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Imagine you were studying physics (natural philosophy) before Newton

• There were lots of experiments with results and partial explanations
• Pendulum motion
• Falling bodies
• Bodies on inclined planes
• Planetary motion

• But there was no unifying theory, and no way to predict results of new experiments

• Newton’s laws provided this theory!

• So is there a unifying theory that allows us to predict and explain all the weird 
quantum experiments?



Quantum Mechanics and Schrödinger’s equation

Schrödinger’s equation replaces Ԧ𝐹 = 𝑚 Ԧ𝑎 for the motion of particles on an atomic scale.

It must satisfy the wave equation, since the particles have wave properties.
• But what is the dependent variable?

• E.g. for an EM wave, the dependent vars are E and B strength, for a sound wave it is pressure

• The dependent variable is the wave function Ψ (Psi)

• The square of its magnitude has physical significance – the probability of the particle 
being there (between x and x+dx)!

𝑃𝑟𝑜𝑏 ∝ Ψ 2Δ𝑥

So you can at best know probably where a particle is located. But since you’ve already come to peace 

with the fact that you can’t know a particle’s position and momentum to a high level of precision, you’re 

probably okay with this concept too ☺

(or 𝑊 = 𝐹𝑥 = Δ𝐾 etc)
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How to use Schrödinger’s equation
• Use it to calculate Ψ
• Then from Ψ calculate the interesting properties of the electron’s motion, like KE, etc.

• Also, the probability the electron will arrive at a certain position x, Ψ 2𝑑𝑥.

• Ψ is a construct and used like E in EMag theory
• You can it to predict interference patterns etc, but you only experimentally measure 

E
2

One dimensional SE for electron for a potential energy that depends only on x not t

ℎ2

8𝜋2𝑚

𝑑2𝜓

𝑑𝑥2
+ 𝐸 − 𝑈 𝑥 𝜓 = 0

PE e.g. from Coulomb FTotal E

Wave function that only depends on x
You don’t have to use the SE yourself,

this is just important background theory 

to help you understand the effects we will 

soon be predicting
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The free electron and Schrödinger’s equation

One dimensional SE for electron for a potential energy that depends only on x not t

ℎ2

8𝜋2𝑚

𝑑2𝜓

𝑑𝑥2
+ 𝐸 − 𝑈 𝑥 𝜓 = 0

Let our electron travel in a region of constant potential E
• let U=0 for simplicity
• It is isolated (doesn’t interact with anything) so total energy is a constant.

ℎ2

8𝜋2𝑚

𝑑2𝜓

𝑑𝑥2
+ 𝐸𝜓 = 0

𝜓 = 𝐴 sin
2𝜋

ℎ
2𝑚𝐸𝑥 + 𝐵 cos

2𝜋

ℎ
2𝑚𝐸 𝑥

= 𝐴 sin
2𝜋

𝜆
𝑥 + 𝐵 cos

2𝜋

𝜆
𝑥

Look closely – this has the same form 

as the pendulum or LC circuit 

equations!

𝜆 =
ℎ

2𝑚𝐸

Such an 

electron has all 

its E in form of 

KE
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The free electron and Schrödinger’s equation

𝜓 = 𝐴 sin
2𝜋

ℎ
2𝑚𝐸𝑥 + 𝐵 cos

2𝜋

ℎ
2𝑚𝐸 𝑥

= 𝐴 sin
2𝜋

𝜆
𝑥 + 𝐵 cos

2𝜋

𝜆
𝑥

• This is an infinitely long train of waves
• It has a precise wavelength and momentum

• A precise p means a completely imprecise x, which is why the wave train is so long.

• But if we know (sort of) where the e- is, the wave is different:
• It’s a wave packet! Its small so p becomes big, and it travels at 𝑣 =

2𝐾

𝑚

𝜆 =
ℎ

2𝑚𝐸
and 𝑝 =

ℎ

𝜆

Understand what this wave 

function means in terms of 

the behaviour of the e-

(Δ𝑝 = 0) (Δ𝑥 = ∞)
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The free electron
A free electron has a kinetic energy of 

10 eV.

