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Part 1

Real Multivariate and vector
functions






Chapter 1

Multivariate functions

The goal of this chapter is to translate knowledge from real analysis to higher
dimensions of Euclidean spaces. Real analysis studied functions of the form
f R — R, however we now want to consider f : R™ — R"; we’ll be looking
at functions between real Euclidean spaces, possibly with different dimen-
sions. One consequence is that the absolute value as a metric generalizes to
the norm.

It’s worth mentioning that many of the ideas addressed in this book are
standards for any multidimensional generalization of analysis. We first look
at three types of functions that are used across all types of multidimenional
analysis.

Definition 1.1. A wvector valued function is a function r : X" — R™ that
maps elements of a space to a Euclidean space.

Definition 1.2. A vector field is a vector valued function f : X” — R™ that
assigns each vector in some space X" to a vector in a real space of the same
dimension. It is a vector valued function where the domain and image spaces
have the same dimension.

Definition 1.3. A scalar field is a vector valued function f : X" — R that
assigns a real number to each pont in some space X".

Though these definitions apply to functions whose domains are arbitrary
spaces X, this book will only vector valued functions with Fuclidean domains
f:R™ — R" so the following variants of these 3 definitions will be frequent
objects of interest within this book.
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e Real multivariate functions f : R® — R,n > 1; scalar fields with
Euclidean domain.

e Real vector functions f : R™ — R", m,n > 1; vector valued functions
with Euclidean domain.

e Real vector fields f : R® — R", n > 1; vector fields with Euclidean
domain.

There are special classes within these functions, such as differentiable
curves and surfaces; we’ll delve into this theory soon.

After having learned the theory of this book, functional analysis can be
used to explore these functions on more general spaces called manifolds.

Example 1.1. The following function f : R?> — R is an example of real
multivariate function.

fla,y) =a" -y

Example 1.2. The following function r : [0, 67] — R3 is an example of real
vector function (it’s also a ’differentiable curve’) that maps a single variable
to a R? vector. This is a helix that makes 3 revolutions.

cos(t)

r(t) = |sin(t)
t

Example 1.3. The following function f : R? — R? is an example of a real

vector field. It returns a vector that is orthogonal to the input vector.

f(x) = {XQ } = Xoi — X



Chapter 2

Multivariate limits

In terms of theory and rigor, limits are defined in an extremely similar way
to real analysis. In terms of reality and intuition, the primary difference is
that in real analysis, it suffices to check that both the left and right limits
exist and are equal. In higher dimensions, there are an uncountably infinite
directions in which a limit may be approached.

limit in R

Definition 2.1. For a real vector function f, its limit at p is a vector L such
that for any positive e, we can find a positive § so that whenever |[x —p|| < ¢
we have ||f(x) — L|| < €. Basically, as x converges to p, f(x) converges to L.

lim f(x) = L <= Ve € (0,00)(36 € (0,00)[|x—p|| < = [If(x)-L| < ¢])

X—=p

Proposition 2.1. for real vector functions limits areclosed under addition
subtraction scalar multiplication dot product cross product norm
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Chapter 3

Multivariate continuity

Proposition 3.1.
f is continuous at xg <= limx_,x,f(x) = f(x0)

Proposition 3.2. Let f : R™ — R". f is continuous at x; iff each component
function f; continuous at xq.

Proposition 3.3. for real vector functions continuity is closed under addi-
tion subtraction multiplication composition
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Chapter 4

Multivariate differentiation

In real analysis, the derivative is a tool that describes the 'tangent’ or 'best
linear approximator’ at a point of a function.

For multivariate Functions, there are several directions to approach do-
main elements by and the function may increase at different rates for different
directions taken; tangents in one direction may not be tangents in another.

One idea is to only consider the derivative along a specific direction to a
domain element; this is what directional derivatives and partial derivatives
strive to do, and it will prove an adequate stating point for now.

4.1 Directional derivative

Partial derivatives can take the derivative with respect to any variable, how-
ever does there exist a way of taking the derivative of a multivariate function
with respect to any arbitrary 'direction’, rather than the directions dictated
by the variables (usually axis’)? If one represents their direction by u, the
directional derivative acts as a framework to take the derivative along u.
We start by considering the derviatives at a point with respect to a specific
direction specified by a unit vector. These are the directional derivatives.

Definition 4.1. Let f : R™ — R" be a real vector function and @ be a unit
vector, the directional derivative of f at xq is defined as the following. It
represents the derivative in the sense of real analysis along u.
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4.2 Partial derivative

A special case of directional derivatives is when we take the directional deriva-
tive by purely along a single variable. These are the partial derivatives; the
derivative of a multivariate function with respect to a single variable.

Definition 4.2. The partial derivative of £ at xo with respect to Xy, is defined
as the following.

X1 X1

X1

B (| 1) = Jimm h

Xm_

This is essentially differentiation in the sense of real analysis where other
variables behave as constants.

