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Chapter 1

Groups

Readers will be familiar with elementary algebra; solving for x by leveraging
the laws of operations. Algebra is a useful tool, and it proves powerful when
generalized to other objects in mathematics. To generalize the idea of one
operation working on a set, we introduce the notion of a group.

See "Universal Algebra’ for more details on operations; this theory is vital
for developing group theory.

1.1 Groups

Definition 1.1. A group is an ordered pair (G,-) of a set G and a binary
operation - acting on GG with the following properties:

e - is associative on GG

G contains an identity element with respect to -

Every element of G is invertible with respect to -

G is the set of elements the group works over

-+ G X G — @G is the operation of the group

(G,-) is a group <= - is associative on GATlg € GVg € G(g-1g = 1g-g = g)]A\Vg € G[3g *(g-g™" =

3



4 CHAPTER 1. GROUPS

When the operation is apparent, a group (G, -) may be denoted as G, and
the expression g - h may be contracted to gh.

Many algebraic strucutres of one operation encountered in mathematics
and the sciences can be represented as groups, and the study of groups as an
abstraction can lead to some deep propositions with profound consequences.
Indeed, more complex algebraic structures often extend upon the notion of
a group.

Though all groups find common ground in the three properties above,
they may exhibit various behaviours due to extra properties regarding the
group’s set and operation. One fundamental property that may differ among
groups is their order.

Definition 1.2. The order of a group is the cardinality of its set.
Definition 1.3. A finite group is a group with a finite order.

Another fundamental property that some particularly 'nice’ groups have
is commutativity of it’s operation, that is to say, the order of elements under
an operation does not affect the result (like how 94 10 = 10+ 9).

Definition 1.4. An Abelian group is a group such that - is also commutative.
(G,-) is an Abelian group <= (G, ) is a group A - is commutative on G

Even though some groups may not be Abelian, they could have a collec-
tion of elements.

Definition 1.5. The center of a group G is a set Z((G) containing the ele-
ments that commute with every other element.

Z(G)={2€G:VgeG(zg =g2)}

1.2 Properties of Groups

To obtain a deeper intuition of the behaviour of a group, it is vital to deduce
some common properties that all groups share.

Notably, one can derive properties regarding the uniqueness of identity
and inverse elements of groups.

Proposition 1.1. Let (G,-) be a group:
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e (G contains a unique identity element with respect to -

e Every element of GG is invertible by a unique inverse element with re-
spect to -

E“lG c G[Vg - G(g . IG = 1G - g :g)]
Vge GRlg g-g7 =g -g=¢e)]
Proposition 1.2.
GisagroupAg, 91,02 €G = (g1-g2) 1=095" g1

The cancellation law is also permitted by groups thanks to inverse ele-
ments.

Proposition 1.3 (Cancellation law for Groups). Let (G,-) be a group and
991,92 € G, then g- g1 = g- g2 iff g1 = g

GisagroupAg, 91,00 € G = g- g1 =09 o < §1 = G2

1.3 Notation for Groups

Recall how on the back of primary school books, one can find addition and
multiplication tables to help students memorize them (or more likely, to cheat
on tests).

We can use a generalization of this table to describe the behaviour of
a finite group’s operation. A Cayley table is a table showing the result of
applying every combination of two elements with the group operation. It
is formally represented as a square matrix C, since finite groups have |G|?
possible combination of elements into the group operation

Cij=9;9i

Group presentation - Notation for representing a group based on its ele-
ments and the conditions it is subject to

G=(S:R)
e S is the set of elements generating the group

e R is the relation that the group must follow



6 CHAPTER 1. GROUPS

1.4 Examples of Groups
Example 1.1. The additive group of integers (Z,+)
e [t is Abelian
e It has order N
Example 1.2. The Klein fourgroup (K4, o)
e [t is Abelian
e [t has order 4
Example 1.3. The dihedral group Dih(n)
e [t has order 2n

Example 1.4. The general linear group (GL(n,R),-)



Chapter 2

Subgroups

2.1 Subgroups

Definition 2.1. A subgroup of (G, -) is a group (H, -) such that H is a subset
of G. H < G denotes that H is a subgroup of G.

