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Preface

The origins of algebra are usually traced back to Muhammad ben Musa al-Khwarizmi,
who worked at the court of the Caliph al-Ma’mun in Baghdad in the early 9th Century.
The word derives from the Arabic al-jabr, which refers to the process of adding the
same quantity to both sides of an equation. The work of Arabic scholars was known in
Italy by the 13th Century and a lively school of algebraists arose there. Much of their
interest was centered on the solution of polynomial equations. This preoccupation of
mathematicians lasted until the beginning of the 19th Century, when the possibility of
solving the general equation of the �fth degree in terms of radicalswas �nally disproved
by Ru�ni and Abel.

This early work led to the introduction of some of the main structures of abstract
algebra, groups, rings and �elds. These structures have been studied intensively over
the past two hundred years. For an interesting historical account of the origins of
algebra the reader may consult the book by van der Waerden [17].

Until quite recently algebra was very much the domain of the pure mathematician,
and applications were few and far between. But the situation has changed, in part as a
result of the rise of information technology, where the precision and power inherent
in the language and concepts of algebra have proved to be invaluable. Today many
specialists in computer science and engineering, as well as physics and chemistry,
routinely take courses in abstract algebra. The present work represents an attempt to
meet the needs of bothmathematicians and scientists who seek to acquire a knowledge
of algebra and its applications.

As towhat is expected of the reader, a basic knowledge ofmatrix algebra is assumed
and also at least the level of mathematical maturity consistent with completion of three
semesters of calculus. The objective is to introduce the reader to the principal structures
of abstract algebra and to give an account of some of its more convincing applications.
In particular there are sections on solution of equations by radicals, ruler and compass
constructions, Polya counting theory, Steiner systems, orthogonal latin squares and
error correcting codes. The book should be suitable for students in the �nal year of
undergraduate or �rst year of (post)graduate studies at a university in North America
or the United Kingdom.

The principal change to the book from the �rst edition is the addition of two new
chapters. The �rst of these is an introduction to the theory of modules, a topic that
combines the concepts of group and ring. Enough of the theory is developed to establish
the structure theorem for �nitely generatedmodules over principal ideal domains. Then
applications to matrices and linear operators are presented. The second new chapter
gives an introduction to tensor products, an essential tool in many advanced parts of
algebra. Also Hilbert’s Basis Theorem is proved and a more detailed account of Hall’s
theory of �nite solvable groups is given. The original chapter on vector spaces has been
modi�ed by substituting an account of the theory of eigenvalues and eigenvectors of
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linear operators for the section on orthogonality. Some of these changes have inevitably
had the e�ect of raising the level of abstraction in parts of the book. However, the
original aim of making abstract algebra accessible to as many readers as possible is
maintained in this edition.

Naturally the opportunity has been taken to correct errors and obscurities in the
�rst edition. I am grateful to those readers who took the time and trouble to send in
lists of corrections, and here particular thanks are due to Adolfo Ballester-Bolinches
and Dieter Kilsch. Of course, as usual, full credit for all errors belongs to the author.

There is more than enough material here for a two semester course in abstract
algebra. If just one semester is available, Chapters One through Eight and Chapter
Eleven could be covered. The �rst two chapters contain topics that will be familiar
to many readers and can be covered more quickly. In addition, a good deal of the
material in Chapter Eight will not be new to a reader who has taken a �rst course
in linear algebra. A word about proofs is in order. Sometimes students from outside
mathematics question the need for mastering the art of rigorous proof, although this is
perhaps becoming less common. One response is that the only way to be sure that a
statement is correct, or that a computer program will always deliver the correct answer,
is to prove it. As a rule complete proofs are given and they should be read. The �rst two
chapters, which contain much elementary material, are a good place for the reader to
develop and polish theorem proving skills. Each section of the book is followed by a
selection of problems of varying degrees of di�culty.

The second edition of this book, like the �rst, is based on courses given over many
years at the University of Illinois at Urbana-Champaign, the National University of
Singapore and the University of London. I am grateful to my colleagues for good advice
and many stimulating conversations: these have led to numerous improvements in
the text. My thanks are due to Otto Kegel and Manfred Karbe for assistance with the
�rst edition. In preparing this second edition I have been aided by Leonardo Milla and
Friederike Dittberner at Walter de Gruyter, whose advice and assistance have greatly
helped. Finally, I thank my family for their patience and encouragement, which are
essential in a project such as this.

Derek Robinson

Urbana, Illinois,
November 2014
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1 Sets, relations and functions

The concepts introduced in this chapter are truly fundamental and underlie almost
every branch of mathematics. Most of the material is quite elementary and will be
familiar to many readers. Nevertheless readers are encouraged to review the material
and to check notation and de�nitions. Because of its nature the pace of this chapter is
somewhat faster than in subsequent chapters.

1.1 Sets and subsets

By a set we shall mean any well-de�ned collection of objects, which are called the
elements of the set. Some care must be exercised in using the term “set” because of
Bertrand Russell’s famous paradox, which shows that not every collection can be
regarded as a set. Russell considered the collection C of all sets which are not elements
of themselves. If C is allowed to be a set, a contradiction arises when one inquires
whether or not C is an element of itself. Now plainly there is something suspicious
about the idea of a set being an element of itself and we shall take this as evidence that
the quali�cation “well-de�ned” needs to be taken seriously. A collection that is not a
set is called a proper class.

Sets will be denoted by capital letters and their elements by lower case letters. The
standard notation

a ∈ A

means that a is a element of the set A, or a belongs to A. The negation of a ∈ A is
denoted by a ∉ A. Sets can be de�ned either by writing their elements out between
braces, as in {a, b, c, d}, or alternatively by giving a formal description of the elements,
the general format being

A = {a | a has property P},

i.e., A is the set of all objects with the property P. If A is a �nite set, the number of its
elements is written

|A|.

Subsets. Let A and B be sets. If every element of A is an element of B, we write

A ⊆ B

and say that A is a subset of B, or that A is contained in B. If A ⊆ B and B ⊆ A, so that
A and B have exactly the same elements, then A and B are said to be equal,

A = B.

The negation of this is A ̸= B. The notation A ⊂ B is used if A ⊆ B and A ̸= B; then A is
called a proper subset of B.
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Some special sets. A set with no elements at all is called an empty set. An empty set E
is a subset of any set A; for if this were false, there would be an element of E that is not
in A, which is certainly wrong. As a consequence, there is exactly one empty set: for if E
and E� are two empty sets, then E ⊆ E� and E� ⊆ E, so that E = E�. The unique empty
set is written

0.

Some further standard sets with reserved notations are

ℕ, ℤ, ℚ, ℝ, ℂ,

which are respectively the sets of natural numbers 0, 1, 2, . . . , integers, rational
numbers, real numbers and complex numbers.

Set operations. Next we recall the familiar set operations of union, intersection and
complement. Let A and B be sets. The union A ∪ B is the set of all objects which belong
to A or B, or possibly to both; the intersection A ∩ B consists of all objects that belong
to both A and B. Thus

A ∪ B = {x | x ∈ A or x ∈ B},

while
A ∩ B = {x | x ∈ A and x ∈ B}.

It should be clear how to de�ne the union and intersection of an arbitrary collection of
sets {Aλ | λ ∈ Λ}; these are written

⋃
λ∈Λ

Aλ and ⋂
λ∈Λ

Aλ ,

respectively. The relative complement of B in A is

A − B = {x | x ∈ A and x ∉ B}.

Frequently one has to deal only with subsets of some �xed set U, called the universal
set. If A ⊆ U, then the complement of A in U is

Ā = U − A.

We list for future reference the fundamental properties of unions, intersections
and complements: most of these should be familiar.

(1.1.1) Let A, B, C, Bλ (λ ∈ Λ) be sets. Then the following statements are valid:
(i) A ∪ B = B ∪ A and A ∩ B = B ∩ A, (commutative laws).
(ii) (A ∪ B) ∪ C = A ∪ (B ∪ C) and (A ∩ B) ∩ C = A ∩ (B ∩ C), (associative laws).
(iii) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), (distributive

laws).
(iv) A ∪ A = A = A ∩ A.
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(v) A ∪ 0 = A, A ∩ 0 = 0.
(vi) A − (⋃λ∈Λ Bλ) = ⋂λ∈Λ(A − Bλ) and A − (⋂λ∈Λ Bλ) = ⋃λ∈Λ(A − Bλ), (De Morgan’s

Laws).¹

The easy proofs of these results are left to the reader as an exercise.

Set products. Let A1, A2, . . . , An be sets. By an n-tuple of elements from A1, A2, . . . ,
An is to be understood a sequence of elements a1, a2, . . . , an with ai ∈ Ai. The n-tuple
is usually written (a1, a2, . . . , an) and the set of all n-tuples is denoted by

A1 × A2 × ⋅ ⋅ ⋅ × An .

This is the set product (or cartesian product) of A1, A2, . . . , An. For exampleℝ × ℝ is
the set of coordinates of points in the plane.

The following result is a basic counting tool.

(1.1.2) If A1, A2, . . . , An are �nite sets, then

|A1 × A2 × ⋅ ⋅ ⋅ × An| = |A1| ⋅ |A2| ⋅ ⋅ ⋅ |An|.

Proof. In forming an n-tuple (a1, a2, . . . , an)we have |A1| choices for a1, |A2| choices
for a2, . . . , |An| choices for an. Each choice of an ai yields a di�erent n-tuple. Therefore
the total number of n-tuples is |A1| ⋅ |A2| ⋅ ⋅ ⋅ |An|.

The power set. The power set of a set A is the set of all subsets of A, including the
empty set and A itself; it is denoted by

P(A).

The power set of a �nite set is always a larger set, as the next result shows.

(1.1.3) If A is a �nite set, then |P(A)| = 2|A|.

Proof. Let A = {a1, a2, . . . , an} with distinct ai’s. Also put I = {0, 1}. Each subset B
of A is to correspond to an n-tuple (i1, i2, . . . , in) with ij ∈ I. Here the rule for forming
the n-tuple corresponding to B is this: ij = 1 if aj ∈ B and ij = 0 if aj ∉ B. Conversely,
every n-tuple (i1, i2, . . . , in) with ij ∈ I determines a subset B of A, de�ned by B =
{aj | 1 ≤ j ≤ n, ij = 1}. It follows that the number of subsets of A equals the number
of elements in I × I × ⋅ ⋅ ⋅ × I, where the number of factors is n. By (1.1.2) we obtain
|P(A)| = 2n = 2|A|.

1 Augustus De Morgan (1806–1871)
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The power set P(A), together with the operations ∪ and ∩, constitutes what is
known as a Boolean² algebra; such algebras have become very important in logic and
computer science.

Exercises (1.1)

(1) Prove as many parts of (1.1.1) as possible.
(2) Let A, B, C be sets such that A ∩ B = A ∩ C and A ∪ B = A ∪ C. Prove that B = C.
(3) If A, B, C are sets, establish the following:

(i) (A − B) − C = A − (B ∪ C).
(ii) A − (B − C) = (A − B) ∪ (A ∩ B ∩ C).

(4) Let A and B be �nite sets. Prove that |P(A × B)| = |P(A)||B|.
(5) Let A and B be �nite sets with more than one element in each. Prove that |P(A × B)|
is larger than both |P(A)| and |P(B)|.
(6) The disjoint union A ⊕ B of sets A and B is de�ned by the rule A ⊕ B = A ∪ B − A ∩ B,
so its elements are those that belong to exactly one of A and B. Prove the following
statements:

(i) A ⊕ A = 0, A ⊕ B = B ⊕ A.
(ii) (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C).
(iii) (A ⊕ B) ∩ C = (A ∩ C) ⊕ (B ∩ C).

(7) If A and B be �nite sets, show that |P(A ∪ B)| = |P(A)|⋅|P(B)|
|P(A∩B)| .

1.2 Relations, equivalence relations, partial orders

In mathematics it is often not su�cient to deal with the individual elements of a set:
for it may be critical to understand how elements of the set are related to each other.
This leads us to formulate the concept of a relation.

Let A and B be sets. Then a relation R between A and B is a subset of the set product
A × B. The de�nition is clari�ed by use of a suggestive notation: if (a, b) ∈ R, then a is
said to be related to b by R and we write

a R b.

The most important case is of a relation R between A and itself; this is called a relation
on the set A.

Example (1.2.1)

(i) Let A be a set and de�ne R = {(a, a) | a ∈ A}. Thus a1 R a2 means that a1 = a2
and R is the relation of equality on A.

2 George Boole (1815–1864)
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(ii) Let P be the set of all points and L the set of all lines in the plane. A relation R
from P to L is de�ned by: p R ℓ if the point p lies on the line ℓ.

(iii) A relation R on the set of integersℤ is de�ned by: a R b if a − b is even.

The next result con�rms what one might suspect, that a �nite set has many relations.

(1.2.1) If A is a �nite set, the number of relations on A equals 2|A|2 .

For this is the number of subsets of A × A by (1.1.2) and (1.1.3).
The concept of a relation on a set is evidently a very broad one. In practice the

relations of greatest interest are those which have special properties. Themost common
of these are listed next. Let R be a relation on a set A.
(i) R is re�exive if a R a for all a ∈ A.
(ii) R is symmetric if a R b always implies that b R a.
(iii) R is antisymmetric if a R b and b R a imply that a = b;
(iv) R is transitive if a R b and b R c imply that a R c.

Relations which are re�exive, symmetric and transitive are called equivalence relations;
they are of fundamental importance. Relations which are re�exive, antisymmetric and
transitive are also important; they are called partial orders. Here are some examples of
relations of various types.

Example (1.2.2)

(i) Equality on a set is both an equivalence relation and a partial order.
(ii) A relation R on ℤ is de�ned by: a R b if and only if a − b is even. This is an

equivalence relation, but it is not a partial order.
(iii) If A is any set, the relation of containment ⊆ is a partial order on the power set P(A).
(iv) A relation R onℕ is de�ned by a R b if a divides b. Here R is a partial order onℕ.

Equivalence relations and partitions. The structure of an equivalence relation on a
set will now be analyzed. The essential conclusion will be that an equivalence relation
causes the set to split up into non-overlapping non-empty subsets.

Let E be an equivalence relation on a set A. First of all de�ne the E-equivalence
class of an element a of A to be the subset

[a]E = {x | x ∈ A and x E a}.

By the re�exive law a ∈ [a]E, so
A = ⋃

a∈A
[a]E

and A is the union of all the equivalence classes.
Next suppose that the equivalence classes [a]E and [b]E both contain an element x.

Assume that y ∈ [a]E; then y E a, a E x and x E b, by the symmetric law. Hence y E b
by two applications of the transitive law. Therefore y ∈ [b]E and we have proved that
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[a]E ⊆ [b]E. By the same reasoning [b]E ⊆ [a]E , so that [a]E = [b]E . It follows that
distinct equivalence classes are disjoint, i.e., they have no elements in common.

What has been shown so far is that the set A is the union of the E-equivalence
classes and that distinct equivalence classes are disjoint. A decomposition of A into
disjoint non-empty subsets is called a partition of A. Thus E determines a partition
of A.

Conversely, suppose that a partition of A into non-empty disjoint subsets Aλ, (λ ∈
Λ), is given. We would like to construct an equivalence relation on A corresponding
to the partition. Now each element of A belongs to a unique subset Aλ; thus we may
de�ne a E b to mean that a and b belong to the same subset Aλ. It follows immediately
from the de�nition that the relation E is an equivalence relation; what is more, the
equivalence classes are just the subsets Aλ of the original partition. We summarize
these conclusions in:

(1.2.2)

(i) If E is an equivalence relation on a set A, the E-equivalence classes form a partition
of A.

(ii) Conversely, each partition of A determines an equivalence relation on A for which
the equivalence classes are the subsets in the partition.
Thus the concepts of equivalence relation and partition are in essence the same. In

the equivalence relation (ii) above there are two equivalence classes, the sets of even
and odd integers; of course these form a partition ofℤ.

Partial orders. Suppose that R is a partial order on a set A, i.e., R is a re�exive, anti-
symmetric, transitive relation on A. Instead of writing a R b it is customary to employ
a more suggestive symbol and write

a ⪯ b.

The pair (A, ⪯) then constitutes a partially ordered set (or poset).
The e�ect of a partial order is to impose a hierarchy on the set A. When the set is

�nite, this can be visualized by drawing a picture of the poset called a Hasse³ diagram.
It consists of vertices and edges drawn in the plane, the vertices representing the
elements of A. A sequence of upwardly sloping edges from a to b, as in the diagram
below, indicates that a ⪯ b. Elements a, b not connected by such a sequence of edges
do not satisfy a ⪯ b or b ⪯ a. In order to simplify the diagram as far as possible, it is

3 Helmut Hasse (1898–1979)



1.2 Relations, equivalence relations, partial orders | 7

agreed that unnecessary edges are to be omitted.

b

∘a

∘

∘

∘

A very familiar poset is the power set of a set A with the partial order ⊆, i. e. (P(A), ⊆).

Example (1.2.3) Draw the Hasse diagram of the poset (P(A), ⊆) where A = {1, 2, 3}.
This poset has 23 = 8 vertices, which can be visualized as the vertices of a cube

standing on one corner.

{3}

0

{1}

{1,3}{2,3}

{2}

{1,2}

{1,2,3}

One reason why partially ordered sets are important in algebra is that they provide
a useful representation of substructures of standard algebraic structures, for example
subsets, subgroups, subrings etc..

A partial order ⪯ on a set A is called a linear order if, given a, b ∈ A, either a ⪯ b or
b ⪯ a holds. Then (A, ⪯) is called a linearly ordered set or chain. The Hasse diagram of
a chain is a single sequence of edges sloping upwards. Obvious examples of chains are
(ℤ, ≤) and (ℝ, ≤) where ≤ is the usual “less than or equal to”. Finally, a linear order
on A is called a well order if each non-empty subset X of A contains a least element a,
i.e., such that a ⪯ x for all elements x ∈ X. While it might seem obvious that ≤ is a well
order on the set of all positive integers, this actually an axiom, the Well-Ordering Law,
which is discussed in Section (2.1).

Lattices. Consider a poset (A, ⪯). If a, b ∈ A, a least upper bound (or lub) of a and b is
an element ℓ ∈ A such that a ⪯ ℓ and b ⪯ ℓ, and if a ⪯ x and b ⪯ x, with x in A, then
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ℓ ⪯ x. Similarly a greatest lower bound (or glb) of a and b is an element g ∈ A such
that g ⪯ a and g ⪯ b, while x ⪯ a and x ⪯ b imply that x ⪯ g. If ℓ and g exist, the Hasse
diagram of (A, ⪯) will contain the subdiagram

∘a ∘b

∘g

∘ℓ

A poset in which each pair of elements has an lub and a glb is called a lattice. For
example, (P(S), ⊆) is a lattice since the lub and glb of A and B are just A ∪ B and A ∩ B
respectively.

The composite of relations. Since a relation is a subset, two relationsmay be combined
by forming their unionor intersection.However, there is amoreusefulwayof combining
relations called composition: let R and S be relations between A and B and between B
and C respectively. Then the composite relation

S ∘ R

is the relation between A and C de�ned by: a (S ∘ R) c if and only if there exists b ∈ B
such that a R b and b S c.

For example, assume that A = ℤ, B = {a, b, c}, C = {α, β, ã}. De�ne relations
R = {(1, a), (2, b), (4, c)}, S = {(a, α), (b, ã), (c, β)}. Then S ∘ R = {(1, α), (2, ã), (4, β)}.

In particular one can form the composite of any two relations R and S on a set A.
Notice that the condition for a relation R to be transitive can now be expressed in the
form R ∘ R ⊆ R.

A result of fundamental importance is the associative law for composition of rela-
tions.

(1.2.3) Let R, S, T be relations between A and B, B and C, and C and D respectively.
Then T ∘ (S ∘ R) = (T ∘ S) ∘ R.

Proof. Let a ∈ A and d ∈ D. Then a (T ∘ (S ∘ R)) dmeans that there exists c ∈ C such
that a (S ∘ R) c and c T d, i.e., there exists b ∈ B such that a R b, b S c and c T d.
Therefore b (T ∘ S) d and a ((T ∘ S) ∘ R) d. Thus T ∘ (S ∘ R) ⊆ (T ∘ S) ∘ R, and in a similar
way (T ∘ S) ∘ R ⊆ T ∘ (S ∘ R).
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Exercises (1.2)

(1) Determine whether the binary relations R de�ned on the set A below are re�exive,
symmetric, antisymmetric or transitive.

(i) A = ℝ and a R b means a2 = b2.
(ii) A = ℝ and a R b means a − b ≤ 2.
(iii) A = ℤ × ℤ and (a, b) R (c, d)means a + d = b + c.
(iv) A = ℤ and a R b means that b = a + 3c for some integer c.

(2) A relation ∼ onℝ − {0} is de�ned by a ∼ b if ab > 0. Show that ∼ is an equivalence
relation and identify the equivalence classes.
(3) Let A = {1, 2, . . . , n} where n is a positive integer. De�ne a ⪯ b to mean that a
divides b. Show that (A, ⪯) is a poset. Draw the Hasse diagram for the case n = 12.
(4) Let (A, ⪯) be a poset and let a, b ∈ A. Show that a and b have at most one lub and
at most one glb.
(5) Given linearly ordered sets (Ai , ⪯i), i = 1, 2, . . . , k, suggest a way to make A1 × A2 ×
⋅ ⋅ ⋅ × Ak into a linearly ordered set.
(6) How many equivalence relations are there on sets with 1, 2, 3 or 4 elements?
(7) Suppose that A is a set with n elements. Show that there are exactly 2n2−n re�exive
relations on A and 2n(n+1)/2 symmetric ones.
(8) Let R be a relation on a set A. De�ne powers of R recursively by R1 = R and Rn+1 =
Rn ∘ R for n = 1, 2, . . . .

(i) If R is transitive, show that ⋅ ⋅ ⋅ Rn ⫅ Rn−1 ⫅ ⋅ ⋅ ⋅ ⫅ R2 ⫅ R.
(ii) If in addition R is re�exive, show that R = R2 = R3 = etc.
(iii) If R is a transitive relation on a �nite set with n elements, prove that Rm =

Rm+1 = ⋅ ⋅ ⋅ where m = n2 + 1.

1.3 Functions

A more familiar concept than a relation is a function. While functions are to be found
throughout mathematics, they are usually �rst encountered in calculus as real-valued
functions of a real variable. Functions can provide convenient descriptions of complex
objects and processes in mathematics and the information sciences.

Let A and B be sets. A function or mapping ormap from A to B, in symbols

α : A → B,

is a rule which assigns to each element a of A a unique element α(a) of B, called the
image of a under α. The sets A and B are the domain and codomain of α respectively.
The image of the function α is

Im(α) = {α(a) | a ∈ A},
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which is a subset of the codomain. The set of all functions from A to B will occasionally
be written Fun(A, B).

Examples of functions.

(i) The functions that appear in calculus are those whose domain and codomain are
subsets ofℝ. Such a function can be visualized by drawing its graph in the usual way.
(ii) Given a function α : A → B, we de�ne

Rα = {(a, α(a)) | a ∈ A} ⊆ A × B.

Thus Rα is a relation between A and B. Observe that Rα is a special kind of relation
since each a in A is related to a unique element of B, namely α(a).

Conversely, suppose that R is a relation between A and B such that each a ∈ A
is related to a unique b ∈ B. We may de�ne a corresponding function αR : A → B by
αR(a) = b where a R b. Thus functions from A to B may be regarded as special types
of relation between A and B.

This observation permits us to form the composite of two functions α : A → B and
β : B → C by forming the composite of the corresponding relations: thus β ∘ α : A → C
is de�ned by

β ∘ α(a) = β(α(a)).

(iii) The characteristic function of a subset. Let A be a �xed set. For each subset X of A
de�ne a function αX : A → {0, 1} by the rule

αX(a) =
{
{
{

1 if a ∈ X
0 if a ∉ X.

Then αX is called the characteristic function of the subset X. Conversely, every function
α : A → {0, 1} is the characteristic function of some subset of A – which subset?
(iv) The identity function on a set A is the function idA : A → A de�ned by idA(a) = a
for all a ∈ A.

Injectivity and surjectivity. There are two special types of function of critical impor-
tance. A function α : A → B is called injective (or one-one) if α(a) = α(a�) always
implies that a = a�, i.e., distinct elements of A have distinct images in B under α. Next
α : A → B is surjective (or onto) if each element of B is the image under α of at least
one element of A, i.e., Im(α) = B. Finally, α : A → B is said to be bijective (or a one-one
correspondence) if it is both injective and surjective.

Here are some examples of various types of functions.
(i) α : ℝ → ℝ where α(x) = 2x is injective but not surjective.
(ii) α : ℝ → ℝwhere α(x) = x3 − 4x is surjective but not injective. Here surjectivity is
best seen by drawing the graph of y = x3 − 4x. Note that any line parallel to the x-axis
meets the curve at least once. But α is not injective since α(0) = 0 = α(2).



1.3 Functions | 11

(iii) α : ℝ → ℝ where α(x) = x3 is bijective.
(iv) α : ℝ → ℝ where α(x) = x2 is neither injective nor surjective.

Inverse functions. Functions α : A → B and β : B → A are said to be mutually inverse
if α ∘ β = idB and β ∘α = idA. Also β is an inverse of α. Suppose that β� is another inverse
of α. Then, with the aid of the associative law, we have

β = idA ∘ β = (β� ∘ α) ∘ β = β� ∘ (α ∘ β) = β� ∘ idB = β�.

Therefore α has a unique inverse, if it has one at all. We will write

α−1 : B → A

for the unique inverse of α when it exists.
It is important to be able to recognize functions which possess inverses.

(1.3.1) A function α : A → B has an inverse if and only if it is bijective.

Proof. Assume that α−1 : A → B exists. If α(a1) = α(a2), then, applying α−1 to each
side, we arrive at a1 = a2, which shows that α is injective. Next, to show that α is
surjective, let b ∈ B. Then b = idB(b) = α(α−1(b)) ∈ Im(α), showing that Im(α) = B
and α is surjective. Thus α is bijective.

Conversely, let α be bijective. If b ∈ B, there is precisely one element a in A such
that α(a) = b since α is bijective. De�ne β : B → A by β(b) = a. Then αβ(b) = α(a) = b
and αβ = idB. Also βα(a) = β(b) = a; since every a in A arises in this way, βα = idA
and β = α−1.

The next result records some useful facts about inverses.

(1.3.2)

(i) If α : A → B is bijective, then so is α−1 : B → A and (α−1)−1 = α.
(ii) If α : A → B and β : B → C are bijective functions, then β ∘ α : A → C is bijective

and (β ∘ α)−1 = α−1 ∘ β−1.

Proof. The equations α ∘ α−1 = idB and α−1 ∘ α = idA tell us that α is the inverse of α−1.
Check directly that α−1∘β−1 is the inverse of β∘α by using the associative law twice: thus
(β∘α)∘(α−1 ∘β−1) = ((β∘α)∘α−1)∘β−1 = (β∘(α∘α−1))∘β−1 = (β∘idB)∘β−1 = β∘β−1 = idC.
Similarly (α−1 ∘ β−1) ∘ (β ∘ α) = idA.

Application to automata. As an illustration of how the language of sets and functions
may be used to describe information systems, we give a brief account of automata. An
automaton is a theoretical device that is a basic model of a digital computer. It consists
of an input tape and an output tape together with two “heads”, which are able to read
symbols on the input tape and print symbols on the output tape. At any instant the
system is in one of a number of states. When the automaton reads a symbol on the
input tape, it goes to another state and writes a symbol on the output tape.
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To make this idea precise we de�ne an automaton A to be a 5-tuple

(I, O, S, ν, σ)

where I and O are the respective sets of input and output symbols, S is the set of states,
ν : I × S → O is the output function and σ : I × S → S is the next state function. The
automaton operates in the following manner. If it is in state s ∈ S and input symbol
i ∈ I is read, the automaton prints the symbol ν(i, s) on the output tape and goes to
state σ(i, s). Thus the mode of operation is determined by the three sets I, O, S and the
two functions ν, σ.

Exercises (1.3)

(1) Which of the following functions are injective, surjective, bijective?
(i) α : ℝ → ℤ where α(x) = [x], the largest integer ≤ x.
(ii) α : ℝ>0 → ℝ where α(x) = log10(x). (Hereℝ>0 = {x | x ∈ ℝ, x > 0}).
(iii) α : A × B → B × A where α((a, b)) = (b, a).

(2) Prove that a composite of injective functions is injective and a composite of surjective
functions is surjective.
(3) Let α : A → B be a function between �nite sets. Show that if |A| > |B|, then α cannot
be injective, and if |A| < |B|, then α cannot be surjective.
(4) De�ne α : ℝ → ℝ by α(x) = x3

x2+1 . Prove that α is bijective.
(5) Give an example of two functions α, β on a set A such that α ∘ β = idA but β ∘ α ̸= idA.
(6) Let α : A → B be a injective function. Show that there is a surjective function
β : B → A such that β ∘ α = idA.
(7) Let α : A → B be a surjective function. Show that there is an injective function
β : B → A such that α ∘ β = idB.
(8) Describe a simpli�ed version of an automaton with no output tape in which each
output is the new state. (This is called a state output automaton).
(9) Let α : A → B be a function. De�ne a relation Eα on A by the rule: a Eα a� means
that α(a) = α(a�). Prove that Eα is an equivalence relation on A. Then show that,
conversely, if E is any equivalence relation on a set A, then E = Eα for some function α
with domain A.
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1.4 Cardinality

If we want to compare two sets, a natural basis for comparison is the “size” of each set.
If the sets are �nite, their sizes are just the numbers of elements in the set. But how can
one measure the size of an in�nite set? A reasonable point of view would be to hold
that two sets have the same size if their elements can be paired o�. Certainly two �nite
sets have the same number of elements precisely when their elements can be paired.
The point to observe is that this idea also applies to in�nite sets, making it possible to
give a rigorous de�nition of the size of an in�nite set, its cardinal.

Let A and B be two sets. Then A and B are said to be equipollent if there is a bijection
α : A → B: thus the elements of A and Bmay be paired o� as (a, α(a)), a ∈ A. It follows
from (1.3.2) that equipollence is an equivalence relation on the class of all sets. Thus
each set A belongs to a unique equivalence class, which will be written

|A|

and called the cardinal of A. Informally we can think of |A| as the collection of all sets
with the same “size” as A. A cardinal number is the cardinal of some set.

If A is a �nite set with exactly n elements, then A is equipollent to the set {0, 1, . . . ,
n − 1} and |A| = |{0, 1, . . . , n − 1}|. It is reasonable to identify the �nite cardinal
|{0, 1, . . . , n − 1}| with the non-negative integer n. For then cardinal numbers appear
as in�nite versions of the non-negative integers.

Let us sum up our very elementary conclusions so far.

(1.4.1)

(i) Every set A has a unique cardinal number |A|.
(ii) Two sets are equipollent if and only if they have the same cardinal.
(iii) The cardinal of a �nite set may be identi�ed with the number of its elements.

Since we plan to use cardinals to compare the sizes of sets, it makes sense to de�ne
a “less than or equal to” relation ≤ on cardinals. De�ne

|A| ≤ |B|

to mean that there is an injective function α : A → B. Of course we will write |A| < |B|
if |A| ≤ |B| and |A| ̸= |B|.

It is important to verify that this de�nition of ≤ depends only on the cardinals |A|
and |B|, not on the choice of sets A and B. Indeed, if A� ∈ |A| and B� ∈ |B|, then there
are bijections α� : A� → A and β� : B → B�; by composing these with the injection
α : A → B we obtain the injection β� ∘ α ∘ α� : A� → B�. Thus |A�| ≤ |B�|.

Next we prove a famous result about inequality of cardinals.

(1.4.2) (The Cantor-Bernstein⁴ Theorem) If A and B are sets such that |A| ≤ |B| and
|B| ≤ |A|, then |A| = |B|.

4 Georg Cantor (1845–1918), Felix Bernstein (1878–1956)
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The proof of (1.4.2) is our most challenging proof so far and some readers may
prefer to skip it. However, the basic idea behind it is not di�cult to grasp.

Proof. By hypothesis there are injective functions α : A → B and β : B → A. These
will be used to construct a bijective function ã : A → B, which will show that |A| = |B|.

Consider an arbitrary element a in A; either a = β(b) for some unique b ∈ B or
else a ∉ Im(β): here we use the injectivity of β. Similarly, either b = α(a�) for a unique
a� ∈ A or else b ∉ Im(α). Continuing this process, we trace back the “ancestry” of the
element a. There are three possible outcomes:
(i) we reach an element of A − Im(β);
(ii) we reach an element of B − Im(α);
(iii) the process continues without end.
Partition the set A into three subsets corresponding to possibilities (i), (ii), (iii) and
call them AA, AB, A∞ respectively. In a similar fashion the set B decomposes into
three disjoint subsets BA, BB, B∞; for example, if b ∈ BA, we can trace b back to an
element of A − Im(β).

Now we are in a position to de�ne the function ã : A → B. First observe that the
restriction of α to AA is a bijection from AA to BA, and the restriction of α to A∞ is a
bijection from A∞ to B∞. Also, if x ∈ AB, there is a unique element x� ∈ BB such that
β(x�) = x. Now de�ne

ã(x) =
{{{
{{{
{

α(x) if x ∈ AA
α(x) if x ∈ A∞
x� if x ∈ AB.

Then ã is the desired bijection.

(1.4.3) The relation ≤ is a partial order on cardinal numbers.

For we have proved antisymmetry in (1.4.2), while re�exivity and transitivity are
clearly true. In fact one can do better since ≤ is even a linear order. This is because of:

(1.4.4) (The Law of Trichotomy) If A and B are sets, then exactly one of the following
must hold:

|A| < |B|, |A| = |B|, |B| < |A|.

The proof will not be given at this point since it depends on advanced material –
see (14.1.7) below for a proof.

The next result establishes the existence of arbitrarily large cardinal numbers.

(1.4.5) If A is any set, then |A| < |P(A)|.

Proof. The easy step is to show that |A| ≤ |P(A)|. This is because the assignment
a Ü→ {a} sets up an injection from A to P(A).

Next assume that |A| = |P(A)|, so that there is a bijection α : A → P(A). Of course
at this point we are looking for a contradiction. The trick is to consider the subset
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B = {a | a ∈ A, a ∉ α(a)} of A. Then B ∈ P(A), so B = α(a) for some a ∈ A. Now either
a ∈ B or a ∉ B. If a ∈ B, then a ∉ α(a) = B; if a ∉ B = α(a), then a ∈ B. This is our
contradiction.

Countable sets. The cardinal of the set of natural numbers ℕ = {0, 1, 2, . . . } is de-
noted by

ℵ0.

Hereℵ is the Hebrew letter aleph. A set A is said to be countable if |A| ≤ ℵ0. Essentially
this means that the elements of A can be “labelled” by attaching to each element a
natural number as a label. An uncountable set cannot be so labelled.

We need to explain what is meant by an in�nite set for the next result to be mean-
ingful. A set A will be called in�nite if it has a subset that is equipollent withℕ, i.e., if
ℵ0 ≤ |A|. An in�nite cardinal is the cardinal of an in�nite set.

(1.4.6) ℵ0 is the smallest in�nite cardinal.

Proof. If A is an in�nite set, then A has a subset B such that ℵ0 = |B|. Hence ℵ0 ≤
|A|.

It follows that if A is a countable set, either A is �nite or |A| = ℵ0. As the �nal topic
of the chapter we consider the cardinals of the setsℚ andℝ.

(1.4.7)

(i) The setℚ of rational numbers is countable.
(ii) The setℝ of real numbers is uncountable.

Proof. (i) Each positive rational number has the form m
n where m and n are positive

integers. Arrange these rationals in a rectangular array, with m
n in the mth row and

nth column. Of course each rational will occur in�nitely often because of cancellation.
Now follow the path indicated by the arrows in the diagram below.

1
1 → 1

2
1
3 → 1

4 . . .
↙ ↗ ↙

2
1

2
2

2
3

2
4 . . .

↓ ↗ ↙ . . .
3
1

3
2

3
3

3
4 . . .

. . . . . . . .

This creates a sequence in which every positive rational number appears in�nitely
often. Delete repetitions in the sequence. Insert 0 at the beginning of the sequence and
insert −r immediately after r for each positive rational r. Now every rational occurs
exactly once in the sequence. Henceℚ is countable.
(ii) It is enough to show that the set I of all real numbers r such that 0 ≤ r ≤ 1 is
uncountable: this is because |I| ≤ |ℝ|. Assume that I is countable, so that it can be
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written in the form {r1, r2, r3, . . . }. Write each ri as a decimal, say

ri = 0 ⋅ ri1ri2 ⋅ ⋅ ⋅

where 0 ≤ rij ≤ 9. We reach a contradiction by producing a number in the set I which
does not equal any ri. De�ne

si =
{
{
{

0 if rii ̸= 0
1 if rii = 0

and let s be the decimal 0 ⋅ s1s2 ⋅ ⋅ ⋅ ; then certainly s ∈ I. Hence s = ri for some i, so
that si = rii; but this is impossible by the de�nition of si.

Exercises (1.4)

(1) A �nite set cannot be equipollent to a proper subset.
(2) A set is in�nite if and only if it has the same cardinal as some proper subset.
(3) If there is a surjection from a set A to a set B, then |B| ≤ |A|.
(4) Show that |ℤ| = ℵ0 and |ℤ × ℤ| = ℵ0.
(5) Let A1, A2, . . . be countably many, countable sets. Prove that⋃i=1,2,... Ai is a count-
able set. [Hint: write Ai = {ai0, ai1, . . . } and follow the method of the proof of (1.4.7(i)].
(6) Suggest reasonable de�nitions of the sum and product of two cardinal numbers.
[Hint: try using the union and set product]
(7) Let S denote the set of all restricted sequences of integers a1, a2, a3, . . . , i.e., ai = 0
for all but a �nite number of i. Prove that |S| = ℵ0.
(8) Let A be a countably in�nite set and let Pf (A) denote the set of all �nite subsets
of A.

(i) Prove that |Pf (A)| = |A|, so that Pf (A) is countable.
(ii) Prove that on the other hand P(A) is uncountable.



2 The integers

The role of the integers is central in algebra, as it is in all parts of mathematics. One
reason for this is that the set of integers ℤ, together with the standard arithmetic
operations of addition and multiplication, serves as a model for several of the funda-
mental structures of algebra, including groups and rings. In this chapter the most basic
properties of the integers are developed.

2.1 Well-ordering and mathematical induction

We begin by listing the properties of the fundamental arithmetic operations on ℤ,
addition and multiplication. In the following a, b, c are arbitrary integers.
(i) a + b = b + a, ab = ba, (commutative laws);
(ii) (a + b) + c = a + (b + c), (ab)c = a(bc), (associative laws);
(iii) (a + b)c = ac + bc, (distributive law);
(iv) 0 + a = a and 1 ⋅ a = a, (existence of identities);
(v) each integer a has a negative −a with the property a + (−a) = 0;
(vi) if ab = 0, then a = 0 or b = 0.
Next we list properties of the relation ≤ onℤ.
(vii) ≤ is a linear order onℤ, i.e., the relation≤ is re�exive, antisymmetric and transitive;

in addition, for any pair of integers a, b either a ≤ b or b ≤ a;
(viii) if a ≤ b and c ≥ 0, then ac ≤ bc;
(ix) if a ≤ b, then −b ≤ −a.

These properties are assumed as axioms. But there is a further property of the linearly
ordered set (ℤ, ≤) which is independent of the above axioms and is quite vital for the
development of the elementary theory of the integers.

The Well-Ordering Law. Let k be a �xed integer and put U = {n | n ∈ ℤ, n ≥ k}.
Suppose that S is a non-empty subset of U. Then theWell-Ordering Law (WO) asserts
that S has a smallest element. Thus ≤ is a well order on U in the sense of (1.2).

While this may seem a harmless assumption, it cannot be deduced from axioms
(i)–(ix) and must be adopted as an additional axiom. The importance of WO for us is
that it provides a sound basis for the method of proof by mathematical induction. This
is embodied in

(2.1.1) (The Principle of Mathematical Induction) Let k be an integer and let U = {n |
n ∈ Z, n ≥ k}. Assume that S is a subset of U with the properties
(i) k ∈ S;
(ii) if n ∈ S, then n + 1 ∈ S.
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Then S equals U.

Proof. Once again the assertion sounds fairly obvious, but in order to prove it, we must
use WO. To see how WO applies, assume that S ̸= U, so that S� = U − S is not empty.
Then WO guarantees that S� has a smallest element, say s. Notice that k < s since k ∈ S
by hypothesis. Thus k ≤ s −1 and s −1 ∉ S� because s is minimal in S�. Hence s −1 ∈ S,
which by (ii) above implies that s ∈ S, a contradiction. Thus (2.1.1) is established.

The method of proof by induction. Suppose that k is a �xed integer and that for each
integer n ≥ k there is a proposition p(n), which is either true or false. Assume that the
following hold:
(i) p(k) is true;
(ii) if p(n) is true, then p(n + 1) is true.
Then we can conclude that p(n) is true for all n ≥ k.

For let S be the set of all integers n ≥ k for which p(n) is true. Then the hypotheses
of PMI (Principle of Mathematical Induction) apply to S. The conclusion is that S equals
{n | n ∈ ℤ, n ≥ k}, i.e., p(n) is true for all n ≥ k.

Here is a simple example of proof by mathematical induction.

Example (2.1.1) Use mathematical induction to show that 8n+1 + 92n−1 is a multiple
of 73 for all positive integers n.

Let p(n)denote the statement: 8n+1+92n−1 is amultiple of 73. Then p(1) is certainly
true since 8n+1 + 92n−1 = 73 when n = 1. Assume that p(n) is true; we have to deduce
that p(n + 1) is true. Now we may rewrite 8(n+1)+1 + 92(n+1)−1 in the form

8n+2 + 92n+1 = 8(8n+1 + 92n−1) + 92n+1 − 8 ⋅ 92n−1

= 8(8n+1 + 92n−1) + 73 ⋅ 92n−1.

Since both terms in the last expression are multiples of 73, so is 8n+2 + 92n+1. Thus
p(n + 1) is true and by PMI the statement p(n) is true for all n ≥ 1.

(2.1.2) (Alternate Form of PMI) Let k be an integer and let U = {n | n ∈ ℤ, n ≥ k}.
Assume that S is a subset of U with the properties
(i) k ∈ S;
(ii) if m ∈ S for all integers m such that k ≤ m < n, then n ∈ S.
Then S = U.

This variant of PMI follows from WO just as the original form does. There are
situations where proof by induction cannot be easily used but the alternate form is
e�ective. In such a case one has a proposition p(n) for n ≥ k such that:
(i) p(k) is true;
(ii) if p(m) is true whenever k ≤ m < n, then p(n) is true.
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The conclusion is that p(n) is true for all n ≥ k.

A good example of a proposition where this type of induction proof is successful is
the Fundamental Theorem of Arithmetic – see (2.2.7).

Our approach to the integers in this section has been quite naive: we have simply
stated as axioms all the properties that we need. For a good axiomatic treatment of the
construction of the integers, including an account of the axioms of Peano, see [6].

Exercises (2.1)

(1) Use induction to establish the following summation formulas for n ≥ 1.
(i) 1 + 2 + 3 + ⋅ ⋅ ⋅ + n = 1

2n(n + 1);
(ii) 12 + 22 + 32 + ⋅ ⋅ ⋅ + n2 = 1

6n(n + 1)(2n + 1);
(iii) 13 + 23 + 33 + ⋅ ⋅ ⋅ + n3 = (12n(n + 1))2.

(2) Deduce the alternate form of PMI fromWO.
(3) Prove that 2n > n3 for all integers n ≥ 10.
(4) Prove that 2n > n4 for all integers n ≥ 17.
(5) Prove by mathematical induction that 6 divides n3 − n for all integers n ≥ 0.
(6) Use the alternate form of mathematical induction to show that any n cents worth of
postage, where n ≥ 12, can be made up by using only 4-cent and 5-cent stamps. [Hint:
�rst verify the statement for n ≤ 15].

2.2 Division in the integers

In this section we establish the basic properties of the integers that relate to division,
notably the Division Algorithm, the existence of greatest common divisors and the
Fundamental Theorem of Arithmetic.

Recall that if a, b are integers, then a divides b, in symbols

a | b,

if there is an integer c such that b = ac. The following properties of division are simple
consequences of the de�nition, as the reader should verify.

(2.2.1)

(i) The relation of division is a partial order onℤ.
(ii) If a | b and a | c, then a | bx + cy for all integers x, y.
(iii) a | 0 for all a, while 0 | a if and only if a = 0.
(iv) 1 | a for all a, while a | 1 if and only if a = ±1.

The division algorithm. The �rst result about the integers of real signi�cance is the
Division Algorithm; it code�es the time-honored process of dividing one integer by
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another to obtain a quotient and remainder. It should be noted that the proof of the
result uses WO.

(2.2.2) Let a, b be integers with b ̸= 0. Then there exist unique integers q (the quotient)
and r (the remainder) such that a = bq + r and 0 ≤ r < |b|.

Proof. Let S be the set of all non-negative integers of the form a − bq where q ∈ ℤ. In
the �rst place we need to observe that S is not empty. Indeed, if b > 0 and we choose
an integer q ≤ a

b , then a − bq ≥ 0; if b < 0, choose an integer q ≥ a
b , so that again

a − bq ≥ 0. Applying the Well-Ordering Law to the set S, we conclude that it contains a
smallest element, say r. Then r = a − bq for some integer q and a = bq + r.

Now suppose that r ≥ |b|. If b > 0, then a − b(q + 1) = r − b < r, while if b < 0,
then a − b(q − 1) = r + b < r. In each case a contradiction is reached since we have
found an integer in S which is less than r. Hence r < |b|.

Finally, we must show that q and r are unique. Suppose that a = bq� + r� where
q�, r� ∈ ℤ and 0 ≤ r� < |b|. Then bq + r = bq� + r� and b(q − q�) = r� − r. Thus
|b| ⋅ |q − q�| = |r − r�|. If q ̸= q�, then |r − r�| ≥ |b|, whereas |r − r�| < |b| since 0 ≤ r,
r� < |b|. Therefore q = q� and it follows at once that r = r�.

When a < 0 or b < 0, care must be taken to ensure that a negative remainder is
not obtained. For example, if a = −21 and b = −4, then −21 = (−4)6 + 3, so that q = 6
and r = 3.

Greatest common divisors. Let a1, a2, . . . , an be integers. An integer c which divides
every ai is called a common divisor of a1, a2, . . . , an. Our next goal is to establish the
existence of a greatest common divisor.

(2.2.3) Let a1, a2, . . . , an be integers. Then there is a unique integer d ≥ 0 with the
properties:
(i) d is a common divisor of a1, a2, . . . , an;
(ii) every common divisor of a1, a2, . . . , an divides d;
(iii) d = a1x1 + ⋅ ⋅ ⋅ + anxn for some integers xi.

Proof. If all of the ai are 0, we can take d = 0 since this �ts the description. So assume
that at least one ai is non-zero. Then the set S of all non-negative integers a1x1 +
a2x2 + ⋅ ⋅ ⋅ + anxn with xi ∈ ℤ is non-empty. By WO there is a least element in S, say
d = a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn. If an integer c divides each ai, then c | d by (2.2.1). Thus
it only remains to show that d | ai for all i.

By the Division Algorithmwe can write ai = dqi + ri where qi , ri ∈ ℤ and 0 ≤ ri < d.
Then

ri = ai − dqi = a1(−x1qi) + ⋅ ⋅ ⋅ + ai(1 − xiqi) + ⋅ ⋅ ⋅ + an(−xnqi).

If ri ̸= 0, then ri ∈ S, which contradicts the minimality of d in S. Hence ri = 0 and d | ai
for all i.
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Finally, we show that d is unique. If d� is another integer satisfying (i) and (ii), then
d | d� and d� | d, so that d = d� since d, d� ≥ 0.

The integer d of (2.2.3) is called the greatest common divisor of a1, a2, . . . , an, in
symbols

d = gcd{a1, a2, . . . , an}.

If d = 1, the integers a1, a2, . . . , an are said to be relatively prime; of course this means
that the integers have no common divisors except ±1.

The Euclidean¹ Algorithm. The proof of the existence of gcd’swhich has just been given
is not constructive, i.e., it does not provide a method for calculating gcd’s. However,
there is a well known procedure called the Euclidean Algorithm which is e�ective in
this respect.

Assume that a, b are integers with b ̸= 0. Apply the Division Algorithm to divide a
by b to get quotient q1 and remainder r1. Next divide b by r1 to get quotient q2 and
remainder r2; then divide r1 by r2 to get quotient q3 and remainder r3. And so on. By
WO there is a smallest non-zero remainder, say rn−1. Thus rn = 0 and we have a system
of integer equations

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

a = bq1 + r1,
b = r1q2 + r2,
r1 = r2q3 + r3,
...

...
rn−3 = rn−2qn−1 + rn−1,
rn−2 = rn−1qn + 0.

Here 0 ≤ r1 < |b|, 0 ≤ ri < ri−1 and rn−1 is the smallest non-zero remainder. With this
notation we can state:

(2.2.4) (The Euclidean Algorithm) The greatest common divisor of a and b equals the
last non-zero remainder rn−1.

Proof. Starting with the second last equation in the system above, we can solve back
for rn−1, obtaining eventually an expression of the form rn−1 = ax + by, where x, y ∈ ℤ.
This shows that any common divisor of a and b must divide rn−1. We can also use
the system of equations above to show successively that rn−1 | rn−2, rn−1 | rn−3, . . . ,
etc., and �nally rn−1 | b, rn−1 | a. It follows that rn−1 = gcd{a, b} by uniqueness of
gcd’s.

1 Euclid of Alexandria (325–265 BC)
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Example (2.2.1) Find gcd(76, 60). We compute successively: 76 = 60 ⋅ 1 + 16, 60 =
16 ⋅ 3 + 12, 16 = 12 ⋅ 1 + 4, 12 = 4 ⋅ 3 + 0. Hence gcd{76, 60} = 4, the last non-zero
remainder. By reading back from the third equation we obtain the predicted expression
for the gcd, 4 = 76 ⋅ 4 + 60 ⋅ (−5).

The Euclidean algorithm can also be applied to calculate gcd’s of more than two
integers by using the formula

gcd{a1, a2, . . . , am+1} = gcd{gcd{a1, a2, . . . am}, am+1}

and induction on m: see Exercise (2.2.1).
A very useful tool in working with divisibility is:

(2.2.5) (Euclid’s Lemma) Let a, b, m be integers. If m divides ab and m is relatively
prime to a, then m divides b.

Proof. By hypothesis gcd{a,m} = 1, so by (2.2.3) there are integers x, y such that
1 = mx+ ay. Multiplying by b, we obtain b = mbx+ aby. Sincem divides ab, it divides
the right side of the equation. Hence m divides b.

Recall that a prime number is an integer p > 1 such that ±1 and ±p are its only
divisors. If p is a prime and a is any integer, then either gcd{a, p} = 1 or p | a. Thus
(2.2.5) has the consequence.

(2.2.6) If a prime p divides ab where a, b ∈ ℤ, then p divides a or b.

The Fundamental Theorem of Arithmetic. It is a basic result that every integer greater
than 1 can be expressed as a product of primes. The proof of this result is a good
example of proof by the alternate form of mathematical induction.

(2.2.7) Every integer n > 1 can be expressed as a product of primes. Moreover the
expression is unique up to the order of the factors.

Proof. (i) Existence. We show that n is a product of primes, which is certainly true if
n = 2. Assume that every integer m satisfying 2 ≤ m < n is a product of primes. If n
itself is a prime, there is nothing to prove. Otherwise n = n1n2 where 1 < ni < n. Then
n1 and n2 are both products of primes, whence so is n = n1n2. The result now follows
by the alternate form of mathematical induction (2.1.2).
(ii)Uniqueness. In this part we have to show that n has a unique expression as a product
of primes. Again this is clearly correct for n = 2. Assume that if 2 ≤ m < n, then m
is uniquely expressible as a product of primes. Next suppose that n = p1p2 ⋅ ⋅ ⋅ pr =
q1q2 ⋅ ⋅ ⋅ qs where the pi and qj are primes. Then p1 | q1q2 ⋅ ⋅ ⋅ qs and by (2.2.6) the prime
p1 must divide, and hence equal, one of the qj’s; we can assume p1 = q1 by relabelling
the qj’s if necessary. Now cancel p1 to getm = p2 ⋅ ⋅ ⋅ pr = q2 ⋅ ⋅ ⋅ qs. Sincem = n/p1 < n,
we deduce that p2 = q2, . . . , pr = qr, and r = s, after further relabelling of the qj’s.
Hence the result is proven.
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A convenient expression for an integer n > 1 is

n = pe11 p
e2
2 ⋅ ⋅ ⋅ pekk

where the pi are distinct primes and ei > 0. That the pi and ei are unique up to order
follows from (2.2.7).

Finally in this section we prove the famous theorem of Euclid on the in�nitude of
primes.

(2.2.8) There exist in�nitely many prime numbers.

Proof. Suppose this is false and let p1, p2, . . . , pk be the list of all the primes. The trick
is to produce a prime that is not on the list. To do this put n = p1p2 ⋅ ⋅ ⋅ pk + 1. Now
no pi can divide n, otherwise pi | 1. But n is certainly divisible by at least one prime,
so we reach a contradiction.

Example (2.2.2) If p is a prime, then√p is not a rational number.
For, assume that√p is a rational and√p = m

n where m, n are integers; evidently
there is nothing to be lost in assuming that m and n are relatively prime since any
common factor can be cancelled. Squaring both sides, we obtain p = m2/n2 and
m2 = pn2. Hence p | m2 and Euclid’s Lemma shows that p | m. Write m = pm1 for
some integer m1. Then p2m2

1 = pn2, so pm2
1 = n2. Thus p | n2 and p | n: but this

means m and n are not relatively prime, a contradiction.

Exercises (2.2)

(1) Let a1, a2, . . . , am be integers. Prove that

gcd{a1, a2, . . . , am+1} = gcd{gcd{a1, a2, . . . , am}, am+1}.

(2) Prove that gcd{ka1, ka2, . . . , kam} = k ⋅gcd{a1, a2, . . . , am}where the ai and k ≥ 0
are integers.
(3) Use the Euclidean Algorithm to compute the following gcd’s:

gcd{840, 410}, gcd{24, 328, 472}.

Then express each gcd as a linear combination of the relevant integers.
(4) Consider the equation ax + by = c where a, b, c are given integers.

(i) Prove that there is a solution in integers x, y if and only if d = gcd{a, b}
divides c.

(ii) Write d = ua + vb where u, v ∈ ℤ. Prove that the general solution of the
equation is x = uc

d + mb
d , y = vc

d − ma
d where m is an arbitrary integer.
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(5) Find all solutions in integers of the equation 6x + 11y = 1.
(6) If p and q are distinct primes, prove that√pq is irrational.
(7) Let a1, a2, . . . , am be positive integers and write ai = pei11 pei22 ⋅ ⋅ ⋅ peinn where the eij
are integers ≥ 0 and the primes pi are all di�erent. Show that gcd{a1, a2, . . . , am} =
pf11 p

f2
2 ⋅ ⋅ ⋅ pfnn where fj = min{e1j , e2j , . . . , emj}.

(8) A least common multiple (or lcm) of integers a1, a2, . . . , am is an integer ℓ ≥ 0 such
that each ai divides ℓ and ℓ divides any integer which is divisible by every ai.

(i) Let ai = pei11 pei22 ⋅ ⋅ ⋅ peinn where the eij are integers ≥ 0 and the primes pi are all
di�erent. Prove that lcm’s exist and are unique by establishing the formula
lcm{a1, a2, . . . , am} = pg11 p

g2
2 ⋅ ⋅ ⋅ pgnn with gj = max{e1j , e2j , . . . , emj}.

(ii) Prove that gcd{a, b} ⋅ lcm{a, b} = ab.
(9) Let r be a rational number and let a and b be relatively prime integers. If ar and br
are integers, prove that r is also an integer.
(10) Let a and b be integers with b > 0. Prove that there are integers u, v such that
a = bu + v and − b2 ≤ v < b

2 . [Hint: start with the Division Algorithm].
(11) Prove that gcd{4n + 5, 3n + 4} = 1 for all integers n.
(12) Prove that gcd{2n + 6, n2 + 3n + 2} = 2 or 4 for any integer n and show that both
possibilities can occur.
(13) Show that if 2n + 1 is prime, then n must have the form 2l. (Such primes are called
Fermat² primes).
(14) The only integer n which is expressible as a3(3a + 1) and b2(b + 1)3 with a, b
relatively prime and positive is 2000.

2.3 Congruences

The notion of congruence was introduced by Gauss³ in 1801, but it had long been
implicit in ancient writings concerned with the computation of dates.

Let m be a positive integer. Two integers a, b are said to be congruent modulo m, in
symbols

a ≡ b(mod m),

if m divides a − b. Thus congruence modulo m is a relation on ℤ and an easy check
reveals that it is an equivalence relation. Hence the set ℤ splits up into equivalence
classes, which in this context are called congruence classes modulo m: see (1.2.2). The
unique congruence class to which an integer a belongs is written

[a] or [a]m = {a + mq | q ∈ ℤ}.

2 Pierre de Fermat (1601–1665)
3 Carl Friedrich Gauss (1777–1855)
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By the Division Algorithm any integer a can bewritten in the form a = mq+ rwhere
q, r ∈ ℤ and 0 ≤ r < m. Thus a ≡ r (mod m) and [a] = [r]. Therefore [0], [1], . . . ,
[m − 1] are all the congruence classes modulo m. Furthermore, if [r] = [r�]where 0 ≤ r,
r� < m, then m | r − r�, which can only mean that r = r�. Thus we have proved:

(2.3.1) Let m be any positive integer. Then there are exactly m congruence classes mod-
ulo m, namely [0], [1], . . . , [m − 1].

Congruence arithmetic. We will write

ℤm

for the set of all congruences classes modulo m. Next we de�ne operations of addi-
tion and multiplication for congruence classes, thereby introducing the possibility of
arithmetic inℤm.

The sum and product of congruence classes modulo m are de�ned by the rules

[a] + [b] = [a + b] and [a] ⋅ [b] = [ab].

These de�nitions are surely the natural ones. However, some care must be exercised in
framing de�nitions of this type. A congruence class can be represented by any one of
its elements: we need to ensure that the sum and product speci�ed above depend only
on the congruence classes themselves, not on the chosen representatives.

To this end, let a� ∈ [a] and b� ∈ [b]. It must be shown that [a + b] = [a� + b�]
and [ab] = [a�b�]. Now a� = a + mu and b� = b + mv for some u, v ∈ ℤ. Therefore
a� + b� = (a + b) +m(u + v) and a�b� = ab +m(av + bu +muv); from these equations it
follows that a� + b� ≡ a + b (mod m) and a�b� ≡ ab (mod m). Thus [a� + b�] = [a + b]
and [a�b�] = [ab], as required.

Now that we know the sum and product of congruence classes to be well-de�ned,
it is a routine task to establish the basic properties of these operations.

(2.3.2) Let m be a positive integer and let [a], [b], [c] be congruence classes modulo m.
Then
(i) [a] + [b] = [b] + [a] and [a] ⋅ [b] = [b] ⋅ [a];
(ii) ([a] + [b]) + [c] = [a] + ([b] + [c]) and ([a][b])[c] = [a]([b][c]);
(iii) ([a] + [b])[c] = [a][c] + [b][c];
(iv) [0] + [a] = [a] and [1][a] = [a];
(v) [a] + [−a] = [0].

Since all of these properties are valid inℤ as well asℤm – see (2.1) – we recognize
some common features of the arithmetics on ℤ and ℤm. This commonality can be
expressed by saying thatℤ and ℤm are both commutative rings with identity, as will be
explained in Chapter Six.
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Fermat’s Theorem. Before proceeding to this well-known theorem, we will establish a
frequently used property of the binomial coe�cients. If n and r are integers satisfying
0 ≤ r ≤ n, the binomial coe�cient (nr) is the number of ways of choosing r objects from
a set of n distinct objects. There is the well-known formula

(
n
r) =

n!
r!(n − r)! =

n(n − 1) ⋅ ⋅ ⋅ (n − r + 1)
r! .

The property needed is:

(2.3.3) If p is a prime and 0 < r < p, then (pr) ≡ 0 (mod p).

Proof. Write (pr) = pm where m is the rational number

(p − 1)(p − 2) ⋅ ⋅ ⋅ (p − r + 1)
r! .

Notice that each prime appearing as a factor of the numerator or denominator of m
is smaller than p. Write m = u

v where u and v are relatively prime integers. Then
v(pr) = pmv = pu and by Euclid’s Lemma v divides p. Now v ̸= p, so v = 1 and
m = u ∈ ℤ. Hence p divides (pr).

We are now able to provewhat is often called Fermat’s Little Theorem, to distinguish
it from the well known Fermat’s Last Theorem.

(2.3.4) If p is a prime and x is any integer, then xp ≡ x (mod p).

Proof. Since (−x)p ≡ −xp (mod p), whether or not p is odd, there is no loss in assuming
that x ≥ 0. We will use induction on x to show that xp ≡ x (mod p), which certainly
holds for x = 0. Assume it is true for x. Then by the Binomial Theorem

(x + 1)p =
p
∑
r=0

(
p
r)x

r ≡ xp + 1 (mod p)

since p divides (pr) if 0 < r < p. Because xp ≡ x (mod p), it follows that (x + 1)p ≡ x + 1
(mod p) . The induction is now complete.

Solving Congruences. Just as we solve equations for unknown real numbers, we can
try to solve congruences for unknown integers. The simplest case is that of a linear
congruencewith a single unknown x; this has the form ax ≡ b (mod m), where a, b,
m are given integers.

(2.3.5) Let a, b, m be integers with m > 0. Then there is a solution x of the congruence
ax ≡ b (mod m) if and only if gcd{a,m} divides b.
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Proof. Set d = gcd{a,m}. If x is a solution of congruence ax ≡ b (mod m), then
ax = b + mq for some q ∈ ℤ, from which it follows that d must divide b. Conversely,
assume that d | b. By (2.2.3) there are integers u, v such that d = au + mv. Multiplying
this equation by the integer b/d, we obtain b = a(ub/d) + m(vb/d). Put x = ub/d,
which is an integer; then ax ≡ b (mod m) and x is a solution of the congruence.

The most important case is for b = 1.

Corollary (2.3.6) Let a, m be integers with m > 0. Then the congruence ax ≡ 1 mod m)
has a solution x if and only if a is relatively prime to m.

It is worthwhile translating the last result into the language of congruence arith-
metic. Given an integer m > 0 and a congruence class [a] modulo m, there is a con-
gruence class [x] such that [a][x] = [1] if and only if a is relatively prime to m. Thus
we can tell which congruence classes modulo m have “inverses”: they are classes [x]
where 0 < x < m and x is relatively prime to m. The number of invertible congruence
classes modulo m is denoted by

ϕ(m).

Here ϕ is called Euler’s⁴ function. Next we consider systems of linear congruences.

(2.3.7) (The Chinese Remainder Theorem) Let a1, a2, . . . , ak and m1, m2, . . . , mk be
integers with mi > 0. Assume that gcd{mi ,mj} = 1 if i ̸= j. Then there is a common
solution x of the system of congruences

{{{{{{{
{{{{{{{
{

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

...
x ≡ ak (mod mk).

When k = 2, this striking result was discovered by the Chinese mathematician
Sun Tse, who lived sometime between the Third and Fifth centuries AD.

Proof of (2.3.7). Put m = m1m2 ⋅ ⋅ ⋅mk and m�
i = m/mi. Then mi and m�

i are relatively
prime, so by (2.3.6) there exists an integer ℓi such that m�

iℓi ≡ 1 (mod mi). Now let
x = a1m�

1ℓ1 + ⋅ ⋅ ⋅ + akm�
kℓk. Then

x ≡ aim�
iℓi ≡ ai (mod)mi

since mi | m�
j if i ̸= j.

4 Leonhard Euler (1707–1783)
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As an application of (2.3.7) a well-known formula for Euler’s function will be
derived.

(2.3.8)

(i) If m and n are relatively prime positive integers, then ϕ(mn) = ϕ(m)ϕ(n).
(ii) If m = pl11 p

l2
2 ⋅ ⋅ ⋅ plkk with li > 0 and distinct primes pi, then

ϕ(m) =
k
∏
i=1

(plii − p
li−1
i ).

Proof. (i) Let Um denote the set of invertible congruence classes in ℤm. Thus |Um| =
ϕ(m). De�ne a map α : Umn → Um × Un by the rule α([a]mn) = ([a]m , [a]n). First
of all observe that α is well-de�ned. Next suppose that α([a]mn) = α([a�]mn). Then
[a]m = [a�]m and [a]n = [a�]n, equations which imply that a − a� is divisible by m
and n, and hence by mn. Therefore [a]mn = [a�]mn and α is an injective function.

In fact α is also surjective. For, if [a]m ∈ Um and [b]n ∈ Un are given, the Chinese
Remainder Theorem assures us that there is an integer x such that x ≡ a (mod m) and
x ≡ b (mod n). Hence [x]m = [a]m and [x]n = [b]n, so that α([x]mn) = ([a]m , [b]n).
Therefore α is a bijection and consequently |Umn| = |Um ×Un| = |Um| ⋅ |Un|, as required.
(ii) Suppose that p is a prime and n > 0. There are pn−1 multiples of p among the
integers 0, 1, . . . , pn − 1; therefore ϕ(pn) = pn − pn−1. Finally apply (2.3.8)(i) to obtain
the formula indicated.

We end the chapter with several examples which illustrate the utility of congru-
ences.

Example (2.3.1) Show that an integer is divisible by 3 if and only if the sum of its digits
is a multiple of 3.

Let n = a0a1 . . . ak be the decimal representation of an integer n. Thus n = ak +
ak−110 + ak−2102 + ⋅ ⋅ ⋅ + a010k where 0 ≤ ai < 10. The key observation is that 10 ≡
1 (mod 3), i.e., [10] = [1]. Hence [10i] = [10]i = [1]i = [1], i.e., 10i ≡ 1 (mod 3) for
all i ≥ 0. It therefore follows that n ≡ a0 + a1 + ⋅ ⋅ ⋅ + ak (mod 3). The assertion is an
immediate consequence of this congruence.

Example (2.3.2) (Days of the week) Congruences have long been used implicitly to
compute dates. As an example, let us determine what day of the week September 25 of
the year 2020 will be.

To keep track of the days assign the integers 0, 1, 2, . . . , 6 as labels for the days
of the week, say Sunday = 0, Monday = 1, . . . , Saturday = 6. Suppose that we reckon
from January 5, 2014, which was a Sunday. All we have to do is count the number of
days from this date to September 25, 2020. Allowing for leap years, this number is 2455.
Now 2455 ≡ 5 (mod 7) and 5 is the label for Friday. Therefore September 25, 2020 will
be a Friday.
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Example (2.3.3) (The Basket of Eggs Problem) What is the smallest number of eggs
a basket can contain if, when eggs are removed k at time, there is one egg left when
k = 2, 3, 4, 5 or 6 and there are no eggs left when k = 7? (This ancient problem is
mentioned in an Indian manuscript of the 7th Century).

Let x be the number of eggs in the basket. The conditions require that x ≡ 1
(mod k) for k = 2, 3, 4, 5, 6 and x ≡ 0 (mod k) for k = 7. Clearly this amounts to x
satisfying the four congruences x ≡ 1 (mod 3), x ≡ 1 (mod 4), x ≡ 1 (mod 5) and
x ≡ 0 (mod 7). Furthermore these are equivalent to the congruences

x ≡ 1 (mod 60) and x ≡ 0 (mod 7).

By the Chinese Remainder Theorem there is a solution to this pair of congruences:
we have to �nd the smallest positive solution. Applying the method of the proof of
(2.3.7), we have m1 = 60, m2 = 7, m = 420 and thus m�

1 = 7, m�
2 = 60. Also ℓ1 = 43,

ℓ2 = 2. Therefore one solution is given by x = 1 ⋅ 7 ⋅ 43 + 0 ⋅ 60 ⋅ 2 = 301. If y is any
other solution, observe that y − x must be divisible by 60 × 7 = 420. Hence the general
solution is x = 301 + 420q, q ∈ ℤ. So the smallest positive solution is 301.

The next example is a re�nement of Euclid’s Theorem on the in�nity of primes –
see (2.2.8).

Example (2.3.4) Prove that there are in�nitely many primes of the form 3n + 2 where
n is an integer ≥ 0.

In fact the proof is a variant of Euclid’s method. Suppose the result is false and let
the odd primes of the form 3n + 2 be p1, p2, . . . , pk. Now consider the positive integer
m = 3p1p2 ⋅ ⋅ ⋅ pk + 2. Notice that m is odd and it is not divisible by any pi. Therefore
m is a product of odd primes di�erent from p1, . . . , pk. Hence m must be a product
of primes of the form 3n + 1 since every integer is of the form 3n, 3n + 1 or 3n + 2. It
follows that m itself must have the form 3n + 1 and thus m ≡ 1 (mod 3). On the other
hand, m ≡ 2 (mod 3), so we have reached a contradiction.

Actually this exercise is a special case of a famous theorem of Dirichlet⁵: every
arithmetic progression an + b, where n = 0, 1, 2, . . . , and the integers a and b are
positive and relatively prime, contains in�nitely many primes.

Example (2.3.5) (TheRSACryptosystem)This is a secure system formessage encryption
which has been widely used for transmitting sensitive data since its invention in 1977
by R. Rivest, A. Shamir and L. Adleman. It has the advantage of being a public key
system in which only the decyphering function is not available to the public.

Suppose that a message is to be sent from A to B. The parameters required are two
distinct large primes p and q. Put n = pq and m = ϕ(n); therefore m = (p − 1)(q − 1)

5 Johann Peter Gustav Lejeune Dirichlet (1805–1859)
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by (2.3.8). Let a be an integer in the range 1 to m which is relatively prime to m. Then
by (2.3.6) there is a unique integer b satisfying 0 < b < m and ab ≡ 1 (mod m). The
sender A is assumed to know the integers a and n, while the receiver B knows b and n.

The message to be sent is �rst converted to an integer x which is not divisible by
p or q and satis�es 0 < x < n. Then A encyphers x by raising it to the power a and
then reducing modulo n. In this form the message is transmitted to B. On receiving the
transmitted message, B raises it to the power b and reduces modulo n. The result will
be the original message x. What is being claimed here is that xab ≡ x (mod n), since
0 < x < n. To see why this holds, �rst write

ab = 1 + lm = 1 + l(p − 1)(q − 1)

with l an integer. Then

xab = x1+l(p−1)(q−1) = x(xp−1)l(q−1) ≡ x (mod p)

since xp−1 ≡ 1 (mod p) by Fermat’s Theorem. Hence p divides xab − x, and in a similar
way q also divides this number. Therefore n = pq divides xab − x as claimed.

Even if n and a become public knowledge, it will be di�cult to break the system
by �nding b. For this would require computation of the inverse of [a] inℤm. To do this
using the Euclidean Algorithm, the result that lies behind (2.3.6), one would need to
know the primes p and q. But the problem of factorizing the integer n = pq in order
to discover the primes p and q is considered to be computationally very hard. Thus
the RSA-system remains secure until more e�cient ways of factorizing large numbers
become available.

Exercises (2.3)

(1) Establish the properties of congruences listed in (2.3.2).
(2) Inℤ24 �nd the inverses of [7] and [13].
(3) Show that if n is an odd integer, n2 ≡ 1 (mod 8).
(4) Find the general solution of the congruence 6x ≡ 11 (mod 5).
(5) What day of the week will April 1, 2030 be?
(6) Find the smallest positive solution x of the system of congruences x ≡ 4 (mod 3),
x ≡ 5 (mod 7), x ≡ 6 (mod 11).
(7) Prove that there are in�nitely many primes of the form 4n + 3.
(8) Prove that there are in�nitely many primes of the form 6n + 5.
(9) In a certain culture the festivals of the snake, the monkey and the �sh occur every
6, 5 and 11 years respectively. The next festivals occur in 3, 4 and 1 years respectively.
How many years must pass before all three festivals occur in the same year?
(10) Prove that no integer of the form 4n + 3 can be written as the sum of two squares
of integers.



3 Introduction to groups

Groups constitute one of themost important andnatural structures in algebra. They also
feature in other areas of mathematics such as geometry, topology and combinatorics. In
addition groups arise inmanyareas of science, typically in situationswhere symmetry is
important, as in atomic physics and crystallography. More general algebraic structures
which have recently come to prominence due to the rise of information science include
semigroups and monoids. This chapter serves as an introduction to these types of
structure.

There is a continuing debate as to whether it is better to introduce groups or rings
�rst in an introductory course in algebra: here we take the point of view that groups
are logically the simpler objects since they involve only one binary operation, whereas
rings have two. Accordingly rings are left until Chapter Six.

Historically the �rst groups to be studied consisted of permutations, i.e., bijective
functions on a set. Indeed for most of the 19th century “group” was synonymous with
“group of permutations”. Since permutation groups have the great advantage that
their elements are concrete and easy to compute with, we begin this chapter with a
discussion of permutations.

3.1 Permutations

If X is any non-empty set, a bijective function π : X → X is called a permutation
of X. Thus by (1.3.1) π has a unique inverse function π−1 : X → X, which is also a
permutation. The set of all permutations of the set X is denoted by

Sym(X),

which stands for the symmetric group on X.
If π and σ are permutations of X, their composite π ∘ σ is also a permutation; this

is because it has an inverse, namely the permutation σ−1 ∘ π−1 by (1.3.2). In the future
for the sake of simplicity we will usually write

πσ

for π ∘ σ. Of course idX, the identity function on X, is a permutation.
At this juncture we pause to note some features of the set Sym(X): this set is

“closed” with respect to forming inverses and composites, by which we mean that
if π, σ ∈ Sym(X), then π−1 and π ∘ σ belong to Sym(X). In addition Sym(X) contains
the identity permutation idX, which has the property idX ∘π = π = π ∘ idX. And �nally,
the associative law for permutations is valid, (π ∘ σ) ∘ τ = π ∘ (σ ∘ τ). In fact what these
properties assert is that the pair (Sym(X), ∘) is a group, as de�ned in (3.2). Thus the
permutations of a set a�ord a very natural example of a group.
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Permutations of �nite sets. We now begin the study of permutations of a �nite set
with n elements,

X = {x1, x2, . . . , xn}.

Let π ∈ Sym(X). Since π is injective, π(x1), π(x2), . . . , π(xn) are all di�erent and
therefore constitute all n elements of the set X, but possibly in some order di�erent
from x1, x2, . . . , xn. Thus we can think of a permutation as a rearrangement of the
order x1, x2, . . . , xn. A convenient way to denote the permutation π is

π = (
x1 x2 . . . xn
π(x1) π(x2) . . . π(xn)

)

where the second row consists of the images under π of the elements of the �rst row.
It should be clear to the reader that nothing essential is lost if we take X to be the set
{1, 2, . . . , n}. With this choice of X, it is usual to write

Sn

for Sym(X); this is called the symmetric group of degree n.
Computations with elements of Sn are easily performed by working directly from

the de�nitions. An example will illustrate this.

Example (3.1.1) Let

π = (
1 2 3 4 5 6
6 1 2 5 3 4

) and σ = (
1 2 3 4 5 6
6 1 4 3 2 5

)

be elements of S6. Hence

πσ = (
1 2 3 4 5 6
4 6 5 2 1 3

) , σπ = (
1 2 3 4 5 6
5 6 1 2 4 3

)

and

π−1 = (
1 2 3 4 5 6
2 3 5 6 4 1

) .

Here πσ has been computed using the de�nition πσ(i) = π(σ(i)), while π−1 is readily
obtained by reading up from 1, 2, . . . , 6 in the second row of π to obtain the second row
of π−1. Notice that πσ ̸= σπ, i. e., multiplication of permutations is not commutative in
general.

A simple count establishes the number of permutations of a �nite set.

(3.1.1) If X is a set with n elements, then | Sym(X)| = n!.

Proof. Consider the number of ways of constructing the second row of a permutation

π = (
x1 x2 . . . xn
y1 y2 . . . yn

)
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There are n choices for y1, but only n−1 choices for y2 since y1 cannot be chosen again.
Next we cannot choose y1 or y2 again, so there are n − 2 choices for y3, and so on;
�nally, there is just one choice for yn. Each choice of a yi leads to a di�erent permutation.
Therefore the number of di�erent permutations of X is n(n − 1)(n − 2) ⋅ ⋅ ⋅1 = n!.

Cyclic permutations. Let π ∈ Sn, so that π is a permutation of the set {1, 2, . . . , n}.
The support of π is de�ned to be the set of all i such that π(i) ̸= i, in symbols

supp(π).

Let r be an integer satisfying 1 ≤ r ≤ n. Then π is called an r-cycle if supp(π) =
{i1, i2, . . . , ir}, with distinct ij, where π(i1) = i2, π(i2) = i3, . . . , π(ir−1) = ir and
π(ir) = i1. To visualize the permutation think of the integers i1, i2, . . . , ir as being
arranged in this order anticlockwise round a circle. Then π has the e�ect of rotating
the circle in the anticlockwise direction. Of course π �xes all the other integers: often π
is written in the form

π = (i1i2 ⋅ ⋅ ⋅ ir)(ir+1) ⋅ ⋅ ⋅ (in)

where the presence of a 1-cycle (j)means that π(j) = j. The notationmay be abbreviated
by omitting all 1-cycles, although if this is done, the integer nmay need to be speci�ed.

In particular a 2-cycle has the form (ij): it interchanges i and j and �xes all other
integers. 2-cycles are frequently called transpositions.

Example (3.1.2) The permutation (
1 2 3 4 5
2 5 3 4 1

) is the 3-cycle (125)(3)(4), that

is, (125). While

(
1 2 3 4 5 6 7 8
6 1 5 8 7 2 3 4

)

is not a cycle, it is the composite of three cycles of length > 1, namely (162)∘(357)∘(48),
as one can see by following what happens to each of the integers 1, 2, . . . , 8 when
the permutation is applied. In fact this is an instance of an important general result,
that any permutation is expressible as a composite of cycles: this will be established
in (3.1.3).

It should be observed that there are r di�erent ways to write an r-cycle since any
element of the cycle can be the initial element: indeed (i1i2 . . . ir) = (i2i3 . . . ir i1) =
⋅ ⋅ ⋅ = (ir i1i2 ⋅ ⋅ ⋅ ir−1).

Two permutations π, σ in Sn are said to be disjoint if their supports are disjoint, i.e.,
they do not bothmove the same element. An important fact about disjoint permutations
is that they commute, in contrast to permutations in general.

(3.1.2) If π and σ are disjoint permutations in Sn, then πσ = σπ.
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Proof. Let i ∈ {1, 2, . . . , n}; we show that πσ(i) = σπ(i). If i ∉ supp(π) ∪ supp(σ), then
plainly πσ(i) = i = σπ(i). Suppose that i ∈ supp(π); then i ∉ supp(σ) and σ(i) = i. Thus
πσ(i) = π(i). Also σπ(i) = π(i); for otherwise π(i) ∈ supp(σ) and so π(i) ∉ supp(π),
which leads to π(π(i)) = π(i). However, π−1 can be applied to both sides of this equation
to give π(i) = i, a contradiction since i ∈ supp(π).

Powers of a permutation. Since we know how to form products of permutations using
composition, it is natural to de�ne powers of a permutation. Let π ∈ Sn and let i be a
non-negative integer. Then the ith power πi is de�ned recursively by the rules:

π0 = id, πi+1 = πiπ.

The point to note here is that the rule allows us to compute successive powers of the
permutation as follows: π1 = π, π2 = ππ, π3 = π2π, etc. Powers are used in the proof
of the following fundamental theorem.

(3.1.3) Let π ∈ Sn. Then π is expressible as a product of disjoint cycles and the cycles
appearing in the product are unique.

Proof. We deal with the existence of the expression �rst. If π is the identity, then
obviously π = (1)(2) ⋅ ⋅ ⋅ (n). Assume that π ̸= id and choose an integer i1 such that
π(i1) ̸= i1. Now the integers i1, π(i1), π2(i1), . . . belong to the �nite set {1, 2, . . . , n}
and so they cannot all be di�erent; say πr(i1) = πs(i1)where r > s ≥ 0. Applying (π−1)s

to both sides of the equation and using associativity, we �nd that πr−s(i1) = i1. Hence
by the Well-Ordering Law there is a least positive integer m1 such that πm1 (i1) = i1.

Next we argue that the integers i1, π(i1), π2(i1), . . . , πm1−1(i1) are all di�erent. For
if not and πr(i1) = πs(i1) where m1 > r > s ≥ 0, then, just as above, we can argue that
πr−s(i1) = i1; on the other hand, 0 < r − s < m1, which contradicts the choice of m1. It
follows that π permutes the m1 distinct integers i1, π(i1), . . . , πm1−1(i1) in a cycle, so
that we have identi�ed the m1-cycle (i1 π(i1) . . . πm1−1(i1)) as a component of π.

If π �xes all other integers, then π = (i1 π(i1) ⋅ ⋅ ⋅ πm1−1(i1)) and π is an m1-cycle.
Otherwise there exists an integer i2 ∉ {i1, π(i1), . . . , πm1−1(i1)} such that π(i2) ̸= i2.
Just as above we identify a second cycle (i2 π(i2) . . . πm2−1(i2)) present in π. This is
disjoint from the �rst cycle. Indeed, if the cycles had a common element, they would
have to coincide. It should also be clear that by a �nite number of applications of this
procedure we can express π as a product of disjoint cycles.

Next to establish uniqueness. Assume that there are two expressions for π as a
product of disjoint cycles, say (i1i2 ⋅ ⋅ ⋅ )(j1j2 ⋅ ⋅ ⋅ ) ⋅ ⋅ ⋅ and (i�1i

�
2 ⋅ ⋅ ⋅ )(j

�
1j

�
2 ⋅ ⋅ ⋅ ) ⋅ ⋅ ⋅ . By (3.1.2)

disjoint cycles commute. Thuswithout loss of generalitywe can assume that i1 occurs in
the cycle (i�1i

�
2 ⋅ ⋅ ⋅ ). Since any element of a cycle can be moved up to the initial position,

it can also be assumed that i1 = i�1. Then i2 = π(i1) = π(i�1) = i
�
2; similarly i3 = i�3, etc.

The other cycles are dealt with in the samemanner. Therefore the two expressions for π
are identical.
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Corollary (3.1.4) If n > 1, every element of Sn is expressible as a product of transposi-
tions.

Proof. Because of (3.1.3) it is su�cient to show that each cyclic permutation is a product
of transpositions. That this is true follows from the easily veri�ed identity:

(i1i2 ⋅ ⋅ ⋅ ir−1ir) = (i1ir)(i1ir−1) ⋅ ⋅ ⋅ (i1i3)(i1i2).

Example (3.1.3) Express π = (
1 2 3 4 5 6
3 6 5 1 4 2

) as a product of transpositions.

First of all write π as a product of disjoint cycles, following the method of the proof
of (3.1.3) to get π = (1354)(26). Also (1354) = (14)(15)(13), so that

π = (14)(15)(13)(26).

On the other hand not every permutation in Sn is expressible as a product of disjoint
transpositions. (Why not?)

Even and odd permutations. If π is a permutation in Sn, then π replaces the natural
order of integers, 1, 2, . . . , n by the new order π(1), π(2), . . . , π(n). Thus π may cause
inversions of the natural order: here an inversion occurs if for some i < j, we have
π(i) > π(j). To clarify the de�nition it is convenient to introduce a formal device.

Consider a polynomial f in indeterminates x1, x2, . . . , xn, with integer coe�cients.
(Here we assume the reader is familiar with the concept of a polynomial). If π ∈ Sn, then
π determines a new polynomial πf which is obtained by permuting the variables x1,
x2, . . . , xn. Thus πf(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)). For example, if f = x1 − x2 − 2x3
and π = (12)(3), then πf = x2 − x1 − 2x3.

Now consider the polynomial

f(x1, . . . , xn) =
n
∏
i,j=1
i<j

(xi − xj).

A typical factor in πf is xπ(i) − xπ(j). Now if π(i) < π(j), this is also a factor of f , while if
π(i) > π(j), then −(xπ(i) − xπ(j)) is a factor of f . Consequently πf = +f if the number of
inversions of the natural order in π is even and πf = −f if it is odd. This observation
permits us to de�ne the sign of the permutation π to be

sign(π) = πf
f .

Thus sign(π) = 1 or −1 according as the number of inversions in π is even or odd. Call
π an even permutation if sign(π) = 1 and an odd permutation if sign(π) = −1.

Example (3.1.4) The even permutations in S3 are (1)(2)(3), (123) and (132), while the
odd permutations are (1)(23), (2)(13) and (3)(12).
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In deciding if a permutation is even or odd a crossover diagram is a useful tool. We
illustrate this idea with an example.

Example (3.1.5) Is the permutation

π = (
1 2 3 4 5 6 7
3 7 2 5 4 1 6

)

even or odd?
To construct the crossover diagram simply join equal integers in the top and bottom

rows of π and count the intersections or “crossovers”, taking care to avoid multiple or
unnecessary intersections. A crossover indicates the presence of an inversion of the
natural order.

1 2 3 4 5 6 7

3 7 2 5 4 1 6

There are 11 crossovers, so sign(π) = −1 and π is an odd permutation.
The next result records very signi�cant property of transpositions.

(3.1.5) Transpositions are always odd.

Proof. Consider the crossover diagram for the transposition (ij) where i < j.

1 2 ... i − 1 i i + 1 ... j − 1 j j + 1 ... n

1 2 ... i − 1 j i + 1 ... j − 1 i j + 1 ... n

An easy count reveals the presence of 1 + 2(j − i − 1) crossovers. Since this integer
is certainly odd, (ij) is an odd permutation.
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The basic properties of the sign function are laid out next.

(3.1.6) Let π, σ ∈ Sn. Then the following hold:
(i) sign(πσ) = sign(π) sign(σ);
(ii) sign(π−1) = sign(π).

Proof. Let f = ∏n
i<j=1(xi − xj). Since πf = sign(π)f , we have

πσf(x1, . . . , xn) = π(σf(x1, . . . , xn))
= π((sign(σ)f(x1, . . . , xn))
= sign(σ)πf(x1, . . . , xn)
= sign(σ) sign(π)f(x1, . . . , xn).

Since (πσ)f = sign(πσ)f , it follows that sign(πσ) = sign(π) sign(σ). Finally, by (i) we
have 1 = sign(id) = sign(ππ−1) = sign(π) sign(π−1), so that sign(π−1) = 1/ sign(π) =
sign(π).

Corollary (3.1.7) A permutation π in Sn is even (odd) if and only if it is a product of an
even (respectively odd) number of transpositions.

For, if π = ∏k
i=1 πi with each πi a transposition, then

sign(π) =
k
∏
i=1

sign(πi) = (−1)k

by (3.1.5) and (3.1.6).
The subset of all even permutations in Sn is denoted by

An ,

which is called the alternating group of degree n. Obviously A1 = S1. For n > 1 exactly
half of the permutations in Sn are even, as the next result shows.

(3.1.8) If n > 1, there are 1
2 (n!) even permutations and 1

2 (n!) odd permutations in Sn.

Proof. De�ne a function α : An → Sn by the rule α(π) = π ∘ (12), observing that α(π)
is odd and α is injective. Every odd permutation σ belongs to Im(α) since α(π) = σ
where π = σ ∘ (12) ∈ An. Thus Im(α) is precisely the set of all odd permutations and
|Im(α)| = |An|.

(3.1.9) (Cauchy’s¹ Formula) If π in Sn is the product of c disjoint cycles, including 1-
cycles, then

sign(π) = (−1)n−c .

1 Augustin Louis Cauchy (1789–1857)
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Proof. Let π = σ1σ2 ⋅ ⋅ ⋅ σc where the σi are disjoint cycles and σi has length ℓi. Now σi
is expressible as a product of ℓi −1 transpositions by the proof of (3.1.4). Hence by (3.1.6)
we have sign(σi) = (−1)ℓi−1 and thus

sign(π) =
c
∏
i=1

sign(σi) =
c
∏
i=1

(−1)ℓi−1 = (−1)n−c

since∑c
i=1 ℓi = n.

Derangements. We conclude the section with a discussion of a special type of permu-
tation. A permutation of a set is called a derangement if it �xes no elements of the set,
i.e., its support is the entire set. For example, (1234)(56) is a derangement in S6. A
natural question is: how many derangements does Sn contain? To answer the question
we employ a well known combinatorial principle.

(3.1.10) (The Inclusion–Exclusion Principle) If A1, A2, . . . , Ar are �nite sets, then

|A1 ∪ A2 ∪ ⋅ ⋅ ⋅ ∪ Ar| =
r
∑
i=1

|Ai| −
r
∑
i<j=1

|Ai ∩ Aj|+

r
∑

i<j<k=1
|Ai ∩ Aj ∩ Ak| + ⋅ ⋅ ⋅ + (−1)r−1|A1 ∩ A2 ∩ ⋅ ⋅ ⋅ ∩ Ar|.

Proof. We have to count the number of objects that belong to at least one Ai. Our
�rst estimate is∑r

i=1 |Ai|, but this double counts elements in more than one Ai, so we
subtract ∑r

i<j=1 |Ai ∩ Aj|. But now elements belonging to three or more Ai’s have not
been counted at all, sowemust add∑r

i<j<k=1 |Ai∩Aj∩Ak|. Now elements in four ormore
Ai’s have been double counted, and so on. After a succession of r such “inclusions”
and “exclusions” we arrive at the correct formula.

It is now relatively easy to count derangements.

(3.1.11) The number of derangements in Sn is given by the formula

dn = n!(1 −
1
1!

+
1
2!

−
1
3!

+ ⋅ ⋅ ⋅ + (−1)n 1n!).

Proof. Let Xi denote the set of all permutations in Sn which �x the integer i, (1 ≤ i ≤ n).
Then the number of derangements in Sn is

dn = n! − |X1 ∪ ⋅ ⋅ ⋅ ∪ Xn|.
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Now |Xi| = (n − 1)!; also |Xi ∩ Xj| = (n − 2)!, (i < j), and |Xi ∩ Xj ∩ Xk| = (n − 3)!,
(i < j < k), etc. Therefore by the Inclusion–Exclusion Principle

dn = n! − {(
n
1)

(n − 1)! − (
n
2)

(n − 2)! + (
n
3)

(n − 3)!

− ⋅ ⋅ ⋅ + (−1)n−1(nn)(n − n)!}.

Here the reason is that there are (nr) intersections Xi1∩Xi2∩⋅ ⋅ ⋅∩Xir with i1 < i2 < ⋅ ⋅ ⋅ < ir.
The required formula appears after a minor simpli�cation of the terms in the sum.

Notice that limn→∞( dnn! ) = e
−1 = 0.36787 . . . , so roughly 36.8% of the permuta-

tions in Sn are derangements.

Example (3.1.6) (The Hat Problem) There are n people attending a party each of whom
wears a di�erent hat. All the hats are checked in on arrival. Afterwards each person is
given a hat at random. What is the probability that no one get the correct hat?

A distribution of hats corresponds to a permutation of the original order. The
permutations that are derangements give the distributions in which everyone has the
wrong hat. So the probability asked for is dn

n! or roughly e
−1.

Exercises (3.1)

(1) Let π = (
1 2 3 4 5 6
2 4 1 5 3 6

) and σ = (
1 2 3 4 5 6
6 1 5 3 2 4

). Compute π−1, πσ

and πσπ−1.
(2) Determine which of the permutations in Exercise (3.1.1) are even and which are odd.
(3) Prove that sign(πσπ−1) = sign(σ) for all π, σ ∈ Sn.
(4) Prove that if n > 1, every non-trivial element of Sn is a product of adjacent transposi-
tions, i.e., transpositions of the form (i i + 1). [Hint: it is enough to prove the statement
for a transposition (i j) where i < j. Now consider the composite (j j + 1)(i j)(j j + 1)].
(5) Prove that an element π in Sn satis�es π2 = id if and only if π is a product of disjoint
transpositions.
(6) How many elements π in Sn satisfy π2 = id? [Hint: count the permutations which
have exactly k disjoint transpositions for 2k ≤ n by �rst choosing 2k integers from
1, 2, . . . , n and then forming k transpositions from them.]
(7) How many permutations in Sn contain at most one 1-cycle?
(8) In the game of Rencontre there are two players A and B, each of whom has a regular
pack of 52 cards. The players deal their cards simultaneously. If at some point they both
deal the same card, this is a “rencontre” and player A wins. If no rencontre appears,
player B wins. What are the probabilities of each player winning?
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3.2 Semigroups, monoids and groups

Many of the structures that occur in algebra consist of a set together with a set of
operations that can be applied to elements of the set. To make this precise, let us de�ne
a binary operation on a set S to be a function

α : S × S → S.

Thus for each ordered pair (a, b) with a, b in S the function α produces a unique
element α((a, b)) of S. It is better notation if we write

a ∗ b

instead of α((a, b)) and refer to the binary operation as ∗.
Of course binary operations abound: one need think no further than addition or

multiplication in sets such asℤ,ℚ,ℝ, or composition on the set of all functions on a
given set.

The �rst algebraic structure of interest to us is a semigroup, which is a pair

(S, ∗)

consisting of a non-empty set S and a binary operation ∗ on S which satis�es the
associative law,
(i) (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ S.
If the semigroup has an identity element, i.e., an element e of S such that
(ii) a ∗ e = a = e ∗ a for all a ∈ S,
then it is called amonoid.

Finally, the monoid is called a group if each element a has an inverse, i.e., an
element a� of S such that
(iii) a ∗ a� = e = a� ∗ a.
Also a semigroup (S, ∗) is said to be commutative if
(iv) a ∗ b = b ∗ a for all a, b ∈ S.
A commutative group is called an abelian² group.

Thus semigroups, monoids and groups form successively narrower classes of
algebraic structures. These concepts will now be illustrated by some familiar examples.

Examples of semigroups, monoids and groups.

(i) The pairs (ℤ, +), (ℚ, +), (ℝ, +) are groups where + is ordinary addition, 0 is an
identity element and an inverse of x is its negative −x.

2 After Niels Henrik Abel (1802–1829)
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(ii) Next consider (ℚ∗, ⋅), (ℝ∗, ⋅) where the dot denotes ordinary multiplication andℚ∗

and ℝ∗ are the sets of non-zero rational numbers and real numbers respectively. Here
(ℚ∗, ⋅) and (ℝ∗, ⋅) are groups, the identity element being 1 and an inverse of x being 1

x .
On the other hand, (ℤ∗, ⋅) is only a monoid since the integer 2, for example, has no
inverse inℤ∗ = ℤ − {0}.
(iii) (ℤm , +) is a group where m is a positive integer. The usual addition of congruence
classes is used here.
(iv) (ℤ∗m , ⋅) is a group where m is a positive integer: here ℤ∗m is the set of invertible
congruence classes [a] modulo m, i.e., such that gcd{a,m} = 1, and multiplication
of congruence classes is used – see (2.3.6). Note that |ℤ∗m| = ϕ(m)where ϕ is Euler’s
function.
(v) Let Mn(ℝ) be the set of all n × n matrices with real entries. If the usual rule of
addition of matrices is used, (Mn(ℝ), +) is an abelian group.

On the other hand, Mn(ℝ) with matrix multiplication is only a monoid. To obtain
a group we must form

GLn(ℝ),

the subset of all invertible (or non-singular) matrices inMn(ℝ): recall that these are the
matrices with non-zero determinant. This group is called the general linear group of
degree n overℝ.
(vi) For an example of a semigroup that is not a monoid we need look no further than
the set of all even integers with multiplication as the group operation. Clearly there is
no identity element here.
(vii) The monoid of functions on a set. Let A be any non-empty set, and write Fun(A) for
the set of all mappings or functions α on A. Then

(Fun(A), ∘)

is a monoid where ∘ is functional composition. Indeed, this binary operation is asso-
ciative by (1.2.3) and the identity function on A is an identity element.

If we restrict attention to the bijective functions on A, i.e., to those which have
inverses, we obtain the symmetric group on A

(Sym(A), ∘),

consisting of all the permutations of A. This example was the motivation for the de�ni-
tion of a group.
(viii) Monoids of words. For a di�erent type of example we consider words in an alpha-
bet X. Here X is any non-empty set and a word in X is just an n-tuple of elements of X,
written for convenience without parentheses in the form x1x2 ⋅ ⋅ ⋅ xn, n ≥ 0. The case
n = 0 is the empty word 0. LetW(X) denote the set of all words in X.

There is a natural binary operation on X, namely juxtaposition. Thus, if u = x1 ⋅ ⋅ ⋅ xn
and v = y1 ⋅ ⋅ ⋅ ym arewords in X, de�ne uv to be theword x1 ⋅ ⋅ ⋅ xny1 ⋅ ⋅ ⋅ ym. If u = 0, then
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by convention uz = z = zu for all z. It is clear that this binary operation is associative
and that 0 is an identity element. ThusW(X), with the operation speci�ed, is a monoid,
the so-called free monoid on X.
(ix) Monoids and automata. There is a somewhat unexpected connection between
monoids and automata. Suppose that A = (I, S, ν) is a state output automaton with
input set I, state set S and next state function ν : I × S → S: see Exercise (1.3.8). Then
A determines a monoid MA in the following way.

Let i ∈ I and de�ne θi : S → S by the rule θi(s) = ν(i, s) where s ∈ S. Now let
MA consist of the identity function and all composites of �nite sequences of θi’s; thus
MA ⊆ Fun(S). Clearly (MA , ∘) is a monoid with respect to functional composition.

In fact one can go in the opposite direction as well. Let (M, ∗) be a monoid and
de�ne an automaton AM = (M,M, ν)where the next state function ν : M ×M → M is
given by the rule ν(x1, x2) = x1 ∗ x2. Thus a connection between monoids and state
output automata has been detected.
(x) Symmetry groups. As has been remarked, groups tend to arise wherever symmetry
is of importance. The size of the group can be regarded as a measure of the amount of
symmetry present. Since symmetry is at heart a geometric notion, it is not surprising
that geometry provides many interesting examples of groups.

A bijective function de�ned on 3-dimensional space or the plane is called an
isometry if it preserves distances between points. Natural examples of isometries are
translations, rotations and re�ections. Let X be a non-empty set of points in 3-space or
the plane – we will refer to X as a geometric con�guration. An isometry α which �xes
the set X, i.e., such that

X = {α(x) | x ∈ X},

is called a symmetry of X. Note that a symmetry can move the individual points of X.
It is easy to see that the symmetries of X form a group with respect to functional

composition; this is the symmetry group S(X) of X. Thus S(X) is a subset of Sym(X),
usually a proper subset.

The symmetry group of the regular n-gon. As an illustration let us analyze the sym-
metries of the regular n-gon: this is a polygon in the plane with n edges of equal length,
(n ≥ 3). It is convenient to label the vertices of the n-gon 1, 2, . . . , n, so that each
symmetry is represented by a permutation of the vertex set {1, 2, . . . , n}, i.e., by an
element of Sn.
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Each symmetry arises from an axis of symmetry of the �gure. Of course, in order to
obtain a group, we must include the identity symmetry, represented by (1)(2) ⋅ ⋅ ⋅ (n).
There are n − 1 anticlockwise rotations about the line perpendicular to the plane of
the �gure and through the centroid, through angles i(2πn ), for i = 1, 2, . . . , n − 1. For
example, the rotation through 2π

n is represented by the n-cycle (1 2 3 . . . n); other
rotations correspond to powers of this n-cycle. (Note that every clockwise rotation is
achievable as an anticlockwise rotation).

Then there are n re�ections in axes of symmetry in the plane. If n is odd, such
axes join a vertex to the midpoint of the opposite edge. For example, (1)(2 n)(3 n −
1) ⋅ ⋅ ⋅ corresponds to one such re�ection. However, if n is even, there are two types of
re�ections, in an axis joining a pair of opposite vertices and in an axis joiningmidpoints
of opposite edges: hence there are 1

2n + 1
2n = n re�ections in this case as well.

Since all axes of symmetry of the n-gon have now been exhausted, we conclude
that the order of the symmetry group is 1 + (n − 1) + n = 2n. This group is called the
dihedral group of order 2n,

Dih(2n).

Notice that Dih(2n) is a proper subset of Sn if 2n < n!, i.e., if n ≥ 4. Thus not every
permutation of the vertices arises from a symmetry when n ≥ 4.

Simple consequences of the axioms.

We end the section by noting three elementary facts that follow quickly from the
axioms.

(3.2.1)

(i) (The Generalized Associative Law) Let x1, x2, . . . , xn be elements of a semigroup
(S, ∗). If an element u is constructed by combining these elements in the given order,
using any mode of bracketing, then u = (⋅ ⋅ ⋅ ((x1 ∗ x2) ∗ x3) ∗ ⋅ ⋅ ⋅ ) ∗ xn, so that u is
independent of the positioning of the parentheses.

(ii) Every monoid has a unique identity element.
(iii) Every element in a group has a unique inverse.

Proof. (i) We argue by induction on n, which can be assumed to be at least 3. If u is
constructed from x1, x2, . . . , xn in that order, then u = v∗wwhere v is constructed from
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x1, x2, . . . , xi andw from xi+1, . . . , xn; here 1 ≤ i ≤ n−1. Then v = (⋅ ⋅ ⋅ (x1∗x2)∗⋅ ⋅ ⋅∗xi)
by induction on n. If i = n − 1, then w = xn and the result follows at once. Otherwise
i + 1 < n and w = z ∗ xn where z is constructed from xi+1, . . . , xn−1. Then u = v ∗ w =
v ∗ (z ∗ xn) = (v ∗ z) ∗ xn by the associative law. The result is true for v ∗ z by induction,
so it is true for u.
(ii) Suppose that e and e� are two identity elements in a monoid. Then e = e ∗ e� since
e� is an identity, and e ∗ e� = e� since e is an identity. Hence e = e�.
(iii) Let g be an element of a group and suppose g has two inverses x and x�; we
claim that x = x�. To see this observe that (x ∗ g) ∗ x� = e ∗ x� = x�, while also
(x ∗ g) ∗ x� = x ∗ (g ∗ x�) = x ∗ e = x. Hence x = x�.

Because of (3.2.1)(i) above, we can without ambiguity omit all parentheses from an
expression formed from elements x1, x2, . . . , xn of a semigroup – an enormous gain
in simplicity. Also (ii) and (iii) show that it is unambiguous to speak of the identity
element of a monoid and the inverse of an element of a group.

Exercises (3.2)

(1) Let S be the subset ofℝ×ℝ speci�ed below and de�ne (x, y)∗(x�, y�) = (x+x�, y+y�).
Say in each case whether (S, ∗) is a semigroup, a monoid, a group, or none of these, as
is most appropriate.