Find its corresponding speed.

If the speed is known to 1.0% accuracy, 

what is the accuracy with which we can 

measure the electron’s position?

v=1.9x106 m/s; x=40 nm or 6nm using h/2pi



Quantum Physics 2 1
0

The free golf ball
A golf ball has a mass of 45 g and speed 

of 75 m/s measured to 1.0% accuracy.

What is the accuracy with which we can 

measure its position?

x=2x10-32 m <<< smaller than an atom!
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String Waves and Matter Waves

• Confinement of a wave leads to quantisation – that is, to the existence of discrete states
with discrete wavelengths. The wave can only have those wavelengths.

• This observation applies to waves of all kinds, including matter waves. For matter waves,
however, we will deal with the energy, E, of the wave packet and not the frequency f,
which has no physical significance.

This Photo by Unknown Author is licensed under CC BY

https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/16-6-standing-waves-and-resonance/
https://creativecommons.org/licenses/by/3.0/


Energies of trapped electron : - one dimensional trap
𝑛𝜆

2
𝐿 = , 𝑓𝑜𝑟 𝑛 = 1, 2, 3, … . .

Each value of n identifies the state of the oscillating 
string; the integer n is a quantum number.

𝑦𝑛 𝑥

For each state of the string, the transverse 
displacement of the string at any position x along 
the string is given by:

𝑛𝜋= 𝐴 sin 𝑥 ,
𝐿

for n = 1, 2, 3, ……
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Trapped electron: - finding quantised energies

In the region 0 to L the electron’s potential energy is zero 
as V=0. Outside this ‘well’ its energy would be positive and 
infinite in magnitude as V goes to infinity. This potential 
pattern is called an infinitely deep potential energy well 
as an electron trapped in it cannot escape.
It reflects from each wall due to a force of essentially
infinite magnitude.
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Trapped electron: - finding quantised energies using the SE

Want to use the Schrödinger equation? Here’s how:

First, just look at the region of 0<x<L where U = 0. Subs 
that into the SE

ℎ2

8𝜋2𝑚

𝑑2𝜓

𝑑𝑥2
+ 𝐸𝜓 = 0

As before, this has a solution of a sinusoidal wave.

But now! The probability of finding the e- outside the 
well is zero ( 𝜓 2 = 0). 
The solution of ψ has to be 0 when x≥0 and x≤L.
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Trapped electron: - finding quantised energies

Like a standing wave in a string, the matter wave
describing the trapped electron must have nodes at
x = 0 and x = L.

This determines the allowed e- wave packet 
wavelengths.

This is turn determines the allowed e- momenta and 
energies:

𝜆 = =
ℎ ℎ

𝑝 2𝑚𝐾
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Interference of de Broglie waves!

Know the allowed standing wave patterns and their wavelengths, 

momenta, and energies



Trapped electron: - finding quantised energies

Substituting into 𝐿 =
𝑛𝜆

2
and solving for E we get for a one

dimensional infinite well of width L:

𝐸𝑛 =
ℎ2

8𝑚𝐿2
𝑛2 for 𝑛 = 1, 2, 3, … …

The trapped e- can only have an energy from a set of
discrete values!

This can be extended to two and three dimension with:

𝐸𝑛𝑥𝑥 ,𝑛𝑦𝑦 ,𝑛𝑧𝑦 =
8𝑚 𝑥𝐿

2
𝑦𝐿
2

𝑥 + 𝑦 +
𝑧ℎ2 𝑛2 𝑛2 𝑛2

𝑧𝐿
2
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The n’s are called quantum numbers

The allowed E’s are called energy levels



What can these wells look like?

