
Number Theory and Cryptography

MATH2088/2988
Number Theory and Cryptography

Lecture Notes

Semester 2, 2018

Contents

1 Introduction 4
1.1 Divisibility . 4
1.2 Division with a remainder . 4
1.3 Greatest common divisor . 5
1.4 Extended Euclidean Algorithm . 6

2 Prime and composite numbers 7
2.1 Introduction to prime and composite numbers . 7
2.2 Fundamental Theorem of Arithmetic . 7
2.3 Factorisation . 8

3 Congruences 8
3.1 Introduction to congruences . 8
3.2 Modular arithmetic . 9
3.3 Application of congruences . 10
3.4 Complete and redcued systems of residues moduluo m 10
3.5 Powers in modular arithmetic . 10

4 Cryptography 11
4.1 Codes vs Ciphers . 11
4.2 Ciphers . 11

4.2.1 Caesar’s ciphers . 11
4.2.2 Translation ciphers . 11
4.2.3 Simple substitution ciphers . 11
4.2.4 The Vigenère cipher . 12

4.3 Finding the period using the coincidence index 12
4.4 Finding the key using the period . 12
4.5 Transposition ciphers . 13

5 Euler-Fermat Theorem 13
5.1 Reduced systems of residues – extension . 13
5.2 Euler-Fermat Theorem . 14
5.3 Fermat’s Little Theorem when gcd(a, p) 6= 1 . 15

– 1 –

Number Theory and Cryptography

6 Relating congruences with different moduli 16
6.1 Principles . 16

7 Computing powers in modulo arithmetic 19
7.1 Several approaches . 19

8 Computing kth roots in modular arithmetic 20

9 Multiplicative functions 20
9.1 Euler’s phi function . 20
9.2 Liouville and Mobius functions . 22
9.3 λ(n), µ(n) and the distribution of primes . 22
9.4 The number and sum of divisors . 23
9.5 Applications of the multiplicative nature of σ(n): classification of perfect numbers 24
9.6 More on Euler’s phi function . 25
9.7 Mobius Inversion Formula . 26

10 RSA cryptosystem 27
10.1 The process of the RSA cryptosystem . 27
10.2 Digital signature with the help of RSA . 28

11 Computational complexity 28
11.1 Elementary bit operations . 28
11.2 Big O notation . 30

12 Computational complexity of some standard algorithms 31
12.1 Division with a remainder . 31
12.2 Computation of gcd . 31
12.3 Computation of a power modulo a number . 32
12.4 Checking primality . 32

13 Polynomial congruences 33

14 Primitive roots and discrete logarithms 34
14.1 Primes and order . 35

15 Diffie – Hellman key exchange protocol and Elgamal cryptosystem 36
15.1 Algorithm (Diffie – Hellman) . 36
15.2 Elgamal cryptosystem . 37
15.3 Analysis of the Diffie – Hellman key exchange . 37

16 Applications of primitive roots 38
16.1 Solving equations of the form xm ≡ c (mod p) . 39

17 Algorithms for factorisation and DLP 39
17.1 Factorisation . 39
17.2 Discrete logarithm problem: Naive approach . 41
17.3 Baby-step/Giant-step algorithm . 41
17.4 Pohlig-Hellman algorithm . 42
17.5 Complexity of the Pohlig-Hellman algorithm . 42

– 2 –

Number Theory and Cryptography

18 Lagrange Interpolation Formula in modular arithmetic 43
18.1 The formula . 43
18.2 Splitting the secret key . 44

19 Square roots in modular arithmetic 44
19.1 The case where we have an odd prime p . 44
19.2 The case where the modulus m is of the form m = pq, where p, q are distinct primes 46
19.3 Rabin cryptosystem . 46

– 3 –

Number Theory and Cryptography

1 Introduction

1.1 Divisibility

Definition 1.1. Let a, b ∈ Z. We say that a divides b if there exists an α ∈ Z such that

b = αa.

Properties of divisibility, given that a, b, c ∈ Z:

• a | 0 (a 6= 0)

• 1 | a

• If a | b and b | c, then a | c

• If a | b and a | c, then a | (mb+ nc), ∀m,n ∈ Z

1.2 Division with a remainder

Proposition 1.2. Let a ∈ Z, b ∈ Z+. Then there exists unique integers q and r such that

a = qb+ r, 0 ≤ r < b.

Proof. We will use the Least Integer Principle. The Least Integer Principle states that any
nonempty subset of Z contains a minimal element. Consider

S+ = {a− kb : k ∈ Z, a− kb > 0} ⊂ N.

If a ≥ 0, then we can take k = 0. If a < 0, then we can take k = a. From here we can deduce that
the set S+ is nonempty, and hence, it must follow the Least Integer Principle. This means that
the set S+ must contain a minimal element, which we will call r = a− qb (r ≥ 0 by definition).

r − b = a− (q + 1)b < 0 =⇒ r < b.

Finally, we have
a = qb+ r, 0 ≤ r < b.

Now we can prove the uniqueness of the proposition. Assume for the sake of contradiction that
we have (q1, r1) and (q2, r2) such that

a = q1b+ r1 = q2b+ r2, 0 ≤ r1r2 < b.

Subtracting both equations we get

(q1 − q2)b = r2 − r1.

If q1 > q2, then
b ≤ (q1 − q2)b = r2 − r2 < b =⇒ b < b,

which is a contradiction. If q1 < q2, we will derive a similar contradiction. Hence, the proposition
is unique.

Remark 1.3. For a ∈ Z+, a | b iff the remainder after the division of b by a is 0. (Note that this
is trivial.)

– 4 –

Number Theory and Cryptography

1.3 Greatest common divisor

Definition 1.4. Let a, b ∈ Z. We say that d ∈ Z is the common divisor of a and b if

d | a, d | b.

• The greatest common divisor is the greatest d with this properly, formally written

gcd(a, b) = max{d ∈ Z : d | a, d | b}.

• By convention, we have
gcd(0, 0) = 0.

Properties of gcd, given that a, b ∈ Z:

• gcd(a, b) = gcd(b, a)

• gcd(a, 0) = 0 (a ≥ 0)

• gcd(a, b) = gcd(−a, b)

Lemma 1.5. Let a, b, q ∈ Z. Then

gcd(a, b) = gcd(a, b− a) = gcd(a, b− 2a) = · · · = gcd(a, b− qa).

Proof. Consider a common divisor d of a and b. Then

d | a, d | b =⇒ d | (b− a).

This implies that d is a common divisor of a and b− a. Now

d | a, d | (b− a) =⇒ d | (a+ (b− a)) =⇒ d | b.

This implies that d is a common divisor of a and b− a. The set of common divisors of (a, b) and
(a, b− a) are the same, and hence, their maximums coincide.

∴ gcd(a, b) = gcd(a, b− a).

By similar arguments,

gcd(a, b) = gcd(a, b− a) = gcd(a, b− 2a) = · · · = gcd(a, b− qa).

Theorem 1.6 (Euclidean Algorithm). Let a ∈ Z and b ∈ Z+. Then gcd(a, b) can be calculated
by the following algorithm:

a = q1b+ r1

b = a2r1 + r2

r1 = q3r2 + r3

· · ·
rn−1 = qn+1rn + rn+1

This occurs until we have rn+1 = 0. Then gcd(a, b) = rn.

– 5 –

Number Theory and Cryptography

Proof. The algorithm will complete in a finite number of steps, in essence,

b > r1 > r2 > · · · > rn > rn+1 ≥ 0.

Eventually,we will have rn+1 = 0 and the algorithm will finish. Now computing the gcd:

gcd(a, b) = gcd(b, a)

= gcd(b, a− q1b)
= gcd(b, r1)

= gcd(r1, b)

= gcd(r1, b− q2r1)

= gcd(r1, r2)

= · · ·
= gcd(rn, rn+1)

= gcd(rn, 0)

= 0

1.4 Extended Euclidean Algorithm

Theorem 1.7. The Euclidean Algorithm shows that gcd(a, b) can be written as

gcd(a, b) = s · a+ t · b, s, t ∈ Z.

We can write gcd(a, b) = ri in the form

ri = (−1)i+1kia+ (−1)ihib,

where ki and hi are integers.

Proof. We still start with:
r−1 = a = 1 · a+ 0 · b

r0 = b = 0 · a+ 1 · b

Providing a formula for ri+1:

ri−1 = qi+1ri + ri+1

ri+1 = ri−1 − qi+1ri

= ((−1)iki−1a+ (−1)i−1hi−1b)− qi+1((−1)i+1kia+ (−1)ihib)

= (−1)i+2 (ki−1 + qi+1ki)︸ ︷︷ ︸
ki+1

a+ (−1)i+1 (hi−1 + qi+1hi)︸ ︷︷ ︸
hi+1

b

By induction, or by taking i = 1, 2, · · · , n− 1, we end up with

ri = gcd(a, b) = (−1)i+1ki︸ ︷︷ ︸
s

a+ (−1)ihi︸ ︷︷ ︸
t

b.

– 6 –

Number Theory and Cryptography

2 Prime and composite numbers

2.1 Introduction to prime and composite numbers

Remark 2.1. The set of all primes is denoted by P.

Definition 2.2. Let n ∈ Z, n ≥ 2. n is called prime if all of its natural divisors are 1 and n.
Otherwise, n is called composite.

Remark 2.3. The numbers 0 and 1 are neither prime nor composite.

Proposition 2.4. Let p be prime, a, b ∈ Z. If p | ab, then either p | a or p | b.

Proof. Consider gcd(p, a). If gcd(p, a) = p, then p | a. Assume that gcd(p, a) = 1. Now by the
Extended Euclidean Algorithm, we have

1 = s · p+ t · a =⇒ b = s · bp+ t · ab.

It is known that p divides sbp and tab, hence, this implies p | b.

Theorem 2.5. If p is prime, and p | a1a2 · · · an, then p divides one of a1, a2, · · · , an.

Proof. The proof is similar to the proof of the previous proposition, and hence will be left as an
exercise to the reader.

2.2 Fundamental Theorem of Arithmetic

Theorem 2.6. Every positive integer can be written as a product of primes in a unique way.

Proof. We will firstly prove the existence of this theorem. By the principles of mathematical
induction,

• 1 is an empty product of primes,

• 2 is prime (a product of one number).

Assume that all numbers between 1 and n can be written as a product of primes. Now we must
prove this is true for n+ 1:
Case 1: n+ 1 is prime. In this case, n+ 1 = (1)(n+ 1).
Case 2: n + 1 is not prime. n + 1 = d1d2, where 1 < d1d2 < n + 1. Both d1 and d2 can be
written as a product of primes. Hence, n+ 1 = d1d2 can also be written as a product of primes.
Now we will prove the uniqueness of this theorem. Assume that

n = p1p2 · · · pd = q1q2 · · · qs,

where p1, p2, · · · , pd, q1, q2, · · · and ps are prime, and d ≤ s.
Now p1|q1q2 · · · qs =⇒ p1 divides qi (i ∈ {q1, q2, · · · , qs}). Without loss of generality, p1|q1 =⇒
p1 = q1. Now we can divide p1 from both sides of n = p1p2 · · · pd = q1q2 · · · qs, giving us

p2 · · · pd = q2 · · · qs.

By repeating the same argument, we get

p2 = q2, p3 = q3, · · · , pd = qd.

This equation is only possible if the product on the RHS is empty, in essence s = d.
Finally,

p1 = q1, p2 = q2, · · · pd = qd, s = d.