We've used the notation f, to describe the partial derivative of f with re-
spect to x, however most notations of analysis support for partial derivatives.
Leibniz notation expresses partial derivatives in the following way.

of
ox

0 f
0x0y
Lagrange notation expresses partial derivatives in the following way.

Jfa
f Ty

Fuler-Arbogast notation expresses partial derivatives in the following way.
O, f
Oy f

Newton’s notation does not support partial derivatives.
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4.3 The Jacobian matrix and Hessian matrix

Now that the notions of partial derivatives are accessible, we discuss 2 inter-
esting matrixes; they will be useful tools later on.

Definition 4.3. The Hessian matriz of f is the matrix of second-order par-
tial derivatives of a real multivariate function.

Hy

2 f
(Hf)ij N 8x20xj

Definition 4.4. The Jacobian matriz of f is the matrix of first-order partial
derivatives for each function within a real vector function.

Jg

df;
(Je)ij = ox;
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Chapter 5

Total derivative

Though a point may have directional derivatives defined for all directions,
it is still possible for the function to be discontinuous at that point! Just
because a function is differentiable and continuous through at a point on a
certain path,

A more holistic approach that captures the geometry of multidimensional
space is needed for deeper insight of differentiability of such functions.

In an informal sense, differentiable functions express the fact that a func-
tion can be approximated as a linear function on a small enough scale; if we
'zoom in’ infinitely on the function, it is linear. Let’s try and formulate this
in the sense of real analysis.

f@o+h) = f(xo) + f'(x0)h

fxo +h) = f(x0)

i h = fla)
}llig(l) f(xo + h}z — f(z0) — #'(20) =0
. flxo+h) = flxo) = f/(zo)h 0
h—0 h

o 10 ) = (7o) + F ] _
h—0 h

This proves that differentiable functions are such that f(xo + h) can be
represented by a linear approximate f(zo)+ f'(zo)h+7(h), where r(h) is some

13
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remainder function that is dominated by h in the sense that limy,_,q T(h—h) =0;

it is 'megligible’ in the limit.

Differentiation from this perspective is easier to generalize; we don’t nec-
essarily need to define differentiability by expressing a direct Newton quo-
tient, but by specifying that some linear function exists that can approximate
the function in this specific way. All we need to do now is generalize the idea
of a real linear function from real analysis to real vector linear function!

Linear transforms are the generalization for higher dimension spaces, and
these can be represented my matrixes; the analogue of out f’(x¢)h will be
Jh, where J is some matrix that makes such a linear transform. In this vain,
we can let our linear approximator be f(xg) + Jh.

Definition 5.1. A real vector function f is (totally) differentiable iff there
exists some matrix J where the following holds. The matrix J is the total
deriwative of £

o ko +h) — (£(x0) + Ih)

=0
h—0 |||

f is differentiable at xy <= EIJ[llqir% [£(xo + b) ﬂéﬁ(xo) +Jh)]
g

= (]

This is the ultimate definition for differentiability for any real vector func-
tion (I'll often drop the ’totally’ part because I'm lazy). This condition is
stronger than the notions of directional and partial derivatives; it entirely
encapsulates the idea that the function can locally be approximated by a
single linear transform.

We introduce a second equivalent totally differentiable function that men-
tions the use of a remainder function; this is extremely useful in proofs.

Proposition 5.1. A real vector function f is (totally) differentiable iff there
exists some matrix J and real vector function r where the following holds.

f(xo+h) =f(x9) + Jh+r(h)

el

h—0 ||hH

We now delve into the properties of totally differentiable functions.

Proposition 5.2. Let f be differentiable at xq, then f is continuous at xq.
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Proposition 5.3. Differentiable implies directional derivative eists in all
directions.

The following lemma will be used prove a theorem that will tell us exactly
how to calculate the total derivative, however the lemma also has some stan-
dalone value since it links the total derivative to the directional derivative.

Lemma 5.1. Let f be a function differentiable at xy with total derivative J,
then V,f(x¢) = J*(xo)u , where J* is the ith column of J.

We now prove the following revelation.

Theorem 5.1. Let f be differentiable at xg, then the total derivative at xq
is the Jacobian matrix evaluated at xo Jg(xo)

It was our Jacobain matrix all along; the Jacobian matrix represent this
best linear transform at a point! If for a real function f(zo+ h) ~ f(zo) +
f'(xg)h, then for a real vector function we have f(xg)!

Using this fact, we can prove the following.

Corollary 5.1.
Vuf = Z uifxi
i=1

We will have an even more elegant representation for this when we study
differential operators.

5.0.1 Properties of Jacobian matrix

Now that we’ve discovered that the Jacobian matrix embodies the total
derivative in a Euclidean space, it is fitting that we study this structure
more closely.

Proposition 5.4.
Jf+g =Je+ Jg

Jue = wde +1£J,
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5.1 Multivariate chain rule

We've already seen that composition of continuous functions are continuous
in any space; however are compositions of differentiable functions differen-
tiable? We've seen this to be true in real analysis, and the chain rule gives us
a neat formula on how to compute derivatives with respect to the composed
functions and their derivatives.

