

About	This	eBook

ePUB	is	an	open,	industry-standard	format	for	eBooks.	However,	support	of
ePUB	and	its	many	features	varies	across	reading	devices	and	applications.	Use
your	device	or	app	settings	to	customize	the	presentation	to	your	liking.	Settings
that	you	can	customize	often	include	font,	font	size,	single	or	double	column,
landscape	or	portrait	mode,	and	figures	that	you	can	click	or	tap	to	enlarge.	For
additional	information	about	the	settings	and	features	on	your	reading	device	or
app,	visit	the	device	manufacturer’s	Web	site.
Many	titles	include	programming	code	or	configuration	examples.	To

optimize	the	presentation	of	these	elements,	view	the	eBook	in	single-column,
landscape	mode	and	adjust	the	font	size	to	the	smallest	setting.	In	addition	to
presenting	code	and	configurations	in	the	reflowable	text	format,	we	have
included	images	of	the	code	that	mimic	the	presentation	found	in	the	print	book;
therefore,	where	the	reflowable	format	may	compromise	the	presentation	of	the
code	listing,	you	will	see	a	“Click	here	to	view	code	image”	link.	Click	the	link
to	view	the	print-fidelity	code	image.	To	return	to	the	previous	page	viewed,
click	the	Back	button	on	your	device	or	app.

Learn	C	The	Hard	Way
Practical	Exercises	on	the	Computational	Subjects

You	Keep	Avoiding	(Like	C)

Zed	A.	Shaw

New	York	•	Boston	•	Indianapolis	•	San	Francisco
Toronto	•	Montreal	•	London	•	Munich	•	Paris	•	Madrid
Capetown	•	Sydney	•	Tokyo	•	Singapore	•	Mexico	City

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their
products	are	claimed	as	trademarks.	Where	those	designations	appear	in	this
book,	and	the	publisher	was	aware	of	a	trademark	claim,	the	designations	have
been	printed	with	initial	capital	letters	or	in	all	capitals.

The	author	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but
make	no	expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility
for	errors	or	omissions.	No	liability	is	assumed	for	incidental	or	consequential
damages	in	connection	with	or	arising	out	of	the	use	of	the	information	or
programs	contained	herein.

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales
opportunities	(which	may	include	electronic	versions;	custom	cover	designs;	and
content	particular	to	your	business,	training	goals,	marketing	focus,	or	branding
interests),	please	contact	our	corporate	sales	department	at
corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact
governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact
international@pearsoned.com.

Visit	us	on	the	Web:	informit.com/aw

Library	of	Congress	Cataloging-in-Publication	Data

Shaw,	Zed,	author.
		Learn	C	the	hard	way	:	practical	exercises	on	the	computational	subjects	you
keep	avoiding	(like	C)	/
Zed	A.	Shaw.
							pages	cm
		Includes	index.
		ISBN	978-0-321-88492-3	(pbk.	:	alk.	paper)—ISBN	0-321-88492-2	(pbk.	:	alk.
paper)
		1.	C	(Computer	program	language)—Problems,	exercises,	etc.	I.	Title.
		QA76.73.C15S473	2016
		005.13’3—
dc23																																																																																																																					2015020858

Copyright	©	2016	Zed	A.	Shaw

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com
http://informit.com/aw

protected	by	copyright,	and	permission	must	be	obtained	from	the	publisher
prior	to	any	prohibited	reproduction,	storage	in	a	retrieval	system,	or
transmission	in	any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	recording,	or	likewise.	To	obtain	permission	to	use	material	from
this	work,	please	submit	a	written	request	to	Pearson	Education,	Inc.,
Permissions	Department,	200	Old	Tappan	Road,	Old	Tappan,	New	Jersey	07657,
or	you	may	fax	your	request	to	(201)	236-3290.

ISBN-13:	978-0-321-88492-3
ISBN-10:	0-321-88492-2

Text	printed	in	the	United	States	on	recycled	paper	at	RR	Donnelley	in
Crawfordsville,	Indiana.
First	printing,	August	2015

Contents

Acknowledgments

This	Book	Is	Not	Really	about	C
The	Undefined	Behaviorists
C	Is	a	Pretty	and	Ugly	Language
What	You	Will	Learn
How	to	Read	This	Book
The	Videos
The	Core	Competencies
Reading	and	Writing
Attention	to	Detail
Spotting	Differences
Planning	and	Debugging

Exercise	0	The	Setup
Linux
Mac	OS	X
Windows
Text	Editor
Do	Not	Use	an	IDE

Exercise	1	Dust	Off	That	Compiler
Breaking	It	Down
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	2	Using	Makefiles	to	Build
Using	Make
What	You	Should	See
How	to	Break	It

Extra	Credit

Exercise	3	Formatted	Printing
What	You	Should	See
External	Research
How	to	Break	It
Extra	Credit

Exercise	4	Using	a	Debugger
GDB	Tricks
GDB	Quick	Reference
LLDB	Quick	Reference

Exercise	5	Memorizing	C	Operators
How	to	Memorize
The	List	of	Operators

Exercise	6	Memorizing	C	Syntax
The	Keywords
Syntax	Structures
A	Word	of	Encouragement
A	Word	of	Warning

Exercise	7	Variables	and	Types
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	8	If,	Else-If,	Else
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	9	While-Loop	and	Boolean	Expressions
What	You	Should	See

How	to	Break	It
Extra	Credit

Exercise	10	Switch	Statements
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	11	Arrays	and	Strings
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	12	Sizes	and	Arrays
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	13	For-Loops	and	Arrays	of	Strings
What	You	Should	See
Understanding	Arrays	of	Strings
How	to	Break	It
Extra	Credit

Exercise	14	Writing	and	Using	Functions
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	15	Pointers,	Dreaded	Pointers
What	You	Should	See
Explaining	Pointers
Practical	Pointer	Usage
The	Pointer	Lexicon
Pointers	Aren’t	Arrays

How	to	Break	It
Extra	Credit

Exercise	16	Structs	and	Pointers	to	Them
What	You	Should	See
Explaining	Structures
How	to	Break	It
Extra	Credit

Exercise	17	Heap	and	Stack	Memory	Allocation
What	You	Should	See
Heap	versus	Stack	Allocation
How	to	Break	It
Extra	Credit

Exercise	18	Pointers	to	Functions
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	19	Zed’s	Awesome	Debug	Macros
The	C	Error-Handling	Problem
The	Debug	Macros
Using	dbg.h
What	You	Should	See
How	the	CPP	Expands	Macros
Extra	Credit

Exercise	20	Advanced	Debugging	Techniques
Debug	Printing	versus	GDB
A	Debugging	Strategy
Extra	Credit

Exercise	21	Advanced	Data	Types	and	Flow	Control
Available	Data	Types

Type	Modifiers
Type	Qualifiers
Type	Conversion
Type	Sizes

Available	Operators
Math	Operators
Data	Operators
Logic	Operators
Bit	Operators
Boolean	Operators
Assignment	Operators

Available	Control	Structures
Extra	Credit

Exercise	22	The	Stack,	Scope,	and	Globals
ex22.h	and	ex22.c
ex22_main.c

What	You	Should	See
Scope,	Stack,	and	Bugs
How	to	Break	It
Extra	Credit

Exercise	23	Meet	Duff’s	Device
What	You	Should	See
Solving	the	Puzzle
Why	Bother?

Extra	Credit

Exercise	24	Input,	Output,	Files
What	You	Should	See
How	to	Break	It
The	I/O	Functions
Extra	Credit

Exercise	25	Variable	Argument	Functions
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	26	Project	logfind
The	logfind	Specification

Exercise	27	Creative	and	Defensive	Programming
The	Creative	Programmer	Mind-Set
The	Defensive	Programmer	Mind-Set
The	Eight	Defensive	Programmer	Strategies
Applying	the	Eight	Strategies
Never	Trust	Input
Prevent	Errors
Fail	Early	and	Openly
Document	Assumptions
Prevention	over	Documentation
Automate	Everything
Simplify	and	Clarify
Question	Authority

Order	Is	Not	Important
Extra	Credit

Exercise	28	Intermediate	Makefiles
The	Basic	Project	Structure
Makefile

The	Header
The	Target	Build
The	Unit	Tests
The	Cleaner
The	Install
The	Checker

What	You	Should	See
Extra	Credit

Exercise	29	Libraries	and	Linking
Dynamically	Loading	a	Shared	Library
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	30	Automated	Testing
Wiring	Up	the	Test	Framework
Extra	Credit

Exercise	31	Common	Undefined	Behavior
UB	20
Common	UBs

Exercise	32	Double	Linked	Lists
What	Are	Data	Structures
Making	the	Library
Doubly	Linked	Lists
Definition
Implementation

Tests
What	You	Should	See
How	to	Improve	It
Extra	Credit

Exercise	33	Linked	List	Algorithms
Bubble	and	Merge	Sort
The	Unit	Test
The	Implementation
What	You	Should	See
How	to	Improve	It

Extra	Credit

Exercise	34	Dynamic	Array
Advantages	and	Disadvantages
How	to	Improve	It
Extra	Credit

Exercise	35	Sorting	and	Searching
Radix	Sort	and	Binary	Search
C	Unions
The	Implementation
RadixMap_find	and	Binary	Search
RadixMap_sort	and	radix_sort

How	to	Improve	It
Extra	Credit

Exercise	36	Safer	Strings
Why	C	Strings	Were	a	Horrible	Idea
Using	bstrlib
Learning	the	Library

Exercise	37	Hashmaps
The	Unit	Test
How	to	Improve	It
Extra	Credit

Exercise	38	Hashmap	Algorithms
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	39	String	Algorithms
What	You	Should	See
Analyzing	the	Results
Extra	Credit

Exercise	40	Binary	Search	Trees
How	to	Improve	It
Extra	Credit

Exercise	41	Project	devpkg
What	Is	devpkg?
What	We	Want	to	Make
The	Design
The	Apache	Portable	Runtime

Project	Layout
Other	Dependencies

The	Makefile
The	Source	Files
The	DB	Functions
The	Shell	Functions
The	Command	Functions
The	devpkg	Main	Function

The	Final	Challenge

Exercise	42	Stacks	and	Queues
What	You	Should	See
How	to	Improve	It
Extra	Credit

Exercise	43	A	Simple	Statistics	Engine
Rolling	Standard	Deviation	and	Mean
Implemention
How	to	Use	It
Extra	Credit

Exercise	44	Ring	Buffer
The	Unit	Test
What	You	Should	See

How	to	Improve	It
Extra	Credit

Exercise	45	A	Simple	TCP/IP	Client
Augment	the	Makefile
The	netclient	Code
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	46	Ternary	Search	Tree
Advantages	and	Disadvantages
How	to	Improve	It
Extra	Credit

Exercise	47	A	Fast	URL	Router
What	You	Should	See
How	to	Improve	It
Extra	Credit

Exercise	48	A	Simple	Network	Server
The	Specification

Exercise	49	A	Statistics	Server
Specification

Exercise	50	Routing	the	Statistics

Exercise	51	Storing	the	Statistics
The	Specification

Exercise	52	Hacking	and	Improving	Your	Server

Next	Steps

Index

Acknowledgments

I	would	like	to	thank	three	kinds	of	people	who	helped	make	this	book	what	it	is
today:	the	haters,	the	helpers,	and	the	painters.
The	haters	helped	make	this	book	stronger	and	more	solid	through	their
inflexibility	of	mind,	irrational	hero	worship	of	old	C	gods,	and	complete	lack	of
pedagogical	expertise.	Without	their	shining	example	of	what	not	to	be,	I	would
have	never	worked	so	hard	to	make	this	book	a	complete	introduction	to
becoming	a	better	programmer.
The	helpers	are	Debra	Williams	Cauley,	Vicki	Rowland,	Elizabeth	Ryan,	the
whole	team	at	Addison-Wesley,	and	everyone	online	who	sent	in	fixes	and
suggestions.	Their	work	producing,	fixing,	editing,	and	improving	this	book	has
formed	it	into	a	more	professional	and	better	piece	of	writing.
The	painters,	Brian,	Arthur,	Vesta,	and	Sarah,	helped	me	find	a	new	way
to	express	myself	and	to	distract	me	from	deadlines	that	Deb	and	Vicki	clearly
set	for	me	but	that	I	kept	missing.	Without	painting	and	the	gift	of	art	these
artists	gave	me,	I	would	have	a	less	meaningful	and	rich	life.
Thank	you	to	all	of	you	for	helping	me	write	this	book.	It	may	not	be	perfect,
because	no	book	is	perfect,	but	it’s	at	least	as	good	as	I	can	possibly	make	it.

This	Book	Is	Not	Really	about	C

Please	don’t	feel	cheated,	but	this	book	is	not	about	teaching	you	C
programming.	You’ll	learn	to	write	programs	in	C,	but	the	most	important	lesson
you’ll	get	from	this	book	is	rigorous	defensive	programming.	Today,	too	many
programmers	simply	assume	that	what	they	write	works,	but	one	day	it	will	fail
catastrophically.	This	is	especially	true	if	you’re	the	kind	of	person	who	has
learned	mostly	modern	languages	that	solve	many	problems	for	you.	By	reading
this	book	and	following	my	exercises,	you’ll	learn	how	to	create	software	that
defends	itself	from	malicious	activity	and	defects.
I’m	using	C	for	a	very	specific	reason:	C	is	broken.	It	is	full	of	design	choices
that	made	sense	in	the	1970s	but	make	zero	sense	now.	Everything	from	its
unrestricted,	wild	use	of	pointers	to	its	severely	broken	NUL	terminated	strings
are	to	blame	for	nearly	all	of	the	security	defects	that	hit	C.	It’s	my	belief	that	C
is	so	broken	that,	while	it’s	in	wide	use,	it’s	the	most	difficult	language	to	write
securely.	I	would	fathom	that	Assembly	is	actually	easier	to	write	securely	than
C.	To	be	honest,	and	you’ll	find	out	that	I’m	very	honest,	I	don’t	think	that
anybody	should	be	writing	new	C	code.
If	that’s	the	case,	then	why	am	I	teaching	you	C?	Because	I	want	you	to	become
a	better,	stronger	programmer,	and	there	are	two	reasons	why	C	is	an	excellent
language	to	learn	if	you	want	to	get	better.	First,	C’s	lack	of	nearly	every	modern
safety	feature	means	you	have	to	be	more	vigilant	and	more	aware	of	what’s
going	on.	If	you	can	write	secure,	solid	C	code,	you	can	write	secure,	solid	code
in	any	programming	language.	The	techniques	you	learn	will	translate	to	every
language	you	use	from	now	on.	Second,	learning	C	gives	you	direct	access	to	a
mountain	of	legacy	code,	and	teaches	you	the	base	syntax	of	a	large	number	of
descendant	languages.	Once	you	learn	C,	you	can	more	easily	learn	C++,	Java,
Objective-C,	and	JavaScript,	and	even	other	languages	become	easier	to	learn.
I	don’t	want	to	scare	you	away	by	telling	you	this,	because	I	plan	to	make	this
book	incredibly	fun,	easy,	and	devious.	I’ll	make	it	fun	to	learn	C	by	giving	you
projects	that	you	might	not	have	done	in	other	programming	languages.	I’ll
make	this	book	easy	by	using	my	proven	pattern	of	exercises	that	has	you	doing
C	programming	and	building	your	skills	slowly.	I’ll	make	it	devious	by	teaching
you	how	to	break	and	then	secure	your	code	so	you	understand	why	these	issues
matter.	You’ll	learn	how	to	cause	stack	overflows,	illegal	memory	access,	and
other	common	flaws	that	plague	C	programs	so	that	you	know	what	you’re	up
against.

Getting	through	this	book	will	be	challenging,	like	all	of	my	books,	but	when
you’re	done	you	will	be	a	far	better	and	more	confident	programmer.

The	Undefined	Behaviorists
By	the	time	you’re	done	with	this	book,	you’ll	be	able	to	debug,	read,	and	fix
almost	any	C	program	you	run	into,	and	then	write	new,	solid	C	code	should	you
need	to.	However,	I’m	not	really	going	to	teach	you	official	C.	You’ll	learn	the
language,	and	you’ll	learn	how	to	use	it	well,	but	official	C	isn’t	very	secure.	The
vast	majority	of	C	programmers	out	there	simply	don’t	write	solid	code,	and	it’s
because	of	something	called	Undefined	Behavior	(UB).	UB	is	a	part	of	the
American	National	Standards	Institute	(ANSI)	C	standard	that	lists	all	of	the
ways	that	a	C	compiler	can	disregard	what	you’ve	written.	There’s	actually	a
part	of	the	standard	that	says	if	you	write	code	like	this,	then	all	bets	are	off	and
the	compiler	doesn’t	have	to	do	anything	consistently.	UB	occurs	when	a	C
program	reads	off	the	end	of	a	string,	which	is	an	incredibly	common
programming	error	in	C.	For	a	bit	of	background,	C	defines	strings	as	blocks	of
memory	that	end	in	a	NUL	byte,	or	a	0	byte	(to	simplify	the	definition).	Since
many	strings	come	from	outside	the	program,	it’s	common	for	a	C	program	to
receive	a	string	without	this	NUL	byte.	When	it	does,	the	C	program	attempts	to
read	past	the	end	of	this	string	and	into	the	memory	of	the	computer,	causing
your	program	to	crash.	Every	other	language	developed	after	C	attempts	to
prevent	this,	but	not	C.	C	does	so	little	to	prevent	UB	that	every	C	programmer
seems	to	think	it	means	they	don’t	have	to	deal	with	it.	They	write	code	full	of
potential	NUL	byte	overruns,	and	when	you	point	them	out	to	these
programmers,	they	say,	“Well	that’s	UB,	and	I	don’t	have	to	prevent	it.”	This
reliance	on	C’s	large	number	of	UBs	is	why	most	C	code	is	so	horribly	insecure.
I	write	C	code	to	try	to	avoid	UB	by	either	writing	code	that	doesn’t	trigger	it,	or
writing	code	that	attempts	to	prevent	it.	This	turns	out	to	be	an	impossible	task
because	there	is	so	much	UB	that	it	becomes	a	Gordian	knot	of	interconnected
pitfalls	in	your	C	code.	As	you	go	through	this	book,	I’ll	point	out	ways	you	can
trigger	UB,	how	to	avoid	it	if	you	can,	and	how	to	trigger	it	in	other	people’s
code	if	possible.	However,	you	should	keep	in	mind	that	avoiding	the	nearly
random	nature	of	UB	is	almost	impossible,	and	you’ll	just	have	to	do	your	best.

Warning!
You’ll	find	that	hardcore	C	fans	frequently	will	try	to	beat	you	up	about
UB.	There’s	a	class	of	C	programmers	who	don’t	write	very	much	C	code
but	have	memorized	all	of	the	UB	just	so	they	could	beat	up	a	beginner

intellectually.	If	you	run	into	one	of	these	abusive	programmers,	please
ignore	them.	Often,	they	aren’t	practicing	C	programmers,	they	are
arrogant,	abusive,	and	will	only	end	up	asking	you	endless	questions	in	an
attempt	to	prove	their	superiority	rather	than	helping	you	with	your	code.
Should	you	ever	need	help	with	your	C	code,	simply	email	me	at
help@learncodethehardway.org,	and	I	will	gladly	help	you.

C	Is	a	Pretty	and	Ugly	Language
The	presence	of	UB	though	is	one	more	reason	why	learning	C	is	a	good	move	if
you	want	to	be	a	better	programmer.	If	you	can	write	good,	solid	C	code	in	the
way	I	teach	you,	then	you	can	survive	any	language.	On	the	positive	side,	C	is	a
really	elegant	language	in	many	ways.	Its	syntax	is	actually	incredibly	small
given	the	power	it	has.	There’s	a	reason	why	so	many	other	languages	have
copied	its	syntax	over	the	last	45	or	so	years.	C	also	gives	you	quite	a	lot	using
very	little	technology.	When	you’re	done	learning	C,	you’ll	have	an	appreciation
for	a	something	that	is	very	elegant	and	beautiful	but	also	a	little	ugly	at	the
same	time.	C	is	old,	so	like	a	beautiful	monument,	it	will	look	fantastic	from
about	20	feet	away,	but	when	you	step	up	close,	you’ll	see	all	the	cracks	and
flaws	it	has.
Because	of	this,	I’m	going	to	teach	you	the	most	recent	version	of	C	that	I	can
make	work	with	recent	compilers.	It’s	a	practical,	straightforward,	simple,	yet
complete	subset	of	C	that	works	well,	works	everywhere,	and	avoids	many
pitfalls.	This	is	the	C	that	I	use	to	get	real	work	done,	and	not	the	encyclopedic
version	of	C	that	hardcore	fans	try	and	fail	to	use.
I	know	the	C	that	I	use	is	solid	because	I	spent	two	decades	writing	clean,	solid
C	code	that	powered	large	operations	without	much	failure	at	all.	My	C	code	has
probably	processed	trillions	of	transactions	because	it	powered	the	operations	of
companies	like	Twitter	and	airbnb.	It	rarely	failed	or	had	security	attacks	against
it.	In	the	many	years	that	my	code	powered	the	Ruby	on	Rails	Web	world,	it’s
run	beautifully	and	even	prevented	security	attacks,	while	other	Web	servers	fell
repeatedly	to	the	simplest	of	attacks.
My	style	of	writing	C	code	is	solid,	but	more	importantly,	my	mind-set	when
writing	C	is	one	every	programmer	should	have.	I	approach	C,	and	any
programming,	with	the	idea	of	preventing	errors	as	best	I	can	and	assuming	that
nothing	will	work	right.	Other	programmers,	even	supposedly	good	C
programmers,	tend	to	write	code	and	assume	everything	will	work,	but	rely	on
UB	or	the	operating	system	to	save	them,	neither	of	which	will	work	as	a

mailto:help@learncodethehardway.org

solution.	Just	remember	that	if	people	try	to	tell	you	that	the	code	I	teach	in	this
book	isn’t	“real	C.”	If	they	don’t	have	the	same	track	record	as	me,	maybe	you
can	use	what	I	teach	you	to	show	them	why	their	code	isn’t	very	secure.
Does	that	mean	my	code	is	perfect?	No,	not	at	all.	This	is	C	code.	Writing
perfect	C	code	is	impossible,	and	in	fact,	writing	perfect	code	in	any	language	is
impossible.	That’s	half	the	fun	and	frustration	of	programming.	I	could	take
someone	else’s	code	and	tear	it	apart,	and	someone	could	take	my	code	and	tear
it	apart.	All	code	is	flawed,	but	the	difference	is	that	I	try	to	assume	my	code	is
always	flawed	and	then	prevent	the	flaws.	My	gift	to	you,	should	you	complete
this	book,	is	to	teach	you	the	defensive	programming	mind-set	that	has	served
me	well	for	two	decades,	and	has	helped	me	make	high-quality,	robust	software.

What	You	Will	Learn
The	purpose	of	this	book	is	to	get	you	strong	enough	in	C	that	you’ll	be	able	to
write	your	own	software	with	it	or	modify	someone	else’s	C	code.	After	this
book,	you	should	read	Brian	Kernighan	and	Dennis	Ritchie’s	The	C
Programming	Language,	Second	Edition	(Prentice	Hall,	1988),	a	book	by	the
creators	of	the	C	language,	also	called	K&R	C.	What	I’ll	teach	you	is

•	The	basics	of	C	syntax	and	idioms
•	Compilation,	make	files,	linkers
•	Finding	bugs	and	preventing	them
•	Defensive	coding	practices
•	Breaking	C	code
•	Writing	basic	UNIX	systems	software

By	the	final	exercise,	you	will	have	more	than	enough	ammunition	to	tackle
basic	systems	software,	libraries,	and	other	smaller	projects.

How	to	Read	This	Book
This	book	is	intended	for	programmers	who	have	learned	at	least	one	other
programming	language.	I	refer	you	to	my	book	Learn	Python	the	Hard	Way
(Addison-Wesley,	2013)	if	you	haven’t	learned	a	programming	language	yet.	It’s
meant	for	beginners	and	works	very	well	as	a	first	book	on	programming.	Once
you’ve	completed	Learn	Python	the	Hard	Way,	then	you	can	come	back	and	start
this	book.
For	those	who’ve	already	learned	to	code,	this	book	may	seem	strange	at	first.
It’s	not	like	other	books	where	you	read	paragraph	after	paragraph	of	prose	and

then	type	in	a	bit	of	code	here	and	there.	Instead,	there	are	videos	of	lectures	for
each	exercise,	you	code	right	away,	and	then	I	explain	what	you	just	did.	This
works	better	because	it’s	easier	for	me	to	explain	something	you’ve	already	done
than	to	speak	in	an	abstract	sense	about	something	you	aren’t	familiar	with	at	all.
Because	of	this	structure,	there	are	a	few	rules	that	you	must	follow	in	this	book:

•	Watch	the	lecture	video	first,	unless	the	exercise	says	otherwise.
•	Type	in	all	of	the	code.	Don’t	copy-paste!
•	Type	in	the	code	exactly	as	it	appears,	even	the	comments.
•	Get	it	to	run	and	make	sure	it	prints	the	same	output.
•	If	there	are	bugs,	fix	them.
•	Do	the	Extra	Credit,	but	it’s	all	right	to	skip	anything	you	can’t	figure	out.
•	Always	try	to	figure	it	out	first	before	trying	to	get	help.

If	you	follow	these	rules,	do	everything	in	the	book,	and	still	can’t	code	C,	then
you	at	least	tried.	It’s	not	for	everyone,	but	just	trying	will	make	you	a	better
programmer.

The	Videos
Included	in	this	course	are	videos	for	every	exercise,	and	in	many	cases,	more
than	one	video	for	an	exercise.	These	videos	should	be	considered	essential	to
get	the	full	impact	of	the	book’s	educational	method.	The	reason	for	this	is	that
many	of	the	problems	with	writing	C	code	are	interactive	issues	with	failure,
debugging,	and	commands.	C	requires	much	more	interaction	to	get	the	code
running	and	to	fix	problems,	unlike	languages	like	Python	and	Ruby	where	code
just	runs.	It’s	also	much	easier	to	show	you	a	video	lecture	on	a	topic,	such	as
pointers	or	memory	management,	where	I	can	demonstrate	how	the	machine	is
actually	working.
I	recommend	that	as	you	go	through	the	course,	you	plan	to	watch	the	videos
first,	and	then	do	the	exercises	unless	directed	to	do	otherwise.	In	some	of	the
exercises,	I	use	one	video	to	present	a	problem	and	then	another	to	demonstrate
the	solution.	In	most	of	the	other	exercises,	I	use	a	video	to	present	a	lecture,	and
then	you	do	the	exercise	and	complete	it	to	learn	the	topic.

The	Core	Competencies
I’m	going	to	guess	that	you	have	experience	using	a	lesser	language.	One	of
those	usable	languages	that	lets	you	get	away	with	sloppy	thinking	and	half-
baked	hackery	like	Python	or	Ruby.	Or,	maybe	you	use	a	language	like	LISP	that

pretends	the	computer	is	some	purely	functional	fantasy	land	with	padded	walls
for	little	babies.	Maybe	you’ve	learned	Prolog,	and	you	think	the	entire	world
should	just	be	a	database	where	you	walk	around	in	it	looking	for	clues.	Even
worse,	I’m	betting	you’ve	been	using	an	integrated	development	environment
(IDE),	so	your	brain	is	riddled	with	memory	holes,	and	you	can’t	even	type	an
entire	function’s	name	without	hitting	CTRL-SPACE	after	every	three
characters.
No	matter	what	your	background	is,	you	could	probably	use	some	improvement
in	these	areas:

Reading	and	Writing
This	is	especially	true	if	you	use	an	IDE,	but	generally	I	find	programmers	do
too	much	skimming	and	have	problems	reading	for	comprehension.	They’ll	just
skim	code	that	they	need	to	understand	in	detail	without	taking	the	time	to
understand	it.	Other	languages	provide	tools	that	let	programmers	avoid	actually
writing	any	code,	so	when	faced	with	a	language	like	C,	they	break	down.	The
simplest	thing	to	do	is	just	understand	that	everyone	has	this	problem,	and	you
can	fix	it	by	forcing	yourself	to	slow	down	and	be	meticulous	about	your	reading
and	writing.	At	first,	it’ll	feel	painful	and	annoying,	but	take	frequent	breaks,	and
then	eventually	it’ll	be	easier	to	do.

Attention	to	Detail
Everyone	is	bad	at	this,	and	it’s	the	biggest	cause	of	bad	software.	Other
languages	let	you	get	away	with	not	paying	attention,	but	C	demands	your	full
attention	because	it’s	right	in	the	machine,	and	the	machine	is	very	picky.	With
C,	there	is	no	“kind	of	similar”	or	“close	enough,”	so	you	need	to	pay	attention.
Double	check	your	work.	Assume	everything	you	write	is	wrong	until	you	prove
it’s	right.

Spotting	Differences
A	key	problem	that	people	who	are	used	to	other	languages	have	is	that	their
brains	have	been	trained	to	spot	differences	in	that	language,	not	in	C.	When	you
compare	code	you’ve	written	to	my	exercise	code,	your	eyes	will	jump	right
over	characters	you	think	don’t	matter	or	that	aren’t	familiar.	I’ll	be	giving	you
strategies	that	force	you	to	see	your	mistakes,	but	keep	in	mind	that	if	your	code
is	not	exactly	like	the	code	in	this	book,	it’s	wrong.

Planning	and	Debugging

I	love	other,	easier	languages	because	I	can	just	hang	out.	I	can	type	the	ideas	I
have	into	their	interpreter	and	see	results	immediately.	They’re	great	for	just
hacking	out	ideas,	but	have	you	noticed	that	if	you	keep	doing	hack	until	it
works,	eventually	nothing	works?	C	is	harder	on	you	because	it	requires	you	to
first	plan	out	what	you	want	to	create.	Sure,	you	can	hack	for	a	bit,	but	you	have
to	get	serious	much	earlier	in	C	than	in	other	languages.	I’ll	be	teaching	you
ways	to	plan	out	key	parts	of	your	program	before	you	start	coding,	and	this	will
likely	make	you	a	better	programmer	at	the	same	time.	Even	just	a	little	planning
can	smooth	things	out	down	the	road.
Learning	C	makes	you	a	better	programmer	because	you	are	forced	to	deal	with
these	issues	earlier	and	more	frequently.	You	can’t	be	sloppy	about	what	you
write	or	nothing	will	work.	The	advantage	of	C	is	that	it’s	a	simple	language	that
you	can	figure	out	on	your	own,	which	makes	it	a	great	language	for	learning
about	the	machine	and	getting	stronger	in	these	core	programming	skills.

Exercise	0.	The	Setup

The	traditional	first	exercise,	Excercise	0,	is	where	you	set	up	your	computer	for
the	rest	of	this	book.	In	this	exercise	you’ll	install	packages	and	software
depending	on	the	type	of	computer	you	have.
If	you	have	problems	following	this	exercise,	then	simply	watch	the	Exercise	0
video	for	your	computer	and	follow	along	with	my	setup	instructions.	That	video
should	demonstrate	how	to	do	each	step	and	help	you	solve	any	problems	that
might	come	up.

Linux
Linux	is	most	likely	the	easiest	system	to	configure	for	C	development.	For
Debian	systems	you	run	this	command	from	the	command	line:
Click	here	to	view	code	image

$	sudo	apt−get	install	build−essential

Here’s	how	you	would	install	the	same	setup	on	an	RPM-based	Linux	like
Fedora,	RedHat,	or	CentOS	7:
Click	here	to	view	code	image

$	sudo	yum	groupinstall	development−tools

If	you	have	a	different	variant	of	Linux,	simply	search	for	“c	development	tools”
and	your	brand	of	Linux	to	find	out	what’s	required.	Once	you	have	that
installed,	you	should	be	able	to	type:

$	cc	--version

to	see	what	compiler	was	installed.	You	will	most	likely	have	the	GNU	C
Compiler	(GCC)	installed	but	don’t	worry	if	it’s	a	different	one	from	what	I	use
in	the	book.	You	could	also	try	installing	the	Clang	C	compiler	using	the	Clang’s
Getting	Started	instructions	for	your	version	of	Linux,	or	searching	online	if
those	don’t	work.

Mac	OS	X
On	Mac	OS	X,	the	install	is	even	easier.	First,	you’ll	need	to	either	download	the
latest	XCode	from	Apple,	or	find	your	install	DVD	and	install	it	from	there.	The
download	will	be	massive	and	could	take	forever,	so	I	recommend	installing
from	the	DVD.	Also,	search	online	for	“installing	xcode”	for	instructions	on	how

to	do	it.	You	can	also	use	the	App	Store	to	install	it	just	as	you	would	any	other
app,	and	if	you	do	it	that	way	you’ll	receive	updates	automatically.
To	confirm	that	your	C	compiler	is	working,	type	this:

$	cc	−−version

You	should	see	that	you	are	using	a	version	of	the	Clang	C	Compiler,	but	if	your
XCode	is	older	you	may	have	GCC	installed.	Either	is	fine.

Windows
For	Microsoft	Windows,	I	recommend	you	use	the	Cygwin	system	to	acquire
many	of	the	standard	UNIX	software	development	tools.	It	should	be	easy	to
install	and	use,	but	watch	the	videos	for	this	exercise	to	see	how	I	do	it.	An
alternative	to	Cygwin	is	the	MinGW	system;	it	is	more	minimalist	but	should
also	work.	I	will	warn	you	that	Microsoft	seems	to	be	phasing	out	C	support	in
their	development	tools,	so	you	may	have	problems	using	Microsoft’s	compilers
to	build	the	code	in	this	book.
A	slightly	more	advanced	option	is	to	use	VirtualBox	to	install	a	Linux
distribution	and	run	a	complete	Linux	system	on	your	Windows	computer.	This
has	the	added	advantage	that	you	can	completely	destroy	this	virtual	machine
without	worrying	about	destroying	your	Windows	configuration.	It’s	also	an
opportunity	to	learn	to	use	Linux,	which	is	both	fun	and	beneficial	to	your
development	as	a	programmer.	Linux	is	currently	deployed	as	the	main	operating
system	for	many	distributed	computer	and	cloud	infrastructure	companies.
Learning	Linux	will	definitely	improve	your	knowledge	of	the	future	of
computing.

Text	Editor
The	choice	of	text	editor	for	a	programmer	is	a	tough	one.	For	beginners,	I	say
just	use	Gedit	since	it’s	simple	and	it	works	for	code.	However,	it	doesn’t	work
in	certain	international	situations,	and	if	you’ve	been	programming	for	a	while,
chances	are	you	already	have	a	favorite	text	editor.
With	this	in	mind,	I	want	you	to	try	out	a	few	of	the	standard	programmer	text
editors	for	your	platform	and	then	stick	with	the	one	that	you	like	best.	If	you’ve
been	using	GEdit	and	like	it,	then	stick	with	it.	If	you	want	to	try	something
different,	then	try	it	out	real	quick	and	pick	one.
The	most	important	thing	is	do	not	get	stuck	trying	to	pick	the	perfect	editor.
Text	editors	all	just	kind	of	suck	in	odd	ways.	Just	pick	one,	stick	with	it,	and	if

you	find	something	else	you	like,	try	it	out.	Don’t	spend	days	on	end	configuring
it	and	making	it	perfect.
Some	text	editors	to	try	out:

•	GEdit	on	Linux	and	OS	X.
•	TextWrangler	on	OS	X.
•	Nano,	which	runs	in	Terminal	and	works	nearly	everywhere.
•	Emacs	and	Emacs	for	OS	X;	be	prepared	to	do	some	learning,	though.
•	Vim	and	MacVim.

There	is	probably	a	different	editor	for	every	person	out	there,	but	these	are	just
a	few	of	the	free	ones	that	I	know	work.	Try	out	a	few	of	these—and	maybe
some	commercial	ones—until	you	find	one	that	you	like.

Do	Not	Use	an	IDE

Warning!
Avoid	using	an	integrated	development	environment	(IDE)	while	you	are
learning	a	language.	They	are	helpful	when	you	need	to	get	things	done,
but	their	help	tends	also	to	prevent	you	from	really	learning	the	language.
In	my	experience,	the	stronger	programmers	don’t	use	an	IDE	and	also
have	no	problem	producing	code	at	the	same	speed	as	IDE	users.	I	also
find	that	the	code	produced	with	an	IDE	is	of	lower	quality.	I	have	no	idea
why	that	is	the	case,	but	if	you	want	deep,	solid	skills	in	a	programming
language,	I	highly	recommend	that	you	avoid	IDEs	while	you’re	learning.
Knowing	how	to	use	a	professional	programmer’s	text	editor	is	also	a

useful	skill	in	your	professional	life.	When	you’re	dependent	on	an	IDE,
you	have	to	wait	for	a	new	IDE	before	you	can	learn	the	newer
programming	languages.	This	adds	a	cost	to	your	career:	It	prevents	you
from	getting	ahead	of	shifts	in	language	popularity.	With	a	generic	text
editor,	you	can	code	in	any	language,	any	time	you	like,	without	waiting
for	anyone	to	add	it	to	an	IDE.	A	generic	text	editor	means	freedom	to
explore	on	your	own	and	manage	your	career	as	you	see	fit.

Exercise	1.	Dust	Off	That	Compiler

After	you	have	everything	installed,	you	need	to	confirm	that	your	compiler
works.	The	easiest	way	to	do	that	is	to	write	a	C	program.	Since	you	should
already	know	at	least	one	programming	language,	I	believe	you	can	start	with	a
small	but	extensive	example.

ex1.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2
	3			/*	This	is	a	comment.	*/
	4			int	main(int	argc,	char	*argv[])
	5			{
	6							int	distance	=	100;
	7
	8							//	this	is	also	a	comment
	9							printf("You	are	%d	miles	away.\n",	distance);
10
11							return	0;
12			}

If	you	have	problems	getting	the	code	up	and	running,	watch	the	video	for	this
exercise	to	see	me	do	it	first.

Breaking	It	Down
There	are	a	few	features	of	the	C	language	in	this	code	that	you	might	or	might
not	have	figured	out	while	you	were	typing	it.	I’ll	break	this	down,	line	by	line,
quickly,	and	then	we	can	do	exercises	to	understand	each	part	better.	Don’t
worry	if	you	don’t	understand	everything	in	this	breakdown.	I	am	simply	giving
you	a	quick	dive	into	C	and	promise	you	will	learn	all	of	these	concepts	later	in
the	book.
Here’s	a	line-by-line	description	of	the	code:

ex1.c:1	An	include,	and	it	is	the	way	to	import	the	contents	of	one	file	into
this	source	file.	C	has	a	convention	of	using	.h	extensions	for	header	files,
which	contain	lists	of	functions	to	use	in	your	program.

ex1.c:3	This	is	a	multiline	comment,	and	you	could	put	as	many	lines	of	text
between	the	opening	/*	and	closing	*/	characters	as	you	want.

ex1.c:4	A	more	complex	version	of	the	main	function	you’ve	been	using	so
far.	How	C	programs	work	is	that	the	operating	system	loads	your
program,	and	then	it	runs	the	function	named	main.	For	the	function	to	be
totally	complete	it	needs	to	return	an	int	and	take	two	parameters:	an
int	for	the	argument	count	and	an	array	of	char	*	strings	for	the
arguments.	Did	that	just	fly	over	your	head?	Don’t	worry,	we’ll	cover	this
soon.

ex1.c:5	To	start	the	body	of	any	function,	you	write	a	{	character	that
indicates	the	beginning	of	a	block.	In	Python,	you	just	did	a	:	and
indented.	In	other	languages,	you	might	have	a	begin	or	do	word	to	start.

ex1.c:6	A	variable	declaration	and	assignment	at	the	same	time.	This	is	how
you	create	a	variable,	with	the	syntax	type	name	=	value;.	In	C,
statements	(except	for	logic)	end	in	a	;	(semicolon)	character.

ex1.c:8	Another	kind	of	comment.	It	works	like	in	Python	or	Ruby,	where	the
comment	starts	at	the	//	and	goes	until	the	end	of	the	line.

ex1.c:9	A	call	to	your	old	friend	printf.	Like	in	many	languages,	function
calls	work	with	the	syntax	name(arg1,	arg2);	and	can	have	no
arguments	or	any	number	of	them.	The	printf	function	is	actually	kind
of	weird	in	that	it	can	take	multiple	arguments.	You’ll	see	that	later.

ex1.c:11	A	return	from	the	main	function	that	gives	the	operating	system
(OS)	your	exit	value.	You	may	not	be	familiar	with	how	UNIX	software
uses	return	codes,	so	we’ll	cover	that	as	well.

ex1.c:12	Finally,	we	end	the	main	function	with	a	closing	brace	}	character,
and	that’s	the	end	of	the	program.

There’s	a	lot	of	information	in	this	breakdown,	so	study	it	line	by	line	and	make
sure	you	at	least	have	a	grasp	of	what’s	going	on.	You	won’t	know	everything,
but	you	can	probably	guess	before	we	continue.

What	You	Should	See
You	can	put	this	into	an	ex1.c	and	then	run	the	commands	shown	here	in	this
sample	shell	output.	If	you’re	not	sure	how	this	works,	watch	the	video	that	goes
with	this	exercise	to	see	me	do	it.

Exercise	1	Session

Click	here	to	view	code	image

$	make	ex1
cc	-Wall	-g				ex1.c		-o	ex1

$./ex1
You	are	100	miles	away.

$

The	first	command	make	is	a	tool	that	knows	how	to	build	C	programs	(and
many	others).	When	you	run	it	and	give	it	ex1	you	are	telling	make	to	look	for
the	ex1.c	file,	run	the	compiler	to	build	it,	and	leave	the	results	in	a	file	named
ex1.	This	ex1	file	is	an	executable	that	you	can	run	with	./ex1,	which	outputs
your	results.

How	to	Break	It
In	this	book,	I’m	going	to	have	a	small	section	for	each	program	teaching	you
how	to	break	the	program	if	it’s	possible.	I’ll	have	you	do	odd	things	to	the
programs,	run	them	in	weird	ways,	or	change	code	so	that	you	can	see	crashes
and	compiler	errors.
For	this	program,	simply	try	removing	things	at	random	and	still	get	it	to
compile.	Just	make	a	guess	at	what	you	can	remove,	recompile	it,	and	then	see
what	you	get	for	an	error.

Extra	Credit
•	Open	the	ex1	file	in	your	text	editor	and	change	or	delete	random	parts.
Try	running	it	and	see	what	happens.
•	Print	out	five	more	lines	of	text	or	something	more	complex	than	“hello
world.”
•	Run	man	3	printf	and	read	about	this	function	and	many	others.
•	For	each	line,	write	out	the	symbols	you	don’t	understand	and	see	if	you
can	guess	what	they	mean.	Write	a	little	chart	on	paper	with	your	guess	so
you	can	check	it	later	to	see	if	you	got	it	right.

Exercise	2.	Using	Makefiles	to	Build

We’re	going	to	use	a	program	called	make	to	simplify	building	your	exercise
code.	The	make	program	has	been	around	for	a	very	long	time,	and	because	of
this	it	knows	how	to	build	quite	a	few	types	of	software.	In	this	exercise,	I’ll
teach	you	just	enough	Makefile	syntax	to	continue	with	the	course,	and	then
an	exercise	later	will	teach	you	more	complete	Makefile	usage.

Using	Make
How	make	works	is	you	declare	dependencies,	and	then	describe	how	to	build
them	or	rely	on	the	program’s	internal	knowledge	of	how	to	build	most	common
software.	It	has	decades	of	knowledge	about	building	a	wide	variety	of	files	from
other	files.	In	the	last	exercise,	you	did	this	already	using	commands:

$	make	ex1
#	or	this	one	too
$	CFLAGS="-Wall"	make	ex1

In	the	first	command,	you’re	telling	make,	“I	want	a	file	named	ex1	to	be
created.”	The	program	then	asks	and	does	the	following:

1.	Does	the	file	ex1	exist	already?
2.	No.	Okay,	is	there	another	file	that	starts	with	ex1?
3.	Yes,	it’s	called	ex1.c.	Do	I	know	how	to	build	.c	files?
4.	Yes,	I	run	this	command	cc	ex1.c	-o	ex1	to	build	them.
5.	I	shall	make	you	one	ex1	by	using	cc	to	build	it	from	ex1.c.

The	second	command	in	the	listing	above	is	a	way	to	pass	modifiers	to	the	make
command.	If	you’re	not	familiar	with	how	the	UNIX	shell	works,	you	can	create
these	environment	variables	that	will	get	picked	up	by	programs	you	run.
Sometimes	you	do	this	with	a	command	like	export	CFLAGS="-Wall"
depending	on	the	shell	you	use.	You	can,	however,	also	just	put	them	before	the
command	you	want	to	run,	and	that	environment	variable	will	be	set	only	while
that	command	runs.
In	this	example,	I	did	CFLAGS="-Wall"	make	ex1	so	that	it	would	add	the
command	line	option	-Wall	to	the	cc	command	that	make	normally	runs.	That
command	line	option	tells	the	compiler	cc	to	report	all	warnings	(which,	in	a
sick	twist	of	fate,	isn’t	actually	all	the	warnings	possible).

You	can	actually	get	pretty	far	with	just	using	make	in	that	way,	but	let’s	get	into
making	a	Makefile	so	you	can	understand	make	a	little	better.	To	start	off,
create	a	file	with	just	the	following	in	it.

ex2.1.mak

CFLAGS=-Wall	-g

clean:
				rm	-f	ex1

Save	this	file	as	Makefile	in	your	current	directory.	The	program
automatically	assumes	there’s	a	file	called	Makefile	and	will	just	run	it.

Warning!
Make	sure	you	are	only	entering	TAB	characters,	not	mixtures	of	TAB
and	spaces.

This	Makefile	is	showing	you	some	new	stuff	with	make.	First,	we	set
CFLAGS	in	the	file	so	we	never	have	to	set	it	again,	as	well	as	adding	the	-g
flag	to	get	debugging.	Then,	we	have	a	section	named	clean	that	tells	make
how	to	clean	up	our	little	project.
Make	sure	it’s	in	the	same	directory	as	your	ex1.c	file,	and	then	run	these
commands:

$	make	clean
$	make	ex1

What	You	Should	See
If	that	worked,	then	you	should	see	this:

Exercise	2	Session

Click	here	to	view	code	image

$	make	clean
rm	-f	ex1

$	make	ex1
cc	-Wall	-g				ex1.c			-o	ex1

ex1.c:	In	function	'main':

ex1.c:3:	warning:	implicit	declaration	of	function	'puts'

$

Here	you	can	see	that	I’m	running	make	clean,	which	tells	make	to	run	our
clean	target.	Go	look	at	the	Makefile	again	and	you’ll	see	that	under	this
command,	I	indent	and	then	put	in	the	shell	commands	I	want	make	to	run	for
me.	You	could	put	as	many	commands	as	you	wanted	in	there,	so	it’s	a	great
automation	tool.

Warning!
If	you	fixed	ex1.c	to	have	#include	<stdio.h>,	then	your	output
won’t	have	the	warning	(which	should	really	be	an	error)	about	puts.	I
have	the	error	here	because	I	didn’t	fix	it.

Notice	that	even	though	we	don’t	mention	ex1	in	the	Makefile,	make	still
knows	how	to	build	it	and	use	our	special	settings.

How	to	Break	It
That	should	be	enough	to	get	you	started,	but	first	let’s	break	this	Makefile	in
a	particular	way	so	you	can	see	what	happens.	Take	the	line	rm	-f	ex1	and
remove	the	indent	(move	it	all	the	way	left)	so	you	can	see	what	happens.	Rerun
make	clean,	and	you	should	get	something	like	this:
Click	here	to	view	code	image

$	make	clean
Makefile:4:	***	missing	separator.		Stop.

Always	remember	to	indent,	and	if	you	get	weird	errors	like	this,	double	check
that	you’re	consistently	using	tab	characters	because	some	make	variants	are
very	picky.

Extra	Credit
•	Create	an	all:	ex1	target	that	will	build	ex1	with	just	the	command
make.
•	Read	man	make	to	find	out	more	information	on	how	to	run	it.
•	Read	man	cc	to	find	out	more	information	on	what	the	flags	-Wall	and
-g	do.
•	Research	Makefiles	online	and	see	if	you	can	improve	this	one.

•	Find	a	Makefile	in	another	C	project	and	try	to	understand	what	it’s
doing.

Exercise	3.	Formatted	Printing

Keep	that	Makefile	around	since	it’ll	help	you	spot	errors,	and	we’ll	be
adding	to	it	when	we	need	to	automate	more	things.
Many	programming	languages	use	the	C	way	of	formatting	output,	so	let’s	try	it:

ex3.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2
	3			int	main()
	4			{
	5							int	age	=	10;
	6							int	height	=	72;
	7
	8							printf("I	am	%d	years	old.\n",	age);
	9							printf("I	am	%d	inches	tall.\n",	height);
10
11							return	0;
12			}

Once	you’ve	finished	that,	do	the	usual	make	ex3	to	build	and	run	it.	Make
sure	you	fix	all	warnings.
This	exercise	has	a	whole	lot	going	on	in	a	small	amount	of	code,	so	let’s	break
it	down:

•	First	we’re	including	another	header	file	called	stdio.h.	This	tells	the
compiler	that	you’re	going	to	use	the	standard	Input/Output	functions.	One
of	those	is	printf.
•	Then	we’re	using	a	variable	named	age	and	setting	it	to	10.
•	Next	we’re	using	a	variable	height	and	setting	it	to	72.
•	Then	we’re	adding	the	printf	function	to	print	the	age	and	height	of	the
tallest	10-year-old	on	the	planet.
•	In	printf,	you’ll	notice	we’re	including	a	format	string,	as	seen	in	many
other	languages.
•	After	this	format	string,	we’re	putting	in	the	variables	that	should	be
“replaced”	into	the	format	string	by	printf.

The	result	is	giving	printf	some	variables	and	it’s	constructing	a	new	string
and	then	printing	it	to	the	terminal.

What	You	Should	See
When	you	do	the	whole	build,	you	should	see	something	like	this:

Exercise	3	Session

Click	here	to	view	code	image

$	make	ex3
cc	-Wall	-g				ex3.c				-o	ex3

$./ex3
I	am	10	years	old.

I	am	72	inches	tall.

$

Pretty	soon	I’m	going	to	stop	telling	you	to	run	make	and	what	the	build	looks
like,	so	please	make	sure	you’re	getting	this	right	and	that	it’s	working.

External	Research
In	the	Extra	Credit	section	of	each	exercise,	you	may	have	you	go	find
information	on	your	own	and	figure	things	out.	This	is	an	important	part	of	being
a	self-sufficient	programmer.	If	you’re	constantly	running	to	ask	someone	a
question	before	trying	to	figure	things	out	yourself,	then	you’ll	never	learn	how
to	solve	problems	independently.	You’ll	never	build	confidence	in	your	skills
and	will	always	need	someone	else	around	to	do	your	work.
The	way	to	break	this	habit	is	to	force	yourself	to	try	to	answer	your	own
question	first,	and	then	confirm	that	your	answer	is	right.	You	do	this	by	trying
to	break	things,	experimenting	with	your	answer,	and	doing	your	own	research.
For	this	exercise,	I	want	you	to	go	online	and	find	out	all	of	the	printf	escape
codes	and	format	sequences.	Escape	codes	are	\n	or	\t	that	let	you	print	a
newline	or	tab,	respectively.	Format	sequences	are	the	%s	or	%d	that	let	you	print
a	string	or	integer.	Find	them	all,	learn	how	to	modify	them,	and	see	what	kind
of	“precisions”	and	widths	you	can	do.
From	now	on,	these	kinds	of	tasks	will	be	in	the	Extra	Credit	sections,	and	you
should	do	them.

How	to	Break	It

Try	a	few	of	these	ways	to	break	this	program,	which	may	or	may	not	cause	it	to
crash	on	your	computer:

•	Take	the	age	variable	out	of	the	first	printf	call,	then	recompile.	You
should	get	a	couple	of	warnings.
•	Run	this	new	program	and	it	will	either	crash	or	print	out	a	really	crazy
age.
•	Put	the	printf	back	the	way	it	was,	and	then	don’t	set	age	to	an	initial
value	by	changing	that	line	to	int	age;,	and	then	rebuild	it	and	run	it
again.

Exercise	3.bad	Session

Click	here	to	view	code	image

#	edit	ex3.c	to	break	printf
$	make	ex3
cc	-Wall	-g				ex3.c			-o	ex3

ex3.c:	In	function	'main':

ex3.c:8:	warning:	too	few	arguments	for	format

ex3.c:5:	warning:	unused	variable	'age'

$./ex3
I	am	-919092456	years	old.

I	am	72	inches	tall.

#	edit	ex3.c	again	to	fix	printf,	but	don't	init	age
$	make	ex3
cc	-Wall	-g				ex3.c			-o	ex3

ex3.c:	In	function	'main':

ex3.c:8:	warning:	'age'	is	used	uninitialized	in	this	function

$./ex3
I	am	0	years	old.

I	am	72	inches	tall.

$

Extra	Credit
•	Find	as	many	other	ways	to	break	ex3.c	as	you	can.
•	Run	man	3	printf	and	read	about	the	other	%	format	characters	you
can	use.	These	should	look	familiar	if	you	used	them	in	other	languages
(they	come	from	printf).
•	Add	ex3	to	the	all	list	in	your	Makefile.	Use	this	to	make	clean
all	and	build	all	of	your	exercises	thus	far.
•	Add	ex3	to	the	clean	list	in	your	Makefile	as	well.	Use	make

clean	to	remove	it	when	you	need	to.

Exercise	4.	Using	a	Debugger

This	is	a	video-focused	exercise	where	I	show	you	how	to	use	the	debugger	that
comes	with	your	computer	to	debug	your	programs,	detect	errors,	and	even
debug	processes	that	are	currently	running.	Please	watch	the	accompanying
video	to	learn	more	about	this	topic.

GDB	Tricks
Here’s	a	list	of	simple	tricks	you	can	do	with	GNU	Debugger	(GDB):

gdb	--args	Normally,	gdb	takes	arguments	you	give	it	and	assumes	they	are
for	itself.	Using	--args	passes	them	to	the	program.

thread	apply	all	bt	Dump	a	backtrace	for	all	threads.	It’s	very	useful.
gdb	--batch	--ex	r	--ex	bt	--ex	q	--args	Run	the	program	so	that	if	it	bombs,
you	get	a	backtrace.

GDB	Quick	Reference
The	video	is	good	for	learning	how	to	use	a	debugger,	but	you’ll	need	to	refer
back	to	the	commands	as	you	work.	Here	is	a	quick	reference	to	the	GDB
commands	that	I	used	in	the	video	so	you	can	use	them	later	in	the	book:

run	[args]	Start	your	program	with	[args].
break	[file:]function	Set	a	break	point	at	[file:]function.	You	can	also	use	b.
backtrace	Dump	a	backtrace	of	the	current	calling	stack.	Shorthand	is	bt.
print	expr	Print	the	value	of	expr.	Shorthand	is	p.
continue	Continue	running	the	program.	Shorthand	is	c.
next	Next	line,	but	step	over	function	calls.	Shorthand	is	n.
step	Next	line,	but	step	into	function	calls.	Shorthand	is	s.
quit	Exit	GDB.
help	List	the	types	of	commands.	You	can	then	get	help	on	the	class	of
command	as	well	as	the	command.

cd,	pwd,	make	This	is	just	like	running	these	commands	in	your	shell.
shell	Quickly	start	a	shell	so	you	can	do	other	things.
clear	Clear	a	breakpoint.

info	break,	info	watch	Show	information	about	breakpoints	and
watchpoints.

attach	pid	Attach	to	a	running	process	so	you	can	debug	it.
detach	Detach	from	the	process.
list	List	out	the	next	ten	source	lines.	Add	a	-	to	list	the	previous	ten	lines.

LLDB	Quick	Reference
In	OS	X,	you	no	longer	have	GDB	and	instead	must	use	a	similar	program	called
LLDB	Debugger	(LLDB).	The	commands	are	almost	the	same,	but	here’s	a
quick	reference	for	LLDB:

run	[args]	Start	your	program	with	[args].
breakpoint	set	-	-name	[file:]function	Set	a	break	point	at
[file:]function.	You	can	also	use	b,	which	is	way	easier.

thread	backtrace	Dump	a	backtrace	of	the	current	calling	stack.	Shorthand
is	bt.

print	expr	Print	the	value	of	expr.	Shorthand	is	p.
continue	Continue	running	the	program.	Shorthand	is	c.
next	Next	line,	but	step	over	function	calls.	Shorthand	is	n.
step	Next	line,	but	step	into	function	calls.	Shorthand	is	s.
quit	Exit	LLDB.
help	List	the	types	of	commands.	You	can	then	get	help	on	the	class	of
command	as	well	as	the	command	itself.

cd,	pwd,	make	just	like	running	these	commands	in	your	shell.
shell	Quickly	start	a	shell	so	you	can	do	other	things.
clear	Clear	a	breakpoint.
info	break,	info	watch	Show	information	about	breakpoints	and
watchpoints.

attach	-p	pid	Attach	to	a	running	process	so	you	can	debug	it.
detach	Detach	from	the	process.
list	List	out	the	next	ten	source	lines.	Add	a	-	to	list	the	previous	ten	sources.

You	can	also	search	online	for	quick	reference	cards	and	tutorials	for	both	GDB
and	LLDB.

Exercise	5.	Memorizing	C	Operators

When	you	learned	your	first	programming	language,	it	most	likely	involved
going	through	a	book,	typing	in	code	you	didn’t	quite	understand,	and	then
trying	to	figure	out	how	it	worked.	That’s	how	I	wrote	most	of	my	other	books,
and	that	works	very	well	for	beginners.	In	the	beginning,	there	are	complex
topics	you	need	to	understand	before	you	can	grasp	what	all	the	symbols	and
words	mean,	so	it’s	an	easy	way	to	learn.
However,	once	you	already	know	one	programming	language,	this	method	of
fumbling	around	learning	the	syntax	by	osmosis	isn’t	the	most	efficient	way	to
learn	a	language.	It	works,	but	there	is	a	much	faster	way	to	build	both	your
skills	in	a	language	and	your	confidence	in	using	it.	This	method	of	learning	a
programming	language	might	seem	like	magic,	but	you’ll	have	to	trust	me	that	it
works	surprisingly	well.
How	I	want	you	to	learn	C	is	to	first	memorize	all	the	basic	symbols	and	syntax,
then	apply	them	through	a	series	of	exercises.	This	method	is	very	similar	to
how	you	might	learn	human	languages	by	memorizing	words	and	grammar,	and
then	applying	what	you	memorize	in	conversations.	With	just	a	simple	amount
of	memorization	effort	in	the	beginning,	you	can	gain	foundational	knowledge
and	have	an	easier	time	reading	and	writing	C	code.

Warning!
Some	people	are	dead	against	memorization.	Usually,	they	claim	it	makes
you	uncreative	and	boring.	I’m	proof	that	memorizing	things	doesn’t
make	you	uncreative	and	boring.	I	paint,	play	and	build	guitars,	sing,
code,	write	books,	and	I	memorize	lots	of	things.	This	belief	is	entirely
unfounded	and	detrimental	to	efficient	learning.	Please	ignore	anyone
telling	you	this.

How	to	Memorize
The	best	way	to	memorize	something	is	a	fairly	simple	process:

1.	Create	a	set	of	flash	cards	that	have	a	symbol	on	one	side	and	the
description	on	the	other.	You	could	also	use	a	program	called	Anki	to	do
this	on	your	computer.	I	prefer	creating	my	own	because	it	helps	me
memorize	them	as	I	make	them.

2.	Randomize	the	flash	cards	and	start	going	through	them	on	one	side.	Try
your	best	to	remember	the	other	side	of	the	card	without	looking.

3.	If	you	can’t	recall	the	other	side	of	the	card,	then	look	at	it	and	repeat	the
answer	to	yourself,	then	put	that	card	into	a	separate	pile.

4.	Once	you	go	through	all	the	cards	you’ll	have	two	piles:	one	pile	of	cards
you	recalled	quickly,	and	another	you	failed	to	recall.	Pick	up	the	fail	pile
and	drill	yourself	on	only	those	cards.

5.	At	the	very	end	of	the	session,	which	is	usually	15–30	minutes,	you’ll
have	a	set	of	cards	you	just	can’t	recall.	Take	those	cards	with	you
wherever	you	go,	and	when	you	have	free	time,	practice	memorizing	them.

There	are	many	other	tricks	to	memorizing	things,	but	I’ve	found	that	this	is	the
best	way	to	build	instant	recall	on	things	you	need	to	be	able	to	use	immediately.
The	symbols,	keywords,	and	syntax	of	C	are	things	you	need	instant	recall	on,	so
this	method	is	the	best	one	for	this	task.
Also	remember	that	you	need	to	do	both	sides	of	the	cards.	You	should	be	able	to
read	the	description	and	know	what	symbol	matches	it,	as	well	as	knowing	the
description	for	a	symbol.
Finally,	you	don’t	have	to	stop	while	you’re	memorizing	these	operators.	The
best	approach	is	to	combine	this	with	exercises	in	this	book	so	you	can	apply
what	you’ve	memorized.	See	the	next	exercise	for	more	on	this.

The	List	of	Operators
The	first	operators	are	the	arithmetic	operators,	which	are	very	similar	to	almost
every	other	programming	language.	When	you	write	the	cards,	the	description
side	should	say	that	it’s	an	arithmetic	operator,	and	what	it	does.

Relational	operators	test	values	for	equality,	and	again,	they	are	very	common	in
programming	languages.

Logical	operators	perform	logic	tests,	and	you	should	already	know	what	these
do.	The	only	odd	one	is	the	logical	ternary,	which	you’ll	learn	later	in	this	book.

Bitwise	operators	do	something	you	likely	won’t	experience	often	in	modern
code.	They	alter	the	bits	that	make	up	bytes	and	other	data	types	in	various	ways.
I	won’t	cover	this	in	my	book,	but	they	are	very	handy	when	working	with
certain	types	of	lower-level	systems.

Assignment	operators	simply	assign	expressions	to	variables,	but	C	combines	a
large	number	of	other	operators	with	assignment.	So	when	I	say	and-equal,	I

mean	the	bitwise	operators,	not	the	logical	operators.

I’m	calling	these	data	operators	but	they	really	deal	with	aspects	of	pointers,
member	access,	and	various	elements	of	data	structures	in	C.

Finally,	there	are	a	few	miscellaneous	symbols	that	are	either	frequently	used	for
different	roles	(like	,),	or	don’t	fit	into	any	of	the	previous	categories	for	various
reasons.

Study	your	flash	cards	while	you	continue	with	the	book.	If	you	spent	15–30
minutes	a	day	before	studying,	and	another	15–30	minutes	before	bed,	you	could
most	likely	memorize	all	of	these	in	a	few	weeks.

Exercise	6.	Memorizing	C	Syntax

After	learning	the	operators,	it’s	time	to	memorize	the	keywords	and	basic
syntax	structures	you’ll	be	using.	Trust	me	when	I	tell	you	that	the	small	amount
of	time	spent	memorizing	these	things	will	pay	huge	dividends	later	as	you	go
through	the	book.
As	I	mentioned	in	Exercise	5,	you	don’t	have	to	stop	reading	the	book	while	you
memorize	these	things.	You	can	and	should	do	both.	Use	your	flash	cards	as	a
warm	up	before	coding	that	day.	Take	them	out	and	drill	on	them	for	15–30
minutes,	then	sit	down	and	do	some	more	exercises	in	the	book.	As	you	go
through	the	book,	try	to	use	the	code	you’re	typing	as	more	of	a	way	to	practice
what	you’re	memorizing.	One	trick	is	to	build	a	pile	of	flash	cards	containing
operators	and	keywords	that	you	don’t	immediately	recognize	while	you’re
coding.	After	you’re	done	for	the	day,	practice	those	flash	cards	for	another	15–
30	minutes.
Keep	this	up	and	you’ll	learn	C	much	faster	and	more	solidly	than	you	would	if
you	just	stumbled	around	typing	code	until	you	memorized	it	secondhand.

The	Keywords
The	keywords	of	a	language	are	words	that	augment	the	symbols	so	that	the
language	reads	well.	There	are	some	languages	like	APL	that	don’t	really	have
keywords.	There	are	other	languages	like	Forth	and	LISP	that	are	almost	nothing
but	keywords.	In	the	middle	are	languages	like	C,	Python,	Ruby,	and	many	more
that	mix	sets	of	keywords	with	symbols	to	create	the	basis	of	the	language.

Warning!
The	technical	term	for	processing	the	symbols	and	keywords	of	a
programming	language	is	lexical	analysis.	The	word	for	one	of	these
symbols	or	keywords	is	a	lexeme.

Syntax	Structures
I	suggest	you	memorize	those	keywords,	as	well	as	memorizing	the	syntax
structures.	A	syntax	structure	is	a	pattern	of	symbols	that	make	up	a	C	program
code	form,	such	as	the	form	of	an	if-statement	or	a	while-loop.	You
should	find	most	of	these	familiar,	since	you	already	know	one	language.	The
only	trouble	is	then	learning	how	C	does	it.
Here’s	how	you	read	these:

1.	Anything	in	ALLCAPS	is	meant	as	a	replacement	spot	or	hole.
2.	Seeing	[ALLCAPS]	means	that	part	is	optional.
3.	The	best	way	to	test	your	memory	of	syntax	structures	is	to	open	a	text
editor,	and	where	you	see	switch-statement,	try	to	write	the	code
form	after	saying	what	it	does.

An	if-statement	is	your	basic	logic	branching	control:
if(TEST)	{
				CODE;
}	else	if(TEST)	{
				CODE;
}	else	{
				CODE;

}

A	switch-statement	is	like	an	if-statement	but	works	on	simple
integer	constants:

switch	(OPERAND)	{
				case	CONSTANT:
								CODE;
								break;
				default:
								CODE;
}

A	while-loop	is	your	most	basic	loop:
while(TEST)	{
				CODE;
}

You	can	also	use	continue	to	cause	it	to	loop.	Call	this	form	while-
continue-loop	for	now:

while(TEST)	{
				if(OTHER_TEST)	{
								continue;
				}
				CODE;
}

You	can	also	use	break	to	exit	a	loop.	Call	this	form	while-break-loop:

while(TEST)	{
				if(OTHER_TEST)	{
								break;
				}
				CODE;
}

The	do-while-loop	is	an	inverted	version	of	a	while-loop	that	runs	the
code	then	tests	to	see	if	it	should	run	again:

do	{
				CODE;
}	while(TEST);

It	can	also	have	continue	and	break	inside	to	control	how	it	operates.
The	for-loop	does	a	controlled	counted	loop	through	a	(hopefully)	fixed
number	of	iterations	using	a	counter:

for(INIT;	TEST;	POST)	{

				CODE;
}

An	enum	creates	a	set	of	integer	constants:
Click	here	to	view	code	image

enum	{	CONST1,	CONST2,	CONST3	}	NAME;

A	goto	will	jump	to	a	label,	and	is	only	used	in	a	few	useful	situations	like	error
detection	and	exiting:

if(ERROR_TEST)	{
				goto	fail;
}

fail:
				CODE;

A	function	is	defined	this	way:
TYPE	NAME(ARG1,	ARG2,	..)	{
				CODE;
				return	VALUE;
}

That	may	be	hard	to	remember,	so	try	this	example	to	see	what’s	meant	by
TYPE,	NAME,	ARG	and	VALUE:

int	name(arg1,	arg2)	{
				CODE;
				return	0;
}

A	typedef	defines	a	new	type:
Click	here	to	view	code	image

typedef	DEFINITION	IDENTIFIER;

A	more	concrete	form	of	this	is:
Click	here	to	view	code	image

typedef	unsigned	char	byte;

Don’t	let	the	spaces	fool	you;	the	DEFINITION	is	unsigned	char	and	the
IDENTIFIER	is	byte	in	that	example.
A	struct	is	a	packaging	of	many	base	data	types	into	a	single	concept,	which
are	used	heavily	in	C:

struct	NAME	{

				ELEMENTS;
}	[VARIABLE_NAME];

The	[VARIABLE_NAME]	is	optional,	and	I	prefer	not	to	use	it	except	in	a	few
small	cases.	This	is	commonly	combined	with	typedef	like	this:
Click	here	to	view	code	image

typedef	struct	[STRUCT_NAME]	{
				ELEMENTS;
}	IDENTIFIER;

Finally,	union	creates	something	like	a	struct,	but	the	elements	will	overlap
in	memory.	This	is	strange	to	understand,	so	simply	memorize	the	form	for	now:

union	NAME	{
				ELEMENTS;
}	[VARIABLE_NAME];

A	Word	of	Encouragement
Once	you’ve	created	flash	cards	for	each	of	these,	drill	on	them	in	the	usual	way
by	starting	with	the	name	side,	and	then	reading	the	description	and	form	on	the
other	side.	In	the	video	for	this	exercise,	I	show	you	how	to	use	Anki	to	do	this
efficiently,	but	you	can	replicate	the	experience	with	simple	index	cards,	too.
I’ve	noticed	some	fear	or	discomfort	in	students	who	are	asked	to	memorize
something	like	this.	I’m	not	exactly	sure	why,	but	I	encourage	you	to	do	it
anyway.	Look	at	this	as	an	opportunity	to	improve	your	memorization	and
learning	skills.	The	more	you	do	it,	the	better	at	it	you	get	and	the	easier	it	gets.
It’s	normal	to	feel	discomfort	and	frustration.	Don’t	take	it	personally.	You	might
spend	15	minutes	and	simply	hate	doing	it	and	feel	like	a	total	failure.	This	is
normal,	and	it	doesn’t	mean	you	actually	are	a	failure.	Perseverance	will	get	you
past	the	initial	frustration,	and	this	little	exercise	will	teach	you	two	things:

1.	You	can	use	memorization	as	a	self-evaluation	of	your	competence.
Nothing	tells	you	how	well	you	really	know	a	subject	like	a	memory	test	of
its	concepts.

2.	The	way	to	conquer	difficulty	is	a	little	piece	at	a	time.	Programming	is	a
great	way	to	learn	this	because	it’s	so	easy	to	break	down	into	small	parts
and	focus	on	what’s	lacking.	Take	this	as	an	opportunity	to	build	your
confidence	in	tackling	large	tasks	in	small	pieces.

A	Word	of	Warning
I’ll	add	a	final	word	of	warning	about	memorization.	Memorizing	a	large

quantity	of	facts	doesn’t	automatically	make	you	good	at	applying	those	facts.
You	can	memorize	the	entire	ANSI	C	standards	document	and	still	be	a	terrible
programmer.	I’ve	encountered	many	supposed	C	experts	who	know	every	square
inch	of	standard	C	grammar	but	still	write	terrible,	buggy,	weird	code,	or	don’t
code	at	all.
Never	confuse	an	ability	to	regurgitate	memorized	facts	with	ability	to	actually
do	something	well.	To	do	that	you	need	to	apply	these	facts	in	different
situations	until	you	know	how	to	use	them.	That’s	what	the	rest	of	this	book	will
help	you	do.

Exercise	7.	Variables	and	Types

You	should	be	getting	a	grasp	of	how	a	simple	C	program	is	structured,	so	let’s
do	the	next	simplest	thing	and	make	some	variables	of	different	types:

ex7.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2
	3			int	main(intargc,	char*argv[])
	4			{
	5							int	distance	=	100;
	6							float	power	=	2.345f;
	7							double	super_power	=	56789.4532;
	8							char	initial	=	'A';
	9							char	first_name[]	=	"Zed";
10							char	last_name[]	=	"Shaw";
11
12							printf("You	are	%d	miles	away.\n",	distance);
13							printf("You	have	%f	levels	of	power.\n",	power);
14							printf("You	have	%f	awesome	super	powers.\n",	super_power);
15							printf("I	have	an	initial	%c.\n",	initial);
16							printf("I	have	a	first	name	%s.\n",	first_name);
17							printf("I	have	a	last	name	%s.\n",	last_name);
18							printf("My	whole	name	is	%s	%c.	%s.\n",
19															first_name,	initial,	last_name);
20
21							int	bugs	=	100;
22							double	bug_rate	=	1.2;
23
24							printf("You	have	%d	bugs	at	the	imaginary	rate	of	%f.\n",
25															bugs,	bug_rate);
26
27							long	universe_of_defects	=	1L	*	1024L	*	1024L	*	1024L;
28							printf("The	entire	universe	has	%ld	bugs.\n",
universe_of_defects);
29
30							double	expected_bugs	=	bugs	*	bug_rate;
31							printf("You	are	expected	to	have	%f	bugs.\n",
expected_bugs);
32
33							double	part_of_universe	=	expected_bugs	/
universe_of_defects;
34							printf("That	is	only	a	%e	portion	of	the	universe.\n",
35															part_of_universe);
36

37							//	this	makes	no	sense,	just	a	demo	of	something	weird
38							char	nul_byte	=	'\0';
39							int	care_percentage	=	bugs	*	nul_byte;
40							printf("Which	means	you	should	care	%d%%.\n",
care_percentage);
41
42							return	0;
43			}

In	this	program,	we’re	declaring	variables	of	different	types	and	then	printing
them	using	different	printf	format	strings.	I	can	break	it	down	as	follows:

ex7.c:1-4	The	usual	start	of	a	C	program.
ex7.c:5-6	Declare	an	int	and	double	for	some	fake	bug	data.
ex7.c:8-9	Print	out	those	two,	so	nothing	new	here.
ex7.c:11	Declare	a	huge	number	using	a	new	type,	long,	for	storing	big
numbers.

ex7.c:12-13	Print	out	that	number	using	%ld	that	adds	a	modifier	to	the	usual
%d.	Adding	l	(the	letter)	tells	the	program	to	print	the	number	as	a	long
decimal.

ex7.c:15-17	This	is	just	more	math	and	printing.
ex7.c:19-21	Craft	a	depiction	of	your	bug	rate	compared	to	the	bugs	in	the
universe,	which	is	a	completely	inaccurate	calculation.	It’s	so	small	that	we
have	to	use	%e	to	print	it	in	scientific	notation.

ex7.c:24	Make	a	character,	with	a	special	syntax	'\0'	that	creates	a	nul
byte	character.	This	is	effectively	the	number	0.

ex7.c:25	Multiply	bugs	by	this	character,	which	produces	0,	as	in	how	much
you	should	care.	This	demonstrates	an	ugly	hack	you	might	see	sometimes.

ex7.c:26-27	Print	that	out,	and	notice	we’ve	used	%%	(two	percent	signs)	so
that	we	can	print	a	%	(percent)	character.

ex7.c:28-30	The	end	of	the	main	function.
This	source	file	demonstrates	how	some	math	works	with	different	types	of
variables.	At	the	end	of	the	program,	it	also	demonstrates	something	you	see	in
C	but	not	in	many	other	languages.	To	C,	a	character	is	just	an	integer.	It’s	a
really	small	integer,	but	that’s	all	it	is.	This	means	you	can	do	math	on	them,	and
a	lot	of	software	does	just	that—for	good	or	bad.
This	last	bit	is	your	first	glance	at	how	C	gives	you	direct	access	to	the	machine.
We’ll	be	exploring	that	more	in	later	exercises.

What	You	Should	See
As	usual,	here’s	what	you	should	see	for	the	output:

Exercise	7	Session

Click	here	to	view	code	image

$	make	ex7
cc	-Wall	-g				ex7.c			-o	ex7

$./ex7
You	have	100	bugs	at	the	imaginary	rate	of	1.200000.

The	entire	universe	has	1073741824	bugs.

You	are	expected	to	have	120.000000	bugs.

That	is	only	a	1.117587e-07	portion	of	the	universe.

Which	means	you	should	care	0%.

$

How	to	Break	It
Again,	go	through	this	and	try	to	break	the	printf	by	passing	in	the	wrong
arguments.	See	what	happens	if	you	try	to	print	out	the	nul_byte	variable
along	with	%s	versus	%c.	When	you	break	it,	run	it	under	the	debugger	to	see
what	it	says	about	what	you	did.

Extra	Credit
•	Make	the	number	you	assign	to	universe_of_defects	various	sizes
until	you	get	a	warning	from	the	compiler.
•	What	do	these	really	huge	numbers	actually	print	out?
•	Change	long	to	unsigned	long	and	try	to	find	the	number	that	makes
it	too	big.
•	Go	search	online	to	find	out	what	unsigned	does.
•	Try	to	explain	to	yourself	(before	I	do	in	the	next	exercise)	why	you	can
multiply	a	char	and	an	int.

Exercise	8.	If,	Else-If,	Else

In	C,	there	really	isn’t	a	Boolean	type.	Instead,	any	integer	that’s	0	is	false	or
otherwise	it’s	true.	In	the	last	exercise,	the	expression	argc	>	1	actually
resulted	in	1	or	0,	not	an	explicit	True	or	False	like	in	Python.	This	is	another
example	of	C	being	closer	to	how	a	computer	works,	because	to	a	computer,
truth	values	are	just	integers.
However,	C	does	have	a	typical	if-statement	that	uses	this	numeric	idea	of
true	and	false	to	do	branching.	It’s	fairly	similar	to	what	you	would	do	in	Python
and	Ruby,	as	you	can	see	in	this	exercise:

ex8.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2
	3			int	main(int	argc,	char	*argv[])
	4			{
	5							int	i	=	0;
	6
	7							if	(argc	==	1)	{
	8											printf("You	only	have	one	argument.	You	suck.\n");
	9							}	else	if	(argc	>	1	&&	argc	<	4)	{
10											printf("Here's	your	arguments:\n");
11
12											for	(i	=	0;	i	<	argc;	i++)	{
13															printf("%s	",	argv[i]);
14											}
15											printf("\n");
16							}	else	{
17											printf("You	have	too	many	arguments.	You	suck.\n");
18							}
19
20							return	0;
21			}

The	format	for	the	if-statement	is	this:
if(TEST)	{
				CODE;
}	else	if(TEST)	{
				CODE;
}	else	{
				CODE;

}

This	is	like	most	other	languages	except	for	some	specific	C	differences:
•	As	mentioned	before,	the	TEST	parts	are	false	if	they	evaluate	to	0,	or
otherwise	true.
•	You	have	to	put	parentheses	around	the	TEST	elements,	while	some	other
languages	let	you	skip	that.
•	You	don’t	need	the	{}	braces	to	enclose	the	code,	but	it	is	very	bad	form	to
not	use	them.	The	braces	make	it	clear	where	one	branch	of	code	begins
and	ends.	If	you	don’t	include	them	then	obnoxious	errors	come	up.

Other	than	that,	the	code	works	the	way	it	does	in	most	other	languages.	You
don’t	need	to	have	either	else	if	or	else	parts.

What	You	Should	See
This	one	is	pretty	simple	to	run	and	try	out:

Exercise	8	Session

Click	here	to	view	code	image

$	make	ex8
cc	-Wall	-g				ex8.c			-o	ex8

$./ex8
You	only	have	one	argument.	You	suck.

$./ex8	one
Here's	your	arguments:

./ex8	one

$./ex8	one	two
Here's	your	arguments:

./ex8	one	two

$./ex8	one	two	three
You	have	too	many	arguments.	You	suck.

$

How	to	Break	It
This	one	isn’t	easy	to	break	because	it’s	so	simple,	but	try	messing	up	the	tests	in
the	if-statement:

•	Remove	the	else	at	the	end,	and	the	program	won’t	catch	the	edge	case.
•	Change	the	&&	to	a	||	so	you	get	an	or	instead	of	an	and	test	and	see	how
that	works.

Extra	Credit
•	You	were	briefly	introduced	to	&&,	which	does	an	and	comparison,	so	go
research	online	the	different	Boolean	operators.
•	Write	a	few	more	test	cases	for	this	program	to	see	what	you	can	come	up
with.
•	Is	the	first	test	really	saying	the	right	thing?	To	you,	the	first	argument
isn’t	the	same	first	argument	a	user	entered.	Fix	it.

Exercise	9.	While-Loop	and	Boolean	Expressions

The	first	looping	construct	I’ll	show	you	is	the	while-loop,	and	it’s	the
simplest,	useful	loop	you	could	possibly	use	in	C.	Here’s	this	exercise’s	code	for
discussion:

ex9.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2
	3			int	main(int	argc,	char	*argv[])
	4			{
	5							int	i	=	0;
	6							while	(i	<	25)	{
	7											printf("%d",	i);
	8											i++;
	9							}
10
11							return	0;
12			}

From	this	code,	and	from	your	memorization	of	the	basic	syntax,	you	can	see
that	a	while-loop	is	simply	this:

while(TEST)	{
				CODE;
}

It	simply	runs	the	CODE	as	long	as	TEST	is	true	(1).	So	to	replicate	how	the
for-loop	works,	we	need	to	do	our	own	initializing	and	incrementing	of	i.
Remember	that	i++	increments	i	with	the	post-increment	operator.
Refer	back	to	your	list	of	tokens	if	you	didn’t	recognize	that.

What	You	Should	See
The	output	is	basically	the	same,	so	I	just	did	it	a	little	differently	so	that	you	can
see	it	run	another	way.

Exercise	9	Session

Click	here	to	view	code	image

$	make	ex9
cc	-Wall	-g				ex9.c			-o	ex9

$./ex9
arg	0:	./ex9

state	0:	California

state	1:	Oregon

state	2:	Washington

state	3:	Texas

$
$./ex9	test	it
arg	0:	./ex9

arg	1:	test

arg	2:	it

state	0:	California

state	1:	Oregon

state	2:	Washington

state	3:	Texas

$

How	to	Break	It
There	are	several	ways	to	get	a	while-loop	wrong,	so	I	don’t	recommend	you
use	it	unless	you	must.	Here	are	a	few	easy	ways	to	break	it:

•	Forget	to	initialize	the	first	int	i;.	Depending	on	what	i	starts	with,	the
loop	might	not	run	at	all,	or	run	for	an	extremely	long	time.
•	Forget	to	initialize	the	second	loop’s	i	so	that	it	retains	the	value	from	the
end	of	the	first	loop.	Now	your	second	loop	might	or	might	not	run.
•	Forget	to	do	a	i++	increment	at	the	end	of	the	loop	and	you’ll	get	a
forever	loop,	one	of	the	dreaded	problems	common	in	the	first	decade	or
two	of	programming.

Extra	Credit
•	Make	the	loop	count	backward	by	using	i--	to	start	at	25	and	go	to	0.
•	Write	a	few	more	complex	while-loops	using	what	you	know	so	far.

Exercise	10.	Switch	Statements

In	other	languages,	like	Ruby,	you	have	a	switch-statement	that	can	take
any	expression.	Some	languages,	like	Python,	don’t	have	a	switch-
statement	because	an	if-statement	with	Boolean	expressions	is	about
the	same	thing.	For	these	languages,	switch-statements	are	more	like
alternatives	to	if-statements	and	work	the	same	internally.
In	C,	the	switch-statement	is	actually	quite	different	and	is	really	a	jump
table.	Instead	of	random	Boolean	expressions,	you	can	only	put	expressions	that
result	in	integers.	These	integers	are	used	to	calculate	jumps	from	the	top	of	the
switch	to	the	part	that	matches	that	value.	Here’s	some	code	to	help	you
understand	this	concept	of	jump	tables:

ex10.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2
	3			int	main(int	argc,	char	*argv[])
	4			{
	5							int	i	=	0;
	6
	7							//	go	through	each	string	in	argv
	8							//	why	am	I	skipping	argv[0]?
	9							for	(i	=	1;	i	<	argc;	i++)	{
10											printf("arg	%d:	%s\n",	i,	argv[i]);
11							}
12
13							//	let's	make	our	own	array	of	strings
14							char	*states[]	=	{
15											"California",	"Oregon",
16											"Washington",	"Texas"
17							};
18
19							int	num_states	=	4;
20
21							for	(i	=	0;	i	<	num_states;	i++)	{
22											printf("state	%d:	%s\n",	i,	states[i]);
23							}
24
25							return	0;
26			}

In	this	program,	we	take	a	single	command	line	argument	and	print	out	all
vowels	in	an	incredibly	tedious	way	to	demonstrate	a	switch-statement.
Here’s	how	the	switch-statement	works:

•	The	compiler	marks	the	place	in	the	program	where	the	switch-
statement	starts.	Let’s	call	this	location	Y.
•	It	then	evaluates	the	expression	in	switch(letter)	to	come	up	with	a
number.	In	this	case,	the	number	will	be	the	raw	ASCII	code	of	the	letter	in
argv[1].
•	The	compiler	also	translates	each	of	the	case	blocks	like	case	'A':
into	a	location	in	the	program	that’s	that	far	away.	So	the	code	under	case
'A'	is	at	Y	+	A	in	the	program.
•	It	then	does	the	math	to	figure	out	where	Y	+	letter	is	located	in	the
switch-statement,	and	if	it’s	too	far,	then	it	adjusts	it	to	Y	+	default.
•	Once	it	knows	the	location,	the	program	jumps	to	that	spot	in	the	code,	and
then	continues	running.	This	is	why	you	have	break	on	some	of	the
case	blocks	but	not	on	others.
•	If	'a'	is	entered,	then	it	jumps	to	case	'a'.	There’s	no	break,	so	it
“falls	through”	to	the	one	right	under	it,	case	'A',	which	has	code	and	a
break.
•	Finally,	it	runs	this	code,	hits	the	break,	and	then	exits	out	of	the	switch-
statement	entirely.