H<G <= (HCG)A(H,-)is a group
Theorem 2.1. Let (G, ) be a group:
e (G,-) is a subgroup of itself

e (1g,-) is a subgroup of (G, -) (i.e the trivial group is a subgroup of every
group)

2.2 Examples of Subgroups

Proposition 2.1.
Z(G) <G

Z(@) is Abelian

Example 2.1. The additive group of n-multiples (nZ,+) Subgroup of (Z, +)
of multiples of n.

Example 2.2. The special linear group SL(n,R) Subgroup of GL(n) of ma-
trixes with determinant 1.
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Example 2.3. The orthogonal group O(n,R) Subgroup of GL(n) of orthog-
onal matrixes

Example 2.4. The special orthogonal group SO(n,R) Subgroup of O(n) of
matrixes with determinant 1

e It is Abelian for n < 2

2.3 Properties of Subgroups
Proposition 2.2. Let H be a subgroup of G, then 14 is in the subgroup H.

H<S<G = 1lge H



Chapter 3

Cosets

There is an interesting property relating to how the orders of groups relate to
the orders of their subgroups. Bringing this fact to light requires experiment-
ing how subgroup elements behave with foreign elements in its ’supergroup’;
this will be done by the use of cosets.

3.1 Cosets

Definition 3.1. Given the subgroup (H,-) of (G,-), a left coset of (H,-) is
a set gH containing the elements of the form ¢ - h, where h € H.

gH={g-h:heH}
i/pi. The set G//H is the set of all unique left cosets of H on G.

Definition 3.2. If (H,-) is a subgroup of (G, ), a right coset of (H,-) is a
set Hg containing the elements of the form h - g, where h € H.

Hg={h-g:he H}

3.2 Properties of Cosets

Among the more basic properties that cosets have are consequences of the
basic properties of groups. The following propositions will explicitly deal
with left cosets for brevity, however right cosets have similar properties.

9
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Proposition 3.1. The cardinality of left cosets of (H, -) is the order of (H,-)
lgH| = [Hg| = [H|
Proposition 3.2.

H < G N H is an Abelian group — Hg = gH

3.3 Lagrange’s theorem

Cosets can be used to describe a very interesting property about finite sub-
groups. We will construct a repertoire of lemmas to propound a notorious
theorem in group theory.

Lemma 3.1.
H<GANheH — hH =1gH

The previous proposition discusses the result of forming cosets with a
subgroup element, which is useful to know, however forming cosets on foreign
elements will provide deeper insight.

Lemma 3.2. Left cosets are equivalence classes on G.
Lemma 3.3. Left cosets are either equal or disjoint.

Theorem 3.1 (Lagrange’s theorem). Let H be a subgroup of G, then the
order of H divides the order of G by the amount of distinct left cosets.

H<G = |G| =[G : H||H|

Proposition 3.3.
g =1q
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Group homomorphisms
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Chapter 4

Group homomorphism

Definition 4.1. Let (G,-) and (H,+) be two groups. A group homomor-
phism f : G — H is a function between groups that ’preserves’ the group’s
operation in the following sense; if g1, g, are elements of GG, we have the
following.

flg1-g2) = f(g1) + flg2)

Homomorphisms have some nice properties relating to mappings of iden-
tity and inverse elements.

Proposition 4.1.

Proposition 4.2.

4.1 Examples of Group homomorphism
4.2 Group monomorphism
4.3 Group epimorphism

4.4 Group endomorphism

These types of group homorphisms have particularly interesting properties,
but group isomorphisms are perhaps the most important class of homomor-

13
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phisms.



