MATH3968 – Lecture 5

Basic topology

Dr. Emma Carberry

Definition 1. If α is regular except at finitely many points, it is said to be *piecewise-regular*.

Let $\alpha:[0,L]:\to\mathbb{R}^2$ be a simple closed curve, regular except at points s_i ,

$$0 = s_0 < s_1 < \dots < s_{n-1} < s_n = L$$

(we are assuming that the curve is parameterised by arc length).

The total curvature is

$$\int_0^L k_0 ds = \sum_{i=0}^{n-1} \int_{s_i}^{s_{i+1}} d\theta$$

$$= \sum_{i=0}^{n-1} (\theta_-(s_{i+1}) - \theta_+(s_i))$$

$$= \theta_-(s_n) - \theta_+(s_0) + \sum_{i=1}^{n-1} (\theta_-(s_i) - \theta_+(s_i)).$$

Write γ_i for the angle $(\in (-\pi, \pi))$ from the vector $\lim_{s \to s_i^-} t(s)$ to the vector $\lim_{s \to s_i^+} t(s)$, $1 \le i \le n-1$.

Write γ_0 for the angle $(\in (-\pi, \pi))$ from the vector $\lim_{s \to s_n^-} t(s)$ to the vector $\lim_{s \to s_0^+} t(s)$. Then

$$\theta_{-}(s_i) - \theta_{+}(s_i) = -\gamma_i$$

 $\theta_{-}(s_n) - \theta_{+}(s_0) = -\gamma_0 + 2\pi n,$

for some $n \in \mathbb{Z}$.

We call n the rotation index of the piecewise-regular curve α , and from above

$$\int k_o \, ds + \sum_{i=0}^{n-1} \gamma_i = 2\pi n.$$

Theorem 2 (Theorem of Turning Tangents). Let $\alpha : [0, L] \to \mathbb{R}^2$ be a piecewise-regular simple closed curve, oriented anticlockwise. Then the rotation index of α is 1.

Continuity

Read do Carmo, Appendix A, p118, and Appendices A p456 and C p466.

Definition 3. The open ball $B_r(p)$ in \mathbb{R}^n centred at $p = (p_1, \dots p_n)$ of radius r is

$$B_r(p) = \{ x \in \mathbb{R}^n : |x - p| < r \}.$$

Definition 4. $U \subset \mathbb{R}^n$ is open if for each $p \in U$, there is an r > 0 so that

$$B_r(p) \subset U$$
.

Definition 5. An open set containing $p \in \mathbb{R}^n$ is said to be a *(open) neighbourhood* of p.

Proposition 6. Open sets in \mathbb{R}^n have the following properties:

- 1. \emptyset and \mathbb{R}^n are open sets
- 2. the union of an arbitrary collection of open sets is open
- 3. the intersection of finitely many open sets is open.

Proof. See MATH2962, or exercise.

Definition 7. A set $U \subset \mathbb{R}^n$ is *closed* if its complement $U^c = \mathbb{R}^n \setminus U$ is open

Since

$$\left(\bigcap_{i\in I} U_i\right)^c = \bigcup_{i\in I} U_i^c, \qquad \left(\bigcup_{i\in I} U_i\right)^c = \bigcap_{i\in I} U_i^c$$

we have

Proposition 8. 1. \emptyset and \mathbb{R}^n are closed sets

- 2. the intersection of an arbitrary collection of closed sets is closed
- 3. the union of finitely many closed sets is closed

Proposition 9. $U \subset \mathbb{R}^n$ is closed if and only if every convergent sequence $\{x_k\}$ with $x_k \in U$ has its limit in U

Proof. See MATH2962, or exercise.

Example 10.

Definition 11. Let $X \subset \mathbb{R}^n$. A subset U of X is relatively open in X if for each $p \in U$ there exists r > 0 such that $B_r(p) \cap X \subset U$.

Proposition 12. $U \subset X \subset \mathbb{R}^n$ is relatively open in X if and only if it is the intersection of X with an open set in \mathbb{R}^n .

Proof. See MATH2962, or exercise

Definition 13. $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $p \in \mathbb{R}^n$ if for each $\epsilon > 0$, there exists $\delta > 0$ such that

$$f(B_{\delta}(p)) \subset B_{\epsilon}(f(p)).$$

Example 14. The function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1, & x < 0 \\ 2, & x \ge 0 \end{cases}$$

is NOT continuous at x=0, since there is no $\delta>0$ such that $f(B_{\delta}(0))\subset B_{\frac{1}{2}}(f(0))$.

