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Preface

The origins of algebra are usually traced back to Muhammad ben Musa al-Khwarizmi,
who worked at the court of the Caliph al-Ma’'mun in Baghdad in the early 9th Century.
The word derives from the Arabic al-jabr, which refers to the process of adding the
same quantity to both sides of an equation. The work of Arabic scholars was known in
Italy by the 13th Century and a lively school of algebraists arose there. Much of their
interest was centered on the solution of polynomial equations. This preoccupation of
mathematicians lasted until the beginning of the 19th Century, when the possibility of
solving the general equation of the fifth degree in terms of radicals was finally disproved
by Ruffini and Abel.

This early work led to the introduction of some of the main structures of abstract
algebra, groups, rings and fields. These structures have been studied intensively over
the past two hundred years. For an interesting historical account of the origins of
algebra the reader may consult the book by van der Waerden [17].

Until quite recently algebra was very much the domain of the pure mathematician,
and applications were few and far between. But the situation has changed, in part as a
result of the rise of information technology, where the precision and power inherent
in the language and concepts of algebra have proved to be invaluable. Today many
specialists in computer science and engineering, as well as physics and chemistry,
routinely take courses in abstract algebra. The present work represents an attempt to
meet the needs of both mathematicians and scientists who seek to acquire a knowledge
of algebra and its applications.

As to what is expected of the reader, a basic knowledge of matrix algebra is assumed
and also at least the level of mathematical maturity consistent with completion of three
semesters of calculus. The objective is to introduce the reader to the principal structures
of abstract algebra and to give an account of some of its more convincing applications.
In particular there are sections on solution of equations by radicals, ruler and compass
constructions, Polya counting theory, Steiner systems, orthogonal latin squares and
error correcting codes. The book should be suitable for students in the final year of
undergraduate or first year of (post)graduate studies at a university in North America
or the United Kingdom.

The principal change to the book from the first edition is the addition of two new
chapters. The first of these is an introduction to the theory of modules, a topic that
combines the concepts of group and ring. Enough of the theory is developed to establish
the structure theorem for finitely generated modules over principal ideal domains. Then
applications to matrices and linear operators are presented. The second new chapter
gives an introduction to tensor products, an essential tool in many advanced parts of
algebra. Also Hilbert’s Basis Theorem is proved and a more detailed account of Hall’s
theory of finite solvable groups is given. The original chapter on vector spaces has been
modified by substituting an account of the theory of eigenvalues and eigenvectors of



VIII —— Preface

linear operators for the section on orthogonality. Some of these changes have inevitably
had the effect of raising the level of abstraction in parts of the book. However, the
original aim of making abstract algebra accessible to as many readers as possible is
maintained in this edition.

Naturally the opportunity has been taken to correct errors and obscurities in the
first edition. I am grateful to those readers who took the time and trouble to send in
lists of corrections, and here particular thanks are due to Adolfo Ballester-Bolinches
and Dieter Kilsch. Of course, as usual, full credit for all errors belongs to the author.

There is more than enough material here for a two semester course in abstract
algebra. If just one semester is available, Chapters One through Eight and Chapter
Eleven could be covered. The first two chapters contain topics that will be familiar
to many readers and can be covered more quickly. In addition, a good deal of the
material in Chapter Eight will not be new to a reader who has taken a first course
in linear algebra. A word about proofs is in order. Sometimes students from outside
mathematics question the need for mastering the art of rigorous proof, although this is
perhaps becoming less common. One response is that the only way to be sure that a
statement is correct, or that a computer program will always deliver the correct answer,
is to prove it. As a rule complete proofs are given and they should be read. The first two
chapters, which contain much elementary material, are a good place for the reader to
develop and polish theorem proving skills. Each section of the book is followed by a
selection of problems of varying degrees of difficulty.

The second edition of this book, like the first, is based on courses given over many
years at the University of Illinois at Urbana-Champaign, the National University of
Singapore and the University of London. I am grateful to my colleagues for good advice
and many stimulating conversations: these have led to numerous improvements in
the text. My thanks are due to Otto Kegel and Manfred Karbe for assistance with the
first edition. In preparing this second edition I have been aided by Leonardo Milla and
Friederike Dittberner at Walter de Gruyter, whose advice and assistance have greatly
helped. Finally, I thank my family for their patience and encouragement, which are
essential in a project such as this.

Derek Robinson

Urbana, Illinois,
November 2014
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1 Sets, relations and functions

The concepts introduced in this chapter are truly fundamental and underlie almost
every branch of mathematics. Most of the material is quite elementary and will be
familiar to many readers. Nevertheless readers are encouraged to review the material
and to check notation and definitions. Because of its nature the pace of this chapter is
somewhat faster than in subsequent chapters.

1.1 Sets and subsets

By a set we shall mean any well-defined collection of objects, which are called the
elements of the set. Some care must be exercised in using the term “set” because of
Bertrand Russell’s famous paradox, which shows that not every collection can be
regarded as a set. Russell considered the collection C of all sets which are not elements
of themselves. If C is allowed to be a set, a contradiction arises when one inquires
whether or not C is an element of itself. Now plainly there is something suspicious
about the idea of a set being an element of itself and we shall take this as evidence that
the qualification “well-defined” needs to be taken seriously. A collection that is not a
set is called a proper class.

Sets will be denoted by capital letters and their elements by lower case letters. The
standard notation

achA

means that a is a element of the set A, or a belongs to A. The negation of a € A is
denoted by a ¢ A. Sets can be defined either by writing their elements out between
braces, as in {a, b, c, d}, or alternatively by giving a formal description of the elements,
the general format being

A = {a | a has property P},

i.e., A is the set of all objects with the property P. If A is a finite set, the number of its
elements is written
|A].

Subsets. Let A and B be sets. If every element of A is an element of B, we write
AcCB

and say that A is a subset of B, or that A is contained in B.If A ¢ B and B ¢ A, so that
A and B have exactly the same elements, then A and B are said to be equal,

A=B.

The negation of thisis A # B. The notation A ¢ Bisused if A ¢ Band A # B; then A is
called a proper subset of B.
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Some special sets. A set with no elements at all is called an empty set. An empty set E
is a subset of any set A; for if this were false, there would be an element of E that is not
in A, which is certainly wrong. As a consequence, there is exactly one empty set: for if E
and E’ are two empty sets, then E ¢ E' and E' € E, so that E = E’. The unique empty
set is written

0.

Some further standard sets with reserved notations are
N, Z, Q, R, C,

which are respectively the sets of natural numbers 0, 1, 2, ..., integers, rational
numbers, real numbers and complex numbers.

Set operations. Next we recall the familiar set operations of union, intersection and
complement. Let A and B be sets. The union A U B is the set of all objects which belong
to A or B, or possibly to both; the intersection A N B consists of all objects that belong
to both A and B. Thus

AUB={x|xeAorxe B},

while
ANnB={x|xeAandx € B}.

It should be clear how to define the union and intersection of an arbitrary collection of
sets {4 | A € A}; these are written

UA,\ and ﬂA/\,

AeA AeA

respectively. The relative complement of B in A is
A-B={x|xeAandx ¢ B}.

Frequently one has to deal only with subsets of some fixed set U, called the universal
set. If A ¢ U, then the complement of A in U is

A=U-A.

We list for future reference the fundamental properties of unions, intersections
and complements: most of these should be familiar.

(1.1.1) Let A, B, C, By (A € A) be sets. Then the following statements are valid:

(i) AuB=BUAandAnB = Bn A, (commutative laws).

(ii) (AUuB)UC=AUBUC)and (AnB)nC = An(Bn C), (associative laws).

(({i)AnNnBUC)=ANBUANC)and Au (BnC) = (AUB)n(AuC), (distributive
laws).

(iv AUA=A=AnA.
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V) Aup=A,An0=0.
(vi) A - (U/\e/l B/\) = Mea(A - By) and A - (ﬂ/\eA B/\) = Urea(4 - By), (De Morgan’s

Laws).t

The easy proofs of these results are left to the reader as an exercise.

Set products. Let A1, A, ..., A, be sets. By an n-tuple of elements from A4, A, ...,
A, is to be understood a sequence of elements a1, as, . . ., a, with a; € A;. The n-tuple
is usually written (a;, a,, . . ., a,) and the set of all n-tuples is denoted by

Ay XAy x---x Ay

This is the set product (or cartesian product) of A1, A, ..., A,. For example R x R is
the set of coordinates of points in the plane.
The following result is a basic counting tool.

(1.1.2) IfAq, Ay, ..., Ay, are finite sets, then

|A1 x Ay X+ X Ap| = |A1] - |A2] -+ - |An].

Proof. In forming an n-tuple (a1, as, ..., a,) we have |A1| choices for a;, |A,| choices
fora,, ..., |An| choices for a,. Each choice of an qg; yields a different n-tuple. Therefore
the total number of n-tuplesis |A1| - |A>|---|Anl. O

The power set. The power set of a set A is the set of all subsets of A, including the
empty set and A itself; it is denoted by

P(A).

The power set of a finite set is always a larger set, as the next result shows.

(1.1.3) If A is a finite set, then |P(A)| = 2141,

Proof. Let A = {ay, aa, ..., a,} with distinct a;’s. Also put I = {0, 1}. Each subset B
of A is to correspond to an n-tuple (i1, i3, . .., i) with ij € I. Here the rule for forming
the n-tuple corresponding to B is this: i; = 1 if a; € Band i; = 0 if a; ¢ B. Conversely,
every n-tuple (i1, iz, .. ., ip) with i; € I determines a subset B of A, defined by B =
{aj 1 1 <j < n,ij = 1}. It follows that the number of subsets of A equals the number
of elements in I x I x --- x I, where the number of factors is n. By (1.1.2) we obtain
|P(A)| = 21 = 214l O

1 Augustus De Morgan (1806-1871)
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The power set P(A), together with the operations U and n, constitutes what is
known as a Boolean? algebra; such algebras have become very important in logic and
computer science.

Exercises (1.1)

(1) Prove as many parts of (1.1.1) as possible.
(2) Let A, B, Cbesetssuchthat AnB=AnCand AuB =AU C. Prove that B = C.

(3)If A, B, C are sets, establish the following:
i) A-B)-C=A-(BuUO).
i) A-B-CO)=A-B)U@AnBnO).
(4) Let A and B be finite sets. Prove that |P(4 x B)| = |P(A)|'Bl.

(5) Let A and B be finite sets with more than one element in each. Prove that |P(A x B)|
is larger than both |P(A)| and |P(B)|.

(6) The disjoint union A ® B of sets A and B is defined by therule Ae B=AUB-AnNB,
so its elements are those that belong to exactly one of A and B. Prove the following
statements:

i) AeA=0,AeoB=BoA.

(i) AeB)eC=AaBaC(C).

(iii) AeB)NnC=(ANC)®(BNC).

. _ [PAIPB)I
(7) If A and B be finite sets, show that |P(A U B)| = SSaRBT

1.2 Relations, equivalence relations, partial orders

In mathematics it is often not sufficient to deal with the individual elements of a set:
for it may be critical to understand how elements of the set are related to each other.
This leads us to formulate the concept of a relation.

Let A and B be sets. Then a relation R between A and B is a subset of the set product
A x B. The definition is clarified by use of a suggestive notation: if (a, b) € R, then a is
said to be related to b by R and we write

aRb.

The most important case is of a relation R between A and itself; this is called a relation
on the set A.

Example (1.2.1)
(i) Let A beasetanddefineR = {(a,a) | a € A}. Thus a; R a, means that a; = a;
and R is the relation of equality on A.

2 George Boole (1815-1864)
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(ii) Let P be the set of all points and L the set of all lines in the plane. A relation R
from P to L is defined by: p R ¢ if the point p lies on the line #.
(iii) A relation R on the set of integers Z is defined by: a R b if a — b is even.

The next result confirms what one might suspect, that a finite set has many relations.
(1.2.1) IfA is a finite set, the number of relations on A equals 2'A”.

For this is the number of subsets of A x A by (1.1.2) and (1.1.3).

The concept of a relation on a set is evidently a very broad one. In practice the
relations of greatest interest are those which have special properties. The most common
of these are listed next. Let R be a relation on a set A.

(i) Risreflexiveifa R aforall a € A.

(ii) R issymmetricif a R b always implies that b R a.

(iii) R is antisymmetricif a R b and b R a imply that a = b;
(iv) Ris transitiveifa R band b R c imply that a R c.

Relations which are reflexive, symmetric and transitive are called equivalence relations;
they are of fundamental importance. Relations which are reflexive, antisymmetric and
transitive are also important; they are called partial orders. Here are some examples of
relations of various types.

Example (1.2.2)

(i) Equality on a set is both an equivalence relation and a partial order.

(ii) A relation R on Z is defined by: a R b if and only if a - b is even. This is an
equivalence relation, but it is not a partial order.

(iii) If A is any set, the relation of containment ¢ is a partial order on the power set P(A).

(iv) A relation R on N is defined by a R b if a divides b. Here R is a partial order on IN.

Equivalence relations and partitions. The structure of an equivalence relation on a
set will now be analyzed. The essential conclusion will be that an equivalence relation
causes the set to split up into non-overlapping non-empty subsets.

Let E be an equivalence relation on a set A. First of all define the E-equivalence
class of an element a of A to be the subset

l[al ={x| x € Aand x E a}.

By the reflexive law a € [a]g, so

A=|lalk

acA
and A is the union of all the equivalence classes.
Next suppose that the equivalence classes [a]g and [b]g both contain an element x.
Assume that y € [a]g; theny E a, a E x and x E b, by the symmetric law. Hence y E b
by two applications of the transitive law. Therefore y € [b]r and we have proved that
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lalg < [b]g. By the same reasoning [b]g < [alg, so that [a]g = [b]g. It follows that
distinct equivalence classes are disjoint, i.e., they have no elements in common.

What has been shown so far is that the set A is the union of the E-equivalence
classes and that distinct equivalence classes are disjoint. A decomposition of A into
disjoint non-empty subsets is called a partition of A. Thus E determines a partition
of A.

Conversely, suppose that a partition of A into non-empty disjoint subsets Ay, (A €
A), is given. We would like to construct an equivalence relation on A corresponding
to the partition. Now each element of A belongs to a unique subset A,; thus we may
define a E b to mean that a and b belong to the same subset A,. It follows immediately
from the definition that the relation E is an equivalence relation; what is more, the
equivalence classes are just the subsets A, of the original partition. We summarize
these conclusions in:

(1.2.2)

(i) IfEis an equivalence relation on a set A, the E-equivalence classes form a partition
of A.

(ii) Conversely, each partition of A determines an equivalence relation on A for which
the equivalence classes are the subsets in the partition.

Thus the concepts of equivalence relation and partition are in essence the same. In
the equivalence relation (ii) above there are two equivalence classes, the sets of even
and odd integers; of course these form a partition of Z.

Partial orders. Suppose that R is a partial order on a set 4, i.e., R is a reflexive, anti-
symmetric, transitive relation on A. Instead of writing a R b it is customary to employ
a more suggestive symbol and write

ax<bhb.

The pair (4, <) then constitutes a partially ordered set (or poset).

The effect of a partial order is to impose a hierarchy on the set A. When the set is
finite, this can be visualized by drawing a picture of the poset called a Hasse3 diagram.
It consists of vertices and edges drawn in the plane, the vertices representing the
elements of A. A sequence of upwardly sloping edges from a to b, as in the diagram
below, indicates that a < b. Elements a, b not connected by such a sequence of edges
do not satisfy a < b or b < a. In order to simplify the diagram as far as possible, it is

3 Helmut Hasse (1898-1979)
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agreed that unnecessary edges are to be omitted.

ob

o

e

o

e

°a
A very familiar poset is the power set of a set A with the partial order ¢, i. e. (P(4), ©).

Example (1.2.3) Draw the Hasse diagram of the poset (P(A4), <) where A = {1, 2, 3}.
This poset has 23 = 8 vertices, which can be visualized as the vertices of a cube
standing on one corner.

{1,2,3}

{2,3} {1,3} {1,2}

{3} {2} {1}

0

One reason why partially ordered sets are important in algebra is that they provide
a useful representation of substructures of standard algebraic structures, for example
subsets, subgroups, subrings etc..

A partial order < on a set A is called a linear order if, given a, b € A, eithera < b or
b < a holds. Then (4, <) is called a linearly ordered set or chain. The Hasse diagram of
a chain is a single sequence of edges sloping upwards. Obvious examples of chains are
(Z, <) and (R, <) where < is the usual “less than or equal to”. Finally, a linear order
on A is called a well order if each non-empty subset X of A contains a least element a,
i.e., such that a < x for all elements x € X. While it might seem obvious that < is a well
order on the set of all positive integers, this actually an axiom, the Well-Ordering Law,
which is discussed in Section (2.1).

Lattices. Consider a poset (4, <).If a, b € A, a least upper bound (or lub) of a and b is
anelement £ € Asuchthata <¢and b < ¢,andifa < xand b < x, with xin A, then
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£ < x. Similarly a greatest lower bound (or glb) of a and b is an element g € A such
that g < aand g < b, while x < a and x < b imply that x < g. If £ and g exist, the Hasse
diagram of (4, <) will contain the subdiagram

N
7

g

b

A poset in which each pair of elements has an lub and a glb is called a lattice. For
example, (P(S), <) is a lattice since the lub and glb of A and B are just AuUBand AN B
respectively.

The composite of relations. Since arelation is a subset, two relations may be combined
by forming their union or intersection. However, there is a more useful way of combining
relations called composition: let R and S be relations between A and B and between B
and C respectively. Then the composite relation

S-R

is the relation between A and C defined by: a (S - R) c if and only if there exists b € B
suchthata Rband b S c.

For example, assume that A = Z, B = {a, b, c}, C = {a, B, y}. Define relations
R={(1,a),(2,b),(4,0)},S={(a,a),(,y),(c,B)}.Then S R ={(1, a), (2, y), (4, B)}.

In particular one can form the composite of any two relations R and S on a set A.
Notice that the condition for a relation R to be transitive can now be expressed in the
formR-R C R.

A result of fundamental importance is the associative law for composition of rela-
tions.

(1.2.3) Let R, S, T be relations between A and B, B and C, and C and D respectively.
ThenTo(SocR)=(T-S)-R.

Proof. Leta € Aand d € D. Then a (T » (S - R)) d means that there exists ¢ € C such
thata (SeR) candc T d, i.e., there exists b € Bsuchthata R b,b Scandc T d.
Therefore b (ToS)dand a ((ToS)oR) d.Thus To(SoR) € (T~S)oR, and in a similar
way (ToS)oR<c To(SoR). O
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Exercises (1.2)

(1) Determine whether the binary relations R defined on the set A below are reflexive,
symmetric, antisymmetric or transitive.

(i) A=RandaR bmeansa? = b2

(i) A=RandaR bmeansa-b < 2.

(iii) A=ZxZand (a,b) R (c,d)meansa+d=>b +c.

(iv) A =Zand a R b means that b = a + 3¢ for some integer c.
(2) A relation ~ on R - {0} is defined by a ~ b if ab > 0. Show that ~ is an equivalence
relation and identify the equivalence classes.

(3) Let A = {1, 2, ..., n} where n is a positive integer. Define a < b to mean that a
divides b. Show that (4, <) is a poset. Draw the Hasse diagram for the case n = 12.

(4) Let (A, <) be a poset and let a, b € A. Show that a and b have at most one lub and
at most one glb.

(5) Given linearly ordered sets (4;, <;),i =1, 2, ..., k, suggest a way to make A1 x A, x
--- X Ay into a linearly ordered set.

(6) How many equivalence relations are there on sets with 1, 2, 3 or 4 elements?

(7) Suppose that A is a set with n elements. Show that there are exactly 211 reflexive
relations on A and 2""*1/2 symmetric ones.

(8) Let R be a relation on a set A. Define powers of R recursively by R! = R and R™! =
R*oRforn=1,2,....
(i) IfRis transitive, show that---R" € R*1 ¢c...c RZ¢R.
(i) Ifin addition R is reflexive, show that R = R? = R> =etc.
(iii) If R is a transitive relation on a finite set with n elements, prove that R™ =
R™1 ... wherem = n? + 1.

1.3 Functions

A more familiar concept than a relation is a function. While functions are to be found
throughout mathematics, they are usually first encountered in calculus as real-valued
functions of a real variable. Functions can provide convenient descriptions of complex
objects and processes in mathematics and the information sciences.

Let A and B be sets. A function or mapping or map from A to B, in symbols

a:A — B,

is a rule which assigns to each element a of A a unique element a(a) of B, called the
image of a under a. The sets A and B are the domain and codomain of a respectively.
The image of the function a is

Im(a) = {a(a) | a € A},
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which is a subset of the codomain. The set of all functions from A to B will occasionally
be written Fun(A4, B).

Examples of functions.

(i) The functions that appear in calculus are those whose domain and codomain are
subsets of R. Such a function can be visualized by drawing its graph in the usual way.

(ii) Given a function a : A — B, we define
Ry ={(a,a(a)) | aec A} < AxB.

Thus R, is a relation between A and B. Observe that R, is a special kind of relation
since each a in A is related to a unique element of B, namely a(a).

Conversely, suppose that R is a relation between A and B such that each a € A
is related to a unique b € B. We may define a corresponding function ag : A — B by
agr(a) = b where a R b. Thus functions from A to B may be regarded as special types
of relation between A and B.

This observation permits us to form the composite of two functions & : A — B and
B : B — C by forming the composite of the corresponding relations: thus foa: A — C
is defined by

Bea(a) = fla(a)).

(iii) The characteristic function of a subset. Let A be a fixed set. For each subset X of A
define a function ax : A — {0, 1} by the rule

1 ifaeX
ax(a) = .
0 ifa¢X.

Then ay is called the characteristic function of the subset X. Conversely, every function
a : A — {0, 1} is the characteristic function of some subset of A — which subset?

(iv) The identity function on a set A is the functionid, : A — A defined by ids(a) = a
foralla € A.

Injectivity and surjectivity. There are two special types of function of critical impor-
tance. A function @ : A — B is called injective (or one-one) if a(a) = a(a') always
implies that a = a’, i.e., distinct elements of A have distinct images in B under a. Next
a : A — B is surjective (or onto) if each element of B is the image under a of at least
one element of A, i.e., Im(a) = B. Finally, a : A — B is said to be bijective (or a one-one
correspondence) if it is both injective and surjective.

Here are some examples of various types of functions.

(i) a : R — R where a(x) = 2¥ is injective but not surjective.

(ii) @ : R — R where a(x) = x> - 4x is surjective but not injective. Here surjectivity is
best seen by drawing the graph of y = x> — 4x. Note that any line parallel to the x-axis
meets the curve at least once. But « is not injective since a(0) = 0 = a(2).
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(iii) a : R —» R where a(x) = x> is bijective.

(iv) @ : R — R where a(x) = x? is neither injective nor surjective.

Inverse functions. Functionsa : A — Band 8 : B — A are said to be mutually inverse
ifaof =idpand foa = ida. Also 8 is an inverse of a. Suppose that ' is another inverse
of a. Then, with the aid of the associative law, we have

B=idyof=(Bca)ef=po(@:p)=p oids=p
Therefore a has a unique inverse, if it has one at all. We will write
al:B>A

for the unique inverse of a when it exists.
It is important to be able to recognize functions which possess inverses.

(1.3.1) A function a : A — B has an inverse if and only if it is bijective.

Proof. Assume that a™! : A — B exists. If a(a;) = a(a>), then, applying a~! to each

side, we arrive at a; = a,, which shows that a is injective. Next, to show that a is
surjective, let b € B. Then b = idg(h) = a(a"1(b)) € Im(a), showing that Im(a) = B
and «a is surjective. Thus a is bijective.

Conversely, let a be bijective. If b € B, there is precisely one element a in A such
that a(a) = b since a is bijective. Define 8 : B — A by B(b) = a. Then af(b) = a(a) = b
and af = idg. Also Ba(a) = B(b) = a; since every a in A arises in this way, fa = idys
and B = al. O

The next result records some useful facts about inverses.

(1.3.2)

(i) Ifa:A — Bis bijective, thensoisa™! : B —» Aand (a”1)™! = a.

(i) Ifa: A — Band B : B — C are bijective functions, then B o a« : A — C is bijective
and (Bea)yt=atopL.

Proof. The equations a o a~! =idg and a ! o & = idy tell us that a is the inverse of a~1.

Check directly that =!8~ is the inverse of Soa by using the associative law twice: thus

(Bea)e(atof) = (Bea)eat)of! = (Bo(acat))of! = (Boidp)ef = B! = idc.

Similarly (a1 o 1) o (B a) = idy. O

Application to automata. As an illustration of how the language of sets and functions
may be used to describe information systems, we give a brief account of automata. An
automaton is a theoretical device that is a basic model of a digital computer. It consists
of an input tape and an output tape together with two “heads”, which are able to read
symbols on the input tape and print symbols on the output tape. At any instant the
system is in one of a number of states. When the automaton reads a symbol on the
input tape, it goes to another state and writes a symbol on the output tape.
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output tape

To make this idea precise we define an automaton A to be a 5-tuple
(1,0,S,v,0)

where I and O are the respective sets of input and output symbols, S is the set of states,
v:IxS — Oisthe output functionand ¢ : I x S — S is the next state function. The
automaton operates in the following manner. If it is in state s € S and input symbol
i € Iis read, the automaton prints the symbol v(i, s) on the output tape and goes to
state o(i, s). Thus the mode of operation is determined by the three sets I, O, S and the
two functions v, o.

Exercises (1.3)

(1) Which of the following functions are injective, surjective, bijective?

(i) a:R — Zwhere a(x) = [x], the largest integer < x.

(i) a:R>° — Rwhere a(x) = log;o(x). (Here R°° = {x | x € R, x > O}).

(iii) a: A x B — B x A where a((a, b)) = (b, a).
(2) Prove that a composite of injective functions is injective and a composite of surjective
functions is surjective.
(3) Let a : A — Bbe a function between finite sets. Show that if |A| > |B|, then a cannot
be injective, and if |A| < |B|, then a cannot be surjective.
(4) Definea : R —» Rby a(x) = % Prove that a is bijective.
(5) Give an example of two functions a, f on a set A such that ao = id4 but foa # ida.
(6) Let @ : A — B be a injective function. Show that there is a surjective function
B : B — Asuchthat foa=id,.
(7) Let a : A — B be a surjective function. Show that there is an injective function
B : B — Asuchthata-f =idp.
(8) Describe a simplified version of an automaton with no output tape in which each
output is the new state. (This is called a state output automaton).
(9) Let @ : A — B be a function. Define a relation E, on A by the rule: a E, a’ means
that a(a) = a(a’). Prove that E, is an equivalence relation on A. Then show that,
conversely, if E is any equivalence relation on a set A, then E = E, for some function a
with domain A.
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1.4 Cardinality

If we want to compare two sets, a natural basis for comparison is the “size” of each set.
If the sets are finite, their sizes are just the numbers of elements in the set. But how can
one measure the size of an infinite set? A reasonable point of view would be to hold
that two sets have the same size if their elements can be paired off. Certainly two finite
sets have the same number of elements precisely when their elements can be paired.
The point to observe is that this idea also applies to infinite sets, making it possible to
give a rigorous definition of the size of an infinite set, its cardinal.

Let A and B be two sets. Then A and B are said to be equipollent if there is a bijection
a : A — B:thus the elements of A and B may be paired off as (a, a(a)), a € A. It follows
from (1.3.2) that equipollence is an equivalence relation on the class of all sets. Thus
each set A belongs to a unique equivalence class, which will be written

Al

and called the cardinal of A. Informally we can think of |A| as the collection of all sets
with the same “size” as A. A cardinal number is the cardinal of some set.

If A is a finite set with exactly n elements, then A is equipollent to the set {0, 1, ...,
n -1} and |A| = |{0,1,...,n — 1}|. It is reasonable to identify the finite cardinal
{0, 1, ..., n — 1}| with the non-negative integer n. For then cardinal numbers appear
as infinite versions of the non-negative integers.

Let us sum up our very elementary conclusions so far.

(1.4.1)

(i) Every set A has a unique cardinal number |A|.

(ii) Two sets are equipollent if and only if they have the same cardinal.

(iii) The cardinal of a finite set may be identified with the number of its elements.

Since we plan to use cardinals to compare the sizes of sets, it makes sense to define
a “less than or equal to” relation < on cardinals. Define

|Al < |B|

to mean that there is an injective function @ : A — B. Of course we will write |A| < |B]|
if|A| < |B| and |A]| # |B.

It is important to verify that this definition of < depends only on the cardinals |A|
and |B|, not on the choice of sets A and B. Indeed, if A’ € |A| and B’ € |B|, then there
are bijections a’ : A’ - A and ' : B — B’; by composing these with the injection
a : A — Bwe obtain the injection ' ca o a’ : A’ —» B’. Thus |A’| < |B|.

Next we prove a famous result about inequality of cardinals.

(1.4.2) (The Cantor-Bernstein* Theorem) If A and B are sets such that |A| < |B| and
|B| < |A|, then |A| = |B].

4 Georg Cantor (1845-1918), Felix Bernstein (1878-1956)
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The proof of (1.4.2) is our most challenging proof so far and some readers may
prefer to skip it. However, the basic idea behind it is not difficult to grasp.

Proof. By hypothesis there are injective functionsa : A — Band  : B — A. These

will be used to construct a bijective function y : A — B, which will show that |A| = |B|.
Consider an arbitrary element a in A; either a = S(b) for some unique b € B or

else a ¢ Im(B): here we use the injectivity of 8. Similarly, either b = a(a’) for a unique

a' € Aorelse b ¢ Im(a). Continuing this process, we trace back the “ancestry” of the

element a. There are three possible outcomes:

(i) we reach an element of A — Im(f);

(ii) we reach an element of B — Im(a);

(iii) the process continues without end.

Partition the set A into three subsets corresponding to possibilities (i), (ii), (iii) and
call them AA, AB, Aco respectively. In a similar fashion the set B decomposes into
three disjoint subsets BA, BB, Boo; for example, if b € BA, we can trace b back to an
element of A — Im(f3).

Now we are in a position to define the function y : A — B. First observe that the
restriction of a to AA is a bijection from AA to BA, and the restriction of @ to Aco is a
bijection from Aoco to Boo. Also, if x € AB, there is a unique element x’ € BB such that
B(x') = x. Now define

a(x) ifx e AA
px) = qax) ifxeAoco
x! if x € AB.

Then yis the desired bijection. O

(1.4.3) The relation < is a partial order on cardinal numbers.

For we have proved antisymmetry in (1.4.2), while reflexivity and transitivity are
clearly true. In fact one can do better since < is even a linear order. This is because of:

(1.4.4) (The Law of Trichotomy) If A and B are sets, then exactly one of the following
must hold:
|Al < |Bl, |Al=1Bl|, |B|<]IAl.

The proof will not be given at this point since it depends on advanced material —
see (14.1.7) below for a proof.
The next result establishes the existence of arbitrarily large cardinal numbers.

(1.4.5) If A is any set, then |A| < |P(4)|.

Proof. The easy step is to show that |A| < |P(A)|. This is because the assignment
a — {a} sets up an injection from A to P(A).

Next assume that |A| = |P(4)|, so that there is a bijection a : A — P(A). Of course
at this point we are looking for a contradiction. The trick is to consider the subset
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B={a|lacA, a¢a(a)}of A. Then B € P(A), so B = a(a) for some a € A. Now either
acBora¢ B.Ifa e B,thena ¢ a(a) = B;ifa ¢ B = a(a), then a € B. This is our
contradiction. O

Countable sets. The cardinal of the set of natural numbers N = {0, 1, 2,...}is de-
noted by
No.

Here X is the Hebrew letter aleph. A set A is said to be countable if |A| < Ry. Essentially
this means that the elements of A can be “labelled” by attaching to each element a
natural number as a label. An uncountable set cannot be so labelled.

We need to explain what is meant by an infinite set for the next result to be mean-
ingful. A set A will be called infinite if it has a subset that is equipollent with N, i.e., if
Ro < |A|. An infinite cardinal is the cardinal of an infinite set.

(1.4.6) N is the smallest infinite cardinal.

Proof. If A is an infinite set, then A has a subset B such that Xy = |B|. Hence Xg <
|Al. O

It follows that if A is a countable set, either A is finite or |A| = Ro. As the final topic
of the chapter we consider the cardinals of the sets Q and R.

(1.4.7)
(i) The set Q of rational numbers is countable.
(ii) The set R of real numbers is uncountable.

Proof. (i) Each positive rational number has the form % where m and n are positive
integers. Arrange these rationals in a rectangular array, with 2 in the mth row and
nth column. Of course each rational will occur infinitely often because of cancellation.
Now follow the path indicated by the arrows in the diagram below.

1 1 1 1
i 2 3 7%
e 7 e
2 2 2 2
1 2 3 4
l 7 4
3 3 El 3
1 2 3 4

This creates a sequence in which every positive rational number appears infinitely
often. Delete repetitions in the sequence. Insert O at the beginning of the sequence and
insert —r immediately after r for each positive rational r. Now every rational occurs
exactly once in the sequence. Hence Q is countable.

(ii) It is enough to show that the set I of all real numbers r such that 0 < r < 11is
uncountable: this is because |I| < |R|. Assume that I is countable, so that it can be
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written in the form {rq, r2, r3, . . . }. Write each r; as a decimal, say
ri=0-ritip---

where 0 < rj; < 9. We reach a contradiction by producing a number in the set I which
does not equal any r;. Define

0 ifrj#0
Si =
1 ifr;=0

and let s be the decimal O - 5155 - - - ; then certainly s € I. Hence s = r; for some i, so
that s; = ry;; but this is impossible by the definition of s;. O

Exercises (1.4)

(1) A finite set cannot be equipollent to a proper subset.

(2) A set is infinite if and only if it has the same cardinal as some proper subset.
(3) If there is a surjection from a set A to a set B, then |B| < |A]|.

(4) Show that |Z| = Ng and |Z x Z| = Ng.

(5) Let Ay, Aa, . .. be countably many, countable sets. Prove that  J;_; , . A;isacount-

yeee

able set. [Hint: write A; = {ajo, ai1, . . . } and follow the method of the proof of (1.4.7(i)].

(6) Suggest reasonable definitions of the sum and product of two cardinal numbers.
[Hint: try using the union and set product]
(7) Let S denote the set of all restricted sequences of integers a4, a, as, ...,i.e,,a; =0
for all but a finite number of i. Prove that |S| = Rg.
(8) Let A be a countably infinite set and let Pf(A) denote the set of all finite subsets
of A.

(i) Prove that |Pf(A)| = |A], so that P;(A) is countable.