1-D confinement (free to move in 2D)

2-D confinement (free to move in 1D) 
= quantum wire

3-D confinement (not free to move) 
= quantum dot



Trapped electron: - finding quantised energies

The diagram to the left is Figure 39-3 from the textbook 
and shows the lowest five allowed energy values for an 
infinite well of L = 100 pm. These are called energy
levels. A wave packet described by wave function with a 
certain n value is in quantum state n.

n = 1 is the ground state and has the lowest possible 
energy where the electron tends to reside. For n > 1, the 
electron is said to be in an excited state with n = 2 the first 
excited state.
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Zero Point Energy

In the result

𝐸𝑛 =
ℎ2
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8𝑚𝐿2
𝑛2 for 𝑛 = 1, 2, 3, … …

n = 1 is the quantum state with lowest energy for an electron in an infinite potential
well, the ground state.

The energy of an e- in the ground state is E1 ≠ 0!

Therefore in quantum physics, confined systems cannot exist in states with zero energy. 
They must always have a certain minimum energy called the zero-point energy.

Even if T = 0 K!



Absorption of photon by a trapped electron

If a confined electron is to absorb a photon to make a quantum jump (be excited to 
another level as in (a)), the energy hf of the photon must equal the energy difference 
ΔE between the initial energy level of the electron and a higher level:

ℎ𝑐
Δ𝐸 = ℎ𝑓 = = 𝐸ℎ𝑖𝑔ℎ − 𝐸𝑙𝑜𝑤

𝜆

The electron does not stay in the excited state, instead it de-excites by releasing a 
photon. Some allowed transitions are shown below in (c) - (d).

Quantum Physics 2 20
Sec. 39.1



Absorption/Radiation of photon by a trapped electron

(Bit of background theory, to help you link quantum with classical picture)
• Find the expected (average) position of the electron using the wave function.

• This is a constant position if the electron is a single state, it doesn’t oscillate.

• But if the electron is simultaneously in two states e.g. Ψ = 𝑎Ψ1 + 𝑏Ψ2 and a and b
evolve with time (e.g. start with a=1 and b=0) then expected position oscillates and 

hence radiates as a cosine with frequency 𝑓 =
𝐸2−𝐸1

ℎ
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The electron “distribution” in two states leads to back and forth motion of the electron

refresher https://youtu.be/FWCN_uI5ygY

Atomic Dipole Transitions Applet (falstad.com)

(more quantum weirdness)

https://youtu.be/FWCN_uI5ygY
https://falstad.com/qmatomrad/#:~:text=It%20demonstrates%20absorption%20and%20stimulated%20emission.%20When%20the,back%20to%20the%20ground%20state%2C%20and%20so%20on.


Example 2

An electron is trapped in a one-

dimensional infinite well of width 450

pm and is in its ground state. What are

the

a. longest,

b. second longest, and

c.third longest wavelengths of light

that can excite the electron from the

ground state via a single photon

absorption?

Quantum 2



Example 2 cont.

An electron is trapped in a one-

dimensional infinite well of width 450

pm and is in its ground state. What are

the

a. longest,

b. second longest, and

c.third longest wavelengths of light

that can excite the electron from the

ground state via a single photon

absorption?

Quantum 2



Wave functions of a trapped electron
The probability 𝑝 𝑥 that an electron can be detected at position 𝑥
within the well is:

𝑛𝑝 𝑥 = 𝜓2 𝑥 𝑑𝑥

For an electron trapped in the one dimensional well

𝑛𝜓
2 𝑥 = 𝐴2 sin2

𝐿

𝑛𝜋 𝑥 , for 𝑛 = 1, 2, 3, … …

for 0 ≤ x ≤ L. Note the wave function is zero outside that range. The 
probability density for L = 100 pm is shown in the diagram for a 
number of levels.

probability 𝑝(𝑥) of detection
in width 𝑑𝑥 centred on

position 𝑥
=

probability density
𝜓2 𝑥 at position 𝑥
𝑛

. width 𝑑𝒙
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Wave functions of a trapped electron – finding A

To find the probability of detecting the electron in a finite region (say 
between 𝑥1 𝑎𝑛𝑑 𝑥2) we must integrate between those points

Probabilit𝑦 =
𝑥1

𝑥2
𝑛
2𝜓 𝑥

𝑥1

𝑑𝑥 =
𝑥2 𝐴2 sin2

𝐿

𝑛𝜋 𝑥 𝑑𝑥

The probability of detecting the electron between −∞ < 𝑥 < ∞ is
ONE (normalisation condition) therefore for an infinite potential well 
of width L.