Definition 15. Let $U \subset \mathbb{R}^n$ be open. A function $f: U \to \mathbb{R}^m$ is *continuous* if it is continuous at every point in U.

Definition 16. Let $A \subset \mathbb{R}^n$ be an arbitrary set. $f: A \to \mathbb{R}^m$ is *continuous* if it is the restriction of a continuous function on an open set containing A.

Proposition 17. Let $U \subset \mathbb{R}^n$ be open. $f: U \to \mathbb{R}^m$ is continuous if and only if whenever $V \subset \mathbb{R}^m$ is open, $f^{-1}(V)$ is also open.

Proof. (\Rightarrow) Let $V \subset \mathbb{R}^m$ be open, and take $p \in f^{-1}(V)$.

Since V is open, there exists $\epsilon > 0$ such that $B_{\epsilon}(f(p)) \subset V$.

Since f is continuous, there is a $\delta > 0$ such that $f(B_{\delta}(p)) \subset B_{\epsilon}(f(p))$. But then $B_{\delta}(p) \subset f^{-1}(V)$.

 (\Leftarrow) Take $p \in U$, and $\epsilon > 0$.

Then by assumption, $f^{-1}(B_{\epsilon}(f(p)))$ is open, so there is some $\delta > 0$ so that $B_{\delta}(p) \subset f^{-1}(B_{\epsilon}(f(p)))$ and hence $f(B_{\delta}(p)) \subset B_{\epsilon}(f(p))$.

Proposition 18. Let $U \subset \mathbb{R}^n$ be open. $f: U \to \mathbb{R}^m$ is continuous if and only if all the component functions $f_i: \mathbb{R}^n \to \mathbb{R}$, $f = (f_1, \ldots, f_m)$, are continuous.

Proof. Exercise. \Box

Definition 19. A set $U \subset \mathbb{R}^n$ is *disconnected* if it may be written as the union of two disjoint nonempty relatively open sets. It is *connected* it is not disconnected.

disconnected

Theorem 20 (Heine-Borel). Let [a,b] be a closed interval, and I_{γ} be a collection of open intervals so that

$$[a,b]\subset\bigcup_{\gamma}I_{\gamma}.$$

Then there is a finite subcollection $I_{\gamma_1}, \ldots, I_{\gamma_n}$ so that

$$[a,b] \subset I_{\gamma_1} \cup \cdots \cup I_{\gamma_n}$$

Example 21. The interval [0,5) does NOT have this property.

$$[0,5) \subset \bigcup_{n=1}^{\infty} \left(-1, 5 - \frac{1}{n}\right),$$

but no finite sub-collection of these intervals will cover [0, 5).

Theorem 22 (General Heine-Borel). More generally in \mathbb{R}^n , if K is a closed and bounded subset, and $\{U_{\alpha}\}$ is a collection of open sets that cover K,

$$K \subseteq \bigcup_{\alpha} U_{\alpha}$$

then there is a finite subcollection that also covers K (ie K is compact),

$$K \subseteq U_1 \cup U_2 \cup \cdots \cup U_n$$

Differentiability

Definition 23. Let $U \subset \mathbb{R}^n$ be open. A function $f: U \to \mathbb{R}^m$ is *smooth* if all of its component functions have continuous partial derivatives of all orders.

Definition 24. Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^m$ be smooth. The differential of f at $p \in U$ is a linear map

$$df_n: \mathbb{R}^n \to \mathbb{R}^m$$

defined as follows: take $w \in \mathbb{R}^n$, and let $\alpha : (-\epsilon, \epsilon) \to U$ be a smooth curve so that $\alpha(0) = p$ and $\alpha'(0) = w$. Then

$$df_p(w) = (f \circ \alpha)'(0).$$

Proposition 25. df_p is a well-defined linear map, and with respect to the standard bases is given by the matrix

$$df_p := \begin{pmatrix} \frac{\partial f^1}{\partial x_1}(p) & \frac{\partial f^1}{\partial x_2}(p) & \cdots & \frac{\partial f^1}{\partial x_n}(p) \\ \frac{\partial f^2}{\partial x_1}(p) & \frac{\partial f^2}{\partial x_2}(p) & \cdots & \frac{\partial f^2}{\partial x_n}(p) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f^m}{\partial x_1}(p) & \frac{\partial f^m}{\partial x_2}(p) & \cdots & \frac{\partial f^m}{\partial x_n}(p) \end{pmatrix}.$$

