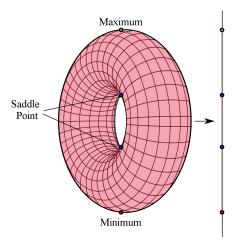
MATH3968 – Lecture 8

The tangent plane

Dr. Emma Carberry



Example 1 (Height function on a torus).

How would you prove that these critical points are of the types claimed?

Example 2. Local coordinates are diffeomorphisms.

By definition, a local coordinate $\phi: U \to \Sigma$ is smooth and invertible.

For each $p \in \phi(U)$, if $\psi: V \to \Sigma$ is another local coordinate about p then $\phi^{-1} \circ \psi|_{\psi^{-1}(\psi(V)\cap\phi(U))}$ is smooth.

This is the definition of what it means for ϕ^{-1} to be smooth at p.

Active Learning

Question 3. Let Σ be the paraboloid $z = x^2 + y^2$.

- 1. Show that Σ is a regular surface.
- 2. Show that Σ is diffeomorphic to a plane (that is, there is a diffeomorphism between Σ and a plane).

Surfaces of Revolution

A number of interesting surfaces can be obtained as surfaces of revolution.

Let Σ be the surface in \mathbb{R}^3 obtained by rotating the regular plane curve

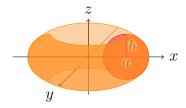
$$x = f(v), \quad z = g(v)$$

about the z-axis, where we assume that the curve does not intersect the z-axis.

$$\phi(u, v) = (f(v)\cos u, \ f(v)\sin u, \ g(v))$$

defines local coordinates. By changing the range of angles (u, v) for which the map ϕ is defined we can cover the entire surface of revolution.

Example 5 (Torus). Let $x = a + b \cos v$, $z = b \sin v$, b < a.



Example 5 (continued).

$$\phi_1 : (0, 2\pi) \times (0, 2\pi) \to \mathbb{R}^3$$

$$(u, v) \mapsto ((a + b \cos v) \cos u,$$

$$(a + b \cos v) \sin u, b \sin v)$$

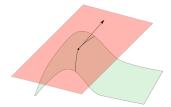
is one local coordinate; together with

$$\phi_2 : (-\frac{\pi}{2}, \frac{3\pi}{2}) \times (-\frac{\pi}{2}, \frac{3\pi}{2}) \to \mathbb{R}^3$$
$$\phi_3 : (-\pi, \pi) \times (-\pi, \pi) \longrightarrow \mathbb{R}^3$$

both using the same formula as above for their respective local coordinates, we have an atlas for the torus.

Tangent Plane

Definition 6. Let $\Sigma \subset \mathbb{R}^3$ be a regular surface, and take $p \in \Sigma$. A tangent vector to Σ at p is the velocity vector $\alpha'(0)$ of some smooth parametrised curve $\alpha: (-\epsilon, \epsilon) \to \Sigma$ with $\alpha(0) = p$.



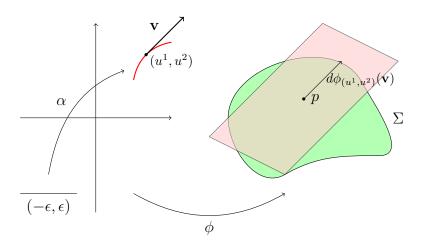
Definition 7. The set of all tangent vectors to Σ at p is called the *tangent plane to* Σ at p, and is denoted by $T_p\Sigma$.

Proposition 8. Let Σ be a regular surface, and take $p \in \Sigma$. The tangent plane $T_p\Sigma$ is a 2-dimensional linear subspace of \mathbb{R}^3 , and is equal to $d\phi_{u^1,u^2}(\mathbb{R}^2)$, for any local parameterisation $\phi: U \subset \mathbb{R}^2 \to \Sigma$ with $\phi(u^1, u^2) = p$.

Proof: The first statement follows from the second one, so we show that given a local parameteristion ϕ of the specified form, we have $d\phi_{u^1,u^2}(\mathbb{R}^2) = T_p\Sigma$.

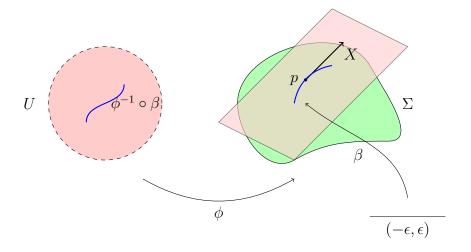
$$d\phi_{u^1,u^2}(\mathbb{R}^2) \subset T_p\Sigma.$$

- Take $\mathbf{v} \in \mathbb{R}^2$, and choose $\alpha : (-\epsilon, \epsilon) \to \mathbb{R}^2$ such that $\alpha(0) = (u^1, u^2)$ and $\alpha'(0) = \mathbf{v}$.
- By definition, $d\phi_{(u^1,u^2)}(\mathbf{v}) = (\phi \circ \alpha)'(0)$, so $d\phi_{(u^1,u^2)}(\mathbf{v}) \in T_p\Sigma$.



