
[image: Front Cover of Ultimate Guide to Mastering Command Blocks!]

[image: Book Title of Ultimate Guide to Mastering Command Blocks!]

[image: Image]

Screenshot: Minecraft® ™ & © 2009–2016 Mojang/Notch

Copyright © 2016 by Triumph Books LLC

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher, Triumph Books LLC, 814 North Franklin Street; Chicago, Illinois 60610.

This book is available in quantity at special discounts for your group or organization.

For further information, contact:

Triumph Books LLC

814 North Franklin Street

Chicago, Illinois 60610

Phone: (312) 337-0747

www.triumphbooks.com

Printed in U.S.A.

ISBN: 978-1-62937-232-7

Content packaged by Mojo Media, Inc.

Joe Funk: Editor

Jason Hinman: Creative Director

Gerry Walsh: Writer

This book is not authorized, sponsored, endorsed, approved or licensed by, or associated or connected with, Mojang AB. MINECRAFT is a registered trademark owned by Mojang AB; other company names and/or trademarks mentioned in this book are the property of their respective companies and are used for identification purposes only.

All screenshots for criticism and review. Minecraft® ™ & © 2009-2016 Mojang/Notch.

[image: Image]

Contents

Introduction

What Are Command Blocks

The Basics

The Interface

Command Blocks and Redstone

Learning Basic Commands

Minecraft Command Compendium

Welcome to the Gallery!

Redstone Items

Your First 5 Redstone Builds

[image: Image]

Introduction

There comes a time in every Minecraft player’s experience when they hit the limit of what can be done with pickaxes, pistons, and the ever faithful Redstone.

After hours of play and designing a world that moves and shakes to the beat of your automated note-block symphony, you might start to pine for a different kind of creative power. A power to give you the freedom to make marvels and pull off effects you might not have ever dreamed of once upon a time.

Enter Minecraft’s most powerful block to date.

We call her the command block, and she’s the mother of all other blocks before her. With this new addition to the game it’s possible to upgrade your play style—no more tackling things a block at a time. The power to affect and change your whole world and all the moving parts and mobs in it becomes yours.

[image: Image]

FUN FACT:

Command blocks can be used to summon or kill any mob in the game. You can even name some entities and change how they behave in the world. Want an armored zombie as a body guard to follow you around? Go for it! Want to sit back and watch a giant Wither Boss fight the End Dragon? Well grab some popcorn because it’s possible!

[image: Image]

These blocks have multi-functionality that lets it affect any and all you can think of in your Minecraft game world so long as you have the right command in mind. We’ll provide a list of commands (it’s gigantic) and the effects you can achieve depending on which ones you use.

Have you ever wanted a secret door to your base that looks just like the wall surrounding it? Even better have you ever wanted it to open automatically and have it open just for you? How about a security system for your base that can tell when a stranger is invading and turn the entire floor in an area to lava as a security measure? Or perhaps an entire structure summoned with the flick of a switch only to disappear again when that same switch is turned off? All this and more is possible with the use of command blocks and as you can imagine it can be anywhere from the simplest command like giving you an item, to affecting an entire area all at once and completely changing the landscape.

[image: Image]

It’s even possible to combine the use of more than one command block at a time to create some never before seen Rube Goldberg device to trap or confuse enemies with hilarious results or even just to watch your creation move and unfold before you at the touch of a button.

The list of commands and possibilities for using command blocks isn’t endless but it is fairly massive, and while the learning curve isn’t as steep as the gigantic list might make you think, it’s still there. So we’ll start off with the basics, and work our way up to the more advanced commands the command block is capable of performing.

Eventually we’ll lead you into using multiple command blocks at the same time to achieve amazing feats of Minecraft engineering that would be impossible otherwise.

[image: Image]

For now, without letting the size be too daunting, we suggest to take this tutorial at a steady and even pace. There isn’t a time crunch—this book isn’t going anywhere, but learning some of the heavier stuff dealing with command blocks does take a basic understanding of how they work and how to achieve desired results with the right commands. It won’t be instant, but by the end of this book you should be very familiar with command blocks and how to use them to suit your plans. So much so that you might even find yourself taking what you’ve learned and coming up with new ideas that aren’t even in this book! That’s how many different ways to use command blocks exist, there is such a variety of methods and combinations to use, that this book would be the size of a dictionary if we could add them all!

Saying that, even after reading, we would suggest that it might be a good idea to go out and seek other means of educating yourself on the subject, from watching videos to watching over the shoulder of a more experienced player. Even playing with command blocks yourself with a list of commands in front of you will give you pivotal experience to help you on your way.

[image: Image]

The name of the game here is getting you to where you want to be in your understanding of how command blocks work and how to get them working for you. If you decide you need to seek out another resource or two to help with that, then all the power to ya!

Our goal within the pages of this book is to cover as much information as we can on command blocks and the commands they use so you don’t lose your way when you try it out for the first time.

What to Expect

For the purposes of this book we’re going to be looking at command blocks and the commands that you can use with them within the confines of a single player creative world setting. Though most of these commands will be used more often in a multiplayer server, this is because in a server there are more players who cannot use chat based commands compared to those who can. This book will be sequential, as we move forward, each new section will cover material under the assumption you have read the material of the previous sections.

[image: Image]

It’ll start simple, we’ll need to cover all of the basics before moving onto anything more complicated because to do any of the major projects involving command blocks you’ll need at least a basic understanding of how to write out the easy stuff first. Things like basic summoning of items and mobs and moving around blocks a certain way will pave the way for you to learn the more complicated command block setups and help you to think up new ways of using them all your own.

We’ll be using a fair bit of terminology as well, words and phrases that, prior to reading this book you might not be familiar with so we’ll have a section that explains them all. That way at any point throughout your reading of this book if you get stuck on a term you haven’t seen before, you can just flip back a few pages and learn about it.

After the basics are learned and you know where to go looking for anything you might not be familiar with, we’ll demonstrate various setups with command blocks and different ways of using Redstone to activate them as well as using multiple command blocks and Redstone set ups at the same time in some advanced builds.

[image: Image]

FUN FACT:

With the say command you can make it seem like anyone at all has joined your game! Fool your friends in chat and have a laugh when some big Minecraft names “join your game” only to be nowhere to be found despite the best efforts of the other players! (see our gallery)

[image: Image]

What Are Command Blocks

The command block, like its name suggests, is a block in Minecraft all about commands. Each command you give to a command block is, in a sense, giving a command to the server, telling it to do something.

The only difference here being that the thing executing the command is the block, and it can continue to execute any command long after the server admin or creative player that spawned it is gone. Not long ago there was only one type of command block in the game but with the advent of the 1.9 update, there are now 3 types of command blocks at your disposal to conquer your Minecraft experience like never before.

[image: Image]

These new types of command blocks aren’t exactly extra items added in the game, but instead what they’ve done is add extra functionality to the original command block.

Now via interaction with the new improved interface of the classic (or Impulse) command block, you can change it into one of two new types, the Chain command block and the Repeating command block, each with their own functionality separate from that of the original.

While a classic command block will activate its command with a Redstone signal, with the chain variation (the green one), it is possible to place multiple command blocks down in a line (much like placing down lines of Redstone) and have them react in order, one after the other.

The repeating command block (purple) was created to automatically activate itself over and over instead of having to use Redstone to achieve the same effect. Don’t panic though, Redstone will still be a big part of working with command blocks regardless of these innovations.

[image: Image]

As you might guess, because of the variety of different ways to set up a Redstone system, you could still have a command block continuously executing a command automatically by using Redstone.

So if you want a command block to summon a cow every few minutes, you can do it. If you wanted a block of diamond to suddenly appear out of nowhere at the push of a button, that’s possible too. If you wanted to design a bridge to cross a ravine that disappears periodically these command blocks are your tool to use.

But wait, there’s more!

Not only can command blocks work for making physical changes to your Minecraft world and summoning blocks, items, or mobs, but they can also function as “brains” or “radars.” What this means is that as well as summoning all those things, they can also “detect” anything you tell them to, and if you so choose, react to anything that it detects via a Redstone signal.

[image: Image]

Basically if you place down a command block and tell it to look out for say, a creeper, you can have the block act as a guard for whatever you’re building. If the creeper gets too close, it’ll emit a Redstone signal. When that happens you can have that Redstone signal lead off to a trap of your own design, eliminating the problem while you’re off doing your own thing, completely at ease knowing the command block is doing its job. It’s not just enemy mobs like creepers, zombies, skeletons and Endermen either—it can detect other players, friendly mobs and even blocks. Based on the various things it can detect, you can have it react however you want. Even to the point where it can influence another command block to perform additional commands and achieve multiple effects.

The sky’s pretty much the limit with command blocks.

[image: Image]

HOT TIP:

When you have a long and complicated command typed out in a command block and want to take the block with you somewhere else, command and all, hold the control key while you middle click (scroll wheel) your mouse while looking at it and it will pick it up with your command still inside!

[image: Image]

The Basics

In a normal server, summoned items and changes are brought about by inputting basic commands in the little black chat bar that pops up when you hit the “t” key on your keyboard. Alternatively you can use the forward slash “/” on your keyboard to the same effect but this adds in a forward slash “/” automatically, to start off any command you might be about to use.

The way to tell a server you’re giving it a command is to start your line of text with a “/” or forward slash. This is true ONLY for typing commands into chat, but not for when you are imputing commands into command blocks.

The sole purpose of a command block is to execute a command, therefore, the “/” key isn’t needed to tell the block that is what you are doing. There’s nothing else you can be doing with it, so unlike typing commands into the chat bar, the commands for command blocks don’t need the forward slash in front of them.

Before we get any further though there are a couple things to keep in mind. It’s worth noting that a command block is only accessible through creative mode or being spawned in by the server—there’s no crafting recipe here. Command blocks can only be summoned by someone playing in creative mode with the command:

/give [player] command_block

For chain commands blocks it would be:

/give [player] chain_command_block

And lastly for repeating command blocks the command would be:

/give [player] repeating_command_block

Alternatively, if on a multiplayer server, the same command can be used by any server admin to acquire one.

For those of you playing in creative mode, a neat trick to keep in mind is using the middle click mouse button while looking at a command block or any other block. By using middle click (or pushing in on your scroll wheel) whatever it is you are looking at will duplicate and appear in an empty space in your inventory.

So rather than having to type out “/give [player] command_block” every time you need another one, you can just middle mouse click on any existing command block and another will appear right in your hot-bar if you’ve got the space.

Added onto this feature is the “shift middle click” function. This works like the middle click function with the exception that you’re holding shift when you click it. What this does is it scans whatever commands and settings that have been input into the command block you’ve clicked, and copies them out exactly into the one that appears in your inventory. So if you wanted to have two command blocks with the same command doing the same thing and you didn’t want to write out the same command twice, you would use this function and you wouldn’t have to.

Once a command block is summoned and placed in the world it can only be interacted with by creative mode players, server admins, or “Opped” players with a permission level of at least 2.

Though after a command has been set to a command block, any means of Redstone device can be connected to it and used by any player to activate it.

Once you get a command block, it’s going to work just like a furnace or a crafting table. What this means is that anywhere in the world you want to place it you can, and once that’s done you can just right click and open up the interface to start giving it commands.

[image: Image]

FUN FACT:

Even the items in this game are customizable with command blocks and commands. You can create your very own customized potion or even use a command block to grow a golden apple that armors you in enchanted golden armor when you eat it!

[image: Image]

The Interface

When you right click on a command block for the first time, either in creative mode or as an admin on a server, there’s not much to the window you will see, but chances are you are already confused.

That’s okay. If you knew what to do here you probably wouldn’t be reading this book. It may look a little confusing at first, but it’s a lot easier to deal with than you might think.

There are two long black bars (one is invisible at first) that remind you of your chat bar and some text on the screen that probably doesn’t make sense, along with a couple of buttons. Don’t worry about the text just now we’ll be getting there a bit later.

For now, just focus on the first black bar. The black bar at the top is where you’ll be inputting your commands, and the second bar at the bottom that you won’t see at first is to see that command block’s “previous output.”

[image: Image]

You can’t type anything into this second bar but it’s there to let you know whether the last command you did type in the top bar worked or if it failed. The smallest button at the bottom right marked with “O” is the indicator. If it’s still “O” it worked. If it’s an “X” then the black bar is now visible and you will see the error message for the command you tried to activate.

Impulse, Chain, & Repeating Command blocks

These next three buttons are rather new, so let’s tackle them in order.

1. The first button you’ll notice will change a few times when you click on it. It toggles between Impulse, Chain, and Repeating. This is how you change one type of command block into the other and back again. (The change only taking effect after clicking “Done.”)

[image: Image]

a. The Impulse command block works the most normal out of the 3, you input a command, give it a Redstone signal and it executes that command. Nice and simple.

[image: Image]

b. The Chain command block works a little different—this one is designed to sit where you place it and look for other chain command blocks on any of its 6 sides. If it detects another chain command block actually executing a command, then it reacts by executing its own command and sends out its own signal to the next one if there is another in the chain. So it works like a domino effect. If one goes off, it sets off the one next to it, which would then set off the next one, and so on.

[image: Image]

Be aware of the arrow-like design on all command blocks, when you place one down the arrow will point back towards the player. This arrow needs to be pointing at the next command block in the chain if you want that next command block to activate in turn.

[image: Image]

[image: Image]

c. The Repeating command block works like a really fast Redstone clock, (see our Redstone section for details on clocks) it will continue to pulse out a Redstone signal to itself to activate its command over and over. It does this at a rate of about 20 times a second or once per tick in Minecraft lingo.

[image: Image]

[image: Image]

2. The second button will switch between Conditional and Unconditional.

If you have this set to conditional that means that the command block, no matter which type, will execute its command if the command block behind it (opposite of where the arrow is pointing) successfully executed its own command. If set to unconditional then that command block will ignore the block behind it. Note that when a command block has been set to conditional the arrow design on the block will change slightly to let you know without having to check the interface.

[image: Image]

3. The third button changes from its default setting “Needs Redstone” to “Always Active.” This is the difference between the command block being able to execute with any Redstone device, like a button or a lever, and having the command block activate as soon as you click “done,” after which it will stay activated.

To activate the typed-in command and set the command block, you click the “done” button. If you still need to rethink the command and don’t want to set it right away, you click “cancel.”

After you’ve typed in a functional command by using the interface and selected “Done,” the interface window will close and the chat bar will tell you: Command set: [name of command]

[image: Image]

FUN FACT:

Command blocks can be used to change the game rules as well, if you want to change something like how fast the tick speed is you can increase that number as much as you want and watch as things start to happen, like plants starting to grow a lot faster and lava starting to flow faster.

[image: Image]

Command Blocks and Redstone

There is a very long list of commands and command combinations that you can use with command blocks, but I think you’ll agree with us when we say the other important half of the process is actually activating the block when you have the command assigned to it. The only method for doing this is with the use of a Redstone signal. The Redstone signal can be anything from sticking a simple button to the side of your command block to any number of the complicated Redstone setups that exist out there, there’s quite a few.

We realize most of you may have an idea already on how to use Redstone and most likely can manage this on your own but for the sake of covering all bases we’re going to demonstrate a few simple methods out there for activating your command block and maybe a few other methods you might not have been aware of.

1. Button

First we have activation by button. You probably figured this out for yourself but we’re starting at the bottom here. Not difficult, just press the button to activate the command block and voila. Simple and easy. The command we are using here as well as for the rest of our example pieces is “say Activated!”

[image: Image]

2. Pressure Plates

Next up is the pressure plates. Not that much different than buttons. Essentially they are just big flattened buttons you can only place on any block surface that isn’t the wall or ceiling. The advantage to pressure plates is they don’t need direct purposeful interaction by the player. Any mob or entity can walk across and activate the command block making it a good tool in setting up command blocks dealing with mob traps or farms for animals.

[image: Image]

3. Levers

Lever activating is just as simple. Every toggle of the lever placed either on the command block or on an adjacent surface to it will activate the command block’s command. While great on their own, you might find that they work better when they are working together with other Redstone devices.

[image: Image]

4. Redstone Torch

A Redstone torch is one of the more basic ways to activate a command block but because the power of command blocks activates the moment they trigger a command, once a Redstone torch activates it, that’s it. Nothing else happens unless you break the torch and place it again making it not the most practical tool when used alone.

[image: Image]

5. Trip Wire

We’re getting fancy now with trip wire activation. Just imagine the kind of booby traps you can set up with command blocks pulling the strings. Though normally associated with creating complicated Redstone arrow traps or pitfalls, the trip wire still does count as a Redstone signal to a command block.

[image: Image]

6. Lever, Piston, Redstone Block

We’ll call this one the lever, piston and Redstone block activation. Redstone blocks are a lot like Redstone torches with the exception that they can be placed more easily in different situations (on the ceiling or floating in the air). When placed down next to a command block, they will activate it only once, but because it is a block, pistons can be used to move it allowing for more than one activation.

[image: Image]

7. Lever, Piston, Redstone Block Extended

This one is just like the last one but we’re using a line of Redstone on the ground to reach the piston moving the block. This is more to give you the idea that even Redstone placed on the ground correctly can be used to create a sequence that will activate a command block from afar.

[image: Image]

8. Redstone Clock

Moving even further we can see that even Redstone setups such as “clocks” can work to activate command blocks. With clocks and other similar contraptions it’s possible to continuously activate command blocks automatically so that you don’t have to keep constant watch over it yourself. Make note of the fact that when using Redstone dust by itself to connect to the command block, the last line of dust has to be placed on top of the block itself, not adjacent, or it will not work.

[image: Image]

9. Entity Spawning Dispenser + Pressure Plate

Not too complicated of a setup, pull the lever, dispenser spawns a villager (or other mob), villager lands on pressure plate and activates the command block’s command. This example is to demonstrate the customization possibilities when setting up your Redstone setup for connecting to the command block. This isn’t the most advanced setup but maybe it might give you some ideas as to how you might do your own.

[image: Image]

10. Daylight Sensor

The last one we’ll show here is the daylight sensor setup. The daylight sensor will detect the light levels of wherever it’s placed and pump out a Redstone signal based on how much light there is. The more light, the stronger the Redstone signal. As the light dims, the Redstone signal gets weaker. We have this setup so that at the darkest level of light, (night) the Redstone signal from the sensor will be weak enough that it stops transmitting to the Redstone torch. The Redstone torch lights up, then sends a signal to the command blocks thus activating their commands (“Time set day” and “Weather clear”).

[image: Image]

[image: Image]

FUN FACT:

Designed your building too big? Are the stairs you created to scale the walls of your castle just taking too long to climb? Well plop down a secret command block and hook it up with a Redstone signal and the teleport command to make your own make-shift elevator!

Learning Basic Commands

At this point it may start to sound like a broken Music Disc on repeat but let me reinforce once more just how many command block commands there are. It won’t be possible to go over in detail every single one, but for reference they will be included in this book with a small summary for each.

The method to our madness here will be to teach you the basics of the easier commands and how they can be changed and affected by modifying different values and variables within specific command lines. This will show you how the result of your command blocks doing their thing can change and how you can change it by inputting things differently. Our hope is that once you’ve learned all there is to within this book, you’ll be at a level where you can teach yourself how to use any commands we don’t cover in depth.

Terminology

There will be a few terms we use in this next part you might not be familiar with, and that’s okay. Explaining them by themselves would be confusing so we’re going to bring them up as we go through the different commands we’re covering. The first time you come across a new term or a word that goes along with the command, chances are it’ll be explained right there or a little later.

When they come up in the next section the first time you see these specific terms they will have the first letter of each word capitalized and will be in bold so you know which ones to keep an eye out for. After that they will simply be in bold as a reminder of that you’re dealing with something that has already been covered.

1. HELP

The first command is the easiest to get a grasp of: the “help” command.

For a list of all the available commands in Minecraft’s repertoire, type in chat “/help” and it will bring up the first of seven pages worth of commands that you can use both in chat or with a command block. To continue on to the next of the seven pages simply type in chat “/help 2” for page 2, “/help 3” for page 3, and so on.

[image: Image]

Though it is entirely possible to hook this up to a command block to be activated with a Redstone signal, we highly recommend this be one of the few commands you stick to using just in chat.

2. SAY

Next we’ll continue on with the “say” command. Normally when using the “say” command in game it works like an announcement. You type “forward slash say” “/say” into your chat menu, then follow it up with whatever message you want to announce to the server.

