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CHAPTER 1

Preliminaries

1. Solving Polynomial Equations

Methods for solving quadratic equations go back to the prehistory of mathem-
atics. They involve the algebraic operations addition, subtraction, multiplication,
division taking a square root. For the general quadratic equation aX2+bX+c = 0,
they lead to familiar formula,

X =
−b±

√
b2 − 4ac

2a

for its solutions.
Italian mathematicians Ferro (1465-1526) and Tartaglia (1550-1557) discovered

analogous methods for algebraically solving cubic equations, but now involving
taking both a square root and cube root. Ferrari (1522-1565) discovered a method to
solve quartic equation. These methods were all published by Cardano (1501-1576)
in his Ars Magma of 1545. They shared the common feature is that they showed
that quadratic, cubic or quartic equations f(X) = 0, were all solvable by radicals.
That is they gave a method for solving such equations starting with the coefficients
f(X), and using the operations of addition, subtraction, multiplication, division
taking radicals (i.e taking square roots, cube roots, etc) of previously obtained
numbers. Many ingenious but ultimately futile attempts were made find a solution
by radicals of the general quintic equation.

In 1770 Lagrange (1736-1813 ) gave a unified approach to deriving solutions
in radicals to quadratic, cubic and quartic equations. However his method could
not be made to work for degree 5 equations. An incomplete proof that the general
quintic equation was not solvable by radicals was published in 1799 by Ruffini
(1765-1822). It was not until 1824 that Abel (1802-1829) finally proved this was
indeed impossible. Note although some special quintic and higher equations are
solvable by radicals, e.g. X5 − 2 = 0, (X2 − 3)3 = 0.

In 1830 Galois (1811-1832) posed and answered the question, “when is a poly-
nomial equation solvable by radicals?” To this he developed the beautiful theory
now known as Galois Theory. In doing so he was had first to make explicit the
concept of groups and fields and to develop some of their properties.

Cardano’s Method for Solving Cubic Equations. Cardano’s method ap-
plies to cubic equations of the form X3 = 3GX + H. Solving the general cubic
equation az3 + bz2 + cz + d = 0 can be reduced to an equation of this form by the
substitution z = X − b/3a

Observe that

(P +Q)3 = 3PQ(P +Q) + P 3 +Q3

So X = P +Q is a solution of X3 = 3GX+H if P 3 +Q3 = H and PQ = G. These
conditions imply P 3 + Q3 = H and P 3Q3 = G3. Hence P 3 and Q3 are a pair of
roots,

H ±
√
H2 − 4G3

2
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6 1. PRELIMINARIES

of the resolvent quadratic X2 − HX + G3. If these roots are α and β say, then
we take P = 3

√
α, some choice of cube root of α. Then we can make a choice of

cube root Q = 3
√
β, such that PQ = G. There are then two other pairs of choices

P = ω 3
√
α, Q = ω2 3

√
β and P = ω2 3

√
α, Q = ω 3

√
β where

ω = exp(2πi/3) =
−1 + i

√
3

2
, and ω2 = exp(4πi/3) =

−1− i
√

3

2
= ω

are the primitive cube roots of 1. So we can write down three solutions to the cubic
equation

P +Q, ωP + ω2Q, ω2P + ωQ.

Suppose G,H are real. Then there are two main cases.
In the case H2 − 4G3 > 0, α and β are distinct real number. Let P = 3

√
α and

Q = 3
√
β be their real cube roots. Then PQ is real and a cube root of G3, and

hence equals G. In this case then

P +Q =
3

√
H +

√
H2 − 4G3

2
+

3

√
H −

√
H2 − 4G3

2

gives a real solution to X3 = 3GX + H and the other two roots form a complex
conjugate pair.

In the case H2 − 4G3 < 0, α and β are a pair complex conjugate roots. In this
case if we let P be any cube root of α, then Q = P is a cube root of β. Again PQ
is real and a cube root of G3, and hence equals G. In this case, using ω2 = ω, we
can write down three roots,

P + P , ωP + ωP , ωP + ωP .

You see that each is fixed by complex conjugation. In this case therefore, all the
roots are real.

2. Groups and Monoids

Composition Laws. A law of composition on set M is mapping from from
M ×M → M . For example addition and multiplication are laws of composition
on N. For r, s ∈ M the image of (r, s) is called their composite. If we denote the
image of (r, s) by rs then we call rs their product. In the case the composite is
denoted r + s we call this element the sum of r and s. Sum notation is only used
when the composition law is commutative, that is r + s = s+ r for all r, s ∈M .

Assume for now M is a set with a composition law.
Identity Elements. An element e such that er = r = re for all r ∈ M is called

an identity element. A composition law has at most one identity element since if e′

is also an identity element then e′ = ee′ = e, (first equality because e is an identity
and second because e′ is an identity). Usually in multiplicative notation identity
elements are written as 1, while for additive laws of composition they are denoted
by 0 and called a zero elements.

Associative Laws. The law of composition is called associative if (rs)t = r(st)
for all r, s, t ∈ M . In this case for x1, x2, . . . , xn ∈ M , we define x1x2 . . . xn
inductively by

x1x2 . . . xn = (x1x2 . . . xn−1)xn.

It can be show inductively that x1, x2, . . . , xm, xm+1 . . . xm+n ∈M ,

(x1 . . . xm)(xm+1 . . . xm+n) = x1 . . . xmxm+1 . . . xm+n.

Consequently, when a composition law is associative, in any product pairs of match-
ing brackets can be be inserted or deleted at will.
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Suppose the composition law on M is both associative and commutative. Then
any composition x1x2 . . . xn is independent of the order of the factors. So for
additive laws,

m∑
i=1

 n∑
j=1

rij

 =

n∑
j=1

(
m∑
i=1

rij

)
.

and for commutative multiplicative laws we have,

m∏
i=1

 n∏
j=1

rij

 =

n∏
j=1

(
m∏
i=1

rij

)
,

and for additive such laws,

m∑
i=1

 n∑
j=1

rij

 =

n∑
j=1

(
m∑
i=1

rij

)
.

Monoids. A monoid is a set M , with composition law which is associative,
and which has an identity element.

2.1. Example

(1) N under addition (identity element 0).
(2) N under multiplication, (identity element 1).
(3) For any set X, Map(X,X), the set maps from X to itself, (identity 1X

the identity map x 7→ x, on X).
♦

Index Laws for Monoids. In a general monoid we define x0 = e, and for any
x ∈M and positive integer n define

xn =
∏

x = xx · · ·x, product of n terms x.

Then the index laws xnxm = xn+m, and (xm)n = xnm hold for all m,n ∈ N.
In additive notation: 0x = 0, and for n > 0,

nx =
∑

x = x+ x+ · · ·+ x, sum of n > 0 terms.

Then nx+mx = (n+m)x, and n(mx) = (nm)x for all m,n ∈ N.
Invertible Elements. An element r of a monoid M is called invertible if there is

an s ∈M such that rs = e = sr. Such an element, if it exists, is unique because if
t ∈M also satisfies tr = e = rt,

s = se = s(rt) = (sr)t = et = t.

A multiplicative inverse of an element x is denoted x−1. An additive inverse is
denoted −x, and in additive notation x− y is short hand for x+ (−y).

2.2. Proposition. Let M be a monoid.

(1) The identity element e of M is invertible.
(2) If x ∈M is invertible, x−1 is invertible and (x−1)−1 = x.
(3) Show x and y invertible in M implies xy invertible in M , and

(xy)−1 = y−1x−1.

Additive version: −(x+ y) = −x− y.

Proof. Exercise. �

If x has an inverse then the index laws extend to all m,n ∈ Z by defining
x−n = (x−1)n, for n > 0. Additive version: define (−n)x = n(−x) for n > 0.
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Groups. A group G is a monoid in which every element has an inverse. Groups
with a commutative law of composition are called abelian.

2.3. Example Groups

(1) Z under addition.
(2) C×, the non-zero complex numbers, under multiplication.
(3) GLn(C), invertible n× n matrices under matrix multiplication.
(4) Sym(X) bijective functions from X to X under composition of maps.

Elements of Sym(X) are called permutations of X.
(5) Zm, integers modulo m, under addition

♦

Permutation Group Convention.
Let Sn be the group permutation of [n] = {1, 2, . . . , n} under composition of

maps. Note if σ, τ ∈ Sn are permutations then στ(i) = σ(τ(i)).
If σ ∈ Sn, we write

σ =

(
1 2, . . . n
σ1 σ2 . . . σn

)
, where σi = σ(i).

An r-cycle is a permutations which cyclically permutes r elements and fixes all
the rest. Every permutation can be written as a product of disjoint (commuting)
cycles, which is unique up to ordering of cycles. The cycle

i1 → i2, i2 → i3, . . . , ir−1 → ir, ir → i1.

is commonly denoted (i1, i2, . . . , ir−1 → ir).

2.4. Example For

σ =

(
1 2 3 4 5
3 4 5 2 1

)
= (1 3 5)(2 4), τ =

(
1 2 3 4 5
2 5 3 1 4

)
= (1 2 5 4),

♦

στ =

(
1 2 3 4 5
4 1 5 3 2

)
= (1 4 3 5 2).

Note since we are using standard function notation we compose permutations
from right to left. So e.g.

(στ)(1) = σ(τ(1)) = σ(2) = 4.

Cancellation Laws. In a group ab = ac implies by multiplying on the left by
a−1, b = c. Similarly bd = cd implies, by multiplying on the right by d−1, b = c.

Note that 0a = 0b, and b0 = a0 for all a, b ∈ N. So in the monoid N under
multiplication, the cancellation law fails spectacularly.

2.5. Proposition. The invertible elements of a monoid form a group under
monoid composition.

Proof. See Proposition 2.2. �

Subobjects.
Closure Under Composition. Suppose G has a composition law and H is a

subset of G. We say H is closed under composition, if rs ∈ H for all r, s ∈ H.
In this case the composition law on G restricts to give a composition law on H.
Conversely if we want the composition law on G to restrict to give a composition
law on H, H must be closed under composition.
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Submonoids. Let G be a monoid with identity e. Suppose a subset H of G is
closed under composition, and e ∈ H. Then the composition law on G restricts to
give an associative composition law on H, with identity e. In this case we say H is
a submonoid of G.

2.6. Observation (Submonoid Conditions). The defining criteria for a sub-
set H of a monoid G with identity e to form a submonoid of G are

(1) e ∈ H, and
(2) rs ∈ H for all r, s ∈ H.

If M is a monoid with identity element e, then {e} is submonoid of M . In
the monoid (N,×), the subset {0} is closed under multiplication but it is not a
submonoid of (N,×).

Subgroups. A subset H of a group G is called closed under taking inverse if for
all h ∈ H, h−1 ∈ H.

Suppose H be a subset of a group G and e is the identity of G. Suppose that
e ∈ H and that the composition law on G restricts to give a composition law on H,
or equivalently that H is a submonoid of G with identity e. This submonoid H is
a group if and only if it is closed under taking inverses. In this case we say H is a
subgroup of G. In summary,

2.7. Observation. The defining criteria for a subset H of a group G with
identity e to form a subgroup of G are

(1) e ∈ H,
(2) rs ∈ H for all r, s ∈ H, and
(3) r−1 ∈ H for all r ∈ H.

Sometimes it is easier to apply the following.

2.8. Proposition (Subgroup Conditions). A subset H of a group G is a
subgroup if and only if H 6= ∅ is non-empty and xy−1 ∈ H whenever x, y ∈ H.

Proof. If H is subgroup, e ∈ H. So H 6= ∅. Closure under taking inverse and
multiplication implies xy−1 ∈ H whenever x, y ∈ H.

Suppose, H is non-empty and xy−1 ∈ H whenever x, y ∈ H. Let r be an
element of H. Then e = rr−1 ∈ H. Hence if s ∈ H, s−1 = es−1 ∈ H. Consequently
for r, s ∈ H, rs = r(s−1)−1 ∈ H. �

We have as an immediate corollary,

2.9. Corollary. A subset H of an additive group G is a subgroup if and only
if H 6= ∅ and x− y ∈ H whenever x, y ∈ H.

3. Isomorphisms

In this section suppose M is a set with composition law (x, y) 7→ x ∗ y and M ′

a set with composition law (x, y) 7→ x ∗′ y.

3.1. Definition. A bijection φ : M → M ′ is called an isomorphism from
(M, ∗) to (M ′, ∗′) if x ∗ y = z in M if and only if φ(x) ∗′ φ(y) = φ(z) in M ′.

3.2. Example The exponential map exp : R → (0,∞), x 7→ ex is bijection from
R to the positive real numbers (0,∞). Since exp(x) exp(y) = exp(x+ y) and exp is
bijective exp(x) exp(y) = exp(z) if and only x+ y = z. Hence exponentiation is an
isomorphism from R under addition to the positive real numbers (0,∞) under mul-
tiplication. Consider now the inverse bijection to exp, the log map log : (0,∞)→ R.
Since log(xy) = log x + log y, log x + log y = log z if and only if z = xy. Hence
the inverse log of exp is an isomorphism back from the positive real numbers under
multiplication to R under addition. ♦
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More generally suppose a bijection φ : M →M ′ is isomorphism φ from (M, ∗)
to (M ′, ∗′). Then for any a, b, c ∈M ′ taking x = φ−1(a), y = φ−1(b), z = φ−1(c) in
the defining criteria for above for φ to be an isomorphism, and using φφ−1(a) = a,
etc we find

φ−1(a) ∗ φ−1(b) = φ−1(c) ⇔ a ∗′ b = c

Hence if a bijection φ : M → M ′ is an isomorphism from (M, ∗) to (M ′, ∗′) under
∗′ then the inverse bijection φ−1 : M ′ → M ′ is an isomorphism from (M ′, ∗′) to
(M, ∗). Thus being isomorphic is a symmetric relation on sets with composition law.
It is immediate that the identity map on M is an isomorphism from (M, ∗) to itself.
If we have a further isomorphism ψ from (M ′, ∗′) to a set M ′′ with composition
law ∗′′, then it is immediate that the composite φψ is an isomorphism from (M, ∗)
to (M ′′, ∗′′). Hence isomorphism of sets with a composition law is an equivalence
relation.

If (M, ∗) and (M ′, ∗′) are isomorphic then their composition laws have the same
properties. In particular we have the following.

3.3. Proposition. Suppose (M, ∗) is isomorphic to (M ′, ∗‘). Then we have

(1) (M, ∗) is commutative if and only if (M ′, ∗′) is commutative
(2) (M, ∗) is associative if and only if (M ′, ∗′) is associative.
(3) (M, ∗) has an identity if and only if (M ′, ∗′) has an identity.

In this case under any isomorphism from (M, ∗) to (M ′, ∗′) the iden-
tity in M is paired with the identity in M ′.

(4) (M, ∗) is a monoid if and only if M ′, ∗′) is a monoid
(5) M is group under ∗ if and only if M ′ is a group under ∗′.

Proof. Exercise. �

3.4. Corollary. If φ : M → M ′ is an isomorphism of monoids then φ maps
the identity of M to the identity of M ′.

3.5. Lemma. Show that a bijection φ : M → M ′ is an isomorphism from
(M, ∗) to (M ′, ∗′) if and only if

φ(x ∗ y) = φ(x) ∗′ φ(y), for all x, y ∈M.

Proof. Exercise. �

4. Homomorphisms

Homomorphisms of Groups. In group theory a homomorphism is com-
monly defined to be any map φ from group G to a group G′ which respects
their composition laws: that is in multiplicative notation, φ(xy) = φ(x)φ(y) for
all x, y ∈ G. From this it follows can that every homomorphism of groups respects
identities and inverses.

4.1. Lemma. Suppose φ : G → G′ is a homomorphism from a group G with
identity e to a group G′ with identity e′. Then,

(1) φ(e) = e′, and (in multiplicative notation)
(2) φ(x−1) = φ(x)−1 for all x in G.

Proof. By first using φ a homomorphism, and then properties of identity
elements we see,

φ(e)φ(e) = φ(ee) = φ(e) = φ(e)e′.

Hence, multiplying on the left by the inverse of φ(e), φ(e) = e′. Further for any
x ∈ G,

φ(x)φ(x−1) = φ(xx−1) = φ(e) = e′,

and similarly φ(x−1)φ(x) = e′. Hence, φ(x) is invertible and φ(x−1) = φ(x)−1. �
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Image of a Group Homomorphism. Suppose φ : G→ G′ is a group homomorph-
ism. Consider the image of G under φ,

φ(G) = {φ(x) : x ∈ G} ⊆ G′.
Writing the defining condition for φ to be homomorphism in the equivalent form

φ(x)φ(y) = φ(xy) for all x, y ∈ G,
shows that φ(G) is closed under composition in the group G′. Dealing similarly
with the conclusions of the previous lemma,

(1) e′ = φ(e), and
(2) φ(x)−1 = φ(x−1) for all x in G.

shows that e′ ∈ φ(G) and φ(G) is closed under taking inverses. Hence φ(G) is
subgroup of the group G′. In summary we have verified the following.

4.2. Observation. If φ : G → G′ is a homomorphism of groups, its image
φ(G) is a subgroup of G′.

Homomorphisms of Composition Laws. Let M be a set with composition
law (x, y) 7→ x ∗ y and M ′ is a set with composition law (x, y) 7→ x ∗′ y. Say
φ : M → M ′ is a homomorphism from (M.∗) to (M ′, ∗′) if φ(x ∗ y) = φ(x) ∗′ φ(y)
for all x, y ∈M . Rewriting this last equation as φ(x ∗ y)φ(x) ∗′ φ(y) = φ(x ∗ y) for
all x, y ∈ M , we see that if φ : M → M ′ is a homomorphism from M under ∗ to
M ′ under ∗′ then the image of M under φ,

φ(M) = {φ(x) : x ∈M} ⊆M ′

is closed under ∗′. Hence ∗′ induces a composition law on φ(M). Further (φ(M), ∗)
inherits any composition law properties of (M, ∗). This can be particularly useful
if φ is a surjective homomorphism as we will see later.

4.3. Lemma. Let M and M ′ be sets with a composition law ∗ and ∗′ respectively.
Suppose φ : M →M ′ a homomorphism from (M, ∗) to (M ′, ∗′). Then the following
hold

(1) (M, ∗) is commutative implies (φ(M), ∗′) commutative.
(2) (M, ∗) associative implies (φ(M), ∗′) associative.
(3) (M, ∗) has an identity element e, implies (φ(M), ∗′) has identity element

φ(e).
(4) (M, ∗) a monoid with identity e, implies (φ(M), ∗′) is a monoid with iden-

tity φ(e).

Proof. Exercise. �

4.4. Corollary. If φ is surjective and (M, ∗) is a monoid with identity e then
(M ′, ∗) is monoid with identity φ(e).

Monoid Homomorphisms. Suppose now M and M ′ are monoids and the map
φ : M → M ′ is a homomorphism of their composition laws. Then by Lemma 4.3
above φ(M) is a monoid under ∗′ with identity φ(e). The image φ(M) is closed
under composition in M ′, and therefore is submonoid of M ′ if and only if the
identity e′ of M ′ lies in φ(M). Then by uniqueness of identity elements we have
φ(M) is submonoid if and only if φ(e) = e′. Note that if the monoids are groups
then φ(e) = e′ is a consequence of φ respecting their composition laws. This is not
necessarily the case for monoids.

4.5. Example The map φ : N → N such that n 7→ 0 for all n ∈ N defines a
homomorphism from (N,×) to itself. The φ(N) = {0} is closed under multiplication
but it is not a submonoid because it does not contain the identity element 1 of φ(N).

♦
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4.6. Definition. A monoid homomorphism from a monoid M to a monoid M ′

is a map φ : M →M ′ which respects their composition laws, and maps the identity
of M to the identity element of M ′

Suppose M and M ′ are multiplicative monoids with identities each denoted
by 1. Then a map φ : M →M ′ is a monoid homomorphism if

(1) φ(xy) = φ(x)φ(y) for all x, y ∈M , and
(2) φ(1) = 1, (on the left 1 ∈M and on the right 1 ∈M ′).

From the preliminary discussion preceding this definition we note the following.

4.7. Observation. If φ : M →M ′ is a monoid homomorphism then its image
φ(M) is a submonoid of M ′.

Now that we have defined what is meant by a monoid homomorphism we record
the following reinterpretation of Corollary 4.4 to Lemma 4.3. for use later on.

4.8. Proposition. Let (M, ∗) be a monoid and (M ′, ∗′) a set with a composition
law. Suppose φ : M →M ′ is surjective map such that

φ(x ∗ y) = φ(x) ∗′ φ(y), for all x, y ∈M.

Then M ′ is a monoid under ∗′ and φ : M →M ′ is a monoid homomorphism.

Proof. This follows directly and Corollary 4.4 of Lemma 4.3. �

Lemma 4.1 shows a group homomorphism respects inverses. The proof adapts
readily to the case of monoid homorphisms.

4.9. Lemma (Monoid Homomorphism Respect Inverses).
Suppose φ : M → M ′ is a monoid homomorphism. Then if x ∈ M×, φ(x) ∈

M ′
×

and (in multiplicative notation)

φ(x)−1 = φ(x−1).

Proof. Exercise. �

We can now deduce a group version of Proposition 4.8

4.10. Proposition. Suppose (G.∗) is a group and φ : G → G′ is surjective
map to a set G′ with composition law ∗′ and

φ(x ∗ y) = φ(x) ∗′ φ(y), for all x, y ∈M.

Then G′ is a group under ∗′, and φ : G→ G′ is homomorphism of groups.

Proof. It is enough to show G′ is a group as then φ : G → G′ satisfies the
group homomorphism condition. By Proposition 4.8 we know (G′′∗′) is a monoid
and φ is a monoid homomorphism. It remains to show every element in G′ is in-
vertible. Because φ is a monoid homomorphism and every element of G is invertible
every element of φ(G) is invertible by Lemma 4.9 . Since φ is surjective we conclude
every element in the monoid G′ is invertible. �



CHAPTER 2

Ring Basics

1. Rings

1.1. Definition (Rings). A ring is set R with addition and multiplication
operations satisfying the following axioms.

(1) R is an abelian group under addition.
(2) R is a monoid under multiplication.
(3) Multiplication distributes over addition on the left and on the right:

a(b+ c) = ab+ ac, (b+ c)d = bd+ cd and for all a, b, c, d ∈ R.

A ring is called a commutative ring if its multiplication is commutative.
The zero element of a ring is usually denoted by 0. The identity of a ring is

usually denoted by 1.

Examples. The following are rings under their standard addition and multiplic-
ation laws.

(1) The integers, Z.
(2) The fields of rational numbers Q, the field of real numbers R, the field of

complex numbers C.
(3) Residue classes of Z modulo, m for m = 2, 3, . . . .
(4) Z[X] polynomials in an indeterminate X with coefficients in Z.
(5) F [X] polynomials in an indeterminate X with coefficients in any of the

fields F = Q, R, C.
The above rings are all commutative.

(6) Mn(Z), square n× n matrices with coefficients in the ring of integers Z.
(7) Mn(F ) square n × n matrices with coefficients in any of the fields F =

Q,R,C.
The above matrix rings are all non-commutative for n > 1.

The Zero Ring. The smallest possible ring is the zero ring O with has single
element 0, and composition laws 0 + 0 = 0, 0× 0 = 0. In the zero ring 1 = 0.

1.2. Proposition. In any ring R we have,

(1) a0 = 0a = 0, for all a ∈ R.
(2) (−1)a = −a for all a ∈ R
(3) (−a)b = −(ab) = a(−b), for all a, b ∈ R.

Proof. Exercise. Note these involve the interaction of the additive and mul-
tiplicative structure of R. So you expect to have to invoke the distributive laws.

�

1.3. Corollary. In a non-zero ring 1 6= 0.

Proof.
If R is a ring with 1 = 0, then for all r ∈ R, r = 1r = 0r = 0. Hence R = {0}

is the zero ring. �

13
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1.4. Proposition. For all m,n ∈ Z and all r, s in a ring R,

(mr)(ns) = (mn)(rs).

Proof. Exercise. For m,n positive this follows directly from the distributive
laws. The results of Proposition 1.2 then show that this extends to all integers
m,n. �

Fields. A non-zero commutative ring like Q, R or C in which every non-zero
element has multiplicative inverse is called a field.

1.5. Exercise. Check that the above characterisation of a fields is equivalent
to the set of axioms for field you met in linear algebra.

Check too that general matrix properties imply that Mn(F ), n × n matrices
with coefficients in a field F form a ring under matrix addition and multiplication.

Units. An element of a ring with a multiplicative inverse is called a unit, e.g.
the identity of element of a ring is always a unit. Note that since any ring R is a
monoid under multiplication, its units R× form a group under multiplication with
identity 1. We let R× denote the group of units of a ring R.

For example,

(1) Z× = {±1}.
(2) For any field F , F× is the set of non-zero elements of F .
(3) A square a matrix with coefficients in a field is invertible if and only if it

has non-zero determinate.

GLn(F ) = Matn(F )× = {A ∈ Matn(F ) : detA 6= 0} .

Integral Domains. For elements a and b in a ring ab = 0 if a = 0 or b = 0.
In the ring of integers, or in any field ab = 0, if and only if a = 0 or b = 0. This
not the case in general. For example, in the matrix ring Mat2(Q),[

1 0
0 0

] [
0 0
1 1

]
=

[
0 0
0 0

]
.

Zero Divisors. Let R be a ring. Then elements a, b ∈ R are called zero

divisors if a 6= 0, b 6= 0 but ab = 0. In a non-commutative ring we call a a
left zero divisor and b a right zero divisor.

1.6. Definition. (Integral Domain) A non-zero commutative ring with no
zero divisors is called an integral domain. So an integral domain is a ring R satis-
fying the following three conditions.

(1) R is commutative.
(2) 1 6= 0, i.e R is a non-zero ring.
(3) R has no zero divisors.

Note R has no zero divisors means for any elements a, b ∈ R, ab = 0
implies a = 0 or b = 0, or equivalently a 6= 0 and b 6= 0 implies ab 6= 0.

The ring of integers Z is an integral domain. Every field is an integral domain.
Cancellation Laws. For elements a, b, c in a field ab = ac if and only if a = 0,

or b = c. So if ab = ac and a 6= 0 we can cancel the a to conclude b = c. This
property continue to hold in integral domains. Note it does not hold in any ring
with zero divisors.

Exercise. Prove the cancellation law for integral domains.
For a, b, c elements of an integral domain, ab = ac and a 6= 0 implies b = c.
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Rings of Integers Modulo m. Fix an integer m > 1. Two integers are
said to be in the same residue class modulo m if they leave the same remainder
on division by m. Hence there are m residue classes modulo m corresponding the
remainders 0, 1, . . . ,m− 1. We write

a ≡ b (mod m)

if a and b belong to the same residue class modulo m. Let mZ = {mn : n ∈ Z}
denote the set of integer multiples of m. Then a ≡ b (mod m) is equivalent to
b− a ∈ mZ. Let Z/mZ denote this set of residue classes. Think of its elements as
being represented by integers, where integers a and b represent the same element of
Z/mZ if a ≡ b (mod m). It is readily verified that if a ≡ a′ and b ≡ b′, then both
a + b ≡ a′ + b′ and ab ≡ a′b′. Hence we can define addition on Z/mZ be adding
representatives and multiplication Z/mZ by multiplying representatives. Under
this addition and multiplication Z/mZ is a finite commutative ring, with exactly
m elements, represented by 0, 1, . . . ,m− 1. The zero of Z/mZ is represented by 0
and the identity element by 1.

1.7. Proposition. Z/mZ is an integral domain if and only m = p a rational
prime.

Proof. All Z/mZ, m > 1, are commutative. They all have at m > 1 elements,
so are not the zero ring. So a residue class ring Z/mZ is an integral domain if and
only if it has no zero divisors.

If m ≥ 2 is not prime, then m is composite. So m = ab, for some a, b ∈ N with
0 < a, b < m. Hence modulo m, ab ≡ 0 (mod m), but a and b are not congruent
to 0. So a and b are zero divisors modulo m. Hence Z/mZ is not an integral domain
if m is composite.

If m = p a prime. Suppose ab ≡ 0 mod p, then p divides ab. Hence p divides a
or b, or equivalently, a ≡ 0 (mod p) or b ≡ 0 (mod p). Hence Z/pZ does not have
zero divisors. Hence Z/pZ is an integral domain if p is prime. �

1.8. Proposition. A finite integral domain is a field.

Proof. Suppose R is an integral domain with finitely many elements. Then
R is a commutative ring in which 1 6= 0. So show it a field it remains to show every
non-zero elements invertible.

List the non-zero elements

a1 = 1, a2, . . . , an.

Let a ∈ R be non-zero. An integral domain has no zero divisors, so a product of
non-zero elements is non-zero. Hence

aa1, aa2, . . . , aan.

are all non-zero. These elements all distinct because in an integral domain aai = aaj
and a 6= 0 implies ai = aj , So the list

aa1, a2, . . . , aan

has n distinct elements. Hence it is a permutation of a1, a2, . . . an. So for some i,
aai = 1. Hence, since R is commutative, aia = aai = 1, which shows a has inverse
ai. �

1.9. Corollary. For p a prime number the integral domain Z/pZ is a field.
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The Characteristic of a Ring.

1.10. Definition (Characteristic of a Ring). Let R be a ring. Consider the
multiples,

1, 1 + 1, 1 + 1 + 1, · · ·
of the identity element 1 ∈ R. If these sums are non-zero and we define char(R) = 0.
If for some m ≥ 1,

1 + 1 + · · ·+ 1︸ ︷︷ ︸
m terms

= 0 ∈ R.

we define char(R) to be the minimum such m.
The characteristic of R is thus the order of the additive subgroup of R generated

by 1

Every m appears as the characteristic of a ring.

(1) char(Z) = 0.
(2) char(R) = 1 if and only if 1 = 0, that is R is the zero ring.
(3) char(Z/mZ) = m, for m > 1.

1.11. Proposition. The characteristic of an integral domain is either 0 or a
prime number p.

Proof. Let R be an integral domain. Then char(R) = 0 or p for some integer
p > 1. Suppose char(R) = p for some p > 1 and that p factorises in N as p = mn
some postive integers m,n ≥ 1. Then in the integral domain R,

(m1)(n1) = (mn)1 = p1 = 0.

Hence m1 = 0 or n1 = 0. By the definition of characteristic we deduce m = p or
n = p. Hence p > 1 is a prime number. �

Subrings. Let R is a subset of a ring S. Then R is called a subring of S
if under addition and multiplication of S forms a ring with identity the identity
element 1 ∈ S. For this to be the case R must be a subgroup of S under addition
and a submonoid of S under multiplication. Conversely if this is is the case then
R is a subring. If R is as subring of a ring S we call S extension ring of R.

For example Z is subring of Q, which is in turn a subring of C. Every ring S
his a subring of itself. A subring R of a ring S is called a proper subring if R is
proper subset of S, that is R 6= S. If R is subring of a ring S, and S a subring of a
ring T , then R is subring of T .

1.12. Proposition (Subring Criteria). Let R be a subset of a ring S. Then
R is subring of S if and only if the following hold.

(1) 1 ∈ R. and for all a, b ∈ R,
(2) ab ∈ R for all a, b ∈ R.
(3) a− b ∈ R for all a, b ∈ R.

Proof. Exercise. �

Example: The Ring of Gaussian Integers. Every complex number as unique
representation in the form a + bi, with a, b ∈ R. Complex numbers of the form
a+ bi with a, b ∈ Z are called Gaussian integers. Set

G = {a+ bi : a, b ∈ Z} .
The integers Z are the Gaussian integers with real part b = 0. In particular 1 is a
Gaussian integer. Suppose α and β are Gaussian integers. Then α = a + bi and
β = c+ id for some integers a, b, c, d. Products, sums and differences of integers are
integers. Hence Hence from

α− β = (a− c) + (c− d)i, and αβ = (ac− bd) + (ad+ bc)i.
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we see α − β and αβ are Gaussian integers. Hence the Gaussian integers contain
the identity of C and are closed under taking products and differences. So G is a
subring of C.