Chapter 5

Group isomorphism

Definition 5.1. Let (G,-) and (H, +) be two groups. A group isomorphism
f + G — H is a bijective isomorphism. If there exists an isomorphism
between G and H, then the groups are isomorphic to eachother, also written
as (G,-) = (H,+).

5.1 Properties of Group isomorphism
5.2 Examples of Group isomorphism

5.3 Group automorphism

Definition 5.2. Let (G, ) be a group. A group automorphism f: G — G is
an isomorphism onto the same group.

Proposition 5.1. For any group (G, -) there exists a class of automorphisms

called the inner automorphisms defined as ¢, (x) = grg™'.

Some Theorems
A Canonical map is a function between two objects that arises from their
definitions. It is a function used to define the behaviour of some object.

Definition 5.3. Let (G,-) and (H,+) be two groups and f : G — H a
homorphism. The kernel of a group homomorphism is the set of elements
that a homomorphism maps to the other group’s identity element.

ker(f) ={9€G: flg) =1y}

15
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Proposition 5.2.
f: G — H is a homomorphism = ker(f) <G

Definition 5.4.
Im(f)={f(g)eH:9€CG

Isometry
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Chapter 6

Normal subgroups

Now that some familiarity with the basic theory of groups is established, we
can now turn towards some common groups constructions; ways in which
different groups can be related to one another to form new groups.

We have discovered that cosets formed from subgroups essentially divides
a groups elements into equally sized classes. One may ask if a group on these
cosets can be formed with the operator + behaving similar to the original
group in the sense that g1 H + goH = (g1 - 92)H.

One slightly small caveat is that cosets formed by different elements be
the same coset (more specifically, if b € aH, then aH = bH), so if we have
aH = bH,we want (a - g)H = (b- g)H, which is not true in generall So
as a precursor to defining these ’groups divided into cosets’, we must first
address this concern by finding what type of subgroup permits this type of
behaviour.

6.1 Normal subgroups

Normal subgroups are what is required to ensure that identical cosets are
treated the same by our ’coset operation’.

Definition 6.1. A normal subgroup
N <G < Vg€ G[gNg ' = N]
Here is a useful sufficient condition for normal subgroups.

19
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Proposition 6.1. If a subgroup is Abelian, then it is normal.
N <GAN is Abelian =— N <G
This immediately implies the following.
Proposition 6.2. Centers are normal subgroups.
Z(G)< @G
Although kernels are not necessarily Abelian, they are indeed normal.

Proposition 6.3. Kernels are normal subgroups.

ker(f) <G

6.2 Quotient map

Now we can define the behaviour of this operation through a homomorphism
without quarrel.

Definition 6.2. The Quotient map m of a normal group N is the follow-
ing group epimorphism from the original group G to cosets of the normal
subgroup gN.

m:g— gN
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Quotient groups

Definition 7.1. A quotient group is a group G/N of unique cosets on the
normal subgroup g/N with the operation defined by the quotient map.

7.1 Examples of quotient groups

Example 7.1. Consider the additive group of integers modulo n (Z/nZ,+)
Recall that nZ < 7Z and that Z and its subgroups are Abelian, hence it is
indeed well defined. Since numbers with the same Euclidean remainder when
divided by n fall in the same coset, the cosets are Z/nZ = {nZ,1 + nZ,2 +
nZ,...,(n — 1) +nZ}

Example 7.2. The circle group (T,-), where T = {z € C' : |z| = 1} can
be represented isomorphically as a quotient group. One can show that T =
R/277Z by a result called the first isomorphism thorem.

7.2 First isomorphism theorem

We can create quotient groups given any normal subgroup. Remember that
kernels and images of homomorphisms actually form subgroups themselves;
that’s pretty neat. However can one make quotient groups with the kernel?

Lemma 7.1.

f: G — H is a homomorphism = ker(f) <G

21
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This means we can make quotient groups using kernels. So the cosets on
the kernel form their own group. Experimenting with the cosets of the kernel
brings the following lemma.