In higher dimensions the chain rule holds similarly in terms of the Jaco-
bian matrix.

Theorem 5.2 (Multivariate chain rule).
Jtog = Jf(g)Jg
We require a generalization of the chain rule for such compositions.
Proposition 5.5.

Of < Of Ox;
5 2 Ox, Ot

5.2 Clairaut’s theorem

Theorem 5.3 (Clairaut’s theorem).

This theorem has many names Clairaut’s theorem, Young’s theorem, Schwarz’
theorem, or simply the symmetry of second derivatives.

5.3 Multivariate inverse function theorem

Theorem 5.4 (Multivariate inverse function theorem).

Je-1(%0) = [Je(x0)] ™
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5.3.1 Multivariate inverse function theorem

5.3.2 Multivariate implicit function theorem
5.4 Multivariate Taylor’s theorem

5.4.1 Multivariate Taylor’s theorem

5.4.2 Multivariate Taylor series
5.5 Derivative tests

5.5.1 Properties of the Hessian matrix

Proposition 5.6 (Multivariate derivative test). If a real multivariate func-
tion f with continuous second derivatives has V f(xg) = 0 and Hy(xo) is
positive definite, then xg is a local minimum of f.

Proposition 5.7. Let f have continuous second-order partial derivatives on
U. Then f is convex on U iff its Hessian matrix Hy is positive semi-definite.

Proposition 5.8. Let f have continuous second-order partial derivatives on
U. If the Hessian matrix Hy is positive definite on U, then f is convex on U.

5.5.2 Lagrangian multipliers
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Chapter 6

Multivariate integration

6.1 Multivariate integration

6.2 Fubini’s theorem and Tonelli’s theorem

6.2.1 Nested integration

The theorems of Fubini and Tonelli assist immensely in the calculation and
interpretation of multivariate integrals. They provide two different sufficient
conditions for when one can swap the order of integral nesting. It turns
out we can do this for quite a rich class of functions, however proving these
theorems requires us to interpret integration as Lebesgue integration rather
than Riemann integration. If you are unfamiliar with the Lebesgue integral,
this is covered at the end of Real Analysis.

6.2.2 Fubini’s theorem

Theorem 6.1. Let f be Lebesgue integrable on X x Y, then we have the
following.

/Xxyf” (z:9) //fl‘ydydx—//fxydx

6.2.3 Tonelli’s theorem

Though similar to Fubini’s condition, Tonelli introduces a similar yet distinct
condition that implies that nested integration can be swapped.

19
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Theorem 6.2. Let f be a nonnegative measurable function on X x Y, then
we have the following.

/Xfoxy)xy //fxydyda?—//f:cydx

6.3 Fubini’s theorem and Tonelli’s theorem

ih3 class=cyan; Vector-valued functionj/h3; jp;Function r : X" — R™ m >
2 that takes parameter vector or scalar as input and outputs a cartesian vec-
torj/pi, jh4 class=cyan; Vector field Campo vettorialej/h4;, jp¢ Vector-valued
function F : X™ — R” that assigns a cartesian vector with same dimension as
the space, to each point in said space X"j/p;, ipiF(x)i/pi, h4 class=cyan; Position
functionj/h4;, ip;Vector valued function r : [tg, ;] — R" that takes a scalar
parameter ¢ as input and outputs a cartesian vector, essentially representing
a path in a space;j/pj,

ih3 class=cyan; Vector operatorsj/h3; jh4 class=cyan;Nabla symbolj/h4;
ipi Differential operator V used as a notation for V%ctor operators and hints

towards their methods of calculationj/p;, ipiV = i/pé, ih4 class=cyan; Gradient

%“
Gradiente j/h4; ip;Vector operator that lb()returns the vector of maximum

change of a point in a scalar fieldj/b; fi/pi ipiVf = (ﬁ)]/pg} july ilig f

o
is the scalar fieldj/li;, i/uli ipiSee ja href:’/daigaku/20221um/m2.php’ >
Mathematics2 < Ja >< [p >
ih3 class=cyan; Divergence Divergenza j/h3; ipi Vector operator that jb;returns
the scalar quantity of flow in and out of a point in a vector field;/b; Fj/pi
ipi To calculate based on intuition, look to the top, bottom, left and right
of the point and note how regarding these adjacent vectors the point ab-

oz
¥\ 0F, OF, an_ o
ay o dy + |/Pz, july,

sorbs and emitsj/p;, ipiV - F =

ili, F is the vector fieldj/li;, ili; F,, is the vector field’s n argument,/h() i/ul;,

