MATH3968 - LeCtul“e 9 Riemannian metrics

Dr. Emma Carberry

Definition 1. A parametrised surface is a smooth map ¢ : U — R3 where U C R? is
open.

If the differential dey,1 ,2) is not one-to-one (i.e., has rank < 2), we say that (u',u?) is a
singular point of ¢.

If the differential d@(,1 ,2) is one-to-one (i.e., has rank 2), we say that (u',u?) is a regular
point of ¢.

The parametrised surface is regular if all (u',u?) € U are regular points of ¢.

Notice that we have NOT required that the map ¢ be one-to-one.

Ezxample 2.
¢: R? — RS
(w,v) = (u?—1, v, u(u*—1))

The differential at (u,v) is

2u 0
d¢(u,v) == 0 1
3u—1 0

Since 2u and 3u? — 1 cannot both be zero,
d(ﬁ(uw) : ]R2 — ]R3

is for each (u,v) € R? a one-to-one linear mapping.

Ezxample 2 (continued). However, the trace of this regular parametrised surface is NOT

a regular surface.

¢ is not one-to-one, since
(()? =1, o', ul((u')? = 1) = (@) = 1, v*, w*((u*)* = 1))
has solution (u',v') = (1,k), (u?v?) = (=1,k), k € R.

For each v € R, there is no open neighbourhood V of ¢(1,v) = (0,v,0) in R? such that
V N ¢(R?) can be parametrised by a coordinate chart — otherwise T{g ., 0)(¢(R?)) would

exist and be a 2-dimensional linear subspace of R3.
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Ezxample 2 (continued). However we see that the space of velocity vectors to curves

through (0,v,0) is given by the plane z = x, which is the image of d¢(1 k) and the plane

z = —ux, which is the image of d¢(_, 1), since the respective matrices are
2 0 -2 0
01
2 0 0

Example 3 (Torus). Recall that we made the torus 7:
2
22+ (x/x2+y2—a> =b, b<a

into a regular surface by defining

¢ : (0,27) x (0,27) — R®

(u,v) — ((a + bcosv) cosu, (a+ bcosv) sinu, bsinv)

as one local coordinate; together with functions given by the same formula but on different

domains

SR

we have an atlas for the torus.

Example 3 (continued). Define f : T? — T2 to be the reflection in the yz-plane, namely
f(xa Y, Z) = (—33, Y, Z)

1. Describe df ;.. .).

2. Calculate the matrix of the differential df(f ) with respect to the parameter-
27 V27

isation v near (“—\g’, “—j;’O) and (—”—jé’a _a_jil)? )-

Ezample 3 (continued). 1. Take X € T(,,.) and let a : (—¢,€) — T2 be a smooth
curve with g(0) = (z,y, 2), ¢/(0) = X.



Let R, : R?® — R? denote reflection in the yz-plane.

f (.2 (X) = (f 0 ) (0)

d
=2 (Re o a(t))l,—o

Ezample 3 (continued). 2. (%’, “—\E’,O) =(%,0) and (-2, “—+2b,0) =(%,0)

Near (a—j;,“—j;,O),
¢_1 o R, ot(u,v) = (7 — u,v)

which has differential

Relevant Linear Algebra

Let V' be a vector space over the real numbers.

Definition 4. A bilinear form B on V is a map B : V x V — R which is linear in each

component, i.e.

1. B(ayv! + av?, w) = a1 B(v', w) + aaB(v?, w) for aj,a; € R, v',v* w € V, and
2. B(v,a1wy + aswsy) = a1 B(v,wy) + agB(v,wy) for aj,as € R, v, wy,wy € v.
Definition 5. The bilinear form B is symmetric if B(v,w) = B(w,v) for all v,w € V.

Definition 6. A bilinear form B on V is positive definite if B(v,v) > 0 for all v € V|
with equality if and only if v = 0.

Definition 7. A inner product on V is a positive definite symmetric bilinear form.

Definition 8. A quadratic form on an n-dimensional real vector space V is given by a

homogeneous polynomial of degree 2 satisfying an additional symmetry condition.

We shall view them as maps:

Definition 9. A quadratic form on V is a map @) : V — R such that

1. Q(av) = a*Q(v) for all a € R and v € V, and

2. the map B : V x V — R defined by B(v,w) = 3(Q(v + w) — Q(v) — Q(w)) is a

(symmetric) bilinear form.



