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Part 1

Topological spaces






Chapter 1

Introduction to metric spaces

One major goal of topology is to define some notion of 'closeness’ without
resorting to measuring distance; this allows us to consider ideas like limits
and continuous functions in very abstract spaces.

To develop the idea of a topological space, we first resort to the basics
of metric spaces (spaces where distance is defined) and attempt to make
abstractions. This idea is that metric spaces are much more intuitive, so we
start with metric spaces and then slowly take away distance from the course
of discourse.

1.1 Metric space

Definition 1.1. A metric spaceis an ordered pair (X, d).
o X is a set

e d: X xX — Rt is a distance function or metricl that defines the
notion of distance.

The metric must satisfy the following properties.
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This last condition for the distance function is known as the triangle
inequality; it is an incredibly useful tool in proofs.

Here are some examples to familiarize us with metrics; the first of which
is already known to us.

Example 1.1. The Fuclidean metric is the following metric defined on R".

n

d(x,y) = Z(Xz - yi)?

i=1

Notice that for R, this is just d(z,y) = |z — y|, and higher dimensions are
variations of the Pythagorean theorem.

Example 1.2. The Chebyshev metric is the following metric defined on R™.
d(x, y) = max(x; — yi)
This metric represents the largest difference between two points on an axis.

Example 1.3. The taxicab metric is the following metric defined on R™.
d(x,y) = Z i — yil
i=1

This metric represents the distance of the smallest path between the points
if one could only 'walk’ along the axises.

1.2 Open balls

We now introduce a useful tool in the analysis of metric spaces.

Definition 1.2. Let (X,d) be a metric space, pbe an element in X and
r € (0,00) a nonnegative real number. An open ball centered at p with radius
r is a set B(p,r) defined as such.

B(p,r) ={z € X : d(x,p) <1}
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It is called a ’'ball’ because open balls made with the Euclidean metric
look like a ball. The idea is that these sets cover any points strictly closer
than r units away. The 'open’ part of the name corresponds to the strict
inequality < rather than <, so that the ball doesn’t contain the boundary
points of the ball.

It is only because open balls exclude these boundary points that we can
prove the following.

Proposition 1.1. If z € B(p,r), then there exists some B(x,s) such that
B(z,s) is contained completely in B(p,r). Elements in open balls of p have
their own open balls completely contained in that open ball of p.

xr € B(p,r) = s € (0,00)[B(z,s) C B(p,r)]

1.3 Open and closed sets

Inspired by the properties of open balls, we would like to create classes for
sets that contain none of their boundrary points, and all of their boundary
points. We start by actually defining what boundary points are.

Definition 1.3. Let (X, d) be a metric space. The boundary of S is the set
of all elements p € X such that all their open balls have intersections with
S and X \ S. We denote the boundary of S as 05, and elements of 05 are
called boundary points of S.

Definition 1.4. Let (X, d) be a metric space. A open set of X is a set U
that is disjoint to OU. We say that U s open in X.

Definition 1.5. Let (X, d) be a metric space. A closed set of X is a set F'
that completely contains 0F. We say that F' is closed in X.

1.4 Reducing open and closed sets to ’algebra
of set’ constructions

Noting that 95 = (X \ S), we can prove the following curious proposition.

Proposition 1.2. F'is closed iff X \ F is open.
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This gives us a nice set theoretic representation for closed sets that doesn’t
include a metric; we’ll make this the prime definition once we’ve defined what
topologies are!

Theorem 1.1. Let (X, d) be a metric space. If U is open in X then any
element in U has an open ball completely contained in U.

This brings us 2 intuitive corollaries.
Corollary 1.1. Let (X, d) be a metric space. Open balls are open sets.

Corollary 1.2. Let (X, d) be a metric space. open sets are unions of open
balls.

The following proposition is the key ingredient in defining what a topology
is.

Proposition 1.3. Let (X, d) be a metric space.
e X and () are open sets
e Open sets are closed under countable unions
e Open sets are closed under finite intersections

Since a family of open sets must obey these 3 properties, if we consider
arbitrary sets that satisfy these 3 properties rather than the open balls, we
have the definition of a topology.



