ¥ may be joined to p by
a unique geodesic of S in V. Since p € Bd S, there exists ¢ € ¥ N 5. Let
7 be a geodesic of S joining p to g. Because S is an open set in .S, 7 agrees
with a geodesic y of S in a neighborhood of ¢g. Let p, be the first point of

that does not belong to S. By the initial observation, ¥ is a meridian and p,
is the vertex of §. Furthermore D, = D; otherwise there would exist a neigh-
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borhood of p that does not contain p,. By repeating the argument for that

neighborhood, we obtain a vertex different from p,, which is a contradiction.

Tt fallawe that BA O radncac +a the vertay »n
AL AULIUWY wIdL DU I 10U ULLS LU LIl YL WA 1"0

Now let W be a neighborhood of p, in S such that any two points of W
may be joined by a geodesic of § (Sec. 4-7, Prop. 1). We shall prove that
V — {po} = S. In fact, the points of y belong to S. On the other hand, a
point » € W which does not belong to y or to its extension may be joined to
a point ¢ of y, t % p,, t € W, by a geodesic o, different from y (see Fig. 5-6).
By the initial observation, every point of &, in particular r, belongs to §.
Finally, the points of the extension of y, except p,, also belong to S; other-
wise, they would belong to the boundary of § which we have proved to be
made up only of p,.

Figure 5-6

In this way, our assertions are completely proved. Thus, § is nonextend-
able and the desired example is obtained.

For what follows, it is convenient to introduce a notion of distance

hatwaan twn nainte af O whicrh Aanande anly Aan tha intrincies canmafery Af ©
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and not on the way § is immersed in R® (cf. Remark 1, Sec. 4-2). Observe
that, since 8 < R?, it is possible to define a distance between two points of
S as the distance between these two points in R?. However, this distance
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depends on the second fundamental form, and, thus, it is not adequate for
the purposes of this chapter.

We need some preliminaries.

A continuous mapping o: [a b} — S of a closed interval [a, b] < R of

tha lina P Antn tha rvrfana C’ nnnnn 1At e o mAaramaed ad miansinten _
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entiable curve joining a(a) to a(b) if there exists a partition of [a, b] by points
a=1t, <<t <ty <+ <t <<tp,; =b such that g is differentiable in
[t t;:1), i =0, ..., k. The length I(e) of o is defined as

k tie1
o) =3 [ ") dr.
PROPOSITION 2. Given two points p,q € S of a regular (connected)
surface S, there exists a parametried piecewise differentiable curve joining p
to g.

Proof: Since S is connected, there exists a continuous curve «: [g, b] — §
with a(a) = p, a(b) =¢q. Let t € [a, b] and let I, be an open interval in
[a, b], containing ¢, such that ¢(/,) is contained in a coordinate neighborhood
of a(?). The union U 7, t € [a, b, covers [a, b] and, by compactness, a finite

number 7, ..., I, still covers [a, b]. Therefore, it is possible to decompose
Ibypointsa =1, <t, < --- <t, <l =binsuch a way that [7, 1, ]
is contained in some /;,, j=1,...,n Thus, a(t,t,,,) is contained in a

coordinate neighborhood.
Since p = w(t,) and a(z,) lie in a same coordinate neighborhood x(U)
— (’ it is nncclhlp to 1mn them hv a differentiable curve, nnmplv the image
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by x of a dlﬁerentlable curve in U < R? joining x‘l(cx(ro)) to x‘l(a(t ). By

this process, we join oft) to olt;n), i =0,...,k, by a differentiable curve
TI’\i(‘ {\“I JaAg O '\‘I.ﬂf\ﬂ A1q‘n1‘ﬁﬂ+ nt‘\‘r_\ Fadh b aa V1) 1 1"\11"\(\’ » f \ nﬂf‘ 7 -
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and concludes the proof of the proposition. Q.E.D.

Now let p,g € § be two points of a regular surface S. We denote by
o,, & parametrized, piecewise differentiable curve joining p to ¢ and by
(et ,, ) its length, Prop051t10n 2 shows that the set of all such a,, , is not empty.

Thue we ran cat the fallawineg:
ALLius, v Lali set L IV IULIVWLLLE .

DEFINITION 3. The (intrinsic) distance d(p, q) from the point p € S
to the point q € S is the number

d(p, @) = infl(x;,0),
where the inf is taken over all piecewise differentiable curves joining p fo q.

PROPOSITION 3. The distance d defined above has the following prop-
erties,
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1. d(p, @) = d(q, p),
2. d(p, @) + d(q, r) = d(p, 1),
3. d(p,q) >0,

4. d(p, q) = 0 if and only if p = q,

where p, q, T are arbitrary points of S.

Proof. Property 1 is immediate, since each parametrized curve

o: [a, b] — S,

with a(a) = p, aib) =g, gives rise to a parametrized curve &: [a, b] — S,
defined by &) = a(a —t -+ b). It is clear that oc(a) =gq, 0(b) =
and [a,,,) = ().

Property 2 follows from the fact that when 4 and B are sets of real num-
bers and 4 = B then inf 4 > inf B.

Property 3 follows from the fact that the infimum of positive numbers is
positive or zero.

Let us now prove property 4. Let p = ¢g. Then, by taking the constant
curve a: [a, b] — S, given by a(t) = p, t € [a, b], we get (&) = 0; hence,

d(p,q) = 0.
To prove that n’(n

us assume that d(p, q) inf /(o ) = 0 and p # ¢. Let V' be a neighborhood
of pin S, with ¢ ¢ V¥, and such that every point of ¥ may be joined to p by
a unique geodesic in V. Let B,(p) — V be the region bounded by a geodesic
circle of radius r, centered in p, and contained in V. By definition of infimum,
given € > 0, 0 << € < r, there exists a parametrized, piecewise differentiable
curve &: [a, b] — S joining p to ¢ and with /(&) << €. Since a{{a, b]) is con-
nected and ¢ ¢ B,, there exists a point ¢z, € [a, b] such that a(z,) belongs to
the boundary of B,(p). It follows that /() > r > €, which is a contradiction.

Therefore, p = ¢, and this concludes the proof of the proposition. Q.E.D.

= 0 implies that p = g we proceed as follows. Let

11 o [ A 4 Frvewveie o AU

\./

COROLLARY. |d(p, 1) — d(r, )| < d(p, Q).

It suffices to observe that

d(p,r} < d{p, q) + d(q, r),
d(r, q) < d(r, p) + d(p, 9);
hence,

PROPOSITION 4. If we let p, € S be a point of S, then the function
f: S — R given by f(p) = d(py, p), P € S, is continuous on S.

Proof. We have to show that for each p « S, given ¢ > 0, there exists

J > 0 such that if g € By(p) N S, where B,(p) < R? is an open ball of R?
centered at P and of radius 5. then | f‘(n\ — f(n\l — i{](n n\ dip..a)| < €.
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Let € << ¢ be such that the exponential map exp, = T,(S) — Sis a
diffeomorphism in the disk B.(0) < T,(S), where 0 is the origin of T,(S),
and set exp(B,.(0)) = V. Clearly, V is an open set in §; hence, there exists
an open ball B,;(p) in R® such that B,(p) " § < V. Thus, if ¢ € B,(p) N S,

|d(po, P) — d(po, @) < d(p,q) < € < e,

[N IRy T, y - - f M T T

QIL.U

Remark 1. The readers with an elementary knowledge of topology will
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of a metric space. On the other hand, as a subset of a metric space, § = R?
has an induced metric 4. It is an important fact that these two metrics deter-
mine the same topology, that is, the same family of open sets in S. This
follows from the fact that exp,: U < T,(S) — S is a local diffeomorphism,
and its proof is analogous to that of Prop. 4.

Having finished the preliminaries, we may now make the following
observation.

PROPOSITION 5. A4 closed surface S = R3? is complete.

Proof. Let y: [0, €) — S be a parametrized geodesic of S,y(0) =p € 5,
which we may assume, without loss of generality, to be parametrized by arc
length. We need to show that it is possible to extend p to a geodesicj: R — S,
defined on the entire line R. Observe first that when ¥(s,), s, € R, is defined,
then, by the theorem of existence and uniqueness of geodesics (Sec. 4-4,
Prop. 5), it is possible to extend ¥ to a neighborhood of s, in R. Therefore,
the set of all s € R where 7 is defined is open in R. If we can prove that this
set is closed in R (which is connected), it will be possible to define ¥ for all
of R, and the proof will be completed.

Let us assume that.y is defined for s << s, and let us show that 7 is defined
for s = s,. Consider a sequence {s,} — s,, with s, <s,, n =1,2,....

We shall first prove that the sequence {¥(s,}} converges in S. In fact, given
€ > 0, there exists n, such that if n, m > n,, then|s, — s,,| << €. Denote by
d the distance in R3, and observe that if p, g € S, then d(p, g) < d(p, q)
Thus,

d(F(s,), F(8m)) < AF(5,), FSm)) < |80 — 8] < 6,

where the second inequality comes from the definition of 4 and the fact that
|s, — 5,]1s equal to the arc length of the curve ¥ between s, and s,,. It follows
that {#(s,)} is a Cauchy sequence in R*; hence, it converges to a pointg € R*
(appendix to Chap. 5, Prop. 4). Since ¢ is a limit point of {}(s,)} and § is
closed, g € S, which proves our assertion.
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Now let W and § be the neighborhood of ¢ and the number given by
Prop. 1 of Sec. 4-7. Let %(s,), ¥(s,.) € W be points such that|s, — s, | < J,
and let y be the unique geodesic with /(y) << & joining ¥(s,) to $(s,,). Clearly,
7 agrees with y. Since expy,, is a diffeomorphism in B,(0) and exp,,,(B;(0))
D W, y extends 7 beyond g. Thus, 7 is defined at s = s,, which completes
the proof. Q.E.D.

COROLLARY. A compact surface is complete.

Remark 2. The converse of PrOp 5 does not hold. For instance, a right
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0 be complete but not closed (Fig. 5-7).
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Figure 5-7. A closed noncom- Figure 5-8
plete surface,

We say that a geodesic y joining two points p, ¢ € § is minimal if its
length /(y) is smaller than or equal to the length of any piecewise regular
curve joining p to g (cf. Sec. 4-7). This is equivalent to saying that /(y) =
d(p, q), since, given a piecewise differentiable curve ¢ joining p to ¢, we can
find a piecewise regular curve joining p to g that is shorter (or at least not
fonger) than a. The proof of the last assertion is left as an exercise.

Observe that a minimal geodesic may not exist, as shown in the following
example.

Let $? — {p} be the surface formed by the sphere $? minus the point
p € S%. By taking, on the meridian that passes through p, two points p,
and p,, symmetric relative to p and sufficiently near to p, we see that there
exists no minimal geodesic joining p, to p, in the surface $? — {p} (see Fig.
5-8).

On the other hand, there may exist an infinite number of minimal geodes-
ics joining two points of a surface, as happens, for example, with two anti-



Complete Surfaces 333

podal points of a sphere; all the meridians that join these antipodal points

are minimal geodesics.
The main result of this section is that in a complete surface there always

exists a minimal geodesic joining two given points.

THEOREM (Hopf-Rinow). Let S be a complete surface. Given two points
P, q € S, there exists a minimal geodesic joining p o q.

Proof. Let r = d(p, q) be the distance between the points p and g. Let
B,(0) € T,(S) be a disk of radius J, centered in the origin 0 of the tangent
plane 7,(S) and contained in a neighborhood U = T ,(S) of 0, where exp,, is
a diffeomorphism. Let B,(p) = exp,(B;(0)). Observe that the boundary
Bd B,(p) = X is compact since it is the continuous image of the compact set
Bd B,(0) = T,(S).

If x € ¥, the continuous function d(x, q) reaches a minimum at a. paint
x, of the compact set . The point x, may be written as

Xp = expp(év), vl =1,v € T (S).
Let y be the geodesic parametrized by arc length, given by (see Fig. 5-9)

}'(S) = Cpr(S’U).

Figure 5-9

Since S is complete, y is defined for every s € R. In particular, y is defined
in the interval [0, r]. If we show that y(r) = ¢, then y must be a geodesic
joining p to ¢ which is minimal, since /(y) = r = d(p, q), and this will con-
clude the proof.

To prove this, we shall show that if s € [4, r], then

d(y(s),q) = r — s. @

v o -—p» tha \—nﬂQdPT‘Pd
1 o _l, LJ.J.CLD J/\I} —li’ e S AL WA

To prove E (1) we shall first show that it holds for s = d. Now the set
—{s e [6, r] where Eq. (1) holds} is clearly closed in [0, r]. Next we
show that if s, € 4 and s,<C r, then Eq. (1) holds for s, + ', where " > 0
and &’ is sufficiently small. It follows that 4 = [J, r] and that Eq. (1) will

be proved.
We shall now show that Eq. (i) holds for s = 4. In fact, since every curve
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joining p to g intersects X, we have, denoting by x an arbitrary point of Z,

& p, gy = inf Ket,, ,) = inf {inf e, ) + inf Ha, )
o xXEXR o o
= inf (d(p, x) + d(x, q)) = inf (6 -+ d(x, q))
XEX XEL
= 0 + d(x,, g)-

Hence,
d(y(&), Q) =r—= 55

which is Eq. (1) for s = 4.

Now we shall show that if Eq. (1) holds for s, € [, r], then, for §’ > 0
and sufficiently small, it holds for s, -+ &'.

Let B;(0) be a disk in the tangent plane 7,,,(S), centered in the origin
0 of this tangent plane and contained in a neighborhood U’, where exp,,,
is a diffeormophism. Let B;(y(s,)) = €Xp,,B>(0) and L' = Bd(B,(y(s,)).
If x' ¢ E’, the continuous function d(x’, ¢) reaches a minimum at x, € X’
(see Fig. 5-10). Then, as previously,

d(y(so), g) = 1nf {d(p(s,), x*) + d(x", g)}
x'ex’
= " 4 d(x%s q).
Since Eq. (1) holds in s,, we have that d(y(s,), ) = r — s,. Therefore,

Xy, q) =1 — 5, — 0. 2

Furthermore, since

d(p’ x'O) = d(P’ q) - d(Q’ x,O):

we obtain from Eq. (2)

Adp, X)) =r—(r—s,) -0 =5, 9.
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Observe now that the curve that goes from p to y(s,) through y and from
¥(s,) to x, through a geodesic radius of B;.(y(s,)) has length exactly equal to
s, + &'. Since d(p, x;) > s, + 0, this curve, which joins p to xj, has mini-
mal length. It follows (Sec. 4-6, Prop. 2) that it is a geodesic, and hence
regular in all its points. Therefore, it should coincide with y; hence, x; =
p(s + ). Thus, Eq. (2) may be written as

d(y(so + 97, q) =1 — (50 4 &),

which is Eq. (1) for s = s, -- &".
This proves our assertion and concludes the proof. Q.E.D.

COROLLARY 1. Let S be complete. Then for every point p € S the map
exp,: T,(8) — S is onto S.

This is true because if ¢ € S and d(p, g) = r, then g = exp, rv, where
v = 7'(0) is the tangent vector of a minimal geodesic y parametrized by the
arc length and joining p to g.

COROLLARY 2. Let S be complete and bounded in the metric d (that is,
there exists v > 0 such that d(p, q) <t for every pair p,q € S). Then S is
compact.

Proof. By fixing p € §, the fact that S is bounded implies the existence
of a closed ball B < T,(S) of radius r, centered at the origin 0 of the tangent
plane T,(S), such that exp,(B) = exp (T ,(S)). By the fact that exp, is onto,
we have S = exp,(T,(S)) = exp,(B). Since B is compact and exp, is con-
tinuous, we conclude that S is compact. Q.E.D.

From now on, the metric notions to be used will refer, except when
otherwise stated, to the distance 4 in Def. 3. For instance, the diameter p(S)
of a surface S is, by definition,

p(s) = sup d(p, q).
D, qES

With this definition, the diameter of a unit sphere S? is p(S?) = =n.

EXERCISES

1. Let S = R3 be a complete surface and let F < .S be a nonempty, closed subset
of § such that the complement .S — Fis connected. Show that .S — Fis a non-
complete regular surface.
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2.

3.

*5.

*6.

Global Differential Geometry

Let .S be the one-sheeted cone of Example 1. Show that, given p € S, the only
geodesic of S that passes through p and cannot be extended for every value of
the parameter is the meridian of S through p.

Let S be the one-sheeted cone of Example 1. Use the isometry of Example 3 of
Sec. 4-2 to show that any two points p, g € S (see Fig. 5-11) can be joined by a
minimal geodesic on S.

Figure 5-11

. We say that a sequence {p,} of points on a regular surface S — R3 converges to

a point p, € S in the (intrinsic) distance d if given € > 0 there exists an index
ny such that » > n, implies that d(p,, ps) < €. Prove that a sequence {p,} of
points in S converges in d to p, € S if and only if {p,} converges to p, as a
sequence of points in R3 (i.e., in the euclidean distance).

Let S = R3 be a regular surface. A sequence {p,} of points on S is a Cauchy
sequence in the {intrinsic) distance d if given € > 0 there exists an index r, such
that when n, m > n, then d(p,, p,.) < €. Prove that S is complete if and only if
every Cauchy sequence on S converges to a point in S.

A geodesic y: [0, o) — S on a surface S is a ray issuing from p(0) if it realizes
the (intrinsic) distance between 9(0) and p(s) for all s € [0, o). Let p be a point
on a complete, noncompact surface S. Prove that S contains a ray issuing from

D.
A divergent curve on S is a differentiable map & : [0, c0) — S such that for every
compact subset K < S there exists a #, < (0, c0) with () ¢ K for r > ¢, (i.e.,
o “leaves” every compact subset of S). The length of a divergent curve is defined
as

lim f |ou'(¢)| dt.

{—oo

that .S < R3 is complete if and only if the length of every divergent curve
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*8.

*9,

*10.

11.

Let Sand S be regular surfaces and let ¢: .§ — S be a diffeomorphism. Assume
that S is complete and that a constant ¢ > 0 exists such that

1,(v) = cdy)(de (1))

forallpe S and all v € T,(S), where I and T denote the first fundamental
forms of § and S, respectively. Prove that .S is complete.

Let S; < R? be a (connected) complete surface and S; < R3? be a connected
surface such that any two points of .S, can be joined by a unigue geodesic. Let
¢:S; — S, be a local isometry. Prove that ¢ is a global isometry.

Let S < R3 be a complete surface. Fix a unit vectorv € R,andlet#: S — Rbe
the height function A(p) = {p, v), p € S. We recall that the gradient of A is the
(tangent) vector field grad /# on .S defined by

{grad h(p), w), = dh,(w) for all w € T,(S)

(cf. Exercise 14, Sec. 2-5). Let ot(r) be a trajectory of grad 4; i.e., 0(¢) is a curve on
S such that &¢'(f) = grad A(t(z)). Prove that

a. |grad h(p < 1 for allp € S.

The following exercise presumes the material of Sec. 3-5, part, B and an ele-
mentary knowledge of functions of complex variables,

(Osserman’s Lemma.) Let Dy = {{ ¢ C;[{| < 1} be the unit disk in the com-
plex plane C. As usual, we identify C ~ R2by{ = u - iv. Letx: D, — R3be
an isothermal parametrization of a minimal surface x(D;) < R?. This means
(cf. Sec. 3-5, Part B) that

K Xy = Xy Xppy K Xp =0
and (the minimality condition) that
Xy T Xy = 0.
Assume that the unit normal vectors of x{D,) omit a neighborhood of a unit

sphere. More precisely, assume that for some vector w € R3, |w| = 1, there
exists an € > 0 such that

<xlu’:;)2> > EZ and <12150T'2> > 62 (*)

The goal of the exercise is to prove that X(D) is not a complete surface. (This is
the crucial step in the proof of Osserman’s theorem quoted at the end of Sec.

N\ Deannad ne FAllA
'J ] LEULRAAL a> T0LOWS .
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a. Define g: Dy — C by

@(u, v) = @) = {x,, w) + 1Ky, W),

Show that the minimality condition implies that ¢ is analytic.

. Define 8: p; — € by

60 = [ 9t = 1.

By part a, 8 is an analytic function. Show that 8(0) = 0 and that the
condition (x) implies that 8'({) = 0. Thus, in a neighborhood of 0, 8 has an
analytic inverse §-1. Use Liouville’s theorem to show that #-! cannot be
analytically extended to all of C.

. By part b there is a disk

De=Mmeliini< Ry
and a point #o, with [#y| = R, such that 8! is analytic in D and cannot be
analytically extended to a neighborhood of 7, (Fig. 5-12). Let L be the seg-
ment of Dy that joins #, to 0; ie., L ={mm, € C;0 <r<1}. Set & =
8-1(L) and show that the arc length [ of x(a) is

1= | Jrxoso{(@) = (5) ]

<1 [ vE TG =1 [ i@

R
= = [CoR
= +

Use Exercise 7 to conclude that x(D) is not complete.

¢ plane 7 plane

Dr

N Y

Figure 5-12
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5-4. First and Second Variations
of Arc Length; Bonnet’'s Theorem

The goal of this section is to prove that a complete surface S with Gaussian
curvature K > ¢ > 0 is compact (Bonnet’s theorem).

The crucial point of the proof is to show that if X > § > 0, a geodesic y
joining two arbitrary points p, ¢ € S and having length I(y) > n/./ § is no
longer minimal; that is, there exists a parametrized curve joining p and g,
the length of which is smaller than /(y).

Once this 18 proved, it follows that every minimal geodesic has length
I < mf/ 8 ; thus, S is bounded in the distance d. Since .S is complete, S is
compact (Corollary 2, Sec. 5-3). We remark that, in addition, we obtain an
estimate for the diameter of S, namely, p(S) << 7/./ 0.

To prove the above point, we need to compare the arc length of a para-
metrized curve with the arc length of “neighboring curves.” For this, we
shall introduce a number of ideas which are useful in other problems of
differential geometry. Actually, these ideas are adaptations to the purposes
of differential geometry of more general concepts found in calculus of varia-
tions. No knowledge of calculus of variations will be assumed.

In this section, S will denote a regular (not necessarily complete) surface.

We shall begin by making precise the idea of neighboring curves of a
given curve.

DEFINITION 1. Let o [0, I] — S be a regular parametrized curve, where
the parameter s < [0, [] is the arc length. A variation of a is a differentiable
map h: [0, ] X (—€, €) = R* — S such that

h(s, 0) = a(s), s € [0, /].

For each t € (—e,€), the curve h,:[0,1]1-— S, given by h(s) ==h(s, t), is
called a curve of the variation h. A variation h is said to be proper if

h(0,t) =a(0), h(Lt)=a(), teE (—¢¢).

Intuitively, a variation of ¢ is a family 4, of curves depending differenti-
ably on a parameter r € (—e¢, €) and such that 4, agrees with « (Fig. 5-13).
The condition of being proper means that all curves &, have the same initial
point &(0) and the same end point a(/).

It is convenient to adopt the following notation. The parametrized curves
in R* given by

S — (S, to),

t—> (503 t)’
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Figure 5-13

pass through the point p, = (s,, #,) € R* and have (1,0) and (0, 1) as
tangent vectors at (s, #,). Let £:[0,]] X (—¢,€) = R* — S be a differentiable
map and let p, € [0, /] X (—e€, €). Then dh, (1, 0) is the tangent vector to
the curve s — A(s, #,) at h(p,), and dh, (0, 1) is the tangent vector to the
curve t — h(s,, t) at A(p,). We shall denote

N VI
anp 1, 0) = 5APa);

dhy (0, 1) = (py).

We recall (cf. Sec. 4-4, Def. 2) that a vector field w along a curve ot: 7 — S
1s a correspondence that assigns to each ¢ € I a vector w(¢) tangent to the
surface S at a(f). Thus, dh/ds and dh/dt are differentiable tangent vector
fields along ¢.
it foliows that a variation 4 of & determines a differentiabie vector fieid
V(s) along o by
o 0k,

V(S) = —a?ks, G),

s € [0,7].

V is called the variational vector field of h; we remark that if 4 is proper, then
V() = V{/) =0.
This terminology is justified by the following proposition.

PROPOSITION 1. If we let V(s) be a differentiable vector field along
a parametrized regular curve o:[0,1]1 — S then there exists a variation
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h:[0,7] X (—e, €) — S of o such that V(s) is the variational vector field of
h. Furthermore, if V(0) = V(I) = 0, then h can be chosen to be proper.

Proof. We first show that there exists a J > 0 such that if |v] << 4,
v € T,.,(S), then exp,, v 1s well defined for all s & [0, /]. In fact, for each
P < a([0, I]) < S consider the neighborhood W, (a normal neighborhood of
all of its points) and the number §, > 0 given by Prop. 1 of Sec. 4-7. The
union (_J, W, covers a(]0, /]) and, by compactness, a finite number of them,
say, W, ..., W, still covers a([0, /]). Set § = min (d,,...,d,), where §, is
the number corresponding to the neighborhood W, i =1,...,n It is
easily seen that § satisfies the above condition.

Now let M = max,c;, | V(5)|, € < §/M, and define

h(s, 1) = eXp,( tV(s), se[0,1], te (—e,e¢).

h is clearly well defined. Furthermore, since

where y is the (differentiable) map of Theorem 1 of Sec. 4-7 (i.e., for ¢ =£ 0,
and F(s) = 0, p(1, a(s), tV(s)) is the geodesic y with initial conditions
y(0) = a(s), p'(0) = V(s)), h 1s differentiable. It is immediately checked
that A(s, 0) = a(s). Finally, the variational vector field of % is given by

T8 0) = dh 0, 1) = “£(@xpacy V()|

a“_ {1, oc(s),tV(s)) y y(t a(s), V' = V(s),

We want to compare the arc length of a (= h,) with the arc length of 4,.
Thus, we define a function L: (—¢,€) — R by

Loy = [ 9%, 0)d te(—€¢€ (1)
(0= | |550s0|ds, e (—¢€, €). (1)

The study of L in a neighborhood of # = 0 will inform us of the “arc length
behavior” of curves neighboring a.
We need some preliminary lemmas.

LEMMA 1. The function L defined by Eq. (1) is differentiable in a neigh-
borhood of t = 0; in such a neighborhood, the derivative of L may be obtained

bv differentiation under the 1nfocrrﬂ] SIon.
IIJ WJJ‘/ iy [ Ea% 3 b



342 Global Differential Geometry

Proof. Since o.: [0, 1] — S is parametrized by arc length,

|0h( 0)1_1

lg—?(s, t)‘:/—' 0, sel0/, |t]<o.

Since the absolute value of a nonzero differentiable function is differentiable,
the integrand of Eq. (1) is differentiable for [#| < 4. By a classical theorem of
calculus (see R. C. Buck, Advanced Calculus, 1965, p. 120), we conclude that
L is differentiable for | 7| < 6 and that

L) = f

Lemmas 2, 3, and 4 below have some independent interest.

‘9’1 Ons, r)' ds. QE.D.

LEMMA 2. Let w(t) be a differentiable vector field along the parametrized
curve o.: [a, b] — S and let f: [a, b] — R be a differentiable function. Then

Decwe) = (O 4 L,

Proof. 1t suffices to use the fact that the covariant derivative is the tan-

gential component of the usual dertvative to conclude that (here ( ), denotes
the tangential component of ( ))

Birw = (G + 12 ):%wﬂ(‘j}—j")r
dfw+f Q.ED.

LEMMA 3. Let v(t) and w(t) be differentiable vector fields along the
parametrized curve o [a, b] — S. Then

S, wod = (3L wo) + (vo. ).

Proof. Using the remarks of the above proof, we obtain

o= (@) + (0 @) = (@), + ¢ (@),)

— <QE W)+ (o 2F)- Q.E.D.
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Before stating the next lemma it is convenient to introduce the following
terminology. Let A: [0, /] X (—e€, €) — S be a differentiable map. A differ-
entiable vector field along h is a differentiable map

Vi[0,1] X (—€,6)—— S < R?

such that V(s, 1) € Ty, ,,(S) for each (s, f) € [0, /] X (—¢, €). This generalizes
the definition of a differentiable vector field along a parametrized curve (Sec.
4-4, Def. 2).

For instance, the vector fields {(dA/ds)(s, t) and, (dh/d?)(s, ¢), introduced
above, are vector fields along A.

If we restrict V(s, t) to the curves s = const., t = const., we obtain vector
fields along curves. In this context, the notation (DV/d7)(s, t) means the
covariant derivative, at the point (s, ¢), of the restriction of V(s, r) to the curve
§ = const.

MMTw (—e. &Y — R2 __, S be iffevrontinhl
I} X —¢€, ¢ X adijjerentiaple

[ # 4 =

-
.

D 6h D 6h
3s gt &P = gr s> Y

Proof. Let x: U — S be a parametrization of S at the point A(s, ¢), with
parameters u, », and let

U= hl(sa t)s v = hZ(S5 t)

be the expression of /4 in this parametrization. Under these conditions, when
(s, 1y € i(x(U)) = W, the curve A(s, t,) may be expressed by

U= hl(ss to); v = hZ(Ss fo)-
Since (9h/ds)(s,, 1,) is tangent to the curve A(s, ¢,) at s = s5,, we have that

6‘hz

0}1( n: n) - ah (SO= to)xv'

By the arbitrariness of (s,, t,) € W, we conclude that

oh  0h, dh,
Js — G5 + ds X

where we omit the indication of the point (s, ) for simplicity of notation.
Similarly,

0h 0h1
FZr TR

0h2
c?t
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We shall now compute the covariant derivatives (D/ds)(dh/dt) and
(D/00)/(0h/ds) using the expression of the covariant derivative in terms
of the Christoffel symbols T'% (Sec. 4-4, Eq. (1)) and obtain the asserted
equality. For instance, the coefficient of x, in both derivatives is given by

d*h, y 0h 0k, | i Oy Ohy | 1y Ry Ry  0hy O,

as:?t ““Gt ds U7t or ds ““dt ds L”“(i’t as

The equality of the coefficientes of x, may be shown in the same way, thus
concluding the proof. Q.E.D.

We are now in a position to compute the first derivative of L at ¢t =0
and obtain

PROPOSITION 2. Let h:[0,!] X (—e, €) be a proper variation of the
curve o.: [0, [1 — S and let V(s) = (dh/dt)(s, 0), s €0, 1], be the variational
vector field of h. Then

L0 = —[ <AG, VE) s, @

where A(s) = (D/ds)(dh/ds)(s, 0).

Proof. If t belongs to the interval (—4, §) given by Lemma 1, then

o= [ {4082

By applying Lemmas 3 and 4, we obtain

/D r?h oh\

(a5 5) (&
dt ds ds Js — d
el

Since | (0h/ds)(s, 0)| = 1, we have that

v (/D Ok Ok
L<°)“L<a—sa?a—s>ds’

where the integrand is calculated at (s, 0), which is omitted for simplicity of
notation.
According to Lemma 3,

l ®
|2

Iyl
S
S

L'(r) =

U W D
[

~”i

3cla 30 = (maw o)+ (G s 3
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Therefore,

vo=[ G5e[| R @ e
- [ G5 e

since (dh/d¢)(0, 0) = (dh/dr) (I, 0) = 0, due to the fact that the variation is
proper. By recalling the definitions of A(s) and V{(s), we may write the last
expression in the form

Lo = —| ; CAGs), Vis)> ds. Q.ED.

Remark I. The vector A(s) is called the acceleration vector of the curve «,
and its norm is nothing but the absolute value of the geodesic curvature of «.
Observe that L'(0) depends only on the variational field V{s) and not on the
variation A itself. Expression (2) is usually called the formula for the first
variation of the arc length of the curve a.

Remark 2. The condition that 4 is proper was only used at the end of the
proof in order to eliminate the terms

<gh dh>(l 0) — <0h 0h>(0 0).

Therefore, if 4 is not proper, we obtain a formula which is similar to Eq. (2)
and contains these additional boundary terms.

An interesting consequence of Prop. 2 is a characterization of the geo-
desics as solutions of a “variational problem.” More precisely,

PROPOSITION 3. A regular parametrized curve o,: [0, I] — S, where the

mawrmiotor o — [V 11 e tho i 3 mnd anlv i€ far overt
IJMI HUrritcicy o9 T LU, JJ LO TiC wr o LCILSI’JL UJ W, I u SCUMCOlb U CErilt Uil )y J,JUI CVCI_}/

t v lomnath afa fo n oondooter

proper variation h: [0, ] X (—e€, €) — S of a, L'(0) = 0.

Proof. The necessity is trivial since the acceleration vector A(s) =
(D/3s)(da/ds) of a geodesic ¢ is identically zero. Therefore, L'(0) = 0 for
every proper variation.

Suppose now that L’(0) = 0 for every proper variation of ¢ and consider
a vector field V{(s) = f(s)A(s), where f: [0,7/] -— R is a real differentiable
function, with £(s) >0, f(0) = f(I) =0, and A(s) is the acceleration
vector of o. By constructing a variation corresponding to ¥(s), we have
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L©) =~ {f6)dis), Als)> ds
— _f; F()| Als) [ ds = 0.

Therefore, since f(s)|A(s)]* > 0, we obtain

f@IA@EF =0.

We shall prove that the above relation implies that 4(s) =0, s € [0, /].
In fact, if | A(sy) | 5= 0, 5, € (0, ]), there exists aninterval I = (s, — €, s, + €)
such that | A(s)| == 0 for s € I. By choosing f such that f(s,) > 0, we con-
tradict f(s,)| A(s,)| = 0. Therefore, | A(s)| =0 when s € (0,7). By con-
tinuity, 4(0) = A(/) = 0 as asserted.
Since the acceleration vector of « is identically zero, & is geodesic.
Q.E.D.

From now on, we shall only consider proper variations of geodesics
y:[0, I] — S, parametrized by arc length; that is, we assume L'(0) = 0. To
simplify the computations, we shall restrict ourselves to orthogonal variations;
that is, we shall assume that the variational field V' (s) satisfies the condition
{V(s), 7'(s)y =0, s € [0,]]. To study the behavior of the function L in a
neighborhood of 0 we shall compute L"(0).

For this computation, we need some lemmas that relate the Gaussian
curvature to the covariant derivative.

LEMMA 5. Let x: U — S be a parametrization at a point p € S of a
regular surface S, with parameters u, v, and let K be the Gaussian curvature
of S. Then

DD DD
a—v-a—_uxu —aﬁg\—/xu — K(Xu /\ xv) /\ xu'

Proof. By observing that the covariant derivative is the component of
the usual derivative in the tangent plane, we have that (Sec. 4-3)

D/D \ 92 = RN y o owmy wmt . wmy W= Y
—“Xu) =il 1)y 7 L2l 11+ 1 22d 143X,

+ {(Ffi)u + I'i.T1 + F%zr%l}xv-

We verify, by means of a similar computation, that
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0Du(£) ) = {(r 2 + Tl A+ I zr12}x

+ {(r%z)u + i, + I'irik,.

Therefore,
D D D
%% X, — 7o 2%, = {(C1), — (Th). -+ TLTH — ThIx,

+ {(T3), — (). 4 T + T3y
— I — r%zrll}xv'

We now use the expressions of the curvature in terms of Christoffel symbols
(Sec. 4-3, Egs. (5) and (5a) and conclude that

D D Dpb_
'a—v"ﬁxu 32 30 —X, FKx, + EKX,
= K{{x,, x,0X, — {X,» X, )X,}
= K(x, A x,) A\ X,. Q.E.D.

LEMMA 6. Let h: [0, /] X (—e, €) — S be a differentiable mapping and
let V(s, 1), (s,t) € [0, ] X (—€, €), be a differentiable vector field along h.
Then

DD DD dh
gtgs’ “gsar’ = K& ‘)( AgE) AV

where K(s, t) is the curvature of S at the point h(s, t).

"u

rant T A
rv J e
Vs, t) = a(s, )%, + b(s, )X,

be the expression of V{(s, ) = V in this system of coordinates. By Lemma 2,
we have

(?SV=(9 (axu+bxv)
D D da 0b
_aa xu+basxv+%xu+asxv
Therefore,
DD D D da D
TRV =T b e g

bD_ . daD. dbD 9a 32b
s S T G N T G g T ara™ Tt dras™
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By a similar computation, we obtain a formula for (D/ds)(D/dt)V, which
is given by interchanging s and ¢ in the last expression. It follows that

pp, DD, (DD DD
EYE?_sVdﬁEBTV—a(a_zasx" asatx“) 3
DD _DD )

T b(c?t s T Fsar
To compute (D/dt) D/ds)x,, we shall take the expression of A,
u=hs1), v="hs1),
in the parametrization x(x, v) and write
x, (1, v) = X, (h,(s, 1), 1, (s, 1)) = x,.

Since the covariant derivative (D/ds)x, is the projection onto the tangent
plane of the usual derivative (d/ds)x,, we have

D [(d _ 0h, dh,
s ¥ = {'Js""}T = (X + X as}
ahl{ uu}'." + ahz{xm;}T
__dh, D 0h, D
s du X+ Js 6

where T denotes the projection of a vector onto the tangent plane.
With the same notation, we obtain

DD oh, D 9hy D _Ph D
FT Chad {dt(as du T Gs 9w )} = Grds ou
3*h, D oh, (3h, D D 9h, D D
T oras oo T 3 (az Gugn™ T gt avau")

dh, (0h, D D athD
+ as(az dudv> T3 9vou )

In a similar way, we obtain (D/ds)(D/d1)x,, which is given by interchanging
s and ¢ in the above expression. It follows that

DD, DD _0mon(DD__ DD
G ds > a5 Gs ot (c?u g t_?_c?_x")
dh, dh, DD
+ 55 ar (c?v o a_a_"“)
——A/D DX \
= MG a™ T qudge ™)’
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where

By introducing the above expression in Eq. (3) and using Lemma 5, we
conclude that

D D D D

'a—t-d—EV_ 'd_s'a?V: aAK(xu /\ Xv) /\ xu+ bAK(xu /\ Xw) /\ Xv

- K(Axu /\ Xv) /\ (axu + bxv)'

hence,
Oh , 0h Ao . .
g5 NG = BKAX,
Therefore,
D D DD_, . (0h , dh
a?;EV—EEEV_K((?S /\a—t)/\V. Q.E.D.

We are now In a position to compute L”(0).

PROPOSITION 4. Let h: [0, /] x (—e, €) — S be a proper orthogonal
variation of a geodesic y: {0, I1 — S parametrized by the arc length s € [0, [].
Let V(s) = (dh/at)(s, 0) be the variational vector field of h. Then

=7
3

L"(0) = J 0 (

where K(s) = K(s, 0) is the Gaussian curvature of S at y(s) = h(s, 0).

2VE| — K|V ds, @

Proof. As we saw in the proof of Prop. 2,

(D3, 3k
ro- | <———~—~—§f, 0;;,1;5/2 ds
3 3
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for ¢ belonging to the interval (—4, 0) given by Lemma 1. By differentiating
the above expression, we obtain

d/D adh dh\\/dh dh\V?
vo-|[ (&% ?E<’ fgf)as %) i
ds ds

((L
\\d's

dS// Js.

3/2

-1

Observe now that for t = 0, |(0h/ds)(s, 0)| = 1. Furthermore,

dk 9
3t
@

5w e a6 wa)

Since y is a geodesic, (D/ds)(dh/ds) = O for = 0, and since the variation is
orthogonal,

<gl;-a%i;>:0 fort = 0.

It follows that

may— [ d /D dh dh
L0 = JDHE<63 3 5645 (5)
where the integrand is calculated at (s, 0).

Let us now transform the integrand of Eq. (5) into a more convenient
expression. Observe first that

&) - G ares)

s> ds 9’ 91 ds
g_l;,_@> <D D dh ah>
b

+

ds 0t 9t Os

since (D/ds)(dh/ds)(s, 0) = 0, owing to the fact that y is a geodesic. More-
over, by using Lemma 6 plus the fact that the variation is orthogonal, we
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obtain (for + = 0)

Graa s~ Gara o) = oG a) a0 &)

.,
¥

|

|
=
=~
&

By introducing the above values in Eq. (5), we have
1
L0 = [ (=K IVOF + | pro|)d
0
+ (D3 Iy 0 — (2% S0, 0,

Finally, since the variation is proper, (@h/d1)(0, ) = (Qh/a)(, 1) =0,
t € (—0, ¢). Thus,

o108

os

vis)[ — K| V(s)|2) ds. Q.E.D.

Remark 3. Expression (4) is called the formula for the second variation of
the arc length of . Observe that it depends only on the variational field of /
and not on the variation # itseif. Sometimes it is convenient to indicate this
dependence by writing L;(0).

Remark 4. It is often convenient to have the formula (4) for the second
variation written as follows:

I
D*V
$3 _
L(O)_—J <d2—-|-KV,V ds (4a)
0
nnnnnn (Ao nnmane Fram Ba (A hyu natining that 770N — A — 0N and that
L\iuaLJUl UTra) vuUuiauv 11011 1_4\.1. UTJy Uy LIVLIVILIE WAL F V) ey VOO LN LG

&%) - wrm)a=[(n 5]
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The second variation L''(0) of the arc length is the tool that we need to
prove the crucial step in Bonnet’s theorem, which was mentioned in the
beginning of this section. We may now prove

THEOREM (Bonnet). Let the Gaussian curvature K of a complete surface
S satisfy the condition

K>6>0.