1.13. Proposition. Let S be a ring and F be a (non-empty) family of subrings

of S. Then their intersection
⋂
R∈F

R is a subring of S.

Proof. Exercise. �

1.14. Definition. (Ring Extension) Suppose R subring of a ring S, and a
subset A of S. Then the the family of all subrings of S containing R and A is
non-empty, as S is a such a subring. Hence the of the intersection of the rings in
this family is a subring of S containing R and A. This subring is called the ring
extension of R by A. The ring extension R′ of R by A, is can be characterised by
the following two properties.

(1) R′ is a subring of S containing R and A.
(2) R′ is subset of every subring of S containing R and A.

For example the ring of Gaussian integers G is a subring of C containing Z and
i. Suppose now R is any subring of C containing i and Z. Then given a, b ∈ Z,
we have a, b and i in R. So R closed under multiplication and addition implies
a + ib ∈ R. Hence G is a subset of every subring of C containing Z and i. Hence
the ring of Gaussian integers is the extension of Z by i.

Returning to general case, R subring of a ring S, and a subset A of S. We
can give a constructive description of the ring extension of R by A as follows.
Consider the set R′ of all elements of S built up from elements of R and elements
of A, using the ring operations, multiplication, taking negatives and addition. Then
R′ contains R, and therefore 1 ∈ R, contains A, and is closed under addition and
multiplication. Hence R′ is a subring of S containing R and A. Further any subring
of S containing R and A contains all the elements of R‘. Hence R′ is the extension
of R by A.

Subfields and Extension Fields. Let F is a subset of a subfield K. Then
F is called a subfield of K if F forms a field under addition and multiplication
in K with identity the identity element 1 ∈ K. For this to be the case F must
be a subring of K and the inverse of every non-zero element of F must lies in F .
Conversely if this is the case then F is a subfield. If F is a subfield of K we call K
an extension field of F .

1.15. Proposition (Subfield Criteria). Let F be a subset of a field K. Then
F is subfield of K if and only if the following hold

(1) 1 ∈ F .
(2) ab ∈ R for all a, b ∈ F .
(3) a− b ∈ R for all a, b ∈ F .
(4) For all non-zero a ∈ F , a−1 ∈ F .

1.16. Proposition. Let K be a field and F be a non-empty family of subfields

of K. Then their intersection
⋂
F∈F

F is a subfield of K.

Field Extension. Suppose F subring of a field K, and a subset A of K. Then
the family of all subfields of K containing F and A is non-empty, as K is a such a
subfield. Hence the of the intersection of the fields in this family is a subfield E of
S containing F and A. This subfield is called the field extension of F by A. The
field extension E of F by A, is can be characterised by the following two properties.
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(1) E is a subfield of K containing F and A.
(2) E is subfield of every subring of K containing F and A.

Polynomial Rings. Let R be a ring and X an indeterminate. A polynomial
in X with coefficients in R is an expression of the form

f(X) = a0 + a1X + · · ·+ anX
n,

with a0, a1, . . . , an a finite sequence of elements of R. We extend this sequence to
all of i ∈ N by setting ai = 0 for i > n. For i ∈ N, ai is called the coefficient of Xi

in f(X). We declare two polynomial expressions

f(X) = a0 + a1X + · · ·+ anX
n and

g(X) = b0 + b1X + · · ·+ bmX
n

to represent the same polynomial if the coefficients of corresponding powers of X
agree: ai = bi for all i. Hence there is a 1–1 correspondence between polynomials
and infinite sequences (ai) = (a0, a1, . . . ) of elements of R such that ai = 0 for all
i > n, for some n ∈ N. Given such sequence (an) we let

∑
i≥0 aiX

i denote the

corresponding polynomial, (with the usual power convention X0 = 1 ∈ R). We
let R[X] denote the set of polynomials in X with coefficients in R. The ring R is
embedded in R[X] as the subset of constant polynomials.

We define addition and multiplication of polynomials as if R was subring of a
ring S, and X was an element of S which commuted with elements of R (aX = aX
for all a ∈ R) and then collecting terms with the same power of X. Thus the sum
two polynomials is formed by adding coefficients of corresponding powers of Xi,∑

i≥0

aiX
i +
∑
i≥0

biX
i =

∑
i≥0

(ai + bi)X
i.

The product of two polynomials is ther given by the rule,

m∑
i=0

aiX
i
n∑
j=0

bjX
j =

m+n∑
k=0

∑
i+j=m

aibjX
k.

We leave it as an exercise for the reader to check that with these definitions R[X]
forms a ring. The zero of R[X] is the constant 0 polynomial and its multiplicative
identity is the constant polynomial 1. If f(X) =

∑
aiX

i, its negative −f(X) =∑
(−ai)Xi. Further R[X] is commutative if R is commutative. Addition and

multiplication of polynomials is defined so that for constant polynomials a0 and
b0, their polynomial sum is the constant polynomial a0 + b0 and their polynomial
product is the constant polynomial a0b0. Hence R is embedded as a subring of R[X].
In particular the zero of R[X] is the constant 0 polynomial and its multiplicative
identity is the constant polynomial 1.

Any nonzero f(X) ∈ R[X] can be expressed uniquely in the form

f(X) = a0 + a1X + · · ·+ anX
n, an 6= 0.

The integer n is called the degree, deg f(X), of f(X). The term anX
n is called the

leading term and an ∈ R is called the leading coefficient of a(X).
Note the polynomials of degree 0 are the non-zero constant polynomials.
Suppose we have a second non-zero polynomial g(X) and deg g(X) = m:

g(X) = b0 + b1X + · · ·+ bmX
n, bm 6= 0.

Then

a(X)b(X) = a0b0 + · · ·+ anbmX
n+m.
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If least one of an and bm is not a zero divisors, anbm 6= 0 and so a(X)b(X) has
leading term anbmX

n+m. Hence a(X)b(X) 6= 0, and

deg a(X)b(X) = deg a(X) + deg(X).

This will be the case for all non-zero polynomials if R is has no zero divisors. For
example this holds if R is an integral domain. In that case too, R[X] is commutative
because R is. Further R[X] is not the zero ring because R is not the zero ring. Hence
we have the following.

1.17. Proposition. Let R be an integral domain. Then R[X] is an integral
domain. Further for all non-zero f(X), g(X) ∈ R[X],

deg f(X)g(X) = deg f(X) + deg g(X)

1.18. Corollary. A polynomial ring F [X] over a field F is an integral domain.

Polynomial Functions. Suppose R is a subring of a ring S. Then we can evaluate
polynomials f ∈ R[X] at elements of α ∈ S. If

f(X) = a0 + a1X + · · ·+ anX
n

we set

f(α) = a0 + a1α+ · · ·+ anα
n.

Note this only depends on f since any two expressions for f(X) differ by a sum of
terms with coefficient zero.

Polynomial addition and multiplication are defined so that the following holds.

1.19. Lemma. Let R be subring of a ring S and α ∈ S. Then for all f, g ∈ R[X]

(1) If f(X)± g(X) = h(X) in R[X], then in S,

f(α)± g(α) = h(α).

(2) If α commutes with all elements of R and f(X)g(X) = h(X) in R[X],
then in S,

f(α)g(α) = h(α).

We set

R[α] = {f(α) : f ∈ R[X]} .

1.20. Proposition. Let R be subring of a ring S and suppose α ∈ S commutes
with all elements of R. Then

R[α] = {f(α) : f(X) ∈ R[X]}

is the ring extension of R by α.

Proof. We verify the conditions of Definition 1.14

(1) Evaluating f(X) = X at α, shows α ∈ R[α]. Evaluating the constant func-
tions shows R[α] contains R. In particular it contains 1. From Lemma 1.19
R[α] is closed under multiplication and subtraction. Hence R[α] is subring
of S containing and α.

(2) Any subring of S containing α necessarily contains all powers 1αi, 1 =
0, 1, 2 . . . . If it also contains R it therefore contains all expressions

a0 + a1α+ · · ·+ anα
n, a0, . . . , an ∈ R.

So any subring of S containing R and α contains R[α].

�
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For example since G = {a+ b : a, b ∈ Z} ⊂ C is the extension of Z by i, Z[i] =
a+ bi : a, b ∈ Z We can show this directly. Given a, b ∈ Z, a + ib = f(X), for
f(X) = a+ bX. hence

{a+ bi : a, b ∈ Z} ⊆ {f(α) : f(X) ∈ Z[X]} = Z[i].

The opposite containment follows because any power of i is either ±1 or ±i. Con-
sequently if we evaluate any polynomial with coefficients in Z at i, the result can
expressed in the form a+ ib with a, b ∈ Z. Hence Z[i] ⊆ {a+ bi : a, b ∈ Z}.

Simple Field Extensions. Consider in particular the case F is a subfield of a
field K, and α ∈ K. K is a commutative ring. Hence the subring of K generated
by F and α is

F [α] = {f(α) : f ∈ F [X]} .
Let F (α) denote the field extension of F generated by α. Since F (α) is subring of
K containing F and α, F [α] ⊆ F (α), and F [α] = F (α) if and only if the ring F [α]
is a field.

In general we have

F (α) = {f(α)/g(α) : f, g ∈ F [X], g(α) 6= 0} .
First check the right hand set is a subfield of K containing F and α. Hence
F (α) ⊆ {f(α)/g(α) : f, g ∈ F [X], g(α) 6= 0}. The opposite inclusion follows since
from by closure of fields under field operation, any subfield of K containing F
and α must contain F [α] and hence all quotients f(α)/g(α) with f, g ∈ F [X] and
g(α) 6= 0.

Example: The Field of Gaussian Numbers. The complex numbers of the form
a+ ib with a, b ∈ Q are called the Gaussian numbers. The repeating the discussion
of the Gaussian integers above with Z in place of Q we find the ring extension of
Q by i

Q[i] = {a+ ib : a, b ∈ Q} .
Suppose α is a non-zero Gaussian integer. Then α = a+ bi, with a, b ∈ Q non-zero.
Then a2 + b2 is a positive, and therefore a non-zero, rational number. This number
α has inverse in C,

α−1 =
a

a2 + b2
− bi

a2 + b2
,

whose real and imaginary parts built are up from a and b using field operations, and
hence lie in Q. Thus the inverse of every non-zero Gaussian number is a Gaussian
number. Hence the subring Q[i] is in fact a subfield of C. Thus we have

Q(i) = Q[i] = {a+ bi : a, b ∈ Q} .

2. Ring Homomorphisms, Kernels and Ideals

Let R and S be rings. A map φ : R → S is a ring homomorphism if it
is homomorphism of their multiplicative monoids and a homomorphism of their
additive groups.

Hence a map φ : R→ S is a ring homomorphism if (and only if) the following
all hold,

(1) φ(1R) = 1S .
(2) φ(ab) = φ(a)φ(b) for all a, b ∈ R.
(3) φ(a+ b) = φ(a) + φ(b) for all a, b ∈ R.

Examples.
1. Subring Inclusion. If R is a subring of a ring S, the inclusion map R ↪→ S,

x 7→ x, is an injective ring homomorphism.
2. The Zero Map. For any ring R the unique map x 7→ 0, from R to the zero

ring O, is a ring homomorphism.
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3. The Characteristic Map.

2.1. Definition. For a ring R, the map

χ : Z→ R, χ(n) = n1, n ∈ Z, 1 ∈ R,

is called the characteristic map.

2.2. Proposition. The characteristic map χ : Z → R, is the unique ring
homomorphism from Z to R.

Proof. First we show χ is a ring homomorphism. For any additive group A
and a ∈ A, n 7→ na is an additive map sending 1 to a. Hence χ is additive and
maps 1 ∈ Z to 1 ∈ R. It remains to show it respects multiplication. In general
(mr)(ns) = (mn)(rs) for all m,n and r, s ∈ R. Hence for all m,n ∈ Z, and 1 ∈ R,

χ(mn) = (mn)1 = (m1)(n1) = χ(m)χ(n).

Uniqueness follows because any additive map from Z to an additive group A,
φ(na) = nφ(1). If φ : Z → R is a ring homomorphism, then φ(1) = 1. Hence
φ(n) = n1 = χ(n) for all n ∈ Z. �

4. Evaluation Homomorphisms. Suppose R be a subring of a ring S and α ∈ S.
Then evaluation at α, f(X) 7→ f(α) defines a map εα : R[X]→ S.

2.3. Observation. Suppose R be a subring of a ring S and α ∈ S commutes
with all elements of R. Then evaluation at α,

εα : R[X]→ S,

is a ring homomorphism.

Proof. We have εα(a) = a for all a ∈ R. In particular εα(1) = 1.
Lemma 1.19 shows εα preserves addition and multiplication when α ∈ S com-

mutes with all elements of R. �

Image of Homomorphism. Suppose φ : R → S is a ring homomorphism. Then
the image of φ, φ(R) = {φ(r) : r ∈ R} ⊂ S, is both submonoid of S under multi-
plication and a subgroup of S under addition. Hence φ(R) is a subring of S. So we
have the following.

2.4. Observation. If φ : R→ S is a ring homomorphism, the image of φ,

φ(R) = {φ(r) : r ∈ R}

is subring of S.

For R be a subring of a ring S and α ∈ S commutes with all elements of R,
then image of evaluation at α,

εα = {f(α) : f(X) ∈ R[X]} = R[α],

the ring extension of R by α.
The Characteristic Subring. For any ring R the image of the characteristic

homomorphism χ : Z→ R,

χ(R) = {n1 : n ∈ Z} ,

is called the characteristic subring of R.
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2.1. Kernels and Ideals. Recall (or prove) that for φ : A → B a homo-
morphism of additive groups, kerφ = {a ∈ A : φ(a) = 0} is an additive subgroup of
A. Further recall φ is injective if and only if kerφ = {0}.

2.5. Definition. Kernel Let φ : R→ S be a homomorphism of rings. Then

kerφ = {a ∈ R : φ(a) = 0}

is its kernel as a homomorphism of additive groups. Note therefore kerφ is an
additive subgroup of R, and φ is injective if and only if kerφ = {0}.

We can ask can kerφ be a subring? For kerφ to be a subring we require
1 ∈ kerφ, that is φ(1) = 0. But since φ is a ring homomorphism φ(1) = 1.
Hence we require 1 = φ(1) = 0 in S. Hence S must be the zero ring, φ the zero
homomorphism, and kerφ = R. Otherwise kerφ is not a subring of R. We can
show kerφ is closed under multiplication however much more is true.

Suppose a ∈ kerφ and r ∈ R. Then using φ preserves multiplication, and
s0 = 0s = 0 for all s ∈ S,

φ(ra) = φ(r)φ(a) = φ(r)0 = 0

and

φ(ar) = φ(a)φ(r) = 0φ(r) = 0.

Hence a ∈ kerφ implies ra and ar in kerφ for all r ∈ R.

2.6. Definition. (Ideals)
A subset I of a ring R is called an ideal if the following all hold.

(1) I is subgroup of R under addition.
(2) For all a ∈ I and all r ∈ R, ra ∈ I.
(3) For all a ∈ I and all r ∈ R, ar ∈ I.

Condition (2) can be summarised by saying I is closed under multiplication by R
on the left, and condition (3) by saying I is closed under multiplication by R on
the right. If I satisfies (1) and (2) it is called a left ideal. If I satisfies (1) and
(3) it is called a right ideal. Thus an ideal I is both a left ideal and a right ideal,
sometimes called a two-sided ideal. In a commutative ring (2) ⇔ (3).

From above we see that the kernel of a ring homomorphism is an ideal. We show
later the converse is true. That is, every ideal is the kernel of a homomorphism.

The Zero Ideal and The Unit Ideal. Let ring R be any ring. The singleton set
O = {0} and the whole ring R are ideals. The ideal O = {0} is called the zero
ideal, or sometimes the trivial ideal. The ideal R is called the unit ideal.

2.7. Observation. Let I be an ideal of a ring R, and u a unit of R. Then
u ∈ I if and only if I = R, the unit ideal. In particular I = R if and only if 1 ∈ I.

Proof. Exercise. �

An ideal I of R is called a proper ideal if I 6= R.

2.8. Lemma. Let φ : R → S be a ring homomorphism. Then kerφ = R if and
only if S is the zero ring.

Proof. Exercise. �

2.9. Corollary. If φ : R → S is a ring homomorphism kerφ is proper ideal
of R unless S is the zero ring.
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Principal Ideals. Let R be a ring and a ∈ R. The the set of left multiples of a,
Ra = {ra : r ∈ R} is a left ideal of R, called the principal left ideal generated by a.
The set of right multiples of a, aR = {ar : r ∈ R} is a right ideal of R called the
principal right ideal generated by a. Note that if I is principal left or right ideal
generated by a then a = 1a = a1 ∈ I. The both zero ideal O = 0R = R0 and the
unit ideal R are simultaneously principal left ideals and principal right ideals of R.
Ideals of the form Ra are called principal left ideals, those of the form Ra principal
right ideals.

For a commutative ring R, aR = Ra is called the principal ideal generated
by a. An ideal I of commutative ring is called a principal ideal if is is the form
Ra = aR for some a ∈ I.

An integral domain R is called a principal ideal domain if every ideal of R is
principal.

The Ideals of Z. The ring Z has distinct principal ideals dZ = (−d)Z, d ∈ N.
We know they are distinct because 0Z = O, the zero ideal and for d > 0, d is the
least positive element in dZ. We show this is a complete list of ideals of Z, and
hence Z is principal ideal domain

2.10. Proposition. The ring of integers Z is a principal ideal domain. A
non-zero ideal I = dZ, where d is the least positive integer in I.

Proof. Let I be a non-zero ideal of Z. Then I has non-zero elements. If n ∈ I
the −n ∈ I. Hence I has positive elements. Let d be the least positive element of
I ∩ N. Since I is an ideal and d ∈ I, all multiples of d lie in I. Hence dZ ⊆ I.

Now suppose a ∈ I. Then if q ∈ Z is the quotient and r ∈ N the remainder on
dividing a by d,

a = qd+ r, 0 ≤ r < d.

Consider r = a − qd. From above qd ∈ Z ⊆ I and we are given a ∈ I. Ideals
are subgroups under addition. Hence r = a − qd ∈ I. Since d is the least positive
element in I and 0 ≤ r < d, we must have r = 0. Thus a = qd ∈ Zd = dZ. Hence
dZ ⊇ I. �

3. The Field of Fractions of an Integral Domain

The elements of the field Q are all fractions
a

c
, a, c ∈ Z, c 6= 0.

We have the following rules for manipulating fractions.

F1.
a

c
=
a′

c′
if and only if ac′ = ca′.

In particular
ad

cd
=
a

c
for all d 6= 0.

F2. Addition:
a

c
+
b

d
=
ad+ bc

cd
.

F3. Multiplication:
a

b

a′

b′
=
aa′

bb′
.

F4. Inversion:
a

b
= 0 ∈ Q if and only if a = 0 ∈ Z.

For
a

b
6= 0,

(a
b

)−1
=
b

a
.



24 2. RING BASICS

The identification a =
a

1
embeds Z as subring of Q.

Similarly for any field F , from the polynomial ring F [X] we build the field of
polynomial fractions, called the field of rational functions in the indeterminate X
with coefficients in F ,

F (X) =

{
f(X)

g(X)
: f(X), g(X) ∈ F [X], g(X) 6= 0

}
.

In this case the identification f(X) =
f(X)

1
embeds F [X] as a subring of F (X).

3.1. Theorem. Let R be an integral domain. Then there is a field F(R) with
the following properties.

QF1. R is embedded as a subring of F(R).
QF2. Every element of F is of the form ab−1, a, b ∈ R, b 6= 0.
QF3. If R is a subring of a field F then F(R) is embedded as subfield of F , and

is the smallest subfield of F containing R.

Proof. (Sketch)
Step 1. Show that (a, c) ∼ (b, d) if ad = bc defines an equivalence relation on the
set of pairs {(a, c) : a, c ∈ R, c 6= 0}.

For a, c ∈ R, with c 6= 0 let
a

c
denote the equivalence class of (a, c). Set

F(R) =
{a
c

: a, c ∈ R, c 6= 0
}

Then F1 holds.
Step 2. Show that rules for manipulating fractions F2, F3 can be used to define
addition and multiplication laws on F(R).

Suppose
a

c
,
b

d
∈ F(R). Then c 6= 0 and d 6= 0. Then R an integral domain

implies cd 6= 0. Consequently
ab

cd
and

ad+ bc

cd
are elements of F(R).

Verify that if
a

c
=
a′

c′
and

b

d
=
b′

d′
then

ab

cd
=
a′b′

c′d′
and

ad+ bc

cd
=
a′d′ + b′c′

c′d′

Hence we can define multiplication and addition in F(R), by

a

c

b

d
=
ab

cd
and

a

c
+
b

d
=
ad+ bc

cd
.

Step 3. Verify that under multiplication and addition of fractions F(R) is a ring.
Check the following.

• F(R) is a commutative monoid under multiplication with identity ele-

ment 1 =
1

1
.

• F(R) an additive group under addition with zero element 0 =
0

1
.

• Multiplication distributes over addition in F(R).

Step 4. Show that the ring F(R) is a field.
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See that
a

c
= 0 ∈ F(R) if and only if a = 0. In particular 1 6= 0 in F(R).

Further if
a

c
6= 0,

c

a
∈ F(R), and

c

a

a

c
=
ac

ac
=

1

1
= 1 ∈ F(R).

Hence, if
a

c
6= 0,

a

c
has multiplicative inverse

c

a
, i.e

(a
c

)−1
=
c

a
.

Step 5. Verify that QF1-QF3 hold.

QF1. It is immediate that for a, a′ ∈ R,
a

1
=
a′

1
if and only if a = a′. Further

for all a, a′ ∈ R,

a

1
+
a′

1
=
a+ a′

1
and

a

1

a′

1
=
aa′

1
.

Hence you can embed R a subring of F(R) by relabelling each
a

1
= a.

QF2. In the field F(R), and using the identifcation above,

a

b
=
a

1
× 1

b
=
a

1
×
(
b

1

)−1
= ab−1.

QF3. If R is a subfield of a field F then for all a, b ∈ R, b 6= 0, ab−1 ∈ F .
Note that for all a, b, c, d ∈ F , with c, d 6= 0, the condition F1, F2, F3

and F4 listed above hold. Hence setting as usual
a

c
= ac−1 for a, c ∈ R,

c 6= 0, embeds F(R) as a subfield of F .

Check: This compatible with the embedding of R in F(R): a =
a

1
in

F(R) and
a

1
= a× 1−1 = a in F .

So F(R) is embedded as a subfield of F containing R, and further any

subfield of F containing R must contain all elements
a

c
= ac−1, a, c ∈ R,

c 6= 0, of F(R).

�





CHAPTER 3

Factorisation

1. Divisibility in Commutative Rings

1.1. Definition. (Divisibility) In a commutative ring R we say a divides b,
written a|b in R if b is a multiple of a in R, that is b = ar for some r ∈ R. The set
of multiples of a is the principal ideal Ra. Hence a|b is equivalent to b ∈ Ra. If b
is multiple of a, the every multiple of b is multiple of a, so Rb ⊆ Ra. Since b ∈ Rb,
Rb ⊆ Ra implies b ∈ Ra. So we have the following statements are equivalent.

(1) a|b,
(2) b is multiple of a.
(3) b ∈ Ra,
(4) Rb ⊆ Ra

Hence divisibility relations can be reformulated in terms relations between prin-
cipal ideals and vice versa.

Consider the following further general observations.

1.2. Observation. In every commutative ring R,

(1) Division is transitive: a|b, and b|c implies a|c.
(2) a|b and a|c implies a|(b± c)
(3) a|b implies a|bc for all c ∈ R.

The first is equivalent to the fact that Rb ⊆ Ra and cR ⊆ Rb implies Rc ⊆ Ra.
The second statement says b, c ∈ Ra implies b ± c ∈ Ra. The third says b ∈ Ra
implies bc ∈ Ra for all c ∈ R. These last two form part of the verification that Ras
is indeed an ideal.

Divisibility and Zero. In any ring R R0 = {0}. Hence a ∈ R0 implies a = 0.
Zero lies every ideal of a ring. So 0 ∈ Ra for all a ∈ R. Translated in divisibility
relations we deduce the following.

1.3. Observation. In every commutative ring R,

(1) 0|a implies a = 0.
(2) a|0 for all a ∈ R.

Divisibility and Units.

1.4. Lemma. Let R be a commutative ring. The u is unit if and only if Ru = R,
the unit ideal.

If u is a unit of R. Then the following hold.

(1) u|a for all a ∈ R.
(2) For all a in R, a|u implies a is a unit.

Proof. u ∈ R is unit if and only if 1 = uv for some v ∈ R. This is equivalent
to 1 ∈ uR, which by Observation 2.7 is equivalent to uR = R.

Suppose now u ∈ R×. Then Ru = R.

(1) For all a ∈ R, a ∈ R = Ru, implies u|a.
(2) If a|u, then R = Ru ⊆ Ra ⊆ R. Hence Ra = R, and therefore a is unit.

�
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Associates.
Given a, b in a commutative ring R we say b is an associate of a, written a ∼ b,

if b = ua for some unit u of R.
. For example any non-zero integer n ∈ Z has just two associates ±n.

1.5. Lemma. Associativity is an equivalence relation on R.

Proof. For all a ∈ R, a = 1× a, and 1 ∈ R×. Hence a ∼ a.
For a, b ∈ R, b = ua, u ∈ R×, implies a = u−1b, u−1 ∈ R×. Hence a ∼ b

implies b ∼ a.
For a, b, c ∈ R, a = ub, b = vc, u, v ∈ R× implies a = uvc, uv ∈ R×. Hence

a ∼ b, b ∼ c implies a ∼ c. �

Note that a ∼ 0 if and only if a = 0 and a ∼ 1 if and only if u is unit.

1.6. Lemma. Let R be an integral domain. Then the following are equivalent
for a, b ∈ R.

(1) a ∼ b.
(2) a|b and b|a
(3) Ra = Rb

Proof. In any commutative ring R, (1) implies (2) because a ∼ b implies a =
ub and b = u−1a, with both u, u−1 ∈ R×. Hence a|b and b|a. In any commutative
ring,

a|b and b|a ⇔ Rb ⊆ Ra and Ra ⊆ Rb ⇔ Ra = Rb.

Hence (2) and (3) are equivalent.
It is sufficient now to show that when R an integral domain (2) implies (1).

Suppose a|b and b|a. Then for some u, v ∈ R, b = ua and a = vb. Hence if either
a = 0 or b = 0, then a = b = 0. Otherwise a 6= 0 and b 6= 0. Then R an integral
domain implies ab 6= 0. From b = ua and a = vb, we deduce ab = abuv, and hence
ab(uv − 1) = 0. Then R an integral domain and ab 6= 0 implies uv = 1. Hence u
and v are units. So a ∼ b. �

1.7. Corollary. In integral domain R associate elements have the same di-
visibility properties: if a ∼ a′ and b ∼ b′, then a|b if and only if a′|b′.

Proof. If a ∼ a′ and b ∼ b′, then Ra = Ra′ and Rb = Rb′. Hence a|b if and
only if Ra ⊇ Rb if and only if Ra′ ⊇ Rb′ if and only if a′|b′. �

2. Factorisation in Integral Domains

From now on suppose R is an integral domain.
We consider the possibility of factorising non-zero elements c ∈ R. If u is a

unit with inverse v, then we can factorise any c ∈ R as c = uc′ with c′ = vc ∼ c. A
factorisation of the form c = ab, with one factor a unit and the other an associate
of c, is called a trivial factorisation.

We know from Lemma 1.4 on units and divisibility that factors if c is a unit
then c = ab if and only if both a and b are units. So unit elements do not have
non-trivial factorisations.

Reducible and Irreducible Elements.
Suppose now c 6= 0 and c not a unit. We say c is reducible if it has a non-trivial

factorisation. So c 6= 0 reducible if we can factorise c = ab, with neither a nor
b a unit. If c not reducible and not a unit it is called irreducible. Hence if c is
irreducible and c = ab then exactly one of the factors a and b is a unit, and the
other is therefore an associate of c.

In Z the units are ±1. A positive integer is reducible if and only if it composite,
and irreducible if and only if it is a prime number. Hence in Z the irreducible
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elements are all ±p, p > 0 a prime number, and the reducible elements are all ±m
where m > 1 is composite.

2.1. Definition (Unique Factorisation Domains). An integral domain R
is called a unique factorisation domain if both the following hold.

UFD1 Every non-zero element of R is either a unit of a product of irreducible
elements.

UFD2 Factorisations into irreducibles are unique up to associates and the order
of factors. If we have two associate products,

π1 . . . πm ∼ ρ1 . . . ρn
with π1, . . . , πm and ρ1, . . . ρn all irreducible in R, then m = n and after
reordering, π1 ∼ ρ1, . . . πn ∼ ρn.

This last condition is summarised, as decomposition into irreducibles is unique up
to associates and the order of factors.

The Fundamental Theorem of Arithmetic says that every integer m > 1 can
be expressed as a product of primes numbers, and the this decomposition is unique
up to the order of factors. A corollary of this is that Z is a unique factorisation
domain. Note that up to associates and order of factors

2× 3 = 3× 2 = −2×−3 = −3×−2

are equivalent ways of factoring 6 into irreducibles.

3. Integer Quadratic Domains

For δ ∈ R, we let
√
δ denotes the principal value. So for real δ > 0,

√
δ is the

positive square root of δ, and
√
−δ means i

√
δ. You may recall that if ξ ∈ R is

irrational or more generally ξ ∈ C and ξ 6∈ Q, a+ bξ = a′+ b′ξ if and only if a = a′,
b = b′. In the language of vector spaces, if ξ ∈ C and ξ 6∈ Q, then 1 and ξ are
linearly independent over Q. If we have any α = r + s

√
d, d ∈ Q,

√
d irrational.

Then r and s are uniquely determined by α.
Suppose now d ∈ Z and

√
d is not rational. We leave it an exercise to show the

extension of Z by
√
d,

Z[
√
d] = {x+ y

√
d : x, y ∈ Z} ⊂ C.

Assuming
√
d not rational implies each α ∈ Z[

√
d] has a unique representation in

the form α = x + y
√
d, x, y ∈ Z. So for example Z[

√
−1 ] = Z[i], is the ring of

Gaussian integers. Every Z[
√
d] is a subring of the field C and hence an integral

domain.
Note Z[

√
d] ⊂ R if and only if d > 0. The Z[

√
d] with d > 0 are called real

quadratic domains, a and those with d < 0 imaginary quadratic domains.
Conjugates.
If we have any α = r + s

√
δ, r, s, δ ∈ Q,

√
δ irrational, then

α = r − s
√
δ

is called the conjugate of α. In the case δ > 0, a number of the form α = r+ s
√
δ is

called a surd, and α = r− s
√
δ is called its conjugate surd. If δ < 0, the conjugate

of α = r + s
√
δ is its complex conjugate.

Note that for d ∈ Z, α ∈ Z[
√
d] if and only if α ∈ Z[

√
d].

3.1. Lemma (Algebraic Properties of Conjugation).

For all α, β in a quadratic domain Z[
√
d],

(1) α = α,
(2) α+ β = α+ β,
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(3) αβ = αβ,
(4) α = α, if and only if α ∈ Z.

Proof. Exercise. �

Condition (1) says conjugation is an involution on Z[
√
d], and by (2) and (3)

it an isomorphism of the additive and multiplicative composition laws on Z[
√
d].

Thus it defines is involutary ring automorphism on Z[
√
d].

The Norm Map.
Suppose α = x+ y

√
d, x, y ∈ Z. Then ,

αα = (x+ y
√
d)(x− y

√
d) = x2 − dy2 ∈ Z.