Lemma 7.2.
f:G — H is a homomorphism = [giker(f) = g2ker(f) <= f(q1) = f(g2)]

One way of interpreting this lemma is that kernel cosets correspond to
sets of elements with the same homomorphism mappings. This is the essence
of the first isomorphism theorem.

Theorem 7.1 (First isomorphism theorem for groups). Let f : G — H be
a homomorphism . Then Im(f) = G/ker(f) the following isomorphism k.

k: gker(f) — f(g)

G—>Imf)

2

G/ker(f)
Corollary 7.1.

f:G — H is an epimorphism == G/ker(f) = H
Corollary 7.2.

f: G — H is a homomorphism = [Im(f)||Ker(f)| = |G|
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Chapter 8

Cyclic Group

8.1 Properties of Cyclic Groups

Definition 8.1. A cyclic group (G, -) is a group such that there exists some
element v that can generate all other elements of the group under the opera-
tion. That is, all elements are of the form ¢g"”. We say that such a v generates

G.
(G,-) is cyclic <= Vg e G(In € ZY" = g])

If the group operator is clear, one may write the set of elements generated
by the element g as the following.

(v ={":nekZ}

Definition 8.2. Let (G,-) be a cyclic group. A generator of a cyclic group
is an element v that generates G. The order of a generator is the order of
the group that it forms.

v € G is a generator of (G,-) <= G = (V)

Finite cyclic groups of the same order are all isomorphic by the isomor-
phism f(7") = ™ (where G = (y), H = (1), hence we define a notation to
represent the unique cyclic group of order n (unique up to an isomorphism).

Definition 8.3. Cyc(n) is the cyclic group of order n
Let’s consider subgroups of cyclic groups.

Definition 8.4. A cyclic subgroup

25



26 CHAPTER 8. CYCLIC GROUP

8.2 Properties of Cyclic Groups

The following theorem greatly expands our power to work with cyclic groups
since it equates it (up to an isomorphism) to a very familiar friend.

Proposition 8.1.
Cyc(n) = Z\ nZ

Proposition 8.2. Groups of prime order are cylcic.
|G| is prime = G = Cyc(|G|)
Proposition 8.3. Subgroups of cyclic groups are cyclic.

Proposition 8.4. If d divides the order of a cyclic group, then there is a
unique cyclic subgroup of order d.

n=> ()

dln

Proposition 8.5.

Recall our beloved Lagrange’s theorem; it’s pretty cool that the order of
subgroups divide the order of the group. However, if a number divides the
order of a group, does that mean a subgroup with an order of that number
be made? This is the converse to Lagrange’s theorem, and it is not true in
general, however it turns out that this is true for prime numbers and these
groups happen to be cyclic!

Proposition 8.6 (Cauchy’s theorem). Let G be a finite group. If a prime
number p divides the order of G, then there exists a cyclic subgroup of GG
with order p.
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Chapter 9

Direct Product Groups

Definition 9.1. A product of group subsets is the set closed by multiplying
elements of two subsets together.

STCGE = ST={s-t:seSANteT}

Definition 9.2. A product group is a group (G x H, -) formed by the groups
(G,-¢) and (H,-y) with the operation as such.

(91, h1) - (92, h2) = (91 *c g2, b1 11 o)
e (G x H is the cartesian product of the group sets
e (G x H is the cartesian product of the group sets
Proposition 9.1.
M,N<GAMNON={lg} = NM<GAMxN=MN
Proposition 9.2.
HEK<GANHXK=G < HNK={lcg}) N\HK=GANK<<G

9.1 A ’Chinese remainder theorem’ for groups

Proposition 9.3. Let (n;);_; € Z be coprime integers and N = [[i_; n;.
Then Z
NZ = x7_7/niZ.

- Sylow’s theorem

29
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Semidirect Product Groups

- semidirect product group

10.1 Relationship between Direct and Semidi-
rect Product Groups

- when is a direct-semidirect map an isomorphism?

