MATH3968 — Lecture 6

Regular surfaces

Dr. Emma Carberry

Last Lecture

Definition 1. Let U C R"™ be open and f : U — R™ be smooth. The differential of f at

p € U is a linear map
df, : R" — R™

defined as follows: take w € R", and let a : (—€,€) — U be a smooth curve so that

a(0) = p and o/(0) = w. Then
dfp(w) = (f © @)'(0).

Proposition 2. df, is a well-defined linear map, and with respect to the standard bases

18 given by the matrix

8 1 8 1 3 1
L £ - L
of2 af2 of2
dfp - a—xl:(P) a—m:(p) E p
ofm afm ofm™
) ) - )

Proposition 3 (Chain Rule). If f : R® — R™ and g : R™ — R* are smooth mappings,
then so is go f, and for p € R,

d(go f)p = dgsmdfy.
Recall from linear algebra that if
A:R™ - R"
is linear, then writing [A] for the matrix of A with respect to the standard bases,

rank [A]
= number of linearly independent columns of [ A |

= number of linearly independent rows of [ A |

= dimension of the image of A (=column space of [A])
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To prove that these things are equivalent, reduce the matrix to row echelon form and
check that

1. each of the above are invariant under row operations

2. the above are equal for a matrix in row echelon form

In particular, then

Proposition 4. A linear map A : R" — R" is surjective if and only if [A] has rank n.

Recall also the
Theorem 5 (Rank—Nullity Theorem). Suppose
A:R™ - R"

1s linear, then
dim image (A) + dim ker (A) =m
or

rank + nullity = number of columns.

The rank—nullity theorem immediately gives us

Proposition 6. A linear map A : R™ — R"™™ s injective if and only if [A] has rank n,

where [A] is the matriz of A with respect to the standard bases.

This proposition enables us in particular to check when the differential dg, is injective.

Definition 7. A parametrised surface in R? is a smooth mapping
¢:U —R?
where U is an open set in R2. ¢ is regular if
dg, : R* — R?
dp 0

is injective for all p € U, ie s 8—¢ are linearly independent where in terms of coordinates,
u Ov
¢ takes the form

(b(uvU) = ((bl(u?U)? ¢2<uav)7 ¢3<u7 ?})) .



The regularity condition guarantees the existence of a tangent plane at each point.
Unlike with curves, this will not be the basic definition of “surface” that we shall use.
The reason is that it does not allow us to deal properly with global properties of surfaces.

Indeed, one of the most basic surfaces—the sphere—is not properly treated with this

definition, because there is not a regular ¢ whose image is the whole sphere.

We need to be able to use more than one such map ¢ in order to cover the sphere.

Definition 8. Let U C R" be open. We say that ¢ : U — R™ is a homeomorphism onto

its image if it is continuous and has continuous inverse.

(Note that this requires ¢ to be one-to-one.)

Definition 9 (Regular Surface). A subset ¥ C R? is a regular surface if for each p € &

there exists a neighbourhood V of p in R? and a map
p:U—=>VNX
of an open set U C R? onto V N'Y so that
1. ¢ is smooth;

2. ¢ is a homeomorphism;

3. for each ¢ € U, d¢, : R* — R? is one-to-one (regularity condition).

¢ is called a local parameterisation or local coordinate or coordinate chart near p, and

V' N X is called a coordinate neighbourhood of p.

CVNnX D

A

Ezample 10 (Stereographic Projection from the North Pole).

= {wy2) |t +9P 422 = 1),



(u,0) = <1fz132>

Ezxample 10 (continued). Use inverse of stereographic projection from the North Pole N

to obtain a local parameterisation of S?\ {N}, given by

B 2u
R

2v
w22 +1
uw?+0? -1
(exercise).

Ezxample 10 (continued). Use inverse of stereographic projection from the South Pole S

(or any point other than N) to obtain a local parameterisation near N.

z
N
(x1,21)
U Ny
o : T
AN
(fl?o, Zo)
S

FExample 11. Alternatively, we can try
o(u,v) = (cosucosv,sinucos v, sinv),

0<u<2m —7/2 <v <m7/2. Here u is longitude and v is latitude.

Note that u =60, v = m/2 — ¢ where 0, ¢ are the usual spherical coordinates.