(i) S = {(x, y) | x + y ≥ 0};
(ii) S = {(x, y) | x + y > 0};
(iii) S = {(x, y) | |x + y| ≤ 1};
(iv) S = {(x, y) | 2x + 3y = 0}.

(2) Do the sets of even or odd permutations in Sn form a semigroup when functional
composition is used as the binary operation?
(3) Show that the set of all 2 × 2 real matrices with non-negative entries is a monoid,
but not a group, when matrix addition used.
(4) Let A be a non-empty set and de�ne a binary operation ∗ on the power set P(A) by
S ∗ T = (S ∪ T) − (S ∩ T). Prove that (P(A), ∗) is an abelian group.
(5) De�ne powers in a semigroup (S, ∗) by the rules x1 = x and xn+1 = xn ∗ x where
x ∈ S and n is a non-negative integer. Prove that xm ∗ xn = xm+n and (xm)n = xmn where
m, n > 0.
(6) Let G be a monoid such that for each x in G there is a positive integer n such that
xn = e. Prove that G is a group.
(7) Let G be the set consisting of the permutations (12)(34), (13)(24), (14)(23) and the
identity permutation (1)(2)(3)(4). Show that G is a group with exactly four elements
in which each element is its own inverse. (This group is called the Klein³ 4-group).

3 Felix Klein (1849–1925)
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(8) Prove that the group Sn is abelian if and only if n ≤ 2.
(9) Prove that the group GLn(ℝ) is abelian if and only if n = 1.

3.3 Groups and subgroups

From this point on we will concentrate on groups and we begin by improving the
notation. In the �rst place it is customary not to distinguish between a group (G, ∗)
and its underlying set G, provided there is no likelihood of confusion. Then there are
two standard ways of writing the group operation. In the additive notation we write
x + y for x ∗ y; the identity is 0G or 0 and the inverse of an element x is −x. The additive
notation is most often used for abelian groups, i.e., groups (G, ∗) such that x∗ y = y∗ x
for all x, y ∈ G.

For non-abelian groups the multiplicative notation is generally employed, with
xy being written for x ∗ y; the identity element is 1G or 1 and the inverse of x is x−1.
The multiplicative notation will be used here unless the additive notation is clearly
preferable, as with a group such asℤ.

Isomorphism. It is important to decide when two groups are to be regarded as es-
sentially the same. It is possible that two groups have very di�erent sets of elements,
but their elements behave in a similar manner with respect to their respective group
operations. This leads us to introduce the concept of isomorphism. Let G and H be
(multiplicatively written) groups. An isomorphism from G to H is a bijective function
α : G → H such that

α(xy) = α(x)α(y)

for all x, y ∈ G. Groups G and H are said to be isomorphic if there exists an isomorphism
from G to H, in symbols

G ≃ H.

(3.3.1) (i) If α : G → H is an isomorphism of groups, then so is its inverse α−1 : H → G.
(ii) Isomorphism is an equivalence relation on the class of groups.

Proof. To establish (i) all we need to do is prove that α−1(xy) = α−1(x)α−1(y). Now
α(α−1(xy)) = xy, while

α(α−1(x)α−1(y)) = α(α−1(x))α(α−1(y)) = xy.

Hence α−1(xy) = α−1(x)α−1(y) by injectivity of α.
To prove (ii) note that re�exivity is obvious, while transitivity follows from the

observation that a composite of isomorphisms is an isomorphism: of course (i) implies
the symmetric property.
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The idea behind isomorphism is that, while the elements in two isomorphic groups
may be di�erent, they have the same properties in relation to their respective group
operations. Note that isomorphic groups have the same order, where by the order of a
group G we mean the cardinality of its set of elements |G|.

The next result records some very useful techniques for working with group ele-
ments.

(3.3.2) Let x, a, b be elements of a group G.
(i) If xa = b, then x = ba−1, and if ax = b, then x = a−1b.
(ii) (ab)−1 = b−1a−1.

Proof. From xa = b we obtain (xa)a−1 = ba−1, i.e., x(aa−1) = ba−1. Since aa−1 = 1
and x1 = x, we get x = ba−1. The second statement in (i) is dealt with similarly. By (3.2.1)
to establish (ii) it is enough to show that b−1a−1 is an inverse of ab. This can be checked
directly: (ab)(b−1a−1) = a(bb−1)a−1 = a1a−1 = aa−1 = 1; similarly (b−1a−1)(ab) = 1.
Consequently (ab)−1 = b−1a−1.

The group table. Suppose that (G, ∗) is a group of �nite order n whose elements are
ordered in some�xedmanner, let us say g1, g2, . . . , gn. The rule for combining elements
in the group can be displayed in its group table. This is the n × n rectangular array M
whose (i, j) entry is gi ∗ gj. Thus the ith row of M is gi ∗ g1, gi ∗ g2, . . . , gi ∗ gn. From
the group table any pair of group elements can be combined. If the group is written
multiplicatively, the termmultiplication table is used.

Notice that all the elements in a row are di�erent: for gi ∗ gj = gi ∗ gk implies that
gj = gk by (3.3.2). The same is true of the columns of M. What this means is that each
group element appears exactly once in each row and exactly once in each column of
M, that is, the group table is a latin square. Such con�gurations are studied in (11.4).

As an example, consider the group of order 4 whose elements are the identity
permutation 1 = (1)(2)(3)(4) and the permutations a = (12)(34), b = (13)(24),
c = (14)(23). This is the Klein 4-group, which was mentioned in Exercise (3.2.7). The
multiplication table of this group is the 4 × 4 array

1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

Powers of group elements. Let x be an element of a (multiplicative) group G and let n
be an integer. The nth power xn of x is de�ned recursively as follows:

x0 = 1, xn+1 = xnx, x−n = (xn)−1
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where n ≥ 0. (See also Exercise (3.2.5)). Of course, if G were written additively, we
would write nx instead of xn. Fundamental for the manipulation of powers is:

(3.3.3) (The Laws of Exponents) Let x be an element of a group G and let m, n be integers.
Then
(i) xmxn = xm+n = xnxm;
(ii) (xm)n = xmn.

Proof. (i) First we show that xrxs = xr+s where r, s ≥ 0, using induction on s. This is
clear if s = 0. Assuming it true for s, we have

xrxs+1 = xrxsx = xr+sx = xr+s+1,

thus completing the induction. Next using (3.3.2) and the de�nition of negative powers,
we deduce from xrxs = xr+s that x−rxr+s = xs and hence by inversion that x−r−sxr = x−s.
This shows that x−rxs = xs−r for all r, s ≥ 0. In a similar way xry−s = xr−s for all r, s ≥ 0.

Finally, by inverting xsxr = xr+s where r, s ≥ 0, we obtain x−rx−s = x−r−s. Thus all
cases have been covered.
(ii) When n ≥ 0, use induction on n: clearly it is true when n = 0. Assuming the
statement true for n, we have (xm)n+1 = (xm)nxm = xmnxm = xm(n+1) by (3.3.2)(i).
Next (xm)−n = ((xm)n)−1 = (xmn)−1 = x−mn, which covers the case where the second
exponent is negative.

Subgroups. Roughly speaking, a subgroup is a group contained within a larger group.
To make this concept precise, consider a group (G, ∗) and a subset S of G. If the group
operation ∗ is restricted to S, we obtain a function ∗� from S × S to G. If ∗� is a binary
operation on S, i.e., if x ∗ y ∈ S whenever x, y ∈ S, and if (S, ∗�) is actually a group,
then S is called a subgroup of G.

The �rst point to settle is that 1S, the identity element of (S, ∗�), equals 1G. Indeed
1S = 1S ∗� 1S = 1S ∗ 1S, so 1S ∗ 1S = 1S ∗ 1G. By (3.3.2) it follows that 1S = 1G. Next let
x ∈ S and denote the inverse of x in (S, ∗) by x−1S . We want to be sure that x−1S = x−1.
Now 1G = 1S = x ∗� x−1S = x ∗ x−1S . Hence x ∗ x−1 = x ∗ x−1S and so x−1S = x−1. Thus
inverses are the same in (S, ∗�) and in (G, ∗).

On the basis of these observations we are able to formulate a convenient test for a
subset of a group to be a subgroup.

(3.3.4) Let S be a subset of a group G. Then S is a subgroup of G if and only if the following
hold:
(i) 1G ∈ S;
(ii) xy ∈ S whenever x ∈ S and y ∈ S, (closure under products);
(iii) x−1 ∈ S whenever x ∈ S, (closure under inverses).
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To indicate that S is a subgroup of a group G we write

S ≤ G.

If in addition S ̸= G, then S is a proper subgroup and we sometimes write S < G.

Examples of subgroups.

(i) ℤ ≤ ℚ ≤ ℝ ≤ ℂ. These statements follow at once via (3.3.4). For the same reason
ℚ∗ ≤ ℝ∗ ≤ ℂ∗.
(ii) An ≤ Sn. Recall that An is the set of even permutations in Sn. Here the point to note
is that if π and σ are even permutations, then so are πσ and π−1 by (3.1.6): of course
the identity permutation is even. However, the odd permutations in Sn do not form a
subgroup.
(iii) Two subgroups that are present in every group G are the trivial or identity sub-
group {1G}, which is written 1 or 1G, and the improper subgroup G itself. For some
groups these are the only subgroups.
(iv) Cyclic subgroups. The interesting subgroups of a group are the proper non-trivial
ones. An easy way to produce subgroups is to take all the powers of a �xed element.
Let G be a group and choose x ∈ G. We denote the set of all powers of the element x by

⟨x⟩.

Using (3.3.4) and the Laws of Exponents (3.3.3), we quickly verify that ⟨x⟩ is a subgroup.
It is called the cyclic subgroup generated by x. Since every subgroup of Gwhich contains
x must also contain all powers of x, it follows that ⟨x⟩ is the smallest subgroup of G
containing x.

A group G is said to be cyclic if G = ⟨x⟩ for some x in G. For example,ℤ andℤn are
cyclic groups since, allowing for the additive notation,ℤ = ⟨1⟩ andℤn = ⟨[1]n⟩.

Next we consider intersections of subgroups.

(3.3.5) If {Sλ | λ ∈ Λ} is a set of subgroups of a group G, then⋂λ∈Λ Sλ is also a subgroup
of G.

This follows immediately from (3.3.4). Now suppose that X is a non-empty subset
of a group G. There is at least one subgroup that contains X, namely G itself. Thus we
may form the intersection of all the subgroups of G that contain X. This is a subgroup
by (3.3.5) which is denoted by

⟨X⟩.

Obviously ⟨X⟩ is the smallest subgroup of G containing X: it is called the subgroup
generated by X. Note that the cyclic subgroup ⟨x⟩ is just the subgroup generated by the
singleton set {x}. More generally a group G is said to be �nitely generated if G = ⟨X⟩ for
some �nite set X.
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It is natural to enquire ask about the form of elements of ⟨X⟩.

(3.3.6) Let X be a non-empty subset of a group G. Then ⟨X⟩ consists of all elements of G
of the form

xe11 x
e2
2 ⋅ ⋅ ⋅ xekk

where xi ∈ X, ei = ±1 and k ≥ 0, (the case k = 0 being interpreted as 1G).

Proof. Let S denote the set of all elements of the speci�ed form. It is easy to check
that S contains 1 and is closed under products and inversion, by using (3.3.2). Thus
S is a subgroup. Clearly X ⊆ S, so that ⟨X⟩ ⊆ S since ⟨X⟩ is the smallest subgroup
containing X. On the other hand, any element of the form xe11 ⋅ ⋅ ⋅ xekk must belong to ⟨X⟩
since xi ∈ ⟨X⟩. Therefore S ⊆ ⟨X⟩ and ⟨X⟩ = S.

Notice that if X is the 1-element set {x}, we recover the fact that the cyclic subgroup
⟨x⟩ consists of all powers of x.

The lattice of subgroups. Let G be a group; then set inclusion is a partial order on the
set of all subgroups of G

S(G),

which is therefore a partially ordered set. Now if H and K are subgroups of G, they have
a greatest lower bound in S(G), namely H ∩ K, and also a least upper bound ⟨H ∪ K⟩,
which is usually written ⟨H, K⟩. This last is true because any subgroup containing H
and K must also contain ⟨H, K⟩. This means that S(G) is a lattice, in the sense of (1.2).
When G is �nite, S(G) can be visualized by means of its Hasse diagram; the basic
component in the diagram of subgroups of a group is the subdiagram below

H∘ ∘K

∘
H∩K

⟨H,K⟩
∘

The order of a group element. Let x be an element of a group. If the subgroup ⟨x⟩ has
a �nite number m of elements, x is said to have �nite order m. If on the other hand ⟨x⟩
is in�nite, then x is called an element of in�nite order. We shall write

|x|
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for the order of x. The basic facts about orders of group elements are contained in the
next result.

(3.3.7) Let x be an element of a group G.
(i) If all powers of x are distinct, then x has in�nite order.
(ii) Assume that two powers of x are equal. Then x has �nite order m and xℓ = 1 if and

only if ℓ is divisible by m. Thus m is the smallest positive integer such that xm = 1.
Furthermore ⟨x⟩ = {1, x, . . . , xm−1}.

Proof. (i) This is clearly true.
(ii) Suppose that two powers of x are equal, say xi = xj where i > j. Then xi−j = 1
by (3.3.3). Using Well-Ordering we may choose a smallest positive integer m for which
xm = 1. Now let ℓ be any integer and write ℓ = mq + r where q, r ∈ ℤ and 0 ≤ r < m,
using the Division Algorithm. By (3.3.3) again xℓ = (xm)qxr = xr. By minimality of
m we deduce that xℓ = 1 if and only if r = 0, i.e., ℓ is divisible by m. It follows that
⟨x⟩ = {1, x, x2, . . . , xm−1}, so that x has �nite order m.

We will now study cyclic groups with the aim of identifying them up to isomor-
phism.

(3.3.8) A cyclic group of order n is isomorphic withℤn. An in�nite cyclic group is isomor-
phic withℤ.

Proof. Let G = ⟨x⟩ be a cyclic group. If |G| = n, then G = {1, x, . . . , xn−1}. De�ne
α : ℤn → G by α([i]) = xi, which is awell-de�ned function because xi+nq = xi(xn)q = xi.
Also

α([i] + [j]) = α([i + j]) = xi+j = xixj = α([i])α([j]),

while α is clearly bijective. Therefore, allowing forℤn being written additively and G
multiplicatively, we conclude that α is an isomorphism andℤn ≃ G. When G is in�nite
cyclic, the proof is similar, but easier, and is left to the reader.

There is a simple way to compute the order of an element of the symmetric group
Sn by using least common multiples – see Exercise (2.2.8).

(3.3.9) Let π ∈ Sn and write π = π1π2 ⋅ ⋅ ⋅ πk where the πi are disjoint cycles, with πi of
length ℓi. Then the order of π equals the least common multiple of ℓ1, ℓ2, . . . , ℓk.

Proof. By (3.1.3) there is a such an expression for π. Also disjoint permutations commute
by (3.1.2). Hence πm = πm1 π

m
2 ⋅ ⋅ ⋅ πmk for any m > 0. Now the πmi a�ect disjoint sets of

integers, so πm = 1, (i.e., πm = id), if and only if πm1 = πm2 = ⋅ ⋅ ⋅ = πmk = 1. By (3.3.7)
these conditions are equivalent to m being divisible by the orders of all the πi. Finally,
it is easy to see by forming successive powers that the order of an r-cycle is r. Therefore
|π| = lcm{ℓ1, ℓ2, . . . , ℓk}.
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Example (3.3.1) What is the largest possible order of an element of S8?
Let π ∈ S8 andwrite π = π1 ⋅ ⋅ ⋅ πk where the πi are disjoint cycles. If πi has length ℓi,

then∑k
i=1 ℓi = 8 and |π| = lcm{ℓ1, . . . , ℓk}. So the question is: which positive integers

ℓ1, . . . , ℓk with sum equal to 8 have the largest least common multiple? A little experi-
mentation will convince the reader that the answer is k = 2, ℓ1 = 3, ℓ2 = 5. Hence 15
is the largest order of an element of S8. For example, the permutation (123)(45678)
has order 15.

We conclude with two more examples, including an application to number theory.

Example (3.3.2) Let G be a �nite abelian group. Prove that the product of all the ele-
ments of G equals the product of all the elements of G of order 2.

The key point to notice here is that if x ∈ G, then |x| = 2 if and only if x = x−1 ̸= 1.
Since G is abelian, in the product ∏g∈G g we can group together elements of order
greater than 2 with their inverses and then cancel each pair xx−1. What is left is the
product of the elements of order 2.

Example (3.3.3) (Wilson’s⁴ Theorem) If p is a prime, then (p − 1)! ≡ −1 (mod p).
Apply Example (3.3.2) to ℤ∗p, the multiplicative group of non-zero congruence

classesmod p. Now theonly element of order 2 inℤ∗p is [−1]: for a2 ≡ 1 (mod p) implies
that a ≡ ±1 (mod p), i.e., [a] = [1] or [−1]. It follows that [1][2] ⋅ ⋅ ⋅ [p − 1] = [−1] and
hence (p − 1)! ≡ −1 (mod p).

Exercises (3.3)

(1) In each of the following situations say whether or not the subset S is a subgroup of
the group G:

(i) G = GLn(ℝ), S = {A ∈ G | det(A) = 1}.
(ii) G = (ℝ, +), S = {x ∈ R | |x| ≤ 1}.
(iii) G = ℝ×ℝ, S = {(x, y) | 3x − 2y = 1}: here the group operation of G is addition

of pairs componentwise.
(2) Let H and K be subgroups of a group G. Prove that H ∪ K is a subgroup if and only
if H ⊆ K or K ⊆ H.
(3) Show that no group can be the union of two proper subgroups. Then exhibit a group
which is the union of three proper subgroups.
(4) Find the largest possible order of an element of S11. How many elements of S11
have this order?
(5) The same question for S12.
(6) Find the orders of the elements [3] and [7] ofℤ∗11.

4 John Wilson (1741–1793)
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(7) Prove that a group of even order must contain an element of order 2. [Hint: assume
this is false and group the non-identity elements in pairs x, x−1].
(8) Assume that for each pair of elements a, b of a group G there is an integer n such
that (ab)i = aibi holds for i = n, n + 1 and n + 2. Prove that G is abelian.
(9) Let S denote the set productℤ × ℤ. De�ne a relation E on S by (a, b) E (a�, b�) ⇔
a − b = a� − b�.

(i) Prove that E is an equivalence relation on S and that each E-equivalence class
contains a pair (a, b) with a, b > 0.

(ii) De�ne (a, b) + (a�, b�) = (a + a�, b + b�) and show that this determines a well
de�ned binary operation on the set P of all E-equivalence classes.

(iii) Prove that if + denotes the binary operation in (ii), then (P, +) is an abelian
group.

(iv) By �nding a mapping from P toℤ, prove that P ≃ ℤ.
(10) Let S be a non-empty set of subgroups of a group. Then S is said to satisfy the
ascending chain condition (acc) if there does not exist an in�nite ascending chain of
subgroups G1 < G2 < . . . where Gi ∈ S. Also S is said to satisfy the maximal condition
(max) if eachnon-empty subsetT ofShas at least onemaximal element, i.e., a subgroup
in T which is not properly contained in any other subgroup in T. Prove that the acc and
max are the same property.
(11) A group G is said to satisfy the maximal condition on subgroups (max) if the set of
all its subgroups S(G) satis�es max, or equivalently the acc. Prove that G satis�es max
if and only if every subgroup of G is �nitely generated. [Hint: use the acc form].
(12) Prove thatℤ satis�es max, butℚ does not.



4 Quotient groups and homomorphisms

In this chapter we probe more deeply into the nature of the subgroups of a group and
we introduce functions between groups that relate their group operations.

4.1 Cosets and Lagrange’s Theorem

Consider a group G with a �xed subgroup H. A binary relation ∼H on G is de�ned by
the following rule: x ∼H y means that x = yh for some h ∈ H. It is an easy veri�cation
that ∼H is an equivalence relation on G. Therefore by (1.2.2) the group G splits up into
disjoint equivalence classes. The equivalence class to which an element x belongs is
the subset

{xh | h ∈ H},

which is called a left coset of H in G and is written

xH.

Thus G is the disjoint union of the distinct left cosets of H. Notice that the only coset
which is a subgroup is 1H = H since no other coset contains the identity element.

Next observe that the assignment h Ü→ xh, (h ∈ H), determines a bijection from H
to xH; for xh1 = xh2 implies that h1 = h2. From this it follows that

|xH| = |H|,

so that each left coset of H has the cardinal of H.
Suppose that we label the left cosets of H in somemanner, say as Cλ , λ ∈ Λ, and for

each λ in Λ we choose an arbitrary element tλ from Cλ. (If Λ is in�nite, we are assuming
at this point a set theoretic axiom called the axiom of choice – for this see (14.1)). Then
Cλ = tλH and, since every group element belongs to some left coset of H, we have
G = ⋃λ∈Λ tλH. Furthermore, cosets are equivalence classes and therefore are disjoint,
so each element x of G has a unique expression x = tλh, where h ∈ H, λ ∈ Λ. The set
{tλ | λ ∈ Λ} is called a left transversal to H in G. Thus we have found a unique way to
express elements of G in terms of the transversal and elements of the subgroup H.

In a similar fashion one can de�ne right cosets of H in G; these are the equivalence
classes of the equivalence relation H ∼, where xH ∼ y means that x = hy for some h
in H. The right coset containing x is

Hx = {hx | h ∈ H}

and right transversals are de�ned analogously.
The next result was the �rst signi�cant theorem to be discovered in group theory.
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(4.1.1) (Lagrange’s¹ Theorem) Let H be a subgroup of a �nite group G. Then |H| divides
|G| and |G|

|H| = the number of left cosets of H = the number of right cosets of H.

Proof. Let ℓ be the number of left cosets of H in G. Since the number of elements in
any left coset of H is |H| and distinct left cosets are disjoint, a count of the elements
of G yields |G| = ℓ ⋅ |H|; thus ℓ = |G|/|H|. For right cosets the argument is similar.

Corollary (4.1.2) The order of an element of a �nite group divides the order of the group.
For the order of an element equals the order of the cyclic subgroup it generates.

The index of a subgroup. Even in an in�nite group G the sets of left and right cosets
of a subgroup H have the same cardinal. Indeed the assignment xH Ü→ Hx clearly
determines a bijection between these sets. This allows us to de�ne the index of H in G
to be simultaneously the cardinal of the set of left cosets and the cardinal of the set of
right cosets of H; the index is written

|G : H|.

When G is �nite, we have already seen that |G : H| = |G|/|H| by Lagrange’s Theorem.

Example (4.1.1) Let G be the symmetric group S3 and let H = ⟨(12)(3)⟩. Then |H| = 3
and |G : H| = |G|/|H| = 6/2 = 3, so we expect to �nd three left cosets and three right
ones. The left cosets are

H = {(1)(2)(3)(4), (12)(3)}, (123)H = {(123), (13)(2)}, (132)H = {(132), (1)(23)},

and the right cosets are

H = {(1)(2)(3)(4), (12)(3)}, H(123) = {(123), (1)(23)}, H(132) = {(132), (13)(2)}.

Notice that the left cosets are disjoint, as are the right ones; but the left and right cosets
are not all disjoint.

The next result is useful in calculations with subgroups: it involves the concept of
the product of cardinal numbers – see Exercise (1.4.6).

(4.1.3) Let H ≤ K ≤ G where G is any group. Then

|G : H| = |G : K| ⋅ |K : H|.

1 Joseph Louis Lagrange (1736–1813)
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Proof. Let {tλ | λ ∈ Λ} be a left transversal to H in K, and let {sµ | µ ∈ M} be a left
transversal to K in G. Thus K = ⋃λ∈Λ tλH and G = ⋃µ∈M sµK. Hence

G = ⋃
λ∈Λ, µ∈M

(sµ tλ)H.

We claim that the elements sµ tλ belong to di�erent left cosets of H. Indeed suppose
that sµ tλH = sµ� tλ�H; then, since tλH ⊆ K, we have sµK = sµ�K, which implies that
µ = µ�. Hence tλH = tλ�H, which shows that λ = λ�. It follows that |G : H|, which is the
cardinal of the set of left cosets of H in G, equals |M × Λ|. By de�nition of the product
this is |M| ⋅ |Λ| = |G : K| ⋅ |K : H|.

Groups of prime order. Lagrange’s Theorem is su�ciently strong to enable us to de-
scribe all groups of prime order. This is the �rst example of a classi�cation theorem in
group theory; it is also a �rst indication of the importance of arithmetic properties of
the group order for the structure of a group.

(4.1.4) A group G has prime order p if and only if G ≃ ℤp.

Proof. Assume that |G| = p and let 1 ̸= x ∈ G. Then |⟨x⟩| divides |G| = p by (4.1.1).
Hence |⟨x⟩| = p = |G| and G = ⟨x⟩, a cyclic group of order p. Thus G ≃ ℤp by (3.3.8).
The converse is obvious.

Example (4.1.2) Find all groups of order less than 6.
Let G be a group such that |G| < 6. If |G| = 1, then G is a trivial group. If |G| = 2, 3

or 5, then (4.1.4) tells us that G ≃ ℤ2,ℤ3 orℤ5 respectively. We are left with the case
where |G| = 4. If G contains an element x of order 4, then G = ⟨x⟩ and G ≃ ℤ4 by (3.3.8).
Assuming that G has no elements of order 4, we conclude from (4.1.2) that G must
consist of 1 and three elements of order 2, say a, b, c.

Now ab cannot equal 1, otherwise b = a−1 = a. Also it is clear that ab ̸= a and
ab ̸= b. Hence ab must equal c; also ba = c by the same argument. Similarly we can
prove that bc = a = cb and ca = b = ac.

At this point the reader should recognize that G is very like the Klein 4-group

V = {(1)(2)(3)(4), (12)(34), (13)(24), (14)(23)}.

In fact the assignments 1G Ü→ 1V , a Ü→ (12)(34), b Ü→ (13)(24), c Ü→ (14)(23) deter-
mine an isomorphism from G to V. Our conclusion is that up to isomorphism there are
exactly six groups with order less than 6, namely ℤ1,ℤ2,ℤ3,ℤ4, V,ℤ5.

The following application of Lagrange’s Theorem furnishes another proof of Fer-
mat’s Theorem – see (2.3.4).
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Example (4.1.3) Use a group theoretic argument to prove that if p is a prime and n is
any integer, then np ≡ n (mod p).

Apply (4.1.2) toℤ∗p, the multiplicative group of non-zero congruence classes mod-
ulo p. If [n] ̸= [0], then (4.1.2) implies that the order of [n] divides |ℤ∗p| = p − 1. Thus
[n]p−1 = [1], i.e., np−1 ≡ 1 (mod p). Multiply by n to get np ≡ n (mod p), and observe
that this also holds if [n] = [0].

According to Lagrange’s Theorem the order of a subgroup of a �nite group divides
the group order. However, the natural converse of this statement is false: there need
not be a subgroup with order equal to a positive divisor of the group order. This is
demonstrated by the following example.

Example (4.1.4) The alternating group A4 has order 12, but it has no subgroups of
order 6.

Write G = A4. First note that each non-trivial element of G is either a 3-cycle or the
product of two disjoint transpositions. Also all of the latter with the identity form the
Klein 4-group V.

Suppose that H is a subgroup of G with order 6. Assume �rst that H ∩ V = 1. Then
there are 6 × 4 = 24 distinct elements of the form hv, h ∈ H, v ∈ V; for if h1v1 = h2v2
with hi ∈ H, vi ∈ V, then h−12 h1 = v2v−11 ∈ H ∩ V = 1, so that h1 = h2 and v1 = v2. This
is impossible, so H ∩ V ̸= 1.

Let us say H ∩ V contains π = (12)(34). Now H must also contain a 3-cycle since
there are 8 of these in G, say σ = (123) ∈ H. Hence H contains τ = σπσ−1 = (14)(23).
Thus H contains πτ = (13)(24) and it follows that V ⊆ H. Other choices of elements
leads to the same conclusion. However, |V| does not divide |H|, a �nal contradiction.

Subgroups of cyclic groups. Usually a group has many subgroups and it can be a
di�cult task to �nd all of them. Thus it is of interest that the subgroups of a cyclic
group are easy to describe. The �rst observation is that such subgroups are themselves
cyclic.

(4.1.5) A subgroup of a cyclic group is cyclic.

Proof. Let H be a subgroup of a cyclic group G = ⟨x⟩. If H = 1, then obviously H = ⟨1⟩;
thus we may assume that H ̸= 1, so that H contains some xm ̸= 1; since H must also
contain (xm)−1 = x−m, we may as well assume that m > 0. Now choose m to be the
smallest positive integer for which xm ∈ H; of course we have used the Well-Ordering
Law here.

Certainly it is true that ⟨xm⟩ ⊆ H. We will prove the reverse inclusion, which will
show that H = ⟨xm⟩. Let h ∈ H and write h = xi. By the Division Algorithm i = mq + r
where q, r ∈ ℤ and 0 ≤ r < m. By the Laws of Exponents (3.3.3) xi = xmqxr. Hence
xr = x−mqxi, which belongs to H since xm ∈ H and xi ∈ H. From the minimality of m it
follows that r = 0 and i = mq. Therefore h = xi ∈ ⟨xm⟩.
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The next result tells us how to construct the subgroups of a given cyclic group.

(4.1.6) Let G = ⟨x⟩ be a cyclic group.
(i) If G is in�nite, each subgroup of G has the form Gi = ⟨xi⟩ where i ≥ 0. Furthermore,

the Gi are all distinct and Gi has in�nite order if i > 0.
(ii) If G has �nite order n, then it has exactly one subgroup of order d for each positive

divisor d of n, namely ⟨xn/d⟩.

Proof. Assume �rst that G is in�nite and let H be a subgroup of G. By (4.1.5) H is cyclic,
say H = ⟨xi⟩ where i ≥ 0. Thus H = Gi. If xi had �nite order m, then xim = 1, which,
since x has in�nite order, can only mean that i = 0 and H = 1. Thus H is certainly
in�nite cyclic if i > 0. Next Gi = Gj implies that xi ∈ ⟨xj⟩ and xj ∈ ⟨xi⟩, i.e., j | i and
i | j, so that i = j. Therefore all the Gi’s are di�erent.

Next let G have �nite order n and suppose d is a positive divisor of n. Now (x n
d )d =

xn = 1, so ℓ = |x n
d | must divide d by (3.3.7). But also x nℓ

d = 1 and hence n divides nℓ
d ,

i.e., d divides ℓ. It follows that ℓ = d and thus K = ⟨xn/d⟩ has order exactly d.
To complete the proof, suppose that H = ⟨xr⟩ is another subgroup with order d.

Then xrd = 1, so n divides rd and n
d divides r. This shows that H = ⟨xr⟩ ≤ ⟨xn/d⟩ = K.

But |H| = |K| = d, from which it follows that H = K. Consequently there is exactly one
subgroup of order d.

Recall from (3.3) that the set of all subgroups of a group is a lattice and may be
represented by a Hasse diagram. In the case of a �nite cyclic group, (4.1.6) shows that
the lattice corresponds to the lattice of divisors of the group order.

Example (4.1.5) Display the Hasse diagram for the subgroups of a cyclic group of
order 12.

Let G = ⟨x⟩ have order 12. By (4.1.6) the subgroups of G correspond to the positive
divisors of 12, i.e., 1, 2, 3, 4, 6, 12; indeed, if i | 12, the subgroup ⟨x12/i⟩ has order i.
It is now easy to draw the Hasse diagram:

∘
⟨x3⟩

∘
⟨x6⟩

∘
1

G=⟨x⟩
∘

⟨x2⟩
∘

⟨x4⟩
∘
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Next comes a useful formula for order of an element in a cyclic group.

(4.1.7) Let G = ⟨x⟩ be a cyclic group with �nite order n. Then the order of the element xi

is
n

gcd{i, n} .

Proof. In the �rst place (xi)m = 1 if and only if n | im, i.e., nd | ( id )mwhere d = gcd{i, n}.
Since n

d and i
d are relatively prime, by Euclid’s Lemma this is equivalent to n

d dividingm.
Therefore (xi)m = 1 if and only if nd divides m, which shows that xi has order n

d , as
claimed.

Corollary (4.1.8) Let G = ⟨x⟩ be a cyclic group of �nite order n. Then G = ⟨xi⟩ if and
only if gcd{i, n} = 1.

For G = ⟨x⟩ if and only if xi has order n, i.e., gcd{i, n} = 1. This means that the
number of possible generators of G equals the number of integers i satisfying 1 ≤ i < n
and gcd{i, n} = 1. This number is ϕ(n) where ϕ is the Eulerian function introduced
in (2.3).

Every non-trivial group has at least two subgroups, itself and the trivial subgroup:
which groups have these two subgroups and no more? The question is easily answered
using (4.1.7) and Lagrange’s Theorem.

(4.1.9) A group G has just two subgroups if and only if G ≃ ℤp for some prime p.

Proof. Assume that G has only the two subgroups 1 and G. Let 1 ̸= x ∈ G; then
1 ̸= ⟨x⟩ ≤ G, so G = ⟨x⟩ and G is cyclic. Now G cannot be in�nite; for then it would
have in�nitely many subgroups by (4.1.6). Thus G has �nite order n, say. Now if n is
not a prime, it has a divisor d where 1 < d < n, and ⟨xn/d⟩ is a subgroup of order d,
which is impossible. Therefore G has prime order p and G ≃ ℤp by (4.1.4). Conversely,
if G ≃ ℤp, then |G| = p and Lagrange’s Theorem shows that G has no non-trivial proper
subgroups.

Products of subgroups. If H and K are subsets of a group G, the product of H and K is
de�ned to be the subset

HK = {hk | h ∈ H, k ∈ K}.

For example, if H = {h} and K is a subgroup, then HK is just the left coset hK. Products
of more than two subsets are de�ned in the obvious way:

H1H2 ⋅ ⋅ ⋅Hm = {h1h2 ⋅ ⋅ ⋅ hm | hi ∈ Hi}.
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Even ifH and K are subgroups, their productHK need not be a subgroup. For exam-
ple, in S3 let H = ⟨(12)⟩ and K = ⟨(13)⟩. Then HK = {(1)(2)(3)(4), (12), (13), (132)}.
But HK cannot be a subgroup since 4 does not divide 6, the order of S3.

The following result tells us when the product of two subgroups is a subgroup.

(4.1.10) Let H and K be subgroups of a group G. Then HK is a subgroup if and only if
HK = KH, and in this event ⟨H, K⟩ = HK.

Proof. Assume �rst that HK ≤ G. Then H ≤ HK and K ≤ HK, so KH ⊆ HK. By taking
the inverse of each side of this inclusion, we deduce that HK ⊆ KH. Hence HK = KH.
Moreover ⟨H, K⟩ ⊆ HK since H ≤ HK and K ≤ HK, while HK ⊆ ⟨H, K⟩ is always true.
Therefore ⟨H, K⟩ = HK.

Conversely, assume that HK = KH; we will verify that HK is a subgroup by us-
ing (3.3.4). Let h1, h2 ∈ H and k1, k2 ∈ K. Then (h1k1)−1 = k−11 h

−1
1 ∈ KH = HK. Also

(h1k1)(h2k2) = h1(k1h2)k2; now k1h2 ∈ KH = HK, so that k1h2 = h3k3 where h3 ∈ H,
k3 ∈ K. Thus (h1k1)(h2k2) = (h1h3)(k3k2) ∈ HK. Obviously 1 ∈ HK. Since we have
proved that the subset HK is closed under products and inversion, it is a subgroup.

It is customary to say that the subgroups H and K permute if HK = KH. The next
result is frequently used in calculations with subgroups.

(4.1.11) (Dedekind’s² Modular Law) Let H, K, L be subgroups of a group and assume
that K ⊆ L. Then

(HK) ∩ L = (H ∩ L)K.

Proof. In the �rst place (H ∩ L)K ⊆ L since K ⊆ L; therefore (H ∩ L)K ⊆ (HK) ∩ L. To
prove the converse, let x ∈ (HK) ∩ L and write x = hk where h ∈ H, k ∈ K. Hence
h = xk−1 ∈ LK = L, from which it follows that h ∈ H ∩ L and x = hk ∈ (H ∩ L)K. Thus
(HK) ∩ L ⊆ (H ∩ L)K and the result follows.

Notice that (4.1.11) is a special case of the distributive law ⟨H, K⟩∩L = ⟨H∩L, K∩L⟩.
However, this law does not hold in general, (see Exercise (4.1.1) below).

Frequently one wants to count the elements in a product of �nite subgroups, which
makes the next result useful.

(4.1.12) If H and K are �nite subgroups of a group, then

|HK| = |H| ⋅ |K|
|H ∩ K| .

2 Richard Dedekind (1831–1916)
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Proof. De�ne a function α : H ×K → HK by the rule α((h, k)) = hk where h ∈ H, k ∈ K;
evidently α is surjective. Now α((h1, k1)) = α((h2, k2)) holds if and only if h1k1 = h2k2,
i.e., h−12 h1 = k2k−11 = d ∈ H ∩ K. Thus h2 = h1d−1 and k2 = dk1. It follows that the
elements of H × K which have the same image under α as (h1, k1) are those of the form
(h1d−1, dk1) where d ∈ H ∩ K. Now compute the number of the elements of H × K by
counting their images under α and allowing for the number of elements with the same
image. This gives |H × K| = |HK| ⋅ |H ∩ K|. Of course |H × K| = |H| ⋅ |K|, so the result is
proved.

The �nal result of this section provides important information about the index of
the intersection of two subgroups.

(4.1.13) (Poincaré³) Let H and K be subgroups of �nite index in a group G. Then H ∩ K
has �nite index and

|G : H ∩ K| ≤ |G : H| ⋅ |G : K|,

with equality if |G : H| and |G : K| are relatively prime.

Proof. To each left coset x(H ∩ K) assign the pair of left cosets (xH, xK). This is a well-
de�ned function; for, if we were to replace x by xd with d ∈ H ∩ K, then xH = xdH and
xK = xdK. The function is also injective; for (xH, xK) = (yH, yK) implies that xH = yH
and xK = yK, i.e., y−1x ∈ H ∩ K, so that x(H ∩ K) = y(H ∩ K). It follows that the number
of left cosets of H ∩ K in G is at most |G : H| ⋅ |G : K|.

Now assume that |G : H| and |G : K| are relatively prime. Since |G : H ∩ K| = |G :
H| ⋅ |H : H ∩ K| by (4.1.3), we see that |G : H| divides |G : H ∩ K|, as does |G : K| for a
similar reason. But |G : H| and |G : K| are relatively prime, whichmeans that |G : H∩K|
is divisible by |G : H| ⋅ |G : K|. It follows that |G : H ∩ K|must equal |G : H| ⋅ |G : K|.

Exercises (4.1)

(1) Show that the distributive law for subgroups ⟨H, K⟩ ∩ L = ⟨H ∩ L, K ∩ L⟩ is false in
general.
(2) If H is a subgroup of a �nite group, show that there are |H||G:H| left transversals to H
in G and the same number of right transversals.
(3) Let H be a subgroup of a group G such that G − H is �nite. Prove that either H = G
or G is �nite.
(4) Display the Hasse diagram for the subgroup lattices of the following groups: ℤ18,
ℤ24, V (the Klein 4-group), S3.
(5) Let G be a group with exactly three subgroups. Show that G ≃ ℤp2 where p is a
prime. [Hint: �rst prove that G is cyclic].

3 Henri Poincaré (1854–1912)
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(6) Let H and K be subgroups of a �nite group G with relatively prime indexes in G.
Prove that G = HK. [Hint: use (4.1.12) and (4.1.13)].
(7) If the product of subsets is used as the binary operation, show that the set of all
non-empty subsets of a group is a monoid.
(8) Let H and K be subgroups of a �nite group with relatively prime orders. Show that
H ∩ K = 1 and |HK| divides the order of ⟨H, K⟩.
(9) Let G = ⟨x⟩ be an in�nite cyclic group and put H = ⟨xi⟩, K = ⟨xj⟩. Prove that
H ∩ K = ⟨xℓ⟩ and ⟨H, K⟩ = ⟨xd⟩ where ℓ = lcm{i, j} and d = gcd{i, j}.
(10) Let G be a �nite group of order n and let d be the minimum number of generators
of G. Prove that n ≥ 2d, so that d ≤ [log2 n].
(11) By applying Lagrange’s Theorem to the group ℤ∗n, prove that xϕ(n) ≡ 1 (mod n)
where n is any positive integer and x is an integer relatively prime to n. Here ϕ is Euler’s
function. (This is a generalization of Fermat’s theorem (2.3.4)).
(12) Let H be a subgroup with �nite index in a �nitely generated group G. Use the
argument that follows to prove that H is �nitely generated. Let G = ⟨g1, . . . , gn⟩ and
let {t1, . . . , tm} be a left transversal to H in G with t1 = 1. Without loss assume that
each g−1i is also a generator. Write gi = tℓihi with hi ∈ H. Also write gi tj = tr(i,j)hij with
hij ∈ H.

(i) Prove that gigj = gr(i,ℓj)hiℓjhj.
(ii) Let h = gi1gi2 ⋅ ⋅ ⋅ gik ∈ H. By applying (i) repeatedly to segments of h, prove

that h ∈ ⟨hi , hjℓ | i, j = 1, . . . , n, ℓ = 1, . . .m, ⟩. Conclude that H is �nitely
generated.

4.2 Normal subgroups and quotient groups

We focus next on a special type of subgroup called a normal subgroup. Such subgroups
are important since they can be used to construct new groups, the so-called quotient
groups. Normal subgroups are characterized in the following result.

(4.2.1) Let H be a subgroup of a group G. Then the following statements about H are
equivalent:
(i) xH = Hx for all x in G;
(ii) xhx−1 ∈ H whenever h ∈ H and x ∈ G.

Proof. First assume that (i) holds and let x ∈ G and h ∈ H. Then xh ∈ xH = Hx, so
xh = h1x for some h1 ∈ H; hence xhx−1 = h1 ∈ H, which establishes (ii).

Now assume that (ii) holds. Again let x ∈ G and h ∈ H. Then xhx−1 = h1 ∈ H, so
xh = h1x ∈ Hx and therefore xH ⊆ Hx. Next x−1hx = x−1h(x−1)−1 = h2 ∈ H, which
shows that hx = xh2 ∈ xH and Hx ⊆ xH. Thus xH = Hx and (i) is proved.
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A subgroup H with the equivalent properties in (4.2.1) is called a normal subgroup
of G. The notation

H ⊲ G

is used to denote the fact that H is a normal subgroup of a group G. Also xhx−1 is called
the conjugate of h by x. Thus H ⊲ G is valid if and only if H contains all conjugates of
its elements by elements of G.

Example (4.2.1)

(i) Obvious examples of normal subgroups are: 1 ⊲ G and G ⊲ G, and it is possible
that these are the only normal subgroups present. If 1 and G are the only normal
subgroups of a non-trivial group G, then G is said to be a simple group. This is one of the
great mis-nomers of mathematics since simple groups can have extremely complicated
structure.
(ii) An ⊲ Sn.

For, if π ∈ An and σ ∈ Sn, then by (3.1.6) we have

sign(σπσ−1) = sign(σ) sign(π)(sign(σ))−1 = (sign(σ))2 = 1,

so that σπσ−1 ∈ An.
(iii) In an abelian group G every subgroup H is normal.

This is because xhx−1 = hxx−1 = h for all h ∈ H, x ∈ G.
(iv) Recall that GLn(ℝ) is the group of all non-singular n × n real matrices. The subset
of matrices in GLn(ℝ) with determinant equal to 1 is denoted by

SLn(ℝ).

First observe that this is a subgroup, the so-called special linear group of degree n
over ℝ; indeed, if A, B ∈ SLn(ℝ), then det(AB) = det(A)det(B) = 1 and det(A−1) =
(det(A))−1 = 1. In addition

SLn(ℝ) ⊲ GLn(ℝ) :

for if A ∈ SLn(ℝ) and B ∈ GLn(ℝ),

det(BAB−1) = det(B)det(A)(det(B))−1 = det(B)1det(B)−1 = 1.

In these computations two standard results about determinants have been used:

det(XY) = det(X)det(Y) and det(X−1) = (det(X))−1.

(v) A subgroup of S3 that is not normal is ⟨(12)(3)⟩.
(vi) The normal closure. Let X be a non-empty subset of a group G. The normal closure

⟨XG⟩
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of X in G is the subgroup generated by all the conjugates gxg−1 with g ∈ G and x ∈ X.
Clearly this is the smallest normal subgroup of G which contains X.
(vii) Finally, we introduce two important normal subgroups that can be formed in any
group G. The center of G,

Z(G),

consists of all x in G such that xg = gx for every g in G. The reader should check that
Z(G) ⊲ G. Plainly a group G is abelian if and only if G = Z(G).

Next, if x, y are elements of a group G, their commutator is the element

[x, y] = xyx−1y−1,

The signi�cance of commutators arises from the fact that [x, y] = 1 if and only if
xy = yx, i.e., x and y commute. The derived subgroup or commutator subgroup of G is
the subgroup G� generated by all the commutators,

G� = ⟨[x, y] | x, y ∈ G⟩.

An easy calculation reveals that z[x, y]z−1 = [zxz−1, zyz−1], which implies that G� ⊲ G.
Clearly a group G is abelian if and only if G� = 1.

Quotient groups. Next we will explain how to form a new group from a normal sub-
group N of a group G. This is called the quotient group of N in G,

G/N.

The elements of G/N are the cosets xN = Nx, while the group operation is given by the
natural rule

(xN)(yN) = (xy)N, (x, y ∈ G).

Our �rst concern is to check that this binary operation on G/N is properly de�ned; it
should depend on the two cosets xN and yN, not on the choice of coset representatives
x and y. To prove this, let x1 ∈ xN and y1 ∈ yN, so that x1 = xa and y1 = yb where
a, b ∈ N. Then

x1y1 = xayb = xy(y−1ay)b ∈ (xy)N

since y−1ay = y−1a(y−1)−1 ∈ N by normality of N. Thus (xy)N = (x1y1)N.
It is straightforward to verify that the binary operation just de�ned is associative.

The role of the identity in G/N is played by 1N = N, while x−1N is the inverse of xN, as
is readily checked. It follows that G/N is a group. Note that the elements of G/N are
subsets, not elements, of G, so that G/N is not a subgroup of G. If G is �nite, so is G/N
with order

|G/N| = |G : N| = |G|
|N| .

Example (4.2.2)

(i) G/1 is the set of all x1 = {x}, i.e., one-element subsets of G. Also {x}{y} = {xy}. In
fact this quotient is not really a new group since G ≃ G/1 via the isomorphism in which
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x Ü→ {x}. Another trivial example of a quotient group is G/G, which is a group of order 1,
with the single element G.
(ii) Let n be a positive integer. Thenℤ/nℤ = ℤn. For, allowing for the additive notation,
the coset of nℤ containing x is x + nℤ = {x + nq | q ∈ ℤ}, which is just the congruence
class of x modulo n.
(iii) If G is any group, the quotient group G/G� is an abelian group: indeed (xG�)(yG�) =
xyG� = (yx)(x−1y−1xy)G� = yxG� = (yG�)(xG�). Also, if G/N is any other abelian
quotient group, then

(xy)N = (xN)(yN) = (yN)(xN) = (yx)N,

which implies that [x−1, y−1] = x−1y−1xy ∈ N for all x, y ∈ N. Since G� is generated
by all commutators [x−1, y−1], it follows that G� ≤ N. Therefore G/G� is the “largest”
abelian quotient group of G.
(iv) The circle group. Let r be a real number and suppose that the plane is rotated
through angle 2rπ in an anti-clockwise direction about an axis through the origin and
perpendicular to the plane. This results in a symmetry of the unit circle, which we will
call r�.

Now de�ne G = {r� | r ∈ ℝ}, a subset of the symmetry group of the unit circle. Note
that r�1 ∘ r

�
2 = (r1 + r2)� and (r�)−1 = (−r)�. This shows that G is actually a subgroup of

the symmetry group; indeed it is the subgroup of all rotations. Our aim is to identify G
as a quotient group.

It is claimed that the assignment r + ℤ Ü→ r� determines a function α : ℝ/ℤ → G:
�rst we need to make sure that the function is well-de�ned. To this end let n be an
integer and observe that (r + n)� = r� ∘ n� = r� since n� is a rotation through angle
2nπ, i.e., it is the identity rotation. Clearly α is surjective; it is also injective because
r�1 = r�2 implies that 2r1π = 2r2π + 2nπ for some integer n, i.e., r1 = r2 + n, and hence
r1 + ℤ = r2 + ℤ. Thus α is a bijection. Finally α((r1 + ℤ) + (r2 + ℤ)) = α((r1 + r2) + ℤ),
which equals

(r1 + r2)� = r�1 ∘ r
�
2 = α(r1 + ℤ) ∘ α(r2 + ℤ).

Therefore, allowing for the additive and multiplicative notations for the respective
groupsℝ/ℤ and G, we conclude that α is an isomorphism from the quotient groupℝ/ℤ
to the circle group G. Hence G ≃ ℝ/ℤ.

Subgroups of quotient groups. Suppose that N is a normal subgroup of a group G; it is
natural to enquire about the subgroups of the quotient group G/N. It is to be expected
that they are related in some simple fashion to the subgroups of G.

Assume that H is a subgroup of G/N and de�ne a corresponding subset of G,

H̄ = {x ∈ G | xN ∈ H}.

It is easy to verify that H̄ is a subgroup of G. Also the de�nition of H̄ shows that N ⊆ H̄.
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Conversely, suppose we start with a subgroup K of G which contains N. Since N ⊲G
implies that N ⊲ K, we can form the quotient group K/N, which is evidently a subgroup
of G/N. Notice that if N ≤ K1 ≤ G, then K/N = K1/N implies that K = K1. Thus the
assignment K Ü→ K/N determines an injective function from the set of subgroups of G
that contain N to the set of subgroups of G/N. The function is also surjective since
H̄ Ü→ H in the notation of the previous paragraph; therefore it is a bijection.

These arguments establish the following fundamental theorem.

(4.2.2) (The Correspondence Theorem) Let N be a normal subgroup of a group G. Then
the assignment K Ü→ K/N determines a bijection from the set of subgroups of G that
contain N to the set of subgroups of G/N. Furthermore, K/N ⊲ G/N if and only if K ⊲ G.

All of this has been proven except the last statement, which follows from the
observation that (xN)(kN)(xN)−1 = (xkx−1)N for k ∈ K and x ∈ G.

Example (4.2.3) Let n be a positive integer. The subgroups of ℤn = ℤ/nℤ are of the
form K/nℤ where nℤ ≤ K ≤ ℤ. Now by (4.1.5) there is an integer m > 0 such that
K = ⟨m⟩ = mℤ, and clearly m divides n since nℤ ≤ K. Thus the Correspondence
Theorem tells us that the subgroups ofℤn correspond to the positive divisors of n, a
fact we already know from (4.1.6).

Example (4.2.4) Let N be a normal subgroup of a group G. Call N amaximal normal
subgroup of G if N ̸= G and if N < L ⊲ G implies that L = G. In short “maximal normal”
means “maximal proper normal”. It follows from the Correspondence Theorem that
if N is a proper normal subgroup of G, then G/N is simple if and only if there are no
normal subgroups of G lying strictly between N and G, i.e., N is maximal normal in G.
Thus maximal normal subgroups lead in a natural way to simple groups.

Direct products. Consider twonormal subgroupsH andK of a (multiplicativelywritten)
group G such that H ∩ K = 1. Let h ∈ H and k ∈ K. Then [h, k] = (hkh−1)k−1 ∈ K since
K ⊲ G; also [h, k] = h(kh−1k−1) ∈ H since H ⊲ G. But H ∩ K = 1, so [h, k] = 1, i.e.,
hk = kh. Thus elements of H commute with elements of K.

If in addition G = HK, then G is said to be the internal direct product of H and K,
in symbols

G = H × K.

Each element of G is uniquely expressible in the form hk, (h ∈ H, k ∈ K). For if hk = h�k�

with h� ∈ H, k� ∈ K, then (h�)−1h = k�k−1 ∈ H ∩ K = 1, so that h = h� and k = k�. Notice
also the form taken by the group operation in G,

(h1k1)(h2k2) = (h1h2)(k1k2) (hi ∈ H, ki ∈ K),

since k1h2 = h2k1.
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For example, consider the Klein 4-group

V = {(1)(2)(3)(4), (12)(34), (13)(24), (14)(23)} :

here V = A × B = B × C = A × C where A = ⟨(12)(34)⟩, B = ⟨(13)(24)⟩, C = ⟨(14)(23)⟩.

The direct product conceptmay be extended to an arbitrary set of normal subgroups
{Gλ | λ ∈ Λ} of a group G where
(i) Gλ ∩ ⟨Gµ | µ ∈ Λ, µ ̸= λ⟩ = 1 for all λ ∈ Λ;
(ii) G = ⟨Gλ | λ ∈ Λ⟩.
By the argument in the case of two subgroups, elements from di�erent Gλ’s commute.
Also every element of G has a unique expression of the form g1g2 ⋅ ⋅ ⋅ gm where gi ∈ Gλi
and the λi ∈ Λ are distinct. (The reader should supply a proof). The direct product is
denoted by

G = Drλ∈ΛGλ

or, in case Λ is a �nite set {λ1, λ2, . . . , λn}, by

Gλ1 × Gλ2 × ⋅ ⋅ ⋅ × Gλn .

For additively written groups the term direct sum is used and the notation for direct
sums is

⨁
λ∈Λ

Gλ and Gλ1 ⊕ Gλ2 ⊕ ⋅ ⋅ ⋅ ⊕ Gλn .

External direct products. Up to now a direct product can only be formed from sub-
groups within a given group. We show next how to form the direct product of groups
that are not necessarily subgroups of the same group. For simplicity we deal only with
the case of a �nite set of groups {G1, G2, . . . , Gm}, but see Exercise (4.2.13) for the
in�nite case.

First we form the set product

G = G1 × G2 × ⋅ ⋅ ⋅ × Gm ,

consisting of all m-tuples (g1, g2, . . . , gm) with gi ∈ Gi. Next a binary operation on G
is de�ned by the rule

(g1, g2, . . . , gm)(g�1, g
�
2, . . . , g

�
m) = (g1g�1, g2g

�
2, . . . , gmg

�
m)

where gi , g�i ∈ Gi. With this operation G becomes a group, with identity element
(1G1 , 1G2 , . . . , 1Gm ) and inverses given by

(g1, g2, . . . , gm)−1 = (g−11 , g−12 , . . . , g−1m ).

Call G the external direct product of the Gi: it is also written

G1 × G2 × . . . × Gm .
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Although Gi is not a subgroup of G, there is an obvious subgroup of G which is
isomorphic with Gi. Let Ḡi consist of all elements of the form ḡi = (1G1 , 1G2 , . . . , g, . . . ,
1Gm ) where g ∈ Gi appears as the ith entry of ḡi. Then Gi ≃ Ḡi ≤ G, because of
the assignment gi Ü→ ḡi. Also, if x = (g1, g2, . . . , gm) is any element of G, then x =
ḡ1 ḡ2 ⋅ ⋅ ⋅ ḡm, by the product rule in G. Hence G = Ḡ1Ḡ2 ⋅ ⋅ ⋅ Ḡm. It is easy to verify that
Ḡi ⊲ G and Ḡi ∩ ⟨Ḡj | j = 1, . . . ,m, j ̸= i⟩ = 1, which shows that G is also the internal
direct product

G = Ḡ1 × Ḡ2 × ⋅ ⋅ ⋅ × Ḡm

of subgroups isomorphic with G1, G2, . . . , Gm. Thus the external direct product can
be regarded as an internal direct product.

Example (4.2.5) Let C1, C2, . . . , Ck be �nite cyclic groups of orders n1, n2, . . . , nk
where the ni are pairwise relatively prime. Form the external direct product

D = C1 × C2 × ⋅ ⋅ ⋅ × Ck .

Therefore |D| = n1n2 ⋅ ⋅ ⋅ nk = n, say. Now let Ci = ⟨xi⟩ and put x = (x1, x2, . . . , xm) ∈ D.
We claim that x generates D, so that D is a cyclic group of order n.

To prove this statement it is enough to show that an arbitrary element xu11 ⋅ ⋅ ⋅ xukk
of D is of the form xr for some r. This amounts to proving that xri = x

ui
i for each i, so

there is a solution r of the system of linear congruences r ≡ ui (mod ni), i = 1, 2, . . . , k.
This is true by the Chinese Remainder Theorem (2.3.7) since n1, n2, . . . , nk are relatively
prime.

For example, let n be a positive integer and write n = pe11 p
e2
2 ⋅ ⋅ ⋅ pekk where the pi

are distinct primes and ei > 0. Then the preceding discussion shows thatℤpe11 ×ℤpe22 ×
⋅ ⋅ ⋅ × ℤpekk is a cyclic group of order n and hence is isomorphic withℤn.

Exercises (4.2)

(1) Identify all the normal subgroups of the groups S3, Dih(8) and A4.
(2) Let H be a subgroup of a group G with index 2. Prove that H ⊲ G. Is this true if 2 is
replaced by 3?
(3) Let H ⊲ K ≤ G and L ≤ G. Show that H ∩ L ⊲ K ∩ L. Also, if L ⊲ G, prove that
HL/L ⊲ KL/L.
(4) Let H ≤ G and N ⊲ G. Prove that HN is a subgroup of G.
(5) Assume that H ≤ K ≤ G and N ⊲ G. If H ∩ N = K ∩ N and HN = KN, prove that
H = K.
(6) Show that normality is not a transitive relation in general, i.e., H ⊲ K ⊲ G need not
imply that H ⊲ G. [Hint: consider Dih(8)].
(7) If H, K, L are arbitrary groups, prove that

H × (K × L) ≃ H × K × L ≃ (H × K) × L.
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(8) Let G = H × K where H, K ≤ G. Prove that G/H ≃ K and G/K ≃ H.
(9) Let G = ⟨x⟩ be a cyclic group of order n. If d ≥ 0, prove that G/⟨xd⟩ is cyclic with
order gcd{n, d}.
(10) Prove that Z(Sn) = 1 if n ̸= 2.
(11) Prove that S�n ̸= Sn if n ̸= 1.
(12) Prove that the center of the group GLn(ℝ) of all n × n non-singular real matrices is
the subgroup of all scalar matrices.
(13) (External direct products of in�nitelymany groups). Let {Gλ , λ ∈ Λ} be a set of groups.
A restricted choice function for the set is a mapping f : Λ → ⋃λ∈Λ Gλ such that f(λ) ∈ Gλ
and f(µ) = 1Gµ for all but a �nite number of µ. Let G be the set of all restricted choice
functions and de�ne a binary operation on G by fg(λ) = f(λ)g(λ). Then G is called the
restricted external direct product Drλ∈ΛGλ of the groups Gλ.

(i) Prove that G is a group.
(ii) For λ ∈ Λ de�ne fλ : Gλ → G as follows: if x ∈ Gλ, then fλ(x) sends λ to x and

µ to 1Gµ for µ ̸= λ. Prove that Ḡλ = {fλ(x) | x ∈ Gλ} is a normal subgroup of G
and that Ḡλ ≃ Gλ.

(iii) Prove that G is the internal direct product of the subgroups Ḡλ.
(14) It is also possible to form the unrestricted external direct product of the Gλ , λ ∈ Λ.
Follow the construction in Exercise (4.2.13), but allow all choice functions f : Λ →
⋃λ∈Λ Gλ, (so the condition that f(µ) = 1Gµ for all but a �nite number of µ is omitted).
In this way obtain a group Drλ∈Λ Gλ containing Drλ∈ΛGλ as a subgroup. Prove that the
subgroups Ḡλ in Exercise (4.2.13) are normal subgroups of Drλ∈Λ Gλ, as is Drλ∈ΛGλ.

4.3 Homomorphisms

A homomorphism between two groups is a function that links the operations of the
groups. More precisely, if G and H are groups, a function α : G → H is called a
homomorphism if

α(xy) = α(x)α(y)

for all x, y ∈ G. The reader will recognize that a bijective homomorphism is what we
have been calling an isomorphism.

Example (4.3.1) We list some standard examples of homomorphisms.
(i) α : ℤ → ℤn where α(x) = [x]n. Here n is a positive integer. Allowing for the additive
notation, what is claimed here is that α(x + y) = α(x) + α(y), i.e. [x + y]n = [x]n + [yn];
this is just the de�nition of the sum of congruence classes.
(ii) The determinant function det : GLn(ℝ) → ℝ∗ in which A Ü→ det(A), is a homomor-
phism, the reason being the well known identity det(AB) = det(A)det(B).
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(iii) The sign function sign : Sn → {±1} in which π Ü→ sign(π), is a homomorphism
since sign(πσ) = sign(π) sign(σ) by (3.1.6).
(iv) The canonical homomorphism. This example provides the �rst evidence of a link
between homomorphisms and normal subgroups. Let N be a normal subgroup of a
group G and de�ne a function

α : G → G/N

by the rule α(x) = xN. Then α(xy) = α(x)α(y), i.e., (xy)N = (xN)(yN), by de�nition of
the group operation in G/N. Thus α is a homomorphism.
(v) For any pair of groups G, H there is always at least one homomorphism from G to H,
namely the trivial homomorphism in which x Ü→ 1H for all x in G. Another obvious
example is the identity homomorphism from G to G, which is the identity function on G.

Next come two very basic properties that all homomorphism possess.

(4.3.1) Let α : G → H be a homomorphism of groups. Then:
(i) α(1G) = 1H;
(ii) α(xn) = (α(x))n for all n ∈ ℤ.

Proof. Applying α to the equation 1G1G = 1G, we obtain α(1G)α(1G) = α(1G), which
on cancellation yields α(1G) = 1H .

If n > 0, an easy induction on n shows that α(xn) = (α(x))n. Next xx−1 = 1G, so that
α(x)α(x−1) = α(1G) = 1H; from this it follows that α(x−1) = (α(x))−1. Finally, if n ≥ 0,
we have α(x−n) = α((xn)−1) = (α(xn))−1 = ((α(x))n)−1 = (α(x))−n, which completes the
proof.

Image and kernel. Let α : G → H be a group homomorphism. The image of α is the
subset Im(α) = {α(x) | x ∈ G}. Another signi�cant subset associatedwith α is the kernel,
which is de�ned by

Ker(α) = {x ∈ G | α(x) = 1H}.

The fundamental properties of image and kernel appear in the following result.

(4.3.2) If α : G → H is a homomorphism of groups, the image Im(α) is a subgroup of H
and the kernel Ker(α) is a normal subgroup of G.

Proof. By (4.3.1) 1H ∈ Im(α). Let x, y ∈ G; then α(x)α(y) = α(xy) and (α(x))−1 = α(x−1).
These equations show that Im(α) is a subgroup of H.

Next, if x, y ∈ Ker(α), then α(xy) = α(x)α(y) = 1H1H = 1H , and α(x−1) = (α(x))−1 =
1−1H = 1H; thus Ker(α) is a subgroup of G. Finally, we establish the critical fact that
Ker(α) is normal in G. Let x ∈ Ker(α) and g ∈ G; then

α(gxg−1) = α(g)α(x)α(g)−1 = α(g)1Hα(g)−1 = 1H ,

so that gxg−1 ∈ Ker(α), as required.
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Example (4.3.2) Let us compute the image and kernel of some of the homomorphisms
in Example (4.3.1).
(i) det : GLn(ℝ) → ℝ∗. The kernel is SLn(ℝ), the special linear group, and the image is
ℝ∗ since each non-zero real number is the determinant of a diagonal matrix in GLn(ℝ).
(ii) sign : Sn → {±1}. The kernel is the alternating group An and the image is the group
{±1}, unless n = 1.
(iii) The kernel of the canonical homomorphism from G to G/N is, as one would expect,
the normal subgroup N. The image is G/N.

Clearly one can tell from the image of a homomorphism whether it is surjective. In
fact the kernel of a homomorphism shows whether it is injective.

(4.3.3) Let α : G → H be a group homomorphism. Then:
(i) α is surjective if and only if Im(α) = H;
(ii) α is injective if and only if Ker(α) = 1G;
(iii) α is an isomorphism if and only if Im(α) = H and Ker(α) = 1G.

Proof. Of course (i) is true by de�nition. As for (ii), if α is injective and x ∈ Ker(α),
then α(x) = 1H = α(1G), so that x = 1G by injectivity of α. Conversely, assume that
Ker(α) = 1G. If α(x) = α(y), then α(xy−1) = α(x)(α(y))−1 = 1H, which means that
xy−1 ∈ Ker(α) = 1G and x = y. Thus (ii) is proven, while (iii) follows at once from (i)
and (ii).

The Isomorphism Theorems. We come now to three fundamental results about homo-
morphisms and quotient groups which are traditionally known as the Isomorphism
Theorems.

(4.3.4) (First Isomorphism Theorem) If α : G → H is a homomorphism of groups, then
G/Ker(α) ≃ Im(α) via the mapping x Ker(α) Ü→ α(x)).

Thus the image of a homomorphism may be regarded as a quotient group: con-
versely, every quotient group is the image of the associated canonical homomorphism.
What this means is that up to isomorphism quotient groups and homomorphic images
are the same objects.

Proof of (4.3.4) Let K = Ker(α). We wish to de�ne a function θ : G/K → Im(α) by the
natural rule θ(xK) = α(x), but �rst we need to check that this makes sense. If k ∈ K,
then α(xk) = α(x)α(k) = α(x), showing that θ(xK) depends only on the coset xK and
not on the choice of x from xK. Thus θ is a well-de�ned function.

Next θ((xy)K) = α(xy) = α(x)α(y) = θ(xK)θ(yK), so θ is a homomorphism. It is
obvious that Im(θ) = Im(α). Finally, θ(xK) = 1H if and only if α(x) = 1H , i.e., x ∈ K or
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equivalently xK = K = 1G/K . Therefore Ker(θ) is the identity subgroup of G/K and θ is
an isomorphism from G/K to Im(α).

(4.3.5) (Second Isomorphism Theorem) Let G be a group with a subgroup H and a
normal subgroup N. Then HN ≤ G, H ∩ N ⊲ H and HN/N ≃ H/H ∩ N.

Proof. We begin by de�ning a function θ : H → G/N by the rule θ(h) = hN, (h ∈ H).
It is easy to check that θ is a homomorphism. Also Im(θ) = {hN | h ∈ H} = HN/N,
which is a subgroup of G/N by (4.3.2); therefore HN ≤ G. Next h ∈ Ker(θ) if and only if
hN = N, i.e., h ∈ H ∩ N. Therefore Ker(θ) = H ∩ N and H ∩ N ⊲ H by (4.3.2). Apply the
First Isomorphism Theorem to the homomorphism θ to obtain H/H ∩ N ≃ HN/N.

(4.3.6) (Third Isomorphism Theorem) Let M and N be normal subgroups of a group G
such that N ⊆ M. Then M/N ⊲ G/N and (G/N)/(M/N) ≃ G/M.

Proof. De�ne θ : G/N → G/M by the rule θ(xN) = xM; the reader should verify that
θ is a well-de�ned homomorphism. Also Im(θ) = G/M and Ker(θ) = M/N; the result
now follows via (4.3.4).

Thus a quotient group of a quotient group of G is essentially a quotient group of G,
which represents a considerable simpli�cation. Next these theorems are illustrated by
some examples.

Example (4.3.3) Let m, n be positive integers. Then, allowing for the additive notation,
we deduce from (4.3.5) that

(mℤ + nℤ)/nℤ ≃ mℤ/(mℤ ∩ nℤ).

What does this say about the integers m, n? Obviously mℤ ∩ nℤ = ℓℤ where ℓ is
the least common multiple of m and n. Next mℤ + nℤ consists of all ma + nb where
a, b ∈ ℤ. From (2.2.3) we see that this is just dℤ where d = gcd{m, n}. So the assertion
is that dℤ/nℤ ≃ mℤ/ℓℤ. Now dℤ/nℤ ≃ ℤ/( nd )ℤ via the mapping dx + nℤ Ü→ x + n

dℤ.
Similarly mℤ/ℓℤ ≃ ℤ/( ℓ

m )ℤ. Therefore ℤ/(
n
d )ℤ ≃ ℤ/( ℓ

m )ℤ. Since isomorphic groups
have the same order, it follows that nd = ℓ

m or mn = dℓ. Hence (4.3.5) implies that

gcd{m, n} ⋅ lcm{m, n} = mn,

(see also Exercise (2.2.8)).

Example (4.3.4) Consider the determinantal homomorphism det : GLn(ℝ) → ℝ∗,
which has kernel SLn(ℝ) and imageℝ∗. Then by (4.3.4)

GLn(ℝ)/SLn(ℝ) ≃ ℝ∗.
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Automorphisms. An automorphism of a group G is an isomorphism from G to itself.
Thus an automorphism of G is a permutation of the set of group elements which is also
a homomorphism. The set of all automorphisms of G,

Aut(G),

is therefore a subset of the symmetric group Sym(G). The �rst observation to make is:

(4.3.7) If G is a group, then Aut(G) is a subgroup of Sym(G).

Proof. The identity permutation is certainly an automorphism. Also, if α ∈ Aut(G),
then α−1 ∈ Aut(G) by (3.3.1). Finally, if α, β ∈ Aut(G), then αβ is certainly a permutation
of G, while αβ(xy) = α(β(x)β(y)) = αβ(x)αβ(y), which leads to αβ ∈ Aut(G), so Aut(G)
is a subgroup.

In fact Aut(G) is usually quite a small subgroup of Sym(G), as will be seen in some
of the ensuing examples.

Example (4.3.5) Let A be any additively written abelian group and de�ne α : A → A
by α(x) = −x. Then α is an automorphism since

α(x + y) = −(x + y) = −x − y = α(x) + α(y),

while α2 = 1, so α−1 = α.
Now suppose we choose A to be ℤ and let β be any automorphism of A. Thus

β(1) = n for some integer n. Notice that β is completely determined by n since β(m) =
β(m1) = mβ(1) = mn by (4.3.1)(ii). Also β(x) = 1 for some integer x since β is surjective.
Furthermore 1 = β(x) = β(x1) = xβ(1) = xn and it follows that n = ±1. Hence there
are just two possibilities for β, namely the identity and the automorphism α of the last
paragraph. Therefore |Aut(ℤ)| = 2 and Aut(ℤ) ≃ ℤ2. On the other hand, it is not hard
to show that the group Sym(ℤ) is uncountable.

Inner automorphisms. An easy way to construct automorphisms is to use a �xed ele-
ment of the group to form conjugates. If g is an element of a group G, de�ne a func-
tion τ(g) on G by the rule

τ(g)(x) = gxg−1, (x ∈ G).

Recall that gxg−1 is the conjugate of x by g. Since

τ(g)(xy) = g(xy)g−1 = (gxg−1)(gyg−1) = (τ(g)(x))(τ(g)(y)),

we see that τ(g) is a homomorphism. Now τ(g−1) is clearly the inverse of τ(g), therefore
τ(g) is an automorphism of G: it is known as the inner automorphism induced by g.
Thus we have discovered a function

τ : G → Aut(G).
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The next observation is that τ is a homomorphism, called the conjugation homo-
morphism; for

τ(gh)(x) = (gh)x(gh)−1 = g(hxh−1)g−1,

which is also the image of x under the composite τ(g)τ(h). Thus τ(gh) = τ(g)τ(h) for
all g, h ∈ G.

The image of τ is the set of all inner automorphisms of G, which is denoted by

Inn(G).

This is a subgroup of Aut(G) by (4.3.2). What can be said about Ker(τ)? An element g
belongs to Ker(τ) if and only if τ(g)(x) = x for all x in G, i.e., gxg−1 = x, or gx = xg.
Therefore the kernel of τ is exactly Z(G), the center of G, which consists of the elements
of G that commute with every element of G.

These conclusions are summed up in the following important result.

(4.3.8) Let G be a group and let τ : G → Aut(G) be the conjugation homomorphism.
Then Ker(τ) = Z(G) and Im(τ) = Inn(G). Hence Inn(G) ≃ G/Z(G).

The �nal statement follows on applying the First Isomorphism Theorem to the
homomorphism τ.

Usually a group possesses non-inner automorphisms. For example, if A is an
(additively written) abelian group, every inner automorphism is trivial since τ(g)(x) =
g + x − g = g − g + x = x. On the other hand, the assignment x Ü→ −x determines an
automorphism of A which is not trivial unless 2x = 0 for all x in A.

(4.3.9) The relation Inn(G) ⊲ Aut(G) holds for any group G.

Proof. Let α ∈ Aut(G) and g ∈ G;we claim that ατ(g)α−1 = τ(α(g)), whichwill establish
normality. For if x ∈ G, we have

τ(α(g))(x) = α(g)x(α(g))−1 = α(g)xα(g−1),

which equals
α(gα−1(x)g−1) = α(τ(g)(α−1(x))) = (ατ(g)α−1)(x),

as required.

On the basis of (4.3.9) we can form the quotient group

Out(G) = Aut(G)/ Inn(G),

which is termed the outer automorphism group of G, (although its elements are not
actually automorphisms). Thus all automorphisms of G are inner precisely when
Out(G) = 1.

A group G is said to be complete if the conjugation homomorphism τ : G → Aut(G)
is an isomorphism: this is equivalent to requiring that Z(G) = 1 and Out(G) = 1. It will
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be shown in Chapter Five that the symmetric group Sn is always complete unless n = 2
or 6.

Finally, we point out that the various groups and homomorphisms introduced
above �t neatly together in a sequence of groups and homomorphisms

1 → Z(G) ι
Ú→ G τ

Ú→ Aut(G) ν
→ Out(G) → 1.

Here ι is the inclusion map, τ is the conjugation homomorphism and ν is the canonical
homomorphism associated with the normal subgroup Inn(G). Of course 1 → Z(G)
and Out(G) → 1 are trivial homomorphisms.

The sequence above is an example of an exact sequence, whose feature is that at
each group in the interior of the sequence the image of the homomorphism on the left
equals the kernel of the homomorphism on the right. For example at Aut(G)we have
Im(τ) = Inn(G) = Ker(ν). Exact sequences play a prominent role in algebra, especially
in the theory of modules: for more on this see (9.1).

In general it is hard to determine the automorphism group of a given group. A
useful aid in the process of deciding which permutations of the group are actually
automorphisms is the following simple fact.

(4.3.10) Let G be a group, g ∈ G and α ∈ Aut(G). Then g and α(g) have the same order.

Proof. By (4.3.1) α(gm) = α(g)m. Since α is injective, it follows that α(g)m = 1 if and
only if gm = 1. Hence |g| = |α(g)|.

The automorphism group of a cyclic group. As a �rst example we consider the auto-
morphism group of a cyclic group G = ⟨x⟩. If G is in�nite, then G ≃ ℤ and we saw in
Example (4.3.5) that Aut(G) ≃ ℤ2. Assume from now on that G has �nite order m.

First of all notice that α is completely determined by α(x) since α(xi) = α(x)i. Also
|α(x)| = |x| = m by (4.3.10). Thus (4.1.7) shows that α(x) = xi where 1 ≤ i < m and i
is relatively prime to m. Consequently |Aut(G)| ≤ ϕ(m) where ϕ is Euler’s function,
since ϕ(m) is the number of such integers i.

Conversely, suppose that i is an integer satisfying 1 ≤ i < m and gcd{i,m} = 1.
Then the assignment g Ü→ gi, (g ∈ G), determines a homomorphism αi : G → G because
(g1g2)i = gi1g

i
2, the group G being abelian. Since |xi| = m, the element xi generates G

and so this homomorphism is surjective. But G is �nite, so we may conclude that αi
is also injective and thus αi ∈ Aut(G). It follows that |Aut(G)| = ϕ(m), the number of
such i’s.

It is not hard to identify the group Aut(G). Recall that ℤ∗m is the multiplicative
group of congruence classes [a]m where a is relatively prime to m. Now there is a
natural function θ : ℤ∗m → Aut(G) given by θ([i]m) = αi where αi is de�ned as above;
θ is well-de�ned since αi+ℓm = αi for all ℓ. In addition θ is a homomorphism because
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αij = αiαj, and the preceding discussion shows that it is surjective and hence bijective.
We have therefore established:

(4.3.11) Let G = ⟨x⟩ be a cyclic group of order m. Thenℤ∗m ≃ Aut(G) via the assignment
[i]m Ü→ (g Ü→ gi).

In particular this establishes:

Corollary (4.3.12) The automorphism group of a cyclic group is abelian.

The next example is more challenging.

Example (4.3.6) Show that the order of the automorphism group of the dihedral
group Dih(2p) where p is an odd prime is p(p − 1).

Recall that Dih(2p) is the symmetry group of a regular p-gon – see (3.2). First we
need a good description of the elements of G = Dih(2p). If the vertices of the p-gon are
labelled 1, 2, . . . , p, then G contains the p-cycle σ = (1 2 . . . p), which corresponds
to an anticlockwise rotation through angle 2π

p . It also contains the permutation τ =
(1)(2 p)(3 p − 1) . . . ( p+12

p+3
2 ), which represents a re�ection in the line through the

vertex 1 and the midpoint of the opposite edge.
The elements σr, σrτ, where r = 0, 1, . . . , p − 1, are all di�erent and there are 2p

of them. Since |G| = 2p, we conclude that

G = {σr , σrτ | r = 0, 1, . . . , p − 1}.

Notice that (σrτ)2 = 1 and in fact σrτ = 1 is a re�ection, while σr is a rotation of order 1
or p.

Next let α ∈ Aut(G). By (4.3.10) α(σ) has order p, and hence α(σ) = σr where
1 ≤ r < p; also α(τ) has order 2 and so it must equal σsτ where 0 ≤ s < p. Observe
that α is determined by its e�ect on σ and τ since α(σi) = α(σ)i and α(σiτ) = α(σ)iα(τ).
It follows that there are at most p(p − 1) possibilities for α and hence that |Aut(G)| ≤
p(p − 1).

To show that p(p − 1) is the order of the automorphism group we need to construct
some automorphisms. Now it is easy to see that Z(G) = 1; thus by (4.3.8) Inn(G) ≃
G/Z(G) ≃ G. Therefore | Inn(G)| = 2p, and since Inn(G) ≤ Aut(G), it follows from
Lagrange’s Theorem that p divides |Aut(G)|.

Next for 0 < r < p we de�ne an automorphism αr of G by the rules

αr(σ) = σr and αr(τ) = τ.

To verify that αr is a homomorphism one needs to check that αr(xy) = αr(x)αr(y); this
is not di�cult, but it does involve some case distinctions, depending on the form of x
and y. Now αr is clearly surjective because σr generates ⟨σ⟩; thus it is an automorphism.
Notice also that αrαs = αrs, so that [r]p Ü→ αr determines a homomorphism fromℤ∗p to
H = {αr | 1 ≤ r < p}. This mapping is surjective, while if αr = 1, then r ≡ 1 (mod p),
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i.e., [r]p = [1]p. Hence the assignment [r]p Ü→ αr determines an isomorphism fromℤ∗p
to H. Therefore H has order p − 1 and p − 1 divides |Aut(G)|. Consequently p(p − 1)
divides the order of Aut(G) and hence |Aut(G)| = p(p − 1).

Since | Inn(G)| = |G| = 2p, we see that

|Out(G)| = p(p − 1)
2p =

p − 1
2

.

Thus |Out(G)| = 1 if and only if p = 3. Since also Z(G) = 1, as a consequence Dih(2p)
is a complete group if and only if p = 3.

Semidirect products. Suppose that G is a group with a normal subgroup N and a
subgroup H such that

G = NH and N ∩ H = 1.

Then G is said to be the internal semidirect product of N and H. As a simple example,
consider the alternating group G = A4; this has a normal subgroup of order 4, namely
the Klein 4-group V, and also the subgroup H = ⟨(123)(4)⟩ of order 3. Thus V ∩ H = 1
and |VH| = |V| ⋅ |H| = 12 by (4.1.12). Hence G = VH and G is the semidirect product
of V and H.

Now let us analyze the structure of a semidirect product G = NH. In the �rst place
each element g ∈ G has a unique expression g = nh with n ∈ N and h ∈ H. For if
g = n�h� is another such expression, (n�)−1n = h�h−1 ∈ N ∩ H = 1, which shows
that n = n� and h = h�. Secondly, conjugation in N by an element h of H produces
an automorphism of N, say θ(h). Thus θ(h)(n) = hnh−1, (n ∈ N). Furthermore it is
easily veri�ed that θ(h1h2) = θ(h1)θ(h2), (hi ∈ H). Therefore θ : H → Aut(N) is a
homomorphism.

Let us see whether, on the basis of the preceding analysis, we can reconstruct the
semidirect product from the groups N and H and a given homomorphism θ : H →
Aut(N). This will be the external semidirect product. The underlying set of this group is
to be the set product N × H, so that

G = {(n, h) | n ∈ N, h ∈ H}.

A binary operation on G is de�ned by the rule

(n1, h1)(n2, h2) = (n1θ(h1)(n2), h1h2).

Themotivation for this rule is theway that products are formed in an internal semidirect
product NH, which is (n1h1)(n2h2) = n1(h1n2h−11 )h1h2. The identity element of G is
(1N , 1H) and the inverse of (n, h) is to be (θ(h−1)(n−1), h−1): the latter is motivated by
the fact that in an internal semidirect product NH inverses are formed according to the
rule (nh)−1 = h−1n−1 = (h−1n−1h)h−1. We omit the entirely routine veri�cation of the
group axioms for G.
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Next we look for subgroups of G which resemble the original groups N and H.
There are natural candidates,

N̄ = {(n, 1H) | n ∈ N} and H̄ = {(1N , h) | h ∈ H}.

It is straightforward to show that these are subgroups isomorphic with N and H respec-
tively. The group operation of G shows that

(n, 1H)(1N , h) = (nθ(1H)(1N), h) = (n, h) ∈ N̄H̄

since θ(1H) is the identity automorphism of N. It follows that G = N̄H̄, while it is
evident that N̄ ∩ H̄ = 1.

To show that G is the semidirect product of N̄ and H̄, it is only necessary to check
normality of N̄ in G. Let n, n1 ∈ N and h ∈ H. Then by de�nition

(n, h)(n1, 1H)(n, h)−1 = (n, h)(n1, 1H)(θ(h−1)(n−1), h−1)
= (nθ(h)(n1), h)(θ(h−1)(n−1), h−1)
= (nθ(h)(n1)θ(h)(θ(h−1)(n−1)), 1H)
= (nθ(h)(n1)n−1, 1H) ∈ N̄ .

In particular conjugation in N̄ by (1N , h) sends (n1, 1H) to (θ(h)(n1), 1H). Therefore
conjugation in N̄ by (1N , h) induces the automorphism θ(h) in N.

In the special case where θ is chosen to be the trivial homomorphism, elements
of N̄ and H̄ commute, so that G becomes the direct product. Thus the semidirect product
is a generalization of the direct product of two groups. Semidirect products provide an
important means of constructing new groups.

Example (4.3.7) Let N = ⟨n⟩ and H = ⟨h⟩ be cyclic groups with respective orders 3
and 4. Suppose we wish to form a semidirect product G of N and H. For this purpose
choose a homomorphism θ : H → Aut(N); there is little choice here since N has
only one non-identity automorphism, namely n Ü→ n−1. Accordingly de�ne θ(h) to be
this automorphism. The resulting group G is known as the dicyclic group of order 12.
Observe that this group is not isomorphic with A4 or Dih(12) since, unlike these groups,
G has an element of order 4.

Exercises (4.3)

(1) Let H ⊲K ≤ G and let α : G → G1 be a homomorphism. Show that α(H) ⊲ α(K) ≤ G1
where α(H) = {α(h) | h ∈ H}.
(2) If G and H are groups with relatively prime orders, show that the only homomor-
phism from G to H is the trivial one.
(3) Let G be a simple group. Show that if α : G → H is a homomorphism, either α is
trivial or H has a subgroup isomorphic with G.
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(4) Prove that Aut(V) ≃ S3 where V is the Klein 4-group.
(5) Prove that Aut(ℚ) ≃ ℚ∗ whereℚ∗ is the multiplicative group of non-zero rationals.
[Hint: an automorphism is determined by its e�ect on 1].
(6) Let G and A be groups, with A abelian written additively. Let Hom(G, A) denote the
set of all homomorphisms from G to A. De�ne a binary operation + on Hom(G, A) by
α + β(x) = α(x) + β(x), (x ∈ G). Prove that with this operation Hom(G, A) is an abelian
group. Then prove that Hom(ℤ, A) ≃ A.
(7) Let G = ⟨x⟩ have order 8. Write down all the automorphisms of G and verify that
Aut(G) ≃ V: conclude that the automorphism group of a cyclic group need not be
cyclic.
(8) If G and H are �nite groups of relatively prime orders, prove that Aut(G × H) ≃
Aut(G) × Aut(H).
(9) Use Exercise (4.3.8) to prove that ϕ(mn) = ϕ(m)ϕ(n) where ϕ is Euler’s function
andm, n are relatively prime integers. (A di�erent proof of this fact was given in (2.3.8)).
(10) An n×nmatrix is called a permutationmatrix if each row and each column contains
a single 1 and all other entries are 0. If π ∈ Sn, form an n × n permutation matrix M(π)
by de�ning M(π)ij to be 1 if π(j) = i and 0 otherwise.

(i) Prove that the assignment π Ü→ M(π) determines an injective homomorphism
from Sn to GLn(ℚ).

(ii) Deduce that the n × n permutation matrices form a group which is isomorphic
with Sn.

(iii) How can one tell from M(π) whether the permutation π is even or odd?
(11) Show that each of the groups Dih(2n) and S4 is a semidirect product of groups of
smaller orders.
(12) Use the groups ℤ3 × ℤ3 and ℤ2 to form three non-isomorphic groups of order 18
each with a normal subgroup of order 9.



5 Groups acting on sets

Until the end of the Nineteenth Century, a group was usually synonymous with a
permutation group, so that the elements acted in a natural way on a set. While group
theory has since become more abstract, it remains true that groups are at their most
useful when their elements act on a set. In this chapter we develop the basic theory of
group actions and illustrate its utility by giving applications both within group theory
and to combinatorics.

5.1 Group actions

Let G be a group and X a non-empty set. A left action of G on X is a function

α : G × X → X,

written for convenience α((g, x)) = g ⋅ x, with the following properties for all gi ∈ G
and x ∈ X:

(i) g1 ⋅ (g2 ⋅ x) = (g1g2) ⋅ x
(ii) 1G ⋅ x = x.

Here one should think of the group element g as operating or acting on a set element x
to produce the set element g ⋅ x.

There is a corresponding de�nition of a right action of G on X as a function β :
X × G → X, with β((x, g)) written x ⋅ g, such that x ⋅ 1G = x and (x ⋅ g1) ⋅ g2 = x ⋅ (g1g2)
for all x ∈ X and gi ∈ G.

For example, suppose that G is a subgroup of the symmetric group Sym(X), in
which event G is called a permutation group on X. De�ne π ⋅ x to be π(x)where π ∈ G
and x ∈ X; this is a left action of G on X. There may of course be other ways for G to act
on X, so we are dealing here with a wide generalization of a permutation group.

Permutation representations. Let G be a group and X a non-empty set. A homomor-
phism

σ : G → Sym(X)

is called a permutation representation of G on X. Thus the homomorphism σ represents
elements of the abstract group G by concrete objects, namely permutations of X. A
permutation representation provides a useful way of visualizing the elements of an
abstract group.

What is the connection between group actions andpermutation representations? In
fact the two concepts are essentially identical. To see why, suppose that a permutation
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representation σ : G → Sym(X) is given; then there is a corresponding left action of G
on X de�ned by

g ⋅ x = σ(g)(x),

where g ∈ G, x ∈ X; it is easy to check that this is an action.
Conversely, if we start with a left action of G on X, say (g, x) Ü→ g ⋅ x, there is a

corresponding permutation representation σ : G → Sym(X) de�ned by

σ(g)(x) = g ⋅ x,

where g ∈ G, x ∈ X. Again it is an easy veri�cation that the mapping σ is a homomor-
phism and hence is a permutation representation of G on X.

The foregoing discussion makes the following result clear.

(5.1.1) Let G be a group and X a non-empty set. Then there is a bijection from the set of
left actions of G on X to the set of permutation representations of G on X.

If σ is a permutation representation of a group G on a set X, then G/Ker(σ) ≃ Im(σ)
by the First Isomorphism Theorem (4.3.4). Thus G/Ker(σ) is isomorphic with a permu-
tation group on X. If Ker(σ) = 1, then G itself is isomorphic with a permutation group
on X, in which case the representation σ is said to be faithful. The term faithful can also
be applied to a group action by means of the associated permutation representation.

Next we will describe some natural ways in which a group can act on a set.
Action on a group by multiplication. A group G can act on its underlying set G by left
multiplication, that is to say,

g ⋅ x = gx,

where g, x ∈ G; this is an action since 1G ⋅ x = 1Gx = x and

g1 ⋅ (g2 ⋅ x) = g1(g2x) = (g1g2)x = (g1g2) ⋅ x.

This action is called the left regular action of G and the corresponding permutation
representation

λ : G → Sym(G),

which is given by λ(g)(x) = gx, is called the left regular representation of G. Observe
that λ(g) = 1 if and only if gx = x for all x ∈ G, i.e., g = 1. Thus Ker(λ) = 1 and λ is a
faithful permutation representation.

It follows at once that G is isomorphic with Im(λ), which is a subgroup of Sym(G).
We have therefore proved the following result, which demonstrates in a striking fashion
the signi�cance of permutation groups.

(5.1.2) (Cayley’s¹ Theorem)Anarbitrary group G is isomorphicwith a subgroupofSym(G)
via the left regular representation in which g Ü→ (x Ü→ gx) where x, g ∈ G.

1 Arthur Cayley (1821–1895)



5.1 Group actions | 81

Action on cosets. For the next example of an action take a �xed subgroup H of a
group G and letL be the set of all left cosets of H in G. A left action of G onL is de�ned
by the rule

g ⋅ (xH) = (gx)H,

where g, x ∈ G. Again it is simple to verify that this is a left action.
Now consider the corresponding permutation representation λ : G → Sym(L).

Then g ∈ Ker(λ) if and only if gxH = xH for all x in G, i.e., x−1gx ∈ H or g ∈ xHx−1. It
follows that

Ker(λ) = ⋂
x∈G

xHx−1.

Thus we have:

(5.1.3) The kernel of the permutation representation of G on the set of left cosets of H by
left multiplication is

⋂
x∈G

xHx−1,

which is the largest normal subgroup of G contained in H.

For the �nal statement in (5.1.3), note that the intersection is normal in G. Also,
if N ⊲ G and N ≤ H, then N ≤ xHx−1 for all x ∈ G. The normal subgroup⋂x∈G xHx−1 is
called the normal core of H in G.

Here is an application of the action on left cosets.

(5.1.4) Suppose that H is a subgroup of a �nite group G such that |G : H| equals the
smallest prime dividing |G|. Then H ⊲ G. In particular, a subgroup of index 2 is always
normal.

Proof. Let |G : H| = p and let K be the kernel of the permutation representation of G
arising from the left action of G on the set of left cosets of H. Then K ≤ H < G and
p = |G : H| divides |G : K| by (4.1.3). Now G/K is isomorphic with a subgroup of the
symmetric group Sp, so |G : K| divides |Sp| = p! by (4.1.1). But |G : K| divides |G| and
thus cannot be divisible by a smaller prime than p. Therefore |G : K| = p = |G : H| and
H = K ⊲ G.

Action by conjugation. Another natural way in which a group G can act on its under-
lying set is by conjugation. De�ne

g ⋅ x = gxg−1,

where g, x ∈ G; by a simple check this is a left action. Again we ask about the kernel of
the action. An element g belongs to the kernel if and only if gxg−1 = x, i.e., gx = xg,
for all x ∈ G: this is the condition for g to belong to Z(G), the center of G. It follows that
Z(G) is the kernel of the conjugation representation.
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A group G can also act on its set of subgroups by conjugation; thus if H ≤ G, de�ne

g ⋅ H = gHg−1 = {ghg−1 | h ∈ H}.

In this case the kernel consists of all group elements g such that gHg−1 = H for all
H ≤ G. This normal subgroup is called the norm of G; clearly it contains the center Z(G).

Exercises (5.1)

(1) Complete the proof of (5.1.1).
(2) Let (x, g) Ü→ x ⋅ g be a right action of a group G on a set X. De�ne ρ : G → Sym(X)
by ρ(g)(x) = x ⋅ g−1. Prove that ρ is a permutation representation of G on X. Why is the
inverse necessary here?
(3) Establish a bijection between the set of right actions of a group G on a set X and the
set of permutation representations of G on X.
(4) A right action of a group G on its underlying set is de�ned by x ⋅ g = xg. Verify that
this is an action and describe the corresponding permutation representation of G, (it is
called the right regular representation of G).
(5) Prove that a permutation representation of a simple group is either faithful or trivial.
(6) The left regular representation of a �nite group is surjective if and only if the group
has order 1 or 2.
(7) De�ne a “natural” right action of a group G on the set of right cosets of a subgroup H
and then identify the kernel of the associated representation.
(8) Show that up to isomorphism the number of groups of order n is at most (n!)[log2 n].
[Hint: a group of order n can be generated by [log2 n] elements by Exercise (4.1.10).
Now apply (5.1.2)].

5.2 Orbits and stabilizers

In this section we proceed to develop the theory of group actions, introducing the
fundamental concepts of orbit and stabilizer.

Let G be a group and X a non-empty set, and suppose that a left action of G on X
is given. A binary relation ∼

G
on X is de�ned by the rule:

a ∼
G
b if and only if g ⋅ a = b

for some g ∈ G. A simple veri�cation shows that ∼
G
is an equivalence relation on the

set X. The ∼
G
-equivalence class containing a is evidently

G ⋅ a = {g ⋅ a | g ∈ G},
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which is called the G-orbit of a. Thus X is the union of the distinct G-orbits and distinct
G-orbits are disjoint: these statements follow from general facts about equivalence
relations – see (1.2.2).

If X is the only G-orbit, the action of G on X – and the corresponding permutation
representation of G – is called transitive. Thus the action of G is transitive if for each
pair of elements a, b of X, there exists a g in G such that g ⋅ a = b. For example, the
left regular representation is transitive, as is the left action of a group on the set of left
cosets of a subgroup.

Another important notion is that of a stabilizer. The stabilizer in G of an element
a ∈ X is de�ned to be

StG(x) = {g ∈ G | g ⋅ x = x}.

It is easy to verify that StG(a) is a subgroup of G. If StG(a) = 1 for all a ∈ X, the action
is called semiregular. An action which is both transitive and semiregular is termed
regular.

We illustrate these concepts by examining the group actions introduced in (5.1).

Example (5.2.1) Let G be any group.
(i) The left regular action of G is regular. Indeed (yx−1)x = y for any x, y ∈ G, so it is

transitive, while gx = x implies that g = 1 and regularity follows.
(ii) In the conjugation action of G on its underlying set the stabilizer of x consists of

all g in G such that gxg−1 = x, i.e., gx = xg. This subgroup is called the centralizer
of x in G: it is denoted by

CG(x) = {g ∈ G | gx = xg}.

(iii) In the conjugation action of G on its underlying set the G-orbit of x is {gxg−1 | g ∈
G}, i.e., the set of all conjugates of x in G. This is called the conjugacy class of x.
The number of conjugacy classes in a �nite group is called the class number.

(iv) In the action of G by conjugation on its set of subgroups, the G-orbit of H ≤ G is
just the set of all conjugates of H in G, i.e., {gHg−1 | g ∈ G}. The stabilizer of H in G
is an important subgroup termed the normalizer of H in G,

NG(H) = {g ∈ G | gHg−1 = H}.

Centralizers and normalizers feature throughout group theory.

Next we will prove two basic theorems on group actions. The �rst one counts the
number of elements in an orbit.

(5.2.1) Let G be a group acting on a set X on the left and let x ∈ X. Then the assignment
g StG(x) Ü→ g ⋅ x determines a bijection from the set of left cosets of StG(x) in G to the
orbit G ⋅ x. Hence |G ⋅ x| = |G : StG(x)|.
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Proof. In the �rst place the assignment g StG(x) Ü→ g ⋅ x determines a well-de�ned
function. For if s ∈ StG(x), then gs ⋅ x = g ⋅ (s ⋅ x) = g ⋅ x. Next g1 ⋅ x = g2 ⋅ x implies
that (g−12 g1) ⋅ x = x, so g−12 g1 ∈ StG(x), i.e., g1 StG(x) = g2 StG(x). Hence the function is
injective, while it is obviously surjective.

Corollary (5.2.2) Let G be a �nite group acting on a �nite set X. If the action is transitive,
|X| divides |G|. If the action is regular, |X| = |G|.

Proof. If the action is transitive, X is the only G-orbit, so |X| = |G : StG(x)| for any x ∈ X
by (5.2.1); hence |X| divides |G|. If the action is regular, then in addition StG(x) = 1 and
thus |X| = |G|.

The corollary tells us that if G is a transitive permutation group of degree n, i.e.,
acting on a set with elements, then n divides |G|, while |G| = n if G is regular.

The second main theorem on actions counts the number of orbits and has many
applications. If a group G acts on a set X on the left and g ∈ G, the �xed point set of g is
de�ned to be

Fix(g) = {x ∈ X | g ⋅ x = x}.

(5.2.3) (The Frobenius-Burnside Theorem)² Let G be a �nite group acting on a �nite
set X (on the left). Then the number of G-orbits in X equals

1
|G| ∑

g∈G
| Fix(g)|,

i.e., the average number of �xed points of elements of G.

Proof. Consider how often an element x of X is counted in the sum ∑g∈G | Fix(g)|.
This happens once for each g in StG(x). Thus by (5.2.1) the element x contributes
| StG(x)| = |G|/|G ⋅ x| to the sum. The same is true of each element of the orbit |G ⋅ x|,
so that the total contribution of this orbit to the sum is (|G|/|G ⋅ x|) ⋅ |G ⋅ x| = |G|. It
follows that ∑g∈G | Fix(g)|must equal |G| times the number of orbits, so the result is
proven.

We illustrate the Frobenius-Burnside Theorem with a simple example.

Example (5.2.2) The group

G = {(1)(2)(3)(4), (12)(3)(4), (1)(2)(34), (12)(34)}

acts on the set X = {1, 2, 3, 4} in the natural way, as a permutation group. There are
two G-orbits, namely {1, 2} and {3, 4}. Count the �xed points of the elements of G by

2 Ferdinand Georg Frobenius (1849–1917), William Burnside (1852–1927)
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looking for 1-cycles. Thus the four elements of the group have respective numbers of
�xed points 4, 2, 2, 0. Therefore the number of G-orbits should be

1
|G| (∑g∈G

| Fix(g)|) =
1
4
(4 + 2 + 2 + 0) = 2,

which is the correct answer.

Example (5.2.3) Show that the average number of �xed points of elements of Sn is 1.
The symmetric group Sn acts on the set {1, 2, . . . , n} in the natural way and the

action is clearly transitive. By (5.2.3) the average number of �xed points equals the
number of Sn-orbits, which is 1 by transitivity of the action.

Exercises (5.2)

(1) If g is an element of a �nite group G, show that the number of conjugates of g divides
|G : ⟨g⟩|.
(2) If H is a subgroup of a �nite group G, show that the number of conjugates of H
divides |G : H|.
(3) Let G = ⟨(1 2 . . . p), (1)(2 p)(3 p − 1) ⋅ ⋅ ⋅ ⟩ be the dihedral group Dih(2p) where p is
an odd prime. Check the validity of (5.2.3) for the group G acting on the set {1, 2, . . . , p}
as a permutation group.
(4) Let G be a �nite group acting as a �nite set X. If the action is semiregular, prove that
|G| divides |X|.
(5) Prove that the class number of a �nite group G is given by the formula

1
|G| (∑x∈G

|CG(x)|).

(6) Prove that the class number of a direct product H ×K equals the product of the class
numbers of H and K.
(7) Let G be a �nite group acting transitively on a �nite set X where |X| > 1. Prove that
G contains at least |X| − 1 �xed-point-free elements, i.e., elements g such that Fix(g) is
empty.
(8) Let H be a proper subgroup of a �nite group G. Prove that G ̸= ⋃x∈G xHx−1. [Hint:
consider the action of G on the set of left cosets of H by multiplication. The action is
transitive, so Exercise (5.2.7) may be applied].
(9) Let X be a subset of a group G. De�ne the centralizer CG(X) of X in G to be the set of
elements of G that commute with every element of X. Prove that CG(X) is a subgroup
and then show that CG(CG(CG(X))) = CG(X).
(10) Let G be a �nite groupwith class number h. An element is chosen at random from G
and replaced. Then another group element is chosen. Prove that the probability of the
two elements commuting is h

|G| . What would the answer be if the �rst group element
were not replaced? [Hint: use Exercise (5.2.5)].
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5.3 Applications to the structure of groups

The aim of this section is to demonstrate that group actions can be a highly e�ective tool
for investigating the structure of groups. The �rst result provides important arithmetic
information about the conjugacy classes of a �nite group.

(5.3.1) Let G be a �nite group with distinct conjugacy classes C1, C2, . . . , Ch. Then
(i) |Ci| = |G : CG(xi)| for any xi in Ci; thus |Ci| divides |G|.
(ii) |G| = |C1| + |C2| + ⋅ ⋅ ⋅ + |Ch|, (the Class Equation).

Here (i) follows on applying (5.2.1) to the conjugation action of G on its underlying
set. For in this action the G-orbit of x is its conjugacy class, while the stabilizer of x is
the centralizer CG(x); thus |G ⋅ x| = |G : StG(x)| = |G : CG(x)|. Finally, (ii) holds because
the Ci are disjoint.

There are other ways to express the class equation. Choose any xi ∈ Ci and put
ni = |CG(xi)|. Then |Ci| = |G|/ni. On division by |G|, the class equation becomes

1
n1

+
1
n2

+ ⋅ ⋅ ⋅ +
1
nh

= 1,

an interesting diophantine equation for the orders of the centralizers.
It is an easy observation that a one-element set {x} is a conjugacy class of G if and

only if x is its only conjugate in G, i.e., x belongs to the center of the group G. Now
suppose we order the conjugacy classes in such a way that |Ci| = 1 for i = 1, 2, . . . , r
and |Ci| > 1 if r < i ≤ h. With this notation the class equation takes the form:

(5.3.2) |G| = |Z(G)| + |Cr+1| + ⋅ ⋅ ⋅ + Ch|.

A natural question is: what are the conjugacy classes of the symmetric group Sn?
First note that any two r-cycles in Sn are conjugate. For

π(i1i2 ⋅ ⋅ ⋅ ir)π−1 = (j1j2 ⋅ ⋅ ⋅ jr)

where π is any permutation in Sn such that π(i1) = j1, π(i2) = j2, . . . , π(ir) = jr. From
this remark and (3.1.3) it follows that any two permutations which have the same cycle
type are conjugate in Sn. Here “cycle type” refers to the numbers of 1-cycles, 2-cycles,
etc. which are present in the disjoint cycle decomposition. Conversely, it is easy to see
that conjugate permutations have the same cycle type. Thus we have the answer to our
question.