– 7 –

Number Theory and Cryptography

2.3 Factorisation

All previously learnt methods of factorising have been somewhat inefficient. A more efficient
way of factorising is the Fermat Factorisation Method. This method of factorising can quickly
factorise a positive integer, given that the positive integer has 2 neighbouring divisors.

Definition 2.7 (Fermat Factorisation Method). If we want to factorise n, first, we compute
√
n.

Then we will pick m ≥ n, where m is as small as possible. We will increase m until m2 − n is a
perfect square.

Theorem 2.8 (Euclid). There are infinitely many primes.

Proof. Assume that there are finitely many primes, we will call these primes p1, p2, · · · , pd.
Consider

N = p1p2 · · · pd + 1.

By the Fundamental Theorem of Arithmetic, there exists a prime q|N . gcd(N, pi) = 1 for all pi,
i ∈ N, 1 ≤ i ≤ d. This implies that gcd(q, pi) = 1, which implies that q is not on the list. This is
a contradiction. Thus, there are not a finite number of primes. Therefore, there are an infinite
number of primes.

Remark 2.9. p1p2 · · · pd + 1 is not always prime. There exists a counterexample

2× 3× 5× 7× 11× 13 + 1 = 59509

which is not prime.

3 Congruences

3.1 Introduction to congruences

Definition 3.1. Let m ∈ Z+ (the modulus), a, b ∈ Z. We say that a is congruent to b modulo
m if m | b− a or b = a+mk (k ∈ Z), or if a and b have the same residues modulo m.

The notation used for congruence is

a ≡ b (mod m).

Basic properties of congruences (given a, b, c ∈ Z, m ∈ Z+):

• a ≡ a (mod m)

• a ≡ b (mod m)⇐⇒ b ≡ a (mod m)

• a ≡ b (mod m) & b ≡ c (mod m) =⇒ a ≡ c (mod m)

Definition 3.2. Let m ∈ Z+, a ∈ Z. The congruence class of a modulo m is the set of integers
which are congruent to a modulo m.

– 8 –

Number Theory and Cryptography

3.2 Modular arithmetic

Proposition 3.3. Letm ∈ Z+ and a, a′, b, b′ ∈ Z such that a ≡ a′ (mod m) and b ≡ b′ (mod m).
Then

• a+ b ≡ a′ + b′ (mod m)

• a · b ≡ a′ · b (mod m)

Proof. Let k, l ∈ Z. Then
a ≡ a′ (mod m) =⇒ a = a′ + km,

b ≡ b′ (mod m) =⇒ b = b′ + lm.

a+ b ≡ a′ + b′ (mod m):

a+ b = a′ + km+ b′ + lm

= (a′ + b′) + (l + k)m

≡ a′ + b′ (mod m)

a · b ≡ a′ · b (mod m):

a · b = (a′ + km) · (b′ + lm)

= a′b′ + a′lm+ b′km+ klm2

= a′b′ + (a′l + b′k + klm)m

≡ a′ · b′ (mod m)

Proposition 3.4. Let m ∈ Z+, a, b, c ∈ Z, and gcd(c,m) = 1. Then

ac ≡ bc (mod m) =⇒ a ≡ b (mod m).

Proof. From the Extended Euclidean Algorithm, for s, t ∈ Z,

1 = sc+ tm =⇒ 1 ≡ sc (mod m).

Multiplying both sides of ac = bc (mod m) by s, we get

asc ≡ bsc (mod m).

As 1 ≡ sc (mod m), then the above expression simplifies to

a ≡ b (mod m),

which completes the proof.

Remark 3.5. The number s from the proof above is called the inverse of c modulo m. The
notation for s is

s ≡ c−1 (mod m).

– 9 –

Number Theory and Cryptography

3.3 Application of congruences

Proposition 3.6. An integer a is divisible by 9 iff the sum of its digits are divisible by 9.

Proof.
a = 100d0 + 101d1 + 102d2 + · · ·+ 10ndn.

Consider
10 ≡ 1 (mod 9) =⇒ 10j ≡ 1j ≡ 1 (mod 9),

for j ∈ {0, 1, 2, · · · , n}. Therefore, we can deduce that

100 ≡ 10 (mod 9), 101 ≡ 11 (mod 9), 102 ≡ 12 (mod 9), · · · , 10n ≡ 1n (mod 9).

∴ a ≡ d0 + d1 + d2 + · · · dn (mod 9).

Remark 3.7. There is a similar proof for the fact that an integer a is divisible by 11 iff the
alternating sum of its digits are divisible by 11.

3.4 Complete and redcued systems of residues moduluo m

Definition 3.8. A complete system of residues modulo m is a set of integers containing exactly
one representative from each congruence class modulo m.

Definition 3.9. A reduced system of residues modulo m is a set of integers containing exactly
one representative of each invertible congruence class.

Definition 3.10. The standard reduced system of residues modulo m is given by

{a ∈ Z : 0 ≤ a ≤,m− 1, gcd(a,m) = 1}.

Definition 3.11. The cardinality of a reduced system of residues modulo m is called Euler’s
totient function. The notation for Euler’s totient function is

ϕ(m) := #{a ∈ Z : 0 ≤ a ≤ m− 1, gcd(a,m) = 1}.

3.5 Powers in modular arithmetic

Proposition 3.12. Let m ∈ Z+, a ∈ Z, and gcd(a,m) = 1. Then there exists a, d > 0 such that

ad ≡ 1 (mod m).

Proof. Compute
a0, a1, a2, · · · , am︸ ︷︷ ︸

m+ 1 values

(mod m).

Therefore we must have i, j such that 0 ≤ i < j ≤ m and ai ≡ aj (mod m) =⇒ 1 ≡ aj−i

(mod m).

Definition 3.13. Let m ∈ Z+, a ∈ Z, and gcd(a,m) = 1. The order of a modulo m is the
smallest d ∈ Z+, such that ad ≡ 1 (mod m).

The notation for order is given by
ordm(a) = d.

– 10 –

Number Theory and Cryptography

4 Cryptography

4.1 Codes vs Ciphers

From a mathematical standpoint, encryption is just a function from one of set of messages (the
plaintext) to another set of messages (the ciphertext). The function should be invertible, and
decryption is the inverse function.

In everyday English, encoding and decoding are used for such an inverse pair of functions,
rather than encryption and decryption. Note that encoding and enciphering should be kept dis-
tinct. The world code should be reserved for situations where there the encoding and decoding
processese are not kept secret. An example of this is Morse code.

4.2 Ciphers

4.2.1 Caesar’s ciphers

Caesar’s cipher was a simple cipher used by Julius Caesar. Represent the letters A - Z by the
numbers 0 - 25. To use the cipher, replace each letter i with i+ 3 (mod 26).

4.2.2 Translation ciphers

A translation cipher, or alphabetic shift, is a cipher which encrypts a message by replacing each
letter i with i+k (reduced modulo 12) for some fixed k. If we were to decrypt the message, each
letter j is to be replaced with j − k.

In this case, the key is just the number k (or rather, its residue modulo 26). With this key,
anyone will be able to encrypt and decrypt messages.

4.2.3 Simple substitution ciphers

Translation ciphers are an example of simple substitution ciphers, where a message is encrypted
by applying the same pre-determined substitution rule to each letter. The encryption key is just
the substitution rule, which could be any invertible function f from the source alphabet to the
target alphabet. The decryption key is f−1.

Thus, in a simple substitution cipher, if the plaintext is

x1x2 · · ·xN ,

the ciphertext is
f(x1)f(x2) · · · f(xN).

For an arbitrarily simple substitution key on the alphabet A - Z, the key is a permutation of the
26 letters. The number of possible keys is

26! = 40329146112660563584000000,

which makes an exhaustive key search impossible.

– 11 –

Number Theory and Cryptography

4.2.4 The Vigenère cipher

• A Vigenère cipher is a polyalphabetic translation cipher. That is, m alphabetic shifts are
used, for some m known as the period.

• The key for a Vigenère cipher is the m-letter word giving the images of the letter A under
the m translations.

• The plaintext M can be thought of as a sequence of residues modulo 26. So M =
c1c2c3 · · · cN , where each ci is a natural number less than 26, and N is the length of the
message.

• The keyword K = k1k2 · · · km is also a sequence of residues modulo 26. Here m is the
period.

• Define km+1 = k1, km+2 = k2, etc. More precisely, for each i ∈ Z let ki = kr, where r is
the residue of i mod m. The ciphertext is M ′ = c′1c

′
2c
′
3 · · · c′N , where the i-th term c′i is the

mod 26 residue of ci + ki.

• In particular the sequence c′1c
′
m+1c

′
2m+1 · · · is simply an “alphabetic shift” of the sequence

c1cm+1c2m+1 · · · . To get c′am+1 you just add k1 to cam+1 (mod 26).

• We define the decimation ofM with periodm and index r to be the sequence Dec(M,m, r) =
crcm+rc2m+rc3m+r · · · .

4.3 Finding the period using the coincidence index

• The coincidence index of a piece of text is the probability that two randomly chosen letters
are the same. That is, if the relative frequencies of the 26 letters are p0, p1, · · · , p25 then
the coincidence index is

25∑
i=0

p2i .

• By the Cauchy–Schwarz inequality, the coincidence index is always at least 1
26 = 0.0385 · · · .

The more skewed the distribution of frequencies is, the higher the coincidence index will
be. For English text the coincidence index is usually about 0.065.

• An alphabetic shift (or any simple substitution cipher) does not change the coincidence
index. In particular, if a Vigenère cipher has period m, the decimations Dec(M ′,m, i) will
have coincidence index about 0.065.

• This provides a convenient way to find m: compute the coincidence index of Dec(M ′,m, i)
for m = 1, 2, 3, · · · until we find an m that gives a value greater than about 0.06.

4.4 Finding the key using the period

• Suppose that the period is m. Then

Dec(M ′,m, 1) = c′1c
′
m+1c

′
2m+1c

′
3m+1 . . .

is the same as
Dec(M,m, 1) = c1cm+1c2m+1c3m+1 . . .

alphabetically shifted by k1, where k1 is the first term of the key.

– 12 –

Number Theory and Cryptography

• We can find k1 by examining letter frequencies in Dec(M ′,m, 1): whatever is the most
frequent letter in Dec(M ′,m, 1) is probably the shift of E by k1, and we can check that
guess easily using the next most frequent letters.

• And we can similarly find k2, k3, . . . , km by examining letter frequencies in Dec(M ′,m, 2),
Dec(M ′,m, 3), . . ., Dec(M ′,m,m).

• For the above methods to work one needs a piece of ciphertext of length many times the
length of the period m. Otherwise the decimations Dec(M ′,m, i) will not be long enough
to give meaningful frequency distributions. In the extreme case that m is greater than the
length of the ciphertext, it is impossible to decrypt the message without knowing the key.

4.5 Transposition ciphers

pass

5 Euler-Fermat Theorem

5.1 Reduced systems of residues – extension

Proposition 5.1. Let a, b ∈ Z, m ∈ Z+, gcd(a,m) = 1. If m | ab, then m | b.

Proof. By the Extended Euclidean Algorithm,

1 = sa+ tm,

for some s, t ∈ R.
=⇒ b = sab+ tmb

As m divides both sab and tmb, then m | b.

Proposition 5.2. Let a, b ∈ Z. If gcd(a,m) = gcd(b,m) = 1, then gcd(ab,m) = 1.

Proof. Assume that gcd(ab,m) = d > 1.

