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Naive Set Theory






Chapter 1

Sets

At the beggining of the 19th century, mathematicians sought to create a
robust mathematical framework that ensured consistent proofs, propositions
and algorithms. To do this, they had to create general, unambiguous, and
well-formed definitions and axioms throughout mathematics. Formalizing
mathematical logic would be the first step, however there would need to
be some ’intermediate’ field of mathematics that defines objects on which
mathematical logic can state propositions on.

Georg Cantor has created a paradise which connects almost all the rest of
mathematics between eachother and to mathematical logic (the notable ex-
ception being type theory; an alternative to set theory). Philosophically, set
theory is extremely fundamental and powerful, so having a strong command
of it is an essential tool for every mathematician.

Indeed, there are many ways to go about establishing set theory depend-
ing on one’s philosophy on how mathematics 'should’ be (this is a topic in
its own), however the earlierst step forward was the development of naive set
theory.

Georg Cantor’s development of set theory contained some paradoxes,
leading it to be called naive set theory. Axiomatic set theories such as ZFC
(Zermelo’s Fried Chicken?!?) fix these paradoxes, however naive set the-
ory gives a mostly correct intuition as well as the proper language to make
branches of mathematics rigorous. As we study naive set theory, we’ll allude
to its limitations due to some noteworthy paradoxes.

We now commence our journey through Cantor’s paradise.
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1.1 Sets

A mathematical object is anything that can be well defined in mathematics.
They include numbers, functions, geometric objects, spaces (linear spaces,
topological spaces, measure spaces etc.), algebraic strucutres (groups, rings
etc.) and even (or perhaps especially) sets themselves.

Then Cantor said, ”Let there be sets,” and there were sets. And Cantor
saw that the sets were good.

Definition 1.1. A set is an unordered collection of unique objects (one
cannot have two instances of the same object in the same set). Mathematical
objects within a set are called elements of the set.

Typically capital case letters are used to symbolically represent sets. One
may also specify a set using curly brackets around the objects, for example,
{1,2,3,4,5} is the set containing integers 1 through to 5.

Example 1.1.
2

Z = {4,6502, 64, %}

Example 1.2.
N=1{0,1,2,3,4,5,...}

Example 1.3.
V ={AEILO,U}

Although the idea of a set is simple, extremely complicated sets with
unintuitive properties can be formed. We have seen that sets can be specified
by exaustively listing each of its elements, however one can use a logical
statement to determine which elements lie within a set; this is known as set
builder notation.

X = {z: P(z)}

Example 1.4.
P = {n € N:nis prime}

Definition 1.2. A disjoint pair of sets are a pair of sets A, B that share no
elements in common. We say that A and B are disjoint.
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1.2 Examples of sets
The most basic set is the emptyset; a set which contains nothing.

Definition 1.3 (Empty set). The emptyset is the set containing no elements.
It is denoted as ()

Definition 1.4 (Singleton). A singleton is a set containing 1 element. If
this element is x, the singleton is often denoted as {z}.

1.3 Subsets

Definition 1.5. Let X be a set, then Y is a subset of X if all the elements
of Y are in X, or in other words, the elements of Y form a part of X.

YCX <= VyeY[yeX]

Definition 1.6. The powerset of a set X is the set of all subsets of X. It is
denoted as P(X).
P(X)={Y: Y CX}

1.4 Cardinality

Definition 1.7 (Cardinality of a set). The cardinality of a set X is the
number of elements within X. It is denoted as |X]|.

One interesting question to ask is what cardinality sets of infinite elements
have. The truth is that there are different types of ’infinities’, and therefore to
do proper analysis on these sets we require more theory; this will be covered
in part 3.

Some observations can be made using all this theory that we have devel-
oped

YCX = Y] <|X|

P(X) = 2Xl

- combina - universe of discourse
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1.5 Set operations

1.5.1 Intersection

ANB={x:x€ ANz € B}
ANB=BnNA

|AN B| < min{|A],|B|}
Where 'min’ refers to the smallest element of this set, see Order Theory.
BCA = ANnB=B

Intersections allow us to formally define the disjoint property between
sets.

