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Part I

Fourier analysis
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Chapter 1

Fourier series

Fourier analysis is the fundamental field of harmonic analysis, studying func-
tions between Euclidean spaces and focusing on their trigonometric sum (or
integral) decomposition.

Abstract harmonic analysis generalizes the ideas and tools of Fourier anal-
ysis by considering more complex spaces that may require a different type of
sum (or integral) decomposition to best suit the space’s symmetry.

Trigonometric series were used notably by Euler, Lagrange, and Gauss in
various applications, however Fourier and Bessel were the first mathemati-
cians to think about them as a way of representing

1.1 Linear algebra and functional analysis

Taylor series are based on a premise that a Taylor series should have the
same derivatives as the function it models. Fourier series work by means of a
different train of thought, we’re projecting a function onto a space spanned
by infinite ’sinusoids’.

Considering this interpretation, to truly understand Fourier analysis in
all its mathematical rigour, we require some assitance from linear algebra
and functional analysis.

REFRESHER/BRIEF INTRODUCTION TO LEBESGUE INTEGRA-
TION
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4 CHAPTER 1. FOURIER SERIES

1.1.1 Inner product spaces

1.1.2 Lp spaces

Originally we learn integration as the Riemann integral; integration by parti-
tioning the domain by basic set theory. Here, we will instead use the Lebesgue
integral; integration by partitioning the range by measure theory.

Lebesgue integration offers many theoretical advantages. For Fourier
analysis, the use of Lebesgue integration is particularly important as sets
of Lebesgue integrable functions form a linear space, something Riemann
integrable functions cannot do.

1.2 Fourier series

Definition 1.1 (Trigonometric series).

b0 +
N∑

n=1

[an sin(nx) + bn cos(nx)]

N∑
n=−N

cne
inx

We will study Fourier analysis by means of the latter form.
We are familiar with the Taylor series decomposition for analytic functions

by matching derivatives at some reference point, can we also model some rich
class of functions by means of a trigonometric series? This was the exact
motivation of Fourier and Bessel.

If we restrict our attention to L1([0, 2π]) functions (complex functions
integrable on [0, 2π]), we can devise a general method by using the orthogo-
nality of trigonometric functions on [0, 2π], in other words, we can abuse the
following identities. ∫

[0,2π]

einxeimxdx = 0

Let’s say we have some function f : [0, 2π] → C and we’re hoping to
model a trigonometric series converging to f on [0, 2π].∫

[0,2π]

f(x)einxdx
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=

∫
[0,2π]

[
∞∑

n=−∞

f̂(n)einx]eimxdx

=
∞∑

n=−∞

f̂(n)

∫
[0,2π]

einxeimxdx

= f̂(n)

∫
[0,2π]

eimxeimxdx+ f̂(−n)

∫
[0,2π]

e−imxeimxdx

= 2πf̂(−n)

If we rearrange for f̂(−n) and then flip −n → n, we have a method to
calculate the coefficients we want so that the trigonometic series equals f
(well, at least for sufficiently nice functions)!

f̂(n) =
1

2π

∫
[0,2π]

f(x)e−inxdx

There’s one slightly subtle but mathematically crucial caveat to this
method; the 3rd equality swaps the infinite sum and the integral. This
cannot be done in general, so we must keep in mind that this trigonometric
series converges to f iff this sum-integral swap is permitted (we will disuss
this in further detail later).

f̂(n) =
⟨f, e−inx⟩

⟨e−inx, e−inx⟩

Definition 1.2 (Fourier series). Given a (Lebesgue) integrable complex func-
tion f , the Fourier series of f is the following related trigonometric series.

f ∼
∞∑

n=−∞

f̂(n)einx

� f̂(n) = 1
2π

∫ π

−π
f(n)e−inxdx are the Fourier coefficients

We remind the reader that a Fourier series of a function does not neces-
sarily equal the function, even if this is the main motivation for its definition
(just like Taylor series). Indeed, it is quite complicated to determine when
and in what sense (pointwise or uniformly, everywhere or almost everywhere
etc.) a Fourier series converges to its function. We will come back and answer
this question later.
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The Fourier coefficient function is worthy of much study, and it obeys
many elementary, yet interesting properties.

Proposition 1.1. � f ∈ L2 =⇒ ∥f∥22 =
∑∞

n=−∞ |f̂(n)|2

�
̂af + bgn = af̂(n) + bĝ(n)

�
̂f(x− a)n = e−inaf̂(n)

� f̂ ′(n) = inf̂(n)



Chapter 2

Fourier transform

The Fourier transform is the continous analogy of the idea of the Fourier
series coefficients.