Chapter 2

Topological spaces

2.1 Topology

We use the 3 set theoretic properties obeyed by open sets of metric spaces
to define topologies in a way that are backwards compatible with metrics.

Definition 2.1. A topology on a set X is a set T of subsets of X such that:
e X and () are in T
e 7 is closed under finite intersections

e 7T is closed under countable unions

T CP(X) is a topology on X <= X,@E’T/\[ﬂUiET]/\[UUiET]

=0 =0

Definition 2.2. A topological space is an ordered pair (X, 7T) of a set X and
a topology 7 on X denoted as . Elements of X are referred to as points.

e X is a set
e 7T is a topology over X

The sets in T are called the open sets, and they are said to be open in X
(X,T) is a topological space <= T is a topology on X

Uisopenin X < UeT

7



8 CHAPTER 2. TOPOLOGICAL SPACES

We'll also port our definition of closed sets.

Definition 2.3.
(X,T)

Fisclosed in X <= X \ F is open in X

We won’t define boundaries for topological spaces just yet since we’ll
require the notion of 'neighborhoods and limit points’, but we know from our
study in metric spaces that we’ll eventually prove that closed sets contain
their whole boundary, and open sets contain none of it.

It’s important to note that closed sets and open sets are not necessarily
opposites in the sense of the English language; there exist sets which are both
open and closed (sets with an empty boundary) or neither.

Definition 2.4.
U is clopen in (X,7T) <= U is closed and open in (7, X)

For any given set X, there are two ’obvious’ topologies that could be
made.
T is the discrete topology on X <= T = P(X)

T is the indiscrete topology on X <— T = {X, 0}

We introduce a topology that can be put upon infinite sets.

T is the cofinite topology on X <= T ={UCX:U =0V |X\U| <N}

X is finite AT is the cofinite topology on X = T is the discrete topology on X

2.2 Examples of topological spaces

To build some intuition for topological spaces, we offer some basic examples
of what topological spaces look like (and what they don’t look like).
Basic examaples

({1,2,3},{0,{1,2,3},{2,3}, {1, 2}, {2}})
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({1,2,3,4},{0,{1,2,3,4},{2,3},{1,2,3},{1,4},{1}})

Examples that aren’t topological spaces
({1,2,3,4},{0,{1,2,3,4},{2,3,4},{1,2,4}})
({1,2,3},{0,{2,3} {1, 2}, {2}})

Boring examaples
(X, P(X))
(X,{0,X})
Topological spaces are not always so bland; some rather interesting topo-

logical spaces are out in the wild.
Weird example; cofinite topology on N

(N, {U: IN\U| < Ro})

Though that last example was kind of cool, it’s perhaps not entirely clear
why we're doing topology in the first place. We now discuss a topological
space that is quite familiar to us.

Useful example; Euclidean topology

RAU : U = | J(an,bn)})

neN
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Basis of a topological space

Those familiar with linear algebra are familiar with the idea of a basis; a
set of elements that under some operation can generate an entire space.
Topological spaces follow the same principle; often we can find some basis
that can generate the topological space that helps our analysis of the space.
Better yet, perhaps we want to define a topological space by means of a basis!

Definition 3.1. Let (X,7) be a topological space. A basis of T is a set
B C T such that any set open in X is a union of sets in B. Elements of B
are called basic sets.

Every topological space can be represented by a basis since the topology
itself forms a trivial basis for itself.

Proposition 3.1. Let (X, 7) be a topological space. T is a basis for T

3.1 Generating a topology

- when does a basis generate a topology? Existence of topology for a basis
Like with open balls, a basis forms the ’ingredients’ and the three con-
ditions generate these ingredients into a topology. But unfortunately not
every set of sets can be a basis; when can a set of sets acually generate some
topology?
By ensuring our set of sets agrees with the 3 conditions of the algebra of
sets, we can be sure that our set is basis for some topology on the space.

