
Mathematical Optimization

Zac Zerafa

September 30, 2025

iv

Contents

I Fundamentals 1

1 Optimization problems 3

2 Constraints 7

II Linear Programming 9

3 Linear programs 11

3.1 Graphical method . 12

3.2 Canonical form . 12

3.3 Application of convex analysis 13

4 Simplex method 15

4.1 Calculating arbitrary BFS . 16

4.2 Determining ’optimal’ variable 16

4.3 Ratio test . 17

4.4 Simplex method . 18

5 Simplex method revisions 21

5.1 Artificial variables . 21

5.2 Big M simplex method . 21

5.3 Two phase simplex method 21

5.4 Revised simplex method . 22

6 Duality theory 23

6.1 Dual simplex method . 24

v

vi CONTENTS

7 Sensitivity analysis on LPs 25
7.1 Cost vector entries c . 25

7.1.1 Nonbasis . 26
7.1.2 Basis . 26

7.2 Constraint vector entries b . 26
7.3 Constraint matrix entries A 26

7.3.1 Nonbasis . 26
7.3.2 Basis . 26

7.4 Additional constraint . 26
7.5 Additional variable . 27

III Nonlinear programming 29

8 Unconstrained 31
8.1 Derivative tests . 32
8.2 Gradient methods . 32

8.2.1 Steepest descent method 32
8.2.2 Newton’s method . 32

9 Constrained 35
9.1 Lagrangian relaxation method 35

IV Integer programming 37

10 Branch-and-bound method 39

11 Hungarian method 41

12 Cutting plane method 43

Part I

Fundamentals

1

Chapter 1

Optimization problems

Mathematical optimization seeks to apply mathematics to real life problems
to determine the most efficient allocation of ’resources’ (whether that be
physical resources, time, or any other abstraction of the term). The nature of
mathematical optimization may differ depending on the type of problem; the
subfield of linear programming (LP) draws extensively from convex analysis
and linear algebra, however nonlinear integer programming would require a
deeper understanding of combinatorics and number theory.

Nevertheless, the fundamentals of mathematical optimization pays some
homage to a range of definitions and concepts, most of which lie at the
interplay of elementary set theory, order theory, and algebra.

Before one even considers the use of mathematics to solve optimization
problems, they would have to resort to a framework to define their problem
in a mathematical sense. We start by developing the tools that can describe
various rules in which a resource may legally be allocated.

Definition 1.1. A dependent variable (DV) x is a variable representing some
quantity that can be changed. It often represents an amount of some ’re-
source’ available to us.

We will often use a vector x to represent the vector with the dependent
variables as entries.

Often we want to impose rules on which values dependent variables can
have. For instance, perhaps x1 should never be less than x2.

Definition 1.2. The feasible region X is the set of all permissible combina-
tions of values that the DVs may have. Elements of the feasible region are
called feasible solutions.

3

4 CHAPTER 1. OPTIMIZATION PROBLEMS

The DVs essentially provide a way of quantifying the thing we seek to
optimally distribute, and feasible regions

It’s crucial to have some method to determine how optimal elements of
the feasible region really are. This method is represented as a function, and
its its minimum or maximum.

Definition 1.3. An objective function (OF) f : X → Y is a function whose
domain is restricted to the feasible region. This function determines a way
to compare how ’desirable’ different feasible solutions are.

Definition 1.4. A goal function (GF) g : F → R is a function that maps
OFs to the ’most desirable’ element in its image. Commonly, these are either
the min or max functions.

Definition 1.5. An optimization problem is a 2-tuple (X, f, g) of a feasi-
ble regionX, an objective function f with X as its domain, and a ’goal’
set function g that states how to determine the optimal solution from the
objective function (min or max). Problems with the min goal function are
minimization optimization problems, while those endowned with the max
goal function are maximization optimization functions.

We now define what constitutes a solution to an optimization problem.

Definition 1.6. The optimal solution of an optimization problem (X, f, g)
is the following represented by z.

z = g{f(x) : x ∈ X}

Definition 1.7. An optimal parameter of an optimization problem (X, f, g)
is an element x0 in the feasible region that optimizes the OF.

x0 ∈ X is an optimal parameter of (X, f, g) ⇐⇒ f(x0) = gx∈X(f)}

Note that the optimal parameter and solution may not exist (i.e be un-
defined or unbounded; we will get to these soon), making someoptimization
problems degenerate.

