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Chapter I

Metric Spaces

The theory of metric spaces is a natural generalisation of the notion of Euclidean

distance. We only keep the basic properties of symmetry of distance and the trian-

gle inequality. Then we can still define open and closed sets the same way as done

in RN. Similarly we can look at properties of sequences, continuity, uniform con-

vergence of functions and more. Euclidean distance is closely tied to the geometry

of RN. This can be lifted to a more abstract level as well and leads to the theory of

inner product spaces and Hilbert spaces, which is the second part of these notes.

1 The Axiom of Choice and Zorn’s Lemma

Suppose that A is a set, and that for each α ∈ A there is a set Xα. We call (Xα)α∈A
a family of sets indexed by A. The set A may be finite, countable or uncountable.

We then consider the Cartesian product of the sets Xα:

∏

α∈A

Xα

consisting of all “collections” (xα)α∈A, where xα ∈ Xα. More formally,
∏

α∈AXα is

the set of functions

x : A→
⋃

α∈A

Xα

such that x(α) ∈ Xα for all α ∈ A. We write xα for x(α) and (xα)α∈A or simply

(xα) for a given such function x . Suppose now that A 6= ∅ and Xα 6= ∅ for all

α ∈ A. Then there is a fundamental question:

�

�

�



Is

∏

α∈AXα nonempty in general?

Here some brief history about the problem, showing how basic and difficult it is:
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• Zermelo (1904) (see [7]) observed that it is not obvious from the existing

axioms of set theory that there is a procedure to select a single xα from each

Xα in general. As a consequence he introduced what we call the axiom of

choice, asserting that
∏

α∈AXα 6= ∅ whenever A 6= ∅ and Xα 6= ∅ for all

α ∈ A.

It remained open whether his axiom of choice could be derived from the

other axioms of set theory. There was an even more fundamental question

on whether the axiom is consistent with the other axioms!

• Gödel (1938) (see [5]) proved that the axiom of choice is consistent with the

other axioms of set theory. The open question remaining was whether it is

independent of the other axioms.

• P.J. Cohen (1963/1964) (see [2, 3]) finally showed that the axiom of choice

is in fact independent of the other axioms of set theory, that is, it cannot be

derived from them.

The majority of mathematicians accept the axiom of choice, but there is a minority

which does not. Many very basic and important theorems in functional analysis

cannot be proved without the axiom of choice.
�

�

�



We accept the axiom of choice.

There are some non-trivial equivalent formulations of the axiom of choice which

are useful for our purposes. Given two sets X and Y recall that a relation from

X to Y is simply a subset of the Cartesian product X × Y . We now explore some

special relations, namely order relations.

1.1 Definition (partial ordering) A relation ≺ on a set X is called a partial or-

dering of X if

• x ≺ x for all x ∈ X (reflexivity);

• x ≺ y and y ≺ z imply x ≺ z (transitivity);

• x ≺ y and y ≺ x imply x = y (anti-symmetry).

We also write x ≻ y for y ≺ x . We call (X,≺) a partially ordered set.

1.2 Examples (a) The usual ordering ≤ on R is a partial ordering on R.

(b) Suppose S is a collection of subsets of a set X. Then inclusion is a partial

ordering. More precisely, if S, T ∈ S then S ≺ T if and only if S ⊆ T . We say S
is partially ordered by inclusion.

(c) Every subset of a partially ordered set is a partially ordered set by the induced

partial order.
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There are more expressions appearing in connection with partially ordered sets.

1.3 Definition Suppose that (X,≺) is a partially ordered set. Then

(a) m ∈ X is called a maximal element in X if for all x ∈ X with x ≻ m we have

x ≺ m;

(b) m ∈ X is called an upper bound for S ⊆ X if x ≺ m for all x ∈ S;

(c) A subset C ⊆ X is called a chain in X if x ≺ y or y ≺ x for all x, y ∈ C;

(d) If a partially ordered set (X,≺) is a chain we call it a totally ordered set.

(e) If (X,≺) is partially ordered and x0 ∈ X is such that x0 ≺ x for all x ∈ X,

then we call x0 a first element.

There is a special class of partially ordered sets playing a particularly important role

in relation to the axiom of choice as we will see later.

1.4 Definition (well ordered set) A partially ordered set (X,≺) is called a well

ordered set if every subset has a first element.

1.5 Examples (a) N is a well ordered set, but Z or R are not well ordered with

the usual order.

(b) Z and R are totally ordered with the usual order.

1.6 Remark Well ordered sets are always totally ordered. To see this assume

(X,≺) is well ordered. Given x, y ∈ X we consider the subset {x, y} of X. By

definition of a well ordered set we have either x ≺ y or y ≺ x , which shows that

(X,≺) is totally ordered. The converse is not true as the example of Z given above

shows.

There is another, highly non-obvious but very useful statement appearing in con-

nection with partially ordered sets:

1.7 Zorn’s Lemma Suppose that (X,≺) is a partially ordered set such that each

chain in X has an upper bound. Then X has a maximal element.

There is a non-trivial connection between all the apparently different topics we

discussed so far. We state it without proof (see for instance [4]).

1.8 Theorem The following assertions are equivalent

(i) The axiom of choice;

(ii) Zorn’s Lemma;

(iii) Every set can be well ordered.

3



The axiom of choice may seem “obvious” at the first instance. However, the other

two equivalent statements are certainly not. For instance take X = R, which

we know is not well ordered with the usual order. If we accept the axiom of

choice then it follows from the above theorem that there exists a partial ordering

making R into a well ordered set. This is a typical “existence proof” based on the

axiom of choice. It does not give us any hint on how to find a partial ordering

making R into a well ordered set. This reflects Zermelo’s observation that it is

not obvious how to choose precisely one element from each set when given an

arbitrary collection of sets. Because of the non-constructive nature of the axiom

of choice and its equivalent counterparts, there are some mathematicians rejecting

the axiom. These mathematicians have the point of view that everything should

be “constructible,” at least in principle, by some means (see for instance [1]).

2 Elementary Properties of Metric Spaces

Metric spaces are sets in which we can measure distances between points. We

expect such a “distance function,” called a metric, to have some obvious properties,

which we postulate in the following definition.

2.1 Definition (Metric Space) Suppose X is a set. A map d : X × X → R is

called a metric on X if the following properties hold:

(i) d(x, y) ≥ 0 for all x, y ∈ x ;

(ii) d(x, y) = 0 if and only if x = y ;

(iii) d(x, y) = d(y , x) for all x, y ∈ X.

(iv) d(x, y) ≤ d(x, z) + d(z, y) for all x, y , z ∈ X (triangle inequality).

We call (X, d) a metric space. If it is clear what metric is being used we simply

say X is a metric space.

2.2 Example The simplest example of a metric space is R with d(x, y) := |x − y |.
The standard metric used in RN is the Euclidean metric given by

d(x, y) = |x − y |2 :=

√

√

√

√

N
∑

i=1

|xi − yi |2

for all x, y ∈ RN.

2.3 Remark If (X, d) is a metric space, then every subset Y ⊆ X is a metric space

with the metric restricted to Y . We say the metric on Y is induced by the metric

on X.
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2.4 Definition (Open and Closed Ball) Let (X, d) be a metric space. For r > 0

we call

B(x, r) := {y ∈ X : d(x, y) < r}
the open ball about x with radius r . Likewise we call

B̄(x, r) := {y ∈ X : d(x, y) ≤ r}

the closed ball about x with radius r .

Using open balls we now define a “topology” on a metric space.

2.5 Definition (Open and Closed Set) Let (X, d) be a metric space. A subset

U ⊆ X is called open if for every x ∈ X there exists r > 0 such that B(x, r) ⊆ U.

A set U is called closed if its complement X \ U is open.

2.6 Remark For every x ∈ X and r > 0 the open ball B(x, r) in a metric space is

open. To prove this fix y ∈ B(x, r). We have to show that there exists ε > 0 such

that B(y , ε) ⊆ B(x, r). To do so note that by definition d(x, y) < r . Hence we

can choose ε ∈ R such that 0 < ε < r−d(x, y). Thus, by property (iv) of a metric,

for z ∈ B(y , ε) we have d(x, z) ≤ d(x, y) + d(y , z) < d(x, y) + r − d(x, y) = r .
Therefore z ∈ B(x, r), showing that B(y , ε) ⊆ B(x, r).

Next we collect some fundamental properties of open sets.

2.7 Theorem Open sets in a metric space (X, d) have the following properties.

(i) X, ∅ are open sets;

(ii) arbitrary unions of open sets are open;

(iii) finite intersections of open sets are open.

Proof. Property (i) is obvious. To prove (ii) let Uα, α ∈ A be an arbitrary family

of open sets in X. If x ∈ ⋃

α∈A Uα then x ∈ Uβ for some β ∈ A. As Uβ is open there

exists r > 0 such that B(x, r) ⊆ Uβ. Hence also B(x, r) ⊆ ⋃

α∈A Uα, showing that
⋃

α∈A Uα is open. To prove (iii) let Ui , i = 1, . . . , n be open sets. If x ∈ ⋂n
i=1 Ui

then x ∈ Ui for all i = 1, . . . , n. As the sets Ui are open there exist ri > 0 such

that B(x, ri) ⊆ Ui for all i = 1, . . . , n. If we set r := mini=1,...,n ri then obviously

r > 0 and B(x, r) ⊆ ⋂n
i=1 Ui , proving (iii).

2.8 Remark There is a more general concept than that of a metric space, namely

that of a “topological space.” A collection T of subsets of a set X is called a

topology if the following conditions are satisfied

(i) X, ∅ ∈ T ;
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(ii) arbitrary unions of sets in T are in T ;

(iii) finite intersections of sets in T are in T .

The elements of T are called open sets, and (X, T ) a topological space. Hence

the open sets in a metric space form a topology on X.

2.9 Definition (Neighbourhood) Suppose that (X, d) is a metric space (or more

generally a topological space). We call a set U a neighbourhood of x ∈ X if there

exists an open set V ⊆ U with x ∈ V .