Then S is compact and the diameter p of S satisfies the inequality

< T _.
A9
Proof. Since S is complete, given two points p, g € S, there exists, by the

Hopf-Rinow theorem, a minimal geodesic y of S joining p to g. We shall
prove that the length [ = d(p, g) of this geodesic satisfies the inequality

7
I< 5
A/ ©

We shall assume that / > z/+/ 8 and consider a variation of the geodesic
v:[0, 7] — S, defined as follows. Let w, be a unit vector of T, (S) such
that {w,, 7'(0)> =0 and let w(s), s € [0, 7], be the parallel transport of w,
along y. It is clear that {w(s)| =1 and that {w(s), y’(s)> =0, s € [0, /].
Consider the vector field ¥{(s) defined by

V(s) = w(s) sin -’[,Ls, s € [0, ).

Since ¥(0) = V(I) = 0 and {¥(s), '(5)> = 0, the vector field V(s) determines
a proper, orthogonal variation of y. By Prop. 4,

Q.:l Sy

2
s)l — K(5)| V(s)!z) ds.

L(0) — f g |

Since w(s) is a parallel vector field,
D sy = (Z cos &
B_S_V(S) = ( 7 Cos 7 s) w(s).

Thus, since ! > 7/+/ J, so that K > § > #2/I2, we obtain

!

" . 2
L,,(O)-—J (12 cos? TS K sin IS) ds
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I
n? n g T
< "~ 2o 2
fo 72 (cos 7S5 — sin® s) ds
n2

L 2n
= l—zfo cos —l—s ds = 0.

Therefore, there exists a variation of y for which L''(0) < 0. However,
since y is a minimal geodesic, its length is smaller than or equal to that of
any curve joining p to q. Thus, for every variation of y we should have L'(0)
=0 and L”(0) > 0. We obtained therefore a contradiction, which shows
that I = d(p, q) < n/~/ 8, as we asserted.

Since d(p, q) << m// & for any two given points of S, we have that § is
bounded and that its diameter p << m/./d . Moreover, since S is complete
and bounded, § is compact. Q.E.D.

Remark 5. The choice of the variation V(s) = w(s) sin (n/)s in the above
proof may be better understood if we look at the second variation in the
form (4a) of Remark 4. Since K > [?/n?, we can write

LY(0) = ﬂf LN - >ds—f;(K~—Zlf;)lV|2ds

- f/V,D2V+ "V ds.
as“ I /

Now it is easy to guess that the above V(s) makes the last integrand equal to
zero; hence, L;(0) < 0.

Remark 6. The hypothesis K > é > 0 may not be weakened to K > 0.
In fact, the paraboloid

{(x,y,2) € Rz =x+4 y*}

has Gaussian curvature K > 0, is complete, and is not compact. Observe
that the curvature of the paraboloid tends toward zero when the distance of

the point (x, y) € R? to the origin (0, 0) becomes arbitrarily large (cf. Remark

8 below).

Reémark 7. The estimate of the diameter p << m/./ 3 given by Bonnet’s
theorem is the best possible, as shown by the example of the unit sphere:
K=1landp =n=.

Remark 8. The first proof of the above theorem was obtained by O.
Bonnet, “Sur quelquer propriétés des lignes géodésiques,” C.R.Ac. Sc. Paris
XL (1850), 1331, and “Note sur les lignes géodésiques,” ibid. XLI (1851),
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32. A formulation of the theorem in terms of complete surfaces 1s found in
the article of Hopf-Rinow quoted in the previous section. Actually, it is not
necessary that K be bounded away from zero but only that it not approach
zero too fast. See E. Calabi, “On Ricci Curvature and Geodesics,” Duke
Math. J. 34 (1967), 667-676; or R. Schneider, “Konvexe Flachen mit lang-
sam abnehmender Kriimmung,” Archiv der Math. 23 (1972), 650-654 (cf.
also Exercise 2 below).

EXERCISES

1. Is the converse of Bonnet’s theorem true; i.e., if S is compact and has diameter
PN, isK=>61?

*2. (Kazdan-Warner’s Remark. cf. Exercise 10, Sec. 5-10.) Let S = {z = f(x, );
(x, ¥) € R?} be a complete noncompact regular surface. Show that

lim( mmf K(x,y) <O0.

r—oo  x2iyi>r

3. a. Derive a formula for the first variation of arc length without assuming that
the variation is proper.

b. Let S be a complete surface. Let p(s), s € R, be a geodesic on S and let d(s) be
the distance d(p(s), p) from p(s) to a point p € .S not in the trace of y. Show
that there exists a point s, € R such that d(sy) << d(s) for all s € R and that
the geodesic I joining p to p(s,) is perpendicular to y (Fig. 5-14).

L

Y(5)

~2
p:
&

Figure 5-14

c. Assume further that S is homeomorphic to a plane and has Gaussian curva-
ture K < 0. Prove that s, (hence, I'} is unique.

4. (Calculus of Variations.) Geodesics are particular cases of solutions to variational
problems. In this exercise, we shall discuss some points of a simple, although
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quite representative, variational problem. In the next exercise we shall make some
applications of the ideas presented here.

Let y = y(x), x € [x,, x;] be a differentiable curve in the xy plane and let a
variation of y be given by a differentiable map y = y(x, t), t € (—¢€, €). Here
¥(x, 0) = y(x) for all x € [x1, x2}, and y(x, 1) = y(xl), ,v(xz, 1) = y(x;) for all

| LAt 2 d o

¢ € (—¢, €) (i.e., the end points of the variation are fixed). Consider the integral

16) = [ FOoyn 0,y ) dv, 1€ (=€),

where F(x, y, ) is a differentiable function of three variables and y’ = dy/dx.
The problem of finding the critical points of I(¢) is called a variational problem
with integrand F.

a. Assume that the curve y = y(x) is a critical point of I(¢) (i.e., dl/dt = O for
¢t = 0). Use integration by parts to conclude that (/ = dl/dt)

ity = f ( gf + F, ?;) dx
[at F,lj + f: %%’(Fy —_ %F,,) dx.

Then, by using the boundary conditions, obtain

0 = (0) = J {}y(Fy — d—‘fcpy,)} dx, (%)

where 7 = (dy/d1)(x, 0). (The function 5 corresponds to the variational vector
field of y(x, t}.)

b. Prove that if /(0) = O for all variations with fixed end points (i.., for all # in
()} with #(x;) = 5(x,) = 0), then

d
Fy —_ E.X-'Fy =0, (**)

Equation (%) is called the Euler-Lagrange equation for the variational problem

nth intaocrand
witn Integrana r.

¢. Show that if F does not involve explicitly the variable x, ie., F = F(y, y"),
then, by differentiating y'F,» — F, and using (x*) we obtain that

y'F, — F = const.

(A nrliie Af Vawvinatinmoe . Annlis P

\uutbu:uo UJ FUriditviiy, ﬂyy&lb l« }

a. (Surfaces of Revolution of Least Area.) Let S be a surface of revolution ob-
tained by rotating the curve y = f(x), x € [xy, x2], about the x axis. Suppose
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that § has least area among all surfaces of revolution generated by curves
joining (xy, f(xy)) to (xa, f(x,)). Thus, y = f(x) minimizes the integral (cf.
Exercise 11, Sec. 2-5)

1) f " T O dx

X1

for all variations y(x, t) of y with fixed end points y(x,), y(x,). By part b of
Exercise 4, F(y, y') = ya/1 + ()2 satisfies the Euler-Lagrange equation (#x).
Use part ¢ of Exercise 4 to obtain that

, ¢ = const.;

e e b 1
YFy —F= T 1L 7vh2
A "N N B W Y ] o

hence,
1
Y= cosh(ex + ¢y), ¢ = const.
Conclude that if there exists a regular surface of revolution of least area con-

necting two given paralilel circles, this surface is the catenoid which contains the
two given circles as parallels.

. (Geodesics of Surfaces of Revolution.) Let

X(u, v) = (f(v) cos u, f(v) sin u, g(v))

PR P

NP o . PPN

¢ a parametrization of a surface of revolution S. Let u = u(v) be the eq uatio
of a geodesic of § which is neither a parallel nor a meridian. Then « = u(v
a critical point for the arc length integral (F = 0)

[wiad

= , du
J‘/\/E(u)2 + G db, W=

Since E = f2, G = ()2 + (g’)2, we see that the Euler-Lagrange equation for
this variational problem is

a
dv

F,—=F,=0, F=4 )+ () +(@)*

Notice that F does not depend on «. Thus, (d/dv}F, = 0, and

uf?
¢c=const. = F, =
NI+ ()P + ()
From this, obtain the following equation for the geodesic u = u(v) (cf.
iple §, Sec. 4-4):

.-.a “ [ o

Uu=c %«/(f;%z_+c(zg’)2 dv + const.
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5-5. Jacobi Fields
and Conjugate Points

In this section we shall explore some details of the variational techniques
which were used to prove Bonnet’s theorem.

We are interested in obtaining information on the behavior of geodesics
neighboring a given geodesic p. The natural way to proceed is to consider
variations of y which satisfy the further condition that the curves of the
variation are themselves geodesics. The variational field of such a variation
gives an idea of how densely the geodesics are distributed in a neighborhood
of y.

To simplify the exposition we shall assume that the surfaces are complete,
although this assumption may be dropped with further work. The notation
y:[0,1] — S will denote a geodesic parametrized by arc length on the
complete surface S.

DEFINITION 1. Let p:[0,7)— S be a parametrized geodesic on S and
let h: [0, ] % (—e€, €) — S be a variation of y such that for everyt € (—¢, €)
the curve h(s) = h(s, t), s € [0, 7], is a parametrized geodesic (not necessarily
parametrized by arc length). The variational field (0h/dt)(s, 0) = J(s) is called
a Jacobi field along y.

A trivial example of a Jacobi field is given by the field y'(s), s € [0, [], of
tangent vectors to the geodesic y. In fact, by taking A(s, 1) = y(s + 1), we
have

K5y = s, 00 = 2.

We are particularly interested in studying the behavior of the geodesics
neighboring y:[0, /] — S, which start from 9(0). Thus, we shall consider
variations 4: [0, /] X (—¢, €) — S that satisfy the condition 4(0, 1) = y(0),
t € (—e, €). Therefore, the corresponding Jacobi field satisfies the condi-
tion J(0) = O (see Fig. 5-15).

Before presenting a nontrivial example of a Jacobi field, we shall prove
that such a field may be characterized by an analytical condition.

PROPOSITION 1. Let I(s) be a Jacobi field along y:[0, 1] — S, s € [0, 1]
Then 1 satisfies the so-called Jacobi equation

d%(%](s) + K(s)p'(s) A Xs) A y'(s) =0, Q)

where K(s) is the Gaussian curvature of S at y(s).
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K AZ

Figure 5-15

Proof. By the definition of J(s), there exists a variation

h:[0,1] X (—e,€) — S

of y such that (dh/d1)(s, 0) = J(s) and Z(s) is a geodesic, + € (—¢,€). It
follows that (D/ds)(@h/ds)(s, £) = 0. Therefore,

D D dh

07 ds ds (5,0=0, (5,0 €[0,]] X (—¢€,6).

On the other hand, by using Lemma 6 of Sec. 5-4 we have

QDW 2?@+m:ﬂ L

s dt os dl‘/"ds

-

tos

s
Q:,
Q.l

Since (D/d1)(3h/ds) = (D/ds)(@h/d1), we have, for ¢ = 0,

D D ) 4 Ksy'(9) A JS) A y() = O, QED.

To draw some consequences from Prop. 1, it i1s convenient to put the
Jacobi equation (1) in a more familiar form. For that, let e,(0) and ¢,(0) be

it arthanonnal vantarc tha tancant nlana T FCY and lat 2 £} and » (o
ul].ll. ULLLIUEUIIHL YW LUl o Jll. Liiv l.all.s\.rlll. Plullb Xz (0)\“} aAilvl vl C]‘D} CLLINL CZ\OJ

be the parallel transport of ¢,(0) and e,(0), respectively, along y(s).
Assume that

J(5) = a,(s)ey(5) + az(s)ex(s)

for some functions a, = a,(s), a, = a,(s). Then, by using Lemma 2 of the
last section and omitting s for notational simplicity, we obtain

D
—J = a1e| + aze‘):
oy
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625 3%'] = ale, + a%e,.

On the other hand, if we write

' AN)A )" = A&, + Aqe,,

we have

I

Ae; + de, = (v A (aey + ae.)) A Y
i ) i Sy i1 i “ asr LN

=a(y Ne) AY + ax(y Ael) Ay
Therefore, by setting {(y* A e) A y', e,> =a, i,j = 1,2, we obtain
A= agyy b Ay, Ay = a0y + @y,

It follows that Eq. (1) may be written

ay + K(oya, + 0,1a2) = 0,

, (1a)
ay -+ K(o;,a; + 0z2a;) = 0,

where all the elements are functions of s. Note that (1a) is

where all the elements are functions ote that ( a systeny near,
second-order differential equations. The solutions (a,(s), a,(s)) = J(s) of
such a system are defined for every s € [0, /] and constitute a vector space.
Moreover, a solution J(s) of (1a) (or (1)) is completely determined by the
initial conditions J(0), (DJ/ds)(0), and the space of the solutions has 2 X 2
= 4 dimensions.

One can show that every vector field J(s) along a geodesic y: [0, i] — S
which satisfies Eq. (1) is, in fact, a Jacobi field. Since we are interested only
in Jacobi fields J(s) which satisfy the condition J(0) = 0, we shall prove the
proposition only for this particular case.

We shall use the following notation. Let T,(S), p € S, be the tangent plane
to S at point p, and denote by (7,(S)), the tangent space at v of T,(S) con-
sidered as a surface in R3. Since exp,: T,(S) — S,

i

of inear
WA AL

exp,)y: (TAS)), — Texp,)(S)

We shall frequently make the following notational abuse: If v, w € T,(S),
then w denotes also the vector of (T',(S)), obtained from w by a translation of
vector v (see Fig. 5-16). This is equivalent to identifying the spaces T,(5) and
(7,(S)), by the translation of vector .

LEMMA 1. Let p € S and choose v,w € T,(S), with |v|= 1. Let
y:[0, I1 — S be the geodesic on S given by

p(s) = expy(sv), s € [0,I].
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(d expply

/ (d expp )y (W)

—

\/ Figure 5-16

Then, the vector field J(s) along y given by
I(s) = s(d expp)v(w), s € [0,/],
is a Jacobi field. Furthermore, J(0) = 0, (DJ/ds)(0) = w.

Proof. Let t — o(), t € (—¢, €), be a parametrized curve in T,(S) such
that »(0) = v and (dv/dr)(0) = w. (Observe that we are making the notational
abuse mentioned above.) Define (see Fig. 5-17)

h(s, 1) = exp,(sv(?)), t € (—e,€),5 €[0,/7].

The mapping k is obviously differentiable, and the curves s — A(s) =
h(s, t) are the geodesics s — exp,(sv(t)). Therefore, the variational field of A
1s a Jacobi field along p.

- .
PR T v e 3 B Tt

T a 4+l 1
iV QuUlLLIpuLe tllC vallalluiidl h

serve tna

~ F +la s v AF
C L LG CULYC UL
the tangent vector to this

It follows that

%?(s, 0) = (dexp,).(sw) = s(d exp,)s,(w)-
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o

- (P
-

w=1r'(0) W
w
wWo)=v»

Figure 5-17

The vector field J(s) = s(d exp,),,(w) is, therefore, a Jacobi field. It is imme-
diate to check that J(0) = 0. To verify the last assertion of the lemma, we
compute the covariant derivative of the above expression (¢f. Lemma 2,
Sec. 5-4), obtaining

355 XD)l) = (@exp)ulo) + 57 (d03,)0)

PROPOSITION 2. If we let J(s) be a differentiable vector field along
y:[0,/]— S, s & [O 11, satisfying the Jacobi equation (1), with J(0) =0,

fh/;n T(Q\ isa

Tacobi field along y.

Proof. Let w = (DJ/ds)(0) and v =y '(0). By Lemma 1, there exists a
Jacobi field s(d exp,),,(w) = J(s), s € [0, I], satisfying

J(0) =0, (—3{ )(0) _

Then, J and J are two vector fields satisfying the system (1) with the same
initial conditions, By uniqueness, J(s) = J(s), s € [0, /]; hence, J is a Jacobi
field. Q.E.D.

We are now in a position to present a nontrivial example of a Jacobi
field.
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Example. Let S? ={(x,y,z) € R*;x* 4 y> + z2 =1} be the unit
sphere and x(0, ¢) be a parametrization at p € S, by the colatitude 8 and the’
longitude ¢ (Sec. 2-2, Example 1). Consider on the parallel @ = n/2 the
segment between ¢, = /2 and ¢, = 3x/2. This segment is a geodesic yp,
which we assume to be parametrized by ¢ — ¢, = s. Let w(s) be the parallel
transport along y of a vector w(0) € T,,(S), with |w(0)] =1 and
{w(0), y'(0), = 0. We shall prove that the vector field (see Fig. 5-18)

J(r) = (sin s)w(s), s e [0, m],

is a Jacobi field along y.

Figure 5-18. A Jacobi field on a sphere.

In fact, since J(0) = 0, it suffices to verify that J satisfies Eq. (1). By using
the fact that K = 1 and w is a parallel field we obtain, sucessively,

DJ

5= (cos s)w(s),
D DJ
a5 ds (—sin s)w(s),

Q_D_'l | Cad A TN A add . - ol oY 1 i AN Y
ds as T W A AT = AT SHLIS) T (S S)WAS) =

which shows that J is a Jacobi field. Observe that J(z) = 0.

DEFINITION 2, Let y:[0, {] -— S be a geodesic of S with p(0) = p. We
say that the point q = y(s,), s, € [0, [], is conjugate to p relative to the geo-
desic y if there exists a Jacobi field )(s) which is not identically zero along y
with J(0) = J(s,) = 0.

As we saw in the previous example, given a point p € S? of a unit sphere
52, its antipodal point is conjugate to p along any geodesic that starts from p.
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However, the example of the sphere is not typical. In general, given a point p
of a surface S, the “first” conjugate point g to p varies as we change the
direction of the geodesic passing through p and describes a parametrized
curve. The trace of such a curve is called the conjugate locus to p and is
denoted by C(p).

Figure 5-19 shows the situation for the ellipsoid, which is typical. The
geodesics starting from a point p are tangent to the curve C(p) in such a way

that when a oeadecic ¥ near v annranchece v than tha (ntarcactinn noint of 3
tilar Yt @ gLOULGILC J ddval ) appiodliids ), ulCil il 1nCistutlon pollic Ox

and y approaches the conjugate point g of p relative to . This situation was
expressed in classical terminology by saying that the conjugate point is the
point of intersection of two “infinitely close” geodesics.

Figure 5-19. The conjugate locus of an ellipsoid.

Remark I. The fact that, in the sphere 52, the conjugate locus of each
point p € S? reduces to a single point (the antipodal point of p) is an excep-
tional situation. In fact, it can be proved that the sphere is the only such sur-

- o~ A e

face (cf. L. Green, “Aufwiedersehenfliche,” Ann. Math. 78 (1963), 289-300).
Remark 2. The conjugate locus of the general ellipsoid was determined
by A. Braunmiihl, “Geoditische Linien auf dreiachsigen Flichen zweiten
Grades,” Math. Ann. 20 (1882), 557-586. Compare also H. Mangoldt,
“Geoditische Linien auf positiv gekriimmten Flachen,” Crelles Journ. 91
(1881), 23-52.
A useful property of Jacobi fields J along y: [0, /] — S is the fact that

Y
when J(0) = J(I) = 0,

Js), y'(5)> =0

for every s € [0, []. Actually, this is a consequence of the following properties
of Jacobi fields.

PROPOSITION 3. Let J,(s) and J,(s) be Jacobi fields along y: [0, [] — S,
s €[0, [ji. Then
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<D_‘£1, Jz(s)> — <J1(s), Dd—‘;z> = const.

Proof. 1t suffices to differentiate the expression of the statement and
apply Prop. 1 (s is omitted for notational convenience):

4401, 1y (5, D)
ds {( ds ’J2> T ds

_(BDL ;)\ (5, DD (D DLy (D), DIy
T \ds ds "% Uds ds ds ~ ds ds ~ ds

= —K{y ATYAY T =L AT) Ay, T =0.

Q.E.D.
PROPOSITION 4. Let J(s) be a Jacobi field along y:[0, I] — S, with

J(5), p'(51)> = {J(s52), 7'(52)) = 0, 51, 8, €00, 1], 51 # 5.
Then
TS yH =0, s,

Proof. We set J,(s) = J(s) and J,(s) = »'(s) (which is a Jacobi field) in
the previous proposition and obtain

<£c)l‘—], }r’(s)> = const. = A4.
s
Therefore,
3 ' 2 N 4 Y
d DJ .
2Ty ) = (5 v'(9) = 45
hence,
J(s), '(s)) = As + B,
where B ia a cnﬂcf‘anf S;ncp tha “ﬂear evr\rnoo;nn Ac 1 R 1¢c =7arn far
A S ALAO L AAL ALAW W LilN AELAN L APIU\J\)A\JLL LA ] 47 Fys) Lwi AU
5,8, € [0,1], s, 7 5,, 1t 1s identically zero. E.D

COROLLARY. Let J(s) be a Jacobi field along y: [0, 11— S, with J(0)
= J() = 0. Then {J(s), y'(s)> =0, s € [0, ]].

We shall now show that the conjugate points may be characterized by the
behavior of the exponential map. Recall that when ¢: S, — S, is a differ-
entiable mapping of the regular surface S, into the regular surface S,, a point
p € S, is said to be a critical point of ¢ if the linear map
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dp,: T(S)) —> T,»(S2)
is singular, that is, if there exists v € T,(S,), v = 0, with dp (v) = 0.
PROPOSITION 5. Ler p, q € S be two points of S and let y:[0, ][] — S
be a geodesic joining p = y(0) to q = exp,(Iy’(0)). Then q is conjugate to p
relative to y if and only if v = [y'(0) is a critical point of exp,: T,(S) — S.

Proof. As we saw in Lemma I, for every w € T ,(S) (which we identify
with (T7,(S)),) there exists a Jacobi field J(s) along y with

J(0) = 0,
DJ .
&=
and J(1) = H{(d exp,).(w)}.
If v T(Q\ 1S a critical point tofe there exists w € T,(S)),, w # 0,

1ca a1l X p’ (B3 Lw Lw 233 W T 2 pARP S

with (d expp)y(w) = 0. This 1rnp11es that the above vector field J(s) is not
identically zero and that J(0) = J(I} == 0; that is, p(/) is conjugate to p(0)
relative to y.

Conversely, if g = p(I) is conjugate to p = (0) relative to p, there exists
a Jacobi field J(s), not identically zero, with f(O) = f(l) = 0. Let (DJ/ds)(0)
= w # 0. By constructing a Jacobi field J(s) as above, we obtain, by unique-
ness, J(s) = J(s). Since

TN e dovm YOul — TN — D

JUJ = L@ EXPp W)y = 1Y) =V,
we conclude that (d exp,),(w) = 0, with w == 0. Therefore v is a critical point
af exn NED
Ul Ai} . NFeliulFe

The fact that Eq. (1) of Jacobi fields involves the Gaussian curvature X
of S is an indication that the “spreading out” of the geodesics which start
from a point p € S is closely related to the distribution of the curvature in S
(cf Remark 2, Sec. 4-6). It is an elementary fact that two neighboring geo—

P Ny Nl e JIRURER AR e n o o am o wate Py~

Ucblbb >ldl Lillg 1ITom a pUillL[) e O uuuauy puu dpdiL lll LIIC Lasc Uf ad D_{JHCLC
or an ellipsoid (K > ¢ > 0) they reapproach each other and become tangent
to the conjugate locus C(p). In the case of a plane they never get closer again.
The following theorem shows that an “infinitesimal version™ of the situation
for the plane occurs in surfaces of negative or zero curvature. (See Remark 3
after the proof of the theorem.)

THEOREM. Assume that the Gaussian curvature K of a surface S satisfies
the condition K <C 0. Then, for every p € S, the conjugate locus of p is empty.
In short, a surface of curvature K << 0 does not have conjugate points.
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Proof. Let p € S and let y: [0, /] — S be a geodesic of S with p(0) = p
Assume that there exists a nonvanishing Jacobi field J(s), with J(0) = J({)
= (. We shall prove that this gives a contradiction.

In fact, since J(s) is a Jacobi field and J(0) = J(I) = 0, we have, by the
corollary of Prop. 4, that {J(s), y'(s)> = 0, s € [0, []. Therefore,

D DJ
ds ds

DDJ N\ _
(227 1= —kr.0y =0,

L KJ=0,

since K << 0.
It follows that

) Fa (@ &)=

Therefore, the function {DJ/ds, J> does not decrease-in the interval [0, /].
Since this function is zero for s = 0 and s = /, we conclude that

IDJ \ L
<B;,J(S)> =0, se][0,Il.
Finally, by observing that

<JJ> 2< J>—O

we have |J|* = const. Since J(O) 0, we conclude that |J(s)| =0, s € [0,/]
that is, J is identically zero in [0, /]. This is a contradiction Q.E.D.

Remark 3. The theorem does not assert that two geodesics starting from
a given point will never meet again. Actually, this is false, as shown by the
closed geodesics of a cylinder, the curvature of which is zero. The assertion
is not true even if we consider geodesics that start from a given point with

- . - g .
“‘l‘\ﬂ")f’l‘\‘f f"Tfpf\fjn“C‘ kg Tf (‘Iimf‘ﬂﬂ tn f‘ﬁﬂ(‘1{"ﬂf’ a maru‘hon ﬁp f"’\n !“]’I'Iﬂf‘ﬂf’ Qf\(q t~
LAl IJ)’ VLl WwWwLAV LD, AL OUllivLY LY VU LLoIMWE W LI NIl VL LVl \/J’ LELINANAE CLARNL LU

observe that the helices that follow directions nearby that of the meridian
meet this meridian. What the proposition asserts is that the intersection point
of two “neighboring” geodesics goes to “infinity” as these geodesics approach
each other (this is precisely what occurs in the cylinder). In a classical ter-
minology we can say that two “infinitely close” geodesics never meet. In
this sense, the theorem is an infinitesimal version of the situation for the plane.

An immediate consequence 0 of Prop. 5, the above theorem, and the inverse
ion orollar

. 41 F gy | I iy | PR
1 J.lUWlllg [ aty.
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COROLLARY. Assume the Gaussian curvature K of S to be negative or
zero. Then for every p € S, the mapping

exp,: T, (S)— S
is a local diffeomorphism.

We shall use later the following lemma, which generalizes the fact that,
in a normal neighborhood of p, the geodesic circles are orthogonal to the
radial geodesics (Sec. 4-6, Prop. 3 and Remark 1).

LEMMA 2 (Gauss). Let p € S be a point of a (complete) surface S and
let u € TS) and w € (T,S)).. Then

(u, wy = {(d exp,),(u), (d exp,).(W)>,

where the identification T, (S) = (T,(S)), is being used.

Proof. Let | =|ul, v = uf|u| and let y:[0,/] — S be a geodesic of S
given by

p(s) = exp,(sv), s e [0, 1].

Then y'(0} = ». Furthermore, if we consider the curve s — svin T,(S) which
passes through u for s = [ with tangent vector v (see Fig. 5-20), we obtain

YU) = S (exp,sv)| = (dexp,)(v)
s=1I
l €XDPp
(d expply(w)
Y
» (d expp )y (v)
Figure 5-20

Consider now a Jacobi field J along p, given by J(0) = 0, (DJ/ds)(0) = w
(cf. Lemma 1). Then, since p(s) is a geodesic,
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and since J is a Jacobi field,

FOF) = (o) -0

It follows that
d /. DI\ _ s
2 (), J5)> = (), DT} = const. = € @
hence (since J(0) = 0)
Y(s), H(s)y = Cs &)

To compute the constant C, set s equal to /in Eq. (3). By Lemma 1,

() = I(d exp,).(w).
Therefore,

= ', J(1)> = {(d exp,)(v), l(d exp,)(w)).

From Eq. (2) we conclude that
b2 o)== ro. Eo) = w.w.

By using the value of C, we obtain from the above expression

Gty wy = {(d exP,)0), (d eXp)u(W)). Q.E.D.

EXERCISES

1. a. Let y: [0, /] — S be a geodesic parametrized by arc length on a surface S and
let J(s) be a Jacobi field along y with J(0) = 0, {J'(0), y'(0)> = 0. Prove that
{J(s), p'(s)y = 0 for all s € [0, 7].

b. Assume further that |J'(0)| = 1. Take the paraliel transport of e, (0} = y'(0)
and of ¢,(0) = J’(0) along y and obtain orthonormal bases {e, (s), e,(s)} for all
T,»(S), s € [0, []. By part a, J(5) = u(s)e,(s) for some function u = u(s).
Show that the Jacobi equation for J can be written as

u'’(s) + K(s)u(s) = 0,

with initial conditions #(0) = 0, #'(0) = 1.

2. Show that the point p = (0, 0, 0) of the paraboloid z = x2 4 y? has no conju-
gate point relative to a geodesic p(s) with p(0) =
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3.

(The Comparison Theorems.) Let S and § be complete surfaces. Let p € S,
5 € S and choose a linear isometry i: T,(S) —— T5(S). Let :[0, ) — S be a
geodesic on S with p(0) = p, [y’(0)] = 1, and let J(5) be a Jacobi field along y
with J(0) = 0, {J'(0), y’(0)> = 0, |J'(0)| = 1. By using the linear isometry 7, con-
struct a geodesm 7:10, o0} — S with $(0) = 5, 7'(0) = i(y’(0)), and a Jacobi field
J along ¥ with J J(0) = 0, J(0) = i(J’(0)) (Fig. 5-21). Below we shall describe two
theorems (which are essentially geometric interpretations of the classical Sturm

comparison theorems) that allow us to compare the Jacobi fields J and J from a
“comparison hvnnfhpqm” on the curvatures of § and §‘

a.

*b.

SARLApAI ASRSIL AxY AL32s Ll LA LR VLIRS VD L2 Al

r J(0)

Figure 5-21

Use Exercise 1 to show that J(s) = v(s)ex(s), J(s) = u(s)&(s), where u = u(s),
v = v(s) are differentiable functions, and e,(s) (respectively, €,(s)} is the par-
allel transport along y (respectively, ¥) of J'(0) (respectively, J ’(0)). Conclude
that the Jacobi equations for J and J are

v(s) + K(sy(s) =0,  »(0) =0, v/(0) = 1,
w(s) + K()u(s) =0,  u(0) =0, '(0) = 1,

respectively, where K and K denote the Gaussian curvatures of S and S.
Assume that K(s) << K(s), s € [0, o]. Show that

0= f 0 {u(w” -+ Kv) — o(u” + Ku)lds

, N (%)
= [w’ — vu']§ -+ j (K — K)uv ds.
0
Conclude that if a is the first zero of u in (0, o) (i.e., #{a) = 0 and u(s) > Oin
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(0, @)) and b is the first zero of » in (0, o0), then b > a. Thus, if K(s) < ﬁ(s) for
all s, the first conjugate point of p relative to y does not occur before the first
conjugate point of P relative to 9. This is called the first comparison theorem.

*c, Assume that K(s) < K(s), s € [0, @). Use () and the fact that  and v are

*6.

positive in (0, @) to obtain that [uv’ — vl > 0. Use this inequality to show
that v(s) > u(s) for all s € (0, a). Thus, if K(5) < K(s) for all s before the first
conjugate point of §, then | J(s)| > ﬁ(s) | for all such s. This is called the second
comparison theorem (of course, this includes the first one as a particular case;
ra gnemarntnd tha Rrgé ~nocn lhanntion 1+ 10 Anginer am A Tlanm~nrion 1+ 1o -

hn
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that we use more often).

d. Prove that in part ¢ the equality v(s) = u(s) holds for all s € [0, a) if and only
if K(s) = K(s), s € [0, a).

Let S be a complete surface with Gaussian curvature K < K, where K; is a
positive constant. Compare .S with a sphere § 2(K,) with curvature K, (that is, set,
in Exercise 3, § = S2(K,) and use the first comparison theorem, Exercise 3, part
b) to conclude that any geodesic y: [0, c0) — S on .S has no point conjugate to
y(0) in the interval (0, 7/a/Ky).

Let S be a complete surface with K > K, > 0, where K is the Gaussian curvature
of § and X is a constant. Prove that every geodesic y: [0, c0) — § has a point
conjugate to ¥(0) in the interval (0, 7/a/K;].

(Sturm’s Oscillation Theorem.) The following slight generalization of the first
comparison theorem (Exercise 3, part b) is often useful. Let S be a complete
surface and y: [0, o) — S be a geodesic in S. Let J{s) be a Jacobi field along y
with J(0) = J(sq) = 0, 5 € (0, c0) and J(s) = 0, for s € (0, sy). Thus, J(s)is a
normal field (corollary of Prop. 4). 1t follows that J(s} = v(s)e,(s), where v(s) is

v"(s) + K(s)v(s) = 0, s € [0, o0),

L £

and e,(s) is the parallel transport of a unit vector at 7, »(0) () normal to y
Assume that the Gaussian curvature K(s) of S satisfies K(s) << L(s), where L is
differentiable function on [0, oc). Prove that any solution of

u'(s) + L(s)u(s) =0, s < [0, o0),

has a zero in the interval (0, s,] (i.e., there exists s, € (0, so] with u(s,) = 0).

(Kneser Criterion for Conjugate Points.) Let S be a complete surface and let
y: [0, oo) — Sbea geodesic on S with y(0) = p. Let K(s) be the Gaussian curva-

PN C a QT

Lulc Ul e ] cung, J/ LADOULLIG lllal-

- 1
f K(s) ds < < AT forallt >0 (%)

r

in the sense that the integral converges and is bounded as indicated.
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a. Define

wi(t) = fm K(s) ds -+ 4—(1—1—1), £>0,

and show that w'(¢) + (w())?2 << —K().
b. Set, for # > 0, w'(¢) + (w(¥))2 = —L(t) (so that L{¢t) > K(¢)) and define

v(t) = exp(f0 w(s) ds), t > 0.

Show that »”(t) + L(t)v(t) = 0, »(0) = 1, »’(0) = 0.

c. Notice that »(#) > 0 and use the Sturm oscillation theorem (Exercise 6) to
show that there is no Jacobi field J(s) a]nnn 'n.’o\ with f(n\ —QandJlc.) =0

AL siiNia N IV JOW UL RN ¢ (W GAL/LL LI & \UUI — Vg

so € (0, o0). Thus, if (x) holds, there is no pomt conjugate to p along y.

*8. Let y: [0, I] — S be a geodesic on a complete surface .S, and assume that (/) is
not conjugate to p(0). Let wy € T,0,(S) and w; € T,,(S). Prove that there
exists a unique Jacobi field J(s) along y with J(0) = wy, J(I) = wy.

9. LetJ(s) be a Jacobi field along a geodesic y: [0, /] — S such that {J(0), y"(0)> =0
and J'(0) = 0. Prove that {J(s), y’(s)> = Oforall s € [0, [].

5-6. Covering Spaces;
The Theorems of Hadamard

We saw in the last section that when the curvature K of a complete surface
S satisfies the condition K <C 0 then the mappjng exp,: T (S) — S, pe S,

PP OS A SR o P ety Fa o SRR

lb a IOCE‘u ulﬁ‘CUUlUl L)l].lblll lL ib l.ld.LLll d.l LU d.bl& WIICU. thb IUL«CLI UlllCUillUiplllblli
is a global diffeomorphism. It is convenient to put this question in a more
general setting for which we need the notion of covering space.

A. Covering Spaces

DEFINITION 1. Let B and B be subsets of R®. We say that n: B—B
is a covering map if

1. 7 is continuous and n(B) — B

2. Each point p € B has a neighborhood U in B (fo be called a distin-
guished neighborhood of p) such that

z '(U) = V.,

where the V,’s are pairwise disjoint open sets such that the restriction of
7 to V, is a homeomorphism of V, onto U.
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B is then called a covering space of B.

Example 1. Let P — R? be a plane of R?. By fixing a point ¢, € P and
two orthogonal unit vectors ey, e, € £, with origin in q,, every point g € P
is characterized by coordinates (&, ¥) = g given by

q — U, = ue; + ve,.

Now let S ={(x,y,2z) € R*; x* + y* =1} be the right circular cylinder
whose axis is the z axis, and let z: P — S be the map defined by

n(u, v) = (cos u, sin u, v)

(the geometric meaning of this map is to wrap the plane Paround the cylinder
§ an infinite number of times; see Fig. 5-22).

I

“0+Tf

Figure 5-22

We shall prove that z is a covering map. We first observe that when
(o, vo) € P, the mapping r restricted to the band

R={(wv) e Piuy —n<u<u,+nj

covers S entirely. Actually, n restricted to the interior of R is a parametriza-

timm ~AF C tha nAaamdinmata maichlhach and AF o hiink Anaas PR Y

Uon 01 5, i Coorainai neignouormooa oI wiicri COvers o uuuub a 551151 alor.
It follows that # 1s continuous (actually, differentiable) and that z(P) = S,
thus verifying condition 1.

To verify condition 2, let p € § and U = S — r, where r is the generator
opposite to the generator passing through p. We shall prove that U is a
distinguished neighborhood of p.

Let (u,, v4) € P be such that z(u,, v} = p and choose for ¥, the band
given by

V,=1{uv)e Pu, + 2n — r <u <uy + 2n - Dxl},
’2:01 :t'l’ :tza .

It is immediate to verify that if n == m, then ¥V, "\ V,, = ¢ and that {_],V,



Covering Spacas; Tha Theorams of Hadamard 373

=z~ }(U). Moreover, by the initial observation, n restricted to any V,is a
homeomorphism onto U. It follows that U is a distinguished neighborhood
of p. This verifies condition 2 and shows that the plane P is a covering space
of the cylinder S.

Example 2. Let H be the helix
H={(x,y,z) € R®; x =cost,y =sint;z =bt,t € R}

and let
St ={(x,,0) € R; x>+ y* =1}

be a unit circle. Let z: H — S! be defined by
n(x, y,2) = (x, 3, 0).

We shall prove that z is a covering map (see Fig. 5-23).

7 Figure 5-23

It is clear that z is continuous and that z#(H) = 5. This verifies condition 1.

To verify condition 2, let p € S*'. We shall prove that U = §' — {g},
where ¢ € S is the point symmetric to p, is a distinguished neighborhood of
p. In fact, let £, € R be such that

n(cos ¢4, sin ¢y, bty) = p.
Let us take for V, the arc of the helix corresponding to the interval
(to+ 2n— Dm,t, + 2n+ n) < R, n=0,+1,+2,....

Then it is easy to show that z~'(U) = (_J, V,, that the V,’s are pairwise dis-
joint, and that 7 restricted to ¥, is a homeomorphism onto U. This verifies
condition 2 and concludes the example.

Now, let =: 85— B be a covering map. Since n(8) = B, each point
P € B is such that 5 € #~(p) for some p € B. Therefore, there exists a
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neighborhood V, of p such that z restricted to ¥, is a homeomorphism. It
follows that n is a local homeomorphism. The following example shows,
however, that there exist local homeomorphisms which are not covering
maps.

Before presenting the example it should be observed that if U is a dis-
tinguished neighborhood of p, then every neighborhood U of p such that
U = U is again a distinguished neighborhood of p. Since n~1(U) = (U, V,
and the V, are pairwise disjoint, we obtain

7:_1((7) = U Wd’

where the sets W, = n~ () N V, still satisfy the disjointness condition 2 of
Def. 1. In this way, when dealing with distinguished neighborhoods, we may

restrict ourselves to “small” neighborhoods.

Example 3. Consider in Example 2 a segment A of the helix H corre-
sponding to the interval (m, 4m) — R. It is clear that the restriction # of x to
this open segment of helix is still a local homeomorphism and that #(H) =
S, However, no neighborhood of

n(cos 3m, sin 3x, b3n) = (—1,0,0) = p € St

can be a distinguished neighborhood. In fact, by taking U sufficiently small,
A Y(U)=V, UV, where V, is the segment of helix corresponding to
t € (m,n + €)and V, is the segment corresponding to ¢t € (37 — ¢, 37 -} €).
Now 7 restricted to ¥, is not a homeomorphism onto U since #(V,) does not
even contain p. It follows that #: H — S is a local homeomorphism onto S!
but not a covering map.

We may now rephrase the question we posed in the beginning of this
chapter in the following more general form: Under what conditions is a local
homeomorphism a global homeomorphism?

The notion of covering space allows us to break up this question into two
questions as follows:

1. Under what conditions is a local homeomorphism a covering
map? .

2. Under what conditions is a covering map a global homeomor-
phism?

A simple answer to question 1 is given by the following proposition.

PROPOSITION 1. Let z: B — B be a local homeomorphism, B compact

and B connected. Then 7 is a covering map.
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Proof. Since  is a local homeomorphism 7#(8) = Bis open in B. More-
over, by the continuity of 7, 7(8) is compact, and hence closed in B. Since
n(B) = Bis open and closed in the connected set B, z(8) = B. Thus condition
1 of Def. 1 is verified.

To verify condition 2, let b € B. Then z7'(B) — B is finite.
it would have a limit point § € B which would contradict the fact that
n: B — B is a local homeomorphism. Therefore, we may write 7~ !(b) =

Nl argrioa
LOCTWISE,

(L £
‘LUI, «eey Ukj.

Let W, be a neighborhood of b,,i = 1, . . ., k, such that the restriction of
7 to W, is a homeomorphism (7 is a local homeomorphism). Since 7~ 1(B) is
finite, it is possible to choose the W’s sufficiently small so that they are pair-
wise disjoint. Clearly there exists a neighborhood U of b such that
U < M(#(W))) (see Fig. 5-24). By setting V, = n~(U) N W, we have that

) =¥,

and that the V;’s are pairwise disjoint. Moreover, the restriction of # to V,
is clearly a homeomorphism onto U. It follows that U is a distinguished neigh-
borhood of p. This verifies condition 2 and concludes the proof.  Q.E.D.

by
T
by
T
bl
\& Wy
l 7

o =

B .4?