Definition 3.2. A set B C P(X) generate some topology on X iff both of
the following hold

11
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o X = UieNBi
e For any sets B;B; € B, we have B, B; € B

- Partitions on X are basis’ for topologies on X -

3.2 Generating a given topology

- generating a basis for given topology
We can now check whether a set of sets can actually form a topology, but
what if we want to check if our basis forms a particular topology in question?
We can refine our definition of a basis to be more 'constructive’ in this
sense.

Proposition 3.2. Let (X,7) be a topological space. A set of sets B is a
basis for T iff any of the following hold.

e If U is an open set, it is a union of sets in B

e [f U is an open set, for any u € U there is a set in B containing v that
is completely contained in U

- The singletons are a basis for the discrete topology

3.3 Generating identical topologies

- identical topologies by comparing bases
A basis is a nice way to define a topology, however it is possible that
different basis’ can actually generate the same topology!

Proposition 3.3. Two basis B;, By generate the same topology iff all the
following hold.

e For any B; € By each b; € By has a set By € By such that be By
e For any By € B, each by € By has a set By € By such that by € B;
When we have two basis’ for a topology, we can compare their refinement.

Definition 3.3. Let (X, 7) be a topological space. If B,C are two basis’ for
T, we say that B is a refinement of C iff B C C.



Chapter 4

Euclidean topology

One of the most interesting fundamental topologies is the Euclidean topo-
logical space, which characterizes open sets in a Euclidean space.

T ={U:U=|J(a:;,b;)}
ieN
Since we define open sets as unions of open intervals, we can see that the
open intervals form a basis for the Euclidean topology.

Br = {(a,b) :a,b e RAa < b}

Noting that (a,b) = (42 — o atb 4 boe) — Rp(atd b0} we gee that
the open intervals are actually open balls of the single dimension Euclidean
metric space. This alludes to the fact that this is actually a metric space;
indeed this is true for any dimensional Euclidean topology, however we’ll
savour the details for later.

Due to the general familiarity that readers tend to have with the Eu-
clidean topology, much of the theory developed for general topology will be

applied to the Euclidean topology as a mode of demonstration.

13
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Chapter 5

Neighborhoods

Now we will start developing more specific theory of topology that culmi-
nates to generalizing limits to topological spaces. We do this by means of
beighborhoods.

Definition 5.1. A neighborhood of p is a set V' containing some open set U
containing p. An open neighborhood of p is a neighborhood of p that is an
open set.

V is a neighborhood of p <= 3U C V[U is an open set A p € U]
V' is an open neighborhood of p <= V is an open set Ap eV

Some authors define neighborhoods as open neighborhoods, however this
book does not make that assumption. It might be interesting to note that
neighborhoods of p can play a similar role to open balls of p in the sense that
they both contain open sets containing p. Though there are some notable
differences like open balls relying on a metric and neighborhoods being much
more general, they can be used with similar functions in some circumstances.

Proposition 5.1. If p has a neighborhood V', then p has an open neighbor-
hood U C V.

V is a neighborhood of p = 3U C V[U is an open neighborhood of p]

- neighborhoods in Euclidean space In the Euclidean topology, any two
points have disjoint neighborhoods. This actually goes for any topological
space that is a metric space. The exact class of spaces where this occurs is
called a Hausdorff space.

- power of neighborhioods in simplicying definitions on limit points - open
cover - subcover

15



16

CHAPTER 5. NEIGHBORHOODS



Chapter 6
Limit points

We may now define limits in topological spaces.

Definition 6.1. In a topological space (X, T), a limit of a sequence is a point
p where all its neighborhoods contain all remaining terms of a sequence. A
convergent sequence is a sequence with a limit.

(X, T)

lim z, = p <= VV C X[V is a neighborhood of p = IN € Njn > N — aq, € V]]

n—0o0

If one restricts the terms of a sequence to some set, it may still be possible
that the limit of the sequence lies outside this set. Consider the Euclidean
topology on R, the open set (0, 1) and the sequence a,, = n+r1, n > 1. Though
we have a,, € (0, 1), we also have lim,,_,, a, = 0, which is out of the set!

