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Mathematical Description of a Wave
The WAVE FUNCTION, y(x,t), describes the displacement, y, of each particle 
from its equilibrium position at a distance, x, from the starting point as some 
time, t. Think about the particles along a string

It gives a ‘snapshot’ in time of the position of each particle.
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Wave Number (k)
The wave number 𝑘𝑘 is defined as 𝑘𝑘 = 2𝜋𝜋

𝜆𝜆
and has units rad/m.

Substituting 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆

1 𝜔𝜔
𝑇𝑇 2𝜋𝜋

= we get:and 𝑓𝑓 =

𝑦𝑦 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴 cos 𝑘𝑘𝑥𝑥 −𝜔𝜔𝑡𝑡 +𝜙𝜙
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When our wave/energy is travelling from left to the RIGHT.
Where 𝐴𝐴 : amplitude

𝑘𝑘: wave number and

𝜔𝜔: angular frequency
𝜙𝜙: initial phase angle in radians



Wave Function for a Travelling Wave
If our energy is travelling from right to the LEFT then our wave function is:

𝑦𝑦 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴𝑐𝑐𝑜𝑜𝑠𝑠 𝑘𝑘𝑥𝑥 +𝜔𝜔𝑡𝑡 + 𝜙𝜙

So we have:
𝑦𝑦 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴𝑐𝑐𝑜𝑜𝑠𝑠 𝑘𝑘𝑥𝑥 ∓ 𝜔𝜔𝑡𝑡 + 𝜙𝜙
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That quantity 𝑘𝑘𝑥𝑥 ∓𝜔𝜔𝑡𝑡 is called the phase of the wave in radians and is 
constant.

The wave speed is given by 𝑣𝑣 = 𝑓𝑓𝑓𝑓
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Example 1
Given at a time t = 0, the wave speed of a sinusoidal wave through a string is
12.0 m/s with frequency of 2.00 Hz and amplitude 0.075m. Find the angular 
frequency, period, wavelength and wave number of the wave. What is the 
wave function if the initial phase is zero?
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Example 2
Write the equation for a progressive wave moving along the negative x-axis 
and having amplitude 0.020 m, frequency 550 Hz, and velocity 330 m/s.



Example 3
When a train of plane waves of wavelength 
3.40m traverses a medium, individual 
particles execute a periodic motion given by

𝜋𝜋𝑡𝑡
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3
where y is in mmthe relation, 𝑦𝑦 = 50.0 sin

and t in seconds.

a. Find the velocity of the wave.

b.Find difference in phase (in degrees), for 
two positions of the same particle at time 
intervals 1.00 apart.

c.Find the difference in phase of two 
particles 2.10m apart?

d.If the displacement of a certain particle at a 
given time is 30 mm, determine its possible 
position two seconds later.



Example 3 cont…
When a train of plane waves of wavelength 
3.40m traverses a medium, individual 
particles execute a periodic motion given by

𝜋𝜋𝑡𝑡
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3
where y is in mmthe relation, 𝑦𝑦 = 50.0 sin

and t in seconds.

a. Find the velocity of the wave.

b.Find difference in phase (in degrees), for 
two positions of the same particle at time 
intervals 1.00 apart.

c.Find the difference in phase of two 
particles 2.10m apart?

d.If the displacement of a certain particle at a 
given time is 30 mm, determine its possible 
position two seconds later.



Velocity and Acceleration of the PARTICLE at distance ‘x’
If our energy is travelling from left to the RIGHT then our wave function is:

y(x, t) = Acos(kx −ωt +φ)
Velocity

Acceleration

These are partial derivatives, treating ‘x’ as a constant while differentiating 
with respect to ‘t’. There will more about this in Mathematics 2.

v(x, t) = ∂y(x, t) = Aωsin(kx−ωt +φ)
∂t

∂2 y(x, t)
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= −Aω2 cos(kx −ωt +φ) = −ω2 y(x, t)
∂t 2

a(x, t) =

Note the difference between
wave speed and particle speed!



The Wave Equation

This is important! When it occurs we know a disturbance can propagate as a wave along a 
medium. This can be any wave, not just a sinusoidal wave. You will see this relationship 
when you reach quantum.

Note: Once again, this mathematics requires partial derivatives which are taught in 
Mathematics 2. For this subject, I will not examine the higher level calculus presented. 
Only the resulting algebraic equations.

v2
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∂2 y(x, t) = 1 ∂2 y(x, t)
∂x2 ∂t 2
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Physical optics

Key Properties of EM Waves
1. The wave is transverse.
2. Both E and B are perpendicular 

to the direction of propagation, c, 
of the wave.
E andB are perpendicular to one another. 
Direction of c is given by E×B
Emax = cBmaxwhere c is the speed of light.

The waves travel in vacuum with a definite and unchanging speed.
Unlike mechanical waves, EM waves require no medium. 
What is oscillating is the electric and magnetic field.
The fields always vary sinusoidally, have the same frequency, and are
in phase with each other.

3.
4.
5.
6.
7.
8.

Sec. 33.1

9.

This is a diagram of a 1-D EM wave



A slightly more helpful visualisation in 3-D

A plane wave
- The electric field is the same (mag and dir) 

everywhere on a given plane
- What would the field line representation look 

like?