Now we define some sets associated with a given subset of a metric space.

2.10 Definition (Interior, Closure, Boundary) Suppose that U is a subset of a

metric space (X, d) (or more generally a topological space). A point x ∈ U is

called an interior point of U if U is a neighbourhood of x . We call

(i) Ů := Int(U) := {x ∈ U : x interior point of U} the interior of U;

(ii) U := {x ∈ X : U ∩ V 6= ∅ for every neighbourhood V of x} the closure of U;

(iii) ∂U := Ū \ Int(U) the boundary of U.

2.11 Remark A set is open if and only if Ů = U and closed if and only if U = U.

Moreover, ∂U = U ∩X \ U.

Sometimes it is convenient to look at products of a (finite) number of metric

spaces. It is possible to define a metric on such a product as well.

2.12 Proposition Suppose that (Xi , di), i = 1, . . . , n are metric spaces. Then

X = X1 ×X2 × · · · ×Xn becomes a metric space with the metric d defined by

d(x, y) :=

n
∑

i=1

di(xi , yi)

for all x = (x1, . . . , xn) and y = (y1, . . . , yn) in X.

Proof. Obviously, d(x, y) ≥ 0 and d(x, y) = d(y , x) for all x, y ∈ X. Moreover,

as di(xi , yi) ≥ 0 we have d(x, y) = 0 if and only if di(xi , yi) = 0 for all i = 1, . . . , n.

As di are metrics we get xi = yi for all i = 1, . . . , n. For the triangle inequality

note that

d(x, y) =

n
∑

i=1

d(xi , yi) ≤
n

∑

i=1

(

d(xi , zi) + d(zi , yi)
)

=

n
∑

i=1

d(xi , zi) +

n
∑

i=1

d(zi , yi) = d(x, y) + d(z, y)

for all x, y , z ∈ X.
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2.13 Definition (Product space) The space and metric introduced in Proposi-

tion 2.12 is called a product space and a product metric, respectively.

3 Limits

Once we have a notion of “closeness” we can discuss the asymptotics of sequences

and continuity of functions.

3.1 Definition (Limit) Suppose (xn)n∈N is a sequence in a metric space (X, d),

or more generally a topological space. We say x0 is a limit of (xn) if for every

neighbourhood U of x0 there exists n0 ∈ N such that xn ∈ U for all n ≥ n0. We

write

x0 = lim
n→∞
xn or xn → x as n →∞.

If the sequence has a limit we say it is convergent, otherwise we say it is divergent.

3.2 Remark Let (xn) be a sequence in a metric space (X, d) and x0 ∈ X. Then

the following statements are equivalent:

(1) lim
n→∞
xn = x0;

(2) for every ε > 0 there exists n0 ∈ N such that d(xn, x0) < ε for all n ≥ n0.

Proof. Clearly (1) implies (2) by choosing neighbourhoods of the form B(x, ε). If

(2) holds and U is an arbitrary neighbourhood of x0 we can choose ε > 0 such that

B(x0, ε) ⊆ U. By assumption there exists n0 ∈ N such that d(xn, x0) < ε for all

n ≥ n0, that is, xn ∈ B(x0, ε) ⊆ U for all n ≥ n0. Therefore, xn → x0 as n →∞.

3.3 Proposition A sequence in a metric space (X, d) has at most one limit.

Proof. Suppose that (xn) is a sequence in (X, d) and that x and y are limits of

that sequence. Fix ε > 0 arbitrary. Since x is a limit there exists n1 ∈ N such

that d(xn, x) < ε/2 for all n > n1. Similarly, since y is a limit there exists n2 ∈ N
such that d(xn, y) < ε/2 for all n > n2. Hence d(x, y) ≤ d(x, xn) + d(xn, y) ≤
ε/2 + ε/2 = ε for all n > max{n1, n2}. Since ε > 0 was arbitrary it follows that

d(x, y) = 0, and so by definition of a metric x = y . Thus (xn) has at most one

limit.

We can characterise the closure of sets by using sequences.

3.4 Theorem Let U be a subset of the metric space (X, d) then x ∈ U if and only

if there exists a sequence (xn) in U such that xn → x as n →∞.

7



Proof. Let U ⊆ X and x ∈ U. Hence B(x, ε)∩U) 6= ∅ for all ε > 0. For all n ∈ N
we can therefore choose xn ∈ U with d(x, xn) < 1/n. By construction xn → x as

n →∞. If (xn) is a sequence in U converging to x then for every ε > 0 there exists

n0 ∈ N such that xn ∈ B(x, ε) for all n ≥ n0. In particular, B(x, ε) ∩ U 6= ∅ for all

ε > 0, implying that x ∈ U as required.

There is another concept closely related to convergence of sequences.

3.5 Definition (Cauchy Sequence) Suppose (xn) is a sequence in the metric space

(X, d). We call (xn) a Cauchy sequence if for every ε > 0 there exists n0 ∈ N such

that d(xn, xm) < ε for all m, n ≥ n0.

Some sequences may not converge, but they accumulate at certain points.

3.6 Definition (Point of Accumulation) Suppose that (xn) is a sequence in a

metric space (X, d) or more generally in a topological space. We say that x0 is a

point of accumulation of (xn) if for every neighbourhood U of x0 and every n0 ∈ N
there exists n ≥ n0 such that xn ∈ U.

3.7 Remark Equivalently we may say x0 is an accumulation point of (xn) if for

every ε > 0 and every n0 ∈ N there exists n ≥ n0 such that d(xn, x0) < ε. Note

that it follows from the definition that every neighbourhood of x0 contains infinitely

many elements of the sequence (xn).

3.8 Proposition Suppose that (X, d) is a metric space and (xn) a sequence in that

space. Then x ∈ X is a point of accumulation of (xn) if and only if

x ∈
∞
⋂

k=1

{xj : j ≥ k}. (3.1)

Proof. Suppose that x ∈ ⋂∞
k=1 {xj : j ≥ k}. Then x ∈ {xj : j ≥ k} for all k ∈ N.

By Theorem 3.4 we can choose for every k ∈ N an element xnk ∈ {xj : j ≥ k} such

that d(xnk , x) < 1/k . By construction xnk → x as k → ∞, showing that x is a

point of accumulation of (xn). If x is a point of accumulation of (xn) then for all

k ∈ N there exists nk ≥ k such that d(xnk , x) < 1/k . Clearly xnk → x as k → ∞,

so that x ∈ {xnj : j ≥ k} for all k ∈ N. As {xnj : j ≥ k} ⊆ {xj : j ≥ k} for all k ∈ N
we obtain (3.1).

In the following theorem we establish a connection between Cauchy sequences and

converging sequences.

3.9 Theorem Let (X, d) be a metric space. Then every convergent sequence is a

Cauchy sequence. Moreover, if a Cauchy sequence (xn) has an accumulation point

x0, then (xn) is a convergent sequence with limit x0.

8



Proof. Suppose that (xn) is a convergent sequence with limit x0. Then for every

ε > 0 there exists n0 ∈ N such that d(xn, x0) < ε/2 for all n ≥ n0. Now

d(xn, xm) ≤ d(xn, x0) + d(x0, xm) = d(xn, x0) + d(xm, x0) <
ε

2
+
ε

2
= ε

for all n,m ≥ n0, showing that (xn) is a Cauchy sequence. Now assume that (xn)

is a Cauchy sequence, and that x0 ∈ X is an accumulation point of (xn). Fix ε > 0

arbitrary. Then by definition of a Cauchy sequence there exists n0 ∈ N such that

d(xn, xm) < ε/2 for all n,m ≥ n0. Moreover, since x0 is an accumulation point

there exists m0 ≥ n0 such that d(xm0, x0) < ε/2. Hence

d(xn, x0) ≤ d(xn, xm0) + d(xm0, x0) <
ε

2
+
ε

2
= ε

for all n ≥ n0. Hence by Remark 3.2 x0 is the limit of (xn).

In a general metric space not all Cauchy sequences have necessarily a limit, hence

the following definition.

3.10 Definition (Complete Metric Space) A metric space is called complete if

every Cauchy sequence in that space has a limit.

One property of the real numbers is that the intersection of a nested sequence of

closed bounded intervals whose lengths shrinks to zero have a non-empty intersec-

tion. This property is in fact equivalent to the “completeness” of the real number

system. We now prove a counterpart of that fact for metric spaces. There are no

intervals in general metric spaces, so we look at a sequence of nested closed sets

whose diameter goes to zero. The diameter of a set K in a metric space (X, d) is

defined by

diam(K) := sup
x,y∈K

d(x, y).

3.11 Theorem (Cantor’s Intersection Theorem) Let (X, d) be a metric space.

Then the following two assertions are equivalent:

(i) (X, d) is complete;

(ii) For every sequence of closed sets Kn ⊆ X with Kn+1 ⊆ Kn for all n ∈ N

diam(Kn) := sup
x,y∈Kn

d(x, y)→ 0

as n →∞ we have
⋂

n∈NKn 6= ∅.

9



Proof. First assume that X is complete and let Kn be as in (ii). For every n ∈ N
we choose xn ∈ Kn and show that (xn) is a Cauchy sequence. By assumption

Kn+1 ⊆ Kn for all n ∈ N, implying that xm ∈ Km ⊆ Kn for all m > n. Since

xm, xn ∈ Kn we have

d(xm, xn) ≤ sup
x,y∈Kn

d(x, y) = diam(Kn)

for all m > n. Since diam(Kn) → 0 as n → ∞, given ε > 0 there exists n0 ∈ N
such that diam(Kn0) < ε. Hence, since Km ⊆ Kn ⊆ Kn0 we have

d(xm, xn) ≤ diam(Kn) ≤ diam(Kn0) < ε

for all m > n > n0, showing that (xn) is a Cauchy sequence. By completenes of S,

the sequence (xn) converges to some x ∈ X. We know from above that xm ∈ Kn
for all m > n. As Kn is closed x ∈ Kn. Since this is true for all n ∈ N we conclude

that x ∈ ⋂

n∈NKn, so the intersection is non-empty as claimed.

