Quantum Physics — particle
confinement and quantisation
of energy

Text: Walker etal. (2021), Halliday’s Fundamentals of Physics — First Australian and New Zealand Edition
John Wiley & Sons Australia (HW)

With many thanks to Walter Kalceff for the use of his original lecture notes.
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Imagine you were studying physics (natural philosophy) before Newton

There were lots of experiments with results and partial explanations

*  Pendulum motion

e Falling bodies

 Bodies oninclined planes
* Planetary motion

* But there was no unifying theory, and no way to predict results of new experiments

* Newton’s laws provided this theory!

 Sois there a unifying theory that allows us to predict and explain all the weird
guantum experiments?



Quantum Mechanics and Schrodinger’s equation

(or W(= Fx) = AK etc)

Schrédinger’s equation replaces F = ma for the motion of particles on an atomic scale.

It must satisfy the wave equation, since the particles have wave properties.

 But what is the dependent variable?
e E.g.for an EM wave, the dependent vars are E and B strength, for a sound wave it is pressure

 The dependent variable is the wave function W (Psi)

* The square of its magnitude has physical significance — the probability of the particle
being there (between x and x+dx)!

Prob « |W|?Ax

So you can at best know probably where a particle is located. But since you’ve already come to peace

with the fact that you can’t know a particle’s position and momentum to a high level of precision, you’re
probably okay with this concept too ©



How to use Schrodinger’s equation

* Use it to calculate W
* Then from W calculate the interesting properties of the electron’s motion, like KE, etc.
* Also, the probability the electron will arrive at a certain position x, |¥|?dx.

* Wis a construct and used like E in EMag theory

. T_O)F can it to predict interference patterns etc, but you only experimentally measure
E

One dimensional SE for electron for a potential energy that depends only on x not t
h? d%y
8w m dx?

You don’t have to use the SE yourself,
this is just important background theory
to help you understand the effects we will
soon be predicting

+(E-U@)p =0
/ \ \ Wave function that only depends on x

Total E PE e.g. from Coulomb F
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The free electron and Schrodinger’s equation

One dimensional SE for electron for a potential energy that depends only on x not t
h?  d*y
8w m dx?

+(E=U(x))y =0
Such an

) i . electron has all
Let our electron travel in a region of constant potential E its E in form of

* let U=0 for simplicity / KE

e |tisisolated (doesn’t interact with anything) so total energy is a constant.

h2  d2y |
> > + EY =0 Look closely — this has the same form
8m m dx as the pendulum or LC circuit
equations!
2T 2T
Yy=A sinTVZmEx + B COSTVZmEX
. 2m 2T .
= Asin—x + Bcos—x 1=

A A 2mkE



The free electron and Schrodinger’s equation

2T 2T
Y = Asin—V2mEx + Bcos—V2mE x

h h Understand what this wave
o 2m 21T function means in terms of
=4 SIHTX + B cos TX the behaviour of the e-

| wave function | ~2

This is an infinitely long train of waves i
It has a precise wavelength and momentum

h h -
A= — and p = .

A precise p means a completely imprecise x, which is why the wave train is so long.
(Ap = 0) (Ax = o)

But if we know (sort of) where the e- is, the wave is different: 2

It’s a wave packet! Its small so Ap becomes big, and it travels at v = —
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The free electron
A free electron has a kinetic energy of
10 eV.
Find its corresponding speed.

If the speed is known to 1.0% accuracy,
what is the accuracy with which we can
measure the electron’s position?

Quantum Physics 2

v=1.9x108 m/s; Ax=40 nm or 6nm using h/2pi



The free golf ball

A golf ball has a mass of 45 g and speed
of 75 m/s measured to 1.0% accuracy.

What is the accuracy with which we can
measure its position?

Quantum Physics 2 Ax=2x10732 m <<< smaller than an atom!

1
0



String Waves and Matter Waves

* Confinement of a wave leads to quantisation — that is, to the existence of discrete states
with discrete wavelengths. The wave can only have those wavelengths.

* This observation applies to waves of all kinds, including matter waves. For matter waves,
however, we will deal with the energy, E, of the wave packet and not the frequency f,
which has no physical significance.