Conversely, a symmetric bilinear form B on V' defines a quadratic form () via

Q(v) = B(v,v).

Assume V is n-dimensional with basis e1, ..., e,, and write v € V as v =Y | v'e;.

A bilinear form B is represented with respect to this basis by a matrix A, where

B is symmetric if and only if the matrix A is symmetric: A* = A.

The associated quadratic form () is represented by the same matrix

Note that Q(v) is given by a homogeneous polynomial

Q) = z”: a;jv'v’

ij=1
of degree 2 in the coefficients v?.
We could alternatively define a quadratic form on V' to be a map ) : V' — R such that if

e1,... e, is a basis of V and we write v € V as v =)', v'e; then

n

Q(v) =) vt

1,j=1

to for some a;; (independent of v) satistying a;; = aj;.

Riemannian Metric

Let X be a regular surface, and

o U - R?

(u'u?) = o(u', u?)

a local parameterisation near p € X.



Notation

Write
_ 99
- oul

99

E;(p) (¢ '(p), Eap) = wwﬁ‘l(p))-

The restriction (-,-), of the standard inner product (-,-) on R?® to T,X C R® varies
smoothly with p in the sense that the

9i5(p) = (Ei(p), E;(p)) = Ei(p) - E;(p)
are smooth functions U — R for every coordinate neighbourhood U C ..

We denote this inner product also by ¢g(p)(X,Y) or X - Y, X|Y € T,¥ and frequently
omit the p.

Definition 10. We call the smoothly varying inner product (-, -), a Riemannian metric

on X.

We shall often simply write (-, -).

Warning: A better name would be “Riemannian inner product”. The word metric is

traditional, but don’t think of metric topology!

g1 12
921 g22
is symmetric and for X = X'E; + X?E,,Y = Y'E; + Y?E, € T,%., defines a smoothly

varying inner product on the tangent spaces of ¥ by

g11 912 Y!
g(X,Y) = <X,Y> = (X1’X2) < o o > ( YQ ) — ZQ’LJXZY}
ij

Definition 11. The associated quadratic form on 7,,¥ is denoted I, and is called the first

The 2 x 2 matrix

fundamental form of the reqular surface ¥ at p. The smoothly varying quadratic form I
is called the first fundamental form of 3.

The functions g11, g12 = ¢21, g22 : 2 — R are called the coefficients of the first fundamental
form.
What is the point?

The Riemannian metric (smoothly varying inner product) g = (-,-) and the first funda-

mental form (smoothly varying quadratic form) are equivalent.
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Geometrically, they give us a notion of length and angle in every tangent plane.
This enables us to define area.
It also enables us to distinguish between different “geometries” (more later).

Example 12. Let ¥ be the plane in R? through the point py and containing the orthonormal

vectors v, w.

N~

Po

Find the coefficients of the first fundamental form with respect to the global parameteri-

sation @(u',u?) = py + u'v + w?w. For any p € ¥, recall the notation

Ei(p) = 20 (67 0), Ealp) = o2 (67 (0).

Ezxample 12 (continued).
Eqi(p) = v, Ex(p) = w

so since these are orthonormal,
911(@5(“1,“2)) (E1,Eq) =1,

g12(¢(u', u?)) = (B, Ep) = 0 = (Ea, E1) = go1(¢(u', u?)),
g22(d(u', u?)) = (Ey, Ey)

If the coordinate chart ¢ is understood, we may write Ey, Fs, g;; directly as functions of
(ul,u?).
Active Learning

Question 13. Let v,w € R? be orthonormal, ¢ be the line with direction vector v x w

through the point py, and X be the cylinder of radius 1 about the line ¢.
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Question 13 (continued). The local parameterisations

¢:(0,2n) xR —= X%

(u', u?) = po + cos(u)v + sin(u')w + u*(v x w)
and

Y (—m,m) xR =X

(u', u?) = po + cos(u')v + sin(u')w + v (v x w)

give X the structure of a regular surface.

Compute the coefficients of the first fundamental form with respect to these parameteri-

sations.

The geometric “reason” why we can find local parameterisations of the plane and the
cylinder with the same g;; is the fact that locally we can transform one into the other

without any “stretching”.