This	is	a	deep	dive	into	how	the	switch-statement	works,	but	in	practice
you	just	have	to	remember	a	few	simple	rules:

•	Always	include	a	default:	branch	so	that	you	catch	any	missing	inputs.
•	Don’t	allow	fall	through	unless	you	really	want	it.	It’s	also	a	good	idea	to
add	a	//fallthrough	comment	so	people	know	it’s	on	purpose.
•	Always	write	the	case	and	the	break	before	you	write	the	code	that
goes	in	it.
•	Try	to	use	if-statements	instead	if	you	can.

What	You	Should	See
Here’s	an	example	of	me	playing	with	this,	and	also	demonstrating	various	ways
to	pass	in	the	argument:

Exercise	10	Session

Click	here	to	view	code	image

$	make	ex10
cc	-Wall	-gex10.c			-o	ex10

$./ex10
ERROR:	You	need	one	argument.

$
$./ex10	Zed
0:	Z	is	not	a	vowel

1:	'E'

2:	d	is	not	a	vowel

$
$./ex10	Zed	Shaw
ERROR:	You	need	one	argument.

$
$./ex10	"Zed	Shaw"
0:	Z	is	not	a	vowel

1:	'E'

2:	d	is	not	a	vowel

3:			is	not	a	vowel

4:	S	is	not	a	vowel

5:	h	is	not	a	vowel

6:	'A'

7:	w	is	not	a	vowel

$

Remember	that	there’s	an	if-statement	at	the	top	that	exits	with	a	return
1;	when	you	don’t	provide	enough	arguments.	A	return	that’s	not	0	indicates	to
the	OS	that	the	program	had	an	error.	You	can	test	for	any	value	that’s	greater
than	0	in	scripts	and	other	programs	to	figure	out	what	happened.

How	to	Break	It
It’s	incredibly	easy	to	break	a	switch-statement.	Here	are	just	a	few	ways
you	can	mess	one	of	these	up:

•	Forget	a	break,	and	it’ll	run	two	or	more	blocks	of	code	you	don’t	want	it
to	run.
•	Forget	a	default,	and	it’ll	silently	ignore	values	you	forgot.
•	Accidentally	put	a	variable	into	the	switch	that	evaluates	to	something
unexpected,	like	an	int,	which	becomes	weird	values.
•	Use	uninitialized	values	in	the	switch.

You	can	also	break	this	program	in	a	few	other	ways.	See	if	you	can	bust	it

yourself.

Extra	Credit
•	Write	another	program	that	uses	math	on	the	letter	to	convert	it	to
lowercase,	and	then	remove	all	of	the	extraneous	uppercase	letters	in	the
switch.
•	Use	the	','	(comma)	to	initialize	letter	in	the	for-loop.
•	Make	it	handle	all	of	the	arguments	you	pass	it	with	yet	another	for-
loop.
•	Convert	this	switch-statement	to	an	if-statement.	Which	do
you	like	better?
•	In	the	case	for	'Y'	I	have	the	break	outside	of	the	if-statement.
What’s	the	impact	of	this,	and	what	happens	if	you	move	it	inside	of	the
if-statement.	Prove	to	yourself	that	you’re	right.

Exercise	11.	Arrays	and	Strings

This	exercise	shows	you	that	C	stores	its	strings	simply	as	an	array	of	bytes,
terminated	with	the	'\0'	(nul)	byte.	You	probably	clued	in	to	this	in	the	last
exercise	since	we	did	it	manually.	Here’s	how	we	do	it	in	another	way	to	make	it
even	clearer	by	comparing	it	to	an	array	of	numbers:

ex11.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2
	3			int	main(int	argc,	char	*argv[])
	4			{
	5							int	numbers[4]	=	{	0	};
	6							char	name[4]	=	{	'a'	};
	7
	8							//	first,	print	them	out	raw
	9							printf("numbers:	%d	%d	%d	%d\n",
10															numbers[0],	numbers[1],	numbers[2],	numbers[3]);
11
12							printf("name	each:	%c	%c	%c	%c\n",
13															name[0],	name[1],	name[2],	name[3]);
14
15							printf("name:	%s\n",	name);
16
17							//	set	up	the	numbers
18							numbers[0]	=	1;
19							numbers[1]	=	2;
20							numbers[2]	=	3;
21							numbers[3]	=	4;
22
23							//	set	up	the	name
24							name[0]	=	'Z';
25							name[1]	=	'e';
26							name[2]	=	'd';
27							name[3]	=	'\0';
28
29							//	then	print	them	out	initialized
30							printf("numbers:	%d	%d	%d	%d\n",
31															numbers[0],	numbers[1],	numbers[2],	numbers[3]);
32
33							printf("name	each:	%c	%c	%c	%c\n",
34															name[0],	name[1],	name[2],	name[3]);
35
36							//	print	the	name	like	a	string

37							printf("name:	%s\n",	name);
38
39							//	another	way	to	use	name
40							char	*another	=	"Zed";
41
42							printf("another:	%s\n",	another);
43
44							printf("another	each:	%c	%c	%c	%c\n",
45															another[0],	another[1],	another[2],	another[3]);
46
47							return	0;
48			}

In	this	code,	we	set	up	some	arrays	the	tedious	way,	by	assigning	a	value	to	each
element.	In	numbers,	we	are	setting	up	numbers;	but	in	name,	we’re	actually
building	a	string	manually.

What	You	Should	See
When	you	run	this	code,	you	should	first	see	the	arrays	printed	with	their
contents	initialized	to	0	(zero),	then	in	its	initialized	form.

Exercise	11	Session

Click	here	to	view	code	image

$	make	ex11
cc	-Wall	-g				ex11.c		-o	ex11

$./ex11
numbers:	0	0	0	0

name	each:	a

name:	a

numbers:	1	2	3	4

name	each:	Z	e	d

name:	Zed

another:	Zed

another	each:	Z	e	d

$

You’ll	notice	some	interesting	things	about	this	program:
•	I	didn’t	have	to	give	all	four	elements	of	the	arrays	to	initialize	them.	This
is	a	shortcut	in	C.	If	you	set	just	one	element,	it’ll	fill	in	the	rest	with	0.
•	When	each	element	of	numbers	is	printed,	they	all	come	out	as	0.
•	When	each	element	of	name	is	printed,	only	the	first	element	'a'	shows
up	because	the	'\0'	character	is	special	and	won’t	display.

•	Then	the	first	time	we	print	name,	it	only	prints	the	letter	a.	This	is
because	the	array	will	be	filled	with	0	after	the	first	'a'	in	the	initializer,
so	the	string	is	correctly	terminated	by	a	'\0'	character.
•	We	then	set	up	the	arrays	with	a	tedious,	manual	assignment	to	each	thing
and	print	them	out	again.	Look	at	how	they	changed.	Now	the	numbers	are
set,	but	do	you	see	how	the	name	string	prints	my	name	correctly?
•	There	are	also	two	syntaxes	for	doing	a	string:	char	name[4]	=
{'a'}	on	line	6	versus	char	*another	=	"name"	on	line	44.	The
first	one	is	less	common	and	the	second	is	what	you	should	use	for	string
literals	like	this.

Notice	that	I’m	using	the	same	syntax	and	style	of	code	to	interact	with	both	an
array	of	integers	and	an	array	of	characters,	but	printf	thinks	that	the	name	is
just	a	string.	Again,	this	is	because	the	C	language	doesn’t	differentiate	between
a	string	and	an	array	of	characters.
Finally,	when	you	make	string	literals	you	should	typically	use	the	char
*another	=	"Literal"	syntax.	This	works	out	to	be	the	same	thing,	but
it’s	more	idiomatic	and	easier	to	write.

How	to	Break	It
The	source	of	almost	all	bugs	in	C	come	from	forgetting	to	have	enough	space,
or	forgetting	to	put	a	'\0'	at	the	end	of	a	string.	In	fact,	it’s	so	common	and
hard	to	get	right	that	the	majority	of	good	C	code	just	doesn’t	use	C-style	strings.
In	later	exercises,	we’ll	actually	learn	how	to	avoid	C	strings	completely.
In	this	program,	the	key	to	breaking	it	is	to	forget	to	put	the	'\0'	character	at
the	end	of	the	strings.	There	are	a	few	ways	to	do	this:

•	Get	rid	of	the	initializers	that	set	up	name.
•	Accidentally	set	name[3]	=	'A';	so	that	there’s	no	terminator.
•	Set	the	initializer	to	{'a','a','a','a'}	so	that	there	are	too	many
'a'	characters	and	no	space	for	the	'\0'	terminator.

Try	to	come	up	with	some	other	ways	to	break	this,	and	run	all	of	these	under	the
debugger	so	you	can	see	exactly	what’s	going	on	and	what	the	errors	are	called.
Sometimes	you’ll	make	these	mistakes	and	even	a	debugger	can’t	find	them.	Try
moving	where	you	declare	the	variables	to	see	if	you	get	an	error.	This	is	part	of
the	voodoo	of	C:	Sometimes	just	where	the	variable	is	located	changes	the	bug.

Extra	Credit
•	Assign	the	characters	into	numbers,	and	then	use	printf	to	print	them
one	character	at	a	time.	What	kind	of	compiler	warnings	do	you	get?
•	Do	the	inverse	for	name,	trying	to	treat	it	like	an	array	of	int	and	print	it
out	one	int	at	a	time.	What	does	the	debugger	think	of	that?
•	In	how	many	other	ways	can	you	print	this	out?
•	If	an	array	of	characters	is	4	bytes	long,	and	an	integer	is	4	bytes	long,	then
can	you	treat	the	whole	name	array	like	it’s	just	an	integer?	How	might
you	accomplish	this	crazy	hack?
•	Take	out	a	piece	of	paper	and	draw	each	of	these	arrays	as	a	row	of	boxes.
Then	do	the	operations	you	just	did	on	paper	to	see	if	you	get	them	right.
•	Convert	name	to	be	in	the	style	of	another	and	see	if	the	code	keeps
working.

Exercise	12.	Sizes	and	Arrays

In	the	last	exercise,	you	did	math	but	with,	a	'\0'	(nul)	character.	This	may
seem	odd	if	you’re	coming	from	other	languages,	since	they	try	to	treat	strings
and	byte	arrays	as	different	beasts.	C	treats	strings	as	just	arrays	of	bytes,	and	it’s
only	the	different	printing	functions	that	recognize	a	difference.
Before	I	can	really	explain	the	significance	of	this,	I	have	to	introduce	a	couple
more	concepts:	sizeof	and	arrays.	Here’s	the	code	we’ll	be	talking	about:

ex12.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2
	3			int	main(int	argc,	char	*argv[])
	4			{
	5							int	areas[]	=	{	10,	12,	13,	14,	20	};
	6							char	name[]	=	"Zed";
	7							char	full_name[]	=	{
	8											'Z',	'e',	'd',
	9											'	',	'A',	'.',	'	',
10											'S',	'h',	'a',	'w',	'\0'
11							};
12
13							//	WARNING:	On	some	systems	you	may	have	to	change	the
14							//	%ld	in	this	code	to	a	%u	since	it	will	use	unsigned	ints
15							printf("The	size	of	an	int:	%ld\n",	sizeof(int));
16							printf("The	size	of	areas	(int[]):	%ld\n",	sizeof(areas));
17							printf("The	number	of	ints	in	areas:	%ld\n",
18															sizeof(areas)	/	sizeof(int));
19							printf("The	first	area	is	%d,	the	2nd	%d.\n",	areas[0],
areas[1]);
20
21							printf("The	size	of	a	char:	%ld\n",	sizeof(char));
22							printf("The	size	of	name	(char[]):	%ld\n",	sizeof(name));
23							printf("The	number	of	chars:	%ld\n",	sizeof(name)	/
sizeof(char));

24
25							printf("The	size	of	full_name	(char[]):	%ld\n",
sizeof(full_name));
26							printf("The	number	of	chars:	%ld\n",
27															sizeof(full_name)	/	sizeof(char));
28
29							printf("name=\"%s\"	and	full_name=\"%s\"\n",	name,
full_name);

30
31							return	0;
32			}

In	this	code,	we	create	a	few	arrays	with	different	data	types	in	them.	Because
arrays	of	data	are	so	central	to	how	C	works,	there	are	a	huge	number	of	ways	to
create	them.	For	now,	just	use	the	syntax	type	name[]	=
{initializer};	and	we’ll	explore	more	later.	What	this	syntax	means	is,	“I
want	an	array	of	type	that	is	initialized	to	{..}.”	When	C	sees	this,	it	knows	to:

•	Look	at	the	type,	and	in	this	first	case,	it’s	int.
•	Look	at	the	[]	and	see	that	there’s	no	length	given.
•	Look	at	the	initializer	{10,	12,	13,	14,	20}	and	figure	out	that
you	want	those	five	integers	in	your	array.
•	Create	a	piece	of	memory	in	the	computer	that	can	hold	5	integers	one
after	another.
•	Take	the	name	you	want,	areas,	and	assign	it	this	location.

In	the	case	of	areas,	it’s	creating	an	array	of	five	integers	that	contain	those
numbers.	When	it	gets	to	char	name[]	=	"Zed";	it’s	doing	the	same
thing,	except	it’s	creating	an	array	of	three	characters	and	assigning	that	to
name.	The	final	array	we	make	is	full_name,	but	we	use	the	annoying	syntax
of	spelling	it	out	one	character	at	a	time.	To	C,	name	and	full_name	are
identical	methods	of	creating	a	char	array.
In	the	rest	of	the	file,	we’re	using	a	keyword	called	sizeof	to	ask	C	how	big
things	are	in	bytes.	C	is	all	about	the	size	and	location	of	pieces	of	memory,	and
what	you	do	with	them.	To	help	you	keep	this	straight,	it	gives	you	sizeof	so
that	you	can	ask	how	big	something	is	before	you	work	with	it.
This	is	where	stuff	gets	tricky,	so	let’s	run	this	code	first	and	then	explain	it	later.

What	You	Should	See

Exercise	12	Session

Click	here	to	view	code	image

$	make	ex12
cc	-Wall	-g				ex12.c			-o	ex12

$./ex12
The	size	of	an	int:	4

The	size	of	areas	(int[]):	20

The	number	of	ints	in	areas:	5

The	first	area	is	10,	the	2nd	12.

The	size	of	a	char:	1

The	size	of	name	(char[]):	4

The	number	of	chars:	4

The	size	of	full_name	(char[]):	12

The	number	of	chars:	12

name="Zed"	and	full_name="Zed	A.	Shaw"

$

Now	you	see	the	output	of	these	different	printf	calls	and	start	to	get	a
glimpse	of	what	C	is	doing.	Your	output	could	actually	be	totally	different	from
mine,	since	your	computer	might	have	different	size	integers.	I’ll	go	through	my
output:

5	My	computer	thinks	an	int	is	4	bytes	in	size.	Your	computer	might	use	a
different	size	if	it’s	a	32-bit	versus	64-bit	CPU.

6	The	areas	array	has	five	integers	in	it,	so	it	makes	sense	that	my
computer	requires	20	bytes	to	store	it.

7	If	we	divide	the	size	of	areas	by	the	size	of	an	int,	then	we	get	five
elements.	Looking	at	the	code,	this	matches	what	we	put	in	the	initializer.

8	We	then	did	an	array	access	to	get	areas[0]	and	areas[1],	which
means	C	is	zero	indexed	like	Python	and	Ruby.

9-11	We	repeat	this	for	the	name	array,	but	do	you	notice	something	odd
about	the	size	of	the	array?	It	says	it’s	4	bytes	long,	but	we	only	typed
“Zed”	for	three	characters.	Where’s	the	fourth	one	coming	from?

12-13	We	do	the	same	thing	with	full_name,	and	now	notice	it	gets	this
correct.
13	Finally,	we	just	print	out	the	name	and	full_name	to	prove	that	they
actually	are	“strings”	according	to	printf.

Make	sure	you	can	go	through	and	see	how	these	output	lines	match	what	was
created.	We’ll	be	building	on	this,	and	exploring	more	about	arrays	and	storage
next.

How	to	Break	It
Breaking	this	program	is	fairly	easy.	Try	some	of	these:

•	Get	rid	of	the	'\0'	at	the	end	of	full_name	and	rerun	it.	Run	it	under
the	debugger	too.	Now,	move	the	definition	of	full_name	to	the	top	of
main	before	areas.	Try	running	it	under	the	debugger	a	few	times	and

see	if	you	get	some	new	errors.	In	some	cases,	you	might	still	get	lucky
and	not	catch	any	errors.
•	Change	it	so	that	instead	of	areas[0]	you	try	to	print	areas[10].	See
what	the	debugger	thinks	of	that.
•	Try	other	ways	to	break	it	like	this,	doing	it	to	name	and	full_name,
too.

Extra	Credit
•	Try	assigning	to	elements	in	the	areas	array	with	areas[0]	=	100;
and	similar.
•	Try	assigning	to	elements	of	name	and	full_name.
•	Try	setting	one	element	of	areas	to	a	character	from	name.
•	Search	online	for	the	different	sizes	used	for	integers	on	different	CPUs.

Exercise	13.	For-Loops	and	Arrays	of	Strings

You	can	make	an	array	of	various	types	with	the	idea	that	a	string	and	an	array	of
bytes	are	the	same	thing.	The	next	step	is	to	do	an	array	that	has	strings	in	it.
We’ll	also	introduce	your	first	looping	construct,	the	for-loop,	to	help	print
out	this	new	data	structure.
The	fun	part	of	this	is	that	there’s	been	an	array	of	strings	hiding	in	your
programs	for	a	while	now:	the	char	*argv[]	in	the	main	function
arguments.	Here’s	code	that	will	print	out	any	command	line	arguments	you	pass
it:

ex13.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2
	3			int	main(int	argc,	char	*argv[])
	4			{
	5							if	(argc	!=	2)	{
	6											printf("ERROR:	You	need	one	argument.\n");
	7											//	this	is	how	you	abort	a	program
	8											return	1;
	9							}
10
11							int	i	=	0;
12							for	(i	=	0;	argv[1][i]	!=	'\0';	i++)	{
13											char	letter	=	argv[1][i];
14
15											switch	(letter)	{
16															case	'a':
17															case	'A':
18																			printf("%d:	'A'\n",	i);
19																			break;
20
21															case	'e':
22															case	'E':
23																			printf("%d:	'E'\n",	i);
24																			break;
25
26															case	'i':
27															case	'I':
28																			printf("%d:	'I'\n",	i);
29																			break;
30

31															case	'o':
32															case	'O':
33																			printf("%d:	'O'\n",	i);
34																			break;
35
36															case	'u':
37															case	'U':
38																			printf("%d:	'U'\n",	i);
39																			break;
40
41															case	'y':
42															case	'Y':
43																			if	(i	>	2)	{
44																							//	it's	only	sometimes	Y
45																							printf("%d:	'Y'\n",	i);
46																			}
47																			break;
48
49															default:
50																			printf("%d:	%c	is	not	a	vowel\n",	i,	letter);
51											}
52							}
53
54							return	0;
55			}

The	format	of	a	for-loop	is	this:
Click	here	to	view	code	image

for(INITIALIZER;	TEST;	INCREMENTER)	{
					CODE;
}

Here’s	how	the	for-loop	works:
•	The	INITIALIZER	is	code	that’s	run	to	set	up	the	loop,	which	in	this
case	is	i	=	0.
•	Next,	the	TEST	Boolean	expression	is	checked.	If	it’s	false	(0),	then	CODE
is	skipped,	doing	nothing.
•	The	CODE	runs	and	does	whatever	it	does.
•	After	the	CODE	runs,	the	INCREMENTER	part	is	run,	usually	incrementing
something,	such	as	in	i++.
•	And	it	continues	again	with	step	2	until	the	TEST	is	false	(0).

This	for-loop	is	going	through	the	command	line	arguments	using	argc	and
argv	like	this:

•	The	OS	passes	each	command	line	argument	as	a	string	in	the	argv	array.
The	program’s	name	(./ex10)	is	at	0,	with	the	rest	coming	after	it.
•	The	OS	also	sets	argc	to	the	number	of	arguments	in	the	argv	array,	so
you	can	process	them	without	going	past	the	end.	Remember	that	if	you
give	one	argument,	the	program’s	name	is	the	first,	so	argc	is	2.
•	The	for-loop	sets	up	with	i	=	1	in	the	initializer.
•	It	then	tests	that	i	is	less	than	argc	with	the	test	i	<	argc.	Since	$1	<
2$,	it’ll	pass.
•	It	then	runs	the	code	that	just	prints	out	the	i	and	uses	i	to	index	into
argv.
•	The	incrementer	is	then	run	using	the	i++	syntax,	which	is	a	handy	way	of
writing	i	=	i	+	1.
•	This	then	repeats	until	i	<	argc	is	finally	false	(0),	the	loop	exits,	and
the	program	continues	on.

What	You	Should	See
To	play	with	this	program,	then,	you	have	to	run	it	two	ways.	The	first	way	is	to
pass	in	some	command	line	arguments	so	that	argc	and	argv	get	set.	The
second	is	to	run	it	with	no	arguments	so	you	can	see	that	the	first	for-loop
doesn’t	run	if	i	<	argc	is	false.

Exercise	13	Session

Click	here	to	view	code	image

$	make	ex13
cc	-Wall	-g				ex13.c			-o	ex13

$./ex13	i	am	a	bunch	of	arguments
arg	1:	i

arg	2:	am

arg	3:	a

arg	4:	bunch

arg	5:	of

arg	6:	arguments

state	0:	California

state	1:	Oregon

state	2:	Washington

state	3:	Texas

$
$./ex13

state	0:	California

state	1:	Oregon

state	2:	Washington

state	3:	Texas

$

Understanding	Arrays	of	Strings
In	C	you	make	an	array	of	strings	by	combining	the	char	*str	=	"blah"
syntax	with	the	char	str[]	=	{'b','l','a','h'}	syntax	to	construct
a	two-dimensional	array.	The	syntax	char	*states[]	=	{...}	on	line	14
is	this	two-dimensional	combination,	each	string	being	one	element,	and	each
character	in	the	string	being	another.
Confusing?	The	concept	of	multiple	dimensions	is	something	most	people	never
think	about,	so	what	you	should	do	is	build	this	array	of	strings	on	paper:

•	Make	a	grid	with	the	index	of	each	string	on	the	left.
•	Then	put	the	index	of	each	character	on	the	top.
•	Then	fill	in	the	squares	in	the	middle	with	what	single	character	goes	in
each	square.
•	Once	you	have	the	grid,	trace	through	the	code	using	this	grid	of	paper.

Another	way	to	figure	this	is	out	is	to	build	the	same	structure	in	a	programming
language	you	are	more	familiar	with,	like	Python	or	Ruby.

How	to	Break	It
•	Take	your	favorite	other	language	and	use	it	to	run	this	program,	but
include	as	many	command	line	arguments	as	possible.	See	if	you	can	bust
it	by	giving	it	way	too	many	arguments.
•	Initialize	i	to	0	and	see	what	that	does.	Do	you	have	to	adjust	argc	as
well,	or	does	it	just	work?	Why	does	0-based	indexing	work	here?
•	Set	num_states	wrong	so	that	it’s	a	higher	value	and	see	what	it	does.

Extra	Credit
•	Figure	out	what	kind	of	code	you	can	put	into	the	parts	of	a	for-loop.
•	Look	up	how	to	use	the	comma	character	(,)	to	separate	multiple
statements	in	the	parts	of	the	for-loop,	but	between	the	semicolon
characters	(;).
•	Read	about	what	a	NULL	is	and	try	to	use	it	in	one	of	the	elements	from

the	states	array	to	see	what	it’ll	print.
•	See	if	you	can	assign	an	element	from	the	states	array	to	the	argv
array	before	printing	both.	Try	the	inverse.

Exercise	14.	Writing	and	Using	Functions

Up	until	now,	we’ve	just	used	functions	that	are	part	of	the	stdio.h	header
file.	In	this	exercise,	you’ll	write	some	functions	and	use	some	other	functions.

ex14.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2			#include	<ctype.h>
	3
	4			//	forward	declarations
	5			int	can_print_it(char	ch);
	6			void	print_letters(char	arg[]);
	7
	8			void	print_arguments(int	argc,	char	*argv[])
	9			{
10							int	i	=	0;
11
12							for	(i	=	0;	i	<	argc;	i++)	{
13											print_letters(argv[i]);
14							}
15			}
16
17			void	print_letters(char	arg[])
18			{
19							int	i	=	0;
20
21							for	(i	=	0;	arg[i]	!=	'\0';	i++)	{
22											char	ch	=	arg[i];
23
24											if	(can_print_it(ch))	{
25															printf("'%c'	==	%d	",	ch,	ch);
26											}
27							}
28
29							printf("\n");
30			}
31
32			int	can_print_it(char	ch)
33			{
34							return	isalpha(ch)	||	isblank(ch);
35			}
36
37			int	main(int	argc,	char	*argv[])
38			{
39							print_arguments(argc,	argv);

40							return	0;
41			}

In	this	example	we’re	creating	functions	to	print	out	the	characters	and	ASCII
codes	for	any	that	are	alpha	or	blanks.	Here’s	the	breakdown:

ex14.c:2	Include	a	new	header	file,	so	we	can	gain	access	to	isalpha	and
isblank.

ex14.c:5-6	Tell	C	that	you’ll	be	using	some	functions	later	in	your	program
without	actually	having	to	define	them.	This	is	a	forward	declaration	and	it
solves	the	chicken-and-egg	problem	of	needing	to	use	a	function	before
you’ve	defined	it.

ex14.c:8-15	Define	the	print_arguments	function,	which	knows	how	to
print	the	same	array	of	strings	that	main	typically	gets.

ex14.c:17-30	Define	the	next	function,	print_letters,	which	is	called
by	print_arguments	and	knows	how	to	print	each	of	the	characters
and	their	codes.

ex14.c:32-35	Define	can_print_it,	which	simply	returns	the	truth	value
(0	or	1)	of	isalpha(ch)	||	isblank(ch)	back	to	its	caller,
print_letters.

ex14.c:38-42	Finally,	main	simply	calls	print_arguments	to	make	the
whole	chain	of	functions	go.

I	shouldn’t	have	to	describe	what’s	in	each	function,	because	they’re	all	things
you’ve	run	into	before.	What	you	should	be	able	to	see,	though,	is	that	I’ve
simply	defined	functions	the	same	way	you’ve	been	defining	main.	The	only
difference	is	you	have	to	help	C	out	by	telling	it	ahead	of	time	if	you’re	going	to
use	functions	it	hasn’t	encountered	yet	in	the	file.	That’s	what	the	forward
declarations	do.

What	You	Should	See
To	play	with	this	program,	you	just	feed	it	different	command	line	arguments,
which	get	passed	through	your	functions.	Here’s	me	playing	with	it	to
demonstrate:

Exercise	14	Session

Click	here	to	view	code	image

$	make	ex14
cc	-Wall	-g				ex14.c			-o	ex14

$./ex14
'e'	==	101	'x'	==	120

$./ex14	hi	this	is	cool
'e'	==	101	'x'	==	120

'h'	==	104	'i'	==	105

't'	==	116	'h'	==	104	'i'	==	105	's'	==	115

'i'	==	105	's'	==	115

'c'	==	99	'o'	==	111	'o'	==	111	'l'	==	108

$./ex14	"I	go	3	spaces"
'e'	==	101	'x'	==	120

'I'	==	73	'	'	==	32	'g'	==	103	'o'	==	111	'	'	==	32	'	'	==	32\

								's'	==	115	'p'	==	112	'a'	==	97	'c'	==	99	'e'	==	101	's'	==
115

$

The	isalpha	and	isblank	do	all	the	work	of	figuring	out	if	the	given
character	is	a	letter	or	a	blank.	When	I	do	the	last	run,	it	prints	everything	but	the
3	character	since	that’s	a	digit.

How	to	Break	It
There	are	two	different	kinds	of	breaking	in	this	program:

•	Remove	the	forward	declarations	to	confuse	the	compiler	and	cause	it	to
complain	about	can_print_it	and	print_letters.
•	When	you	call	print_arguments	inside	main,	try	adding	1	to	argc
so	that	it	goes	past	the	end	of	the	argv	array.

Extra	Credit
•	Rework	these	functions	so	that	you	have	fewer	functions.	For	example,	do
you	really	need	can_print_it?
•	Have	print_arguments	figure	out	how	long	each	argument	string	is
by	using	the	strlen	function,	and	then	pass	that	length	to
print_letters.	Then,	rewrite	print_letters	so	it	only	processes
this	fixed	length	and	doesn’t	rely	on	the	'\0'	terminator.	You’ll	need	the
#include	<string.h>	for	this.
•	Use	man	to	look	up	information	on	isalpha	and	isblank.	Use	other
similar	functions	to	print	out	only	digits	or	other	characters.

•	Go	read	about	how	other	people	like	to	format	their	functions.	Never	use
the	K&R	syntax	(it’s	antiquated	and	confusing)	but	understand	what	it’s
doing	in	case	you	run	into	someone	who	likes	it.

Exercise	15.	Pointers,	Dreaded	Pointers

Pointers	are	famous	mystical	creatures	in	C.	I’ll	attempt	to	demystify	them	by
teaching	you	the	vocabulary	to	deal	with	them.	They	actually	aren’t	that
complex,	but	they’re	frequently	abused	in	weird	ways	that	make	them	hard	to
use.	If	you	avoid	the	stupid	ways	to	use	pointers,	then	they’re	fairly	easy.
To	demonstrate	pointers	in	a	way	that	we	can	talk	about	them,	I’ve	written	a
frivolous	program	that	prints	a	group	of	people’s	ages	in	three	different	ways.

ex15.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2
	3			int	main(int	argc,	char	*argv[])
	4			{
	5							//	create	two	arrays	we	care	about
	6							int	ages[]	=	{	23,	43,	12,	89,	2	};
	7							char	*names[]	=	{
	8											"Alan",	"Frank",
	9											"Mary",	"John",	"Lisa"
10							};
11
12							//	safely	get	the	size	of	ages
13							int	count	=	sizeof(ages)	/	sizeof(int);
14							int	i	=	0;
15
16							//	first	way	using	indexing
17							for	(i	=	0;	i	<	count;	i++)	{
18											printf("%s	has	%d	years	alive.\n",	names[i],	ages[i]);
19							}
20
21							printf("---\n");
22
23							//	set	up	the	pointers	to	the	start	of	the	arrays
24							int	*cur_age	=	ages;
25							char	**cur_name	=	names;
26
27							//	second	way	using	pointers
28							for	(i	=	0;	i	<	count;	i++)	{
29											printf("%s	is	%d	years	old.\n",
30																			*(cur_name	+	i),	*(cur_age	+	i));
31							}
32
33							printf("---\n");

34
35							//	third	way,	pointers	are	just	arrays
36							for	(i	=	0;	i	<	count;	i++)	{
37											printf("%s	is	%d	years	old	again.\n",	cur_name[i],
cur_age[i]);
38							}
39
40							printf("---\n");
41
42							//	fourth	way	with	pointers	in	a	stupid	complex	way
43							for	(cur_name	=	names,	cur_age	=	ages;
44															(cur_age	-	ages)	<	count;	cur_name++,	cur_age++)	{
45											printf("%s	lived	%d	years	so	far.\n",	*cur_name,
*cur_age);
46							}
47
48							return	0;
49			}

Before	explaining	how	pointers	work,	let’s	break	this	program	down	line	by	line
so	you	get	an	idea	of	what’s	going	on.	As	you	go	through	this	detailed
description,	try	to	answer	the	questions	for	yourself	on	a	piece	of	paper,	then	see
if	what	you	guessed	matches	my	description	of	pointers	later.

ex15.c:6-10	Create	two	arrays:	ages	storing	some	int	data,	and	names
storing	an	array	of	strings.

ex15.c:12-13	These	are	some	variables	for	our	for-loops	later.
ex15.c:16-19	This	is	just	looping	through	the	two	arrays	and	printing	how	old
each	person	is.	This	is	using	i	to	index	into	the	array.

ex15.c:24	Create	a	pointer	that	points	at	ages.	Notice	the	use	of	int	*	to
create	a	pointer	to	integer	type	of	pointer.	That’s	similar	to	char	*,	which
is	a	pointer	to	char,	and	a	string	is	an	array	of	chars.	Seeing	the	similarity
yet?

ex15.c:25	Create	a	pointer	that	points	at	names.	A	char	*	is	already	a
pointer	to	char,	so	that’s	just	a	string.	However,	you	need	two	levels	since
names	is	two-dimensional,	which	then	means	you	need	char	**	for	a
pointer	to	(a	pointer	to	char)	type.	Study	that	and	try	to	explain	it	to
yourself,	too.

ex15.c:28-31	Loop	through	ages	and	names	but	use	the	pointers	plus	an
offset	of	i	instead.	Writing	*(cur_name+i)	is	the	same	as	writing
name[i],	and	you	read	it	as	“the	value	of	(pointer	cur_name	plus	i).”

ex15.c:35-39	This	shows	how	the	syntax	to	access	an	element	of	an	array	is

the	same	for	a	pointer	and	an	array.
ex15.c:44-50	This	is	another	admittedly	insane	loop	that	does	the	same	thing
as	the	other	two,	but	instead	it	uses	various	pointer	arithmetic	methods:
ex15.c:44	Initialize	our	for-loop	by	setting	cur_name	and	cur_age
to	the	beginning	of	the	names	and	ages	arrays.

ex15.c:45	The	test	portion	of	the	for-loop	then	compares	the	distance
of	the	pointer	cur_age	from	the	start	of	ages.	Why	does	that	work?

ex15.c:46	The	increment	part	of	the	for-loop	then	increments	both
cur_name	and	cur_age	so	that	they	point	at	the	next	element	of	the
name	and	age	arrays.

ex15.c:48-49	The	pointers	cur_name	and	cur_age	are	now	pointing	at
one	element	of	the	arrays	that	they	work	on,	and	we	can	print	them	out
using	just	*cur_name	and	*cur_age,	which	means	“the	value	of
wherever	cur_name	is	pointing.”

This	seemingly	simple	program	has	a	large	amount	of	information,	and	my	goal
is	to	get	you	to	attempt	to	figure	pointers	out	for	yourself	before	I	explain	them.
Don’t	continue	until	you’ve	written	down	what	you	think	a	pointer	does.

What	You	Should	See
After	you	run	this	program,	try	to	trace	back	each	line	printed	out	to	the	line	in
the	code	that	produced	it.	If	you	have	to,	alter	the	printf	calls	to	make	sure
you’ve	got	the	right	line	number.

Exercise	15	Session

Click	here	to	view	code	image

$	make	ex15
cc	-Wall	-g				ex15.c			-o	ex15

$./ex15
Alan	has	23	years	alive.

Frank	has	43	years	alive.

Mary	has	12	years	alive.

John	has	89	years	alive.

Lisa	has	2	years	alive.

Alan	is	23	years	old.

Frank	is	43	years	old.

Mary	is	12	years	old.

John	is	89	years	old.

Lisa	is	2	years	old.

Alan	is	23	years	old	again.

Frank	is	43	years	old	again.

Mary	is	12	years	old	again.

John	is	89	years	old	again.

Lisa	is	2	years	old	again.

Alan	lived	23	years	so	far.

Frank	lived	43	years	so	far.

Mary	lived	12	years	so	far.

John	lived	89	years	so	far.

Lisa	lived	2	years	so	far.

$

Explaining	Pointers
When	you	type	something	like	ages[i],	you’re	indexing	into	the	array	ages,
and	you’re	using	the	number	that’s	held	in	i	to	do	it.	If	i	is	set	to	zero	then	it’s
the	same	as	typing	ages[0].	We’ve	been	calling	this	number	i	an	index	since
it’s	a	location	inside	ages	that	we	want.	It	could	also	be	called	an	address,
which	is	a	way	of	saying	“I	want	the	integer	in	ages	that’s	at	address	i.”
If	i	is	an	index,	then	what’s	ages?	To	C,	ages	is	a	location	in	the	computer’s
memory	where	all	of	these	integers	start.	It’s	also	an	address,	and	the	C	compiler
will	replace	ages	anywhere	you	type	it	with	the	address	of	the	very	first	integer
in	ages.	Another	way	to	think	of	ages	is	that	it’s	the	“address	of	the	first	integer
in	ages.”	But	here’s	the	trick:	ages	is	an	address	inside	the	entire	computer.	It’s
not	like	i	that’s	just	an	address	inside	ages.	The	ages	array	name	is	actually
an	address	in	the	computer.
That	leads	to	a	certain	realization:	C	thinks	your	whole	computer	is	one	massive
array	of	bytes.	Obviously,	this	isn’t	very	useful,	but	then	what	C	does	is	layer	on
top	of	this	massive	array	of	bytes	the	concept	of	types	and	sizes	of	those	types.
You	already	saw	how	this	worked	in	previous	exercises,	but	now	you	start	to	get
an	idea	of	how	C	is	doing	the	following	with	your	arrays:

•	Creating	a	block	of	memory	inside	your	computer
•	Pointing	the	name	ages	at	the	beginning	of	that	block
•	Indexing	into	the	block	by	taking	the	base	address	of	ages	and	getting	the
element	that’s	i	away	from	there
•	Converting	that	address	at	ages+i	into	a	valid	int	of	the	right	size,	such
that	the	index	works	to	return	what	you	want:	the	int	at	index	i

If	you	can	take	a	base	address,	like	ages,	and	add	to	it	with	another	address	like
i	to	produce	a	new	address,	then	can	you	just	make	something	that	points	right
at	this	location	all	the	time?	Yes,	and	that	thing	is	called	a	pointer.	This	is	what
the	pointers	cur_age	and	cur_name	are	doing:	They	are	variables	pointing	at
the	location	where	ages	and	names	live	in	your	computer’s	memory.	The
example	program	is	then	moving	them	around	or	doing	math	on	them	to	get
values	out	of	the	memory.	In	one	instance,	they	just	add	i	to	cur_age,	which	is
the	same	as	what	the	program	does	with	array[i].	In	the	last	for-loop,
though,	these	two	pointers	are	being	moved	on	their	own,	without	i	to	help	out.
In	that	loop,	the	pointers	are	treated	like	a	combination	of	array	and	integer
offset	rolled	into	one.
A	pointer	is	simply	an	address	pointing	somewhere	inside	the	computer’s
memory	with	a	type	specifier	so	that	you	get	the	right	size	of	data	with	it.	It’s
kind	of	like	a	combination	of	ages	and	i	rolled	into	one	data	type.	C	knows
where	pointers	are	pointing,	knows	the	data	type	they	point	at,	the	size	of	those
types,	and	how	to	get	the	data	for	you.	Just	like	with	i,	you	can	increment,
decrement,	subtract,	or	add	to	them.	But,	just	like	ages,	you	can	also	get	values
out,	put	new	values	in,	and	use	all	of	the	array	operations.
The	purpose	of	a	pointer	is	to	let	you	manually	index	data	into	blocks	or	memory
when	an	array	won’t	do	it	right.	In	almost	all	other	cases,	you	actually	want	to
use	an	array.	But,	there	are	times	when	you	have	to	work	with	a	raw	block	of
memory	and	that’s	where	a	pointer	comes	in.	A	pointer	gives	you	raw,	direct
access	to	a	block	of	memory	so	you	can	work	with	it.
The	final	thing	to	grasp	at	this	stage	is	that	you	can	use	either	syntax	for	most
array	or	pointer	operations.	You	can	take	a	pointer	to	something,	but	use	the
array	syntax	to	access	it.	You	can	take	an	array	and	do	pointer	arithmetic	with	it.

Practical	Pointer	Usage
There	are	primarily	four	useful	things	you	can	do	with	pointers	in	C	code:

•	Ask	the	OS	for	a	chunk	of	memory	and	use	a	pointer	to	work	with	it.	This
includes	strings	and	something	you	haven’t	seen	yet,	structs.
•	Pass	large	blocks	of	memory	(like	large	structs)	to	functions	with	a	pointer,
so	you	don’t	have	to	pass	the	whole	thing	to	them.
•	Take	the	address	of	a	function,	so	you	can	use	it	as	a	dynamic	callback.
•	Scan	complex	chunks	of	memory,	converting	bytes	off	of	a	network	socket
into	data	structures	or	parsing	files.

For	nearly	everything	else,	you	might	see	people	use	pointers	when	they	should
be	using	arrays.	In	the	early	days	of	C	programming,	people	used	pointers	to
speed	up	their	programs,	because	the	compilers	were	really	bad	at	optimizing
array	usage.	These	days,	the	syntax	to	access	an	array	versus	a	pointer	are
translated	into	the	same	machine	code	and	optimized	in	the	same	way,	so	it’s	not
as	necessary.	Instead,	you	should	go	with	arrays	whenever	you	can,	and	then
only	use	pointers	as	a	performance	optimization	if	you	absolutely	have	to.

The	Pointer	Lexicon
I’m	now	going	to	give	you	a	little	lexicon	to	use	for	reading	and	writing	pointers.
Whenever	you	run	into	a	complex	pointer	statement,	just	refer	to	this	and	break
it	down	bit	by	bit	(or	just	don’t	use	it	since	it’s	probably	not	good	code.)

type	*ptr	A	pointer	of	type	named	ptr
*ptr	The	value	of	whatever	ptr	is	pointed	at
*(ptr	+	i)	The	value	of	(whatever	ptr	is	pointed	at	plus	i)
&thing	The	address	of	thing
type	*ptr	=	&thing	A	pointer	of	type	named	ptr	set	to	the	address	of
thing

ptr++	Increment	where	ptr	points
We’ll	be	using	this	simple	lexicon	to	break	down	all	of	the	pointers	we	use	from
now	on	in	the	book.

Pointers	Aren’t	Arrays
No	matter	what,	you	should	never	think	that	pointers	and	arrays	are	the	same
thing.	They	aren’t	the	same	thing,	even	though	C	lets	you	work	with	them	in
many	of	the	same	ways.	For	example,	if	you	do	sizeof(cur_age)	in	the
code	above,	you	would	get	the	size	of	the	pointer,	not	the	size	of	what	it	points
at.	If	you	want	the	size	of	the	full	array,	you	have	to	use	the	array’s	name,	age,
as	I	did	on	line	12.
To	do:	Expand	on	this	some	more	with	what	doesn’t	work	the	same	on	pointers
and	arrays.

How	to	Break	It
You	can	break	this	program	by	simply	pointing	the	pointers	at	the	wrong	things:

•	Try	to	make	cur_age	point	at	names.	You’ll	need	to	use	a	C	cast	to

force	it,	so	go	look	that	up	and	try	to	figure	it	out.
•	In	the	final	for-loop,	try	getting	the	math	wrong	in	weird	ways.
•	Try	rewriting	the	loops	so	that	they	start	at	the	end	of	the	arrays	and	go	to
the	beginning.	This	is	harder	than	it	looks.

Extra	Credit
•	Rewrite	all	of	the	arrays	in	this	program	as	pointers.
•	Rewrite	all	of	the	pointers	as	arrays.
•	Go	back	to	some	of	the	other	programs	that	use	arrays	and	try	to	use
pointers	instead.
•	Process	command	line	arguments	using	just	pointers,	similar	to	how	you
did	names	in	this	one.
•	Play	with	combinations	of	getting	the	value	of	and	the	address	of	things.
•	Add	another	for-loop	at	the	end	that	prints	out	the	addresses	that	these
pointers	are	using.	You’ll	need	the	%p	format	for	printf.
•	Rewrite	this	program	to	use	a	function	for	each	of	the	ways	you’re	printing
out	things.	Try	to	pass	pointers	to	these	functions	so	that	they	work	on	the
data.	Remember	you	can	declare	a	function	to	accept	a	pointer,	but	just	use
it	like	an	array.
•	Change	the	for-loops	to	while-loops	and	see	what	works	better	for
which	kind	of	pointer	usage.

Exercise	16.	Structs	And	Pointers	to	Them

In	this	exercise,	you’ll	learn	how	to	make	a	struct,	point	a	pointer	at	it,	and
use	it	to	make	sense	of	internal	memory	structures.	We’ll	also	apply	the
knowledge	of	pointers	from	the	last	exercise,	and	then	get	you	constructing	these
structures	from	raw	memory	using	malloc.
As	usual,	here’s	the	program	we’ll	talk	about,	so	type	it	in	and	make	it	work.

ex16.c

Click	here	to	view	code	image

	1			#include	<stdio.h>
	2			#include	<assert.h>
	3			#include	<stdlib.h>
	4			#include	<string.h>
	5
	6			struct	Person	{
	7							char	*name;
	8							int	age;
	9							int	height;
10							int	weight;
11			};
12
13			struct	Person	*Person_create(char	*name,	int	age,	int	height,
14											int	weight)
15			{
16							struct	Person	*who	=	malloc(sizeof(struct	Person));
17							assert(who	!=	NULL);
18
19							who->name	=	strdup(name);
20							who->age	=	age;
21							who->height	=	height;
22							who->weight	=	weight;
23
24							return	who;
25			}
26
27			void	Person_destroy(struct	Person	*who)
28			{
29							assert(who	!=	NULL);
30
31							free(who->name);
32							free(who);
33			}
34

35			void	Person_print(struct	Person	*who)
36			{
37							printf("Name:	%s\n",	who->name);
38							printf("\tAge:	%d\n",	who->age);
39							printf("\tHeight:	%d\n",	who->height);
40							printf("\tWeight:	%d\n",	who->weight);
41			}
42
43			int	main(int	argc,	char	*argv[])
44			{
45							//	make	two	people	structures
46							struct	Person	*joe	=	Person_create("Joe	Alex",	32,	64,	140);
47
48							struct	Person	*frank	=	Person_create("Frank	Blank",	20,	72,
180);

49
50							//	print	them	out	and	where	they	are	in	memory
51							printf("Joe	is	at	memory	location	%p:\n",	joe);
52							Person_print(joe);
53
54							printf("Frank	is	at	memory	location	%p:\n",	frank);
55							Person_print(frank);
56
57							//	make	everyone	age	20	years	and	print	them	again
58							joe->age	+=	20;
59							joe->height	-=	2;
60							joe->weight	+=	40;
61							Person_print(joe);
62
63							frank->age	+=	20;
64							frank->weight	+=	20;
65							Person_print(frank);
66
67							//	destroy	them	both	so	we	clean	up
68							Person_destroy(joe);
69							Person_destroy(frank);
70
71							return	0;
72			}

To	describe	this	program,	I’m	going	to	use	a	different	approach	than	before.	I’m
not	going	to	give	you	a	line-by-line	breakdown	of	the	program,	I’m	going	to
make	you	write	it.	I’m	giving	you	a	guide	of	the	program	based	on	the	parts	it
contains,	and	your	job	is	write	out	what	each	line	does.

includes	I	include	some	new	header	files	here	to	gain	access	to	some	new
functions.	What	does	each	give	you?

struct	Person	This	is	where	I’m	creating	a	structure	that	has	four	elements	to
describe	a	person.	The	final	result	is	a	new	compound	type	that	lets	me
reference	these	elements	all	as	one	or	each	piece	by	name.	It’s	similar	to	a

row	of	a	database	table	or	a	class	in	an	object-oriented	programming
(OOP)	language.

function	Person_create	I	need	a	way	to	create	these	structures,	so	I’ve	made
a	function	to	do	that.	Here	are	the	important	things:
•	I	use	malloc	for	memory	allocate	to	ask	the	OS	to	give	me	a	piece	of
raw	memory.
•	I	pass	to	malloc	the	sizeof(struct	Person),	which	calculates
the	total	size	of	the	structure,	given	all	of	the	fields	inside	it.
•	I	use	assert	to	make	sure	that	I	have	a	valid	piece	of	memory	back
from	malloc.	There’s	a	special	constant	called	NULL	that	you	use	to
mean	“unset	or	invalid	pointer.”	This	assert	is	basically	checking	that
malloc	didn’t	return	a	NULL	invalid	pointer.
•	I	initialize	each	field	of	struct	Person	using	the	x->y	syntax,	to
say	what	part	of	the	structure	I	want	to	set.
•	I	use	the	strdup	function	to	duplicate	the	string	for	the	name,	just	to
make	sure	that	this	structure	actually	owns	it.	The	strdup	actually	is
like	malloc,	and	it	also	copies	the	original	string	into	the	memory	it
creates.

function	Person_destroy	If	I	have	a	create	function,	then	I	always	need	a
destroy	function,	and	this	is	what	destroys	Person	structures.	I	again
use	assert	to	make	sure	I’m	not	getting	bad	input.	Then	I	use	the
function	free	to	return	the	memory	I	got	with	malloc	and	strdup.	If
you	don’t	do	this,	you	get	a	memory	leak.

function	Person_print	I	then	need	a	way	to	print	out	people,	which	is	all	this
function	does.	It	uses	the	same	x->y	syntax	to	get	the	field	from	the
structure	to	print	it.

function	main	In	the	main	function,	I	use	all	of	the	previous	functions	and
the	struct	Person	to	do	the	following:
•	Create	two	people,	joe	and	frank.
•	Print	them	out,	but	notice	I’m	using	the	%p	format	so	you	can	see	where
the	program	has	actually	put	your	structure	in	memory.
•	Age	both	of	them	by	20	years	with	changes	to	their	bodies,	too.
•	Print	each	one	after	aging	them.
•	Finally,	destroy	the	structures	so	we	can	clean	up	correctly.

Go	through	this	description	carefully,	and	do	the	following:
•	Look	up	every	function	and	header	file	you	don’t	know.	Remember	that
you	can	usually	do	man	2	function	or	man	3	function,	and	it’ll
tell	you	about	it.	You	can	also	search	online	for	the	information.
•	Write	a	comment	above	each	and	every	single	line	that	says	what	the	line
does	in	English.
•	Trace	through	each	function	call	and	variable	so	you	know	where	it	comes
from	in	the	program.
•	Look	up	any	symbols	you	don’t	understand.

What	You	Should	See
After	you	augment	the	program	with	your	description	comments,	make	sure	it
really	runs	and	produces	this	output:

Exercise	16	Session

Click	here	to	view	code	image

$	make	ex16
cc	-Wall	-g				ex16.c			-o	ex16

$./ex16
Joe	is	at	memory	location	0xeba010:

Name:	Joe	Alex

		Age:	32
		Height:	64
		Weight:	140
Frank	is	at	memory	location	0xeba050:

Name:	Frank	Blank

		Age:	20
		Height:	72
		Weight:	180
Name:	Joe	Alex

		Age:	52
		Height:	62
		Weight:	180
Name:	Frank	Blank

		Age:	40
		Height:	72
		Weight:	200

Explaining	Structures
If	you’ve	done	the	work,	then	structures	should	be	making	sense,	but	let	me

explain	them	explicitly	just	to	make	sure	you’ve	understood	it.
A	structure	in	C	is	a	collection	of	other	data	types	(variables)	that	are	stored	in
one	block	of	memory	where	you	can	access	each	variable	independently	by
name.	They	are	similar	to	a	record	in	a	database	table,	or	a	very	simplistic	class
in	an	OOP	language.	We	can	break	one	down	this	way:

•	In	the	above	code,	we	make	a	struct	that	has	fields	for	a	person:	name,
age,	weight,	and	height.
•	Each	of	those	fields	has	a	type,	like	int.
•	C	then	packs	those	together	so	that	they	can	all	be	contained	in	one	single
struct.
•	The	struct	Person	is	now	a	compound	data	type,	which	means	you
can	refer	to	struct	Person	using	the	same	kinds	of	expressions	you
would	for	other	data	types.
•	This	lets	you	pass	the	whole	cohesive	grouping	to	other	functions,	as	you
did	with	Person_print.
•	You	can	then	access	the	individual	parts	of	a	struct	by	their	names
using	x->y	if	you’re	dealing	with	a	pointer.
•	There’s	also	a	way	to	make	a	struct	that	doesn’t	need	a	pointer,	and	you
use	the	x.y	(period)	syntax	to	work	with	it.	We’ll	do	this	in	the	Extra
Credit	section.

If	you	didn’t	have	struct,	you’d	need	to	figure	out	the	size,	packing,	and
location	of	pieces	of	memory	with	contents	like	this.	In	fact,	in	most	early
Assembler	code	(and	even	some	now),	this	is	what	you	would	do.	In	C,	you	can
let	it	handle	the	memory	structuring	of	these	compound	data	types	and	then
focus	on	what	you	do	with	them.

How	to	Break	It
The	ways	in	which	to	break	this	program	involve	how	you	use	the	pointers	and
the	malloc	system:

•	Try	passing	NULL	to	Person_destroy	see	what	it	does.	If	it	doesn’t
abort,	then	you	must	not	have	the	-g	option	in	your	Makefile's
CFLAGS.
•	Forget	to	call	Person_destroy	at	the	end,	and	then	run	it	under	the
debugger	to	see	it	report	that	you	forgot	to	free	the	memory.	Figure	out	the
options	you	need	to	pass	to	the	debugger	to	get	it	to	print	how	you	leaked

this	memory.
•	Forget	to	free	who->name	in	Person_destroy	and	compare	the
output.	Again,	use	the	right	options	to	see	how	the	debugger	tells	you
exactly	where	you	messed	up.
•	This	time,	pass	NULL	to	Person_print	and	see	what	the	debugger
thinks	of	that.	You’ll	figure	out	that	NULL	is	a	quick	way	to	crash	your
program.

Extra	Credit
In	this	part	of	the	exercise,	I	want	you	to	attempt	something	difficult	for	the	extra
credit:	Convert	this	program	to	not	use	pointers	and	malloc.	This	will	be	hard,
so	you’ll	want	to	research	the	following:

•	How	to	create	a	struct	on	the	stack,	just	like	you’re	making	any	other
variable.
•	How	to	initialize	it	using	the	x.y	(period)	character	instead	of	the	x->y
syntax.
•	How	to	pass	a	structure	to	other	functions	without	using	a	pointer.

Exercise	17.	Heap	and	Stack	Memory	Allocation

In	this	exercise,	you’re	going	to	make	a	big	leap	in	difficulty	and	create	an	entire
small	program	to	manage	a	database.	This	database	isn’t	very	efficient	and
doesn’t	store	very	much,	but	it	does	demonstrate	most	of	what	you’ve	learned	so
far.	It	also	introduces	memory	allocation	more	formally,	and	gets	you	started
working	with	files.	We	use	some	file	I/O	functions,	but	I	won’t	be	explaining
them	too	well	so	that	you	can	try	to	figure	them	out	first.
As	usual,	type	this	whole	program	in	and	get	it	working,	then	we’ll	discuss	it.

ex17.c

Click	here	to	view	code	image

		1			#include	<stdio.h>
		2			#include	<assert.h>
		3			#include	<stdlib.h>
		4			#include	<errno.h>
		5			#include	<string.h>
		6
		7			#define	MAX_DATA	512
		8			#define	MAX_ROWS	100
		9
	10				struct	Address	{
	11								int	id;
	12								int	set;
	13								char	name[MAX_DATA];
	14								char	email[MAX_DATA];
	15				};
	16
	17				struct	Database	{
	18								struct	Address	rows[MAX_ROWS];
	19				};
	20
	21				struct	Connection	{
	22								FILE	*file;
	23								struct	Database	*db;
	24				};
	25
	26				void	die(const	char	*message)
	27				{
	28								if	(errno)	{
	29												perror(message);
	30								}	else	{
	31												printf("ERROR:	%s\n",	message);
	32								}

	33
	34								exit(1);
	35				}
	36
	37				void	Address_print(struct	Address	*addr)
	38				{
	39								printf("%d	%s	%s\n",	addr->id,	addr->name,	addr->email);
	40				}
	41
	42				void	Database_load(struct	Connection	*conn)
	43				{
	44								int	rc	=	fread(conn->db,	sizeof(struct	Database),	1,	conn-
>file);
	45								if	(rc	!=	1)
	46												die("Failed	to	load	database.");
	47				}
	48
	49				struct	Connection	*Database_open(const	char	*filename,	char
mode)
	50				{
	51								struct	Connection	*conn	=	malloc(sizeof(struct
Connection));
	52								if	(!conn)
	53												die("Memory	error");
	54
	55								conn->db	=	malloc(sizeof(struct	Database));
	56								if	(!conn->db)
	57												die("Memory	error");
	58
	59								if	(mode	==	'c')	{
	60												conn->file	=	fopen(filename,	"w");
	61								}	else	{
	62												conn->file	=	fopen(filename,	"r+");
	63
	64												if	(conn->file)	{
	65																Database_load(conn);
	66												}
	67								}
	68
	69								if	(!conn->file)
	70												die("Failed	to	open	the	file");
	71
	72								return	conn;
	73				}
	74
	75				void	Database_close(struct	Connection	*conn)
	76				{
	77								if	(conn)	{
	78												if	(conn->file)
	79																fclose(conn->file);
	80												if	(conn->db)
	81																free(conn->db);

	82												free(conn);
	83								}
	84				}
	85
	86				void	Database_write(struct	Connection	*conn)
	87				{
	88								rewind(conn->file);
	89
	90								int	rc	=	fwrite(conn->db,	sizeof(struct	Database),	1,
conn->file);
	91								if	(rc	!=	1)
	92												die("Failed	to	write	database.");
	93
	94								rc	=	fflush(conn->file);
	95								if	(rc	==	-1)
	96												die("Cannot	flush	database.");
	97				}
	98
	99				void	Database_create(struct	Connection	*conn)
100				{
101								int	i	=	0;
102
103								for	(i	=	0;	i	<	MAX_ROWS;	i++)	{
104												//	make	a	prototype	to	initialize	it
105												struct	Address	addr	=	{.id	=	i,.set	=	0	};
106												//	then	just	assign	it
107												conn->db->rows[i]	=	addr;
108								}
109				}
110
111				void	Database_set(struct	Connection	*conn,	int	id,	const	char
*name,
112												const	char	*email)
113				{
114								struct	Address	*addr	=	&conn->db->rows[id];
115								if	(addr->set)
116												die("Already	set,	delete	it	first");
117
118								addr->set	=	1;
119								//	WARNING:	bug,	read	the	"How	To	Break	It"	and	fix	this
120								char	*res	=	strncpy(addr->name,	name,	MAX_DATA);
121								//	demonstrate	the	strncpy	bug
122								if	(!res)
123												die("Name	copy	failed");
124
125								res	=	strncpy(addr->email,	email,	MAX_DATA);
126								if	(!res)
127												die("Email	copy	failed");
128				}
129
130				void	Database_get(struct	Connection	*conn,	int	id)
131				{

132								struct	Address	*addr	=	&conn->db->rows[id];
133
134								if	(addr->set)	{
135												Address_print(addr);
136								}	else	{
137												die("ID	is	not	set");
138								}
139				}
140
141				void	Database_delete(struct	Connection	*conn,	int	id)
142				{
143								struct	Address	addr	=	{.id	=	id,.set	=	0	};
144								conn->db->rows[id]	=	addr;
145				}
146
147				void	Database_list(struct	Connection	*conn)
148				{
149								int	i	=	0;
150								struct	Database	*db	=	conn->db;
151
152								for	(i	=	0;	i	<	MAX_ROWS;	i++)	{
153												struct	Address	*cur	=	&db->rows[i];
154
155												if	(cur->set)	{
156																Address_print(cur);
157												}
158								}
159				}
160
161				int	main(int	argc,	char	*argv[])
162				{
163								if	(argc	<	3)
164												die("USAGE:	ex17	<dbfile>	<action>	[action	params]");
165
166								char	*filename	=	argv[1];
167								char	action	=	argv[2][0];
168								struct	Connection	*conn	=	Database_open(filename,	action);
169								int	id	=	0;
170
171								if	(argc	>	3)	id	=	atoi(argv[3]);
172								if	(id	>=	MAX_ROWS)	die("There's	not	that	many	records.");
173
174								switch	(action)	{
175												case	'c':
176																Database_create(conn);
177																Database_write(conn);
178																break;
179
180												case	'g':
181																if	(argc	!=	4)
182																				die("Need	an	id	to	get");
183

184																Database_get(conn,	id);
185																break;
186
187												case	's':
188																if	(argc	!=	6)
189																				die("Need	id,	name,	email	to	set");
190
191																Database_set(conn,	id,	argv[4],	argv[5]);
192																Database_write(conn);
193																break;
194
195												case	'd':
196																if	(argc	!=	4)
197																				die("Need	id	to	delete");
198
199																Database_delete(conn,	id);
200																Database_write(conn);
201																break;
202
203												case	'l':
204																Database_list(conn);
205																break;
206												default:
207																die("Invalid	action:	c=create,	g=get,	s=set,
d=del,	l=list");
208								}
209
210								Database_close(conn);
211
212								return	0;
213				}

In	this	program,	we’re	using	a	set	of	structures,	or	structs,	to	create	a	simple
database	for	an	address	book.	There	are	some	things	you’ve	never	seen,	so	you
should	go	through	it	line	by	line,	explain	what	each	line	does,	and	look	up	any
functions	that	you	don’t	recognize.	There	are	a	few	key	things	that	you	should
pay	attention	to,	as	well:

#define	for	constants	We	use	another	part	of	the	C	preprocessor	(CPP)	to
create	constant	settings	of	MAX_DATA	and	MAX_ROWS.	I’ll	cover	more	of
what	the	CPP	does	later,	but	this	is	a	way	to	create	a	constant	that	will
work	reliably.	There	are	other	ways,	but	they	don’t	apply	in	certain
situations.

Fixed	sized	structs	The	Address	struct	then	uses	these	constants	to	create
a	piece	of	data	that	is	fixed	in	size,	making	it	less	efficient	but	easier	to
store	and	read.	The	Database	struct	is	then	also	a	fixed	size	because	it’s
a	fixed	length	array	of	Address	structs.	That	lets	you	write	the	whole

thing	to	disk	in	one	move	later.
die	function	to	abort	with	an	error	In	a	small	program	like	this,	you	can
make	a	single	function	that	kills	the	program	with	an	error	if	there’s
anything	wrong.	I	call	this	die,	and	it’s	used	to	exit	the	program	with	an
error	after	any	failed	function	calls	or	bad	inputs.

errno	and	perror()	for	error	reporting	When	you	have	an	error	return	from
a	function,	it	will	usually	set	an	external	variable	called	errno	to	say
exactly	what	happened.	These	are	just	numbers,	so	you	can	use	perror	to
print	the	error	message.

FILE	functions	I’m	using	all	new	functions	like	fopen,	fread,	fclose,
and	rewind	to	work	with	files.	Each	of	these	functions	works	on	a	FILE
struct	that’s	just	like	your	other	structs,	but	it’s	defined	by	the	C	standard
library.

nested	struct	pointers	There’s	a	use	for	nested	structures	and	getting	the
address	of	array	elements	that	you	should	study.	Specifically,	code	like
&conn->db->rows[i]	that	reads	“get	the	i	element	of	rows,	which	is
in	db,	which	is	in	conn,	then	get	the	address	of	(&)	it.”

copying	struct	prototypes	Best	shown	in	Database_delete,	you	can
see	I’m	using	a	temporary	local	Address,	initializing	its	id	and	set
fields,	and	then	simply	copying	it	into	the	rows	array	by	assigning	it	to
the	element	I	want.	This	trick	makes	sure	that	all	fields	except	set	and	id
are	initialized	to	zeros	and	it’s	actually	easier	to	write.	Incidentally,	you
shouldn’t	be	using	memcpy	to	do	these	kinds	of	struct	copying	operations.
Modern	C	allows	you	to	simply	assign	one	struct	to	another	and	it’ll
handle	the	copying	for	you.

processing	complex	arguments	I’m	doing	some	more	complex	argument
parsing,	but	this	isn’t	really	the	best	way	to	do	it.	We’ll	get	into	a	better
option	for	parsing	later	in	the	book.

converting	strings	to	ints	I	use	the	atoi	function	to	take	the	string	for	the
id	on	the	command	line	and	convert	it	to	the	int	id	variable.	Read	up	on
this	and	similar	functions.

allocating	large	data	on	the	heap	The	whole	point	of	this	program	is	that
I’m	using	malloc	to	ask	the	OS	for	a	large	amount	of	memory	when	I
create	the	Database.	We’ll	cover	this	in	more	detail	later.

NULL	is	0,	so	Boolean	works	In	many	of	the	checks,	I’m	testing	that	a

pointer	is	not	NULL	by	simply	doing	if(!ptr)	die("fail!"),
because	NULL	will	evaluate	to	false.	You	could	be	explicit	and	say
if(ptr	==	NULL)	die("fail!"),	as	well.	In	some	rare	systems,
NULL	will	be	stored	in	the	computer	(represented)	as	something	not	0,	but
the	C	standard	says	you	should	still	be	able	to	write	code	as	if	it	has	a	0
value.	From	now	on	when	I	say	“NULL	is	0,”	I	mean	its	value	for	anyone
who	is	overly	pedantic.

What	You	Should	See
You	should	spend	as	much	time	as	you	can	testing	that	it	works,	and	running	it
with	a	debugger	to	confirm	that	you’ve	got	all	of	the	memory	usage	right.	Here’s
a	session	of	me	testing	it	normally,	and	then	using	the	debugger	to	check	the
operations:

Exercise	17	Session

Click	here	to	view	code	image

$	make	ex17
cc	-Wall	-g				ex17.c			-o	ex17

$./ex17	db.dat	c
$./ex17	db.dat	s	1	zed	zed@zedshaw.com
$./ex17	db.dat	s	2	frank	frank@zedshaw.com
$./ex17	db.dat	s	3	joe	joe@zedshaw.com
$
$./ex17	db.dat	l
1	zed	zed@zedshaw.com

2	frank	frank@zedshaw.com

3	joe	joe@zedshaw.com

$./ex17	db.dat	d	3
$./ex17	db.dat	l
1	zed	zed@zedshaw.com

2	frank	frank@zedshaw.com

$./ex17	db.dat	g	2
2	frank	frank@zedshaw.com

Heap	versus	Stack	Allocation
You	kids	have	it	great	these	days.	You	play	with	your	Ruby	or	Python	and	just
make	objects	and	variables	without	any	care	for	where	they	live.	You	don’t	care
if	it’s	on	the	stack,	and	what	about	on	the	heap?	Fuggedaboutit.	You	don’t	even
know,	and	you	know	what,	chances	are	your	language	of	choice	doesn’t	even	put
the	variables	on	stack	at	all.	It’s	all	heap,	and	you	don’t	even	know	if	it	is.

http://zed@zedshaw.com
http://frank@zedshaw.com
http://joe@zedshaw.com
http://zed@zedshaw.com
http://frank@zedshaw.com
http://frank@zedshaw.com

C	is	different	because	it’s	using	the	real	CPU’s	actual	machinery	to	do	its	work,
and	that	involves	a	chunk	of	RAM	called	the	stack	and	another	called	the	heap.
What’s	the	difference?	It	all	depends	on	where	you	get	the	storage.
The	heap	is	easier	to	explain	since	it’s	just	all	the	remaining	memory	in	your
computer,	and	you	access	it	with	the	function	malloc	to	get	more.	Each	time
you	call	malloc,	the	OS	uses	internal	functions	to	register	that	piece	of
memory	to	you,	and	then	returns	a	pointer	to	it.	When	you’re	done	with	it,	you
use	free	to	return	it	to	the	OS	so	that	it	can	be	used	by	other	programs.	Failing
to	do	this	will	cause	your	program	to	leak	memory,	but	Valgrind	will	help	you
track	these	leaks	down.
The	stack	is	a	special	region	of	memory	that	stores	temporary	variables,	which
each	function	creates	as	locals	to	that	function.	How	it	works	is	that	each
argument	to	a	function	is	pushed	onto	the	stack	and	then	used	inside	the
function.	It’s	really	a	stack	data	structure,	so	the	last	thing	in	is	the	first	thing	out.
This	also	happens	with	all	local	variables	like	char	action	and	int	id	in
main.	The	advantage	of	using	a	stack	for	this	is	simply	that	when	the	function
exits,	the	C	compiler	pops	these	variables	off	of	the	stack	to	clean	up.	This	is
simple	and	prevents	memory	leaks	if	the	variable	is	on	the	stack.
The	easiest	way	to	keep	this	straight	is	with	this	mantra:	If	you	didn’t	get	it	from
malloc,	or	a	function	that	got	it	from	malloc,	then	it’s	on	the	stack.
There	are	three	primary	problems	with	stacks	and	heaps	to	watch	out	for:

•	If	you	get	a	block	of	memory	from	malloc,	and	have	that	pointer	on	the
stack,	then	when	the	function	exits	the	pointer	will	get	popped	off	and	lost.
•	If	you	put	too	much	data	on	the	stack	(like	large	structs	and	arrays),	then
you	can	cause	a	stack	overflow	and	the	program	will	abort.	In	this	case,	use
the	heap	with	malloc.
•	If	you	take	a	pointer	to	something	on	the	stack,	and	then	pass	or	return	it
from	your	function,	then	the	function	receiving	it	will	segmentation	fault
(segfault),	because	the	actual	data	will	get	popped	off	and	disappear.	You’ll
be	pointing	at	dead	space.

This	is	why	I	created	a	Database_open	that	allocates	memory	or	dies,	and
then	a	Database_close	that	frees	everything.	If	you	create	a	create	function
that	makes	the	whole	thing	or	nothing,	and	then	a	destroy	function	that	safely
cleans	up	everything,	then	it’s	easier	to	keep	it	all	straight.
Finally,	when	a	program	exits,	the	OS	will	clean	up	all	of	the	resources	for	you,
but	sometimes	not	immediately.	A	common	idiom	(and	one	I	use	in	this	exercise)

is	to	just	abort	and	let	the	OS	clean	up	on	error.

How	to	Break	It
This	program	has	a	lot	of	places	where	you	can	break	it,	so	try	some	of	these	but
also	come	up	with	your	own:

•	The	classic	way	is	to	remove	some	of	the	safety	checks	so	that	you	can
pass	in	arbitrary	data.	For	example,	remove	the	check	on	line	160	that
prevents	you	from	passing	in	any	record	number.
•	You	can	also	try	corrupting	the	data	file.	Open	it	in	any	editor	and	change
random	bytes,	and	then	close	it.
•	You	could	also	find	ways	to	pass	bad	arguments	to	the	program	when	it’s
run.	For	example,	getting	the	file	and	action	backward	will	make	it	create	a
file	named	after	the	action,	and	then	do	an	action	based	on	the	first
character.
•	There’s	a	bug	in	this	program	because	strncpy	is	poorly	designed.	Go
read	about	strncpy	and	try	to	find	out	what	happens	when	the	name	or
address	you	give	is	greater	than	512	bytes.	Fix	this	by	simply	forcing
the	last	character	to	'\0'	so	that	it’s	always	set	no	matter	what	(which	is
what	strncpy	should	do).
•	In	the	Extra	Credit	section,	I	have	you	augment	the	program	to	create
arbitrary	size	databases.	Try	to	see	what	the	biggest	database	is	before	you
cause	the	program	to	die	due	to	lack	of	memory	from	malloc.

Extra	Credit
•	The	die	function	needs	to	be	augmented	to	let	you	pass	the	conn
variable,	so	it	can	close	it	and	clean	up.
•	Change	the	code	to	accept	parameters	for	MAX_DATA	and	MAX_ROWS,
store	them	in	the	Database	struct,	and	write	that	to	the	file,	thus	creating
a	database	that	can	be	arbitrarily	sized.
•	Add	more	operations	you	can	do	with	the	database,	like	find.
•	Read	about	how	C	does	it’s	struct	packing,	and	then	try	to	see	why	your
file	is	the	size	it	is.	See	if	you	can	calculate	a	new	size	after	adding	more
fields.
•	Add	some	more	fields	to	Address	and	make	them	searchable.
•	Write	a	shell	script	that	will	do	your	testing	automatically	for	you	by

running	commands	in	the	right	order.	Hint:	Use	set	-e	at	the	top	of	a
bash	to	make	it	abort	the	whole	script	if	any	command	has	an	error.
•	Try	reworking	the	program	to	use	a	single	global	for	the	database
connection.	How	does	this	new	version	of	the	program	compare	to	the
other	one?
•	Go	research	stack	data	structure	and	write	one	in	your	favorite	language,
then	try	to	do	it	in	C.

Exercise	18.	Pointers	to	Functions

Functions	in	C	are	actually	just	pointers	to	a	spot	in	the	program	where	some
code	exists.	Just	like	you’ve	been	creating	pointers	to	structs,	strings,	and	arrays,
you	can	point	a	pointer	at	a	function,	too.	The	main	use	for	this	is	to	pass
callbacks	to	other	functions,	or	to	simulate	classes	and	objects.	In	this	exercise,
we’ll	do	some	callbacks,	and	in	the	next	exercise,	we’ll	make	a	simple	object
system.
The	format	of	a	function	pointer	looks	like	this:
Click	here	to	view	code	image

int	(*POINTER_NAME)(int	a,	int	b)

A	way	to	remember	how	to	write	one	is	to	do	this:
•	Write	a	normal	function	declaration:	int	callme(int	a,	int	b)
•	Wrap	the	function	name	with	the	pointer	syntax:	int	(*callme)(int
a,	int	b)

•	Change	the	name	to	the	pointer	name:	int	(*compare_cb)(int	a,
int	b)

The	key	thing	to	remember	is	that	when	you’re	done	with	this,	the	variable	name
for	the	pointer	is	called	compare_cb	and	you	use	it	just	like	it’s	a	function.	This
is	similar	to	how	pointers	to	arrays	can	be	used	just	like	the	arrays	they	point	to.
Pointers	to	functions	can	be	used	like	the	functions	they	point	to	but	with	a
different	name.
Click	here	to	view	code	image

int	(*tester)(int	a,	int	b)	=	sorted_order;
printf("TEST:	%d	is	same	as	%d\n",	tester(2,	3),	sorted_order(2,	3));

This	will	work	even	if	the	function	pointer	returns	a	pointer	to	something:
•	Write	it:	char	*make_coolness(int	awesome_levels)
•	Wrap	it:	char	*(*make_coolness)(int	awesome_levels)
•	Rename	it:	char	*(*coolness_cb)(int	awesome_levels)

The	next	problem	to	solve	with	using	function	pointers	is	that	it’s	hard	to	give
them	as	parameters	to	a	function,	such	as	when	you	want	to	pass	the	function
callback	to	another	function.	The	solution	is	to	use	typedef,	which	is	a	C
keyword	for	making	new	names	for	other,	more	complex	types.

The	only	thing	you	need	to	do	is	put	typedef	before	the	same	function	pointer
syntax,	and	then	after	that	you	can	use	the	name	like	it’s	a	type.	I	demonstrate
this	in	the	following	exercise	code:

ex18.c

Click	here	to	view	code	image

		1			#include	<stdio.h>
		2			#include	<stdlib.h>
		3			#include	<errno.h>
		4			#include	<string.h>
		5
		6			/**	Our	old	friend	die	from	ex17.	*/
		7			void	die(const	char	*message)
		8			{
		9							if	(errno)	{
	10											perror(message);
	11							}	else	{
	12											printf("ERROR:	%s\n",	message);
	13							}
	14
	15							exit(1);
	16				}
	17
	18				//	a	typedef	creates	a	fake	type,	in	this
	19				//	case	for	a	function	pointer
	20				typedef	int	(*compare_cb)	(int	a,	int	b);
	21
	22				/**
	23					*	A	classic	bubble	sort	function	that	uses	the
	24					*	compare_cb	to	do	the	sorting.
	25					*/
	26				int	*bubble_sort(int	*numbers,	int	count,	compare_cb	cmp)
	27				{
	28								int	temp	=	0;
	29								int	i	=	0;
	30								int	j	=	0;
	31								int	*target	=	malloc(count	*	sizeof(int));
	32
	33								if	(!target)
	34												die("Memory	error.");
	35
	36								memcpy(target,	numbers,	count	*	sizeof(int));
	37
	38								for	(i	=	0;	i	<	count;	i++)	{
	39												for	(j	=	0;	j	<	count	-	1;	j++)	{
	40																if	(cmp(target[j],	target[j	+	1])	>	0)	{
	41																				temp	=	target[j	+	1];
	42																				target[j	+	1]	=	target[j];

	43																				target[j]	=	temp;
	44																}
	45												}
	46								}
	47
	48								return	target;
	49				}
	50
	51				int	sorted_order(int	a,	int	b)
	52				{
	53								return	a	-	b;
	54				}
	55
	56				int	reverse_order(int	a,	int	b)
	57				{
	58								return	b	-	a;
	59				}
	60
	61				int	strange_order(int	a,	int	b)
	62				{
	63								if	(a	==	0	||	b	==	0)	{
	64												return	0;
	65								}	else	{
	66												return	a	%	b;
	67								}
	68				}
	69
	70				/**
	71					*	Used	to	test	that	we	are	sorting	things	correctly
	72					*	by	doing	the	sort	and	printing	it	out.
	73					*/
	74				void	test_sorting(int	*numbers,	int	count,	compare_cb	cmp)
	75				{
	76								int	i	=	0;
	77								int	*sorted	=	bubble_sort(numbers,	count,	cmp);
	78
	79								if	(!sorted)
	80												die("Failed	to	sort	as	requested.");
	81
	82								for	(i	=	0;	i	<	count;	i++)	{
	83												printf("%d	",	sorted[i]);
	84								}
	85								printf("\n");
	86
	87								free(sorted);
	88				}
	89
	90				int	main(int	argc,	char	*argv[])
	91				{
	92								if	(argc	<	2)	die("USAGE:	ex18	4	3	1	5	6");
	93
	94								int	count	=	argc	-	1;

	95								int	i	=	0;
	96								char	**inputs	=	argv	+	1;
	97
	98								int	*numbers	=	malloc(count	*	sizeof(int));
	99								if	(!numbers)	die("Memory	error.");
100
101								for	(i	=	0;	i	<	count;	i++)	{
102												numbers[i]	=	atoi(inputs[i]);
103								}
104
105								test_sorting(numbers,	count,	sorted_order);
106								test_sorting(numbers,	count,	reverse_order);
107								test_sorting(numbers,	count,	strange_order);
108
109								free(numbers);
110
111								return	0;
112				}

In	this	program,	you’re	creating	a	dynamic	sorting	algorithm	that	can	sort	an
array	of	integers	using	a	comparison	callback.	Here’s	the	breakdown	of	this
program,	so	you	can	clearly	understand	it:

ex18.c:1-6	The	usual	includes	that	are	needed	for	all	of	the	functions	that	we
call.

ex18.c:7-17	This	is	the	die	function	from	the	previous	exercise	that	I’ll	use
to	do	error	checking.

ex18.c:21	This	is	where	the	typedef	is	used,	and	later	I	use	compare_cb
like	it’s	a	type	similar	to	int	or	char	in	bubble_sort	and
test_sorting.

ex18.c:27-49	A	bubble	sort	implementation,	which	is	a	very	inefficient	way
to	sort	some	integers.	Here’s	a	breakdown:
ex18.c:27	I	use	the	typedef	for	compare_cb	as	the	last	parameter
cmp.	This	is	now	a	function	that	will	return	a	comparison	between	two
integers	for	sorting.

ex18.c:29-34	The	usual	creation	of	variables	on	the	stack,	followed	by	a
new	array	of	integers	on	the	heap	using	malloc.	Make	sure	you
understand	what	count	*	sizeof(int)	is	doing.

ex18.c:38	The	outer	loop	of	the	bubble	sort.
ex18.c:39	The	inner	loop	of	the	bubble	sort.
ex18.c:40	Now	I	call	the	cmp	callback	just	like	it’s	a	normal	function,	but
instead	of	being	the	name	of	something	that	we	defined,	it’s	just	a

pointer	to	it.	This	lets	the	caller	pass	in	anything	it	wants	as	long	as	it
matches	the	signature	of	the	compare_cb	typedef.

ex18.c:41-43	The	actual	swapping	operation	where	a	bubble	sort	needs	to
do	what	it	does.

ex18.c:48	Finally,	this	returns	the	newly	created	and	sorted	result	array
target.

ex18.c:51-68	Three	different	versions	of	the	compare_cb	function	type,
which	needs	to	have	the	same	definition	as	the	typedef	that	we	created.
The	C	compiler	will	complain	to	you	if	you	get	this	wrong	and	say	the
types	don’t	match.

ex18.c:74-87	This	is	a	tester	for	the	bubble_sort	function.	You	can	see
now	how	I’m	also	using	compare_cb	to	pass	to	bubble_sort,
demonstrating	how	these	can	be	passed	around	like	any	other	pointers.

ex18.c:90-103	A	simple	main	function	that	sets	up	an	array	based	on	integers
to	pass	on	the	command	line,	and	then	it	calls	the	test_sorting
function.

ex18.c:105-107	Finally,	you	get	to	see	how	the	compare_cb	function
pointer	typedef	is	used.	I	simply	call	test_sorting	but	give	it	the
name	of	sorted_order,	reverse_order,	and	strange_order	as
the	function	to	use.	The	C	compiler	then	finds	the	address	of	those
functions,	and	makes	it	a	pointer	for	test_sorting	to	use.	If	you	look
at	test_sorting,	you’ll	see	that	it	then	passes	each	of	these	to
bubble_sort,	but	it	actually	has	no	idea	what	they	do.	The	compiler
only	knows	that	they	match	the	compare_cb	prototype	and	should	work.

ex18.c:109	Last	thing	we	do	is	free	up	the	array	of	numbers	that	we	made.

What	You	Should	See
Running	this	program	is	simple,	but	you	should	try	different	combinations	of
numbers,	or	even	other	characters,	to	see	what	it	does.

Exercise	18	Session

Click	here	to	view	code	image

$	make	ex18
cc	-Wall	-g				ex18.c			-o	ex18

$./ex18	4	1	7	3	2	0	8

0	1	2	3	4	7	8

8	7	4	3	2	1	0

3	4	2	7	1	0	8

$

How	to	Break	It
I’m	going	to	have	you	do	something	kind	of	weird	to	break	this.	These	function
pointers	are	like	every	other	pointer,	so	they	point	at	blocks	of	memory.	C	has
this	ability	to	take	one	pointer	and	convert	it	to	another	so	you	can	process	the
data	in	different	ways.	It’s	usually	not	necessary,	but	to	show	you	how	to	hack
your	computer,	I	want	you	to	add	this	at	the	end	of	test_sorting:
Click	here	to	view	code	image

unsigned	char	*data	=	(unsigned	char	*)cmp;

for(i	=	0;	i	<	25;	i++)		{
					printf("%02x:",	data[i]);
}

printf("\n");

This	loop	is	sort	of	like	converting	your	function	to	a	string,	and	then	printing
out	its	contents.	This	won’t	break	your	program	unless	the	CPU	and	OS	you’re
on	has	a	problem	with	you	doing	this.	What	you’ll	see	after	it	prints	the	sorted
array	is	a	string	of	hexadecimal	numbers,	like	this:
Click	here	to	view	code	image

55:48:89:e5:89:7d:fc:89:75:f8:8b:55:fc:8b:45:

That	should	be	the	raw	assembler	byte	code	of	the	function	itself,	and	you
should	see	that	they	start	the	same	but	then	have	different	endings.	It’s	also
possible	that	this	loop	isn’t	getting	all	of	the	function,	or	it’s	getting	too	much
and	stomping	on	another	piece	of	the	program.	Without	more	analysis	you	won’t
know.

Extra	Credit
•	Get	a	hex	editor	and	open	up	ex18,	and	then	find	the	sequence	of	hex
digits	that	start	a	function	to	see	if	you	can	find	the	function	in	the	raw
program.
•	Find	other	random	things	in	your	hex	editor	and	change	them.	Rerun	your
program	and	see	what	happens.	Strings	you	find	are	the	easiest	things	to
change.

•	Pass	in	the	wrong	function	for	the	compare_cb	and	see	what	the	C
compiler	complains	about.
•	Pass	in	NULL	and	watch	your	program	seriously	bite	it.	Then,	run	the
debugger	and	see	what	that	reports.
•	Write	another	sorting	algorithm,	then	change	test_sorting	so	that	it
takes	both	an	arbitrary	sort	function	and	the	sort	function’s	callback
comparison.	Use	it	to	test	both	of	your	algorithms.