$T_p\Sigma \subset d\phi_{u^1,u^2}(\mathbb{R}^2)$

- Take $X \in T_p\Sigma$, and choose $\beta: (-\epsilon, \epsilon) \to \Sigma$ so that $\beta(0) = p, \beta'(0) = X$.
- The local coordinate charts ϕ are diffeomorphisms, so $\phi^{-1} \circ \beta : (-\epsilon, \epsilon) \to U$ are smooth curves.
- $d\phi_{(u^1,u^2)}((\phi^{-1}\circ\beta)'(0)) = (\phi\circ\phi^{-1}\circ\beta)'(0) = \beta'(0)$, so $X\in d\phi_{(u^1,u^2)}(\mathbb{R}^2)$.



Definition 9. Given a local parameterisation $\phi: U \to \Sigma$ with $\phi(u^1, u^2) = p$, write e_1, e_2 for the standard basis of \mathbb{R}^2 . Then

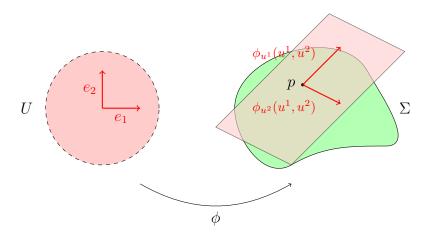
$$\phi_{u^1}(u^1, u^2) = \frac{\partial \phi}{\partial u^1}(u^1, u^2) = d\phi_{(u^1, u^2)}(e_1),$$

$$\phi_{u^2}(u^1, u^2) = \frac{\partial \phi}{\partial u^2}(u^1, u^2) = d\phi_{(u^1, u^2)}(e_2)$$

is called the basis of $T_p\Sigma$ associated to ϕ , and if $X \in T_p\Sigma$ is given by

$$X = a\phi_{u^1}(u^1, u^2) + b\phi_{u^2}(u^1, u^2)$$

we call (a, b) the *coordinates* of X with respect to ϕ .



Take $X \in T_p\Sigma$, and let (a,b) be the coordinates of X with respect to ϕ , $\phi(u_0^1,u_0^2)=p$.

$$X = a\phi_{u^1}(u_0^1, u_0^2) + b\phi_{u^2}(u_0^1, u_0^2)$$

Let $\alpha:(-\epsilon,\epsilon)\to \Sigma$ be a smooth curve with $\alpha(0)=p,\,\alpha'(0)=X.$

Then writing $\phi^{-1} \circ \alpha(t) = (u^1(t), u^2(t)),$

$$a\phi_{u^{1}}(u_{0}^{1}, u_{0}^{2}) + b\phi_{u^{2}}(u_{0}^{1}, u_{0}^{2}) = \alpha'(0)$$

$$= (\phi \circ (\phi^{-1} \circ \alpha))'(0)$$

$$= d\phi_{(u_{0}^{1}, u_{0}^{2})}(u^{1'}(0)e_{1} + u^{2'}(0)e_{2})$$

$$= u^{1'}(0)\phi_{u^{1}}(u_{0}^{1}, u_{0}^{2}) + u^{2'}(0)\phi_{u^{2}}(u_{0}^{1}, u_{0}^{2})$$

SO

$$(a,b) = (u^{1'}(0), u^{2'}(0)),$$

i.e.

$$X = u^{1\prime}(0)\phi_{u^1}(u_0^1, u_0^2) + u^{2\prime}(0)\phi_{u^2}(u_0^1, u_0^2).$$

Active Learning

Question 10. Let $\phi: U \subset \mathbb{R}^2 \to \Sigma \subset \mathbb{R}^3$ be a local parameterisation of a regular surface Σ , and for $(u_0^1, u_0^2) \in U$, consider

$$d\phi_{(u_0^1, u_0^2)} : \mathbb{R}^2 \to T_{\phi(u_0^1, u_0^2)} \Sigma.$$

What is the matrix of $d\phi_{(u_0^1,u_0^2)}$ with respect to

- the standard basis e_1, e_2 on \mathbb{R}^2 ;
- the basis $\phi_{u^1}(u^1_0,u^2_0),\phi_{u^2}(u^1_0,u^2_0)$ of $T_{\phi(u^1_0,u^2_0)}\Sigma$?

