
MATH3968 – Lecture 5

Basic topology

Dr. Emma Carberry

Definition 1. If α is regular except at finitely many points, it is said to be piecewise-

regular.

Let α : [0, L] :→ R2 be a simple closed curve, regular except at points si,

0 = s0 < s1 < · · · < sn−1 < sn = L

(we are assuming that the curve is parameterised by arc length).

α(s0) = α(s3) α(s1)

α(s2)

θ−(s3)
θ+(s0)

θ−(s1)
θ+(s1)

θ−(s2)

θ+(s2)

The total curvature is∫ L

0

k0ds =
n−1∑
i=0

∫ si+1

si

dθ

=
n−1∑
i=0

(θ−(si+1)− θ+(si))

= θ−(sn)− θ+(s0) +
n−1∑
i=1

(θ−(si)− θ+(si)).

α(s0) = α(s3) α(s1)

α(s2)

γ0

γ1

γ2
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Write γi for the angle (∈ (−π, π)) from the vector lims→s−i
t(s) to the vector lims→s+i

t(s),

1 ≤ i ≤ n− 1.

Write γ0 for the angle (∈ (−π, π)) from the vector lims→s−n t(s) to the vector lims→s+0
t(s).

Then

θ−(si)− θ+(si) = −γi

θ−(sn)− θ+(s0) = −γ0 + 2πn,

for some n ∈ Z.

We call n the rotation index of the piecewise-regular curve α, and from above∫
ko ds+

n−1∑
i=0

γi = 2πn.

Theorem 2 (Theorem of Turning Tangents). Let α : [0, L] → R2 be a piecewise-regular

simple closed curve, oriented anticlockwise. Then the rotation index of α is 1.

Continuity

Read do Carmo, Appendix A, p118, and Appendices A p456 and C p466.

Definition 3. The open ball Br(p) in Rn centred at p = (p1, . . . pn) of radius r is

Br(p) = {x ∈ Rn : |x− p| < r}.

Br(p)p
r

Definition 4. U ⊂ Rn is open if for each p ∈ U , there is an r > 0 so that

Br(p) ⊂ U.

U

Br(p)p
r

2



Definition 5. An open set containing p ∈ Rn is said to be a (open) neighbourhood of p.

Proposition 6. Open sets in Rn have the following properties:

1. ∅ and Rn are open sets

2. the union of an arbitrary collection of open sets is open

3. the intersection of finitely many open sets is open.

Proof. See MATH2962, or exercise.

Definition 7. A set U ⊂ Rn is closed if its complement U c = Rn \ U is open

Since (⋂
i∈I

Ui

)c

=
⋃
i∈I

U c
i ,

(⋃
i∈I

Ui

)c

=
⋂
i∈I

U c
i

we have

Proposition 8. 1. ∅ and Rn are closed sets

2. the intersection of an arbitrary collection of closed sets is closed

3. the union of finitely many closed sets is closed

Proposition 9. U ⊂ Rn is closed if and only if every convergent sequence {xk} with

xk ∈ U has its limit in U

Proof. See MATH2962, or exercise.

Example 10.
open closed

neither open

nor closed

Definition 11. Let X ⊂ Rn. A subset U of X is relatively open in X if for each p ∈ U
there exists r > 0 such that Br(p) ∩X ⊂ U .

Proposition 12. U ⊂ X ⊂ Rn is relatively open in X if and only if it is the intersection

of X with an open set in Rn.

Proof. See MATH2962, or exercise
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U
X

Definition 13. f : Rn → Rm is continuous at p ∈ Rn if for each ε > 0, there exists δ > 0

such that

f(Bδ(p)) ⊂ Bε(f(p)).

Example 14. The function f : R→ R defined by

f(x) =

1, x < 0

2, x ≥ 0

is NOT continuous at x = 0, since there is no δ > 0 such that f(Bδ(0)) ⊂ B 1
2
(f(0)).

x

y

Bδ(0)

B 1
2
(2)

Definition 15. Let U ⊂ Rn be open. A function f : U → Rm is continuous if it is

continuous at every point in U .

Definition 16. Let A ⊂ Rn be an arbitrary set. f : A → Rm is continuous if it is the

restriction of a continuous function on an open set containing A.

Proposition 17. Let U ⊂ Rn be open. f : U → Rm is continuous if and only if whenever

V ⊂ Rm is open, f−1(V ) is also open.

Proof. (⇒) Let V ⊂ Rm be open, and take p ∈ f−1(V ).

Since V is open, there exists ε > 0 such that Bε(f(p)) ⊂ V .

Since f is continuous, there is a δ > 0 such that f(Bδ(p)) ⊂ Bε(f(p)). But then

Bδ(p) ⊂ f−1(V ).
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(⇐) Take p ∈ U , and ε > 0.

Then by assumption, f−1(Bε(f(p))) is open, so there is some δ > 0 so that Bδ(p) ⊂
f−1(Bε(f(p))) and hence f(Bδ(p)) ⊂ Bε(f(p)).

Proposition 18. Let U ⊂ Rn be open. f : U → Rm is continuous if and only if all the

component functions fi : Rn → R, f = (f1, . . . , fm), are continuous.

Proof. Exercise.

