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Numerical methods
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For many problems of mathematical analysis, an analytic solution is un-
available and hence one may resort to numerical solutions. The general
approach is to use a numerical method that converges towards the solution.

Definition 0.1. Given a well posed problem F (x, y) = 0 with F : X×Y → R
and with some locally Lipshitz function from X to Y at every solution (x, y),
a numerical method is a sequence of problems (Fn(xn, yn) = 0)n∈N. In other
words, it is a sequence of (hopefully easier or analytically solved) problems
whose solutions are used to approximate the problem F (x, y) = 0.

Numerical methods with the same objective may differ in quality, primar-
ily with regard to:

� Numerical stability

� Rate of convergence

Numerical stability refers to whether...
A numerical method’s rate of convergence describes, the rate at which

absolute error decreases as the numerical method progresses to subsequent
terms. Higher rates of convergence are highly desirable

A numerical method’s rate of convergence describes
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Chapter 1

Errors

One can analyze the efficacy of a numerical method by observing its error
after n steps. There are two main ways in which error is quantified.

Definition 1.1. The absolute error of an estimation is its distance to the
true value.

∥x− ξ∥

Definition 1.2. The relative error of an estimation is its distance to true
value divided by the norm of the estimation.

∥x− ξ∥
∥x∥

� Approximation (the use of an approximate function induces error)

� Truncation (error from terminating numerical method that converges
to true value)

� Roundoff (error due to limitations of model of computation to store the
true value)

� Statistical (error due to the randomness of a random sample possibly
employed in the numerical method)

1.1 Roundoff error

In Python, 100000000000000000 is recognized as the same number as 100000000000000001.
This is clearly false mathematically, however this phenomena occurs in real

5



6 CHAPTER 1. ERRORS

application. This is due to the limited storage space designated to a number
on a PC, meaning that only a finite amount of numers are recognizable. Dif-
ferent implementations have different consequences, however this phenomena
is a downside of floating-point arithmetic specifically.

This book aims to discuss numerical analysis in a theoretical, mathemat-
ical environment, and Turing machines (basically ’theoretical computers’)
do not have issues with roundoff error. That said, if one wants to create a
mathematical environment that emulates roundoff error, one can introduce
a quantity called machine epsilon.

Definition 1.3. The machine epsilon ε of some model of computation is an
upper bound on relative approximation error. A model of computation with
machine epsilon ε cannot distinguish x, y if |x− y| < |x|ε

1.2 Approximation error

Many numerical methods draw from approximation theory to use similar
functions that are ’nicer’ to make calculations.

1.3 Truncation error

Numerical methods are employed in algorithms, and ideally the algorithms
we use should terminate (at least in the context of numerical analysis).

� Finite iterations

� Reaching predefined tolerance

When a certain amount of error is acceptable, and one has an infinite nu-
merical method, one may be able to calculate a value with arbitrary tolerance
to the true value.

Definition 1.4. The tolerance ε is a value reperesenting the maximum error.

∥x− ξ∥ ≤ ε
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2. rate of convergence - Rate of convergence - Aitken’s delta squared
process
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Part II

Interpolation and
Approximation theory
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Chapter 2

Interpolation

Often one has a function of discrete ’data points’ to evaluate a function from,
however if one seeks to evaluate a function at a point between the given data
points one resorts to interpolation; extending a function of discrete data
points to a continuous domain to evaluate points within the range of the
data points.

If one wishes to evaluate points above the largest data point or below the
smallest data point, this becomes a problem of extrapolation.

2.1 Lagrange polynomial interpolation

Consider a vector x of domain elements with each entry mapped to the image
element in y. Note the following.

yi = f(xi)

U = {(x1, y1), . . . , (xn, yn)}

ℓn(x) =

∏
i ̸=n(x− xi)∏
i ̸=n(xn − xi)

f(x) =
n∑

k=1

ykℓk(x)
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2.2 Vandermonde polynomial interpolation

Consider a vector x of domain elements with each entry mapped to the image
element in y. Note the following.

yi = f(xi)

Like Lagrange interpolation, we will attempt to use the theory of poly-
nomails to interpolate f .

Proposition 2.1. For a set of n mappings of distinct domain elements ,
there is a unique polynomial of order n−1 that interpolates these mappings.

This gives rise to a strong idea; assume an n− 1 degree polynomial and
solve for its coefficients. This can indeed be reduced to system of linear
equations and hence a simple matrix equation. We can express this problem
by means of the Vandermonde matrix.

Definition 2.1. A Vandermonde matrix V is a matrix of the first n powers
of a set of real numbers.

V(x) =


1 x1 x2

1 . . . xn
1

1 x2 x2
2 . . . xn

2
...