One can show a special relationship between the min and max goal func-
tions that essentialy implies that the two types of optimization problems can
trivially be converted from one to another.

5

Theorem 1.1 (Min-Max equivalence). Given a minimization optimization
problem (X, f,min),the maximization problem (X,−f,−max) has the same
optimal solution and optimal parameters.

This claims that minimization and maximization differs only by a sign.
Because of this result, the majority of this book will discuss and present
theory based on minimization optimization functions.

Now let’s discuss the rather ’dissapointing’ types of optimization prob-
lems.

Definition 1.8. A minimization optimization problem is infeasible iff its
feasibility region is the null set.

(X, f, g) is infeasible ⇐⇒ X = ∅

It makes no sense to discuss how to execute an impossible task ’optimally’;
the notion of infeasibility captures this.

Definition 1.9. An optimization problem is unbounded iff for any element
of the feasible region, one can always find a more optimal element in the
feasible region.

(X, f,min) is unbounded ⇐⇒ ∀x ∈ X(∃y ∈ X[f(y) < f(x)])

(X, f,max) is unbounded ⇐⇒ ∀x ∈ X(∃y ∈ X[f(y) > f(x)])

It makes no sense to discuss how to execute an impossible task ’optimally’;
the notion of infeasibility captures this.

The notion of an optimization problem pretty much defines the scope of
this branch of mathematics; if some dilemma is reducible to an optimization
problem, the theory of this field may prove useful.

Granted, this definition of an optimization problem is quite general and
indeed encompasses many trivial problems, impossible problems, and even
problems defined in such a way thatone can do no better than a brute force
algorithm on its feasible region.

Here is a basic optimization problem to build some inuition with the
mathematical notation.

Example 1.1. John is 185cm tall and Jane is 167cm tall. A pair of Yeezys
add 3cm to one’s height and a pair or Air Forces add 5cm. Which combination
of person and pair of shoes is closest to 176cm, given that shoes must be worn?

f(x) = |176− x1 + x2|

6 CHAPTER 1. OPTIMIZATION PROBLEMS

X = {
[
185
3

]
,

[
185
5

]
,

[
167
3

]
,

[
167
5

]
}

z = min
x∈X

(f) = 4

x0 = argminx∈X(f) =

[
167
5

]
This problem in itself is kind of dull (there could be worse problems,

imagine a problem with only one element in its feasible region!), however this
notation can also express optimization problems in much more complicated
contexts.

Chapter 2

Constraints

Let’s consider the following example.

Example 2.1. Enter a God awful example here with 3 inequalities

This example does something pretty interesting; it defines its feasible
region with respect to 3 different inequalities which all have to be satisfied,
or in the fancy language of set theory and mathematical logic, it defines the
feasible region by using a conjunction of predicates in the setbuilder logic.

Definition 2.1. A constraint is some condition (technically called a ’pred-
icate’) on the dependent variables. These can be used to define types of
feasible regions so that all feasible solutions must satisfy each constraint.

One can take the notion of a constraint to create extremely bizzare (and
even ill-posed) optimization problems, however inequalities and equalities
are by far the most common type of constraint; the use of minimum and
maximum functions as well as the fact that inequalities are widely studied
constraints is precisely why order theory has so much to bestow upon math-
ematical optimization.

7

8 CHAPTER 2. CONSTRAINTS

Part II

Linear Programming

9

Chapter 3

Linear programs

A class of optimization problems that tackle a decent range of real life appli-
cations are linear programs. Indeed, linear programs form the basic theory
for more complex optimation problems.

Definition 3.1. A linear program (LP) is an optimization problem ’equiva-
lent’ to some (X, f,min), with matrix A and vectors b, c such that:

X = {x ∈ Rn : Ax ≥ b ∧ x ≥ 0}

Similarly, for (X, f,max) we have the following.

X = {x ∈ Rn : Ax ≤ b ∧ x ≥ 0}

f(x) = c⊺x

Since this matrix and pair of vectors can define a linear program, the 4-tuple
(A,b, c, g) may be used to refer to LPs.

The use of the word ’equivalent’ roughly means that the feasible region,
optimal solution and optimal parameters are the same as some optimization
problem constructed by the definition of an LP. We will delve into this idea
of LP equivalence soon.