Exercise	19.	Zed’s	Awesome	Debug	Macros

There’s	a	reoccurring	problem	in	C	that	we’ve	been	dancing	around,	but	I’m
going	to	solve	it	in	this	exercise	using	a	set	of	macros	I	developed.	You	can
thank	me	later	when	you	realize	how	insanely	awesome	these	macros	are.	Right
now,	you	don’t	know	how	awesome	they	are,	so	you’ll	just	have	to	use	them,
and	then	you	can	walk	up	to	me	one	day	and	say,	“Zed,	those	debug	macros	were
the	bomb.	I	owe	you	my	firstborn	child	because	you	saved	me	a	decade	of
heartache	and	prevented	me	from	killing	myself	more	than	once.	Thank	you,
good	sir,	here’s	a	million	dollars	and	the	original	Snakehead	Telecaster	prototype
signed	by	Leo	Fender.”
Yes,	they	are	that	awesome.

The	C	Error-Handling	Problem
Handling	errors	is	a	difficult	activity	in	almost	every	programming	language.
There	are	entire	programming	languages	that	try	as	hard	as	they	can	to	avoid
even	the	concept	of	an	error.	Other	languages	invent	complex	control	structures
like	exceptions	to	pass	error	conditions	around.	The	problem	exists	mostly
because	programmers	assume	errors	don’t	happen,	and	this	optimism	infects	the
types	of	languages	they	use	and	create.
C	tackles	the	problem	by	returning	error	codes	and	setting	a	global	errno	value
that	you	check.	This	makes	for	complex	code	that	simply	exists	to	check	if
something	you	did	had	an	error.	As	you	write	more	and	more	C	code,	you’ll
write	code	with	this	pattern:

•	Call	a	function.
•	Check	if	the	return	value	is	an	error	(and	it	must	look	that	up	each	time,
too).
•	Then,	clean	up	all	the	resources	created	so	far.
•	Lastly,	print	out	an	error	message	that	hopefully	helps.

This	means	for	every	function	call	(and	yes,	every	function),	you	are	potentially
writing	three	or	four	more	lines	just	to	make	sure	it	worked.	That	doesn’t	include
the	problem	of	cleaning	up	all	of	the	junk	you’ve	built	to	that	point.	If	you	have
ten	different	structures,	three	files,	and	a	database	connection,	you’d	have	14
more	lines	when	you	get	an	error.
In	the	past,	this	wasn’t	a	problem	because	C	programs	did	what	you’ve	been

doing	when	there	was	an	error:	die.	No	point	in	bothering	with	cleanup	when	the
OS	will	do	it	for	you.	Today,	though,	many	C	programs	need	to	run	for	weeks,
months,	or	years,	and	handle	errors	from	many	different	sources	gracefully.	You
can’t	just	have	your	Web	server	die	at	the	slightest	touch,	and	you	definitely
can’t	have	a	library	that	you’ve	written	nuke	the	program	it’s	used	in.	That’s	just
rude.
Other	languages	solve	this	problem	with	exceptions,	but	those	have	problems	in
C	(and	in	other	languages,	too).	In	C,	you	only	have	one	return	value,	but
exceptions	make	up	an	entire	stack-based	return	system	with	arbitrary	values.
Trying	to	marshal	exceptions	up	the	stack	in	C	is	difficult,	and	no	other	libraries
will	understand	it.

The	Debug	Macros
The	solution	I’ve	been	using	for	years	is	a	small	set	of	debug	macros	that
implements	a	basic	debugging	and	error-handling	system	for	C.	This	system	is
easy	to	understand,	works	with	every	library,	and	makes	C	code	more	solid	and
clearer.
It	does	this	by	adopting	the	convention	that	whenever	there’s	an	error,	your
function	will	jump	to	an	error:	part	of	the	function	that	knows	how	to	clean
up	everything	and	return	an	error	code.	You	can	use	a	macro	called	check	to
check	return	codes,	print	an	error	message,	and	then	jump	to	the	cleanup	section.
You	can	combine	that	with	a	set	of	logging	functions	for	printing	out	useful
debug	messages.
I’ll	now	show	you	the	entire	contents	of	the	most	awesome	set	of	brilliance
you’ve	ever	seen.

dbg.h

Click	here	to	view	code	image

#ifndef	__dbg_h__

#define	__dbg_h__

#include	<stdio.h>

#include	<errno.h>

#include	<string.h>

#ifdef	NDEBUG

#define	debug(M,	...)

#else

#define	debug(M,	...)	fprintf(stderr,	"DEBUG	%s:%d:	"	M	"\n",\

								__FILE__,	__LINE__,	##__VA_ARGS__)
#endif

#define	clean_errno()	(errno	==	0	?	"None"	:	strerror(errno))

#define	log_err(M,	...)	fprintf(stderr,\

								"[ERROR]	(%s:%d:	errno:	%s)	"	M	"\n",	__FILE__,	__LINE__,\
								clean_errno(),	##__VA_ARGS__)

#define	log_warn(M,	...)	fprintf(stderr,\

								"[WARN]	(%s:%d:	errno:	%s)	"	M	"\n",\
								__FILE__,	__LINE__,	clean_errno(),	##__VA_ARGS__)

#define	log_info(M,	...)	fprintf(stderr,	"[INFO]	(%s:%d)	"	M	"\n",\

								__FILE__,	__LINE__,	##__VA_ARGS__)

#define	check(A,	M,	...)	if(!(A))	{\

				log_err(M,	##__VA_ARGS__);	errno=0;	goto	error;	}

#define	sentinel(M,	...)	{	log_err(M,	##__VA_ARGS__);\

				errno=0;	goto	error;	}

#define	check_mem(A)	check((A),	"Out	of	memory.")

#define	check_debug(A,	M,	...)	if(!(A))	{	debug(M,	##__VA_ARGS__);\

				errno=0;	goto	error;	}

#endif

Yes,	that’s	it,	and	here’s	a	breakdown	of	every	line:
dbg.h:1-2	The	usual	defense	against	accidentally	including	the	file	twice,
which	you	saw	in	the	last	exercise.

dbg.h:4-6	Includes	for	the	functions	that	these	macros	need.
dbg.h:8	The	start	of	a	#ifdef	that	lets	you	recompile	your	program	so	that
all	of	the	debug	log	messages	are	removed.

dbg.h:9	If	you	compile	with	NDEBUG	defined,	then	“no	debug”	messages
will	remain.	You	can	see	in	this	case	the	#define	debug()	is	just
replaced	with	nothing	(the	right	side	is	empty).

dbg.h:10	The	matching	#else	for	the	above	#ifdef.
dbg.h:11	The	alternative	#define	debug	that	translates	any	use	of
debug("format",	arg1,	arg2)	into	an	fprintf	call	to
stderr.	Many	C	programmers	don’t	know	this,	but	you	can	create
macros	that	actually	work	like	printf	and	take	variable	arguments.
Some	C	compilers	(actually	CPP)	don’t	support	this,	but	the	ones	that

matter	do.	The	magic	here	is	the	use	of	##__VA_ARGS__	that	says	“put
whatever	they	had	for	extra	arguments	(...)	here.”	Also	notice	the	use	of
__FILE__	and	__LINE__	to	get	the	current	file:line	for	the	debug
message.	Very	helpful.

dbg.h:12	The	end	of	the	#ifdef.
dbg.h:14	The	clean_errno	macro	that’s	used	in	the	others	to	get	a	safe,
readable	version	of	errno.	That	strange	syntax	in	the	middle	is	a	ternary
operator	and	you’ll	learn	what	it	does	later.

dbg.h:16-20	The	log_err,	log_warn,	and	log_info,	macros	for
logging	messages	that	are	meant	for	the	end	user.	They	work	like	debug
but	can’t	be	compiled	out.

dbg.h:22	The	best	macro	ever,	check,	will	make	sure	the	condition	A	is
true,	and	if	not,	it	logs	the	error	M	(with	variable	arguments	for	log_err),
and	then	jumps	to	the	function’s	error:	for	cleanup.

dbg.h:24	The	second	best	macro	ever,	sentinel,	is	placed	in	any	part	of	a
function	that	shouldn’t	run,	and	if	it	does,	it	prints	an	error	message	and
then	jumps	to	the	error:	label.	You	put	this	in	if-statements	and
switch-statements	to	catch	conditions	that	shouldn’t	happen,	like
the	default:.

dbg.h:26	A	shorthand	macro	called	check_mem	that	makes	sure	a	pointer	is
valid,	and	if	it	isn’t,	it	reports	it	as	an	error	with	“Out	of	memory.”

dbg.h:28	An	alternative	macro,	check_debug,	which	still	checks	and
handles	an	error,	but	if	the	error	is	common,	then	it	doesn’t	bother
reporting	it.	In	this	one,	it	will	use	debug	instead	of	log_err	to	report
the	message.	So	when	you	define	NDEBUG,	the	check	still	happens,	and
the	error	jump	goes	off,	but	the	message	isn’t	printed.

Using	dbg.h
Here’s	an	example	of	using	all	of	dbg.h	in	a	small	program.	This	doesn’t
actually	do	anything	but	demonstrate	how	to	use	each	macro.	However,	we’ll	be
using	these	macros	in	all	of	the	programs	we	write	from	now	on,	so	be	sure	to
understand	how	to	use	them.

ex19.c

Click	here	to	view	code	image

		1			#include	"dbg.h"
		2			#include	<stdlib.h>
		3			#include	<stdio.h>
		4
		5			void	test_debug()
		6			{
		7							//	notice	you	don't	need	the	\n
		8							debug("I	have	Brown	Hair.");
		9
	10							//	passing	in	arguments	like	printf
	11							debug("I	am	%d	years	old.",	37);
	12			}
	13
	14			void	test_log_err()
	15			{
	16							log_err("I	believe	everything	is	broken.");
	17							log_err("There	are	%d	problems	in	%s.",	0,	"space");
	18			}
	19
	20			void	test_log_warn()
	21			{
	22							log_warn("You	can	safely	ignore	this.");
	23							log_warn("Maybe	consider	looking	at:	%s.",	"/etc/passwd");
	24			}
	25
	26			void	test_log_info()
	27			{
	28							log_info("Well	I	did	something	mundane.");
	29							log_info("It	happened	%f	times	today.",	1.3f);
	30			}
	31
	32			int	test_check(char	*file_name)
	33			{
	34							FILE	*input	=	NULL;
	35							char	*block	=	NULL;
	36
	37							block	=	malloc(100);
	38							check_mem(block);																//	should	work
	39
	40							input	=	fopen(file_name,	"r");
	41							check(input,	"Failed	to	open	%s.",	file_name);
	42
	43							free(block);
	44							fclose(input);
	45							return	0;
	46
	47			error:
	48							if	(block)	free(block);
	49							if	(input)	fclose(input);
	50							return	-1;
	51			}

	52
	53			int	test_sentinel(int	code)
	54			{
	55							char	*temp	=	malloc(100);
	56							check_mem(temp);
	57
	58							switch	(code)	{
	59											case	1:
	60															log_info("It	worked.");
	61															break;
	62											default:
	63															sentinel("I	shouldn't	run.");
	64							}
	65
	66							free(temp);
	67							return	0;
	68
	69			error:
	70							if	(temp)
	71											free(temp);
	72							return	-1;
	73			}
	74
	75			int	test_check_mem()
	76			{
	77							char	*test	=	NULL;
	78							check_mem(test);
	79
	80							free(test);
	81							return	1;
	82
	83			error:
	84							return	-1;
	85			}
	86
	87			int	test_check_debug()
	88			{
	89							int	i	=	0;
	90							check_debug(i	!=	0,	"Oops,	I	was	0.");
	91
	92							return	0;
	93			error:
	94							return	-1;
	95			}
	96
	97			int	main(int	argc,	char	*argv[])
	98			{
	99							check(argc	==	2,	"Need	an	argument.");
100
101							test_debug();
102							test_log_err();
103							test_log_warn();

104							test_log_info();
105
106							check(test_check("ex19.c")	==	0,	"failed	with	ex19.c");
107							check(test_check(argv[1])	==	-1,	"failed	with	argv");
108							check(test_sentinel(1)	==	0,	"test_sentinel	failed.");
109							check(test_sentinel(100)	==	-1,	"test_sentinel	failed.");
110							check(test_check_mem()	==	-1,	"test_check_mem	failed.");
111							check(test_check_debug()	==	-1,	"test_check_debug
failed.");
112
113							return	0;
114
115			error:
116							return	1;
117			}

Pay	attention	to	how	check	is	used,	and	when	it’s	false,	it	jumps	to	the
error:	label	to	do	a	cleanup.	The	way	to	read	those	lines	is,	“check	that	A	is
true,	and	if	not,	say	M	and	jump	out.”

What	You	Should	See
When	you	run	this,	give	it	some	bogus	first	parameter	to	see	this:

Exercise	19	Session

Click	here	to	view	code	image

$	make	ex19
cc	-Wall	-g	-DNDEBUG				ex19.c			-o	ex19

$./ex19	test
[ERROR]	(ex19.c:16:	errno:	None)	I	believe	everything	is	broken.

[ERROR]	(ex19.c:17:	errno:	None)	There	are	0	problems	in	space.

[WARN]	(ex19.c:22:	errno:	None)	You	can	safely	ignore	this.

[WARN]	(ex19.c:23:	errno:	None)	Maybe	consider	looking	at:

/etc/passwd.

[INFO]	(ex19.c:28)	Well	I	did	something	mundane.

[INFO]	(ex19.c:29)	It	happened	1.300000	times	today.

[ERROR]	(ex19.c:38:	errno:	No	such	file	or	directory)	Failed	to	open

test.

[INFO]	(ex19.c:57)	It	worked.

[ERROR]	(ex19.c:60:	errno:	None)	I	shouldn't	run.

[ERROR]	(ex19.c:74:	errno:	None)	Out	of	memory.

See	how	it	reports	the	exact	line	number	where	the	check	failed?	That’s	going
to	save	you	hours	of	debugging	later.	Also,	see	how	it	prints	the	error	message
for	you	when	errno	is	set?	Again,	that	will	save	you	hours	of	debugging.

How	the	CPP	Expands	Macros
It’s	now	time	for	you	to	get	a	short	introduction	to	the	CPP	so	that	you	know
how	these	macros	actually	work.	To	do	this,	I’m	going	to	break	down	the	most
complex	macro	from	dbg.h,	and	have	you	run	cpp	so	you	can	see	what	it’s
actually	doing.
Imagine	that	I	have	a	function	called	dosomething()	that	returns	the	typical
0	for	success	and	-1	for	an	error.	Every	time	I	call	dosomething,	I	have	to
check	for	this	error	code,	so	I’d	write	code	like	this:
Click	here	to	view	code	image

int	rc	=	dosomething();

if(rc	!=	0)	{
				fprintf(stderr,	"There	was	an	error:	%s\n",	strerror());
				goto	error;
}

What	I	want	to	use	the	CPP	for	is	to	encapsulate	this	if-statement	into	a
more	readable	and	memorable	line	of	code.	I	want	what	you’ve	been	doing	in
dbg.h	with	the	check	macro:
Click	here	to	view	code	image

int	rc	=	dosomething();
check(rc	==	0,	"There	was	an	error.");

This	is	much	clearer	and	explains	exactly	what’s	going	on:	Check	that	the
function	worked,	and	if	not,	report	an	error.	To	do	this,	we	need	some	special
CPP	tricks	that	make	the	CPP	useful	as	a	code	generation	tool.	Take	a	look	at	the
check	and	log_err	macros	again:
Click	here	to	view	code	image

#define	log_err(M,	...)	fprintf(stderr,\
				"[ERROR]	(%s:%d:	errno:	%s)	"	M	"\n",	__FILE__,	__LINE__,\
				clean_errno(),	##__VA_ARGS__)
#define	check(A,	M,	...)	if(!(A))	{\
				log_err(M,	##__VA_ARGS__);	errno=0;	goto	error;	}

The	first	macro,	log_err,	is	simpler.	It	simply	replaces	itself	with	a	call	to
fprintf	to	stderr.	The	only	tricky	part	of	this	macro	is	the	use	of	...	in
the	definition	log_err(M,	...).	What	this	does	is	let	you	pass	variable
arguments	to	the	macro,	so	you	can	pass	in	the	arguments	that	should	go	to
fprintf.	How	do	they	get	injected	into	the	fprintf	call?	Look	at	the	end
for	the	##__VA_ARGS__,	which	is	telling	the	CPP	to	take	the	args	entered

where	the	...	is,	and	inject	them	at	that	part	of	the	fprintf	call.	You	can	then
do	things	like	this:
Click	here	to	view	code	image

log_err("Age:	%d,	name:	%s",	age,	name);

The	arguments	age,	name	are	the	...	part	of	the	definition,	and	those	get
injected	into	the	fprintf	output:
Click	here	to	view	code	image

fprintf(stderr,	"[ERROR]	(%s:%d:	errno:	%s)	Age	%d:	name	%d\n",
				__FILE__,	__LINE__,	clean_errno(),	age,	name);

See	the	age,	name	at	the	end?	That’s	how	...	and	##__VA_ARGS__	work
together,	which	will	work	in	macros	that	call	other	variable	argument	macros.
Look	at	the	check	macro	now	and	see	that	it	calls	log_err,	but	check	is
also	using	the	...	and	##__VA_ARGS__	to	do	the	call.	That’s	how	you	can
pass	full	printf	style	format	strings	to	check,	which	go	to	log_err,	and
then	make	both	work	like	printf.
The	next	thing	to	study	is	how	check	crafts	the	if-statement	for	the	error
checking.	If	we	strip	out	the	log_err	usage,	we	see	this:
Click	here	to	view	code	image

if(!(A))	{	errno=0;	goto	error;	}

Which	means:	If	A	is	false,	then	clear	errno	and	goto	the	error	label.	The
check	macro	is	being	replaced	with	the	if-statement,	so	if	we	manually
expand	out	the	macro	check(rc	==	0,	"There	was	an	error."),
we	get	this:
Click	here	to	view	code	image

if(!(rc	==	0))	{
				log_err("There	was	an	error.");
				errno=0;
				goto	error;
}

What	you	should	be	getting	from	this	trip	through	these	two	macros	is	that	the
CPP	replaces	macros	with	the	expanded	version	of	their	definition,	and	it	will	do
this	recursively,	expanding	all	of	the	macros	in	macros.	The	CPP,	then,	is	just	a
recursive	templating	system,	as	I	mentioned	before.	Its	power	comes	from	its
ability	to	generate	whole	blocks	of	parameterized	code,	thus	becoming	a	handy
code	generation	tool.

That	leaves	one	question:	Why	not	just	use	a	function	like	die?	The	reason	is
that	you	want	file:line	numbers	and	the	goto	operation	for	an	error
handling	exit.	If	you	did	this	inside	a	function,	you	wouldn’t	get	a	line	number
where	the	error	actually	happened,	and	the	goto	would	be	much	more
complicated.
Another	reason	is	that	you	still	have	to	write	the	raw	if-statement,	which
looks	like	all	of	the	other	if-statements	in	your	code,	so	it’s	not	as	clear
that	this	one	is	an	error	check.	By	wrapping	the	if-statement	in	a	macro
called	check,	you	make	it	clear	that	this	is	just	error	checking,	and	not	part	of
the	main	flow.
Finally,	CPP	has	the	ability	to	conditionally	compile	portions	of	code,	so	you	can
have	code	that’s	only	present	when	you	build	a	developer	or	debug	version	of	the
program.	You	can	see	this	already	in	the	dbg.h	file	where	the	debug	macro
only	has	a	body	if	the	compiler	asks	for	it.	Without	this	ability,	you’d	need	a
wasted	if-statement	that	checks	for	debug	mode,	and	then	wastes	CPU
capacity	doing	that	check	for	no	value.

Extra	Credit
•	Put	#define	NDEBUG	at	the	top	of	the	file	and	check	that	all	of	the
debug	messages	go	away.
•	Undo	that	line,	and	add	-DNDEBUG	to	CFLAGS	at	the	top	of	the
Makefile,	and	then	recompile	to	see	the	same	thing.
•	Modify	the	logging	so	that	it	includes	the	function	name,	as	well	as	the
file:line.

Exercise	20.	Advanced	Debugging	Techniques

I’ve	already	taught	you	about	my	awesome	debug	macros,	and	you’ve	been
using	them.	When	I	debug	code	I	use	the	debug()	macro	almost	exclusively	to
analyze	what’s	going	on	and	track	down	the	problem.	In	this	exercise,	I’m	going
to	teach	you	the	basics	of	using	GDB	to	inspect	a	simple	program	that	runs	and
doesn’t	exit.	You’ll	learn	how	to	use	GDB	to	attach	to	a	running	process,	stop	it,
and	see	what’s	happening.	After	that,	I’ll	give	you	some	little	tips	and	tricks	that
you	can	use	with	GDB.
This	is	another	video-focused	exercise	where	I	show	you	advanced	debugging
tricks	with	my	technique.	The	discussion	below	reinforces	the	video,	so	watch
the	video	first.	Debugging	will	be	much	easier	to	learn	by	watching	me	do	it
first.

Debug	Printing	versus	GDB
I	approach	debugging	primarily	with	a	“scientific	method”	style:	I	come	up	with
possible	causes	and	then	rule	them	out	or	prove	that	they	cause	the	defect.	The
problem	many	programmers	have	with	this	approach	is	that	they	feel	like	it	will
slow	them	down.	They	panic	and	rush	to	solve	the	bug,	but	in	their	rush	they	fail
to	notice	that	they’re	really	just	flailing	around	and	gathering	no	useful
information.	I	find	that	logging	(debug	printing)	forces	me	to	solve	a	bug
scientifically,	and	it’s	also	just	easier	to	gather	information	in	most	situations.
In	addition,	I	have	these	reasons	for	using	debug	printing	as	my	primary
debugging	tool:

•	You	see	an	entire	tracing	of	a	program’s	execution	with	debug	printing	of
variables,	which	lets	you	track	how	things	are	going	wrong.	With	GDB,
you	have	to	place	watch	and	debug	statements	all	over	the	place	for
everything	you	want,	and	it’s	difficult	to	get	a	solid	trace	of	the	execution.
•	The	debug	prints	can	stay	in	the	code,	and	when	you	need	them,	you	can
recompile	and	they	come	back.	With	GDB,	you	have	to	configure	the	same
information	uniquely	for	every	defect	you	have	to	hunt	down.
•	It’s	easier	to	turn	on	debug	logging	on	a	server	that’s	not	working	right,
and	then	inspect	the	logs	while	it	runs	to	see	what’s	going	on.	System
administrators	know	how	to	handle	logging,	but	they	don’t	know	how	to
use	GDB.
•	Printing	things	is	just	easier.	Debuggers	are	always	obtuse	and	weird	with

their	own	quirky	interfaces	and	inconsistencies.	There’s	nothing
complicated	about	debug("Yo,	dis	right?	%d",	my_stuff);.
•	When	you	write	debug	prints	to	find	a	defect,	you’re	forced	to	actually
analyze	the	code	and	use	the	scientific	method.	You	can	think	of	debug
usage	as,	“I	hypothesize	that	the	code	is	broken	here.”	Then	when	you	run
it,	you	get	your	hypothesis	tested,	and	if	it’s	not	broken,	then	you	can	move
to	another	part	where	it	could	be.	This	may	seem	like	it	takes	longer,	but
it’s	actually	faster	because	you	go	through	a	process	of	differential
diagnosis	and	rule	out	possible	causes	until	you	find	the	real	one.
•	Debug	printing	works	better	with	unit	testing.	You	can	actually	just
compile	the	debugs	while	you	work,	and	when	a	unit	test	explodes,	just	go
look	at	the	logs	at	any	time.	With	GDB,	you’d	have	to	rerun	the	unit	test
under	GDB	and	then	trace	through	it	to	see	what’s	going	on.

Despite	all	of	these	reasons	that	I	rely	on	debug	over	GDB,	I	still	use	GDB	in	a
few	situations,	and	I	think	you	should	have	any	tool	that	helps	you	get	your	work
done.	Sometimes,	you	just	have	to	connect	to	a	broken	program	and	poke
around.	Or,	maybe	you’ve	got	a	server	that’s	crashing	and	you	can	only	get	at
core	files	to	see	why.	In	these	and	a	few	other	cases,	GDB	is	the	way	to	go,	and
it’s	always	good	to	have	as	many	tools	as	possible	to	help	solve	problems.
Here’s	a	breakdown	of	when	I	use	GDB	versus	Valgrind	versus	debug	printing:

•	I	use	Valgrind	to	catch	all	memory	errors.	I	use	GDB	if	Valgrind	is	having
problems	or	if	using	Valgrind	would	slow	the	program	down	too	much.
•	I	use	print	with	debug	to	diagnose	and	fix	defects	related	to	logic	or	usage.
This	amounts	to	about	90%	of	the	defects	after	you	start	using	Valgrind.
•	I	use	GDB	for	the	remaining	mysteriously	weird	stuff	or	emergency
situations	to	gather	information.	If	Valgrind	isn’t	turning	anything	up,	and	I
can’t	even	print	out	the	information	that	I	need,	then	I	bust	out	GDB	and
start	poking	around.	My	use	of	GDB	in	this	case	is	entirely	to	gather
information.	Once	I	have	an	idea	of	what’s	going	on,	I’ll	go	back	to	writing
a	unit	test	to	cause	the	defect,	and	then	do	print	statements	to	find	out	why.

A	Debugging	Strategy
This	process	will	actually	work	with	any	debugging	technique	you’re	using.	I’m
going	to	describe	it	in	terms	of	using	GDB	since	it	seems	people	skip	this	process
the	most	when	using	debuggers.	Use	this	for	every	bug	until	you	only	need	it	on
the	very	difficult	ones.

•	Start	a	little	text	file	called	notes.txt	and	use	it	as	a	kind	of	lab	notes
for	ideas,	bugs,	problems,	and	so	on.
•	Before	you	use	GDB,	write	out	the	bug	you’re	going	to	fix	and	what	could
be	causing	it.
•	For	each	cause,	write	out	the	files	and	functions	where	you	think	the	cause
is	coming	from,	or	just	write	that	you	don’t	know.
•	Now	start	GDB	and	pick	the	first	possible	cause	with	good	file	and	function
variables	and	set	breakpoints	there.
•	Use	GDB	to	then	run	the	program	and	confirm	whether	that	is	the	cause.
The	best	way	is	to	see	if	you	can	use	the	set	command	to	either	fix	the
program	easily	or	cause	the	error	immediately.
•	If	this	isn’t	the	cause,	then	mark	in	the	notes.txt	that	it	wasn’t,	and
why.	Move	on	to	the	next	possible	cause	that’s	easiest	to	debug,	and	keep
adding	information.

In	case	you	haven’t	noticed,	this	is	basically	the	scientific	method.	You	write
down	a	set	of	hypotheses,	then	you	use	debugging	to	prove	or	disprove	them.
This	gives	you	insight	into	more	possible	causes	and	eventually	you	find	it.	This
process	helps	you	avoid	going	over	the	same	possible	causes	repeatedly	after
you’ve	found	that	they	aren’t	possible.
You	can	also	do	this	with	debug	printing,	the	only	difference	is	that	you	actually
write	out	your	hypotheses	in	the	source	code	instead	of	in	the	notes.txt.	In	a
way,	debug	printing	forces	you	to	tackle	bugs	scientifically	because	you	have	to
write	out	hypotheses	as	print	statements.

Extra	Credit
•	Find	a	graphical	debugger	and	compare	using	it	to	raw	GDB.	These	are
useful	when	the	program	you’re	looking	at	is	local,	but	they	are	pointless	if
you	have	to	debug	a	program	on	a	server.
•	You	can	enable	core	dumps	on	your	OS,	and	when	a	program	crashes,
you’ll	get	a	core	file.	This	core	file	is	like	a	postmortem	of	the	program
that	you	can	load	up	to	see	what	happened	right	at	the	crash	and	what
caused	it.	Change	ex18.c	so	that	it	crashes	after	a	few	iterations,	then	try
to	get	a	core	dump	and	analyze	it.

Exercise	21.	Advanced	Data	Types	and	Flow	Control

This	exercise	will	be	a	complete	compendium	of	the	available	C	data	types	and
flow	control	structures	you	can	use.	It	will	work	as	a	reference	to	complete	your
knowledge,	and	won’t	have	any	code	for	you	to	enter.	I’ll	have	you	memorize
some	of	the	information	by	creating	flash	cards	so	you	can	get	the	important
concepts	solid	in	your	mind.
For	this	exercise	to	be	useful,	you	should	spend	at	least	a	week	hammering	in	the
content	and	filling	out	all	of	the	elements	that	are	missing	here.	You’ll	be	writing
out	what	each	one	means,	and	then	writing	a	program	to	confirm	what	you’ve
researched.

Available	Data	Types

Type	Modifiers

Type	Qualifiers

Type	Conversion
C	uses	a	sort	of	stepped	type	promotion	mechanism,	where	it	looks	at	two
operands	on	either	side	of	an	expression,	and	promotes	the	smaller	side	to	match
the	larger	side	before	doing	the	operation.	If	one	side	of	an	expression	is	on	this
list,	then	the	other	side	is	converted	to	that	type	before	the	operation	is	done.	It
goes	in	this	order:

1.	long	double
2.	double
3.	float
4.	int	(but	only	char	and	short	int);
5.	long

If	you	find	yourself	trying	to	figure	out	how	your	conversions	are	working	in	an
expression,	then	don’t	leave	it	to	the	compiler.	Use	explicit	casting	operations	to
make	it	exactly	what	you	want.	For	example,	if	you	have
Click	here	to	view	code	image

long	+	char	-	int	*	double

Rather	than	trying	to	figure	out	if	it	will	be	converted	to	double	correctly,	just
use	casts:
Click	here	to	view	code	image

(double)long	-	(double)char	-	(double)int	*	double

Putting	the	type	you	want	in	parentheses	before	the	variable	name	is	how	you
force	it	into	the	type	you	really	need.	The	important	thing,	though,	is	always
promote	up,	not	down.	Don’t	cast	long	into	char	unless	you	know	what	you’re
doing.

Type	Sizes
The	stdint.h	defines	both	a	set	of	typdefs	for	exact-sized	integer	types,	as
well	as	a	set	of	macros	for	the	sizes	of	all	the	types.	This	is	easier	to	work	with
than	the	older	limits.h	since	it	is	consistent.	Here	are	the	types	defined:

The	pattern	here	is	in	the	form	(u)int(BITS)_t	where	a	u	is	put	in	front	to	indicate
“unsigned,”	and	BITS	is	a	number	for	the	number	of	bits.	This	pattern	is	then
repeated	for	macros	that	return	the	maximum	values	of	these	types:

INT(N)_MAX	Maximum	positive	number	of	the	signed	integer	of	bits	(N),
such	as	INT16_MAX.

INT(N)_MIN	Minimum	negative	number	of	signed	integer	of	bits	(N).
UINT(N)_MAX	Maximum	positive	number	of	unsigned	integer	of	bits	(N).
Since	it’s	unsigned,	the	minimum	is	0	and	it	can’t	have	a	negative	value.

Warning!
Pay	attention!	Don’t	go	looking	for	a	literal	INT(N)_MAX	definition	in
any	header	file.	I’m	using	the	(N)	as	a	placeholder	for	any	number	of	bits
your	platform	currently	supports.	This	(N)	could	be	any	number—8,	16,
32,	64,	maybe	even	128.	I	use	this	notation	in	this	exercise	so	that	I	don’t
have	to	literally	write	out	every	possible	combination.

There	are	also	macros	in	stdint.h	for	sizes	of	the	size_t	type,	integers
large	enough	to	hold	pointers,	and	other	handy	size	defining	macros.	Compilers
have	to	at	least	have	these,	and	then	they	can	allow	other,	larger	types.
Here	is	a	full	list	that	should	be	in	stdint.h:

Available	Operators
This	is	a	comprehensive	list	of	all	the	operators	in	the	C	language.	In	this	list,
I’m	indicating	the	following:

Math	Operators
These	perform	your	basic	math	operations,	plus	I	include	()	since	it	calls	a
function	and	is	close	to	a	math	operation.

Data	Operators
These	are	used	to	access	data	in	different	ways	and	forms.

Logic	Operators
These	handle	testing	equality	and	inequality	of	variables.

Bit	Operators
These	are	more	advanced	and	are	for	shifting	and	modifying	the	raw	bits	in
integers.

Boolean	Operators
These	are	used	in	truth	testing.	Study	the	ternary	operator	carefully.	It’s	very
handy.

Assignment	Operators
Here	are	compound	assignment	operators	that	assign	a	value,	and/or	perform	an
operation	at	the	same	time.	Most	of	the	above	operations	can	also	be	combined
into	a	compound	assignment	operator.

Available	Control	Structures
There	are	a	few	control	structures	that	you	haven’t	encountered	yet.

do-while	do	{	...	}	while(X);	First	does	the	code	in	the	block,	then
tests	the	X	expression	before	exiting.

break	Puts	a	break	in	a	loop,	ending	it	early.
continue	Stops	the	body	of	a	loop	and	jumps	to	the	test	so	it	can	continue.
goto	Jumps	to	a	spot	in	the	code	where	you’ve	placed	a	label:,	and	you’ve
been	using	this	in	the	dbg.h	macros	to	go	to	the	error:	label.

Extra	Credit

•	Read	stdint.h	or	a	description	of	it,	and	write	out	all	the	available	size
identifiers.
•	Go	through	each	item	here	and	write	out	what	it	does	in	code.	Research	it
online	so	you	know	you	got	it	right.
•	Get	this	information	memorized	by	making	flash	cards	and	spending	15
minutes	a	day	practicing	it.
•	Create	a	program	that	prints	out	examples	of	each	type,	and	confirm	that
your	research	is	right.

Exercise	22.	The	Stack,	Scope,	and	Globals

The	concept	of	scope	seems	to	confuse	quite	a	few	people	when	they	first	start
programming.	It	originally	came	from	the	use	of	the	system	stack	(which	we
lightly	covered	earlier),	and	how	it	was	used	to	store	temporary	variables.	In	this
exercise,	we’ll	learn	about	scope	by	learning	how	a	stack	data	structure	works,
and	then	feeding	that	concept	back	in	to	how	modern	C	does	scoping.
The	real	purpose	of	this	exercise,	though,	is	to	learn	where	the	hell	things	live	in
C.	When	someone	doesn’t	grasp	the	concept	of	scope,	it’s	almost	always	a
failure	in	understanding	where	variables	are	created,	exist,	and	die.	Once	you
know	where	things	are,	the	concept	of	scope	becomes	easier.
This	exercise	will	require	three	files:

ex22.h	A	header	file	that	sets	up	some	external	variables	and	some	functions.
ex22.c	This	isn’t	your	main	like	normal,	but	instead	a	source	file	that	will
become	the	object	file	ex22.o,	which	will	have	some	functions	and
variables	in	it	defined	from	ex22.h.

ex22_main.c	The	actual	main	that	will	include	the	other	two,	and
demonstrate	what	they	contain,	as	well	as	other	scope	concepts.

ex22.h	and	ex22.c
Your	first	step	is	to	create	your	own	header	file	named	ex22.h	that	defines	the
functions	and	extern	variables:

ex22.h

Click	here	to	view	code	image

#ifndef	_ex22_h

#define	_ex22_h

//	makes	THE_SIZE	in	ex22.c	available	to	other	.c	files

extern	int	THE_SIZE;

//	gets	and	sets	an	internal	static	variable	in	ex22.c

int	get_age();
void	set_age(int	age);

//	updates	a	static	variable	that's	inside	update_ratio

double	update_ratio(double	ratio);

void	print_size();

#endif

The	important	thing	to	see	here	is	the	use	of	extern	int	THE_SIZE,	which
I’ll	explain	after	you	create	this	matching	ex22.c:

ex22.c

Click	here	to	view	code	image

		1			#include	<stdio.h>
		2			#include	"ex22.h"
		3			#include	"dbg.h"
		4
		5			int	THE_SIZE	=	1000;
		6
		7			static	int	THE_AGE	=	37;
		8
		9			int	get_age()
	10			{
	11							return	THE_AGE;
	12			}
	13
	14			void	set_age(int	age)
	15			{
	16							THE_AGE	=	age;
	17			}
	18
	19			double	update_ratio(double	new_ratio)
	20			{
	21							static	double	ratio	=	1.0;
	22
	23							double	old_ratio	=	ratio;
	24							ratio	=	new_ratio;
	25
	26							return	old_ratio;
	27			}
	28
	29			void	print_size()
	30			{
	31							log_info("I	think	size	is:	%d",	THE_SIZE);
	32			}

These	two	files	introduce	some	new	kinds	of	storage	for	variables:
extern	This	keyword	is	a	way	to	tell	the	compiler	“the	variable	exists,	but	it’s
in	another	‘external’	location.”	Typically	this	means	that	one	.c	file	is	going
to	use	a	variable	that’s	been	defined	in	another	.c	file.	In	this	case,	we’re

saying	ex22.c	has	a	variable	THE_SIZE	that	will	be	accessed	from
ex22_main.c.

static	(file)	This	keyword	is	kind	of	the	inverse	of	extern,	and	says	that	the
variable	is	only	used	in	this	.c	file	and	should	not	be	available	to	other
parts	of	the	program.	Keep	in	mind	that	static	at	the	file	level	(as	with
THE_AGE	here)	is	different	than	in	other	places.

static	(function)	If	you	declare	a	variable	in	a	function	static,	then	that
variable	acts	like	a	static	defined	in	the	file,	but	it’s	only	accessible
from	that	function.	It’s	a	way	of	creating	constant	state	for	a	function,	but
in	reality	it’s	rarely	used	in	modern	C	programming	because	they	are	hard
to	use	with	threads.

In	these	two	files,	you	should	understand	the	following	variables	and	functions:
THE_SIZE	This	is	the	variable	you	declared	extern	that	you’ll	play	with
from	ex22_main.c.

get_age	and	set_age	These	are	taking	the	static	variable	THE_AGE,	but
exposing	it	to	other	parts	of	the	program	through	functions.	You	can’t
access	THE_AGE	directly,	but	these	functions	can.

update_ratio	This	takes	a	new	ratio	value,	and	returns	the	old	one.	It	uses
a	function	level	static	variable	ratio	to	keep	track	of	what	the	ratio
currently	is.

print_size	This	prints	out	what	ex22.c	thinks	THE_SIZE	is	currently.

ex22_main.c
Once	you	have	that	file	written,	you	can	then	make	the	main	function,	which
uses	all	of	these	and	demonstrates	some	more	scope	conventions.

ex22_main.c

Click	here	to	view	code	image

		1			#include	"ex22.h"
		2			#include	"dbg.h"
		3
		4			const	char	*MY_NAME	=	"Zed	A.	Shaw";
		5
		6			void	scope_demo(int	count)
		7			{
		8							log_info("count	is:	%d",	count);

		9
	10							if	(count	>	10)	{
	11											int	count	=	100;				//	BAD!	BUGS!
	12
	13											log_info("count	in	this	scope	is	%d",	count);
	14							}
	15
	16							log_info("count	is	at	exit:	%d",	count);
	17
	18							count	=	3000;
	19
	20							log_info("count	after	assign:	%d",	count);
	21			}
	22
	23			int	main(int	argc,	char	*argv[])
	24			{
	25							//	test	out	THE_AGE	accessors
	26							log_info("My	name:	%s,	age:	%d",	MY_NAME,	get_age());
	27
	28							set_age(100);
	29
	30							log_info("My	age	is	now:	%d",	get_age());
	31
	32							//	test	out	THE_SIZE	extern
	33							log_info("THE_SIZE	is:	%d",	THE_SIZE);
	34							print_size();
	35
	36							THE_SIZE	=	9;
	37
	38							log_info("THE	SIZE	is	now:	%d",	THE_SIZE);
	39							print_size();
	40
	41							//	test	the	ratio	function	static
	42							log_info("Ratio	at	first:	%f",	update_ratio(2.0));
	43							log_info("Ratio	again:	%f",	update_ratio(10.0));
	44							log_info("Ratio	once	more:	%f",	update_ratio(300.0));
	45
	46							//	test	the	scope	demo
	47							int	count	=	4;
	48							scope_demo(count);
	49							scope_demo(count	*	20);
	50
	51							log_info("count	after	calling	scope_demo:	%d",	count);
	52
	53							return	0;
	54			}

I’ll	break	this	file	down	line	by	line,	but	as	I	do,	you	should	find	each	variable
and	where	it	lives.

ex22_main.c:4	A	const,	which	stands	for	constant,	and	is	an	alternative	to
using	a	define	to	create	a	constant	variable.

ex22_main.c:6	A	simple	function	that	demonstrates	more	scope	issues	in	a
function.

ex22_main.c:8	This	prints	out	the	value	of	count	as	it	is	at	the	top	of	the
function.

ex22_main.c:10	An	if-statement	that	starts	a	new	scope	block,	and	then
has	another	count	variable	in	it.	This	version	of	count	is	actually	a
whole	new	variable.	It’s	kind	of	like	the	if-statement	started	a	new
mini	function.

ex22_main.c:11	The	count	that	is	local	to	this	block	is	actually	different
from	the	one	in	the	function’s	parameter	list.

ex22_main.c:13	This	prints	it	out	so	you	can	see	it’s	actually	100	here,	not
what	was	passed	to	scope_demo.

ex22_main.c:16	Now	for	the	freaky	part.	You	have	count	in	two	places:	the
parameters	to	this	function,	and	in	the	if-statement.	The	if-
statement	created	a	new	block,	so	the	count	on	line	11	does	not
impact	the	parameter	with	the	same	name.	This	line	prints	it	out,	and
you’ll	see	that	it	prints	the	value	of	the	parameter,	not	100.

ex22_main.c:18-20	Then,	I	set	the	parameter	count	to	3000	and	print	that
out,	which	will	demonstrate	that	you	can	change	function	parameters	and
they	don’t	impact	the	caller’s	version	of	the	variable.

Make	sure	that	you	trace	through	this	function,	but	don’t	think	that	you
understand	scope	quite	yet.	Just	start	to	realize	that	if	you	make	a	variable	inside
a	block	(as	in	if-statements	or	while-loops),	then	those	variables	are
new	variables	that	exist	only	in	that	block.	This	is	crucial	to	understand,	and	is
also	a	source	of	many	bugs.	We’ll	address	why	you	shouldn’t	make	a	variable
inside	a	block	shortly.
The	rest	of	the	ex22_main.c	then	demonstrates	all	of	these	by	manipulating
and	printing	them	out:

ex22_main.c:26	This	prints	out	the	current	values	of	MY_NAME,	and	gets
THE_AGE	from	ex22.c	by	using	the	accessor	function	get_age.

ex22_main.c:27-30	This	uses	set_age	in	ex22.c	to	change	THE_AGE
and	then	print	it	out.

ex22_main.c:33-39	Then	I	do	the	same	thing	to	THE_SIZE	from	ex22.c,
but	this	time	I’m	accessing	it	directly.	I’m	also	demonstrating	that	it’s
actually	changing	in	that	file	by	printing	it	here	and	with	print_size.

ex22_main.c:42-44	Here,	I	show	how	the	static	variable	ratio	inside
update_ratio	is	maintained	between	function	calls.

ex22_main.c:46-51	Finally,	I’m	running	scope_demo	a	few	times	so	you
can	see	the	scope	in	action.	The	big	thing	to	notice	is	that	the	local	count
variable	remains	unchanged.	You	must	understand	that	passing	in	a
variable	like	this	won’t	let	you	change	it	in	the	function.	To	do	that,	you
need	our	old	friend	the	pointer.	If	you	were	to	pass	a	pointer	to	this
count,	then	the	called	function	would	have	the	address	of	it	and	could
change	it.

That	explains	what’s	going	on,	but	you	should	trace	through	these	files	and	make
sure	you	know	where	everything	is	as	you	study	it.

What	You	Should	See
This	time,	instead	of	using	your	Makefile,	I	want	you	to	build	these	two	files
manually	so	you	can	see	how	the	compiler	actually	puts	them	together.	Here’s
what	you	should	do	and	see	for	output:

Exercise	22	Session

Click	here	to	view	code	image

$	cc	-Wall	-g	-DNDEBUG		-c	-o	ex22.o	ex22.c
$	cc	-Wall	-g	-DNDEBUG			ex22_main.c	ex22.o			-o	ex22_main
$./ex22_main
[INFO]	(ex22_main.c:26)	My	name:	Zed	A.	Shaw,	age:	37

[INFO]	(ex22_main.c:30)	My	age	is	now:	100

[INFO]	(ex22_main.c:33)	THE_SIZE	is:	1000

[INFO]	(ex22.c:32)	I	think	size	is:	1000

[INFO]	(ex22_main.c:38)	THE	SIZE	is	now:	9

[INFO]	(ex22.c:32)	I	think	size	is:	9

[INFO]	(ex22_main.c:42)	Ratio	at	first:	1.000000

[INFO]	(ex22_main.c:43)	Ratio	again:	2.000000

[INFO]	(ex22_main.c:44)	Ratio	once	more:	10.000000

[INFO]	(ex22_main.c:8)	count	is:	4

[INFO]	(ex22_main.c:16)	count	is	at	exit:	4

[INFO]	(ex22_main.c:20)	count	after	assign:	3000

[INFO]	(ex22_main.c:8)	count	is:	80

[INFO]	(ex22_main.c:13)	count	in	this	scope	is	100

[INFO]	(ex22_main.c:16)	count	is	at	exit:	80

[INFO]	(ex22_main.c:20)	count	after	assign:	3000

[INFO]	(ex22_main.c:51)	count	after	calling	scope_demo:	4

Make	sure	you	trace	how	each	variable	is	changing	and	match	it	to	the	line	that

gets	output.	I’m	using	log_info	from	the	dbg.h	macros	so	you	can	get	the
exact	line	number	where	each	variable	is	printed,	and	find	it	in	the	files	for
tracing.

Scope,	Stack,	and	Bugs
If	you’ve	done	this	right,	you	should	now	see	many	of	the	different	ways	you
can	place	variables	in	your	C	code.	You	can	use	extern	or	access	functions
like	get_age	to	create	globals.	You	can	make	new	variables	inside	any	blocks,
and	they’ll	retain	their	own	values	until	that	block	exits,	leaving	the	outer
variables	alone.	You	also	can	pass	a	value	to	a	function,	and	change	the
parameter	but	without	changing	the	caller’s	version	of	it.
The	most	important	thing	to	realize	is	that	all	of	this	causes	bugs.	C’s	ability	to
place	things	in	many	places	in	your	machine,	and	then	let	you	access	it	in	those
places,	means	that	you	can	get	easily	confused	about	where	something	lives.	If
you	don’t	know	where	it	lives,	then	there’s	a	chance	you	won’t	manage	it
properly.
With	that	in	mind,	here	are	some	rules	to	follow	when	writing	C	code	so	you	can
avoid	bugs	related	to	the	stack:

•	Do	not	shadow	a	variable	like	I’ve	done	here	with	count	in
scope_demo.	It	leaves	you	open	to	subtle	and	hidden	bugs	where	you
think	you’re	changing	a	value	but	you’re	actually	not.
•	Avoid	using	too	many	globals,	especially	if	across	multiple	files.	If	you
have	to	use	them,	then	use	accessor	functions	like	I’ve	done	with
get_age.	This	doesn’t	apply	to	constants,	since	those	are	read-only.	I’m
talking	about	variables	like	THE_SIZE.	If	you	want	people	to	modify	or
set	this	variable,	then	make	accessor	functions.
•	When	in	doubt,	put	it	on	the	heap.	Don’t	rely	on	the	semantics	of	the	stack
or	specialized	locations.	Just	create	things	with	malloc.
•	Don’t	use	function	static	variables	like	I	did	in	update_ratio.	They’re
rarely	useful	and	end	up	being	a	huge	pain	when	you	need	to	make	your
code	concurrent	in	threads.	They’re	also	hard	as	hell	to	find	compared	to	a
well-done	global	variable.
•	Avoid	reusing	function	parameters.	It’s	confusing	as	to	whether	you’re	just
reusing	it	or	if	you	think	you’re	changing	the	caller’s	version	of	it.

As	with	all	things,	these	rules	can	be	broken	when	it’s	practical.	In	fact,	I
guarantee	you’ll	run	into	code	that	breaks	all	of	these	rules	and	is	perfectly	fine.

The	constraints	of	different	platforms	even	make	it	necessary	sometimes.

How	to	Break	It
For	this	exercise,	try	to	access	or	change	some	things	you	can’t	to	break	the
program.

•	Try	to	directly	access	variables	in	ex22.c	from	ex22_main.c	that	you
think	you	can’t	access.	For	example,	can	you	get	at	ratio	inside
update_ratio?	What	if	you	had	a	pointer	to	it?
•	Ditch	the	extern	declaration	in	ex22.h	to	see	what	errors	or	warnings
you	get.
•	Add	static	or	const	specifiers	to	different	variables,	and	then	try	to
change	them.

Extra	Credit
•	Research	the	concept	of	pass	by	value	versus	pass	by	reference.	Write	an
example	of	both.
•	Use	pointers	to	gain	access	to	things	you	shouldn’t	have	access	to.
•	Use	your	debugger	to	see	what	this	kind	of	access	looks	like	when	you	do
it	wrong.
•	Write	a	recursive	function	that	causes	a	stack	overflow.	Don’t	know	what	a
recursive	function	is?	Try	calling	scope_demo	at	the	bottom	of
scope_demo	itself	so	that	it	loops.
•	Rewrite	the	Makefile	so	that	it	can	build	this.

Exercise	23.	Meet	Duff’s	Device

This	exercise	is	a	brain	teaser	where	I	introduce	you	to	one	of	the	most	famous
hacks	in	C	called	Duff’s	device,	named	after	Tom	Duff,	its	inventor.	This	little
slice	of	awesome	(evil?)	has	nearly	everything	you’ve	been	learning	wrapped	in
one	tiny,	little	package.	Figuring	out	how	it	works	is	also	a	good,	fun	puzzle.

Warning!
Part	of	the	fun	of	C	is	that	you	can	come	up	with	crazy	hacks	like	this,	but
this	is	also	what	makes	C	annoying	to	use.	It’s	good	to	learn	about	these
tricks	because	it	gives	you	a	deeper	understanding	of	the	language	and
your	computer.	But	you	should	never	use	this.	Always	strive	for	easy-to-
read	code.

Discovered	by	Tom	Duff,	Duff’s	device	is	a	trick	with	the	C	compiler	that
actually	shouldn’t	work.	I	won’t	tell	you	what	it	does	yet	since	this	is	meant	to
be	a	puzzle	for	you	to	ponder	and	try	to	solve.	You’ll	get	this	code	running	and
then	try	to	figure	out	what	it	does,	and	why	it	does	it	this	way.

ex23.c

Click	here	to	view	code	image

		1			#include	<stdio.h>
		2			#include	<string.h>
		3			#include	"dbg.h"
		4
		5			int	normal_copy(char	*from,	char	*to,	int	count)
		6			{
		7							int	i	=	0;
		8
		9							for	(i	=	0;	i	<	count;	i++)	{
	10											to[i]	=	from[i];
	11							}
	12
	13							return	i;
	14			}
	15
	16			int	duffs_device(char	*from,	char	*to,	int	count)
	17			{
	18							{
	19											int	n	=	(count	+	7)	/	8;

	20
	21											switch	(count	%	8)	{
	22															case	0:
	23																			do	{
	24																							*to++	=	*from++;
	25																							case	7:
	26																							*to++	=	*from++;
	27																							case	6:
	28																							*to++	=	*from++;
	29																							case	5:
	30																							*to++	=	*from++;
	31																							case	4:
	32																							*to++	=	*from++;
	33																							case	3:
	34																							*to++	=	*from++;
	35																							case	2:
	36																							*to++	=	*from++;
	37																							case	1:
	38																							*to++	=	*from++;
	39																			}	while	(--n	>	0);
	40												}
	41								}
	42
	43								return	count;
	44				}
	45
	46				int	zeds_device(char	*from,	char	*to,	int	count)
	47				{
	48								{
	49												int	n	=	(count	+	7)	/	8;
	50
	51												switch	(count	%	8)	{
	52																case	0:
	53				again:				*to++	=	*from++;
	54
	55																case	7:
	56														*to++	=	*from++;
	57																case	6:
	58														*to++	=	*from++;
	59																case	5:
	60														*to++	=	*from++;
	61																case	4:
	62														*to++	=	*from++;
	63																case	3:
	64														*to++	=	*from++;
	65																case	2:
	66														*to++	=	*from++;
	67																case	1:
	68														*to++	=	*from++;
	69														if	(--n	>	0)
	70																		goto	again;
	71												}

	72								}
	73
	74								return	count;
	75				}
	76
	77				int	valid_copy(char	*data,	int	count,	char	expects)
	78				{
	79								int	i	=	0;
	80								for	(i	=	0;	i	<	count;	i++)	{
	81												if	(data[i]	!=	expects)	{
	82																log_err("[%d]	%c	!=	%c",	i,	data[i],	expects);
	83																return	0;
	84												}
	85								}
	86
	87								return	1;
	88				}
	89
	90				int	main(int	argc,	char	*argv[])
	91				{
	92								char	from[1000]	=	{	'a'	};
	93								char	to[1000]	=	{	'c'	};
	94								int	rc	=	0;
	95
	96								//	set	up	the	from	to	have	some	stuff
	97								memset(from,	'x',	1000);
	98								//	set	it	to	a	failure	mode
	99								memset(to,	'y',	1000);
100								check(valid_copy(to,	1000,	'y'),	"Not	initialized
right.");
101
102								//	use	normal	copy	to
103								rc	=	normal_copy(from,	to,	1000);
104								check(rc	==	1000,	"Normal	copy	failed:	%d",	rc);
105								check(valid_copy(to,	1000,	'x'),	"Normal	copy	failed.");
106
107								//	reset
108								memset(to,	'y',	1000);
109
110								//	duffs	version
111								rc	=	duffs_device(from,	to,	1000);
112								check(rc	==	1000,	"Duff's	device	failed:	%d",	rc);
113								check(valid_copy(to,	1000,	'x'),	"Duff's	device	failed
copy.");
114
115								//	reset
116								memset(to,	'y',	1000);
117
118								//	my	version
119								rc	=	zeds_device(from,	to,	1000);
120								check(rc	==	1000,	"Zed's	device	failed:	%d",	rc);
121								check(valid_copy(to,	1000,	'x'),	"Zed's	device	failed

copy.");
122
123								return	0;
124				error:
125								return	1;
126				}

In	this	code,	I	have	three	versions	of	a	copy	function:
normal_copy	This	is	just	a	plain	for-loop	that	copies	characters	from	one
array	to	another.

duffs_device	This	is	called	Duff’s	device,	named	after	Tom	Duff,	the	person
to	blame	for	this	delicious	evil.

zeds_device	A	version	of	Duff’s	device	that	just	uses	a	goto	so	you	can	clue
in	to	what’s	happening	with	the	weird	do-while	placement	in
duffs_device.

Study	these	three	functions	before	continuing.	Try	to	explain	what’s	going	on	to
yourself.

What	You	Should	See
There’s	no	output	from	this	program,	it	just	runs	and	exits.	Run	it	under	your
debugger	to	see	if	you	can	catch	any	more	errors.	Try	causing	some	of	your	own,
as	I	showed	you	in	Exercise	4.

Solving	the	Puzzle
The	first	thing	to	understand	is	that	C	is	rather	loose	regarding	some	of	its
syntax.	This	is	why	you	can	put	half	of	a	do-while	in	one	part	of	a	switch-
statement,	then	the	other	half	somewhere	else,	and	the	code	will	still	work.	If
you	look	at	my	version	with	the	goto	again,	it’s	actually	more	clear	what’s
going	on,	but	make	sure	you	understand	how	that	part	works.
The	second	thing	is	how	the	default	fallthrough	semantics	of	switch-
statements	let	you	jump	to	a	particular	case,	and	then	it	will	just	keep
running	until	the	end	of	the	switch.
The	final	clue	is	the	count	%	8	and	the	calculation	of	n	at	the	top.
Now,	to	solve	how	these	functions	work,	do	the	following:

•	Print	this	code	out	so	that	you	can	write	on	some	paper.
•	Write	each	of	the	variables	in	a	table	as	they	look	when	they	get	initialized
right	before	the	switch-statement.

•	Follow	the	logic	to	the	switch,	then	do	the	jump	to	the	right	case.
•	Update	the	variables,	including	the	to,	from,	and	the	arrays	they	point	at.
•	When	you	get	to	the	while	part	or	my	goto	alternative,	check	your
variables,	and	then	follow	the	logic	either	back	to	the	top	of	the	do-
while	or	to	where	the	again	label	is	located.
•	Follow	through	this	manual	tracing,	updating	the	variables,	until	you’re
sure	you	see	how	this	flows.

Why	Bother?
When	you’ve	figured	out	how	it	actually	works,	the	final	question	is:	Why
would	you	ever	want	to	do	this?	The	purpose	of	this	trick	is	to	manually	do	loop
unrolling.	Large,	long	loops	can	be	slow,	so	one	way	to	speed	them	up	is	to	find
some	fixed	chunk	of	the	loop,	and	then	just	duplicate	the	code	in	the	loop	that
many	times	sequentially.	For	example,	if	you	know	a	loop	runs	a	minimum	of	20
times,	then	you	can	put	the	contents	of	the	loop	20	times	in	the	source	code.
Duff’s	device	is	basically	doing	this	automatically	by	chunking	up	the	loop	into
eight	iteration	chunks.	It’s	clever	and	actually	works,	but	these	days	a	good
compiler	will	do	this	for	you.	You	shouldn’t	need	this	except	in	the	rare	case
where	you	have	proven	it	would	improve	your	speed.

Extra	Credit
•	Never	use	this	again.
•	Go	look	at	the	Wikipedia	entry	for	Duff’s	device	and	see	if	you	can	spot
the	error.	Read	the	article,	compare	it	to	the	version	I	have	here,	and	try	to
understand	why	the	Wikipedia	code	won’t	work	for	you	but	worked	for
Tom	Duff.
•	Create	a	set	of	macros	that	lets	you	create	any	length	of	device	like	this.
For	example,	what	if	you	wanted	to	have	32	case	statements	and	didn’t
want	to	write	out	all	of	them?	Can	you	do	a	macro	that	lays	down	eight	at	a
time?
•	Change	the	main	to	conduct	some	speed	tests	to	see	which	one	is	really
the	fastest.
•	Read	about	memcpy,	memmove,	and	memset,	and	also	compare	their
speed.
•	Never	use	this	again!

Exercise	24.	Input,	Output,	Files

You’ve	been	using	printf	to	print	things,	and	that’s	great	and	all,	but	you	need
more.	In	this	exercise,	you’ll	be	using	the	functions	fscanf	and	fgets	to
build	information	about	a	person	in	a	structure.	After	this	simple	introduction
about	reading	input,	you’ll	get	a	full	list	of	the	functions	that	C	has	for	I/O.	Some
of	these	you’ve	already	seen	and	used,	so	this	will	be	another	memorization
exercise.

ex24.c

Click	here	to	view	code	image

		1			#include	<stdio.h>
		2			#include	"dbg.h"
		3
		4			#define	MAX_DATA	100
		5
		6			typedef	enum	EyeColor	{
		7							BLUE_EYES,	GREEN_EYES,	BROWN_EYES,
		8							BLACK_EYES,	OTHER_EYES
		9			}	EyeColor;
	10
	11			const	char	*EYE_COLOR_NAMES[]	=	{
	12							"Blue",	"Green",	"Brown",	"Black",	"Other"
	13			};
	14
	15			typedef	struct	Person	{
	16							int	age;
	17							char	first_name[MAX_DATA];
	18							char	last_name[MAX_DATA];
	19							EyeColor	eyes;
	20							float	income;
	21			}	Person;
	22
	23			int	main(int	argc,	char	*argv[])
	24			{
	25							Person	you	=	{.age	=	0	};
	26							int	i	=	0;
	27							char	*in	=	NULL;
	28
	29							printf("What's	your	First	Name?	");
	30							in	=	fgets(you.first_name,	MAX_DATA	-	1,	stdin);
	31							check(in	!=	NULL,	"Failed	to	read	first	name.");
	32
	33							printf("What's	your	Last	Name?	");

	34							in	=	fgets(you.last_name,	MAX_DATA	-	1,	stdin);
	35							check(in	!=	NULL,	"Failed	to	read	last	name.");
	36
	37							printf("How	old	are	you?	");
	38							int	rc	=	fscanf(stdin,	"%d",	&you.age);
	39							check(rc	>	0,	"You	have	to	enter	a	number.");
	40
	41							printf("What	color	are	your	eyes:\n");
	42							for	(i	=	0;	i	<=	OTHER_EYES;	i++)	{
	43											printf("%d)	%s\n",	i	+	1,	EYE_COLOR_NAMES[i]);
	44							}
	45							printf(">	");
	46
	47							int	eyes	=	-1;
	48							rc	=	fscanf(stdin,	"%d",	&eyes);
	49							check(rc	>	0,	"You	have	to	enter	a	number.");
	50
	51							you.eyes	=	eyes	-	1;
	52							check(you.eyes	<=	OTHER_EYES
	53															&&	you.eyes	>=	0,	"Do	it	right,	that's	not	an
option.");
	54
	55							printf("How	much	do	you	make	an	hour?	");
	56							rc	=	fscanf(stdin,	"%f",	&you.income);
	57							check(rc	>	0,	"Enter	a	floating	point	number.");
	58
	59							printf("-----	RESULTS	-----\n");
	60
	61							printf("First	Name:	%s",	you.first_name);
	62							printf("Last	Name:	%s",	you.last_name);
	63							printf("Age:	%d\n",	you.age);
	64							printf("Eyes:	%s\n",	EYE_COLOR_NAMES[you.eyes]);
	65							printf("Income:	%f\n",	you.income);
	66
	67							return	0;
	68			error:
	69
	70							return	-1;
	71			}

This	program	is	deceptively	simple,	and	introduces	a	function	called	fscanf,
which	is	the	file	scanf.	The	scanf	family	of	functions	are	the	inverse	of	the
printf	versions.	Where	printf	printed	out	data	based	on	a	format,	scanf
reads	(or	scans)	input	based	on	a	format.
There’s	nothing	original	in	the	beginning	of	the	file,	so	here’s	what	the	main	is
doing	in	the	program:

ex24.c:24-28	Sets	up	some	variables	we’ll	need.
ex24.c:30-32	Gets	your	first	name	using	the	fgets	function,	which	reads	a

string	from	the	input	(in	this	case	stdin),	but	makes	sure	it	doesn’t
overflow	the	given	buffer.

ex24.c:34-36	Same	thing	for	you.last_name,	again	using	fgets.
ex24.c:38-39	Uses	fscanf	to	read	an	integer	from	stdin	and	put	it	into
you.age.	You	can	see	that	the	same	format	string	is	used	as	printf	to
print	an	integer.	You	should	also	see	that	you	have	to	give	the	address	of
you.age	so	that	fscanf	has	a	pointer	to	it	and	can	modify	it.	This	is	a
good	example	of	using	a	pointer	to	a	piece	of	data	as	an	out	parameter.

ex24.c:41-45	Prints	out	all	of	the	options	available	for	eye	color,	with	a
matching	number	that	works	with	the	EyeColor	enum	above.

ex24.c:47-50	Using	fscanf	again,	gets	a	number	for	the	you.eyes,	but
make	sure	the	input	is	valid.	This	is	important	because	someone	can	enter	a
value	outside	the	EYE_COLOR_	NAMES	array	and	cause	a	segmentation
fault.

ex24.c:52-53	Gets	how	much	you	make	as	a	float	for	the	you.income.
ex24.c:55-61	Prints	everything	out	so	you	can	see	if	you	have	it	right.	Notice
that	EYE_COLOR_NAMES	is	used	to	print	out	what	the	EyeColor	enum
is	actually	called.

What	You	Should	See
When	you	run	this	program,	you	should	see	your	inputs	being	properly
converted.	Make	sure	you	try	to	give	it	bogus	input	too,	so	you	can	see	how	it
protects	against	the	input.

Exercise	24	Session

Click	here	to	view	code	image

$	make	ex24
cc	-Wall	-g	-DNDEBUG				ex24.c				-o	ex24

$./ex24
What's	your	First	Name?	Zed

What's	your	Last	Name?	Shaw

How	old	are	you?	37

What	color	are	your	eyes:

1)	Blue

2)	Green

3)	Brown

4)	Black

5)	Other

>	1
How	much	do	you	make	an	hour?	1.2345

-----	RESULTS	-----

First	Name:	Zed

Last	Name:	Shaw

Age:	37

Eyes:	Blue

Income:	1.234500

How	to	Break	It
This	is	all	fine	and	good,	but	the	really	important	part	of	this	exercise	is	how
scanf	actually	sucks.	It’s	fine	for	a	simple	conversion	of	numbers,	but	fails	for
strings	because	it’s	difficult	to	tell	scanf	how	big	a	buffer	is	before	you	read	it.
There’s	also	a	problem	with	the	function	gets	(not	fgets,	the	non-f	version),
which	we	avoided.	That	function	has	no	idea	how	big	the	input	buffer	is	at	all
and	will	just	trash	your	program.
To	demonstrate	the	problems	with	fscanf	and	strings,	change	the	lines	that	use
fgets	so	they	are	fscanf(stdin,	"%50s",	you.first_name),	and
then	try	to	use	it	again.	Notice	it	seems	to	read	too	much	and	then	eat	your	enter
key?	This	doesn’t	do	what	you	think	it	does,	and	rather	than	deal	with	weird
scanf	issues,	you	should	just	use	fgets.
Next,	change	the	fgets	to	use	gets,	then	run	your	debugger	on	ex24.	Do
this	inside:

"run	<<	/dev/urandom"

This	feeds	random	garbage	into	your	program.	This	is	called	fuzzing	your
program,	and	it’s	a	good	way	to	find	input	bugs.	In	this	case,	you’re	feeding
garbage	from	the	/dev/urandom	file	(device),	and	then	watching	it	crash.	In
some	platforms,	you	may	have	to	do	this	a	few	times,	or	even	adjust	the
MAX_DATA	define	so	it’s	small	enough.
The	gets	function	is	so	bad	that	some	platforms	actually	warn	you	when	the
program	runs	that	you’re	using	gets.	You	should	never	use	this	function,	ever.
Finally,	take	the	input	for	you.eyes	and	remove	the	check	that	the	number	is
within	the	right	range.	Then,	feed	it	bad	numbers	like	-1	or	1000.	Do	this	under
the	debugger	so	you	can	see	what	happens	there,	too.

The	I/O	Functions
This	is	a	short	list	of	various	I/O	functions	that	you	should	look	up.	Create	flash

cards	that	have	the	function	name	and	all	the	variants	similar	to	it.
•	fscanf
•	fgets
•	fopen
•	freopen
•	fdopen
•	fclose
•	fcloseall
•	fgetpos
•	fseek
•	ftell
•	rewind
•	fprintf
•	fwrite
•	fread

Go	through	these	and	memorize	the	different	variants	and	what	they	do.	For
example,	for	the	card	fscanf,	you’ll	have	scanf,	sscanf,	vscanf,	etc.,
and	then	what	each	of	those	does	on	the	back.
Finally,	use	man	to	read	the	help	for	each	variant	to	get	the	information	you	need
for	the	flash	cards.	For	example,	the	page	for	fscanf	comes	from	man
fscanf.

Extra	Credit
•	Rewrite	this	to	not	use	fscanf	at	all.	You’ll	need	to	use	functions	like
atoi	to	convert	the	input	strings	to	numbers.
•	Change	this	to	use	plain	scanf	instead	of	fscanf	to	see	what	the
difference	is.
•	Fix	it	so	that	their	input	names	get	stripped	of	the	trailing	newline
characters	and	any	white	space.
•	Use	scanf	to	write	a	function	that	reads	one	character	at	a	time	and	fills
in	the	names	but	doesn’t	go	past	the	end.	Make	this	function	generic	so	it
can	take	a	size	for	the	string,	but	just	make	sure	you	end	the	string	with

'\0'	no	matter	what.

Exercise	25.	Variable	Argument	Functions

In	C,	you	can	create	your	own	versions	of	functions	like	printf	and	scanf
by	creating	a	variable	argument	function,	or	vararg	function.	These	functions
use	the	header	stdarg.h,	and	with	them,	you	can	create	nicer	interfaces	to
your	library.	They	are	handy	for	certain	types	of	builder	functions,	formatting
functions,	and	anything	that	takes	variable	arguments.
Understanding	vararg	functions	is	not	essential	to	creating	C	programs.	I	think
I’ve	used	it	maybe	20	times	in	my	code	in	all	of	the	years	I’ve	been
programming.	However,	knowing	how	a	vararg	function	works	will	help	you
debug	the	programs	you	use	and	gives	you	a	better	understanding	of	the
computer.

ex25.c

Click	here	to	view	code	image

		1
		2
		3			#include	<stdlib.h>
		4			#include	<stdio.h>
		5			#include	<stdarg.h>
		6			#include	"dbg.h"
		7
		8			#define	MAX_DATA	100
		9
	10			int	read_string(char	**out_string,	int	max_buffer)
	11			{
	12							*out_string	=	calloc(1,	max_buffer	+	1);
	13							check_mem(*out_string);
	14
	15							char	*result	=	fgets(*out_string,	max_buffer,	stdin);
	16							check(result	!=	NULL,	"Input	error.");
	17
	18							return	0;
	19
	20			error:
	21							if	(*out_string)	free(*out_string);
	22							*out_string	=	NULL;
	23							return	-1;
	24			}
	25
	26			int	read_int(int	*out_int)
	27			{
	28							char	*input	=	NULL;

	29							int	rc	=	read_string(&input,	MAX_DATA);
	30							check(rc	==	0,	"Failed	to	read	number.");
	31
	32							*out_int	=	atoi(input);
	33
	34							free(input);
	35							return	0;
	36
	37			error:
	38							if	(input)	free(input);
	39							return	-1;
	40			}
	41
	42			int	read_scan(const	char	*fmt,	...)
	43			{
	44							int	i	=	0;
	45							int	rc	=	0;
	46							int	*out_int	=	NULL;
	47							char	*out_char	=	NULL;
	48							char	**out_string	=	NULL;
	49							int	max_buffer	=	0;
	50
	51							va_list	argp;
	52							va_start(argp,	fmt);
	53
	54							for	(i	=	0;	fmt[i]	!=	'\0';	i++)	{
	55											if	(fmt[i]	==	'%')	{
	56															i++;
	57															switch	(fmt[i])	{
	58																			case	'\0':
	59																							sentinel("Invalid	format,	you	ended	with
%%.");
	60																							break;
	61
	62																			case	'd':
	63																							out_int	=	va_arg(argp,	int	*);
	64																							rc	=	read_int(out_int);
	65																							check(rc	==	0,	"Failed	to	read	int.");
	66																							break;
	67
	68																			case	'c':
	69																							out_char	=	va_arg(argp,	char	*);
	70																							*out_char	=	fgetc(stdin);
	71																							break;
	72
	73																			case	's':
	74																							max_buffer	=	va_arg(argp,	int);
	75																							out_string	=	va_arg(argp,	char	**);
	76																							rc	=	read_string(out_string,	max_buffer);
	77																							check(rc	==	0,	"Failed	to	read	string.");
	78																							break;
	79

	80																			default:
	81																							sentinel("Invalid	format.");
	82															}
	83											}	else	{
	84															fgetc(stdin);
	85											}
	86
	87											check(!feof(stdin)	&&	!ferror(stdin),	"Input	error.");
	88							}
	89
	90							va_end(argp);
	91							return	0;
	92
	93			error:
	94							va_end(argp);
	95							return	-1;
	96			}
	97
	98			int	main(int	argc,	char	*argv[])
	99			{
100							char	*first_name	=	NULL;
101							char	initial	=	'	';
102							char	*last_name	=	NULL;
103							int	age	=	0;
104
105							printf("What's	your	first	name?	");
106							int	rc	=	read_scan("%s",	MAX_DATA,	&first_name);
107							check(rc	==	0,	"Failed	first	name.");
108
109							printf("What's	your	initial?	");
110							rc	=	read_scan("%c\n",	&initial);
111							check(rc	==	0,	"Failed	initial.");
112
113							printf("What's	your	last	name?	");
114							rc	=	read_scan("%s",	MAX_DATA,	&last_name);
115							check(rc	==	0,	"Failed	last	name.");
116
117							printf("How	old	are	you?	");
118							rc	=	read_scan("%d",	&age);
119
120							printf("----	RESULTS	----\n");
121							printf("First	Name:	%s",	first_name);
122							printf("Initial:	'%c'\n",	initial);
123							printf("Last	Name:	%s",	last_name);
124							printf("Age:	%d\n",	age);
125
126							free(first_name);
127							free(last_name);
128							return	0;
129			error:
130							return	-1;
131			}

This	program	is	similar	to	the	previous	exercise,	except	I	have	written	my	own
scanf	function	to	handle	strings	the	way	I	want.	The	main	function	should	be
clear	to	you,	as	well	as	the	two	functions	read_string	and	read_int,	since
they	do	nothing	new.
The	varargs	function	is	called	read_scan,	and	it	does	the	same	thing	that
scanf	is	doing	using	the	va_list	data	structure	and	supporting	macros	and
functions.	Here’s	how:

•	I	set	as	the	last	parameter	of	the	function	the	keyword	...	to	indicate	to	C
that	this	function	will	take	any	number	of	arguments	after	the	fmt
argument.	I	could	put	many	other	arguments	before	this,	but	I	can’t	put	any
more	after	this.
•	After	setting	up	some	variables,	I	create	a	va_list	variable	and	initialize
it	with	va_start.	This	configures	the	gear	in	stdarg.h	that	handles
variable	arguments.
•	I	then	use	a	for-loop	to	loop	through	the	format	string	fmt	and	process
the	same	kind	of	formats	that	scanf	has,	only	much	simpler.	I	just	have
integers,	characters,	and	strings.
•	When	I	hit	a	format,	I	use	the	switch-statement	to	figure	out	what	to
do.
•	Now,	to	get	a	variable	from	the	va_list	argp,	I	use	the	macro
va_arg(argp,	TYPE)	where	TYPE	is	the	exact	type	of	what	I	will
assign	this	function	parameter	to.	The	downside	to	this	design	is	that
you’re	flying	blind,	so	if	you	don’t	have	enough	parameters,	then	oh	well,
you’ll	most	likely	crash.
•	The	interesting	difference	from	scanf	is	I’m	assuming	that	people	want
read_scan	to	create	the	strings	it	reads	when	it	hits	an	's'	format
sequence.	When	you	give	this	sequence,	the	function	takes	two	parameters
off	the	va_list	argp	stack:	the	max	function	size	to	read,	and	the
output	character	string	pointer.	Using	that	information,	it	just	runs
read_string	to	do	the	real	work.
•	This	makes	read_scan	more	consistent	than	scanf,	since	you	always
give	an	address-of	&	on	variables	to	have	them	set	appropriately.
•	Finally,	if	the	function	encounters	a	character	that’s	not	in	the	correct
format,	it	just	reads	one	char	to	skip	it.	It	doesn’t	care	what	that	char	is,	just
that	it	should	skip	it.

What	You	Should	See
When	you	run	this	one,	it’s	similar	to	the	last	one.

Exercise	25	Session

Click	here	to	view	code	image

$	make	ex25
cc	-Wall	-g	-DNDEBUG				ex25.c			-o	ex25

$./ex25
What's	your	first	name?	Zed

What's	your	initial?	A

What's	your	last	name?	Shaw

How	old	are	you?	37

----	RESULTS	----

First	Name:	Zed

Initial:	'A'

Last	Name:	Shaw

Age:	37

How	to	Break	It
This	program	should	be	more	robust	against	buffer	overflows,	but	it	doesn’t
handle	the	formatted	input	as	well	as	scanf.	To	try	to	break	this,	change	the
code	so	that	you	forget	to	pass	in	the	initial	size	for	‘%s’	formats.	Try	giving	it
more	data	than	MAX_DATA,	and	then	see	how	omitting	calloc	in
read_string	changes	how	it	works.	Finally,	there’s	a	problem	where	fgets
eats	the	newlines,	so	try	to	fix	that	using	fgetc,	but	leave	out	the	\0	that	ends
the	string.

Extra	Credit
•	Make	double	and	triple	sure	that	you	know	what	each	of	the	out_
variables	is	doing.	Most	importantly,	you	should	know	what
out_string	is	and	how	it’s	a	pointer	to	a	pointer,	so	that	you	understand
when	you’re	setting	the	pointer	versus	the	contents	is	important.
•	Write	a	similar	function	to	printf	that	uses	the	varargs	system,	and
rewrite	main	to	use	it.
•	As	usual,	read	the	man	page	on	all	of	this	so	that	you	know	what	it	does	on
your	platform.	Some	platforms	will	use	macros,	others	will	use	functions,
and	some	will	have	these	do	nothing.	It	all	depends	on	the	compiler	and
the	platform	you	use.

Exercise	26.	Project	logfind

This	is	a	small	project	for	you	to	attempt	on	your	own.	To	be	effective	at	C,
you’ll	need	to	learn	to	apply	what	you	know	to	problems.	In	this	exercise,	I
describe	a	tool	I	want	you	to	implement,	and	I	describe	it	in	a	vague	way	on
purpose.	This	is	done	so	that	you	will	try	to	implement	whatever	you	can,
however	you	can.	When	you’re	done,	you	can	then	watch	a	video	for	the
exercise	that	shows	you	how	I	did	it,	and	then	you	can	get	the	code	and	compare
it	to	yours.
Think	of	this	project	as	a	real-world	puzzle	that	you	might	have	to	solve.

The	logfind	Specification
I	want	a	tool	called	logfind	that	lets	me	search	through	log	files	for	text.	This
tool	is	a	specialized	version	of	another	tool	called	grep,	but	designed	only	for
log	files	on	a	system.	The	idea	is	that	I	can	type:

logfind	zedshaw

And,	it	will	search	all	the	common	places	that	log	files	are	stored,	and	print	out
every	file	that	has	the	word	“zedshaw”	in	it.
The	logfind	tool	should	have	these	basic	features:

1.	This	tool	takes	any	sequence	of	words	and	assumes	I	mean	“and”	for
them.	So	logfind	zedshaw	smart	guy	will	find	all	files	that	have
zedshaw	and	smart	and	guy	in	them.

2.	It	takes	an	optional	argument	of	-o	if	the	parameters	are	meant	to	be	or
logic.

3.	It	loads	the	list	of	allowed	log	files	from	~/.logfind.
4.	The	list	of	file	names	can	be	anything	that	the	glob	function	allows.
Refer	to	man	3	glob	to	see	how	this	works.	I	suggest	starting	with	just	a
flat	list	of	exact	files,	and	then	add	glob	functionality.

5.	You	should	output	the	matching	lines	as	you	scan,	and	try	to	match	them
as	fast	as	possible.

That’s	the	entire	description.	Remember	that	this	may	be	very	hard,	so	take	it	a
tiny	bit	at	a	time.	Write	some	code,	test	it,	write	more,	test	that,	and	so	on	in	little
chunks	until	you	have	it	working.	Start	with	the	simplest	thing	that	gets	it

working,	and	then	slowly	add	to	it	and	refine	it	until	every	feature	is	done.

Exercise	27.	Creative	and	Defensive	Programming

You	have	now	learned	most	of	the	basics	of	C	programming	and	are	ready	to
start	becoming	a	serious	programmer.	This	is	where	you	go	from	beginner	to
expert,	both	with	C	and	hopefully	with	core	computer	science	concepts.	I	will	be
teaching	you	a	few	of	the	core	data	structures	and	algorithms	that	every
programmer	should	know,	and	then	a	few	very	interesting	ones	I’ve	used	in	real
software	for	years.
Before	I	can	do	that,	I	have	to	teach	you	some	basic	skills	and	ideas	that	will
help	you	make	better	software.	Exercises	27	through	31	will	teach	you	advanced
concepts,	featuring	more	talking	than	coding.	After	that,	you’ll	apply	what
you’ve	learned	to	make	a	core	library	of	useful	data	structures.
The	first	step	in	getting	better	at	writing	C	code	(and	really	any	language)	is	to
learn	a	new	mind-set	called	defensive	programming.	Defensive	programming
assumes	that	you	are	going	to	make	many	mistakes,	and	then	attempts	to	prevent
them	at	every	possible	step.	In	this	exercise,	I’m	going	to	teach	you	how	to	think
about	programming	defensively.

The	Creative	Programmer	Mind-Set
It’s	not	possible	to	show	you	how	to	be	creative	in	a	short	exercise	like	this,	but	I
will	tell	you	that	creativity	involves	taking	risks	and	being	open-minded.	Fear
will	quickly	kill	creativity,	so	the	mind-set	I	adopt,	and	many	programmers	copy,
is	that	accidents	are	designed	to	make	you	unafraid	of	taking	chances	and
looking	like	an	idiot.	Here’s	my	mind-set:

•	I	can’t	make	a	mistake.
•	It	doesn’t	matter	what	people	think.
•	Whatever	my	brain	comes	up	with	is	going	to	be	a	great	idea.

I	only	adopt	this	mind-set	temporarily,	and	even	have	little	tricks	to	turn	it	on.	By
doing	this,	I	can	come	up	with	ideas,	find	creative	solutions,	open	my	thoughts
to	odd	connections,	and	just	generally	invent	weirdness	without	fear.	In	this
mind-set,	I’ll	typically	write	a	horrible	first	version	of	something	just	to	get	the
idea	out.
However,	when	I’ve	finished	my	creative	prototype,	I	will	throw	it	out	and	get
serious	about	making	it	solid.	Where	other	people	make	a	mistake	is	carrying	the
creative	mind-set	into	their	implementation	phase.	This	then	leads	to	a	very

different,	destructive	mind-set:	the	dark	side	of	the	creative	mind-set:
•	It’s	possible	to	write	perfect	software.
•	My	brain	tells	me	the	truth,	and	it	can’t	find	any	errors:	I	have	therefore
written	perfect	software.
•	My	code	is	who	I	am	and	people	who	criticize	its	perfection	are	criticizing
me.

These	are	lies.	You	will	frequently	run	into	programmers	who	feel	intense	pride
about	what	they’ve	created,	which	is	natural,	but	this	pride	gets	in	the	way	of
their	ability	to	objectively	improve	their	craft.	Because	of	this	pride	and
attachment	to	what	they’ve	written,	they	can	continue	to	believe	that	what	they
write	is	perfect.	As	long	as	they	ignore	other	people’s	criticism	of	their	code,
they	can	protect	their	fragile	egos	and	never	improve.
The	trick	to	being	creative	and	making	solid	software	is	the	ability	to	adopt	a
defensive	programming	mind-set.

The	Defensive	Programmer	Mind-Set
After	you	have	a	working,	creative	prototype	and	you’re	feeling	good	about	the
idea,	it’s	time	to	switch	to	being	a	defensive	programmer.	The	defensive
programmer	basically	hates	your	code	and	believes	these	things:

•	Software	has	errors.
•	You	aren’t	your	software,	yet	you’re	responsible	for	the	errors.
•	You	can	never	remove	the	errors,	only	reduce	their	probability.

This	mind-set	lets	you	be	honest	about	your	work	and	critically	analyze	it	for
improvements.	Notice	that	it	doesn’t	say	you	are	full	of	errors?	It	says	your	code
is	full	of	errors.	This	is	a	significant	thing	to	understand	because	it	gives	you	the
power	of	objectivity	for	the	next	implementation.
Just	like	the	creative	mind-set,	the	defensive	programming	mind-set	has	a	dark
side,	as	well.	Defensive	programmers	are	paranoid,	and	this	fear	prevents	them
from	ever	possibly	being	wrong	or	making	mistakes.	That’s	great	when	you’re
trying	to	be	ruthlessly	consistent	and	correct,	but	it’s	murder	on	creative	energy
and	concentration.

The	Eight	Defensive	Programmer	Strategies
Once	you’ve	adopted	this	mind-set,	you	can	then	rewrite	your	prototype	and
follow	a	set	of	eight	strategies	to	make	your	code	as	solid	as	possible.	While	I
work	on	the	real	version,	I	ruthlessly	follow	these	strategies	and	try	to	remove	as

many	errors	as	I	can,	thinking	like	someone	who	wants	to	break	the	software.
Never	Trust	Input	Never	trust	the	data	you’re	given	and	always	validate	it.
Prevent	Errors	If	an	error	is	possible,	no	matter	how	probable,	try	to	prevent
it.

Fail	Early	and	Openly	Fail	early,	cleanly,	and	openly,	stating	what
happened,	where,	and	how	to	fix	it.

Document	Assumptions	Clearly	state	the	pre-conditions,	post-conditions,
and	invariants.

Prevention	over	Documentation	Don’t	do	with	documentation	that	which
can	be	done	with	code	or	avoided	completely.

Automate	Everything	Automate	everything,	especially	testing.
Simplify	and	Clarify	Always	simplify	the	code	to	the	smallest,	cleanest
form	that	works	without	sacrificing	safety.