[image: Image]

For demonstration we’ll use the message “I’m Learning Command Blocks.” In chat it will look like this: /say I’m Learning Command Blocks

[image: Image]

 While working within a command block’s interface it will look like this: say I’m Learning Command Blocks

[image: Image]

You’ll notice that when typed in chat it’ll show the name of the player who used the command, but when a command block executes the command the player name is replaced with [@] to let you know a command block is the one doing it.

As we mentioned, the forward slash is not necessary when inputting commands through command blocks.

This command can also narrow down who you would like to “say” something to. For instance, if you would like to say something to a specific player only, and not the entire server you can specify this by adding @[player] before you type out the actual message you want sent. This is what is called a Target Selector and the “say” command will not be the only command it is used for, so watch out for it later.

The Syntax looks like this:

In chat command: /say @[player] I’m Learning Command Blocks

Typing the command in a command block: say @[player] I’m Learning Command Blocks

[image: Image]

This can be taken a step further by filtering multiple names when using the “say” command. So instead of deciding between just one person or the whole server receiving the message, you can select multiple people to receive it while keeping it from everyone else.

To do this you simply add another @ [player] after the first one but instead of using the spacebar to separate the names you use the “,” comma.

So in chat it would look like this: /say @[player],@[player] I’m Learning Command Blocks

In a command block it would look like this: say @[player],@[player] I’m Learning Command Blocks

[image: Image]

We will note however that the say command is more for widespread messaging as the Tell command also exists. It works in the same way the say command does but you need to input a player’s name for it to work as it will be a private message. (You can find the tell command in our list of commands.)

• Usage: /tell <player> <private message>

[image: Image]

Now as you might have seen in the interface already there are 4 different target selectors displayed for your convenience. To use these you replace the @[player] with whichever target selector you want when typing out the command:

[image: Image]

	@p for targeting the closest person to the command block (or you, if typed in chat),

	@r to target any random player on a server,

	@a to target all the players, this is the default option for the say command if you don’t use any of the other target selectors,

	@e to target all Entities, this targets all entities present on the server.

The best time to use multiple target selectors might be when there are factions or multiple teams playing together on the server and certain messages need to be kept secret for strategic advantage. There are other commands that use target selectors so we’ll be going into more detail later.

Don’t feel limited though, this command could be used in a variety of ways. It wouldn’t be out of place to see this command used in adventure maps, competitive arenas, and more. We’re just giving our suggestion and letting you know of the possibilities. (You do the rest!)

3. GIVE

We’ll get a little more complicated now with the “give” command.

This is the command that lets either the player typing it in chat or the assigned command block give a certain player or players any number (up to 64 at a time) of any item in the game.

This brings us to a term we used for the last command but didn’t go over in detail.

There’s a nifty little function Minecraft has built-in specifically to help people out when it comes to using commands either in chat or with command blocks. You can see how this works when you take any command from the long list of commands and just type it in the chat bar with no target selectors or any other Arguments filled in.

What comes up is the commands “syntax”. Essentially this is the bare bones or the shell of the command without anything filled in, telling it what to do with the command or where to do it.

[image: Image]

As an example we’ll use the give command. We type in: /give

And what the chat gives us in return is this: Usage: /give <player> <item> [amount] [data] [dataTag]

There’s a lot to take in here, so we’ll take it step by step.

First of all you’ll notice that it’s in red, this is the color that comes up in chat when it’s showing you the syntax of a command.

[image: Image]

Go ahead and try it. It works for any command so long as you type the name of the command and nothing else into the chat bar. This function works the exact same in a command block, you’ll find it in the second of the two black bars in the interface, the only difference being that a command block includes a timestamp at the beginning of the syntax message.

Now let’s take note of the fact that some things are in square brackets while others are in angle brackets. (The stuff in between the brackets by the way is referred to as arguments.)

[image: Image]

The bracket difference is important to remember because this will not be the only command that has both.

Any argument sitting between two angle brackets “<!>” you need to fill in—the command will not work unless you have something here. So for the give command we can see that the minimum amount of required information needed for the command to activate is the name of the player and the item to be given.

[image: Image]

The square brackets “[!]” however are for optional information.

Anything between this type of bracket in the syntax of a command, you don’t need for the command to activate, so even if you don’t have anything to put in between these square brackets, the command will still work if you filled in the correct information between the angle brackets.

[image: Image]

For this command, the optional information asked for between the square brackets is the [amount] and the [data].

The amount is self-explanatory, if you don’t put anything here it will default to 1 of the intended item. The max amount you can input into this field is 64 so the most you can give of any one item at a time is a full stack of 64.

We’re going to go into [data] and [dataTag] just a little bit later.

(From here on out we’re going to just be giving examples of commands typed into a command block. In other words without the forward slash “/” in front of them. By now we assume you know the difference between chat commands and command block commands so to save space we will forgo giving you examples of both.)

So, given all we know about the give command and how the angle brackets and the square brackets work when we’re talking about syntax, let’s test it out a few times to make sure we know what’s going to happen depending on how we lay out our give command when inputting it into a command block.

For the first example we’ll be giving ourselves some diamonds and we’ll be using a stone button to activate the command block once we are ready.

So we’ll start off by telling the command block to give us 1 diamond at the push of a button.

[image: Image]

The command we will input into the command block looks like this: give @ [player] diamond 1

And voila! A diamond at the push of a button, or the pull of a lever, or by stepping on a pressure plate. Like we said before, you can be however inventive you want to be with the activating and using of these commands you can be.

Now let’s try giving ourselves multiple diamonds at once and we’ll do it from a distance with our trusty Redstone Dust and a pressure plate. Changing it up a little this time it’ll look like this: give player diamond 64

[image: Image]

And if you wanted the command block to give out some diamonds to whoever might be closest to it at the time, the command would look something like this: give @p diamond 32

So when the Redstone signal sets off the command block and it activates its command, it will search for the closest player and it will be that player who gets some diamonds.

Of course all of the previously mentioned target selectors you can see in the command block’s interface can be used here as well, so if you wanted to surprise a random player with some diamonds you would use “@r” and to spread the love and give everyone something nice you would use “@e”.

An interesting crazy way to use this command might be to use this command with the repeating command block, either as a way to prank a friend with a quick filling inventory full of fish or a quick way to ensure your inventory has a never ending supply of Iron blocks for you to build with. With the give command and the repeating command block working together you can have items spawning in anyone’s inventory 20 times a second!

[image: Image]

4. SUMMON

This next command is called “summon” and it may as well be right next door to the “give” command.

While the give command will grant specific players items, the summon command will bring forth Entities. We’ll have a list of these entities but for now what you need to know to tell the difference between something that is an entity and something that isn’t, is whether or not it moves in any way shape or form. If it’s an object like an ender crystal, a moving block like falling sand, a projectile like an arrow or a snowball or even mobs like cows and sheep. If it moves at all, it’s an entity.

[image: Image]

The summon command brings these entities out into the world wherever you choose instead of having to worry about if someone can carry it in their inventory. This fact brings us to a whole new element of arguments typed into command lines that will change up our game even further.

First let’s look at the syntax by typing into our chat bars: /summon

What we get from that is: /summon <EntityName> [x] [y] [z] [dataTag]

[image: Image]

We’ve seen the dataTag optional argument before and unfortunately we’re still not at a good spot to talk about that just yet. We’ll get there!

The other optional arguments available to us are the [x], [y], and [z] arguments. These describe the location of where the summoned entity will appear.

These are called Coordinates, and you check for the coordinates of your player by pressing the f3 key on your keyboard. Pressing f3 will bring up a lot of white text you may or may not be familiar with, but take a breath and keep calm because for now, we don’t have to worry about too much of it.

[image: Image]

What we’re looking for here is in the second big chunk of text down on the left.

At the top of this part of the text we can see in all capital letters “XYZ:” followed by three numbers divided by two forward slashes.

[image: Image]

These are the current coordinates of where your player is standing. A few commands will use these numbers either as optional or required arguments when you’re putting them into a command block.

Take a minute to figure out how these work, move your character around while you have this F3 interface open to see how your coordinates change.

	The Y coordinate is for vertical movement, it changes when you move either up or down.

	X and Z coordinate crisscross horizontally and will change when you’re walking forward or back or when you’re strafing left or right. This changes when you swivel your point of view with the mouse of course.

Further down the list on the F3 screen, at the bottom of that chunk of text you will see “Looking at:” This is telling you the coordinates of the block your player is currently focused on.

[image: Image]

Another thing to make note of when you’re dealing with coordinates is that these coordinates should always be rounded off. Don’t bother worrying about anything that comes after the comma “,”. It will work just fine with the closest number. (Ex:-499.437 = -499)

So like we’ve seen in the syntax, the X, Y, Z, represent the coordinates and because they’re in square brackets [!], its optional meaning it’s up to you if you want to use them in the command or not.

While that’s true, for now we’re going to need some examples so we know how a functional summon command works in a command block.

Like we said there’s a long list of entities to choose from so we’ll only be using a couple to show you how this works. To start with let’s try it with some arrows.

[image: Image]

An arrow, much like a snowball is classified as a projectile entity so when it’s summoned it’s going to fly until it hits something and sticks.

(An important rule you should always remember here when typing in the names of Entities, or other named things in a command, is that they are Case Sensitive. This means that if on the list of entities they start with a capital letter, then when you type them into the command they should start with a capital letter as well. Example: It would be Cow not cow; Sheep not sheep; Arrow not arrow; Snowball not snowball etc.

So we have our command block, our target (the red wool) and we’re set to go. First we’ll try it without any coordinate arguments so you can see what that looks like. Then we’ll move on to summoning an arrow while using coordinates.

Without coordinates the command looks like this: Summon Arrow

[image: Image]

And what we get is an arrow inside the command block that summoned it. This happened because commands like this will use the command block (or the person) that executed the command as its point of origin. So when there’s no other coordinates given, that will be where it spawns the entity.

Now we’ll try to hit the piece of red wool that serves as our target. To do this we’ll walk up and press F3 so we can see coordinates, this time though, rather than checking our own, we’ll use the numbers we see where it says “Looking at:” (This is probably where you will be getting your coordinates most of the time.)

[image: Image]

We can see that it says the coordinates of the red wool block are: X=-490, Y=75, Z=1245.

So now back at the command block, after “Arrow” in the command we typed, we’ll put in the information to have it look like this: Summon Arrow -490 75 1245

[image: Image]

Any brackets we might see in the syntax of a command we don’t actually include when typing it out. You just type the information that should go between the brackets, so for this command we only typed the x, y, and z coordinates but left out the square brackets. This will always be the case. Also remember that you use just a space between each coordinate to separate them.

[image: Image]

What we have now is an arrow stuck in the middle of our red block target where it spawned. Not on the outside of the block but right in the middle of it.

Why is that? Because the coordinate we used that time was the coordinate of the block itself. If we wanted to have an arrow fall and stick into our target rather than spawn inside it, we would need to add to the Y coordinate so the arrow would spawn higher.

Let’s test it out by adding 5 to the Y coordinate in this last example and seeing what happens:

Summon Arrow -490 80 1245

And presto! Just like that we’ve summoned an arrow from the sky to hit our target by using a command block. If we want to get a little silly with it we can change our command block to a Repeating command block and test that out just to see what it does.

[image: Image]

5. SETBLOCK

It’s time to finally start affecting the world with our commands, not just giving, summoning, or saying, but actually changing the blocks in our world as we want to with the help of commands.

The first command we’re going to look at that does this is the Setblock command.

With this command we’re going to be able to choose coordinates, which we learned about while we worked with the last command, and use those coordinates to pick where we want a block to go, or what block we want to replace with another one.

Once again we’ll start with typing the command into chat so we can get a look at the syntax.

We type in: /setblock

And what we get is this: /setblock <x> <y> <z> <TileName> [dataValue] [oldBlockHandling] [dataTag]

[image: Image]

There’s even more information here than we’ve seen before. This time we’re going to go over the [dataValue] argument and [OldBlockHandling] because with the setblock command these arguments will be quite useful to customize things and change around the rules as we want.

You’ll see.

First we’re going to try the command first, see what happens and have a look at how we can change what happens when we want to use it again.

We’re standing on grass blocks in this world so how about we get the command block to change the grass block at our feet into stone.

Like before, we have to check the coordinates by pressing F3 and finding out the numbers for “LookingAt.”

[image: Image]

So if we follow the syntax and put everything where it needs to go (minus the stuff we haven’t covered yet) we should get a command that looks something like this:

setblock 10 81 14 stone

[image: Image]

Input the command into a regular impulse command block and with the press of a button we can see that we’ve now changed the block at our feet to stone!

[image: Image]

This concept is pretty crazy, and can be used in a lot of different ways, but there’s still even more we can do with it.

Finally we’re going to be getting to the first of a few new optional arguments that’ll change what happens when a command block executes this command.

We’re going to start with the [dataValue] argument, this one’s new, but in this command and any other dealing with changing or moving blocks in the world it can be an important one.

A lot of blocks in Minecraft come in different forms. Your game considers them the same thing but we’ll say that Minecraft looks at them as a different type of the same thing.

[image: Image]

Take wool for example, while all wool blocks are still wool blocks, they come in different colors and each of those different colors (even including the original white wool block) have their own dataValues so the game can tell them apart even though they’re technically the same thing.

[image: Image]

By default when you are in creative mode and you hover over different items, you can’t see these dataValues.

Back in the F3 interface though, you’ll see at the very bottom left, the option for help by pressing the F3 key and the Q key at the same time.

[image: Image]

What this does is bring up a help page in the chat much like the help command would do, but here there is only the one page.

[image: Image]

Within this list you can see a couple different options but for now let’s focus on the option to press F3+H to enable advanced tool tips.

[image: Image]

Now in our inventory screens we can see the dataValues of whatever item our cursor hovers over. This makes it easier to find out what to type in a command wherever it asks for a dataValue. If you’re familiar with them you’ll be ready as soon as you start typing to change the block into what you want exactly.

[image: Image]

It might sound confusing but we’ll give a few more examples here and I’m sure they’ll brighten the way a little more.

Let’s stick to stone for now, we’ll use the same command we did before but now we’ll see what we can do when we use a dataValue tacked onto the end of the command. For this example we’ll use the dataValue “1”:

setblock 10 81 14 stone 1

[image: Image]

And there we go! What the command block did still counted as turning the grass at our feet to stone, but it’s now a different kind of stone (granite), with a different dataValue than the original stone block.

[image: Image]

These dataValues can be finicky and complicated sometimes but it’s easy to learn with practice so don’t give up on mastering them!

We’ve got a full list of all the blocks and the dataValues that go with them in this book for you to check them all out yourself. There’s also the Minecraft wiki which lists them online.

Alright, so that’s [dataTag] covered, next we’ll move onto [OldBlockHandling].

This argument is special because it affects the block that you are replacing, not the one you are placing down. If we were talking about our previous example, it would affect the grass block that disappeared to make way for the stone block, and not the stone block itself.

There are three options to input for the OldBlockHandling argument:

• Destroy: This makes the command destroy the block as if it was broken by a player so the previous block that was there (the grass block) breaks like you punched it (makes the noise and everything) with your fist and drops as an item to be picked up.

• Keep: This argument makes it so that you can only use the setblock command on coordinates with empty air at their location. If there’s another block already there, nothing will happen.

• Replace: The last one is the default setting, so if you don’t add anything into this optional argument this is what will happen anyway. When used as an argument the setblock command will replace the old block with the new one without dropping anything because the old block disappears.

So up until this point while we’ve been having our command block use this command, it’s been set on the replace argument, because we haven’t told it to use any of the others.

Let’s try it one more time and see for ourselves how this looks when used.

[image: Image]

We’ll extend our Redstone setup a little here so we can get a better look at the action and for the purpose of our example we’ll go with the destroy argument, so the command will look like this:

setblock 10 81 14 stone destroy

And there we go!

[image: Image]

It replaces the grass block at our feet with granite instead of just regular stone because we changed the dataValue of the block, and it broke the grass block to replace it because we used the optional argument destroy.

Now that brings us to the end of the setblock command, the first of a couple different commands that affect the blocks in our Minecraft world. We still haven’t touched on the [dataTag] optional argument just yet but we’re still a ways off from where we need to be to get a good handle on it. But we’re moving one step closer with our next command!

6. FILL

Alright then, so now we’re going to take it up another notch with the Fill command.

This command is in every way the big brother to the setblock command. Up until now it’s only been one block at a time we’ve handled, so now let’s shake things up and start dealing with as many blocks as we want all at once.

This is going to get a little tricky; we’re going to be dealing with coordinates, which we talked about in the last command, but it’s going to work a little different as we no longer are worrying about just one block.

To find out the usage we type into chat: /fill

What we get in return looks like this: Usage: /fill <x1> <y1> <z1> <x2> <y2> <z2> <TileName> [dataTag] [oldBlockHandling] [dataTag]

[image: Image]

You’ll see now that in this command it’s asking for two sets of coordinates, to be input one right after the other.

While it’s asking for the coordinates of two blocks, you’re actually describing one large area you want to affect and these two coordinates are just the opposite corners of that area.

Be sure to keep this in mind, it’s not just any two corners of the area you want to affect, it has to be two opposite corners specifically, otherwise it won’t work. If the first corner you pick is at the bottom, and you want the area of effect to be multiple blocks tall and multiple blocks wide, the next corner you specify with coordinates has to be on the opposite side at the top.

This means that when this command executes, as the name of the command suggests, it’s going to fill in the area between those two blocks you targeted with the coordinates you gave in the first part of the command line.

Let’s give it a whirl with some functioning examples.

What we’re going to do here is mark an area within the command by selecting two opposite corners to decide how big or small that area is going to be. It doesn’t have to be a perfect square either, don’t worry about counting blocks to make things even (unless you want to) because that’s not the requirement.

We’ll mark the area we want to effect with some Redstone Blocks so it’s easier to see in our example (though do note this is not necessary):

[image: Image]

	With F3 enabled you can see the “looking at” coordinates for the first corner of our area selection are: 1 81 2

	These numbers are what is going to replace the x1, y1, and z1 in the command.

	Looking at the second (and opposite) corner of our desired area marked with a Redstone Block we can see that its coordinates are: 7 81 7

We can see that the Y level stayed the same because this second corner is not any higher or lower than the first. Because of that, the area we fill will be flat, only 1 block in height.

[image: Image]

With these coordinates in mind we can now type out the command in the command block, we’ll leave out any fancy optional arguments for now and just focus on changing the blocks: fill 1 81 2 7 81 7 lava

[image: Image]

We input this into our command block, hit the magic button and there we have it! A small pond of lava of our very own. The command block is even nice enough to tell us each time just how many block it filled in for us when it executed.

[image: Image]

We used lava here in our example but nothing’s stopping you from making a shiny diamond block surface or changing all that grass to a gravel patch.

The argument it’s looking for here is labeled “TileName” and like in our earlier “give” and “summon” commands where we were looking for the entity names, tile names refer to the names of blocks you want you use in your command. So the lava we used here could be any other block of your choosing that exists in the game. You can find the list of these TileNames in another section in this book, or in the online wiki.

For this next example, rather than making a large flat surface, we’ll go for some height and see what we can do when the Y coordinate is changed in our command.

We’ll use this diamond block (diamond_ block) whose coordinates we can see are: 4 82 6

[image: Image]

Now what we want to do here is make a tower.

So let’s make our next coordinate directly above it by about 10 blocks. This will make it a 1 block wide, 10 block tall tower, and because the X and the Z coordinates won’t change; we can just use the same X and Z from the first set.

If we know our math, the only difference here will be adding 10 to our Y coordinate and having our command block fire away. 4 92 6

So altogether this new command will look like this:

fill 4 82 6 4 92 6 diamond_block

[image: Image]

Suddenly a diamond block tower emerges!

[image: Image]

We said before that the second coordinate we use has to be the opposite of the first to fill in your selection.

Don’t be confused because that’s still what we did here, when the X and Z coordinates don’t change from the first set but the Y coordinate does, it makes your selection a stick or a tower and the next set of coordinates becomes the other end of that stick or tower, in other words, the opposite end.

Now for our last example we’ll use some gold blocks and all three coordinates to see what we can do when we use the X, Y, and Z rather than just one or two at a time.

Say we want these two gold blocks to be our opposite corner coordinates we use to define our targeted area.

Can you spot the problem? What we’re trying to do here is have our command block spawn a wide and tall tower of gold blocks for us but if these are the two corners we’re targeting it’s just going to make a flat surface like before.