Definition 1.8. A disjoint pair of sets are a pair of sets A, B that satisfy
AN B = 1. In other words, they share no elements in common.

1.5.2 Union

AUB={z:x€ AVz € B}
AUB=BUA

AN B| > max{| Al |BJ}
BCA— AUB=A

1.5.3 Complement
A ={z:2¢ A
(AE =4

1.5.4 Set difference
A\B={zx:x€ ANz ¢ B}
A\B=AnNB

(A\B)C A
A\ Bl < [4]
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1.5.5 Cartesian product
Ax B={(a,b):ac ANDeE B}

|Ax B| = |A]|B]
|A x B| = |B x A]

- symmetric difference

1.5.6 De morgan’s laws (set theory)

1.6 Closure operators

X C c(X)
cl(cl(X)) = el(X)
XCY = cl(X) Ccl(Y)

Related to topological closure of a set. Also have use in universal algebra.

1.7 Covers

Definition 1.9 (Cover). A cover of X is a family of sets C = (S;);c; whose
union is a superset of X.

XQUSi

Covers appear in branches of mathematics such as topology and measure
theory.

1.8 Partitions

Definition 1.10 (Partition). A partition on X is a family of sets P of subsets
of X such that all the following hold.

0¢P

UPeP P=X
Any two distinct sets in the partition are disjoint.
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Definition 1.11. A partition A is a refinement of B iff every a € A is a
subset of some b € B. We say that A is finer than B and B is coarser than
A.

1.8.1 Russel’s paradox



Chapter 2

Other collection objects

2.1 Multiset

Here is a useful set-like object which is crucial to combinatorics.

Definition 2.1. A multiset is an unordered collection of objects, where the
same object may have multiple instances. Unique objects within the multiset
are called elements of the multiset The amount of instances of an element is
called its multiplicity.
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Chapter 3

Relation

3.1 Relation

Sometimes we wish to describe that 2 objects are 'related’ in some way;
maybe they share a specific property, and we want a set to keep track of all
pairs of ’similar elements’. This leads to the idea of a relation.

Definition 3.1. A relation is a set R of ordered pairs from two sets. We use
the notation xRy to say that (x,y) is in R, meaning that x is R-related to y.

Risarelationof X xY <— RC X xY

tRy < (z,y) € R

3.1.1 Examples of relations

We are familiar with a few relations already.

Example 3.1. The following is a relation that relates real numbers that are
equal to eachother.

E={(z,y) eRxR:z=y}

In this relation, each x is related only to the y equal to it; it’s kind of a trivial
relation.

11
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Example 3.2. The following is a relation that relates real numbers with real
number less that or equal to it.

L={(z,y) eRxR:z <y}
In this relation, each x is related to an infinite amount of .

Example 3.3. The following is a relation that characterizes cartesian coor-
dinates on the unit circle

L={(z,y) eERxR:2*+y*=1}
In this relation, each x is related to at most 2 y.

Relations don’t even need to have deep mathematical properties; they
simply need to be subsets of the cartesian product of two sets!

Example 3.4. The following is an example relating my sister an I to our
favourite numbers.

F = {(Zac,64), (Zac,6502), (Zac,4), (Alyssa, 6), (9) }

This is a subset of {Zac, Alyssa} x N, hence it is a relation.

3.2 Function

We now look to study a special type of relation that is still quite general, but
as we will later see is particularly interesting regarding the things we can say
about them.

These kind of relations give every element in the first set strictly 1 map-
ping, and are called functions.

