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Part I

Numbers
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Chapter 1

Types of numbers

Number theory studies integers, integer functions, and numbers with close
relations to integers such as the rational numbers. More specific areas of
number theory may look at algebraic numbers and transcendental numbers
(algebraic and transcendental number theory), however elementary number
theory tends to focus on just integers, possibly rational numbers on occasion.

Though readers are quite familiar with numbers, we define them for com-
pleteness.

1.1 Natural numbers

Definition 1.1. The natural numbers are numbers where each number has
a successor. The set of natural numbers is denoted N.

N = {0, 1, 2, 3, 4, 5, ...}
N = {n+ 1 : n ∈ N} ∪ {0, 1}

The natural numbers are simple enough, yet much can be said about
them and there are many unanswered questions related to them. A few neat
properties can be seen by breaking the number up into a sum of its ones,
tens, hundreds, etc. This is generalized by the basis representation theorem.

Theorem 1.1 (Basis representation theorem). For any natural numbers n, b,
there is a unique sequence (di)

k
i=0 with di < bthat can represent n in the

following way.

n =
k∑

i=0

dib
i
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4 CHAPTER 1. TYPES OF NUMBERS

This theorem is responsible for the machinery behind the basic addition
algorithm learnt at school; the basis representation theorem with b = 10
provides the justification to add multidigit numbers by adding ones digits
together, tens digits together ans so forth, and borrowing is the necessary
remedy when the di ≥ b.

One caveat with natural numbers is that subtraction isn’t always well
defined even though addition is. For example 4 − 5 /∈ N. This is because
although every number has a successor, not every number has a predecessor
(0 ruins the fun for us).

1.2 Integers

Definition 1.2. The integers are an extension of the natural numbers such
that each number also has a predecessor. The set of integers is denoted Z.

Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}

Z = {b− a : a, b ∈ N}

Working with integers, the mathematician can be sure that addition,
subtraction, and multiplication are closed in Z.

1.3 Rational numbers

Both the natural numbers and integers are closed under multiplication, but
we require the rational numbers ensure closure under division.

Definition 1.3. The rational numbers are an extension of the integers such
that the quotient of two integers is always well defined. The set of rational
numbers is denoted Q.

Z = {a
b
: a, b ∈ Z}

As readers might know, there are also irrational numbers ; numbers that
can be approximated as close as desired by rational numbers, alas they cannot
be represented as a fraction of two integers. Examples of these are

√
2 and π;

this is described more in Transcendental Number Theory and Real Analysis.



Chapter 2

Basic classes of integers

Just like the natural numbers, integers have a straightforward definition but
have extremely deep properties. Sometimes we can identify that a certain
group of numbers have some special ’pattern’ or ’property’, while other num-
bers don’t. A sequence or set might be used as notation to describe such
numbers.

The nth even number is every second number starting from 0

(2n)n∈N

(0, 2, 4, 6, 8, 10, ...)

The nth odd number is every second number starting from 1. The idea is
that it captures the numbers that are not even.

(2n+ 1)n∈N

(1, 3, 5, 7, 9, 11, ...)

The kth multiple of n is the result of k × n

(kn)k∈N

The kth power of n is the result of nk

(nk)k∈N

The nth square number is the result of squaring n

(n2)n∈N

(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...)

5



6 CHAPTER 2. BASIC CLASSES OF INTEGERS

Proposition 2.1. The sum of the first n− 1 odd numbers is the nth square
number

n2 =
n−1∑
k=0

(2k + 1)

The nth triangle number is a number obtained by adding up the first n
numbers.

Sn =
n∑

k=0

k

(0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...)

Triangle numbers have a closed form expression that makes them easier
to computer and

Proposition 2.2.
n∑

k=0

k =
n(n+ 1)

2

There are also some notable integer sequences that come from the field
of enumerative combinatorics; number theory is indeed used to study these
sequences. The Fibonacci and Catalan numbers are perhaps the most famous
examples. Indeed, number theory and combinatorics are quite intimately
related.

Above all, there is one class of a number that has perpetually fascinated
and eluded mathematicians for millennia, and they are perhaps the most
elegant and enigmatic class of integers in mathematics entirely. They are no
other than the prime numbers ; though we’ll have to develop some theory on
divisibility before we can discuss them.



Chapter 3

Divisibility

3.1 Divisibility

We define divisibility as the following relation on the integers.