[image: Image]

The thing about making a tall and wide structure is that if the first set of coordinates is on the ground like our first gold block, the second would need to be in the opposite corner, but way up in the sky, however tall we wanted it to be.

There’s our problem, right now there is no other block way up in the sky for us to check the coordinates of.

Now, you could build a one block wide tower all the way up to the opposite corner if you wanted to.

But an easier way to do this is to just take the coordinates from that second gold block, and add to the Y coordinate ourselves in the command line. However much we add to the Y coordinate will determine how tall the structure will be. The second gold block’s X and Z coordinates will tell the command block how wide it’s going to be. If we want to lower the number of the Y coordinate, it works in reverse, lowering the Y coordinate will make the target area below the original height.

It’s a complicated concept, but once you get it you’ll never forget it.

Let’s try this example now and see if we can make this a little more clear by showing what we’re talking about. To set up we’ll get the coordinates of both gold blocks first.

Our first gold block’s coordinates are:

1 81 7

[image: Image]

The second: 7 81 1

[image: Image]

So like we said, what we’re going to do now is take the Y coordinate of the second gold block and increase it by 10. The coordinates: “7 81 1” become “7 91 1” when we’re inputting them into the command block. So now our opposite corner is no longer that gold block but an invisible block in the exact same position, just 10 blocks above it.

Our coordinates to indicate the target area are now 1 81 7 for the first block and 7 91 1 for the second block. So now we plug all that data into the fill command in our command block so it looks like this:

fill 1 81 7 7 91 1 gold_block

[image: Image]

Boom! Our biggest effect yet!

[image: Image]

It even goes down a level too. Remember this is because it started at the Y level of where those two first gold blocks were originally so that whole layer in the selection turned to gold blocks as well.

[image: Image]

This was our last example for the fill command but let’s just go over quickly what happened here so we can be sure we understand how to select our target areas in the future by using coordinates.

We’ll mark the locations of the coordinates we used in Redstone so this can be more easily spotted.

This first block is the first set of coordinates we used in the command line. While this block is where we had the second set of coordinate’s target by adjusting the original coordinates of that second gold block.

[image: Image]

[image: Image]

This is what we mean by opposite corners, the area you target will always be a kind of box or cube of varying size (It is Minecraft after all). The two corners you specify for target selection will always be at opposite sides from one another.

If you’re making a large flat surface like our lava example then obviously then two blocks whose coordinates you need will be at opposite ends; if you wanted to make just a 1 block wide tall tower then the opposite ends you need to specify become the top block and the bottom block because there are no corners; and of course when you are affecting an area that is more than 1 block tall and more than 1 block wide you select one corner at the bottom and the opposite corner at the top.

We know it can be difficult to grasp just from reading about it in a book and looking at the pictures on the pages so we suggest you play around with this, a lot.

Get really familiar with how the coordinate system works because the commands that use them are the real in-game world changers and are some of the most useful commands out there for you to shape and change the game how you want.

As we move on, we’ll be covering a few more commands and a few more concepts relating to coordinates so we want to be sure no one is left in the dark when we bring up new material that requires understanding of the old material.

7. CLONE

So we dealt with the setblock command that used 1 coordinate, the fill command that uses 2 coordinates so let’s up the ante one more time and move on to the clone command which, as you might have guessed, uses 3 sets of coordinates.

This one can work together with the fill command we just got done using, but there are plenty of other things you can do with it too. First and foremost though let’s type into our chat menu to see what the syntax looks like:

We type: /clone And what chat then gives us: Usage: /clone <x1> <y1> <z1> <x2> <y2> <z2> <x> <y> <z> [maskMode] [cloneMode]

[image: Image]

Your eyes aren’t playing tricks on you, that’s three sets of coordinates we’ve got on our plates now. Let’s not let our imaginations run too wild though. Other than the third set of coordinates and the optional arguments, if you’ve been following along in this book you already know half of what you need to for this command.

Like the fill command the first two sets of coordinates determine your target area selection. Before we were selecting an area to fill up with a certain block, but now what the clone command does is select a certain area with the use of coordinates and clone it to wherever you want.

So if you made a really neat looking castle or structure you can clone it and use it somewhere else if you happen to be particularly fond of its design.

Maybe you’ve put together a complicated Redstone setup and you want to use it somewhere else but you’re not looking forward to having to redo the entire thing all over again in another location. The answer? The clone command.

That third set of coordinates in the syntax (the set without the number after each letter) is the location of where you want your cloned selection to go. So let’s go over some examples to see how this actually works and then we’ll take a look at the optional arguments to see how we can change the specifics of the cloning process and what happens to the area where the clone ends up.

And important thing to remember about this cloning process is that while it will work on blocks, it will also work on anything else placed in the targeted area as well.

We’ll demonstrate this here.

[image: Image]

As you can see there’s a lot going on here, we’ve got some blocks, some torches, some anvils and even a beacon for our demonstration of the clone command.

Like back in the fill command we need to select our target area by using two sets of coordinates. One at any one corner of the selection and another at the complete opposite end from the first. Like before, in our example here we’ll indicate the coordinates we are using with a Redstone block.

Our first set of coordinates are: 0 81 8

[image: Image]

The next set on the opposite side and up in the air are: 4 84 4

[image: Image]

Now we’ll pick our last coordinate that will tell the command block where we want this selection cloned to. The coordinates for this last block, which is what the command block will look at when it’s figuring out where to make the clone spawn, are: 7 81 4

[image: Image]

Something to note here about the clone command is that your last coordinate set will not be the “center” of where the selection is pasted to.

[image: Image]

Looking from top down, the set of coordinates for where your clone will appear are going to be the bottom block in the top left corner. That’s difficult to make sense of we know but just have a look at our example here and you’ll see.

[image: Image]

So we input this command into our trusty command block and let her rip. Clone 0 81 8 4 84 4 7 81 4

[image: Image]

Now as you can see the Redstone block that indicated where our clone was going to spawn, ended up being the bottom block at the top left of our selected area. Another way to put it is that whenever something is cloned, the selected area to be cloned will always appear on the +X and +Z axis from the target block’s coordinates. (You can check which direction that is in the F3 menu.)

As you can see, anything that gets copied and pasted over will act the same way the blocks in the original selected area do. Our new torches are giving light and our beacon with the diamond base underneath of it is activated just like the beacon of the original selection. Even Redstone configurations will remain the same and activate upon cloning.

Please be aware though that there’s a limit how much you can clone at once. The command caps out at 32,768 blocks maximum. If you try to copy any more than that the command will not execute.

Another limitation to this command is not being able to overlap the target location with the original selected area.

However this brings us to our optional arguments for the clone command. There’s [maskMode] and then there’s [cloneMode].

There are 3 different options for each of these.

For maskMode:

1. Filtered: This filters the clone command by using a specific TileName. What this means is that only the block specified by the TileName (stone; grass; dirt; cobblestone, etc) will be copied over. When you go to type in the TileName make sure it’s the last thing in the command line you type.

2. Masked: When you use this optional argument the clone command will only copy over non-air blocks. This means that any empty space in the original selected area might not stay empty when it is cloned if there is something in the way.

3. Replace: This is the default. If you don’t put anything for this optional argument the command will copy all blocks and overwrite anything that is going to be in the way of where the clone or the selected area spawns.

For cloneMode:

1. Force: This will force the clone to paste over even if it’s going to overlap with the original selection, which normally it would not do.

2. Move: With this optional argument the command will execute and the original selected area will be replaced with “air” blocks, making it disappear. Unless a specific filter is used in maskMode in which case only the blocks that are actually cloned will disappear.

3. Normal: This is the default setting, this optional argument just states that the command will neither force nor move the original selection.

You might want to save using these optional arguments for when you’re well versed with the command and already have a decent amount of practice with it, as it’s a little advanced to dive on in that far right from the start.

RELATIVE COORDINATES AND THE TILDE ~ KEY

Now that we’ve gotten all of the commands out of the way that deal with coordinates and how to use them, we’re going to look at a different aspect of how to select a target location without the use of numbers as our coordinates.

This brings us to Relative Coordinates, a subject that is a little tricky to understand but makes your play time with coordinates and command blocks a lot easier.

Relative coordinates will work on chat commands as well but we’re only going to be talking about them as we would use them with a command block, be aware though that these same rules apply for a command typed in chat and the player who typed it.

At a certain point it gets tiring running around and looking for the coordinates of each block you need when you’re setting up a command block to get something done. You might also want to use a certain command again in another location but that won’t do you any good if the coordinates are all still set up to affect the old location. Maybe the area you want to affect is only a couple of blocks away from where you placed down the command block and you don’t want to go through all the hassle of pressing F3 and finding out the coordinates for a block or two that’s so close.

Well somewhere along the line someone thought of that.

So what we can use now are relative coordinates.

Using relative coordinates is telling the command block where its target is, based off where that command block is at.

Essentially you won’t be using regular coordinates anymore, you’ll just be saying, “Hey! I want this to happen 10 blocks away from the command block in this direction” instead of finding out where 10 blocks away is and running back with the coordinates.

You do this by typing tilde (~) in place of the X, Y, and Z coordinates in your command block.

We’ll use the setblock command to demonstrate this.

So what we’ll try to do here is spawn a Redstone block by using relative coordinates instead of regular ones.

Like we mentioned previously, in the command line we’ll replace the X, Y, and Z coordinates with the tilde (~) symbol (Please remember to separate the tildes with a space like you would the original coordinates) so our command will look something like this: - setblock ~ ~ ~ redstone_block

[image: Image]

And poof! Our command block turned into a Redstone block.

Now this might not seem like the most useful thing because our command block just disappeared on us.

The reason this happened is because when tilde is used it it’s now basing its target location relative to the command block that is executing the command. So “~ ~ ~” looks like “0 0 0” to the command block, which is target its own location. (This works for a players, too.)

Our command block did exactly what we wanted it to do here, it spawned a Redstone block, and the only trouble is that we told it to spawn the Redstone block exactly where our command block was sitting. So it did its thing and was replaced by the block that it spawned.

So let’s change this up a little. What we’re going to try now is spawning it above the block instead of directly replacing the block that executed the command. Like with normal coordinates that means we have to change the Y which is now represented by the middle tilde. With relative coordinates you don’t actually change the tilde but you add a number to it, a positive number or a negative number. (A negative number you indicate by putting a [-] symbol in front of it. Ex: -10.)

So if we were going to have the Redstone block appear 2 blocks above the command block the command would look like this:

setblock ~ ~2 ~ redstone_block

[image: Image]

This works because what we basically told the command block is to “spawn a Redstone block 2 spaces above you” by adding “2” to the middle tilde or the Y.

This is how it works for all 3 relative coordinates. If you add a number to the tilde of the X, Y, or Z coordinates then the target location will move relative to the command block depending on how much you add.

Let’s try the command again, this time though we’ll change multiple relative coordinates.

We’ll start off by changing the X and Z coordinates with these examples.

Press F3 and look to where it tells you the direction you’re facing. In our example here we’re facing east, in Minecraft lingo “east” is considered “Positive X”.

This means that if we want to spawn our Redstone block in that direction we’ll have to add a positive number to our X tilde. We’ll use 5 here so our command will now look like this: setblock ~5 ~ ~ redstone_block

[image: Image]

[image: Image]

And what we get from that is, as expected, a Redstone block 5 blocks east of the command block that spawned it. Now without resetting let’s change the Z relative coordinate in the command and execute the command again. setblock ~5 ~ ~5 redstone_block

[image: Image]

Now we have spawned a Redstone block 5 blocks Positive X or east and 5 blocks Positive Z or south, all relative to the command block.

[image: Image]

We’ll finish this up by adding 5 to the Y coordinate just to have an example of all 3 relative coordinates working together at the same time. So now our command will look like this:

setblock ~5 ~5 ~5 redstone_block

[image: Image]

There we have it, so you can see that by using the tilde and indicating to the command block to use relative coordinates you can select a location for it to affect, relative to the command block itself. Remember too that these relative coordinates can also be used for the other commands like summon and setblock.

TARGET SELECTORS AND ARGUMENTS

Like we’ve mentioned before, there are just too many commands for command blocks to be able to include them all in this book. What we are trying to do here though, is to give you a comprehensive knowledge on enough of the subject matter dealing with command blocks. Enough so that afterwards you will be able to go out and explore the wiki pages and YouTube videos on your own and be able to follow along learn more of the advanced stuff as you come across it.

Relative coordinates is on our list of important things you should know but so too are Target Selectors and arguments.

We’ve mentioned both of these things previously in the book but we’re including a section here specifically to teach you about how target selectors work and how you can change the commands that use them even more when you apply arguments to them.

The first command we’ll use to help explain target selectors is the give command. Let’s use diamonds again and see how we can go about using different target selectors to execute the command.

First we won’t use any so our command will look like this:

give CupofGerry diamond

[image: Image]

Low and behold, we get a diamond. So now we have a command block that gives one player in particular (CupofGerry) a diamond. But in the spirit of giving we’re going to find a way to share this wealth. Right now it only gives one player a diamond because it’s only that player that has been specified in the command. So let’s try out our first target selector by replacing the player name with the first target selector on the list “@p” to target the nearest player to the command block:

give @p diamond

[image: Image]

[image: Image]

We press our magic button once again and once again it is only our test player that gets the diamond. This happened because in our test world there is only one player so it’s to be expected that the nearest player is the only player available. We try again with “@r” and what we get as a result isn’t unexpected: give @r diamond

[image: Image]

For the same reason as before it is only our test player (CupofGerry) that gets the diamond, though on a server full of players the command would select a random player for this command’s target. The final target selector that works like this and gives us the same result is the “@a” target selector: give @a diamond

[image: Image]

What happens with selectors is the game replaces them in the command with the name of whatever player or entity that fits its criteria. So when we specify for the closest player with “@p” if a player fits the criteria of being the closest to the command block then the game will see that player’s name instead of “@p”. The same goes for the other selectors.

The black sheep in this list is the “@e” selector, when using this one the command block looks around for entities with inventory space for it to place the diamond in. There aren’t any entities around like that so the command would fail, but this only applies for the give command. If we were to test target selector with another command we might get some results.

We’re going to go with the say command and see what we can do with it. For starters we’ll have it say the name of the closest player with the “@p” selector. say @p

[image: Image]

With that it blurts out the name in chat of the closest player to the command block when it activates. You can even add words into this and jumble them around so it appears as if the game is speaking to a player.

say Greetings @p

[image: Image]

[image: Image]

And just like that we have our command block talking to us.

Keep in mind too that it doesn’t just have to be for one player, we’ve got more than one target selector to choose from here. For this one, let’s use that black sheep target selector from before to have our command block give it’s greetings to every entity out there in our test world. say Greetings @e

[image: Image]

All of a sudden our chat explodes with the names of all the entities the command block tries to say hi to.

It’s a long list because at all times even though they might not be directly in your presence there is a multitude of entities simply hanging out in each Minecraft world, even if you never see them.

These include but are not limited to: item entities floating freely on the ground as if dropped, animals, projectiles like an arrow or snowball, and various other things. Chances are with command blocks that you’re not going to be selecting “every player” for a target selector that often, if ever.

The same goes even more so for selecting “every entity,” there’s just not a lot to do with commands that affects every single player or entity at once. But if you can think of something give it a go and break new ground.

What we can do now with that giant list of entities is narrow it down and filter it by using selector arguments, these allow you to input criteria into the command so it can pick and choose what specifically you want to target.

So we’ve had our command block say a greeting to every possible entity, let’s narrow it down a little and give it a radius to work with. We’ll give it a radius of about 10.

The thing about selector arguments is that they don’t show up in the syntax of a command when you type it out to get the red text in the chat. At the same time though they can be used in multiple commands, this isn’t obvious right away so that is why we’re including this section.

So to make our command block filter its results by giving it a radius of 10 what we do is we add in between square brackets [!] “r=10” with no spaces immediately after the target selector within the typed command in the command block. That’s going to look like this: say Greetings @e[r=10]

[image: Image]

So now what happens is that when the command activates it only looks for all entities within the span of 10 blocks from the command block itself.

This is hard to demonstrate through the pages of a book but if you’re following along with us in game, you’ll see for yourself that if you back away more than 10 blocks and activate the command block, you won’t be caught in its activation.

It’s only us in this world so let’s add some more entities and see what happens. We’ll throw in some animals and some random items for good measure. We’ll bump up the radius to 60 so we are sure it’ll get them all.

[image: Image]

With our new radius, our command now looks like this:

say Greetings @e[r=60]

[image: Image]

We get another long list of entities the command block is greeting, notice that it’s not as big as the first because we’ve gone from telling it to use the say command on every entity in the world, to giving it a radius of 60 blocks to work within.

Let’s narrow down the criteria even more by telling it to only target the floating item entities in our little test area. We’ll keep the command the same but within the square brackets, after the “60” of the radius we’ll put down a comma [,] to let it know we’re starting a new filter and then we’ll say “type=Item” So our command now looks like this:

Say Greetings @e[r=60,type=Item]

[image: Image]

The list is even smaller now. This is because the command block is disregarding all of the animal mobs and just looking at the floating item entities to target when executing its say command.

Let’s switch things up a little by using another command here to show how much customization you can manage by making good use of the target selectors and arguments within a command.

We’ll use the teleport command, (found within our Command Block Compendium) with it we can teleport specific entities around our test world.

So let’s try this out.

We’ll use relative coordinates that we just covered in the last selection to make this easier. Let’s specify that we want to send all the cows within our radius 20 blocks into the air relative to where our command block is sitting. So we want our command to now look like this:

tp @e[type=Cow,radius=60] ~ ~20~

[image: Image]

The sky is falling!

[image: Image]

Those poor cows, but as you can see, our command worked. All the other mobs and even the items on the ground remained untouched because of our specifications using arguments with our target selectors.

There’s a lot of customizability here, we suggest you play around with target selectors and arguments to get familiar and practiced with them as they can help a lot when narrowing down specifics in your commands.

There is a list of all available Selector Arguments and their descriptions on the wiki page under the Target Selector Arguments section, we’ll have a picture here as well so you can kind of get an idea what all is possible when it comes to using them.

There’s too much here to go through every single target selector argument in detail but we’ll at least give you a brief description here.

Summary of target selector arguments

	
Argument(s)

	
Selection criteria

	
x, y, z

	
coordinate

	
r, rm

	
radius (max, min)

	
m

	
game mode

	
c

	
count

	
l, lm

	
experience level (max, min)

	
score_name

	
max score

	
score_name_min

	
min score

	
team

	
team name

	
name

	
entity name

	
dx, dy, dz

	
volume dimensions

	
rx, rxm

	
vertical rotation (max, min)

	
ry, rym

	
horizontal rotation (max, min)

	
type

	
entity type

1. Coordinate: With this argument you can make the criteria specific to a certain set of coordinates. When inputting it into a command block it looks like this:

tp @e[x=10,y=25, z=250,r=30] ~ ~10 ~

There’s also the option to write it out in a shortened form:

tp @e[10,25,250,30] ~ ~10 ~

Keep in mind when typing it out in this shortened form the game will always consider the first 3 sets of numbers to be coordinates and 4th to be the radius. This is also one of the few times when relative coordinates won’t work. When you’re writing out the argument for the selector in between the square brackets [!] you have to use actual numbered coordinates.

2. Radius (max, min): We’ve used this one before, it describes the radius criteria. While “r” is for maximum radius, “rm” is for indicating the minimum radius. So if you were to input the argument [rm=5] it will only target things further away than 5 blocks.

3. Game Mode: This argument is for distinguishing between players in different game modes. You can choose between [m=0] for survival, [m=1] for creative mode, [m=2] for adventure mode, and [m=3] for spectator mode.

4. Count: This argument limits the number of targets selected when the command executes. If you were to put [c=30] then only 30 of the closest selected criteria would be affected by the command because the closer to the command block (or player) executing the command, the more priority that target will have. This is reversed if you use a negative number (the three farthest targets will be selected upon command activation).

5. Experience Level (max, min): Works under the same principle as the radius but for different levels of experience. Maximum amount is “l,” “lm” is for minimum.