We are already familiar with some basic LPs. Take the example from the
last chapter; we can formally represent it as an LP in the following way. -
represent the optimization prob as an LP here

Often it is the case where a real-life problem has dependent variables that
are not restricted in sign (i.e they violate x ≥ 0). Fortunately, thefollowing
fact can be used to transform it into the standard form for an LP.

11

12 CHAPTER 3. LINEAR PROGRAMS

Proposition 3.1. Any real number is the difference of two nonnegative real
numbers.

x ∈ R ⇐⇒ ∃x1, x2 ∈ [0,∞)[x = x1 − x2]

3.1 Graphical method

� Change all inequality constraints to

3.2 Canonical form

In our definition, the condition we imposed on our matrix and vectors to
form the feasible region is called the normal form of an LP. Indeed, one
can define LPs with respect to different ’forms’ which are ’equivalent’ to the
normal form; every LP in normal form has an ’equivalent’ LP with respect
to another form (note that this LP may use a different matrix than A and
vector than b); we define equivalence inthe following manner.

Definition 3.2. Let (X, f, g) and (Y, f, h) be two LPs with the same OF,
then the pair of LPs is an pair of equivalent LPs iff the feasible regions X, Y
form the same set and the LPs have the same optimal solution and optimal
parameters.

An extremely useful form to deal with LPs is the canonical form; it will
be required for an algorithm that we will investigate later.

Definition 3.3. An LP (X, f, g) is in canonical form iff

X = {x ∈ Rn : Ax = b ∧ x ≥ 0 ∧ b ≥ 0}

The proof equating canonical and normal forms is omitted, however it will
be a simple consequence of the techniques listed in this chapter. Note that
its use of equalities allows for a much easier analysis since direct methods
from linear algebra can be applied!

However how does one convert inequalities of the normal form to equalities
in the canonical form? Any inequality can be made into an equality, albeit at
the cost of introducing new nonnegative variables. These variables introduced
are called slack and excess variables.

3.3. APPLICATION OF CONVEX ANALYSIS 13

Proposition 3.2. If for two nonnegative variables we have x ≤ y, a nonneg-
ative slack variable may be added to x to acheive equality.

x, y ∈ [0,∞) =⇒ [x ≤ y ⇐⇒ ∃s ∈ [0,∞)(x+ s = y)]

If for two nonnegative variables we have x ≥ y, a nonnegative excessvariable
may be subtracted to x to acheive equality.

x, y ∈ [0,∞) =⇒ [x ≥ y ⇐⇒ ∃e ∈ [0,∞)(x− e = y)]

Slack variables are dummy variables used to represent remaining addable
quantity to reach equality. Surplus variables are dummy variables that rep-
resent excess quantity from equality.

3.3 Application of convex analysis

Now that we are able to convert any problem to canonical form, we turn to
some results from convex analysis that affect the field of linear programming.

Proposition 3.3. For any LP (X, f, g), X is convex,

(X, f, g) is an LP =⇒ X is convex

Proposition 3.4. feasible sets have optimal solution at an extreme point
feasible sets have finite extreme points

These results mean that if any extreme point can be calculated, any LP
can theoretically be solved by calculating the finite amount of extreme points,
passing them through the OF, and taking the most optimal value of this set.
Hence extreme points in an LP are called basic feasilbe solutions, due to their
potential of being a solution by the proposition.

Definition 3.4. basic feasible solution (BFS) of an LP is an extreme point
of its feasible region.

Unfortunately, larger problems have astronomical amounts of BFSs; for n
variables and m constraints, one has

(
n
m

)
BFSs in the worst case(depending

on factors such as linear dependence etc.). For a practical algorithm, one
must reduce the amount of BFSs involved.