(a) /\\/ Possible mode
(b) /’\_ Impossible mode

This Photo by Unknown Author is licensed under CC BY
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https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/16-6-standing-waves-and-resonance/
https://creativecommons.org/licenses/by/3.0/

Energies of trapped electron : - one dimensional trap

Sec. 39.1

An electron can be trapped
In the V =0 region.

N o V=0 W
— — X
!
(g
x=0 x=L
Fig. 39-1 The elements of an

idealized “trap™ designed to confine
an electron to the central cylinder. We
take the semi-infinitely long end
cylinders to be at an infinitely great
negative potential and the central
cylinder to be at zero potential.

forn=1,2,3,....

Each value of n identifies the state of the oscillating
string; the integer n is a quantum number.

For each state of the string, the transverse
displacement of the string at any position x along
the string is given by:

. (NTT
ya(x) = A sin (T x) ,

forn=1, 2, 3,
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Sec. 39.1

Trapped electron: - finding quantised energies

In the region O to L the electron’s potential energy is zero
as V=0. Outside this ‘well’ its energy would be positive and
infinite in magnitude as V goes to infinity. This potential
pattern is called an infinitely deep potential energy well
as an electron trapped in it cannot escape.

It reflects from each wall due to a force of essentially
infinite magnitude.

An electron can be trapped
in the U = 0 region.

I‘(\i

= A

() [
Fig. 39-2 The electric potential
energy U(x) of an electron confined
to the central cylinder of the ideal-
1zed trap of Fig. 39-1. We see that
U=0for0<x<L,and U— x
forx <Oandx > L.
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Trapped electron: - finding quantised energies using the SE

An electron can be trapped
in the U = 0 region.

I.(\l

() [

Fig. 39-2 The electric potential
energy U(x) of an electron confined
to the central cylinder of the ideal-
1zed trap of Fig. 39-1. We see that
U=0for0<x<L,and U— x
forx <Oandx > L.

Sec.39.1,394

Want to use the Schrédinger equation? Here’s how:

First, just look at the region of O<x<L where U = 0. Subs
that into the SE

h? d*y

8m?m dx?

+Ep =0

As before, this has a solution of a sinusoidal wave.
But now! The probability of finding the e- outside the

well is zero (JyY]? = 0).
The solution of ) has to be 0 when x>0 and x<L.

Quantum Physics 2 14



Trapped electron: - finding quantised energies
Interference of de Broglie waves!

An electron can be trapped

B Like a standing wave in a string, the matter wave

describing the trapped electron must have nodes at
x=0and x=L.

— U x)
This determines the allowed e- wave packet
wavelengths.
This is turn determines the allowed e- momenta and
energies:
. : | & o _h__h
Fig. 39-2 The electric potential p vV 2mK

energy U(x) of an electron confined

to the central cylinder of the ideal-

ized trap of Fig. 39-1. We see that

U=0for0<x< L,andU — =

forx <Oandx > L. Know the allowed standing wave patterns and their wavelengths,
momenta, and energies
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Trapped electron: - finding quantised energies

An electron can be trapped
in the U = 0 region.

/'{\i

() [

Fig. 39-2
energy U(x) of an electron confined

The electric potential

to the central cylinder of the ideal-
1zed trap of Fig. 39-1. We see that
U=0for0<x<L,andU — =

forx<0Oandx > L.

Sec.39.1,394

Substituting into L = % and solving for E we get for a one
dimensional infinite well of width L:

h2
E = n2
n (8mL2

forn=1,23,.....

The trapped e- can only have an energy from a set of
discrete values!

This can be extended to two and three dimension with:

h? (n2 n?2 n?

E = >+ 2+ =
NxXxX,Nyy,Nzy Sm LZ LZ L2
X y Z

The n’s are called quantum numbers
The allowed E’s are called energy levels
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What can these wells look like?

1-D confinement (free to move in 2D)

2-D confinement (free to move in 1D)
= quantum wire

3-D confinement (not free to move)
= quantum dot




Energv (e\)

Sec. 39.1

Trapped electron: - finding quantised energies

[ OMN)

NN !