6. Max Score: Allows you to filter between the max scores of an in-game scoring system of the players own design. (see scoreboard section)

7. Min Score: Allows you to filter between the minimum scores of an in-game scoring system of the player’s own design. (see scoreboard section)

8. Team name: By using [team=(team name)] you can pick and choose who the commands affect based on the name of the team they are on. (see scoreboard section)

9. Entity Name: Allows you to decide what the command will affect based off the name of the specific entity you want targeted. (Only works on named entities)

10. Volume Dimensions: This will allow you to select things within the specified volume starting from where the command block is sitting and stretching out as far in each direction as you indicate with DX, DY, and DZ instead of at specific coordinates.

11. Vertical Rotation (max, min): Filters between targets with maximum vertical rotation using [RY] and a minimum vertical rotation using [RYM] within the command argument.

12. Horizontal Rotation (max, min): Will allow filtering between targets of a maximum horizontal rotation with [ry] and a minimum horizontal rotation with [rym].

13. Entity Type: We’ve used this one already, it allows you to filter between different types of entities like mobs and projectiles etc. [type=(entity type)]

Our last bit of advice for dealing with Target Selectors and Arguments is this: go test them out. As much as we can talk about them within the confines of this book, you will learn a great deal more when you’re out playing the game and creating your own masterpieces with command blocks and figuring out how to give detailed instructions for when your commands execute.

We’re going to be talking about just a few more commands here before we’re done but the best teacher here is going to be the experience of playing the game and testing out these target selectors, and the arguments that go with them for yourself.

Be patient, watch videos, read up on the wiki or come back to this book for a refresher, but the best thing to do for learning all this stuff is to read what you can and then test it out on your own or with some friends who are also eager to learn.

8. EXECUTE

This is a warning to all of you who have made it this far: This is the most complicated command to learn yet, so much so that even by the time you’re done reading this section on the execute command you still might not understand it fully.

We are advising heavy practice and experimentation with this one as it is one heck of a command and getting the hang of it right away might not be possible.

On the other hand though, if you learn to use it well, it might just be the command you use the most often out of all of them.

The execute command has the power to use and combine all of the other commands at the same time for some radical effects, we won’t even be able to list all the possibilities here. We’re just going to scratch the surface so you get a basic understanding of its potential and armed with that information you can set out and learn the rest on your own.

With that being said, let’s dive on in to the execute command by inputting it into chat without any selectors or arguments and see what we get:

We type in: /Execute

What the game gives us back: Usage: /execute <entity> <x> <y> <z> <command> OR /execute <entity> <x> <y> <z> detect <x> <y> <z> <block> <data> <command>

[image: Image]

There’s more to take in here than we’ve seen in any command yet, and what’s more none of it is optional.

In the middle of the syntax you can see the word “OR” in all caps, this is here because there are two different ways you can use this command, both of which we will discuss.

We’re discussing the execute command but first we need to start with another command because as you can see in the syntax, what the execute command does is that it changes who is considered to be executing the command it, and like we’ve discussed with target selectors and arguments you can narrow down the criteria for when this entity in another location will actually execute.

We’re aware this is complicated, just know that when using the execute command you’re telling another entity somewhere else to execute another command over there. As for when it executes, you get to decide what has to happen for the command to execute. You do this with selectors and arguments.

So first we have to pick a command that we’re going to use together with the execute command. For demonstration purposes we’ll use the setblock command because it’s simple. We pick a block, we change it to another block or maybe we just make a block appear from nowhere.

Let’s bring out our trusty diamond block buddy once more to give us a hand. We’ll also be using relative coordinates again (the tildes ~). This way indicating where things are going to happen will be quicker and easier.

Let’s type out a setblock command using relative coordinates to get our diamond block to suddenly appear above our heads every time we execute it. The command looks like this:

/setblock ~ ~2 ~ diamond_block

[image: Image]

[image: Image]

And there we go, we have our diamond block. So now every time we execute this command we’ll get a diamond block to appear above our heads. Now let’s input the command into a command block and get it to try the same thing.

setblock ~ ~2 ~ diamond_block

[image: Image]

Press our button and presto we get the same thing that happened to us but now the diamond block is hovering over the command block. This is because we used relative coordinates and relative coordinates select where to spawn the block based on who/what executed the command.

First it was our example player who executed, now it’s the command block that spawned the diamond block.

So with our execute command, we’re changing who is considered to be the one executing the setblock command. In other words we’re switching the entity.

So following the syntax, let’s set up the execute command within our command block. Remember that instead of directly naming an entity we can pick from our list of target selectors located in the command block interface.

For now let’s use “@p” to target the nearest player, we’ll have it look like this “execute @p”.

[image: Image]

The next thing it wants is coordinates of who or what new entity is going to execute the command. Just like when we used the setblock command we can use relative coordinates here as well. We’ll do this because we want it to activate exactly where the player (or entity) is in the world every time it executes.

So now it looks like this:

execute @p ~ ~ ~ setblock ~ ~2 ~ diamond_block

[image: Image]

If we’re going to go for as basic an execute command as we can manage, that’s pretty much all there is to it.

[image: Image]

Now when this command block executes, instead of a diamond block appearing above the command block, it will act as though we (the player) executed the command by giving us a diamond block to appear over our head (the closest player’s head because of @p). You will even notice in the chat that instead of saying [a] when the block is summoned to indicate the command block, it will say [player] to indicate the player.

So this is pretty cool, we can now have a command block that has a command execute for another entity in what could be a completely different location based on criteria we decide. Not only that but it can execute any other command. We used setblock in our example but it would also work with the fill command, the clone command, the summon command, the list is a long one.

For now let’s see about narrowing down our criteria ever more and making things more specific by using arguments. We’ll pick on some cows again with this example. Instead of the nearest player (us) being the target we’ll change it so that all cows in the area will be the ones targeted.

And because we don’t want to affect every cow in our game world let’s put a radius argument on it so it will only affect the cows within a 15 block radius.

To target entities we change “@p” to “@e” and to narrow it down to only target cows we will use the argument [type=Cow]. To target entities within a 15 block radius of the command block we’ll add the argument [r=15]. So now our command is going to look like this: execute @e[type=Cow,r=15] ~ ~ ~ setblock ~ ~2 ~ diamond_block

[image: Image]

We’ve got our pen full of animal mobs, (and some villagers) and we’ve got some cows in the distance a little higher up. What should happen is that the command block will tell all the cow entities within 15 blocks of the command block to execute a setblock command to spawn a diamond block above each of their heads.

[image: Image]

Success! All of the cows within 15 blocks radius, executed a setblock command while the rest of the cows farther away were left alone.

This is the real power of the command block, as any selector can be used within an execute command, you can be as specific as you want as to who or what your command block will target and affect. You could make it so only certain players on a certain team, within a certain area, or at a specific level are targeted, how much to define your target will be up to you.

To take it even further you can continue to narrow down and filter what you want to affect by adding more than one execute command after the other in your command block.

What this means is that your first execute command can be looking for a certain player on a certain team within a radius of the command block.

The second execute command, typed out directly after the first, can be checking for players above a certain level. You can continue to narrow it down with more and more execute commands and the way it works is that the last execute command in the line will only work if the criteria for each execute command before it is met.

Let’s test this out.

We’ll say to start we want to target all entities within a 15 block radius that are chickens.

execute @e[type=Chicken,r=15] ~ ~ ~

[image: Image]

For all of those entities we’ll want them to execute a command looking for the nearest player. execute @p ~ ~ ~

[image: Image]

And for that nearest player (us), we’ll get it to execute a summon command to throw an exp bottle on that players location, to give the player some experience.

summon ThrownExpBottle ~ ~3 ~

[image: Image]

So typed out the whole command will look like this:

execute @e[type=Chicken,r=15] ~ ~ ~ execute @p ~ ~ ~ summon ThrownExpBottle ~ ~3 ~

Now we’ll activate it and… nothing happens.

Why?

Because out of the 3 execute commands, one of them doesn’t have their criteria met, specifically the “detect chicken within 15 block radius” criteria.

So let’s spawn ourselves a chicken and try again.

[image: Image]

Command successful!

Though we had our two other execute commands in the command block saying to look for the closest player to summon an exp bottle, the first criteria of making sure a chicken was around wasn’t met. When it detected a chicken, it knew all the criteria had been met, then executed the rest of the command.

If we wanted, we could two chickens hanging around and the command would execute for both, because we didn’t use an argument specifying we only wanted it to look for one.

[image: Image]

Once you’re good enough with the execute command, eventually you’ll be able to come up with a command that could represent or filter through any condition or combination of conditions that exist in Minecraft.

The second version of the execute command works like a detector for certain blocks.

If it detects the specific kind of block at the location of your choosing (by using coordinates), then it will execute another command of your choosing.

This kind of command could be useful for adventure maps when a player has to place a certain block at a certain location to achieve an effect or receive a reward. There’s a lot you can do with it but not as much as you can with the first version of the execute command.

It works similarly to the regular execute command so we’ll forgo giving examples here because if you made it this far, then the syntax should be easy enough to understand after having gone through the first version.

9. SCOREBOARD

We’re now going to be moving on to the most complicated and complex command for command blocks that exists in Minecraft.

Before we go right into it however be aware that we will be working under the assumption that you, the reader, has already covered all other sections prior to this section or at the very least has a basic understanding of all the concepts detailed earlier in this book.

We’ll detail new subjects as they come up but there’s a lot of content to learn with this command even to understand the basics so anything we’ve covered already we’re going to assume you already know.

The being said, scoreboards, what are they?

Well if you’re familiar at all with sports or other games you’ve probably seen them before. It’s essentially a player list with a set of scores associated with each player on that list.

With the scoreboard command in Minecraft there’s a big list of things you can link scores to. Whether they be Objectives, Statistics, or the amount of times you watch a creeper blow up a cow, you can assign almost anything to a player or players as a score.

Keep in mind also that scores aren’t exclusive to just players. Entities can also have scores, and so can any name or title you come up with. There’d be nothing stopping you from coming up with a name like “Flying Pigs” and assigning a scoring system to it with this command.

So let’s get down to the syntax of this command.

When we type in: /scoreboard

Into chat we get:

Usage: /scoreboard <objectives:players:teams:> …

[image: Image]

What we get isn’t too helpful.

The reason for this is that because this command is so complex and has so much to it, the syntax will only reveal more of it self when we specify the next part we want to see.

Our options for required arguments are objectives, players, and teams, and for the first time we see the ellipses (…), indicating there’s more to it.

In order to actually work with the scoreboard command we have to create a scoreboard objective ourselves because in any Minecraft world, by default there are none.

So let’s progress a little with our syntax by inputting the “objectives” argument into chat and see what we get. /scoreboard objectives

In return it gives us:

Usage: /scoreboard objectives

<list:add:remove:setdisplay> …

[image: Image]

We can see here there are still yet more ellipses (…) indicating even more, but what we want to do here is add an objective so what we’ll type out next is:

/scoreboard objectives add

And what that gives us in return now is:

Usage: /scoreboard objectives add <name> <crtieria type> [display name …]

[image: Image]

This is as far as we’re going to go for now so let’s look at the arguments.

The name argument serves an obvious purpose, you get to name what this new scoreboard objective will be. In your game it’s up to you but for now we’ll name our example objective “PigPoofs” and why we’re naming it that we’ll become apparent shortly.

After naming it we have to decide upon a criteria type as we can see indicated by the angled brackets, this argument too, is not optional. What criteria type means is that in this argument we’re describing what has to happen in the game for the scoreboard objective to count a point towards that score.

There is a very long list of criteria types that you can find on the Minecraft Scoreboard Command Wiki page, we’re not even going to try to include them all here as the list is so large. You’ll notice too that the Scoreboard command isn’t even included on the same page as all the other commands. It has its own page, that’s how large this subject is.

The criteria type can be anywhere from how many deaths you’ve had in game to how many times you’ve mined a certain block or even how many times you decided to throw an apple on the ground.

Keep in mind, some criteria types like breaking a certain block, will only count if the player assigned to that score is in survival or adventure mode. When you break a block in creative, it doesn’t really count as “breaking” it.

If you hit your escape menu in game and go to the statistics menu you’ll see that there’s a statistic for every block, Item, mob, and even a general section that tells you your statistics for everything from how many times you’ve quit the game to how much time you’ve slept in a bed.

[image: Image]

[image: Image]

All of these statistics can count as a criteria type.

The game already takes notice of every single one, all you need to do is specify in a scoreboard command that you want to set up a new scoring system for any one in particular.

Getting back to what we wanted to use as a criteria type, considering we picked the name “PigPoofs” we’ll make the criteria for our score going up equal to the amount of times we make a Pig go Poof!

[image: Image]

To do that we’ll need to look up on the Scoreboard Command Wiki page the correct way to type out our criteria in the command.

We can see now that the first thing we have to indicate in the command is that we want the criteria type to count when we’ve killed an entity, we do this by writing out “stat.killEntity” and because we want to narrow it down even further we look for the appropriate sub criteria. We’re looking for our score to go up when we kill pigs so our sub criteria is “Pigs” with a capital “P.” The final argument in the syntax is the display name, this is an optional argument but we’re going to use this anyway. What inputting something for display name argument does is that it indicates how you want that objective to be shown on screen via the display, we’ll go with “Pigs Poofed” for ours.

All written out, our command now looks like this:

/scoreboard objectives add PigPoofs stat.killEntity.Pigs Pigs Poofed

We hit enter and the chat tells us we’ve successfully added a new objective called “PigPoofs” but other than that we’re not seeing much else. This is fine, it’s done what we’ve asked and set the objective we wanted, but there are no scores just yet and there’s still the small matter of actually indicating we want to see the display on screen.

What we can do next is input the command:

/scoreboard objectives setdisplay

This brings up syntax that look slike this:

Usage: /Scoreboard objectives setdisplay <slot> [objective]

[image: Image]

 This lets us select a certain slot to display our score for a certain objective. To see this list of slots just hit tab and it’ll bring it up in full.

[image: Image]

It’s a big list, for the most part these slots are there so different teams on the same server can see different scores from one another as they’re playing. The slots that are usually the most interesting are: list, sidebar, belowName.

The one that players working with Redstone use the most often is the “sidebar” slot. This slot shows up on our screens on the right side and updates in real-time so we can see our scores changing as they change.

So now let’s set our “PigPoofs” objective to display by using this argument in our next command that looks like this:

/scoreboard objectives setdisplay sidebar PigPoofs

[image: Image]

The games tells us now that we’ve set out objective into the sidebar slot but as far as we can see, nothing’s changed.

All that we’ve done is created the objective and gave it a place to display. The next step is to set the score to a specific entity or player (in this case, us). If we remember from way back when we first input the scoreboard command, players was one of the three arguments available between the first set of angled brackets.

Let’s check now what we can do when inputting players into the scoreboard command.

/scoreboard players

The syntax it returns to us looks like this:

Usage: /scoreboard players <set:add:remove:reset:list:enable:test:operation:tag> …

[image: Image]

 We’re not going to go over all of these. As you venture further on into the scoreboard command after being done with this book we’re confident you’ll be able to figure out the rest on your own by a healthy combination of experimentation and the ever faithful Wiki page.

For now, our objective is to add a player (us) to the “Pig Poofs” score so we can start keeping track of all the Pigs we poof. This means that we want to add, so let’s type that out and look at the next step.

/scoreboard players add

The chat then returns to us with:

Usage: /scoreboard players add <player> <objective> <count> [dataTage]

[image: Image]

Now that we see this, the next part should be obvious. One part we will point out though is that to start, the count argument should usually begin at “0” unless you find a reason for having the starting score start at a higher number.

So now our full command to set a player (us) to the score for “PigPoofs” will look like this:

/scoreboard players add CupofGerry PigPoofs 0

[image: Image]

We’ve done it!

Now as you can see on the right hand side of the screen a display for our “PigPoofs” objective has appeared, and because of our earlier commands indication that the score will go up depending on how many pig entities we kill.

Keep in mind for later that at any time we can input the command:

/scoreboard players reset CupofGerry PigPoofs

This will reset your score only with the objective you specify, we used “PigPoofs” here but it’s the only one we’ve made in our test world. In a world with multiple objectives and multiple scores you can reset whichever one at your discretion.

Instead of using the player name in the reset command there’s also the option to use an asterisk (*), this resets all the scores of every player or entity in that scoreboard objective rather than just the individual.

So now that we’ve created our “Pig Poofs” objective, let’s test this out by poofing some Pigs.

[image: Image]

[image: Image]

Just like that we’ve got a displayed score that reacts to something happening in the world we’ve designated.

With all of the different criteria types and combinations the possibilities are near limitless as to what you can do with them and this command.

Now this scoreboard command is all well and good but we haven’t seen too much of what we can do while using this command in a command block. So let’s have a look at that.

We’re going to get fancier with this scoreboard command now by using it in tandem with another command or two, so to start off we’ll create an execute command and have it run on a repeating command block so that it updates once per tick or twenty times a second.

[image: Image]

Say we want a golden road to appear at our feet as we walk. But we don’t want to keep having to type the command into chat for every new block we walk over to turn to gold. The answer to this is to have a command block set to repeating with an execute command targeted at us, that will execute the golden road making command for us.

So the command we would type into the command block would look like this:

Execute @a ~ ~ ~ setblock ~ ~-1 ~ gold_block

We then set the command block to be a repeating command block and voila, everywhere we walk turns to gold blocks at our feet!

[image: Image]

We have a problem here, we can’t jump with this command on all the time because as soon as we do there appears a gold block at our feet, and because the repeating command block updates so fast we can’t even break the gold blocks to get back down and turn the command off.

What’s our solution? First of all, if you’re following along in game with us for the scoreboard command, don’t jump. At least not yet.

Now with the use of scoreboards we can have an outside factor decide whether or not this gold-path making command is on or off. Another way of putting it is that we’re using the scoreboard command to decide the state of the setblock command.

So based on what we learned with the “PigPoofs” scoreboard, let’s apply that knowledge here.

We’re adding an objective, and then we’re going to name it while deciding what that objective is. So if we check back to our syntax:

Usage: /scoreboard objectives add <name> <criteriatype> [display name …]

We can figure out what needs to go where, so let’s fill in the arguments. scoreboard objectives add GoldPathStart dummy GoldenParthMakerState

[image: Image]

We used the “dummy” criteria type here because as is seen on the wiki page, the “dummy” type criteria is only changed by commands rather than anything happening in the world.

There, we’ve now created the “dummy” objective “GoldPathStart” which will only be affected by another command block attuned to the name “GoldPathStart”. Notice we haven’t set any players to that objective yet, that comes later.

For the purposes of our example, let’s make it so that our gold-path maker is turned on when we’re standing underneath a block of Lime wool. The condition to stop our golden path maker will be to stand underneath a block of red wool.

This means now that we’ll need to be able to use a command that can look for and detect certain blocks within the world and only activate if it finds them.

Our “execute detect” command just a little ways back will do the trick just fine.

The syntax for this command looks like this:

Usage: /execute <entity> <x> <y> <z> detect <x2> <y2> <z2> <block> <data> <command …>

So we’ll set down another repeating command block and input within it an execute command that targets the exact coordinates of all players (@a ~ ~ ~) and detects the block 2 spaces above the location of those players (detect ~ ~2 ~), in other words the block hovering right over the top of their heads.

Then we need to specify the block and the data for that block which looks like “wool 5”. The “5” indicating it’s not just any wool but the Lime colored wool.

All of this information we put in will make it so that the execute command will run normally, but only if it detects that Lime wool block above a players head.

Now we input the scoreboard command. “scoreboard players set @p GoldPathStart 1”

Altogether the command should look like this:

execute @a ~ ~ ~ detect ~ ~2 ~ wool 5 scoreboard players set @p GoldPathStart 1

[image: Image]

So what’s going on here?

What we’ve done with this command is that we set the score of “1” in the objective “GoldPathStart” for “@p” (the nearest player), usually it looks for the nearest player to the thing that executed the command, but since we used execute detect here, it’s now looking for the nearest player standing under a Lime colored wool block.

If we want to see an example of this, we’re going to need to bring up our display again. The command to do so looks like this:

/scoreboard objectives setdisplay sidebar GoldPathStart

Now, we have a side bar display that is going keep us updated on the score in our GoldPathMaker scoreboard.

Once again however, we start off by seeing nothing. That is because we still do not have a score in this scoreboard to display, so nothing shows up.

When we step underneath a Lime colored wool however, we can see that it is now working.

Now to combat the problem we had earlier with not being able to turn off the gold path maker, let’s get ourselves another repeating command block and input the same command except for a couple of changes.