Ezample 11 (continued). ¢ is smooth and one-to-one, hence a homeomorphism if it is
everywhere regular (Inverse Function Theorem).

)

It misses the North and South Poles, and the “international dateline”.

The Jacobian matrix is

—sinucosv — cosusinv
dpy, = COSUCOSVU  —sinwusinwv
0 Ccos v

The columns are linearly dependent only when cosv = 0, which does not occur in our

domain.

We can cover the whole sphere by, for example, interchanging the roles of  and z, and

choosing a domain such that arcs “missed” by the two charts do not intersect.

Proposition 12. Let U C R? be open, and f : U — R be smooth. Then the graph of f,

namely
{(,y, f(z,9)) - (x,y) € U}

s a reqular surface.

Proof: Define 5
o:U—R

(u,v) = (u,v, f(u,v)).

1. ¢ is smooth.

2. ¢ is one-to-one, and its inverse is given by projection onto the first two co-ordinates,

the restriction of a continuous map, and hence is continuous.

3. The first two rows of the Jacobian matrix d¢,, are the identity, so it is one-to-one.

]

Definition 13 ( Regular/Critical Points and Values ). Let F : U C R*™™™ — R" be a

smooth map on the open set U. p € U is a regular point / critical point of F if
dF, : R"*" — R"

is surjective / is not surjective. The image F'(p) of a critical point is called a critical value
of F'; a point in F(U) C R™ which is not the image of any critical point is called a reqular

value of F.



Theorem 14 (Implicit Function Theorem).

F: WCR™=R" xR* — R™
(T1y e Ty Yty -5 ) = (FH(zyy), ..., F™(z,y))

Suppose F is a smooth map, and that for (a,b) € W,

%_i(av b) %_521(@7 b) T %(a’ b)
2 2 2
%(aa b) %%(CL, b) T %(av b)

is invertible (note then that dF(qp) is surjective). Write ¢ = F'(a,b). Then there are open
neighbourhoods U C R™ of a and V' C R™ of b and a smooth map g : U — V so that for
(z,y) eU XV,

Fla,y)=c <  y=gx)
Proposition 15. If f : U C R® — R is a smooth function and a € f(U) is a regqular

value of f, then f~(a) is a reqular surface in R3.

Proof: Use the Implicit Function Theorem:

0
Take p = (0, Yo, 20) € f~(a), and by renaming the axes if necessary assume that a—f(p) #
2
0.

By the Implicit Function Theorem, there are open neighbourhoods U C R? of (z¢, yo) and
V C R of z; together with a smooth map

g:U—=V

such that g(zo,yo) = 20 and
fx.y.9(z,y) =a
for all (z,y) € U.

Near p, the surface f~1(a) is given by the graph of g, which we proved above to be a

regular surface.

That is, we checked that

o: U — RS
($7y> = (3373179(37;31))
gives a local coordinate about p.

Since p € f~!(a) was arbitrary, f~'(a) is a regular surface. O
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Active Learning

Question 16. Let f(z,y,2) = 22

1. Is 0 a regular value of f?
2. Is f71(0) a regular surface?
Ezample 18 (Sphere). We can define the sphere implicitly as
{(z,y,2) e R®: 2® +¢* + 22 = 1}.
It is the level set F'(z,y,z) = 1 of the function F(z,y,z) = 2? + y* + 2%
AFlayz) = (22,2y,22),

so the only critical point of F'is (0,0,0), and hence its only critical value is 0.
In particular, this shows that the sphere is a regular surface.

Ezxample 19 (Torus). We can define a torus of internal radius R and external radius a > R
by rotating the circle
(y —a)® + 2> = R?

in the yz plane about the 2 axis, to give

2
(x/x2+y2 — a) + 22 = R%

L,
| @
—a)

Ezample 19 (continued). Let f(z,y,2) = (/22 + y% — a)? + 2%; then

p B <2x(\/x2+y2—a) 2y(\/2?2 +y%* —a) >
f(x,y,z) - 2z 1.

The differential only fails to have maximal rank when /22 + y> = a and z = 0.

In particular, R? is a regular value of f(z,y,2) = (\/22 + y? — a)? + 22, so the torus is a

regular surface.