ih4 class=cyan;Sinkj/h4, jp;Points in vector fields with more jb;inwardj/b;,

flowj/pi ipi(x,y) is a sink <= V-f(x,y)0i/pi jh4 class=cyan;Sourcej/h4,,

ipi, Points in vector fields with more jbjoutward;/b¢ flowj/p¢, ipi(z,y) is a source <=
V- f(z,9)0i/pi
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ih3 class=cyan;Curl Rotore j/h3;, jp;Vector operator that jbjreturns the
vector normal to the direction of counterclockwise rotation with its magni-
tude representing the intensity of the rotation at a point in vector field;j/by,

o ~ > oF,  OFy
o ) ool [ &

Fi/pi itV x F = | & By 2| = 8613; — 387; i/pé, julg jli,F is the vector
F, F, F, T~ B

field;j/li;, ilij F), is the vector field’s n argument;j/li;, j/ul;,

ih3 class=cyan; Laplacian Laplaciano j/h3;, jp; Vector operator that jb;returns
the scalar quantity of 'curvature’ at a point in the scalar fieldj/b; fi/pi.
ipi, This works by capturing the gradient of the scalar field and finding the

2
divergence of this gradient at some pointj/p;, ip;V>f = V - (Vf) = 6_]2‘" +
92 ox
a—yQI/pL

ih3 class=cyan;Coordinate systemj/h3; ip;System of variables used to
define a set of points in a spacej/p;, jh4 class=cyanjPoint representation;j/h4;,
ipi Each coordinate system has a set of equations to translate points in an-
other system to said coordinate system;/p; jh4 class=cyan;Vector repre-
sentationj/h4;, jp;Each coordinate system has an orthonormal basis (frame)
relative to a point in space that represents any vector from that point, e
see ja href=/daigaku/2024,ut/la.php > LinearAlgebra < Ja >< [p ><
p > Notethatsomeorthonormalbasisesmaybedependentonsomef or ¢ rela-
tional to the vector’s base from the originj/p; jh4 class=cyan;R?j/h4; jul;,
ili; Cartesianj/li, ili; Polar;j/li;, jli; Parabolicj/li; jli; Bipolarj/li;, jli; Ellipticj/lij
i/uly jh4 class=cyan;R3j/h4; jul;, jli; Cartesiani/lij, jli; Cylindricalj/lij, {li; Sphericalj/1i;,
i/ul;,

ih3 class=cyan;Cartesian coordinatesj/h3; jp;Ordered 3-tuple (z,y, 2)
that represents a point in a 3D spacej/p;, jul;, jlijx € R is the translation along
the x-axisj/lij, jlijy € R is the horizontal translation perpendicular to the x-
axisj/lij jlijz € R is the vertical translation;/lij j/ulj jh4 class=cyan; Vector

1 0
transformj/h4y, ipispan{i, J, k} = R3/pg july ilige = | 0 | i/t ligg = | 1 |i/1i;
0 0
/0
iligk = | 0]/l j/ul; jh4 class=cyan; Volume element;j/h4; ip;dV = dxdydzi/p;,
1

ih3 class=cyan; Polar coordinatesj/h3,, jp;Ordered pair (r,6) that repre-
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sents any point and vector in a 2D spacej/p;, jul;, jlijr € R, represents the
modulusj/lij, jlij@ € [0, 27| represents the azimuthal angle (angle from x to

v)i/lig i/uly jhd class=cyan;Point transfomj/h4; july iliijr = /2% + y2i/li;,
iligd = arctan(¥)i/li; j/ul; jul; jligz = rcos(9)i/li;, iligy = rsin(0)i/li;
i/ulj ih4 class=cyan; Vector transformj/h4; jp;For some chosen angle 0;/p;

LA . cos —sin(0 :
ipispan{7, 0} = R*i/p; july ilig? = (sm(( ;) Jlig. ilizf = ( mé ))i/hz,

cos(#)
cos(f) —sin(d
i/l iPiPro) @y = Singgg Cos(é))]i/pz; ihd class=cyan/Vector oper-
ators/hdy, jul; 1y Vf = Li 4+ 290 1,V - F = 1905 4 108,y
ili; V2f = ;5(7"%) + 3 g;,/hé, ,/uh) ih4 class=cyan;Area elementj/h4;,

ipidA = rdrdfi/p;

ih3 class=cyan;Cylindrical coordinatesj/h3; jp;Ordered 3-tuple (r,0, 2)
that represents any point and vector in a 3D spacej/p; jul; ilijr € Ry
represents the modulus projected along the x-y planej/lij jliz6 € [0,2n]
represents the azimuthal angle (horizontally from +x-axis to +y-axis);j/li,
ili; z € R represents vertical translationj/lij, j/ulj jh4 class=cyan; Point trans-
formj/h4; jul; ili;r = /22 +y?/lig iligf = arctan(¥)i/lig flijz = zi/li;,
i/uly july jligz = rcos(0)i/li;, jlily = rsin(0)i/li, l].léz = zj/lij, j/uly jh4
class=cyan; Vector transform;j/h4; jp;For some chosen angle 0;/p;, ipispan{r, 0, z} =