HiN) =

Ith excired

'-ltl (RN | |l1'||

_’IN| excied

I\I e\ |l('||

Cround

The diagram to the left is Figure 39-3 from the textbook
and shows the lowest five allowed energy values for an
infinite well of L = 100 pm. These are called energy
levels. A wave packet described by wave function with a
certain n value is in quantum state n.

n =1 is the ground state and has the lowest possible
energy where the electron tends to reside. For n > 1, the
electron is said to be in an excited state with n = 2 the first
excited state.
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Zero Point Energy

In the result

h2
E, = (8mL2> n? forn=1,2,3,.....

n =1 is the quantum state with lowest energy for an electron in an infinite potential
well, the ground state.

The energy of an e- in the ground state is £, # 0! Evenif T=0K!

Therefore in quantum physics, confined systems cannot exist in states with zero energy.
They must always have a certain minimum energy called the zero-point energy.

Sec. 39.2



Absorption of photon by a trapped electron

If a confined electron is to absorb a photon to make a quantum jump (be excited to
another level as in (a)), the energy hf of the photon must equal the energy difference
AE between the initial energy level of the electron and a higher level:

hc
AE = hf = — = Enigh — Elow

The electron does not stay in the excited state, instead it de-excites by releasing a
photon. Some allowed transitions are shown below in (c) - (d).

I I I £

Sec. 39.1



Absorption/Radiation of photon by a trapped electron

(Bit of background theory, to help you link guantum with classical picture)
 Find the expected (average) position of the electron using the wave function.

* This is a constant position if the electron is a single state, it doesn’t oscillate.

(more quantum weirdness)

* Butif the electron is simultaneously in two states e.g. ¥ = a¥; + bW, andaand b
evolve with time (e.g. start with a=1 and b=0) then expected position oscillates and

. . . E _E
hence radiates as a cosine with frequency [ = Zh :
L

The electron “distribution” in two states leads to back and forth motion of the electron

Atomic Dipole Transitions Applet (falstad.com)

( el)

Sec. 39 1 refresher _https://youtu.be/FWCN ul5ygY



https://youtu.be/FWCN_uI5ygY
https://falstad.com/qmatomrad/#:~:text=It%20demonstrates%20absorption%20and%20stimulated%20emission.%20When%20the,back%20to%20the%20ground%20state%2C%20and%20so%20on.

Example 2

An electron is trapped in a one-
dimensional infinite well of width 450
pm and is in its ground state. What are
the

a. longest,

b. second longest, and

c.third longest wavelengths of light
that can excite the electron from the
ground state via a single photon
absorption?

Quantum 2




Example 2 cont.

An electron is trapped in a one-
dimensional infinite well of width 450
pm and is in its ground state. What are
the

a. longest,

b. second longest, and

c.third longest wavelengths of light
that can excite the electron from the
ground state via a single photon
absorption?

Quantum 2




Wave functions of a trapped electron

The probability p (x) that an electron can be detected at position x v? .
within the well is: |

probability p(x) of detection babili .
tyd t
in width dx centred on = 125(2953 altl pyosﬁ?jﬁ,‘,'c . width dx
n

position x ) -
p(x) = Pn(x)dx

For an electron trapped in the one dimensional well « (pm)

Y2(x) = A2sin? (*x),  for n=123,.... MA

0 50 100)

for 0 < x < L. Note the wave function is zero outside that range. The « (pm)
probability density for L = 100 pm is shown in the diagram for a

number of levels. ) WVWWVWWW\
Vis
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Wave functions of a trapped electron — finding A

To find the probability of detecting the electron in a finite region (say
between x; and x;) we must integrate between those points

Probability = f 22 (x) dx = *? A? sin? (% x) dx
X1 X1

The probability of detecting the electron between —oco < x < 0 is
ONE (normalisation condition) therefore for an infinite potential well

of width L.
p nim
1= fAZ sin? (T x) dx
0

2
A2 =12
L

Evaluating gives

Quantum Physics 2
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Electron orbiting an atom - Neils Bohr’s model

* The problem: classical theory can show why an atom radiates (circular motion ->
acceleration -> radiation) BUT it predicts a continuous spectrum, not the line spectra
seen in experiments. |

e A e @
00nm 450 500 550 E:_ 7007 :

fITHI |||||||\|(1||]||ll|‘|\tlll, el o Sussicpgs
* In 1913, Danish physicist Niels Bohr (a student of both Thomson and Rutherford) further
refined the nuclear model by proposing that:

* electrons moved only in restricted, successive orbital shells

* the outer, higher-energy orbits determined the chemical properties of the different
elements.