31
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Chapter 11

Symmetric Group

Definition 11.1. A permutation function on X is a bijective function o :
X — X. It represents the idea of permuting (swapping around) elements of
X.

Definition 11.2. A symmetric group is a group (Sym(X), o).
e Sym(X) is the set of all permutation functions on X
e o is the function composition operator

Definition 11.3. Sym(n) represents the symmetry group with permutations
on NN [1,n].

Proposition 11.1.
neNA|X|=n = Sym(X) = Sym(n)

Proposition 11.2.
Sym(n)] = n!

Since symmetric groups of identical orders are all isomorphic, we shall
only speak about symmetric groups in the context of Sym(n), and permuta-
tion functions are always considered on N N [1,n].

There are 3 standard notations to represent the mappings of a permuta-
tion

e Standard function notation

e Matrix notation

35
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e Cycle notation

As with any general function, a permutation is expressible as an equal-
ity of the function on its argument to its mappings, for instance, o(n) =
3 n=1
1 n=2. However, for permutations this notation grows exponentially
2 n=3
inefficient for larger symmetry groups.
The matrix notation uses a matrix where the first row indicates the in-

- . 1 . .
dexes, and the second row indicates mappings o = 12| matrix notation

- permutation group

There exists a notation of "cycles’ which is even more efficient; it describes
where to send an element, and then where to send that displaced element
to, and then the next displaced element, until the original element’s index
is filled. Not every permutation is reducible to a single cycle, however com-
position of cycles can represent any permutation; this result will be prooved
shortly.

o= (132)

Definition 11.4. A permutation group is a subgroup of a symmetric group.



Chapter 12

Cycles

- cycle notation

12.1 Cycles

Definition 12.1. A k-cycle is a permutation . A 2-cycle is calso called
a transposition. A simple transposition is a transposition that permutes
adjacent elements, so is of the form (7,7 4 1).

Definition 12.2. disjoint pairs of cycles are a pairs of cycles that permute
no element in common; they contain no element in common.

12.2 Properties of Cycles

- commutativity of disjoint cycles - all bijections have unique disjoint cycle
product representation - cycle type - conjugate cycle lemma - cycle type-
conjugation theorem

12.3 Inversions

The bubble sort algorithm is

Definition 12.3. The inversion set of a permutation is the set of all pairs
of elements that are ’out of order’ in the sense that permutation permutes

37
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some number to a larger number. Let n(o) = |I,|
I, ={(,7):1<i<j<NAo(i) >o(j)}
Proposition 12.1. ¢ is identity permutation iff n(c) =0

When two ’adjacent’ elements are permuted by a simple transposition,
the number of inversions changes by 1. This is characterized in the following
lemma.

Lemma 12.1. For a simple transposition s; and permutation o, we have the
following.

Proposition 12.2. ¢ is a product of n(o) simple transpositions.
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Alternating group

13.1 Permutation signatures

So far we have been counting the amount of simple transpositions required
to form a permutation; we can class permutations by the parity of this count.
- permutation signature

sgu(o) = (~1)"

The signature function has a codomain of two elements; by mapping -
signature homomorphism

Calculating the signature for a cycle is simply a matter of counting the
amount of elements it cycles between.
Proposition 13.1.

sgn((z1x...75)) = (_1)k71

13.2 Alternating group

Signatures of permutations serve as a function that encapsulates a notion of
‘parity’ of permutations; does it require an even or odd amount of simple
transpositions to form?

What happens when one considers the subgroup of only ’even’ signatures?
This is called the alternating group.

Definition 13.1. Alt(n) represents the subgroup of Sym(n) of permutations
with signature 1.

39
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Proposition 13.2.
n!

Ale(n)] = &

Since the signature function is a homomorphism to Z/27Z we can create
the following isomorphism by the first isomorphism theorem.

Sym(n)/Alt(n) = Z/2Z
13.3 Simple group

Definition 13.2. A simple group is a group whose only normal subgroups
are the trivial group and itself.