(ii) Prove that on the other hand P(A) is uncountable.
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The role of the integers is central in algebra, as it is in all parts of mathematics. One
reason for this is that the set of integers Z, together with the standard arithmetic
operations of addition and multiplication, serves as a model for several of the funda-
mental structures of algebra, including groups and rings. In this chapter the most basic
properties of the integers are developed.

2.1 Well-ordering and mathematical induction

We begin by listing the properties of the fundamental arithmetic operations on Z,
addition and multiplication. In the following a, b, c are arbitrary integers.

(i) a+b=>b+a,ab = ba,(commutative laws);

(i) (@a+b)+c=a+(b+c), (ab)c = a(bc), (associative laws);

(iii) (a + b)c = ac + bc, (distributive law);

(iv) O+a=aand 1-a = a, (existence of identities);

(v) each integer a has a negative —a with the property a + (-a) = 0;

(vi) ifab = 0,thena=0o0rb =0.

Next we list properties of the relation < on Z.

(vii) <isalinear order on Z, i.e., the relation < is reflexive, antisymmetric and transitive;
in addition, for any pair of integers a, b eithera < bor b < a;

(viii) if a < b and ¢ > 0, then ac < bc;

(ix) ifa < b, then -b < —a.

These properties are assumed as axioms. But there is a further property of the linearly
ordered set (Z, <) which is independent of the above axioms and is quite vital for the
development of the elementary theory of the integers.

The Well-Ordering Law. Let k be a fixed integerand put U = {n | n € Z,n > k}.
Suppose that S is a non-empty subset of U. Then the Well-Ordering Law (WO) asserts
that S has a smallest element. Thus < is a well order on U in the sense of (1.2).

While this may seem a harmless assumption, it cannot be deduced from axioms
(i)—(ix) and must be adopted as an additional axiom. The importance of WO for us is
that it provides a sound basis for the method of proof by mathematical induction. This
is embodied in

(2.1.1) (The Principle of Mathematical Induction) Let k be an integer and let U = {n |
n e Z,n > k}. Assume that S is a subset of U with the properties

(i) keS;

(ii) ifne S,thenn+1 € S.
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Then S equals U.

Proof. Once again the assertion sounds fairly obvious, but in order to prove it, we must
use WO. To see how WO applies, assume that S # U, so that S’ = U - S is not empty.
Then WO guarantees that S’ has a smallest element, say s. Notice that k < ssincek € S
by hypothesis. Thus k < s—1and s -1 ¢ S’ because s is minimal in S’. Hences -1 € S,
which by (ii) above implies that s € S, a contradiction. Thus (2.1.1) is established. [

The method of proof by induction. Suppose that k is a fixed integer and that for each
integer n > k there is a proposition p(n), which is either true or false. Assume that the
following hold:

(i) p(k)is true;

(i) if p(n) is true, then p(n + 1) is true.

Then we can conclude that p(n) is true for all n > k.

For let S be the set of all integers n > k for which p(n) is true. Then the hypotheses
of PMI (Principle of Mathematical Induction) apply to S. The conclusion is that S equals
{nlneZ,nz>kiie., p(n)istrue foralln > k.

Here is a simple example of proof by mathematical induction.

Example (2.1.1) Use mathematical induction to show that 8™*! + 9271 is a multiple
of 73 for all positive integers n.

Let p(n) denote the statement: 8"*1+92"~1 js a multiple of 73. Then p(1) is certainly
true since 8™1 + 92"-1 = 73 when n = 1. Assume that p(n) is true; we have to deduce
that p(n + 1) is true. Now we may rewrite 8+D+1 4 92(n+1)-1 jp the form

8n+2 + 92n+1 — 8(8n+1 + 92n—1) + 92n+1 _ 8 . 92"—1

— 8(8n+1 + 927‘!*1) + 73 . 92)’1*1.

Since both terms in the last expression are multiples of 73, so is 8"*2 + 92"*1, Thus
p(n + 1) is true and by PMI the statement p(n) is true for all n > 1.

(2.1.2) (Alternate Form of PMI) Let k be an integer and let U = {n | n € Z,n > k}.
Assume that S is a subset of U with the properties

(i) keS;

(ii) if m € S for all integers m such that k < m < n, thenn € S.

Then S = U.

This variant of PMI follows from WO just as the original form does. There are
situations where proof by induction cannot be easily used but the alternate form is
effective. In such a case one has a proposition p(n) for n > k such that:

(i) p(k)is true;
(ii) if p(m) is true whenever k < m < n, then p(n) is true.
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The conclusion is that p(n) is true for all n > k.

A good example of a proposition where this type of induction proof is successful is
the Fundamental Theorem of Arithmetic — see (2.2.7).

Our approach to the integers in this section has been quite naive: we have simply
stated as axioms all the properties that we need. For a good axiomatic treatment of the
construction of the integers, including an account of the axioms of Peano, see [6].

Exercises (2.1)

(1) Use induction to establish the following summation formulas for n > 1.
() 1+2+43+--+n=3nn+1);
(i) 12+22+32+--+n?=1lnn+1)(2n+1);
(i) > +23+3%+--+n®=(3nn+ 1))°.
(2) Deduce the alternate form of PMI from WO.
(3) Prove that 2" > n? for all integers n > 10.
(4) Prove that 2" > n* for all integers n > 17.
(5) Prove by mathematical induction that 6 divides n> — n for all integers n > 0.

(6) Use the alternate form of mathematical induction to show that any n cents worth of
postage, where n > 12, can be made up by using only 4-cent and 5-cent stamps. [Hint:
first verify the statement for n < 15].

2.2 Division in the integers

In this section we establish the basic properties of the integers that relate to division,
notably the Division Algorithm, the existence of greatest common divisors and the
Fundamental Theorem of Arithmetic.

Recall that if a, b are integers, then a divides b, in symbols

alb,

if there is an integer ¢ such that b = ac. The following properties of division are simple
consequences of the definition, as the reader should verify.

(2.2.1)

(i) The relation of division is a partial order on Z.

(ii) Ifa | band a | c, then a | bx + cy for all integers x, y.
(iii) a | O for all a, while O | a if and only if a = 0.

(iv) 1| a for all a, while a | 1 if and only if a = +1.

The division algorithm. The first result about the integers of real significance is the
Division Algorithm; it codefies the time-honored process of dividing one integer by
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another to obtain a quotient and remainder. It should be noted that the proof of the
result uses WO.

(2.2.2) Let a, b be integers with b + 0. Then there exist unique integers q (the quotient)
and r (the remainder) such that a = bqg + rand 0 < r < |b|.

Proof. Let S be the set of all non-negative integers of the form a — bq where q € Z. In
the first place we need to observe that S is not empty. Indeed, if b > 0 and we choose

an integer q < 4, then a — bq > 0;if b < 0, choose an integer g > %, so that again

a-bg=0. Applbying the Well-Ordering Law to the set S, we conclude that it contains a
smallest element, say r. Then r = a — bq for some integer g and a = bq +r.

Now suppose thatr > |b|.If b > 0, thena - b(q+1) =r-b < r, whileif b < 0,
thena - b(q — 1) = r + b < r. In each case a contradiction is reached since we have
found an integer in S which is less than r. Hence r < |b]|.

Finally, we must show that g and r are unique. Suppose that a = bq' + r’ where
q',7v € Zand 0 < r' < |b|l. Then bqg +r = bq' + ' and b(q — q') = ' — r. Thus
bl -1g-q'| =|r-r'|.Ifq + q', then |r - r'| > |b|, whereas |r —r'| < |b| since O < r,
r' < |b|. Therefore g = ¢’ and it follows at once that r = r’. O

When a < 0 or b < 0, care must be taken to ensure that a negative remainder is
not obtained. For example, if a = -21 and b = -4, then -21 = (-4)6 + 3,sothatg =6
and r = 3.

Greatest common divisors. Let aq, as, ..., a, be integers. An integer ¢ which divides
every a; is called a common divisor of a4, as, . . ., a,. Our next goal is to establish the
existence of a greatest common divisor.

(2.2.3) Let ay, ay, ..., a, be integers. Then there is a unique integer d > 0 with the
properties:

(i) disacommon divisorof ai, as, ..., an;

(ii) every common divisor of a1, as, ..., ay divides d;

(iii) d = a1 xy + - -+ + anxy for some integers x;.

Proof. 1f all of the a; are 0, we can take d = O since this fits the description. So assume
that at least one a; is non-zero. Then the set S of all non-negative integers a;x; +
azx; + -+ + AnXy With x; € Z is non-empty. By WO there is a least element in S, say
d = ayx1 + axx, + - -+ + apxy. If an integer ¢ divides each aj, then ¢ | d by (2.2.1). Thus
it only remains to show that d | a; for alli.

By the Division Algorithm we can write a; = dq; + r; where g;, r; € Zand 0 < r; < d.
Then

ri=ai—dqi= ai(-x1qi) + -+ ai(1 = Xiqi) + -+ + An(-Xndi)-

If r; # O, then r; € S, which contradicts the minimality of d in S. Hencer; = O and d | a;
for all i.
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Finally, we show that d is unique. If d’ is another integer satisfying (i) and (ii), then

d|d andd' | d,sothatd = d’ sinced, d' > 0. O
The integer d of (2.2.3) is called the greatest common divisor of ay, a,, .. ., dn, in
symbols

d = gcd{aq, as, ..., an}.

If d = 1, the integers a;, aa, . . ., a, are said to be relatively prime; of course this means
that the integers have no common divisors except +1.

The Euclidean?® Algorithm. The proof of the existence of gcd’s which has just been given
is not constructive, i.e., it does not provide a method for calculating gcd’s. However,
there is a well known procedure called the Euclidean Algorithm which is effective in
this respect.

Assume that a, b are integers with b # 0. Apply the Division Algorithm to divide a
by b to get quotient q; and remainder r;. Next divide b by r; to get quotient g, and
remainder r;; then divide r; by r; to get quotient g3 and remainder r3. And so on. By
WO there is a smallest non-zero remainder, say r,,_1. Thus r, = 0 and we have a system
of integer equations

a=bhbqy+ry,

riqa +r,

rL =rqs +7rs3,

-3 = In-2qn-1 + 'n-1,

Tn-2 =Tn-1qn + 0.

Here 0 < ry < |b|, 0 < r; < rji_1 and r,_1 is the smallest non-zero remainder. With this
notation we can state:

(2.2.4) (The Euclidean Algorithm) The greatest common divisor of a and b equals the
last non-zero remainder rn_1.

Proof. Starting with the second last equation in the system above, we can solve back
for r,,_1, obtaining eventually an expression of the form r,_; = ax + by, where x, y € Z.
This shows that any common divisor of a and b must divide r,_1. We can also use
the system of equations above to show successively that r,—1 | rp-2, -1 | n=3, - - -,
etc., and finally -1 | b, rn-1 | a. It follows that r,_; = gcd{a, b} by uniqueness of
gcd’s. O

1 Euclid of Alexandria (325-265 BC)
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Example (2.2.1) Find gcd(76, 60). We compute successively: 76 = 60-1 + 16, 60 =
16-3+12, 16 =12-1+4, 12 = 4-3 + 0. Hence gcd{76, 60} = 4, the last non-zero
remainder. By reading back from the third equation we obtain the predicted expression
fortheged, 4 =76 -4+ 60 - (-5).

The Euclidean algorithm can also be applied to calculate gcd’s of more than two
integers by using the formula

ged{as, az, ..., ams1} = ged{ged{ay, az, . . . am}, Ams1}

and induction on m: see Exercise (2.2.1).
A very useful tool in working with divisibility is:

(2.2.5) (Euclid’s Lemma) Let a, b, m be integers. If m divides ab and m is relatively
prime to a, then m divides b.

Proof. By hypothesis gcd{a, m} = 1, so by (2.2.3) there are integers x, y such that
1 = mx + ay. Multiplying by b, we obtain b = mbx + aby. Since m divides ab, it divides
the right side of the equation. Hence m divides b. O

Recall that a prime number is an integer p > 1 such that +1 and +p are its only
divisors. If p is a prime and a is any integer, then either gcd{a, p} = 1 or p | a. Thus
(2.2.5) has the consequence.

(2.2.6) If a prime p divides ab where a, b € Z, then p divides a or b.

The Fundamental Theorem of Arithmetic. It is a basic result that every integer greater
than 1 can be expressed as a product of primes. The proof of this result is a good
example of proof by the alternate form of mathematical induction.

(2.2.7) Every integer n > 1 can be expressed as a product of primes. Moreover the
expression is unique up to the order of the factors.

Proof. (i) Existence. We show that n is a product of primes, which is certainly true if
n = 2. Assume that every integer m satisfying 2 < m < n is a product of primes. If n
itself is a prime, there is nothing to prove. Otherwise n = nyn, where 1 < n; < n. Then
n; and n, are both products of primes, whence so is n = n1n,. The result now follows
by the alternate form of mathematical induction (2.1.2).

(ii) Uniqueness. In this part we have to show that n has a unique expression as a product
of primes. Again this is clearly correct for n = 2. Assume thatif 2 < m < n, thenm
is uniquely expressible as a product of primes. Next suppose that n = p1p,---pr =
d192 - - - gs where the p; and g; are primes. Then p; | 19> - - - ¢s and by (2.2.6) the prime
p1 must divide, and hence equal, one of the g;’s; we can assume p1 = ¢ by relabelling
the g;’s if necessary. Now cancel py togetm =p,---pr = g2 --- qs. Sincem = n/p, < n,
we deduce that p; = q2,...,pr = qr, and r = s, after further relabelling of the g;’s.
Hence the result is proven. O
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A convenient expression for an integer n > 1 is
e e €
n=pyp, by

where the p; are distinct primes and e; > 0. That the p; and e; are unique up to order
follows from (2.2.7).

Finally in this section we prove the famous theorem of Euclid on the infinitude of
primes.

(2.2.8) There exist infinitely many prime numbers.

Proof. Suppose this is false and let pq, p», . . ., px be the list of all the primes. The trick
is to produce a prime that is not on the list. To do this put n = p1p; ---px + 1. Now
no p; can divide n, otherwise p; | 1. But n is certainly divisible by at least one prime,
so we reach a contradiction. O

Example (2.2.2) If p is a prime, then +/p is not a rational number.

For, assume that +/p is a rational and /p = % where m, n are integers; evidently
there is nothing to be lost in assuming that m and n are relatively prime since any
common factor can be cancelled. Squaring both sides, we obtain p = m?/n? and
m? = pn?. Hence p | m? and Euclid’s Lemma shows that p | m. Write m = pm; for
some integer m;. Then p?m? = pn?, so pm? = n?. Thus p | n? and p | n: but this
means m and n are not relatively prime, a contradiction.

Exercises (2.2)

(1) Letay, ay, ..., an be integers. Prove that
ng{al, (75 N am+1} = ng{ng{aly (25 PR am}; am+1}-

(2) Prove that gcd{kaq, kas, . .., kan} = k-gcd{ay, as, ..., an} wherethea;and k > 0
are integers.

(3) Use the Euclidean Algorithm to compute the following gcd’s:
gcd{840, 410}, gcd{24,328,472}.

Then express each gcd as a linear combination of the relevant integers.

(4) Consider the equation ax + by = c where a, b, ¢ are given integers.
(i) Prove that there is a solution in integers x, y if and only if d = gcd{a, b}
divides c.
(i) Write d = ua + vb where u,v € Z. Prove that the general solution of the
mb vC

equation is x = % + 2, y = ¥& — "% where m is an arbitrary integer.
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(5) Find all solutions in integers of the equation 6x + 11y = 1.
(6) If p and q are distinct primes, prove that +/pq is irrational.

(7) Let a1, ay, . . ., am be positive integers and write a; = p$" p5? - - - p;" where the e;;
are integers > 0 and the primes p; are all different. Show that gcd{aq, as, ..., an} =
pffp’;2 coph where f; = min{eqj, eyj, . . ., €mj}.

(8) A least common multiple (or Icm) of integers aq, ay, . . ., an is an integer £ > 0 such
that each a; divides ¢ and ¢ divides any integer which is divisible by every a;.

(i) Leta; =pi"p5? - pn" where the e;; are integers > 0 and the primes p; are all
different. Prove that lcm’s exist and are unique by establishing the formula
lem{ay, ay, .. ., am} = p§'p5 -+ p5' with gj = max{eyj, €yj, . . ., emj}.

(ii) Prove that gcd{a, b} - lcm{a, b} = ab.

(9) Let r be a rational number and let a and b be relatively prime integers. If ar and br
are integers, prove that r is also an integer.

(10) Let a and b be integers with b > 0. Prove that there are integers u, v such that
a=bu+vand —% <v< %. [Hint: start with the Division Algorithm].

(11) Prove that gcd{4n + 5, 3n + 4} = 1 for all integers n.

(12) Prove that gcd{2n + 6, n?> + 3n + 2} = 2 or 4 for any integer n and show that both
possibilities can occur.

(13) Show that if 2" + 1 is prime, then n must have the form 2.. (Such primes are called
Fermat? primes).

(14) The only integer n which is expressible as a®>(3a + 1) and b%(b + 1)3 with a, b
relatively prime and positive is 2000.

2.3 Congruences

The notion of congruence was introduced by Gauss? in 1801, but it had long been
implicit in ancient writings concerned with the computation of dates.
Let m be a positive integer. Two integers a, b are said to be congruent modulo m, in
symbols
a = b(mod m),

if m divides a — b. Thus congruence modulo m is a relation on Z and an easy check
reveals that it is an equivalence relation. Hence the set Z splits up into equivalence
classes, which in this context are called congruence classes modulo m: see (1.2.2). The
unique congruence class to which an integer a belongs is written

[al or [alm ={a+mq | q € Z}.

2 Pierre de Fermat (1601-1665)
3 Carl Friedrich Gauss (1777-1855)
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By the Division Algorithm any integer a can be written in the form a = mq +r where
q,r € Zand 0 < r < m. Thus a = r (mod m) and [a] = [r]. Therefore [0], [1], ...,
[m — 1] are all the congruence classes modulo m. Furthermore, if [r] = [r'] where O < r,
r' < m,thenm | r — r', which can only mean that r = r’. Thus we have proved:

(2.3.1) Let m be any positive integer. Then there are exactly m congruence classes mod-
ulo m, namely [0], [1], ..., [m - 1].

Congruence arithmetic. We will write
s

for the set of all congruences classes modulo m. Next we define operations of addi-
tion and multiplication for congruence classes, thereby introducing the possibility of
arithmetic in Z,,.

The sum and product of congruence classes modulo m are defined by the rules

[a] + [b] =[a+b] and [a]-[b]=[ab].

These definitions are surely the natural ones. However, some care must be exercised in
framing definitions of this type. A congruence class can be represented by any one of
its elements: we need to ensure that the sum and product specified above depend only
on the congruence classes themselves, not on the chosen representatives.

To this end, let a’ € [a] and b’ € [b]. It must be shown that [a + b] = [a’ + b']
and [ab] = [a’b']. Now a’' = a + mu and b’ = b + mv for some u, v € Z. Therefore
a' +b' =(a+b)+m(u+v)anda'b’ = ab+ m(av + bu + muv); from these equations it
follows thata’ + b’ = a+ b (mod m) and a’b’ = ab (mod m). Thus [a’ + b'] = [a + b]
and [a’b'] = [ab], as required.

Now that we know the sum and product of congruence classes to be well-defined,
it is a routine task to establish the basic properties of these operations.

(2.3.2) Let m be a positive integer and let [a], [b], [c] be congruence classes modulo m.
Then

() [a] +[b] = [b] +[a]and [a]-[b] = [b]-[a];

(i) (la] + [b]) + [c] = [a] + ([b] + [c]) and ([a][b])[c] = [a]([b][c]);

(iii) ([a] + [b])[c] = [allc] + [b][c];

(iv) [0] + [a] = [a] and [1][a] = [a];

) [a] +[-a] = [O].

Since all of these properties are valid in Z as well as Z,, — see (2.1) — we recognize
some common features of the arithmetics on Z and Z,,. This commonality can be
expressed by saying that Z and Z,, are both commutative rings with identity, as will be
explained in Chapter Six.
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Fermat’s Theorem. Before proceeding to this well-known theorem, we will establish a
frequently used property of the binomial coefficients. If n and r are integers satisfying
0 < r < n, the binomial coefficient () is the number of ways of choosing r objects from
a set of n distinct objects. There is the well-known formula

(n)_ nl  nn-1)---(n-r+1)

r] rin-n!" r!

The property needed is:

(2.3.3) Ifpisaprimeand O < r < p, then (¥) = 0 (mod p).

Proof. Write (¥) = pm where m is the rational number

pP-Dp-2)---(p-r+1)
r! )

Notice that each prime appearing as a factor of the numerator or denominator of m
is smaller than p. Write m = ¥ where u and v are relatively prime integers. Then
v(Y) = pmv = pu and by Euclid’s Lemma v divides p. Now v # p, sov = 1 and
m = u € Z. Hence p divides (¥). a

We are now able to prove what is often called Fermat’s Little Theorem, to distinguish
it from the well known Fermat’s Last Theorem.

(2.3.4) If p is a prime and x is any integer, then xP = x (mod p).

Proof. Since (-x)? = —xP (mod p), whether or not p is odd, there is no loss in assuming
that x > 0. We will use induction on x to show that x? = x (mod p), which certainly
holds for x = 0. Assume it is true for x. Then by the Binomial Theorem

< (p
(x+1)P = Z(r)x’zxp+1(modp)

r=0

since p divides (¥) if 0 < r < p. Because x? = x (mod p), it follows that (x + 1)P = x +1
(mod p) . The induction is now complete. O

Solving Congruences. Just as we solve equations for unknown real numbers, we can
try to solve congruences for unknown integers. The simplest case is that of a linear
congruence with a single unknown x; this has the form ax = b (mod m), where a, b,
m are given integers.

(2.3.5) Let a, b, m be integers with m > 0. Then there is a solution x of the congruence
ax = b (mod m) if and only if gcd{a, m} divides b.
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Proof. Set d = gcd{a, m}. If x is a solution of congruence ax = b (mod m), then
ax = b + mq for some q € Z, from which it follows that d must divide b. Conversely,
assume that d | b. By (2.2.3) there are integers u, v such that d = au + mv. Multiplying
this equation by the integer b/d, we obtain b = a(ub/d) + m(vb/d). Put x = ub/d,
which is an integer; then ax = b (mod m) and x is a solution of the congruence. [

The most important case is for b = 1.

Corollary (2.3.6) Let a, m be integers with m > 0. Then the congruence ax = 1 mod m)
has a solution x if and only if a is relatively prime to m.

It is worthwhile translating the last result into the language of congruence arith-
metic. Given an integer m > 0 and a congruence class [a] modulo m, there is a con-
gruence class [x] such that [a][x] = [1] if and only if a is relatively prime to m. Thus
we can tell which congruence classes modulo m have “inverses”: they are classes [x]
where 0 < x < m and x is relatively prime to m. The number of invertible congruence
classes modulo m is denoted by

¢p(m).

Here ¢ is called Euler’s* function. Next we consider systems of linear congruences.

(2.3.7) (The Chinese Remainder Theorem) Let aq, a», . . ., ax and my, mo, ..., my be
integers with m; > 0. Assume that gcd{m;, m;} = 1ifi # j. Then there is a common
solution x of the system of congruences

X =a; (mod mq)

X = a; (mod m;)

x = ay (mod my).

When k = 2, this striking result was discovered by the Chinese mathematician
Sun Tse, who lived sometime between the Third and Fifth centuries AD.

Proof of (2.3.7). Put m = mym; - -- my and m{ = m/m;. Then m; and m| are relatively
prime, so by (2.3.6) there exists an integer ¢; such that m}¢; = 1 (mod m;). Now let
X =aimyly +---+ agm;£x. Then

x = aym!¢; = a; (mod)m;

since m; | m)’ ifi#j. O

4 Leonhard Euler (1707-1783)
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As an application of (2.3.7) a well-known formula for Euler’s function will be
derived.

(2.3.8)
(i) If m and n are relatively prime positive integers, then ¢p(mn) = ¢p(m)¢p(n).
(i) Ifm= plfplz2 pf(" with l; > 0 and distinct primes p;, then

k
pm) =} -pi™.
i=1

Proof. (i) Let Uy, denote the set of invertible congruence classes in Z,,. Thus |Up,| =
¢(m). Define amap a : Uy, — Uy x Uy by the rule a([almn) = ([alm, [a]n). First
of all observe that a is well-defined. Next suppose that a([a]n,) = a([a’]mn). Then
[alm = [@']lm and [a], = [a']n, equations which imply that a — a’ is divisible by m
and n, and hence by mn. Therefore [a]m, = [a’']mn and a is an injective function.

In fact a is also surjective. For, if [a], € Uy, and [b], € U, are given, the Chinese
Remainder Theorem assures us that there is an integer x such that x = a (mod m) and
x = b (mod n). Hence [x],, = [al, and [x], = [b]y, so that a([x]mn) = ([alm, [b]n)-
Therefore a is a bijection and consequently |Upn| = |Up X Un| = |Un| - |Uxl, as required.
(ii) Suppose that p is a prime and n > 0. There are p™~! multiples of p among the
integers 0, 1, ..., p" - 1; therefore ¢p(p") = p™ — p™~1. Finally apply (2.3.8)(i) to obtain
the formula indicated. O

We end the chapter with several examples which illustrate the utility of congru-
ences.

Example (2.3.1) Show that an integer is divisible by 3 if and only if the sum of its digits
is a multiple of 3.

Let n = apa; ... ai be the decimal representation of an integer n. Thus n = ay +
ar-110 + aj_210% + -+ + ap10* where 0 < a; < 10. The key observation is that 10 =
1 (mod 3), i.e., [10] = [1]. Hence [10!] = [10]! = [1]! = [1], i.e., 10! = 1 (mod 3) for
all i > 0. It therefore follows that n = ag + a; +--- + ax (mod 3). The assertion is an
immediate consequence of this congruence.

Example (2.3.2) (Days of the week) Congruences have long been used implicitly to
compute dates. As an example, let us determine what day of the week September 25 of
the year 2020 will be.

To keep track of the days assign the integers 0, 1, 2, ..., 6 as labels for the days
of the week, say Sunday = 0, Monday = 1, ..., Saturday = 6. Suppose that we reckon
from January 5, 2014, which was a Sunday. All we have to do is count the number of
days from this date to September 25, 2020. Allowing for leap years, this number is 2455.
Now 2455 = 5 (mod 7) and 5 is the label for Friday. Therefore September 25, 2020 will
be a Friday.
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Example (2.3.3) (The Basket of Eggs Problem) What is the smallest number of eggs
a basket can contain if, when eggs are removed k at time, there is one egg left when
k = 2, 3, 4, 5 or 6 and there are no eggs left when k = 7? (This ancient problem is
mentioned in an Indian manuscript of the 7th Century).

Let x be the number of eggs in the basket. The conditions require that x = 1
(mod k) for k = 2,3, 4,5, 6 and x = 0 (mod k) for k = 7. Clearly this amounts to x
satisfying the four congruences x = 1 (mod 3), x = 1 (mod 4), x = 1 (mod 5) and
x =0 (mod 7). Furthermore these are equivalent to the congruences

x=1(mod 60) and x =0 (mod 7).

By the Chinese Remainder Theorem there is a solution to this pair of congruences:
we have to find the smallest positive solution. Applying the method of the proof of
(2.3.7), we have m; = 60, m = 7, m = 420 and thus m} = 7, m}, = 60. Also ¢, = 43,
¢, = 2. Therefore one solution is givenby x =1-7-43 +0-60-2 = 301. Ify is any
other solution, observe that y — x must be divisible by 60 x 7 = 420. Hence the general
solution is x = 301 + 420q, q € Z. So the smallest positive solution is 301.

The next example is a refinement of Euclid’s Theorem on the infinity of primes —
see (2.2.8).

Example (2.3.4) Prove that there are infinitely many primes of the form 3n + 2 where
n is an integer > 0.

In fact the proof is a variant of Euclid’s method. Suppose the result is false and let
the odd primes of the form 3n + 2 be p1, pa, ..., pk. Now consider the positive integer
m = 3p1p; - -- px + 2. Notice that m is odd and it is not divisible by any p;. Therefore
m is a product of odd primes different from p1, ..., px. Hence m must be a product
of primes of the form 3n + 1 since every integer is of the form 3n,3n + 1 or3n+ 2. It
follows that m itself must have the form 3n + 1 and thus m = 1 (mod 3). On the other
hand, m = 2 (mod 3), so we have reached a contradiction.

Actually this exercise is a special case of a famous theorem of Dirichlet®: every
arithmetic progression an + b, wheren = 0, 1, 2, ..., and the integers a and b are
positive and relatively prime, contains infinitely many primes.

Example (2.3.5) (The RSA Cryptosystem) This is a secure system for message encryption
which has been widely used for transmitting sensitive data since its invention in 1977
by R. Rivest, A. Shamir and L. Adleman. It has the advantage of being a public key
system in which only the decyphering function is not available to the public.
Suppose that a message is to be sent from A to B. The parameters required are two
distinct large primes p and q. Put n = pq and m = ¢(n); therefore m = (p — 1)(g - 1)

5 Johann Peter Gustav Lejeune Dirichlet (1805-1859)
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by (2.3.8). Let a be an integer in the range 1 to m which is relatively prime to m. Then
by (2.3.6) there is a unique integer b satisfying 0 < b < mand ab = 1 (mod m). The
sender A is assumed to know the integers a and n, while the receiver B knows b and n.

The message to be sent is first converted to an integer x which is not divisible by
p or g and satisfies 0 < x < n. Then A encyphers x by raising it to the power a and
then reducing modulo n. In this form the message is transmitted to B. On receiving the
transmitted message, B raises it to the power b and reduces modulo n. The result will
be the original message x. What is being claimed here is that x** = x (mod n), since
0 < x < n. To see why this holds, first write

ab=1+Im=1+1l(p-1)(q-1)
with [ an integer. Then
Xah — X1+l(p—1)(q—1) — X(Xp—l)l(q—l) =x (modp)

since x’~1 = 1 (mod p) by Fermat’s Theorem. Hence p divides x?? — x, and in a similar
way q also divides this number. Therefore n = pq divides x? — x as claimed.

Even if n and a become public knowledge, it will be difficult to break the system
by finding b. For this would require computation of the inverse of [a] in Z,. To do this
using the Euclidean Algorithm, the result that lies behind (2.3.6), one would need to
know the primes p and q. But the problem of factorizing the integer n = pq in order
to discover the primes p and q is considered to be computationally very hard. Thus
the RSA-system remains secure until more efficient ways of factorizing large numbers
become available.

Exercises (2.3)

(1) Establish the properties of congruences listed in (2.3.2).

(2) In Z,4 find the inverses of [7] and [13].

(3) Show that if n is an odd integer, n®> = 1 (mod 8).

(4) Find the general solution of the congruence 6x = 11 (mod 5).
(5) What day of the week will April 1, 2030 be?

(6) Find the smallest positive solution x of the system of congruences x = 4 (mod 3),
x=5 (mod 7),x =6 (mod 11).

(7) Prove that there are infinitely many primes of the form 4n + 3.
(8) Prove that there are infinitely many primes of the form é6n + 5.

(9) In a certain culture the festivals of the snake, the monkey and the fish occur every
6, 5 and 11 years respectively. The next festivals occur in 3, 4 and 1 years respectively.
How many years must pass before all three festivals occur in the same year?

(10) Prove that no integer of the form 4n + 3 can be written as the sum of two squares
of integers.



3 Introduction to groups

Groups constitute one of the most important and natural structures in algebra. They also
feature in other areas of mathematics such as geometry, topology and combinatorics. In
addition groups arise in many areas of science, typically in situations where symmetry is
important, as in atomic physics and crystallography. More general algebraic structures
which have recently come to prominence due to the rise of information science include
semigroups and monoids. This chapter serves as an introduction to these types of
structure.

There is a continuing debate as to whether it is better to introduce groups or rings
first in an introductory course in algebra: here we take the point of view that groups
are logically the simpler objects since they involve only one binary operation, whereas
rings have two. Accordingly rings are left until Chapter Six.

Historically the first groups to be studied consisted of permutations, i.e., bijective
functions on a set. Indeed for most of the 19th century “group” was synonymous with
“group of permutations”. Since permutation groups have the great advantage that
their elements are concrete and easy to compute with, we begin this chapter with a
discussion of permutations.

3.1 Permutations

If X is any non-empty set, a bijective function 7 : X — X is called a permutation
of X. Thus by (1.3.1) 7 has a unique inverse function 77! : X — X, which is also a
permutation. The set of all permutations of the set X is denoted by

Sym(X),

which stands for the symmetric group on X.

If 7 and o are permutations of X, their composite 77 o ¢ is also a permutation; this
is because it has an inverse, namely the permutation 0= o 7~1 by (1.3.2). In the future
for the sake of simplicity we will usually write

o

for i - 0. Of course idy, the identity function on X, is a permutation.

At this juncture we pause to note some features of the set Sym(X): this set is
“closed” with respect to forming inverses and composites, by which we mean that
if 1, 0 € Sym(X), then 7~! and 7 - o belong to Sym(X). In addition Sym(X) contains
the identity permutation idy, which has the property idx o = m = 7 o idx. And finally,
the associative law for permutations is valid, (71 ¢) o T = o (0 o T). In fact what these
properties assert is that the pair (Sym(X), o) is a group, as defined in (3.2). Thus the
permutations of a set afford a very natural example of a group.
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Permutations of finite sets. We now begin the study of permutations of a finite set
with n elements,

X = {Xl;XZ’ A ,Xn}-
Let m1 € Sym(X). Since 7 is injective, n(x1), m(x2), ..., m(x,) are all different and
therefore constitute all n elements of the set X, but possibly in some order different
from xq, x5, ..., x,. Thus we can think of a permutation as a rearrangement of the
order x1, X2, . .., Xn. A convenient way to denote the permutation 7 is
e ( X1 X2 ... Xn )
n(x1) n(x2) ... 7(xp)

where the second row consists of the images under 7 of the elements of the first row.
It should be clear to the reader that nothing essential is lost if we take X to be the set
{1, 2, ..., n}. With this choice of X, it is usual to write

Sn

for Sym(X); this is called the symmetric group of degree n.
Computations with elements of S, are easily performed by working directly from
the definitions. An example will illustrate this.

Example (3.1.1) Let

1 2 3 4 5 6 1 2 3 4 5 6
= and o =
6 1 2 5 3 4 6 1 4 3 2 5

be elements of S¢. Hence

1 2 3 4 6 1 2 3 4 5 6
710 = , O =
4 6 5 2 3 5 6 1 2 4 3

n1=<1 2 3 4 5 6).