(5.3.3) The conjugacy classes of the symmetric group Sn are the sets of permutations
with the same cycle type.

It follows that the class number of Sn is the number of di�erent cycle types, which
equals

λ(n),
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the number of partitions of n, i.e., the number of ways of writing the positive integer n
as a sum of positive integers when order of summands is not signi�cant. This is a
well-known number theoretic function which has been studied intensively.

Example (5.3.1) The symmetric group S6 has 11 conjugacy classes. For λ(6) = 11, as
is seen by writing out the partitions of 11.

As a deeper application of our knowledge of the conjugacy classes of Sn we will
prove next:

(5.3.4) The symmetric group Sn has no non-inner automorphisms if n ̸= 6.

Proof. Since S2 has only the trivial automorphism, we can assume that n > 2 as well as
n ̸= 6. First a general remark: in any group G the automorphism group Aut(G) permutes
the conjugacy classes of G. Indeed, if α ∈ Aut(G), then α(xgx−1) = α(x)α(g)(α(x))−1,
so α maps the conjugacy class of g to that of α(g).

Now let C1 denote the conjugacy class consisting of all the 2-cycles in Sn. If π is
a 2-cycle, α(π) also has order 2 and so is a product of, say, k disjoint 2-cycles. Hence
α(C1) = Ck where Ck is the conjugacy class of all (disjoint) products of k 2-cycles. The
�rst step in the proof is to show by a counting argument that k = 1, i.e., αmaps 2-cycles
to 2-cycles. Assume to the contrary that k ≥ 2.

Clearly |C1| = (n2), and more generally

|Ck| = (
n
2k)

(2k)!
(2!)kk!

.

For, in order to form a product of k disjoint 2-cycles, �rst choose the 2k integers from
1, 2, . . . , n in ( n2k) ways. Then divide these 2k elements into k pairs, with order of
pairs unimportant; this can be done in (2k)!

(2!)kk! ways. Forming the product, we obtain
the formula for |Ck|.

Since α(C1) = Ck, it must be the case that |C1| = |Ck| and hence

(
n
2)

= (
n
2k)

(2k)!
(2!)kk!

.

After cancellation this becomes

(n − 2)(n − 3) ⋅ ⋅ ⋅ (n − 2k + 1) = 2k−1(k!).

This is impossible if k = 2, while if k = 3 it can only hold if n = 6, which is forbidden.
Therefore k > 3. Clearly n ≥ 2k, so (n − 2)(n − 3) ⋅ ⋅ ⋅ (n − 2k + 1) ≥ (2k − 2)!. This leads
to (2k − 2)! ≤ 2k−1(k!), which implies that k = 3, a contradiction.

The argument so far has established that k = 1 and α(C1) = C1. Write

α((ab)) = (b�b��) and α((ac)) = (c�c��).
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Since (ac)(ab) = (abc), which has order 3, also α((ac)(ab)) = (c�c��)(b�b��) has order 3.
Therefore b�, b��, c�, c�� cannot all be di�erent and we can write

α((ab)) = (a�b�) and α((ac)) = (a�c�).

Next suppose there is a d such that α((ad)) = (b�c�) with a� ̸= b�, c�. Then

(ac)(ad)(ab) = (abdc),

an element of order 4, whereas its image (a�c�)(b�c�)(a�b�) = (a�)(b�c�) has order 2,
another contradiction.

This argument shows that for each a there is a unique a� such that α((ab)) = (a�b�)
for all b and some b�. Therefore α determines a permutation π ∈ Sn such that π(a) = a�.
Thus α((ab)) = (a�b�) = (π(a) π(b)), which equals the conjugate π(ab)π−1 because the
latter interchanges a� and b� and �xes all other integers. Since Sn is generated by 2-
cycles by (3.1.4), it follows that α is conjugation by π, so it is an inner automorphism.

Recall that a group is complete if the conjugationhomomorphism τ : G → Aut(G) is
an isomorphism, i.e., Ker(τ) = Z(G) = 1 and Aut(G) = Inn(G) by (4.3.8). Now Z(Sn) = 1
if n ̸= 2 – see Exercise (4.2.10). Hence we obtain:

Corollary (5.3.5) The symmetric group Sn is complete if n ̸= 2 or 6.

Of course, S2 is not complete since it is abelian. It is known that the group S6 has
a non-inner automorphism, so it too is not complete.

Finite p-groups. If p is a prime number, a �nite group is called a p-group if its order
is a power of p. Finite p-groups form an important and highly complex class of �nite
groups. A �rst indication that these groups have special features is provided by the
following result.

(5.3.6) If G is a non-trivial �nite p-group, then Z(G) ̸= 1.

Proof. Consider the class equation of G in the form

|G| = |Z(G)| + |Cr+1| + ⋅ ⋅ ⋅ + |Ch|,

– see (5.3.1) and (5.3.2). Here |Ci| divides |G| and hence is a power of p; also |Ci| > 1. If
Z(G) = 1, then it would follow that |G| ≡ 1 (mod p), which is impossible because |G|
is a power of p. Therefore Z(G) ̸= 1.

This behavior is in contrast to �nite groups in general, which can easily have trivial
center: for example, Z(S3) = 1.

Corollary (5.3.7) If p is a prime, every group of order p2 is abelian.
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Proof. Let G be a group of order p2. Then |Z(G)| = p or p2 by (5.3.6) and (4.1.1). If
|Z(G)| = p2, then G = Z(G) is abelian. Thus we can assume that |Z(G)| = p, so that
|G/Z(G)| = p. By (4.1.4) both G/Z(G) and Z(G) are cyclic, say G/Z(G) = ⟨aZ(G)⟩ and
Z(G) = ⟨b⟩. It follows that each element of G has the form aibj where i, j are integers.
However,

(aibj)(ai�bj� ) = ai+i�bj+j� = (ai�bj� )(aibj)

since b ∈ Z(G), which shows that G is abelian and Z(G) = G, a contradiction.

On the other hand, there are non-abelian groups of order 23 = 8, for example
Dih(8), so (5.3.7) does not generalize to groups of order p3.

Sylow’s³ Theorem. Group actions will now be used to give a proof of Sylow’s Theorem,
which is probably the most celebrated and frequently used result in elementary group
theory.

Let G be a �nite group and p a prime, and write |G| = pam where p does not divide
the integer m. Thus pa is the highest power of p dividing |G|. Lagrange’s Theorem
guarantees that the order of a p-subgroup of G is at most pa. That p-subgroups of this
order actually occur is the �rst part of Sylow’s Theorem. A subgroup of G with the
order pa is called a Sylow p-subgroup.

(5.3.8) (Sylow’s Theorem) Let G be a �nite group and let pa denote largest power of the
prime p that divides |G|. Then the following are true.
(i) Every p-subgroup of G is contained in some subgroup of order pa: in particular, Sylow

p-subgroups exist.
(ii) If np is the number of Sylow p-subgroups, np ≡ 1 (mod p).
(iii) Any two Sylow p-subgroups are conjugate in G.

Proof. Write |G| = pam where p does not divide the integer m. Three group actions
will be used during the course of the proof.
(a) Let S be the set of all subsets of G with exactly pa elements. Then S has s elements
where

s = (
pam
pa ) =

m(pam − 1) ⋅ ⋅ ⋅ (pam − pa + 1)
1 ⋅ 2 ⋅ ⋅ ⋅ (pa − 1)

.

First we prove that p does not divide s. To this end consider the rational number p
am−i
i

where 1 ≤ i < pa. If pj | i, then j < a and hence pj | pam − i. On the other hand, if
pj | pam − i, then j < a since otherwise pa | i. Therefore pj | i. It follows that the
integers pam − i and i involve the same highest power of p, which can of course be
cancelled in the fraction pam−i

i ; thus no p’s occur in this rational number. It follows
that p does not divide s, as claimed.

3 Peter Ludwig Mejdell Sylow (1832–1918)



90 | 5 Groups acting on sets

Now we introduce the �rst group action. The group G acts on the set S via left
multiplication, i.e., g ⋅ X = gX where X ⊆ G and |X| = pa. Thus S splits up into disjoint
G-orbits. Since |S| = s is not divisible by p, there must be at least one G-orbit S1 such
that |S1| is not divisible by p. Choose X ∈ S1 and put P = StG(X), which is, of course,
a subgroup. Then |G : P| = |S1|, from which it follows that p does not divide |G : P|.
However pa divides |G| = |G : P| ⋅ |P|, which implies that pa divides |P|.

Now �x x in X; then the number of elements gx with g ∈ P equals |P|. Also gx ∈ X;
hence |P| ≤ |X| = pa and consequently |P| = pa. Therefore P is a Sylow p-subgroup
of G and we have shown that Sylow p-subgroups exist.
(b) Let T denote the set of all conjugates of the Sylow p-subgroup P constructed in (a).
We argue next that |T| ≡ 1 (mod p).

The group P acts on the set T by conjugation, i.e., g ⋅ Q = gQg−1 where g ∈ P and
Q ∈ T; clearly |gQg−1| = |Q| = |P| = pa. In this action {P} is a P-orbit since gPg−1 = P
if g ∈ P. Suppose that {P1} is another one-element P-orbit. Then P1 ⊲ ⟨P, P1⟩; for
xP1x−1 = P1 if x ∈ P ∪ P1, so N⟨P,P1⟩(P1) = ⟨P, P1⟩. By (4.3.5) PP1 is a subgroup and its
order is

|PP1| =
|P| ⋅ |P1|
|P ∩ P1|

,

which is certainly a power of p. But P ⊆ PP1 and P already has the maximum order
allowed for a p-subgroup. Therefore P = PP1, so P1 ⊆ P and hence P1 = P since
|P1| = |P|.

Consequently there is only one P-orbit of T with a single element. Every other
P-orbit has order a power of p greater than 1. Therefore |T| ≡ 1 (mod p).
(c) Finally, let P2 be an arbitrary p-subgroup of G. We aim to show that P2 is contained
in some conjugate of the Sylow p-subgroup P in (a); this will complete the proof of
Sylow’s Theorem.

Let P2 act on T by conjugation, where as before T is the set of all conjugates of P.
Assume that P2 is not contained in any member of T. If {P3} is a one-element P2-
orbit of T, then, arguing as in (b), we see that P2P3 is a p-subgroup containing P3, so
P3 = P2P3 because |P3| = pa. Thus P2 ⊆ P3 ∈ T, contrary to assumption. It follows
that there are no one-element P2-orbits in T; this means that |T| ≡ 0 (mod p), which
contradicts the conclusion of (b).

An important special case of Sylow’s Theorem is:

(5.3.9) (Cauchy’s Theorem) If the order of a �nite group G is divisible by a prime p,
then G has an element of order p.

Proof. Let P be a Sylow p-subgroup of G. Then P ̸= 1 since p divides |G|. Choose
1 ̸= g ∈ P; then |g| divides |P|, and hence |g| = pm wherem > 0. Thus gpm−1 has order p,
as required.

While Sylow’s Theorem does not tell us the exact number of Sylow p-subgroups,
it provides valuable information which may be su�cient to determine how many
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there are. Let us review what is known. Suppose P is a Sylow p-subgroup of a �nite
group G. Then, since every Sylow p-subgroup is a conjugate of P, the number of Sylow
p-subgroups of G equals the number of conjugates of P, which by (5.2.1) is

np = |G : NG(P)|,

where NG(P) is the normalizer of P in G – see (5.2). Hence np divides |G : P| since
P ≤ NG(P). Also of course

np ≡ 1 (mod p).

Example (5.3.2) Find the numbers of Sylow p-subgroups of the alternating group A5.
Let G = A5. We can assume that p divides |G|, so that p = 2, 3 or 5. Note that a

non-trivial element of G has one of three cycle types,

(∗∗)(∗∗)(∗), (∗ ∗ ∗)(∗)(∗), (∗ ∗ ∗ ∗ ∗)

If p = 2, then n2 | 60
4 = 15 and n2 ≡ 1 (mod 2), so n2 = 1, 3, 5 or 15. There are

5×3 = 15 elements of order 2 in G, with three of them in each Sylow 2-subgroup. Hence
n2 ≥ 5. If n2 = 15, then P = NG(P)where P is a Sylow 2-subgroup, since P ≤ NG(P) ≤ G
and |G : NG(P)| = 15 = |G : P|. But this is wrong since P is normalized by a 3-cycle –
note that the Klein 4-group is normal in A4. Consequently n2 = 5.

Next n3 | 60
3 = 20and n3 ≡ 1 (mod 3). Thus n3 = 1, 4 or 10.NowG has (53)×2 = 20

elements of order 3, which shows that n3 > 4. Hence n3 = 10. Finally, n5 | 12 and
n5 ≡ 1 (mod 5), so n5 = 6 since n5 = 1 would give only four elements of order 5.

The next result provides some very important information about the group A5.

(5.3.10) The alternating group A5 is simple.

Proof. Let G = A5 and suppose N is a proper non-trivial normal subgroup of G. The
possible orders of elements of G are 1, 2, 3, or 5, (note that 4-cycles are odd). If N
contains an element of order 3, it contains a Sylow 3-subgroup of G, and by normality
it contains all such. Hence N contains all 3-cycles. Now the easily veri�ed equations
(ab)(ac) = (acb) and (ac)(bd) = (abc)(abd), together with the fact that every permu-
tation in G is a product of an even number of transpositions, shows that G is generated
by 3-cycles. Therefore N = G, which is a contradiction.

Next suppose N has an element of order 5; then N contains a Sylow 5-subgroup
and hence all 5-cycles. But (12345)(12543) = (132), which gives the contradiction
that N contains a 3-cycle.

The argument thus far tells us that each element of N has order a power of 2, which
implies that |N| is a power of 2 by Cauchy’s Theorem. Since |N| divides |G| = 60, this
order must be 2 or 4. We leave it to the reader to disprove these possibilities. This �nal
contradiction shows that G is a simple group.
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More generally, An is simple for all n ≥ 5: this is proved in (10.1.7) below. We
will see in Chapter Twelve that the simplicity of A5 is intimately connected with the
insolvability of polynomial equations of degree 5 by radicals.

Example (5.3.3) Find all groups of order 21.
Let G be a group of order 21. Then G contains elements a and bwith orders 7 and 3

respectively by (5.3.9). Now the order of ⟨a⟩∩⟨b⟩ divides both 7 and 3, i.e., ⟨a⟩∩⟨b⟩ = 1,
and thus |⟨a⟩⟨b⟩| = |a| ⋅ |b| = 21, which means that G = ⟨a⟩⟨b⟩. Next ⟨a⟩ is a Sylow
7-subgroup of G, and n7 ≡ 1 (mod 7) and n7 | 3. Hence n7 = 1, so that ⟨a⟩ ⊲ G and
bab−1 = ai where 1 ≤ i < 7. If i = 1, then G is abelian and |ab| = 21. In this case
G = ⟨ab⟩ ≃ ℤ21.

Next assume i ̸= 1. Now b3 = 1 and bab−1 = ai, with 2 ≤ i < 7, imply that
a = b3ab−3 = ai3 . Hence 7 | i3 −1, which shows that i = 2 or 4. Now [2]7 = [4]−17 since
8 ≡ 1 (mod 7). Since we can replace b by b−1 if necessary, there is nothing to be lost
in assuming that i = 2.

Thus far we have discovered that G = {aubv | 0 ≤ u < 7, 0 ≤ v < 3} and that the
relations a7 = 1 = b3, bab−1 = a2 hold. But is there really such a group? An example
is easily found by using permutations. Put π = (1234567) and σ = (235)(476): thus
⟨π, σ⟩ is a subgroup of S7. One quickly veri�es that π7 = 1 = σ3 and σπσ−1 = π2. A brief
computation reveals that the assignments a Ü→ π, b Ü→ σ determine an isomorphism
from G to the group ⟨π, σ⟩. It follows that that up to isomorphism there are exactly two
groups of order 21.

Example (5.3.4) Show that there are no simple groups of order 300.
Suppose that G is a simple group of order 300. Since 300 = 22 ⋅ 3 ⋅ 52, a Sylow

5-subgroup P has order 25. Now n5 ≡ 1 (mod 5) and n5 divides 300/25 = 12. Thus
n5 = 1 or 6. But n5 = 1 implies that P ⊲ G, which is impossible. Hence n5 = 6 and
|G : NG(P)| = 6. The left action of G on the set of left cosets of NG(P) (see (5.1)) leads to
a homomorphism θ from G to S6. Also Ker(θ) = 1 since G is simple. Thus θ is injective
and G ≃ Im(θ) ≤ S6. However, |G| = 300, which does not divide |S6| = 6!, so we have a
contradiction.

Exercises (5.3)

(1) A �nite p-group cannot be simple unless its order is p.
(2) Let G be a group of order pq where p and q are primes such that p ̸≡ 1 (mod q) and
q ̸≡ 1 (mod p). Prove that G is cyclic.
(3) Show that if p is a prime, a group of order p2 is isomorphic with Zp2 or Zp × Zp.
(4) Let P be a Sylow p-subgroup of a �nite group G and let N ⊲ G. Prove that P ∩ N and
PN/N are Sylow p-subgroups of N and G/N respectively.
(5) Show that there are no simple groups of orders 312.
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(6) Let G be a �nite simple group which has a subgroup of index n. Prove that G is
isomorphic with a subgroup of Sn.
(7) Prove that there are no simple groups of order 1960. [Hint: assume there is one and
�nd n7; then apply Exercise (5.3.6)].
(8) Prove that there are no simple groups of order 616. [Hint: assume there is one. Show
that for this group one must have n11 = 56 and n7 ≥ 8; then count the elements of
orders 7 and 11].
(9) Prove that every group of order 561 is cyclic. [Hint: show that there is a cyclic
normal subgroup ⟨x⟩ of order 11 × 17 = 187; then use the fact that 3 does not divide
|Aut(⟨x⟩)|].
(10) Let G be a group of order 2m where m is odd. Prove that G has a normal subgroup
of order m. [Hint: let λ be the left regular representation of G. By (5.3.9) there is an
element g of order 2 in G. Now argue that λ(g)must be an odd permutation].
(11) Find all �nite groups with class number at most 2.
(12) Show that every group of order 10 is isomorphic withℤ10 or Dih(10). [Follow the
method of Example (5.3.3)].
(13) Show that up to isomorphism there are two groups of order 55.
(14) If H is a proper subgroup of a �nite p-group G, prove that H < NG(H). [Hint: use
induction on |G| > 1, noting that H ⊲ HZ(G)].
(15) Let P be a Sylow p-subgroup of a �nite group G and let H be a subgroup of G
containing NG(P). Prove that H = NG(H). [Hint: if g ∈ NG(H), then P and gPg−1 are
conjugate in H].
(16) Let G be a �nite group and suppose it is possible to choose one element from each
conjugacy class in such a way that all the selected elements commute. Prove that G is
abelian. [Hint: use (5.3.2)].

5.4 Applications to combinatorics

Group actions can be used e�ectively to solve certain types of counting problem. As
an example of such a problem, suppose we wish to color the six faces of a cube and
�ve colors are available. How many di�erent coloring schemes are there? At �rst sight
one might answer 56 since each of the six faces can be colored in �ve di�erent ways.
However, this answer is not correct since by merely rotating the cube it is possible to
pass from one coloring scheme to another. Clearly two such coloring schemes are not
really di�erent. Thus not all of the 56 colorings schemes are distinct.

Let us pursue further the idea of rotating the cube. The group of rotations of the
cube acts on the set of all possible coloring schemes. If two colorings belong to the
same orbit, they should be considered identical since one arises from the other by a
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suitable rotation. What we really need to do is count the number of orbits of colorings
and for this purpose the Frobenius-Burnside Theorem (5.2.3) is ideally suited.

Labelling problems. Our problem is really about the labelling of sets. Let X and L be
two non-empty sets, with L referred to as the set of labels. Suppose that a label is to be
assigned to each element of the set X, so that we need to specify a function

α : X → L :

call such a function α a labelling of X by L. Thus the set of all such labellings of X by L
is

Fun(X, L).

Now suppose that G is a group acting on the set X (on the left). Then G can be
made to act on the set of labellings in a natural way by the rule

(g ⋅ α)(x) = α(g−1 ⋅ x),

where g ∈ G, x ∈ X and α ∈ Fun(X, L). What this equation asserts is that the labelling
g ⋅ α assigns to the set element g ⋅ x the same label as α assigns to x. The example of
the cube should convince the reader that this is the correct action.

Firstwe verify that this really is an action ofG onFun(X, L). To do this let g1, g2 ∈ G,
x ∈ X and α ∈ Fun(X, L); then

(g1 ⋅ (g2 ⋅ α))(x) = (g2 ⋅ α)(g−11 ⋅ x) = α(g−12 ⋅ (g−11 ⋅ x))
= α((g1g2)−1 ⋅ x)
= ((g1g2) ⋅ α)(x).

Hence g1 ⋅ (g2 ⋅ α) = (g1g2) ⋅ α. Also 1G ⋅ α(x) = α(1G ⋅ x) = α(x), so that 1G ⋅ α = α.
Therefore we have an action of G on Fun(X, L).

Our goal is to count the G-orbits in Fun(X, L), which is achieved in the following
fundamental result.

(5.4.1) (Polya⁴) Let G be a �nite group acting on a �nite set X, and let L be a �nite set of
labels. Then the number of G-orbits of labellings of X by L is

1
|G| (∑g∈G

ℓm(g))

where ℓ = |L| and m(g) is the number of disjoint cycles in the permutation of X corre-
sponding to g.

4 George Polya (1887–1985)
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Proof. By (5.2.3) the number of G-orbits of labellings is

1
|G| (∑g∈G

| Fix(g)|)

where Fix(g) is the set of labellings �xed by g. We have to count these labellings. Now
α ∈ Fix(g) if and only if g ⋅ α(x) = α(x), i.e., α(g−1 ⋅ x) = α(x) for all x ∈ X. This
equation asserts that α is constant on the ⟨g⟩-orbit ⟨g⟩ ⋅ x. Now the ⟨g⟩-orbits arise
from the disjoint cycles involved in the permutation of X corresponding to g. Therefore,
to construct a labelling in Fix(g) all we need to do is assign a label to each cycle of g.
This can be done in ℓm(g) ways where m(g) is the number of cycles; consequently
| Fix(g)| = ℓm(g) and we have our formula.

Polya’s Theorem will now be applied to solve some counting problems.

Example (5.4.1) Howmanyways are there to design a necklace of 11 beads if c di�erent
colors of beads are available?

Here it is assumed that the beads are identical apart from color. The necklace
can be visualized as a regular 11-gon with the beads as vertices. The labels are the
c colors and one color has to be assigned to each vertex. Clearly a symmetry of the
11-gon can be applied without changing the design of the necklace. Recall that the
group of symmetries G is a dihedral group Dih(22) – see (3.2). It consists of the identity,
rotations through (2π11 )i, for i = 1, 2, . . . , 10, and re�ections in a line joining a vertex
to the midpoint of the opposite edge.

For each element g ∈ Gwe count the numberm(g) of ⟨g⟩-orbits in the set of vertices
X = {1, 2, . . . , 11}, so that Polya’s formula can be applied. The results of the count are
displayed in tabular form below.

Type of element Cycle type Number of elements m

identity eleven 1-cycles 1 11
rotation through
2πi
11 , 1 ≤ i ≤ 10 one 11-cycle 10 1
reflection one 1-cycle, �ve 2-cycles 11 6

From the table and Polya’s formula we deduce that the number of di�erent designs is

1
22

(c11 + 11c6 + 10c) = 1
22
c(c5 + 1)(c5 + 10).

Next we tackle the cube-coloring problem with which the section began.

Example (5.4.2) Howmany ways are there to color the faces of a cube using c di�erent
colors?
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In this problem the relevant group is the rotation group G of the cube since this
group acts on the set of colorings. In fact G ≃ S4: the easiest way to see this is to observe
that each rotation permutes the four diagonals of the cube. But this observation is not
needed to solve the problem.

Let L be the set of c colors and let X consist of the six faces of the cube. To identify
the rotations in G, we examine the various axes of symmetry of the cube. For each
rotation record the cycle type and number of cycles in the corresponding permutation
of X. Again the results are conveniently displayed in a table.

Type of element Cycle type Number of elements m

identity six 1-cycles 1 6
rotation about line
through centroids of
opposite faces through
π/2 two 1-cycles, one 4-cycle 3 3
π two 1-cycles, two 2-cycles 3 4
3π
2 two 1-cycles, one 4-cycle 3 3
rotation about
diagonal through
2π
3 two 3-cycles 4 2
4π
3 two 3-cycles 4 2
rotation about line
joining midpoints
of opposite edges
through π three 2-cycles 6 3

The count of elements con�rms that |G| = 24, and Polya’s formula gives the answer
1
24 (c

6 + 3c3 + 3c4 + 3c3 + 4c2 + 4c2 + 6c3), which factorizes as

1
24
c2(c + 1)(c3 − c2 + 4c + 8).

When c = 5, the formula yields 800, so there are 800 di�erent ways to color the faces
of a cube using 5 colors.

It is apparent from these examples that Polya’s theorem enables us to solve some
complex combinatorial problems which might otherwise be intractable.

Counting graphs. We conclude the chapter by describing how Polya’s method can be
used to count graphs. First some brief remarks about graphs.

A graph Γ consists of a non-empty set V of vertices and a relation E on V which is
symmetric and irre�exive, i.e., v E̸ v for all v ∈ V. If u E v, call the 2-element set {u, v}
an edge of Γ. Since E is symmetric, we can identify E with the set of all edges of Γ.

A graph can be visualized by representing the vertices by points in the plane and
the edges by lines joining appropriate vertices. Simple examples of graphs are:
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∘

∘ ∘

∘

∘

∘ ∘

∘
∘

Note that loops and multiple edges are not permitted. Graph theory has many applica-
tions outside mathematics, for example to transportation systems, telephone networks
and electrical circuits.

Two graphs Γi = (Vi , Ei), i = 1, 2, are said to be isomorphic if there is a bijection
θ : V1 → V2 such that {u, v} ∈ E1 if and only if {θ(u), θ(v)} ∈ E2. Two graphs may
appear to be di�erent, yet be isomorphic: for example, the graphs

a∘

b∘ ∘c

∘d ∘a�

b�∘ ∘ c�

∘d�

are isomorphic because of the bijection a Ü→ a�, b Ü→ b�, c Ü→ c�, d Ü→ d�.

The problem of interest to us is to �nd the number of non-isomorphic graphs on
a given set of n vertices. For this purpose it is enough to count isomorphism classes
of graphs with vertex set V = {1, 2, . . . , n}. The �rst step is to observe that a graph
Γ = (V, E) is determined by its edge function

αΓ : V [2] → {0, 1}

where V [2] is the set of all 2-element sets {u, v}, with u ̸= v in V, and

αΓ({u, v}) =
{
{
{

0 if (u, v) ∉ E
1 if (u, v) ∈ E

.

Thus we can think of a graph as a labelling of V [2] by {0, 1}. The symmetric group Sn
acts on the vertex set V in the natural way and this leads to an action of Sn on V [2] in
which

π ⋅ {u, v} = {π(u), π(v)}

where π ∈ Sn. Thus Sn acts on the set of all edge functions for V, i.e., on

F = Fun(V [2], {0, 1}).

It is a consequence of the de�nition of isomorphism that graphs Γ1 = (V, E1) and
Γ2 = (V, E2) are isomorphic if and only if there exists a π ∈ Sn such that π ⋅ αΓ1 = αΓ2 ,
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i.e., αΓ1 and αΓ2 belong to the same Sn-orbit of F. Thus we have to count the Sn-orbits
of F. Now (5.4.1) can be applied to this situation with G = Sn , X = V [2] and L = {0, 1}.
This allows us to derive a formula for the number of isomorphism classes of graphs
with vertex set V.

(5.4.2) The number of non-isomorphic graphs with a given set of n vertices is given by

g(n) = 1
n!( ∑

π∈Sn
2m(π))

where m(π) is the number of disjoint cycles present in the permutation of V [2] induced
by π.

To use this result one must be able to compute m(π), the number of Sn-orbits
in V [2]. While formulas for m(π) are available, we will be content to calculate these
numbers directly for small values of n.

Example (5.4.3) Show that there are exactly 11 non-isomorphic graphs with 4 vertices.

What we have to do is to compute m(π) for π of each cycle type in S4. Note that
|V [2]| = (42) = 6. Of course m(1) = 6. If π is a 4-cycle, say (1234), there are two cycles
in the permutation of V [2] produced by π, namely ({1, 2}, {2, 3}, {3, 4}, {4, 1}) and
({1, 3}, {2, 4}); thus m(π) = 2. Also there are six 4-cycles in S4.

If π is a 3-cycle, say (123)(4), there are two cycles, ({1, 2}, {2, 3}, {1, 3}) and
({1, 4}, {2, 4}, {3, 4}), thus m(π) = 2: there are eight such 3-cycles.

If π has two 2-cycles, say π = (12)(34), there are four cycles ({1, 2}), ({3, 4}),
({1, 3}, {2, 4}), ({1, 4}, {2, 3}); so m(π) = 4. There are three such π’s.

Finally, there are six transpositions π and it is easy to see that for each onem(π) = 4.
The formula in (5.4.2) therefore yields

g(4) = 1
4!

(26 + 6 ⋅ 22 + 8 ⋅ 22 + 3 ⋅ 24 + 6 ⋅ 24) = 11.

This result can be veri�ed by actually enumerating the graphs.
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∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘

∘ ∘

∘

Notice that all these graphs are planar, i.e., they can be drawn in the plane in such a
way that no edges cross except at vertices.

Exercises (5.4)

(1) Show that there are 1
10 c(c

2+1)(c2+4)ways to label the vertices of a regular pentagon
using c labels.
(2) The same problem for the edges of the pentagon.
(3) A baton has n bands of equal width. Show that there are 1

2 (c
n + c[ n+12 ])ways to color

it using c colors. [The baton can be rotated through 180∘].
(4) The faces of a regular tetrahedron are to be painted using c colors. Prove that there
are 1

12 c
2(c2 + 11) ways to do it.

(5) A necklace has p beads of identical shape and size where p is an odd prime number.
Beads of c colors available. How many necklace designs are possible?
(6) How many ways are there to place eight identical checkers on an 8 × 8 chessboard
of squares if rotation of the board is allowed?
(7) Prove that the number of isomorphism types of graphs with n vertices is at most
2n(n−1)/2.
(8) Show that there are four isomorphism types of graphs with three vertices.
(9) Show that there are 34 isomorphism types of graphs with �ve vertices.
(10) Prove that the number of ways to design a necklace with n beads of c di�erent
colors is

1
2n (

n
∑
i=1
i|n

ϕ(i)c
n
i ) +

1
4
(c[

n+1
2 ] + c[

n+2
2 ]),

where ϕ is Euler’s function.



6 Introduction to rings

A ring is a set, together with two binary operations called addition andmultiplication
which are subject to a number of natural requirements. Thus, from the logical point of
view, a ring is a more complex object than a group, which is a set with a single binary
operation. Yet some of the most familiar mathematical objects are rings – for example,
the sets of integers, real polynomials, continuous functions – and for this reason some
readers may feel more at home with rings than with groups. One motivation for the
study of rings is to see how far properties of the ring of integers extend to rings in
general.

6.1 Elementary properties of rings

A ring is a triple
(R, +, ×)

where R is a set and + and × are binary operations on R, called addition andmultiplica-
tion, such that the following properties hold: here a × b is written ab:
(i) (R, +) is an abelian group;
(ii) (R, ×) is a semigroup;
(iii) the left and right distributive laws hold,

a(b + c) = ab + ac, (a + b)c = ac + bc, (a, b, c ∈ R).

If in addition the commutative law for multiplication holds,
(iv) ab = ba for all a, b ∈ R,
the ring is said to be commutative.

If R contains an element 1R ̸= 0R such that 1Ra = a = a1R for all a ∈ R, then R
is called a ring with identity and 1R is the (clearly unique) identity element of R. Care
must be taken to distinguish between the additive identity (or zero element) 0R, which
exists in any ring R, and the multiplicative identity 1R in a ring R with identity. These
will often be written simply 0 and 1. As with groups, we usually prefer to speak of “the
ring R”, rather than the triple (R, +, ×).

There are many familiar examples of rings at hand.

Examples (6.1.1)

(i) ℤ,ℚ,ℝ, ℂ are commutative rings with identity where the ring operations are the
usual addition and multiplication of arithmetic.

(ii) Let m be a positive integer. Then ℤm, the set of congruence classes modulo m,
is a commutative ring with identity where the ring operations are addition and
multiplication of congruence classes.
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(iii) The set of all continuous real-valued functions de�ned on the interval [0, 1] is
a ring when addition and multiplication are given by f + g(x) = f(x) + g(x) and
fg(x) = f(x)g(x). This is a commutative ring in which the identity element is the
constant function 1.

(iv) Let R be any ring with identity and de�ne Mn(R) to be the set of all n × n matrices
with entries in R. The usual rules for adding and multiplying matrices are to be
used. By the elementary properties of matrices Mn(R) is a ring with identity. It is
not hard to see that Mn(R) is commutative if and only if R is commutative and
n = 1.

Of course the ring axioms must be veri�ed in these examples, but this presents little
di�culty.

Rings of polynomials. Next we introduce rings of polynomials, which are one of the
most fruitful sources of rings.

First we must give a clear de�nition of a polynomial, not involving vague terms
like “indeterminate”. In essence a polynomial is just the list of its coe�cients, of which
only �nitely many can be non-zero. We proceed to re�ne this idea. Let R be a ring with
identity. A polynomial over R is a sequence of elements ai ∈ R, one for each natural
number i,

f = (a0, a1, a2, . . . )

such that ai = 0 for all but a �nite number of i; the ai are called the coe�cients of f . The
zero polynomial is (0R , 0R , 0R , . . . ). If f = (a0, a1, . . . ) is not zero, there is a largest
integer i such that ai ̸= 0; thus f = (a0, a1, . . . , ai , 0, 0, . . . ). The integer i is called
the degree of f , in symbols

deg(f).

It is convenient to assign to the zero polynomial the degree −∞. A polynomial whose
degree is ≤ 0, i.e., one of the form (a0, 0, 0, . . . ), is called a constant polynomial.

The de�nitions of addition and multiplication of polynomials are just the familiar
rules from elementary algebra, but adapted to the current notation. Let f = (a0, a1, . . . )
and g = (b0, b1, . . . ) be polynomials over R. Their sum and product are de�ned by

f + g = (a0 + b0, a1 + b1, . . . , ai + bi , . . . )
and

fg = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . . ,
n
∑
j=0
ajbn−j , . . . ).

Notice that these really are polynomials; for all but a �nite number of the coe�cients
are 0. Negatives are de�ned by −f = (−a0, −a1, −a2, . . . ).

(6.1.1) If f and g are polynomials over a ring with identity, then f + g and fg are polyno-
mials. Also
(i) deg(f + g) ≤ max{deg(f), deg(g)};
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(ii) deg(fg) ≤ deg(f) + deg(g).
This follows quickly from the de�nitions of sum and product. It is also quite routine

to verify that the ring axioms hold for polynomials with these binary operations. Thus
we have:

(6.1.2) If R is a ring with identity, then so is the ring of all polynomials over R.

Of course, the multiplicative identity in the polynomial ring over R is the constant
polynomial (1R , 0R , 0R , . . . ).

Now we would like to recover the traditional notation for polynomials, involv-
ing an “indeterminate” t. This is accomplished as follows. Let t denote the polyno-
mial (0, 1, 0, 0, . . . ); then the product rule shows that t2 = (0, 0, 1, 0, . . . ), t3 =
(0, 0, 0, 1, 0, . . . ) etc. If we de�ne the multiple of a polynomial by a ring element r by
the rule

r(a0, a1, . . . ) = (ra0, ra1, . . . ),

then it follows that

(a0, a1, . . . , an , 0, 0, . . . ) = a0 + a1t + ⋅ ⋅ ⋅ + an tn ,

which is called a polynomial in t. Thus we can return with con�dence to the traditional
notation for polynomials knowing that it is soundly based. The ring of polynomials
in t over R will be written

R[t].

Polynomial rings in more than one indeterminate are de�ned recursively by the
equation

R[t1, . . . , tn] = (R[t1, . . . , tn−1])[tn],

where n > 1. A typical element of R[t1, . . . , tn] is a multinomial expression

∑
ℓi=0,1,...

rℓ1 ⋅⋅⋅ℓn t
ℓ1
1 ⋅ ⋅ ⋅ tℓnn ,

where the ℓi are non-negative integers and rℓ1 ⋅⋅⋅ℓn ∈ R equals zero for all but a �nite
number of (ℓ1, ℓ2, . . . , ℓn).

We list next some elementary and frequently used consequences of the ring axioms.

(6.1.3) Let R be any ring. Suppose that a, b are elements of R and that n is an integer.
Then:
(i) a0 = 0 = 0a;
(ii) a(−b) = (−a)b = −(ab);
(iii) (na)b = n(ab) = a(nb).
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Proof. By the distributive law a(0 + 0) = a0 + a0. Hence a0 = a0 + a0 and so a0 = 0
after cancellation. Similarly 0a = 0. This proves (i). As for (ii) we have a(−b) + ab =
a(−b + b) = a0 = 0. Thus a(−b) = −(ab). Similarly (−a)b = −(ab). To prove (iii)
assume that n ≥ 0; then (na)b = n(ab) by an easy induction on n. Next (−na)b+nab =
(−na + na)b = 0b = 0, so (−na)b = −(nab). Similarly a(−nb) = −(nab), which
completes the proof.

Units in rings. Suppose that R is a ring with identity. An element r ∈ R is called a unit
if it has amultiplicative inverse, i.e., an element s ∈ R such that rs = 1 = sr. Notice that
0 cannot be a unit since 0s = 0 ̸= 1 for all s ∈ S by (6.1.3). Also, if r is a unit, it has a
unique inverse, written r−1: this is proved in the same way as (3.2.1)(iii).

Now suppose that r1 and r2 are two units of R. Then r1r2 is also a unit since
(r1r2)−1 = r−12 r

−1
1 , as is seen by forming products with r1r2. Also of course (r−1)−1 = r,

so that r−1 is a unit. Since 1 is is its own inverse, we can state:

(6.1.4) If R is a ring with identity, the set of units of R is a multiplicative group in which
the group operation is ring multiplication.

The group of units of R is written

U(R)

or sometimes R∗. Here are some simple examples of groups of units.

Example (6.1.2)

(i) U(ℤ) = {±1}, a group of order 2.
(ii) U(ℚ) = ℚ − 0, the multiplicative group of non-zero rational numbers.
(iii) If m > 0, then U(ℤm) is the multiplicative groupℤ∗m of all congruence classes [i]m

where gcd(i,m) = 1. This is an abelian group of order ϕ(m).
(iv) U(ℝ[t]) is the group of non-zero constant polynomials. For if fg = 1, the polynomi-

als f and g must be constant.

Exercises (6.1)

(1) Which of the following are rings?
(i) The sets of even and odd integers, with the usual arithmetic operations;
(ii) the set of all di�erentiable functions on [0, 1] where f + g(x) = f(x) + g(x) and

fg(x) = f(x)g(x);
(iii) the set of all singular 2 × 2 real matrices, with the usual matrix operations.

(2) Let S be a non-empty set. De�ne two binary operations on the power set P(S) by
X + Y = (X ∪ Y) − (X ∩ Y) and X ⋅ Y = X ∩ Y. Prove that (P(S), +, ⋅) is a commutative ring
with identity. Show also that X2 = X and 2X = 0P(S).
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(3) A ring R is called Boolean if r2 = r for all r ∈ R, (cf. Exercise (6.1.2)). If R is a Boolean
ring, prove that 2r = 0 and that R is commutative.
(4) Let A be an arbitrary (additively written) abelian group. Prove that A is the underly-
ing additive group of some commutative ring.
(5) Find the unit groups of the following rings:

(i) { m2n | m, n ∈ ℤ}, with the usual addition and multiplication;
(ii) Mn(ℝ) with the standard matrix operations;
(iii) the ring of continuous functions on [0, 1].

(6) Prove that the Binomial Theorem is valid in any commutative ring R, i.e., (a + b)n =
∑n
i=0 (

n
i )a

ibn−i where a, b ∈ R and n is a non-negative integer.
(7) Let R be a ring with identity. Suppose that a is an element of R with a unique left
inverse b, i.e., b is the unique element in R such that ba = 1. Prove that ab = 1, so that
a is a unit. [Hint: consider the element ab − 1 + b.]
(8) Let R be a ring with identity. Explain how to de�ne a formal power series over R of
the form∑∞

n=0 an tn with an ∈ R. Then verify that these form a ring with identity with
respect to appropriate sum and product operations. (This is called the ring of formal
power series in t over R, in symbols R[[t]]).
(9) Let R be a ring with identity. Prove thatMn(ℝ) is a commutative ring if and only if R
is commutative and n = 1.

6.2 Subrings and ideals

In Chapter Three the concept of a subgroup of a group was introduced and already this
has proved to be valuable in the study of groups. We aim to pursue a similar course for
rings by introducing subrings.

Let (R, +, ×) be a ring and S a subset of the underlying set R. Then S is called a
subring of R if (S, +S , ×S) is a ring where +S and ×S denote the binary operations +
and ×when restricted to S. In particular S is a subgroup of the additive group (R, +).
With the aid of (3.3.4), we obtain a more useful description of a subring.

(6.2.1) Let S be a subset of a ring R. Then S is a subring of R if and only if S contains 0R
and is closed with respect to addition, multiplication and the formation of negatives, i.e.,
if a, b ∈ S, then a + b ∈ S, ab ∈ S and −a ∈ S.

Example (6.2.1)

(i) ℤ,ℚ,ℝ are successively larger subrings of the ring of complex numbers ℂ.
(ii) The set of even integers 2ℤ is a subring of ℤ. Notice that it does not contain the

identity element, which is not a requirement for a subring.
(iii) In any ring R there are at least two subrings, the zero subring 0 = {0R} and the

improper subring R itself.
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(iv) Let S = 1
2ℤ, i.e., S = {m2 | m ∈ ℤ}. Then S is an additive subgroup of the ring ℚ,

but it is not a subring since 1
2 × 1

2 = 1
4 ∉ S. Thus the concept of a subring is more

special than that of an additive subgroup.

Ideals. It is reasonable to expect there to be an analogy between groups and rings in
which subgroups correspond to subrings. The question then arises: what is to corre-
spond to normal subgroups? This is where ideals enter the picture.

Let R be an arbitrary ring. A left ideal of R is an additive subgroup L such that
ra ∈ L whenever r ∈ R and a ∈ L. Similarly a right ideal of R is an additive subgroup S
such that ar ∈ S whenever r ∈ R and a ∈ S. If I is both a left and right ideal of R, it is
called a 2-sided ideal, or simply an ideal of R. Thus an ideal is an additive subgroup
which is closed with respect to multiplication of its elements by arbitrary ring elements
on the left and the right. Notice that left ideals and right ideals are subrings.

Example (6.2.2)

(i) Let R be a ring and let x ∈ R. De�ne subsets of R

Rx = {rx | r ∈ R} and xR = {xr | r ∈ R}.

Then Rx and xR are respectively a left ideal and a right ideal of R. For the �rst
statement Rx is a subgroup since r1x + r2x = (r1 + r2)x and −(rx) = (−r)x; also
s(rx) = (sr)x for all r ∈ R, so Rx is a left ideal. Similarly xR is a right ideal. If R is a
commutative ring, Rx = xR is an ideal. An ideal of this type is called a principal
ideal.

(ii) Every subgroup ofℤ has the form nℤwhere n ≥ 0 by (4.1.5). Hence every subgroup
ofℤ is a principal ideal.

(iii) On the other hand, ℤ is a subring, but not an ideal, of ℚ since 1
2 (1) ∉ ℤ. Thus

subrings are not always ideals.
Thus we have a hierarchy of distinct substructures of rings:

left (right) ideal ⇒ ideal ⇒ subring ⇒ subgroup.

(6.2.2) The intersection of a non-empty set of subrings (left ideals, right ideals) of a ring
R is a subring (respectively left ideal, right ideal) of R.

The easy proofs are left to the reader. Let R be any ring and let X be a non-empty
subset of R. On the basis of (6.2.2) we can assert that the intersection of all the subrings
of R which contain X is a subring, clearly the smallest subring containing X. This is
called the subring generated by X and it will be denoted by

Rg⟨X⟩.
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If X = {x1, x2, . . . , xn}, this subring is denoted by Rg⟨x1, x2, . . . , xn⟩. When R has an
identity element, the general form of elements of Rg⟨X⟩ is not hard to determine.

(6.2.3) Let R be a ring with identity and let X be a non-empty subset of R. Then Rg⟨X⟩
consists of all elements of the form

∑
ℓ1 ,ℓ2 ,...,ℓn

mℓ1 ,ℓ2 ,...,ℓn x
ℓ1
1 ⋅ ⋅ ⋅ xℓnn

where xi ∈ X, n ≥ 0,mℓ1 ,ℓ2 ,...,ℓn ∈ ℤ and the ℓi are non-negative integers.

Again the easy proof is left to the reader. A ring R is said to be �nitely generated if
R = Rg⟨x1, x2, . . . , xn⟩ for some �nite set of elements {x1, . . . , xn}. In a similar vein
we de�ne the left, right or two-sided ideal generated by a non-empty subset X of a ring
R to be the intersection of all the respective ideals that contain X.

(6.2.4) Let R be a ring with identity and let X be a non-empty subset of R. Then the left
ideal generated by X consists of all elements of the form

n
∑
i=1
rixi

where xi ∈ X, ri ∈ R, n ≥ 0.

There are similar statements for right and two-sided ideals. The simple proofs are
left as an exercise. The left ideal of R generated by X is denoted by

RX.

A left ideal I of a ring R is said to be �nitely generated as a left ideal if it can be generated
by �nitely many elements x1, x2, . . . , xn. If R has an identity, the ideal I has the form
I = R{x1, x2, . . . xn} = Rx1 + Rx2 + ⋅ ⋅ ⋅ + Rxn.

If R is a commutative ring with identity, the ideal R{x1, x2, . . . , xn} is often written
(x1, x2, . . . , xn). In particular

(x)

is the principal ideal R{x}, consisting of all elements of the form rx where r ∈ R.

Homomorphisms of rings. It is still not apparent why ideals as de�ned above should
be the analogs of normal subgroups. The decisive test of the appropriateness of the
de�nition will come when ring homomorphisms are de�ned. If we are right, the kernel
of a homomorphism will be an ideal.

It is fairly obvious how one should de�ne a homomorphism from a ring R to a ring S:
this is a function θ : R → S which relates the ring operations in the sense that

θ(a + b) = θ(a) + θ(b) and θ(ab) = θ(a)θ(b)

for all a, b ∈ R. Thus in particular θ is a homomorphism of groups.
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If in addition θ is bijective, θ is called an isomorphism of rings. If there is an isomor-
phism from ring R to ring S, then R and S are said to be isomorphic rings, in symbols

R ≃ S.

Example (6.2.3)

(i) Let m be a positive integer. The function θm : ℤ → ℤm de�ned by θm(x) = [x]m
is a ring homomorphism. This is a consequence of the way in which sums and
products of congruence classes were de�ned.

(ii) The zero homomorphism 0 : R → S sends every r ∈ R to 0S. Also the identity
isomorphism from R to R is just the identity function on R.

Complex numbers. For a more interesting example of a ring isomorphism, consider
the set R of matrices of the form

[
a b

−b a
] , (a, b ∈ ℝ).

These are quickly seen to forma subring of thematrix ringM2(ℝ). Nowde�ne a function
θ : R → ℂ by the rule

θ([ a b
−b a

]) = a + ib

where i = √−1. Then θ is a ring homomorphism: for

[
a1 b1

−b1 a1
][

a2 b2
−b2 a2

] = [
a1a2 − b1b2 a1b2 + a2b1

−a1b2 − a2b1 a1a2 − b1b2
] ,

which is mapped by θ to (a1a2 − b1b2) + i(a1b2 + a2b1), i.e., to the product (a1 +
ib1)(a2 + ib2). An easier calculation shows that θ sends

[
a1 b1

−b1 a1
] + [

a2 b2
−b2 a2

]

to (a1 + ib1) + (a2 + ib2).
Certainly θ is surjective; it is also injective since a + ib = 0 implies that a = 0 = b.

Therefore θ is an isomorphism and we obtain the interesting fact that R ≃ ℂ. Thus
complex numbers can be represented by real 2 × 2 matrices. In fact this provides a way
to de�ne complex numbers without resorting to the square root of −1.

Next we consider the nature of the kernel and image of a ring homomorphism. The
following result should be compared with (4.3.2).

(6.2.5) If θ : R → S is a homomorphism of rings, then Ker(θ) is an ideal of R and Im(θ)
is a subring of S.



108 | 6 Introduction to rings

Proof. Weknowalready from (4.3.2) that Ker(θ) and Im(θ) are subgroups. Let k ∈ Ker(θ)
and r ∈ R. Then θ(kr) = θ(k)θ(r) = 0S and θ(rk) = θ(r)θ(k) = 0S since θ(k) = 0S.
Therefore Ker(θ) is an ideal of R. Furthermore θ(r1)θ(r2) = θ(r1r2), so that Im(θ) is a
subring of S.

(6.2.6) If θ : R → S is an isomorphism of rings, then so is θ−1 : S → R.

Proof. Weknow from (3.3.1) that θ−1 is an isomorphism of groups. It must still be shown
that θ−1(s1s2) = θ−1(s1)θ−1(s2), (si ∈ S). Observe that the image of each side under θ
is s1s2. Since θ is injective, it follows that θ−1(s1s2) = θ−1(s1)θ−1(s2).

Quotient rings. Since ideals appear to be the natural ring theoretic analog of normal
subgroups, we expect to be able to de�ne the quotient of a ring by an ideal. Let I be an
ideal of a ring R. Certainly I is a normal subgroup of the additive abelian group R, so we
can form the quotient group R/I. This is an additive abelian group whose elements are
the cosets of I. To make R/I into a ring, a rule for multiplying cosets must be speci�ed:
the natural one to try is

(r1 + I)(r2 + I) = r1r2 + I, (ri ∈ R).

To prove that this is well-de�ned, let i1, i2 ∈ I and note that

(r1 + i1)(r2 + i2) = r1r2 + (r1i2 + i1r2 + i1i2) ∈ r1r2 + I

since I is an ideal. Thus the rule is independent of the choice of coset representatives
r1 and r2.

A further easy check shows that the ring axioms hold; therefore R/I is a ring,
the quotient ring of I in R. Note also that the assignment r Ü→ r + I is a surjective
ring homomorphism from R to R/I with kernel I; this is the canonical homomorphism,
(cf. (4.3)).

As one might expect, there are isomorphism theorems for rings similar to those for
groups.

(6.2.7) (First Isomorphism Theorem) If θ : R → S is a homomorphism of rings, then
R/Ker(θ) ≃ Im(θ).

(6.2.8) (Second Isomorphism Theorem) If I is an ideal and S is a subring of a ring R,
then S + I is a subring of R and S ∩ I is an ideal of S. Also S + I/I ≃ S/S ∩ I.

(6.2.9) (Third Isomorphism Theorem) Let I and J be ideals of a ring R with I ⊆ J. Then
J/I is an ideal of R/I and (R/I)/(J/I) ≃ R/J.

Fortunately we can apply the isomorphism theorems for groups – see (4.3.4),
(4.3.5), (4.3.6). The isomorphisms constructed in the proofs of these theorems still
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stand if we allow for the additive notation. Thus we have only to check that they are
homomorphisms of rings.

For example, take the case of (6.2.7). From (4.3.4) we know that the assignment
r + Ker(θ) Ü→ θ(r) yields a group isomorphism α : R/Ker(θ) Ü→ Im(θ). Also

α((r1 + Ker(θ))(r2 + Ker(θ)) = α(r1r2 + Ker(θ)) = θ(r1r2),

which is equal to θ(r1)θ(r2) = α(r1 + Ker(θ))α(r2 + Ker(θ)). Therefore we conclude that
α is an isomorphism of rings: this proves (6.2.7). It is left to the reader to complete the
proofs of the other two isomorphism theorems.

(6.2.10) (The Correspondence Theorem) Let I be an ideal of a ring R. Then the assignment
S Ü→ S/I determines a bijection from the set of subrings of R that contain I to the set of
subrings of R/I. Furthermore S/I is an ideal of R/I if and only if S is an ideal of R.

Proof. The correspondence between subgroups described in (4.2.2) applies here. It
remains only to verify that S is a subring (ideal) if and only if S/I is. It is left to the
reader to �ll in the details.

Exercises (6.2)

(1) Classify the following subsets of a ring R as an additive subgroup, subring or ideal,
as is most appropriate:

(i) {f ∈ ℝ[t] | f(a) = 0} where R = ℝ[t] and a ∈ ℝ is �xed;
(ii) the set of twice di�erentiable functions on [0, 1] which satisfy the di�erential

equation f �� + f � = 0: here R is the ring of continuous functions on [0, 1];
(iii) nℤ where R = ℤ;
(iv) 1

2ℤ where R = ℚ.
(v) the set of real n × n matrices with zero �rst row where R = Mn(ℝ).

(2) Prove (6.2.2).
(3) Prove (6.2.3) and (6.2.4).
(4) Which of the following rings are �nitely generated?ℤ;ℚ;ℤ[t1, t2, . . . , tn].
(5) Let R be a ring with identity. If I is a left ideal containing a unit, show that I = R.
(6) Let I and J be ideals of a ring R such that I ∩ J = 0. Prove that ab = 0 for all a ∈ I,
b ∈ J.
(7) Let a ∈ ℝ and de�ne θa : ℝ[t] → ℝ by θa(f) = f(a). Prove that θa is a ring
homomorphism. Identify Im(θa) and Ker(θa).
(8) Let α : R → S be a surjective ring homomorphism and assume that R has an identity
element and S is not the zero ring. Prove that S has an identity element.
(9) Give examples of a left ideal that is not a right ideal and a right ideal that is not a
left ideal.
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(10) Give an example of an ideal of a commutative ringwith identity that is not principal.
(11) What is the form of elements of the left ideal generated by a subset X in a ring R
that does not have an identity element?
(12) Prove that the subring ofℚ consisting of all m2n is a �nitely generated ring.

6.3 Integral domains, division rings and �elds

The purpose of this section is to introduce some special types of ring with desirable
properties. Speci�callywe are interested in rings having a satisfactory theory of division.
For this reason it is necessary to exclude the phenomenon in which the product of two
non-zero ring elements is zero.

If R is a ring, a left zero divisor is a non-zero element a such that ab = 0 for some
b ̸= 0 in R. Of course b is called a right zero divisor. Clearly the presence of zero divisors
will make it di�cult to construct a reasonable theory of division.

Example (6.3.1) Let n be a positive integer. The zero divisors inℤn are the congruence
classes [m]where m and n are not relatively prime and 1 < m < n. Thusℤn has zero
divisors if and only if n is not a prime.

For, if m and n are not relatively prime and d > 1 is a common divisor of m and n,
then [m][ nd ] = [md ][n] = [0] since [n] = [0], while [m] ̸= 0 and [ nd ] ̸= [0]; thus [m] is a
zero divisor.

Conversely, suppose that [m] is a zero divisor and [m][ℓ] = [0] where [ℓ] ̸= [0].
Then n | mℓ; thus, ifm and n are relatively prime, n | ℓ and [ℓ] = [0] by Euclid’s Lemma.
This contradiction shows that m and n cannot be relatively prime.

Next we introduce an important class of rings with no zero divisors. An integral
domain (ormore brie�y a domain) is a commutative ringwith identity which has no zero
divisors. For example, ℤ is a domain, while ℤn is a domain if and only if n is a prime,
by Example (6.3.1). Domains can also be characterized by a cancellation property.

(6.3.1) Let R be a commutative ring with identity. Then R is a domain if and only if the
cancellation law is valid in R, that is, ab = ac and a ̸= 0 always imply that b = c.

Proof. If ab = ac and b ̸= c, a ̸= 0, then a(b− c) = 0, so that a is a zero divisor and R is
not a domain. Conversely, if R is not a domain and ab = 0 with a, b ̸= 0, then ab = a0,
so the cancellation law fails.

The next result shows that it is much simpler to work with polynomials if the
coe�cient ring is a domain.

(6.3.2) Let R be an integral domain and let f, g ∈ R[t]. Then

deg(fg) = deg(f) + deg(g).
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Hence fg ̸= 0 if f ̸= 0 and g ̸= 0, so that R[t] is an integral domain.

Proof. If f = 0, then fg = 0 and deg(f) = −∞ = deg(fg); hence the formula is valid in
this case. Assume that f ̸= 0 and g ̸= 0, and let atm and btn be the terms of highest
degree in f and g respectively; thus a ̸= 0 and b ̸= 0. Then fg = abtm+n + terms of lower
degree, and ab ̸= 0 since R is a domain. Therefore deg(fg) = m+n = deg(f)+deg(g).

Recall that a unit in a ring with identity is an element with a multiplicative inverse.
A ring with identity in which every non-zero element is a unit is termed a division ring.
Commutative division rings are called a �elds. Clearly ℚ, ℝ and ℂ are examples of
�elds, while ℤ is not a �eld. Fields are one of the most frequently used types of ring
since the ordinary operations of arithmetic can be performed in a �eld.

Notice that a division ring cannot have zero divisors: for if ab = 0 and a ̸= 0, then
b = a−1ab = a−10 = 0. Thus the rings without zero divisors include domains and
division rings.

The ring of quaternions. The examples of division rings given so far are commutative,
i.e., they are �elds. We will now describe a famous example of a non-commutative
division ring, the ring of Hamilton’s¹ quaternions. First of all consider the following
2 × 2 matrices over ℂ,

I = [
i 0
0 −i

] , J = [
0 1

−1 0
] , K = [

0 i
i 0

]

where i = √−1. These are known in physics as the Pauli² spin matrices. Simple matrix
computations show that the following relations hold:

I2 = J2 = K2 = −1, IJ = K = −JI, JK = I = −KJ, KI = J = −IK.

Here 1 is being used to denote the identity 2 × 2 matrix and it should be distinguished
from the matrix I.

If a, b, c, d are rational numbers, we can form the matrix

a1 + bI + cJ + dK = [
a + bi c + di

−c + di a − bi
] ,

which is called a rational quaternion. Let R be the set of all rational quaternions. Then
R is a subring of the matrix ring M2(ℂ) containing the identity: for

(a1 + bI + cJ + dK) + (a�1 + b�I + c�J + d�K)
= (a + a�)1 + (b + b�)I + (c + c�)J + (d + d�)K,

1 William Rowan Hamilton (1805–1865)
2 Wolfgang Ernst Pauli (1900–1958)



112 | 6 Introduction to rings

while (a1 + bI + cJ + dK)(a�1 + b�I + c�J + d�K) equals

(aa� − bb� − cc� − dd�)1 + (ab� + a�b + cd� − c�d)I
+ (ac� + a�c + b�d − bd�)J + (ad� + a�d + bc� − b�c)K,

as is seen by multiplying out and using the properties of I, J, K above.
The signi�cant property of the ring R is that each non-zero element is a unit. For,

if 0 ̸= Q = a1 + bI + cJ + dK, then

det(Q) =
!!!!!!!!!

a + bi c + di
−c + di a − bi

!!!!!!!!!
= a2 + b2 + c2 + d2 ̸= 0,

and by elementary matrix algebra

Q−1 =
1

det(Q) [
a − bi −c − di
c − di a + bi

] ∈ R.

This allows us to state:

(6.3.3) The ring of rational quaternions is a non-commutative division ring.

Notice that the ring of quaternions is in�nite. This is no accident since, by a famous
theorem of Wedderburn,³ a �nite division ring is a �eld. This will not be proved here;
however, we will prove the corresponding statement for domains, which is much easier.

(6.3.4) A �nite integral domain is a �eld.

Proof. Let R be a �nite domain and let 0 ̸= r ∈ R; we need to show that r has an inverse.
Consider the function α : R → R de�ned by α(x) = rx. Now α is injective since rx = ry
implies that x = y by (6.3.1). However, R is a �nite set, so it follows that α must also be
surjective. Therefore 1 = rx for some x ∈ R and x = r−1.

Next we consider the role of ideals in commutative ring theory. A �rst observation
is that the presence of proper non-zero ideals is counter-indicative for the existence of
units.

(6.3.5) Let R be a commutative ring with identity. Then the set of non-units of R is equal
to the union of all the proper ideals of R.

Proof. Suppose that r is not a unit of R; then Rx = {rx | x ∈ R} is a proper ideal
containing r since 1 ∉ Rx. Conversely, if a unit r belongs to an ideal I, then for any x
in R we have x = (xr−1)r ∈ I, showing that I = R. Thus a unit cannot belong to a proper
ideal.

3 Joseph Henry Maclagan Wedderburn (1881–1948)
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Recalling that �elds are exactly the commutative rings with identity in which each
non-zero element is a unit, we deduce:

Corollary (6.3.6) A commutative ring with identity is a �eld if and only if it has no proper
non-zero ideals.

Maximal ideals andprime ideals. Let R be a commutative ringwith identity. Amaximal
ideal of R is a proper ideal I such that the only ideals containing I are I itself and R.
Thus a maximal ideal is amaximal proper ideal. For example, if p is a prime, pℤ is a
maximal ideal ofℤ: for |ℤ/pℤ| = p and (6.2.10) shows that no ideal can occur strictly
between pℤ andℤ.

A related concept is that of a prime ideal. If R is a commutative ring with identity, a
prime ideal of R is a proper ideal I with the property: ab ∈ I implies that a ∈ I or b ∈ I,
where a, b ∈ R.

There are enlightening characterizations of prime and maximal ideals in terms of
quotient rings.

(6.3.7) Let I be a proper ideal of a commutative ring R with identity.
(i) I is a prime ideal of R if and only if R/I is an integral domain;
(ii) I is a maximal ideal of R if and only if R/I is a �eld.

Proof. Let a, b ∈ R; then ab ∈ I if and only if (a + I)(b + I) = I = 0R/I . Thus I is prime
precisely when R/I has no zero divisors, i.e., it is a domain, so (i) is established. By
(6.2.10) I is maximal in R if and only if R/I has no proper non-zero ideals and by (6.3.6)
this is equivalent to R/I being a �eld.

Since every �eld is a domain, there follows at once:

Corollary (6.3.8) Every maximal ideal of a commutative ring with identity is a prime
ideal.

On the other hand, prime ideals need not be maximal. Indeed, if R is any domain,
the zero ideal is certainly prime, but it is notmaximal unless R is a �eld.More interesting
examples of non-maximal prime ideals can be constructed in polynomial rings.

Example (6.3.2) Let R = ℚ[t1, t2], the ring of polynomials in t1, t2 with rational
coe�cients. Let I be the subset of all polynomials in R which are multiples of t1. Then
I is a prime ideal of R, but it is not maximal.

For consider the function α : R → ℚ[t2] which carries a polynomial f(t1, t2) to
f(0, t2). This is a surjective ring homomorphism. Now if f(0, t2) = 0, then f is a multiple
of t1, which shows that the kernel of α is I. From (6.2.7) we deduce that R/I ≃ ℚ[t2].
Sinceℚ[t2] is a domain, but not a �eld, it follows from (6.3.7) that I is a prime ideal
of R which is not maximal.
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The characteristic of an integral domain. Let R be a domain and let S = ⟨1⟩, the
additive subgroup of R generated by 1. Suppose for the moment that S is �nite, with
order n say; we claim that n must be a prime. For suppose that n = n1n2 where ni ∈ ℤ
and 1 < ni < n. Then 0 = n1 = (n1n2)1 = (n11)(n21) by (6.1.3). However, R is a domain,
so n11 = 0 or n21 = 0, which shows that n divides n1 or n2, a contradiction. Therefore
n is a prime.

This observation is the essence of:

(6.3.9) Let R be an integral domain and put S = ⟨1⟩. Then either S is in�nite or else it
has prime order p. In the latter event pa = 0 for all a ∈ R.

To prove the �nal statement, simply note that pa = (p1R)a = 0a = 0.
If R is an integral domain and ⟨1R⟩ has prime order p, then R is said to have

characteristic p. The other possibility is that ⟨1R⟩ is in�nite, in which event R is said to
have characteristic 0. Thus the characteristic of R,

char(R),

is either 0 or a prime. For example, ℤp and ℤp[t] are domains with characteristic p,
whileℚ,ℝ andℝ[t] all have characteristic 0.

The �eld of fractions of an integral domain. Suppose that F is a �eld and R is a sub-
ring of F containing 1F . Then R is a domain since there cannot be zero divisors in F.
Conversely, one can ask if every domain arises in this way as a subring of a �eld. We
will answer the question positively by showing how to construct the �eld of fractions
of a domain. It will be helpful for the reader to keep in mind that the procedure to be
described is a generalization of the way in which the rational numbers are constructed
from the integers.

Let R be any integral domain. First we have to decide how to de�ne a fraction
over R. Consider the set

S = {(a, b) | a, b ∈ R, b ̸= 0}.

Here a will correspond to the numerator and b to the denominator of the fraction. A
binary relation ∼ on S will now be introduced which allows for cancellation between
numerator and denominator:

(a1, b1) ∼ (a2, b2) ⇔ a1b2 = a2b1.

Of course this relation is motivated by a familiar arithmetic rule: m1
n1 = m2

n2 if and only if
m1n2 = m2n1.

We verify that ∼ is an equivalence relation on S. Only transitivity requires a com-
ment: suppose that (a1, b1) ∼ (a2, b2) and (a2, b2) ∼ (a3, b3); then a1b2 = a2b1 and
a2b3 = a3b2. Multiply the �rst equation by b3 and use the second equation to derive
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a1b3b2 = a2b3b1 = a3b2b1. Cancel b2 to obtain a1b3 = a3b1; thus (a1, b1) ∼ (a3, b3).
Now de�ne a fraction over R to be a ∼-equivalence class

a
b = [(a, b)]

where a, b ∈ R, b ̸= 0. Note that acbc = a
b since (a, b) ∼ (ac, bc); thus cancellation can

be performed within a fraction.
Let F denote the set of all fractions over R: we wish to make F into a ring. To this

end de�ne addition and multiplication in R by the rules

a
b +

a�

b� =
ab� + a�b
bb� and (

a
b )(

a�

b� ) =
aa�

bb� .

Here we have been guided by the ordinary arithmetic rules for adding and multiplying
fractions. However, it is necessary to show that these operations are well-de�ned, i.e.,
there is no dependence on the chosen representative (a, b) of the equivalent class a

b .
For example, take the case of addition. Let (a, b) ∼ (c, d) and (a�, b�) ∼ (c�, d�): then
in fact (ab� + a�b, bb�) ∼ (cd� + c�d, dd�) because

(ab� + a�b)dd� = ab�dd� + a�bdd� = bcb�d� + b�c�bd = (cd� + c�d)bb�.

The next step is to verify the ring axioms: as an example we will check the validity
of the distributive law

(
a
b +

c
d )(

e
f ) = (

a
b )(

e
f ) + (

c
d )(

e
f ),

leaving the reader to verify the other axioms. By de�nition

(
a
b )(

e
f ) + (

c
d )(

e
f ) =

ae
bf +

ce
df =

aedf + cebf
bdf 2

=
ade + bce
bdf ,

which equals
(
ad + bc
bd )(

e
f ) = (

a
b +

c
d )(

e
f ),

as claimed.
Once all the axioms have been checked, we know that F is a ring; note that the zero

element of F is 0F = 0R
1R . Clearly F is commutative and it has identity element 1F = 1R

1R .
Furthermore, if a, b ̸= 0,

(
a
b )(

b
a ) =

ab
ab =

1R
1R

= 1F ,

so that, as expected, the inverse of ab is b
a . Therefore F is a �eld, the �eld of fractions of

the domain R.
In order to relate F to R we introduce the natural function

θ : R → F
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de�ned by θ(a) = a
1 . It is straightforward to check that θ is an injective ring homomor-

phism. Therefore R ≃ Im(θ) and of course Im(θ) is a subring of F containing 1F . Thus
the original domain R is isomorphic with a subring of the �eld F. Our conclusions are
summed up in the following result.

(6.3.10) Let R be an integral domain and let F denote the set of all fractions over R, with
the addition and multiplication speci�ed above. Then F is a �eld and the assignment
a Ü→ a

1 determines is an injective ring homomorphism from R to F.

Example (6.3.3)

(i) When R = ℤ, the �eld of fractions is, up to isomorphism, the �eld of rational
numbersℚ. This example motivated the general construction.

(ii) Let K be any �eld and put R = K[t]; this is a domain by (6.3.2). The �eld of
fractions F ofR is the�eld of rational functions in t overK; these are formal quotients
of polynomials in t over K

f
g

where f, g ∈ R, g ̸= 0. The notation K{t} is often used denote the �eld of rational
functions in t over K.

Exercises (6.3)

(1) Find all zero divisors in the following rings:ℤ6,ℤ15,ℤ2[t],ℤ4[t], Mn(ℝ).
(2) Let R be a commutative ring with identity such that the degree formula deg(fg) =
deg(f) + deg(g) is valid in R[t]. Prove that R is a domain.
(3) If R is a division ring, prove that the only left ideals and right ideals are 0 and R.
(4) Let R be a ring with identity. If R has no left or right ideals except 0 and R, prove
that R is a division ring.
(5) Let θ : D → R be a non-zero ring homomorphism. If D is a division ring, show that
it is isomorphic with a subring of R.
(6) Let I1, I2, . . . , Ik be non-zero ideals of a domain. Prove that I1 ∩ I2 ∩ ⋅ ⋅ ⋅ ∩ Ik ̸= 0. Is
this necessarily true for an in�nite set of non-zero ideals?
(7) Let I be the principal ideal (ℤ[t])t ofℤ[t]. Prove that I is prime but not maximal.
(8) The same problem for I = (ℤ[t])(t2 − 2).
(9) Let F be a �eld. If a, b ∈ F and a ̸= 0, de�ne a function θa,b : F → F by the rule
θa,b(x) = ax + b. Prove that the set of all θa,b’s is a group with respect to functional
composition.
(10) Let F be the �eld of fractions of a domain R and let α : R → F be the canonical
injective homomorphism r Ü→ r

1 . Suppose that β : R → K is an injective ring homomor-
phism from R to some other �eld K. Prove that there is an injective homomorphism
θ : F → K such that θα = β. (Thus in a sense F is the smallest �eld containing an
isomorphic copy of R.)
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6.4 Finiteness conditions on ideals

In this section we introduce certain �niteness properties of ideals that are possessed
by some important types of ring.

(6.4.1) Let I be a non-empty set of left ideals of a ring R. Then the following statements
about I are equivalent.
(i) The set I satis�es the ascending chain condition, i.e., there does not exist an in�nite

ascending chain of left ideals I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ with Ii ∈ I.
(ii) The set I satis�es the maximal condition, i.e., every non-empty subset of I has a

maximal element, that is to say, an element which is not properly contained in any
other element of I.

Proof. Assume that I satis�es condition (i) and suppose that S is a non-empty subset
of I that does not contain a maximal element. Let I1 ∈ S; then there exists I2 ∈ Swhich
is strictly larger than I1 since I1 is not maximal in I. Similarly there exists I3 ∈ S which
is strictly larger that I2, and so on. But clearly this leads to an in�nite ascending chain
I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ in I, a contradiction.

Conversely, assume that I satis�es condition (ii). If there is an in�nite ascending
chain I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ in I, the maximal condition can be applied to the set {I1, I2, . . . , }
to give a maximal element. This is obviously impossible.

We remark that similar properties for subgroups of a group were introduced in
Exercise (3.3.10).

There is of course a corresponding result for right ideals. The case of greatest
interest to us is when I is the set of all left ideals of the ring R. If this set satis�es one of
the two equivalent conditions of (6.4.1), then R is called a left noetherian ⁴ ring. There
is a corresponding de�nition of a right noetherian ring. In case of a commutative ring,
the ring is simply said to be noetherian. The following result sheds some light on the
nature of the noetherian condition.

(6.4.2) Let R be a ring with identity. Then R is left noetherian if and only if every left
ideal of R is �nitely generated as a left ideal of R.

Proof. First suppose that I is a left ideal of R which is not �nitely generated. Certainly
I ̸= 0, so there exists r1 ∈ I − 0 and I ̸= Rr1 since I is not �nitely generated. Let
r2 ∈ R − Rr1. Then I ̸= Rr1 + Rr2. Let r3 ∈ I − (Rr1 + Rr2) and note that Rr1 + Rr2 ̸=
Rr1 + Rr2 + Rr3, and so on. But this leads to an in�nite ascending chain of left ideals
Rr1 ⊂ Rr1 + Rr2 ⊂ Rr1 + Rr2 + Rr3 ⊂ ⋅ ⋅ ⋅ and R is not left noetherian.

Conversely, assume R is not left noetherian, so that there exists an in�nite ascend-
ing chain of left ideals I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ . Set I = ⋃i=1,2,... Ii, which is clearly a left ideal of R.

4 Emmy Noether (1882–1935)
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Then I cannot be generated by �nitely many elements r1, r2, . . . , rk, since all the ri
would belong to some Ij, which leads to the contradiction Ij = Ij+1.

Obvious examples of noetherian rings include the ring of integers and any �eld.
Much more interesting examples are provided by (6.4.3) below, which is probably the
most celebrated result in the theory of noetherian rings.

(6.4.3) (Hilbert’s⁵ Basis Theorem) Let R be a commutative noetherian ring with identity.
Then the polynomial ring R[t1, t2, . . . , tn] is also noetherian.

Proof. In the �rst place is enough to prove the theorem for n = 1. For assume that
this case has been dealt with and that n > 1. Now R[t1, t2, . . . , tn] = S[tn] where
S = R[t1, t2, . . . , tn−1] and S is noetherian by induction on n. Therefore the result is
true by the case n = 1. From now on we will work with the ring T = R[t].

By (6.4.2) it su�ces to prove that an arbitrary ideal J of T is �nitely generated as
an ideal. Suppose that J is not �nitely generated; then J ̸= 0 and there is a polynomial
f1 ∈ J − 0 of smallest degree d1. Since J is not �nitely generated, J ̸= J1 = (f1) and
J − J1 contains a polynomial f2 of smallest degree d2. Furthermore J ̸= J2 = (f1) + (f2)
and J − J2 contains a polynomial f3 of smallest degree d3, and so on. This gives rise to
in�nite sequences of ideals J1 ⊂ J2 ⊂ ⋅ ⋅ ⋅ where Ji = (f1) + (f2) + ⋅ ⋅ ⋅ + (fi), and non-zero
polynomials f1, f2, . . . with deg(fi) = di and d1 ≤ d2 ≤ ⋅ ⋅ ⋅ ; moreover fi+1 ∉ Ji. Let us
write fi = ai tdi+ terms of lower degree, where 0 ̸= ai ∈ R.

Set Ii = (a1) + (a2) + ⋅ ⋅ ⋅ + (ai), so that I1 ⊆ I2 ⊆ ⋅ ⋅ ⋅ is an ascending sequence of
ideals of R. This sequence must have �nite length since R is noetherian, so Im = Im+1
for some integer m. Hence am+1 ∈ Im and consequently there is an expression am+1 =
r1a1 + r2a2 + ⋅ ⋅ ⋅ + rmam with ri ∈ R. Now de�ne a new polynomial g ∈ R[t] by

g = fm+1 −
m
∑
i=1

(ri fi)tdm+1−di .

Thus g ∈ Jm+1. Observe that g ∉ Jm since fm+1 ∉ Jm. The highest power of t that could
occur in g is certainly tdm+1 , but by inspection we see that its coe�cient is

am+1 − r1a1 − r2a2 − ⋅ ⋅ ⋅ − rmam = 0.

Therefore deg(g) < dm+1 = deg(fm+1), which is contrary to the choice of fm+1 as a
polynomial of smallest degree in J− Jm. This contradiction establishes the theorem.

Corollary (6.4.4) The rings ℤ[t1, t2, . . . , tn] and F[t1, t2, . . . , tn] are noetherian,
where F is any �eld.

Using this result we can �nd a large class of noetherian rings.

(6.4.5) Every �nitely generated commutative ring with identity is noetherian.

5 David Hilbert (1862–1943)
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Proof. Let R be the ring in question and suppose that it has generators x1, x2, . . . , xn.
By (6.2.3) every element of R has the form

∑
ℓi≥0

mℓ1 ,ℓ2 ,...,ℓn x
ℓ1
1 x

ℓ2
2 ⋅ ⋅ ⋅ xℓnn

where mℓ1 ,ℓ2 ,...,ℓn ∈ ℤ and the sum is over all non-negative integers ℓ1, ℓ2, . . . , ℓn. Let
S = ℤ[t1, t2, . . . , tn] and de�ne a map θ : S → R by

θ( ∑
ℓi≥0

mℓ1 ,ℓ2 ,...,ℓn t
ℓ1
1 t

ℓ2
2 ⋅ ⋅ ⋅ tℓnn ) = ∑

ℓi≥0
mℓ1 ,ℓ2 ,...,ℓn x

ℓ1
1 x

ℓ2
2 ⋅ ⋅ ⋅ xℓnn .

Then θ is a ring homomorphism since sums and products of elements in R and in S are
formed by the same rules, and clearly θ is also surjective. Hence S/Ker(θ) ≃ R by (6.2.7).
By (6.4.4) the ring S is noetherian and thus every quotient of S is also noetherian, which
establishes the result.

Exercises (6.4)

(1) Prove that every non-zero commutative noetherian ring has at least one maximal
(proper) ideal.
(2) If R is a non-zero commutative noetherian ring, prove that R has a quotient ring
which is a �eld.
(3) Let R be a commutative noetherian ring and I an ideal of R. Prove that R/I is also
noetherian.
(4) Let R be the ring of all rational numbers of the form m

2n where m, n ∈ ℤ. Show that
R is a noetherian ring.
(5) Prove the the ringℤ[t1, t2, . . . ] of polynomials in in�nitely many indeterminates ti
cannot be noetherian by �nding an ideal which is not �nitely generated.
(6) Prove that if R is a commutative noetherian ring with identity, the ring of formal
power series R[[t]] is noetherian: see Exercise (6.1.8). [Hint: follow the proof of Hilbert’s
Basis Theorem].
(7) Prove that if R is a commutative ring with identity which can be generated by n ele-
ments, then R ≃ ℤ[t1, t2, . . . , tn]/(f1, f2, . . . , fk) for certain polynomials fi. Conclude
that R is determined up to isomorphism by �nitely many polynomials in t1, t2, . . . , tn.



7 Division in commutative rings

The aim of this chapter is to construct a theory of division in rings that mirrors, as
closely as possible, the familiar theory of division in the ring of integers. To simplify
matters let us agree to restrict attention to commutative rings – in non-commutative
rings questions of left and right divisibility arise. Also, remembering from (6.3) the
phenomenon of zero divisors, we will further restrict ourselves to integral domains. In
fact even this class of rings is too wide, although it provides a reasonable target for our
theory. For this reason we will introduce some well-behaved types of domains.

7.1 Euclidean domains

Let R be a commutative ring with identity and let a, b ∈ R. Then a is said to divide b,
in symbols

a | b,

if ac = b for some c ∈ R. From the de�nition there quickly follow some elementary
facts about division.

(7.1.1) Let R be a commutative ring with identity and let a, b, c, x, y be elements of R.
Then:
(i) a | a and a | 0 for all a ∈ R;
(ii) 0 | a if and only if a = 0;
(iii) if a | b and b | c, then a | c, so division is a transitive relation;
(iv) if a | b and a | c, then a | bx + cy for all x, y ∈ R;
(v) if u is a unit, u | a for all a ∈ R, while a | u if and only if a is a unit.

For example, taking the case of (iv), we have b = ad and c = ae for some d, e ∈ R.
Then bx + cy = a(dx + ey), so that a divides bx + cy. The other proofs are equally
simple exercises which are left to the reader.

One situation we expect to encounter in a ring is a pair of elements each of which
divides the other: such elements are called associates.

(7.1.2) Let R be an integral domain and let a, b ∈ R. Then a | b and b | a if and only if
b = au where u is a unit of R.

Proof. Let u be a unit; then a|au. Also (au)u−1 = a, so au|a. Conversely, assume that
a | b and b | a. If a = 0, then b = 0 and the statement is certainly true, so let a ̸= 0.
Now a = bc and b = ad for some c, d ∈ R. Therefore a = bc = adc and by (6.3.1) we
obtain dc = 1, so that d is a unit.

For example, two integers a and b are associates if and only if b = ±a.
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Irreducible elements. Let R be a commutative ring with identity. An element a of R
is called irreducible if it is neither 0 nor a unit and if its only divisors are units and
associates of a, i.e., the elements thatwe knowmust divide a. Thus irreducible elements
have as few divisors as possible.

Example (7.1.1)

(i) The irreducible elements ofℤ are the prime numbers and their negatives.
(ii) A �eld has no irreducible elements since every non-zero element is a unit.
(iii) If F is a �eld, the irreducible elements of the polynomial ring F[t] are the so-

called irreducible polynomials, i.e., the non-constant polynomials which are not
expressible as a product of polynomials of lower degree.

Almost every signi�cant property of division in ℤ depends ultimately on the Di-
vision Algorithm. Thus it is natural to focus on rings in which some version of this
property is valid. Thismotivates us to introduce a special class of domains, the so-called
Euclidean domains.

A domain R is called Euclidean if there is a function

δ : R − {0R} → ℕ

with the following properties:
(i) δ(a) ≤ δ(ab) if 0 ̸= a, b ∈ R;
(ii) if a, b ∈ R and b ̸= 0, there exist q, r ∈ R such that a = bq + r where either r = 0 or

δ(r) < δ(b).
The standard example of a Euclideandomain isℤwhere δ is the absolute value function,
i.e., δ(a) = |a|. Note that property (i) holds since |ab| = |a| ⋅ |b| ≥ |a| if b ̸= 0. Of course
(ii) is the usual statement of the Division Algorithm forℤ.

New and important examples of Euclidean domains are given by the next result.

(7.1.3) If F is a �eld, the polynomial ring F[t] is a Euclidean domain with associated
function δ given by δ(f) = deg(f).

Proof. We already know from (6.3.2) that R = F[t] is a domain. Also, by the same result,
if f, g ̸= 0, then δ(fg) = deg(fg) = deg(f) + deg(g) ≥ deg(f) = δ(f). Hence property (i) is
valid. To establish the validity of (ii), put

S = {f − gq | q ∈ R}.

If 0 ∈ S, then f = gq for some q ∈ R and we may take r to be 0. Assuming that 0 ∉ S,
we note that every element of S has degree ≥ 0, so by the Well-Ordering Principle there
is an element r in S with smallest degree, say r = f − gq where q ∈ R. Thus f = gq + r.

Suppose that deg(r) ≥ deg(g). Write g = atm + ⋅ ⋅ ⋅ and r = btn + ⋅ ⋅ ⋅ where m =
deg(g), n = deg(r), 0 ̸= a, b ∈ F and the dots represent terms of lower degree in t. Since
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m ≤ n, we can form the polynomial

s = r − (a−1btn−m)g ∈ R.

Now the term in tn cancels in s, so either s = 0 or deg(s) < n. But s = f − (q +
a−1btn−m)g ∈ S and hence s ̸= 0, so deg(s) < n, which contradicts the minimality
of n = deg(r). Therefore deg(r) < deg(g), as required.

A less familiar example of a Euclidean domain is the ring of Gaussian integers. A
Gaussian integer is a complex number of the form

u + iv

where u, v ∈ ℤ and of course i = √−1. It is easily seen that the Gaussian integers form
a subring of ℂ containing 1 and hence constitute a domain.

(7.1.4) The ring R of Gaussian integers is a Euclidean domain.

Proof. In this case an associated function δ : R − {0} → ℕ is de�ned by the rule

δ(u + iv) = |u + iv|2 = u2 + v2.

We must show that δ satis�es the two requirements for a Euclidean domain. In the �rst
place, if 0 ̸= a, b ∈ R, then δ(ab) = |ab|2 = |a|2|b|2 ≥ |a|2 since |b| ≥ 1.

Veri�cation of the second requirement is harder. First write ab−1 = u� + iv� where
u�, v� are rational numbers. Now choose integers u and v that are as close as possible
to u� and v� respectively; thus |u − u�| ≤ 1

2 and |v − v�| ≤ 1
2 . Next

a = b(u� + iv�) = b(u + iv) + b(u�� + iv��)

where u�� = u� − u and v�� = v� − v. Finally, let q = u + iv and r = b(u�� + iv��). Then
a = bq + r; also q ∈ R and hence r = a − bq ∈ R. If r ̸= 0, then, since |u��| ≤ 1

2 and
|v��| ≤ 1

2 ,

δ(r) = |b|2|u�� + iv��|2 = |b|2(u��2 + v��2) ≤ |b|2(14 +
1
4)

=
1
2
|b|2,

so that δ(r) < |b|2 = δ(b). Therefore δ(r) < δ(b) as required.

Exercises (7.1)

(1) Complete the proof of (7.1.1).
(2) Identify the irreducible elements in the following rings:

(i) the ring of rational numbers with odd denominators;
(ii) ℤ[t].
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(3) Let R be a commutative ring with identity. If R has no irreducible elements, show
that either R is a �eld or there exists an in�nite strictly increasing chain of principal
ideals I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ in R. Deduce that if R is noetherian, it is a �eld.
(4) Let R = F[[t]] be the ring of formal power series in t over a �eld F, (see Exercise
(6.1.8)). Prove that the irreducible elements of R are those of the form tf where f ∈ R
and f(0) ̸= 0.
(5) Let f = t5 − 3t2 + t + 1 and g = t2 + t + 1 be polynomials inℚ[t]. Find q, r ∈ ℚ[t]
such that f = gq + r and deg(r) ≤ 1.
(6) Let R be a Euclidean domain with associated function δ : R − {0} → ℕ.

(i) Show that δ(a) ≥ δ(1) for all a ̸= 0 in R.
(ii) If a is a unit of R, prove that δ(a) = δ(1).
(iii) Conversely, show that if δ(a) = δ(1), then a is a unit of R.

(7) Prove that t3 + t + 1 is irreducible inℤ2[t], but t3 + t2 + t + 1 is reducible.

7.2 Principal ideal domains

Let R be a commutative ring with identity. If r ∈ R, recall from (6.2) that the subset
Rr = {rx | x ∈ R} = (r) is an ideal of R containing r called a principal ideal. If every
ideal of R is principal, then R is a principal ideal ring. A domain in which every ideal
is principal is called a principal ideal domain or PID: these rings form an extremely
important class of domains. For example, ℤ is a PID; for an ideal of ℤ is a cyclic
subgroup and thus has the formℤn where n ≥ 0.

A good source of PID’s is indicated by the next result.

(7.2.1) Every Euclidean domain is a principal ideal domain.

Proof. Let R be a Euclidean domain with associated function δ : R − 0 → ℕ and let I
be an ideal of R; we need to show that I is principal. If I is the zero ideal, I = (0) and
I is principal. So we assume that I ̸= 0 and apply the Well-Ordering Law to pick an
x in I − 0 such that δ(x) is minimal. Now certainly (x) ⊆ I; the claim is that I ⊆ (x).
To substantiate this, let y ∈ I and write y = xq + r with q, r ∈ R where either r = 0
or δ(r) < δ(x). This is possible since δ is the associated function for the Euclidean
domain R. If r = 0, then y = xq ∈ (x). Otherwise δ(r) < δ(x); but this is impossible
since r = y − xq ∈ I, which contradicts the choice of x in I − 0. Therefore I = (x).

The following important result is a consequence of (7.1.3) and (7.2.1).

Corollary (7.2.2) If F is a �eld, then F[t] is a principal ideal domain.

Another example of a PID is the ring of Gaussian integers by (7.2.1) and (7.1.4). Our
next objective is to show that PID’s have good division properties, despite the lack of a
division algorithm.
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Greatest common divisors. Let a, b be elements in a domain R. A greatest common
divisor (or gcd) of a and b is a ring element d such that the following hold:
(i) d | a and d | b;
(ii) if c | a and c | b for some c ∈ R, then c | d.
The de�nition here has been carried over directly from the integers – see (2.2).

Notice that if d and d� are two gcd’s of a, b, then d | d� and d� | d, so that d and d�

are associate. Thus by (7.1.2) d� = du with u a unit of R. It follows that gcd’s are unique
only up to a unit. Of course in the case of ℤ, where the units are ±1, we were able
to make gcd’s unique by insisting that they be positive. This course of action is not
possible in arbitrary domains since there is no concept of positivity.

There is no reason why gcd’s should exist in a domain. However, the situation is
very satisfactory for PID’s.

(7.2.3) Let a and b be elements of a principal ideal domain R. Then a and b have a
greatest common divisor d which has the form d = ax + by with x, y ∈ R.

Proof. De�ne I = {ax + by | x, y ∈ R} and observe that I is an ideal of R. Hence I = (d)
for some d ∈ I, with d = ax + by say. If c | a and c | b, then c | ax + by = d by (7.1.1).
Also a ∈ I = (d), so d | a, and similarly d | b. Hence d is a gcd of a and b.

Elements a and b of a domain R are said to be relatively prime if 1 is a gcd of a
and b, which means that ax + by = 1 for some x, y ∈ R.

(7.2.4) (Euclid’s Lemma) Let a, b, c be elements of a principal ideal domain and assume
that a | bc where a and b are relatively prime. Then a | c.

Corollary (7.2.5) If R is a principal ideal domain and p | bc where p, b, c ∈ R and p is
irreducible, then p | b or p | c.

The proofs of these results are exactly the same as those given in (2.2) forℤ.

Maximal ideals in principal ideal domains. In a PID the maximal ideals and the prime
ideals coincide and admit a nice description in terms of irreducible elements.

(7.2.6) Let I be a non-zero ideal of a principal ideal domain R. Then the following state-
ments about I are equivalent:
(i) I is maximal;
(ii) I is prime;
(iii) I = (p) where p is an irreducible element of R.

Proof. (i)⇒ (ii). This was proved in (6.3.8).
(ii) ⇒ (iii). Assume that I is prime. Since R is a PID, we have I = (p) for some p ∈ R.
Note that p cannot be a unit since I ̸= R. Suppose that p = ab where neither a nor b is
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associate to p. Then ab ∈ I and I is prime, so a ∈ I or b ∈ I, i.e., p | a or p | b. Since we
also have a | p and b | p, we obtain the contradiction that a or b is associate to p. This
shows that p is irreducible.
(iii)⇒ (i). Assume that I = (p) with p irreducible, and let I ⊆ J ⊆ R where J is an ideal
of R. Then J = (x) for some x ∈ R, and p ∈ (x), so that x | p. Hence either x is a unit or
it is associate to p, so that J = R or J = I. Therefore I is maximal as claimed.

Corollary (7.2.7) Let F be a �eld. Then the maximal ideals of the polynomial ring F[t]
are exactly those of the form (f) where f is an irreducible polynomial which is monic, (i.e.,
its leading coe�cient is 1).

This is because F[t] is a PID by (7.2.2) and the irreducible elements of F[t] are just
the irreducible polynomials. The corollary provides us with an important method for
constructing a �eld from an irreducible polynomial f ∈ F[t]: indeed F[t]/(f) is a �eld.
This will be exploited in (7.4) below.

We conclude the section by noting a property of PID’s which will be crucial when
we address the issue of unique factorization in (7.4).

(7.2.8) Every principal ideal domain is noetherian.

Proof. Let R be a PID. By de�nition every ideal of R is principal and hence can be
generated by a single element. Therefore R is noetherian by (6.4.2).

Exercises (7.2)

(1) Prove (7.2.4) and (7.2.5).
(2) Show thatℤ[t] is not a PID.
(3) Show that F[t1, t2] is not a PID for any �eld F.
(4) Let R be a commutative ring with identity. If R[t] is a PID, prove that R must be a
�eld.
(5) Let f = t3 + t + 1 ∈ ℤ2[t]. Show thatℤ2[t]/(f) is �nite �eld and �nd its order.
(6) Prove that the ring of rational numbers with odd denominators is a PID.
(7) Prove that F[[t]], the ring of formal power series in t over a �eld F, is a PID by
describing its ideals.
(8) Let R be a commutative noetherian ring with identity. Assume that R has the prop-
erty that each pair of elements a, b has a greatest common divisor which is a linear
combination of a and b. Prove that R is a PID. [Hint: let I be an ideal of R. Note that I is
a �nitely generated ideal and reduce to the case where it is generated by two elements].
(9) Prove that the Chinese Remainder Theorem holds in a Euclidean domain, (cf. (2.3.7)).
(10) Describe the Euclidean algorithm for a Euclidean domain.
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7.3 Unique factorization in integral domains

The present section is concerned with domains in which there is unique factorization
in terms of irreducible elements. Our model here is the Fundamental Theorem of
Arithmetic (2.2.7), which asserts that such factorizations exist inℤ. First it is necessary
to clarify what is meant by uniqueness of factorization.

Let R be a domain and let S denote the set of all irreducible elements in R, which
might of course be empty. Observe that “being associate to” is an equivalence relation
on S, so that S splits up into equivalence classes. Choosing one element from each
equivalence class, we form a subset C of S. (Strictly speaking this procedure involves the
Axiom of Choice – see (14.1)). Now observe that the set C has the following properties:
(i) every irreducible element of R is associate to some element of C;
(ii) distinct elements of C are not associate.
A subset C with these properties is called a complete set of irreducibles for R. We have
just established the following simple fact.

(7.3.1) Every integral domain has a (possibly empty) complete set of irreducible elements.

Our interest in complete sets of irreducibles stems from the observation that if
there is to be unique factorization in terms of irreducibles, then only irreducibles from
a complete set can be used: otherwise there will be di�erent factorizations of the type
ab = (ua)(u−1b) where a, b are irreducible and u is a unit.

An integral domain R is called a unique factorization domain, or UFD, if there exists
a complete set of irreducibles C for R such that each non-zero element a of R has an
expression of the form

a = up1p2 ⋅ ⋅ ⋅ pk

where u is a unit and pi ∈ C, and furthermore this expression is unique up to order of
the factors.

At present the only example of a UFD we know is ℤ, where C can be taken to be
the set of prime numbers. The next theorem provides us with many more examples.

(7.3.2) Every principal ideal domain is a unique factorization domain.

Proof. Let R be a PID and let C be any complete set of irreducibles of R. It will be shown
that there is unique factorization for elements of R in terms of units and elements
of C. This is accomplished in three steps, the �rst of which establishes the existence of
irreducibles when R contains a non-zero, non-unit element, i.e., R is not a �eld.
(i) If a is a non-zero, non-unit element of R, it is divisible by at least one irreducible
element of R.

Suppose this is false. Then a itself must be reducible, so a = a1a�1 where a1 and a�1
are non-units and (a) ⊆ (a1). Also (a) ̸= (a1). For otherwise a1 ∈ (a), so that a | a1, as
well as a1 | a; by (7.1.2) this implies that a�1 is a unit. Therefore (a) ⊂ (a1).
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Next a1 cannot be irreducible since a1 | a. Thus a1 = a2a�2 where a2, a�2 are
non-units and it follows that (a1) ⊂ (a2) by the argument just given. Continuing in this
way, we recognize that the procedure cannot terminate: for otherwise an irreducible
divisor of a will appear. Hence there is an in�nite strictly ascending chain of ideals
(a) ⊂ (a1) ⊂ (a2) ⊂ ⋅ ⋅ ⋅ ; but this is impossible since R is noetherian by (7.2.8).
(ii) If a is a non-zero, non-unit element of R, then a is a product of irreducibles.

Again suppose this is false. By (i) there is an irreducible p1 dividing a, with a =
p1a1 say. Now a1 cannot be a unit, so there is an irreducible p2 dividing a1, with say
a1 = p2a2 and a = p1p2a2, and so on inde�nitely. However, (a) ⊂ (a1) ⊂ (a2) ⊂ ⋅ ⋅ ⋅ is
a strictly ascending in�nite chain of ideals, which again contradicts (7.2.8).
(iii) If a is a non-zero element of R, then a is the product of a unit and irreducible elements
in C.

This is clear if a is a unit – no irreducibles are needed. Otherwise by (ii) a is a
product of irreducibles, each of which is associate to an element of C. The result now
follows on replacing each irreducible factor of a by an irreducible in C multiplied by a
unit.
(iv) The �nal step in the proof establishes uniqueness. Suppose that

a = up1p2 ⋅ ⋅ ⋅ pk = vq1q2 ⋅ ⋅ ⋅ qℓ

where u, v are units of R and pi , qj ∈ C. Argue by induction on k: if k = 0, then a = u,
a unit, so ℓ = 0 and u = v. Now assume that k > 0.

Since p1 | a = vq1q2 ⋅ ⋅ ⋅ qℓ, Euclid’s Lemma shows that p1 must divide one of
q1, . . . , qℓ. Relabelling the qj’s, we may assume that p1 | q1. Thus p1 and q1 are
associate members of C, which can only mean that p1 = q1. Hence, on cancelling p1,
we obtain a� = up2 ⋅ ⋅ ⋅ pk = vq2 ⋅ ⋅ ⋅ qℓ. By the induction hypothesis k − 1 = ℓ − 1, so
k = ℓ and, after further relabelling, pi = qi for i = 2, 3, . . . , k, and u = v. Therefore
uniqueness has been established.

Corollary (7.3.3) If F is a �eld, the polynomial ring F[t] is a unique factorization domain.

This is because F[t] is a PID by (7.2.2). The natural choice for a complete set of
irreducibles in F[t] is the set of all monic irreducible polynomials. Thus we have unique
factorization in F[t] in terms of constants and monic irreducible polynomials. Another
example of a UFD is the ring of Gaussian integers {a+ b√−1 | a, b ∈ Z}, which by (7.1.4)
is a Euclidean domain and hence a PID. However, some domains of similar appearance
are not UFD’s.

Example (7.3.1) Let R be the subring of ℂ consisting of all a + b√−3 where a, b ∈ ℤ.
Then R is not a unique factorization domain.

First observe that ±1 are the only units of R. For, let 0 ̸= r = a + b√−3 ∈ R. Then

r−1 =
1

a2 + 3b2
(a − b√−3),
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which is in R if and only if a
a2+3b2 and b

a2+3b2 are integers. This happens only when
b = 0 and 1

a ∈ ℤ, i.e., r = a = ±1. It follows that no two of the elements 2, 1 + √−3,
1 − √−3 are associate.

Next we claim that 2, 1 + √−3, 1 − √−3 are irreducible elements of R. Fortunately
all three elements can be handled simultaneously. Suppose that

(a + √−3b)(c + √−3d) = 1 ± √−3 or 2

where a, b, c, d ∈ ℤ. Taking the modulus squared of both sides, we obtain (a2 +
3b2)(c2 + 3d2) = 4 in every case. But this implies that a2 = 1 and b = 0 or c2 = 1 and
d = 0, i.e., either a + √−3b or c + √−3d is a unit.

Finally, unique factorization fails because

4 = 2 ⋅ 2 = (1 + √−3)(1 − √−3)

and 2, 1 + √−3, 1 − √−3 are non-associate irreducibles. It follows that R is not a UFD.

Two useful properties of UFD’s are recorded in the next result.

(7.3.4) Let R be a unique factorization domain. Then:
(i) gcd’s exist in R;
(ii) Euclid’s Lemma holds in R.

Proof. To prove (i) let a = upe11 p
e2
2 ⋅ ⋅ ⋅ pekk and b = vpf11 p

f2
2 ⋅ ⋅ ⋅ pfkk where u, v are units

of R, the pi belong to a complete set of irreducibles for R, and ei , fi ≥ 0. De�ne d =
pg11 p

g2
2 ⋅ ⋅ ⋅ pgkk where gi is the minimum of ei and fi. Then d is a gcd of a and b. For

clearly d | a and d | b, and, on the other hand, if c | a and c | b, the unique
factorization property shows that c must have the form wph11 p

h2
2 ⋅ ⋅ ⋅ phkk where w is a

unit and 0 ≤ hi ≤ gi. Hence c | d. The proof of (ii) is left to the reader as an exercise.

Although polynomial rings in more than one variable over a �eld are not PID’s –
see Exercise (7.2.3) – they are in fact UFD’s. It is our aim in the remainder of the section
to prove this important result.

Primitive polynomials. Let R be a UFD and let 0 ̸= f ∈ R[t]. Since gcd’s exist in R
by (7.3.4), we can form the gcd of the coe�cients of f ; this is called the content of f ,

c(f).

Keep in mind that content is unique only up to a unit of R, and equations involving
content have to be interpreted in this light. If c(f) = 1, i.e., c(f) is a unit, the polynomial f
is said to be primitive. For example 2 + 4t − 3t3 ∈ ℤ[t] is a primitive polynomial. Next
two useful results about the content of polynomials will be established.

(7.3.5) Let 0 ̸= f ∈ R[t] where R is a unique factorization domain. Then f = cf0 where
c = c(f) and f0 ∈ R[t] is primitive.
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Proof. Write f = a0 + a1t + ⋅ ⋅ ⋅ + an tn; then c(f) = gcd{a0, a1, . . . , an} = c, say. Write
ai = cbi with bi ∈ R and put f0 = b0 + b1t + ⋅ ⋅ ⋅ + bn tn ∈ R[t]. Thus f = cf0. If
d = gcd{b0, b1, . . . , bn}, then d | bi and so cd | cbi = ai. Since c is the gcd of the ai, it
follows that cd divides c, which shows that d is a unit and f0 is primitive.

(7.3.6) Let R be a unique factorization domain and let f , g be non-zero polynomials
over R. Then c(fg) = c(f)c(g). In particular, if f and g are primitive, then so is fg.

Proof. Consider �rst the special case where f and g are primitive. If fg is not primitive,
c(fg) is not a unit, so it must be divisible by an irreducible element p of R. Write
f = ∑m

i=0 ai ti and g = ∑n
j=0 bj tj, so that

fg =
m+n
∑
k=0

ck tk

where ck = ∑k
i=0 aibk−i. (Here ai = 0 if i > m and bj = 0 if j > n). Since f is

primitive, p cannot divide all its coe�cients and there is an integer r ≥ 0 such that
p | a0, a1, . . . , ar−1, but p ∤ ar. Similarly there is an s ≥ 0 such that p divides each of
b0, b1, . . . , bs−1, but not bs. Now consider cr+s, which can be written

(a0br+s + a1br+s−1 + ⋅ ⋅ ⋅ + ar−1bs+1) + arbs + (ar+1bs−1 + ⋅ ⋅ ⋅ + ar+sb0).

We know that p | cr+s; also p divides both the expressions in parentheses in the
expression above. It follows that p | arbs. By Euclid’s Lemma for UFD’s (see (7.3.4)), it
follows that p | ar or p | bs, both of which are impossible. By this contradiction fg is
primitive.