Definition 3.1. Given two integers a, b, a divides b iff a can be multiplied
by some integer to obtain b. We denote this relation as a|b.

a, b ∈ Z

a|b ⇐⇒ ∃k ∈ Z(ak = b)

3.2 Euclid’s division lemma

Lemma 3.1 (Euclid’s division lemma). Every natural number n can be
represented with a unique d and a unique r less than d in the following
manner.

n = dq + r

∀n ∈ N(∃!d ∈ Z, r ∈ N ∩ [0, d)[n = qd+ r])

3.3 Multiples and factors

Definition 3.2. A multiple of a is some integer that a divides; an integer
that equals a multiplied by some integer.

m is a multiple of a ⇐⇒ a|m

7



8 CHAPTER 3. DIVISIBILITY

Definition 3.3. A factor or divisor of a is some integer that divides a; an
integer that can ’go into’ a with no remainder.

d is a factor of a ⇐⇒ d|a

3.4 Lowest common multiple

3.5 Greatest common factor

3.6 Euclidean algorithm

We first develop the theory that Euclid had in mind.

Proposition 3.1.

m,n ∈ Z =⇒ gcd(m, 0) = m ∧ ∀q ∈ Z[gcd(m,n) = gcd(m− qn, n)]

m← max(a, b)
n← min(a, b)
while m%n > 0 do
v ← m
m← n
n← v%n

end while
d← n

3.7 Bézout’s lemma

This identity follows from the extended Euclidean algorithm and will prove
vital in our analysis coprimality. It is also important in abstract algebra,
where they classify algebraic structures on whether this identity holds.

Lemma 3.2 (Bézout’s lemma).

∃x, y ∈ Z[ax+ by = gcd(a, b)]

- perfect number



Chapter 4

Primality

4.1 Prime numbers

Prime numbers lie not just in the heard of number theory, but in the heart
of a mathematician. This book will provide only an elementary insight into
their properties, however resorting to the likes of modern algebra and complex
analysis allows for some seriously gourmet proofs.

Definition 4.1. A natural number greater than 1 is a prime number iff it is
divisible only by 1 and itself.

n ∈ N \ {0, 1} is prime ⇐⇒ {d ∈ N : d|n} = {1, n}

A natural number greater than 1 is a composite number iff it is not prime.

Here we have yet another definition that is easy to understand, but bears
consequences beyond even the richest of imaginations. This chapter will ana-
lyze prime numbers using elementary algebra and the results on integers and
divisibility established earlier, however as we progress into modular arith-
metic, we will draw upon some deeper reasoning (basic group theory sugar
coated by elementary methods) to get a hold of some more interesting results.

Though riveting stuff awaits when we add a bit of ’algebraic magic’,
studying prime numbers in an elementary setting is by no means boring. We
shall demonstrate the original proof of Euclid’s theorem; often hailed as one
of the most elegant proofs in mathematics.

9



10 CHAPTER 4. PRIMALITY

4.2 Euclid’s theorem

We introduce a nice notation that goes particularly well with the theorem
that we are about to prove.

Definition 4.2. The primorial is a function returning the product of the
first n prime numbers.

n# =
n∏

i=1

pi

Theorem 4.1 (Euclid’s theorem). There are an infinite amount of prime
numbers; for any prime number, there is a larger prime number.

p is prime =⇒ ∃q(q is prime ∧ q > p)

Assume p is the nth prime number and consider n# + 1. n# + 1 is not
divisible by any of the first n primes. If n#+ 1 is either prime itself, we are
done. If it is not prime, them it must be divisible by a prime number larger
than p.

4.3 Pair of coprime numbers

Definition 4.3. A pair of coprime numbers are a pair of integers a, b such
that ther GFC is 1.

(a, b) are coprime ⇐⇒ gcd(a, b) = 1

4.4 Euclid’s lemma

Lemma 4.1 (Euclid’s lemma).

p is prime ∧ p|ab ∧ ¬(p|a) =⇒ p|b

Lemma 4.2 (Generalized Euclid’s lemma).

c|ab ∧ gcd(c, a) = 1 =⇒ c|b
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Proposition 4.1.
a|a

a|b ∧ b|c =⇒ a|c

a|b =⇒ an|bn

an|bn ∧ a ̸= 0 =⇒ a|b

a, b > ∧a|b =⇒ a ≤ b

4.5 Naive factorization algorithm

Proposition 4.2.

n is composite =⇒ ∃p[p is prime ∧ p ≤
√
n]

- algo here

D ← {n}
while ∃d ∈ D(d is composite) do
for a ∈ N ∩ [2,

√
d] do

if a|d then
D ← D \ {d}
D ← D ⊔ {a, d

a
}

break
end if

end for
end while

4.6 Fundamental theorem of arithmetic

4.7 Types of prime numbers

Some mathematicians have restricted their study to prime numbers of a cer-
tain forms. The reason for this is because mathematicians seek to understand
how primality interacts with other mathematical properties, in hopes of find-
ing interesting results. For instance, numbers of the form 2n − 1 have some
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properties that permit relatively efficient algorithms for checking their pri-
malities.