A spherical wave
- The electric field is the same (mag and dir

relative to r) everywhere on a given spherical 
surface

- What would the field line representation look 
like?
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Ey (x, t) = Emax cos(kx −ωt ) and Bz (x, t) = Bmax cos(kx −ωt )

where Emax and Bmax are the amplitudes of the fields, ω is the angular frequency and
k = 2π / λ is the wave number.

The speed of all EM waves (in vacuum) is given by c =

whereµ0 is the permeability of free space = 4π×10-7 N/A2 and ε0

of free space = 8.85×10-12 C2 /N.m2
is the permittivity

Also can be shown that: (amplitude ratio)

Time varying Eand B

µ0ε0

1

c = Emax

Physical OpticsSec. 33.1

Bmax



Energy in EM waves
Energy is associated with EM waves: think sunburn, microwave ovens, radio transmitters 
and lasers which make use of EM energy.

The rate of energy transport per unit area is given by the Poynting vector, S (after

John Poynting, 1852- 1914).

with the intensity, I, of an EM wave is given by the average value of the Poynting vector,

The energy density within an electric field is given by

S = 1 E×B W/m2

µ0

0 0 2
= Emax1

2µ cµ
= Emax Bmax

ave rmsN.B. ErmsE2I = S =

2
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0

1 B2

uE =
2
ε0 E =

2µ



Example 5
Sunlight just outside Earth’s atmosphere has an intensity of 1.4 kW/m2. 
Assuming the light is a plane-wave, find Emax and Bmax.
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Energy radiation from a point source

If we assume a point source, S, emits

light isotropically then the light must

pass through the sphere of radius, r.

The intensity of the wave at a distance r from the source is:

area

28
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I = power = PS

4πr 2



Radiation Pressure, pr
EM waves have linear momentum and can exert a pressure on objects. Extremely small –
notice no kickback from camera flash!

During an interval Δt, the object gains an energy ΔU from the radiation. If the object is free
to move and the radiation is entirely absorbed by the object, then the momentum change
is given by: ∆U

c
∆p =

If the radiation is entirely reflected back along its original path, the magnitude of the 
momentum change of the object is twice that given above, or

∆p = 2∆U
c

29
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Radiation Pressure cont…..

Since and , it

follows that total

reflection

Since pressur , the radiation pressures, pr in the two cases become

total 

absorption

total 

reflectionr c
p = I

F = ∆p I = power = (energy 
a

total

c absorption

∆t

F = IA F = 2IA

30
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c

p = 2I
r c



Example 6
The maximum electric field 10 m from an isotropic point source of light is 2.0 V/m. What 
are
a. The maximum value of the magnetic field?
b. The average intensity of the light there?
c. What is the power of the source?

31
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Example 7
High power lasers are used to compress a plasma ( a gas of charged particles) by radiation
pressure. A laser generating radiation pulses with peak power of 1.5 × 103 MW is focused
onto 1.0 mm2 of high-electron density plasma.

Find the pressure exerted on the plasma if the plasma reflects all the light directly back 
along their paths.

33
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Polarisation
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Our little diagram for an EM is a little 
deceptive as it suggests that EM waves 
are perfect and the E and B fields are 
always oriented the same way. This is
known as polarised light.

If an EM wave is unpolarised, the E & B fields lie in 
randomly directed (but mutually perpendicular planes). 
The bottom diagram shows how the E and B fields 
could point in random directions as the wave travel 
towards you.

(Randomly polarised over very short 
periods of time)



Polarising Materials
A polariser will allow one E-field orientation through.

If the intensity of the original unpolarised light is I0, then the intensity of the 
light emerging through a polariser, I, is half the incident intensity.

Which E field gets through?

02
I = 1 I

35
Physical OpticsSec. 33.3



Intensity of the Polarised Wave
If the light incident on a polarising sheet is already polarised with intensity I0, 
only those components of the E field that are parallel to the polarising
direction are transmitted.

Ey = E cosθ and

Thus,

Crossed Polariser
If unpolarised light is incident on a polariser then 
this is incident on a second polariser rotated some 
angle θ to the first the resultant intensity will be

E

Ex

Ey

E2

cµ0

I = rms

0I = I cos2 θ

2

36
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0
1
2

I cos θI =



Example 8
A beam of light with intensity 43 W/m2 and polarisation parallel to the y-axis is sent into a 
system of two polarising sheets with polarizing directions at angles of θ1 = 70o and θ2 = 90o 

to the y – axis. What is the final intensity?
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Polarisation by reflection – Brewster’s Angle, θB
Light reflected from a surface is either fully or partially polarised. For rays 
incident on a surface at the Brewster angle the reflected and refracted rays are 
perpendicular to one another. The

reflected ray consists only of 
components perpendicular to the 
page while the refracted ray 
consists of the original parallel 
components and weaker 
perpendicular components. It can 
be shown:

HRW. Fig. 33-25, pg. 912.

1
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B n
θ = tan−1 n2



Brewster’s Angle – it comes down to little current 
oscillations

(Interesting background
- Not examinable)



Example 9
Light travelling in water of refractive index 1.33 is incident on a plate of glass with index 
of refraction 1.53. At what angle of incidence is the reflected light fully polarised?

41
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