Definition 3.2. A function is a relation f where no two ordered pairs have
the same first element. Since functions relate every element from the first
entry of the ordered pair only once, we can denote the y such tht zfy as

().

fis a function <= f is a relation AV(z,y),(z,2) € fly = 2]

fl@)=y <= afy
Functions are perhaps the most interesting objects in mathematics; just
ask Thomas Garrity https://youtu.be/zHU1xH60gs4?si=13G81IifMUrq8sP9.
Because of their special status and properties, they are often described using
different notations to relations; more on this later.


https://youtu.be/zHU1xH6Ogs4?si=i3G81IifMUrq8sP9
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3.3 Equivalence relation

Readers familiar with some number theory know that 7 = 2( mod 5), al-
though obviously 7 # 2. Readers familiar with Star Wars know that Anakin
Skywalker is Darth Vader, but Darth Vader often exclaims that he isn’t
Anakin and that ” Anakin Skywalker is dead”.

The point is that in certain contexts, distinct (unequal) objects may ex-
hibit identical behaviour. 7,2 are ’equivalent’ in Z \ 5Z, and ’from a certain
point of view’ Darth Vader is Anakin.

Relations that seek to relate entities that are the same from a certain
point of view’ are called equivalence relations, and are defined as relations
that obey the 3 properties of reflexivity, symmetry, and transitivity.

Definition 3.3. An equivalence relation ~ is a relation that is reflexive,
symmetric, and transitive. It generalizes the properties that equality has.

~ is an equivalence relation <= ~ is symmetric, reflexive and transitive

~ is an equivalence relation <= Vz € X[z ~ z|A\Vz,y € X[z ~y = ~ z]|Aforallx,y,z € X[z ~ 1

R is reflexive <= Vx € X, zRx
R is symmetric <= (Vz,y € X, 2Ry — yRx)
R is antisymmetric <= (Vz,y € X, 2Ry ANzRy — = =1y)
R is transitive <= (Vx,y,z € X, 2Ry NyRz — xRz)

Definition 3.4. An equivalence class of an element a is the set of all elements
that an equivalence relation deems 'equal’ to a.

a] ={r e X :a~zx}

Proposition 3.1.

Proposition 3.2. Equivalence classes form partitions.
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Chapter 4

Functions and Maps

4.1 Functions

Authors may differentiate between a ’function’ and a 'map’, but they are
really the same thing; 'map’ tends to be used for special types of functions
but in this text the definitions are synonymous. Generally the term "function’
will be used, unless the function in question is conventionally referred to as
a map.

Functions were defined earlier as a special type of relation. We further
study the different range of functions that exist

Definition 4.1. map is a synonym for function; this word is favoured when
the is associated with a ’special structure’ (like linear spaces, topological
spaces, groups, rings, and so; don’t worry if you don’t know what these are).

Definition 4.2. A homomorphism is a map between ’special structures’ that
preserves the behaviour of

Definition 4.3. The domain of a function is the set of all well defined inputs
for the function.

f: X =Y = Dom(f)={xe X: f(z) is well defined}

Definition 4.4. The predomain of a function is the set representing the
‘space’ of which the domain is a subset of.

f: X —-Y = X is the predomain of f

15
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Definition 4.5. The codomain of a function
f: X =Y = Codom(f)=Y

Definition 4.6. The image of a subset is the set of all outputs the function
has mapped to some subset of its domain.

fU) ={f(u) :ueU}

The tmage of a function is the set of all outputs the function has mapped to
its domain elements.

Im(f) = {f(z) : € Dom(f)} = fldom(f)]

Definition 4.7. The preimage of a subset is the set of all inputs the function
has mapped to some subset of its image.

fHU) = {z € dom(f) : f(x) € U}

Fibers are preimages of a singleton.

7 ({u}) = {z € dom({f) : f(2) = u}

The term ‘range’ is used ambiguously to denote either the codomain or
image; from my experience it is used informally in contexts where the image
is equal to the codomain. Consider the function f : R — R defined by
f(z) = 2% — 3z, indeed Im(f) = Codom(f) = R, hence no confusion can

occur on the function’s range’.

4.2 Types of functions

Functions can differ significantly regarding what type of objects it maps in
its domain and image. Functions might also obey certain specific properties
on how domain elements are mapped, however we can discuss some general
properties of functions that rely on no other mathematics other than set
theory.