Figure 5-24

When B is not compact there are few useful criteria for asserting that a
local homeomorphism is a covering map. A special case will be treated later.
For this special case as well as for a treatment of question 2 we need to return
to covering spaces.

The most important property of a covering map is the possibility of
“lifting” into & continuous curves of B. To be more precise we shall introduce
the following terminology.

Let B « R3. Recall that a continuous mapping«:[0, /] — B,[0,/] = R,
is called an arc of B (see the appendix to Chap. 5, Def. 8). Now, let B and B
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be subsets of R®. Let n: B — B be a continuous map and «: [0, /] — B be
an arc of B. If there exists an arc of B,

&:[0, 1] — B,

with 7 o & = a, & is said to be a lifting of & with origin in &0) & B. The situa-
tion is described in the accompanying diagram.

T
B

With the above terminology a fundamental property of covering spaces
is expressed by the following proposition of existence and unigueness.

[0, 7]

-3

PROPOSITION 2. Let m: B — B be a covering map, & [0,/}— B an
arc in B, and P, € B a point of B such that n(p,) = «(0) = p,. Then there
exists a unique lifting &:[0,1] — B of « with origin at D,, that is, with
5&(0) = Po-

Proof. We first prove the uniqueness. Let &, B: [0, /] — B be two liftings
of & with origin at j,. Let 4 < [0, /] be the set of points ¢ € [0, /] such that
&(7) = B(1). A is nonempty and clearly closed in [0, /].

We shall prove that A is open in [0, /]. Suppose that &(#) = B = p
Consider a neighborhood V of § in which z is a homeomorphism. Since &
and f§ are continuous maps, there exists an open interval I, < [0, /] containing
t such that &) < Vand B(I) = V. Since 7 o & = 7o f§ and 7z is a homeo-
morphism in ¥, & = f in I, and thus A is open. It follows that 4 = [0, /],
and the two liftings coincide for every ¢ € [0, /].

We shall now prove the existence. Since g is continuous, for every a(f) € B
there exists an interval I, < [0, /] containing ¢ such that «(l,) is contained
in a distinguished neighborhood of a(f). The family I,, 7 € [0, /], is an open
covering of [0, /] that, by compactness of [0, /], admits a finite subcovering,
say, {g, ..., 1,

Assume that 0 € I,. (If it did not, we would change the enumeration of
the intervals.) Since ®(/,) is contained in a distinguished neighborhood U,
of p, there exists a neighborhood ¥, of j, such that the restriction n, of 7 to
V, 1s a homeomorphism onto U,. We define, for ¢ € I, (see Fig. 5-295),

%l = o' o al?),

where 75! is the inverse map in U, of the homeomorphism 7. It is clear that
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p U, /
e/
&(O) = ﬁo:
7 o &(t) = o), t e I,

Figure 5-25

Suppose now that I, N I, # ¢ (otherwise we would change the order of
the intervals). Let ¢z, € I, N I,. Since a(l,) is contained in a distinguished
neighborhood U, of «(¢,), we may define a lifting of & in I, with origin at
&(z,). By uniqueness, this arc agrees with & in I, M I,, and, therefore, it is an
extension of & to I, U I,. Proceeding in this manner, we build an arc
&:[0, /] — B such that &0) = 5, and 7o &) = a(f), t € [0,]. Q.E.D.

An interesting consequence of the arc lifting property of a covering map
n: B — B is the fact that when B is arcwise connected there exists a one-to-
one correspondence between the sets 77 !(p) and #~'(g), where p and g are
two arbitrary points of B. In fact, if B is arcwise connected, there exists an
arc o: [0, /] — B, with ¢(0) = p and a(!) = q. For every 5 € ™ !(p), there is
a lifting &,: [0, /] — B, with &,(0) = 5. Now define ¢: 7~ '(p) — n~'(g) by
o(p) = &, (I); that is, let ¢(p) be the extremity of the lifting of & with origin
p. By the uniqueness of the lifting, ¢ is a one-to-one correspondence as
asserted.

It follows that the “number” of points of z~!(p), p € B, does not depend
on p when B is arcwise connected. If this number is finite, it is called the
number of sheets of the covering. If 771(p) is not finite, we say that the cover-
ing is infinite. Examples 1 and 2 are infinite coverings. Observe that when B
is compact the covering is always finite.

Example 4. Let

S'={(x,y) € R®; x =cost,y =sint,t € R}
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be the unit circle and define a map n: §' — S' by
7(cos 7, sin 1) = (cos kt, sin kt),

where k is a positive integer and ¢t € R. By the inverse function theorem, #
is a local diffeomorphism, and hence a local homeomorphism. Since S* is
compact, Prop. 1 can be applied. Thus, n: S* — S' is a covering map.

Geometrically, # wraps the first S* & times onto the second S!. Notice
that the inverse image of a point p € S! contains exactly k& points. Thus, n
is a k-sheeted covering of S*.

For the treatment of question 2 we also need to make precise some
intuitive ideas which arise from the following considerations. In order that a
covering map n: B — B be a homeomorphism it suffices that it is a one-
to-one map. Therefore, we shall have to find a condition which ensures that
when two points j,, p, of B project by z onto the same point

p = n(p,) = n(p)

of B, this implies that 5, = 5,. We shall assume B to be arcwise connected
and project an arc & of B, which joins 5, to j,, onto the closed arc o of B,
which joins p to p (see Fig. 5-26). If B does not have “holes” (in a sense to be
made precise), it is possible to “deform & continuously to the point p.” That
is, there exists a family of arcs «,, continuous in ¢, ¢t € [0, 1], with &, =«
and o, equal to the constant arc p. Since o'i is a lifting of a, it is natural to

avemant thot tha arrc olan ko 1ifiad a fno nEIMTIATT
\IAPU\JL Lllal— L1 al\ID W: ll].a_y aAlovU U lllb‘ru .[[l a lcuuu_y U'“t UUllbllluUuD Jll L’

e [0, 7], with &, = &. It follows that &, is a lifting of the constant arc p and,
therefore, reduces to a single point. On the other hand, &; joins j, to g, and
hence we conclude that 5, = p,.

Figure 5-26

To make the above heuristic argument rigorous we have to define a “con-

tinuous family of arcs joining two given arcs” and to show that such a family
mav be “lifted.”

AXACE Y AdL v

DEFINITION 2. Let B — R® and let a,:[0,1]— B, a,:[0,/]— B be
two arcs of B, joining the points

P — 0(0) — 0,(0) and q — tiolD) — ey
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We say that o, and o, are homotopic if there exists a continuous map
H: [0, ] x [0, 1] — B such that

1. H(s, 0) = ao(s), H(s, 1) = a(s), s € [0, /]
" HO t) — n H( ) — q =10 11
Fa AL\V, t} l.l, J.J.\.l’ lf} H_B | SR w— I_V’ _lJu

The map H is called a homotopy between 0,y and ..

For every ¢ € [0, 1], the arc «,: [0, /] — B given by a,(s) = H(s, 1) is
called an arc of the homotopy H. Therefore, the homotopy is a family of
arcs o, t € [0, 1], which constitutes a continuous deformation of ¢, into a;
(see Fig. 5-27) in such a way that the extremities p and ¢ of the arcs &, remain
fixed during the deformation (condition 2),

ot

Figure 5-27

The notion of lifting of homotopies is entirely analogous to that of lifting
of arcs. Let 7: B — B be a continuous map and let a,, &, : [0, /] — B be two
arcs of B joining the points p and g. Let H: [0, /] X [0, 1] — B be a homotopy
between &, and &,. If there exists a continuous map

7:10,1 % [0,1] — B

such that 7 « B = H, we say that H is a lifting of the homotopy H, with origin
at (0,0) =5 € B.

We shall now show that a covering map has the property of lifting
homotopies. Actually, we shall prove a more general proposition. Observe
that a covering map n: B — B is a local homeomorphism and, furthermore,
that every arc of B may be lifted into an arc of B. For the proofs of Props.
3, 4, and 5 below we shall use only these two properties of covering maps,
and so, for future use, we shall state these propositions in this generality.
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Thus, we shall say that a continuous map x: B — B has the property of
lifting arcs when every arc of B may be lifted. Notice that this implies that z
maps B onto B.

PROPOSITION 3. Let n: B — B be a local homeomorphism with the
property of lifting arcs. Let 6y, &, : [0, I1 — B be two arcs of B joining the points
p and q, let

H:{0,/1 x [0,1]] —> B

be a homotopy between o, and o, and let p B be a point of B such that
n(P) = p. Then there exists a unique lifting H of H with origin at p.

Proof. The proof of the uniqueness is entirely analogous to that of the
lifting of arcs. Let H, and A, be two liftings of H with (0, 0) = H,(0, 0)
= p. Then the set A of points (s, #) € [0, 7] x [0, 1] = Q such that H,(s, )
= H,(s, 1) is nonempty and closed in Q. Since A, and H, are continuous
and = is a local homeomorphism, A4 is open in Q. By connectedness of Q,
A = Q; hence, H, = H,.

To prove the existence, let a,(s) = H(s, t) be an arc of the homotopy H.
Define & by

H(s, ) = d(s), sel0,0],¢te]01],
where &, is the lifting of &,, with origin at j. It is clear that

H(s, ) = afs) = H(s,1), se[0,],2<]0,1],
) =

o~

%, (0) = 5.

H

rs

H(0,0

Let us now prove that H is continuous. Let (s,, #,) € [0, /] x [0, 1]. Since
7 is a local homeomorphism, there exists a Ht‘:lguoornouu V ot E\.so, to) such
that the restriction z, of z to ¥ is a homeomorphism onto a neighborhood U

of H(sy, 2,). Let Qo « H-Y(U) < [0,7] X [0, 1] be an open square given by

Sg — € << § <8, + €, th —e <t<t,+ e

!

v
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1
conclude that H is continuous at (s, #,). Since (s, ,) is arbitrary, H is con-
tinuous in [0, /] x [0, 1], as desired.
For that, we observe that

C
[

QD

no_l(H(SOa t))’ t e (to — €1 + 6)9

is a lifting of the arc H(s,, ?) passing through H(s,, t,). By uniqueness,

75 {(H(s,, ©)) = H(s,, ). Since Q0 is a square, for every (sl, 1) € Q0 there
avicto am avn F(c # X 30 T] o — _ | wrlhinle 1t arcanto A e
CAlIODLYD adll diw 11\ s L) A1 U, 3 O \00 C, .)0 e C), Wlllbll llllclbcb ] C aluv
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H(s,, t). Since ng5 '(H(s,, t,)) = H(s,, t,), the arc 75 (H(s, t,)) is the lifting of
H(s, t,) passing through H(s,,t;). By uniqueness, 75 (H(s, t,)) = H(s, t,);
hence, 7y '(H(s,, t,)) = F(s,, t;). By the arbitrariness of (s,,#,) € Q, we
conclude that 7y '(H(s, 1)) = H(s, t), (s,¢) € Q,, which ends the proof.

Fa S nik Y

U.E.D.

A consequence of Prop. 3 is the fact that if z: B — B is a covering map,
then homotopic arcs of B are lifted into homotopic arcs of B. This may be
expressed in a more general and precise way as follows.

PROPOSITION 4. Let n: B — B be a local homeomorphism with the
property of lifting arcs. Let &y, &,: [0, /]— B be two arcs of B joining the
points p and q and choose p € B such that m(p) = p. If &, and &, are homotopic,
then the liftings &, and &, of o, and o, respectively, with origin P, are homo-
topic.

Proof. Let H be the homotopy between &, and ¢, and let A be its lifting,
with origin at 5. We shall prove that H is a homotopy between &, and &,
(see Fig. 5-28).

In fact, by the uniqueness of the lifting of arcs,

A, 0) = Go(s), Al 1) =), se 0],

which verifies condition 1 of Def. 2. Furthermore, H(0, ¢) is the lifting of the

“onnctant” are HO. A — pn. with oricin at 5. Bv
WA LI IVLALEIL LW 4AX \ ‘} F’ YY AL Vl‘b“-‘ - Ill J

et

H©O,?) = p, t € [0, 1].

Figure 5-28
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Similarly, H(l, ¢) is the lifting of H(l, ) = g, with origin at &,(/) = §; hence,
ALt =§ =), te]0,1]

Therefore, condition 2 of Def. 2 is verified, showing that A is a homotopy

between &, and &,. Q.E.D.

Returning to the heuristic argument that led us to consider the concept
of homotopy, we sce that it still remains to explain what it is meant by a space
without “holes.” Of course we shall take as a definition of such a space
precisely that property which was used in the heuristic argument.

DEFINITION 3. An arcwise connected set B — R? is simply connected
if given two points p,q € B and two ares a,:[0,1]— B, a,:[0,/]-— B
joining p to q, there exists a homotopy in B between o, and o;. In particular,
any closed arc of B, &:[0,!]— B (closed means that «(0) = & ()= p), is
homotopic to the “constant” arc a(s) = p, s € [0, I](in Exercise.5 it is indicated
that this last property is actually equivalent to the first one).

Intuitively, an arcwise connected set B is simply connected if every closed
arc in B can be continuously deformed into a point. It is possible to prove
that the plane and the sphere are simply connected but that the cylinder and
the torus are not simply connected (cf. Exercise 5).

We may now state and prove an answer to question 2 of this section. This
will come out as a corollary of the following proposition.

PROPOSITION 5. Let m: B — B be a local homeomorphism with the
property of lifting arcs. Let B be arcwise connected and B simply connected.
Then wt is a homeomorphism.

Proof. The proof is essentially the same as that presented in the heuristic
argument.

We need to prove that n is one-to-one. For this, let 5, and 5, be two
points of B, with #(7,) = n(p,) == p. Since B is arcwise connected, there
exists an arc &, of B, joining p, to 5,. Then g o &, =
Since B is simply connected, &, is homotopic to the constant arc «,(s) = p,
s € [0, []. By Prop. 4, &, is homotopic to the lifting &, of &, which has origin
in p. Since &, is the constant arc joining the points 5, and j,, we conclude
that p, = p,. Q.E.D.

a ica clacad arc nf R
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and B simply connected. Then m is a homeomorphism.

~
M cemiiiros AriiEo s io
, D Grcwise cownnecied,

The fact that we proved Props. 3, 4, and 5 with more generality than was
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strictly necessary will allow us to give another answer to question 1, as
described below.

Let 7: B — B be a local homeomorphism with the property of lifting
arcs, and assume that B and B are locally “well-behaved” (to be made pre-
cise). Then 7z is, in fact, a covering map.

The required local properties are described as follows. Recall that B — R?
1s locally arcwise connected if any neighborhood of each point contains an
arcwise connected neighborhood (appendix to Chap. 5, Def. 12).

DEFINITION 4. B is locally simply connected if any neighborhood of
each point contains a simply connected neighborhood.

In other words, B is locally simply connected if each point has arbltrarﬂy

small simply connected neighborhoods. It is clear that if B is loc

connected, then B is locally arcwise connected.

We remark that a regular surface S is locally simply connected, since
p € S has arbitrarily small neighborhoods homeomorphic to the interior of
a disk in the plane.

In the next proposition we shall need the following properties of a locally
arcwise connected set B — R? (cf. the Appendix to Chap. 5, Part D). The
union of all arcwise connected subsets of B which contain a point p € B
is clearly an arcwise connected set A to be called the arcwise connected
component of B containing p. Since B is locally arcwise connected, A is open
in B. Thus, B can be written as a union B = |_J,4, of its connected com-
ponents A,, which are open and pairwise disjoint.

We also remark that a regular surface is locally arcwise connected. Thus,
in the proposition below, the hypotheses on B and B are satisfied when both
B and B are regular surfaces.

PROPOSITION 6. Let n: B-— B be a local homeomorphism with the
property of lifting arcs. Assume that B is locally simply connected and that B
is locally arcwise connected. Then it is a covering map.

Proof. 1et p € B and let V be a simply connected neighborhood of p
in B. The set 7z~ (V) is the union of its arcwise nnected components; that is,
ﬂ_l(V) = U Vw

where the 7,’s are open, arcwise connected, and pairwise disjoint sets.
\./OI‘ISluel" [IlC I'Cbl.l'i(.o[l()ﬂ . V -— V. 1I wE bﬂUW Lﬂd.l. A lb a IlUIIlBUIIlUI‘pUlbiﬂ
of ¥, onto V,  will satisfy the conditions of the definition of a covering map.

We first prove that n(¥,) = V. In fact, z(V,) = V. Assume that there is

apointp € V,p ¢ n(V,). Then, since ¥ is arcwise connected, there exists an
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arc & [a, b] — V joining a point ¢ € n(¥,) to p. The lifting &: [a, 8] — B
of & with origin at § € ¥,, where n(§) = ¢, is an arc in ¥,, since ¥, is an
arcwise connected component of B. Therefore,

(@) = p € aV.),

which is a contradiction and shows that z(¥,) = V.

Next, we observe that n: ¥, — V is still a local homeomorphism, since
¥, is open. Furthermore, by the above, the map n: ¥, — V still has the
property of lifting arcs. Therefore, we have satisfied the conditions of Prop.
5; hence, n is a homeomorphism. Q.E.D.

B. The Hadamard Theorems

‘x[ﬂ C"‘IO]} now ratuiirn tn h Mo

Q
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namely, under what conditions is the local diffeomorphism exp,: T (S) — S,
where p is a point of a complete surface S of curvature X <C 0, a global dif-
feomorphism of 7,(S) onto S. The following propositions, which serve to
“pbreak up” the given question into questions I and 2, yield an answer to the
problem.

We shall need the following lemma.

LEMMA 1. Let S be a complete surface of curvature K < 0. Then
exp,: T,(S)-— S, p € S, is length-increasing in the following sense: If
u, w € T,(S), we have

(d expp)u(w), (d expy)u(W)) = (W, W),

where, as usual, w denotes a vector in (T,(S)), that is obtained from w by the
translation u.

Proof. For the case u = 0, the equality is trivially verified. Thus, let
v = uf|ul,us 0, and let y:[0,] — S, [ =|u|, be the geodesic

y(5) = exp, s, s € [0,1].

By the Gauss lemma, we may assume that {w,v> = 0. Let J(s) = s(d exp,),,(w)
be the Jacobi field along y given by Lemma 1 of Sec. 5-5. We know that
J(0) =0, (DJ/ds)(0) = w, and {J(s),y'(s)> =0, s € [0, [].

Observe now that, since K << 0 (cf. Eq. (1), Sec. 5-5),

d ; DIN_ /DI DI\, [} DY\ _ (DI _ g
E<J’ ds>_<ds’ds>+<J’ ds2>#‘ﬂf’ KIJF = 0.
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This implies that

/J D7 0
,_.S")Z s
hence,
d /DJ DJ\ _/DJ D\ _ _ ,./DJ
ﬁ<‘d?“d§> . 2(71?, W) - 2K< . J) > 0. 60
It follows that
DJ DJ DJ P
<ds ds>>< ©), ds(0)> W) = € @
hence,
dZJJ U" Uu 2 ZDJD\ 3
ot -G ) ) 2 G )= o

By integrating both sides of the above inequality, we obtain

d%o, J>>2Cs + (_d%a, J>)F —2Cs + 2( ), J(O)) _ 20,

Another integration yields
T, J ) > Cs? + {J(0}, J(0)> = Cs2.

By setting s = / in the above expression and noticing that C = {w, w>, we
obtain

W), IS = 12w, wd.

Since J() = I(d exp,),,(w), we finally conclude that

{(d exp,)n(w), (d exp),(w)) = {w, w). Q.E.D.

For later use, it is convenient to establish the following consequence of the
above proof.

COROLLARY (of the proof). Let K = 0. Then exp,: T,(S) — S, p € §,
is a local isometry.

It suffices to observe that if X = 0, it is possible to substitute “> 0” by
“= 0" in Eqgs. (1), (2), and (3) of the above proof.

PROPOSITION 7. Let S be a complete surface with Gaussian curvature
K < 0. Then the map exp,: T(S) — S, p € S, is a covering map.
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Proof. Since we know that exp, 1s a local diffeomorphism, it suffices
(by Prop. 6) to show that exp, has the property of lifting arcs.

Let o:[0,/]-— S be an arc in S and also let v € T,(S) be such that
exp, v = &(0). Such a v exists since S is complete. Because exp, is a local
diffeomorphism, there exists a neighborhood U of v in T,(S) such that exp,
restricted to U is a diffeomorphism. By using exp,, in exp,(U), it is possible to
define & in a neighborhood of 0.

Now let 4 be the set of ¢ € [0, /] such that & is defined in [0, ¢]. 4 is non-
empty, and if &(¢,) is defined, then & is defined in a neighborhood of ¢,; that
is, 4 is open in [0, /]. Once we prove that 4 is closed in [0, /], we have, by
connectedness of [0, /], that A = [0, /] and &t may be entirely lifted.

The crucial point of the proof consists, therefore, in showing that A4 is
closed in [0, /]. For this, let ¢, € [0, /] be an accumulation point of 4 and
{t,} be a sequence with {r,} —t,, 1, € A,n=1,2,.... We shall first prove
that &(z,) has an accumulation point,

Assume that &(f,) has no accumulation point in 7,(S). Then, given a
C] ncad dick N of T (Q\ with center AT fhr-\r'r-\ 1€ an n cnch that A7 \ ﬂfl D

losed disk D of 7 with center &(0), there is an n, such that &(z,, D.
It follows that the dlstance, i 7,(S), from &(0) to &(z,) becomes arbltrarlly
large. Since, by Lemma 1, exp,: T,(S) — S increases lengths of the vectors,
it is clear that the intrinsic distance in .S from a(0) to a(z,) becomes arbitrarily
large. But that contradicts the fact that the intrinsic distance from «(0) to
o(ty) = lim, ., a(,) is finite, which proves our assertion.

We shall denote by ¢ an accumulation point of &(z,).

Now let V' be a neighborhood of ¢ in T,(S) such that the restriction of
exp, to V is a diffeomorphism. Since g is an accumulation point of {d&(z,)},
there exists an »n; such that &(t.) € V. Moreover, since « is continuous,
there exists an open interval I < [0, /], ¢, € 1, such that a(J) = exp, (V) =
By using the restriction of exp, ' in U it is possible to define a lifting of & in 7,
with origin in &{.). Since exp, is a local diffeomorphism, this lifting
coincides with & in [0, ¢£,) N Tand is therefore an extension of & to an interval
containing ¢,. Thus, the set A is closed, and this ends the proof of Prop. 7.

Q.E.D.

Remark 1. Tt should be noticed that the curvature condition K < 0 was
used only to guarantee that exp,: T,(S) — S is a length-increasing local dif-
feomorphism. Therefore, we have actually proved that if ¢:S, — S, is a

Ineal Ar#nnmnrnhwcm nf a nnmn]nfn mlrfnna Q onto a surface S whioh ¢
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length-increasing, then @ is a covering map.

The following proposition, known as the Hadamard theorem, describes
the topological structure of a complete surface with curvature K << 0.
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THEOREM 1 (Hadamard). Let S be a simply connected, complete surface,

frvn K <« 0O Th avn T Q) Q 1
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morphism, that is, S is diffeomorphic to a plane.

Proof. By Prop. 7, exp,: T,(S) — S is a covering map. By the corollary
of Prop. 5, exp, is a homeomorphism. Since exp, is a local diffeomorphism,
its inverse map is differentiable, and exp, is a diffeomorphism. Q.E.D.

We shall now present another geometric application of the covering
spaces, also known as the Hadamard theorem. Recall that a connected,
compact, regular surface, with Gaussian curvature K > 0, is called an ovaloid
(cf. Remark 1, Sec. 5-2).

THEOREM 2 (Hadamard). Let S be an ovaloid. Then the Gauss map
N: S -— 82 is a diffeomorphism. In particular, S is diffeomorphic to a sphere.

Proof. Since for every p € S the Gaussian curvature of S, K = det(dN,),
is positive, N is a local diffeomorphism. By Prop. 1, N is a covering map.
Since the sphere S? is simply connected, we conclude from the corollary of
Prop. 5 that N: .S — S? is a homeomorphism of .S onto the unit sphere S2.
Since N is a local diffeomorphism, its inverse map is differentiable. Therefore,
N is a diffeomorphism. Q.E.D.

Remark 2. Actually, we have proved somewhat more. Since the Gauss
map NV is a diffeomorphism, each unit vector ¥ of R® appears exactly once as
a unit normal vector to S. Taking a plane normal to v, away from the surface,
and displacing it paraliel to itself until it meets the surface, we conclude that
S lies on one side of each of its tangent planes. This 1s expressed by saying
that an ovaloid S'is locally convex. It can be proved from this that Sis actually
the boundary of a convex set (that is, a set K = R? such that the line segment
Jjoining any two points p, g € K belongs entirely to K).

Remark 3. The fact that compact surfaces with K > 0 are homeomorphic
to spheres was extended to compact surfaces with K >> 0 by S. S. Chern and
R. K. Lashof (*°On the Total Curvature of Immersed Manifolds,” Michigan
Math. J. 5 (1958), 5-12). A generalization for complete surfaces was first
obtained by J. J. Stoker (“Uber die Gestalt der positiv gekriimnten offenen
Fliche,” Compositio Math. 3 (1936), 58-89), who proved, among other
things, the following: A complete surface with K > 0 is homeomorphic to a
sphere or a plane. This result still holds for K > 0 if one assumes that at some
point K > 0 (for a proof and a survey of this problem, see M. do Carmo and
E. Lima, “Isometric Immersions with Non-negative Sectional Curvatures,”

Boletim da Soc. Bras. Mat. 2 (1971), 9-22)
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EXERCISES

Show that the map #: R— S! ={(x,») € R?; x2 + y2 = 1} that is given
by n(:) = (cos t,sint), t € R, is a covering map.

Show that the map #: R? — {0, 0} — R?2 — {0, 0} given by
Tf(x,y) = (xz _yZ’ ZxY): (xsy) € RZ:

is a two-sheeted covering map.

Let S be the helicoid generated by the normals to the helix (cos ¢, sin ¢, bt).
Denote by L the z axis and let #: S — L — R2? — {0, 0} be the projection
n(x, y, z) = (x, ). Show that 7 is a covering map.

Those who are familiar with functions of a complex variable will have noticed
that the map z in Exercise 2 is nothing but the map 7(z) = z2 from C — {0}
onto € — {0}; here C is the complex plane and z € C. Generalize that by prov-
ing that the map #: C — {0} — C — {0} given by 7(z) = z" is an n-sheeted cov-
ering map.

Let B = R? be an arcwise connected set. Show that the following two properties
are equivalent (cf. Def. 3):

1. For any pair of points p,g € B and any pair of arcs ¢,: [0, []-— B,
®,:[0, /] — B, there exists a homotopy in B joining ¢, to &,.

2. Forany p € Band any arc o: [0, /] — B with a(0) = a.(/) = p (that is,
o is a closed arc with initial and end point p} there exists a homotopy
joining o to the constant arc o(s) = p, s € [0, /1.

. Fix a point p, € R? and define a family of maps ¢,: R? — R, ¢t € [0, 1], by

@dp) =1tpo + (1 —Np, p € R2 Notice that go(p) = p, ¢.(p) = po. Thus, ¢,
is a continuous family of maps which starts with the identity map and ends with
the constant map py. Apply these considerations to prove that R2 is simply con-
nected.

a. Use stereographic projection and Exercise 6 to show that any closed arc on a
sphere §2 which omits at least one point of $2 is homotopic to a constant arc.

b. Show that any closed arc on S2 is homotopic to a closed arc in S2 which
omits at least one point.

¢. Conclude from parts a and b that §2 is simply connected. Why is part b nec-
essary ?

. (Klingenberg’s Lemma.) Let S © R3? be a complete surface with Gaussian cur-

vature K < K, where K|, is a nonnegative constant. Let p, ¢ € .S and let y, and

Al md e T o o el Tlae N Tl N bo o FSON T

1 be two distinct geodesics joining p to g, with I(yo) < I(y,}; here [{ ) denotes
the length of the corresponding curve. Assume that , is homotopic to y;; i.e.,
there exists a continuous family of curves &,, ¢ € [0, 1], joining p to g with
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0o = Yo, 0y = ¥1. The aim of this exercise is to prove that there exists a
tg € [0, 1] such that

I70) + 100) > 2
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Figure 5-29. Klingenberg’s lemma.

a. Use the first comparison theorem (cf. Exercise 3, Sec. 5-5) to prove that
exp,: T,(S) — S has no critical points in an open disk B of radius 7/s/ K,
about p.

b. Show that, for ¢ small, it is possible to lift the curve ¢, into the tangent plane
T,(S); i.e., there exists a curve &, joining exp;'(p) = 0 to exp, '(g) = § and
such that exp, o & = &,.

c. Show that the lifting in part b cannot be defined for all ¢ € [0, 1]. Conclude

that for every € > 0 there exists a #(€) such that &, can be lifted into &,
and &, contains points at a distance <(€ from the boundary of B. Thus,

I _ e
1)

1(Yo) + (00 = ——= VK.

s

Choose in part ¢ a sequence of €'s,{€,} — 0, and consider a converging sub-
sequence of {#(€,)}. Conclude the existence of a curve ¢, #; € [0, 1], such
that
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2n
l()’o) + l(mto) > ’\/Ko

9. a. Use Klingenberg’s lemma to prove that if .S is a complete, simply connected
surface with K <C 0, then exp,: T,(S) — S is one-to-one.

b. Use part a to give a simple proof of Hadamard’s theorem (Theorem 1).

*10. (Synge’s Lemma.) We recall that a differentiable closed curve on a surface S is
a differentiable map &: [0, /] — S such that & and all its derivatives agree at 0
and /. Two differentiable closed curves oo, &, : [0, /] — S are freely homotopic if
there exists a continuous map H: [0, [] x [0, 1]—- S such that H(s, 0) = t(s),
H(s, 1) = t,(s), s € [0, []. The map H is called a free homotopy (the end points
are not fixed) between & and . Assume that .S is orientable and has positive
Gaussian curvature. Prove that any simple closed geodesic on S'is freely homo-
topic to a closed curve of smaller length.

. Let § be a complete surface. A point p € S is called a pole if every geodesic
¥: [0, co) — S with (0} = p contains no point conjugate to p relative to p. Use
the techniques of Klingenberg’s lemma (Exercise 8) to prove that if .S is simply
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5-7. Global Theorems for Curves;
The Fary-Milnor Theorem

In this section, some global theorems for closed curves will be presented.
The main tool used here is the degree theory for continuous maps of the
circle. To introduce the notion of degree, we shall use some properties of
covering maps developed in Sec. 5-6.

Let ST = {(x, y) € R*; x> + y* = 1} and let z: R— S' be the covering
of S! by the real line R given by

n(x) = (cos x, sin x), x € R.

Let ¢: 8' — S! be a continuous map. The degree of ¢ is defined as follows,
We can think of the first S? in the map ¢: S* — S! as a closed interval [0 1]
with its end points 0 and / identified. Thus, ¢ can be thought of as a con-
tinuous map ¢: [0, [] — S?, with ¢(0) = ¢(/) = p € S'. Thus, ¢ is a closed
arc at p in S' which, by Prop. 2 of Sec. 5-6, can be lifted into a unique arc
@:10,1] — R, starting at a point x € R with n(x) = p. Since z{@p(0)) =
a(@(D)), the difference () — @F(0) is an integral multiple of 2z. The integer
deg ¢ given by

g(l) — ¢(0) = (deg ¢)2n

is called the degree of ¢.
Intuitively, degga is the number of times that ¢:[0, /] — S “wraps”
t

rn I _.._.1 I\ 2g = AN P SRS - ~ rnon .2 J P,
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tinuous determination of the positive angle that the fixed vector ¢(0) —
makes with ¢(t) — O, ¢t € [0,!], O = (0, 0)—e. g., the map z:S'— §'
described in Example 4 of Sec. 5-6, Part A, has degree k.

We must show that the definition of degree is independent of the choices
of p and x.

First, deg ¢ is independent of the choice of x. In fact, let x; > x be a point
in R such that z(x,) = p, and let @,(¥) = @) + (x, — x), ¢ € [0,/]. Since
x; — x is an integral multiple of 2z, @, is a lifting of ¢ starting at x,. By the
uniqueness part of Prop. 2 of Sec. 5-6, @, is the lifting of ¢ starting at x;. Since

#.(1) — §.(0) = ¢() — §(0) = (deg ¢)2m,

the degree of ¢ is the same whether computed with x or with x,.
Second, deg ¢ is independent of the choice of p € S'. In fact, each point
p; € S, except the antipodal point of p, belongs to a distinguished neigh-
borhood U, of p. Choose x,, in the connected component of 7~ '(U;) contain-
ing x, such that z(x,) = p,, and let §, be the lifting of
p:[0, /] — S

]

starting at x,. Clearly, |#,(0) — @#(0)| < 2. It follows from the stepwise

process through which liftings are constructed (cf. the proof of Prop. 2, Sec.

5-6) that | @,(/) — &(/)| < 2z. Since both differences @(I) — @(0), #,(/) — ¢,(0)
must be integral multiples of 2z, their values are actually equal. By continuity,
the conclusion also holds for the antipodal point of p, and this proves our
claim.

The most important property of degree is its invariance under homotopy.
More precisely, let ¢, p,: S' — S* be continuous maps. Fix a point p € S,
thus obtaining two closed arcs at p, @,, @,:[0,/] — S, ¢,(0) = ¢,(0) =

If ¢, and @, are homotopic, then deg ¢, = deg p,. This follows immediateiy
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from the fact that (Prop. 4, Sec. 5-6) the liftings of ¢, and ¢, starting from
a fixed point x € R are homotopic, and hence have the same end points.

It should be remarked that if ¢: [0, /] — S! is differentiable, it determines
differentiable functions a = a(¢), b = b(¢), given by ¢(f) = (a(?), b(r)), which
satisfy the condition a? -+ b? = 1. In this case, the lifting @, starting at ¢, = x,
is precisely the differentiable function (cf. Lemma 1, Sec. 4-4)

)= Fo + | (ab' — ba') dt.

This follows from the uniqueness of the lifting and the fact that cos §(¢) = a(?),
sin @§(¢) = b(t), @(0) = @,. Thus, in the differentiable case, the degree of
@ can be expressed by an integral,

_ 1 ["dp
deg g #EJ‘OEC{L

In the latter form, the notion of degree has appeared repeatedly in this
book. For instance, when v: U = R* — R?, U o S, is a vector field, and
(0, 0) 1s its only singularity, the index of » at (0, 0) (cf. Sec. 4-5, Application 5)
may be interpreted as the degree of the map ¢:S' — S' that is given by
p(p) = v(p)lv(p)l, p € S*.

Before going into further examples, let us recall that a closed (differenti-
able)} curve is a differentiable map &: [0, /] — R® (or R?, if it is a plane curve)
such that the components of «, together with all its derivatives, agree at 0 and
I. The curve ¢ is regular if ¢'(r) == O for all ¢ € [0, /], and & is simple if when-
ever ty £ t,, t,, 1, € [0, 1), then a(t,) 54 a(t,). Sometimes it is convenient to
assume that o is merely continuous; in this case, we shall say explicitly that

.
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Example 1 (The Winding Number of a Curve). Let a:[0,/] — R* be a
plane, continuous closed curve. Choose a point p, € R?, p, ¢ a([0, []), and
let ¢: {0, /] — S* be given by

p(1) = ”'(1)_‘*’“, t € [0,1]
la(t) — pol

Clearly ¢(0) = ¢(!), and ¢ may be thought of as a map of S* into S7; it is
called the position map of o relative to p,. The degree of ¢ is called the winding
number (or the index) of the curve g relative to p, (Fig. 5-31).

Notice that by moving p, along an arc f# which does not meet a([0, /])
the winding number remains unchanged. Indeed, the position maps of «
relative to any two points of f can clearly be joined by a homotopy. It follows

that the winding number of # relative to 7 1€ conctant when 7 rune in a con-
new 12 NUMDEr O X 1 € 10 ntwien g runs in a con
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nected component of R? — a([0, /]).
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Figure 5-31

Example 2 (The Rotation Index of a Curve). Leta: [0, [] — R? be a regular
plane closed curve, and let ¢: [0, /] — S be given by

o(t) = Iz—%—l t e [0, 1],
Clearly ¢ is differentiable and ¢(0) = ¢(/). ¢ is called the rangent map of «,
and the degree of ¢ is called the rotation index of a. Intuitively, the rotation
index of a closed curve is the number of complete turns given by the tangent
vector field along the curve (Fig. 1-27, Sec. 1-7).
It is possible to extend the notion of rotation index to piecewise regular

cnryae hu neino tha analac af the varficace faae Qar A_SY and tn DTy athnt tha
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rotation index of a simple, closed, piecewise regular curve is 41 (the theorem
of turning tangents). This fact is used in the proof of the Gauss-Bonnet
theorem. Later in this section we shall prove a differentiable version of the
theorem of turning tangents.

F+Qﬁf\f\
1 1
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Jordan curve theorem. For the proof we shall presume some familiarity with
the material of Sec. 2-7.

THEOREM 1 (Differentiable Jordan Curve Theorem). Let o [0, []— R?
be a plane, regular, closed, simple curve. Then R* — ([0, []) has exactly two

PRI S RPN DU S f o WY & RN SRSy I SNSRI AU S
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Proof. Let N, () be a tubular neighborhood of «([0, /]). This is con-
structed in the same way as that used for the tubular neighborhood of a com-
pact surface (cf. Sec. 2-7). We recall that N (e) is the union of open normal
segments 7(f), with length 2¢ and center in a(f). Clearly, N.(x) — a([0, /])
has two connected components 7'; and 7,. Denote by w(p) the winding num-
ber of o relative to p € R* — ([0, /]). The crucial point of the proof is to
show that if both p, and p, belong to distinct connected components of
N. (o) — &[0, /]) and to the same L(¢,), t, € [0, [], then w(p,) — w(p,) = 4-1,
the sign depending on the orientation of «.
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Choose points 4 = a(ty), D = a(t,), t; < ty < t,, 30 close to ¢, that the
arc AD of & can be deformed homotopically onto the polygon ABCD of
Fig. 5-32. Here BC is a segment of the tangent line at «(¢), and B4 and CD
are parallel to the normal line at a(t,).

Tubular
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D=a(i)=p(13)
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C N

T N
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Figure 5-32

Let us denote by #:[0, /] — R> the curve obtained from & by replacing the
arc AD by the polygon ABCD, and let us assume that (0) = §(/) = 4 and
that §(z;) = D. Clearly, w(p,) and w(p,) remain unchanged.

Let ¢, p,: [0, I1 — §" be the position maps of B relative to p,, p,, respec-
tively (cf. Example 1), and let @,, @,: [0, /] — R be their liftings from a fixed
point, say 0 € R. For convenience, let us assume the orientation of £ to be
given as in Fig. 5-32.

We first remark that if 1 € [¢;, {1, the distances from o.(f) to both p, and p,
remain bounded below by a number independent of #, namely, the smallest
of the two numbers dist(p,, Bd N, (a)) and dist(p,, Bd N,(x)). Tt follows that
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the angle of a(f) — p; with a(r) — p, tends uniformly to zero in [t,, [] as p,
approaches p,.
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@.(2;) — §:(0) =7 — €, and §,(t;) — §,(0) = —(z + ¢,), with €, and ¢,
smaller than z/3. Furthermore,

2n(w(p;) — W(Pz)) = (¢1(i) — 551(0)) - (@2(1-) — @,(0))
= {(f, — @, \(ﬂ — (@ — @, Nt3)}

TA/ AT TA/\ J/J

+ (@, — @)(t3) — (@ — §2)0)}.

By the above remark, the first term can be made arbitrarily small, say equal to
€; < mf3, 1f p, is sufficiently close to p,. Thus,

2n(w(p) —w(pa)) = €3+ — €, — (= — €,) = 2n + ¢,
where ¢ << = if p, is sufficiently close to p,. It follows that w{p,) — w(p,) =1,
as we had claimed.

It is now easy to complete the proof, Since w(p) is constant in each con-
nected component of R? — ([0, []) = W, it follows from the above that there
are at least two connected components in W. We shall show that there are
exactly two such components.

In fact, let C be a connected component of W. Clearly Bd C # ¢ and
Bd C < «([0, /]). On the other hand, if p € a([0, /]), there is a neighborhood
of p that contains only points of ([0, /]), points of T, and points of T, (T,
and 7, are the connected components of N, (&) — «(f0, /])). Thus, either 7,
or T, intersect C. Since C is a connected component, C = T, or C o T).
Therefore, there are at most two (hence, exactly two) connected components
of W. Denote them by C, and C,. The argument also shows that
Bd C, = 4&([0, /) = Bd C,. Q.E.D.

The two connected components given by Theorem 1 can easily be dis-
tinguished. One starts from the observation that if p, is outside a closed disk
D containing ([0, /]) (since [0, /] is compact, such a disk exists), then the
winding number of o relative to p, is zero. This comes from the fact that the
lines joining p, to (), ¢t € [0, /], are all within a region containing D and
bounded by the two tangents from p, to the circle Bd D. Thus, the connected

componeut with w1ud1115 number zero is uuuuui‘ided and contains all pOli‘itS

outside a certain disk. Clearly the remaining connected component has
winding number +1 and is bounded. It is usual to call them the exterior and
the interior of &, respectively.