=⇒ d |m, gcd(a,m) = 1 =⇒ gcd(a, d) = 1

But d | ab, and by Proposition 8.1, d | b.

=⇒ gcd(b,m) ≥ d

But this contradicts with gcd(b,m) = 1.

∴ gcd(ab,m) = 1

– 13 –

Number Theory and Cryptography

5.2 Euler-Fermat Theorem

Proposition 5.3. Let R be a reduced system of residues modulo m. Let a ∈ Z, gcd(a,m) = 1.
Then aR := {ar : r ∈ R} is also a reduced system of residues modulo m.

Proof. We must firstly show that all elements in aR are distinct modulo m.
Assume

ar1 ≡ ar2 (mod m).

Then
r1 ≡ r2 (mod m) =⇒ r1 = r2.

ar is comprime with m =⇒ gcd(ar,m) = 1.
Hence, all values ar from aR are distinct representatives from each invertible congruence class
=⇒ aR is a reduced system.

Remark 5.4. The same proposition is true for complete system of residues.

Theorem 5.5 (Euler-Fermat Theorem). Let m ∈ Z+, a ∈ Z, gcd(a,m) = 1. Then

aϕ(m) ≡ 1 (mod m).

Proof. Consider R as a reduced system of residues mod m. In essence,

R = {r1, r2, · · · , rϕ(m)}.

aR is also a reduced system of residues mod m.

=⇒ r1, ar2, · · · , arϕ(m) are congruent to r1, r2, · · · , rϕ(m) in a different order.

=⇒ r1r2 · · · rϕ(m) ≡ ar1 · ar2 · · · · · arϕ(m)

≡ aϕ(m)r1r2 · · · rϕ(m) (mod m)

=⇒ 1 ≡ aϕ(m) (mod m) (we can cancel r1, r2, · · · , rϕ(m) from both sides.)

Corollary 5.6 (Fermat’s Little Theorem). Let p be prime, a ∈ Z, ap−1 6≡ 0 (mod p). Then

ap−1 ≡ 1 (mod p).

Proof. We know that ϕ(p) = p − 1, where p is prime. Now letting m = p in the Euler-Fermat
Theorem, we get the desired result.

Proposition 5.7. If m ∈ Z+, a ∈ Z and gcd(a,m) = 1. Then

ordm(a) |ϕ(m).

d = ordm(a)

Divide ϕ(m) by d with the remainder

ϕ(m) = qd+ r, 0 ≤ r < d.

aϕ(m) = aqd+r = (ad)q · ar ≡ ar (mod m)

as ad ≡ 1 (mod m). But by the Euler–Fermat Theorem,

aϕ(m) ≡ 1 (mod m) =⇒ ar ≡ 1 (mod m).

Since d is the smallest positive integer with ad ≡ 1 (mod m), r has to be 0. Hence

d |ϕ(m).

– 14 –

Number Theory and Cryptography

5.3 Fermat’s Little Theorem when gcd(a, p) 6= 1

Theorem 5.8. Let p be prime for some arbitrary a ∈ Z. Then

ap ≡ a (mod p).

Proof. If gcd(a, p) = 1, then

ap−1 ≡ 1 (mod p) =⇒ ap ≡ a (mod p).

If gcd(a, p) > 1, then
a ≡ 0 (mod p) =⇒ 0 ≡ ap ≡ a (mod p).

Proposition 5.9. If the input of the Euler’s totient function is a product of two primes, say pq,
where p and q are prime, then

ϕ(pq) = (p− 1)(q − 1).

Proof. gcd(a, pq) can equal to 1, p, q and pq.

gcd(a, pq) = pq

for a = 0 (considering 0 ≤ a < pq).
gcd(a, pq) = p

for a = p, 2p, 3p, · · · , (q − 1)p.
gcd(a, pq) = q

for a = q, 2q, 3q, · · · , (p− 1)q.

=⇒ ϕ(pq) = pq − 1− (q − 1)− (p− 1) = pq − p− q + 1 = (p− 1)(q − 1)

Proposition 5.10. Let m = pq, where p and q are distinct primes. Let a ∈ Z. Then

aϕ(m)+1 ≡ a (mod m).

Proof. 1. If gcd(a,m) = 1, then

aϕ(m) ≡ 1 (mod m) =⇒ aϕ(m)+1 ≡ a (mod m).

2. If gcd(a,m) = pq = m, then

a ≡ 0 (mod m) =⇒ aϕ(m)+1 ≡ a ≡ 0 (mod m).

3. If gcd(a,m) = gcd(a, pq) = p, then by Euler’s Theorem (gcd(a, q) = 1),

aq−1 ≡ 1 (mod q) =⇒ a(q−1)(p−1) ≡ 1 (mod q) =⇒ aϕ(m)+1 ≡ a (mod q).

a ≡ 0 (mod p) =⇒ aϕ(m)+1 ≡ a ≡ 0 (mod p)

We have
p | aϕ(m)+1 − a, q | aϕ(m)+1 − a =⇒ pq | aϕ(m)+1 − a

=⇒ aϕ(m)+1 ≡ a (mod pq).

– 15 –

Number Theory and Cryptography

Theorem 5.11 (RSA Theorem). Let m = pq, where p and q are distinct primes. Let a ∈ Z,
k ∈ Z+. Then

akϕ(m)+1 ≡ a (mod m).

Proof. We will conduct this proof by induction. k = 0 is obvious. k = 1 is true by a previous
proposition. Assume that the congruence is true for k. We will now prove that the congruence
is true for k + 1.

a(k+1)ϕ(m)+1 ≡ akϕ(m)+1︸ ︷︷ ︸
≡a (by assumption)

aϕ(m) ≡ aϕ(m)+1 ≡ a (mod m)

Corollary 5.12. Let p and q be distinct primes and consider d ∈ Z such that gcd(d, ϕ(pq)) = 1,
e ≡ d−1 (mod ϕ(pq)). Then the following two functions are inverses of each other:

m = pq

{0, 1, 2, · · · ,m− 1}{0, 1, 2, · · · ,m− 1}

b→ bd (mod m)

a→ ad (mod m)

Proof. (ad)e ≡ a (mod m)
We have ed ≡ 1 (mod ϕ(m)) or ed = 1 + kϕ(m) for some k ∈ Z

∴ (ad)e ≡ aed ≡ akϕ(m)+1 ≡ a (mod m).

6 Relating congruences with different moduli

6.1 Principles

Proposition 6.1 (Principle 1). Let m1,m2 ∈ Z+ and m1 |m2. Then

a ≡ b (mod m2) =⇒ a ≡ b (mod m1).

Proof. m2 = dm1 for some d ∈ Z. Hence

a ≡ b (mod m2) =⇒ b = a+ km2 =⇒ b = a+ kdm1 =⇒ a ≡ b (mod m1).

Remark 6.2. The converse of the above proposition is not true, however, we can state a weaker
statement:

a ≡ b (mod m1) =⇒ a ≡ b+m2 −m1 (mod m2)

– 16 –

Number Theory and Cryptography

Proposition 6.3 (Principle 2). If a ≡ b (mod m), then ac ≡ bc (mod mc).

Proof. m | ab =⇒ mc | (a− b)c = ac− bc =⇒ ac ≡ bc (mod mc).

Remark 6.4. The converse of the above proposition is true.

Proposition 6.5. Let m ∈ Z+, a, b ∈ Z and

a ≡ b (mod m).

If d | a and d |m, then d also divides b and

a

d
≡ b

d
(mod

m

d
).

Proof. b = a+ km =⇒ d | b. Then we can write a = da1, b = db1, m = dm1 and

db1 = da1 + kdm1 =⇒ b1 = a1 + km1 =⇒ b1 ≡ a (mod m1)

Corollary 6.6. Every linear congruence

ax ≡ b (mod m)

either does not have integer solutions, or have integer solutions of the form

x ≡ c (mod m1)

for some values c and m1.

When solving linear congruences, there are three steps:

1. Compute gcd(a,m)

2. If gcd(a,m) = 1, then there exists a−1 (mod m) and

x ≡ a−1b (mod m).

3. Assume gcd(a,m) = d > 1. If d - d, there are no solutions. If d | b, we can rewrite the
congruence

a

d
≡ b

d
(mod

m

d
).

Now that gcd(ad ,
m
d) = 1, repeat step 2.

Proposition 6.7. If
a ≡ b (mod m1)

a ≡ b (mod m2)

and gcd(m1,m2) = 1, then
a ≡ b (mod m1m2).

Proof.
a ≡ b (mod m1) =⇒ m1 | a− b
a ≡ b (mod m2) =⇒ m2 | a− b

Since gcd(m1,m2) = 1, it implies that m1m2 | a− b =⇒ a ≡ b (mod m1m2).

– 17 –

Number Theory and Cryptography

Theorem 6.8 (Chinese Remainder Theorem). Let m1,m2 ∈ Z+, gcd(m1,m2) = 1. Then for
any pair a, b ∈ Z, the system of congruences

x ≡ a (mod m1)

x ≡ b (mod m2)

is equivalent to x ≡ c (mod m1m2) for some integer c.

Proof. We will firstly prove the existence of this theorem. By the Extended Euclidean Algorithm,
we can write

1 = sm1 + tm2

for some s, t ∈ Z.
b1 = b1sm1 + b1tm2

Consider b1tm2 modulo m1 and m2:

b1tm2 ≡ b1 (mod m1)

b1tm2 ≡ 0 (mod m2).

Now multiply both sides of 1 = sm1 + tm2 by b2 and consider b2sm1 modulo m1 and m2:

b2tm1 ≡ 0 (mod m1)

b2tm1 ≡ b2 (mod m2).

Now consider b1tm2 + b2sm1 :

b1tm2 + b2sm1 ≡ b1 (mod m1)

b1tm2 + b2sm1 ≡ b2 (mod m2).

Hence, we have the solution
x = b1tm2 + b2sm1.

Now we will prove the uniqueness of this theorem. Consider two solutions, c and c′ of the system

c ≡ b1 ≡ c′ (mod m1)

c ≡ b2 ≡ c′ (mod m2).

=⇒ c− c′ ≡ 0 (mod m1), c− c′ ≡ 0 (mod m2) =⇒ c− c′ ≡ 0 (mod m1m2)

=⇒ c ≡ c′ (mod m1m2)

Now we can check that any x ≡ c (mod m1m2) is the solution of the system (this is left as an
exercise to the reader).

Theorem 6.9 (Chinese Remainder Theorem (Full version)). Let m1,m2, · · · ,md ∈ Z+ be pair-
wise coprime, meaning that gcd(mi,mj) = 1 for any i 6= j. Then for any b1, b2, · · · , bd ∈ Z, the
system

x ≡ b1 (mod m1)

x ≡ b2 (mod m2)

· · ·
x ≡ bd (mod md)

has a unique solution modulo m1m2 · · ·md.

– 18 –

Number Theory and Cryptography

Proof. This proof is based off the two congruences version of the Chinese Remainder Theorem.
Note that the system of the first two congruences is equivalent to

x ≡ c1 (mod m1m2).

Replace the first two congruences with the congruence above. Now notice that gcd(m1m2,mi) =
1 for 3 ≤ i ≤ d. From here, we will decrease the number of congruences in the system until we
have one:

x ≡ c (mod m1m2 · · ·md).

7 Computing powers in modulo arithmetic

7.1 Several approaches

Let’s compute
22016 (mod 1739) = 22016 (mod 37× 47).