Definition 4.8 (Injective function). An injective function

f is injective <— f(x)=f(y) <= ==y
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Definition 4.9 (Surjective function). A surjective function
f is surjective <= Vy € Codom(f)3z € Dom(f)[f(z) = y]

Theorem 4.1. If a function is surjective then its image has the same cardi-
nality as its codomain.

f is surjective = |Im(f)| = |Codom(f)|

Definition 4.10 (Bijective function). A bijective function is a function that
is both injective and surjective.

f is bijective <= f is injective A f is surjective

Theorem 4.2. If a function is surjective then its domain the same cardinality

as its range.
f is bijective = |Im(f)| = |Dom(f)]

Definition 4.11. The composition operator o is a (go f) = g(f(x))
Definition 4.12. An inverse function of f
Theorem 4.3. A function is invertible iff it is bijective.

Definition 4.13. An operation is a function whose domain is the same set
as its image.

Definition 4.14. An n-ary function is a function that takes n arguments.
n is called the arity of this function.

Definition 4.15. Given a function f, a fized point xq € dom(f)
xg is a fixed point of f <= f(xg) = o

4.3 Indexed families

Sets are powerful objects; we’ve been able to develop much of mathematics
through their grace. However, sets are limited in that they are unordered
and can only hold one ’instance’ of some mathematical object (i.e sets don’t
allow repetition of elements). The theory of functions can build upon the
notion of a set to allow ’ordered collections’ structures.

Definition 4.16. An indezed family is a function f: I — X (z;)ier or (x;)

Definition 4.17 (n-tuple (function definition)). An n-tuple (also called a
sequence) is an indexed family indexed by a set of n elements.

Definition 4.18 (Ordered pair). An ordered pair is a 2-tuple.
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4.4 Tuples and sequences

Definition 4.19 (n-tuple (collection definition)). An n-tuple is an ordered
collection of objects, where the same object may appear multiple times. The
kth object in the tuple is called the kth term of the n-tuple.

Definition 4.20. The characteristic function of S on U is the function yg :
U — {0,1} with S C U defined in the following manner.

1 z€8
XS(x)z{O x ¢S



Chapter 5

Cardinality

The fundamentals of cardinality have been stated previously, however the
deeper ideas associated with cardinality were inaccessible to us without first
learning more about functions. Sets of infinite elements may not necessarily
be of the same ’size’; some infinities are 'larger’ than others. This intriguing
fact is the first item on our agenda.

5.1 Countable sets

Definition 5.1. A countable set is a set that either has a bijection to N or
has finite cardinality.

Definition 5.2. A countably infinite set is a set that has a bijection to N.

5.1.1 Propositions on countable sets

5.1.2 Examples of countable sets

{0,2,4,5,6} is countable. N is countable.

These 2 examples follow directly from the definition of a countable set,
however our propositions allow us to deduce more complicated sets as count-
able. Z is countable. QQ is countable.

5.2 A notable uncountable set

R is uncountable.

19
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Because the nature of a sets cardinality is not adequately described by
natural numbers when dealing with infinite sets, a set of ordered symbols
calld cardinal numbers are introduced.

5.3 Cardinal numbers

We call the ’set’ of ordered symbols used to compare cardinalities as cardinal
numbers. Their definition is designed to compare the sizes of sets. So long
as there is a way of deciding which cardinal number is ’bigger’ in a pair of
cardinal numbers, we are happy.

So far the natural numbers have been our cardinal numbers, however this
contains no symbol to adequately describe the cardinality of N; a countable
but infinite set. Better yet, we also want to describe the cardinality of R; an
infinite set that isn’t even countable.

We want a ’set’ of well ordered cardinal numbers that allows to compare
finite and infinite cardinalities.

5.3.1 Aleph numbers

We want to contain the natural numbers in this set of cardinal numbers to
handle the finite sets, however we want to augment a cardinal to represent
the infinite, but countable sets. These type of sets are the most basic and
smallest type of infinite set, and so this cardinal number should be greater
than all natural numbers, but less than any future infinite cardinal numebrs
we append.