2 35 6 4 1

Here 70 has been computed using the definition (i) = m(o(i)), while 1 is readily
obtained by reading up from 1, 2, . . ., 6 in the second row of 77 to obtain the second row
of m71. Notice that 70 # o, i. e., multiplication of permutations is not commutative in

general.
A simple count establishes the number of permutations of a finite set.

=

and

(3.1.1) If X is a set with n elements, then | Sym(X)| = n!.

Proof. Consider the number of ways of constructing the second row of a permutation

ﬂ:(Xl X2 ... xn)
Yi Y2 ... Vn
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There are n choices for y1, but only n -1 choices for y, since y; cannot be chosen again.
Next we cannot choose y; or y, again, so there are n — 2 choices for y3, and so on;
finally, there is just one choice for y,. Each choice of a y; leads to a different permutation.
Therefore the number of different permutations of Xisn(n - 1)(n-2)---1=n!l. O

Cyclic permutations. Let 1 € S,, so that 7 is a permutation of the set {1, 2, ..., n}.
The support of i is defined to be the set of all i such that 7(i) # i, in symbols

supp(m).
Let r be an integer satisfying 1 < r < n. Then n is called an r-cycle if supp() =
{i1, iz, ..., i;}, with distinct i;, where n(i1) = iy, n(i2) = i3,...,n(ir-1) = i, and
n(i,) = i. To visualize the permutation think of the integers i4, is, ..., i; as being

arranged in this order anticlockwise round a circle. Then m has the effect of rotating
the circle in the anticlockwise direction. Of course 7 fixes all the other integers: often 7
is written in the form

7= (iyiz - i) (ire1) -+~ (in)

where the presence of a 1-cycle (j) means that 71(j) = j. The notation may be abbreviated
by omitting all 1-cycles, although if this is done, the integer n may need to be specified.

In particular a 2-cycle has the form (ij): it interchanges i and j and fixes all other
integers. 2-cycles are frequently called transpositions.

Example (3.1.2) The permutation (; ; i) is the 3-cycle (125)(3)(4), that
is, (125). While

1 2 3 4 5 6 7 8

6 1 5 8 7 2 3 4

isnot a cycle, it is the composite of three cycles of length > 1, namely (162)+(357)0(48),
as one can see by following what happens to each of the integers 1, 2, ..., 8 when
the permutation is applied. In fact this is an instance of an important general result,
that any permutation is expressible as a composite of cycles: this will be established
in (3.1.3).

It should be observed that there are r different ways to write an r-cycle since any
element of the cycle can be the initial element: indeed (i1i3 ... i) = (i2i3...i1) =
oo = (fpigdp - Bpog).

Two permutations 77, o in S, are said to be disjoint if their supports are disjoint, i.e.,
they do not both move the same element. An important fact about disjoint permutations

is that they commute, in contrast to permutations in general.

(3.1.2) If m and o are disjoint permutations in Sy, then o = o7.
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Proof. Letie{1,2,...,n};weshow that mo(i) = on(i). If i ¢ supp(;r) Usupp(o), then
plainly ma(i) = i = on(i). Suppose that i € supp(m); theni ¢ supp(o) and (i) = i. Thus
mo(i) = n(i). Also on(i) = m(i); for otherwise (i) € supp(o) and so 7(i) ¢ supp(m),
which leads to rr(7(i)) = n(i). However, 7~! can be applied to both sides of this equation
to give 71(i) = i, a contradiction since i € supp(m). O

Powers of a permutation. Since we know how to form products of permutations using
composition, it is natural to define powers of a permutation. Let 7 € S,, and let i be a
non-negative integer. Then the ith power 7t is defined recursively by the rules:

a° =id, ' =nln.
The point to note here is that the rule allows us to compute successive powers of the
permutation as follows: 7' = m, n2 = i, > = mm, etc. Powers are used in the proof
of the following fundamental theorem.

(3.1.3) Let m € S,,. Then m is expressible as a product of disjoint cycles and the cycles
appearing in the product are unique.

Proof. We deal with the existence of the expression first. If 77 is the identity, then
obviously 7 = (1)(2)---(n). Assume that 7 # id and choose an integer i; such that
n(i1) # i1. Now the integers iy, 71(i1), m%(i1), . . . belong to the finite set {1, 2, ..., n}
and so they cannot all be different; say 7' (i1) = m°(i,) where r > s > 0. Applying (7~ 1)*
to both sides of the equation and using associativity, we find that 7775(i;) = i;. Hence
by the Well-Ordering Law there is a least positive integer m; such that 7™ (i;) = i;.

Next we argue that the integers iy, 71(i1), m%(i1), . . ., #™~1(i1) are all different. For
if not and 71" (i;) = m5(i1) where m; > r > s > 0, then, just as above, we can argue that
n"~5(i1) = i1; on the other hand, O < r — s < my, which contradicts the choice of m;. It
follows that 7 permutes the m, distinct integers i, n(i1), ..., 7™ ~1(i1) in a cycle, so
that we have identified the m;-cycle (iy 7(i1) . . . 7™ ~1(i1)) as a component of 7.

If 7t fixes all other integers, then 7 = (i; 1(i1) - -- ™~ 1(i1)) and m is an m; -cycle.
Otherwise there exists an integer i, ¢ {i1, 1(i1), ..., 7™~ 1(i1)} such that n1(i,) # i,.
Just as above we identify a second cycle (i, 7(i) . .. m™~1(i,)) present in m. This is
disjoint from the first cycle. Indeed, if the cycles had a common element, they would
have to coincide. It should also be clear that by a finite number of applications of this
procedure we can express 7 as a product of disjoint cycles.

Next to establish uniqueness. Assume that there are two expressions for 7 as a
product of disjoint cycles, say (i1i2 -+ )(jij2 -+ )--- and (i} ---)(jij5--)---. By (3.1.2)
disjoint cycles commute. Thus without loss of generality we can assume that i; occurs in
the cycle (i} i} - - -). Since any element of a cycle can be moved up to the initial position,
it can also be assumed that i; = i}. Then i, = n(i1) = n(i}) = i}; similarly i3 = i}, etc.
The other cycles are dealt with in the same manner. Therefore the two expressions for
are identical. O



3.1 Permutations = 35

Corollary (3.1.4) Ifn > 1, every element of S,, is expressible as a product of transposi-
tions.

Proof. Because of (3.1.3) it is sufficient to show that each cyclic permutation is a product
of transpositions. That this is true follows from the easily verified identity:

(iqin -+ dp-qdy) = (i1ip)(A1ir-1) -+ - (I113)(1112). O

1 2 3 4 5
E le(3.1.3) E =
xample (3.1.3) Express 1 <3 6 5 1 4 2

First of all write 7 as a product of disjoint cycles, following the method of the proof
of (3.1.3) to get 71 = (1354)(26). Also (1354) = (14)(15)(13), so that

) as a product of transpositions.

= (14)(15)(13)(26).

On the other hand not every permutation in S, is expressible as a product of disjoint
transpositions. (Why not?)

Even and odd permutations. If 77 is a permutation in Sy, then 7 replaces the natural
order of integers, 1, 2, ..., n by the new order 7(1), (2), . . ., m(n). Thus 7 may cause
inversions of the natural order: here an inversion occurs if for some i < j, we have
n1(i) > m(j). To clarify the definition it is convenient to introduce a formal device.

Consider a polynomial f in indeterminates x1, X3, . . ., X», with integer coefficients.
(Here we assume the reader is familiar with the concept of a polynomial). If 7 € S, then
11 determines a new polynomial 7if which is obtained by permuting the variables x1,
X2, ..., Xp. Thus itf(x1, ..., Xn) = f(Xz@), . . . » Xa(n)). For example, if f = x1 — x2 — 2x3
and = (12)(3), then 71f = x5 — xq — 2x3.

Now consider the polynomial

n
fa,ooxn) = [ ] i = x)).
i,j=1

i<j
A typical factor in 7f is Xz(j) — Xn(j). Now if 71(i) < 71(j), this is also a factor of f, while if
n(i) > n(j), then —(xz(;) — Xn(j)) is a factor of f. Consequently 7if = +f if the number of
inversions of the natural order in 77 is even and nif = —f if it is odd. This observation
permits us to define the sign of the permutation 7 to be

f

T

Thus sign(mr) = 1 or —1 according as the number of inversions in 7 is even or odd. Call
1T an even permutation if sign(mr) = 1 and an odd permutation if sign(m) = -1.

sign(m) =

Example (3.1.4) The even permutations in S3 are (1)(2)(3), (123) and (132), while the
odd permutations are (1)(23), (2)(13) and (3)(12).
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In deciding if a permutation is even or odd a crossover diagram is a useful tool. We
illustrate this idea with an example.

Example (3.1.5) Is the permutation

Lot 23 45 67
“"\3 7 25 4 1 6
even or odd?

To construct the crossover diagram simply join equal integers in the top and bottom
rows of 71 and count the intersections or “crossovers”, taking care to avoid multiple or
unnecessary intersections. A crossover indicates the presence of an inversion of the
natural order.

3 7 2 5 4 1 6

There are 11 crossovers, so sign(mr) = —1 and 7 is an odd permutation.

The next result records very significant property of transpositions.

(3.1.5) Transpositions are always odd.

Proof. Consider the crossover diagram for the transposition (ij) where i < j.

1 2 ... i-1 i i+1... j-1 j j+1 .. n

1 2. i-1 j i+1... j-1 i j+1 ... n

An easy count reveals the presence of 1 + 2(j — i — 1) crossovers. Since this integer
is certainly odd, (ij) is an odd permutation. O
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The basic properties of the sign function are laid out next.

(3.1.6) Let m, 0 € Sy. Then the following hold:
(i) sign(mo) = sign(m) sign(o);
(ii) sign(m1) = sign(m).

Proof. Letf = ]_[?<j=l(x,- - X;j). Since iif = sign(m)f, we have

mof(x1,...,xn) = 1(0f(X1,...,Xn))
= n1((sign(o)f(x1, . . . , Xn))
= sign(o)mf(x1, ..., Xn)
= sign(o) sign(m)f(x1, .. ., Xn).
Since (710)f = sign(mo)f, it follows that sign(ro) = sign () sign(o). Finally, by (i) we
have 1 = sign(id) = sign(nr~1) = sign(mr) sign(m~1), so that sign(m~1) = 1/ sign() =
sign(m). O

Corollary (3.1.7) A permutation min S, is even (odd) if and only if it is a product of an
even (respectively odd) number of transpositions.

For, if = [X., m; with each 71; a transposition, then

k
sign(m) = [ [ sign(m;) = (- 1)
i=1
by (3.1.5) and (3.1.6).
The subset of all even permutations in S, is denoted by

AY[;

which is called the alternating group of degree n. Obviously A; = S1. For n > 1 exactly
half of the permutations in S, are even, as the next result shows.

(3.1.8) Ifn > 1, there are %(n!) even permutations and %(n!) odd permutations in Sy,.

Proof. Define a function a : A, — Sy, by the rule a(r) = - (12), observing that a(m)
is odd and «a is injective. Every odd permutation ¢ belongs to Im(a) since a(m) = ¢
where 1 = 00 (12) € A,. Thus Im(a) is precisely the set of all odd permutations and
[Im(a)| = |An|. O

(3.1.9) (Cauchy’st Formula) If  in Sy, is the product of c disjoint cycles, including 1-
cycles, then
sign(m) = (-1)""°°.

1 Augustin Louis Cauchy (1789-1857)



38 —— 3 Introduction to groups

Proof. Let m = 010, --- 0. where the g; are disjoint cycles and o; has length ¢;. Now o;
is expressible as a product of ¢; — 1 transpositions by the proof of (3.1.4). Hence by (3.1.6)
we have sign(o;) = (-1)%~1 and thus

C C
sign(m) = [ [ sign(oq) = [ [-1)%"! = (-1)"¢
i=1 i=1
since Y5, ¢ = n. O

Derangements. We conclude the section with a discussion of a special type of permu-
tation. A permutation of a set is called a derangement if it fixes no elements of the set,
i.e., its support is the entire set. For example, (1234)(56) is a derangement in S¢. A
natural question is: how many derangements does S, contain? To answer the question
we employ a well known combinatorial principle.

(3.1.10) (The Inclusion-Exclusion Principle) If A1, A», ..., A, are finite sets, then

r r
A1 UA U UA =) Al - ) 1AinAjl+
i=1 i<j=1
r
Y AN AN Al +-+ (1) AL N A 0N A
i<j<k=1

Proof. We have to count the number of objects that belong to at least one A;. Our
first estimate is Z{zl |A;], but this double counts elements in more than one A4;, so we
subtract Z{q-:l |A; N Aj|. But now elements belonging to three or more A;’s have not
been counted at all, so we mustadd ¥;_;_;_; |4iNA;nA|. Now elements in four or more
A;’s have been double counted, and so on. After a succession of r such “inclusions”
and “exclusions” we arrive at the correct formula. O

It is now relatively easy to count derangements.

(3.1.11) The number of derangements in S, is given by the formula

1 1 1 .1
dnzn!(l—ﬂ+i—§+"'+(—l) m).

Proof. Let X; denote the set of all permutations in S,, which fix the integer i, (1 < i < n).
Then the number of derangements in S, is

n=nl—|X;U---UXyl.
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Now [X;| = (n-1)};also [X; n Xj| = (n—2)}, (i < j), and |X; n X; n Xi| = (n - 3)!,
(i < j < k), etc. Therefore by the Inclusion—Exclusion Principle

dy = n! - {(Z)(n _1)l- (;)(n N (;’>(n _3)
- (—1)"1<Z>(n -mi}.

Here the reason is that there are () intersections X;, N X;, N---nX;, withiy <iy <--- <ip.
The required formula appears after a minor simplification of the terms in the sum. 0O

Notice that limn_m(%) =e 1 =0.36787..., so roughly 36.8 % of the permuta-
tions in S, are derangements.

Example (3.1.6) (The Hat Problem) There are n people attending a party each of whom
wears a different hat. All the hats are checked in on arrival. Afterwards each person is
given a hat at random. What is the probability that no one get the correct hat?

A distribution of hats corresponds to a permutation of the original order. The
permutations that are derangements give the distributions in which everyone has the

wrong hat. So the probability asked for is % or roughly e~ 1.

Exercises (3.1)

1 2 1 2
(1) Letm = 3456 do-= 3 4 56
2 4 1 5 3 6 6 1 5 3 2 4
and mom~ 1.

1

). Compute 7™+, 10

(2) Determine which of the permutations in Exercise (3.1.1) are even and which are odd.
(3) Prove that sign(mon~1) = sign(o) forall i1, o € Sy,.

(4) Prove that if n > 1, every non-trivial element of S,, is a product of adjacent transposi-
tions, i.e., transpositions of the form (i i + 1). [Hint: it is enough to prove the statement
for a transposition (i j) where i < j. Now consider the composite (jj + 1)(i j)(jj + 1)].

(5) Prove that an element 77 in S, satisfies 72 = id if and only if 77 is a product of disjoint
transpositions.

(6) How many elements 77 in S, satisfy 7% = id? [Hint: count the permutations which
have exactly k disjoint transpositions for 2k < n by first choosing 2k integers from
1,2,...,nand then forming k transpositions from them.]

(7) How many permutations in S, contain at most one 1-cycle?

(8) In the game of Rencontre there are two players A and B, each of whom has a regular
pack of 52 cards. The players deal their cards simultaneously. If at some point they both
deal the same card, this is a “rencontre” and player A wins. If no rencontre appears,
player B wins. What are the probabilities of each player winning?
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3.2 Semigroups, monoids and groups

Many of the structures that occur in algebra consist of a set together with a set of
operations that can be applied to elements of the set. To make this precise, let us define
a binary operation on a set S to be a function

a:SxS—S.

Thus for each ordered pair (a, b) with a, b in S the function a produces a unique
element a((a, b)) of S. It is better notation if we write

axh

instead of a((a, b)) and refer to the binary operation as =*.

Of course binary operations abound: one need think no further than addition or
multiplication in sets such as Z, Q, R, or composition on the set of all functions on a
given set.

The first algebraic structure of interest to us is a semigroup, which is a pair

(S, %)

consisting of a non-empty set S and a binary operation = on S which satisfies the
associative law,

(i) (asxb)ysc=ax*b=c)foralla, b, ccS.

If the semigroup has an identity element, i.e., an element e of S such that

(i) are=a=exaforallaces,

then it is called a monoid.

Finally, the monoid is called a group if each element a has an inverse, i.e., an
element a’ of S such that
(iiaxa =e=a' *a.
Also a semigroup (S, *) is said to be commutative if
(ivvas*b=b=xaforalla,b€S.

A commutative group is called an abelian? group.
Thus semigroups, monoids and groups form successively narrower classes of
algebraic structures. These concepts will now be illustrated by some familiar examples.

Examples of semigroups, monoids and groups.

(i) The pairs (Z, +), (Q, +), (R, +) are groups where + is ordinary addition, O is an
identity element and an inverse of x is its negative —x.

2 After Niels Henrik Abel (1802-1829)
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(ii) Next consider (Q*, -), (R*, -) where the dot denotes ordinary multiplication and Q*
and R* are the sets of non-zero rational numbers and real numbers respectively. Here
(Q*, ) and (R*, -) are groups, the identity element being 1 and an inverse of x being %
On the other hand, (Z*, -) is only a monoid since the integer 2, for example, has no
inverse in Z* = Z - {0}.

(iii) (Zm, +) is a group where m is a positive integer. The usual addition of congruence
classes is used here.

(iv) (Z3,, -) is a group where m is a positive integer: here Z;, is the set of invertible
congruence classes [a] modulo m, i.e., such that gcd{a, m} = 1, and multiplication
of congruence classes is used — see (2.3.6). Note that |Z},| = ¢(m) where ¢ is Euler’s
function.

(v) Let M,(R) be the set of all n x n matrices with real entries. If the usual rule of
addition of matrices is used, (M, (R), +) is an abelian group.
On the other hand, M,(R) with matrix multiplication is only a monoid. To obtain
a group we must form
GLn(R),

the subset of all invertible (or non-singular) matrices in M, (R): recall that these are the
matrices with non-zero determinant. This group is called the general linear group of
degree n over R.

(vi) For an example of a semigroup that is not a monoid we need look no further than
the set of all even integers with multiplication as the group operation. Clearly there is
no identity element here.

(vii) The monoid of functions on a set. Let A be any non-empty set, and write Fun(A) for
the set of all mappings or functions a on A. Then

(Fun(A), <)

is a monoid where - is functional composition. Indeed, this binary operation is asso-
ciative by (1.2.3) and the identity function on A is an identity element.

If we restrict attention to the bijective functions on A, i.e., to those which have
inverses, we obtain the symmetric group on A

(Sym(A), o),

consisting of all the permutations of A. This example was the motivation for the defini-
tion of a group.

(viii) Monoids of words. For a different type of example we consider words in an alpha-
bet X. Here X is any non-empty set and a word in X is just an n-tuple of elements of X,
written for convenience without parentheses in the form x;x; - - - x,, n > 0. The case
n = 0 is the empty word @. Let W(X) denote the set of all words in X.

There is a natural binary operation on X, namely juxtaposition. Thus, ifu = x; - - xp,
andv = y; --- Yy are words in X, define uv tobe the word x1 - - - xpy1 - - Ym. lf u = 0, then
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by convention uz = z = zu for all z. It is clear that this binary operation is associative
and that ¢ is an identity element. Thus W(X), with the operation specified, is a monoid,
the so-called free monoid on X.

(ix) Monoids and automata. There is a somewhat unexpected connection between
monoids and automata. Suppose that A = (I, S, v) is a state output automaton with
input set I, state set S and next state function v : I x S — S: see Exercise (1.3.8). Then
A determines a monoid M, in the following way.

Leti € I and define 8; : S — S by the rule 6;(s) = v(i, s) where s € S. Now let
M, consist of the identity function and all composites of finite sequences of 8;’s; thus
My < Fun(S). Clearly (My, o) is a monoid with respect to functional composition.

In fact one can go in the opposite direction as well. Let (M, *) be a monoid and
define an automaton Ay = (M, M, v) where the next state functionv: M x M — M s
given by the rule v(x1, x3) = x1 * x. Thus a connection between monoids and state
output automata has been detected.

(x) Symmetry groups. As has been remarked, groups tend to arise wherever symmetry
is of importance. The size of the group can be regarded as a measure of the amount of
symmetry present. Since symmetry is at heart a geometric notion, it is not surprising
that geometry provides many interesting examples of groups.

A bijective function defined on 3-dimensional space or the plane is called an
isometry if it preserves distances between points. Natural examples of isometries are
translations, rotations and reflections. Let X be a non-empty set of points in 3-space or
the plane — we will refer to X as a geometric configuration. An isometry @ which fixes
the set X, i.e., such that

X ={a(x) | x € X},

is called a symmetry of X. Note that a symmetry can move the individual points of X.

It is easy to see that the symmetries of X form a group with respect to functional
composition; this is the symmetry group S(X) of X. Thus S(X) is a subset of Sym(X),
usually a proper subset.

The symmetry group of the regular n-gon. As an illustration let us analyze the sym-
metries of the regular n-gon: this is a polygon in the plane with n edges of equal length,
(n = 3). It is convenient to label the vertices of the n-gon 1, 2, ..., n, so that each
symmetry is represented by a permutation of the vertex set {1, 2, ..., n}, i.e., byan
element of S,,.



3.2 Semigroups, monoids and groups = 43

Each symmetry arises from an axis of symmetry of the figure. Of course, in order to
obtain a group, we must include the identity symmetry, represented by (1)(2) --- (n).
There are n - 1 anticlockwise rotations about the line perpendicular to the plane of
the figure and through the centroid, through angles i (27”), fori=1,2,...,n-1.For
example, the rotation through 27” is represented by the n-cycle (1 2 3... n); other
rotations correspond to powers of this n-cycle. (Note that every clockwise rotation is
achievable as an anticlockwise rotation).

Then there are n reflections in axes of symmetry in the plane. If n is odd, such
axes join a vertex to the midpoint of the opposite edge. For example, (1)(2 n)(3 n —
1)--- corresponds to one such reflection. However, if n is even, there are two types of
reflections, in an axis joining a pair of opposite vertices and in an axis joining midpoints
of opposite edges: hence there are 1n + 3n = n reflections in this case as well.

Since all axes of symmetry of the n-gon have now been exhausted, we conclude
that the order of the symmetry group is 1 + (n — 1) + n = 2n. This group is called the
dihedral group of order 2n,

Dih(2n).

Notice that Dih(2n) is a proper subset of S, if 2n < n!, i.e., if n > 4. Thus not every
permutation of the vertices arises from a symmetry when n > 4.

Simple consequences of the axioms.

We end the section by noting three elementary facts that follow quickly from the
axioms.

(3.2.1)

(i) (The Generalized Associative Law) Let x1, X2, . . ., X, be elements of a semigroup
(S, *). If an element u is constructed by combining these elements in the given order,
using any mode of bracketing, then u = (--- ((x1 * X2) * X3) % --+) % Xy, So that u is
independent of the positioning of the parentheses.

(ii) Every monoid has a unique identity element.

(iii) Every element in a group has a unique inverse.

Proof. (i) We argue by induction on n, which can be assumed to be at least 3. If u is
constructed from x1, x5, . . ., X, in that order, then u = v+ w where v is constructed from
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X1,X2,...,x;jand wfrom xj,1,...,xp;herel <i<n-1.Thenv = (- (X1 *Xx2) *- % X;)
by induction on n. If i = n — 1, then w = x, and the result follows at once. Otherwise
i+1<nandw = z * x, where z is constructed from x;,1, ..., Xp,_1. Thenu =v = w =
v (Z % Xn) = (v * 2) * x,, by the associative law. The result is true for v * z by induction,
so it is true for u.

(ii) Suppose that e and e’ are two identity elements in a monoid. Then e = e * e’ since
e’ is an identity, and e = e’ = e’ since e is an identity. Hence e = e'.

(iii) Let g be an element of a group and suppose g has two inverses x and x'; we
claim that x = x’. To see this observe that (x * g) * X’ = e * X’ = x/, while also
(x*xg)*x' =x*(g*x')=x*e=x.Hencex=x'. O

Because of (3.2.1)(i) above, we can without ambiguity omit all parentheses from an
expression formed from elements x4, x2, ..., X, of a semigroup — an enormous gain
in simplicity. Also (ii) and (iii) show that it is unambiguous to speak of the identity
element of a monoid and the inverse of an element of a group.

Exercises (3.2)

(1) Let S be the subset of Rx R specified below and define (x, y) * (x', y') = (x+x', y+y’).
Say in each case whether (S, *) is a semigroup, a monoid, a group, or none of these, as
is most appropriate.

@ S={xy|lx+y=>0}

(i) S={xy |x+y>0}

(i) S={06y) lIx+yl<1k

(iv) S={(x,y)|2x+3y=0}.
(2) Do the sets of even or odd permutations in S, form a semigroup when functional
composition is used as the binary operation?

(3) Show that the set of all 2 x 2 real matrices with non-negative entries is a monoid,
but not a group, when matrix addition used.

(4) Let A be a non-empty set and define a binary operation * on the power set P(A) by
S« T=(SUT)-(SnT).Provethat (P(A), ) is an abelian group.
(5) Define powers in a semigroup (S, *) by the rules x! = x and x™*1 = x™ « x where

x € S and n is a non-negative integer. Prove that x™  x™ = x™" and (x™)" = x™" where
m,n > 0.

(6) Let G be a monoid such that for each x in G there is a positive integer n such that
x™ = e. Prove that G is a group.

(7) Let G be the set consisting of the permutations (12)(34), (13)(24), (14)(23) and the
identity permutation (1)(2)(3)(4). Show that G is a group with exactly four elements
in which each element is its own inverse. (This group is called the Klein3 4-group).

3 Felix Klein (1849-1925)
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(8) Prove that the group S, is abelian if and only if n < 2.
(9) Prove that the group GL,(R) is abelian if and only if n = 1.

3.3 Groups and subgroups

From this point on we will concentrate on groups and we begin by improving the
notation. In the first place it is customary not to distinguish between a group (G, *)
and its underlying set G, provided there is no likelihood of confusion. Then there are
two standard ways of writing the group operation. In the additive notation we write
x +y for x x y; the identity is O or 0 and the inverse of an element x is —x. The additive
notation is most often used for abelian groups, i.e., groups (G, *) such that x xy = y  x
forallx,y € G.

For non-abelian groups the multiplicative notation is generally employed, with
xy being written for x * y; the identity element is 1 or 1 and the inverse of x is x L.
The multiplicative notation will be used here unless the additive notation is clearly
preferable, as with a group such as Z.

Isomorphism. It is important to decide when two groups are to be regarded as es-
sentially the same. It is possible that two groups have very different sets of elements,
but their elements behave in a similar manner with respect to their respective group
operations. This leads us to introduce the concept of isomorphism. Let G and H be
(multiplicatively written) groups. An isomorphism from G to H is a bijective function
a: G — H such that

a(xy) = a(x)a(y)

forall x, y € G. Groups G and H are said to be isomorphic if there exists an isomorphism
from G to H, in symbols
G =H.

(3.3.1) (i) Ifa: G — H is an isomorphism of groups, then so is its inverse ™! : H — G.
(ii) Isomorphism is an equivalence relation on the class of groups.

Proof. To establish (i) all we need to do is prove that a 1(xy) = a 1(x)a"1(y). Now
a(a(xy)) = xy, while

a(a ' at(y)) = a(a t(x)a(a L (y)) = xy.

Hence a1 (xy) = a~'(x)a"1(y) by injectivity of a.

To prove (ii) note that reflexivity is obvious, while transitivity follows from the
observation that a composite of isomorphisms is an isomorphism: of course (i) implies
the symmetric property. O
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The idea behind isomorphism is that, while the elements in two isomorphic groups
may be different, they have the same properties in relation to their respective group
operations. Note that isomorphic groups have the same order, where by the order of a
group G we mean the cardinality of its set of elements |G]|.

The next result records some very useful techniques for working with group ele-
ments.

(3.3.2) Let x, a, b be elements of a group G.
(i) Ifxa=Db,thenx =ba!,andifax = b, thenx = a 1b.
(ii) (ab)_1 =b a1,

Proof. From xa = b we obtain (xa)a™! = ba™1, i.e., x(aa™') = ba™!. Sinceaa™! = 1

and x1 = x, we get x = ba~!. The second statement in (i) is dealt with similarly. By (3.2.1)
to establish (ii) it is enough to show that b~1a~! is an inverse of ab. This can be checked
directly: (ab)(b~ta 1) = a(bb™V)a™! = ala™! = aa™! = 1; similarly (b-a"1)(ab) = 1.
Consequently (ab)™! = b1a1. O

The group table. Suppose that (G, ) is a group of finite order n whose elements are
ordered in some fixed manner, let us say g1, g2, . . . , §n. The rule for combining elements
in the group can be displayed in its group table. This is the n x n rectangular array M
whose (i, j) entry is g; = gj. Thus the ith row of M is g; * g1, g&i * &2, ..., & * gn. From
the group table any pair of group elements can be combined. If the group is written
multiplicatively, the term multiplication table is used.

Notice that all the elements in a row are different: for g; * gj = g; * g implies that
gj = 8k by (3.3.2). The same is true of the columns of M. What this means is that each
group element appears exactly once in each row and exactly once in each column of
M, that is, the group table is a latin square. Such configurations are studied in (11.4).

As an example, consider the group of order 4 whose elements are the identity
permutation 1 = (1)(2)(3)(4) and the permutations a = (12)(34), b = (13)(24),
¢ = (14)(23). This is the Klein 4-group, which was mentioned in Exercise (3.2.7). The
multiplication table of this group is the 4 x 4 array

o St
O S Q R
S0 R Q
Q = o TS
Qo0

Powers of group elements. Let x be an element of a (multiplicative) group G and let n
be an integer. The nth power x" of x is defined recursively as follows:

XO — 1, Xn+1 — an, X—n — (Xn)—l
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where n > 0. (See also Exercise (3.2.5)). Of course, if G were written additively, we
would write nx instead of x™. Fundamental for the manipulation of powers is:

(3.3.3) (The Laws of Exponents) Let x be an element of a group G and let m, n be integers.
Then

(i) XMy = ym+n — anm;

(i) (x™)" = x™n,

Proof. (i) First we show that x"x% = x"*S where r, s > 0, using induction on s. This is
clear if s = 0. Assuming it true for s, we have

ers+1 =x"xSx = x"Sx = Xr+s+1’

thus completing the induction. Next using (3.3.2) and the definition of negative powers,

we deduce from x"x$ = xS that x "x"*S = x° and hence by inversion that x " 5x" = x5,

This shows that x™"x5 = x5~ " for all r, s > 0. In a similar way x"y~* = x"$ forallr, s > 0.
Finally, by inverting x5x™ = x™*S where r, s > 0, we obtain x"x~5 = x™"5. Thus all

cases have been covered.

(ii) When n > 0, use induction on n: clearly it is true when n = 0. Assuming the
statement true for n, we have (x™)™1 = (x™M)xM = xMxm = xmn+) hy (3.3.2)(i).
Next (x™)™" = ((x™)")~1 = (x™)~1 = x~™" which covers the case where the second
exponent is negative. O

Subgroups. Roughly speaking, a subgroup is a group contained within a larger group.
To make this concept precise, consider a group (G, *) and a subset S of G. If the group
operation = is restricted to S, we obtain a function *' from S x S to G. If ' is a binary
operation on S, i.e., if x * y € S whenever x, y € S, and if (S, *') is actually a group,
then S is called a subgroup of G.

The first point to settle is that 1g, the identity element of (S, '), equals 15. Indeed
1s =15 %' 15 =15 * 15,50 15 * 15 = 15 * 1. By (3.3.2) it follows that 15 = 15. Next let
x € S and denote the inverse of x in (S, %) by xgl. We want to be sure that xgl =x1,
Now 1 = 15 = x #' xg' = x = x5'. Hence x » x™! = x x5! and so x5' = x~1. Thus
inverses are the same in (S, *') and in (G, *).

On the basis of these observations we are able to formulate a convenient test for a
subset of a group to be a subgroup.

(3.3.4) Let S be asubset of agroup G. Then S is a subgroup of G if and only if the following
hold:

(1) 1(; € S,'

(ii) xy € S whenever x € Sand y € S, (closure under products);

(iii) x~1 € S whenever x € S, (closure under inverses).
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To indicate that S is a subgroup of a group G we write
S<aG.

If in addition S # G, then S is a proper subgroup and we sometimes write S < G.

Examples of subgroups.

(i) Z < Q < R < C. These statements follow at once via (3.3.4). For the same reason
Q*<R*<C*.

(ii) A, < Sy,. Recall that A, is the set of even permutations in S,,. Here the point to note
is that if 7 and o are even permutations, then so are 7o and 71~ by (3.1.6): of course
the identity permutation is even. However, the odd permutations in S, do not form a
subgroup.

(iii) Two subgroups that are present in every group G are the trivial or identity sub-
group {15}, which is written 1 or 15, and the improper subgroup G itself. For some
groups these are the only subgroups.

(iv) Cyclic subgroups. The interesting subgroups of a group are the proper non-trivial
ones. An easy way to produce subgroups is to take all the powers of a fixed element.
Let G be a group and choose x € G. We denote the set of all powers of the element x by

(x).

Using (3.3.4) and the Laws of Exponents (3.3.3), we quickly verify that (x) is a subgroup.
It is called the cyclic subgroup generated by x. Since every subgroup of G which contains
x must also contain all powers of x, it follows that (x) is the smallest subgroup of G
containing x.

A group G is said to be cyclic if G = (x) for some x in G. For example, Z and Z,, are
cyclic groups since, allowing for the additive notation, Z = (1) and Z,, = {[1]n).

Next we consider intersections of subgroups.

(3.3.5) If{S) | A € A} is a set of subgroups of a group G, then (.4 Sa is also a subgroup
of G.

This follows immediately from (3.3.4). Now suppose that X is a non-empty subset
of a group G. There is at least one subgroup that contains X, namely G itself. Thus we
may form the intersection of all the subgroups of G that contain X. This is a subgroup
by (3.3.5) which is denoted by

(X).

Obviously (X) is the smallest subgroup of G containing X: it is called the subgroup
generated by X. Note that the cyclic subgroup (x) is just the subgroup generated by the
singleton set {x}. More generally a group G is said to be finitely generated if G = (X) for
some finite set X.
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It is natural to enquire ask about the form of elements of (X).

(3.3.6) Let X be a non-empty subset of a group G. Then (X) consists of all elements of G
of the form

e e ek
Xl Xz ...Xk

where x; € X, e; = +1 and k > 0, (the case k = 0 being interpreted as 1¢).