Assume now that (ii) is true and let (xn) be a Cauchy sequence in (X, d). Hence

there exists n0 ∈ X such that d(xn0, xn) < 1/2 for all n ≥ n0. Similarly, there exists

n1 > n0 such that d(xn1, xn) < 1/2
2 for all n ≥ n1. Continuing that way we

construct a sequence (nk) in N such that for every k ∈ N we have nk+1 > nk and

d(xnk , xn) < 1/2
k+1 for all n > nk . We now set Kk := B(xk , 2−k)). If x ∈ Kk+1,

then since nk+1 > nk

d(xnk , x) ≤ d(xnk , xnk+1) + d(xnk+1, x) <
1

2k+1
+
1

2k+1
=
1

2k
.

Hence x ∈ Kk , showing that Kk+1 ⊆ Kk for all k ∈ N. By assumption (ii) we

have
⋂

k∈NKk 6= ∅, so choose x ∈ ⋂

k∈NKk 6= ∅. Then x ∈ Kk for all k ∈ N, so

d(xnk , x) ≤ 1/2k for all k ∈ N. Hence xnk → x as k → ∞. By Theorem 3.9 the

Cauchy sequence (xn) converges, proing (i).

We finally look at product spaces defined in Definition 2.13. The rather simple

proof of the following proposition is left to the reader.

3.12 Proposition Suppose that (Xi , di), i = 1, . . . , n are complete metric spaces.

Then the corresponding product space is complete with respect to the product

metric.

4 Compactness

We start by introducing some additional concepts, and show that they are all

equivalent in a metric space. They are all generalisations of “finiteness” of a set.

10



4.1 Definition (Open Cover, Compactness) Let (X, d) be a metric space. We

call a collection of open sets (Uα)α∈A an open cover of X if X ⊆ ⋃

α∈A Uα. The

space X is called compact if for every open cover (Uα)α∈A there exist finitely many

αi ∈ A, i = 1, . . . , m such that (Uαi )i=1,...,m is an open cover of X. We talk about

a finite sub-cover of X.

4.2 Definition (Sequential Compactness) We call a metric space (X, d) sequen-

tially compact if every sequence in X has an point of accumulation.

4.3 Definition (Total Boundedness) We call a metric space X totally bounded

if for every ε > 0 there exist finitely many points xi ∈ X, i = 1, . . . , m, such that

(B(xi , ε))i=1,...,m is an open cover of X.

It turns out that all the above definitions are equivalent, at least in metric spaces

(but not in general topological spaces).

4.4 Theorem For a metric space (X, d) the following statements are equivalent:

(i) X is compact;

(ii) X is sequentially compact;

(iii) X is complete and totally bounded.

Proof. To prove that (i) implies (ii) assume that X is compact and that (xn) is

a sequence in X. We set Cn := {xj : j ≥ n} and Un := X \ Cn. Then Un is open

for all n ∈ N as Cn is closed. By Proposition 3.8 the sequence (xn) has a point of

accumulation if
⋂

n∈N

Cn 6= ∅,

which is equivalent to

⋃

n∈N

Un =
⋃

n∈N

X \ Cn = X \
⋂

n∈N

Cn 6= X

Clearly C0 ⊃ C1 ⊃ · · · ⊃ Cn 6= ∅ for all n ∈ N. Hence every finite intersection of

sets Cn is nonempty. Equivalently, every finite union of sets Un is strictly smaller

than X, so that X cannot be covered by finitely many of the sets Un. As X is

compact it is impossible that
⋃

n∈N Un = X as otherwise a finite number would

cover X already, contradicting what we just proved. Hence (xn) must have a point

of accumulation.

Now assume that (ii) holds. If (xn) is a Cauchy sequence it follows from (ii) that

it has a point of accumulation. By Theorem 3.9 we conclude that it has a limit,

showing that X is complete. Suppose now that X is not totally bounded. Then,

there exists ε > 0 such that X cannot be covered by finitely many balls of radius

ε. If we let x0 be arbitrary we can therefore choose x1 ∈ X such that d(x0, x1) > ε.

11



By induction we may construct a sequence (xn) such that d(xj , xn) ≥ ε for all

j = 1, . . . , n − 1. Indeed, suppose we have x0, . . . , xn ∈ X with d(xj , xn) ≥ ε for

all j = 1, . . . , n − 1. Assuming that X is not totally bounded
⋃n
j=1B(xj , ε) 6= X,

so we can choose xn+1 not in that union. Hence d(xj , xn+1) ≥ ε for j = 1, . . . , n.

By construction it follows that d(xn, xm) ≥ ε/2 for all n,m ∈ N, showing that (xn)

does not contain a Cauchy subsequence, and thus has no point of accumulation.

As this contradicts (ii), the space X must be totally bounded.

Suppose now that (iii) holds, but X is not compact. Then there exists an open

cover (Uα)α∈A not having a finite sub-cover. As X is totally bounded, for every

n ∈ N there exist finite sets Fn ⊆ X such that

X =
⋃

x∈Fn

B(x, 2−n). (4.1)

Assuming that (Uα)α∈A does not have a finite sub-cover, there exists x1 ∈ F1 such

that B(x1, 2
−1) and thus K1 := B(x1, 3 · 2−1) cannot be covered by finitely many

Uα. By (4.1) it follows that there exists x2 ∈ F2 such that B(x1, 2
−1)∩B(x2, 2−2)

and therefore K2 := B(x2, 3 · 2−2) is not finitely covered by (Uα)α∈A. We can

continue this way and choose xn+1 ∈ Fn+1 such that B(xn, 2
−n) ∩B(xn+1, 2−(n+1))

and therefore Kn+1 := B(x2, 3 · 2−(n+1)) is not finitely covered by (Uα)α∈A. Note

that B(xn, 2
−n) ∩ B(xn+1, 2−(n+1)) 6= ∅ since otherwise the intersection is finitely

covered by (Uα)α∈A. Hence if x ∈ Kn+1, then

d(xn, x) ≤ d(xn, xn+1) + d(xn+1, x) ≤
1

2n
+
1

2n+1
+
3

2n+1
=
6

2n+1
=
3

2n
,

implying that x ∈ Kn. Also diamKn ≤ 3 · 2n−1 → 0. Since X is complete,

by Cantor’s intersection Theorem 3.11 there exists x ∈ ⋂

n∈NKn. As (Uα) is a

cover of X we have x ∈ Uα0 for some α0 ∈ A. Since Uα0 is open there exists

ε > 0 such that B(x, ε) ⊆ Uα0. Choose now n such that 6/2n < ε and fix

y ∈ Kn. Since x ∈ Kn we have d(x, y) ≤ d(x, xn) + d(xn, y) ≤ 6/2n < ε. Hence

Kn ⊆ B(x, ε) ⊆ Uα0, showing that Kn is covered by Uα0. However, by construction

Kn cannot be covered by finitely many Uα, so we have a contradiction. Hence X

is compact, completing the proof of the theorem.

The last part of the proof is modelled on the usual proof of the Heine-Borel the-

orem asserting that bounded and closed sets are the compact sets in RN. Hence

it is not a surprise that the Heine-Borel theorem easily follows from the above

characterisations of compactness.

4.5 Theorem (Heine-Borel) A subset of RN is compact if and only if it is closed

and bounded.

Proof. Suppose A ⊆ RN is compact. By Theorem 4.4 the set A is totally bounded,

and thus may be covered by finitely many balls of radius one. A finite union of

12



such balls is clearly bounded, so A is bounded. Again by Theorem 4.4, the set A

is complete, so in particular it is closed. Now assume A is closed and bounded.

As RN is complete it follows that A is complete. Next we show that A is totally

bounded. We let M be such that A is contained in the cube [−M,M]N. Given

ε > 0 the interval [−M,M] can be covered by m := [2M/ε] + 1 closed intervals

of length ε/2 (here [2M/ε] is the integer part of 2M/ε). Hence [−M,M]N can be

covered by mN cubes with edges ε/2 long. Such cubes are contained in open balls

of radius ε, so we can cover [−M,M]N and thus A by a finite number of balls of

radius ε. Hence A is complete and totally bounded. By Theorem 4.4 the set A is

compact.

We can also look at subsets of metric spaces. As they are metric spaces with the

metric induced on them we can talk about compact subsets of a metric space. It

follows from the above theorem that compact subsets of a metric space are always

closed (as they are complete). Often in applications one has sets that are not

compact, but their closure is compact.

4.6 Definition (Relatively Compact Sets) We call a subset of a metric space

relatively compact if its closure is compact.

4.7 Proposition Closed subsets of compact metric spaces are compact.

Proof. Suppose C ⊆ X is closed and X is compact. If (Uα)α∈A is an open cover

of C then we get an open cover of X if we add the open set X \ C to the Uα. As

X is compact there exists a finite sub-cover of X, and as X \ C ∩ C = ∅ also a

finite sub-cover of C. Hence C is compact.

Next we show that finite products of compact metric spaces are compact.

4.8 Proposition Let (Xi , di), i = 1, . . . , n, be compact metric spaces. Then the

product X := X1×· · ·×Xn is compact with respect to the product metric introduced

in Proposition 2.12.

Proof. By Proposition 3.12 it follows that the product space X is complete.

By Theorem 4.4 is is therefore sufficient to show that X is totally bounded. Fix

ε > 0. Since Xi is totally bounded there exist xik ∈ Xi , k = 1, . . . mi such that

Xi is covered by the balls Bik of radius ε/n and centre xik . Then X is covered

by the balls of radius ε with centres (x1k1, . . . , xiki , . . . xnkn), where ki = 1, . . . mi .