For α ∈ Z[
√
d], Nα := αα is called the norm of α. So the norm defines map

N : Z[
√
d]→ Z. Note in the real case Z[

√
d], d > 0, a norm N (x+y

√
d) = x2−dy2

takes both positive and negative values. However in the imaginary case Z[
√
−d],

d > 0, all norms N (x+ y
√
−d) = x2 + dy2 ∈ N.

3.2. Lemma (Multiplicative Properties of the Norm). The norm map

N : Z[
√
d]→ Z

has the following properties.

(1) It is multiplicative:

N (αβ) = NαNβ, for all α, β ∈ Z[
√
d].

(2) Na = a2 for all a ∈ Z. In particular N1 = 1.

(3) Nα = Nα for all α ∈ Z[
√
d].

(4) Nα = 0 if and only if α = 0.

Proof. Exercise. For 3, note α = 0 if and only if α = 0. �

Note that (1) and (2) say the norm is a homomorphism of multiplicative mon-
oids.

3.3. Proposition. An element α ∈ Z[
√
d] is a unit if and only if Nα = ±1.

Proof. Suppose α ∈ Z[
√
d] is unit with inverse β. Then αβ = 1. Therefore

by the multiplicative properties of the norm,

NαNβ = N (αβ) = N1 = 1.

Since NαNβ ∈ Z we conclude either Nα = Nβ = 1 or Nα = Nβ = −1.
Alternatively we could recall, see Lemma 4.9, which says monoid homomorphism
respect inverses. Hence u a unit in Z[

√
d] implies Nu a unit in N.

Conversely suppose α ∈ Z[
√
d] and Nα = ±1. Then α 6= 0, has an inverse in

α−1 ∈ C.
In the case Nα = 1, αα = 1, and α−1 = α ∈ Z[

√
d]. In the case Nα = −1,

(only a possibility in the real case), αα = −1, and so α−1 = −α ∈ Z[
√
d]. �

3.4. Corollary. (1) The units of Z[i] are ±1 and ±i.
(2) For d > 1, the only units of Z[

√
−d], d > 1, are ±1.

Proof.

(1) The only integer solutions to x2 + y2 = 1 are x = ±1, y = 0 and x = 0,
y = ±1.

(2) For d > 1, The only integer solutions to x2 + dy2 = 1 are x = ±1, y = 0..

�
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Example of Non-Unique Factorisation.
In the domain Z[

√
−3],

(1 +
√
−3)(1−

√
−3) = 4 = 2× 2.

The elements 1 +
√
−3, 1−

√
−3 and 2 all have norm 4. They are all therefore

irreducible. This because if Nα = 4 and α is reducible, then α = βγ, β, γ not units.
Hence taking norms we find that in N, Nα = NβNγ = 4 and both Nβ 6= 1 and
Nγ 6= 1. So we must have Nβ = Nγ = 2. But there are no elements δ = x+y

√
−3,

x, y ∈ Z, of norm equal to 2. If δ 6= 0 or δ 6= ±1, either x2 ≥ 4 or y2 ≥ 1, and
in either case N δ = x2 + 3y2 ≥ 3. In Z[

√
−3] α ∼ β if and only if α = ±β. By

inspection neither of 1 +
√
−3 or 1 −

√
−3 is associate of 2. So 4 can be factored

into irreducibles in two inequivalent ways.

Unique Factorisation.
Irreducibles and Primes. Suppose p is a prime number and p divides the product

ab of two factors a, b ∈ N. Then p must divide one of the factors. It is this
crucial property of prime numbers which is the key step in proving the Fundamental
Theorem of Arithmetic. Let R be a unique factorisation domain and π ∈ R an
irreducible element of R. Suppose for some a, b ∈ R, π|ab. We show below that π|a
or π|b. We also note that trivially any unit u of any commutative ring also have
the property u|ab implies u|a or u|b.

3.5. Definition (Prime Elements). Let R be an arbitrary commutative ring.
π ∈ R is called prime if

(1) π is not a unit.
(2) For all a, b ∈ R, p|ab implies p|a or p|b.

3.6. Proposition (Primes and Irreducible).

(1) In any integral domain π a non-zero prime implies π irreducible.
(2) In a unique factorisation domain π irreducible implies π is a non-zero

prime.

Proof.

(1) Let R be an integral domain. Suppose π 6= 0 is prime in R. Then by
definition π is not a unit. Suppose π = ab, a, b ∈ R. It remains to show
one of a or b is necessarily an associate of π. Since π = ab|ab, by the
definition of a prime element, π|a or π|b. In the case π|a, a = πc for some
c ∈ R. Hence π = πcb. Since by assumption c 6= 0 and R is an integral
domain, π = πcb implies cb = 1, and so, because R is a commutative
ring, b is a unit of R. Similarly π|b implies a is a unit. Hence Hence π is
irreducible.

(2) Suppose now R is a unique factorisation domain, and π ∈ R is irreducible.
Then π 6= 0 and π is not a unit. It remains to show π|ab, a, b ∈ R implies
π|a or π|b.

If a = 0, π|a. If b = 0, π|b. Suppose now a 6= 0 and b 6= 0, and hence
since R is an integral domain ab 6= 0. If a is unit ab ∼ b. Hence π|ab
implies π|b. Similarly if b is a unit π|a. Suppose now a 6= 0 and b 6= 0
are not units. Then πc = ab 6= 0 is reducible. Hence c 6= 0 is not a unit.
So, since R is unique factorisation domain, a, b and c are each products
of irreducibles. Suppose

a = ρ1 . . . ρl,

b = σ1 . . . σm,

c = τ1 . . . τn,
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where the πi, ρi and σi are all irreducible. Then

πτ1 . . . τn = ρ1 . . . ρmσ1 . . . σm

Hence by uniqueness of factorisation in the unique factorisation domain
R, either π ∼ ρi for some i, or π ∼ τi for some i. In the first case ρi|a
implies π|a. In the second similarly π|b.

�

3.7. Corollary. In a unique factorisation domain a non-zero element is ir-
reducible if and only if it is prime.

Note that irreducibles may or may not be prime. In Z[
√
−3], 2 is irreducible

and 2 divides (1 +
√
−3)(1−

√
−3), but neither is divisible by 2 in Z[

√
−3] because

neither

1

2
(1 +

√
−3) =

1

2
+

1

2

√
−3, nor

1

2
(1−

√
−3) =

1

2
+

1

2

√
−3

lies in Z[
√
−3].

You might ask, “Can a zero element be prime?”

3.8. Lemma. The zero element of a commutative ring R is prime if and only
if R is an integral domain.

Proof. An amusing and instructive exercise. �

We now show that in an integral domain factorisations into non-zero prime
elements are unique up to associates and the order of factors.

3.9. Proposition (Unique Factorisation into Primes).
Let R be an integral domain. Suppose for some m,n ≥ 1,

π1 . . . πm ∼ ρ1 . . . ρn

where all πi, ρi are non-zero prime elements. Then m = n and after reordering,
π1 ∼ ρ1, . . . πn ∼ ρn,

Proof. We prove this by induction on m.
In the case m = 1 we have for some n ≥ 1, and unit u of R, π1 = uρ1 . . . ρn. The

right hand side is reducible if n ≥ 2. Hence we must have n = 1 and π1 = uρ1 ∼ ρ1.
So the statement holds for m = 1. Assume m > 1 and that statement holds for
m− 1. Then we have

π1 . . . πm ∼ ρ1 . . . ρn.

Hence π divides the right hand side. So πm primes implies πm|ρi some i. After
reordering we may assume πm|ρn. Then because πm is not a unit and ρn is irredu-
cible, πm ∼ ρn. Hence,

π1 . . . πm−1πm ∼ ρ1 . . . ρn ∼ ρ1 . . . ρn−1πm.

Since R an integral domain and πm 6= 0 we can cancel the πm factor and deduce,

π1 . . . πm−1 ∼ ρ1 . . . ρn ∼ ρ1 . . . ρn−1.

By the inductive assumption we deduce m = n and that after reordering,

π1 ∼ ρ1, . . . πn−1 ∼ ρn−1, and πn ∼ ρn.

�
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Factorisation into Irreducibles. Consider the question of factorisation into ir-
reducibles. Suppose that some a0 ∈ R is non-zero , not a unit is not expressible
as product of irreducibles. This a0 cannot be an irreducible. So we can factorise
a0 = bc, where neither a nor b is a unit. Hence Ra0 ⊂ Rb,Rc, but Ra0 6= Rb,Rc.
Thus Ra0 ⊂ Rb,Rc. Both a and b cannot each be products of irreducibles, or a0
would be. Let a1 = b if b is not a product of irreducibles, otherwise set a1 = c.
Then Ra0 ⊂ a1, and a1 is non-zero, not a unit and not a product of irreducible.
Continuing this process we obtain an infinite strictly ascending chain of principal
ideals

Ra0 ⊂ Ra1 ⊂ Ra2 ⊂ · · ·
Thus we deduce the following

3.10. Lemma. Suppose an integral domain R has the property that there is no
infinite sequence a0, a1, . . . of elements of R such that Ran ⊂ Ran+1 for all n ≥ 0.
Then every non-zero element of R is either a unit or a product of irreducibles.

3.11. Proposition. An integral domain R is unique factorisation domain if
and only if the following hold.

(1) Every irreducible π of R is prime.
(2) There is no infinite sequence a0, a1, . . . of elements of R such that

Ran ⊂ Ran+1 for all n ≥ 0.

Proof. Suppose (1) and (2) holds. Then by Lemma 3.10 above every non zero
element of R is either a unit or product of irreducibles, and by Proposition 3.9 fac-
torisation into irreducibles is unique in R. Hence R is unique factorisation domain.

Conversely suppose R is unique factorisation domain. Then by the second part
of Proposition 3.6, (2) holds. It remains to show (1) holds. For c 6= 0 define l(c) = 0
if c is unit. Otherwise for some sequence of irreducibles πi, c ∼ π1 . . . πr, where
by uniqueness of factorisation r ≥ 1 depends only on c. In this case put l(c) = r.
Then for all ab 6= 0,

l(ab) = l(a) + l(b).

Hence if a = bc and c is not unit then l(a) = l(b) + l(c) > l(b). Equivalently
if Ra ⊆ Rb, Ra 6= Rb, l(a) > l(b). Hence if we have strictly ascending chain
Ra0 ⊂ Ra1 ⊂ · · · ⊂ Ran then we have a decreasing sequence of non-negative
integers

l(a0) > l(a1) > · · · > l(an) ≥ 0

which implies n ≤ l(a0). Hence there are no infinite sequence a0, a1, . . . of elements
of R such that Ran ⊂ Ran+1 for all n ≥ 0 in a unique factorisation domain. �

Greatest Common Divisors

3.12. Definition. Let R be an integral domain, and a, b ∈ R. The d ∈ R is
called a greatest common divisor of a and b if

GCD1: d|a and d|b.
GCD2: If e|a and e|b, then e|d.

We write gcd(a, b) = d if d is a greatest common divisor of a and b.

Greatest common divisors are unique up to associates.

3.13. Lemma. Suppose gcd(a, b) = d. Then gcd(a, b) = d′ if and only d ∼ d′.

Proof. Let d be a greatest common divisor of a and b. We show d′ is also a
greatest common divisor if and only if d′ is an associate of d.

Suppose d′ ∼ d an associate of d. Then d satisfies GCD1 and GCD2 if and only
if d′ does. Conversely suppose d′ is also greatest common divisor of a and b. Then
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by GCD1 d′|a and d′|b and d|a and d′|b. Hence by GCD2 , d′|d and d|d′. Hence d
and d′ are associates. �

A given pair a, b in an integral domain R may or may not have a greatest
common divisor in R. We note that always, gcd(a, 0) = a. Hence question of
existence of a greatest common divisor gcd(a, b) reduces to the case a and b both
non-zero. We also make the following trivial observations.

3.14. Observation. For all a, b elements of any integral domain,

(1) gcd(a, a) = a.
(2) gcd(a, b) = a if (and only if) a|b.

3.15. Definition. Two elements a and b of an integral domain are called
relatively prime if their only common divisors are units. Note this is equivalent to
gcd(a, b) = 1.

The notion of greatest common divisor is not restricted to pairs of elements of
an integral domain Given a1, . . . , an ∈ R we set gcd(a1, . . . , an) = d if

GCD1: d|a1 . . . d|an.
GCD2: If e|a1 . . . e|an then e|d.

As for the case n = 2, d and d′ are greatest common divisors of a1, . . . , an if and
only if they are associates.

3.16. Proposition. Suppose a gcd(a, b) exists for all a, b ∈ R.
Then a gcd(a1, . . . , an) exists for all a1, . . . , an ∈ R.

Proof. We show a gcd(a1, . . . , an) exists for all a1, . . . , an ∈ R, by induction
on n. For n = 1 we check gcd(a1) = a1 for all a1 ∈ R. The result is true for
n = 2 by assumption. Suppose now n > 2. Then by induction we may assume
a gcd(a1, . . . , an−1) exists. Hence a gcd ( gcd(a1, . . . , an−1), an) = d exists by as-
sumption. We show gcd(a1, . . . , an) = d

By GCD1 d| gcd(a1, . . . , an−1) and d|an. So by GCD1 again,

d|a1, . . . , d|an−1, d|an.

Suppose e|a1 . . . , e|an−1, e|an. Then by GCD2

e| gcd(a1, . . . , an−1) and e|an
Hence by GCD2 e|d.

Thus gcd(a1, . . . , an) = d.
Hence by mathematical induction a gcd(a1, . . . , an) exists for all a1, . . . , an ∈

R. �

Greatest Common Divisors in Unique Factorisation Domains.
Suppose now R is a unique factorisation domain. If c is unit put vπ(c) = 0.

Otherwise c ∼ π1 . . . πr for some irreducibles πi. Then let vπ(c) be the number of πi
such that πi ∼ π. If π and π‘ are associate irreducibles then vπ′(c) = vπ(c), and if
c ∼ c′ then vπ(c) = vπ(c) for all irreducibles π. Note that vπ(c) = 0 for all π if and
only if c is unit. Otherwise, c is not a unit, let π1, . . . πr is a list of representatives
of all irreducible divisors of c. That is, these irreducibles are pairwise non-associate
and if π is an irreducible divisor of c then π ∼ πi for some (therefore unique) πi in
the list. Then,

c ∼ πvπ1 (c)1 . . . π
vπr (c)
r .

Hence if vπ(c) = vπ(c′) for all irreducibles π, then c ∼ c′. So we have,

vπ(c) = vπ(c′) for all irreducibles π if and only if c ∼ c′.
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Lastly note that for all a, b ∈ R with ab 6= 0,

vπ(ab) = vπ(a) + vπ(b).

Hence we have for all non-zero a and b in R,

a|b ⇐⇒ vπ(a) ≤ vπ(b), for all irreducibles π ∈ R

3.17. Proposition. A gcd(a1, . . . , an) exists for any a1, . . . an in a unique fac-
torisation domain.

Proof. By Proposition 3.16 it is sufficient to show gcd(a, b) exists for all a, b ∈
R. As noted before this reduces to showing any two non-zero a and b in R have a
greatest common divisor.

The conditions for d to be a greatest common divisor of a and b are that the
following hold for all irreducibles π.

GCD1: vπ(d) ≤ vπ(a) and vπ(d) ≤ vπ(b).
GCD2: If vπ(e) ≤ vπ(a) and vπ(e) ≤ vπ(b), then vπ(e) ≤ vπ(d).

Equivalently we must

vπ(d) = min( vπ(a), vπ(b) )

for all irreducibles π. If a and b have no non-unit common divisors gcd(a, b) = 1.
This the case where the minimum is zero for all irreducibles. Otherwise we let
π1, . . . πr be list of a list of representatives of all irreducible which divide both a
and b. Set µi = min(vπi(a), vπi(b)) and put

d = πµ1

1 . . . πµrr

Both sides are 0 if π is not an associate of any πi. Both sides are µi if π ∼ πi.
Hence vπ(d) = min(vπ(a), vπ(b) for all irreducibles π. So d is a greatest common
divisor of a and b. �

4. Principal Ideal Domains

Finitely Generated Ideals. Let R be a commutative. Suppose a1, . . . an ∈ R.
Then we define

〈a1, . . . , an〉 := {a1x1 + · · ·+ anxn : x1, . . . , xn ∈ R} .

This is a non-empty set of R, closed under multiplication by elements of R and
hence, multiplying by(−1), closed under taking negatives. It also clearly closed
under addition. We also have each of a1, . . . , an ∈ 〈a1, . . . , an〉. Thus 〈a1, . . . , an〉
is an ideal of R.

Suppose J is any ideal of R containing a1, . . . , an and x1 . . . , xn ∈ R. Then
J closed under multiplication by elements R implies. a1x1, . . . , anxn ∈ J . Con-
sequently, J an additive subgroup ofR implies,

∑
aixi ∈ J . Hence every 〈a1, . . . , an〉 ⊆

J for any ideal J containing a1, . . . an. An ideal in a commutative ring of the form
I = 〈a1, . . . , an〉 for some a1, . . . an ∈ R is said to be finitely generated with gener-
ators a1, . . . , an.

An ideal in a commutative ring of the form I =< a1, . . . , an > is said to be
finitely generated with generators a1, . . . , an. For example a principal Ra = 〈a〉 is
a finitely generated ideal.

Principal Ideal Domains.
An integral domain in which every ideal is principal is called a principal ideal

domain.
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4.1. Proposition. Let R be a principal ideal domain. Then any pair of ele-
ments a, b ∈ R have a greatest common divisor and gcd(a, b) = d if and only if

〈a, b〉 = {ax+ by : x, y ∈ R} = Rd

Any greatest common divisor d of a and b can be expressed in the form

d = ax+ by for some x, y ∈ R.

Proof. As discussed above 〈a, b〉 = {ax+ by : x, y ∈ R} is an ideal of R con-
taining a and b. Because R is a principal ideal domain 〈a, b〉 = Rd for some d ∈ R.
Hence every element of 〈a, b〉 is divisible by d. In particular since a, b ∈ 〈a, b〉, d|a
and d|b. If e|a and e|b then e|(ax+by) for all x, y ∈ R. Hence e|d as d ∈ Rd = 〈a, b〉.
Thus d satisfies the greatest common divisor conditions GCD1 and GCD2. Lastly
element d′ is also a greatest common divisor of a, b if and only if d ∼ d if and only
if Rd = Rd′.

If d = gcd(a, b) then d ∈ Rd = 〈a, b〉 implies d = ax+ by for some x, y ∈ R. �

4.2. Proposition. Let R be a a principal ideal domain. The every irreducible
element of R is prime.

Proof. Let π ∈ R be irreducible. Then up to associates the only factors of π
are 1 and π. Hence for a ∈ R, there are two mutually exclusive possibilities. Either

(1) π|a and gcd(a, π) = π or,
(2) π does not divide a and gcd(a, π) = 1.

Suppose π|ab. We claim that π|a or π|b. From above either π|a or gcd(a, π) = 1. In
the latter case, R a principal ideal domain implies ax+ πy = 1 for some x, y ∈ R.
Hence b = abx+ πby ∈ Rπ. Hence π|b. �

4.3. Theorem. Every principal ideal domain is a unique factorisation domain.

Proof. Suppose R is a principal ideal domain. We have verified the first of
the necessary and sufficient conditions for R to be a unique factorisation domainof
Proposition 3.11 above.

We now verify the second. Suppose we have an infinite ascending chain of
principal ideals

Ra0 ⊆ Ra1 ⊆ Ra2 ⊆ Ra3 ⊆ · · ·

Consider,

I =

∞⋃
n=1

Ran.

We show I is an ideal of R. To show I is an ideal is is sufficient to show it
is non-empty, and closed under subtraction, and multiplication by elements of R.
Clearly I 6= ∅, (0 ∈ Ra0 ⊆ I). Suppose u, v ∈ I. Then, since I is union of the nested
sets Ran, u, v ∈ Ran for some n. Hence, since Ran is an ideal, u − v ∈ Ran ⊆ I.
Thus I is closed under subtraction. Suppose r ∈ R, and u ∈ I, then u ∈ Ran for
some n. Hence, since Ran is an ideal, ru = ur ∈ Ran ⊆ I. Thus I is closed under
multiplication by elements of R.

Since R is a principal ideal domain, I = Ra for some a ∈ I. For some N
therefore a ∈ RaN . But then we must have I = Ra ⊆ RaN . So for all n ≥ N
Hence I = RaN ⊆ Ran ⊆ I. Hence the chain stabilises, Ran = I for all ≥ N .
Hence we cannot have a strictly ascending chain of principal ideals in a principal
ideal domain. �
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5. Euclidean Domains

An integral domain R is called a Euclidian domain if for every non-zero a ∈ R
there is a non-negative integer γ(a) such that following two conditions hold, in
which case we say R is Euclidean with respect to γ.

ED1: For all non-zero a, b ∈ R, γ(a) ≤ γ(ab).
ED2: For any a, b ∈ R with b 6= 0 there exist q and r in R such that
a = bq + r where either r = 0 or γ(r) < γ(b).

Note that γ(0) may or may not be defined.
The paradigm example of a Euclidean domain is R = Z, which is Euclidean

with respect to γ(n) = |n|, the absolute value of n ∈ Z.
For any field F , the polynomial ring F [X] is Euclidean with respect to γ(f) =

deg f(X).

5.1. Theorem. Every Euclidean domain is a principal ideal domain.

Proof. Suppose R is Euclidean with respect to γ. Let I be an ideal of R.
The zero ideal I = {0} is a principal ideal. Suppose I 6= {0}. Then it contains
non-zero elements. Hence {γ(a) : a ∈ I, a 6= 0} is a non-empty subset of N. So it
has a minimal element. Let d be a non-zero element of I with γ(d) minimal. We
show I = Rd, that is Rd ⊆ I, and I ⊆ Rd.

First d ∈ R implies rd ∈ I for all r ∈ R. Hence Rd ⊆ I.
Now suppose a ∈ I. Then by ED2, for some q and r in R, a = dq + r where

either r = 0 or γ(r) < γ(d). Now I an ideal and d ∈ I implies dq ∈ R, and I an
ideal, a ∈ I and qd ∈ I imply r = a − dq ∈ I. Hence if r 6= 0, γ(r) ≥ d, by the
choice of d. Hence we must have r = 0 and a = dq ∈ I. Hence I ⊆ Rd. �

5.2. Corollary. Every Euclidean domain is a unique factorisation domain.

Note the above result nowhere needed the condition ED1.

5.3. Proposition. Let I be a non-zero ideal in a Euclidean domain. Then
I = Rd if and only if d ∈ I is an non-zero element with

γ(d) = min {γ(a) : a ∈ I, a 6= 0} .

Proof. Suppose d ∈ I, with d 6= 0 is such an element. Then by the proof of
the theorem above I = Rd. Suppose I = Ra. Then a 6= 0, and γ(a) ≥ γ(d), by the
choice of d. We are claiming γ(a) = γ(d). To establish this it sufficient now to show
γ(a) ≤ γ(d). Since d ∈ I = Ra, d = ra for some r ∈ R. So by ED1 γ(a) ≥ γ(d) as
required. �

6. The Gaussian Integers

6.1. Theorem (Gauss 1832). The Gaussian integers are Euclidean with respect
to the norm.

Proof. The Gaussian integers are subring of the field C. So they are an
integral domain.

(ED1) If α = a+ ib ∈ Z[i], Nα = a2 + b2 ∈ N and for α 6= 0, Nα ≥ 1. Hence for
α, β non-zero elements of Z[i], N (αβ) = NαNβ ≥ Nα.

(ED2) Suppose αβ ∈ Z[i] and β 6= 0. Then β is invertible in C. So

α

β
= x+ iy, for some x, y ∈ C.

Pick integers c, d ∈ Z such that

|x− c| ≤ 1
2 , |y − d| ≤ 1

2 .
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Set γ = c+ id and ξ = (x− c) + i(y − d). Then
α

β
= γ + ξ

with γ ∈ Z[i] and

|ξ|2 = ξξ = (x− c)2 + i(y − d)2 ≤ 1
4 + 1

4 < 1.

Hence α = βγ + ρ where ρ = ξβ = α− βγ ∈ Z[i], and

Nρ = ρρ = ξξββ = |ξ|2Nβ < Nβ.
So either ρ = 0 or 0 < Nρ < Nβ.

�

6.2. Corollary. The Gaussian integers are a principal ideal domain.

6.3. Corollary. The Gaussian integers are a unique factorisation domain.

6.4. Lemma. An n ∈ N is a sum of two squares in Z if and only if n = Nα for
some α ∈ Z[i].

If and both n,m ∈ N are each the sum of two squares in Z so is mn.

Proof. The first statement follows from N (a+ ib) = a2 + b2 ∈ N.
Hence the second follows because if n = Nα and m = Nβ for α, β ∈ Z[i] then

nm = NαNβ = Nγ where γ = αβ ∈ Z[i].
�

Recall. For a prime p, Fp = Z/pZ, is field with p elements.

6.5. Lemma. Let p ∈ N be an odd prime. Then the following are equivalent

(i) p ≡ 1 (mod 4).
(ii) −1 is a square modulo p.

Proof. Recall that over a field a quadratic can have at most two roots.
For any non-zero y in the field Z/pZ, call P (y) =

{
y,−y, y−1,−y−1

}
, the

package generated by y. You can readily check

P (y) = P (−y) = P (y−1) = P (y−1).

Hence the distinct packages P (y) partition (Z/pZ)
×

. Since for p 6= 2, x 6= −x
for x 6= 0 in Z/pZ, every P (y) has four elements unless y = y−1 or y = −y−1.
We have y = y−1 if and only if y2 = 1 if and only if y = ±1. In this case
P (y) = {1,−1} has two elements. We have y = −y−1 if only if y2 = −1. In this
case P (y) = P (−y) = {y,−y} has two elements.

If −1 is a square then (Z/pZ)
×

is a partioned into two packages of size 2 and
the rest of size 4. In this case p − 1 ≡ 0 (mod 4), that is p ≡ 1 (mod 4). If −1 is
not a square one package has two elements and the rest have 4 elements. In this
case p− 1 ≡ 2 (mod 4), that is p ≡ 3 (mod 4). �

6.6. Theorem. (Fermat 1640, Euler 1747) Let p be an odd prime p ∈ N.
The p is a sum of two squares if and only if p ≡ 1 (mod 4).

Proof. ( Dedekind 1894)
Suppose p is a sum of squares in Z, p = a2 + b2. Then neither a nor b be

can be 0. So 0 < |a|, |b| < √p. So neither a nor b is divisible by p. Hence the

are invertible modulo p. Hence from a2 + b2 ≡ 0 (mod p) we deduce (a/b)2 ≡ −1
(mod p). Hence (−1) is a square in Z/pZ. So p ≡ 1 (mod 4).

Conversely suppose p ≡ 1 (mod 4). Then −1 is a square in Z/pZ. Then there
is an c ∈ Z such that c2 + 1 is divisible by p. In Z[i], c2 + 1 = (c − i)(c − i)
and p|(c − i)(c + i). But neither of (c ± i)/p is in Z[i] because in each case the
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coefficient of i, ±1/p, is not in Z. So p does not divide c ± i in Z[i]. Hence p is
not a prime in the unique factorisation domain Z[i]. But in a unique factorisation
domain a non-zero element is prime if and only if it is irreducible. Consequently p
is reducible in Z[i]. So there is factorisation p = αβ in Z[i] with neither factor a
unit. This implies that the rational integers Nα and Nβ are both greater than 1.
Taking norms gives p2 = Np = NαNβ, which since p is a prime number implies
Nα = Nβ = p. Hence p is a sum of two squares. �





CHAPTER 4

Congruence, Quotients and Ideals

1. Equivalence Relations, Quotients

We recall some facts about equivalence relations. A relation on a set S is called

• reflective if x ∼ x for all x ∈ S;
• symmetric if for x, y ∈ S, x ∼ y implies y ∼ x;
• transitive if for x, y, z ∈ S, x ∼ y and y ∼ z together imply x ∼ z.

A relation ∼ on a non-empty set S is called an equivalence relation if it is
reflective, symmetric and transitive.

For example congruence modulo m is an equivalence relation on Z.
If ∼ is an equivalence relation on S and x ∈ S,

x = {y ∈ S : x ∼ y} ,

is called the equivalence class of x. Note x = y if and only if x ∼ y.
The equivalence classes partition S, that is they are non-empty, their union is

S and if x∩ y is non-empty then x = y. Conversely suppose we have a partition of
S as a disjoint union of non-empty subsets Xi. That is S = ∪Xi, all Xi 6= ∅ and
Xi ∩ Xj = ∅ if i 6= j. Then set x ∼ y if x and y lie in the same subset Xi is an
equivalence relation on S with equivalence classes the Xi.

The set of equivalence classes of an equivalence relation on a set S,

S/∼ = {x : x ∈ S} ,

is called the quotient of S by ∼. The surjective map S −→ S/∼ such that x 7→ x
is called the canonical map.

First Isomorphism Theorem for Sets. Let φ : S → X be a map from S to a
set X. Then x ∼ y if φ(x) = φ(y) defines an equivalence relation on S, and x = y
if and only if φ(x) = φ(y). Hence x 7→ φ(x), defines a bijection

φ : S/∼ −→ φ(S).

We call the map φ the induced map.

Congruences. Suppose now S is a set with a composition law (x, y) 7→ xy,
and ≈ is an equivalence relation on S. Then there is a most one way to define a
composition law (x, y) 7→ xy on the quotient S/≈ such that the canonical map from
S to S/ ≈ is a homomorphism. For the canonical map to be a homomorphism we
require that x ∗ y = x ∗ y for all x, y ∈ S. For this to define a composition law it
is necessary and sufficient that whenever x ≈ x′ and y ≈ y′ we have xy ≈ x′y′, so
that xy = x′y′. In this case ≈ is called a congruence for the composition law. We
call S/≈ with the composition law defined by x ∗ y = xy, the quotient of S by the
congruence ≈.

By construction the canonical map x 7→ x is called the canonical homomorph-
ism. Since the canonical homomorphism is surjective we deduce the following result
as an immediate application of Proposition 4.8.

1.1. Proposition.

41
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(1) If ≈ is a congruence on a monoid G then G/≈ is a monoid and the
canonical map from G to G/≈ is surjective monoid homomorphism.

(2) If ≈ is a congruence on a group G then G/≈ is a group and the canonical
map from G to G/≈ is surjective group homomorphism.

1.2. Proposition. (The First Isomorphism Theorem for Monoids)
Let φ : M → N be a monoid homomorphism. Then the following hold.

(1) The image φ(M) is submonoid of N .
(2) Then x ≈ y if φ(x) = φ(y) is a congruence on M .
(3) The induced map φ : S/≈ → φ(S), x 7→ φ(x), is an isomorphism of

monoids.

Proof. We know that x ≈ y if φ(x) = φ(y) is an equivalence relation on M
and that induced map x 7→ φ(x), is a bijection from M/ ≈→ φ(M)

(1) In section 4 we established that image of monoid under a monoid homo-
morphism is a submonoid.

(2) Suppose φ(x) = φ(x′) and φ(y) = φ(y′). Then φ a homomorphism implies

φ(xy) = φ(x)φ(y) = φ(x′)φ(y′) = φ(x′y′).

Hence x ≈ x′, y ≈ y′ implies φ(x′)φ(y′) ≈ φ(x′y′). Hence ≈ is a congru-
ence.

(3) The canonical map is φ : S/≈ → φ(S), is a bijection. It remains to show
it is preserves monoid composition. For x, y ∈ S/≈,

φ(x y) = φ(xy) = φ(xy) = φ(x)φ(y) = φ(x)φ(y),

first equality by the definition of product in the quotient, the second by
the definition of φ, the third because φ is a homomorphism, and the fourth
by the definition of φ.