Now we are ready for the general case. Using (7.3.5), we write f = cf0 and g = dg0
where c = c(f), d = c(g) and the polynomials f0, g0 are primitive in R[t]. Then fg =
cd(f0g0) and, as has just been shown, f0g0 is primitive. In consequence c(fg) = cd =
c(f)c(g).

The next result is frequently helpful in deciding whether a polynomial is irre-
ducible.

(7.3.7) (Gauss’s Lemma) Let R be a unique factorization domain and let F denote its
�eld of fractions. If f ∈ R[t], then f is irreducible over R if and only if it is irreducible over
F

Proof. We can assume that R ⊆ F. Of course irreducibility over F implies irreducibility
over R. It is the converse implication that requires proof. Assume that f is irreducible
over R but reducible over F. We can assume that f is primitive on the basis of (7.3.5).
Then f = gh where g, h ∈ F[t] are non-constant. Since F is the �eld of fractions of R,
there exist elements a, b ̸= 0 in R such that g1 = ag ∈ R[t] and h1 = bh ∈ R[t]. Write
g1 = c(g1)g2 where g2 ∈ R[t] is primitive. Then ag = c(g1)g2, so we can divide both
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sides by gcd{a, c(g1)}. On these grounds it is permissible to assume that c(g1) and a
are relatively prime, and for similar reasons the same can be assumed of c(h1) and b.

Next (ab)f = (ag)(bh) = g1h1. Taking the content of each side and using (7.3.6),
we obtain ab = c(g1)c(h1) since f is primitive. But c(g1) and a are relatively prime,
so a | c(h1), and for a similar reason b | c(g1). Therefore we have the factorization
f = (b−1g1)(a−1h1) in which both factors are polynomials over R. But this contradicts
the irreducibility of f over R and the proof is complete.

For example, to show that a polynomial in ℤ[t] isℚ-irreducible, it is enough to
show that it isℤ-irreducible, usually an easier task.

Polynomial rings in several variables. Let us now use the theory of content to show
that unique factorization occurs in polynomial rings with more than one variable. Here
one should keep in mind that such rings are not PID’s and so are not covered by (7.3.2).
The main result is:

(7.3.8) If R is a unique factorization domain, then so is the polynomial ring R[t1, . . . , tk].

Proof. In the �rst place we need only prove the theorem for k = 1. Indeed if k > 1, we
have

R[t1, . . . , tk] = (R[t1, . . . , tk−1])[tk],

so that induction on kwill succeed once the case k = 1 is settled. From now on consider
the ring S = R[t]. The �rst step in the proof is to establish:
(i) Any non-constant polynomial f in S is expressible as a product of irreducible elements
of R and primitive irreducible polynomials over R.

The key idea in the proof is to introduce the �eld of fractions F of R, and exploit the
fact that F[t] is known to be a PID and hence a UFD. First of all write f = c(f)f0 where
f0 ∈ S is primitive, using (7.3.5). Here c(f) is either a unit or a product of irreducibles
of R. Thus we can assume that f is primitive. Regarding f as an element of the UFD F[t],
we write f = p1p2 ⋅ ⋅ ⋅ pm where pi ∈ F[t] is irreducible over F. Now �nd ai ̸= 0 in R
such that fi = aipi ∈ S. Writing c(fi) = ci, we have fi = ciqi where qi ∈ R[t] is primitive.
Hence pi = a−1i fi = a

−1
i ciqi and qi is F-irreducible since pi is F-irreducible. Thus qi is

certainly R-irreducible.
Combining these expressions for pi, we �nd that

f = (a−11 a
−1
2 ⋅ ⋅ ⋅ a−1m c1c2 ⋅ ⋅ ⋅ cm)q1q2 ⋅ ⋅ ⋅ qm ,

and hence (a1a2 ⋅ ⋅ ⋅ am)f = (c1c2 ⋅ ⋅ ⋅ cm)q1q2 ⋅ ⋅ ⋅ qm. Now take the content of both sides
of this equation to get a1a2 ⋅ ⋅ ⋅ am = c1c2 ⋅ ⋅ ⋅ cm up to a unit, since f and the qi are
primitive. Consequently f = uq1q2 ⋅ ⋅ ⋅ qm for some unit u of R. This is what was to be
proved.
(ii) The next step is to assemble a complete set of irreducibles for S. First take a com-
plete set of irreducibles C1 for R. Then consider the set of all primitive irreducible
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polynomials in S. Now being associate is an equivalence relation on this set, so we
can choose an element from each equivalence class. This yields a set of non-associate
primitive irreducible polynomials C2 with the property that every primitive irreducible
polynomial in R[t] is associate to an element of C2. Now put

C = C1 ∪ C2.

Since distinct elements of C cannot be associate, C is a complete set of irreducibles
for S. If 0 ̸= f ∈ S, it follows from step (i) that f is expressible as a product of elements
of C and a unit of R.
(iii) There remains the question of uniqueness. Suppose that

f = ua1a2 ⋅ ⋅ ⋅ ak f1f2 ⋅ ⋅ ⋅ fr = vb1b2 ⋅ ⋅ ⋅ bℓ g1g2 ⋅ ⋅ ⋅ gs

where u, v are units, ak , bℓ ∈ C1 and fi , gj ∈ C2. By Gauss’s Lemma (7.3.7) the fi and gj
are F-irreducible. Since F[t] is a UFD and C2 is a complete set of irreducibles for F[t],
we conclude that r = s and fi = wigi, (after possible relabelling), where wi ∈ F. Write
wi = cid−1i where ci , di ∈ R. Then di fi = cigi, which, on taking contents, yields di = ci
up to a unit. This implies that wi is a unit of R. Therefore fi and gi are associate and
thus fi = gi.

Cancelling the fi and gi, we are left with ua1a2 ⋅ ⋅ ⋅ ak = vb1b2 ⋅ ⋅ ⋅ bℓ. Since R is
a UFD with a complete set of irreducibles C1, it follows that k = ℓ, u = v and ai = bi
(after further relabelling). This completes the proof.

This theorem provides us with some important new examples of UFD’s.

Corollary (7.3.9) The following rings are unique factorization domains:

ℤ[t1, . . . , tk] and F[t1, . . . , tk]

where F is any �eld.

Exercises (7.3)

(1) Prove that a UFD satis�es the ascending chain condition on principal ideals, i.e.,
there does not exist an in�nite strictly ascending chain of principal ideals.
(2) If R is a UFD and C is any complete set of irreducible elements for R, show that there
is unique factorization in terms of C.
(3) If C1 and C2 are two complete sets of irreducibles for a domain R, prove that |C1| =
|C2|.
(4) Show that the domain {a + b√−5 | a, b ∈ ℤ} is not a UFD.
(5) Prove that t3 + at + 1 ∈ ℤ[t] is reducible overℚ if and only if a = 0 or −2.
(6) Explain why the ring of rational numbers with odd denominators is a UFD and �nd
a complete set of irreducibles for it.
(7) The same question for the power series ring F[[t]] where F is a �eld.
(8) Prove that Euclid’s Lemma is valid in any UFD.
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7.4 Roots of polynomials and splitting �elds

Let R be a commutative ring with identity, let f = b0 + b1t + ⋅ ⋅ ⋅ + bn tn ∈ R[t] and let
a ∈ R. Then the value of the polynomial f at a is de�ned to be

f(a) = b0 + b1a + ⋅ ⋅ ⋅ + bnan ∈ R.

Thus we have a function θa : R[t] → R which evaluates polynomials at a, i.e., θa(f) =
f(a). Now f + g(a) = f(a) + g(a) and (fg)(a) = f(a)g(a), because the ring elements f(a)
and g(a) are added and multiplied by the same rules as the polynomials f and g. It
follows that θa : R[t] → R is a ring homomorphism. Its kernel consists of all f ∈ R[t]
such that f(a) = 0, that is, all polynomials that have a as a root.

The following criterion for an element to be a root of a polynomial should be
familiar from elementary algebra.

(7.4.1) (The Remainder Theorem) Let R be an integral domain, let f ∈ R[t] and let a ∈ R.
Then a is a root of f if and only if t − a divides f in the ring R[t].

Proof. If t − a divides f , then f = (t − a)g where g ∈ R[t]. Then f(a) = θa(f) = θa((t −
a)g) = θa(t − a)θa(g) = 0. Hence a is a root of f .

Conversely, assume that f(a) = 0 and let F denote the �eld of fractions of R. Since
F[t] is a Euclidean domain, we can divide f by t − a to get a quotient and remainder
in F[t], say f = (t − a)q + r where q, r ∈ F[t] and deg(r) < 1, i.e., r is constant. However,
notice that by the usual long division process q and r actually belong to R[t]. Finally,
apply the evaluation homomorphism θa to f = (t − a)q + r to obtain 0 = r since r is
constant. Therefore t − a divides f .

Corollary (7.4.2) The kernel of the evaluation homomorphism θa is the principal ideal
(t − a).

This is simply a restatement of (7.4.1).

The multiplicity of a root. Let R be a domain and suppose that f ∈ R[t] is not constant
and has a root a in R; thus t − a | f . There is a largest positive integer n such that
(t − a)n | f , since the degree of a divisor of f cannot exceed deg(f). In this situation a is
said to be a root of f with multiplicity n. If n > 1, then a is called amultiple root of f .

(7.4.3) Let R be a domain and let 0 ̸= f ∈ R[t] have degree n. Then the sum of the
multiplicities of all the roots of f that lie in R is at most n.

Proof. Let a be a root of f . By (7.4.2) t − a divides f and f = (t − a)g where g ∈ R[t]
has degree n − 1. By induction on n the sum of the multiplicities of the roots of g is at
most n − 1. Now a root of f either equals a or else is a root of g. Consequently the sum
of the multiplicities of the roots of f is at most 1 + (n − 1) = n.
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Example (7.4.1)

(i) The polynomial t2 + 1 ∈ ℚ[t] has no roots inℚ, so the sum of the multiplicities of
the roots of a polynomial can be less than the degree.
(ii) Consider the polynomial t4 − 1 ∈ R[t]where R is the ring of rational quaternions
(see (6.3)). Then f has 8 roots in R, namely ±1, ±I, ±J, ±K. Therefore (7.4.3) is not valid
for non-commutative rings, which is another reason to keep our rings commutative.

Next comes another well-known theorem.

(7.4.4) (The Fundamental Theorem of Algebra) Let f be a non-zero polynomial of de-
gree n over the �eld of complex numbersℂ. Then the sum of the multiplicities of the roots
of f in ℂ equals n, i.e., f is a product of n linear factors over ℂ.

The proof of this theorem will be postponed until Chapter Twelve – see (12.3.6).
Despite its name, all the known proofs of the theorem employ some analysis.

Derivatives. Derivatives are useful in detecting multiple roots of polynomials. Since
we are not dealing with polynomials overℝ here, limits cannot be used. For this reason
we adopt the following formal de�nition of the derivative f � of the polynomial f ∈ R[t]
where R is a commutative ring with identity. If f = a0 + a1t + ⋅ ⋅ ⋅ + an tn, then

f � = a1 + 2a2t + ⋅ ⋅ ⋅ + nan tn−1 ∈ R[t].

On the basis of this de�nition the usual rules of di�erentiation can be established.

(7.4.5) Let f, g ∈ R[t] and c ∈ R where R is a commutative ring with identity. Then
(i) (f + g)� = f � + g�;
(ii) (cf)� = cf �;
(iii) (fg)� = f �g + fg�.

Proof. Only the statement (iii) will be proved. Write f = ∑m
i=0 ai ti and g = ∑n

j=0 bj tj;
then

fg =
m+n
∑
i=0

(
i
∑
k=0

akbi−k)ti .

The coe�cient of ti−1 in (fg)� is therefore equal to i(∑i
k=0 akbi−k).

On the other hand, the coe�cient of ti−1 in f �g + fg� is

i−1
∑
k=0

(k + 1)ak+1bi−k−1 +
i−1
∑
k=0

(i − k)akbi−k ,

which equals

iaib0 +
i−2
∑
k=0

(k + 1)ak+1bi−k−1 + ia0bi +
i−1
∑
k=1

(i − k)akbi−k .
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On adjusting the summation in the second sum, this becomes

iaib0 +
i−2
∑
k=0

(k + 1)ak+1bi−k−1 +
i−2
∑
k=0

(i − k − 1)ak+1bi−k−1 + ia0bi ,

which reduces to

i(a0bi +
i−2
∑
k=0

ak+1bi−k−1 + aib0) = i(
i
∑
k=0

akbi−k).

It follows that (fg)� = f �g + fg�.

Corollary (7.4.6) (fm)� = mfm−1f � where m is a positive integer.

This is proved by induction on m using (7.4.5). A criterion for a polynomial to have
multiple roots can now be given.

(7.4.7) Let R be a domain and let a ∈ R be a root of a polynomial f ∈ R[t]. Then a is a
multiple root if and only if t − a divides both f and f �.

Proof. Let ℓ be the multiplicity of the root a. Then ℓ ≥ 1 and f = (t − a)ℓg where
t−a ∤ g ∈ R[t]. Hence f � = ℓ(t−a)ℓ−1g+(t−a)ℓg� by (7.4.5) and (7.4.6). If a is a multiple
root of f , then ℓ ≥ 2 and f �(a) = 0; by (7.4.1) t − a divides f �, as well as f .

Conversely, suppose that t − a | f � = ℓ(t − a)ℓ−1g + (t − a)ℓg�. If ℓ = 1, then t − a
divides g, a contradiction. Therefore ℓ > 1 and a is a multiple root.

Example (7.4.2) Let F be a �eld whose characteristic does not divide the positive inte-
ger n. Then tn − 1 ∈ F[t] has no multiple roots in F.

For, with f = tn − 1, we have f � = ntn−1 ̸= 0 since char(F) does not divide n. Hence
tn −1 and ntn−1 are relatively prime and thus f and f � have no common roots. Therefore
f has no multiple roots by (7.4.7).

Splitting �elds. We will now consider roots of polynomials over a �eld F. If f ∈ F[t]
is not constant, we know that f has at most deg(f) roots in F, including multiplicities,
by (7.4.3). However, f need not have any roots in F, as the example t2 + 1 ∈ ℝ[t] shows.
On the other hand, t2+ 1 has two roots in the larger �eld ℂ.

The question to be addressed is this: can we construct a �eld K, larger than F in
some sense, in which f has exactly deg(f) roots up to multiplicity, i.e., over which f
splits into a product of linear factors? A smallest such �eld is called a splitting �eld
of f . In the case of the polynomial t2 + 1 ∈ ℝ[t], the situation is quite clear; its splitting
�eld is ℂ since t2 + 1 = (t + i)(t − i)where i = √−1. However, for a general �eld F we
do not have a convenient larger �eld like ℂ at hand. Thus splitting �elds will have to
be constructed from scratch.
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We begin by formulating precisely the de�nition of a splitting �eld. If F is a �eld, by
a sub�eld of F is meant a subring containing the identity element which is closed under
forming inverses of non-zero elements. Let f be a non-constant polynomial over F. A
splitting �eld for f over F is a �eld K containing an isomorphic copy F1 of F as a sub�eld
such that the polynomial in F1[t] corresponding to f can be expressed in the form

a(t − c1)(t − c2) ⋅ ⋅ ⋅ (t − cn)

where a is in F1 and K is a smallest �eld containing F1 and the elements c1, c2, . . . cn.
There is nothing to be lost in assuming that F ⊆ K since F can be replaced by the
isomorphic �eld F1. Thus F is a sub�eld of K.

Our �rst objective is to demonstrate that splitting �elds actually exist.

(7.4.8) If f is a non-constant polynomial over a �eld F, then f has a splitting �eld over F.

Proof. We argue by induction on n = deg(f); note that we may assume n > 1 since
otherwise F itself is a splitting �eld for f . Assume the result is true for all polynomials
of degree less than n. Consider �rst the case where f is reducible, so f = gh where g,
h in F[t] both have degree less than n. By induction hypothesis g has a splitting �eld
over F, say K1, which we may suppose contains F as a sub�eld. For the same reason h
has a splitting �eld over K1, say K, with K1 ⊆ K. Clearly f is a product of linear factors
over K. Hence K is a splitting �eld of f .

Therefore we can assume f is irreducible. By (7.2.6) the ideal (f) is maximal in F[t]
and consequently the quotient ring

K1 = F[t]/(f)

is a �eld. Next the assignment a Ü→ a + (f), where a ∈ F, determines an injective ring
homomorphism from F to K1. The image is a sub�eld F1 of K1 and F ≃ F1. Thus we
may regard f as a polynomial over F1.

The critical observation to make is that f has a root in K1, namely a1 = t + (f); for
f(a1) = f(t) + (f) = (f) = 0K1 . By (7.4.1) f = (t − a1)g where g ∈ K1[t], and of course
deg(g) = n − 1. By induction hypothesis g has a splitting �eld K containing K1. Since
a1 ∈ K1 ⊆ K, we see that K is a splitting �eld for f : for any sub�eld of K containing F
and the roots of f must contain K1 since each element of K1 has the form h+(f) = h(a1)
for some h ∈ F[t]. This completes the proof.

Example (7.4.3) Let f = t3 − 2 ∈ ℚ[t]. The roots of f are 21/3, c21/3, c221/3 where
c = e2πi/3, a complex cube root of unity. Then f has as its splitting �eld the smallest
sub�eld of ℂ containingℚ, 21/3 and c.

The next example shows how �nite �elds can be constructed from irreducible
polynomials.
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Example (7.4.4) Show that f = t3 + 2t + 1 ∈ ℤ3[t] is irreducible and use it to construct
a �eld of order 27. Prove that this is a splitting �eld of f .

First of all notice that the only way a cubic polynomial can be reducible is if it has
a linear factor, i.e., it has a root in the �eld. But we easily verify that f has no roots in
ℤ3 = {0, 1, 2} since f(0) = f(1) = f(2) = 1. (For conciseness we have written i for the
congruence class [i]). It follows that f is irreducible and

K = ℤ3[t]/(f)

is a �eld.
If g ∈ ℤ3[t], then by the Division Algorithm g = fq + r where q, r ∈ ℤ3[t] and r = 0

or 0 ≤ deg r < 3. Hence g+(f) = r+(f). This shows that every element of K has the form
a0 + a1t + a2t2 + (f) where ai ∈ ℤ3. Thus |K| ≤ 33 = 27. On the other hand, all such
elements are distinct. Indeed, if r + (f) = s + (f)with r and s both of degree < 3, then
f | r − s, so that r = s. Therefore |K| = 27 and we have constructed a �eld of order 27.

As in the proof of (7.4.8), we see that f has the root a = t + (f) in K. To prove that
K is actually a splitting �eld, note that f has two further roots in K, namely a + 1 and
a − 1. Thus f = (t − a)(t − a − 1)(t − a + 1).

Further discussion of �elds is postponed until Chapter Eleven. However, we have
seen enough to realize that irreducible polynomials play a vital role in the theory of
�elds. Thus a practical criterion for irreducibility is sure to be useful. Probably the best
known test for irreducibility is:

(7.4.9) (Eisenstein’s¹ Criterion) Let R be a unique factorization domain and let f =
a0 + a1t + ⋅ ⋅ ⋅ + an tn be a non-constant polynomial over R. Suppose that there is an
irreducible element p of R such that p | a0, p | a1, . . . , p | an−1, but p ∤ an and p2 ∤ a0.
Then f is irreducible over R.

Proof. Assume that f is reducible and

f = (b0 + b1t + ⋅ ⋅ ⋅ + br tr)(c0 + c1t + ⋅ ⋅ ⋅ + cs ts)

where bi , cj ∈ R, r, s < n, and r + s = n. By hypothesis p | a0 = b0c0, but p2 ∤ a0; thus
p must divide exactly one of b0 and c0, say p | b0 and p ∤ c0. Also p does not divide
an = brcs, so it cannot divide br. Therefore there is a smallest positive integer k ≤ r
such that p ∤ bk. Now p divides each of b0, b1, . . . , bk−1, and also p | ak because
k ≤ r < n. Since ak = (b0ck + b1ck−1 + ⋅ ⋅ ⋅ + bk−1c1) + bkc0, (where ci = 0 if i > s), it
follows that p | bkc0. By Euclid’s Lemma – which by (7.3.4) is valid in a UFD – either
p | bk or p | c0, both of which are forbidden.

1 Ferdinand Gotthold Max Eisenstein (1823–1852)
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Eisenstein’s Criterion is often applied in conjunction with Gauss’s Lemma (7.3.7) to
give a test for irreducibility over the �eld of fractions of a domain.

Example (7.4.5) Prove that t5 − 9t + 3 is irreducible overℚ.
First of all f = t5 − 9t + 3 is irreducible overℤ by Eisenstein’s Criterion with p = 3.

Then Gauss’s Lemma shows that f is irreducible overℚ.

Example (7.4.6) Show that if p is a prime, the polynomial f = 1 + t + t2 + ⋅ ⋅ ⋅ + tp−1 is
irreducible overℚ.

By Gauss’s Lemma it su�ces to prove that f is ℤ-irreducible. Since (7.4.9) is not
immediately applicable to f , we resort to a trick. Consider the polynomial g = f(t + 1);
then

g = 1 + (t + 1) + ⋅ ⋅ ⋅ + (t + 1)p−1 =
(t + 1)p − 1

t ,

by the formula for the sum of a geometric series. On expanding (t +1)p by the Binomial
Theorem – see Exercise (6.1.6) – we arrive at the formula

g = tp−1 + (
p

p − 1)
tp−2 + ⋅ ⋅ ⋅ + (

p
2)
t + (

p
1)

.

Now p | (pi ) if 0 < i < p by (2.3.3). Therefore g is irreducible over ℤ by Eisenstein’s
Criterion. Clearly this implies that f is irreducible overℤ. (The polynomial f is called
the cyclotomic polynomial of order p).

Exercises (7.4)

(1) Let f ∈ F[t] have degree ≤ 3 where F is a �eld. Show that f is reducible over F if and
only if it has a root in F.
(2) Find the multiplicity of the root 2 of the polynomial t3 + 2t2 + t + 2 ∈ ℤ5[t].
(3) List all irreducible polynomials of degree at most 3 inℤ2[t].
(4) Use t3 + t + 1 ∈ ℤ5[t] to construct a �eld of order 125.
(5) Let f = 1 + t + t2 + t3 + t4 ∈ ℚ[t].

(i) Prove that K = ℚ[t]/(f) is a �eld.
(ii) Show that every element of K can be uniquely written in the form a0 + a1x +

a2x2 + a3x3 where x = t + (f) and ai ∈ ℚ.
(iii) Prove that K is a splitting �eld of f . [Hint: note that x5 = 1 and check that x2,

x3, x4 are roots of f ].
(iv) Compute (1 + x2)3 and (1 + x)−1 in K.

(6) Show that t6 + 6t5 + 4t4 + 2t + 2 is irreducible overℚ.
(7) Show that t6 + 12t5 + 49t4 + 96t3 + 99t2 + 54t + 15 is irreducible overℚ. [Hint: use
a suitable change of variable].
(8) Let F = ℤp{t1}, the �eld of rational functions, and R = F[t] where t and t1 are
distinct indeterminates. Prove that tn − t21t + t1 ∈ R is irreducible over F for all n ≥ 1.
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(9) Find a polynomial of degree 4 inℤ[t]which has√3−√2 as a root and is irreducible
overℚ.
(10) Prove that if n is a positive integer that is not a prime, then 1 + t + t2 + ⋅ ⋅ ⋅ + tn−1 is
reducible over any �eld.
(11) Show thatℚ[t] contains an irreducible polynomial of every degree n ≥ 1.
(12) Let R be a commutative ring with identity containing a zero divisor. Find a linear
polynomial in R[t] which has at least two roots in R, so that (7.4.3) fails for R.



8 Vector spaces

We have already encountered groups and rings, two of the most commonly used alge-
braic structures. A third structure of great importance is a vector space. Vector spaces
appear throughout mathematics and they also turn up in many applied areas, for
example, in quantum theory and coding theory.

8.1 Vector spaces and subspaces

Let F be a �eld. A vector space over F is an additively written abelian group V with an
action of F on V called scalar multiplication, that is, a function from F × V to V written
(a, v) Ü→ av, (a ∈ F, v ∈ V), such that the following axioms hold for all u, v ∈ V and
a, b ∈ F.
(i) a(u + v) = au + av;
(ii) (a + b)v = av + bv;
(iii) (ab)v = a(bv);
(iv) 1Fv = v.
Notice that (iii) and (iv) assert that the multiplicative group of F acts on the set V in the
sense of (5.1). Elements of V are called vectors and elements of F scalars. When there is
no chance of confusion, it is usual to refer to the set V as the vector space.

First of all we record two elementary consequences of the axioms.

(8.1.1) Let v be a vector in a vector space V over a �eld F and let a ∈ F. Then:
(i) 0Fv = 0V and a0V = 0V ;
(ii) (−1F)v = −v.

Proof. Put a = 0F = b in vector space axiom (ii) to get 0Fv = 0Fv+0Fv. Hence 0Fv = 0V
by the cancellation law for the group (V, +). Similarly, setting u = 0V = v in (i) yields
a0V = 0V . This establishes (i).

Using axioms (ii) and (iv) and property (i), we obtain

v + (−1F)v = 1Fv + (−1F)v = (1F + (−1F))v = 0Fv = 0V .

Therefore (−1F)v equals −v, which completes the proof.

Examples of vector spaces

Before proceeding further we review some standard sources of vector spaces.
(i) Vector spaces of matrices. Let F be a �eld and de�ne

Mm,n(F)
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to be the set of all m × n matrices over F. This is already an abelian group with respect
to ordinary matrix addition. There is also a natural scalar multiplication here: if A =
[aij] ∈ Mm,n(F) and f ∈ F, then fA is the matrix which has faij as its (i, j) entry. That
the vector space axioms hold is guaranteed by elementary results from matrix algebra.

Two special cases of interest are the vector spaces

Fm = Mm,1(F) and Fn = M1,n(F).

Thus Fm is the vector space of m-column vectors over F, while Fn is the vector space
of n-row vectors over F.

The spaceℝn is called Euclidean n-space. For n ≤ 3 there is awell-known geometric
interpretation ofℝn. Consider for exampleℝ3. A vector inℝ3

v = [[

[

a
b
c

]]

]
is represented by a line segment v⃗ in 3-dimensional space drawn from an arbitrary
initial point (p, q, r) to the point (p + a, q + b, r + c). With this interpretation of vectors,
the rule of addition of vectors u and v in ℝ3 is equivalent to the well-known triangle
rule for addition of line segments u⃗ and v⃗; this is illustrated in the diagram below.

∙

∙

∙

u⃗

44

v⃗

GG

u⃗+v⃗

;;

A detailed account of the geometric interpretations of euclidean 2-space and 3-space
may be found in any text on linear algebra – see for example [12].

(ii) Vector spaces of polynomials. The set F[t] of all polynomials in t over a �eld F is a
vector space over F with the usual addition and scalar multiplication of polynomials.

(iii) Fields as vector spaces. Suppose that F is a sub�eld of a �eld K, i.e., F is a subring
of K containing 1 which is closed with respect to taking inverses of non-zero elements.
We can regard K as a vector space over F, using the �eld operations as vector space
operations. At �rst sight this example may seem confusing since elements of F are
simultaneously vectors and scalars. However, this point of view will be particularly
valuable when we come to investigate the structure of �elds in Chapter Eleven.

Subspaces. In analogy with subgroups of groups and subrings of rings, it is natural
to introduce the concept of a subspace of a vector space. Let V be a vector space over a
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�eld F and let S be a subset of V. Then S is called a subspace of V if, when we restrict
the vector space operations of V to S, we obtain a vector space over F. Taking note of
the analysis of the subgroup concept in (3.3) – see especially (3.3.4)– we conclude that
a subspace is a subset of V containing 0V which is closed with respect to addition and
multiplication by scalars.

Obvious examples of subspaces of V are 0 = 0V , the zero subspace which contains
just the zero vector, and V itself, the improper subspace. A more interesting source of
examples is given in:

Example(8.1.1) Let A be an m × n matrix over a �eld F and de�ne S to be the subset
of all X in Fn such that AX = 0. Then S is a subspace of Fn, veri�cation of the closure
properties being very easy. The subspace S is called the null space of the matrix A.

Linear combinations of vectors. Suppose that V is a vector space over a �eld F and
v1, v2, . . . , vk are vectors in V. A linear combination of these vectors is a vector of the
form

a1v1 + a2v2 + ⋅ ⋅ ⋅ + akvk
where a1, a2, . . . , ak ∈ F. If X is any non-empty set of vectors in V, we will write
either F⟨X⟩ or, if we do not wish to emphasize the �eld, ⟨X⟩ for the set of all linear
combinations of vectors in the set X. It is a fundamental fact that this is always a
subspace.

(8.1.2) Let X be a non-empty subset of a vector space V over a �eld F. Then F⟨X⟩ is the
smallest subspace of V that contains X.

Proof. In the �rst place it is easy to verify that F⟨X⟩ is closed with respect to addition
and scalar multiplication; of course it also contains the zero vector 0V . Therefore F⟨X⟩
is a subspace. Also it contains X since x = 1Fx ∈ F⟨X⟩ for all x ∈ X. Finally, any
subspace that contains X automatically contains every linear combination of vectors
in X, i.e., it must contain F⟨X⟩ as a subset.

The subspace ⟨X⟩ is called the subspace generated (or spanned) by X. If V = ⟨X⟩,
then X is said to generate the vector space V. If V can be generated by some �nite set of
vectors, we say that V is a �nitely generated vector space. What this means is that every
vector in V can be expressed as a linear combination of the vectors in some �nite set.

Example (8.1.2) Fn is a �nitely generated vector space. To see why, consider the so-
called elementary vectors in Fn,

E1 =

[[[[[[[[

[

1
0
0
...
0

]]]]]]]]

]

, E2 =

[[[[[[[[

[

0
1
0
...
0

]]]]]]]]

]

, . . . , En =

[[[[[[[[

[

0
0
...
0
1

]]]]]]]]

]

.
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A general vector in Fn,

[[[[[

[

a1
a2
...
an

]]]]]

]

,

can be written as a1E1 + a2E2 + ⋅ ⋅ ⋅ + anEn. Hence Fn = ⟨E1, E2, . . . , En⟩ and Fn is
�nitely generated.

On the other hand, in�nitely generated, i.e., non-�nitely generated, vector spaces
are not hard to �nd.

Example (8.1.3) The vector space F[t] is in�nitely generated.
Indeed suppose that F[t] could be generated by �nitely many polynomials p1,

p2, . . . , pk and let m be the maximum degree of the pi. Then clearly tm+1 cannot be
expressed as a linear combination of p1, . . . , pk, so a contradiction is reached.

Exercises (8.1)

(1) Which of the following are vector spaces? The operations of addition and scalar
multiplication are the natural ones.

(i) The set of of all real 2 × 2 matrices with determinant 0.
(ii) The set of all solutions y(x) of the homogeneous linear di�erential equation

an(x)y(n) + an−1(x)y(n−1) + ⋅ ⋅ ⋅ + a1(x)y� + a0(x)y = 0, where the ai(x) are given
real-valued functions of x.

(iii) The set of all solutions X of the matrix equation AX = B.
(2) In the following cases say whether S is a subspace of the vector space V.

(i) V = ℝ2, S = all [a
2

a
], a ∈ ℝ;

(ii) V is the vector space of all continuous functions on the interval [0, 1] and S
consists of all in�nitely di�erentiable functions in V;

(iii) V = F[t], S = {f ∈ V | f(a) = 0} where a is a �xed element of F.
(3) Verify that the rule for adding the vectors inℝ3 corresponds to the usual triangle
rule for addition of line segments.

(4) Does [4 3
1 −2

] belong to the subspace of M2(ℝ) generated by the matrices [3 4
1 2

],

[
0 2
−1
3 4

], [0 2
0 1

]?

(5) Let V be a vector space over a �nite �eld. Prove that V is �nitely generated if and
only if it is �nite.
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8.2 Linear independence, basis and dimension

A concept of critical importance in vector space theory is linear independence. For an
understanding of this topic some knowledge of systems of linear equations, and in
particular row and column operations on matrices, is essential and will be assumed.

Let V be a vector space over a �eld F and let X be a non-empty subset of V. Then X
is called linearly dependent if there exist distinct vectors x1, x2, . . . , xk in X and scalars
a1,a2, . . . , ak ∈ F, not all the ai being zero, such that

a1x1 + a2x2 + ⋅ ⋅ ⋅ + akxk = 0.

This amounts to saying that some xi can be expressed as a linear combination of the
others. For if, say, ai ̸= 0, we can solve for xi, obtaining

xi =
k
∑
j=1
j ̸=i

(−a−1i )ajvj .

A subset which is not linearly dependent is called linearly independent. For example,
the elementary vectors E1, E2, . . . , En form a linearly independent subset of Fn for any
�eld F.

Homogeneous linear systems. Tomake signi�cant progresswith linear independence,
some knowledge of systems of linear equations is needed. Let F be a �eld and consider
a system of m homogeneous linear equations over F

{{{{{{{
{{{{{{{
{

a11x1 + ⋅ ⋅ ⋅ + a1nxn = 0
a21x1 + ⋅ ⋅ ⋅ + a2nxn = 0

...
am1x1 + ⋅ ⋅ ⋅ + amnxn = 0

Here aij ∈ F and x1, x2, . . . , xn are the unknowns
Clearly the system has the trivial solution x1 = x2 = ⋅ ⋅ ⋅ = xn = 0. The interesting

question is whether there are any non-trivial solutions. A detailed account of the
theory of systems of linear equations can be found in any book on linear algebra, for
example [12].

The linear system can be written in the matrix form

AX = 0,

where A = [aij]m,n is the coe�cient matrix and X is the n-column vector formed by the
unknowns x1, x2, . . . , xn. The following result is su�cient for our present purposes.

(8.2.1) The homogenous linear system AX = 0 has a non-trivial solution X if and only if
the rank of the coe�cient matrix A is less than the number of unknowns.
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Proof. Write A = [aij]. We adopt the method of systematic elimination known as
Gaussian elimination. It may be assumed that a11 ̸= 0; for, if this is not true, replace
equation 1 by the �rst equation inwhich x1 appears. Since equation 1 can bemultiplied
by a−111, we may also assume that a11 = 1. Then, by subtracting multiples of equation 1
from equations 2 through m, the unknown x1 can be eliminated from these equations.

Next �nd the �rst of equations 2 through m which contains an unknown with
smallest subscript > 1, say xi2 . Move this equation up to second position. Now make
the coe�cient of xi2 equal to 1 and subtract multiples of equation 2 from equations 3
through m so as to eliminate xi2 . Repeat this procedure until the remaining equations
involve no further unknowns, i.e., they are of the trivial form 0 = 0. Let us say this
happens after r steps. At this point the matrix of coe�cients is in row echelon formwith
r linearly independent rows. The integer r is the rank of A.

Unknowns other than x1 = xi1 , xi2 , . . . , xir can be given arbitrary values. The
non-trivial equations may then be used to solve back for xir , xir−1 , . . . , xi1 successively.
Therefore there is a non-trivial solution if and only if r < n; for then at least one
unknown can be given an arbitrary value.

Corollary (8.2.2) A homogeneous linear system AX = 0 of n equations in n unknowns
has a non-trivial solution if and only if det(A) = 0.

For det(A) = 0 if and only if the rank of A is less than n. This result is used to
establish the fundamental theorem on linear dependence in vector spaces.

(8.2.3) Let v1, v2, . . . , vk be vectors in a vector space V over a �eld F. Then any set of
k + 1 or more vectors in the subspace ⟨v1, v2, . . . , vk⟩ is linearly dependent.

Proof. Let u1, u2, . . . , uk+1 ∈ S = ⟨v1, . . . , vk⟩. It is enough to show that {u1, u2, . . . ,
uk+1} is a linearly dependent set. This amounts to �nding �eld elements a1, a2, . . . ,
ak+1, not all of them zero, such that a1u1 + a2u2 + ⋅ ⋅ ⋅ + ak+1uk+1 = 0.

Since ui ∈ S, there is an expression ui = d1iv1 + d2iv2 + ⋅ ⋅ ⋅ + dkivk where dji ∈ F.
On substituting for the ui, we obtain

a1u1 + a2u2 + ⋅ ⋅ ⋅ + ak+1uk+1 =
k+1
∑
i=1
ai(

k
∑
j=1
djivj) =

k
∑
j=1

(
k+1
∑
i=1
djiai)vj .

Therefore a1u1 + a2u2 + ⋅ ⋅ ⋅ + ak+1uk+1 = 0 if the ai satisfy the equations

k+1
∑
i=1
djiai = 0, j = 1, . . . , k.

But this is a system of k linear homogeneous equations in the k+1 unknowns ai, so the
rank of the coe�cient matrix [dij] is at most k. By (8.2.1) there is a non-trivial solution
a1, a2, . . . , ak+1. Therefore {u1, u2, . . . , uk+1} is linearly dependent, as claimed.



8.2 Linear independence, basis and dimension | 145

Corollary (8.2.4) If a vector space V can be generated by k elements, then every subset
of V with k + 1 or more elements is linearly dependent.

Bases. A basis of a vector space V is a non-empty subset X such that:
(i) X is linearly independent;
(ii) X generates V.
These are contrasting properties in the sense that (i) means that X is not too large and
(ii) that X is not too small.

For example, the elementary vectors E1, E2, . . . , En form a basis of the vector
space Fn called the standard basis. More generally a basis of Mm,n(F) is obtained by
taking all the m × n matrices over F with a single non-zero entry which is equal to 1F .

A important property of a basis is unique expressibility.

(8.2.5) If {v1, v2, . . . , vn} is a basis of a vector space V over a �eld F, then every vector v
in V is uniquely expressible in the form v = a1v1 + ⋅ ⋅ ⋅ + anvn with ai ∈ F.

Proof. In the �rst place such expressions for v exist by de�nition. If v in V had two
such expressions v = ∑n

i=1 aivi = ∑n
i=1 bivi, we would have ∑n

i=1(ai − bi)vi = 0, from
which it follows that ai = bi by linear independence of the vi.

This result shows that a basis may be used to introduce coordinates in a vector
space. Suppose that V is a vector space over �eld F and that B = {v1, v2, . . . , vn} is
a basis of V with its elements written in a speci�c order, i.e., an ordered basis. Then
by (8.2.5) each v ∈ V has a unique expression v = ∑n

i=1 civi with ci ∈ F. Thus v is
determined by the column vector in Fn whose entries are c1, c2, . . . , cn; this is called
the coordinate column vector of v with respect toB and is written

[v]B.

Coordinate vectors provide a concrete representation of vectors in an abstract vector
space.

The existence of bases. There is nothing in the de�nition of a basis to make us certain
that bases exist. Our �rst task will be to show that this is true for any �nitely generated
non-zero vector space. Notice that the zero space does not have a basis since it has no
linearly independent subsets.

(8.2.6) Let V be a �nitely generated vector space and suppose that X0 is a linearly
independent subset of V. Then X0 is contained in a basis of V.

Proof. Suppose that V can be generated by m vectors. Then by (8.2.4) a linearly inde-
pendent subset of V cannot containmore thanm vectors. It follows that X0 is contained
in a largest linearly independent subset X; for otherwise it would be possible to form
ever larger �nite linearly independent subsets containing X0.
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We complete the proof by showing that X generates V. If this is false, there is a
vector u in V − F⟨X⟩. Then u ∉ X, so X ̸= X ∪ {u} and X ∪ {u} is linearly dependent by
maximality of X. Writing X = {v1, . . . , vk}, we conclude that there is a relation of the
type

a1v1 + ⋅ ⋅ ⋅ + akvk + bu = 0,

where a1, . . . , ak , b ∈ F and not all of these scalars are 0. Now b cannot equal 0: for
otherwise a1v1 + ⋅ ⋅ ⋅ + akvk = 0 and hence a1 = ⋅ ⋅ ⋅ = ak = 0 since the vi are known to
be linearly independent. Therefore b ̸= 0 and u = −b−1a1v1 − ⋅ ⋅ ⋅ − b−1akvk ∈ F⟨X⟩,
which is a contradiction.

Corollary (8.2.7) Every �nitely generated non-zero vector space V has a basis.

The reason is that since V ̸= 0, we can choose a non-zero vector v from V and apply
(8.2.6) with X0 = {v}. In fact every in�nitely generated vector space has a basis, but
advanced methods are needed to prove this – see (14.1.1) below.

Dimension. A vector space usually has many bases: it is an important fact that all of
them have the same number of elements.

(8.2.8) Let V be a �nitely generated non-zero vector space. Then any two bases of V
have the same number of elements.

Proof. In the �rst place a basis of V is necessarily �nite by (8.2.4). Next let {u1, . . . , um}
and {v1, . . . , vn} be two bases. Then V = ⟨v1, . . . , vn⟩ and by (8.2.4) there cannot be a
linearly independent subset of V with more than n elements. Therefore m ≤ n. By the
same reasoning n ≤ m, so we obtain m = n, as required.

This result enables us to de�ne the dimension

dim(V)

of a �nitely generated vector space V. If V = 0, de�ne dim(V) to be 0, and if V ̸= 0,
let dim(V) be the number of elements in a basis of V. By (8.2.8) this de�nition is
unambiguous. In the future we shall speak of �nite dimensional vector spaces instead
of �nitely generated ones.

(8.2.9) Let X1, X2, . . . , Xk be vectors in Fn where F is a �eld. Let A = [X1X2 . . . Xk] be
the n × k matrix which has the Xi as columns. Then dim(⟨X1, . . . , Xk⟩) = r where r is the
rank of the matrix A.

Proof. We will use some elementary facts about matrices here. In the �rst place, S =
⟨X1, . . . , Xk⟩ is the column space of A, and it is una�ected when column operations
are applied to A. By applying column operations to A, just as we did for row operations
during Gaussian elimination in the proof of (8.2.1), we can replace A by a matrix with
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the same column space S which has the so-called column echelon form with r non-zero
columns. Here r is the rank of A. Since the r columns are linearly independent, they
form a basis of S (if r > 0). Hence dim(S) = r.

Next we consider the relation between the dimension of a vector space and that of
a subspace.

(8.2.10) If V is a vector space with �nite dimension n and U is a subspace of V, then
dim(U) ≤ dim(V). Furthermore dim(U) = dim(V) if and only if U = V.

Proof. If U = 0, then dim(U) = 0 ≤ dim(V). Assume that U ̸= 0 and let X be a basis of U.
By (8.2.6) the subset X is contained in a basis Y ofV. Hence dim(U) = |X| ≤ |Y| = dim(V).
Finally, suppose that dim(U) = dim(V), but U ̸= V. Then U ̸= 0. As before, a basis X of
U is contained in a basis Y of V. Since |X| = |Y|, it follows that X = Y. Therefore U = V,
a contradiction.

The next result can simplify the task of showing that a subset of a �nite dimensional
vector space is a basis.

(8.2.11) Let V be a �nite dimensional vector space with dimension n and let X be a subset
of V with n elements. Then the following statements about X are equivalent:
(i) X is a basis of V;
(ii) X is linearly independent;
(iii) X generates V.

Proof. Of course (i) implies (ii). Assume that (ii) holds. Then X is a basis of ⟨X⟩, the
subspace it generates; hence dim(⟨X⟩) = n = dim(V) and (8.2.10) shows that ⟨X⟩ = V.
Thus (ii) implies (iii).

Finally, assume that (iii) holds. If X is not a basis of V, itmust be linearly dependent,
so one of its elements can be written as a linear combination of the others. Hence V
can be generated by fewer than n elements, which is a contradiction by (8.2.4).

Change of basis. As has been previously remarked, vector spaces usually have many
bases and a vector may be represented with respect to each basis by a coordinate
column vector. A natural question is: how are these coordinate vectors related?

LetB = {v1, v2, . . . , vn} andB� = {v�1, v
�
2, . . . , v�n} be two ordered bases of a �nite

dimensional vector space V over a �eld F. Then each v�i can be expressed as a linear
combination of v1, v2, . . . , vn, say

v�i =
n
∑
j=1
sjivj ,

where sji ∈ F. The change of basisB� → B is described by the transition matrix S = [sij].
Observe that S is n × n and its ith column is the coordinate vector [v�i]B.



148 | 8 Vector spaces

To understand how S determines the change of basisB� → B, choose an arbitrary
vector v from V and write v = ∑n

i=1 c�iv
�
i where c�1, c

�
2, . . . , c�n are the entries of the

coordinate vector [v]B� . Replace v�i by∑n
j=1 sjivj to get

v =
n
∑
i=1
c�i(

n
∑
j=1
sjivj) =

n
∑
j=1

(
n
∑
i=1
sjic�i)vj .

Therefore the entries of the coordinate vector [v]B are ∑n
i=1 sjic�i for j = 1, 2, . . . , n.

This shows that
[v]B = S[v]B� ,

i.e., left multiplication by the transition matrix S transforms coordinate vectors with
respect toB� into those with respect toB.

Notice that the transitionmatrix Smust be non-singular. For otherwise, by standard
matrix theory there would exist a non-zero X ∈ Fn such that SX = 0; however, if u ∈ V
is de�ned by [u]B� = X, then [u]B = SX = 0, which can only mean that u = 0 and
X = 0. From [v]B = S[v]B� we deduce that S−1[v]B = [v]B� . Thus S−1 is the transition
matrix for the change of basisB → B�. These conclusions are summed up in the next
result.

(8.2.12) LetB andB� be ordered bases of an n-dimensional vector space V. De�ne S to
be the n × n matrix whose ith column is the coordinate vector of the ith vector ofB� with
respect toB. Then S is non-singular and for all v in V

[v]B = S[v]B� and [v]B� = S−1[v]B.

Example (8.2.1) Let V be the vector space of all real polynomials in t with degree at
most 2. ThenB = {1, t, t2} is clearly a basis of V and so isB� = {1+ t, 2t, 4t2 −2}, since
it is quickly seen that this set is linearly independent. Write the coordinate vectors of
1 + t, 2t, 4t2 − 2 with respect toB as columns of the matrix

S = [[

[

1 0 −2
1 2 0
0 0 4

]]

]

.

This is the transition matrix for the change of basisB� → B. The transition matrix for
B → B� is

S−1 = [[

[

1 0 1
2

−1
2

1
2 −1

4
0 0 1

4

]]

]

.

For example, to express f = a + bt + ct2 in terms of the basisB�, we compute

[f]B� = S−1[f]B = [[

[

1 0 1
2

−1
2

1
2 −1

4
0 0 1

4

]]

]

[[

[

a
b
c

]]

]

= [[

[

a + c
2

−1
2a + 1

2b − 1
4 c

1
4 c

]]

]

.
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Thus f = (a + c
2 )(1 + t) + (−1

2a + 1
2b − 1

4 c)(2t) +
1
4 c(4t

2 − 2), which is clearly correct.

Dimension of the sum and intersection of subspaces. Since a vector space V is an
additively written abelian group, one can form the sum of two subspaces U and W;
thus

U +W = {u + w | u ∈ U, w ∈ W}.

It is easily veri�ed that U +W is a subspace of V. Also U ∩W is a subspace. There is a
useful formula connecting the dimensions of U +W and U ∩W.

(8.2.13) If U and W are subspaces of a �nite dimensional vector space V, then

dim(U +W) + dim(U ∩W) = dim(U) + dim(W).

Proof. If U = 0, then U +W = W and U ∩W = 0; in this case the formula is certainly
true. Thus we can assume that U ̸= 0 andW ̸= 0.

Choose a basis for U ∩ W, say z1, . . . , zr, if U ∩ W ̸= 0; should U ∩ W be 0, just
ignore the zi. By (8.2.6) we can extend {z1, . . . , zr} to bases of U and ofW, say

{z1, . . . , zr , ur+1, . . . , um} and {z1, . . . , zr , wr+1, . . . , wn}.

Now the vectors z1, z2, . . . zr , ur+1, . . . , um , wr+1, . . . , wn surely generate U +W: for
any vector inU+W is expressible as a linear combination of them. In fact these elements
are also linearly independent, so they form a basis of U +W. To establish this claim,
suppose there is a linear relation

r
∑
i=1
eizi +

m
∑
j=r+1

cjuj +
n
∑
k=r+1

dkwk = 0

where ei, cj, dk are scalars. Then
n
∑
k=r+1

dkwk =
r
∑
i=1

(−ei)zi +
m
∑
j=r+1

(−cj)uj ,

whichbelongs toU and toW and so toU∩W. Hence∑n
k=r+1 dkwk is a linear combination

of the zi. But z1, . . . , zr, wr+1, . . . , wn are linearly independent, which implies that
dk = 0 for all k. The linear relation now reduces to

r
∑
i=1
eizi +

m
∑
j=r+1

cjuj = 0.

But z1, . . . , zr, ur+1, . . . , um are linearly independent. Therefore all the cj and ei equal
zero, which establishes the claim of linear independence.

Finally, dim(U + W) equals the number of the vectors z1, . . . , zr, ur+1, . . . , um,
vr+1, . . . , vn: this is, r + (m − r) + (n − r) = m + n − r, which equals dim(U) + dim(W) −
dim(U ∩W), so the required formula follows.



150 | 8 Vector spaces

Direct sums of vector spaces. Since a vector space V is an additive abelian group, we
can form the direct sum of subspaces U1, U2, . . . , Uk – see (4.2). This is an additive
abelian group which is written

U = U1 ⊕ U2 ⋅ ⋅ ⋅ ⊕ Uk .

Thus U = {u1 + u2 + ⋅ ⋅ ⋅ + uk | ui ∈ Ui} and Ui ∩ ∑j ̸=i Uj = 0. Clearly U is a subspace
of V. Note that by (8.2.13) and induction on k

dim(U1 ⊕ U2 ⊕ ⋅ ⋅ ⋅ ⊕ Uk) = dim(U1) + dim(U2) + ⋅ ⋅ ⋅ + dim(Uk).

Next if {v1, v2, . . . , vn} be a basis of V, then V = ⟨v1⟩ ⊕ ⟨v2⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨vn⟩, so that we
have established:

(8.2.14) An n-dimensional vector space is the direct sum of n 1-dimensional subspaces.

This result is also true when n = 0 if the direct sum is interpreted as 0.

Quotient spaces. Suppose that V is a vector space over a �eld F and U is a subspace
of V. Since V is an abelian group and U is a subgroup, the quotient

V/U = {v + U | v ∈ V}

is already de�ned as an abelian group. Now make V/U into a vector space over F by
de�ning scalar multiplication in the natural way,

a(v + U) = av + U, (a ∈ F).

This is evidently a well-de�ned operation. After an easy check of the axioms, we
conclude that V/U is a vector space over F, the quotient space of U in V. The dimension
of a quotient space is easily computed.

(8.2.15) Let U be a subspace of a �nite dimensional space V. Then dim(V/U) = dim(V)−
dim(U).

Proof. If U = 0, the statement is obviously true. Assuming U ̸= 0, we choose a basis
{v1, v2, . . . , vm} of U and extend it to a basis of V, say {v1, v2, . . . , vm , vm+1, . . . , vn}.
We will argue that {vm+1 + U, . . . , vn + U} is a basis of V/U.

Assume that∑n
i=m+1 ai(vi + U) = 0V/U = U where ai is a scalar. Then∑n

i=m+1 aivi ∈
U, so this element is a linear combination of v1, . . . , vm. It follows by linear inde-
pendence that each ai = 0, which shows that {vm+1 + U, . . . , vn + U} is linearly in-
dependent. Next, if v ∈ V, write v = ∑n

i=1 aivi, with scalars ai, and observe that
v + U = ∑n

i=m+1 ai(vi + U) since v1, . . . , vm ∈ U. It follows that vm+1 + U, . . . , vn + U
form a basis of V/U and dim(V/U) = n − m = dim(V) − dim(U), as required.
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To conclude this section let us show that the mere existence of a basis in a �nite
dimensional vector space is enough to prove two important results about abelian groups
and �nite �elds.

Let p be a prime. An additively written abelian group A is called an elementary
abelian p-group if pa = 0 for all a in A, i.e., each element of A has order 1 or p. For
example, the Klein 4-group is an elementary abelian 2-group. The structure of �nite
elementary abelian p-groups is given by the next result.

(8.2.16) Let A be a �nite abelian group. Then A is an elementary abelian p-group if and
only if A is a direct sum of copies ofℤp.

Proof. The essential idea of the proof is to view A as a vector space over the �eldℤp.
Here the scalar multiplication is the natural one, namely (i + pℤ)a = ia where i ∈
ℤ, a ∈ A. One has to verify that this operation is well-de�ned, which is true since
(i + pm)a = ia + mpa = ia for all a ∈ A. Since A is �nite, it is a �nite dimensional
vector space overℤp. By (8.2.14) A = A1 ⊕A2 ⊕ ⋅ ⋅ ⋅ ⊕An where each Ai is a 1-dimensional
subspace; thus |Ai| = p and Ai ≃ ℤp. Conversely, any direct sum of copies of ℤp
certainly satis�es pa = 0 for every element a and so is an elementary abelian p-
group.

The second application is to prove that the number of elements in a �nite �eld is
always a prime power. This is in marked contrast to the behavior of groups and rings,
examples of of which exist with any �nite order.

(8.2.17) Let F be a �nite �eld. Then |F| is a power of a prime.

Proof. By (6.3.9) the �eld F has characteristic a prime p and pa = 0 for all a ∈ F. Thus,
as an additive group, F is elementary abelian p. It now follows from (8.2.16) that |F| is
a power of p.

Exercises (8.2)

(1) Show that X1 = [[

[

4
2
1

]]

]

, X2 = [[

[

−5
2

−3

]]

]

, X3 = [[

[

1
3
0

]]

]

form a basis of ℝ3, and express the

elementary vectors E1, E2, E3 in terms of X1, X2, X3.

(2) Find a basis for the null space of the matrix [[

[

2 3 1 1
−3 1 4 −7
1 2 1 0

]]

]

.

(3) Find the dimension of the vector space Mm,n(F) where F is an arbitrary �eld.
(4) Let v1, v2, . . . , vn be vectors in a vector space V. Assume that each element of V is
uniquely expressible as a linear combination of v1, v2, . . . , vn. Prove that the vi’s form
a basis of V.
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(5) LetB = {E1, E2, E3} be the standard ordered basis ofℝ3 and let

B� =
{{
{{
{

[[

[

2
0
0

]]

]

,[[
[

−1
2
0

]]

]

,[[
[

1
1
1

]]

]

}}
}}
}

.

Show thatB� is a basis ofℝ3 and �nd the transition matrices for the changes of bases
B� → B andB → B�.
(6) Let V be a vector space of dimension n and let i be an integer such that 0 ≤ i ≤ n.
Prove that V has at least one subspace of dimension i.
(7) The same as Exercise (8.2.6) with “subspace” replaced by “quotient space”.
(8) Let U be a subspace of a �nite dimensional vector space V. Prove that there is a
subspaceW such that V = U ⊕W.
(9) Let V be a vector space of dimension 2n and assume that U andW are subspaces of
dimensions n and n + 1 respectively. Prove that U ∩W ̸= 0.
(10) Let the vectors v1, v2, . . . , vm generate a vector space V. Prove that some subset
of {v1, v2, . . . , vm} is a basis of V.

8.3 Linear mappings

Just as there are homomorphisms of groups and of rings, there are homomorphisms of
vector spaces. Traditionally these are called linear mappings or transformations. Let V
andW be vector spaces over the same �eld F. Then a function

α : V → W

is called a linear mapping from V to W if the following rules are valid for all v1, v2 ∈ V
and a ∈ F:
(i) α(v1 + v2) = α(v1) + α(v2);
(ii) α(av1) = aα(v1).
If α is also bijective, it is called an isomorphism of vector spaces. Should there exist an
isomorphism between vector spaces V andW over a �eld F, then V andW are said to
be isomorphic and we write

V F≃ W or V ≃ W.

Notice that a linear mapping is automatically a homomorphism of additive groups by
(i) above, so all results established for group homomorphisms may be carried over to
linear mappings. A linear mapping α : V → V is called a linear operator on V.

Example (8.3.1) Let A be an m × nmatrix over a �eld F and de�ne a function α : Fn →
Fm by the rule α(X) = AX where X ∈ Fn. Simple properties of matrices show that α is a
linear mapping.
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Example (8.3.2) Let V be an n-dimensional vector space over a �eld F and let B =
{v1, v2, . . . , vn} be an ordered basis of V. Recall that to each vector v in V there corre-
sponds a unique coordinate vector [v]B with respect toB.

Use this correspondence to de�ne a function α : V → Fn by α(v) = [v]B. By simple
calculations we see that [u + v]B = [u]B + [v]B and [av]B = a[vB] where u, v ∈ V,
a ∈ F. Hence α is a linear mapping. Clearly [v]B = 0 implies that v = 0; thus α is
injective and it is obviously surjective. The conclusion is that α is an isomorphism and
V F≃ Fn.

We state this conclusion as:

(8.3.1) If V is a vector space with dimension n over a �eld F, then V F≃ Fn. Thus two
�nite dimensional vector spaces over F are isomorphic if and only if they have the same
dimension.

Here the converse statement follows from the observation that isomorphic vector spaces
have the same dimension.

An important way of de�ning a linear mapping is by specifying its e�ect on a basis.

(8.3.2) Let {v1, . . . , vn} be a basis of a vector space V over a �eld F and let w1, . . . , wn
be any n vectors in another F-vector space W. Then there is a unique linear mapping
α : V → W such that α(vi) = wi for i = 1, 2, . . . , n.

Proof. Let v ∈ V and write v = ∑n
i=1 aivi, with ai ∈ F. De�ne a function α : V → W by

the rule

α(v) =
n
∑
i=1
aiwi .

Then an easy check shows that α is a linear mapping, and of course α(vi) = wi. If
α� : V → W is another such linear mapping, then α� = α; for α�(v) = ∑n

i=1 aiα�(vi) =
∑n
i=1 aiwi = α(v).

Our experience with groups and rings suggests it may be worthwhile to examine
the kernel and image of a linear mapping.

(8.3.3) Let α : V → W be a linear mapping. Then Ker(α) and Im(α) are subspaces of V
and W respectively.

Proof. Since α is a group homomorphism, it follows from (4.3.2) that Ker(α) and Im(α)
are additive subgroups. We leave the reader to complete the proof by showing that
these subgroups are also closed under scalar multiplication.

Just as for groups and rings, there are isomorphism theorems for vector spaces.

(8.3.4) (First Isomorphism Theorem) If α : V → W is a linear mapping between vector
spaces over a �eld F, then V/Ker(α) F≃ Im(α).
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(8.3.5) (Second Isomorphism Theorem) Let U and W be subspaces of a vector space
over a �eld F. Then (U +W)/W F≃ U/(U ∩W).

(8.3.6) (Third Isomorphism Theorem) Let U and W be subspaces of a vector space over
a �eld F such that U ⊆ W. Then (V/U)/(W/U) F≃ V/W.

Since the isomorphism theorems for groups are applicable, all one has to prove
here is that the functions introduced in the proofs of (4.3.4), (4.3.5) and (4.3.6) are linear
mappings, i.e., they act appropriately on scalar multiples.

For example, in (8.3.4) the function in question is θ : V/Ker(α) → Im(α) where
θ(v + Ker(α)) = α(v). Then

θ(a(v + Ker(α)) = θ(av + Ker(α)) = α(av) = aα(v) = aθ(v + Ker(α)).

It follows that θ is a linear mapping.
There is an important formula connecting the dimensions of kernel and image.

(8.3.7) If α : V → W is a linear mapping between �nite dimensional vector spaces, then
dim(Ker(α)) + dim(Im(α)) = dim(V).

This follows directly from (8.3.4) and (8.2.15). There is an immediate application to
the null space of a matrix.

Corollary (8.3.8) Let A be an m× n matrix with rank r over a �eld F. Then the dimension
of the null space of A is n − r.

Proof. Let α be the linear mapping from Fn to Fm de�ned by α(X) = AX. Then Ker(α) is
the null space of A and it is readily seen that Im(α) is just the column space. By (8.2.9)
dim(Im(α)) = r, the rank of A, and by (8.3.7) dim(Ker(α)) = n − r.

As another application of (8.3.7) we give a di�erent proof of the dimension formula
for sum and intersection of subspaces – see (8.2.13).

(8.3.9) If U and W are subspaces of a �nite dimensional vector space, then dim(U +
W) + dim(U ∩W) = dim(U) + dim(W).

Proof. By (8.3.5) (U + W)/W ≃ U/(U ∩ W). Hence, taking dimensions and applying
(8.2.15), we �nd that dim(U + W) − dim(W) = dim(U) − dim(U ∩ W), and the result
follows.

Vector spaces of linear mappings. It is useful to endow sets of linear mappings with
the structure of a vector space. Suppose that V andW are vector spaces over the same
�eld F. We will write

L(V,W)
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for the set of all linear mappings from V toW. De�ne addition and scalar multiplication
in L(V,W) by the natural rules

(α + β)(v) = α(v) + β(v), (a ⋅ α)(v) = a(α(v)),

where α, β ∈ L(V,W), v ∈ V, a ∈ F. It is simple to verify that α + β and a ⋅ α are linear
mappings. The basic result about L(V,W) is:

(8.3.10) Let V and W be vector spaces over a �eld F. Then:
(i) L(V,W) is a vector space over F;
(ii) if V and W are �nite dimensional, then so is L(V,W) and

dim(L(V,W)) = dim(V) ⋅ dim(W).

Proof. We omit the routine proof of (i) and concentrate on (ii). Let {v1, . . . , vm} and
{w1, . . . , wn} be bases of V andW respectively. By (8.3.2), for i = 1, 2, . . . ,m and j = 1,
2, . . . , n, there is a unique linear mapping αij : V → W such that

αij(vk) =
{
{
{

wj if k = i
0 if k ̸= i

.

Thus αij sends basis element vi to basis element wj and all other vk’s to 0. First we
show that the αij are linearly independent in the vector space L(V,W).

Let aij ∈ F; then by de�nition of αij we have for each k

(
m
∑
i=1

n
∑
j=1
aijαij)(vk) =

n
∑
j=1

m
∑
i=1
aij(αij(vk)) =

n
∑
j=1
akjwj . (∗)

Therefore∑m
i=1∑

n
j=1 aijαij = 0 if and only if akj = 0 for all j, k. It follows that the αij are

linearly independent.
Finally,we claim that the αij actually generate L(V,W). To prove this let α ∈ L(V,W)

and write α(vk) = ∑n
j=1 akjwj where akj ∈ F. Then from the equation (∗) above we see

that α = ∑m
i=1∑

n
j=1 aijαij. Therefore the αij’s form a basis of L(V,W) and dim(L(V,W)) =

mn = dim(V) ⋅ dim(W).

The dual space. If V is a vector space over a �eld F, the vector space

V∗ = L(V, F)

is called the dual space of V; here F is regarded as a 1-dimensional vector space over F.
The elements of V∗ are linear mappings from V to F, which are called linear functionals
on V.

Example (8.3.3) Let Y ∈ Fn be �xed and de�ne α : Fn → F by the rule α(X) = YTX
where YT is the transpose of Y. Then α is a linear functional on Fn.
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If V is an n-dimensional vector space over F,

dim(V∗) = dim(L(V, F)) = dim(V)

by (8.3.10). Thus V, V∗ and the double dual V∗∗ = (V∗)∗ all have the same dimension,
so these vector spaces are isomorphic by (8.3.1).

In fact there is a canonical linear mapping θ : V → V∗∗. Let v ∈ V and de�ne
θ(v) ∈ V∗∗ by the rule

θ(v)(α) = α(v)

where α ∈ V∗. Thus θ(v) evaluates each linear functional on V at v. Regarding the
function θ, we prove:

(8.3.11) If V is a �nite dimensional vector space, then θ : V → V∗∗ is an isomorphism.

Proof. In the �rst place θ(v) ∈ V∗∗ for all v ∈ V: indeed, if α, β ∈ V∗,

θ(v)(α + β) = (α + β)(v) = α(v) + β(v) = θ(v)(α) + θ(v)(β).

Also θ(v)(a ⋅ α) = (a ⋅ α)(v) = a(α(v)) = a(θ(v)(α)) where a is a scalar.
Next for any α ∈ V∗ and vi ∈ V, we have

θ(v1 + v2)(α) = α(v1 + v2)
= α(v1) + α(v2)
= θ(v1)(α) + θ(v2)(α)
= (θ(v1) + θ(v2))(α),

which shows that θ(v1 + v2) = θ(v1) + θ(v2). We leave the reader to verify that θ(a ⋅ v) =
a(θ(v)) where a ∈ F, v ∈ V. Hence θ is a linear mapping from V to V∗∗.

Next suppose that θ(v) = 0. Then 0 = θ(v)(α) = α(v) for all α ∈ V∗. This can only
mean that v = 0: for if v ̸= 0, then v can be included in a basis of V. Then by (8.3.2) we
can construct a linear functional α such that α(v) = 1F and other basis elements are
mapped by α to 0. It follows that θ is injective.

Finally, dim(V) = dim(V∗) = dim(V∗∗) and also dim(V) = dim(Im(θ)) since θ is
injective. By (8.2.10) we have Im(θ) = V∗∗, so that θ∗ is an isomorphism.

Representing linear mappings by matrices. A linear mapping between �nite dimen-
sional vector spaces can be described by matrix multiplication, which provides us with
a concrete way of representing linear mappings.

Let V and W be vector spaces over a �eld F with respective �nite dimensions
m > 0 and n > 0. Choose ordered bases for V and W, say B = {v1, v2, . . . , vm} and
C = {w1, w2, . . . , wn} respectively. Now let α ∈ L(V,W); then

α(vi) =
n
∑
j=1
ajiwj , i = 1, 2, . . . ,m,
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where aji ∈ F. This enables us to form the n × m matrix over F

A = [aji],

which is to represent α. Notice that the ith column of A is precisely the coordinate
column vector of α(vi) with respect to the basis C. Thus we have a function

θ : L(V,W) → Mn,m(F)

de�ned by the rule that column i of θ(α) is [α(vi)]C.
To understand how the matrix A = θ(α) reproduces the e�ect of α on an arbitrary

vector v = ∑m
i=1 bivi of V, we compute

α(v) =
m
∑
i=1
bi(α(vi)) =

m
∑
i=1
bi(

n
∑
j=1
ajiwj) =

n
∑
j=1

(
m
∑
i=1
ajibi)wj .

Hence the coordinate column vector of α(v) with respect to C has entries∑m
i=1 ajibi, for

j = 1, . . . , n, i.e., it is

A
[[[

[

b1
...
bm

]]]

]

= A[v]B.

Thus we arrive at the basic formula

[α(v)]C = A[v]B = θ(α)[v]B.

Concerning the function θ we prove:

(8.3.12) If V and W are �nite dimensional vector spaces over a �eld F, the function
θ : L(V,W) → Mn,m(F) is an isomorphism of vector spaces.

Proof. In the �rst place θ is a linear mapping. For, let α, β ∈ L(V,W) and v ∈ V; then
the formula above shows that

θ(α + β)[v]B = [(α + β)(v)]C = [α(v) + β(v)]C = [α(v)]C + [β(v)]C,

which equals
θ(α)[v]B + θ(β)[v]B = (θ(α) + θ(β))[v]B.

Hence θ(α + β) = θ(α) + θ(β), and in a similar fashion it may be shown that θ(a ⋅ α) =
a(θ(α)) where a ∈ F.

Next if θ(α) = 0, then [α(v)]C = 0, so α(v) = 0 for all v ∈ V and α = 0. Hence θ
is injective. If V andW have respective dimensions m and n, then L(V,W) ≃ Im(θ) ⊆
Mn,m(F). But the vector spaces L(V,W) and Mn,m(F) both have dimension mn – see
(8.3.10). Therefore Im(θ) = Mn,m(F) by (8.2.10) and θ is an isomorphism.
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Example (8.3.4) Consider the dual space V∗ = L(V, F), where V is an n-dimensional
vector space over a �eld F. Choose an ordered basisB of V and use the basis {1F} for V.
Then a linear functional α ∈ V∗ is represented by an n-row vector, i.e., by XT where
X ∈ Fn, according to the rule α(v) = XT[v]B. Thus the e�ect of a linear functional is
produced by left multiplication of coordinate vectors by a row vector, (cf. Example
(8.3.3)).

The e�ect of a change of basis. We have seen that any linear mapping between �nite
dimensional vector spaces can be represented by multiplication by a matrix. However,
the matrix depends on the choice of ordered bases of the vector spaces. The precise
nature of this dependence will now be investigated.

Let B and C be ordered bases of respective �nite dimensional vector spaces V
andW over a �eld F, and let α : V → W be a linear mapping. Then α is represented by
a matrix A over F where [α(v)]C = A[v]B. Now suppose now that two di�erent ordered
bases B� and C� are chosen for V and W respectively. Then α will be represented by
another matrix A�. The question is: how are A and A� related?

To answer the question we introduce the transition matrices S and T for the respec-
tive changes of basesB → B� and C → C� (see (8.2.12)). Thus for any v ∈ V and w ∈ W
we have

[v]B� = S[v]B and [w]C� = T[w]C.
Therefore

[α(v)]C� = T[α(v)]C = TA[v]B = TAS−1[v]B� ,

and it follows that A� = TAS−1. We record this conclusion in:

(8.3.13) Let V and W be non-zero �nite dimensional vector spaces over the same �eld.
Let B, B� be ordered bases of V and C, C� ordered bases of W. Suppose further that
S and T are the transition matrices for the changes of bases B → B� and C → C�

respectively. If the linear mapping α : V → W is represented by matrices A and A� with
respect to the respective pairs of bases (B, C) and (B�, C�), then A� = TAS−1.

The case where α is a linear operator on V is especially important. Here V = W and
we can takeB = C andB� = C�. Thus S = T and A� = SAS−1, i.e., A and A� are similar
matrices. Consequently,matrices that represent the same linear operator are similar.

The algebra of linear operators. Let V be a vector space over a �eld F and suppose
also that V is a ring with respect to some product operation. Then V is said to be an
F-algebra if, in addition to the vector space and ring axioms, the following law is valid:

a(uv) = (au)v = u(av)

for all a ∈ F, u, v ∈ V. For example, the set of all n × n matrices Mn(F) is an F-algebra
with respect to the usual matrix operations.
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Now let V be any vector space over a �eld F; we will write

L(V)

for the vector space L(V, V) of all linear operators on V. Our aim is to make L(V) into an
F-algebra: it is already an F-vector space. There is a natural product operation on L(V),
namely functional composition. Indeed, if α1, α2 ∈ L(V), then α1α2 ∈ L(V) by an easy
check. We claim that with this product operation L(V) becomes an F-algebra.

The �rst step is to verify that L(V) is a ring. This is fairly routine; for example, if
αi ∈ L(V) and v ∈ V,

α1(α2 + α3)(v) = α1(α2(v) + α3(v)) = α1α2(v) + α1α3(v),

which equals (α1α2 + α1α3)(v). Hence α1(α2 + α3) = α1α2 + α1α3.
Once the ring axiomshavebeenveri�ed,wehave to check that a(α1α2) = (aα1)α2 =

α1(aα2) for a ∈ F. This is not hard to see; indeed all three mappings send v to
a(α1(α2(v))). Therefore L(V) is an F-algebra.

A function α : A1 → A2 between two F-algebras is called an algebra isomorphism
if it is bijective and it is both a linear mapping of vector spaces and a homomorphism
of rings.

(8.3.14) Let V be a vector space with �nite dimension n over a �eld F. Then L(V) and
Mn(F) are isomorphic as F-algebras.

Proof. Choose an ordered basisB of V and letΦ : L(V) → Mn(F) be the functionwhich
associates to a linear operator α the n × nmatrix that represents α with respect toB.
Thus [α(v)]B = Φ(α)[v]B for all v ∈ V. Clearly Φ is bijective, so to prove that it is an
F-algebra isomorphismwe need to establishΦ(α+ β) = Φ(α)+Φ(β),Φ(a ⋅α) = a ⋅Φ(α)
and Φ(αβ) = Φ(α)Φ(β).

For example, take the third statement. If v ∈ V, then

Φ(αβ)[v]β = [αβ(v)]B = Φ(α)[β(v)]B = Φ(α)(Φ(β)[v]B) = (Φ(α)Φ(β))[v]B.

Therefore Φ(αβ) = Φ(α)Φ(β). The other statements are dealt with in a similar fashion.

Thus (8.3.14) tells us in a precise way that linear operators on an n-dimensional
vector space over F behave in very much the same manner as n × n matrices over F.

Exercises (8.3)

(1) Which of the following functions are linear mappings?
(i) α : ℝ3 → ℝ where α([x1 x2 x3]) = √x21 + x

2
2 + x

2
3;

(ii) α : Mm,n(F) → Mn,m(F) where α(A) = AT , the transpose of A;
(iii) α : Mn(F) → F where α(A) = det(A).
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(2) A linear mapping α : ℝ4 → ℝ3 sends [x1 x2 x3 x4]T to [x1 − x2 + x3 − x4 2x1 + x2 −
x3 x2 − x3 + x4]T . Find the matrix which represents α when the standard bases ofℝ4

andℝ3 are used.
(3) Answer Exercise (8.3.2) when the ordered basis {[1 1 1]T , [0 1 1]T , [0 0 1]T} ofℝ3

is used, together with the standard basis ofℝ4.
(4) Find bases for the kernel and image of the following linear mappings:

(i) α : F4 → F where α maps a column vector to the sum of its entries;
(ii) α : ℝ[t] → ℝ[t] where α(f) = f �, the derivative of f ;
(iii) α : ℝ2 → ℝ2 where α([x y]T) = [2x + 3y 4x + 6y]T .

(5) Prove that a linear mapping α : V → W is injective if and only if α maps linearly
independent subsets of V to linearly independent subsets ofW.
(6) Prove that a linear mapping α : V → W is surjective if and only if αmaps generating
sets of V to generating sets ofW.
(7) Let U andW be subspaces of a �nite dimensional vector space V. Prove that there
is a linear operator α on V such that Ker(α) = U and Im(α) = W if and only if dim(U) +
dim(W) = dim(V).
(8) Suppose that α : V → W is a linearmapping. Explain how to de�ne a corresponding
“induced" linear mapping α∗ : W∗ → V∗. Then prove that (αβ)∗ = β∗α∗.

(9) Let U α
→ V

β
→ W → 0 be an exact sequence of vector spaces and linear mappings.

(This means that Im(α) = Ker(β) and Im(β) = Ker(W → 0) = W, i.e., β is surjective).
Prove that the corresponding sequence of dual spaces and induced linear mappings
0 → W∗ β∗

→ V∗ α∗
→ U∗ is exact, i.e., β∗ is injective and Im(β∗) = Ker(α∗). (For more

general results of this kind see (9.1.19)).

8.4 Eigenvalues and eigenvectors

Let α be a linear operator on a vector space V over a �eld F. An eigenvector of α is a non-
zero vector v of V such that α(v) = cv for some c ∈ F called an eigenvalue. For example,
if α is a rotation in ℝ3, the eigenvectors of α are the non-zero vectors parallel to the
axis of rotation and the eigenvalues are all equal to 1. A large amount of information
about a linear operator is carried by its eigenvectors and eigenvalues. In addition the
theory of eigenvectors and eigenvalues has many applications, for example to systems
of linear recurrence relations and systems of linear di�erential equations.

Let A be an n × n matrix over a �eld F. De�ne α to be the linear operator on Fn

which sends X to AX. Then an eigenvector of α is a non-zero vector X ∈ Fn such that
AX = cX for some c ∈ F. We will call X an eigenvector and c an eigenvalue of the
matrix A.

Conversely, suppose we start with a linear operator α on a �nite dimensional vector
space V over a �eld F. Choose an ordered basisB for V, so that α is represented by an
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n×nmatrix A with respect toB and [α(v)]B = A[v]B. Let v be an eigenvector for α with
corresponding eigenvalue c ∈ F. Then α(v) = cv, which translates into A[v]B = c[v]B.
Thus [v]B is an eigenvector and c an eigenvalue of A.

These considerations show that the theory of eigenvalues and eigenvectors can be
developed for either matrices or linear operators on a �nite dimensional vector space.
We will follow both approaches here, as is convenient.

Example (8.4.1) Let D denote the vector space of in�nitely di�erentiable real valued
functions on the interval [a, b]. Consider the linear operator α on D de�ned by α(f) = f �,
the derivative of the function f . The condition for f ̸= 0 to be an eigenvector of α is that
f � = cf for some constant c. The general solution of this simple di�erential equation is
f = decx where d is a constant. Thus the eigenvectors of α are the functions decx with
d ̸= 0, while the eigenvalues are all real numbers c.

Example (8.4.2) A linear operator α on the vector space ℂ2 is de�ned by α(X) = AX
where

A = [
2 −1
2 4

] .

Thus α is represented with respect to the standard basis by the matrix A. The condition

for a vector X = [
x1
x2

] to be an eigenvector of A (or α) is that AX = cX for some scalar c.

This is equivalent to (cI2 − A)X = 0, which asserts that X is a solution of the linear
system

[
c − 2 1
−2 c − 4

][
x1
x2

] = [
0
0
] .

By (8.2.2) this linear system has a non-trivial solution [x1, x2]T if and only if the deter-
minant of the coe�cient matrix vanishes, i.e.,

!!!!!!!!!

c − 2 1
−2 c − 4

!!!!!!!!!
= 0.

On expansion this becomes c2 − 6c + 10 = 0. The roots of this quadratic equation are
c1 = 3 + i and c2 = 3 − i where i = √−1, so these are the eigenvalues of A.

The eigenvectors for each eigenvalue are found by solving the linear systems
(c1I2 − A)X = 0 and (c2I2 − A)X = 0. For example, in the case of c1 we have to solve

{
(1 + i)x1 + x2 = 0

−2x1 + (−1 + i)x2 = 0

The general solution of this system is x1 = d
2 (−1 + i), x2 = d where d is an arbitrary

scalar. Thus the eigenvectors of A associated with the eigenvalue c1 are the non-zero
vectors of the form

d [
−1+i
2
1

] .
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Notice that these, together with the zero vector, form a 1-dimensional subspace of ℂ2.
In a similar manner the eigenvectors for the eigenvalue 3 − i are found to be the vectors
of the form

d [−
1+i
2
1

]

where d ̸= 0. Again these form with the zero vector a subspace of ℂ2.

This example is an illustration of the general procedure for �nding eigenvectors
and eigenvalues.

The characteristic equation. Let A be an n × n matrix over a �eld F and let X be a non-
zero n-column vector over F. The condition for X to be an eigenvector of A is AX = cX
or

(cIn − A)X = 0,

where c is the corresponding eigenvalue. Thus the eigenvectors associated with c,
together with the zero vector, form the null space of the matrix cIn − A. This subspace
is called the eigenspace of the eigenvalue c.

Next (cIn −A)X = 0 is a homogeneous linear system of n equations in n unknowns,
namely the entries of X. By (8.2.2) the condition for there to be a non-trivial solution of
the system is

det(cIn − A) = 0.

Conversely, if c ∈ satis�es this equation, there is a non-zero solution of the system and
c is an eigenvalue. These considerations show that the determinant

det(tIn − A) =

!!!!!!!!!!!!!!!!!!

t − a11 −a12 ⋅ ⋅ ⋅ −a1n
−a21 t − a22 ⋅ ⋅ ⋅ −a2n
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−an1 −an2 ⋅ ⋅ ⋅ t − ann

!!!!!!!!!!!!!!!!!!

plays a critical role. This is a polynomial of degree n in t with coe�cients in F called
the characteristic polynomial of A. The equation obtained by setting the characteristic
polynomial equal to zero is the characteristic equation. Thus the eigenvalues of A are
the roots of the characteristic polynomial which lie in the �eld F.

One should keep in mind that A may well have no eigenvalues in F. For example,
the characteristic polynomial of the real matrix

[
0 1

−1 0
]

is t2 + 1, which has no real roots, so the matrix has no eigenvalues inℝ.
In general the eigenvalues of a linear operator or a matrix lie in the splitting �eld

of the characteristic polynomial – see (7.4). If F = ℂ, all roots of the characteristic
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equation lie in ℂ by the Fundamental Theorem of Algebra. Because of this we can be
sure that a complex matrix has all its eigenvalues in ℂ.

Let us sum up our conclusions about the eigenvalues of matrices so far.

(8.4.1) Let A be an n × n matrix over a �eld F.
(i) The eigenvalues of A in F are precisely the roots of the characteristic polynomial

det(tIn − A) which lie in F.
(ii) The eigenvectors of A associated with the eigenvalue c are the non-zero vectors in

the null space of the matrix cIn − A.

Example (8.4.3) Find the eigenvalues of the upper triangular matrix

A =
[[[[

[

a11 a12 a13 ⋅ ⋅ ⋅ a1n
0 a22 a23 ⋅ ⋅ ⋅ a2n
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 ⋅ ⋅ ⋅ ann

]]]]

]

.

The characteristic polynomial of A is

!!!!!!!!!!!!!!!!!!

t − a11 −a12 −a13 ⋅ ⋅ ⋅ −a1n
0 t − a22 −a23 ⋅ ⋅ ⋅ −a2n
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 ⋅ ⋅ ⋅ t − ann

!!!!!!!!!!!!!!!!!!

,

which equals (t − a11)(t − a22) ⋅ ⋅ ⋅ (t − ann). The eigenvalues of the matrix are therefore
just the diagonal entries a11, a22, . . . , ann.

Example (8.4.4) Consider the 3 × 3 matrix

A = [[

[

2 −1 −1
−1 2 −1
−1 −1 0

]]

]

.

The characteristic polynomial of A is

!!!!!!!!!!!!!!

t − 2 1 1
1 t − 2 1
1 1 t

!!!!!!!!!!!!!!

= t3 − 4t2 + t + 6.

By inspection one root of this cubic polynomial is −1. Dividing the polynomial by
t + 1 using long division, we obtain the quotient t2 − 5t + 6 = (t − 2)(t − 3). Hence
the characteristic polynomial factorizes completely as (t + 1)(t − 2)(t − 3) and the
eigenvalues of A are −1, 2 and 3.
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To �nd the corresponding eigenvectors, solve the three linear systems (−I3 − A)X =
0, (2I3 − A)X = 0 and (3I3 − A)X = 0. On solving these, we �nd that the respective
eigenvectors are the non-zero scalar multiples of the vectors

[[

[

1
1
2

]]

]

, [[
[

1
1

−1

]]

]

, [[
[

1
−1
0

]]

]

,

so that eigenspaces all have dimension 1.

Properties of the characteristic polynomial. Let us see what can be said about the
characteristic polynomial of an arbitrary n × n matrix A = [aij] over a �eld F. This is

p(t) =

!!!!!!!!!!!!!!!!!!

t − a11 −a12 ⋅ ⋅ ⋅ −a1n
−a21 t − a22 ⋅ ⋅ ⋅ −a2n
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−an1 −an2 ⋅ ⋅ ⋅ t − ann

!!!!!!!!!!!!!!!!!!

.

At this point recall the de�nition of a determinant as an alternating sum of n! terms,
each term being a product of n entries, one from each row and column. The term of
p(t) with highest degree in t arises from the product

(t − a11)(t − a22) ⋅ ⋅ ⋅ (t − ann)

and is clearly tn. The terms of degree n − 1 are easily identi�ed as they arise from the
same product. Thus the coe�cient of tn−1 is −(a11 + a22 + ⋅ ⋅ ⋅ + ann). The sum of the
diagonal entries of A is called the trace of A,

tr(A) = a11 + a22 + ⋅ ⋅ ⋅ + ann ,

so the term in p(t) of degree n − 1 is −tr(A)tn−1.
The constant term in p(t) is p(0) = det(−A) = (−1)ndet(A). Our knowledge of p(t)

so far is summarized by the formula

p(t) = tn − tr(A)tn−1 + ⋅ ⋅ ⋅ + (−1)n det(A).

The other coe�cients in the characteristic polynomial are not so easy to describe,
but they are in fact expressible in terms of subdeterminants of det(A). For example, take
the case of tn−2. A term in tn−2 arises in twoways: from theproduct (t−a11)(t−a22) ⋅ ⋅ ⋅ (t−
ann) or from products like −a12a21(t − a33) ⋅ ⋅ ⋅ (t − ann). So a typical contribution to
the coe�cient of tn−2 is

(a11a22 − a12a21) =
!!!!!!!!!

a11 a12
a21 a22

!!!!!!!!!
.

From this one can see that the term of degree n − 2 in p(t) is tn−2 times the sum of all
the 2 × 2 sub-determinants of the form

!!!!!!!!!

aii aij
aji ajj

!!!!!!!!!
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where i < j.
In general it can be shown by similar considerations that the following is true.

(8.4.2) The characteristic polynomial of the n × n matrix A is

n
∑
i=0

(−1)idi tn−i

where di is the sum of all the i × i subdeterminants of det(A) whose principal diagonals
are part of the principal diagonal of A.

Next let c1, c2, . . . , cn be the eigenvalues of A in the splitting �eld of its character-
istic polynomial p(t). Since p(t) is monic, we have

p(t) = (t − c1)(t − c2) ⋅ ⋅ ⋅ (t − cn).

The constant term in this product is evidently (−1)nc1c2 . . . cn, while the term in tn−1

has coe�cient −(c1 + ⋅ ⋅ ⋅ + cn). On the other hand, we found these coe�cients to
be (−1)ndet(A) and −tr(A) respectively. Thus we have found two important relations
between the eigenvalues and the entries of A.

Corollary (8.4.3) If A is a square matrix, the product of the eigenvalues equals det(A)
and the sum of the eigenvalues equals tr(A).

Let A and B be n × nmatrices over a �eld F. Recall that A and B are similar over
F if there is an invertible n × n matrix S over F such that B = SAS−1. The next result
indicates that similar matrices have much in common.

(8.4.4) Similar matrices have the same characteristic polynomial. Hence they have the
same eigenvalues, trace and determinant.

Proof. LetA and S be n×nmatrices over a �eldwith S invertible. Then the characteristic
polynomial of the matrix SAS−1 is

det(tI − SAS−1) = det(S(tI − A)S−1) = det(S)det(tI − A)det(S)−1

= det(tI − A).

(Here we have used the property of determinants, det(PQ) = det(P)det(Q)). The state-
ments about trace and determinant follow from (8.4.3).

On the other hand, similar matrices need not have the same eigenvectors. Indeed
the condition for X to be an eigenvector of SAS−1 with eigenvalue c is (SAS−1)X = cX,
which is equivalent to A(S−1X) = c(S−1X). Thus X is an eigenvector of SAS−1 if and
only if S−1X is an eigenvector of A.
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Diagonalizable matrices. We now consider when a square matrix is similar to a diago-
nal matrix. This is an important question since diagonal matrices have much simpler
properties than arbitrary matrices. For example, when a diagonal matrix is raised to
the mth power, the e�ect is merely to raise each element on the diagonal to the mth
power, whereas there is no simple expression for the mth power of an arbitrary matrix.
Suppose we want to compute Am where A is similar to a diagonal matrix D, with say
A = SDS−1. Then Am = (SDS−1)m = SDmS−1 after cancellation. Thus it is possible to
calculate Am quite simply if we have explicit knowledge of S and D.

Let A be a square matrix over a �eld F. Then A is said to be diagonalizable over F if
it is similar to a diagonal matrix D over F, that is, there is an invertible matrix S over F
such that A = SDS−1 or equivalently D = S−1AS. We also say that S diagonalizes A.

The terminology extends naturally to linear operators on a �nite dimensional
vector space V. A linear operator α on V is said to be diagonalizable if there is a basis
{v1, . . . , vn} such that α(vi) = civi where ci ∈ F, for i = 1, . . . , n. Thus α is represented
by the diagonal matrix diag(c1, c2, . . . , cn) with respect to this basis.

It is an important observation that if amatrixA is diagonalizable and its eigenvalues
are c1, . . . , cn, then Amust be similar to the diagonal matrix with c1, . . . , cn on the
principal diagonal. This is because similar matrices have the same eigenvalues and the
eigenvalues of a diagonal matrix are just the entries on the principal diagonal.

We aim to �nd a criterion for a square matrix to be diagonalizable. A key step in
the search is next.

(8.4.5) Let A be an n×n matrix over a �eld F and let c1, . . . , cr be distinct eigenvalues of
A with associated eigenvectors X1, . . . , Xr. Then {X1, . . . , Xr} is a linearly independent
subset of Fn .

Proof. Assume the theorem is false; then there is a positive integer i such that {X1, . . . ,
Xi} is linearly independent, but adjunction of the vector Xi+1 produces the linearly
dependent set {X1, . . . , Xi , Xi+1}. Hence there are scalars d1, . . . , di+1, not all of them
zero, such that

d1X1 + ⋅ ⋅ ⋅ + diXi + di+1Xi+1 = 0.

Premultiply both sides of this equation by A and use the equations AXj = cjXj to get

c1d1X1 + ⋅ ⋅ ⋅ + cidiXi + ci+1di+1Xi+1 = 0.

On subtracting ci+1 times the �rst equation from the second, we arrive at the equation

(c1 − ci+1)d1X1 + ⋅ ⋅ ⋅ + (ci − ci+1)diXi = 0.

Since X1, . . . , Xi are linearly independent, the coe�cients (cj − ci+1)dj must vanish.
But c1, . . . , ci+1 are all di�erent, so it follows that dj = 0 for j = 1, . . . , i. Hence
di+1Xi+1 = 0 and di+1 = 0, contrary to assumption, so the theorem is proved.
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A criterion for diagonalizability can now be established.

(8.4.6) Let A be an n × n matrix over a �eld F. Then A is diagonalizable over F if and
only if A has n linearly independent eigenvectors in Fn .

Proof. First of all assume that A has n linearly independent eigenvectors in Fn, say
X1, X2, . . . , Xn, and let the associated eigenvalues be c1, c2, . . . , cn. De�ne S to be the
n × n matrix whose columns are the eigenvectors; thus

S = [X1 X2 . . . Xn].

The �rst thing to note is that S is invertible since its columns are linearly independent.
Forming the product of A and S in partitioned form, we �nd that

AS = [AX1 AX2 . . . AXn] = [c1X1 c2X2 ⋅ ⋅ ⋅ cnXn],
so that

AS = [X1 X2 . . . Xn]
[[[[

[

c1 0 0 ⋅ ⋅ ⋅ 0
0 c2 0 ⋅ ⋅ ⋅ 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 ⋅ ⋅ ⋅ ⋅ cn

]]]]

]

= SD,

where D = diag(c1, c2, . . . , cn) is the diagonal matrix with diagonal entries c1, . . . , cn.
Therefore A = SDS−1 and A is diagonalizable.

Conversely, assume that A is diagonalizable and S−1AS = D = diag(c1, c2, . . . , cn).
Here the ci must be the eigenvalues of A. Then AS = SD, which implies that AXi =
ciXi where Xi is the ith column of S. Therefore X1, X2, . . . , Xn are eigenvectors of
A with associated eigenvalues c1, c2, . . . , cn. Since X1, X2, . . . , Xn are columns of
the invertible matrix S, they are linearly independent. Consequently A has n linearly
independent eigenvectors.

Corollary (8.4.7) An n × n complex matrix with n distinct eigenvalues is diagonalizable.

This follows at once from (8.4.5) and (8.4.6). On the other hand, it is easy to �nd
matrices that are not diagonalizable: for example, the matrix

A = [
1 1
0 1

] .

Indeed, if A were diagonalizable, it would be similar to the identity matrix I2, since
both eigenvalues of A equal to 1. But then A = SI2S−1 = I2 for some S, a contradiction.

A feature of the proof of (8.4.6) is that it provides a method for �nding a matrix S
whichdiagonalizesA. It su�ces to �nda largest set of linearly independent eigenvectors
of A; if there are enough of them, they can be taken to form the columns of the matrix S.
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Example (8.4.5) Find a matrix which diagonalizes

A = [
2 −1
2 4

] .

From Example (8.4.2) we know that the eigenvalues of A are 3 ± i, so A is diagonal-
izable over ℂ by (8.4.7). Also corresponding eigenvectors for A were found which form
the matrix

S = [
−1+i
2 −1+i

2
1 1

] .

From the preceding theory we may be sure that

S−1AS = [
3 + i 0
0 3 − i

] .

Triangularizable matrices. It has been seen that not every complex square matrix is
diagonalizable. Compensating for this failure is the fact such a matrix is always similar
to an upper triangular matrix.

Let A be a square matrix over a �eld F. Then A is said to be triangularizable over F
if there is an invertible matrix S over F such that A = STS−1 or equivalently S−1AS = T,
where T is upper triangular. It will also be convenient to say that S triangularizes A. Note
that the diagonal entries of the triangular matrix T will necessarily be the eigenvalues
of A. This is because of Example (8.4.3) and the fact that similar matrices have the same
eigenvalues. Thus a necessary condition for A to be triangularizable over F is that all
its eigenvalues belong to F. In fact the converse is also true.

(8.4.8) Asquarematrix A over a �eld F all ofwhose eigenvalues lie in F is triangularizable
over F.

Proof. We show by induction on n that A is triangularizable. If n = 1, there is nothing
to prove, so let n > 1. Assume the result is true for (n − 1) × (n − 1)matrices.

By hypothesis A has at least one eigenvalue c in F, with associated eigenvector
X say. Since X ̸= 0, it is possible to adjoin vectors to X to produce a basis of Fn, say
{X = X1, X2, . . . , Xn}; here we have used (8.2.6). Left multiplication of the vectors of
Fn by A gives rise to linear operator α on Fn. With respect to the basis {X1, . . . , Xn},
the linear operator α is represented by a matrix with the special form

B1 = [
c A2
0 A1

]

where A1 and A2 are matrices over F and A1 has n − 1 rows and columns. The reason
for the special form is that α(X1) = AX1 = cX1 since X1 is an eigenvector of A with
associated eigenvalue c. The matrices A and B1 are similar since they represent the
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same linear operator α. Suppose that in fact B1 = S−11 AS1 where S1 is an invertible
n × n matrix.

Observe that the eigenvalues of A1 are among those of B1 and hence A, so they
are all distinct. By induction on n there is an invertible matrix S2 with n − 1 rows and
columns such that B2 = S−12 A1S2 is upper triangular. Now write

S = S1 [
1 0
0 S2

] .

This is a product of invertible matrices, so it is invertible. An easy matrix computation
shows that

S−1AS = [
1 0
0 S−12

] (S−11 AS1) [
1 0
0 S2

] = [
1 0
0 S−12

] B1 [
1 0
0 S2

] .

From this we obtain

S−1AS = [
1 0
0 S−12

][
c A2
0 A1

][
1 0
0 S2

] = [
c A2S2
0 S−12 A1S2

] = [
c A2S2
0 B2

] = T.

The matrix T is upper triangular, so the theorem is proved.

The preceding proof provides a method for triangularizing a matrix.

Example (8.4.6) Triangularize the matrix A = [
1 1

−1 3
] over ℂ.

The characteristic polynomial of A is t2−4t+4, so both eigenvalues equal 2. Solving

(2I2 − A)X = 0, we �nd that all the eigenvectors of A are scalar multiples of X1 = [
1
1
].

Therefore by (8.4.6) the matrix A is not diagonalizable.
Let α be the linear operator on ℂ2 arising from left multiplication by A. Adjoin a

vector to X2 to X1 to get a basisB2 = {X1, X2} of ℂ2: for example let X2 = [
0
1
]. Denote

by B1 the standard basis of ℂ2. The change of basis B2 → B1 has transition matrix

S = [
1 0
1 1

], so S1 = S−1 = [
1 0

−1 1
] is the transition matrix of the change of basis

B1 → B2. Therefore by (8.3.13) the matrix that represents α with respect to the basis

B2 is S1AS−11 = [
2 1
0 2

] = T. Hence A = S−11 TS1 = STS−1 and S triangularizes A.

To conclude the chapter we show how to solve a system of linear recurrences by
using matrix diagonalization.

Example (8.4.7) In a population of rabbits and weasels it is observed that each year
the number of rabbits is equal to four times the number of rabbits less twice the number
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of weasels in the previous year. The number of weasels in any year equals the sum
of the numbers of rabbits and weasels in the previous year. If the initial numbers of
rabbits and weasels were 100 and 10 respectively, �nd the numbers of each species
after n years.

Let rn and wn denote the respective numbers of rabbits and weasels after n years.
The information given translates into the two linear recurrence relations

{
rn+1 = 4rn − 2wn
wn+1 = rn + wn

together with the initial conditions r0 = 100, w0 = 10. We have to solve this system of
linear recurrence relations for rn and wn.

To see how eigenvalues enter into the problem, write the system of recurrences in

matrix form. Put Xn = [
rn
wn

] andA = [
4 −2
1 1

]. Then the two recurrences are equivalent

to the single matrix equation
Xn+1 = AXn ,

while the initial conditions assert that X0 = [
100
10

] . These equations enable us to

calculate successive vectors Xn; for X1 = AX0, X2 = A2X0 and in general Xn = AnX0.
In principle this provides a solution to the problem.However, it involves calculating

powers of thematrix A. Fortunately A is diagonalizable since it has distinct eigenvalues

2 and 3. Corresponding eigenvectors are found to be [1
1
] and [

2
1
]; therefore the matrix

S = [
1 2
1 1

] diagonalizes A, and

S−1AS = [
2 0
0 3

] = D.

It is now easy to compute powers since An = (SDS−1)n = SDnS−1. Therefore Xn =
AnX0 = SDnS−1X0 and thus

Xn = [
1 2
1 1

][
2n 0
0 3n

][
−1 2
1 −1

][
100
10

] ,

which leads to

Xn = [
180 ⋅ 3n − 80 ⋅ 2n

90 ⋅ 3n − 80 ⋅ 2n
] .

The solution to the problem can now be read o�:

rn = 180 ⋅ 3n − 80 ⋅ 2n and wn = 90 ⋅ 3n − 80 ⋅ 2n .

Notice that rn and wn both increase without limit as n → ∞ since 3n is the domi-
nant term; however, limn→∞( rnwn ) = 2. The conclusion is that, while both populations
explode, in the long run there will be twice as many rabbits as weasels.
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Exercises (8.4)

(1) Find the eigenvectors and eigenvalues of the following matrices:

[
1 5
3 3

] ; [[

[

1 2 −1
1 0 1
4 −4 5

]]

]

;
[[[[

[

1 0 0 0
2 2 0 0
1 0 3 0
0 1 −1 4

]]]]

]

.

(2) Prove that tr(A + B) = tr(A) + tr(B) and tr(cA) = c tr(A) where A and B are n × n
matrices and c is a scalar.
(3) If A and B are n × n matrices, show that AB and BA have the same eigenvalues.
(4) Suppose that A is a square matrix with real entries and real eigenvalues. Prove that
each eigenvalue of A has an associated real eigenvector.
(5) A real square matrix with distinct eigenvalues is diagonalizable over ℝ: true or
false?
(6) Let p(t) be the polynomial tn + an−1tn−1 + an−2tn−2 + ⋅ ⋅ ⋅ + a0 over a �eld F. Show
that p(t) is the characteristic polynomial of the matrix

[[[[[[

[

0 0 ⋅ ⋅ ⋅ 0 −a0
1 0 ⋅ ⋅ ⋅ 0 −a1
0 1 ⋅ ⋅ ⋅ 0 −a2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 ⋅ ⋅ ⋅ 1 −an−1

]]]]]]

]

.

(This is called the companion matrix of p(t)):
(7) Find matrices which diagonalize the following matrices:

(a) [1 5
3 3

] ; (b) [[
[

1 2 −1
1 0 1
4 −4 5

]]

]

.

(8) For which values of a and b is the matrix [
0 a
b 0

] diagonalizable over ℂ?

(9) Prove that a complex 2 × 2 matrix is not diagonalizable if and only if it is similar to

a matrix of the form [
a b
0 a

] where b ̸= 0.

(10) LetA be adiagonalizablematrix and assume that S is amatrixwhichdiagonalizesA.
Prove that a matrix T diagonalizes A if and only if it is of the form T = CS where C is a
matrix such that AC = CA.
(11) If A is a non-singularmatrix with eigenvalues c1, . . . , cn, show that the eigenvalues
of A−1 are c−11 , . . . , c−1n .
(12) Let α be a linear operator on a complex n-dimensional vector space V. Prove that
there is a basis {v1, ..., vn} of V such that α(vi) is a linear combination of v1, v2, . . . , vi
for i = 1, . . . , n.
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(13) Let T : Pn(ℝ) → Pn(ℝ) be the linear operator corresponding to di�erentiation.
Show that all the eigenvalues of α are zero. What are the eigenvectors?
(14) Let c1, . . . , cn be the eigenvalues of a complexmatrix A. Prove that the eigenvalues
of Am are cm1 , . . . , cmn where m is any positive integer.
(15) Prove that a square matrix and its transpose have the same eigenvalues.
(16) Use matrix diagonalization to solve the following system of linear recurrences:

{
xn+1 = 2xn + 10yn
yn+1 = 2xn + 3yn

with the initial conditions x0 = 0, y0 = 1.



9 Introduction to modules

After groups, rings and vector spaces, the most useful algebraic structures are prob-
ably modules. A module is an abelian group on which a ring acts subject to natural
rules. Aside from their intrinsic interest as algebraic objects, modules have important
applications to linear operators, canonical forms of matrices and representations of
groups.

9.1 Elements of module theory

Let R be a ring and let M be an abelian group which is written additively. Then M is
said to be a left R-module if there is a left action of R onM, i.e., a map from R ×M toM,
written (r, a) Ü→ r ⋅ a, (r ∈ R, a ∈ M), such that the following axioms are valid for all
r, s ∈ R and a, b ∈ M:
(i) r ⋅ (a + b) = r ⋅ a + r ⋅ b;
(ii) (r + s) ⋅ a = r ⋅ a + s ⋅ a;
(iii) (rs) ⋅ a = r ⋅ (s ⋅ a).
If the ring R has an identity element and if in addition
(iv) 1R ⋅ a = a,
for all a ∈ M, the module M is called unitary. It will be a tacit assumption here that
whenever a ring R has identity, an R-module is unitary.

A right R-module is de�ned in the analogous fashion via a right action of R on M.
Sometimes it is convenient to indicate whether an R-moduleM is left or right by writing

RM or MR ,

respectively
It is usually not necessary to study left and right R-modules separately since one

can always pass to modules over the opposite ring

Ropp

of R. This is the ring with the same underlying set and operation of addition as R, but
with the opposite multiplication, i.e.,

r ∗ s = sr, (r, s ∈ R).

It is easy to check that Ropp is a ring. Of course R = Ropp if R is a commutative ring. The
relation between left and right modules is made clear by the next result.

(9.1.1) Let R be a ring and M an R-module.
(i) If M is a left R-module, it is also a right Ropp-module with the right action a ⋅ r = r ⋅ a.
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(ii) If M is a right R-module, it is also a left Ropp-module with the left action r ⋅ a = a ⋅ r.