Proof. Let S denote the set of all elements of the specified form. It is easy to check
that S contains 1 and is closed under products and inversion, by using (3.3.2). Thus
S is a subgroup. Clearly X ¢ S, so that (X) < S since (X) is the smallest subgroup
containing X. On the other hand, any element of the form x5 - - - x;* must belong to (X)
since x; € (X). Therefore S ¢ (X) and (X) = S. O

Notice that if X is the 1-element set {x}, we recover the fact that the cyclic subgroup
{x) consists of all powers of x.

The lattice of subgroups. Let G be a group; then set inclusion is a partial order on the
set of all subgroups of G
S(G),

which is therefore a partially ordered set. Now if H and K are subgroups of G, they have
a greatest lower bound in S(G), namely H n K, and also a least upper bound (H U K),
which is usually written (H, K). This last is true because any subgroup containing H
and K must also contain (H, K). This means that S(G) is a lattice, in the sense of (1.2).
When G is finite, S(G) can be visualized by means of its Hasse diagram; the basic
component in the diagram of subgroups of a group is the subdiagram below

(H,K)

~

o
HnK

The order of a group element. Let x be an element of a group. If the subgroup (x) has
a finite number m of elements, x is said to have finite order m. If on the other hand (x)
is infinite, then x is called an element of infinite order. We shall write

|x|
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for the order of x. The basic facts about orders of group elements are contained in the
next result.

(3.3.7) Let x be an element of a group G.

(i) If all powers of x are distinct, then x has infinite order.

(ii) Assume that two powers of x are equal. Then x has finite order m and x¢ = 1 if and
only if € is divisible by m. Thus m is the smallest positive integer such that x™ = 1.
Furthermore (x) = {1, x, ..., x™1}.

Proof. (i) This is clearly true.
(ii) Suppose that two powers of x are equal, say x! = x where i > j. Then xi/ = 1
by (3.3.3). Using Well-Ordering we may choose a smallest positive integer m for which
x™ = 1. Now let £ be any integer and write ¢ = mq + r where q,r € Zand 0 < r < m,
using the Division Algorithm. By (3.3.3) again x! = (x™)9x" = x". By minimality of
m we deduce that x¢ = 1 ifand only if r = 0, i.e., £ is divisible by m. It follows that
(x) ={1, x,x%,...,x™ 1}, sothat x has finite order m.

O

We will now study cyclic groups with the aim of identifying them up to isomor-
phism.

(3.3.8) A cyclic group of order n is isomorphic with Z.,. An infinite cyclic group is isomor-
phic with Z.

Proof. Let G = (x) be a cyclic group. If |G| = n, then G = {1,x,...,x" 1}. Define
a: Zn — Gbya([i]) = x!, which is a well-defined function because x'*"4 = xi(x")4 = xi,
Also

a([i] + [j]) = a([i +j]) = x™ = x'¥ = a((i)a([j]),

while a is clearly bijective. Therefore, allowing for Z, being written additively and G
multiplicatively, we conclude that a is an isomorphism and Z,, ~ G. When G is infinite
cyclic, the proof is similar, but easier, and is left to the reader. O

There is a simple way to compute the order of an element of the symmetric group
Sy by using least common multiples — see Exercise (2.2.8).

(3.3.9) Let m € S, and write m = 7, - - - Ty where the m1; are disjoint cycles, with m; of
length ¢;. Then the order of m equals the least common multiple of €1, €2, . . ., k.

Proof. By (3.1.3) thereis a such an expression for 7. Also disjoint permutations commute
by (3.1.2). Hence ™ = n{'ny' --- my' for any m > 0. Now the " affect disjoint sets of
integers, so ™ = 1, (i.e., 7™ = id), ifand only if 7' = 7' = --- = m! = 1. By (3.3.7)
these conditions are equivalent to m being divisible by the orders of all the ;. Finally,
it is easy to see by forming successive powers that the order of an r-cycle is r. Therefore
|71 = lem{éq, €5, ..., €i}. O
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Example (3.3.1) What is the largest possible order of an element of Sg?

Let m € Sg and write i = 711 - - - y where the 71; are disjoint cycles. If 7; has length ¢;,
then fozl ¢; = 8 and || = lcm{¢4, ..., £x}. So the question is: which positive integers
€1, ..., € with sum equal to 8 have the largest least common multiple? A little experi-
mentation will convince the reader that the answeris k = 2, ¢; = 3, £, = 5. Hence 15
is the largest order of an element of Sg. For example, the permutation (123)(45678)
has order 15.

We conclude with two more examples, including an application to number theory.

Example (3.3.2) Let G be a finite abelian group. Prove that the product of all the ele-
ments of G equals the product of all the elements of G of order 2.

The key point to notice here is that if x € G, then |x| = 2 ifand only if x = x* # 1.
Since G is abelian, in the product [],.; & we can group together elements of order
greater than 2 with their inverses and then cancel each pair xx~1. What is left is the
product of the elements of order 2.

Example (3.3.3) (Wilson’s* Theorem) If p is a prime, then (p — 1)! = -1 (mod p).

Apply Example (3.3.2) to Z3, the multiplicative group of non-zero congruence
classes mod p. Now the only element of order 2 in Zj; is [-1]: for a’ =1 (mod p)implies
that a = +1 (mod p), i.e., [a] = [1] or [-1]. It follows that [1][2]---[p — 1] = [-1] and
hence (p - 1)! = -1 (mod p).

Exercises (3.3)

(1) In each of the following situations say whether or not the subset S is a subgroup of
the group G:

(i) G=GLn(R),S=1{A e G|det(A)=1}.

(i) G=(R,+),S={xeR]| |x| <1}

(iii) G=RxR,S ={(x,y)|3x-2y = 1}: here the group operation of G is addition

of pairs componentwise.

(2) Let H and K be subgroups of a group G. Prove that H U K is a subgroup if and only
ifHcKorK c H.

(3) Show that no group can be the union of two proper subgroups. Then exhibit a group
which is the union of three proper subgroups.

(4) Find the largest possible order of an element of S;;. How many elements of S1;
have this order?

(5) The same question for S15.
(6) Find the orders of the elements [3] and [7] of Z],.

4 John Wilson (1741-1793)
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(7) Prove that a group of even order must contain an element of order 2. [Hint: assume
this is false and group the non-identity elements in pairs x, x~1].

(8) Assume that for each pair of elements a, b of a group G there is an integer n such
that (ab)! = alb' holds for i = n, n + 1 and n + 2. Prove that G is abelian.

(9) Let S denote the set product Z x Z. Define a relation E on S by (a, b) E (a’, b')
a-b=a-»b'.
(i) Prove that E is an equivalence relation on S and that each E-equivalence class
contains a pair (a, b) with a, b > 0.
(i) Define (a, b) + (a’,b') = (a + a’, b + b’) and show that this determines a well
defined binary operation on the set P of all E-equivalence classes.
(iii) Prove that if + denotes the binary operation in (ii), then (P, +) is an abelian
group.
(iv) By finding a mapping from P to Z, prove that P = Z.
(10) Let 8 be a non-empty set of subgroups of a group. Then § is said to satisfy the
ascending chain condition (acc) if there does not exist an infinite ascending chain of
subgroups G; < G, < ... where G; € 8. Also 8 is said to satisfy the maximal condition
(max) if each non-empty subset T of § has at least one maximal element, i.e., a subgroup
in T which is not properly contained in any other subgroup in 7. Prove that the acc and
max are the same property.

(11) A group G is said to satisfy the maximal condition on subgroups (max) if the set of
all its subgroups S(G) satisfies max, or equivalently the acc. Prove that G satisfies max
if and only if every subgroup of G is finitely generated. [Hint: use the acc form].

(12) Prove that Z satisfies max, but Q does not.
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In this chapter we probe more deeply into the nature of the subgroups of a group and
we introduce functions between groups that relate their group operations.

4.1 Cosets and Lagrange’s Theorem

Consider a group G with a fixed subgroup H. A binary relation ~y on G is defined by
the following rule: x ~ y means that x = yh for some h € H. It is an easy verification
that ~y is an equivalence relation on G. Therefore by (1.2.2) the group G splits up into
disjoint equivalence classes. The equivalence class to which an element x belongs is
the subset

{xh | h € H},

which is called a left coset of H in G and is written
xH.

Thus G is the disjoint union of the distinct left cosets of H. Notice that the only coset
which is a subgroup is 1H = H since no other coset contains the identity element.

Next observe that the assignment h — xh, (h € H), determines a bijection from H
to xH; for xh; = xh, implies that h; = h,. From this it follows that

IxH| = [H|,

so that each left coset of H has the cardinal of H.

Suppose that we label the left cosets of H in some manner, say as Cy, A € A, and for
each Ain A we choose an arbitrary element t; from Cj. (If A is infinite, we are assuming
at this point a set theoretic axiom called the axiom of choice - for this see (14.1)). Then
C) = tpH and, since every group element belongs to some left coset of H, we have
G = [Jjea taH. Furthermore, cosets are equivalence classes and therefore are disjoint,
so each element x of G has a unique expression x = t1h, where h € H, A € A. The set
{ta | A € A}is called a left transversal to H in G. Thus we have found a unique way to
express elements of G in terms of the transversal and elements of the subgroup H.

In a similar fashion one can define right cosets of H in G; these are the equivalence
classes of the equivalence relation i ~, where xg ~ y means that x = hy for some h
in H. The right coset containing x is

Hx ={hx | h € H}

and right transversals are defined analogously.
The next result was the first significant theorem to be discovered in group theory.



54 =— 4 Quotient groups and homomorphisms

(4.1.1) (Lagrange’s! Theorem) Let H be a subgroup of a finite group G. Then |H| divides
|G| and % = the number of left cosets of H = the number of right cosets of H.

Proof. Let ¢ be the number of left cosets of H in G. Since the number of elements in
any left coset of H is |H| and distinct left cosets are disjoint, a count of the elements
of G yields |G| = ¢ - |H|; thus ¢ = |G|/|H|. For right cosets the argument is similar. O

Corollary (4.1.2) The order of an element of a finite group divides the order of the group.

For the order of an element equals the order of the cyclic subgroup it generates.

The index of a subgroup. Even in an infinite group G the sets of left and right cosets
of a subgroup H have the same cardinal. Indeed the assignment xH — Hx clearly
determines a bijection between these sets. This allows us to define the index of H in G
to be simultaneously the cardinal of the set of left cosets and the cardinal of the set of
right cosets of H; the index is written

|G : HI.

When G is finite, we have already seen that |G : H| = |G|/|H| by Lagrange’s Theorem.

Example (4.1.1) Let G be the symmetric group S3 and let H = ((12)(3)). Then |H| = 3
and |G : H| = |G|/|H| = 6/2 = 3, so we expect to find three left cosets and three right
ones. The left cosets are

H={(1)(2)(3)(4), (12)(3)}, (123)H = {(123), (13)(2)}, (132)H = {(132), (1)(23)},
and the right cosets are
H={(1)(2)(3)(4), (12)(3)}, H(123) = {(123), (1)(23)}, H(132) = {(132), (13)(2)}.

Notice that the left cosets are disjoint, as are the right ones; but the left and right cosets
are not all disjoint.

The next result is useful in calculations with subgroups: it involves the concept of
the product of cardinal numbers — see Exercise (1.4.6).

(4.1.3) Let H < K < G where G is any group. Then

|G:H|=|G:K|-|K: H|.

1 Joseph Louis Lagrange (1736-1813)
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Proof. Let {t) | A € A} be aleft transversal to H in K, and let {s,, | p € M} be a left
transversal to K in G. Thus K = (¢, t1H and G = (J,¢y S K. Hence

G=|J (sut)H.
AeA, yeM

We claim that the elements s, ) belong to different left cosets of H. Indeed suppose
that s, tAH = s, ty H; then, since {H < K, we have s, K = s,y K, which implies that
u = y'. Hence tyH = ty H, which shows that A = A’. It follows that |G : H|, which is the
cardinal of the set of left cosets of H in G, equals |[M x A|. By definition of the product
thisis [M|-|A| = |G : K| - |K : H]. O

Groups of prime order. Lagrange’s Theorem is sufficiently strong to enable us to de-
scribe all groups of prime order. This is the first example of a classification theorem in
group theory; it is also a first indication of the importance of arithmetic properties of
the group order for the structure of a group.

(4.1.4) A group G has prime order p if and only if G = Z,.

Proof. Assume that |G| = p and let 1 # x € G. Then [{x)| divides |G| = p by (4.1.1).
Hence [(x)| = p = |G| and G = (x), a cyclic group of order p. Thus G = Z, by (3.3.8).
The converse is obvious. O

Example (4.1.2) Find all groups of order less than 6.

Let G be a group such that |G| < 6. If |G| = 1, then G is a trivial group. If |G| = 2, 3
or 5, then (4.1.4) tells us that G = Z;, Z5 or Zs respectively. We are left with the case
where |G| = 4. If G contains an element x of order 4, then G = (x) and G = Z, by (3.3.8).
Assuming that G has no elements of order 4, we conclude from (4.1.2) that G must
consist of 1 and three elements of order 2, say a, b, c.

Now ab cannot equal 1, otherwise b = a~! = a. Also it is clear that ab # a and
ab + b. Hence ab must equal c; also ba = ¢ by the same argument. Similarly we can
provethat bc=a=cbandca=»b = ac.

At this point the reader should recognize that G is very like the Klein 4-group

V ={(1)(2)(3)(4), (12)(34), (13)(24), (14)(23)}.

In fact the assignments 15 — 1y, a — (12)(34), b — (13)(24), ¢ — (14)(23) deter-
mine an isomorphism from G to V. Our conclusion is that up to isomorphism there are
exactly six groups with order less than 6, namely 7.1, 7., Z3, Z.4, V, Zs.

The following application of Lagrange’s Theorem furnishes another proof of Fer-
mat’s Theorem — see (2.3.4).
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Example (4.1.3) Use a group theoretic argument to prove that if p is a prime and n is
any integer, then n? = n (mod p).

Apply (4.1.2) to Z,,, the multiplicative group of non-zero congruence classes mod-
ulo p. If [n] # [0], then (4.1.2) implies that the order of [n] divides |Z;l =p - 1. Thus
[n]P~1 = [1],i.e., n”?~1 =1 (mod p). Multiply by n to get n” = n (mod p), and observe
that this also holds if [n] = [0].

According to Lagrange’s Theorem the order of a subgroup of a finite group divides
the group order. However, the natural converse of this statement is false: there need
not be a subgroup with order equal to a positive divisor of the group order. This is
demonstrated by the following example.

Example (4.1.4) The alternating group A, has order 12, but it has no subgroups of
order 6.

Write G = A,. First note that each non-trivial element of G is either a 3-cycle or the
product of two disjoint transpositions. Also all of the latter with the identity form the
Klein 4-group V.

Suppose that H is a subgroup of G with order 6. Assume first that HN V = 1. Then
there are 6 x 4 = 24 distinct elements of the form hv, h € H, v € V; forif hyv, = hyv,
with h; € H,v; € V, then h;'hy = vovit € HNV = 1, so that hy = hy and vy = v,. This
is impossible,so HN V # 1.

Let us say H N V contains 7 = (12)(34). Now H must also contain a 3-cycle since
there are 8 of these in G, say ¢ = (123) € H. Hence H contains T = omo™! = (14)(23).
Thus H contains 1T = (13)(24) and it follows that V ¢ H. Other choices of elements
leads to the same conclusion. However, | V| does not divide |H|, a final contradiction.

Subgroups of cyclic groups. Usually a group has many subgroups and it can be a
difficult task to find all of them. Thus it is of interest that the subgroups of a cyclic
group are easy to describe. The first observation is that such subgroups are themselves
cyclic.

(4.1.5) A subgroup of a cyclic group is cyclic.

Proof. Let H be a subgroup of a cyclic group G = (x). If H = 1, then obviously H = (1);
thus we may assume that H # 1, so that H contains some x™ # 1; since H must also
contain (x™)~! = x™™, we may as well assume that m > 0. Now choose m to be the
smallest positive integer for which x™ € H; of course we have used the Well-Ordering
Law here.

Certainly it is true that (x™) ¢ H. We will prove the reverse inclusion, which will
show that H = (x™). Let h € H and write h = x'. By the Division Algorithm i = mq + r
where ¢, € Z and 0 < r < m. By the Laws of Exponents (3.3.3) x! = x™4x". Hence
x" = x"™x!, which belongs to H since x™ ¢ H and x' € H. From the minimality of m it
follows that r = 0 and i = mgq. Therefore h = x! € (x™). O
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The next result tells us how to construct the subgroups of a given cyclic group.

(4.1.6) Let G = (x) be a cyclic group.

() If G is infinite, each subgroup of G has the form G; = (x') where i > 0. Furthermore,
the G; are all distinct and G; has infinite order if i > 0.

(ii) If G has finite order n, then it has exactly one subgroup of order d for each positive
divisor d of n, namely (x"/?),

Proof. Assume first that G is infinite and let H be a subgroup of G. By (4.1.5) H is cyclic,
say H = (x') where i > 0. Thus H = G;. If x had finite order m, then xI™ = 1, which,
since x has infinite order, can only mean that i = 0 and H = 1. Thus H is certainly
infinite cyclic if i > 0. Next G; = G; implies that x' € (x¥}) and ¥ € (x'),i.e.,j|iand
i|j,sothati = j. Therefore all the G;’s are different.

Next let G have finite order n and suppose d is a positive divisor of n. Now (xd)4 =
x" =1, s0 £ = |xd| must divide d by (3.3.7). But also x'¢ = 1 and hence n divides ”7",
i.e., d divides ¢. It follows that £ = d and thus K = (x"/9) has order exactly d.

To complete the proof, suppose that H = (x") is another subgroup with order d.
Then x™ = 1, so n divides rd and 2 divides r. This shows that H = (x") < (x"/4) = K.
But |H| = |K| = d, from which it follows that H = K. Consequently there is exactly one
subgroup of order d. O

Recall from (3.3) that the set of all subgroups of a group is a lattice and may be
represented by a Hasse diagram. In the case of a finite cyclic group, (4.1.6) shows that
the lattice corresponds to the lattice of divisors of the group order.

Example (4.1.5) Display the Hasse diagram for the subgroups of a cyclic group of
order 12.

Let G = (x) have order 12. By (4.1.6) the subgroups of G correspond to the positive
divisors of 12, i.e., 1, 2, 3, 4, 6, 12; indeed, if i | 12, the subgroup (x'2/!) has order i.
It is now easy to draw the Hasse diagram:

G=(x)

RN

o 2
) )
x) o

%
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Next comes a useful formula for order of an element in a cyclic group.

(4.1.7) Let G = {x) be a cyclic group with finite order n. Then the order of the element x!

1S
n

gcd{i, n}’

Proof. Inthe first place (x))™ = 1ifand onlyifn | im, i.e., % | (é)m where d = gcd{i, n}.
Since § and ; are relatively prime, by Euclid’s Lemma this is equivalent to ; dividing m.
Therefore (x')™ = 1 if and only if g divides m, which shows that x' has order (—’5, as
claimed. O

Corollary (4.1.8) Let G = (x) be a cyclic group of finite order n. Then G = (x') if and
only if gcd{i, n} = 1.

For G = (x) if and only if x has order n, i.e., gcd{i, n} = 1. This means that the
number of possible generators of G equals the number of integers i satisfying 1 <i < n
and gcd{i, n} = 1. This number is ¢p(n) where ¢ is the Eulerian function introduced
in (2.3).

Every non-trivial group has at least two subgroups, itself and the trivial subgroup:
which groups have these two subgroups and no more? The question is easily answered
using (4.1.7) and Lagrange’s Theorem.

(4.1.9) A group G has just two subgroups if and only if G = Z,, for some prime p.

Proof. Assume that G has only the two subgroups 1 and G. Let 1 # x € G; then
1+ (x) < G,s0G = (x) and G is cyclic. Now G cannot be infinite; for then it would
have infinitely many subgroups by (4.1.6). Thus G has finite order n, say. Now if n is
not a prime, it has a divisor d where 1 < d < n, and (x"/ 4y is a subgroup of order d,
which is impossible. Therefore G has prime order p and G = Z, by (4.1.4). Conversely,
if G = Z,, then |G| = p and Lagrange’s Theorem shows that G has no non-trivial proper
subgroups. O

Products of subgroups. If H and K are subsets of a group G, the product of H and K is
defined to be the subset
HK ={hk | h e H, k € K}.

For example, if H = {h} and K is a subgroup, then HK is just the left coset hK. Products
of more than two subsets are defined in the obvious way:

HiHy---Hp ={h1hy---hy | hi € Hi}.
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Evenif H and K are subgroups, their product HK need not be a subgroup. For exam-
ple, in Ss let H = ((12)) and K = ((13)). Then HK = {(1)(2)(3)(4), (12), (13), (132)}.
But HK cannot be a subgroup since 4 does not divide 6, the order of Ss.

The following result tells us when the product of two subgroups is a subgroup.

(4.1.10) Let H and K be subgroups of a group G. Then HK is a subgroup if and only if
HK = KH, and in this event (H, K) = HK.

Proof. Assume first that HK < G. Then H < HK and K < HK, so KH < HK. By taking
the inverse of each side of this inclusion, we deduce that HK ¢ KH. Hence HK = KH.
Moreover (H, K) ¢ HK since H < HK and K < HK, while HK < (H, K) is always true.
Therefore (H, K) = HK.

Conversely, assume that HK = KH; we will verify that HK is a subgroup by us-
ing (3.3.4). Let hy, hy € Hand k1, ky € K. Then (h1ki)™! = k'hy* € KH = HK. Also
(hlkl)(hzkz) = hl(klhz)kz; now klhz e KH = HK, so that k1h2 = h3k3 where h3 € H,
ks € K. Thus (h1k1)(haky) = (h1hs)(ksky) € HK. Obviously 1 € HK. Since we have
proved that the subset HK is closed under products and inversion, it is a subgroup. [

It is customary to say that the subgroups H and K permute if HK = KH. The next
result is frequently used in calculations with subgroups.

(4.1.11) (Dedekind’s? Modular Law) Let H, K, L be subgroups of a group and assume
that K c L. Then
(HK)N L = (Hn L)K.

Proof. In the first place (H N L)K < L since K < L; therefore (Hn L)K < (HK) n L. To
prove the converse, let x € (HK) n L and write x = hk where h € H, k € K. Hence
h=xk! e LK = L, from which it follows that h € Hn L and x = hk € (Hn L)K. Thus
(HK)n L < (Hn L)K and the result follows. O

Notice that (4.1.11) is a special case of the distributive law (H, K)nL = (HNL, KnL).
However, this law does not hold in general, (see Exercise (4.1.1) below).

Frequently one wants to count the elements in a product of finite subgroups, which
makes the next result useful.

(4.1.12) If H and K are finite subgroups of a group, then

_ |H]- K]

HK| = ——.
IHK] [HNK]|

2 Richard Dedekind (1831-1916)



60 —— 4 Quotient groups and homomorphisms

Proof. Define a function a : Hx K — HK by the rule a((h, k)) = hk where h € H, k € K;
evidently a is surjective. Now a((h1, k1)) = a((hz, k»)) holds if and only if h1k; = hy ks,
ie., hy'hy = koki' = d € Hn K. Thus h, = hyd ! and k, = dk;. It follows that the
elements of H x K which have the same image under a as (hq, k1) are those of the form
(h1d™1, dki) where d € H n K. Now compute the number of the elements of H x K by
counting their images under a and allowing for the number of elements with the same
image. This gives |H x K| = |HK| - |[H n K|. Of course |H x K| = |H| - |K|, so the result is
proved. O

The final result of this section provides important information about the index of
the intersection of two subgroups.

(4.1.13) (Poincaré3) Let H and K be subgroups of finite index in a group G. Then H n K
has finite index and
|G:HNnK|<|G:H|-|G:K|,

with equality if |G : H| and |G : K| are relatively prime.

Proof. To each left coset x(H n K) assign the pair of left cosets (xH, xK). This is a well-
defined function; for, if we were to replace x by xd with d € H n K, then xH = xdH and
xK = xdK. The function is also injective; for (xH, xK) = (yH, yK) implies that xH = yH
and xK = yK, i.e.,y"1x € Hn K, so that x(H n K) = y(H n K). It follows that the number
of left cosets of HN K in G is at most |G : H| - |G : K]|.

Now assume that |G : H| and |G : K| are relatively prime. Since |G : HN K| = |G :
H|-|H : Hn K| by (4.1.3), we see that |G : H| divides |G : Hn K|, as does |G : K| for a
similar reason. But |G : H|and |G : K| are relatively prime, which means that |G : HNK]|
is divisible by |G : H|-|G : K|. It follows that |G : HNn K| mustequal |G : H|-|G : K|. O

Exercises (4.1)

(1) Show that the distributive law for subgroups (H, K) N L = (Hn L, K n L) is false in
general.

(2) If H is a subgroup of a finite group, show that there are |H|!5:H! left transversals to H
in G and the same number of right transversals.

(3) Let H be a subgroup of a group G such that G — H is finite. Prove that either H = G
or G is finite.

(4) Display the Hasse diagram for the subgroup lattices of the following groups: Zs,
Z,4, V (the Klein 4-group), S3.

(5) Let G be a group with exactly three subgroups. Show that G = Z,> where p is a
prime. [Hint: first prove that G is cyclic].

3 Henri Poincaré (1854-1912)
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(6) Let H and K be subgroups of a finite group G with relatively prime indexes in G.
Prove that G = HK. [Hint: use (4.1.12) and (4.1.13)].

(7) If the product of subsets is used as the binary operation, show that the set of all
non-empty subsets of a group is a monoid.

(8) Let H and K be subgroups of a finite group with relatively prime orders. Show that
Hn K =1 and |HK| divides the order of (H, K).

(9) Let G = (x) be an infinite cyclic group and put H = (x!), K = (x/). Prove that
HnK = (x%)and (H, K) = (x?) where ¢ = lem{i, j} and d = gcd{i, j}.

(10) Let G be a finite group of order n and let d be the minimum number of generators
of G. Prove that n > 29, so that d < [log, n].

(11) By applying Lagrange’s Theorem to the group Z;, prove that x?™ = 1 (mod n)
where n is any positive integer and x is an integer relatively prime to n. Here ¢ is Euler’s
function. (This is a generalization of Fermat’s theorem (2.3.4)).

(12) Let H be a subgroup with finite index in a finitely generated group G. Use the
argument that follows to prove that H is finitely generated. Let G = (g1, ..., gn) and
let {t1, ..., t;} be a left transversal to H in G with t; = 1. Without loss assume that
each gl.‘1 is also a generator. Write g; = t¢,h; with h; € H. Also write g;tj = t, j hij with
hij € H.
(i) Prove that gigj = gr(,e) hie; hj.
(i) Leth = gi,8i, - 8i, € H.By applying (i) repeatedly to segments of h, prove
that h € (hj, hje|i,j=1,...,n,€ =1,...m,). Conclude that H is finitely
generated.

4.2 Normal subgroups and quotient groups

We focus next on a special type of subgroup called a normal subgroup. Such subgroups
are important since they can be used to construct new groups, the so-called quotient
groups. Normal subgroups are characterized in the following result.

(4.2.1) Let H be a subgroup of a group G. Then the following statements about H are
equivalent:

(i) xH = Hx forall x in G;

(i) xhx™! € H whenever h ¢ Hand x € G.

Proof. First assume that (i) holds and let x € G and h € H. Then xh € xH = Hx, so
xh = hqx for some h; € H; hence xhx~! = h; € H, which establishes (ii).

Now assume that (ii) holds. Again let x € G and h € H. Then xhx™! = h; € H, so
xh = hix € Hx and therefore xH < Hx. Next x 1hx = x *h(x"1)~! = h, € H, which
shows that hx = xh, € xH and Hx € xH. Thus xH = Hx and (i) is proved. O



62 —— 4 Quotient groups and homomorphisms

A subgroup H with the equivalent properties in (4.2.1) is called a normal subgroup
of G. The notation
H«G

is used to denote the fact that H is a normal subgroup of a group G. Also xhx~! is called
the conjugate of h by x. Thus H <« G is valid if and only if H contains all conjugates of
its elements by elements of G.

Example (4.2.1)

(i) Obvious examples of normal subgroups are: 1 < G and G < G, and it is possible
that these are the only normal subgroups present. If 1 and G are the only normal
subgroups of a non-trivial group G, then G is said to be a simple group. This is one of the
great mis-nomers of mathematics since simple groups can have extremely complicated
structure.

(ii) A, < Sp.
For, if 1 € A, and 0 € S,, then by (3.1.6) we have

sign(omo™ 1) = sign(o) sign(m)(sign(o)) ! = (sign(0))? = 1,

so that orto~! € A,.
(iii) In an abelian group G every subgroup H is normal.
This is because xhx™! = hxx 1 = hforallh € H, x € G.

(iv) Recall that GL,(RR) is the group of all non-singular n x n real matrices. The subset
of matrices in GL,(R) with determinant equal to 1 is denoted by

SLn(R).

First observe that this is a subgroup, the so-called special linear group of degree n
over R; indeed, if A, B € SL,(R), then det(AB) = det(A)det(B) = 1 and det(4™1) =
(det(A4))~! = 1. In addition

SL,(R) <« GL,(R):

forif A € SL,(R) and B € GL,(R),
det(BAB™') = det(B) det(A)(det(B))* = det(B)1det(B)! = 1.
In these computations two standard results about determinants have been used:

det(XY) = det(X)det(Y) and det(X~1) = (det(X))?.

(v) A subgroup of S3 that is not normal is ((12)(3)).

(vi) The normal closure. Let X be a non-empty subset of a group G. The normal closure

(X%
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of X in G is the subgroup generated by all the conjugates gxg~! with g € G and x ¢ X.
Clearly this is the smallest normal subgroup of G which contains X.

(vii) Finally, we introduce two important normal subgroups that can be formed in any
group G. The center of G,
Z(G),

consists of all x in G such that xg = gx for every g in G. The reader should check that
Z(G) <« G. Plainly a group G is abelian if and only if G = Z(G).
Next, if x, y are elements of a group G, their commutator is the element

[x,y] =xyx" 'y 1,

The significance of commutators arises from the fact that [x, y] = 1 if and only if
Xy = yx, i.e., x and y commute. The derived subgroup or commutator subgroup of G is
the subgroup G’ generated by all the commutators,

G' =[xyl lxyeG).

An easy calculation reveals that z[x, y]z~! = [zxz™!, zyz~1], which implies that G’ « G.
Clearly a group G is abelian if and only if G’ = 1.

Quotient groups. Next we will explain how to form a new group from a normal sub-
group N of a group G. This is called the quotient group of N in G,

G/N.

The elements of G/N are the cosets xN = Nx, while the group operation is given by the
natural rule
(xN)(yN) = (xy)N, (x,y € G).

Our first concern is to check that this binary operation on G/N is properly defined; it
should depend on the two cosets xN and yN, not on the choice of coset representatives
x and y. To prove this, let x; € xN and y; € yN, so that x; = xa and y; = yb where
a,b € N.Then

x1y1 = xayb = xy(y"*ay)b € (xy)N

since y"tay =y ta(y 1)1 € N by normality of N. Thus (xy)N = (x1y1)N.
It is straightforward to verify that the binary operation just defined is associative.
The role of the identity in G/N is played by 1N = N, while x"1N is the inverse of xN, as
is readily checked. It follows that G/N is a group. Note that the elements of G/N are
subsets, not elements, of G, so that G/N is not a subgroup of G. If G is finite, so is G/N
with order
|Gl

G/N|=|G:N|= —.
IG/NI =16 : NI =

Example (4.2.2)

(i) G/1is the set of all x1 = {x}, i.e., one-element subsets of G. Also {x}{y} = {xy}. In
fact this quotient is not really a new group since G = G/1 via the isomorphism in which
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x — {x}. Another trivial example of a quotient group is G/G, which is a group of order 1,
with the single element G.

(ii) Let n be a positive integer. Then Z/nZ. = Z.,. For, allowing for the additive notation,
the coset of nZ containing x is x + nZ = {x + nq | q € Z}, which is just the congruence
class of x modulo n.

(iii) If G is any group, the quotient group G/G’ is an abelian group: indeed (xG')(yG') =
xyG' = (yx)(x Yy xy)G' = yxG' = (yG')(xG'). Also, if G/N is any other abelian
quotient group, then

(xy)N = (xN)(yN) = (yN)(xN) = (yx)N,

which implies that [x 1, y™'] = x 1y~lxy € Nforall x,y € N. Since G' is generated
by all commutators [x~1, y~1], it follows that G’ < N. Therefore G/G’ is the “largest”
abelian quotient group of G.

(iv) The circle group. Let r be a real number and suppose that the plane is rotated
through angle 2rm in an anti-clockwise direction about an axis through the origin and
perpendicular to the plane. This results in a symmetry of the unit circle, which we will
call r'.

Now define G = {r' | r € R}, a subset of the symmetry group of the unit circle. Note
that r} or = (r1 +12) and (r')~! = (-r)'. This shows that G is actually a subgroup of
the symmetry group; indeed it is the subgroup of all rotations. Our aim is to identify G
as a quotient group.

It is claimed that the assignment r + Z — r’ determines a function a : R/Z — G:
first we need to make sure that the function is well-defined. To this end let n be an
integer and observe that (r + n)) = r’ o n’ = r' since n’ is a rotation through angle
2nm, i.e., it is the identity rotation. Clearly a is surjective; it is also injective because
ry = r} implies that 2r,7 = 2r,7 + 2nmn for some integer n, i.e., r; = r, + n, and hence
11 +Z =r, + Z. Thus a is a bijection. Finally a((r1 + Z) + (r2 + Z)) = a((r1 + r2) + Z),
which equals

(ri+r) =rjorh=a(ri+2Z)oa(r; + Z).

Therefore, allowing for the additive and multiplicative notations for the respective
groups IR/Z and G, we conclude that a is an isomorphism from the quotient group R/Z
to the circle group G. Hence G =~ R/Z.

Subgroups of quotient groups. Suppose that N is a normal subgroup of a group G; itis
natural to enquire about the subgroups of the quotient group G/N. It is to be expected
that they are related in some simple fashion to the subgroups of G.

Assume that H is a subgroup of G/N and define a corresponding subset of G,

H={xeG|xN e H}.

It is easy to verify that H is a subgroup of G. Also the definition of H shows that N ¢ .



4.2 Normal subgroups and quotient groups =—— 65

Conversely, suppose we start with a subgroup K of G which contains N. Since N< G
implies that N <« K, we can form the quotient group K/N, which is evidently a subgroup
of G/N. Notice that if N < K; < G, then K/N = K;/N implies that K = K;. Thus the
assignment K — K/N determines an injective function from the set of subgroups of G
that contain N to the set of subgroups of G/N. The function is also surjective since
H — H in the notation of the previous paragraph; therefore it is a bijection.