14 CHAPTER 3. LINEAR PROGRAMS

Chapter 4

Simplex method

We shall develop a greedy algorithm that starts with some initial BFS and
seeks an ’adjacent’ BFS that is ’more optimal’. Consider m constraints and
n variables, where n ≥ m. Then we have n − m redundant variables that
may be set to zero. The remaining m variables are called the basis elements,
let them form the set B. It is most conventient to make the initial BFS that
where the slack variables are the basis elements. For a given basis B, let us
define the following notations:

� B is the matrix of columns of A corresponding to basis elements

� N is the matrix of columns of A corresponding to non-basis elements

� xB is the vector of variables corresponding to basis elements (which we
set as zeros)

� xN = 0 is the vector of variables corresponding to non-basis elements

� cB is the vector of cost coefficients corresponding to basis elements

� cN = 0 is the vector of cost coefficients corresponding to non-basis
elements

Adjacent BFSs are those that differ by a single variable; our algorithm
should jump to an adjacent BFS by determining the most optimal nonbasis
variable to enter the BFS and utilize this variable until it renders another
basis element equal to 0, essentially booting it from our BFS.

15

16 CHAPTER 4. SIMPLEX METHOD

4.1 Calculating arbitrary BFS

Assume that our LP is in canonical form, feasible solutions are solutions to
this equality.

Ax = b

Since A is not necessarily square (so there may not exist anA−1), we consider
breaking it up in the following manner.

BxB +NxN = b

Recall that we set xN = 0
BxB = b

xB = B−1b

Hence the solution of the current BFS:

xB = B−1b

4.2 Determining ’optimal’ variable

In order to consider which nonbasis element is ideal to add to the BFS, we
consider rewriting the OF to include the nonbasis elements. Although we
have officially set all these nonbasis elements to 0, it’s inclusion in the OF
gives algebraic hints as to which variable would improve our solution if we
were to include it in the BFS. To begin along this train of though, we start
by rewriting basis elements with respect to non-basis elements.

BxB +NxN = b

xB = B−1(b−NxN)

xB = B−1b−B−1NxN

Now to consider what the OF results to

z = c⊺x

z = c⊺BxB + c⊺NxN

z = c⊺B(B
−1b−B−1NxN) + c⊺NxN

4.3. RATIO TEST 17

z = c⊺BB
−1b− c⊺BB

−1NxN + c⊺NxN

z = c⊺BB
−1b− (c⊺BB

−1N− c⊺N)xN

z + (c⊺BB
−1N− c⊺N)xN = c⊺BB

−1b

We define the addend to z as the reduced cost vector. Notice that although
xN = 0, we could hypothetically ’switch on’ a nonbasis element to the basis
to potentially minimize futher. How do we choose which element will be
beneficial to add to the basis? The one associated with the largest coefficient
in the reduced cost vector is the ideal candidate; this is because the larger the
coefficient, the larger a value will be subtracted from our current ’solution’.
This gives us a method to determine which nonbasis element it would be
most desirable to ’switch on’.

ĉ⊺ = c⊺BB
−1N− c⊺N

4.3 Ratio test

Let xj be the entering variable. Now that we know that the larger we make xj,
the better our ’solution’ will become; this is essentially sending us greedily
to the next BFS. We want to make xj large enough until the constraints
force one of the basis elements to become 0; this is the sign that tells us that
we have reached the next extreme point (remember; optimal solutions are
at extreme points). To do this, we analyze this previously derived formula
linking the basis and nonbasis variables.

xB = B−1b−B−1NxN

We are trying to find out which basis element is the first to hit 0 when
increasing xj, so we can set xB = 0 and look for the smallest increase in xj

until one basis element concedes to zero; this is the basis element leaving the
basis.

0 = B−1b−B−1NxN

0 = b̂− N̂xN

b̂ = N̂xN

We then analyze each basis element individually to see which one will be the
first to buckle down to 0.

b̂i = Âijxj

18 CHAPTER 4. SIMPLEX METHOD

b̂i

Âij

= xj

This formula states how large we can make xj until basis element xi becomes
0. Therefore the first xi to become 0 is the one associated with the smallest
xj.

This is known as the ratio test ; it is used to determine which variable
leaves. The polished result is as follows.

i = argmini{
b̂i

Âij

: Âij > 0}

Now that we know how to start an LP at an initial BFS, and jump
between BFS’ in an efficient way, we can synthesize this information into a
concrete algorithm.

4.4 Simplex method

We shall now formally define the process of the simplex method. Here is the
sketch of what the algorithm should do.

� Set initial BFS where slack variables are the only nonzero variables

� Add most helpful variable to BFS (allow it to be nonzero in new BFS)

� Drop least helpful variable from BFS (force it to be zero in new BFS)

� Repeat until optimal solution acquired

The simplex method below updates the basis set B and the basis matrix
B according to the Simplex algorithm for a minimization LP in standard
form.