We’re going to change the “wool 5” to “wool 14” to indicate we’re talking about the red wool block now. The next thing we change will be the number “1” to “0” so now our new command in this second repeating command block will look like this:

execute @a ~ ~ ~ detect ~ ~2 ~ wool 14 scoreboard players set @p GoldPathStart 0

[image: Image]

This command block will now be in charge of when the GoldPathMaker gets turned off. (1=on, 0=off)

So when we walk underneath a Lime wool block the score will set to 1 or “on” and to counter that, when walking underneath a red wool block the score switches to 0 or “off.”

[image: Image]

Now we can connect the gold path setblock command block up to all of this and have everything working together.

Right now our setblock command looks like this:

execute @a ~ ~ ~ setblock ~ ~-1 ~ gold_block

It’s set to activate for “@a” or all players on the server, but we want it to only activate for someone standing underneath our Lime colored wool block.

This brings us back to the target selectors we’ve used before.

After the “@a” we’ll put in square brackets [score_GoldPathStart_min=1] making out new setblock command look like this:

execute @a[score_GoldPathStart_min=1] ~ ~ ~ setblock ~ ~-1 ~ gold_block

[image: Image]

Our target selector did one of two things here, we indicated the target had to have a score of at least 1 in the scoreboard GoldPathMaker, we did this with (min=1).

We could have used just (GoldPathStart_1) but that would indicate the maximum, meaning this number or less. That wouldn’t work for us here because to turn our gold path on we want the player to have at least a score of 1. If we had it the other way, it would turn it on for both 0 and 1, at that point there would really be no difference. Therefore, we used (min=1) to indicate the score in the GoldPathMaker objective has to be at least 1 for the gold path to start working.

[image: Image]

So now that we have all the commands input and working together correctly, we can see that stepping under the lime wool block gives us a score of “1” and because our score is now “1” our setblock repeating command block picks up on that and activates the gold blocks appearing at our feet. Walking a little further until we’re under the red wool block we can see that it turns our score back to zero. Now that that has happened our setblock repeating command shuts off the gold block path just like that.

[image: Image]

These examples are among the most basic of the scoreboard command, and while they might be easy to do, it doesn’t take a whole lot of imagination to see just how far you could take this kind of command as you progress in your learning of how to turn effects on an off. As well as learning all the different kinds of commands and criteria types that exist on the Scoreboard commands Wiki page.

There is a whole rainbow of possibilities when using this command and when combining it with any and all of the other commands. Whole new worlds open up with a limitless variety of ways to play the game as you mix and match each command together with the others.

Just be sure to practice the commands in game as well as practicing your patience, there’s so much to each command that learning everything all at once is next to impossible, so don’t go for the impossible. Go for learning these commands at your own pace and getting as much fun out of mixing and matching them as you can.

[image: Image]

FUN FACT:

We see scores and scoreboards all the time in other games and sports, but did you know it was possible to make your own in minecraft? Check out the scoreboard command to see how you can get Minecraft to keep score of anything from how many seconds you spend swimming to the number of pigs you kill.

Minecraft Command Compendium

We arrive now at our compendium of Minecraft Commands, If you’ve been following along in this book you’ll see we’ve made mention of it a few times.

What’s been included in this section is a list of every command we haven’t already covered in the book. There’s plenty here so if you’re working on your mastery of commands you’ve got a fair amount on your plate. Don’t be discouraged though, for each command in the list we’ve included a brief description as well as some examples for a few.

Chances are you’re coming here after reading the earlier parts of the book so some of the simpler commands we won’t be giving examples for as their descriptions and the syntax will be enough to get you going with them.

If you’re here before getting through the rest of the book then we’d like to congratulate you on being so keen and eager to get started!

That being said however, this section is not meant to teach. We’re providing this list as a resource to readers who are already comfortable with commands and command blocks and are able to apply the information provided here to their game and know (more or less) what to do with it.

We’ve included some of the more complicated commands earlier in the book while at the same time going over how to read syntax and what the difference between the different types of arguments are.

How you go about reading this book is up to you of course but we’re recommending having a read over the rest before you dive too deep into our command compendium.

ACHIEVEMENT

This command grants an achievement of your choosing to the player of your choice, even if you haven’t met the requirements to earn it. It can also be used to take an achievement away. The asterisk (*) symbol represents all the achievements at once here.

Syntax:

achievement <give|take> <stat_name|*> [player]

Examples

To grant the “Overkill” achievement to yourself: achievement give achievement.overkill

To grant the “Taking Inventory” achievement to Sam: achievement give achievement.openInventory Sam

To increase the “Mob Kills” statistic by 1 for the nearest player: achievement give stat.mobKills @p

To remove all achievements from all players: achievement take * @a

BAN

With this command you can ban any player from the server while including the reason for doing so that both the banned player as well as the rest of the server will see. A ban will take priority and overwrite a whitelisting.

You might also want to look at:

/whitelist

Adds a player to the blacklist

Syntax:

ban <name> [reason …]

BAN-IP

Adds an IP address to the blacklist.

Syntax:

ban-ip <address|name> [reason …]

BANLIST

Displays the server’s blacklist (or list of banned players).

Syntax:

banlist ips

banlist players

This will always work. Displays banned IP addresses or banned players.

BLOCKDATA

Modifies the data tag of a block.

Syntax:

blockdata <x> <y> <z> <dataTag>

Examples

To change the primary power of the beacon at (0,64,0) to Haste:

blockdata 0 64 0 {Primary:3}

You might also want to look at:

/replaceitem — replaces items in a block’s inventory

/setblock — places a new block at a position

/stats — sets a block’s CommandStats

CLEAR

Clears items from player inventory.

Syntax:

clear [player] [item] [data] [maxCount] [dataTag]

Examples:

To clear your entire inventory: clear

To clear all items from Sam’s inventory: clear Sam

To clear all wool items from Sam’s inventory: clear Sam minecraft:wool

To clear all orange wool items from the inventory of all players: clear @a minecraft:wool 1

To clear all golden swords with the “Sharpness I” enchantment from the nearest player, regardless of their damage value: clear @p minecraft:golden_sword -1 -1 {ench:[{id:16s,lvl:1s}]}

You might also want to look at:

/blockdata — can change or remove items in block inventories

/entitydata — can change or remove items in entity inventories

/give — give items to player

/kill — can destroy item entities

/replaceitem — can replace items in block or entity inventories

DEBUG

Starts or stops a debugging session.

Syntax:

debug <start|stop>

DEFAULTGAMEMODE

This will change the game-mode players will have upon joining a server for the first time. (Creative, survival etc)

Syntax:

defaultgamemode <mode>

Examples:

To set the default game mode to survival: defaultgamemode survival, defaultgamemode s, or defaultgamemode 0

You might also want to look at:

/gamemode — changes a player’s game mode

DEOP

This command takes away a players OP (Operator/admin) status.

Syntax:

deop <player>

Examples:

To remove Sam from the list of operators: deop Sam

DIFFICULTY

Sets the difficulty level (peaceful, easy, etc.).

Syntax:

difficulty <difficulty>

Examples:

To change the difficulty to hard: difficulty hard, difficulty h, or difficulty 3

You might also want to look at:

/gamemode — changes a player’s game mode (creative, survival, etc.)

EFFECT

Gives or takes away different potion effects (complete with particle effects) to a player of your choosing.

Syntax:

effect <player> clear (removes all effects)

effect <player> <effect> [seconds] [amplifier] [hideParticles] (gives an effect)

Examples:

To grant a Speed 1 effect to the nearest player for 60 seconds: effect @p 1 60

To grant a Speed 3 effect to the nearest player for 60 seconds: effect @p minecraft:speed 60 2

To clear any Haste effects from all players: effect @a minecraft:haste 0

To clear all effects from all zombies: effect @e[type=Zombie] clear

ENCHANT

Use this command to enchant select tools, armor, or weapons in your inventory. You are limited the same way as if using an anvil.

Syntax:

enchant <player> <enchantment ID> [level]

ENTITYDATA

Modifies the data tag of an entity.

Syntax:

entitydata <entity> <dataTag>

GAMEMODE

A simple widely used command you’ve probably seen before that is used to set the game mode of your player (creative, survival, etc).

Syntax:

gamemode <mode> [player]

mode

Must be one of:

• survival (0) for survival mode

• creative (1) for creative mode

• adventure (2) for adventure mode

• spectator (3) for spectator mode

“Hardcore” is not a valid option for the mode argument, as it is technically not a game mode.

Examples:

To put yourself into creative mode: gamemode creative, gamemode c, or gamemode 1

To put all players into survival mode: gamemode 0 @a

You might also want to look at:

defaultgamemode — sets the initial game mode for players joining the world

GAMERULE

Sets or queries a game rule value.

Syntax:

gamerule <rule name> [value] (PredefinedGameRules.png) (if this doesn’t fit just try to fit in the “rule names”)

Examples:

To stop the day-night cycle:

gamerule doDaylightCycle false

To stop natural healing:

gamerule naturalRegeneration false

To define a new game rule called MyNewRule and sets its value to 10:

gamerule MyNewRule 10

KICK

With this command you have the option to kick someone off the server. As an added bonus you can tell them why with the optional argument in the square brackets “reason.”

Syntax:

kick <player> [reason …]

KILL

Kills entities (players, mobs, items, etc.).

Syntax:

kill [player|entity]

Examples:

To kill yourself: kill

To kill a player named Bob: kill Bob

To “kill” all item entities (making them vanish from the world): kill @e[type=Item]

To “kill” all entities within loaded chunks, including yourself: kill @e

LIST

Lists players on the server.

Syntax:

list

Description:

Shows the names of all currently-connected players (the same can be achieved when pressing tab).

This will always work, even in a command block.

ME

Displays a message about your player in the 3rd person. If Sam were to use the command “/me dances” the message other players would see would be: Sam dances

Syntax:

me <action …>

OP

Gives operator status to a player.

Syntax:

op <player>

This will always work. Grants player operator status on the server.

PARDON

You can use this command once you’ve forgiven someone and want to let them back on the list of people that are allowed to play on the server.

Syntax: pardon <name>

pardon-ip <address>

PARTICLE

Creates particles.

Syntax:

particle <name> <x> <y> <z> <xd> <yd> <zd> <speed> [count] [mode]

particle <name> <x> <y> <z> <xd> <yd> <zd> <speed> [count] [mode] [player] [params …]

Examples:

To create a stationary huge explosion particle 10 blocks to the east:

particle hugeexplosion ~10 ~ ~ 0 0 0 0

PLAYSOUND

Plays a sound.

Syntax:

playsound <sound> <player> [x] [y] [z] [volume] [pitch] [minimumVolume]

playsound <sound> <source> <player> [x] [y] [z] [volume] [pitch] [minimumVolume]

PUBLISH

Opens single-player world to the local network.

Syntax: publish

Description:

Opens your single-player game for LAN friends to join. This command appears in the singleplayer cheats.

Cannot be used in a command block.

REPLACEITEM

Takes the items out of anything with inventory space whether it be blocks (furnaces, crafting tables, etc) or entites (players, some mobs) and replaces it with something else of your choosing.

Syntax:

replaceitem block <x> <y> <z> <slot> <item> [amount] [data] [dataTag]

replaceitem entity <selector> <slot> <item> [amount] [data] [dataTag]

Examples:

To replace the items in the bottom-right slot of a single chest one block above with four spruce saplings:

replaceitem block ~ ~1 ~ slot. container.26 minecraft:sapling 4 1

To replace the items in the rightmost hotbar slot of the nearest player with four spruce saplings:

replaceitem entity @p slot.hotbar.8 minecraft:sapling 4 1

You might also want to look at:

/blockdata — can also replace items in a container

/entitydata — can also replace items in a mob’s inventory, or modify the drop chances of armor and weapons

/give — give items to players without specifying specific inventory slots or overwriting other items

SAVE

These commands manage server saves.

Save-all:

Saves the server to disk.

Syntax: save-all [flush]

SAVE-OFF

Turns off automatic server saves.

Syntax: save-off

SAVE-ON

Turns on automatic server saves.

Syntax: save-on

SCOREBOARD

These commands manage scoreboard objectives, players, and teams.

Syntax:

scoreboard

<objectives|players|teams>

SEED

Displays the world seed.

Syntax: seed

This will always work. This command can always be used in single-player mode, regardless of whether cheats are enabled or not.

SETIDLETIMEOUT

This command allows you to decide how much time someone can sit in your server and do nothing before the server finally kicks them out.

Syntax:

setidletimeout <Minutes until kick>

SETWORLDSPAWN

Sets the location in your Minecraft server world where everyone will spawn for the first time.

Syntax: setworldspawn

setworldspawn <x> <y> <z>

SPAWNPOINT

Sets the location in your Minecraft world for a player to spawn.

Syntax: spawnpoint

spawnpoint <player>

spawnpoint <player> <x> <y> <z>

SPREAD PLAYERS

Teleports entities (players, mobs, items, etc.) to random locations within an area.

Syntax:

spreadplayers <x> <z> <spreadDistance> <maxRange> <respectTeams> <player …>

Examples:

To teleport all players by team to random surface locations in a 1,000×1,000-block area centered on (0,0), with a minimum distance between teams of 200 blocks: spreadplayers 0 0 200 500 true @a

To teleport one random player from each of three teams (Red, Blue, and Green), as well as Sam and Bob, to random surface locations in a 200×200-block area centered on (0,0), with a minimum distance between players of 50 blocks: spreadplayers 0 0 50 100 false @r[team=Red] @r[team=Blue] @r[team=Green] Sam Bob

You might also want to look at:

/tp — teleports a single player or entity to a specific position (even underground).

STATS

This allows players via the use of command blocks or just typing the command into chat to keep up with and update scoreboard scores per activation. It allows for each argument or selector of any of the scoreboard commands to be changed according to your specifications within the typed out command.

Syntax:

stats block <x> <y> <z> clear <stat>

stats block <x> <y> <z> set <stat> <selector> <objective>

stats entity <selector2> clear <stat>

stats entity <selector2> set <stat> <selector> <objective>

Examples:

To set the block at (0,64,0) to update scoreboard objective MyObj of the nearest player with the value of any query result returned by the block: stats block 0 64 0 set QueryResult @p MyObj

To stop the block at (0,64,0) from updating any scoreboard obectives with the success count of commands it executes:

stats block 0 64 0 clear SuccessCount

To have the nearest wither skull update the scoreboard objective NumBlocks of fake player #FakePlayer with the number of blocks affected by commands executed by the wither skull:

stats entity

@e[type=WitherSkull,c=1] set AffectedBlocks #FakePlayer NumBlocks

You might also want to look at:

/blockdata — can also change the selector and objectives of blocks by altering data tags directly

/entitydata — can also change the selector and objectives of entities by altering data tags directly

STOP

Stops a server.

Syntax: stop

This will always work. Saves all changes to disk, then shuts down the server.

TELL

Sends a private message to one or more players.

Syntax: tell <player> <message …>

msg <player> <message …>

w <player> <message …>

Examples:

To privately tell Sam to start the mission: tell Sam Start the mission!

TELLRAW

Sends a JSON message to players.

Syntax:

tellraw <player> <raw json message>

You might also want to look at:

/say — send a simple text message to all players

/tell — send a simple text message to specific players

TESTFOR

Counts entities (players, mobs, items, etc.) matching specified conditions.

Syntax: testfor <player> [dataTag]

Examples:

To test if Sam is online: testfor Sam

To count the number of players in survival mode within a 3-block radius of (0,64,0):

testfor @a[0,64,0,3,m=0]

To count the number of zombies within a 20-block radius of (0,64,0):

testfor @e[0,64,0,20,type=Zombie]

To count the number of players currently flying:

testfor @a {abilities:{flying:1b}}

To test if a arrow is in a block:

testfor @e[type=Arrow] {inGround:1b}

TESTFORBLOCK

Tests whether a certain block is in a specific location.

Syntax:

testforblock <x> <y> <z> <TileName> [dataValue] [dataTag]

Examples:

To test if the block at (0,64,0) is any type of wool: testforblock 0 64 0 minecraft:wool

testforblock 0 64 0 minecraft:wool -1

To test if the block at (0,64,0) is orange wool: testforblock 0 64 0 minecraft:wool 1

To test if the block below is a jukebox with the “mall” record inside: testforblock ~ ~-1 ~ minecraft:jukebox -1 {Record:2261}

TESTFORBLOCKS

Tests whether the blocks in two regions match.

Syntax:

testforblocks <x1> <y1> <z1> <x2> <y2> <z2> <x> <y> <z> [mode]

Color added to make reading easier.

TIME

This command lets you check or change what the in-game time is in your Minecraft world.

Syntax:

time <add|query|set> <value>

Examples:

To set the time to 1,000: time set 1000 or time set day

To add one day to the world time: time add 24000

TITLE

Controls screen titles.

Screen titles are shown to players as a single line of large text in the middle of their displays and can include a second line of text called a “subtitle.” Both of these lines can be heavily customized as to how they act when they’re appearing on your screen (different visual effects like appearing and disappearing, etc).

Syntax: The command has five variations, each with different arguments.

title <player> clear (removes the screen title from the screen)

title <player> reset (resets options to default values)

title <player> subtitle <title> (specifies the subtitle text)

title <player> times <fadeIn> <stay> <fadeOut> (specifies fadein, stay, and fade-out times)

title <player> title <title> displays the screen title)

Examples:

To display a bold screen title “Chapter I” with a gray italic subtitle “The story begins…” to all players:

1. title @a subtitle {text:”The story begins…”,color:gray,italic:true}

2. title @a title {text:”Chapter I”,bold:true}

TOGGLEDOWNFALL

Toggles the weather.

Syntax: toggledownfall

This will always work. If weather is currently clear, rain or snow will start. If weather is currently rain or snow, it will stop.

TP (TELEPORT)

Teleports entities (players, mobs, items, etc.).

Syntax:

tp [target player] <destination player>

tp [target player] <x> <y> <z> [<y-rot> <x-rot>]

Examples:

To teleport yourself to Sam: tp Sam

To teleport all players to yourself: tp @a @p

To teleport yourself to x=100 and z=100, but three blocks above your current position: tp 100 ~3 100

To rotate the nearest player 10 degrees to the right without changing their position: tp @p ~ ~ ~ ~ 10 ~

TRIGGER

Modifies a scoreboard objective with a “trigger” criteria.

Syntax:

trigger <objective> <add|set> <value>

Description:

Used together with /tellraw to let players activate systems made by operators or mapmakers.

WEATHER

Sets the weather.

Syntax:

weather <clear|rain|thunder> [duration]

Examples:

To get clear weather for one Minecraft day: weather clear 1200

To make it rain, but let it end at its own pace: weather rain

WHITELIST

Manages the server whitelist.

Server ops will always be able to connect when the whitelist is active, even if their names do not appear in the whitelist.

Syntax:

The command has six different forms.

whitelist add <player>

whitelist list

whitelist off

whitelist on

whitelist reload

whitelist remove <player>

WORLDBORDER

These commands control the world border.

Syntax:

The command has eight different forms:

worldborder add <distance> [time] (increases the world border diameter)

worldborder center <x> <z> (recenters the world boundary)

worldborder damage amount <damagePerBlock> (specifies the world border damage rate)

worldborder damage buffer <distance> (specifies the world border damage buffer distance)

worldborder get (returns the world border diameter)

worldborder set <distance> [time] (sets the world border diameter)

worldborder warning distance <distance> (specifies the world border warning distance)

worldborder warning time <time> (specifies the world border warning time)

[image: Image]

HOT TIP:

With command blocks you can give yourself or other players different kinds of potion effects and make them last as long as you want. So if you’ve ever wanted to have an easier time building that secret underwater fort on a survival server, just set up the command in a command block and have the water breathing effect on permanently and take as much time as you want.

[image: Image]

Welcome to the Gallery!

[image: Image]

We’ve had our fun discussing how command blocks work. We’ve also seen what more than a few commands can do and how to mix and match them together for even better results.

So now it’s time to see some of the best of what command blocks and their commands have to offer.

Not a whole lot is out there yet in terms of fantastic creations made by command blocks and their commands, but we’ve gathered together a few from various parts of the world wide web to awe and inspire however we can.

Who knows? What you see here could inspire you to be one of the first to come up with your own customized creations new to the world of command blocks.

We’ve arranged a series of amazing command block commands that could be anywhere from the very strange to the very big.

[image: Image]

Chain Command Block Pyramid Summoning

1. For our first example of amazing command block feats, we’ll demonstrate the power of instant-building with multiple chain command blocks all hooked up to create structure faster than ever before.