These arguments establish the following fundamental theorem.

(4.2.2) (The Correspondence Theorem) Let N be a normal subgroup of a group G. Then
the assignment K — K/N determines a bijection from the set of subgroups of G that
contain N to the set of subgroups of G/N. Furthermore, K/N < G/N if and only if K < G.

All of this has been proven except the last statement, which follows from the
observation that (xN)(kN)(xN)~! = (xkx 1)N for k € K and x € G.

Example (4.2.3) Let n be a positive integer. The subgroups of Z,, = Z/nZ. are of the
form K/nZ where nZ < K < Z. Now by (4.1.5) there is an integer m > 0 such that
K = (m) = mZ, and clearly m divides n since nZ < K. Thus the Correspondence
Theorem tells us that the subgroups of Z, correspond to the positive divisors of n, a
fact we already know from (4.1.6).

Example (4.2.4) Let N be a normal subgroup of a group G. Call N a maximal normal
subgroup of Gif N + Gand if N < L < G implies that L = G. In short “maximal normal”
means “maximal proper normal”. It follows from the Correspondence Theorem that
if N is a proper normal subgroup of G, then G/N is simple if and only if there are no
normal subgroups of G lying strictly between N and G, i.e., N is maximal normal in G.
Thus maximal normal subgroups lead in a natural way to simple groups.

Direct products. Consider two normal subgroups H and K of a (multiplicatively written)
group Gsuchthat HNK = 1.Let h € Hand k € K. Then [h, k] = (hkh™1)k™! € K since
K <« G;also [h, k] = h(kh 'k ') e Hsince Ha G.But HNK = 1, so [h, k] = 1, i.e.,
hik = kh. Thus elements of H commute with elements of K.
If in addition G = HK, then G is said to be the internal direct product of H and K,
in symbols
G=HxK.

Each element of G is uniquely expressible in the form hk, (h € H, k € K). Forif hk = h'k’
with b’ € H, k' € K, then (W')"'h=k'k"* e HnK =1, so that h = h’ and k = k'. Notice
also the form taken by the group operation in G,

(hik1)(haka) = (hihy)(kiko) (h; € H, ki € K),

since klhz = hzkl.
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For example, consider the Klein 4-group
V ={(1)(2)(3)(4), (12)(34), (13)(24), (14)(23)} :

here V=AxB=BxC(C=AxCwhere A = ((12)(34)), B = ((13)(24)), C = ((14)(23)).

The direct product concept may be extended to an arbitrary set of normal subgroups
{Ga | A € A} of a group G where
() Gan{GulueA u+A)=1foralldeA;
(i) G=(Gyr|AeA).
By the argument in the case of two subgroups, elements from different G,’s commute.
Also every element of G has a unique expression of the form g1g, - - - gm where g; € Gy,
and the A; € A are distinct. (The reader should supply a proof). The direct product is
denoted by

G =Drpca Gy

or, in case A is a finite set {11, A5, ..., Ay}, by

G, x Gy, X+ x Gy,

n

For additively written groups the term direct sum is used and the notation for direct
sums is

@G}( and G/h GBGA2®~~-GBG,1".
AeA

External direct products. Up to now a direct product can only be formed from sub-
groups within a given group. We show next how to form the direct product of groups
that are not necessarily subgroups of the same group. For simplicity we deal only with
the case of a finite set of groups {G1, G, ..., Gn}, but see Exercise (4.2.13) for the
infinite case.

First we form the set product

G=Gl>(Gz><---><Gm,

consisting of all m-tuples (g1, g2, . .., 8m) With g; € G;. Next a binary operation on G
is defined by the rule

(gly 825+ 9gm)(g,19g,29 .. ’g:’n) = (glgrlrgzglzy e )gmg;n)

where g;, g} € G;. With this operation G becomes a group, with identity element
(16,5 16,5 ..., 1¢,) and inverses given by

(glagZ’ o ’gm)_l = (gIly gily o 9g;n1)-
Call G the external direct product of the G;: it is also written

G1xGyXx...xGny.
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Although G; is not a subgroup of G, there is an obvious subgroup of G which is

isomorphic with G;. Let G; consist of all elements of the form g; = (16,5 16,958 evvs
16,) where g € G; appears as the ith entry of ;. Then G; = G; < G, because of
the assignment g; — g;. Also, if x = (g1, 82, ..., 8m) is any element of G, then x =

818> -+ &m, by the product rule in G. Hence G = G1G; --- Gy,. It is easy to verify that
Gi<Gand Gin(Gj|j=1,...,m,j+i) =1, which shows that G is also the internal
direct product

GZC_;lXGzX-'-XGm

of subgroups isomorphic with G1, G, ..., Gp. Thus the external direct product can
be regarded as an internal direct product.

Example (4.2.5) Let Cq, C,, ..., Ci be finite cyclic groups of orders ny, na, ..., ng
where the n; are pairwise relatively prime. Form the external direct product

D=C;xCyx---xCkg.

Therefore |[D| = nyn; - - - ny = n, say. Now let C; = (x;) and put x = (x1, X2, ..., Xm) € D.
We claim that x generates D, so that D is a cyclic group of order n.

To prove this statement it is enough to show that an arbitrary element xlfl .. -x%"
of D is of the form x" for some r. This amounts to proving that xlf = x:."' for each i, so

there is a solution r of the system of linear congruences r = u; (mod n;),i=1,2,...,k.
This is true by the Chinese Remainder Theorem (2.3.7) since ny, ny, . . ., ny are relatively
prime.

For example, let n be a positive integer and write n = p'p3’ --- p;* where the p;
are distinct primes and e; > 0. Then the preceding discussion shows that Zpil X Zp;z X
ceex Zpik is a cyclic group of order n and hence is isomorphic with Z,,.

Exercises (4.2)
(1) Identify all the normal subgroups of the groups S3, Dih(8) and Aj.

(2) Let H be a subgroup of a group G with index 2. Prove that H < G. Is this true if 2 is
replaced by 3?

3)Let HaK < Gand L < G. Show that Hn L <« K n L. Also, if L < G, prove that
HL/L <KL/L.

(4) Let H < G and N « G. Prove that HN is a subgroup of G.

(5) Assume that H < K < Gand Na G.If HN N = Kn N and HN = KN, prove that
H =K.

(6) Show that normality is not a transitive relation in general, i.e., H < K < G need not
imply that H < G. [Hint: consider Dih(8)].

(7) If H, K, L are arbitrary groups, prove that

Hx (KxL)~HxKxL=(HxK)xL.
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(8) Let G = H x K where H, K < G. Prove that G/H = K and G/K = H.

(9) Let G = (x) be a cyclic group of order n. If d > 0, prove that G/ (x4) is cyclic with
order gcd{n, d}.

(10) Prove that Z(Sy) = 1if n # 2.
(11) Prove that S, # Spif n # 1.

(12) Prove that the center of the group GL,(R) of all n x n non-singular real matrices is
the subgroup of all scalar matrices.

(13) (External direct products of infinitely many groups). Let {G,, A € A} be a set of groups.
A restricted choice function for the set is a mapping f : A — [ J;c4 Ga such that f(A) € G,
and f(u) = 1g, for all but a finite number of u. Let G be the set of all restricted choice
functions and define a binary operation on G by fg(A) = f(1)g(A). Then G is called the
restricted external direct product Dr)c 4 G, of the groups G,.
(i) Prove that G is a group.
(ii) For A € A define f} : Gy — G as follows: if x € Gy, then f}(x) sends A to x and
utolg, for u # A. Prove that G, = {f3(x) | x € G} is a normal subgroup of G
and that G, = G,.
(iii) Prove that G is the internal direct product of the subgroups G,.
(14) It is also possible to form the unrestricted external direct product of the G, A € A.
Follow the construction in Exercise (4.2.13), but allow all choice functions f : A —
Unxea Ga, (so the condition that f(u) = 15, for all but a finite number of y is omitted).
In this way obtain a group Dryca Ga containing Dric4 G, as a subgroup. Prove that the
subgroups G, in Exercise (4.2.13) are normal subgroups of Drjca Gy, as is Driea Ga.

4.3 Homomorphisms

A homomorphism between two groups is a function that links the operations of the
groups. More precisely, if G and H are groups, a function a : G — H is called a
homomorphism if

a(xy) = a(x)a(y)

for all x, y € G. The reader will recognize that a bijective homomorphism is what we
have been calling an isomorphism.

Example (4.3.1) We list some standard examples of homomorphisms.

(i) a : Z — Z,, where a(x) = [x],. Here n is a positive integer. Allowing for the additive
notation, what is claimed here is that a(x + y) = a(x) + a(y), i.e. [x + ¥]n = [x]n + [Yn];
this is just the definition of the sum of congruence classes.

(ii) The determinant function det : GL,(R) — R* in which A — det(A), is a homomor-
phism, the reason being the well known identity det(AB) = det(A) det(B).
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(iii) The sign function sign : S, — {+1} in which 71 — sign(s), is a homomorphism
since sign(7o) = sign(m) sign(o) by (3.1.6).
(iv) The canonical homomorphism. This example provides the first evidence of a link
between homomorphisms and normal subgroups. Let N be a normal subgroup of a
group G and define a function

a:G— G/N

by the rule a(x) = xN. Then a(xy) = a(x)a(y), i.e., (xy)N = (xN)(yN), by definition of
the group operation in G/N. Thus a is a homomorphism.

(v) For any pair of groups G, H there is always at least one homomorphism from G to H,
namely the trivial homomorphism in which x — 1p for all x in G. Another obvious
example is the identity homomorphism from G to G, which is the identity function on G.

Next come two very basic properties that all homomorphism possess.

(4.3.1) Let a : G — H be a homomorphism of groups. Then:
() a(lg)=1g;
(i) a(x™) = (a(x))" foralln € Z.

Proof. Applying a to the equation 1516 = 1, we obtain a(1g)a(1g) = a(1g), which
on cancellation yields a(15) = 1g.

If n > 0, an easy induction on n shows that a(x") = (a(x))". Next xx™! = 1, so that
a(x)a(x1) = a(1g) = 1g; from this it follows that a(x~!) = (a(x))~L. Finally, if n > 0,
we have a(x™) = a((x™)™1) = (a(x™))™! = ((a(x))")~ = (a(x))™", which completes the
proof. O

Image and kernel. Let a : G — H be a group homomorphism. The image of a is the
subset Im(a) = {a(x) | x € G}. Another significant subset associated with a is the kernel,
which is defined by

Ker(a) = {x € G | a(x) = 1g}.

The fundamental properties of image and kernel appear in the following result.

(4.3.2) Ifa : G — H is a homomorphism of groups, the image Im(a) is a subgroup of H
and the kernel Ker(a) is a normal subgroup of G.

Proof. By (4.3.1) 15 € Im(a). Let x, y € G; then a(x)a(y) = a(xy) and (a(x))™! = a(x™1).
These equations show that Im(a) is a subgroup of H.

Next, if x, y € Ker(a), then a(xy) = a(x)a(y) = 1glg = 1g,and a(x"1) = (a(x))™! =
1;11 = 1g; thus Ker(a) is a subgroup of G. Finally, we establish the critical fact that
Ker(a) is normal in G. Let x € Ker(a) and g € G; then

agxg™) = a(@a)a@) ! = a(@)lya(g) ' = 1,

so that gxg~! € Ker(a), as required. O
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Example (4.3.2) Let us compute the image and kernel of some of the homomorphisms
in Example (4.3.1).

(i) det : GL,(R) — R*. The kernel is SL,(R), the special linear group, and the image is
R* since each non-zero real number is the determinant of a diagonal matrix in GL,(R).

(ii) sign : S, — {£1}. The kernel is the alternating group A, and the image is the group
{1}, unless n = 1.

(iii) The kernel of the canonical homomorphism from G to G/N is, as one would expect,
the normal subgroup N. The image is G/N.

Clearly one can tell from the image of a homomorphism whether it is surjective. In
fact the kernel of a homomorphism shows whether it is injective.

(4.3.3) Let a : G — H be a group homomorphism. Then:

(i) a s surjective if and only if Im(a) = H;

(ii) a isinjective if and only if Ker(a) = 15;

(iii) a is an isomorphism if and only if Im(a) = H and Ker(a) = 1;.

Proof. Of course (i) is true by definition. As for (ii), if a is injective and x € Ker(a),
then a(x) = 1y = a(1¢), so that x = 15 by injectivity of a. Conversely, assume that
Ker(a) = 1g. If a(x) = a(y), then a(xy™!) = a(x)(a(y))"* = 1y, which means that
xy~! e Ker(a) = 1 and x = y. Thus (ii) is proven, while (iii) follows at once from (i)
and (ii). O

The Isomorphism Theorems. We come now to three fundamental results about homo-
morphisms and quotient groups which are traditionally known as the Isomorphism
Theorems.

(4.3.4) (First Isomorphism Theorem) If a : G — H is a homomorphism of groups, then
G/ Ker(a) = Im(a) via the mapping x Ker(a) — a(x)).

Thus the image of a homomorphism may be regarded as a quotient group: con-
versely, every quotient group is the image of the associated canonical homomorphism.
What this means is that up to isomorphism quotient groups and homomorphic images
are the same objects.

Proof of (4.3.4) Let K = Ker(a). We wish to define a function 6 : G/K — Im(a) by the
natural rule 8(xK) = a(x), but first we need to check that this makes sense. If k € K,
then a(xk) = a(x)a(k) = a(x), showing that 6(xK) depends only on the coset xK and
not on the choice of x from xK. Thus 6 is a well-defined function.

Next 8((xy)K) = a(xy) = a(x)a(y) = 0(xK)0(yK), so 0 is a homomorphism. It is
obvious that Im(6) = Im(a). Finally, 8(xK) = 1 if and only if a(x) = 1p, i.e., x € K or
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equivalently xK = K = 1¢/k. Therefore Ker(0) is the identity subgroup of G/K and 0 is
an isomorphism from G/K to Im(a). O

(4.3.5) (Second Isomorphism Theorem) Let G be a group with a subgroup H and a
normal subgroup N. Then HN < G, HN N <« H and HN/N =~ H/H n N.

Proof. We begin by defining a function 6 : H — G/N by the rule 8(h) = hN, (h € H).
It is easy to check that 8 is a homomorphism. Also Im(8) = {hN | h € H} = HN/N,
which is a subgroup of G/N by (4.3.2); therefore HN < G. Next h € Ker(6) if and only if
hN = N, i.e., h € Hn N. Therefore Ker(6) = Hn N and Hn N < H by (4.3.2). Apply the
First Isomorphism Theorem to the homomorphism 6 to obtain H/H n N ~ HN/N. O

(4.3.6) (Third Isomorphism Theorem) Let M and N be normal subgroups of a group G
such that N ¢ M. Then M/N < G/N and (G/N)/(M/N) = G/M.

Proof. Define 8 : G/N — G/M by the rule 8(xN) = xM; the reader should verify that
0 is a well-defined homomorphism. Also Im(8) = G/M and Ker(6) = M/N; the result
now follows via (4.3.4). O

Thus a quotient group of a quotient group of G is essentially a quotient group of G,
which represents a considerable simplification. Next these theorems are illustrated by
some examples.

Example (4.3.3) Let m, n be positive integers. Then, allowing for the additive notation,
we deduce from (4.3.5) that

(mZ + nZ)/nZ =~ mZ/(mZ N nZ).

What does this say about the integers m, n? Obviously mZ n nZ = €Z where ¢ is
the least common multiple of m and n. Next mZ + nZ consists of all ma + nb where
a, b € Z.From (2.2.3) we see that this is just dZ where d = gcd{m, n}. So the assertion
is that dZ/nZ =~ mZ/€Z. Now dZ/nZ = Z/(})Z via the mapping dx + nZ ~ x + 3 Z.
Similarly mz/€Z = 7.,/(£)Z. Therefore Z/(%)Z = Z,/()Z. Since isomorphic groups
have the same order, it follows that & = % or mn = de. Hence (4.3.5) implies that

gcd{m, n} - lem{m, n} = mn,

(see also Exercise (2.2.8)).

Example (4.3.4) Consider the determinantal homomorphism det : GL,(R) — R*,
which has kernel SL,(R) and image R*. Then by (4.3.4)

GL,(R)/SLy(R) = R*.
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Automorphisms. An automorphism of a group G is an isomorphism from G to itself.
Thus an automorphism of G is a permutation of the set of group elements which is also
a homomorphism. The set of all automorphisms of G,

Aut(G),

is therefore a subset of the symmetric group Sym(G). The first observation to make is:

(4.3.7) If G is a group, then Aut(G) is a subgroup of Sym(G).

Proof. The identity permutation is certainly an automorphism. Also, if @ € Aut(G),
then a~! € Aut(G) by (3.3.1). Finally, if a, B € Aut(G), then ap is certainly a permutation
of G, while af(xy) = a(B(x)B(y)) = aB(x)aB(y), which leads to af§ € Aut(G), so Aut(G)
is a subgroup. O

In fact Aut(G) is usually quite a small subgroup of Sym(G), as will be seen in some
of the ensuing examples.

Example (4.3.5) Let A be any additively written abelian group and definea : A — A
by a(x) = —x. Then a is an automorphism since

ax+y)=-(x+y)=-x-y=akx) +a(y),

while a? = 1,s0 a1

=a.

Now suppose we choose A to be Z and let 8 be any automorphism of A. Thus
B(1) = n for some integer n. Notice that § is completely determined by n since f(m) =
B(m1) = mB(1) = mn by (4.3.1)(ii). Also B(x) = 1 for some integer x since f is surjective.
Furthermore 1 = B(x) = B(x1) = xB(1) = xn and it follows that n = +1. Hence there
are just two possibilities for 8, namely the identity and the automorphism «a of the last
paragraph. Therefore | Aut(Z)| = 2 and Aut(Z) = Z,. On the other hand, it is not hard

to show that the group Sym(Z) is uncountable.

Inner automorphisms. An easy way to construct automorphisms is to use a fixed ele-
ment of the group to form conjugates. If g is an element of a group G, define a func-
tion 7(g) on G by the rule

1)) =gxg™", (x€G).
Recall that gxg~! is the conjugate of x by g. Since
7(g)(xy) = g(xy)g ™ = (gxg 1 )(gyg™) = (T(®)X))(T(2)y)),

we see that 7(g) is a homomorphism. Now 7(g 1) is clearly the inverse of 7(g), therefore
7(g) is an automorphism of G: it is known as the inner automorphism induced by g.
Thus we have discovered a function

T:G — Aut(G).
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The next observation is that 7 is a homomorphism, called the conjugation homo-
morphism; for
T(gh)(x) = (gh)x(gh)™" = g(hxh™H)g™*,
which is also the image of x under the composite 7(g)7(h). Thus 7(gh) = 7(g)1(h) for

allg,heG.
The image of 7 is the set of all inner automorphisms of G, which is denoted by

Inn(G).

This is a subgroup of Aut(G) by (4.3.2). What can be said about Ker(7)? An element g
belongs to Ker(t) if and only if 7(g)(x) = x for all x in G, i.e., gxg~! = x, or gx = xg.
Therefore the kernel of 7 is exactly Z(G), the center of G, which consists of the elements
of G that commute with every element of G.

These conclusions are summed up in the following important result.

(4.3.8) Let G be a group and let T : G — Aut(G) be the conjugation homomorphism.
Then Ker(t) = Z(G) and Im(7) = Inn(G). Hence Inn(G) = G/Z(G).

The final statement follows on applying the First Isomorphism Theorem to the
homomorphism 7.

Usually a group possesses non-inner automorphisms. For example, if A is an
(additively written) abelian group, every inner automorphism is trivial since 7(g)(x) =
g+ Xx -8 =g-g+x = x.0n the other hand, the assignment x — —x determines an
automorphism of A which is not trivial unless 2x = 0 for all x in A.

(4.3.9) The relation Inn(G) < Aut(G) holds for any group G.
Proof. Leta € Aut(G)and g € G;weclaimthat at(g)a~! = 7(a(g)), which will establish
normality. For if x € G, we have
T(a(@)(x) = a(@x(a(g) " = a(@)xa(g™),
which equals
a(gat(0g™h) = a(t(@)(a ' (%)) = (at(g)a H)(x),
as required. O

On the basis of (4.3.9) we can form the quotient group
Out(G) = Aut(G)/ Inn(G),

which is termed the outer automorphism group of G, (although its elements are not
actually automorphisms). Thus all automorphisms of G are inner precisely when
Out(G) = 1.

A group G is said to be complete if the conjugation homomorphism 7 : G — Aut(G)
is an isomorphism: this is equivalent to requiring that Z(G) = 1 and Out(G) = 1. It will
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be shown in Chapter Five that the symmetric group Sy, is always complete unless n = 2
or 6.

Finally, we point out that the various groups and homomorphisms introduced
above fit neatly together in a sequence of groups and homomorphisms

15 2(6)S 65 Aut(G) % out(G) — 1.

Here  is the inclusion map, 7 is the conjugation homomorphism and v is the canonical
homomorphism associated with the normal subgroup Inn(G). Of course 1 — Z(G)
and Out(G) — 1 are trivial homomorphisms.

The sequence above is an example of an exact sequence, whose feature is that at
each group in the interior of the sequence the image of the homomorphism on the left
equals the kernel of the homomorphism on the right. For example at Aut(G) we have
Im(1) = Inn(G) = Ker(v). Exact sequences play a prominent role in algebra, especially
in the theory of modules: for more on this see (9.1).

In general it is hard to determine the automorphism group of a given group. A
useful aid in the process of deciding which permutations of the group are actually
automorphisms is the following simple fact.

(4.3.10) Let G be a group, g € G and a € Aut(G). Then g and a(g) have the same order.

Proof. By (4.3.1) a(g™) = a(g)™. Since a is injective, it follows that a(g)™ = 1 if and
only if g™ = 1. Hence |g| = |a(g)I. O

The automorphism group of a cyclic group. As a first example we consider the auto-
morphism group of a cyclic group G = (x). If G is infinite, then G = Z and we saw in
Example (4.3.5) that Aut(G) = Z,. Assume from now on that G has finite order m.

First of all notice that a is completely determined by a(x) since a(x’) = a(x)!. Also
la(x)| = |x| = m by (4.3.10). Thus (4.1.7) shows that a(x) = x! where 1 < i < mand i
is relatively prime to m. Consequently | Aut(G)| < ¢(m) where ¢ is Euler’s function,
since ¢(m) is the number of such integers i.

Conversely, suppose that i is an integer satisfying 1 < i < m and gcd{i, m} = 1.
Then the assignment g — g%, (g € G), determines a homomorphism a; : G — G because
(8182)' = g\ g}, the group G being abelian. Since |x/| = m, the element x' generates G
and so this homomorphism is surjective. But G is finite, so we may conclude that a;
is also injective and thus a; € Aut(G). It follows that | Aut(G)| = ¢p(m), the number of
such i’s.

It is not hard to identify the group Aut(G). Recall that Z, is the multiplicative
group of congruence classes [a],, where a is relatively prime to m. Now there is a
natural function 0 : Z, — Aut(G) given by 0([i]) = a; where a; is defined as above;
0 is well-defined since a;.,m = a; for all £. In addition € is a homomorphism because
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aij = a;a;j, and the preceding discussion shows that it is surjective and hence bijective.
We have therefore established:

(4.3.11) Let G = (x) be a cyclic group of order m. Then Z};, ~ Aut(G) via the assignment
[i]m — (8 8").
In particular this establishes:

Corollary (4.3.12) The automorphism group of a cyclic group is abelian.
The next example is more challenging.

Example (4.3.6) Show that the order of the automorphism group of the dihedral
group Dih(2p) where p is an odd prime is p(p — 1).

Recall that Dih(2p) is the symmetry group of a regular p-gon — see (3.2). First we
need a good description of the elements of G = Dih(2p). If the vertices of the p-gon are
labelled 1, 2, ..., p, then G contains the p-cycle 6 = (1 2. .. p), which corresponds
to an anticlockwise rotation through angle 2?”. It also contains the permutation 7 =

12pBp-1)... (’%1 ’%3), which represents a reflection in the line through the
vertex 1 and the midpoint of the opposite edge.
The elements o”, 01, wherer =0, 1, ..., p — 1, are all different and there are 2p

of them. Since |G| = 2p, we conclude that
G={0",0't|r=0,1,...,p—-1}.

Notice that (¢"7)? = 1 and in fact 0"t = 1 is a reflection, while ¢" is a rotation of order 1
orp.

Next let a € Aut(G). By (4.3.10) a(0) has order p, and hence a(g) = ¢" where
1 < r < p; also a(r) has order 2 and so it must equal 057 where O < s < p. Observe
that a is determined by its effect on ¢ and 7 since a(¢') = a(0)! and a(oit) = a(0) a(1).
It follows that there are at most p(p — 1) possibilities for @ and hence that | Aut(G)| <
pp-1).

To show that p(p — 1) is the order of the automorphism group we need to construct
some automorphisms. Now it is easy to see that Z(G) = 1; thus by (4.3.8) Inn(G) =
G/Z(G) = G. Therefore | Inn(G)| = 2p, and since Inn(G) < Aut(G), it follows from
Lagrange’s Theorem that p divides | Aut(G)|.

Next for 0 < r < p we define an automorphism &, of G by the rules

a,(0)=0" and a,(1)=T.

To verify that a, is a homomorphism one needs to check that a,(xy) = a,(x)a,(y); this
is not difficult, but it does involve some case distinctions, depending on the form of x
and y. Now a, is clearly surjective because 0" generates (0); thus it is an automorphism.
Notice also that a;as = ays, so that [r], — a;, determines a homomorphism from Z;, to
H = {a, | 1 < r < p}. This mapping is surjective, while if @, = 1, thenr = 1 (mod p),
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i.e., [r]p = [1]p. Hence the assignment [r], — a, determines an isomorphism from z,
to H. Therefore H has order p — 1 and p - 1 divides | Aut(G)|. Consequently p(p — 1)
divides the order of Aut(G) and hence | Aut(G)| = p(p - 1).

Since | Inn(G)| = |G| = 2p, we see that

_plp-1) p-1
| Out(G)| = TR

Thus | Out(G)| = 1 if and only if p = 3. Since also Z(G) = 1, as a consequence Dih(2p)
is a complete group if and only if p = 3.

Semidirect products. Suppose that G is a group with a normal subgroup N and a
subgroup H such that
G=NH and NnH=1.

Then G is said to be the internal semidirect product of N and H. As a simple example,
consider the alternating group G = A,; this has a normal subgroup of order 4, namely
the Klein 4-group V, and also the subgroup H = ((123)(4)) of order 3.Thus VN H =1
and |VH| = |V| - |H| = 12 by (4.1.12). Hence G = VH and G is the semidirect product
of V and H.

Now let us analyze the structure of a semidirect product G = NH. In the first place
each element g € G has a unique expression g = nh withn € Nand h € H. For if
g = n'h’ is another such expression, (n')™'n = h'h™' € N n H = 1, which shows
that n = n’ and h = h’. Secondly, conjugation in N by an element h of H produces
an automorphism of N, say 8(h). Thus 8(h)(n) = hnh™', (n € N). Furthermore it is
easily verified that 8(h1h,) = 6(h1)0(h,), (h; € H). Therefore 6 : H — Aut(N) is a
homomorphism.

Let us see whether, on the basis of the preceding analysis, we can reconstruct the
semidirect product from the groups N and H and a given homomorphism 6 : H —
Aut(N). This will be the external semidirect product. The underlying set of this group is
to be the set product N x H, so that

G={(n,h)|neN,heH}.
A binary operation on G is defined by the rule
(n1, h1)(nz, hy) = (n16(h1)(n2), hihy).

The motivation for this rule is the way that products are formed in an internal semidirect
product NH, which is (ny1h1)(nxhy) = nl(hlnzhzl)hlhz. The identity element of G is
(1n, 1g) and the inverse of (n, h) is to be (8(h~1)(n™1), h~1): the latter is motivated by
the fact that in an internal semidirect product NH inverses are formed according to the
rule (nh)™! = h™1n~! = (h"In~th)h~1. We omit the entirely routine verification of the
group axioms for G.
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Next we look for subgroups of G which resemble the original groups N and H.
There are natural candidates,

N={(n,1g)IneN} and H={(1y,h)|h € H}.

It is straightforward to show that these are subgroups isomorphic with N and H respec-
tively. The group operation of G shows that

(n, 1g)(1n, h) = (nO(1p)(1N), h) = (n, h) € NH

since 6(1p) is the identity automorphism of N. It follows that G = NH, while it is
evidentthat Nn H = 1.

To show that G is the semidirect product of N and H, it is only necessary to check
normality of Nin G. Let n, n; € N and h € H. Then by definition

(n, h)(n1, 1g)(n, h)™' = (n, h)(ny, 1p)(@(hH)(n™1), h7Y)
= (nB(h)(ny), h)(O(h " )(n™ "), k™)
= (nB(h)(ny)0(h)(B(h")(n™1)), 1n)
= (nO(h)(ny)n"t, 1) € N.

In particular conjugation in N by (1y, h) sends (n1, 1g) to (8(h)(n1), 1g). Therefore
conjugation in N by (1y, h) induces the automorphism 8(h) in N.

In the special case where 6 is chosen to be the trivial homomorphism, elements
of N and H commute, so that G becomes the direct product. Thus the semidirect product
is a generalization of the direct product of two groups. Semidirect products provide an
important means of constructing new groups.

Example (4.3.7) Let N = (n) and H = (h) be cyclic groups with respective orders 3
and 4. Suppose we wish to form a semidirect product G of N and H. For this purpose
choose a homomorphism 8 : H — Aut(N); there is little choice here since N has
only one non-identity automorphism, namely n — n~'. Accordingly define 8(h) to be
this automorphism. The resulting group G is known as the dicyclic group of order 12.
Observe that this group is not isomorphic with A4 or Dih(12) since, unlike these groups,
G has an element of order 4.

Exercises (4.3)

(1) Let H<K < Gandleta : G — G1 be ahomomorphism. Show that a(H) < a(K) < G,
where a(H) = {a(h) | h € H}.

(2) If G and H are groups with relatively prime orders, show that the only homomor-
phism from G to H is the trivial one.

(3) Let G be a simple group. Show that if &« : G — H is a homomorphism, either a is
trivial or H has a subgroup isomorphic with G.
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(4) Prove that Aut(V) =~ S3 where V is the Klein 4-group.

(5) Prove that Aut(Q) =~ Q* where Q* is the multiplicative group of non-zero rationals.
[Hint: an automorphism is determined by its effect on 1].

(6) Let G and A be groups, with A abelian written additively. Let Hom(G, A) denote the
set of all homomorphisms from G to A. Define a binary operation + on Hom(G, A) by
a + B(x) = a(x) + B(x), (x € G). Prove that with this operation Hom(G, A) is an abelian
group. Then prove that Hom(Z, A) = A.

(7) Let G = (x) have order 8. Write down all the automorphisms of G and verify that
Aut(G) = V: conclude that the automorphism group of a cyclic group need not be
cyclic.

(8) If G and H are finite groups of relatively prime orders, prove that Aut(G x H) =
Aut(G) x Aut(H).

(9) Use Exercise (4.3.8) to prove that ¢p(mn) = ¢p(m)¢(n) where ¢ is Euler’s function
and m, n are relatively prime integers. (A different proof of this fact was given in (2.3.8)).

(10) An nx n matrix is called a permutation matrix if each row and each column contains
a single 1 and all other entries are 0. If 7 € S,,, form an n x n permutation matrix M(7)
by defining M(m);; to be 1 if 71(j) = i and O otherwise.
(i) Prove that the assignment 77 — M(7r) determines an injective homomorphism
from S, to GL,(Q).
(ii) Deduce that the n x n permutation matrices form a group which is isomorphic
with S,.
(iii) How can one tell from M(7r) whether the permutation 7 is even or odd?
(11) Show that each of the groups Dih(2n) and S, is a semidirect product of groups of
smaller orders.

(12) Use the groups Z3 x Z3 and Z, to form three non-isomorphic groups of order 18
each with a normal subgroup of order 9.



5 Groups acting on sets

Until the end of the Nineteenth Century, a group was usually synonymous with a
permutation group, so that the elements acted in a natural way on a set. While group
theory has since become more abstract, it remains true that groups are at their most
useful when their elements act on a set. In this chapter we develop the basic theory of
group actions and illustrate its utility by giving applications both within group theory
and to combinatorics.

5.1 Group actions

Let G be a group and X a non-empty set. A left action of G on X is a function
a:GxX—-X,

written for convenience a((g, x)) = g - x, with the following properties forall g; € G
and x € X:

0] g1-(82-x) =(8182)-x
(ii) 1lg-x=x.

Here one should think of the group element g as operating or acting on a set element x
to produce the set element g - x.

There is a corresponding definition of a right action of G on X as a function f :
X x G — X, with S((x, g)) written x - g, such that x- 15 = xand (x - g1) - 82 = x - (8182)
forallx € Xand g; € G.

For example, suppose that G is a subgroup of the symmetric group Sym(X), in
which event G is called a permutation group on X. Define 7 - x to be 71(x) where 7 € G
and x € X; this is a left action of G on X. There may of course be other ways for G to act
on X, so we are dealing here with a wide generalization of a permutation group.

Permutation representations. Let G be a group and X a non-empty set. A homomor-
phism
0: G — Sym(X)

is called a permutation representation of G on X. Thus the homomorphism o represents
elements of the abstract group G by concrete objects, namely permutations of X. A
permutation representation provides a useful way of visualizing the elements of an
abstract group.

What is the connection between group actions and permutation representations? In
fact the two concepts are essentially identical. To see why, suppose that a permutation
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representation o : G — Sym(X) is given; then there is a corresponding left action of G
on X defined by
g-x=0(g)x),
where g € G, x € X; itis easy to check that this is an action.
Conversely, if we start with a left action of G on X, say (g, x) — g - x, there is a
corresponding permutation representation o : G — Sym(X) defined by

o(g)(x)=g-x,

where g € G, x € X. Again it is an easy verification that the mapping o is a homomor-
phism and hence is a permutation representation of G on X.
The foregoing discussion makes the following result clear.

(5.1.1) Let G be a group and X a non-empty set. Then there is a bijection from the set of
left actions of G on X to the set of permutation representations of G on X.

If 0 is a permutation representation of a group G on a set X, then G/ Ker(o) = Im(0)
by the First Isomorphism Theorem (4.3.4). Thus G/ Ker(0o) is isomorphic with a permu-
tation group on X. If Ker(o) = 1, then G itself is isomorphic with a permutation group
on X, in which case the representation o is said to be faithful. The term faithful can also
be applied to a group action by means of the associated permutation representation.