This is relatively straightforward to program on a modern computer, how-
ever the linear algebra required can be quite demanding if all components
are calculated directly.

A simplex method tableau is often used for human computers so that
instead of directly doing operations such as inverting B and matrix multipli-
cation, one finds only the necessary row reduction steps required to preserve
the following.

4.4. SIMPLEX METHOD 19

while maxi{(c⊺BB−1N− c⊺N)i} > 0 do
e← argmaxi{(c

⊺
BB

−1N− c⊺N)i}
l← argmini{

(B−1b)i
(B−1A)ie

: (B−1A)ie > 0}
B ← B ∪ {xe}
B ← B \ {xl}
Update B as columns of A corresponding to elements of B

end while
xB ← B−1b
z ← c⊺BxB

� Ensure columns of Â relating to basis elements are colums of identity
matrix

� Ensure indexes of ĉ⊺ relating to basis elements are equal to 0

� Ensure simplex method tableau is in cannonical form

- simplex method tableau - canonical form simplex method tableau

20 CHAPTER 4. SIMPLEX METHOD

Chapter 5

Simplex method revisions

5.1 Artificial variables

5.2 Big M simplex method

� Arrange LP into canonical form

� Add an artificial variable ai to each constraint without a slack variable

� Update OF to z = c⊺x +
∑

i Mai (where M is treated as a ’large’
constant)

� Solve the new LP with the simplex method

5.3 Two phase simplex method

� Arrange LP into canonical form

� Add an artificial variable ai to each constraint without a slack variable

� Solve the LP using the same constraints but an OF of w =
∑

i ai

� If w = 0, drop the nonbasic ai, reintroduce the OF as z = c⊺x and
continue solve using the simplex method

� If w ̸= 0, the LP is infeasible

21

22 CHAPTER 5. SIMPLEX METHOD REVISIONS

5.4 Revised simplex method

Manipulating the simplex method tableau is actually implicitly calculating
B−1 for the new BFS, and the tabelau updates how Â, b̂, ĉ⊺ based on this
new B.

The columns of Â corresponding to the initial BFS actually equals the
latest B−1. This is because the basis elements have columns of the iden-
tity matrix, and the initial BFS columns were originally the columns of the
identity matrix, therefore the must have been multiplied by B−1.

Chapter 6

Duality theory

Every LP is mathematically associated with some other ’similar’ LP called
is ’dual problem’.

Definition 6.1. Given an LP (A,b, c,min), A, c,b,max) is called its dual
LP and the original LP is called the primal LP.

Dual LPs might arise naturally in application due to having two related
LPs that work with the same values, however there is much theory that can
be stated about how the two LPs relate to one another in a mathematical
sense.

- optimality gap -The duality gap of an LP is the difference between the
optimal solutions of a prime LP and its dual LP. We will later see that this
gap iz

Lemma 6.1. The dual of the primal’s dual is the primal.

This is basically because swapping b, c in the 4-tuple an even amount of
times leaves the LP unchanged from the primal, swapping min,max an even
amount of times does the same thing.

6.1 Asymmetric dual problems

When A is not square, the dual will have more (or less) constraints and
less (or more) variables. This may cause issues with the LP being able to
be stated in canonical form; however there is a following trick to relieve the
burden of cleaning up a dual problem into canonical form.

23

24 CHAPTER 6. DUALITY THEORY

� nonnegative primal variables means dual constraint in normal form

� nonpositive primal variables means dual inequality in constraint is op-
posite that of the normal form

� Unrestricted primal variables mean equality in dual constraint.

After applying this proposition, one can use the familiar tricks of trans-
forming problems into canonical form to finish the job!

6.2 Theorems of duality

Theorem 6.1 (Weak Duality Theorem; WDT). Let P = (b,A, c, g) be a
primal problem and D the dual of P . If x and y are feasible for P and D
respectively, then the following inequality holds.

c⊺x ≥ b⊺y

Corollary 6.1. Let P = (b,A, c, g) be a primal problem and D the dual of
P . If P is unbounded, then D is infeasible.