Throw the switch and presto change-o! We get a lovely pyramid of our very own that looked like it could have come smack dab right out of the desert.

[image: Image]

For this piece we had to pick two opposite corners for each layer and with the fill command, input the coordinates for those corners into a chain of command blocks with the coordinates moving upward and inward once for every level!

[image: Image]

Summon Your Own Head Command

2. To continue on let’s decorate our newly made pyramid structure with something special, we’ll input the command into the command block and use it to summon out something unexpected.

Our head! That’s right, with this command:

give [player name] minecraft:skull 1 3 {SkullOwner:”[player name]”}

[image: Image]

All that needs doing is replacing the first “player name” with the name of who obtains the head, and the second “player name” with whoever’s head you want it to be and now you’ve got a creepy decoration of your very own to plaster the walls of your house and scare your fellow Minecraft players.

[image: Image]

Giant Wither Boss

3. Next up is a mob summoning like we’ve never seen before command blocks came into the picture. We’ve seen enemy mobs all over the place and boss mobs both in the Nether and in The End. But this command block command summons a beast you’ll have a hard time topping.

The command looks like this:

summon WitherBoss ~ ~ ~ {Invul:10000,CustomName:Dinnerbone}

Press the button to activate it and prepare for the boss fight of your life!

[image: Image]

The Edge Of The World

4. Now for an impossible trip not many Minecraft player’s get to take in their lifetime. By using the teleport command we can cover unrealistic distances in a short amount of time. If you’ve ever wanted to see the edge of the world this is your shot: Tp [player name] 29999999 80 29999999

No block can be placed (unless you use a command) and no block can be broken, we’re on the other side of the end of the world and we could only get here with a command block.

[image: Image]

Unfortunate Skeleton Summon

5. Let’s have some more fun with summoning. With commands, it’s possible to summon mobs in twisted new shapes and sizes, there’s no limit to how different you can change something once you know the right command. Let’s give that a whirl and see what we can manage with some skeleton summoning:

summon Skeleton ~ ~1 ~ {CustomNam e:”Dinnerbone”,Riding:{id:”Skeleton”,Equipment:[{id:391}]}}

He may not be the happiest of skeletons but it’s all in the name of science and command blocks!

[image: Image]

Multi-Function Magic Book

6. This command is a complicated one. Probably one of the more complicated commands we’ll showcase, it’s actually so big we can’t include it here.

We’re going to input into our command block a very special “give” command. We’ll use it to create a book that has the functions of multiple commands built into one.

The book has multiple functions built in and can be used rather than actually having to type commands into chat or a command block.

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Repeating Command Block Arrow Rain

7. Let’s have some fun with the repeat command block and see what mischief we can get up to with a simple arrow summoning command. Input the summon arrow command that looks like this: summon Arrow ~ ~10 ~ into a few command blocks set to “Repeat” and “Always Active” and we’ve got constant arrow rain from above!

[image: Image]

Fast Growing Chorus Plant

8. With the 1.9 update we’ve seen a lot of new blocks and additions to the game.

One such addition is the chorus plant and the chorus flower, two plants that grow in The End and with this example we’re going to play around a little bit with the growth rate.

[image: Image]

With the command: /gamerule randomTickSpeed 1000 we can speed up the growth rate of things by a thousand for results like this.

[image: Image]

If we were to input another command which resets the flowers once they’ve finished growing,

execute @a~ ~ ~ fill ~-5 ~-5 ~-5 ~5 ~5 ~5 chorus_flower 0 replace chorus_flower 5

then we get an endlessly growing plant that looks something like this.

[image: Image]

The Super Creeper

9. Let’s come back to our pyramid again and see what we can do with a creeper to break it up. For this command we’ll summon a creeper and through the power of a command block we’ll super charge that creeper to never before seen levels of explosive power.

[image: Image]

Our command looks like this: summon Creeper ~ ~ ~ {powered:1,ExplosionRadius:100}

So now we have a super powered creeper capable of dealing massive amounts of area damage. And if we give it a little poke…

We can see just how much damage it can dish out.

[image: Image]

The Troll Command

10. Finally for our last command, for those of you out there that like to troll and prank your friends while playing on a server or LAN world, this command is for you.

We’ve split it up into two separate commands, one to start and one to end the troll, the first of the two is this: tellraw @a {text:”Notch joined the game”, “color”:”yellow”}

[image: Image]

Wait for a little bit to watch your friends freak out and then after a couple of minutes you can use this command:

Tellraw @a {“text”:”Notch left the game”,”color”:”yellow”}

[image: Image]

HOT TIP:

Command blocks are even capable of affecting other command blocks. The more you want to do the longer the command will be however but if done right it’s possible to have multiple command blocks doing their thing all at the same time!

[image: Image]

Redstone Items

Knowing the items that are used in Redstone builds and how they interact with Redstone, and knowing this well, is the key to understanding Redstone. The better you know these items and their features, the better your Redstone builds will be, and the less time and energy you’ll have to spend on each. Know these items, learn these items, love these items, profit.

Before we get to the things themselves, we should break down the different types of Redstone items and get an idea of what each type does, and why that’s important:

The 6 Types of Redstone Items

[image: Image]

Power & Control Components: (The Heart) These are the most important of the Redstone items, as they’re what provide the Redstone power signal that everything else uses in a Redstone build. These come in a variety of types, with the difference between each being how they’re activated, how much power they put out, what they power and how long they power it for.

[image: Image]

Wires and Transmission Components: The second most important type of Redstone items, these are those items that move the power signal from a source of power to other parts of a Redstone build, whether it’s a mechanism or another component. The simplest form of this is Redstone Dust, which simply moves the signal along a maximum of 15 blocks on its own, but the other items in the Repeater and the Comparator are essential to more complex builds.

[image: Image]

Mechanisms: Essentially the items that “do something,” whether that something is as simple as a Door opening or more complex like a Hopper sucking in and distributing items. These nearly all need power and activating them is often the “goal” of the Redstone build, but they can also simply be a small part of a Redstone build that causes something else to happen (such as how Pistons can be used to complete circuits).

[image: Image]

Rails that Interact with Redstone: The Rails system in Minecraft also includes some items that interact with Redstone. This is primarily those Rail items that put out or interact with a power signal (Activator, Detector and Powered Rails), but Minecarts themselves are also part of the Redstone tool-box, as they can activate Activator Rails, among other things (like interacting with Hoppers).

[image: Image]

Other Items that Interact with Redstone: This is a catch-all for items that don’t create or transmit power as their primary function and aren’t mechanisms, but which can be interacted with by a Redstone signal, or used in a Redstone build. These are less important in most builds compared to the items in the other sections, but they can be integral parts of some builds. For instance, the TNT can be an important part of certain builds like cannons.

[image: Image]

Basic Blocks and Redstone: Some plain blocks interact with Redstone in particular ways. Most importantly, the way that “transparent” blocks (as opposed to the regular “opaque” block that is powered by a Redstone signal) interact with Redstone signals is very important.

These six categories pretty much cover the world of Redstone, so let’s stop chatting about ‘em and start getting familiar with the Redstone item pool.

KEY

[image: inline-Image] = The three core Redstone items

[image: inline-Image] = Very important and/or common Redstone items

[image: inline-Image] = Secondary, but still fairly commonly used Redstone items

[image: inline-Image] = Rare, or very simple Redstone items with a specific use

Power & Control Components

These are what provide power to the rest of your build. Think of these like batteries that contain infinite power that you need to connect to your creations using wire (transmission components), and each of them sends out a signal (similar to powering with electricity) in different ways.

[image: Image]

Redstone Torch [image: inline-Image]

Primary Feature: Gives a full Redstone power signal, which is a level 15 (out of 15) signal, which turns off if the block the Redstone Torch is on is or becomes a powered block

Powers:

	Block above Torch

	Dust adjacent

	Repeaters and Comparators adjacent and facing away from the Lever

	Mechanisms adjacent, above or below

Description: Ah the Redstone Torch, one of the three most common items in Redstone creation (the other two being Redstone and Redstone Repeaters). These guys are used in just about every Redstone build, and for good reason: Redstone Torches fully power Redstone Dust and mechanisms.

[image: Image]

This is not the only way in which these glowy little dudes are useful, however. Redstone Torches also have two very special functions when it comes to opaque blocks, and these functions make Torches essential to most builds:

1. Redstone Torches do not power the block they are attached to. This is useful in many ways, for instance when you have a Redstone Torch on one side of a 1 block-thick wall, and there’s a Redstone mechanism on the other side of the wall that you don’t want the Redstone Torch to power.

2. Redstone Torches will be turned off if the block they are on is powered by something else. In other words, Redstone Torches that are on the top or side of a powered block will have their signals inverted, meaning they no longer give out power to anything they were previously powering. This is incredibly useful in the creation of a huge variety of Redstone components, such as logic gates, as it can be used to customize the way in which a specific line of power interacts with a Redstone build.

[image: Image]

Common Uses: Just about everything! One Redstone Torch on its own can power a mechanism or a line of Redstone Dust, or literally thousands could be used in complex builds such as Redstone computers. They can also be used to create a Torch ladder, which is one way of propagating a Redstone signal vertically in a compact space, something tricky to do.

Other Recipes Used In: Activator Rail, Redstone Comparator, Redstone Repeater

[image: Image]

Block of Redstone [image: inline-Image]

Primary Feature: Provides full power signal, but it will not power opaque blocks of any kind.

Powers:

	Dust adjacent

	Repeaters and Comparators adjacent and facing away from the Redstone Block

	Mechanisms adjacent, above or below

Description: Blocks of Redstone are pure, unadulterated Redstone power. They power whatever is around them, except opaque blocks, which are unaffected by Blocks of Redstone. Blocks of Redstone can’t be turned off, but they can be moved by Pistons and Sticky Pistons. In fact, attaching a Block of Redstone to a Sticky Piston can be an excellent way to inject or take away a power source from a specific section of your Redstone build when needed.

[image: Image]

Redstone Blocks can be very useful when you want a guaranteed power source, but they are also fairly expensive (9 Redstone each), so they are more often used in Creative Mode as opposed to Survival. They can also be used as a way to store more Redstone in a Chest, as you can fit 576 Redstone in one full stack of 64 Blocks of Redstone.

Common Uses: Typically used in order to make builds more compact or where a Redstone Torch wouldn’t work. For instance, Water can’t move through a Block of Redstone, but it would destroy a Redstone Torch. A Redstone Torch would also power an opaque block above it, while a Block of Redstone would not, which you might want in some cases when layering Redstone builds on top of each other. Blocks of Redstone are also a lot easier to see than most other power sources, another useful feature in the right situation.

Other Recipes Used In: Can be converted back into 9 Redstone

[image: Image]

Lever [image: inline-Image]

Primary Feature: When on, provides full power, but can also be turned off, cutting off the power.

Powers:

	Block it’s on (if opaque)

	Dust adjacent

	Repeaters and Comparators adjacent and facing away from the Lever

	Mechanisms adjacent, above or below

Description: Levers not only provide power, they are also the first of our direct control components. This means that unlike Redstone Torches or Blocks of Redstone, the power output of a Lever can be directly controlled by changing the state of the Lever (meaning you can turn it on or off). While you can create this kind of alternating power output from a Torch or a Block of Redstone by building a special component to create this situation, Levers and other control components make the process of turning a Redstone power signal on or off much more efficient and easy to use.

[image: Image]

Common Uses: Wherever an on/off switch for the power of a section of a Redstone build is needed. For instance, Levers can be placed on an opaque block adjacent to a Door. When the Lever is flipped on, the block the Lever is on will power the Door, causing it to open. When the Lever is switched off, the power to the block the Lever is on is turned off, and the Door closes, as it is no longer powered.

[image: Image]

Button [image: inline-Image]

Primary Feature: Provides full power for just 10 ticks (1 second)

Powers:

	Block it’s on (if opaque)

	Dust adjacent

	Repeaters and Comparators adjacent and facing away from the Button (the block the Button sticks out into)

	Mechanisms adjacent, above or below

[image: Image]

 Description: Another direct control power component, the Button acts just like the Lever, except that it only provides power for a period of 10 game ticks, or 1 real second. This is very useful for things that you only want in a powered state for a very short amount of time, like a Door, which will open when the Button is pressed but will close when the 10 ticks of power are over. One useful feature of Wooden Buttons in particular is that they can be activated by Arrows, whether shot by a player, a Skeleton or a Dispenser.

Common Uses: Where a short, simple burst of power is needed, such as having a Dispenser throw a single item, or a Piston extend for just 1 second.

[image: Image]

Pressure Plate [image: inline-Image]

Primary Feature: Gives full temporary power similar to a Button. However, the power signal from the Pressure Plate activates due to something being on top of it (technically it is that the object collides with the Plate, but essentially it is because something or someone is on top of the Plate), and the power continues to come from the Plate as long as something is on the Plate. It powers for a minimum of 10 ticks (1 second).

Powers:

	Block it’s on (if opaque)

	Dust adjacent

	Repeaters and Comparators adjacent and facing away from the Pressure Plate

	Mechanisms adjacent or above Pressure Plate (above only works with Wooden Pressure Plates and entities, as well as mobs, that are shorter than 1 block tall)

[image: Image]

Description: Pressure Plates are just like a Button, except they can only be put on the top of a block, and they can be activated much longer and only need pressure to activate, as opposed to being clicked on (or shot with an Arrow, in the case of the Wooden Button). This happens differently for various types of Pressure Plates, of which there are the following and the following methods of activation:

Wooden Pressure Plate: Activated by all entities (players and mobs, items of all kinds, Fishing Bobs, Arrows and even experience orbs)

Stone Pressure Plate: Activated only by mobs and players

Light Weighted Pressure Plate: Activated by at least 1 mob or player, but will put out a stronger signal with each additional entity of any kind on the Plate (1 entity = 1 power strength, 2 entities = 2 power strength, 3 = 3 etc.)

Heavy Weighted Pressure Plate: Activated by at least 1 mob or player, but will put out a much stronger signal with each additional entity of any kind on the Plate (1 entity = 1-10 signal strength, 2 entities = 11-20 signal strength, 3 entities = 21-30 signal strength etc.)

Common Uses: One use is for when you want a Redstone component to activate when either you or a mob runs over it, such as Doors opening when you run over a Pressure Plate, or a signal in your house activating telling you a mob is standing on a Pressure Plate outside your home. Another use is in complex builds where it would be useful for something to activate when enough items land on a Pressure Plate, such as causing a Piston to pull back and let Water temporarily flow over the ground in a mob grinder when enough mobs have been killed, washing all of the items they have dropped out of the grinder and to an area where you’d be able to pick them up.

Other Recipes Used In: Detector Rails

[image: Image]

Tripwire Hook [image: inline-Image]

Primary Feature: When a complete Tripwire circuit is built, most entities (excepting some shot Arrows, and thrown Ender Pearls, Eyes of Ender and Potions) that move through the Tripwire will send out a full power signal. This lasts as long as an entity is colliding with the Tripwire, or for a minimum of 5 ticks, or 0.5 seconds.

Powers:

	Block both Tripwire Hooks are on (if opaque)

	Dust adjacent

	Repeaters and Comparators adjacent and facing away from the Detector Rail

	Mechanisms adjacent, above or below

Description: Sometimes pushing a Button or even running over a Pressure Plate won’t be the ideal way to activate a Redstone build. In these cases, a nice Tripwire circuit may be the thing you need. This is basically a line that goes across the air or ground, and if anything besides the entities listed above collides with that line, it will power the Tripwire Hooks at the ends of the Tripwire circuit. A working Tripwire circuit involves a Tripwire Hook placed on the side of one block, another placed on the side of another block in a direct line from the original Tripwire Hook, and then clicking on one of the Hooks while holding a piece of String. If the Tripwire Hooks are in the right place, and nothing is blocking the way (such as other blocks), you will see the piece of String go across the space between the Tripwire Hooks, and when you run through the String you’ll hear the click of the Hooks being powered.

[image: Image]

Common Uses: For places where it would be best for a Redstone mechanism or construct to activate anytime any entity crosses a certain line. An example would be a Dispenser launching a Potion at the user when they run past a certain part of their base, or for Dispensers to fire Arrows at a large area when anything crosses a long Tripwire in that area.

[image: Image]

Daylight Sensor [image: inline-Image]

Primary Feature: Gives a power signal whose strength varies according to how much natural light the Daylight Sensor is exposed to. This is true up to the full light level of 15, at which point the Daylight Sensor is capable of reaching up to power level 8, and it then goes higher than 8 depending on the amount of time it has been exposed. It will then steadily become unpowered as it gets darker.

Powers:

	Block it’s on (if opaque)

	Dust adjacent

	Repeaters and Comparators adjacent and facing away from the Daylight Sensor

	Mechanisms adjacent, above or below

Description: Daylight Sensors are the one power item that sends out power not based on a physical interaction (Levers, Buttons, etc.) or a constant state of having power (Redstone Torches and Blocks of Redstone), but instead on a non-physical entity, specifically the level of the light that is touching the Daylight Sensor. When powering Dust or Comparators, the amount of power going out from the Daylight Sensor and through the Dust or Comparator will be between 0-15 based on both the level of light and the amount of time exposed to light (see http://bit.ly/DaylightSensor for the full chart). Mechanisms attached to a Daylight Sensor will fire when light hits the Sensor at all, and attached Repeaters will instantly send a 15 power level signal. Note: it being night does not mean that the Daylight Sensor will immediately turn off, as there is still some light for part of the night. Daylight Sensors can also be turned to night time detectors by surrounding them in blocks or keeping them far from the sky, or they can be made into inverted daylight detectors by right-clicking the Sensor. This will make the Sensor act the opposite as it normally would, giving a full signal at night, a weak one during the day and none at noon.

[image: Image]

Common Uses: Welp, just about anything you can think of that would depend on it being night or day to have power! Many Redstone builders use these to build automatic lighting systems for their homes and the areas around them at night, or to trigger a something such as a Redstone Torch that will give a visual notice that it’s day even when deep down in a mine or another place where you wouldn’t be able to see that it was such.

[image: Image]

Trapped Chest [image: inline-Image]

Primary Feature: Gives out a powered Redstone signal when opened.

Powers:

	Block(s) it’s on (if opaque), power signal equal to the amount of players accessing chest (max of 15)

	Dust and Repeaters adjacent (and below for Dust only), power signal equal to the amount of players accessing chest (max of 15)

	Mechanisms adjacent, above and below

Note: Comparators treat the Trapped Chest as a typical Chest, reading the amount of items in it, and are not powered by it as a Redstone signal normally would power a Comparator.

[image: Image]

Description: The Trapped Chest is a unique power source in that it is almost exclusively used to give off an indication to a player that a Chest has been accessed. It will not only give out a power signal when the Trapped Chest is opened, but will also put out a signal of variable power based on how many people are looking into the Trapped Chest.

Common Uses: Mostly to keep tabs on your Chest and items and/or to make a trap for players that open the Trapped Chest (whether with TNT hooked up to it or otherwise), but could conceivably be hooked up to a more complex system if desired.

Wires and Transmission Components

These are the components that take a Redstone signal and actually put it out to things that can use it. This is what hooks everything up together and makes it possible.

[image: Image]

Redstone (aka Redstone Dust) [image: inline-Image]

Primary Feature: Transmits power in one direction, which can be routed to Redstone systems or used to activate Redstone mechanisms. When put down on a block, Redstone is called Redstone Dust. It’s the soul of Redstone building, and it’s what makes up the “wires” that connect everything Redstone together. Redstone is what makes it all work.

Powers:

	Block it’s on (if opaque)

	Block in front of it (if opaque and in the direction the power is traveling)

	Dust adjacent

	Repeaters and Comparators adjacent and facing away from the powered Dust

	Mechanisms that the Dust directly “runs into” (will not power just by being adjacent to mechanisms)

[image: Image]

Description: The main item of the Redstone world is, unsurprisingly, Redstone. To understand Redstone, imagine it as a real-life wire, which conveys power. In Minecraft, power sources like those in the previous pages (Levers, Buttons, Redstone Torches etc.) put out power like a battery, and Redstone Dust transmits it like a wire to other places.

You can lay Redstone down on all opaque blocks, upside down slabs, stairs and hoppers, and Glowstone, and it will show up as a dot on the top of the block if there is no other Redstone around it. It will also automatically “attach” to any Redstone that is immediately adjacent to it, as well as to Redstone on the blocks that are one block above or below and to the side (if there are any and there’s nothing blocking the way).

