
MATH3968 – Lecture 9 Riemannian metrics

Dr. Emma Carberry

Definition 1. A parametrised surface is a smooth map φ : U → R3 where U ⊂ R2 is

open.

If the differential dφ(u1,u2) is not one-to-one (i.e., has rank < 2), we say that (u1, u2) is a

singular point of φ.

If the differential dφ(u1,u2) is one-to-one (i.e., has rank 2), we say that (u1, u2) is a regular

point of φ.

The parametrised surface is regular if all (u1, u2) ∈ U are regular points of φ.

Notice that we have NOT required that the map φ be one-to-one.

Example 2.

φ : R2 → R3

(u, v) 7→ (u2 − 1, v, u(u2 − 1))

The differential at (u, v) is

dφ(u,v) =


2u 0

0 1

3u2 − 1 0


Since 2u and 3u2 − 1 cannot both be zero,

dφ(u,v) : R2 → R3

is for each (u, v) ∈ R2 a one-to-one linear mapping.

Example 2 (continued). However, the trace of this regular parametrised surface is NOT

a regular surface.

φ is not one-to-one, since

((u1)2 − 1, v1, u1((u1)2 − 1)) = ((u2)2 − 1, v2, u2((u2)2 − 1))

has solution (u1, v1) = (1, k), (u2, v2) = (−1, k), k ∈ R.

For each v ∈ R, there is no open neighbourhood V of φ(1, v) = (0, v, 0) in R3 such that

V ∩ φ(R2) can be parametrised by a coordinate chart – otherwise T(0,v,0)(φ(R2)) would

exist and be a 2-dimensional linear subspace of R3.
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Example 2 (continued). However we see that the space of velocity vectors to curves

through (0, v, 0) is given by the plane z = x, which is the image of dφ(1,k) and the plane

z = −x, which is the image of dφ(−1,k), since the respective matrices are
2 0

0 1

2 0



−2 0

0 1

2 0

 .

Example 3 (Torus). Recall that we made the torus T 2:

z2 +
(√

x2 + y2 − a
)2

= b, b < a

into a regular surface by defining

φ : (0, 2π)× (0, 2π)→ R3

(u, v) 7→ ((a+ b cos v) cosu, (a+ b cos v) sinu, b sin v)

as one local coordinate; together with functions given by the same formula but on different

domains

ψ :
(
−π

2
,
3π

2

)
×
(
−π

2
,
3π

2

)
→ R3

ϕ :
(π

2
,
5π

2

)
×
(π

2
,
5π

2

)
→ R3

we have an atlas for the torus.

Example 3 (continued). Define f : T 2 → T 2 to be the reflection in the yz-plane, namely

f(x, y, z) = (−x, y, z).

1. Describe df(x,y,z).

2. Calculate the matrix of the differential df(−a+b√
2
,a+b√

2
,0) with respect to the parameter-

isation ψ near (a+b√
2
, a+b√

2
, 0) and (−a+b√

2
,−a+b√

2
, 0).

Example 3 (continued). 1. Take X ∈ T(x,y,z) and let α : (−ε, ε) → T 2 be a smooth

curve with g(0) = (x, y, z), α′(0) = X.
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Let Rx : R3 → R3 denote reflection in the yz-plane.

df(x,y,z)(X) = (f ◦ α)′(0)

=
d

dt
(Rx ◦ α(t))|t=0

= Rx(α
′(0))

= Rx(X).

Example 3 (continued). 2. (a+b√
2
, a+b√

2
, 0) = ψ(π

4
, 0) and (−a+b√

2
, a+b√

2
, 0) = ψ(3π

4
, 0)

Near (a+b√
2
, a+b√

2
, 0),

ψ−1 ◦Rx ◦ ψ(u, v) = (π − u, v)

which has differential (
−1 0

0 1

)
.

Relevant Linear Algebra

Let V be a vector space over the real numbers.

Definition 4. A bilinear form B on V is a map B : V × V → R which is linear in each

component, i.e.

1. B(a1v
1 + a2v

2, w) = a1B(v1, w) + a2B(v2, w) for a1, a2 ∈ R, v1, v2, w ∈ V , and

2. B(v, a1w1 + a2w2) = a1B(v, w1) + a2B(v, w2) for a1, a2 ∈ R, v, w1, w2 ∈ v.

Definition 5. The bilinear form B is symmetric if B(v, w) = B(w, v) for all v, w ∈ V .

Definition 6. A bilinear form B on V is positive definite if B(v, v) ≥ 0 for all v ∈ V ,

with equality if and only if v = 0.

Definition 7. A inner product on V is a positive definite symmetric bilinear form.

Definition 8. A quadratic form on an n-dimensional real vector space V is given by a

homogeneous polynomial of degree 2 satisfying an additional symmetry condition.