If f equals some Fourier series, we want to find some sequence f̂(n) such
that

f(x) =
∞∑

n=−∞

f̂(n)einx

if f equals some ’Fourier integral’, we want to find some function f̂(ξ)
such that

f(x) =

∫
R
f̂(ξ)eixξdξ

The basic idea is that instead of considering a countably infinite, discrete
set of frequency functions (in our case, einx with n ∈ Z), we now consider an
uncountably infinite, continuous set of frequency functions (eixξ with ξ ∈ R).
Due to this continuous nature we end up studying an integral representation
instead of a sum representation like in the Fourier series.

In our study of Fourier series, we started with the question of finding a
trigonometric series representation if a function and finished with our solu-
tion; a method to compute the appropriate Fourier series coefficients.

For ’Fourier integrals’, we will start the other way around; we will define
the Fourier transform and then show that it is the appropriate weight for the
’Fourier integral’ as a result called the Fourier inversion theorem.

7



8 CHAPTER 2. FOURIER TRANSFORM

2.1 Fourier transform

Is there a way of determining how much of a wave is in the function? We
use a specific integral transform called the Fourier transform to recover this
information.

An integral transform is a transform (self-map) of a function space of the
following form

T {f}(t) =
∫
Ω

I(x, t)f(x)dx

� T : L1 → R is the integral transform

� f : X → Y is the input function

� I : X × T → Y is the integral transform kernel

Now let’s introduce the integral transform we need to decompose a func-
tion.

Definition 2.1 (Fourier transform). The Fourier transform is the integral
transform F on functions in L1(R) that describes how periodic functions of
frequency 2πξ are present in a function.

F{f}(ξ) = f̂(ξ) =

∫ ∞

−∞
f(x)e−i2πξxdx

� f ∈ L1 is a Lebesgue intergable function

� F{f} is the Fourier transform

Proposition 2.1.
f, g ∈ L1(R)

� F{f} ∈ L∞

� F{af + bg} = aF{f}+ bF{g}

� ∥f̂∥∞ ≤ ∥f∥1

� F{f ′} = 2πiξF{f}

� F{f} is uniformly continuous
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� F{f(x− a)} = e2πiaξF{f}

�

∫∞
−∞ f̂(x)g(x)dx =

∫∞
−∞ f(x)ĝ(x)dx

� F{f}(ξ − a) = F{e2πiaf}(ξ)

� F{f(ax)}(ξ) = 1
a
F{f}( ξ

a
)

These elementary properties may seem similar to those for Fourier co-
efficients. Indeed (no book on mathematics is complete without copious
proliferation of the word ’indeed’), we will discuss many properties of the
Fourier transform that are also applicable for Fourier series coefficients!

2.2 Fourier inversion theorem

Functional analysis have since become a major tool in the study of Fourier
analysis, since (Lebesgue) integrable functions form their own space (called
a Banach space) on which the Fourier transform is a functor.

Definition 2.2 (Inverse Fourier transform).

F−1{f}(x) =
∫ ∞

−∞
f(ξ)ei2πξxdξ

2.3 Convolution theorem (Fourier transform)

There exists a that manages to show up in many places within mathematics
and its applications, the convolution operator. Originally it found applica-
tions in the following ways.

� PDF for sum of random variables

� Solutions to the heat equation

� Superposition of signals in signal processing

When studied within harmonic analysis, mathematicians realized that
this operator has some notable, mathematically interesting properties. We
first define such an operator.
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Definition 2.3 (Convolution operator). Operator on L1(R) functions such
that the integral of f is evaluated with g as a weight function that is trans-
lated by t

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t− τ)dτ

Proposition 2.2.

(f ∗ g) = (g ∗ f)

∥f ∗ g∥1 ≤ ∥f∥1∥g∥1

Now we will lead to the big result relating to the convolution operator in
Fourier analysis. We know that F{f}+F{g} = F{f + g} due to the linear-
ity of the Fourier transform, but is there a similar result for compactifying
F{f}F{g} into 1 Fourier transform?

The answer is ’yes’, and our friend convolution comes in clutch.

Theorem 2.1 (Convolution theorem (Fourier transform)).

f, g ∈ L1(R) =⇒ F{f ∗ g}(ξ) = F{f}(ξ)F{g}(ξ)

This is good news for signal processing engineers, since they now have an
easier way to calculate the Fourier transform for their superimposed signals.It
also facilitates problems in PDEs.

2.4 Riemann-Lebesgue lemma

Intuition tells us that when a function makes heavy use of more.

If we consider our relatively nice class of L1(Rn) functions, can we say
something about how the Fourier transform must behav

Lemma 2.1 (Riemann-Lebesgue lemma). Let f be a L1(Rn) function, then
the following holds (i.e its Fourier transform’s tails tend to 0).

lim
ξ→±∞

F{f}(ξ) = 0

f ∈ L1(Rn) =⇒ lim
ξ→±∞

F{f}(ξ) = 0
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2.5 Plancherel’s theorem

Theorem 2.2 (Plancherel theorem).

f ∈ L1(R) ∩ L2(R) =⇒ ∥F{f}∥2 = ∥f∥2

2.6 Parseval’s theorem

Definition 2.4 (Parseval’s theorem). The Fourier transform is a unitary
operator.
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Chapter 3

More Fourier series

Although we’re familiar with the motive, definition, and derivation of Fourier
series, we haven’t talked about the interesting results relating to it like we’ve
done with the Fourier transform.