Question	Authority	Don’t	blindly	follow	or	reject	rules.
These	aren’t	the	only	strategies,	but	they’re	the	core	things	I	feel	programmers
have	to	focus	on	when	trying	to	make	good,	solid	code.	Notice	that	I	don’t	really
say	exactly	how	to	do	these.	I’ll	go	into	each	of	these	in	more	detail,	and	some	of
the	exercises	will	actually	cover	them	extensively.

Applying	the	Eight	Strategies
These	ideas	are	all	as	great	pop-psychology	platitudes,	but	how	do	you	actually
apply	them	to	working	code?	I’m	now	going	to	give	you	a	set	of	things	to	always
do	in	this	book’s	code	that	demonstrates	each	one	with	a	concrete	example.	The
ideas	aren’t	limited	to	just	these	examples,	so	you	should	use	these	as	a	guide	to
making	your	own	code	more	solid.

Never	Trust	Input
Let’s	look	at	an	example	of	bad	design	and	better	design.	I	won’t	say	good
design	because	this	could	be	done	even	better.	Take	a	look	at	these	two	functions
that	both	copy	a	string	and	a	simple	main	to	test	out	the	better	one.

ex27_1.c

Click	here	to	view	code	image

		1			#undef	NDEBUG
		2			#include	"dbg.h"

		3			#include	<stdio.h>
		4			#include	<assert.h>
		5
		6			/*
		7				*	Naive	copy	that	assumes	all	inputs	are	always	valid
		8				*	taken	from	K&R	C	and	cleaned	up	a	bit.
		9				*/
	10			void	copy(char	to[],	char	from[])
	11			{
	12							int	i	=	0;
	13
	14							//	while	loop	will	not	end	if	from	isn't	'\0'	terminated
	15							while	((to[i]	=	from[i])	!=	'\0')	{
	16											++i;
	17							}
	18			}
	19
	20			/*
	21				*	A	safer	version	that	checks	for	many	common	errors	using	the
	22				*	length	of	each	string	to	control	the	loops	and	termination.
	23				*/
	24			int	safercopy(int	from_len,	char	*from,	int	to_len,	char	*to)
	25			{
	26							assert(from	!=	NULL	&&	to	!=	NULL	&&	"from	and	to	can't	be
NULL");
	27							int	i	=	0;
	28							int	max	=	from_len	>	to_len	-	1	?	to_len	-	1	:	from_len;
	29
	30							//	to_len	must	have	at	least	1	byte
	31							if	(from_len	<	0	||	to_len	<=	0)
	32											return	-1;
	33
	34							for	(i	=	0;	i	<	max;	i++)	{
	35											to[i]	=	from[i];
	36							}
	37
	38							to[to_len	-	1]	=	'\0';
	39
	40							return	i;
	41			}
	42
	43			int	main(int	argc,	char	*argv[])
	44			{
	45							//	careful	to	understand	why	we	can	get	these	sizes
	46							char	from[]	=	"0123456789";
	47							int	from_len	=	sizeof(from);
	48
	49							//	notice	that	it's	7	chars	+	\0
	50							char	to[]	=	"0123456";
	51							int	to_len	=	sizeof(to);
	52
	53							debug("Copying	'%s':%d	to	'%s':%d",	from,	from_len,	to,

to_len);
	54
	55							int	rc	=	safercopy(from_len,	from,	to_len,	to);
	56							check(rc	>	0,	"Failed	to	safercopy.");
	57							check(to[to_len	-	1]	==	'\0',	"String	not	terminated.");
	58
	59							debug("Result	is:	'%s':%d",	to,	to_len);
	60
	61							//	now	try	to	break	it
	62							rc	=	safercopy(from_len	*	-1,	from,	to_len,	to);
	63							check(rc	==	-1,	"safercopy	should	fail	#1");
	64							check(to[to_len	-	1]	==	'\0',	"String	not	terminated.");
	65
	66							rc	=	safercopy(from_len,	from,	0,	to);
	67							check(rc	==	-1,	"safercopy	should	fail	#2");
	68							check(to[to_len	-	1]	==	'\0',	"String	not	terminated.");
	69
	70							return	0;
	71
	72			error:
	73							return	1;
	74			}

The	copy	function	is	typical	C	code	and	it’s	the	source	of	a	huge	number	of
buffer	overflows.	It’s	flawed	because	it	assumes	that	it	will	always	receive	a
valid,	terminated	C	string	(with	'\0'),	and	just	uses	a	while-loop	to	process
it.	Problem	is,	to	ensure	that	is	incredibly	difficult,	and	if	it’s	not	handled	right,	it
causes	the	while-loop	to	loop	infinitely.	A	cornerstone	of	writing	solid	code
is	never	writing	loops	that	can	possibly	loop	forever.
The	safercopy	function	tries	to	solve	this	by	requiring	the	caller	to	give	the
lengths	of	the	two	strings	it	must	deal	with.	By	doing	this,	it	can	make	certain
checks	about	these	strings	that	the	copy	function	can’t.	It	can	check	that	the
lengths	are	right,	and	that	the	to	string	has	enough	space,	and	it	will	always
terminate.	It’s	impossible	for	this	function	to	run	on	forever	like	the	copy
function.
This	is	the	idea	behind	never	trusting	the	inputs	you	receive.	If	you	assume	that
your	function	is	going	to	get	a	string	that’s	not	terminated	(which	is	common),
then	you	can	design	your	function	so	that	it	doesn’t	rely	on	it	to	work	properly.	If
you	need	the	arguments	to	never	be	NULL,	then	you	should	check	for	that,	too.	If
the	sizes	should	be	within	sane	levels,	then	check	that.	You	simply	assume	that
whoever	is	calling	you	got	it	wrong,	and	then	try	to	make	it	difficult	for	them	to
give	you	another	bad	state.
This	extends	to	software	you	write	that	gets	input	from	the	external	universe.

The	famous	last	words	of	the	programmer	are,	“Nobody’s	going	to	do	that.”	I’ve
seen	them	say	that	and	then	the	next	day	someone	does	exactly	that,	crashing	or
hacking	their	application.	If	you	say	nobody	is	going	to	do	that,	just	throw	in	the
code	to	make	sure	they	simply	can’t	hack	your	application.	You’ll	be	glad	you
did.
There	is	a	diminishing	return	on	this,	but	here’s	a	list	of	things	I	try	to	do	in	all	of
the	functions	I	write	in	C:

•	For	each	parameter,	identify	what	its	preconditions	are,	and	whether	the
precondition	should	cause	a	failure	or	return	an	error.	If	you	are	writing	a
library,	favor	errors	over	failures.
•	Add	assert	calls	at	the	beginning	that	check	for	each	failure
precondition	using	assert(test	&&	"message");.	This	little	hack
does	the	test,	and	when	it	fails,	the	OS	will	typically	print	the	assert	line
for	you	that	includes	that	message.	This	is	very	helpful	when	you’re	trying
to	figure	out	why	that	assert	is	there.
•	For	the	other	preconditions,	return	the	error	code	or	use	my	check	macro
to	give	an	error	message.	I	didn’t	use	check	in	this	example	since	it
would	confuse	the	comparison.
•	Document	why	these	preconditions	exist	so	that	when	a	programmer	hits
the	error,	he	or	she	can	figure	out	if	they’re	really	necessary	or	not.
•	If	you’re	modifying	the	inputs,	make	sure	that	they	are	correctly	formed
when	the	function	exits,	or	abort	if	they	aren’t.
•	Always	check	the	error	codes	of	functions	you	use.	For	example,	people
frequently	forget	to	check	the	return	codes	from	fopen	or	fread,	which
causes	them	to	use	the	resources	the	return	codes	give	despite	the	error.
This	causes	your	program	to	crash	or	open	an	avenue	for	an	attack.
•	You	also	need	to	be	returning	consistent	error	codes	so	that	you	can	do	this
for	all	of	your	functions.	Once	you	get	in	this	habit,	you’ll	then	understand
why	my	check	macros	work	the	way	they	do.

Just	doing	these	simple	things	will	improve	your	resource	handling	and	prevent
quite	a	few	errors.

Prevent	Errors
In	response	to	the	previous	example,	you	might	hear	people	say,	“Well,	it’s	not
very	likely	someone	will	use	copy	wrong.”	Despite	the	mountain	of	attacks

made	against	this	very	kind	of	function,	some	people	still	believe	that	the
probability	of	this	error	is	very	low.	Probability	is	a	funny	thing	because	people
are	incredibly	bad	at	guessing	the	probability	of	any	event.	People	are,	however,
much	better	at	determining	if	something	is	possible.	They	might	say	the	error	in
copy	is	not	probable,	but	they	can’t	deny	that	it’s	possible.
The	key	reason	is	that	for	something	to	be	probable,	it	first	has	to	be	possible.
Determining	the	possibility	is	easy,	since	we	can	all	imagine	something
happening.	What’s	not	so	easy	is	determining	its	probability	after	that.	Is	the
chance	that	someone	might	use	copy	wrong	20%,	10%,	or	1%?	Who	knows?
You’d	need	to	gather	evidence,	look	at	rates	of	failure	in	many	software
packages,	and	probably	survey	real	programmers	about	how	they	use	the
function.
This	means,	if	you’re	going	to	prevent	errors,	you	still	need	to	try	to	prevent
what’s	possible	but	first	focus	your	energies	on	what’s	most	probable.	It	may	not
be	feasible	to	handle	all	of	the	possible	ways	your	software	can	be	broken,	but
you	have	to	attempt	it.	But	at	the	same	time,	if	you	don’t	constrain	your	efforts	to
the	most	probable	events,	then	you’ll	be	wasting	time	on	irrelevant	attacks.
Here’s	a	process	for	determining	what	to	prevent	in	your	software:

•	List	all	the	possible	errors	that	can	happen,	no	matter	how	probable	(within
reason,	of	course).	No	point	listing	“aliens	sucking	your	memories	out	to
steal	your	passwords.”
•	Give	each	possible	error	a	probability	that’s	a	percentage	of	the	operations
that	can	be	vulnerable.	If	you	are	handling	requests	from	the	Internet,	then
it’s	the	percentage	of	requests	that	can	cause	the	error.	If	they	are	function
calls,	then	it’s	what	percentage	of	function	calls	can	cause	the	error.
•	Calculate	the	effort	in	number	of	hours	or	amount	of	code	to	prevent	it.
You	could	also	just	give	an	easy	or	hard	metric,	or	any	metric	that	prevents
you	from	working	on	the	impossible	when	there	are	easier	things	to	fix	still
on	the	list.
•	Rank	them	by	effort	(lowest	to	highest),	and	probability	(highest	to
lowest).	This	is	now	your	task	list.
•	Prevent	all	of	the	errors	you	can	in	this	list,	aiming	for	removing	the
possibility,	then	reducing	the	probability	if	you	can’t	make	it	impossible.
•	If	there	are	errors	you	can’t	fix,	then	document	them	so	someone	else	can
fix	them.

This	little	process	will	give	you	a	nice	list	of	things	to	do,	but	more	importantly,

keep	you	from	working	on	useless	things	when	there	are	other	more	important
things	to	work	on.	You	can	also	be	more	or	less	formal	with	this	process.	If
you’re	doing	a	full	security	audit,	this	will	be	better	done	with	a	whole	team	and
a	nice	spreadsheet.	If	you’re	just	writing	a	function,	then	simply	review	the	code
and	scratch	these	out	into	some	comments.	What’s	important	is	that	you	stop
assuming	that	errors	don’t	happen,	and	you	work	on	removing	them	when	you
can	without	wasting	effort.

Fail	Early	and	Openly
If	you	encounter	an	error	in	C	you	have	two	choices:

•	Return	an	error	code.
•	Abort	the	process.

This	is	just	how	it	is,	so	what	you	need	to	do	is	make	sure	the	failures	happen
quickly,	are	clearly	documented,	give	an	error	message,	and	are	easy	for	the
programmer	to	avoid.	This	is	why	the	check	macros	I’ve	given	you	work	the
way	they	do.	For	every	error	you	find,	it	prints	a	message,	the	file	and	line
number	where	it	happened,	and	forces	a	return	code.	If	you	just	use	my	macros,
you’ll	end	up	doing	the	right	thing	anyway.
I	tend	to	prefer	returning	an	error	code	to	aborting	the	program.	If	it’s
catastrophic,	then	I	will,	but	very	few	errors	are	truly	catastrophic.	A	good
example	of	when	I’ll	abort	a	program	is	if	I’m	given	an	invalid	pointer,	as	I	did
in	safercopy.	Instead	of	having	the	programmer	experience	a	segmentation
fault	explosion	somewhere,	I	catch	it	right	away	and	abort.	However,	if	it’s
common	to	pass	in	a	NULL,	then	I’ll	probably	change	that	to	a	check	instead
so	that	the	caller	can	adapt	and	keep	running.
In	libraries,	however,	I	try	my	hardest	to	never	abort.	The	software	using	my
library	can	decide	if	it	should	abort,	and	I’ll	typically	abort	only	if	the	library	is
very	badly	used.
Finally,	a	big	part	of	being	open	about	errors	is	not	using	the	same	message	or
error	code	for	more	than	one	possible	error.	You	typically	see	this	with	errors	in
external	resources.	A	library	will	receive	an	error	on	a	socket,	and	then	simply
report	“bad	socket.”	What	they	should	do	is	return	the	error	on	the	socket	so	that
it	can	be	properly	debugged	and	fixed.	When	designing	your	error	reporting,
make	sure	you	give	a	different	error	message	for	the	different	possible	errors.

Document	Assumptions

If	you’re	following	along	and	using	this	advice,	then	what	you’re	doing	is
building	a	contract	of	how	your	functions	expect	the	world	to	be.	You’ve	created
preconditions	for	each	argument,	you’ve	handled	possible	errors,	and	you’re
failing	elegantly.	The	next	step	is	to	complete	the	contract	and	add	invariants	and
postconditions.
An	invariant	is	a	condition	that	must	be	held	true	in	some	state	while	the
function	runs.	This	isn’t	very	common	in	simple	functions,	but	when	you’re
dealing	with	complex	structures,	it	becomes	more	necessary.	A	good	example	of
an	invariant	is	a	condition	where	a	structure	is	always	initialized	properly	while
it’s	being	used.	Another	example	would	be	that	a	sorted	data	structure	is	always
sorted	during	processing.
A	postcondition	is	a	guarantee	on	the	exit	value	or	result	of	a	function	running.
This	can	blend	together	with	invariants,	but	this	is	something	as	simple	as
“function	always	returns	0	or	-1	on	error.”	Usually	these	are	documented,	but	if
your	function	returns	an	allocated	resource,	you	can	add	a	postcondition	that
checks	to	make	sure	it’s	returning	something,	and	not	NULL.	Or,	you	can	use
NULL	to	indicate	an	error,	so	that	your	postcondition	checks	that	the	resource	is
deallocated	on	any	errors.
In	C	programming,	invariants	and	postconditions	are	usually	used	more	in
documentation	than	actual	code	or	assertions.	The	best	way	to	handle	them	is	to
add	assert	calls	for	the	ones	you	can,	then	document	the	rest.	If	you	do	that,
when	people	hit	an	error	they	can	see	what	assumptions	you	made	when	writing
the	function.

Prevention	over	Documentation
A	common	problem	when	programmers	write	code	is	that	they	will	document	a
common	bug	rather	than	simply	fix	it.	My	favorite	is	when	the	Ruby	on	Rails
system	simply	assumed	that	all	months	had	30	days.	Calendars	are	hard,	so
rather	than	fix	it,	programmers	threw	a	tiny	little	comment	somewhere	that	said
this	was	on	purpose,	and	then	they	refused	to	fix	it	for	years.	Every	time
someone	would	complain,	they	would	bluster	and	yell,	“But	it’s	documented!”
Documentation	doesn’t	matter	if	you	can	actually	fix	the	problem,	and	if	the
function	has	a	fatal	flaw,	then	just	don’t	include	it	until	you	can	fix	it.	In	the	case
of	Ruby	on	Rails,	not	having	date	functions	would	have	been	better	than
including	purposefully	broken	ones	that	nobody	could	use.
As	you	go	through	your	defensive	programming	cleanups,	try	to	fix	everything
you	can.	If	you	find	yourself	documenting	more	and	more	problems	you	can’t

fix,	then	consider	redesigning	the	feature	or	simply	removing	it.	If	you	really
have	to	keep	this	horribly	broken	feature,	then	I	suggest	you	write	it,	document
it,	and	then	find	a	new	job	before	you	are	blamed	for	it.

Automate	Everything
You	are	a	programmer,	and	that	means	your	job	is	putting	other	people	out	of
jobs	with	automation.	The	pinnacle	of	this	is	putting	yourself	out	of	a	job	with
your	own	automation.	Obviously,	you	won’t	completely	eliminate	what	you	do,
but	if	you’re	spending	your	whole	day	rerunning	manual	tests	in	your	terminal,
then	your	job	isn’t	programming.	You	are	doing	QA,	and	you	should	automate
yourself	out	of	this	QA	job	that	you	probably	don’t	really	want	anyway.
The	easiest	way	to	do	this	is	to	write	automated	tests,	or	unit	tests.	In	this	book
I’m	going	to	get	into	how	to	do	this	easily,	but	I’ll	avoid	most	of	the	dogma
about	when	you	should	write	tests.	I’ll	focus	on	how	to	write	them,	what	to	test,
and	how	to	be	efficient	at	the	testing.
Here	are	common	things	programmers	fail	to	automate	when	they	should:

•	Testing	and	validation
•	Build	processes
•	Deployment	of	software
•	System	administration
•	Error	reporting

Try	to	devote	some	of	your	time	to	automating	this	and	you’ll	have	more	time	to
work	on	the	fun	stuff.	Or,	if	this	is	fun	to	you,	then	maybe	you	should	work	on
software	that	makes	automating	these	things	easier.

Simplify	and	Clarify
The	concept	of	simplicity	is	a	slippery	one	to	many	people,	especially	smart
people.	They	generally	confuse	comprehension	with	simplicity.	If	they
understand	it,	clearly	it’s	simple.	The	actual	test	of	simplicity	is	comparing
something	with	something	else	that	could	be	simpler.	But	you’ll	see	people	who
write	code	go	running	to	the	most	complex,	obtuse	structures	possible	because
they	think	the	simpler	version	of	the	same	thing	is	dirty.	A	love	affair	with
complexity	is	a	programming	sickness.
You	can	fight	this	disease	by	first	telling	yourself,	“Simple	and	clear	is	not	dirty,
no	matter	what	everyone	else	is	doing.”	If	everyone	else	is	writing	insane	visitor
patterns	involving	19	classes	over	12	interfaces,	and	you	can	do	it	with	two

string	operations,	then	you	win.	They	are	wrong,	no	matter	how	elegant	they
think	their	complex	monstrosity	is.
Here’s	the	simplest	test	of	which	function	is	better:

•	Make	sure	both	functions	have	no	errors.	It	doesn’t	matter	how	fast	or
simple	a	function	is	if	it	has	errors.
•	If	you	can’t	fix	one,	then	pick	the	other.
•	Do	they	produce	the	same	result?	If	not,	then	pick	the	one	that	has	the
result	you	need.
•	If	they	produce	the	same	result,	then	pick	the	one	that	either	has	fewer
features,	fewer	branches,	or	you	just	think	is	simpler.
•	Make	sure	you’re	not	just	picking	the	one	that	is	most	impressive.	Simple
and	dirty	beats	complex	and	clean	any	day.

You’ll	notice	that	I	mostly	give	up	at	the	end	and	tell	you	to	use	your	judgment.
Simplicity	is	ironically	a	very	complex	thing,	so	using	your	taste	as	a	guide	is	the
best	way	to	go.	Just	make	sure	that	you	adjust	your	view	of	what’s	“good”	as
you	grow	and	gain	more	experience.

Question	Authority
The	final	strategy	is	the	most	important	because	it	breaks	you	out	of	the
defensive	programming	mind-set	and	lets	you	transition	into	the	creative	mind-
set.	Defensive	programming	is	authoritarian	and	can	be	cruel.	The	job	of	this
mind-set	is	to	make	you	follow	rules,	because	without	them	you’ll	miss
something	or	get	distracted.
This	authoritarian	attitude	has	the	disadvantage	of	disabling	independent	creative
thought.	Rules	are	necessary	for	getting	things	done,	but	being	a	slave	to	them
will	kill	your	creativity.
This	final	strategy	means	you	should	periodically	question	the	rules	you	follow
and	assume	that	they	could	be	wrong,	just	like	the	software	you	are	reviewing.
What	I	will	typically	do	is	go	take	a	nonprogramming	break	and	let	the	rules	go
after	a	session	of	defensive	programming.	Then	I’ll	be	ready	to	do	some	creative
work	or	more	defensive	coding	if	I	need	to.

Order	Is	Not	Important
The	final	thing	I’ll	say	on	this	philosophy	is	that	I’m	not	telling	you	to	do	this	in
a	strict	order	of	“CREATE!	DEFEND!	CREATE!	DEFEND!”	At	first	you	might
want	to	do	that,	but	I’d	actually	do	either	in	varying	amounts	depending	on	what

I	wanted	to	do,	and	I	might	even	meld	them	together	with	no	defined	boundary.
I	also	don’t	think	one	mind-set	is	better	than	another,	or	that	there’s	a	strict
separation	between	them.	You	need	both	creativity	and	strictness	to	do
programming	well,	so	work	on	both	if	you	want	to	improve.

Extra	Credit
•	The	code	in	the	book	up	to	this	point	(and	for	the	rest	of	it)	potentially
violates	these	rules.	Go	back	and	apply	what	you’ve	learned	to	one
exercise	to	see	if	you	can	improve	it	or	find	bugs.
•	Find	an	open	source	project	and	give	some	of	the	files	a	similar	code
review.	Submit	a	patch	that	fixes	a	bug.

Exercise	28.	Intermediate	Makefiles

In	the	next	three	exercises	you’ll	create	a	skeleton	project	directory	to	use	in
building	your	C	programs	later.	This	skeleton	directory	will	be	used	for	the	rest
of	the	book.	In	this	exercise,	I’ll	cover	just	the	Makefile	so	you	can
understand	it.
The	purpose	of	this	structure	is	to	make	it	easy	to	build	medium-sized	programs
without	having	to	resort	to	configure	tools.	If	done	right,	you	can	get	very	far
with	just	GNU	make	and	some	small	shell	scripts.

The	Basic	Project	Structure
The	first	thing	to	do	is	make	a	c-skeleton	directory,	and	then	put	a	set	of
basic	files	and	directories	in	it	that	many	projects	have.	Here’s	my	starter:

Exercise	28	Session

Click	here	to	view	code	image

$	mkdir	c-skeleton
$	cd	c-skeleton/
$	touch	LICENSE	README.md	Makefile
$	mkdir	bin	src	tests
$	cp	dbg.h	src/			#	this	is	from	Ex19
$	ls	-l
total	8

-rw-r--r--		1	zedshaw			staff					0		Mar	31	16:38	LICENSE

-rw-r--r--		1	zedshaw			staff		1168		Apr		1	17:00	Makefile

-rw-r--r--		1	zedshaw			staff					0		Mar	31	16:38	README.md

drwxr-xr-x		2	zedshaw			staff				68		Mar	31	16:38	bin

drwxr-xr-x		2	zedshaw			staff				68		Apr		1	10:07	build

drwxr-xr-x		3	zedshaw			staff			102		Apr		3	16:28	src

drwxr-xr-x		2	zedshaw			staff				68		Mar	31	16:38	tests

$	ls	-l	src
total	8

-rw-r--r--		1	zedshaw			staff			982		Apr		3	16:28	dbg.h

$

At	the	end	you	see	me	do	a	ls	-l	so	that	you	can	see	the	final	results.
Here’s	a	breakdown:

LICENSE	If	you	release	the	source	of	your	projects,	you’ll	want	to	include	a
license.	If	you	don’t,	though,	the	code	is	copyright	by	you	and	nobody	else
has	rights	to	it	by	default.

README.md	Basic	instructions	for	using	your	project	go	here.	It	ends	in
.md	so	that	it	will	be	interpreted	as	markdown.

Makefile	The	main	build	file	for	the	project.
bin/	Where	programs	that	users	can	run	go.	This	is	usually	empty,	and	the
Makefile	will	create	it	if	it’s	not	there.

build/	Where	libraries	and	other	build	artifacts	go.	Also	empty,	and	the
Makefile	will	create	it	if	it’s	not	there.

src/	Where	the	source	code	goes,	usually	.c	and	.h	files.
tests/	Where	automated	tests	go.
src/dbg.h	I	copied	the	dbg.h	from	Exercise	19	into	src/	for	later.

I’ll	now	break	down	each	of	the	components	of	this	skeleton	project	so	that	you
can	understand	how	it	works.

Makefile

The	first	thing	I’ll	cover	is	the	Makefile,	because	from	that	you	can
understand	how	everything	else	works.	The	Makefile	in	this	exercise	is	much
more	detailed	than	ones	you’ve	used	so	far,	so	I’ll	break	it	down	after	you	type	it
in:

Makefile

Click	here	to	view	code	image

		1			CFLAGS=-g	-O2	-Wall	-Wextra	-Isrc	-rdynamic	-DNDEBUG
$(OPTFLAGS)
		2			LIBS=-ldl	$(OPTLIBS)
		3			PREFIX?=/usr/local
		4
		5			SOURCES=$(wildcard	src/**/*.c	src/*.c)
		6			OBJECTS=$(patsubst	%.c,%.o,$(SOURCES))
		7
		8			TEST_SRC=$(wildcard	tests/*_tests.c)
		9			TESTS=$(patsubst	%.c,%,$(TEST_SRC))
	10
	11			TARGET=build/libYOUR_LIBRARY.a
	12			SO_TARGET=$(patsubst	%.a,%.so,$(TARGET))
	13
	14			#	The	Target	Build
	15			all:	$(TARGET)	$(SO_TARGET)	tests
	16
	17			dev:	CFLAGS=-g	-Wall	-Isrc	-Wall	-Wextra	$(OPTFLAGS)

	18			dev:	all
	19
	20			$(TARGET):	CFLAGS	+=	-fPIC
	21			$(TARGET):	build	$(OBJECTS)
	22							ar	rcs	$@	$(OBJECTS)
	23							ranlib	$@
	24			$(SO_TARGET):	$(TARGET)	$(OBJECTS)
	25							$(CC)	-shared	-o	$@	$(OBJECTS)
	26
	27			build:
	28							@mkdir	-p	build
	29							@mkdir	-p	bin
	30
	31			#	The	Unit	Tests
	32			.PHONY:	tests
	33			tests:	CFLAGS	+=	$(TARGET)
	34			tests:	$(TESTS)
	35							sh	./tests/runtests.sh
	36
	37			#	The	Cleaner
	38			clean:
	39							rm	-rf	build	$(OBJECTS)	$(TESTS)
	40							rm	-f	tests/tests.log
	41							find	.	-name	"*.gc*"	-exec	rm	{}	\;
	42							rm	-rf	`find	.	-name	"*.dSYM"	-print`
	43
	44			#	The	Install
	45			install:	all
	46							install	-d	$(DESTDIR)/$(PREFIX)/lib/
	47							install	$(TARGET)	$(DESTDIR)/$(PREFIX)/lib/
	48
	49			#	The	Checker
	50			check:
	51							@echo	Files	with	potentially	dangerous	functions.
	52							@egrep	'[^_.>a-zA-Z0-9](str(n?cpy|n?cat|xfrm|n?
dup|str|pbrk|tok|_)\
	53																			|stpn?cpy|a?sn?printf|byte_)'	$(SOURCES)	||
true

Remember	that	you	need	to	consistently	indent	the	Makefile	with	tab
characters.	Your	text	editor	should	know	that	and	do	the	right	thing.	If	it	doesn’t,
get	a	different	text	editor.	No	programmer	should	use	an	editor	that	fails	at
something	so	simple.

The	Header
This	Makefile	is	designed	to	build	a	library	reliably	on	almost	any	platform
using	special	features	of	GNU	make.	We’ll	be	working	on	this	library	later,	so
I’ll	break	down	each	part	in	sections,	starting	with	the	header.

Makefile:1	These	are	the	usual	CFLAGS	that	you	set	in	all	of	your	projects,
along	with	a	few	others	that	may	be	needed	to	build	libraries.	You	may
need	to	adjust	these	for	different	platforms.	Notice	the	OPTFLAGS	variable
at	the	end	that	lets	people	augment	the	build	options	as	needed.

Makefile:2	These	options	are	used	when	linking	a	library.	Someone	else	can
then	augment	the	linking	options	using	the	OPTLIBS	variable.

Makefile:3	This	code	sets	an	optional	variable	called	PREFIX	that	will	only
have	this	value	if	the	person	running	the	Makefile	didn’t	already	give	a
PREFIX	setting.	That’s	what	the	?=	does.

Makefile:5	This	fancy	line	of	awesomeness	dynamically	creates	the
SOURCES	variable	by	doing	a	wildcard	search	for	all	*.c	files	in	the
src/	directory.	You	have	to	give	both	src/**/*.c	and	src/*.c	so
that	GNU	make	will	include	the	files	in	src	and	the	files	below	it.

Makefile:6	Once	you	have	the	list	of	source	files,	you	can	then	use	the
patsubst	to	take	the	SOURCES	list	of	*.c	files	and	make	a	new	list	of
all	the	object	files.	You	do	this	by	telling	patsubst	to	change	all	%.c
extensions	to	%.o,	and	then	those	extensions	are	assigned	to	OBJECTS.

Makefile:8	We’re	using	the	wildcard	again	to	find	all	of	the	test	source
files	for	the	unit	tests.	These	are	separate	from	the	library’s	source	files.

Makefile:9	Then,	we’re	using	the	same	patsubst	trick	to	dynamically	get
all	the	TEST	targets.	In	this	case,	I’m	stripping	away	the	.c	extension	so
that	a	full	program	will	be	made	with	the	same	name.	Previously,	I	had
replaced	the	.c	with	{.o}	so	an	object	file	is	created.

Makefile:11	Finally,	we	say	the	ultimate	target	is
build/libYOUR_LIBRARY.a,	which	you	will	change	to	be	whatever
library	you’re	actually	trying	to	build.

This	completes	the	top	of	the	Makefile,	but	I	should	explain	what	I	mean	by
“lets	people	augment	the	build.”	When	you	run	Make,	you	can	do	this:
Click	here	to	view	code	image

#	WARNING!	Just	a	demonstration,	won't	really	work	right	now.
#	this	installs	the	library	into	/tmp
$	make	PREFIX=/tmp	install
#	this	tells	it	to	add	pthreads
$	make	OPTFLAGS=-pthread

If	you	pass	in	options	that	match	the	same	kind	of	variables	you	have	in	your

Makefile,	then	those	will	show	up	in	your	build.	You	can	then	use	this	to
change	how	the	Makefile	runs.	The	first	variable	alters	the	PREFIX	so	that	it
installs	into	/tmp	instead.	The	second	one	sets	OPTFLAGS	so	that	the	-
pthread	option	is	present.

The	Target	Build
Continuing	with	the	breakdown	of	the	Makefile,	I’m	actually	building	the
object	files	and	targets:

Makefile:14	Remember	that	the	first	target	is	what	make	runs	by	default
when	no	target	is	given.	In	this,	it’s	called	all:	and	it	gives	$(TARGET)
tests	as	the	targets	to	build.	Look	up	at	the	TARGET	variable	and	you
see	that’s	the	library,	so	all:	will	first	build	the	library.	The	tests	target
is	further	down	in	the	Makefile	and	builds	the	unit	tests.

Makefile:16	Here’s	another	target	for	making	“developer	builds”	that
introduces	a	technique	for	changing	options	for	just	one	target.	If	I	do	a
“dev	build,”	I	want	the	CFLAGS	to	include	options	like	-Wextra	that	are
useful	for	finding	bugs.	If	you	place	them	on	the	target	line	as	options	like
this,	then	give	another	line	that	says	the	original	target	(in	this	case	all),
then	it	will	change	the	options	you	set.	I	use	this	for	setting	different	flags
on	different	platforms	that	need	it.

Makefile:19	This	builds	the	TARGET	library,	whatever	that	is.	It	also	uses
the	same	trick	from	line	15,	giving	a	target	with	just	options	and	ways	to
alter	them	for	this	run.	In	this	case,	I’m	adding	-fPIC	just	for	the	library
build,	using	the	+=	syntax	to	add	it	on.

Makefile:20	Now	we	see	the	real	target,	where	I	say	first	make	the	build
directory,	and	then	compile	all	of	the	OBJECTS.

Makefile:21	This	runs	the	ar	command	that	actually	makes	the	TARGET.
The	syntax	$@	$(OBJECTS)	is	a	way	of	saying,	“put	the	target	for	this
Makefile	source	here	and	all	the	OBJECTS	after	that.”	In	this	case,	the
$@	maps	back	to	the	$(TARGET)	on	line	19,	which	maps	to
build/libYOUR_LIBRARY.a.	It	seems	like	a	lot	to	keep	track	of	in
this	indirection,	and	it	can	be,	but	once	you	get	it	working,	you	just	change
TARGET	at	the	top	and	build	a	whole	new	library.

Makefile:22	Finally,	to	make	the	library,	you	run	ranlib	on	the	TARGET
and	it’s	built.

Makefile:23-24	This	just	makes	the	build/	or	bin/	directories	if	they
don’t	exist.	This	is	then	referenced	from	line	19	when	it	gives	the	build
target	to	make	sure	the	build/	directory	is	made.

You	now	have	all	of	the	stuff	you	need	to	build	the	software,	so	we’ll	create	a
way	to	build	and	run	unit	tests	to	do	automated	testing.

The	Unit	Tests
C	is	different	from	other	languages	because	it’s	easier	to	create	one	tiny	little
program	for	each	thing	you’re	testing.	Some	testing	frameworks	try	to	emulate
the	module	concept	other	languages	have	and	do	dynamic	loading,	but	this
doesn’t	work	well	in	C.	It’s	also	unnecessary,	because	you	can	just	make	a	single
program	that’s	run	for	each	test	instead.
I’ll	cover	this	part	of	the	Makefile,	and	then	later	you’ll	see	the	contents	of
the	tests/	directory	that	make	it	actually	work.

Makefile:29	If	you	have	a	target	that’s	not	real,	but	there	is	a	directory	or	file
with	that	name,	then	you	need	to	tag	the	target	with	.PHONY:	so	make
will	ignore	the	file	and	always	run.

Makefile:30	I	use	the	same	trick	for	modifying	the	CFLAGS	variable	to	add
the	TARGET	to	the	build	so	that	each	of	the	test	programs	will	be	linked
with	the	TARGET	library.	In	this	case,	it	will	add
build/libYOUR_LIBRARY.a	to	the	linking.

Makefile:31	Then	I	have	the	actual	tests:	target,	which	depends	on	all	of
the	programs	listed	in	the	TESTS	variable	that	we	created	in	the	header.
This	one	line	actually	says,	“Make,	use	what	you	know	about	building
programs	and	the	current	CFLAGS	settings	to	build	each	program	in
TESTS.”

Makefile:32	Finally,	when	all	of	the	TESTS	are	built,	there’s	a	simple	shell
script	I’ll	create	later	that	knows	how	to	run	them	all	and	report	their
output.	This	line	actually	runs	it	so	you	can	see	the	test	results.

For	the	unit	testing	to	work,	you’ll	need	to	create	a	little	shell	script	that	knows
how	to	run	the	programs.	Go	ahead	and	create	this	tests/runtests.sh
script:

runtests.sh

Click	here	to	view	code	image

		1			echo	"Running	unit	tests:"
		2
		3			for	i	in	tests/*_tests
		4			do
		5							if	test	-f	$i
		6							then
		7											if	$VALGRIND	./$i	2>>	tests/tests.log
		8											then
		9															echo	$i	PASS
	10												else
	11																echo	"ERROR	in	test	$i:	here's	tests/tests.log"
	12																echo	"------"
	13																tail	tests/tests.log
	14																exit	1
	15												fi
	16									fi
	17					done
	18
	19					echo	""

I’ll	be	using	this	later	when	I	cover	how	unit	tests	work.

The	Cleaner
I	now	have	fully	working	unit	tests,	so	next	up	is	making	things	clean	when	I
need	to	reset	everything.

Makefile:38	The	clean:	target	starts	things	off	when	we	need	to	clean	up
the	project.

Makefile:39-42	This	cleans	out	most	of	the	junk	that	various	compilers	and
tools	leave	behind.	It	also	gets	rid	of	the	build/	directory	and	uses	a	trick
at	the	end	to	cleanly	erase	the	weird	*.dSYM	directories	that	Apple’s
XCode	leaves	behind	for	debugging	purposes.

If	you	run	into	junk	that	you	need	to	clean	out,	simply	augment	the	list	of	things
being	deleted	in	this	target.

The	Install
After	that,	I’ll	need	a	way	to	install	the	project,	and	for	a	Makefile	that’s
building	a	library,	I	just	need	to	put	something	in	the	common	PREFIX
directory,	usually	/usr/local/lib.

Makefile:45	This	makes	install:	depend	on	the	all:	target,	so	that
when	you	run	make	install,	it	will	be	sure	to	build	everything.

Makefile:46	I	then	use	the	program	install	to	create	the	target	lib
directory	if	it	doesn’t	exist.	In	this	case,	I’m	trying	to	make	the	install	as
flexible	as	possible	by	using	two	variables	that	are	conventions	for
installers.	DESTDIR	is	handed	to	make	by	installers,	which	do	their	builds
in	secure	or	odd	locations,	to	build	packages.	PREFIX	is	used	when
people	want	the	project	to	be	installed	in	someplace	other	than
/usr/local.

Makefile:47	After	that,	I’m	just	using	install	to	actually	install	the
library	where	it	needs	to	go.

The	purpose	of	the	install	program	is	to	make	sure	things	have	the	right
permissions	set.	When	you	run	make	install,	you	usually	have	to	do	it	as
the	root	user,	so	the	typical	build	process	is	make	&&	sudo	make
install.

The	Checker
The	very	last	part	of	this	Makefile	is	a	bonus	that	I	include	in	my	C	projects
to	help	me	dig	out	any	attempts	to	use	the	bad	functions	in	C.	These	are	namely
the	string	functions	and	other	unprotected	buffer	functions.

Makefile:50	This	sets	a	variable	that’s	a	big	regex	looking	for	bad	functions
like	strcpy.

Makefile:51	The	check:	target	allows	you	to	run	a	check	whenever	you
need	to.

Makefile:52	This	is	just	a	way	to	print	a	message,	but	doing	@echo	tells
make	to	not	print	the	command,	just	its	output.

Makefile:53	Run	the	egrep	command	on	the	source	files	to	look	for	any
bad	patterns.	The	||	true	at	the	end	is	a	way	to	prevent	make	from
thinking	that	egrep	failed	if	it	doesn’t	find	errors.

When	you	run	this,	it	will	have	the	odd	effect	of	returning	an	error	when	there’s
nothing	bad	going	on.

What	You	Should	See
I	have	two	more	exercises	to	go	before	I’m	done	building	the	project	skeleton
directory,	but	here’s	me	testing	out	the	features	of	the	Makefile.

Exercise	28	Session

Click	here	to	view	code	image

$	make	clean
rm	-rf	build

rm	-f	tests/tests.log

find	.	-name	"*.gc*"	-exec	rm	{}	\;

rm	-rf	`find	.	-name	"*.dSYM"	-print`

$	make	check
$	make

When	I	run	the	clean:	target,	it	works,	but	because	I	don’t	have	any	source
files	in	the	src/	directory,	none	of	the	other	commands	really	work.	I’ll	finish
that	up	in	the	next	exercises.

Extra	Credit
•	Try	to	get	the	Makefile	to	actually	work	by	putting	a	source	and	header
file	in	src/	and	making	the	library.	You	shouldn’t	need	a	main	function
in	the	source	file.
•	Research	what	functions	the	check:	target	is	looking	for	in	the
BADFUNCS	regular	expression	that	it’s	using.
•	If	you	don’t	do	automated	unit	testing,	then	go	read	about	it	so	you’re
prepared	later.

Exercise	29.	Libraries	and	Linking

A	central	part	of	any	C	program	is	the	ability	to	link	it	to	libraries	that	your	OS
provides.	Linking	is	how	you	get	additional	features	for	your	program	that
someone	else	created	and	packaged	on	the	system.	You’ve	been	using	some
standard	libraries	that	are	automatically	included,	but	I’m	going	to	explain	the
different	types	of	libraries	and	what	they	do.
First	off,	libraries	are	poorly	designed	in	every	programming	language.	I	have	no
idea	why,	but	it	seems	language	designers	think	of	linking	as	something	they	just
slap	on	later.	Libraries	are	usually	confusing,	hard	to	deal	with,	can’t	do
versioning	right,	and	end	up	being	linked	differently	everywhere.
C	is	no	different,	but	the	way	linking	and	libraries	are	done	in	C	is	an	artifact	of
how	the	UNIX	operating	system	and	executable	formats	were	designed	years
ago.	Learning	how	C	links	things	helps	you	understand	how	your	OS	works	and
how	it	runs	your	programs.
To	start	off,	there	are	two	basic	types	of	libraries:

static	You	made	one	of	these	when	you	used	ar	and	ranlib	to	create	the
libYOUR_LIBRARY.a	in	the	last	exercise.	This	kind	of	library	is
nothing	more	than	a	container	for	a	set	of	.o	object	files	and	their
functions,	and	you	can	treat	it	like	one	big	.o	file	when	building	your
programs.

dynamic	These	typically	end	in	.so,	.dll	or	about	one	million	other
endings	on	OS	X,	depending	on	the	version	and	who	happened	to	be
working	that	day.	Seriously	though,	OS	X	adds	.dylib,	.bundle,	and
.framework	with	not	much	distinction	among	the	three.	These	files	are
built	and	then	placed	in	a	common	location.	When	you	run	your	program,
the	OS	dynamically	loads	these	files	and	links	them	to	your	program	on
the	fly.

I	tend	to	like	static	libraries	for	small-	to	medium-sized	projects,	because	they
are	easier	to	deal	with	and	work	on	more	operating	systems.	I	also	like	to	put	all
of	the	code	I	can	into	a	static	library	so	that	I	can	then	link	it	to	unit	tests	and	to
the	file	programs	as	needed.
Dynamic	libraries	are	good	for	larger	systems,	when	space	is	tight,	or	if	you
have	a	large	number	of	programs	that	use	common	functionality.	In	this	case,
you	don’t	want	to	statically	link	all	of	the	code	for	the	common	features	to	every

program,	so	you	put	it	in	a	dynamic	library	so	that	it	is	loaded	only	once	for	all
of	them.
In	the	previous	exercise,	I	laid	out	how	to	make	a	static	library	(a	.a	file),	and
that’s	what	I’ll	use	in	the	rest	of	the	book.	In	this	exercise,	I’m	going	to	show
you	how	to	make	a	simple	.so	library,	and	how	to	dynamically	load	it	with	the
UNIX	dlopen	system.	I’ll	have	you	do	this	manually	so	that	you	understand
everything	that’s	actually	happening,	then	for	extra	credit	you’ll	use	the	c-
skeleton	skeleton	to	create	it.

Dynamically	Loading	a	Shared	Library
To	do	this,	I	will	create	two	source	files:	One	will	be	used	to	make	a
libex29.so	library,	the	other	will	be	a	program	called	ex29	that	can	load
this	library	and	run	functions	from	it.

libex29.c

Click	here	to	view	code	image

		1			#include	<stdio.h>
		2			#include	<ctype.h>
		3			#include	"dbg.h"
		4
		5
		6			int	print_a_message(const	char	*msg)
		7			{
		8							printf("A	STRING:	%s\n",	msg);
		9
	10							return	0;
	11			}
	12
	13
	14			int	uppercase(const	char	*msg)
	15			{
	16							int	i	=	0;
	17
	18							//	BUG:	\0	termination	problems
	19							for(i	=	0;	msg[i]	!=	'\0';	i++)	{
	20											printf("%c",	toupper(msg[i]));
	21							}
	22
	23							printf("\n");
	24
	25							return	0;
	26			}
	27

	28			int	lowercase(const	char	*msg)
	29			{
	30							int	i	=	0;
	31
	32							//	BUG:	\0	termination	problems
	33							for(i	=	0;	msg[i]	!=	'\0';	i++)	{
	34											printf("%c",	tolower(msg[i]));
	35							}
	36
	37							printf("\n");
	38
	39							return	0;
	40			}
	41
	42			int	fail_on_purpose(const	char	*msg)
	43			{
	44							return	1;
	45			}

There’s	nothing	fancy	in	there,	although	there	are	some	bugs	I’m	leaving	in	on
purpose	to	see	if	you’ve	been	paying	attention.	You’ll	fix	those	later.
What	we	want	to	do	is	use	the	functions	dlopen,	dlsym,	and	dlclose	to
work	with	the	above	functions.

ex29.c

Click	here	to	view	code	image

		1			#include	<stdio.h>
		2			#include	"dbg.h"
		3			#include	<dlfcn.h>
		4
		5			typedef	int	(*lib_function)	(const	char	*data);
		6
		7			int	main(int	argc,	char	*argv[])
		8			{
		9							int	rc	=	0;
	10							check(argc	==	4,	"USAGE:	ex29	libex29.so	function	data");
	11
	12							char	*lib_file	=	argv[1];
	13							char	*func_to_run	=	argv[2];
	14							char	*data	=	argv[3];
	15
	16							void	*lib	=	dlopen(lib_file,	RTLD_NOW);
	17							check(lib	!=	NULL,	"Failed	to	open	the	library	%s:	%s",
lib_file,
	18															dlerror());
	19
	20							lib_function	func	=	dlsym(lib,	func_to_run);
	21							check(func	!=	NULL,

	22															"Did	not	find	%s	function	in	the	library	%s:	%s",
func_to_run,
	23															lib_file,	dlerror());
	24
	25							rc	=	func(data);
	26							check(rc	==	0,	"Function	%s	return	%d	for	data:	%s",
func_to_run,
	27															rc,	data);
	28
	29							rc	=	dlclose(lib);
	30							check(rc	==	0,	"Failed	to	close	%s",	lib_file);
	31
	32							return	0;
	33
	34			error:
	35							return	1;
	36			}

I’ll	now	break	this	down	so	you	can	see	what’s	going	on	in	this	small	bit	of
useful	code:

ex29.c:5	I’ll	use	this	function	pointer	definition	later	to	call	functions	in	the
library.	This	is	nothing	new,	but	make	sure	you	understand	what	it’s	doing.

ex29.c:17	After	the	usual	setup	for	a	small	program,	I	use	the	dlopen
function	to	load	up	the	library	that’s	indicated	by	lib_file.	This
function	returns	a	handle	that	we	use	later,	which	works	a	lot	like	opening
a	file.

ex29.c:18	If	there’s	an	error,	I	do	the	usual	check	and	exit,	but	notice	at	then
end	that	I’m	using	dlerror	to	find	out	what	the	library-related	error	was.

ex29.c:20	I	use	dlsym	to	get	a	function	out	of	the	lib	by	its	string	name	in
func_to_run.	This	is	the	powerful	part,	since	I’m	dynamically	getting	a
pointer	to	a	function	based	on	a	string	I	got	from	the	command	line	argv.

ex29.c:23	I	then	call	the	func	function	that	was	returned,	and	check	its
return	value.

ex29.c:26	Finally,	I	close	the	library	up	just	like	I	would	a	file.	Usually,	you
keep	these	open	the	whole	time	the	program	is	running,	so	closing	it	at	the
end	isn’t	as	useful,	but	I’m	demonstrating	it	here.

What	You	Should	See
Now	that	you	know	what	this	file	does,	here’s	a	shell	session	of	me	building	the
libex29.so,	ex29	and	then	working	with	it.	Follow	along	so	you	learn	how
these	things	are	manually	built.

Exercise	29	Session

Click	here	to	view	code	image

#	compile	the	lib	file	and	make	the	.so
#	you	may	need	-fPIC	here	on	some	platforms.	add	that	if	you	get	an
error
$	cc	-c	libex29.c	-o	libex29.o
$	cc	-shared	-o	libex29.so	libex29.o

#	make	the	loader	program
$	cc	-Wall	-g	-DNDEBUG	ex29.c	-ldl	-o	ex29

#	try	it	out	with	some	things	that	work
$	ex29	./libex29.so	print_a_message	"hello	there"
-bash:	ex29:	command	not	found

$./ex29	./libex29.so	print_a_message	"hello	there"
A	STRING:	hello	there

$./ex29	./libex29.so	uppercase	"hello	there"
HELLO	THERE

$./ex29	./libex29.so	lowercase	"HELLO	tHeRe"
hello	there

$./ex29	./libex29.so	fail_on_purpose	"i	fail"
[ERROR]	(ex29.c:23:	errno:	None)	Function	fail_on_purpose	return	1

for\

												data:	i	fail

#	try	to	give	it	bad	args
$./ex29	./libex29.so	fail_on_purpose
[ERROR]	(ex29.c:11:	errno:	None)	USAGE:	ex29	libex29.so	function	data

#	try	calling	a	function	that	is	not	there
$./ex29	./libex29.so	adfasfasdf	asdfadff
[ERROR]	(ex29.c:20:	errno:	None)	Did	not	find	adfasfasdf

		function	in	the	library	libex29.so:	dlsym(0x1076009b0,
adfasfasdf):\

										symbol	not	found

#	try	loading	a	.so	that	is	not	there
$./ex29	./libex.so	adfasfasdf	asdfadfas
[ERROR]	(ex29.c:17:	errno:	No	such	file	or	directory)	Failed	to	open

				the	library	libex.so:	dlopen(libex.so,	2):	image	not	found
$

One	thing	that	you	may	run	into	is	that	every	OS,	every	version	of	every	OS,	and
every	compiler	on	every	version	of	every	OS,	seems	to	want	to	change	the	way
you	build	a	shared	library	every	time	some	new	programmer	thinks	it’s	wrong.	If
the	line	I	use	to	make	the	libex29.so	file	is	wrong,	then	let	me	know	and	I’ll
add	some	comments	for	other	platforms.

Warning!
Sometimes	you’ll	do	what	you	think	is	normal,	and	run	this	command	cc
-Wall	-g	-DNDEBUG	-ldl	ex29.c	-o	ex29	thinking
everything	will	work,	but	nope.	You	see,	on	some	platforms	the	order	of
where	libraries	go	makes	them	work	or	not,	and	for	no	real	reason.	In
Debian	or	Ubuntu,	you	have	to	do	cc	-Wall	-g	-DNDEBUG
ex29.c	-ldl	-o	ex29	for	no	reason	at	all.	It’s	just	the	way	it	is.	So
since	this	works	on	OS	X	I’m	doing	it	here,	but	in	the	future,	if	you	link
against	a	dynamic	library	and	it	can’t	find	a	function,	try	shuffling	things
around.
The	irritation	here	is	there’s	an	actual	platform	difference	on	nothing

more	than	the	order	of	command	line	arguments.	On	no	rational	planet
should	putting	an	-ldl	at	one	position	be	different	from	another.	It’s	an
option,	and	having	to	know	these	things	is	incredibly	annoying.

How	to	Break	It
Open	libex29.so	and	edit	it	with	an	editor	that	can	handle	binary	files.
Change	a	couple	of	bytes,	then	close	itlibex29.so.	Try	to	see	if	you	can	get
the	dlopen	function	to	load	it	even	though	you’ve	corrupted	it.

Extra	Credit
•	Were	you	paying	attention	to	the	bad	code	I	have	in	the	libex29.c
functions?	Do	you	see	how,	even	though	I	use	a	for-loop	they	still
check	for	'\0'	endings?	Fix	this	so	that	the	functions	always	take	a
length	for	the	string	to	work	with	inside	the	function.
•	Take	the	c-skeleton	skeleton,	and	create	a	new	project	for	this
exercise.	Put	the	libex29.c	file	in	the	src/	directory.	Change	the
Makefile	so	that	it	builds	this	as	build/libex29.so.
•	Take	the	ex29.c	file	and	put	it	in	tests/ex29_tests.c	so	that	it
runs	as	a	unit	test.	Make	this	all	work,	which	means	that	you’ll	have	to
change	it	so	that	it	loads	the	build/	libex29.so	file	and	runs	tests
similar	to	what	I	did	manually	above.
•	Read	the	man	dlopen	documentation	and	read	about	all	of	the	related
functions.	Try	some	of	the	other	options	to	dlopen	beside	RTLD_NOW.

Exercise	30.	Automated	Testing

Automated	testing	is	used	frequently	in	other	languages	like	Python	and	Ruby,
but	rarely	used	in	C.	Part	of	the	reason	comes	from	the	difficulty	of
automatically	loading	and	testing	pieces	of	C	code.	In	this	chapter,	we’ll	create	a
very	small	testing	framework	and	get	your	skeleton	directory	to	build	an
example	test	case.
The	framework	I’m	going	to	use,	and	you’ll	include	in	your	c-skeleton
skeleton,	is	called	minunit	which	started	with	a	tiny	snippet	of	code	by	Jera
Design.	I	evolved	it	further,	to	be	this:

minunit.h

Click	here	to	view	code	image

		1			#undef	NDEBUG
		2			#ifndef	_minunit_h
		3			#define	_minunit_h
		4
		5			#include	<stdio.h>
		6			#include	<dbg.h>
		7			#include	<stdlib.h>
		8
		9			#define	mu_suite_start()	char	*message	=	NULL
	10
	11			#define	mu_assert(test,	message)	if	(!(test))	{\
	12							log_err(message);	return	message;	}
	13			#define	mu_run_test(test)	debug("\n-----%s",	"	"	#test);	\
	14							message	=	test();	tests_run++;	if	(message)	return	message;
	15
	16			#define	RUN_TESTS(name)	int	main(int	argc,	char	*argv[])	{\
	17							argc	=	1;	\
	18							debug("-----	RUNNING:	%s",	argv[0]);\
	19							printf("----\nRUNNING:	%s\n",	argv[0]);\
	20							char	*result	=	name();\
	21							if	(result	!=	0)	{\
	22											printf("FAILED:	%s\n",	result);\
	23							}\
	24							else	{\
	25											printf("ALL	TESTS	PASSED\n");\
	26							}\
	27							printf("Tests	run:	%d\n",	tests_run);\
	28							exit(result	!=	0);\
	29			}
	30

	31			int	tests_run;
	32
	33			#endif

There’s	practically	nothing	left	of	the	original,	since	now	I’m	using	the	dbg.h
macros	and	a	large	macro	that	I	created	at	the	end	for	the	boilerplate	test	runner.
Even	with	this	tiny	amount	of	code,	we’ll	create	a	fully	functioning	unit	test
system	that	you	can	use	in	your	C	code	once	it’s	combined	with	a	shell	script	to
run	the	tests.

Wiring	Up	the	Test	Framework
To	continue	this	exercise,	you	should	have	your	src/libex29.c	working.
You	should	have	also	completed	the	Exercise	29	Extra	Credit	to	get	the	ex29.c
loader	program	to	properly	run.	In	Exercise	29,	I	ask	you	to	make	it	work	like	a
unit	test,	but	I’m	going	to	start	over	and	show	you	how	to	do	that	with
minunit.h.
The	first	thing	to	do	is	create	a	simple	empty	unit	test	name,
tests/libex29_tests.c	with	this	in	it:

ex30.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2
		3			char	*test_dlopen()
		4			{
		5
		6							return	NULL;
		7			}
		8
		9			char	*test_functions()
	10			{
	11
	12								return	NULL;
	13			}
	14
	15			char	*test_failures()
	16			{
	17
	18							return	NULL;
	19			}
	20
	21			char	*test_dlclose()
	22			{

	23
	24							return	NULL;
	25			}
	26
	27			char	*all_tests()
	28			{
	29							mu_suite_start();
	30
	31							mu_run_test(test_dlopen);
	32							mu_run_test(test_functions);
	33							mu_run_test(test_failures);
	34							mu_run_test(test_dlclose);
	35
	36							return	NULL;
	37			}
	38
	39			RUN_TESTS(all_tests);

This	code	is	demonstrating	the	RUN_TESTS	macro	in	tests/minunit.h
and	how	to	use	the	other	test	runner	macros.	I	have	the	actual	test	functions
stubbed	out	so	that	you	can	see	how	to	structure	a	unit	test.	I’ll	break	this	file
down	first:

libex29_tests.c:1	This	includes	the	minunit.h	framework.
libex29_tests.c:3-7	A	first	test.	Tests	are	structured	so	that	they	take	no
arguments	and	return	a	char	*	that’s	NULL	on	success.	This	is	important
because	the	other	macros	will	be	used	to	return	an	error	message	to	the	test
runner.

libex29_tests.c:9-25	These	are	more	tests	that	are	the	same	as	the	first.
libex29_tests.c:27	The	runner	function	that	will	control	all	of	the	other	tests.
It	has	the	same	form	as	any	other	test	case,	but	it	gets	configured	with
some	additional	gear.

libex29_tests.c:28	This	sets	up	some	common	stuff	for	a	test	with
mu_suite_start.

libex29_tests.c:30	This	is	how	you	say	what	tests	to	run,	using	the
mu_run_test	macro.

libex29_tests.c:35	After	you	say	what	tests	to	run,	you	then	return	NULL	just
like	a	normal	test	function.

libex29_tests.c:38	Finally,	you	just	use	the	big	RUN_TESTS	macro	to	wire
up	the	main	method	with	all	of	the	goodies,	and	tell	it	to	run	the
all_tests	starter.

That’s	all	there	is	to	running	a	test,	and	now	you	should	try	getting	just	this	to

run	within	the	project	skeleton.	Here’s	what	it	looks	like	when	I	do	it:

Exercise	30	Session

not	printable

I	first	did	a	make	clean	and	then	I	ran	the	build,	which	remade	the	template
libYOUR_LIBRARY.	a	and	libYOUR_LIBRARY.so	files.	Remember	that
you	did	this	in	the	Extra	Credit	for	Exercise	29,	but	just	in	case	you	didn’t	get	it,
here’s	the	diff	for	the	Makefile	I’m	using	now:

ex30.Makefile.diff

Click	here	to	view	code	image

diff	--git	a/code/c-skeleton/Makefile	b/code/c-skeleton/Makefile

index	135d538..21b92bf	100644

---	a/code/c-skeleton/Makefile
+++	b/code/c-skeleton/Makefile
@@	-9,9	+9,10	@@	TEST_SRC=$(wildcard	tests/*_tests.c)

	TESTS=$(patsubst	%.c,%,$(TEST_SRC))

	TARGET=build/libYOUR_LIBRARY.a
+SO_TARGET=$(patsubst	%.a,%.so,$(TARGET))

	#	The	Target	Build
-all:	$(TARGET)	tests
+all:	$(TARGET)	$(SO_TARGET)	tests

	dev:	CFLAGS=-g	-Wall	-Isrc	-Wall	-Wextra	$(OPTFLAGS)
	dev:	all
@@	-21,6	+22,9	@@	$(TARGET):	build	$(OBJECTS)

				ar	rcs	$@	$(OBJECTS)
				ranlib	$@

+$(SO_TARGET):	$(TARGET)	$(OBJECTS)
+	$(CC)	-shared	-o	$@	$(OBJECTS)
+
	build:
				@mkdir	-p	build
				@mkdir	-p	bin

With	those	changes	you	should	now	be	building	everything	and	finally	be	able	to
fill	in	the	remaining	unit	test	functions:

libex29_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<dlfcn.h>
		3
		4			typedef	int	(*lib_function)	(const	char	*data);
		5			char	*lib_file	=	"build/libYOUR_LIBRARY.so";
		6			void	*lib	=	NULL;
		7
		8			int	check_function(const	char	*func_to_run,	const	char	*data,
		9												int	expected)
	10			{
	11							lib_function	func	=	dlsym(lib,	func_to_run);
	12							check(func	!=	NULL,
	13															"Did	not	find	%s	function	in	the	library	%s:	%s",
func_to_run,
	14															lib_file,	dlerror());
	15
	16							int	rc	=	func(data);
	17							check(rc	==	expected,	"Function	%s	return	%d	for	data:	%s",
	18															func_to_run,	rc,	data);
	19
	20							return	1;
	21			error:
	22							return	0;
	23			}
	24
	25			char	*test_dlopen()
	26			{
	27							lib	=	dlopen(lib_file,	RTLD_NOW);
	28							mu_assert(lib	!=	NULL,	"Failed	to	open	the	library	to
test.");
	29
	30							return	NULL;
	31			}
	32
	33			char	*test_functions()
	34			{
	35							mu_assert(check_function("print_a_message",	"Hello",	0),
	36															"print_a_message	failed.");
	37							mu_assert(check_function("uppercase",	"Hello",	0),
	38															"uppercase	failed.");
	39							mu_assert(check_function("lowercase",	"Hello",	0),
	40															"lowercase	failed.");
	41
	42							return	NULL;
	43			}
	44
	45			char	*test_failures()
	46			{
	47							mu_assert(check_function("fail_on_purpose",	"Hello",	1),
	48															"fail_on_purpose	should	fail.");

	49
	50							return	NULL;
	51			}
	52
	53			char	*test_dlclose()
	54			{
	55							int	rc	=	dlclose(lib);
	56							mu_assert(rc	==	0,	"Failed	to	close	lib.");
	57
	58							return	NULL;
	59			}
	60
	61			char	*all_tests()
	62			{
	63							mu_suite_start();
	64
	65							mu_run_test(test_dlopen);
	66							mu_run_test(test_functions);
	67							mu_run_test(test_failures);
	68							mu_run_test(test_dlclose);
	69
	70							return	NULL;
	71			}
	72
	73			RUN_TESTS(all_tests);

Hopefully	by	now	you	can	figure	out	what’s	going	on,	since	there’s	nothing	new
in	this	except	for	the	check_function	function.	This	is	a	common	pattern
where	I	use	a	chunk	of	code	repeatedly,	and	then	simply	automate	it	by	either
creating	a	function	or	a	macro	for	it.	In	this	case,	I’m	going	to	run	functions	in
the	.so	that	I	load,	so	I	just	made	a	little	function	to	do	it.

Extra	Credit
•	This	works	but	it’s	probably	a	bit	messy.	Clean	the	c-skeleton
directory	up	so	that	it	has	all	of	these	files,	but	remove	any	of	the	code
related	to	Exercise	29.	You	should	be	able	to	copy	this	directory	over	and
kick-start	new	projects	without	much	editing.
•	Study	the	runtests.sh,	and	then	go	read	about	bash	syntax	so	you
know	what	it	does.	Do	you	think	you	could	write	a	C	version	of	this	script?

Exercise	31.	Common	Undefined	Behavior

At	this	point	in	the	book,	it’s	time	to	introduce	you	to	the	most	common	kinds	of
UB	that	you	will	encounter.	C	has	191	behaviors	that	the	standards	committee
has	decided	aren’t	defined	by	the	standard,	and	therefore	anything	goes.	Some	of
these	behaviors	are	legitimately	not	the	compiler’s	job,	but	the	vast	majority	are
simply	lazy	capitulations	by	the	standards	committee	that	cause	annoyances,	or
worse,	defects.	An	example	of	laziness:

An	unmatched	“or”	character	is	encountered	on	a	logical	source
line	during	tokenization.

In	this	instance,	the	C99	standard	actually	allows	a	compiler	writer	to	fail	at	a
parsing	task	that	a	junior	in	college	could	get	right.	Why	is	this?	Who	knows,	but
most	likely	someone	on	the	standards	committee	was	working	on	a	C	compiler
with	this	defect	and	managed	to	get	this	in	the	standard	rather	than	fix	their
compiler.	Or,	as	I	said,	simple	laziness.
The	crux	of	the	issue	with	UB	is	the	difference	between	the	C	abstract	machine,
defined	in	the	standard	and	real	computers.	The	C	standard	describes	the	C
language	according	to	a	strictly	defined	abstract	machine.	This	is	a	perfectly
valid	way	to	design	a	language,	except	where	the	C	standard	goes	wrong:	It
doesn’t	require	compilers	to	implement	this	abstract	machine	and	enforce	its
specification.	Instead,	a	compiler	writer	can	completely	ignore	the	abstract
machine	in	191	instances	of	the	standard.	It	should	really	be	called	an	“abstract
machine,	but”,	as	in,	“It’s	a	strictly	defined	abstract	machine,	but...”
This	allows	the	standards	committee	and	compiler	implementers	to	have	their
cake	and	eat	it,	too.	They	can	have	a	standard	that	is	full	of	omissions,	lax
specification,	and	errors,	but	when	you	encounter	one	of	these,	they	can	point	at
the	abstract	machine	and	simply	say	in	their	best	robot	voice,	“THE
ABSTRACT	MACHINE	IS	ALL	THAT	MATTERS.	YOU	DO	NOT
CONFORM!”	Yet,	in	191	instances	that	compiler	writers	don’t	have	to	conform,
you	do.	You	are	a	second	class	citizen,	even	though	the	language	is	really	written
for	you	to	use.
This	means	that	you,	not	the	compiler	writer,	are	left	to	enforce	the	rules	of	an
abstract	computational	machine,	and	when	you	inevitably	fail,	it’s	your	fault.
The	compiler	doesn’t	have	to	flag	the	UB,	do	anything	reasonable,	and	it’s	your
fault	for	not	memorizing	all	191	rules	that	should	be	avoided.	You	are	just	stupid
for	not	memorizing	191	complex	potholes	on	the	road	to	C.	This	is	a	wonderful

situation	for	the	classic	know-it-all	type	who	can	memorize	these	191	finer
points	of	annoyance	with	which	to	beat	beginners	to	intellectual	death.
There’s	an	additional	hypocrisy	with	UB	that	is	doubly	infuriating.	If	you	show	a
C	fanatic	code	that	properly	uses	C	strings	but	can	overwrite	the	string
terminator,	they	will	say,	“That’s	UB.	It’s	not	the	C	language’s	fault!”	However,
if	you	show	them	UB	that	has	while(x)	x	<<=	1	in	it,	they	will	say,
“That’s	UB	idiot!	Fix	your	damn	code!”	This	lets	the	C	fanatic	simultaneously
use	UB	to	defend	the	purity	of	C’s	design,	and	also	beat	you	up	for	being	an	idiot
who	writes	bad	code.	Some	UB	is	meant	as,	“you	can	ignore	the	security	of	this
since	it’s	not	C’s	fault”,	and	other	UB	is	meant	as,	“you	are	an	idiot	for	writing
this	code,”	and	the	distinction	between	the	two	is	not	specified	in	the	standard.
As	you	can	see,	I	am	not	a	fan	of	the	huge	list	of	UB.	I	had	to	memorize	all	of
these	before	the	C99	standard,	and	just	didn’t	bother	to	memorize	the	changes.
I’d	simply	moved	on	to	a	way	and	found	a	way	to	avoid	as	much	UB	as	I
possibly	could,	trying	to	stay	within	the	abstract	machine	specification	while
also	working	with	real	machines.	This	turns	out	to	be	almost	impossible,	so	I	just
don’t	write	new	code	in	C	anymore	because	of	its	glaringly	obvious	problems.

Warning!
The	technical	explanation	as	to	why	C	UB	is	wrong	comes	from	Alan
Turing:
1.	C	UB	contains	behaviors	that	are	lexical,	semantic,	and	execution	based.
2.	The	lexical	and	semantic	behaviors	can	be	detected	by	the	compiler.
3.	The	execution-based	behaviors	fall	into	Turing’s	definition	of	the	halting
problem,	and	are	therefore	NP-complete.

4.	This	means	that	to	avoid	C	UB,	it	requires	solving	one	of	the	oldest
proven	unsolvable	problems	in	computer	science,	making	UB	effectively
impossible	for	a	computer	to	avoid.

To	put	it	more	succinctly:	“If	the	only	way	to	know	that	you’ve	violated	the
abstract	machine	with	UB	is	to	run	your	C	program,	then	you	will	never	be	able
to	completely	avoid	UB.”

UB	20
Because	of	this,	I’m	going	to	list	the	top	20	undefined	behaviors	in	C,	and	tell
you	how	to	avoid	them	as	best	I	can.	In	general,	the	way	to	avoid	UB	is	to	write
clean	code,	but	some	of	these	behaviors	are	impossible	to	avoid.	For	example,

writing	past	the	end	of	a	C	string	is	an	undefined	behavior,	yet	it’s	easily	done	by
accident	and	externally	accessible	to	an	attacker.	This	list	will	also	include
related	UB	that	all	fall	into	the	same	category	but	with	differing	contexts.

Common	UBs
1.	An	object	is	referred	to	outside	of	its	lifetime	(6.2.4).

•	The	value	of	a	pointer	to	an	object	whose	lifetime	has	ended	is	used
(6.2.4).
•	The	value	of	an	object	with	automatic	storage	duration	is	used	while	it
is	indeterminate	(6.2.4,	6.7.8,	6.8).

2.	Conversion	to	or	from	an	integer	type	produces	a	value	outside	the	range
that	can	be	represented	(6.3.1.4).
•	Demotion	of	one	real	floating	type	to	another	produces	a	value	outside
the	range	that	can	be	represented	(6.3.1.5).

3.	Two	declarations	of	the	same	object	or	function	specify	types	that	are	not
compatible	(6.2.7).

4.	An	lvalue	having	array	type	is	converted	to	a	pointer	to	the	initial	element
of	the	array,	and	the	array	object	has	register	storage	class	(6.3.2.1).
•	An	attempt	is	made	to	use	the	value	of	a	void	expression,	or	an	implicit
or	explicit	conversion	(except	to	void)	is	applied	to	a	void	expression
(6.3.2.2).
•	Conversion	of	a	pointer	to	an	integer	type	produces	a	value	outside	the
range	that	can	be	represented	(6.3.2.3).
•	Conversion	between	two	pointer	types	produces	a	result	that	is
incorrectly	aligned	(6.3.2.3).
•	A	pointer	is	used	to	call	a	function	whose	type	is	not	compatible	with
the	pointed-to	type	(6.3.2.3).
•	The	operand	of	the	unary	*	operator	has	an	invalid	value	(6.5.3.2).
•	A	pointer	is	converted	to	other	than	an	integer	or	pointer	type	(6.5.4).
•	Addition	or	subtraction	of	a	pointer	into,	or	just	beyond,	an	array	object
and	an	integer	type	produces	a	result	that	does	not	point	into,	or	just
beyond,	the	same	array	object	(6.5.6).
•	Addition	or	subtraction	of	a	pointer	into,	or	just	beyond,	an	array	object
and	an	integer	type	produces	a	result	that	points	just	beyond	the	array
object	and	is	used	as	the	operand	of	a	unary	*	operator	that	is	evaluated

(6.5.6).
•	Pointers	that	do	not	point	into,	or	just	beyond,	the	same	array	object	are
subtracted	(6.5.6).
•	An	array	subscript	is	out	of	range,	even	if	an	object	is	apparently
accessible	with	the	given	subscript	(as	in	the	lvalue	expression	a[1]
[7]	given	the	declaration	int	a[4][5])	(6.5.6).
•	The	result	of	subtracting	two	pointers	is	not	representable	in	an	object
of	type	ptrdiff_t(6.5.6).
•	Pointers	that	do	not	point	to	the	same	aggregate	or	union	(nor	just
beyond	the	same	array	object)	are	compared	using	relational	operators
(6.5.8).
•	An	attempt	is	made	to	access,	or	generate	a	pointer	to	just	past,	a
flexible	array	member	of	a	structure	when	the	referenced	object	provides
no	elements	for	that	array	(6.7.2.1).
•	Two	pointer	types	that	are	required	to	be	compatible	are	not	identically
qualified,	or	are	not	pointers	to	compatible	types	(6.7.5.1).
•	The	size	expression	in	an	array	declaration	is	not	a	constant	expression
and	evaluates	at	program	execution	time	to	a	nonpositive	value	(6.7.5.2).
•	The	pointer	passed	to	a	library	function	array	parameter	does	not	have	a
value	such	that	all	address	computations	and	object	accesses	are	valid
(7.1.4).

5.	The	program	attempts	to	modify	a	string	literal	(6.4.5).
6.	An	object	has	its	stored	value	accessed	other	than	by	an	lvalue	of	an
allowable	type	(6.5).

7.	An	attempt	is	made	to	modify	the	result	of	a	function	call,	a	conditional
operator,	an	assignment	operator,	or	a	comma	operator,	or	to	access	it	after
the	next	sequence	point	(6.5.2.2,	6.5.15,	6.5.16,	6.5.17).

8.	The	value	of	the	second	operand	of	the	/	or	%	operator	is	zero	(6.5.5).
9.	An	object	is	assigned	to	an	inexactly	overlapping	object	or	to	an	exactly
overlapping	object	with	incompatible	type	(6.5.16.1).

10.	A	constant	expression	in	an	initializer	is	not,	or	does	not	evaluate	to,	one
of	the	following:	an	arithmetic	constant	expression,	a	null	pointer	constant,
an	address	constant,	or	an	address	constant	for	an	object	type	plus	or	minus
an	integer	constant	expression	(6.6).
•	An	arithmetic	constant	expression	does	not	have	arithmetic	type;	has

operands	that	are	not	integer	constants,	floating	constants,	enumeration
constants,	character	constants,	or	sizeof	expressions;	or	contains	casts
(outside	operands	to	sizeof	operators)	other	than	conversions	of
arithmetic	types	to	arithmetic	types	(6.6).

11.	An	attempt	is	made	to	modify	an	object	defined	with	a	const-qualified
type	through	use	of	an	lvalue	with	non-const-qualified	type	(6.7.3).

12.	A	function	with	external	linkage	is	declared	with	an	inline	function
specifier,	but	is	not	also	defined	in	the	same	translation	unit	(6.7.4).

13.	The	value	of	an	unnamed	member	of	a	structure	or	union	is	used	(6.7.8).
14.	The	}	that	terminates	a	function	is	reached,	and	the	value	of	the	function

call	is	used	by	the	caller	(6.9.1).
15.	A	file	with	the	same	name	as	one	of	the	standard	headers,	not	provided	as

part	of	the	implementation,	is	placed	in	any	of	the	standard	places	that	are
searched	for	included	source	files	(7.1.2).

16.	The	value	of	an	argument	to	a	character	handling	function	is	neither	equal
to	the	value	of	EOF	nor	representable	as	an	unsigned	char	(7.4).

17.	The	value	of	the	result	of	an	integer	arithmetic	or	conversion	function
cannot	be	represented	(7.8.2.1,	7.8.2.2,	7.8.2.3,	7.8.2.4,	7.20.6.1,	7.20.6.2,
7.20.1).

18.	The	value	of	a	pointer	to	a	FILE	object	is	used	after	the	associated	file	is
closed	(7.19.3).
•	The	stream	for	the	fflush	function	points	to	an	input	stream	or	to	an
update	stream	in	which	the	most	recent	operation	was	input	(7.19.5.2).
•	The	string	pointed	to	by	the	mode	argument	in	a	call	to	the	fopen
function	does	not	exactly	match	one	of	the	specified	character	sequences
(7.19.5.3).
•	An	output	operation	on	an	update	stream	is	followed	by	an	input
operation	without	an	intervening	call	to	the	fflush	function	or	a	file
positioning	function,	or	an	input	operation	on	an	update	stream	is
followed	by	an	output	operation	with	an	intervening	call	to	a	file
positioning	function	(7.19.5.3).

19.	A	conversion	specification	for	a	formatted	output	function	uses	a	#	or	0
flag	with	a	conversion	specifier	other	than	those	described	(7.19.6.1,
7.24.2.1).	*	An	s	conversion	specifier	is	encountered	by	one	of	the
formatted	output	functions,	and	the	argument	is	missing	the	null	terminator
(unless	a	precision	is	specified	that	does	not	require	null	termination)

(7.19.6.1,	7.24.2.1).	*	The	contents	of	the	array	supplied	in	a	call	to	the
fgets,	gets,	or	fgetws	function	are	used	after	a	read	error	occurred
(7.19.7.2,	7.19.7.7,	7.24.3.2).

20.	A	non-null	pointer	returned	by	a	call	to	the	calloc,	malloc,	or
realloc	function	with	a	zero	requested	size	is	used	to	access	an	object
(7.20.3).	*	The	value	of	a	pointer	that	refers	to	space	deallocated	by	a	call
to	the	free	or	realloc	function	is	used	(7.20.3).	*	The	pointer
argument	to	the	free	or	realloc	function	does	not	match	a	pointer
earlier	returned	by	calloc,	malloc,	or	realloc,	or	the	space	has	been
deallocated	by	a	call	to	free	or	realloc	(7.20.3.2,	7.20.3.4).

There	are	many	more,	but	these	seem	to	be	the	ones	that	I	run	into	the	most	often
or	that	come	up	the	most	often	in	C	code.	They	are	also	the	most	difficult	to
avoid,	so	if	you	at	least	remember	these,	you’ll	be	able	to	avoid	the	major	ones.

Exercise	32.	Double	Linked	Lists

The	purpose	of	this	book	is	to	teach	you	how	your	computer	really	works,	and
included	in	that	is	how	various	data	structures	and	algorithms	function.
Computers	by	themselves	don’t	do	a	lot	of	useful	processing.	To	make	them	do
useful	things,	you	need	to	structure	the	data	and	then	organize	the	processing	of
these	structures.	Other	programming	languages	either	include	libraries	that
implement	all	of	these	structures,	or	they	have	direct	syntax	for	them.	C	makes
you	implement	all	of	the	data	structures	that	you	need	yourself,	which	makes	it
the	perfect	language	to	learn	how	they	actually	work.
My	goal	is	to	help	you	do	three	things:

•	Understand	what’s	really	going	on	in	Python,	Ruby,	or	JavaScript	code
like	this:	data	=	{"name":	"Zed"}
•	Get	even	better	at	C	code	by	using	data	structures	to	apply	what	you	know
to	a	set	of	solved	problems.
•	Learn	a	core	set	of	data	structures	and	algorithms	so	that	you	are	better
informed	about	what	works	best	in	certain	situations.

What	Are	Data	Structures
The	name	data	structure	is	self-explanatory.	It’s	an	organization	of	data	that	fits
a	certain	model.	Maybe	the	model	is	designed	to	allow	processing	the	data	in	a
new	way.	Maybe	it’s	just	organized	to	store	it	on	disk	efficiently.	In	this	book,
I’ll	follow	a	simple	pattern	for	making	data	structures	that	work	reliably:

•	Define	a	structure	for	the	main	outer	structure.
•	Define	a	structure	for	the	contents,	usually	nodes	with	links	between	them.
•	Create	functions	that	operate	on	these	two	structures.

There	are	other	styles	of	data	structures	in	C,	but	this	pattern	works	well	and	is
consistent	for	making	most	data	structures.

Making	the	Library
For	the	rest	of	this	book,	you’ll	be	creating	a	library	that	you	can	use	when
you’re	done.	This	library	will	have	the	following	elements:

•	Header	(.h)	files	for	each	data	structure.
•	Implementation	(.c)	files	for	the	algorithms.

•	Unit	tests	that	test	all	of	them	to	make	sure	they	keep	working.
•	Documentation	that	we’ll	auto-generate	from	the	header	files.

You	already	have	the	c-skeleton,	so	use	it	to	create	a	liblcthw	project:

Exercise	32	Session

Click	here	to	view	code	image

$	cp	-r	c-skeleton	liblcthw
$	cd	liblcthw/
$	ls
LICENSE					Makefile							README.md					bin				build			src			tests

$	vim	Makefile
$	ls	src/
dbg.h													libex29.c							libex29.o

$	mkdir	src/lcthw
$	mv	src/dbg.h	src/lcthw
$	vim	tests/minunit.h
$	rm	src/libex29.*	tests/libex29*
$	make	clean
rm	-rf	build	tests/libex29_tests

rm	-f	tests/tests.log

find	.	-name	"*.gc*"	-exec	rm	{}	\;

rm	-rf	`find	.	-name	"*.dSYM"	-print`

$	ls	tests/
minunit.h	runtests.sh

$

In	this	session	I	do	the	following:
•	Copy	the	c-skeleton	over.
•	Edit	the	Makefile	to	change	libYOUR_LIBRARY.a	to	liblcthw.a
as	the	new	TARGET.
•	Make	the	src/lcthw	directory,	where	we’ll	put	our	code.
•	Move	the	src/dbg.h	into	this	new	directory.
•	Edit	tests/minunit.h	so	that	it	uses	#include	<lcthw/dbg.h>
as	the	include.
•	Get	rid	of	the	source	and	test	files	that	we	don’t	need	for	libex29.*.
•	Clean	up	everything	that’s	left	over.

Now	that	you’re	ready	to	start	building	the	library,	the	first	data	structure	that	I’ll
build	is	the	doubly	linked	list.

Doubly	Linked	Lists
The	first	data	structure	that	we’ll	add	to	liblcthw	is	a	doubly	linked	list.	This
is	the	simplest	data	structure	you	can	make,	and	it	has	useful	properties	for
certain	operations.	A	linked	list	works	by	nodes	having	pointers	to	their	next	or
previous	element.	A	doubly	linked	list	contains	pointers	to	both,	while	a	singly
linked	list	only	points	at	the	next	element.
Because	each	node	has	pointers	to	the	next	and	previous	elements,	and	because
you	keep	track	of	the	first	and	last	elements	of	the	list,	you	can	do	some
operations	very	quickly	with	doubly	linked	lists.	Anything	that	involves
inserting	or	deleting	an	element	will	be	very	fast.	They’re	also	easy	to	implement
by	most	programmers.
The	main	disadvantage	of	a	linked	list	is	that	traversing	it	involves	processing
every	single	pointer	along	the	way.	This	means	that	searching,	most	sorting,	and
iterating	over	the	elements	will	be	slow.	It	also	means	that	you	can’t	really	jump
to	random	parts	of	the	list.	If	you	had	an	array	of	elements,	you	could	just	index
right	into	the	middle	of	the	list,	but	a	linked	list	uses	a	stream	of	pointers.	That
means	if	you	want	the	tenth	element,	you	have	to	go	through	the	first	nine
elements.

Definition
As	I	said	in	the	introduction	to	this	exercise,	first	write	a	header	file	with	the
right	C	structure	statements	in	it.

list.h

Click	here	to	view	code	image

#ifndef	lcthw_List_h

#define	lcthw_List_h

#include	<stdlib.h>

struct	ListNode;
typedef	struct	ListNode	{
				struct	ListNode	*next;
				struct	ListNode	*prev;
				void	*value;
}	ListNode;

typedef	struct	List	{
				int	count;
				ListNode	*first;

				ListNode	*last;
}	List;

List	*List_create();
void	List_destroy(List	*	list);
void	List_clear(List	*	list);
void	List_clear_destroy(List	*	list);

#define	List_count(A)	((A)->count)

#define	List_first(A)	((A)->first	!=	NULL	?	(A)->first->value	:	NULL)

#define	List_last(A)	((A)->last	!=	NULL	?	(A)->last->value	:	NULL)

void	List_push(List	*	list,	void	*value);
void	*List_pop(List	*	list);

void	List_unshift(List	*	list,	void	*value);
void	*List_shift(List	*	list);

void	*List_remove(List	*	list,	ListNode	*	node);

#define	LIST_FOREACH(L,	S,	M,	V)	ListNode	*_node	=	NULL;\

																																																			ListNode	*V	=
NULL;\

for(V	=	_node	=	L->S;	_node	!=	NULL;	V	=	_node	=	_node->M)

#endif

The	first	thing	I	do	is	create	two	structures	for	the	ListNode	and	the	List	that
will	contain	those	nodes.	This	creates	the	data	structure,	which	I’ll	use	in	the
functions	and	macros	that	I	define	after	that.	If	you	read	these	functions,	you’ll
see	that	they’re	rather	simple.	I’ll	be	explaining	them	when	I	cover	the
implementation,	but	hopefully	you	can	guess	what	they	do.
Each	ListNode	has	three	components	within	the	data	structure:

•	A	value,	which	is	a	pointer	to	anything,	and	stores	the	thing	we	want	to	put
in	the	list.
•	A	ListNode	*next	pointer,	which	points	at	another	ListNode	that
holds	the	next	element	in	the	list.
•	A	ListNode	*prev	that	holds	the	previous	element.	Complex,	right?
Calling	the	previous	thing	“previous.”	I	could	have	used	“anterior”	and
“posterior,”	but	only	a	jerk	would	do	that.

The	List	struct	is	then	nothing	more	than	a	container	for	these	ListNode
structs	that	have	been	linked	together	in	a	chain.	It	keeps	track	of	the	count,
first,	and	last	elements	of	the	list.
Finally,	take	a	look	at	src/lcthw/list.h:37	where	I	define	the

LIST_FOREACH	macro.	This	is	a	common	programming	idiom	where	you
make	a	macro	that	generates	iteration	code	so	people	can’t	mess	it	up.	Getting
this	kind	of	processing	right	can	be	difficult	with	data	structures,	so	writing
macros	helps	people	out.	You’ll	see	how	I	use	this	when	I	talk	about	the
implementation.