Proof. (i) The axioms for a right action have to be veri�ed, the crucial one being

(a ⋅ r) ⋅ s = (r ⋅ a) ⋅ s = s ⋅ (r ⋅ a) = (sr) ⋅ a = (r ∗ s) ⋅ a = a ⋅ (r ∗ s) :

here ∗ denotes the ring operation in Ropp. The proof of (ii) is similar.

This result allows us to concentrate on left modules.

Elementary properties. The simplest consequences of themodule axioms are collected
in the next result, which, as will usually be the case, is stated for left modules.

(9.1.2) Let M be a left R-module and let a ∈ M, r ∈ R and n ∈ ℤ. Then:
(i) r ⋅ 0M = 0M;
(ii) 0R ⋅ a = 0M;
(iii) n(r ⋅ a) = (nr) ⋅ a = r ⋅ (na).

Proof. For (i) put a = 0M = b in module axiom (i): for (ii) put r = 0R = s in axiom (ii).
The proof of (iii) requires a little more e�ort. If n > 0, the statements are quickly proved
by induction on n. For n = 0 they follow at once from (i) and (ii).

Next consider the case n = −1. The elements (−r) ⋅ a and r ⋅ (−a) both equal −(r ⋅ a)
since (−r) ⋅a+ r ⋅a = (−r+ r) ⋅a = 0R ⋅a = 0M and r ⋅ (−a)+ r ⋅a = r ⋅ (−a+a) = r ⋅0M = 0M
by (i) and (ii).

Finally, let n < 0. Then −n(r ⋅ a) = (−n)r ⋅ a = r ⋅ (−na). Take the negative of each
side and use the case n = −1 to get n(r ⋅ a) = (nr) ⋅ a = r ⋅ (na), as required.

In future we will write 0 for both 0R and 0M.

Examples of modules. Next we list some standard sources of modules.
(i) Let R be an arbitrary ring. De�ne a left action of R on itself by using the ring product:
thus r ⋅ s = rs, (r, s ∈ R). The ring axioms guarantee the validity of the module axioms.
In a similar way R can be made into a right R-module using the ring product. To
distinguish when the ring is being regarded as a left or a right module, we will often
write

RR and RR

respectively.

(ii) Let F be a �eld. Then a left F-module is simply a vector space over F since the vector
space axioms are just those for an F-module.

(iii) An abelian group A is a leftℤ-module inwhich the action is n ⋅a = na, n ∈ ℤ, a ∈ A.
Conversely, if A is aℤ-module, the module action is n ⋅ a = na. To see this set r = 1

in (9.1.2)(iii), keeping in mind that A is a unitary module. Consequently, there is only
one way to make an abelian group into aℤ-module.
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These examples show that the module concept is a broad one, encompassing rings,
abelian groups and vector spaces.

Bimodules. Let R and S be a pair of rings. An (R, S)-bimodule is an abelian group M
which is simultaneously a left R-module and a right S-module, and in which the left
and right actions are linked by the law

(r ⋅ a) ⋅ s = r ⋅ (a ⋅ s),

where r ∈ R, s ∈ S, a ∈ M. The notation

RMS

will be used to indicate an (R, S)-bimodule. For example, a ring R is an (R, R)-bimodule
via the ring operations. Of course, if R is a commutative ring, R = Ropp and there is no
di�erence between a left R-module, a right R-module and an (R, R)-bimodule.

Submodules. Groups have subgroups, rings have subrings and vector spaces have
subspaces, so it is to be expected that submodules will play a role in module theory.

Let M be a left R-module. An R-submodule of M is a subgroup N of M which has
the additional property

a ∈ N, r ∈ R ⇒ r ⋅ a ∈ N.

Notice thatN itself is anR-module. There is a correspondingde�nition for rightmodules.
Here are some standard examples of submodules.
(i) If R is a ring, the submodules of RR are the left ideals of R, while those of RR are

the right ideals.
(ii) Every module has the zero submodule, containing only the zero element, and the

improper submodule, namely the module itself.

Submodules generated by subsets. Let R be a ring and M a left R-module. It follows
quickly from the de�nition of a submodule that the intersection of a non-empty set of
submodules of M is itself a submodule. Now let X be a non-empty subset of M. There
is at least one submodule of M containing X, namely M itself. Thus we can form the
intersection of all the submodules that contain X, which is a submodule called the
submodule generated by X. It is evidently the smallest submodule of M containing X.

It is natural to ask what the elements of this submodule look like; recall that similar
questions arose for subgroups, subrings, ideals and subspaces. The answer in the case
of a ring with identity is given next.

(9.1.3) Let R be a ring with identity and M a left R-module. If X is a non-empty subset of
M, the submodule of M generated by X consists of all elements of the form

r1 ⋅ x1 + r2 ⋅ x2 + ⋅ ⋅ ⋅ + rn ⋅ xn

where ri ∈ R, xi ∈ X, n ≥ 0.
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Proof. Let N be the set of all elements of the form r1 ⋅ x1 + r2 ⋅ x2 + ⋅ ⋅ ⋅ + rn ⋅ xn with ri ∈
R, xi ∈ X, n ≥ 0. (Note that when n = 0, the sum is to be interpreted as 0). It is an easy
veri�cation that N is a submodule. Now X ⊆ N since x = 1 ⋅ x ∈ N for all x ∈ X. Hence
the submodule L generated by X is contained in N. On the other hand, N ⊆ L, since
it is clear from their form that every element of N belongs to L. Therefore L = N.

If R is a ring with identity and X is a subset of a left R-module, the notation

R ⋅ X

will be used to denote the submodule generated by X. (If R is a �eld, so that R-modules
are vector spaces, the notation used in (8.1) for R ⋅ X was ⟨X⟩).

An R-module M is said to be �nitely generated if it can be generated by a �nite
subset X. An important special case is when X = {x}. In this situation, if R has an
identity, we write R ⋅ x for R ⋅ X; then M is called a cyclic R-module. For example,
the cyclic submodules of RR are the principal left ideals of R, i.e., those of the form
Rx = {r ⋅ x | r ∈ R}.

Quotient modules and homomorphisms. Just as for groups, rings and vector spaces, it
is possible to de�ne quotients of modules. Let N be a submodule of a left R-module M.
Since N is a subgroup of the abelian group M, the quotient M/N = {a + N | a ∈ M},
consisting of all cosets of N in M, already has the structure of an abelian group. To
make M/N into a left R-module a left action must be speci�ed. The natural candidate
is the rule

r ⋅ (a + N) = r ⋅ a + N, (a ∈ M, r ∈ R).

As usual when an operation is to be de�ned on a quotient structure, the question arises
as to whether it is well de�ned. Let b ∈ a + N, so that b = a + c with c ∈ N. Then
r ⋅ b = r ⋅ a + r ⋅ c ∈ r ⋅ a + N since r ⋅ c ∈ N. Hence r ⋅ a + N = r ⋅ b + N and the left action
has been well de�ned. The simple task of checking the validity of the module axioms is
left to the reader. The moduleM/N is the quotient module (or factor module) ofM by N.

It is to be expected that there will be mappings betweenmodules called module ho-
momorphisms. LetM, N be two left modules over a ring R. An R-module homomorphism
from M to N is a homomorphism of abelian groups

α : M → N

which has the additional property that α(r ⋅ a) = r ⋅ α(a) for r ∈ R, a ∈ M. Thus the
mapping α connects the module structures of M and N.

A standard example is the canonical homomorphism ν from an R-module M to the
quotient module M/N where N is a submodule of M. This is de�ned by ν(a) = a + N.
We already know from group theory that ν is a group homomorphism. To show that it is
a module homomorphism simply observe that ν(r ⋅ a) = r ⋅ a + N = r ⋅ (a + N) = r ⋅ ν(a).
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(9.1.4) Let M and N be left modules over a ring R and let α : M → N be a module
homomorphism. Then Im(α) and Ker(α) are submodules of N and M respectively.

Of course group theory tells us that Im(α) and Ker(α) are subgroups of N and M. It
is just a matter of verifying that they are submodules, another simple task that is left to
the reader.

A module homomorphism which is bijective is called a module isomorphism. If
there is a module isomorphism between two R-modules M and N, they are said to be
R-isomorphic, in symbols

M R≃ N.

It is an important observation that the inverse of a module isomorphism is also a module
isomorphism – see Exercise (9.1.4). Therefore isomorphism of R-modules is an equiva-
lence relation.

The isomorphism theorems for modules. Just as in group theory there are theorems
connecting module homomorphisms and quotient modules.

(9.1.5) (First Isomorphism Theorem) Let α : M → N be an R-module homomorphism.
Then the map θ : M/Ker(α) → Im(α) de�ned by θ(a + Ker(α)) = α(a), (a ∈ M), is an
isomorphism of R-modules.

(9.1.6) (Second Isomorphism Theorem) Let M and N be submodules of an R-module.
Then M + N and M ∩ N are submodules and (M + N)/N R≃ M/(M ∩ N) via the map
a + N Ü→ a + (M ∩ N), (a ∈ M).

(9.1.7) (Third Isomorphism Theorem) Let L,M, N be submodules of an R-module such
that L ⊆ M ⊆ N. Then M/L is a submodule of N/L and (N/L)/(M/L) R≃ N/M via the map
(a + L) + (M/L) Ü→ a +M, (a ∈ N).

Proof. We know from (4.3.4), (4.3.5) and (4.3.6) that each of the speci�ed maps is an
isomorphism of groups. To complete the proofs it is a question of showing that the
relevant maps are module homomorphisms. For example, take the case of (9.1.5). By
de�nition θ(r ⋅ (a + Ker(α)) = θ(r ⋅ a + Ker(α)) = α(r ⋅ a) = r ⋅ α(a) = r ⋅ θ(a + Ker(α)). In
a similar way (9.1.6) and (9.1.7) can be established.

We mention, without writing down the details, that there is a module version of
the Correspondence Theorem – see (4.2.2). This theorem describes the submodules of
a quotient module M/N as L/N where L is a submodule of M containing N.

The structure of cyclic modules. Su�cient machinery has been developed to permit a
description of cyclic R-modules when R is a ring with identity.
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(9.1.8) Let R be a ring with identity.
(i) If M is a cyclic left R-module, then M R≃ RR/L where L is a left ideal of R.
(ii) Conversely, if L is a left ideal of R, then RR/L is the cyclic left R-module generated by

1R + L.

Proof. Assume that M is cyclic and M = R ⋅ a where a ∈ M. De�ne a function α :
RR → M by α(r) = r ⋅ a. Check that α is an R-module homomorphism. For example, let
r1, r ∈ R; then α(r1 ⋅ r) = α(r1r) = (r1r) ⋅ a = r1 ⋅ (r ⋅ a) = r1 ⋅ α(r). Also α is surjective
since each element of M has the form r ⋅ a = α(r) for some r ∈ R. Set L = Ker(α) and
note that L is a left ideal by (9.1.4). Hence RR/L

R≃ Im(α) = M by 9.1.5. The converse
statement is obvious.

The kernel of the function α in the proof of (9.1.8)(i) is the set {r ∈ R | r ⋅ a = 0}: this
left ideal of R is called the annihilator of a in R and is denoted by

AnnR(a).

Since cyclic left R-modules have been seen to correspond to left ideals of the ring
R, it is to be expected that module theory will be more complicated for rings with many
ideals. The simplest situation is, of course, for �elds, which have no proper non-zero
ideals: in this case we are dealing with vector spaces over a �eld and every cyclic
module is a 1-dimensional space isomorphic with the �eld itself.

Direct sums of submodules. Just as for vector spaces, there is the notion of a direct
sum of submodules. Let M be a module with a family of submodules {Mλ | λ ∈ Λ}.
Suppose that

Mλ ∩ ∑
µ ̸=λ

Mµ = 0

for all λ ∈ Λ. Then the Mλ generate their internal direct sum, which is written

⨁
λ∈Λ

Mλ .

This is a subgroup of M, as we know from (4.2), (where the multiplicative notation was
used). It is evidently also a submodule. We will mainly be concerned with the case
where Λ is �nite. If Λ = {1, 2, . . . , n}, we write the direct sum as

M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mn .

It is also possible to form the external direct sum of a set of modules – see (4.2)
where external direct products of groups were de�ned. The commonest situation is
where there are �nitely many modules {M1,M2, . . . ,Mn}. The external direct sum of
these is the set product M1 × M2 × ⋅ ⋅ ⋅ × Mn where elements are added componentwise
and the action of the ring is on components. The external direct sum is also denoted
by M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mn: we will sometimes write a1 ⊕ a2 ⊕ ⋅ ⋅ ⋅ ⊕ an for (a1, a2, . . . , an)
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to distinguish the direct sum from the set product. Also any external direct sum is
isomorphic with an internal direct sum – cf. the discussion for groups in (4.2).

External direct sums can be extended to the case where there are in�nitely many
modules – see Exercise (9.1.13) below and also Exercises (4.2.13) and (4.2.14) for the
case of groups.

Finiteness conditions on modules. Modules are frequently studied in conjunction
with �niteness restrictions on their submodules.

(9.1.9) Let S be a non-empty set of submodules of a module. Then the following state-
ments about S are equivalent.
(i) The set S satis�es the ascending chain condition, i.e., there does not exist an in�nite

ascending chain of submodules M1 ⊂ M2 ⊂ ⋅ ⋅ ⋅ with Mi ∈ S.
(ii) The set S satis�es themaximal condition, which asserts that every non-empty subset

of S has a maximal element, i.e., an element which is not properly contained in any
other element of S.
The corresponding result for �niteness conditions on ideals in a ring was proved

in (6.4.1). The proof of (9.1.9) is very similar. Amodule forwhich the set of all submodules
satis�es the equivalent conditions in (9.1.9) is said to be noetherian. Notice that if R
is a ring, then RR is a noetherian R-module if and only if R is a left noetherian ring –
see (6.4).

The next result provides some insight into the nature of the noetherian condition
for modules.

(9.1.10) Let M be a module. Then M is noetherian if and only if every submodule of M is
�nitely generated.

Again there was a similar result for rings and ideals (6.4.2); the proof of (9.1.10) is
nearly identical.

A noetherian module is always �nitely generated, as (9.1.10) shows, but the con-
verse is false: �nitely generated modules need not be noetherian – see Exercise (9.1.9).
Therefore the next result is of interest.

(9.1.11) Let R is a left noetherian ring with identity and M a �nitely generated R-module.
Then M is noetherian.

Proof. By hypothesis there exist elements a1, a2, . . . , ak such that M = R ⋅ a1 + R ⋅
a2 + ⋅ ⋅ ⋅ + R ⋅ ak. Since R ⋅ a R≃ RR/AnnR(a) by (9.1.8) and RR is noetherian, we see that
R ⋅ a is a noetherian R-module. Thus the result is true when k = 1. Let k > 1 and argue
by induction on k; then N = R ⋅ a2 + ⋅ ⋅ ⋅ + R ⋅ ak is noetherian. Next M = R ⋅ a1 + N
andM/N R≃ R ⋅ a1/(R ⋅ a1) ∩ N by (9.1.6), which is noetherian since R ⋅ a1 is noetherian.
Finally, sinceM/N and N are both noetherian,M is noetherian by Exercise (9.1.10).
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This result provides many examples of noetherianmodules. Recall from (6.4.5) that
a �nitely generated commutative ring with identity is noetherian. Therefore by (9.1.11)
a �nitely generated module over a �nitely generated commutative ring with identity is
noetherian.

Bases and free modules. The concept of a basis of a vector space extends in a natural
way to modules. LetM be a left module over a ring R with identity. A non-empty subset
X of M is called an R-basis of M if the following hold:
(i) M = R ⋅ X, i.e., X generates M as an R-module.
(ii) X is R-linearly independent, i.e., if r1 ⋅ x1 + r2 ⋅ x2 + ⋅ ⋅ ⋅ + rk ⋅ xk = 0 with ri ∈ R and

distinct xi ∈ X, then r1 = r2 = ⋅ ⋅ ⋅ = rk = 0.
It is easy to see that these properties taken together are equivalent to every element of
the module having a unique expression as an R-linear combination of elements of X:
cf. (8.2.5) and Exercise (8.2.4).

Unlike vector spaces,modules neednot have bases. Indeed there are abelian groups
without non-trivial elements of �nite order that have no bases.

Example (9.1.1) The additive groupℚ of rational numbers does not have a basis.
For suppose thatℚ has a basis X. If X contains two di�erent elements m1

n1 ,
m2
n2 , then

m2n1
m1
n1

− m1n2
m2
n2

= 0,

which contradicts linear independence. Hence X has just one element x andℚ = ⟨x⟩ ≃
ℤ. But this is certainly wrong sinceℚ = 2ℚ, whereasℤ ̸= 2ℤ.

Let R be a ring with identity and M a left R-module. If M has a basis X, then it
is called a free module on X. If R is a �eld, all non-zero modules are free since every
vector space has a basis, but, as has been seen, not everyℤ-module has a basis. Free
ℤ-modules are called free abelian groups.

We will investigate the properties of free modules next. Let M be a free R-module
with a basis X. ThenM = ∑x∈X R ⋅ x and also (R ⋅ x) ∩∑y∈X−{x} R ⋅ y = 0 by uniqueness of
expression as a linear combination. HenceM = ⨁x∈X R ⋅ x. Next R ⋅ x is clearly a cyclic
module, so R ⋅ x ≃ RR/L where L = AnnR(x) by (9.1.8). If r ∈ L, then 0 = r ⋅ x = 0 ⋅ x,
fromwhich it follows by uniqueness of expression that r = 0 and L = 0. Thus R ⋅x R≃ RR.
These conclusions are summed up in:

(9.1.12) Let R be a ring with identity and M a free R-module with a basis X. Then M =
⨁x∈X Mx where Mx

R≃ RR.

The signi�cance of free modules in module theory becomes clear from the next
result, which shows that every module is a homomorphic image of a free module.

(9.1.13) Let R be a ring with identity and let M be a left R-module which is generated by
a subset X = {xλ| λ ∈ Λ}. If F is a free left R-module with basis X̄ = {x̄λ| λ ∈ Λ}, there is a
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surjective R-module homomorphism θ : F → M such that θ(x̄λ) = xλ for all λ ∈ Λ. Thus
M R≃ F/Ker(θ).

Proof. If f ∈ F, there is a unique expression f = r1 ⋅ x̄λ1 + r2 ⋅ x̄λ2 + ⋅ ⋅ ⋅ + rn ⋅ x̄λn with
ri ∈ R, x̄λi ∈ X̄. De�ne θ(f) = r1 ⋅ xλ1 + r2 ⋅ xλ2 + ⋅ ⋅ ⋅ + rn ⋅ xλn . Then θ is a surjective module
homomorphism from F to M.

Next comes a useful property of free modules.

(9.1.14) Let M be a left R-module with a submodule N such that M/N is free. Then there
is a submodule F such that M = N ⊕ F and F R≃ M/N.

Proof. Let X = {xλ + N | λ ∈ Λ} be an R-basis of M/N and let F be the submodule of M
generated by all the elements xλ. Certainly M = N + F. Suppose that f ∈ N ∩ F. Then
f = r1 ⋅ xλ1 + ⋅ ⋅ ⋅ + rn ⋅ xλn where ri ∈ R and the xλi are distinct. Hence

r1 ⋅ (xλ1 + N) + ⋅ ⋅ ⋅ + rn ⋅ (xλn + N) = f + N = 0M/N .

Since X is a basis of M/N, it follows that ri = 0 for all i and f = 0. Therefore N ∩ F = 0
and M = N ⊕ F.

Finally, we address the question of the cardinality of a basis in a freemodule. Recall
that any two bases of a �nite dimensional vector space have the same cardinal, which is
termed the dimension of the space. In general it is possible for a free module to contain
bases with di�erent cardinalities. For present purposes the following positive result is
su�cient.

(9.1.15) Let M be a �nitely generated free module over a commutative noetherian ring R
with identity. Then every basis of M is �nite and any two bases have the same cardinality.

Proof. Since M is �nitely generated, it can be generated by a �nite subset of the basis.
Hence the basis is �nite, say {x1, x2, . . . , xn}. Since R is noetherian, there is a maximal
proper ideal S of R. Then K = R/S is a �eld by (6.3.7). Let N be the subgroup of M
generated by all elements of the form s ⋅ a where s ∈ S, a ∈ M. Then N is a submodule
and M̄ = M/N is a K-vector space via the action (r + S) ⋅ (a + N) = r ⋅ a + N: here it is
necessary to check that this action is well de�ned.

Nextwe show that {xi+N | i = 1, . . . , n} is a basis of M̄. Clearly this subset generates
M̄, so it remains to establish K-linear independence. Suppose that∑n

i=1(ri+ I) ⋅(xi+N) =
0M̄ where ri ∈ R. Then∑n

i=1 ri ⋅ xi ∈ N, which shows that

n
∑
i=1
ri ⋅ xi =

n
∑
i=1
si ⋅ xi

for some si ∈ S. Since the xi are linearly independent, it follows that ri = si ∈ S and
ri + S = 0K . Thus the xi + N are linearly independent and therefore form a basis of
the K-space M̄. Hence n = dimK(M̄), which shows that all R-bases of M have the same
number of elements.
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The cardinality of a basis in a free module F, when this is unique, is called the rank
of F, in symbols rank(F). A zero module is regarded as a free module of rank 0. For an
extension of (9.1.15) see (14.1.5).

Homomorphism groups. Let M and N be left modules over a ring R. The set of all
R-module homomorphisms from M to N is written

HomR(M, N).

This set can be endowed with the structure of an abelian group in which the group
operation is de�ned as follows. If α, β ∈ HomR(M, N), then α + β : V → W is given
by the rule (α + β)(a) = α(a) + β(a) where a ∈ M. It is a simple veri�cation that
α+ β = β+ α ∈ HomR(M, N). The identity element is the zero mapping and the negative
of α is −α where (−α)(a) = −(α(a)). The group axioms are quickly veri�ed.

When R = F is a �eld, HomF(V,W) = L(V,W) and HomF(V, V) = L(V) is the set of
linear operators on the F-vector space V. In particular HomF(V,W) is an F-vector space.
In general HomR(M, N) is not an R-module, but it can inherit a module structure from
M or N, as is seen from the next result.

(9.1.16) Let RMS and RNT be bimodules with respect to rings R, S, T as indicated. Then
HomR(M, N) is an (S, T)-bimodule in which the module actions of S and T are given by

(s ⋅ α)(a) = α(a ⋅ s) and (α ⋅ t)(a) = α(a) ⋅ t

where a ∈ M, s ∈ S, t ∈ T.

Proof. We check the module axioms for the �rst action, leaving the second action
to the reader. Let α ∈ HomR(M, N), ai , a ∈ M, r ∈ R, s ∈ S; then (s ⋅ α)(a1 + a2) =
α((a1 + a2) ⋅ s) = α(a1 ⋅ s + a2 ⋅ s) = α(a1 ⋅ s) + α(a2 ⋅ s) = (s ⋅ α)(a1) + (s ⋅ α)(a2).
Also (s ⋅ α)(r ⋅ a) = α((r ⋅ a) ⋅ s) = α(r ⋅ (a ⋅ s)) = r ⋅ (α(a ⋅ s)) = r ⋅ ((s ⋅ α)(a)). Hence
s ⋅ α ∈ HomR(M, N).

Next it must be proved that s ⋅ (α1 + α2) = s ⋅ α1 + s ⋅ α2, (s1 + s2) ⋅ α = s1 ⋅ α + s2 ⋅ α
and s1 ⋅ (s2 ⋅ α) = (s1s2) ⋅ α, where s, si ∈ S, α, αi ∈ HomR(M, N). Let us take the
third statement, leaving the others to the reader. If a ∈ M, we have (s1 ⋅ (s2 ⋅ α))(a) =
(s2 ⋅ α)(a ⋅ s1) = α((a ⋅ s1) ⋅ s2) = α(a ⋅ (s1s2)) = ((s1s2) ⋅ α)(a), as required.

Finally, we check the bimodule property. Let α ∈ HomR(M, N), s ∈ S, t ∈ T; then
((s ⋅ α) ⋅ t)(a) = ((s ⋅ α)(a)) ⋅ t = (α(a ⋅ s)) ⋅ t = (α ⋅ t)(a ⋅ s) = (s ⋅ (α ⋅ t))(a) for all a ∈ M.
Therefore (s ⋅ α) ⋅ t = s ⋅ (α ⋅ t).

Of course, if we only have RMS or RNT , then HomR(M, N) is merely a left S-module
or a right T-module respectively.

Induced mappings. If a homomorphism between modules is given, it can lead to an
“induced homomorphism" between homomorphism groups.

(9.1.17) Let A, B,M be left modules over a ring R and let α : A → B be a module
homomorphism. Then the following are true.
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(i) There is a group homomorphism α∗ : HomR(M, A) → HomR(M, B) such that
α∗(θ) = αθ.

(ii) There is a group homomorphism α∗ : HomR(B,M) → HomR(A,M) such that
α∗(ϕ) = ϕα.

Proof. Only (ii) will be proved. Let ϕ ∈ HomR(B,M). Certainly α∗(ϕ) = ϕα is a function
from A to M. We check that it is an R-module homomorphism. Let a, ai ∈ A and
r ∈ R. Firstly α∗(ϕ)(a1 + a2) = ϕα(a1 + a2) = ϕ(α(a1) + α(a2)) = ϕα(a1) + ϕα(a2) =
α∗(ϕ)(a1) + α∗(ϕ)(a2). Then (α∗(ϕ))(r ⋅ a) = ϕα(r ⋅ a) = ϕ(r ⋅ α(a)) = r ⋅ (ϕα(a)) =
r ⋅ (α∗(ϕ)(a)). Hence α∗(ϕ) ∈ HomR(A,M).

Finally, we prove that α∗ is a group homomorphism. Let ϕi ∈ HomR(B,M). Then
α∗(ϕ1 + ϕ2) = (ϕ1 + ϕ2)α = ϕ1α + ϕ2α = α∗(ϕ1) + α∗(ϕ2), as required.

The induced mappings just de�ned have notable properties when applied to compos-
ites.

(9.1.18) Let A, B, C,M be left modules over a ring R and let α : A → B and β : B → C
be R-module homomorphisms. Then the induced mappings satisfy (i) (βα)∗ = β∗α∗ and
(ii) (βα)∗ = α∗β∗.

Proof. For example, to prove (ii) let ϕ ∈ HomR(C,M). Then (βα)∗(ϕ) = ϕ(βα) =
(ϕβ)α = β∗(ϕ)α = α∗(β∗(ϕ)) = α∗β∗(ϕ) and hence (βα)∗ = α∗β∗.

Exact sequences. An exact sequence of modules over a ring R is a chain of R-modules
and R-module homomorphisms

⋅ ⋅ ⋅ Ú→ Ai−1
αi−1Ú→ Ai

αiÚ→ Ai+1 Ú→ ⋅ ⋅ ⋅

such that Im(αi−1) = Ker(αi) for all i. Here the chain can be �nite or in�nite in either
direction. We note some important types of exact sequences:

0 → A α
→ B

β
→ C and A α

→ B
β
→ C → 0.

In the �rst sequence exactness at A means that Ker(α) = 0, i.e., α is injective: in the
second exactness at C shows that β is surjective. The combination of the two types

0 → A α
→ B

β
→ C → 0

is called a short exact sequence: in this case A R≃ Im(α) = Ker(β) and B/Ker(β) R≃ C.
The Hom construction has the critical property of preserving exactness of se-

quences on the left.

(9.1.19) (Left exactness of Hom) Let M be a left R-module where R is an arbitrary ring.
Then the following hold.
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(i) If 0 → A α
→ B

β
→ C is an exact sequence of left R-modules, the induced sequence of

abelian groups and homomorphisms

0 → HomR(M, A)
α∗→ HomR(M, B)

β∗→ HomR(M, C)

is exact.
(ii) If A α

→ B
β
→ C → 0 is an exact sequence of left R-modules, the induced sequence of

abelian groups and homomorphisms

0 → HomR(C,M)
β∗
→ HomR(B,M)

α∗
→ HomR(A,M)

is exact.

Proof. Only (i) will be proved, the proof of (ii) being similar. Firstly, α∗ is injective. For
suppose that α∗(θ) = 0, i.e., αθ = 0. Since α is injective, it follows that θ = 0 and hence
the sequence is exact at HomR(M, A).

Now for exactness at HomR(M, B), i.e., Ker(β∗) = Im(α∗). Since Im(α) = Ker(β, we
have β∗α∗ = (βα)∗ = 0∗ = 0 by (9.1.18). Hence Im(α∗) ⊆ Ker(β∗). Next let ϕ ∈ Ker(β∗),
so we have 0 = β∗(ϕ) = βϕ. If m ∈ M, then βϕ(m) = 0, so ϕ(m) ∈ Ker(β) = Im(α).
Hence ϕ(m) = α(a) for some a ∈ A. In fact the element a is unique: for, if also ϕ(m) =
α(a�), then a = a� by injectivity of α. This allows us to de�ne unambiguously a function
θ : M → A by θ(m) = a where ϕ(m) = α(a). It is easy to see that θ is an R-module
homomorphism. Next (α∗(θ))(m) = αθ(m) = α(a) = ϕ(m) for all m ∈ M. Therefore
α∗(θ) = ϕ and ϕ ∈ Im(α∗), so that Ker(β∗) = Im(α∗), as was to be proved.

Exercises (9.1)

(1) Let L,M, N be submodules of an R-module such that N ⊆ M. Prove the following
statements.

(i) (L ∩M)/(L ∩ N) is R-isomorphic with a submodule of M/N.
(ii) (L +M)/(L + N) is R-isomorphic with a quotient of M/N.

(2) Let L,M, N be submodules of an R-module such that N ⊆ M. If L + M = L + N and
L ∩M = L ∩ N, prove that M = N.
(3) Let X be a non-empty subset of an R-moduleM. If the ring R does nothave an identity
element, what is the general form of an element of the submodule of M generated by
X?
(4) If α : M → N is a module isomorphism, show that α−1 : N → M is also a module
isomorphism.
(5) State and prove the Correspondence Theorem for modules.
(6) Let R be a commutative ring with identity. Prove that R is a �eld if and only if every
non-zero cyclic R-module is isomorphic with R.
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(7) Let R, S be rings and let RMS be a bimodule as indicated. If R has an identity element,
prove that HomR(RR, RMS)

S≃ M.
(8) Prove that HomR(−,M) is left exact, i.e., establish (9.1.19)(ii).
(9) Give an example of a �nitely generated module which is not noetherian. [Hint: if R
is a ring with identity, then RR is a �nitely generated R-module].
(10) Let M be a module with a submodule N. If N and M/N are noetherian, prove that
M is noetherian.
(11) LetM be an R-module with a submodule N such thatM R≃ M/N. IfM is noetherian,
prove that N = 0.

(12) Let u, v be elements of a PID R such that gcd{u, v} = 1. Prove that R/Ru ⊕ R/Rv R≃
R/Ruv. Extend this result to n mutualy relatively prime elements u1, u2, . . . , un.
(13) Following Exercises (4.2.13) and (4.2.14), explain how to de�ne the unrestricted
and restricted direct sums of an in�nite set of modules.

(14) An exact sequence of R-modules and homomorphisms 0 → A α
→ B

β
→ C → 0 is

said to split if there is a module homomorphism ã : C → B such that βã is the identity
map on C. Prove that in this event B = Im(α) ⊕ Im(ã) R≃ A ⊕ C.
(15) Prove that an exact sequence 0 → A → B → F → 0 always splits if F is a free
module.
(16) Prove that the exact sequence 0 → ℤ → ℚ → ℚ/ℤ → 0 in which all the maps are
the natural ones does not split.

9.2 Modules over principal ideal domains

In this section we restrict attention to modules over commutative rings. The main
objective is to determine the structure of �nitely generated modules over PID’s. This is
one of the central results of abstract algebra and it has applications to �nitely generated
abelian groups, linear operators on �nite dimensional vector spaces and canonical
forms of matrices.

Torsion elements. Let R be a commutative ringwith identity and letM be an R-module.
Recall that we need not distinguish between left and right modules. An element a ofM
is called an R-torsion element if there exists r ̸= 0 in R such that r ⋅ a = 0. Equivalently,
the annihilator AnnR(a) is a non-zero ideal of R. If every element of M is a torsion
element, M is called an R-torsion module. On the other hand, if 0 is the only torsion
element of M, the module is said to be R-torsion-free. (The terminology comes from
topology).

For example, a torsion element of aℤ-module, i.e., an abelian group, is an element
of �nite order and a torsion-freeℤ-module is an abelian group inwhich every non-trivial
element has in�nite order.
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(9.2.1) Let R be an integral domain and M an R-module. Then the torsion elements of M
form a submodule T, the torsion submodule, such that M/T is torsion-free.

Proof. Let a and b be torsion elements of M; thus there exist r, s ̸= 0 in R such that
r⋅a = 0 = s⋅b. Since R is an integral domain, rs ̸= 0.Now rs⋅(a±b) = s⋅(r⋅a)±r⋅(s⋅b) = 0,
which shows that a ± b ∈ T. Next let u ∈ R; then r ⋅ (u ⋅ a) = u ⋅ (r ⋅ a) = u ⋅ 0 = 0, so
u ⋅ a ∈ T. Hence T is a submodule.

Now suppose that a + T is a torsion element of M/T. Then r ⋅ (a + T) = 0M/T = T
for some r ̸= 0 in R, that is, r ⋅ a ∈ T. Therefore s ⋅ (r ⋅ a) = 0 for some s ̸= 0 in R. Hence
(sr) ⋅ a = 0 and sr ̸= 0, from which it follows that a ∈ T and a + T = T = 0M/T .

p-Torsionmodules. Next the concept of a torsion module will be re�ned. Let p denote
an irreducible element of an integral domain R. An element a of an R-module M is
termed a p-torsion element if pi ⋅ a = 0 for some i > 0. If every element ofM is p-torsion,
then M is called a p-torsionmodule.

(9.2.2) Let M be a module over a principal ideal domain R and let p be an irreducible
element of R. Then the following statements are true.
(i) The p-torsion elements form a submodule Mp of M, (called the p-torsion submod-

ule).
(ii) If R is a principal ideal domain, a non-zero element a in M is a p-torsion element if

and only if AnnR(a) = (pi) for some i > 0.

Proof. The proof of (i) is a simple exercise. As for (ii), let I = AnnR(a); then I = (s)
where s ∈ R is a non-zero, non-unit, since R is a PID. If a is a p-torsion element, pj ∈ (s)
for some j > 0 and hence s divides pj. Since R is a UFD by (7.3.2), it follows that s = piu
where 0 < i ≤ j and u a unit of R. Therefore I = (s) = (pi). The converse is clear.

The �rst really signi�cant result about torsion modules is:

(9.2.3) (The Primary Decomposition Theorem) Let M be a torsion module over a princi-
pal ideal domain R and let P be a complete set of irreducible elements for R. Then M is
the direct sum of the p-torsion components Mp for p ∈ P.

Proof. Let 0 ̸= a ∈ M. Since M is a torsion module, there exists r ̸= 0 in R such that
r ⋅a = 0. Note that r cannot be a unit of R since otherwise a = 0.Write r = upe11 p

e2
2 ⋅ ⋅ ⋅ pekk

where the pi are distinct elements of P, ei > 0 and u is a unit of R. Let ri denote the
product that remains when the factor peii is deleted from r. Then r1, r2, . . . , rk are
relatively prime since they have no common irreducible factors. By (7.2.3) applied
repeatedly, there exist si ∈ R such that r1s1 + r2s2 + ⋅ ⋅ ⋅ + rksk = 1. Consequently
a = 1⋅a = (r1s1)⋅a+(r2s2)⋅a+⋅ ⋅ ⋅+(rksk)⋅a. Now peii ⋅((risi)⋅a) = (sipeii ri)⋅a = si ⋅(r⋅a) = 0.
Hence (risi) ⋅ a ∈ Mpi , from which it follows that M is the sum of the submodules Mp
with p ∈ P.

To complete the proof it must be shown that the sum is direct. Suppose that b ∈
Mp ∩ ∑q∈P−{p}Mq. Then pm ⋅ b = 0 for some m > 0 and also there is an expression
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b = b1 + b2 + ⋅ ⋅ ⋅ + bℓ with bi ∈ Mqi and qi ∈ P − {p}. Thus qmi
i ⋅ bi = 0 for some

mi > 0, and hence q ⋅ b = 0 where q = qm1
1 qm2

2 ⋅ ⋅ ⋅ qmℓ
ℓ . Since none of the qi can equal p,

the elements q and pm are relatively prime and hence there exist u, v ∈ R such that
pmu + qv = 1. Therefore

b = 1 ⋅ b = (pmu + qv) ⋅ b = u ⋅ (pm ⋅ b) + v ⋅ (q ⋅ b) = 0,

and it follows that Mp ∩ ∑q∈π−{p}Mq = 0, so the sum is direct.

In essence this theorem reduces the study of torsion modules over a PID to the case
of p-torsion modules.

Submodules of free modules. Before we can proceed further with the study of �nitely
generated modules over PID’s, we need to gain a better understanding of free modules.
As a �rst step we consider submodules of free modules and show these are also free.
For simplicity we will discuss only free modules of �nite rank, although the results are
true in the in�nite case as well.

(9.2.4) Let S be a submodule of a �nitely generated free module F over a principal ideal
domain R. Then S is a free module with rank less than or equal to the rank of F.

Proof. By hypothesis F has �nite rank, say r. If S = 0, it is free with rank 0, so we can
assume that S ̸= 0 and thus r > 0. Suppose �rst that r = 1, so that F R≃ R. Identifying F
with R, we see that that S is an ideal of R and thus S = (s) for some s, since R is a PID.
The assignment x Ü→ xs, (x ∈ R), determines a surjective R-module homomorphism
from R to S. It is also injective because R is a domain, i.e., it is a module isomorphism
and S R≃ R. Thus S is a free module of rank 1.

Next assume that r > 1 and let {x1, x2, . . . , xr} be a basis of F. De�ne Fi to be the
submodule of F generated by x1, x2, . . . , xi, so we have the chain of submodules of F

0 = F0 ⊂ F1 ⊂ F2 ⊂ ⋅ ⋅ ⋅ ⊂ Fr = F.

Clearly Fi is free with basis {x1, x2, . . . , xi} and rank i. De�ne Si = S ∩ Fi, a submodule
of F; then there is a chain of submodules 0 = S0 ⊆ S1 ⊆ S2 ⊆ ⋅ ⋅ ⋅ ⊆ Sr = S. By (9.1.6)

Si+1/Si = S ∩ Fi+1/S ∩ Fi
R≃ ((S ∩ Fi+1) + Fi)/Fi ⊆ Fi+1/Fi .

Since Fi+1/Fi
R≃ R, either Si = Si+1 or Si+1/Si

R≃ R by the rank 1 case. From (9.1.14) we
obtain Si+1 = Si ⊕ Ti+1, from which it follows that S = T1 ⊕ T2 ⊕ ⋅ ⋅ ⋅ ⊕ Tr. In addition
Ti+1

R≃ Si+1/Si and hence either Ti+1 = 0 or Ti+1
R≃ R. Therefore S is a free module with

rank at most r.

An important consequence of the last result is:

Corollary (9.2.5) Let R be a principal ideal domain and let M be an R-module which can
be generated by n elements. If N is a submodule of M, then N can be generated by n or
fewer elements.
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Proof. By (9.1.13) we have M R≃ F/L where F is a free module of rank n and L is a
submodule. By the Correspondence Theorem formodules,N R≃ S/L for some submodule
S of F containing L. By (9.2.4) S can be generated by n or fewer elements, from which it
follows that N also has this property.

We are now equipped with su�cient knowledge of free modules over PID’s to
determine the structure of �nitely generated, torsion-free modules.

(9.2.6) Let M be a �nitely generated torsion-free module over a principal ideal domain R.
Then M is a free module.

Proof. We can assume that M ̸= 0. Suppose that M is generated by non-zero elements
a1, a2, . . . , an. If n = 1, then M = R ⋅ a1 and M R≃ R/AnnR(a1) by (9.1.8). However,
AnnR(a1) = 0 since a1 ̸= 0 and M is torsion-free. Hence M R≃ R and M is a free module
of rank 1.

Let n > 1 and use induction on n. For convenience let us write a = a1. Denote by
N/R ⋅a the torsion-submodule ofM/R ⋅a. By (9.2.1) themoduleM/N is torsion-free, and
clearly it can be generated by n − 1 elements. Therefore by induction hypothesis M/N
is free and (9.1.14) shows that there is a submodule L such that M = N ⊕ L; moreover,
L R≃ M/N, so L is free. Thus it is enough to prove that N is a free module.

By (9.2.5) N can be �nitely generated, say by b1, b2, . . . , bk. Since bi ∈ N, there
exists ri ̸= 0 in R such that ri ⋅ bi ∈ R ⋅ a. Writing r = r1r2 ⋅ ⋅ ⋅ rk ̸= 0, we have r ⋅ bi ∈ R ⋅ a
for i = 1, 2, . . . , k, which implies that r ⋅ N ⊆ R ⋅ a. But R ⋅ a R≃ R since AnnR(a) = 0, so
r ⋅ N is free by the case n = 1. Finally, N R≃ r ⋅ N via the map b Ü→ r ⋅ b and consequently
N is a free module.

Corollary (9.2.7) Let M be a �nitely generated module over a principal ideal domain R
and let T be the torsion submodule of M. Then M = T ⊕ F where F is a free module of
�nite rank.

Proof. By (9.2.1)M/T is torsion-free and it is evidently �nitely generated. HenceM/T is
free by (9.2.6). From (9.1.14) we deduce that M = T ⊕ F where F R≃ M/T, so F is free.

Combining (9.2.7) with the Primary Decomposition Theorem (9.2.3), we see that
the remaining obstacle to determining the structure of �nitely generated modules over
a PID is the case of a �nitely generated p-torsion module. This is overcome in the next
major result.

(9.2.8) Let M be a �nitely generated module over a principal ideal domain R. Assume
that M is a p-torsion module for some irreducible element p of R. Then M is a direct sum
of �nitely many cyclic p-torsion modules.

Notice that by (9.1.8) and (9.2.2) a cyclic p-torsion R-module is isomorphic with
R/(pi) for some i > 0. Thus (9.2.8) shows that the module M is completely determined
by certain powers of irreducible elements of R.
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The proof of (9.2.8) is one of the harder proofs in this book. The reader is advised
to look out for the main ideas behind the proof and try not to get bogged down in the
details.

Proof of (9.2.8). We can suppose that M ̸= 0; let it be generated by non-zero elements
b1, b2, . . . , bk. Then pei ⋅ bi = 0 where ei > 0. Let e be the largest of the ei, so that
pe ⋅ bi = 0 for all i and thus pe ⋅ M = 0. Choose e to be the smallest positive integer
with this property. Hence there exists a ∈ M such that pe−1 ⋅ a ̸= 0, and thus AnnR(a) =
(pe) = AnnR(M).

The main step in the proof is to establish the following statement.
For any a ∈ M such that AnnR(a) = (pe) = AnnR(M), the cyclic submodule R ⋅ a is

a direct summand of M. (∗)
Let us assume the statement (∗) is false: a series of contradictions will then en-

sue. By (9.2.5) every submodule of M is �nitely generated and hence M is noetherian
by (9.1.10). We claim that M contains a submodule M0 which is maximal subject to
having the following properties:
(i) M̄ = M/M0 has an element ā such that AnnR(ā) = (pe) = Ann(M̄);
(ii) R ⋅ ā is a not a direct summand of M̄.
Certainly there are submodules with these properties, for example the zero submodule
quali�es. The maximal condition on submodules guarantees that there is a maximal
one. Since we are only looking for a contradiction, we can just well work with the
module M̄: thus we will assume that M0 = 0 and M = M̄. Consequently (∗) is true for
every proper quotient of M, but false for M itself.

Suppose �rst that there exists b ∈ M − R ⋅ a such that p ⋅ b = 0. Notice that R ⋅ b is a
module over the �eld R/(p) since p ⋅ b = 0; thus it is a 1-dimensional vector space over
R/(p). Therefore (R ⋅ a) ∩ (R ⋅ b), being a subspace of R ⋅ b, is either 0 or R ⋅ b. In the
second case R ⋅b ⊆ R ⋅a and b ∈ R ⋅a, contrary to the choice of b. Thus (R ⋅a)∩(R ⋅b) = 0.
Next pe−1 ⋅ (a + R ⋅ b) = pe−1 ⋅ a + R ⋅ b, which cannot equal 0M/R⋅b, since otherwise
pe−1 ⋅ a ∈ (R ⋅ a) ∩ (R ⋅ b) = 0, another contradiction. Therefore pe−1 ⋅ (a+R ⋅ b) ̸= 0M/R⋅b
and AnnR(a + R ⋅ b) = (pe) = AnnR(M/R ⋅ b). This means that the module M/R ⋅ a and
the element a + R ⋅ a satisfy the hypotheses of (∗) above. Since M/R ⋅ b is a proper
quotient of M, there is a direct decomposition M/R ⋅ b = R ⋅ (a + R ⋅ b) ⊕ N/(R ⋅ b).
ConsequentlyM = (R ⋅ a) + N, while (R ⋅ a) ∩ N ⊆ (R ⋅ a) ∩ (R ⋅ b) = 0 andM = R ⋅ a ⊕ N,
contradicting the fact that (∗) is false for M.

From the discussion of the previous paragraph, we conclude that R ⋅ a contains all
elements b ofM such that p⋅b = 0. Let c ∈ M−(R⋅a)be chosen such that AnnR(c) = (pk)
with kminimal. Then 1 < k ≤ e since p ⋅ c cannot equal 0. Next 0 = pk ⋅ c = pk−1 ⋅ (p ⋅ c),
and by minimality of k we have p ⋅ c ∈ R ⋅ a: now write p ⋅ c = r ⋅ a with r ∈ R. Thus
0 = pk ⋅ c = pk−1 ⋅ (p ⋅ c) = pk−1 ⋅ (r ⋅ a) = (pk−1r) ⋅ a, from which it follows that pe

divides pk−1r. Since k − 1 < e, we deduce that p divides r. Write r = pr� with r� ∈ R.
Then p ⋅ c = r ⋅ a = (pr�) ⋅ a and hence p ⋅ (c − r� ⋅ a) = 0. Consequently c − r� ⋅ a ∈ R ⋅ a
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and hence c ∈ R ⋅ a. This contradiction �nally establishes the truth of the statement (∗)
above.

From this point it is but a short step to �nish the proof. Writing a1 for a, we have
shown that M = R ⋅ a1 ⊕M1 for some �nitely generated submodule M1. Either M1 = 0,
in which eventM = R ⋅ a1 and we are done, or elseM1 ̸= 0 and the same argument may
be applied toM1, yieldingM1 = R ⋅ a2 ⊕M2 andM = R ⋅ a1 ⊕ R ⋅ a2 ⊕M2 for a suitable
element a2 and �nitely generated submoduleM2. The argument may be repeated ifM2
is non-zero, and so on. Because the ascending chain condition is valid in the noetherian
moduleM, wewill eventually reach a direct decompositionM = R ⋅a1⊕R ⋅a2⊕⋅ ⋅ ⋅⊕R ⋅an,
and the theorem is proved.

The Structure Theorem for �nitely generatedmodules over a PID can now be stated.

(9.2.9) Let M be a �nitely generated module over a principal ideal domain R. Then M is
the direct sum of �nitely many cyclic R-modules. More precisely

M = F ⊕M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mk

where F is a free module of �nite rank r ≥ 0 and

Mi = Mi(1) ⊕Mi(2) ⊕ ⋅ ⋅ ⋅ ⊕Mi(ℓi), i = 1, 2, . . . , k,

where Mi(j) is the direct sum of nij isomorphic copies of R/(pji), (j = 1, 2, . . . , ℓi),
nij ≥ 0, niℓi > 0 and the pi are distinct elements in a complete set of irreducible elements
for R.

Proof. From (9.2.7) we have M = F ⊕ T where T is the torsion submodule of M and F
is a �nitely generated free module. Next T is �nitely generated since M is noetherian,
so by (9.2.3) T = M1 ⊕ M2 ⊕ ⋅ ⋅ ⋅ ⊕ Mk where Mi ̸= 0 is the pi-torsion submodule of M
and the pi are distinct elements in a complete set of irreducibles. Finally, by (9.2.8) Mi
is a direct sum of cyclic pi-torsion modules each of which is isomorphic with some
R/(pji). By grouping together isomorphic cyclic modules in the direct sum, we obtain
the desired result.

While the last theorem gives a clear picture of the structure of the module M, it
leaves a natural question open, namely, what is the signi�cance of the data r, k, pi, ℓi,
nij? The module M will usually have many direct decompositions of the type in (9.2.9),
so the question arises as to whether di�erent sets of data could arise from di�erent
decompositions. In other words we are asking if r, k, pi , ℓi , nij are true invariants of
the module M. The answer is supplied by the result that follows.

(9.2.10) Let M be a �nitely generated module over a principal ideal domain R and
suppose that M has twodirect decompositions into cyclic submodules of the type in (9.2.9),

M = F ⊕M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mk = F̄ ⊕ M̄1 ⊕ M̄2 ⊕ ⋅ ⋅ ⋅ ⊕ M̄k̄ ,

with corresponding data r, k, pi , ℓi , nij and ̄r, k̄, p̄i , ℓ̄i , n̄ij. Then r = ̄r, k = k̄, pi =
p̄i , ℓi = ℓ̄i , nij = n̄ij, after possible reordering of the M̄i.
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Proof. In the �rst place the torsion submodule of M is evidently

T = M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mk = M̄1 ⊕ M̄2 ⊕ ⋅ ⋅ ⋅ ⊕ M̄k̄ .

Hence F R≃ M/T R≃ F̄ and by (9.1.15) we deduce that r = ̄r. Also the pi and p̄i are the
irreducible elements with non-trivial torsion components in M. Thus k = k̄ and the
p̄i can be relabelled so that pi = p̄i. Consequently we can assume that M itself is a
p-torsion module for some irreducible element p, and that

M = M(1) ⊕M(2) ⊕ ⋅ ⋅ ⋅ ⊕M(ℓ) = M̄(1) ⊕ M̄(2) ⊕ ⋅ ⋅ ⋅ ⊕ M̄(ℓ̄),

where M(j) and M̄(j) are direct sums of nj and n̄j copies of R/(pj) respectively. Note
that nℓ, n̄ℓ̄ > 0. Our task is to prove that nj = n̄j and ℓ = ℓ̄.

We introduce the useful notation M[p] = {a ∈ M | p ⋅ a = 0}: notice that M[p] an
R-submodule of M, indeed it is a vector space over the �eld R/(p). Observe also that
pm ⋅ (R/(pj) R≃ R/(pj−m) if m < j, while pm ⋅ (R/(pj) = 0 if m ≥ j.

A consequence of these observations is that pm ⋅M(j) = 0 if m ≥ j and pm ⋅M(j) is
the direct sum of nj copies of R/(pj−m) ifm < j. Therefore (pm ⋅M)[p] is an R/(p)-vector
space with dimension nm+1 + nm+2 + ⋅ ⋅ ⋅ + nℓ. Of course, the same argument may be
applied to the second direct decomposition. Now clearly (pm ⋅ M)[p] depends only on
the moduleM, not on any particular direct decomposition of it. Therefore, on equating
dimensions, we obtain the system of linear equations

nm+1 + nm+2 + ⋅ ⋅ ⋅ + nℓ = n̄m+1 + n̄m+2 + ⋅ ⋅ ⋅ + n̄ℓ̄

for m = 1, 2, . . . . Since nℓ, n̄ℓ̄ > 0, it follows that ℓ = ℓ̄. Back solution of the linear
system yields nj = n̄j, for j = 1, 2, . . . , ℓ.

Elementary divisors and invariant factors. If M is a �nitely generated module over a
PID R, the invariants pji for which R/(pji) is isomorphic with one of the direct sum-
mands of M in (9.2.9) are called the elementary divisors of M. The torsion submodule
is determined by the elementary divisors together with their multiplicities. The ele-
mentary divisors are invariants of the module and do not depend on a particular direct
decomposition.

Let us suppose that the elementary divisors are arranged to form a rectangular
array as shown below,

pr111 pr121 . . . pr1ℓ1
pr212 pr222 . . . pr2ℓ2
. . . . . .
prk1k prk2k . . . prkℓk

where 0 ≤ ri1 ≤ ri2 ≤ ⋅ ⋅ ⋅ ≤ riℓ, at least one element in each row and column is di�erent
from 1, and ℓ is the maximum of ℓ1, ℓ2, . . . , ℓk. Here in order to ensure that all the
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rows of the array have the same length, it may be necessary to introduce several 1’s at
the beginning of a row.

Now de�ne
sj = p

r1j
1 p

r2j
2 ⋅ ⋅ ⋅ prkjk , j = 1, 2, . . . , ℓ,

the product of the elements in column j. The ring elements s1, s2, . . . , sℓ, which cannot
be units, are called the invariant factors of M. These are also invariants of the module
since they are expressed in terms of the elementary divisors. The invariant factors have
the noteworthy divisibility properties

s1 | s2 | ⋅ ⋅ ⋅ | sℓ

since rij ≤ rij+1.
We remark that if u, v ∈ R are relatively prime, then R/(u) ⊕ R/(v) R≃ R/(uv),

which is Exercise (9.1.12). This observation allows us to combine all the cyclic modules
associated with entries in the jth column of the array of elementary divisors into a
single cyclic submodule R/(sj). In this way we obtain an alternative form of (9.2.9).

(9.2.11) Let M be a �nitely generated module over a principal ideal domain R. Then

M R≃ F ⊕ R/(s1) ⊕ R/(s2) ⊕ ⋅ ⋅ ⋅ ⊕ R/(sℓ)

where F is a free module of �nite rank and the sj are the invariant factors of M.

Here is an example with R = ℤ to illustrate the procedure for �nding the invariant
factors when the elementary divisors are known.

Example (9.2.1) Consider the �nite abelian group

A = ℤ2 ⊕ ℤ2 ⊕ ℤ2 ⊕ ℤ3 ⊕ ℤ5 ⊕ ℤ52 .

The elementary divisors of A are quickly identi�ed from the direct decomposition as
2, 2, 2, 3, 5, 52. Arrange these to form an array with 1’s inserted appropriately,

2 2 2
1 1 3
1 5 52

Forming the products of the columns, we �nd the invariant factors to be 2, 10, 150.
Therefore A ≃ ℤ2 ⊕ ℤ10 ⊕ ℤ150.

Presentations of modules Let R be a PID and M a �nitely generated R-module gen-
erated by elements a1, a2, . . . , an. Suppose that F is a free R-module with basis
{x1, x2, . . . , xn}. Then by (9.1.13) there is a surjective R-module homomorphism θ :
F → M such that θ(xi) = ai for i = 1, . . . , n. Thus M R≃ F/N where N = Ker(θ). By
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(9.2.5) N is a �nitely generated R-module, say with generators y1, y2, . . . , ym, where
m ≤ n, and there are expressions yj = ∑n

k=1 ujk ⋅ xk with ujk ∈ R.
Conversely, suppose we start with a free R module F with basis {x1, x2, . . . , xn}

and elements y1, y2, . . . , ym of F where yj = ∑n
k=1 ujk ⋅ xk, and ujk ∈ R. Let N =

R ⋅ {y1, y2, . . . , ym} and put M = F/N. Then M is a �nitely generated R-module which
may be written in the form

M = ⟨x1, x2, . . . , xn | y1, y2, . . . , ym⟩.

This called a presentation of the R-moduleM: the xi are the generators and the yj are the
relators of the presentation. We should think of the generators x1, x2, . . . , xn as being
subject to the relations y1 = 0, y2 = 0, . . . , ym = 0. The presentation is determined by
the presentation matrix

U = [uij]m,n ∈ Mm,n(R).

Since every �nitely generated R-module has a presentation which determines it up
to isomorphism, a natural question arises: given a presentation, how can one discover
the structure of the module? We will answer the question in the case of modules over a
Euclidean domain by describing a procedure which, when applied to a presentation
matrix, gives the invariant factors and hence the structure of the module determined
by the presentation.

The key observation is that there three types ofmatrix operation that can be applied
to a presentation matrix U without changing the isomorphism type of the associated
module M. These are:
(I) Interchange of two rows or columns.
(II) Addition of an R-multiple of one row to another.
(III)Addition of an R-multiple of one column to another
Clearly interchange of two rows merely changes the order of the relators and of two
columns the order of generators. Adding a multiple of row i to row j produces a new
relator which is a consequence of the relator associated with row j and which also
implies it.

Justi�cation of interchange of two columns requires a little more thought. Suppose
we add c times column i to column j where c ∈ R. This amounts to replacing the
generator xi by a new generator x�i = xi − c ⋅ xj with corresponding changes in the
relators, as can be seen from the equation

uri ⋅ x�i + (urj + curi) ⋅ xj = uri ⋅ xi + urj ⋅ xj .

The important point to keep in mind is that, while these operations change the presen-
tation, they do not change the isomorphism type of the corresponding module.

If a matrix V is obtained from a matrix U ∈ Mm,n(R) by means of a �nite sequence
of operations of types (I), (II), (III) above, then V is said to be R-equivalent to U, in
symbols

U
R
≡ V.
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This is obviously an equivalence relation on presentation matrices. The critical result
needed is the following.

(9.2.12) Let R be a Euclidean domain and U an m × n matrix with entries in R. Then U
is R-equivalent to an m × n diagonal matrix

V = diag(d1, d2, . . . , dk , 0, . . . , 0)

where 0 ̸= di ∈ R, k ≥ 0 and d1|d2| ⋅ ⋅ ⋅ |dk.

Note that thematrix V in (9.2.12) has d1, d2, . . . , dk , 0, . . . , 0 on the principal diagonal
and zeroes elsewhere.

Proof of (9.1.12). Let δ : R − {0} → ℕ be the associated function for the Euclidean
domain R and recall that R is a PID by (7.2.1). We can assume that U ̸= 0. To initiate the
procedure move a non-zero entry b1 to the (1, 1) position by using row and column
interchanges. Suppose that b1 does not divide some entry c in row 1 or column 1: let
us say the latter, the case of a row being similar. Using the division algorithm for R,
write c = b1q + b2 where q, b2 ∈ R and δ(b2) < δ(b1). Subtract q times row 1 from
the row containing c, the e�ect of which is to replace c by b2. Then move b2 up to the
(1, 1) position.

If b2 does not divide some entry in row 1 or column 1, repeat the procedure.
Continuation of this process yields a sequence of elements b1, b2, . . . , in R such that
δ(b1) > δ(b2) > . . . . Since the δi are non-negative integers, the process must terminate
and when this happens, we will have a matrix R-equivalent to U with an element a1
in the (1, 1) position which divides every entry in row 1 and column 1. By further row
and column subtractions we can clear out all the entries in row 1 and column 1 except
the (1, 1) entry to obtain a matrix of the form

[
a1 0
0 U1

]

which isR-equivalent toU; here of courseU1 is an (m−1)×(n−1)matrix. By inductionon
m thematrixU1 is R-equivalent to amatrix diag(a2, a3, . . . , ak , 0 . . . , 0) and therefore

U
R
≡ D = diag(a1, a2, a3, . . . , ak , 0 . . . , 0).

Suppose that a1 does not divide a2. Let d = va1 + wa2 be a gcd of a1 and a2 with
v, w ∈ R. Then, using the operations of types (I), (II), (III), we obtain

[
a1 0
0 a2

]
R
≡ [

a va1 + wa2
0 a2

] = [
a1 d
0 a2

]
R
≡ [

d a1
a2 0

]
R
≡ [

d 0
0 −a1a2

d
] .

Note that d divides a1a2
d . Use this routine to replace a1 by d in the diagonal matrix D.

Repeating the procedure for a3, . . . , ak, we get U
R
≡ diag(d1, ā2, . . . , āk , 0, . . . , 0)
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where d1 is a gcd, andhence a linear combination, of a1, a2, a3, . . . , ak, and d1 divides
each of ā2, . . . , āk. By induction we conclude that

U
R
≡ diag(d1, d2, . . . , dk , 0 . . . , 0)

where d2|d3| ⋅ ⋅ ⋅ |dk and d2 is an R-linear combination of ā2, ā3, . . . , āk. Hence d1|d2
since ā2, ā3, . . . , āk are divisible by d1. This completes the proof.

The diagonal matrix V in (9.2.12) is called the Smith normal form¹ of U. Its entries
are determined only up to units. Let us apply this method to the presentation matrix U
for a �nitely generatedmoduleM = F/N over a Euclidean domain R. Then U

R
≡ V where

V = diag(d1, d2, . . . , dk , 0, . . . , 0), 0 ̸= di ∈ R and d1|d2| ⋅ ⋅ ⋅ |dk . The matrix V is the
Smith normal form of U; it gives a new presentation of M which is much simpler in
form, having generators x�1, x

�
2, . . . , x�n and relators d1x�1, d2x

�
2, . . . , dkx

�
k. From this

presentation we read o� that

M R≃ R/(d1) ⊕ R/(d2) ⊕ ⋅ ⋅ ⋅ ⊕ R/(dk) ⊕ R ⊕ ⋅ ⋅ ⋅ ⊕ R⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n−k

.

Thus n− k is the number of cyclic summands isomorphic with R, while the the non-unit
di’s are the invariant factors, up to units.

Example (9.2.2) Let A be the abelian group with generators x, y, z and relations

3x + 4y + 3z = 0, 6x + 4y + 6z = 0, 3x + 8y + 3z = 0.

In this example R = ℤ and the presentation matrix is

U = [[

[

3 4 3
6 4 6
3 8 3

]]

]

.

Following the steps in the algorithm in (9.2.12), we �nd that

U
ℤ
≡ [[

[

1 0 0
0 ±12 0
0 0 0

]]

]

= V,

which is the Smith normal form of U. Hence A ≃ ℤ1 ⊕ ℤ12 ⊕ ℤ, i.e.,

A ≃ ℤ12 ⊕ ℤ ≃ ℤ3 ⊕ ℤ4 ⊕ ℤ.

The single invariant factor is 12 and the elementary divisors are 3, 4.

1 Henry John Stephen Smith (1826–1883)
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The description of �nite abelian groups a�orded by the preceding theory is precise
enough for us to make an exact count of the groups of given order.

(9.2.13) Let n > 1 be an integer and write n = pe11 p
e2
2 ⋅ ⋅ ⋅ pekk where ei > 0 and the pi are

distinct primes. Then the number of isomorphism types of abelian groups of order n is

λ(e1)λ(e2) ⋅ ⋅ ⋅ λ(ek)

where λ(i) is the number of partitions of i.

Proof. First let A be an abelian group of order pe > 1 where p is a prime. By (9.2.8) A is
the direct sum of ℓ1 copies ofℤp, ℓ2 copies ofℤp2 , etc, where ℓi ≥ 0 and e = ℓ1 + 2ℓ2 +
3ℓ3 + ⋅ ⋅ ⋅ . Thus we have partition of e into ℓ1 1-subsets, ℓ2 2-subsets, etc. Conversely,
every partition of e leads to an abelian group of order pe and di�erent partitions yield
non-isomorphic groups since the invariant factors are di�erent. Therefore the number
of possible isomorphism types for A is λ(e).

Now let A be an abelian group of order n = pe11 p
e2
2 ⋅ ⋅ ⋅ pekk ; then A = A1⊕A2⊕⋅ ⋅ ⋅⊕Ak

where Ai is the pi-torsion component and |Ai| = peii . There are λ(ei) possible isomor-
phism types forAi, so the number of isomorphism types forA is λ(e1)λ(e2) ⋅ ⋅ ⋅ λ(ek).

Example (9.2.3) Find all abelian groups of order 600.
Since 600 = 23 ⋅3 ⋅52, the number of abelian groups of order 600 is λ(3)λ(1)λ(2) =

3 × 1 × 2 = 6. The isomorphism types are determined by the partitions of 3 and 2,
namely 3 = 1 + 2 = 1 + 1 + 1, and 2 = 1 + 1. Hence the six isomorphism types are:

ℤ8 ⊕ ℤ3 ⊕ ℤ52 , ℤ8 ⊕ ℤ3 ⊕ ℤ5 ⊕ ℤ5, ℤ2 ⊕ ℤ4 ⊕ ℤ3 ⊕ ℤ52 ,
ℤ2 ⊕ ℤ4 ⊕ ℤ3 ⊕ ℤ5 ⊕ ℤ5, ℤ2 ⊕ ℤ2 ⊕ ℤ2 ⊕ ℤ3 ⊕ ℤ52 , ℤ2 ⊕ ℤ2 ⊕ ℤ2 ⊕ ℤ3 ⊕ ℤ5 ⊕ ℤ5.

Notice thatℤ8 ⊕ ℤ3 ⊕ ℤ52 is the cyclic group of order 600.

Of course the task of counting the non-abelian groups of given �nite order is a
much more formidable one.

Exercises (9.2)

(1) Let R be a domain with �eld of fractions F and R ⊆ F. Regard F as an R-module via
the �eld operations. Prove that F is torsion-free and F/R is a torsion module.
(2) Let R = ℤ6, the ring of congruence classes modulo 6. Find the torsion elements
in the module R. Deduce that the torsion elements in a module do not always form a
submodule.
(3) Let p1, p2, . . . be the sequence of primes and let ⟨ai⟩ be an additively written group
of order pi. De�ne A to be the set of all sequences (x1, x2, . . . )where xi ∈ ⟨ai⟩. Make
A into an abelian group by adding components.

(i) Show that the torsion subgroup T consists of all sequences in which all but a
�nite number of components are 0.
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(ii) Prove that Ā = A/T has the property Ā = pĀ for all primes p.
(iii) Prove that⋂p pA = 0.
(iv) Deduce from (ii) and (iii) that T is not a direct summand of A.

(4) Find the elementary divisors and invariant factors of the groupℤ4 ⊕ ℤ30 ⊕ ℤ35.
(5) Find all abelian groups of order 1350.
(6) Let A be a torsion-free abelian group and de�ne D = ⋂n=1,2,... nA. Prove that (i)
A/D is torsion-free and (ii) D = nD for all n > 0.
(7) A �nitely generated abelian group A is given by a presentation with generators
x, y, z, u and relators x − y − z − u, 3x + y − z + u, 2x + 3y − 2z + t. Find the invariant
factors of A and hence its structure.
(8) Let A be a �nite abelian group and denote by νn(A) the number of elements of A
which have order exactly n.

(i) If n = pe11 p
e2
2 ⋅ ⋅ ⋅ pekk with distinct primes pi, show that

νn(A) = νpe11 (A)νpe22 (A) ⋅ ⋅ ⋅ νpekk (A).

(ii) Let A be a �nite abelian p-group. De�ne A[pi] = {a ∈ A | pia = 0}. Prove that
νpe (A) = |A[pe]| − |A[pe−1]| for e ≥ 1.

(9) Let A be a �nite abelian p-group. Assume that A is the direct sum of ri cyclic groups
of order pi where i = 1, 2 . . . , ℓ. Prove that |A[pi]| = psi where si = r1 + 2r2 + ⋅ ⋅ ⋅
(i − 1)ri−1 + i(ri + ri+1 + ⋅ ⋅ ⋅ + rℓ) for 1 ≤ i ≤ ℓ.
(10) Let A and B be �nite abelian groups. If νn(A) = νn(B) for all positive integers n,
prove that A ≃ B. [Use Exercises (9.2.8) and (9.2.9)].

9.3 Applications to linear operators

One of the most convincing applications of modules over PID’s is to the study of linear
operators on a �nite dimensional vector spaces. Since the relation between modules
and linear operators is not obvious, some explanation is called for.

Let V be a �nite dimensional vector space over a �eld F with n = dim(V) > 0 and
let α be a �xed linear operator on V. Set R = F[t], the ring of polynomials in t over F,
and recall that R is a PID by (7.2.2). The fundamental idea is tomake V into an R-module
by de�ning

f ⋅ v = f(α)(v), (f ∈ R, v ∈ V).

The notation here is as follows: if f = a0 + a1t + ⋅ ⋅ ⋅ + am tm ∈ R, then f(α) is the linear
operator a01 + a1α + ⋅ ⋅ ⋅ + amαm. (Here 1 is the identity linear operator on V). It is
straightforward to check the validity the module axioms for the speci�ed action.

Next the properties of the R-module V will be investigated. Let v ∈ V; since
dim(V) = n, the subset

{v, α(v), α2(v), . . . , αn(v)}
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must be linearly dependent by (8.2.3). Hence there exist elements a0, a1, . . . , am of
F, not all equal to zero, such that a0v + a1α(v) + ⋅ ⋅ ⋅ + anαn(v) = 0. Put g = a0 + a1t +
⋅ ⋅ ⋅ + an tn ∈ R, noting that g ̸= 0. Then g ⋅ v = g(α)(v) = 0, so V is a torsion R-module.
In fact more is true. Let {v1, v2, . . . , vn} be a basis of V. Then there exist gi ̸= 0 in R
such that gi ⋅ vi = 0 for i = 1, 2, . . . , n. Put h = g1g2 ⋅ ⋅ ⋅ gn ̸= 0; then h ⋅ vi = 0 for all i
and thus h ⋅ v = 0 for all v ∈ V, i.e., h(α) = 0. It follows that AnnR(V) ̸= 0.

Since R is a PID, AnnR(V) = (f) for some f ∈ R and clearly we may choose the
polynomial f to be monic. Thus a polynomial g belongs to AnnR(V) if and only if f
divides g, and consequently f is the unique monic polynomial of smallest degree such
that f(α) = 0. These conclusions are summed up in:

(9.3.1) Let α be a linear operator on a �nite dimensional vector space V over a �eld F.
Then there is a unique monic polynomial f in F[t] of smallest degree such that f(α) = 0.
Moreover, g(α) = 0 if and only if f divides g in F[t].

The polynomial f is called theminimum polynomial of α. The next step forward is to
apply the Primary Decomposition Theorem (9.2.3) to the torsion module V. According
to this result there is a direct decomposition

V = V1 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vk

where Vi ̸= 0 is the pi-torsion submodule of V and p1, p2, . . . , pk are distinct monic
irreducible elements of R = F[t]. There are only �nitely many such Vi since V is �nite
dimensional. The restriction of α to Vi is a linear operator αi, which has minimum
polynomial of the form peii . If g ∈ R, then g(α) = 0 if and only if g(αi) = 0, i.e., peii |g, for
all i. It follows that the minimum polynomial of α is f = pe11 p

e2
2 ⋅ ⋅ ⋅ pekk . Thus we have

proved the following theorem.

(9.3.2) Let α be a linear operator on a �nite dimensional vector space V over a �eld F,
and suppose that the minimum polynomial of α is f = pe11 p

e2
2 ⋅ ⋅ ⋅ pekk , where the pi are

distinct monic irreducibles in F[t] and ei > 0. Then V = V1 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vk where Vi is
the pi-torsion submodule of V. Moreover, peii is the minimum polynomial of αi = α|Vi .

The case of an algebraically closed �eld. Up to this point the �eld has been arbitrary.
However, important simpli�cations occur for an algebraically closed �eld F: for then
an irreducible polynomial over F has degree 1. In particular these apply to the complex
�eld ℂ by the Fundamental Theorem of Algebra – see (12.3.6).

Consider the situation of (9.3.2) when F is algebraically closed and pi = t − ai with
ai ∈ F. The minimum polynomial of α is

f = (t − a1)e1 (t − a2)e2 ⋅ ⋅ ⋅ (t − ak)ek .

Let V = V1 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vk be the primary decomposition of the F[t]-module V, with
Vi the pi-torsion component. Thus αi = α|Vi has minimum polynomial (t − ai)ei and
(αi−ai1)ei = 0. Thismeans that αi−ai1 is a nilpotent linear operator, i.e., some positive
power of it equals to zero.
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De�ne two new linear operators δ, ν on V by δ|Vi = ai1, for i = 1, 2, . . . , k, and
ν = α − δ. Then νi = ν|Vi = αi − ai1 and hence νeii = 0, which implies that νe = 0 where
e is the largest of e1, e2, . . . , ek. Thus ν is a nilpotent linear operator on V. Notice that
δi, being multiplication by ai, commutes with νi, from which it follows that δν = νδ.

The important feature of the linear operator δ is that it is diagonalizable, since ν
acts on Vi by multiplication by ai. This leads to the following result.

(9.3.3) Let V be a �nite dimensional vector space over an algebraically closed �eld F
and let α be a linear operator on V. Then there are linear operators δ, ν on V such that
α = δ + ν and δν = νδ, where δ is diagonalizable and ν is nilpotent.

Notice that (9.3.3) can be applied to an n × n matrix A if we take α to be the linear
operator X → AX on Fn. The statement then takes the form thatA = D+N andDN = ND
where D is diagonalizable and N is nilpotent.

Example (9.3.1) Let A = [
−7 27
−3 11

]. The characteristic polynomial of A is (t − 2)2.

The minimum polynomial is also (t − 2)2, either by direct matrix multiplication or
by (9.3.5) below. Thus k = 1 and V = V1 in the previous notation; hence D = 2I2. Put

N = A − D = [
−9 27
−3 9

], so that A = D + N and N2 = 0; also note that DN = ND.

Rational canonical form. It is time to apply the full force of the structure theorem for
modules over a PID to a linear operator α on an n-dimensional vector space V over
an arbitrary �eld F. Bear in mind that V is a torsion module over R = F[t] via the ring
action f ⋅ v = f(α)(v). Thus by (9.2.11)

V = V1 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vℓ

where Vi = R ⋅ vi
R≃ R/(si) and AnnR(vi) = (si). Here s1, s2, . . . , sℓ are the invariant

factors, which satisfy s1|s2| . . . |sℓ. Recall that the si can be chosen to be monic. Let
αi = α|Vi . If g ∈ R, then g(α) = 0 if andonly if g(αi) = 0, that is, g ∈ (si) for i = 1, 2 . . . , ℓ.
The divisibility property of the si implies that this happens precisely when sℓ divides g.
Consequently, the �nal invariant factor sℓ is the minimum polynomial of α.

Next we will show that dimF(R/(si) = deg(si). Write

si = tni + aini−1tni−1 + ⋅ ⋅ ⋅ + ai1t + ai0, (aij ∈ R).

If g ∈ R, then g = qsi + ri where q, ri ∈ R and ri = 0 or deg(ri) < deg(si) = ni. Then
g+(si) = ri+(si), so that dimF(R/(si)) ≤ ni. Suppose that 1+(si), t+(si), . . . , tni−1+(si)
are linearly dependent and a01 + a1t + ⋅ ⋅ ⋅ + ani−1tni−1 + (si) = 0R/(si) where not all the
ai ∈ F are zero. Let g = a0 + a1t + ⋅ ⋅ ⋅ + ani−1tni−1; thus g ̸= 0. Since g + (si) = 0R/(si),
we have g ∈ (si) and si divides g. But deg(gi) < deg(si), which can only mean that
g = 0. By this contradiction 1 + (si), t + (si), . . . , tni−1 + (si) are linearly independent



200 | 9 Introduction to modules

and these elements form an F-basis of R/(si). Hence dim(Vi) = dim(R/(si) = ni and
dim(V) = ∑ℓ

i=1 ni.
Since Vi

R≃ R/(si) via the assignment r ⋅ vi → r + (si), the subspace Vi has the basis
{vi , α(vi), α2(vi), . . . , αni−1(vi)}. Let us identify the matrix which represents αi with
respect to this ordered basis. Now α(αj(vi)) = αj+1(vi) if 0 ≤ j < ni − 1 and

α(αni−1(vi)) = αni (vi) = −ai0vi − ai1α(vi) − ⋅ ⋅ ⋅ − aini−1αni−1(vi)

since si(αi) = 0. Therefore αi is represented by the ni × ni matrix

Ri =
[[[[[[

[

0 0 . . . 0 −ai0
1 0 . . . 0 −ai1
0 1 . . . 0 −ai2
. . . . . . .
0 0 . . . 1 −aini−1

]]]]]]

]

.

This is the companion matrix of the polynomial si – see Exercise (8.4.6). Note that si is
the minimum polynomial of αi and hence of Ri.

Now form the union of the chosen bases of the Vi to obtain a basis of V with respect
to which α is represented by the block matrix

C =
[[[[

[

R1 0 . . . 0
0 R2 . . . 0
. . . . . .
0 0 . . . Rℓ

]]]]

]

.

This is called the rational canonical form of α.
Recall that the characteristic polynomial of α is det(tIn − R). Now

det(tIn − C) =

!!!!!!!!!!!!!!!!!!

tIn1 − R1 0 . . . 0
0 tIn2 − R2 . . . 0
. . . . . .
0 0 . . . tInℓ − Rℓ

!!!!!!!!!!!!!!!!!!

,

which is equal to the product det(tIn1 − R1)det(tIn2 − R2) ⋅ ⋅ ⋅det(Inℓ − Rℓ). Also

det(tIni − Ri) =

!!!!!!!!!!!!!!!!!!!!!!!

t 0 0 . . . 0 ai0
−1 t 0 . . . 0 ai1
0 −1 t . . . 0 ai2
. . . . . . . .
0 0 0 . . . −1 t + aini

!!!!!!!!!!!!!!!!!!!!!!!

,

which by direct determinantal expansion equals ai0 + ai1t + ⋅ ⋅ ⋅ + aini−1tni−1 + tni = si.
Therefore det(tIn − C) = s1s2 ⋅ ⋅ ⋅ sℓ.

These conclusions are summed up in the following fundamental result.

(9.3.4) (Rational canonical form) Let α be a linear operator on a �nite dimensional
vector space V over an arbitrary �eld. Then the following statements hold.
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(i) α can be represented with respect to a suitable basis of V by a matrix in rational
canonical form.

(ii) The �nal invariant factor of α is the minimum polynomial.
(iii) The product of the invariant factors of α equals the characteristic polynomial.
Corollary (9.3.5) (The Cayley-Hamilton Theorem) The minimum polynomial of a linear
operator divides its characteristic polynomial and these polynomials have the same
irreducible factors.

This follows directly from (9.3.4). The preceding very powerful results have been
stated for a linear operator. Of course, they apply equally to an n×nmatrix A over a �eld
F, since the mapping X Ü→ AX is a linear operator on Fn. Thus by (9.3.4) every square
matrix is similar to a matrix in rational canonical form and also the Cayley-Hamilton
Theorem is valid.

Nilpotent linear operators. Rational canonical form is particularly e�ective when ap-
plied to a nilpotent linear operator α on an n-dimensional vector space V over an
arbitrary �eld F. Since αk = 0 for some k > 0, the minimum polynomial must divide tk

and thus has the form tm where m ≤ k. The invariant factors satisfy s1|s2| ⋅ ⋅ ⋅ |sℓ = tm

by (9.3.4). Hence si = tni where n1 ≤ n2 ≤ ⋅ ⋅ ⋅ ≤ nℓ = m. The characteristic polynomial
of α equals s1s2 ⋅ ⋅ ⋅ sℓ = tn and thus n = ∑ℓ

i=1 ni.
The companion matrix of si is the ni × ni matrix

Ri =
[[[[[[

[

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . .
0 0 . . . 1 0

]]]]]]

]

and the rational canonical form of α is the block matrix formed by R1, R2, . . . , Rℓ. This
is a lower triangular matrix with zeros on the diagonal, a type of matrix called lower
zero triangular. Applying this in matrix form, we deduce:

(9.3.6) A nilpotent matrix is similar to a lower zero triangular matrix.

Rational canonical form allows us to make an exact count of the similarity types
of nilpotent n × n matrix.

(9.3.7) The number of similarity types of nilpotent n × n matrices over any �eld equals
λ(n) where λ is the partition function.

Proof. Let A be an n × n nilpotent matrix. Let mi denote the number of rational blocks
with exactly i 1’s on the subdiagonal. Thus mi ≥ 0 and 0 ≤ i ≤ n − 1. Then n =
∑n−1
i=0 (i + 1)mi, so that we have a partition of n. Conversely, each partition of n allows

us to assemble a nilpotent matrix, the rational blocks coming from the subsets in the
partition. Moreover, di�erent partitions give rise to non-similar matrices by uniqueness
of the invariant factors.
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Example (9.3.2) Since λ(3) = 3, there are three similarity types of nilpotent 3 × 3
matrices, corresponding to the partitions of 3, which are 1 + 1 + 1, 1 + 2, 3. The
respective types of matrix are

[[

[

0 0 0
0 0 0
0 0 0

]]

]

, [[

[

0 0 0
0 0 0
0 1 0

]]

]

, [[

[

0 0 0
1 0 0
0 1 0

]]

]

.

Jordan form. Let α be a linear operator on an n-dimensional vector space V over a �eld
F and let f denote theminimumpolynomial of α. Assume that f splits into linear factors
over F, which by the Cayley-Hamilton Theorem amounts to requiring all eigenvalues of
α to be in F, which will certainly be true if F is algebraically closed.

In this case there is a simpler canonical form for α called Jordan normal form. Write

f = (t − a1)e1 (t − a2)e2 ⋅ ⋅ ⋅ (t − ak)ek

where ei > 0 and the ai are distinct elements of the �eld F. By (9.3.5) the roots of f are
the roots of the characteristic polynomial, so a1, a2, . . . , ak are the distinct eigenvalues
of α. By the Primary Decomposition Theorem V = V1 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vk where Vi is the
pi = (t − ai)-torsion submodule of V. Write ni = dim(Vi), so that n = ∑k

i=1 ni. Then
αi = α|Vi has (t − ai)ei as its minimum polynomial by (9.3.2); thus (αi − ai1ni )ei = 0
and αi − ai1ni is a nilpotent linear operator on Vi. By the discussion of nilpotent linear
operators above, αi − ai1ni is represented with respect to a suitable basis of Vi by a
matrix consisting of ℓij nij × nij blocks of the type

[[[[[[

[

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . .
0 0 . . . 1 0

]]]]]]

]

for j = 1, 2, . . . , ei. Here ni1 ≤ ni2 ≤ ⋅ ⋅ ⋅ ≤ niei and ∑ei
j=1 ℓijnij = dim(Vi) = ni. Con-

sequently, αi is represented by a matrix consisting of ℓij nij × nij blocks Jij with the
form

Jij =
[[[[[[

[

ai 0 . . . 0 0 0
1 ai 0 0 . . . 0
0 1 ai 0 . . . 0
. . . . . . . .
0 0 . . . 0 1 ai

]]]]]]

]

.

Such matrices are called Jordan blocks and they are unique up to order since they are
determined by the elementary divisors of α. Therefore we can state:

(9.3.8) (Jordan normal form) Let α be a linear operator on a �nite dimensional vector
space over a �eld F. Assume that the minimum polynomial of α splits into linear factors



9.3 Applications to linear operators | 203

over F. Then α can be represented with respect to a suitable basis by a matrix with Jordan
blocks on the diagonal which are unique up to order.

Thematrix formof (9.3.8) asserts that an n×nmatrixAwhoseminimumpolynomial
is a product of linear factors over F is similar to a matrix with Jordan blocks on the
diagonal. Therefore, in particular, A is similar to a lower triangular matrix over F, i.e.,
with zeros above the diagonal – cf. (8.4.8).

Example (9.3.3) Find all similarity types of complex 3 × 3 matrices A which satisfy the
equation A(A − 2I)2 = 0.

From the information furnished the minimum polynomial f of A divides t(t − 2)2.
Hence there are �ve possibilities for f , which are listed below with the corresponding
Jordan canonical form J of A:
(i) f = t: in this case A = J = 0.
(ii) f = t − 2: J = 2I3.

(iii) f = (t − 2)2: J = [[

[

2 0 0
1 2 0
0 0 2

]]

]

.

(iv) f = t(t − 2): J = [[

[

0 0 0
0 2 0
0 0 2

]]

]

or [[
[

0 0 0
0 0 0
0 0 2

]]

]

.

(v) f = t(t − 2)2: J = [[

[

0 0 0
0 2 0
0 1 2

]]

]

.

Hence there are six types of matrix up to similarity.

Smith normal form of a matrix.We end the chapter by describing a method for calcu-
lating the invariant factors of a linear operator or matrix. It is stated for matrices.

(9.3.9) Let A be an n × n matrix over a �eld F. Then the Smith normal form of the
matrix tI − A is diag(1, 1, . . . , 1, s1, s2, . . . , sℓ) up to signs, where s1, s2, . . . , sℓ are
the invariant factors of A.

Proof. Let S denote the rational canonical form of A. Then S = XAX−1 for some non-
singular matrix X over F. It follows that S and A have the same invariant factors since
they represent the same linear operator on Fn, but with respect to di�erent bases. Also
tI − S = X(tI − S)X−1, so by the same reasoning tI − S and tI − A have the same Smith
normal form. Therefore we may assume that A = S, i.e., A is in rational canonical form.

Let R1, R2, . . . , Rℓ be the rational blocks in A, corresponding to the invariant
factors s1|s2| . . . |sℓ of A. It is enough to prove that the Smith normal form of tI − Ri
is diag(1, 1, . . . , 1, si); for then tI − A will have diag(1, 1, . . . , 1, s1, s2, . . . , sℓ) as its
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Smith normal form. Let si = ai0 + ai1t + ⋅ ⋅ ⋅ + aini−1tni−1 + tni ; thus

Ri =
[[[[[[

[

0 0 . . . 0 −ai0
1 0 . . . 0 −ai1
0 1 . . . 0 −ai2
. . . . . . .
0 0 . . . 1 −aini−1

]]]]]]

]

.

Since F[t] is a Euclidean domain, we can transform the matrix

tI − Ri =
[[[[[[

[

t 0 0 . . . 0 ai0
−1 t 0 . . . 0 ai1
0 −1 t . . . 0 ai2
. . . . . . . .
0 0 . . . . −1 t + aini−1

]]]]]]

]

,

into Smith normal form using the algorithm of (9.2.12). This is readily seen to be
diag(1, 1, . . . , 1, si), as the reader should verify at least for ni ≤ 3. (Note the absence
of zeros since V is a torsion module). The required result now follows.

Example (9.3.4) Consider the rational matrix

A = [[

[

0 4 1
−1 −4 2
0 0 −2

]]

]

.

Apply suitable row and column operations to put the matrix

tI − A = [[

[

t −4 −1
1 t + 4 −2
0 0 t + 2

]]

]
into its Smith normal form, which is

[[

[

1 0 0
0 1 0
0 0 (t + 2)3

]]

]

.

Hence there is just one invariant factor s1 = (t + 2)3. The rational canonical form of A
can now be written down immediately as

[[

[

0 0 −8
1 0 −12
0 1 −6

]]

]

.

The minimum polynomial is (t + 2)3, so the Jordan normal form is

[[

[

−2 0 0
1 −2 0
0 1 −2

]]

]

.
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Exercises (9.3)

(1) Find all similarity types of 3 × 3 rational matrices A which satisfy the equation
A4 = A5.
(2) Find the invariant factors and rational canonical form of the rational

matrix [[

[

2 3 1
1 2 1
0 0 −4

]]

]

.

(3) Find the Jordan normal form and minimum polynomial of the rational matrix

[[

[

3 1 0
−1 1 0
0 0 2

]]

]

.

(4) Let A be an n × nmatrix overℚ and let p be a prime. Assume that Ap = I. Prove that
the number of similarity types of A is 1 + [ n

p−1 ]. [Hint: recall from Example (7.4.6) that
the rational polynomial 1 + t + t2 + ⋅ ⋅ ⋅ + tp−1 is irreducible].
(5) Prove that a square matrix A over a �eld is similar to its transpose. (Youmay assume
the �eld contains all roots of the minimum polynomial of A).
(6) Prove that every square matrix is similar to an upper triangular matrix.
(7) Let A be a non-singular n × n matrix over an algebraically closed �eld F and let
J1, J2, . . . , Jk be the blocks in the Jordan normal form of A. Prove that A has �nite order
if and only if each Ji has �nite order and in that case |A| = lcm{|J1|, |J2|, . . . , |Jk|}.
(8) Let J be an n × n Jordan block over a �eld F, with diagonal elements equal to
a ̸= 0. If n > 1, prove that J has �nite order if and only if a has �nite order in F∗ and
p = char(F) ̸= 0.
(9) Let A be a non-singular n × n matrix over an algebraically closed �eld of character-
istic 0. Let a1, a2, . . . , an be the eigenvalues of A. Prove that A has �nite order if and
only if each ai has �nite order and then |A| = lcm{|a1|, |a2|, . . . , |aℓ|}.

(10) Find the Jordan normal form of the matrix A = [[

[

0 0 1
1 0 4
0 1 3

]]

]

over GF(7), the �eld

of seven elements. Then use it to prove that |A| = 7.



10 The Structure of groups

In this chapter we pursue the study of groups at a deeper level. A common method of
investigation in algebra is to break up a complex structure into simpler substructures.
The hope is that by repeated application of this procedure one will eventually arrive at
substructures that are easy to understand. It may then be possible in some sense to
synthesize these substructures to reconstruct the original structure. While it is rare for
the procedure just described to be brought to such a perfect state of completion, the
analytic-synthetic method can yield valuable information and suggest new concepts.
Wewill consider some instances where this procedure can be employed in group theory.

10.1 The Jordan–Hölder Theorem

A basic concept in group theory is that of a series in a group G. By this is meant a �nite
chain of subgroups S = {Gi | i = 0, 1, . . . , n} leading from the identity subgroup to G,
with each term normal in its successor, that is, a chain of the form

1 = G0 ⊲ G1 ⊲ ⋅ ⋅ ⋅ ⊲ Gn = G.

The Gi are the terms of the series and the quotient groups Gi+1/Gi are the factors.
The length of the series is de�ned to be the number of non-trivial factors. Keep in
mind that Gi may not be normal in G since normality is not a transitive relation – see
Exercise (4.2.6).

A subgroupHwhich appears in a series in a groupG is called a subnormal subgroup;
clearly this is equivalent to there being a chain of normality relations leading from H
to G,

H = H0 ⊲ H1 ⊲ ⋅ ⋅ ⋅ ⊲ Hm = G.

A partial order on the set of series in a group G is de�ned as follows. A series S is
called a re�nement of a series T if every term of T is also a term of S. If S has at least
one term that is not a term of T, then S is a proper re�nement of T. It is easy to see that
the relation of being a re�nement is a partial order on the set of all series in G.

Example (10.1.1) The symmetric group S4 has the series 1 ⊲ V ⊲ A4 ⊲ S4 where V is the
Klein 4-group. This is a re�nement of the series 1 ⊲ A4 ⊲ S4.

Isomorphic series. Two series S and T in a group G are called isomorphic if there is a
bijection from the set of non-trivial factors of S to the set of non-trivial factors of T such
that corresponding factors are isomorphic groups. Isomorphic series must have the
same length, but the isomorphic factors may occur at di�erent points in the series.

Example (10.1.2) In ℤ6 the series 0 ⊲ ⟨[2]⟩ ⊲ ℤ6 and 0 ⊲ ⟨[3]⟩ ⊲ ℤ6 are isomorphic
since ⟨[2]⟩ ≃ ℤ6/⟨[3]⟩ and ⟨[3]⟩ ≃ ℤ6/⟨[2]⟩.
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The foundation for the theory of series in groups is the following technical result.
It can be viewed as a generalization of the Second Isomorphism Theorem.

(10.1.1) (Zassenhaus’s¹ Lemma) Let A1, A2, B1, B2 be subgroups of a group such that
A1 ⊲ A2 and B1 ⊲ B2. De�ne Dij = Ai ∩ Bj, (i, j = 1, 2). Then A1D21 ⊲ A1D22 and
B1D12 ⊲ B1D22. Furthermore

A1D22/A1D21 ≃ B1D22/B1D12.

Proof. The Hasse diagram below displays the relevant subgroups.

A2∘

A1D22∘

A1D21∘

A1∘

D12∘

D22∘

D12D21∘

D11∘

B2∘

B1D22∘

B1D12∘

B1∘

D21∘

From B1 ⊲ B2 we obtain D21 ⊲ D22 by intersecting with A2. Since A1 ⊲ A2, it
follows that A1D21 ⊲ A1D22 on applying the canonical homomorphism A2 → A2/A1.
Similarly B1D12 ⊲ B1D22. Now we invoke (4.3.5) with H = D22 and N = A1D21 to
give HN/N ≃ H/H ∩ N. But HN = A1D22 and H ∩ N = D22 ∩ (A1D21) = D12D21
by (4.1.11). The conclusion is that A1D22/A1D21 ≃ D22/D12D21. By the same argument
B1D22/B1D12 ≃ D22/D12D21, from which the result follows.

The main use of Zassenhaus’s Lemma is to prove a theorem about re�nements: its
statement is remarkably simple.

(10.1.2) (The Schreier² Re�nement Theorem) Any two series in a group have isomorphic
re�nements.

Proof. Let 1 = H0 ⊲ H1 ⊲ ⋅ ⋅ ⋅ ⊲ Hl = G and 1 = K0 ⊲ K1 ⊲ ⋅ ⋅ ⋅ ⊲ Km = G be two series
in a group G. De�ne subgroups Hij = Hi(Hi+1 ∩ Kj) for 0 ≤ i ≤ l − 1, 0 ≤ j ≤ m and

1 Hans Zassenhaus (1912–1991)
2 Otto Schreier (1901–1929)
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Kij = Kj(Hi ∩ Kj+1) for 0 ≤ i ≤ l, 0 ≤ j ≤ m − 1. Apply (10.1.1) with A1 = Hi, A2 = Hi+1,
B1 = Kj and B2 = Kj+1; the conclusion is that Hij ⊲ Hij+1 and Kij ⊲ Ki+1j, and also that
Hij+1/Hij ≃ Ki+1j/Kij. Therefore the series {Hij | i = 0, 1, . . . , l − 1, j = 0, 1, . . .m}
and {Kij | i = 0, 1, . . . , l, j = 0, 1, . . . ,m − 1} are isomorphic re�nements of {Hi | i =
0, 1, . . . , l} and {Kj | j = 0, 1, . . . ,m} respectively.

Composition series. A series which has no proper re�nements is called a composition
series and its factors are composition factors. If G is a �nite group, we can start with
any series, for example 1 ⊲ G, and keep re�ning it until a composition series is reached.
Thus every �nite group has a composition series. However, not every in�nite group has
a composition series, as is shown by (10.1.6) below.

A composition series can be recognized from the nature of its factors.

(10.1.3) A series is a composition series if and only if all its factors are simple groups.

Proof. Let X/Y be a factor of a series in a group G. If X/Y is not simple, there is a
subgroupW such that Y < W < X andW ⊲ X; here the Correspondence Theorem (4.2.2)
has been invoked. AdjoiningW to the given series, we obtain a new series which is a
proper re�nement, with the terms Y ⊲W ⊲ X replacing Y ⊲ X.

Conversely, if a series in G has a proper re�nement, there must be two consecutive
terms Y ⊲ X of the original series with additional terms of the re�ned series between
them. Hence there is a subgroupW in the re�ned series such that Y < W < X andW⊲ X.
But thenW/Y is a proper non-trivial normal subgroup of X/Y and the latter cannot be
simple. Hence the result is proved.

The main result about composition series is a celebrated theorem associated with
the names of two prominent 19th Century algebraists, Camille Jordan (1838–1922) and
Otto Hölder (1859–1937).

(10.1.4) (The Jordan–Hölder Theorem) Let S be a composition series in a group G and
suppose that T is any series in G. Then T has a re�nement which is isomorphic with S.

Themost important case is when T itself is a composition series and the conclusion
is that T is isomorphic with S. Thus we obtain:

Corollary (10.1.5) Any two composition series in a group are isomorphic.

Proof of (10.1.4). By the Re�nement Theorem (10.1.2), the series S and T have isomorphic
re�nements. ButS is a composition series, so it is isomorphicwith a re�nement ofT.

Example (10.1.3) Consider the symmetric group S4. It has a series

1 ⊲ C ⊲ V ⊲ A4 ⊲ S4
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where |C| = 2 and V is the Klein 4-group. Now C, V/C and S4/A4 all have order 2,
while A4/V has order 3, so all factors of the series are simple. By (10.1.3) the series is a
composition series with composition factorsℤ2,ℤ2,ℤ3,ℤ2.

The next result demonstrates that not every group has a composition series.

(10.1.6) An abelian group A has a composition series if and only if it is �nite.

Proof. Only necessity is in doubt, so assume that A has a composition series. Each
factor of the series is simple and abelian, and thus has no proper non-trivial subgroups.
By (4.1.9) the factors have prime order and therefore A is �nite.

Example (10.1.4) Composition series inℤn.
Let n be an integer greater than 1. The group ℤn has a composition series with

factors of prime order. Since the product of the orders of the composition factors is
equal to n, the group order, it follows that n is a product of primes, which is the �rst part
of the Fundamental Theorem of Arithmetic. In fact we can also obtain the uniqueness
part.

Suppose that n = p1p2 ⋅ ⋅ ⋅ pk is an expression for n as a product of primes. De�ne
Hi to be the subgroup ofℤn generated by the congruence class [pi+1pi+2 ⋅ ⋅ ⋅ pk] where
0 ≤ i < k and let Hk = ℤn. Then

0 = H0 ⊲ H1 ⊲ ⋅ ⋅ ⋅ ⊲ Hk−1 ⊲ Hk = ℤn

is a series in ℤn. Now clearly |Hi| = p1p2 ⋅ ⋅ ⋅ pi and hence |Hi+1/Hi| = pi+1. Thus we
have constructed a composition series inℤn with factors of orders p1, p2, . . . , pk.

If n = q1q2 ⋅ ⋅ ⋅ ql is another expression for n as product of primes, there is a corre-
sponding composition serieswith factors of orders q1, q2, . . . , ql. By the Jordan–Hölder
Theorem these composition series are isomorphic. Consequently, k = ℓ and the qj’s
must be the pi’s in some order. Thus we have recovered the Fundamental Theorem of
Arithmetic from the Jordan–Hölder Theorem.

Some simple groups. The investigation so far shows that in a sense a �nite group
decomposes into a number of simple groups, namely its composition factors. The only
simple groups we currently know are the groups of prime order and the alternating
group A5 – see (5.3.10). It is de�nitely time to expand this list, which we do by proving:

(10.1.7) The alternating group An is simple if and only if n ̸= 1, 2 or 4.

The proof uses the following property of 3-cycles.

(10.1.8) If n ≥ 3, the alternating group An is generated by 3-cycles.
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Proof. First of all note that 3-cycles are even and hence belong to An. Next each ele-
ment of An is the product of an even number of transpositions by (3.1.7). Finally, note
the equations (ac)(ab) = (abc) and (ab)(cd) = (adb)(adc), where a, b, c, d are all
di�erent; these demonstrate that every element of An is a product of 3-cycles.

Proof of (10.1.7). In the �rst place A4 has a normal subgroup of order 4, so it cannot
be simple. Also A1 and A2 have order 1, so these are also excluded. However, A3 is
simple because its order is 3. Thus we can assume that n ≥ 5 and aim to show that An
is simple. If this is false, there is a proper, non-trivial normal subgroup N. The proof
analyzes the possible forms of elements of N.

Assume �rst that N contains a 3-cycle (abc). If (a�b�c�) is another 3-cycle and π
in Sn sends a, b, c to a�, b�, c� respectively, then π(abc)π−1 = (a�b�c�). If π is even,
it follows that (a�b�c�) ∈ N. If, on the other hand, π is odd, it can be replaced by the
even permutation π ∘ (ef) where e, f are di�erent from a�, b�, c� – notice that this uses
n ≥ 5. We will still have π(abc)π−1 = (a�b�c�). Consequently N contains all 3-cycles
and by (10.1.8) N = An, a contradiction. Hence N cannot contain a 3-cycle.

Assume next that N contains a permutation π whose disjoint cycle decomposition
involves a cycle of length at least 4, say

π = (a1a2a3a4 ⋅ ⋅ ⋅ ) ⋅ ⋅ ⋅

where the �nal dots indicate the possible presence of further disjoint cycles. Now N
also contains the conjugate of π

π� = (a1a2a3)π(a1a2a3)−1 = (a2a3a1a4 ⋅ ⋅ ⋅ ) ⋅ ⋅ ⋅ .

Therefore N contains π�π−1 = (a1a2a4): here the point to note is that the other cycles
cancel. Since this conclusion is untenable, elements in N must have disjoint cycle
decompositions involving cycles of length at most 3. Furthermore, such elements
cannot involve just one 3-cycle, otherwise by squaring we would obtain a 3-cycle in N.

Assume next that N contains a permutation with at least two disjoint 3-cycles, say
π = (abc)(a�b�c�) ⋅ ⋅ ⋅ . Then N contains the conjugate

π� = (a�b�c)π(a�b�c)−1 = (aba�)(cc�b�) ⋅ ⋅ ⋅ ,

and hence it contains ππ� = (aca�bb�) ⋅ ⋅ ⋅ , which has been seen to be impossible.
Therefore each non-trivial element of N must be the product of an even number of
disjoint transpositions.

If π = (ab)(a�b�) ∈ N, then N contains π� = (acb)π(acb)−1 = (ac)(a�b�) for any c
una�ected by π. But then N will contain ππ� = (acb), which is false. Consequently, if
1 ̸= π ∈ N, then π = (a1b1)(a2b2)(a3b3)(a4b4) ⋅ ⋅ ⋅ , with at least four transpositions. It
follows that N also contains

π� = (a3b2)(a2b1)π(a2b1)(a3b2) = (a1a2)(a3b1)(b2b3)(a4b4) ⋅ ⋅ ⋅

and hence N contains ππ� = (a1b2a3)(a2b1b3), a �nal contradiction.



10.1 The Jordan–Hölder Theorem | 211

As a consequence of (10.1.8) there are in�nitely many simple alternating groups.
The simplicity of An will now be used to determine the composition series of Sn.

(10.1.9) If n = 3 or n ≥ 5, then 1 ⊲ An ⊲ Sn is the unique composition series of Sn.

Proof. In the �rst place this is a composition series since An and Sn/An ≃ ℤ2 are
simple. Suppose that N is a non-trivial, proper normal subgroup of Sn. We will show
that N = An, which will settle the matter. First note that N ∩ An ⊲ An, so that either
N ∩ An = 1 or An ≤ N since An is simple. Now |Sn : An| = 2, so if An ≤ N, then N = An.
Suppose that N ∩ An = 1. Then NAn = Sn and |N| = |NAn/An| = |Sn/An| = 2. Thus
N contains a single non-identity element π, (necessarily an odd permutation). Since
N ⊲ Sn, the permutation π belongs to the center of Sn; however Z(Sn) = 1 by Exercise
(4.2.10), so a �nal contradiction is reached.

Projective linear groups. Wemention in passing another in�nite family of �nite simple
groups. Let F be any �eld. It is not di�cult to prove by direct matrix calculations that
the center of the general linear group GLn(F) is just the subgroup of all scalar matrices
fIn where f ∈ F – cf. Exercise (4.2.12). The projective general linear group of degree n
over F is de�ned to be

PGLn(F) = GLn(F)/Z(GLn(F)).

Recall that SLn(F) is the special linear group consisting of all matrices in GLn(F) with
determinant equal to 1. The center of SLn(F) can be shown to be Z(GLn(F)) ∩ SLn(F).
Therefore by (4.3.5)

SLn(F)Z(GLn(F))/Z(GLn(F)) ≃ SLn(F)/Z(SLn(F)).