We shall view them as maps:

Definition 9. A quadratic form on V is a map Q : V → R such that

1. Q(av) = a2Q(v) for all a ∈ R and v ∈ V , and

2. the map B : V × V → R defined by B(v, w) = 1
2
(Q(v + w) − Q(v) − Q(w)) is a

(symmetric) bilinear form.
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Conversely, a symmetric bilinear form B on V defines a quadratic form Q via

Q(v) = B(v, v).

Assume V is n-dimensional with basis e1, . . . , en, and write v ∈ V as v =
∑n

i=1 v
iei.

A bilinear form B is represented with respect to this basis by a matrix A, where

B(v, w) = [v1, . . . , vn]

[
A

]
w1

...

wn

 .
B is symmetric if and only if the matrix A is symmetric: At = A.

The associated quadratic form Q is represented by the same matrix

Q(v) = [v1, . . . , vn]

[
A

]
v1

...

vn


Note that Q(v) is given by a homogeneous polynomial

Q(v) =
n∑

i,j=1

aijv
ivj

of degree 2 in the coefficients vi.

We could alternatively define a quadratic form on V to be a map Q : V → R such that if

e1, . . . , en is a basis of V and we write v ∈ V as v =
∑n

i=1 v
iei then

Q(v) =
n∑

i,j=1

aijv
ivj

to for some aij (independent of v) satisfying aij = aji.

Riemannian Metric

Let Σ be a regular surface, and

φ : U → R3

(u1, u2) 7→ φ(u1, u2)

a local parameterisation near p ∈ Σ.
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Notation

Write

E1(p) =
∂φ

∂u1
(φ−1(p)), E2(p) =

∂φ

∂u2
(φ−1(p)).

The restriction 〈·, ·〉p of the standard inner product 〈·, ·〉 on R3 to TpΣ ⊂ R3 varies

smoothly with p in the sense that the

gij(p) = 〈Ei(p), Ej(p)〉 = Ei(p) · Ej(p)

are smooth functions U → R for every coordinate neighbourhood U ⊂ Σ.

We denote this inner product also by g(p)(X, Y ) or X · Y , X, Y ∈ TpΣ and frequently

omit the p.

Definition 10. We call the smoothly varying inner product 〈·, ·〉p a Riemannian metric

on Σ.

We shall often simply write 〈·, ·〉.

Warning: A better name would be “Riemannian inner product”. The word metric is

traditional, but don’t think of metric topology!

The 2 × 2 matrix (
g11 g12

g21 g22

)
is symmetric and for X = X1E1 + X2E2, Y = Y 1E1 + Y 2E2 ∈ TpΣ, defines a smoothly

varying inner product on the tangent spaces of Σ by

g(X, Y ) = 〈X, Y 〉 = (X1, X2)

(
g11 g12

g21 g22

)(
Y 1

Y 2

)
=
∑
ij

gijXiYj

Definition 11. The associated quadratic form on TpΣ is denoted Ip and is called the first

fundamental form of the regular surface Σ at p. The smoothly varying quadratic form I

is called the first fundamental form of Σ.

The functions g11, g12 = g21, g22 : Σ→ R are called the coefficients of the first fundamental

form.

What is the point?

The Riemannian metric (smoothly varying inner product) g = 〈·, ·〉 and the first funda-

mental form (smoothly varying quadratic form) are equivalent.
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Geometrically, they give us a notion of length and angle in every tangent plane.

This enables us to define area.

It also enables us to distinguish between different “geometries” (more later).

Example 12. Let Σ be the plane in R3 through the point p0 and containing the orthonormal

vectors v, w.

Σ

v

p0

w

Find the coefficients of the first fundamental form with respect to the global parameteri-

sation φ(u1, u2) = p0 + u1v + u2w. For any p ∈ Σ, recall the notation

E1(p) =
∂φ

∂u1
(φ−1(p)), E2(p) =

∂φ

∂u2
(φ−1(p)).

Example 12 (continued).

E1(p) = v, E2(p) = w

so since these are orthonormal,

g11(φ(u1, u2)) = 〈E1,E1〉 = 1,

g12(φ(u1, u2)) = 〈E1,E2〉 = 0 = 〈E2,E1〉 = g21(φ(u1, u2)),

g22(φ(u1, u2)) = 〈E2,E2〉 = 1

If the coordinate chart φ is understood, we may write E1,E2, gij directly as functions of

(u1, u2).

Active Learning

Question 13. Let v, w ∈ R3 be orthonormal, ` be the line with direction vector v × w
through the point p0, and Σ be the cylinder of radius 1 about the line `.
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`

w

p0

v

Σ

Question 13 (continued). The local parameterisations

φ : (0, 2π)× R→ Σ

(u1, u2) 7→ p0 + cos(u1)v + sin(u1)w + u2(v × w)

and

ψ : (−π, π)× R→ Σ

(u1, u2) 7→ p0 + cos(u1)v + sin(u1)w + u2(v × w)

give Σ the structure of a regular surface.

Compute the coefficients of the first fundamental form with respect to these parameteri-

sations.

The geometric “reason” why we can find local parameterisations of the plane and the

cylinder with the same gij is the fact that locally we can transform one into the other

without any “stretching”.
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