Remark 1. A useful complement to the above theorem, which was used in
the applications of the Gauss-Bonnet theorem (Sec. 4-5), is the fact that the
interior of & is homeomorphic to an open disk. A proof of that can be found
in J. J. Stoker, Differential Geometry, Wiley-Interscience, New York, 1969,
pp. 43-45.
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We shall now prove a differentiable version of the theorem of turning
tangents.

THEOREM 2. Let B:[0,/]— R? be a plane, regular, simple, closed
curve. Then the rotation index of B is --1 (depending on the orientation of f).

Proof. Consider a line that does not meet the curve and displace it parallel
to itself until it is tangent to the curve. Denote by / this position of the line
and by p a point of tangency of the curve with /. Clearly the curve is entirely
on one side of / (Fig. 5-33). Choose a new parametrization o :[0, /] — R?
for the curve so that o(0) = p. Now let

T= {(tlstz) € [0,1]1 x [0,1];0 <, <t, <1}

be a triangle, and define a “secant map” y: T — S* by

it t) = 2 = at)  p g iy e T — (0, 1)
e | 6(Z2) — olZy) | .
o' (1) o’ (0)
b =20 yo,n = —. %0,
vit) =ragr vYOD = 0]

B=({0,0) C=(4,9

A

A =(0,0)

\'A
%

Figure 5-33

Since « is regular, y is easily seen to be continuous. Let 4 = (0, 0),
B = (0,1), C = (I, I) be the vertices of the triangle 7. Notice that y restricted
to the side AC is the tangent map of «, the degree of which is the rotation
number of ¢. Clearly (Fig. 5-33), the tangent map is homotopic to the restric-
tion of y to the remaining sides AB and BC. Thus, we are reduced to show
that the degree of the latter map is 4-1.
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Assume that the orientations of the plane and the curve are such that the
oriented angle from a’(0) to —a’(0) is #. Then the restriction of w to AB
covers half of S! in the positive direction, and the restriction of w to BC
covers the remaining half also in the positive direction (Fig. 5-33). Thus, the
degree of y restricted to AB and BCis + 1. Reversing the orientation, we shall
obtain —1 for this degree, and this completes the proof. Q.E.D.

The theorem of turning tangents can be used to give a characterization of
an important class of curves, namely the convex curves.

A plane, regular, closed curve &: [0, /] — R?is convex if, foreach ¢ < [0, /],
the curve lies in one of the closed half-planes determined by the tangent line
at 1 (Fig. 5-34; cf. also Sec. 1-7). If & is simple, convexity can be expressed in
terms of curvature. We recall that for plane curves, curvature always means
the signed curvature (Sec. 1-5, Remark 1).

>< / N —_—

(@) b (c)
Convex curve Nonconvex curves

Figure 5-34

it is simple and its curvature k does not change sign.

Proof. Let ¢:[0,1] — S be the tangent map of « and @: [0, /] — R be
the lifting of ¢ starting at 0 € R. We first remark that the condition that k
does not change sign is equivalent to the condition that # is monotonic (non-
decreasing if k > 0, or nonincreasing if k < 0).

Now, suppose that & is simple and that k& does not change sign. We can
orient the plane of the curve so that k > 0. Assume that & is not convex. Then
there exists ¢, € [0, /] such that points of a([0, /]) can be found on both sides
of the tangent line T at «(?,). Let # = n(#,) be the normal vector at f,, and set

R = {a(t) — alte), ny, t€1[0,1]

Since [0, /] is compact and both sides of T contain points of the curve, the
“height function” A, has a maximum at ¢, # t, and a minimum at ¢, = ¢,.
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The tangent vectors at the points ¢, ¢;, {, are all parallel, so two of them, say
o'(t,), &'(¢,), have the same direction. It follows that ¢(z,) = @(¢,) and, by
Theorem 2 (o is simple), @(¢,) = @(¢,). Let us assume that f; > ¢,. By the
above remark, ¢ is monotonic nondecreasing, and hence constant in [z, ¢,].
This means that a(J¢,, ¢;]) = 7. But this contradicts the choice of T and shows
that & is convex.

Conversely, assume that ¢ is convex. We shall leave it as an eXercise to
show that if & is not simple, at a self-intersection point (Fig. 5-35(a)), or
nearby it (Fig. 5-35(b)), the convexity condition is violated. Thus, « 1s simple.

(a) (b)
Figure 5-35

We now assume that ¢ is convex and that k changes sign in [0, []. Then
there are points ¢,, ¢, € [0, /], t; < ¢t,, with @(¢;) = @(¢,) and @ not constant
in [t,, t,].

We shall show that this leads to a contradiction, thereby concluding the
proof. By Theorem 2, there exists t; € [0, /) with ¢(z;) = —¢(¢,). By con-
vexity, two of the three parallel tangent lines at e(¢;), a(z,), o(z;) must coin-
cide. Assume this to be the case for a(z,) = p, a(t;) = q, t; > t,. We claim
that the arc of & between p and ¢ is the line segment pg.

In fact, assume that r 3 g is the last point for which this arc is a line
segment {r may agree with p). Since the curve lies in the same side of the line
pq, it is easily seen that some tangent 7 near p will cross the segment pg in an
interior point (Fig. 5-36). Then p and g lie on distinct sides of 7\ That is a con-
tradiction and proves our claim.

Tt follows that the coincident tancent lines have the same directions: that
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is, they are actually the tangent lines at a(¢,) and et(¢;). Thus, # is constant in
[t:, ¢,], and this contradiction proves that k& does not change sign in [0, /].
Q.E.D.

Remark 2. The condition that e is simple is essential to the proposition,
as shown by the example of the curve in Fig. 5-34(c).

Remark 3. The proposition should be compared with Remarks 2 and 3 of
Sec. 5-6; there it is stated that a similar situation holds for surfaces. It is to be
noticed that, in the case of surfaces, the nonexistence of self-intersections is
not an assumption but a consequence.

Remark 4. 1t can be proved that a plane, regular, closed curve is convex

if and only if its interior is a convex set K = R? (cf. Exercise 4).

We shall now turn our attention to space curves. In what follows the word
curve will mean a parametrized regular curve o : [0, /] — R? with arclength s
as parameter. If o is a plane curve, the curvature 4(s) is the signed curvature of
o (cf. Sec. 1-5); otherwise, k(s) is assumed to be positive for all s € [0, /]. It is
convenient to call

[ 1) 1ds

the total curvature of «. '
Probably the best-known global theorem on space curves is the so-called

S P

amat a0 g
reiienct 5, LUICOTIcClil,

THEOREM 3 (Fenchel’s Theorem). The total curvature of a simple closed
curve is > 2m, and equality holds if and only if the curve is a plane convex
curve.

Before going into the proof, we shall introduce an auxiliary surface which
is also useful for the proof of Theorem 4.
The tube of radius r around the curve ¢ is the parametrized surface

x(s,v) = os) -I- r(ncos v + b sin v), s € [0, 1],» € [0, 27],

where n = n(s) and b = b(s) are the normal and the binormal vector of «,
respectively. It is easily checked that

|x, A X,| = EG — F? = r*(1 — rk cos v).

We assume that r is so small that rk, << 1, where k, << max |k(s)], s € [0, {].
Then x is regular, and a straightforward computation gives
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N = —(ncosv + bsinv),
X, A\ X, = r(l — rk cos v)N,
N, AN, =kcosv(ncosv + bsinv) = —k Ncosv

k cosv
71 T R, ..\X’U /\ X.S'
r(1 — rk cos v)

It follows that the Gaussian curvature K = K(s, v) of the tube is given by

o kcosv
r(I — rkcosv)

K(S, 'L’) ==

Notice that the trace T of x may have self-intersections. However, if « is

simple, it is possible to choose » so small that this does not occur; we use the
compactness of [0, /] and proceed as in the case of a tubular neishborhood

WAL PR LA SS L | et viil A LLAVILAIAD JRE R AR BN

constructed in Sec. 2-7. If, in addition, ¢ is closed, T is a regular surface
homeomorphic to a torus, also called a tube around «. In what follows, we
assume this to be the case.

Proof of Theorem 3. Let T be a tube around &, and let R = T be the region
of T"where the Gaussian curvature of 7 is nonnegative. On the one hand,

” Kdo = ” K/EG — F*ds dv

= f: k ds sz cosvdv =2 JIO k(s)ds.

n/2

On the other hand, each half-line L through the origin of R® appears at
least once as a normal direction of R. For if we take a plane P perpendicular
to L such that P N T = ¢ and move P parallel to itself toward T (Fig. 5-37),
it will meet T for the first time at a point where K > 0.

It follows that the Gauss map N of R covers the entire unit sphere S? at

least once; hence, J’JP K do > 4n. Therefore, the total curvature of & is > 27,
R

and we have proved the first part of Theorem 3.

Nheoarua that tha imaoca Af tha ance man A ractricted fa anch Alrcla
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s = const. is one-to-one and that its image is a great circle I', < S§%2. We
shall denote by I'} < T, the closed half-circle corresponding to points where
K> 0.

Assume that « is a plane convex curve. Then all I'} have the same end
points p, g, and, by convexity, I';, N I's, = {p} U {g} for s, £ 5,,5,,5, €

[0, /). By the first part of the theorem, it follows that JJ K do = 4n; hence,
R

the total curvature of o is equal to 2z.

O A P | Ure o
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Figure 5-37

of the theorem, ”- Kdo = 4r. We claim that all I'f have the same end
R

points p and g. Otherwise, there are two distinct great circles T's, Iy, s,
arbitrarily close to s,, that intersect in two antipodal points which are not in
N(R N Q), where Q is the set of points in T with nonpositive curvature. It
follows that there are two points of positive curvature which are mapped by

o

AT 31t a citnola At ~AF ©2 Quionn AT o o0 lannl diffanima smimltoma at griah o te
IV LUV a SIIEIC PUIIL UL 07 DIIVC 1Y 15 a 10Lal ULHCUINOLNPIISIIL at dulll POUrid

and each point of S? is the image of at least one point of R, we conclude that
J f Ko > 47, a contradiction.
R

By observing that the points of zero Gaussian curvature in T are the in-
tersections of the binormal of ¢ with 7', we see that the binormal vector of &
is parallel to the line pg. Thus, g is contained in a plane normal to this line.

We finally prove that & is convex. We may assume that o is so oriented
that its rotation number is positive. Since the total curvature of ¢ is 2z, we
have
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27z:J:|k|dst;kds.

Lk ds > 2x,

where J = {s € [0, /]; k(s) > 0}. This holds for any plane closed curve and

follows from an argument entirely similar to the one used for R = T in the
hemnmncr of this nrnnf‘ Thusg

........ LOLARAS LU} R T

j;kds:

Therefore, k > 0, and « is a plane convex curve. Q.E.D.

Romarlk 5§ Ttic n

nt
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simple. The tube will then have self-intersections, but this is irrelevant to the
argument. In the last step of the proof (the convexity of &), one has to observe
that we have actually shown that & 1s nonnegatively curved and that its rota-
tion index is equal to 1. Looking back at the first part of the proof of Prop.
1, one easily sees that this implies that & is convex.

hrr‘nnnhfhn nronf
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We want to use the above method of proving Fenchel’s theorem to obtain
a sharpening of this theorem which states that if a space curve is knotted (a
concept to be defined presently), then the total curvature is actually greater
than or equal to 47.
A simple closed continuous curve C < R® is unknotted if there exists a
homotopy H: §' X I— R?, I = [0, 1], such that
H(s' x {0} = S
H(S' x {1}) =C
and H(S' x {t}) =C, < R?
is homeomorphic to S! for all ¢ € [0, 1]. Intuitively, this means that C can
be deformed continuously onto the circle S* so that all intermediate positions
are homeomorphic to S!. Such a homotopy is called an isotopy; an unknotted

curve is then a curve isotopic to S*. When this is not the case, C is said to be
knotted (Fig. 5-38).

THEOREM 4 (Fary-Milnor). The fotal curvature of a knotted simple
closed curve is greater than or equal to 4r.

Proof. Let C = ([0, []), let T be a tube around &, and let R < T be the
region of T where K > 0. Let & = b(s) be the binormal vector of &, and let
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O

Unknotted Knotted Figure 5-38

v € R? be a unit vector, v == b(s), for all s € [0, []. Let 4,: [0, /] — R be the
height function of e in the direction of »; that is, Ah(s) = {a(s) — 0,v>,
s € [0, []. Clearly, s is a critical point of %, if and only if » is perpendicular to
the tangent line at a(s). Furthermore, at a critical point,

d 2
B}E(hv) = <cji—-$’ U> = k<n7 ’U> #*= 03

since v 7= b(s) for all s and & > 0. Thus, the critical points of %, are either
maxima or minima.

Now, assume the total curvature of & to be smaller than 4z. This means
that

”RKdazszds<8n.

We claim that, for some v, ¢ b([0, []), #,, has exactly two critical points
(since [0, /] is compact, such points correspond to the maximum and minimum
of h,,). Assume that the contrary is true. Then, for every v ¢ b([0, /1), 4, has
at least three critical points. We shall assume that two of them are points of
minima, s, and s,, the case of maxima being treated similarly.

Cancidar a nlans P narnandisrnlar ta 9 ennch that D f‘\ 'T' — A and move it
LUIINIUCL a plalle £ pul puoiliuicuial to v Sulil ulav £ — Y, Gl OVve It

parallel to itself toward T. Either A,(s,) = h,(s,) or, say, h(s;) < h,(s,). In
the first case, P meets T at points g, # ¢,, and since v ¢ b([0, []), K(g,) and
K(g,) are positive. In the second case, before meeting a(s;), P will meet T at
a point g, with K(g;) > 0. Consider a second plane P, parallel to and at a
distance r above P (r is the radius of the tube 7'). Move P further up until it
reaches a(s,); then P will meet T at a point g, % ¢, (Fig. 5-39). Since 5, isa
point of minimum and v ¢ b([0, []), K(g,) > 0. In any case, there are two
distinct points in 7 with K > 0 that are mapped by N into a single point of

S$2, This contradicts the fact that J.J‘ K do < 8w, and proves our claim.
R

Let s, and s, be the critical points of 4,,, and let P, and P, be planes per-
pendicular to v, and passing through a(s,) and a(s,), respectively. Each plane
parallel to », and between P, and P, will meet C in exactly two points. Joining
these pairs of points by line segments, we generate a surface bounded by C



404 Global Differential Geometry

;
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which is easily seen to be homeomorphic to a disk. Thus, C is unknotted, and
this contradiction completes the proof. Q.E.D.

EXERCISES

1. Determine the rotation indices of curves (a), (b), (c), and (d) in Fig. 5-40.

@
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Figure 540



Global Theorems for Curves 408

2, Let oty = (x(), y(©)), t € [0,1], be a differentiable plane closed curve. Let
Po = (x0, yo) € R2, (xg,¥0) ¢ ([0, []), and define the functions

_ x(t) — xp
W = GO =7 T OO —7)i
b(t) - y(t) - yO

T {x() — x0)2 F Ot) — yo)B2

a. Use Lemma 1 of Sec. 4-4 to show that the differentiable function

_ Lo . , _da ,, _db
p@t) = @o -+ _L {ab’ — ba')dt, a _c—i?’b =7

is a determination of the angle that the x axis makes with the position vector
(@) — po)/|(?) — pol.

b. Use part a to show that when & is a differentiable closed plane curve, the
winding number of & relative to p, is given by the integral

LI P
w=ﬁj‘o(ab — ba’) dt.

3. Let &: [0, /] — R2? and f: [0, I] — R? be two differentiable plane closed curves,
and let p, € R? be a point such that p, ¢ a0, /]) and p, ¢ B([0, /]). Assume
that, for each ¢ € [0, ], the points &(¢) and B(¢) are closer than the points &(?)
and p,; i.e.,

loa(ry — B < a(r) — pol-

Use Exercise 2 to prove that the winding number of @ relative to p, is equal to
the winding number of f§ relative to p,.

a. Let C be a regular plane closed convex curve. Since C is simple, it determines,
by the Jordan curve theorem, an interior region K — R2. Prove that K is a
convex set (i.e., given p, ¢ € K, the segment of straight line pg is contained in
K; cf. Exercise 9, Sec. 1-7).

b. Conversely, let C be a regular plane curve (not necessarily closed), and assume
that C is the boundary of a convex region. Prove that C is convex.

Pn

5. Let C be a regular plane, closed, convex curve. By Exercise 4, the interior of C'is
aconvex set K. Letpg € K, p, ¢ C.

a. Show that the line which joins py to an arbitrary point ¢ € C is not tangent

to Catgq.
b. Conclude from part a that the rotation index of Cis equal to the winding num-

her of (" ralativa tno n.
ol U1 o Idiailye O g,

¢. Obtain from part b a simple proof for the fact that the rotation index of a
closed convex curve is L 1.
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6. Let &: [0, /] — R3 be a regular closed curve parametrized by arc length. Assume
that 0 # | k(s)| << 1 for all s € [0, []. Prove that / >> 2m and that / = 2x if and
only if & is a plane convex curve.

7. (Schur’s Theorem for Plane Curves.) Let &.:[0, [] — R%and &: [0, /] — R2 be two
plane convex curves parametrized by arc length, both with the same length /.
Denote by k and & the curvatures of & and &, respectively, and by d and d the
lengths of the chords of & and &, respectively; i.e.,

d(s) = |a(s) — a@)],  d(s) = |&(s) — &)},

Assume that k(s) > k(s), s € [0, /]. We want to prove that d(s) < J(s) s € [0,1]

a givatnl jta prhards lhanaraa Tt gan) o A ot ams Aldas far
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s € [0, I]if and only if the two curves differ by a rigid motion. We remark that
the theorem can be extended to the case where & is a space curve and has a num-
ber of applications. Compare S. S. Chern [10].

The following outline may be helpful.
a. Fix a point s = s,. Put both curves o(s) = (x(s) y(s)) (x(s) (x(s), y(s)) in

thv lower half- ylauu ¥ < 0 so that UNV\U} W\.)l}, w\u;, aud uu\.)1; lie on the x

axis and x(s,) > x{0), X(s;) > X(0) (see Fig. 5-41). Let s, € [0, s,] be such
that o'(s,) is parallel to the x axis. Choose the function 8(s) which gives a dif-
ferentiable determination of the angle that the x axis makes with ¢&'(s) in such a
way that B(s,) = 0. Show that, by convexity, —z < 8 < x.

y
A
0 x(0) x(s1)  %(0) x(s1) x
0 0 sy
alsg)
Figure 5-41

b. Let 8(s), B(s,) = 0, be a differentiable determination of the angle that the x
axis makes with @'(s). (Notice that &'(s,) may no longer be parallel to the x
axis.) Prove that 8(s) << 8(s) and use part a to conclude that

d(s,) = JU cos B(s) ds < fo cos (s) ds < d(sy).

theorem for plane curves.

8. (Stoker’s Theorem for Plane Curves.) Let &.: R —— R2 be a regular plane curve
parametrized by arc length. Assume that o satisfies the following conditions:
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1. The curvature of & is strictly positive.
2. lim |a(s)| = co; that is, the curve extends to infinity in both directions.

3. & has no self-intersections.
The goal of the exercise is to prove that the total curvature of & is < 7.
The following indications may be helpful. Assume that the total curvature
is > @ and that & has no self-intersections. To obtain a contradiction, proceed as
follows:

a. Prove that there exist points, say, p = &(0), g = 0(s,), s; > 0, such that the
tangent lines 7,, T, at the points p and g, respectively, are parallel and there
exists no tangent line parallel to T, in the arc &([0, 5]).

. Show that as s increases, %(s) meets 7, at a point, say, r (Fig. 5-42).
The arc &((—co, 0)) must meet 7, at a point ¢ between p and r.

slsvv

ann]pfp the are tpgr of & with an arc R without self-intersections ioining r to
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Z, thus obtaining a closed curve C. Show that the rotation index of Cis > 2.
Show that this implies that o has self-intersections, a contradiction.

p =al0)

g=olsy)
Figure 5-42
‘9. Let o: [0, /] — S2 be a regular closed curve oh a sphere S2 = {(x, y, z) € R3;
x%* + p? + z? = 1}. Assume that o is parametrized by arc length and that the

curvature k(s) is nowhere zero. Prove that

(The above integral is actually a sufficient condition for a nonplanar curve to lie
on the surface of a sphere. For this and related results, see H. Geppert, “Sopra
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una caractterizzazione della sfera,” Ann. di Mat. Pura ed App. XX (1941), 59--66;
and B. Segre, “Una nuova caracterizazzione della sfera,” Arti Accad. Naz. dei
Lincei 3 (1947), 420-422.)

5-8. Surfaces of Zero Gaussian Curvature

look upon such surfaces from t he pomt of Vlew of thelr position in R3 and
the

nrava tha fallawineg olah
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THEOREM. Let S < R?® be a complete surface with zero Gaussian
curvature. Then S is a cylinder or a plane,

By definition, a cylinder is a regular surface S such that through each
point p € § there passes a unique line R(p) <= S (the generator through p)
which satisfies the condition that if ¢ %= p, then the lines R(p) and R(g) are
parallel or equal.

It 1s a strange fact in the history of differential geometry that such a
theorem was proved only somewhat late in its development. The first proof
came as a corollary of a theorem of P. Hartman and L. Nirenberg (“On
Spherical Images Whose Jacobians Do Not Change Signs,” Amer. J. Math.
81 (1959), 901-920) dealing with a situation much more general than ours.
Later, W. S. Massey (“Surfaces of Gaussian Curvature Zero in Euclidean
Space,” Tohoku Math. J. 14 (1962), 73-79) and J. J. Stoker (“Developable
Surfaces in the Large,” Comm. Pure and Appl. Math. 14 (1961), 627-635)
obtained elementary and direct proofs of the theorem. The proof we present
here is a modification of Massey’s proof. It should be remarked that Stoker’s
paper contains a slightly more general theorem.

We shall start with the study of some local properties of a surface of zero
curvature.

Let S < R? be a regular surface with Gaussian curvature K = 0. Since
K = k.,k,, where k,; and k, are the principal curvatures, the points of S are
either parabolic or planar points. We denote by P the set of planar points and
by U = § — P the set of parabolic points of S.

P is closed in S. In fact, the points of P satisfy the condition that the
mean curvature H = 4(k; -+ k,) is zero. A point of accumulation of P has,
by continuity of H, zero mean curvature; hence, it belongs to P. It follows
that U = .S — Pis open in S.

An instructive example of the relations between the sets P and U is given

in the following example.
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Example 1. Consider the open triangle ABC and add to each side a
cylindrical surface, with generators parallel to the given side (see Fig. 5-43).
It is possible to make this construction in such a way that the resulting

surface is a regular surface. For instance, to ensure regularity along the open
segment BC, it suffices that the section FG of the cylindrical band B BCDEbya

D iy L2 2L 3LAINGY LALAL LILID SOL LAV VILW Sy aliiNaiadia: viil

plane normal to BC is a curve of the form

Observe that the vertices 4, B, C of the triangle and the edges BE, CD, etc.,
of the cylindrical bands do not belong to S.

Figure 5-43

The surface S so constructed has curvature K = 0. The set P is formed by
the closed triangle ABC minus the vertices. Observe that P is closed in S
but not in R*. The set U is formed by the points which are interior to the
cylindrical bands. Through each point of U there passes a unique line which
will never meet P. The boundary of P is formed by the open segments AB,
BC, and CA.

appear in the general case.

First, let p € U. Since p is a parabolic point, one of the principal direc-
tions at p is an asymptotic direction, and there is no other asymptotic direc-
tion at p. We shall prove that the unique asymptotic curve that passes through
p is a segment of a line.

PROPOSITION 1. The unique asymptotic line that passes through a
parabolic point p € U < S of a surface S of curvature K =0 is an (open)
segment of a (straight) line in S.



410 Global Differential Geometry

Proof. Since p is not umbilical, it is possible to parametrize a neighbor-
hood V = U of p by x(u, v) = x in such a way that the coordinate curves are
lines of curvature. Suppose that » = const. is an asymptotic curve; that is, it
has zero normal curvature. Then, by the theorem of Olinde Rodrigues (Sec.
3-2, Prop. 4), N, = 0 along » == const. Since through each point of the
neighborhood V there passes a curve » = const., the relation N, = 0 holds
for every point of V.

It follows that in 1

X, Ny, =X, Ny +<{x, N,y =0
Therefore,

v NN — mf.
N X

(h
» A¥ iy

where p(v) is a differentiable function of » alone. By differentiating Eq. (1)
with respect to », we obtain

X, Ny = ¢'(v). 2

On the other hand, N, is normal to N and different from zero, since the
points of V" are parabolic. Therefore, N and N, are linearly independent.
Furthermore, N,, = N,, =0in V.

We now observe that along the curve v = const. = p, the vector Nu) =
N, and N, (u) = (N,), = const. Thus, Eq. (1) implies that the curve x(u, v,)
belongs to a plane normal to the constant vector N, and Eq. (2) implies that
this curve belongs to a plane normal to the constant vector (N,),. Therefore,
the curve is contained in the intersection of two planes (the intersection exists
since N, and (N,), are linearly independent); hence, it Is a segment of a

line. Q.E.D.

Remark. 1t is essential that K = 0 in the above proposition. For instance,
the upper parallel of a torus of revolution is an asymptotic curve formed by
parabolic points and it is not a segment of a line.

We are now going to sece what happens when we extend this segment of
line. The following proposition shows that (cf. Example 1) the extended line
never meets the set P; either it “ends” at a boundary point of S or stays indefi-
nitely in U.

It is convenient to use the following terminology. An asymptotic curve
passing through a point p € S is said to be maximal if it is not a proper
subset of some asymptotic curve passing through p.

PROPOSITION 2 (Massey, loc. cit.). Let r be a maximal asymptotic line
passing through a parabolic point p € U < S of a surface S of curvature
K = 0 and let P < S be the set of planar points of S. Then r N P = ¢.



Surfaces of Zero Gaussian Curvature 4117

The proof of Prop. 2 depends on the following local lemma, for which we
use the Mainardi-Codazzi equations (cf. Sec. 4-3).

LEMMA 1. Let s be the arc length of the asymptotic curve passing through
a parabolic point p of a surface S of zero curvature and let H = H(s) be the
mean curvature of S along this curve. Then, in U,

(4 -

Proof of Lemma 1. We introduce in a neighborhood V' < U of p a system
of coordinates (¥, v) such that the coordinate curves are lines of curvature
and the curves » = const. are the asymptotic curves of V. Let ¢, f, and g be

t+h [ f
the coeflicients of the second fundamental form in this parametrization. Since

f =0 and the curve » = const., u = u(s) must satisfy the differential equa-
tion of the asymptotic curves

(B) -t () =

we conclude that e = 0. Under these conditions, the mean curvature H is
given by

2

Q-l o

_ kit k, 1ie g\ _ 1 g
I

By introducing the values F=f=¢ =0 in the Mainardi-Codazzi
equations (Sec. 4-1, Eq. (7) and (7a)), we obtain

1 gE, _ 1 gG,
0=5%> &=73%" “@

From the first equation of (4) it follows that E, = 0. Thus, E = E(u) is a
function of u alone. Therefore, it is possible to make a change of parameters:

5= v, a:jJﬁam.

We shall still denote the new parameters by # and v. ¥ now measures the arc
length along v = const., and thus E = 1.

In the new parametrization (F = 0, E = 1) the expression for the Gaus-
sian curvature is
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Therefore,
NG = ci(vu + cx(v), (5)

where ¢,(v) and ¢,(v) are functions of v alone.
On the other hand, the second equation of (4) may be written (g == 0)

&_1_ G, (JG).
g 2./G/G G

hence,
g = c3(v)/ G, (6)

where ¢;(v) is a function of ». By introducing Eqs. (5) and (6) into Eq. (3) we
obtain

‘Cs(’l)) i_ L c3(v) .
2 c(v)u + cx(v)

Finally, by recalling that # = s and differentiating the above expression with
respect to s, we conclude that

i“i(Hi) _ o, Q.E.D.

Proof of Prop. 2. Assume that the maximal asymptotic line r passing
through p and parametrized by arc length s contains a pointg € P. Since r is
connected and U is open, there exists a point p, of r, corresponding to s,,
such that p, € P and the points of r with s <C 5, belong to U.

On the other hand, from Lemma 1, we conclude that along r and for
5 < S,

1

H(S) = as + ba

where a and b are constants. Since the points of P have zero mean curvature,
we obtain

ey — T ]
H(po) = 0 = lim H(s) = lim ",
which is a contradiction and concludes the proof. Q.E.D.

Let now Bd(U) be the boundary of U in S; that is, Bd(U) is the set of
points p € S such that every neighborhood of p in S contains points of U
and points of S — U = P. Since U is open in S, it follows that Bd(U) = P.
Furthermore, since the definition of a boundary point is symmetric in U
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and P, we have that
Bd(U) = Bd(P).

The following proposition shows that (just as in Example 1) the set
Bd(U) = Bd{P) is formed by segments of straight lines.

PROPOSITION 3 (Massey). Let p € Bd(U) = S be a point of the
boundary of the set U of parabolic points of a surface S of curvature K = 0.
Then through p there passes a unique open segment of line C(p) < S. Further-
more, C(p) < ‘Bd(U); that is, the boundary of U is formed by segments of

lines.

Proof. Let p € BA(U). Since p is a limit point of U, it is possible to
choose a sequence {p,}, p, € U, with lim_... p, = p. For every p,, let C(p,)
be the unique maximal asymptotic curve (open segment of a line) that passes
through p, (cf. Prop. 1). We shall prove that, as n -— oo, the directions of
(Yn \ converge to a certal ain direction that does not d_epend_ on the choice of
the sequence { 2.}

Infact, let £ = R? be a sufficiently small sphere around p. Since the sphere
¥ is compact, the points {g,} of intersection of C(p,) with X have at least one
point of accumulation ¢ € Z, which occurs simultaneously with its antipodal
point. If there were another point of accumulation r besides g and its antipo-
dal point, then through arbitrarily near points p, and p,, there should pass
asymptotic lines C(p,) and C(p,,) making an angle greater than

thus contradicting the continuity of asymptotic lines. It follows that the
lines C(p,) have a limiting direction. An analogous argument shows that
this Iimiting direction does not depend on the chosen sequence {p,} with
lim,_., p, = p, as previously asserted.

Since the directions of C(p,) converge and p,-— p, the open segments
of lines C(p,) converge to a segment C(p) — S that passes through p. The
segment C(p) does not reduce itself to the point p. Otherwise, since C(p,) is
maximal, p € § would be a point of accumulation of the extremities of
C(p,), which do not belong to § (cf. Prop. 2). By the same reasoning, the
segment C(p) does not contain its extreme points.

Finally, we shall prove that C(p) = Bd(U). In fact, if ¢ € C(p), there
exists a sequence

{a.}, 9, € C(p,) = U, with limg, - q.
Then ¢ € U U Bd(U). Assume that ¢ ¢ Bd(U). Then ¢ € U, and, by the
continuity of the asymptotic directions, C(p) is the unique asymptotic line
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that passes through ¢. This implies, by Prop. 2, that p € U, which is a con-
tradiction. Therefore, 4 € Bd(U), that is, C(p) < Bd(U), and this concludes
the proof. Q.E.D.

We are now in a position to prove the global result stated in the beginning

Proof of the Theorem. Assume that S is not a plane. Then (Sec. 3-2,
Prop. 5) S contains parabolic points. Let U be the (open) set of parabolic
points of S and P be the (closed) set of planar points of S. We shall denote by
int P, the interior of P, the set of points which have a neighborhood entirely
contained in P. int P is an open set in .S which contains only planar points.
Therefore, each connected component of int P is contained in a plane (Sec.
3-2, Prop. 5).

We shall first prove that if ¢ € S and ¢ ¢ int P, then through g there
passes a unique line R(g) < S, and two such lines are either equal or do not
intersect.

In fact, when ¢ € U, then there exists a unique maximal asymptotic line
r passing through 4. r is a segment of line (thus, a geodesic) and r " P = ¢
(cf. Props. 1 and 2). By parametrizing r by arc length we see that r is not a
finite segment. Otherwise, there exists a geodesic which cannot be extended
to all values of the parameter, which contradicts the completeness of .S,
Therefore, r is an entire line R(g), and since r N P = ¢, we conclude that
R(g) = U. Tt follows that when p is another point of U, p ¢ R(g), then
R(p) N R(g) = ¢. Otherwise, through the intersection point there should

nass two asyvmntotic lines. which contradicts tha accerted unigueness
eI YV QUYL VUL d1iivdy VY LU WU LML QRUIWLD LY QAOOVI LV ML UL L OT.

On the other hand, if ¢ € Bd(U) = Bd(P), then (cf. Prop. 3) through ¢
there passes a unique open segment of line which is contained in Bd(U). By
the previous argument, this segment may be extended into an entire line
R(g) = Bd(U), and if p € Bd(U), p ¢ R(g), then R(p) N R(g) = ¢.

Clearly, since U is open, ifg € Uand p € Bd(U), then R(p) N R(g) = ¢.
In this way, through each point of § — int P = U U Bd(U) there passes a
unique line contained in S — int P, and two such lines are either equal or do
not intersect, as we claimed. If we prove that these lines are parallel, we shall
conclude that Bd(U) (= Bd(P)) is formed by parallel lines and that each
connected component of int P is an open set of a plane, bounded by two
parallel lines. Thus, through each point ¢t < int P there passes a unique line
R(#) = int P paraliel to the common direction. It follows that through each
point of S there passes a unique generator and that the generators are parallel,
that is, S is a cylinder, as we wish.

To prove that the lines passing through the points of U U Bd(U) are
parallel, we shall proceed in the following way. Let ¢ € U U Bd(U) and
p € U. Since S is connected, there exists an arc ¢t: [0, I — S, with a(0) = p,
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a(l) = q. The map exp,: T,(S) — S'is a covering map (Prop. 7, Sec. 5-6) and
a local isometry (corollary of Lemma 2, Sec. 5-6). Let &: [0, ] — T,(S) be
the lifting of e, with origin at the origin 0 € T,(S). For each &(f), with
exp, &(r) = a(t) € U U Bd(U), let r, be the lifting of R(a(¢)) with origin at
&(1r). Since exp, is a local isometry, r, is a line in T ,(S).

We shall prove that when a(t,) # a(t,), ¢, t. € [0, /], the lines r;, and r,,
are parallel. In fact, if » € r., N r,, then

exp,(v) € R(aft;)) M R(w(t2)),

which is a contradiction.

So far we have not defined R(x(r)) when a(t) € int P, This will now be
done. When d(¢) is such that exp, &(¢) = a(f) € int P, we draw through &(¢)
a line r in T ,(S) parallel to the common direction we have just obtained. It is
clear that exp,(r) — int P, and since exp,(r) is a geodesic, exp,{r) is an entire
line contained in S. In this way, the line R{a(?)) is defined for every ¢ < [0, /].

We shall now prove that the lines R(e(1)), ¢t € [0, /], are parallel lines. In
fact, by the usual compactness argument, it is p0531ble to cover the interval
[0, /] with a finite number of open intervals I, ..., I, such that &(/)) is con-
tained in a neighborhood ¥, of afr,), ¢, € I,, where the restriction of exp, is
an isometry in V. Observe now that when ¢,, ¢, € I, and a(¢,) +# a(t,) then
R(a(t,)) is parallel to R(x(z,)). In fact, since r,, is parallel to r,, and exp, is an
isometry in I/, the open segment exp,(r,, N V) is parallel to exp,(r., N V,);
this means that the lines exp, r.,, = R(a(t,)) and exp, r,, = R(«(z,)) have
parallel open segments and are therefore parallel. By then using the decom-
position of [0, {] by I, ..., I, we shall prove, step by step, that the lines
R(o(1)) are parallel.

In particular, the line R(q) is parallel to R(p). If s is another point in
U W Bd(U), then, by the same argument, R(s) 1s parallel to R(p) and hence
parallel to R(g). In this way, it is proved that all the lines that pass through
U U Bd(U) are parallel, and this concludes the proof of the theorem.

Q.E.D.

5-9. Jacobi's Theorems

Tt is a fundamental nronerty of 2 ceadesic » (QPP 4-6 prnp A\ that when two

15 L 1naiv i l.\d-L 1_; \JIJ\JALJ i u- SwuvLiv Y

points p and g of y are sufficiently close, then py minimizes the arc length
between p and ¢. This means that the arc length of y between p and g is smaller
than or equal to the arc length of any curve joining p to . Suppose now that
we follow a geodesic y starting from a point p. It is then natural to ask how
far the geodesic y minimizes arc length. In the case of a sphere, for instance,
a geodesic y (a meridian) starting from a point p minimizes arc length up to
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the first conjugate point of p relative to y (that is, up to the antipodal point of
p). Past the antipodal point of p, the geodesic stops being minimal, as we may
intuitively see by the following considerations.

A geodesic joining two points p and ¢ of a sphere may be thought of asa
thread stretched over the sphere and joining the two given points. When the

arc pq is smaller than a semimeridian and the points p and ¢ are kept fixed,
it is not possible to move the thread without increasing its length. On the
other hand, when the arc ‘8; is greater than a semimeridian, a small displace-
ment of the thread (with p and g fixed) “loosens” the thread (see Fig. 5-44).

Figure 5-44

In other words, when ¢ is farther away than the antipodal point of p, it is

possible to obtain curves joining p to ¢ that are close to the geodesic arc pg
and are shorter than this arc. Clearly, this is far from being a mathematical
argument.

In this section we shall begin the study of this question and prove a result,
due to Jacobi, which may be roughly described as follows. A geodesic y
starting from a point p minimizes arc length, relative to “neighboring”
curves of y, only up to the “first” conjugate point of p relative to y (more
precise statements will be given later; see Theorems 1 and 2).

For 51mp11c1ty, the surfaces in this section are assumed to be complete and

arametrized by arc lencth

parametrized by arc length.

We need some preliminary results.

The following lemma shows that the image by exp,: T,(S) — S of a
segment of line of T,(S) with origin at O € T (S} (geodesic starting from
p) is minimal relative to the images by exp, curves of T,(S) which join the
extremities of this segment.

More precisely, let
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and let 7:[0, /] — T,(S) be the line of T,(S) given by
Ps) =sv, sel01] “

’U:W-

Let &: [0, /] — T,(S) be a differentiable parametrized curve of T,(S), with
&(0) =0, &) =u, and d&(s) % 0 if s 3= 0. Furthermore, let (Fig. 5-45)

i Tp®)

Figure 5-45
LEMMA 1. With the above notation, we have

1. Ka) = I(y), wherel( ) denotes the arc length of the corresponding
curve.

In addition, if &(s) is not a critical point of exp,, s € [0, )], and if the traces
of « and y are distinct, then

2. I(o) > I(y).

Proof. Let &(s)/|&(s)| =r, and let n be a unit vector of T,(S), with
{r,ny = 0. In the basis {r, n} of T,(S) we can write (Fig. 5-45)

&'(s) = ar -+ bn,
where

a = {&'(s), r),
b = {&'(s), ny.
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By definition

&'(s) = (d exppa(@'(s))
= a(d expp)d(S)(r) + b(d expp)d(s)(n)-

Therefore, by using the Gauss lemma (cf. Sec. 5-5, Lemma 2) we obtain

@'(s), a'(s)) = a* + ¢,

vvvvvvv

c* = b? | (d expp)d(S)(n) |2'
It follows that .
o'(s), &' (s)> > a?.
On the other hand,

Acats), asp = AT I — s). 1> = a

Therefore,

” ~r

Ier) = J!<oc'(s), 2 (s)OV2 ds > J a ds
— [ &aato) atspr ds = jat) = 1 = 1),

and this proves part 1.
To prove part 2, let us assume that /(o) = I(p). Then

j; ((s), ()12 ds = j'o a ds,

and since
/' (s), &' (sHV? = a,

the equality must hold in the last expression for every s € [0, /]. Therefore,

¢ = |b||(dexp,am(m)] = 0.

Since &(s) in not a critical point of exp,, we conclude that b = 0. It follows
that the tangent lines to the curve & all pass through the origin O of T ,(s).
Thus, & is a line of 7 ,(S) which passes through O. Since &(/) = #(!), the lines
& and ¥ coincide, thus contradicting the assumption that the traces of ¢ and
y are distinct. From this contradiction it follows that /(&) > /(y), which proves
part 2 and ends the proof of the lemma, Q.E.D.
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We are now 1n a position to prove that if a geodesic arc contains no con-
Jugate points, it yields a local minimum for the arc length. More precisely,
we have

THEOREM 1 (Jacobi.) Let y: [0, /]— S, y(0) —= p, be a geodesic without
conjugate points; that is, exp,: T,(S) — S is regular at the points of the line
F(s) = sp"(0) of T,(S), s € [0,/]. Let h:[0,1] X (—e,€) — S be a proper

verrirtinm nf o Thonm
Yur fHLiviri UJ )’- Lricri

1. There exists a 0 > 0, d < €, such that if t € (=6, J),
L(t) = L(0),

where L(t) is the length of the curve h,:[0,/]— S that is given by
h,(s) = h(s, t).

2. If, in addition, the trace of h, is distinct from the trace of yp,
L(t) > L(0).

Proof. The proof consists essentially of showing that it is possible, for
every t € (—§, 8), to lift the curve A, into a curve k, of T,(S) such that
h(0) = 0, 1(]) = (/) and then to apply Lemma 1.