�

1.3. Definition. An equivalence relation ∼ on a set S with composition law is
called left invariant if x ∼ x′ implies yx ∼ yx′ for all x, x′, y ∈ S and right invariant
if x ∼ x′ implies xy ∼ x′y for all x, x′, y ∈ S.

1.4. Lemma. An equivalence relation on a set S with composition law is a
congruence if and only if it is both left and right invariant.

Proof. Suppose ∼ is a congruence and x, x′, y ∈ S and x ∼ x′. Then from
x ∼ x′ and y ∼ y we deduce both yx ∼ yx′ and xy ∼ x′y. So ∼ is both left and
right invariant. Conversely suppose ∼ is both left and right invariant. Then given
x ∼ x′, and y ∼ y′, we have xy ∼ xy′, by left invariance and xy′ ∼ x′y′ by right
invariance. Hence by the transitivity of ∼, xy ∼ x′y′. �

Cosets, Normal Subgroups and Quotient Groups.
In this section we revisit some basic group theory.
Let G is a group and H a subgroup. Then xH = {xh : h ∈ H} is called the

left coset of H generated by x. The left cosets partition G. Since H is subgroup
e ∈ G. So x = xe ∈ xH. So the cosets are non-empty. Suppose y ∈ xH. Then
y = xh for some h ∈ H. For all h′ ∈ H, hh′ ∈ H. So yh′ = yhh′ ∈ xH. Hence
yH ⊆ xH. From y = xh, x = yh−1 ∈ yH, as H is closed under taking inverses.
Hence xH ⊆ yH. If z ∈ xH ∩ yH, xH = zH = yH. So x ∼l y if xH = yH
is an equivalence relation on G with x = {y ∈ G : y ∼l x} = xH. For all x, x′

in y ∈ H, xH = x′H implies yH = yx′H. So ∼l if is a left invariant equivalence
relation on G. Similarly Hx = {hx : h ∈ H} is called the right coset of H generated
by x and x ∼r y if xH = yH is an right invariant equivalence relation on G with
x = {y ∈ G : y ∼r x} = Hx.
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A subgroup of H of G is called a normal subgroup if xH = Hx for all x ∈ G.
In this case x ≈ y if xH = yH is a both left and right invariant and hence a
congruence on G. This congruence is called congruence modulo H.

We now show the above equivalence relations account for all left or right equival-
ence relations on a group. In particular that congruence modulo a normal subgroup
accounts for all congruences on a group.

1.5. Proposition. Suppose ≈ is an equivalence relation on a group G. Set

H = {x ∈ G : x ≈ 1} .

(1) ≈ is left invariant ⇔ H is a subgroup of G and x = xH for all x ∈ G.
(2) ≈ is right invariant ⇔ H is a subgroup of G and x = Hx for all x ∈ G.
(3) ≈ is a congruence ⇔ if and only if H is normal subgroup of G, and

x = xH for all x ∈ G.

Proof. Suppose ≈ is left invariant. We show H is a subgroup of G. Since
e ≈ e, e ∈ H. Suppose x, y ∈ H. Then y ≈ e. So by left invariance xy ≈ x. We also
have x ≈ e. Hence by transitivity xy ≈ e. Hence H is closed under multiplication.
Finally for x ≈ e, multiplying on the left by x−1 gives e ≈ x−1, and therefore
x−1 ∈ H. Hence H is closed under taking inverses. Then using left invariance,
y ≈ x if and only if x−1y ∈ H. We have x−1y ∈ H if and only if y ∈ xH. Hence
x = xH.

Conversely suppose H is group and x = xH. Then ≈ is the equivalence relation
x ∼l y if xH = yH, which is left invariant. This establishes the first equivalence.
The second equivalence follows similarly, and the third from the first and second.

�

For H a normal subgroup of a group G, The the set of equivalence classes
of congruence modulo H, G/H = {xH : x ∈ G} is called the quotient of G by the
normal subgroup H. The quotient group has quotient group structure, (xH)(yH) =
xyH for x, y ∈ G. The canonical map from G to G/H, maps x ∈ G to the coset
xH.

In the case an additive group J , all subgroups I are normal, and in additive
notation the coset of B generated by a ∈ J , is denote a+ I. Then

J/I = {a+ I : a ∈ J}

has additive group structure (a+ I) + (b+ I) = (a+ b) + I, and the canonical map
sends a ∈ J to a+ J ∈ J/I.

1.6. Proposition (First Isomorphism Theorem for Groups). Let φ : G → G′

be homomorphism of groups. Then the following hold.

(1) φ(G) is subgroup of G.
(2) kerφ = {x ∈ G : φ(x) = e} is a normal subgroup of G.
(3) The induced map φ : G/ kerφ→ φ(G), x kerφ 7→ φ(x), is an isomorphism

of groups.

Proof. This follows directly from the First Isomorphism Theorem for Monoids
and the correspondence between normal subgroups and congruences, together with
basic properties of homomorphisms. �

Note that if H is a normal subgroup of a group G the H is the kernel of the
canonical map from G to G/H. Hence every normal subgroup arises as the kernel
of a homomorphism.
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2. Quotients Rings and Ideals

Let ≡ be an equivalence relation on a ring R. Then to put a ring structure on
R/ ≡ such that the canonical map from R to R/ ≡ is a ring homomorphism it is
necessary and sufficient that ≡ be a congruence for the addition and multiplication
on R. The paradigm example of a such an equivalence relation is congruence is
congruence modulo an integer m > 1 on Z.

2.1. Definition. (Ring Congruences)
An equivalence relation ≡ on a ring R is called a (ring) congruence if for all

x, x′, y, y′ ∈ R, x ≡ x′ and y ≡ y′,
x+ y ≡ x′ + y′, and xy ≡ x′y′.

Equivalently an equivalence relation ≡ on a ring R is ring congruence if it is a
congruence for ring addition and ring multiplication.

Suppose now ≡ is a congruence on R. Let x denote the equivalence class of
x ∈ R. Set R denote the quotient R/ ≡= {x : x ∈ R}. Then ≡ is a congruence for
ring addition and ring multiplication implies that the quotient R has addition and
multiplication defined by

x+ y = x+ y,

x y = xy.

2.2. Lemma. Under quotient addition and multiplication the quotient R = R/≡
is a ring with zero 0 and identity 1. If R is a commutative ring , the quotient ring
R is commutative.

Proof. By our results on quotient of composition laws, under quotient addi-
tion R is an abelian group with zero 0, and under quotient multiplication R is a
monoid with identity 1. Further, if multiplication in R is commutative, multiplic-
ation in the quotient R is commutative. To prove R is ring it remains to show the
distributive laws hold. For any x, y, z ∈ R,

x(y + z) = x(y + z), (by definition of quotient addition)

= x(y + z), (by definition of quotient multiplication)

= (xy + xz), (by the left distributive law in R)

= xy + xz (by definition of quotient addition)

= x y + x z, (by definition of quotient multiplication).

hence the left distributive law holds in R. Similarly the right distributive law holds
in R. �

Just as congruences on a group G correspond to normal subgroups H of G, we
now go on to show congruences on a ring R correspond to ideals I of R.

2.3. Definition. (Congruence Modulo an Ideal)
Let I be an ideal of a ring R. Then for a x, y ∈ R, we say x is congruent to y

modulo I, written, x ≡ y (mod I) if x− y ∈ I.

For a, b ∈ Z, a ≡ b (mod m) is equivalent to congruence modulo the principal
ideal mZ.

2.4. Proposition. Let I be an ideal of a ring R. Then congruence modulo I
of R is a ring congruence on R.

Conversely suppose ≡ be an equivalence relation on a ring R. Set

I = {x ∈ R : x ≡ 0} .
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Then I is an ideal on R, and ≡ is congruence modulo I.

Proof. Let I be an ideal of R.
Since an ideal is an additive subgroup it is a congruence for addition.
We show it is also congruence for the multiplicative structure of R. Suppose

r, s, s′ ∈ R, and s ≡ s′ mod I. Then s − s′ ∈ I. Hence since an ideal, is closed
under left and right multiplication by elements of R,

rs− rs′ = r(s− s′) ∈ I, and sr − s′r = (s− s′)r ∈ I.

Thus,

rs ≡ rs′ mod I, and sr ≡ rs′r mod I.

Hence congruence modulo I is a congruence for both the additive and multiplicative
structure of R.

Conversely suppose ≡ is a congruence on R. Then canonical map γ : R → R
is a ring homomorphism and I = ker γ. Hence I is an ideal of R. Further by the
results for groups and x ≡ y if and only if x − y ∈ I. So ≡ is congruence modulo
I. �

Then as noted above congruence modulo I a congruence for the additive struc-
ture of R. Hence the quotient ring R = {x+ I : x ∈ R}. In R/I,

(x+ I) + (y + I) = (x+ y) + I,

(x+ I)(y + I) = xy + I.

In additive coset notation the identity of R/I, 1 = 1 + I and the zero of R/I,
0 = 0 + I = I. In practice this notation is unwieldy to use. It does serves to
emphasis that under addition R/I is the quotient of the additive group of R by its
additive subgroup I.

The First Isomorphism Theorem for Rings.
Ring Isomorphisms.

2.5. Definition. (Ring Isomorphisms)
A bijective homomorphism from a ring R to ring S is called an isomorphism.
We write R ∼= S to indicate there is an isomorphism from a ring R to a ring S,

and say R is isomorphic to S.
A map from one ring to another is an isomorphism if and only if it is both an

isomorphisms of their additive groups, and an isomorphisms of their multiplicative
monoids.

The following are immediate given that we know the corresponding results hold
for groups and monoids.

(1) For R a ring the identity map x 7→ x is a ring isomorphism.
(2) The inverse of a ring isomorphism is a ring isomorphism.
(3) A composition of ring isomorphisms is a ring isomorphisms

Consequently ring isomorphism is an equivalence relation.

2.6. Theorem. (First Isomorphism Theorem for Rings)
Suppose φ : R→ S is a ring homomorphism. Then the following hold.

(1) The image of φ, φ(R) = {φ(r) : r ∈ R} is subring of S.
(2) The kernel kerφ is and ideal of R.
(3) The induced map φ : R/ kerφ → φ(R), x + I = x → φ(x) is a ring

isomorphism.
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Proof. We noted (1) and (2) when we first discussed ring homomorphisms
kernels and ideals in section 2

Because congruence modulo an ideal is a congruence for addition φ is an iso-
morphism of additive groups. Because congruence modulo an ideal is a congruence
for multiplication φ is an isomorphism of multiplicative monoids. Hence it is an
isomorphism of rings as asserted in (3). �

Two Trivial Examples.
1. Subring Inclusion. If R is a subring of a ring S, the inclusion map R ↪→ S, x 7→ x,
has kernel {0}, and image R. The First Isomorphism Theorem says x = {x} 7→ x
is an isomorphism from R/ {0} to R.
2. The Zero Homomorphism. For any ring R the unique map from R to the zero
ring O, has kernel R and image O. The quotient R/R has one element 0 = R. The
First Isomorphism Theorem says 0 7→ 0 is an isomorphism from R/R =

{
0
}

to the
zero ring O.

We record the following for completeness.

2.7. Theorem. (The Second Isomorphism Theorem for Rings)
Let R be a subring of a ring S and I an ideal of S. Then we have the following.

(1) R+ I = {r + a : r ∈ R, a ∈ I} is a subring of S, I is an ideal of S+ I and
S ∩ I is an ideal of R.

(2) There is a canonical isomorphism (R+ I)/I ∼= R/R ∩ I.

Proof. Exercise. The canonical isomorphism is the map such that

r + I 7→ r +R ∩ I,

for r ∈ R. �

The Third Isomorphism Theorem for Rings.

2.8. Theorem. (The Third Isomorphism Theorem for Rings)
Let θ : R→ R′ be a surjective ring homomorphism.

(1) Then
(A) I 7→ I ′ = θ(I), I ⊆ R, and
(B) I ′ 7→ I = θ−1(I ′), I ′ ⊆ R′,
defines a 1–1 order preserving correspondence between ideals I of R con-
taining ker θ and ideals I ′ of R′.

(2) Suppose the ideal I of R corresponds to the ideal I ′ of R′. Then mapping
x+ I 7→ θ(x) + I ′ induces a ring isomorphism R/I ∼= R′/I ′.

Proof. Before we prove this theorem we recap some set theory.
Let θ : R → R′ be a set map. Then taking images, A 7→ φ(A) for A ⊆ R, and

taking inverse images A′ 7→ φ−1(A′) for A′ ⊆ R′, are order preserving maps. That
is

A ⊆ B ⊆ R =⇒ θ(A) ⊆ θ(B) ⊆ R′

and

A′ ⊆ B′ ⊆ R′ =⇒ θ−1(A′) ⊆ θ−1(B′) ⊆ R
For all subsets A of R,

θ−1 (θ (A)) ⊇ A,
and we have equality for all A if (and only if) θ is injective.

For all subsets A′ of R′,

θ
(
θ−1 (A′)

)
⊆ A′,

and we have equality for all A′ if (and only if) θ is surjective.
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(1) Both I 7→ θ(I) and I ′ 7→ I = θ−1(I ′) are order preserving maps. Suppose
I is an ideal of R. Then θ(I) is an additive subgroup of R′, because
every ring homomorphism is homomorphism for addition. The map θ is
surjective. So given r′ ∈ R and a′ ∈ θ(I), r′ = θ(r) and a = θ(a) for some
r ∈ R and a ∈ I. Since I is an ideal of R, ra and ar lie in I. Hence

r′a′ = θ(r)θ(a) = θ(ra) ∈ θ(I), and , a′r′ = θ(a)θ(r) = θ(ar) ∈ θ(I)

Hence φ(I) is also closed under multiplication by all elements of R′ on the
left and on the right. So θ(I) is an ideal of R′ for every ideal I of R.

Suppose I ′ is an ideal of R′. We show θ−1I ′ is an ideal of R by
showing it is the kernel of a ring homomorphism. Let γ : R′ → R/I ′ be
the canonical map r′ 7→ r′ + I. Then since both θ and γ are surjective
ring homomorphisms their composite γθ : R → R′/I ′ is surjective ring
homomorphism. Now for r ∈ R, γθ(r) = θ(r) + I ′. Hence r ∈ ker γθ if
and only if θ(r) ∈ I ′. We deduce that

ker γθ = {r ∈ R : θ(a) ∈ I ′} = θ−1(I ′).

Hence θ−1(I ′) is an ideal of R. For all a ∈ ker θ, θ(a) = 0 ∈ I ′. So for
each ideal I ′ of R′, θ−1(I ′) is an ideal of R containing ker θ.

We have now established that (A) and (B) define an order preserving
correspondence between ideals I of R containing ker θ and ideals I ′ of R′.
It remains to show the are mutually inverse.

Since θ is surjective,

θ
(
θ−1 (I ′)

)
= I ′,

for all for all ideals I ′ of R.
For any I an ideal of R, θ−1 (θ (I)) ⊇ I. It remains to show that if an

ideal I of R contains ker θ, then θ−1 (θ (I)) ⊆ I, and hence

θ−1 (θ (I)) = I.

Suppose I is such an ideal. Suppose r ∈ θ−1 (θ (I)). Then θ(r) ∈ θ(I).
Thus θ(r) = θ(a) for some a ∈ I. Hence θ(r − a) = θ(r) − θ(a) ∈ I. We
deduce r − a ∈ ker θ, and so r − a ∈ I. Hence r = (r − a) + r ∈ I.

(2) Suppose the ideal I of R corresponds to the ideal I ′ of R′. Then I =
θ−1(I ′). From the proof of the first part I = ker γθ, where γ : R′ → R′/I ′

is the canonical map. We noted above that this composite is surjective.
Hence by the First Isomorphism Theorem for rings the induced map

r + I 7→ γθ(r) = r + I

defines an isomorphism R/I ∼= R′/I ′.

�

Let I be an ideal of a ring R. Then we can apply the third isomorphism theorem
to the canonical map γ : R → R/I. For J an ideal of R, γ(J) = {a+ I : a ∈ J} =
J/I.

We deduce the following version of the third isomorphism theorem.

2.9. Corollary. Let I be an ideal of a ring R. Then the following hold.

(1) Mapping J 7→ J/I defines a 1–1 correspondence between ideals J of R
containing I and ideals of R/I.

(2) The canonical map from R to R/I induces an isomorphism of rings,

R/J ∼= (R/I) / (J/I) .

2.1. Maximal Ideals and Prime Ideals.
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Maximal Ideals.

2.10. Definition (Maximal Ideals). Let R be an arbitrary ring. An ideal M
of R is called a maximal ideal if M 6= R, and for all ideals I of R, M ⊆ I implies
I = M or I = R.

2.11. Lemma. A commutative ring F is a field if and only if its zero ideal is
maximal.

Proof. If F is field then F is commutative and its zero ideal is a proper ideal.
Recall by Observation 2.7 of section 1 an ideal I of a ring R contains a unit element
if and only if I = R the unit ideal. Since a every non-zero element in F is invertible
the only non-zero ideal of F is its unit ideal F . Hence its zero ideal is maximal.
Conversely suppose F is commutative ring and the zero ideal is maximal. Then F
is not the zero ring. It remains to show all x 6= 0 are invertible in F . Then for
any x 6= 0, the principal ideal Fx 6= 0 and O maximal implies Fx = F . Hence by
Lemma 1.4 x is invertible. �

2.12. Proposition. Let R be a commutative ring. Then an ideal M is maximal
if and only if R/M is a field.

Proof. By the Third Isomorphism Theorem for Rings an M is maximal if and
only if the zero ideal of R/M is maximal. �

Simple Rings. A non-zero ring R whose zero ideal O is maximal is called is
called a simple ring. So a simple ring R has exactly two ideals, its zero ideal and
and its unit ideal R. As shown above the simple commutative rings are the fields. If
F is a field each matrix ring Mn(F ) with n > 1 is an example of non-commutative
simple ring.

Prime Ideals.
Recall an element in a commutative ring R is called prime if the following hold.

(1) π is not a unit.
(2) For all a, b ∈ R, π|ab implies π|a or π|b.

Recall also that a, b ∈ R, a|b means b ∈ Ra, the principal ideal generated by a.
Also Ra = R if and only if a is a unit of R. Hence we have π ∈ R is prime if the
following hold.

(1) πR 6= R.
(2) For all a, b ∈ R, ab ∈ Rπ implies a ∈ Rπ or b ∈ Rπ.

2.13. Definition (Prime Ideals). Let R be any ring.
An ideal P 6= R is called a prime ideal if the following hold.

(1) P is not the unit ideal, that is P 6= R.
(2) For all a, b ∈ R, ab ∈ P implies a ∈ P or b ∈ P .

In particular an element π of a commutative ring R is prime if and only if
P = Rπ is a prime ideal.

2.14. Proposition. Let R be a commutative ring. Then an ideal P of R is
prime if and only if R/P is an integral domain.

Proof. Since R is commutative then R/P is commutative for all ideals P of
R. Therefore the quotient R/P is an integral domain if and only if R/P is not the
zero ring, and R/P has no zero divisors. The quotient R/P is the zero ring if and
only if R = P . Hence R/P is not the zero ring is equivalent to P 6= R.

R/P has no zero divisors is equivalent to a, b ∈ R and ab ≡ 0 (mod P ) implies
a ≡ 0 (mod P ) or a ≡ 0 (mod P ), For any r ∈ R, r ≡ 0, (mod P ), means r ∈ P .
So the condition R/P has no zero divisors is equivalent a, b ∈ R and ab ∈ P implies
a ∈ P or b ∈ P . �
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2.15. Corollary. Maximal ideals of a commutative ring R are prime.

Proof. By Proposition 2.12 if M is a maximal ideal of R then R/M is a field,
and fields are integral domains. �

2.16. Corollary. Let R be a unique factorisation domain.
Then π ∈ R irreducible implies R/πR is an integral domain.

Proof. Recall that ifR is a unique factorisation domain then π ∈ R irreducible
implies π is a prime element. �

All principal ideal domains are unique factorisation domains. For principal
ideal domains even more is true.

2.17. Proposition. Let R be a principal ideal domain. Then π ∈ R irreducible
implies R/πR is field.

Proof. Every principal ideal domain is a unique factorisation domain. Hence
by the previous Corollary 2.16 we know that R/πR is an integral domain. It remains
to show that every non-zero element of R/πR is invertible. Equivalently we have
to show that if a ∈ R is not congruent to 0 modulo Rπ, that is is not a multiple of
π, there exist an x ∈ R such that ax ≡ 1 (mod Rπ). We start with the deductions
made at the beginning of the proof of Proposition 4.2. Since π ∈ R is irreducible,
up to associates the only factors of π are 1 and π. Hence for any a ∈ R, there are
two mutually exclusive possibilities. Either π|a and gcd(a, π) = π or π does not
divide a and gcd(a, π) = 1. In the latter case, R is principal ideal domain implies
there exist x, y ∈ R such that ax+ πy = 1. Hence we have ax ≡ 1 (mod Rπ). �





CHAPTER 5

Factorisation in Polynomial Domains

1. Polynomial Preliminaries

Given a ring R and n variables X1,. . . , Xn the polynomial ring R[X1, . . . , Xn]
is the ring Rn defined by

R1 = R[X1], R2 = R1[X2], . . . , Rn = Rn−1[Xn].

The Rn = R[X1, . . . , Xn] is called the polynomial ring in n variables.
We can describe this ring in multi-index notation as follows.
Let X = (X1, X2, . . . , Xn). Set R[X] = R[X1, X2, . . . , Xn].
For an n-tuple of integers i = (i1, i2, . . . , in) we let Xi = Xii . . . Xin

n .
We define i ≤ j if
i1 ≤ j1, i2 ≤ j2, . . . , in ≤ jn.
Then R[X1, . . . , Xn = R[X] consists of all expression

f(X) =
∑
i≤m

aiX
i

with all coefficients ai ∈ R, i ≤m. We extend this coefficient sequence all n-tuples
of integers by setting ai = 0 ∈ R for i 6≤ m. Two such expressions represent the
same polynomial if they have the same coefficient sequence. Addition is defined
component-wise and multiplication by∑

i

aiX
i
∑
j

bjX
j =

∑
m

ciX
m, cm =

∑
i+j=m

aibj.

From the one variable case we have that R an integral domain implies R[X]
is an integral domain. Other one variable results have multi-variable counter part.
As in the one variable case suppose S is a subring of a ring S, and α is an n-
tuple of (α1, . . . , αn) of mutually commuting elements of S, which commute with
all elements of R. Then evaluation at α define a ring homomorphism

εα : R[X]→ S.

The image of this homomorphism is

R[α] = {f(α) : f(X) ∈ R[X]}
is called the extension of R by α1, . . . , αn. It consists of all polynomial expressions
in α1, . . . , αn with coefficients in R. and can be characterised as is the minimal
subring of S containing R and all α1, . . . , αn.

Let F be a field then field of rational functions in X1, . . . , Xn is denoted
F (X1, . . . , Xn) or in multi-index notation F (X). It is the field of fractions of F (X).
Thus

F (X1, . . . , Xn) =

{
f(X1, . . . , Xn)

g(X1, . . . , Xn)
: f, g ∈ F [X1, . . . , Xn], g(X1, . . . , Xn) 6= 0

}
or in multi-index notation,

F (X) =

{
f(X)

g(X)
: f, g ∈ F [X], g(X) 6= 0

}
.

51
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Suppose F is a subfield of a field K and α1, . . . , αn ∈ K,

F (α1, . . . , αn) =

{
f(α1, . . . , αn)

g(α1, . . . , αn)
: f, g ∈ F [X], g(α1, . . . , αn) 6= 0 ∈ K

}
.

is the subfield of K generated by α1, . . . , αn.

2. Polynomial Long Division

The long division process defined for dividing a polynomial a(X) over a field
by a non-zero polynomial b(X), can be carried over to commutative ring as long as
the dividing polynomial b(X) is a monic polynomial. or more generally as long as
the leading coefficient is a unit.

2.1. Proposition. Let R be a commutative ring and a(X), b(X) ∈ R[X], where
b(X) 6= 0 has leading term a unit in R.

Then there exist unique polynomials in q(X) and r(X) in R[X] such that

a(X) = b(X)q(X) + r(X), deg r(X) < deg b(X).

Proof. Let m = deg b(X), so

b(X) = b0 + · · ·+ bmX
m, bm invertible in R.

First we show that existence follows from the polynomial division process. We
proceed by induction n = deg a(X).

If n < m take q(X) = 0, r(X) = a(X).
Suppose n ≥ m and a(X) has leading term anX

n, an 6= 0. Then the monomial
multiple anb

−1
m Xn−mb(X) of b(X) also has leading term anX

n. Subtracting this
from a(X) gives a polynomial

a1(X) = a(X)− anb−1m Xn−mb(X)

of degree less than or equal to n−1. Then by induction there exist q1(X) and r(X)
in R[X] such that

a1(X) = q1(X)b(X) + r(X),deg r(X) < deg b(X).

Setting q(X) = q1(X) + anb
−1
m Xn−mb(X), gives

a(X) = a1(X) + anb
−1
m Xn−mb(X) = q(X)b(X) + r(X),deg r(X) < deg b(X).

For uniqueness suppose,

q1(X)b(X) + r1(X) = q2b(X) + r2(X), deg r1(X),deg r2(X) < deg b(X).

Then

(q1(X)− q2(X))b(X) = r1(X)− r2(X), deg(r1(X)− r2(X)) < deg b(X).

The right hand side of this equation has degree less than deg b(X). If q1(X) 6=
q2(X). then because the leading coefficient of b(X) is a unit,

deg (q1(X)− q2(X)) b(X) = deg(q1(X)− q2(X)) + deg b(X) ≥ deg b(X).

Therefore we must have q1(X) = q2(X), and r1(X) = r2(X). �

The unique polynomials q(X) and r(X) are called respectively, the quotient
and remainder on dividing a(X) by b(X).

In the case of R = F a field then all b(X) 6= 0 have leading term a unit.
A non-zero polynomial is called monic if its leading coefficient is 1.
For any commutative ring R the condition on b(X) are satisfied for all monic

polynomials in b(X) ∈ R[X], and in particular for all polynomials X − a, a ∈ R.
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Roots and Factors.

2.2. Theorem. (The Remainder Theorem) Let a ∈ R be a commutative
ring, and f(X) ∈ R[X]. Then the remainder on division by X − a is f(a).

f(X) = (X − a)q(X) + f(a).

Proof. Since X − a has degree 1, the remainder on division by X − a is
constant r. So we have,

f(X) = (X − a)q(X) + r.

By uniqueness of the remainder we have X − a divides f(X) if and only if r = 0.
Putting X = a, gives r = f(a). Hence X − a is a factor of f(X) if and only if
f(a) = 0. �

2.3. Definition. Suppose R is a commutative ring. Then a ∈ R is called a
root of f(X) ∈ R[X] if f(a) = 0.

Then we have immediately from the Remainder Theorem,

2.4. Corollary. Let a ∈ R be a commutative ring, and f(X) ∈ R[X]. Then
(X − a)|f(X) in R[X] if and only if a is root of f .

3. Polynomials Over A Field

Let F be a field. We collect together some facts about its associated polynomial
ring F [X].

Units, Monic Polynomials and Associates.
The units of F [X] are the non-zero constant polynomials.
A monic polynomial is a polynomial,

f(X) = a0 + a1X + · · ·+ an−1X
n−1 +Xn

with leading coefficient 1.
The associates of f(X) ∈ F [X] are all cf(X) with c ∈ F×
In F [X] every non-zero polynomial has exactly one monic associate.
So just as in Z exactly of any non-zero integer is positive in F [X] exactly one

associate of any non-zero polynomial is monic.
Domain Properties.
We know polynomials over a field form an integral domain.

3.1. Proposition. F [X] is Euclidean with respect to deg.

Proof. deg f(X) ∈ N for every non-zero polynomial f(X).

ED1 For a(X), b(X) non-zero polynomials in F [X],

deg a(X)b(X) = deg a(X) + deg b(X) ≥ deg a(X).

ED2 By the division algorithm, for any a(X), b(X) ∈ R with b(X) 6= 0 there
exist q(X) and r(X) in F [X] such that

a(X) = b(X)q(X) + r(X),

and either r(X) = 0 or 0 ≤ deg r(X) < deg b(X).
Recall that when dividing a(X) by b(X) the quotient q(X) and re-

mainder r(X) are uniquely determined.

�

Consequently F [X] is a principal ideal domain and therefore a unique factor-
isation domain. Just as the non-zero ideals of Z correspond to the positive integers,
the non-zero ideals in F [X] correspond to the monic polynomials.
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3.2. Proposition. Each non-zero ideal I = F [X]m(X) where is m(X) is the
unique monic polynomial of minimal degree in I.

Proof. All Euclidean domains R are principal ideals domains. Since R is
Euclidean with respect to deg, any non-zero ideal I = F [X]a(X) where a(X) ∈ I
is of minimal degree for non-zero a(X) ∈ I. Hence I = F [X]m(X) where is m(X)
is the monic associate of a(X). Any other non-constant multiple of m(X) will have
higher degree than m(X). So m(X) is the unique monic polynomial of minimum
degree in I. Hence I = F [X]m(X) where m(X) is the monic associate of a(X). �

Unique Factorisation.
Let f(X) ∈ F [X] be non-zero polynomial. Then f(X) is reducible means it

can be factored as a product of two polynomials each of degree less than deg p(X).
Thus f(X) is irreducible if and only if in any factorisation p(X) = a(X)b(X), one
of a(X) and b(X) is a non-zero constant.

Exactly one associate of an irreducible is monic. Hence in F [X] every monic
polynomial is product of irreducible monic polynomials and this product is unique
up to order of factors.

Degree One Factors.
The monic irreducibles of degree 1 in F [X] are the (X−a) with a ∈ F . By the

Remainder Theorem irreducible divisors of a polynomial f(X) correspond to roots
of f(X).

3.3. Proposition. Let F be a field. Suppose and f(X) ∈ F [X] has distinct
roots a1, . . . , an ∈ F . Then in F [X],

(X − a1) · · · (X − an)|f(X).

Proof. Proof is by induction on n. The result holds for n = 1 by the previous
corollary. If n > 1 and we suppose know the result is true for n − 1, then we can
conclude that for some g(X) ∈ F [X],

f(X) = (X − a1) · · · (X − an−1)g(X)

To complete the induction it remains to show X − an is a factor of g(X). Since an
is a root of f , f(an) = 0. Hence

(an − a1) · · · (an − an−1)g(an) = f(an) = 0.

By assumption none of (an − a1) · · · (an − an−1) is zero. Hence, since F is a field,
we must have g(an) = 0. We conclude by the Remainder Theorem that X − an is
factor of g(X). �

3.4. Corollary. A polynomial of degree n over a field has at most n distinct
roots.

3.5. Definition. We call a ∈ R a root of f(X) ∈ R[X] a root of multiplicity
m if (X − a)m|f(X) but (X − a)m+1 - f(X).

When we count roots of a polynomial a root of multiplicity m counts as m
roots.

3.6. Proposition. Let F be a field. Suppose and f(X) ∈ F [X] has distinct
roots a1, . . . , ar ∈ R with multiplicities m1 · · ·mr respectively. Then

(X − a1)m1 · · · (X − ar)mr |f(X).

Proof. Exercise. �

3.7. Corollary. A polynomial of degree n over a field can have at most n
roots.
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4. Unique factorisation Domains

Suppose R is a unique factorisation domain. We will relate factorisation in
R[X] to factorisation in R and F [X], where F is the quotient field of R. These
results were initially obtained by Gauss in the case R = Z, F = Q.

4.1. Definition. (Primitive Polynomials)
A polynomial f(X) = a0 + a1X + · · ·+ anX

n, with coefficients in R, is called
primitive if gcd(a0, . . . , an) = 1.

Given any f(X) 6= 0 in R[X] and c ∈ R a gcd of its coefficients, then f(X) =
cp(X) with p(X) primitive. This decomposition is unique up to units.