We’ll start by porting all the Fourier transform results that apply to
Fourier series coefficients. Recall that we calculate Fourier series for functions
on compact intervals, so the general idea to port such results over is to
consider the function on R, however mapping all domain elements outside
this compact interval to 0 (this is called giving the function ’support’). This
essentially makes the Fourier transform the Fourier series coefficient function!

Theorem 3.1 (Plancherel theorem (Fourier coefficients)).

Theorem 3.2 (Parseval’s theorem (Fourier coefficients)).

f ∈ L2 =⇒ 1

2π

∫ π

−π

|f(x)|2dx =
∞∑

n=−∞

|f̂(n)|2

One can actually solve the Basel problem by applying Parseval’s theorem
to |x| on [−π, π].

Lemma 3.1 (Riemann-Lebesgue lemma (Fourier coefficients)).

f is continuous on I ∧ f is 2πperiodic on R =⇒ lim
n→∞

|f̂(n)| = 0

3.1 Fourier convergence theorem

When does a Fourier series converge to its function?

13



14 CHAPTER 3. MORE FOURIER SERIES

Taylor’s theorem is the main result used to ensure that a Taylor series
converges to its function, it would be nice to have such an analogue for
Fourier series.

3.2 Kernels

Taylor’s theorem considers partial Taylor series as apart of its result; it is
a good start to study partial Fourier series too. We know that since it is a
finite sum that it indeed converges, so things are much nicer.

3.2.1 Dirichlet kernel

We can actually represent partial Fourier series by means of a special integral
transform on the related function f ; partial Fourier series have an integral
representation!

For an informal derivation, let’s operate under the ansatz that such a
integral transform exists, then we have the following.

N∑
n=−N

f̂(n)einx =

∫ 2π

0

f(x)g(x, t)dt

Since we know how Fourier series coefficients are calculated, we replace
the Fourier coefficient symbols with what they calculate to.

N∑
n=−N

f̂(n)einx =

∫ 2π

0

f(x)g(x, t)dt

Applying the linearity of the integral (which is possible in general since
we are considering finite sums), it becomes clear what kind of kernel our
integral transform must take!

Our kernel is
∑N

n=−N e−inx

2π
. FOr the sake of a clean notation, we can

consider partial Fourier series as the convolution of f and
∑N

n=−N einx

2π
.

Let’s make some definitions.

Definition 3.1 (Dirichlet kernel).

Dn(x) =
n∑

k=−n

eikx =
sin(n+1

2
x)

sin(x
2
)
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Proposition 3.1.

(Dn ∗ f)(x) = 2π
n∑

k=−n

f̂(n)einx

∫ π

−π
Dn(x)dx = 2π (Dn∗f)(x) = 2π

∑n
k=−n f̂(n)e

inx ∃f ′(x) =⇒ limn→∞(Dn∗
f)(x) = f(x) ∃f ′(x) =⇒ limn→∞(Dn∗f)(x) = 1

2
[f(x+)+f(x−)] ∃f ′(x)p.w =⇒

limn→∞(Dn ∗ f)(x) = f(x)

3.2.2 Fejér kernel

The Cesàro summation of the first n partial Fourier series can also be rep-
resented as an integral transform. If one were to reverse engineer under
this assumption like we did to derive the Dirichlet kernel, we would end up
discovering the Fejér kernel.

Definition 3.2 (Fejér kernel).

Fn(x) =
1

n

n−1∑
k=0

Dk(x) =
sin2(n

2
x)

n sin2(x
2
)

Proposition 3.2.

(Fn ∗ f)(x) =
2π

n

n−1∑
k=0

n∑
k=−n

f̂(n)einx

Fn(x) =
1
n

∑n−1
k=0 Dk(x) ∀x, Fn(x) ≥ 0

∫ π

−π
Fn(x)dx = 2π ∀δ ∈ (0, π) limn→∞

∫
δ<|x|<π

Fn(x)dx =

0 limn→∞ Tn(x) → Sn(x)uniformly
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Chapter 4

Hankel transform

F{f}(ξ) =
∫
Rn

f(x)e−i⟨x,ξ⟩dx

4.1 Hankel transform

For radial functions,there exists a different set of orthogonal functions that
better suits radial symmetry.

Definition 4.1 (Hankel transform). Integral transform that extends the no-
tion of Fourier transform for radial functions

Hn{f}(ρ) =
∫ ∞

0

f(r)Jn(ρr)rdr

� f ∈ L1 is a Lebesgue intergable radial function

� Hn{f} is the radial Hankel transform of order n

� Jn is the Bessel function of the first kind of order n

17
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Part II

Abstract harmonic analysis
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