Since exp, is regular at the points of the line ¥ of T,(S), foreach s € [0, /]
there exists a neighborhood U, of #(s) such that exp, restricted to U, is a
diffeomorphism. The family {U }, s € [0, /], covers #([0, /]), and, by compact-
ness, it is possible to obtain a finite subfamily, say, U, ..., U, which still

covers $([0, /]). It follows that we may divide the interval [0, /] by points
O=u9, <s5, << - <5, <8, =1

in such a way that ¥([s;, s,.,]) = U, i = 1, ..., n. Since 4 is continuous and
[s,, 5,11 is compact, there exists §, > 0 such that

W([ss Sear] X (—6,, 8)) < exp,(U) = V.

Let § = min(d,, ..., d,). For t € (—4, 9), the curve A,: [0, /] — S may be
lifted into a curve A,: [0, {] — T,(S), with origin A,(0) == 0, in the following
way. Let s € [s, 5,]. Then

h(s) = exp; ' (A(s)),

where exp,' is the inverse map of exp,: U, — V,. By applying the same
technique we used for covering spaces (cf. Prop. 2, Sec. 5-6), we can extend
h, for all s € [0, /] and obtain 4,(/) = F(!). )

In this way, we conclude that y(s) = exp, $(s) and that 4,(s) = exp,, /.(5),
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t € (—8,9), with 1,0) =0, i) = 7(I). We then apply Lemma I to this
situation and obtain the desired conclusions. Q.E.D.

Remark 1. A geodesic y containing no conjugate points may well not be
minimal relative to the curves which are not in a neighborhood of ». Such a
situation occurs, for instance, in the cylinder (which has no conjugate points),
as the reader will easily verify by observing a closed geodesic of the cylinder.

This situation is related to the fact that conjugate points inform us only
about the differential of the exponential map, that is, about the rate of
“spreading out” of the geodesics nieghboring a given geodesic. On the other
hand, the global behavior of the geodesics is controlled by the exponential
map itself, which may not be globally one-to-one even when its differential is
nonsingular everywhere.

Another example (this time simply connected) where the same fact occurs
is in the ellipsoid, as the reader may verify by observing the figure of the
ellipsoid in Sec. 5-5 (Fig. 5-19).

The study of the locus of the points for which the geodesics starting from
p stop globally minimizing the arc length (called the cut locus of p) is of
fundamental importance for certain global theorems of differential geometry,
but 1t will not be considered in this book.

We shall proceed now to prove that a geodesic y containing conjugate

pninfc is not a locql minimum for the arc length: that is, “arbitrarily near” to
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p there exists a curve, joining its extreme points, the length of which is smaller
than that of y.
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definition of variation of a geodesic to h where piecewise differentiable
functions are admitted.

DEFINITION 1. Let y: [0, []-— S be a geodesic of S and let

held 1M~ 1~ -~ . Q
Diju, e X {— €, €) — >

be a continuous map with
h(s, 0) = p(s), s €[0, 1.
h is said to be a broken variation of y if there exists a partition
0=5, <Ts; TSy << +v+ <5,y <8, =1

of [0, {] such that

h:[Si,SH]]X(_E, 6)"‘—)S,i:0, 1,.-,,11_‘1,
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is differentiable. The broken variation is said to be proper if h(0, t) = y(0),
h(Z, t) = p(/) for every t € (—e¢, €).

The curves A/(s), s € [0, 7], of the variation are now piecewise differenti-

ﬂ]ﬁ]ﬂ Fal b B 2 97-Y4 TL\A ﬂflﬂf f'\ﬂﬂ] wroant A a]f" T/fn\ —_— f,:”'..f,af\fn : nnnnnnnnnnnnn
aoit CUrves. inc variationa: vecior uv..xu. FAR) — \UAjut (O, U} 10 }MC\«CWIDC

differentiable vector field along y; that is, V: [0, /] — R? is a continuous map,
differentiable in each [¢,, #,.,]. The broken variation 4 is said to be orthogonal
if {V(s), y'(s)y =0,s € [0,1].

In a way entirely analogous to that of Prop. 1 of Sec. 5-4, it is possible
to prove that a piecewise differentiable vector field ¥ along y gives rise to a
broken variation of p, the variational field of which is V. Furthermore, if

Vo) = v =0,

the variation can be chosen to be proper.
Similarly, the function L: (—¢, €) —— R (the arc length of a curve of the
variation) is defined by

L(r)—"i; f s, t)|ds

‘“’llt I""

(S,

By Lemma 1 of Sec. 5-4, each summand of this sum is differentiable in a
neighborhood of 0. Therefore, L is differentiable in (—9, ¢) if d is sufficiently
small.

The expression of the second variation of the arc length (L"'(0)), for
proper and orthogonal broken variations, is exactly the same as that obtained
in Prop. 4 of Section 5-4, as may easily be verified. Thus, if V is a piecewise
differentiable vector field along a geodesic y: [0, /] — S such that

V() y'(s)y =0, s€[0,/], and V() =V({) =0,
we have

1~ [ (321 — ksxvion vsp) s

Now let y:[0,/] — S be a geodesic and let us denote by U the set of
piecewise differentiable vector fields along y which are orthogonal to y; that
is, if ¥ € U, then {V(s), y'(s)y = 0for all s € [0, /]. Observe that ‘U, with the
natural operations of addition and multiplication by a real number, forms a
vector space. Define a map 7: U X U — R by
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w.m - | ((BLDIY  K(s)vis), wisp>) ds

where V, W e U.

It is immediate to verify that I is a symmetric bilinear map; that is, I is
linear in each variable and I(V, W) = I(W, V). Therefore, I determines a
quadratic form in U, given by I(V, V). This quadratic form is called the
index form of yp.

Remark 2. The index form of a geodesic was introduced by M. Morse,
who proved the following result. Let p(s,) be a conjugate point of p(0) = p,
relative to the geodesic y:[0,/] — S, s, € [0, /]. The multiplicity of the
conjugate point p(s,) is the dimension of the largest subspace E of 7,(S)
such that (d exp,), ;. (#) = O for every u € E. The index of a quadratic form
Q: E— R in a vector space E is the maximum dimension of a subspace L
of E such that Q(v) < 0, v € L. With this terminology, the Morse index
theorem is stated as follows: Let y: [0, [1— S be a geodesic. Then the index of
the quadratic form I of y is finite, and it is equal to the number of conjugate
points to y(0) in y((0, 11), each one counted with its multiplicity. A proof of this
theorem may be found in J. Milnor, Morse Theory, Annals of Mathematics
Studies, Vol. 51, Princeton University Press, Princeton, N. J., 1963,

For our purposes we need only the following lemma.

LEMMA 2. Let V € U be a Jacobi field along a geodesic y: [0, I]— S
and W € 0. Then

v, W) = (370, W) — (Y 0), wo))-

Proof. By observing that

1w, w)— \DV, WW | I (\(’?,ZV + K(s)V(s), W(s)>> ds.

J o \\ ds?
0

From the fact that ¥ is a Jacobi field orthogonal to y, we conclude that the
integrand of the second term is zero. Therefore,

1, w) = (2L, W(l)> _ (%SK(O), W(0)>- Q.E.D.
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We are now in a position to prove

THEOREM 2 (Jacobi). If we let y:[0, I]— S be a geodesic of S and we let
7(8o) € p((0,1) be a point conjugate to p(0) = p relative to y, then there exists
a proper broken variation h: [0, [1 X (—¢€, €) — S of y and a real number § > 0,
0 << €, such that if t € (—3, ) we have L(t) < L(0).

Proof. Since y(s,) is conjugate to p relative to p, there exists a Jacobi
field J along y, not identically zero, with J(0) = J(s,) = 0. By Prop. 4 of Sec.
5-5, it follows that {J(s), ¥'(s)> =0, s € [0, /]. Furthermore, (DJ/ds)(s,) 7= 0;
otherwise, J(s) = 0.

. Now let Z be a parallel vector field along y, with Z(s,) = —(DJ/ds)(s,),
and f: [0, /]— R be a differentiable function with f(0) = f(I) =0, f(s,) = 1.
Define Z(s) = f(5)Z(s), s < [0, /).

For each real number 5 > 0, define a vector field Y, along y by

Y, = J(s) + nZ(s), s € [0, 5],
= Z(s) s € [sq, 1]

Y, is a piecewise differentiable vector field orthogonal to y. Since Y,(0) =
Y (/) = 0, it gives rise to a proper, orthogonal, broken variation of y. We
shall compute L""(0) = I(Y,, Y,).

For the segment of geodesic between 0 and s,, we shall use the bilinearity
of 7 and Lemma 2 to obtain

7° rr) I(J"_ TIZ’J—i_ ”Z)
= I (J I+ 295 (], Z) + 9?1, (Z, Z)

7 —

/DI, N e N
= 4’1\3—(50), Z(so)) + n*1+(Z, Z)

2
= —25 —(So) + 7*l(Z, Z),
where I, indicates that the coresponding integral is taken between 0 and s,.
Bv neino 1o denaote ﬂmu inteoral hetweean O and and naticino that the inteoral
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is additive, we have

1Y, Y)— —2q| 2
N 2 nrs I N

Observe now that if # = #, is sufficiently small, the above expression. is
negative. Therefore, by taking Y, , we shall obtain a proper broken variation,
with L"/(0) < 0. Since L'(0) = 0, this means that 0 is a point of local maxi-
mum for L; that is, there exists § > 0 such that if r € (=4, ), t # 0, then
L(t) < 1(0). Q.E.D.
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Remark 3. Jacobi’s theorem is a particular case of the Morse index theo-
rem, quoted in Remark 2. Actually, the crucial point of the proof of the index
theorem is essentially an extension of the ideas presented in the proof of
Theorem 2.

EXERCISES

1. (Bonnet’s Theorem.) Let S be a complete surface with Gaussian curvature
K > 0 > 0. By Exercise 5 of Sec. 5-5, every geodesic y: [0, o) — S has a point
conjugate to p(0) in the interval (0, /s/ J 1. Use Jacobi’s theorems to show that
this implies that S is compact and that the diameter p(S) < 7t/s/ & (this gives a
new proof of Bonnet’s theorem of Sec, 5-4).

2. (Lines on Complete Surfaces.) A geodesic y: [— oo, c0) — Sis called a /ine if its
length realizes the (intrinsic) distance between any two of its points.

a.

b.

d.

W”(") = G, w{—€) — u{—¢€}), W’(*t?) = r‘i’(—f)

Show that through each point of the complete cylinder x2 4 y2 =1 there
passes 2 line. ‘

Assume that S is a complete surface with Gaussian curvature K > 0. Let
y:(—o0, o0) — S be a geodesic on S and let J(s) be a Jacobi field along y given
by {J(0), Y (0> =0, |J(0)] =1, J(0) = 0. Choose an orthonormal basis
{€1(0) = 7(0), e2(0)} at T, (0)(.S) and extend it by parallel transport along y to
obtain a basis {e;(s), e2(s)} at each T,,(,,(S). Show that J(s) = u(s)e,(s) for some
function u(s) and that the Jacobi equation for J is

u' + Ku =0, u(0) =1, u'(0) = 0. (%)

Extend to the present situation the comparison theorem of part b of Exercise
3, Sec. 5-5. Use the fact that K > 0 to show that it is possible to choose € > 0

sufficiently small so that

u(€) > 0, u(—e) >0, w(€) <0, u(—€)>0,
where u(s) is a solution of (*). Compare () with
v’(s) = 0, v(€) = u(€), v'(€) = u'(€) for s € [€, o)

and with

fors € (—oo, -€]
to conclude that if s, is sufficiently large, then J (s) has two zeros in the interval
(—50, 50).

Use the above to prove that a complete surface with positive Gaussian curvature
contains no lines.



Abstract Surfaces 425

5-70. Abstract Surfaces,
Further Generalizations

In Sec. 5-11, we shall prove a theorem, due to Hilbert, which asserts that
there exists no complete regular surface in R* with constant negative Gaussian
curvature.

Actually, the theorem is somewhat stronger, To understand the correct
statement and the proof of Hilbert’s theorem, it will be convenient to intro-
duce the notion of an abstract geometric surface which arises from the follow-
ing considerations.

So far the surfaces we have dealt with are subsets S of R® on which differ-
entiable functions make sense. We defined a tangent plane T,(S) at each
p € S and developed the differential geometry around p as the study of the
variation of T,(S). We have, however, observed that all the notions of the
intrinsic geometry (Gaussian curvature, geodesics, completeness, etc.) only
depended on the choice of an inner product on each T,(S). If we are able to
define abstractly (that is, with no reference to R*) a set S on which differenti-
able functions make sense, we might eventually extend the intrinsic gecometry
to such sets.

The definition. below is an outgrowth of our experience in Chap. 2.
Historically, it took a long time to appear, probably due to the fact that the
fundamental role of the change of parameters in the definition of a surface
in R? was not clearly understood.

DEFINITION 1. An abstract surface (differentiable manifold of dimension
2) is a set S together with a family of one-to-one maps x,.: U, — S of open sets
U, = R? into S such that

1. ). x(U,) =S.

2. For each pair o, B with x,(U,) N x,(Uy) = W = @, we have that
x; (W), x5 (W) are open sets in R?, and xz' o X,, x;' o X, are dif-
ferentiable maps (Fig. 5-46)

The pair (U,, x,,) with p € x,(U,) is called a parametrization (or coordi-
nate system) of S around p. x,(U,) is called a coordinate neighborhood, and if
g = x,(u,, v,) € S, we say that (u,, »,) are the coordinates of g in this coor-
dinate system. The family {U,, x,} is called a differentiable structure for S.

It follows immediately from condition 2 that the “change of parameters”

X;lo X, 1 X (W) — x; (W)

is a diffeomorphism.
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W zxa(Ua) rn xﬁ(Up)

Figure 5-46

Remark 1. It Is sometimes convenient to add a further axiom to Def. |
and say that the differentiable structure should be maximal relative to condi-
tions 1 and 2. This means that any other family satisfying conditions 1 and 2
is already contained in the family {U,, x,}.

A comparison of the above definition with the definition of a regular
surface in R? (Sec. 2-2, Def. 1) shows that the main point is to include the
law of change of parameters (which is a theorem for surfaces in R?, cf. Sec.
2-3, Prop. 1) in the definition of an abstract surface. Since this was the pro-
perty which allowed us to define differentiable functions on surfaces in R®
(Sec. 2-3, Def. 1), we may set

DEFINITION 2. Let S, and S, be abstract surfaces. A map ¢: S, — S,
is differentiable at p € S, if given a parametrization y: V < R? — S, around
@(p) there exists a parametrization x: U < R* — S, around p such that
p(x(U)) < y(V) and the map

yltogox:x{(U) = R* —> R? @

is differentiable at x~'(p). ¢ is differentiable on S, if it is differentiable at every
p € S, (Fig. 5-47).

T+ 35 Alanr
it is <icart,
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¢(x(U))

x{U)

y‘10¢0x

Y

F
\

Figure 5-47

choices of the parametrizations. The map (1) is called the expression of ¢ in
the parametrizations x, y.

Thus, on an abstract surface it makes sense to talk about differentiable
functions, and we have given the first step toward the generalization of
intrinsic geometry.

Example 1. Let S? = {(x,y,2) € R*; x* + y* + 2> = 1} be the unit
sphere and let A: §* — S§? be the antipodal map; ie., A(x,y,z) =
(—x, —y, —z). Let P? be the set obtained from S? by identifying p with A(p)
and denote by n: S? — P? the natural map z(p) = {p, A4(p)}. Cover S? with
parametrizations x,: U, — S? such that x,(U,) N 4 o x,(U,) = ¢. From the
fact that S?is a regular surface and A4 is a diffeomorphism, it follows that P?
together with the family {U,, z o x,} is an abstract surface, to be denoted again
by P2, P? is called the real projective plane.

Example 2. Let T < R? be a torus of revolution (Sec. 2-2, Example 4)
with center in (0,0,0) € R3 and let 4: T — T be defined by A(x, y, z) =
(—x, —y, —z) (Fig. 5-48). Let K be the quotient space of T by the equiva-
lence relation p ~ A(p) and denote by z: T — K the map n(p) = {p, A(p)}.
Cover T with parametrizations x,.: U, — T such that x,(U,) N 4 o x,(U,) =
@. As before, it is possible to prove that K with the family {U,, n o x,} is an

nthotnn bt crrefona Thinhk 10 AnllaAd 4-1-. T,-. | APRPPY I
dauolidul auuau:, WiliCIl 18 Cauca i €Il poliie.
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Figure 5-48

Now we need to associate a tangent plane to each point of an abstract
surface S. It is again convenient to use our experience with surfaces in R?
(Sec. 2-4). There the tangent plane was the set of tangent vectors at a point,
a tangent vector at a point being defined as the velocity at that point of a
curve on. the surface. Thus, we must define what is the tangent vector of a
curve on an abstract surface. Since we do not have the support of R3, we
must search for a characteristic property of tangent vectors to curves which is
independent of R3.

The following considerations will motivate the definition to be given
below. Let a: (—e¢, €} — R? be a differentiable curve in R?, with a(0) =
Write a(f) = (u(?), v(t)), t € (—¢, €), and o'(0) = (¥'(0), v'(0)) = w. Let f be
a differentiable function defined in a neighborhood of p. We can restrict f
to o and write the directional derivative of frplnhvp to w as follows:

TRAL R AL e wANS ALLNA Shwr A Y R ¥ A wakaia G AN aRSS

=G ).

Thus, the directiona] derivative in the direction of the vector w is an operator
r

S
n A1 ar ahla fianeot vhinrh A ndq Thig 1ig +ha ~h
on aificrentiaovic iunctions which u\.«l.)\.«uuo VlLi.y Oon w. 1nisis e cii

property of tangent vectors that we were looking for.

df °a)

p = v ©@F + v L} 7.

r=0

nenrtariotin
alavlolidliv

DEFINITION 3. A differentiable map o.: (—¢, €) — S is called a curve
on S. Assume that 6(0) = p and let D be the set of functions on S which are
differentiable at p. The tangent vector to the curve o at t = 0 is the function
a'(0): D — R given by

d(foa) ’

L k=0

o' (0)(f) = feD.

A tangent vector at a point p € S is the tangent vector at t = 0 of seme curve
o: (—e, €) — S with a(0) = p.
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By choosing a parametrization x: U — S around p = x(0, 0) we may
express both the function f and the curve a in x by f(u, v) and (u(z), v(7)),
respectively. Therefore,

{

W(OXS) = L om)|_ — L, o)

- vo(f), +v0fF), - po(g), + 0() o

This suggests, given coordinates (¥, v} around p, that we denote by (d/du),
the tangent vector at p which maps a function finto (df/du),; a similar mean-
ing will be attached to the symbol (¢/dv),. We remark that (d/du),, (9/0v),
may be interpreted as the tangent vectors at p of the “coordinate curves”

u — x(u, 0), v —> X(0, v),

respectively (Fig. 5-49).

e (\0 q/)

Figure 5-49

From the above, it follows that the set of tangent vectors at p, with the
usual operations for functions, is a two-dimensional vector space T ,(S) to be
called the tangent space of S at p. It is also clear that the choice of a parame-
trization x: U — § around p determines an associated basis {(0/0u),, (d/0v),}
of T(S) for any g € x(U).

With the notion of tangent space, we can extend to abstract surfaces the
definition of differential.

DEFINITION 4. Let S, and S, be abstract surfaces and let ¢: S, — S, be
a differentiable map. For each p € S, and each w € T (S,), consider a differ-
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entiable curve o:(—e€,€)—S,, with a(0) =p, a'(0) =w. Set B = gou.
The map de,: T (S;) — T,(S,) given by de,(w) = B'(0) is a well-defined
linear map, called the differential of ¢ at p.

The proof that dp, is well defined and linear is exactly the same as the
proof of Prop. 2 in Sec. 2-4.

We are now in a position to take the final step in our generalization of
the intrinsic geometry.

DEFINITION 5. A geometric surface (Riemannian manifold of dimension
2) is an abstract surface S together with the choice of an inner product { , >,
at each T,(S), p € S, which varies differentiably with p in the following sense.
For some (and hence all) parametrization x: U -— S around p, the functions

E(u, v) = <§ﬁ’f%l>’ Fu,v) = <a%’§{,>’ G, v) = <%’%>

are differentiable functions in U. The inner product { , ) is often called a
(Riemannian) metric on S.

It is now a simple matter to extend to geometric surfaces the notions of
the intrinsic geometry. Indeed, with the functions E, F, G we define Christoffel
symbols for S by system 2 of Sec. 4-3. Since the notions of intrinsic geometry
were all defined in terms of the Christoffel symbols, they can now be defined
in S.

Thus, covariant derivatives of vector fields along curves are given by
Eq. (1) of Sec. 4-4. The existence of parallel transport follows from Prop. 2
of Sec. 4-4, and a geodesic is a curve such that the field of its tangent vectors
has zero covariant derivative. Gaussian curvature can be ecither defined by
Eq. (5) of Sec. 4-3 or in terms of the parallel transport, as in done in Sec.
4-5,

That this brings into play some new and interesting objects can be seen by
he following considerations. We shall start with an example related to Hil-

Example 3. Let S = R? be a plane with coordinates (v, v) and define an
inner product at each point ¢ = (4, v} € R? by setting

Grgd =E=t Gaw),=r=o
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R? with this inner product is a geometric surface H called the hyperbolic

plane. The geometry of H is different from the usual geometry of R?. For

F3 S LS S axivsed

instance, the curvature of # is (Sec. 4-3, Exercise 1)

- sl () - ), -

Actually the geometry of H is an exact model for the non-euclidean geometry
of Lobachewski, in which all the axioms of Euclid, except the axiom of
parallels, are assumed (cf. Sec. 4-5). To make this point clear, we shall com-
pute the geodesics of H.

If we look at the differential equations for the geodesics when E =1,
F =0 (Sec. 4-6, Exercise 2), we see immediately that the curves » = const.

are geodesics. To find the other ones, it is convenient to define a map

¢:H—> R ={(x,y) € R*;y >0}

by &, v) = (v, e™). It is easily seen that ¢ is differentiable and, since
y > 0, that it has a differentiable inverse. Thus, ¢ is a diffeomorphism, and
we can induce an inner product in R? by setting

{dp(w 1), dd(w2) g = <Wi> WD

To compute this inner product, we observe that

a_9 0 0
dx v’ dy ou

Gtk Gdo G-k

R? with this inner product is isometric to H, and it is sometimes called the
Poincaré half-plane.

To determine the geodesics of H, we work with the Poincaré half-plane
and make two further coordinate changes.

First, fix a point (x,, 0) and set (Fig, 5-50)

hence,

X — Xo = pcos b, y = psin0,

0 <@ <m0<p< +oo. This is a diffeomorphism of R? into itself, and

Gprip) = v Gpan) = o)~ w0



432 Global Differential Geometry

Parallels to
7 through p

7

X0

Figure 5-50

Next, consider the diffeomorphism of R? given by (we want to chan
into a parameter that measures the arc length along p = const.)

e v
_— = |
pr=1p 6 Josinﬂdg’

which yields

<00P1’0f71>:p% S}nzﬂ’ <0ipl’aigl>:0’ <9%_1’3%—1>: 1.

By looking again at the differential equations for the geodesics (F =0,
G == 1), we sce that p, = p = const. are geodesics. (Another way of finding
the geodesics of R? is given in Exercise 8.)

Collecting our observations, we conclude that the lines and the half-
circles which are perpendicular to the axis y > 0 are geodesics of the Poincaré
half-plane R?. These are all the geodesics of R2, since through each point
g € R? and each direction issuing from ¢ there passes either a circle tangent
to that line and normal to the axis y = 0 or a vertical line (when the direction
is vertical).

The geometric surface R? is complete; that is, geodesics can be defined for
all values of the parameter. The proof of this fact will be left as an exercise
(Exercise 7; cf. also Exercise 6).

It is now easy to see, if we define a straight line of R? to be a geodesic,
that all the axioms of Euclid but the axiom of parallels hold true in this
geometry. The axiom of parallels in the Euclidean plane P asserts that from

a noint not in a straicht line r — P one can draw a unigue straicht line

v 1AVL 3l QR OLIRASaIL aildv 7 L O3 ¥ LW L b SLRnBanRiy
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r’ < P that does not meet r. Actually, in R2, from a point not in a geodesic
y we can draw an infinite number of geodesics which do not meet y.

The question then arises whether such a surface can be found as a regular
surface in R?. The natural context for this question is the following definition.

DEFINITION 6. A differentiable map ¢: S — R’ of an abstract surface
S into R* is an immersion if the differential dg,: T (S) — T, (R3) is injective.
If, in addition, S has a metric { , > and

@ is said to be an isometric immersion.

Notice that the first inner product in the above relation is the usual inner
product of R?, whereas the second one is the given Riemannian metric on .S.
This means that in an isometric immersion, the metric “induced™ by R® on
S agrees with the given metric on S.

Hilbert’s theorem, to be proved in Sec. 5-11, states that there is no isome-
tric immersion into R? of the complete hyperbolic plane. In particular, one
cannot find a model of the geometry of Lobachewski as a regular surface in
R3,

Actually, there is no need to restrict ourselves to R3. The above definition
of isometric immersion makes perfect sense when we replace R? by R* or,
for that matter, by an arbitrary R”. Thus, we can broaden our initial question,
and asK: For what values of n is there an isometric immersion of the complete
hyperbolic plane into R*? Hilbert’s theorem say that n > 4. As far as we know,
the case n = 4 is still unsettled.

Thus, the introduction of abstract surfaces brings in new objects and
illuminates our view of important questions.

In the rest of this section, we shall explore in more detail some of the
ideas just introduced and shall show how they lead naturally to further
important generalizations. This part will not be needed for the understanding
of the next section.

Let us look into further examples.

Example 4. Let R? be a plane with coordinates (x, y)and T, ,: R* — R?
be the map (translation) T, ,(x, y) = (x + m, y 1+ n), where m and »n are
integers. Define an equivalence relation in R? by (x, y) ~ (x;, y,)if there exist
integers m, n such that T, .(x, ») = (x,, y,). Let T be the quotient space of
R? by this equivalence relation, and let z: R? — T be the natural projection
map 7(x, ¥) = {Tm. X, »); all integers m, n}. Thus, in each open unit square
whose vertices have integer coordinates, there is only one representative of
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T, and 7' may be thought of as a closed square with opposite sides identified.
(See Fig. 5-51. Notice that all points of R* denoted by x represent the same
point p in T.)

Let i,: U, = R* — R*? be a family of parametrizations of R?, where i,
is the identity map, such that U, N T, (U,) = ¢ forall m, n. Since T, ,is a
diffeomorphism, it is easily checked that the family (U,, noi,) is a differenti-
able structure for T. T is called a (differentiable) torus. From the very defini-
tion of the differentiable structure on 7, n: R* — T is a differentiable map
and a local diffeomorphism (the construction made in Fig. 5-51 indicates
that T is diffeomorphic to the standard torus in R?).

Now notice that 7', , Is an isometry of R? and introduce a geometric
(Riemannian) structure on T as follows. Let p € T and v € T(T). Let
41, g2 € R* and w,, w, € R? be such that z(q,) = zn(g,) = p and drn_(w,) =
dnq,(w;) = v. Then g, ~ q,; hence, there exists T',, , such that T, (q,) = q,,

AT, Da(wy) = wy. Since T, . is an isometry, |w, | = [w,|. Now, define the
length of win T,(T) by |v| = Idng(wl)l = |W1 |. By what we have seen, this is
well defined. Lleafly' this ngca rise to an inner pluuuu g ) >p on TP(T)

for each p € T. Since this is essentially the inner product of R? and 7 is a
local diffeomorphism, { , >, varies differentiably with p.

x
>

N

Figure 5-51 The torus.
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Observe that the coefficients of the first fundamental form of T, in any of
the parametrizations of the family {U,, 7 - i,}, are E = G = 1, F = 0. Thus,
this torus behaves locally like a Euclidean space. For instance, its Gaussian
curvature is identically zero (cf. Exercise 1, Sec. 4-3). This accounts for the
name flat torus, which is usuvally given to 7 with the inner product just
described.

Clearly the flat torus cannot be isometrically immersed in R3, since, by
compactness, it would have a point of positive curvature (cf. Exercise 16,
Sec. 3-3, or Lemma 1, Sec. 5-2). However, it can be isometrically immersed
in R

In fact, let F: R* — R* be given by

F(x, y) = %_z (cos 2nx, sin 2zx, cos 2my, sin 2my).

Since F(x + m, y + n) = F(x, y) for all m, n, we can defineamapg: T — R*
by @¢(p) = F(q), where ¢ € n~!(p). Clearly, ¢ o # = F, and since n: R* — T
is a local diffeomorphism, ¢ is differentiable. Furthermore, the rank of dp
1s equal to the rank of dF, which is easily computed to be 2. Thus, ¢ is an
immersion. To see that the immersion is isometric, we first observe that if
e; = (1,0), e; = (0, 1) are the vectors of the canonical basis in RZ, the vectors
dn (e)) = fi1, dnle;) = f2, q € R?, form a basis for T, (T). By definition of

tha j1mar mradiiet Aasw T /L £N o 2N 34— 1 9 Nevt we ratmniiia
LIICT 11LI1IC] PIUU.U\/L UIL a1, \J“JJ‘/ — \Ci, Cj/, l,J —-= 1y L. INUAL, WL LULIIPULC
oF .
oo = dF(e,) = (—sin 2zx, cos 2zx, 0, 0),
IF _ 4r(e,) = (0, 0, —sin 2 2
i (e,) = (0, 0, —sin 27y, cos 27y),

and obtain that

Thus,
{do( 1), dp( f)> = {dp(dnle)), dp(dn(e;))y = {fi [1>-

It follows that ¢ is an isometric immersion, as we had asserted.

It should be remarked that the image ¢(S) of an immersion ¢: § — R
may have self-intersections. In the previous example, ¢: T'— R* is one-to-
one, and furthermore g is a homeomorphism onto its image. It is convenient
to use the following terminology.

DEFINITION 7. Let S be an abstract surface. A differentiable map
@: S-— R® is an embedding if ¢ is an immersion and a homeomorphism onto

its image.
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For instance, a regular surface in R® can be characterized as the image of
an abstract surface S by an embedding ¢: § — R?. This means that only
those abstract surfaces which can be embedded in R® could have been
detected in our previous study of regular surfaces in R3. That this is a serious
restriction can be seen by the example below.

Example 5. We first remark that the definition of orientability (cf. Sec.
2-6, Def. 1) can be extended, without changing a single word, to abstract
surfaces. Now consider the real projective plane P? of Example 1. We claim
that P2 is nonorientable.

To prove this, we first make the following general observation. Whenever
an abstract surface S contains an open set M difftfomorphic to a M&bius
strip (Sec. 2-6, Example 3), it is nonorientable. Otherwise, there exists a
family of parametrizations covering .S with the property that all coordinate
changes have positive Jacobian; the restriction of such a family to M will

induce an orientation on M which is a contradiction.
Now, P2 is obtained from the sphere S? by identifying antipodal points,

Consxder on S? a thin strip B made up of open segments of meridians whose
centers Iay on half an equator (Fig. 5-52). Under identification of antipodal
points, B clearly becomes an open Mdbius strip in P2. Thus, P2 is nonorient-

able.

Figure 5-52. The projective plane contains a Mobius strip.

By a similar argument, it can be shown that the Klein bottle K of Example
2 is also nonorientable. In general, whenever a regular surface S < R? is
symmetric relative to the origin of R?, identification of symmetric points gives

rice 03 marinmntahla ahotrant grirfaca
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It can be proved that a compact regular surface in R* is orientable (cf.
Remark 2, Sec. 2-7). Thus, P? and K cannot be embedded in R?, and the
same happens to the compact orientable surfaces generated as above. Thus,
we miss quite a number of surfaces in R°.

P?%and K can, however, be embedded in R*. For the Klein bottle K, con-
sider the map G: R* — R* given by

G(u, v) = ((r cos v + a)cosu, (rcos v + a)sinu,
r sin v cOos

U o U
= ¥ sin v sin =~} -
2° 2)
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Notice that G(u, ») = G(u + 2maz, 2nz — v), where m and »n are integers.
Thus, G induces a map y of the space obtained from the square

[0, 27] X [0, 27] < R?

by first reflecting one of its sides in the center of this side and then identi-
fying opposite sides (see Fig. 5-53). That this is the Klein bottle, as defined
in Example 2, can be seen by throwing away an open half of the torus in
which antipodal points are being identified and observing that both processes
lead to the same surface (Fig. 5-53).

Klein bottle
immersed in R?
with self-intersections

Figure 5.53
Thus, y is a map of K into R*. Observe further that
G(u + 4mn, v + 2mn) = G(u, v).

It follows that G =wom, oz, where z: R? — T is essentially the natural
projection on the torus T (cf. Example 4) and x,: T — K corresponds to
identifying “antipodal” points in 7. By the definition of the differentiable
structures on 7 and K, z and z, are local diffeomorphisms. Thus, y: K — R*
is differentiable, and the rank of dw is the same as the rank of dG. The
latter is easily computed to be 2; hence,  is an immersion. Since K is compact
and i is one-to-one, y~! is easily seen to be continuous in ¢(K). Thus,  is an

embedding, as we wished.
For the projective plane P2, consider the map F: R® — R* given by

F(x,y,z) = (x* — y?%, xy, Xz, yz).

Let S? = R® be the unit sphere with center in the origin of R3, It is clear that
the restriction ¢ — F/S? is such that ¢(p) = ¢(—p). Thus, g induces a map
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@: Pr—> R* by @({p, —p}) = o(p).

To see that ¢ (hence, @) is an immersion, consider the parametrization x
of S% given by x(x,y) =(x, y, + ~/1 — x* — »?), where x2 4+ y2 < 1.
Then

¢OX(X,y):(xz—yz,xy,xD’yD), D:m/l—xz—yz.

It is easily checked that the matrix of d(pox) has rank 2. Thus, @ is an immer-
sion.
To see that @ is one-to-one, set

x? —yt = g, xy = b, xz=-¢c, yz ==d. (2)
It suffices to show that, under the condition x? + y2 -+ z% = 1, the above
equations have only two solutions which are of the form (x, y, z) and
(—x, —y, —z). In fact, we can write

x*d = be, yic = bd,
z:bh = cd, x?—y*=a, 3)
x2 4 p2 422 =1

where the first three equations come from the last three equations of (2).

Now, if one of the numbers b, ¢, d is nonzero, the equations in (3) will
give x2, y2, and z%, and the equations in (2) will determine the sign of two
coordinates, once given the sign of the remaining one. If b = ¢ =d =0,
the equations in (2) and the last equation of (3) show that exactly two coordi-
nates will be zero, the remaining one being 4-1. In any case, the solutions

have the required form, and § is one-to-one.

Aliy

By compactness, ¢ is an embedding, and that concludes the example.

If we look back to the definition of abstract surface, we see that the
number 2 has played no essential role. Thus, we can extend that definition to
an arbitrary » and, as we shall see presently, this may be useful.

DEFINITION 1a. 4 differentiable manifold of dimension n is a set M
together with a family of one-to-one maps x,: U, — M of open sets U, < R*®
info M such that

1. Ux(U) =M.

2. For each pair o, § with x,(U,) N x,(Uz) = W = ¢, we have that
X, (W), x;1(W) are open sets in R® and that X' ox,, X; 'oX, are differ-

.
prrda 2 TAAD

h
Enidoe maps.
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3. The family {U,, x,} is maximal relative to conditions 1 and 2.

A family {U,, x,} satisfying conditions 1 and 2 is called a differentiable
structure on M. Given a differentiable structure on M we can easily complete
it into a maximal one by adding to it all possible parametrizations that,
together with some parametrization of the family {U,, x,}, satisfy condition
2. Thus, with some abuse of language, we may say that a differentiable mani-
fold is a set together with a differentiable structure.

Remark. A family of open sets can be defined in A by the following
requirement: ¥V < M is an open set if for every a, x;'(V M x,(U,)) 1s an open
set in R”, The readers with some knowledge of point set topology will notice
that such a family defines a natural topology on M. In this topology, the maps

x_ are continuous and the setsx (7 Yare onen in M. In some deenar theorems

ARy GAL W WRCLALAIAWR WS Gl LA SVLD Ay V) Giw Vi i L OVLIIG MuL (LS RV

on manifolds, it is necessary to impose some conditions on the natural
topology of M.

The definitions of differentiable maps and tangent vector carry over,
word by word, to differentiable manifolds. Of course, the tangent space is
now an n-dimensional vector space. The definitions of differential and orien-
tability also extend straightforwardly to the present situation.

In the following example we shall show how questions on two-dimensional
manifolds lead naturally into the consideration of higher-dimensional
manifolds.

Example 6 (The Tangent Bundle). Let S be an abstract surface and let
T(S) ={(p,w),p € S,w € T,S)}. We shall show that the set 7(S) can be
given a differentiable structure (of dimension 4) to be called the tangent
bundle of S.

Let {U,, x,} be a differentiable structure for S. We shall denote by (u,, v.)
the coordinates of U,, and by {d/du,, d/dv,} the associated bases in the
tangent planes of x,(U,). For each «, definea map y,: U, X R* — T(S) by

U X XU (9 d\ X
ya( - 4] ac: :y)—\ ac( o oc d —I_yd?)} k :}’)

\-)

Geometrically, this means that we shall take as coordinates of a point
(p, w) € T(S)thecoordinates u,, v, of p plus the coordinates of w in the basis
{d/du,, d/dv,}.

We shall show that {U, x R?,y,} is a differentiable structure for 7(S).
Since | J, x.(U,) = § and (dx,),(R?) = T,,(S), g € U,, we have that

L lv (], x RYY = T(S),
s v a J w2)s
24
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and that verifies condition 1 of Def. 1a. Now let

(p, w) € ¥u(U, X R N ye(Uy X RY).
Then
(P, W) = (Xu(qo)s AXa(Wo)) = (¥5(qp) dX,p(Wp)),

whereq, € U,,q, € Uy w,, w, € R2 Thus,

Yz' o Vulqa> wa) = ¥5 ' (X(q.)s dXa(wa))
= ((x5" 0 x,)(qa), d(x5" ° x,Xw,)).

Since x5! o x, is differentiable, so isd(x;* < x,). It follows that y;! o y, is dif-
ferentiable, and that verifies condition 2 of Def. 1a.

The tangent bundle of S is the natural space to work with when one is
dealing with second-order differential equations on S. For instance, the
equations of a geodesic on a geometric surface S can be written, in a coordi-
nate neighborhood, as (cf. Sec. 4-7)

u” = fi(u, v, u', '),
a ¥ O U A TLAY
v ——Jzku, Uy U » Uj.
The classical “trick” of introducing new variables x = ', y = v’ to reduce
the above to the first-order system

x' = fi(u, v, x, y),
V' =talws ¥; X, ), @
u' = f3(u, v, x, p),
v = fuu, v, x, y)

may be-interpreted as bringing into consideration the tangent bundle 7(S),
with coordinates (4, v, x, y) and as looking upon the geodesics as trajectories
of a vector field given locally in 7(S) by (4). It can be shown that such a vector
field is well defined in the entire 7'(S'); that is, in the intersection of two coor-
dinate neighborhoods, the vector fields given by (4) agree. This field (or rather
its trajectories) is called the geodesic flow on T(S). It is a very natural object to
work with when studying global properties of the geodesics on S.

By looking back to Sec. 4-7, it will be noticed that we have used, in a
disguised form, the manifold 7°(S). Since we were interested only in local
properties, we could get along with a coordinate neighborhood (which is
essentially an open set of R*). However, even this local work becomes neater

when the notion of tangent bundle is brought into consideration.
Of course, we can also define the tangent bundle of an arbitrary n-dimen-
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sional manifold. Except for notation, the details are the same and will be
left as an exercise.

We can also extend the definition of a geometric surface to an arbitrary
dimension.

DEFINITION 5a. 4 Riemannian manifold is an n-dimensional differenti-~
able manifold M together with a choice, for each p € M, of an inner product
oy opin T(M) that varies differentiably with p in the following sense. For
some (hence, all) parametrization x,: U, — M with p € x,(U,), the functions

Jd d .
giy(Up, oo s Uy) :<-a"a—_,%>, Lj=1,...,n,
i j
are differentiable at x;'(p); here (u,, . .., u,) are the coordinates of U, = R*,

The differentiable family {{ >,, p € M} is called a Riemannian structure

( T L\Jyxxlanﬁlau mCLTAC) fGi‘ A,

Notice that in the case of surfaces we have used the traditional notation
g1 =FE 81, =81 =F, g, =G.

The extension of the notions of the intrinsic geometry to Riemannian
manifolds is not so straightforward as in the case of differentiable manifolds.

First, we must define a notion of covariant derivative for Riemannian
manifolds. For this, let x: U — M be a parametrization with coordinates
(uy, ..., u,)and set x, = d/du,. Thus, g;; = <{x,, x,>.

We want to define the covariant derivative D, v of a vector field » relative
to a vector field w. We would like D,v to have the properties we are used to
and that have shown themselves to be effective in the past. First, it should
have the distributive properties of the old covariant derivative. Thus, if u, v, w
are vector fields on M and f, g are differentiable functions on M, we want

Dfu+gw(v) :fDuv + ngU, (5)

Do+ gw) = fDw + Yv + gy + GEw, (6)

where df/du, for instance, is a function whose value at p © M is the derivative

(f o a)(0) of the restriction of f to a curve a: (—¢,€) — M, a(0) =p,
a'(0) =u.