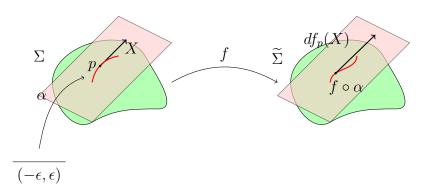
Differential of a smooth map

Definition 12. Let $f: \Sigma \to \widetilde{\Sigma}$ be a smooth map with $f(p) = \widetilde{p}$. The differential df_p of f at p is a linear map

$$df_p: T_p\Sigma \to T_{\widetilde{p}}\widetilde{\Sigma};$$

to define $df_p(X)$, take a smooth curve $\alpha: (-\epsilon, \epsilon) \to \Sigma$ with $\alpha(0) = p$ and $\alpha'(0) = X$ and set

$$df_p(X) = (f \circ \alpha)'(0).$$

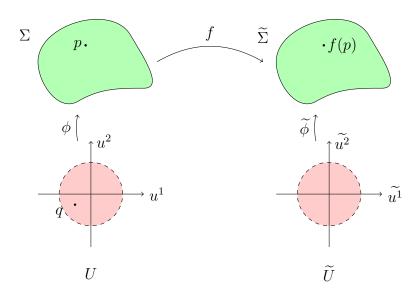


Proposition 13. Let $f: \Sigma \to \widetilde{\Sigma}$ be a smooth map and take $p \in \Sigma$.

- 1. The differential df_p defined above is a well-defined linear map.
- 2. Let $\phi, \widetilde{\phi}$ be local parameterisations of $\Sigma, \widetilde{\Sigma}$ about p, f(p). Writing $\phi^{-1} = (u^1, u^2)$, $\widetilde{\phi}^{-1} = (\widetilde{u}^1, \widetilde{u}^2)$ and $\widetilde{\phi}^{-1} \circ f = (f^1, f^2)$, the matrix of df_p with respect to the bases $(\phi)_{u^1}$ and $(\widetilde{\phi})_{\widetilde{u}^1}$ is

$$\left(\begin{array}{cc}
\frac{\partial f^1}{\partial u^1}(q) & \frac{\partial f^1}{\partial u^2}(q) \\
\frac{\partial f^2}{\partial u^1}(q) & \frac{\partial f^2}{\partial u^2}(q)
\end{array}\right)$$

where $q = \phi^{-1}(p)$.

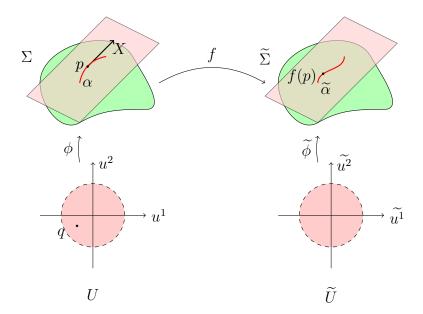


Proof: The first statement follows from the second. Take $X \in T_p\Sigma$, and write

$$X = (u^{1})'\phi_{u^{1}}(q) + (u^{2})'\phi_{u^{2}}(q).$$

Let $\alpha:(-\epsilon,\epsilon)\to \Sigma$ be a smooth curve with $\alpha(0)=p$ and $\alpha'(0)=X.$

Then $\widetilde{\alpha} = f \circ \alpha$ is a smooth curve in $\widetilde{\Sigma}$.



By the chain rule

$$(\widetilde{\phi}^{-1} \circ f \circ \alpha)'(0) = \frac{df^1}{dt}(0)\widetilde{e}_1 + \frac{df^2}{dt}(0)\widetilde{e}_2$$

$$= \left(\frac{\partial f^1}{\partial u^1}(q)\frac{du^1}{dt}(0) + \frac{\partial f^1}{\partial u^2}(q)\frac{du^2}{dt}(0)\right)\widetilde{e}_1$$

$$+ \left(\frac{\partial f^2}{\partial u^1}(q)\frac{du^1}{dt}(0) + \frac{\partial f^2}{\partial u^2}(q)\frac{du^2}{dt}(0)\right)\widetilde{e}_2.$$

Hence

$$(f \circ \alpha)'(0) = \left(\frac{\partial f^1}{\partial u^1}(q)\frac{du^1}{dt}(0) + \frac{\partial f^1}{\partial u^2}(q)\frac{du^2}{dt}(0)\right)\widetilde{\phi}_{\widetilde{u}^1} + \left(\frac{\partial f^2}{\partial u^1}(q)\frac{du^1}{dt}(0) + \frac{\partial f^2}{\partial u^2}(q)\frac{du^2}{dt}(0)\right)\widetilde{\phi}_{\widetilde{u}^2}$$

so the matrix of df_p is as claimed.

Observe the coordinates of $(f \circ \alpha)'(0)$ with respect to $\widetilde{\phi}$ depend only on the coordinates of $\alpha'(0)$ with respect to ϕ , and hence only on $X = \alpha'(0)$, not on the choice of α .