Approach 1 (naive). Compute
21, 22, · · · , 22016.

This is inefficient as it requires a total of 2015 multiplications.

Approach 2. Use the Euler-Fermat Theorem.

2ϕ(1739) =≡ 1 (mod 1739)

=⇒ 22016 ≡ 2360 (mod 1739),

which is quicker to compute, but still takes long (359 multiplications).

Approach 3 (successive squaring).

1. Write number as a sum of powers of 2. In this case,

2360 = 28 + 26 + 25 + 23.

2. Compute the sequence an ≡ 22
n

(mod ()m). In this case, m = 1739. Notice that

an+1 = a2n (mod 1739).

n 0 1 2 3 4 5 6 7 8

22
n

(mod 1739) 2 4 16 256 1193 747 1529 625 1089

3. Here, the computation of your power of 2 is trivial.

Approach 4. Use Fermat’s little theorem, then use the Chinese Remainder Theorem.

– 19 –

Number Theory and Cryptography

8 Computing kth roots in modular arithmetic

We want to solve
xk ≡ a (mod m).

In other words, for given m ∈ Z+, a ∈ Z, k ∈ Z+, we want to find an integer x which satisfies
the above congruence. There are several restrictions:

• gcd(k, ϕ(m)) = 1

• gcd(a,m) = 1 (In some cases, we can drop this restriction. For example, for m = p or
m = pq, where p 6= q are primes (see RSA Theorem))

A quick way of computing kth roots would be:

1. Compute ϕ(m)

2. Compute s and t (where s, t ∈ Z) such that

1 = sk + tϕ(m) (EEA)

3. Compute x ≡ as (mod m)

Remark 8.1. This method does not guarantee that the solution x will be unique. In fact, it is
unique, but we do not prove it here.

9 Multiplicative functions

Definition 9.1. A function f : Z+ → Z is called multiplicative if for any m,n ∈ Z, with
gcd(m,n) = 1, we have

f(mn) = f(m)f(n).

f is called completely multiplicative if the above equation is true for all pairs m,n ∈ Z.

9.1 Euler’s phi function

Recall that
ϕ(n) := #{a ∈ Z : 0 ≤ a < n, gcd(a, n) = 1},

where

• ϕ(p) = p− 1

• ϕ(pn) = pn − pn−1

• ϕ(pq) = (p− 1)(q − 1) for distinct primes p and q.

Theorem 9.2. Euler’s phi function is multiplicative

Proof. We will show that ϕ(mn) = ϕ(m)ϕ(n) for coprime m and n. Firstly, we will construct
one-to-one correspondence between the following sets:

{x ∈ Z : 0 ≤ x < mn, gcd(x,mn) = 1}

⇐⇒

– 20 –

Number Theory and Cryptography

{y ∈ Z : 0 ≤ y < m, gcd(y,m) = 1} × {z ∈ Z : 0 ≤ z < n, gcd(z, n) = 1}
Now we consider the set of pairs (y, z) such that 0 ≤ y < m, 0 ≤ z < n, gcd(y,m) = gcd(z, n) = 1.
We map x to a pair (y, z) so that

y ≡ x (mod m) and z ≡ x (mod n),

where f(x) := (y, z). We will now check that the function is injective, that is, f(x) = f(x′)
implies that x = x′. Assume that f(x) = f(x′)

=⇒ x ≡ x′ ≡ y (mod m) and x ≡ x′ ≡ z (mod n).

By Principle 3, we have that
x ≡ x′ (mod mn)

and hence
x = x′.

Now we will check that the function is surjective, that is, every element (y, z) has at least one
preimage. We are given (y, z), whereby 0 ≤ y < m, gcd(y,m) = 1 and 0 ≤ z < n, gcd(z, n) = 1.
Now we need to find x such that

x ≡ y (mod m) and x ≡ z (mod n).

By the Chinese Remainder Theorem, such x exists. We can make x such that 0 ≤ x < mn by
taking the remainder after division of x by mn. Hence

gcd(y,m) = 1 =⇒ gcd(x,m) = 1.

Similarly, we have
gcd(x, n) = 1.

Hence,
gcd(x,mn) = 1,

which implies that the map f is a bijection, and thus, the cardinalities of the two sets coincide.
Therefore, we can conclude that

ϕ(mn) = ϕ(m)ϕ(n)

for distinct primes m,n.

Proposition 9.3. Let
n = pα1

1 · p
α2
2 · · · · · p

αd

d

be the factorisation of n as a product of primes. Then

ϕ(n) = (pα1
1 − p

α1−1
1) · (pα2

2 − p
α2−1
2) · · · · · (pαd

d − p
αd−1
d)

= n

(
1− 1

p1

)
·
(

1− 1

p2

)
· · · · ·

(
1− 1

pd

)
.

Proof.

ϕ(pα1
1 · p

α2
2 · · · · · p

αd

d) = ϕ(pα1
1) · ϕ(pα2

2) · · · · · pαd

d

= (pα1
1 − p

α1−1
1) · (pα2

2 − p
α2−1
2) · · · · · (pαd

d − p
αd−1
d)

= pα1
1

(
1− 1

p1

)
· pα2

2

(
1− 1

p2

)
· · · · · pαd

d

(
1− 1

pd

)
·

= n

(
1− 1

p1

)
·
(

1− 1

p2

)
· · · · ·

(
1− 1

pd

)

– 21 –

Number Theory and Cryptography

9.2 Liouville and Mobius functions

Definition 9.4. Let
n = pα1

1 · p
α2
2 · · · · · p

αd

d .

Then the Liouville functon is defined as

λ(n) = (−1)α1+α2+···+αd .

Theorem 9.5. λ(n) is completely multiplicative.

Proof. Let
n = pα1

1 · p
α2
2 · · · · · p

αd

d

and
m = pβ1

1 · p
β2

2 · · · · · p
βd

d .

Then

ϕ(mn) = λ
(
pα1+β1

1 · pα2+β2

2 · · · · · pαd+βd

d

)
= (−1)α1+β1+α2+β2+···+αd+βd

= (−1)α1+α2+···+αd · (−1)β1+β2+···+βd

= ϕ(n)ϕ(m).

Definition 9.6. The Mobius function is defined as

µ(n) :=

{
λ(n) if n is squarefree

0 otherwise.

Remark 9.7. n is called squarefree if it is not divisible by any square of an integer except 1.

Remark 9.8. µ(n) is multiplicative but not completely multiplicative.

9.3 λ(n), µ(n) and the distribution of primes

λ(n) and µ(n) are closely related with the distribution of primes. It is known that

1

N

N∑
n=1

λ(n)→ 0

as n→∞. This is equivalent to the Prime Number Theorem.

Theorem 9.9 (Prime Number Theorem). The number of primes between 1 and N is approxi-
mately

N

lnN
.

The Riemann hypothesis is equivalent to: ∀ε > 0, we have

1

N
1
2+ε

N∑
n=1

λ(n)→ 0 and
1

N
1
2+ε

N∑
n=1

µ(n),

as n→∞.

– 22 –

Number Theory and Cryptography

9.4 The number and sum of divisors

Definition 9.10. τ(n) denotes the number of positive integer divisors of n.

Some properties of τ(n) include

• τ(p) = 2 for primes p

• τ(pk) = k + 1.

We can also represent τ(n) by

τ(n) =
∑
d |n

1.

Definition 9.11. σ(n) denote the sum of positive integer divisors of n.

Some properties of σ(n) include

• σ(p) = p+ 1 for primes p

• σ(pk) = 1 + p+ p2 + · · ·+ pk = pk+1−1
p−1 .

Before we go on with the next proposition, we will firstly need a lemma.

Lemma 9.12. For n,m ∈ Z+ with gcd(n,m) = 1, the map given by

(d1, d2) −→ d1d2

between the sets

{d1 ∈ Z+ : d1 |n} × {d2 ∈ Z+ : d2 |n} and {d ∈ Z+ : d |mn}

is a bijection.

Proof. We will first prove that the map is surjective, that is, any d |mn has a preimage (d1, d2).
Consider

m = pα1
1 · p

α2
2 · · · · · p

αd

d and n = qβ1

1 · q
β2

2 · · · · · q
βd

d ,

whereby m and n are prime factorised and all pi’s and qi’s are distinct. Now consider d |mn. For
d2, we will take all powers of pi from the factorisation of d. For d1, we will take all the powers
of qi from the factorisation of d. Hence

d1 |n and d2 |m =⇒ d1d2 = d.

Now we will prove that the map is injective, that is, if d1d2 |nm and d′1d
′
2 |nm with d1d2 = d′1d

′
2,

then d1 = d′1 and d2 = d′2.
d′1 | d′1d′2 = d1d2,

but as gcd(d′1, d2) = 1, then d′1 | d1. Similarly, d1 | d′1 =⇒ d1 = d′1. From here, we have that
d2 = d′2, which completes the proof.

Proposition 9.13. Let f : Z+ → Z be a multiplicative function. Then the function F : Z+ → Z
defined as

F (n) :=
∑
d |n

f(d)

is also multiplicative.

– 23 –

Number Theory and Cryptography

Proof.

F (nm) =
∑
d |nm

f(d)

=
∑

d1 |n, d2 |m

f(d1d2) (by the previously proven lemma)

=
∑

d1 |n, d2 |m

f(d1)f(d2)

=
∑
d1 |n

∑
d2 |m

f(d1)f(d2)

=

∑
d1 |n

f(d1)

∑
d2 |m

f(d2)


= F (n)F (m)

Corollary 9.14. τ(n) and σ(n) are multiplicative.

Proof. Easy.

9.5 Applications of the multiplicative nature of σ(n): classification of
perfect numbers

Definition 9.15. n ∈ Z+ is called perfect if it is equal to the sum of all of its proper divisors.
In essence,

n = σ(n)− n =⇒ 2n = σ(n).

Remark 9.16. It is not known if there are infinitely many perfect numbers.

Remark 9.17. It is not known if there exists an odd perfect number.

Theorem 9.18. An even number is perfect iff it is of the form

n = 2k(2k+1 − 1)

and 2k+1 − 1 is prime.

Proof. We will write n in the form n = 2k ·m, where m is an odd integer. Hence

σ(n) = σ(2k ·m) = σ(2k)σ(m) = (2k+1 − 1)σ(m).

On the other hand, σ(n) = 2n,

=⇒ 2k+1 − 1 | 2n = 2k+1m =⇒ m = (2k+1 − 1)l, l ∈ Z.

2n = 2k+1(2k+1 − 1)l = σ(n) = (2k+1 − 1)σ((2k+1 − 1)l) =⇒ 2k+1l = σ((2k+1 − 1)l).

Assume that l > 1. Then

σ((2k+1 − 1)l) ≥ 1 + (2k+1 − 1) + l + (2k+1 − 1)l > 2k+1l,

– 24 –

Number Theory and Cryptography

which is a contradiction. Now we will take l = 1. Then the equation transforms into

2k+1 = σ(2k+1 − 1).

This equation is only possible if 2k+1 − 1 is prime. Finally, n = 2k(2k+1 − 1) and 2k+1 − 1 is
prime. From here, we just need to check that n = 2k(2k+1 − 1) is perfect, which is trivial.

Remark 9.19. Prime number of the form 2k+1−1 are called Mersenne primes. Only 50 of them
are known at the moment. The largest Mersenne prime is

277232917 − 1.

9.6 More on Euler’s phi function

Proposition 9.20. ∑
d |n

ϕ(d) = n.