Indeed, suppose that x = (x1, x2, . . . , xn) ∈ X is arbitrary. By assumption, for every

i = 1, . . . n there exist 1 ≤ ki ≤ mi such that d(xi , xiki ) < ε/n. By definition of

the product metric the distance between (x1k1, . . . , xnkn) and x is no larger than

d(x1, x1k1) + · · ·+ d(xn, xnkn) ≤ nε/n = ε. Hence X is totally bounded and thus X

is compact.
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5 Continuous Functions

We give a brief overview on continuous functions between metric spaces. Through-

out, let X = (X, d) denote a metric space. We start with some basic definitions.

5.1 Definition (Continuous Function) A function f : X → Y between two metric

spaces is called continuous at a point x ∈ X if for every neighbourhood V ⊆ Y
of f (x) there exists a neighbourhood U ⊆ X of x such that f (U) ⊆ V . The map

f : X → Y is called continuous if it is continuous at all x ∈ X. Finally we set

C(X, Y ) := {f : X → Y | f is continuous}.

The above is equivalent to the usual ε-δ definition.

5.2 Theorem Let X, Y be metric spaces and f : X → Y a function. Then the

following assertions are equivalent:

(i) f is continuous at x ∈ X;

(ii) For every ε > 0 there exists δ > 0 such that dY
(

f (x), f (y)
)

≤ ε for all y ∈ X
with dX(x, y) < δ;

(iii) For every sequence (xn) in X with xn → x we have f (xn)→ f (x) as n →∞.

Proof. Taking special neighbourhoods V = B(f (x), ε) and U := B(x, δ) then

(ii) is clearly necessary for f to be continuous. To show the (ii) is sufficient let

V be an arbitrary neighbourhood of f (x). Then there exists ε > 0 such that

B(f (x), ε) ⊆ V . By assumption there exists δ > 0 such that dY
(

f (x), f (y)
)

≤ ε
for all y ∈ X with dX(x, y) < δ, that is, f (U) ⊆ V if we let U := B(x, δ). As U

is a neighbourhood of x it follows that f is continuous. Let now f be continuous

and (xn) a sequence in X converging to x . If ε > 0 is given then there exists δ > 0

such that dY (f (x), f (y)) < ε for all y ∈ X with dX(x, y) < δ. As xn → x there

exists n0 ∈ N such that dX(x, xn) < δ for all n ≥ n0. Hence dY (f (x), f (xn)) < ε

for all n ≥ n0. As ε > 0 was arbitrary f (xn)→ f (x) as n →∞. Assume now that

(ii) does not hold. Then there exists ε > 0 such that for each n ∈ N there exists

xn ∈ X with dX(x, xn) < 1/n but dY (f (x), f (xn)) ≥ ε for all n ∈ N. Hence xn → x
in X but f (xn) 6→ f (x) in Y , so (iii) does not hold. By contrapositive (iii) implies

(ii), completing the proof of the theorem.

Next we want to give various equivalent characterisations of continuous maps (with-

out proof).

5.3 Theorem (Characterisation of Continuity) LetX, Y be metric spaces. Then

the following statements are equivalent:
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(i) f ∈ C(X, Y );

(ii) f −1[O] := {x ∈ X : f (x) ∈ O} is open for every open set O ⊆ Y ;

(iii) f −1[C] is closed for every closed set C ⊆ Y ;

(iv) For every x ∈ X and every neighbourhood V ⊆ Y of f (x) there exists a

neighbourhood U ⊆ X of x such that f (U) ⊆ V ;

(v) For every x ∈ X and every ε > 0 there exists δ > 0 such that dY
(

f (x), f (y)
)

<

ε for all y ∈ X with dX(x, y) < δ.

5.4 Definition (Distance to a Set) Let A be a nonempty subset of X. We define

the distance between x ∈ X and A by

dist(x, A) := inf
a∈A
d(x, a)

5.5 Proposition For every nonempty set A ⊆ X the map X → R, x 7→ dist(x, A),
is continuous.

Proof. By the properties of a metric d(x, a) ≤ d(x, y) + d(y , a). By first

taking an infimum on the left hand side and then on the right hand side we get

dist(x, A) ≤ d(x, y) + dist(y , A) and thus

dist(x, A)− dist(y , A) ≤ d(x, y)

for all x, y ∈ X. Interchanging the roles of x and y we get dist(y , A)−dist(x, A) ≤
d(x, y), and thus

| dist(x, A)− dist(y , A)| ≤ d(x, y),
implying the continuity of dist(· , A).

We continue to discuss properties of continuous functions on compact sets.

5.6 Theorem If f ∈ C(X, Y ) and X is compact then the image f (X) is compact

in Y .

Proof. Suppose that (Uα) is an open cover of f (X) then by continuity f −1[Uα]

are open sets, and so (f −1[Uα]) is an open cover of X. By the compactness of

X it has a finite sub-cover. Clearly the image of that finite sub-cover is a finite

sub-cover of f (X) by (Uα). Hence f (X) is compact.

Continuous functions on compact sets have other nice properties.

5.7 Definition (Uniform Continuity) We say a function f : X → Y is uniformly

continuous if for all ε > 0 there exists δ > 0 such that dY
(

f (x), f (y)
)

< ε for all

x, y ∈ X satisfying dX(x, y) < δ.
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The difference to continuity is that δ does not depend on the point x , but can be

chosen to be the same for all x ∈ X, that is uniformly with respect to x ∈ X.

5.8 Theorem If X is compact, then every function f ∈ C(X, Y ) is uniformly con-

tinuous.

Proof. Suppose that X is compact and f not uniformly continuous. Then there

exists ε > 0 such that for all n ∈ N there exist xn, yn ∈ X with d(xn, yn) < 1/n and

d(f (xn), f (yn)) ≥ ε. (5.1)

As X is compact and thus sequentially compact there exists a subsequence xnk
converging to some x ∈ X as k →∞ (see Theorem 4.4). Now

d(x, ynk ) ≤ d(x, xnk ) + d(xnk , ynk ) ≤ d(x, xnk ) +
1

nk

k→∞−−−→ 0,

so that ynk → x as well. By the continuity of f and the triangle inequality

d(f (xnk ), f (ynk )) ≤ d(f (xnk ), f (x)) + d(f (ynk ), f (x))
k→∞−−−→ 0,

contradicting our assumption (5.1). Hence f must be uniformly continuous.

One could give an alternative proof of the above theorem using the covering prop-

erty of compact sets. We complete this section by an important property of real

valued continuous functions.

5.9 Theorem Suppose that X is a compact metric space and f ∈ C(X,R). Then

f attains its maximum and minimum, that is, there exist x1, x2 ∈ X such that

f (x1) = inf{f (x) : x ∈ X} and f (x2) = sup{f (x) : x ∈ X}.
Proof. By Theorem 5.6 the image of f is compact, and so by the Heine-Borel

theorem (Theorem 4.5) closed and bounded. Hence the image f (X) = {f (x) : x ∈
X} contain its infimum and supremum, that is, x1 and x2 as required exist.

16



Chapter II

Hilbert Spaces

Preliminary Remarks

Hilbert spaces are in some sense a direct generalisation of finite dimensional Eu-

clidean spaces, where the norm has some geometric meaning and angles can be

defined by means of the dot product. The dot product can be used to define the

norm and prove many of its properties. Hilbert space theory is doing this in a similar

fashion, where an inner product is a map with properties similar to the dot product

in Euclidean space. We will emphasise the analogies and see how useful they are

to find proofs in the general context of inner product spaces.

6 Inner Product Spaces

Throughout we let E denote a vector space over K, where K denotes either R or

C.

6.1 Definition (Inner product, inner product space) A function (· | ·) : E×E →
K is called an inner product or scalar product if

(i) (u | v) = (v | u) for u, v ∈ E,

(ii) (u | u) ≥ 0 for all u ∈ E and (u | u) = 0 if and only if u = 0.

(iii) (αu + βv | w) = α(u | w) + β(v | w) for all u, v , w ∈ E and α, β ∈ K,

We say that E equipped with (· | ·) is an inner product space.

6.2 Remark As an immediate consequence of the above definition, inner products

have the following properties:

(a) By property (i) we have (u | u) = (u | u) and therefore (u | u) ∈ R for all

u ∈ E. Hence property (ii) makes sense.
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(b) Using (i) and (iii) we have

(u | αv + βw) = α(u | v) + β(u | w)

for all u, v , w ∈ E and α, β ∈ K. In particular we have

(u | λv) = λ(u | v)

for all u, v ∈ E and λ ∈ K.

Next we give some examples of Hilbert spaces.

6.3 Examples (a) The space CN equipped with the Euclidean scalar product given

by

(x | y) := x · y =
N
∑

i=1

xiy i

for all x := (x1, . . . , xN), y := (y1, . . . , yN) ∈ CN is an inner product space. More

generally, if we take a positive definite Hermitian matrix A ∈ CN×N, then

(x | y)A := xTAȳ

defines an inner product on CN.

(b) An infinite dimensional version is ℓ2. An inner product is defined by

(x | y) :=
∞
∑

i=1

xiy i

for all (xi), (yi) ∈ ℓ2. The series converges absolutely by the Cauchy Schwarz

inequality.

(c) If (a, b) ⊆ R we let

L2((a, b)) := {f : (a, b)→ C |
∫ b

a

|f (t)|2 dt <∞}

For u, v ∈ L2((a, b)) we let

(u | v) :=
∫ b

a

u(t)v(t) dx.

The Euclidean norm on CN is defined by means of the dot product, namely by

‖x‖ = √x · x for x ∈ CN. We make a similar definition in the context of general

inner product spaces.

6.4 Definition (induced norm) If E is an inner product space with inner product

(· | ·) we define

‖u‖ :=
√

(u | u) (6.1)

for all u ∈ E.
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‖u‖

‖v‖

‖v − u‖
θ

Figure 6.1: Triangle formed by u, v and v − u.

Note that from Remark 6.2 we always have (x | x) ≥ 0, so ‖x‖ is well defined. We

call ‖·‖ a “norm,” but at the moment we do not know whether it really is a norm.