[image: Image]

When power goes through Redstone Dust, it loses its power level by 1 for every block it travels through. The farthest a power signal can travel through one line of Redstone Dust from the source of power before it fades entirely to a 0 power level is 15 blocks. However, you can extend power to greater distances by adding Redstone Repeaters to a line of Redstone Dust, as well as by other methods.

Redstone will power mechanisms if power is going through it, but it has to be set up the right way. While Redstone automatically attaches to itself when adjacent to more Redstone Dust, it does not automatically face mechanisms correctly and must be built so that it directly powers the mechanism by facing into it. Powered Redstone Dust will also give weak power to any block it is either on top of or pointing directly at and adjacent to, but will never give full power this way.

[image: Image]

If all that weren’t enough to make Redstone without a doubt the most complex item in Minecraft, the stuff is also used in many recipes, particularly for items with a function like Clocks (the item, not the Redstone build), Compasses and Redstone-specific items like Dispensers and Repeaters.

Common Uses: It’s the most common Redstone item and the thing that is necessary for just about everything related to Redstone, so it’s common to use it in all Redstone builds.

Other Recipes Used In: Block of Redstone, Clock, Compass, Detector Rail, Dispenser, Dropper, Note Block, Piston, Potions (Mundane Potion, Increased Duration, reverting other potions back to Level I), Powered Rail, Redstone Lamp, Redstone Repeater, Redstone Torch

[image: Image]

Redstone Repeater [image: inline-Image]

Primary Feature: Boosts any incoming Redstone power signal to level 15 and sends it out in one direction while also slightly delaying the signal. The delay can be set from 1 to 4 ticks by right-clicking.

Powers:

	Block in front of it (if opaque and located in the direction that the power is moving)

	Dust, Repeaters and Comparators adjacent and facing in the same direction as the Repeater

	Mechanisms adjacent, above or below

Description: Another of the three big Redstone items (along with Redstone Torches and Redstone itself in Dust form), the Repeater is a triple function Redstone item. First, it transmits a signal just like Redstone Dust, except that on top of powering Dust, other Repeaters or Comparators, and mechanisms, it will also strongly power an opaque block in front of it (as opposed to Dust weakly powering such blocks). Second, it boosts whatever signal comes into it (from the back only) to a power level of 15. And third, it will always delay a signal for at least 1 tick, but can be set up to 4 ticks of delay by right clicking the Repeater (you can visually see it change its setting as the little torches on the Repeater move each time you click).

[image: Image]

While the transmission and boosting properties make Repeaters automatically quite useful for bigger builds where a signal must be transmitted for long distances, the Repeater’s delay feature adds to that usefulness in a huge way. That ability to keep a signal from reaching a certain part of a Redstone build for any amount of time you’d like (by directing the flow of power through multiple Repeaters) is used to create everything from simple functional Redstone builds like hidden doors, to basic Redstone clocks, to the most advanced Redstone computers.

Common Uses: Any build where you need to extend a Redstone signal or create just about any kind of complex circuit is going to need quite a few Repeaters, as will any build that needs any part of itself to be activated behind the exact moment you activate the power to the build. So basically all Redstone builds that are beyond the most simple.

[image: Image]

Redstone Comparator [image: inline-Image]

Primary Feature: Multiple, but essentially it takes power signals in from behind and/or the left side and/or the right side and outputs the power signal based on the power levels of the various signals coming into the Comparator as well as based on which of its two settings it is on. It’s either used to compare the power level of the incoming signals, subtract power from the level of the signal to its rear or, as a third feature, to put out a signal of a variable power level based on the amount of items inside of certain containers (such as Chests or Dispensers).

Description: Aaaaand now we come to by far the most complex single Redstone item: the Comparator (cool name right?). As the name suggests, the Comparator’s main function is to “compare” various types of inputs and put out a specific power signal (or kill a power signal entirely) based on the input. Input can be from the sides and/or the back, or it could be from a container, from which the Comparator will read the amount of items and will put out a signal with a power level based on this number. Let’s break this complex item down first by the four possible ways that a Comparator can be “set”:

[image: Image]

Maintain state: This is when the Comparator only has a powered signal coming in from behind it, and in this setting it will simply output the same signal that is being input to it from behind. This does not mean, however, that there is nothing else hooked up to the Comparator: you could very well have a Comparator with inputs on the side as well that are simply turned off for the moment, which is very useful in certain builds.

Lowered, or Compare Signal state: In this state the Comparator has its front “torch” (on the Comparator itself) lowered and not lit up. This is for the “compare signal” setting of the Comparator. In this setting the Comparator looks at all signals that are coming into it (whether from the back, the left side, the right side or some combination of the three), and it will output a signal from the front that is the same as whichever incoming signal has the greatest power. So, if a signal with 12 power comes in from the left, and a signal with 4 power from the right, and a signal with 11 power from behind, the Comparator will output a signal with 12 power, because this is the strongest signal. This is another useful feature for very complex builds where you would like various parts of the Redstone build to put out a specific signal, and you would then like those signals interpreted by the Comparator, which then outputs a signal causing different things to happen depending on which signal at what level was chosen by the Comparator. This is a very powerful but difficult-to-master function that is typically reserved for very complicated builds.

Raised, or Subtract Signal state: When the Comparator is set so that the little torch on the front is raised and lit up, it’s in “subtraction” mode. This setting also compares the signals coming into the Comparator, similar to the compare signal state, but instead of choosing the strongest signal to output, it will subtract the strength of the highest side signal from that of the rear signal. The minimum signal is 0 power, but it can be anything in between 0 and 15 (it will only be the max if the rear signal is 0 and one of the side signals is 15). So, with a left input signal of 4 and a right input signal of 6, a rear signal of 14 would have the 6 subtracted from it, and the Comparator would output 8.

Measure state: Comparators that are placed facing out from a container, or are facing out from a single block that is adjacent to a container, will be in “measure block” mode. This mode has the Comparator count how many items are in the container (works with any container, as well as with Cauldrons, End Portal Frames, Jukeboxes and Item Frames), and it will then put out a signal whose strength depends on the amount of items in the container. Empty containers put out a 0 signal, full containers a full 15 power signal, and the signal for any amount of items between full and empty is relative to the amount of total items a container could hold. The formula for signal strength is thus, with “truncate” meaning to cut off any fraction in the final number:

signal strength = truncate(1 + ((sum of all slots’ fullnesses) / number of slots in container) * 14)

fullness of a slot = (number of items in slot) / (max stack size for this type of item)

It’s a little complex, but it can be very useful for creating signals of various types and for building Redstone constructs that will tell you the fullness of a container at a glance.

[image: Image]

Items that aren’t typical containers have different rules for the power output:

	Cauldrons put out a 0-3 signal depending on how much Water they contain

	End Portal Frames put out a 0 if empty and a 15 if containing an Eye of Ender

	Jukebox put out a different signal depending on what Record they are playing

	Item Frames put out a 0 signal if empty or 1-8 if containing an item and depending on the item’s rotation

Common Uses: Complex ones, but basically when you want certain things to happen based on certain situations in your build. Whether that’s based on the amount of items in Chests or whether you hook up a whole bunch of variable signals from different components to Comparators and want various outputs based on which components are activated, Comparators are the realm of the big, fancy, master engineer builds.

Other Items that Interact with Redstone

Mostly just fun novelties, these guys take Redstone signals to perform their action, but they aren’t mechanical and don’t really fit in elsewhere. One-offs, but fun!

[image: Image]

Note Block [image: inline-Image]

Primary Feature: Makes a customizable noise when activated with a power source.

Powered by:

	Components adjacent, above or below

	Powered block adjacent, above or below

	Dust, Comparator or Repeater powered and facing in to the Note Block

[image: Image]

Description: Note Blocks are just a fun little item that has no other use than to make noise when activated by Redstone power. You can set the note you want the Note Block to play with right clicking, and they need an empty block above them to play. They can be powered with a Lever on them, but the Lever sound is almost louder than the note, and they can’t be powered by something above them, because they need that block empty to play.

Common Uses: Doorbells and other times you’d like Minecraft to make noise. Some people have created entire songs using many Note Blocks set on Repeater delays.

[image: Image]

Redstone Lamp [image: inline-Image]

Primary Feature: Acts as a light source instantly when powered by Redstone.

Powered by:

	Components adjacent, above or below

	Powered block adjacent, above or below

	Dust, Comparator or Repeater powered and facing in to the Redstone Lamp

Description: Redstone Lamps are the fanciest of Minecraft light sources, in that they are not small Torches or natural Glowstone and they require Redstone power to work. They’ll put out a source of light instantly that is 15, the highest light value in the game, and they’ll turn off when unpowered, though it takes 2 ticks to shut off.

Common Uses: Just to light up the land, really. It’s simply another way to do lighting, giving you the option to be more creative with it as it can be turned on and off at whim. You can even rig Redstone Lamps up to flash, but you have to make sure to account for the 2 tick delay on shutting down, or they’ll just stay on.

[image: Image]

TNT [image: inline-Image]

Primary Feature: Ignites when activated, which can be done with a Redstone signal, and when ignited this way (or by fire) its ‘fuse’ lasts 40 ticks.

Powered by:

	Components adjacent, above or below

	Powered block adjacent, above or below

	Dust, Comparator or Repeater powered and facing in to TNT

Description: TNT is the biggest destructive force in vanilla Minecraft, and its use as a Redstone component mostly deals with using Redstone to ignite the stuff. This is useful for safely blowin’ the crap out of large areas by creating a line of Redstone from a TNT stack to a power component (think like the oldschool ‘line of gunpowder leading to the pile of dynamite’ trope), but it’s also used to create cannons and TNT traps, which themselves are usually powered by Redstone at some point. TNT doesn’t otherwise interact with Redstone much.

Common Uses: Mostly just ‘splodey stuff, but particularly traps and cannons. Check out the Intermediate Builds section for how to make a real nice TNT cannon.

Other Recipes Used In: Minecart with TNT

[image: Image]

Water/Lava [image: inline-Image]

Primary Feature: Breaks a Redstone connection by pouring through the space where part of a Redstone component exists. Can also be used as part of a mechanism, such as by using a Dispenser to pick up or drop a bucket of either, or in special builds where things moving through Water are necessary.

[image: Image]

Description: Water and Lava aren’t very big parts of most Redstone machines, but they can be useful in very special situations. For instance, you could use either as a self-destruct system for your Redstone build, or even just part of it (whether for fun or practicality). Some complex systems use Water to move things along, either in order to gather them (like in a plant-harvesting water scythe), or to move things to where they can then fall to activate a Pressure Plate (complex, but possible).

Common Uses: Mostly for destruction of a Redstone build or in builds that utilize Water.

[image: Image]

Your First 5
Redstone Builds

All this talk about the components and concepts and rules of Redstone has probably got you a bit overwhelmed, but don’t worry: actually doing a little Redstone will help you tremendously in figuring out just what all that information means, as well as how to use it to make MInecraft even more awesome than it already is.

So, young crafters, here’s the part where we stop just telling you about Redstone and start actually makin’ some cool stuff! These are your first five true Redstone builds, starting from the simplest Redstone doorbell and going through an awesome-lookin’ Piston wave that’s a great and easy way to impress those who don’t have your Redstone skills.

[image: Image]

These builds are designed to be super simple to build, in order to get you comfortable with using Redstone, yet they’ll also teach you important lessons about Redstone and its properties. The builds also incorporate a few more complex properties and functions of Redstone, such as a clock, which you’ll become much more familiar with later in the book as we get into more complex and difficult Redstone builds.

For now, however, we just want to focus on building the five contraptions here and understanding the simple basics of how they work. Later, we’ll get into the more complex ideas behind some of the functions in these builds, but this chapter is all about dipping your toes into the world of Redstone in the simplest, most pain-free way possible. All you’ve got to do is follow the instructions and then recreate what you see in the images, and you’ll already be on your way to earning your honorary Master’s degree in Redstone Engineering.

Note: We recommend doing this in Creative Mode in order to learn these builds, but you can do them in Survival Mode as well if you have the materials.

[image: Image]

The Doorbell

What it does: Lets ya know someone wants in your house by making a ding (or y’know, whatever weird noise you set it to).

How it works: A Note Block inside your home makes a noise when someone outside pushes a Button, powering the Note Block.

You’ll Need: 1 Button, 1 Note Block, Redstone (optional)

Makin’ a working, useful doorbell is just about the easiest Redstone project you’ll ever do. In fact, it can be done without any Redstone Wire at all if you don’t mind the Note Block being right inside your door. This is a good project to just get an idea of how power-giving items such as Buttons work with items like the Note Block that take power, and it’s a cute little way to spruce up your home. Plus, Note Blocks can be heard up to 48 blocks from its location, so it will inform you of visitors even at a good distance.

[image: Image]

[image: Image]

[image: Image]

1. Find the spot where you’d like to put the button that will activate your doorbell. Typically these are placed by a Door, but you could do it anywhere you wanted. For the easiest Doorbell, pick a spot on a wall near a Door that is one block off the ground and where the wall is just one block thick behind where the Button will be. Place the Button on this block.

2. Place the Note Block on the other side of the block that now has a Button on it.

3. If the block under the Note Block is one you placed yourself, break it and leave the space empty. If you can’t remember if you placed the block then go ahead and break it. This is done because the Note Block will change to a different sound than the beep we want if a human-placed block is underneath it.

4. Right-click the Note Block until it hits the note you’d like to use as your doorbell. This can be a little tricky, as sometimes the Note Block doesn’t want to make noise, but just break the block and put it back down if you can’t get it to work at first.

5. Press the Button back on the other side of the wall, and the Note Block will make its sound! The way this works is that the Button gives power to the block it is placed on, and this block gives power to the Note Block.

[image: Image]

The Easy Potion Dispenser

What it does: Throws a Potion out at you when you run up and bump it (no need to click on this one).

How it works: A Dispenser is placed on a block, a Fence is placed in front of the block and Dispenser, and on top of the Fence is a Pressure Plate. When you run up to the Pressure Plate and push your crafter into it, it will press down, and whatever is in the Dispenser will launch out (Potions, in this case)

You’ll Need: 1 Dispenser, 1 Fence, 1 Pressure Plate, 1 random block (optional, Dispenser could hang in the air), whatever Potions you want to dispense

[image: Image]

[image: Image]

[image: Image]

Another quite simple little doohickey, the easy Potion dispenser makes taking Potions in Minecraft about as easy as it can be. Typically, you have to open your inventory or go to your hot bar and actually use a potion, or even run up to a Dispenser and push a Button or pull a Lever to get one to launch out at you. However, with the Easy Potion Dispenser, all you have to do is run up and bump the Pressure Plate, and you’ll be smartly splashed with Potion.

1. Place a block of any kind down.

2. Put a Dispenser on top of this block.

3. Fill the Dispenser with a Potion of your choosing. This will actually work with anything a Dispenser can dispense at you, but Potions are one of the most useful options in this configuration.

4. Stand so the Dispenser is facing you (the side with the O-shaped hole) and look down at the block it is sitting on. Place one Fence on the block that is in front of this block that the Dispenser is on.

5. Place a Pressure Plate on top of the one Fence you have just placed.

6. Run up to the Pressure Plate, and it will press down and the Potion (or whatever else you’ve got in the Dispenser) will launch out. This is the Pressure Plate activating from interacting with your body and powering the Dispenser, which fires a random item inside of it at you.

[image: Image]

[image: Image]

The Trapdoor

What it does: Opens a hole in the ground wherever you’d like (in this case in front of a Door) at the flick of a Lever. Beneath this hole that opens is a big pit and/or Lava, which anything that was standing on the block above the hole will fall into.

How it works: A Sticky Piston is attached to a block and extended over a pit, covering the hole. The Sticky Piston is attached underground to a Redstone “gate” called a NOT Gate (look to the Gates chapter for further explanation of this), which goes beneath the wall of a house using Redstone Wire. On the other side of the wall, a Lever on the ground surface turns the signal for the Redstone wire on and off, causing the Sticky Piston to expose and to cover the pit, alternatively. The whole contraption is hidden.

You’ll Need: 1 Sticky Piston, 1 Lever, 1 Redstone Torch, 2 Redstone Wire, 2 Slabs of any kind, 1 random block

[image: Image]

Diagram designed at mordritch.com

[image: Image]

[image: Image]

[image: Image]

1. Find yourself a nice Door. This Door should be one which you would like to look out of, see a Creeper, and then kill that Creeper by making it drop to its doom. Also works with annoying players.

2. Dig out a pit in the pattern of Diagram 1. It should be only 1 block wide and 3 long, and it should alternate being 2 and 1 and then 2 blocks deep, as you also see in the Diagram.

3. Place a Redstone Torch on the wall as you see in the photo here.

4. Put a Sticky Piston in the space above the Redstone Torch facing toward the space in front of the Door (it will extend automatically), and then put a block of whatever type you’d like in front of the Sticky Piston. The 1 block deep hole in front of the Door should now be covered by the block stuck to the Sticky Piston.

5. Go to the other side of the wall which the Door is set in. Dig out a pit immediately on the other side of the wall from the block where the Sticky Piston and Redstone Torch are. Make this pit 1 block wide, 2 blocks long and 2 blocks deep.

6. Lay Redstone Wire down on the bottom of this pit. This is not essential to understand at this point, but what you have created in this section of the build is represented in the Diagram.

[image: Image]

[image: Image]

[image: Image]

Diagram designed at mordritch.com

[image: Image]

By adding a power source to the end of the Redstone Wire in the Diagram (or on a block above it, as we will do in the next step), we create what is called a NOT Gate. A NOT Gate is a type of construction known as a logic gate, which manipulates a Redstone signal and is something we will learn in the future chapter on Gates.

7. Cover the last block of the pit (farthest from the wall) with the same type of block that makes up the rest of the floor. Put a Lever on top of this block. Now cover the second block of the pit with the same type of block, but with no Lever.

8. Flip the Lever and the Sticky Piston should pull back and uncover the hole in front of the Door.

9. Go back through the Door to the pit in front of it, and dig the pit deeper. Here you have a few options: place Lava or Cactus at the bottom of the pit to kill intruders with damage, make a long drop that will kill the intruder (at least 24 blocks down for a TKO), or build an area at the bottom for the intruders to fall into and just, y’know, hang out. Until you come to slice them up with your Sword, of course.

10. Go back up and cover up the Sticky Piston by placing 2 Slabs of any kind on top of the two blocks it takes up. Don’t put one over the spot in front of the door, of course.

11. Wait for a Creeper to come stand outside your door, flip the Lever, profit.

[image: Image]

[image: Image]

[image: Image]

The Simplest Clock

What it does: Creates a pulse of Redstone power that turns on and off at a regular interval, which allows many concepts to be created with Redstone, including but not limited to contraptions that keep time.

How it works: A Redstone Torch powers a Redstone Repeater, which slows down the signal slightly (in this case it is a ‘4 tick’ delay). After 4 ticks the power goes through the Repeater and on to the Wire after it, which curves around to power the block that the original Redstone Torch was on. This turns off the Redstone Torch temporarily, in turn turning off the signal through the Redstone Repeater after 4 more ticks. This repeats indefinitely unless acted upon from an outside signal.

You’ll Need: 1 Redstone Torch, 1 Redstone Repeater, 3 Redstone Wire, 1 Random Block

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Diagram designed at mordritch.com

When referring to Redstone components, a “clock” is a Redstone construction that alternately causes an on signal and then an off signal to be transmitted from itself every so many seconds in a constant pulse.

Clocks are power loops, where a signal is transmitted from a power source, slowed down by Repeaters (or other ways, in more complex cases), and then is sent back to the original power source, temporarily turning it off. This causes the power to pulse with a consistent amount of time between each pulse, and the amount of time between each pulse can be customized by the builder through using multiple Repeaters in a row as well as other tactics.

This pulsing signal can be used to give something else power for a few ticks, and then take it away. So for instance, a Piston hooked up to a clock would continuously extend and pull back as long as it was hooked up to the clock.

This is the simplest version of a clock, and it’s quite useful for everything from practical, mechanical Redstone builds to the most complex logic circuits.

[image: Image]

[image: Image]

[image: Image]

1. Turn so that the direction you would like your power to go in is to your right. Make sure there are about five blocks of usable ground space to your right (if there is not, scooch over a bit so there is).

2. Place your random block down. This has to be one that can transfer power, so something like Stone, Wool or Wood of any type is good.