Proof. The LHS and RHS of the equation are multiplicative functions. TO verify that they are
the same, we need to compare them at the powers of primes. Let n = pk, then we have∑

d | pk
ϕ(d) = ϕ(1) + ϕ(p) + ϕ(p2) + · · ·+ ϕ(pk)

= 1 + (p− 1) + (p2 − p) + · · ·+ (pk − pk−1)

= pk

= n.

Proposition 9.21. Let n ∈ Z+, d ∈ Z+ where d |n. Then

#{a ∈ Z : 0 ≤ a < n, gcd(a, n) = d}

is equal to ϕ
(
n
d

)
.

Proof. gcd(a, n) = d implies that a = db and n = de, where b, e ∈ Z. Now we can consider
gcd(b, e) = 1 (if gcd(b, e) = f > 1, then df | a and df |n which is a contradiction). Hence

0 ≤ a < n⇐⇒ 0 ≤ db < n⇐⇒ 0 ≤ b < e.

Therefore b belongs to
{b ∈ Z : 0 ≤ b < e, gcd(b, e) = 1} := B.

From here we will check that the cardinalities of B and the initial set coincide, which will then
imply that

#B = ϕ(e) = ϕ
(n
d

)
= #{a ∈ Z : 0 ≤ a < n, gcd(a, n) = d}.

– 25 –

Number Theory and Cryptography

9.7 Mobius Inversion Formula

Proposition 9.22. Let F (n) :=
∑
d |n µ(d). Then

F (n) =

{
1 if n = 1

0 if n > 1.

Proof. To check that the equation holds ∀n ∈ Z+, we just need to check the equation for powers
of primes (n = pk) as both functions involved are multiplicative. Evaluating F (n), we have

F (n) = F (pk) = µ(1)︸︷︷︸
=1

+µ(p1)︸ ︷︷ ︸
=−1

+µ(p2)︸ ︷︷ ︸
=0

+ · · ·+ µ(pk)︸ ︷︷ ︸
=0

= 0

which completes the proof.

Theorem 9.23 (Mobius Inversion Formula). Suppose that we have n ∈ Z+ and numbers ad for
all divisors d of n. Then the following system of equations∑

e | d

xe = ad

over variables xe where e runs over all divisors of n has a unique solution

xe =
∑
n | e

µ
(e
n

)
· an.

Proof. We write the system of equations in matrix form Mx = a, where

• x = (xe)e |n is the vector of unknown numbers

• a = (ad)d |n is the vector of known numbers

• M = (md,e)d,e |n is the matrix where

md,e =

{
1 if e | d
0 otherwise.

Matrix M is triangular (with zeroes above the diagonal and with ones on the diagonal). Hence,
detM = 1, which implies that the system has a unique solution given by

x = M−1a.

Now we need to compute M−1. More specifically, we need to verify that

M = P = (pe,h)e,h |n

where

pe,h =

{
µ
(
e
h

)
if h | e

0 otherwise.

– 26 –

Number Theory and Cryptography

Now we compute MP , we need to check that this product is the identity matrix I.

MP =



m11 · · · m1n

...
...

md1 · · · mdn

...
...

mn1 · · · mnn


p11 · · · p1h · · · p1n

...
...

...
pn1 · · · pnh · · · pnn



The entry (d, h) of MP is equal to

md1p1h +md2p2h + · · ·+mdnpnh.

We can evaluate the above expression:

md1p1h +md2p2h + · · ·+mdnpnh =
∑
e |n

{
1 if e | d
0 otherwise

}µ
(e
h

)
if h | e

0 otherwise


=

∑
all e |n with e | d, h | e

µ
(e
h

)
=

∑
all k with hk | d

µ(k)

=

{∑
k | d

h
µ(k) if h | d

0 if h - d

=

{
1 if d

h = 1

0 otherwise
(by the proposition).

This value coincides with the (d, h) entry of the identity matrix. Hence MP = I and M−1 =
P .

Corollary 9.24 (Mobius Inversion Formula for multiplicative functions). Let f(n) and F (n) be
two multiplicative functions such that

F (n) =
∑
d |n

f(d).

Then f(n) can be restored from F (n) by the formula

f(n) =
∑
d |n

µ
(n
d

)
F (d).

Proof. From applying the Mobius Inversion Formula with ad = F (d), the proof is complete.

10 RSA cryptosystem

10.1 The process of the RSA cryptosystem

‘RSA’ comes from the names of the inventors, Rivest, Shamir and Adleman. Description of RSA:

– 27 –

Number Theory and Cryptography

1. Bob chooses two large prime numbers p and q. Bob computes n = pq and then ϕ(n) =
(p−1)(q−1). Bob then chooses an encryption exponent e such that gcd(e, ϕ(n)) = 1. Bob
computes the decryption exponent d ≡ e−1 (mod ϕ(n)).

2. Bob publishes the public key (n, e) and keeps p, q, ϕ(n) and d a secret.

3. Alice encodes the message to get a sequence [m1,m2, · · ·] where mi ∈ {0, 1, · · · , n− 1}︸ ︷︷ ︸
alphabet

.

4. Alice encrypts the message by computing [m′1,m
′
2, · · ·], where m′i ≡ me

i (mod n).

5. Bob decrypts the message by computing mi ≡ (m′i)
d (mod n).

Now to check that this cryptosystem works, we need to verify

(m′i)
d ≡ mi (mod n).

Since we have m′i ≡ me
i (mod n) and d ≡ e−1 (mod ϕ(n)), then

de ≡ 1 (mod ϕ(n)) or de = kϕ(n) + 1.

Then
(m′i)

d ≡ (me
i)
d ≡ mkϕ(n)+1

i ≡ mi (mod n) (RSA Theorem).

10.2 Digital signature with the help of RSA

Here, only Alice can encode the message and everyone can decode it. Description of the algorithm:

1. Alice’s set-up is the same as before.

2. Alice publishes the public key (n, e), keeping everything else as a secret.

3. Alice encodes the message

[m1,m2, · · ·]; mi ∈ {0, 1, · · · , n− 1}.

4. Alice encrypts the message by replacing mi with m′i ≡ md
i (mod n).

5. Bob decrypts the message by replacing m′i with (m′i)
e (mod n).

11 Computational complexity

The general question involved with computing is: How long will it take for a computer to perform
computations?

11.1 Elementary bit operations

Computers store numbers in a binary form, in essence,

n = (bk−1bk−2 · · · b1b0)2,

where each bit bi ∈ {0, 1}. The numbers from

(100 · · · 0︸ ︷︷ ︸
k digits

)2 = 2k−1 to (111 · · · 1︸ ︷︷ ︸
k digits

)2 = 2k−1 + 2k−2 + · · ·+ 21 + 20

– 28 –

Number Theory and Cryptography

consist of k bits. Given that n ∈ Z+, the number of bits required to store n is the unique number
k ∈ Z such that

2k−1 ≤ n < 2k =⇒ k = blog2 nc+ 1.

Remark 11.1. The number of bits grows much slower than n.

Let’s consider 2 numbers, m, which contains k bits, and n, which contains l bits. Without loss
of generality, we can assume that k ≥ l. Then m + n has either k bits or k + 1 bits. Also, mn
has either k + l − 1 or k + l bits.

Generally, you need k bit operations to compute m + n or m − n. k(l − 1) bit operations is
needed to compute mn.

Theorem 11.2 (Karatsuba). Let M(k) be the number of bit operations needed to multiply two
k-bit numbers. Then

M(2k) ≤ 3M(k) + 10k.

Proposition 11.3. Let l ∈ Z+. Then the number of bit operations to multiply 2l-bit numbers
can be estimated to be

10(3l − 2l).

Proof. We will prove this by induction on l. If l = 1, 10(3l − 2l) = 10, and we can multiply
2-bit numbers in 10 bit operations by long multiplication. Hence this is true for l = 1. Now we
assume that M(2l) ≤ 10(3l − 2l). We are now required to prove that the statement is true for
l + 1. We have

M(2l+1) ≤ 3M(2l) + 10 · 2l

≤ 3 · 10(3l − 2l) + 10 · 2l

= 10 · 3l+1 − 10 · 2l+1

= 10(3l+1 − 2l+1)

which completes the proof by induction.

Proposition 11.4. The number of bit operations to multiply two k-bit numbers can be estimated
to be

M(k) ≤ 30klog2 3.

Proof. Let l a number such that
2l−1 < k ≤ 2l.

We make k-bit numbers larger by adding zeroes, such that they will become 2l-bit numbers.
Hence

M(k) ≤M(2l) ≤ 10(3l − 2l).

From 2l−1 < k ≤ 2l, we have that

l ≥ log2 k and l < log2 k + 1,

which implies that
l = dlog2 ke < log2 k + 1.

– 29 –

Number Theory and Cryptography

Then

M(k) ≤ 10(3log2 k+1 − 2log2 k+1)

≤ 30 · 3log2 k

= 30 · 3log3 k·log2 3

= 30 · klog2 3,

completing the proof.

11.2 Big O notation

Definition 11.5. Let f(n) and g(n) be two positive valued functions, defined over the positive
integers. We say that

g(n) = O(f(n))

if there exists positive numbers C,N such that

g(n) ≤ Cf(n), ∀n ≥ N.

When we computed the bits required for long division, it came out to be k(l − 1). Now if both
numbers are k-bit, then this means that the number of bits required is

k(l − 1) = k(k − 1) = O(k2).

Karatsuba requires 30 · klog2 3 bit operations and hence,

30 · klog2 3 = O(klog2 3) = O(k2).

Definition 11.6. An algorithm is said to be a polynomial time algorithm if the number of bit
operations required to perform it on k-bit numbers is O(ka) for some a > 0.

Proposition 11.7. If

lim
k→∞

f(k)

g(k)
= L < +∞,

then f(k) is O(g(k)). If

lim
k→∞

f(k)

g(k)
=∞,

then f(k) is not O(g(k)).

Proof. From the definition of a limit, ∀ε > 0, ∃N = N(ε) such that

L− ε < f(k)

g(k)
< L+ ε for k ≥ N.

If we take ε = 1, then
f(k) < (L+ 1)g(k) for k ≥ N(1).

Hence, f(k) is O(g(k)). Proving the second part of the proposition is trivial.

Remark 11.8. Big O notation only provides an estimate for f(k) from above, not from below.

– 30 –

Number Theory and Cryptography

12 Computational complexity of some standard algorithms

12.1 Division with a remainder

Now we want an algorithm that considers a, b ∈ Z+, where it will find q, r ∈ N such that

a = qb+ r.

For k-bit numbers, the algorithm requires less than k subtractions, whereby each subtraction
will require up to k elementary bit operations, and less than k comparisons. In total, we will
have less than k2 + k = O(k2) operations, and hence, our algorithm is polynomial time.

12.2 Computation of gcd

Given numbers a, b ∈ N, whereby the numbers have less than or equal to k bits, what is the
algorithm to find gcd(a, b)?

Now the naive approach will try all the numbers from 1 to min{a, b} and then take the largest
element from those set of numbers. This requires taking min{a, b} numbers, which is O(2k).
Trial division of a and b by that number will require O(k2) operations. In total, the complexity
of the algorithm is O(2kk2), which is not polynomial time.

Now consider the Euclidean algorithm, that is, given a, b ∈ Z+, which are numbers that are
at most k bits. Then the algorithm is given by

a = q1b+ r1

b = q2r1 + r2

· · ·
rn−3 = qn−1rn−2 + rn−1︸︷︷︸

6=0

rn−2 = qnrn−1 + rn︸︷︷︸
=0

.