Next we will describe some natural ways in which a group can act on a set.
Action on a group by multiplication. A group G can act on its underlying set G by left
multiplication, that is to say,

§-X=8x,
where g, x € G; this is an action since 15 - x = 16x = x and

g1-(82-x) = g1(82%) = (8182)x = (8182) - x.

This action is called the left regular action of G and the corresponding permutation
representation
A: G — Sym(G),

which is given by A(g)(x) = gx, is called the left regular representation of G. Observe
that A(g) = 1ifand only if gx = x forall x € G, i.e., g = 1. Thus Ker(1) = 1 and Ais a
faithful permutation representation.

It follows at once that G is isomorphic with Im(A), which is a subgroup of Sym(G).
We have therefore proved the following result, which demonstrates in a striking fashion
the significance of permutation groups.

(5.1.2) (Cayley’s! Theorem) An arbitrary group G is isomorphic with a subgroup of Sym(G)
via the left regular representation in which g — (x — gx) where x, g € G.

1 Arthur Cayley (1821-1895)
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Action on cosets. For the next example of an action take a fixed subgroup H of a
group G and let £ be the set of all left cosets of H in G. A left action of G on £ is defined
by the rule

g- (xH) = (gx)H,

where g, x € G. Again it is simple to verify that this is a left action.

Now consider the corresponding permutation representation A : G — Sym(L).
Then g € Ker(A) ifand only if gxH = xH forall xin G, i.e., x 'gx e Hor g e xHx 1. It
follows that

Ker(A) = ﬂ xHx 1,
xeG

Thus we have:

(5.1.3) The kernel of the permutation representation of G on the set of left cosets of H by
left multiplication is
ﬂ xHx™ 1,

xeG

which is the largest normal subgroup of G contained in H.

For the final statement in (5.1.3), note that the intersection is normal in G. Also,
if N<aGandN < H, then N < xHx ! forall x € G. The normal subgroup (). XHx ™! is
called the normal core of H in G.

Here is an application of the action on left cosets.

(5.1.4) Suppose that H is a subgroup of a finite group G such that |G : H| equals the
smallest prime dividing |G|. Then H < G. In particular, a subgroup of index 2 is always
normal.

Proof. Let |G : H| = p and let K be the kernel of the permutation representation of G
arising from the left action of G on the set of left cosets of H. Then K < H < G and
p = |G : H| divides |G : K| by (4.1.3). Now G/K is isomorphic with a subgroup of the
symmetric group Sy, so |G : K| divides |S,| = p! by (4.1.1). But |G : K| divides |G| and
thus cannot be divisible by a smaller prime than p. Therefore |G : K| = p = |G : H| and
H=K«G. O

Action by conjugation. Another natural way in which a group G can act on its under-
lying set is by conjugation. Define

g-x=gxg !,

where g, x € G; by a simple check this is a left action. Again we ask about the kernel of
the action. An element g belongs to the kernel if and only if gxg™! = x, i.e., gx = xg,
for all x € G: this is the condition for g to belong to Z(G), the center of G. It follows that
Z(G) is the kernel of the conjugation representation.
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A group G can also act on its set of subgroups by conjugation; thus if H < G, define
g-H=gHg ' ={ghg™' | h ¢ H.

In this case the kernel consists of all group elements g such that gHg™! = H for all
H < G. This normal subgroup is called the norm of G; clearly it contains the center Z(G).

Exercises (5.1)
(1) Complete the proof of (5.1.1).

(2) Let (x, g) — x - g be a right action of a group G on a set X. Define p : G — Sym(X)
by p(g)(x) = x - g~1. Prove that p is a permutation representation of G on X. Why is the
inverse necessary here?

(3) Establish a bijection between the set of right actions of a group G on a set X and the
set of permutation representations of G on X.

(4) A right action of a group G on its underlying set is defined by x - g = xg. Verify that
this is an action and describe the corresponding permutation representation of G, (it is
called the right regular representation of G).

(5) Prove that a permutation representation of a simple group is either faithful or trivial.

(6) The left regular representation of a finite group is surjective if and only if the group
has order 1 or 2.

(7) Define a “natural” right action of a group G on the set of right cosets of a subgroup H
and then identify the kernel of the associated representation.

(8) Show that up to isomorphism the number of groups of order n is at most (n!)l1°s: 1,
[Hint: a group of order n can be generated by [log, n] elements by Exercise (4.1.10).
Now apply (5.1.2)].

5.2 Orbits and stabilizers

In this section we proceed to develop the theory of group actions, introducing the
fundamental concepts of orbit and stabilizer.

Let G be a group and X a non-empty set, and suppose that a left action of G on X
is given. A binary relation p on X is defined by the rule:

aEbifandonlyifg-a:b

for some g € G. A simple verification shows that p is an equivalence relation on the

set X. The g-equivalence class containing a is evidently

G-a={g-al|geG}
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which is called the G-orbit of a. Thus X is the union of the distinct G-orbits and distinct
G-orbits are disjoint: these statements follow from general facts about equivalence
relations — see (1.2.2).

If X is the only G-orbit, the action of G on X — and the corresponding permutation
representation of G - is called transitive. Thus the action of G is transitive if for each
pair of elements a, b of X, there exists a g in G such that g- a = b. For example, the
left regular representation is transitive, as is the left action of a group on the set of left
cosets of a subgroup.

Another important notion is that of a stabilizer. The stabilizer in G of an element
a € X is defined to be

Ste(x) ={geG|g-x=x

It is easy to verify that Sts(a) is a subgroup of G. If Stg(a) = 1 for all a € X, the action
is called semiregular. An action which is both transitive and semiregular is termed
regular.

We illustrate these concepts by examining the group actions introduced in (5.1).

Example (5.2.1) Let G be any group.

(i) The left regular action of G is regular. Indeed (yx 1)x = y forany x, y € G, so itis
transitive, while gx = x implies that g = 1 and regularity follows.

(ii) In the conjugation action of G on its underlying set the stabilizer of x consists of
all gin G such that gxg~! = x, i.e., gx = xg. This subgroup is called the centralizer
of x in G: it is denoted by

Ce(x)={g e G| gx=xgl

(iii) In the conjugation action of G on its underlying set the G-orhit of x is {gxg™! | g €
G}, i.e., the set of all conjugates of x in G. This is called the conjugacy class of x.
The number of conjugacy classes in a finite group is called the class number.

(iv) In the action of G by conjugation on its set of subgroups, the G-orbit of H < G is
just the set of all conjugates of H in G, i.e., {gHg ! | g € G}. The stabilizer of Hin G
is an important subgroup termed the normalizer of H in G,

Ng(H)={g e G|gHg ' = H}.

Centralizers and normalizers feature throughout group theory.

Next we will prove two basic theorems on group actions. The first one counts the
number of elements in an orbit.

(5.2.1) Let G be a group acting on a set X on the left and let x € X. Then the assignment
gStg(x) — g - x determines a bijection from the set of left cosets of Sts(x) in G to the
orbit G - x. Hence |G - x| = |G : Stg(x)|.
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Proof. In the first place the assignment g Stg(x) — g - x determines a well-defined
function. For if s € Stg(x), thengs-x =g-(s-x) = g- x. Next g - x = g, - x implies
that (g;lgl) -X =X, S0 g;lgl € Stg(x), i.e., g1 Stg(x) = g2 Stg(x). Hence the function is
injective, while it is obviously surjective. O

Corollary (5.2.2) Let G be a finite group acting on a finite set X. If the action is transitive,
|X| divides |G|. If the action is regular, | X| = |G].

Proof. If the action is transitive, X is the only G-orbit, so |X| = |G : Stg(x)| forany x € X
by (5.2.1); hence |X| divides |G|. If the action is regular, then in addition Stg(x) = 1 and
thus |X| = |G|. O

The corollary tells us that if G is a transitive permutation group of degree n, i.e.,
acting on a set with elements, then n divides |G|, while |G| = n if G is regular.

The second main theorem on actions counts the number of orbits and has many
applications. If a group G acts on a set X on the left and g € G, the fixed point set of g is
defined to be

Fix(g) ={xeX|g-x=x}.

(5.2.3) (The Frobenius-Burnside Theorem)? Let G be a finite group acting on a finite
set X (on the left). Then the number of G-orbits in X equals

1

Gl > I Fix(g),

geG
i.e., the average number of fixed points of elements of G.

Proof. Consider how often an element x of X is counted in the sum de(; | Fix(g)|.
This happens once for each g in Sts(x). Thus by (5.2.1) the element x contributes
| Stg(x)| = |G|/|G - x| to the sum. The same is true of each element of the orbit |G - x|,
so that the total contribution of this orbit to the sum is (|G|/|G - x]) - |G - x| = |G]|. It
follows that deG | Fix(g)| must equal |G| times the number of orbits, so the result is
proven. O

We illustrate the Frobenius-Burnside Theorem with a simple example.
Example (5.2.2) The group
G =1{(1)(2)(3)(4), (12)(3)(4), (1)(2)(34), (12)(34)}

acts on the set X = {1, 2, 3, 4} in the natural way, as a permutation group. There are
two G-orbits, namely {1, 2} and {3, 4}. Count the fixed points of the elements of G by

2 Ferdinand Georg Frobenius (1849-1917), William Burnside (1852-1927)
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looking for 1-cycles. Thus the four elements of the group have respective numbers of
fixed points 4, 2, 2, 0. Therefore the number of G-orbits should be

1 . 1
ﬁ(z | Fix(g)|) = FUr2+240=2,
geG
which is the correct answer.

Example (5.2.3) Show that the average number of fixed points of elements of S, is 1.

The symmetric group S, acts on the set {1, 2, ..., n} in the natural way and the
action is clearly transitive. By (5.2.3) the average number of fixed points equals the
number of Sy,-orbits, which is 1 by transitivity of the action.

Exercises (5.2)

(1) If g is an element of a finite group G, show that the number of conjugates of g divides
G : (g)I.

(2) If H is a subgroup of a finite group G, show that the number of conjugates of H
divides |G : H|.

B)LetG=((12...p), 1)2p)3p-1)---) be the dihedral group Dih(2p) where p is
an odd prime. Check the validity of (5.2.3) for the group G acting on the set {1, 2, ..., p}
as a permutation group.

(4) Let G be a finite group acting as a finite set X. If the action is semiregular, prove that
|G| divides | X].

(5) Prove that the class number of a finite group G is given by the formula
1
— Cc(@)]|).
al (X;; IC6(x)1)

(6) Prove that the class number of a direct product H x K equals the product of the class
numbers of H and K.

(7) Let G be a finite group acting transitively on a finite set X where |X| > 1. Prove that
G contains at least |X| — 1 fixed-point-free elements, i.e., elements g such that Fix(g) is
empty.

(8) Let H be a proper subgroup of a finite group G. Prove that G # | J,.; xHx"!. [Hint:
consider the action of G on the set of left cosets of H by multiplication. The action is
transitive, so Exercise (5.2.7) may be applied].

(9) Let X be a subset of a group G. Define the centralizer C;(X) of X in G to be the set of
elements of G that commute with every element of X. Prove that C¢(X) is a subgroup
and then show that C5(Cg(Cs(X))) = Co(X).

(10) Let G be a finite group with class number h. An element is chosen at random from G
and replaced. Then another group element is chosen. Prove that the probability of the
two elements commuting is % What would the answer be if the first group element
were not replaced? [Hint: use Exercise (5.2.5)].
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5.3 Applications to the structure of groups

The aim of this section is to demonstrate that group actions can be a highly effective tool
for investigating the structure of groups. The first result provides important arithmetic
information about the conjugacy classes of a finite group.

(5.3.1) Let G be a finite group with distinct conjugacy classes C1, C», ..., Cn. Then
(i) ICi| =G : Cg(x;)| for any x; in C;; thus |C;| divides |G]|.
(ii) |G| = |C1| +|Ca| + --- + |Cyl, (the Class Equation).

Here (i) follows on applying (5.2.1) to the conjugation action of G on its underlying
set. For in this action the G-orbit of x is its conjugacy class, while the stabilizer of x is
the centralizer Cg(x); thus |G- x| = |G : Stg(x)| = |G : Cs(x)|. Finally, (ii) holds because
the C; are disjoint.

There are other ways to express the class equation. Choose any x; € C; and put
n; = |Cg(x;)|. Then |C;| = |G|/n;. On division by |G|, the class equation becomes
1 1 1

—t+—+-+— =1,
ng np Np

an interesting diophantine equation for the orders of the centralizers.

It is an easy observation that a one-element set {x} is a conjugacy class of G if and
only if x is its only conjugate in G, i.e., x belongs to the center of the group G. Now
suppose we order the conjugacy classes in such a way that |C;| = 1fori=1,2,...,r
and |C;| > 1if r < i < h. With this notation the class equation takes the form:

(5.3.2) |G| = 1Z(G)] + |Crsal + -+ + Chl.

A natural question is: what are the conjugacy classes of the symmetric group S,,?
First note that any two r-cycles in S, are conjugate. For

n(iyiy - i)mt = (ujz -+ jir)

where 7 is any permutation in S, such that 7(iy) = j1, n(i2) = j2, ..., n(i;) = j,. From
this remark and (3.1.3) it follows that any two permutations which have the same cycle
type are conjugate in Sy,. Here “cycle type” refers to the numbers of 1-cycles, 2-cycles,
etc. which are present in the disjoint cycle decomposition. Conversely, it is easy to see
that conjugate permutations have the same cycle type. Thus we have the answer to our
question.

(5.3.3) The conjugacy classes of the symmetric group Sy, are the sets of permutations
with the same cycle type.

It follows that the class number of S,, is the number of different cycle types, which
equals
A(n),
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the number of partitions of n, i.e., the number of ways of writing the positive integer n
as a sum of positive integers when order of summands is not significant. This is a
well-known number theoretic function which has been studied intensively.

Example (5.3.1) The symmetric group S¢ has 11 conjugacy classes. For A(6) = 11, as
is seen by writing out the partitions of 11.

As a deeper application of our knowledge of the conjugacy classes of S,, we will
prove next:

(5.3.4) The symmetric group S, has no non-inner automorphisms if n + 6.

Proof. Since S, has only the trivial automorphism, we can assume that n > 2 as well as
n + 6. First a general remark: in any group G the automorphism group Aut(G) permutes
the conjugacy classes of G. Indeed, if @ € Aut(G), then a(xgx™1) = a(x)a(g)(a(x))™1,
so a maps the conjugacy class of g to that of a(g).

Now let C; denote the conjugacy class consisting of all the 2-cycles in Sj,. If 7 is
a 2-cycle, a(m) also has order 2 and so is a product of, say, k disjoint 2-cycles. Hence
a(Cy) = Cx where Cy is the conjugacy class of all (disjoint) products of k 2-cycles. The
first step in the proof is to show by a counting argument that k = 1, i.e., a maps 2-cycles
to 2-cycles. Assume to the contrary that k > 2.

Clearly |C4| = (}), and more generally

_(n\ k)
ICl = <2k)(2!)kk!'

For, in order to form a product of k disjoint 2-cycles, first choose the 2k integers from
1,2, ..., nin (;;) ways. Then divide these 2k elements into k pairs, with order of
pairs unimportant; this can be done in ((221)’;);(! ways. Forming the product, we obtain
the formula for |Cy|.

Since a(Cy) = Cy, it must be the case that |C;| = |Cx| and hence

n\ (n\ k!
2] \2k/)@hkK!”

After cancellation this becomes

(n-2)(n-=3)---(n-2k+1) =21(k).

This is impossible if k = 2, while if k = 3 it can only hold if n = 6, which is forbidden.
Therefore k > 3. Clearly n > 2k, so (n-2)(n-3)---(n -2k + 1) > (2k — 2)!. This leads
to (2k — 2)! < 2%-1(k!), which implies that k = 3, a contradiction.

The argument so far has established that k = 1 and a(Cy) = C;. Write

a((ab)) = (b'b") and a((ac)) = (c'c").
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Since (ac)(ab) = (abc), which has order 3, also a((ac)(ab)) = (c’c")(b'b"") has order 3.
Therefore b’, b", ¢’, ¢"" cannot all be different and we can write

a((ab)) = (a'b’) and a((ac)) = (a'c’).
Next suppose there is a d such that a((ad)) = (b'c’) with a’ # b’, ¢’. Then
(ac)(ad)(ab) = (abdc),

an element of order 4, whereas its image (a'c’)(b'c')(a’b") = (a’)(b'c’) has order 2,
another contradiction.

This argument shows that for each a there is a unique a’ such that a((ab)) = (a’b’)
for all b and some b’. Therefore a determines a permutation 77 € S,, such that 77(a) = a’.
Thus a((ab)) = (a’'b’) = (n(a) n(b)), which equals the conjugate r(ab)n~! because the
latter interchanges a’ and b’ and fixes all other integers. Since S, is generated by 2-
cycles by (3.1.4), it follows that a is conjugation by 7, so it is an inner automorphism. [

Recall that a group is complete if the conjugation homomorphism 7 : G — Aut(G)is
an isomorphism, i.e., Ker(7) = Z(G) = 1 and Aut(G) = Inn(G) by (4.3.8). Now Z(S,) = 1
if n # 2 — see Exercise (4.2.10). Hence we obtain:
Corollary (5.3.5) The symmetric group Sy, is complete if n + 2 or 6.

Of course, S, is not complete since it is abelian. It is known that the group S¢ has

a non-inner automorphism, so it too is not complete.

Finite p-groups. If p is a prime number, a finite group is called a p-group if its order
is a power of p. Finite p-groups form an important and highly complex class of finite
groups. A first indication that these groups have special features is provided by the
following result.

(5.3.6) If G is a non-trivial finite p-group, then Z(G) + 1.

Proof. Consider the class equation of G in the form
|Gl = 1Z(G)| + |Crs1l +--- +|Chnl,

—see (5.3.1) and (5.3.2). Here |C;| divides |G| and hence is a power of p; also |C;| > 1. If
Z(G) = 1, then it would follow that |G| = 1 (mod p), which is impossible because |G|
is a power of p. Therefore Z(G) # 1. O

This behavior is in contrast to finite groups in general, which can easily have trivial
center: for example, Z(S3) = 1.

Corollary (5.3.7) If p is a prime, every group of order p? is abelian.
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Proof. Let G be a group of order p2. Then |Z(G)| = p or p? by (5.3.6) and (4.1.1). If
|Z(G)| = p?, then G = Z(G) is abelian. Thus we can assume that |Z(G)| = p, so that
|G/Z(G)| = p. By (4.1.4) both G/Z(G) and Z(G) are cyclic, say G/Z(G) = (aZ(G)) and
Z(G) = (b). It follows that each element of G has the form a'b’/ where i, j are integers.
However,

(@b)(a'b') = a7 = (a" V' )(a' D))

since b € Z(G), which shows that G is abelian and Z(G) = G, a contradiction. O

On the other hand, there are non-abelian groups of order 23 = 8, for example
Dih(8), so (5.3.7) does not generalize to groups of order p3.

Sylow’s® Theorem. Group actions will now be used to give a proof of Sylow’s Theorem,
which is probably the most celebrated and frequently used result in elementary group
theory.

Let G be a finite group and p a prime, and write |G| = p®m where p does not divide
the integer m. Thus p? is the highest power of p dividing |G|. Lagrange’s Theorem
guarantees that the order of a p-subgroup of G is at most p?. That p-subgroups of this
order actually occur is the first part of Sylow’s Theorem. A subgroup of G with the
order p? is called a Sylow p-subgroup.

(5.3.8) (Sylow’s Theorem) Let G be a finite group and let p* denote largest power of the

prime p that divides |G|. Then the following are true.

(i) Every p-subgroup of G is contained in some subgroup of order p?: in particular, Sylow
p-subgroups exist.

(i) If np is the number of Sylow p-subgroups, n, =1 (mod p).

(iii) Any two Sylow p-subgroups are conjugate in G.

Proof. Write |G| = p®m where p does not divide the integer m. Three group actions
will be used during the course of the proof.

(a) Let 8 be the set of all subsets of G with exactly p? elements. Then § has s elements
where

= (p"m) _mpm-1)---(p®m-p°+1)
- pa - 1.-2---(p2-1) :

First we prove that p does not divide s. To this end consider the rational number ’#
where 1 <i < p%. If p/ | i, thenj < a and hence p/ | p%m - i. On the other hand, if
P’ | p?m - i, thenj < a since otherwise p? | i. Therefore p/ | i. It follows that the
integers p®m — i and i involve the same highest power of p, which can of course be
cancelled in the fraction w ; thus no p’s occur in this rational number. It follows
that p does not divide s, as claimed.

3 Peter Ludwig Mejdell Sylow (1832-1918)
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Now we introduce the first group action. The group G acts on the set § via left
multiplication, i.e., g- X = gX where X ¢ G and |X| = p?. Thus 8 splits up into disjoint
G-orbits. Since [8| = s is not divisible by p, there must be at least one G-orbit §; such
that |8;] is not divisible by p. Choose X € 8; and put P = Stg(X), which is, of course,
a subgroup. Then |G : P| = |81/, from which it follows that p does not divide |G : P|.
However p? divides |G| = |G : P| - |P|, which implies that p? divides |P|.

Now fix x in X; then the number of elements gx with g € P equals |P]. Also gx € X;
hence |P| < |X| = p? and consequently |P| = p®. Therefore P is a Sylow p-subgroup
of G and we have shown that Sylow p-subgroups exist.

(b) Let T denote the set of all conjugates of the Sylow p-subgroup P constructed in (a).
We argue next that |T7| = 1 (mod p).

The group P acts on the set T by conjugation, i.e., g - Q = gQg~" where g € P and
Q € T;clearly [gQg~1| = |Q| = |P| = p%. In this action {P} is a P-orbit since gPg™! = P
if g € P. Suppose that {P;} is another one-element P-orbit. Then P; <« (P, P;); for
xP1x71 =Py ifx € PUPy, 50 Nipp,)(P1) = (P, P1). By (4.3.5) PP; is a subgroup and its

order is
|P| - |P]

|P n P1| ’
which is certainly a power of p. But P ¢ PP; and P already has the maximum order
allowed for a p-subgroup. Therefore P = PPy, so P; ¢ P and hence P; = P since
|P1] = |P].

Consequently there is only one P-orbit of T with a single element. Every other
P-orbit has order a power of p greater than 1. Therefore || = 1 (mod p).

|PPy| =

(c) Finally, let P, be an arbitrary p-subgroup of G. We aim to show that P, is contained
in some conjugate of the Sylow p-subgroup P in (a); this will complete the proof of
Sylow’s Theorem.

Let P, act on T by conjugation, where as before 7 is the set of all conjugates of P.
Assume that P, is not contained in any member of 7. If {P3} is a one-element P,-
orbit of T, then, arguing as in (b), we see that P, P3 is a p-subgroup containing P3, so
P3 = P,P5 because |P3| = p?. Thus P, € P5 € T, contrary to assumption. It follows
that there are no one-element P,-orbits in T; this means that |J7| = 0 (mod p), which
contradicts the conclusion of (b). O

An important special case of Sylow’s Theorem is:

(5.3.9) (Cauchy’s Theorem) If the order of a finite group G is divisible by a prime p,
then G has an element of order p.

Proof. Let P be a Sylow p-subgroup of G. Then P # 1 since p divides |G|. Choose
1 + g € P; then |g| divides |P|, and hence |g| = p™ where m > 0. Thus gan has order p,
as required. O

While Sylow’s Theorem does not tell us the exact number of Sylow p-subgroups,
it provides valuable information which may be sufficient to determine how many
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there are. Let us review what is known. Suppose P is a Sylow p-subgroup of a finite
group G. Then, since every Sylow p-subgroup is a conjugate of P, the number of Sylow
p-subgroups of G equals the number of conjugates of P, which by (5.2.1) is

np =G : Ne(P)l,

where Ng(P) is the normalizer of P in G - see (5.2). Hence n, divides |G : P| since
P < Ng(P). Also of course
np=1 (mod p).

Example (5.3.2) Find the numbers of Sylow p-subgroups of the alternating group As.

Let G = As. We can assume that p divides |G|, so that p = 2, 3 or 5. Note that a
non-trivial element of G has one of three cycle types,

If p = 2, then n, | % =15andn, =1 (mod 2),son, =1, 3, 5or 15. There are
5x3 = 15 elements of order 2 in G, with three of them in each Sylow 2-subgroup. Hence
ny, > 5.1f n, = 15, then P = Ng(P) where P is a Sylow 2-subgroup, since P < Ng(P) < G
and |G : Ng(P)| = 15 = |G : P|. But this is wrong since P is normalized by a 3-cycle —
note that the Klein 4-group is normal in A4. Consequently n; = 5.

Nextns | & = 20andn; = 1 (mod 3).Thus ns = 1, 4 or 10. Now G has (3)x2 = 20
elements of order 3, which shows that n; > 4. Hence n3 = 10. Finally, n5 | 12 and
ns =1 (mod 5), so ns = 6 since ns = 1 would give only four elements of order 5.

The next result provides some very important information about the group As.

(5.3.10) The alternating group As is simple.

Proof. Let G = As and suppose N is a proper non-trivial normal subgroup of G. The
possible orders of elements of G are 1, 2, 3, or 5, (note that 4-cycles are odd). If N
contains an element of order 3, it contains a Sylow 3-subgroup of G, and by normality
it contains all such. Hence N contains all 3-cycles. Now the easily verified equations
(ab)(ac) = (ach) and (ac)(bd) = (abc)(abd), together with the fact that every permu-
tation in G is a product of an even number of transpositions, shows that G is generated
by 3-cycles. Therefore N = G, which is a contradiction.

Next suppose N has an element of order 5; then N contains a Sylow 5-subgroup
and hence all 5-cycles. But (12345)(12543) = (132), which gives the contradiction
that N contains a 3-cycle.

The argument thus far tells us that each element of N has order a power of 2, which
implies that |N| is a power of 2 by Cauchy’s Theorem. Since |N| divides |G| = 60, this
order must be 2 or 4. We leave it to the reader to disprove these possibilities. This final
contradiction shows that G is a simple group. O
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More generally, A, is simple for all n > 5: this is proved in (10.1.7) below. We
will see in Chapter Twelve that the simplicity of As is intimately connected with the
insolvability of polynomial equations of degree 5 by radicals.

Example (5.3.3) Find all groups of order 21.

Let G be a group of order 21. Then G contains elements a and b with orders 7 and 3
respectively by (5.3.9). Now the order of {a) N (b) divides both 7 and 3, i.e., (a)n{(b) = 1,
and thus |{a)(b)| = |a| - |b| = 21, which means that G = {a)(b). Next (a) is a Sylow
7-subgroup of G, and n; = 1 (mod 7) and n; | 3. Hence n; = 1, so that (a) < G and
bab™! = a where 1 < i < 7.If i = 1, then G is abelian and |ab| = 21. In this case
G = (ab) = 7.

Next assume i # 1. Now b3 = 1 and bab~! = d/, with 2 < i < 7, imply that
a=h3ab™3 = a’.Hence 7 | i3 - 1, which shows that i = 2 or 4. Now [2]; = [4]; since
8 =1 (mod 7). Since we can replace b by b~ if necessary, there is nothing to be lost
in assuming that i = 2.

Thus far we have discovered that G = {a“bh" | 0 < u < 7,0 < v < 3} and that the
relations a’ = 1 = b3, bab™! = a? hold. But is there really such a group? An example
is easily found by using permutations. Put 7 = (1234567) and ¢ = (235)(476): thus
(rt, o) isa subgroup of S7. One quickly verifies that 7’ = 1 = 0> and omo~! = 2. A brief
computation reveals that the assignments a — 7, b — ¢ determine an isomorphism
from G to the group (m, 0). It follows that that up to isomorphism there are exactly two
groups of order 21.

Example (5.3.4) Show that there are no simple groups of order 300.

Suppose that G is a simple group of order 300. Since 300 = 22 - 3 - 52, a Sylow
5-subgroup P has order 25. Now ns = 1 (mod 5) and ns divides 300/25 = 12. Thus
ns = 1 or 6. But n5 = 1 implies that P < G, which is impossible. Hence ns = 6 and
|G : Ng(P)| = 6. The left action of G on the set of left cosets of Ng(P) (see (5.1)) leads to
a homomorphism 6 from G to S¢. Also Ker(6) = 1 since G is simple. Thus 8 is injective
and G = Im(0) < S¢. However, |G| = 300, which does not divide |Sg| = 6!, so we have a
contradiction.

Exercises (5.3)
(1) A finite p-group cannot be simple unless its order is p.

(2) Let G be a group of order pg where p and g are primes such that p # 1 (mod g) and
g # 1 (mod p). Prove that G is cyclic.

(3) Show that if p is a prime, a group of order p? is isomorphic with Z,2 or Z, x Zp,.

(4) Let P be a Sylow p-subgroup of a finite group G and let N < G. Prove that Pn N and
PN/N are Sylow p-subgroups of N and G/N respectively.

(5) Show that there are no simple groups of orders 312.
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(6) Let G be a finite simple group which has a subgroup of index n. Prove that G is
isomorphic with a subgroup of Sj,.

(7) Prove that there are no simple groups of order 1960. [Hint: assume there is one and
find n7; then apply Exercise (5.3.6)].

(8) Prove that there are no simple groups of order 616. [Hint: assume there is one. Show
that for this group one must have ny; = 56 and n; > 8; then count the elements of
orders 7 and 11].

(9) Prove that every group of order 561 is cyclic. [Hint: show that there is a cyclic
normal subgroup (x) of order 11 x 17 = 187; then use the fact that 3 does not divide
| Aut({x))l].

(10) Let G be a group of order 2m where m is odd. Prove that G has a normal subgroup
of order m. [Hint: let A be the left regular representation of G. By (5.3.9) there is an
element g of order 2 in G. Now argue that A(g) must be an odd permutation].

(11) Find all finite groups with class number at most 2.

(12) Show that every group of order 10 is isomorphic with Z1o or Dih(10). [Follow the
method of Example (5.3.3)].

(13) Show that up to isomorphism there are two groups of order 55.

(14) If H is a proper subgroup of a finite p-group G, prove that H < Ng(H). [Hint: use
induction on |G| > 1, noting that H < HZ(G)].

(15) Let P be a Sylow p-subgroup of a finite group G and let H be a subgroup of G
containing Ng(P). Prove that H = Ng(H). [Hint: if g € Ng(H), then P and gPg~! are
conjugate in H].

(16) Let G be a finite group and suppose it is possible to choose one element from each
conjugacy class in such a way that all the selected elements commute. Prove that G is
abelian. [Hint: use (5.3.2)].

5.4 Applications to combinatorics

Group actions can be used effectively to solve certain types of counting problem. As
an example of such a problem, suppose we wish to color the six faces of a cube and
five colors are available. How many different coloring schemes are there? At first sight
one might answer 5° since each of the six faces can be colored in five different ways.
However, this answer is not correct since by merely rotating the cube it is possible to
pass from one coloring scheme to another. Clearly two such coloring schemes are not
really different. Thus not all of the 5° colorings schemes are distinct.

Let us pursue further the idea of rotating the cube. The group of rotations of the
cube acts on the set of all possible coloring schemes. If two colorings belong to the
same orbit, they should be considered identical since one arises from the other by a
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suitable rotation. What we really need to do is count the number of orbits of colorings
and for this purpose the Frobenius-Burnside Theorem (5.2.3) is ideally suited.

Labelling problems. Our problem is really about the labelling of sets. Let X and L be
two non-empty sets, with L referred to as the set of labels. Suppose that a label is to be
assigned to each element of the set X, so that we need to specify a function

a:X—>L:

call such a function a a labelling of X by L. Thus the set of all such labellings of X by L
is
Fun(X, L).

Now suppose that G is a group acting on the set X (on the left). Then G can be
made to act on the set of labellings in a natural way by the rule

(g () =a(g! x),

where g € G, x € Xand a € Fun(X, L). What this equation asserts is that the labelling
g - a assigns to the set element g - x the same label as a assigns to x. The example of
the cube should convince the reader that this is the correct action.

First we verify that this really is an action of G on Fun(X, L). Todo thislet g1, g2 € G,
x € X and a € Fun(X, L); then

(81 (82 @) = (g2 - a)(gy" - x) = (g5 - (87" - X))
a((g182)™! - x)
((g182) - ®)(x).

Hence g1 - (g2 - @) = (8182) - a. Also 15 - a(x) = a(1g - x) = a(x), so that 15 - a = a.
Therefore we have an action of G on Fun(X, L).

Our goal is to count the G-orbits in Fun(X, L), which is achieved in the following
fundamental result.

(5.4.1) (Polya*) Let G be a finite group acting on a finite set X, and let L be a finite set of
labels. Then the number of G-orbits of labellings of X by L is

1
G (g;; gm(g))

where ¢ = |L| and m(g) is the number of disjoint cycles in the permutation of X corre-
sponding to g.

4 George Polya (1887-1985)
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Proof. By (5.2.3) the number of G-orbits of labellings is
1 .
(X 1Fx@I)
8eG

where Fix(g) is the set of labellings fixed by g. We have to count these labellings. Now
a € Fix(g) if and only if g - a(x) = a(x), i.e., a(g™! - x) = a(x) for all x € X. This
equation asserts that a is constant on the (g)-orbit (g) - x. Now the (g)-orbits arise
from the disjoint cycles involved in the permutation of X corresponding to g. Therefore,
to construct a labelling in Fix(g) all we need to do is assign a label to each cycle of g.
This can be done in £™® ways where m(g) is the number of cycles; consequently
| Fix(g)| = £™® and we have our formula. O

Polya’s Theorem will now be applied to solve some counting problems.

Example (5.4.1) How many ways are there to design a necklace of 11 beads if c different
colors of beads are available?

Here it is assumed that the beads are identical apart from color. The necklace
can be visualized as a regular 11-gon with the beads as vertices. The labels are the
c colors and one color has to be assigned to each vertex. Clearly a symmetry of the
11-gon can be applied without changing the design of the necklace. Recall that the
group of symmetries G is a dihedral group Dih(22) - see (3.2). It consists of the identity,
rotations through (%—’17)1', fori=1,2,...,10, and reflections in a line joining a vertex
to the midpoint of the opposite edge.

For each element g € G we count the number m(g) of (g)-orbits in the set of vertices
X={1,2,...,11}, so that Polya’s formula can be applied. The results of the count are
displayed in tabular form below.

Type of element  Cycle type Number of elements m
identity eleven 1-cycles 1 11
rotation through

2mi .

ETR 1<i<10 onell-cycle 10 1
reflection one 1-cycle, five 2-cycles 11 6

From the table and Polya’s formula we deduce that the number of different designs is
i(c11 +11c® + 10c) = ic(c5 +1)(c® + 10)
22 22 )
Next we tackle the cube-coloring problem with which the section began.