cos(f) ) — sin(0) 0
R3i/pi, july jlig7 = | sin(0) |i/lig, ilig0 = | cos(8) |i/lig iliz2 = [0 |i/li,
0 0 1
cos(d) —sin(d) 0
i/uli iPi P02 (eyz) = |sin(@) cos(d) 0|i/pi ih4 class=cyan;Vector
0 0 1
operatorsj/h4; july ligVf = af“ + ig’;@ + 2‘/11(} 11i¢V F = 711_8(21:7«) +
71'88};9+8F2l/h() lh()VXF (1a£z_8£@)r+(8£r_8&)g+ ( Tfe) 00 )él/h(;
ili;, V2f = FE<T%) + %2395 + azzl/h&, i/uly jh4 class=cyan;Volume ele-

mentj/hd; pidV = rdrdfdz;/p;

ih3 class=cyan;Spherical coordinatesj/h3; ip;Ordered 3-tuple (p, 8, @)
that represents any point and vector in a 3D spacej/p;, jul;, ilijp € R, repre-
sents the modulus;/lij jlij@ € [0, 7] represents the inclination angle (vertically
from +z-axis to x-y-plane)j/lij, ilij¢ € [0,27] represents the azimuthal an-
gle (horizontally from +x-axis to +y-axis)j/lij, j/ul; jh4 class=cyan;Point

transformj/h4; july iligp = /2?2 + y? + 22j/1i;, jlij0 = arccos(2 ) Jig iligep =
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arctan(?)j/li;, j/uly july flijz = psin(f) cos(d)i/lig, ilijy = psin(#) sin(¢)j/li;,
iligz = ,ocos( )i/lig i/uly ih4 class=cyaniVector transformj/h4; ip;jV0,¢ €

A sin(6) cos(9) R cos(f) cos(p)
[0, 2], span{p, 0, ¢} = R?/p;, july, ligp = | sin(0)sin(¢) |i/li; ligd = | cos(0)sin(p) |i/liz
cos(0) — sin(#)
— sin(yp) sin(f) cos(¢p) cos(f) cos(¢p) — sin(¢)
Bzp= [ cos(o) |i/lic i/l 0Py ooy = |sin(@)sin(s) cos(d)sin(d) cos(d) |i/p:
0 cos(0) — sin(0) 0

ih4 class=cyan; Vector operatorsj/h4;, ]lig)Vf gﬁﬁ ;ggg + psln(Q) a¢90l/1i2,
li,V-F = 1(PF,) | 1 Oin(O)Fy) |

- 1 O(sin(0)F,)
p%2  Op ps1n(0) o0 psm 6) 8@ l/hé ‘h()vXF psm(@)( a6 =

A OF; (pFy) OF, 16)
G2)p+ (o 92— p ! )9 + ( ng) SE)eiliy V2 = 52 (p*l) +

p2s+n(9)869 (an(&)%)—i—m 5 1/11() l/ul¢ ih4 class=cyan; Volume elementj/h4;,

ip.dV = psin(0)dpdfdsi/p;,
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Differentiable curves and
surfaces
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Chapter 7

Differentiable curves

7.1 Differentiable curve

We will define differentiable curves by means of position functions; functions
that represent one’s position in a space.

Definition 7.1. A position function is a vector valued function r : I — X"
that maps a real interval I to some space X", essentially representing a path
in a space. The argument of a position function will be referred to as time
since the parameter often represents time.

As one could imagine, position functions are crucial in physics as physi-
cists are often concerned with how forces modify the "position’” of objects.

As intuition may suggest, this function is 'nice’ when it is continuous (the
position doesn’t magically "teleport’) and differentiable (we can calculate how
much the direction of this position is changing with respect to time). Thus
we arrive at the idea of a differentiable curve.

Definition 7.2. A differentiable curve is a vector valued function « : I — R"
that maps a real interval I to some space X", essentially representing a path
in a space.

Definition 7.3. A differentiable curve is a position function r : I — X
that is totally differentiable. The image of this function is also called the
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28 CHAPTER 7. DIFFERENTIABLE CURVES

differentiable curve. X is some space, technically a differentiable manifold.
r: [to,t1] — X is closed <= r(ty) =r(t1)

A curve that is continuous but not differentiable is known as a topological
curve; this is a notion studied further in general topology.

7.2 Closed differentiable curve

7.3 Line integral (scalar field)

Definition 7.4. Let r : [ty,t;] — C be a differentiable curve. The arc length
function of r is the function s : [to, 1] — [0,00) that returns the length of
the differentiable curve at a given time.

()= [ I ©lar

Definition 7.5.