The latter is called the projective special linear group

PSLn(F).

The projective special linear groups are usually simple, as the following result shows.

(10.1.10) Let F be a �eld and let n > 1. Then PSLn(F) is simple if and only if n ≥ 3 or
n = 2 and F has more than three elements.

This result can be proved by direct, if tedious, matrix calculations – see for exam-
ple [12]. If F is a �nite �eld, its order is a prime power q by (8.2.17). Moreover, by (11.3.5)
below, there is up to isomorphism just one �eld of order q. If F is a �eld of order q, it is
better notation to write

GLn(q), PGLn(q), PSLn(q)

instead of GLn(F), PGLn(F), PSLn(F).
It is not hard to compute the orders of these groups. In the �rst place, |Z(GLn(F)| =

|F∗| = q − 1, where F∗ = U(F) = F − 0, and also |Z(SLn(F))| = gcd{n, q − 1}. For the last
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statement we need to know that F∗ is cyclic: for a proof see (11.3.6) below. The orders
of the projective groups can now be read o�. A simple count of the non-singular n × n
matrices over F reveals that

|GLn(q)| = (qn − 1)(qn − q) ⋅ ⋅ ⋅ (qn − qn−1),

while |SLn(q)| = |GLn(q)|/(q−1). Thus we have formulas for the orders of the projective
groups.

(10.1.11)

(i) |PGLn(q)| = |GLn(q)|/(q − 1);
(ii) |PSLn(q)| = |SLn(q)|/ gcd{n, q − 1}.

For example, PSL2(5) is a simple group of order 60. In fact there is only one simple
group of this order – see Exercise (10.2.18) – so PSL2(5)must be isomorphic with A5.
But PSL2(7) of order 168 and PSL2(8) of order 504 are simple groups that are not of
alternating type.

Projective groups and projective space. We indicate brie�y how the projective
groups arise in geometry. Let V be an (n + 1)-dimensional vector space over a �eld F
and let V∗ denote the set of all non-zero vectors in V. An equivalence relation ∼ on V∗

is introduced by the following rule: u ∼ v if and only if u = fv for some f ̸= 0 in F. Let
[v] be the equivalence class of the vector v, so this is just the set of non-zero multiples
of v. The set

Ṽ = {[v] | v ∈ V∗}

is called n-dimensional projective space over F.
Next let α be a bijective linear operator on V. Then there is an induced mapping

α̃ : Ṽ → Ṽ de�ned by the rule
α̃([v]) = [α(v)].

Here α̃ is called a collineation on Ṽ. It is not hard to see that the collineations on Ṽ form
a group PGL(Ṽ) with respect to functional composition.

It is also straightforward to verify that the assignment α Ü→ α̃ gives rise to a surjec-
tive group homomorphism from GL(V), the group of invertible linear operators on V,
to PGL(Ṽ), with kernel equal to the subgroup of all scalar linear operators. Therefore
PGL(Ṽ) ≃ PGLn(F), while PSLn(F) corresponds to the subgroup of collineations arising
from matrices with determinant equal to 1.

The classi�cation of �nite simple groups. The projective special linear groups form
one of a number of in�nite families of �nite simple groups known collectively as the
simple groups of Lie type. They arise as groups of automorphisms of simple Lie algebras.
In addition to the alternating groups and the groups of Lie type, there are 26 isolated
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simple groups, the so-called sporadic simple groups. The smallest of these, theMathieu³
group M11, has order 7920, while the largest one, the so-calledMonster, has order

246 ⋅ 320 ⋅ 59 ⋅ 76 ⋅ 112 ⋅ 133 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 41 ⋅ 47 ⋅ 59 ⋅ 71,

or approximately 8.08 × 1053.
It is now widely accepted that the alternating groups, the simple groups of Lie type

and the sporadic simple groups account for all the �nite non-abelian simple groups.
While a complete proof of this result has yet to appear, it is the subject of amulti-volume
work currently in preparation. The classi�cation of �nite simple groups is a synthesis of
the work of many mathematicians and is by any standard one of the greatest scienti�c
achievements of all time.

To conclude the section let us assess how far we have come in trying to understand
the structure of �nite groups. If the aim is to construct all �nite groups, the Jordan–
Hölder Theorem shows that two steps are necessary:

(i) �nd all �nite simple groups;
(ii) construct all possible group extensions of a given �nite group N by a �nite simple

group S.
In step (ii) we have to construct all groups G with a normal subgroup M such that
M ≃ N and G/M ≃ S.

Let us accept that step (i) has been accomplished. A formal description of the
extensions arising in (ii) is possible, but the general problemof decidingwhen twoof the
constructed groups are isomorphic is intractable. Thus the practicality of the scheme
is questionable. However, this does not mean that the enterprise was not worthwhile
since a vast amount of knowledge about �nite groups has been accumulated during
the course of the program.

Exercises (10.1)

(1) Show that isomorphic groups have the same composition factors.
(2) Find two non-isomorphic groups with the same composition factors.
(3) Show that S3 has a unique composition series, while S4 has exactly three composi-
tion series.
(4) Let G be a �nite group and let N ⊲ G. How are the composition factors of G related
to those of N and G/N?
(5) Suppose that G is a group generated by normal subgroups N1, N2, . . . , Nk each of
which is simple. Prove that G is the direct product of certain of the Ni. [Hint: choose
r maximal subject to the existence of normal subgroups Ni1 , . . . , Nir which generate
their direct product. Then show that the direct product equals G].

3 Émile Léonard Mathieu (1835–1890)
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(6) Let G be as in the previous exercise. If N⊲G, prove that N is a direct factor of G. [Hint:
write G = N1 × N2 × ⋅ ⋅ ⋅ × Ns. Choose rmaximal subject to N, Ni1 , . . . , Nir generating
their direct product; then prove that this direct product equals G].
(7) Let G be a group with a series in which each factor is either in�nite cyclic or �nite.
Prove that any other series of this type in G has the same number of in�nite factors,
but not necessarily the same number of �nite ones.
(8) Suppose that G is a group with a composition series. Prove that G satis�es the
ascending and descending chain conditions for subnormal subgroups, i.e., there cannot
exist an in�nite ascending chain H1 < H2 < H3 < ⋅ ⋅ ⋅ or an in�nite descending chain
H1 > H2 > H3 > ⋅ ⋅ ⋅ where the Hi are subnormal subgroups of G. (For more on chain
conditions see Exercise (3.3.10)).
(9) Prove that a group G which satis�es both the ascending and descending chain
conditions on subnormal subgroups has a composition series. [Hint: start by choosing
a minimal non-trivial subnormal subgroup of G].
(10) Let Dn denote the subgroup of Sn generated by all the derangements where n > 1.
Prove that Dn = Sn if n ̸= 3, but D3 = A3. Conclude that if n ̸= 3, every permutation
is a product of derangements. (Suggestion: �rst prove that Dn ⊲ Sn and that if n ̸= 3,
odd derangements exist. Deal �rst with the case n = 4. Then note that if n > 4, then
Dn = Sn by (10.1.9)).

10.2 Solvable and nilpotent groups

In this section we will discuss certain types of group which are wide generalizations of
abelian groups, but which retain vestiges of commutativity. The basic concept is that
of a solvable group, which is de�ned to be a group with a series all of whose factors
are abelian. The terminology derives from the classical problem of solving algebraic
equations by radicals, which is discussed in detail in Chapter Twelve. The length of a
shortest series with abelian factors is called the derived length of the solvable group.
Thus abelian groups are the solvable groups with derived length at most 1. Solvable
group with derived length 2 or less are calledmetabelian.

Finite solvable groups are easily characterized in terms of their composition factors.

(10.2.1) A �nite group is solvable if and only if its composition factors have prime orders.
In particular a simple group is solvable if and only if it has prime order.

Proof. Let G be a �nite solvable group, so that G has a series S with abelian factors.
Re�ne S to a composition series of G. The factors of this series are simple and they
are also abelian since they are isomorphic with quotients of abelian groups. By (4.1.9)
a simple abelian group has prime order. Hence composition factors of G have prime
orders. The converse is an immediate consequence of the de�nition of solvability.
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Solvability is well-behaved with respect to the formation of subgroups, quotient
groups and extensions.

(10.2.2)

(i) If G is a solvable group, then every subgroup and every quotient group of G is solvable.
(ii) Let G be a group with a normal subgroup N such that N and G/N are solvable. Then

G is solvable.

Proof. (i) Let 1 = G0 ⊲ G1 ⊲ ⋅ ⋅ ⋅ ⊲ Gn = G be a series with abelian factors and let H be a
subgroup of G. Then

1 = G0 ∩ H ⊲ G1 ∩ H ⊲ ⋅ ⋅ ⋅ ⊲ Gn ∩ H = H

is a series in H. Let x, y ∈ Gi+1 ∩ H. Then the commutator [x, y] = xyx−1y−1 belongs
to Gi, because Gi+1/Gi is abelian, and clearly [x, y] ∈ H. Therefore [x, y] ∈ Gi ∩ H and
Gi+1 ∩ H/Gi ∩ H is abelian, which shows that H is a solvable group.

Next let N ⊲ G. Then G/N has the series

1 = G0N/N ⊲ G1N/N ⊲ ⋅ ⋅ ⋅ ⊲ GnN/N = G/N.

Also (Gi+1N/N)/(GiN/N) ≃ Gi+1N/GiN by (4.3.6). The assignment xGi Ü→ xGiN deter-
mines a well de�ned, surjective homomorphism from Gi+1/Gi to Gi+1N/GiN. Since
Gi+1/Gi is abelian, the group Gi+1N/GiN is abelian and hence G/N is solvable.
(ii) The proof is left to the reader as an exercise.

The derived series. Recall from (4.2) that the derived subgroup G� of a group G is the
subgroup generated by all the commutators in G,

G� = ⟨[x, y] | x, y ∈ G⟩.

The derived chain G(i), i = 0, 1, 2, . . . , is de�ned to be the descending sequence of
subgroups formed by repeatedly taking derived subgroups: thus

G(0) = G, G(i+1) = (G(i))�.

Note that G(i) ⊲ G and G(i)/G(i+1) is an abelian group.
The important properties of the derived chain are that in a solvable group it reaches

the identity subgroup and of all series with abelian factors it has shortest length.

(10.2.3) Let 1 = G0 ⊲ G1 ⊲ ⋅ ⋅ ⋅ ⊲ Gk = G be a series with abelian factors in a solvable
group G. Then G(i) ≤ Gk−i for 0 ≤ i ≤ k. In particular G(k) = 1, so that the length of the
derived chain equals the derived length of G.

Proof. The containment is certainly true when i = 0. Assume that it is true for i. Since
Gk−i/Gk−i−1 is abelian, G(i+1) = (G(i))� ≤ (Gk−i)� ≤ Gk−i−1, as required. On setting i = k,
we �nd that G(k) = 1.
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Notice the consequence: a solvable group has a normal series, i.e., one in which
every term is normal, with abelian factors: indeed the derived series is of this type.

It is sometimes possible to deduce solvability of a �nite group from the properties
of its order. Some group orders for which this can be done are given in the next result.

(10.2.4) Let p, q, r be primes. Then a group whose order has the form pm, p2q2, pmq or
pqr is solvable.

Proof. First observe that in each case it is enough to show that there are no non-abelian
simple groups with the order. For once this fact has been established, by applying it
to the composition factors the general case will follow. If G is a simple group of order
pm ̸= 1, then Z(G) ̸= 1 by (5.3.6) and Z(G) ⊲ G, so G = Z(G) and G is abelian.

Now consider the case of a simple group G with order pmq. We can of course
assume that p ̸= q. Then np ≡ 1 (mod p) and np | q, so that np = q, since np = 1
would mean that there is a normal Sylow p-subgroup.

Choose two distinct Sylow p-subgroups P1 and P2 whose intersection I = P1 ∩ P2
has largest order. First of all suppose that I = 1. Then each pair of distinct Sylow
p-subgroups intersects in 1, which makes it easy to count the number of non-trivial
elements with order a power of p; indeed this number is q(pm − 1) since there are q
Sylow p-subgroups. This leaves pmq − q(pm − 1) = q elements of order prime to p.
These elements must form a single Sylow q-subgroup, which is therefore normal in G,
contradicting the simplicity of the group G. It follows that I ̸= 1.

By Exercise (5.3.14) or (10.2.7) below, I < Ni = NPi (I) for i = 1, 2. Thus I ⊲ J =
⟨N1, N2⟩. Suppose for themoment that J is a p-group. By Sylow’s Theorem J is contained
in some Sylow subgroup P3 of G. But P1 ∩ P3 ≥ P1 ∩ J > I since N1 ≤ P1 ∩ J, which
contradicts the maximality of the intersection I. Therefore J is not a p-group.

By Lagrange’s Theorem |J| divides |G| = pmq and it is not a power of p, from which
it follows that q must divide |J|. Let Q be a Sylow q-subgroup of J. By (4.1.12)

|P1Q| =
|P1| ⋅ |Q|
|P1 ∩ Q|

=
pmq
1

= |G|,

and thus G = P1Q. Now let g ∈ G andwrite g = abwhere a ∈ P1, b ∈ Q. Then bIb−1 = I
since I ⊲ J and Q ≤ J. Hence gIg−1 = a(bIb−1)a−1 = aIa−1 ≤ P1 < G. But this means
that ̄I = ⟨gIg−1 | g ∈ G⟩ ≤ P1 < G and also 1 ̸= ̄I ⊲ G, a �nal contradiction.

The remaining group orders are left as exercises with appropriate hints – see
Exercise (10.2.5) and (10.2.6).

We mention two much deeper arithmetic criteria for a �nite group to be solvable.
The �rst states that a group of order pmqn is solvable if p and q are primes. This is the
celebrated Burnside p-q Theorem. It is best proved using group characters and thus
lies beyond the scope of this book.
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An even more di�cult result is the Odd Order Theorem, which asserts that every
group of odd order is solvable. This famous theorem is due W. Feit ⁴ and J.G. Thompson:
the original proof, published in 1963, was over 250 pages long.

These results indicate that there are many �nite solvable groups: indeed �nite
non-abelian simple groups should be regarded as a rarity among �nite groups.

Nilpotent groups. Nilpotent groups form an important subclass of the class of solvable
groups. A group G is said to be nilpotent if it has a central series, by which is meant
a series of normal subgroups 1 = G0 ⊲ G1 ⊲ G2 ⊲ ⋅ ⋅ ⋅ ⊲ Gn = G such that Gi+1/Gi is
contained in the center of G/Gi for all i. The length of a shortest central series is called
the nilpotent class of G. abelian groups are just the nilpotent groups with class ≤ 1.
Clearly every nilpotent group is solvable, but S3 is a solvable group that is not nilpotent
since its center is trivial.

The great source of �nite nilpotent groups is the groups of prime power order.

(10.2.5) Let G be a group of order pm where p is a prime. Then G is nilpotent, and if
m > 1, the nilpotent class of G is at most m − 1.

Proof. De�ne a sequence of subgroups {Zi} by repeatedly forming centers. Thus Z0 = 1
and Zi+1/Zi = Z(G/Zi). By (5.3.6), if Zi ̸= G, then Z(G/Zi) ̸= 1 and Zi < Zi+1. Since G
is �nite, there is a smallest integer n such that Zn = G, and clearly n ≤ m. Suppose
that n = m. Then |Zm−2| ≥ pm−2 and thus |G/Zm−2| ≤ pm/pm−2 = p2, which means
that G/Zm−2 is abelian by (5.3.7). This yields the contradiction Zm−1 = G; therefore
n ≤ m − 1.

The foregoing proof suggests a general construction, the upper central chain of a
group G. This is the chain of subgroups de�ned by repeatedly forming centers,

Z0(G) = 1, Zi+1(G)/Zi(G) = Z(G/Zi(G)).

Thus 1 = Z0 ≤ Z1 ≤ ⋅ ⋅ ⋅ and Zi ⊲ G. If G is �nite, this chain will certainly terminate,
although itmay it not reach G. The signi�cance of the upper central chain for nilpotency
is shown by the next result.

(10.2.6) Let 1 = G0 ⊲ G1 ⊲ ⋅ ⋅ ⋅ ⊲ Gk = G be a central series in a nilpotent group G. Then
Gi ≤ Zi(G) for 0 ≤ i ≤ k. In particular, Zk(G) = G and the length of the upper central
chain equals the nilpotent class of G.

Proof. We argue that Gi ≤ Zi(G) by induction on i, which is certainly true for i = 0. If it
is true for i, then, since Gi+1/Gi ≤ Z(G/Gi), we have

Gi+1Zi(G)/Zi(G) ≤ Z(G/Zi(G)) = Zi+1(G)/Zi(G).

4 Walter Feit (1930–2004)
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Thus Gi+1 ≤ Zi+1(G), which completes the induction. Consequently G = Gk ≤ Zk(G)
and G = Zk(G).

Example (10.2.1) Let p be a prime and let n > 1. Denote by Un(p) the group of all n × n
upper unitriangular matrices over the �eld ℤp, i.e., matrices which have 1’s on the
diagonal and 0’s below it. Counting the matrices of this type by enumerating possible
superdiagonals, we �nd that |Un(p)| = pn−1 ⋅ pn−2 ⋅ ⋅ ⋅ p ⋅ 1 = pn(n−1)/2. Therefore Un(p)
is a nilpotent group, and in fact its class is n − 1, (see Exercise (10.2.11)).

Characterizations of �nite nilpotent groups. There are several di�erent descriptions
of �nite nilpotent groups which shed light on the nature of the property of nilpotency.

(10.2.7) Let G be a �nite group. Then the following statements are equivalent:
(i) G is nilpotent;
(ii) every subgroup of G is subnormal;
(iii) every proper subgroup of G is smaller than its normalizer;
(iv) G is the direct product of its Sylow subgroups.

Proof. (i) implies (ii). Let 1 = G0 ⊲ G1 ⊲ ⋅ ⋅ ⋅ ⊲ Gn = G be a central series and let H be a
subgroup of G. Then Gi+1/Gi ≤ Z(G/Gi), so HGi/Gi ⊲ HGi+1/Gi. Hence there is a chain
of subgroups H = HG0 ⊲ HG1 ⊲ ⋅ ⋅ ⋅ ⊲ HGn = G and H is subnormal in G.
(ii) implies (iii). Let H < G; then H is subnormal in G, so there is a chain H = H0 ⊲ H1 ⊲
⋅ ⋅ ⋅ ⊲ Hm = G. There is a least i > 0 such that H ̸= Hi, and then H = Hi−1 ⊲ Hi. Therefore
Hi ≤ NG(H) and NG(H) ̸= H.
(iii) implies (iv). Let P be a Sylow p-subgroup of G. If P is not normal in G, then NG(P) <
G, and hence NG(P) is smaller than its normalizer. But this contradicts Exercise (5.3.15).
Therefore P ⊲ G and P must be the unique Sylow p-subgroup, which will be written Gp.

Evidently Gp ⊲ G and Gp ∩ ⟨Gq | q ̸= p⟩ = 1 since orders of elements from the inter-
secting subgroups are relatively prime. Clearly G is generated by its Sylow subgroups,
so G is the direct product of the Gp.
(iv) implies (i). This follows quickly from the fact that a �nite p-group is nilpotent.

The unique Sylow p-subgroup Gp is called the p-component of the nilpotent
group G.

The Frattini⁵ subgroup. A very intriguing subgroup that can be formed in any group G
is the Frattini subgroup

ϕ(G).

5 Giovanni Frattini (1852–1925)
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This is de�ned to be the intersection of all the maximal subgroups of G. Here amaximal
subgroup is a proper subgroup which is not contained in any larger proper subgroup.
If G has no maximal subgroups, as is the case if G is trivial and might happen if G is
in�nite, then ϕ(G) is de�ned to be G. Note that ϕ(G) is normal in G. For example, S3
has one maximal subgroup of order 3 and three of order 2: these intersect in 1, so
ϕ(S3) = 1.

There is another, very di�erent, way of describing the Frattini subgroup, which
involves the notion of a non-generator. An element g of a group G is called a non-
generator if G = ⟨g, X⟩ always implies that G = ⟨X⟩where X is a non-empty subset of G.
Thus a non-generator can be omitted from any generating set for G.

(10.2.8) If G is a �nite group, ϕ(G) is the set of all non-generators of G.

Proof. Let g be a non-generator of G and assume that g is not in ϕ(G). Then there
is at least one maximal subgroup of G which does not contain g, say M. Thus M
is de�nitely smaller than ⟨g,M⟩, which implies that G = ⟨g,M⟩ since M is maximal.
Therefore G = M by the non-generator property, which is a contradiction sincemaximal
subgroups are proper.

Conversely, let g ∈ ϕ(G) and suppose that G = ⟨g, X⟩, but G ̸= ⟨X⟩. Then ⟨X⟩
must be contained in some maximal subgroup of G, say M. But g ∈ ϕ(G) ≤ M, so
G = ⟨g,M⟩ = M, another contradiction.

Actually (10.2.8) is valid for in�nite groups as well, but the proof requires the use
of Zorn’s Lemma – see Exercise (14.1.6). Next we establish an important property of the
Frattini subgroup of a �nite group.

(10.2.9) If G is a �nite group, then ϕ(G) is nilpotent.

Proof. The proof depends on a useful trick known as the Frattini argument. Write
F = ϕ(G) and let P be a Sylow p-subgroup of F. If g ∈ G, then gPg−1 ≤ F since
F ⊲ G: also |gPg−1| = |P|. Therefore gPg−1 is a Sylow p-subgroup of F, and as such
it must be conjugate to P in F by Sylow’s Theorem. Thus gPg−1 = xPx−1 for some x
in F. This implies that x−1gP(x−1g)−1 = P, i.e., x−1g ∈ NG(P) and g ∈ FNG(P). Thus
the conclusion of the Frattini argument is that G = FNG(P). Now the non-generator
property comes into play, allowing us to omit the elements of F one at a time, until
eventually we get G = NG(P), i.e., P ⊲ G. In particular P ⊲ F, so that all the Sylow
subgroups of F are normal and F is nilpotent by (10.2.7).

The Frattini subgroup of a �nite p-group. The Frattini subgroup plays an especially
signi�cant role in the theory of �nite p-groups. Suppose that G is a �nite p-group. IfM is
a maximal subgroup of G, then, since G is nilpotent,M is subnormal and hence normal
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in G. Furthermore G/M cannot have proper non-trivial subgroups by maximality of M.
Thus |G/M| = p. De�ne the pth power of the group G to be

Gp = ⟨gp | g ∈ G⟩.

Then GpG� ≤ M for all M and GpG� ≤ ϕ(G).
On the other hand, G/GpG� is a �nite abelian group in which every pth power is

the identity, i.e., it is an elementary abelian p-group. By (8.2.16) such a group is a direct
product of groups of order p. This fact enables us to construct maximal subgroups
of G/GpG� by omitting all but one factor from the direct product. The resultingmaximal
subgroups of G/GpG� clearly intersect in the identity subgroup, which shows that
ϕ(G) ≤ GpG�. We have therefore proved:

(10.2.10) If G is a �nite p-group, then ϕ(G) = GpG�.

Next suppose that V = G/GpG� has order pd; thus d is the dimension of V as a
vector space over the �eld ℤp. Consider an arbitrary set X of generators for G. Now
the subset {xGpG� | x ∈ X} clearly generates V as a vector space. By Exercise (8.2.10)
there is a subset Y of X such that {yGpG� | y ∈ Y} is a basis of V. Of course |Y| = d.
We claim that Y generates G. Certainly we have that G = ⟨Y, GpG�⟩ = ⟨Y, ϕ(G)⟩. The
non-generator property of ϕ(G) shows that G = ⟨Y⟩.

Summing up these conclusions, we have the following basic result on �nite p-
groups.

(10.2.11) Let G be a �nite p-group and assume that G/ϕ(G) has order pd. Then every
set of generators of G has a d-element subset that generates G. In particular G can be
generated by d and no fewer elements.

Example (10.2.2) AgroupG is constructed as the semidirect product of a cyclic group ⟨a⟩
of order 2n with a Klein 4-group V = ⟨x, y⟩ where n ≥ 3, xax−1 = a−1 and yay−1 =
a1+2n−1 . Thus |G| = 2n+2. Observe that G� = ⟨a2⟩ and thus G/G� is elementary abelian
of order 8. Hence ϕ(G) = G2G� = ⟨a2⟩. By (10.2.11) the group G can be generated by 3
and no fewer elements, and in fact G = ⟨a, x, y⟩.

Exercises (10.2)

(1) Let M ⊲ G and N ⊲ G where G is any group. If M and N are solvable, prove that MN
is solvable.
(2) Let M ⊲ G and N ⊲ G for any group G. If G/M and G/N are solvable, prove G/M ∩ N
is solvable.
(3) Explain why a solvable group with a composition series is necessarily �nite.
(4) Let G be a �nite group with two non-trivial elements a and b such that |a|, |b|, |ab|
are relatively prime in pairs. Prove that G cannot be solvable. [Hint: put H = ⟨a, b⟩ and
consider H/H�].
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(5) Prove that if p, q, r are primes, then every group of order pqr is solvable. [Hint:
assume that G is a simple group of order pqr where p < q < r and show that nr = pq,
nq ≥ r and np ≥ q. Now count elements to obtain a contradiction].
(6) Prove that if p and q are primes, then every group of order p2q2 is solvable. [Hint:
follow the method of proof for groups of order pmq in (10.2.4). Deal �rst with the
case where each pair of Sylow p-subgroups intersects in 1. Then choose two Sylow
subgroups P1 and P2 such that I = P1 ∩ P2 has order p and note that I ⊲ J = ⟨P1, P2⟩].
(7) Establish the commutator identities

[x, y−1] = y−1([x, y]−1)y and [x, yz] = [x, y](y[x, z]y−1).

(8) Let G be a group and let z ∈ Z2(G). Prove that the assignment x Ü→ [z, x] determines
a homomorphism from G to Z(G) whose kernel contains G�.
(9) Let G be a group such that Z1(G) < Z2(G). Use Exercise (10.2.8) to show that G > G�.
(10) Find the upper central series of the group G = Dih(2m) where m ≥ 2. Hence
compute the nilpotent class of G.
(11) Let n > 1 and let G = Un(p), the group of n × n upper unitriangular matrices over
ℤp. De�ne Gi to be the subgroup of all elements of G in which the �rst i superdiagonals
consist of 0’s, where 0 ≤ i < n. Show that the Gi are terms of a central series of G. Then
�nd the nilpotent class of G.
(12) Let G be a nilpotent group with a non-trivial normal subgroup N. Prove that N ∩
Z(G) ̸= 1.
(13) Let A be a maximal abelian normal subgroup of a nilpotent group G. Prove that
CG(A) = A. [Hint: assume this is false and apply Exercise (10.2.12) to CG(A)/A ⊲ G/A].
(14) If every abelian normal subgroup of a nilpotent group is �nite, prove that the group
is �nite.
(15) The lower central sequence {ãi(G)} of group G is de�ned by ã1(G) = G and ãi+1(G) =
[ãi(G), G]. If G is a nilpotent group, prove that the lower central sequence reaches 1
and its length equals the nilpotent class of G. (If H, K are subgroups of a group, then
[H, K] is the subgroup generated by all commutators [h, k], h ∈ H, k ∈ K].
(16) Find the Frattini subgroup of the groups An, Sn and Dih(2n) where n is odd.
(17) Use (10.2.4) to show that a non-solvable group of order at most 100 must have
order 60. (Note that the only orders requiring attention are 60, 72, 84 and 90).
(18) Prove that A5 is the only non-solvable group with order ≤ 100. [Hint: it is enough
to show that a simple group of order 60 must have a subgroup of index 5. Consider the
number of Sylow 2-subgroups].
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10.3 Theorems on �nite solvable groups

The �nal section of the chapter will take us deeper into the theory of �nite solvable
groups and several famous theorems will be proved.

Schur’s splitting and conjugacy theorem. Suppose that N is a normal subgroup of a
group G. A subgroup X such that G = NX and N ∩ X = 1 is called a complement of N
in G. In this case G is said to split over N and G is the semidirect product of N and X. A
splitting theorem is theorem asserting that a group splits over a normal subgroup. One
can think of such a theorem as resolving a group into a product of potentially simpler
groups. The most celebrated splitting theorem in group theory is undoubtedly Schur’s
theorem.

(10.3.1) (Schur⁶) Let A be an abelian normal subgroup of a �nite group G such that |A|
and |G : A| are relatively prime. Then G splits over A and all complements of A are
conjugate in G.

Proof. (i) Existence of a complement. To start the proof choose an arbitrary transversal
to A in G, say {tx | x ∈ Q = G/N} where x = Atx. Most likely this transversal will
not be a subgroup. The idea behind the proof is to transform the transversal into
one which is a subgroup. Let x, y ∈ Q: then x = Atx and y = Aty, and in addition
Atxy = xy = AtxAty = Atx ty. Thus it is possible to write

tx ty = a(x, y)txy

for some a(x, y) ∈ A.
The associative law (tx ty)tz = tx(ty tz) imposes a condition on the elements a(x, y).

For, applying the above equation twice, we obtain

(tx ty)tz = a(x, y)a(xy, z)txyz ,

and similarly

tx(ty tz) = txa(y, z)tyz = (txa(y, z)t−1x )tx tyz = (txa(y, z)t−1x )a(x, yz)txyz .

Now conjugation of elements of A by tx induces an automorphism of A which
depends only on x: for, if a, b ∈ A, then (btx)a(btx)−1 = txat−1x since A is abelian. Let
us write xa for txat−1x . Then on equating (tx ty)tz and tx(ty tz) and cancelling txyz, we
arrive at the equation

a(x, y)a(xy, z) = xa(y, z)a(x, yz), (∗)

6 Issai Schur (1875–1941)



10.3 Theorems on �nite solvable groups | 223

which is valid for all x, y, z, ∈ Q. A function a : Q × Q → A that satis�es the condition
(∗) is called a factor set or 2-cocycle.

Next de�ne
bx = ∏

y∈Q
a(x, y),

noting that the order of the factors in the product is immaterial since A is abelian. On
forming the product of the equations (∗) above for all z in Q with x and y �xed, we
obtain the equation

a(x, y)m bxy = xbybx , (∗∗)

where m = |Q| = |G : A|. Note here that the product of all the xa(y, z) is xby and the
product of all the a(x, yz) is bx.

Since m is relatively prime to |A|, the mapping a Ü→ am is an automorphism of A.
Thus we can write bx as an mth power, say bx = c−mx where cx ∈ A. Substituting for bx
in equation (∗∗), we get (a(x, y)c−1xy )m = ((xcycx)−1)m, from which it follows that

cxy = cx(xcy)a(x, y).

We are now ready to form the new transversal. Write sx = cx tx and observe that
the sx , (x ∈ Q), form a transversal to A. Moreover

sxsy = cx txcy ty = cx(xcy)tx ty = cx(xcy)a(x, y)txy = cxy txy = sxy .

This demonstrates that the transversal H = {sx | x ∈ Q} is a subgroup. Since G = AH
and A ∩ H = 1, it follows that H is a complement of A in G and G splits over A.

(ii) Conjugacy of complements. Let H = {sx | x ∈ Q} and H∗ = {s∗x | x ∈ Q} be two
complements of A in G. If x ∈ Q, we can write x = Asx = As∗x where sx and s∗x belong
to H and H∗ respectively. Thus sx and s∗x are related by an equation of the form

s∗x = d(x)sx

where d(x) ∈ A. Since Asxy = xy = AsxAsy = Asxsy, we have sxsy = sxy, and similarly
s∗x s∗y = s∗xy. In the last equation make the substitutions s∗x = d(x)sx, s∗y = d(y)sy,
s∗xy = d(xy)sxy to get d(x)sxd(y)sy = d(xy)sxy and hence

d(xy) = d(x)(xd(y))

for all x, y ∈ Q. Such a function d : Q → A is called a derivation or 1-cocycle.
Put d = ∏x∈Q d(x) and take the product of all the equations dxy = d(x)(xd(y)) for

y ∈ Q with x �xed. This leads to d = (d(x)m)(xd). Writing d = em with e ∈ A, we obtain
em = (d(x) xe)m and hence e = d(x)(xe). Thus d(x) = e(xe)−1. Since xe = sxes−1x , we
have

s∗x = d(x)sx = e(xe)−1sx = e(sxe−1s−1x )sx = esxe−1.

Therefore H∗ = eHe−1, so H and H∗ are conjugate.
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In fact(10.3.1) is true even when A is non-abelian, a result which is known as the
Schur-Zassenhaus Theorem. The proof of conjugacy of complements requires the Odd
Order Theorem: see for example [11] and also Exercise (10.3.7).

Hall’s theorems on �nite solvable groups. To illustrate the usefulness of Schur’s split-
ting theorem we will make a foray into the theory of �nite solvable groups by proving
the following celebrated result.

(10.3.2) (P. Hall⁷) Let G be a �nite solvable group and write |G| = mn where the positive
integers m, n are relatively prime. Then G has a subgroup of order m and all subgroups
of this order are conjugate.

Proof. (i) Existence.We argue by induction on |G| > 1. The group G has a non-trivial
abelian normal subgroup A, for example the smallest non-trivial term of the derived
series. Since A is the direct product of its primary components, we can assume that A
is a p-group, with |A| = pk, say. There are two cases to consider.

Suppose �rst that p does not divide m. Then pk | n because m and n are relatively
prime. Since |G/A| = m ⋅ (n/pk), the induction hypothesis may be applied to the
group G/A to show that it has a subgroup of order m, say K/A. Now |A| is relatively
prime to m = |K : A|, so (10.3.1) may be applied to K. Hence there is a complement of A
in K: this has order m, as required.

Now assume that p divides m; then pk | m since p cannot divide n. Since |G/A| =
(m/pk) ⋅ n, induction shows that G/A has a subgroup of order m/pk, say H/A. Then
|H| = |A| ⋅ |H/A| = pk(m/pk) = m, as required.
(ii) Conjugacy. Let H and H∗ be two subgroups of order m, and choose A as in (i). If
p does not divide m, then A ∩ H = 1 = A ∩ H∗, and AH/A and AH∗/A are subgroups
of G/A with order m. By induction on |G| these subgroups are conjugate and thus
AH = g(AH∗)g−1 = A(gH∗g−1) for some g ∈ G. By replacing H∗ by gH∗g−1, we can
assume that AH = AH∗. But now H and H∗ are two complements of A in HA, so (10.3.1)
guarantees that they are conjugate.

Finally, assume that p divides m. Then p does not divide n = |G : H| = |G : H∗|.
Since |AH : H| is a power of p and it also divides n, we conclude that |AH : H| = 1 and
A ≤ H. Similarly A ≤ H∗. By induction H/A and H∗/A are conjugate in G/A, as must H
and H∗ be in G.

Hall π-subgroups. Let us now assess the signi�cance of Hall’s theorem. Let π denote
a non-empty set of primes and let π� be the complementary set of primes. A positive
integer is called a π-number if it is a product of powers of primes from the set π. A �nite
group is said to be a π-group if its order is a π-number.

7 Philip Hall (1904–1982)
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Now let G be a �nite solvable group and write |G| = mn where m is a π-number
and n is a π�-number. Then (10.3.2) tells us that G has a subgroup H of order m and
index n. Thus H is a π-group and |G : H| is a π�-number: such a subgroup is called a
Hall π-subgroup of G. Thus (10.3.2) actually asserts that Hall π-subgroups exist in a
�nite solvable group for any set of primes π, and that any two Hall π-subgroups are
conjugate.

Hall’s theorem can be regarded as an extension of Sylow’s Theorem since if π = {p},
a Hall π-subgroup is simply a Sylow p-subgroup. However, Sylow’s Theorem is valid
for any �nite group, whereas Hall subgroups need not exist in an insolvable group. For
example A5 has order 60 = 3 ⋅ 20, but it has no subgroups of order 20, as the reader
should verify.

This example is no coincidence since there is in fact a strong converse of Hall’s
theorem: themere existence Hall p�-subgroups for all primes p dividing the group order
is enough to imply solvability of the group. Here p� is the set of all primes di�erent
from p. The proof of this result uses the Burnside pq-Theorem: a group of order pmqn

is solvable if p and q are primes.

(10.3.3) (P. Hall) Let G be a �nite group and suppose that for every prime p dividing |G|
there is a Hall p�-subgroup in G. Then G is solvable.

Proof. Assume the theorem is false and let G be a counterexample of smallest order.
We look for a contradiction. Suppose that N is proper non-trivial normal subgroup of G.
If H is a Hall p�-subgroup of G, then by consideration of order and index we see that
H ∩ N and HN/N are Hall p�-subgroups of N and G/N respectively. Therefore N and
G/N are solvable by minimality of |G|, and thus G is solvable. By this contradiction G
is a simple group.

Write |G| = pe11 p
e2
2 ⋅ ⋅ ⋅ pekk where ei > 0 and the pi are distinct primes. The Burnside

pq-Theorem shows that k > 2. Let Gi be a Hall p�i-subgroup of G; thus |G : Gi| = peii .
Put H = G3 ∩ ⋅ ⋅ ⋅ ∩ Gk and observe that

|G : H| =
k
∏
i=3

|G : Gi| =
k
∏
i=3
peii

by (4.1.13). Therefore |H| = |G|/|G : H| = pe11 p
e2
2 and H is solvable by Burnside’s

Theorem.
Since H ̸= 1, it contains a minimal normal subgroup M. By Exercise (10.3.2) below

M is an elementary abelian p-group where p = p1 or p2: without loss of generality let
p = p1. Now

|G : H ∩ G2| = |G : H| ⋅ |G : G2| =
k
∏
i=2
peii

by (4.1.13) once again. Thus |H ∩ G2| = pe11 , i.e., H ∩ G2 is a Sylow p1-subgroup of H.
HenceM(H∩G2) is a p1-group, fromwhich it follows thatM ≤ H∩G2. Also |H∩G1| = pe22
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by the same argument and therefore

|(H ∩ G1)G2| = |H ∩ G1| ⋅ |G2| = pe22
|G|
pe22

= |G|.

Consequently G = (H ∩ G1)G2. Next consider the normal closure of M in G – see
Example (4.2.1)(vi). This is

⟨MG⟩ = ⟨M(H∩G1)G2⟩ = ⟨MG2⟩ ≤ G2 < G,

since M ⊲ H. It follows that ⟨MG⟩ is a proper non-trivial normal subgroup of G, so G is
not simple, a contradiction.

Hall’s theorems are the starting point for a rich theory of �nite solvable groups
which has been developed over the last eight decades; the standard reference for this
is [3].

Exercises (10.3)

(1) Give an example of a �nite group G with an abelian normal subgroup A such that G
does not split over A.
(2) If G is a �nite solvable group with a minimal (non-trivial) normal subgroup N, prove
that N is an elementary abelian p-group for some p dividing |G|. [Hint: note that N�⊲G].
(3) If M is a maximal subgroup of a �nite solvable group G, prove that |G : M| is equal
to a prime power. [Hint: use induction on |G| to reduce to the case where M contains
no non-trivial normal subgroups of G. Let A be a minimal normal subgroup of G. Show
that G = MA and M ∩ A = 1].
(4) For which sets of primes π does the group A5 contain a Hall π-subgroup?
(5) Let G be a �nite solvable group and p a prime dividing the order of G. Prove that G
has a maximal subgroup with index a power of p. [Hint: apply (10.3.2)].
(6) Let G be a �nite group and π a set of primes. Let L be a solvable normal subgroup of
G and assume that H is a Hall π-subgroup of L. Prove that G = LNG(H).
(7) Let G be a �nite group with a normal subgroup N. Assume that |N| and |G : N| are
relatively prime and that N is solvable. Prove that G splits over N and all complements
of N are conjugate. [Hint: assume that N ̸= 1 and �nd a non-trivial abelian subgroup
A of G which is contained in N. By induction on the group order the result is true for
G/A].
(8) Let G be a �nite group and let p be a prime dividing the order of G. Prove that p
divides |G/ϕ(G)|. [Hint: assume this is false, so G/ϕ(G) is a p�-group. Since ϕ(G) is
nilpotent, there exists P ⊲ G such that P ≤ ϕ(G), P is a p-group and G/P a p�-group.
Now apply Exercise (10.3.7)].
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Field theory is one of the most attractive parts of algebra. It contains many powerful
results on the structure of �elds, for example, the Fundamental Theorem of Galois
Theory, which establishes a correspondence between sub�elds of a �eld and subgroups
of the Galois group. In addition �eld theory can be applied to awide variety of problems,
some of which date from classical antiquity. Among the applications to be described
here and in the following chapter are: ruler and compass constructions, solution of
equations by radicals, orthogonal latin squares and Steiner systems. In short �eld
theory is algebra at its best – deep theorems with convincing applications to problems
which might otherwise be intractible.

11.1 Field extensions

Recall from (7.4) that a sub�eld of a �eld F is a subring containing 1 which is closed
with respect to inversion of its non-zero elements. The following is an immediate
consequence of the de�nition.

(11.1.1) The intersection of any set of sub�elds of a �eld is a sub�eld.

Suppose that X is a (non-empty) subset of a �eld F. By (11.1.1) the intersection of all
the sub�elds of F that contain X is a sub�eld, which is evidently the smallest sub�eld
containing X. We call this the sub�eld of F generated by X. It is easy to describe the
elements of the sub�eld generated by a given subset.

(11.1.2) If X is a subset of a �eld F, the sub�eld generated by X consists of all elements
of the form

f(x1, . . . , xm)g(y1, . . . , yn)−1

where f ∈ ℤ[t1, . . . , tm], g ∈ ℤ[t1, . . . , tn], xi , yj ∈ X and g(y1, . . . , yn) ̸= 0.

To prove this, �rst observe that the set S of elements with the speci�ed form is a
sub�eld of F containing X. Then note that any sub�eld of F which contains X must
also contain all the elements of S, so that S is the smallest sub�eld that contains X.

Prime sub�elds. In a �eld F one can form the intersection of all its sub�elds. This is
the unique smallest sub�eld of F and it is called the prime sub�eld of F. A �eld which
equals its prime sub�eld is called a prime �eld. It is easy to identify the prime �elds.

(11.1.3) A prime �eld of characteristic 0 is isomorphic with ℚ: a prime �eld of prime
characteristic p is isomorphic withℤp. Conversely,ℚ andℤp are prime �elds.
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Proof. Assume that F is a prime �eld and put I = ⟨1F⟩ = {n1F | n ∈ Z}. Suppose �rst
that F has characteristic 0, so I is in�nite cyclic. De�ne a surjective mapping α : ℚ → F
by the rule α(mn ) = (m1F)(n1F)−1, where n ̸= 0. It is easily checked that α is a well
de�ned ring homomorphism and its kernel is therefore an ideal ofℚ. Now 0 andℚ
are the only ideals ofℚ and α(1) = 1F ̸= 0F, so Ker(α) ̸= ℚ. It follows that Ker(α) = 0
andℚ ≃ Im(α). Since F is a prime �eld and Im(α) is a sub�eld, Im(α) = F and α is an
isomorphism. Thus F ≃ ℚ.

Now suppose that F has prime characteristic p, so that |I| = p. In this situation we
de�ne α : ℤ → F by α(n) = n1F . Thus α(n) = 0F if and only if n1F = 0, i.e., p divides n.
Hence Ker(α) = pℤ and Im(α) ≃ ℤ/pℤ = ℤp. It follows that ℤp is isomorphic with
a sub�eld of F and, since F is prime, ℤp ≃ F. It is left to the reader to check that ℚ
andℤp are prime �elds.

Field extensions. Consider two �elds F and E and suppose there is an injective ring
homomorphism α : F → E. Then F is isomorphic with Im(α), which is a sub�eld of E:
under these circumstances we say that E is an extension of F. Often we prefer to assume
that F is actually a sub�eld of E. This is usually a harmless assumption since F can be
replaced by the isomorphic �eld Im(α). Notice that by (11.1.3) every �eld is an extension
of eitherℤp orℚ, according as the characteristic is a prime p or 0.

If E is an extension of F, then E can be regarded as a vector space over F by using
the �eld operations. The vector space axioms are consequences of the �eld axioms.
This simple idea is critical since it allows us to de�ne the degree of E over F as

(E : F) = dimF(E),

assuming that this dimension is �nite. Then E is called a �nite extension of F.

Simple extensions. Let F be a sub�eld and X a non-empty subset of a �eld E. The
sub�eld of E generated by F ∪ X is denoted by

F(X).

It follows readily from (11.1.2) that F(X) consists of all elements of the form

f(x1, . . . , xm)g(y1, . . . , yn)−1

where f ∈ F[t1, . . . , tm], g ∈ F[t1, . . . , tn], xi , yj ∈ X and g(y1, . . . , yn) ̸= 0. If X =
{x1, x2, . . . , xl}, we write

F(x1, x2, . . . , xl)

instead of F({x1, x2, . . . , xl}). The most interesting case for us is when X = {x} and
a typical element of F(x) has the form f(x)g(x)−1 where f, g ∈ F[t] and g(x) ̸= 0. If
E = F(x) for some x ∈ E, then E is said to be a simple extension of F.

We proceed at once to determine the structure of simple extensions.
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(11.1.4) Let E = F(x) be a simple extension of a �eld F. Then one of the following must
hold:
(i) f(x) ̸= 0 for all 0 ̸= f ∈ F[t] and E ≃ F{t}, the �eld of rational functions in t over F;
(ii) f(x) = 0 for some monic irreducible polynomial f ∈ F[t] and E ≃ F[t]/(f).

Proof. We assume that F ⊆ E. De�ne a mapping θ : F[t] → E by evaluation at x, i.e.,
θ(f) = f(x). This is a ring homomorphism whose kernel is an ideal of F[t], say I.

Assume �rst that I = 0, i.e., f(x) = 0 implies that f = 0. Then θ can be extended
to a function α : F{t} → E by the rule α( fg ) = f(x)g(x)

−1; this function is also a ring
homomorphism. Notice that α( fg ) = 0 implies that f(x) = 0 and hence f = 0. Therefore
Ker(α) = 0 and F{t} is isomorphic with Im(α), which is a sub�eld of E. Now Im(α)
contains F and x since α(a) = a if a ∈ F and α(t) = x. Because E is a smallest �eld
containing F and x, it follows that E = Im(α) ≃ F{t}.

Now suppose that I ̸= 0. Then F[t]/I is isomorphic with a subring of the �eld E,
so it is a domain and hence I is a prime ideal. Since F[t] is a PID, we can apply (7.2.6)
to get I = (f) where f is a monic irreducible polynomial in F[t]. Thus F[t]/I is a �eld
which is isomorphic with Im(θ), a sub�eld of E containing F and x for reasons given
above. Therefore F[t]/I ≃ Im(θ) = E.

Algebraic elements. Consider a �eld extension E of F and let x ∈ E. There are two
possible forms for the sub�eld F(x), as indicated in (11.1.4). If f(x) ̸= 0 whenever
0 ̸= f ∈ F[t], then F(x) ≃ F{t} and x is said to be transcendent over F.

The other possibility is that x is a root of a monic irreducible polynomial f in F[t].
In this case F(x) ≃ F[t]/(f) and x is said to be algebraic over F. The polynomial f is the
unique monic irreducible polynomial over F which has x as a root: for if g is another
such polynomial, then g ∈ (f) and f | g, so f = g by irreducibility and monicity. We call
f the irreducible polynomial of x over F, in symbols

IrrF(x) :

thus F(x) ≃ F[t]/(IrrF(x)).
Now let f = IrrF(x) have degree n. For any g in F[t]write g = fq+ r where q, r ∈ F[t]

and deg(r) < n, by the Division Algorithm for F[t], (see (7.1.3)). Then g + (f) = r + (f),
which shows that F(x) is generated as an F-vector space by 1, x, x2, . . . , xn−1. In fact
these elements are linearly independent over F. For, if a0 + a1x + ⋅ ⋅ ⋅ + an−1xn−1 = 0
with ai ∈ F, then g(x) = 0 where g = a0 + a1t + ⋅ ⋅ ⋅ + an−1tn−1, and hence f | g. But
deg(g) ≤ n − 1, which can only mean that g = 0 and all the ai are zero. It follows that
the elements 1, x, x2, . . . , xn−1 form an F-basis of the vector space F(x) and hence
(F(x) : F) = n = deg(f).

These conclusions are summarized in:

(11.1.5) Let E = F(x) be a simple �eld extension of F.
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(i) If x is transcendent over F, then E ≃ F{t}.
(ii) If x is algebraic over F, then E ≃ F[t]/(IrrF(x)) and (E : F) = deg(IrrF(x)).

Example (11.1.1) Show that √3 − √2 is algebraic over ℚ, by �nding its irreducible
polynomial and hence the degree (ℚ(√3 − √2) : ℚ).

Put x = √3 − √2. The �rst move is to �nd a rational polynomial with x as a root.
Now x2 = 5 − 2√6, so (x2 − 5)2 = 24 and x4 − 10x2 + 1 = 0. Hence x is a root of
f = t4 − 10t2 + 1 and thus is algebraic over ℚ. If we can show that f is irreducible
overℚ, it will follow that Irrℚ(x) = f and (ℚ(x) : ℚ) = 4.

By Gauss’s Lemma (7.3.7) it is enough to show that f is irreducible over ℤ. Now
clearly f has no integer roots, for ±1 are the only candidates and neither one is a root.
Thus, if f is reducible, there must be a decomposition of the form

f = (t2 + at + b)(t2 + a1t + b1)

where a, b, a1, b1 are integers. On equating coe�cients of 1, t3, t2 on both sides, we
arrive at the equations

bb1 = 1, a + a1 = 0, aa1 + b + b1 = −10.

Hence b = b1 = ±1 and a1 = −a, so that −a2 ± 2 = −10. Since this equation has no
integer solutions, f is irreducible.

Algebraic extensions. Let E be an extension of a �eld F. If every element of E is alge-
braic over F, then E is called an algebraic extension of F. Extensions of �nite degree
are an important source of algebraic extensions.

(11.1.6) An extension E of a �eld F with �nite degree is algebraic.

Proof. Let x ∈ E. By hypothesis E has �nite dimension as a vector space over F, say n;
consequently the set {1, x, x2, . . . , xn} is linearly dependent and there are elements
a0, a1, . . . , an of F, not all zero, such that a0 + a1x + a2x2 + ⋅ ⋅ ⋅ + anxn = 0. Thus x
is a root of the non-zero polynomial a0 + a1t + ⋅ ⋅ ⋅ + an tn and it is therefore algebraic
over F.

The next result is useful in calculations with degrees.

(11.1.7) Let F ⊆ K ⊆ E be successive �eld extensions. If K is �nite over F and E is �nite
over K, then E is �nite over F and (E : F) = (E : K) ⋅ (K : F).

Proof. Let {x1, . . . , xm} be an F-basis of K and {y1, . . . , yn} a K-basis of E. Then each
e ∈ E can be written as e = ∑n

i=1 kiyi where ki ∈ K. Also each ki can be written
ki = ∑m

j=1 fijxj with fij ∈ F. Therefore e = ∑n
i=1∑

m
j=1 fijxjyi and it follows that the

elements xjyi generate the F-vector space E.
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Next assume there is an F-linear relation among the xjyi,

n
∑
i=1

m
∑
j=1
fijxjyi = 0

where fij ∈ F. Then ∑n
i=1(∑

m
j=1 fijxj)yi = 0, so that ∑m

j=1 fijxj = 0 for all i, since the yi
are K-linearly independent. Finally, fij = 0 for all i and j by linear independence of
the xj over F. Consequently the elements xjyi form an F-basis of E and (E : F) = nm =
(E : K) ⋅ (K : F).

Corollary (11.1.8) Let F ⊆ K ⊆ E be successive �eld extensions with E algebraic over K
and K algebraic over F. Then E is algebraic over F.

Proof. Let x ∈ E, so that x is algebraic over K; let its irreducible polynomial be f =
a0 + a1t + ⋅ ⋅ ⋅ + an−1tn−1 + tn where ai ∈ K. Put Ki = F(a0, a1, . . . , ai). Then ai is
algebraic over F and hence over Ki−1. Since Ki = Ki−1(ai), it follows via (11.1.5) that
(Ki : Ki−1) is �nite for i = 0, 1, . . . , n − 1, where K−1 = F. Hence (Kn−1 : F) is �nite
by (11.1.7). Also x is algebraic over Kn−1, so that (Kn−1(x) : Kn−1) is �nite and therefore
(Kn−1(x) : F) is �nite. It follows via (11.1.6) that x is algebraic over F.

Algebraic and transcendental numbers. Next let us consider the complex �eld ℂ as
an extension of the rational �eld ℚ. If x ∈ ℂ is algebraic over ℚ, then x is called an
algebraic number: otherwise x is a transcendental number. Thus the algebraic numbers
are the real and complex numbers which are roots of non-zero rational polynomials.

(11.1.9) The algebraic numbers form a sub�eld of ℂ.

Proof. Let a and b be algebraic numbers. It is su�cient to show that a±b, ab and ab−1

(if b ̸= 0) are algebraic numbers. To see this note that (ℚ(a) : ℚ) is �nite by (11.1.5). Also
ℚ(a, b) = (ℚ(a))(b) is �nite overℚ(a) for the same reason. Therefore (ℚ(a, b) : ℚ) is
�nite by (11.1.7) and henceℚ(a, b) is algebraic overℚ by (11.1.6). The required result
now follows.

The next result shows that not every complex number is an algebraic number.

(11.1.10) There are countably many algebraic numbers, but uncountably many complex
numbers.

Proof. Of course ℂ is uncountable by (1.4.7). To see that there are countably many
algebraic numbers, observe that ℚ[t] is countable since it is a countable union of
countable sets – see Exercise (1.4.5). Also each non-zero polynomial inℚ[t] has �nitely
many roots. It follows that there are only countablymany roots of non-zero polynomials
inℚ[t]: these are precisely the algebraic numbers.
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The existence of transcendental numbers is demonstrated by (11.1.10), but without
giving a single example. Indeed it is a good deal harder to �nd speci�c examples.
The best known transcendental numbers are the numbers π and e. The fact that π is
transcendental underlies the impossibility of “squaring the circle” – for this see (11.2).
A good reference for the transcendence of π, e and many other interesting numbers is
[10].

A sub�eld of ℂ which is a �nite extension ofℚ is called an algebraic number �eld:
the elements of algebraic number �elds constitute all the algebraic numbers. The theory
of algebraic number �elds is very well developed and is one of the most active areas of
algebra.

Exercises (11.1)

(1) Give examples of in�nite �eld extensions ofℚ and ofℤp.

(2) Let a = 2
1
p where p is a prime. Prove that (ℚ(a) : ℚ) = p and that ℚ(a) has only

two sub�elds.
(3) Let n be an arbitrary positive integer. Construct an algebraic number �eld of degree n
overℚ.
(4) Let a be a root of t6 − 4t + 2 ∈ ℚ[t]. Prove that (ℚ(a) : ℚ) = 6.
(5) Let p and q be distinct primes and set F = ℚ(√p,√q). Prove the following state-
ments.

(i) (F : ℚ) = 4;
(ii) F = ℚ(√p + √q);
(iii) the irreducible polynomial of√p + √q overℚ is t4 − 2(p + q)t2 + (p − q)2.

(6) Let K be a �nite extension of a �eld F and let F1 be a sub�eld such that F ⊆ F1 ⊆ K.
Prove that F1 is �nite over F and K is �nite over F1.
(7) Prove that every non-constant element ofℚ{t} is transcendent overℚ.
(8) Let a = 3 1

2 − 2 1
3 . Show that (ℚ(a) : ℚ) = 6 and �nd Irrℚ(a).

(9) Let p be a prime and put a = e2πi/p, a complex primitive pth root of unity. Prove
that Irrℚ(a) = 1 + t + t2 + ⋅ ⋅ ⋅ + tp−1 and (ℚ(a) : ℚ) = p − 1.

11.2 Constructions with ruler and compass

One of themost striking applications of �eld theory is to solve certain famous geometric
problems dating back to classical Greece. Each problem asks whether it is possible
to construct a geometric object using ruler and compass only. Here one has to keep in
mind that to the ancient Greeks only mathematical objects constructed by such means
had any reality, since Greek mathematics was based on geometry. We will describe four
constructional problems and then translate them to �eld theory.
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(i) Duplication of the cube. A cube of side one unit is given. The problem is to construct
a cube with double the volume using ruler and compass. This problem is said to
have arisen when the oracle at Delphi commanded the citizens of Delos to double
the size of the altar to the god Apollo, which had the shape of a cube.

(ii) Squaring the circle. Here the question is whether it is possible to construct, using
ruler and compass, a square whose area equals that of a circle with radius one
unit? This is perhaps the most notorious of the ruler and compass problems. It is
really a question about the nature of the number π.

(iii) Trisection of an angle. Another notorious problemaskswhether it is always possible
to trisect a given angle using ruler and compass.

(iv) Construction of a regular n-gon. Here the problem is to construct by ruler and
compass a regular n-sided plane polygon with side equal to one unit where n ≥ 3.

These problems de�ed the e�orts of mathematicians for more than 2000 years despite
many ingenious attempts to solve them. It was only with the rise of abstract algebra
in the 18th and 19th centuries that it was realized that all four problems had negative
solutions.

Constructibility. Our �rst move must be to formulate precisely what is meant by a
ruler and compass construction. Let S be a set of points in the plane containing the
points O(0, 0) and I(1, 0); note that O and I are one unit apart. A point P in the plane
is said to be constructible from S by ruler and compass if there is a �nite sequence of
points P0, P1, . . . , Pn = P with P0 in S where Pi+1 is obtained from P0, P1, . . . , Pi by
a procedure of the following type:
(i) draw a straight line joining two of P0, P1, . . . , Pi;
(ii) draw a circle with center one of P0, P1, . . . , Pi and radius equal to the distance

between two of these points.
Then Pi+1 is to be a point of intersection of two lines, of a line and a circle or of two
circles, where the lines and circles are as described as in (i) and (ii).

Finally, a real number r is said to be constructible from S if the point (r, 0) is con-
structible from S. The reader will realize that these de�nitions are designed to express
precisely the intuitive idea of a construction by ruler and compass. Each of the four
problems asks whether a certain real number is constructible from some given set of
points. For example, in the problem of duplicating a cube of side 1, take S to be the
set {O, I}: the question is whether 3√2 is constructible from S.

We begin by showing that the real numbers which are constructible from a given
set of points form a �eld: this explains why �eld theory is relevant to constructional
problems.

(11.2.1) Let S be a set of points in the plane containing O(0, 0) and I(1, 0) and let S∗ be
the set of all real numbers constructible from S. Then S∗ is a sub�eld ofℝ. Also√a ∈ S∗

whenever a ∈ S∗ and a > 0.
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Proof. This is entirely elementary plane geometry. Let a, b ∈ S∗; we have �rst to prove
that a ± b, ab and a−1 (if a ̸= 0) belong to S∗. Keep in mind here that by hypothesis a
and b are constructible.

To construct a±b, where say a ≥ b, draw the circle with center A(a, 0) and radius b.
This intersects the x-axis at the points B(a − b, 0) and C(a + b, 0). Hence a + b and
a − b are constructible from S and belong to S∗. (If a < b, the argument is similar.)
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It is a little harder to construct ab. Assume that a ≤ 1 ≤ b: in other cases the
procedure is similar. Let A and B be the points (a, 0) and (b, 0). Mark the point B�(0, b)
on the y-axis; thus |OB�| = |OB|. Draw the line IB� and then draw AC� parallel to IB�

with C� on the y-axis: elementary geometry tells us how to do this. Mark C on the x-axis
so that |OC| = |OC�|.
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By similar triangles |OC�|/|OB�| = |OA|/|OI|; therefore |OC| = |OC�| = |OA| ⋅ |OB�| = ab.
Hence (ab, 0) is constructible and ab ∈ S∗.
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Next we show how to construct a−1 where, say, a > 1. Let A be the point (a, 0)
and mark the point I�(0, 1) on the y-axis. Draw the line IC� parallel to AI� with C� on
the y-axis. Mark C on the x-axis so that |OC| = |OC�|. Then |OC�|/|OI�| = |OI|/|OA|, so
|OC| = |OC�| = a−1. Thus (a−1, 0) is constructible and a−1 ∈ S∗.
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Finally, let a ∈ S∗ where a > 0. We show how to construct the point (√a, 0): it will
then follow that√a ∈ S∗. We can assume that a > 1 – otherwise replace a by a−1. First
mark the point A1(a + 1, 0). Let C be the mid-point of the line segment OA1; thus C is
the point ( a+12 , 0) and it is clear how to construct this. Now draw the semicircle with
center C and radius |OC| = a+1

2 .

O x

y

A1CI

D1

D

Then draw the perpendicular to the x-axis through the point I(1, 0) and let it meet the
semicircle at D1. Mark D on the x-axis so that |OD| = |ID1|. Then

|OD|2 = |ID1|2 = |D1C|2 − |IC|2 = (
a + 1
2 )

2
− (

a − 1
2 )

2
= a.

Hence |OD| = √a and (√a, 0) is constructible.

It is now time to explain the �eld theoretic aspect of constructibility.

(11.2.2) Let S be a set of points in the plane containing O(0, 0) and I(1, 0), and denote
by F the sub�eld ofℝ generated by the coordinates of the points of S. Let a be any real
number. If a is constructible from S, then (F(a) : F) is equal to a power of 2.
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Proof. Let P be the point (a, 0). Since P is constructible from S, there is by de�nition
a sequence of points P0, P1, . . . , Pn = P with P0 ∈ S, where Pi+1 is obtained from P0,
P1, . . . , Pi by intersecting lines and circles as explained above. Let Pi be the point
(ai , bi) and put Ei = F(a1, . . . , ai , b1, . . . , bi) and E0 = F. Then F(a) ⊆ En = E. If Pi+1
is the point of intersection of two lines whose equations have coe�cients in Ei, then
ai+1 and bi+1 are in Ei, as can be seen by solving two linear equations, i.e., Ei = Ei+1.
If Pi+1 is a point of intersection of a line and a circle whose equations have coe�cients
in Ei, then ai+1 is a root of a quadratic equation over Ei. Hence (Ei(ai+1) : Ei) ≤ 2.
Clearly we can solve for bi+1 in terms of ai+1, so bi+1 ∈ Ei(ai+1) and Ei+1 = Ei(ai+1).
Therefore (Ei+1 : Ei) ≤ 2. If Pi+1 is a point of intersection of two circles over Ei, subtract
the equations of the circles (in standard form) to realize Pi+1 as a point of intersection
of a line and a circle. Thus (Ei+1 : Ei) ≤ 2 in all cases and it follows that

(E : F) =
n−1
∏
i=0

(Ei+1 : Ei)

is a power of 2, as is (F(a) : F) since (E : F) = (E : F(a))(F(a) : F) by (11.1.7).

The �rst two ruler and compass problems can now be resolved.

(11.2.3) It is impossible to duplicate a cube of side 1 or to square a circle of radius 1 by
ruler and compass.

Proof. Let S consist of the points O(0, 0) and I(1, 0). In the case of the cube, con-
structibility would imply that (ℚ( 3√2) : ℚ) is a power of 2 by (11.2.2). But (ℚ( 3√2) :
ℚ) = 3 since Irrℚ( 3√2) = t3 − 2, a contradiction.

If it were possible to square the circle,√π would be constructible from S. By (11.2.2)
this implies that (ℚ(√π) : ℚ) is a power of 2, as is (ℚ(π) : ℚ), since (ℚ(π) : ℚ(√π)) ≤ 2.
But in fact π is transcendental overℚ by a famous result of Lindemann¹, so (ℚ(π) : ℚ)
is actually in�nite. Therefore it is impossible to square the circle.

With a little more e�ort we can determine which angles can be trisected.

(11.2.4) An angle α can be trisected by ruler and compass if and only if the polynomial
4t3 − 3t − cos α is reducible over the �eldℚ(cos α).

Proof. In this problem the angle α is given, so we can construct its cosine by drawing a
right angled triangle with angle α and hypotenuse 1. Now let S consist of the points
O, I and (cos α, 0). Let F = ℚ(cos α) and put θ = 1

3α. The problem is to decide if θ, or
equivalently cos θ, is constructible from S. If this is the case, (F(cos θ) : F)must be a
power of 2.

1 Carl Ferdinand von Lindemann (1852–1939).
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Recall the well-known trigonometric identity

cos 3θ = 4 cos3 θ − 3 cos θ.

Hence 4 cos3 θ − 3 cos θ − cos α = 0, so that cos θ is a root of the polynomial f =
4t3 − 3t − cos α ∈ F[t]. If θ is constructible, IrrF(cos α) has degree a power of 2 and
therefore f is reducible.

Conversely, suppose that f is reducible, so that cos θ is a root of a linear or quadratic
polynomial over F; thus cos θ has the form u + v√w where u, v, w ∈ F and w ≥ 0. Since
F ⊆ S∗, it follows from (11.2.1) that√w ∈ S∗. Hence cos θ ∈ S∗ and cos θ is constructible
from S, as required.

Example (11.2.1) The angle π
4 is trisectible by ruler and compass.

Since cos π4 = 1
√2 , the polynomial f in (11.2.4) equals 4t3 − 3t − 1

√2 , which has the
root − 1

√2 inℚ(cos(π/4)) = ℚ(√2). Hence f is reducible. Now apply (11.2.4) to get the
result.

Example (11.2.2) The angle π
3 is not trisectible by ruler and compass.

In this case cos π3 = 1
2 and f = 4t3 − 3t − 1

2 . This polynomial is irreducible over
ℚ(12 ) = ℚ since it has no rational roots. Hence π

3 is not trisectible.

A complete discussion of the problem of constructing a regular n-gon calls for
some Galois theory and is deferred until (12.3).

Exercises (11.2)

(1) Complete the proof that ab ∈ S∗ in (11.2.1) by dealing with the cases 1 ≤ a ≤ b,
and a ≤ b ≤ 1.
(2) A cube of side a can be duplicated if and only if 2a is the cube of a rational number.
(3) Consider the problem of doubling the surface area of a cube of side 1. Can a cube
with double the surface area be constructed by ruler and compass?
(4) Determine which of the following angles are trisectible: (i) π2 ; (ii)

π
6 ; (ii)

π
12 .

(5) Let p be a prime and suppose that a = e2πi/p is constructible fromO(0, 0) and I(1, 0).
Show that p must have the form 22c + 1 for some integer c ≥ 0, i.e., p is a Fermat prime.
(The known Fermat primes occur for 0 ≤ c ≤ 4).

11.3 Finite �elds

It was shown in (8.2.17) that the order of a �nite �eld is always a power of a prime. More
precisely, if F is a �nite �eld of prime characteristic p and (F : ℤp) = n, then |F| = pn.
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Our main purpose in this section is to show that there are �elds with arbitrary prime
power order and that �elds with the same order are isomorphic.

We begin by identifying �nite �elds with the splitting �elds of certain polynomials.
Let F be a �eld of order q = pn where p is a prime, namely the characteristic of F. The
multiplicative group U(F) has order q−1 and Lagrange’s Theorem shows that the order
of every element of U(F) divides q − 1. This means that aq−1 = 1 for every a ̸= 0 in F,
so aq − a = 0. Since the zero element also satis�es the last equation, every element
of F is a root of the polynomial tq − t ∈ ℤp[t]. But tq − t cannot have more than q roots,
so we conclude that the elements of F constitute all the roots of tq − t, so that F is a
splitting �eld of tq − t.

The foregoing discussion suggests that the existence of �nite �elds can be estab-
lished by using splitting �elds, a hope that is borne out by the next result.

(11.3.1) Let q = pn where p is a prime and n > 0. Then:
(i) a splitting �eld of the polynomial tq − t ∈ ℤp[t] has order q;
(ii) if F is any �eld of order q, then F is a splitting �eld of tq − t overℤp.

Proof. We have already proved (ii), so let us consider the assertion (i) and write F for a
splitting �eld of tq − t. De�ne S = {a ∈ F | aq = a}, i.e., the set of roots of tq − t in F. First
we show that S is a sub�eld of F. For this purpose let a, b ∈ S. Recall that p divides (pi )
if 1 ≤ i < p by (2.3.3); therefore the Binomial Theorem for the �eld F takes the form
(a ± b)p = ap ± bp, (see Exercise (6.1.6)). On taking further powers of p, we conclude
that

(a ± b)q = aq ± bq = a ± b,

which shows that a ± b ∈ S. Also (ab)q = aqbq = ab and (a−1)q = (aq)−1 = a−1 if
a ̸= 0, so it follows that ab ∈ S and a−1 ∈ S. Therefore S is a sub�eld of F.

Next the roots of the polynomial tq− t are all di�erent. For (tq− t)� = qtq−1−1 = −1,
so that tq − t and its derivative (tq − t)� are relatively prime; therefore by (7.4.7) the
polynomial tq − t has no repeated roots and it follows that |S| = q. Finally, since F is a
splitting �eld of tq − t, it is generated byℤp and the roots of tq − t. Therefore F = S and
|F| = q.

Our next objective is to show that �elds with the same �nite order are isomorphic.
Since every �nite �eld has been identi�ed as a splitting �eld, our strategy is to prove
the general result that any two splitting �elds of a given polynomial are isomorphic,
plainly a result of independent interest. In proving this we employ a useful lemma
which shows how to extend an isomorphism between two given �elds to extensions of
these �elds.

(11.3.2) Let E = F(x) and E∗ = F∗(x∗) be simple algebraic extensions of �elds F and F∗.
Further assume there is an isomorphism α : F → F∗ such that α(IrrF(x)) = IrrF∗ (x∗).
Then there is an isomorphism θ : E → E∗ such that θ|F = α and θ(x) = x∗.
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In the statement of this result α has been extended in the obvious way to a ring
isomorphism α : F[t] → F∗[t], by the rule α(∑m

i=1 ai ti) = ∑m
i=1 α(ai)ti where ai ∈ F.

Proof of (11.3.2). Put f = IrrF(x) and f∗ = IrrF∗ (x∗); then by hypothesis α(f) = f∗. This
fact permits us to de�ne a mapping

θ0 : F[t]/(f) → F∗[t]/(f∗)

by the rule θ0(g + (f)) = α(g) + (f∗); a simple check shows this to be a well de�ned
isomorphism. Next by (11.1.4) we have F(x) ≃ F[t]/(f) and F∗(x∗) ≃ F∗[t]/(f∗) via
the respective assignments g(x) Ü→ g + (f) and g∗(x∗) Ü→ g∗ + (f∗), (g ∈ F[t], g∗ ∈
F∗[t]). Composition with θ0 yields an isomorphism θ : F(x) → F∗(x∗) where θ(g(x)) =
α(g(x∗)), as indicated in the sequence ofmaps F(x) → F[t]/(f)

θ0→ F∗[t]/(f∗) → F∗(x∗).

The uniqueness of splitting �elds is a special case of the next result.

(11.3.3) Let α : F → F∗ be an isomorphism of �elds, and let f ∈ F[t] and f∗ = α(f) ∈
F∗[t]. If E and E∗ are splitting �elds of f and f∗ respectively, there is an isomorphism
θ : E → E∗ such that θ|F = α.

Proof. Argue by induction on n = deg(f). If n = 1, then E = F, E∗ = F∗ and θ = α.
Assume that n > 1. Let a be a root of f in E and put g = IrrF(a). Choose any root a∗

of g∗ = α(g) ∈ F∗[t]. Then g∗ = IrrF∗ (a∗). By (11.3.2) we can extend α to an isomorphism
θ1 : F(a) → F∗(a∗) such that θ1|F = α and θ1(a) = a∗.

Now regard E and E∗ as splitting �elds of the polynomials f/(t − a) and f∗/(t − a∗)
over F(a) and F∗(a∗) respectively. By induction on n we can extend θ1 to an isomor-
phism θ : E → E∗; furthermore θ|F = θ1|F = α, as required.

Corollary (11.3.4) Let f be a non-constant polynomial over a �eld F. Then up to isomor-
phism f has a unique splitting �eld.

This follows from (11.3.3) by taking F = F∗ and α to be the identity map. Since a
�nite �eld of order q is a splitting �eld of tq − t, we deduce from (11.3.4) the fundamental
theorem:

(11.3.5) (E.H. Moore²) Finite �elds of the same order are isomorphic.

It is customary to write
GF(q)

for the unique �eld of order q: here “GF” stands for Galois �eld.

2 Eliakim Hastings Moore (1862–1932)
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It is a very important fact about �nite �elds that their multiplicative groups are
cyclic. Somewhat more generally we prove:

(11.3.6) If F is any �eld, every �nite subgroup of its multiplicative group U(F) is cyclic. If
F has �nite order q, then U(F) is a cyclic group of order q − 1.

Proof. Let X be a �nite subgroup of U(F). Then X is a �nite abelian group, so by
the Primary Decomposition Theorem (9.2.3), X = P1 × P2 × ⋅ ⋅ ⋅ × Pk where Pi is a
�nite pi-group and p1, p2, . . . , pk are di�erent primes. Choose an element xi of Pi
with maximum order, say pℓii , and put x = x1x2 ⋅ ⋅ ⋅ xk. Now xm = xm1 x

m
2 ⋅ ⋅ ⋅ xmk and,

since X is the direct product of the Pi, it follows that xm = 1 if and only if xmi = 1,
i.e., pℓii divides m for all i. Consequently x has order d = pℓ11 p

ℓ2
2 ⋅ ⋅ ⋅ pℓkk and |X| ≥

|x| = d.
Next let y be any element of X and write y = y1y2 ⋅ ⋅ ⋅ yk with yi ∈ Pi. Then y

pℓii
i = 1

since pℓii is the largest order of an element of Pi. Therefore ydi = 1 for all i and yd = 1.
It follows that every element of X is a root of the polynomial td − 1 and hence |X| ≤ d.
Therefore |X| = d = |⟨x⟩| and X = ⟨x⟩.

This result provides another way to represent the elements of a �eld F of order q.
If U(F) = ⟨a⟩, then F = {0, 1, a, a2, . . . , aq−2}where aq−1 = 1. This representation is
useful for computational purposes.

Corollary (11.3.7) Every �nite �eld F is a simple extension of its prime sub�eld.

For if U(F) = ⟨a⟩, then clearly F = ℤp(a) where p is the characteristic of F.

Example (11.3.1) Let F = GF(27) be the Galois �eld of order 27. Exhibit F as a simple
extension of GF(3) and �nd a generator of U(F).

The �eld F may be realized as the splitting �eld of the polynomial t27 − t, but it
is simpler to choose an irreducible polynomial of degree 3 over GF(3), for example
f = t3 − t + 1. Then F = (GF(3)[t])/(f) is a �eld of order 33, which by (11.3.5) must
be GF(27). Put x = t + (f). Then, because f has degree 3, each element b of F has the
unique form b = a0 + a1t + a2t2 + (f), i.e., b = a0 + a1x + a2x2. Thus F = GF(3)(x) and
IrrGF(3)(x) = f = t3 − t + 1.

Next we argue that U(F) = ⟨x⟩. Since |U(F)| = 26, it is enough to prove that |x| = 26.
Certainly |x|divides 26, so it su�ces to show that x2 ̸= 1and x13 ̸= 1. The �rst statement
is true because f ∤ t2 − 1. To show that x13 ̸= 1, use the relation x3 = x − 1 to compute
x12 = (x − 1)4 = x2 + 2; thus x13 = −1 ̸= 1.

Exercises (11.3)

(1) Let F be a �eld of order pm where p is a prime, and let K a sub�eld of F. Prove that
|K| = pd where d divides m.
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(2) If F is a �eld of order pm and d is a positive divisor of m, show that F has exactly
one sub�eld of order pd.
(3) Find an element of order 7 in the multiplicative group ofℤ2[t]/(t3 + t + 1) ≃ GF(8).
(4) Find elements of order 3, 5 and 15 in the multiplicative group ofℤ2[t]/(t4 + t +1) ≃
GF(16).
(5) Prove that tpn − t ∈ GF(p)[t] is the product of the distinct monic irreducible polyno-
mials with degrees dividing n.
(6) Letψ(n) denote the number ofmonic irreducible polynomials of degree n in GF(p)[t]
where p is a �xed prime.

(i) Prove that pn = ∑d|n dψ(d) where the sum is over all positive divisors d of n.
(ii) Deduce that ψ(n) = 1

n ∑d|n µ(d)pn/d where µ is the Möbius³ function, which is
de�ned as follows: µ(1) = 1, µ(n) equals (−1)r where r is the number of distinct
prime divisors of n if n is square-free, and µ(n) = 0 otherwise. [You will need
the Möbius Inversion Formula: if f(n) = ∑d|n g(d), then g(n) = ∑d|n µ(d)f(n/d).
For an account of the Möbius function see (12.2) below].

(7) Find all monic irreducible polynomials over GF(2)with degrees 2, 3, 4 and 5, using
Exercise (11.3.6) to check your answer.

11.4 Latin squares and Steiner triple systems

In this section we will describe two applications of �nite �elds to combinatorics, which
demonstrate the e�cacy of algebraic methods in solving di�cult combinatorial prob-
lems.

Latin squares. A latin square of order n is an n × n matrix with entries from a set of n
symbols such that each symbol occurs exactly once in each row and exactly once in
each column. Examples of latin squares are easily found.

Example (11.4.1)

(i) The matrices [a b
b a

] and [[

[

a b c
b c a
c a b

]]

]

are latin squares of orders 2 and 3 respec-

tively.
(ii) Let G = {g1, g2, . . . , gn} be a (multiplicatively written) group of order n. Then the
multiplication table of G is a latin square of order n. For, if the �rst row is g1, g2, . . . , gn,
the entries of the ith row are gig1, gig2, . . . , gign, which are clearly all di�erent. A
similar argument applies to the columns. On the other hand, not every latin square

3 August Ferdinand Möbius (1790–1868)
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determines a group table since the associative law may not hold. In fact a latin square
determines a more general algebraic structure called a quasigroup – for this concept
see Exercises (11.4.4) and (11.4.5) below. Latin squares frequently occur in puzzles, but
they also have a serious use in the design of statistical experiments. Here is an an
example to illustrate this use.

Example (11.4.2) Five types of washing powder P1, P2, P3, P4, P5 are to be tested in
�ve machines A, B, C, D, E over �ve days D1, D2, D3, D4, D5. Each washing powder is
to be used once each day and tested once on each machine. How can this be done?

Here the intention is to allow for di�erences in the machines and in the water
supply on di�erent days, while keeping the number of tests to a minimum. A schedule
of tests can be given in the form of a latin square of order 5 whose rows correspond to
the washing powders and whose columns correspond to the days; the symbols are the
machines. For example, we could use the latin square

[[[[[[

[

A B C D E
B C D E A
C D E A B
D E A B C
E A B C D

]]]]]]

]

.

This would mean, for example, that washing powder P3 will be used on day D4 in
machine A. There are of course many other possible schedules.

The number of latin squares. Let L(n) denote the number of latin squares of order n
which can be formed from a given set of n symbols. It is clear that L(n)must increase
rapidly with n. A rough upper bound for L(n) can be found by counting derangements.

(11.4.1) The number L(n) of latin squares of order n that can be formed from n given
symbols satis�es the inequality

L(n) ≤ (n!)n(1 −
1
1!

+
1
2!

− ⋅ ⋅ ⋅ +
(−1)n

n! )
n−1

,

and hence L(n) = O((n!)n/en−1).

Proof. Taking the symbols to be 1, 2, . . . , n, we note that each row of a latin square
of order n corresponds to a permutation of {1, 2, . . . , n}, i.e., to an element of the
symmetric group Sn. Thus there are n! choices for the �rst row. Now rows 2 through n
must be derangements of row 1 since no column can have a repeated element. Recall
from (3.1.11) that the number of derangements of n symbols is

dn = n!(1 −
1
1!

+
1
2!

− ⋅ ⋅ ⋅ +
(−1)n

n! ).

Hence rows 2 through n of the latin square can be chosen in at most (dn)n−1 ways.
Therefore L(n) ≤ (n!)(dn)n−1 and the result follows.
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It can be shown that L(n) ≥ (n!)2n
nn2

– for details see [2].

Orthogonal latin squares. Suppose that A = [aij] and B = [bij] are two latin squares
of order n. Then A and B are calledmutually orthogonal latin squares (or MOLS) if the n2

ordered pairs (aij , bij) are all di�erent.

Example (11.4.3) The latin squares

[[

[

a b c
b c a
c a b

]]

]

and [[

[

α β ã
ã α β
β ã α

]]

]

are mutually orthogonal, as can be seen by listing the nine pairs of entries. On the
other hand, there are no pairs of MOLS of order 2 since these would have to be of the
form

[
a b
b a

] , [
a� b�

b� a�
]

and the pair (a, a�) is repeated.
One reason for the interest in mutually orthogonal latin squares is that they have

statistical applications, as can be seen from an elaboration of the washing powder
example.

Example (11.4.4) Suppose that in Example (11.4.2) there are also �ve washing machine
operators α, β, ã, δ, ε. Each operator is to test each powder once and to carry out one
test per day. In addition, for reasons of economy, we do not want to repeat the same
combination of machine and operator for any powder and day.

What is required here is a pair of MOLS of order 5. A latin square with the schedule
of machines was given in Example (11.4.2). By a little experimentation another latin
square for the machines can be found such that the pair are mutually orthogonal. The
pair of MOLS is

[[[[[[

[

A B C D E
B C D E A
C D E A B
D E A B C
E A B C D

]]]]]]

]

,
[[[[[[

[

α β ã δ ϵ
ã δ ϵ α β
ϵ α β ã δ
β ã δ ϵ α
δ ϵ α β ã

]]]]]]

]

.

Direct enumeration of the 25 pairs of entries from the two latin squares reveals that all
are di�erent. The two latin squares tell us the schedule of operations: thus, for example,
powder P3 is to be tested on day D4 by operator ã in machine A.

We are interested in determining the maximum number of MOLS of order n, say

f(n).
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In the �rst place there is an easy upper bound for f(n).

(11.4.2) If n ≥ 1, then f(n) ≤ n − 1.

Proof. Assume that there exist r MOLS of order n, namely A1, A2, . . . , Ar, and let the
(1, 1) entry of Ai be ai. Consider row 2 of A1. It has an a1 in the (2, i1) position for
some i1 ̸= 1 since there is already an a1 in the �rst column. Hence there are n − 1
possibilities for i1. Next in A2 there is an a2 in row 2, say as the (2, i2) entry where
i2 ̸= 1; also i2 ̸= i1 since the pair (a1, a2) has already occurred and cannot be repeated.
Therefore there are n −2 possibilities for i2. Continuing this line of argument until Ar is
reached, we conclude that ar is the (2, ir) entry of Ar where there are n − r possibilities
for ir. Therefore n − r > 0 and r ≤ n − 1, as required.

The question to be addressed is whether f(n) > 1 for n > 2; note that f(2) = 1 since,
as already observed, there cannot exist two MOLS of order 2.

The intervention of �eld theory. The mere existence of �nite �elds of every prime
power order is enough to make a decisive advance in the construction of MOLS of prime
power order.

(11.4.3) Let p be a prime and m a positive integer. Then f(pm) = pm − 1.

Proof. Let F be a �eld of order pm, which exists by (11.3.1). For each a ̸= 0 in F de�ne
a pm × pm matrix A(a) over F with rows and columns labelled by the elements of F,
written in some �xed order: the (u, v) entry of A(a) is to be computed from the formula

[A(a)]u,v = ua + v

where u, v ∈ F. In the �rst place A(a) is a latin square of order pm. For ua + v = u�a + v
implies that ua = u�a and u = u� since 0 ̸= a ∈ F. Also ua + v = ua + v� implies that
v = v�.

Next we show that A(a)’s are mutually orthogonal. Suppose that A(a1) and A(a2)
are not orthogonal where a1 ̸= a2: then

(ua1 + v, ua2 + v) = (u�a1 + v�, u�a2 + v�)

for some u, v, u�, v� ∈ F. Then ua1 + v = u�a1 + v� and ua2 + v = u�a2 + v�. Subtraction
of the second equation from the �rst leads to u(a1 −a2) = u�(a1 −a2). Since a1 −a2 ̸= 0
and F is a �eld, it follows that u = u� and hence v = v�. Thus we have constructed
pm−1MOLSof order pm, which is themaximumnumber permitted by (11.4.2). Therefore
f(pm) = pm − 1.

Example (11.4.5) Construct three MOLS of order 4.
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In the �rst place f(4) = 3. To construct three MOLS, start with a �eld F of order 4,
obtained from t2 + t + 1, the unique irreducible polynomial of degree 2 in ℤ2[t]. If a
is a root of this polynomial, F = {0, 1, a, 1 + a}where a2 = a + 1. Now form the three
MOLS A(1), A(a), A(1 + a), using the formula indicated in the proof of (11.4.3): thus

A(1) =
[[[[

[

0 1 a 1 + a
1 0 1 + a a
a 1 + a 0 1

1 + a a 1 0

]]]]

]

,

A(a) =
[[[[

[

0 1 a 1 + a
a 1 + a 0 1

1 + a a 1 0
1 0 1 + a a

]]]]

]

,

A(1 + a) =
[[[[

[

0 1 a 1 + a
1 + a a 1 0
1 0 1 + a a
a 1 + a 0 1

]]]]

]

.

To construct MOLS whose order is not a prime power, a direct product construction
can be used. Let A and B be latin squares of orders m and n respectively. The direct
product A × B is de�ned to be the mn × mn matrix whose entries are pairs of elements
(aij , bi� j� ). The matrix can be visualized in the block form

[[[[[

[

(a11, B) (a12, B) . . . (a1m , B)
(a21, B) (a22, B) . . . (a2m , B)

...
...

...
...

(am1, B) (am2, B) . . . (amm , B)

]]]]]

]

where (aij , B)means that aij is paired with each entry of B in the natural matrix order.
It is easy to see that A × B is a latin square of order mn.

Example (11.4.6) Given latin squares A = [
a b
b a

] and B = [[

[

α β ã
β ã α
ã α β

]]

]

, we can form

A × B =

[[[[[[[[[

[

(a, α) (a, β) (a, ã) (b, α) (b, β) (b, ã)
(a, β) (a, ã) (a, α) (b, β) (b, ã) (b, α)
(a, ã) (a, α) (a, β) (b, ã) (b, α) (b, β)
(b, α) (b, β) (b, ã) (a, α) (a, β) (a, ã)
(b, β) (b, ã) (b, α) (a, β) (a, ã) (a, α)
(b, ã) (b, α) (b, β) (a, ã) (a, α) (a, β)

]]]]]]]]]

]

,

which is a latin square of order 6.
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Suppose that we have MOLS A1, A2, . . . , Ar of order m and B1, B2, . . . , Bs of
order n where r ≤ s; then the latin squares A1 ×B1, A2 ×B2, . . . , Ar ×Br have ordermn
and they are mutually orthogonal, as a check of the entry pairs shows. On the basis of
this observation we can state:

(11.4.4) If n = n1n2, then f(n) ≥ min{f(n1), f(n2)}.

This result can be used to give further information about the integer f(n). Let
n = pe11 p

e2
2 ⋅ ⋅ ⋅ pekk be the primary decomposition of n. Then

f(n) ≥ min{peii − 1 | i = 1, 2, . . . , k}

by (11.4.3) and (11.4.4). Therefore f(n) > 1 provided that peii ̸= 2 for all i. This will be
the case if either n is odd or it is divisible by 4, i.e., n ̸≡ 2 (mod 4). Hence we have:

(11.4.5) If n ̸≡ 2 (mod 4), then f(n) > 1, so there exist at least two mutually orthogonal
latin squares of order n.

In 1782 Euler conjectured that the converse is true, i.e. if n ≡ 2 (mod 4), there
cannot be a pair of n × n MOLS. As evidence for this, in 1900 Tarry⁴ was able to con�rm
that there does not exist a pair of 6 × 6 MOLS; thus f(6) = 1. However, in the end it
turned out that Euler waswrong; for in a remarkable work Bose, Shrikhande and Parker
were able to prove that there is a pair of n × n MOLS for all even integers n ̸= 2, 6.

The case n = 6 is Euler’s celebrated Problem of the Thirty Six O�cers. Suppose
there are thirty six o�cers of six ranks and six regiments, with six of each regiment
and six of each rank. Euler asked if it is possible for the o�cers to march in six rows of
six, so that in each row and in each column there is exactly one o�cer of each rank and
one of each regiment, with no combination of rank and regiment being repeated. Euler
was really asking if there are two mutually orthogonal latin squares of order 6, the
symbols of the �rst latin square being the ranks and those of the second the regiments
of the o�cers. By Tarry’s result the answer is negative.

Steiner triple systems. Another striking use of �nite �elds is to construct combina-
torial objects known as Steiner⁵ triple systems. We begin with a brief explanation of
these. A Steiner triple system of order n is a pair (X, T)where X is a set with n elements,
called the points, and T is a set of 3-element subsets of X, called the triples, such that
every pair of points occurs in exactly one triple. Steiner triple systems belong to a wide
class of combinatorial objects called designs which are frequently used in statistics.

Example (11.4.7) A Steiner system of order 7.

4 Gaston Tarry (1843–1913)
5 Jakob Steiner (1796–1863).
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Consider the diagram consisting of a triangle with the three medians drawn. Let X
be the set of seven points consisting of the vertices, the midpoints of the sides and the
centroid, labelled A, B, C, D, E, F, G. Let the triples be the sets of three points lying on
each line and on the circle DEF. Thus

T = {ADB, BEC, CFA, AGE, BGF, CGD, DEF},

where, for example, we have written ADF for the triple {A, D, F}. It is clear from the
diagram that each pair of points belongs to a unique triple.

B C

A

D F

E

G

In fact this con�guration is well known as the projective plane over ℤ2 with seven
points and seven lines.

We will consider the question: for which positive integers n do there exist Steiner
triple systems of order n? It is quite easy to derive necessary conditions on n; these will
follow from the next result.

(11.4.6) Suppose that (X, T) is a Steiner triple system of order n. Then:
(i) each point belongs to exactly n−1

2 triples;
(ii) the number of triples is n(n−1)

6 .

Proof. (i) Let x, y ∈ X with x �xed. The idea behind the proof is to count in two di�erent
ways the pairs (y, T) such that y ∈ T, y ̸= x, T ∈ T. There are n − 1 choices for y; then,
once y has been chosen, there is a unique T ∈ T containing x and y, so the number of
such pairs is n − 1. On the other hand, let r denote the number of triples in T to which
x belongs. Once a T ∈ T containing x has been chosen, there are two choices for y in T.
Thus the number of pairs is 2r. Therefore 2r = n − 1 and r = n−1

2 .
(ii) In a similar vein we count in two di�erent ways the pairs (x, T) such that x ∈ T and
T ∈ T. If t is the total number of triples, the number of pairs is 3t since there are three
choices for x in T. On the other hand, we may also choose x in n ways and a triple T
containing x in n−1

2 ways by (i). Therefore 3t = n(n−1)
2 and t = 1

6n(n − 1).

From this result we deduce a necessary condition on n for a Steiner triple system
of order n to exist.

Corollary (11.4.7) If a Steiner triple system of order n exists, then n ≡ 1 or 3 (mod 6).
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Proof. In the �rst place n−1
2 must be an integer, so n is odd. Thuswe canwrite n = 6k+ℓ

where ℓ = 1, 3 or 5. If ℓ = 5, then 1
6n(n −1) =

1
3 (6k +5)(3k +2), which is not an integer.

Hence l = 1 or 3 and n ≡ 1 or 3 (mod 6).

The fundamental theorem on Steiner triple systems asserts that the converse of
(11.4.7) is true. If n ≡ 1 or 3 (mod 6), there is a Steiner triple system of order n. We will
prove a special case of this theorem to illustrate how �eld theory can be applied.

(11.4.8) If q is a prime power such that q ≡ 1 (mod 6), there is a Steiner triple system of
order q.

Proof. Let F be a �nite �eld of order q. Recall from (11.3.6) that U(F) is a cyclic group of
order q − 1. Since 6 | q − 1 by hypothesis, it follows from (4.1.6) that U(F) contains an
element z of order 6. Thus |U(F) : ⟨z⟩| = q−1

6 . Choose a transversal to ⟨z⟩ in U(F), say
{t1, t2, . . . , t q−1

6
}. Now de�ne subsets

Ti = {0, ti , tiz}

for i = 1, 2, . . . , q−16 .
The points of the Steiner triple system are to be the elements of the �eld F, while

the set of triples is designated as

T = {a + Ti | a ∈ F, i = 1, 2, . . . , q − 1
6 }.

Here a + Ti denotes the set {a + x | x ∈ Ti}. We claim that (X, T) is a Steiner triple
system. First we make an observation. Let Di denote the set of di�erences of pairs
of elements in Ti; thus Di = {0, ±ti , ±tiz, ±ti(1 − z)}. Now z has order 6 and 0 =
z6 − 1 = (z3 − 1)(z + 1)(z2 − z + 1), so that z2 − z + 1 = 0 and z2 = z − 1. Hence
z3 = −1, z4 = −z, z5 = 1 − z. From these equations it follows that Di is simply the coset
ti⟨z⟩ = {tizk | 0 ≤ k ≤ 5} with 0 adjoined.

To show that (X, T) is a Steiner triple system, we need to prove that any two distinct
elements x and y of F belong to a unique triple a + Ti. Let f = x − y ∈ U(F). Now
f belongs to a unique coset ti⟨z⟩, and by the observation above f ∈ Di, so that f is
expressible as the di�erence between two elements in the set Ti, say f = ui − vi. Writing
a = y − vi, we have x = f + y = (y − vi) + ui ∈ a + Ti and y = (y − vi) + vi ∈ a + Ti.

Now suppose that x and y belong to another triple b + Tj, with x = b + dj and
y = b + ej where dj , ej ∈ Tj. Then 0 ̸= f = x − y = dj − ej and hence f ∈ Dj. Thus
f ∈ tj⟨z⟩, which means that j = i. Also there is clearly only one way to write f as the
di�erence between two elements of Ti. Therefore di = ui and ei = vi, from which it
follows that a = y − vi = y − ei = b. The proof is now complete.

The construction just described produces Steiner triple systems of order 7, 13, 19,
25. Trivially there are Steiner triple systems of orders 1 and 3. In addition there are no
Steiner systems of orders 2, 4, 5, 6, 8, 10, 11, 12 by (11.4.7). In Exercise (11.4.6) below
it is indicated how to construct a Steiner triple system of order 9.
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Exercises (11.4)

(1) Show L(1) = 1, L(2) = 2, L(3) = 12.
(2) Explain how to construct the following objects: (i) four 5 × 5 MOLS; (ii) eight 9 × 9
MOLS.
(3) Show that there are at least 48 MOLS of order 6125.
(4) A quasigroup is a set Q together with a binary operation (x, y) Ü→ xy such that, given
x, y ∈ Q, there is a unique u ∈ Q such that ux = y and a unique v ∈ Q such that xv = y.
Prove that the multiplication table of a �nite quasigroup is a latin square.
(5) Conversely, prove that every latin square determines a �nite quasigroup.
(6) Construct a Steiner triple system of order 9 by using the following geometric proce-
dure. Start with a 3 × 3 array of 9 points. Draw all horizontals, verticals and diagonals
in the �gure. Then draw four curves connecting exterior points.
(7) (Kirkman’s⁶ schoolgirl problem) Show that it is possible for nine schoolgirls to walk
in three groups of three for four successive days in such a way that each pair of girls
walks together on exactly one day.
(8) Let n be a positive integer such that n ≡ 3 (mod 6). Assuming the existence of
Steiner triple systems of order n, generalize the preceding problem by showing that it
is possible for n schoolgirls to walk in n

3 groups of three on n−1
2 days without two girls

walking together on more than one day.
(9) Use the method of (11.4.8) to construct a Steiner triple system of order 13.
(10) Construct a Steiner triple system of order 25 by starting with the �eld ℤ5[t]/
(t2 − t + 1). [Note that a root of t2 − t + 1 has order 6].

6 Thomas Penyngton Kirkman (1806–1895)



12 Galois Theory

In this chapter the Galois group of a �eld extension is introduced. This establishes
the critical link between �eld theory and group theory in which sub�elds correspond
to subgroups of the Galois group. A major application is to the classical problem of
solving polynomial equations by radicals, which is an excellent illustration of the rich
rewards that can be reapedwhen connections aremadebetweendi�erentmathematical
theories.

12.1 Normal and separable extensions

We begin by introducing two special types of �eld extension, leading up to the concept
of a Galois extension. Let E be an extension of a �eld F with F ⊆ E. Then E is said to be
normal over F if it is algebraic over F and if every irreducible polynomial in F[t] having
a root in E has all its roots in E; thus the polynomial is a product of linear factors over E.

Example (12.1.1) Consider the �eld E = ℚ(a) where a = 21/3. Then E is algebraic
overℚ since (E : ℚ) is �nite, but it is not normal overℚ. This is because t3 − 2 has one
root a in E but not the complex roots aω, aω2 where ω = e2πi/3.

Example (12.1.2) Let E be an extension of a �eld F with (E : F) = 2. Then E is normal
over F.

In the �rst place E is algebraic over F. Suppose that x ∈ E is a root of some monic
irreducible polynomial f ∈ F[t]. Then f = IrrF(x) and deg(f) = (F(x) : F) ≤ (E : F) = 2,
which means that deg(f) = 1 or 2. In the �rst case x is the only root of f . Suppose
that deg(f) = 2 with say f = t2 + at + b and a, b ∈ F; if x� is another root of f , then
xx� = b ∈ F, so that x� ∈ E. Therefore E is normal over F.

That there is a close connection between normal extensions and splitting �elds of
polynomials is demonstrated by the following fundamental result.

(12.1.1) Let E be a �nite extension of a �eld F. Then E is normal over F if and only if E is
the splitting �eld of some polynomial in F[t].

Proof. First of all assume that E is normal over F. Since (E : F) is �nite, we can write
E = F(x1, x2, . . . , xk). Let fi = IrrF(xi). Now fi has the root xi in E, so by normality of
the extension all roots of fi are in E. Put f = f1f2 ⋅ ⋅ ⋅ fk ∈ F[t]. Then f has all its roots in
E and these roots with F generate the �eld E. Hence E is the splitting �eld of f .

The converse is harder to prove. Suppose that E is the splitting �eld of some f ∈ F[t],
and denote the roots of f by a1, a2, . . . , ar, so that E = F(a1, a2, . . . , ar). Let g be an
irreducible polynomial over F with a root b in E. Furthermore let K be the splitting �eld
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of g over E. Then F ⊆ E ⊆ K. Let b∗ ∈ K be another root of g. Our task is to show that
b∗ ∈ E.

Since g = IrrF(b) = IrrF(b∗), there is an isomorphism θ0 : F(b) → F(b∗) such
that θ0(b) = b∗ and θ0|F is the identity map: here we have applied (11.3.2). Put g1 =
IrrF(b)(a1) and note that g1 divides f over F(b) since f(a1) = 0. Now consider g∗1 =
θ0(g1) ∈ F(b∗)[t]. Then g∗1 divides θ0(f) = f over F(b∗). Hence the roots of g∗1 are
among a1, a2, . . . , ar.

Let ai1 be any root of g∗1. By (11.3.2) once again, there is an isomorphism θ1 :
F(b, a1) → F(b∗, ai1 ) such that θ1(a1) = ai1 and (θ1)|F(b) = θ0. Next write g2 =
IrrF(b,a1)(a2) and g∗2 = θ1(g2). The roots of g∗2 are among a1, a2, . . . , ar, by the ar-
gument used above. Let ai2 be any root of g∗2. Now extend θ1 to an isomorphism
θ2 : F(b, a1, a2) → F(b∗, ai1 , ai2 ) such that θ2(a2) = ai2 and (θ2)|F(b,a1) = θ1.

After r applications of this argument we will have an isomorphism

θ : F(b, a1, a2, . . . , ar) → F(b∗, ai1 , ai2 , . . . , air )

such that θ(aj) = aij , θ(b) = b∗ and θ|F is the identity map. But b ∈ E = F(a1, a2, . . . ,
ar) by hypothesis, so b∗ = θ(b) ∈ F(ai1 , ai2 , . . . , air ) ⊆ E, as required.

Separable polynomials. Contrary to what one might �rst think, it is possible for an ir-
reducible polynomial to have repeated roots. This phenomenon is called inseparability.

Example (12.1.3) Let p be a prime and let f denote the polynomial tp − x in ℤp{x}[t]:
here x and t are distinct indeterminates and ℤp{x} is the �eld of rational functions
in x overℤp. Then f is irreducible overℤp[x] by (7.4.9) since x is clearly an irreducible
element ofℤp[x]. Gauss’s Lemma (7.3.7) shows that f is irreducible overℤp{x}. Let a
be a root of f in its splitting �eld. Then f = tp − ap = (t − a)p since (pi ) ≡ 0 (mod p) if
0 < i < p. It follows that f has all its roots equal to a.

An irreducible polynomial f over a �eld F is said to be separable if all its roots are
di�erent, i.e., f is a product of distinct linear factors over its splitting �eld. The example
above shows that tp − x is inseparable overℤp{x}, a �eld with prime characteristic. The
criterion which follows shows that the phenomenon of inseparability can only occur
for �elds of prime characteristic.

(12.1.2) Let f be an irreducible polynomial over a �eld F.
(i) If char(F) = 0, then f is separable.
(ii) If char(F) = p > 0, then f is inseparable if and only if f = g(tp) for some irreducible

polynomial g over F.

Proof. There is no loss in supposing f to be monic. Assume �rst that char(F) = 0
and let a be a root of f in its splitting �eld. If a has multiplicity greater than 1, then
(7.4.7) shows that t − a | f � where f � is the derivative of f . Thus f �(a) = 0. Writing
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f = a0 + a1t + ⋅ ⋅ ⋅ + an tn, we have f � = a1 + 2a2t + ⋅ ⋅ ⋅ + nan tn−1. But f = IrrF(a), so
f divides f �. Since deg(f �) < deg(f), this can only mean that f � = 0, i.e., iai = 0 for
all i > 0 and so ai = 0. Thus f is constant, which is impossible. Therefore a is not a
repeated root and f is separable.

Now assume that char(F) = p > 0 and again let a be a multiple root of f . Arguing
as before, we conclude that iai = 0 for i > 0. In this case all we can deduce is that
ai = 0 if p does not divide i. Hence

f = a0 + ap tp + a2p t2p + ⋅ ⋅ ⋅ + arp trp

where rp is the largest positive multiple of p not exceeding n. It follows that f = g(tp)
where g = a0 + ap t + ⋅ ⋅ ⋅ + arp tr. Notice that g is irreducible since if it were reducible,
so would f be.

Conversely, assume that f = g(tp) where g = ∑r
i=0 ai ti ∈ F[t]. We claim that f

is inseparable. Let bi be a root of tp − ai in the splitting �eld E of the polynomial
(tp − a1)(tp − a2) ⋅ ⋅ ⋅ (tp − ar). Then ai = bpi and hence

f =
r
∑
i=0
ai tip =

r
∑
i=0
bpi t

ip = (
r
∑
i=0
bi ti)

p
,

from which it follows that every root of f has multiplicity at least p. Hence f is insepa-
rable.