* Bohr was able to explain the spectral lines of the different elements by suggesting that
as electrons jumped from higher to lower orbits, they emitted energy in the form of a
single photon.



Bohr model of the hydrogen atom

Coulomb’s force attracts the electron to the proton:
|q1q2 | 5 PE of electron, proton is at x=0
F=k 5 e
r

- U(r) =— ) ﬁ ]
4TTEYT
Substitute this into the SE in spherical coordinates and L

a miracle occurs.

As for the electron in a well, the SE predicts allowed
constructive interference states.

Nucleus
In this case, the wave function has to constructively
interfere in with itself in a spherical path. Circular Orbit
This is a 3D problem so we have 3 quantum numbers: “Electron
* n—the principal qguantum number, can be any
integer

 [—the angular momentum quantum number, <n
* m,—the magnetic quantum number
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Bohr theory:- orbital energy is quantised cont....

The energy levels corresponding to different states depend only on n:

1me* 1
E,=— forn=1,2,3,......
8 eh2 n?
Substituting in constants:
—18 Which is the same
E. = — 2.18 X 10 ] — _ 13.6 eV result as Bohr’s (but he
n n2 n2 didn’t use the SE or

know why energy
should be quantised)

Using the SE instead of Bohr's ad hoc classical approach allows us to predict other properties such as:
« The nature of the electron motion in the orbits

« The probable location of the electron

« The nature of the transition between energy states

Sec. 39.5



Bohr theory:- how energy changes in the hydrogen — association with wavelength

Atomic energy gain or loss is associated with one photon
hf = AE = Ehigh — Ejow

Also
4 4
hf:E:AETF—lWZw 21 __ln;e 21
A 8 &§ h? Nhigh 8 &5 h? Now
1_1me* [ 1 L Y_pf 1 - 1
A 8gdh3c\nf n%ligh Mo nfztigh

4
= 1.097373 x 10’m~1 is known as Rydberg’s constant.

Quantum Physics 2 36
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Sec.

Energy Level diagram for hydrogen atom (l)

Nonquantized Nonquantized
n n
0 . 0 o
5 5
4 4
3 3
-2.0 -2.0
B B The Lyman series
-4 g of wavelengths
_ are jumps up from
= 60 z -6.0 n =1 (absorption)
% These are the lowest Z or down to n=1
[ . . - . .
E 80 six allowed energies £ 0 (emission),
of the hydrogen atom. —Series
o limit
-10.0 -10.0
-12.0 -12.0
1 . l
-14.0 -14.0 - Lyman series
(a) (b)

Quantum Physics 2
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Energy Level diagram for hydrogen atom (ll)

Sec. 39.5

Energy (eV)

-6.0

-10.0

-14.0

Nonquantized

wleawos

1]
TN

Balme1
series

"’ This is the
shortest

Balmer A
(series limit).

Hydrogen emission spectrum

———Series
limit

The Balmer series
of wavelengths
are jJumps up from
n = 2 (absorption)
or down to n= 2
(emission).

| A

- This is the

longest
Balmer A
(red).

Energy (eV)

0

-4.0

-6.0

-3.0

-10.0

-12.0

-14.0

!

400 nm

700 nm

Nonquantized
n
-
— Series
Paschen limit
series
2
|

sics 2

The Paschen series
of wavelengths

are jJumps up from
n= 3 (absorption)
ordownton=23
(emission).

ll{)

38



Example 1

What are the emitted photon’s
a. energy,
b. magnitude of the momentum, and
c. wavelength

when a hydrogen atom undergoes a transition
from a state with n = 4 to a state with n = 2
(from Balmer series)?

Hydrogen emission spectrum

| |
400 nm 700 nm
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