Equations (5) and (6) show that the covariant derivative D is entirely
determined once we know its values on the basis vectors

n
Dxixf:z:rﬁ'xk’ l,Jak:l,...,n,
k=1

where the coefficients l k. ; arc functions yet to be determined.
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Second, we want the I'¥, to be symmetric in i and j(I'f, =TI'%); that is,
D.x, = D.X; for all i, J. D
Third, we want the law of products to hold; that is,

0 %0 %) = DuXo X0+ <X DuX). (8)
Up

From Egs. (7) and (8), it follows that

o1, equivalently,
d d d
Mgz‘j_l—'a"l"l;gjk_a gkz_2zrzk &ij-

Since det(g,;) # 0, we can solve the last system, and obtain the I'F; as
functions of the Riemannian metric g;; and its derivatives (the reader should
compare the system above with system (2) of Sec. 4-3). If we think of g,; asa
matrix and write its inverse as g, the solution of the above system is

>

ko &l 5&: 0g, %
v 2 Zg ( du 6u;)

----- ~ DPiosasriiaiom N sl PRV FPy

TIIJMJ, ELI/CIL U INCTTLUTLFLLUrT ouu(,uuc JUI' 1vi, H't(if(i EXISIS a4 uruque covari L““—f-
derivative on M (also called the Levi-Civita connection of the given Riemannian
structure) satisfying Eqs. (5)—(8).

Starting from the covariant derivative, we can define parallel transport,
geodesics, geodesic curvature, the exponential map, completeness, etc. The
definitions are exactly the same as those we have given previously. The notion
of curvature, however, requires more elaboration. The following concept,
due to Riemann, is probably the best analogue in Riemannian geometry of
the Gaussian curvature.

Let p € M and let ¢ < T, (M) be a two-dimensional subspace of the
tangent space 7,(M). Consider all those geodesics of M that start from p and
are tangent to ¢. From the fact that the exponential map is a local diffeo-
morphism at the origin of T (M), it can be shown that small segments of such
geodesics make up an abstract surface S containing p. S has a natural geome-
tric structure induced by the Riemannian structure of M. The Gaussian
curvature of S at p is called the sectional curvature K(p, o) of M at p along o.

It is p0551b1e to fo rmallze the sectional curvature in terms of the Levi-

"!1] ﬂﬂT‘P‘
1 ULJ.X)’
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mention that most of the theorems in this chapter can be posed as natural
questions in Riemannian geometry. Some of them are true with little or no
modification of the given proofs. (The Hopf-Rinow theorem, the Bonnet
theorem, the first Hadamard theorem, and the Jacobi theorems are all in this
class.) Some others, however, require further assumptions to hold true (the
second Hadamard theorem, for instance) and were seeds for further develop-
ments.

A full development of the above ideas would lead us into the realm of
Riemannian geometry. We must stop here and refer the reader to the biblio-
graphy at the end of the book.

EXERCISES

— R 5 Sy

1. Introduce a metric on the projective plane P2 (cf. Example 1) so that the natural
projection 1: §2 — P2 is a local isometry. What is the (Gaussian) curvature of
such a metric?

2, (The Infinite Mdbius Strip.) Let
C={(,y2)e R;x%2+ y2 =1}

be a cylinder and A4: C — C be the map (the antipodal map) A(x, y, z) =
(—x, —y, —z). Let M be the quotient of C by the equivalence relation
p ~ A(p), and let 7: C — M be the map #(p) = {p, A(p)},p c C.

o Qhnaw that AL ~on he civen a diffaranfinhla ciriicfiirs en that o je o lacal Aiffan
e RJIUVY LLIAL 4V2 WALl WA BEVLLL A WLTUIVIIA UG SLLUULULL OV Llial 4L 1> d 1vlal Ulivu-

morphism (M is then called the infinite Mébius strip).
b. Prove that M is nonorientable.

¢. Introduce on M a Riemannian metric so that 7z is a local isometry. What is
the curvature of such a metric?

3. a. Show that the projection 7: S2 -— P2 from the sphere onto the projective
plane has the following properties: (1) 7 is continuous and 7(S2) = P2; (2)
each point p € P? has a neighborhood U such that z=4(U) = V; U V>,
where V' and V, are disjoint open subsets of $2, and the restriction of 7 to
each V;, i = 1, 2, is a homeomorphism onto U. Thus, 7 satisfies formally the
conditions for a covering map (see Sec. 5-6, Def. 1) with two sheets. Because
of this, we say that S is an orientable double covering of P2.

b. Show that, in this sense, the torus 7 is an orientable double covering of the
Klein bottle K (cf. Example 2) and that the cylinder is an orientable double
covering of the infinite Mobius strip (cf. Exercise 2).

4. (The Orientable Double Covering). This exercise gives a general construction for
the orientable double covering of a nonorientable surface. Let S be an abstract,
connected, nonorientable surface. For each p € §, consider the set B of all
bases of T,(S) and call two bases equivalent if they are related by a matrix with
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positive determinant. This 1s clearly an equivalence relation and divides B into
two disjoint sets (cf. Sec. 1-4). Let O, be the quotient space of B by this equiva-
lence refation. O, has two elements, and each element O, & 0, is an orientation
of T,(S) (cf. Sec. 1-4). Let S be the set

S=1{p0;p < S;0, €0,

To give § a differentiable structure, let {U,, X, } be the maximal differentiable
structure of .S and define X,: U, — S by

Lty 70) = (Xt © “)’[ai., aij)

where (¢4, v,) € U, and [0/du,, 0/dv,] denotes the element of O, determined by

the basis {@/0u,, 3/0v,}. Show that

a. {U,, %,}is a differentiable structure on § and that S with such a differentiable
structure is an orientable surface.

b. The map 7: § — S given by 7(p, 0,) = p is a differentiable surjective map.
Furthermore, each point p € S has a neighborhood U such that z-1(U)
= V; U V,, where V, and V, are disjoint open subsets of S and 7 restricted
toeach V;, i = 1, 2, is a diffeomorphism onto U. Because of this, S is called
an orientable double covering of S.

5. Extend the Gauss-Bonnet theorem (see Sec. 4-5) to orientable geometric sur-
faces and apply it to prove the following facts:

a. There is no Riemannian metric on an abstract surface T diffeomorphic to a
torus such that its curvature is positive (or negative) at all points of T.

oy P B s R N

T ndt TaemdAd C2 1a PR PPN - iy TUs
SUridaccs UlllCUlllUlplllL lU I.UC LU US

Let Tand S2 be abstract aii ,
respectively, and let ¢: T — S? be a differentiable map. Then has at I ast
one critical point, i.e., a point p € T such that dg, = 0.

ra

=2

6. Consider the upper half-plane R (cf. Example 3) with the metric
1
E(xy y) = I: F(X, y) = 0: G(xr y) - 'y—,: (xy y) € -R%-

Show that the lengths of vectors become arbitrarily large as we approach the
boundary of R% and yet the length of the vertical segment

x=0: 0<€.£y_<_19

approaches 2 as € — 0. Conclude that such a metric is not complete.

*7. Prove that the Poincaré half-plane (cf. Example 3) is a complete geometric
surface. Conclude that the hyperbolic plane is complete.

L 1kt LAl LS AL AL ALY P UM 42 Lo 22

8. Another way of finding the geodesics of the Poincaré half-plane (cf. Example 3)
15 to use the Eu]er-Lagrange equation for the corresponding variational problem

Twvnammioan A Qoan & AV Qi 1z Looe sy it 41 cartinal 1imae frn o dao
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10.

can restrict ourselves to geodesics of the form y = y(x). Thus, we must ook for
the critical points of the integral (F = 0)

f/\/E———l— G(y/)z dx = f’\_/l—:—(y,)z dx’

since E = G = 1/y2. Use Exercise 4, Sec. 5-4, to show that the solution to this
variational problem is a family of circles of the form

(x + k) +y*=k3, ki, ko = const.

Let § and S be connected geometric surfaces and let 7: § — S be a surjective
differentiable map with the following property: For each p & S, there exists a
neighborhood U of p such that n-1(U) = | J,V,, where the V,’s are open dis-
joint subsets of S and 7 restricted to each V, is an isometry onto U (thus, 7 is
essentially a covering map and a local isometry).

a. Prove that § is complete if and only if § is complete.

b. Is the metric on the infinite Mobius strip, introduced in Exercise 2, part ¢, a
complete metric?

(Kazdan-Warner’s Results.)
a. Let a metric on R? be given by

E(x,y) =1, F(x,y)=0, G(x,y) > 0, (x,y) € R

Show that the curvature of this metric is given by
+ K(x, )W/ G =0. ()

b. Conversely, given a function K(x, y) on RZ?, regard y as a parameter and let
A/ G be the solution of (x) with the initial conditions

VGran =1, o0

Prove that G is positive in a neighborhood of (x;, ¥) and thus defines a metric
in this neighborhood. This shows that every differentiable function is locally
the curvature of some (abstract) metric.

*¢. Assume that K(x, y) << Oforall (x, ) € R2. Show that the solution of part b
satisfies

NG, NG, ) =1 for all x.

Thus, G(x, y) defines a metric on all of R2, Prove also that this metric is com-
plete. This shows that any nonpositive differentiable function on R2 is the cur-
vature of some complete metric on R2, If we do not insist on the metric being
complete, the result is true for any differentiable function X on R2, Compare
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J. Kazdan and F. Warner, “Curvature Functions for Open 2-Manifolds,”
Ann. of Math. 99 (1974), 203-219, where it is also proved that the condition
on K given in Exercise 2 of Sec. 5-4 is necessary and sufficient for the metric
to be complete.

§5-11. Hilbert's Theorem

Hilbert’s theorem can be stated as follows.

THEOREM. A complete geometric surface S with constant negative
curvature cannot be isometrically immersed in R3.

Remark 1. Hilbert’s theorem was first treated in D. Hilbert, “Uber
Flichen von konstanter Gausscher Kriimung,” Trans. Amer. Math. Soc. 2
(1901), 87-99. A different proof was given shortly after by E. Holmgren,
“Sur les surfaces & courbure constante negative,” C. R. Acad. Sci. Paris 134
(1902), 740-743. The proof we shall present here follows Hilbert’s original
ideas. The local part is essentially the same as in Hilbert’s paper; the global

nart hawavar ic eriheaetantially Aiffarant Wa want ta fhanl T A SQrhainkman
Pali, LHUWLUYLL, 1o suldildiitidil y UIICIVIIL. VYL Wwallil LU Lidln 0, 2x, WJULCILAITdld

for helping us to work out this proof and M. Spivak for suggesting Lemma 7
below.

We shall start with some observations. By multiplying the inner product by
a constant factor, we may assume that the curvature K = —1. Moreover,
since exp,: T,(S) — Sis a local diffeomorphism {corollary of the theorem of
Sec. 5-5), it induces an inner product in T,(S). Denote by S’ the geometric
surface 7',(S) with this inner product. If y7: S — R® is an isometric immersion,
the same holds for ¢ = yoexp,: §* — R®. Thus, we are reduced to proving
that there exists no isometric immersion ¢: S —R? of a plane S’ with an
inner product such that K = —1.

LEMMA 1. The area of S’ is infinite.

Proof. We shall prove that S’ is (globally) isometric to the hyperbolic
plane H. Since the area of the latter is (cf. Example 3, Sec. 5-10)

+ oo + oo
f f e dudv = oo,

this will prove the lemma.
Let p € H, p’ € §, and choose a linear isometry y: T,(H) — T ,(S") be-
tween their tangent spaces. Defineamap ¢: H— S" by p =exp, o w ¢ exp; .
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Since each point of H is joined to p by a unique minimal geodesic, ¢ is well
defined.

We now use polar coordinates (p, 8) and (p’, 8’) around p and p’, respec-
tively, requiring that ¢ maps the axis 8 = 0 into the axis #’ = 0. By the results
of Sec. 4-6, ¢ preserves the first fundamental form; hence, it is locally an
1sometry. By using the remark made after Hadamard’s theorem, we conclude
that ¢ is a covering map. Since S’ is simply connected, ¢ is a homeomorphism,
and hence a (global) isometry. Q.E.D.

For the rest of this section we shall assume that there exists an isometric
immersion ¢: S — R?, where S’ is a geometric surface homeomorphic to a
plane and with K = —1.

To avoid the difficulties associated with possible self-intersections of
@(S"), we shall work with S” and use the immersion ¢ to induce on S’ the local
extrinsic geometry of @(S’) — R*. More precisely, since ¢ is an immersion,
for each p € S’ there exists a neighborhood V' < S’ of p such that the
restriction ¢ [V’ = ¢ is a diffeomorphism. At each ¢(g) € @(V"’), there exist,
for instance, two asymptotic directions. Through @, these directions induce

two directions at g € §’, which will be called the asymptotic directions on

S’ at g. In this way, it makes sense to talk about asymptotic curves on §’,
and the same procedure can be applied to any other local entity of p(S').

We now recall that the coordinate curves of a parametrization constitute
a Tchebyshef net if the opposite sides of any quadrilateral formed by them
havn amiial lanmath 7o Evaranica 7T Qan 3 &Y T éhic 1c thn roge i+ 30 tnmootlsla ¢4
1Have C\-iud.l lCllsLll \bl. LLACLIVIDL fy LA, L'J}. A1 LIS 1) Llie babc, 1L 1> PUDDIUIC iV
reparametrize the coordinate neighborhood in such a way that £ =1,
F =cos 0, G = 1, where 8 is the angle formed by the coordinate curves, (Sec.
2-5, Exercise 8). Furthermore, in this situation, K = —(&,,/sin §) (Sec. 4-3,
Exercise 5).

LEMMA 2, Foreach p € S’ there is a parametrization x: U < R* — §',
p € x(U), such that the coordinate curves of x are the asymptotic curves
of x(U) =V’ and form a Tchebyshef net (we shall express this by saying
that the asymptotic curves of V' form a Tchebyshef net).

Proof. Since K < 0, a neighborhood ¥' = S’ of p can be parametrized
by x(u, v) in such a way that the coordinate curves of x are the asymptotic
curves of V’. Thus, if e, f, and g are the coefficients of the second fun-
damental form of S’ in this parametrization, we have ¢ = g = 0. Notice
that we are using the above convention of referring to the second fundamental
form of S’ rather than the second fundamental form of ¢(S") < R5.

Now in (V') = R3, we have
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Nﬂ /\ NU - K(xu /\ X?));

Furthermore,

N AN, = 500 A %) A NS = {0 Nox, — (x, Nox)
= %(fxu - exv)’

and, similarly,

_ 1 _
N /\ Nv - I)_(gxu fxv)

Since K = —1 = —(f?/D*) and e = g = 0, we obtain

N AN,= £Xx, N AN, = £x,;
hence,

2KDN = —2DN = &4x,, + x,, = +2x,,.

It follows that x,, is parallel to N; hence, £, = 2{x,,, X,» =0 and G, =
2{X,,, X,» = 0. But E, == G, = 0 implies (Sec. 2-5, Exercise 7) that the coor-
dinate curves form a Tchebyshef net. Q.E.D.

LEMMA 3. Let V' = S’ be a coordinate neighborhood of S’ such that
the coordinate curves are the asymptotic curves in V'. Then the area A of any
quadrilateral formed by the coordinate curves is smaller than 2m.

Proof. Let (i, 9) be the coordinates of V. By the argument of Lemma 1,
the coordinate curves form a Tchebyshel net. Thus, it is possible to repara-
metrize V' by, say, (4,v) so that E=G =1 and F =cosf. Let R be
a quadrilateral that is formed by the coordinate curves with vertices
(U1, v1), (Ua, ©1), (Uy, ¥,), (U, v,) and interior angles &, &, &3, oLy, respectively
(Fig. 5-54). Since £ = G =1, F = cos 0, and f,, = sin 0, we obtain

A= fRdAz fRSLHBdudw = LBWdudv
= O(uy, v,) — Oug, v) + Ouy, v5) — O(uy, v,)
——-051—|—ac3—(n——acz)—(n——oc4):i;ai—2ﬁ<27c,

3 MNATN
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Figure 5-54

So far the considerations have been local. We shall now define a map

. 2 ; 3 1 PR rm 4
x: R* — §" and show that X is a parametrization for the en t re S,

The map x is defined as follows (Fig. 5-55). Fix a point O € S” and choose
orientations on the asymptotic curves passing through O. Make a definite
choice of one of these asymptotic curves, to be called a,, and denote the
other one by a,. For each (s, {) € R?, lay off on g, a length equal to s starting
from O. Let p’ be the point thus obtained. Through p’ there pass two asympto-
tic curves, one of which is @,. Choose the other one and give it the orientation
obtained by the continuous extension, along g,, of the orientation of a,.
Over this oriented asymptotic curve lay off a length equal to ¢ starting from
p’. The point so obtained is x(s, 7).

x(s,0)

Figure 5-55

x(s, t) is well defined for all (s, £}y € RZ In fact, if x(s, 0) is not defined,
there exists s, such that a,(s) is defined for all s < 5, but not for s =s,.
Let g = lim,_,,, a,(s). By completeness, g € 5. By using Lemma 2, we see
that a,(s,) is defined, which is a contradiction and shows that x(s, 0) is defined
for all s € R. With the same argument we show that x(s, ¢) 1s defined for all
t € R
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Now we must show that x is a parametrization of S’. This will be done
through a series of lemmas.

LEMMA 4. For a fixedt, the curve X(s, t), —oo < s << o0, is an asympto-
tic curve with s as arc length.

Proof. For each point x(s’, t') € §’, there exists by Lemma 2 a “rectan-
gular” neighborhood (that is, of the form ¢, < ¢ < ¢, 5, << § < 5,) such that
the asymptotic curves of this neighborhood form a Tchebyshef net. We
first remark that if for some #,, 7, << t, << t;, the curve X(s, t;), 5, << § << 8,
is an asymptotic curve, then we know the same holds for every curve x(s, ),
t, << < t, In fact, the point x(s, f) is obtained by laying off a segment of
length 7 from x(s, 0) which is equivalent to laying off a segment of length
f — t, from x(s, #,). Since the asymptotic curves form a Tchebyshef net in this
neighborhood, the assertion follows.

x(sy,t9)

vl

a’] 7—/
Figure 5-56

Now, let x(s,,,) € S’ be an arbitrary point. By compactness of the
segment x(s,, £), 0 <{ ¢ < ¢, it is possible to cover it by a finite number of
rectangular neighborhoods such that the asymptotic curves of each of them
form a Tchebyshef net (Fig. 5-56). Since x(s, 0) is an asymptotic curve, we
iterate the previous remark and show that x(s, 7,) is an asymptotic curve in a
neighborhood of s,. Since (s,, t;) was arbitrary, the assertion of the lemma

follows. Q.E.D.

LEMMAS. x i

Proof. This follows from the fact that on the one hand x(s,, 7), X(s, #,)
are asymptotic curves parametrized by arc length, and on the other hand §”
can be locally parametrized in such a way that the coordinate curves are the
asymptotic curves of S’ and £ = G = 1. Thus, x agrees locally with such a

rirro AT N
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LEMMA 6. x is surjective.

Proof. Let Q = x(R?). Since x is a local diffeomorphism, Q is open in
S’. We also remark that if p" == x(s,, #,), then the two asymptotic curves
which pass through p’ are entirely contained in Q.

Let us assume that 0 == §". Since S”is connected, the boundary Bd Q +# ¢.
Let p ¢ Bd Q. Since Q is open in S', p ¢ Q. Now consider a rectangular
neighborhood R of p in which the asymptotic curves form a Tchebyshef net
(Fig. 5-57). Let ¢ € Q N R. Then one of the asymptotic curves through
g intersects one of the asymptotic curves through p. By the above remark,

this is a contradiction OFD

SR RE 310 % i, RV AR BT )

Figure 5-57

LEMMA 7. On S’ there are two differentiable linearly independent vector
fields which are tangent to the asymptotic curves of S'.

Proof. Through each point of S’ there pass two distinct asymptotic
curves. Fix a point p € S’ and choose two unit vectors, #,(p) and v,(p),
tangent to the asymptotic curves through p. Let g € S’ be an arbitrary point
and let a,:[0,7] — S" be an arc such that a,(0) = p, ay(/) =¢q. Define

(e ¢ = T J1 ag tha f1imiana) caontinuiang avfancinn of 2 £ alane ~
VW0 /)y 2 = |V ]y €O LHL LULIHUL ) VVLILLIUWUUD VALLLIDIVIL VI Vi ) alvilg WU

which is tangent to an asymptotic curve. Define similarly »,(ay(s)), s € [0, [].
We claim that »,(g) and #,(q) do not depend on the choice of the arc joining
p to g. Thus, v, and v, are well-defined continuous vector fields on S’ which
are tangent to the asymptotic curves. Hence, v, and v, are differentiable, and
the lemma will be proved.

To prove our claim, let us work with v,, the case of v, being similar. Let
a, : [0, I]— S’ be another arc with «,(0) = p, «,(/) = g. Since S” (which is
homeomorphic to a plane) is simply connected (cf. Sec. 5-6, Def. 3), there
exists a homotopy «,(s) = H(s, t), se [0, /], t € [0, 1], between «, and «a,
(cf. Sec. 5-6, Def. 2); that is, «,(s) is a continuous family of arcs joining p to
g. From the continuity of the asymptotic directions and the compactness of
[0, [], it follows that given € > O there exists ¢, € [0, 1] such that if 1 < 1,
then |v,{(a, (1)) — vi(oo(1))] < €. Thus, if 7, is small enough, we have v, (o (/)) =
v, (o) for ¢t < t,. Since [0, 1] is compact, we can extend this argument
stepwise to all ¢ € [0, 1]. Hence, v (a,()) = v;(a,(])) .
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This proves our claim and concludes the proof of the lemma. Q.E.D.

LEMMA 8. x is injective.

[y £\ __ wrfo P ling $+hat¢ o 4N
Xi{Sg, fp) = XiS5y, {1 ImMpiics tnat {5y, {g) —

(Sls tl)

We first assume that X(s,, #,) = X(51, ¢,), §; > §,, and show that this
itself unless the tangent lines agree at the intersection point. Since x is a local
diffeomorphism, there exists an € > 0 such that

X($9, 1) =X(51, 1), ty — € <t <1, + €.

e comic pancma e1a

v o rmeimte AF tha ~arvees w xrhinl
Y UiC Sallc 1edonli, 1l porilis vl Lic LU 1

~ mrd o N £ -~
YO 1\.)0, £) 1V wWililll
X(5q, 1) = X(54, 1)

form an open and closed set of this curve; hence, x(s,, ) = x(s,, #) for all ¢.
Moreover, by the construction of the map x, x(s, - &, #,} = x(s5, + 4, t;),
0<a<s, — sy; hence, x(s; + @, 1) = x(s, + a, t) for all ¢. Thus, either

1. x(sq, to) = X(5,, ¢) for all £ > ¢,, or

2. There exists t = ¢, > t, such that x(s,, t,) = x(s,, ¢,}; by a similar
argument, we shall prove that x(s, 7, + &) = x(s, r; + b) for all s,
0<<b<<t —t,.

" In case 1, x maps each strip of R? between two vertical lines at a distance
5, — s, onto S” and identifies points in these lines with the same 7. This implies
that S’ is homeomorphic to a cylinder, and this is a contradiction (Fig. 5-58).

In case 2, x maps each square formed by two horizontal lines at a distance
s, — s, and two vertical lines at a distance ¢, — ¢, onto S and identifies

R 1! o T

-t
- ~

Figure 5-58
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corresponding points on opposite sides of the boundary. This implies that
S’ is homeomorphic to a torus, and this is a contradiction (Fig. 5-59).

By a similar argument, we show that x(s,, t,) == x(s,, 1,), {; > t,, leads
to the same contradiction.

b re

Sl

Figure 5-59

We now consider the case x(s, t,) = X(§1, 1,), §; > 8¢, 1, > ¢,. By using
the fact that x is a local diffeomorphism and the connectedness of ', we see
that x maps onto S’ a strip of R? between two lines perpendicular to the vector
(s; — S5, t; — ;) € R? and at a distance /(s; — 5,)% + (¢, — £,)? apart.
We can now consider cases 1 and 2 as in the previous argument and show that
S’ is then homeomorphic either to a cylinder or to a torus. In any case, this
1s a contradiction. Q.E.D.

The proof of Hilbert’s theorem now follows easily.

Proof of the Theorem. Assume the existence of an isometric immersion
w:S — R? where S is a complete surface with K= —1. Let p € § and
denote by S’ the tangent plane 7,(.5) endowed with the metric induced by
exp,: T',(S) — S. Then ¢ = woexp,: S’ —— R’ is an isometric immersion and
Lemmas 5, 6, and 8 show the existence of a parametrization x: R? — S’ of
the entire S’ such that the coordinate curves of x are the asymptotic curves
of §" (Lemma 4). Thus, we can cover S’ by a union of “coordinate quadrila-
terals” Q,, with Q, = Q,,,. By Lemma 3, the arca of each @, is smaller
than 2z. On the other hand, by Lemma 1, the area of S’ is unbounded. This
is a contradiction and concludes the proof. Q.E.D.

Remark 2. Hilbert’s theorem was generalized by N. V. Efimov, “Appear-
ance of Singularities on Surfaces of Negative Curvature,” Math. Sh. 106
FAAONEAN A WA o T et A Yyl £ 1000 184 100 L 1 a1
(1709). A VLD, 1TANSIdUIONS, DCTICS £, ¥V Ol DU, 15700, 1094—17V, WiiU PIrovea uic
following conjecture of Cohn-Vossen: Let S be a complete surface with
curvature K satisfying K <. 6 << 0. Then there exists no isometric immersior. of

S into R3. Efimov’s proof is very long, and a shorter proof would be desirable.
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An excellent exposition of Efimov’s proof can be found in a paper by T.
Klotz Milnor, “Efimov’s Theorem About Complete Immersed Surfaces of
Negative Curvature,” Advances in Mathematics 8 (1972), 474-543. This
paper also contains another proof of Hilbert’s theorem which holds for sur-
faces of class C2.

For further details on immersion of the hyperbolic plane see M. L.
Gromov and V. A. Rokhlin, “Embeddings and Immersions in Riemannian
Geometry,” Russian Math. Surveys (1970), 1-57, especially p. 15.

1R Y

1. (Stoker’s Remark.) Let S be a complete geometric surface. Assume that the
Gaussian curvature K satisfies K < d < 0. Show that there is no isometric im-
mersion @: S — R3 such that the absolute value of the mean curvature H is
bounded. This proves Efimov’s theorem quoted in Remark 2 with the additional
condition on the mean curvature. The following outline may be useful;

a. Assume such a @ exists and consider the Gauss map N: ¢(S) = R? — §2,
where S? is the unit sphere. Since K += 0 everywhere, N induces a new metric
(,) on S by requiring that No@: S5 -— S? be a local isometry, Choose
coordinates on S so that the images by @ of the coordinate curves are lines of
curvature of ¢(S). Show that the coefficients of the new metric in this coor-
dinate system are

g11 = (k1)*E, &1z = 0, g2z = (k2)*G,

where E, F (= 0), and G are the coefficients of the initial metric in the same
system.

b. Show that there exists a constant M > 0 such that k2 << M, k% << M. Use the
fact that the initial metric is complete to conclude that the new metric is also
complete,

c. Use part b to show that S is compact; hence, it has points with positive curva-
ture, a contradiction.

2. The goal of this exercise is to prove that there is no regular complete surface of
revolution S in R?® with X < ¢ < 0 (this proves Efimov’s theorem for surfaces
of revolution). Assume the existence of suchan § = R°.

a. Prove that the only possible forms for the generating curve of S are those in
Fig. 5-60(a) and (b), where the meridian curve goes to infinity in both direc-
tions. Notice that in Fig. 5-60(b) the lower part of the meridian is asymptotic
to the z axis.

F-

Parametrize the generating curve (p(s), ¥ (s)) by arc length s € R so that
w(0) = 0. Use the relations ¢” + K = 0 (cf. Example 4, Sec. 3-3, Eq. (9))
and K < § < 0 to conclude that there exists a point 5, € [0, -+ o) such that
(@'(s0))> = 1.
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c. Show that each of the three possibilities to continue the meridian (@(s), w(s))
of S past the point py = (@(so), ¥(s,) (described in Fig. 5-60(c) as I, 1I, and
III) leads to a contradiction. Thus, S is not complete.
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Figure 5-60

3. (T. K. Milnor’s Proof of Hilbert’s Theorem.) Let S be a plane with a complete
metric g; such that its curvature K = —1. Assume that there exists an isometric
immersion ¢: S — R3, To obtain a contradiction, proceed as follows:

a. Consider the Gauss map N: ¢(5) = R? — §? and let g, be the metric on §
obtained by requiring that N o ¢: .S — S2 be a local isometry. Choose local
~rnnrdinatac nm Coen that tha imaoac ey m Af tha canrdinata cnvogae ara tha novma,
WATULVLLLIALAAD UL L) OV LAl Liaw uuu.é\.m Uy SU WL Lidv UYL VLA LW VUL VOO dd v L CI.DJ 1N
ptotic curves of ¢(S). Show that, in such a coordinate system, g; can be written
as

du? + 2 cos 8 du dv + dv?
and that g, can be written as

du? — 2 cos 0 du dv + dv?.

b. Prove that g; = }(g, + g£;) is a metric on S with vanishing curvature. Use the
fact that g, is a complete metric and 3g; > g, to conclude that the metric g
is complete.

c. Prove that the plane with the metric g5 is globally isometric to the standard
(Euclidean) plane R2, Thus, there is an isometry ¢: S — RZ2. Prove further
that ¢ maps the asymptotic curves of S, parametrized by arc length, into a
rectangular system of straight lines in R2, parametrized by arc length.

d. Use the global coordinate system on S given by part ¢, and obtain a contra-
diction as in the proof of Hilbert’s theorem in the text.



Appendix Point-Set Topology

of Euclidean Spaces

In Chap. 5 we have used more freely some elementary topological properties
of R”. The usual properties of compact and connected subsets of R”, as they
appear in courses of advanced calculus, are essentially all that is needed. For
completeness, we shall make a brief presentation of this material here, with
proofs. We shall assume the material of the appendix to Chap. 2, Part A, and
the basic properties of real numbers.

A. Preliminaries

Here we shall complete in some points the material of the appendix to
Chap. 2, Part A.

In what follows U = R will denote an open set in R”. The index i varies
in the range 1,2, ...,m,...,andif p={(x(,...,x), d =V .-, V)

| p — q| will denote the distance from p to ¢; that is,
p—qlP=20x—y) Jj=L....n

DEFINITION 1. A sequerce py,..., D ... € R® converges to p, € R®
if given € > 0, there exists an index i, of the sequence such that p; € B.(p,)
for all i > i,. Irn this situation, p, is the limit of the sequence {p;}, and this is
denoted by {p;} — p,.

Convergence is related to continuity by the following proposition.

éh
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PROPOSITION 1. 4 map F: U = R* — R™ is continuous at p, € U if
and orly if for each converging sequence {p;} — D, ir U, the sequence {F(p)}
converges to F(p,).

Proof. Assume F to be continuous at p, and let € > 0 be given. By con-
tinuity, there exists § > 0 such that F(B,(p,)) < B.(F(p,)). Let {p;} be a
sequence in U, with {p,} — p, € U. Then there exists in correspondence with
o an index i, such that p, € By(p,) fori > i,. Thus, for i > iss

AL + A1aL — SN 07 2= o~ « MAARZOD

F(p) € F(Bs(p,)) = BAF(po))s

which implies that {F(p)} — F(p,).

Suppose now that F is not continuous at p,. Then there exists a num-
ber € > 0 such that for every § > 0 we can find a point p € B;(p,), with
F(p) ¢ B.(F(p,). Fixthis€,andsetd =1, 1/2,...,1/i, ..., thus obtaining
a sequence {p;} which converges to p,. However, since F(p,) ¢ B.F(p,)),
the sequence {F(p,)} does not converge to F(p,). Q.E.D.

Ll )

DEFINITION 2. A poirt p € R* is a limit point of @ set A = R* if every
reighborhood of p in R® contains one point of A distirct from p.

To avoid some confusion with the notion of limit of a sequence, a limit
point is sometimes called a cluster point or an accumulatior. poirt.

Definition 2 is equivalent to saying that every neighborhood ¥ of p
contains infinitely many points of A. In fact, let ¢, 5= p be the point of 4
given by the definition, and consider a ball B.(p) = V so that ¢, ¢ B.(p).
Then there is a point g, % p,q, € A N B.(p). By repeating this process, we
obtain a sequence {g,} in ¥V, where the g, € A are all distinct. Since {q,} — p,

the aronment alea chowe that » 1c a limit noint of 4 iFf and anlyv if p ic the
VAL ulsulllhlll« CLLIOW/ QLIV YYD LLLCLL ]/ 10 A L1L1Li11L l_lUJ.].J.lz 1 /4 11 CAlivd U].llj 11 1/ 49 Ll

limit of some sequence of distinct points in A.

Example 1. The sequence 1, 1/2,1/3,...,1/i,... converges to 0. The
sequence 3/2,4/3,...,i+ l/i, ... converges to 1. The “intertwined”

sequence 1, 3/2, 1/2, 4/3, / , 1 + (1/i), 1/i, . . . does not converge and
Thna texrn limass «.,-.. uts. na N o ,.1 Mea A& TN
nas two 1imit poinits, nam _y 0 and 1 (Fig. AS-1).
111 4 3
0 43 2 ! 32 2
Figure AS-1

It should be observed that the limit p, of a converging sequence has the
property that any neighborhood of p, contains all but a finite number of
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points of the sequence, whereas a limit point p of a set has the weaker property
that any neighborhood of p contains infinitely many points of the set. Thus, a
sequence which contains no constant subsequence is convergent if and only
if, as a set, it contains only one limit point.

An interesting example is given by the rational numbers Q. It can be
proved that Q is countable; that is, it can be made into a sequence. Since
arbitrarily near any real number there are rational numbers, the set of limit
points of the sequence Q is the real line R.

DEFINITION 3. A4 set F = R® is closed if every limit point of F belorgs
to F. The closure of A = R® deroted by A, is the union of A with its limit
points.

Intuitively, F is closed if it contains the limit of all its convergent se-
quences, or, in other words, it is invariant under the operation of passing to
the limit.

It is obvious that the closure of a set is a closed set. It is convenient to
make the convention that the empty set ¢ is both open and closed.

There is a very simple relation between open and closed sets.

PROPOSITION 2. F = R® is closed if ard orly if the complement
R* — F of F is open.

Proof. Assume F to be closed and let p € R* — F. Since p is not a limit
ints of F. Thus,

noint of F there exists a hall B, fn\ which contains no o
contams no points . fhu

g Uiiw LWV S Fo s

¥
B. © R* — F; hence R* — Fis open.
Conversely, suppose that R" — Fis open and that p is a limit point of F.

Wa want e thao I' Acgiiran tha nantrary Than thara a hall

we want to prove tnat P € . AsSsumc the contrary. ilinen there 1s a ball
B.(p) = R* — F. This 1mp11es that B.(p) contains no point of F and contra-
dicts the fact that p is a limit point of F. Q.E.D.

Continuity can also be expressed in terms of closed sets, which is a con-
sequence of the following fact.

PROPOSITION 3. 4 map F: U = R* — R™ is continuous if and orly
if for each opern set V < R™, F~Y(V) is an open set.

Proof. Assume F to be continuous and let ¥ = R™ be an open set in R™.
If F~Y(V) = ¢, there is nothing to prove, since we have set the convention
that the empty set is open. If F~Y(V) == ¢,let p € F~'(V). Then F(p) € V,
and since V is open, there exists a ball B,(F(p)) = V. By continuity of F,
there exists a ball B,(p) such that
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FBAp)) = B{K(p)) = V.

s SN ) — & [§ }l 1IN, - 194 ;a Vel
Assume now that F~'(V) is open for everyopenset V< R™. letp e U
and € > 0 be given. Then 4 = F~'(B.(F(p))) is open. Thus, there exists
d > 0 such that B,(p) = A. Therefore,

F(Bs(p)) = F(4) = BF(p));
hence, F is continuous in p. Q.E.D.
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Fy={(x,»); f(x,y)=0}= f~'(0)
is closed in R2, and the sets

U, = {(x: y)§ f(xa y) = 0}’
Uy = {(x, y); f(x, y) <0}

A={x,y) e R}, x2 + p* < 1}
Uf(x,y) e R x*+y2=1,x>0,p > 0]

is neither open nor closed (Fig. A5-2).
The last example suggests the following definition.

DEFINITION 4. Let A — R®. The boundary Bd A of A is the set of
points p in R such that every neighborhood of p corntains points in A and
points in R — A,

Thus, if A is the set of Example 2, Bd 4 is the circle x2 4 y2 = 1. Clearly,
A = R7is open if and only if no point of Bd A belongs to A, and B < R"is
closed if and only if all points of Bd B belong to B.

A final remark on these preliminary notions: Here, as in the appendix to
Chap. 2, definitions were given under the assumption that R" was the “am
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Figure A5-2

bient” space. It is often convenient, as already remarked in the appendix to
Chap. 2, to extend such definitions to subsets of an arbitrary set 4 < R
To do that, we adopt the following definition.

DEFINITION 5. Let A = R, We say that V < A is an open set in A if
there exists an open set U in R® such that V = U N A. A neighborhood of
p € Ain A is an oper set in A containing p.

With this notion of “proximity” in 4, it is a simple matter to extend the
previous definitions to subsets of 4 and to check that the propositions
already proved still hold with the new definitions.

Now we want to recall a basic property of the real numbers. We need some
definitions.

DEFINITION 6. A subset A — R of the real line R is bounded above if
there exists M € R such that M > a for all a € A. The number M is called
ar.upper bound for A. When A is bounded above, a supremum or a least upper
bound of A, sup A (or Lu.b. A) is an upper bound M which satisfies the follow-
ing condition: Given € > 0, there exists a € A such that M — € < a. By

changing the o:gw nf the above ‘rng?uah”eo we deﬁvze Srmrfnr.’n a lower bguﬂd

for A and an mﬁmum (or a greatest lower bound) of A, inf A (or g.Lb. A).

AXIOM OF COMPLETENESS OF REAL NUMBERS. Let A = R be
ronempty and bounded above (below). Then there exists sup A (inf A).

amtivalant wave af
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above (below), we say that sup 4 = +oc (inf 4 = —o0). With this con-
vention the above axiom can be statéd as follows: Every ronempty set of real
numbers has a sup and an inf.

Example 3. The sup of the set (0, 1) is 1, which does not belong to the set.
The sup of the set

={xe R, 0<x<1}ui2}

is 2. The point 2 is an isolated point of B; that is, it belongs to B but is not a
limit point of B. Observe that the greatest limit point of B is 1, which is not
sup B. However, if a bounded set has no isolated points, its sup is certainly a
limit point of the set.

One important consequence of the completeness of the real numbers is
the following “intrinsic” characterization of convergence, which is actually
equivalent to completeness (however, we shall not prove that).

LEMMA 1. Call a sequerce {x} of real rumbers a Cauchy sequence if
given € < 0, there exists 1, such that | X, — X;| < € for all1,j > i,. A sequerce
is convergent if and only if it is a Cauchy sequence.

Proof. Let {x;} — x,. Then, if € > 0 is given, there exists ¢, such that
|x, — x,| < €/2 for i > i,. Thus, for i, j > i,, we have

e, — 2, <3 — Xl - [x; — x| < €

hence, {x,} is a Cauchy sequence.
Conversely, let {x,} be a Cauchy sequence. The set {x;} is clearly a bounded
set. Let @, = inf{x,}, b, = sup{x,}. Either, one of these points is a limit point

af {1+ 1 and then {v 1 converoac ta thic naint or hath are icnlatad hnnﬂ'e of the
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set {x,}. In the latter case, consider the set of points in the open interval
(a,, b,), and let a, and b, be its inf and sup, respectively. Proceeding in this
way, we obtain that either {x,} converges or there are two bounded sequences

a; < a, < ---and b, > b, > ---. Let @ = sup{a;} and b = inf{b,}. Since
{x;} is a Cauchy sequence, @ = b, and this common value x, is the unique
limit point of {x,}. Thus, {x,;} — x,. Q.E.D.

This form of completness extends naturally to Euclidean spaces.

DEFINITION 7. A sequence {p:}, p; € R*, is a Cauchy sequence if giver
€ > 0, there exists an index 1, such that the distance |p; — p;| << € for all

i, ] > 1.
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PROPOSITION 4. A sequence {p;}, p; € R®, convergesif and ornly if it is a
Cauchy sequence.

Proof. A convergent sequence is clearly a Cauchy sequence (see the
argument in Lemma 1). Conversely, let {p,} be a Cauchy sequence, and
consider its projection on the j axis of R*,j =1, .. ., r. This gives a sequence
of real numbers {x} which, since the projection decreases distances, is again
a Cauchy sequence. By Lemma 1, {x;} — Xjo- It follows that {p,} — p, =
{X10s X205 -+ - 5 Xno}- Q.E.D.

B. Connected Sets

DEFINITION 8. A continuous curve a.:[a, bl— A < R® is called an
arc in A io ﬂ(ﬂ\ to rv(h\

Earlier in the book we have used the word connected to mean arcwise
connected (Sec. 2-2). Since we were considering only regular surfaces, this
can be justified, as will be done presently. For a general subset of R”, however,
the notion of arcwise connectedness is much too restrictive, and it is more
convenient to use the following definition.

DEFINITION 10. A = R® is connected wher it is rot possible to write
A =U, U U,, where U, and U, are ronempty oper setsin A and U; n U, =

6.

Intuitively, this means that it is impossible to decompose A into disjoint
pieces. For instance, the sets U; and F, in Example 2 are not connected. By
taking the complements of U, and U,, we see that we can replace the word
“open” by “closed” in Def. 10.