Separable extensions. Let E be an extension of a �eld F. An element x of E is said
to be separable over F if x is algebraic and its multiplicity as a root of IrrF(x) is 1. If
x is algebraic but inseparable, the �nal argument of the proof of (12.1.2) shows that
its irreducible polynomial is a prime power of a polynomial, so that all its roots have
multiplicity greater then 1. Therefore x ∈ E is separable over F if and only if IrrF(x) is a
separable polynomial.

If every element of E is separable over F, then E is called a separable extension
of F. Finally, a �eld F is said to be perfect if every algebraic extension of F is separable.
Since any irreducible polynomial over a �eld of characteristic 0 is separable, all �elds of
characteristic 0 are perfect. There is a simple criterion for a �eld of prime characteristic
to be perfect.

(12.1.3) Let F be a �eld of prime characteristic p. Then F is perfect if and only if F = Fp

where Fp is the sub�eld {ap | a ∈ F}.

Proof. In the �rst place Fp is a sub�eld of F since (a ± b)p = ap ± bp , (a−1)p = (ap)−1

and (ab)p = apbp for a, b ∈ F. Now assume that F = Fp. If f ∈ F[t] is irreducible but
inseparable, then f = g(tp) for some g ∈ F[t] by (12.1.2). Let g = ∑r

i=0 ai ti; then ai = b
p
i

for some bi ∈ F since F = Fp. Therefore f = ∑r
i=0 ai tpi = ∑r

i=0 b
p
i t
pi = (∑r

i=0 bi ti)p,
which is impossible since f is irreducible. Thus f is separable. This shows that if E is
an algebraic extension of F, then it is separable. Hence F is a perfect �eld.
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Conversely, assume that F ̸= Fp and choose a ∈ F − Fp. Consider the polynomial
f = tp −a. First we claim that f is irreducible over F. Suppose this is false, so that f = gh
where g and h in F[t] are monic with smaller degrees than f . Now f = tp − a = (t − b)p

where b is a root of f in its splitting �eld, so it follows that g = (t − b)i and h = (t − b)j

where i + j = p and 0 < i, j < p. Since gcd{i, p} = 1, we can write 1 = iu + pv for
suitable integers u, v. Therefore b = (bi)u(bp)v = (bi)uav ∈ F since bi ∈ F, and hence
a = bp ∈ Fp, a contradiction. Thus f is irreducible and by (12.1.2) it is inseparable. It
follows that F cannot be a perfect �eld.

(12.1.4) Every �nite �eld is perfect.

Proof. Let F be a �eld of order pm with p a prime. Every element f of F satis�es the
equation tpm − t = 0 by (11.3.1). Hence F = Fp and F is perfect.

On the other hand, the �eld F = ℤp{t} is not perfect because Fp = ℤp{tp} is a
proper sub�eld of F.

It is desirable to have a practical criterion for a �nite extension of prime character-
istic to be separable.

(12.1.5) Let E be a �nite extension of a �eld F with prime characteristic p. Then E is
separable over F if and only if E = F(Ep).

Proof. Assume that E is separable over F and let a ∈ E. Writing f = IrrF(ap)(a), we
observe that f divides tp − ap = (t − a)p. Since f is a separable polynomial, it follows
that f = t − a and thus a ∈ F(ap) ⊆ F(Ep).

Conversely, assume that E = F(Ep) and let x ∈ E; we need to prove that f = IrrF(x)
is separable over F. If this is false, then f = g(tp) for some g = ∑k

i=0 ai ti ∈ F[t]. Since
0 = g(xp) = a0 + a1xp + ⋅ ⋅ ⋅ + akxkp, the �eld elements 1, xp, . . . , xkp are linearly
dependent over F. On the other hand, k < kp = deg(f) = (F(x) : F), so that 1, x, . . . ,
xk must be linearly independent over F. Extend {1, x, . . . , xk} to an F-basis of E, say
{y1, y2, . . . , yn}, using (8.2.6).

We have E = Fy1 + Fy2 + ⋅ ⋅ ⋅ + Fyn and thus Ep ⊆ Fyp1 + Fyp2 + ⋅ ⋅ ⋅ + Fypn. Therefore
E = F(Ep) = Fyp1 + Fy

p
2 + ⋅ ⋅ ⋅ + Fypn . It follows that yp1, y

p
2, . . . , y

p
n are F-linearly indepen-

dent since n = (E : F). This shows that 1, xp, . . . , xkp are F-linearly independent, a
contradiction.

Corollary (12.1.6) Let E = F(a1, a2, . . . , ak) be an extension of a �eld F such that each
ai is separable over F. Then E is separable over F.

Proof. We may assume that char(F) = p > 0. Since ai is separable over F, we have
ai ∈ F(api ), as in the �rst paragraph of the preceding proof. Hence ai ∈ F(Ep) and
E = F(Ep). Therefore E is separable over F by (12.1.5).
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Notice the consequence of the last result: the splitting �eld of a separable polynomial
is a separable extension.

We conclude this section by addressing a question which may already have oc-
curred to the reader: when is a �nite extension E of F a simple extension, i.e., when is
E = F(x) for some x? An important result on this problem is:

(12.1.7) (The Theorem of the Primitive Element) Let E be a �nite separable extension of
a �eld F. Then there is an element a such that E = F(a).

Proof. The proof is easy when E is �nite. For then E − {0} is a cyclic group by (11.3.6),
generated by a, say. Then E = {0, 1, a, . . . , aq−1} where q = |E|, and hence E = F(a).

From now on assume E is in�nite. Since (E : F) is �nite, E = F(u1, u2, . . . , un) for
some ui in E. The proof proceeds by induction on n. If n > 2, then F(u1, u2, . . . , un−1) =
F(v) for some v, by induction hypothesis, and hence E = F(v, un) = F(a) for some a by
the case n = 2. Therefore it is enough to deal with the case n = 2. From now on write

E = F(u, v).

We introduce the polynomials f = IrrF(u) and g = IrrF(v); these are separable
polynomials since E is separable over F. Let the roots of f and g be u = x1, x2, . . . , xm
and v = y1, y2, . . . , yn respectively, in the splitting �eld of fg over F. Here all the xi
are di�erent, as are all the yj. From this we conclude that for j ̸= 1 there is at most one
element zij in F such that

u + zijv = xi + zijyj ,

namely zij = (xi − u)(v − yj)−1. Since F is in�nite, it is possible to choose an element z
in F which is di�erent from each of the �nitely many zij. Then u + zv ̸= xi + zyj if
(i, j) ̸= (1, 1).

With this choice of z, put a = u + zv ∈ E. We will show that E = F(a). Since
g(v) = 0 = f(u) = f(a − zv), the element v is a common root of the polynomials g and
f(a − zt) ∈ F(a)[t]. Now these polynomials have no other common roots. For if yj were
one, then a−zyj = xi for some i, which implies that u+zv = a = xi+zyj; this is contrary
to the choice of z. It follows that t − v is the unique (monic) gcd of g and f(a − zt) in E[t].
Now the gcd of these polynomials actually lies in the subring F(a)[t]: for the gcd can
be computed by using the Euclidean Algorithm, which is valid for F(a)[t]. Therefore
v ∈ F(a) and u = a − zv ∈ F(a). Finally E = F(u, v) = F(a).

Since an algebraic number �eld is by de�nition a �nite extension ofℚ, we deduce:

Corollary (12.1.8) If E is an algebraic number �eld, then E = ℚ(a) for some a in E.

Exercises (12.1)

(1) Which of the following �eld extensions are normal?
(i)ℚ(31/3) ofℚ; (ii)ℚ(31/3, e2πi/3) ofℚ; (iii)ℝ ofℚ; (v) ℂ ofℝ.
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(2) Let F ⊆ K ⊆ E be �eld extensions with all degrees �nite. If E is normal over F, show
that it is normal over K, but K need not be normal over F.
(3) Let f ∈ F[t] where char(F) = p > 0, and assume that f is monic with degree pn. If
all roots of f are equal in its splitting �eld, prove that f = tpn − a for some a ∈ F.
(4) Let E be a �nite extension of a �eld F of characteristic p > 0 and assume that (E : F)
is not divisible by p. Prove that E is separable over F.
(5) Let F ⊆ K ⊆ E be �eld extensions with all degrees �nite and E separable over F.
Prove that E is separable over K.
(6) Let F ⊆ K ⊆ E be �eld extensions with all degrees �nite. If E is separable over K
and K is separable over F, show that E is separable over F.
(7) Let E be a �nite separable extension of a �eld F. Prove that there is a �nite extension
K of E such that K is separable and normal over F.

12.2 Automorphisms of �eld extensions

Fields, like groups, possess automorphisms and these play a crucial role in �eld theory.
An automorphism of a �eld F is de�ned to be a bijective ring homomorphism α : F → F;
thus α(x+y) = α(x)+α(y) and α(xy) = α(x)α(y). The automorphisms of a �eld are easily
seen to form a groupwith respect to functional composition. If E is a �eld extension of F,
we interested in automorphisms of E over F, i.e., automorphisms of E whose restriction
to F is the identity function. For example, complex conjugation is an automorphism
of ℂ over ℝ. The set of automorphisms of E over F is a subgroup of the group of all
automorphisms of F and is denoted by

Gal(E/F) :

this is the Galois¹ group of E over F.
Suppose that E = F(a) is a simple algebraic extensionof Fwithdegree n. Then every

element of E has the form x = ∑n−1
i=0 ciai with ci ∈ F and thus α(x) = ∑n−1

i=0 ciα(a)i where
α ∈ Gal(E/F). If b is any root of the polynomial f = IrrF(a), then 0 = α(f(b)) = f(α(b)),
so that α(b) is also a root of f in E. Thus each α in Gal(E/F) gives rise to a permutation
π(α) of X, the set of distinct roots of f in E. What is more, the mapping

π : Gal(E/F) → Sym(X)

is evidently a group homomorphism, i.e., α is a permutation representation of the
Galois group on X.

In fact π a faithful permutation representation of Gal(E/F) on X. For, if π(α) is the
identity permutation, α(a) = a and hence α is the identity automorphism of E. For this

1 Évariste Galois (1811–1831)
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reason it is often useful to think of the elements of Gal(E/F) as permutations of the set
of distinct roots X.

Next let b be any element of X. Then F ⊆ F(b) ⊆ E = F(a), and also (F(b) : F) =
deg(f) = (F(a) : F) by (11.1.4) since f = IrrF(b). It follows that F(b) = F(a) = E by (11.1.7).
Since IrrF(a) = f = IrrF(b), we may apply (11.3.2) to produce an automorphism α
of E over F such that α(a) = b. Therefore the group Gal(E/F) acts transitively on the
set X. Finally, if α in Gal(E/F) �xes some b in X, then α must equal the identity since
E = F(b). This shows that Gal(E/F) acts regularly on X and it follows from (5.2.2) that
|X| = |Gal(E/F)|.

These conclusions are summed up in the following fundamental result.

(12.2.1) Let E = F(a) be a simple algebraic extension of a �eld F. Then Gal(E/F) acts
regularly on the set X of distinct roots of IrrF(a) in E. Therefore

|Gal(E/F)| = |X| ≤ (E : F).

An extension of a �eld F which is �nite, separable and normal is said to be Galois
over F. For such extensions we have:

Corollary (12.2.2) If E is a Galois extension of a �eld F with degree n, then Gal(E/F) is
isomorphic with a regular subgroup of Sn and

|Gal(E/F)| = n = (E : F).

For (12.1.7) shows that E = F(a) for some a ∈ E. Also IrrF(a) has n distinct roots
in E by normality and separability.

The Galois group of a polynomial. Suppose that f is a non-constant polynomial over
a �eld F and let E be the splitting �eld of f : recall from (11.3.4) that this �eld is unique
up to isomorphism. Then the Galois group of the polynomial f is

Gal(f) = Gal(E/F).

This is always a �nite group by (12.2.1). The basic properties of the Galois group are
given in the next result.

(12.2.3) Let f be a non-constant polynomial of degree n over a �eld F. Then:
(i) Gal(f) is isomorphic with a permutation group on the set of distinct roots of f ; thus

|Gal(f)| divides n!;
(ii) if all the roots of f are distinct, then f is irreducible if and only ifGal(f) acts transitively

on the set of roots of f .
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Proof. Let E denote the splitting �eld of f , so that Gal(f) = Gal(E/F). Let α ∈ Gal(f). If
a is a root of f in E, then f(α(a)) = α(f(a)) = 0, so that α(a) is also a root of f . If α �xes
every root of f , then α is the identity automorphism since E is generated by F and the
roots of f . Hence Gal(f) is isomorphic with a permutation group on the set of distinct
roots of f . If there are r such roots, then r ≤ n and |Gal(f)| | r! | n!, so that |Gal(f)| | n!.

Next assume that all the roots of f are di�erent. Let f be irreducible. If a and b are
roots of f , then IrrF(a) = f = IrrF(b), and by (11.3.2) there exists α ∈ Gal(f) such that
α(a) = b. It follows that Gal(f) acts transitively on the roots of f .

Conversely, suppose that Gal(f) acts transitively on the roots of f , but f is reducible;
write f = g1g2 ⋅ ⋅ ⋅ gk where gi ∈ F[t] is irreducible and k ≥ 2. Let a1 and a2 be roots
of g1 and g2 respectively. By transitivity there exists α ∈ Gal(f) such that α(a1) = a2.
But 0 = α(g1(a)) = g1(α(a)) = g1(a2). Hence g2 = IrrF(a2) divides g1. Therefore g22
divides f and the roots of f cannot all be di�erent, a contradiction which shows that f
is irreducible.

Corollary (12.2.4) Let f be a separable polynomial of degree n over a �eld F and let E
be its splitting �eld. Then |Gal(f)| = (E : F) and |Gal(f)| is divisible by n.

Proof. Note that E is separable and hence Galois over F by (12.1.6). Hence |Gal(f)| =
|Gal(E/F)| = (E : F) by (12.2.2). Further f is irreducible by de�nition, so Gal(f) acts
transitively on the n roots of f ; therefore n divides |Gal(f)| by (5.2.2).

Let us consider some polynomials whose Galois groups can be readily computed.

Example (12.2.1) Let f = t3 − 2 ∈ ℚ[t]. Then Gal(f) ≃ S3.
To see this let E denote the splitting �eld of f ; thus E is Galois over ℚ. Then

E = ℚ(21/3, e2πi/3) and one can easily check that (E : ℚ) = 6, so that |Gal(f)| = 6. Since
Gal(f) is isomorphic with a subgroup of S3, it follows that Gal(f) ≃ S3.

In fact it is not di�cult to write down the six elements of the group Gal(f). Put
a = 21/3 and ω = e2πi/3; then E = ℚ(a, ω). Since E = ℚ(a)(ω) and t3 − 2 is the
irreducible polynomial of both a and aω overℚ(ω), there is an automorphism α of E
overℚ such that α(a) = aω, α(ω) = ω. Clearly α has order 3. Also α2(a) = aω2 and
α2(ω) = ω. It is easy to identify an automorphism β such that β(a) = a and β(ω) = ω2;
indeed β is just complex conjugation. Two more automorphisms of order 2 are formed
by composition: ã = αβ and δ = α2β. It is quickly seen that ãmaps ω to ω2 and a to aω,
while δmaps ω to ω2 and a to aω2. Thus the elements of the Galois group Gal(f) are 1,
α, α2, β, ã, δ.

Example (12.2.2). Let p be a prime and put f = tp − 1 ∈ ℚ[t]. Then Gal(f) ≃ U(ℤp), a
cyclic group of order p − 1.

To see this put a = e2πi/p, a primitive pth root of unity; the roots of f are 1, a,
a2, . . . , ap−1 and its splitting �eld is E = ℚ(a). Now f = (t−1)(1+ t+ t2 + ⋅ ⋅ ⋅+ tp−1) and
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the second factor isℚ-irreducible by Example (7.4.6). Hence the irreducible polynomial
of a is 1 + t + t2 + ⋅ ⋅ ⋅ + tp−1 and |Gal(f)| = (E : ℚ) = p − 1.

To show that Gal(f) is cyclic, we construct a group isomorphism

θ : U(ℤp) → Gal(f).

If 1 ≤ j < p, de�ne θ(j + pℤ) to be θj where θj(a) = aj and θj is trivial onℚ; this is an
automorphism by (11.3.2). Obviously θj is the identity only if j = 1, so θ is injective.
Since U(ℤp) and Gal(f) both have order p − 1, they are isomorphic.

Conjugacy in �eld extensions. Let E be an extension of a �eld F. Two elements a
and b of E are said to be conjugate over F if α(a) = b for some α ∈ Gal(E/F). In normal
extensions conjugacy amounts to the elements having the same irreducible polynomial,
as the next result shows.

(12.2.5) Let E be a �nite normal extension of a �eld F. Then two elements a and b of E
are conjugate over F if and only if they have the same irreducible polynomial.

Proof. If a and b have the same irreducible polynomial, (11.3.2) shows that there is
a �eld isomorphism θ : F(a) → F(b) such that θ(a) = b and θ is the identity map
on F. By (12.1.1) E is the splitting �eld of some polynomial over F and hence over F(a).
Consequently, (11.3.3) can be applied to extend θ to an isomorphism α : E → E such
that θ is the restriction of α to F(a). Hence α ∈ Gal(E/F) and α(a) = b, which shows
that a and b are conjugate over F.

To prove the converse, suppose that b = α(a) where a, b ∈ E and α ∈ Gal(E/F).
Put f = IrrF(a) and g = IrrF(b). Then 0 = α(f(a)) = f(α(a)) = f(b). Therefore g divides f
and it follows that f = g since f and g are monic and irreducible.

The next result is of critical importance in Galois theory: it asserts that the only
elements of an extension that are �xed by every automorphism are the elements of the
base �eld.

(12.2.6) Let E be a Galois extension of a �eld F and let a ∈ E. Then α(a) = a for all
automorphisms α of E over F if and only if a ∈ F.

Proof. Assume that α(a) = a for all α ∈ Gal(E/F) and put f = IrrF(a). Since E is normal
over F, all the roots of f are in E. If b is any such root, it is conjugate to a by (12.2.5),
so there exists α in Gal(E/F) such that α(a) = b. Hence b = a and the roots of f are all
equal. But f is separable since E is separable over F. Therefore f = t − a and a belongs
to F. The converse is obvious.

Roots of unity. Wewill postpone further development of the theory ofGalois extensions
until the next section and concentrate on roots of unity. Let F be a �eld and n a positive
integer. A root a of the polynomial tn − 1 ∈ F[t] is called an nth root of unity over F;
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thus an = 1. If am ̸= 1 for all proper divisors m of n, then |a| = n and a is said to be
a primitive nth root of unity. If char(F) = p divides n, there are no primitive nth roots
of unity over F: for then tn − 1 = (tn/p − 1)p and every nth root of unity has order at
most n/p. However, if char(F) does not divide n, primitive nth roots of unity over F
always exist, as will now be shown.

(12.2.7) Let F be a �eld whose characteristic does not divide the positive integer n and
let E be the splitting �eld of tn − 1 over F. Then:
(i) primitive nth roots of unity exist in E; furthermore these generate a cyclic subgroup

of order n.
(ii) Gal(E/F) is isomorphic with a subgroup of U(ℤn) and is therefore abelian with order

dividing ϕ(n).

Proof. (i) Set f = tn − 1, so that f � = ntn−1. Since char(F) does not divide n, the
polynomials f and f � are relatively prime. It follows via (7.4.7) that f has n distinct roots
in its splitting �eld E, namely the nth roots of unity. Clearly these roots form a subgroup
H of U(E) with order n, and by (11.3.6) it is cyclic, say H = ⟨x⟩. Here x has order n and
thus it is a primitive nth root of unity.
(ii) Let a be a primitive nth root of unity in E. Then the roots of tn − 1 are ai, i =
0, 1, . . . , n − 1, and E = F(a). If α ∈ Gal(E/F), then α is completely determined by
α(a) = ai where 1 ≤ i < n and i is relatively prime to n. Furthermore, the assignment
α Ü→ i + nℤ yields an injective homomorphism from the Galois group into U(ℤn). By
Lagrange’s Theorem |Gal(E/F)| divides |U(ℤn)| = ϕ(n).

Corollary (12.2.8) The number of primitive nth roots of unity over a �eld whose charac-
teristic does not divide n is ϕ(n), where ϕ is Euler’s function.

For, if a is a �xed primitive nth root of unity, the primitive nth roots of unity are
just the powers ai where 1 ≤ i < n and i is relatively prime to n.

Cyclotomic polynomials. Assume that F is a �eld whose characteristic does not di-
vide the positive integer n and denote the primitive nth roots of unity over F by a1,
a2, . . . , aϕ(n). The cyclotomic polynomial of order n over F is de�ned to be

Φn =
ϕ(n)
∏
i=1

(t − ai),

which is a monic polynomial of degree ϕ(n). Since every nth root of unity is a primitive
dth root of unity for some divisor d of n, we have immediately that

tn − 1 = ∏
d|n
Φd .

This leads to the formula
Φn =

tn − 1
∏d‖n Φd

,
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where d ‖ nmeans that d is a proper divisor of n. Using this formula,we can computeΦn
recursively, i.e., if we know Φd for all proper divisors d of n, then we can calculate Φn.
The formula also shows that Φn ∈ F[t]. For Φ1 = t − 1 ∈ F[t] and if Φd ∈ F[t] for all
proper divisors d of n, then Φn ∈ F[t].

Example (12.2.3) Since Φ1 = t − 1,

Φ2 =
t2 − 1
t − 1

= t + 1, Φ3 =
t3 − 1
t − 1

= t2 + t + 1,

and

Φ4 =
t4 − 1

(t − 1)(t + 1)
= t2 + 1.

There is in fact an explicit formula for Φn. This involves the Möbius function µ,
which is well-known from number theory. It is de�ned by the rules:

µ(1) = 1, µ(p1p2 ⋅ ⋅ ⋅ pk) = (−1)k ,

if p1, p2, . . . , pk are distinct primes, and

µ(n) = 0

if n is divisible by the square of a prime.

(12.2.9) The cyclotomic polynomial of order n over any �eld whose characteristic does
not divide n is given by

Φn = ∏
d|n

(td − 1)µ(n/d).

Proof. First we note an auxiliary property of the Möbius function,

∑
d|n
µ(d) =

{
{
{

1 if n = 1
0 if n > 1

This is obvious if n = 1, so assume that n > 1 and write n = pe11 p
e2
2 ⋅ ⋅ ⋅ pekk where the pi

are distinct primes. If d is a square-free divisor of n, then d has the form pi1pi2 ⋅ ⋅ ⋅ pir
where 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ir ≤ n, which corresponds to the term (−1)r ti1 ti2 ⋅ ⋅ ⋅ tir in the
product (1 − t1)(1 − t2) ⋅ ⋅ ⋅ (1 − tn); note also that µ(d) = (−1)r. Therefore we obtain the
identity

(1 − t1)(1 − t2) ⋅ ⋅ ⋅ (1 − tn) = ∑ µ(pi1pi2 ⋅ ⋅ ⋅ pir )ti1 ti2 ⋅ ⋅ ⋅ tir ,

where the sum is over all ij satisfying 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ir ≤ n. Set all ti = 1 to get
∑ µ(pi1 , pi2 , . . . pir ) = 0. Since µ(d) = 0 if d is not square-free, we can rewrite the last
equation as∑d|n µ(d) = 0.
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We are now in a position to establish the formula for Φn. Let

Ψn = ∏
e|n

(te − 1)µ(n/e),

so that Ψ1 = t − 1 = Φ1. Assume that Ψd = Φd for all d < n. Then by de�nition of Ψd,
we have

∏
d|n
Ψd = ∏

d|n
∏
e|d

(te − 1)µ(d/e) = ∏
f|n

(tf − 1)∑f|d|n µ(d/f).

Next for a �xed f dividing d we have

∑
f|d|n

µ(d/f) = ∑
d
f |
n
f

µ(d/f),

which equals 1 or 0 according as f = n or f < n. It therefore follows that

∏
d|n
Ψd = tn − 1 = ∏

d|n
Φd .

Since Ψd = Φd if d < n, cancellation yields Ψn = Φn and the proof is complete.

Example (12.2.4) Use the formula of (12.2.9) to compute the cyclotomic polynomial of
order 12 overℚ.

The formula yields

Φ12 = (t − 1)µ(12)(t2 − 1)µ(6)(t3 − 1)µ(4)(t4 − 1)µ(3)(t6 − 1)µ(2)(t12 − 1)µ(1),

which reduces to

(t2 − 1)(t4 − 1)−1(t6 − 1)−1(t12 − 1) = t4 − t2 + 1,

since µ(12) = µ(4) = 0, µ(2) = µ(3) = −1 and µ(6) = µ(1) = 1.

Example (12.2.5) If p is a prime, Φp = 1 + t + t2 + ⋅ ⋅ ⋅ + tp−1.

For Φp = (t − 1)µ(p)(tp − 1)µ(1) = tp−1
t−1 = 1 + t + t2 + ⋅ ⋅ ⋅ + tp−1, since µ(p) = −1.

Since we are interested in computing the Galois group of a cyclotomic polynomial
over ℚ, it is important to know if Φn is irreducible. This is certainly true when n is
prime by Example (7.4.6). The general result is:

(12.2.10) The cyclotomic polynomial Φn is irreducible overℚ for all integers n.
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Proof. Assume that Φn is reducible overℚ; then Gauss’s Lemma (7.3.7) tells us that it
must be reducible over ℤ. Since Φn is monic, it follows that it is a product of monic
irreducible polynomials in ℤ[t]. Let f be one such polynomial and choose a root a
of f ; then f = Irrℚ(a). Now a is a primitive nth root of unity, so, if p is any prime not
dividing n, then ap is also a primitive nth root of unity and is thus a root of Φn. Hence
ap is a root of some monicℚ-irreducible divisor g of Φn inℤ[t]. Of course g = Irrℚ(ap).

Suppose �rst that f ̸= g. Thus tn − 1 = fgh for some h ∈ ℤ[t] since f and g are
distinctℚ-irreducible divisors of tn − 1. Also g(ap) = 0 implies that f divides g(tp) and
thus g(tp) = fk where k ∈ ℤ[t]. The canonical homomorphism fromℤ to ℤp induces
a homomorphism from ℤ[t] to ℤp[t]; let ̄f , ḡ, h̄, k̄, denote images of f, g, h, k under
this homomorphism. Then ̄f k̄ = ḡ(tp) = (ḡ(t))p since xp ≡ x (mod p) for any integer x.
Now ℤp[t] is a PID and hence a UFD. Since ̄f k̄ = ḡp, the polynomials ̄f and ḡ have a
common irreducible divisor in ℤp[t]. This means that ̄f ḡh̄ ∈ ℤp[t] is divisible by the
square of this irreducible factor and hence tn − 1 ∈ ℤp[t] has a multiple root in its
splitting �eld. However, (tn − 1)� = ntn−1 is relatively prime to tn − 1 inℤp[t] since p
does not divide n. This is a contradiction by (7.4.7). It follows that f = g.

We have proved that ap is a root of f for all primes p not dividing n. It follows that
am is a root of f whenever 1 ≤ m < n and gcd{m, n} = 1. Therefore deg(f) ≥ ϕ(n) =
deg(Φn), which shows that f = Φn and Φn is irreducible.

We can now compute the Galois group of a cyclotomic polynomial.

(12.2.11) If n is a positive integer, the Galois group of Φn overℚ is isomorphic with U(ℤn),
an abelian group of order ϕ(n).

Proof. Let E denote the splitting �eld of Φn overℚ and let a be a primitive nth root of
unity in E. The roots of Φn are ai where i = 1, 2, . . . , n − 1 and gcd{i, n} = 1. Hence
E = ℚ(a) and Φn is the irreducible polynomial of a by (12.2.10). Thus |Gal(E/F)| =
deg(Φn) = ϕn. If 1 ≤ i < n and i is relatively prime to n, there is an automorphism αi
of E overℚ such that αi(a) = ai since a and ai have the same irreducible polynomial.
Moreover the map i + nℤ Ü→ αi is easily seen to be an injective group homomorphism
from U(ℤ) to Gal(E/F). Since both these groups have order ϕ(n), they are isomorphic.

The splitting �eld of Φn ∈ ℚ[t] is called a cyclotomic number �eld. Thus the Galois
group of a cyclotomic number �eld is abelian.

Exercises (12.2)

(1) Give an example of a �nite simple extension E of a �eld F such that |Gal(E/F)| = 1,
but E ̸= F.
(2) If E = ℚ(√5), �nd Gal(E/F).
(3) If E = ℚ(√2,√3), �nd Gal(E/F).
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(4) Find the Galois groups of the following polynomials inℚ[t]: (i) t2 + 1; (ii) t3 − 4;
(iii) t3 − 2t + 4.
(5) Let f ∈ F[t] and suppose that f = f1f2 ⋅ ⋅ ⋅ fk where the fi are polynomials over the
�eld F. Prove that Gal(f) is isomorphic with a subgroup of the direct product Gal(f1) ×
Gal(f2) × ⋅ ⋅ ⋅ × Gal(fk).
(6) Prove that the Galois group of GF(pm) over GF(p) is a cyclic group of order m and
that it is generated by the automorphism in which a Ü→ ap.
(7) Give an example to show that Gal(Φn) need not be cyclic.
(8) Let p be a prime not dividing the positive integer n. Prove that if Φn is irreducible
over GF(p), then ϕ(n) is the smallest positive integer m such that pm ≡ 1 (mod n).
(9) Show that Φ5 is reducible over GF(11) and �nd an explicit factorization of it in
terms of irreducibles.

12.3 The Fundamental Theorem of Galois theory

Armedwith the techniques of the last two sections, we can nowapproach the celebrated
theorem of the title. First some terminology: let E be an extension of a �eld F. By an
intermediate �eld is meant a sub�eld S such that F ⊆ S ⊆ E. If H is a subgroup
of Gal(E/F), the �xed �eld of H

Fix(H)

is the set of elements of E which are �xed by every element of H. It is quickly veri�ed
that Fix(H) is a sub�eld and F ⊆ Fix(H) ⊆ E, i.e., Fix(H) is an intermediate �eld.

(12.3.1) Let E be a Galois extension of a �eld F. Let S be an intermediate �eld and let H
be a subgroup of the Galois group G = Gal(E/F). Then:
(i) the mappings H Ü→ Fix(H) and S → Gal(E/S) are mutually inverse, inclusion revers-

ing bijections;
(ii) (E : Fix(H)) = |H| and (Fix(H) : F) = |G : H|;
(iii) (E : S) = |Gal(E/S)| and (S : F) = |G : Gal(E/S)|.

Thus the theorem asserts the existence of a bijection from the set of sub�elds
between E and F to the set of subgroups of the Galois group G; furthermore the bijec-
tion reverses set inclusions. Such a bijection is called a Galois correspondence. The
Fundamental Theorem allows us to translate a problem about sub�elds into one about
subgroups, which sometimes makes the problem easier to solve.

Proof of (12.3.1). (i) In the �rst place Fix(Gal(E/S) = S by (12.2.6). To show that we have
mutually inverse bijections wemust still prove that Gal(E/Fix(H)) = H. By the Theorem
of the Primitive Element (12.1.7), E = F(a) for some a in E. De�ne a polynomial f in E[t]
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by
f = ∏

α∈H
(t − α(a)).

Note that all the roots of f are distinct: for α1(a) = α2(a) implies that α1 = α2 since
E = F(a). Hence deg(f) = |H|. Also elements of H permute the roots of f , so that α(f) = f
for all α ∈ H. Therefore the coe�cients of f lie in K = Fix(H). In addition f(a) = 0, so
IrrK(a) divides f , and since E = K(a), it follows that

(E : K) = deg(IrrK(a)) ≤ deg(f) = |H|.

Hence |Gal(E/K)| ≤ |H|. But clearly H ≤ Gal(E/K), so that H = Gal(E/K), as required.
(ii) Since E is Galois over Fix(H), we have

(E : Fix(H)) = |Gal(E/Fix(H)| = |H|

by (12.3.1)(i). The second statement follows from

(E : Fix(H)) ⋅ (Fix(H) : F) = (E : F) = |G| = |H| ⋅ |G : H|.

(iii) The �rst statement is obvious. For the second statement we have (E : S)(S : F) =
(E : F) and (E : S) = Gal(E/S), while (E : F) = |G|. The result now follows.

Normal extensions and normal subgroups. If E is a Galois extension of a �eld F, inter-
mediate sub�elds which are normal over F surely correspond to subgroups of Gal(E/F)
which are in some way special. In fact these are exactly the normal subgroups of
Gal(E/F). To prove this a simple lemma about Galois groups of conjugate sub�elds is
called for. If α ∈ Gal(E/F) and F ⊆ S ⊆ E, write α(S) = {α(a) | a ∈ S}. Clearly α(S) is a
sub�eld and F ⊆ α(S) ⊆ E: the sub�eld α(S) is called a conjugate of S.

(12.3.2) Let E be an extension of a �eld F and let S be an intermediate �eld. If α ∈
Gal(E/F), then Gal(E/α(S)) = αGal(E/S)α−1.

Proof. Let β ∈ Gal(E/F). Then β ∈ Gal(E/α(S)) if and only if β(α(a)) = α(a), i.e.,
α−1βα(a) = a, for all a ∈ S, or equivalently α−1βα ∈ Gal(E/S). Hence β ∈ Gal(E/α(S))
if and only if β ∈ αGal(E/S)α−1.

The connection between normal extensions and normal subgroups is now within
reach.

(12.3.3) Let E be a Galois extension of a �eld F and let S be an intermediate �eld. Then
the following statements about S are equivalent:
(i) S is normal over F;
(ii) α(S) = S for all α ∈ Gal(E/F);
(iii) Gal(E/S) ⊲ Gal(E/F).
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Proof. (i) implies (ii). Let a ∈ S and write f = IrrF(a). Since S is normal over F and f
has a root in S, all the roots of f are in S. If α ∈ Gal(E/F), then α(a) is also a root of f
since f(α(a)) = α(f(a)) = 0. Therefore α(a) ∈ S and α(S) ⊆ S. By the same argument
α−1(S) ⊆ S, so that S ⊆ α(S) and α(S) = S.
(ii) implies (iii). Suppose that α ∈ Gal(E/F). By (12.3.2)

αGal(E/S)α−1 = Gal(E/α(S)) = Gal(E/S),

which shows that Gal(E/S) ⊲ Gal(E/F).
(iii) implies (i). Starting with Gal(E/S) ⊲ Gal(E/F), we have for any α ∈ Gal(E/F)
that Gal(E/S) = αGal(E/S)α−1 = Gal(E/α(S)) by (12.3.2). Apply the function Fix to
Gal(E/S) = Gal(E/α(S)) to obtain S = α(S) by the Fundamental Theorem of Galois
Theory. Next let f in F[t] be irreducible with a root a in S and suppose b is another root
of f . Then b ∈ E since E is normal over F. Because IrrF(a) = f = IrrF(b), there there
exists α ∈ Gal(E/F) such that α(a) = b. Therefore b ∈ α(S) = S, from which it follows
that S is normal over F.

(12.3.4) If E is a Galois extension of a �eld F and S is an intermediate �eld which is
normal over F, then

Gal(S/F) ≃ Gal(E/F)/Gal(E/S).

Proof. Let α ∈ Gal(E/F); then α(S) = S by (12.3.3) and thus α|S ∈ Gal(S/F).What ismore,
the restriction map α Ü→ α|S is a homomorphism from Gal(E/F) to Gal(S/F)with kernel
equal to Gal(E/S). The First Isomorphism Theorem then tells us that Gal(E/F)/Gal(E/S)
is isomorphic with a subgroup of Gal(S/F). In addition

|Gal(E/F)/Gal(E/S)| = (E : F)/(E : S) = (S : F) = |Gal(S/F)|

since S is Galois over F. Therefore Gal(E/F)/Gal(E/S) ≃ Gal(S/F).

Example (12.3.1) Let E denote the splitting �eld of t3 − 2 ∈ ℚ[t]. Thus E = ℚ(a, ω)
where a = 21/3 and ω = e2πi/3. By Example (12.2.1) (E : ℚ) = 6 and G = Gal(E/F) ≃ S3.

Now G has exactly six subgroups, which are displayed in the Hasse diagram below.

⟨β⟩∙ ∙⟨α⟩ ∙⟨ã⟩ ∙⟨δ⟩

∙ G

∙1



266 | 12 Galois Theory

Here α(a) = aω and α(ω) = ω; β(a) = a and β(ω) = ω2; ã(a) = aω and ã(ω) = ω2;
δ(a) = aω2 and δ(ω) = ω2. Each subgroupH corresponds to its �xed �eld Fix(H) under
the Galois correspondence. For example, Fix(⟨α⟩) = ℚ(ω) and Fix(⟨β⟩) = ℚ(a). The
normal subgroups of G are 1, ⟨α⟩ and G; the three corresponding normal extensions
are E,ℚ(ω) andℚ.

The six sub�elds of E are displayed in the Hasse diagram below.

ℚ(a)∙ ∙ℚ(ω) ∙ℚ(aω2) ∙ℚ(aω)

∙E

∙ℚ

Since every subgroup of an abelian group is normal, we deduce at once from
(12.3.3):

Corollary (12.3.5) If E is a Galois extension of a �eld F and Gal(E/F) is abelian, then
every intermediate �eld is normal over F.

For example, by (12.2.11) the Galois group of the cyclotomic polynomial Φn ∈ ℚ[t]
is abelian. Therefore every sub�eld of a cyclotomic number �eld is normal overℚ.

As a demonstration of the power of Galois theory, let us prove the Fundamental
Theorem of Algebra, which was mentioned in (7.4). All known proofs of this theorem
employ some analysis. Here only the Intermediate Value Theorem is used: if f is a
continuous function of a real variable which assumes the values a and b, then f
assumes all values between a and b. In fact this result is only required for polynomial
functions.

(12.3.6) Let f be a non-constant polynomial overℂ. Then f is the product of linear factors
over ℂ.

Proof. First note that the polynomial f ̄f has real coe�cients. Since we can replace
f by this polynomial, there is no loss in assuming that f has real coe�cients. It can
also be assumed that deg(f) > 1. Let E be the splitting �eld of f over ℂ. Then E is the
splitting �eld of (t2 + 1)f overℝ. Hence E is Galois overℝ, the characteristic being 0.
Put G = Gal(E/ℝ). Then |G| = (E : ℝ) = (E : ℂ) ⋅ (ℂ : ℝ) = 2(E : ℂ), and we conclude
that |G| is even.

Let H be a Sylow 2-subgroup of G and put F = Fix(H). Then ℝ ⊆ F ⊆ E and
(F : ℝ) = |G : H| is odd. Let a ∈ F and set g = Irrℝ(a). Since deg(g) = (ℝ(a) : ℝ),
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which divides (F : ℝ), we conclude that deg(g) is odd. Also g is monic, so g(x) > 0
for large positive x and g(x) < 0 for large negative x. This is our opportunity to apply
the Intermediate Value Theorem, the conclusion being that g(x) = 0 for some real
number x. But g is irreducible over ℝ, so deg(g) = 1; hence a ∈ ℝ and F = ℝ. This
implies that H = G and G is a 2-group.

Let G0 = Gal(E/ℂ) ≤ G; thus G0 is a 2-group. Now G0 = 1 implies that E = ℂ
and f is a product on linear factors over ℂ. So assume that G0 ̸= 1. Hence there is a
maximal (proper) subgroup M of G0. Now G0 is nilpotent, so M ⊲ G0 and |G0 : M| = 2
by (10.2.7)(ii). Now put S = Fix(M). By (12.3.1) we have

(S : ℂ) = |Gal(E/ℂ) : Gal(E/S)| = |G0|
|M|

= 2.

Hence any s in S − ℂ has irreducible polynomial over ℂ of degree 2, say t2 + at + b.
By the quadratic formula s = − 1

2 (a ± √a2 − 4b) ∈ ℂ and it follows that S = ℂ, a
contradiction.

Constructing regular n-gons. We return to the last of the ruler and compass problems
discussed in (11.2), which was left unresolved. The problem is to construct a regular
n-gon of side 1 unit using ruler and compass only.

Consider a regular n-gon with vertices A1, A2, . . . , An and centroid C. Let θn be
the angle between lines joining the centroid C to neighboring vertices; thus θn = 2π

n .
By elementary geometry, if d is the the distance from the centroid C to a vertex, then
d sin 1

2 θn = 1
2 and hence

d =
1

2 sin(12 θn)
=

1
√2(1 − cos θn)

.

It follows from the discussion of constructibility in (11.2) that the regular n-gon is
constructible by ruler and compass if and only if cos θn is constructible from the set
{(0, 0), (1, 0)}.

The de�nitive result can now be proved.

(12.3.7) A regular n-gon of side 1 can be constructed by ruler and compass if and only
if n has the form 2kp1p2 ⋅ ⋅ ⋅ pk where k ≥ 0 and the pj are distinct Fermat primes, i.e., of
the form 22

ℓj + 1.

Proof. Assume that the regular n-gon is constructible, so that cos θn is constructible.
Then (ℚ(cos θn) : ℚ)must be a power of 2 by (11.2.2). Put c = e2πi/n, a primitive nth root
of unity. Then cos θn = 1

2 (c+c
−1), so thatℚ(cos θn) ⊆ ℚ(c). Since c+c−1 = 2 cos θn, we

have c2−2c cos θn+1 = 0.Hence (ℚ(c) : ℚ(cos θn)) = 2and (ℚ(c) : ℚ) = 2d for some d.
Recall from (12.2.10) that Irrℚ(c) = Φn, which has degree ϕ(n). Writing n = 2kpe11 ⋅ ⋅ ⋅ perr
with distinct odd primes pj and ej > 0, we have ϕ(n) = 2k−1(pe11 −pe1−11 ) ⋅ ⋅ ⋅ (perr −per−1r )
by (2.3.8). This must equal 2d. Hence ej = 1 and pj − 1 is a power of 2 for all j. Since



268 | 12 Galois Theory

2s + 1 cannot be a prime if s is not a power of 2 (see Exercise (2.2.13)), it follows that pj
is a Fermat prime.

Conversely, assume that n has the form indicated. Since ℚ(c) is Galois over ℚ,
we have (ℚ(c) : ℚ) = ϕ(n), which is a power of 2 by the formula for ϕ(n). Hence
Gal(ℚ(c)/ℚ) is a �nite abelian 2-group and therefore G = Gal(ℚ(cos θ)/ℚ), being
isomorphic with a quotient of it, is also a �nite abelian 2-group. Therefore, all the
factors in a composition series of G have order 2 and by the Fundamental Theorem of
Galois Theory there is a chain of sub�elds

ℚ = F0 ⊂ F1 ⊂ ⋅ ⋅ ⋅ ⊂ Fℓ = ℚ(cos θ)

such that Fj+1 is Galois over Fj and (Fj+1 : Fj) = 2.
We argue by induction on j that every element of Fj is constructible. Let x ∈ Fj+1−Fj.

Then IrrFj (x) = t2 + at + b where a, b ∈ Fj and thus x2 + ax + b = 0. Hence (x + 1
2a)

2 =
1
4a

2 − b > 0 since x is real. Writing x� = x + 1
2a, we have x�2 ∈ Fj. By induction

hypothesis x�2 is constructible and (11.2.1) shows that x� is constructible, whence so
is x. Finally we deduce that cos θ is constructible.

Example (12.3.2). A regular n-gon is constructible for n = 3, 4, 5, 6, but not for n = 7.
The only known Fermat primes are 3, 5, 17, 257 = 223 + 1 and 65, 537 = 224 + 1.

Since 7 is not a Fermat prime, it is impossible to construct a regular 7-gon using ruler
and compass.

Exercises (12.3).

(1) For each of the following polynomials overℚ display the lattice of subgroups of the
Galois group and the corresponding lattice of sub�elds of the splitting �eld: (i) t2 − 5;
(ii) t4 − 5; (iii) (t2 + 1)(t2 + 3).
(2) Determine the normal sub�elds of the splitting �elds in Exercise (12.3.1).
(3) Use the Fundamental Theorem of Galois Theory and Exercise (12.2.6) to prove that
GF(pm) has exactly one sub�eld of order pd for each positive divisor d of m and no
sub�elds of other orders – see also Exercise (11.3.2).
(4) Let E = ℚ(√2,√3). Find all the subgroups of Gal(E/ℚ) and hence all sub�elds of E.
(5) Find all �nite �elds with exactly two sub�elds and also those with exactly three
sub�elds.
(6) Let E be a Galois extension of a �eld F and let pk be the largest power of a prime
p dividing (E : F). Prove that there is an intermediate �eld S such that (E : S) = pk. If
Gal(E/F) is solvable, prove that there is an intermediate �eld T such that (T : F) = pk.
(7) If E is a Galois extension of a �eld F and there is exactly one proper intermediate
�eld, what can be said about Gal(E/F)?
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(8) If E is a Galois extension of F and (E : F) is the square of a prime, show that each
intermediate �eld is normal over F.
(9) Prove that a regular 2k-gon of side 1 is constructible if k ≥ 2.
(10) For which values of n in the range 10 to 20 can a regular n-gon of side 1 be
constructed?
(11) Show that if a is a real number such that (ℚ(a) : ℚ) is a power of 2 and ℚ(a) is
normal overℚ, then a is constructible from the points (0, 0) and (1, 0).
(12) Let p be a prime and let f = tp − t − a ∈ F[t] where F = GF(p). Denote by E the
splitting �eld of f over F.

(i) If x is a root of f in E, show that the set of all roots of f is {x + b | b ∈ F}, and
that E = F(x).

(ii) Prove that f is irreducible over F if and only if a ̸= 0.
(iii) Prove that |Gal(f)| = p unless a = 0, when Gal(f) = 1.

12.4 Solvability of equations by radicals

One of the oldest parts of algebra is concerned with the problem of solving equations
of the form f(t) = 0 where f is a non-constant polynomial over ℚ or ℝ. The object
is to �nd a formula for the solutions of the equation which involves the coe�cients
of f , square roots, cube roots, etc. The easiest cases are when deg(f) ≤ 2; if the degree
is 1, we are solving a single linear equation. If the degree is 2, there is the familiar
formula for the solutions of a quadratic equation. For equations of degree 3 and 4 the
problem is harder, but methods of solution had been found by the 16th Century. Thus
for deg(f) ≤ 4 there are explicit formulas for the roots of f(t) = 0, which in fact involve
radicals of the form k√ for k ≤ 4.

The problem of �nding formulas for the solutions of equations of degree 5 and
higher is one that fascinated mathematicians for hundreds of years. An enormous
amount of ingenuity was expended in attempts to solve the general equation of the �fth
degree. It was only with the work of Abel, Galois and Ru�ni² in the early 19th Century
that it became clear that all these e�orts had been in vain. It is a fact that solvability
of a polynomial equation is inextricably linked to the solvability of the Galois group
of the polynomial. The symmetric group Sn is solvable for n < 5, but is insolvable for
n ≥ 5. This explains why early researchers were able to solve the general equation of
degree n only for n ≤ 4. Without the aid of group theory it is impossible to comprehend
the reason for this failure. Our aim here is explain why the solvability of the Galois
group governs the solvability of a polynomial equation.

2 Paolo Ru�ni (1765–1822)
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Radical extensions. Let E be an extension of a �eld F. Then E is called a radical exten-
sion of F if there is a chain of sub�elds

F = E0 ⊆ E1 ⊆ E2 ⊆ ⋅ ⋅ ⋅ ⊆ Em = E

such that Ei+1 = Ei(ai+1) where ai+1 has irreducible polynomial over Ei of the form
tni+1 − bi. It is natural to refer to ai+1 as a radical and write ai+1 = ni+1√bi, but here one
has to keep in mind that ai+1 may not be uniquely determined by bi. Since

E = F( n1√b1, n2√b2, . . . , nm√bm),

elements of E are expressible as polynomial functions of the radicals ni√bi.
Let f be a non-constant polynomial over F with splitting �eld K. Then f , or the

equation f = 0, is said to be solvable by radicals if K is contained in some radical
extension of F. This means that the roots of f are obtained by forming a �nite sequence
of successive radicals, starting with elements of F. The de�nition gives a precise ex-
pression of our intuitive idea of what it means for a polynomial equation to be solvable
by radicals.

To make progress with the problem of describing the radical extensions it is neces-
sary to have a better understanding of polynomials of the form tn − a.

(12.4.1) Let F be a �eld and n a positive integer. Assume that F contains a primitive nth
root of unity. Then for any a in F the group Gal(tn − a) is cyclic with order dividing n.

Proof. Let z be a primitive nth root of unity in F and denote by b a root of f = tn−a in its
splitting �eld E. Then the roots of f are bzj, j = 0, 1, . . . , n−1. If α ∈ Gal(f) = Gal(E/F),
then α(b) = bzj(α) for some j(α) and α is completely determined by j(α): this is because
α|F is the identity map and E = F(b) since z ∈ F. The assignment α Ü→ j(α) + nℤ
is an injective homomorphism from Gal(f) to ℤn: for αβ(b) = α(bzj(β)) = α(b)zj(β) =
bzj(α)+j(β) and thus j(αβ) ≡ j(α) + j(β) (mod n). It follows that Gal(f) is isomorphic with
a subgroup ofℤn, whence it is a cyclic group with order dividing n.

We will need the following simple result.

(12.4.2) Let E be a Galois extension of a �eld F and let K1 and K2 be sub�elds interme-
diate between F and E . If Hi = Gal(E/Ki), then Gal(E/K1 ∩ K2) = ⟨H1, H2⟩.

Proof. Clearly H1 and H2 are contained in Gal(E/K1 ∩ K2) and hence J = ⟨H1, H2⟩ ≤
Gal(E/K1 ∩ K2). Next suppose that x ∈ E − Ki. Then there exists α ∈ Hi such that
α(x) ̸= x. Hence x ∉ Fix(J) and consequently Fix(J) ⊆ K1 ∩ K2. Taking the Galois group
of E over each side and applying (12.3.1), we obtain J ≥ Gal(E/K1 ∩ K2).

The principal theorem is now within reach.

(12.4.3) Let f be a non-constant polynomial over a �eld F of characteristic 0. If f is
solvable by radicals, then Gal(f) is a solvable group.
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Proof. Let E denote the splitting �eld of f over F. By hypothesis E ⊆ R where R is a
radical extension of F. Hence there are sub�elds Ri such that

F = R0 ⊆ R1 ⊆ ⋅ ⋅ ⋅ ⊆ Rm = R

where Ri+1 = Ri(ai+1) and IrrRi (ai+1) = tni+1 − bi with bi ∈ Ri. It follows that (Ri+1 :
Ri) = ni+1 and hence (R : F) = n1n2 ⋅ ⋅ ⋅ nm = n, say.

Let K and L be the splitting �elds of the polynomial tn −1 over F and R respectively.
Note that L may not be normal over F. Let N be the the splitting �eld over F of the
product of tn − 1 and all the polynomials IrrF(ai), i = 1, 2, . . . ,m. Then L ⊆ N and N
is normal over F. Clearly (N : F) is �nite and N is separable since the characteristic is
zero. Thus N is Galois over F. Put Li = K(Ri), so there is the chain of sub�elds

K = L0 ⊆ L1 ⊆ ⋅ ⋅ ⋅ ⊆ Lm = L ⊆ N.

The relevant sub�elds are displayed in the Hasse diagram below.

K = L0∙

L1∙

Lm−1∙
...

Lm = L∙

N∙

∙Rm = R

∙
...

Rm−1

∙R1

∙R0 = F

∙E

Note that Li+1 is the splitting �eld of tni+1 − bi over Li since K contains all ni+1th
roots of unity. Thus Li+1 is normal and hence Galois over Li. Now set G = Gal(N/F) and
Gi = Gal(N/Li); hence Gi+1 ⊲Gi by (12.3.3). Also write V = Gal(N/K) and U = Gal(N/E),
noting that U⊲G and V⊲G since E and K are normal over F. Thuswe have the truncated
series of subgroups

Gal(N/L) = Gm ⊲ Gm−1 ⊲ ⋅ ⋅ ⋅ ⊲ G1 ⊲ G0 = V.

Notice that Gi/Gi+1 ≃ Gal(Li+1/Li) = Gal(tni+1 − bi), and the latter is cyclic by (12.4.1).
Since Gm ≤ U, there is a series

1 = GmU/U ⊲ Gm−1U/U ⊲ ⋅ ⋅ ⋅ ⊲ G1U/U ⊲ G0U/U = UV/U,

and the factors of this series are cyclic since the Gi/Gi+1 is cyclic. Therefore UV/U is a
solvable group. Now from (12.4.2) we have Gal(N/K ∩ E) = UV ⊲ G and K ∩ E is normal
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over F. Moreover,

G/UV = Gal(N/F)/Gal(N/K ∩ E) ≃ Gal(K ∩ E/F)

and therefore G/UV ≃ Gal(K/F)/Gal(K/K ∩ E). Since Gal(K/F) is abelian by (12.2.7), it
follows that G/UV is abelian. Therefore G/U is solvable. Finally,

Gal(E/F) ≃ Gal(N/F)/Gal(N/E) = G/U,

so that Gal(f) = Gal(E/F) is solvable, as required.

It can be shown – although we will not do so here – that the converse of (12.4.3)
is valid: see [1] or [15] for a proof. As a consequence there is the following de�nitive
result.

(12.4.4) Let f be a non-constant polynomial over a �eld of characteristic 0. Then f is
solvable by radicals if and only if Gal(f) is a solvable group.

Let n = deg(f). Then Gal(f) is isomorphic with a subgroup of the symmetric
group Sn by (12.2.3). If n ≤ 4, then Sn, and hence Gal(f), is solvable. Therefore by (12.4.4)
every polynomial with degree 4 or less is solvable by radicals.

On the other hand, when n ≥ 5, the symmetric group Sn is not solvable since An is
simple by (10.1.7). Thus we are led to suspect that not every polynomial equation of
degree 5 is solvable by radicals. Actual examples of polynomials that are not solvable
by radicals are furnished by the next result.

(12.4.5) Let f ∈ ℚ[t] be an irreducible polynomial of prime degree p and assume that f
has exactly two complex roots. Then Gal(f) ≃ Sp and hence f is not solvable by radicals
if p ≥ 5.

Proof. Label the roots of f in its splitting �eld a1, a2, . . . , ap; these are all di�erent
since f is separable. Two of these roots are complex conjugates, say ā1 = a2, while
the other roots are all real. We can think of Gal(f) as a group of permutations of the
set of roots {a1, a2, . . . , ap} and indeed Gal(f) acts transitively since f is irreducible.
Therefore p divides |Gal(f)| by (5.2.2), and Cauchy’s Theorem (5.3.9) shows that there is
an element of order p in Gal(f). Hence Gal(f) contains a p-cycle, say π = (a1ai2 . . . aip ).
Replacing π by a suitable power, wemay assume that i2 = 2. Now relabel the remaining
roots a3, a4, . . . , ap so that π = (a1a2a3 . . . ap).

Complex conjugation, i.e., σ = (a1a2), is an element of Gal(f) with order 2. Conju-
gation of σ by powers of π shows that Gal(f) contains all the adjacent transpositions
(aiai+1), for i = 1, 2, . . . , p − 1. But any permutation is expressible as a product of
adjacent transpositions – see Exercise (3.1.4)– and therefore Gal(f) = Sn.

Example (12.4.1) The polynomial f = t5 − 6t + 3 ∈ ℚ[t] is not solvable by radicals.
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In the �rst place f is irreducible overℚbyEisenstein’s Criterion andGauss’s Lemma.
In addition calculus tells us that the curve f(t) = 0 crosses the t-axis exactly three times,
so there are three real roots and two complex ones. Thus Gal(t5 − 6t + 3) ≃ S5 and the
result follows via (12.4.3).

Example (12.4.2) The polynomial f = t5 + 8t3 − t2 + 12t − 2 is solvable by radicals.
Here the situation is di�erent since f factorizes as (t2 + 2)(t3 + 6t − 1). Therefore

Gal(f) is isomorphic with a subgroup of Gal(t2 +2) ×Gal(t3 +6t −1) by Exercise (12.2.5).
The latter is a solvable group. Hence by (10.2.2) the group Gal(f) is solvable and f is
solvable by radicals.

Symmetric functions. As the �nal topic of the chapter, we present an account of the el-
ementary theory of symmetric functions and explore its relationship with Galois theory.
Let F be an arbitrary �eld and put E = F{x1, x2, . . . , xn}, the �eld of rational functions
over F in distinct indeterminates x1, x2, . . . , xn. A symmetric function in x1, x2, . . . , xn
over F an element g ∈ E such that

g(xπ(1), xπ(2), . . . , xπ(n)) = g(x1, x2, . . . , xn)

for all π ∈ Sn. Thus g is una�ected by permutations of the indeterminates x1, x2, . . . , xn.
It is easy to verify that the symmetric functions form a sub�eld of E. Next consider the
polynomial

f = (t − x1)(t − x2) ⋅ ⋅ ⋅ (t − xn) ∈ E[t]

where t is another indeterminate. Then expansion shows that

f = tn − s1tn−1 + s2tn−2 − ⋅ ⋅ ⋅ + (−1)nsn

where s1 = ∑n
i=1 xi, s2 = ∑n

i<j=1 xixj, and in general

sj =
n
∑

i1<i2<⋅⋅⋅<ij=1
xi1xi2 ⋅ ⋅ ⋅ xij ,

the last sum being over all tuples (i1, i2, . . . , ij) such that 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ij ≤ n.
It is evident that the sj are symmetric functions: they are known as the elementary
symmetric functions in x1, x2, . . . , xn. For example, when n = 3, there are three
elementary symmetric functions,

s1 = x1 + x2 + x3, s2 = x1x2 + x2x3 + x1x3, s3 = x1x2x3.

Put S = F(s1, s2, . . . , sn), which is a sub�eld of E. Then f ∈ S[t] and E is generated
by S and the roots of f , i.e., x1, x2, . . . , xn. Hence E is the splitting �eld of f over S.
Since all the roots of f are distinct, (12.1.6) shows that E is separable and hence Galois
over S. Therefore Gal(f) = Gal(E/S) has order (E : S). We now proceed to determine the
Galois group of f over S. With the same notation the de�nitive result is:

(12.4.6) Gal(f) ≃ Sn.
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Proof. Since Gal(f) permutes the roots x1, x2, . . . , xn faithfully, we may identify it with
a subgroup of Sn. Let π ∈ Sn and de�ne απ : E → E by the rule

απ(g(x1, x2, . . . , xn)) = g(xπ(1), xπ(2), . . . , xπ(n));

then απ is evidently an automorphism of E. Since απ �xes all the elementary symmetric
functions, it �xes every element of S = F(s1, s2, . . . , sn) and therefore απ ∈ Gal(E/S) =
Gal(f). Finally, all the απ are di�erent, so Gal(f) = Sn.

From this we quickly deduce a famous theorem.

Corollary (12.4.7) (The Symmetric Function Theorem) If F is an arbitrary �eld and s1,
s2, . . . , sn are the elementary symmetric functions in indeterminates x1, x2, . . . , xn,
then F(s1, s2, . . . , sn) is the �eld of all symmetric functions in x1, x2, . . . , xn. Also the
symmetric polynomials form a subring which is generated by F and the s1, s2, . . . , sn.

Proof. Let S = F(s1, s2, . . . , sn) ⊆ E = F{x1, x2, . . . , xn}. By (12.4.6) Gal(E/S) e�ec-
tively consists of all permutations of {x1, x2, . . . , xn}. Hence Fix(Gal(E/S) is the sub-
�eld of all symmetric functions. But by (12.3.1) this is also equal to S. The statement
about polynomials is left as an exercise.

Generic polynomials. Let F be an arbitrary �eld and write K for the rational function
�eld in indeterminates x1, x2, . . . , xn over F. The polynomial

f = tn − x1tn−1 + x2tn−2 − ⋅ ⋅ ⋅ + (−1)nxn

is called a generic polynomial. The point to note here is that we can obtain from f any
monic polynomial of degree n in F[t] by replacing x1, x2, . . . , xn by suitable elements
of F. It is therefore not surprising that the Galois group of f over K is as large as it
could be.

(12.4.8) With the above notation, Gal(f) ≃ Sn.

Proof. Let u1, u2, . . . , un be the roots of f in its splitting �eld E over K. Then f =
(t−u1)(t−u2) ⋅ ⋅ ⋅ (t−un) and thus xi = si(u1, u2, . . . , un)where si is the ith elementary
symmetric function in n indeterminates y1, y2, . . . , yn, all of which are di�erent from
x1, x2, . . . , xn, t.

The assignment xi Ü→ si determines a ring homomorphism

ϕ0 : F{x1, x2, . . . , xn} → F{y1, y2, . . . , yn};

observe here that g(s1, . . . , sn) = 0 implies that g(x1, . . . , xn) = 0 because xi =
si(u1, . . . , un). So ϕ0 is actually an isomorphism from K = F{x1, x2, . . . , xn} to L =
F(s1, s2, . . . , sn) ⊆ F{y1, y2, . . . , yn}. Set f∗ = ϕ0(f) with f as above; thus

f∗ = tn − s1tn−1 + s2tn−2 − ⋅ ⋅ ⋅ + (−1)nsn = (t − y1)(t − y2) ⋅ ⋅ ⋅ (t − yn),

by de�nition of the elementary symmetric functions si.
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By (11.3.3) we can extend ϕ0 to an isomorphism ϕ from E, the splitting �eld of f
over K, to the splitting �eld of f∗ over L. Therefore ϕ induces a group isomorphism
fromGal(f) to Gal(f∗). But we know that Gal(f∗) ≃ Sn by (12.4.6). Hence Gal(f) ≃ Sn.

Corollary (12.4.9) (Abel, Ru�ni) If F is a �eld of characteristic 0, the generic polynomial
tn − x1tn−1 + x2tn−2 − ⋅ ⋅ ⋅ + (−1)nxn is insolvable by radicals over F(x1, x2, . . . , xn) if
n ≥ 5.

Thus, as one would expect, there is no general formula for the roots of a polynomial
of degree n ≥ 5 in terms of its coe�cients.

Exercises (12.4)

(1) Let F ⊆ K ⊆ E be �eld extensions with K radical over F and E radical over K. Prove
that E is radical over F.
(2) Let F ⊆ K ⊆ E be �eld extensions with E radical and Galois over F. Prove that E is
radical over K.
(3) Show that the polynomial t5 − 3t + 2 inℚ[t] is solvable by radicals.
(4) If p is a prime larger than 11, show that t5 − pt+ p inℚ[t] is not solvable by radicals.
(5) If f ∈ F[t] is solvable by radicals and g | f in F[t], prove that g is solvable by radicals.
(6) Let f = f1f2 where f1, f2 ∈ F[t] and F has characteristic 0. If f1 and f2 are solvable
by radicals, show that f is too. Deduce that every non-constant reducible polynomial
of degree less than 6 overℚ is solvable by radicals.
(7) Let F be a �eld of characteristic 0 and let f ∈ F[t] be non-constant with splitting
�eld E. Prove that there is a unique smallest intermediate �eld S such that S is normal
over F and f is solvable by radicals over S. [Hint: show �rst that there is a unique
maximum solvable normal subgroup in any �nite group].
(8) For each integer n ≥ 5 exhibit a polynomial of degree n overℚ which is insolvable
by radicals.
(9) Let G be any �nite group. Prove that there is a Galois extension E of some algebraic
number �eld F such that Gal(E/F) ≃ G. [You may assume there is an algebraic number
�eld whose Galois group overℚ is isomorphic with Sn]. (Remark: the general problem
of whether every �nite group is the Galois group of some algebraic number �eld over
ℚ is still open; it is known to be true for solvable groups.)
(10) Write each of the following symmetric polynomials as a polynomial in the elemen-
tary symmetric functions s1, s2, s3 in x1, x2, x3.

(i) x21 + x
2
2 + x

2
3;

(ii) x21x2 + x1x
2
2 + x

2
2x3 + x2x

2
3 + x

2
1x3 + x1x

2
3;

(iii) x31 + x
3
2 + x

3
3.



13 Tensor products

13.1 De�nition of the tensor product

The tensor product is a very widely used construction in algebra which can be applied
to modules, linear operators and matrices. We will begin by describing the tensor
product of modules: here the distinction between left and right modules is essential.

Let R be an arbitrary ring and let MR and RN be right and left R-modules as indi-
cated. Denote by F the free abelian group whose basis is the set product

M × N = {(a, b) | a ∈ M, b ∈ N}.

Thus each element f of F can be uniquely written in the form f = ∑k
i=1 ℓi(ai , bi) where

ℓi ∈ ℤ, ai ∈ M, bi ∈ N. De�ne S to be the (additive) subgroup of F generated by all
elements of the forms
(i) (a1 + a2, b) − (a1, b) − (a2, b),
(ii) (a, b1 + b2) − (a, b1) − (a, b2),
(iii (a ⋅ r, b) − (a, r ⋅ b),
where a, ai ∈ M, b, bi ∈ N and r ∈ R. Then the tensor product ofM and N is de�ned to
be the quotient group

M ⊗R N = F/S.

Thus M ⊗R N is an abelian group generated by all elements of the form

a ⊗ b = (a, b) + S, (a ∈ M, b ∈ N);

the elements a ⊗ b are called tensors. When R = ℤ, which is a very common case, it is
usual to write M ⊗ N instead of M⊗ℤN.

The next result is an immediate consequence of the de�nition of the tensor product.
It demonstrates the essentially bilinear nature of tensor products.

(13.1.1) Let MR and RN be modules over a ring R. In the tensor product M ⊗R N the
following rules are valid:
(i) (a1 + a2) ⊗ b = a1 ⊗ b + a2 ⊗ b;
(ii) a ⊗ (b1 + b2) = a ⊗ b1 + a ⊗ b2;
(iii) (a ⋅ r) ⊗ b = a ⊗ (r ⋅ b)
where a, ai ∈ M, b, bi ∈ N, r ∈ R.

We record two simple consequences of (13.1.1),

0M ⊗ b = 0M⊗RN = a ⊗ 0N , (a ∈ M, b ∈ N).

These follow from (i) and (ii) on setting a1 = 0M = a2 and b1 = 0N = b2, respectively.
It should be stressed that the tensor product M ⊗R N is only an abelian group at this
point: later we will see when it can be given a module structure.
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The mapping property of tensor products. We continue the previous notation with
modulesMR and RN over a ring R. A critical property of the tensor productM ⊗R N is a
certain mapping property; this involves the concept of a middle linear map, which will
now be explained.

Let A be an (additively written) abelian group: a mapping α : M × N → A is said to
be R-middle linear if it has the three properties listed below for all a, ai ∈ M, b, bi ∈
N, r ∈ R:
(i) α((a1 + a2, b)) = α((a1, b)) + α((a2, b));
(ii) α((a, b1 + b2)) = α((a, b1)) + α((a, b2));
(iii) α((a ⋅ r, b)) = α((a, r ⋅ b)).
For example, the canonical mapping ν : M × N → M ⊗ N in which ν((a, b)) = a ⊗ b is
middle linear because of the properties listed in (13.1.1). The crucial mapping property
of the tensor product is as follows.

(13.1.2) Let MR and RN be modules over a ring R.
(i) Given a middle linear map α : M ×N → A with A an abelian group, there is a unique

group homomorphism β : M ⊗R N → A such that α = βν where ν : M ×N → M ⊗R N
is the canonical middle linear map in which (a, b) Ü→ a ⊗ b.

(ii) Conversely, if T is an abelian group and ϕ : M × N → T is a middle linear map such
that the pair (T, ϕ) has the mapping property in (i), then T ≃ M ⊗R N.

The assertion of (13.1.2)(i) is most easily remembered from the triangle diagram
below.

A
α ↗ ↖β

M × N Ú→
ν

M ⊗R N

Indeed the relation α = βν expresses the commutativity of the diagram, in the sense
that if we start with an element x ∈ M × N and follow it in both directions around the
triangle, applying the maps indicated by the arrows, we end up with the same element
of A, namely α(x) = βν(x).

When (i) and (ii) of (13.1.2) are combined, they demonstrate that the tensor product
M ⊗R N, together with the canonical middle linear mapping ν, is characterized by the
mapping property. Another way of looking at the mapping property is that if a function
with codomain an abelian group A is de�ned on tensors and arises from amiddle linear
mapping, then it can be extended to a homomorphism fromM ⊗R N to A. It is this form
of the mapping property that makes it an indispensable tool in working with tensor
products.

Proof of (13.1.2). (i). Let F be the free abelian group with basis M × N. By (9.1.13) there
is a homomorphism β� : F → A such that β�((a, b)) = α((a, b)) for all a ∈ M, b ∈ N. By
de�nition M ⊗R N = F/S where S is generated by all elements of F of the three types in
the de�nition of the tensor product. Now β� maps each of the listed generators of S to 0
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since α is middle linear, and hence β�(s) = 0 for all s ∈ S. This observation allows us to
de�ne in a unique manner a function

β : M ⊗R N → A

by the rule β(f+S) = β�(f). Notice that β is a homomorphism since β� is one. Furthermore

βν((a, b)) = β((a, b) + S) = β�((a, b)) = α((a, b))

for all a ∈ M, b ∈ N. Therefore βν = α.
The uniqueness of β remain to be established. Suppose that β̄ : M ⊗R N → A is

another homomorphism with the property β̄ν = α. Then βν = β̄ν, so that β and β̄ agree
on Im(ν), i.e., on the set of all tensors. But the tensors generate M ⊗R N, so it follows
that β = β̄, which completes the proof of (i).
(ii) By the mapping property for the pair (M ⊗R N, β) there is a homomorphism β :
M ⊗R N → T such that ϕ = βν, and by the mapping property for (T, ϕ) there is a
homomorphism β̄ : T → M ⊗R N such that ν = β̄ϕ. Thus we have the two commutative
triangles that follow:

T
ϕ ↗ ↖β

M × N Ú→
ν

M ⊗R N

M ⊗R N
ν ↗ ↖β̄

M × N Ú→
ϕ

T

Therefore ββ̄ϕ = βν = ϕ and β̄βν = β̄ϕ = ν, equations that express the commutativity
of the two triangles below

T
ϕ ↗ ↖ββ̄

M × N Ú→
ϕ

T

M ⊗R N
ν ↗ ↖β̄β

M × N Ú→
ν

M ⊗R N

But clearly these triangles will also commute if β̄β and ββ̄ are replaced by the appro-
priate identity maps. At this point the uniqueness clause in the mapping property is
invoked to show that β̄β and ββ̄ are identity maps. Hence β̄ is an isomorphism and
T R≃ M ⊗R N.
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Tensor products and homomorphisms. When homomorphisms between pairs of mod-
ules are given, there are induced homomorphisms between the tensor products of these
modules.

(13.1.3) Let there be given modules MR ,M�
R and RN, RN� over a ring R, together with

R-module homomorphisms α : M → M� and β : N → N�. Then there is a homomorphism
of groups α ⊗ β : M ⊗R N → M� ⊗R N� such that

α ⊗ β(
k
∑
i=1

ℓi(ai ⊗ bi)) =
k
∑
i=1

ℓi(α(ai) ⊗ β(bi)),

where ai ∈ M, bi ∈ N, ℓi ∈ ℤ.

Proof. The �rst point to realise here is that one cannot simply use the formula in
the statement as the de�nition of α ⊗ β, the reason being that there is no unique
expressibility for an element of M ⊗R N as a linear combination of tensors. However,
an indirect approach using the mapping property succeeds.

To exploit this property we �rst introduce a function θ : M × N → M� ⊗R N� by
de�ning θ((a, b)) = α(a) ⊗ β(b). Then we check the middle linearity of θ, which is easy.
By the mapping property there is a group homomorphism ϕ : M ⊗R N → M� ⊗R N�

such that ϕν = θ where ν : M × N → M ⊗R N is the canonical middle linear map
(a, b) Ü→ a ⊗ b. Thus the triangle below commutes

M� ⊗R N�

θ ↗ ↖ϕ

M × N Ú→
ν

M ⊗R N

Now de�ne α ⊗ β to be the map ϕ and check that it has the required property:

ϕ(
k
∑
i=1

ℓi(ai ⊗ bi)) =
k
∑
i=1

ℓiϕ(ai ⊗ bi) =
k
∑
i=1

ℓiϕν((ai , bi)) =
k
∑
i=1

ℓiθ((ai , bi)),

which equals∑k
i=1 ℓi(α(ai) ⊗ β(bi)) by de�nition of θ.

This use of the mapping property is typical in situations where a mapping from a
tensor product is to be de�ned and the problem of non-uniqueness of expression in
terms of tensors must be faced.

Important special cases of (13.1.3) arise when α or β is an identity map. Speci�cally,
given module homomorphisms α : MR → M�

R and β : RN → RN�, we can form the
induced homomorphisms

α∗ = α ⊗ idN and β∗ = idM ⊗ β.

Thus α∗ and β∗ are homomorphisms from M ⊗R N to M� ⊗R N and M ⊗R N to M ⊗R N�

respectively. Moreover, α∗(a⊗b) = α(a)⊗b and β∗(a⊗b) = a⊗β(b)where a ∈ M, b ∈ N.
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Tensor products as modules. As has been observed, in general a tensor product is an
abelian groupwith nomodule structure other than overℤ. However, when themodules
in a tensor product have additional module structures, this is inherited by the tensor
product.

(13.1.4) Let SMR and RNT be modules over rings R, S, T as indicated. Then M ⊗R N is an
(S, T)-bimodulewith respect to the ring actions s⋅(a⊗b) = (s⋅a)⊗b and (a⊗b)⋅t = a⊗(b⋅t)
where a ∈ M, b ∈ N, s ∈ S, t ∈ T.

Proof. Fix s in S and consider the mapping α(s) : MR → MR in which α(s)(a) = s ⋅ a.
This is a homomorphism of right R-modules, as an easy check reveals. By (13.1.3) we
can form the induced homomorphism (α(s))∗ : M ⊗R N → M ⊗R N. This enables us
to de�ne a left action of S on M ⊗R N by s ⋅ x = (α(s))∗(x) for x ∈ M ⊗R N. This is
certainly well de�ned, but we still need to verify the module axioms. First note that
s ⋅ (a ⊗ b) = (α(s))∗(a ⊗ b) = (α(s)(a)) ⊗ b = (s ⋅ a) ⊗ b where a ∈ M, b ∈ N.

Turning to themodule axioms, we have s ⋅ (x1+x2) = (α(s))∗(x1+x2) = (α(s))∗(x1)+
(α(s))∗(x2) = s ⋅ x1 + s ⋅ x2, where s ∈ S and xi ∈ M ⊗R N, since α(s) is a homomorphism.
Next let si ∈ S; then (s1+s2) ⋅ (a⊗b) = ((s1+s2) ⋅a)⊗b = (s1 ⋅a+s2 ⋅a)⊗b = s1 ⋅ (a⊗b)+
s2 ⋅ (a⊗b). This implies that (s1+ s2) ⋅ x = s1 ⋅ x+ s2 ⋅ x for all x inM⊗R N, since the latter
is generated by the tensors a ⊗ b and (α(s))∗ is a homomorphism. As for the last module
axiom, s1 ⋅(s2 ⋅(a⊗b)) = s1 ⋅((s2 ⋅a)⊗b) = (s1 ⋅(s2 ⋅a))⊗b = ((s1s2)⋅a)⊗b = (s1s2)⋅(a⊗b),
which is su�cient for the proof since M ⊗R N is generated by the tensors a ⊗ b.

The right action of T arises in a similar fashion from the map
β(t) :R N →R N, (t ∈ T), in which β(t)(b) = b ⋅ t for b ∈ N. Thus x ⋅ t is de�ned to
be (β(t))∗(x). To complete the proof the reader should verify the bimodule condition,
s ⋅ (x ⋅ t) = (s ⋅ x) ⋅ t for s ∈ S, t ∈ T, x ∈ M ⊗R N, noting that it is enough to do this when
and x is a tensor.

We remark that there are versions of (13.1.4) applicable to the module situations
SMR, RN andMR, RNT , whenM ⊗R N is only either a left S-module or a right T-module
respectively.

In the case of a commutative ring there is no di�erence between left and right
modules, as we saw (9.1), so the tensor product is always a bimodule.

(13.1.5) Let M and N be modules over a commutative ring R. Then M ⊗R N is an (R, R)-
bimodule. Furthermore,

r ⋅ (a ⊗ b) = (r ⋅ a) ⊗ b = a ⊗ (b ⋅ r) = (a ⊗ b) ⋅ r

where a ∈ M, b ∈ N, r ∈ R.
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Exercises (13.1)

(1) Let R, S, T be rings and SMR , RNT modules. State what module structure the fol-
lowing tensor products possess and give the module action in each case: R ⊗R N and
M ⊗R R.

(2) Let M and N be R-modules where R is a commutative ring. Prove that M ⊗R N
R≃

N ⊗R M.
(3) Let A be an abelian torsion group, i.e., each element of A has �nite order. Prove that
A ⊗ ℚ = 0.
(4) Let A and B be abelian torsion groups such that elements from A and B have
relatively prime orders. Prove that A ⊗ B = 0.
(5) Let R be a ring and letMR and RN be modules. Prove thatM ⊗R N ≃ N ⊗Ropp M. (Here
Ropp is the opposite ring of R – see (9.1)).
(6) Let α : A → A1, β : B → B1, ã : A1 → A2, δ : B1 → B2 be module homomor-
phisms. Prove that (ã⊗ δ)(α ⊗ β) = (ãα) ⊗ (δβ).
(7) Let A be the multiplicative group of all complex p-power roots of unity where p is a
prime. Prove that A ⊗ A = 0.
(8) Let R be a ring and M a right R-module. Also let α : A → B and β : B → C be
homomorphisms of left R-modules. Form the induced homomorphism α∗ = idM ⊗ α
and similarly form β∗ and (βα)∗. Prove that (βα)∗ = β∗α∗. (Compare this with (9.1.18)).

13.2 Properties of tensor products.

In this section we present a sequence of results about tensor products which aid in
their calculation.

(13.2.1) Let R be a ring with identity and let MR and RN be modules. Then
(i) M ⊗R R

R≃ M,
(ii) R ⊗R N

R≃ N,
via the respective isomorphisms in which a ⊗ r Ü→ a ⋅ r and r ⊗ b Ü→ r ⋅ b, (a ∈ M, b ∈
N, r ∈ R).

Proof. First observe thatM⊗R R and R⊗R N are respectively a right R-module and a left
R-module by (13.1.4). Only the �rst isomorphism will be proved. Consider the map from
M × R to M de�ned by (a, r) Ü→ a ⋅ r. This is clearly middle linear, so by the mapping
property there is a group homomorphism α : M ⊗R R → M such that α(a ⊗ r) = a ⋅ r. In
fact α is a homomorphism of right R-modules because

α((
k
∑
i=1

ℓi(ai ⊗ ri)) ⋅ r) = α(
k
∑
i=1

ℓi(ai ⊗ (rir))) =
k
∑
i=1

ℓiα(ai ⊗ (rir))
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=
k
∑
i=1

ℓi(ai ⋅ (rir)) = (
k
∑
i=1

ℓi(ai ⋅ ri)) ⋅ r = α(
k
∑
i=1

ℓi(ai ⊗ ri)) ⋅ r,

where ai ∈ M, r, ri ∈ R, ℓi ∈ ℤ.
To show that α is an isomorphism we produce an inverse function. De�ne β : M →

M ⊗R R by β(a) = a ⊗ 1R. This is certainly well de�ned and a simple check reveals that
αβ and βα are identity functions. Thus β = α−1.

(13.2.2) (Associativity of tensor products) Let R and S be rings and LR , RMS , SN mod-
ules as indicated. Then there is an isomorphism of groups

α : (L ⊗R M) ⊗S N → L ⊗R (M ⊗S N)

such that α((a ⊗ b) ⊗ c) = a ⊗ (b ⊗ c) where a ∈ L, b ∈ M, c ∈ N.

Proof. First note that these tensor products exist. Choose and �x c ∈ N; then observe
that the assignment (a, b) Ü→ a⊗(b⊗ c), where a ∈ L, b ∈ M, is an R-middle linear map
from L ×M to L ⊗R (M ⊗S N). By the mapping property there is a group homomorphism
βc : L ⊗R M → L ⊗R (M ⊗S N) such that βc(a ⊗ b) = a ⊗ (b ⊗ c).

Next the assignment(x, c) Ü→ βc(x) determines an S-middle linear map from (L ⊗R
M)×N to L⊗R (M⊗S N) – notice that βc1+c2 = βc1 +βc2 . Hence there is a homomorphism
α : (L ⊗R M) ⊗S N → L ⊗R (M ⊗S N) such that α((a ⊗ b) ⊗ c) = βc(a ⊗ b) = a ⊗ (b ⊗ c).
By a similar argument – which the reader should supply – there is a homomorphism
ã : L ⊗R (M ⊗S N) → (L ⊗R M) ⊗S N such that ã(a ⊗ (b ⊗ c)) = (a ⊗ b) ⊗ c. Since α and ã
are inverse functions, α is an isomorphism.

Here it should be noted that if there is additional module structure in (13.2.2),
the map α may be a module isomorphism. Speci�cally, if we have QLR or SNT with
rings Q and T, then α is a homomorphism of left Q-modules or of right T-modules
respectively. For example, in the �rst case, if a ∈ L, b ∈ M, c ∈ N, q ∈ Q, then we have
α(q ⋅ ((a⊗b)⊗c)) = α(((q ⋅a)⊗b)⊗c) = (q ⋅a)⊗(b⊗c) = q ⋅ (a⊗(b⊗c)) = q ⋅α((a⊗b)⊗c),
which implies that α is a Q-module homomorphism.

(13.2.3) (Distributivity of tensor products) Let R be a ring and let LR , RM, RN be
modules. Then there is a group homomorphism

α : L ⊗R (M ⊕ N) → (L ⊗R M) ⊕ (L ⊗R N)

such that α(a ⊗ (b ⊕ c)) = (a ⊗ b) ⊕ (a ⊗ c), where a ∈ L, b ∈ M, c ∈ N.

(Here, in order to improve the notation, we are writing b ⊕ c for (b, c) ∈ M ⊕N, etc).

Proof. Let a ∈ L, b ∈ M, c ∈ N. Then the assignment (a, b ⊕ c) Ü→ (a ⊗ b) ⊕ (a ⊗ c)
determines a middle linear map from L × (M ⊕ N) to (L ⊗R M) ⊕ (L ⊗R N), so there is a
group homomorphism α : L⊗R (M ⊕N) → (L⊗RM) ⊕ (L⊗R N) such that α(a⊗ (b⊕ c)) =
(a ⊗ b) ⊕ (a ⊗ c).
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Next the canonical injections ιM : M → M ⊕N and ιN : N → M ⊕N lead to induced
homomorphisms (ιM)∗ : L ⊗R M → L ⊗R (M ⊕ N) and (ιN)∗ : L ⊗R N → L ⊗R (M ⊕ N).
Combine (ιM)∗ and (ιN)∗ to produce a homomorphism β : (L ⊗R M) ⊕ (L ⊗R N) →
L ⊗R (M ⊕ N)which sends (a ⊗ b) ⊕ 0 to a ⊗ (b ⊕ 0) and 0 ⊕ (a ⊗ c)) to a ⊗ (0 ⊕ c). Hence
β((a⊗b)⊕(a⊗c)) = a⊗(b⊕c). Since α and β are inversemaps, α is an isomorphism.

Once again, given the extra module structure SLR or RMT and RNT , it is easy to
verify that α is a left S- or a right T-module isomorphism respectively.

Tensor products of quotients. There is a useful technique for computing the tensor
product of two quotient modules. Let R be a ring and let MR , RN be modules with
respective submodules M0 and N0. De�ne

S = ⟨a ⊗ b | a ∈ M0 or b ∈ N0⟩,

which is a subgroup ofM ⊗R N. With this notation we have the fundamental result that
follows.

(13.2.4) There is an isomorphism

α : (M/M0) ⊗R (N/N0) → (M ⊗R N)/S

such that α((a +M0) ⊗ (b + N0)) = a ⊗ b + S.

Proof. In the �rst place the assignment (a + M0, b + N0) Ü→ a ⊗ b + S gives rise to a
well de�ned middle linear mapping from M/M0 × N/N0 to (M ⊗R N)/S, by de�nition
of S. Hence there is a homomorphism α : (M/M0) ⊗R (N/N0) → (M ⊗R N)/S such that
α((a +M0) ⊗ (b + N0)) = a ⊗ b + S. Next let π : M → M/M0 and σ : N → N/N0 denote
the canonical homomorphisms. Now form the homomorphism β̄ = π ⊗ σ; thus β̄ sends
a⊗b to (a+M0)⊗(b+N0). Observe that β̄maps each generator of S to 0, so that β̄|S = 0.
Therefore we can de�ne unambiguously a mapping

β : (M ⊗R N)/S → (M/M0) ⊗R (N/N0)

by β(x + S) = β̄(x). Note that β(a ⊗ b + S) = β̄(a ⊗ b) = (a + M0) ⊗ (b + N0). Finally, α
and β are inverse maps, so α is an isomorphism.

As usual when additional module structure in M or N is present, α is a module
isomorphism. A �rst application of (13.2.4) is to compute tensor products in which one
factor is a cyclic module. But �rst recall from (9.1.8) that if R is a ring with identity, a
cyclic left R-module is isomorphic with a module RR/I where I is a left ideal of R, and
there is a corresponding statement for cyclic right modules.

(13.2.5) Let R be a ring with identity and let I, J be left and right ideals of R respectively.
Let MR and RN be modules. Then
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(i) M ⊗R (RR/I) ≃ M/(M ⋅ I);
(ii) (RR/J) ⊗R N ≃ N/(J ⋅ N).

In the statement of this resultM ⋅ I denotes the subgroup generated by all elements
of the form a ⋅ i where a ∈ M and i ∈ I, with a similar explanation for J ⋅ N.

Proof. Only (i)will be proved.Apply (13.2.4)withM0 = 0andN0 = I. ThenM⊗R(RR/I) ≃
(M ⊗R R)/S and it is just a question of identifying the subgroup S = ⟨a ⊗ i | a ∈ M, i ∈ I⟩.
By (13.2.1) the assignment a ⊗ r Ü→ a ⋅ r determines an isomorphism α : M ⊗R RR → M.
The image of S under α is generated by the elements a ⋅ i, where a ∈ M, i ∈ I; therefore
α(S) = M ⋅ I and M ⊗R (RR/I) ≃ M/(M ⋅ I).

Corollary (13.2.6) If I and J are respectively left and right ideals of a ring R with identity,
the mapping (r1 + J) ⊗ (r2 + I) Ü→ r1r2 + (I + J) yields an isomorphism

(RR/J) ⊗R (RR/I) ≃ R/(I + J).

Moreover, if I and J are two sided ideals, the isomorphism is of (R, R)-bimodules.

Proof. From (13.2.5)(i) we have

(RR/J) ⊗R (RR/I) ≃ (R/J)/((R/J) ⋅ I) = (R/J)/(I + J/J),

which by (9.1.7) is isomorphic with R/(I + J). Composition of the isomorphisms yields
the map stated. If I and J are two sided ideals, each module is an (R, R)-bimodule and
clearly the isomorphism is of R-modules.

For example, ifm, n are positive integerswith d = gcd{m, n}, then dℤ = mℤ+nℤ =
(m) + (n) and it follows from (13.2.6) that

ℤm ⊗ ℤn = ℤ/(m) ⊗ ℤ/(n) ≃ ℤ/((m) + (n)) = ℤ/(d) = ℤd . (∗)

Example (13.2.1) Let A = ℤ ⊕ ℤ3 ⊕ ℤ52 and B = ℤ ⊕ ℤ32 ⊕ ℤ52 ⊕ ℤ7. Applying the
distributive property together with (13.2.1) and the isomorphism (∗), we obtain

A ⊗ B ≃ ℤ ⊕ ℤ3 ⊕ ℤ3 ⊕ ℤ32 ⊕ ℤ52 ⊕ ℤ52 ⊕ ℤ52 ⊕ ℤ7.

Tensor products of freemodules. A tensor product of freemodules over a commutative
ring with identity is in fact always a free module. For simplicity of presentation we will
discuss only the case where the free modules are �nitely generated.

(13.2.7) Let R be a commutative ring with identity and let M and N be �nitely generated
free R-modules with respective bases {x1, x2, . . . , xm} and {y1, y2, . . . , yn}. ThenM⊗RN
is a free R-module with basis {xi ⊗ yj | i = 1, 2, . . . ,m, j = 1, 2, . . . , n}.
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Proof. We have N = R ⋅ y1 ⊕ R ⋅ y2 ⊕ ⋅ ⋅ ⋅ ⊕ R ⋅ yn and hence by the distributive law

M ⊗R N
R≃ (M ⊗R (R ⋅ y1)) ⊕ (M ⊗R (R ⋅ y2)) ⊕ ⋅ ⋅ ⋅ ⊕ (M ⊗R (R ⋅ yn)).

Now R ⋅ yj
R≃ R, since r ⋅ yj = 0 implies that r = 0. ThusM ⊗R (R ⋅ yj)

R≃ M ⊗R R
R≃ M, and

the image of xi ⊗ yj under the composite of these isomorphisms is xi. Therefore the
xi ⊗ yj , i = 1, 2, . . . ,m, are R-linearly independent, so they form a basis ofM⊗R (R ⋅ yj),
which implies the result.

Corollary (13.2.8) Let M and N be free modules with �nite rank over R, a commutative
noetherian ring with identity. Then rank(M ⊗R N) = rank(M) ⋅ rank(N).

For the concept of rank see (9.1.15) and its sequel. Note that for a vector space rank
equals dimension; thus if V andW are �nite dimensional vector spaces over a �eld F,
then V ⊗F W is �nite dimensional and dim(V ⊗F W) = dim(V) ⋅ dim(W).

Tensor products of matrices. We have seen how to form the tensor product of module
homomorphisms in (13.1.3). The close connection between matrices and linear map-
pings suggests that there should be a corresponding way to form tensor products of
matrices.

Let A and B be m × n and p × q matrices respectively over a �eld F. Then there
are corresponding linear transformations α : Fn → Fm and β : Fq → Fp de�ned
by equations α(X) = AX and β(Y) = BY. Let E(n)i denote the ith column of the n × n
identity matrix In. Thus {E(n)i | i = 1, . . . , n} is the standard basis of Fn. The linear
transformation α is represented with respect to the bases {E(n)i } and {E(m)

j } by the
matrix A. There is a similar statement for β.

By de�nition of the linear mapping α ⊗ β : Fn ⊗F Fq → Fm ⊗F Fp,

α ⊗ β(E(n)i ⊗ E(q)j ) = α(E(n)i ) ⊗ β(E(q)j ),

which equals
m
∑
k=1

akiE(m)
k ⊗

p
∑
ℓ=1

bℓjE(p)ℓ =
m
∑
k=1

p
∑
ℓ=1

akibℓj(E(m)
k ⊗ E(p)ℓ ).

Now (13.2.7) shows that the E(n)i ⊗E(q)j form a basis for Fn ⊗F Fq, as do the E(m)
k ⊗E(p)ℓ

for Fm ⊗F Fp. Let these bases be ordered lexicographically, i.e., by �rst subscript, then
second subscript. With this choice of ordered bases we can read o� the mp × nqmatrix
M which represents the linear mapping α ⊗ β. The rows of M are labelled by the pairs
[k, ℓ], 1 ≤ k ≤ m, 1 ≤ ℓ ≤ p, and the columns by the pairs [i, j], 1 ≤ i ≤ n, 1 ≤ j ≤ q.
Therefore the ([k, ℓ], [i, j]) entry of M is

akibℓj .

The foregoing discussion suggests that we de�ne the tensor product A ⊗ B of A
and B to be the mp × nq matrixM. In essence the entries of A ⊗ B are formed by taking
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all possible products of an entry of A and an entry of B. Writing the matrix in block
form, we obtain the more easily remembered formula

M = A ⊗ B =
[[[[

[

a11B a12B . . . a1nB
a21B a22B . . . a2nB
. . . . . .

am1B am2B . . . amnB

]]]]

]

.

The tensor product of matrices is sometimes called the Kronecker product.¹

Example (13.2.2). Consider the matrices

A = [
a11 a12
a21 a22

] and B = [
b11 b12
b21 b22

] .

The tensor product is

A ⊗ B =
[[[[

[

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

]]]]

]

.

Right exactness of tensor products. The section concludes with a discussion of the
right exactness property of tensor products, a fundamental result that is used constantly
in advanced work.

(13.2.9) Let MR and RN be modules over a ring R.
(i) Let A α

→ B
β
→ C → 0 be an exact sequence of left R-modules. Then there is an exact

sequence of abelian groups and induced homomorphisms

M ⊗R A
α∗→ M ⊗R B

β∗→ M ⊗R C → 0.

(ii) Let A α
→ B

β
→ C → 0 be an exact sequence of right R-modules. Then there is an exact

sequence of abelian groups and induced homomorphisms

A ⊗R N
α∗→ B ⊗R N

β∗→ C ⊗R N → 0.

Proof. Only (i) will be proved. The �rst step is to show that β∗ is surjective. Let m ∈ M
and c ∈ C. Since β is surjective, c = β(b) for some b ∈ B. Hence β∗(m ⊗ b) = (idM ⊗

1 Leopold Kronecker (1823–1891)
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β)(m ⊗ b) = m ⊗ β(b) = m ⊗ c. SinceM ⊗R C is generated by the tensorsm ⊗ c, it follows
that β∗ is surjective.

It remains to prove that Im(α∗) = Ker(β∗), which is harder. In the �rst place,
β∗α∗ = (βα)∗ = 0∗ = 0 by Exercise (13.1.8), so that Im(α∗) ⊆ Ker(β∗). To establish the
reverse inclusion we form the commutative triangle

C
β ↗ ↖ã

B Ú→
ν

B/Ker(β)

where ν is the canonical homomorphism and ã is the isomorphism in the First Isomor-
phism Theorem which sends b + Ker(β) to β(b). Commutativity of the diagram is easily
checked, so ãν = β. This implies that ã∗ν∗ = (ãν)∗ = β∗. Since ã is an isomorphism, so
is the induced map ã∗ and hence Ker(β∗) = Ker(ν∗).

De�ne
S = ⟨m ⊗ k | m ∈ M, k ∈ Ker(β)⟩.

Then S = Im(α∗) since Ker(β) = Im(α). Next S ⊆ Ker(ν∗); for, if m ∈ M and k ∈ Ker(β),
we have ν∗(m ⊗ k) = m ⊗ (k + Ker(β)) = m ⊗ 0 = 0. Hence ν∗ induces a homomorphism
λ : (M ⊗R B)/S → M ⊗R (B/Ker(β)) such that λ(u + S) = ν∗(u) for u ∈ M ⊗R B. Thus
λ(m ⊗ b + S) = ν∗(m ⊗ b) = m ⊗ (b + Ker(β)). By (13.2.4) there is an isomorphism
θ : M ⊗ (B/Ker(β)) → (M ⊗R B)/S such that θ(m ⊗ (b +Ker(β))) = m ⊗ b + S. Notice that
θ and λ are mutually inverse maps, so λ = θ−1 is an isomorphism. If u ∈ Ker(ν∗), then,
since ν∗ induces λ, we have u + S ∈ Ker(λ) = 0M⊗RB/S and u ∈ S. Hence Ker(ν∗) ⊆ S and
�nally Ker(β∗) = Ker(ν∗) ⊆ S = Im(α∗), so that Ker(β∗) = Im(α∗), as required.

The right exactness property of tensor products should be compared with the
left exactness of Hom in Chapter Nine – see (9.1.19). The “duality" between the the
tensor product and Hom indicated by (13.2.9) and (9.1.19) is just the beginning of a
fundamental duality in homological algebra between homology and cohomology.

Exercises (13.2)

(1) Given amodule RNS where R and S are rings and R has identity, prove that R⊗RN
S≃ N.

(2) Simplify (ℤ ⊕ ℚ ⊕ ℤ18) ⊗ (ℚ ⊕ ℤ5 ⊕ ℤ24) as far as possible.
(3) Show by an example that the tensor product does not have the left exactness

property, i.e., if M is a right R-module and 0 → A α
→ B

β
→ C is an exact sequence of

left R-modules, the induced sequence 0 → M ⊗R A
α∗→ M ⊗R B

β∗→ M ⊗R C is not exact
in general. [Hint: applyℤ2 ⊗ − to the sequence 0 → ℤ → ℚ → ℚ/ℤ].
(4) Let A and B be m × m and n × n matrices over a �eld. Prove that det(A ⊗ B) =
(det(A))n(det(B))m. Deduce that the tensor product of non-singular matrices is non-
singular. [Hint: de�ne Ā to be the mn × mn block matrix whose (i, j) block is aij In and
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let B♯ be the mn ×mn block matrix with B on the diagonal and 0 elsewhere. Show that
A ⊗ B = ĀB♯. Then take the determinant of both sides].
(5) Let Q, R, S be rings and QLR , RMS , SN modules as indicated. Prove that there is an
isomorphism of left Q-modules α : (L ⊗R M) ⊗S N → L ⊗R (M ⊗S N).

(6) Let RN be a module over an arbitrary ring R. Suppose that A α
→ B

β
→ C → 0 is an

exact sequence of right R-modules. Prove that the sequence of abelian groups and
induced homomorphisms

A ⊗R N
α∗→ B ⊗R N

β∗→ C ⊗R N → 0

is exact.
(7) (Adjoint associativity). Let R and S be rings and AR , RBS , CS modules. (i) Explain
why HomS(B, C) is a right R-module. (ii) Establish the isomorphismHomS(A⊗R B, C) ≃
HomR(A, HomS(B, C)).

13.3 Extending the ring of operators.

Suppose we have a module over a ring R: is there a way to make it into a module over
a di�erent ring S? Of course the question is vague, but one situation in which this is
possible is if a ring homomorphism ϕ : S → R is given. For, if M is a left R-module, a
left action of S onM can be de�ned by the rule s ⋅ a = ϕ(s) ⋅ a for s ∈ S and a ∈ M. The
simple task of verifying the module axioms is left to the reader.

It is a less trivial exercise to go in the opposite direction: let M be a left R-module
and let ϕ : R → S be a ring homomorphism. The question is: how can one associate a
left S-module with M? At this point tensor products come to our aid. First observe that
S is a (S, R)-bimodule where the left action comes from the ring product in S and the
right action of R on S is given by s ⋅ r = sϕ(r), (s ∈ S, r ∈ R). Again veri�cation of the
module axioms is easy. Therefore we can form the tensor product S ⊗R M, which is a
left S-module by (13.1.4), and also a left R-module via ϕ.

One can ask how the new R-module S ⊗R M is related to the original module M. If
S has an identity element, there is an obvious mapping

θ : M → S ⊗R M

given by θ(a) = 1S ⊗ a. Observe that θ(r ⋅ a) = 1S ⊗ (r ⋅ a) = (1S ⋅ r) ⊗ a = (1Sϕ(r)) ⊗ a =
(ϕ(r)1S) ⊗ a = (r ⋅ 1S) ⊗ a = r ⋅ (1S ⊗ a) = r ⋅ (θ(a)), where r ∈ R, a ∈ M. Therefore θ is
a homomorphism of left R-modules.

A case of particular interest is where ϕ is injective, so that R is essentially a subring
of S. In this circumstance we are extending the ring of operators on a module from
the subring R to S. The interesting question is whether θ is also injective. A detailed
investigation of the problem would take us too far a�eld, so we will restrict ourselves to



13.3 Extending the ring of operators. | 289

the special, but important, case where R is a domain and ϕ is the canonical injection
from R into its �eld of fractions F. Thus we are trying to embed an R-module in an
F-vector space.

Tensor products and localizations. Let R be a domain with �eld of fractions F. Recall
from (6.3) that each element of F is a fraction over R with the form r1

r2 where ri ∈ R and
r2 ̸= 0. Also there is an injective ring homomorphism ϕ : R → F in which r Ü→ r

1 : this
is by (6.3.10).

Assume now that M is a torsion-free R-module. We are interested in the mapping
ψ : M → F ⊗R M where ψ(a) = 1F ⊗ a, the aim being to prove that it is injective. Before
this can be done, a better understanding of F ⊗R M is needed and for this purpose a
“model" of this F-module will be constructed.

We start by forming the set

S = {(a, r) | a ∈ M, 0 ̸= r ∈ R}

and then introduce a binary relation ∼ on S by

(a, r) ∼ (a�, r�) ⇔ r ⋅ a� = r� ⋅ a.

The motivation here is the rule for equality of two rational numbers. By a simple check
∼ is an equivalence relation on S, but notice that for the transitive law to hold it is
essential that M be torsion-free. The ∼-equivalence class of (a, r) will be written

a
r

and referred to as a fraction over R. Denote the set of all such fractions by R−1 ⋅M.
The plan is to turn R−1 ⋅M into an F-module by de�ning

a1
r1

+
a2
r2

=
r2 ⋅ a1 + r1 ⋅ a2

r1r2
and (

r1
r2

) ⋅
a
r =

r1 ⋅ a
r1r2

.

Since these are operations on equivalence classes, it is essential to verify that they are
well de�ned, i.e., there is no dependence on the choice of elements (ai , ri) from ai

ri or
(a, r) from a

r . All of this is routine calculation, which, as usual, we urge the reader to
perform.

Then the module axioms must be checked. For example,

(
r
r� ) ⋅ (

a1
r1

+
a2
r2

) = (
r
r� ) ⋅ (

r2 ⋅ a1 + r1 ⋅ a2
r1r2

) =
rr2 ⋅ a1 + rr1 ⋅ a2

r�r1r2
.

Also
(
r
r� ) ⋅ (

a1
r1

) + (
r
r� ) ⋅ (

a2
r2

) =
r ⋅ a1
r�r1

+
r ⋅ a2
r�r2

=
rr�r2 ⋅ a1 + rr�r1 ⋅ a2

r�2r1r2
,

which is seen to equal the previous expression after allowing for cancellation of the
common factor r� in the numerator and denominator.
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The module R−1 ⋅M is called the localization of M. The statement we are aiming
for is next.

(13.3.1) Let R be an integral domain and F its �eld of fractions. If M is a torsion-free
R-module, then

R−1 ⋅M F≃ F ⊗R M.

Proof. The assignment ( r1r2 , a) Ü→
r1 ⋅a
r2 yields a well de�ned R-middle linear mapping

from F ×M to R−1 ⋅M. For example, the map sends ( r1r2 , a1 + a2) − ( r1r2 , a1) − ( r1r2 , a2) to

r1 ⋅ (a1 + a2)
r2

−
r1 ⋅ a1
r2

−
r1 ⋅ a2
r2

= 0.