Each iteration of the algorithm takes O(k2) bit operations, meaning that in total, the number of
bit operations required is given by O(nk2).

Proposition 12.1. For each i ∈ {0, · · · , n− 4}, we have ri+2 <
1
2ri.

Proof. Firstly, we will consider when ri+1 <
1
2ri. Then

ri+2 < ri+1 ≤
1

2
ri =⇒ ri+2 <

1

2
ri.

Now if ri+1 >
1
2ri, then we have that

ri = qi+2ri+1 + ri+2 =⇒ ri+2 = ri − qi+2ri+1 ≤ ri − ri+1 < ri −
1

2
ri =

1

2
ri.

Corollary 12.2. The number of iterations in the Euclidean algorithm is at most 2k.

– 31 –

Number Theory and Cryptography

Proof.

1 ≤ rn−1 ≤
1

2
rn−3 <

1

22
rn−5 < · · · <

1

2b
n
2 c
rn−1−2bn2 c =⇒ 2b

n
2 c < 2k =⇒ n ≤ 2k.

In conclusion, we can say that the computational complexity of the Euclidean algorithm is
O(nk2) = O(k3), and thus, the Euclidean algorithm is polynomial time.

12.3 Computation of a power modulo a number

Suppose that we have an input of three numbers, a, b,m ∈ Z+, where each number is less than
or equal to k bits long. From this, we want to compute

ab (mod m).

When we compute each term of this sequence, the computation will require one multiplication
of k-bit numbers, and then we will take the remainder after division by m. This will take O(k2)
bit operations. Since we have k terms, the complexity of this step is O(k3).

Now we will compute the product of the a2
i

’s (from successive squaring) to then make the
expression ab (mod m). For this step, we will have less than or equal to k − 1 multiplications
modulo m. The complexity of this step is also O(k3). Hence, the overall complexity is O(k3),
and thus, our algorithm is polynomial time.

12.4 Checking primality

Now we are given an n ∈ Z+, which is up to k bits. The desired task is to check if n is prime
(no need for factorisation). Now a fast way to execute this algorithm would be to follow the
following steps,

1. Take a random value a ∈ {2, 3, · · · , n− 1}

2. Compute gcd(a, n)

3. If the result is not 1, then n is composite

4. If the result is 1, then compute
an−1 (mod n)

5. If the result is not 1, then n is composite

6. If the result is 1, then we will choose a different a and retry all the steps.

Theorem 12.3 (Agrawal-Kayal-Saxena, 2002). The primality of a number n ∈ Z+ can be
checked in polynomial time.

Proof. no thanks.

Definition 12.4. A number n is called a pseudoprime for the base a if

an−1 ≡ 1 (mod n)

and n is composite.

– 32 –

Number Theory and Cryptography

Definition 12.5. A number n is called a Carmichael number if

an−1 ≡ 1 (mod n)

is satisfied for any gcd(a, n) = 1.

13 Polynomial congruences

We want to solve
adx

d + ad−1x
d−1 + · · ·+ a1x+ a0 ≡ 0 (mod m).

Here, x is unknown, a0, a1, · · · , ad ∈ Z, ad 6≡ 0 (mod m). m is called the modulus.

Theorem 13.1 (Principle 1). We can replace ai with another coefficient a′i ≡ ai (mod m). This
will not change the set of solutions.

Theorem 13.2 (Principle 2). If x is a solution, then y ≡ x (mod m) is also a solution.

Proposition 13.3. Let p be prime, where p ≡ 3 (mod 4). Then the congruence

x2 ≡ −1 (mod p)

does not have any solutions.

Proof. Assume that x is a solution of

x2 ≡ −1 (mod p).

Now compute

xp−1 ≡ (x2)
p−1
2 ≡ (−1)

p−1
2 ≡ −1 (mod p)

=⇒ 1 ≡ −1 (mod p),

which is a contradiction.

Proposition 13.4. Let p be prime, where p ≡ 1 (mod 4). Then the congruence

x2 ≡ −1 (mod p)

has two solutions modulo p.

Proof. Consider (p− 1)! (mod p).

1 · 2 · 3 · · · · · (p− 4)︸ ︷︷ ︸
≡−4

· (p− 3)︸ ︷︷ ︸
≡−3

· (p− 2)︸ ︷︷ ︸
≡−2

· (p− 1)︸ ︷︷ ︸
≡−1

≡
(
p− 1

2

)
! · (−1)

p−1
2 ·

(
p− 1

2

)
!

≡
((

p− 1

2

)
!

)2

(mod p)

Now we will split all of the elements of {1, 2, 3, · · · , p − 1} into pairs (a, a−1). Consider the
numbers such that a ≡ a−1 (mod p)⇐⇒ a2 ≡ 1 (mod p) ≡ a ≡ 1 or −1 (mod p).

(p− 1)! ≡ 1(−1) · (2 · 2−1) · (3 · 3−1) · · · · ≡ −1 (mod p).

Hence, ((
p− 1

2

)
!

)2

≡ −1 (mod p)

as required.

– 33 –

Number Theory and Cryptography

From the proof above, we can see that the two solutions of the congruence are

x ≡
(
p− 1

2

)
! (mod p) and x ≡ −

(
p− 1

2

)
! (mod p).

Theorem 13.5. Let p be prime. Consider the congruence

adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 ≡ 0 (mod p),

where ai ∈ Z, ad 6≡ 0 (mod p). The set of solutions of this congruence is a union of at most d
congruent classes modulo p.

Proof. We will prove this by induction on d. First we sub d = 1. Then we have

a1x+ a0 ≡ 0 (mod p).

This congruence has a solution
x ≡ −a0a−11 (mod p),

and hence, the statement is true for d = 1. Now we will assume that the statement is true for d,
meaning that we will now prove it for d+ 1. Hence

f(x) ≡ 0 (mod p), deg f = d+ 1.

If there are no solutions to this congruence, then we have nothing to prove. So we consider a
solution c such that

f(c) ≡ 0 (mod p).

Then

f(x) ≡ f(x)− f(c) = ad+1(xd+1 − cd+1) + ad(x
d − cd) + · · ·+ a1(x− c)

≡ (x− c)(ad+1(xdc0 + xd−1c1 + xd−2c2 + · · ·x0cd) + ad(· · ·) + · · ·+ a1)

≡ (x− c)g(x) (mod p),

where g(x) is a polynomial of degree d.

f(x) ≡ 0 (mod p)⇐⇒ (x− c)g(x) ≡ 0 (mod p)

⇐⇒ p | (x− c)g(x)

⇐⇒ p |x− c or p | g(x)

=⇒ x ≡ c (mod p) (one solution), g(x) ≡ 0 (mod p) (≤ d solutions).

In total, f(x) ≡ 0 (mod p) has ≤ d+ 1 solutions.

14 Primitive roots and discrete logarithms

Consider the congruence
xd ≡ c (mod p),

where d ∈ Z+, c ∈ Z and p is prime. This congruence has ≤ d solutions.

– 34 –

Number Theory and Cryptography

Theorem 14.1. Let p be prime, d ∈ Z+ such that d | p−1. Then for any integer c 6≡ 0 (mod p),
the congruence

xd ≡ c (mod p)

either has no solutions or d solutions.

Proof. Consider the map

f : {1, 2, · · · , p− 1} → {1, 2, · · · , p− 1}

x 7→ xd.

Consider some c in the range (image) of f ,

c ≡ xd (mod p).

Define e = p−1
d . Now we compute ce,

ce ≡ (xd)e ≡ xde ≡ xp−1 ≡ 1 (mod p).

Hence, any c from the range of f is a solution of xe ≡ 1 (mod p). Now we know that the range
of f has ≤ e elements. Fixing c from the range of f and looking at x such from the domain of
f such that xd ≡ c (mod p). By the theorem, there are ≤ d such elements. In total, there are
≤ ed = p−1 elements in the domain of f . But there are exactly p−1 elements in {1, 2, · · · , p−1}.
Thus, all ≤ in the proof become <, and there are e elements c in the range of f and for each c
from the range,

xd ≡ c (mod p)

has d solutions.

14.1 Primes and order

We will recall that if p is prime and a ∈ Z such that gcd(a, p) = 1, then the order of a modulo p
is the smallest d ∈ Z+ such that

ad ≡ 1 (mod p).

We know that

1. ad ≡ ad′ (mod p)⇐⇒ d ≡ d′ (mod ordp(a))

2. ad ≡ 1 (mod p)⇐⇒ ordp(a) | d

3. By Fermat’s Little Theorem, ap−1 ≡ 1 (mod p) =⇒ ordp(a) | p− 1.

Theorem 14.2. Let p be prime, where d | p− 1. Then the number of values a ∈ {1, · · · , p− 1}
such that ordp(a) = d, is ϕ(d).

Proof. Let
F (d) := #{a ∈ {1, · · · , p− 1} : ordp(a) = d}.

Then

d = #{a ∈ {1, · · · , p− 1} : ad ≡ 1 (mod p)}
= #{a ∈ {1, · · · , p− 1} : ordp(a) | d}

=
∑
e | d

#{a ∈ {1, · · · , p− 1} : ordp(a) = e}

=
∑
e | d

F (e).

– 35 –

Number Theory and Cryptography

Applying the Mobius Inversion Formula, we get

F (d) =
∑
e | d

µ

(
d

e

)
e = ϕ(d).

Definition 14.3. Let m ∈ Z+. Then a ∈ Z is called a primitive root modulo m if gcd(a,m) = 1
and ordm(a) = ϕ(m).

Corollary 14.4. Primitive roots modulo a prime p always exist. Moreover, there are ϕ(p − 1)
of them.

Remark 14.5. The previous corollary is not true for composite values m.

Definition 14.6. Let b be a primitive root modulo a prime p and a ∈ Z with gcd(a, p) = 1.
Then the discrete logarithm of a modulo p (logb,p(a)) is the value d ∈ {0, · · · , p− 2} such that

bd ≡ a (mod p).

For a ≡ 0 (mod p), logb,p(a) does not exist.

Remark 14.7. For logb,p(a), the input is a residue modulo p, but the output is a residue modulo
p− 1.

15 Diffie – Hellman key exchange protocol and Elgamal
cryptosystem

We now want to establish a shared secret key by only using non secured communication channels.

Alice Bob

Eavesdropper

15.1 Algorithm (Diffie – Hellman)

In this algorithm, there are 5 steps:

1. Alice carefully chooses a prime p, a b ∈ {1, 2, · · · , p−1} and a private key x ∈ {1, 2, · · · , p−
2}. From this, she computes k ≡ bx (mod p).

2. Alice sends the triple (p, b, k) to Bob, keeping x a secret.

3. Bob chooses his own private key y ∈ {1, · · · , p− 2} and computes c ≡ by (mod p).

4. Bob sends to Alice the value c, keeping y as a secret.

5. Alice and Bob compute the common secret key, m:

• Alice: m ≡ cx ≡ bxy (mod p);

• Bob: m ≡ ky ≡ bxy (mod p).

– 36 –

Number Theory and Cryptography

The eavesdropper knows the values of p, b, k, c. They need to compute m ≡ bxy (mod p) from
this information.

It is believed (not proven) that this task requires a solution of the discrete logarithm problem,
that is, given p, b, k, we need to find x which solves

bx ≡ k (mod p).

This problem is believed to be extremely difficult for large and carefully chosen values of p.