. . .
...

...
1 xn x2

n . . . xn
n


V(x)ij = xj

i

We can now start to see that the vector of coefficients c is subject to
V(x)c = y. i have foreshadowed that there must exist a n− 1 degree poly-
nomial, so it must be that V(x) is invertible. Indeed, this checks out by the
following proposition.

Proposition 2.2.

det[V(x)] =
∏

0≤i<j<n

(xj − xi)

Since we’re dealing with distinct domain elements, the determinant is
nonzero and hence invertible. We’re then left with the following interpolation
formula.

f(x) =
n∑

k=1

(V−1(x)y)kx
k
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2.3 Spline interpolation
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Chapter 3

Approximation theory

3.1 Taylor series approximation

- Taylor series approximation

f(x) =
n∑

k=0

f (k)(0)

k!
xk

3.2 Padé approximant

3.3 Stirling’s formula
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Part III

Numerical differentiation and
integration
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Chapter 4

Numerical differentiation

4.1 Forward difference

4.2 Backwards difference

4.3 Balanced difference

4.4 Higher order methods
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Chapter 5

Numerical integration

5.1 Riemann sum

The definition of a Riemann integrable function offers a natural∫ b

a

f(x)dx ≈
n∑

k=1

f(xk)h

h =
b− a

n
xk = a+ nh

5.2 Trapezoidal rule

To reduce the error, one can consider the use of trapezoids along the mesh;
hence the integral is estimated as a linear function over each partiton rather
than as a constant function.∫ b

a

f(x)dx ≈
n−1∑
k=1

f(xk)h

h =
b− a

n
xk = a+ nh

fk =
f(xk) + f(xk+1)

2
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5.3 Refined trapezoidal rule

One can remodel the trapezoidal rule as an algorithm where tolerance is
specified rather than the mesh refinement. The crux of the idea is to double
the refinement of the mesh until the absolute error from the previous iteration
is within tolerance, however there are two standard methods for iterating the
algorithm:

� Weighted sum of previous value and Riemann sum with ’doubly refined
mesh’

� Calculating trapezoidal rule for ’doubly refined mesh’

hn =
b− a

2n

xn,k = a+ khn

I0 =
f(a) + f(b)

2
(a− b)

In+1 =
In
2

+
hn+1

2

2n+1∑
i=1

f(xn+1,i)

5.4 Romberg integration

One can perform a series acceleration technique known as Richardson extrap-
olation to derive higher order schemes for numerical integration. The use of
this technique in numerical integration is formalized as Romberg integration.

5.5 Simpson’s rule

The theory of Romberg integration allows us to develop higher order schemes
than the trapezoidal rule (0-order). Simpson’s rule is the 1-order algorithm
in the Romberg integration scheme, and is otherwise observed by fitting
quadratics to each partition rather than lines.



Chapter 6

Advanced methods

6.1 Gauss-Legendre integration

An idea with strong link to functional analysis and the idea of orthogonal
polynomials allows the realization of an extremely powerful method of numer-
ical integration. We develop our theory within the Hilbert space L2([−1, 1])
(this just means we’re going to consider integration problems on [−1, 1]; one
can do the change of variables later).

Consider a function f that can be represented well by a polynomial
interpolation h. Let (Pn)n∈N be the Legendre polynomials. Recall that∫ 1

−1
Pn(x)x

kdx = 0

By Euclidean polynomial division, we may have h(x) = q(x)Pn(x)+r(x),
where ∫ 1

−1

f(x)dx ≈
∫ 1

−1

h(x)dx

=

∫ 1

−1

q(x)Pn(x) + r(x)dx

=

∫ 1

−1

q(x)Pn(x) + r(x)dx

=

∫ 1

−1

r(x)dx
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Since r is a polynomial of degree less than n, it can be interpolated exactly
by some Lagrange interpolation.

r(x) =
n∑

i=1

ℓi(x)r(xi)

=

∫ 1

−1

n∑
i=1

ℓi(x)r(xi)dx

=
n∑

i=1

r(xi)

∫ 1

−1

ℓi(x)dx

wi =

∫ 1

−1

ℓi(x)dx

=
n∑

i=1

r(xi)widx

This is close, however we want to deal with the function h instead of r;
how can we pick the xi so that r coincides with h? Returning to the equation
h(xi) = q(xi)Pn(xi) + r(xi), we can see that one way to do this is by letting
xi be the zeroes of Pn! ∫ 1

−1

f(x)dx ≈
n∑

i=1

f(xi)widx

With the change of variables, we get the following.∫ b

a

f(x)dx =≈ b− a

2

n∑
i=0

wif(
b− a

2
ui +

a+ b

2
)