For now, let’s denote the cardinality of countably infinite sets with the
cardinal number X,.

Proposition 5.1. Countably infinite sets are the sets of cardinality Ng.
A is countably infinite <= |A| =N,

We can inductively define the rest of the cardinal numbers by introducing
new cardinal number as the next smallest cardinal.

The details are complicated, however we are assured that this is permis-
sible due to the well-ordering theorem, which states that for any set we can
create some order upon it that makes it well-ordered (every subset contains a



5.3. CARDINAL NUMBERS 21

smallest element). Hence if one considers the set of all cardinal largers num-
ber than Ny, our theorem states this contains a smallest cardinal number,
which we may denote as N;.

This can be generalized

Definition 5.3 (Aleph numbers). The aleph numbers are a sequence of or-
dered cardinal numbers (R),,cn representing the nth smallest infinite cardinal.

Vn € N(Rg > n)
n>m — N, >N,

Recall that for finite sets, a set with cardinality n has its powerset with
cardinality 2"; mathematicians allow a similar notation to describe the car-
dinalities of infinite powersets. This allows the representation |P(N)| = 2%,

5.3.2 Cardinality of the continuum

The cardinality of the continuum
¢ = R

¢ = [P(N)]

5.3.3 Beth numbers

Theorem 5.1. Cantor’s theorem
P(X)] > |X|

Cantor’s theorem is obvious for finite cardinalities since 2" > n for any
natural number n. The real kicker is the fact that it holds for the infinite
cardinalities too; meaning you can create arbitrarily larger infinities as de-
sired.

One interesting question is whether taking the powerset of the countable
set yields a set with the very next cardinal N;.

- Mention continuum hypothesis

Nl — 2N0
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In words, this means that there is no infinite cardinal between the car-
dinalities Ny and ¢, so ¢ is the very next cardinal and hence ¢ = N;. The
truth of this hypothesis is kind of complicated, we will return to this when
we study axiomatic set theory.

There is also a generalization of this hypothesis that extends to all the
aleph numbers.

- Mention generalized continuum hypothesis

Na+1 = 2Na

This generalization means that taking powersers of any infinite set always
yields the very next cardinal number; Cantor’s theorem instantly implies that
N1 < 2% but there is no apparent reason to believe that N, ; > 2%,

We now introduce the beth numbers to offer a clean notation to describe
constructing cardinal numbers by repeatedly taking powersets. We will later
tie these in with the generalized continuum hypothesis.

Definition 5.4 (Beth numbers). The beth numbers are a sequence of ordered
cardinal numbers (3),cy representing the cardinality of the powerset of a set
with cardinality of the previous beth number.

Jo =¥
:n+1 = 22”
Proposition 5.2.
c = 31

This gives us a nice representation for the continuum hypothesis.
Ny =2
And the generalized continuum hypothesis is as such.

Nozzjoz

5.3.4 Arithmetic on cardinal numbers
|Al=aA|Bl=bANANB=10
a+b=|AUB|
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|Al]=aAN|Bl=bANANB=10
ab = |A x B

Addition of cardinal numbers is a commutative monoid.
a+b=b+a

a+(b+c)=(a+b)+c
a+0=a

Multiplication of cardinal numbers is a commutative monoid.
a+b=b+a

a+(b+c)=(a+b)+c
a+0=a

5.4 Ordinal numbers
Definition 5.5 (First infinite ordinal). w

Definition 5.6 (Epsilon numbes).

5.5 Large countable numbers
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Part 11

Formalized Set Theory
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Chapter 6

Zermelo-Fraenkel Set Theory
(ZFC)

The standard formal set theory construction used by mathematicians is ZFC.
Due to its popularity, this will be the first formalized set theory that we will
develop.

6.1 Axiom of choice

Historically the most contoversial axiom in mathematics has been the axiom
of choice and its equivalent forms (which we will discuss later). Even today,
some mathematicians are hesitant to accept the axiom of choice in thei set
theories.

6.1.1 Zermelo’s theorem

6.1.2 Zorn’s lemma

27
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