15.2 Elgamal cryptosystem

In the Elgamal cryptosystem, everyone can encrypt the message, but only Alice can decrypt it
(like in RSA).

Alice BobRob

Gob

In this algorithm, there are 9 steps:

1. As before, Alice chooses a triple (p, b, k) and computes k ≡ bx (mod p).

2. Alice publishes the triple (p, b, k).

3. Bob chooses y and computes c ≡ by (mod p).

4. Bob encodes the messageM such that it is written as a sequence of numbers =⇒ [M1,M2, · · · ,Md],
where Mi ∈ {1, · · · , p− 1}.

5. Bob computes the shared secret key S ≡ ky (mod p).

6. Bob encrypts the message by computing M ′i ≡ SMi (mod p).

7. Bob sends the following information to Alice: 〈C, [M ′1,M ′2, · · · ,M ′d]〉.

8. Alice computes a shared secret key S ≡ cx (mod p).

9. Alice decrypts the message: Mi ≡ S−1M ′i (mod p).

15.3 Analysis of the Diffie – Hellman key exchange

Knowing p, b, k, c, we want to find S ≡ bxy (mod p). The naive approach to this would be to
compute

b0, b1, b2, b3, · · · (mod p)

until we find k or c. This method will require up to ordp(b) multiplications (ordp(b) is maximised
if b is a primitive root, and hence, ordp(b) = p − 1). There is an algorithm (Pohlig-Hellman)
which computes the discrete logarithm quickly if all prime divisors of ordp(b) = p− 1 are small.
Now, p− 1 should have a large prime divisor. p− 1 is even, however, p−12 is prime. Such a prime
is called a safe prime.

Conjecture 15.1. There are infinitely many safe primes.

– 37 –

Number Theory and Cryptography

Remark 15.2. For all primes q 6= 2, we either have q ≡ 1 (mod 4) or q ≡ 3 (mod 4). Hence,
every safe p = 2q + 1 (except 5) is congruent to 3 modulo 4.

Proposition 15.3. There are infinitely many primes p ≡ 3 (mod 4).

Proof. Assume that there are finitely many primes

p1, p2, · · · , pd.

Consider N = 4p1p2 · · · pd − 1. From this we have pi - N and 2 - N . Hence, all prime divisors of
n are congruent to 1 modulo 4.

−1 ≡ N ≡ q1q2 · · · qs ≡ 1s ≡ 1 (mod 4)

=⇒ −1 ≡ 1 (mod 4),

which is a contradiction and hence, we have completed the proof.

Proposition 15.4. There are infinitely many primes which are congruent to 1 modulo 4.

Proof. Assume hat there are finitely many primes

p1, p2, · · · , pd.

Consider N = (2p1p2 · · · pd)2 + 1. From this we have pi - N and 2 - N . Hence, all prime divisors
of n are congruent to 3 modulo 4.

We will take a prime q such that q |N . Then x = 2p1p2 · · · pd is a solution of the congruence

x2 + 1 ≡ 0 (mod q).

But we know that the congruence has no solutions for q ≡ 3 (mod 4), which is a contradiction,
and hence, we have completed the proof.

16 Applications of primitive roots

Given a prime p, how do we find a primitive root modulo p? We know that there are ϕ(p − 1)
primitive roots modulo p. Hence, the probability that a randomly chosen b ∈ {1, · · · , p− 1} is a
primitive root is equal to

ϕ(p− 1)

p− 1
.

Let p− 1 = qα1
1 · q

α2
2 · · · · · q

αd

d be the prime factorisation of p− 1. Then

ϕ(p− 1)

p− 1
=

(p− 1)
(

1− 1
q1

)(
1− 1

q2

)
· · · · ·

(
1− 1

qd

)
p− 1

=

(
1− 1

q1

)(
1− 1

q2

)
· · · · ·

(
1− 1

qd

)
.

In theory, if p−1 is a product of many primes, this expression can be very small. But in practice,
the number of tries for a primitive root is usually ≤ 10.

Now we know that if we want to find a primitive root modulo a prime p, we take candidates

– 38 –

Number Theory and Cryptography

randomly from {1, 2, · · · , p− 1} and check if they are primitive roots.

Now, if we want to check if a ∈ {1, 2, · · · , p − 1} is a primitive root modulo p, we check if
ordp(a) = p − 1. If this is true, then we can conclude that a is a primitive root modulo p. We
know that ordp(a) | p− 1. Therefore, a is a primitive root modulo p ⇐⇒ ad 6≡ 1 (mod p) for all
proper divisors d of p− 1. To check this, we need to find the prime factorisation of p− 1, which
may be difficult.

16.1 Solving equations of the form xm ≡ c (mod p)

An important property of a primitive root is that if a is a primitive root modulo p, then

{a0, a1, a2, · · · , ap−2}

is a reduced set of residues modulo p. In other words, {a0, a1, a2, · · · , ap−2} coincides with the
set {1, 2, · · · , p− 1} in a different order (i.e. a0, a1, a2, · · · , ap−2 are all unique).

Proposition 16.1. Let p be prime, and let a be a primitive root modulo p, where d | p−1. Then
the number an is a solution of

xd ≡ 1 (mod p)

if and only if n = ke = k
(
p−1
d

)
.

Proof. Trivial.

Now consider the congruence
xm ≡ c (mod p),

where gcd(m, p− 1) = 1. Let a be a primitive root modulo p. We will write

x ≡ ap (mod p), c ≡ ab (mod p).

Then amy ≡ ab (mod p)⇐⇒ my ≡ b (mod p− 1)⇐⇒ y ≡ m−1b (mod p− 1)⇐⇒ x ≡ am−1b ≡
cm
−1

(mod p).

17 Algorithms for factorisation and DLP

17.1 Factorisation

We have a problem: Given a composite number n, find one of its non-trivial factors. One way
to approach this would be to conduct trial division. We will try small primes p between 2 and√
n. By the prime number theorem,

#{p is prime : p ≤ N} ≈ N

lnN

and hence, the number of primes to test is approximately

√
n

ln
√
n
.

Note that this algorithm is not polynomial time in k = log2 n. Another method to solve this
problem would be to take a sequence of values a and compute gcd(a, n) (which can be done

– 39 –

Number Theory and Cryptography

quickly by EEA). If gcd(a, n) > 1, then this will give us a non-trivial divisor of n.

Now a question arises, how many tries do we expect if we choose a ∈ {1, 2, · · · , n − 1} ran-
domly? For simplicity, n = pq for prime p, q, where p, q ≈

√
n, gcd(a, n) > 1. Hence, a is a

multiple of p or a multiple of q. Thus, the probability is

1

p
+

1

q
≈ 2√

n
.

The expected number of tries is approximately
√
n
2 , which is not better than trial division.

Now since we have had poor methods to solve this problem, we now have a better method
known as the Pollard-Rho Method (1975): We compose the sequence ti ∈ {0, 1, · · · , p − 1} as
follows:

t0 = 1

ti+1 ≡ t2i + 1 (mod n).

Note that every element is between 0 and n − 1, hence, the sequence has to repeat after ≤ n
terms. However, in many cases, it repeats much quicker.

Now in the Pollard-Rho method, we expect ti ≡ tj (mod p) for some 0 ≤ i < j ≤ constant×√p.
We compute

gcd(ti − tj , n)

for 0 ≤ i < j ≤ constant× n 1
4 . The problem is, the computation require O(n

1
2) computations of

gcd, which is not better than trial division. The solution to this is in the following proposition.

Proposition 17.1. Assume that ti ≡ tj (mod n) for some i < j. Then there exists an integer
l, i ≤ l < j such that

tl ≡ t2l (mod n).

Proof. Denote mi = j− i. Then i, i+ 1, i+ 2, · · · , j− 1 are m succesive integers and exactly one
of them (say l) is a multiply of m. Then

ti ≡ tj (mod n)⇐⇒ ti ≡ ti+m (mod n)

=⇒ ti+1 ≡ tj+1 (mod n)⇐⇒ ti+1 ≡ ti+1+m (mod n)

=⇒ · · ·

=⇒ tk ≡ tk+m (mod n), ∀k ≥ i.

Now applying this congruence to k = l, we get

tl ≡ tl+m ≡ tl+2m ≡ · · · ≡ tl + l = t2l (mod n).

Now the algorithm for the Pollard-Rho method is as follows:

• Input: n ∈ Z+, n is composite.

1. Set l = 0, t0 = 1.

– 40 –

Number Theory and Cryptography

2. Compute tl+1 ≡ t2l + 1 (mod n).

3. Compute t2(l+1) ≡ (t22l + 1)2 + 1 (mod n).

4. Compute gcd(t2(l+1) − tl+1, n).

• If the gcd is equal to 1, then increase l by 1 and go back to step 2.

• If the gcd is larger than 1, then we find some divisor d > 1 of n.

Remark 17.2. d may be equal to n. In this case, try trial division or repeat the Pollard-Rho
method with different parameters.

Remark 17.3. Expected complexity of the Pollard-Rho method is O(n
1
4).

17.2 Discrete logarithm problem: Naive approach

No polynomial time algorithms for the Discrete Logarithm Problem are known, which means
that the Diffie-Hellman and Elgamal cryptosystem are secure. The fastest algorithm is number
field sieving, which can find the discrete logarithm for numbers p which are 160-200 digits long.
[Note: We assume that N = ordp(b) is known. Computing N may be a hard problem.]

17.3 Baby-step/Giant-step algorithm

The problem now is that we have a prime p, with a, b ∈ {1, 2, · · · , p− 1}, where bx ≡ a (mod p).
We also know that N = ordp(a). Our aim is to find x.

To do this we first let M = d
√
Ne. We will write x = My + z with y, z ∈ {0, 1, · · · ,M − 1}.

Then
bx ≡ a (mod p)⇐⇒ bMy+z ≡ a (mod p)

=⇒ bz ≡ (b−M)y · a (mod p).

Here, will introduce the baby-step/giant-step algorithm:

1. Compute the list of
b0, b1, b2, · · · , bM−1 (mod p).

2. Compute b−M (mod p)

3. Compute
(b−M)0 · a, (b−M)1 · a, · · · (mod p)

until we find a coincidence with the first list.

Then we have

(b−M)y · a ≡ bz (mod p) and x ≡My + Z (mod N).

Now the complexity of this algorithm can be calculated by: Algorithm takes M−1+2+M−1 =
2M operations modulo p, which is O(M) = O(

√
N).

– 41 –

Number Theory and Cryptography

17.4 Pohlig-Hellman algorithm

Let N = qα1
1 · q

α2
2 · · · · · qαr

r , where qi are distinct primes. The idea behind the Pohlig-Hellman
algorithm is to compute x modulo qα1

1 , qα2
2 , · · · , qαr

r separately, and the use the Chinese Re-
mainder Theorem.

Let d |N ,

bx ≡ a (mod p) =⇒ (b
N
d)x ≡ aN

d (mod p).

We have ordp(b
N
d) = d. Then we use a naive approach for the baby-step/giant-step algorithm

to solve
(b

N
d)x ≡ aN

d (mod p)

with N ′ = ordp(b
N
d) = d.

Now there is one last trick with the Pohlig-Hellman algorithm. We first let qk be a divisor of
N from the prime factorisation of N . To find x (mod qk), we compute x (mod q), x (mod q2),
· · · . Let

x = (ymym−1 · · · y1y0)1,

which is the expansion of x in base q, which is identical to

x = ymq
m + ym−1q

m−1 + · · ·+ y1q + y0; yi ∈ {0, 1, · · · , q − 1}.