Implementation
You	should	mostly	understand	how	a	doubly	linked	list	works.	It’s	nothing	more
than	nodes	with	two	pointers	to	the	next	and	previous	elements	of	the	list.	You
can	then	write	the	src/lcthw	/list.c	code	to	see	how	each	operation	is
implemented.

list.c

Click	here	to	view	code	image

		1			#include	<lcthw/list.h>
		2			#include	<lcthw/dbg.h>
		3
		4			List	*List_create()
		5			{
		6							return	calloc(1,	sizeof(List));
		7			}
		8
		9			void	List_destroy(List	*	list)
	10			{
	11							LIST_FOREACH(list,	first,	next,	cur)	{
	12											if	(cur->prev)	{
	13															free(cur->prev);
	14											}
	15							}
	16
	17							free(list->last);
	18							free(list);
	19			}
	20
	21			void	List_clear(List	*	list)
	22			{
	23							LIST_FOREACH(list,	first,	next,	cur)	{
	24											free(cur->value);
	25							}
	26			}
	27
	28			void	List_clear_destroy(List	*	list)
	29			{
	30							List_clear(list);
	31							List_destroy(list);

	32			}
	33
	34			void	List_push(List	*	list,	void	*value)
	35			{
	36							ListNode	*node	=	calloc(1,	sizeof(ListNode));
	37							check_mem(node);
	38
	39							node->value	=	value;
	40
	41							if	(list->last	==	NULL)	{
	42											list->first	=	node;
	43											list->last	=	node;
	44							}	else	{
	45											list->last->next	=	node;
	46											node->prev	=	list->last;
	47											list->last	=	node;
	48							}
	49
	50							list->count++;
	51
	52			error:
	53							return;
	54			}
	55
	56			void	*List_pop(List	*	list)
	57			{
	58							ListNode	*node	=	list->last;
	59							return	node	!=	NULL	?	List_remove(list,	node)	:	NULL;
	60			}
	61
	62			void	List_unshift(List	*	list,	void	*value)
	63			{
	64							ListNode	*node	=	calloc(1,	sizeof(ListNode));
	65							check_mem(node);
	66
	67							node->value	=	value;
	68
	69							if	(list->first	==	NULL)	{
	70											list->first	=	node;
	71											list->last	=	node;
	72							}	else	{
	73											node->next	=	list->first;
	74											list->first->prev	=	node;
	75											list->first	=	node;
	76							}
	77
	78							list->count++;
	79
	80			error:
	81							return;
	82			}
	83

	84			void	*List_shift(List	*	list)
	85			{
	86							ListNode	*node	=	list->first;
	87							return	node	!=	NULL	?	List_remove(list,	node)	:	NULL;
	88			}
	89
	90			void	*List_remove(List	*	list,	ListNode	*	node)
	91			{
	92							void	*result	=	NULL;
	93
	94							check(list->first	&&	list->last,	"List	is	empty.");
	95							check(node,	"node	can't	be	NULL");
	96
	97							if	(node	==	list->first	&&	node	==	list->last)	{
	98											list->first	=	NULL;
	99											list->last	=	NULL;
100							}	else	if	(node	==	list->first)	{
101											list->first	=	node->next;
102											check(list->first	!=	NULL,
103																			"Invalid	list,	somehow	got	a	first	that	is
NULL.");
104											list->first->prev	=	NULL;
105							}	else	if	(node	==	list->last)	{
106											list->last	=	node->prev;
107											check(list->last	!=	NULL,
108																			"Invalid	list,	somehow	got	a	next	that	is
NULL.");
109											list->last->next	=	NULL;
110							}	else	{
111											ListNode	*after	=	node->next;
112											ListNode	*before	=	node->prev;
113											after->prev	=	before;
114											before->next	=	after;
115							}
116
117							list->count--;
118							result	=	node->value;
119							free(node);
120
121			error:
122							return	result;
123			}

I	then	implement	all	of	the	operations	on	a	doubly	linked	list	that	can’t	be	done
with	simple	macros.	Rather	than	cover	every	tiny,	little	line	of	this	file,	I’m
going	to	give	a	high-level	overview	of	every	operation	in	both	the	list.h	and
list.c	files,	and	then	leave	you	to	read	the	code.

list.h:List_count	Returns	the	number	of	elements	in	the	list,	which	is
maintained	as	elements	are	added	and	removed.

list.h:List_first	Returns	the	first	element	of	the	list,	but	doesn’t	remove	it.
list.h:List_last	Returns	the	last	element	of	the	list,	but	doesn’t	remove	it.
list.h:LIST_FOREACH	Iterates	over	the	elements	in	the	list.
list.c:List_create	Simply	creates	the	main	List	struct.
list.c:List_destroy	Destroys	a	List	and	any	elements	it	might	have.
list.c:List_clear	A	convenient	function	for	freeing	the	values	in	each	node,
not	the	nodes.

list.c:List_clear_destroy	Clears	and	destroys	a	list.	It’s	not	very	efficient
since	it	loops	through	them	twice.

list.c:List_push	The	first	operation	that	demonstrates	the	advantage	of	a
linked	list.	It	adds	a	new	element	to	the	end	of	the	list,	and	because	that’s
just	a	couple	of	pointer	assignments,	it	does	it	very	fast.

list.c:List_pop	The	inverse	of	List_push,	this	takes	the	last	element	off
and	returns	it.

list.c:List_unshift	The	other	thing	you	can	easily	do	to	a	linked	list	is	add
elements	to	the	front	of	the	list	very	quickly.	In	this	case,	I	call	that
List_unshift	for	lack	of	a	better	term.

list.c:List_shift	Just	like	List_pop,	this	removes	the	first	element	and
returns	it.

list.c:List_remove	This	is	actually	doing	all	of	the	removal	when	you	do
List_pop	or	List_	shift.	Something	that	seems	to	always	be
difficult	in	data	structures	is	removing	things,	and	this	function	is	no
different.	It	has	to	handle	quite	a	few	conditions	depending	on	if	the
element	being	removed	is	at	the	front,	the	end,	both	the	front	and	the	end,
or	the	middle.

Most	of	these	functions	are	nothing	special,	and	you	should	be	able	to	easily
digest	this	and	understand	it	from	just	the	code.	You	should	definitely	focus	on
how	the	LIST_FOREACH	macro	is	used	in	List_destroy	so	that	you	can
understand	how	much	it	simplifies	this	common	operation.

Tests
After	you	have	those	compiling,	it’s	time	to	create	the	test	that	makes	sure	they
operate	correctly.

list_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<lcthw/list.h>
		3			#include	<assert.h>
		4
		5			static	List	*list	=	NULL;
		6			char	*test1	=	"test1	data";
		7			char	*test2	=	"test2	data";
		8			char	*test3	=	"test3	data";
		9
	10			char	*test_create()
	11			{
	12							list	=	List_create();
	13							mu_assert(list	!=	NULL,	"Failed	to	create	list.");
	14
	15							return	NULL;
	16			}
	17
	18			char	*test_destroy()
	19			{
	20							List_clear_destroy(list);
	21
	22							return	NULL;
	23
	24			}
	25
	26			char	*test_push_pop()
	27			{
	28							List_push(list,	test1);
	29							mu_assert(List_last(list)	==	test1,	"Wrong	last	value.");
	30
	31							List_push(list,	test2);
	32							mu_assert(List_last(list)	==	test2,	"Wrong	last	value");
	33
	34							List_push(list,	test3);
	35							mu_assert(List_last(list)	==	test3,	"Wrong	last	value.");
	36							mu_assert(List_count(list)	==	3,	"Wrong	count	on	push.");
	37
	38							char	*val	=	List_pop(list);
	39							mu_assert(val	==	test3,	"Wrong	value	on	pop.");
	40
	41							val	=	List_pop(list);
	42							mu_assert(val	==	test2,	"Wrong	value	on	pop.");
	43
	44							val	=	List_pop(list);
	45							mu_assert(val	==	test1,	"Wrong	value	on	pop.");
	46							mu_assert(List_count(list)	==	0,	"Wrong	count	after	pop.");
	47
	48							return	NULL;
	49			}
	50

	51			char	*test_unshift()
	52			{
	53							List_unshift(list,	test1);
	54							mu_assert(List_first(list)	==	test1,	"Wrong	first	value.");
	55
	56							List_unshift(list,	test2);
	57							mu_assert(List_first(list)	==	test2,	"Wrong	first	value");
	58
	59							List_unshift(list,	test3);
	60							mu_assert(List_first(list)	==	test3,	"Wrong	last	value.");
	61							mu_assert(List_count(list)	==	3,	"Wrong	count	on
unshift.");
	62
	63							return	NULL;
	64			}
	65
	66			char	*test_remove()
	67			{
	68							//	we	only	need	to	test	the	middle	remove	case	since
push/shift

	69							//	already	tests	the	other	cases
	70
	71							char	*val	=	List_remove(list,	list->first->next);
	72							mu_assert(val	==	test2,	"Wrong	removed	element.");
	73							mu_assert(List_count(list)	==	2,	"Wrong	count	after
remove.");
	74							mu_assert(List_first(list)	==	test3,	"Wrong	first	after
remove.");
	75							mu_assert(List_last(list)	==	test1,	"Wrong	last	after
remove.");
	76
	77							return	NULL;
	78			}
	79
	80			char	*test_shift()
	81			{
	82							mu_assert(List_count(list)	!=	0,	"Wrong	count	before
shift.");
	83
	84							char	*val	=	List_shift(list);
	85							mu_assert(val	==	test3,	"Wrong	value	on	shift.");
	86
	87							val	=	List_shift(list);
	88							mu_assert(val	==	test1,	"Wrong	value	on	shift.");
	89							mu_assert(List_count(list)	==	0,	"Wrong	count	after
shift.");
	90
	91							return	NULL;
	92			}
	93
	94			char	*all_tests()
	95			{

	96							mu_suite_start();
	97
	98							mu_run_test(test_create);
	99							mu_run_test(test_push_pop);
100							mu_run_test(test_unshift);
101							mu_run_test(test_remove);
102							mu_run_test(test_shift);
103							mu_run_test(test_destroy);
104
105							return	NULL;
106			}
107
108			RUN_TESTS(all_tests);

This	test	simply	goes	through	every	operation	and	makes	sure	it	works.	I	use	a
simplification	in	the	test	where	I	create	just	one	List	*list	for	the	whole
program,	and	then	have	the	tests	work	on	it.	This	saves	the	trouble	of	building	a
List	for	every	test,	but	it	could	mean	that	some	tests	only	pass	because	of	how
the	previous	test	ran.	In	this	case,	I	try	to	make	each	test	keep	the	list	clear	or
actually	use	the	results	from	the	previous	test.

What	You	Should	See
If	you	did	everything	right,	then	when	you	do	a	build	and	run	the	unit	tests,	it
should	look	like	this:

Exercise	32.build	Session

Click	here	to	view	code	image

$	make
cc	-g	-O2	-Wall	-Wextra	-Isrc	-rdynamic	-DNDEBUG	-fPIC			-c	-o\

							src/lcthw/list.o	src/lcthw/list.c
ar	rcs	build/liblcthw.a	src/lcthw/list.o

ranlib	build/liblcthw.a

cc	-shared	-o	build/liblcthw.so	src/lcthw/list.o

cc	-g	-O2	-Wall	-Wextra	-Isrc	-rdynamic	-DNDEBUG		build/liblcthw.a

				tests/list_tests.c			-o	tests/list_tests
sh	./tests/runtests.sh

Running	unit	tests:

RUNNING:	./tests/list_tests

ALL	TESTS	PASSED

Tests	run:	6

tests/list_tests	PASS

$

Make	sure	six	tests	ran,	it	builds	without	warnings	or	errors,	and	it’s	making	the

build	/liblcthw.a	and	build/liblcthw.so	files.

How	to	Improve	It
Instead	of	breaking	this,	I’m	going	to	tell	you	how	to	improve	the	code:

•	You	can	make	List_clear_destroy	more	efficient	by	using
LIST_FOREACH	and	doing	both	free	calls	inside	one	loop.
•	You	can	add	asserts	for	preconditions	so	that	the	program	isn’t	given	a
NULL	value	for	the	List	*list	parameters.
•	You	can	add	invariants	that	check	that	the	list’s	contents	are	always
correct,	such	as	count	is	never	<	0,	and	if	count	>	0,	then	first
isn’t	NULL.
•	You	can	add	documentation	to	the	header	file	in	the	form	of	comments
before	each	struct,	function,	and	macro	that	describes	what	it	does.

These	improvements	speak	to	the	defensive	programming	practices	I	talked
about	earlier,	hardening	this	code	against	flaws	and	improving	usability.	Go
ahead	and	do	these	things,	and	then	find	as	many	other	ways	to	improve	the	code
as	you	can.

Extra	Credit
•	Research	doubly	versus	singly	linked	lists	and	when	one	is	preferred	over
the	other.
•	Research	the	limitations	of	a	doubly	linked	list.	For	example,	while	they
are	efficient	for	inserting	and	deleting	elements,	they	are	very	slow	for
iterating	over	them	all.
•	What	operations	are	missing	that	you	can	imagine	needing?	Some
examples	are	copying,	joining,	and	splitting.	Implement	these	operations
and	write	the	unit	tests	for	them.

Exercise	33.	Linked	List	Algorithms

Im	going	to	cover	two	algorithms	for	a	linked	list	that	involve	sorting.	I’m	going
to	warn	you	first	that	if	you	need	to	sort	the	data,	then	don’t	use	a	linked	list.
These	are	horrible	for	sorting	things,	and	there	are	much	better	data	structures
you	can	use	if	that’s	a	requirement.	I’m	covering	these	two	algorithms	because
they	are	slightly	difficult	to	pull	off	with	a	linked	list,	and	to	get	you	thinking
about	how	to	efficiently	manipulate	them.
In	the	interest	of	writing	this	book,	I’m	going	to	put	the	algorithms	in	two
different	files	list_algos.h	and	list_algos.c	then	write	a	test	in
list_algos_test.c.	For	now,	just	follow	my	structure,	since	it	keeps
things	clean,	but	if	you	ever	work	on	other	libraries,	remember	that	this	isn’t	a
common	structure.
In	this	exercise,	I’m	also	going	to	give	you	an	extra	challenge	and	I	want	you	to
try	not	to	cheat.	I’m	going	to	give	you	the	unit	test	first,	and	I	want	you	to	type	it
in.	Then,	I	want	you	to	try	and	implement	the	two	algorithms	based	on	their
descriptions	in	Wikipedia	before	seeing	if	your	code	looks	like	my	code.

Bubble	and	Merge	Sorts
You	know	what’s	awesome	about	the	Internet?	I	can	just	refer	you	to	the	“bubble
sort”	and	“merge	sort”	pages	on	Wikipedia	and	tell	you	to	read	those.	Man,	that
saves	me	a	boatload	of	typing.	Now	I	can	tell	you	how	to	actually	implement
each	of	these	using	the	pseudo-code	they	have	there.	Here’s	how	you	can	tackle
an	algorithm	like	this:

•	Read	the	description	and	look	at	any	visualizations	it	has.
•	Either	draw	the	algorithm	on	paper	using	boxes	and	lines,	or	actually	take
a	deck	of	playing	cards	(or	cards	with	numbers)	and	try	to	do	the	algorithm
manually.	This	gives	you	a	concrete	demonstration	of	how	the	algorithm
works.
•	Create	the	skeleton	functions	in	your	list_algos.c	file	and	make	a
working	list_algos.h	file,	then	set	up	your	test	harness.
•	Write	your	first	failing	test	and	get	everything	to	compile.
•	Go	back	to	the	Wikipedia	page	and	copy-paste	the	pseudo-code	(not	the	C
code!)	into	the	guts	of	the	first	function	that	you’re	making.
•	Translate	this	pseudo-code	into	good	C	code	the	way	I’ve	taught	you,

using	your	unit	test	to	make	sure	it’s	working.
•	Fill	out	some	more	tests	for	edge	cases	like	empty	lists,	already	sorted
lists,	and	the	like.
•	Repeat	this	for	the	next	algorithm	and	test	it.

I	just	gave	you	the	secret	to	figuring	out	most	of	the	algorithms	out	there—until
you	get	to	some	of	the	more	insane	ones,	that	is.	In	this	case,	you’re	just	doing
the	bubble	and	merge	sorts	from	Wikipedia,	but	those	will	be	good	starters.

The	Unit	Test
Here	is	the	unit	test	you	should	use	for	the	pseudo-code:

list_algos_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<lcthw/list_algos.h>
		3			#include	<assert.h>
		4			#include	<string.h>
		5
		6			char	*values[]	=	{	"XXXX",	"1234",	"abcd",	"xjvef",	"NDSS"	};
		7
		8			#define	NUM_VALUES	5
		9
	10			List	*create_words()
	11			{
	12							int	i	=	0;
	13							List	*words	=	List_create();
	14
	15							for	(i	=	0;	i	<	NUM_VALUES;	i++)	{
	16											List_push(words,	values[i]);
	17							}
	18
	19							return	words;
	20			}
	21
	22			int	is_sorted(List	*	words)
	23			{
	24							LIST_FOREACH(words,	first,	next,	cur)	{
	25											if	(cur->next	&&	strcmp(cur->value,	cur->next->value)	>
0)	{

	26															debug("%s	%s",	(char	*)cur->value,
	27																							(char	*)cur->next->value);
	28															return	0;
	29											}
	30							}

	31
	32							return	1;
	33			}
	34
	35			char	*test_bubble_sort()
	36			{
	37							List	*words	=	create_words();
	38
	39							//	should	work	on	a	list	that	needs	sorting
	40							int	rc	=	List_bubble_sort(words,	(List_compare)	strcmp);
	41							mu_assert(rc	==	0,	"Bubble	sort	failed.");
	42							mu_assert(is_sorted(words),
	43															"Words	are	not	sorted	after	bubble	sort.");
	44
	45							//	should	work	on	an	already	sorted	list
	46							rc	=	List_bubble_sort(words,	(List_compare)	strcmp);
	47							mu_assert(rc	==	0,	"Bubble	sort	of	already	sorted
failed.");
	48							mu_assert(is_sorted(words),
	49															"Words	should	be	sort	if	already	bubble	sorted.");
	50
	51							List_destroy(words);
	52
	53							//	should	work	on	an	empty	list
	54							words	=	List_create(words);
	55							rc	=	List_bubble_sort(words,	(List_compare)	strcmp);
	56							mu_assert(rc	==	0,	"Bubble	sort	failed	on	empty	list.");
	57							mu_assert(is_sorted(words),	"Words	should	be	sorted	if
empty.");
	58
	59							List_destroy(words);
	60
	61							return	NULL;
	62			}
	63
	64			char	*test_merge_sort()
	65			{
	66							List	*words	=	create_words();
	67
	68							//	should	work	on	a	list	that	needs	sorting
	69							List	*res	=	List_merge_sort(words,	(List_compare)	strcmp);
	70							mu_assert(is_sorted(res),	"Words	are	not	sorted	after	merge
sort.");
	71
	72							List	*res2	=	List_merge_sort(res,	(List_compare)	strcmp);
	73							mu_assert(is_sorted(res),
	74															"Should	still	be	sorted	after	merge	sort.");
	75							List_destroy(res2);
	76							List_destroy(res);
	77
	78							List_destroy(words);
	79							return	NULL;

	80			}
	81
	82			char	*all_tests()
	83			{
	84							mu_suite_start();
	85
	86							mu_run_test(test_bubble_sort);
	87							mu_run_test(test_merge_sort);
	88
	89							return	NULL;
	90			}
	91
	92			RUN_TESTS(all_tests);

I	suggest	that	you	start	with	the	bubble	sort	and	get	that	working,	and	then	move
on	to	the	merge	sort.	What	I	would	do	is	lay	out	the	function	prototypes	and
skeletons	that	get	all	three	files	compiling,	but	not	passing	the	test.	Then,	I’d	just
fill	in	the	implementation	until	it	starts	working.

The	Implementation
Are	you	cheating?	In	future	exercises,	I’ll	just	give	you	a	unit	test	and	tell	you	to
implement	it,	so	it’s	good	practice	for	you	to	not	look	at	this	code	until	you	get
your	own	working.	Here’s	the	code	for	the	list_algos.c	and
list_algos.h:

list_algos.h

Click	here	to	view	code	image

#ifndef	lcthw_List_algos_h

#define	lcthw_List_algos_h

#include	<lcthw/list.h>

typedef	int	(*List_compare)	(const	void	*a,	const	void	*b);

int	List_bubble_sort(List	*	list,	List_compare	cmp);

List	*List_merge_sort(List	*	list,	List_compare	cmp);

#endif

list_algos.c

Click	here	to	view	code	image

		1			#include	<lcthw/list_algos.h>
		2			#include	<lcthw/dbg.h>
		3
		4			inline	void	ListNode_swap(ListNode	*	a,	ListNode	*	b)
		5			{
		6							void	*temp	=	a->value;
		7							a->value	=	b->value;
		8							b->value	=	temp;
		9			}
	10
	11			int	List_bubble_sort(List	*	list,	List_compare	cmp)
	12			{
	13							int	sorted	=	1;
	14
	15							if	(List_count(list)	<=	1)	{
	16											return	0;														//	already	sorted
	17							}
	18
	19							do	{
	20											sorted	=	1;
	21											LIST_FOREACH(list,	first,	next,	cur)	{
	22															if	(cur->next)	{
	23																			if	(cmp(cur->value,	cur->next->value)	>	0)	{
	24																							ListNode_swap(cur,	cur->next);
	25																							sorted	=	0;
	26																			}
	27															}
	28											}
	29							}	while	(!sorted);
	30
	31							return	0;
	32			}
	33
	34			inline	List	*List_merge(List	*	left,	List	*	right,	List_compare
cmp)
	35			{
	36							List	*result	=	List_create();
	37							void	*val	=	NULL;
	38
	39							while	(List_count(left)	>	0	||	List_count(right)	>	0)	{
	40											if	(List_count(left)	>	0	&&	List_count(right)	>	0)	{
	41															if	(cmp(List_first(left),	List_first(right))	<=	0)
{

	42																			val	=	List_shift(left);
	43															}	else	{
	44																			val	=	List_shift(right);
	45															}
	46
	47															List_push(result,	val);
	48											}	else	if	(List_count(left)	>	0)	{
	49															val	=	List_shift(left);
	50															List_push(result,	val);

	51											}	else	if	(List_count(right)	>	0)	{
	52															val	=	List_shift(right);
	53															List_push(result,	val);
	54											}
	55							}
	56
	57							return	result;
	58			}
	59
	60			List	*List_merge_sort(List	*	list,	List_compare	cmp)
	61			{
	62							if	(List_count(list)	<=	1)	{
	63											return	list;
	64							}
	65
	66							List	*left	=	List_create();
	67							List	*right	=	List_create();
	68							int	middle	=	List_count(list)	/	2;
	69
	70							LIST_FOREACH(list,	first,	next,	cur)	{
	71											if	(middle	>	0)	{
	72															List_push(left,	cur->value);
	73											}	else	{
	74															List_push(right,	cur->value);
	75											}
	76
	77											middle--;
	78							}
	79
	80							List	*sort_left	=	List_merge_sort(left,	cmp);
	81							List	*sort_right	=	List_merge_sort(right,	cmp);
	82
	83							if	(sort_left	!=	left)
	84											List_destroy(left);
	85							if	(sort_right	!=	right)
	86											List_destroy(right);
	87
	88							return	List_merge(sort_left,	sort_right,	cmp);
	89			}

The	bubble	sort	isn’t	too	hard	to	figure	out,	although	it’s	really	slow.	The	merge
sort	is	much	more	complicated,	and	honestly,	I	could	probably	spend	a	bit	more
time	optimizing	this	code	if	I	wanted	to	sacrifice	clarity.
There	is	another	way	to	implement	a	merge	sort	using	a	bottom-up	method,	but
it’s	a	little	harder	to	understand,	so	I	didn’t	do	it.	As	I’ve	already	said,	sorting
algorithms	on	linked	lists	are	entirely	pointless.	You	could	spend	all	day	trying	to
make	this	faster	and	it	will	still	be	slower	than	almost	any	other	sortable	data
structure.	Simply	don’t	use	linked	lists	if	you	need	to	sort	things.

What	You	Should	See
If	everything	works,	then	you	should	get	something	like	this:

Exercise	33	Session

Click	here	to	view	code	image

$	make	clean	all
rm	-rf	build	src/lcthw/list.o	src/lcthw/list_algos.o\

							tests/list_algos_tests	tests/list_tests
rm	-f	tests/tests.log

find	.	-name	"*.gc*"	-exec	rm	{}	\;

rm	-rf	`find	.	-name	"*.dSYM"	-print`

cc	-g	-O2	-Wall	-Wextra	-Isrc	-rdynamic	-DNDEBUG		-fPIC			-c	-o\

							src/lcthw/list.o	src/lcthw/list.c
cc	-g	-O2	-Wall	-Wextra	-Isrc	-rdynamic	-DNDEBUG		-fPIC			-c	-o\

							src/lcthw/list_algos.o	src/lcthw/list_algos.c
ar	rcs	build/liblcthw.a	src/lcthw/list.o	src/lcthw/list_algos.o

ranlib	build/liblcthw.a

cc	-shared	-o	build/liblcthw.so	src/lcthw/list.o

src/lcthw/list_algos.o

cc	-g	-O2	-Wall	-Wextra	-Isrc	-rdynamic	-DNDEBUG		build/liblcthw.a\

							tests/list_algos_tests.c				-o	tests/list_algos_tests
cc	-g	-O2	-Wall	-Wextra	-Isrc	-rdynamic	-DNDEBUG		build/liblcthw.a\

							tests/list_tests.c			-o	tests/list_tests
sh	./tests/runtests.sh

Running	unit	tests:

RUNNING:	./tests/list_algos_tests

ALL	TESTS	PASSED

Tests	run:	2

tests/list_algos_tests	PASS

RUNNING:	./tests/list_tests

ALL	TESTS	PASSED

Tests	run:	6

tests/list_tests	PASS

$

After	this	exercise,	I’m	not	going	to	show	you	this	output	unless	it’s	necessary	to
show	you	how	it	works.	From	now	on,	you	should	know	that	I	ran	the	tests	and
that	they	all	passed	and	everything	compiled.

How	to	Improve	It
Going	back	to	the	description	of	the	algorithms,	there	are	several	ways	to
improve	these	implementations.	Here	are	a	few	obvious	ones:

•	The	merge	sort	does	a	crazy	amount	of	copying	and	creating	lists,	so	find

ways	to	reduce	this.
•	The	bubble	sort	description	in	Wikipedia	mentions	a	few	optimizations.
Try	to	implement	them.
•	Can	you	use	the	List_split	and	List_join	(if	you	implemented
them)	to	improve	merge	sort?
•	Go	through	all	of	the	defensive	programming	checks	and	improve	the
robustness	of	this	implementation,	protecting	against	bad	NULL	pointers,
and	then	create	an	optional	debug	level	invariant	that	works	like
is_sorted	does	after	a	sort.

Extra	Credit
•	Create	a	unit	test	that	compares	the	performance	of	the	two	algorithms.
You’ll	want	to	look	at	man	3	time	for	a	basic	timer	function,	and	run
enough	iterations	to	at	least	have	a	few	seconds	of	samples.
•	Play	with	the	amount	of	data	in	the	lists	that	need	to	be	sorted	and	see	if
that	changes	your	timing.
•	Find	a	way	to	simulate	filling	different	sized	random	lists,	measuring	how
long	they	take.	Then,	graph	the	result	to	see	how	it	compares	to	the
description	of	the	algorithm.
•	Try	to	explain	why	sorting	linked	lists	is	a	really	bad	idea.
•	Implement	a	List_insert_sorted	that	will	take	a	given	value,	and
using	the	List_compare,	insert	the	element	at	the	right	position	so	that
the	list	is	always	sorted.	How	does	using	this	method	compare	to	sorting	a
list	after	you’ve	built	it?
•	Try	implementing	the	bottom-up	merge	sort	described	on	the	Wikipedia
page.	The	code	there	is	already	C,	so	it	should	be	easy	to	recreate,	but	try
to	understand	how	it’s	working	compared	to	the	slower	one	I	have	here.

Exercise	34.	Dynamic	Array

This	is	an	array	that	grows	on	its	own	and	has	most	of	the	same	features	as	a
linked	list.	It	will	usually	take	up	less	space,	run	faster,	and	has	other	beneficial
properties.	This	exercise	will	cover	a	few	of	the	disadvantages,	like	very	slow
removal	from	the	front,	with	a	solution	to	just	do	it	at	the	end.
A	dynamic	array	is	simply	an	array	of	void	**	pointers	that’s	pre-allocated	in
one	shot	and	that	point	at	the	data.	In	the	linked	list,	you	had	a	full	structure	that
stored	the	void	*value	pointer,	but	in	a	dynamic	array,	there’s	just	a	single
array	with	all	of	them.	This	means	you	don’t	need	any	other	pointers	for	next
and	previous	records	since	you	can	just	index	into	the	dynamic	array	directly.
To	start,	I’ll	give	you	the	header	file	you	should	type	in	for	the	implementation:

darray.h

Click	here	to	view	code	image

#ifndef	_DArray_h

#define	_DArray_h

#include	<stdlib.h>

#include	<assert.h>

#include	<lcthw/dbg.h>

typedef	struct	DArray	{
				int	end;
				int	max;
				size_t	element_size;
				size_t	expand_rate;
				void	**contents;
}	DArray;

DArray	*DArray_create(size_t	element_size,	size_t	initial_max);

void	DArray_destroy(DArray	*	array);

void	DArray_clear(DArray	*	array);

int	DArray_expand(DArray	*	array);

int	DArray_contract(DArray	*	array);

int	DArray_push(DArray	*	array,	void	*el);

void	*DArray_pop(DArray	*	array);

void	DArray_clear_destroy(DArray	*	array);

#define	DArray_last(A)	((A)->contents[(A)->end	-	1])

#define	DArray_first(A)	((A)->contents[0])

#define	DArray_end(A)	((A)->end)

#define	DArray_count(A)	DArray_end(A)

#define	DArray_max(A)	((A)->max)

#define	DEFAULT_EXPAND_RATE	300

static	inline	void	DArray_set(DArray	*	array,	int	i,	void	*el)
{

				check(i	<	array->max,	"darray	attempt	to	set	past	max");
				if	(i	>	array->end)
								array->end	=	i;
				array->contents[i]	=	el;
error:
				return;
}

static	inline	void	*DArray_get(DArray	*	array,	int	i)
{

				check(i	<	array->max,	"darray	attempt	to	get	past	max");
				return	array->contents[i];
error:
				return	NULL;
}

static	inline	void	*DArray_remove(DArray	*	array,	int	i)
{

				void	*el	=	array->contents[i];

				array->contents[i]	=	NULL;

				return	el;
}

static	inline	void	*DArray_new(DArray	*	array)
{

				check(array->element_size	>	0,
												"Can't	use	DArray_new	on	0	size	darrays.");

				return	calloc(1,	array->element_size);

error:
				return	NULL;
}

#define	DArray_free(E)	free((E))

#endif

This	header	file	is	showing	you	a	new	technique	where	I	put	static	inline
functions	right	in	the	header.	These	function	definitions	will	work	similarly	to
the	#define	macros	that	you’ve	been	making,	but	they’re	cleaner	and	easier	to
write.	If	you	need	to	create	a	block	of	code	for	a	macro	and	you	don’t	need	code
generation,	then	use	a	static	inline	function.
Compare	this	technique	to	the	LIST_FOREACH	that	generates	a	proper	for-
loop	for	a	list.	This	would	be	impossible	to	do	with	a	static	inline
function	because	it	actually	has	to	generate	the	inner	block	of	code	for	the	loop.
The	only	way	to	do	that	is	with	a	callback	function,	but	that’s	not	as	fast	and	it’s
harder	to	use.
I’ll	then	change	things	up	and	have	you	create	the	unit	test	for	DArray:

darray_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<lcthw/darray.h>
		3
		4			static	DArray	*array	=	NULL;
		5			static	int	*val1	=	NULL;
		6			static	int	*val2	=	NULL;
		7
		8			char	*test_create()
		9			{
	10							array	=	DArray_create(sizeof(int),	100);
	11							mu_assert(array	!=	NULL,	"DArray_create	failed.");
	12							mu_assert(array->contents	!=	NULL,	"contents	are	wrong	in
darray");
	13							mu_assert(array->end	==	0,	"end	isn't	at	the	right	spot");
	14							mu_assert(array->element_size	==	sizeof(int),
	15															"element	size	is	wrong.");
	16							mu_assert(array->max	==	100,	"wrong	max	length	on	initial
size");
	17
	18							return	NULL;
	19			}
	20
	21			char	*test_destroy()
	22			{
	23							DArray_destroy(array);
	24
	25							return	NULL;
	26			}

	27
	28			char	*test_new()
	29			{
	30							val1	=	DArray_new(array);
	31							mu_assert(val1	!=	NULL,	"failed	to	make	a	new	element");
	32
	33							val2	=	DArray_new(array);
	34							mu_assert(val2	!=	NULL,	"failed	to	make	a	new	element");
	35
	36							return	NULL;
	37			}
	38
	39			char	*test_set()
	40			{
	41							DArray_set(array,	0,	val1);
	42							DArray_set(array,	1,	val2);
	43
	44							return	NULL;
	45			}
	46
	47			char	*test_get()
	48			{
	49							mu_assert(DArray_get(array,	0)	==	val1,	"Wrong	first
value.");
	50							mu_assert(DArray_get(array,	1)	==	val2,	"Wrong	second
value.");
	51
	52							return	NULL;
	53			}
	54
	55			char	*test_remove()
	56			{
	57							int	*val_check	=	DArray_remove(array,	0);
	58							mu_assert(val_check	!=	NULL,	"Should	not	get	NULL.");
	59							mu_assert(*val_check	==	*val1,	"Should	get	the	first
value.");
	60							mu_assert(DArray_get(array,	0)	==	NULL,	"Should	be	gone.");
	61							DArray_free(val_check);
	62
	63							val_check	=	DArray_remove(array,	1);
	64							mu_assert(val_check	!=	NULL,	"Should	not	get	NULL.");
	65							mu_assert(*val_check	==	*val2,	"Should	get	the	first
value.");
	66							mu_assert(DArray_get(array,	1)	==	NULL,	"Should	be	gone.");
	67							DArray_free(val_check);
	68
	69							return	NULL;
	70			}
	71
	72			char	*test_expand_contract()
	73			{
	74							int	old_max	=	array->max;

	75							DArray_expand(array);
	76							mu_assert((unsigned	int)array->max	==	old_max	+	array-
>expand_rate,
	77															"Wrong	size	after	expand.");
	78
	79							DArray_contract(array);
	80							mu_assert((unsigned	int)array->max	==	array->expand_rate	+
1,

	81															"Should	stay	at	the	expand_rate	at	least.");
	82
	83							DArray_contract(array);
	84							mu_assert((unsigned	int)array->max	==	array->expand_rate	+
1,

	85															"Should	stay	at	the	expand_rate	at	least.");
	86
	87							return	NULL;
	88			}
	89
	90			char	*test_push_pop()
	91			{
	92							int	i	=	0;
	93							for	(i	=	0;	i	<	1000;	i++)	{
	94											int	*val	=	DArray_new(array);
	95											*val	=	i	*	333;
	96											DArray_push(array,	val);
	97							}
	98
	99							mu_assert(array->max	==	1201,	"Wrong	max	size.");
100
101							for	(i	=	999;	i	>=	0;	i--)	{
102											int	*val	=	DArray_pop(array);
103											mu_assert(val	!=	NULL,	"Shouldn't	get	a	NULL.");
104											mu_assert(*val	==	i	*	333,	"Wrong	value.");
105											DArray_free(val);
106							}
107
108							return	NULL;
109			}
110
111			char	*all_tests()
112			{
113							mu_suite_start();
114
115							mu_run_test(test_create);
116							mu_run_test(test_new);
117							mu_run_test(test_set);
118							mu_run_test(test_get);
119							mu_run_test(test_remove);
120							mu_run_test(test_expand_contract);
121							mu_run_test(test_push_pop);
122							mu_run_test(test_destroy);
123

124							return	NULL;
125			}
126
127			RUN_TESTS(all_tests);

This	shows	you	how	all	of	the	operations	are	used,	which	then	makes
implementing	the	DArray	much	easier:

darray.c

Click	here	to	view	code	image

		1			#include	<lcthw/darray.h>
		2			#include	<assert.h>
		3
		4			DArray	*DArray_create(size_t	element_size,	size_t	initial_max)
		5			{
		6							DArray	*array	=	malloc(sizeof(DArray));
		7							check_mem(array);
		8							array->max	=	initial_max;
		9							check(array->max	>	0,	"You	must	set	an	initial_max	>	0.");
	10
	11							array->contents	=	calloc(initial_max,	sizeof(void	*));
	12							check_mem(array->contents);
	13
	14							array->end	=	0;
	15							array->element_size	=	element_size;
	16							array->expand_rate	=	DEFAULT_EXPAND_RATE;
	17
	18							return	array;
	19
	20			error:
	21							if	(array)
	22											free(array);
	23							return	NULL;
	24			}
	25
	26			void	DArray_clear(DArray	*	array)
	27			{
	28							int	i	=	0;
	29							if	(array->element_size	>	0)	{
	30											for	(i	=	0;	i	<	array->max;	i++)	{
	31															if	(array->contents[i]	!=	NULL)	{
	32																			free(array->contents[i]);
	33															}
	34											}
	35							}
	36			}
	37
	38			static	inline	int	DArray_resize(DArray	*	array,	size_t	newsize)
	39			{

	40							array->max	=	newsize;
	41							check(array->max	>	0,	"The	newsize	must	be	>	0.");
	42
	43							void	*contents	=	realloc(
	44															array->contents,	array->max	*	sizeof(void	*));
	45							//	check	contents	and	assume	realloc	doesn't	harm	the
original	on	error

	46
	47							check_mem(contents);
	48
	49							array->contents	=	contents;
	50
	51							return	0;
	52			error:
	53							return	-1;
	54			}
	55
	56			int	DArray_expand(DArray	*	array)
	57			{
	58							size_t	old_max	=	array->max;
	59							check(DArray_resize(array,	array->max	+	array->expand_rate)
==	0,
	60															"Failed	to	expand	array	to	new	size:	%d",
	61															array->max	+	(int)array->expand_rate);
	62
	63							memset(array->contents	+	old_max,	0,	array->expand_rate	+
1);

	64							return	0;
	65
	66			error:
	67							return	-1;
	68			}
	69
	70			int	DArray_contract(DArray	*	array)
	71			{
	72							int	new_size	=	array->end	<	(int)array->expand_rate	?
	73															(int)array->expand_rate	:	array->end;
	74
	75							return	DArray_resize(array,	new_size	+	1);
	76			}
	77
	78			void	DArray_destroy(DArray	*	array)
	79			{
	80							if	(array)	{
	81											if	(array->contents)
	82															free(array->contents);
	83											free(array);
	84							}
	85			}
	86
	87			void	DArray_clear_destroy(DArray	*	array)
	88			{

	89							DArray_clear(array);
	90							DArray_destroy(array);
	91			}
	92
	93			int	DArray_push(DArray	*	array,	void	*el)
	94			{
	95							array->contents[array->end]	=	el;
	96							array->end++;
	97
	98							if	(DArray_end(array)	>=	DArray_max(array))	{
	99											return	DArray_expand(array);
100							}	else	{
101											return	0;
102							}
103			}
104
105			void	*DArray_pop(DArray	*	array)
106			{
107							check(array->end	-	1	>=	0,	"Attempt	to	pop	from	empty
array.");
108
109							void	*el	=	DArray_remove(array,	array->end	-	1);
110							array->end--;
111
112							if	(DArray_end(array)	>	(int)array->expand_rate
113															&&	DArray_end(array)	%	array->expand_rate)	{
114											DArray_contract(array);
115							}
116
117							return	el;
118			error:
119							return	NULL;
120			}

This	shows	you	another	way	to	tackle	complex	code.	Instead	of	diving	right	into
the	.c	implementation,	look	at	the	header	file,	and	then	read	the	unit	test.	This
gives	you	an	abstract-to-concrete	understanding	of	how	the	pieces	work	together,
making	it	easier	to	remember.

Advantages	and	Disadvantages
A	DArray	is	better	when	you	need	to	optimize	these	operations:

•	Iteration:	You	can	just	use	a	basic	for-loop	and	DArray_count	with
DArray_get,	and	you’re	done.	No	special	macros	needed,	and	it’s	faster
because	you	aren’t	walking	through	pointers.
•	Indexing:	You	can	use	DArray_get	and	DArray_set	to	access	any
element	at	random,	but	with	a	List	you	have	to	go	through	N	elements	to

get	to	N+1.
•	Destroying:	You	can	just	free	the	struct	and	the	contents	in	two
operations.	A	List	requires	a	series	of	free	calls	and	walking	every
element.
•	Cloning:	You	can	also	clone	it	in	just	two	operations	(plus	whatever	it’s
storing)	by	copying	the	struct	and	contents.	Again,	a	list	requires
walking	through	the	whole	thing	and	copying	every	ListNode	plus	its
value.
•	Sorting:	As	you	saw,	List	is	horrible	if	you	need	to	keep	the	data	sorted.
A	DArray	opens	up	a	whole	class	of	great	sorting	algorithms,	because
now	you	can	access	elements	randomly.
•	Large	Data:	If	you	need	to	keep	around	a	lot	of	data,	then	a	DArray	wins
since	its	base,	contents,	takes	up	less	memory	than	the	same	number	of
ListNode	structs.

However,	the	List	wins	on	these	operations:
•	Insert	and	remove	on	the	front	(what	I	called	shift):	A	DArray	needs
special	treatment	to	be	able	to	do	this	efficiently,	and	usually	it	has	to	do
some	copying.
•	Splitting	or	joining:	A	List	can	just	copy	some	pointers	and	it’s	done,	but
with	a	DArray,	you	have	copy	all	of	the	arrays	involved.
•	Small	Data:	If	you	only	need	to	store	a	few	elements,	then	typically	the
storage	will	be	smaller	in	a	List	than	a	generic	DArray.	This	is	because
the	DArray	needs	to	expand	the	backing	store	to	accommodate	future
inserts,	while	a	List	only	makes	what	it	needs.

With	this,	I	prefer	to	use	a	DArray	for	most	of	the	things	you	see	other	people
use	a	List	for.	I	reserve	using	List	for	any	data	structure	that	requires	a	small
number	of	nodes	to	be	added	and	removed	from	either	end.	I’ll	show	you	two
similar	data	structures	called	a	Stack	and	Queue	where	this	is	important.

How	to	Improve	It
As	usual,	go	through	each	function	and	operation	and	add	the	defensive
programming	checks,	pre-conditions,	invariants,	and	anything	else	you	can	find
to	make	the	implementation	more	bulletproof.

Extra	Credit

•	Improve	the	unit	tests	to	cover	more	of	the	operations,	and	test	them	using
a	for-loop	to	ensure	that	they	work.
•	Research	what	it	would	take	to	implement	bubble	sort	and	merge	sort	for
DArray,	but	don’t	do	it	yet.	I’ll	be	implementing	DArray	algorithms	next,
so	you’ll	do	this	then.
•	Write	some	performance	tests	for	common	operations	and	compare	them
to	the	same	operations	in	List.	You	did	some	of	this	already,	but	this
time,	write	a	unit	test	that	repeatedly	does	the	operation	in	question	and
then,	in	the	main	runner,	do	the	timing.
•	Look	at	how	the	DArray_expand	is	implemented	using	a	constant
increase	(size	+	300).	Typically,	dynamic	arrays	are	implemented	with	a
multiplicative	increase	(size	×	2),	but	I’ve	found	this	to	cost	needless
memory	for	no	real	performance	gain.	Test	my	assertion	and	see	when
you’d	want	a	multiplicative	increase	instead	of	a	constant	increase.

Exercise	35.	Sorting	and	Searching

In	this	exercise,	I’m	going	to	cover	four	sorting	algorithms	and	one	search
algorithm.	The	sorting	algorithms	are	going	to	be	quick	sort,	heap	sort,	merge
sort,	and	radix	sort.	I’m	then	going	to	show	you	how	do	a	to	binary	search	after
you’ve	done	a	radix	sort.
However,	I’m	a	lazy	guy,	and	in	most	standard	C	libraries	you	have	existing
implementations	of	the	heapsort,	quicksort,	and	merge	sort	algorithms.	Here’s
how	you	use	them:

darray_algos.c

Click	here	to	view	code	image

		1			#include	<lcthw/darray_algos.h>
		2			#include	<stdlib.h>
		3
		4			int	DArray_qsort(DArray	*	array,	DArray_compare	cmp)
		5			{
		6							qsort(array->contents,	DArray_count(array),	sizeof(void	*),
cmp);
		7							return	0;
		8			}
		9
	10			int	DArray_heapsort(DArray	*	array,	DArray_compare	cmp)
	11			{
	12							return	heapsort(array->contents,	DArray_count(array),
	13															sizeof(void	*),	cmp);
	14			}
	15
	16			int	DArray_mergesort(DArray	*	array,	DArray_compare	cmp)
	17			{
	18							return	mergesort(array->contents,	DArray_count(array),
	19															sizeof(void	*),	cmp);
	20			}

That’s	the	whole	implementation	of	the	darray_algos.c	file,	and	it	should
work	on	most	modern	UNIX	systems.	What	each	of	these	does	is	sort	the
contents	store	of	void	pointers	using	the	DArray_compare	that	you	give
it.	I’ll	show	you	the	header	file	for	this,	too:

darray_algos.h

Click	here	to	view	code	image

#ifndef	darray_algos_h

#define	darray_algos_h

#include	<lcthw/darray.h>

typedef	int	(*DArray_compare)	(const	void	*a,	const	void	*b);

int	DArray_qsort(DArray	*	array,	DArray_compare	cmp);

int	DArray_heapsort(DArray	*	array,	DArray_compare	cmp);

int	DArray_mergesort(DArray	*	array,	DArray_compare	cmp);

#endif

It’s	about	the	same	size	and	should	be	what	you	expect.	Next,	you	can	see	how
these	functions	are	used	in	the	unit	test	for	these	three:

darray_algos_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<lcthw/darray_algos.h>
		3
		4			int	testcmp(char	**a,	char	**b)
		5			{
		6							return	strcmp(*a,	*b);
		7			}
		8
		9			DArray	*create_words()
	10			{
	11							DArray	*result	=	DArray_create(0,	5);
	12							char	*words[]	=	{	"asdfasfd",
	13											"werwar",	"13234",	"asdfasfd",	"oioj"	};
	14							int	i	=	0;
	15
	16							for	(i	=	0;	i	<	5;	i++)	{
	17											DArray_push(result,	words[i]);
	18							}
	19
	20							return	result;
	21			}
	22
	23			int	is_sorted(DArray	*	array)
	24			{
	25							int	i	=	0;
	26
	27							for	(i	=	0;	i	<	DArray_count(array)	-	1;	i++)	{

	28											if	(strcmp(DArray_get(array,	i),	DArray_get(array,	i	+
1))	>	0)	{
	29															return	0;
	30											}
	31							}
	32
	33							return	1;
	34			}
	35
	36			char	*run_sort_test(int	(*func)	(DArray	*,	DArray_compare),
	37											const	char	*name)
	38			{
	39							DArray	*words	=	create_words();
	40							mu_assert(!is_sorted(words),	"Words	should	start	not
sorted.");
	41
	42							debug("---	Testing	%s	sorting	algorithm",	name);
	43							int	rc	=	func(words,	(DArray_compare)	testcmp);
	44							mu_assert(rc	==	0,	"sort	failed");
	45							mu_assert(is_sorted(words),	"didn't	sort	it");
	46
	47							DArray_destroy(words);
	48
	49							return	NULL;
	50			}
	51
	52			char	*test_qsort()
	53			{
	54							return	run_sort_test(DArray_qsort,	"qsort");
	55			}
	56
	57			char	*test_heapsort()
	58			{
	59							return	run_sort_test(DArray_heapsort,	"heapsort");
	60			}
	61
	62			char	*test_mergesort()
	63			{
	64							return	run_sort_test(DArray_mergesort,	"mergesort");
	65			}
	66
	67			char	*all_tests()
	68			{
	69							mu_suite_start();
	70
	71							mu_run_test(test_qsort);
	72							mu_run_test(test_heapsort);
	73							mu_run_test(test_mergesort);
	74
	75							return	NULL;
	76			}
	77

	78			RUN_TESTS(all_tests);

The	thing	to	notice,	and	actually	what	tripped	me	up	for	a	whole	day,	is	the
definition	of	testcmp	on	line	4.	You	have	to	use	a	char	**	and	not	a	char
*	because	qsort	gives	you	a	pointer	to	the	pointers	in	the	contents	array.
The	function	qsort	and	friends	are	scanning	the	array,	and	handing	pointers	to
each	element	in	the	array	to	your	comparison	function.	Since	what	I	have	in	the
contents	array	are	pointers,	that	means	you	get	a	pointer	to	a	pointer.
With	that	out	of	the	way,	you	have	just	implemented	three	difficult	sorting
algorithms	in	about	20	lines	of	code.	You	could	stop	there,	but	part	of	this	book
is	learning	how	these	algorithms	work,	so	the	Extra	Credit	section	is	going	to
involve	implementing	each	of	these.

Radix	Sort	and	Binary	Search
Since	you’re	going	to	implement	quicksort,	heapsort,	and	merge	sort	on	your
own,	I’m	going	to	show	you	a	funky	algorithm	called	radix	sort.	It	has	a	slightly
narrow	usefulness	in	sorting	arrays	of	integers,	but	seems	to	work	like	magic.	In
this	case,	I’m	going	to	create	a	special	data	structure	called	a	RadixMap	that’s
used	to	map	one	integer	to	another.
Here’s	the	header	file	for	the	new	algorithm,	which	is	both	algorithm	and	data
structure	in	one:

radixmap.h

Click	here	to	view	code	image

#ifndef	_radixmap_h

#include	<stdint.h>

typedef	union	RMElement	{
				uint64_t	raw;
				struct	{
								uint32_t	key;
								uint32_t	value;
				}	data;
}	RMElement;

typedef	struct	RadixMap	{
				size_t	max;
				size_t	end;
				uint32_t	counter;
				RMElement	*contents;
				RMElement	*temp;

}	RadixMap;

RadixMap	*RadixMap_create(size_t	max);

void	RadixMap_destroy(RadixMap	*	map);

void	RadixMap_sort(RadixMap	*	map);

RMElement	*RadixMap_find(RadixMap	*	map,	uint32_t	key);

int	RadixMap_add(RadixMap	*	map,	uint32_t	key,	uint32_t	value);

int	RadixMap_delete(RadixMap	*	map,	RMElement	*	el);

#endif

You	see	that	I	have	a	lot	of	the	same	operations	as	in	a	Dynamic	Array	or	a
List	data	structure,	but	the	difference	is	I’m	working	only	with	fixed	size	32-
bit	uin32_t	integers.	I’m	also	introducing	you	to	a	new	C	concept	called	the
union	here.

C	Unions
A	union	is	a	way	to	refer	to	the	same	piece	of	memory	in	a	number	of	different
ways.	You	define	it	like	a	struct,	except	every	element	is	sharing	the	same
space	with	all	of	the	others.	You	can	think	of	a	union	as	a	picture	of	the	memory,
and	the	elements	in	the	union	as	different	colored	lenses	to	view	the	picture.
What	they	are	used	for	is	to	either	save	memory	or	convert	chunks	of	memory
between	formats.	The	first	usage	is	typically	done	with	variant	types,	where	you
create	a	structure	that	has	tag	for	the	type,	and	then	a	union	inside	it	for	each
type.	When	used	for	converting	between	formats	of	memory,	you	can	simply
define	the	two	structures,	and	then	access	the	right	one.
First,	let	me	show	you	how	to	make	a	variant	type	with	C	unions:

ex35.c

Click	here	to	view	code	image

		1			#include	<stdio.h>
		2
		3			typedef	enum	{
		4							TYPE_INT,
		5							TYPE_FLOAT,
		6							TYPE_STRING,
		7			}	VariantType;

		8
		9			struct	Variant	{
	10						VariantType	type;
	11						union	{
	12										int	as_integer;
	13										float	as_float;
	14										char	*as_string;
	15						}	data;
	16			};
	17
	18			typedef	struct	Variant	Variant;
	19
	20			void	Variant_print(Variant	*	var)
	21			{
	22							switch	(var->type)	{
	23											case	TYPE_INT:
	24															printf("INT:	%d\n",	var->data.as_integer);
	25															break;
	26											case	TYPE_FLOAT:
	27															printf("FLOAT:	%f\n",	var->data.as_float);
	28															break;
	29											case	TYPE_STRING:
	30															printf("STRING:	%s\n",	var->data.as_string);
	31															break;
	32											default:
	33															printf("UNKNOWN	TYPE:	%d",	var->type);
	34							}
	35			}
	36
	37			int	main(int	argc,	char	*argv[])
	38			{
	39							Variant	a_int	=	{.type	=	TYPE_INT,	.data.as_integer	=	100
};

	40							Variant	a_float	=	{.type	=	TYPE_FLOAT,	.data.as_float	=
100.34	};
	41							Variant	a_string	=	{.type	=	TYPE_STRING,
	42											.data.as_string	=	"YO	DUDE!"	};
	43
	44							Variant_print(&a_int);
	45							Variant_print(&a_float);
	46							Variant_print(&a_string);
	47
	48							//	here's	how	you	access	them
	49							a_int.data.as_integer	=	200;
	50							a_float.data.as_float	=	2.345;
	51							a_string.data.as_string	=	"Hi	there.";
	52
	53							Variant_print(&a_int);
	54							Variant_print(&a_float);
	55							Variant_print(&a_string);
	56
	57							return	0;

	58			}

You	find	this	in	many	implementations	of	dynamic	languages.	The	language	will
define	some	base	variant	type	with	tags	for	all	the	base	types	of	the	language,
and	then	usually	there’s	a	generic	object	tag	for	the	types	you	can	create.	The
advantage	of	doing	this	is	that	the	Variant	only	takes	up	as	much	space	as	the
VariantType	type	tag	and	the	largest	member	of	the	union.	This	is	because
C	is	layering	each	element	of	the	Variant.data	union	together,	so	they
overlap.	To	do	that,	C	sizes	the	union	big	enough	to	hold	the	largest	element.
In	the	radixmap.h	file,	I	have	the	RMElement	union,	which	demonstrates
using	a	union	to	convert	blocks	of	memory	between	types.	In	this	case,	I	want	to
store	a	uint64_t-sized	integer	for	sorting	purposes,	but	I	want	two
uint32_t	integers	for	the	data	to	represent	a	key	and	value	pair.	By	using	a
union,	I’m	able	to	cleanly	access	the	same	block	of	memory	in	the	two	different
ways	I	need.

The	Implementation
I	next	have	the	actual	RadixMap	implementation	for	each	of	these	operations:

radixmap.c

Click	here	to	view	code	image

		1			/*
		2			*	Based	on	code	by	Andre	Reinald	then	heavily	modified	by	Zed
A.	Shaw.

		3			*/
		4
		5			#include	<stdio.h>
		6			#include	<stdlib.h>
		7			#include	<assert.h>
		8			#include	<lcthw/radixmap.h>
		9			#include	<lcthw/dbg.h>
	10
	11			RadixMap	*RadixMap_create(size_t	max)
	12			{
	13							RadixMap	*map	=	calloc(sizeof(RadixMap),	1);
	14							check_mem(map);
	15
	16							map->contents	=	calloc(sizeof(RMElement),	max	+	1);
	17							check_mem(map->contents);
	18
	19							map->temp	=	calloc(sizeof(RMElement),	max	+	1);
	20							check_mem(map->temp);

	21
	22							map->max	=	max;
	23							map->end	=	0;
	24
	25							return	map;
	26			error:
	27							return	NULL;
	28			}
	29
	30			void	RadixMap_destroy(RadixMap	*	map)
	31			{
	32							if	(map)	{
	33											free(map->contents);
	34											free(map->temp);
	35											free(map);
	36							}
	37			}
	38
	39			#define	ByteOf(x,y)	(((uint8_t	*)x)[(y)])
	40
	41			static	inline	void	radix_sort(short	offset,	uint64_t	max,
	42											uint64_t	*	source,	uint64_t	*	dest)
	43			{
	44							uint64_t	count[256]	=	{	0	};
	45							uint64_t	*cp	=	NULL;
	46							uint64_t	*sp	=	NULL;
	47							uint64_t	*end	=	NULL;
	48							uint64_t	s	=	0;
	49							uint64_t	c	=	0;
	50
	51							//	count	occurences	of	every	byte	value
	52							for	(sp	=	source,	end	=	source	+	max;	sp	<	end;	sp++)	{
	53											count[ByteOf(sp,	offset)]++;
	54							}
	55
	56							//	transform	count	into	index	by	summing
	57							//	elements	and	storing	into	same	array
	58							for	(s	=	0,	cp	=	count,	end	=	count	+	256;	cp	<	end;	cp++)
{

	59											c	=	*cp;
	60											*cp	=	s;
	61											s	+=	c;
	62							}
	63
	64							//	fill	dest	with	the	right	values	in	the	right	place
	65							for	(sp	=	source,	end	=	source	+	max;	sp	<	end;	sp++)	{
	66											cp	=	count	+	ByteOf(sp,	offset);
	67											dest[*cp]	=	*sp;
	68											++(*cp);
	69							}
	70			}
	71

	72			void	RadixMap_sort(RadixMap	*	map)
	73			{
	74							uint64_t	*source	=	&map->contents[0].raw;
	75							uint64_t	*temp	=	&map->temp[0].raw;
	76
	77							radix_sort(0,	map->end,	source,	temp);
	78							radix_sort(1,	map->end,	temp,	source);
	79							radix_sort(2,	map->end,	source,	temp);
	80							radix_sort(3,	map->end,	temp,	source);
	81			}
	82
	83			RMElement	*RadixMap_find(RadixMap	*	map,	uint32_t	to_find)
	84			{
	85							int	low	=	0;
	86							int	high	=	map->end	-	1;
	87							RMElement	*data	=	map->contents;
	88
	89							while	(low	<=	high)	{
	90											int	middle	=	low	+	(high	-	low)	/	2;
	91											uint32_t	key	=	data[middle].data.key;
	92
	93											if	(to_find	<	key)	{
	94															high	=	middle	-	1;
	95											}	else	if	(to_find	>	key)	{
	96															low	=	middle	+	1;
	97											}	else	{
	98															return	&data[middle];
	99											}
100							}
101
102							return	NULL;
103			}
104
105			int	RadixMap_add(RadixMap	*	map,	uint32_t	key,	uint32_t	value)
106			{
107							check(key	<	UINT32_MAX,	"Key	can't	be	equal	to
UINT32_MAX.");
108
109							RMElement	element	=	{.data	=	{.key	=	key,.value	=	value}	};
110							check(map->end	+	1	<	map->max,	"RadixMap	is	full.");
111
112							map->contents[map->end++]	=	element;
113
114							RadixMap_sort(map);
115
116							return	0;
117
118			error:
119							return	-1;
120			}
121
122			int	RadixMap_delete(RadixMap	*	map,	RMElement	*	el)

123			{
124							check(map->end	>	0,	"There	is	nothing	to	delete.");
125							check(el	!=	NULL,	"Can't	delete	a	NULL	element.");
126
127							el->data.key	=	UINT32_MAX;
128
129							if	(map->end	>	1)	{
130											//	don't	bother	resorting	a	map	of	1	length
131											RadixMap_sort(map);
132							}
133
134							map->end--;
135
136							return	0;
137			error:
138							return	-1;
139			}

As	usual,	enter	this	in	and	get	it	working,	along	with	the	unit	test,	and	then	I’ll
explain	what’s	happening.	Take	special	care	with	the	radix_sort	function
since	it’s	very	particular	in	how	it’s	implemented.

radixmap_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<lcthw/radixmap.h>
		3			#include	<time.h>
		4
		5			static	int	make_random(RadixMap	*	map)
		6			{
		7							size_t	i	=	0;
		8
		9							for	(i	=	0;	i	<	map->max	-	1;	i++)	{
	10											uint32_t	key	=	(uint32_t)	(rand()	|	(rand()	<<	16));
	11											check(RadixMap_add(map,	key,	i)	==	0,	"Failed	to	add
key	%u.",
	12											key);
	13							}
	14
	15							return	i;
	16
	17			error:
	18							return	0;
	19			}
	20
	21			static	int	check_order(RadixMap	*	map)
	22			{
	23							RMElement	d1,	d2;

	24							unsigned	int	i	=	0;
	25
	26							//	only	signal	errors	if	any	(should	not	be)
	27							for	(i	=	0;	map->end	>	0	&&	i	<	map->end	-	1;	i++)	{
	28											d1	=	map->contents[i];
	29											d2	=	map->contents[i	+	1];
	30
	31											if	(d1.data.key	>	d2.data.key)	{
	32															debug("FAIL:i=%u,	key:	%u,	value:	%u,	equals	max?
%d\n",	i,
	33																							d1.data.key,	d1.data.value,
	34																							d2.data.key	==	UINT32_MAX);
	35															return	0;
	36											}
	37							}
	38
	39							return	1;
	40			}
	41
	42			static	int	test_search(RadixMap	*	map)
	43			{
	44							unsigned	i	=	0;
	45							RMElement	*d	=	NULL;
	46							RMElement	*found	=	NULL;
	47
	48							for	(i	=	map->end	/	2;	i	<	map->end;	i++)	{
	49											d	=	&map->contents[i];
	50											found	=	RadixMap_find(map,	d->data.key);
	51											check(found	!=	NULL,	"Didn't	find	%u	at	%u.",	d-
>data.key,	i);
	52											check(found->data.key	==	d->data.key,
	53																			"Got	the	wrong	result:	%p:%u	looking	for	%u	at
%u",	found,
	54																			found->data.key,	d->data.key,	i);
	55							}
	56
	57							return	1;
	58			error:
	59							return	0;
	60			}
	61
	62			//	test	for	big	number	of	elements
	63			static	char	*test_operations()
	64			{
	65							size_t	N	=	200;
	66
	67							RadixMap	*map	=	RadixMap_create(N);
	68							mu_assert(map	!=	NULL,	"Failed	to	make	the	map.");
	69							mu_assert(make_random(map),	"Didn't	make	a	random	fake
radix	map.");
	70
	71							RadixMap_sort(map);

	72							mu_assert(check_order(map),
	73															"Failed	to	properly	sort	the	RadixMap.");
	74
	75							mu_assert(test_search(map),	"Failed	the	search	test.");
	76							mu_assert(check_order(map),
	77															"RadixMap	didn't	stay	sorted	after	search.");
	78
	79							while	(map->end	>	0)	{
	80											RMElement	*el	=	RadixMap_find(map,
	81																			map->contents[map->end	/	2].data.key);
	82											mu_assert(el	!=	NULL,	"Should	get	a	result.");
	83
	84											size_t	old_end	=	map->end;
	85
	86											mu_assert(RadixMap_delete(map,	el)	==	0,	"Didn't	delete
it.");
	87											mu_assert(old_end	-	1	==	map->end,	"Wrong	size	after
delete.");
	88
	89											//	test	that	the	end	is	now	the	old	value,
	90											//	but	uint32	max	so	it	trails	off
	91											mu_assert(check_order(map),
	92																			"RadixMap	didn't	stay	sorted	after	delete.");
	93							}
	94
	95							RadixMap_destroy(map);
	96
	97							return	NULL;
	98			}
	99
100			char	*all_tests()
101			{
102							mu_suite_start();
103							srand(time(NULL));
104
105							mu_run_test(test_operations);
106
107							return	NULL;
108			}
109
110			RUN_TESTS(all_tests);

I	shouldn’t	have	to	explain	too	much	about	the	test.	It’s	simply	simulating
placing	random	integers	into	the	RadixMap,	and	then	making	sure	it	can	get
them	out	reliably.	Not	too	interesting.
In	the	radixmap.c	file,	most	of	the	operations	are	easy	to	understand	if	you
read	the	code.	Here’s	a	description	of	what	the	basic	functions	are	doing	and
how	they	work:

RadixMap_create	As	usual,	I’m	allocating	all	of	the	memory	needed	for	the

structures	defined	in	radixmap.h.	I’ll	be	using	the	temp	and
contents	later	when	I	talk	about	radix_sort.

RadixMap_destroy	Again,	I’m	just	destroying	what	was	created.
radix_sort	Here’s	the	meat	of	the	data	structure,	but	I’ll	explain	what	it’s
doing	in	the	next	section.

RadixMap_sort	This	uses	the	radix_sort	function	to	actually	sort	the
contents.	It	does	this	by	sorting	between	the	contents	and	temp
until	finally	contents	is	sorted.	You’ll	see	how	this	works	when	I
describe	radix_sort	later.

RadixMap_find	This	is	using	a	binary	search	algorithm	to	find	a	key	you
give	it.	I’ll	explain	how	this	works	shortly.

RadixMap_add	Using	the	RadixMap_sort	function,	this	will	add	the	key
and	value	you	request	at	the	end,	then	simply	sort	it	again	so	that
everything	is	in	the	right	place.	Once	everything	is	sorted,	the
RadixMap_find	will	work	properly	because	it’s	a	binary	search.

RadixMap_delete	This	works	the	same	as	RadixMap_add,	except	it
deletes	elements	of	the	structure	by	setting	their	values	to	the	max	for	a
unsigned	32-bit	integer,	UINT32_MAX.	This	means	that	you	can’t	use	that
value	as	an	key	value,	but	it	makes	deleting	elements	easy.	Simply	set	it	to
that	and	then	sort,	and	it’ll	get	moved	to	the	end.	Now	it’s	deleted.

Study	the	code	for	the	functions	I	described.	That	just	leaves
RadixMap_sort,	radix_sort,	and	RadixMap_find	to	understand.

RadixMap_find	and	Binary	Search
I’ll	start	with	how	the	binary	search	is	implemented.	Binary	search	is	a	simple
algorithm	that	most	people	can	understand	intuitively.	In	fact,	you	could	take	a
deck	of	playing	cards	and	do	this	manually.	Here’s	how	this	function	works,	and
how	a	binary	search	is	done,	step	by	step:

•	Set	a	high	and	low	mark	based	on	the	size	of	the	array.
•	Get	the	middle	element	between	the	low	and	high	marks.
•	If	the	key	is	less-than,	then	the	key	must	be	below	the	middle.	Set	high	to
one	less	than	middle.
•	If	the	key	is	greater-than,	then	the	key	must	be	above	the	middle.	Set	the
low	mark	one	greater	than	the	middle.
•	If	it’s	equal,	you	found	it.	Stop.

•	Keep	looping	until	low	and	high	pass	each	other.	You	won’t	find	it	if	you
exit	the	loop.

What	you’re	effectively	doing	is	guessing	where	the	key	might	be	by	picking	the
middle	and	comparing	it	to	the	high	and	low	marks.	Since	the	data	is	sorted,	you
know	that	the	the	key	has	to	be	above	or	below	your	guess.	If	it’s	below,	then
you	just	divided	the	search	space	in	half.	You	keep	going	until	you	either	find	it
or	you	overlap	the	boundaries	and	exhaust	the	search	space.

RadixMap_sort	and	radix_sort
A	radix	sort	is	easy	to	understand	if	you	try	to	do	it	manually	first.	What	this
algorithm	does	is	exploit	the	fact	that	numbers	are	stored	with	a	sequence	of
digits	that	go	from	least	significant	to	most	significant.	It	then	takes	the	numbers
and	buckets	them	by	the	digit,	and	when	it	has	processed	all	of	the	digits,	the
numbers	come	out	sorted.	At	first	it	seems	like	magic,	and	honestly,	looking	at
the	code	sure	seems	like	it	is,	so	try	doing	it	manually	once.
To	do	this	algorithm,	write	out	a	bunch	of	three-digit	numbers	in	a	random	order.
Let’s	say	we	do	223,	912,	275,	100,	633,	120,	and	380.

•	Place	the	number	in	buckets	by	the	ones	digit:	[380,	100,	120],
[912],	[633,	223],	[275].
•	I	now	have	to	go	through	each	of	these	buckets	in	order,	and	then	sort	it	by
the	tens	digit:	[100],	[912],	[120,	223],	[633],	[275],
[380].
•	Now	each	bucket	contains	numbers	that	are	sorted	by	the	ones	digit	and
then	the	tens	digit.	I	need	to	then	go	through	these	in	order	and	fill	in	the
final	hundreds	digit:	[100,	120],	[223,	275],	[380],
[633],	[912].
•	At	this	point	each	bucket	is	sorted	by	hundreds,	tens	and	ones,	and	if	I	take
each	bucket	in	order,	I	get	the	final	sorted	list:	100,	120,	223,	275,
380,	633,	912.

Make	sure	you	do	this	a	few	times	so	you	understand	how	it	works.	It	really	is	a
slick	little	algorithm.	Most	importantly,	it	will	work	on	numbers	of	arbitrary	size,
so	you	can	sort	really	huge	numbers	because	you’re	just	doing	them	1	byte	at	a
time.
In	my	situation,	the	digits	(also	called	place	values)	are	individual	8-bit	bytes,	so
I	need	256	buckets	to	store	the	distribution	of	the	numbers	by	their	digits.	I	also
need	a	way	to	store	them	such	that	I	don’t	use	too	much	space.	If	you	look	at

radix_sort,	you’ll	see	that	the	first	thing	I	do	is	build	a	count	histogram	so
I	know	how	many	occurrences	of	each	digit	there	are	for	the	given	offset.
Once	I	know	the	counts	for	each	digit	(all	256	of	them),	I	can	then	use	them	as
distribution	points	into	a	target	array.	For	example,	if	I	have	10	bytes	that	are
0x00,	then	I	know	I	can	place	them	in	the	first	ten	slots	of	the	target	array.	This
gives	me	an	index	for	where	they	go	in	the	target	array,	which	is	the	second
for-loop	in	radix_sort.
Finally,	once	I	know	where	they	can	go	in	the	target	array	I	simply	go	through	all
of	the	digits	in	the	source	array	for	this	offset,	and	place	the	numbers	in
their	slots	in	order.	Using	the	ByteOf	macro	helps	keep	the	code	clean,	since
there’s	a	bit	of	pointer	hackery	to	make	it	work.	However,	the	end	result	is	that
all	of	the	integers	will	be	placed	in	the	bucket	for	their	digit	when	the	final	for-
loop	is	done.
What	becomes	interesting	is	how	I	use	this	in	RadixMap_sort	to	sort	these
64-bit	integers	by	just	the	first	32	bits.	Remember	how	I	have	the	key	and	value
in	a	union	for	the	RMElement	type?	That	means	that	to	sort	this	array	by	the
key,	I	only	need	to	sort	the	first	4	bytes	(32	bits	/	8	bits	per	byte)	of	every	integer.
If	you	look	at	the	RadixMap_sort,	you	see	that	I	grab	a	quick	pointer	to	the
contents	and	temp	for	source	and	target	arrays,	and	then	I	call
radix_sort	four	times.	Each	time	I	call	it,	I	alternate	source	and	target,	and
do	the	next	byte.	When	I’m	done,	the	radix_sort	has	done	its	job	and	the
final	copy	has	been	sorted	into	the	contents.

How	to	Improve	It
There	is	a	big	disadvantage	to	this	implementation	because	it	has	to	process	the
entire	array	four	times	on	every	insertion.	It	does	do	it	fast,	but	it’d	be	better	if
you	could	limit	the	amount	of	sorting	by	the	size	of	what	needs	to	be	sorted.
There	are	two	ways	you	can	improve	this	implementation:

•	Use	a	binary	search	to	find	the	minimum	position	for	the	new	element,
then	only	sort	from	there	to	the	end.	You	find	the	minimum,	put	the	new
element	on	the	end,	and	then	just	sort	from	the	minimum	on.	This	will	cut
your	sort	space	down	considerably	most	of	the	time.
•	Keep	track	of	the	biggest	key	currently	being	used,	and	then	only	sort
enough	digits	to	handle	that	key.	You	can	also	keep	track	of	the	smallest
number,	and	then	only	sort	the	digits	necessary	for	the	range.	To	do	this,
you’ll	have	to	start	caring	about	CPU	integer	ordering	(endianness).

Try	these	optimizations,	but	only	after	you	augment	the	unit	test	with	some
timing	information	so	you	can	see	if	you’re	actually	improving	the	speed	of	the
implementation.

Extra	Credit
•	Implement	quicksort,	heapsort,	and	merge	sort	and	then	provide	a
#define	that	lets	you	pick	among	the	three,	or	create	a	second	set	of
functions	you	can	call.	Use	the	technique	I	taught	you	to	read	the
Wikipedia	page	for	the	algorithm,	and	then	implement	it	with	the	pseudo-
code.
•	Compare	the	performance	of	your	optimizations	to	the	original
implementations.
•	Use	these	sorting	functions	to	create	a	DArray_sort_add	that	adds
elements	to	the	DArray	but	sorts	the	array	afterward.
•	Write	a	DArray_find	that	uses	the	binary	search	algorithm	from
RadixMap_find	and	the	DArray_compare	to	find	elements	in	a
sorted	DArray.

Exercise	36.	Safer	Strings

This	exercise	is	designed	to	get	you	using	bstring	from	now	on,	explain	why
C’s	strings	are	an	incredibly	bad	idea,	and	then	have	you	change	the	liblcthw
code	to	use	bstring.

Why	C	Strings	Were	a	Horrible	Idea
When	people	talk	about	problems	with	C,	they	say	its	concept	of	a	string	is	one
of	the	top	flaws.	You’ve	been	using	these	extensively,	and	I’ve	talked	about	the
kinds	of	flaws	they	have,	but	there	isn’t	much	that	explains	exactly	why	C
strings	are	flawed	and	always	will	be.	I’ll	try	to	explain	that	right	now,	and	after
decades	of	using	C’s	strings,	there’s	enough	evidence	for	me	to	say	that	they	are
just	a	bad	idea.
It’s	impossible	to	confirm	that	any	given	C	string	is	valid:

•	A	C	string	is	invalid	if	it	doesn’t	end	in	'\0'.
•	Any	loop	that	processes	an	invalid	C	string	will	loop	infinitely	(or	just
create	a	buffer	overflow).
•	C	strings	don’t	have	a	known	length,	so	the	only	way	to	check	if	they’re
terminated	correctly	is	to	loop	through	them.
•	Therefore,	it	isn’t	possible	to	validate	a	C	string	without	possibly	looping
infinitely.

This	is	simple	logic.	You	can’t	write	a	loop	that	checks	if	a	C	string	is	valid
because	invalid	C	strings	cause	loops	to	never	terminate.	That’s	it,	and	the	only
solution	is	to	include	the	size.	Once	you	know	the	size,	you	can	avoid	the	infinite
loop	problem.	If	you	look	at	the	two	functions	I	showed	you	from	Exercise	27,
you	see	this:

ex36.c

Click	here	to	view	code	image

		1			void	copy(char	to[],	char	from[])
		2			{
		3							int	i	=	0;
		4
		5							//	while	loop	will	not	end	if	from	isn't	'\0'	terminated
		6							while	((to[i]	=	from[i])	!=	'\0')	{

		7											++i;
		8							}
		9			}
	10
	11			int	safercopy(int	from_len,	char	*from,	int	to_len,	char	*to)
	12			{
	13							int	i	=	0;
	14							int	max	=	from_len	>	to_len	-	1	?	to_len	-	1	:	from_len;
	15
	16							//	to_len	must	have	at	least	1	byte
	17							if	(from_len	<	0	||	to_len	<=	0)
	18											return	-1;
	19
	20							for	(i	=	0;	i	<	max;	i++)	{
	21											to[i]	=	from[i];
	22							}
	23
	24							to[to_len	-	1]	=	'\0';
	25
	26							return	i;
	27			}

Imagine	that	you	want	to	add	a	check	to	the	copy	function	to	confirm	that	the
from	string	is	valid.	How	would	you	do	that?	You’d	write	a	loop	that	checked
that	the	string	ended	in	'\0'.	Oh	wait.	If	the	string	doesn’t	end	in	'\0',	then
how	does	the	checking	loop	end?	It	doesn’t.	Checkmate.
No	matter	what	you	do,	you	can’t	check	that	a	C	string	is	valid	without	knowing
the	length	of	the	underlying	storage,	and	in	this	case,	the	safercopy	includes
those	lengths.	This	function	doesn’t	have	the	same	problem	since	its	loops	will
always	terminate,	and	even	if	you	lie	to	it	about	the	size,	you	still	have	to	give	it
a	finite	size.
What	the	Better	String	Library	does	is	create	a	structure	that	always	includes	the
length	of	the	string’s	storage.	Because	the	length	is	always	available	to	a
bstring,	then	all	of	its	operations	can	be	safer.	The	loops	will	terminate,	the
contents	can	be	validated,	and	it	won’t	have	this	major	flaw.	The	library	also
comes	with	a	ton	of	operations	you	need	with	strings,	like	splitting,	formatting,
and	searching,	and	they’re	most	likely	done	right	and	are	safer.
There	could	be	flaws	in	bstring,	but	it’s	been	around	a	long	time,	so	those	are
probably	minimal.	They	still	find	flaws	in	glibc,	so	what’s	a	programmer	to
do,	right?

Using	bstrlib
There	are	quite	a	few	improved	string	libraries,	but	I	like	bstrlib	because	it

fits	in	one	file	for	the	basics,	and	has	most	of	the	stuff	you	need	to	deal	with
strings.	In	this	exercise	you’ll	need	to	get	two	files,	bstrlib.c	and
bstrlib.h,	from	the	Better	String	Library.
Here’s	me	doing	this	in	the	liblcthw	project	directory:

Exercise	36	Session

Click	here	to	view	code	image

$	mkdir	bstrlib
$	cd	bstrlib/
$	unzip	~/Downloads/bstrlib-05122010.zip
Archive:			/Users/zedshaw/Downloads/bstrlib-05122010.zip

...

$	ls
bsafe.c											bstraux.c							bstrlib.h

bstrwrap.h								license.txt					test.cpp

bsafe.h											bstraux.h							bstrlib.txt

cpptest.cpp							porting.txt					testaux.c

bstest.c		bstrlib.c							bstrwrap.cpp

gpl.txt											security.txt

$	mv	bstrlib.h	bstrlib.c	../src/lcthw/
$	cd	../
$	rm	-rf	bstrlib
#	make	the	edits
$	vim	src/lcthw/bstrlib.c
$	make	clean	all
...

$

On	line	14,	you	see	me	edit	the	bstrlib.c	file	to	move	it	to	a	new	location
and	fix	a	bug	on	OS	X.	Here’s	the	diff	file:

ex36.diff

Click	here	to	view	code	image

25c25
<	#include	"bstrlib.h"

>	#include	<lcthw/bstrlib.h>
2759c2759
<	#ifdef	__GNUC__

>	#if	defined(__GNUC__)	&&	!defined(__APPLE__)

Here	I	change	the	include	to	be	<lcthw/bstrlib.h>,	and	then	fix	one	of

the	ifdef	at	line	2759.

Learning	the	Library
This	exercise	is	short,	and	it’s	meant	to	simply	get	you	ready	for	the	remaining
exercises	that	use	the	Better	String	Library.	In	the	next	two	exercises,	I’ll	use
bstrlib.c	to	create	a	hashmap	data	structure.
You	should	now	get	familiar	with	this	library	by	reading	the	header	file	and	the
implementations,	and	then	write	a	tests/bstr_tests.c	that	tests	out	the
following	functions:

bfromcstr	Create	a	bstring	from	a	C	style	constant.
blk2bstr	Do	the	same	thing,	but	give	the	length	of	the	buffer.
bstrcpy	Copy	a	bstring.
bassign	Set	one	bstring	to	another.
bassigncstr	Set	a	bstring	to	a	C	string’s	contents.
bassignblk	Set	a	bstring	to	a	C	string	but	give	the	length.
bdestroy	Destroy	a	bstring.
bconcat	Concatenate	one	bstring	onto	another.
bstricmp	Compare	two	bstrings	returning	the	same	result	as
strcmp.
biseq	Test	if	two	bstrings	are	equal.
binstr	Tell	if	one	bstring	is	in	another.
bfindreplace	Find	one	bstring	in	another,	then	replace	it	with	a
third.
bsplit	Split	a	bstring	into	a	bstrList.
bformat	Do	a	format	string,	which	is	super	handy.
blength	Get	the	length	of	a	bstring.
bdata	Get	the	data	from	a	bstring.
bchar	Get	a	char	from	a	bstring.

Your	test	should	try	out	all	of	these	operations,	and	a	few	more	that	you	find
interesting	from	the	header	file.

Exercise	37.	Hashmaps

Hash	maps	(hashmaps,	hashes,	or	sometimes	dictionaries)	are	used	frequently	in
dynamic	programming	for	storing	key/value	data.	A	hashmap	works	by
performing	a	hashing	calculation	on	the	keys	to	produce	an	integer,	then	uses
that	integer	to	find	a	bucket	to	get	or	set	the	value.	It’s	a	very	fast,	practical	data
structure	because	it	works	on	nearly	any	data	and	is	easy	to	implement.
Here’s	an	example	of	using	a	hashmap	(aka,	dictionary)	in	Python:

ex37.py

Click	here	to	view	code	image

fruit_weights	=	{'Apples':	10,	'Oranges':	100,	'Grapes':	1.0}

for	key,	value	in	fruit_weights.items():
				print	key,	"=",	value

Almost	every	modern	language	has	something	like	this,	so	many	people	end	up
writing	code	and	never	understand	how	this	actually	works.	By	creating	the
Hashmap	data	structure	in	C,	I’ll	show	you	how	this	works.	I’ll	start	with	the
header	file	so	I	can	talk	about	the	data	structure.

hashmap.h

Click	here	to	view	code	image

#ifndef	_lcthw_Hashmap_h

#define	_lcthw_Hashmap_h

#include	<stdint.h>

#include	<lcthw/darray.h>

#define	DEFAULT_NUMBER_OF_BUCKETS	100

typedef	int	(*Hashmap_compare)	(void	*a,	void	*b);
typedef	uint32_t(*Hashmap_hash)	(void	*key);

typedef	struct	Hashmap	{
				DArray	*buckets;
				Hashmap_compare	compare;
				Hashmap_hash	hash;
}	Hashmap;

typedef	struct	HashmapNode	{
				void	*key;
				void	*data;
				uint32_t	hash;
}	HashmapNode;

typedef	int	(*Hashmap_traverse_cb)	(HashmapNode	*	node);

Hashmap	*Hashmap_create(Hashmap_compare	compare,	Hashmap_hash);
void	Hashmap_destroy(Hashmap	*	map);

int	Hashmap_set(Hashmap	*	map,	void	*key,	void	*data);
void	*Hashmap_get(Hashmap	*	map,	void	*key);

int	Hashmap_traverse(Hashmap	*	map,	Hashmap_traverse_cb	traverse_cb);

void	*Hashmap_delete(Hashmap	*	map,	void	*key);

#endif

The	structure	consists	of	a	Hashmap	that	contains	any	number	of
HashmapNode	structs.	Looking	at	Hashmap,	you	can	see	that	it’s	structured
like	this:

DArray	*buckets	A	dynamic	array	that	will	be	set	to	a	fixed	size	of	100
buckets.	Each	bucket	will	in	turn	contain	a	DArray	that	will	hold
HashmapNode	pairs.

Hashmap_compare	compare	This	is	a	comparison	function	that	the
Hashmap	uses	to	find	elements	by	their	key.	It	should	work	like	all	of	the
other	compare	functions,	and	it	defaults	to	using	bstrcmp	so	that	keys
are	just	bstrings.

Hashmap_hash	hash	This	is	the	hashing	function,	and	it’s	responsible	for
taking	a	key,	processing	its	contents,	and	producing	a	single	uint32_t
index	number.	You’ll	see	the	default	one	soon.

This	almost	tells	you	how	the	data	is	stored,	but	the	buckets	DArray	hasn’t
been	created	yet.	Just	remember	that	it’s	kind	of	a	two-level	mapping:

•	There	are	100	buckets	that	make	up	the	first	level,	and	things	are	in	these
buckets	based	on	their	hash.
•	Each	bucket	is	a	DArray	that	contains	HashmapNode	structs	that	are
simply	appended	to	the	end	as	they’re	added.

The	HashmapNode	is	then	composed	of	these	three	elements:
void	*key	The	key	for	this	key=value	pair.

void	*value	The	value.
uint32_t	hash	The	calculated	hash,	which	makes	finding	this	node	quicker.
We	can	just	check	the	hash	and	skip	any	that	don’t	match,	only	checking
the	key	if	it’s	equal.