6.2 Monte Carlo integration

To integrate for higher dimensions, one approach is to ’nest’ singular di-
mension integrals by setting n − 1 variables as constants, integrating over
this function, changing these n − 1 variables slightly, integrating again etc.
Needless to say, this becomes quite computationally expensive.
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Probability theory offers a unique approach to integration that converges
relatively slowly, however scales well for higher dimensions. It is an inter-
esting consequence of the law of large numbers that states that the volume
(’size’ of the domain of integration) multiplied by mapings of random points
within that volume equals the desired integral. This is known asMonte Carlo
(MC) integration.

plimn→∞

∑n
i=1 f(ui)

n
=

∫
Ω

f(x)dx

Ω is the domain of integration (and simultaenously the sample space we
will sample on) U ∼ U(Ω) is a random variable with a uniform distribution
on Ω (ui) is a sequence of random samples of U λ(Ω) represents the ’volume’
of Ω (technically the Lebesgue measure of Ω)

In practice, if one cannot generate uniform samples over the domain, a
change of variables might be required; similar to Gaussian-Legendre quadra-
ture.

There are methods that seek to reduce the error introduced by the nature
of randomness, a prominent example being MC variance reduction.
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Part IV

Numerical solutions to
differential equation
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- Euler’s method - midpoint method - Runge-Kutta method
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Part V

Root finding methods
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- corrollary of IVT (bracketing method) - bracketing method - bisec-
tion method (IVT) - secant method - forward difference - backward differ-
ence - central difference - Newton-Raphson method - false position method
- Dekker’s method - Brent’s method
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Part VI

Numerical solutions to systems
of equations
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- power method
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Chapter 7

Power method

It is possible to solve the eigenequation Av = λv analytically by the char-
acteristic equation, however this can be computationally expensive since it
requires calculating the determinant.

The power method is a numerical method that converges to the normalized
eigenvector with the largest eigenvalue.

while ∥u− v∥ ≤ ε do
u← v
v← Av

∥Av∥
end while

39



40 CHAPTER 7. POWER METHOD



Chapter 8

Inverse power method

Perhaps one wants the eigenvector associated with the smallest eigenvalue.
Sincethe eigenequation Av = λv can be written equivalently as A−1v =
1
λ
v, and the power method converges to the eigenvector with the largest

eigenvalue, employing the power method on the form A−1v = 1
λ
v returns

the eigenvector with the largest 1
λ
, or equivalently, with the smallest λ!

This is called the inverse power method.

while ∥u− v∥ ≤ ε do
u← v
v← A−1v

∥A−1v∥
end while
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Chapter 9

QR iteration

while Change this do
A := QR
A← RQ

end while

- QR iteration - sparse matrix A sparse matrix is an n × m array that
has may zero entries. In such cases, there may be more memory efficientr
structures like a COO where one stores the row, column and data of a matrix
entry. Or a CSC which stores the data of each matrix entry ordered by
coulmn, and uses an array of ranges to determine which section COO w

� Row array

� Column array

� Data array

� Row array

� Data array (ordered by column)

� ’Column range’ array

- Arnoldi iteration
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Chapter 10

Arnoldi iteration

for Change this do
qk ← Aqk−1

for Change this do
qk ← qk − (q∗

kqk)qk

qk+1 ← qk

∥qk∥
A← RQ

end for
end for
Augment each qk column-wise to create H
Perform QR decomposition on H
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Part VII

Numerical optimization
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10.1 Bracketing method

Before attempting to optimize a function, a bracketing method should be run
on the interval of interest. This helps narrow down the bracket considerably
before even attempting an specialized method.

The idea is to split an interval into fine partitions, and for each mesh see
if the sign of the gradient from beggining to midpoint differs from that of
midpoint to end. - bracketing method - numerical derivative test

10.2 Golden section search

Given a bracket containing a minimum, one aims to find a way to shrink this
bracket.

� the two regions should have equal length

� the ratio of the nonoverlapping part of the region to the bracket the
should be invariant for each iteration

These conditions imply that a region should take up 1
ϕ
of the bracket

length.
For the minimum problem, if the function is seen to increase from the

edge of region 2 to the edge or region 1, bracket the minima in region 1. Else
bracket it in region 2.

10.3 Jarratt’s method

Since quadratic functions are easy to minimize, one idea is to interpolate
the function on its bracket as a quadratic, take the analytical mininum,
and use that result to shrink the bracket. Jarrat’s method embodies this
concept. Quadratic interpolation - golden section search - Brent’s method
(optimization) - Direction set method - Powell’s method - Nedler-meadle
method
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