Notice that x (mod qi) is yi−1q
i−1 + · · · + y1q + y0. Now the idea is that, we will compute

x0, x1, · · · , xk where
x = yi−1q

i−1 + · · ·+ y1q + y0,

i.e. xi ≡ x (mod qi). We will start off with x0 = 1. Given xi, we can compute xi+1:

xi+1 = yiq
i + xi; yi ∈ {0, 1, · · · , q − 1}.

Now we have

bx ≡ a (mod p)

(b
N

qi+1)xi+1 ≡ a
N

qi+1 (mod p)

⇐⇒ (b
N

qi+1)yiq
i+xi ≡ a

N

qi+1 (mod p)

⇐⇒ (b
N
q)yi ≡ a

N

qi+1 (b
N

qi+1)−xi (mod p),

which can be computed. In this case, we have another discrete logarithm problem for yi, which
is between 0 and q − 1. This can be found through a naive approach in O(q) steps, or by the
baby-step/giant-step algorithm in O(

√
q) steps.

17.5 Complexity of the Pohlig-Hellman algorithm

Consider the prime factorisation of N :

N = qα1
1 · q

α2
2 · · · · · q

αd

d .

Then solving the discrete logarithm problem requires α1 DLP’s for the order q1, α2 DLP’s for
the order q2 and so on until αd DLP’s for the order qd.

– 42 –

Number Theory and Cryptography

18 Lagrange Interpolation Formula in modular arithmetic

This formula is used to share a secret key between n people so that at least k people are needed
to reveal the key.

18.1 The formula

In R, consider (x1, y1), (x2, y2), · · · , (xk+1, yk+1). Then there exists a unique polynomial

P (x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0

such that

P (x1) = y1

P (x2) = y2

· · ·
P (xk+1) = yk+1.

Theorem 18.1. Let (x1, x2, · · · , xk+1) be distinct integers modulo a prime p. Let (y1, y2, · · · , yk+1

be another list of integers. Then there exists a unique polynomial

P (x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0

with ai ∈ {0, 1, · · · , p− 1}, such that

P (x1) ≡ y1 (mod p)

P (x2) ≡ y2 (mod p)

· · ·
P (xk) ≡ yk (mod p)

P (xk+1) ≡ yk+1 (mod p).

Proof. We will firstly prove the uniqueness of this theorem. Consider two polynomials, f(x) and
g(x), both satisfying the stated conditions. Then

f(xi)− g(xi) ≡ 0 (mod p) for i ∈ {1, · · · , k + 1}.

In other words, f(x) − g(x) ≡ 0 (mod p) has at least k + 1 solutions. Since the degree of
f(x)− g(x) is ≤ k and from the theorem (number of roots mod p is less than the degree of the
polynomial), we have

f(x)− g(x) ≡ 0 (mod p)⇐⇒ f(x) ≡ g(x) (mod p).

Now to prove the existence, we will use the Lagrange Interpolation formula,

P (x) =
k+1∑
i=1

yi
∏
j 6=i

x− xj
xi − xj

≡ y1
(x− x2)(x− x3) · · · (x− xk+1)

(x1 − x2) · · · (x1 − xk+1)
+ · · ·+ yk+1

(x− x1)(x− x2) · · · (x− xk)

(xk+1 − x1) · · · (xk+1 − xk)
(mod p).

Checking the theorem from here is trivial.

– 43 –

Number Theory and Cryptography

18.2 Splitting the secret key

Problem: We want to share some secrete key between n people so that ≥ k of them are needed
to work out the secret key. Our algorithm is given by:

1. Choose a large prime p such that p > n.

2. Randomly choose a0, a1, · · · , ak−1 ∈ {0, 1, · · · , p− 1}.

3. Let f(x) = ak−1x
k−1 + · · · + a1x + a0. We will provide the person i with the value f(i)

(mod p) where 1 ≤ i ≤ n.

Any k people can combine their information, use the Lagrange Interpolation Formula and hence
find f(x). For any less than k people, f(x) can not be found.

19 Square roots in modular arithmetic

19.1 The case where we have an odd prime p

Definition 19.1. Let a ∈ Z, a 6≡ 0 (mod p). We call a quadratic residue (QR) if the congruence

x2 ≡ a (mod p)

has solutions. Otherwise, we call a quadratic non-residue (NR). [Note: a ≡ 0 (mod p) is neither
QR nor NR modulo p.]

To check if a is QR modulo p, we use the help of primitive roots. Let b be a primitive root
modulo p. Then

a ≡ bd (mod p) and x ≡ by (mod p),

where d can be derived via the DLP and y is unknown. We have

x2 ≡ a (mod p)⇐⇒ b2y ≡ bd (mod p)

⇐⇒ 2y ≡ d (mod p− 1).

Now if d is even, then d = 2d. We have

y ≡ d1 (mod
p− 1

2
) and x ≡ ±bd1 (mod p)

=⇒ a is QR.

If d is odd, then
2y︸︷︷︸
even

≡ d︸︷︷︸
odd

(mod p− 1︸ ︷︷ ︸
even

)

=⇒ no solution =⇒ a is NR.

Now we have a problem, this problem requires to find a primitive root modulo p and to solve the
DLP. In general, this is very difficult, and almost impossible for large p. The solution to this is
in the next proposition.

Proposition 19.2. Let a ∈ Z, a 6≡ 0 (mod p). Then if a is QR, then

a
p−1
2 ≡ 1 (mod p).

a is NR if
a

p−1
2 ≡ −1 (mod p).

– 44 –

Number Theory and Cryptography

Proof. Let a be QR modulo p. As we showed before, a ≡ b2d (mod p).

=⇒ a
p−1
2 ≡ (b2d1)

p−1
2 ≡ (bd1)p−1 ≡ 1 (mod p).

Now let a be NR modulo p. Then

a ≡ bd (mod p) and d = 2d1 + 1.

a
p−1
2 ≡ (b2d1+1)

p−1
2 ≡ b

p−1
2 · (bd1)p−1 ≡ b

p−1
2 (mod p).

The value of b
p−1
2 is a solution of x2 ≡ 1 (mod p). Hence b

p−1
2 = ±1 (mod p). As b is a primitive

root, then

b
p−1
2 ≡ −1 (mod p).

We will now introduce the square root problem, that is, given a ∈ {1, 2, · · · , p−1} is QR modulo
p, solve the congruence

x2 ≡ a (mod p).

From our previous notes, we can solve this with the help of primitive roots modulo p and discrete
logarithms. But this method takes too long. Now if p ≡ 3 (mod 4), then we have p+1

4 ∈ Z.

Proposition 19.3. If p ≡ 3 (mod 4) is prime and a is QR, then the congruence

x2 ≡ a (mod p)

has solutions x ≡ ±a
p+1
4 (mod p).

Proof. a is QR modulo p,

=⇒ a
p−1
2 ≡ 1 (mod p)

=⇒ x2 ≡ a
p+1
2 ≡ a

p−1
2 · a ≡ a (mod p).

Now if we have a general case p = 2km+ 1, k ∈ Z+, where m is odd, then we have an algorithm.
The algorithm for solving x2 ≡ a (mod p) is as follows:

1. Check if a is QR modulo p by checking a
p−1
2 ≡ 1 (mod p).

2. Find b ∈ {1, 2, · · · , p − 1} so that ordp(b) = 2k. The method to do this is: Find a NR
modulo p, denoting it as r. We do this by picking random numbers and checking

r
p−1
2 ≡ −1 (mod p).

We have p−1
2 quadratic non-residues in {1, 2, · · · , p − 1}, meaning that r should be found

quickly. Then
b ≡ rm (mod p).

Now we check
b2

k

≡ (rm)2
k

≡ rp−1 ≡ 1 (mod p)

b2
k−1

≡ (rm)2
k−1

≡ r
p−1
2 ≡ −1 (mod p) (r is NR)

=⇒ ordp(b) | 2k and ordp(b) - 2k−1

=⇒ ordp(b) = 2k.

– 45 –

Number Theory and Cryptography

3. We have that b0, b2, · · · , b2k−2 are all roots of 1 of degree 2k−1. On the other hand, am is
a root of 1 of degree 2k−1. Now we find j which solves

b2j ≡ am (mod p); j ∈ {0, 1, · · · , 2k−1 − 1}.

Since ordp(b
2) = 2k−1, the Pohlig-Hellman algorithm can solve this quickly.

4. x ≡ ±bja−(m−1
2) (mod p). Now check

x2 ≡ b2ja−(m−1) ≡ am−m+1 ≡ a (mod p).

19.2 The case where the modulus m is of the form m = pq, where p, q
are distinct primes

x2 ≡ a (mod pq) is equivalent to {
x2 ≡ a (mod p)

x2 ≡ a (mod q).

[Note that the reverse is true by the Chinese Remainder Theorem.]

x2 ≡ a (mod p) has 
2 solutions if a is QR

1 solution if a ≡ 0 (mod p)

0 solutions if a is NR.

Therefore, x2 ≡ a (mod pq) has

2
1
0

×
2

1
0

 solutions. That gives us 4, 2, 1 or 0 solutions mod

pq.

19.3 Rabin cryptosystem

In this cryptosystem, everyone can encrypt a message but only Bob can decrypt the message.

BobAlice Alice

In this algorithm, the steps are:

1. Bob chooses two primes p, q and computes m = pq.

2. Bob publishes m as a public key and keeps p and q as a secret.

3. Alice encodes the message as a sequence of residues modulo m

[t1, t2, · · · , tl].

4. Alice encrypts the message by replacing

ti → t2i ≡ Si (mod m).

5. Alice sends the encrypted message [S1, S2, · · · , Sl] to Bob.

– 46 –

Number Theory and Cryptography

6. Bob decrypts the message by solving t2i ≡ Si (mod m) with the help of p and q.

Here Bob will get 4 solutions and the correct solution needs to be guessed. To overcome the
problem, we need the help of the next definition and proposition.

Definition 19.4. Let m = pq where p, q are distinct primes. Let a ∈ Z. We say that a is QR
modulo m if it is QR modulo p and QR modulo q.

Proposition 19.5. Define

Q∗m := {a ∈ Z : 1 ≤ a ≤ m− 1 and a is QR modulo m}.

Let p, q ≡ 3 (mod 4). The following map

f : Q∗m → Q∗m

ti → t2i (mod m)

is a bijection.

Proof. We know that if a is QR modulo p, then −a is NR modulo p. Hence

(−a)
p−1
2 ≡ (−1)

p−1
2 · a

p−1
2 ≡ (−1)

p−1
2 ≡ −1 (mod p)

=⇒ −a is NR modulo p.

Consider t ∈ Q∗m,

t ≡ u (mod p)

t ≡ v (mod q),

where u, v are QRs. Then f(t) ≡ t2 (mod m) ≡ u2 (mod p) ≡ v2 (mod q). By solving the
congruence

x2 ≡ t2 (mod m),

we get 4 solutions

x ≡ ±u (mod p)

x ≡ ±v (mod q).

The only solution x ∈ Q∗m is {
x ≡ u (mod p)

x ≡ v (mod q)

or
x ≡ t (mod m).

It is possible to compute the inverse f−1 as follows: If

s ≡ u (mod p)

s ≡ v (mod q)

then

f−1(s) ≡ u
p+1
4 (mod p)

f−1(s) ≡ v
q+1
4 (mod q).

– 47 –