Definition 7.6. A line integral (scalar field) is an integral of a scalar field
taken along a differentiable curve. One can think about it as curve’s arc
length the scaled by the scalar field’s intensity along it.

t1
/ f(x)ds = / FE®) ()] de
C to
e f:R" — Ris a scalar field

e r: [ty,t;] — C is a differentiable curve parametrization

The reparametrization from s to ¢ is from the reverse chain rule.
When representing a line integral along a closed curve, we will use the
integral sign § instead of [

Definition 7.7. A line integral (vector field) is an integral of a vector field
taken along a differentiable curve. One can think about it as curve’s arc
length the scaled by the curve’s dot product with the vector field’s vectors
along it. It is the 'work’ of a vector field along that curve.

r(t1)
/Cf(x) -dr = /r f(r(t))-r'(t)dt

(to)



7.3. LINE INTEGRAL (SCALAR FIELD)

o f:R" = R is a vector field

e 1 : [to,t1] — C is a differentiable curve parametrization
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Chapter 8

Differentiable surfaces

8.1 Differentiable surface
8.2 Various parametrization
8.3 Surface integral

8.4 Flux integral
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Part 111

Frames
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Chapter 9

Frames of coordinate systems

Readers will be familiar with coordinate systems.

Coordinate frame is a Basis that formed based on some arbitrary ’origin’
coordinate. It encapsulates the idea For instance, at some coordinate p,
one may want a frame representing the directions of the increase of each
coordinate (cartesian, cylindrical, spherical frames), or perhaps one wants a
frame with directions along a curve, orthogonal to the bend of a curve, and
another direction orthogonal to both of those (Frenet-Serret frame).

We first study the former; frames of coordinate systems.

Note that although many frames we use are orthonormal basis’, but this
is not a requirement; we’ll see examples of these much later on.

coordinate frame

Definition 9.1. Let z be a coordinate system and r map the coordinate
system to S, then the orthonormal coordinate frame with respect to p is the
orthonormal basis of vectors defined by the set of e,(p) = H:ZE}’; ;H for each
coordinate.

scale factor
divide by scale factor to make normalized coordinate frame
Cartesian frame

(z,y,2)
i
r(z,y,2) = |y
z
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36 CHAPTER 9. FRAMES OF COORDINATE SYSTEMS

1 0 0
J 1w
0 0 1

This is a fized frame; the frame is the same relative to any coordinate
point. Often students are confused when learning other coordinate frames
because the cartesian coordinate frame is fixes, and they expect all others to
be fixed too, but the fact that we have nonfixed frames is precisely why we
like to deal with them.

Cylindrical frame

F ={eseye,} ={

(r,0,2)

rcos(6)
r(r,0,z) = |rsin(0)

z

cos(0) — sin(0) 0
F={e;ep e} ={|sin(0) |, | cos(d) |, 0]}
0 0 1

Spherical frame

(p,0,9)

psin(¢) cos(0)
r(p,0,¢) = | psin(¢) sin(0)
pcos(@)
sin(¢) cos(0) cos(¢) cos(6) cos(¢)
F ={e, ep,e,} ={|sin(¢)sin(d) | , | cos(¢)sin(d) | , | —sin(¢) | }
cos() — sin(¢) 0

9.1 Applications for line integrals

9.2 Applications for surface and flux integrals



Chapter 10

Frenet-Serret frame

Definition 10.1. Let r be a differentiable curve, the Frenet-Serret frame of r
is an orthonormal basis spanning R? relative to a a point on the differentiable
curve r(t) with arclength s.

T(s) =1'(s)
()
N = )]

B(s) = T(s) x N(s)

T (tangent) direction tangent to the differentiable curve N (normal) direc-
tion the differentiable curve is turning into against its tangent B (binormal)
direction orthogonal to T, N

The chain rule can be used to express the Frenet-Serret frame with respect
to 'time’ (it’s argument).

Definition 10.2. The curvature of a differentiable curve is the measure of
directional change on the tangential plane.

r(s) = | T'(s)ll

Definition 10.3. The torsion of a differentiable curve is the measure of
directional change out of the tangential plane.

7(s) = [IB'(s)]]
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38 CHAPTER 10. FRENET-SERRET FRAME

Theorem 10.1 (Frenet-Serret formulae).
T = kN

N = —xkT+ 7B
B = —7N

ih3 class=cyan; Frenet-Serret framej/h3; jp;Orthonormal basis spanning
R3 derived from a point in a path function r(t) with arclength s.i/p; july,
ilijibi Tangentj/b;, unit vector with direction tangent to the path at the
point;j/lij ilijjb;Normal;j/b;, unit vector with direction normal to the path at
the point (differentiation of tangent with respect to arclength);/lij jli;jb;Binormalj/b,,
unit vectot with direction normal to the two other vectorsj/li; j/ul; july,
i, T(s) = v'(s)i/lig 1;N(s) = rpidni/liz lizB(s) = T(s) x N(s)i/liz i/ul;
ipi The chain rule can be used to represent these basis functions with re-
spect to timei /pi il ih4 class= cyan;)Position—dependent definitionj/h4, july,