Theorem 6.2 (Strong Duality Theorem for Linear Programs; SDT). Let
P = (b,A, c,min) be a primal problem and D the dual of P . x and y are
optimal for P and D respectively iff the following equality holds.

c⊺x = b⊺y

This result is quite powerful; it essentially says the dual LP has the same
optimal solution as its primal! When constraints are mixed and the LP
seems generally difficult, one technique is to use the simplex method on the
dual instead of the primal. The SDT ensures us that we will get the same
optimal solution as the primal, however the only thing that remains is the
optimal parameters; how can we revover them?

Assume that using SDT we have just recovered the optimal solution z∗,
we’re reduced only to the constraints z∗ = c⊺x and the primal’s constraints
regarding A and b. From here, we could use slack and surplus variables to
make all constraints equalities and solve using Gaussian-Jordan elimination!

But we’re mathematicians; the chances are that we’re too lazy to deal with
matrixes after all that simplex method (that’s assuming you were bothered

6.3. DUAL SIMPLEX METHOD 25

enough to do it by hand and not delegate the task to a computer). There is a
way to reduce the final set of constraints significantly, and it is by the grace
of the complementary slackness theorem (which really should be thought of
as a corollary of SDT rather than a theorem).

Theorem 6.3 (Complementary Slackness Theorem; CST). Let P = (b,A, c,min)
be a primal problem and D the dual of P . If x and y are optimal for P and
D respectively, then the following equality holds.

(c⊺ − y⊺A)x = 0 ∧ y⊺(b−Ax) = 0

x optimizes P ∧ y optimizes D ⇐⇒ (c⊺ − y⊺A)x = 0 ∧ y⊺(b−Ax) = 0

Perhaps this ’theorem’ initially seems like a jungle of algebra that feels
intuitive, but useless. However, this theorem gives the insight to the following
proposition.

Proposition 6.1. Let y be the optimal parameter for the dual andA : n×m
be the primal constraint matrix for the primal. yi ̸= 0 iff

∑n
k=1Aikxi = bi,

where x is the primal optimal parameter. Essentially the ith constraint
becomes an equality; this is knwon as a constraint becoming ’active’.

Using this proposition, we only need to solve the system of equations
including these ’active’ equality constraints and z∗ = c⊺x!

6.3 Dual simplex method

As previously mentined, we can leverage our duality theorems to solve a
primal by solving the dual with the simplex method, and applying SDT and
CST to reduce the problem to a (relatively) small system of linear equations.
However there is yet another way that duality theory can be used to solve
LPs.

The simplex method tries to iteratively optimize a BFS while keeping in
the feasible region, however since feasibility of a primal problem is equivalent
to feasibility of a dual problem, could one iterate a simplex method that
ensures dual feasibility? This is known as the dual simplex method ; it works
almost identically to the simplex method, except that one finds the leaving
variable first using b̂ and the entering variable second using the ratio test
with ĉ⊺.

26 CHAPTER 6. DUALITY THEORY

� When optimal but not feasible, apply simplex method but by finding
leaving variable first by ratio test on ĉ⊺ and then entering by choosing
optimal element in b̂.

� When feasible but not optimal, apply regular simplex method.

Chapter 7

Sensitivity analysis on LPs

Often one may need to make slight adjustments to an optimization problem
to reflect new conditions (cost of resource rises, amount of resources avail-
able depletes etc.). Sensitivity analysis studies how an optimization problem
may be modified while retaining its feasible region, optimal solution or both.
Here we discuss sensitivity analysis in the context of LPs; of which common
modifications are the following.

� Small changes for entries of c

� Small changes for entries of b

� Small changes for entries of A

� Appending a new constraint

� Appending a new variable

7.1 Cost vector entries c

Small changes in c change the LP in different ways depending on whether
the entry of c being changed is associated with a basis variable in the final
tableau. Hence we will discuss the case of modifying nonbasis coefficients
and basis coefficients separately.

27

28 CHAPTER 7. SENSITIVITY ANALYSIS ON LPS

7.1.1 Nonbasis

c′⊺N = c⊺N + (∆cN)
⊺

(∆cN)
⊺ − ĉN ≥ 0 =⇒ doesn’t change optimal solution

7.1.2 Basis

c′⊺B = c⊺B + (∆cB)
⊺

(∆cB)
⊺B−1N+ ĉN

⊺ ≤ 0 =⇒ doesn’t change optimal solution

7.2 Constraint vector entries b

b′ = b+∆b

B−1(b+∆b) ≥ 0 =⇒ doesn’t change feasible region

7.3 Constraint matrix entries A

7.3.1 Nonbasis

A′
j = Aj +∆Aj

ĉ⊺j + c⊺BB
−1(∆Aj) ≥ 0

7.3.2 Basis

The case where the entry is in a basis column is quite complex. Sherman-
Morrison formula

7.4 Additional constraint

Check that optimal solution satisfies new constraint, if so optimal solution
unchanged. if not, use row reductions to get in canonical form and add to
tableau as a basis element. Note that it may be infeasible; in this case,
continue using dual simplex method.

