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Chapter 1

Graphs

In the Prussian town of Konigsberg (today the Russian town of Kalingrad),
there were 7 bridges connecting 4 distinct sides of the town. Is it possible to
walk a path between these 'islands’ that traverses each bridge exactly once?

This problem is hailed as the birth of 2 different fields; graph theory and
topology.

Graph theory concerns itself with discrete (finite or countable).It allowed
Euler to reduce the Konigsberg problem to its most rudimentary elements
and examine how the bridges connect the islands. Due to its discrete nature,
it is intimately related to combinatorics as it not only borrows combinato-
rial arguments to prove statements about graphs, but employs graphs as a
structure to produce combinatorial results!

One basic but elegant example of graph theory providing a combinatorial
result that affects number theory is by double-counting the edges of complete
graphs to combinatorially prove that > , k = @! We will go through
this when sufficient theory is developed.

Topology extends its focus to more general spaces . It is actually possible
to analyze graphs as topological spaces, however with topology being a more
general theory, many concepts arising from their discrete structure are better
studied from a graph theoretic point of view. THat said, topology can still
capture many concepts related to graphs, and if one wants to consider the
space on which a graph label is embedded upon (such as in the 3 utilities
problem), topology becomes a requirement.

Aside from combinatorics and topology, probability theory borrows graphs
as structures to discuss discrete Markov chains. Indeed, the power of graph
theory permeates itself into applications of mathematics, being central in the
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field of computer science, and being commonplace in the fields of electrical
engineering, chemistry, and mathematical optimization.

1.1 Undirected graphs

This part aims to introduce the fundamentals of graph theory by studying
undirected graphs first. The construction relies heavily on the machinery of
set theory.

Graph theory is notable for having an abundance of terminology, however
the concepts behind them are generally simple.

Definition 1.1 (Undirected graph). An undirected graph G is a 3-tuple
(V, E, ) as specified by the following.

e U/ is a set, its elements are called vertexes
e [/ is a set, its elements are called edges

o v: E — {{vi,v} :v1,v2 € V} is a set mapping edges to multisets of
2 vertexes.

The intuition for graphs is that a vertex is some node and the edges
represent connetions between different (or even the same) node. Drawing
them. The definition of graph is completely distinct of its label. Topological
graph theory notably characterizes some of the phenomena one observes when
physically drawng a graph,such as crossing edges.

Definition 1.2 (Undirected subgraph). A subgraph of G is an undirected
graph H with the came incidence function thatalso satisfies the following.

o Vy C Vg
e by C Eg

e ©: F — {{v,v} :v1,v9 € V} is a set mapping edges to multisets of
2 vertexes.

(VHa EHvSD) S (VGvEGu QO)

Complete graphs The n-complete graph is the undirected, simple graph
not permitting loops K, = (V,E,¢) where every vertex is connected to
eachother.
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e |V|=n

. |E| _ n(n2—1)

e (¢ is bijective

1.2 Loops

We remind you that a multiset is just a set where the same element may
appear multiple times.

Definition 1.3 (Simple graph). An simple graph is a graph such that its
incidence function ¢ is injective, otherwise it is called a multigraph.

Definition 1.4 (Loop). A loop is an edge mapped by the incidence function
to some multiset of the form {vy,v;} (i.e it has a 2-multiplicity element).

Definition 1.5 (Graph permitting loops). A graph permitting loops is a
graph that has a loop
1.3 Directed graphs

Now that we understand the general jist of graph theory, we can start to
study some more exotic graphs.

Definition 1.6 (Directed graph). An directed graph G is a 3-tuple (V, E, )
as specified by the following.

e U/ is a set, its elements are called vertexes
e [/ is a set, its elements are called edges

o v: E — {(v1,v2) : v1,vy € V} is a set mapping edges to ordered pairs
of 2 vertexes.

natural number weights integer weights real weights nonnegative real
weights inclusion of +oo weights
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1.4 Weighted graphs

Definition 1.7 (Weighted graph). A weighted graph G is a 2-tuple (G, d) as
specified by the following.

e G is a graph (directed or undirected)
e w: Eg— [0,00)U{oo} is a distance function

we have a way to allocate weight to edges, however if we orient ourselves
with the goal of finding the path of least cost, we are inspired to develop the
distance function.

distance function

d(vy,v5) = min{w(e) : e € o ({v1,v2})}
d(vy,v9) = min{w(e) : e € o ({v1,v2})}

d(v,v) =0
d(vl, ’UQ) -+ d(Ug, Ug) 2 d(vl, 'U3)

in an undirected graph
d(v1,v2) = d(vy,v2)

An interesting problem in the realm of computer science is to find the
least costly path between 2 given vertexes. There are various algorithms
that provide a solution to this problem with different runtimes, and they are
employed in many networking protocols that we implicitly use today!

1.5 Graph isomorphsim

Definition 1.8 (Graph isomorphism). bijective function f : Vi — Vg such
that vy, vy are adjacent in G iff f(vy), f(vy) are adjacent in H. We say G = H

A big open problem in mathematics and computer science is finding an
polynomial time algorithm that can verify whether two undirected graphs
are isomorphic.