A polynomial h(X) ∈ R[X] is not primitive if and only if some irreducible π
divides all its coefficients, that is π|R[X].

4.2. Lemma. Suppose f(X) and g(X) are polynomials in R[X], and π is an
irreducible element of R. Then π|f(X)g(X) if and only if π|f(X) or π|g(X).

Proof. We assuming R is a unique factorisation domain. Hence π irreducible
implies π is a prime element of R. We consider reduction modulo π. Set R = R/Rπ.

(1) For all a ∈ R, let a = a + Rπ ∈ R, be the reduction of a modulo π.
Reduction modulo π is homomorphism from R to R. This extends to a
homomorphism,

h(X) = a0 + · · ·+ anX
n 7→ f(X) = a0 + · · ·+ anX

n ∈ R[X]

from R[X] to R[X]. Hence f(X) = g(X)h(X).
(2) We have f(X) = 0 if and only if π|f(X).
(3) So far we have not used π ∈ R prime.

π ∈ R prime ⇔ R = R/Rπ is an integral domain, (by Proposition 2.14)

⇔ R[X] is an integral domain (by Proposition 1.17)

Hence in R[X] a product is zero if and only if one of its factors is zero.

Putting these facts together,

π|f(X) ⇔ f(X) = 0, by (2)

⇔ g(X)h(X) = 0, by (1)

⇔ g(X) = 0 or h(X) = 0, by (3)

⇔ π|g(X) or π|h(X), by (2) again.

�

Note the crucial implication in this lemma is if π|f(X)g(X) then π|f(X) or π|g(X).

The converse is true for all π ∈ R. The proof above applies to any prime element π in a

commutative ring. In particular it implies that if π is a prime element of a commutative

ring R then π is a prime element of the the polynomial ring R[X]. Since the zero element of

a commutative ring R is prime if and only if R is an integral domain we see this generalises

the result that R an integral domain implies R[X] an integral domain, which lies at the

core of the proof above.

Suppose f(X), g(X) ∈ R[X]. The crucial implication in Lemma 4.2 tells us
that if f(X)g(X) not primitive, one at least of f(X) or g(X) is not primitive, or
equivalently if both f(X) and g(X) are primitive then so is their product. The
converse implication tells us that if f(X) or g(X) is not primitive then neither is
f(X)g(X). Hence f(X)g(X) cannot be primitive unless f(X) and g(X) are both
primitive. Hence we have the following.
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4.3. Proposition. A product of two polynomials with coefficients in a a unique
factorisation domain is primitive if and only if the two factors are primitive.

Note the crucial implication here is that a product of primitive polynomials is
primitive.

Gauss’ Lemma. For applications and examples later we want to investigate
the reducibility and irreducibility of polynomials with rational coefficients. The
following Theorem and its Corollaries are key to such investigations.

4.4. Theorem. (Gauss’ Lemma Rational Version)
If a primitive polynomial with integer can be factored in two polynomials with

rational coefficients then it has an equivalent factorisation as product of two poly-
nomials with integer coefficients.

4.5. Corollary. Suppose f(X) ∈ Z[X]. Then f(X) is reducible in Q[X] if
and only if it can be factored in Z[X] as a product of polynomials of lower degree.

4.6. Corollary. Suppose f(X) is a monic polynomial with integer coefficients.
Then every monic divisor of f(X) over the rational numbers has integer coefficients.

We prove these in the our more general context of a R a unique factorisation
domain its quotient field F . This result is the key to investigating factorisation in
R[X].

Since F is the quotient field of R we can express any non-zero f(X) ∈ F [X],
in the form f(X) = λp(X) for some non-zero λ ∈ F , and p(X) ∈ R[X] primitive.
First put all the coefficients of f(X) over a common denominator d ∈ R, so that
f(X) = g(X)/d with g(X) ∈ R[X]. Then extract a greatest common divisor c from
the coefficients to write g(X) = cp(X), p(X) primitive. Then f(X) = λp(X) with
λ = c/d.

4.7. Lemma. Suppose f(X) and g(X) are primitive polynomials.
Then if f(X) = λg(X) for some λ ∈ F×, then λ is a unit of R.
Hence if a pair of primitive polynomials are associates in F [X] then they are

associates in R[X].

Proof. Since F is the field of fractions of R, we can write λ in the form
λ = a/b, a, b non-zero elements of F . Then in R[X], bf(X) = ag(X). Looking at
the left hand side we see b is gcd of the coefficients and looking on the right hand
side a is gcd of the coefficients. Hence a = bu for some unit u ∈ R. So λ = a/b = u
is a unit of R. �

4.8. Theorem. (Gauss’ Lemma General Version)
Let R be a unique factorisation domain and F its quotient field. Then if a

primitive polynomial can be factored into two polynomials coefficients in F then it
has an equivalent factorisation as product of two polynomials with coefficients in R.

Proof. Let h(X) be primitive an suppose h(X) = f(X)g(X) in F [X]. We
can express each of f(X) and g(X) as non-zero constant in F times a primitive
polynomial. Hence in F [X] h(X) = λp(X)q(X) with λ ∈ F×, where p(X) is a
primitive multiple of f(X) and q(X) is a primitive multiple of g(X).

By Gauss’ Lemma, p(X)q(X) is primitive. So by Lemma 4.7 above, λ ∈ R×.
Hence we have a factorisation h(X) = λp(X)q(X), with λp(X) a primitive multiple
of f(X) and q(X) a primitive multiple of g(X). �

4.9. Corollary. Suppose f(X) ∈ R[X]. Then f(X) is reducible in F [X] if
and only if it can be factored in R[X] as a product of polynomials of lower degree.

Proof. Exercise. �
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4.10. Corollary. Suppose f(X) is a monic polynomial with coefficients in R.
Then every monic divisor of f(X) in F [X] has coefficients in R.

Proof. A monic polynomial with coefficients in R is primitive. So f(X) is
primitive. Suppose b(X) ∈ F [X] a is monic divisor of f(X). Then f(X) =
b(X)c(X) for some monic c(X) ∈ F [X]. By Gauss’ Lemma, there is an equi-
valent factorisation of f(X) as product of polynomials with coefficients in R. That
is for some non-zero λ ∈ F ,

f(X) = [λ−1b(X)][λc(X)].

with λ−1b(X) ∈ R[X] and λc(X) ∈ R[X]. Looking at the leading coefficient of each
factor we deduce λ−1 ∈ R, and λ ∈ R. Hence λ is a unit of R. b(X) ∈ λR[X] =
R[X]. �

4.11. Theorem. (The Eisenstein Irreducibility Criteria)
Let f(X) = a0 + · · · + anX

n ∈ Z[X]. Suppose that for some rational prime
number p,

p - an, p|an−1, . . . , p|a0, but p2 - a0.
Then f(X) is irreducible in Q[X].

Proof. Since p - an then if write f(X) = cp(X), forc ∈ Z, and p(X) primitive
then the hypothesis of the theorem apply to the coefficients of p(x). Hence without
loss of generality we may assume f(X) is primitive

By Gauss’s lemma f(X) reducible in Q[X] implies we can factor f(X) as a
product f(X) = g(X)h(X) with g(X), h(X) ∈ Z[X] non-constant. Hence

g(X) = g0 + · · ·+ grX
r, h(X) = h0 + · · ·+ hsX

s, 0 < r, s < n, all gi, hi ∈ Z

Reducing modulo p, gives

anX
n = g(X)h(X) in Z/pZ [X].

For p a prime number Z/pZ is a field. Hence we deduce that g(X) = grX
r, and

h(X) = hsX
s. This implies that the constant terms g0 and h0 are each divisible

by p. But then a0 = g0h0 is divisible by p2, contradicting our assumption. Hence
f(X) is must be irreducible. �

Note we have used above that for polynomials over a field any divisor of a
monomial aXn, a 6= 0, is of the form bXr, b 6= 0, r ≤ n. This is true more generally
for polynomials over an integral domain. In fact it is immediate consequence of the
field result, since every integral domain is embedded in its field of fractions. Hence
the proof above extends to any unique factorisation domain R.

4.12. Theorem.
Let R be a unique factorisation domain with field of fractions F . Suppose

f(X) = a0 + · · ·+ anX
n ∈ R[X] and that for some irreducible element π ∈ R,

π - an, π|an−1, . . . , π|a0, but π2 - a0,

Then f(X) is irreducible in F [X].

Unique Factorisation in Polynomial Domains. We continue the assump-
tions of the last section. We let F be the field of fraction of a unique factorisation
domain R. We can give a complete description of factorisation in R[X] in terms of
factorisation in R and F [X].

The units of R[X] are the units of R. The only divisors of a constant polynomial
are constants. Hence the constant irreducibles are the π ∈ R with π irreducible in
R. Hence every constant polynomial is a product of irreducibles in R[X] and this
product is unique up to associates and the order of factors.
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A non-primitive polynomial of positive degree is reducible.
Now suppose p(X) is a non-constant primitive polynomial. Then p(X) has

no constant factors. Hence by Gauss’ Lemma p(X) is reducible in R[X] if and
only if it it is reducible in F [X]. Hence the non-constant irreducibles of R[X]
are the primitive polynomials p(X) which are irreducible in F [X]. Suppose now
p(X) is any non-constant primitive polynomial. Then by repeated applications of
Gauss’ Lemma p(X) has an corresponding factorisation into irreducible primitive
polynomials pi(X).

p(X) = p1(X) . . . pm(X)

Suppose we have second such factorisation,

p(X) = q1(X) . . . qn(X),

into irreducible primitive polynomials qi(X). Then by unique factorisation in F [X],
m = n and after reordering if necessary, p1 = λ1q1, . . . pn = λnqn, with λ1, . . . , λn ∈
F×. Then by Lemma 4.7 each λi is a unit of R. Hence factorisation of primitive
polynomial into irreducible in R[X] is unique, up to order of factors and associates.

Suppose f(X) 6= 0 in R[X] is not a constant or primitive. Then f(X) can be
factored as f(X) = cp(X), for some non-unit c and p(X) a primitive polynomial
of positive degree. This decomposition is unique up to associates. From above c
is uniquely a product irreducibles in R[X] up to order of factors and associates, as
is p(X). Hence f(X) is uniquely a product of irreducibles in R[X] up to order of
factors and associates.

We have proved the following.

4.13. Theorem. Let R be a unique factorisation domain. Then the polynomial
ring R[X] is a unique factorisation domain.

4.14. Corollary. If the R is unique factorisation domain then every polyno-
mial ring R[X1, . . . , Xn] is a unique factorisation domain.

In particular we have both the following

4.15. Corollary. Every ploynomial ring Z[X1, . . . , Xn] is a unique factorisa-
tion domain.

4.16. Corollary. Every polynomial ring F [X1, . . . , Xn] over a field F is a
unique factorisation domain.



CHAPTER 6

Field Extensions

Let F be a field. A field K is said to be an extension field of K, if F is subfield
of K. By a field extension K/F we mean a pair of fields K and F with K an
extension field of F .

For example C is an extension field of R, Q(
√

2) is an extension field of Q, R is
an extension field of Q. In the first two examples we can describe the field structure
of the extension field in purely algebraic terms. It is such extensions that we will
study. The passage from Q to R involves analysis.

The Prime Fields. The fields Q, and Fp, p > 0 a prime number are called the
prime fields.

Recall that an integral domains, and therefore any field are either of charac-
teristic 0, or have positive prime characteristic. If a field F has characteristic zero
we embed Z as subring of F by identifying n = n1, (1 ∈ F ). Then Q the field of
fractions of Z is embedded as subfield of F . Hence every field of characteristic zero
is an extension field of Q. Suppose a field F has prime characteristic p > 0. Then
for a, b ∈ Z we have

a1 = b1 if and only if a ≡ b (mod p).

In this case we identify n (mod p) with n1 ∈ F . This embeds Fp as subfield of
F . Thus each field is an extension of a unique prime field. Fields of characteristic
zero are the extension fields of Q, while for each prime number p > 0, fields of
characteristic p are the extension fields of Fp.

1. Simple Algebraic Extensions

1.1. Definition (Simple Extensions).
Suppose K/F is a field extension and α ∈ K. Recall that the extension of F

by α is the subfield

F (α) =

{
f(α)

g(α)
: F (X), g(X) ∈ F [X], g(α) 6= 0

}
,

of K. If K = F (α) for some α ∈ K we call K a simple extension of F .

1.2. Definition (Algebraic Elements). Let K/F be a field extension. Then
α ∈ K is called algebraic over F if α is a root of a non-zero polynomial f(X) with
coefficients in F . That is there are elements f0, f1 . . . , fn ∈ F , not all 0 such that

f0 + f1α+ · · ·+ fnα
n = 0.

Minimal Polynomials and Degrees. For any α ∈ K,

{f(X) ∈ F [X] : f(α) = 0}
is an ideal of F [X]. In fact it is the kernel of the evaluation map,

εα : F [X]→ K.

Hence α is algebraic over F if and only if

ker εα = {f(X) ∈ F [X] : f(α) = 0} 6= {0} .

59
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Then {f(X) ∈ F [X] : f(α) = 0} = F [X]m(X), where m(X) = mα,F (X) is the
unique monic polynomial such that m(α) = 0.

The polynomial m(X) = mα,F (X) is called the minimal polynomial of α over
F .

The degree of the minimum polynomial mα,F (X) of is the called the degree of
α with respect to F .

1.3. Theorem. Let K/F be a field extension and α ∈ K be algebraic over
F . Let m(x) = mα,F (X) be the minimal polynomial of α over F , and set d =
degm(X).

(1) The minimum polynomial m(X) is irreducible in F [X].
(2) For f(X) ∈ F [X], f(α) = 0 if and only if m(X)|f(X).
(3) Evaluation at α induces an isomorphism F [X]/F [X]m(X) ∼= F (α).
(4) F (α) =

{
a0 + a1α+ · · ·+ ad−1α

d−1 : a1, a1, . . . , ad−1 ∈ F
}

.
Any representation of an element of F (α) in the form

a0 + a1α+ · · ·+ ad−1α
d−1, a1, a1, . . . , ad−1 ∈ F,

is unique.

Proof. (1) If we did have m(X) reducible in F [X] then we would be
able to express it as product m(X) = p(X)q(X) of monic polynomials
p, q ∈ F [X] of lower degree. Then evaluating at α would give p(α)q(α) = 0
in the field K. This would imply p(α) = 0 or q(α) = 0 contradicting the
definition of m(X). Hence m(X) is irreducible.

(2) From the equality {f(X) ∈ F [X] : f(α) = 0} = F [X]m(X) , f(X) ∈ F [X]
and f(α) = 0 if and only if f(X) is a multiple of m(X).

(3) Set I = F [X]m(X). By the discussion leading to the definition of the
minimum polynomial m(X), I is the kernel of the evaluation map εα :
F [X] → K. By the First Isomorphism Theorem evaluation at α induces
an isomorphism f(X) + I) = f(α) from F [X]/I to F [α]. Since F [X]
is a principal ideal domain and m(X) irreducible in F [X] the quotient
F [X]/I is a field, by Proposition 2.17. Consequently F [α] is subfield of
K containing F and α. Hence F (α) = F [α].

(4) By the division algorithm for polynomials each f(X) ∈ F [X] has unique
representation in the form

f(X) = m(X)q(X) + r(X), deg r(X) < d = degm(X).

Consequently each coset f(X) + I of F [X]/I is uniquely of the form

a0 + a1X + · · ·+ ad−1X
d−1 + I, a1, a1, . . . , ad−1.

Hence

F (α) =
{
a0 + a1α+ · · ·+ ad−1α

d−1 : a1, a1, . . . , ad−1 ∈ F
}
,

and a representation of an element of F (α) in the form

a0 + a1α+ · · ·+ ad−1α
d−1, a1, a1, . . . , ad−1 ∈ F,

is unique.
�

Note that if p(X) and m(x) are monic irreducible polynomials in F [X] then
p(X)|m(X) if and only if p(X) = m(X). So from (2) we deduce the following useful
corollary.
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1.4. Corollary. Suppose K/F is a field extension and α ∈ K is root of
a monic irreducible polynomial m(X) ∈ F [X]. Then α is algebraic over F with
minimum polynomial m(X).

Example. Let n be a positive integer. Then n
√

2 ∈ R is a root of Xn − 2. This
polynomial has integer coefficients which satisfy the conditions of the Eisenstein
irreducibility Criteria (Theorem 4.11) for the prime 2. Hence Xn − 2 is irreducible

over Q. So n
√

2 ∈ R is algebraic over Q with minimum polynomial Xn − 2.

2. The Degree of an Extension

2.1. Observation. Let K/F be a field extension. Then under field addition
and multiplication, K is vector space over F .

Proof. Check the vector space axioms, follow from standard field properties.

• K is closed under multiplication by elements of F .
• K is an abelian group under addition.

For all λ, µ ∈ F and v, w ∈ K,

• (λ+ µ)v = λv + µv.
• λ(v + w) = λv + λw.
• λ(µv) = (λµ)v.
• 1v = v.

�

2.2. Definition (The Degree of an Extension). Let K/F be a field extension.
Then the degree of the extension is the dimension dimF K of K viewed as vector
space over F is called the degree of the extension. The degree is denote by [K : F ]:

[K : F ] = dimF K.

The extension is called a finite extension if [K : F ] if is finite.

2.3. Proposition. Suppose K/F is a field extension and α ∈ K. Then α is
algebraic of F if and only if [F (α) : F ] is finite. Then if d is the degree of α with
respect to F , T1, α, . . . , αd−1 is an F -basis and [F (α) : F ] = d.

Proof. Suppose K is an extension field of F and α ∈ K. An F -linear relation
between the powers of α is an equation

a0 + a1α+ a2α
2 + · · ·+ anα

n = 0,

with n ∈ N and a0, a1, . . . , an ∈ F not all 0. Equivalently

f(x) = a0 + a1X + · · ·+ anX
n

is a non-zero polynomial in F [X] with p(α) = 0. If α is not algebraic over F the
powers of α,

1, α, α2, α3, . . .

which all lie in F (α), are linearly independent over F . Then [F (α) : F ] is infinite.
Suppose case α algebraic over F of degree d. Then by (4) of Theorem 1.3 says

in vector space language, F (α) is the F -span

1, α, . . . , αd−1

and an uniqueness of representation says this spanning set is an F -basis of F (α).
So [F (α) : F ] = d. �



62 6. FIELD EXTENSIONS

Examples.

• [C : R] = 2.
• For any field F and indeterminate X, [F (X) : F ] is infinite.

• Recall that for all n ≥ 1, Q( n
√

2) ∈ R is algebraic over Q of degree n.

So [Q( n
√

2) : Q] = n.

By a tower of fields we mean any sequence of field extensions,

F0 ⊆ F1 ⊆ · · · ⊆ Fr−1 ⊆ Fr.

2.4. Theorem. (The Tower Theorem) For any tower of fields L ⊃ K ⊃ F ,

[L : F ] = [L : K][K : F ].

If K/F has F -basis α1, . . . , αm and L/K has K-basis β1, β2, . . . , βn then the mn
elements

αiβj ∈ L, (1 ≤ i ≤ m, 1 ≤ j ≤ m)

form an F -basis of L.

The Tower Theorem says that degree multiplies in towers. We have the follow-
ing immediate corollary.

2.5. Corollary. If we have tower of field extensions,

F0 ⊆ F1 ⊆ · · · ⊆ Fr−1 ⊆ Fr.
then

[Fr : F0] = [Fr : Fr−1] . . . [F1 : F0].

We derive the Tower Theorem from the the following two Lemmas which are
each of independent interest.

2.6. Lemma. (The Generating Set Lemma) Suppose we have extensions
of fields L/K, and K/F . Then if α1, α2, . . . , αm ∈ K span K as an F -space and
β1, β2, . . . , βn ∈ L span L as a K-space the the elements

αiβj ∈ L, (1 ≤ i ≤ m, 1 ≤ j ≤ m)

span L as an F -space.

Proof. Suppose ν ∈ L. Then because the βj span L as K-space

ν =

n∑
j=1

µjβj

for some µj ∈ K.
Because the αi span K as F -space, for each j,

µj =

m∑
i=1

λijαi

for some λij ∈ F . So

ν =
∑

λijαiβj

lies in the F -span of the αiβj . �

2.7. Lemma. (The Linearly Independent Sets Lemma) Suppose we have
extensions of fields L/K, and K/F . Then, if α1, α2, . . . , αm ∈ K are linearly
independent over F , and β1, β2, . . . , βn ∈ L are linearly independent over K, the
elements

αiβj ∈ L, (1 ≤ i ≤ m, 1 ≤ j ≤ m)

are linearly independent over F .
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Proof. Suppose that ∑
i,j

λijαiβj = 0

all λij ∈ F . Then ∑
j

(∑
i

λijαi

)
βj = 0.

Here for each j the coefficient of βj , ∑
i

λijαi

is in K since all λij ∈ F ⊆ K and all αi ∈ K. So, by the linear independence of
the βj over K, for each j,

m∑
i=1

λijαi = 0.

Since the αi are linearly dependent over F this gives λij = 0 for all i, j. �

2.8. Corollary. If either of [L : K] or [K : F ] is infinite then so is [L : F ].

Proof. If [K : F ] is infinite we can find arbitrarily large sequences of F -linearly
independent elements of K, and hence large sequences of F -linearly independent
elements of L. If [L : K] is infinite we can find arbitrarily large sequences of
K-linearly independent elements of L, and hence large sequences of F -linearly in-
dependent elements of L. In either case we have that L is not finite dimensional as
an F -space. �

Proof. (Proof of Tower Theorem) If either [L : K] =∞ or [K : F ] =∞ then
by the above corollary, [L : F ] =∞. So [L : K][K : F ] =∞ = [L : F ].

Suppose m = [K : F ] and n = [L : F ] are both finite. Then if we take an F -
basis α1, α2, . . . , αm of K and a K-basis β1, β2, . . . , βn of L then by the Generating
Set Lemma 2.6 and the Linear Independent Set Lemma 2.7

αiβj , 1 ≤ i ≤ m, 1 ≤ j ≤ n

is an F -basis of L. So [L : F ] = nm = [L : K][K : F ]. �

An immediate frequently used corollary of the Tower Theorem is the following.

2.9. Corollary. Suppose L/K is a finite extension of fields. Then any field
E intermediate between L and F is a finite extension of F and [E : F ]|[L : F ].

3. Algebraic Extensions

3.1. Definition. (Algebraic Extensions)
An field extension K/F is called an algebraic extension if every element of K

is algebraic over F .

3.2. Proposition. Suppose K is a finite extension field of F . Then K is an
algebraic extension of F , and every element of K is algebraic over F of degree
dividing [K : F ].

Proof. Given α ∈ K consider the tower of fields F ⊆ F (α) ⊆ K.
Then from the Tower Theorem we deduce [F (α) : F ] divides [K : F ] < ∞.

Hence α is algebraic over F of degree [F (α) : F ] dividing [K : F ]. �

3.3. Corollary. Suppose α ∈ K is algebraic of degree d over F . Then every
β ∈ F (α) is algebraic over F of degree dividing d.
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Recall that for K/F a field extension and α1, . . . , αn ∈ K. Then the field
generated by F and α1, . . . , αn,

F (α1, . . . , αn) =

{
(f(α1, . . . , αn)

g(α1, . . . , αn)
: f, g ∈ F [X1, . . . , Xn], g(α1, . . . , αn) 6= 0

}
.

is the minimal subfield of K containing F and α1, . . . , αn.

3.4. Proposition. Let F (α, β)/F be a field extension with α, β are algebraic
over F . Then F (α, β) is a finite extension of F . Further,

(1) [F (α, β) : F ] ≤ [F (β) : F ][F (α) : F ], and
(2) [F (α, β) : F ] is divisible by the least common multiple of [F (α) : F ] and

[F (β) : F ].

Proof. Consider the Tower of field F ⊆ F (α) ⊆ F (α)(β) = F (α, β).
Let p(X) be the minimum polynomial of β with respect to F . Then p(X) ∈

F [X] is a polynomial with coefficients in F (α) with root β. Hence β is algebraic
over F (α) of degree less than or equal to deg p(X). So

[F (α, β) : F (α)] ≤ deg p(X) = [F (β) : F ].

Hence by the Tower Theorem,

[F (α, β) : F ] = [F (α, β) : F (α)][F (α) : F ] ≤ [F (β) : F ][F (α) : F ].

In particular [F (α, β) : F (α)] is finite.
Because α, β ∈ F (α, β) both [F (α) : F ] and [F (β) : F ] divide [F (α, β) : F ].

Hence [F (α, β) : F ] is divisible by their lowest common multiple. �

3.5. Corollary. If [F (α) : F ] and F (β) : F ] are relatively prime, then

[F (α, β) : F ] = [F (β) : F ][F (α) : F ].

Proof. This follows immediately for 1. and 2. �

Example.
We know 3

√
2 is algebraic of degree [Q( 3

√
2) : Q] = 3, with minimum polynomial

over Q, X3 − 2.
The complex number ω = −1 + i

√
3)/2 in C and its comlex conjugate

ω = ω2 = (−1− i
√

3)/2,

are the roots of X2 + X + 1 ∈ Q[X] , which is irreducible over R, and hence over
Q. So ω is algebraic of degree [Q(ω) : Q] = 2, with minimum polynomial over Q,
X2 +X + 1.

We deduce the subfield Q( 3
√

2, ω) of C is a finite extension of Q. Further since

[Q(ω) : Q] = 2 and [Q( 3
√

2) : Q] = 3 are relatively prime, we deduce

[Q(
3
√

2, ω) : Q] = [Q(
3
√

2) : Q][Q(ω) : Q] = 6.

From the Tower Theorem we have [Q( 3
√

2, ω) : Q(ω)] = 3. So 3
√

2 is algebraic
over Q(ω) of degree 3. Since it is root of X3−2 with coefficients in Q(ω) this must be

the minimum polynomial of 3
√

2 with respect to Q(ω). Hence the polynomial X3−2

remains irreducible in Q(ω)[X]. A similar argument shows [Q( 3
√

2, ω) : Q( 3
√

2)] = 2,

and X2 +X + 1 is therefore the minimum polynomial of ω over Q( 3
√

2). Hence the

polynomial X2 +X + 1 remains irreducible over the field Q( 3
√

2).
The Proposition on adjoining a pair of algebraic elements has an immediate

generalisation.
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3.6. Proposition. Let F (α1, . . . , αn)/F is a field extension with α1, . . . , αn all
algebraic over F . Then F (α1, . . . , αn) is a finite extension of F of degree

[F (α1, . . . , αn) : F ] ≤ [F (α1) : F ] . . . [F (αn) : F ]

divisible by the least common multiple of [F (α1) : F ], . . . , [F (αn) : F ].

Proof. Exercise. �

3.7. Theorem. Let K/F be a field extension. Then elements of K which are
algebraic over F form a subfield K containing F .

Proof. It suffices to show that this set of elements contains F and is closed
under field operation, addition, subtraction, multiplication and division by non-zero
elements..

Every element of F is algebraic over F . From Proposition 3.4 if α, β ∈ K
are algebraic over F , then K(α, β) : F is a finite extension. Hence as proved in
Proposition 3.2 every element of K(α, β) is algebraic over F . In particular α ± β,
αβ and α/β (when β 6= 0), all lie in K(α, β) and are thus are all algebraic over
F . �

3.8. Definition. (Algebraic Closure) For K/F a field extension then the
subfield of K consisting of all α algebraic over F is called the algebraic closure of
F in K.

Note the algebraic closure of F in K is an algebraic extension of F .

3.9. Proposition. Let L/K/F be a tower of fields. Then L algebraic over K
and K algebraic over F implies L algebraic over F .

Proof. Let α ∈ L. We show aim to show α is algebraic over F .
By assumption α is algebraic over K. So f(α) = 0 for some non-zero

f(X) = λ0 + λ1X + · · ·+ λnX
n ∈ K[X]

Then λ0, . . . , λn ∈ K. So K algebraic over F implies λ0, . . . , λn are all algebraic
over F . Therefore By Proposition 3.6, E = F (λ0, . . . , λn) is a finite extension of F .
The coefficients of f(X) lie in E. Since α is a root of f(X) we deduce α is algebraic
over E, that is E(α) is finite extension of E. So, by the Tower Theorem 2.4, E(α)/F
is a finite extension. Hence by Proposition 3.2, α ∈ E(α) is algebraic over F . �

The Field of Algebraic Numbers.

3.10. Definition. (Algebraic Numbers) A complex number is called an
algebraic number if it is a root of a non-zero polynomial with rational coefficients.
We let Q denote the set of algebraic numbers.

Then Q is the algebraic closure of Q in C. Hence the algebraic numbers Q form
a subfield of C, and the extension Q/Q is algebraic.

3.11. Observation. The algebraic numbers form an infinite algebraic extension
of the rational numbers.

Proof. Recall that for all n ≥ 1, n
√

2 is algebraic over Q of degree n. Therefore
by the Tower Theorem applied to the tower of fields Q ⊇ Q( n

√
2) ⊇ Q( n

√
2)/Q,

[Q : Q] = [Q : Q(
n
√

2)][Q(
n
√

2) : Q] ≥ [Q(
n
√

2 : Q] = n→∞ as n→∞.

�

This shows that although finite extensions are algebraic, algebraic extensions
are not necessarily finite.
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4. Transcendental Elements

Recall F a field, K an extension field and α ∈ K ,then

F (α) = {f(α)/g(α) : f(X), g(X) ∈ F [X], g(α) 6= 0} ⊇ F [α]

is the minimal subfield of K containing F and α We have so far discussed the case
α algebraic over F

4.1. Definition (Transcendental Elements). Let K/F be a field extension.
Suppose α ∈ K is not a root of any non-zero f(X) ∈ F [X]. Then α is said to be
transcendental over F .

An element α ∈ K transcendental over F if and only if the kernel of the
evaluation map εα : F [X] → K, ker εα = {0}. In this case f(X) 7→ f(α) defines
an isomorphism F [X] ∼= F [α]. This extends to an isomorphism F (α) ∼= F (X),
f(X)/g(X) 7→ f(α)/g(α).

Transcendental Numbers.
A complex number is called a transcendental number if it transcendental over

Q, that is not in Q.

• Louville 1851 showed how to construct some number which are transcend-
ental numbers over Q. For example

∞∑
n=1

1

10n!
.

• In 1874 Cantor showed that the real numbers are uncountable. The set Q
of algebraic numbers is countable. Hence there are uncountably infinitely
many real transcendental numbers.

• Showing a naturally occurring number is transcendental over Q is hard.
Hermite (1873): e is transcendental over Q.
Lindemann (1882): π is transcendental over Q.
It is unknown if, for example, Euler’s’ constant

γ = lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
is rational, let alone transcendental over Q.

• Gelfond and independently Schneider (1934): if a and b are algebraic and
over Q and b is irrational, ab is transcendental over Q. So for example

2
√
2 is a transcendental number.

5. Constructing Simple Algebraic Extensions

paragraph*Constructing the Complex Numbers as a Quotient Field
The fact the x2 = −1 has no solution x ∈ R implies the polynomial X2 + 1 is

irreducible in R[X]. Hence the quotient ring by the ideal
〈
X2 + 1

〉
= /R[X](X2+1),

R[X]/
〈
X2 + 1

〉
=
{
f(X) +

〈
X2 + 1

〉
: f(X) ∈ F [X]

}
is a field. On division by X2 + 1 any f(X) ∈ R[X] leaves a unique remainder
of degree less than 2. So every element of the field R[X]/

〈
X2 + 1

〉
is uniquely

expressible in the form a + bX +
〈
X2 + 1

〉
, for some a, b ∈ R. In terms of these

coset representatives

(a+ bX +
〈
X2 + 1

〉
) + (c+ dX +

〈
X2 + 1

〉
) = (a+ c) + (b+ d)X +

〈
X2 + 1

〉
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and multiplying using X2 +
〈
X2 + 1

〉
= −1 +

〈
X2 + 1

〉
,

(a+ bX +
〈
X2 + 1

〉
)(c+ dX +

〈
X2 + 1

〉
)

= (a+ bX)(c+ dX) +
〈
X2 + 1

〉
= ac+ (ad+ bc)X + bdX2 +

〈
X2 + 1

〉
= (ac− bd) + (ad+ bc)X +

〈
X2 + 1

〉
.