The other veri�cations are at a similar level of di�culty.
It follows that there is a homomorphism π : F ⊗

R
M → R−1 ⋅M such that π( r1r2 ⊗ a) =

r1 ⋅a
r2 . Now check that π is an F-module homomorphism. Let r, r�, ri ∈ R, a ∈ M; then

π( rr� ⋅ (
r1
r2

⊗ a)) = π( rr1r�r2
⊗ a) = rr1 ⋅ a

r�r2
=
r
r� ⋅ (

r1 ⋅ a
r2

) =
r
r� ⋅ (π(

r1
r2

⊗ a)),

which is su�cient because F ⊗R M is generated by the tensors r1
r2 ⊗ a.

Next de�ne a mapping ψ : R−1 ⋅M → F ⊗R M by ψ( ar ) =
1
r ⊗ a. To show that ψ is

well de�ned, suppose that (a, r) ∼ (a�, r�). Thus r ⋅ a� = r� ⋅ a and

1
r ⊗ a =

r�

rr� ⊗ a =
1
rr� ⊗ (r� ⋅ a) = 1

rr� ⊗ (r ⋅ a�) = r
rr� ⊗ a

� =
1
r� ⊗ a

�,

as required.
Finally, π and ψ are mutually inverse maps: for πψ( ar ) = π(

1
r ⊗ a) =

1⋅a
r = a

r , while

ψπ( r1r2
⊗ a) = ψ( r1 ⋅ ar2

) =
1
r2

⊗ (r1 ⋅ a) =
r1
r2

⊗ a.

Again this is su�cient since F ⊗R M is generated by the tensors r1
r2 ⊗ a. Therefore ψ is

an F-isomorphism.

Corollary (13.3.2) Let R be an integral domain and F its �eld of fractions. If M is a
torsion-free R-module, the assignment a Ü→ 1 ⊗ a determines an injective R-module
homomorphism θ : M → F ⊗R M.

Proof. Assume that θ(a) = 0 for some a ∈ M, so that 1 ⊗ a = 0. Apply the isomorphism
π in the proof of (13.3.1) to both sides of this equation to get a1 = π(1 ⊗ a) = 0

1 , which
implies that a = 0.

This corollary provides some insight into the nature of torsion-free abelian groups,
but �rst some terminology. A torsion-free abelian group A is said to have �nite rank if it



13.3 Extending the ring of operators. | 291

has no in�nite linearly independent subsets. In this event A must possess a maximal
linearly independent subset {a1, a2, . . . , ar} since otherwise there would exist in�nite
linearly independent subsets.

(13.3.3) If A is a torsion-free abelian group, then A is isomorphic with a subgroup of the
rational vector space V = ℚ ⊗ A. If A has �nite rank, then V has �nite dimension.

Proof. Let θ : A → ℚ ⊗ A be the mapping a → 1 ⊗ a. By (13.3.2) θ is an injective
homomorphism, which proves the �rst statement. Now assume that A has �nite rank
and S = {a1, . . . , ar} is a maximal linearly independent subset of A. Then T = θ(S)
is linearly independent since θ is injective. If r1r2 ⊗ a is a typical tensor in V with ri ∈
ℤ, a ∈ A, then r2( r1r2 ⊗ a) = r1(1 ⊗ a) ∈ ⟨T⟩, which shows that every element ofℚ ⊗ A
is aℚ-linear combination of elements of T and consequently that T is aℚ-basis for V.
Hence dimℚ(V) = r is �nite.

Notice that the proof shows that all maximal linearly independent subsets of A
have the same number of elements, namely dimℚ(ℚ ⊗ A).

While (13.3.3) provides a familiar setting for torsion-free abelian groups of �nite
rank, in the sense that they “live" inside �nite dimensional rational vector spaces,
this placement does not materially advance the classi�cation of these groups. In fact
torsion-free abelian groups of �nite rank can have extremely complex structure, far
beyond that of �nitely generated abelian groups: the standard reference for in�nite
abelian groups is [5].

Exercises (13.3)

(1) Let F be a sub�eld of a �eld K and let V be an n-dimensional vector space over F.
Prove that V ⊗F K is an n-dimensional vector space over K.

[In the exercises that follow R is a domain with �eld of fractions F with R ⊆ F, and
M is an R-module].
(2) Prove that the module operations speci�ed for R−1 ⋅M are well de�ned.
(3) Prove that every element of F ⊗R M has the form 1

r ⊗ a where r ∈ R, a ∈ M.
(4) Let T denote the torsion submodule of M.

(i) Prove that F ⊗R T = 0.
(ii) Prove that F ⊗R M

R≃ F ⊗R (M/T). [Hint: start with the exact sequence 0 → T →
M → M/T → 0 and apply the right exactness property of tensor products].

(5) (The �atness property of F). Let α : A → B be an injective R-module homomorphism.
Prove that the induced map α∗ : F ⊗R A → F ⊗R B is also injective. [Hint: by Exercise
(13.3.4) A and B can be assumed to be torsion-free. Form the commutative square with
horizontal sides A α

→ B and F ⊗R A
α∗→ F ⊗R B, and vertical sides the canonical maps
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A → F ⊗R A and B → F ⊗R B. The vertical maps are injective by (13.3.2). Argue that the
lower horizontal map is also injective by using Exercise (13.3.3)].

(6) If 0 → A α
→ B

β
→ C → 0 is an exact sequence of R-modules, show that the induced

sequence 0 → F ⊗R A
α∗→ F ⊗R B

β∗→ F ⊗R C → 0 is also exact.

(7) Prove that F ⊗R F
R≃ F. [Hint: apply F ⊗R − to the exact sequence 0 → R → F →

F/R → 0].



14 Further topics

The �nal chapter begins with an account of Zorn’s¹ Lemma and includes such critical
applications as the existence of a basis in a vector space and the algebraic closure of a
�eld. It also gives an introduction to free groups and presentations of groups, as well
as to coding theory, an important recent application of algebra. The other sections tie
up some loose ends left over from earlier chapters.

14.1 Zorn’s Lemma with applications

The background to Zorn’s Lemma lies in the kind of set theory that is being used. Up
to this point we have been functioning – quite naively – in what is called the Gödel–
Bernays Theory. In this the primitive, or unde�ned, notions are class, membership
and equality. On the basis of these concepts and the accompanying axioms, the usual
elementary properties of sets can be derived. In addition we have made extensive
use of the Well Ordering Axiom forℤ, and its corollary the Principle of Mathematical
Induction – see (2.1).

However, the set theory just described does not provide an adequate basis for
dealing with in�nite sets. For example, suppose that H is a subgroup of in�nite index
in a group G. We might wish to form a left transversal to H in G. This would involve
making a simultaneous choice of one element from each of the in�nitely many left
cosets of H. That such a choice is possible is asserted by the well-known Axiom of
Choice. However, this axiom is known to be independent of the Gödel–Bernays axioms.
Thus, in order to be able to form left transversals in in�nite groups, we must assume
the Axiom of Choice or else something equivalent to it. For many purposes in algebra
the most useful additional axiom is what has become known as Zorn’s Lemma. Despite
the name, this is an axiom that must be assumed and not a lemma.

Zorn’s Lemma. Let (S, ⪯) be a non-empty partially ordered set with the property that
every chain in S has an upper bound in S. Then S contains at least one maximal element.

The terminology here calls for some explanation. Recall from (1.2) that a chain in
the partially ordered set S is a subset C which is linearly ordered by the partial order ⪯.
An upper bound for C is an element s of S such that c ⪯ s is valid for all c in C. Finally,
amaximal element of S is an element m such that m ⪯ s ∈ S implies that m = s. Note
that in general a partially ordered set may contain several maximal elements or none
at all.

We will now demonstrate how Zorn’s Lemma can be used to prove a number of
critical theorems in algebra.

1 Max August Zorn (1906-1993)
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Existence of a basis in a vector space. It was shown in Chapter Eight that every �nitely
generated non-zero vector space has a basis – see (8.2.7). Zorn’s Lemma can be used to
extend this fundamental result to in�nitely generated vector spaces.

(14.1.1) Every non-zero vector space has a basis.

Proof. Let V be a non-zero vector space over a �eld F and de�ne S to be the set of
all linearly independent subsets of V. The set S is non-empty since it contains the
singleton set {v}where v is any non-zero vector in V. Furthermore, inclusion is a partial
order on S, so (S, ⊆) is a partially ordered set. To apply Zorn’s Lemma, we need to verify
that every chain in S has an upper bound.

Let C be a chain in S. There is an obvious candidate for an upper bound, namely
the union U = ⋃X∈C X. Certainly U is linearly independent: for any relation of linear
dependence in U will involve a �nite number of elements of S and so the relation will
hold in some X ∈ C. Here it is vital that C be linearly ordered. Thus U ∈ S and obviously
U is an upper bound for C.

It is now possible to apply Zorn’s Lemma to obtain a maximal element in S, say B.
By de�nition B is linearly independent: to show that B is a basis we must prove that B
generates V. Assume this is false and let v be a vector in V that is not expressible as a
linear combination of vectors in B; then certainly v ∉ B andhence B is a proper subset of
{v} ∪ B = B�. By maximality of B, the set B� does not belong to S and hence it is linearly
dependent. Therefore there is a linear relation a1u1 + a2u2 + ⋅ ⋅ ⋅ + amum + cv = 0
where ui ∈ B and c, ai ∈ F, with not all the coe�cients being zero. If c = 0, then
a1u1 + a2u2 + ⋅ ⋅ ⋅ + amum = 0, so that a1 = a2 = ⋅ ⋅ ⋅ = am = 0 since u1, u2, . . . , um are
linearly independent. Therefore c ̸= 0 and we can solve the equation for v, obtaining

v = (−c−1a1)u1 + (−c−1a2)v2 + ⋅ ⋅ ⋅ + (−c−1am)um ,

which contradicts the choice of v. Hence B generates V.

In fact any two bases of a vector space have the same cardinal, so that it is possible
to de�ne the dimension of an in�nitely generated vector space to be this cardinal. The
proof below requires some facts from cardinal arithmetic.

(14.1.2) Let X and Y be bases of a vector space V over a �eld F. Then |X| = |Y|.

Proof. In the �rst place, if one basis is �nite, the result follows from (8.2.8), so we may
assume that both X and Y are in�nite. Let Pf (Y) denote the set of all �nite subsets
of Y. De�ne a function α : X → Pf (Y) as follows. If x ∈ X and x = k1y1 + ⋅ ⋅ ⋅ + knyn
with distinct yi ∈ Y and 0 ̸= ki ∈ F, de�ne α(x) = {k1, . . . , kn}. The function α is not
injective, so we will modify it.

Let T = {y1, y2, . . . , yn} ⊆ Y, so that T ∈ Pf (Y).We claim that T̄ = {x ∈ X | α(x) ∈ T}
is �nite. For if not, there are in�nitely many elements of X that are linear combinations
of y1, y2, . . . , yn, contradicting (8.2.3). Let the elements of each T̄ be linearly ordered
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in some way. Next de�ne a function β : X → Im(α) × ℕ by the rule β(x) = (T,m)where
α(x) = T – so that x ∈ T̄ – and x is the mth element of T̄. It is clear that β is injective.
Therefore

|X| ≤ |Im(α) × ℕ| ≤ |Pf (Y)| ⋅ ℵ0 = |Y| ⋅ ℵ0 = |Y|.

In a similar way |Y| ≤ |X|, so by the Cantor-Bernstein Theorem (1.4.2) we arrive at
|X| = |Y|.

In the foregoing proof we used two facts about cardinals: (i) |Pf (Y)| = |Y| – cf. Exer-
cise (1.4.8); (ii) |Y| ⋅ ℵ0 = |Y| if Y is in�nite. For the latter statement see for example [8].

Maximal ideals in rings. Recall from (6.3) that a maximal ideal I of a ring R is a largest
proper ideal. If R is commutative and has an identity, then by (6.3.7) this is equivalent
to I being an ideal such that R/I is a �eld. Maximal left ideals and maximal right ideals
are de�ned in a similar manner. Maximal ideals were used in (7.4) to construct �elds,
but only in circumstances where it was clear that they existed, for example when the
ascending chain on ideals held. Zorn’s Lemma can be used to produce maximal ideals
under more general circumstances.

(14.1.3) An arbitrary ring R with identity has at least one maximal ideal.

Proof. Let S denote the set of all proper ideals of R. Now the zero ideal is proper since
it does not contain 1R, so S is not empty. Of course, S is partially ordered by inclusion.
Let C be a chain in S and de�ne U to be ⋃I∈C I. It is easily seen that U is an ideal. If
U = R, then 1R belongs to some I in C, from which it follows that R = RI ⊆ I and I = R.
From this contradiction we infer that U ̸= R, so that U ∈ S. Now Zorn’s Lemma can be
applied to produce a maximal element of S, i.e., a maximal ideal of R.

In a similar manner one can show that a ring with identity has a maximal left ideal
and a maximal right ideal. An immediate consequence of (14.1.3) is:

(14.1.4) If R is a commutative ring with identity, it has a quotient ring which is a �eld.

On the other hand, not every commutative ring has a maximal ideal.

Example (14.1.1) There exist non-zero commutative rings without maximal ideals.
An easy way to get an example is to take the additive abelian groupℚ and turn

it into a ring by declaring all products to be 0. Thenℚ becomes a commutative ring
in which subgroups and ideals are the same. Butℚ cannot have a maximal subgroup:
for if S were one,ℚ/S would be a group without proper non-trivial subgroups and so
|ℚ/S| = p, a prime. But this is impossible sinceℚ = pℚ. It follows that the ring has no
maximal ideals.

A noteworthy application of (14.1.4) is to generalize (9.1.15) and (14.1.2) to free
modules over arbitrary commutative rings with identity.
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(14.1.5) Let R be a commutative ring with identity and let M be a free R-module. If X and
Y are bases of M, then |X| = |Y|.

Proof. By (14.1.4) there is a quotient K of R which is a �eld. The argument of (9.1.15)
can now be applied with an appeal to (14.1.2) at the appropriate point.

The existence of algebraic closures. Another important application of Zorn’s Lemma
is to show that for every �eld F there is a largest algebraic extension, its algebraic
closure. The construction of such a largest extension is the kind of task to which Zorn’s
Lemma is well-suited.

Let E be a �eld extension of F with F ⊆ E. Then E is called an algebraic closure of F
if the following conditions hold:
(i) E is algebraic over F;
(ii) every irreducible polynomial in E[t] has degree 1.
Notice that by the second condition if K is an algebraic extension of E, then K = E, so
that E is a maximal algebraic extension of F. A �eld that coincides with its algebraic
closure is called an algebraically closed �eld. For example, the complex �eld ℂ is
algebraically closed by the Fundamental Theorem of Algebra (12.3.6).

Our objective is to prove the following theorem:

(14.1.6) Every �eld has an algebraic closure.

Proof. Let F be an arbitrary �eld. The �rst step is to choose a set that is large enough
to accommodate the algebraic closure. In fact what is needed is a set S with cardinal
greater than ℵ0 ⋅ |F|: for example the set P(ℕ × F) will do – see (1.4.5). In particular
|F| < |S|, so there is an injection α : F → S. Now use the map α to turn Im(α) into a
�eld, by de�ning

α(x) + α(y) = α(x + y) and α(x)α(y) = α(xy)

where x, y ∈ F, and α(0F) and α(1F) are the zero element and identity element respec-
tively. Clearly Im(α) is a �eld isomorphic with F. Thus, replacing F by Im(α), we may
assume that F ⊆ S.

To apply Zorn’s Lemma we need to introduce a suitable partially ordered set. LetK
denote the set of all subsets E such that F ⊆ E ⊆ S and the �eld operations of F may
be extended to E in such a way that E becomes a �eld which is algebraic over F. Quite
obviously F ∈ K, so thatK is not empty. A partial order ⪯ onK is de�ned as follows:
if E1, E2 ∈ K, then E1 ⪯ E2 means that E1 ⊆ E2 and the �eld operations of E2 are
consistent with those of E1. So E1 is actually a sub�eld of E2. It is quite easy to see that
⪯ is a partial order onK. Thus we have our partially ordered set (K, ⪯).

Next the union U of a chain C in K is itself in K. For, by the de�nition of the
partial order ⪯, the �eld operations of all members of C are consistent, so they may be
combined to give the �eld operations of U. It follows that U ∈ K and clearly U is an
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upper bound for C inK. Zorn’s Lemmamay now be applied to yield a maximal element
ofK, say E.

By de�nition E is algebraic over F. What needs to be established is that any ir-
reducible polynomial f in E[t] has degree 1. Suppose that in fact deg(f) > 1. Put
E� = E[t]/(f), which is an algebraic extension of E and hence of F by (11.1.8). If we write
E0 = {a + (f) | a ∈ E}, then E0 ⊆ E� and there is an isomorphism β : E0 → E given by
β(a + (f)) = a.

It is at this point that the cardinality of the set S is important. One can showwithout
too much trouble that |E� − E0| < |S − E|, by using the inequalities |E| ≤ ℵ0 ⋅ |F| and
|E[t]| < |S|. Accepting this fact, we can choose an injective map β1 : E� − E0 Ü→ S − E.
Combine β1 with β : E0 → E to produce an injection ã : E� → S. Thus ã(a + (f)) = a
for a in E.

Next we use the map ã to make J = Im(ã) into a �eld, by de�ning ã(x1) + ã(x2) =
ã(x1 + x2) and ã(x1)ã(x2) = ã(x1x2). Then ã : E� → J is an isomorphism of �elds
and ã(E0) = E. Since E� is algebraic over E0, it follows that J is algebraic over E and
therefore J ∈ K. However, E ̸= J since E0 ̸= E�, which contradicts the maximality of E
and completes the proof.

While some details in the above proof may seem tricky, the essential idea is clear:
build a largest algebraic extension of F by using Zorn’s Lemma. It can be shown,
although we shall not do so here, that every �eld has a unique algebraic closure up to
isomorphism – see [8] for a proof.

For example, the algebraic closure ofℝ isℂ, while the algebraic closure ofℚ is the
�eld of all algebraic numbers. Another example of interest is the algebraic closure of
the Galois �eld GF(p), which is an algebraically closed �eld of prime characteristic p.

As a �nal illustration of the power of Zorn’s Lemma, we will prove a result on
cardinal numbers which was stated without proof in (1.4).

(14.1.7) (The Law of Trichotomy) If A and B are sets, then exactly one of the following
must hold,

|A| < |B|, |A| = |B|, |B| < |A|.

Proof. Because of the Cantor–Bernstein Theorem (1.4.2), it is enough to prove that
either |A| ≤ |B| or |B| ≤ |A| holds. Clearly A and B can be assumed non-empty.

Consider the set F of all pairs (X, α) where X ⊆ A and α : X → B is an injective
function. A partial order ⪯ on F is de�ned by (X, α) ⪯ (X�, α�) if X ⊆ X� and α�|X = α. It
is obvious that F is not empty. Let C = {(Xi , αi) | i ∈ I} be a chain in F. Put U = ⋃i∈I Xi
and de�ne α : U → B by extending the αi, which are consistent functions, to U. Then
(U, α) is an upper bound for C in F.

We can now apply Zorn’s Lemma to obtain amaximal element (X, α) ofF. We claim
that either X = A or Im(α) = B. For suppose that both statements are false, and let
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a ∈ A − X and b ∈ B − Im(α). Put Y = X ∪ {a} and de�ne β : Y → B by β(a) = b and
β|X = α. Then β is injective since b ∉ Im(α), and clearly (α, X) ⪯ (β, Y), which is a
contradiction. Therefore, either X = A and hence |A| ≤ |B| by de�nition of the linear
ordering of cardinals, or else Im(α) = B. In the latter case for each b in B choose an ab
in A such that α(ab) = b: then themap b Ü→ ab is an injection from B to A and therefore
|B| ≤ |A|.

Axioms equivalent to Zorn’s Lemma. We mention in passing three axioms that are
logically equivalent to Zorn’s Lemma.

(i) The Axiom of Well-Ordering. Every non-empty set can be well-ordered.
Recall from (1.2) that awell order on a set is a linear order such that each non-empty

subset has a �rst element. Compare the Axiom of Well-Ordering with the Well-Ordering
Law in (2.1), which implies that ≤ is a well-order onℕ.
(ii) The Principle of Trans�nite Induction. Let S be a well-ordered set and T a non-empty
subset of S. Let t ∈ S and assume that t ∈ T whenever it is true that x ∈ T for all x in S
such that x < t. Then T = S.

This result, which is the basis for the method of proof by trans�nite induction,
should be compared with the Principal of Mathematical Induction (2.1.1).
(iii) The Axiom of Choice. Let {Si | i ∈ I} be a non-empty set whose elements Si are non-
empty sets. Then there is at least one choice function α : I → ⋃i∈I Si, i.e., a function α
such that α(i) ∈ Si.

Informally we may express this by saying that it is possible to choose an element
simultaneously from every set Si. For a clear account of the equivalence of these axioms
see [7].

Exercises (14.1)

(1) Let R be a ring with identity. Prove that R has a maximal left ideal and a maximal
right ideal. Use these results to construct simple left and right R-modules.
(2) Let R be a commutative ring and let 0 ̸= r ∈ R. Prove that there is an ideal I which is
maximal subject to not containing r. Then prove that I is an irreducible ideal, i.e., it is
not the intersection of two larger ideals.
(3) Deduce from Exercise (14.1.2) that every proper ideal of a commutative ring R is an
intersection of irreducible ideals. Interpret this result when R is a PID.
(4) Let G be a non-trivial �nitely generated group. Prove that G has at least onemaximal
subgroup. Deduce that ϕ(G) ̸= G where ϕ(G) is the Frattini subgroup of G.
(5) Let G be a group, let X be a subset and let g be an element of G such that g ∉ X.
Prove that there is a subgroup H which is maximal subject to X ⊆ H and g ∉ H.
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(6) Generalize (10.2.8) by showing that in an arbitrary group G the Frattini subgroup
ϕ(G) consists of all non-generators. [Hint: let g ∈ ϕ(G) and assume that G = ⟨g, X⟩,
but G ̸= ⟨X⟩. Apply Exercise (14.1.5)].
(7) Let G be an arbitrary group and p a prime. Show that G has a maximal p-subgroup,
i.e., a subgroup which is maximal subject to every element having order a power of a
prime p. Then prove that the maximal p-subgroups of a �nite group are just the Sylow
p-subgroups.
(8) Let P be a prime ideal of R, a commutative ring with identity. Prove that there is a
largest prime ideal Q containing P. Then show that Q is a maximal ideal.
(9) Let v be a non-zero element in a vector space V. Prove that there is a linear operator
α on V such that α(v) ̸= 0.

14.2 Roots of polynomials and discriminants

In this section we will complete certain topics that were begun in Chapter Twelve. In
particular, the concept of the discriminant of a polynomial is introduced and this is
applied to the Galois groups of polynomials of degree ≤ 4.

The discriminant of a polynomial. Let f be a non-constant monic polynomial in t over
a �eld F and let n = deg(f). Let the roots of f in its splitting �eld E be a1, a2, . . . , an
and de�ne

∆ =
n
∏
i<j=1

(ai − aj),

which is an element of E. Note that ∆ depends on the order in which the roots are
written, so it is only determined up to sign. Also f has all its roots distinct if and only if
∆ ̸= 0: let us assume this to be the case. Thus E is Galois over F.

If α ∈ Gal(f) = Gal(E/F), then α permutes the roots a1, a2, . . . , an, and α(∆) = ±∆.
Indeed α(∆) = ∆ precisely when α produces an even permutation of the ai’s. Thus in
any event α �xes

D = ∆2.

The element D is called the discriminant of f : it is independent of the order of the
roots of f . Since D is �xed by every automorphism α and E is Galois over F, it follows
from (12.2.6) that D belongs to F. The question arises as to how D is related to the
coe�cients of the original polynomial f .

(14.2.1) Let f be a non-constant polynomial over a �eld F. Then the discriminant D of f
is expressible as a polynomial in the coe�cients of f .
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Proof. It can be assumed that f is monic and that it has distinct roots a1, a2, . . . , an
since otherwise D = 0. Then f = (t − a1)(t − a2) ⋅ ⋅ ⋅ (t − an), so that

f = tn − s1tn−1 + s2tn−2 − ⋅ ⋅ ⋅ + (−1)nsn

where s1, s2, . . . , sn are the elementary symmetric functions of degree 1, 2, . . . , n
in a1, a2, . . . , an. Now D = ∏n

i<j=1(ai − aj)2 is obviously a symmetric function of
a1, a2, . . . , an. By the Symmetric Function Theorem (12.4.7), D is expressible as a
polynomial in s1, s2, . . . , sn, i.e., in the coe�cients of f .

Next we examine the discriminants of polynomials of degrees 2 and 3 over a �eld.

Example (14.2.1) Let f = t2 +ut+ v. If the roots of f are a1 and a2, then ∆ = a1 −a2 and
D = (a1 − a2)2. This can be rewritten in the form D = (a1 + a2)2 − 4a1a2. Now clearly
u = −(a1 + a2) and v = a1a2, so we arrive at the familiar formula for the discriminant
of the quadratic t2 + ut + v,

D = u2 − 4v.

Example (14.2.2) Consider a cubic polynomial f = t3 + ut2 + vt + w and let a1, a2,
a3 be its roots. Then D = (a1 − a2)2(a2 − a3)2(a1 − a3)2. Also u = −(a1 + a2 + a3),
v = a1a2 + a2a3 + a1a3 and w = −a1a2a3. By a rather laborious calculation we can
expand D and write it in terms of the elements u, v, w. What emerges is the formula

D = u2v2 − 4v3 − 4u3w − 27w2 + 18uvw.

This expression can be simpli�ed by a judicious change of variable. Put t� = t + 1
3u, so

that t = t� − 1
3u. On substituting for t in f = t3 +ut2 + vt+w, we �nd that f = t�3 +pt� + q

where p = v − 1
3u

2 and q = w + 2
27u

3 − 1
3uv. Hence no generality is lost in assuming

that f does not have a term in t2 and

f = t3 + pt + q.

Now the formula for the discriminant reduces to the more manageable expression

D = −4p3 − 27q2.

Next we relate the discriminant to the Galois group of a polynomial.

(14.2.2) Let F be a �eld whose characteristic is not 2 and let f be a monic polynomial
in F[t] with distinct roots a1, a2, . . . , an. Write ∆ = ∏n

i<j=1(ai − aj). If G = Gal(f) is
identi�ed with a subgroup of Sn, then Fix(G ∩ An) = F(∆).

Proof. Let H = G ∩ An and note that H ⊲ G and |G : H| ≤ 2. If E is the splitting �eld of f ,
then F ⊆ F(∆) ⊆ Fix(H) ⊆ E since elements of H, being even permutations, �x ∆. Now
E is Galois over F, so we have

(F(∆) : F) ≤ (Fix(H) : F) = |G : H| ≤ 2.
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If H = G, it follows that F = F(∆) = Fix(H) and ∆ ∈ F. The statement is therefore true in
this case.

Now suppose that |G : H| = 2 and let α ∈ G − H. Then α(∆) = −∆ as α is odd.
Since char(F) ̸= 2, we have ∆ ̸= −∆ and hence ∆ ∉ F. Therefore (F(∆) : F) = 2 and
Fix(H) = F(∆).

Corollary (14.2.3) With the above notation, Gal(f) ≤ An if and only if ∆ ∈ F.

These ideas will now be applied to investigate the Galois groups of polynomials of
low degree.

Polynomials of degree at most 4. Let F be a �eld such that char(F) ̸= 2.
(i) Consider a quadratic f = t2 + ut + v ∈ F[t]. Then |Gal(f)| = 1 or 2. By (14.2.3)
|Gal(f)| = 1 precisely when ∆ ∈ F, i.e., √u2 − 4v ∈ F. This is the familiar condition
for f to have both its roots in F. Of course |Gal(f)| = 2 if and only if ∆ ∉ F, which is the
irreducible case.
(ii) Next let f be the cubic t3 + pt + q ∈ F[t]. We saw that

∆ = √D = √−4p3 − 27q2.

If f is reducible over F, it must have a quadratic factor f1 and clearly Gal(f) = Gal(f1),
which has order 1 or 2. Thus we can assume f is irreducible. We know from (12.2.3)
that Gal(f) ≤ S3, and that |Gal(f)| is divisible by 3 since it acts transitively on the roots
of f . Hence Gal(f) = A3 or S3. By (14.2.3) Gal(f) = A3 if and only if ∆ ∈ F; otherwise
Gal(f) = S3.
(iii) Finally, let f be a monic polynomial of degree 4 in F[t]. If f is reducible and f = f1f2
with deg(fi) ≤ 3, then Gal(f) is isomorphic with a subgroup of Gal(f1) × Gal(f2), (see
Exercise (12.2.5)). The structure of Gal(fi) is known from (i) and (ii), so assume that f is
irreducible. Then Gal(f) ≤ S4 and 4 divides |Gal(f)|. The subgroups of S4 whose orders
are divisible by 4 areℤ4, V (the Klein 4-group), Dih(8), A4 and S4; thus Gal(f)must be
one of these. In fact all �ve cases can occur, although we will not prove this here.

Explicit formulas for the roots of cubic and quartic equations overℝwere found in
the early 16th century by Scipione del Ferro (1465–1526), Gerolamo Cardano (1501–1576),
Niccolo Tartaglia (1499–1526) and Lodovico Ferrari (1522–1565). An interesting account
of their discoveries and of the mathematical life of the times can be found in [17].

Exercises (14.2)

(1) Find the Galois groups of the following quadratic polynomials overℚ: (i) t2 − 5t + 6,
(ii) t2 + 5t + 1, (iii) (t + 1)2.
(2) Find the Galois group of the following cubic polynomials overℚ: (i) t3 +4t2 +2t−7;
(ii) t3 − t − 1; (iii) t3 − 3t + 1; (iv) t3 + 6t2 + 11t + 5.
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(3) Let f be a cubic polynomial overℚ with discriminant D. Show that f has three real
roots if and only if D ≥ 0. Apply this to the polynomial t3 + pt + q.
(4) Let f be an irreducible quartic polynomial overℚ with exactly two real roots. Show
that Gal(f) ≃ Dih(8) or S4.
(5) (How to solve cubic equations). Let f = t3 + pt + q ∈ ℝ[t]. The following procedure,
due essentially to Scipione del Ferro, will give a root of f .

(i) If t = u − v is a root of f , show that (u3 − v3) + (p − 3uv)(u − v) = −q.
(ii) Find a root of the form u − v by solving the equations u3 − v3 = −q and uv = p

3
for u and v.

(6) The procedure of Exercise (14.2.5) yields one root u − v of f = t3 + pt + q. Prove that
the other two roots of f are ωu−ω2v and ω2u−ωv where ω = e2πi/3. (These are known
as Cardano’s formulas.)
(7) Use themethods of the last two exercises to �nd the roots of the polynomial t3+3t+1.
(8) Solve the cubic equation t3 + 3t2 + 6t + 3 = 0 by �rst transforming it to one of the
form t�3 + pt� + q = 0.

14.3 Presentations of groups

Whengroups entered themathematical arena towards the close of the 18th century, they
were exclusively permutation groups and were studied in connection with the theory of
equations. A hundred years later groups arose from a di�erent source, geometry, and
usually these groups were most naturally described by listing a set of generators and
a set of de�ning relationswhich the generators had to satisfy. A very simple example
is where there is just one generator x and a single de�ning relation xn = 1 where n is
a positive integer. Intuitively one would expect these to determine a cyclic group of
order n.

As another example, suppose that a group has two generators x and y subject to
the three relations x2 = 1 = y2 and xy = yx. Now the Klein 4-group �ts this description,
with x = (12)(34) and y = (13)(24). Thus it seems reasonable that a group with
these generators and relations should be a Klein 4-group. Of course this cannot be
substantiated until we have explained exactly what is meant by a group with given
sets of generators and de�ning relations. Even when the generators are subject to no
de�ning relations, a precise de�nition is still lacking: this is the important case of a
free group. Thus our �rst task is to de�ne free groups.

Free groups. A free group is best de�ned in terms of a certain mapping property. Let F
be a group, X a non-empty set and σ : X → F a function. Then F, or more precisely the
pair (F, σ), is said to be free on X if, for each function α from X to a group G there is a
unique homomorphism β : F → G such that βσ = α, i.e., the triangle below commutes:
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X G

F

α

σ β
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First a comment on the de�nition. The function σ : X → F is necessarily injective. For
suppose that σ(x1) = σ(x2) and x1 ̸= x2. Let G be any group with two or more elements
and choose a function α : X → G such that α(x1) ̸= α(x2). We have βσ(x1) = βσ(x2)
and hence α(x1) = α(x2), a contradiction.

This indicates that we can replace X by the set Im(α), which has the same cardinal-
ity, and take X to be a subset of F with σ the inclusionmap. What the mapping property
then asserts is that every mapping from the subset X to a group G can be extended to a
unique homomorphism from F to G. This property of free groups should be compared
with properties of free modules. Free groups and free modules are special cases of free
objects in a category.

At �rst sight the de�nition of a free group may seem abstract, but soon concrete
descriptions of free groups will emerge. In the meantime the �rst order of business
must be to show that free groups actually exist, something that is not obvious from the
de�nition.

(14.3.1) Let X be any non-empty set. Then there exist a group F and a function σ : X → F
such that (F, σ) is free on X and F is generated by Im(σ).

Proof. Roughly speaking, the idea of the proof is to construct F by forming “words”
in X which are combined in a formal manner by juxtaposition, while at the same time
allowing for cancellation of word segments like xx−1 or x−1x where x ∈ X.

The �rst step is to choose a set disjoint from X with the same cardinality. Since the
purpose of this move is to accommodate inverses of elements of X, it is appropriate to
denote the set of inverses by X−1 = {x−1 | x ∈ X}. But keep in mind that x−1 is merely a
symbol at this point and does not denote an inverse. By a word in X is meant any �nite
sequence w of elements of the set X ∪ X−1, written for convenience in the form

w = xq11 x
q2
2 ⋅ ⋅ ⋅ xqrr ,

where qi = ±1, x1i = xi ∈ X and r ≥ 0. The case r = 0, when the sequence is empty, is
the empty word, which is written 1. Two words are equal if they have the same entries
in each position, i.e., they look exactly alike.

The product of words w = xq11 ⋅ ⋅ ⋅ xqrr and v = yp11 ⋅ ⋅ ⋅ ypss is formed in the obvious
way by juxtaposition, i.e.,

wv = xq11 ⋅ ⋅ ⋅ xqrr y
p1
1 ⋅ ⋅ ⋅ ypss ,
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with the convention that w1 = w = 1w. This is clearly an associative binary operation
on the set S of all words in X. The inverse of the word w is de�ned to be

w−1 = x−qrr ⋅ ⋅ ⋅ x−q11 ,

with the convention that 1−1 = 1. Thus far S, together with the product operation, is a
semigroup with an identity element, i.e., a monoid. Next a device is introduced that
permits the cancellation of segments of a word with the form xx−1 or x−1x. Once this is
done, instead of a monoid, we will have a group.

A relation ∼ on the set S is de�ned in the following way: w ∼ v means that it is
possible to pass from w to v bymeans of a �nite sequence of operations of the following
types:
(i) insertion of xx−1 or x−1x as consecutive symbols in a word where x ∈ X;
(ii) deletion of any such sequences from a word.
For example, xyy−1z ∼ t−1txz where x, y, z, t ∈ X. It is easy to check that ∼ is an
equivalence relation on S. Let F denote the set of all equivalence classes of words
[w], w ∈ S. Our aim is to make F into a group: this will turn out to be a free group on
the set X.

Ifw ∼ w� and v ∼ v�, then it is readily seen thatwv ∼ w�v�. It is thereforemeaningful
to de�ne the product of the equivalence classes [w] and [v] by the rule

[w][v] = [wv].

It follows from this that [w][1] = [w] = [1][w] for all words w. Also [w][w−1] = [1] =
[w−1][w], since ww−1 and w−1w ares plainly equivalent to 1. Finally, we verify the
associative law:

([u][v])[w] = [uv][w] = [(uv)w] = [u(vw)] = [u][vw] = [u]([v][w]).

Consequently, F is a group inwhich [1] is the identity element and [w−1] is the inverse of
[w]. Furthermore, F is generated by the subset X̄ = {[x] | x ∈ X}; for, ifw = xq11 x

q2
2 ⋅ ⋅ ⋅ xqrr

with xi ∈ X, qi = ±1, then

[w] = [x1]q1 [x2]q2 ⋅ ⋅ ⋅ [xr]qr ∈ ⟨X̄⟩.

It remains to prove that F is a free group on X. To this end de�ne a function
σ : X → F by the rule σ(x) = [x]; thus Im(σ) = X̄ and this subset generates F. Next let
α : X → G be a map from X into some group G. To show that (F, σ) is free on X we need
to produce a unique homomorphism β : F → G such that βσ = α. There is only one
reasonable candidate here: de�ne β by the rule

β([xq11 x
q2
2 . . . xqrr ]) = α(x1)q1α(x2)q2 ⋅ ⋅ ⋅ α(xr)qr , (xi ∈ X, qi = ±1).

The �rst thing to observe is that β is well-de�ned: for any other element in the equiva-
lence class [xq11 x

q2
2 ⋅ ⋅ ⋅ xqrr ] di�ers from xq11 x

q2
2 ⋅ ⋅ ⋅ xqrr only by segments of the form xx−1
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or x−1x, (x ∈ X), and these will contribute to the image under β merely α(x)α(x)−1

or α(x)−1α(x), i.e., the identity. It is a simple direct check that β is a homomorphism.
Notice also that βσ(x) = β([x]) = α(x), so that βσ = α.

Finally, we have to establish the uniqueness of β. If β� : F → G is another homo-
morphism for which β�σ = α, then βσ = β�σ and thus β and β� agree on Im(σ). But
Im(σ) generates the group F, so β = β�. Therefore (F, σ) is free on X.

Reduced words. Now that free groups are known to exist, we would like to �nd a
convenient form for their elements. Let F be the free group on the set X just constructed.
A word in X is called reduced if it contains no pairs of consecutive symbols xx−1 or
x−1x with x ∈ X. The empty word is considered to be reduced. Now if w is any word,
we can delete subsequences xx−1 and x−1x from w until a reduced word is obtained.
Thus each equivalence class [w] contains at least one reduced word. The important
point to establish is that there is a unique reduced word in each equivalence class.

(14.3.2) Each equivalence class of words on X contains a unique reduced word.

Proof. There are likely to be many di�erent ways to cancel segments xx−1 or x−1x from
a word. For this reason a direct approach to proving uniqueness would be complicated.
An indirect argument will be used which avoids this di�culty.

Let R denote the set of all reduced words in X. The idea behind the proof is to
introduce a permutation representation of the free group F on the set R. Let u ∈ X∪X−1:
then a function u� : R → R is determined by the following rule

u�(xq11 x
q2
2 ⋅ ⋅ ⋅ xqrr ) =

{
{
{

uxq11 x
q2
2 ⋅ ⋅ ⋅ xqrr if u ̸= x−q11

xq22 ⋅ ⋅ ⋅ xqrr if u = x−q11
.

Here xq11 x
q2
2 ⋅ ⋅ ⋅ xqrr is a reduced word; observe that after applying the function u� the

word is still reduced. Next u� is a permutation of R since its inverse is the function
(u−1)�. Now let α : X → Sym(R) be de�ned by the assignment u Ü→ u�. By the mapping
property of the free group F there is a homomorphism β : F → Sym(R) such that
βσ = α: hence α(x) = βσ(x) = β([x]) for x ∈ X.

X Sym(R)

F

α

σ β

-�
�
�
�
��@
@
@
@
@R

Now suppose that v and w are two equivalent reduced words; we will show that
v = w. Certainly [v] = [w], so β([v]) = β([w]). If v = xq11 x

q2
2 ⋅ ⋅ ⋅ xqrr , then [v] =

[xq11 ][xq22 ] ⋅ ⋅ ⋅ [xqrr ] and we have

β([v]) = β([xq11 ])β([xq22 ]) ⋅ ⋅ ⋅ β([xqrr ]) = β([x1])q1β([x2])q2 ⋅ ⋅ ⋅ β([xr])qr ,
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which equals
α(x1)q1α(x2)q2 ⋅ ⋅ ⋅ α(xr)qr = (x�1)

q1 (x�2)
q2 ⋅ ⋅ ⋅ (x�r)qr .

Applying the function β([v]) to the empty word 1, which is reduced, we obtain xq11 ⋅ ⋅ ⋅
xqrr = v since thisword is reduced. Similarly β([w]) sends the emptyword tow. Therefore
v = w.

Normal form. The argument of the proof of (14.3.2) is a subtle one and it is well worth
rereading. But the main point to appreciate is that (14.3.2) provides a unique way of
representing the elements of the constructed free group F on the setX. Each element of F
has the form [w]where w is a uniquely determined reducedword, say w = xq11 x

q2
2 ⋅ ⋅ ⋅ xqrr

where qi = ±1, r ≥ 0. No consecutive terms xx−1 or x−1x occur in w. Now [w] =
[x1]q1 [x2]q2 ⋅ ⋅ ⋅ [xr]qr ; on combining consecutive terms of this product which involve
the same xi, we conclude that the element [w] can be uniquely written in the form

[w] = [x1]ℓ1 [x2]ℓ2 ⋅ ⋅ ⋅ [xs]ℓs ,

where s ≥ 0, ℓi is a non-zero integer and xi ̸= xi+1. (Strictly speaking the xi may have
been relabelled here).

To simplify the notation let us drop the distinction between x and [x], so that now
X ⊆ F. Then every element w of F has the unique form

w = xℓ11 x
ℓ2
2 ⋅ ⋅ ⋅ xℓss

where s ≥ 0, ℓi ̸= 0 and xi ̸= xi+1. This is called the normal form of w. For example, if
X = {x}, each element of F has the unique normal form xℓ, where ℓ ∈ ℤ. Thus F = ⟨x⟩
is an in�nite cyclic group.

The existence of a normal form is characteristic of free groups in the sense of the
next result.

(14.3.3) Let X be a subset of a group G and suppose that each element g of G can be
uniquely written in the form g = xℓ11 x

ℓ2
2 ⋅ ⋅ ⋅ xℓss where xi ∈ X, s ≥ 0, ℓi ̸= 0, and xi ̸= xi+1.

Then G is free on X.

Proof. Let F be the free group of equivalence classes of words in the set X constructed
in (14.3.1), and let σ : X → F be the associated injection; thus σ(x) = [x]. Apply the
mapping property with the inclusion map α : X → G, i.e., α(x) = x for all x ∈ X. Hence
there is a homomorphism β : F → G such that βσ = α, so Im(α) ⊆ Im(β). Since X =
Im(α) generates G, it follows that Im(β) = G and β is surjective. Finally, the uniqueness
of the normal form guarantees that β is injective. For, if β([x1]ℓ1 ⋅ ⋅ ⋅ [xr]ℓr ) = 1 with
r > 0, xi ̸= xi+1, ℓi ̸= 0, then (βσ(x1))ℓ1 ⋅ ⋅ ⋅ (βσ(xr))ℓr = 1, and hence xℓ11 ⋅ ⋅ ⋅ xℓrr = 1, a
contradiction. Therefore β is an isomorphism and F ≃ G, so that G is free on X.



14.3 Presentations of groups | 307

Thus far we have worked with a particular free group on a set X, the group con-
structed from equivalence classes of words in X. However, all free groups on the same
set are isomorphic, a fact which allows us to deal only with free groups of words. This
follows from the next result.

(14.3.4) Let Fi be a free group on Xi, i = 1, 2, where |X1| = |X2|. Then F1 ≃ F2.

Proof. Let σ1 : X1 → F1 and σ2 : X2 → F2 be the respective injections associated
with the free groups F1 and F2, and let α : X1 → X2 be a bijection, which exists since
|X1| = |X2|. By the mapping property there are commutative diagrams

X1 F2

F1

σ2α

σ1 β1

-�
�
�
�
��@
@
@
@
@R X2 F1

F2

σ1α−1

σ2 β2

-�
�
�
�
��@
@
@
@
@R

in which β1 and β2 are homomorphisms. Thus β1σ1 = σ2α and β2σ2 = σ1α−1. Hence
β2β1σ1 = β2σ2α = σ1α−1α = σ1 and consequently the diagram below commutes,

X1 F1

F1

σ1

σ1 β2β1

-�
�
�
�
��@
@
@
@
@R

But the identity map on F1 will also make this diagram commute, so β2β1 must
equal this identity map by the uniqueness clause of the mapping property. In a similar
fashion it can be shown that β1β2 equals the identity map on F2, so that β1 : F1 → F2
is an isomorphism.

Examples of free groups. At this point free groups may appear to the reader as myste-
rious abstract objects, despite our success in constructing them. It is time to remedy
this by exhibiting some real life examples.

Example (14.3.1) Consider the functions α and β on the set ℂ ∪ {∞} which are de�ned
by the rules

α(x) = x + 2 and β(x) = 1
2 + 1

x
.

Here the symbol∞ is required to satisfy the formal rules 1
∞ = 0, 1

0 = ∞, 2 +∞ = ∞.
Thus α(∞) = ∞, β(0) = 0 and β(∞) = 1

2 . The �rst thing to notice is that α and β are
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bijections since they have inverses given by α−1(x) = x − 2 and β−1(x) = 1
1
x −2

. This can
be checked by computing the composites αα−1, α−1α, ββ−1, β−1β.

De�ne F to be the subgroup ⟨α, β⟩ of the symmetric group on the set ℂ ∪ {∞}. We
are going to prove that F is a free group on {α, β}. To accomplish this it is enough to
show that no non-trivial reduced word in α and β can equal 1: for then each element
of F has a unique normal form and (14.3.3) can be applied.

Since direct calculations with the functions α and β would be tedious, a geometric
approach is adopted. Observe that each non-trivial power of α maps the interior of
the unit circle in the complex plane to its exterior. Also a non-trivial power of β maps
the exterior of the unit circle to its interior with (0, 0) removed: the truth of the last
statement is seen from the equation β(1x ) =

1
x+2 . It follows from this observation that

no mapping of the form αℓ1βm1 ⋅ ⋅ ⋅ αℓrβmr can be trivial unless all the li and mi are 0.

Example (14.3.2) An even more concrete example of a free group is provided by the
matrices

A = [
1 2
0 1

] and B = [
1 0
2 1

] ;

for these generate a subgroup F1 of GL2(ℤ) which is free on {A, B}.
To see why this is true, �rst consider a matrix

U = [
a b
c d

] ∈ GL2(ℂ).

Thus ad − bc ̸= 0. There is a corresponding permutation θ(U) of ℂ ∪ {∞} de�ned by

θ(U) : x Ü→
ax + b
cx + d =

a + b
x

c + d
x
.

Note that θ(U)(∞) = a
c if c ̸= 0 and ∞ otherwise. This is called a linear fractional

transformation. It is easy to verify that θ(UV) = θ(U)θ(V), so that θ : GL2(ℂ) →
Sym(ℂ ∪ {∞}) is a homomorphism. Thus the linear fractional transformations form a
subgroup Im(θ) of Sym(ℂ∪{∞}). Now θ(A) = α and θ(B) = β. Hence, if somenon-trivial
reduced word in A and Bwere to equal the identity matrix, the corresponding word in α
and β would equal the identity permutation, which is impossible by Example (14.3.1).
Therefore F1 is free on {A, B} by (14.3.3).

Next we will use normal form to obtain some structural information about free
groups.

(14.3.5) Let F be a free group on a set X. Then
(i) each non-trivial element of F has in�nite order;
(ii) if F is not in�nite cyclic, i.e. |X| > 1, then Z(F) = 1.
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Proof. (i) Let 1 ̸= f ∈ F and suppose that f = xℓ11 x
ℓ2
2 ⋅ ⋅ ⋅ xℓss is the normal form. If x1 = xs,

we can replace f by the conjugate xℓss fx
−ℓs
s = xℓ1+ℓs1 xℓ22 ⋅ ⋅ ⋅ xℓs−1s−1 , which has the same

order as f . For this reason there is nothing to be lost in assuming that x1 ̸= xs. Let m be
a positive integer; then

fm = (xℓ11 ⋅ ⋅ ⋅ xℓss )(xℓ11 ⋅ ⋅ ⋅ xℓss ) ⋅ ⋅ ⋅ (xℓ11 ⋅ ⋅ ⋅ xℓss ),

with m factors, which is in normal form since x1 ̸= xs. It follows that fm ̸= 1 and f has
in�nite order.
(ii) Assume that 1 ̸= f ∈ Z(F) and let f = xℓ11 x

ℓ2
2 ⋅ ⋅ ⋅ xℓss be the normal form of f . Then

s > 1: for otherwise, f = xℓ11 and if x1 ̸= x ∈ X, then xf ̸= fx. By conjugating f as in (i),
we may assume that x1 ̸= xs. Then fx1 = xℓ11 x

ℓ2
2 ⋅ ⋅ ⋅ xℓss x1 and x1f = xℓ1+11 xℓ22 ⋅ ⋅ ⋅ xℓss are

both in normal form, except that xℓ1+11 is trivial if ℓ1 = −1; but in any event fx1 ̸= x1f
and so f ∉ Z(G).

Generators and relations. The next result shows why free groups are worth studying:
in fact they occupy a key position in group theory since their quotients account for all
groups. The next result should be compared with (9.1.13) on free modules.

(14.3.6) Let G be a group and X a set of generators for G. If F is a free group on the set
X, there is a surjective homomorphism θ : F → G and hence G ≃ F/Ker(θ).

Proof. Let (F, σ)be free on X. The existence of thehomomorphism θ follows onapplying
the mapping property of the free group F to obtain the commutative diagram

X G

F

ι

σ θ

-�
�
�
�
��@
@
@
@
@R

where ι is the inclusion map. Thus x = ι(x) = θσ(x) ∈ Im(θ) for all x in X. Hence
G = Im(θ) ≃ F/Ker(θ).

We are now ready to de�ne a group given by a set of generators and de�ning
relations. Let X be a non-empty set and F the free group on X with X ⊆ F. Let R be a
subset of F and de�ne

N = ⟨RF⟩,

the normal closure of R in F: thus N is the subgroup generated by all conjugates in F
of elements of R – see (4.2). Let

G = F/N.

Certainly the group G is generated by the elements xN where x ∈ X; also r(xN) =
r(x)N = N = 1G for all r ∈ R. Hence the relations r = 1 hold in G. Here r(xN) is the
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element of G obtained from r by replacing each x by xN. Then G is called the group
with generators X and de�ning relations r = 1 where r ∈ R: in symbols

G = ⟨X | r = 1, ∀r ∈ R⟩.

Elements of R are called de�ning relators and the group may also be written

G = ⟨X | R⟩.

The pair ⟨X, R⟩ is called a presentation of G. An element w in the normal subgroup N
is a relator; it is expressible as a product of conjugates of de�ning relators and their
inverses. Also the relator w is said to be a consequence of the de�ning relators in R.
Finally, a presentation ⟨X, R⟩ is called �nite if X and R are both �nite.

Our �rst concern is to prove that every group can be de�ned by a presentation,
which is the next result.

(14.3.7) Every group has a presentation.

Proof. Let G be an arbitrary group and choose a set X of generators for it, for exam-
ple X = G will do. Let F be a free group on X. Then by (14.3.6) there is a surjective
homomorphism θ : F → G and G ≃ F/Ker(θ). Next choose a subset R of Ker(θ)
whose normal closure in F is Ker(θ) – for example we could take R to be Ker(θ). Then
G ≃ F/Ker(θ) = ⟨X | R⟩, which is a presentation of G.

In the proof just given there are many possible choices for X and R, so a group has
many presentations. This is one reason why it can be di�cult to extract information
about the structure of a group from a given presentation. Another, deeper reason for
this di�culty arises from the insolvability of the word problem. Roughly speaking, this
means that it is impossible to write a computer program which can decide if a word in
the generators of a group given by a �nite presentation equals the identity element.
(For a very readable account of the word problem see [14]). As a consequence of this
failure, special features of a group presentation will have to be exploited if we hope to
derive structural information about the group from it.

Despite the di�culties inherent in working with presentations of groups, there is
one very useful tool available.

(14.3.8) (Von Dyck’s² Theorem) Let G and H be groups with presentations ⟨X | R⟩
and ⟨Y | S⟩ respectively. Assume that there is given a surjective map α : X → Y such
that α(x1)ℓ1α(x2)ℓ2 ⋅ ⋅ ⋅ α(xk)ℓk is a relator of H, i.e., a consequence of the words in S,
whenever xℓ11 x

ℓ2
2 ⋅ ⋅ ⋅ xℓkk is a de�ning relator of G. Then there is a surjective homomorphism

θ : G → H such that θ|X = α.

2 Walter von Dyck (1856–1934)
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Proof. Let F be the free group on X; then G = F/N where N is the normal closure of R
in F. By the mapping property of free groups there is a homomorphism θ0 : F → H
such that θ0|X = α. By hypothesis θ0(r) = 1 for all r ∈ R and thus θ0(a) = 1 for all a
in N = ⟨RF⟩. Hence θ0 induces a homomorphism θ : G → H such that θ(fN) = θ0(f).
Finally, Y ⊆ Im(θ0) since α is surjective, so θ0, and hence θ, is surjective.

We will shortly show how Von Dyck’s Theorem can be used to obtain information
about a group from a presentation, but �rst it will be used to establish:

(14.3.9) Every �nite group has a �nite presentation, i.e., a presentation with �nitely many
generators and �nitely many relators.

Proof. Let G = {g1, g2, . . . , gn}, where g1 = 1, be a �nite group of order n. Then
gigj = gv(i,j) and g−1i = gu(i) where u(i), v(i, j) ∈ {1, 2, . . . , n}. Now let Ḡ be the group
with generators ḡ1, ḡ2, . . . , ḡn and de�ning relations ḡi ḡj = ḡv(i,j), ḡ−1i = ḡu(i), where
i, j = 1, 2, . . . , n. Clearly Ḡ has a �nite presentation. Apply Von Dyck’s Theorem to Ḡ
and G where α is the assignment ḡi Ü→ gi, noting that each de�ning relator of Ḡ is
mapped to a relator of G. It follows that there is a surjective homomorphism θ : Ḡ → G
such that θ(ḡi) = gi.

Now every element ḡ of Ḡ is expressible as a product of ḡi’s and their inverses.
Moreover, repeated use of the de�ning relations for Ḡ shows that ḡ equals some ḡk and
it follows that |Ḡ| ≤ n. But G ≃ Ḡ/Ker(θ), so |Ker(θ)| = |Ḡ|/|G| ≤ 1. Hence Ker(θ) = 1
and G ≃ Ḡ.

Next we consider some explicit examples of groups given by a �nite presentation.

Example (14.3.3) Let G = ⟨x | xn⟩ where n is a positive integer.
The free group F on {x} is generated by x: thus F ≃ ℤ and G = F/Fn ≃ ℤ/nℤ = ℤn,

a cyclic group of order n, as expected.

Example (14.3.4) Let G = ⟨x, y | xy = yx, x2 = 1 = y2⟩.
Since xy = yx, the group G is abelian; also every element of G has the form xiyj

where i, j ∈ {0, 1}, because x2 = 1 = y2; hence |G| ≤ 4. On the other hand, the Klein
4-group V is generated by the permutations a = (12)(34) and b = (13)(24), and the
relations ab = ba and a2 = 1 = b2 hold in V. HenceVonDyck’s Theorem can be applied
to yield a surjective homomorphism θ : G → V such that θ(x) = a and θ(y) = b. Thus
G/Ker(θ) ≃ V. Since |G| ≤ 4 = |V|, it follows that Ker(θ) = 1 and θ is an isomorphism.
Therefore G is a Klein 4-group.

For a greater challenge consider the following presentation.

Example (14.3.5) Let G = ⟨x, y | x2 = y3 = (xy)2 = 1⟩.
Our �rst move is to �nd an upper bound for |G|. Let H = ⟨y⟩; this is a subgroup of

order 1 or 3. Write S = {H, xH}; we will argue that S is the set of all left cosets of H in G.
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To establish this it is su�cient to show that xS = S = yS, since it will then follow that
S contains every left coset of H. Certainly xS = S since x2 = 1. Next xyxy = (xy)2 = 1
and hence yx = xy2, since y−1 = y2. It follows that yxH = xy2H = xH and thus yS = S.
Since |H| ≤ 3 and |G : H| = |S| ≤ 2, we deduce that |G| ≤ 6.

Next observe that the symmetric group S3 is generated by the permutations a =
(12)(3) and b = (123), and that a2 = b3 = (ab)2 = 1 since ab = (1)(23). By Von Dyck’s
theorem there is a surjective homomorphism θ : G → S3. Since |G| ≤ 6, it follows that
θ is an isomorphism and G ≃ S3.

The method of the last two examples can be useful when a �nite group is given
by a presentation. The procedure is to choose a subgroup for whose order one has an
upper bound, and then by coset enumeration to �nd an upper bound for the index.
This gives an upper bound for the order of the group. The challenge is then to identify
the group by comparing it with a known group for which the de�ning relations hold.

Exercises (14.3)

(1) Let F be the free group on a set X. Prove that an element f of F belongs to the derived
subgroup F� if and only if the sum of the exponents of x in f is 0 for every x in X.
(2) If F is a free group, prove that F/F� is a direct product of in�nite cyclic groups.

(3) Let G be the subgroup of GL2(ℂ) generated by [
1 a
0 1

] and [
1 0
a 1

] where a is real

and a ≥ 2. Prove that G is a free group.
(4) (The projective property of free groups). Let there be given groups and homomor-
phisms α : F → H and β : G → H where F is a free group and β is surjective. Show
that there is a homomorphism ã : F → G such that βã = α, i.e., the triangle below
commutes,

G H

F

β

αã

-?

�
�

�
�
�
�	

(5) Let G be a group with a normal subgroup N such that G/N is a free group. Prove
that there is free subgroup H such that G = HN and H ∩ N = 1.
(6) Let H be a subgroup with �nite index in a free group F. If 1 ̸= K ≤ F, prove that
H ∩ K ̸= 1.

[In the next three exercises identify the groups with the given presentations].
(7) ⟨x, y | x2 = 1 = y4, xy = yx⟩.
(8) ⟨x, y | x3 = (xy)2 = y3 = 1⟩.
(9) ⟨x, y | x2 = (xy)2 = y5 = 1⟩.
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(10) Let G be a groupwhich has a presentation with n generators and r de�ning relators.
If r < n, prove that G is in�nite. [Hint: consider the abelian group G/G� and use Exercise
(14.3.2)].
(11) Let F1 and F2 be free groups on sets X1 and X2 respectively. If F1 ≃ F2, prove that
|X1| = |X2|. Thus a free group is determined up to isomorphism by the cardinality of
the set on which it is free. [Hint: consider Fi/F2i as a vector space over GF(2)].

14.4 Introduction to error correcting codes

In this, the age of information technology, enormous amounts of data are transmitted
electronically over vast distances every secondof every day. Thedata are generally in the
formof bit strings, i.e., sequences of 0’s and1’s. Inevitably errors occur from time to time
during the process of transmission, so that themessage receivedmay di�er from the one
transmitted. An error correcting code allows the detection and correction of erroneous
messages. The essential idea here is that the possible transmitted codewords should
not be too close to one another, i.e., they should not agree in too many entries. This
makes it more likely that an error can be detected and the original message recovered.
Over the last �fty years an entire mathematical theory of error-correcting codes has
evolved.

Fundamental concepts. Let Q be a �nite set with q elements; this is called the alphabet.
A word w of length n over Q is an n-tuple of elements of Q, written for convenience in
the form

w = (w1w2 ⋅ ⋅ ⋅wn), wi ∈ Q.

The set of all words of length n over Q is called n-dimensional Hamming³ space and is
denoted by

Hn(q).

This is the set of possible messages of length n: notice that |Hn(q)| = qn. If Q is a �nite
�eld, Hn(Q) is an n-dimensional vector space over Q. In practice Q is usually the �eld
with two elements, when Hamming n-space is the set of all bit strings of length n.

It is important to have a measure of how far apart two words are: the natural
measure to use is the number of entries in which the words di�er. If v and w belong
to Hn(q), the distance between v and w is de�ned to be

d(v, w) = |{i | vi ̸= wi}|,

i.e., the number of positions where v and w have di�erent entries. The weight of a
word v is its distance from the zero word,

wt(v) = d(v, 0),

3 Richard Wesley Hamming (1915–1998)
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so wt(v) is just the number of non-zero entries of v. Clearly, d(u, v) is the number of
errors that have been made if the word u is transmitted and it is received wrongly as v.

The basic properties of the distance function are given in the following result.

(14.4.1) Let u, v, w ∈ Hn(q). Then:
(i) d(v, w) ≥ 0 and d(v, w) = 0 if only if v = w;
(ii) d(v, w) = d(w, v);
(iii) d(u, w) ≤ d(u, v) + d(v, w).

These properties assert that the function d : Hn(q) × Hn(q) → ℕ is a metric on the
Hamming space Hn(q).

Proof of (14.4.1) Statements (i) and (ii) are obviously true. To prove (iii) note that u can
be changed to v by d(u, v) entry changes and v can then be changed to w by d(v, w)
changes. Thus u can be changed to w by d(u, v) + d(v, w) entry changes. Therefore
d(u, w) ≤ d(u, v) + d(v, w).

Codes. A code of length n over an alphabet Q with q elements, or brie�y a q-ary code
of length n, is a subset C of Hn(Q)with at least two elements. The elements of C, which
are transmitted in an actual message, are called codewords.

A code C is said to be e-error detecting if c1, c2 ∈ C and d(c1, c2) ≤ e always imply
that c1 = c2. Thus the distance between distinct codewords is always greater than e.
Equivalently, a codeword cannot be transmitted and received as a di�erent codeword
if e or fewer errors have occurred. In this sense the code C is able to detect up to e errors.

Next a q-ary code of length n is called e-error correcting if, for every w in Hn(q),
there is at most one codeword c such that d(w, c) ≤ e. This means that if a codeword c
is received as a di�erent word w and at most e errors have occurred, it is possible to
recover the original codeword by examining all words v in Hn(q) such that d(w, v) ≤ e:
exactly one of these is a codeword and it must have been the transmitted codeword c.
Clearly a code which is e-error correcting is e-error detecting.

An important parameter of a code is the shortest distance between distinct code-
words; this is called theminimum distance of the code. The following result is basic.

(14.4.2) Let C be a code with minimum distance d. Then:
(i) C is e-error detecting if and only if d ≥ e + 1;
(ii) C is e-error correcting if and only if d ≥ 2e + 1.

Proof. (i) Suppose that d ≥ e + 1. If c1, c2 are distinct codewords, then d(c1, c2) ≥ d ≥
e + 1. Hence C is e-error detecting. For the converse, assume that d ≤ e. By de�nition
of d there exist c1 ̸= c2 in C such that d(c1, c2) = d ≤ e, so that C is not e-error
detecting.
(ii) Assume that C is not e-error correcting, so there is a word w and codewords c1 ̸= c2
such that d(c1, w) ≤ e and d(w, c2) ≤ e. Then

d ≤ d(c1, c2) ≤ d(c1, w) + d(w, c2) ≤ 2e
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by (14.4.1). Hence d < 2e + 1.
Conversely, assume that d < 2e + 1 and let c1 and c2 be codewords at distance d

apart. Put f = [12d], i.e., the greatest integer ≤ 1
2d; thus f ≤ 1

2d ≤ e. We claim that
d − f ≤ e. This is true when d is even since d − f = d − 1

2d = 1
2d ≤ e. If d is odd,

f = d−1
2 and d − f = d+1

2 < e + 1; therefore d − f ≤ e. Next we can pass from c1 to c2 by
changing exactly d entries. Let w be the word obtained from c1 after the �rst f entry
changes. Then d(c1, w) = f ≤ e, while d(c2, w) = d − f ≤ e. Therefore C is not e-error
correcting.

Corollary (14.4.3) If a code has minimum distance d, then its maximum error detection
capacity is d − 1 and its maximum error correction capacity is [ d−12 ].

Example (14.4.1) Consider the binary code C of length 5 with the three codewords

c1 = (10010), c2 = (01100), c3 = (10101).

Clearly the minimum distance of C is 3. Hence C is 2-error detecting and 1-error
correcting. For example, suppose that c2 is transmitted and is received as w = (11000),
so that two entry errors have occurred. The error can be detected since w ∉ C. But C
is not 2-error detecting since if v = (11100), then d(c2, v) = 1 and d(c3, v) = 2. Thus
if v is received and up to two errors occurred, we cannot tell whether c2 or c3 was the
transmitted codeword.

Bounds for the size of a code. It is evident from (14.4.2) that for a code to have good
error correcting capability it must have large minimum distance. But the price to be
paid for this is that fewer codewords are available. An interesting question is: what is
the maximum size of a q-ary code with length n and minimum distance d. We begin
with a lower bound, which guarantees the existence of a code of a certain size.

(14.4.4) (The Varshamov–Gilbert lower bound) Let n, q, d be positive integers with
d ≤ n. Then there is a q-ary code of length n and minimum distance d in which the
number of codewords is at least

qn

∑d−1
i=0 (ni )(q − 1)i

.

Before embarking on the proof we introduce the important concept of the r-ball
with center w,

Br(w).

This is the set of all words in Hn(q) at distance r or less from w. Thus a code C is e-error
correcting if and only if the e-balls Be(c) with c in C are pairwise disjoint.
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Proof of (14.4.4). The �rst step is to establish a formula for the size of an r-ball,

|Br(w)| =
r
∑
i=0

(
n
i)(q − 1)i .

To see this observe that in order to construct a word in Br(w), we must alter at most r
entries of w. Choose the i entries to be altered in (ni )ways and then replace each one by
an element of Q in (q − 1)i ways. This gives a count of (ni )(q − 1)i words at distance i
from w; the formula now follows at once.

To start the construction choose any q-ary code C0 of length n with minimum
distance d; for example, C0 might consist of the zeroword and a single word of weight d.
If the union of the Bd−1(c) with c ∈ C0 is not Hn(q), there is a word w whose distance
from every word in C0 is at least d. Let C1 = C0 ∪{w}; this is a larger code than C0 which
has the same minimum distance d. Repeat the procedure for C1 and then as often as
possible. Eventually a code C with minimum distance d will be obtained which cannot
be enlarged; when this occurs, we have Hn(q) = ⋃c∈C Bd−1(c). Therefore

qn = |Hn(q)| = | ⋃
c∈C

Bd−1(c)| ≤ |C| ⋅ |Bd−1(c)|

for any �xed c ∈ C. Hence |C| ≥ qn/|Bd−1(c)| and the bound has been established.

Next we give an upper bound for the size of an e-error correcting code.

(14.4.5) (The Hamming upper bound) Let C be a q-ary code of length n which is e-error
correcting. Then

|C| ≤ qn

∑e
i=0 (

n
i )(q − 1)i

.

Proof. Since C is e-error correcting, the e-balls Be(c) for c ∈ C are pairwise disjoint.
Hence

| ⋃
c∈C

Be(c)| = |C| ⋅ |Be(c)| ≤ |Hn(q)| = qn ,

for any �xed c ∈ C. Therefore |C| ≤ qn/|Be(c)|, as required.

A q-ary code C of length n for which the Hamming upper bound is attained is
called a perfect code. In this case

|C| = qn

∑e
i=0 (

n
i )(q − 1)i

,

and clearly this happens precisely when Hn(q) is the union of the disjoint balls Be(c),
c ∈ C, i.e., every word lies at distance ≤ e from exactly one codeword. Perfect codes are
desirable since they have the largest number of codewords for the given error correcting
capacity; however they are also quite rare.
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Example (14.4.2) (The binary repetition code) A very simple example of a perfect code
is the binary code C of length 2e + 1 with just two codewords,

c0 = (0, 0, . . . , 0) and c1 = (1, 1, . . . , 1).

Clearly C has minimum distance d = 2e + 1 and its maximum error correction capacity
is e by (14.4.3). A word w belongs Be(c0) if more of its entries equal 0 than 1; otherwise
w ∈ Be(c1). Thus Be(c0) ∩ Be(c1) = 0 and Be(c0) ∪ Be(c1) = H2e+1(2).

Linear codes. Let Q denote GF(q), the �eld of q elements, where q is now a prime
power. The Hamming space Hn(q) is the n-dimensional vector space Qn of all n-row
vectors over Q. A q-ary code C of length n is called linear if it is a subspace of Hn(Q).
Linear codes form an important class of codes; they have the advantage that they can
be speci�ed by a basis instead of listing all the codewords. Linear codes can also be
described by matrices, as will be seen in the sequel.

A computational advantage of linear codes is indicated by the next result.

(14.4.6) The minimum distance of a linear code equals the minimal weight of a non-zero
codeword.

Proof. Let C be a linear code. If c1, c2 ∈ C, then d(c1, c2) = wt(c1 − c2) and c1 − c2 ∈ C.
Hence the minimum distance equals the minimum weight.

A point to keep in mind here is that to �nd the minimum distance of a code C
one must compute (|C|2 ) distances, whereas to �nd the minimum weight of C only the
distances from the zero word need be found, so that at most |C| − 1 computations are
necessary.

As with codes in general, it is desirable to have linear codes with large minimum
distance and as many codewords as possible. There is a version of the Varshamov–
Gilbert lower bound for linear codes.

(14.4.7) Let d and n be positive integers with d ≤ n and let q be a prime power. Then
there is a linear q-ary code of length n and minimum distance d for which the number of
codewords is at least

qn

∑d−1
i=0 (ni )(q − 1)i

.

Proof. We refer to the proof of (14.4.4). To start the construction choose a linear q-ary
code C0 of length n and minimum distance d; for example, the subspace generated
by a single word of weight d will su�ce. If ⋃c∈C0 Bd−1(c) ̸= Hn(q), choose a word w
in Hn(q) which belongs to no Bd−1(c) with c in C0. Thus w ∉ C0. De�ne C1 to be the
subspace generated by C0 and w. We claim that C1 still has minimum distance d. To
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prove this it is su�cient to show that wt(c�) ≥ d for any c� in C1 − C0; this is because
of (14.4.6). Write c� = c0 + aw where c0 ∈ C0 and 0 ̸= a ∈ Q. Then

wt(c�) = wt(c0 + aw) = wt(−a−1c0 − w) = d(−a−1c0, w) ≥ d

by choice of w, since −a−1c0 ∈ C0. Note also that dim(C0) < dim(C1).
Repeat the argument above for C1, and then as often as possible. After at most

n steps we arrive at a subspace C with minimum distance d such that⋃c∈C Bd−1(c) =
Hn(q). It now follows that |C| ⋅ |Bd−1(c)| ≥ qn for any c in C, which gives the bound.

Example (14.4.3) Let q = 2, d = 3 and n = 31. According to (14.4.7) there is a linear
binary code C of length 31 with minimum distance 3 such that

|C| ≥ 231

1 + 31 + (312 )
= 4, 320, 892, 652.

In addition C is a subspace of H31(2), so its order is a power of 2. Hence |C| ≥ 223 =
8, 388, 608. In fact there is a larger code of this type with 226 codewords, a so-called
Hamming code – see Example (14.4.7) below.

The generator matrix and check matrix. Let C be a linear q-ary code of length n and
let k be the dimension of C as a subspace of Hn(q). Thus k ≤ n and |C| = qk. Choose an
ordered basis {c1, c2, . . . , ck} for C and write

G =
[[[[[

[

c1
c2
...
ck

]]]]]

]

.

This k × nmatrix over Q = GF(q) is called a generator matrix for C. If c is any codeword,
c = a1c1 + ⋅ ⋅ ⋅ + akck for suitable ai ∈ Q. Thus c = aG where a = (a1, . . . , ak) ∈ Hk(q).
Hence each codeword is uniquely expressible in the form aG with a ∈ Hk(q). It follows
that the code C is the row space of the matrix G, i.e., the subspace of Hn(q) generated by
all the rows of G. Notice that the rank of G is k since its rows are linearly independent.

Recall from (8.1) that the null space N of G consists of all n-column vectors xT such
that GxT = 0: here of course x ∈ Hn(q). Choose an ordered basis for N and use the
transposes of its elements to form the rows of a matrix H. This is called a check matrix
for C. Since G has rank k, we can apply (8.3.8) to obtain dim(N) = n − k, so that H is an
(n − k) × n matrix over Q. Since the columns of HT belong to N, the null space of G, we
obtain the important equation

GHT = 0.

Keep in mind that the matrices G and H depend on choices of bases for C and N. At
this point the following result about matrices is relevant.
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(14.4.8) Let G and H be k × n and (n − k) × n matrices respectively over Q = GF(q), each
having linearly independent rows. Then the following statements are equivalent:
(i) GHT = 0;
(ii) row space(G) = {x ∈ Hn(q) | xHT = 0};
(iii) row space(H) = {x ∈ Hn(q) | xGT = 0}.

Proof. Let S = {x ∈ Hn(q) | xHT = 0}; then x ∈ S if and only if 0 = (xHT)T =
HxT , i.e., xT belongs to null space(H). This implies that S is a subspace and dim(S) =
n − (n − k) = k. Now assume that GHT = 0. If x ∈ row space(G), then x = yG for
some k-row vector y. Hence xHT = yGHT = 0 and x ∈ S. Thus row space(G) ⊆ S. But
dim(row space(G)) = k = dim(S), so that S = row space(G). Thus (i) implies (ii). It is
clear that (ii) implies (i), and thus (i) and (ii) are equivalent.

Next observe that GHT = 0 if and only if HGT = 0, by applying the transpose.
Thus the roles of G and H are interchangeable, which means that (i) and (iii) are
equivalent.

Let us now return to the discussion of a linear q−ary code C of length n with
generator matrix G and check matrix H. From (14.4.8) we conclude that

C = row space(G) = {w ∈ Hn(q) | wHT = 0}.

So the check matrix H provides a convenient way to determine if a given word w is a
codeword. At this point we have proved half of the next result.

(14.4.9)

(i) If C is a linear q-ary code with generator matrix G and check matrix H, then GHT = 0
and C = {w ∈ Hn(q) | wHT = 0}.

(ii) If G and H are k × n and (n − k) × n matrices respectively over GF(q) with linearly
independent rows and if GHT = 0, then C = {w ∈ Hn(q) | wHT = 0} is a linear q-ary
code of length n and dimension k with generator matrix G and check matrix H.

Proof. To prove (i) note that C = row space(G) and we showed that GHT = 0, so
the result follows at once from (14.4.8). Now for (ii): clearly C is a subspace of Hn(q)
and hence is linear q-ary code of length n. By (14.4.8) C is the row space of G. Hence
dim(C) = k and G is a generator matrix for C. Finally, the null space of G consists of
all w in Hn(q) such that GwT = 0, i.e., wGT = 0; this is the row space of H by (14.4.8).
Hence G and H are corresponding generator and check matrices for C.

On the basis of (14.4.9) we show how to construct a linear q-ary code of length n
and dimension n − ℓwith check matrix equal to a given ℓ × n matrix H over GF(q) of
rank ℓ. De�ne C = {x ∈ Hn(q) | xHT = 0}; this is a linear q-ary code. Pass from H to
its reduced row echelon form H� = [Iℓ | A]where A is an ℓ × (n − ℓ)matrix: note that
interchanges of columns, i.e., of word entries, may be necessary to achieve this and
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H� = EHF for some non-singular E and F. Writing G� for [−AT | In−ℓ], we have

G�H�T = [−AT | In−ℓ] [
Iℓ
AT

] = 0.

Hence 0 = G�H�T = (G�FT)HTET , so (G�FT)HT = 0 because ET is non-singular. Put
G = G�FT ; thus GHT = 0 and by (14.4.9) G is a generator matrix and H a check matrix
for C. Also dim(C) = rank(G) = n − ℓ. Note that if no column interchanges are needed
to go from H to H�, then F = I and G = G�.

Example (14.4.4) Consider the matrix

H = [[

[

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

]]

]

over GF(2). Here q = 2, n = 7 and ℓ = 3. The rank of H is 3, so it determines a linear
binary code C of dimension 7 − 3 = 4. Put H in reduced row echelon form,

H� = [[

[

1 0 0 0 1 1 1
0 1 0 1 1 0 1
0 0 1 1 1 1 0

]]

]

= [I3 A] .

No column interchanges were necessary here, so

G = G� = [−AT I4] =
[[[[

[

0 1 1 1 0 0 0
1 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 0 0 0 0 1

]]]]

]

is a generator matrix for C. The rows of G form a basis for the linear code C.
A useful feature of the check matrix is that from it one can read o� the minimum

distance of the code.

(14.4.10) Let H be a check matrix for a linear code C. Then the minimum distance of C
equals the largest integer m such that every set of m − 1 columns of H is linearly inde-
pendent.

Proof. Let d be the minimum distance of C and note that d is the minimum weight of
a non-zero codeword, say d = wt(c). Then cHT = 0, which implies that there exist d
linearly dependent columns of H. Hence m − 1 < d and m ≤ d. Also by maximality
of m there exist m linearly dependent columns of H, so wHT = 0 where w is a non-zero
word with wt(w) ≤ m. But w ∈ C; thus d ≤ m and hence d = m.

Example (14.4.5) Consider the code C in Example (14.4.4). Every pair of columns of the
check matrix H is linearly independent, i.e., the columns are all di�erent. On the other
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hand, columns 1, 4 and 5 are linearly dependent since their sum is zero. Therefore
m = 3 for this code and the minimum distance is 3 by (14.4.10). Consequently C is a
1-error correcting code.

Using the check matrix to correct errors. Let C be a linear q-ary code with length n
andminimumdistance d. Let H be a checkmatrix for C. Note that by (14.4.3) C is e-error
correcting where e = [ d−12 ]. Suppose that a codeword c is transmitted and received as
a word w and that at most e errors in the entries have been made. Here is a procedure
that will correct the errors and recover the original codeword c.

Write w = u + c where u is the error; thus wt(u) ≤ e. Now |Hn(q) : C| = qn−k where
k = dim(C). Choose a transversal to C in Hn(q), say {v1, v2, . . . , vqn−k }, by requiring
that vi be a word of smallest length in its coset vi + C. (There may may be more than one
choice for vi). For any c0 ∈ C we have (vi + c0)HT = viHT , which depends only on i.
Now suppose that w belongs to the coset vi + C. Then wHT = viHT , which is called the
syndrome of w. Writing w = vi + c1 with c1 ∈ C, we have u = w − c ∈ vi + C, so that
wt(vi) ≤ wt(u) ≤ e by choice of vi. Hence w = u + c = vi + c1 belongs to Be(c) ∩ Be(c1).
But this implies that c = c1 since C is e-error correcting. Therefore c = w − vi and the
transmitted codeword has been identi�ed.

In summary here is the procedure to identify the transmitted codeword c. It is
assumed that the transversal {v1, v2, . . . , vqn−k } has been chosen as described above,
with each vi of smallest length in its coset.
(i) Suppose that w is the word received with at most e errors; �rst compute the syn-
drome wHT .
(ii) By comparing wHT with the syndromes viHT , �nd the unique i such that wHT =
viHT .
(iii) Then the transmitted codeword was c = w − vi.

Example (14.4.6) The matrix

H = [[

[

1 0 1 1 0
0 0 1 1 1
1 1 0 1 1

]]

]

determines a linear binary code C with length 5 and dimension 5 − 3 = 2; thus H is a
check matrix for C. Clearly C has minimum distance 3, so it is 1-error correcting. Also
|C| = 22 = 4 and |H5(2) : C| = 25/4 = 8. By reducing H to reduced row echelon form
as in Example (14.4.4), we �nd a generator matrix for C to be

G = [
0 1 1 1 0
1 0 1 0 1

] .

Thus C is generated by (01110) and (10101), so in fact C consists of (00000), (01110),
(10101) and (11011).
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Next enumerate the eight cosets of C in H5(2)with C1 = C and choose a word of
minimum weight from each coset; these are shown in bold face.

C1 = {(00000), (01110), (10101), (11011)}
C2 = {(10000), (11110), (00101), (01011)}
C3 = {(01000), (00110), (11101), (10011)}
C4 = {(00100), (01010), (10001), (11111)}
C5 = {(11000), (10110), (01101), (00011)}
C6 = {(01100), (00010), (11001), (10111)}
C7 = {(10100), (11010), (00001), (01111)}
C8 = {(11100), (10010), (01001), (00111)}

The coset syndromes are computed as

(000), (101), (001), (110), (100), (111), (011), (010).

Now suppose that the word w = (11111) is received with at most one error in its
entries: note that w ∉ C, so w is not a codeword. The syndrome of w is wHT = (110),
which is the syndrome of elements in the coset C4, with coset representative v4 =
(00100). Hence the transmitted codeword was c = w − v4 = (11011).

Hamming codes. Let C be a linear q-ary code of length n and dimension k. Assume
that the minimum distance of C is at least 3, so that C is 1-error correcting. A check
matrix H for C has size ℓ × n where ℓ = n − k, and by (14.4.10) no column of H can be a
multiple of another column.

Now consider the problem of constructing such a linear code which is as large
as possible for given q and ℓ > 1. Then H should have as many columns as possible,
subject to no column being a multiple of another one. Now there are qℓ − 1 non-zero
ℓ-column vectors over GF(q), but each of these is a multiple of q − 1 other columns. So
the maximum possible number of columns for H is n = qℓ−1

q−1 . Note that the columns
of the identity ℓ × ℓmatrix can be included among those of H, so that H has rank ℓ. It
follows that the matrix H determines a linear q-ary code C of length

n =
qℓ − 1
q − 1

.

The minimum distance of H is at least 3 by construction, and in fact it is exactly 3 since
we can include among the columns of H three linearly dependent ones, (10 . . . 0)T ,
(110 . . . 0)T , (010 . . . 0)T . Thus C is 1-error correcting: its dimension is k = n−ℓ and its
order is qn. Such a code is known as aHamming code. It is not surprising that Hamming
codes have optimal properties.

(14.4.11) Hamming codes are perfect.
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Proof. Let C be a q-ary Hamming code of length n constructed from a check matrix
with ℓ rows. Then

|C| = qn−ℓ = qn/qℓ = qn/(1 + n(q − 1))

since n = qℓ−1
q−1 . Thus C attains the Hamming upper bound of (14.4.5), so it is a perfect

code.

Example (14.4.7) Let q = 2 and ℓ = 4. A Hamming code C of length n = 24−1
2−1 = 15 can

be constructed from the 4 × 15 check matrix

H =
[[[[

[

1 0 0 0 1 1 1 0 0 0 0 1 1 1 1
0 1 0 0 1 0 0 1 1 0 1 0 1 1 1
0 0 1 0 0 1 0 1 0 1 1 1 0 1 1
0 0 0 1 0 0 1 0 1 1 1 1 1 0 1

]]]]

]

.

Here |C| = 2n−ℓ = 211 = 2048. Similarly, by taking q = 2 and ℓ = 5 we can construct a
perfect linear binary code of length 31 and dimension 26.

Perfect codes. We conclude with an analysis of perfect codes which will establish the
unique position of the Hamming codes.

(14.4.12) Let C be a perfect q-ary code where q = pa and p is a prime. Assume that C is
1-error correcting. Then:
(i) C has length qs−1

q−1 for some s ≥ 1;
(ii) if C is linear, it is a Hamming code.

Proof. (i) Let C have length n. Then |C| = qn
1+n(q−1) since C is perfect and 1-error correct-

ing. Hence 1 + n(q − 1) divides qn, so it must be a power of p, say 1 + n(q − 1) = pr. By
the Division Algorithm we can write r = sa + t where s, t ∈ ℤ and 0 ≤ t < a. Then

1 + n(q − 1) = pr = (pa)spt = qspt = (qs − 1)pt + pt .

Therefore q−1 divides pt −1. However pt −1 < pa −1 = q−1, which shows that pt = 1
and 1 + n(q − 1) = pas = qs. It follows that n = qs−1

q−1 .

(ii) Now assume that C is linear. Since |C| = qn
1+n(q−1) and we have shown in (i) that

1 + n(q − 1) = qs, it follows that |C| = qn/qs = qn−s. Hence dim(C) = n − s and a
check matrix H for C has size s × n. The number of columns of H is n = qs−1

q−1 , which is
the maximum number possible, and no column is a multiple of another one since C
is 1-error correcting and thus has minimum distance ≥ 3. Therefore C is a Hamming
code.

Almost nothing is known about perfect q-ary codes when q is not a prime power.
Also there are very few perfect linear q-ary codes which are e-error correcting with
e > 1. Apart from binary repetition codes of odd length – see Exercise (14.4.3) below –
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there are just two examples, a binary code of length 23 and a ternary code of length 11.
These remarkable examples, known as the Golay codes, are of great importance in
algebra: see [18] for details.

Exercises (14.4)

(1) Give an example of a code for which the minimum distance is di�erent from the
minimum weight of a non-zero codeword.
(2) Find the number of q-ary words with weights in the range i to i + k.
(3) Let C be the set of all words (aa ⋅ ⋅ ⋅ a) of length n where a ∈ GF(q).

(i) Show that C is a linear q-ary code of dimension 1.
(ii) Find the minimum distance and error correcting capacity of C.
(iii) Write down a generator matrix and a check matrix for C.
(iv) Show that when q = 2, the code C is perfect if and only if n is odd.

(4) Let C be a q-ary code of length n and minimum distance d. Establish the Singleton
upper bound |C| ≤ qn−d+1. [Hint: two codewords with the same �rst n − d + 1 entries
are equal].
(5) If C is a linear q-ary code of length n and dimension k, prove that the minimum
distance of C is at most n − k + 1.
(6) Let C be a linear q-ary code of length n and dimension k. Suppose that G is a
generator matrix for C and that G� = [Ik | A] is the reduced row echelon form of G.
Prove that there is a check matrix for C of the form [−AT | In−k] up to a permutation of
columns.
(7) A linear binary code C has basis {(101110), (011010), (001101)}. Find a check
matrix for C and use it to determine the error-correcting capacity of C.
(8) A check matrix for a linear binary code C is

[[

[

1 1 0 1 1
0 1 0 0 1
1 1 1 0 0

]]

]

.

(i) Find a basis for C.
(ii) Find the minimum distance and error correcting capacity of C.
(iii) If a word (01111) is received and at most one entry is erroneous, use the

syndrome method to �nd the transmitted codeword.
(9) (Analternative decoding procedure). Let C be a linear q-ary code of length nwith error
correcting capacity e. Let H be a check matrix for C. Suppose that a word w is received
with at most e errors. Show that the following procedure will �nd the transmitted
codeword.

(i) Enumerate all words u in Hn(q) of weight ≤ e; these are the possible errors.
(ii) Find the syndrome uHT of each word u from (i).
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(iii) Compute the syndrome wHT and compare it with each uHT : prove that there
is a unique word u in Hn(q) of with weight at most e such that uHT = wHT .

(iv) Show that the transmitted codeword was w − u.
(10) Prove that the number of possible words u in Exercise (14.4.9) is a polynomial in n.
(11) Use the method of Exercise (14.4.9) to �nd the transmitted codeword in Exer-
cise (14.4.8).
(12) (Dual codes). Let C be a linear q-ary code of length n and dimension k. De�ne the
dot product of two words v, w in Hn(q) by v ⋅ w = ∑n

i=1 viwi. Then de�ne C⊥ = {w ∈
Hn(q) | w ⋅ c = 0, ∀c ∈ C}.

(i) Show that C⊥ is a linear q-ary code of length n: this is called the dual code
of C.

(ii) Let G and H be a generator matrix and a check matrix for C. Prove that G is a
check matrix and H a generator matrix for C⊥.

(iii) Prove that dim(C⊥) = n − k and |C⊥| = qn−k.
(13) Let C be a binary Hamming code of length 7. Find a check matrix for the dual
code C⊥ and show that its minimum distance is 4.
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List of symbols

A, B, . . . : sets
a, b, . . . : elements of sets
a ∈ A : a is an element of the set A
|A|: the cardinal of a set
A ⊆ B, A ⊂ B: A is a subset, proper subset of B
0: the empty set
ℕ,ℤ,ℚ,ℝ,ℂ: the sets of natural numbers, inte-

gers, rational numbers, real numbers, com-
plex numbers

⋃, ⋂: union and intersection
A1 × ⋅ ⋅ ⋅ × An: a set product
A − B, Ā: complementary sets
P(A): the power set
S ∘ R: the composite of relations or functions
[x]E: the E-equivalence class of x
α : A → B: a function from A to B
Im(α): the image of the function α
idA, id: the identity function on the set A
α−1: the inverse of a bijective function α
Fun(A, B): the set of all functions from A to B
Fun(A): the set of all functions on A
gcd, lcm: greatest common divisor, least com-

mon multiple
a ≡ b (mod m): a congruence
[x]m or [x]: the congruence class of x modulo m
ℤn: the integers modulo n
a | b: a divides b
ϕ: Euler’s function
µ: the Möbius function
λ(n): the number of partitions of n
sign(π): the sign of a permutation π
(i1 i2 ⋅ ⋅ ⋅ ir): a cyclic permutation
StG(x): the stabilizer of x in G
G ⋅ a: the G-orbit of a
Fix(G): the set of points �xed by a group G
⟨X⟩: the subgroup or subspace generated by X
|x|: the order of a group element x
XY, X + Y: product, sum of subsets of a group
H ≤ G, H < G: H is a subgroup, proper sub-

group of the group G
Drλ∈Λ Gλ, G1 × ⋅ ⋅ ⋅ × Gn: direct products of

groups
Sym(X): the symmetric group on a set X
Sn , An: symmetric and alternating groups of de-

gree n
Dih(2n): the dihedral group of order 2n

GLn(R), GLn(q): general linear groups
SLn(R), SLn(q): special linear groups
|G : H|: the index of H in G
N ⊲ G: N is a normal subgroup of the group G
G/N: the quotient group of N in G
≃: an isomorphism
Ker(α): the kernel of a homomorphism
Z(G): the center of the group G
[x, y]: the commutator xyx−1y−1

G�: the derived subgroup of a group G
G(i): the ith term of the derived chain of the

group G
Zi(G): the ith term of the upper central chain of

the group G
ϕ(G): the Frattini subgroup of a group G
NG(H), CG(H): normalizer and centralizer of H

in G
Aut(G), Inn(G): the automorphism and inner au-

tomorphism groups of a group G
Out(G): the outer automorphism group of a

group G
⟨X | R⟩: a presentation of a group or module
U(R), R∗: the group of units of a ring R
Ropp: the opposite ring of R
RX, (x): ideals generated by a set of elements
R[t1 , . . . , tn]: the ring of polynomials in t1, . . . ,

tn over a ring R
F{t1 , . . . , tn}: The �eld of rational functions in

t1, . . . , tn over a �eld F
Mm,n(R): the set of m × n matrices over a ring R
diag(d1 , d2 , . . . , dn): the diagonal matrix with

d1 , d2 , . . . , dn on the principal diagonal
det(A), tr(A): the determinant and trace of a ma-

trix A
dim(V): the dimension of a vector space V
F⟨X⟩, ⟨X⟩: subspace generated by a subset of an

F-vector space
[v]B: the coordinate vector of v with respect to a

basisB
C[a, b]: the vector space of continuous functions

on the interval [a, b]
L(V,W), L(V): vector spaces of linear mappings
GF(q): the �eld with q elements
(E : F): the degree of E over F
Gal(E/F), Gal(f): Galois groups
deg(f): the degree of a polynomial f
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f �: the derivative of a polynomial f
IrrF(x): the irreducible polynomial of x over F
Φn: the cyclotomic polynomial of order n
RM and NR: left and right R-modules.
RMS: an (R, S)-bimodule.
R ⋅ X, R ⋅ a: submodules generated by a set of

elements
⨁λ∈Λ Mλ, M1 ⊕ ⋅ ⋅ ⋅ ⊕Mn: direct sums of mod-

ules
rank(F): the rank of a free module.
Mp: the p-torsion component of a module
AnnR(X), AnnR(x): annihilators in a ring R

HomR(M, N): a group of homomorphisms
α∗ , α∗: induced mappings
a ⊗ b: a tensor
M ⊗R N,M ⊗ N: tensor products of modules
α ⊗ β, A ⊗ B: tensor products of homomor-

phisms, matrices
Hn(q): Hamming n-space over a set with q ele-

ments
Bn(v): the n-ball with center v
d(a, b): the distance between points a and b
wt(v): the weight of the word v
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Abel, Niels Henrik 40
abelian group 40
– torsion-free 291
action of a group 79
adjoint associativity 288
algebra of linear operators 158
algebra over a �eld 158
algebraic
– closure 296
–element 229
–extension 230
–number 231
–number �eld 232
algebraically closed �eld 296
alternating group 37
– simplicity of 91, 209
annihilator 178
antisymmetric law 5
ascending chain condition
–on ideals 117
–on subgroups 52, 214
–on submodules 179
associate elements in a ring 120
associative law 2
–generalized 43
automaton 11, 42
automorphism of a
–�eld 255
–group 72
automorphism group 72
–of a cyclic group 74
Axiom of Choice 298

ball, r- 315
basis
– change of 147
–existence of 145, 294
–of a free module 180
–of a vector space 145
– standard 145
Bernstein, Felix 13
bijective function 10
bimodule 175
binary operation 40

binary repetition code 317
Boole, George 4
Boolean
–algebra 4
– ring 104
Burnside, William 84
Burnside p-q Theorem 216

cancellation law 110
canonical homomorphism 69
Cantor, Georg 13
Cantor–Bernstein Theorem 13
Cardano, Gerolamo 301
Cardano’s formulas 302
cardinal number 13
cardinal of a set 13
cartesian product 3
Cauchy, Augustin Louis 37
Cauchy’s formula 37
Cauchy’s Theorem 90
Cayley, Arthur 80
Cayley’s Theorem 80
Cayley-Hamilton Theorem 201
center of a group 63
central series 217
centralizer 83
chain in a partially ordered set 7, 293
chain, upper central 217
characteristic
– equation 162
– function of a subset 10
–of an integral domain 114
–polynomial 162
check matrix of a code 318
Chinese Remainder Theorem 27
choice function 68
circle group 64
class
– conjugacy 83
–of symmetric group 86
–equation 86
–number 83
cocycle 223
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code 314
–binary repetition 317
–dual 325
–error correcting 314
–error detecting 314
–Hamming 322
– linear 317
–minimum distance of 314
–perfect 316
codeword 314
codomain 9
collineation 212
column echelon form 147
column space 146
common divisor 20
commutative
–diagram 277
– law 2
– ring 100
commutator 63
– subgroup 63
companion matrix 171
complement
–of a subgroup 222
– relative 2
complete
–group 73, 88
– set of irreducibles 126
composite
–of functions 10
–of relations 8
composition
– factor 208
– series 208
congruence 24
–arithmetic 25
– class 24
– linear 26
conjugacy class 83
– in the symmetric group 86
conjugate elements in a
–�eld 258
–group 62
conjugate sub�eld 264
conjugation homomorphism 73
constructible point 233
construction of a regular n-gon 233, 267
content of a polynomial 128
coordinate column vector 145

Correspondence Theorem for
– groups 65
–modules 177
– rings 109
coset 53
countable set 15
crossover diagram 36
cubic equation 300, 302
cycle 33
cyclic
– group 48
–module 176
–permutation 33
cyclotomic number �eld 262
cyclotomic polynomial 259
–Galois group of 262
– irreducibility of 261

De Morgan, Augustus 3
De Morgan’s laws 3
Dedekind, Richard 59
de�ning relator
– of a group 310
–of a module 193
degree of
– an extension 228
–a polynomial 101
del Ferro, Scipione 301
derangement 38, 214, 242
derivation 223
derivative 133
derived
– chain 215
– length 214
– subgroup 63
descending chain condition 214
diagonalizable
– linear operator 166
–matrix 166
dihedral group 43
dimension of a vector space 146
direct product of
– groups 65
– latin squares 245
direct sum of
–modules 178
– vector spaces 150
Dirichlet, Johann Peter Gustav Lejeune 29
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discriminant of a polynomial 299
disjoint
– permutations 33
–union 4
distance between words 313
distributive law 2
division 19
Division Algorithm 20
division ring 111
domain
– integral 110
–of a function 9
dual
– code 325
–double 156
– space 155
duplication of the cube 233

edge of a graph 96
eigenspace 162
eigenvalue 160
eigenvector 160
Eisenstein, Ferdinand Gotthold Max 136
Eisenstein’s Criterion 136
element of a set 1
elementary
– abelian p-group 151
–divisor 191
– symmetric function 273
– vector 141
empty
– set 2
–word 303
equation of the �fth degree 269
equipollent sets 13
equivalence
– class 5
– relation 5
equivalent matrices 193
Euclid of Alexandria 21
Euclidean
–algorithm 21
–domain 121
– space 140
Euclid’s Lemma 22
– for rings 124
Euler, Leonhard 27
Euler’s function 27

even permutation 35
exact sequence of
– groups 74
–modules 183
– vector spaces 160
exactness
–of Hom 183
–of tensor product 286
extension �eld 228
–algebraic 230
–�nite 228
–Galois 256
–normal 250
– radical 270
– separable 252
– simple 228
external direct
– product 66
– sum 178

factor set 223
faithful
– group action 80
– representation 80
Feit, Walter 217
Feit-Thompson Theorem 217
Fermat, Pierre de 24
Fermat’s Little Theorem 26
Fermat prime 24
Ferrari, Lodovico 301
Ferro, Scipione del 301
�eld 111
– algebraic number 232
–algebraically closed 296
–extension 228
–�nite 151, 237
–Galois 239
–of fractions 114
–of rational functions 116
–perfect 252
–prime 227
– splitting 134
�nite abelian groups, number of 196
�nite dimensional vector space 146
�nite p-group 88
�nitely generated
–group 48
–module 176
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– ring 106
– vector space 141
�niteness conditions on
– ideals 117
– subgroups 52, 214
– submodules 179
�xed �eld 263
�xed point set 84
formal power series 104
fractions, �eld of 114
Frattini, Giovanni 218
Frattini argument 219
Frattini subgroup 218, 299
–of a �nite p-group 219
free abelian group 180
free groups 302
–examples of 307, 308
–mapping property of 302
–projective property of 312
free module 180
free monoid 42
Frobenius, Ferdinand Georg 84
Frobenius-Burnside Theorem 84
function 9
–bijective 10
– characteristic 10
– identity 10
– injective 10
– inverse 11
– surjective 10
– symmetric 273
Fundamental Theorem of
–Algebra 266
–Arithmetic 22
–Galois Theory 263

Galois, Évariste 255
Galois
– correspondence 263
–extension 256
–�eld 239
–group 255
–of an extension 255
–of a polynomial 256
Galois Theory, Fundamental Theorem of 263
Gauss, Carl Friedrich 24
Gaussian elimination 144
Gaussian integer 122

Gauss’s Lemma 129
general linear group 41
generator matrix of a code 318
generators and de�ning relations
–of a group 309
–of a module 193
generic polynomial 274
Gödel-Bernays Theory 293
graph 96
– counting 98
greatest common divisor 21
– in rings 124
greatest lower bound 8
group 40
–abelian 40
–alternating 37
– circle 64
– complete 73, 88
– cyclic 48
–dihedral 43
–elementary abelian p- 151
–�nite p- 88
– free 302
–general linear 41
–nilpotent 217
–of prime order 55
–permutation 79
–quotient 63
– simple 62
– solvable 214
– special linear 62
– symmetric 31, 41
– table 46
group action 79
group extension 213
group of units in a ring 103

Hall, Philip 224
Hall subgroup 224, 225
Hall’s theorems on �nite solvable groups 224
Hamilton, William Rowan 111
Hamming, Richard Wesley 313
Hamming
– code 322
– space 313
–upper bound 316
Hasse, Helmut 6
Hasse diagram 6



Index | 333

Hilbert, David 118
Hilbert’s Basis Theorem 118
Hölder, Otto 208
homomorphism 68
– canonical 69
– conjugation 73
–module 176
– ring 106
– trivial 69
homomorphism group 182

ideal 105
–generated by a subset 106
– left 105
–maximal 113, 295
–prime 113
–principal 105, 123
– right 105
identity
– element 40
– function 10
– subgroup 48
image of
– an element 9
–a function 9
Inclusion-Exclusion Principle 38
index of a subgroup 54
induced mapping 182, 279
in�nite set 15
injective function 10
inner automorphism 72
inseparability 251
integer 17
integral domain 110
intermediate �eld 263
internal direct
– product 65
– sum 178
intersection 2
invariant factor 192
inverse
– element 40
– function 11
irreducible
– element 121
– ideal 298
–polynomial 121
irreducibility, test for 136

isometry 42
isomorphic series 206
isomorphism of
– algebras 159
–graphs 97
–groups 45
–modules 177
– rings 107
– vector spaces 152
Isomorphism Theorems for
– groups 70
–modules 177
– rings 108
– vector spaces 153, 154

Jordan, Camille 208
Jordan-Hölder Theorem 208
Jordan normal form 202

kernel of a
–homomorphism 69
– linear mapping 153
Kirkman, Thomas Penyngton 249
Klein, Felix 44
Klein 4-group 44, 46
Kronecker, Leopold 286
Kronecker product 286

labelling problem 94
Lagrange, Joseph Louis 54
Lagrange’s Theorem 54
latin squares 46, 241
–mutually orthogonal 243
–number of 242
lattice 8
–of subgroups 49
Law of Trichotomy 14, 297
Laws of Exponents 47
least common multiple 24
least upper bound 7
left
– action 79
– coset 53
– ideal 105
–module 173
– regular representation 80
– transversal 53
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– functional 155
–mapping 152
–and matrices 156
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–order 7
– recurrence 169
– transformation 152
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–dependent 143, 180
– independent 143, 180
–ordered set 7
localization 290
lower central sequence 221
lower zero triangular matrix 201
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mapping property of
– free groups 302
– tensor products 277
mathematical induction 18
Mathieu, Émile Léonard 213
Mathieu group 213
maximal
– condition 52, 117
– element 293
– ideal 113, 295
–normal subgroup 65
– p-subgroup 299
– subgroup 219
maximal condition on
– ideals 117
– subgroups 52, 214
– submodules 179
middle linear mapping 277
minimum distance of a code 314
minimum polynomial 198
Modular Law 59
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– cyclic 176, 177
–�nitely generated 176
– free 180
– left 173
–presentation of 192

–quotient 176
– right 173
– torsion 185
– torsion-free 185
–unitary 173
modules over a PID 185, 190
–application to linear operators 197
monic polynomial 125
monoid 40
monster simple group 213
Moore, Eliakim Hastings 239
multiple root 132
multiplication table 46
Möbius, August Ferdinand 241
Möbius function 241, 260

next state function 12
nilpotent
– class 217
–groups 217
– characterization of 218
– linear operator 198
–matrix 201
Noether, Emmy 117
noetherian
–module 179
– ring 117
non-generator 219
norm 82
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– closure 62
– core 81
– extension 250
– subgroup 62
normal form
– Jordan 202
– rational 199
–Smith 195
normal form in a free group 306
normalizer 83
null space 141

Odd Order Theorem 217
odd permutation 35
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one-one correspondence 10
onto 10
opposite ring 173
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