7.5. ADDITIONAL VARIABLE 29

7.5 Additional variable

If (for a min problem) c⊺BB
−1Aj − cj ≤ 0, it can safely be entered into

nonbasis without changing optimal solution, otherwise enter column B−1Aj

into final tabealu and c⊺BB
−1Aj − cj into reduced cost and continue simplex

method.

ĉB
⊺B−1Aj − c⊺j ≤ 0 =⇒ nonbasis entry doesn’t change optimal solution

30 CHAPTER 7. SENSITIVITY ANALYSIS ON LPS

Part III

Nonlinear programming

31

Chapter 8

Unconstrained

For LPs, using the theory of convex analysis and linear algebra, we have the
simplex method; an algorithm that derives the solution for that optimization
problem. We can them preoccupy ourselves about reducing time complex-
ity and understanding how ’continuously’ changing the LP changes feasible
regions and optimal solutions (sensitivity analysis).

A Nonlinear Program (NLP) is an optimization function where the OF is
possibly a nonlinear function, and the feasible region is defined by constraints
of function inequalities that are not necessarily linear. For example, an NLP
might have a linear OF but nonlinear constraint (or some constraint linear,
others not), or it might have a nonlinear OF but all constrains linear, or in
the worst case, nothing being linear at all.

Basically, at least one thing has to be nonlinear.
As one can imagine, this complicates matters imensely. LPs don’t vary

much in behaviour, but NLPs are built different; the variation between NLPs
means that a ’one-size-fits-all’ solution like the simplex method is not going
to happen.

Real analysis, convex analysis, vector analysis, linear algebra and many
other branches offer some critical theory in developing methods to solve
NLPs, but alas, since generic functions are so diverse in behaviour we of-
ten resort to numerical methods to approximate the solution. Even so, this
all assumes that the functions we’re dealing with have some ’nice’ properties
like continuity and differentiability!

So we concede a little bit; we’re going to conduct analysis on NLPs that
are unconstrained, that is, their feasible regions are intervals, rectangles,
entire spaces, and other types of nice convex sets.

33

34 CHAPTER 8. UNCONSTRAINED

- define NLPs as optimization problems as (x, f, g) Where X = {x : ∀i ∈
N∩ [1, n]ai(x) ≤ 0} Where at least one of the ai or f isa nonlinear function.

8.1 Derivative tests

Proposition 8.1. x is a minimum of f iff f ′(x) = 0 and f ′′(x) > 0.

Proposition 8.2. x is a minimum of f iff∇f(x) = 0 andH(f(x)) is positive
semi-definite.

Recall that one can check if a matrix is positive semi-definite by checking
that all its eigenvalues are positive.

8.2 Gradient methods

8.2.1 Steepest descent method

� ε is the tolerance

� f is the multivariate differentiable function to be minimized

while ∥∇f(x)∥ < ε do
d← −∇f(x)
t0 ← argmint>0f(x+ td)
x← x+ t0d

end while

8.2.2 Newton’s method

� ε is the tolerance

� f is the multivariate differentiable function to be minimized

8.2. GRADIENT METHODS 35

while ∥∇f(x)∥ < ε do
x← x−H(f(x))−1(∇f(x))

end while

36 CHAPTER 8. UNCONSTRAINED

Chapter 9

Constrained

9.1 Lagrangian relaxation method

37

38 CHAPTER 9. CONSTRAINED

Part IV

Integer programming

39

Chapter 10

Branch-and-bound method

41

42 CHAPTER 10. BRANCH-AND-BOUND METHOD

Chapter 11

Hungarian method

43

44 CHAPTER 11. HUNGARIAN METHOD

Chapter 12

Cutting plane method

45

46 CHAPTER 12. CUTTING PLANE METHOD