Also mapping a 7→ a+X is an embedding of R in R[X]
〈
X2 + 1

〉
. Hence a+ bX +〈

X2 + 1
〉
↔ a+bi is bijective map from the field R[X]/

〈
X2 + 1

〉
= R[X]/

〈
X2 + 1

〉
to the set C = {a+ ib : ab,∈ R}. If we define addition and multiplication in C by
(a + ib) + (c + id) = (a + c) + i(b + d), (a + bi)(c + di) = (ac − bd) + (ad + bc)i,
a, b, c, d ∈ R then this makes C into field isomorphic to R[X]/

〈
X2 + 1

〉
in which the

element i is algebraic over R with minumum polynomial X2 + 1 over R.. Further
identifying a = a+ i0 embeds R a subring of C.

We can generalise this to arbitrary fields, and irreducible polynomials.
We first review the structure of quotient rings of a polynomial ring over a field

modulo an arbitrary non-constant polynomial p(X). Recall that this quotient is
field if and only if p(X) is irreducible in F [X].

Notation: Recall 〈p(X)〉 = p(X)F [X] the ideal of F [X] generated by p(X).

5.1. Proposition. Let F be a field and p(X) ∈ F [X] a non-constant polyno-
mial of degree deg p(X) = d.

Then the following hold for the quotient ring

F [X]/ 〈p(X)〉 = {f(X) + 〈p(X)〉 : f(X) ∈ F [X]} .
(i) Every element of the ring F [X]/ 〈p(X)〉 is expressible uniquely in the form

a0 + a1X + · · ·+ ad−1X
d−1 + 〈p(X)〉

with a0, a1, . . . , ad−1 ∈ F , that is each coset has a unique representative
r(X) ∈ F [X] with deg r(X) < d.

(ii) Reduction modulo 〈p(X)〉 restricted to a ∈ F , a 7→ a + 〈p(X)〉, is an
embedding (injective ring homomorphism) of F into F [X]/ 〈p(X)〉.

Proof. (i) By the division algorithm for polynomials every f(X) ∈
F [X] can be expressed uniquely in the form f(X) = q(X)p(X) + r(X)
with q(X), r(X) ∈ F [X] and deg r(X) < deg p(X) = d. Hence every coset
modulo 〈p(X)〉 has a unique representative of degree less than d.

(ii) From part (i), a 7→ a + 〈p(X)〉 is an injection of F into the quotient
ring F [X]/ 〈p(X)〉. By definition of quotient ring a 7→ a + 〈p(X)〉 is a
homomorphism.

�

5.2. Theorem. Let F be a field and m(X) ∈ F [X] be a monic irreducible. Then
there is a simple algebraic extension field E = F (α) of F in which α is algebraic
over F with minimum polynomial m(X).

Proof. Let E be a copy of F [X]/ 〈m(X)〉 in which for f(X) ∈ F [X] of degree
less than d we label f(X) + m(X)F [X] by f(α). This is well defined by (i) of
the previous result. The field structure on F [X]/ 〈m(X)〉 pulls back to give a field
structure on E. The field F is embedded in E as the set of labels of the constant
cosets a + p(X)F [X]. By (ii) this embeds F as subfield of E. For an arbitrary
polynomial f(X) ∈ F [X] we have f(α) = 0 if and only if f(X) ≡ 0 (mod m(X)).
Hence α is algebraic over F with minimum polynomial m(X). �

5.3. Corollary. For F a field and f(X) a non-constant polynomial then we
can construct a finite extension of F in which f(X) has root.
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Proof. Let m(X) ∈ F [X] be a monic irreducible factor of f(X). We can
construct a finite extension of F in which m(X) has a root. This root will be root
of f(X). �

A Finite Field Example. Consider the polynomial p(X) = 1+X+X3 in F2[X].
Because p(1) = p(0) = 1, p(X) has no linear factor in F2[X]. Hence it is irreducible.
(If a cubic is factored into two factors one must be linear and the other a quadratic).
Set K = 〈p(X)〉. Then we can construct an extension field E of F2 isomorphic to
F2[X]/K by relabelling a+K as a for a ∈ F2 and X +K as α:

0 +K ↔ 0, 1 +K ↔ 1,

X +K ↔ α, 1 +X +K ↔ 1 + α,

X2 +K ↔ α2, (1 +X2) +K ↔ 1 + α2,

(X +X2) +K ↔ α+ α2, (1 +X +X2) +K ↔ 1 + α+ α2.

and 1 + α + α3 = p(α) = 0. So E = F (α) where α is algebraic over F2 with
minimum polynomial p(X). The field E has 8 distinct elements,

E =
{

0, 1, α, 1 + α, α2, 1 + α2, α+ α2, 1 + α+ α2
}
.

To multiply two arbitrary elements directly we just need to know α3 and α4 in
terms of 1, α, α3. From 1 + α+ α3 = 0 we deduce α3 = 1 + α, and α4 = α+ α2.

Continuing multiplying by α and replacing α3 by 1+α we can list all the powers
of α:

α5 = α2 + (1 + α) = 1 + α+ α2

α6 = α+ α2 + (1 + α) = 1 + α2

α7 = α+ (1 + α) = 1

The non-zero elements E× of E form a cyclic group under multiplication of 7.
Every element of E× is a power of α.

We can now find inverses to each non-zero element, using α−i = α7−i. We have
1−1 = 1 and

α−1 = α6 = 1 + α2, (1 + α2)−1 = 1 + α

α−2 = α5 = 1 + α+ α2, (1 + α+ α2)−1 = α2

(1 + α)−1 = α−3 = α4 = α+ α2 (α+ α2)−1 = 1 + α

For all x, y in a ring of commutative ring or field like E where 2 = 1 + 1 = 0
(x + y)2 = x2 + 2xy + y2) = x2 + y2. Since also (xy)2 = x2y2 and 12 =, squaring
is a homomorphism from E to E.

Hence from 1+α+α3 = 0 we deduce 1+α2 +(α2)3 = 0 and 1+α4 +(α4)3 = 0.
So p(x) has roots α, α2 and α4. So p(x) factors completely in E:

x3 + x+ 1 = (x+ α)(x+ α2)(x+ α4).

Galois Fields.
More generally if we take any irreducible polynomial m(X) ∈ Fp[X] we can

construct an extension field E = F (α) of Fp isomorphic to Fp[X]/m(X)Fp[X],
with α a root of m(X). If degm(X) = d then E is a finite field with pd elements.
Such a field is called a Galois Field.

5.4. Observation. Warning! Not every field of characteristic p > 0 is a finite
field. The rational function field Fp(X), (quotient field of Fp(X)), has characteristic
p and has infinitely many elements.
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6. Ruler and Compass Construction

The ancient Greeks left the following problems for posterity. Are there ruler
and compass construction to do the following.

(1) Duplicate the cube: given a magnitude construct a magnitude 3
√

2 times
as large.

(2) Square the Circle: construct a square with the same area as a given circle.
(3) Trisect a given angle.
(4) Draw a regular m-sided polygon, for a given m ≥ 3.

At first sight these look along way from field extensions. However we can use
theory of field and field extensions we have developed so far to show the first three
are impossible and for the fourth to severely limit the possible m.

Ruler and Compass Construction Rules.
Starting from two points A and B in a plane we can:

(1) Draw the straight line through any previously constructed points.
(2) Draw a circle with centre a previously constructed point radius the dis-

tance between any two previously constructed points
(3) Mark any point of intersection of these curves.

Basic Constructions.

6.1. Lemma.

(1) Given two marked points P and Q we can construct their mid-point and
perpendicular bisector.

(2) Given a point P on a constructed line l we can construct the perpendicular
to l through P .

(3) Given a constructed line l and a constructed point P not on the line we
can construct the foot F of the perpendicular from P to l.

Proof.

(1) Draw the circles centre P and Q radius |PQ|, the distance between P and
Q. Mark their intersection points R and S. Then SR is the perpendicular
bisector of PQ. This line meets the line L at the midpoint of P and Q.

(2) The line l must have another marked point P on it. Draw the circle
centre P radius |PR|. Mark this cuts l at R and the point R′ on the circle
opposite R. The required line is the perpendicular bisector of R and R′.
This can be constructed by (1).

(3) The line l must contain a pair of marked points. Let be Q be one of these.
If Q = F done. If not the circle centre P radius |PQ| cuts the line at Q
and another point Q′. Then F is the midpoint of Q and Q′ which can be
constructed by (1).

�

Introducing Coordinates.
Suppose we start we points with points A and B. Then we introduce Cartesian

coordinates as follows. The X-axis is the line through A and B. The Y -axis is the
line through A perpendicular to B. So the X-axis and the Y -axis are constructable
lines. We introduce coordinates by scaling to labeleling the point B by (1, 0).

If as we carry out a construction of we mark each new point as is constructed
we generate a sequence of points

(0, 0), P0 = (1, 0), P1, . . . , Pr

where for each i ≥ 1 each Pi is constructed directly from previously marked points.
That is Pi is either the intersection of a pair of lines joining a pair of previously
marked points, or of a line joining a pair of previously marked points and a circle
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centre a previously marked point radius the distance between previously marked
points, or a pair of circles centres previously marked pointa and radii distances
between previously marked points.

We call at point (α, β) ∈ R2 constructable if there is such a sequence terminating
with Pr = α, β).

Algebra of Lines and Circles.

6.2. Definition. Suppose F is subfield of R.
An F -line is line between point with coordinates in F .
F -circle is a circle centre a point with coordinates in F and radius the distance

between two points with coordinates in F .

6.3. Observation.

(1) An F -line has a Cartesian equation of the form aX + bY = c, a, b, c ∈ F .
(2) An F -circle has a Cartesian equation of the form X2 +Y 2 +aX+ bY = c,

a, b, c ∈ F .

Proof. Check. �

6.4. Lemma. (1) The intersection of two F -lines has coordinates in F .
(2) The intersection of a line and a circle or of two circles has coordinates in

F (
√

∆) for some ∆ ∈ F .

Proof.

(1) The solution to a pair of distinct linear equations with coefficients in F
lies in F .

(2) To find the points of intersection of a line and a circle which each have
equations with coefficients in F , we make a substitution to reduce to
solving a quadratic with coefficients in F . The intersection point can
be expressed in the form r + s

√
∆ where r, s ∈ F and ∆ ∈ F is the

discriminant of the quadratic.
To find the intersection of two F -circles we must solve a pair of

equations X2 + Y 2 + aX + bY = c and X2 + Y 2 + a′X + b′Y = c′

with coefficients in F , we subtract to reduce to to solving two equations
X2 + Y 2 + aX + bY = c, and (a− a′)X + (b− b′)Y = c− c′, which both
have coefficients in F as in the case just considered.

�

Application of the Tower Theorem.

6.5. Proposition. Suppose we have a sequence of points in R2,

(0, 0), (1, 0) = P0, P1, . . . , Pr

where for each i ≥ 1 each Pi = (αi, βi) is constructed directly from previously
marked points.

Let Fr be the subfield of R generated by the coordinates of P0, P1, . . . , Pr.
Then [Fr : Q] divides 2r.

Proof. For i ≥ 1, let Fi be the minimal subfield of R containing the coordin-
ates P0 = (1, 0), P1, . . . , Pi. Then F0 = Q and for all 1 ≤ i ≤ r, Fi = Fi−1(αi, βi).
At the i stage Pi is a point of intersection of two curves each of which is either an
Fi−1-line and or Fi−1-circle. By the previous lemma therefore either Fi = Fi−1 or

Fi−1 ⊆ Fi ⊆ Fi−1(
√

∆) for some ∆ ∈ Fi−1. In the first case [Fi : Fi−1] = 1 and the
second [Fi : Fi−1] = 1 or 2.

Applying the Tower Theorem to the tower of fields

Q = F0 ⊆ F1 ⊆ · · · ⊆ Fr,
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we find [Fr : Q] is a power of 2 dividing 2r. �

Constructable Numbers.

6.6. Definition. A real number α is called constructable if the point (α, 0) is
constructable. Let K denote the set of constructable numbers.

6.7. Lemma. The point (α, β) ∈ R2 is constructable if and only if both α, and
β are constructable.

Proof. Observe that the circle centre the origin and radius the distance between
O and (α, 0), cuts the X-axis at (±α, 0) and the Y -axis at (0,±α). Hence α is con-
structable if either of (α, 0) or (0, α) is constructable.

If the points (α, 0) and (0, β) are constructable then by construction (2) we
can construct the lines X = α and Y = β. Hence their intersection point (α, β) is
constructable.

If (α, β) is constructable then by construction (3) we can construct the points
(α, 0) and (0, β). �

Let K denote the set of constructable numbers.

6.8. Proposition. Constructable numbers K form are subfield of R.
For all α ∈ K, α > 0 implies

√
α is constructable.

Proof. First note 1 ∈ K, as (0, 1) is contructable Suppose α, β ∈ K.

(1) The constructable circle centre α radius |β| cuts the X-axis at (α ± β).
Hence α± β are constructable numbers.

(2) The line Y = αX is constructable as it passes through the constructable
points O and (1, α).
(a) It meets the he constructable line X = β at (β, αβ). So αβ ∈ K.
(b) If α 6= 0 it meets the constructable line Y = β at (β/α, β). So if

α 6= 0, β/α ∈ K.

The fact that 1 ∈ K ⊆ R and (1), (2)(a) and (2)(b) hold show K is subfield of
R.

Lastly note the identity,(
α− 1

2

)2

+ α =

(
α+ 1

2

)2

Hence if α > 0 then ((α− 1)/2,
√
α )) is a point of intersection of the line X =

(α − 1)/2 and the circle X2 + Y 2 = ((α+ 1)/2)
2
. If α ∈ K both this line and this

circle are constructable. Hence the point (α − 1)/2,
√
α) is constructable. Hence√

α ∈ K. �

6.9. Proposition. If α ∈ K is a constructable number α is algebraic of Q of
degree a power of 2.

Proof. This follows from Proposition 6.5, and Proposition 3.2
If α ∈ K, there is sequence of points

(0, 0), (1, 0) = P0, P1, . . . , Pr = (α, 0).

where for each i ≥ 1 each Pi = (αi, βi) is constructed directly from previously
marked points. Then if Fr is the field generated by the coordinates of all the Pi,
[Fr : Q] is power of 2. Since α ∈ Fr it is algebraic over Q of degree [Q(α) : Q]
dividing [Fr : Q], and hence algebraic over Q of degree a power of 2. �
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7. Impossibility Results

These are based on the immediate Corollary of Proposition 6.9: if α ∈ R and
[Q(α) : Q] is not a power of 2, α is not a constructable number.

Duplicating the Cube.

7.1. Proposition. It is not possible to construct a cube with twice the volume
of a given cube by ruler and compass construction.

Proof. If were possible to duplicate a cube, then starting with any line seg-
ment we could construct line segment 3

√
2 times as long. Hence 3

√
2 would be a

constructible number. But 3
√

2 is root of X3 − 2 ∈ Q[X]. This polynomial is irre-
ducible in Q[X], by the Eisenstein Criterion with p = 2. So m 3√2,Q(x) = X3 − 2

which shows [Q( 3
√

2) : Q] = 3, not a power of 2. So, by Proposition 6.9, 3
√

2 is not
a constructible number. Hence we cannot duplicate a cube by ruler and compass
construction. �

Squaring the Circle.

7.2. Proposition. There is no ruler and compass construction to produce a
square the same area as given circle.

Proof. Given such a construction, starting with a line segment AB and the
circle centre A radius AB, we could construct a square whose sides had length

√
π

times as long as the segment AB. This would imply
√
π ∈ K and hence π ∈ K.

Recall though that π is a transcendental number, that is [Q(π) : Q] = ∞, not a
power of 2. So by Proposition 6.9, π is not a constructible number. We conclude
we cannot square the circle with a ruler and compass construction. �

Trisecting Angles.

7.3. Proposition. There is no general construction for trisecting a given angle
using ruler and compass.

Proof. The intersection P (1/2,
√

3/2) = (cosπ/3, sinπ/3) of the line X = 1/2
with the unit circle is a constructable point. The line OP makes angle π/3 with the
positive X-axis. If there is a ruler and compass construction for trisecting angles
then we could construct the line making angle π/9 with the positive X-axis. This
line cuts the unit circle at (cosπ/9, sinπ/9). Hence it would follow that cosπ/9
and hence 2 cosπ/9 ∈ K.

We show 2 cosπ/9 is not a constructible number, and there can therefore be no
general ruler and compass construction to trisect a given angle.

Observe that

(2 cos θ)3 = (eiθ + e−iθ)3

= (e3iθ + e−3iθ) + 3(eiθ + e−iθ)

= (2 cos 3θ) + 3(2 cos θ).

Putting θ = π/9 we find

(2 cosπ/9)2 = 1 + 3(2 cosπ/9).

2 cosπ/9 is a root of X3 − 3X − 1. This is a monic polynomial with coefficients
in Z. By the Rational Root Theorem any rational root of this polynomial must
be an integral divisor of 1. None of the divisors ±1 of 1 are roots. So the cubic
has no rational roots. Hence it is irreducible over Q. So 2 cosπ/9 has minimum
polynomial X3 − 3X − 1 with respect to Q. Thus [Q(2 cosπ/9) : Q] = 3, not a
power of 2. Hence 2 cosπ/9 is not a constructible number. �
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Some Cyclotomy (Circle Division). We now consider the problem of construct-
ing a regular m-gon.

We call an angle θ constructable if θ = ∠PQR with P , Q, R all constructable.

7.4. Lemma. The angle θ is constructable if and only if cos θ is a constructable
number.

Proof. Suppose θ = ∠PQR with P , Q, R all constructable. Then we can
construct the foot F of the perpendicular from P to the line QR. We know
|QF | = ± cos θ|QP |, (plus if θ is acute, and negative if not). Since P , Q and
F are constructable, we deduce cos θ ∈ K.

Conversely if cos θ ∈ K, the line X = cos θ meets the unit circle at the points
(cos θ,± sin θ). Hence P = (cos θ, sin θ) is a constructable point. Hence θ = ∠POR
is a constructable angle. �

7.5. Corollary. The regular m-gon is constructable if and only if cos 2π/m
is a constructable number.

7.6. Lemma. If p is prime Φp(X) = Xp−1
X−1 = 1 + X + X2 + · · · + Xp−1 is

irreducible in Q[X].

Proof. This is a nice application of the Eisenstein Irreducibility Criteria.
Note that f(X) 7→ f(X + 1) is an isomorphism from Q[X] to itself. Reason: it

is the evaluation map εX+1 with inverse εX−1, f(X) 7→ f(X − 1). It also preserves
degrees. Hence f(X) ∈ Q[X] is reducible if and only if f(X + 1) is reducible. So,
equivalently f(X) is irreducible if and only f(X + 1) is irreducible

Φp(X + 1) = 1 + (X + 1) + (X + 1)2 + · · ·+ (X + 1)p−1

=
(X + 1)p−1

(X + 1)− 1
=

(X + 1)p − 1

X
=

p∑
i=1

(
p

i

)
Xi−1

Thus Φp(X + 1) ∈ Z[X] has leading coefficient 1, not divisible by p, and by the
lemma below, all other coefficients divisible by p. Lastly the constant term of
Φp(X + 1) = Φp(0) = p is not divisible by p2. Hence by Eisenstein’s Criteria
Φp(X + 1) is irreducible. Hence Φp(X) is irreducible. �

7.7. Lemma.

For p prime

(
p

i

)
is divisible by p for all i with 1 ≤ i ≤ p− 1.

Proof. In Z we can factor

p! =

(
p

i

)
× i!(p− i)!

We see p occurs as a factor p! but for 1 ≤ i ≤ p− 1, p is not a factor of

i!(p− i)! = (1× 2× · · · × i)× (1× 2× · · · × (p− i))
because p is not a factor of any terms on the right hand side. So because p is prime
it must divide the factor

(
p
i

)
of p!. �

The primitive p-th roots of unity are cos 2πia
p + i sin 2πia

p a = 1, . . . , p− 1.

If ζ = cos 2πia
p + i sin 2πia

p then ζ + ζ−1 = 2 cos 2πia
p .

7.8. Proposition. Let p be a prime number and ζ ∈ C any primitive pth root
of unity. Then

(1) [Q(ζ) : Q] = p− 1, and
(2) for p odd [Q(ζ + ζ−1) : Q] = p−1

2 .
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Proof. We first show [Q(ζ) : Q] = p−1, that is ζ is algebraic over Q of degree
p− 1. We have ζp = 1 and ζ 6= 1. We have therefore,

1 + ζ + · · ·+ ζp−1 =
ζp − 1

ζ − 1
= 0

So ζ is a root of

Φp(X) = 1 +X + · · ·+Xp−1,

which monic and irreducible in Q[X]. Hence ζ is algebraic over Q of degree p− 1,
with mζ,Q(X) = Φp(X).

Consider the tower of fields Q ⊆ Q(ζ + ζ−1) ⊆ Q(ζ). By the tower theorem

[Q(ζ) : Q(ζ + ζ−1)][Q(ζ + ζ−1) : Q] = [Q(ζ) : Q] = p− 1

It remains to show that for p > 2, [Q(ζ) : Q(ζ + ζ−1)] = 2.
For p > 2, ζ 6∈ R, whereas ζ + ζ−1 ∈ R. Hence ζ 6∈ Q(ζ + ζ−1) ⊆ R. However

ζ is a root of

(X − ζ)(X − ζ−1) = X2 − (ζ + ζ−1)X + 1 ∈ Q(ζ + ζ−1)[X].

So Q(ζ) is algebraic of degree 2 over Q(ζ + ζ−1), as required. �

7.9. Corollary. cos 2πi
p 6∈ K unless p− 1 is a power of 2.

Note that if m is divisible by an odd prime p, then if we can construct a
regular m-gon, then we can construct a regular p-gon. Hence we have the following
restriction on the m for which a regular m-gon can be constructed.

7.10. Proposition. The regular m-gon is not constructable unless every odd
prime divisor of m is of the form 2n + 1.

For a odd we have the algebraic identity

Xa + 1 = (X + 1)(Xa−1 −Xa−2 + · · · −X + 1).

Using this you can show 2n + 1 is composite unless n is power of 2. Primes of the
form Fr = 22

r

+ 1 are called Fermat primes. The only known Fermat primes are

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

The numbers Fr are known to be composite for 5 ≤ r ≤ 32. No other Fermat
primes are known.

The full story is that a regular m-gon can be constructed if and only if m is of
the form m = 2rp1 . . . ps where the pi are distinct Fermat primes.

8. Splitting Fields

8.1. Definition (Splitting Fields).
Let L/F a field extension, and f(X) ∈ F [X] a non-constant polynomial.

(1) We say f(X) splits in L if it factors into linear factors in L.
(2) We say L is a splitting field of f(X) over F if f(X) splits in L, but not

in any extension of K/F of F with K properly contained in L.

8.2. Observation.

(1) Suppose L is a splitting field for f(X) ∈ F [X] over F , and α1, . . . , αn are
the roots of f(X) in L. Then L = F (α1, . . . , αn)

Since all these roots are algebraic over F , L/F is a finite extension.
(2) Suppose f(X) ∈ F [X] splits in the the extension field L of F . Then the

extension F (α1, . . . , αn) where the α1, . . . , αn are the roots of f(X) in L,
is the unique splitting field of f(X) over F contained in L.
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Examples.

(1) The polynomial X3 − 2 ∈ Q[X] has roots 3
√

2, ω 3
√

2, ω2 3
√

2 in C, (ω a

complex cube root of unity). Hence L = Q( 3
√

2, ω 3
√

2, ω2 3
√

2) ⊆ C, is the
splitting field of X3 − 2 over Q contained in C.

All the roots ofX3−2 lie in Q(ω, 3
√

2). Both 3
√

2 and ω = (ω2 3
√

2)/(ω 3
√

2)

lie in L. Hence L = Q( 3
√

2, ω 3
√

2, ω2 3
√

2) = Q(ω, 3
√

2).

(2) The splitting field in C of (X2 − 2)(X3 − 2) ∈ Q[X] over Q is Q(
√

2,
√

3).

8.3. Proposition. Let F be a field and f(X) ∈ F [X] have degree n ≥ 1. Then
f(X) has splitting field L over F of degree at most n! over F .

Proof. We induct of n = deg f(X). The result is immediate for n = 1. Then
f(X) = c(X − a) for some a, c ∈ F and we can take L = F . Suppose n > 1. Let
m(X) be an irreducible factor of f(X). Then by Theorem 5.2 there is an extension
of E = F (α) in which m(X) has root α, and [E : F ] = degm(X) ≤ deg f(X) = n.
So α is root of f and in E[X] we have f(X) = (X − α)g(X) for g(X) ∈ E[X] of
degree n − 1. By induction there is an extension L of E with [L : E] ≤ (n − 1)!
in which g(X) splits into linear factors. Hence f(X) splits into linear factors in L,
and

[L : F ] = [L : E][E : F ] ≤ (n− 1)!× n = n!.

�

This proof of this proposition shows that give a polynomial over a field F of
degree n we can construct a splitting field for this polynomial of degree at most n!.
The following question now arises. Suppose I have two splitting fields L1 and L2

of the same polynomial over a field, how are they related?

9. Field Embeddings

We make a preliminary observation about homomorphisms between fields.

9.1. Lemma. Every homomorphism of fields is an embedding.

Proof. A field F has exactly two ideals F , and {0}. If θ : F → F ′ is field
homomorphism, θ(1) = 1 6= 0 ∈ F ′. Hence ker θ = {0}. Hence θ is injective. �

Consequently if θ : F → K and F ′ = θ(F ) is the image of θ, then F ′ is a
subfield of K and θ maps F isomorphically onto its image F ′.

9.2. Lemma. Let E and E′ be fields. Suppose E = F (α1, . . . , αn) for some field
F , and α1, . . . , αn ∈ E. Then any field embedding ψ : E → E′ is determined by θ =
ψ|F and ψ(α1), . . . , ψ(αn), and maps E isomorphically onto F ′(ψ(α1), . . . , ψ(αn))
where F ′ = θ(F ).

Proof. The the elements of the field F (α1, . . . , αn) consists of all expressions
which can be formed from elements of F and α1, . . . , αn ∈ E using field operations.
Any homomorphism ψ : E → E preserves the field operations and so is determined
by knowing ψ(a) = θ(a) for all a ∈ F , and ψ(α1), . . . , ψ(αn).

Consequently if ψ : E → E′ is field homomorphisms its image ψ(E) con-
sists of all expressions which can be formed from the elements of F ′ = θ(F ), and
ψ(α1), . . . , ψ(αn) using field operations, that is the image consists of the elements
of F ′(ψ(α1), . . . , ψ(αn)). �
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Extending Isomorphisms.
Suppose θ : F ∼= F ′ is an isomorphisms of fields and E/F and E′/F ′ are field

extensions. Then an isomorphism ψ : E ∼= E′ is said to extend θ if ψ|F = θ, that is
ψ(a) = θ(a) for all a ∈ F .

For example complex conjugation and the identity map from C to C are both
isomorphism extending the identity map from R to R.

9.3. Definition. Given a field isomorphism θ : F ∼= F ′, and

f(X) = a0 + a1X + · · ·+ anX
n ∈ F [X],

we define θf ∈ F ′[X] to be polynomial

θf(X) = θ(a0) + θ(a1)X + · · ·+ θ(an)Xn ∈ F ′[X]

obtained by applying θ to the coefficients of f(X).
The map f(X) 7→ θf(X) defines an isomorphism F [X] ∼= F ′[X]. It is the

unique homomorphism from F [X]→ F ′[X] extending θ and mapping X to X.
We call f(X) and θf(X) isomorphic polynomials

9.4. Lemma. Let E/F and E′/F ′ be field extensions and ψ : E ∼= E′ be a
field isomorphism extending an isomorphism θ : F ∼= F ′. Suppose α ∈ E, and set
α′ = ψ(α). Then for any f(X) ∈ F [X],

ψ(f(α)) = θf(α′) ∈ E′.

That is ψ maps the polynomial f(X) ∈ F [X] evaluated at α to the polynomial
θf [X] ∈ F ′[X] evaluated at α′ = ψ(α).

Proof. Suppose f(X) = a0 + · · ·+ anX
n. Then

ψ(f(α)) = ψ(a0 + a1α+ · · ·+ anα
n)

= ψ(a0) + ψ(a1)ψ(α) + · · ·+ ψ(an)ψ(αn)

= θ(a0) + θ(a1)ψ(α) + · · ·+ θ(an)ψ(α)n

= θf(α′).

�

9.5. Theorem. (The Isomorphism Extension Theorem)
Let E/F and E′/F ′ be field extensions and θ : F ∼= F ′ be an isomorphism of

fields.
Suppose E = F (α) for some α algebraic over F with minimum polynomial

m(x) ∈ F [X].

(1) Suppose there is an isomorphism ψ : E ∼= E′ extending θ. Then α′ =
ψ(α) is algebraic over F ′ with minimum polynomial over F ′. θm(X), and
E′ = F ′(α).

(2) Conversely if E′ = F (α′) where α ∈ E′ is algebraic over F ′ with minimum
polynomial over F ′, then there is an isomorphism ψ : E ∼= E′ extending θ
which maps α to α′.

Proof. (1) Suppose we have an isomorphism ψ : E ∼= E′ extending
θ : F ∼= F ′. Then by Lemma 9.2, E′ = F ′(α′) where α′ = ψ(α), and
ψ is the unique such isomorphism. Since ψ is an isomorphism for any
f(X) ∈ F [X], f(α) = 0 if and only if ψ(f(α) = 0). So by the calculation
of Lemma 9.4 we have f(α) = 0 if and only θf(α′) = 0. Equivalently
α ∈ E is a root of f(X) if and only if α′ is a root of θf(X). The map
f 7→ θf , maps monic polynomials to monic polynomial and preserves
degrees. Hence α′ is algebraic over F ′ with minimum polynomial θm(X).
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(2) We now suppose E′ = F ′(α′), α′ ∈ L has minimum polynomial θm(X)
with respect to F ′. It remains to show there is an extension ψ : F (α) ∼=
F ′(α′) of θ : F ∼= F ′ which takes α to α′.

The map f(X) 7→ (θf)(X) is an isomorphism F [X]→ F ′[X]. It maps
multiples of m(X) to multiples of θm(X). Hence,

f(X) + 〈m(X)〉 7→ (θf)(X) + 〈θm(X)〉
defines an isomorphism F [X]/ 〈m(X)〉 ∼= F ′[X]/ 〈θm(X)〉.

Now f(α) 7→ f(X)+ 〈m(X)〉 is an isomorphism F (α) ∼= F [X] 〈m(X)〉
and (θf)(X)+ 〈θm(X)〉 7→ (θf)(α′) is an isomorphism F ′[X]/ 〈θm(X)〉 ∼=
F ′(α′) Hence the composite

f(α) 7→ f(X) + 〈m(X)〉 7→ (θf)(X) + 〈θm(X)〉 7→ (θf)(α′)

defines is isomorphism ψ : F (α) ∼= F ′(α′) which extends θ, and maps α
to α′.

�

10. Isomorphisms of Splitting Fields

We now show that isomorphic polynomials have isomorphic splitting fields.
We make the following timely observation which we use repeatedly in what is

to follow.

10.1. Observation.
Suppose L is a splitting field over F for f(X) ∈ F [X] and E is an intermediate

field F ⊆ E ⊆ L.
Then L is a splitting field over E of f(X) viewed as polynomial in E[X].