The	rest	of	the	header	file	is	nothing	new,	so	now	I	can	show	you	the
implementation	hashmap.c	file:

hashmap.c

Click	here	to	view	code	image

		1			#undef	NDEBUG
		2			#include	<stdint.h>
		3			#include	<lcthw/hashmap.h>
		4			#include	<lcthw/dbg.h>
		5			#include	<lcthw/bstrlib.h>
		6
		7			static	int	default_compare(void	*a,	void	*b)
		8			{
		9							return	bstrcmp((bstring)	a,	(bstring)	b);
	10			}
	11
	12			/**
	13				*	Simple	Bob	Jenkins's	hash	algorithm	taken	from	the
	14				*	wikipedia	description.
	15				*/
	16			static	uint32_t	default_hash(void	*a)
	17			{
	18							size_t	len	=	blength((bstring)	a);
	19							char	*key	=	bdata((bstring)	a);
	20							uint32_t	hash	=	0;
	21							uint32_t	i	=	0;
	22
	23							for	(hash	=	i	=	0;	i	<	len;	++i)	{
	24											hash	+=	key[i];
	25											hash	+=	(hash	<<	10);
	26											hash	^=	(hash	>>	6);
	27							}
	28
	29							hash	+=	(hash	<<	3);
	30							hash	^=	(hash	>>	11);
	31							hash	+=	(hash	<<	15);
	32
	33							return	hash;
	34			}
	35
	36			Hashmap	*Hashmap_create(Hashmap_compare	compare,	Hashmap_hash
hash)

	37			{
	38							Hashmap	*map	=	calloc(1,	sizeof(Hashmap));
	39							check_mem(map);
	40
	41							map->compare	=	compare	==	NULL	?	default_compare	:	compare;
	42							map->hash	=	hash	==	NULL	?	default_hash	:	hash;
	43							map->buckets	=	DArray_create(
	44															sizeof(DArray	*),	DEFAULT_NUMBER_OF_BUCKETS);
	45							map->buckets->end	=	map->buckets->max;	//	fake	out
expanding	it

	46							check_mem(map->buckets);
	47
	48							return	map;
	49
	50			error:
	51							if	(map)	{
	52											Hashmap_destroy(map);
	53							}
	54
	55							return	NULL;
	56			}
	57
	58			void	Hashmap_destroy(Hashmap	*	map)
	59			{
	60							int	i	=	0;
	61							int	j	=	0;
	62
	63							if	(map)	{
	64											if	(map->buckets)	{
	65															for	(i	=	0;	i	<	DArray_count(map->buckets);	i++)	{
	66																			DArray	*bucket	=	DArray_get(map->buckets,	i);
	67																			if	(bucket)	{
	68																							for	(j	=	0;	j	<	DArray_count(bucket);	j++)
{

	69																											free(DArray_get(bucket,	j));
	70																							}
	71																							DArray_destroy(bucket);
	72																			}
	73															}
	74															DArray_destroy(map->buckets);
	75											}
	76
	77											free(map);
	78							}
	79			}
	80
	81			static	inline	HashmapNode	*Hashmap_node_create(int	hash,	void
*key,
	82											void	*data)
	83			{
	84							HashmapNode	*node	=	calloc(1,	sizeof(HashmapNode));
	85							check_mem(node);

	86
	87							node->key	=	key;
	88							node->data	=	data;
	89							node->hash	=	hash;
	90
	91							return	node;
	92
	93			error:
	94							return	NULL;
	95			}
	96
	97			static	inline	DArray	*Hashmap_find_bucket(Hashmap	*	map,	void
*key,
	98											int	create,
	99											uint32_t	*	hash_out)
100			{
101							uint32_t	hash	=	map->hash(key);
102							int	bucket_n	=	hash	%	DEFAULT_NUMBER_OF_BUCKETS;
103							check(bucket_n	>=	0,	"Invalid	bucket	found:	%d",	bucket_n);
104							//	store	it	for	the	return	so	the	caller	can	use	it
105							*hash_out	=	hash;
106
107							DArray	*bucket	=	DArray_get(map->buckets,	bucket_n);
108
109							if	(!bucket	&&	create)	{
110											//	new	bucket,	set	it	up
111											bucket	=	DArray_create(
112																			sizeof(void	*),	DEFAULT_NUMBER_OF_BUCKETS);
113											check_mem(bucket);
114											DArray_set(map->buckets,	bucket_n,	bucket);
115							}
116
117							return	bucket;
118
119			error:
120							return	NULL;
121			}
122
123			int	Hashmap_set(Hashmap	*	map,	void	*key,	void	*data)
124			{
125							uint32_t	hash	=	0;
126							DArray	*bucket	=	Hashmap_find_bucket(map,	key,	1,	&hash);
127							check(bucket,	"Error	can't	create	bucket.");
128
129							HashmapNode	*node	=	Hashmap_node_create(hash,	key,	data);
130							check_mem(node);
131
132							DArray_push(bucket,	node);
133
134							return	0;
135
136			error:

137							return	-1;
138			}
139
140			static	inline	int	Hashmap_get_node(Hashmap	*	map,	uint32_t
hash,
141											DArray	*	bucket,	void	*key)
142			{
143							int	i	=	0;
144
145							for	(i	=	0;	i	<	DArray_end(bucket);	i++)	{
146											debug("TRY:	%d",	i);
147											HashmapNode	*node	=	DArray_get(bucket,	i);
148											if	(node->hash	==	hash	&&	map->compare(node->key,	key)
==	0)	{
149															return	i;
150											}
151							}
152
153							return	-1;
154			}
155
156			void	*Hashmap_get(Hashmap	*	map,	void	*key)
157			{
158							uint32_t	hash	=	0;
159							DArray	*bucket	=	Hashmap_find_bucket(map,	key,	0,	&hash);
160							if	(!bucket)	return	NULL;
161
162							int	i	=	Hashmap_get_node(map,	hash,	bucket,	key);
163							if	(i	==	-1)	return	NULL;
164
165							HashmapNode	*node	=	DArray_get(bucket,	i);
166							check(node	!=	NULL,
167															"Failed	to	get	node	from	bucket	when	it	should
exist.");
168
169							return	node->data;
170
171			error:																			//	fallthrough
172							return	NULL;
173			}
174
175			int	Hashmap_traverse(Hashmap	*	map,	Hashmap_traverse_cb
traverse_cb)
176			{
177							int	i	=	0;
178							int	j	=	0;
179							int	rc	=	0;
180
181							for	(i	=	0;	i	<	DArray_count(map->buckets);	i++)	{
182											DArray	*bucket	=	DArray_get(map->buckets,	i);
183											if	(bucket)	{
184															for	(j	=	0;	j	<	DArray_count(bucket);	j++)	{

185																			HashmapNode	*node	=	DArray_get(bucket,	j);
186																			rc	=	traverse_cb(node);
187																			if	(rc	!=	0)
188																							return	rc;
189															}
190											}
191							}
192
193							return	0;
194			}
195
196			void	*Hashmap_delete(Hashmap	*	map,	void	*key)
197			{
198							uint32_t	hash	=	0;
199							DArray	*bucket	=	Hashmap_find_bucket(map,	key,	0,	&hash);
200							if	(!bucket)
201											return	NULL;
202
203							int	i	=	Hashmap_get_node(map,	hash,	bucket,	key);
204							if	(i	==	-1)
205											return	NULL;
206
207							HashmapNode	*node	=	DArray_get(bucket,	i);
208							void	*data	=	node->data;
209							free(node);
210
211							HashmapNode	*ending	=	DArray_pop(bucket);
212
213							if	(ending	!=	node)	{
214											//	alright	looks	like	it's	not	the	last	one,	swap	it
215											DArray_set(bucket,	i,	ending);
216							}
217
218							return	data;
219			}

There’s	nothing	very	complicated	in	the	implementation,	but	the
default_hash	and	Hashmap_find_bucket	functions	will	need	some
explanation.	When	you	use	Hashmap_create,	you	can	pass	in	any	compare
and	hash	functions	you	want,	but	if	you	don’t,	it	uses	the	default_compare
and	default_hash	functions.
The	first	thing	to	look	at	is	how	default_hash	does	its	thing.	This	is	a	simple
hash	function	called	a	Jenkins	hash	after	Bob	Jenkins.	I	got	the	algorithm	from
the	“Jenkins	hash”	page	on	Wikipedia.	It	simply	goes	through	each	byte	of	the
key	to	hash	(a	bstring),	and	then	it	works	the	bits	so	that	the	end	result	is	a	single
uint32_t.	It	does	this	with	some	adding	and	exclusive	or	(XOR)	operations.
There	are	many	different	hash	functions,	all	with	different	properties,	but	once

you	have	one,	you	need	a	way	to	use	it	to	find	the	right	buckets.	The
Hashmap_find_bucket	does	it	like	this:

•	First,	it	calls	map->hash(key)	to	get	the	hash	for	the	key.
•	It	then	finds	the	bucket	using	hash	%
DEFAULT_NUMBER_OF_BUCKETS,	so	every	hash	will	always	find	some
bucket	no	matter	how	big	it	is.
•	It	then	gets	the	bucket,	which	is	also	a	DArray,	and	if	it’s	not	there,	it	will
create	the	bucket.	However,	that	depends	on	if	the	create	variable	says
to	do	so.
•	Once	it	has	found	the	DArray	bucket	for	the	right	hash,	it	returns	it,	and
the	hash_out	variable	is	used	to	give	the	caller	the	hash	that	was	found.

All	of	the	other	functions	then	use	Hashmap_find_bucket	to	do	their	work:
•	Setting	a	key/value	involves	finding	the	bucket,	making	a
HashmapNode,	and	then	adding	it	to	the	bucket.
•	Getting	a	key	involves	finding	the	bucket,	and	then	finding	the
HashmapNode	that	matches	the	hash	and	key	that	you	want.
•	Deleting	an	item	finds	the	bucket,	finds	where	the	requested	node	is,	and
then	removes	it	by	swapping	the	last	node	into	its	place.

The	only	other	function	that	you	should	study	is	the	Hashmap_traverse.
This	simply	walks	through	every	bucket,	and	for	any	bucket	that	has	possible
values,	it	calls	the	traverse_cb	on	each	value.	This	is	how	you	scan	a	whole
Hashmap	for	its	values.

The	Unit	Test
Finally,	you	have	the	unit	test	to	test	all	of	these	operations:

hashmap_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<lcthw/hashmap.h>
		3			#include	<assert.h>
		4			#include	<lcthw/bstrlib.h>
		5
		6			Hashmap	*map	=	NULL;
		7			static	int	traverse_called	=	0;

		8			struct	tagbstring	test1	=	bsStatic("test	data	1");
		9			struct	tagbstring	test2	=	bsStatic("test	data	2");
	10			struct	tagbstring	test3	=	bsStatic("xest	data	3");
	11			struct	tagbstring	expect1	=	bsStatic("THE	VALUE	1");
	12			struct	tagbstring	expect2	=	bsStatic("THE	VALUE	2");
	13			struct	tagbstring	expect3	=	bsStatic("THE	VALUE	3");
	14
	15			static	int	traverse_good_cb(HashmapNode	*	node)
	16			{
	17							debug("KEY:	%s",	bdata((bstring)	node->key));
	18							traverse_called++;
	19							return	0;
	20			}
	21
	22			static	int	traverse_fail_cb(HashmapNode	*	node)
	23			{
	24							debug("KEY:	%s",	bdata((bstring)	node->key));
	25							traverse_called++;
	26
	27							if	(traverse_called	==	2)	{
	28											return	1;
	29							}	else	{
	30											return	0;
	31							}
	32			}
	33
	34			char	*test_create()
	35			{
	36							map	=	Hashmap_create(NULL,	NULL);
	37							mu_assert(map	!=	NULL,	"Failed	to	create	map.");
	38
	39							return	NULL;
	40			}
	41
	42			char	*test_destroy()
	43			{
	44							Hashmap_destroy(map);
	45
	46							return	NULL;
	47			}
	48
	49			char	*test_get_set()
	50			{
	51							int	rc	=	Hashmap_set(map,	&test1,	&expect1);
	52							mu_assert(rc	==	0,	"Failed	to	set	&test1");
	53							bstring	result	=	Hashmap_get(map,	&test1);
	54							mu_assert(result	==	&expect1,	"Wrong	value	for	test1.");
	55
	56							rc	=	Hashmap_set(map,	&test2,	&expect2);
	57							mu_assert(rc	==	0,	"Failed	to	set	test2");
	58							result	=	Hashmap_get(map,	&test2);
	59							mu_assert(result	==	&expect2,	"Wrong	value	for	test2.");

	60
	61							rc	=	Hashmap_set(map,	&test3,	&expect3);
	62							mu_assert(rc	==	0,	"Failed	to	set	test3");
	63							result	=	Hashmap_get(map,	&test3);
	64							mu_assert(result	==	&expect3,	"Wrong	value	for	test3.");
	65
	66							return	NULL;
	67			}
	68
	69			char	*test_traverse()
	70			{
	71							int	rc	=	Hashmap_traverse(map,	traverse_good_cb);
	72							mu_assert(rc	==	0,	"Failed	to	traverse.");
	73							mu_assert(traverse_called	==	3,	"Wrong	count	traverse.");
	74
	75							traverse_called	=	0;
	76							rc	=	Hashmap_traverse(map,	traverse_fail_cb);
	77							mu_assert(rc	==	1,	"Failed	to	traverse.");
	78							mu_assert(traverse_called	==	2,	"Wrong	count	traverse	for
fail.");
	79
	80							return	NULL;
	81			}
	82
	83			char	*test_delete()
	84			{
	85							bstring	deleted	=	(bstring)	Hashmap_delete(map,	&test1);
	86							mu_assert(deleted	!=	NULL,	"Got	NULL	on	delete.");
	87							mu_assert(deleted	==	&expect1,	"Should	get	test1");
	88							bstring	result	=	Hashmap_get(map,	&test1);
	89							mu_assert(result	==	NULL,	"Should	delete.");
	90
	91							deleted	=	(bstring)	Hashmap_delete(map,	&test2);
	92							mu_assert(deleted	!=	NULL,	"Got	NULL	on	delete.");
	93							mu_assert(deleted	==	&expect2,	"Should	get	test2");
	94							result	=	Hashmap_get(map,	&test2);
	95							mu_assert(result	==	NULL,	"Should	delete.");
	96
	97							deleted	=	(bstring)	Hashmap_delete(map,	&test3);
	98							mu_assert(deleted	!=	NULL,	"Got	NULL	on	delete.");
	99							mu_assert(deleted	==	&expect3,	"Should	get	test3");
100							result	=	Hashmap_get(map,	&test3);
101							mu_assert(result	==	NULL,	"Should	delete.");
102
103							return	NULL;
104			}
105
106			char	*all_tests()
107			{
108							mu_suite_start();
109
110							mu_run_test(test_create);

111							mu_run_test(test_get_set);
112							mu_run_test(test_traverse);
113							mu_run_test(test_delete);
114							mu_run_test(test_destroy);
115
116							return	NULL;
117			}
118
119			RUN_TESTS(all_tests);

The	only	thing	to	learn	about	this	unit	test	is	that	at	the	top	I	use	a	feature	of
bstring	to	create	static	strings	to	work	within	the	tests.	I	use	the
tagbstring	and	bsStatic	to	create	them	on	lines	7–13.

How	to	Improve	It
This	is	a	very	simple	implementation	of	Hashmap,	as	are	most	of	the	other	data
structures	in	this	book.	My	goal	isn’t	to	give	you	insanely	great,	hyper-speed,
well-tuned	data	structures.	Usually	those	are	much	too	complicated	to	discuss
and	only	distract	you	from	the	real,	basic	data	structure	at	work.	My	goal	is	to
give	you	an	understandable	starting	point	to	then	improve	upon	or	better
understand	the	implementation.
In	this	case,	there	are	some	things	you	can	do	with	this	implementation:

•	You	can	use	a	sort	on	each	bucket	so	that	they’re	always	sorted.	This
increases	your	insert	time	but	decreases	your	find	time,	because	you	can
then	use	a	binary	search	to	find	each	node.	Right	now,	it’s	looping	through
all	of	the	nodes	in	a	bucket	just	to	find	one.
•	You	can	dynamically	size	the	number	of	buckets,	or	let	the	caller	specify
the	number	for	each	Hashmap	created.
•	You	can	use	a	better	default_hash.	There	are	tons	of	them.
•	This	(and	nearly	every	Hashmap)	is	vulnerable	to	someone	picking	keys
that	will	fill	only	one	bucket,	and	then	tricking	your	program	into
processing	them.	This	then	makes	your	program	run	slower	because	it
changes	from	processing	a	Hashmap	to	effectively	processing	a	single
DArray.	If	you	sort	the	nodes	in	the	bucket,	this	helps,	but	you	can	also
use	better	hashing	functions,	and	for	the	really	paranoid	programmer,	add	a
random	salt	so	that	keys	can’t	be	predicted.
•	You	could	have	it	delete	buckets	that	are	empty	of	nodes	to	save	space,	or
put	empty	buckets	into	a	cache	so	you	can	save	on	time	lost	creating	and
destroying	them.

•	Right	now,	it	just	adds	elements	even	if	they	already	exist.	Write	an
alternative	set	method	that	only	adds	an	element	if	it	isn’t	set	already.

As	usual,	you	should	go	through	each	function	and	make	it	bulletproof.	The
Hashmap	could	also	use	a	debug	setting	for	doing	an	invariant	check.

Extra	Credit
•	Research	the	Hashmap	implementation	in	your	favorite	programming
language	to	see	what	features	it	has.
•	Find	out	what	the	major	disadvantages	of	a	Hashmap	are	and	how	to
avoid	them.	For	example,	it	doesn’t	preserve	order	without	special
changes,	nor	does	it	work	when	you	need	to	find	things	based	on	parts	of
keys.
•	Write	a	unit	test	that	demonstrates	the	defect	of	filling	a	Hashmap	with
keys	that	land	in	the	same	bucket,	then	test	how	this	impacts	performance.
A	good	way	to	do	this	is	to	just	reduce	the	number	of	buckets	to	something
stupid,	like	five.

Exercise	38.	Hashmap	Algorithms

There	are	three	hash	functions	that	you’ll	implement	in	this	exercise:
FNV-1a	Named	after	the	creators	Glenn	Fowler,	Phong	Vo,	and	Landon	Curt
Noll,	this	hash	produces	good	numbers	and	is	reasonably	fast.

Adler-32	Named	after	Mark	Adler,	this	is	a	horrible	hash	algorithm,	but	it’s
been	around	a	long	time	and	it’s	good	for	studying.

DJB	Hash	This	hash	algorithm	is	attributed	to	Dan	J.	Bernstein	(DJB),	but
it’s	difficult	to	find	his	discussion	of	the	algorithm.	It’s	shown	to	be	fast,
but	possibly	not	great	numbers.

You’ve	already	seen	the	Jenkins	hash	as	the	default	hash	for	the	Hashmap	data
structure,	so	this	exercise	will	be	looking	at	these	three	new	hash	functions.	The
code	for	them	is	usually	small,	and	it’s	not	optimized	at	all.	As	usual,	I’m	going
for	understanding	and	not	blinding	speed.
The	header	file	is	very	simple,	so	I’ll	start	with	that:

hashmap_algos.h

Click	here	to	view	code	image

#ifndef	hashmap_algos_h

#define	hashmap_algos_h

#include	<stdint.h>

uint32_t	Hashmap_fnv1a_hash(void	*data);

uint32_t	Hashmap_adler32_hash(void	*data);

uint32_t	Hashmap_djb_hash(void	*data);

#endif

I’m	just	declaring	the	three	functions	I’ll	implement	in	the
hashmap_algos.c	file:

hashmap_algos.c

Click	here	to	view	code	image

		1			#include	<lcthw/hashmap_algos.h>

		2			#include	<lcthw/bstrlib.h>
		3
		4			//	settings	taken	from
		5			//	http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-
param

		6			const	uint32_t	FNV_PRIME	=	16777619;
		7			const	uint32_t	FNV_OFFSET_BASIS	=	2166136261;
		8
		9			uint32_t	Hashmap_fnv1a_hash(void	*data)
	10			{
	11							bstring	s	=	(bstring)	data;
	12							uint32_t	hash	=	FNV_OFFSET_BASIS;
	13							int	i	=	0;
	14
	15							for	(i	=	0;	i	<	blength(s);	i++)	{
	16											hash	^=	bchare(s,	i,	0);
	17											hash	*=	FNV_PRIME;
	18							}
	19
	20							return	hash;
	21			}
	22
	23			const	int	MOD_ADLER	=	65521;
	24
	25			uint32_t	Hashmap_adler32_hash(void	*data)
	26			{
	27							bstring	s	=	(bstring)	data;
	28							uint32_t	a	=	1,	b	=	0;
	29							int	i	=	0;
	30
	31							for	(i	=	0;	i	<	blength(s);	i++)	{
	32											a	=	(a	+	bchare(s,	i,	0))	%	MOD_ADLER;
	33											b	=	(b	+	a)	%	MOD_ADLER;
	34							}
	35
	36							return	(b	<<	16)	|	a;
	37			}
	38
	39			uint32_t	Hashmap_djb_hash(void	*data)
	40			{
	41							bstring	s	=	(bstring)	data;
	42							uint32_t	hash	=	5381;
	43							int	i	=	0;
	44
	45							for	(i	=	0;	i	<	blength(s);	i++)	{
	46											hash	=	((hash	<<	5)	+	hash)	+	bchare(s,	i,	0);	/*	hash
*	33	+	c	*/

	47							}
	48
	49							return	hash;
	50			}

This	file,	then,	has	the	three	hash	algorithms.	You	should	notice	that	I’m	just
using	a	bstring	for	the	key,	but	I’m	using	the	bchare	function	to	get	a
character	from	the	bstring,	but	returning	0	if	that	character	is	outside	the	string’s
length.
Each	of	these	algorithms	are	found	online,	so	go	search	for	them	and	read	about
them.	Again,	I	primarily	used	Wikipedia	and	then	followed	it	to	other	sources.
I	then	have	a	unit	test	that	tests	out	each	algorithm,	but	it	also	tests	whether	it
will	distribute	well	across	a	number	of	buckets:

hashmap_algos_tests.c

Click	here	to	view	code	image

		1			#include	<lcthw/bstrlib.h>
		2			#include	<lcthw/hashmap.h>
		3			#include	<lcthw/hashmap_algos.h>
		4			#include	<lcthw/darray.h>
		5			#include	"minunit.h"
		6
		7			struct	tagbstring	test1	=	bsStatic("test	data	1");
		8			struct	tagbstring	test2	=	bsStatic("test	data	2");
		9			struct	tagbstring	test3	=	bsStatic("xest	data	3");
	10
	11			char	*test_fnv1a()
	12			{
	13							uint32_t	hash	=	Hashmap_fnv1a_hash(&test1);
	14							mu_assert(hash	!=	0,	"Bad	hash.");
	15
	16							hash	=	Hashmap_fnv1a_hash(&test2);
	17							mu_assert(hash	!=	0,	"Bad	hash.");
	18
	19							hash	=	Hashmap_fnv1a_hash(&test3);
	20							mu_assert(hash	!=	0,	"Bad	hash.");
	21
	22							return	NULL;
	23			}
	24
	25			char	*test_adler32()
	26			{
	27							uint32_t	hash	=	Hashmap_adler32_hash(&test1);
	28							mu_assert(hash	!=	0,	"Bad	hash.");
	29
	30							hash	=	Hashmap_adler32_hash(&test2);
	31							mu_assert(hash	!=	0,	"Bad	hash.");
	32
	33							hash	=	Hashmap_adler32_hash(&test3);
	34							mu_assert(hash	!=	0,	"Bad	hash.");
	35

	36							return	NULL;
	37			}
	38
	39			char	*test_djb()
	40			{
	41							uint32_t	hash	=	Hashmap_djb_hash(&test1);
	42							mu_assert(hash	!=	0,	"Bad	hash.");
	43
	44							hash	=	Hashmap_djb_hash(&test2);
	45							mu_assert(hash	!=	0,	"Bad	hash.");
	46
	47							hash	=	Hashmap_djb_hash(&test3);
	48							mu_assert(hash	!=	0,	"Bad	hash.");
	49
	50							return	NULL;
	51			}
	52
	53			#define	BUCKETS	100
	54			#define	BUFFER_LEN	20
	55			#define	NUM_KEYS	BUCKETS	*	1000
	56			enum	{	ALGO_FNV1A,	ALGO_ADLER32,	ALGO_DJB	};
	57
	58			int	gen_keys(DArray	*	keys,	int	num_keys)
	59			{
	60							int	i	=	0;
	61							FILE	*urand	=	fopen("/dev/urandom",	"r");
	62							check(urand	!=	NULL,	"Failed	to	open	/dev/urandom");
	63
	64							struct	bStream	*stream	=	bsopen((bNread)	fread,	urand);
	65							check(stream	!=	NULL,	"Failed	to	open	/dev/urandom");
	66
	67							bstring	key	=	bfromcstr("");
	68							int	rc	=	0;
	69
	70							//	FNV1a	histogram
	71							for	(i	=	0;	i	<	num_keys;	i++)	{
	72											rc	=	bsread(key,	stream,	BUFFER_LEN);
	73											check(rc	>=	0,	"Failed	to	read	from	/dev/urandom.");
	74
	75											DArray_push(keys,	bstrcpy(key));
	76							}
	77
	78							bsclose(stream);
	79							fclose(urand);
	80							return	0;
	81
	82			error:
	83							return	-1;
	84			}
	85
	86			void	destroy_keys(DArray	*	keys)
	87			{

	88							int	i	=	0;
	89							for	(i	=	0;	i	<	NUM_KEYS;	i++)	{
	90											bdestroy(DArray_get(keys,	i));
	91							}
	92
	93							DArray_destroy(keys);
	94			}
	95
	96			void	fill_distribution(int	*stats,	DArray	*	keys,
	97											Hashmap_hash	hash_func)
	98			{
	99							int	i	=	0;
100							uint32_t	hash	=	0;
101
102							for	(i	=	0;	i	<	DArray_count(keys);	i++)	{
103											hash	=	hash_func(DArray_get(keys,	i));
104											stats[hash	%	BUCKETS]	+=	1;
105							}
106
107			}
108
109			char	*test_distribution()
110			{
111							int	i	=	0;
112							int	stats[3][BUCKETS]	=	{	{0}	};
113							DArray	*keys	=	DArray_create(0,	NUM_KEYS);
114
115							mu_assert(gen_keys(keys,	NUM_KEYS)	==	0,
116															"Failed	to	generate	random	keys.");
117
118							fill_distribution(stats[ALGO_FNV1A],	keys,
Hashmap_fnv1a_hash);
119							fill_distribution(stats[ALGO_ADLER32],	keys,
Hashmap_adler32_hash);
120							fill_distribution(stats[ALGO_DJB],	keys,	Hashmap_djb_hash);
121
122							fprintf(stderr,	"FNV\tA32\tDJB\n");
123
124							for	(i	=	0;	i	<	BUCKETS;	i++)	{
125											fprintf(stderr,	"%d\t%d\t%d\n",
126																			stats[ALGO_FNV1A][i],
127																			stats[ALGO_ADLER32][i],	stats[ALGO_DJB][i]);
128							}
129
130							destroy_keys(keys);
131
132							return	NULL;
133			}
134
135			char	*all_tests()
136			{
137							mu_suite_start();

138
139							mu_run_test(test_fnv1a);
140							mu_run_test(test_adler32);
141							mu_run_test(test_djb);
142							mu_run_test(test_distribution);
143
144							return	NULL;
145			}
146
147			RUN_TESTS(all_tests);

I	have	the	number	of	BUCKETS	in	this	code	set	fairly	high,	since	I	have	a	fast
enough	computer,	but	if	it	runs	slow,	just	lower	it	and	NUM_KEYS.	What	this	test
lets	me	do	is	run	the	test	and	then	look	at	the	distribution	of	keys	for	each	hash
function	using	a	bit	of	analysis	with	a	language	called	R.
I	do	this	by	crafting	a	big	list	of	keys	using	the	gen_keys	function.	These	keys
are	taken	out	of	the	/dev/urandom	device	and	are	random	byte	keys.	I	then
use	these	keys	to	have	the	fill_distribution	function	fill	up	the	stats
array	with	where	those	keys	would	hash	in	a	theoretical	set	of	buckets.	All	this
function	does	is	go	through	all	of	the	keys,	do	the	hash,	then	do	what	the
Hashmap	would	do	to	find	its	bucket.
Finally,	I’m	simply	printing	out	a	three-column	table	with	the	final	count	for
each	bucket,	showing	how	many	keys	managed	to	get	into	each	bucket
randomly.	I	can	then	look	at	these	numbers	to	see	if	the	hash	functions	are
distributing	keys	evenly.

What	You	Should	See
Teaching	you	R	is	outside	the	scope	of	this	book,	but	if	you	want	to	get	it	and	try
this,	it	can	be	found	at	www.r-project.org.
Here	is	an	abbreviated	shell	session	that	shows	me	running
tests/hashmap_algos_test	to	get	the	table	produced	by
test_distribution	(not	shown	here),	and	then	using	R	to	see	what	the
summary	statistics	are.

Exercise	38	Session

Click	here	to	view	code	image

$	tests/hashmap_algos_tests
#	copy-paste	the	table	it	prints	out
$	vim	hash.txt

http://www.r-project.org

$	R
>	hash	<-	read.table("hash.txt",	header=T)
>	summary(hash)
						FNV												A32														DJB
	Min.			:	945			Min.			:	908.0			Min.			:	927
	1st	Qu.:	980			1st	Qu.:	980.8			1st	Qu.:	979
	Median	:	998			Median	:1000.0			Median	:	998
	Mean			:1000			Mean			:1000.0			Mean			:1000
	3rd	Qu.:1016			3rd	Qu.:1019.2			3rd	Qu.:1021
	Max.			:1072			Max.			:1075.0			Max.			:1082
>

First,	I	just	run	the	test,	which	on	your	screen	will	print	the	table.	Then,	I	just
copy-paste	it	out	of	my	terminal	and	use	vim	hash.txt	to	save	the	data.	If
you	look	at	the	data,	it	has	the	header	FNV	A32	DJB	for	each	of	the	three
algorithms.
Secondly,	I	run	R	and	load	the	data	using	the	read.table	command.	This	is	a
smart	function	that	works	with	this	kind	of	tab-delimited	data,	and	I	only	have	to
tell	it	header=T	for	it	to	know	that	the	data	has	a	header.
Finally,	I	have	the	data	loaded	and	can	use	summary	to	print	out	its	summary
statistics	for	each	column.	Here	you	can	see	that	each	function	actually	does
alright	with	this	random	data.	Here’s	what	each	of	these	rows	means:

Min.	This	is	the	minimum	value	found	for	the	data	in	that	column.	FNV-la
seems	to	win	on	this	run	since	it	has	the	largest	number,	meaning	it	has	a
tighter	range	at	the	low	end.

1st	Qu.	This	is	the	point	where	the	first	quarter	of	the	data	ends.
Median	This	is	the	number	that’s	in	the	middle	if	you	sorted	them.	Median	is
most	useful	when	compared	to	mean.

Mean	Mean	is	the	average	most	people	think	of,	and	it’s	the	sum	divided	by
the	count	of	the	data.	If	you	look,	all	of	them	are	1,000,	which	is	great.	If
you	compare	this	to	the	median,	you	see	that	all	three	have	really	close
medians	to	the	mean.	What	this	means	is	the	data	isn’t	skewed	in	one
direction,	so	you	can	trust	the	mean.

3rd	Qu.	This	is	the	point	where	the	last	quarter	of	the	data	starts	and
represents	the	tail	end	of	the	numbers.

Max.	This	is	the	maximum	number	of	the	data,	and	presents	the	upper	bound
on	all	of	them.

Looking	at	this	data,	you	see	that	all	of	these	hashes	seem	to	do	well	on	random
keys,	and	the	means	match	the	NUM_KEYS	setting	that	I	made.	What	I’m

looking	for	is	this:	If	I	make	1,000	keys	per	bucket	(BUCKETS	×	1000),	then	on
average	each	bucket	should	have	1,000	keys	in	it.	If	the	hash	function	isn’t
working,	then	you’ll	see	these	summary	statistics	show	a	mean	that’s	not	1,000,
and	really	high	ranges	at	the	first	and	third	quarters.	A	good	hash	function	should
have	a	dead-on	1,000	mean,	and	as	tight	a	range	as	possible.
You	should	also	know	that	you’ll	get	different	numbers	from	mine,	and	even
between	different	runs	of	this	unit	test.

How	to	Break	It
I’m	finally	going	to	have	you	do	some	breaking	in	this	exercise.	I	want	you	to
write	the	worst	hash	function	you	can,	and	then	use	the	data	to	prove	that	it’s
really	bad.	You	can	use	R	to	do	the	statistics,	just	like	I	did,	but	maybe	you	have
another	tool	that	you	can	use	to	give	you	the	same	summary	statistics.
The	goal	is	to	make	a	hash	function	that	seems	normal	to	an	untrained	eye,	but
when	actually	run,	it	has	a	bad	mean	and	is	all	over	the	place.	That	means	you
can’t	just	have	it	return	1.	You	have	to	give	a	stream	of	numbers	that	seem
alright	but	aren’t,	and	they’re	loading	up	some	buckets	too	much.
Extra	points	if	you	can	make	a	minimal	change	to	one	of	the	four	hash
algorithms	that	I	gave	you	to	do	this.
The	purpose	of	this	exercise	is	to	imagine	that	some	friendly	coder	comes	to	you
and	offers	to	improve	your	hash	function,	but	actually	just	makes	a	nice	little
back	door	that	really	screws	up	your	Hashmap.
As	the	Royal	Society	says,	“Nullius	in	verba.”

Extra	Credit
•	Take	the	default_hash	out	of	the	hashmap.c,	make	it	one	of	the
algorithms	in	hashmap_algos.c,	and	then	make	all	of	the	tests	work
again.
•	Add	the	default_hash	to	the	hashmap_algos_tests.c	test	and
compare	its	statistics	to	the	other	hash	functions.
•	Find	a	few	more	hash	functions	and	add	them,	too.	You	can	never	have	too
many	hash	functions!

Exercise	39.	String	Algorithms

In	this	exercise,	I’m	going	to	show	you	a	supposedly	faster	string	search
algorithm,	called	binstr,	and	compare	it	to	the	one	that	exists	in	bstrlib.c.
The	documentation	for	binstr	says	that	it	uses	a	simple	“brute	force”	string
search	to	find	the	first	instance.	The	one	that	I’ll	implement	will	use	the	Boyer-
Moore-Horspool	(BMH)	algorithm,	which	is	supposed	to	be	faster	if	you	analyze
the	theoretical	time.	Assuming	my	implementation	isn’t	flawed,	you’ll	see	that
the	practical	time	for	BMH	is	much	worse	than	the	simple	brute	force	of
binstr.
The	point	of	this	exercise	isn’t	really	to	explain	the	algorithm,	because	it’s
simple	enough	for	you	to	read	the	“Boyer-Moore-Horspool	algorithm”	page	on
Wikipedia.	The	gist	of	this	algorithm	is	that	it	calculates	a	skip	characters	list	as
a	first	operation,	then	it	uses	this	list	to	quickly	scan	through	the	string.	It’s
supposed	to	be	faster	than	brute	force,	so	let’s	get	the	code	into	the	right	files	and
see.
First,	I	have	the	header:

string_algos.h

Click	here	to	view	code	image

#ifndef	string_algos_h

#define	string_algos_h

#include	<lcthw/bstrlib.h>

#include	<lcthw/darray.h>

typedef	struct	StringScanner	{
				bstring	in;
				const	unsigned	char	*haystack;
				ssize_t	hlen;
				const	unsigned	char	*needle;
				ssize_t	nlen;
				size_t	skip_chars[UCHAR_MAX	+	1];
}	StringScanner;

int	String_find(bstring	in,	bstring	what);

StringScanner	*StringScanner_create(bstring	in);

int	StringScanner_scan(StringScanner	*	scan,	bstring	tofind);

void	StringScanner_destroy(StringScanner	*	scan);

#endif

In	order	to	see	the	effects	of	this	skip	characters	list,	I’m	going	to	make	two
versions	of	the	BMH	algorithm:

String_find	This	simply	finds	the	first	instance	of	one	string	in	another,
doing	the	entire	algorithm	in	one	shot.

StringScanner_scan	This	uses	a	StringScanner	state	structure	to
separate	the	skip	list	build	from	the	actual	find.	This	will	let	me	see	what
impact	that	has	on	performance.	This	model	also	gives	me	the	advantage
of	incrementally	scanning	for	one	string	in	another	and	quickly	finding	all
instances.

Once	you	have	that,	here’s	the	implementation:

string_algos.c

Click	here	to	view	code	image

		1			#include	<lcthw/string_algos.h>
		2			#include	<limits.h>
		3
		4			static	inline	void	String_setup_skip_chars(size_t	*	skip_chars,
		5											const	unsigned	char	*needle,
		6											ssize_t	nlen)
		7			{
		8							size_t	i	=	0;
		9							size_t	last	=	nlen	-	1;
	10
	11							for	(i	=	0;	i	<	UCHAR_MAX	+	1;	i++)	{
	12											skip_chars[i]	=	nlen;
	13							}
	14
	15							for	(i	=	0;	i	<	last;	i++)	{
	16											skip_chars[needle[i]]	=	last	-	i;
	17							}
	18			}
	19
	20			static	inline	const	unsigned	char	*String_base_search(const
unsigned

	21											char	*haystack,
	22											ssize_t	hlen,
	23											const	unsigned
	24											char	*needle,
	25											ssize_t	nlen,
	26											size_t	*

	27											skip_chars)
	28			{
	29							size_t	i	=	0;
	30							size_t	last	=	nlen	-	1;
	31
	32							assert(haystack	!=	NULL	&&	"Given	bad	haystack	to
search.");
	33							assert(needle	!=	NULL	&&	"Given	bad	needle	to	search
for.");
	34
	35							check(nlen	>	0,	"nlen	can't	be	<=	0");
	36							check(hlen	>	0,	"hlen	can't	be	<=	0");
	37
	38							while	(hlen	>=	nlen)	{
	39											for	(i	=	last;	haystack[i]	==	needle[i];	i--)	{
	40															if	(i	==	0)	{
	41																			return	haystack;
	42															}
	43											}
	44
	45											hlen	-=	skip_chars[haystack[last]];
	46											haystack	+=	skip_chars[haystack[last]];
	47							}
	48
	49			error:																			//	fallthrough
	50							return	NULL;
	51			}
	52
	53			int	String_find(bstring	in,	bstring	what)
	54			{
	55							const	unsigned	char	*found	=	NULL;
	56
	57							const	unsigned	char	*haystack	=	(const	unsigned	char
*)bdata(in);
	58							ssize_t	hlen	=	blength(in);
	59							const	unsigned	char	*needle	=	(const	unsigned	char
*)bdata(what);
	60							ssize_t	nlen	=	blength(what);
	61							size_t	skip_chars[UCHAR_MAX	+	1]	=	{	0	};
	62
	63							String_setup_skip_chars(skip_chars,	needle,	nlen);
	64
	65							found	=	String_base_search(haystack,	hlen,
	66																				needle,	nlen,	skip_chars);
	67
	68							return	found	!=	NULL	?	found	-	haystack	:	-1;
	69			}
	70
	71			StringScanner	*StringScanner_create(bstring	in)
	72			{
	73							StringScanner	*scan	=	calloc(1,	sizeof(StringScanner));
	74							check_mem(scan);

	75
	76							scan->in	=	in;
	77							scan->haystack	=	(const	unsigned	char	*)bdata(in);
	78							scan->hlen	=	blength(in);
	79
	80							assert(scan	!=	NULL	&&	"fuck");
	81							return	scan;
	82
	83			error:
	84							free(scan);
	85							return	NULL;
	86			}
	87
	88			static	inline	void	StringScanner_set_needle(StringScanner	*
scan,
	89											bstring	tofind)
	90			{
	91							scan->needle	=	(const	unsigned	char	*)bdata(tofind);
	92							scan->nlen	=	blength(tofind);
	93
	94							String_setup_skip_chars(scan->skip_chars,	scan->needle,
scan->nlen);
	95			}
	96
	97			static	inline	void	StringScanner_reset(StringScanner	*	scan)
	98			{
	99							scan->haystack	=	(const	unsigned	char	*)bdata(scan->in);
100							scan->hlen	=	blength(scan->in);
101			}
102
103			int	StringScanner_scan(StringScanner	*	scan,	bstring	tofind)
104			{
105							const	unsigned	char	*found	=	NULL;
106							ssize_t	found_at	=	0;
107
108							if	(scan->hlen	<=	0)	{
109											StringScanner_reset(scan);
110											return	-1;
111							}
112
113							if	((const	unsigned	char	*)bdata(tofind)	!=	scan->needle)	{
114											StringScanner_set_needle(scan,	tofind);
115							}
116
117							found	=	String_base_search(scan->haystack,	scan->hlen,
118															scan->needle,	scan->nlen,
119															scan->skip_chars);
120
121							if	(found)	{
122											found_at	=	found	-	(const	unsigned	char	*)bdata(scan-
>in);
123											scan->haystack	=	found	+	scan->nlen;

124											scan->hlen	-=	found_at	-	scan->nlen;
125							}	else	{
126											//	done,	reset	the	setup
127											StringScanner_reset(scan);
128											found_at	=	-1;
129							}
130
131							return	found_at;
132			}
133
134			void	StringScanner_destroy(StringScanner	*	scan)
135			{
136							if	(scan)	{
137											free(scan);
138							}
139			}

The	entire	algorithm	is	in	two	static	inline	functions	called
String_setup_skip_chars	and	String_base_search.	These	are
then	used	in	the	other	functions	to	actually	implement	the	searching	styles	I
want.	Study	these	first	two	functions	and	compare	them	to	the	Wikipedia
description	so	that	you	know	what’s	going	on.
The	String_find	then	just	uses	these	two	functions	to	do	a	find	and	return
the	position	found.	It’s	very	simple,	and	I’ll	use	it	to	see	how	this	build
skip_chars	phase	impacts	real,	practical	performance.	Keep	in	mind	that	you
could	maybe	make	this	faster,	but	I’m	teaching	you	how	to	confirm	theoretical
speed	after	you	implement	an	algorithm.
The	StringScanner_scan	function	then	follows	the	common	pattern	I	use
of	create,	scan,	and	destroy,	and	is	used	to	incrementally	scan	a	string	for	another
string.	You’ll	see	how	this	is	used	when	I	show	you	the	unit	test	that	will	test	this
out.
Finally,	I	have	the	unit	test	that	first	confirms	that	this	is	all	working,	then	it	runs
simple	performance	tests	for	all	three,	finding	algorithms	in	a	commented	out
section.

string_algos_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<lcthw/string_algos.h>
		3			#include	<lcthw/bstrlib.h>
		4			#include	<time.h>
		5

		6			struct	tagbstring	IN_STR	=	bsStatic(
		7											"I	have	ALPHA	beta	ALPHA	and	oranges	ALPHA");
		8			struct	tagbstring	ALPHA	=	bsStatic("ALPHA");
		9			const	int	TEST_TIME	=	1;
	10
	11			char	*test_find_and_scan()
	12			{
	13							StringScanner	*scan	=	StringScanner_create(&IN_STR);
	14							mu_assert(scan	!=	NULL,	"Failed	to	make	the	scanner.");
	15
	16							int	find_i	=	String_find(&IN_STR,	&ALPHA);
	17							mu_assert(find_i	>	0,	"Failed	to	find	'ALPHA'	in	test
string.");
	18
	19							int	scan_i	=	StringScanner_scan(scan,	&ALPHA);
	20							mu_assert(scan_i	>	0,	"Failed	to	find	'ALPHA'	with	scan.");
	21							mu_assert(scan_i	==	find_i,	"find	and	scan	don't	match");
	22
	23							scan_i	=	StringScanner_scan(scan,	&ALPHA);
	24							mu_assert(scan_i	>	find_i,
	25															"should	find	another	ALPHA	after	the	first");
	26
	27							scan_i	=	StringScanner_scan(scan,	&ALPHA);
	28							mu_assert(scan_i	>	find_i,
	29															"should	find	another	ALPHA	after	the	first");
	30
	31							mu_assert(StringScanner_scan(scan,	&ALPHA)	==	-1,
	32															"shouldn't	find	it");
	33
	34							StringScanner_destroy(scan);
	35
	36							return	NULL;
	37			}
	38
	39			char	*test_binstr_performance()
	40			{
	41							int	i	=	0;
	42							int	found_at	=	0;
	43							unsigned	long	find_count	=	0;
	44							time_t	elapsed	=	0;
	45							time_t	start	=	time(NULL);
	46
	47							do	{
	48											for	(i	=	0;	i	<	1000;	i++)	{
	49															found_at	=	binstr(&IN_STR,	0,	&ALPHA);
	50															mu_assert(found_at	!=	BSTR_ERR,	"Failed	to	find!");
	51															find_count++;
	52											}
	53
	54											elapsed	=	time(NULL)	-	start;
	55							}	while	(elapsed	<=	TEST_TIME);
	56

	57							debug("BINSTR	COUNT:	%lu,	END	TIME:	%d,	OPS:	%f",
	58															find_count,	(int)elapsed,	(double)find_count	/
elapsed);
	59							return	NULL;
	60			}
	61
	62			char	*test_find_performance()
	63			{
	64							int	i	=	0;
	65							int	found_at	=	0;
	66							unsigned	long	find_count	=	0;
	67							time_t	elapsed	=	0;
	68							time_t	start	=	time(NULL);
	69
	70							do	{
	71											for	(i	=	0;	i	<	1000;	i++)	{
	72															found_at	=	String_find(&IN_STR,	&ALPHA);
	73															find_count++;
	74											}
	75
	76											elapsed	=	time(NULL)	-	start;
	77							}	while	(elapsed	<=	TEST_TIME);
	78
	79							debug("FIND	COUNT:	%lu,	END	TIME:	%d,	OPS:	%f",
	80															find_count,	(int)elapsed,	(double)find_count	/
elapsed);
	81
	82							return	NULL;
	83			}
	84
	85			char	*test_scan_performance()
	86			{
	87							int	i	=	0;
	88							int	found_at	=	0;
	89							unsigned	long	find_count	=	0;
	90							time_t	elapsed	=	0;
	91							StringScanner	*scan	=	StringScanner_create(&IN_STR);
	92
	93							time_t	start	=	time(NULL);
	94
	95							do	{
	96											for	(i	=	0;	i	<	1000;	i++)	{
	97															found_at	=	0;
	98
	99															do	{
100																			found_at	=	StringScanner_scan(scan,	&ALPHA);
101																			find_count++;
102															}	while	(found_at	!=	-1);
103											}
104
105											elapsed	=	time(NULL)	-	start;
106							}	while	(elapsed	<=	TEST_TIME);

107
108							debug("SCAN	COUNT:	%lu,	END	TIME:	%d,	OPS:	%f",
109															find_count,	(int)elapsed,	(double)find_count	/
elapsed);
110
111							StringScanner_destroy(scan);
112
113							return	NULL;
114			}
115
116			char	*all_tests()
117			{
118							mu_suite_start();
119
120							mu_run_test(test_find_and_scan);
121
122							//	this	is	an	idiom	for	commenting	out	sections	of	code
123			#if	0
124							mu_run_test(test_scan_performance);
125							mu_run_test(test_find_performance);
126							mu_run_test(test_binstr_performance);
127			#endif
128
129							return	NULL;
130			}
131
132			RUN_TESTS(all_tests);

I	have	it	written	here	with	#if	0,	which	is	a	way	to	use	the	CPP	to	comment
out	a	section	of	code.	Type	it	in	like	this,	and	then	remove	it	and	the	#endif	so
that	you	can	see	these	performance	tests	run.	As	you	continue	with	the	book,
simply	comment	these	out	so	that	the	test	doesn’t	waste	development	time.
There’s	nothing	amazing	in	this	unit	test;	it	just	runs	each	of	the	different
functions	in	loops	that	last	long	enough	to	get	a	few	seconds	of	sampling.	The
first	test	(test_find_and_scan)	just	confirms	that	what	I’ve	written	works,
because	there’s	no	point	in	testing	the	speed	of	something	that	doesn’t	work.
Then,	the	next	three	functions	run	a	large	number	of	searches,	using	each	of	the
three	functions.
The	trick	to	notice	is	that	I	grab	the	starting	time	in	start,	and	then	I	loop	until
at	least	TEST_TIME	seconds	have	passed.	This	makes	sure	that	I	get	enough
samples	to	work	with	while	comparing	the	three.	I’ll	then	run	this	test	with
different	TEST_TIME	settings	and	analyze	the	results.

What	You	Should	See
When	I	run	this	test	on	my	laptop,	I	get	numbers	that	look	like	this:

Exercise	39.1	Session

Click	here	to	view	code	image

$./tests/string_algos_tests
DEBUG	tests/string_algos_tests.c:124:	-----	RUNNING:

				./tests/string_algos_tests

RUNNING:	./tests/string_algos_tests

DEBUG	tests/string_algos_tests.c:116:

-----	test_find_and_scan

DEBUG	tests/string_algos_tests.c:117:

-----	test_scan_performance

DEBUG	tests/string_algos_tests.c:105:	SCAN	COUNT:\

										110272000,	END	TIME:	2,	OPS:	55136000.000000

DEBUG	tests/string_algos_tests.c:118:

-----	test_find_performance

DEBUG	tests/string_algos_tests.c:76:	FIND	COUNT:\

										12710000,	END	TIME:	2,	OPS:	6355000.000000

DEBUG	tests/string_algos_tests.c:119:

-----	test_binstr_performance

DEBUG	tests/string_algos_tests.c:54:	BINSTR	COUNT:\

										72736000,	END	TIME:	2,	OPS:	36368000.000000

ALL	TESTS	PASSED

Tests	run:	4

$

I	look	at	this	and	I	want	to	do	more	than	2	seconds	for	each	run.	I	want	to	run
this	many	times,	and	then	use	R	to	check	it	out	like	I	did	before.	Here’s	what	I
get	for	ten	samples	for	about	10	seconds	each:

scan	find	binstr
71195200	6353700	37110200
75098000	6358400	37420800
74910000	6351300	37263600
74859600	6586100	37133200
73345600	6365200	37549700
74754400	6358000	37162400
75343600	6630400	37075000
73804800	6439900	36858700
74995200	6384300	36811700
74781200	6449500	37383000

The	way	I	got	this	is	using	a	little	bit	of	shell	help,	and	then	editing	the	output:

Exercise	39.2	Session

Click	here	to	view	code	image

$	for	i	in	1	2	3	4	5	6	7	8	9	10
>	do	echo	"RUN	---	$i"	>>	times.log
>	./tests/string_algos_tests	2>&1	|	grep	COUNT	>>	times.log
>	done
$	less	times.log
$	vim	times.log

Right	away,	you	can	see	that	the	scanning	system	beats	the	pants	off	both	of	the
others,	but	I’ll	open	this	in	R	and	confirm	the	results:

Exercise	39.3	Session

Click	here	to	view	code	image

>	times	<-	read.table("times.log",	header=T)
>	summary(times)
						scan															find													binstr
	Min.			:71195200			Min.			:6351300			Min.			:36811700
	1st	Qu.:74042200			1st	Qu.:6358100			1st	Qu.:37083800
	Median	:74820400			Median	:6374750			Median	:37147800
	Mean			:74308760			Mean			:6427680			Mean			:37176830
	3rd	Qu.:74973900			3rd	Qu.:6447100			3rd	Qu.:37353150
	Max.			:75343600			Max.			:6630400			Max.			:37549700
>

To	understand	why	I’m	getting	the	summary	statistics,	I	have	to	explain	some
statistics	for	you.	What	I’m	looking	for	in	these	numbers	is	simply	this:	“Are
these	three	functions	(scan,	find,	bsinter)	actually	different?”	I	know	that
each	time	I	run	my	tester	function,	I	get	slightly	different	numbers,	and	those
numbers	can	cover	a	certain	range.	You	see	here	that	the	first	and	third	quarters
do	that	for	each	sample.
What	I	look	at	first	is	the	mean,	and	I	want	to	see	if	each	sample’s	mean	is
different	from	the	others.	I	can	see	that,	and	clearly	the	scan	beats	binstr,
which	also	beats	find.	However,	I	have	a	problem.	If	I	use	just	the	mean,
there’s	a	chance	that	the	ranges	of	each	sample	might	overlap.
What	if	I	have	means	that	are	different,	but	the	first	and	third	quarters	overlap?
In	that	case,	I	could	say	that	if	I	ran	the	samples	again	there’s	a	chance	that	the
means	might	not	be	different.	The	more	overlap	I	have	in	the	ranges,	the	higher
probability	that	my	two	samples	(and	my	two	functions)	are	not	actually
different.	Any	difference	that	I’m	seeing	in	the	two	(in	this	case	three)	is	just
random	chance.
There	are	many	tools	that	you	can	use	to	solve	this	problem,	but	in	our	case,	I
can	just	look	at	the	first	and	third	quarters	and	the	mean	for	all	three	samples.	If

the	means	are	different,	and	the	quarters	are	way	off	with	no	possibility	of
overlapping,	then	it’s	alright	to	say	that	they	are	different.
In	my	three	samples,	I	can	say	that	scan,	find,	and	binstr	are	different,
don’t	overlap	in	range,	and	I	can	trust	the	sample	(for	the	most	part).

Analyzing	the	Results
Looking	at	the	results,	I	can	see	that	String_find	is	much	slower	than	the
other	two.	In	fact,	it’s	so	slow	that	I’d	think	there’s	something	wrong	with	how	I
implemented	it.	However,	when	I	compare	it	to	StringScanner_scan,	I	can
see	that	it’s	most	likely	the	part	that	builds	the	skip	list	that’s	costing	the	time.
Not	only	is	find	slower,	it’s	also	doing	less	than	scan	because	it’s	just	finding
the	first	string	while	scan	finds	all	of	them.
I	can	also	see	that	scan	beats	binstr,	as	well,	and	by	quite	a	large	margin.
Again,	not	only	does	scan	do	more	than	both	of	these,	but	it’s	also	much	faster.
There	are	a	few	caveats	with	this	analysis:

•	I	may	have	messed	up	this	implementation	or	the	test.	At	this	point	I
would	go	research	all	of	the	possible	ways	to	do	a	BMH	algorithm	and	try
to	improve	it.	I	would	also	confirm	that	I’m	doing	the	test	right.
•	If	you	alter	the	time	the	test	runs,	you’ll	get	different	results.	There	is	a
warm-up	period	that	I’m	not	investigating.
•	The	test_scan_performance	unit	test	isn’t	quite	the	same	as	the
others,	but	it’s	doing	more	than	the	other	tests,	so	it’s	probably	alright.
•	I’m	only	doing	the	test	by	searching	for	one	string	in	another.	I	could
randomize	the	strings	to	find	their	position	and	length	as	a	confounding
factor.
•	Maybe	binstr	is	implemented	better	than	simple	brute	force.
•	I	could	be	running	these	in	an	unfortunate	order.	Maybe	randomizing
which	test	runs	first	will	give	better	results.

One	thing	to	gather	from	this	is	that	you	need	to	confirm	real	performance	even
if	you	implement	an	algorithm	correctly.	In	this	case,	the	claim	is	that	the	BMH
algorithm	should	have	beaten	the	binstr	algorithm,	but	a	simple	test	proved	it
didn’t.	Had	I	not	done	this,	I	would	have	been	using	an	inferior	algorithm
implementation	without	knowing	it.	With	these	metrics,	I	can	start	to	tune	my
implementation,	or	simply	scrap	it	and	find	another	one.

Extra	Credit
•	See	if	you	can	make	the	Scan_find	faster.	Why	is	my	implementation
here	slow?
•	Try	some	different	scan	times	and	see	if	you	get	different	numbers.	What
impact	does	the	length	of	time	that	you	run	the	test	have	on	the	scan
times?	What	can	you	say	about	that	result?
•	Alter	the	unit	test	so	that	it	runs	each	function	for	a	short	burst	in	the
beginning	to	clear	out	any	warm-up	period,	and	then	start	the	timing
portion.	Does	that	change	the	dependence	on	the	length	of	time	the	test
runs?	Does	it	change	how	many	operations	per	second	are	possible?
•	Make	the	unit	test	randomize	the	strings	to	find	and	then	measure	the
performance	you	get.	One	way	to	do	this	is	to	use	the	bsplit	function
from	bstrlib.h	to	split	the	IN_STR	on	spaces.	Then,	you	can	use	the
bstrList	struct	that	you	get	to	access	each	string	it	returns.	This	will
also	teach	you	how	to	use	bstrList	operations	for	string	processing.
•	Try	some	runs	with	the	tests	in	different	orders	to	see	if	you	get	different
results.

Exercise	40.	Binary	Search	Trees

The	binary	tree	is	the	simplest	tree-based	data	structure,	and	even	though	it’s
been	replaced	by	hash	maps	in	many	languages,	it’s	still	useful	for	many
applications.	Variants	on	the	binary	tree	exist	for	very	useful	things	like	database
indexes,	search	algorithm	structures,	and	even	graphics.
I’m	calling	my	binary	tree	a	BSTree	for	binary	search	tree,	and	the	best	way	to
describe	it	is	that	it’s	another	way	to	do	a	Hashmap	style	key/value	store.	The
difference	is	that	instead	of	hashing	the	key	to	find	a	location,	the	BSTree
compares	the	key	to	nodes	in	a	tree,	and	then	walks	through	the	tree	to	find	the
best	place	to	store	it,	based	on	how	it	compares	to	other	nodes.
Before	I	really	explain	how	this	works,	let	me	show	you	the	bstree.h	header
file	so	that	you	can	see	the	data	structures,	and	then	I	can	use	that	to	explain	how
it’s	built.

bstree.h

Click	here	to	view	code	image

#ifndef	_lcthw_BSTree_h

#define	_lcthw_BSTree_h

typedef	int	(*BSTree_compare)	(void	*a,	void	*b);

typedef	struct	BSTreeNode	{
				void	*key;
				void	*data;

				struct	BSTreeNode	*left;
				struct	BSTreeNode	*right;
				struct	BSTreeNode	*parent;
}	BSTreeNode;

typedef	struct	BSTree	{
				int	count;
				BSTree_compare	compare;
				BSTreeNode	*root;
}	BSTree;

typedef	int	(*BSTree_traverse_cb)	(BSTreeNode	*	node);

BSTree	*BSTree_create(BSTree_compare	compare);
void	BSTree_destroy(BSTree	*	map);

int	BSTree_set(BSTree	*	map,	void	*key,	void	*data);
void	*BSTree_get(BSTree	*	map,	void	*key);

int	BSTree_traverse(BSTree	*	map,	BSTree_traverse_cb	traverse_cb);

void	*BSTree_delete(BSTree	*	map,	void	*key);

#endif

This	follows	the	same	pattern	that	I’ve	been	using	this	whole	time	where	I	have
a	base	container	named	BSTree,	which	has	nodes	named	BSTreeNode	that
make	up	the	actual	contents.	Bored	yet?	Good,	there’s	no	reason	to	be	clever
with	this	kind	of	structure.
The	important	thing	is	how	the	BSTreeNode	is	configured,	and	how	it	gets
used	to	do	each	operation:	set,	get,	and	delete.	I’ll	cover	get	first	since
it’s	the	easiest	operation,	and	I’ll	pretend	I’m	doing	it	manually	against	the	data
structure:

•	I	take	the	key	you’re	looking	for	and	I	start	at	the	root.	First	thing	I	do	is
compare	your	key	with	that	node’s	key.
•	If	your	key	is	less	than	the	node.key,	then	I	traverse	down	the	tree	using
the	left	pointer.
•	If	your	key	is	greater	than	the	node.key,	then	I	go	down	with	right.
•	I	repeat	steps	2	and	3	until	I	either	find	a	matching	node.key	or	get	to	a
node	that	has	no	left	and	right.	In	the	first	case,	I	return	the	node.data.
In	the	second,	I	return	NULL.

That’s	all	there	is	to	get,	so	now	on	to	set.	It’s	nearly	the	same	thing,	except
you’re	looking	for	where	to	put	a	new	node:

•	If	there	is	no	BSTree.root,	then	I	just	make	it	and	we’re	done.	That’s
the	first	node.
•	After	that,	I	compare	your	key	to	node.key,	starting	at	the	root.
•	If	your	key	is	less	than	or	equal	to	the	node.key,	then	I	want	to	go	left.
If	your	key	is	greater	than	and	not	equal	to	the	node.key,	then	I	want	to
go	right.
•	I	keep	repeating	step	3	until	I	reach	a	node	where	left	or	right	doesn’t	exist,
but	that’s	the	direction	I	need	to	go.
•	Once	there,	I	set	that	direction	(left	or	right)	to	a	new	node	for	the	key	and
data	I	want,	and	then	set	this	new	node’s	parent	to	the	previous	node	I

came	from.	I’ll	use	the	parent	node	when	I	do	delete.
This	also	makes	sense	given	how	get	works.	If	finding	a	node	involves	going
left	or	right	depending	on	how	the	key	compares,	then	setting	a	node	involves
the	same	thing	until	I	can	set	the	left	or	right	for	a	new	node.
Take	some	time	to	draw	out	a	few	trees	on	paper	and	go	through	setting	and
getting	nodes	so	you	understand	how	this	works.	After	that,	you’re	ready	to	look
at	the	implementation,	and	I	can	explain	delete.	Deleting	in	trees	is	a	major
pain,	and	so	it’s	best	explained	by	doing	a	line-by-line	code	breakdown.

bstree.c

Click	here	to	view	code	image

		1			#include	<lcthw/dbg.h>
		2			#include	<lcthw/bstree.h>
		3			#include	<stdlib.h>
		4			#include	<lcthw/bstrlib.h>
		5
		6			static	int	default_compare(void	*a,	void	*b)
		7			{
		8							return	bstrcmp((bstring)	a,	(bstring)	b);
		9			}
	10
	11			BSTree	*BSTree_create(BSTree_compare	compare)
	12			{
	13							BSTree	*map	=	calloc(1,	sizeof(BSTree));
	14							check_mem(map);
	15
	16							map->compare	=	compare	==	NULL	?	default_compare	:	compare;
	17
	18							return	map;
	19
	20			error:
	21							if	(map)	{
	22											BSTree_destroy(map);
	23							}
	24							return	NULL;
	25			}
	26
	27			static	int	BSTree_destroy_cb(BSTreeNode	*	node)
	28			{
	29							free(node);
	30							return	0;
	31			}
	32
	33			void	BSTree_destroy(BSTree	*	map)
	34			{

	35							if	(map)	{
	36											BSTree_traverse(map,	BSTree_destroy_cb);
	37											free(map);
	38							}
	39			}
	40
	41			static	inline	BSTreeNode	*BSTreeNode_create(BSTreeNode	*
parent,
	42											void	*key,	void	*data)
	43			{
	44							BSTreeNode	*node	=	calloc(1,	sizeof(BSTreeNode));
	45							check_mem(node);
	46
	47							node->key	=	key;
	48							node->data	=	data;
	49							node->parent	=	parent;
	50							return	node;
	51
	52			error:
	53							return	NULL;
	54			}
	55
	56			static	inline	void	BSTree_setnode(BSTree	*	map,	BSTreeNode	*
node,
	57											void	*key,	void	*data)
	58			{
	59							int	cmp	=	map->compare(node->key,	key);
	60
	61							if	(cmp	<=	0)	{
	62											if	(node->left)	{
	63															BSTree_setnode(map,	node->left,	key,	data);
	64											}	else	{
	65															node->left	=	BSTreeNode_create(node,	key,	data);
	66											}
	67							}	else	{
	68											if	(node->right)	{
	69															BSTree_setnode(map,	node->right,	key,	data);
	70											}	else	{
	71															node->right	=	BSTreeNode_create(node,	key,	data);
	72											}
	73							}
	74			}
	75
	76			int	BSTree_set(BSTree	*	map,	void	*key,	void	*data)
	77			{
	78							if	(map->root	==	NULL)	{
	79										//	first	so	just	make	it	and	get	out
	80										map->root	=	BSTreeNode_create(NULL,	key,	data);
	81										check_mem(map->root);
	82						}	else	{
	83										BSTree_setnode(map,	map->root,	key,	data);
	84						}

	85
	86						return	0;
	87		error:
	88						return	-1;
	89		}
	90
	91		static	inline	BSTreeNode	*BSTree_getnode(BSTree	*	map,
	92										BSTreeNode	*	node,	void	*key)
	93		{
	94						int	cmp	=	map->compare(node->key,	key);
	95
	96						if	(cmp	==	0)	{
	97										return	node;
	98						}	else	if	(cmp	<	0)	{
	99										if	(node->left)	{
100														return	BSTree_getnode(map,	node->left,	key);
101										}	else	{
102														return	NULL;
103										}
104						}	else	{
105										if	(node->right)	{
106														return	BSTree_getnode(map,	node->right,	key);
107										}	else	{
108														return	NULL;
109										}
110						}
111		}
112
113		void	*BSTree_get(BSTree	*	map,	void	*key)
114		{
115						if	(map->root	==	NULL)	{
116										return	NULL;
117						}	else	{
118										BSTreeNode	*node	=	BSTree_getnode(map,	map->root,	key);
119										return	node	==	NULL	?	NULL	:	node->data;
120						}
121		}
122
123		static	inline	int	BSTree_traverse_nodes(BSTreeNode	*	node,
124										BSTree_traverse_cb	traverse_cb)
125		{
126						int	rc	=	0;
127
128						if	(node->left)	{
129										rc	=	BSTree_traverse_nodes(node->left,	traverse_cb);
130										if	(rc	!=	0)
131														return	rc;
132						}
133
134						if	(node->right)	{
135										rc	=	BSTree_traverse_nodes(node->right,	traverse_cb);
136										if	(rc	!=	0)

137														return	rc;
138						}
139
140						return	traverse_cb(node);
141		}
142
143		int	BSTree_traverse(BSTree	*	map,	BSTree_traverse_cb
traverse_cb)
144		{
145						if	(map->root)	{
146										return	BSTree_traverse_nodes(map->root,	traverse_cb);
147						}
148
149						return	0;
150		}
151
152		static	inline	BSTreeNode	*BSTree_find_min(BSTreeNode	*	node)
153		{
154						while	(node->left)	{
155										node	=	node->left;
156						}
157
158						return	node;
159		}
160
161		static	inline	void	BSTree_replace_node_in_parent(BSTree	*	map,
162										BSTreeNode	*	node,
163										BSTreeNode	*	new_value)
164		{
165						if	(node->parent)	{
166										if	(node	==	node->parent->left)	{
167														node->parent->left	=	new_value;
168										}	else	{
169														node->parent->right	=	new_value;
170										}
171						}	else	{
172										//	this	is	the	root	so	gotta	change	it
173										map->root	=	new_value;
174						}
175
176						if	(new_value)	{
177										new_value->parent	=	node->parent;
178						}
179		}
180
181		static	inline	void	BSTree_swap(BSTreeNode	*	a,	BSTreeNode	*	b)
182		{
183						void	*temp	=	NULL;
184						temp	=	b->key;
185						b->key	=	a->key;
186						a->key	=	temp;
187						temp	=	b->data;

188						b->data	=	a->data;
189						a->data	=	temp;
190		}
191
192		static	inline	BSTreeNode	*BSTree_node_delete(BSTree	*	map,
193										BSTreeNode	*	node,
194										void	*key)
195		{
196						int	cmp	=	map->compare(node->key,	key);
197
198						if	(cmp	<	0)	{
199										if	(node->left)	{
200														return	BSTree_node_delete(map,	node->left,	key);
201										}	else	{
202														//	not	found
203														return	NULL;
204										}
205						}	else	if	(cmp	>	0)	{
206										if	(node->right)	{
207														return	BSTree_node_delete(map,	node->right,	key);
208										}	else	{
209														//	not	found
210														return	NULL;
211										}
212						}	else	{
213										if	(node->left	&&	node->right)	{
214														//	swap	this	node	for	the	smallest	node	that	is
bigger	than	us

215														BSTreeNode	*successor	=	BSTree_find_min(node-
>right);
216														BSTree_swap(successor,	node);
217
218														//	this	leaves	the	old	successor	with	possibly	a
right	child

219														//	so	replace	it	with	that	right	child
220														BSTree_replace_node_in_parent(map,	successor,
221																						successor->right);
222
223														//	finally	it's	swapped,	so	return	successor	instead
of	node

224														return	successor;
225										}	else	if	(node->left)	{
226														BSTree_replace_node_in_parent(map,	node,	node-
>left);
227										}	else	if	(node->right)	{
228														BSTree_replace_node_in_parent(map,	node,	node-
>right);
229										}	else	{
230														BSTree_replace_node_in_parent(map,	node,	NULL);
231										}
232
233										return	node;

234						}
235		}
236
237		void	*BSTree_delete(BSTree	*	map,	void	*key)
238		{
239						void	*data	=	NULL;
240
241						if	(map->root)	{
242										BSTreeNode	*node	=	BSTree_node_delete(map,	map->root,
key);
243
244										if	(node)	{
245														data	=	node->data;
246														free(node);
247										}
248						}
249
250						return	data;
251		}

Before	getting	into	how	BSTree_delete	works,	I	want	to	explain	a	pattern
for	doing	recursive	function	calls	in	a	sane	way.	You’ll	find	that	many	tree-based
data	structures	are	easy	to	write	if	you	use	recursion,	but	formulate	a	single
recursive	function.	Part	of	the	problem	is	that	you	need	to	set	up	some	initial
data	for	the	first	operation,	then	recurse	into	the	data	structure,	which	is	hard	to
do	with	one	function.
The	solution	is	to	use	two	functions:	One	function	sets	up	the	data	structure	and
initial	recursion	conditions	so	that	a	second	function	can	do	the	real	work.	Take	a
look	at	BSTree_get	first	to	see	what	I	mean.

•	I	have	an	initial	condition:	If	map->root	is	NULL,	then	return	NULL	and
don’t	recurse.
•	I	then	set	up	a	call	to	the	real	recursion,	which	is	in	BSTree_getnode.	I
create	the	initial	condition	of	the	root	node	to	start	with	the	key	and	then
the	map.
•	In	the	BSTree_getnode,	I	then	do	the	actual	recursive	logic.	I	compare
the	keys	with	map->compare(node->key,	key)	and	go	left,	right,
or	equal	to	depending	on	the	results.
•	Since	this	function	is	self-similar	and	doesn’t	have	to	handle	any	initial
conditions	(because	BSTree_get	did),	then	I	can	structure	it	very
simply.	When	it’s	done,	it	returns	to	the	caller,	and	that	return	then	comes
back	to	BSTree_get	for	the	result.
•	At	the	end,	the	BSTree_get	handles	getting	the	node.data	element

but	only	if	the	result	isn’t	NULL.
This	way	of	structuring	a	recursive	algorithm	matches	the	way	I	structure	my
recursive	data	structures.	I	have	an	initial	base	function	that	handles	initial
conditions	and	some	edge	cases,	and	then	it	calls	a	clean	recursive	function	that
does	the	work.	Compare	that	with	how	I	have	a	base	structure	in	BStree
combined	with	recursive	BSTreeNode	structures,	which	all	reference	each
other	in	a	tree.	Using	this	pattern	makes	it	easy	to	deal	with	recursion	and	keep	it
straight.
Next,	go	look	at	BSTree_set	and	BSTree_setnode	to	see	the	exact	same
pattern.	I	use	BSTree_set	to	configure	the	initial	conditions	and	edge	cases.	A
common	edge	case	is	that	there’s	no	root	node,	so	I	have	to	make	one	to	get
things	started.
This	pattern	will	work	with	nearly	any	recursive	algorithm	you	have	to	figure
out.	The	way	I	do	it	is	by	following	this	pattern:

•	Figure	out	the	initial	variables,	how	they	change,	and	what	the	stopping
conditions	are	for	each	recursive	step.
•	Write	a	recursive	function	that	calls	itself,	and	has	arguments	for	each
stopping	condition	and	initial	variable.
•	Write	a	setup	function	to	set	initial	starting	conditions	for	the	algorithm
and	handle	edge	cases,	then	have	it	call	the	recursive	function.
•	Finally,	the	setup	function	returns	the	final	result,	and	possibly	alters	it	if
the	recursive	function	can’t	handle	final	edge	cases.

This	finally	leads	me	to	BSTree_delete	and	BSTree_node_delete.
First,	you	can	just	look	at	BSTree_delete	and	see	that	it’s	the	setup	function.
What	it’s	doing	is	grabbing	the	resulting	node	data	and	freeing	the	node	that’s
found.	Things	get	more	complex	in	BSTree_node_delete,	because	to	delete
a	node	at	any	point	in	the	tree,	I	have	to	rotate	that	node’s	children	up	to	the
parent.	Here’s	a	breakdown	of	this	function	and	the	functions	it	uses:

bstree.c:190	I	run	the	compare	function	to	figure	out	which	direction	I’m
going.

bstree.c:192-198	This	is	the	usual	less-than	branch	to	use	when	I	want	to	go
left.	I’m	handling	the	case	that	left	doesn’t	exist	here,	and	returning	NULL
to	say	“not	found.”	This	covers	deleting	something	that	isn’t	in	the
BSTree.

bstree.c:199-205	This	is	the	same	thing,	but	for	the	right	branch	of	the	tree.

Just	keep	recursing	down	into	the	tree	just	like	in	the	other	functions,	and
return	NULL	if	it	doesn’t	exist.

bstree.c:206	This	is	where	I	have	found	the	node,	since	the	key	is	equal
(compare	return	0).

bstree.c:207	This	node	has	both	a	left	and	right	branch,	so	it’s	deeply
embedded	in	the	tree.

bstree.c:209	To	remove	this	node,	I	first	need	to	find	the	smallest	node	that’s
greater	than	this	node,	which	means	I	call	BSTree_find_min	on	the
right	child.

bstree.c:210	Once	I	have	this	node,	I’ll	swap	its	key	and	data	with	the
current	node’s	values.	This	will	effectively	take	this	node	that	was	down	at
the	bottom	of	the	tree	and	put	its	contents	here,	so	that	I	don’t	have	to	try
and	shuffle	the	node	out	by	its	pointers.

bstree.c:214	The	successor	is	now	this	dead	branch	that	has	the	current
node’s	values.	It	could	just	be	removed,	but	there’s	a	chance	that	it	has	a
right	node	value.	This	means	I	need	to	do	a	single	rotate	so	that	the
successor’s	right	node	gets	moved	up	to	completely	detach	it.

bstree.c:217	At	this	point,	the	successor	is	removed	from	the	tree,	its	values
are	replaced	the	current	node’s	values,	and	any	children	it	had	are	moved
up	into	the	parent.	I	can	return	the	successor	as	if	it	were	the	node.

bstree.c:218	At	this	branch,	I	know	that	the	node	has	a	left	but	no	right,	so	I
want	to	replace	this	node	with	its	left	child.

bstree.c:219	I	again	use	BSTree_replace_node_in_parent	to	do	the
replace,	rotating	the	left	child	up.

bstree.c:220	This	branch	of	the	if-statement	means	I	have	a	right	child	but	no
left	child,	so	I	want	to	rotate	the	right	child	up.

bstree.c:221	Again,	I	use	the	function	to	do	the	rotate,	but	this	time,	rotate
the	right	node.

bstree.c:222	Finally,	the	only	thing	that’s	left	is	the	condition	where	I’ve
found	the	node,	and	it	has	no	children	(no	left	or	right).	In	this	case,	I
simply	replace	this	node	with	NULL	by	using	the	same	function	I	did	with
all	of	the	others.

bstree.c:210	After	all	that,	I	have	the	current	node	rotated	out	of	the	tree	and
replaced	with	some	child	element	that	will	fit	in	the	tree.	I	just	return	this
to	the	caller	so	it	can	be	freed	and	managed.

This	operation	is	very	complex,	and	to	be	honest,	I	just	don’t	bother	doing
deletes	in	some	tree	data	structures,	and	I	treat	them	like	constant	data	in	my
software.	If	I	need	to	do	heavy	inserting	and	deleting,	I	use	a	Hashmap	instead.
Finally,	you	can	look	at	the	unit	test	to	see	how	I’m	testing	it:

bstree_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<lcthw/bstree.h>
		3			#include	<assert.h>
		4			#include	<lcthw/bstrlib.h>
		5			#include	<stdlib.h>
		6			#include	<time.h>
		7
		8			BSTree	*map	=	NULL;
		9			static	int	traverse_called	=	0;
	10			struct	tagbstring	test1	=	bsStatic("test	data	1");
	11			struct	tagbstring	test2	=	bsStatic("test	data	2");
	12			struct	tagbstring	test3	=	bsStatic("xest	data	3");
	13			struct	tagbstring	expect1	=	bsStatic("THE	VALUE	1");
	14			struct	tagbstring	expect2	=	bsStatic("THE	VALUE	2");
	15			struct	tagbstring	expect3	=	bsStatic("THE	VALUE	3");
	16
	17			static	int	traverse_good_cb(BSTreeNode	*	node)
	18			{
	19							debug("KEY:	%s",	bdata((bstring)	node->key));
	20							traverse_called++;
	21							return	0;
	22			}
	23
	24			static	int	traverse_fail_cb(BSTreeNode	*	node)
	25			{
	26							debug("KEY:	%s",	bdata((bstring)	node->key));
	27							traverse_called++;
	28
	29							if	(traverse_called	==	2)	{
	30											return	1;
	31							}	else	{
	32											return	0;
	33							}
	34			}
	35
	36			char	*test_create()
	37			{
	38							map	=	BSTree_create(NULL);
	39							mu_assert(map	!=	NULL,	"Failed	to	create	map.");
	40

	41							return	NULL;
	42			}
	43
	44			char	*test_destroy()
	45			{
	46							BSTree_destroy(map);
	47
	48							return	NULL;
	49			}
	50
	51			char	*test_get_set()
	52			{
	53							int	rc	=	BSTree_set(map,	&test1,	&expect1);
	54							mu_assert(rc	==	0,	"Failed	to	set	&test1");
	55							bstring	result	=	BSTree_get(map,	&test1);
	56							mu_assert(result	==	&expect1,	"Wrong	value	for	test1.");
	57
	58							rc	=	BSTree_set(map,	&test2,	&expect2);
	59							mu_assert(rc	==	0,	"Failed	to	set	test2");
	60							result	=	BSTree_get(map,	&test2);
	61							mu_assert(result	==	&expect2,	"Wrong	value	for	test2.");
	62
	63							rc	=	BSTree_set(map,	&test3,	&expect3);
	64							mu_assert(rc	==	0,	"Failed	to	set	test3");
	65							result	=	BSTree_get(map,	&test3);
	66							mu_assert(result	==	&expect3,	"Wrong	value	for	test3.");
	67
	68							return	NULL;
	69			}
	70
	71			char	*test_traverse()
	72			{
	73							int	rc	=	BSTree_traverse(map,	traverse_good_cb);
	74							mu_assert(rc	==	0,	"Failed	to	traverse.");
	75							mu_assert(traverse_called	==	3,	"Wrong	count	traverse.");
	76
	77							traverse_called	=	0;
	78							rc	=	BSTree_traverse(map,	traverse_fail_cb);
	79							mu_assert(rc	==	1,	"Failed	to	traverse.");
	80							mu_assert(traverse_called	==	2,	"Wrong	count	traverse	for
fail.");
	81
	82							return	NULL;
	83			}
	84
	85			char	*test_delete()
	86			{
	87							bstring	deleted	=	(bstring)	BSTree_delete(map,	&test1);
	88							mu_assert(deleted	!=	NULL,	"Got	NULL	on	delete.");
	89							mu_assert(deleted	==	&expect1,	"Should	get	test1");
	90							bstring	result	=	BSTree_get(map,	&test1);
	91							mu_assert(result	==	NULL,	"Should	delete.");

	92
	93							deleted	=	(bstring)	BSTree_delete(map,	&test1);
	94							mu_assert(deleted	==	NULL,	"Should	get	NULL	on	delete");
	95
	96							deleted	=	(bstring)	BSTree_delete(map,	&test2);
	97							mu_assert(deleted	!=	NULL,	"Got	NULL	on	delete.");
	98							mu_assert(deleted	==	&expect2,	"Should	get	test2");
	99							result	=	BSTree_get(map,	&test2);
100							mu_assert(result	==	NULL,	"Should	delete.");
101
102							deleted	=	(bstring)	BSTree_delete(map,	&test3);
103							mu_assert(deleted	!=	NULL,	"Got	NULL	on	delete.");
104							mu_assert(deleted	==	&expect3,	"Should	get	test3");
105							result	=	BSTree_get(map,	&test3);
106							mu_assert(result	==	NULL,	"Should	delete.");
107
108							//	test	deleting	non-existent	stuff
109							deleted	=	(bstring)	BSTree_delete(map,	&test3);
110							mu_assert(deleted	==	NULL,	"Should	get	NULL");
111
112							return	NULL;
113			}
114
115			char	*test_fuzzing()
116			{
117							BSTree	*store	=	BSTree_create(NULL);
118							int	i	=	0;
119							int	j	=	0;
120							bstring	numbers[100]	=	{	NULL	};
121							bstring	data[100]	=	{	NULL	};
122							srand((unsigned	int)time(NULL));
123
124							for	(i	=	0;	i	<	100;	i++)	{
125											int	num	=	rand();
126											numbers[i]	=	bformat("%d",	num);
127											data[i]	=	bformat("data	%d",	num);
128											BSTree_set(store,	numbers[i],	data[i]);
129							}
130
131							for	(i	=	0;	i	<	100;	i++)	{
132											bstring	value	=	BSTree_delete(store,	numbers[i]);
133											mu_assert(value	==	data[i],
134																			"Failed	to	delete	the	right	number.");
135
136											mu_assert(BSTree_delete(store,	numbers[i])	==	NULL,
137																			"Should	get	nothing.");
138
139											for	(j	=	i	+	1;	j	<	99	-	i;	j++)	{
140															bstring	value	=	BSTree_get(store,	numbers[j]);
141															mu_assert(value	==	data[j],
142																							"Failed	to	get	the	right	number.");
143											}

144
145											bdestroy(value);
146											bdestroy(numbers[i]);
147							}
148
149							BSTree_destroy(store);
150
151							return	NULL;
152			}
153
154			char	*all_tests()
155			{
156							mu_suite_start();
157
158							mu_run_test(test_create);
159							mu_run_test(test_get_set);
160							mu_run_test(test_traverse);
161							mu_run_test(test_delete);
162							mu_run_test(test_destroy);
163							mu_run_test(test_fuzzing);
164
165							return	NULL;
166			}
167
168			RUN_TESTS(all_tests);

I’ll	point	you	to	the	test_fuzzing	function,	which	is	an	interesting	technique
for	testing	complex	data	structures.	It	is	difficult	to	create	a	set	of	keys	that	cover
all	of	the	branches	in	BSTree_node_	delete,	and	chances	are,	I	would
miss	some	edge	case.	A	better	way	is	to	create	a	fuzz	function	that	does	all	of
the	operations,	but	does	them	in	a	horrible	and	random	way.	In	this	case,	I’m
inserting	a	set	of	random	string	keys,	and	then	I’m	deleting	them	and	trying	to
get	the	rest	after	each	delete.
Doing	this	prevents	you	from	testing	only	what	you	know	to	work,	and	then	miss
things	you	don’t	know.	By	throwing	random	junk	at	your	data	structures,	you’ll
hit	things	you	didn’t	expect	and	be	able	to	work	out	any	bugs	you	have.

How	to	Improve	It
Do	not	do	any	of	these	yet.	In	the	next	exercise	I’ll	be	using	this	unit	test	to	teach
you	some	more	performance-tuning	tricks,	and	you’ll	come	back	and	do	these
after	you	complete	Exercise	41.

•	As	usual,	you	should	go	through	all	of	the	defensive	programming	checks
and	add	assert``s	for	conditions	that	shouldn’t	happen.	For	example,
you	shouldn’t	be	getting	``NULL	values	for	the	recursion	functions,	so

assert	that.
•	The	traverse	function	walks	through	the	tree	in	order	by	traversing	left,
then	right,	and	then	the	current	node.	You	can	create	traverse	functions
for	the	reverse	order,	as	well.
•	It	does	a	full	string	compare	on	every	node,	but	I	could	use	the
Hashmap	hashing	functions	to	speed	this	up.	I	could	hash	the	keys,	and
then	keep	the	hash	in	the	BSTreeNode.	Then,	in	each	of	the	setup
functions,	I	can	hash	the	key	ahead	of	time	and	pass	it	down	to	the
recursive	function.	Using	this	hash,	I	can	then	compare	each	node	much
quicker	in	a	way	that’s	similar	to	what	I	do	in	Hashmap.