Example (5.4.2) How many ways are there to color the faces of a cube using ¢ different
colors?
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In this problem the relevant group is the rotation group G of the cube since this
group acts on the set of colorings. In fact G = S,: the easiest way to see this is to observe
that each rotation permutes the four diagonals of the cube. But this observation is not
needed to solve the problem.

Let L be the set of c colors and let X consist of the six faces of the cube. To identify
the rotations in G, we examine the various axes of symmetry of the cube. For each
rotation record the cycle type and number of cycles in the corresponding permutation
of X. Again the results are conveniently displayed in a table.

Type of element Cycle type Number of elements m

identity six 1-cycles 1 6
rotation about line

through centroids of

opposite faces through

m/2 two 1-cycles, one 4-cycle 3 3
m two 1-cycles, two 2-cycles 3 4
Eu two 1-cycles, one 4-cycle 3 3

rotation about
diagonal through

ey two 3-cycles 4 2

4n two 3-cycles 4 2

rotation about line
joining midpoints
of opposite edges
through m three 2-cycles 6 3

The count of elements confirms that |G| = 24, and Polya’s formula gives the answer
2(c® +3c% +3c¢% +3¢3 + 4c? + 4¢? + 6¢3), which factorizes as

1
ﬂcz(c +1)(c3 - c® + 4c + 8).
When ¢ = 5, the formula yields 800, so there are 800 different ways to color the faces
of a cube using 5 colors.

It is apparent from these examples that Polya’s theorem enables us to solve some
complex combinatorial problems which might otherwise be intractable.

Counting graphs. We conclude the chapter by describing how Polya’s method can be
used to count graphs. First some brief remarks about graphs.

A graph I consists of a non-empty set V of vertices and a relation E on V which is
symmetric and irreflexive, i.e., v E vforallv € V.If u E v, call the 2-element set {u, v}
an edge of I'. Since E is symmetric, we can identify E with the set of all edges of I".

A graph can be visualized by representing the vertices by points in the plane and
the edges by lines joining appropriate vertices. Simple examples of graphs are:
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o

| I
AR EERVAN.

Note that loops and multiple edges are not permitted. Graph theory has many applica-
tions outside mathematics, for example to transportation systems, telephone networks
and electrical circuits.

Two graphs I'; = (Vi, E;), i = 1, 2, are said to be isomorphic if there is a bijection
6 : V; — V, such that {u, v} € E; if and only if {6(u), 8(v)} € E,. Two graphs may
appear to be different, yet be isomorphic: for example, the graphs

aoc —— od oa’

d'

o

LN

bo—OC b/o—oc’

are isomorphic because of the bijectiona — a’, b — b',c— c',d— d'.

The problem of interest to us is to find the number of non-isomorphic graphs on
a given set of n vertices. For this purpose it is enough to count isomorphism classes
of graphs with vertex set V = {1, 2, ..., n}. The first step is to observe that a graph
I’ = (V, E) is determined by its edge function

ar : V21 5 40,1}
where V12! is the set of all 2-element sets {u, v}, with u # v in V, and

0 if(u,v)¢E

ar({u, v}) = <l ] .
1 if(u,v)eE

Thus we can think of a graph as a labelling of V2! by {0, 1}. The symmetric group S,
acts on the vertex set V in the natural way and this leads to an action of S, on V2! in
which

- {u, v} = {n(u), n(v)}

where 71 € S,,. Thus S, acts on the set of all edge functions for V, i.e., on
F = Fun(V? {0, 1}).

It is a consequence of the definition of isomorphism that graphs I'y = (V, E1) and
I'; = (V, E;) are isomorphic if and only if there existsa i € S, such that 7 - ar, = ar,,
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i.e., ar, and ar, belong to the same Sy-orbit of F. Thus we have to count the S,-orbits
of F. Now (5.4.1) can be applied to this situation with G = S,, X = V2l and L = {0, 1}.
This allows us to derive a formula for the number of isomorphism classes of graphs
with vertex set V.

(5.4.2) The number of non-isomorphic graphs with a given set of n vertices is given by

g(n) = %( > 2'"(”))

meS,

where m(m) is the number of disjoint cycles present in the permutation of V2! induced
by m.

To use this result one must be able to compute m(mr), the number of S,,-orbits
in V12, While formulas for m(m) are available, we will be content to calculate these
numbers directly for small values of n.

Example (5.4.3) Show that there are exactly 11 non-isomorphic graphs with 4 vertices.

What we have to do is to compute m(s) for i of each cycle type in S,. Note that
[V = () = 6. Of course m(1) = 6. If m is a 4-cycle, say (1234), there are two cycles
in the permutation of V12! produced by n, namely ({1, 2}, {2, 3}, {3, 4}, {4, 1}) and
({1, 3}, {2, 4}); thus m(mr) = 2. Also there are six 4-cycles in Sy.

If  is a 3-cycle, say (123)(4), there are two cycles, ({1, 2}, {2, 3}, {1, 3}) and
({1, 4}, {2, 4}, {3, 4}), thus m(sr) = 2: there are eight such 3-cycles.

If m has two 2-cycles, say m = (12)(34), there are four cycles ({1, 2}), ({3, 4}),
({1, 3}, {2, 4}), ({1, 4}, {2, 3}); so m(mr) = 4. There are three such n’s.

Finally, there are six transpositions 7 and it is easy to see that for each one m(m) = 4.
The formula in (5.4.2) therefore yields

1
g(4)=E(ZG+6-22+8-22+3-24+6-24)=11.

This result can be verified by actually enumerating the graphs.

o o o o o o o o
o o o o o o o o
o o o o o o o o
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Notice that all these graphs are planar, i.e., they can be drawn in the plane in such a
way that no edges cross except at vertices.

Exercises (5.4)

(1) Show that there are % c(c?+1)(c?+4) ways to label the vertices of a regular pentagon
using c labels.

(2) The same problem for the edges of the pentagon.

(3) A baton has n bands of equal width. Show that there are %(c" + c[%l]) ways to color
it using ¢ colors. [The baton can be rotated through 180°].

(4) The faces of a regular tetrahedron are to be painted using c colors. Prove that there
are 75c¢?(c? + 11) ways to do it.

(5) A necklace has p beads of identical shape and size where p is an odd prime number.
Beads of c colors available. How many necklace designs are possible?

(6) How many ways are there to place eight identical checkers on an 8 x 8 chessbhoard
of squares if rotation of the board is allowed?

(7) Prove that the number of isomorphism types of graphs with n vertices is at most
2n(n—1)/2'

(8) Show that there are four isomorphism types of graphs with three vertices.
(9) Show that there are 34 isomorphism types of graphs with five vertices.

(10) Prove that the number of ways to design a necklace with n beads of c different
colors is

1 L n 1 n+ n+
ﬁ(z plict) + Z(C[Tl] + '),
i=1
iln

where ¢ is Euler’s function.



6 Introduction to rings

A ring is a set, together with two binary operations called addition and multiplication
which are subject to a number of natural requirements. Thus, from the logical point of
view, a ring is a more complex object than a group, which is a set with a single binary
operation. Yet some of the most familiar mathematical objects are rings — for example,
the sets of integers, real polynomials, continuous functions — and for this reason some
readers may feel more at home with rings than with groups. One motivation for the
study of rings is to see how far properties of the ring of integers extend to rings in
general.

6.1 Elementary properties of rings

Aring is a triple
(R, +, %)

where R is a set and + and x are binary operations on R, called addition and multiplica-
tion, such that the following properties hold: here a x b is written ab:

(i) (R, +)isan abelian group;

(ii) (R, x) is a semigroup;

(iii) the left and right distributive laws hold,

a(b+c)=ab +ac, (a+b)c=ac+bc, (a,b,ceR).

If in addition the commutative law for multiplication holds,
(iv) ab = baforalla, b € R,

the ring is said to be commutative.

If R contains an element 1 # Og such that 1ga = a = alg forall a € R, then R
is called a ring with identity and 1y, is the (clearly unique) identity element of R. Care
must be taken to distinguish between the additive identity (or zero element) Og, which
exists in any ring R, and the multiplicative identity 1 in a ring R with identity. These
will often be written simply 0 and 1. As with groups, we usually prefer to speak of “the
ring R”, rather than the triple (R, +, X).

There are many familiar examples of rings at hand.

Examples (6.1.1)

(i) z,Q, R, C are commutative rings with identity where the ring operations are the
usual addition and multiplication of arithmetic.

(ii) Let m be a positive integer. Then Z,,, the set of congruence classes modulo m,
is a commutative ring with identity where the ring operations are addition and
multiplication of congruence classes.
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(iii) The set of all continuous real-valued functions defined on the interval [0, 1] is
a ring when addition and multiplication are given by f + g(x) = f(x) + g(x) and
fg(x) = f(x)g(x). This is a commutative ring in which the identity element is the
constant function 1.

(iv) Let R be any ring with identity and define M,,(R) to be the set of all n x n matrices
with entries in R. The usual rules for adding and multiplying matrices are to be
used. By the elementary properties of matrices M, (R) is a ring with identity. It is
not hard to see that M,,(R) is commutative if and only if R is commutative and
n=1.

Of course the ring axioms must be verified in these examples, but this presents little

difficulty.

Rings of polynomials. Next we introduce rings of polynomials, which are one of the
most fruitful sources of rings.

First we must give a clear definition of a polynomial, not involving vague terms
like “indeterminate”. In essence a polynomial is just the list of its coefficients, of which
only finitely many can be non-zero. We proceed to refine this idea. Let R be a ring with
identity. A polynomial over R is a sequence of elements a; € R, one for each natural
number i,

f=(ao,a1,as,...)

such that a; = O for all but a finite number of i; the a; are called the coefficients of f. The
zero polynomial is (Og, Og, Or, ...). If f = (ap, a1, ...) is not zero, there is a largest
integer i such that a; # 0; thus f = (ao, a1, ..., a;,0,0,...). The integer i is called
the degree of f, in symbols

deg(f).

It is convenient to assign to the zero polynomial the degree —co. A polynomial whose
degreeis < 0, i.e., one of the form (ayp, 0, O, .. .), is called a constant polynomial.
The definitions of addition and multiplication of polynomials are just the familiar
rules from elementary algebra, but adapted to the current notation. Let f = (ao, ai,...)
and g = (bo, b1, ...) be polynomials over R. Their sum and product are defined by

f+g=(ao+b0,a1+b1,...,a,-+bi,...)

and

n
fg = (aob(), a0b1 + albo, aobz + (11b1 + azbo, ey Z a,-bn_j, e )
j=0

Notice that these really are polynomials; for all but a finite number of the coefficients
are 0. Negatives are defined by —-f = (-ao, —a1, —as, ...).

(6.1.1) Iff and g are polynomials over a ring with identity, then f + g and fg are polyno-
mials. Also

(i) deg(f +g) < max{deg(f), deg(g)};
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(i) deg(fg) < deg(f) + deg(g).
This follows quickly from the definitions of sum and product. It is also quite routine

to verify that the ring axioms hold for polynomials with these binary operations. Thus
we have:

(6.1.2) If R is a ring with identity, then so is the ring of all polynomials over R.

Of course, the multiplicative identity in the polynomial ring over R is the constant
polynomial (1g, Og, Og, ...).

Now we would like to recover the traditional notation for polynomials, involv-
ing an “indeterminate” ¢t. This is accomplished as follows. Let ¢ denote the polyno-
mial (0,1, 0,0, ...); then the product rule shows that t* = (0,0,1,0,...), 3 =
(0,0,0,1,0,...) etc. If we define the multiple of a polynomial by a ring element r by
the rule

r(agp, ai,...) = (rag, ras,...),

then it follows that
(ap,ai,...,an,0,0,...)=ag+ait+ -+ at",

which is called a polynomial in t. Thus we can return with confidence to the traditional
notation for polynomials knowing that it is soundly based. The ring of polynomials
in t over R will be written

R[t].

Polynomial rings in more than one indeterminate are defined recursively by the
equation
R[tl’ ) tn] = (R[tl’ L) tn—l])[tn],

where n > 1. A typical element of R[t1, ..., t] is a multinomial expression
Z Torp by -t
£i=0,1,...

where the ¢; are non-negative integers and ry,..,, € R equals zero for all but a finite
number of (€1, €2, ...,€n).
We list next some elementary and frequently used consequences of the ring axioms.

(6.1.3) Let R be any ring. Suppose that a, b are elements of R and that n is an integer.
Then:

(i) a0=0=0a;

(i) a(-b) = (-a)b = -(ab);

(iii) (na)b = n(ab) = a(nb).
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Proof. By the distributive law a(0 + 0) = a0 + a0. Hence a0 = a0 + a0 and so a0 = 0
after cancellation. Similarly Oa = 0. This proves (i). As for (ii) we have a(-b) + ab =
a(-b + b) = a0 = 0. Thus a(-b) = —(ab). Similarly (-a)b = —(ab). To prove (iii)
assume that n > 0; then (na)b = n(ab) by an easy induction on n. Next (-na)b +nab =
(-na + na)b = 0b = 0, so (-na)b = —(nab). Similarly a(-nb) = —(nab), which
completes the proof. O

Units in rings. Suppose that R is a ring with identity. An element r € R is called a unit
if it has a multiplicative inverse, i.e., an element s € R such that rs = 1 = sr. Notice that
0 cannot be a unit since Os = 0 # 1 for all s € S by (6.1.3). Also, if r is a unit, it has a
unique inverse, written r~!: this is proved in the same way as (3.2.1)(iii).

Now suppose that r; and r, are two units of R. Then r;yr; is also a unit since
(rir2)~! = r;'r7, as is seen by forming products with r1r,. Also of course (r~1)~?
so that r~1 is a unit. Since 1 is is its own inverse, we can state:

=7,

(6.1.4) IfR is a ring with identity, the set of units of R is a multiplicative group in which
the group operation is ring multiplication.

The group of units of R is written
U(R)

or sometimes R*. Here are some simple examples of groups of units.

Example (6.1.2)

(i) U(Z) = {1}, a group of order 2.

(ii) U(Q) = Q - 0, the multiplicative group of non-zero rational numbers.

(iii) If m > O, then U(Z,,) is the multiplicative group Z;, of all congruence classes [i];
where gcd(i, m) = 1. This is an abelian group of order ¢p(m).

(iv) U(R[t]) is the group of non-zero constant polynomials. For if fg = 1, the polynomi-
als f and g must be constant.

Exercises (6.1)

(1) Which of the following are rings?

(i) The sets of even and odd integers, with the usual arithmetic operations;

(ii) the set of all differentiable functions on [0, 1] where f + g(x) = f(x) + g(x) and

f8(x) = f(x)g(x);

(iii) the set of all singular 2 x 2 real matrices, with the usual matrix operations.
(2) Let S be a non-empty set. Define two binary operations on the power set P(S) by
X+Y=XuY)-XnY)and X-Y = XnY. Prove that (P(S), +, -) is a commutative ring
with identity. Show also that X? = X and 2X = Op(s).
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(3) Aring R is called Boolean if r> = r forall r € R, (cf. Exercise (6.1.2)). If R is a Boolean
ring, prove that 2r = 0 and that R is commutative.

(4) Let A be an arbitrary (additively written) abelian group. Prove that A is the underly-
ing additive group of some commutative ring.

(5) Find the unit groups of the following rings:
() {3 | m, n e z}, with the usual addition and multiplication;
(ii) Mp(R) with the standard matrix operations;
(iii) the ring of continuous functions on [0, 1].
(6) Prove that the Binomial Theorem is valid in any commutative ring R, i.e., (a + b)" =
2o (})a'b™ where a, b € R and n is a non-negative integer.

(7) Let R be a ring with identity. Suppose that a is an element of R with a unique left
inverse b, i.e., b is the unique element in R such that ba = 1. Prove that ab = 1, so that
a is a unit. [Hint: consider the element ab — 1 + b.]

(8) Let R be a ring with identity. Explain how to define a formal power series over R of
the form Y2y ant™ with a, € R. Then verify that these form a ring with identity with
respect to appropriate sum and product operations. (This is called the ring of formal
power series in t over R, in symbols R[[¢]]).

(9) Let R be a ring with identity. Prove that M, (RR) is a commutative ring if and only if R
is commutative and n = 1.

6.2 Subrings and ideals

In Chapter Three the concept of a subgroup of a group was introduced and already this
has proved to be valuable in the study of groups. We aim to pursue a similar course for
rings by introducing subrings.

Let (R, +, x) be aring and S a subset of the underlying set R. Then S is called a
subring of R if (S, +g, xs) is a ring where +5 and xs denote the binary operations +
and x when restricted to S. In particular S is a subgroup of the additive group (R, +).
With the aid of (3.3.4), we obtain a more useful description of a subring.

(6.2.1) Let S be a subset of aring R. Then S is a subring of R if and only if S contains Og
and is closed with respect to addition, multiplication and the formation of negatives, i.e.,
ifa,beS,thena+beS,abeSand-a € S.

Example (6.2.1)

(i) Z, Q, R are successively larger subrings of the ring of complex numbers C.

(ii) The set of even integers 2Z is a subring of Z. Notice that it does not contain the
identity element, which is not a requirement for a subring.

(iii) In any ring R there are at least two subrings, the zero subring 0 = {Og} and the
improper subring R itself.
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(iv) Let S = %Z, i.e., S = {5 | m € Z}. Then S is an additive subgroup of the ring Q,
but it is not a subring since § x 3 = # ¢ S. Thus the concept of a subring is more

special than that of an additive subgroup.

Ideals. It is reasonable to expect there to be an analogy between groups and rings in
which subgroups correspond to subrings. The question then arises: what is to corre-
spond to normal subgroups? This is where ideals enter the picture.

Let R be an arbitrary ring. A left ideal of R is an additive subgroup L such that
ra € L whenever r € R and a € L. Similarly a right ideal of R is an additive subgroup S
such that ar € S whenever r € R and a € S. If I is both a left and right ideal of R, it is
called a 2-sided ideal, or simply an ideal of R. Thus an ideal is an additive subgroup
which is closed with respect to multiplication of its elements by arbitrary ring elements
on the left and the right. Notice that left ideals and right ideals are subrings.

Example (6.2.2)
(i) Let Rbearing and let x € R. Define subsets of R

Rx={rx|reR}and xR = {xr | r € R}.

Then Rx and xR are respectively a left ideal and a right ideal of R. For the first
statement Rx is a subgroup since rix + rox = (r; + ro)x and —(rx) = (-r)x; also
s(rx) = (sr)x for all r € R, so Rx is a left ideal. Similarly xR is a right ideal. If R is a
commutative ring, Rx = xR is an ideal. An ideal of this type is called a principal
ideal.

(ii) Every subgroup of Z has the form nZ where n > 0 by (4.1.5). Hence every subgroup
of Z is a principal ideal.

(iii) On the other hand, Z is a subring, but not an ideal, of Q since %(1) ¢ Z. Thus
subrings are not always ideals.

Thus we have a hierarchy of distinct substructures of rings:

left (right) ideal = ideal = subring = subgroup.

(6.2.2) The intersection of a non-empty set of subrings (left ideals, right ideals) of a ring
R is a subring (respectively left ideal, right ideal) of R.

The easy proofs are left to the reader. Let R be any ring and let X be a non-empty
subset of R. On the basis of (6.2.2) we can assert that the intersection of all the subrings
of R which contain X is a subring, clearly the smallest subring containing X. This is
called the subring generated by X and it will be denoted by

Rg(X).
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If X = {x1, x2, ..., Xn}, this subring is denoted by Rg(x1, x2, ..., Xxn). When R has an
identity element, the general form of elements of Rg(X) is not hard to determine.

(6.2.3) Let R be a ring with identity and let X be a non-empty subset of R. Then Rg(X)
consists of all elements of the form

e 4
Y Mt X X
€1,€2,...,8n

where x; € X,n > 0, My, ¢,,....c, € Z and the ¢; are non-negative integers.

.....

Again the easy proof is left to the reader. A ring R is said to be finitely generated if
R = Rg(x1, x2, ..., xn) for some finite set of elements {x1, ..., x,}. In a similar vein
we define the left, right or two-sided ideal generated by a non-empty subset X of a ring
R to be the intersection of all the respective ideals that contain X.

(6.2.4) Let R be a ring with identity and let X be a non-empty subset of R. Then the left
ideal generated by X consists of all elements of the form

n

Y rix;

i=1
where x; € X,ri e R,n > 0.

There are similar statements for right and two-sided ideals. The simple proofs are
left as an exercise. The left ideal of R generated by X is denoted by

RX.
Aleftideal I of aring R is said to be finitely generated as a left ideal if it can be generated
by finitely many elements x1, x2, . . ., X,. If R has an identity, the ideal I has the form
I=R{x1,X2,...Xn} = RXx1+Rx3 +---+ Rxy.
If R is a commutative ring with identity, the ideal R{x1, x, ..., Xy} is often written
(x1, X2, ..., Xp). In particular
()

is the principal ideal R{x}, consisting of all elements of the form rx where r € R.

Homomorphisms of rings. It is still not apparent why ideals as defined above should
be the analogs of normal subgroups. The decisive test of the appropriateness of the
definition will come when ring homomorphisms are defined. If we are right, the kernel
of a homomorphism will be an ideal.

It is fairly obvious how one should define a homomorphism from a ring R to a ring S:
this is a function 8 : R — S which relates the ring operations in the sense that

6(a+b)=06(a)+60() and 6(ab)=0(a)f(b)

for all a, b € R. Thus in particular 8 is a homomorphism of groups.
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If in addition 6 is bijective, 0 is called an isomorphism of rings. If there is an isomor-
phism from ring R to ring S, then R and S are said to be isomorphic rings, in symbols

R=S.

Example (6.2.3)

(i) Let m be a positive integer. The function 6,, : Z — Z,, defined by 0,,(x) = [x]n
is a ring homomorphism. This is a consequence of the way in which sums and
products of congruence classes were defined.

(ii) The zero homomorphism 0 : R — S sends every r € R to Os. Also the identity
isomorphism from R to R is just the identity function on R.

Complex numbers. For a more interesting example of a ring isomorphism, consider
the set R of matrices of the form

a b
[—b a]’ (a,b € R).

These are quickly seen to form a subring of the matrix ring M, (R). Now define a function
0 : R — C by the rule

e([_b Z]) _a+ib
where i = v—1. Then 8 is a ring homomorphism: for

ai b1 aj bz _ alaz—blbz a1b2+a2b1
-b1 ai]|-b2 az] |-aiba-ab1 aiaz-biby |’

which is mapped by 0 to (aia; — b1b;) + i(a1by + ab1), i.e., to the product (a; +
iby)(ay + ib>). An easier calculation shows that 0 sends

aq b1 + a bz
—b1 aq —bz aj
to (ay +ibq) + (a; + iby).

Certainly 6 is surjective; it is also injective since a + ib = 0 implies that a = 0 = b.
Therefore 6 is an isomorphism and we obtain the interesting fact that R ~ C. Thus
complex numbers can be represented by real 2 x 2 matrices. In fact this provides a way
to define complex numbers without resorting to the square root of —1.

Next we consider the nature of the kernel and image of a ring homomorphism. The
following result should be compared with (4.3.2).

(6.2.5) If0 : R — S is a homomorphism of rings, then Ker(0) is an ideal of R and Im(6)
is a subring of S.



108 —— 6 Introduction to rings

Proof. We know already from (4.3.2) that Ker(6) and Im(6) are subgroups. Let k € Ker(0)
and r € R. Then O0(kr) = 6(k)6(r) = Os and 6(rk) = 6(r)6(k) = Os since 6(k) = Os.
Therefore Ker(6) is an ideal of R. Furthermore 8(r1)8(r,) = 6(r1r»), so that Im(8) is a
subring of S. O

(6.2.6) If0 : R — S is anisomorphism of rings, thensois ™1 : S — R.

Proof. We know from (3.3.1) that 8~ is an isomorphism of groups. It must still be shown
that 871(s15,) = 871(s1)071(s2), (si € S). Observe that the image of each side under 8
is s155. Since 8 is injective, it follows that 8- 1(s1s,) = 871(s1)071(s>). O

Quotient rings. Since ideals appear to be the natural ring theoretic analog of normal
subgroups, we expect to be able to define the quotient of a ring by an ideal. Let I be an
ideal of aring R. Certainly I is a normal subgroup of the additive abelian group R, so we
can form the quotient group R/I. This is an additive abelian group whose elements are
the cosets of I. To make R/I into a ring, a rule for multiplying cosets must be specified:
the natural one to try is

(ri+D(ra+)=riro+1, (ri €R).
To prove that this is well-defined, let i, i, € I and note that
(r1 + il)(rz + 12) =riry + (l’1i2 + ilrz + iliz) €rr + 1

since I is an ideal. Thus the rule is independent of the choice of coset representatives
r1 and r;.

A further easy check shows that the ring axioms hold; therefore R/I is a ring,
the quotient ring of I in R. Note also that the assignment r — r + I is a surjective
ring homomorphism from R to R/I with kernel I; this is the canonical homomorphism,
(cf. (4.3)).

As one might expect, there are isomorphism theorems for rings similar to those for
groups.

(6.2.7) (First Isomorphism Theorem) If 6 : R — S is @a homomorphism of rings, then
R/ Ker(0) = Im(9).

(6.2.8) (Second Isomorphism Theorem) If I is an ideal and S is a subring of a ring R,
then S + I'is a subring of R and S n I is an ideal of S. Also S + I/I ~ S/SN 1.

(6.2.9) (Third Isomorphism Theorem) Let I and J be ideals of a ring R with I < J. Then
J/1is anideal of R/I and (R/T)/(J/I) = R/].

Fortunately we can apply the isomorphism theorems for groups — see (4.3.4),
(4.3.5), (4.3.6). The isomorphisms constructed in the proofs of these theorems still
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stand if we allow for the additive notation. Thus we have only to check that they are
homomorphisms of rings.

For example, take the case of (6.2.7). From (4.3.4) we know that the assignment
r + Ker(6) — 6(r) yields a group isomorphism « : R/ Ker(6) — Im(6). Also

a((r1 + Ker(0))(r, + Ker(0)) = a(riry + Ker(8)) = 6(r1r2),

which is equal to 6(r1)0(r,) = a(r1 + Ker(6))a(r, + Ker(0)). Therefore we conclude that
a is an isomorphism of rings: this proves (6.2.7). It is left to the reader to complete the
proofs of the other two isomorphism theorems.

(6.2.10) (The Correspondence Theorem) Let I be anideal of a ring R. Then the assignment
S +— S/I determines a bijection from the set of subrings of R that contain I to the set of
subrings of R/I. Furthermore S/I is an ideal of R/I if and only if S is an ideal of R.

Proof. The correspondence between subgroups described in (4.2.2) applies here. It
remains only to verify that S is a subring (ideal) if and only if S/I is. It is left to the
reader to fill in the details. O

Exercises (6.2)

(1) Classify the following subsets of a ring R as an additive subgroup, subring or ideal,
as is most appropriate:

(1) {f € R[t] | f(a) = 0} where R = R[t] and a € R s fixed;

(ii) the set of twice differentiable functions on [0, 1] which satisfy the differential

equation f” + f' = 0: here R is the ring of continuous functions on [0, 1];

(iii) nZ whereR = Z;

(iv) 3ZwhereR =Q.

(v) theset of real n x n matrices with zero first row where R = M,,(RR).
(2) Prove (6.2.2).

(3) Prove (6.2.3) and (6.2.4).
(4) Which of the following rings are finitely generated? Z; Q; Z[t1, t, .. ., tn].
(5) Let R be a ring with identity. If I is a left ideal containing a unit, show that I = R.

(6) Let I and J be ideals of a ring R such that I n J = 0. Prove that ab = O forall a € I,
be].

(7) Let a € R and define 6, : R[t] — R by 6,(f) = f(a). Prove that 8, is a ring
homomorphism. Identify Im(68,) and Ker(6,).

(8) Let @ : R — S be a surjective ring homomorphism and assume that R has an identity
element and S is not the zero ring. Prove that S has an identity element.

(9) Give examples of a left ideal that is not a right ideal and a right ideal that is not a
left ideal.
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(10) Give an example of an ideal of a commutative ring with identity that is not principal.

(11) What is the form of elements of the left ideal generated by a subset X in a ring R
that does not have an identity element?

(12) Prove that the subring of Q consisting of all 7 is a finitely generated ring.

6.3 Integral domains, division rings and fields

The purpose of this section is to introduce some special types of ring with desirable
properties. Specifically we are interested in rings having a satisfactory theory of division.
For this reason it is necessary to exclude the phenomenon in which the product of two
non-zero ring elements is zero.

If R is a ring, a left zero divisor is a non-zero element a such that ab = 0 for some
b + 0in R. Of course b is called a right zero divisor. Clearly the presence of zero divisors
will make it difficult to construct a reasonable theory of division.

Example (6.3.1) Let n be a positive integer. The zero divisors in Z, are the congruence
classes [m] where m and n are not relatively prime and 1 < m < n. Thus Z, has zero
divisors if and only if n is not a prime.

For, if m and n are not relatively prime and d > 1 is a common divisor of m and n,
then [m][%] = [§][n] = [0] since [n] = [0], while [m] # 0 and [§] # [0]; thus [m] isa
zero divisor.

Conversely, suppose that [m] is a zero divisor and [m][¢] = [0] where [¢] # [O].
Then n | m¢; thus, if m and n are relatively prime, n | £ and [¢] = [0] by Euclid’s Lemma.
This contradiction shows that m and n cannot be relatively prime.

Next we introduce an important class of rings with no zero divisors. An integral
domain (or more briefly a domain) is a commutative ring with identity which has no zero
divisors. For example, Z is a domain, while Z, is a domain if and only if n is a prime,
by Example (6.3.1). Domains can also be characterized by a cancellation property.

(6.3.1) Let R be a commutative ring with identity. Then R is a domain if and only if the
cancellation law is valid in R, that is, ab = ac and a + 0 always imply that b = c.

Proof. Ifab =acandb + c, a # 0, then a(b-c) = 0, so that a is a zero divisor and R is
not a domain. Conversely, if R is not a domain and ab = 0 with a, b # 0, then ab = a0,
so the cancellation law fails. O

The next result shows that it is much simpler to work with polynomials if the
coefficient ring is a domain.

(6.3.2) Let R be an integral domain and let f, g € R[t]. Then
deg(fg) = deg(f) + deg(g).



6.3 Integral domains, division rings and fields = 111

Hence fg + 0iff + 0 and g + 0, so that R[t] is an integral domain.

Proof. If f = 0, then fg = 0 and deg(f) = —co = deg(fg); hence the formula is valid in
this case. Assume that f # 0 and g # 0, and let at™ and bt" be the terms of highest
degree in f and g respectively; thus a # O and b # 0. Then fg = abt™™ + terms of lower
degree,and ab + Osince R is a domain. Therefore deg(fg) = m+n = deg(f)+deg(g). O

Recall that a unit in a ring with identity is an element with a multiplicative inverse.
A ring with identity in which every non-zero element is a unit is termed a division ring.
Commutative division rings are called a fields. Clearly Q, R and C are examples of
fields, while Z is not a field. Fields are one of the most frequently used types of ring
since the ordinary operations of arithmetic can be performed in a field.

Notice that a division ring cannot have zero divisors: for if ab = 0 and a # 0, then
b = alab = a 10 = 0. Thus the rings without zero divisors include domains and
division rings.

The ring of quaternions. The examples of division rings given so far are commutative,
i.e., they are fields. We will now describe a famous example of a non-commutative
division ring, the ring of Hamilton’s® quaternions. First of all consider the following
2 x 2 matrices over C,

=l Sl ol [
0 —i -1 0 i 0

where i = V-1. These are known in physics as the Pauli? spin matrices. Simple matrix
computations show that the following relations hold:

P=]?=K*=-1,J=K=-JI, JK=I1=-KJ, KI=]=-IK.

Here 1 is being used to denote the identity 2 x 2 matrix and it should be distinguished
from the matrix I.
If a, b, c, d are rational numbers, we can form the matrix

a1+bI+c]+dK:[ a+bi C+dl],

-c+di a-bi

which is called a rational quaternion. Let R be the set of all rational quaternions. Then
R is a subring of the matrix ring M, (C) containing the identity: for

(al+bl+cJ+dK)+(@'1+b'I+c'J+dK)
=(a+a)1+b+b)+(c+c)+(d+d)K,

1 William Rowan Hamilton (1805-1865)
2 Wolfgang Ernst Pauli (1900-1958)
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while (al + bI + cJ + dK)(a'1 + b'I + '] + d'K) equals

(aa’' -bb' —cc' -dd")1 +(ab' +a'b +cd - c'd)I
+(ac'+ad'c+b'd-bd)]+(ad +a'd+bc' -b'o)K,

as is seen by multiplying out and using the properties of I, J, K above.
The significant property of the ring R is that each non-zero element is a unit. For,
if0 # Q = al + bl + cJ + dK, then

a+bi c+di

2 2,2, 42
=a‘+b°+c - +d #0,
—-c+di a-bi *

det(Q) =

and by elementary matrix algebra

41 a-bi -c-di R
" det(Q) |c-di a+bi )

This allows us to state:
(6.3.3) The ring of rational quaternions is a non-commutative division ring.

Notice that the ring of quaternions is infinite. This is no accident since, by a famous
theorem of Wedderburn,? a finite division ring is a field. This will not be proved here;
however, we will prove the corresponding statement for domains, which is much easier.

(6.3.4) A finite integral domain is a field.

Proof. Let R be a finite domain and let O # r € R; we need to show that r has an inverse.
Consider the function a : R — R defined by a(x) = rx. Now «a is injective since rx = ry
implies that x = y by (6.3.1). However, R is a finite set, so it follows that @ must also be
surjective. Therefore 1 = rx for some x € Rand x = r 1. O

Next we consider the role of ideals in commutative ring theory. A first observation
is that the presence of proper non-zero ideals is counter-indicative for the existence of
units.

(6.3.5) Let R be a commutative ring with identity. Then the set of non-units of R is equal
to the union of all the proper ideals of R.

Proof. Suppose that r is not a unit of R; then Rx = {rx | x € R} is a proper ideal
containing r since 1 ¢ Rx. Conversely, if a unit r belongs to an ideal I, then for any x
in R we have x = (xr™1)r € I, showing that I = R. Thus a unit cannot belong to a proper
ideal. O

3 Joseph Henry Maclagan Wedderburn (1881-1948)
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Recalling that fields are exactly the commutative rings with identity in which each
non-zero element is a unit, we deduce:

Corollary (6.3.6) A commutative ring with identity is a field if and only if it has no proper
non-zero ideals.