We now want to work towards a proof that ‖·‖ is a norm on E. On the way we look

at some geometric properties of inner products and establish the Cauchy-Schwarz

inequality.

By the algebraic properties of the inner products in a space over R and the

definition of the norm we get

‖v − u‖2 = ‖u‖2 + ‖v‖2 − 2(u | v).

On the other hand, by the law of cosines we know that for vectors u, v ∈ R2

‖v − u‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ.

if we form a triangle from u, v and v − u as shown in Figure 6.1. Therefore

u · v = ‖u‖‖v‖ cos θ

and thus

|u · v | ≤ ‖u‖‖v‖.
The latter inequality has a counterpart in general inner product spaces. We give

a proof inspired by (but not relying on) the geometry in the plane. All arguments

used purely depend on the algebraic properties of an inner product and the definition

of the induced norm.

6.5 Theorem (Cauchy-Schwarz inequality) Let E be an inner product space with

inner product (· | ·). Then

|(u | v)| ≤ ‖u‖‖v‖ (6.2)

for all u, v ∈ E with equality if and only if u and v are linearly dependent.

Proof. If u = 0 or v = 0 the inequality is obvious and u and v are linearly

dependent. Hence assume that u 6= 0 and v 6= 0. We can then define

n = v − (u | v)‖u‖2 u.
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Note that the vector

p :=
(u | v)
‖u‖2 u

is the projection of v in the direction of u, and n is the projection of v orthogonal

to u as shown in Figure 6.2. Using the algebraic rules for the inner product and

u

v
n = v − p

p =
(u | v)
‖u‖2 u

Figure 6.2: Geometric interpretation of n.

the definition of the norm we get

0 ≤ ‖n‖2 = v · v − 2(u | v)(v | u)‖u‖2 +
(u | v)(u | v)
‖u‖4 (u | u)

= ‖v‖2 − 2 |(u | v)|
2

‖u‖2 +
|(u | v)|2
‖u‖4 ‖u‖

2 = ‖v‖2 − |(u | v)|
2

‖u‖2 .

Therefore |(u | v)|2 ≤ ‖u‖2‖v‖2, and by taking square roots we find (6.2). Clearly

equality holds if and only if ‖n‖ = 0, that is, if

v =
(u | v)
‖u‖2 u.

Hence we have equality in (6.2) if and only if u and v are linearly dependent. This

completes the proof of the theorem.

As a consequence we get a different characterisation of the induced norm.

6.6 Corollary If E is an inner product space and ‖·‖ the induced norm, then

‖u‖ = sup
‖v‖≤1

|(u | v)| = sup
‖v‖=1

|(u | v)|

for all u ∈ E.

Proof. If u = 0 the assertion is obvious, so assume that u 6= 0. If ‖v‖ ≤ 1, then

|(u | v)| ≤ ‖u‖‖v‖ = ‖u‖ by the Cauchy-Schwarz inequality. Hence

‖u‖ ≤ sup
‖v‖≤1

|(u | v)|.
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Choosing v := u/‖u‖ we have |(u | v)| = ‖u‖2/‖u‖ ≤ ‖u‖, so equality holds in the

above inequality. Since the supremum over ‖v‖ = 1 is larger or equal to that over

‖v‖ ≤ 1, the assertion of the corollary follows.

Using the Cauchy-Schwarz inequality we can now prove that ‖·‖ is in fact a norm.

6.7 Theorem If E is an inner product space, then (6.1) defines a norm on E.

Proof. By property (ii) of an inner product (see Definition 6.1 we have ‖u‖ =
√

(u | u) ≥ 0 with equality if and only if u = 0. If u ∈ E and λ ∈ K, then

‖λu‖ =
√

(λu | λu) =
√

λλ̄(u | u) =
√

|λ|2‖u‖2 = |λ|‖u‖

as required. To prove the triangle inequality let u, v ∈ E. By the algebraic proper-

ties of an inner product and the Cauchy-Schwarz inequality we have

‖u + v‖2 = (u + v | u + v) = ‖u‖2 + (u | v) + (v | u) + ‖v‖2

≤ ‖u‖2 + 2|(u | v)|2 + ‖v‖2 ≤ ‖u‖2 + 2‖u‖2‖v‖2 + ‖v‖2 =
(

‖u‖+ ‖v‖
)2
.

Taking square roots the triangle inequality follows. Hence ‖·‖ defines a norm.

As a matter of convention we always consider inner product spaces as normed

spaces.

6.8 Convention Since every inner product induces a norm we will always assume

that an inner product space is a normed space with the norm induced by the inner

product.

Once we have a norm we can talk about convergence and completeness. Note that

not every inner product space is complete, but those which are play a special role.

6.9 Definition (Hilbert space) An inner product space which is complete with

respect to the induced norm is called a Hilbert space.

The inner product is a map on E × E. We show that this map is continuous with

respect to the induced norm.

6.10 Proposition (Continuity of inner product) Let E be an inner product space.

Then the inner product (· | ·) : E×E → K is continuous with respect to the induced

norm.

Proof. If xn → x and yn → y in E (with respect to the induced norm), then using

the Cauchy-Schwarz inequality

|(xn | yn)− (x | y)| = |(xn − x | yn) + (x | yn − y)|
≤ |(xn − x | yn)|+ |(x | yn − y)| ≤ ‖xn − x‖‖yn‖+ ‖x‖‖yn − y‖ → 0
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as n →∞. Note that we also use the continuity of the norm in the above argument

to conclude that ‖yn‖ → ‖y‖. Hence the inner product is continuous.

The lengths of the diagonals and edges of a parallelogram in the plane satisfy a

relationship. The norm in an inner product space satisfies a similar relationship,

called the parallelogram identity. The identity will play an essential role in the next

section.

6.11 Proposition (Parallelogram identity) Let E be an inner product space and

‖·‖ the induced norm. Then

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2 (6.3)

for all u, v ∈ E.

Proof. By definition of the induced norm and the properties of an inner product

‖u + v‖2 + ‖u − v‖2 = ‖u‖2 + (u | v) + (v | u) + ‖v‖2
+ ‖u‖2 − (u | v)− (v | u) + ‖v‖2 = 2‖u‖2 + 2‖v‖2

for all u, v ∈ E as required.

It turns out that the converse is true as well. More precisely, if a norm satisfies

(6.3) for all u, v ∈ E, then there is an inner product inducing that norm (see [6,

Section I.5] for a proof).

7 Projections and Orthogonal Complements

In this section we discuss the existence and properties of “nearest point projections”

from a point onto a set, that is, the points that minimise the distance from a closed

set to a given point. If (X, d) is a metric space and M ⊆ X we define the distance

of a point x ∈ X to M by dist(x,M) := inf{d(x, y) : y ∈ M}.

7.1 Definition (Projection) Let E be a normed space and M a non-empty closed

subset. We define the set of projections of x onto M by

PM(x) := {m ∈ M : ‖x −m‖ = dist(x,M)}.

The meaning of PM(x) is illustrated in Figure 7.1 for the Euclidean norm in the

plane. If the set is not convex, PM(x) can consist of several points, if it is convex,

it is precisely one.

We now look at some example. First we look at subsets of RN, and show that

then PM(x) is never empty.
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x

M

Figure 7.1: The set of nearest point projections PM(x).

7.2 Example Suppose that M ⊂ RN is non-empty and closed. If we fix α >

dist(x,M) and x ∈ RN, then the set K := M ∩ B(x, α) is a closed and bounded,

and dist(x,M) = dist(x,K). We know that the distance function x 7→ dist(x,K)
is continuous. Since K is compact by the Heine-Borel theorem, the continuous

map y 7→ d(x, y) attains a minimum on K. Hence there exists y ∈ K such that

d(x, y) = infz∈K d(y , z) = dist(x,K) = dist(x,M), which means that y ∈ PM(x).
Hence PM(x) is non-empty if M ⊂ RN. The same applies to any finite dimensional

space.

The argument to prove that PM(x) is non-empty used above very much depends on

the set K to be compact. Since bounded and closed sets in an infinite dimensional

space are not necessarily compact we have to use a different argument for the

existence of a nearest point. The main idea is to use the parallelogram identity

from Proposition 6.11.

7.3 Theorem (Existence and uniqueness of projections) LetH be a Hilbert space

and M ⊂ H non-empty, closed and convex. Then PM(x) contains precisely one

element which we also denote by PM(x).

Proof. Let M ⊂ H be non-empty, closed and convex. If x ∈ M, then PM(x) = x ,

so there is existence and also uniqueness of an element of PM(x). Hence we assume

that x 6∈ M and set

α := dist(x,M) = inf
m∈M
‖x −m‖.

Since M is closed and x 6∈ M we have α > 0. From the parallelogram identity

Proposition 6.11 we get

‖m1 −m2‖2 = ‖(m1 − x)− (m2 − x)‖2
= 2‖m1 − x‖2 + 2‖m1 − x‖2 − ‖(m1 − x) + (m2 − x)‖2.

If m1, m2 ∈ M, then ‖mi − x‖ ≥ α for i = 1, 2 and by the convexity of M we have

(m1 +m2)/2 ∈ M. Hence

‖(m1 − x) + (m2 − x)‖ = ‖m1 +m2 − 2x‖ = 2
∥

∥

∥

m1 +m2
2

− x
∥

∥

∥ ≥ 2α.
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and by using the above

‖m1 −m2‖2 ≤ 2‖m1 − x‖2 + 2‖m1 − x‖2 − 4α2. (7.1)

for all m1, m2 ∈ M. We can now prove uniqueness. Given m1, m2 ∈ PM(x) we have

by definition ‖mi − x‖ = α (i = 1, 2), and so by (7.1)

‖m1 −m2‖2 ≤ 4α2 − 4α2 = 0.

Hence ‖m1 − m2‖ = 0, that is, m1 = m2 proving uniqueness. As a second step

we prove the existence of an element in PM(x). By definition of an infimum there

exists a sequence (xn) in M such that

‖xn − x‖ → α := dist(x,M).