Extra	Credit
•	There’s	an	alternative	way	to	do	this	data	structure	without	using
recursion.	The	Wikipedia	page	shows	alternatives	that	don’t	use	recursion
but	do	the	same	thing.	Why	would	this	be	better	or	worse?
•	Read	up	on	all	of	the	different	but	similar	trees	you	can	find.	There	are
AVL	trees	(named	after	Georgy	Adelson-Velsky	and	E.M.	Landis),	red-
black	trees,	and	some	non-tree	structures	like	skip	lists.

Exercise	41.	Project	devpkg

You	are	now	ready	to	tackle	a	new	project	called	devpkg.	In	this	project	you’re
going	to	recreate	a	piece	of	software	that	I	wrote	specifically	for	this	book	called
devpkg.	You’ll	then	extend	it	in	a	few	key	ways	and	improve	the	code,	most
importantly	by	writing	some	unit	tests	for	it.
This	exercise	has	a	companion	video	to	it,	and	also	a	project	on	GitHub
(https://github.com)	that	you	can	reference	if	you	get	stuck.	You	should	attempt
to	do	this	exercise	using	the	description	below,	since	that’s	how	you’ll	need	to
learn	to	code	from	books	in	the	future.	Most	computer	science	textbooks	don’t
include	videos	for	their	exercises,	so	this	project	is	more	about	trying	to	figure	it
out	from	this	description.
If	you	get	stuck,	and	you	can’t	figure	it	out,	then	go	watch	the	video	and	look	at
the	GitHub	project	to	see	how	your	code	differs	from	mine.

What	Is	devpkg?
Devpkg	is	a	simple	C	program	that	installs	other	software.	I	made	it	specifically
for	this	book	as	a	way	to	teach	you	how	a	real	software	project	is	structured,	and
also	how	to	reuse	other	people’s	libraries.	It	uses	a	portability	library	called	the
Apache	Portable	Runtime	(APR),	which	has	many	handy	C	functions	that	work
on	tons	of	platforms,	including	Windows.	Other	than	that,	it	just	grabs	code	from
the	Internet	(or	local	files)	and	does	the	usual	./configure,	make,	and	make
install	that	every	program	does.
Your	goal	in	this	exercise	is	to	build	devpkg	from	the	source,	finish	each
challenge	I	give,	and	use	the	source	to	understand	what	devpkg	does	and	why.

What	We	Want	to	Make
We	want	a	tool	that	has	these	commands:

devpkg	-S	Sets	up	a	new	installation	on	a	computer.
devpkg	-I	Installs	a	piece	of	software	from	a	URL.
devpkg	-L	Lists	all	of	the	software	that’s	been	installed.
devpkg	-F	Fetches	some	source	code	for	manual	building.
devpkg	-B	Builds	the	source	code	and	installs	it,	even	if	it’s	already	installed.

We	want	devpkg	to	be	able	to	take	almost	any	URL,	figure	out	what	kind	of

https://github.com

project	it	is,	download	it,	install	it,	and	register	that	it	downloaded	that	software.
We’d	also	like	it	to	process	a	simple	dependency	list	so	that	it	can	install	all	of
the	software	that	a	project	might	need,	as	well.

The	Design
To	accomplish	this	goal,	devpkg	will	have	a	very	simple	design:

Use	External	Commands	You’ll	do	most	of	the	work	through	external
commands	like	curl,	git,	and	tar.	This	reduces	the	amount	of	code
devpkg	needs	to	get	things	done.

Simple	File	Database	You	could	easily	make	it	more	complex,	but	you’ll
start	by	making	just	make	a	single	simple	file	database	at
/usr/local/.devpkg/db	to	keep	track	of	what’s	installed.

/usr/local	Always	Again,	you	could	make	this	more	advanced,	but	for	now
just	assume	it’s	always	/usr/local,	which	is	a	standard	install	path	for
most	software	on	UNIX.

configure,	make,	make	install	It’s	assumed	that	most	software	can	be
installed	with	just	a	configure,	make,	and	make	install—and
maybe	configure	is	optional.	If	the	software	at	a	minimum	can’t	do
that,	there	are	some	options	to	modify	the	commands,	but	otherwise,
devpkg	won’t	bother.

The	User	Can	Be	Root	We’ll	assume	that	the	user	can	become	root	using
sudo,	but	doesn’t	want	to	become	root	until	the	end.

This	will	keep	our	program	small	at	first	and	work	well	enough	for	us	to	get	it
going,	at	which	point	you’ll	be	able	to	modify	it	further	for	this	exercise.

The	Apache	Portable	Runtime
One	more	thing	you’ll	do	is	leverage	the	APR	Libraries	to	get	a	good	set	of
portable	routines	for	doing	this	kind	of	work.	APR	isn’t	necessary,	and	you	could
probably	write	this	program	without	it,	but	it’d	take	more	code	than	necessary.
I’m	also	forcing	you	to	use	APR	now	so	you	get	used	to	linking	and	using	other
libraries.	Finally,	APR	also	works	on	Windows,	so	your	skills	with	it	are
transferable	to	many	other	platforms.
You	should	go	get	both	the	apr-1.5.2	and	the	apr-util-1.5.4	libraries,
as	well	as	browse	through	the	documentation	available	at	the	main	APR	site	at
http://apr.apache.org.

http://apr.apache.org

Here’s	a	shell	script	that	will	install	all	the	stuff	you	need.	You	should	write	this
into	a	file	by	hand,	and	then	run	it	until	it	can	install	APR	without	any	errors.

Exercise	41.1	Session

Click	here	to	view	code	image

set	-e

#	go	somewhere	safe

cd	/tmp

#	get	the	source	to	base	APR	1.5.2

curl	-L	-O	http://archive.apache.org/dist/apr/apr-1.5.2.tar.gz

#	extract	it	and	go	into	the	source

tar	-xzvf	apr-1.5.2.tar.gz
cd	apr-1.5.2

#	configure,	make,	make	install

./configure
make
sudo	make	install

#	reset	and	cleanup

cd	/tmp
rm	-rf	apr-1.5.2	apr-1.5.2.tar.gz

#	do	the	same	with	apr-util

curl	-L	-O	http://archive.apache.org/dist/apr/apr-util-1.5.4.tar.gz

#	extract

tar	-xzvf	apr-util-1.5.4.tar.gz
cd	apr-util-1.5.4

#	configure,	make,	make	install

./configure	--with-apr=/usr/local/apr
#	you	need	that	extra	parameter	to	configure	because

#	apr-util	can't	really	find	it	because...who	knows.

make
sudo	make	install

#cleanup

cd	/tmp
rm	-rf	apr-util-1.5.4*	apr-1.5.2*

I’m	having	you	write	this	script	out	because	it’s	basically	what	we	want	devpkg
to	do,	but	with	extra	options	and	checks.	In	fact,	you	could	just	do	it	all	in	shell

with	less	code,	but	then	that	wouldn’t	be	a	very	good	program	for	a	C	book
would	it?
Simply	run	this	script	and	fix	it	until	it	works,	then	you’ll	have	the	libraries	you
need	to	complete	the	rest	of	this	project.

Project	Layout
You	need	to	set	up	some	simple	project	files	to	get	started.	Here’s	how	I	usually
craft	a	new	project:

Exercise	41.2	Session

mkdir	devpkg
cd	devpkg
touch	README	Makefile

Other	Dependencies
You	should	have	already	installed	apr-1.5.2	and	apr-util-1.5.4,	so	now	you	need	a
few	more	files	to	use	as	basic	dependencies:

•	dbg.h	from	Exercise	20.
•	bstrlib.h	and	bstrlib.c	from	http://bstring.sourceforge.net/.
Download	the	.zip	file,	extract	it,	and	copy	just	those	two	files.
•	Type	make	bstrlib.o,	and	if	it	doesn’t	work,	read	the	instructions	for
fixing	bstring	below.

Warning!
In	some	platforms,	the	bstring.c	file	will	have	an	error	like	this:

Click	here	to	view	code	image

bstrlib.c:2762:	error:	expected	declaration\
specifiers	or	'...'	before	numeric	constant

This	is	from	a	bad	define	that	the	authors	added,	which	doesn’t	always
work.	You	just	need	to	change	line	2759	that	reads	#ifdef	__GNUC__
to	read:

Click	here	to	view	code	image

#if	defined(__GNUC__)	&&	!defined(__APPLE__)

and	then	it	should	work	on	OS	X.

http://bstring.sourceforge.net/

When	that’s	all	done,	you	should	have	a	Makefile,	README,	dbg.h,
bstrlib.h,	and	bstrlib.c	ready	to	go.

The	Makefile
A	good	place	to	start	is	the	Makefile	since	this	lays	out	how	things	are	built
and	what	source	files	you’ll	be	creating.

Makefile

Click	here	to	view	code	image

PREFIX?=/usr/local
CFLAGS=-g	-Wall	-I${PREFIX}/apr/include/apr-1
CFLAGS+=-I${PREFIX}/apr/include/apr-util-1
LDFLAGS=-L${PREFIX}/apr/lib	-lapr-1	-pthread	-laprutil-1

all:	devpkg

devpkg:	bstrlib.o	db.o	shell.o	commands.o

install:	all
				install	-d	$(DESTDIR)/$(PREFIX)/bin/
				install	devpkg	$(DESTDIR)/$(PREFIX)/bin/

clean:
				rm	-f	*.o
				rm	-f	devpkg
				rm	-rf	*.dSYM

There’s	nothing	in	this	that	you	haven’t	seen	before,	except	maybe	the	strange	?
=	syntax,	which	says	“set	PREFIX	equal	to	this	unless	PREFIX	is	already	set.”

Warning!
If	you’re	on	more	recent	versions	of	Ubuntu,	and	you	get	errors	about
apr_off_t	or	off64_t,	then	add	-D_LARGEFILE64_SOURCE=1
to	CFLAGS.	Another	thing	is	that	you	need	to	add
/usr/local/apr/lib	to	a	file	in	/etc/ld.conf.so.d/	and
then	run	ldconfig	so	that	it	correctly	picks	up	the	libraries.

The	Source	Files
From	the	Makefile,	we	see	that	there	are	five	dependencies	for	devpkg:

bstrlib.o	This	comes	from	bstrlib.c	and	the	header	file	bstlib.h,
which	you	already	have.

db.o	This	comes	from	db.c	and	header	file	db.h,	and	it	will	contain	code
for	our	little	database	routines.

shell.o	This	is	from	shell.c	and	header	shell.h,	as	well	as	a	couple	of
functions	that	make	running	other	commands	like	curl	easier.

commands.o	This	is	from	command.c	and	header	command.h,	and
contains	all	of	the	commands	that	devpkg	needs	to	be	useful.

devpkg	It’s	not	explicitly	mentioned,	but	it’s	the	target	(on	the	left)	in	this
part	of	the	Makefile.	It	comes	from	devpkg.c,	which	contains	the
main	function	for	the	whole	program.

Your	job	is	to	now	create	each	of	these	files,	type	in	their	code,	and	get	them
correct.

Warning!
You	may	read	this	description	and	think,	“Man!	How	is	it	that	Zed	is	so
smart	that	he	just	sat	down	and	typed	these	files	out	like	this!?	I	could
never	do	that.”	I	didn’t	magically	craft	devpkg	in	this	form	with	my
awesome	coding	powers.	Instead,	what	I	did	is	this:
•	I	wrote	a	quick	little	README	to	get	an	idea	of	how	I	wanted	it	to	work.
•	I	created	a	simple	bash	script	(like	the	one	you	did	earlier)	to	figure	out	all
of	the	pieces	that	were	needed.
•	I	made	one	.c	file	and	hacked	on	it	for	a	few	days	working	through	the	idea
and	figuring	it	out.
•	I	got	it	mostly	working	and	debugged,	then	I	started	breaking	up	the	one
big	file	into	these	four	files.
•	After	getting	these	files	laid	down,	I	renamed	and	refined	the	functions	and
data	structures	so	that	they’d	be	more	logical	and	pretty.
•	Finally,	after	I	had	it	working	the	exact	same	but	with	the	new	structure,	I
added	a	few	features	like	the	-F	and	-B	options.

You’re	reading	this	in	the	order	I	want	to	teach	it	to	you,	but	don’t	think
this	is	how	I	always	build	software.	Sometimes	I	already	know	the	subject
and	I	use	more	planning.	Sometimes	I	just	hack	up	an	idea	and	see	how
well	it’d	work.	Sometimes	I	write	one,	then	throw	it	away	and	plan	out	a
better	one.	It	all	depends	on	what	my	experience	tells	me	is	best	or	where

my	inspiration	takes	me.
If	you	run	into	a	supposed	expert	who	tries	to	tell	you	that	there’s	only

one	way	to	solve	a	programming	problem,	they’re	lying	to	you.	Either
they	actually	use	multiple	tactics,	or	they’re	not	very	good.

The	DB	Functions
There	must	be	a	way	to	record	URLs	that	have	been	installed,	list	these	URLs,
and	check	whether	something	has	already	been	installed	so	we	can	skip	it.	I’ll
use	a	simple	flat	file	database	and	the	bstrlib.h	library	to	do	it.
First,	create	the	db.h	header	file	so	you	know	what	you’ll	be	implementing.

db.h

Click	here	to	view	code	image

#ifndef	_db_h

#define	_db_h

#define	DB_FILE	"/usr/local/.devpkg/db"

#define	DB_DIR	"/usr/local/.devpkg"

int	DB_init();
int	DB_list();
int	DB_update(const	char	*url);
int	DB_find(const	char	*url);

#endif

Then,	implement	those	functions	in	db.c,	and	as	you	build	this,	use	make	to
get	it	to	compile	cleanly.

db.c

Click	here	to	view	code	image

		1			#include	<unistd.h>
		2			#include	<apr_errno.h>
		3			#include	<apr_file_io.h>
		4
		5			#include	"db.h"
		6			#include	"bstrlib.h"
		7			#include	"dbg.h"
		8

		9			static	FILE	*DB_open(const	char	*path,	const	char	*mode)
	10			{
	11							return	fopen(path,	mode);
	12			}
	13
	14			static	void	DB_close(FILE	*	db)
	15			{
	16							fclose(db);
	17			}
	18
	19			static	bstring	DB_load()
	20			{
	21							FILE	*db	=	NULL;
	22							bstring	data	=	NULL;
	23
	24							db	=	DB_open(DB_FILE,	"r");
	25							check(db,	"Failed	to	open	database:	%s",	DB_FILE);
	26
	27							data	=	bread((bNread)	fread,	db);
	28							check(data,	"Failed	to	read	from	db	file:	%s",	DB_FILE);
	29
	30							DB_close(db);
	31							return	data;
	32
	33			error:
	34							if	(db)
	35											DB_close(db);
	36							if	(data)
	37											bdestroy(data);
	38							return	NULL;
	39			}
	40
	41			int	DB_update(const	char	*url)
	42			{
	43							if	(DB_find(url))	{
	44											log_info("Already	recorded	as	installed:	%s",	url);
	45							}
	46
	47							FILE	*db	=	DB_open(DB_FILE,	"a+");
	48							check(db,	"Failed	to	open	DB	file:	%s",	DB_FILE);
	49
	50							bstring	line	=	bfromcstr(url);
	51							bconchar(line,	'\n');
	52							int	rc	=	fwrite(line->data,	blength(line),	1,	db);
	53							check(rc	==	1,	"Failed	to	append	to	the	db.");
	54
	55							return	0;
	56			error:
	57							if	(db)
	58											DB_close(db);
	59							return	-1;
	60			}

	61
	62			int	DB_find(const	char	*url)
	63			{
	64							bstring	data	=	NULL;
	65							bstring	line	=	bfromcstr(url);
	66							int	res	=	-1;
	67
	68							data	=	DB_load();
	69							check(data,	"Failed	to	load:	%s",	DB_FILE);
	70
	71							if	(binstr(data,	0,	line)	==	BSTR_ERR)	{
	72											res	=	0;
	73							}	else	{
	74											res	=	1;
	75							}
	76
	77			error:																			//	fallthrough
	78							if	(data)
	79											bdestroy(data);
	80							if	(line)
	81											bdestroy(line);
	82
	83							return	res;
	84			}
	85
	86			int	DB_init()
	87			{
	88							apr_pool_t	*p	=	NULL;
	89							apr_pool_initialize();
	90							apr_pool_create(&p,	NULL);
	91
	92							if	(access(DB_DIR,	W_OK	|	X_OK)	==	-1)	{
	93											apr_status_t	rc	=	apr_dir_make_recursive(DB_DIR,
	94																			APR_UREAD	|	APR_UWRITE
	95																			|	APR_UEXECUTE	|
	96																			APR_GREAD	|	APR_GWRITE
	97																			|	APR_GEXECUTE,	p);
	98											check(rc	==	APR_SUCCESS,	"Failed	to	make	database	dir:
%s",
	99																			DB_DIR);
100						}
101
102						if	(access(DB_FILE,	W_OK)	==	-1)	{
103										FILE	*db	=	DB_open(DB_FILE,	"w");
104										check(db,	"Cannot	open	database:	%s",	DB_FILE);
105										DB_close(db);
106						}
107
108						apr_pool_destroy(p);
109						return	0;
110
111		error:

112						apr_pool_destroy(p);
113						return	-1;
114		}
115
116		int	DB_list()
117		{
118						bstring	data	=	DB_load();
119						check(data,	"Failed	to	read	load:	%s",	DB_FILE);
120
121						printf("%s",	bdata(data));
122						bdestroy(data);
123						return	0;
124
125		error:
126						return	-1;
127		}

Challenge	1:	Code	Review
Before	continuing,	read	every	line	of	these	files	carefully	and	confirm	that	you
have	them	entered	in	exactly	as	they	appear	here.	Read	them	backward	line	by
line	to	practice	that.	Also,	trace	each	function	call	and	make	sure	you’re	using
check	to	validate	the	return	codes.	Finally,	look	up	every	function	that	you
don’t	recognize—either	in	the	APR	Web	site	documentation	or	in	the
bstrlib.h	and	bstrlib.c	source.

The	Shell	Functions
A	key	design	decision	for	devpkg	is	to	have	external	tools	like	curl,	tar,	and
git	do	most	of	the	work.	We	could	find	libraries	to	do	all	of	this	internally,	but
it’s	pointless	if	we	just	need	the	base	features	of	these	programs.	There	is	no
shame	in	running	another	command	in	UNIX.
To	do	this,	I’m	going	to	use	the	apr_thread_proc.h	functions	to	run
programs,	but	I	also	want	to	make	a	simple	kind	of	template	system.	I’ll	use	a
struct	Shell	that	holds	all	of	the	information	needed	to	run	a	program,	but
has	holes	in	the	arguments	list	that	I	can	replace	with	values.
Look	at	the	shell.h	file	to	see	the	structure	and	the	commands	that	I’ll	use.
You	can	see	that	I’m	using	extern	to	indicate	how	other	.c	files	can	access
variables	that	I’m	defining	in	shell.c.

shell.h

Click	here	to	view	code	image

#ifndef	_shell_h

#define	_shell_h

#define	MAX_COMMAND_ARGS	100

#include	<apr_thread_proc.h>

typedef	struct	Shell	{
				const	char	*dir;
				const	char	*exe;

				apr_procattr_t	*attr;
				apr_proc_t	proc;
				apr_exit_why_e	exit_why;
				int	exit_code;

				const	char	*args[MAX_COMMAND_ARGS];
}	Shell;

int	Shell_run(apr_pool_t	*	p,	Shell	*	cmd);
int	Shell_exec(Shell	cmd,	...);

extern	Shell	CLEANUP_SH;
extern	Shell	GIT_SH;
extern	Shell	TAR_SH;
extern	Shell	CURL_SH;
extern	Shell	CONFIGURE_SH;
extern	Shell	MAKE_SH;
extern	Shell	INSTALL_SH;

#endif

Make	sure	you’ve	created	shell.h	exactly	as	it	appears	here,	and	that	you’ve
got	the	same	names	and	number	of	extern	Shell	variables.	Those	are	used
by	the	Shell_run	and	Shell_exec	functions	to	run	commands.	I	define
these	two	functions,	and	create	the	real	variables	in	shell.c.

shell.c

Click	here	to	view	code	image

		1			#include	"shell.h"
		2			#include	"dbg.h"
		3			#include	<stdarg.h>
		4
		5			int	Shell_exec(Shell	template,	...)
		6			{
		7							apr_pool_t	*p	=	NULL;
		8							int	rc	=	-1;

		9							apr_status_t	rv	=	APR_SUCCESS;
	10							va_list	argp;
	11							const	char	*key	=	NULL;
	12							const	char	*arg	=	NULL;
	13							int	i	=	0;
	14
	15							rv	=	apr_pool_create(&p,	NULL);
	16							check(rv	==	APR_SUCCESS,	"Failed	to	create	pool.");
	17
	18							va_start(argp,	template);
	19
	20							for	(key	=	va_arg(argp,	const	char	*);
	21															key	!=	NULL;	key	=	va_arg(argp,	const	char	*))	{
	22											arg	=	va_arg(argp,	const	char	*);
	23
	24											for	(i	=	0;	template.args[i]	!=	NULL;	i++)	{
	25															if	(strcmp(template.args[i],	key)	==	0)	{
	26																			template.args[i]	=	arg;
	27																			break;														//	found	it
	28															}
	29											}
	30							}
	31
	32							rc	=	Shell_run(p,	&template);
	33							apr_pool_destroy(p);
	34							va_end(argp);
	35							return	rc;
	36
	37			error:
	38							if	(p)	{
	39											apr_pool_destroy(p);
	40							}
	41							return	rc;
	42			}
	43
	44			int	Shell_run(apr_pool_t	*	p,	Shell	*	cmd)
	45			{
	46							apr_procattr_t	*attr;
	47							apr_status_t	rv;
	48							apr_proc_t	newproc;
	49
	50							rv	=	apr_procattr_create(&attr,	p);
	51							check(rv	==	APR_SUCCESS,	"Failed	to	create	proc	attr.");
	52
	53							rv	=	apr_procattr_io_set(attr,	APR_NO_PIPE,	APR_NO_PIPE,
	54															APR_NO_PIPE);
	55							check(rv	==	APR_SUCCESS,	"Failed	to	set	IO	of	command.");
	56
	57							rv	=	apr_procattr_dir_set(attr,	cmd->dir);
	58							check(rv	==	APR_SUCCESS,	"Failed	to	set	root	to	%s",	cmd-
>dir);
	59

	60							rv	=	apr_procattr_cmdtype_set(attr,	APR_PROGRAM_PATH);
	61							check(rv	==	APR_SUCCESS,	"Failed	to	set	cmd	type.");
	62
	63							rv	=	apr_proc_create(&newproc,	cmd->exe,	cmd->args,	NULL,
attr,	p);
	64							check(rv	==	APR_SUCCESS,	"Failed	to	run	command.");
	65
	66							rv	=	apr_proc_wait(&newproc,	&cmd->exit_code,	&cmd-
>exit_why,
	67															APR_WAIT);
	68							check(rv	==	APR_CHILD_DONE,	"Failed	to	wait.");
	69
	70							check(cmd->exit_code	==	0,	"%s	exited	badly.",	cmd->exe);
	71							check(cmd->exit_why	==	APR_PROC_EXIT,	"%s	was	killed	or
crashed",
	72															cmd->exe);
	73
	74							return	0;
	75
	76			error:
	77							return	-1;
	78			}
	79
	80			Shell	CLEANUP_SH	=	{
	81							.exe	=	"rm",
	82							.dir	=	"/tmp",
	83							.args	=	{"rm",	"-rf",	"/tmp/pkg-build",	"/tmp/pkg-
src.tar.gz",
	84											"/tmp/pkg-src.tar.bz2",	"/tmp/DEPENDS",	NULL}
	85			};
	86
	87			Shell	GIT_SH	=	{
	88							.dir	=	"/tmp",
	89							.exe	=	"git",
	90							.args	=	{"git",	"clone",	"URL",	"pkg-build",	NULL}
	91			};
	92
	93			Shell	TAR_SH	=	{
	94							.dir	=	"/tmp/pkg-build",
	95							.exe	=	"tar",
	96							.args	=	{"tar",	"-xzf",	"FILE",	"--strip-components",	"1",
NULL}
	97			};
	98
	99			Shell	CURL_SH	=	{
100							.dir	=	"/tmp",
101							.exe	=	"curl",
102							.args	=	{"curl",	"-L",	"-o",	"TARGET",	"URL",	NULL}
103			};
104
105			Shell	CONFIGURE_SH	=	{
106							.exe	=	"./configure",

107							.dir	=	"/tmp/pkg-build",
108							.args	=	{"configure",	"OPTS",	NULL}
109							,
110			};
111
112			Shell	MAKE_SH	=	{
113							.exe	=	"make",
114							.dir	=	"/tmp/pkg-build",
115							.args	=	{"make",	"OPTS",	NULL}
116			};
117
118			Shell	INSTALL_SH	=	{
119							.exe	=	"sudo",
120							.dir	=	"/tmp/pkg-build",
121							.args	=	{"sudo",	"make",	"TARGET",	NULL}
122			};

Read	the	shell.c	from	the	bottom	to	the	top	(which	is	a	common	C	source
layout)	and	you	see	how	I’ve	created	the	actual	Shell	variables	that	you
indicated	were	extern	in	shell.h.	They	live	here,	but	are	available	to	the
rest	of	the	program.	This	is	how	you	make	global	variables	that	live	in	one	.o
file	but	are	used	everywhere.	You	shouldn’t	make	many	of	these,	but	they	are
handy	for	things	like	this.
Continuing	up	the	file	we	get	to	the	Shell_run	function,	which	is	a	base
function	that	just	runs	a	command	according	to	what’s	in	a	Shell	struct.	It	uses
many	of	the	functions	defined	in	apr_thread_proc.h,	so	go	look	up	each
one	to	see	how	the	base	function	works.	This	seems	like	a	lot	of	work	compared
to	just	using	the	system	function	call,	but	it	also	gives	you	more	control	over
the	other	program’s	execution.	For	example,	in	our	Shell	struct,	we	have	a
.dir	attribute	that	forces	the	program	to	be	in	a	specific	directory	before
running.
Finally,	I	have	the	Shell_exec	function,	which	is	a	variable	argument
function.	You’ve	seen	this	before,	but	make	sure	you	grasp	the	stdarg.h
functions.	In	the	challenge	for	this	section,	you’re	going	to	analyze	this	function.

Challenge	2:	Analyze	Shell_exec
The	challenge	for	these	files	(in	addition	to	a	full	code	review	like	you	did	in
Challenge	1)	is	to	fully	analyze	Shell_exec	and	break	down	exactly	how	it
works.	You	should	be	able	to	understand	each	line,	how	the	two	for-loops
work,	and	how	arguments	are	being	replaced.
Once	you	have	it	analyzed,	add	a	field	to	struct	Shell	that	gives	you	the

number	of	variable	args	that	must	be	replaced.	Update	all	of	the	commands	to
have	the	right	count	of	args,	and	have	an	error	check	to	confirm	that	these	args
have	been	replaced,	and	then	error	exit.

The	Command	Functions
Now	you	get	to	make	the	actual	commands	that	do	the	work.	These	commands
will	use	functions	from	APR,	db.h,	and	shell.h	to	do	the	real	work	of
downloading	and	building	the	software	that	you	want	it	to	build.	This	is	the	most
complex	set	of	files,	so	do	them	carefully.	As	before,	you	start	by	making	the
commands.h	file,	then	implementing	its	functions	in	the	commands.c	file.

commands.h

Click	here	to	view	code	image

#ifndef	_commands_h

#define	_commands_h

#include	<apr_pools.h>

#define	DEPENDS_PATH	"/tmp/DEPENDS"

#define	TAR_GZ_SRC	"/tmp/pkg-src.tar.gz"

#define	TAR_BZ2_SRC	"/tmp/pkg-src.tar.bz2"

#define	BUILD_DIR	"/tmp/pkg-build"

#define	GIT_PAT	"*.git"

#define	DEPEND_PAT	"*DEPENDS"

#define	TAR_GZ_PAT	"*.tar.gz"

#define	TAR_BZ2_PAT	"*.tar.bz2"

#define	CONFIG_SCRIPT	"/tmp/pkg-build/configure"

enum	CommandType	{
				COMMAND_NONE,	COMMAND_INSTALL,	COMMAND_LIST,	COMMAND_FETCH,
				COMMAND_INIT,	COMMAND_BUILD
};

int	Command_fetch(apr_pool_t	*	p,	const	char	*url,	int	fetch_only);

int	Command_install(apr_pool_t	*	p,	const	char	*url,
								const	char	*configure_opts,
								const	char	*make_opts,	const	char	*install_opts);

int	Command_depends(apr_pool_t	*	p,	const	char	*path);

int	Command_build(apr_pool_t	*	p,	const	char	*url,
								const	char	*configure_opts,	const	char	*make_opts,
								const	char	*install_opts);

#endif

There’s	not	much	in	commands.h	that	you	haven’t	seen	already.	You	should
see	that	there	are	some	defines	for	strings	that	are	used	everywhere.	The	really
interesting	code	is	in	commands.c.

commands.c

Click	here	to	view	code	image

		1			#include	<apr_uri.h>
		2			#include	<apr_fnmatch.h>
		3			#include	<unistd.h>
		4
		5			#include	"commands.h"
		6			#include	"dbg.h"
		7			#include	"bstrlib.h"
		8			#include	"db.h"
		9			#include	"shell.h"
	10
	11			int	Command_depends(apr_pool_t	*	p,	const	char	*path)
	12			{
	13							FILE	*in	=	NULL;
	14							bstring	line	=	NULL;
	15
	16							in	=	fopen(path,	"r");
	17							check(in	!=	NULL,	"Failed	to	open	downloaded	depends:	%s",
path);
	18
	19							for	(line	=	bgets((bNgetc)	fgetc,	in,	'\n');
	20															line	!=	NULL;
	21															line	=	bgets((bNgetc)	fgetc,	in,	'\n'))
	22							{
	23											btrimws(line);
	24											log_info("Processing	depends:	%s",	bdata(line));
	25											int	rc	=	Command_install(p,	bdata(line),	NULL,	NULL,
NULL);
	26											check(rc	==	0,	"Failed	to	install:	%s",	bdata(line));
	27											bdestroy(line);
	28							}
	29
	30							fclose(in);
	31							return	0;
	32
	33			error:
	34							if	(line)	bdestroy(line);
	35							if	(in)	fclose(in);
	36							return	-1;
	37			}
	38

	39			int	Command_fetch(apr_pool_t	*	p,	const	char	*url,	int
fetch_only)
	40			{
	41							apr_uri_t	info	=	{.port	=	0				};
	42							int	rc	=	0;
	43							const	char	*depends_file	=	NULL;
	44							apr_status_t	rv	=	apr_uri_parse(p,	url,	&info);
	45
	46							check(rv	==	APR_SUCCESS,	"Failed	to	parse	URL:	%s",	url);
	47
	48							if	(apr_fnmatch(GIT_PAT,	info.path,	0)	==	APR_SUCCESS)	{
	49											rc	=	Shell_exec(GIT_SH,	"URL",	url,	NULL);
	50											check(rc	==	0,	"git	failed.");
	51							}	else	if	(apr_fnmatch(DEPEND_PAT,	info.path,	0)	==
APR_SUCCESS)	{
	52											check(!fetch_only,	"No	point	in	fetching	a	DEPENDS
file.");
	53
	54											if	(info.scheme)	{
	55															depends_file	=	DEPENDS_PATH;
	56															rc	=	Shell_exec(CURL_SH,	"URL",	url,	"TARGET",
depends_file,
	57																							NULL);
	58															check(rc	==	0,	"Curl	failed.");
	59											}	else	{
	60															depends_file	=	info.path;
	61											}
	62
	63											//	recursively	process	the	devpkg	list
	64											log_info("Building	according	to	DEPENDS:	%s",	url);
	65											rv	=	Command_depends(p,	depends_file);
	66											check(rv	==	0,	"Failed	to	process	the	DEPENDS:	%s",
url);
	67
	68											//	this	indicates	that	nothing	needs	to	be	done
	69											return	0;
	70
	71							}	else	if	(apr_fnmatch(TAR_GZ_PAT,	info.path,	0)	==
APR_SUCCESS)	{
	72											if	(info.scheme)	{
	73															rc	=	Shell_exec(CURL_SH,
	74																							"URL",	url,	"TARGET",	TAR_GZ_SRC,	NULL);
	75															check(rc	==	0,	"Failed	to	curl	source:	%s",	url);
	76											}
	77
	78											rv	=	apr_dir_make_recursive(BUILD_DIR,
	79																			APR_UREAD	|	APR_UWRITE	|
	80																			APR_UEXECUTE,	p);
	81											check(rv	==	APR_SUCCESS,	"Failed	to	make	directory	%s",
	82																			BUILD_DIR);
	83
	84											rc	=	Shell_exec(TAR_SH,	"FILE",	TAR_GZ_SRC,	NULL);

	85											check(rc	==	0,	"Failed	to	untar	%s",	TAR_GZ_SRC);
	86							}	else	if	(apr_fnmatch(TAR_BZ2_PAT,	info.path,	0)	==
APR_SUCCESS)	{
	87											if	(info.scheme)	{
	88															rc	=	Shell_exec(CURL_SH,	"URL",	url,	"TARGET",
TAR_BZ2_SRC,
	89																							NULL);
	90															check(rc	==	0,	"Curl	failed.");
	91											}
	92
	93											apr_status_t	rc	=	apr_dir_make_recursive(BUILD_DIR,
	94																			APR_UREAD	|	APR_UWRITE
	95																			|	APR_UEXECUTE,	p);
	96
	97											check(rc	==	0,	"Failed	to	make	directory	%s",
BUILD_DIR);
	98											rc	=	Shell_exec(TAR_SH,	"FILE",	TAR_BZ2_SRC,	NULL);
	99											check(rc	==	0,	"Failed	to	untar	%s",	TAR_BZ2_SRC);
100							}	else	{
101											sentinel("Don't	now	how	to	handle	%s",	url);
102							}
103
104							//	indicates	that	an	install	needs	to	actually	run
105							return	1;
106			error:
107							return	-1;
108			}
109
110			int	Command_build(apr_pool_t	*	p,	const	char	*url,
111											const	char	*configure_opts,	const	char	*make_opts,
112											const	char	*install_opts)
113			{
114							int	rc	=	0;
115
116							check(access(BUILD_DIR,	X_OK	|	R_OK	|	W_OK)	==	0,
117															"Build	directory	doesn't	exist:	%s",	BUILD_DIR);
118
119							//	actually	do	an	install
120							if	(access(CONFIG_SCRIPT,	X_OK)	==	0)	{
121											log_info("Has	a	configure	script,	running	it.");
122											rc	=	Shell_exec(CONFIGURE_SH,	"OPTS",	configure_opts,
NULL);
123											check(rc	==	0,	"Failed	to	configure.");
124							}
125
126							rc	=	Shell_exec(MAKE_SH,	"OPTS",	make_opts,	NULL);
127							check(rc	==	0,	"Failed	to	build.");
128
129							rc	=	Shell_exec(INSTALL_SH,
130															"TARGET",	install_opts	?	install_opts	:	"install",
131															NULL);
132							check(rc	==	0,	"Failed	to	install.");

133
134							rc	=	Shell_exec(CLEANUP_SH,	NULL);
135							check(rc	==	0,	"Failed	to	cleanup	after	build.");
136
137							rc	=	DB_update(url);
138							check(rc	==	0,	"Failed	to	add	this	package	to	the
database.");
139
140							return	0;
141
142			error:
143							return	-1;
144			}
145
146			int	Command_install(apr_pool_t	*	p,	const	char	*url,
147											const	char	*configure_opts,	const	char	*make_opts,
148											const	char	*install_opts)
149			{
150							int	rc	=	0;
151							check(Shell_exec(CLEANUP_SH,	NULL)	==	0,
152															"Failed	to	cleanup	before	building.");
153
154							rc	=	DB_find(url);
155							check(rc	!=	-1,	"Error	checking	the	install	database.");
156
157							if	(rc	==	1)	{
158											log_info("Package	%s	already	installed.",	url);
159											return	0;
160							}
161
162							rc	=	Command_fetch(p,	url,	0);
163
164							if	(rc	==	1)	{
165											rc	=	Command_build(p,	url,	configure_opts,	make_opts,
166																			install_opts);
167											check(rc	==	0,	"Failed	to	build:	%s",	url);
168							}	else	if	(rc	==	0)	{
169											//	no	install	needed
170											log_info("Depends	successfully	installed:	%s",	url);
171							}	else	{
172											//	had	an	error
173											sentinel("Install	failed:	%s",	url);
174							}
175
176							Shell_exec(CLEANUP_SH,	NULL);
177							return	0;
178
179			error:
180							Shell_exec(CLEANUP_SH,	NULL);
181							return	-1;
182			}

After	you	have	this	entered	in	and	compiling,	you	can	analyze	it.	If	you’ve	done
the	challenges	thus	far,	you	should	see	how	the	shell.c	functions	are	being
used	to	run	shells,	and	how	the	arguments	are	being	replaced.	If	not,	then	go
back	and	make	sure	you	truly	understand	how	Shell_exec	actually	works.

Challenge	3:	Critique	My	Design
As	before,	do	a	complete	review	of	this	code	and	make	sure	it’s	exactly	the
same.	Then	go	through	each	function	and	make	sure	you	know	how	they	work
and	what	they’re	doing.	You	should	also	trace	how	each	function	calls	the	other
functions	you’ve	written	in	this	file	and	other	files.	Finally,	confirm	that	you
understand	all	of	the	functions	that	you’re	calling	from	APR	here.
Once	you	have	the	file	correct	and	analyzed,	go	back	through	and	assume	that
I’m	an	idiot.	Then,	criticize	the	design	I	have	to	see	how	you	can	improve	it	if
you	can.	Don’t	actually	change	the	code,	just	create	a	little	notes.txt	file	and
write	down	some	thoughts	about	what	you	might	change.

The	devpkg	Main	Function
The	last	and	most	important	file,	but	probably	the	simplest,	is	devpkg.c,
which	is	where	the	main	function	lives.	There’s	no	.h	file	for	this,	since	it
includes	all	of	the	others.	Instead,	this	just	creates	the	executable	devpkg	when
combined	with	the	other	.o	files	from	our	Makefile.	Enter	in	the	code	for	this
file,	and	make	sure	it’s	correct.

devpkg.c

Click	here	to	view	code	image

		1			#include	<stdio.h>
		2			#include	<apr_general.h>
		3			#include	<apr_getopt.h>
		4			#include	<apr_strings.h>
		5			#include	<apr_lib.h>
		6
		7			#include	"dbg.h"
		8			#include	"db.h"
		9			#include	"commands.h"
	10
	11			int	main(int	argc,	const	char	const	*argv[])
	12			{
	13							apr_pool_t	*p	=	NULL;
	14							apr_pool_initialize();
	15							apr_pool_create(&p,	NULL);

	16
	17							apr_getopt_t	*opt;
	18							apr_status_t	rv;
	19
	20							char	ch	=	'\0';
	21							const	char	*optarg	=	NULL;
	22							const	char	*config_opts	=	NULL;
	23							const	char	*install_opts	=	NULL;
	24							const	char	*make_opts	=	NULL;
	25							const	char	*url	=	NULL;
	26							enum	CommandType	request	=	COMMAND_NONE;
	27
	28							rv	=	apr_getopt_init(&opt,	p,	argc,	argv);
	29
	30							while	(apr_getopt(opt,	"I:Lc:m:i:d:SF:B:",	&ch,	&optarg)	==
	31															APR_SUCCESS)	{
	32											switch	(ch)	{
	33															case	'I':
	34																			request	=	COMMAND_INSTALL;
	35																			url	=	optarg;
	36																			break;
	37
	38															case	'L':
	39																			request	=	COMMAND_LIST;
	40																			break;
	41
	42															case	'c':
	43																			config_opts	=	optarg;
	44																		break;
	45
	46															case	'm':
	47																			make_opts	=	optarg;
	48																			break;
	49
	50															case	'i':
	51																			install_opts	=	optarg;
	52																			break;
	53
	54															case	'S':
	55																			request	=	COMMAND_INIT;
	56																			break;
	57
	58															case	'F':
	59																			request	=	COMMAND_FETCH;
	60																			url	=	optarg;
	61																			break;
	62
	63															case	'B':
	64																			request	=	COMMAND_BUILD;
	65																			url	=	optarg;
	66																			break;
	67											}

	68							}
	69
	70							switch	(request)	{
	71											case	COMMAND_INSTALL:
	72															check(url,	"You	must	at	least	give	a	URL.");
	73															Command_install(p,	url,	config_opts,	make_opts,
install_opts);
	74															break;
	75
	76											case	COMMAND_LIST:
	77															DB_list();
	78															break;
	79
	80											case	COMMAND_FETCH:
	81															check(url	!=	NULL,	"You	must	give	a	URL.");
	82															Command_fetch(p,	url,	1);
	83															log_info("Downloaded	to	%s	and	in	/tmp/",
BUILD_DIR);
	84															break;
	85
	86											case	COMMAND_BUILD:
	87															check(url,	"You	must	at	least	give	a	URL.");
	88															Command_build(p,	url,	config_opts,	make_opts,
install_opts);
	89															break;
	90
	91											case	COMMAND_INIT:
	92															rv	=	DB_init();
	93															check(rv	==	0,	"Failed	to	make	the	database.");
	94															break;
	95
	96											default:
	97															sentinel("Invalid	command	given.");
	98							}
	99
100							return	0;
101
102			error:
103							return	1;
104			}

Challenge	4:	The	README	and	Test	Files
The	challenge	for	this	file	is	to	understand	how	the	arguments	are	being
processed,	what	the	arguments	are,	and	then	create	the	README	file	with
instructions	on	how	to	use	them.	As	you	write	the	README,	also	write	a	simple
test.sh	that	runs	./devpkg	to	check	that	each	command	is	actually
working	against	real,	live	code.	Use	the	set	-e	at	the	top	of	your	script	so	that
it	aborts	on	the	first	error.

Finally,	run	the	program	under	your	debugger	and	make	sure	it’s	working	before
moving	on	to	the	final	challenge.

The	Final	Challenge
Your	final	challenge	is	a	mini	exam	and	it	involves	three	things:

•	Compare	your	code	to	my	code	that’s	available	online.	Starting	at	100%,
subtract	1%	for	each	line	you	got	wrong.
•	Take	the	notes.txt	file	that	you	previously	created	and	implement	your
improvements	to	the	the	code	and	functionality	of	devpkg.
•	Write	an	alternative	version	of	devpkg	using	your	other	favorite	language
or	the	one	you	think	can	do	this	the	best.	Compare	the	two,	then	improve
your	C	version	of	devpkg	based	on	what	you’ve	learned.

To	compare	your	code	with	mine,	do	the	following:
Click	here	to	view	code	image

cd	..	#	get	one	directory	above	your	current	one
git	clone	git://gitorious.org/devpkg/devpkg.git	devpkgzed
diff	-r	devpkg	devpkgzed

This	will	clone	my	version	of	devpkg	into	a	directory	called	devpkgzed	so
you	can	then	use	the	tool	diff	to	compare	what	you’ve	done	to	what	I	did.	The
files	you’re	working	with	in	this	book	come	directly	from	this	project,	so	if	you
get	different	lines,	that’s	an	error.
Keep	in	mind	that	there’s	no	real	pass	or	fail	on	this	exercise.	It’s	just	a	way	for
you	to	challenge	yourself	to	be	as	exact	and	meticulous	as	possible.

Exercise	42.	Stacks	and	Queues

At	this	point	in	the	book,	you	should	know	most	of	the	data	structures	that	are
used	to	build	all	of	the	other	data	structures.	If	you	have	some	kind	of	List,
DArray,	Hashmap,	and	Tree,	then	you	can	build	almost	anything	else	out
there.	Everything	else	you	run	into	either	uses	these	or	some	variant	of	these.	If
it	doesn’t,	then	it’s	most	likely	an	exotic	data	structure	that	you	probably	won’t
need.
Stacks	and	Queues	are	very	simple	data	structures	that	are	really	variants	of
the	List	data	structure.	All	they	do	is	use	a	List	with	a	discipline	or
convention	that	says	you	always	place	elements	on	one	end	of	the	List.	For	a
Stack,	you	always	push	and	pop.	For	a	Queue,	you	always	shift	to	the	front,
but	pop	from	the	end.
I	can	implement	both	data	structures	using	nothing	but	the	CPP	and	two	header
files.	My	header	files	are	21	lines	long	and	do	all	of	the	Stack	and	Queue
operations	without	any	fancy	defines.
To	see	if	you’ve	been	paying	attention,	I’m	going	to	show	you	the	unit	tests,	and
then	have	you	implement	the	header	files	needed	to	make	them	work.	To	pass
this	exercise,	you	can’t	create	any	stack.c	or	queue.c	implementation	files.
Use	only	the	stack.h	and	queue.h	files	to	make	the	tests	run.

stack_tests.c

Click	here	to	view	code	image

	1			#include	"minunit.h"
	2			#include	<lcthw/stack.h>
	3			#include	<assert.h>
	4
	5			static	Stack	*stack	=	NULL;
	6			char	*tests[]	=	{	"test1	data",	"test2	data",	"test3	data"	};
	7
	8			#define	NUM_TESTS	3
	9
10			char	*test_create()
11			{
12							stack	=	Stack_create();
13							mu_assert(stack	!=	NULL,	"Failed	to	create	stack.");
14
15							return	NULL;

16			}
17
18			char	*test_destroy()
19			{
20							mu_assert(stack	!=	NULL,	"Failed	to	make	stack	#2");
21							Stack_destroy(stack);
22
23							return	NULL;
24			}
25
26			char	*test_push_pop()
27			{
28							int	i	=	0;
29							for	(i	=	0;	i	<	NUM_TESTS;	i++)	{
30											Stack_push(stack,	tests[i]);
31											mu_assert(Stack_peek(stack)	==	tests[i],	"Wrong	next
value.");
32							}
33
34							mu_assert(Stack_count(stack)	==	NUM_TESTS,	"Wrong	count	on
push.");
35
36							STACK_FOREACH(stack,	cur)	{
37											debug("VAL:	%s",	(char	*)cur->value);
38							}
39
40							for	(i	=	NUM_TESTS	-	1;	i	>=	0;	i--)	{
41											char	*val	=	Stack_pop(stack);
42											mu_assert(val	==	tests[i],	"Wrong	value	on	pop.");
43							}
44
45							mu_assert(Stack_count(stack)	==	0,	"Wrong	count	after
pop.");
46
47							return	NULL;
48			}
49
50			char	*all_tests()
51			{
52							mu_suite_start();
53
54							mu_run_test(test_create);
55							mu_run_test(test_push_pop);
56							mu_run_test(test_destroy);
57
58							return	NULL;
59			}
60
61			RUN_TESTS(all_tests);

Then,	the	queue_tests.c	is	almost	the	same,	only	using	Queue:

queue_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<lcthw/queue.h>
		3			#include	<assert.h>
		4
		5			static	Queue	*queue	=	NULL;
		6			char	*tests[]	=	{	"test1	data",	"test2	data",	"test3	data"	};
		7
		8			#define	NUM_TESTS	3
		9
	10			char	*test_create()
	11			{
	12							queue	=	Queue_create();
	13							mu_assert(queue	!=	NULL,	"Failed	to	create	queue.");
	14
	15							return	NULL;
	16			}
	17
	18			char	*test_destroy()
	19			{
	20							mu_assert(queue	!=	NULL,	"Failed	to	make	queue	#2");
	21							Queue_destroy(queue);
	22
	23							return	NULL;
	24			}
	25
	26			char	*test_send_recv()
	27			{
	28							int	i	=	0;
	29							for	(i	=	0;	i	<	NUM_TESTS;	i++)	{
	30											Queue_send(queue,	tests[i]);
	31											mu_assert(Queue_peek(queue)	==	tests[0],	"Wrong	next
value.");
	32							}
	33
	34							mu_assert(Queue_count(queue)	==	NUM_TESTS,	"Wrong	count	on
send.");
	35
	36							QUEUE_FOREACH(queue,	cur)	{
	37											debug("VAL:	%s",	(char	*)cur->value);
	38							}
	39
	40							for	(i	=	0;	i	<	NUM_TESTS;	i++)	{
	41											char	*val	=	Queue_recv(queue);
	42											mu_assert(val	==	tests[i],	"Wrong	value	on	recv.");
	43							}
	44
	45							mu_assert(Queue_count(queue)	==	0,	"Wrong	count	after

recv.");
	46
	47							return	NULL;
	48			}
	49
	50			char	*all_tests()
	51			{
	52							mu_suite_start();
	53
	54							mu_run_test(test_create);
	55							mu_run_test(test_send_recv);
	56							mu_run_test(test_destroy);
	57
	58							return	NULL;
	59			}
	60
	61			RUN_TESTS(all_tests);

What	You	Should	See
Your	unit	test	should	run	without	your	having	to	change	the	tests,	and	it	should
pass	the	debugger	with	no	memory	errors.	Here’s	what	it	looks	like	if	I	run
stack_tests	directly:

Exercise	42.1	Session

Click	here	to	view	code	image

$./tests/stack_tests
DEBUG	tests/stack_tests.c:60:	-----	RUNNING:	./tests/stack_tests

RUNNING:	./tests/stack_tests

DEBUG	tests/stack_tests.c:53:

-----	test_create

DEBUG	tests/stack_tests.c:54:

-----	test_push_pop

DEBUG	tests/stack_tests.c:37:	VAL:	test3	data

DEBUG	tests/stack_tests.c:37:	VAL:	test2	data

DEBUG	tests/stack_tests.c:37:	VAL:	test1	data

DEBUG	tests/stack_tests.c:55:

-----	test_destroy

ALL	TESTS	PASSED

Tests	run:	3

$

The	queue_test	is	basically	the	same	kind	of	output,	so	I	shouldn’t	have	to
show	it	to	you	at	this	stage.

How	to	Improve	It

The	only	real	improvement	you	could	make	to	this	is	switching	from	a	List	to
a	DArray.	The	Queue	data	structure	is	more	difficult	to	do	with	a	DArray
because	it	works	at	both	ends	of	the	list	of	nodes.
One	disadvantage	of	doing	this	entirely	in	a	header	file	is	that	you	can’t	easily
performance	tune	it.	Mostly,	what	you’re	doing	with	this	technique	is
establishing	a	protocol	for	how	to	use	a	List	in	a	certain	style.	When
performance	tuning,	if	you	make	List	fast,	then	these	two	should	improve	as
well.

Extra	Credit
•	Implement	Stack	using	DArray	instead	of	List,	but	without	changing
the	unit	test.	That	means	you’ll	have	to	create	your	own
STACK_FOREACH.

Exercise	43.	A	Simple	Statistics	Engine

This	is	a	simple	algorithm	that	I	use	for	collecting	summary	statistics	online,	or
without	storing	all	of	the	samples.	I	use	this	in	any	software	that	needs	to	keep
some	statistics,	such	as	mean,	standard	deviation,	and	sum,	but	can’t	store	all	the
samples	needed.	Instead,	I	can	just	store	the	rolling	results	of	the	calculations,
which	is	only	five	numbers.

Rolling	Standard	Deviation	and	Mean
The	first	thing	you	need	is	a	sequence	of	samples.	This	can	be	anything	from	the
time	it	takes	to	complete	a	task	to	the	number	of	times	someone	accesses
something	to	star	ratings	on	a	Web	site.	It	doesn’t	really	matter	what	it	is,	just	so
long	as	you	have	a	stream	of	numbers	and	you	want	to	know	the	following
summary	statistics	about	them:

sum	This	is	the	total	of	all	the	numbers	added	together.
sum	squared	(sumsq)	This	is	the	sum	of	the	square	of	each	number.
count	(n)	This	is	the	number	samples	that	you’ve	taken.
min	This	is	the	smallest	sample	you’ve	seen.
max	This	is	the	largest	sample	you’ve	seen.
mean	This	is	the	most	likely	middle	number.	It’s	not	actually	the	middle,
since	that’s	the	median,	but	it’s	an	accepted	approximation	for	it.

stddev	This	is	calculated	using	$sqrt(sumsq	–	(sum	×	mean))	/	(n	–	1)))$
where	sqrt	is	the	square	root	function	in	the	math.h	header.

I	will	confirm	this	calculation	works	using	R,	since	I	know	R	gets	these	right:

Exercise	43.1	Session

Click	here	to	view	code	image

>	s	<-	runif(n=10,	max=10)
>	s
	[1]	6.1061334	9.6783204	1.2747090	8.2395131	0.3333483	6.9755066
1.0626275

	[8]	7.6587523	4.9382973	9.5788115
>	summary(s)
			Min.	1st	Qu.	Median			Mean	3rd	Qu.				Max.
	0.3333		2.1910	6.5410	5.5850		8.0940		9.6780
>	sd(s)

[1]	3.547868

>	sum(s)
[1]	55.84602

>	sum(s	*	s)
[1]	425.1641

>	sum(s)	*	mean(s)
[1]	311.8778

>	sum(s	*	s)	-	sum(s)	*	mean(s)
[1]	113.2863

>	(sum(s	*	s)	-	sum(s)	*	mean(s))	/	(length(s)	-	1)
[1]	12.58737

>	sqrt((sum(s	*	s)	-	sum(s)	*	mean(s))	/	(length(s)	-	1))
[1]	3.547868

>

You	don’t	need	to	know	R.	Just	follow	along	while	I	explain	how	I’m	breaking
this	down	to	check	my	math:

Lines	1-4	I	use	the	function	runif	to	get	a	random	uniform	distribution	of
numbers,	then	print	them	out.	I’ll	use	these	in	the	unit	test	later.

Lines	5-7	Here’s	the	summary,	so	you	can	see	the	values	that	R	calculates	for
these.

Lines	8-9	This	is	the	stddev	using	the	sd	function.
Lines	10-11	Now	I	begin	to	build	this	calculation	manually,	first	by	getting
the	sum.

Lines	12-13	The	next	piece	of	the	stdev	formula	is	the	sumsq,	which	I	can
get	with	sum(s	*	s)	that	tells	R	to	multiply	the	whole	s	list	by	itself,
and	then	sum	those.	The	power	of	R	is	being	able	to	do	math	on	entire	data
structures	like	this.

Lines	14-15	Looking	at	the	formula,	I	then	need	the	sum	multiplied	by
mean,	so	I	do	sum(s)	*	mean(s).

Lines	16-17	I	then	combine	the	sumsq	with	this	to	get	sum(s	*	s)	-
sum(s)	*	mean(s).

Lines	18-19	That	needs	to	be	divided	by	$n-1$,	so	I	do	(sum(s	*	s)	-
sum(s)	*	mean(s))	/	(length(s)	-	1).

Lines	20-21	Finally,	I	sqrt	that	and	I	get	3.547868,	which	matches	the
number	R	gave	me	for	sd	above.

Implementation
That’s	how	you	calculate	the	stddev,	so	now	I	can	make	some	simple	code	to

implement	this	calculation.

stats.h

Click	here	to	view	code	image

#ifndef	lcthw_stats_h

#define	lcthw_stats_h

typedef	struct	Stats	{
				double	sum;
				double	sumsq;
				unsigned	long	n;
				double	min;
				double	max;
}	Stats;

Stats	*Stats_recreate(double	sum,	double	sumsq,	unsigned	long	n,
								double	min,	double	max);

Stats	*Stats_create();

double	Stats_mean(Stats	*	st);

double	Stats_stddev(Stats	*	st);

void	Stats_sample(Stats	*	st,	double	s);

void	Stats_dump(Stats	*	st);

#endif

Here	you	can	see	that	I’ve	put	the	calculations	I	need	to	store	in	a	struct,	and
then	I	have	functions	for	sampling	and	getting	the	numbers.	Implementing	this	is
then	just	an	exercise	in	converting	the	math:

stats.c

Click	here	to	view	code	image

		1			#include	<math.h>
		2			#include	<lcthw/stats.h>
		3			#include	<stdlib.h>
		4			#include	<lcthw/dbg.h>
		5
		6			Stats	*Stats_recreate(double	sum,	double	sumsq,	unsigned	long
n,
		7											double	min,	double	max)
		8			{

		9							Stats	*st	=	malloc(sizeof(Stats));
	10							check_mem(st);
	11
	12							st->sum	=	sum;
	13							st->sumsq	=	sumsq;
	14							st->n	=	n;
	15							st->min	=	min;
	16							st->max	=	max;
	17
	18							return	st;
	19
	20			error:
	21							return	NULL;
	22			}
	23
	24			Stats	*Stats_create()
	25			{
	26							return	Stats_recreate(0.0,	0.0,	0L,	0.0,	0.0);
	27			}
	28
	29			double	Stats_mean(Stats	*	st)
	30			{
	31							return	st->sum	/	st->n;
	32			}
	33
	34			double	Stats_stddev(Stats	*	st)
	35			{
	36							return	sqrt((st->sumsq	-	(st->sum	*	st->sum	/	st->n))	/
	37															(st->n	-	1));
	38			}
	39
	40			void	Stats_sample(Stats	*	st,	double	s)
	41			{
	42							st->sum	+=	s;
	43							st->sumsq	+=	s	*	s;
	44
	45							if	(st->n	==	0)	{
	46											st->min	=	s;
	47											st->max	=	s;
	48							}	else	{
	49											if	(st->min	>	s)
	50															st->min	=	s;
	51											if	(st->max	<	s)
	52															st->max	=	s;
	53							}
	54
	55							st->n	+=	1;
	56			}
	57
	58			void	Stats_dump(Stats	*	st)
	59			{
	60							fprintf(stderr,

	61															"sum:	%f,	sumsq:	%f,	n:	%ld,	"
	62															"min:	%f,	max:	%f,	mean:	%f,	stddev:	%f",
	63															st->sum,	st->sumsq,	st->n,	st->min,	st->max,
Stats_mean(st),
	64															Stats_stddev(st));
	65			}

Here’s	a	breakdown	of	each	function	in	stats.c:
Stats_recreate	I’ll	want	to	load	these	numbers	from	some	kind	of	database,
and	this	function	let’s	me	recreate	a	Stats	struct.

Stats_create	This	simply	called	Stats_recreate	with	all	0	(zero)
values.

Stats_mean	Using	the	sum	and	n,	it	gives	the	mean.
Stats_stddev	This	implements	the	formula	I	worked	out;	the	only	difference
is	that	I	calculate	the	mean	with	st->sum	/	st->n	in	this	formula
instead	of	calling	Stats_mean.

Stats_sample	This	does	the	work	of	maintaining	the	numbers	in	the	Stats
struct.	When	you	give	it	the	first	value,	it	sees	that	n	is	0	and	sets	min	and
max	accordingly.	Every	call	after	that	keeps	increasing	sum,	sumsq,	and
n.	It	then	figures	out	if	this	new	sample	is	a	new	min	or	max.

Stats_dump	This	is	a	simple	debug	function	that	dumps	the	statistics	so	you
can	view	them.

The	last	thing	I	need	to	do	is	confirm	that	this	math	is	correct.	I’m	going	to	use
numbers	and	calculations	from	my	R	session	to	create	a	unit	test	that	confirms
that	I’m	getting	the	right	results.

stats_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<lcthw/stats.h>
		3			#include	<math.h>
		4
		5			const	int	NUM_SAMPLES	=	10;
		6			double	samples[]	=	{
		7							6.1061334,	9.6783204,	1.2747090,	8.2395131,	0.3333483,
		8							6.9755066,	1.0626275,	7.6587523,	4.9382973,	9.5788115
		9			};
	10
	11			Stats	expect	=	{
	12							.sumsq	=	425.1641,

	13							.sum	=	55.84602,
	14							.min	=	0.333,
	15							.max	=	9.678,
	16							.n	=	10,
	17			};
	18
	19			double	expect_mean	=	5.584602;
	20			double	expect_stddev	=	3.547868;
	21
	22			#define	EQ(X,Y,N)	(round((X)	*	pow(10,	N))	==	round((Y)	*
pow(10,	N)))

	23
	24			char	*test_operations()
	25			{
	26							int	i	=	0;
	27							Stats	*st	=	Stats_create();
	28							mu_assert(st	!=	NULL,	"Failed	to	create	stats.");
	29
	30							for	(i	=	0;	i	<	NUM_SAMPLES;	i++)	{
	31											Stats_sample(st,	samples[i]);
	32							}
	33
	34							Stats_dump(st);
	35
	36							mu_assert(EQ(st->sumsq,	expect.sumsq,	3),	"sumsq	not
valid");
	37							mu_assert(EQ(st->sum,	expect.sum,	3),	"sum	not	valid");
	38							mu_assert(EQ(st->min,	expect.min,	3),	"min	not	valid");
	39							mu_assert(EQ(st->max,	expect.max,	3),	"max	not	valid");
	40							mu_assert(EQ(st->n,	expect.n,	3),	"max	not	valid");
	41							mu_assert(EQ(expect_mean,	Stats_mean(st),	3),	"mean	not
valid");
	42							mu_assert(EQ(expect_stddev,	Stats_stddev(st),	3),
	43															"stddev	not	valid");
	44
	45							return	NULL;
	46			}
	47
	48			char	*test_recreate()
	49			{
	50							Stats	*st	=	Stats_recreate(
	51															expect.sum,	expect.sumsq,	expect.n,	expect.min,
expect.max);
	52
	53							mu_assert(st->sum	==	expect.sum,	"sum	not	equal");
	54							mu_assert(st->sumsq	==	expect.sumsq,	"sumsq	not	equal");
	55							mu_assert(st->n	==	expect.n,	"n	not	equal");
	56							mu_assert(st->min	==	expect.min,	"min	not	equal");
	57							mu_assert(st->max	==	expect.max,	"max	not	equal");
	58							mu_assert(EQ(expect_mean,	Stats_mean(st),	3),	"mean	not
valid");
	59							mu_assert(EQ(expect_stddev,	Stats_stddev(st),	3),

	60															"stddev	not	valid");
	61
	62							return	NULL;
	63			}
	64
	65			char	*all_tests()
	66			{
	67							mu_suite_start();
	68
	69							mu_run_test(test_operations);
	70							mu_run_test(test_recreate);
	71
	72							return	NULL;
	73			}
	74
	75			RUN_TESTS(all_tests);

There’s	nothing	new	in	this	unit	test,	except	maybe	the	EQ	macro.	I	felt	lazy	and
didn’t	want	to	look	up	the	standard	way	to	tell	if	two	double	values	are	close,
so	I	made	this	macro.	The	problem	with	double	is	that	equality	assumes	totally
equal	results,	but	I’m	using	two	different	systems	with	slightly	different
rounding	errors.	The	solution	is	to	say	that	I	want	the	numbers	to	be	“equal	to	X
decimal	places.”
I	do	this	with	EQ	by	raising	the	number	to	a	power	of	10,	then	using	the	round
function	to	get	an	integer.	This	is	a	simple	way	to	round	to	N	decimal	places	and
compare	the	results	as	an	integer.	I’m	sure	there	are	a	billion	other	ways	to	do
the	same	thing,	but	this	works	for	now.
The	expected	results	are	then	in	a	Stats	struct	and	I	simply	make	sure	that
the	number	I	get	is	close	to	the	number	R	gave	me.

How	to	Use	It
You	can	use	the	standard	deviation	and	mean	to	determine	if	a	new	sample	is
interesting,	or	you	can	use	this	to	collect	statistics	on	statistics.	The	first	one	is
easy	for	people	to	understand,	so	I’ll	explain	that	quickly	using	an	example	for
login	times.
Imagine	you’re	tracking	how	long	users	spend	on	a	server,	and	you’re	using
statistics	to	analyze	it.	Every	time	someone	logs	in,	you	keep	track	of	how	long
they	are	there,	then	you	call	Stats_sample.	I’m	looking	for	people	who	are
on	too	long	and	also	people	who	seem	to	be	on	too	quickly.
Instead	of	setting	specific	levels,	what	I’d	do	is	compare	how	long	someone	is
on	with	the	mean	(plus	or	minus)	2	*	stddev	range.	I	get	the	mean

and	2	*	stddev,	and	consider	login	times	to	be	interesting	if	they	are	outside
these	two	ranges.	Since	I’m	keeping	these	statistics	using	a	rolling	algorithm,
this	is	a	very	fast	calculation,	and	I	can	then	have	the	software	flag	the	users	who
are	outside	of	this	range.
This	doesn’t	necessarily	point	out	people	who	are	behaving	badly,	but	instead	it
flags	potential	problems	that	you	can	review	to	see	what’s	going	on.	It’s	also
doing	it	based	on	the	behavior	of	all	of	the	users,	which	avoids	the	problem	of
picking	some	arbitrary	number	that’s	not	based	on	what’s	really	happening.
The	general	rule	you	can	get	from	this	is	that	the	mean	(plus	or	minus)
2	*	stddev	is	an	estimate	of	where	90%	of	the	values	are	expected	to	fall,
and	anything	outside	that	range	is	interesting.
The	second	way	to	use	these	statistics	is	to	go	meta	and	calculate	them	for	other
Stats	calculations.	You	basically	do	your	Stats_sample	like	normal,	but
then	you	run	Stats_sample	on	the	min,	max,	n,	mean,	and	stddev	on	that
sample.	This	gives	a	two-level	measurement,	and	lets	you	compare	samples	of
samples.
Confusing,	right?	I’ll	continue	my	example	above,	but	let’s	say	you	have	100
servers	that	each	hold	a	different	application.	You’re	already	tracking	users’
login	times	for	each	application	server,	but	you	want	to	compare	all	100
applications	and	flag	any	users	that	are	logging	in	too	much	on	all	of	them.	The
easiest	way	to	do	that	is	to	calculate	the	new	login	stats	each	time	someone	logs
in,	and	then	add	that	Stats	structs	element	to	a	second	Stat.
What	you	end	up	with	is	a	series	of	statistics	that	can	be	named	like	this:

mean	of	means	This	is	a	full	Stats	struct	that	gives	you	mean	and
stddev	of	the	means	of	all	the	servers.	Any	server	or	user	who	is	outside
of	this	is	worth	looking	at	on	a	global	level.

mean	of	stddevs	Another	Stats	struct	that	produces	statistics	on	how
all	of	the	servers	range.	You	can	then	analyze	each	server	and	see	if	any	of
them	have	unusually	wide-ranging	numbers	by	comparing	their	stddev
to	this	mean	of	stddevs	statistic.

You	could	do	them	all,	but	these	are	the	most	useful.	If	you	then	wanted	to
monitor	servers	for	erratic	login	times,	you’d	do	this:

•	User	John	logs	in	to	and	out	of	server	A.	Grab	server	A’s	statistics	and
update	them.
•	Grab	the	mean	of	means	statistics,	and	then	take	A’s	mean	and	add	it

as	a	sample.	I’ll	call	this	m_of_m.
•	Grab	the	mean	of	stddevs	statistics,	and	add	A’s	stddev	to	it	as	a
sample.	I’ll	call	this	m_of_s.
•	If	A’s	mean	is	outside	of	m_of_m.mean	+	2	*	m_of_m.stddev,
then	flag	it	as	possibly	having	a	problem.
•	If	A’s	stddev	is	outside	of	m_of_s.mean	+	2	*
m_of_s.stddev,	then	flag	it	as	possibly	behaving	too	erratically.
•	Finally,	if	John’s	login	time	is	outside	of	A’s	range,	or	A’s	m_of_m	range,
then	flag	it	as	interesting.

Using	this	mean	of	means	and	mean	of	stddevs	calculation,	you	can	efficiently
track	many	metrics	with	a	minimal	amount	of	processing	and	storage.

Extra	Credit
•	Convert	the	Stats_stddev	and	Stats_mean	to	static	inline
functions	in	the	stats.h	file	instead	of	in	the	stats.c	file.
•	Use	this	code	to	write	a	performance	test	of	the
string_algos_test.c.	Make	it	optional,	and	have	it	run	the	base	test
as	a	series	of	samples,	and	then	report	the	results.
•	Write	a	version	of	this	in	another	programming	language	you	know.
Confirm	that	this	version	is	correct	based	on	what	I	have	here.
•	Write	a	little	program	that	can	take	a	file	full	of	numbers	and	spit	these
statistics	out	for	them.
•	Make	the	program	accept	a	table	of	data	that	has	headers	on	one	line,	then
all	of	the	other	numbers	on	lines	after	it	are	separated	by	any	number	of
spaces.	Your	program	should	then	print	out	these	statistics	for	each	column
by	the	header	name.

Exercise	44.	Ring	Buffer

Ring	buffers	are	incredibly	useful	when	processing	asynchronous	I/O.	They
allow	one	side	to	receive	data	in	random	intervals	of	random	sizes,	but	feed
cohesive	chunks	to	another	side	in	set	sizes	or	intervals.	They	are	a	variant	on
the	Queue	data	structure	but	focus	on	blocks	of	bytes	instead	of	a	list	of
pointers.	In	this	exercise,	I’m	going	to	show	you	the	RingBuffer	code,	and
then	have	you	make	a	full	unit	test	for	it.

ringbuffer.h

Click	here	to	view	code	image

		1			#ifndef	_lcthw_RingBuffer_h
		2			#define	_lcthw_RingBuffer_h
		3
		4			#include	<lcthw/bstrlib.h>
		5
		6			typedef	struct	{
		7							char	*buffer;
		8							int	length;
		9							int	start;
	10							int	end;
	11			}	RingBuffer;
	12
	13			RingBuffer	*RingBuffer_create(int	length);
	14
	15			void	RingBuffer_destroy(RingBuffer	*	buffer);
	16
	17			int	RingBuffer_read(RingBuffer	*	buffer,	char	*target,	int
amount);
	18
	19			int	RingBuffer_write(RingBuffer	*	buffer,	char	*data,	int
length);
	20
	21			int	RingBuffer_empty(RingBuffer	*	buffer);
	22
	23			int	RingBuffer_full(RingBuffer	*	buffer);
	24
	25			int	RingBuffer_available_data(RingBuffer	*	buffer);
	26
	27			int	RingBuffer_available_space(RingBuffer	*	buffer);
	28
	29			bstring	RingBuffer_gets(RingBuffer	*	buffer,	int	amount);
	30
	31			#define	RingBuffer_available_data(B)	(\

	32											((B)->end	+	1)	%	(B)->length	-	(B)->start	-	1)
	33
	34			#define	RingBuffer_available_space(B)	(\
	35											(B)->length	-	(B)->end	-	1)
	36
	37			#define	RingBuffer_full(B)	(RingBuffer_available_data((B))\
	38											-	(B)->length	==	0)
	39
	40			#define	RingBuffer_empty(B)	(\
	41											RingBuffer_available_data((B))	==	0)
	42
	43			#define	RingBuffer_puts(B,	D)	RingBuffer_write(\
	44											(B),	bdata((D)),	blength((D)))
	45
	46			#define	RingBuffer_get_all(B)	RingBuffer_gets(\
	47											(B),	RingBuffer_available_data((B)))
	48
	49			#define	RingBuffer_starts_at(B)	(\
	50											(B)->buffer	+	(B)->start)
	51
	52			#define	RingBuffer_ends_at(B)	(\
	53											(B)->buffer	+	(B)->end)
	54
	55			#define	RingBuffer_commit_read(B,	A)	(\
	56											(B)->start	=	((B)->start	+	(A))	%	(B)->length)
	57
	58			#define	RingBuffer_commit_write(B,	A)	(\
	59											(B)->end	=	((B)->end	+	(A))	%	(B)->length)
	60
	61			#endif

Looking	at	the	data	structure,	you	see	I	have	a	buffer,	start,	and	end.	A
RingBuffer	does	nothing	more	than	move	the	start	and	end	around	the
buffer	so	that	it	loops	whenever	it	reaches	the	buffer’s	end.	Doing	this	gives	the
illusion	of	an	infinite	read	device	in	a	small	space.	I	then	have	a	bunch	of	macros
that	do	various	calculations	based	on	this.
Here’s	the	implementation,	which	is	a	much	better	explanation	of	how	this
works.

ringbuffer.c

Click	here	to	view	code	image

		1			#undef	NDEBUG
		2			#include	<assert.h>
		3			#include	<stdio.h>
		4			#include	<stdlib.h>
		5			#include	<string.h>

		6			#include	<lcthw/dbg.h>
		7			#include	<lcthw/ringbuffer.h>
		8
		9			RingBuffer	*RingBuffer_create(int	length)
	10			{
	11							RingBuffer	*buffer	=	calloc(1,	sizeof(RingBuffer));
	12							buffer->length	=	length	+	1;
	13							buffer->start	=	0;
	14							buffer->end	=	0;
	15							buffer->buffer	=	calloc(buffer->length,	1);
	16
	17							return	buffer;
	18			}
	19
	20			void	RingBuffer_destroy(RingBuffer	*	buffer)
	21			{
	22							if	(buffer)	{
	23											free(buffer->buffer);
	24											free(buffer);
	25							}
	26			}
	27
	28			int	RingBuffer_write(RingBuffer	*	buffer,	char	*data,	int
length)
	29			{
	30							if	(RingBuffer_available_data(buffer)	==	0)	{
	31											buffer->start	=	buffer->end	=	0;
	32							}
	33
	34							check(length	<=	RingBuffer_available_space(buffer),
	35															"Not	enough	space:	%d	request,	%d	available",
	36															RingBuffer_available_data(buffer),	length);
	37
	38							void	*result	=	memcpy(RingBuffer_ends_at(buffer),	data,
length);
	39							check(result	!=	NULL,	"Failed	to	write	data	into	buffer.");
	40
	41							RingBuffer_commit_write(buffer,	length);
	42
	43							return	length;
	44			error:
	45							return	-1;
	46			}
	47
	48			int	RingBuffer_read(RingBuffer	*	buffer,	char	*target,	int
amount)
	49			{
	50							check_debug(amount	<=	RingBuffer_available_data(buffer),
	51															"Not	enough	in	the	buffer:	has	%d,	needs	%d",
	52															RingBuffer_available_data(buffer),	amount);
	53
	54							void	*result	=	memcpy(target,	RingBuffer_starts_at(buffer),

amount);
	55							check(result	!=	NULL,	"Failed	to	write	buffer	into	data.");
	56
	57							RingBuffer_commit_read(buffer,	amount);
	58
	59							if	(buffer->end	==	buffer->start)	{
	60											buffer->start	=	buffer->end	=	0;
	61							}
	62
	63							return	amount;
	64			error:
	65							return	-1;
	66			}
	67
	68			bstring	RingBuffer_gets(RingBuffer	*	buffer,	int	amount)
	69			{
	70							check(amount	>	0,	"Need	more	than	0	for	gets,	you	gave:	%d
",
	71															amount);
	72							check_debug(amount	<=	RingBuffer_available_data(buffer),
	73															"Not	enough	in	the	buffer.");
	74
	75							bstring	result	=	blk2bstr(RingBuffer_starts_at(buffer),
amount);
	76							check(result	!=	NULL,	"Failed	to	create	gets	result.");
	77							check(blength(result)	==	amount,	"Wrong	result	length.");
	78
	79							RingBuffer_commit_read(buffer,	amount);
	80							assert(RingBuffer_available_data(buffer)	>=	0
	81															&&	"Error	in	read	commit.");
	82
	83							return	result;
	84			error:
	85							return	NULL;
	86			}

This	is	all	there	is	to	a	basic	RingBuffer	implementation.	You	can	read	and
write	blocks	of	data	to	it.	You	can	ask	how	much	is	in	it	and	how	much	space	it
has.	There	are	some	fancier	ring	buffers	that	use	tricks	on	the	OS	to	create	an
imaginary	infinite	store,	but	those	aren’t	portable.
Since	my	RingBuffer	deals	with	reading	and	writing	blocks	of	memory,	I’m
making	sure	that	any	time	end	==	start,	I	reset	them	to	0	(zero)	so	that	they
go	to	the	beginning	of	the	buffer.	In	the	Wikipedia	version	it	isn’t	writing	blocks
of	data,	so	it	only	has	to	move	end	and	start	around	in	a	circle.	To	better
handle	blocks,	you	have	to	drop	to	the	beginning	of	the	internal	buffer	whenever
the	data	is	empty.

The	Unit	Test

For	your	unit	test,	you’ll	want	to	test	as	many	possible	conditions	as	you	can.
The	easiest	way	to	do	that	is	to	preconstruct	different	RingBuffer	structs,	and
then	manually	check	that	the	functions	and	math	work	right.	For	example,	you
could	make	one	where	end	is	right	at	the	end	of	the	buffer	and	start	is	right
before	the	buffer,	and	then	see	how	it	fails.

What	You	Should	See
Here’s	my	ringbuffer_tests	run:

Exercise	44.1	Session

Click	here	to	view	code	image

$./tests/ringbuffer_tests
DEBUG	tests/ringbuffer_tests.c:60:	-----	RUNNING:

./tests/ringbuffer_tests

RUNNING:	./tests/ringbuffer_tests

DEBUG	tests/ringbuffer_tests.c:53:

-----	test_create

DEBUG	tests/ringbuffer_tests.c:54:

-----	test_read_write

DEBUG	tests/ringbuffer_tests.c:55:

-----	test_destroy

ALL	TESTS	PASSED

Tests	run:	3

$

You	should	have	at	least	three	tests	that	confirm	all	of	the	basic	operations,	and
then	see	how	much	more	you	can	test	beyond	what	I’ve	done.

How	to	Improve	It
As	usual,	you	should	go	back	and	add	defensive	programming	checks	to	this
exercise.	Hopefully	you’ve	been	doing	this,	because	the	base	code	in	most	of
liblcthw	doesn’t	have	the	common	defensive	programming	checks	that	I’m
teaching	you.	I	leave	this	to	you	so	that	you	can	get	used	to	improving	code	with
these	extra	checks.
For	example,	in	this	ring	buffer,	there’s	not	a	lot	of	checking	that	an	access	will
actually	be	inside	the	buffer.
If	you	read	the	“Circular	buffer”	page	on	Wikipedia,	you’ll	see	the	“Optimized
POSIX	implementation”	that	uses	Portable	Operating	System	Interface
(POSIX)-specific	calls	to	create	an	infinite	space.	Study	that	and	I’ll	have	you

try	it	in	the	Extra	Credit	section.

Extra	Credit
•	Create	an	alternative	implementation	of	RingBuffer	that	uses	the
POSIX	trick	and	then	create	a	unit	test	for	it.
•	Add	a	performance	comparison	test	to	this	unit	test	that	compares	the	two
versions	by	fuzzing	them	with	random	data	and	random	read/write
operations.	Make	sure	that	you	set	up	this	fuzzing	so	that	the	same
operations	are	done	to	each	version,	and	you	can	compare	them	between
runs.

Exercise	45.	A	Simple	TCP/IP	Client

Im	going	to	use	the	RingBuffer	to	create	a	very	simplistic	network	testing
tool	that	I	call	netclient.	To	do	this,	I	have	to	add	some	stuff	to	the
Makefile	to	handle	little	programs	in	the	bin/	directory.

Augment	the	Makefile
First,	add	a	variable	for	the	programs	just	like	the	unit	test’s	TESTS	and
TEST_SRC	variables:
Click	here	to	view	code	image

PROGRAMS_SRC=$(wildcard	bin/*.c)
PROGRAMS=$(patsubst	%.c,%,$(PROGRAMS_SRC))

Then,	you	want	to	add	the	PROGRAMS	to	the	all	target:
Click	here	to	view	code	image

all:	$(TARGET)	$(SO_TARGET)	tests	$(PROGRAMS)

Then,	add	PROGRAMS	to	the	rm	line	in	the	clean	target:
Click	here	to	view	code	image

rm	–rf	build	$(OBJECTS)	$(TESTS)	$(PROGRAMS)

Finally,	you	just	need	a	target	at	the	end	to	build	them	all:
Click	here	to	view	code	image

$(PROGRAMS):	CFLAGS	+=	$(TARGET)

With	these	changes,	you	can	drop	simple	.c	files	into	bin,	and	make	will	build
them	and	link	them	to	the	library	just	like	unit	tests	do.

The	netclient	Code
The	code	for	the	little	netclient	looks	like	this:

netclient.c

Click	here	to	view	code	image

		1			#undef	NDEBUG
		2			#include	<stdlib.h>

		3			#include	<sys/select.h>
		4			#include	<stdio.h>
		5			#include	<lcthw/ringbuffer.h>
		6			#include	<lcthw/dbg.h>
		7			#include	<sys/socket.h>
		8			#include	<sys/types.h>
		9			#include	<sys/uio.h>
	10			#include	<arpa/inet.h>
	11			#include	<netdb.h>
	12			#include	<unistd.h>
	13			#include	<fcntl.h>
	14
	15			struct	tagbstring	NL	=	bsStatic("\n");
	16			struct	tagbstring	CRLF	=	bsStatic("\r\n");
	17
	18			int	nonblock(int	fd)
	19			{
	20							int	flags	=	fcntl(fd,	F_GETFL,	0);
	21							check(flags	>=	0,	"Invalid	flags	on	nonblock.");
	22
	23							int	rc	=	fcntl(fd,	F_SETFL,	flags	|	O_NONBLOCK);
	24							check(rc	==	0,	"Can't	set	nonblocking.");
	25
	26							return	0;
	27			error:
	28							return	-1;
	29			}
	30
	31			int	client_connect(char	*host,	char	*port)
	32			{
	33							int	rc	=	0;
	34							struct	addrinfo	*addr	=	NULL;
	35
	36							rc	=	getaddrinfo(host,	port,	NULL,	&addr);
	37							check(rc	==	0,	"Failed	to	lookup	%s:%s",	host,	port);
	38
	39							int	sock	=	socket(AF_INET,	SOCK_STREAM,	0);
	40							check(sock	>=	0,	"Cannot	create	a	socket.");
	41
	42							rc	=	connect(sock,	addr->ai_addr,	addr->ai_addrlen);
	43							check(rc	==	0,	"Connect	failed.");
	44
	45							rc	=	nonblock(sock);
	46							check(rc	==	0,	"Can't	set	nonblocking.");
	47
	48							freeaddrinfo(addr);
	49							return	sock;
	50
	51			error:
	52							freeaddrinfo(addr);
	53							return	-1;
	54			}

	55
	56			int	read_some(RingBuffer	*	buffer,	int	fd,	int	is_socket)
	57			{
	58							int	rc	=	0;
	59
	60							if	(RingBuffer_available_data(buffer)	==	0)	{
	61											buffer->start	=	buffer->end	=	0;
	62							}
	63
	64							if	(is_socket)	{
	65											rc	=	recv(fd,	RingBuffer_starts_at(buffer),
	66																			RingBuffer_available_space(buffer),	0);
	67							}	else	{
	68											rc	=	read(fd,	RingBuffer_starts_at(buffer),
	69																			RingBuffer_available_space(buffer));
	70							}
	71
	72							check(rc	>=	0,	"Failed	to	read	from	fd:	%d",	fd);
	73
	74							RingBuffer_commit_write(buffer,	rc);
	75
	76							return	rc;
	77
	78			error:
	79							return	-1;
	80			}
	81
	82			int	write_some(RingBuffer	*	buffer,	int	fd,	int	is_socket)
	83			{
	84							int	rc	=	0;
	85							bstring	data	=	RingBuffer_get_all(buffer);
	86
	87							check(data	!=	NULL,	"Failed	to	get	from	the	buffer.");
	88							check(bfindreplace(data,	&NL,	&CRLF,	0)	==	BSTR_OK,
	89															"Failed	to	replace	NL.");
	90
	91							if	(is_socket)	{
	92											rc	=	send(fd,	bdata(data),	blength(data),	0);
	93							}	else	{
	94											rc	=	write(fd,	bdata(data),	blength(data));
	95							}
	96
	97							check(rc	==	blength(data),	"Failed	to	write	everything	to
fd:	%d.",
	98															fd);
	99							bdestroy(data);
100
101							return	rc;
102
103			error:
104							return	-1;
105			}

106
107			int	main(int	argc,	char	*argv[])
108			{
109							fd_set	allreads;
110							fd_set	readmask;
111
112							int	socket	=	0;
113							int	rc	=	0;
114							RingBuffer	*in_rb	=	RingBuffer_create(1024	*	10);
115							RingBuffer	*sock_rb	=	RingBuffer_create(1024	*	10);
116
117							check(argc	==	3,	"USAGE:	netclient	host	port");
118
119							socket	=	client_connect(argv[1],	argv[2]);
120							check(socket	>=	0,	"connect	to	%s:%s	failed.",	argv[1],
argv[2]);
121
122							FD_ZERO(&allreads);
123							FD_SET(socket,	&allreads);
124							FD_SET(0,	&allreads);
125
126							while	(1)	{
127											readmask	=	allreads;
128											rc	=	select(socket	+	1,	&readmask,	NULL,	NULL,	NULL);
129											check(rc	>=	0,	"select	failed.");
130
131											if	(FD_ISSET(0,	&readmask))	{
132															rc	=	read_some(in_rb,	0,	0);
133															check_debug(rc	!=	-1,	"Failed	to	read	from
stdin.");
134											}
135
136											if	(FD_ISSET(socket,	&readmask))	{
137															rc	=	read_some(sock_rb,	socket,	0);
138															check_debug(rc	!=	-1,	"Failed	to	read	from
socket.");
139											}
140
141											while	(!RingBuffer_empty(sock_rb))	{
142															rc	=	write_some(sock_rb,	1,	0);
143															check_debug(rc	!=	-1,	"Failed	to	write	to
stdout.");
144											}
145
146											while	(!RingBuffer_empty(in_rb))	{
147															rc	=	write_some(in_rb,	socket,	1);
148															check_debug(rc	!=	-1,	"Failed	to	write	to
socket.");
149											}
150							}
151
152							return	0;

153
154			error:
155							return	-1;
156			}

This	code	uses	select	to	handle	events	from	both	stdin	(file	descriptor	0)
and	socket,	which	it	uses	to	talk	to	a	server.	The	code	uses	RingBuffers	to
store	the	data	and	copy	it	around.	You	can	consider	the	functions	read_some
and	write_some	early	prototypes	for	similar	functions	in	the	RingBuffer
library.
This	little	bit	of	code	contains	quite	a	few	networking	functions	that	you	may	not
know.	As	you	come	across	a	function	that	you	don’t	know,	look	it	up	in	the	man
pages	and	make	sure	you	understand	it.	This	one	little	file	might	inspire	you	to
then	research	all	of	the	APIs	required	to	write	a	little	server	in	C.