The phenomenon where limits can exceed the set their terms are chosen
from is interesting indeed; any point that is the limit of some sequence of
terms within a set is called a limit point of that set.

Definition 6.2. A limit point of a set S is a point p such that all neighbor-
hoods of p include another point in S that isn’t p.

p is a limit point of S <= VV[V is a neighborhood of p = V NS # (]

6.1 Closure and interior

Definition 6.3. The closure of a set S is the union of S and the set of all
limit points of S. Given that the topological space is (X, T), the closure of

17
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S is denoted as clx(.S), and its elements are called points of closure of S.
clx(S) := SU{p: pisa limit point of S}

Closures are very useful constructs in topology with many important
properties.

Proposition 6.1. Let (X,7) be a topological space. For any set S, clx(S)
is closed.

(X, T)
VS € X|clx(S) is closed in (X, T)]

Proposition 6.2. Let (X, 7) be a topological space. clx(S) is the smallest
possible closed set containing S.

VT[T is closed in (X, T)ANS CT = clx(S) C T

Here’s one intuitive way to think about that proposition; think of a swarm
of all the open sets disjoint to S, all making a union around .S. This swarm of
open sets is trying to engulf everything around S, so any points that survive’
are in the smallest possible closed superset of S.

Proposition 6.3. Let (X,7) be a topological space. For any set S, clx(5)
is closed.

(X, T)
VS € X|clx(S) is closed in (X, T)]
Limit points follow a ’transitive property’, that is, if the limit points of §

have limit points themselves, they are also limit points of S; we’ve had them
the entire time. This leads to the following proposition.

Proposition 6.4. Let (X, 7) be a topological space. For any S, clx(S) \ S
is closed.

Definition 6.4. The interior of a set S is the union of all subsets U C S
that are open. Given that the topological space is (X, T), the interior of S
is denoted as intx(.5).

Uisopenin X <= intx(U)=U
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6.2 Boundary

-in metric space, all neighborhoods fully contained in an open ball

We can leverage the fact that all neighborhoods in metric spaces can
be fully contained by an open ball to almost directly port our definition of
boundaries to topological spaces!

Definition 6.5. Let (X, 7) be a topological space. The boundary of S is the
set of all points p € X such that all their neighborhoods have intersections
with S and X \ S. We denote the boundary of S as 05, and elements of 0.5
are called boundary points of S.

Using the language of closures and interiors, we can prove the following
equivalent definitions.

Theorem 6.1 (Equivalent definitions of a boundary). Let (X, T) be a topo-
logical space. 95 is the boundary of S iff any of the following hold.

e For each point in 05, all the points neighborhoods have intersections
with S and X \ S.

e 05 =clx(9) \ intx(S)
e S =clx(S)Nclx(X\9)

Now that we've defined boundaries for topological spaces, we can come
full circle to rediscover our definition of closed sets that we defined on metric
spaces!

Theorem 6.2 (Equivalent definitions of a closed set). Let (X, 7) be a topo-
logical space. A set F is closed in X iff any of the following hold.

e X\ Fis open.
e clx(F) = F (F contains all its limit points)
e OFCF
Fis closed in X <= [X \ F is open in X]|V [clx(F) = F|V [0F C F]
Corollary 6.1. Closure is idempotent.

ClX(Clx(S)) = Clx<S)
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Corollary 6.2. Let (X,7) be a topological space. For any S, the set of its
limit points is closed.

VS[{p : p is a limit point of S} is closed in (X, T)]

Theorem 6.3 (Equivalent definitions of an open set). Let (X, T) be a topo-
logical space. A set U is open in X iff any of the following hold.

e X\ U is closed.

o intx(U)=U

e UNU =1

Fisclosed in X <= [X \ Fis openin X|V [clx(F) = F|V [0F C F]

Definition 6.6. Let (X, 7T) be a topological space, a set S is dense in X iff
its closure equals X.

Here’s an example demonstrating this idea in the Euclidean topological
space.

Proposition 6.5. Let (R, Tg) be the Euclidean topological space, then Q is
dense in R.
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Continuous functions
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Chapter 7

Continuous function (Topology)

Like limits, a topological space is also sufficient grounds to develop a general
definition of a continuous function!