1) = ppiftic 1N = i/l 1B = T x Niftig i/ul;
dt

ih3 class=cyan; Curvaturej/h3; jp;Measure of directional change on the
tangential plane]/pg} ipik = ||'T'||i/pé ipik = T'-Nj/p;, jh4 class=cyan; Propositions;j/h4,,
iPLRE = L Hr/”d el l/p(;

ih3 class=cyan;Torsionj/h3; jp;Mesure of directional change out of the
tangential planej/p¢, ipi7 = [|B’||i/pi. ipiT™ = —B’-Nj/p¢, jh4 class=cyan;Propositionsj/h4;
iPLR = 1F“lﬂ(xﬁuzl/ o7

ih3 class=cyan; Frenet-Serret formulaej/h3; jul; ili; T/ = kNj/lij jligN’ =
—xT + 7Bj/li;, iliyB’ = —7Nj/li; j/ul;,

ih3 class=cyan; Fundamental planesj/h3; july, jli; Osculating plane span{T, N} /1i;,
ili; Rectifying plane span{T, B};/li; jli;Normal plane span{N, B};/li; i/ul;,




Part 1V

Multivariate and vector
differential operators
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Chapter 11

Nabla symbol

V is pronounced 'nabla’; it is a symbol used in denoting many multivariate
and vector differential operators. It can be given the following interpretation.
This differential operator can be paired with notations of linear algebra (done
to hint towards the similar calculations of differential operators and some
linear maps of linear algebra) to create new differential operators.

41
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Chapter 12

Multivariate differential
operators

Differential operators on scalar fields

12.1 Gradient operator

Fundamentally, the gradient operator on f

Definition 12.1. The Gradient operator is a multivariate differential oper-
ator V such that Vf is the unique vector whose dot product with u gives
the directional derivative along u.

Proposition 12.1 (Gradient operator of R™).

of

9x1

of

Vf — sz

o

OXn

_9f
The idea behind the gradient operator is that it direction is towards the
largest change in the function. Since partial derivatives calculate the amount
of change along each axis, it is the linear combination of the increases along

each axis; forming the direction of total change.
It also allows for an elegeant representation of the directional derivative.

Vi
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44 CHAPTER 12. MULTIVARIATE DIFFERENTIAL OPERATORS

Proposition 12.2.
!/
Jago=p2r w160

[u

The gradient operator is perhaps one of the most fundamental in vector
analysis, and it is present in the gradient theorem; a fundamental theorem of
calculus for vector fields.

12.2 Laplace operator

Definition 12.2. The Laplace operator or Laplacian is a multivariate dif-
ferential operator V2 (or sometimes written A) defined as the following.

2 — [
vf_;axg

The vector differential operator called the divergence operator allows for
a particularly neat definition for the Laplacian.

Vif=V-(Vf)

The V- is this divergence operator; we will now commence our studies of
such vector differential operators.



Chapter 13

Vector differential operators

Differential operators on vector fields

13.1 Divergence operator

- general def - integral def

VF—hm//F dsS

- Gauss’ theorem jh3 class=cyan;Gauss’ theorem Teorema di Gauss j/h3;
ipi Theorem asserting that the divergence of all points in a volume equals the
flux integral of the volume’s closed surface.j/p¢, ipi, Intuitively, this is because
by thinking of the divergence of each infinitesimal volume element bounded
by the surface, each infinitesimal volume elements has its flux ’cancelled out’

by adjacent volume elements;/p;, lpg}// (V- -F)dV = // -dSj/pi, jul;,
ilij.S is the closed differentiable surface;j/ 11() ili,F is the vector fieldj/li;, j/ulj

13.2 Curl operator
- general def

1
VXF:ﬁlim—%F-dr
c

As—0 AS
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ilijn is the unit vector normal to the direction of counterclockwise rota-
tion;j/lij, jli,C is a piecewise smooth (differentiable) closed (end point is the
same as start point) curvej/lij ilijAs is area bound by C (this equation is
happens when the curve is infinitely tight);/lij,

- basic properties

Vx(Vf)=0
V-(Vxf)=0



Chapter 14

Differential operators in
different frames

ih4 class=cyan; Vector operatorsj/h4; jul;, jliiVf = L7411 afﬁ,/lig) iliyV-F =
iﬁ(gfr) iaag@l/hg) ili; V2 f = rar(r%) + % ‘39§|/11¢ |h4 class=cyan; Vector

operators/h4;, jul; iy Vf = %+ 194 4 0z 1y v - F = 1205)

s 7

}naa%"i_ani/hL lli;VxF = (iaagz_%)r_i_(aair a;;z)e_i_r( gl:o) 8Fr) /hz,

d 52
i V2f =228y L9 4 Ml/hz, i/ul;
ih4 class=cyan; Vector operators;j/h4;,

of 10f » 1 of .

vi= dp p+;%6+psin(9)%gp

1 0(p°F,) N 1 O(sin(0) Fy) N 1 0F,

F =
v p?  Op psin(6) 00 psin(0) o
1 Jd(sin(0)F,) 0Fy, . 1, 1 OF, 0(pF,) ., 1, 0(pFy)
F = — _ _ _
v psin(@)( 00 O )p+p(sin(9) 0 dp )9+p( dp
1o, ,0 1 5} 0 1 0?
vZf — 2 f + . f f

hat' il Ny~ “ZJ
p? 8p(p 8p) p?sin(0) 00 sin )89 * p?sin(0) O¢
i/ulj ih4 class=cyan; Volume elementj/h4; jpidV = p*sin(0)dpdfdei/pi,

47
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Chapter 15

Integral representation
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Chapter 16

Introduction to the integral
theorems

Theorem 16.1 (Gradient theorem).