Definition 19. A set U ⊂ Rn is disconnected if it may be written as the union of two

disjoint nonempty relatively open sets. It is connected it is not disconnected.

disconnected

Theorem 20 (Heine-Borel). Let [a, b] be a closed interval, and Iγ be a collection of open

intervals so that

[a, b] ⊂
⋃
γ

Iγ.

Then there is a finite subcollection Iγ1 , . . . , Iγn so that

[a, b] ⊂ Iγ1 ∪ · · · ∪ Iγn

.

Example 21. The interval [0, 5) does NOT have this property.

[0, 5) ⊂
∞⋃
n=1

(
−1, 5− 1

n

)
,

but no finite sub-collection of these intervals will cover [0, 5).

50
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Theorem 22 (General Heine-Borel). More generally in Rn, if K is a closed and bounded

subset, and {Uα} is a collection of open sets that cover K,

K ⊆
⋃
α

Uα

then there is a finite subcollection that also covers K (ie K is compact),

K ⊆ U1 ∪ U2 ∪ · · · ∪ Un

Differentiability

Definition 23. Let U ⊂ Rn be open. A function f : U → Rm is smooth if all of its

component functions have continuous partial derivatives of all orders.

Definition 24. Let U ⊂ Rn be open and f : U → Rm be smooth. The differential of f

at p ∈ U is a linear map

dfp : Rn → Rm

defined as follows: take w ∈ Rn, and let α : (−ε, ε) → U be a smooth curve so that

α(0) = p and α′(0) = w. Then

dfp(w) = (f ◦ α)′(0).

Proposition 25. dfp is a well-defined linear map, and with respect to the standard bases

is given by the matrix

dfp :=


∂f1

∂x1
(p) ∂f1

∂x2
(p) · · · ∂f1

∂xn
(p)

∂f2

∂x1
(p) ∂f2

∂x2
(p) · · · ∂f2

∂xn
(p)

...
...

...
...

∂fm

∂x1
(p) ∂fm

∂x2
(p) · · · ∂fm

∂xn
(p)

 .

Proposition 26 (Chain Rule). If f : Rn → Rm and g : Rm → Rk are smooth mappings,

then so is g ◦ f , and for p ∈ Rn,

d(g ◦ f)p = dgf(p)dfp.

Theorem 27 (Implicit Function Theorem).

F : W ⊂ Rm+n = Rm × Rn → Rn

(x1, . . . , xm, y1, . . . , yn) 7→ (F 1(x, y), . . . , F n(x, y))

Suppose F is a smooth map, and that for (a, b) ∈ W ,
∂F 1

∂y1
(a, b) ∂F 1

∂y2
(a, b) · · · ∂F 1

∂yn
(a, b)

∂F 2

∂y1
(a, b) ∂F 2

∂y2
(a, b) · · · ∂F 2

∂yn
(a, b)

...
...

...
...

∂Fn

∂y1
(a, b) ∂Fn

∂y2
(a, b) · · · ∂Fn

∂yn
(a, b)


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is invertible. Write c = F (a, b). Then there are open neighbourhoods U ⊂ Rm of a and

V ⊂ Rn of b and a smooth map g : U → V so that for (x, y) ∈ U × V ,

F (x, y) = c ⇔ y = g(x).

If F is linear, the Implicit Function Theorem is a familiar statement from linear algebra:

Theorem 28 (Linear Implicit Function Theorem). Given n linear equations in m + n

variables, if the rank of coefficient matrix is n then we have m free variables and we can

solve uniquely for the remaining n pivot variables in terms of the m free variables.

The xi above are free variables, and the yi are pivot variables.

The Implicit Function Theorem tells us that given n “smooth equations”

F 1(x1, . . . , xm, y1, . . . , yn) = c1

...
...

F n(x1, . . . , xm, y1, . . . , yn) = cn

and p ∈ Rm+n, if dFp has rank n, in particular if[
∂F i(p)

∂yj

]
is invertible, then we can solve uniquely for y1, . . . , yn in terms of x1, . . . , xm and moreover

the map

g : x1, . . . , xm 7→ y1, . . . , yn

is smooth.

Active Learning

Question 29. What does the Implicit Function Theorem tell you about the function

F : R× R→ R

(x, y) 7→ x2 + y2.

at the point (0, 1)?

Theorem 30 (Implicit Function Theorem).

F : W ⊂ Rm+n = Rm × Rn → Rn

(x1, . . . , xm, y1, . . . , yn) 7→ (F 1(x, y), . . . , F n(x, y))
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Suppose F is a smooth map, and that for (a, b) ∈ W ,
∂F 1

∂y1
(a, b) ∂F 1

∂y2
(a, b) · · · ∂F 1

∂yn
(a, b)

∂F 2

∂y1
(a, b) ∂F 2

∂y2
(a, b) · · · ∂F 2

∂yn
(a, b)

...
...

...
...

∂Fn

∂y1
(a, b) ∂Fn

∂y2
(a, b) · · · ∂Fn

∂yn
(a, b)


is invertible (note then that dF(a,b) is surjective). Write c = F (a, b). Then there are open

neighbourhoods U ⊂ Rm of a and V ⊂ Rn of b and a smooth map g : U → V so that for

(x, y) ∈ U × V ,

F (x, y) = c ⇔ y = g(x).
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