This obviously implies that (xn) a bounded sequence in H, but since H is not

necessarily finite dimensional, we cannot conclude it is converging without further

investigation. We show that (xn) is a Cauchy sequence and therefore converges

by the completeness of H. Fix now ε > 0. Since α ≤ ‖xn − x‖ → α there exists

n0 ∈ N such that

α ≤ ‖xn − x‖ ≤ α+ ε
for all n > n0. Hence using (7.1)

‖xk + xn‖2 ≤ 2‖xk − x‖2 + 2‖xn − x‖2 − 4α2 ≤ 4(α+ ε)2 − 4α2 = 4(2α+ ε)ε

for all n, k > n0. Hence (xn) is a Cauchy sequence as claimed.

We next derive a geometric characterisation of the projection onto a convex set. If

we look at a convex set M in the plane and the nearest point projection mx from a

point x onto M, then we expect the angle between x−mx and mx −m to be larger

or equal than π/2. This means that the inner product (x − mx | mx − m) ≤ 0.
We also expect the converse, that is, if the angle is larger or equal to π/2 for all

m ∈ M, then mx is the projection. Look at Figure 7.2 for an illustration. A similar

fact remains true in an arbitrary Hilbert space, except that we have to be careful

in a complex Hilbert space because (x −mx | mx −m) does not need to be real.

7.4 Theorem Suppose H is a Hilbert space and M ⊂ H a non-empty closed and

convex subset. Then for a point mx ∈ M the following assertions are equivalent:

(i) mx = PM(x);

(ii) Re(m −mx | x −mx) ≤ 0 for all m ∈ M.

Proof. By a translation we can assume that mx = 0. Assuming that mx = 0 =

PM(x) we prove that Re(m | x) ≤ 0 for all m ∈ M. By definition of PM(x) we have
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PM(x) = mx

x

m

x −mx

x −m
M

≥ π
2

Figure 7.2: Projection onto a convex set

‖x‖ = ‖x − 0‖ = infm∈M ‖x −m‖, so ‖x‖ ≤ ‖x −m‖ for all m ∈ M. As 0, m ∈ M
and M is convex we have

‖x‖2 ≤ ‖x − tm‖2 = ‖x‖2 + t2‖m‖2 − 2t Re(m | x)
for all m ∈ M and t ∈ (0, 1]. Hence

Re(m | x) ≤ t
2
‖m‖2

for all m ∈ M and t ∈ (0, 1]. If we fix m ∈ M and let t go to zero, then

Re(m | x) ≤ 0 as claimed. Now assume that Re(m | x) ≤ 0 for all m ∈ M and

that 0 ∈ M. We want to show that 0 = PM(x). If m ∈ M we then have

‖x −m‖2 = ‖x‖2 + ‖m‖2 − 2Re(x | m) ≥ ‖x‖2

since Re(m | x) ≤ 0 by assumption. As 0 ∈ M we conclude that

‖x‖ = inf
m∈M
‖x −m‖,

so 0 = PM(x) as claimed.

Every vector subspace M of a Hilbert space is obviously convex. If it is closed,

then the above characterisation of the projection can be applied. Due to the

linear structure of M it simplifies and the projection turns out to be linear. From

Figure 7.3 we expect that (x −mx | m) = 0 for all m ∈ M if mx is the projection

of x onto M and vice versa. The corollary also explains why PM is called the

orthogonal projection onto M.

7.5 Corollary Let M be a closed subspace of the Hilbert space H. Then mx =

PM(x) if and only if mx ∈ M and (x − mx | m) = 0 for all m ∈ M. Moreover,

PM : H → M is linear.

Proof. By the above theorem mx = PM(x) if and only if Re(mx −x | m−mx) ≤ 0
for all m ∈ M. Since M is a subspace m+mx ∈ M for all m ∈ M, so using m+mx
instead of m we get that

Re(mx − x | (m +mx)−mx) = Re(mx − x | m) ≤ 0
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PM(x) = mx

x

m

x −mx

0

M

Figure 7.3: Projection onto a convex set

for all m ∈ M. Replacing m by −m we get −Re(mx − x | m) = Re(mx − x |
−m) ≤ 0, so we must have Re(mx − x | m) = 0 for all m ∈ M. Similarly, replacing

m = ±im if H is a complex Hilbert space we have

± Im(mx − x | im) = Re(mx − x | ±m) ≤ 0,

so also Im(mx − x | m) = 0 for all m ∈ M. Hence (mx − x | m) = 0 for all m ∈ M
as claimed. It remains to show that PM is linear. If x, y ∈ H and λ, µ ∈ R, then

by what we just proved

0 = λ(x −PM(x) | m)+µ(x −PM(y) | m) = (λx +µy − (λPM(x)+µPM(y)) | m)

for all m ∈ M. Hence again by what we proved PM(λx+µy) = λPM(x)+µPM(y),

showing that PM is linear.

We next connect the projections discussed above with the notion of orthogonal

complements.

7.6 Definition (Orthogonal complement) For an arbitrary non-empty subset M

of an inner product space H we set

M⊥ := {x ∈ H : (x | m) = 0 for all m ∈ M}.

We call M⊥ the orthogonal complement of M in H.

We now establish some elementary but very useful properties of orthogonal com-

plements.

7.7 Lemma SupposeM is a non-empty subset of the inner product space H. Then

M⊥ is a closed subspace of H and M⊥ = M
⊥
= (spanM)⊥ = (spanM)⊥.

Proof. If x, y ∈ M⊥ and λ, µ ∈ K, then

(λx + µy | m) = λ(x | m) + µ(y | m) = 0,

for all m ∈ M, so M⊥ is a subspace of H. If x is from the closure of M⊥, then

there exist xn ∈ M⊥ with xn → x . By the continuity of the inner product

(x | m) = lim
n→∞
(xn | m) = lim

n→∞
0 = 0
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for all m ∈ M. Hence x ∈ M⊥, showing that M⊥ is closed. We next show

that M⊥ = M
⊥
. Since M ⊂ M we have M

⊥ ⊂ M⊥ by definition the orthogonal

complement. Fix x ∈ M⊥ and m ∈ M. Then there exist mn ∈ M with mn → m.

By the continuity of the inner product

(x | m) = lim
n→∞
(x | mn) = lim

n→∞
0 = 0.

Hence x ∈ M⊥ and thus M
⊥ ⊃ M⊥, showing that M

⊥
= M⊥. Next we show that

M⊥ = (spanM)⊥. Clearly (spanM)⊥ ⊂ M⊥ since M ⊂ spanM. Suppose now

that x ∈ M⊥ and m ∈ spanM. Then there exist mi ∈ M and λi ∈ K, i = 1, . . . , n,

such that m =
∑n
i=1 λimi . Hence

(x | m) = λi
n

∑

i=1

(x | mi) = 0,

and thus x ∈ (spanM)⊥. Therefore (spanM)⊥ ⊃ M⊥ and so (spanM)⊥ = M⊥ as

claimed. The last assertion of the lemma follows by what we have proved above.

Indeed we know that M⊥ = M
⊥

and that M
⊥
= (spanM)⊥.

We are now ready to prove the main result on orthogonal projections. It is one of

the most important and useful facts on Hilbert spaces.

7.8 Theorem (orthogonal complements) Suppose that M is a closed subspace

of the Hilbert space H. Then

(i) H = M ⊕M⊥;

(ii) PM is the projection of H onto M parallel to M⊥ (that is, PM(M
⊥) = {0})

(iii) PM ∈ L(H,M) with ‖PM‖L(H,M) ≤ 1.

Proof. (i) By Corollary 7.5 we have (x − PM(x) | m) = 0 for all x ∈ H and

m ∈ M. Hence x − PM(x) ∈ M⊥ for all x ∈ H and therefore

x = PM(x) + (I − PM)(x) ∈ M +M⊥,

and thus H = M +M⊥. If x ∈ M ∩M⊥, then (x | x) = 0, so x = 0, showing that

H = M ⊕M⊥ is a direct sum.

(ii) By Corollary 7.5 the map PM is linear. Since PM(x) = x for x ∈ M we have

P 2M = PM and PM(M
⊥) = {0}. Hence PM is a projection.

(iii) By (i) we have (PM(x) | x − PM(x)) = 0 and so

‖x‖2 = ‖PM(x) + (I − PM)(x)‖2
= ‖PM(x)‖2 + ‖x − PM(x)‖2 + 2Re(PM(x) | x − PM(x)) ≥ ‖PM(x)‖2
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for all x ∈ H. Hence PM ∈ L(H,M) with ‖PM‖L(H,M) ≤ 1 as claimed.

The above theorem can be used to prove some properties of orthogonal comple-

ments. The first is a very convenient criterion for a subspace of a Hilbert space to

be dense.

7.9 Corollary A subspace M of a Hilbert space H is dense in H if and only if

M⊥ = {0}.

Proof. Since M⊥ = M
⊥

by Lemma 7.7 it follows from Theorem 7.8 that

H = M ⊕M⊥

for every subspace M of H. Hence if M is dense in H, then M = H and so

M⊥ = {0}. Conversely, if M⊥ = {0}, then M = H, that is, M is dense in H.

We finally use Theorem 7.8 to get a characterisation of the second orthogonal

complement of a set.

7.10 Corollary Suppose M is a non-empty subset of the Hilbert space H. Then

M⊥⊥ := (M⊥)⊥ = spanM.

Proof. By Lemma 7.7 we have M⊥ = (spanM)⊥ = (spanM)⊥. Hence by

replacing M by spanM we can assume without loss of generality that M is a closed

subspace of H. We have to show that M = M⊥⊥. Since (x | m) = 0 for all

x ∈ M and m ∈ M⊥ we have M ⊂ M⊥⊥. Set now N := M⊥ ∩M⊥⊥. Since M is

a closed subspace it follows from Theorem 7.8 that M⊥⊥ = M ⊕ N. By definition

N ⊂ M⊥ ∩M⊥⊥ = {0}, so N = {0}, showing that M = M⊥⊥.