- simple group

Every permutation of Alt(n) where n > 3 is a product of 3-cycles.
For n > 5 Alt(n) is simple.

13.4 Cayley’s theorem

- Cayley’s theorem
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Chapter 14

Group Actions

14.1 Group Actions

Groups have thus far been very interesting to study in and of themselves,
however groups are equally interesting to study on how they can interact
with generic sets. The groups Sym(n) have permutation functions as their
object, however these permutations operate on natural numbers.

This is quite a motivating example to develop some theory of how group
elements can ’act’ on some set; imagine we want to prove things about permu-
tations that don’t move 5 around? Some of this we’ve been doing implicitly
(mutually exclusive permutations), however this idea can be generalized.

Definition 14.1. Given a group (G, -), a left group action o : G x S — S is
amap «(g,s) = g-s with the following properties for any s € S and g,h € G.

e a(lg,s)=s
o a(g,alh,s)) = a(gh, s)

We say that group G acts on S.

14.2 Orbits

Much like the idea of how cosets are a way to study behaviour of some g on
a subgroup H, we can study the behaviour of a group action with various
group arguments on a set element s. These are called orbits.

43
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Definition 14.2. Given a group action a: G x S — S, the orbit of s is the
set of element obtainable by G acting on a specific s. The set of orbits on
each set element is denoted S//G.

Gs={alg,s) : g € G}
S/]G={Gs:se S}

It is sometimes useful to curry’ group actions; this means that instead
of interpreting it as a group element and set element to make a set element,
we can think of group actions as group elements making functions from the
set to itself. These functions can be proven to be bijective.

Lemma 14.1. Orbits are equivalence classes on S.
Lemma 14.2. Orbits are either equal or disjoint.

Definition 14.3. A fized point of G is some element s such that for any
g € G,g-s=s. The set of fixed points of S under G is denoted S¢.

Definition 14.4. Given a set element x, the stabilizer is the set of all group
elements for which x is a fixed point.

G.={9€G:alg,x)=ux}
Similar to the kernel of a homomorphism, stabilizers form a subgroup.

Proposition 14.1.
G, <G

Proposition 14.2. Let f : G//G, — Gz be a function defined by f(¢G,,) =
a(g,xg). f is bijective.

This proposition informally means that the larger the stabilizer is, the
smaller the orbits are. It also means there are just as many unique cosets of
the stabilizer of = as elements in the orbit of x.

Example 14.1. Given H < G, let o : H x G — G be the group action
defined by a(h,g) = g - h=!. The orbits of this group action are simply the
left cosets. The mapping ¢ - h exhibits the same behaviour but conflicts with
the required property of group actions that a(hg, a(hy,g)) = a(hs - hy, g).
All the stabilizers are G, = {15} for this action.
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14.3 Burnside’s lemma

Group actions are very powerful for creating combinatorial arguments, among
the most prominent being Burnside’s lemma.

We have established that orbits are either equal or disjoint, and elements
of orbits of x have a bijection to cosets of the stabilizer of x. This permits
the following simple corollary.

Corollary 14.1.

S| =|S°| + > IG//G.|

z:GzeS//GNGz|>1

-Burnside’s lemma
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Groups of order p"
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Chapter 16

Sylow theorems

-Sylow p-group -First Sylow theorem -Second Sylow theorem -Third Sylow
theorem

49
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Chapter 17

Monoids

Groups are very intersting structures to study, however sometimes what we
want to model doesn’t quite have the properties of a group. There are a
range of group-like structures that relax some of the properties of a group.
Perhaps the runner up to the group is the monoid.

Monoids are essentialy groups without the guarantee of elements being
invertible. One notable place where monoids arise is category theory, where
a category of one object is a monoid.

Monoids also find wide usage in theoretical computer science, specifically
in automata theory.
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Magmas
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Chapter 19

Loops
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