10.2. Proposition. Let θ : F ∼= F ′ be an isomorphism of fields, and f(X) ∈
F [X] be a non-constant polynomial. Suppose L is a splitting field over F of f(X)
and L a splitting field over F ′ for θf(X) ∈ F ′[X]. Then there exists isomorphisms
ψ : L→ L′ extending θ.

Proof. If [L : F ] = 1, i.e L = F , f(X) = c(X −α1) . . . (X −α1) in F [X] then
θf(X) = θ(c)(X − θα1) . . . (X − θαn) in F ′[X], and so L′ = F ′. Hence there is a
unique choice of ψ, viz ψ = θ.

Suppose now [L : F ] > 1. Then some root α of f(X) is not in F . Suppose it has
minimum polynomial m(X) over F . Then m(X) divides f(X) and degm(X) > 1.
In F ′[X] the polynomial θm(X) is irreducible and a divisor of θf(X). So θm(X) is
a product of linear factors in L′[X]. Hence θm(X) has a full set of roots in L′. Let
α′ be any one of them. Then by the Isomorphism Extension Theorem θ extends
to an isomorphisms φ : F (α) ∼= F ′(α′). By observation above L is splitting field of
f(X) viewed as a polynomial in F (α)[X] and L′ is a splitting for (θf)(X) viewed
as polynomial in F ′(α′)[X]. Since [F (α) : F ] = degm(X) > 1,

[L : F (α)] = [L : F ]/[F (α) : L] < [L : F ].

Hence by induction φ extends to an isomorphism ψ from L to L′. This extension
is an isomorphism from L to L extending θ. �

From the proof we have the following corollary.

10.3. Corollary. If α ∈ L is a root of an irreducible factor m(X) of f(X)
and α′ ∈ L′ is a root of the isomorphic irreducible factor θm(X) of θf(X), then
there is an extension ψ : L ∼= L′ of θ such that ψ(α) = α′.

By keeping track of the number of choices at any stage we can show that number
of possible ψ : L ∼= L′ with ψ|F = θ is finite.
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10.4. Corollary. There are at most [L : F ] extensions of θ.

Proof. Going through the proof above in the case n = 1 we have [L : F ] = 1
choice of ψ. At the inductive step we have one choice of φ for each root of the irre-
ducible factor θm(x) of θf(X). The factor θm(X) can have at most deg θm(X) =
degm(X) roots. Hence we have at most

deg θm(X) = degm(X) = [F (α) : F ]

ways to extend θ to an isomorphism to a subfield of L′, with domain F (α), and
by induction at most [L : F (α)] ways to extend each of these to an isomorphism
L→ L′ extending θ. Hence there are at most

[L : F (α)][F (α) : F ] = [L : F ]

choices of ψ : L ∼= L′ extending θ.
�

We now show that with suitable restrictions on f(X) we can get the maximal
number [L : F ] of extensions

Separable Polynomials.

10.5. Definition. • A polynomial f(X) ∈ F [X] is called separable
over F , (F -separable), if its irreducible factors in F [X] have no multiple
roots in a splitting field, and hence in any splitting field.

For example if f(X) itself has no multiple roots in a splitting field
neither can any of its factors. Hence it is F -separable.

• An element α of an extension field of F is called separable if its algebraic
over F and its minimum polynomial over F is F -separable.

For example if α is root of polynomial f(X) with no repeated roots,
then α is separable and algebraic over F .

• An algebraic extension K/F is called separable if every α ∈ K is separable
over F .

Note all the polynomials in examples so far have been re separable. This is
because we have only met polynomials with coefficients in a subfield of C or are
with coefficients in a finite filed. We will shortly show that in characteristic 0 all
polynomials are separable, and that in characteristic 0 all polynomials are separable,
and that all polynomials in a finite field are separable.

10.6. Observation.
If E/F is a field extension, then if f(X) ∈ F [X] is F -separable implies f(X)

is E-separable.

Proof. In F [X], f(X)) = m1(X) . . .mr(X, m1(X), · · ·r (X) ∈ F [X], irredu-
cible in F [X]. This a factorisation of f(X) in E[X]. So if p(X) is an any irreducible
divisor of f(X) = m1(X) . . .mr(X in E[X] then p(X) must be a divisor of one of
the irreducibles mi(X). If f(X) is F -separable mi(X) will have no repeated roots.
Hence p(X) can have no repeated roots. �

10.7. Proposition. Let θ : F ∼= F ′ be an isomorphism of fields. Suppose
L is a splitting field over F of f(X) ∈ F [X] and L′/F ′ a splitting field over F ′

of θf(X) ∈ F ′[X]. Then there exists exactly [L : F ] isomorphisms ψ : L → L′

extending θ if and only if f(X) is separable over F .

Proof. Suppose f(X) is separable over F . In the inductive proof that the
number of extensions is no more than [L : F ] we can replace all inequalities by
equalities. At the inductive step we have [F (α) : F ] choices of α′ and hence of φ.
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Also since f(X) is separable over F (α) by induction there are [L : F (α)] extensions
of each φ to an isomorphism ψ : L ∼= L′. Hence we have

[L : F (α)][F (α) : F ] = [L : F ]

extensions ψ : L ∼= L′ of θ.
If f(X) is not separable then at the inductive step we take a root α of an

irreducible factor m(X) of f(X) with multiple roots. The corresponding polynomial
θm(X) then has multiple roots and we have strict inequality at the inductive step.
Hence we have strictly less than [L : F ] extensions if f(X) is not separable. �





CHAPTER 7

Galois Theory

1. Automorphisms and Fixed Fields

Let L be field. By an automorphism of L we mean a field isomorphism σ :
L ∼= L. The automorphism of L form a subgroup Aut(L) of the group Sym(L), the
group of bijective maps from L to itself. Thus automorphism of L are the bijections
of L preserving the field structure.

Suppose L/F is a field extension. An automorphism φ ∈ Aut(L) is said to fix
F if φ(a) = a for all a ∈ F . Let G(L/F ) denote the set of automorphism of L which
fix F . They form a subgroup Aut(L), called the automorphism of the extension.
Note that G(L/F ) consist of all extensions φ : L ∼= L of the identity isomorphism
from F to F .

Note for any automorphism φ of a field L, φ(1) = 1, and hence fixes all elements
of the prime subfield of L.

So we note that

• if charL = 0, Aut(L) = G(L/Q) and if
• charL = p > 0, Aut(L) = G(L/Fp).

In a particular if F is a prime field Aut(F ) = 1.
Example: Quadratic Extensions. Let L/F be the splitting field of a separable

irreducible quadratic aX2 + bX+ c ∈ F [X] with roots α, β ∈ L. Then L = F (α, β).
We have aX2 + bX + c = a(X −α)(X − β) in L[X]. So we have α+ β = −b/a. So
we can we deduce L = F (α) = F (β). By The Isomorphism Extension Theorem 9.5
we deduce there are two isomorphisms from L to L fixing F . One mapping α to
α, is the identity, the other, γ say, mapping α to β, and necessarily β back to α is
called conjugation. The group G(L/F ) = {1, γ} is cyclic of order two.

Example: p-th roots of Unity. Let ζ ∈ C be a primitive p-th root of unity. We
show G(Q(ζ)/Q) ∼= (Z/pZ)

×
.

Recall that for a prime p the primitive p-th roots of unity in C are the roots of

Φp(X) = 1 +X + . . . Xp−1 =
Xp − 1

X − 1
.

which is irreducible over Q, and that therefore [Q(ζ) : Q] = p − 1. The the p − 1
powers ζa, a = 1, . . . p − 1 run through all p − 1 primitive p-roots of unity in C.
Hence Φ(X) factors completely in Q(ζ).

Φp(X) =

p−1∏
a=1

(X − ζa).

The field Q(ζ) splits Φp(X). Any subfield of C splitting Φp(X) must contain Q(ζ).
Hence Q(ζ) is the splitting field in C of Φp(X) over Q.

Since ζ was any choice of primitive pth root of unity in C, for any a ∈ Z with
gcd(a, p) = 1 Q(ζ) = Q(ζa). Any σ ∈ G(Q(ζ)/Q) must map ζ to a root of Φp(X).
So we must have σ(ζ) = ζa for some a with gcd(a, p) = 1. By the isomorphism
extension theorem there is a unique σ(a) ∈ Gal(Q(ζ)/Q) such that σ(a)ζ = ζa.
Since ζa = ζb if and only if a ≡ b (mod p) the mapping a (mod p) to σ(a) defines

81
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a bijection

σ : (Z/pZ)
× → G(Q(ζ)/Q)

Further for a, b prime to p,

σ(a)σ(b)ζ = σ(a)ζb = (σ(a)ζ)b = (ζa)b = ζab = σ(ab)ζ

Hence this bijection is an isomorphism of groups. Note that

|G(Q(ζ)/Q)| = [Q(ζ) : Q].

Example. Consider the subfield field Q( 3
√

2) of R. Any φ ∈ G(Q( 3
√

2)/Q), is

determined φ( 3
√

2). But,

φ(
3
√

2)3 = φ((
3
√

2)3) = φ(2) = 2.

Hence φ( 3
√

2) ∈ Q( 3
√

2) is a real cube root of 2. Thus φ( 3
√

2) = 3
√

2. So φ is the

identity. Hence |G(Q( 3
√

2)/Q)| = 1.
Automorphism Groups of Splitting Fields.
Let L/F be a field extension. An element ψ ∈ G(L/F ) is an isomorphism

ψ : L ∼= L extending the identity map θ : F = F . Now suppose L is a splitting
field of a polynomial f(X) ∈ F [X]. Then we can apply Proposition 10.7 in the
case F = F ′, L = L′ and θ is the identity isomorphism θ : F = F . This gives
immediately the first statement of the following. The second statement follows
immediately from the first corollary to Proposition 10.2.

1.1. Proposition. Let f(X) be a polynomial with coefficients in a field F , and
suppose L/F is a splitting field of f . Then G(L/F ) ≤ [L : F ] with equality if and
only if f(X) is F -separable.

If α and β are roots of the same irreducible factor in F [X] of m(X) of f(X)
then for some ψ ∈ G(L/F ), ψ(α) = β.

1.2. Definition. (Fixed Fields)
Let L be a field and φ ∈ Aut(L) set

Fix(φ) = {a ∈ L : φ(a) = a} .
We have: φ(1) = 1, and if φ(a) = a and φ(b) = b then

φ(a+ b) = φ(a) + φ(b) = a+ b, φ(ab) = φ(a)φ(b) = ab

and if a 6= 0, φ(a−1) = φ(a)−1 = a−1. Thus Fix(φ) is a subfield of L called the
fixed field of φ.

For any non-empty set of X automorphism L let

Fix(X) = {a ∈ L : φ(a) = a, for all φ ∈ X} .
This is the intersection of the subfields Fix(φ) of L over all φ ∈ X, and hence is a
subfield of L. We call Fix(X) the fixed field of X.

2. The Galois Correspondence

2.1. Definition. (The Galois Correspondence) Suppose L is a field.
Give any subgroup G of Aut(L) we have a subfield Fix(G) of L.
Give any subfield F of L we have a subgroup, G(L/F ) of Aut(L).
This pair of maps between subgroups of Aut(L) and subfields of L is called the

Galois correspondence.

We now record two pairs of tautological facts about the Galois correspondence
between subgroups of automorphisms of a field L and its subfields.

2.2. Lemma. The maps of the Galois correspondence are order reversing.
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(1) If L ⊇ E ⊇ F is a tower of subfields then G(L/E) ≤ G(L/F ).
(2) For subgroups H ≤ G ≤ Aut(L), Fix(G) ⊆ Fix(H).

Proof.

(1) Suppose L ⊇ E ⊇ F is a tower of fields. Any automorphism φ ∈ G(L/E)
fixes all elements of E and hences fixes all elements of F ⊆ E. We have
therefore φ ∈ G(L/F ). Hence G(L/E) ≤ G(L/F ).

(2) If a ∈ Fix(G), then a is fixed by all φ ∈ G, and hence all φ ∈ H ≤ G.
Hence a ∈ Fix(H). We have therefore Fix(G) ⊆ Fix(H).

�

2.3. Lemma.

(1) For any subfield F of a L, F ⊆ Fix(G(L/F )).
(2) For an subgroup G of Aut(L), G ≤ G(L/Fix(G)).

Proof. Both are immediate from the definitions of the automorphism group
of a field extension and of and fixed fields.

The first says every element of F is fixed by every automorphism of L fixing F .
The second says every element of G fixes every element in the set of elements

of L fixed by G. �

2.4. Definition. (Galois Extension and Galois Groups) A field extension
L/F is called a Galois extension if Fix(G(L/F )) = F .

A subgroupG of automorphisms of a field L is called a Galois group ifG(L/Fix(G)) =
G.

Note the following.

(1) If L/F is called a Galois extension then Fix(G(L/F )) = F . Hence
G(L/Fix(G(L/F ))) = G(L/F ). So G(L/F ) is a Galois group.

When L/F is a Galois extension we call G(L/F ) its Galois group.
(2) If a subgroup G of the automorphism group of a field L is a Galois

group, then G(L/Fix(G)) = G. Hence Fix(G(L/Fix(G))) = Fix(G).
So L/Fix(G) is a Galois extension.

When G is a Galois group L/Fix(G) is a Galois extension with Galois
group G(L/Fix(G)) = G.

2.5. Proposition. Let L be a field. Then the Galois correspondence defines a
1–1 order reversing correspondence between Galois field extensions L/F and Galois
groups G ≤ Aut(L).

Proof. We have shown the Galois correspondence is order reversing earlier in
Lemma 2.2

As noted in (1) above, under the Galois correspondence a Galois extension L/F
maps to a Galois group G(L/F ). This Galois group maps back under the corres-
pondence to L/Fix(G(L/F ) and L/Fix(G(L/F ) = L/F , because Fix(G(L/F ) =
F given L/F Galois.

As noted in (2) above under the Galois correspondence a Galois group G ≤
Aut(L) maps to a Galois extension L/Fix(G). This Galois extensions maps back
under the correspondence to G(L/Fix(G)) and G(L/Fix(G)) = G given G is a
Galois group. �

3. Galois Conjugates

Let L/F be Galois extension. Suppose α ∈ L. Then the φ(α), φ ∈ G(L/F ) are
called the Galois conjugates of α with respect to F .
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Suppose α ∈ L is a root of some f(X) ∈ F [X],

f(X) = a0 + a1X + · · ·+ adX
d, a0, a1, . . . , ad ∈ F.

Then
a0 + a1α+ · · ·+ adα

d = 0.

So for any φ ∈ Aut(L),

φ(a0) + φ(a1)φ(α) + · · ·+ φ(ad)φ(α)d = 0.

If φ ∈ G(L/F ),
φ(a0) = a0, φ(a1) = a1, . . . , φ(ad) = ad.

So
a0 + a1φ(α+ · · ·+ adφ(alpha)d = 0,

that is, φ(α) is a root of f(X).
Hence since a polynomial over a field ha only finitely many roots, we conclude

that if α ∈ L is algebraic over F , it has only finitely many Galois conjugates.
Further applying the above to the minimum polynomial m(X) of α over F , we see
that the Galois conjugates are all roots in L of m(X).

Conversely suppose α ∈ L has only finitely many Galois conjugates over F .
Let

α1 = φ1(α), . . . , αn = φn(α), φ1, dots, φn ∈ G(L/F )

be a list of these distinct Galois conjugates, (this list contains α). Then for any
φ ∈ G(L/F ),

φ(α1) = φφ1(α), . . . , φ(αn) = φφn(α),

is a list of distinct Galois conjugates of α. Hence this list is permutation of α, . . . , αn.
Consider

p(X) = (X − α1) . . . (X − αn) ∈ L[X].

Then p(X) monic and has root α. For any φ ∈ Aut(L),

φp(X) = (X − φ(α1)) . . . (X − φ(αn)).

Hence if φ ∈ G(L/F ),

φp(X) = (X − φ(α1)) . . . (X − φ(αn)

= = (X − α1) . . . (X − αn)

= p(X).

Hence the coefficients of p(X), all of which lie in L, are fixed by all φ ∈ G(L/F ). So
the coefficients of p(X) all lie in Fix(G(L/F ) = F . Since α is root of p(X) ∈ F [X],
α is algebraic over F . Let m(X) ∈ F [X] be its minimum polynomial over F .
Because α ∈ L is a root of m(X) and m(X) ∈ F [X], all Galois conjugates of α over
F are roots of m(X). So

p(X) = (X − φ(α1)) . . . (X − φ(αn)) |m(X).

But p(X) is a monic polynomial in F [X] with root α and m(X) is the minimal
such polynomial. Hence p(X) = m(X).

Hence we have the following.

3.1. Proposition. Let L/F be Galois extension.
Then α ∈ L is algebraic over F if and only if α has only finitely many Galois

conjugates over F .
If α ∈ L is algebraic over F and α, . . . , αn is a list of the distinct Galois

conjugates of α over F , then

m(X) = (X − φ(α1)) . . . (X − φ(αn))

is the minimum polynomial of α with respect to F .
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3.2. Corollary. If L/F is a Galois extension then every α ∈ L which is
algebraic over F is separable over F .

3.3. Corollary. If L/F is a Galois extension then any irreducible m(X) ∈
F [X] which has a root α ∈ L factors into linear factors in L.

The first corollary follows since the by definition α ∈ l algebraic over F is
separable over F its its minimum polynomial has distinct root in a splitting field.
The second because such an m(X) and α, will be the minim polynomial of α over
F .

3.4. Definition. Normal Field Extensions A field extension L/F is called
normal if it is an algebraic extension and every irreducible m(X) ∈ F [X] which
has one root in L factors into linear factors in L[X].

Equivalently L/F is normal extension if it is an algebraic extension and for
α ∈ L the minimum polynomial mα,F (X) of any α ∈ L factors into linear factors
in L[X].

A field extension L/F is separable and normal if and only if the minimum
polynomial of any α ∈ L factors into distinct linear factors in L.

4. Finite Galois Extensions

4.1. Theorem. Let L/F be a finite extension of fields. Then the following are
equivalent.

(1) L/F is a Galois extension.
(2) L/F is separable and normal.
(3) L is a splitting field for some separable polynomial f(X) ∈ F [X].

Proof. Note that L/F finite implies every α ∈ L is algebraic over F .
Hence (1)⇒ (2), by two corollaries to Proposition 3.1
(2)⇒ (3)
Assume L/F is separable and normal. Let n = [L : F ]. Let ν1, . . . , νn be an

F − basis of L. For each index i let mi(X) denote the minimum polynomial of νi.
Set f(X) = m1(X) . . .mn(X). Then by assumption each mi(X) is separable and
factors into linear factors in L[X]. Hence f(X) is separable and is split by L, and
its rpts include ν1, . . . , νn. No proper subfield of L, in fact no proper F -subspace
of L, contains the roots ν1, . . . , νr of f(X). Hence L is a splitting field for f(X).

(3)⇒ (1)
Suppose L is splitting field over F of the F -separable polynomial f(X) ∈ F [X].

Then by Proposition 8.3, L is a finite extension of F .
Recall now Observation 10.1 and Observation 10.6. These imply that if E is

any field intermediate between L and F , then L is a splitting field over E of f(X)
and f(X) ∈ E[X] is E-separable. So by Proposition 1.1, |G(L/E)| = [L : E]. In
particular, taking E = F , we have

|G(L/F )| = [L : F ],

and taking E = Fix (G(L/F )), we have

[L : Fix (G(L/F ))] = |G (L/Fix (G(L/F ))) |.
By Lemma 2.3 (2), with G = G(L/F ),

G(L/F ) ≤ G (L/Fix (G(L/F ))) .

Hence

[L : F ] = |G(L/F )| ≤ |G (L/Fix (G(L/F ))) | = [L : Fix (G(L/F ))]

But by Lemma 2.3 (1), F ⊆ Fix (G(L/F )) ⊆ L.
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So [L : F ] > [L : Fix (G(L/F ))] unless F = Fix (G(L/F )).
We deduce therefore that F = Fix (G(L/F )) and L/F is a Galois extension.

�

4.2. Corollary. Suppose L/F is a finite Galois extension. Then,

|G(L/F )| = [L : F ].

Proof. We know, Proposition 1.1, that if L is a splitting field over F of
separable polynomial, then |G(L/F )| = [L : F ]. �

We now derive a fourth equivalent condition for a finite extension L/F to be
Galois.

4.3. Proposition. Let L/F be be finite extension. Then |G(L/F )| ≤ [L : F ].
We have |G(L/F )| = [L : F ] if and only if L/F is Galois.

Proof. Consider the tower of fields

L ⊆ Fix(G(L/F ) ⊆ F.

Since, Lemma 2.2 (1), the Galois correspondence is order reversing,

G(L/Fix(G(L/F ))) ≤ G(L/F ).

But by Lemma 2.3 (2) with G = G(L/F ),

G(L/F ) ≤ G(L/Fix(G(L/F ))).

Hence

G(L/Fix(G(L/F ))) = G(L/F ).

So, by definition of Galois groups, G(L/F ) is a Galois group. We deduce from
the Galois correspondence that L/Fix(G(L/F )) is a Galois extension. So by the
corollary to Theorem 4.1,

|G(L/Fix(G(L/F )))| = [L : Fix(G(L/F )]

Hence

|G(L/F )| = |G(L/Fix(G(L/F )))| = [L : Fix(G(L/F ))].

By the Tower Theorem

[L : Fix(G(L/F ))] = [L : F ]/[Fix(G(L/F )) : F ].

Hence,

|G(L/F )| ≤ [L : F ]

with equality if and only if [Fix(G(L/F )) : F ] = 1. This is the case if and only if
Fix(G(L/F ) = F , which is the defining condition for the field extension L/F to be
Galois. �

5. Finite Galois Groups

We have seen the Galois group of finite extension is a finite group.
We now show every finite group of automorphisms is the Galois group of a

finite extension.

5.1. Proposition. Let L be a field and G a finite subgroup of Aut(L), and
F = Fix(G). Then L is a finite Galois extension of F and G(L/F ) = G.
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Proof. The hard part here is proving L/F is finite extension. We will show
that [L : F ] ≤ |G|.

As noted in Lemma 2.3, G ≤ G(L/Fix(G)0. Hence |G| ≤ |G(L/F )|. By
Proposition 4.3, |G(L/F )| ≤ [L : F ]. If we can prove [L : F ] ≤ |G| we have L/F is
finite and

|G| ≤ |G(L/F )| ≤ [L : F ] ≤ |G|.
Then we will have,

|G| = |G(L/F )| = [L : F ].

From the first equality we can then deduce G = G(L/F ) and from the second and
Proposition 4.3 we can then deduce that L/F is Galois.

Set n = |G|. To show [L : F ] ≤ |G| it sufficient to show that any n+1 non-zero
elements of L are linearly dependent over F .

Suppose α1, α2, . . . , αn+1 are n+ 1 non-zero elements of L. Label the elements
G, φ1, . . . φn. Consider the n+ 1 non-zero vectors in Ln,

u1 =


φ1(α1)
φ2(α1)

...
φn(α1)

 , u2 =


φ1(α2)
φ2(α2)

...
φn(α2)

 , . . . , un+1 =


φ1(αn+1)
φ2(αn+1)

...
φn(αn+1)

 .
These n + 1 non-zero vectors in Ln must be L-linearly dependent. So for some
r ≤ n, u1, u2, . . ., ur are L-linearly independent and for some λ1, . . . λr ∈ L.

(5.2) ur+1 = λ1u1 + · · ·+ λrur.

Comparing components this is equivalent to

φi(αr+1) = λ1φi(α1) + · · ·+ λrφi(αr),

for all i, or equivalently,

(5.3) φ(αr+1) = λ1φ(α1) + · · ·+ λrφ(αr)

for all φ ∈ G.
Let φ, ρ ∈ G. Then ρ−1φ ∈ G. Hence by Equation 5.3

(ρ−1φ)(αr+1) = λ1(ρ−1φ)(α1) + · · ·+ λr(ρ
−1φ)(αr)

Since ρ respects addition and multiplication applying ρ to this last equation gives,

(5.4) φ(αr+1) = ρ(λ1)φ(α1) + · · ·+ ρ(λr)φ(αr).

Since this this holds for all φ ∈ G we deduce

(5.5) ur+1 = ρ(λ1)u1 + · · ·+ ρ(λr)ur

for all ρ ∈ G. Equations Equation 5.2 and Equation 5.5 both express ur+1 as an
L-linear combination of the vectors u1, . . ., ur which are linearly independent over
L. Hence comparing coefficients we find.

ρ(λ1) = λ1, . . . , ρ(λr) = λr.

This holds for all ρ ∈ G. Thus all coefficients λ1, . . . λr ∈ Fix(G) = F .
Taking φ to be the identity of G in equation Equation 5.3 gives

α− r + 1λ1α1 + · · ·+ λrαr,

with λ1, . . . λr ∈ F . Thus αr+1 is an F -linear combination of α1, α2, . . . αr. Hence
the elements α1, α2, . . . αn+1 are F -linearly dependent. �
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6. The Main Theorem of Galois Theory

6.1. Theorem. Let L/F be a finite Galois field extension. Then the following
hold.

(1) (i) For each field E with L ⊇ E ⊇ F , extension L/E is a finite Galois
extension.

(ii) Each subgroup H of G(L/F ) is a Galois group
(iii) The Galois correspondence

L/E 7→ G(L/E), H 7→ L/Fix(H),

defines a pair of mutually inverse order reversing maps between ex-
tension L/E with L ⊇ E ⊇ F and subgroups H of Gal(L/F ).

(2) For any intermediate field E, L ⊇ E ⊇ F the finite extension E/F is
Galois if and only if G(L/E) is a normal subgroup of G(L/F ).

In this case σ 7→ σ|E defines surjective homomorphism from G(L/F )
to G(E/F ) with kernel G(L/E), and induces an isomorphism

G(L/F )/G(L/E) ∼= G(E/F ).

Proof. (1) This all follows from the results already proved.
(i) Suppose E is a field with L ⊇ E ⊇ F . Because L/F is a finite

extension so is L/E. Because L/F is also Galois by Theorem 4.1 L is
a splitting field over F of polynomial F (X) ∈ F [X] which is separable
over F . Hence f(X) is separable over E and L is its splitting field
over E. Hence L/E is a finite Galois extension.

(ii) By the corollary to Theorem 4.1, G(L/F ) is a finite subgroup of
Aut(L). Hence every subgroup H of G(L/F ) is finite subgroup of
Aut(L). Hence by Proposition 5.1 H is a Galois group.

(iii) Given (i) and (ii), this follows from the 1–1 correspondence between
Galois extension L/F and Galois subgroups of Aut(L) proved in Pro-
position 2.5.

(2) Suppose E/F is Galois. Then it is a finite Galois extension. So by
Theorem 4.1 E is the splitting field in L of some separable polynomial
f(X) ∈ F [X]. So E = F (α1, . . . αr) where α1, . . . αr are the roots of f(X)
in E ⊆ L. For any σ ∈ G(L/F ), σ(α1), . . . σ(αr) is a permutation of the
roots of f(X). Hence

σ(E) = F (σ(α1), . . . σ(αr)) = F (α1, . . . αr) = E.

So σ restricts to an automorphism of E. By assumption σ fixes F . So
σ|E ∈ G(E/F ), and the map σ 7→ σ|E is a homomorphism from G(L/F )
to G(E/F ).

We now show this map is surjective. Suppose φ ∈ G(E/F ). Then
by the splitting field isomorphism result Proposition 10.2, applied with
L′ = L and E′ = E and θ = φ, there exists σ : L ∼= L such that σ|E = φ.
We have σ(a) = φ(a) = a for all a ∈ F . So σ ∈ G(L/F ). Hence the
restriction mapping from G(L/F ) to G(E/F ) is surjective.

The kernel of the restriction homomorphism consist of all σ ∈ G(L/F )
such that σ restricts the identity on E, that is σ ∈ G(L/E). Thus G(L/E)
is a normal subgroup of G(L/F ) and restriction induces an isomorphism
G(L/F )/G(L/E) ∼= G(L/E) in which for σ ∈ G(L/K) the coset σG(L/E)
corresponds to σ|E .

It remains to show that if G(L/E) is a normal subgroup of G(L/F ),
then the finite extension E/F is Galois. For this we use equivalent con-
dition (2) of Theorem 4.1. That is a finite extension is Galois if it is
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separable and normal. Assume that G(L/E) E G(L/F ). We show that if
α ∈ E has minimum polynomial m(X) then it factors into distinct linear
factors in E[X].

Because L/F finite and Galois it is separable and normal over F .
Hence m(X) factors into distinct linear factors in L[X]. By Propos-
ition 3.1 its roots are the Galois conjugates over F of α. We show
that these Galois conjugates lie in E. Since L/E is finite and Galois
Fix (G(L/E)) = E. So it remains only to show all Galois conjugates of α
are fixed by G(L/E). Suppose φ ∈ G(L/F ) and σ ∈ G(L/E).

The condition G(L/E) E G(L/F ) implies that σφσ−1 ∈ G(L/E).
Hence σ(α) = α and σφσ−1(α) = α. We find therefore that

σφ(α)) = σφσ−1σ(α) = σφσ−1(α) = α

This shows that all Galois conjugates φ(α) of α lie in Fix(G(L/E)) = E.
Thus the minimum polynomial of any α ∈ E factors into distinct linear
factors in E[X]. Hence E/F is separable and normal. So by equivalent
condition (2) of Theorem 4.1 the finite extension E/F is Galois.

�

7. Separable Extensions

Recall that an irreducible separable polynomial m(X) ∈ F [X] is one that de-
composes as product of distinct linear factors over a splitting field L. A root a
of polynomial f(X) is called a simple root if (X − a)|f(X) but (X − a)2 - f(X).
Hence an irreducible polynomial is separable if and only it has no multiple roots in
a splitting field.

Derivatives, Multiple Roots.
The derivative f ′(X) of polynomial f(X) over field F can be defined formally

by defining (Xn)′ = nXn−1 and extending by linearity. So for

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n,

f ′(X) = a1 + 2a2X + · · ·+ nanX
n−1

You can check that usual product rule

(fg)′ = f ′g + fg′

hold for all polynomials f, g in any polynomial ring.

Proof. To check this reduce by linearity to the case f(X) = Xm, g(X) = Xn.
See:

(XmXn)′ = (Xm+n)′

= (m+ n)Xm+n−1

= Xm(nXn−1) + (mXm−1)Xn

= Xm(Xn)′ + (Xm)′Xn.

�

From calculus we are familiar with the notion that f ′(X) = 0 if and only if f(X)
is a constant. This is always the case for polynomials in characteristic zero, but not
in positive characteristic. For example in characteristic p > 0, (Xp)′ = pXp−1 = 0.

7.1. Lemma. Let F be field and f(X) ∈ F [X].

(1) char(F ) = 0: f ′(X) = 0 in F [X], if and only if f(X) = a0, a constant.
(2) char(F ) = p: f ′(X) = 0 in F [X] if and only if f(X) = g(Xp) for some

g(X) ∈ F [X].
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Proof. Suppose f(X) =
∑
anX

n. Then f ′(X) = 0 in F [X] if and only if
nan = 0 for all n ≥ 0.

(1) In characteristic 0 this is the case if and only if an = 0 for all n ≥ 1, that
is f(X) is a constant polynomial.

(2) In prime characteristic p > 0, this is the case if and only if an = 0 whenever
p - n. This is the case if and only if f(X) = g(Xp) for some g(X) ∈ F [X].

�

7.2. Lemma. Let E/F be a field extension. Suppose α ∈ E is root of a non-
zero polynomial f(X) ∈ F [X]. Then α is a multiple root of f(X) if and only if
f ′(α) = 0.

Proof. Given α ∈ E is root of f(X) we can factorise f(X) = (X −α)g(X) in
E[X]. Thus α is multiple root of f(X) if and only if α is root of g(X), and this is
the case if and only if g(α) = 0. By the product rule

f ′(X) = (X − α)g′(X) + g(X).