8 Orthogonal Systems

In RN, the standard basis or any other basis of mutually orthogonal vectors of

length one play a special role. We look at generalisations of such bases. Recall

that two u, v of an inner product space are called orthogonal if (u | v) = 0.

8.1 Definition (orthogonal systems) Let H be an inner product space with inner

product (· | ·) and induced norm ‖·‖. Let M ⊂ H be a non-empty subset.

(i) M is called an orthogonal system if (u | v) = 0 for all u, v ∈ M with u 6= v .

(ii) M is called an orthonormal system if it is an orthogonal system and ‖u‖ = 1
for all u ∈ M.
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(iii) M is called a complete orthonormal system or orthonormal basis of H if it is

an orthogonal system and spanM = H.

Note that the notion of orthogonal system depends on the particular inner product,

so we always have to say with respect to which inner product it is orthogonal.

8.2 Example (a) The standard basis in KN is a complete orthonormal system in

KN with respect to the usual dot product.

(b) The set

M := {(2π)−1/2e inx : n ∈ Z}
forms an orthonormal system in L2((−π, π),C). Indeed,

‖(2π)−1/2e inx‖22 =
1

2π

∫ π

−π

e inxe−inx dx =
1

2π

∫ π

−π

1 dx = 1

for all n ∈ N. Moreover, if n 6= m, then

( 1√
2π
e inx

∣

∣

∣

1√
2π
e imx

)

=
1

2π

∫ π

−π

e inxe−imx dx

=
1

2π

∫ π

−π

e i(n−m)x dx =
1

2π

1

i(n −m)e
i(n−m)x

∣

∣

∣

π

−π
= 0

since the exponential function is 2πi-periodic. Using the Weierstrass approximation

theorem one can show that this system forms a complete orthonormal system.

(c) The set of real valued functions

1√
2π
,
1√
π
cos nx,

1√
π
sin nx, n ∈ N \ {0}

forms an orthonormal system on L2((−π, π),R). Again it turns out that this sys-

tem is complete. The proof of the orthogonality is a consequence of the trigono-

metric identities

sinmx sin nx =
1

2

(

cos(m − n)x − cos(m + n)x
)

cosmx cos nx =
1

2

(

cos(m − n)x + cos(m + n)x
)

sinmx cos nx =
1

2

(

sin(m − n)x + sin(m + n)x
)

which easily follow from using the standard addition theorems for sin(m± n)x and

cos(m ± n)x
We next show that orthogonal systems are linearly independent if we remove the

zero element. Recall that by definition an infinite set is linearly independent if every

finite subset is linearly independent. We also prove a generalisation of Pythagoras’

theorem.
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8.3 Lemma (Pythagoras theorem) Suppose that H is an inner product space and

M an orthogonal system in H. Then the following assertions are true:

(i) M \ {0} is linearly independent.

(ii) If (xn) is a sequence in M with xn 6= xm for n 6= m and H is complete, then
∑∞
k=0 xk converges if and only if

∑∞
k=0 ‖xk‖2 converges. In that case

∥

∥

∥

∞
∑

k=0

xk

∥

∥

∥

2

=

∞
∑

k=0

‖xk‖2. (8.1)

Proof. (i) We have to show that every finite subset of M \{0} is linearly indepen-

dent. Hence let xk ∈ M \{0}, k = 1, . . . , n be a finite number of distinct elements.

Assume that λk ∈ K are such that

n
∑

k=0

λkxk = 0.

If we fix xm, m ∈ {0, . . . , n}, then by the orthogonality

0 =
(

n
∑

k=0

λkxk

∣

∣

∣xm

)

=

n
∑

k=0

λk(xk | xm) = λm‖xm‖2.

Since xm 6= 0 it follows that λm = 0 for all m ∈ {0, . . . , n}, showing that M \ {0}
is linearly independent.

(ii) Let (xn) be a sequence in M with xn 6= xm. (We only look at the case

of an infinite set because otherwise there are no issues on convergence). We

set sn :=
∑n
k=1 xk and tn :=

∑n
k=1 ‖xk‖2 the partial sums of the series under

consideration. If 1 ≤ m < n, then by the orthogonality

‖sn − sm‖2 =
∥

∥

∥

n
∑

k=m+1

xk

∥

∥

∥

2

=
(

n
∑

k=m+1

xk

∣

∣

∣

n
∑

j=m+1

xj

)

=

n
∑

k=m+1

n
∑

j=m+1

(xk | xj) =
n

∑

k=m+1

‖xk‖2 = |tn − tm|.

Hence (sn) is a Cauchy sequence in H if and only if tn is a Cauchy sequence in R,

and by the completeness they either both converge or diverge. The identity (8.1)

now follows by setting m = 0 in the above calculation and then letting n →∞.

In the case of H = KN and the standard basis ei , i = 1, . . . , N, we call xi = (x | ei)
the components of x ∈ KN. The Euclidean norm is given by

‖x‖2 =
n

∑

k=1

|xi |2 =
n

∑

k=1

|(x | ei)|2.
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If we do not sum over the full standard basis we may only get an inequality, namely

m
∑

k=1

|(x | ei)|2 ≤
n

∑

k=1

|(x | ei)|2 ≤ ‖x‖2.

if m ≤ n. We now prove a similar inequality replacing the standard basis by an

arbitrary orthonormal system M in an inner product space H. From the above

reasoning we expect that
∑

m∈M

|(x | m)|2 ≤ ‖x‖

for all x ∈ M. The definition of an orthonormal system M does not make any

assumption on the cardinality of M, so it may be uncountable. However, if M is

uncountable, it is not clear what the series above means. To make sense of the

above series we define

∑

m∈M

|(x | m)|2 := sup
N ⊂ M finite

∑

m∈N

|(x | m)|2 (8.2)

We now prove the expected inequality.

8.4 Theorem (Bessel’s inequality) Let H be an inner product space and M an

orthonormal system in H. Then

∑

m∈M

|(x | m)|2 ≤ ‖x‖2 (8.3)

for all x ∈ H. Moreover, the set {m ∈ M : (x | m) 6= 0} is at most countable for

every x ∈ H.

Proof. Let N = {mk : k = 1, . . . n} be a finite subset of the orthonormal set M

in H. Then, geometrically,
n

∑

k=1

(x | mk)mk

is the projection of x onto the span of N. By Pythagoras theorem (Lemma 8.3)

and since ‖mk‖ = 1 we have

∥

∥

∥

n
∑

k=1

(x | mk)mk
∥

∥

∥

2

=

n
∑

k=1

|(x | mk)|2‖mk‖2 =
n

∑

k=1

|(x | mk)|2.
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We expect the norm of the projection to be smaller than the norm of ‖x‖. To see

that we use the properties of the inner product and the above identity to get

0 ≤
∥

∥

∥x −
n

∑

k=1

(x | mk)mk
∥

∥

∥

2

= ‖x‖2 +
∥

∥

∥

n
∑

k=1

(x | mk)mk
∥

∥

∥

2

−
n

∑

k=1

(x | mk)(x | mk)−
n

∑

k=1

(x | mk)(mk | x)

= ‖x‖2 +
n

∑

k=1

|(x | mk)|2 − 2
n

∑

k=1

|(x | mk)|2

= ‖x‖2 −
n

∑

k=1

|(x | mk)|2.

Hence we have shown that
∑

m∈N

|(x | m)|2 ≤ ‖x‖2

for every finite set N ⊂ M. Taking the supremum over all such finite sets (8.3)

follows. To prove the second assertion note that for every given x ∈ H the sets

Mn := {m ∈ M : |(x | m)| ≥ 1/n} is finite for every n ∈ N as otherwise (8.3) could

not be true. Since countable unions of finite sets are countable, the set

{m ∈ M : (x | m) 6= 0} =
⋃

n∈N

Mn

is countable as claimed.

8.5 Remark Since for every x the set {m ∈ M : (x | m) 6= 0} is countable we

can choose an arbitrary enumeration and write Mx := {m ∈ M : (x | m) 6= 0} =
{mk : k ∈ N}. Since the series

∑∞
k=1 |(x | mk)|2 has non-negative terms and every

such sequence is unconditionally convergent we have

∞
∑

m∈M

|(x | m)|2 =
∞
∑

k=1

|(x | mk)|2

no matter which enumeration we take. Recall that unconditionally convergent

means that a series converges, and every rearrangement also converges to the

same limit. We make this more precise in the next section.

9 Abstract Fourier Series

If x is a vector in KN and ei the standard basis, then we know that

n
∑

k=1

(x | ek)ek
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is the orthogonal projection of x onto the subspace spanned by e1, . . . , en if n ≤ N,

and that

x =

N
∑

k=1

(x | ek)ek .

We might therefore expect that the analogous expression

∑

m∈M

(x | m)m (9.1)

is the orthogonal projection onto spanM if M is an orthonormal system in a Hilbert

space H. However, there are some difficulties. First of all, M does not need to be

countable, so the sum does not necessarily make sense. Since we are not working

in R, we cannot use a definition like (8.2). On the other hand, we know from

Theorem 8.4 that the set

Mx := {m ∈ M : (x | M) 6= 0} (9.2)

is at most countable. Hence Mx is finite or its elements can be enumerated. If Mx
is finite (9.1) makes perfectly good sense. Hence let us assume that mk , k ∈ N is

an enumeration of Mx . Hence, rather than (9.1), we could write

∞
∑

k=0

(x | mk)mk .

This does still not solve all our problems, because the limit of the series may depend

on the particular enumeration chosen. The good news is that this is not the case,

and that the series is unconditionally convergent, that is, the series converges and

for every bijection σ : N→ N we have

∞
∑

k=0

(x | mk)mk =
∞
∑

k=0

(x | mσ(k))mσ(k).

Recall that the series on the right hand side is called a rearrangement of the series

on the left. We now show that (9.1) is actually a projection, not onto spanM, but

onto its closure.