3. Keeping the direction you would like the signal to move in to your right, place a Redstone Torch on the side of the block facing you, as in the image.

4. As in the image, place a Redstone Repeater on the block to the right of the block that your Redstone Torch hangs over (so, caddy-corner to the block the Redstone Torch is on).

5. Set this repeater on the last setting (4 ticks). This is important- Redstone Torches cannot take a signal that is too fast coming back into them, and Redstone Torches will burn out after a while if you have too quick of a signal piping into them (turn your Repeater to a faster signal when your clock is fully built and test it out sometime, just to see this happen). The reason for this is somewhat complex, but all you need to know at this point is that you need to slow this signal down a bit with your Repeater.

6. Copy the Redstone pattern from the Diagram, taking it one block on the ground past the repeater, then both blocks on the ground to the right of the block you have a Torch on.

7. If you have set the Repeater to the right delay in step #5, your clock will start working immediately, doing a pulsing signal.

8. To use your clock, just put 1 Redstone Wire branching off the existing Redstone Wire in the clock. You can then extend this to whatever you want to power.

Tips: You can put a Lever on the side of the block in your Redstone clock, and you can turn the clock on and off with the Lever.

You can create clocks with greater delays (much greater, theoretically) by using more Redstone Repeaters in a row.

[image: Image]

The Piston Wave

What it does: Causes a series of Pistons (or Sticky Pistons) to extend and pull back with each consecutive Piston firing slightly after the last, making a visual wave.

How it works: A clock (see previous First Build section for how to build) powers a series of Redstone Wires in which there is a Redstone Repeater set every other block. The Repeaters are all set to the same delay (does not matter how long), and a signal branches off from the main Redstone Wire directly after each Repeater to a Piston. This makes each Piston fire, and since the signal is delayed by each subsequent Repeater, each Piston fires slightly after the last. The Pistons also immediately retract as the signal from the clock comes in a pulse and is not constant.

You’ll Need: 8 Pistons (or Sticky Pistons), 27 Redstone, 8 Redstone Repeaters, 1 Redstone Torch, 1 Random block.

[image: Image]

[image: Image]

This build really doesn’t do much that is practical, but it’s fun to see and helps to visualize the effect of Redstone Repeaters on a signal. It combines a few very simple Redstone concepts that have been approached in the previous builds in this section in a fun way that makes a sweet visual Piston wave, and it doesn’t take much to build. This construct could be applied to some visual effects you might want to create in complex Redstone maps, but for the most part it is useful simply for the way it demonstrates what a pulsing signal and a signal slowed by Repeaters can both do.

1. Build a clock using the instructions in the previous build. Make sure the out signal from the clock faces where you’d like your line of firing Pistons to be.

2. Attached to the Wire coming out of the clock, put a Redstone Wire, then a Redstone Repeater, and then another Redstone Wire and another Redstone Repeater (make sure that the Repeaters are facing the right way so that the signal continues to the next Wire). Keep doing this until you have placed down the 7 remaining Redstone Repeaters (after using 1 for the clock). It should be a line of alternating Wires and Repeaters attached to the clock, and if the clock is on (as in the Wire has not been broken or it has not been turned off with a Lever), you will see the signal pulse through the Redstone Wire and Repeaters one by one. Put each Repeater on the same delay at first (though it doesn’t matter which particular tick you set them on, as long as they’re all the same), and, if you want, you can go in later and tweak it however you like to test what it does to the wave.

[image: Image]

Diagram designed at mordritch.com

[image: Image]

3. Place more Redstone down, this time placing 2 Redstone Wire off each Redstone Wire to the left of every Redstone Repeater you have placed (except, of course, the one in your clock). Also place 2 coming off to the right of the final Repeater. Make sure all wires go in the same direction. Refer to the image to see exactly how to do this.

[image: Image]

[image: Image]

4. Place a Piston facing straight up to the sky at the end of each of these branches of Redstone Wire that you have just created. Note: you may want to turn off the clock while you do this, as when all the Pistons fire it will make a lot of noise until you turn it off. It can get super annoying.

5. When wired up to the clock (and with the clock on), the signal will proliferate through the Wire and each Repeater in turn, taking a few ticks each time before it goes through to the next set of Wires and Repeater. This will cause the signal that goes out to each Piston to come a little behind the signal to the Piston to its left, and the Pistons will fire in a wave. Use this construct to observe how signals can be delayed, and play around with the time that each Repeater is set to in order to get an even better sense of the way time works with Redstone. You can also make this build look a little cooler by doing things like using Sticky Pistons with Glowstone attached instead of regular Pistons.

[image: Image]

OEBPS/page-template.xpgt

	

	
	

	

	
	

OEBPS/images/206-1.jpg
P e e e e e e e

EEEBERERREER

OEBPS/images/80-2.jpg
rrluw‘vn-

OEBPS/images/206-2.jpg
1115

OEBPS/images/80-3.jpg

OEBPS/images/8-9.jpg

OEBPS/images/205-2.jpg

OEBPS/images/80-1.jpg

OEBPS/images/208-1.jpg

OEBPS/images/208-2.jpg

OEBPS/images/84.jpg

OEBPS/images/207-1.jpg

OEBPS/images/81-1.jpg
Conéels amine. -

ity
Ut 7 1o Ao omt o] Eyers

OEBPS/images/207-2.jpg

OEBPS/images/81-2.jpg

OEBPS/images/23.jpg
ee®

OEBPS/images/21.jpg

OEBPS/images/85-1.jpg

OEBPS/images/22.jpg

OEBPS/images/85-2.jpg
el (1111

OEBPS/images/85-3.jpg

OEBPS/images/28-29.jpg

OEBPS/images/86-3.jpg

OEBPS/images/30.jpg

OEBPS/images/87-1.jpg

OEBPS/images/24-25.jpg

OEBPS/images/86-1.jpg

OEBPS/images/26.jpg
-L.._Il__ll__-

OEBPS/images/86-2.jpg
Consele Doonend.

st~ | settcch & * daond_tlock

OEBPS/images/32-2.jpg

OEBPS/images/88-2.jpg
b,

]

et by

OEBPS/images/32-3.jpg

OEBPS/images/88-3.jpg
=~ sumen TreowEipbol

oy

OEBPS/images/31.jpg

OEBPS/images/87-2.jpg

OEBPS/images/32-1.jpg

OEBPS/images/88-1.jpg
Conale Comand

erecute Beltupacthickony=151

OEBPS/images/32-4.jpg
Felel [| TTIﬁ

OEBPS/images/89-1.jpg
1T Te[] |

OEBPS/images/32-5.jpg

OEBPS/images/200-1.jpg

OEBPS/images/20.jpg

OEBPS/images/200-3.jpg

OEBPS/images/70-1.jpg

OEBPS/images/200-2.jpg

OEBPS/images/2-3.jpg

OEBPS/images/199-3.jpg

OEBPS/images/201-1.jpg

OEBPS/images/200-4.jpg

OEBPS/images/201-3.jpg

OEBPS/images/201-2.jpg

OEBPS/images/70-2.jpg

OEBPS/images/70-3.jpg

OEBPS/images/74-1.jpg

OEBPS/images/74-2.jpg

OEBPS/images/70-4.jpg
=

OEBPS/images/73.jpg

OEBPS/images/75-3.jpg

OEBPS/images/75-4.jpg

OEBPS/images/75-1.jpg

OEBPS/images/75-2.jpg
EEaine

L]

OEBPS/images/196-2.jpg

OEBPS/images/196-1.jpg

OEBPS/images/197-2.jpg

OEBPS/images/197-1.jpg

OEBPS/images/195-2.jpg

OEBPS/images/199-2.jpg

OEBPS/images/198-2.jpg
“q

]:/w

\/

OEBPS/images/198-1.jpg

OEBPS/images/199-1.jpg

OEBPS/images/198-3.jpg

OEBPS/images/201-4.jpg

OEBPS/images/76-2.jpg

OEBPS/images/202-1.jpg

OEBPS/images/77-1.jpg

OEBPS/images/76-1.jpg

OEBPS/images/203-1.jpg

OEBPS/images/78-1.jpg
GOEBEEEEE

OEBPS/images/203-2.jpg

OEBPS/images/78-2.jpg
i
+ 55

5355
e

i
1823

OEBPS/images/202-2.jpg

OEBPS/images/77-2.jpg

OEBPS/images/202-3.jpg

OEBPS/images/77-3.jpg

OEBPS/images/204-2.jpg

OEBPS/images/79.jpg

OEBPS/images/205-1.jpg

OEBPS/images/203-3.jpg

OEBPS/images/78-3.jpg
FOEEEEE RS

OEBPS/images/204-1.jpg

OEBPS/images/78-4.jpg

OEBPS/images/188.jpg

OEBPS/images/187.jpg

OEBPS/images/190.jpg

OEBPS/images/189.jpg

OEBPS/images/195-1.jpg

OEBPS/images/194.jpg

OEBPS/images/192-1.jpg

OEBPS/images/191.jpg

OEBPS/images/193.jpg

OEBPS/images/192-2.jpg

OEBPS/images/177.jpg
Trapped Che:

OEBPS/images/179.jpg

OEBPS/images/178.jpg

OEBPS/images/184.jpg

OEBPS/images/183.jpg
«Recipe

OEBPS/images/185.jpg

OEBPS/images/180.jpg

OEBPS/images/18-19.jpg

OEBPS/images/182.jpg

OEBPS/images/181.jpg
¢

s S el .

OEBPS/images/66-3.jpg

OEBPS/images/67-2.jpg

OEBPS/images/67-3.jpg
selo- T 11

OEBPS/images/66-4.jpg

OEBPS/images/67-1.jpg

OEBPS/images/69-2.jpg

OEBPS/images/69-3.jpg

OEBPS/images/68.jpg

OEBPS/images/69-1.jpg

OEBPS/images/169.jpg
Crafting

Crafting

-

-

OEBPS/images/168.jpg

OEBPS/images/174.jpg

OEBPS/images/173.jpg
DS

Crarting

OEBPS/images/176.jpg

OEBPS/images/175.jpg

OEBPS/images/170.jpg

OEBPS/images/17.jpg

OEBPS/images/172.jpg

OEBPS/images/171.jpg
Crafing

[Erafiios

[Eratting

Crafing

=]

[«

OEBPS/images/167.jpg

OEBPS/images/160-1.jpg

OEBPS/images/164.jpg

OEBPS/images/163.jpg

OEBPS/images/166.jpg

OEBPS/images/165.jpg

OEBPS/images/160-2.jpg

OEBPS/images/162.jpg

OEBPS/images/161.jpg

OEBPS/images/16.jpg

OEBPS/images/159-4.jpg

OEBPS/images/159-1.jpg

OEBPS/images/158.jpg

OEBPS/images/159-3.jpg

OEBPS/images/159-2.jpg

OEBPS/images/152-153.jpg
:-(“ - “ = : = : \; y ; =
iotch oined the game ‘
FLTT T ITTII1]

OEBPS/images/63-2.jpg
K12 8241 / 8200009 / 9513
fleck = 523
hiniz 22 31n05 0
Facing; ot Clouards nagatve 2 1585 /
ficnc Foresl
SR 15775 sk 1 ool

V7 Gy D @)

Dty Fis ST vidden 5 Ttk Fiden
For he press £ 0

OEBPS/images/150-151.jpg

OEBPS/images/63-3.jpg
Set Cansole Comnand for Block

OEBPS/images/156-157.jpg

OEBPS/images/154-155.jpg
iotch left the game

OEBPS/images/63-1.jpg
T i 3 e
ZACTT

Dty Fis Sh 1% vidden 5 T b
o he press 150 0

OEBPS/images/64-2.jpg
e e | A ¥

12526 4 26 awara vt

BRI paaE
E3E R

OEBPS/images/64-3.jpg

OEBPS/images/63-4.jpg

OEBPS/images/64-1.jpg
I I DeUONCN £.9, 109
az2a

Chunk 42 81n 8.5 0

Facing; north CTousrds negative 2 C

Bione: forest ¢
G des 0 blockd
.1/ 00 s 85

Debuss: Pie E=HIFE: Hidden FPS Calth pise
For- el Erass F3+0

OEBPS/images/146-147.jpg

OEBPS/images/66-2.jpg

OEBPS/images/144-145.jpg
sl

o) [Jars pule an

OEBPS/images/65.jpg
F

nd

OEBPS/images/148-149.jpg

OEBPS/images/66-1.jpg

OEBPS/toc.xhtml

			Cover

			Title Page

			Copyright

			Contents

			Introduction

			What Are Command Blocks

			The Basics

			The interface

			Command Blocks and Redstone

			Learning Basic Commands

			Minecraft Command Compendium

			Welcome to the Gallery!

			Redstone items

			Your First 5 Redstone Builds

Landmarks

			Contents

			Introduction

OEBPS/images/14-15.jpg

OEBPS/images/139-2.jpg

OEBPS/images/142-143.jpg

OEBPS/images/140-141.jpg
surrcmed];
rul g Eunmoned]

OEBPS/images/138-1.jpg

OEBPS/images/138-4.jpg

OEBPS/images/138-2-139-1.jpg
Fage 4 of 7

OEBPS/images/9781633195318_cover.jpg
TOTALLY UNAUTHORIZED
The ULTIMATE Guide To

NIASTIERING
COMMAND

To UNLOCKING SECRET COMMANDS

Minecraft®™ & ©2009-2016 Mojang/Notch

OEBPS/images/132-133.jpg

OEBPS/images/130-131.jpg

OEBPS/images/136-137.jpg

OEBPS/images/134-135.jpg
=
-

i

'}

-
o

L Y 2T

OEBPS/images/124-125.jpg
m; 146 bl
® 95 bloc

OEBPS/images/122-123.jpg

OEBPS/images/128-129.jpg

OEBPS/images/126-127.jpg

OEBPS/images/55-2.jpg

OEBPS/images/121.jpg

OEBPS/images/120.jpg

OEBPS/images/56-2.jpg

OEBPS/images/57-1.jpg

OEBPS/images/55-3.jpg
e D

34t Consuls Comand or sk
Consle Cans

e feros 50 5 128

e i
g Sy
B R
Frevous ot

OEBPS/images/56-1.jpg

OEBPS/images/58-2.jpg

OEBPS/images/58-3.jpg

OEBPS/images/57-2.jpg
Block: 18 82 19
Chunk: 102 1410 85 6
Faoing: north (Tousrds neastive 20 (17

Licht: 15 (15 sky @ block)
Loca Difficult 77 509 (O B

Dabug: Fie [shift]: fidden FF3 L)
For helpi press 3 + 0 u
u

OEBPS/images/58-1.jpg
st 1021 14 sene

e o e e e
R e
R R
R

Fravous oupit

OEBPS/images/59-1.jpg

OEBPS/images/101-1.jpg

OEBPS/images/101-2.jpg

OEBPS/images/100-1.jpg

OEBPS/images/100-2.jpg
St Conscle Comand for Block-
[

2o o
e R

OEBPS/images/12-13.jpg
&uudﬁ

OEBPS/images/102-103.jpg

OEBPS/images/118-119.jpg
=4
. L
w
! .
| L S

gl
e e i

OEBPS/images/1.jpg
The ULTIMATEGuide To

MASTERING
COMMAND
BLOCKS!

MINECRAFT KEYS

To UNLOCKING SECRET COMMANDS

OEBPS/images/59-2.jpg
Light: 15 15 sku, 8 BIEED)
Lacal Difficully: 154 /7 608 (Day &
Lacking at 1 86 1.

Debu; Fiz [hiFRL: bidden FF3 [alf] hisdizn
Far 3

OEBPS/images/10-11.jpg

OEBPS/images/59-3.jpg
Debugl:
EEL

Fin

P40

F3 41 2 Cul randardstancs CEHIT {0 invarse?
F3 %1 = Adianced tnales

3 411 = Cuele crestioe o> seectator

347 2 Fice on oz foaus

£330 % hoa e st

F3 11 2 o resduroapacis

e S ——

OEBPS/images/6-7.jpg

OEBPS/images/60-1.jpg
e Gl G e Bk

Consls Comnand -

(5278 et e i
[B e
152 e 5 L
RN

Fraons ot

OEBPS/images/59-4.jpg
il o Tk o 8 o

OEBPS/images/59-5.jpg

OEBPS/images/61-2.jpg

OEBPS/images/62.jpg

OEBPS/images/60-2.jpg

OEBPS/images/61-1.jpg

OEBPS/images/47-1.jpg

OEBPS/images/star.jpg

OEBPS/images/47-2.jpg

OEBPS/images/star2-g.jpg

OEBPS/images/46-2.jpg

OEBPS/images/star-g.jpg

OEBPS/images/49-1.jpg

OEBPS/images/star3.jpg
OO0

OEBPS/images/49-2.jpg

OEBPS/images/star4-g.jpg

OEBPS/images/47-3.jpg

OEBPS/images/star2.jpg

OEBPS/images/48.jpg

OEBPS/images/star3-g.jpg

OEBPS/images/50-2.jpg

OEBPS/images/5.jpg

OEBPS/images/star4.jpg

OEBPS/images/50-1.jpg

OEBPS/images/52-1.jpg
o coooer .-

Ca:Gven Maw Fish * £ to CupOrerr
La 21 (R Feh - 1 t0 Coporiarr]

2 602 sk ey -1 6 Gt

(Rl Fichy 1 £ Cuporier i

25 Rl it 1 2 oo

R Fichy < 1 00 Cuporier i

Ben s Feh ~ 1 10 Ceproerr sl
Rl Fen 1 13 Cie:

027 (s]~ 0 Clroerr]

L& Goen (R Fehy - 1 to Corierr]

OEBPS/images/52-2.jpg

OEBPS/images/51-1.jpg

OEBPS/images/51-2.jpg

OEBPS/images/53-3.jpg
Minecraft 1.3 (L3/vanilla),
33 = C4) chink updates) T 420 usune fanc.
2500/67630 =3 1 33, L 21078, pC 006, pU

cru

B 12 11 130
Fcis essi (T e > 309 £ 352
Done: s 5
Liaht 15 C5 =

LI S Sk

OEBPS/images/54-1.jpg
Dabuz: Pl (i idsin PPS Gl ian ™ =
Far e sraze 1510 2

o

OEBPS/images/53-1.jpg

OEBPS/images/53-2.jpg
e (PR REE

G st 7 o s

OEBPS/images/54-2.jpg

OEBPS/images/55-1.jpg

OEBPS/images/89-2.jpg

OEBPS/images/33-1.jpg
e ﬁ

1) sctuated:
() Sohated
) Bt
1 St
1 e
] Sotuaned
) 2ohien
) Sty
& St
1 e

OEBPS/images/90.jpg

OEBPS/images/34-35.jpg

OEBPS/images/92-1.jpg

OEBPS/images/36.jpg

OEBPS/images/92-2.jpg

OEBPS/images/33-2.jpg

OEBPS/images/91-1.jpg
e
R

OEBPS/images/33-3.jpg

OEBPS/images/91-2.jpg

OEBPS/images/38-1.jpg

OEBPS/images/94-1.jpg

OEBPS/images/38-2.jpg

OEBPS/images/94-2.jpg

OEBPS/images/37-1.jpg

OEBPS/images/93-1.jpg

OEBPS/images/37-2.jpg

OEBPS/images/93-2.jpg

OEBPS/images/39-1.jpg

OEBPS/images/39-2.jpg

OEBPS/images/95-2.jpg

OEBPS/images/40-1.jpg

OEBPS/images/95-3.jpg
Figs Foofed
CupOfGerry o

.

OEBPS/images/95-1.jpg

OEBPS/images/41-2.jpg

OEBPS/images/96-3.jpg

OEBPS/images/42-43.jpg

OEBPS/images/97-1.jpg

OEBPS/images/40-2.jpg

OEBPS/images/96-1.jpg

OEBPS/images/41-1.jpg

OEBPS/images/96-2.jpg

OEBPS/images/45-3.jpg
KCup0sCrra T Laering Comand Bacis

OEBPS/images/99.jpg
‘Sat Conscla Conmans for Block.
ot s
2 o 14 s s 5 B Gl ot ©

e

OEBPS/images/46-1.jpg

OEBPS/images/45-1.jpg

OEBPS/images/97-2.jpg
R e chiebue st st U ncazstly
SRR

OEBPS/images/45-2.jpg

OEBPS/images/98.jpg
ot Cenzca Connans far Block.
ot s