Definition 7.1. A function f is continuous at p iff for any neighborhood
V Cim(f) of f(p), f~1(V) is a neighborhood of p.

Notably, we can recylce our fact that neighborhoods are always within
open balls to reverse engineer the definition of a continuous function from
real analysis to obrain the topological definition.

23
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Chapter 8

Intermediate Value Theorem
(Topology)

- IVT - special case of Brouwer fixed-point theorem for [0,1] continuous op-
erations.

25
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Chapter 9

Homeomorphisms

Like how group homomorphishms preserve a groups structure, continuous
functions preserve neighborhood structure of a topology. This leads to the
question; like how group isomorphisms show that two groups are ’alge-
braically equivalent’, is there some class of function to show that two topo-
logical spaces are ’topologically equivalent’ (in the sense that they have the
‘isomorphic neighborhoods’)?

Definition 9.1. A homeomorphism between two topological spaces T" and
U is a bijective function f : T'— U such that both f and f~! are continuous.

27
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Part 111

Constructions of topological
spaces
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Chapter 10

Topological subspaces

A topological subspace of (X, T) is a topological space (Y, Ty).
e Y C X is a subset of X

e 7y ={YNU:U € T} is the induced topology for the topological
subspace

31
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Chapter 11

Product topological spaces

33
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Chapter 12

Quotient topological spaces

35
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Part IV

Metric spaces
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We now return to metric spaces using our new fancy knowledge of topo-
logical spaces.

Theorem 12.1. A metric space (X, d) is a topological space (X,7T) gener-
ated by its open balls as a basis.

Definition 12.1. A metrizable topological space is a topological space (X, T)
such that there exists a metric d : X x X — [0, 00) such thatthe topology
induced by d is T.

- topologies induced by metric space are hausdorff
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Limits in metric spaces

Though convergence of sequences may be established without a metric space,
metric spaces provide a more intuitive definition for convergence.

Definition 13.1. In a metric space (X, d), a limit of a sequence is a point
p that is arbitrarily close all remaining terms of a sequence. A convergent
sequence is a sequence with a limit.

(X, d)
lim z, =p <= Ve € (0,00)[IN € Njn > N = d(z,,p) < €]
n—oo
li_>rn T, =p < Ve € (0,00)[3N € N[n > N = =z, € Bx(p,¢)]]

Definition 13.2.

- same sequence converging to x and y means x=y
-cauchy sequence -subsequence -bolzano weierstrass therem topology

41
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Chapter 14

Complete metric space
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Chapter 15

Banach fixed-point theorem

- Contraction mapping - Banach fixed point theorem - Allude to applications
in numerical analysis

45
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Chapter 16

Baire spaces
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Part V

Compact sets
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- compact iff every open cover has finite subcover
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Connected sets
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- Allude to the importance in complex analysis

Definition 16.1. A connected space (X,T) is a topological space where the
only clopen sets are X and 0.

Euclidean topological space is connected.

- simply connected space

ih3;Simply connected spacej/h3; ip;Topological space with no holes,
characterized by the ability to continuously transform any loop around a
pointj/p; jpi X is simply connected <= j/p; ipiX is path-connected;/p;,
ipiVC : [to, t1] — X(C is a closed simple curve = Jf¢(f(C) = 0)j/p.,
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Separation properties
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- T_0 space (Kolmogorov space)

Definition 16.2. A T; space (Kolmogorov space) is a topological space such
that for every distinct pair of points, at least 1 point in the pair has a
neighborhood not containing the other point.

Definition 16.3. A T) space (Topological Fréchet space) is a topological
space such that for every distinct pair of points, both points in the pair has
a neighborhood not containing the other point.

Definition 16.4. A Ty space (Hausdorff space) is a topological space such
that for every distinct pair of points, there exists a pair of neighborhoods of
both points which are disjoint.

- finite frechet spaces are discrete topological spaces
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Topological groups
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- Jordan curve theorem (JCT) - Urysohn’s lemma
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