-
- sieve of Eratosthenes - Fermat prime - Mersenne prime

4.8 Relationship with Riemann Zeta function

Daddy Euler had a strong penchant for infinite products and, like all math-
ematicians, for prime numbers. This is definitely reflected in his proposition
on the Riemann Zeta function factorization.



Part II

Modular arithmetic
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Chapter 5

Modular arithmetic
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Chapter 6

Euler’s theorem

6.1 Fermat’s little theorem

Theorem 6.1 (Fermat’s little theorem).

ap−1 ≡ 1 mod p

However there is a stronger version of the theorem. It requires the un-
derstanding of a totient function.

6.2 Euler’s totient function

Definition 6.1. Euler’s totient function φ : N \ {0} → N \ {0}

φ(n) = |{m ∈ Z ∩ [1, n)[gcd(n,m) = 1]}|

Much can be said about Euler’s totient function; the bulk of these results
will be left for a chapter on arithmetic functions. We will however ist one
proposition that will be required to compare Fermat’s version to Euler’s.

Proposition 6.1.
φ(p) = p− 1

6.3 Euler’s totient function

Theorem 6.2 (Euler’s theorem).

aφ(n) ≡ 1 mod n

17
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Chapter 7

Chinese remainder theorem

Theorem 7.1 (Chinese remainder theorem).

- Lagrange’s theorem

19
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Chapter 8

Quadratic residues

- quadratic residue - Euler’s criterion - Gauss’ lemma - law of quadratic
reciprocity - Wilson’s theorem - uniqueness mod (p-1)/2 of quadratic residues

21
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Part III

Elementary arithmetic
functions
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Chapter 9

Arithmetic function

9.1 Arithmetic function

We have been implicitly using functions to aid our analysis of the integers,
notably the GCD, LCM, and Euler’s totient function. These are called arith-
metic functions, and are used to characterize and relate integers in various
contexts and through various means. It’s often a way that inherently al-
gebraic or combinatoric concepts are manifested in the realm of elementary
probability theory.

An arithmetic function is a function f : N \ {0} → C with a domain of
the positive integers and its image being a subset of the complex numbers.

9.2 Additivity and multiplicativity

An additive function is an arithmetic function where multiplication of co-
prime domain elements corresponds to addition of image elements.

f is additive ⇐⇒ [gcd(a, b) = 1 =⇒ f(ab) = f(a) + f(b)]

A totally additive function drops the requirement for coprimality.

f is completely additive ⇐⇒ f(ab) = f(a) + f(b)

A multiplicative function is an arithmetic function where multiplication
of coprime domain elements corresponds to multiplication of image elements.

f is multiplicative ⇐⇒ [gcd(a, b) = 1 =⇒ f(ab) = f(a)f(b)]

25
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A totally multiplicative function drops the requirement for coprimality.

f is totally multiplicative ⇐⇒ f(ab) = f(a)f(b)

9.3 Examples of familiar arithmetic functions



Chapter 10

Tau and Sigma function

10.1 Tau function

10.2 Sigma function

27
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Chapter 11

Totient functions

- what does totient mean

11.1 Euler’s totient function

11.2 Jordan’s totient function

- Clash with Bessel function notation

11.3 Carmichael function

Definition 11.1. The Carmichael function λ : N→ N is the totient function
returning the smallest power that all integers coprime to n are congruent to
1 mod n.

λ(n) = min{m : ∀a ∈ {a : gcd(a, n) = 1}[am ≡ 1 mod n]}

- Carmichael numbers

29
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Chapter 12

Multiplicative function

12.1 Möbius function

- Möbius inversion formula

12.2 Liouville function

λ - Clash with Carmichael function notation

12.3 Partition function

p

12.4 Von Mangoldt function

Λ
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Part IV

p-adic numbers
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