Proposition 26 (Chain Rule). If $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^k$ are smooth mappings, then so is $g \circ f$, and for $p \in \mathbb{R}^n$,

$$d(g \circ f)_p = dg_{f(p)}df_p.$$

Theorem 27 (Implicit Function Theorem).

$$F: W \subset \mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n$$
$$(x_1, \dots, x_m, y_1, \dots, y_n) \mapsto (F^1(x, y), \dots, F^n(x, y))$$

Suppose F is a smooth map, and that for $(a,b) \in W$,

$$\begin{pmatrix}
\frac{\partial F^{1}}{\partial y_{1}}(a,b) & \frac{\partial F^{1}}{\partial y_{2}}(a,b) & \cdots & \frac{\partial F^{1}}{\partial y_{n}}(a,b) \\
\frac{\partial F^{2}}{\partial y_{1}}(a,b) & \frac{\partial F^{2}}{\partial y_{2}}(a,b) & \cdots & \frac{\partial F^{2}}{\partial y_{n}}(a,b) \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial F^{n}}{\partial y_{1}}(a,b) & \frac{\partial F^{n}}{\partial y_{2}}(a,b) & \cdots & \frac{\partial F^{n}}{\partial y_{n}}(a,b)
\end{pmatrix}$$

is invertible. Write c = F(a, b). Then there are open neighbourhoods $U \subset \mathbb{R}^m$ of a and $V \subset \mathbb{R}^n$ of b and a smooth map $g: U \to V$ so that for $(x, y) \in U \times V$,

$$F(x,y) = c \qquad \Leftrightarrow \qquad y = g(x).$$

If F is linear, the Implicit Function Theorem is a familiar statement from linear algebra:

Theorem 28 (Linear Implicit Function Theorem). Given n linear equations in m + n variables, if the rank of coefficient matrix is n then we have m free variables and we can solve uniquely for the remaining n pivot variables in terms of the m free variables.

The x_i above are free variables, and the y_i are pivot variables.

The Implicit Function Theorem tells us that given n "smooth equations"

$$F^{1}(x_{1}, \dots, x_{m}, y_{1}, \dots, y_{n}) = c_{1}$$

$$\vdots \qquad \vdots$$

$$F^{n}(x_{1}, \dots, x_{m}, y_{1}, \dots, y_{n}) = c_{n}$$

and $p \in \mathbb{R}^{m+n}$, if dF_p has rank n, in particular if

$$\left[\frac{\partial F^i(p)}{\partial y_j}\right]$$

is invertible, then we can solve uniquely for y_1, \ldots, y_n in terms of x_1, \ldots, x_m and moreover the map

$$g: x_1, \ldots, x_m \mapsto y_1, \ldots, y_n$$

is smooth.

Active Learning

Question 29. What does the Implicit Function Theorem tell you about the function

$$F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(x, y) \mapsto x^2 + y^2.$

at the point (0,1)?

Theorem 30 (Implicit Function Theorem).

$$F: W \subset \mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n$$
$$(x_1, \dots, x_m, y_1, \dots, y_n) \mapsto (F^1(x, y), \dots, F^n(x, y))$$

Suppose F is a smooth map, and that for $(a, b) \in W$,

$$\begin{pmatrix} \frac{\partial F^{1}}{\partial y_{1}}(a,b) & \frac{\partial F^{1}}{\partial y_{2}}(a,b) & \cdots & \frac{\partial F^{1}}{\partial y_{n}}(a,b) \\ \frac{\partial F^{2}}{\partial y_{1}}(a,b) & \frac{\partial F^{2}}{\partial y_{2}}(a,b) & \cdots & \frac{\partial F^{2}}{\partial y_{n}}(a,b) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial F^{n}}{\partial y_{1}}(a,b) & \frac{\partial F^{n}}{\partial y_{2}}(a,b) & \cdots & \frac{\partial F^{n}}{\partial y_{n}}(a,b) \end{pmatrix}$$

is invertible (note then that $dF_{(a,b)}$ is surjective). Write c = F(a,b). Then there are open neighbourhoods $U \subset \mathbb{R}^m$ of a and $V \subset \mathbb{R}^n$ of b and a smooth map $g: U \to V$ so that for $(x,y) \in U \times V$,

$$F(x,y) = c \qquad \Leftrightarrow \qquad y = g(x).$$