PROPOSITION 5. Let A = R® be connected and let B — A be simulta-
neously open and closed in A. Then either B = ¢ or B = A.

Proof. Suppose that B = ¢ and B = A and write A = B U (4 — B).
Since B is closed in A, A — B is open in 4. Thus, 4 is a union of disjoint,
nonvoid, open sets, namely B and 4 — B. This contradicts the connectedness

oo M T T
oI A. AV UN I B

The next proposition shows that the continuous image of a connected set
is connected.
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PROPOSITION 6. Let F: A = R* — R™ be continuous and A be con-
nected. Then F(A) is connected.

Proof. Assume that F(A) is not connected. Then F{(4) = U, U U,, where
U, and U, are disjoint, nonvoid, open sets in F(A). Since F is continuous,
F~Y(U,), F~Y(U,) are also disjoint, nonvoid, open sets in 4. Since 4 =
F~'(Uy) W F~Y(U,), this contradicts the connectedness of 4. Q.E.D.

For the purposes of this section, it is convenient to extend the definition of
interval as follows:

DEFINITION 11.  An interval of the real line R is any of the setsa < x < b
a<x<b, a<x<b a<x<b, xeR. The cases a=Db, a = —
b = +oo0 are not excluded, so that an interval may be a point, a half-line, o
R itself.

ION 7. A < R is connected if and only if A is an interval.

Proof. Let A — R be an interval and assume that A is not connected. We
shall arrive at a contradiction.

Since A4 is not connected, 4 = U, \U U,, where U, and U, are nonvoid.
disjoint, and open in 4. Let ¢, € U,, b, € U, and assume that a, << b,. By
dividing the closed interval [a,, b,] = I, by the midpoint (a, + 5,)/2, we
obtain two intervals, one of which, to be denoted by I,, has one of its end
points in U, and the other end point in U,. Considering the midpoint of 1,
and proceeding as before, we obtain an interval I, = I, = I,. Thus, we

obtain a family of closed intervals [, > I, = ... = I — ... whose lengths
approach zero. Let us rewrite I, = [¢,, d]. Thene¢, < c, << -+ < ¢, < -+ -,
and d, >d, > .- >d, > ---. Let ¢ =suplc,} and d = inf{d}. Since

d; — ¢, 1s arbitrarily small, ¢ = d. Furthermore, any neighborhood of ¢
contains some [, for i sufficiently large. Thus, ¢ is a limit point of both U,
and U,. Since U, and U, are closed, ¢ € U, N U,, and that contradicts the
disjointness of U, and U,.

o A ad TF 4 Lo 1 A
Cvu‘v’Ci’SCny, assume that A is connected. If 4 has a smg;c clement, 4 1s
as a

trivially an interval. Suppose that 4 has at least two elements, and let a =
inf A, b = sup A, a # b. Clearly, 4 < [a, b]. We shall show that (a, b) = A,
and that implies that 4 is an interval. Assume the contrary; that is, there
exists f, a <<t<{bh, such that 1 ¢ A. The sets A N (—o0,1) =V,
ANt +oo)=VF,areopenin 4 = V, \U V,. Since A is connected, one of
these sets, say, V,, is empty. Since b € (¢, -+ <o), this implies both that b ¢ 4
and b is not a limit point of 4. This contradicts the fact that b =sup 4. In
the same way, if ¥, = ¢, we obtain a contradiction with the fact that
a =inf A, Q.E.D.
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PROPOSITION 8. Let f: A < R* — R be continuous and A be con-
nected. Assume that £(q) = 0 for all @ € A. Then f does not change sign in A.

Proof. By Prop. 5, f(A) — Ris connected. By Prop. 7, f(A4)is an interval.
By hypothesis, f(A) does not contain zero. Thus, the points in f(A4) all have
the same sign. Q.E.D.

PROPOSITION 9, ILet A = R*® be arcwise connected. Then A is con-
nected.

Proof. Assume that A4 is not connected. Then 4 = U, U U,, where
U,, U, are nonvoid, disjoint, open sets in 4. Let p € U,, g € U,. Since 4
Is arcwise connected, there is an arc o: [a, b] — A4 joining p to g. Since o is
continuous, B = a([a, b]) < A is connected. Set V', =B N U, ¥V, =B N
U,. Then B =V, U V,, where V, and V, are nonvoid, disjoint, open sets in

B, and that is a contradiction. Q.E.D.
The converse is, in general, not true. However, there is an important

special case where the converse holds.

DEFINITION 12, A set A = R is

p € A and each neighborhood V of p in A there exists an arcwise connected
neighborhood U = V of p in A.

Intuitively, this means that each point of 4 has arbitrarily small arcwise
connected neighborhoods. A simple example of a locally arcwise connected
set in R? is a regular surface. In fact, for each p € S and each neighborhood
W of p in R?, there exists a neighborhood ¥ < W of pin R3 such that ¥V N §
is homeomorphic to an open disk in R?; since open disks are arcwise con-
nected, each neighborhood W N S of p & S contains an arcwise connected
neighborhood.

The next proposition shows that our usage of the word connected for
arcwise connected surfaces was entirely justified.

PROPOSITION 10. Let A = R™ be a locally arcwise connected set. Then
A is connected if and only if it is arcwise connected.

Proof. Half of the statement has already been proved in Prop. 9. Now
assume that 4 is connected. Let p € 4 and let 4, be the set of points in 4
that can be joined to p by some arc in 4. We claim that 4, is open in A.

In fact, let ¢ € A, and let a: [a, 5] — A4 be the arc joining p to g. Since
A is locally arcwise connected, there is a neighborhood ¥ of ¢ in 4 such that
g can be joined to any point r € V by an arc B:{b, c] — V (Fig. A5-3).



It follows that the arc in 4,

(1), t € [a, b],
B, telbcl,

ozoﬁz{

joins ¢ to r, and this proves our claim.

By a similar argument, we prove that the complement of 4, is also open
in A. Thus, A, is both open and closed in 4. Since 4 is locally arcwise con-
nected, 4; is not empty. Since A4 is connected, A, = A4. Q.E.D.

Example 4. A set may be arcwise connected and yet fail to be locally
arcwise connected. For instance, let 4 = R? be the set made up of vertical
lines passing through (1/n,0), n =1, ..., plus the x and y axis. 4 is clearly
arcwise connected, but a small neighborhood of (0, ), y # 0, is not arcwise
connected. This comes from the fact that although there is a “long” arcjoining
any two points p,g € A, there may be no short arc joining these points
(Fig. A5-4).

y
0.») g
/'"\‘
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X
0 1/4(1/3 1/2 1

Figure A5-4
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C. Compact Sets

DEFINITION 13. A4 set A — R® is bounded if it is contained in some ball
of R*. A set K = R* is compact if it is closed and bounded.

We have already met compact sets in Sec. 2-7. For completness, we shall
prove here properties 1 and 2 of compact sets, which were assumed in Sec.
2-7.

DEFINITION 14. An open cover of a set A = R® is a family of open sets
{U,}l, & € @ such that{ ), U, = A. When there are only finitely many U, in
the family, we say that the cover is finite. If the subfamily {U,}, f € ® < @,
still covers A, that is, ), U, = A, we say that {U,} is a subcover of {U,}.

PROPOSITION 11. For a set K = R* the following assertions are
equivalent:

I. K is compact.
2. (Heine-Borel). Every open cover of K has a finite subcover.

3. (Bolzano-Weierstrass). Every infinite subset of K has a limit point
in K.

Proof. We shall prove 1 =2 =3 =1.

1 = 2:Let{U,},a € @&, be an open cover of the compact K, and assume
that {U,} has no finite subcover. We shall show that this leads to a contra-
diction.

Since K is compact, it is contained in a closed rectangular region

B={(x;,....x,)eR;a,<x;,<b, j=1,...,nk

Let us divide B by the hyperplanes x, = (a, + b,)/2 (for instance, if K < R2,
B is a rectangle, and we are dividing B into 2° = 4 rectangies). We thus
obtain 27 smaller closed rectangular regions. By hypothesis, at least one of
these regions, to be denoted by B, is such that B, M K is not covered by a
finite number of open sets of {U,}. We now divide B, in a similar way, and,
by repeating the process, we obtain a sequence of closed rectangular regions
(Fig. A5-5)

Bl DBZD DB[-D e
NS T T DU, R, —~ o prrvared ko a fnite miimibar oFf cmen cata oF
which 1s such that no Bi M K is covered Dy a finite numoer o1 open sets of

{U,} and the length of the largest side of B, converges to zero.
We claim that there exists p € M B,. In fact, by projecting each B, on the
jaxisof R*,j =1, ..., n, we obtain a sequence of closed intervals
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By By

[/
B, B
=

Figure A5-5

(a1, byl 2 a0, 055] 2 -+ 2 a;, bl = -
Since (b,; — a,,) is arbitrarily small, we see that

a; = supfa} = inf{b,} = b;
kence,
a; < ﬂ [a;, &)

Thus, p = (ai, ..., 4a,) € ) B,, as we claimed.

Now, any neighborhood of p contains some B, for i sufficiently large;
hence, it contains infinitely many points of K. Thus, p is a limit point of X,
and since K is closed, p € K. Let U, be an element of the family {U,} which
contains p. Since U, is open, there exists a ball B.(p) = U,. On the other
hand, for / sufficiently large, B, = B.(p) = U,. This contradicts the fact
that no B, N K can be covered by a finite number of U,’s and proves that
1= 2.

2 = 3. Assume that 4 — K is an infinite subset of K and that no
point of K is a limit point of 4. Then it is possible, for each p € K, p ¢ A4,
to choose a neighborhood ¥, of p such that V, M 4 = ¢ and foreachgq € 4
to choose a neighborhood W, of g such that W, N A = g. Thus, the family

W,.Wipe K— 4,9 € A, 1s an open cover of K. Since A is infinite and

the omission of any W, of the family leaves the point g uncovered, the family
{V,, W} has no finite subcover. This contradicts assertion 2.

3 = 1: We have to show that X is closed and bounded. K is closed, be-
cause if p is a limit point of K, by considering concentric balls B,,{(p) = B;, we
obtain a sequence p, € B, —B,, p, € B, —B;,...,p; € B, — By, . ..
which has p as a limit point. By assertion 3, p € K.

K is bounded. Otherwise, by considering concentric balls B(p), of radius
1, 2,...,4, ..., we will obtain a sequence p, € By, p, € B, — By,...,

—~

p, € B, — B,_,, ... with no limit point. This proves that 3 = 1. Q.E.D.



468 Global Differential Geometry

The next proposition shows that a continuous image of a compact set is
compact.

PROPOSITION 12. Let F: K <= R* — R™ be continuous and let X bhe
compact. Then F(K) is compact.

Proof. If F(K) is finite, it is trivially compact. Assume that F(K) is not
finite and consider an-infinite subset {F(p,)} < F(K), p, € K. Clearly the set
{p.} = Kisinfinite and has, by compactness, a limit point g € K. Thus, there
exists a sequence py,...,pn...,— 4 P; € {p,}. By the continuity of F,
the sequence F(p;) — F(q) € F(K) (Prop. 1). Thus, {F(p,)} has a limit point
F(gq) € F(K); hence, F(K) is compact. Q.E.D.

The following is probably the most important property of compact sets.

PROPOSITION 13. Letf: K = R® — R be a continuous function defined
on a compact set K. Then there exists p,, p, € K such that

f(p,) < f(p) < f(p,) Jorallp € K;
that is, f reaches a maximum at p, and a minimum at p,.

Proof. We shall prove the existence of p,: the case of minimum can be
treated similarly.

By Prop. 12, f(K) is compact, and hence closed and bounded. Thus,
there exists sup f(K) = x,. Since f(K) is closed, x, € f(K). It follows that
there exists p, € K with x; = f(p,). Clearly, f(p) < f(p,) = x, for all
p € K. Q.E.D.

Although we shall make no use of it, the notion of uniform continuity
fits so naturally in the present context that we should say a few words about
it,

A map F: A — R"— R™ is uniformly continuous in A if given € > 0,
there exists § > 0 such that F(B,(p)) < B.(F(p)) for all p < A.

Formally, the difference between this definition and that of (simple)
continuity is the fact that here, given €, the number d is the same for all
p € B, whereas in simple continuity, given €, the number § may vary with p.
Thus, uniform continuity is a global, rather than a local, notion.

It is an important fact that on compact sets the two notions agree. More
precisely, let F: K < R* — R™ be continuous and K be compact. Then F is
uniformly continuous in K.

The proof of this fact is simple if we recall the notion of the Lebesgue
number of an open cover, introduced in Sec. 2-7. In fact, given € > 0, there

nt /D (=W — R (L)
Hal DAL\ F ) — P2\ V)

<
[
™

:
exists for each p € K a number &(

Z
V
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The family {B;,(p), p € K}isan open cover of K. Let § > 0 be the Lebesgue
number of this family (Sec. 2-7, property 3). If ¢ € By(p), p € K, thengand p
belong to some element of the open cover. Thus, | F(p) — F(g}| << €. Since ¢
is arbitrary, F(B;s(p)) < B.(F(p)). This shows that § satisfies the definition of
uniform continuity, as we wished.

D. Connected Components

When a set is not connected, it may be split into its connected compo-
nents. To make this idea precise, we shall first prove the following proposition.

PROPOSITION 14. Let C, < R*® be a family of connected sets such that
M C, # ¢.
Then | ) C, = C is a connected set.

Proof. Assume that C = U, U U,, where U, and U, are nonvoid, dis-
joint, open setsin C, and that some pointg € [),C, belongsto U;. Letg € U,.
Since C = J,C, and p € [),C,, there exists some C, such that p, g € C,.
Then C, N U, and C, N U, are nonvoid, disjoint, open sets in C,. This
contradicts the connectedness of C, and shows that Cisconnected. Q.E.D.

DEFINITION 15. Let A < R® and p € A. The union of all comnected
subsets of A which contain p is called the connected component of A containing

e

tJ-

By Prop. 14, a connected component is a connected set. Intuitively the

connected comnonent of 4 containineg » = A4 is the laroest connected subeet
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of A (that is, it is contained in no other connected subset of 4 that contains p).
A connected component of a set A is always closed in 4. This is a con-
sequence of the following proposition.

PROPOSITION 15. Ler C = A — R® be a connected set. Then the closure

Proof Let us suppose that C =U, U U,, where U,, U, are nonvoid,

dl nt NAnen aatg nf‘q naﬂ:ﬂfhv el NI —V AT — 1
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are open in C, disjoint, and V', U V, = C. We shall show that ', and V,
are nonvoid, thus reaching a contradiction with the connectedness of C.
Let p € U,. Since U, is open in C, there exists a neighborhood W of p in
A such that W N € < U,. Since p is a limit of C, there existsq ¢ W N C <
WnNCcU, Thus,g € CN U, =V, and V, is not empty. In a similar

Pah R Y

way, it can be shown that ¥, is not empty. Q.E.D.
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COROLLARY. A4 connected component C = A < R of a set A is closed
in A.

In fact, if € %= C, there exists a connected subset of 4, namely C, which
contains C properly. This contradicts the maximality of the connected com-
ponent C.

In some special cases, a connected component of set A4 is also an open set
in A.

PROPOSITION 16. Let C = A = R® be a connected component of a

locally arcwise connected set A. Then C is open in A.

Proof. Let p € C = A. Since A is locally arcwise connected, there exists
an arcwise connected neighborhood V of p in 4. By Prop. 9, V is connected.
Since Cis maximal, C = ¥; hence, Cis openin A. Q.E.D.
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jography and
Comments

The basic work of differential geometry of surfaces is Gauss’ paper “Disqui-
sitiones generales circa superficies curvas,” Comm. Soc. Géttingen Bd 6,
1823-1827. There are translations into several languages, for instance,

1. Gauss, K. F., General Investigations of Curved Surfaces, Raven Press,
New York, 1965.

We believe that the reader of this book is now in a position to try to
understand that paper. Patience and open-mindedness will be required, but
the experience is most rewarding.

The classical source of differential geometry of surfaces is the four-volume
treatise of Darboux:

2. Darboux, G., Théorie des Surfaces, Gauthier-Villars, Paris, 1887, 1889,
1894, 1896. There exists a reprint published by Chelsea Publishing Co.,
Inc., New York.

[y

This is a hard reading for beginners. However, beyond the wealth of
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information, there are still many unexplored ideas in thlS book that make it
worthwhile to come to it from time to time.
The most influential classical text in the English language was probably

3. Eisenhart, L. P., 4 Treatise on the Differential Geometry of Curves and
Surfaces, Ginn and Company, Boston, 1909, reprinted by Dover, New
York, 1960.

An excellent presentation of some intuitive ideas of classical differential
geometry can be found in Chap. 4 of

471
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4. Hilbert, H., and S. Cohn-Vossen, Geometry and Imagination, Chelsea
Publishing Company, Inc., New York, 1962 (translation of a book in
German, first published in 1932).

Below we shall present, in chronological order, a few other textbooks.
They are more or less pitched at about the level of the present book. A more
complete list can be found in [9], which, in addition, contains quite a number
of global theorems.
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8. O’Neill, B., Elementary Differential Geometry, Academic Press, New
York, 1966.

9. Stoker, J. J., Differential Geometry, Wiley-Interscience, New York, 1969.

A clear and elementary exposition of the method of moving frames, not
treated in the present book, can be found in [8]. Also, more details on the
theory of curves, treated briefly here, can be found in [5], [6], and [9].

Although not textbooks, the following references should be included.
Reference [10] is a beautiful presentation of some global theorems on curves
and surfaces, and [11] is a set of notes which became a classic on the subject.

10. Chern, S. S., Curves and Surfaces in Euclidean Spaces, Studies in Global
Geometry and Analysis, MAA Studies in Mathematics, The Mathe-
- matical Association of America, 1967.

11. Hopf, H., Lectures on Differential Geometry in the Large, notes pub-
lished by Stanford University, 1955.

For more advanced reading, one should probably start by learning some-
thing of differentiable manifolds and Lie groups. For instance,

12, Snivak. M.. 4 Comprehensive Introduction to Differential Geometrv, Vol.
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I, Brandeis University, 1970.

13. Warner, F., Foundations of Differentiable Manifolds and Lie Groups,
Scott, Foresman, Glenview, Ill., 1971.

Reference [12] is a delightful-reading. Chapters 1-4 of [13] provide a short
and efficient account of the basics of the subject.

After that, there is a wide choice of reading material, depending on the
reader’s tastes and interests. Below we include a possible choice, by no means
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The theory of minimal submanifolds, [20] and the references therein; the
problems associated with the spectrum, [14]; and the topological behavior
of positively curved manifolds, [16] and [19], are only three of the many
interesting topics of present-day differential geometry.






2.

7.

8.

SECTION 1-3
a. o(f) = (r —sin¢, 1 — cos 1); see Fig. 1-7. Singular points: ¢ = 27zn, wher¢ n
is any integer.

b. Apply the mean value theorem to each of the functions x, y, z to prove that the
vector (A(¢ + h) — a(r -+ k))/(h — k) converges to the vector o(¢) as Ak, k
— 0. Since &'(t) # 0, the line determined by a(r - h), (z -+ k) converges to
the line determined by &/(z).

By the definition of integral, given € > 0, there exists a &’ > 0 such that if
|P| < &, then

1(lew(b)ldt) — 2 — o)) < %

On the other hand, since &’ is uniformly continuous in [a, ], given € > 0, there
exists 0 > 0 such that if ¢, s < [, b] with [r — 5| < ", then

Jo'(t) — a'(s)| < €/2(b — a).

Set & = min(d’, 6”). Then if |P| < &, we obtain, by using the mean value
theorem for vector functions,

{2 oti-) — o) — 2 (i — )] 07| _
<[ X -t — 1) Sliplal(siﬂ — 2 (o — 1))

, , €
<Xty — 1) sup lo(s;) — ()] g“z*’
where #;_; << 5; < t.. Together with the above, this gives the required inequality.
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2.

2,
4.

7.

SECTION 1-4

Let the points py = (xg, yo, 2o) and p = (x, y, z) belong to the plane P. Then
axg + by + ¢z +d =0 =ax | by + ¢z + d. Thus, a(x — xq) + by — yo)
+ ¢z — zo) = 0. Since the vector (x — xg, ¥ — Yo, Z — Zoy 15 parallel to P, the
vector (a, b, ¢) is normal to P. Given a point p = (x, y, z) € P, the distance p
from the plane P to the origin O is given by p =|p|cos 8 = (p - v)/}v|, where 8

is the angle of Op with the normal vector ». Since p - v = —d,
_prv_ _ d.
T o]
This is the angle of their norinal vectors.

Two planes are parallel if and only if their normal vectors are parallel.

v; and v, are both perpendicular to the line of intersection. Thus, vy A v, is par-
allel to this line.

A plane and a line are parallel when a normal vector to the plane is perpendicular
to the direction of the line.

The direction of the common perpendicular to the given lines is the direction of
# A v. The distance between these lines is obtained by projecting the vector
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r = (xqg — X1, Yo — Y1, Zo — z1) onto the common perpendicular. Such a projec-
tion is clearly the inner product of r with the unit vector (u A v)/|u A »|.

SECTION 1-5

Use the fact that o = ¢, 0" = kn, 00" = kn’ + k'n = —k2t + k'n — k7b.
Differentiate a.(s) + A(s)n(s) = const., obtaining

(1 — Akt + An — Azb = 0.
It follows that 7 = O (the curve is contained in a plane) and that A = const.
= 1/k.
a. Parametrize & by arc length.
b. Paramctrize & by arc length s. The normal lines at s, and s, are

Bi(@) = o(sy) + mlsy),  Pa(x) = olsy) + Ta(ss), t€ R TER,

respectively. Their point of intersection will be given by values of 7 and 7
such that

0s2) — Glsy) _ tn(sy) — Th(sa),
Sy — 81 Sy — &

Use Taylor’s formula #(s,) = n(s:) + (s — s)n’(sy) + R, and let s, — sy
to conclude that o’(s,) = —#n’'(s;), where 7 is the limiting common value of

A FRF R | NS A 117
{anda 7 as .)z _ bl ll. TUHU WD I.l dtt = 1/K.
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13.

15.

16.

17.

18.

To prove that the condition is necessary, differentiate three times |o(s)]2 =
const., obtaining ®(s) = —Rwn + R'Th. For the sufficiency, differentiate
B(s) = a(s) + Rn — R’Tb, obtaining

B(s) =t + R(—kt —1b) + R'n — (TRYb — R'n = —(Rt + (TR)"b.

On the other hand, by differentiating R? + (T'R")2 = const., one obtains

A ns
&

0 = 2RR" + 2(TR'(TR") = : (Rt + (TR,

since k" = 0 and 7 # 0. Hence, f(s) is a constant p,, and
[o(s) — po|*> = R? 4+ (TR")? = const.

Since b = tn is known, || = |b’|. Then, up to a sign, » is determined. Since
t = »n A\ b and the curvature is positive and given by ¢t = kn, the curvature can
also be determined.

First show that

rr

k
nAn -n’ T

e

Thus, f a(s) ds = arc tan (k/7); hence, k/T can be determined; since & is posi-
tive, this also gives the sign of 7. Furthermore, |n'|2 = | —kt — Tb|> = k2 + 12
is also known. Together with &/t, this suffices to determine 42 and 72.

a. Let a be the unit vector of the fixed direction and let @ be the constant angle.
Then ¢+ a = cos @ = const., which differentiated gives # - @ = 0. Thus,
a = tcos @ + bsin @, which differentiated gives k¥ cos @ + 7 sin § = 0,
or k/t = —tan 8 = const. Conversely, if k/t = const. = —tan 8 =
—(sin B/cos @), we can retrace our steps, obtaining that z cos @ - bsin f is a
constant vector a. Thus, ¢ - ¢ = cos @ = const.

b. From the argument of part a, it follows immediately that ¢ - @ = const.
implies that n + @ = 0; the last condition means that # is parallel to a plane
normal to a. Conversely, if n - a = 0, then (dt/ds) - a = 0; hence, t - a =
const.

¢. From the argument of part a, it follows that ¢ - ¢ = const. implies that
b + a = const. Conversely, if b - a = const., by differentiation we find that
n-aq=0.

a. Parametrize o by arc length s and differentiate & = o + rn with respect to s,
obtaining

dd;

T (1 —rk)t +r'n — r1b.

Since d@/ds is tangent to &, (d%/ds)-» = 0; hence, r’ =
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b. Parametrize o by arc length s, and denote by § and f the arc length and the

unit tangent vector of &. Since df/ds = (d?/d5)(d5]ds), we obtain that

d - di | dt - ..
%(I'l‘)—-t‘%"i‘a;'t—o,

hence, ¢ - 7 = const. = cos @, Thus, by using that & = & + rn, we have

_ s _dads __ ds.,
COS@—"I—gd—g"—d—g(l rk),

Isin@f = (7 A 1] = |22 1 ) p 1] =

From these two relations, it follows that

1 —rk o B
= COIISL, =— —-
rtT r

Thus, setting ¥ = A, we finally obtain that 4k - Bt = 1.
Conversely, let this last relation hold, set 4 = r, and define & = & + rn.

Then, by again using the relation, we obtain

do

o = (1 — rk)t — rtb = (Bt — rb).

Thus, a unit vector 7 of & is (Bt — rb)/a/B2-+r2 = f. 1t follows that df/ds

= ((Bk — r1)/a/B? + r?)n. Therefore, ii(s) = -tn(s), and the normal lines of &

and o at s agree. Thus, & is a Bertrand curve.
c. Assume the existence of two distinct Bertrand mates & = o 4 7n, @ =

® - #n. By part b there exist constants ¢; and ¢, so that 1 — 7k = ¢,(F1),
1 — 7k = c3(71). Clearly, ¢, # c,. Differentiating these expressions, we
obtain k&' = 7'cy, k" = T’c,, respectively. This implies that &' = 7" = 0.
Using the uniqueness part of the fundamental theorem of the local theory of
curves, it is easy to see that the circular helix is the only such curve.

SECTION 1-6

1. Assume that s = 0, and consider the canonical form around s = 0. By condition

[

1,

P must be of the form z = ¢y, or y = 0. The plane y = 0 is the rectifying

nlane which does not satisfy condition 2. Observe now that if |s| is sufficiently
small, y(s) > 0, and z(s) has the same sign as s. By condition 2, ¢ = z/y is simul-
taneously positive and negative, Thus, P is the plane z=0.

<%
e

Al o AR f,-.\ mainhlhneland A0
W\o} \.z\,\n)}, WS §) i 4 NCignoodinooa Ol

e plane that passe through a(0), &(0 + A,),
5) = ax(s) + by(s) + cz(s) and notice that

he canonical form to show that F'0)=ua

i 413181 S YY  wEIiQLR T by
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1.

F”(0) = bk. Use the mean value theorem to show that as ky, s, — 0, then
a—0 and b— 0. Thus, as h;, h, — O the plane ax + by =cz =0
approaches the planc z = 0, that is, the osculating plane.

SECTION 1-7

No. Use the isoperimetric inequality.

2. Let S! be a circle such that 4B is a chord of S! and one of the two arcs & and f§

co

determined by A and B on §!, say «, has length /. Consider the piecewise C'!
closed curve (sce Remark 2 after Theorem 1) formed by f and C. Let § be fixed
and C vary in the family of all curves joining A to B with length /. By the isoperi-
metric inequality for piccewise C! curves, the curve of the family that bounds
the largest area is S!. Since f is fixed, the arc of circle @ is the solution to
our problem.

Choose coordinates such that the center O is at p and the x and y axes are
directed along the tangent and normal vectors at p, respectively, Parametrize C

it =4 = e it

by arc length, o{s) = (x(s), ¥(s)), and assume that ®(0) = p. Consider the (fi-
nite) Taylor’s expansion

2
a(s) = o(0) + a'(0)s + oc"(())s7 + R,
where lim,_, R/s? = 0. Let k be the curvature of & at s = 0, and obtain
ks?
X(S') =s + ny y(S) = j:—2_ + Ry,

where R = (R,, R,) and the sign depends on the orientation of ¢. Thus,

. Let O be the center of the disk D. Shrink the boundary of D through a family of

concentric circles until it meets the curve C at a point p. Use Exercise 4 to show
that the curvature & of C at p satisfies | k| > 1/r.

Qiinmn Ar 5o oF mla o ya vr Fln 4len o~ AL b miniiay Fom oo 4o
PDLLIGC W 1S DUHILIPIC, WE llave, LY LG LICUICHIL UL 1Ulllllg LdllgClily,

J; k(s) ds = 6(1) — B(0) = 2.

Since k(s) << ¢, we obtain

2 :f k(s)dsgcf ds — cl.
i} 0

By the Jordan curve theorem, a simple closed curve C bounds a set K, If K is
not convex, there are points p, ¢ € K such that the segment pg contains points
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that do not belong to X, and pg meets C at a point r, r # p, ¢. Use the argument
given in the middle of the proof of the four-vertex theorem to show that the line
L determined by p and g is tangent to C at the points p, g, r and that the segment

AW R Y RN Ly Swll 3L s

pq is contained in C = K. This is a contradiction.

Observe that the area bounded by H is greater than or equal to the area bounded
by C and that the length of H is smaller than or equal to the length of C. Expand
H through a family of curves parallel to H (Exercise 6) until its length reaches the
length of C. Since the area either remains the same or has been further in-
creased in this process, we obtain a convex curve H” with the same length as C
but bounding an area greater than or equal to the area of C.

Jo (s
M2=_[2H([ d)de_zn.

(See Fig. 1-40.)

SECTION 2-2

. No. x is not one-to-one.

b. To see that x is one-to-one, observe that from z one obtains +u. Since
cosh v > 0, the sign of u is the same as the sign of x. Thus, sinh » (and hence
v) is determined.

x(u, ») = (sinh u cos v, sinh « sin v, cosh v).

Eliminate ¢ in the equations x/a = y/t = —(z — t)/t of the line joining
p(t) = (0,0,1) to g(t) = (a, 1, 0).

¢. Extend Prop. 3 for plane curves and apply the argument of Example 5.

For the first part, use the inverse function theorem. To determine F, set u = p2,
v =tan g, w = tan 6. Write x = f(p, 6) cos @, y = f(p, 0) sin ¢, where f is
to be determined. Then

X2+ y2 4z =f2 1 72 = p2, gztanze.

It follows that / = p cos 0, z = p sin 6. Therefore,

~u ’ u/ u ’ uw )
AT W+ 0D O+ w1 +vD) A1+ w

F(u, v, w) = (

No. For C, observe that no neighborhood in R2 of a point in the vertical arc can

be written as the graph of a differentiable function. The same argument applies

O
o O,
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SECTION 2-3

1. Since 42 = identity, A = A~1,
5. d is the restriction to S of a function d: R® — R:
d(xa Y, Z) = {(x - xO)z + (y - yO)2 _I_ (Z - 20)2}1/2)
(x: ya Z) # (‘x()’ Yo, ZO)'

8. If p =(x,¥,2), F(p) lies in the intersection with H of the line # — (tx, ty, 2),
t > 0. Thus,

/ /1 | =2 2. \
F — /V_l T £7 /\/.I. _]_‘A_
(7) ('\/XZ—FJ’ T Z)

Let U7 be R?® minus the z axis. Then F: U < R? — R?® as defined above is
differentiable.

13. If fis such a restriction, fis differentiable (Example 1). To prove the converse,
let x: I — R32 be a parametrization of § in ». As in Prop. 1. extend x to

PR iliiiviisaidinivil W Fe 435 aid A awps. ) S ST O §

F:U X R— R3. Let W be a neighborhood of p in R?® on which F~! is a
diffeomorphism. Define g: W — Rby g(q) = fox o o« F-1(g), ¢ € W, where
7: U X R— U is the natural projection. Then g is differentiable, and the
restriction g | Wi S = f.

16. F is differentiable in S? — {N} as a composition of differentiable maps To

mrnus that Dia Aiffarantiahla
Prove whnatl o~ is Giiucidn 1 auvi

the south pole § = (0,0, —1) and set Q = 7tz o Foms!: € — C (of course, we
are identifying the plane z = 1 with C). Show that 7y o 5!: C — {0} — C is
given by 7y o T5'({) = 4/{. Conclude that

& :
a +afl + -+ al”

AT Anmoidar tha ctaranageamlio meniantinm -

< at A CONSIacE tnc sicy Cugplaplliv Pl U_jb\—l.lU.ll. "y JJ. Oimn

Q) =

hence, @ is differentiable at { = 0. Thus, F = 75! o Q o @ is differentiable at
N

SECTION 2-4

1. Let a(t) = (x(2), ¥(t), z()) be a curve on the surface passing through p, =
(X0, ¥0, zo) for ¢ = 0. Thus, f(x(r), ¥(t), z(t)) = 0; hence, f.x'(0) + £'(0) +
f22'(0) = 0, where all derivatives are computed at py. This means that all tangent
vectors at p, are perpendicular to the vector ( f, f,, f>), and hence the desired
cquation.

4. Denote by f* the derivative of f(3/x) with respect to ¢ = y/x. Then z, =
f—W/x)f', z, = f'. Thus, the equation of the tangent plane at (xq, y,) is
z=xof + (f — Wo/xo)Yx — x¢) + f'(y — ¥¢), where the functions are com-
puted at (xq, o). It follows thatif x = 0, y = 0, then z = 0.
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12. For the orthogonality, consider, for instance, the first two surfaces. Their
normals are parallel to the vectors (Zx — a, 2y, 2z2), (2x, 2y — b, 2z). In the
intersection of these surfaces, ax = by; introduce this relation in the inner pro-
duct of the above vectors to show that this inner product is zero.

13. a. Let o(¢) be a curve on S with ®(0) = p, &’(0) = w. Then

00 = H (@0 — po, WD) — poI D)oy — HELZPL,

It follows that p is a critical point of £ if and only if {w, p — p;> = 0 for all
w e T,(5).

- & ¥ o 2P0 N ' 21 ] ) s N\ — 1T 1 AV PR Fat 1 Firan
i4. a. f(7) is continuous 1n the mterval (—oo, ¢), and hm,_,_.. f(¢) = 0, M, 1« /(1)
= -0, Thus, for some t; € (—oo, ¢), f(t;) = 1. By similar arguments, we
find real roots 1, € (¢, b), 13 € (b, a).
h Tha conditinn for tha crirfacas £77.) — 1 1T} — 1 tn hae nrthnonnal 1e
Ay A DIvw VWVLIALLLVLD 1V Ll auxlau\.’a_j \L ]} 1 5J \l 2} 1 LU U vl l.uusuucu 10

FGaDf) + £, )AE) + f() () = 0.
This reduces to

x2 B »* N 72 B
(@a—t)a—1t)  (b—1t)b— 1) " (c—tfe—1t3)

et ]

which follows from the fact that ¢, = ¢, and f(t,) — f(t;) = 0.

17. Since every surface is locally the graph of a differentiable function, S, is given
by f(x,y, z) = 0 and S, by g(x, y, z) = 0 in a neighborhood of p; here 0 is a
regular value of the differentiable functions fand g. In this neighborhood of p,
S; M Sy 1s given as the inverse image of (0, 0) of the map F: R3 — R?: F(q) =
(f(g), g(g)). Since S, and S, intersect transversally, the normal vectors
(fx, [ f2) and (g,, g,, £.) are linearly independent. Thus, (0, 0) is a regular value
of Fand .S; M S, is a regular curve (cf. Exercise 17, Sec. 2-2).

20. The equation of the tangent plane at (xg, yq, z5) IS

o | Ho | Zo _y

a? b2 cl
Mlha l1aa tlho~tiobl £ amAd maremanmAdiAarilas 44 4o $famomnedt mloma 30 csrtram bees
11w 111w LlllUuEll U/ Al PCI pcu\.u\—uuu LU LI Lauscut plallc i) 51 AA™INE U_Y

From the last expression, we obtain

xZaZ . yzbz . ZZCZ . a2x2 + beZ _}__ czz?.
Xx9  ¥Yo 2Zg XXo + ¥¥o + 229
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21.
22.

13.

14.

oid, we obtain

. _ ZZo _ XXo + ¥¥o + zzg,
xgla?  yi/b*  z§/ct 1

XXg YYo

Again from the same expression and using the equation of the tangent plane, we
obtain

x % . yz _ z2 _ x2 _|_ yz + Zz.
(xox)fa — (yo)b>  (zoz)/c? 1

The right-hand sides of the three last equations are therefore equal, and hence
the asserted equation.

Imitate the proof of Prop. 9 of the appendix to Chap. 2.

Let r be the fixed line which is met by the normals of S and let p € S. The plane
P, which contains p and r, contains all the normals to .S at the points of P; N S.
Consider a plane P, passing through p and perpendicular to r. Since the normal
through p meets r, P, is transversal to T,(S); hence, P, N S is a regular plane
curve C in a neighborhood of p (cf. Exercise 17, Sec. 2-4). Furthermore P; N P,
is perpendicular to T,(S) M P;; hence, P; M P, is normal to C. It follows that
the normals of C all pass through a fixed point ¢ = r M P,; hence, C is con-
tained in a circle (cf. Exercise 4, Sec. 1-5). Thus, every p € S has a neighborhood
contained in some surface of revolution with axis r. By connectedness, .S is con-
tained in a fixed one of these surfaces.

G = G(v) is a function of v alone, and we can set v = J
measure arc lengths along the coordinate curves, whence

. Parametrize the generating curve by arc length.

Since the osculating plane is normal to N, N’ = tr and, therefore, 72 =
[N7|2 = k2 cos? 0 + k2 sin2 8, where § is the angle of e; with the tangent to the
curve. Since the direction is asymptotic, we obtain cos? # and sin2 # as functions
of k1 and k,, which substituted in the expression above yields 72 = —kk,.

By setting A; = AN, and A, = A, N, we have that

“\-1 - 2\-7.| = k|{n, N\)N, — {n, Ny)N|
= /A2 + A2 — 22,4, cos 8.
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On the other hand,

[sin@] =[Ny A Ml =n A (Ny A N
= [{n, N;pN;y — {n, NiON, |

16. Intersect the torus by a plane containing its axis and use Exercise 15.

18. Use the fact that if 8 = 27n/m, then

19.

N
=

o(@ =1+ cos28 + --. ~|—cosz(m—1)9=%,

viiisw

o(@) = 211_——( Fi_l” e  2m + 1)

and that the expression under the summation sign is the sum of a geometric
progression, which yields

sin2mfl — @) _ 1
sin 8 )
a. Express 7 and £ in the basis {e4, ¢,} given by the principal directions, and
compute {dN(1), h>.
b. Differentiate cos @ = {N, n>, use that dN({) = —k,t -+ Th, and observe
that {N, 6> = (h, N> = sin 8, where b is the binormal vector,

aces that pass through p. Show that the geodesic
torsions of C; = S, M S, relative to S, and .S; are equal; it will be denoted by
7. Similarly, 7, denotes the geodesic torsion of C, = §; N S5 and 7, that of
S:'MN S,. Use the definition of 7, to show that, since C,, C,, C; are pairwise
orthogonal, 7, + 7, =0, 7, -+ 73 =0, T3 + 7; = 0. It follows that 7, = 7,

273:0.

be the sur

SECTION 3-3

2. Asymptotic curves: u = const., » = const. Lines of curvature:

3.

log (v + 4/v2 + ¢2) + u = const.

#u -+ v =-const. u - v = const.

6. a. By taking the line r as the z axis and a normal to r as the x axis, we have that

«/l—xz
’_-—v—l—l
z = x
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15.

16.

19.

By setting x = sin 8, we obtain

z(8) = f CS(;;ZHG df = log tan g— 4+ cos 8 + C.

If z(m/2) = 0, then C = 0.

. a. The assertion is clearly true if x = x; and X = X, are parametrizations that

satisfy the definition of contact. TIf x and X are arbitrary, observe that x =
X; o h, where / is the change of coordinates. It follows that the partial deriva-
tives of fo X = fo x,; o h are linear combinations of the partial derivatives
of f o x;. Therefore, they become zero with the latter ones.

b. Introduce parametrizations x(x,y) = (x, %, f(x,¥)) and x(x,y) =
(x, v, f(x, ), and define a function k(x, y, z) = f(x, y) — z. Observe that
hox =0and ko & = f— f. It follows from part a, applied the function 4,
that f — f has partial derivatives of order <C 2 equal to zero at (0, 0).

d. Since contact of order > 2 implies contact of order > 1, the paraboloid
passes through p and is tangent to the surface at p. By taking the plane
T,(S) as the xy plane, the equation of the paraboloid becomes

f(x, p) = ax? -+ 2bxy -+ cy* + dx + ey.

Let z = f(x, ¥) be the representation of the surface in the plane 7,(S). By using
part b, we obtain that d = ¢ = 0, @ == 1 fo., b == fr, ¢ = 3 £,

If there exists such an example, it may locally be written in the form z = f(x, ),
with (0, 0) = 0, £.(0,0) = £,(0,0) = 0. The given conditions require that
f2, +f 0 at (0, 0) and that £, f,, — f2, = 0if and only if (x, y) = (0, 0).
By setting, tentatively, f(x, y) = &(x) + B(») + xy, where o(x) is a func-
tion of x alone and f(») is a function of y alone, we verify that ¢&,, = cos x,

B,, = cos y satisfy the conditions above. It follows that
f(x,») =cosx +cosy +xy —2

is such an example.

Take a sphere containing the surface and decrease its radius continuously. Study
the normal sections at the point (or points) where the sphere meets the surface
for the first time.