9.1 Theorem Suppose that M is an orthonormal system in a Hilbert space H and

set N := spanM. Let x ∈ H and mk , k ∈ N an enumeration of Mx . Then
∑∞
k=0(x | mk)mk is unconditionally convergent, and

PN(x) =

∞
∑

k=0

(x | mk)mk , (9.3)

where PN(x) is the orthogonal projection onto N as defined in Section 7.
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Proof. Fix x ∈ H. By Theorem 8.4 the set Mx is either finite or countable. We

let mk , k ∈ N an enumeration of Mx , setting for convenience mk := 0 for k larger

than the cardinality of Mx if Mx is finite. Again by Theorem 8.4

∞
∑

k=0

|(x | mk)|2 ≤ ‖x‖2,

so by Lemma 8.3 the series

y :=

∞
∑

k=0

(x | mk)mk

converges in H since H is complete. We now use the characterisation of projections

from Corollary 7.5 to show that y = PN(x). For m ∈ M we consider

sn(m) :=
(

n
∑

k=0

(x | mk)mk − x
∣

∣

∣m
)

=

n
∑

k=0

(x | mk)(mk | m)− (x | m).

Since the series is convergent, the continuity of the inner product shows that

(y − x | m) = lim
n→∞
sn(m) =

∞
∑

k=0

(x | mk)(mk | m)− (x | m)

exists for all m ∈ M. If m ∈ Mx , that is, m = mj for some j ∈ N, then by the

orthogonality

(y − x | m) = (x | mj)− (x | mj) = 0.
If m ∈ M \Mx , then (x | m) = (mk | m) = 0 for all k ∈ N by definition of Mx
and the orthogonality. Hence again (y − x | m) = 0, showing that y − x ∈ M⊥.

By Lemma 7.7 it follows that y − x ∈ spanM⊥. Now Corollary 7.5 implies that

y = PN(x) as claimed. Since we have worked with an arbitrary enumeration of

Mx and PN(x) is independent of that enumeration, it follows that the series is

unconditionally convergent.

We have just shown that (9.3) is unconditionally convergent. For this reason we

can make the following definition, giving sense to (9.1).

9.2 Definition (Fourier series) Let M be an orthonormal system in the Hilbert

space H. If x ∈ H we call (x | m), m ∈ M, the Fourier coefficients of x with

respect to M. Given an enumeration mk , k ∈ N of Mx as defined in (9.2) we set

∑

m∈M

(x | m)m :=
∞
∑

k=0

(x | mk)mk

and call it the Fourier series of x with respect to M. (For convenience here we let

mk = 0 for k larger than the cardinality of Mx if it is finite.)
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With the above definition, Theorem 9.1 shows that
∑

m∈M

(x | m)m = PN(x)

for all x ∈ H if N := spanM. As a consequence of the above theorem we get the

following characterisation of complete orthonormal systems.

9.3 Theorem (orthonormal bases) Suppose that M is an orthonormal system in

the Hilbert space H. Then the following assertions are equivalent:

(i) M is complete;

(ii) x =
∑

m∈M

(x | m)m for all x ∈ H (Fourier series expansion);

(iii) ‖x‖2 =
∑

m∈M

|(x | m)|2 for all x ∈ H (Parseval’s identity).

Proof. (i)⇒(ii): If M is complete, then by definition N := spanM = H and so by

Theorem 9.1

x = PN(x) =
∑

m∈M

(x | m)m

for all x ∈ H, proving (ii).

(ii)⇒(iii): By Lemma 8.3 and since Mx is countable we have

‖x‖2 =
∥

∥

∥

∑

m∈M

(x | m)m
∥

∥

∥

2

=
∑

m∈M

|(x | m)|2

if (ii) holds, so (iii) follows.

(iii)⇒(i): Let N := spanM and fix x ∈ N⊥. By assumption, Theorem 7.8

and 9.1 as well as Lemma 8.3 we have

0 = ‖PN(x)‖2 =
∥

∥

∥

∑

m∈M

(x | m)m
∥

∥

∥

2

=
∑

m∈M

|(x | m)|2 = ‖x‖2.

Hence x = 0, showing that spanM
⊥
= {0}. By Corollary 7.9 spanM = H, that

is, M is complete, proving (i).

We next provide the connection of the above “abstract Fourier series” to the “classi-

cal” Fourier series you may have seen elsewhere. To do so we look at the expansions

with respect to the orthonormal systems considered in Example 8.2.

9.4 Example (a) Let ei be the standard basis in KN. The Fourier “series” of

x ∈ KN with respect to ei is

x =

N
∑

i=1

(x | ei)ei .
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Of course we do not usually call this a “Fourier series” but say xi := (x | ei) are

the components of the vector x and the above sum the representation of x with

respect to the basis ei . The example should just illustrate once more the parallels

of Hilbert space theory to various properties of Euclidean spaces.

(b) The Fourier coefficients of u ∈ L2((−π, π),C) with respect to the orthonor-

mal system
1√
2π
e inx , n ∈ Z,

are given by

cn :=
1√
2π

∫ π

−π

e−inxu(x) dx.

Hence the Fourier series of u with respect to the above system is

u =
∑

n∈Z

cne
inx =

∑

n∈Z

1√
2π

∫ π

−π

e−inxu(x) dxe inx .

This is precisely the complex form of the classical Fourier series of u. Our the-

ory tells us that the series converges in L2((−π, π),C), but we do not get any

information on pointwise or uniform convergence.

(c) We now look at u ∈ L2((−π, π),R) and its expansion with respect to the

orthonormal system given by

1√
2π
,
1√
π
cos nx,

1√
π
sin nx, n ∈ N \ {0}.

The Fourier coefficients are

a0 =
1√
2π

∫ π

−π

u(x) dx

an =
1√
π

∫ π

−π

u(x) cos nx dx

bn =
1√
π

∫ π

−π

u(x) sin nx dx

Hence the Fourier series with respect to the above system is

u = a0 +

∞
∑

n=0

(an cos nx + bn sin nx),

which is the classical cosine-sine Fourier series. Again convergence is guaranteed

in L2((−π, π),R), but not pointwise or uniform.

Orthonormal bases in linear algebra come from diagonalising symmetric matrices

associated with a particular problem from applications or otherwise. Similarly,

orthogonal systems of functions come by solving partial differential equations by
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separation of variables. There are many such systems like Legendre and Laguerre

polynomials, spherical Harmonics, Hermite functions, Bessel functions and so on.

They all fit into the framework discussed in this section if we choose the right

Hilbert space of functions with the appropriate inner product.

9.5 Remark One can also get orthonormal systems from any finite or countable

set of linearly independent elements of an inner product space by means of the

Gram-Schmidt orghogonalisation process as seen in second year algebra.

We have mentioned the possibility of uncountable orthonormal systems or bases.

They can occur, but in practice all orthogonal bases arising from applications (like

partial differential equations) are countable. Recall that a metric space is separable

if it has a countable dense subset.

9.6 Theorem A Hilbert space is separable if and only if it has a countable or-

thonormal basis.

Proof. If the space H is finite dimensional and ei , i = 1, . . . N, is an orthonormal

basis of H, then the set

spanQ{e1, . . . , eN} :=
{

N
∑

k=1

λkek : λk ∈ Q(+iQ)
}

is dense in H since Q is dense in R, so every finite dimensional Hilbert space is

separable. Now assume that H is infinite dimensional and that H has a complete

countable orthonormal system M = {ek : k ∈ N}. For every N ∈ N we let HN :=

span{e1, . . . , eN}. Then dimHN = N and by what we just proved, HN is separable.

Since countable unions of countable sets are countable it follows that countable

unions of separable sets are separable. Hence

spanM =
⋃

N∈N

HN

is separable. Since M is complete spanM is dense. Hence any dense subset of

spanM is dense in H as well, proving that H is separable. Assume now that H is a

separable Hilbert space and let D := {xk : k ∈ N} be a dense subset of H. We set

Hn := span{xk : k = 1, . . . , n}. Then Hn is a nested sequence of finite dimensional

subspaces of H whose union contains D and therefore is dense in H. We have

dimHn ≤ dimHn+1, possibly with equality. We inductively construct a basis for

spanD by first choosing a basis of H1. Given a basis for Hn we extend it to a

basis of Hn+1 if dimHn+1 > dimHn, otherwise we keep the basis we had. Doing

that inductively from n = 1 will give a basis for Hn for each n ∈ N. The union of

all these bases is a countable linearly independent set spanning spanD. Applying

the Gram-Schmidt orthonormalisation process we can get a countable orthonormal

system spanning spanD. Since spanD is dense, it follows that H has a complete

countable orthonormal system.
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Using the above theorem we show that there is, up to an isometric isomorphism,

there is only one separable Hilbert space, namely ℓ2. Hence ℓ2 plays the same role

as KN is isomorphic to an arbitrary N-dimensional space.

9.7 Corollary Every separable infinite dimensional Hilbert space is isometrically

isomorphic to ℓ2.

Proof. Let H be a separable Hilbert space. Then by Theorem 9.6 H has a

countable orthonormal basis {ek : k ∈ N}. We define a linear map T : H → ℓ2 by

setting

(Tx)i := (x | ei)
for x ∈ H and i ∈ N. (This corresponds to the components of x in case H = KN.)

By Parseval’s identity from Theorem 9.3 we have

‖x‖2 =
∞
∑

i=1

|(x | ei)|2 = |Tx |22

Hence T is an isometry. Hence it remains to show that T is surjective. Let (ξi) ∈ ℓ2
and set

x :=

∞
∑

i=1

ξkei

Since (ξi) ∈ ℓ2 we have

∞
∑

i=1

|ξi |2‖ei‖2 =
∞
∑

i=1

|ξi |2 <∞

By Lemma 8.3 the series defining x converges in H. Also, by orthogonality, (x |
ei) = ξi , so Tx = (ξi). Hence T is surjective and thus an isometric isomorphism

between H and ℓ2.
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