What	You	Should	See
If	you	have	everything	building,	then	the	quickest	way	to	test	the	code	is	see	if
you	can	get	a	special	file	off	of	http://learncodethehardway.org.

Exercise	45.1	Session

Click	here	to	view	code	image

$
$./bin/netclient	learncodethehardway.org	80
GET	/ex45.txt	HTTP/1.1

Host:	learncodethehardway.org

HTTP/1.1	200	OK

Date:	Fri,	27	Apr	2012	00:41:25	GMT

Content-Type:	text/plain

Content-Length:	41

Last-Modified:	Fri,	27	Apr	2012	00:42:11	GMT

ETag:	4f99eb63-29

Server:	Mongrel2/1.7.5

Learn	C	The	Hard	Way,	Exercise	45	works.

^C

$

What	I	do	here	is	type	in	the	syntax	needed	to	make	the	HTTP	request	for	the
file	/ex45.txt,	then	the	Host:	header	line,	and	then	I	press	ENTER	to	get
an	empty	line.	I	then	get	the	response,	with	headers	and	the	content.	After	that,	I
just	hit	CTRL-C	to	exit.

http://learncodethehardway.org

How	to	Break	It
This	code	could	definitely	have	bugs,	and	currently	in	the	draft	of	this	book,	I’m
going	to	have	to	keep	working	on	it.	In	the	meantime,	try	analyzing	the	code	I
have	here	and	thrashing	it	against	other	servers.	There’s	a	tool	called	netcat
that’s	great	for	setting	up	these	kinds	of	servers.	Another	thing	to	do	is	use	a
language	like	Python	or	Ruby	to	create	a	simple	junk	server	that	spews	out
junk	and	bad	data,	randomly	closes	connections,	and	does	other	nasty	things.
If	you	find	bugs,	report	them	in	the	comments,	and	I’ll	fix	them	up.

Extra	Credit
•	As	I	mentioned,	there	are	quite	a	few	functions	you	may	not	know,	so	look
them	up.	In	fact,	look	them	all	up	even	if	you	think	you	know	them.
•	Run	this	under	the	debugger	and	look	for	errors.
•	Go	back	through	and	add	various	defensive	programming	checks	to	the
functions	to	improve	them.
•	Use	the	getopt	function	to	allow	the	user	the	option	not	to	translate	\n
to	\r\n.	This	is	only	needed	on	protocols	that	require	it	for	line	endings,
like	HTTP.	Sometimes	you	don’t	want	the	translation,	so	give	the	user	the
option.

Exercise	46.	Ternary	Search	Tree

The	final	data	structure	that	I’ll	show	you	is	called	the	TSTree,	which	is	similar
to	the	BSTree,	except	it	has	three	branches:	low,	equal,	and	high.	It’s
primarily	used	just	like	BSTree	and	Hashmap	to	store	key/value	data,	but	it
works	off	of	the	individual	characters	in	the	keys.	This	gives	the	TSTree	some
abilities	that	neither	BSTree	nor	Hashmap	has.
In	a	TSTree,	every	key	is	a	string,	and	it’s	inserted	by	walking	through	and
building	a	tree	based	on	the	equality	of	the	characters	in	the	string.	It	starts	at	the
root,	looks	at	the	character	for	that	node,	and	if	it’s	lower,	equal	to,	or	higher
than	that,	then	it	goes	in	that	direction.	You	can	see	this	in	the	header	file:

tstree.h

Click	here	to	view	code	image

#ifndef	_lcthw_TSTree_h

#define	_lcthw_TSTree_h

#include	<stdlib.h>

#include	<lcthw/darray.h>

typedef	struct	TSTree	{
				char	splitchar;
				struct	TSTree	*low;
				struct	TSTree	*equal;
				struct	TSTree	*high;
				void	*value;
}	TSTree;

void	*TSTree_search(TSTree	*	root,	const	char	*key,	size_t	len);

void	*TSTree_search_prefix(TSTree	*	root,	const	char	*key,	size_t
len);

typedef	void	(*TSTree_traverse_cb)	(void	*value,	void	*data);

TSTree	*TSTree_insert(TSTree	*	node,	const	char	*key,	size_t	len,
								void	*value);

void	TSTree_traverse(TSTree	*	node,	TSTree_traverse_cb	cb,	void
*data);

void	TSTree_destroy(TSTree	*	root);

#endif

The	TSTree	has	the	following	elements:
splitchar	The	character	at	this	point	in	the	tree.
low	The	branch	that’s	lower	than	splitchar.
equal	The	branch	that’s	equal	to	splitchar.
high	The	branch	that’s	higher	than	splitchar.
value	The	value	set	for	a	string	at	that	point	with	splitchar.

You	can	see	that	this	implementation	has	the	following	operations:
search	A	typical	operation	to	find	a	value	for	this	key.
search_prefix	This	operation	finds	the	first	value	that	has	this	as	a	prefix	of
its	key.	This	is	the	an	operation	that	you	can’t	easily	do	in	a	BSTree	or
Hashmap.

insert	This	breaks	the	key	down	by	each	character	and	inserts	them	into	the
tree.

traverse	This	walks	through	the	tree,	allowing	you	to	collect	or	analyze	all
the	keys	and	values	it	contains.

The	only	thing	missing	is	a	TSTree_delete,	and	that’s	because	it’s	a	horribly
expensive	operation,	even	more	expensive	than	BSTree_delete.	When	I	use
TSTree	structures,	I	treat	them	as	constant	data	that	I	plan	on	traversing	many
times,	and	not	removing	anything	from	them.	They	are	very	fast	for	this,	but
aren’t	good	if	you	need	to	insert	and	delete	things	quickly.	For	that,	I	use
Hashmap,	since	it	beats	both	BSTree	and	TSTree.
The	implementation	for	the	TSTree	is	actually	simple,	but	it	might	be	hard	to
follow	at	first.	I’ll	break	it	down	after	you	enter	it	in:

tstree.c

Click	here	to	view	code	image

		1			#include	<stdlib.h>
		2			#include	<stdio.h>
		3			#include	<assert.h>
		4			#include	<lcthw/dbg.h>
		5			#include	<lcthw/tstree.h>
		6
		7			static	inline	TSTree	*TSTree_insert_base(TSTree	*	root,	TSTree
*	node,

		8											const	char	*key,	size_t	len,
		9											void	*value)
	10			{
	11							if	(node	==	NULL)	{
	12											node	=	(TSTree	*)	calloc(1,	sizeof(TSTree));
	13
	14											if	(root	==	NULL)	{
	15															root	=	node;
	16											}
	17
	18											node->splitchar	=	*key;
	19							}
	20
	21							if	(*key	<	node->splitchar)	{
	22											node->low	=	TSTree_insert_base(
	23																			root,	node->low,	key,	len,	value);
	24							}	else	if	(*key	==	node->splitchar)	{
	25											if	(len	>	1)	{
	26															node->equal	=	TSTree_insert_base(
	27																							root,	node->equal,	key	+	1,	len	-	1,
value);
	28											}	else	{
	29															assert(node->value	==	NULL	&&	"Duplicate	insert
into	tst.");
	30															node->value	=	value;
	31											}
	32							}	else	{
	33											node->high	=	TSTree_insert_base(
	34																			root,	node->high,	key,	len,	value);
	35							}
	36
	37							return	node;
	38			}
	39
	40			TSTree	*TSTree_insert(TSTree	*	node,	const	char	*key,	size_t
len,
	41											void	*value)
	42			{
	43							return	TSTree_insert_base(node,	node,	key,	len,	value);
	44			}
	45
	46			void	*TSTree_search(TSTree	*	root,	const	char	*key,	size_t	len)
	47			{
	48							TSTree	*node	=	root;
	49							size_t	i	=	0;
	50
	51							while	(i	<	len	&&	node)	{
	52											if	(key[i]	<	node->splitchar)	{
	53															node	=	node->low;
	54											}	else	if	(key[i]	==	node->splitchar)	{
	55															i++;
	56															if	(i	<	len)

	57																			node	=	node->equal;
	58											}	else	{
	59															node	=	node->high;
	60											}
	61							}
	62
	63							if	(node)	{
	64											return	node->value;
	65							}	else	{
	66											return	NULL;
	67							}
	68			}
	69
	70			void	*TSTree_search_prefix(TSTree	*	root,	const	char	*key,
size_t	len)
	71			{
	72							if	(len	==	0)
	73											return	NULL;
	74
	75							TSTree	*node	=	root;
	76							TSTree	*last	=	NULL;
	77							size_t	i	=	0;
	78
	79							while	(i	<	len	&&	node)	{
	80											if	(key[i]	<	node->splitchar)	{
	81															node	=	node->low;
	82											}	else	if	(key[i]	==	node->splitchar)	{
	83															i++;
	84															if	(i	<	len)	{
	85																			if	(node->value)
	86																							last	=	node;
	87																			node	=	node->equal;
	88															}
	89											}	else	{
	90															node	=	node->high;
	91											}
	92							}
	93
	94							node	=	node	?	node	:	last;
	95
	96							//	traverse	until	we	find	the	first	value	in	the	equal
chain

	97							//	this	is	then	the	first	node	with	this	prefix
	98							while	(node	&&	!node->value)	{
	99											node	=	node->equal;
100							}
101
102							return	node	?	node->value	:	NULL;
103			}
104
105			void	TSTree_traverse(TSTree	*	node,	TSTree_traverse_cb	cb,	void
*data)

106			{
107							if	(!node)
108											return;
109
110							if	(node->low)
111											TSTree_traverse(node->low,	cb,	data);
112
113							if	(node->equal)	{
114											TSTree_traverse(node->equal,	cb,	data);
115							}
116
117							if	(node->high)
118											TSTree_traverse(node->high,	cb,	data);
119
120							if	(node->value)
121											cb(node->value,	data);
122			}
123
124			void	TSTree_destroy(TSTree	*	node)
125			{
126							if	(node	==	NULL)
127											return;
128
129							if	(node->low)
130											TSTree_destroy(node->low);
131
132							if	(node->equal)	{
133											TSTree_destroy(node->equal);
134							}
135
136							if	(node->high)
137											TSTree_destroy(node->high);
138
139							free(node);
140			}

For	TSTree_insert,	I’m	using	the	same	pattern	for	recursive	structures
where	I	have	a	small	function	that	calls	the	real	recursive	function.	I’m	not	doing
any	additional	checks	here,	but	you	should	add	the	usual	defensive	programming
checks	to	it.	One	thing	to	keep	in	mind	is	that	it’s	using	a	slightly	different
design	that	doesn’t	have	a	separate	TSTree_create	function.	However,	if
you	pass	it	a	NULL	for	the	node,	then	it	will	create	it	and	return	the	final	value.
That	means	I	need	to	break	down	TSTree_insert_base	so	that	you
understand	the	insert	operation:

tstree.c:10-18	As	I	mentioned,	if	given	a	NULL,	then	I	need	to	make	this
node	and	assign	the	*key	(current	character)	to	it.	This	is	used	to	build	the
tree	as	we	insert	keys.

tstree.c:20-21	If	the	*key	is	less	than	this,	then	recurse,	but	go	to	the	low
branch.

tstree.c:22	This	splitchar	is	equal,	so	I	want	to	go	and	deal	with	equality.
This	will	happen	if	we	just	create	this	node,	so	we’ll	be	building	the	tree	at
this	point.

tstree.c:23-24	There	are	still	characters	to	handle,	so	recurse	down	the
equal	branch,	but	go	to	the	next	*key	character.

tstree.c:26-27	This	is	the	last	character,	so	I	set	the	value	and	that’s	it.	I	have
an	assert	here	in	case	of	a	duplicate.

tstree.c:29-30	The	last	condition	is	that	this	*key	is	greater	than
splitchar,	so	I	need	to	recurse	down	the	high	branch.

The	key	to	this	data	structure	is	the	fact	that	I’m	only	incrementing	the	character
when	a	splitchar	is	equal.	For	the	other	two	conditions,	I	just	walk	through
the	tree	until	I	hit	an	equal	character	to	recurse	into	next.	What	this	does	is	make
it	very	fast	not	to	find	a	key.	I	can	get	a	bad	key,	and	simply	walk	through	a	few
high	and	low	nodes	until	I	hit	a	dead	end	before	I	know	that	this	key	doesn’t
exist.	I	don’t	need	to	process	every	character	of	the	key	or	every	node	of	the	tree.
Once	you	understand	that,	then	move	on	to	analyzing	how	TSTree_search
works.

tstree.c:46	I	don’t	need	to	process	the	tree	recursively	in	the	TSTree.	I	can
just	use	a	while-loop	and	a	node	for	where	I	currently	am.

tstree.c:47-48	If	the	current	character	is	less	than	the	node	splitchar,
then	go	low.

tstree.c:49-51	If	it’s	equal,	then	increment	i	and	go	equal	as	long	as	it’s	not
the	last	character.	That’s	why	the	if(i	<	len)	is	there,	so	that	I	don’t
go	too	far	past	the	final	value.

tstree.c:52-53	Otherwise,	I	go	high,	since	the	character	is	greater.
tstree.c:57-61	If	I	have	a	node	after	the	loop,	then	return	its	value,
otherwise	return	NULL.

This	isn’t	too	difficult	to	understand,	and	you	can	see	that	it’s	almost	exactly	the
same	algorithm	for	the	TSTree_search_prefix	function.	The	only
difference	is	that	I’m	not	trying	to	find	an	exact	match,	but	find	the	longest
prefix	I	can.	To	do	that,	I	keep	track	of	the	last	node	that	was	equal,	and	then
after	the	search	loop,	walk	through	that	node	until	I	find	a	value.

Looking	at	TSTree_search_prefix,	you	can	start	to	see	the	second
advantage	a	TSTree	has	over	the	BSTree	and	Hashmap	for	finding	strings.
Given	any	key	of	X	length,	you	can	find	any	key	in	X	moves.	You	can	also	find
the	first	prefix	in	X	moves,	plus	N	more	depending	on	how	big	the	matching	key
is.	If	the	biggest	key	in	the	tree	is	ten	characters	long,	then	you	can	find	any
prefix	in	that	key	in	ten	moves.	More	importantly,	you	can	do	all	of	this	by
comparing	each	character	of	the	key	once.
In	comparison,	to	do	the	same	with	a	BSTree,	you	would	have	to	check	the
prefixes	of	each	character	in	every	possible	matching	node	in	the	BSTree
against	the	characters	in	the	prefix.	It’s	the	same	for	finding	keys	or	seeing	if	a
key	doesn’t	exist.	You	have	to	compare	each	character	against	most	of	the
characters	in	the	BSTree	to	find	or	not	find	a	match.
A	Hashmap	is	even	worse	for	finding	prefixes,	because	you	can’t	hash	just	the
prefix.	Basically,	you	can’t	do	this	efficiently	in	a	Hashmap	unless	the	data	is
something	you	can	parse,	like	a	URL.	Even	then,	that	usually	requires	whole
trees	of	Hashmaps.
The	last	two	functions	should	be	easy	for	you	to	analyze	since	they’re	the	typical
traversing	and	destroying	operations	that	you’ve	already	seen	in	other	data
structures.
Finally,	I	have	a	simple	unit	test	for	the	whole	thing	to	make	sure	it	works	right:

tstree_tests.c

Click	here	to	view	code	image

		1			#include	"minunit.h"
		2			#include	<lcthw/tstree.h>
		3			#include	<string.h>
		4			#include	<assert.h>
		5			#include	<lcthw/bstrlib.h>
		6
		7			TSTree	*node	=	NULL;
		8			char	*valueA	=	"VALUEA";
		9			char	*valueB	=	"VALUEB";
	10			char	*value2	=	"VALUE2";
	11			char	*value4	=	"VALUE4";
	12			char	*reverse	=	"VALUER";
	13			int	traverse_count	=	0;
	14
	15			struct	tagbstring	test1	=	bsStatic("TEST");
	16			struct	tagbstring	test2	=	bsStatic("TEST2");
	17			struct	tagbstring	test3	=	bsStatic("TSET");

	18			struct	tagbstring	test4	=	bsStatic("T");
	19
	20			char	*test_insert()
	21			{
	22							node	=	TSTree_insert(node,	bdata(&test1),	blength(&test1),
valueA);
	23							mu_assert(node	!=	NULL,	"Failed	to	insert	into	tst.");
	24
	25							node	=	TSTree_insert(node,	bdata(&test2),	blength(&test2),
value2);
	26							mu_assert(node	!=	NULL,
	27															"Failed	to	insert	into	tst	with	second	name.");
	28
	29							node	=	TSTree_insert(node,	bdata(&test3),	blength(&test3),
reverse);
	30							mu_assert(node	!=	NULL,
	31															"Failed	to	insert	into	tst	with	reverse	name.");
	32
	33							node	=	TSTree_insert(node,	bdata(&test4),	blength(&test4),
value4);
	34							mu_assert(node	!=	NULL,
	35															"Failed	to	insert	into	tst	with	second	name.");
	36
	37							return	NULL;
	38			}
	39
	40			char	*test_search_exact()
	41			{
	42							//	tst	returns	the	last	one	inserted
	43							void	*res	=	TSTree_search(node,	bdata(&test1),
blength(&test1));
	44							mu_assert(res	==	valueA,
	45															"Got	the	wrong	value	back,	should	get	A	not	B.");
	46
	47							//	tst	does	not	find	if	not	exact
	48							res	=	TSTree_search(node,	"TESTNO",	strlen("TESTNO"));
	49							mu_assert(res	==	NULL,	"Should	not	find	anything.");
	50
	51							return	NULL;
	52			}
	53
	54			char	*test_search_prefix()
	55			{
	56							void	*res	=	TSTree_search_prefix(
	57															node,	bdata(&test1),	blength(&test1));
	58							debug("result:	%p,	expected:	%p",	res,	valueA);
	59							mu_assert(res	==	valueA,	"Got	wrong	valueA	by	prefix.");
	60
	61							res	=	TSTree_search_prefix(node,	bdata(&test1),	1);
	62							debug("result:	%p,	expected:	%p",	res,	valueA);
	63							mu_assert(res	==	value4,	"Got	wrong	value4	for	prefix	of
1.");

	64
	65							res	=	TSTree_search_prefix(node,	"TE",	strlen("TE"));
	66							mu_assert(res	!=	NULL,	"Should	find	for	short	prefix.");
	67
	68							res	=	TSTree_search_prefix(node,	"TE--",	strlen("TE--"));
	69							mu_assert(res	!=	NULL,	"Should	find	for	partial	prefix.");
	70
	71							return	NULL;
	72			}
	73
	74			void	TSTree_traverse_test_cb(void	*value,	void	*data)
	75			{
	76							assert(value	!=	NULL	&&	"Should	not	get	NULL	value.");
	77							assert(data	==	valueA	&&	"Expecting	valueA	as	the	data.");
	78							traverse_count++;
	79			}
	80
	81			char	*test_traverse()
	82			{
	83							traverse_count	=	0;
	84							TSTree_traverse(node,	TSTree_traverse_test_cb,	valueA);
	85							debug("traverse	count	is:	%d",	traverse_count);
	86							mu_assert(traverse_count	==	4,	"Didn't	find	4	keys.");
	87
	88							return	NULL;
	89			}
	90
	91			char	*test_destroy()
	92			{
	93							TSTree_destroy(node);
	94
	95							return	NULL;
	96			}
	97
	98			char	*all_tests()
	99			{
100							mu_suite_start();
101
102							mu_run_test(test_insert);
103							mu_run_test(test_search_exact);
104							mu_run_test(test_search_prefix);
105							mu_run_test(test_traverse);
106							mu_run_test(test_destroy);
107
108							return	NULL;
109			}
110
111			RUN_TESTS(all_tests);

Advantages	and	Disadvantages
There	are	other	interesting,	practical	things	you	can	do	with	a	TSTree:

•	In	addition	to	finding	prefixes,	you	can	reverse	all	of	the	keys	you	insert,
and	then	find	things	by	suffix.	I	use	this	to	look	up	host	names,	since	I	want
to	find	*.learncodethe	hardway.com.	If	I	go	backward,	I	can
match	them	quickly.
•	You	can	do	approximate	matching,	by	gathering	all	of	the	nodes	that	have
most	of	the	same	characters	as	the	key,	or	using	other	algorithms	to	find	a
close	match.
•	You	can	find	all	of	the	keys	that	have	a	part	in	the	middle.

I’ve	already	talked	about	some	of	the	things	TSTrees	can	do,	but	they	aren’t	the
best	data	structure	all	the	time.	Here	are	the	disadvantages	of	the	TSTree:

•	As	I	mentioned,	deleting	from	them	is	murder.	They	are	better	used	for
data	that	needs	to	be	looked	up	fast	and	rarely	removed.	If	you	need	to
delete,	then	simply	disable	the	value	and	then	periodically	rebuild	the
tree	when	it	gets	too	big.
•	It	uses	a	ton	of	memory	compared	to	BSTree	and	Hashmaps	for	the
same	key	space.	Think	about	it.	It’s	using	a	full	node	for	each	character	in
every	key.	It	might	work	better	for	smaller	keys,	but	if	you	put	a	lot	in	a
TSTree,	it	will	get	huge.
•	They	also	don’t	work	well	with	large	keys,	but	large	is	subjective.	As
usual,	test	it	first.	If	you’re	trying	to	store	10,000-character	keys,	then	use	a
Hashmap.

How	to	Improve	It
As	usual,	go	through	and	improve	this	by	adding	the	defensive	programming
preconditions,	asserts,	and	checks	to	each	function.	There	are	some	other
possible	improvements,	but	you	don’t	necessarily	have	to	implement	all	of	these:

•	You	could	allow	duplicates	by	using	a	DArray	instead	of	the	value.
•	As	I	mentioned	earlier,	deleting	is	hard,	but	you	could	simulate	it	by
setting	the	values	to	NULL	so	that	they	are	effectively	gone.
•	There	are	no	ways	to	collect	all	of	the	possible	matching	values.	I’ll	have
you	implement	that	in	an	Extra	Credit	exercise.
•	There	are	other	algorithms	that	are	more	complex	but	have	slightly	better
properties.	Take	a	look	at	suffix	array,	suffix	tree,	and	radix	tree	structures.

Extra	Credit

•	Implement	a	TSTree_collect	that	returns	a	DArray	containing	all	of
the	keys	that	match	the	given	prefix.
•	Implement	TSTree_search_suffix	and	a
TSTree_insert_suffix	so	you	can	do	suffix	searches	and	inserts.
•	Use	the	debugger	to	see	how	this	structure	stores	data	compared	to	the
BSTree	and	Hashmap.

Exercise	47.	A	Fast	URL	Router

Im	now	going	to	show	you	how	I	use	the	TSTree	to	do	fast	URL	routing	in
Web	servers	that	I’ve	written.	This	works	for	simple	URL	routing	that	you	might
use	at	the	edge	of	an	application,	but	it	doesn’t	really	work	for	the	more	complex
(and	sometimes	unnecessary)	routing	found	in	many	Web	application
frameworks.
To	play	with	routing,	I’m	going	to	make	a	little	command	line	tool	that	I’m
calling	urlor,	which	reads	a	simple	file	of	routes,	and	then	prompts	the	user	to
enter	in	URLs.

urlor.c

Click	here	to	view	code	image

		1			#include	<lcthw/tstree.h>
		2			#include	<lcthw/bstrlib.h>
		3
		4			TSTree	*add_route_data(TSTree	*	routes,	bstring	line)
		5			{
		6							struct	bstrList	*data	=	bsplit(line,	'	');
		7							check(data->qty	==	2,	"Line	'%s'	does	not	have	2	columns",
		8															bdata(line));
		9
	10								routes	=	TSTree_insert(routes,
	11																bdata(data->entry[0]),
	12																blength(data->entry[0]),
	13																bstrcpy(data->entry[1]));
	14
	15								bstrListDestroy(data);
	16
	17								return	routes;
	18
	19				error:
	20								return	NULL;
	21				}
	22
	23				TSTree	*load_routes(const	char	*file)
	24				{
	25								TSTree	*routes	=	NULL;
	26								bstring	line	=	NULL;
	27								FILE	*routes_map	=	NULL;
	28
	29								routes_map	=	fopen(file,	"r");
	30								check(routes_map	!=	NULL,	"Failed	to	open	routes:	%s",

file);
	31
	32								while	((line	=	bgets((bNgetc)	fgetc,	routes_map,	'\n'))	!=
NULL)	{
	33												check(btrimws(line)	==	BSTR_OK,	"Failed	to	trim
line.");
	34												routes	=	add_route_data(routes,	line);
	35												check(routes	!=	NULL,	"Failed	to	add	route.");
	36												bdestroy(line);
	37								}
	38
	39								fclose(routes_map);
	40								return	routes;
	41
	42				error:
	43								if	(routes_map)	fclose(routes_map);
	44								if	(line)	bdestroy(line);
	45
	46								return	NULL;
	47				}
	48
	49				bstring	match_url(TSTree	*	routes,	bstring	url)
	50				{
	51								bstring	route	=	TSTree_search(routes,	bdata(url),
blength(url));
	52
	53								if	(route	==	NULL)	{
	54												printf("No	exact	match	found,	trying	prefix.\n");
	55												route	=	TSTree_search_prefix(routes,	bdata(url),
blength(url));
	56								}
	57
	58								return	route;
	59				}
	60
	61				bstring	read_line(const	char	*prompt)
	62				{
	63								printf("%s",	prompt);
	64
	65								bstring	result	=	bgets((bNgetc)	fgetc,	stdin,	'\n');
	66								check_debug(result	!=	NULL,	"stdin	closed.");
	67
	68								check(btrimws(result)	==	BSTR_OK,	"Failed	to	trim.");
	69
	70								return	result;
	71
	72				error:
	73								return	NULL;
	74				}
	75
	76				void	bdestroy_cb(void	*value,	void	*ignored)
	77				{

	78								(void)ignored;
	79								bdestroy((bstring)	value);
	80				}
	81
	82				void	destroy_routes(TSTree	*	routes)
	83				{
	84								TSTree_traverse(routes,	bdestroy_cb,	NULL);
	85								TSTree_destroy(routes);
	86				}
	87
	88				int	main(int	argc,	char	*argv[])
	89				{
	90								bstring	url	=	NULL;
	91								bstring	route	=	NULL;
	92								TSTree	*routes	=	NULL;
	93
	94								check(argc	==	2,	"USAGE:	urlor	<urlfile>");
	95
	96								routes	=	load_routes(argv[1]);
	97								check(routes	!=	NULL,	"Your	route	file	has	an	error.");
	98
	99								while	(1)	{
100												url	=	read_line("URL>	");
101												check_debug(url	!=	NULL,	"goodbye.");
102
103												route	=	match_url(routes,	url);
104
105												if	(route)	{
106																printf("MATCH:	%s	==	%s\n",	bdata(url),
bdata(route));
107												}	else	{
108																printf("FAIL:	%s\n",	bdata(url));
109												}
110
111												bdestroy(url);
112								}
113
114								destroy_routes(routes);
115								return	0;
116
117				error:
118								destroy_routes(routes);
119								return	1;
120				}

I’ll	then	make	a	simple	file	with	some	fake	routes	to	play	with:
/	MainApp

/hello	Hello

/hello/	Hello

/signup	Signup

/logout	Logout

/album/	Album

What	You	Should	See
Once	you	have	urlor	working,	and	a	routes	file,	you	can	try	it	out	here:

Exercise	47	Session

Click	here	to	view	code	image

$./bin/urlor	urls.txt
URL>	/

MATCH:	/	==	MainApp

URL>	/hello

MATCH:	/hello	==	Hello

URL>	/hello/zed

No	exact	match	found,	trying	prefix.

MATCH:	/hello/zed	==	Hello

URL>	/album

No	exact	match	found,	trying	prefix.

MATCH:	/album	==	Album

URL>	/album/12345

No	exact	match	found,	trying	prefix.

MATCH:	/album/12345	==	Album

URL>	asdfasfdasfd

No	exact	match	found,	trying	prefix.

FAIL:	asdfasfdasfd

URL>	/asdfasdfasf

No	exact	match	found,	trying	prefix.

MATCH:	/asdfasdfasf	==	MainApp

URL>

$

You	can	see	that	the	routing	system	first	tries	an	exact	match,	and	if	it	can’t	find
one,	it	will	give	a	prefix	match.	This	is	mostly	done	to	try	out	the	difference
between	the	two.	Depending	on	the	semantics	of	your	URLs,	you	may	want	to
always	match	exactly,	always	to	prefixes,	or	do	both	and	pick	the	best	one.

How	to	Improve	It
URLs	are	weird	because	people	want	them	to	magically	handle	all	of	the	insane
things	their	Web	applications	do,	even	if	that’s	not	very	logical.	In	this	simple
demonstration	of	how	to	use	the	TSTree	to	do	routing,	there	are	some	flaws
that	people	wouldn’t	be	able	to	articulate.	For	example,	the	TSTree	will	match

/al	to	Album,	which	generally	isn’t	what	they	want.	They	want	/album/*	to
match	Album,	and	/al	to	be	a	404	error.
This	isn’t	difficult	to	implement,	though,	since	you	could	change	the	prefix
algorithm	to	match	any	way	you	want.	If	you	change	the	matching	algorithm	to
find	all	matching	prefixes,	and	then	pick	the	best	one,	you’ll	be	able	to	do	it
easily.	In	this	case,	/al	could	match	MainApp	or	Album.	Take	those	results,
and	then	do	a	little	logic	to	determine	which	is	better.
Another	thing	you	can	do	in	a	real	routing	system	is	use	the	TSTree	to	find	all
possible	matches,	but	these	matches	are	a	small	set	of	patterns	to	check.	In	many
Web	applications,	there’s	a	list	of	regular	expressions	(regex)	that	has	to	be
matched	against	URLs	on	each	request.	Running	all	of	the	regex	can	be	time
consuming,	so	you	can	use	a	TSTree	to	find	all	of	the	possible	matches	by	their
prefixes.	That	way	you	narrow	down	the	patterns	to	try	to	a	few	very	quickly.
Using	this	method,	your	URLs	will	match	exactly	since	you’re	actually	running
real	regex	patterns,	and	they’ll	match	much	faster	since	you’re	finding	them	by
possible	prefixes.
This	kind	of	algorithm	also	works	for	anything	else	that	needs	to	have	flexible
user-visible	routing	mechanisms:	domain	names,	IP	addresses,	registries	and
directories,	files,	or	URLs.

Extra	Credit
•	Instead	of	just	storing	the	string	for	the	handler,	create	an	actual	engine
that	uses	a	Handler	struct	to	store	the	application.	The	structure	would
store	the	URL	to	which	it’s	attached,	the	name,	and	anything	else	you’d
need	to	make	an	actual	routing	system.
•	Instead	of	mapping	URLs	to	arbitrary	names,	map	them	to	.so	files	and
use	the	dlopen	system	to	load	handlers	on	the	fly	and	call	callbacks	they
contain.	Put	these	callbacks	in	your	Handler	struct,	and	then	you	have
yourself	a	fully	dynamic	callback	handler	system	in	C.

Exercise	48.	A	Simple	Network	Server

We	now	start	the	part	of	the	book	where	you	do	a	long-running,	more	involved
project	in	a	series	of	exercises.	The	last	five	exercises	will	present	the	problem
of	creating	a	simple	network	server	in	a	similar	fashion	as	you	did	with	the
logfind	project.	I’ll	describe	each	phase	of	the	project,	you’ll	attempt	it,	and
then	you’ll	compare	your	implementation	to	mine	before	continuing.
These	descriptions	are	purposefully	vague	so	that	you	have	the	freedom	to
attempt	to	solve	the	problems	on	your	own,	but	I’m	still	going	to	help	you.
Included	with	each	of	these	exercises	are	two	videos.	The	first	video	shows	you
how	the	project	for	the	exercise	should	work,	so	you	can	see	it	in	action	and	try
to	emulate	it.	The	second	video	shows	you	how	I	solved	the	problem,	so	you	can
compare	your	attempt	to	mine.	Finally,	you’ll	have	access	to	all	of	the	code	in
the	GitHub	project,	so	you	can	see	real	code	by	me.
You	should	attempt	the	problem	first,	then	after	you	get	it	working	(or	if	you	get
totally	stuck),	go	watch	the	second	video	and	take	a	look	at	my	code.	When
you’re	done,	you	can	either	keep	using	your	code,	or	just	use	mine	for	the	next
exercise.

The	Specification
In	this	first	small	program	you’ll	lay	the	first	foundation	for	the	remaining
projects.	You’ll	call	this	program	statserve,	even	though	this	specification
doesn’t	mention	statistics	or	anything.	That	will	come	later.
The	specification	for	this	project	is	very	simple:

1.	Create	a	simple	network	server	that	accepts	a	connection	on	port	7899
from	netclient	or	the	nc	command,	and	that	echoes	back	anything	you
type.

2.	You’ll	need	to	learn	how	to	bind	a	port,	listen	on	the	socket,	and	answer	it.
Use	your	research	skills	to	study	how	this	is	done	and	attempt	to
implement	it	yourself.

3.	The	more	important	part	of	this	project	is	laying	out	the	project	directory
from	the	c-skeleton,	and	making	sure	you	can	build	everything	and	get
it	working.

4.	Don’t	worry	about	things	like	daemons	or	anything	else.	Your	server	just
has	to	run	from	the	command	line	and	keep	running.

The	important	challenge	for	this	project	is	figuring	out	how	to	create	a	socket
server,	but	everything	you’ve	learned	so	far	makes	this	possible.	Watch	the	first
lecture	video	where	I	teach	you	about	this	if	you	find	that	it’s	too	hard	to	figure
out	on	your	own.

Exercise	49.	A	Statistics	Server

The	next	phase	of	your	project	is	to	implement	the	very	first	feature	of	the
statserve	server.	Your	program	from	Exercise	48	should	be	working	and	not
crashing.	Remember	to	think	defensively	and	attempt	to	break	and	destroy	your
project	as	best	you	can	before	continuing.	Watch	both	Exercise	48	videos	to	see
how	I	do	this.
The	purpose	of	statserve	is	for	clients	to	connect	to	it	and	submit	commands
for	modifying	statistics.	If	you	remember,	we	learned	a	little	bit	about	doing
incremental	basic	statistics,	and	you	know	how	to	use	data	structures	like	hash
maps,	dynamic	arrays,	binary	search	trees,	and	ternary	search	trees.	These	are
going	to	be	used	in	statserve	to	implement	this	next	feature.

Specification
You	have	to	implement	a	protocol	that	your	network	client	can	use	to	store
statistics.	If	you	remember	from	Exercise	43,	you	have	three	simple	operations
you	can	do	to	in	the	stats.h	API:

create	Create	a	new	statistic.
mean	Get	the	current	mean	of	a	statistic.
sample	Add	a	new	sample	to	a	statistic.
dump	Get	all	of	the	elements	of	a	statistic	(sum,	sumsq,	n,	min,	and	max).

This	will	make	the	beginning	of	your	protocol,	but	you’ll	need	to	do	some	more
things:

1.	You’ll	need	to	allow	people	to	name	these	statistics,	which	means	using
one	of	the	map	style	data	structures	to	map	names	to	Stats	structs.

2.	You’ll	need	to	add	the	CRUD	standard	operations	for	each	name.	CRUD
stands	for	create	read	update	delete.	Currently,	the	list	of	commands	above
has	create,	mean,	and	dump	for	reading;	and	sample	for	updating.	You
need	a	delete	command	now.

3.	You	may	also	need	to	have	a	list	command	for	listing	out	all	of	the
available	statistics	in	the	server.

Given	that	your	statserve	should	handle	a	protocol	that	allows	the	above
operations,	let’s	create	statistics,	update	their	sample,	delete	them,	dump	them,
get	the	mean,	and	finally,	list	them.

Do	your	best	to	design	a	simple	(and	I	mean	simple)	protocol	for	this	using	plain
text,	and	see	what	you	come	up	with.	Do	this	on	paper	first,	then	watch	the
lecture	video	for	this	exercise	to	find	out	how	to	design	a	protocol	and	get	more
information	about	the	exercise.
I	also	recommend	using	unit	tests	to	test	that	the	protocol	is	parsing	separately
from	the	server.	Create	separate	.c	and	.h	files	for	just	processing	strings	with
protocol	in	them,	and	then	test	those	until	you	get	them	right.	This	will	make
things	much	easier	when	you	add	this	feature	to	your	server.

Exercise	50.	Routing	the	Statistics

Once	you’ve	solved	the	problem	of	the	protocol	and	putting	statistics	into	a	data
structure,	you’ll	want	to	make	this	much	richer.	This	exercise	may	require	that
you	redesign	and	refactor	some	of	your	code.	That’s	on	purpose,	as	this	is	an
absolute	requirement	when	writing	software.	You	must	frequently	throw	out	old
code	to	make	room	for	new	code.	Never	get	too	attached	to	something	you’ve
written.
In	this	exercise,	you’re	going	to	use	the	URL	routing	from	Exercise	47	to
augment	your	protocol,	allowing	statistics	to	be	stored	at	arbitrary	URL	paths.
This	is	all	the	help	you	get.	It’s	a	simple	requirement	that	you	have	to	attempt	on
your	own,	modifying	your	protocol,	updating	your	data	structures,	and	changing
your	code	to	make	it	work.
Watch	the	lecture	video	to	see	what	I	want,	and	then	try	your	best	before
watching	the	second	video	to	see	how	I	implemented	it.

Exercise	51.	Storing	the	Statistics

The	next	problem	to	solve	is	how	to	store	the	statistics.	There	is	an	advantage	to
having	the	statistics	in	memory,	because	it’s	much	faster	than	storing	them.	In
fact,	there	are	large	data	storage	systems	that	do	this	very	thing,	but	in	our	case,
we	want	a	smaller	server	that	can	store	some	of	the	data	to	a	hard	drive.

The	Specification
For	this	exercise,	you’ll	add	two	commands	for	storing	to	and	loading	statistics
from	a	hard	drive:

store	If	there’s	a	URL,	store	it	to	a	hard	drive.
load	If	there	are	two	URLs,	load	the	statistic	from	the	hard	drive	based	on	the
first	URL,	and	then	put	it	into	the	second	URL	that’s	in	memory.

This	may	seem	simple,	but	you’ll	have	a	few	battles	when	implementing	this
feature:

1.	If	URLs	have	/	characters	in	them,	then	that	conflicts	with	the
filesystem’s	use	of	slashes.	How	will	you	solve	this?

2.	If	URLs	have	/	characters	in	them,	then	someone	can	use	your	server	to
overwrite	files	on	a	hard	drive	by	giving	paths	to	them.	How	will	you	solve
this?

3.	If	you	choose	to	use	deeply	nested	directories,	then	traversing	directories
to	find	files	will	be	very	slow.	What	will	you	do	here?

4.	If	you	choose	to	use	one	directory	and	hash	URLs	(oops,	I	gave	a	hint),
then	directories	with	too	many	files	in	them	are	slow.	How	will	you	solve
this?

5.	What	happens	when	someone	loads	a	statistic	from	a	hard	drive	into	a
URL	that	already	exists?

6.	How	will	someone	running	statserve	know	where	the	storage	should
be?

An	alternative	to	using	a	filesystem	to	store	the	data	is	using	something	like
SQLite	and	SQL.	Another	option	is	to	use	a	system	like	GNU	dbm	(GDBM)	to
store	them	in	a	simpler	database.
Research	all	of	your	options	and	watch	the	lecture	video,	and	then	pick	the
simplest	option	and	try	it.	Take	your	time	figuring	out	this	feature	because	the

next	exercise	will	involve	figuring	out	how	to	destroy	your	server.

Exercise	52.	Hacking	and	Improving	Your	Server

The	final	exercise	consists	of	three	videos.	The	first	video	is	a	lecture	on	how	to
hack	your	server	and	attempt	to	destroy	it.	In	the	video,	I	show	you	a	great	many
tools	and	tricks	for	breaking	protocols,	using	my	own	implementation	to
demonstrate	flaws	in	the	design.	This	video	is	fun,	and	if	you’ve	been	following
along	with	your	own	code,	you	can	compete	with	me	to	see	who	made	the	more
robust	server.
The	second	video	then	demonstrates	how	I’d	add	improvements	to	the	server.
You	should	attempt	your	own	improvements	first,	before	watching	this	video,
and	then	see	if	your	improvements	are	similar	to	mine.
The	third	and	final	video	teaches	you	how	to	make	further	improvements	and
design	decisions	in	the	project.	It	covers	everything	I’d	think	about	to	complete
the	project	and	refine	it.	Typically,	to	complete	a	project,	I’d	do	the	following:

1.	Get	it	online	and	accessible	to	people.
2.	Document	it	and	improve	the	usability	to	make	sure	that	the	documents
are	easy	to	read.

3.	Do	as	much	test	coverage	as	possible.
4.	Improve	any	corner	cases	and	add	defenses	against	any	attacks	that	I	can
find.

The	second	video	demonstrates	each	of	these	and	explains	how	you	can	do	them
yourself.

Next	Steps

This	book	is	most	likely	a	monumental	undertaking	for	a	beginner	programmer,
or	even	a	programmer	with	no	experience	with	many	of	the	topics	covered
inside.	You	have	successfully	learned	an	introductory	amount	of	knowledge	of
C,	testing,	secure	coding,	algorithms,	data	structures,	unit	testing,	and	general
applied	problem	solving.	Congratulations.	You	should	be	a	much	better
programmer	now.
I	recommend	that	you	now	go	read	other	books	on	the	C	programming	language.
You	can’t	go	wrong	with	The	C	Programming	Language	(Prentice	Hall	1988)	by
Brian	W.	Kernighan	and	Dennis	M.	Ritchie,	the	creators	of	the	C	language.	My
book	teaches	you	an	initial,	practical	version	of	C	that	gets	the	job	done,	mostly
as	a	means	of	teaching	you	other	topics.	Their	book	will	teach	you	deeper	C	as
defined	by	the	creators	and	the	C	standard.
If	you	want	to	continue	improving	as	a	programmer,	I	recommend	that	you	learn
at	least	four	programming	languages.	If	you	already	knew	one	language,	and
now	you	know	C,	then	I	recommend	you	try	learning	any	of	these	programming
languages	as	your	next	ones:

•	Python,	with	my	book	Learn	Python	The	Hard	Way,	Third	Edition
(Addison-Wesley,	2014)
•	Ruby,	with	my	book	Learn	Ruby	The	Hard	Way,	Third	Edition	(Addison-
Wesley,	2015)
•	Go,	with	its	list	of	documentation	at	http://golang.org/doc,	another
language	by	the	authors	of	the	C	language,	and	frankly,	a	much	better	one
•	Lua,	which	is	a	very	fun	language	that	has	a	decent	API	for	C	that	you
might	enjoy	now
•	JavaScript,	although	I’m	not	sure	which	book	is	best	for	this	language

There	are	many	programming	languages	available,	so	choose	whichever
language	interests	you	and	learn	it.	I	recommend	this	because	the	easiest	way	to
become	adept	at	programming	and	build	confidence	is	to	strengthen	your	ability
to	learn	multiple	languages.	Four	languages	seems	to	be	the	breaking	point
where	a	beginner	transitions	to	being	a	capable	programmer.	It’s	also	just	a	lot	of
fun.

http://golang.org/doc

Index

Operators
–	(minus	sign)
negative	number	(unary),	108
subtract	(binary),	108
subtraction	operator,	21

––	(minus	signs)
decrement,	then	read	(prefix),	108
read,	then	decrement	(postfix),	108

()	(parentheses)
C	operator,	23
function	call	operator,	108

!	(exclamation	point)
Boolean	NOT	operator,	109
logical	NOT	operator,	22

?	:	(question	mark,	colon)
Boolean	ternary	operator,	109
logical	ternary	operator,	22

.	(period)
structure	reference	operator,	23
structure	value	access,	108

[]	(square	brackets)
array	index,	108
array	subscript	operator,	23

{}	(curly	braces)
C	operator,	23
enclosing	functions,	7

*	(asterisk)
multiplication	operator,	21
multiply	operator	(binary),	108
value	of	(unary),	108
value-of	operator,	23

&	(ampersand)
address	of	(unary),	108
address-of	operator,	23
bitwise	AND	operator,	22
Boolean	AND	operator,	109

^	(caret)
assign	XOR-equal,	109
bitwise	XOR	operator,	22

^=	(caret,	equal)
assign	XOR-equal	operator,	23
bitwise	XOR	and	assign	operator,	110

+	(plus	sign)
add	operator	(binary),	108
add	operator	(unary),	108
addition	operator,	21

++	(plus	signs)
increment,	then	read	(prefix),	108
read,	then	increment	(postfix),	108

|=	(vertical	bar,	equal)
assign	or-equal,	23
bitwise	OR	and	assign	operator,	110

,	(comma),	C	operator,	23
––	(minus	signs),	decrement	operator,	21
/	(slash),	divide	operator,	21,	108
//	(slashes),	comment	indicator,	7,	24
;	(semicolon),	statement	terminator,	7
:	(colon),	C	operator,	23
!=	(exclamation	point,	equal),	not	equal	operator,	22,	109
?=	(question	mark,	equal),	devpkg	syntax,	278
*/	(asterisk	slash),	multi-line	comment	end,	6,	24
/*	(slash	asterisk),	multi-line	comment	start,	6,	24
*=	(asterisk,	equal),	assign	multiply-equal,	23,	110
&&	(ampersands),	logical	AND	operator,	22

&=	(ampersand,	equal),	assign	and-equal,	23,	110
++	(plus	signs),	increment	operator,	21
+=	(plus	sign,	equal),	assign	plus-equal,	23,	110
<	(left	angle	bracket),	less	than	operator,	22,	109
<<	(left	angle	brackets),	bitwise	shift	left	operator,	22,	109
<<=	(left	angle	brackets,	equal),	assign	shift-left-equal,	23,	110
<=	(left	angle	bracket,	equal),	less	than	or	equal	operator,	22,	109
=	(equal	sign),	assign	equal,	23,	110
–=	(minus,	equal),	assign	minus-equal,	23,	110
/=	(slash,	equal),	assign	divide-equal,	23,	110
==	(equal	signs),	equals	operator,	22,	109
|	(vertical	bar),	bitwise	OR	operator,	22,	109
||	(vertical	bars),	Boolean	OR	operator,	109
~	(tilde),	complement	operator,	109
%	(percent	sign)
modulus	operator,	21
printing	as	a	literal,	33

%=	(percent	sign,	equal),	assign	modulus-equal,	23,	110

Symbols
->	(dash,	right	angle	bracket)
structure	dereference	operator,	23
structure	pointer	access,	108

>	(right	angle	bracket),	greater	than	operator,	22,	109
>=	(right	angle	bracket,	equal),	greater	than	or	equal	operator,	22,	109
>>	(right	angle	brackets),	bitwise	shift	right	operator,	22,	109
>>=	(right	angle	brackets,	equal),	assign	shift-left-equal,	23,	110
'0'	(nul)	byte,	array	terminator,	46–49

A
Adler,	Mark,	240
Adler-32	function,	240–247
Alphabetical	characters,	identifying,	60

Ampersand	(&)
address	of	(unary),	108
address-of	operator,	23
bitwise	AND	operator,	22
Boolean	AND	operator,	109

Ampersand,	equal	(&=),	assign	and-equal,	23,	110
Ampersands	(&&),	logical	AND	operator,	22
APR	(Apache	Portable	Runtime),	274,	275–276
Arguments,	passing	to	a	program
GDB,	18
LLDB,	19

Arguments,	printing,	54
Arithmetic	operators,	21
Arrays
’0’	(nul)	byte,	array	terminator,	46–49
description,	46–49
dynamic,	198–206
indexing	into,	65–66
multiple	dimensions,	57
vs.	pointers,	67
sizing,	50–53
of	strings,	54–57

Assignment	operators,	23,	109–110
Asterisk	(*)
multiplication	operator,	21
multiply	operator	(binary),	108
value	of	(unary),	108
value-of	operator,	23

Asterisk,	equal	(*=),	assign	multiply-equal,	23,	110
Asterisk	slash	(*/),	multi-line	comment	end,	6,	24
attach	pid	command
GDB,	19
LLDB,	19

Attaching	to/detaching	from	a	process

GDB,	19
LLDB,	19

auto	operator,	26
Automate	everything,	148
Automated	testing
description,	166
sample	code,	166
wiring	the	test	framework,	167–171

B
Backtrace,	dumping
GDB,	18–19
LLDB,	19

backtrace	command,	GDB,	18
bassign	function,	227
bassignblk	function,	227
bassigncstr	function,	227
bchar	function,	227
bconcat	function,	227
bdata	function,	227
bdestroy	function,	227
Bernstein,	Dan	J.,	240
Better	String	Library,	225–227
bfindreplace	function,	227
bformat	function,	227
bfromcstr	function,	227
Binary	search,	211–220
Binary	search	trees,	260–273.	See	also	Hashmaps;	Ternary	search	trees.
binstr	function,	227
biseq	function,	227
Bit	operators,	109
Bitwise	operators,	22,	109
Blanks,	detecting,	60
blength	function,	227

blk2bstr	function,	227
BMH	(Boyer-Moore-Horspool)	algorithm,	248–257
Boolean	expressions
switch	statements,	42–44
while-loop	statements,	40–41

Boolean	operators,	109.	See	also	True/false	branching.
break	command
flow	control,	110
GDB,	18

break	operator,	26
breakpoint	set	command,	LLDB,	19
Breakpoints,	GDB
clearing,	19
setting,	18
showing	information	about,	19

Breakpoints,	LLDB
clearing,	19
setting,	19
showing	information	about,	19

bsplit	function,	227
bstrcpy	function,	227
BSTree,	260–273.	See	also	TSTree.
bstricmp	function,	227
bstrlib	library,	225–227
bstrlib.o	file,	278
Bubble	sort,	190–197
Building	code.	See	also	make	command;	Makefile.
in	GDB,	18
in	LLDB,	19

C
C	language,	compilers
checking	version,	2
confirming,	6–8

error	handling,	90–91
sample	code,	6–8
support	under	Windows,	3

C	language,	operators.	See	also	specific	operators.
arithmetic,	21
assignment,	23,	109–110
bitwise,	22,	109
Boolean,	109
data,	23,	108
logical,	22,	109
math,	108
memorizing,	20–21
relational,	22

C	language,	syntax
keywords,	26–27
lexemes,	26–29
lexical	analysis,	26–29
memorizing,	26–29
syntax	structures,	27–30

C	preprocessor	(CPP)
conditionally	compiling	code,	98
expanding	macros,	96–98

C	UB	(common	undefined	behavior)
definition,	xv
description,	172–173
top	20	undefined	behaviors,	174–177

C	unions,	212–213
Caret	(^)
assign	XOR-equal,	109
bitwise	XOR	operator,	22

Caret,	equal	(^=)
assign	XOR-equal	operator,	23
bitwise	XOR	and	assign	operator,	110

case	operator,	26

cc	-Wall	-g	-DNDEBUG	-ldl	ex29.c	-o	ex29	command,	164
cd	command
GDB,	18
LLDB,	19

Changing	directory
GDB,	18
LLDB,	19

char	operator,	26,	104
Character	data	types,	104
Character	type	data,	defining,	26
Characters,	detecting,	60
Clang’s	Getting	Started	instructions,	2
clear	command,	19
Clearing	breakpoints,	19
Code,	building.	See	make	command;	Makefile.
Colon	(:),	C	operator,	23
Comma	(,),	C	operator,	23
Command	line	arguments,	printing,	54
commands.c	file,	288–291
commands.h	file,	287–288
Comparing	strings,	227
Compilers,	C	language.	See	C	language,	compilers.
Concatenating	strings,	227
const	operator,	26
const	qualifier,	105
continue	command
flow	control,	110
GDB,	18
LLDB,	19

continue	operator,	27
Continue	running	the	program
GDB,	18
LLDB,	19

Control	structures,	110

Copying	strings,	227
Counting	statistical	samples,	300,	340–341
CPP	(C	preprocessor)
conditionally	compiling	code,	98
expanding	macros,	96–98

Creating
double	linked	list	libraries,	178–179
strings,	227
variables,	32–34

Creating,	data	types
from	multiple	variables,	27,	32–34
for	new	types,	29
as	structs,	30

Creative	programmer	mind-set,	140–141
Curly	braces	({})
C	operator,	23
enclosing	functions,	7

Cygwin	system,	3

D
DArray	program,	198–206
Dash,	right	angle	bracket	(->)
structure	dereference	operator,	23
structure	pointer	access,	108

Data	operators,	23,	108
Data	size,	determining,	27
Data	structures
definition,	178
fuzzing,	272
testing,	272

Data	types.	See	also	specific	data	types.
character,	26,	104
combining	into	a	single	record.	See	Structs.
conversion,	105
declare	empty,	27

double	floating	point,	27,	104
enumerated	types,	104
floating	point,	27,	104
modifiers,	104–107
qualifiers,	105
sizes,	106–107
void,	104

Data	types,	and	flow	control
assignment	operators,	109–110
bit	operators,	109
Boolean	operators,	109
control	structures,	110
data	operators,	108
logic	operators,	109
math	operators,	108
operators,	107–110
type	conversion,	105
type	modifiers,	104–107
type	qualifiers,	105
type	sizes,	106–107
types,	104–107

Data	types,	creating
from	multiple	variables,	27,	32–34
for	new	types,	29
as	structs,	30

Data	types,	integer
declaring,	27
integer	constants,	29,	104
short	integer,	27
signed	modifier	for,	27
unsigned	modifier	for,	27

DB	functions,	devpkg	program,	279–287
db.c	file,	280–282
dbg.h	macro,	91–95

db.h	file,	280
db.o	file,	278
Debug	macros,	91–95
Debug	printing	vs.	GDB,	100–102
Debugging.	See	also	GDB	(GNU	Debugger);	LLDB	Debugger.
advanced	techniques,	100–102
avoiding	stack	bugs,	118–119
strategy,	101–102
with	vararg	functions,	132–136

default	operator,	27
Defensive	programmer	mind-set,	141
Defensive	strategies
automate	everything,	148
document	assumptions,	147
fail	early	and	openly,	146
importance	of	order,	149
never	trust	input,	142–145
overview,	141–142
prevent	errors,	145–146
prevention	over	documentation,	147–148
question	authority,	149
simplify	and	clarify,	148–149

Destroying	strings,	227
detach	command,	19
Detaching	from/attaching	to	a	process
GDB,	19
LLDB,	19

devpkg	file,	279
devpkg	program
?=	(question	mark,	equal),	278
apr_off_t	error,	278
apr_thread_proc.h	functions,	283
checking	for	installed	URLs,	279–287
command	functions,	287–288

commands,	274
commands.c	file,	288–291
commands.h	file,	287–288
DB	functions,	279–287
dependencies,	277
description,	274
devpkg.c	file,	292–294
external	tools,	283
Main	function,	292–294
Makefile,	277–278
off64_t	error,	278
README	file,	294
recording	and	listing	installed	URLs,	279–287
shell	functions,	283–287
shell.c	file,	284–286
Shell_exec	file,	287
shell.h	file,	283–284
Shell.run	function,	286
source	files,	278–279

devpkg.c	file,	292–294
Dictionaries.	See	Hashmaps.
DJB	Hash	function,	240–247
do	operator,	27
Document	assumptions,	147
Double	floating	point	data	types
declaring,	27
description,	104

Double	linked	lists
creating	a	library,	178–179
data	structures,	definition,	178
description,	179–181
implementing,	181–185
testing,	185–187

double	operator,	27,	104

do-while	loop
example,	29
flow	control,	110
starting,	27

Duff,	Tom,	120
Duff’s	device,	120–125
Dumping	a	backtrace
GDB,	18–19
LLDB,	19

Dynamic	arrays,	198–206
Dynamic	libraries,	160

E
else	operator,	27
else-if	statement,	36–38
else-statement,	36–38
Emacs	text	editor,	4
enum	operator,	27,	29,	104
Enumerated	data	types,	104
Equal	sign	(=),	assign	equal,	23,	110
Equal	signs	(==),	equals	operator,	22,	109
Equality	testing.	See	Logic	operators.
Error	codes,	90–91
Error	handling.	See	C	language,	error	handling.
ex22.c	file,	112–114
ex22.h	file,	112–114
ex22_main.c	file,	114–118
Exclamation	point	(!)
Boolean	NOT	operator,	109
logical	NOT	operator,	22

Exclamation	point,	equal	(!=),	not	equal	operator,	22,	109
Exit	out	of	a	compound	statement,	26
extern	operator,	27

F
Fail	early	and	openly,	146
fclose	function,	129
fcloseall	function,	130
fdopen	function,	129
fgetpos	function,	130
fgets	function,	126–130
Find	and	replace	strings,	227
float	operator,	27,	104
Floating	point	data	types
declaring,	27
description,	104

FNV-1a	function,	240–247
fopen	function,	129
for	operator,	27
for-loops
arrays	of	strings,	54–57
example,	29
starting,	27

Formatted	printing,	14–16
Formatting	strings,	227
Fowler,	Glenn,	240
fprintf	function,	130
fread	function,	130
freopen	function,	129
fscanf	function,	126–130
fseek	function,	130
ftell	function,	130
Function	calls,	stepping	into
GDB,	18
LLDB,	19

Function	calls,	stepping	over
GDB,	18

LLDB,	19
Functions.	See	also	specific	functions.
bad,	checking	for,	158–159
defining,	29
I/O	handling,	126–130
returning	from,	27
using,	58–60
vararg,	132–136
with	variable	arguments,	132–136
writing,	58–60

Functions,	pointers	to
description,	84–85
format,	84
sample	code,	84–85

Fuzzing	data	structures,	272
fwrite	function,	130

G
GDB	(GNU	Debugger).	See	also	LLDB	Debugger.
attaching	to/detaching	from	a	running	process,	19
build	code,	18
change	directory,	18
continue	running	the	program,	18
vs.	debug	printing,	100–102
dumping	a	backtrace,	18–19
help,	18
list	ten	source	lines,	19
passing	arguments	to	the	program,	18
quit,	18
start	a	program,	18
start	a	shell,	19
step	into	function	calls,	18
step	over	function	calls,	18
watchpoints,	showing	information	about,	19

GDB	(GNU	Debugger),	breakpoints

clearing,	19
setting,	18
showing	information	about,	19

GDB	(GNU	Debugger),	commands
attach	pid,	19
backtrace,	18
break,	18
cd,	18
clear,	19
continue,	18
detach,	19
help,	18
info	break,	19
info	watch,	19
list,	19
make,	18
next,	18
print	expr,	18
pwd,	18
quick	reference,	18–19
quit,	18
run,	18
shell,	19
step,	18

GDB	(GNU	Debugger),	printing
value	of	an	expression,	18
working	directory,	18

gedit	text	editor,	3
Getting	started.	See	Setting	up	your	computer.
GNU	Debugger	(GDB).	See	GDB	(GNU	Debugger).
goto	operator,	27,	29,	110

H

Hashmaps
Adler-32	function,	240–247
algorithms,	240–247
vs.	binary	or	ternary	search	trees,	323
definition,	228
DJB	Hash	function,	240–247
example,	228–235
finding	prefixes,	327
FNV-1a	function,	240–247
scanning,	235
unit	testing,	235–237

Hashmap_traverse	function,	235
Headers,	Makefile	example,	154–155
Heap	sort,	208–210
Heaps
potential	problems,	81
sample	code,	74–79
vs.	stack	memory	allocation,	74–79

Help
GDB,	18
LLDB,	19

help	command
GDB,	18
LLDB,	19

I
IDE	(Integrated	Development	Environment),	4
Identifiers,	declaring	as	external,	27
if	operator,	27
if-statement
else	branch,	27
example,	28
starting,	27
true/false	branching,	36–38

Indexing	into	arrays,	65–66
Inequality	testing.	See	Logic	operators.
info	break	command,	19
info	watch	command,	19
Input/output.	See	I/O.
Installing
a	Makefile,	example,	158
software.	See	devpkg	program.

Int	constants,	defining	a	set	of,	27
int	operator,	27,	104
int8_t	type	size,	106
int16_t	type	size,	106
int32_t	type	size,	106
int64_t	type	size,	106
Integer	constants,	data	types	for,	104
Integer	data	type
declaring,	27
signed	modifier	for,	27
unsigned	modifier	for,	27

Integrated	Development	Environment	(IDE),	4
INT_FAST	(N)_MAX	type	size,	107
int_fast	(N)_t	type	size,	107
INT_FAST(N)_MAX	type	size,	107
int_fast(N)_t	type	size,	107
INT_LEAST	(N)_MAX	type	size,	107
INT_LEAST	(N)_MIN	type	size,	107
int_least	(N)_t	type	size,	107
INT_LEAST(N)_MAX	type	size,	107
INT_LEAST(N)_MIN	type	size,	107
int_least(N)_t	type	size,	107
INTMAX_MAX	type	size,	107
INTMAX_MIN	type	size,	107
intmax_t	type	size,	107

INTPTR_MAX	type	size,	107
INTPTR_MIN	type	size,	107
intptr_t	type	size,	107
I/O,	reading	from	files,	126–130
isalpha	function,	60
isblank	function,	60

J
Jump	tables,	42–44
Jumping	to	a	label,	27,	29

K
Keywords,	C,	26–27

L
Left	angle	bracket,	equal	(<=),	less	than	or	equal	operator,	22,	109
Left	angle	bracket	(<),	less	than	operator,	22,	109
Left	angle	brackets,	equal	(<<=),	assign	shift-left-equal,	23,	110
Left	angle	brackets	(<<),	bitwise	shift	left	operator,	22,	109
Length	of	strings,	getting,	227
Letters,	identifying,	60
Lexemes,	C	syntax,	26–29
Lexical	analysis,	C	syntax,	26–29
Libraries
Better	String	Library,	225–227
bstrlib,	225–227
double	linked	lists,	178–179
dynamic,	160
linking	to,	160–164
shared,	dynamic	loading,	161–164
static,	160

Linked	list	algorithms,	sorting	with,	190–197
Linking	to	libraries,	160–164
Linux

compiler	version,	checking,	2
running	under	Windows,	3
setting	up	your	computer,	2

list	command,	19
List	next	ten	source	lines	in	GDB	and	LLDB,	19
list_algos.c	file,	193–195
list_algos.h	file,	193
list_algos_tests.f	file,	191–193
LLDB	Debugger.	See	also	GDB	(GNU	Debugger).
attaching	to/detaching	from	a	process,	19
building	code,	19
change	directory,	19
continue	running	the	program,	19
dumping	a	backtrace,	19
help,	19
listing	next	ten	lines,	19
quitting,	19
starting	a	shell,	19
starting	the	program,	19
stepping	into	function	calls,	19
stepping	over	function	calls,	19
watchpoints,	showing	information	about,	19

LLDB	Debugger,	breakpoints
clearing,	19
setting,	19
showing	information	about,	19

LLDB	Debugger,	commands
attach	pid,	19
breakpoint	set,	19
cd,	19
clear,	19
continue,	19
detach,	19
help,	19

info	break,	19
info	watch,	19
list,	19
make,	19
next,	19
print	expr,	19
pwd,	19
quick	reference,	19
quit,	19
run	command,	19
shell,	19
step,	19
thread	backtrace,	19

LLDB	Debugger,	printing
expressions,	19
working	directory,	19

load	command,	344
Local	variables,	giving	a	local	lifetime,	26
Log	files,	finding,	138
Logfind	project,	138
Logic	operators,	22,	109
long	modifier,	104
Loops.	See	also	specific	loops.
breaking	to	exit,	28
continuing	to	the	top	of,	27
infinite,	144

M
Mac	OS	X
compiler	version,	checking,	2
setting	up	your	computer,	2–3

Macros
dbg.h,	91–95
for	debugging,	91–95

expanding,	96–98
MacVim	text	editor,	4
Main	function,	devpkg	program,	292–294
make	clean	command,	10–12
make	command
building	code,	10–12
GDB,	18
LLDB,	19

Makefile
as	automation	tool,	11
building	code,	10–12
devpkg	program,	277–278

Makefile,	examples
basic	structure,	152–154
checking	for	bad	functions,	158–159
cleanup,	157–158
header,	154–155
installing,	158
target	build,	155–156
unit	tests,	156–157

Math	operators,	108
Max/min	samples,	identifying,	300
Mean,	calculating,	300,	340–341
Memorizing
C	operators,	20–21
C	syntax,	26–29

Memory
format	conversion,	212–213
leaks,	shown	by	the	debugger,	80
stack	allocation,	80–81

Merge	sort,	190–197,	208–210
Middle	number,	calculating,	300,	340–341
Mind-set	for	programming.	See	Programmer	mind-set.
MinGw	system,	3

Min/max	samples,	identifying,	300,	340–341
Minus	sign	(-)
negative	number	(unary),	108
subtract	(binary),	108
subtraction	operator,	21

Minus	sign,	equal	(–=),	assign	minus-equal,	23,	110
Minus	signs	(––)
decrement,	then	read	(prefix),	108
read,	then	decrement	(postfix),	108

Minus	signs	(––),	decrement	operator,	21

N
Nano	text	editor,	4
netclient.c	file,	316–320
Network	server	program,	338
Never	trust	input,	142–145
next	command
GDB,	18
LLDB,	19

Noll,	Leonard	Curt,	240
Nul	byte,	array	terminator,	46–49

O
off64_t	error,	278
Operators.	See	C	language,	operators.
Output.	See	I/O.

P
Percent	sign	(%)
modulus	operator,	21
printing	as	a	literal,	33

Percent	sign,	equal	(%=),	assign	modulus-equal,	23,	110
Period	(.)
structure	reference	operator,	23

structure	value	access,	108
Plus	sign	(+)
add	operator	(binary),	108
add	operator	(unary),	108
addition	operator,	21

Plus	sign,	equal	(+=),	assign	plus-equal,	23,	110
Plus	signs	(++)
increment,	then	read	(prefix),	108
read,	then	increment	(postfix),	108

Plus	signs	(++),	increment	operator,	21
Pointers
vs.	arrays,	67
definition,	65
description,	65
indexing	into	arrays,	65–66
lexicon	of,	66–67
sample	code,	62–64
to	structures,	68–71
uses	for,	66

Pointers,	to	functions
description,	84–85
format,	84
sample	code,	84–85

Prevent	errors,	145–146
Prevention	over	documentation,	147–148
print	expr	command
GDB,	18
LLDB,	19

printf	function,	14–16
Printing
%	(percent	signs),	as	literals,	33
command	line	arguments,	54
expression	values,	18,	19
formatting,	14–16

from	GDB,	18
from	LLDB,	19
in	scientific	notation,	33
working	directory,	18,	19

Programmer	mind-set
creative,	140–141
defensive,	141

Programmer	mind-set,	defensive	strategies
automate	everything,	148
document	assumptions,	147
fail	early	and	openly,	146
importance	of	order,	149
never	trust	input,	142–145
overview,	141–142
prevent	errors,	145–146
prevention	over	documentation,	147–148
question	authority,	149
simplify	and	clarify,	148–149

PTRDIFF_MAX	type	size,	107
PTRDIFF_MIN	type	size,	107
pwd	command
GDB,	18
LLDB,	19

Q
Question	authority,	149
Question	mark,	colon	(?:)
Boolean	ternary	operator,	109
logical	ternary	operator,	22

Question	mark,	equal	(?=),	devpkg
syntax,	278

Queues,	296–299
Quick	sort,	208–210
quit	command

GDB,	18
LLDB,	19

Quitting
GDB,	18
LLDB,	19

R
Radix	sort,	211–221
RadixMap_add	function,	219
RadixMap_create	function,	219
RadixMap_delete	function,	219
RadixMap_destroy	function,	219
RadixMap_find	function,	219–220
RadixMap_sort	function,	219,	220–221
radix_sort	function,	219,	220–221
Reading	from	files,	126–130
README	file,	devpkg	program,	294
register	operator,	27
register	qualifier,	105
Relational	operators,	22
Return	from	a	function,	27
return	operator,	27
rewind	function,	130
Right	angle	bracket,	equal	(>=),	greater	than	or	equal	operator,	22,	109
Right	angle	bracket	(>),	greater	than	operator,	22,	109
Right	angle	brackets,	equal	(>>=),	assign	shift-left-equal,	23,	110
Right	angle	brackets	(>>),	bitwise	shift	right	operator,	22,	109
Ring	buffers,	310–314
run	command
GDB,	18
LLDB,	19

S
Scanning	hashmaps,	235

Scope
ex22.c	file,	112–114
ex22.h	file,	112–114
ex22_main.c	file,	114–118
and	stacks,	118–119

Search	algorithms,	248–257
Searching
binary	search,	211–220
binary	search	trees,	260–273
ternary	search	trees,	322–330

Semicolon	(;),	statement	terminator,	7
Server	improvements,	346
Server	login	times,	summary	statistics,	307
Setting
breakpoints,	GDB,	18
breakpoints,	LLDB,	19
strings,	227

Setting	up	your	computer
Clang’s	Getting	Started	instructions,	2
Linux,	2
Mac	OS	X,	2–3
text	editors,	3–4.	See	also	specific	text	editors.
Windows,	3

Shared	libraries,	dynamic	loading,	161–164
Shaw,	Zed	A.,	contact	information,	xv
shell	command,	19
shell.c	file,	284–286
Shell_exec	file,	287
shell.h	file,	283–284
shell.o	file,	278
Shell.run	function,	286
Shells,	starting,	19
Short	integer	data	type,	declaring,	27
short	modifier,	104

short	operator,	27
Showing	information	about	breakpoints,	19
signed	modifier
description,	104
for	integer	data	types,	27

Simplify	and	clarify,	148–149
SIZE_MAX	type	size,	107
sizeof	operator
data	access,	108
description,	23,	27
sizing	arrays,	50–53

Slash,	equal	(/=),	assign	divide-equal,	23,	110
Slash	(/),	divide	operator,	21,	108
Slash	asterisk	(/*),	multi-line	comment	start,	6,	24
Slashes	(//),	comment	indicator,	7,	24
Sorting
bubble	sort,	190–197
heap	sort,	208–210
with	linked	list	algorithms,	190–197
merge	sort,	190–197,	208–210
quick	sort,	208–210
radix	sort,	211–221
statistics,	344

Splitting	strings,	227
Square	brackets	([])
array	index,	108
array	subscript	operator,	23

Squares	of	numbers,	calculating,	300
Stacks
avoiding	bugs,	118–119
definition,	81
description,	296–299
memory	allocation,	80–81
potential	problems,	81

Standard	deviation,	calculating,	300–304
Starting	a	program	with	arguments
GDB,	18
LLDB,	19

Starting	a	shell,	19
Static	libraries,	160
static	operator,	27
Statistics.	See	Summary	statistics.
Statistics	server,	340–341
stats.c	file,	302–304
Stats_create	function,	304
Stats_dump	function,	304
statserve	program,	338,	340–341
stats.h	API,	340–341
Stats_mean	function,	304
Stats_recreate	function,	304
Stats_sample	function,	304
Stats_stddev	function,	304
stats_tests.c	file,	304–306
step	command
GDB,	18
LLDB,	19

Stepping	into	function	calls
GDB,	18
LLDB,	19

Stepping	over	function	calls
GDB,	18
LLDB,	19

store	command,	344
String_base_search	function,	252–255
String_find	function,	249–255,	257
Strings
arrays	of,	54–57
Better	String	Library,	225–227

BMH	(Boyer-Moore-Horspool)	algorithm,	248–257
checking	for	validity,	224–225
comparing,	227
concatenating,	227
copying,	227
creating,	227
destroying,	227
disadvantages	of,	224–225
find	and	replace,	227
formatting,	227
functions	for,	227
getting	characters	from,	227
getting	data	from,	227
getting	length	of,	227
search	algorithms,	248–257
setting,	227
splitting,	227
storing	as	arrays,	46–49
testing	for	equality,	227

StringScanner_scan	function,	249–255,	257
String_setup_skip_chars	function,	252–255
struct	operator,	27,	30
Structs,	68–71
Sum,	calculating,	300,	340–341
Sum	of	squares,	calculating,	340–341
Summary	statistics
counting	samples,	300,	340–341
load	command,	344
loading	from	a	hard	drive,	344
mean,	calculating,	300,	340–341
middle	number,	calculating,	300,	340–341
min/max	samples,	300,	340–341
routing,	342
for	server	login	times,	307

sorting,	344
standard	deviation,	calculating,	300–304
statistics	on	statistics,	306–307
statistics	server,	340–341
stats.c	file,	302–304
Stats_create	function,	304
Stats_dump	function,	304
stats.h	API,	340–341
Stats_mean	function,	304
Stats_recreate	function,	304
Stats_sample	function,	304
Stats_stddev	function,	304
stats_tests.c	file,	304–306
store	command,	344
storing	to	a	hard	drive,	344
sum,	calculating,	300,	340–341
sum	of	squares,	calculating,	300,	340–341
unit	test,	304

switch	operator,	27
switch-statements
branching	in	a,	26
default	branch,	27
description,	42–44
example,	28
starting,	27

Syntax	structures,	C	syntax,	27–30

T
TCP/IP	client,	316–321
Ternary	search	trees,	322–330.	See	also	Binary	search	trees;	TSTree.
Testing
automated.	See	Automated	testing.
data	structures,	272
double	linked	lists,	185–187

strings	for	equality,	227
Text	editors,	3–4.	See	also	specific	text	editors.
TextWrangler	text	editor,	3
thread	backtrace	command,	LLDB,	19
Tilde	(~),	complement	operator,	109
True/false	branching,	36–38
TSTree.	See	also	BSTree.
fast	URL	routing,	332–336
searching	with,	322–330

typedef	operator,	27,	30

U
UB	(undefined	behavior).	See	C	UB	(common	undefined	behavior).
uint8_t	type	size,	106
uint16_t	type	size,	106
uint32_t	type	size,	106
uint64_t	type	size,	106
UINT_FAST	(N)_MAX	type	size,	107
uint_fast	(N)_t	type	size,	107
UINT_FAST(N)_MAX	type	size,	107
uint_fast(N)_t	type	size,	107
UINT_LEAST	(N)_MAX	type	size,	107
uint_least	(N)_t	type	size,	107
UINT_LEAST(N)_MAX	type	size,	107
uint_least(N)_t	type	size,	107
UINTMAX_MAX	type	size,	107
uintmax_t	type	size,	107
UINTPTR_MIN	type	size,	107
uintptr_t	type	size,	107
union	operator,	27,	30
Unions,	212–213
union-statement,	starting,	27,	30
unsigned	operator,	27,	104

URL	routing,	332–336
Urlor	tool,	332–336

V
Validity	checking	strings,	224–225
Variables
combining	into	a	single	record,	27.	See	also	Structs.
creating,	32–34
declaring	as	modifiable,	27
declaring	to	be	stored	in	a	CPU	register,	27
make	unmodifiable,	26
preserving	value	after	scope	exits,	27

Vertical	bar,	equal	(|=)
assign	or-equal,	23
bitwise	OR	and	assign	operator,	110

Vertical	bar	(|),	bitwise	OR	operator,	22,	109
Vertical	bars	(||),	Boolean	OR	operator,	109
Vim	text	editor,	4
VirtualBox,	3
Vo,	Phong,	240
Void	data	types,	104
void	operator,	27,	104
volatile	operator,	27
volatile	type	qualifier,	105

W
Watchpoints,	showing	information	about	GDB	and	LLDB,	19
while	operator,	27
while-loop
Boolean	expressions,	40–41
example,	28
starting,	27

Windows
C	support,	3

running	Linux	under,	3
setting	up	your	computer,	3

Where	are	the	Companion	Content	Files?

Register	this	digital	version	of
Learn	C	the	Hard	Way
to	access	important	downloads.
Register	this	digital	version	to	unlock	the	companion	files	that	are	included	on
the	disc	that	accompanies	the	print	edition.	Follow	the	steps	below.

1.	Go	to	http://www.informit.com/register	and	log	in	or	create	a	new
account.

2.	Enter	this	ISBN:	9780321884923
NOTE:	This	is	the	ISBN	of	the	print	book	which	must	be	used	to	register
the	eBook	edition.

3.	Answer	the	challenge	question	as	proof	of	purchase.
4.	Click	on	the	“Access	Bonus	Content”	link	in	the	“Registered	Products”
section	of	your	account	page,	which	will	take	you	to	the	page	where	your
downloadable	content	is	available.

The	Professional	and	Personal	Technology	Brands	of	Pearson

http://www.informit.com/register

Code	Snippets

	About This eBook
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	This Book Is Not Really about C
	The Undefined Behaviorists
	C Is a Pretty and Ugly Language
	What You Will Learn
	How to Read This Book
	The Videos
	The Core Competencies
	Reading and Writing
	Attention to Detail
	Spotting Differences
	Planning and Debugging

	Exercise 0. The Setup
	Linux
	Mac OS X
	Windows
	Text Editor
	Do Not Use an IDE

	Exercise 1. Dust Off That Compiler
	Breaking It Down
	What You Should See
	How to Break It
	Extra Credit

	Exercise 2. Using Makefiles to Build
	Using Make
	What You Should See
	How to Break It
	Extra Credit

	Exercise 3. Formatted Printing
	What You Should See
	External Research
	How to Break It
	Extra Credit

	Exercise 4. Using a Debugger
	GDB Tricks
	GDB Quick Reference
	LLDB Quick Reference

	Exercise 5. Memorizing C Operators
	How to Memorize
	The List of Operators

	Exercise 6. Memorizing C Syntax
	The Keywords
	Syntax Structures
	A Word of Encouragement
	A Word of Warning

	Exercise 7. Variables and Types
	What You Should See
	How to Break It
	Extra Credit

	Exercise 8. If, Else-If, Else
	What You Should See
	How to Break It
	Extra Credit

	Exercise 9. While-Loop and Boolean Expressions
	What You Should See
	How to Break It
	Extra Credit

	Exercise 10. Switch Statements
	What You Should See
	How to Break It
	Extra Credit

	Exercise 11. Arrays and Strings
	What You Should See
	How to Break It
	Extra Credit

	Exercise 12. Sizes and Arrays
	What You Should See
	How to Break It
	Extra Credit

	Exercise 13. For-Loops and Arrays of Strings
	What You Should See
	Understanding Arrays of Strings
	How to Break It
	Extra Credit

	Exercise 14. Writing and Using Functions
	What You Should See
	How to Break It
	Extra Credit

	Exercise 15. Pointers, Dreaded Pointers
	What You Should See
	Explaining Pointers
	Practical Pointer Usage
	The Pointer Lexicon
	Pointers Aren’t Arrays
	How to Break It
	Extra Credit

	Exercise 16. Structs And Pointers to Them
	What You Should See
	Explaining Structures
	How to Break It
	Extra Credit

	Exercise 17. Heap and Stack Memory Allocation
	What You Should See
	Heap versus Stack Allocation
	How to Break It
	Extra Credit

	Exercise 18. Pointers to Functions
	What You Should See
	How to Break It
	Extra Credit

	Exercise 19. Zed’s Awesome Debug Macros
	The C Error-Handling Problem
	The Debug Macros
	Using dbg.h
	What You Should See
	How the CPP Expands Macros
	Extra Credit

	Exercise 20. Advanced Debugging Techniques
	Debug Printing versus GDB
	A Debugging Strategy
	Extra Credit

	Exercise 21. Advanced Data Types and Flow Control
	Available Data Types
	Type Modifiers
	Type Qualifiers
	Type Conversion
	Type Sizes

	Available Operators
	Math Operators
	Data Operators
	Logic Operators
	Bit Operators
	Boolean Operators
	Assignment Operators

	Available Control Structures
	Extra Credit

	Exercise 22. The Stack, Scope, and Globals
	ex22.h and ex22.c
	ex22_main.c
	What You Should See
	Scope, Stack, and Bugs
	How to Break It
	Extra Credit

	Exercise 23. Meet Duff’s Device
	What You Should See
	Solving the Puzzle
	Why Bother?

	Extra Credit

	Exercise 24. Input, Output, Files
	What You Should See
	How to Break It
	The I/O Functions
	Extra Credit

	Exercise 25. Variable Argument Functions
	What You Should See
	How to Break It
	Extra Credit

	Exercise 26. Project logfind
	The logfind Specification

	Exercise 27. Creative and Defensive Programming
	The Creative Programmer Mind-Set
	The Defensive Programmer Mind-Set
	The Eight Defensive Programmer Strategies
	Applying the Eight Strategies
	Never Trust Input
	Prevent Errors
	Fail Early and Openly
	Document Assumptions
	Prevention over Documentation
	Automate Everything
	Simplify and Clarify
	Question Authority

	Order Is Not Important
	Extra Credit

	Exercise 28. Intermediate Makefiles
	The Basic Project Structure
	Makefile
	The Header
	The Target Build
	The Unit Tests
	The Cleaner
	The Install
	The Checker

	What You Should See
	Extra Credit

	Exercise 29. Libraries and Linking
	Dynamically Loading a Shared Library
	What You Should See
	How to Break It
	Extra Credit

	Exercise 30. Automated Testing
	Wiring Up the Test Framework
	Extra Credit

	Exercise 31. Common Undefined Behavior
	UB 20
	Common UBs

	Exercise 32. Double Linked Lists
	What Are Data Structures
	Making the Library
	Doubly Linked Lists
	Definition
	Implementation

	Tests
	What You Should See
	How to Improve It
	Extra Credit

	Exercise 33. Linked List Algorithms
	Bubble and Merge Sorts
	The Unit Test
	The Implementation
	What You Should See
	How to Improve It
	Extra Credit

	Exercise 34. Dynamic Array
	Advantages and Disadvantages
	How to Improve It
	Extra Credit

	Exercise 35. Sorting and Searching
	Radix Sort and Binary Search
	C Unions
	The Implementation
	RadixMap_find and Binary Search
	RadixMap_sort and radix_sort

	How to Improve It
	Extra Credit

	Exercise 36. Safer Strings
	Why C Strings Were a Horrible Idea
	Using bstrlib
	Learning the Library

	Exercise 37. Hashmaps
	The Unit Test
	How to Improve It
	Extra Credit

	Exercise 38. Hashmap Algorithms
	What You Should See
	How to Break It
	Extra Credit

	Exercise 39. String Algorithms
	What You Should See
	Analyzing the Results
	Extra Credit

	Exercise 40. Binary Search Trees
	How to Improve It
	Extra Credit

	Exercise 41. Project devpkg
	What Is devpkg?
	What We Want to Make
	The Design
	The Apache Portable Runtime

	Project Layout
	Other Dependencies

	The Makefile
	The Source Files
	The DB Functions
	The Shell Functions
	The Command Functions
	The devpkg Main Function

	The Final Challenge

	Exercise 42. Stacks and Queues
	What You Should See
	How to Improve It
	Extra Credit

	Exercise 43. A Simple Statistics Engine
	Rolling Standard Deviation and Mean
	Implementation
	How to Use It
	Extra Credit

	Exercise 44. Ring Buffer
	The Unit Test
	What You Should See
	How to Improve It
	Extra Credit

	Exercise 45. A Simple TCP/IP Client
	Augment the Makefile
	The netclient Code
	What You Should See
	How to Break It
	Extra Credit

	Exercise 46. Ternary Search Tree
	Advantages and Disadvantages
	How to Improve It
	Extra Credit

	Exercise 47. A Fast URL Router
	What You Should See
	How to Improve It
	Extra Credit

	Exercise 48. A Simple Network Server
	The Specification

	Exercise 49. A Statistics Server
	Specification

	Exercise 50. Routing the Statistics
	Exercise 51. Storing the Statistics
	The Specification

	Exercise 52. Hacking and Improving Your Server
	Next Steps
	Index
	Where are the Companion Content Files?
	Code Snippets