Putting X = α, gives

g(α) = f ′(α).

We have therefore the root α of f(X) is multiple root of f(X) if and only if f ′(α) =
0. �

Irreducible Separable Polynomials.

7.3. Proposition. Let m(X) ∈ F [X] be irreducible. Then m(X) is separable
if m′(X) 6= 0.

We therefore have the following.

(1) If char(F ) = 0, m(X) is separable.
(2) If char(F ) = p > 0, then either m(X) is separable or m(X) = g(Xp) for

some irreducible g(X) ∈ F [X].

Proof. Let α be root of m(X) in some extension field. Then m(X) irreducible
implies it is a constant multiple of the minimum polynomial of α over F . Hence
m(X) a non-zero polynomial in F [X] of minimal degree with root α. Suppose
m′(X) 6= 0. Then m′(X) is a non-zero polynomial in F [X] of smaller degree then
m(X). Hence m′(α) 6= 0. So α is a simple root by Lemma 7.2. Hence every root
of m(X) in any splitting field is simple. So m(X) is separable.

Irreducible polynomials have positive degree. Hence if char(F ) = 0, the de-
rivative m′(X) 6= 0, and m(X) is therefore separable. If char(F ) = p > 0, then
m′(X) 6= 0 unless m(X) = g(Xp) for some g(X) ∈ F [X]. Since g(X) reducible
would imply g(Xp) reducible, g(X) must be irreducible �

The Frobenius Endomorphism.
Let p be a prime number and F be a field of characteristic p.

7.4. Definition. For F a field of prime characteristic p, the map Φ : F → F
defined by Φ(x) = xp is called the Frobenius map.

7.5. Lemma. In a field F of prime characteristic p, (a+ b)p = ap + bp.

Proof. Recall (Lemma 7.7) that for primes p, the middle binomial coefficients(
p
i

)
, 1 ≤ i ≤ p− 1 are all divisible by p. Hence for all a, b ∈ F ,

(a+ b)p =

p∑
i=0

(
p

i

)
aibp−i = ap + bp.

�
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7.6. Corollary. The Frobenius map of a field F of prime characteristic is an
endomorphism. The image F p = {ap : a ∈ F} is a subfield of F , isomorphic to F .
If the field F is finite the Frobenius map it is an automorphism.

Proof. There are the three homomorphism conditions to verify. The condi-
tions Φ(1) = 1 and Φ(ab) = Φ(a)Φ(b) are clear. The condition

Φ(a+ b) = Φ(a) + Φ(b)

is the result of Lemma 7.5.
Field homomorphisms are injective. Hence F p is a subfield of F isomorphic to

F .
Injective maps on finite sets are bijective. Hence any endomorphism of a finite

field is bijective, and so an automorphism. �

7.7. Corollary. (Fermat’s Little Theorem). For p a prime ap ≡ a (mod p)
for all a ∈ Z.

Proof. Recall the prime fields Q and Fp = Z/pZ, p prime, have only the
trivial automorphism. Hence the Frobenius map is the identity on Fp = Z/pZ. �

Example. Field of rational functions give example of fields for which F p 6= F .
Suppose F (X) is the field of rational functions in a single variable X with coef-

ficients in a field of characteristic p. Then F (X) is an infinite field of characteristic
p. The image of the Frobenius map on F (X) is the subfield F p(Xp) of rational
functions in Xp with coefficients in F p.

Perfect Fields.

7.8. Definition. A field F is called perfect if every algebraic extension field
of F is separable.

7.9. Proposition. (1) Fields of characteristic 0 are perfect.
(2) A field of positive characteristic is perfect if and only if F = F p.

Proof. The condition every algebraic extension field of F is separable is equi-
valent to every irreducible m(X) ∈ F [X] is separable. By Proposition 7.3, every
field of characteristic 0 is separable.

Suppose now F is a field of positive characteristic p and let m(X) ∈ F [X] be
irreducible. Suppose F = F p. Then for any g(X) =

∑
anX

n ∈ F [X], each an = bpn
for some bn ∈ F . So

g(Xp) =
∑

anX
np =

∑
bpnX

np =
(∑

bnX
n
)p

is reducible. Hence we cannot have m(X) = g(Xp). So we have m′(X) 6= 0, and
m(X) separable by Proposition 7.3 .

Assume now F is perfect and suppose a ∈ F , we show a is p-th power. Let
E = F (α) where α is root of Xp−a. Let m(X) ∈ F [X] be the minimal polynomial.
Then m(X)|(Xp − a). By assumption m(X) has no repeated roots in an extension
field. But in E[X], Xp − a = Xp − αp = (X − α)p. Hence m(X) is a power of
(X − α). But by assumption the minimal polynomial of α is separable, that is has
no repeated roots in an extension field. Hence m(X) = (X − α). So α ∈ F , which
gives a = αp ∈ F p. �

8. Finite Fields

Let F be a finite field with q elements. Fields with zero characteristic are not
finite because they are extensions of the infinite prime field Q. Hence char(F ) = p
for some prime p, and F is an extension of the prime field Fp. Because F is finite
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it certainly finitely generated as an Fp-space. Hence [F : Fp] = n for some positive
integer n. Any vector space over Fp of dimension n is isomorphic to Fnp . Hence

q = |F| = |Fnp | = |Fp|n = pn.

The non-zero elements F× form a group of order q − 1. Hence every non-zero
element α of F satisfies αq−1 = 1. The non-zero elements of F are therefore roots
of Xq−1 − 1. Hence every element of F is root of Xq −X. Thus f(X) = Xq −X
of degree q has q distinct roots in F, these being the elements of F. Hence Xq −X
factors into distinct linear factors in F[X] ,

Xq −X =
∏
α∈Fq

(X − α).

Thus F consists of the roots of Xq −X and is therefore a splitting field for Xq −
X over Fp. By Proposition 10.2 any two splitting fields of Xq − X over Fp are
isomorphic. Hence any field of order q isomorphic to this F.

Suppose now we are give q = pn for some prime p and positive integer n. Let
Fq be a splitting field over Fp. Then Fq is finite extension of Fp. We show that Fq
consists of the roots of Xq −X, and that these roots are distinct. Hence Fq is field
with q elements.

Raising to successive p-th power is the Frobenius endomorphism of fields char-
acteristic p. Hence its n-th power, the raising to the q-th power map, is an endo-
morphism of any field of characteristic p. Let α, β ∈ Fq be roots of Xq −X, that
is αq = α and βq = β. Then

(α+ β)q = αq + βq = α+ β, and (αβ)q = αqβq = αβ

Hence α+ β and αβ are also roots. If α 6= 0, then(
α−1

)q
= (αq)

−1

= α−1

shows α−1 is a root. Lastly clearly 1 is a root of Xq−X. Thus the roots of Xq−X
in Fq form a subfield splitting Xq − X. Hence Fq consists exactly of the roots
of Xq − X. The derivative (Xq − X)′ = −1 has no roots. Hence by Lemma 7.2
Xq−X has no multiple roots. Thus the field Fq has q elements. Note that therefore
[Fq : Fp] = n.

Because Xq − X has no multiple roots its splitting field Fq/Fp is separable.
Hence the finite extension Fq/Fp is a Galois extension. Let Φ be the Frobenius
map on Fq. Because Fq/Fp is finite the Frobenius map on Fq is an automorphism
by the Corollary to Lemma 7.5. Hence Φ ∈ G(Fq/Fp). Every element of Fq is
root of Xq − X. Hence Φn(α) = αq = α for all α ∈ Fq. Thus Φn the identity
automorphism of Fq. Suppose Φr = 1 for some positive r > 0. Then for all α ∈ Fq,
αp

r

= Φr(α) = α. This implies all pn elements of Fq are roots of Xqr − X of
degree pr. Hence r ≥ n. Thus Φ is an element of order n in G(Fq/Fp). But by
Proposition 4.3, Fq/Fp finite and Galois implies G(Fq/Fp) = [Fq : Fp] = n. Hence
G(Fq/Fp) is cyclic of order n generated by the Frobenius element Φ of Fq.

We summarise the above results on finite fields in the following Theorem.

8.1. Theorem. For q = pn for some prime p and positive integer n let Fq be
a splitting field of Xq −X ∈ Fp[X]. Then Fq is a finite field with q elements. The
field Fq has the following properties.

(1) [Fq : Fp] = n
(2) In Fq[X], Xq −X =

∏
α∈Fq (X − α).

(3) The extension Fq/Fp is Galois and G(Fq/Fp) is is cyclic of order n, gen-
erated by the Frobenius automorphism Φ of Fq.

Every finite field is isomorphic to one such field.
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9. Radical Extensions

9.1. Definition. A field extension K/F is called a radical extension if K =
F (α) w here α is root of polynomial Xn − a for some a ∈ F×.

Roots of Unity and Cyclic Groups. Recall that in C we can explicitly solve
equations Xn = a 6= 0. If a has polar form r exp(iθ), then this equation has n
solutions,

r1/n exp(iθ/n) exp(2πij/n), j = 0, 1, . . . a− 1.

Thus α = r1/n exp(iθ/n) is root of Xn − a and the full set of roots of Xn − a is,{
ζjα : j = 0, 1, , . . . , n− 1

}
,

where ζ = exp(2πi/n).
The complex numbers

exp(2πia/n), a = 0, 1, . . . , n− 1

are the roots in C of the polynomial Xn − 1. They are called the n-th roots of
unity in C. They form a cyclic group of order n generated by exp(2πi/n). The
generators of this group in C, that is the roots of unity exp(2πia/n) of order n, are
called primitive n roots of unity. An n-th root of unity exp(2πia/n) is a primitive
n root of unity if and only if gcd(a, n) = 1. The residue class a modulo n with

gcd(a, n) = 1 are the invertible elements (Z/nZ)
×

of Z/nZ. In elementary number
theory residue classes a modulo n with gcd(a, n) are called primitive. The Euler
ϕ-function is defined on the positive integers by,

ϕ(n) = | {a : 1 ≤ a ≤ n, with gcd(a, n) = 1} |

For a positive integer n the value ϕ(n) counts the following.

• The number of primitive residue classes (mod n).
• The number of primitive n-th roots of unity in C.
• The number of generators of a cyclic group of order n.
• The number of elements of order n in a cyclic group of order n.

Fact. It can be shown that

ϕ(n) = n
∏

p|n,p prime

(1− 1/p) .

Subgroups of Cyclic Groups.
Recall the subgroups of a cyclic group of order n,

Cn =< g : gn = e >=
{
g1, g2, . . . , gn−1, gn = e

}
are in one to one correspondence with divisors d of n.

Proof. Suppose n = dd′. Then gd has order d′ = n/d, so its powers form a
cyclic subgroup of Cn of order d′. For example if we take the primitive n root of
unity exp(2π/n) its d-th power is the primitive d′-th root of unity (exp(2πi/d′).
Conversely suppose H is subgroup of Cn. Then you can check

{
k ∈ Z : gk ∈ H

}
is an ideal of Z containing n. So it equals dZ for some d|n. Hence H is generated
by gd. �

Multiplicative Subgroups of Fields.

9.2. Lemma. Let G be a finite group of order n. Suppose for each d dividing n
there are at most d solutions to gd = 1 in G. Then G is cyclic.
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Proof. In a cyclic subgroup C of order n the elements of order d|n are the
generators of its unique subgroup of order d. So there are ϕ(d) such elements.
Hence

(9.3)
∑
d|n

ϕ(d) = n.

The orders of elements of G are divisors of n. For d|n let ϕG(d) be the number
of elements of order d. Then

(9.4)
∑
d|n

ϕG(d) = n

Suppose ϕG(d) 6= 0. Then G has at least one element σ of order d. Then
1, σ, . . . , σd−1 are d distinct solutions of xd = 1 in G. Hence they are the full
set of solutions, and form a cyclic group of order d. Any element of order d in G
is a solution of xd = 1 and so is one of these. So ϕG(d) = ϕ(d). So we have for all
d|n,

0 ≤ ϕG(d) ≤ ϕ(d)

(one extreme or the other holding), and∑
d|n

ϕG(d) =
∑
d|n

ϕ(d).

This is only possible if ϕG(d) = ϕ(d) for all d|n. In particular we must have
ϕG(n) = ϕ(n) ≥ 1. So G has an element of order n. Since |G| = n this implies G
is cyclic. �

9.5. Proposition. A finite multiplicative subgroup a field cyclic.

Proof. This follows directly from Lemma 9.2 because in any field the polyno-
mial equation Xd = 1 has at most d solutions. �

9.6. Corollary. For any finite field Fq with q elements the multiplicative
group F×q is cyclic of order q − 1.

In Homework 3 you constructed a field with 16 elements. It non-zero elements
form cyclic group of order 15, and you found a generator.

Number Theory Example.
For p a prime F×p = (Z/pZ)

×
is cyclic of order p− 1. A generator of this group

is called a primitive root modulo p. So there are ϕ(p − 1) primitive roots modulo
p.

For example (Z/7Z)
×

is cyclic of order 6. Modulo 7, every non-zero element is
a power of 3:

31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1.

So 3 is a primitive root modulo 3. Modulo 6 the primitive residue classes are 1
and 5, so ϕ(6) = 2. So modulo 7 there are ϕ(6) = 2 primitive roots. The other
primitive root modulo 7 is 35 ≡ 5.

Cyclotomic Extensions.

9.7. Proposition. Let L be the splitting field over a field F of Xn − 1, and n
an integer prime to the characteristic of F . Then

• L = F (ζ) where ζ is a primitive n-th root of unity, and
• L is a Galois extension of with abelian Galois group isomorphic to a sub-

group of (Z/nZ)
×

.
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Proof. For n prime to the characteristic of F , n 6= 0. The roots of Xn−1 are
all non-zero, whereas its derivative is nXn−1 6= 0 whose only root is 0. So Xn − 1
has n distinct roots in its splitting field. These n roots form a subgroup of F×.
Verification: The set of n-th roots of unity non -empty. We show it is closed under

products and taking inverses. If ζn1 = 1 and ζn2 = 1 then (ζ1ζ2)
n = ζn1 ζ

n
2 = 1 and

(ζ−1
1 )n = (ζn)−1 = 1.

A finite subgroup of the multiplicative group of a field is cyclic. So the roots of
Xn− 1 from a cyclic group of order n. Any generator ζ of this group is a primitive
n-th root of unity and the complete set of n-th roots of unity is {ζa : 0 ≤ a ≤ n− 1}.
The roots ζa all lie in F (ζ). We deduce

L = F (ζ, ζ2, · · · , ζn−1) = F (ζ).

Because Xn−1 ∈ F [X] has no repeated roots its splitting field L over F is a Galois
extension and the elements of the Galois group permute the n-th roots of unity.
Because L = F (ζ) any φ ∈ G(L/F ) is determined by its action on ζ. The value
φ(ζ) is a primitive n-th root of unity. We have

ζd = 1⇔ φ(ζd) = φ(1)⇔ φ(ζ)d = 1.

Hence ζ and φ(ζ) have the same order. So φ(ζ) is a primitive n-th root of unity.
Hence φ(ζ) = ζi(φ) for a some integer i(φ) with gcd(i(φ), n) = 1, unique modulo n.
Note ζ has order n, so ζa = ζb if and only if a ≡ b modulo n. We deduce that map
φ 7→ a(φ) (mod n) defines an injection

i : G(L/F )→ (Z/nZ)
×
.

For φ1, φ2 ∈ G(L/F ),

ζi(φ2φ1) = φ2(φ1(ζ))

= φ2

(
ζi(φ1)

)
= (φ2(ζ))

i(φ1)

=
(
ζi(φ2)

)i(φ1)

= ζi(φ2)i(φ1).

Consequently

i(φ2φ1) ≡ i(φ2)i(φ1) (mod n).

Hence φ 7→ a(φ) (mod n) is a homomorphism mapping G(L/F ) isomorphically

to a subgroup of (Z/nZ)
×

.
Subgroups of abelian groups are abelian. Hence G(L/F ) is abelian. �

Remark (Two Extremes). In the case F = Q, and ζn a primitive n-th root of unity,
it can be shown that

[Q(ζn) : Q] = ϕ(n) and G(Q(ζn)/Q) ∼= (Z/nZ)
×
.

In the case F = C, L = C and the Galois group is trivial.
Simple Radical Extensions.
Radical extensions of the form F(α)/F where αn ∈ F× and F contains a prim-

itive n-th root of unity are called simple Kummer extensions.

9.8. Proposition. Let F be field which contains a primitive n-th root of unity
and L = F (α), where
alpha is a root of a polynomial Xn − a, a ∈ F×. Then L is a Galois extension of
F with Galois group cyclic of order dividing n.
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Proof. Let ζ be a primitive n-th root of unity in F . Let α be a roots of Xn−a
in an extension field. Then α 6= 0 and Xn − a ∈ F [X] has n distinct roots αζi,
1 ≤ i ≤ n, and they all lie in L = F (ζ). Hence F (α, ζα, . . . ζn−1α) = F (α) = L is a
splitting field for Xn − a over F . Because there are no multiple roots this splitting
field is Galois over F . Let µn be the group of n-th roots of unity in L. Then as
remarked in the proof above, µn is cyclic of order n. The elements of G(L/F )
are determined by their action on α. For each φ ∈ G(L/F ), φ(α) = ζ(φ)α, for
a unique ζ(φ) = φ(α)/α ∈ µn. So we have an injection ζ : G(L/F ) → µn. For
φ1, φ2 ∈ G(L/F ), we have

αζ(φ2φ1) = φ2(φ1(α))

= φ2(αζ(φ1))

= φ2(α)φ2(ζ(φ1))

= αζ(φ2)ζ(φ1).

At the last step we used ζ(φ1) ∈ F is fixed by φ2, an automorphism of L fixing F .
Thus for φ1, φ2 ∈ G(L/F ),

ζ(φ2φ1) = ζ(φ2)ζ(φ1).

We deduce the injection ζ is a homomorphism. So G(LF ) is isomorphic to a
subgroup of the cyclic group µn. Hence G(L/F ) is cyclic of order dividing n. �

Remark (Two Extremes).
If a is an n-th power in F , then L = F and the Galois group is trivial.
It is straight forward to show the Galois group is cyclic of order n if and only

if a is not a d power in F× for any d|n, with d > 1.

10. Solutions by Radicals

10.1. Definition. Let f(X) ∈ F [X]. The polynomial equation f(X) = 0 is
called solvable by radicals if there tower of simple radical extensions

F = F1 ⊆ · · · ⊆ Fr,
such that f(X) splits into linear factors in Fr.

10.2. Definition. A finite group is called solvable if there is a sequence of
subgroups

1 = Gr ≤ Gr−1 . . . ≤ G0 = G

such that for each i = 1, . . . , r, Gi E Gi−1 and the quotient Gi−1/Gi is abelian.

10.3. Theorem. Let F be a field of characteristic 0 and K/F a splitting field
of f(X) ∈ F [X]. Then if f(X) is solvable by radicals G(K/F ) is a solvable group.

Proof. Suppose f(X) ∈ F [X] is solvable by radicals. Then we can find a
tower of fields,

F = F1 ⊆ · · · ⊆ Fr,
where each sub-extension Fi/Fi−1, is a simple radical extension, and Fr contains
a splitting field of f(X) over F . Splitting fields are unique up to isomorphism.
Hence we can embed K as subfield of Fr. Since we are in characteristic 0, f(X) is
separable and hence K/F is a Galois extension.

For each i = 2, . . . , r the extension Fi/Fi−1 is a simple radical extension. So
we have Fi = Fi−1(αi) with for some αi ∈ Fi with αmii ∈ F×i for some mi ∈ N.
Thus [Fi : Fi−1] ≤ mi. Let m be the product of the mi. Then by the Tower
Theorem, [Fr : F ] ≤ m. Hence all the αi are algebraic over F , by Proposition 3.2.
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Let pi) = Xm − 1 and for i = 2, . . . , r let pi(X) be the minimum polynomial of αi
over F . For each i let mi(X) be the minimum polynomial of αi with respect to F .
Let L be the splitting field over Fr of

g(X) = p1(X)p2(X) . . . pr(X)

Then L is the splitting field of g(X) over F . Thus L/F is a finite Galois extension.
Since L splits Xm − 1 and we are in characteristic 0, L contains a primitive n-th
roots of unity, and hence primitive mi-th roots of unity for all mi, i = 2, . . . , r. Let
ζ be a primitive n-th root of unity in L. Set L0 = F and for i > 0 set Li = Fi(ζ).
So we have a tower of fields

F = L0 ⊆ L1 ⊆ · · · ⊆ Lr ⊆ L

Since L1 = F1(ζ) = L0(ζ) the extension L1/L0 is cyclotomic extension. Hence this
extension has abelian Galois group, by Proposition 9.7. For i = 1, . . . , r,

Li = Fi−1(ζ) = Fi−1(αi, ζ) = Li−1(αi),

with αmi ∈ F×i−1 ⊆ L×i−1, and Li−1 contains a primitive mi-th root of unity. Thus
each of these extensions Li/Li−1 is Galois with abelian, cyclic Galois group, by
Proposition 9.8. Set Gi = G(L/Li). Then we have a chain of subgroups

G(L/Lr) = Gr ≤ Gr−1 ≤ · · · ≤ G0 = G(L/F ).

Then Gi E Gi−1 with Gi−1/Gi ∼= G(Li/Li−1) by the Main Theorem of Galois
Theory, and these quotients are all abelian.

Now K ⊆ Fr ⊆ Lr ⊆ L, and K/F is Galois. Since L/F is a finite Galois
extension the restriction map ρ(φ) = φ|K defines a surjective homomorphism

ρ : G(L/F )→ G(K/F ).

We now apply ρ to the chain of subgroups Gi of G(L/F ). By surjectivity ρ(G0) =
ρ (G(L/F )) = G(K/F ). By definition any φ ∈ G(L/Lr) ≤ G(L/F ), fixes Lr and
so fixes K, since K ⊆ Fr ⊆ Lr. So the restriction of φ to K is the identity
automorphism of K. Hence ρ(Gr) = ρ (G(Lr/F )) = 1. Thus we have a chain of
subgroups,

1 = ρ (Gr) ≤ ρ (Gr−1) ≤ · · · ≤ ρ (G0) = G(K/F ).

By the Lemma below this implies that for each i = 1, . . . , r, ρ(Gi) E ρ(Gi−1)
and the quotient ρ(Gi−1)/ρ(Gi) is a homomorphic image of Gi−1)/Gi. Since the
homomorphic image of an abelian group is abelian each quotient ρ(Gi−1)/ρ(Gi) is
abelian. So we have shown G(K/F ) is a solvable group. �

10.4. Lemma. Let ρ : G→ G′ be a homomorphism of groups and H E G. Then
ρ(H) E ρ(G) and ρ(G)/ρ(H) is homomorphic image of G/H.

Proof. H normal in G implies that for all g ∈ G, gH = Hg.
Hence ρ(g)ρ(H) = ρ(H)ρ(g) for all g ∈ G. Thus ρ(H) is normal in ρ(G).
Suppose for g1, g2 ∈ G. If g1H = g2H, then ρ(g1)ρ(H) = ρ(g2)ρ(H). Hence

gH 7→ ρ(g)ρ(H) is a well defined map from G/H onto ρ(G)/ρ(H), and it is a
homomorphism:

ρ(g1Hg2H) = ρ(g1g2H) = ρ(g1g2)ρ(H) = ρ(g1)ρ(H)ρ(g2)ρ(H).

�
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11. Symmetric Rational Functions

Let F (t1, . . . , tn) be the field of rational functions in variables t1, . . . , tn with
coefficients in a field F . For π ∈ Sym[n] symmetric group on n letters and r ∈
F (t1, . . . , tn) we define πr by

πr(t1, . . . , tn) = r(tpi(1), . . . , tπ(n)).

This embeds Sym[n] as subgroup of Aut(F (t1, . . . , tn)). The symmetric rational
functions in n variables are the rational functions r ∈ F (t1, . . . , tn) such that πr = r
for all π ∈ Sym[n]. Hence the symmetric rational functions are the fixed field
Fix(Sym[n]) of Sym[n]. The symmetric polynomials,

a1 = t1 + · · ·+ tn =
∑
i

ti,

a2 =
∑
i<j

titj

a3 =
∑
i<j<k

tttjtk

...

an = t1 . . . tn.an = t1 . . . tn.

are called elementary symmetric functions in t1, . . . , tn. All ak ∈ Fix(Sym[n]).
Hence F (a1, . . . , an) ⊆ Fix(Sym[n]). The k-th elementary symmetric function ak
is the sum of the roots of g(X) = (X − t1) . . . (X − tn) taken k at a time, and

g(X) =
∏
i

(X − ti)

= Xn − a1Xn−1 + a2X
n−2 + · · ·+ (−1)nan.

Hence F (t1, . . . , tn) is a splitting field over F (a1, . . . , an) of g(X). Hence by Pro-
position 8.3

[F (t1, . . . , tn) : F (a1, . . . , an)] ≤ n!.

We now consider the tower of fields,

F (t1, . . . , tn) ⊇ Fix(Sym[n]) ⊇ F (a1, . . . an).

By Proposition 5.1, F (t1, . . . , tn)/F ix(Sym[n]) is a finite Galois extension with
Galois group Sym[n]. Hence by Proposition 4.3 we have

[F (t1, . . . , tn) : Fix(Sym[n])] = n!,

and hence
[F (t1, . . . , tn) : F (a1, . . . , an)] = n!

and
F (a1, . . . , an) = Fix(Sym[n]).

We have established the following theorem.

11.1. Theorem. Let F (t1, . . . , tn) be the field of rational functions in vari-
ables t1, . . . , tn with coefficients in a field F , and a1, . . . , an be the the elementary
symmetric functions in t1, . . . , tn. Then the following hold.

(1) The field of symmetric rational functions equals F (a1 . . . , an).
(2) [F (t1, . . . , tn) : F (a1, . . . , an)] = n!.
(3) F (t1, . . . , tn)/F (a1, . . . , an) is Galois.
(4) G (F (t1, . . . , tn)/F (a1, . . . , an)) = Sym[n].

11.2. Corollary. Every symmetric rational function with coefficients in F is
rational function with coefficients in F of the elementary symmetric functions.
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11.3. Theorem. There is no general formula for solving polynomial equations
of degree 5 or higher by radicals.

Proof. The relies on the following fact: the symmetric groups Sym[n] or not
solvable for n ≥ 5. �

A Theorem of Cayley says that any finite group G of order n can be embedded a
sub group G ≤ Sym[n] = G(F (t1, . . . , tn)/F (a1, . . . , an). Hence by Proposition 5.1
if we let K be the fixed field in (F (t1, . . . , tn), F (t1, . . . , tn)/K is finite Galois with
Galois group G. Thus we have the following

11.4. Proposition. Every finite group can be realised as a Galois group.

12. More on Solutions by Radicals

Given a particular field F there remains the problem, given a particular poly-
nomial f(X) ∈ F [X] is it solvable by radicals? The Fundamental Theorem of
Algebra, really a theorem of analysis, says every polynomial with complex coeffi-
cients factors into linear factors over C. Hence every polynomial over C is solvable
by radicals. Since C = R(i), i2 = −1, C is a radical extension of R which splits
every polynomial with real coefficients into linear factors. Hence every polynomial
over R is solvable by radicals. We finish by showing that not every polynomial with
rational coefficients is solvable by radicals.

We first record some symmetric group facts.
Symmetric Groups.
Recall every permutation in Sym[n] can be decomposed into disjoint cycles.
Every cycle is a product of transpositions.
Check for i1, i2, . . . , ir distinct

(i1 i2 i3 . . . ir) = (i1 ir)(i1 ir−1) . . . (i1 i3)(i1 i2).

In Sym[ n] every transposition can be expressed in terms of the transpositions

(1 2), (1 3), . . . , (1n).

Check for a, b 6= 1, (a b) = (1 a)(1 b).

The transpositions (1 2), (1 3), . . . , (1n) can be expressed in terms of (1 2)
and the n-cycle (1 2 3 . . . n).

Let σ = (1 2)(1 2 3 . . . n) = (2 3 . . . n). Check for 2 ≤ i ≤ n− 1,

σ(1 i)σ−1 = (2 3 . . . n)(1 i)(nn− 1 . . . 2) = (1 i+ 1),

So (1 3) = σ(1 2)σ−1, (1 4) = σ2(1 2)σ−2, etc.

Hence we have the following.

12.1. Lemma. Every element of Sym[n] can expressed in terms of a single
transposition (a, b) and any n-cycle beginning (a b . . . ).

In the case n = p a prime we can conclude the following.

12.2. Lemma. Let p be a prime. Then if G is a subgroup of Sym[p] of order
divisible by p and containing a transposition then G = Sym[p].

Proof. A group of order divisible by a prime p has elements of order p, (Lag-
range’s Theorem). In Sym[p] only the p-cycles have order p. So G contains a
p-cycle.

Suppose the transposition (a, b) ∈ G. Let ρ be a p-cycle in the subgroup. Both
a and b will be in the cycle. Hence applying ρ a number of times i < p takes a to
b. So ρi ∈ G is a p-cycle of the form (a b . . . ). Hence G = Sym[p] be the previous
lemma. �
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Solvability over the Rationals.

12.3. Proposition. Suppose f(X) ∈ Q[X] is irreducible over Q of prime degree
p with p− 2 real roots and pair of complex conjugate roots. Then the Galois group
of f(X) over Q is Sym[p].

Proof. Let K be the splitting field of f(X) in C. The Q-automorphisms of
K permute the roots of f(X), and an automorphism is uniquely determined by its
action on these roots. This identifies G(K/Q) with a subgroup of Sym[p]. If α is
any root of f(X), in the tower of field extensions K/Q(α)/Q, [Q(α) : Q] = p. Hence
|G(K/Q)| = [K : Q] is divisible by p. Complex conjugation fixes the real roots and
swaps the two complex conjugate roots. Hence it corresponds to a transposition in
Sym[p]. So by the lemma above the Galois group is Sym[p]. �

12.4. Corollary. Suppose f(X) is an irreducible polynomial in Q[X] of prime
degree p ≥ 5, with p− 2 real roots and pair of complex conjugate roots. Then f(X)
is not solvable by radicals over Q.

Example.
We show that, X5 − 10X + 5 = 0 has is not solvable by radicals over Q.

Proof. Consider f(X) = X5 − 10X + 5.
Observe f(X) satisfies Eisenstein’s Criterion for the prime p = 5. We see 5

divides the coefficients of all terms except the leading term and 52 does not divide
the constant term 5. So f(X) is irreducible over Q.

Now use some calculus. We have f(X) → ∞ as X → ∞ and f(X) → −∞ as
X → −∞ as f(X) is an odd degree polynomial with coefficient of its leading term
positive. By considering the derivative f ′(X) = 5(X4 − 2), we see the graph of

f(X) has two turning points one at X = − 4
√

2 and the other at X = 4
√

2. Further

f(X) is increasing for |X| > 4
√

2 and decreasing for |X| < 4
√

2. We have X = − 4
√

2

gives a local maximum with f(− 4
√

2) = 5 + 8 4
√

2 > 0. We have X = 4
√

2 gives a

local minimum with f(
√

2) < 5 − 8
√

2 < 0. We deduce the graph of f(X) crosses
the X-axis three time. Hence f(X) has three real roots and a pair of complex
conjugate roots.

We have shown f(X) satisfies the conditions of Proposition 12.3. Hence the
Galois group of the splitting field in C of f(X) over Q is Sym[5]. Consequently
f(X) is not solvable by radicals over Q. �

Open Problem.
We saw above that every finite group can be realised as a Galois group. Over

C only the trivial group appears as Galois group. We have seen that we can realise
Sym[5] as Galois group over Q. It is conjectured that every finite group can be
realised as Galois group over Q. This remains a deep open problem.
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