𝐿

1 = 𝐴2 sin2

0
𝐿

𝑛𝜋
𝑥 𝑑𝑥

Evaluating gives

𝐴2 =
2

𝐿
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Electron orbiting an atom - Neils Bohr’s model 
• The problem: classical theory can show why an atom radiates (circular motion -> 

acceleration -> radiation) BUT it predicts a continuous spectrum, not the line spectra 
seen in experiments.

• In 1913, Danish physicist Niels Bohr (a student of both Thomson and Rutherford) further 
refined the nuclear model by proposing that:

• electrons moved only in restricted, successive orbital shells

• the outer, higher-energy orbits determined the chemical properties of the different 
elements.

• Bohr was able to explain the spectral lines of the different elements by suggesting that 
as electrons jumped from higher to lower orbits, they emitted energy in the form of a 
single photon.

CLASSICAL 

PHYSICS



Bohr model of the hydrogen atom
Coulomb’s force attracts the electron to the proton:

𝐹 = 𝑘
𝑟2

𝑞1𝑞2
→ 𝑈(𝑟) = −

𝑒2

4𝜋𝜖0𝑟

Substitute this into the SE in spherical coordinates and 
a miracle occurs.
As for the electron in a well, the SE predicts allowed 
constructive interference states.
In this case, the wave function has to constructively 
interfere in with itself in a spherical path.

This is a 3D problem so we have 3 quantum numbers:
• n – the principal quantum number, can be any 

integer
• l – the angular momentum quantum number, < n
• ml – the magnetic quantum number
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PE of electron, proton is at x=0



Bohr theory:- orbital energy is quantised cont….

The energy levels corresponding to different states depend only on n:

for 𝑛 = 1, 2, 3, … …
0

1 𝑚𝑒4 1
𝐸n = −

8 𝜀2ℎ2 𝑛2

Substituting in constants:

𝐸𝑛 = −
2.18 × 10−18 J

𝑛2
= −

13.6 𝑒𝑉
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𝑛2

Which is the same 

result as Bohr’s (but he 

didn’t use the SE or 

know why energy 

should be quantised)

Using the SE instead of Bohr’s ad hoc classical approach allows us to predict other properties such as:

• The nature of the electron motion in the orbits

• The probable location of the electron

• The nature of the transition between energy states



Atomic energy gain or loss is associated with one photon

ℎ𝑓 = ∆𝐸 = 𝐸ℎ𝑖𝑔ℎ − 𝐸𝑙𝑜𝑤

Also

0

ℎ𝑐 1 𝑚𝑒4 1

ℎ𝑖𝑔ℎ

ℎ𝑓 = = ∆𝐸𝑛= −
𝜆 8 𝜀2ℎ2 𝑛2

0

1 𝑚𝑒4 1

𝑙𝑜𝑤

− −
8 𝜀2ℎ2 𝑛2
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Bohr theory:- how energy changes in the hydrogen – association with wavelength

0

=
𝜆 8 𝜀2ℎ3𝑐

1 1 𝑚𝑒4 1

𝑙𝑜𝑤

1

ℎ𝑖𝑔ℎ𝑛2 −
𝑛2

𝑅 = 1 𝑚𝑒4

08 𝜀2ℎ3𝑐
= 1.097373 × 107m−1 is known as Rydberg’s constant.



Energy Level diagram for hydrogen atom (I)
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Energy Level diagram for hydrogen atom (II)
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Example 1

What are the emitted photon’s

a. energy,

b. magnitude of the momentum, and

c. wavelength

when a hydrogen atom undergoes a transition

from a state with n = 4 to a state with n = 2

(from Balmer series)?
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