Graph isomorphisms mean that not only are graphs independent of their
labelled graph, but the vertexes may be assigned any symbols; we often like
to use the natural numbers.
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Features of graphs

2.1 Degree

Definition 2.1 (Degree of a vertex).

deg(v) ={e € E:vep({e})}+{e€ E:ee ¢ ({v,uD}|
An important combinatorial result follows the theory of degrees.

Lemma 2.1 (Handshaking lemma). Let (V, E,¢) be an undirected graph
permitting loops, then the following equality holds.

> deg(v) = 2|

veV

2.2 Graph matrixes

Thanks to graph isomorphism, we can assume our graph is
Definition 2.2 (Adjacency matrix). Let G = (NN [1,n], E, ¢) be a graph,
the adjacency matriz of GG is the following symmetric matrix.
Nt o (i) € B
e {{enE=0

Notice that for undirected graphs the adjacency matrix is a symmetric
matrix.
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Definition 2.3 (Degree matrix). Let G = (NN [1,n], E) be a graph, the
degree matriz of G is the following diagonal matrix (note the use of the
Kronecker delta).

Dij = deg(z)@]

2.3 Paths

- path - Hamiltonian path - Eulerian path

2.3.1 Connected graphs
Paths allow us to form the notion of a connected graph

Definition 2.4 (Connected graph). A connected graph is a graph such that
there exists a path between each pair of vertexes.

Topology students may note that the notion of a path connected topo-
logical space is extremely similar in spirit to the connected graph; vertexes
are ananalogous to points, and the topological and graphical paths used are
analogous, however defined for completely different settings.

2.3.2 Konig’s lemma

Connected graphs will be a frequent point of discussion in our study of graph
theory, however it is worth a detour to discuss a rather fun result on infinite
connected graphs.

Definition 2.5 (Infinite graph). A locally finite graph is a graph with infinite
vertexes.

VI >R

Definition 2.6 (Locally finite graph). A locally finite graph is a graph where
every vertex has a finite degree.

deg(v) < oo

Lemma 2.2 (Kénig’s lemma). Let G be a connected, infinite, locally finite
undirected graph, then G has an infinite simple path.

Corollary 2.1. Let G be a connected, infinite, undirected graph, if G has
no infinite simple path then it has a vertex with infinite degree.
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2.4 Cycles

A special type of path is a cycle. - cycle - Hamiltonian cycle - Eulerian cycle

2.5 Trees

A computer scientist’s best friend is a tree (no wonder they’re so lonely).
Definition 2.7 (Tree). Connected, acyclic, undirected graph .

Definition 2.8 (Binary tree). Tree where vertexeshave a maximum degree

of 3.

Definition 2.9 (Spanning tree). subgraph that is a tree

2.5.1 Propositions on trees

Proposition 2.1. Let (V| E, p) be a tree, then the following equation holds.
VI =1E[+1

Proposition 2.2. Let (V, E, ¢) be a complete binary tree, then its height is
Llog,(IV1)]

Proposition 2.3. Let (V, E, ¢) be a complete binary tree, then its height is
[log,([V])]

2.5.2 Cayley’s formula

Proposition 2.4 (Cayley’s formula). There exists n" 2 trees with n vertexes.

HG = (V,E,p):GisatreeA|V|=n} = nn2

2.6 Directed acyclic graph

- directed acyclic graph (DAG)
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Chapter 3

Euler’s formula

As previously stated, graph theory and topology were born out of the same
problem, and hence are intimately connected. One major area of topological
graph theory is studying the consequences of drawing graph labels on surfaces
with different properties (a plane, torus, ’book’ etc.).

This chapter will give an elementary result of topological graph theory
related to the plane (i.e drawing, or in topological terms, embedding graph
labels on a piece of flat paper) and allude to how topological properties of
graphs can change when embedded into different spaces. The result that all
of our observations will orbit around is the magnificent Euler’s formula (as
if he doens’t have enough formulae already).

3.1 3 Utilities problem

We first study a classical problem that gave birth to topological graph theory.

3.2 Euler’s formula
Theorem 3.1 (Euler’s formula (Planar case)). Let (V, E, ¢) be a connected
undirected graph and F' be the amount of distinct faces partitioned by the
graph label’s edges, then the following equation holds.

V|- |E|+F=2

11
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3.3 Solving the 3 utilities problem

Using this formula, we can see that the 3 utilities problem cannot be solved
since

However there’s an implicit assumption we’ve been using all along; our
graph lies upon a plane! If we consider graphs on different surfaces (such as
a torus) the 3 utilites problem does in fact have a solution. This means that
other surfaces require their own versions of Eucler’s formula; as it turns out,
the right hand side is what changes depending on the surface, this number is
something called the Fuler characteristic. This is covered as a topic within
algebraic topology.

Not only does topological graph theory study the topologies formed by
different graphs, but also the effects of defining graphs on different topologies!
Now we have an understanding of what it means to study graphs on different
topologies, however
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Chapter 4

Topological graph theory

- Topological graph - Whitney complex - Graph embedding - Graph structure
theorem - Crossing number

15
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CHAPTER 4. TOPOLOGICAL GRAPH THEORY
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Algebraic graph theory

- Chromatic polynomial

17
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CHAPTER 5. ALGEBRAIC GRAPH THEORY
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