Show that the hyperboloid contains two one-parameter families of lines which
are necessarily the asymptotic lines. To find such families of lines, write the
equation of the hyperboloid as

(x4 z2)0x —z) =1 — (1 + )

and show that, for each k70, the line x +z=k(1+y), x—z=
(1/5)(1 — y) belongs to the surface.
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20. Observe that (x/a2, y/b2, z/c?) = fN for some function f and that an umbilical
point satisfies the equation

Zi

24,

(S n Gy =0

for every curve a(¢) = (x(¢), ¥(t), z(¢)) on the surface. Assume that z = 0, multi-
ply this equation by z/c2, and eliminate z and dz/d¢ (observe that the equation
holds for every tangent vector on the surface). Four umbilical points are found,
namely,

2 . p2 b2 — c2

L7 2 — o2
az _ ¢2° z T R

y =0, x? = q?

The hypothesis z = 0 does not yield any further umbilical points.

. a. Let dN(v,) = av, + bv,, dN(v,) = cvy + dv,. A direct computation yields

b.

d.

A(fN)w1) A d(fN)(@2), fN) = f? det(dN).

Show that fN = (x/a?, y/b2, z/c?) = W, and observe that

AL ONT AY

s v o ﬁi y\ wislimea 4 [PV * BN
dUN)v} = \—

B2’ —2} where v, = (&;, P;, Yi)s

{
\a
i = 1, 2. By choosing v; so that vy A v, = N, conclude that

ASNYor) A N, SN = S50 2

where X = (x, y, z), and therefore {W, X> = 1.

Choose a coordinate system in R? so that the origin O is at p < S, the xy
plane agrees with 7,(5), and the positive direction of the z axis agrees with
the orientation of S at p. Furthermore, choose the x and y axes in T,(S)
along the principal directions at p. If V is sufficiently small, it can then be
represented as the graph of a differentiable function

Z =f‘(xa ), (x: y) e Dc R
where D is an open disk in R? and

£40,0) = £0,0) = £5,(0,0) =0,  fix(0,0) = ki, £,(0,0) = k,.

We can assume, without loss of generality, that £, > 0 and 4, > 0 on
D, and we want to prove that f(x, ) = 0on D.

Assume that, for some (X, ¥) € D, f(x,7) < 0. Consider the function
ho(t) = f(tx, ty), 0 << ¢t << 1. Since Ap(0) = 0, there exists a #,, 0 <<, <1,
such that Aj(¢,) < 0, Let p; = (¢, %, t,3, f(t1%, 1,7)) € S, and consider the
height function 4; of ¥ relative to the tangent plane 7',,(S) at p;. Restricted to
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10.

11.

12,

the curve () =(tx, ty, f(tx, t7)), this height function is &, (#) =<0(¢) — p,, Ny,
where N, is the unit normal vector at p;. Thus, #](r) = {a"(¢), N,», and, at
=ty

Ri(t1) = (0, 0, h§(#1)), (—£(p1), —Flp1), 1)) = hilt:) <O.

But #/(z,) = {&t”(t1), Ny is, up to a positive factor, the normal curvature at p
in the direction of &’(¢,). This is a contradiction.

SECTION 3-4

¢. Reduce the problem to the fact that if A is an irrational number and m and »
run through the integers, the set {Am -+ n} is dense in the real line. To prove
the last assertion, it suffices to show that the set {Am - n} has arbitrarily
small positive elements. Assume the contrary, show that the greatest lower
bound of the positive elements of {Am -+ n} still belongs to that set, and

nhtain a cantradictinn
OOwdill a COoMdadic Ui,

Consider the set {&;: I, — I} of trajectories of w, with a{0) = p, and set
I = ; I;. By uniqueness, the maximal trajectory a: I -— U may be defined by
setting o(r) = o, (¢), where t c I,.

For every g € S, there exist a neighborhood U of ¢ and an interval (—¢, €),
€ > 0, such that the trajectory o(z), with &(0) = ¢, is defined in (—¢, €). By com-
pactness, it is possible to cover S with a finite number of such neighborhoods.
Let €, = minimum of the corresponding €’s. If &(z) is defined for ¢+ < ¢, and is
not defined for ¢¢, take t; € (0, ty), with [#, — #;] < €y/2. Consider the trajec-
tory B(¢) of w, with B(¢,) = &(t,), and obtain a contradiction.

. The “only if” part is immediate. To prove the “if” part, letp € Sandv € T,(S),

v # 0. Consider a curve o: (—¢€, €) — S, with 2’(0) =v». We claim that
| d@ (e’ (0))) = |a'(0)]. Otherwise, say, |d@(a'(0))|> |0'(0)|, and in a neigh-
borhood J of 0 in (—¢€, €), we have |d@(&'())| > |&’(¢)|. This implies that the

length of a(J) is greater than the length of @ o a(J), a contradiction,

1 i slvalil L2dall LA AL AL R & AL I AR AL

Parametrize o by arc length s in a neighborhood of #,. Construct in the plane a
curve with curvature £ = k(s) and apply Exercise 5.

Set 0 = (0, 0, 0), G(0) = p,, and G(p) — po = F(p). Then F: R? — R3is amap
such that F(0) = 0 and | F(p)| = | G(p) — G(0}| =|p|. This implies that F pre-
serves the inner product of R3. Thus, it maps the basis

{(19 09 O) =fl: (03 13 0) :f‘ls (O: 05 1) =f3}

onto an orthonormal basis, and if p = 3} a; f;,i = 1, 2, 3, then F(p) = Xa, F(f).
Therefore, F is linear.



11. a. Since F is distance-preserving and the arc fength of a differentiable curve is
the limit of the lengths of inscribed polygons, the restriction F|.S preserves
the arc length of a curve in S.
¢. Consider the isometry of an open strip of the plane onto a cylinder minus a
generator.

12. The restriction of F(x, y, z) = (x, —y», —z) to Cis an isometry of C (cf. Exercise
11), the fixed points of which are (1, 0, 0) and (—1, 0, 0).

17. The loxodromes make a constant angle with the meridians of the sphere. Under
Mercator’s projection (see Exercise 16) the meridians go into parallel straight
lines in the plane. Since Mercator’s projection is conformal, the loxodromes
also go into straight lines. Thus, the sum of the interior angles of the triangle in
the sphere is the same as the sum of the interior angles of a rectilinear plane
triangle.

SECTION 4-4

6. Use the fact that the absolute value of the geodesic curvature is the absolute
value of the projection onto the tangent plane of the usual curvature.

8. Use Exercise 1, part b, and Prop. 5 of Sec. 3-2.

9. Use the fact that the meridians are geodesics and that the parallel transport
preserves angles.

10. Apply the relation k2 + k2 = k2 and the Meusnier theorem to the projecting
cylinder.

12. Parametrize a neighborhood of p € S in such a way that the two families of
geodesics are coordinate curves (Corollary 1, Sec. 3-4). Show that this impiies
that F = 0, E, = 0 = G,. Make a change of parameters to obtain that F = 0,
E=G=1.

13. Fix two orthogonal unit vectors v(p) and w(p) in T,(S) and parallel transport
them to each point of V. Two differentiable, orthogonal, unit vector fields are
thus obtained. Parametrize ¥ in such a way that the directions of these vectors
are tangent to the coordinate curves, which are then geodesics. Apply Exercise
12.

16. Parametrize a neighborhood of p € § in such a way that the lines of curvature
are the coordinate curves and that » = const. are the asymptotic curves, It
follows that e, = 0, and from the Mainardi-Codazzi equations, we conclude
that E, = 0. This implies that the geodesic curvature of » = const. is zero. For
the example, look at the upper paraliel of the torus.

18. Use Clairaut’s relation (cf. Example 5).

19. Substitute in Eq. (4) the Christoffel symbols by their values as functions of E, F,
and G and differentiate the expression of the first fundamental form:

1 = E@W)? -+ 2Fu'y’ - G(v)2.

20. Use Clairaut’s relation.
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SECTION 4-5

4. b. Observe that the map x = X, y = ()2, z = (Z)3 gives a homeomorphism of
the sphere x2 - y2 -+ z2 = 1 onto the surface (%) - (F)* + (£)5 = 1.

6. a. Restrict » to the curve a(r) = (cos ¢, sin¢), t € [0, 2n]. The angle that »(¢)
forms with the x axis is #. Thus, 2] = 2x; hence, / = 1.
d. By restricting v to the curve o(f) = (cos ¢, sint), ¢ ¢ [0, 2n], we obtain
v(t) = (cos? t —sin2 ¢, —2cos ¢tsint) = (cos 2¢, —sin 2¢). Thus, I = —2.

SECTION 4-6

8. Let (p, 8) be a system of geodesic polar coordinates such that its pole is one of
the vertices of A and one of the sides of A corresponds to 8 = 0. Let the two
other sides be given by 8 = 8, and p = h(8). Since the vertex that corresponds
to the pole does not belong to the coordinate neighborhood, take a small circle
of radius € around the pole. Then

Observing that Ka/G = —(3/ G),, and that lim (/' G), = 1, we have that the
e—0

limit enclosed in parentheses is given by
1 9 G, 0,
op
By using Exercise 7, we obtain
_ 8y 8o 3
ff KJdedB=f dﬁ—f dp =03 — (T — 0y — 0;) = >, 0; — 7.
A 0 Q i

12. ¢. For K = 0, the problem is trivial. For K > 0, use part b. For K < 0, con-
sider a coordinate neighborhood V of the pseudosphere (cf. Exercise 6, part
b, Sec. 3-3), parametrized by polar coordinates (p, 8); thatis, E = 1, F = 0,
G = sinh? p. Compute the geodesics of V; it is convenient to use the change
of coordinates tanh p = 1/w, p = 0, 8 = 0, so that

1 1
E=rpr—pr C=prizp F=0
2
Fil :‘qwﬁii’ F%Z: #wzw__ & ril’.lzws

and the other Christoffel symbols are zero. It follows that the nonradial
geodesics satisfy the equation (d2w/d@?%) -+ w = 0, where w = w(f). Thus,
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1.

w = A cos @ + Bsin 0; that is
A tanh pcos § + Btanh psin @ = 1.
Therefore, the map of } into R? given by
E=tanhpcosf, 7n= tanﬁ psin 8,

1) € R2, is a geodesic mapping.

. b. Define x = ¢~1: ¢(U) = R? — S. Let v = v(u) be a geodesic in U. Since ¢

is a geodesic mapping and the geodesics of R? are lines, then d2v/du? = 0. By
bringing this condition into part a, the required result is obtained.

c¢. Equation (a) is obtained from Eq. (5) of Sec. 4-3 using part b. From Egq.
(5a) of Sec. 4-3 together with part b we have

KF = (M2 — 2Tt + a2

By interchanging u and » in the expression above and subtracting the results,
we obtain (T'},), = (I'},),, whence Eq. (b). Finally, Egs. (c) and (d) are
obtained from Egs. (a) and (b), respectively, by interchanging « and .

d. By differentiating Eq. (a) with respect to », Eq. (b) with respect to «, and sub-
tracting the results, we obtain

EK, — FK, = —K(E, — F,) + K(—FTI'}: + ET }2).

By taking into account the values of I'%, the expression above yields
J

Similarly, from Eqgs. (c) and (d) we obtain FK, — GK, = 0, whence
K, =K, =0.

SECTION 4-7

Consider an orthonormal basis {e,, ¢,} at 7, (0)(S) and take the parallel transport
of ¢, and e, along &, obtaining an orthonormal basis {e,(?), e,2(¢)} at each T, ,(S).
Set w(o(?)) = wy(r)e (1) + wa(t)es(t). Then Dw = wi(0)e; + w,(0)e, and the
second member is the velocity of the curve wi(t)e; + w,(f)e, in T,(S)att = 0.

b. Show that if (¢,,¢,) = Iis small and does not contain “break points of &,” then
the tangent vector field of ®((z,, #,)) can be extended to a vector field y in a
neighborhood of ®{(¢;, #,)). Thus, by restricting » and w to &, property 3
becomes

%@(r), w(t)) = <%J, w> L <@ %ﬁ>’

which implies that parallel transport in &|{¢,, #,) is an isometry. By compactness,
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this can be extended to the entire 7. Conversely, assume that parallel transport is
an isometry. Let & be the trajectory of y through a point p € S. Restrict v and w
to .. Choose orthonormal basis {e, (), e,(¢)} as in the solution of Exercise 1, and
set v(t) = v ey + vae,, w(t) = wieq; + wye,. Then property 3 becomes the “pro-
duct rule”:

5. a.

d ; ; .
d"—l"'(gﬂin);‘?%%Wi'"l—;Ui%, 121,2.

Let D be given and choose an orthogonal parametrization x(u, ). Let y =
yiX, + V2Xy, W = WX, + w,X,. From properties 1, 2, and 3, it follows that
D,w is determined by the knowledge of Dy x,, Dy X, D.Xx, Set D,Xx, =
Alix, + Ahx,, Dyx, = Alyx, + Ahx,, Dyx, = Alx, + A%;x,. From
property 3 it follows that the 4, satisfy the same equations as the I'}; (cf. Eq.
(2), Sec. 4-3). Thus, A, = I'f;, which proves that D,v agrees with the opera-

tion “Take the usual derivative and project it onto the tangent piane.”

. Observe that

Use the fact that x is a local diffeomorphism to cover the compact set I with
a family of open intervals in which x is one-to-one. Use the Heine-Borel
theorem and the Lebesgue number of the covering (cf. Sec. 2-7) to globalize

the result.

. To show that F = 0, we compute (cf. property 4 of Exercise 2)

5% G-

because the vector field dx/ds is parallel along ¢ = const. Since

0= itlor i) = XGig )

F does not depend on s. Since F(0, t) = 0, we have F = 0.

This is a consequence of the fact that F = 0.

ast 95’ 9t

;; :%<ﬁx 6‘x>

. Use Schwarz’s inequality,

()= [rva

with f= 1 and g = |da/dr |.

By noticing that E(t) = JIO {(Qu/dv)? + G(¥(v, 1), v)} dv, we obtain (we write

(v, t) = u(v, t), for convenience)
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e du 02u GG
E(’)“f {260606t+6 }d”'

Since, for ¢t = 0, du/dv =0 and dG/du = 0, we have proved the first part.
Furthermore,

I d2u \? du d3u e aG .,
y (t)_fo (5ra) 25 gugn = G+ gow o

Hence, by using G,, = —2K+/ G and noting that »/ G = 1 for ¢ = 0, we obtain

E"(0) =2 fo {(‘;_;7)2 - Kﬂz} dv

6. b. Choose € > 0 and coordinates in R? = S so that ¢(p, €) = g. Consider the
points (p,€) =ry, (p,€+2msinf)=ry,...,(p,€ 4 2nksinf) = e
Taking € sufficiently small, we see that the line segments ryry, . . ., ror belong
to Vif 27k sin f < & (Fig. 4-49). Since ¢ is a local isometry, the images of
these segments will be geodesics joining ¢ to g, which are clearly broken at ¢
(Fig. 4-49).

c. It must be proved that each geodesic y: [0, [] — S with Y(0) = y(/) = g is the
image by @ of one of the line segments ryr;, - - . , rory referred to in part b,
For some neighborhood U < ¥V of rg, the restriction ¢ | U = @ is an isometry.
Thus, #-1 o ¥ is a segment of a half-line L starting at r,. Since @(L)is a geode-
sic which agrees with ([0, /]) in an open interval, it agrees with ¥ where y is
defined. Since (/) = ¢, L passes | through one of the points r;, i = 1,...,k,

Qv e and cn v ic tha 1m ~f -
oely Ij, “livt Ow I' 10 Lilw 111!“5\/ Ul J OI

SECTION 5-2

x v

3. a. Use the relation ¢ = —K¢ to obtain (¢’2 + K¢?)’ = K'@2. Integrate both
sides of the last relation and use the boundary conditions of the statement.

SECTION 5-3

S i W T IRFIT S

5. Assume that every Cauchy sequence in d converges and let P(s) be a geodesic
parametrized by arc length, Suppose, by contradiction, that y(s) is defined for
§ < 5o but not for s = s,. Choose a sequence {s,} — so. Thus, given € > 0,
there exists ny such that if n, m > no, |s, — s,,| << €. Therefore,

d(Y(sm), P(sn)) <|sp — Sm| <<€

and {y(s,)} is a Cauchy sequence in d. Let {y(s,)} — pp € S and let W be a
neighborhood of pg as given by Prop. 1 of Sec. 4-7. if m, » are sufficiently large,
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the small geodesic joining P(s,,) to Y(s,) clearly agrees with 9. Thus, y can be
extended through p,, a contradiction.

Conversely, assume that .S is complete and let { p,} be a Cauchy sequence in
d of points on S. Since d is greater than or equal to the Euclidean distance d,
{pa} is a Cauchy sequence in d. Thus, {p,} converges to p, € R3. Assume, by
contradiction, that p, ¢ S. Since a Cauchy sequence is bounded, given € > 0
there exists an index n, such that, for all » > n,, the distance d(p,,, p,) < €.
By the Hopf-Rinow theorem, there is a minimal geodesic y, joining p,, to p, with
length < €. As n — oo, P, tends to a minimal geodesic p with length < €. Para-
metrize ¥ by arc length s. Then, since p; ¢ S, ¥ is not defined for s = €. This
contradicts the completeness of S.

6. Let {p,} be a sequence of points on § such that d(p, p,) — <o. Since §'is com-
plete, there is 2 minimal geodesic y,(s) (parametrized by arc length)joining p to
P, with p,(0) = p. The unit vectors ¥,(0) have a limit point v on the (compact)
unit sphere of 7,(S). Let y(s) = exp, sv, s > 0. Then y(s) is a ray issuing from p.
To see this, notice that, for a fixed s, and » sufficiently large, lim, .. P,(s¢) =
P(s0). This follows from the continuous dependence of geodesics from the initial
conditions. Furthermore, since & is continuous,

lim d(p, y.(s0)) = d(p, Y(so)).

n—oo

But if # is large enough, d(p, y,(s,)) = s¢- Thus, d(p, p(s,)) = s, and y is a ray.

8. First show that if d and d denote the intrinsic distances of S and S, respectively,
then d(p,q) > ccf((;)( D), p(q@)) for all p,q € S. Now let { p,} be a Cauchy sequence
in d of points on S. By the initial remark, {¢(p,)} is a Cauchy sequence in d.
Since S is complete, fp(pn)} — @(po). Since ¢! is continuous, {p,] — p,. Thus,
every Cauchy sequence in d converges; hence S is complete (cf. Exercise 5).

9. @ is one-to-one: Assume, by contradiction, that p; s p, € S, are such that
o(p1) = @(p,) = gq. Since S, is complete, there is a minimal geodesic y joining
D1 to p,. Since @ is & local isometry, ¢ o  is a geodesic jé‘ining g to itself with the
same length as . Any point distinct from g on ¢ < ¥ can be joined to g by two
geodesics, a contradiction.

@ is onto: Since @ is a local diffeomorphism, ¢(S;) = S, is an open set in S;.
We shall prove that ¢(S,) is also closed in S, ; since S, is connected, this will
imply that @(S,) = S2. If @(S,) is not closed in S,, there exists a sequence
{o(pn)}, pa € Sy, such that {@(p,)} — po ¢ @(S1). Thus, {p(p.)} is a noncon-
verging Cauchy sequence in @(S;). Since ¢ 1s a one-to-one local isometry, {p,} is
a nonconverging Cauchy sequence in .Sy, a contradiction to the completeness of

S;.
10. a. Since
d d ’
= (heo(D) = @), vy = {@'(t), v) = <{grad &, v>
and
ianm({\\ — AW rn’ (N — Jhfovrad B — /orad ovad h\
dt \ll"’l’l\l}j Wl\lfl \l’} Wl\al“\l Ii-,l \51““ Il’ 5!.““ IF/,
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we conclude, by equating the last members of the above relations, that
|grad A| << 1.

b. Assume that @(t) is defined for ¢ < ¢, but not for # = #,. Then there exists a
sequence {¢,} — #, such that the sequence {@(7,)} does not converge. If m and
n are sufficiently large, we use part a to obtain

@, o) < | Lerad h(@(O)|dr < |1y — 1),

where d is the intrinsic distance of S. This implies that {g(¢,)} is a noncon-
verging Cauchy sequence in d, a contradiction to the completeness of .S.

SECTION 5-4

2. Assume that
lim( inf K(x,y)) = 2¢c> 0.

roos x2+yiar

Then there exists R > 0 such that if (x,») ¢ D, where
D ={(x,y) € R* x% + y* < R%,

then K(x, y) > c. Thus, by taking points outside the disk D, we can obtain arbi-
trarily large disks where K(x, y) == ¢ > 0. This is easily seen to contradict Bon-
net’s theorem.

SECTION 5-5

3. b. Assume that a > b and set s = b in relation (). Use the initial conditions and
the facts v'(b) < 0, u(b) > 0, wv > 01n |0, b] to obtain a contradiction.
¢. From [w’ — vu']§ > 0, one obtains v'fv > «'[u; that is, (logv) > (logu)’.
Now, let 0 < 5o << s << g, and integrate the last inequality between s, and s
to obtain

log v(s) — log v(sy) > log u(s) — log u(sy);
that is, v(s)/u(s) = v(so)/u(s,). Next, observe that

1' U(SO) — l v:(SO) — 1
s:—irflJ u(sg) s:HO 1'(sg)

Thus, »(s) = u(s) for all s € [0, a).

6. Suppose, by c0ntradicti(3n, that u(s) = 0 for all s € (0, 5,]. By using Eq. (x) of
Exercise 3, part b (with K = L and s = s,), we obtain

j 0 (K — Ly ds + u(sy)'(s9) — u(0)'(0) = 0.
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Assume, for instance, that u(s) > 0 and »(s) < 0 on (0, s¢]. Then »'(0) < 0 and
2'(s¢) > 0. Thus, the first term of the above sum is >> 0 and the two remaining
terms are > 0, a contradiction. All the other cases can be treated similarly.

8. Let ¥ be the vector space of Jacobi fields J along y with the property that J(/) =
¥ is a two-dimensional vector space. Since p(/) is not conjugate to p(0), the Imear
map 0: ¥ — T,)(S) given by 8(J)=J (O) is injective, and hence, for dimen-
sional reasons, an isomorphism. Thus, there exists J € ¥ with J(0) = w,. By the
same token, there exists a Jacobi field J along p with J(0) =0, J(I) = w,. The

required Jacobi field is given by J 4 J.

SECTION 5-6
10, Let y:[0,!1 — be a simple closed geodesxc on S and let »(0) € T,,(S) be
such that lv(O)J = 1, <v(0), y’(0)> = 0. Take the parallel transport (s} of #(0)

along y. Since S is orlentable, v(l) = v(O) and » defines a differentiable vector
field along . Notice that » is orthogonal to y and that Dv/ds = 0, s [0, /].
Define a variation (with free end points) 4: [0, [] X (—€, €) — S by

h(s, t) = expy(s tv(s).

Check that, for ¢ small, the curves of the variation k,(s) = A(s, t) are closed.
Extend the formula for the second variation of arc length to the present case,
and show that

H
L0 = —f Kds < 0.
4 0

Thus, p(s) is longer than all curves A,(s) for ¢ small, say, |t| < é < €. By chang-
ing the parameter ¢ into t/d, we obtain the required homotopy.

SECTION 5-7

9. Use the notion of geodesic torsion 7, of a curve on a surface (cf. Exercise 19, Sec.
3-2). Since

da

_—=T T
ds

g2
where cos @ = (N, n)> and the curve is closed and smooth, we obtain
I I
J T ds —f 1, ds = 2mn,
0 1]

where # is an integer. But on the sphere, all curves are lines of curvature. Since
the lines of curvature are characterized by having vanishing geodesic torsion (cf.
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Exercise 19, Sec. 3-2), we have

r!

Jo

|
tn
I
[N
N
b

Since every closed curve on a sphere is homotopic to zero, the integer # is easily

n-ro

SECTION 5-10

7. We have only to show that the geodesics p(s) parametrized by arc length which
approach the boundary of R% are defined for all values of the parameter s. If the
contrary were true, such a geodesic would have a finite length /, say, from a
fixed point py. But for the circles of R% that are geodesics, we have

i ¢ df
im

€20 gmpra S 0

! = >

lim

e—0

>

Jf cos@df|

sin @ n

Bo>n/2

and the same holds for the vertical lines ofi R%.

10. ¢. To prove that the metric is complete, notice first that it dominates the
Euclidean metric on R2. Thus, if a sequence is a Cauchy sequence in the
given metric, it is also a Cauchy sequence in the Euclidean metric. Since
the Euclidean metric is complete, such a sequence converges. It follows that
the given metric is complete (cf. Exercise 1, Sec. 5-3).
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Conjugate minimal surfaces, 213 (Ex. 14)
Conjugate points, 362
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Conoid, 210 (Ex.5)
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Ellipsoid (Cont.)
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first fundamental form of, 99 (Ex. 1)
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Embedding, 435
of the Klein bottle into R4, 436
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of the torus into R4, 435
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differentiability of, 285
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Fary-Milnor Theorem, 402
Fenchel’s theorem, 399
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differential equation of, 179
integral curves of, 178
Field of unit normal vectors, 104
First fundamental form, 92
Flat torus, 435
Focal surfaces, 210 (Ex. 9)
Folium of Descartes, 8 (Ex. 5)
Frenet formulas, 19
Frenet trihedron, 19
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analytic, 207
component, 120
continuous, 119
differentiable, 72, 125
harmonic, 201
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Morse, 173 (Ex.23)
rundamental theorem for the local theory
of curves, 19, 309
Fundamental theorem for the local theory
of surfaces, 236, 31t

Gauss-Bonnet theorem (global), 274
application of, 276
Gauss-Bonnet theorem {(local), 268
Gauss formula, 234
in orthogonal coordinates, 237 (Ex. 1)
Gauss lemma, 288
Gauss map, 136
Gauss theorem egregium, 234
Gaussian curvature, 146, 155
geometric interpretation of, 167
for graphs of differentiable functions, 163
in terms of parallel transport, 270, 271
Genus of a surface, 273
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Geodesic:
circles, 287
coordinates, 306 (Ex. 3}
curvature, 248, 253
flow, 440
mapping, 296 (Ex. 12)
parallels, 306 (Ex. 3)
polar coordinates, 286
first fundamental form in, 287
Gaussian curvature in, 288
geodesics in, 295 (Ex. 7)
torsion, 153 (Ex. 19), 261 (Ex. 14)
Geodesics, 307
of a cone, 306 (Ex. 6)
of a cylinder, 246, 247
differential equations of,
existence of, 255
minimal, 303, 332
minimizing properties of, 292
of a paraboloid of revolution, 258--260
of the Poincaré half-plane, 431, 432, 444
(Ex. 8)
radial, 287
as solutions to a variational problem, 345
of a sphere, 246
of surfaces of revolution, 255-258, 356
(Ex. 5)
Geppert, H., 407
Giuck, H., 41
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Graph of a differentiable function, 58
area of, 100 (Ex. 35)
Gaussian curvature of, 163
mean curvature of, 163
second fundamental form of, 163, 164
tangent plane of, 88 (Ex. 3)
Green, L., 363
Gromov, M. L., and V. A. Rokhlin, 454
Group of isometries, 229 (Ex. 9)
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Hadamard’s theorem on complete surfaces
with K = O, 387, 390 (Ex.9)
Hadamard’s theorem on ovaloids, 387
Hartman, P. and L. Nirenberg, 408
Heine-Borel theorem, 112, 124
Helicoid, 94
asymptotic curves of, 168 (Ex. 2)
distribution parameter of, 209 (Ex. 1)
generalized, 101 (Ex. 13), 186 (Ex. 6)
line of striction of, 209 (Ex. 1)
lines of curvature of, 168 (Ex.2)
local isometry of, with a catenoid, 213
(Ex. 14), 223
as a minimal surface, 204
as the only minimal ruled surface, 204
tangent plane of, 89 (Ex. 9}
Helix, 3, 22 (Ex. 1)
generalized, 26 (Ex. 17)
Hessian, 164, 173 (Ex.22)
Hilbert, D., 318, 446
Hilbert’s theorem, 446
Holmgren, E., 446
Holonomy group, 297 (Ex. 14)
Homeomorphism, 123
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Homotopic arcs, 378
Homotopy of arcs, 378
free, 390 (Ex. 10)
lifting of, 379
Hopf, H. and W. Rinow, 326, 354
Hopf-Rinow’s theorem, 333
Hopf’s theorem on surfaces with H = const.,
234 (Ex.4)
Hurewicz, W., 177
Hyperbolic paraboloid (saddle surface), 66
(Ex. 11), Fig. 3-7
asymptotic curves of, 184
first fundamental form of, 99 (Ex. 1)
Gauss map of, 139
parametirization of, 66 (Ex. 11)
as a ruled surface, 193
Hyperbolic plane, 431
Hyperboloid of one sheet, 88 (Ex.2), Fig.
3-34
Gauss map of, 151 (Ex. 8)
as a ruled surface, 189, 209 (Ex.2)
Hyperboloid of two sheets, 61
first fundamental form of, 99 (Ex. 1)
parametrization of, 67 (Ex. 13), 99 (Ex. 1)

Immersion, 433

isometric, 433
Index form of a geodesic, 422
Index of a vector field, 280
Infimum (g.lb.), 460
Integral curve, 178
Intermediate value theorem, 124
Intrinsic distance, 225, 329
Intrinsic geometry, 217, 235, 238
Inverse function theorem, 131
Inversion, 121
Isometry, 218

linan+ 2729 EBvxy )
GNEar, <40 (X, /)
local, 219

in local coordinates, 220, 228 (Ex. 2)
of tangent surfaces to planes, 228 (Ex.
6)
Isoperimetric inequality, 33
for geodesic circles, 295 (Ex. 9)
Isothermal coordinates, 201, 227
for minimal surfaces, 213 (Ex. 13(b))

Jacabi equation, 357
Jacabi fieid, 357
on a sphere, 362
Jacobian determinant, 128
Jacobian matrix, 128
Jacobi’s theorem on the normal indicatrix,

423
Joachimstahl, theorem of, 152 (Ex. 15)
Jordan curve theorem, 393

Kazdan, J. and F. Warner, 446
Klein bottle, 427
embedding of, into R4, 436, 437
non-orientability of, 436
Kiingenberg’s iemma, 388 (Ex. 8)

Index

Kneser criterion for conjugate points, 370
(Ex. 7)
Knotted curve, 402

Lashof, R. and S. S. Chern, 387
Lebesgue number of a family, 113
Levi-Civita connection, 442
Lifting:
of an arc, 376
of a homotopy, 379
property of, arcs, 380
Lima, E. and M. do Carmo, 387
Limit point, 457
Limit of a sequence, 456
Line of curvature, 145
Liouville:
formula of, 253
surfaces of, 263
Local canonical form of a curve, 27
Locally convex, 174 (Ex. 24), 387
strictly, 174 (Ex.24)
Logarithmic spiral, 9
Loxodromes of a sphere, 96, 230

Mainardi-Codazzi equations, 235
Mangoldt, H., 363
Map:
antipodal, 80 (Ex. 1)
conformal, 226
linear, 229 (Ex. 13)
continuous, 120
covering, 371
differentiable, 73, 126, 426
distance-preserving, 228 (Ex.8)
exponential, 284
Gauss, 136

sendegie 204 DBy
£E0acsic, 506 (X,

1
self-adjoint linear, 214
Massey, W., 408
Mean curvature, 146, 156, 163
Mercator)projection, 230 (Ex. 16), 231 (Ex.
20
Meridian, 76
Meusnier theorem, 142
Milnor, T. Klotz, 454
Minding’s theorem, 288
Minimal surfaces, 197
conjugate, 213 (Ex. 14)
Gauss map of, 212 (Ex. 13)
isothermal parameters om, 202, 213 (Ex.
13(b))
of revolution, 202

riland 204
nea, «ves

as solutions to a wvariational problem,
199

Mobius strip, 106
Gaussian curvature of, 172 (Ex. 18)
infinite, 443 (Ex.2)
nonorientability of, 107, 109 (Exs.1,7)
parametrization of, 106

Monkey saddle, 159, 171 (Ex. 11)

Morse index theorem, 422
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Neighborhood, 119, 123
convex, 303
coordinate, 53
distinguished, 371
normal, 285
Nirenberg, L. and P. Hartman, 408

Norm of a
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Normal:
coordinates, 286
curvature, 141
indicatrix, 278
line, 87
plane to a curve, 19
principal, 19
section, 142
vector to a curve, 17
vector to a surface, 87
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Open set, 118
Onentatlon
change of, for curves, 6
for curves, 109 (Ex. 6)
positive, of Rn, 12
for surfaces, 103, 136
of a vector space, 12
Oriented:
area in R2, 15 (Ex. 10)
positively, boundary of a simple region,
267
positively,
31
surface, 103, 106
volume in R3 16 (Ex.11)

simple closed plane curve,

Orthogonal:
families of curves, 102 (Ex. 15), 181, 186
(Ex. 6)
fields of directions, 181, 185 (Ex.4), 186
(Ex. 5)

parametrization, 95, 183

projection, 80 (Ex.2), 121

transformation, 23 (Ex. 6), 228 (Ex.7)
Osculating:

circle to a curve, 30 (Ex.2(b))

paraboloid to a surface, 170 (Ex. 8(c))

plane to a curve, 17, 29, 29 (Ex.1), 30

(Ex.2)

sphere to a curve, 171 (Ex. 10(c})
Ncocarman’e thanram 208 117 fFY 11
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Ovaloid, 322, 387

b
J

Paraboloid of revolution, 80 (Ex. 3)
conjugate points on, 368 (Ex. 2)
Gauss map of, 140
geodesics of, 258
Parallel:
curves, 47 (Ex.6)
surfaces, 212 (Ex. 11)
transport, 242
existence and uniqueness of, 242, 253

oanmatric canctriis
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vector field, 241
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Parallels:

geodesic, 306 (Ex. 3(d))

of a surface of revoliution, 76
Parameter:

of a curve, 3

distribution, 192

Dovasaton
raramieters:

change of, for curves, 82 (Ex. 15)
change of, for surfaces, 70
isothermal, 227
existence of, 227
existence of, for minimal surfaces, 213
(Ex. 13(b))
Parametrization of a surface, 52
by asymptotic curves, 184
by lines of curvature, 185
orthogonal, 95
existence of, 183
Partition, 10 (Ex. 8), 114

b o} PR
riamng:

hyperbolic, 431
normal, 19
osculating, 17, 29, 29 (Ex. 1), 30 (Ex.2)
real projective, 427
rectifying, 19
tangent, 84
Planes, one-parameter family of tangent, 212
(Ex. 10), 308 (Ex.7)
Plateau’s problem, 200
Poincaré half-plane, 431
completeness of, 444 (Ex.7)
geodesics of, 432, 444 (Ex. %)
Poincaré’s theorem on indices of a vector
field, 282
Point:
accumulation, 457
central, 191
conjugate, 362
critical, 58, 89 (Ex. 13), 364
elliptic, 146
hyperholic, 146
isolated, 461
limit, 457
parabolic, 146
umbilical, 147
Pole, 390 (Ex.11)
Principal:
curvature, 144
direction, 144

nnrma] 19
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Product:
cross, 12
dot, 4
inner, 4
vector, 12
Projection, 80 (Ex.2), 121
Mercator, 230 (Ex. 16), 231 (Ex, 20)
stereographic, 67 (Ex. 16), 228 (Ex.4)
Projective plane, 427
embedding of, into R4, 437
nonorientability of, 436
orientable double covering of, 443 (Ex.
1Y)
=)

Pseudo-sphere, 168 (Ex. 6)
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Radius of curvature, 19
Ray, 336 (Ex.6)
Rectifying plane, 19
envelope of, 308 (Ex.7(b))
Region, 97
bounded, 97
regular, 271
simple, 267
Regular:
curve, 68 (Ex. 17), 75
parametrized curve, 6
parametrized surface, 78
surface, 52
value, 58, 92 (Ex.28)
inverse image of, 59, 92 (Ex. 28)
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Riemannian:
manifold, 441
covariant derivative on, 442
metric, 441
on abstract surfaces,” 430
structure, 442
Rigid motion, 23 (Ex.6), 42
Rigidity of the sphere, 317
Rinow, W. and H. Hopf, 326, 154
Rokhlin, V. A. and M. L. Gromov, 454
Rotation, 74, 86
Rotation axis, 76
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Ruled surface, 188
central points of, 191
directrix of, 188
distribution parameter of, 192
Gaussian curvature of, 192
line of striction of, 191
noncylindrical, 190
rufings of, 188

Ruling, 188

Samelson, H., 114
Santalé, L., 45
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Schneider, R., 54

Schur’s theorem for plane curves, 406 (Ex.

8)

Second fundamental form, 141
Segre, B., 408
Set: -

arcwise connected, 462

bounded, 112

closed, 458

compact, 112, 466

connected, 462

convex, 48 (Ex.9)

locally simply connected, 383

open, 118

simply connected, 382
Similarity, 296 (Ex. 12)
Similitude, 187 (Ex.9), 229 (Ex.13)
Simple region, 267
Singular point:

of a parametrized curve, 6

of a parametrized surface, 78

of a vector field, 279

Index

Smooth function, 2
Soap films, 199
Sphere, 55
conjugate locus on, 362-363
as double covering of projective plane,
443 (Ex.2)
first fundamental form of 95
Gauss map of, 137
geodesics of, 246
isometries of, 229 (Ex.11), 264 (Ex.23)
isothermal parameters on, 228 (Ex. 4)
Jacobi field on, 362
orientability of, 104
parametrizations of, 55-58, 67 (Ex. 16)
rigidity of, 317
QTPTPncrrﬂnh"' nrn1pgngn of, & (EX 16)
Spherlcal image, 152 (Ex.9), 279
Stereographic projection, 67 (Ex.16), 228
{Ex. 4)
Stoker, J. J., 387, 408
Stoker’s remark on Efimov’s theorem, 454
(Ex. 1)
Stoker’s theorem for plane curves, 406 (Ex.
8)
Striction, line of, 191
Sturm’s oscillation theorem, 370 (Ex. 6)
Supremum (l.u.b.), 460
Surface:
abstract 425
complete 325
connected, 61
developable, 194, 210 (Ex.3)
focal, 210 (Ex.9)
geometric, 430
of Liouville, 263
minimal, 197
parametrized, 78
regular, 78
regular, 52
of revolution (see Surfaces of revolution)
rigid, 317
ruled {see Ruled surface}
tangent, 78
Surfaces of revolution, 76
area of, 101 (Ex. 11)
area-preserving maps of, 231 (Ex. 20)
Christoffel symbols, 232
conformal maps of, 231 (Ex. 20)
with constant curvature, 169 (Ex.7), 320
extended, 78
Gaussian curvature of, 162
geodesics of, 255-258
isometries of, 229 (Ex. 10)
mean curvature of, 162
minimal, 202-203
parametrization of, 76
principal curvatures of, 162
Symmetry, 74, 121
Synge’s lemma, 390 (Ex. 10)
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Tangent:
bundle, 439
indicatrix, 23 (Ex. 3), 36
line to a curve, S
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Tangent (Cont.)
map of a curve, 393
plane, 84, 88 (Exs. 1, 3)
of abstract surfaces, 429
strong, 10 (Ex. 7)
surface, 78
vector to an abstract surface, 428
vector to a curve, 2
vector to a regular surface, 83
weak, 10 (Ex.7)
Tangents, theorem of turning, 267, 396
Tchebyshef net, 100 (Exs. 3,4), 237 (Ex. 5),
447
Tissot’s theorem, 187 (Ex.9)
Topological properties of surfaces, 271-273
Torcinan:
in an arbitrary parametrization, 25 (Ex.
12)
geodesic, 153 (Ex.19), 261 (Ex. 14)
in a parametrization by arc length, 22
(Ex. 12)
sign of, 28
Torus, 61
abstract, 434
area of, 98
flat, 435
Gaussian curvature of, 157
implicit equation of, 62
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bottle, 443 (Ex. 3)

parametrization of, 65
Total curvature, 399
Trace of a parametrized curve, 2
Trace of a parametrized surface, 78
Tractrix, 7 (Ex.4)
Translation, 23 (Ex. 6)
Transversal intersection, 90 (Ex.17)
Triangle on a surface, 271

geodesic, 264, 278

free mobility of small, 295 (Ex. 8)

Triangulation, 271
Trihedron:

Darboux, 261 (Ex. 14)

Frenet, 19
Tubular:

neighborhood, 110, 400

surfaces, 89 (Ex. 10}, 399
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PASRA=IRYY

503

Umbilical point, 147
Uniformly continuous map, 468
Unit normal vector, 87

Variation:
first, of arc length, 345
second, of arc length, 351
second, of energy for simple geodesics.

307 (Ex. 5)

Variations:
broken, 420
calculus of, 354-356 (Exs. 4, 5)
of curves, 339
orthogonal, 346
proper, 339

cirg
A

esics, 307
of surfaces, 197
Vector:
acceleration, 345
length of, 4
norm of, 4
tangent (see Tangent, vector)
velocity, 2
Vector field along a curve, 240
covariant derivative of, 240
parallel, 241
variational, 340
Vector field along a map, 343
Vector field on a plane, 175
local first integral of, 178
local flow of, 177
trajectories of, 175
Vector field on a surface, 179, 238
covariant derivative of, 238
derivative of a function relative to, 186
(Ex. 7)
maximal trajectory of, 187 (Ex.11)
singular point of, 279
Vertex:
the four, theorem, 37
of a plane curve, 37
Vertices of a piecewise regular curve, 260
Vertices of a triangulation, 271

Warner, F. and J. Kazdan, 446
Weingarten, equations of, 155
Winding number, 392