/rlvf'erf(rl)—f(ro)

This essentialy means that vector fields expressible as the gradient of some
scalar field have path-independent integrals; all paths between the same two
points return the same integral! This leads us to the idea of a conservative
field; vector fields where the integral between two points is 'conserved’ by
any path between said points.

ih3 class=cyan;Conservative field j/h3; jp; Vector field such that the line
integral result is jb; purely dependent on the endpointsj/bj, of the line j/pj,
ip F is conservative <= j/p; july ilig3f : Vf = Fi/li ili;,)V x F = 0;j/1i;
ili;C is closed = [, F -dr = 0j/lij i/ul; jh4 class=cyan;Potential func-
tionj/h4; ipf is the potential function of F <— Vf = Fi/p;

- Stoke’s theorem jh3 class=cyan;Stoke’s theoremj/h3; jp;Theorem as-
serting that the curl of all points on an open surface equals the line inte-
gral of the open surface’s edge.j/p¢ ipi Intuitively, this is because by think-
ing of the curl of each infinitesimal surface element, each infinitesimal vol-
ume elements has its curl 'cancelled out’ by adjacent surface elements;/p;,

lp¢/ (VXF)-dS = ]{F dri/p¢ julg jlijS is the open differentiable sur-

facej /llé’ ili;C is the closed differentiable curve representing the edge of S,

o1
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oriented counterclockwise the surface’s normalj/li; jlijr(t) : [to,t1] — C is
the position function along Cj/lij, ilijF is the vector field;j/li;, j/ul,

- Green’s theorem

ih3 class=cyan;Green’s theoremj/h3; ijp;Corrolary of Stoke’s theorem,

0
form of Stoke’s theorem of a function projected in the xy-plane.j/pj, ip, // ((9_Q —
S T

oP
8—y)dwdy = jgs P(z,y)dz + Q(z,y)dyi/pi.
ih3 class=cyan; Vector operatorsj/h3; jh4 class=cyan;Nabla symbol;/h4;

ipi Differential operator V used as a notation for vector operators and hints
d

P
towards their methods of calculationj/p;, jpiV = % i/p¢, ih4 class=cyan; Gradient
9z

z
Gradiente j/h4; jp;Vector operator that jbjreturns the vector of maximum

af

change of a point in a scalar fieldj/b; fi/pi ipiVf = (g?)i/pg) july i f
dy

is the scalar fieldj/li; j/ulj ipiSee ja href="/daigaku/2022,um/m2.php’ >

Mathematics2 < Ja >< [p >
ih3 class=cyan;Divergence Divergenza j/h3; ipi Vector operator that jb;returns
the scalar quantity of flow in and out of a point in a vector fieldj/b; Fi/p;
ipi To calculate based on intuition, look to the top, bottom, left and right
of the point and note how regarding these adjacent vectors the point ab-
9
% oF, 0F, OF

sorbs and emitsj/p;, ipiV - F =

0z
ili, F is the vector fieldj/li;, jli; F,, is the vector field’s n argumentj/li; j/ul;,
ih4 class=cyan;Sinkj/h4, jp;Points in vector fields with more jb;inward;/b;,
flowj/p¢ ipi(x,y) is a sink <= V- f(z,y)0i/pi jh4 class=cyan;Source;j/h4,,
ipi Points in vector fields with more jbjoutward;/b; flowi/p;, ipi.(z,y) is a source <=
V- f(a,y)0i/p;,
ih3 class=cyan;Curl Rotore j/h3; jpiVector operator that jbjreturns the

vector normal to the direction of counterclockwise rotation with its magni-
tude representing the intensity of the rotation at a point in vector field;j/b;

N OF,

: g OF, y

¢ J I5] 0z
Fi/pi intVxF= |2 & &= g — 9 4 /p;. july, liF is the vector
F, F, F. T oL

field;j/li;, ilij F), is the vector field’s n argument;/lij j/ul;



93

ih3 class=cyan; Laplacian Laplaciano j/h3;, jp; Vector operator that jb;returns
the scalar quantity of 'curvature’ at a point in the scalar fieldj/b; fi/pi.
ipi, This works by capturing the gradient of the scalar field and finding the
0 f

B

divergence of this gradient at some pointj/p;, ipiV2f = V - (Vf)

>Pf
8—y21/p¢
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Chapter 17

That’s all folks

This book has discussed ways of how ideas in real analysis are extended
into higher Euclidean spaces and how this is assisted by the means of linear
algebra.
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