Maximalideals and prime ideals. Let R be a commutative ring with identity. A maximal
ideal of R is a proper ideal I such that the only ideals containing I are I itself and R.
Thus a maximal ideal is a maximal proper ideal. For example, if p is a prime, pZ is a
maximal ideal of Z: for |Z/pZ| = p and (6.2.10) shows that no ideal can occur strictly
between pZ and Z.

A related concept is that of a prime ideal. If R is a commutative ring with identity, a
prime ideal of R is a proper ideal I with the property: ab € I implies thata € Ior b € I,
where a, b € R.

There are enlightening characterizations of prime and maximal ideals in terms of
quotient rings.

(6.3.7) Let I be a proper ideal of a commutative ring R with identity.
(i) Iisaprimeideal of R if and only if R/I is an integral domain;
(ii) Iis a maximal ideal of R if and only if R/1 is a field.

Proof. Leta, b € R; then ab € Iifand only if (a + I)(b + I) = I = Og/;. Thus I is prime
precisely when R/I has no zero divisors, i.e., it is a domain, so (i) is established. By
(6.2.10) I is maximal in R if and only if R/I has no proper non-zero ideals and by (6.3.6)
this is equivalent to R/I being a field. O

Since every field is a domain, there follows at once:

Corollary (6.3.8) Every maximal ideal of a commutative ring with identity is a prime
ideal.

On the other hand, prime ideals need not be maximal. Indeed, if R is any domain,
the zeroideal is certainly prime, but it is not maximal unless R is a field. More interesting
examples of non-maximal prime ideals can be constructed in polynomial rings.

Example (6.3.2) Let R = Q[t1, 3], the ring of polynomials in t;, t, with rational
coefficients. Let I be the subset of all polynomials in R which are multiples of ¢;. Then
I is a prime ideal of R, but it is not maximal.

For consider the function @ : R — Q[t,] which carries a polynomial f(¢1, t;) to
f(0, t,). This is a surjective ring homomorphism. Now if f(0, t,) = 0, then f is a multiple
of t1, which shows that the kernel of a is I. From (6.2.7) we deduce that R/I =~ Q[t;].
Since Q[t,] is a domain, but not a field, it follows from (6.3.7) that I is a prime ideal
of R which is not maximal.
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The characteristic of an integral domain. Let R be a domain and let S = (1), the
additive subgroup of R generated by 1. Suppose for the moment that S is finite, with
order n say; we claim that n must be a prime. For suppose that n = nyn, where n; € Z
and 1 < n; < n.Then 0 = nl = (n1n,)1 = (n11)(n,1) by (6.1.3). However, R is a domain,
soni;1l = 0orn,1 = 0, which shows that n divides n; or n,, a contradiction. Therefore
nis a prime.

This observation is the essence of:

(6.3.9) Let R be an integral domain and put S = (1). Then either S is infinite or else it
has prime order p. In the latter event pa = O for all a € R.

To prove the final statement, simply note that pa = (p1g)a = Oa = 0.

If R is an integral domain and (1g) has prime order p, then R is said to have
characteristic p. The other possibility is that (1r) is infinite, in which event R is said to
have characteristic 0. Thus the characteristic of R,

char(R),

is either O or a prime. For example, Z,, and Z,[t] are domains with characteristic p,
while Q, R and R[¢] all have characteristic O.

The field of fractions of an integral domain. Suppose that F is a field and R is a sub-
ring of F containing 1r. Then R is a domain since there cannot be zero divisors in F.
Conversely, one can ask if every domain arises in this way as a subring of a field. We
will answer the question positively by showing how to construct the field of fractions
of a domain. It will be helpful for the reader to keep in mind that the procedure to be
described is a generalization of the way in which the rational numbers are constructed
from the integers.

Let R be any integral domain. First we have to decide how to define a fraction
over R. Consider the set

S={(a,b)|a,beR, b+0}.

Here a will correspond to the numerator and b to the denominator of the fraction. A
binary relation ~ on S will now be introduced which allows for cancellation between
numerator and denominator:

(ai, b1) ~ (az, by) & aib; = axb;.

Of course this relation is motivated by a familiar arithmetic rule: 7* = 72 if and only if
min; = mponj.

We verify that ~ is an equivalence relation on S. Only transitivity requires a com-
ment: suppose that (a;, by) ~ (az, b,) and (a, b,) ~ (as, b3); then a1 b, = ab; and
abs = azb,. Multiply the first equation by b3 and use the second equation to derive
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albgbz = a2b3b1 = agbzbl.Cancel bz to obtain a1b3 = a3b1;thus ((11, b1) ~ (a3, bg)
Now define a fraction over R to be a ~-equivalence class

a
—=[(a,b
b [(a, b)]
where a, b € R, b # 0. Note that % = % since (a, b) ~ (ac, bc); thus cancellation can
be performed within a fraction.
Let F denote the set of all fractions over R: we wish to make F into a ring. To this
end define addition and multiplication in R by the rules

a a ab'+ab and (a)(a’) aa’
bl

b bbb b “ b

Here we have been guided by the ordinary arithmetic rules for adding and multiplying
fractions. However, it is necessary to show that these operations are well-defined, i.e.,
there is no dependence on the chosen representative (a, b) of the equivalent class 7.
For example, take the case of addition. Let (a, b) ~ (¢, d) and (a’, b') ~ (c’, d'): then
in fact (ab’ + a’b, bb') ~ (cd' + c'd, dd') because

(ab' + a'b)dd' = ab'dd’ + a'bdd' = becb'd' + b'c'bd = (cd' + c'd)bb’.

The next step is to verify the ring axioms: as an example we will check the validity

of the distributive law
(527 =GR (@)

leaving the reader to verify the other axioms. By definition

df + cebf ade+b
(%)(;)*(5)(;) = Z_;J’ ;_; == b;fge == i;f =

which equals dih
a cy/e a cyse
(557 ) =G+ a)5)-
as claimed.

Once all the axioms have been checked, we know that F is a ring; note that the zero

element of F is Of = (1)—2. Clearly F is commutative and it has identity element 17 = &

Furthermore, ifa, b # 0, , o e’
a a
(O))- 2t

so that, as expected, the inverse of { is 2. Therefore F is a field, the field of fractions of
the domain R.
In order to relate F to R we introduce the natural function

6:R—>F
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defined by 6(a) = {. It is straightforward to check that 6 is an injective ring homomor-
phism. Therefore R = Im(6) and of course Im(0) is a subring of F containing 1. Thus
the original domain R is isomorphic with a subring of the field F. Our conclusions are
summed up in the following result.

(6.3.10) Let R be an integral domain and let F denote the set of all fractions over R, with
the addition and multiplication specified above. Then F is a field and the assignment
a — ¢ determines is an injective ring homomorphism from R to F.

Example (6.3.3)

(i) When R = Z, the field of fractions is, up to isomorphism, the field of rational
numbers Q. This example motivated the general construction.

(ii) Let K be any field and put R = K[t]; this is a domain by (6.3.2). The field of
fractions F of R is the field of rational functions in t over K; these are formal quotients
of polynomials in ¢ over K

f

g
where f, g € R, g + 0. The notation K{t} is often used denote the field of rational
functions in t over K.

Exercises (6.3)

(1) Find all zero divisors in the following rings: Z¢, Z15, Z>[t], Z4[t], Mp(R).

(2) Let R be a commutative ring with identity such that the degree formula deg(fg) =
deg(f) + deg(g) is valid in R[t]. Prove that R is a domain.

(3) If R is a division ring, prove that the only left ideals and right ideals are O and R.
(4) Let R be a ring with identity. If R has no left or right ideals except 0 and R, prove
that R is a division ring.

(5) Let 6 : D — R be a non-zero ring homomorphism. If D is a division ring, show that
it is isomorphic with a subring of R.

(6) LetI1, I, . .., It be non-zero ideals of a domain. Prove that ; nIb n--- NI, # 0.Is
this necessarily true for an infinite set of non-zero ideals?

(7) Let I be the principal ideal (Z[t])t of Z[t]. Prove that I is prime but not maximal.
(8) The same problem for I = (Z[t])(t? - 2).

(9) Let Fbe afield. If a, b € F and a # 0, define a function 8,5 : F — F by the rule
04,5(x) = ax + b. Prove that the set of all 8, ,’s is a group with respect to functional
composition.

(10) Let F be the field of fractions of a domain R and let « : R — F be the canonical
injective homomorphism r — {. Suppose that § : R — K is an injective ring homomor-
phism from R to some other field K. Prove that there is an injective homomorphism
0 : F — K such that fa = B. (Thus in a sense F is the smallest field containing an
isomorphic copy of R.)
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6.4 Finiteness conditions on ideals

In this section we introduce certain finiteness properties of ideals that are possessed
by some important types of ring.

(6.4.1) Let J be a non-empty set of left ideals of a ring R. Then the following statements

about J are equivalent.

(i) The set ] satisfies the ascending chain condition, i.e., there does not exist an infinite
ascending chain of leftideals I, c I, c --- with I; € J.

(ii) The set J satisfies the maximal condition, i.e., every non-empty subset of J has a
maximal element, that is to say, an element which is not properly contained in any
other element of J.

Proof. Assume that J satisfies condition (i) and suppose that § is a non-empty subset
of J that does not contain a maximal element. Let I; € 8; then there exists I, € § which
is strictly larger than I; since I; is not maximal in J. Similarly there exists I5 € S which
is strictly larger that I,, and so on. But clearly this leads to an infinite ascending chain
I c I, c--- inJ, a contradiction.

Conversely, assume that J satisfies condition (ii). If there is an infinite ascending
chainI; c I, ¢ --- inJ, the maximal condition can be applied to the set {I;, I, ...,}
to give a maximal element. This is obviously impossible. O

We remark that similar properties for subgroups of a group were introduced in
Exercise (3.3.10).

There is of course a corresponding result for right ideals. The case of greatest
interest to us is when J is the set of all left ideals of the ring R. If this set satisfies one of
the two equivalent conditions of (6.4.1), then R is called a left noetherian * ring. There
is a corresponding definition of a right noetherian ring. In case of a commutative ring,
the ring is simply said to be noetherian. The following result sheds some light on the
nature of the noetherian condition.

(6.4.2) Let R be a ring with identity. Then R is left noetherian if and only if every left
ideal of R is finitely generated as a left ideal of R.

Proof. First suppose that I is a left ideal of R which is not finitely generated. Certainly
I # 0, so there exists r; € I — 0 and I # Rr; since I is not finitely generated. Let
r» € R—Rri.ThenI # Rri + Rry. Letr3 € I — (Rry + Rr) and note that Rr, + Rr, #
Rry + Rry + Rr3, and so on. But this leads to an infinite ascending chain of left ideals
Rri c Rri + Rry ¢ Rr1 + Rry + Rr3 ¢ --- and R is not left noetherian.

Conversely, assume R is not left noetherian, so that there exists an infinite ascend-
ing chain of leftideals Iy ¢ I; ¢ ---.SetI = J;_; ,, . Ii, whichis clearly a left ideal of R.

4 Emmy Noether (1882-1935)
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Then I cannot be generated by finitely many elements r1, r», ..., rk, since all the r;
would belong to some I;, which leads to the contradiction I; = I, ;. O

Obvious examples of noetherian rings include the ring of integers and any field.
Much more interesting examples are provided by (6.4.3) below, which is probably the
most celebrated result in the theory of noetherian rings.

(6.4.3) (Hilbert’s® Basis Theorem) Let R be a commutative noetherian ring with identity.
Then the polynomial ring R[t1, t, .. ., ty] is also noetherian.

Proof. In the first place is enough to prove the theorem for n = 1. For assume that
this case has been dealt with and that n > 1. Now R[t1, t2, ..., tn] = S[tn] where
S = R[t1,t2,...,tp-1] and S is noetherian by induction on n. Therefore the result is
true by the case n = 1. From now on we will work with the ring T = R[¢].

By (6.4.2) it suffices to prove that an arbitrary ideal J of T is finitely generated as
an ideal. Suppose that J is not finitely generated; then J # 0 and there is a polynomial
f1 € J — 0 of smallest degree d;. Since ] is not finitely generated, J # J; = (f1) and
J — J1 contains a polynomial f> of smallest degree d,. Furthermore J # J; = (f1) + (f2)
and J - J, contains a polynomial f3 of smallest degree d3, and so on. This gives rise to
infinite sequences of ideals J; c J, c --- where J; = (f1) + (f2) + - - - + (fi), and non-zero
polynomials fi, f>, . .. with deg(f;) = djand d1 < d, < ---; moreover fi,1 ¢ J;. Let us
write f; = a;t4i+ terms of lower degree, where O # a; € R.

Set I; = (ay) + (az) +--- + (a;j), sothat Iy ¢ I, ¢ --- is an ascending sequence of
ideals of R. This sequence must have finite length since R is noetherian, so I, = ;1
for some integer m. Hence ap1 € I, and consequently there is an expression ap.1 =
riai + raax + -+ + rpay, With r; € R. Now define a new polynomial g € R[t] by

m
g =fme1 - Z(rifi)tdmlidi-
i1

Thus g € Jin.1. Observe that g ¢ ], since fi,41 ¢ Jm. The highest power of t that could
occur in g is certainly ¢4+, but by inspection we see that its coefficient is

Ams1 — 1AL —12ay — -+ —Irrmdm = 0.
Therefore deg(g) < dms1 = deg(fm+1), which is contrary to the choice of f;,;1 as a
polynomial of smallest degree in J —J,,. This contradiction establishes the theorem. [
Corollary (6.4.4) The rings Z[t1,t2,...,ty] and F[ty, t2, ..., ty] are noetherian,
where F is any field.
Using this result we can find a large class of noetherian rings.

(6.4.5) Every finitely generated commutative ring with identity is noetherian.

5 David Hilbert (1862-1943)
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Proof. Let R be the ring in question and suppose that it has generators x1, x2, . .., Xp.
By (6.2.3) every element of R has the form

1,6 On

¢
Z Mey,es,....en X1 X3 " Xn
£;>0

where me, ¢,,....e, € Z and the sum is over all non-negative integers €1, €2, ..., €,. Let

S=27Z[t, t;,...,ty] and defineamap 6 : S —» R by

€1 .6, ¢ 6 6 ¢
6( z Mey 0,00t 657+ ") = Z Mgy, X1 X3 0 Xyt
€;>0 €;>0

Then 8 is a ring homomorphism since sums and products of elements in R and in S are
formed by the same rules, and clearly 6 is also surjective. Hence S/Ker(6) = R by (6.2.7).
By (6.4.4) the ring S is noetherian and thus every quotient of S is also noetherian, which
establishes the result. O

Exercises (6.4)

(1) Prove that every non-zero commutative noetherian ring has at least one maximal
(proper) ideal.

(2) If R is a non-zero commutative noetherian ring, prove that R has a quotient ring
which is a field.

(3) Let R be a commutative noetherian ring and I an ideal of R. Prove that R/I is also
noetherian.

(4) Let R be the ring of all rational numbers of the form J; where m, n € Z. Show that
R is a noetherian ring.

(5) Prove the the ring Z[t1, t,, . . . ] of polynomials in infinitely many indeterminates t;
cannot be noetherian by finding an ideal which is not finitely generated.

(6) Prove that if R is a commutative noetherian ring with identity, the ring of formal
power series R[[t]] is noetherian: see Exercise (6.1.8). [Hint: follow the proof of Hilbert’s
Basis Theorem].

(7) Prove that if R is a commutative ring with identity which can be generated by n ele-
ments, then R = Z[ty, t2, ..., ty)/(f1, f2, . . ., fx) for certain polynomials f;. Conclude
that R is determined up to isomorphism by finitely many polynomials in ¢4, t5, ..., t;.
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The aim of this chapter is to construct a theory of division in rings that mirrors, as
closely as possible, the familiar theory of division in the ring of integers. To simplify
matters let us agree to restrict attention to commutative rings — in non-commutative
rings questions of left and right divisibility arise. Also, remembering from (6.3) the
phenomenon of zero divisors, we will further restrict ourselves to integral domains. In
fact even this class of rings is too wide, although it provides a reasonable target for our
theory. For this reason we will introduce some well-behaved types of domains.

7.1 Euclidean domains

Let R be a commutative ring with identity and let a, b € R. Then a is said to divide b,
in symbols
alb,

if ac = b for some ¢ € R. From the definition there quickly follow some elementary
facts about division.

(7.1.1) Let R be a commutative ring with identity and let a, b, c, x, y be elements of R.
Then:

(i) alaanda|Oforalla € R;

(ii) 0| aifandonlyifa = 0;

(iii) ifa | band b | c, then a | c, so division is a transitive relation;

(iv)ifa|banda | c,thena | bx +cy forallx,y € R;

(v) ifuisaunit,u| aforall a € R, while a | uif and only if a is a unit.

For example, taking the case of (iv), we have b = ad and ¢ = ae for some d, e € R.
Then bx + cy = a(dx + ey), so that a divides bx + cy. The other proofs are equally
simple exercises which are left to the reader.

One situation we expect to encounter in a ring is a pair of elements each of which
divides the other: such elements are called associates.

(7.1.2) Let R be an integral domain and let a, b € R. Then a | b and b | a if and only if
b = au where u is a unit of R.

Proof. Let u be a unit; then alau. Also (au)u™' = a, so au|a. Conversely, assume that
albandb | a.If a = 0, then b = 0 and the statement is certainly true, so let a # 0.
Now a = bc and b = ad for some ¢, d € R. Therefore a = bc = adc and by (6.3.1) we
obtain dc = 1, so that d is a unit. O

For example, two integers a and b are associates if and only if b = +a.
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Irreducible elements. Let R be a commutative ring with identity. An element a of R
is called irreducible if it is neither O nor a unit and if its only divisors are units and
associates of a, i.e., the elements that we know must divide a. Thus irreducible elements
have as few divisors as possible.

Example (7.1.1)

(i) The irreducible elements of Z are the prime numbers and their negatives.

(ii) A field has no irreducible elements since every non-zero element is a unit.

(iii) If F is a field, the irreducible elements of the polynomial ring F[t] are the so-
called irreducible polynomials, i.e., the non-constant polynomials which are not
expressible as a product of polynomials of lower degree.

Almost every significant property of division in Z depends ultimately on the Di-
vision Algorithm. Thus it is natural to focus on rings in which some version of this
property is valid. This motivates us to introduce a special class of domains, the so-called
Euclidean domains.

A domain R is called Euclidean if there is a function

5:R—{OR}—>]N

with the following properties:
(i) 6(a)<éb(ab)ifO+a,beR;
(ii) ifa, b € Rand b # 0, there exist g, r € R such that a = bq + r where either r = 0 or
6(r) < 6(b).
The standard example of a Euclidean domain is Z where § is the absolute value function,
i.e., 6(a) = |a|. Note that property (i) holds since |ab| = |a| - |b| = |a| if b + 0. Of course
(ii) is the usual statement of the Division Algorithm for Z.
New and important examples of Euclidean domains are given by the next result.

(7.1.3) If Fis a field, the polynomial ring F[t] is a Euclidean domain with associated
function & given by 6(f) = deg(f).

Proof. We already know from (6.3.2) that R = F[t] is a domain. Also, by the same result,

if f, g #+ 0, then 6(fg) = deg(fg) = deg(f) + deg(g) = deg(f) = 6(f). Hence property (i) is
valid. To establish the validity of (ii), put

S={f-8q1q¢<R}.

If0 € S, then f = gq for some g € R and we may take r to be 0. Assuming that 0 ¢ S,
we note that every element of S has degree > 0, so by the Well-Ordering Principle there
is an element r in S with smallest degree, say r = f — gqg where g € R. Thus f = gq +r.

Suppose that deg(r) > deg(g). Write g = at™ +--- and r = bt" + --- where m =
deg(g), n = deg(r), 0 # a, b € F and the dots represent terms of lower degree in t. Since
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m < n, we can form the polynomial
s=r—(a'ht"™)g cR.

Now the term in " cancels in s, so either s = 0 or deg(s) < n.Buts = f - (q +
a lbt"™)g ¢ S and hence s # 0, so deg(s) < n, which contradicts the minimality
of n = deg(r). Therefore deg(r) < deg(g), as required. O

A less familiar example of a Euclidean domain is the ring of Gaussian integers. A
Gaussian integer is a complex number of the form

u+iv

where u, v € Z and of course i = v-1. It is easily seen that the Gaussian integers form
a subring of C containing 1 and hence constitute a domain.

(7.1.4) The ring R of Gaussian integers is a Euclidean domain.

Proof. In this case an associated function 6 : R — {0} — N is defined by the rule
S(u+1iv) = |u+iv|*> = u® +v2.

We must show that 6 satisfies the two requirements for a Euclidean domain. In the first
place, if 0 # a, b € R, then 6(ab) = |ab|? = |a|*|b|? = |a|? since |b| > 1.

Verification of the second requirement is harder. First write ab~! = u’ + iv’ where
u', v' are rational numbers. Now choose integers u and v that are as close as possible
to u’ and v/ respectively; thus [u — u’| < 1 and |v - v/| < 3. Next

a=b +iv)=bu+iv)+bu" +iv")

where u” = u’ —uand v"” = v/ — v. Finally, let ¢ = u + ivand r = b(u" + iv""). Then
a=bqg+r;alsoq € Rand hencer = a - bqg € R.If r # 0, then, since |u"'| < % and
W'l <3,

CRI21 0 L 32 (120, 12 "2 o1 1 _1 2
8(r) = IBPIu" + v = 6P " +v"*) < 6P (g + 7 ) = 51P,
so that 8(r) < |b|? = 6(b). Therefore 6(r) < 6(b) as required. O

Exercises (7.1)
(1) Complete the proof of (7.1.1).

(2) Identify the irreducible elements in the following rings:
(i) the ring of rational numbers with odd denominators;
(i) z[t].
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(3) Let R be a commutative ring with identity. If R has no irreducible elements, show
that either R is a field or there exists an infinite strictly increasing chain of principal
ideals I; c I, c --- in R. Deduce that if R is noetherian, it is a field.

(4) Let R = F[[t]] be the ring of formal power series in t over a field F, (see Exercise
(6.1.8)). Prove that the irreducible elements of R are those of the form tf where f € R
and f(0) # 0.

(5)Letf =t>-3t> +t+1and g = t> + t + 1 be polynomials in Q[¢]. Find g, r € Q[t]
such that f = gq + r and deg(r) < 1.
(6) Let R be a Euclidean domain with associated function 6 : R — {0} — IN.
(i) Show that 6(a) > 6(1) foralla + Oin R.
(ii) If a is a unit of R, prove that §(a) = 6(1).
(iii) Conversely, show that if §(a) = (1), then a is a unit of R.
(7) Prove that 3 + t + 1 is irreducible in Z, [t], but t3 + t2 + t + 1 is reducible.

7.2 Principal ideal domains

Let R be a commutative ring with identity. If r € R, recall from (6.2) that the subset
Rr = {rx | x € R} = (r) is an ideal of R containing r called a principal ideal. If every
ideal of R is principal, then R is a principal ideal ring. A domain in which every ideal
is principal is called a principal ideal domain or PID: these rings form an extremely
important class of domains. For example, Z is a PID; for an ideal of Z is a cyclic
subgroup and thus has the form Zn where n > 0.

A good source of PID’s is indicated by the next result.

(7.2.1) Every Euclidean domain is a principal ideal domain.

Proof. Let R be a Euclidean domain with associated function 6 : R— 0 — N and let I
be an ideal of R; we need to show that I is principal. If I is the zero ideal, I = (0) and
I is principal. So we assume that I # 0 and apply the Well-Ordering Law to pick an
x in I — 0 such that §(x) is minimal. Now certainly (x) ¢ I; the claim is that I ¢ (x).
To substantiate this, let y € I and write y = xq + r with g, r € R where eitherr = 0
or 6(r) < 8(x). This is possible since § is the associated function for the Euclidean
domain R. If r = 0, then y = xq € (x). Otherwise 6(r) < 6(x); but this is impossible
since r = y — xq € I, which contradicts the choice of x in I — 0. Therefore I = (x). O

The following important result is a consequence of (7.1.3) and (7.2.1).

Corollary (7.2.2) IfF is a field, then F[t] is a principal ideal domain.

Another example of a PID is the ring of Gaussian integers by (7.2.1) and (7.1.4). Our
next objective is to show that PID’s have good division properties, despite the lack of a
division algorithm.



124 — 7 Division in commutative rings

Greatest common divisors. Let a, b be elements in a domain R. A greatest common
divisor (or gcd) of a and b is a ring element d such that the following hold:

(i) d|aandd| b;

(ii) ifc | aand c | b for some c € R, then c | d.

The definition here has been carried over directly from the integers — see (2.2).

Notice that if d and d’ are two gcd’s of a, b, then d | d’ and d’ | d, so that d and d’
are associate. Thus by (7.1.2) d’ = du with u a unit of R. It follows that gcd’s are unique
only up to a unit. Of course in the case of Z, where the units are +1, we were able
to make gcd’s unique by insisting that they be positive. This course of action is not
possible in arbitrary domains since there is no concept of positivity.

There is no reason why gcd’s should exist in a domain. However, the situation is
very satisfactory for PID’s.

(7.2.3) Let a and b be elements of a principal ideal domain R. Then a and b have a
greatest common divisor d which has the form d = ax + by with x,y € R.

Proof. Define I = {ax + by | x, y € R} and observe that I is an ideal of R. Hence I = (d)
for some d € I, with d = ax + by say. If c | aand c | b, then c | ax + by = d by (7.1.1).
Alsoa e I =(d),sod | a, and similarly d | b. Hence d is a gcd of a and b. O

Elements a and b of a domain R are said to be relatively prime if 1 is a gcd of a
and b, which means that ax + by = 1 for some x, y € R.

(7.2.4) (Euclid’s Lemma) Let a, b, ¢ be elements of a principal ideal domain and assume
that a | bc where a and b are relatively prime. Then a | c.

Corollary (7.2.5) If R is a principal ideal domain and p | bc where p,b,c € Randp is
irreducible, thenp | bor p | c.

The proofs of these results are exactly the same as those given in (2.2) for Z.

Maximal ideals in principal ideal domains. In a PID the maximal ideals and the prime
ideals coincide and admit a nice description in terms of irreducible elements.

(7.2.6) Let I be a non-zero ideal of a principal ideal domain R. Then the following state-
ments about I are equivalent:

(i) Iis maximal;

(ii) Iis prime;

(iii) I = (p) where p is an irreducible element of R.

Proof. (i) = (ii). This was proved in (6.3.8).

(ii) = (iii). Assume that I is prime. Since R is a PID, we have I = (p) for some p € R.
Note that p cannot be a unit since I # R. Suppose that p = ab where neither a nor b is
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associate to p. Then ab € I and I is prime,soa e Iorb € I,i.e.,,p | aor p | b. Since we
alsohave a | p and b | p, we obtain the contradiction that a or b is associate to p. This
shows that p is irreducible.

(iii) = (i). Assume that I = (p) with p irreducible, and let I < J < R where J is an ideal
of R. Then J = (x) for some x € R, and p € (x), so that x | p. Hence either x is a unit or
it is associate to p, so that J = R or J = I. Therefore I is maximal as claimed. O

Corollary (7.2.7) Let F be a field. Then the maximal ideals of the polynomial ring F[t]
are exactly those of the form (f) where f is an irreducible polynomial which is monic, (i.e.,
its leading coefficient is 1).

This is because F[t] is a PID by (7.2.2) and the irreducible elements of F[t] are just
the irreducible polynomials. The corollary provides us with an important method for
constructing a field from an irreducible polynomial f € F[t]: indeed F[t]/(f) is a field.
This will be exploited in (7.4) below.

We conclude the section by noting a property of PID’s which will be crucial when
we address the issue of unique factorization in (7.4).

(7.2.8) Every principal ideal domain is noetherian.

Proof. Let R be a PID. By definition every ideal of R is principal and hence can be
generated by a single element. Therefore R is noetherian by (6.4.2). O

Exercises (7.2)

(1) Prove (7.2.4) and (7.2.5).

(2) Show that Z[t] is not a PID.

(3) Show that F[t1, t;] is not a PID for any field F.

(4) Let R be a commutative ring with identity. If R[¢] is a PID, prove that R must be a
field.

(5)Let f = £3 + t + 1 € Z,[t]. Show that Z,[t]/(f) is finite field and find its order.
(6) Prove that the ring of rational numbers with odd denominators is a PID.

(7) Prove that F[[t]], the ring of formal power series in t over a field F, is a PID by
describing its ideals.

(8) Let R be a commutative noetherian ring with identity. Assume that R has the prop-
erty that each pair of elements a, b has a greatest common divisor which is a linear
combination of a and b. Prove that R is a PID. [Hint: let I be an ideal of R. Note that I is
a finitely generated ideal and reduce to the case where it is generated by two elements].

(9) Prove that the Chinese Remainder Theorem holds in a Euclidean domain, (cf. (2.3.7)).

(10) Describe the Euclidean algorithm for a Euclidean domain.
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7.3 Unique factorization in integral domains

The present section is concerned with domains in which there is unique factorization
in terms of irreducible elements. Our model here is the Fundamental Theorem of
Arithmetic (2.2.7), which asserts that such factorizations exist in Z. First it is necessary
to clarify what is meant by uniqueness of factorization.

Let R be a domain and let S denote the set of all irreducible elements in R, which
might of course be empty. Observe that “being associate to” is an equivalence relation
on S, so that S splits up into equivalence classes. Choosing one element from each
equivalence class, we form a subset C of S. (Strictly speaking this procedure involves the
Axiom of Choice — see (14.1)). Now observe that the set C has the following properties:
(i) every irreducible element of R is associate to some element of C;

(ii) distinct elements of C are not associate.

A subset C with these properties is called a complete set of irreducibles for R. We have
just established the following simple fact.

(7.3.1) Everyintegral domain has a (possibly empty) complete set of irreducible elements.

Our interest in complete sets of irreducibles stems from the observation that if
there is to be unique factorization in terms of irreducibles, then only irreducibles from
a complete set can be used: otherwise there will be different factorizations of the type
ab = (ua)(u~1b) where a, b are irreducible and u is a unit.

An integral domain R is called a unique factorization domain, or UFD, if there exists
a complete set of irreducibles C for R such that each non-zero element a of R has an
expression of the form

a=upipz---pk

where u is a unit and p; € C, and furthermore this expression is unique up to order of
the factors.

At present the only example of a UFD we know is Z, where C can be taken to be
the set of prime numbers. The next theorem provides us with many more examples.

(7.3.2) Every principal ideal domain is a unique factorization domain.

Proof. Let R be a PID and let C be any complete set of irreducibles of R. It will be shown
that there is unique factorization for elements of R in terms of units and elements
of C. This is accomplished in three steps, the first of which establishes the existence of
irreducibles when R contains a non-zero, non-unit element, i.e., R is not a field.

(i) If a is a non-zero, non-unit element of R, it is divisible by at least one irreducible
element of R.

Suppose this is false. Then a itself must be reducible, so a = a; a} where a; and a
are non-units and (a) < (a,). Also (a) # (ay). For otherwise a; € (a),sothata | ay, as
well as a; | a; by (71.2) this implies that a/ is a unit. Therefore (a) c (a1).
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Next a; cannot be irreducible since a; | a. Thus a; = aza’2 where a,, a’2 are
non-units and it follows that (a;) c (a;) by the argument just given. Continuing in this
way, we recognize that the procedure cannot terminate: for otherwise an irreducible
divisor of a will appear. Hence there is an infinite strictly ascending chain of ideals
(a) c (ay) c (az) c ---; but this is impossible since R is noetherian by (7.2.8).

(ii) If a is a non-zero, non-unit element of R, then a is a product of irreducibles.

Again suppose this is false. By (i) there is an irreducible p; dividing a, with a =
p1a; say. Now a; cannot be a unit, so there is an irreducible p, dividing a;, with say
ay = paz and a = p1p,as, and so on indefinitely. However, (a) c (a1) € (az) C --- is
a strictly ascending infinite chain of ideals, which again contradicts (7.2.8).

(iii) If a is a non-zero element of R, then a is the product of a unit and irreducible elements
inC.

This is clear if a is a unit — no irreducibles are needed. Otherwise by (ii) a is a
product of irreducibles, each of which is associate to an element of C. The result now
follows on replacing each irreducible factor of a by an irreducible in C multiplied by a
unit.

(iv) The final step in the proof establishes uniqueness. Suppose that

a=upipsz---Pk=vqiqa2---qe

where u, v are units of R and p;, g; € C. Argue by induction on k: if k = 0, then a = u,
a unit, so £ = 0 and u = v. Now assume that k > 0.

Since p; | a = vq1q92 - q¢, Euclid’s Lemma shows that p; must divide one of
q1, - .., qe. Relabelling the g;’s, we may assume that p; | gi. Thus p; and g; are
associate members of C, which can only mean that p; = g;1. Hence, on cancelling p,
we obtain a’ = up;---px = vq2 - - - q¢. By the induction hypothesis k - 1 = £ - 1, so
k = ¢ and, after further relabelling, p; = g; fori = 2, 3, ..., k, and u = v. Therefore
uniqueness has been established. O

Corollary (7.3.3) IfFis a field, the polynomial ring F[t] is a unique factorization domain.

This is because F[t] is a PID by (7.2.2). The natural choice for a complete set of
irreducibles in F[t] is the set of all monic irreducible polynomials. Thus we have unique
factorization in F[t] in terms of constants and monic irreducible polynomials. Another
example of a UFD is the ring of Gaussian integers {a + bvV-1 | a, b € Z}, which by (7.1.4)
is a Euclidean domain and hence a PID. However, some domains of similar appearance
are not UFD’s.

Example (7.3.1) Let R be the subring of C consisting of all a + bv-3 where a, b € Z.
Then R is not a unique factorization domain.

First observe that +1 are the only units of R. For, let0 # r = a + bv-3 € R. Then

ri= ;(a -bV-3),

a? +3b2
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which is in R if and only if #3}72 and azfﬁ are integers. This happens only when
b=0and 1 eZ,ie,r=a= 1.1t follows that no two of the elements 2, 1 + V-3,
1 — v/=3 are associate.

Next we claim that 2, 1 + V-3, 1 — v=3 are irreducible elements of R. Fortunately

all three elements can be handled simultaneously. Suppose that
(a+ V=3b)(c+ V-3d) =1+ V-3 0r2

where a, b, ¢, d € Z. Taking the modulus squared of both sides, we obtain (a? +
3b2)(c? + 3d?) = 4 in every case. But this implies that a> = 1 and b = 0 or ¢* = 1 and
d =0, i.e., either a + V=3b or c + V=3d is a unit.

Finally, unique factorization fails because

4=2-2=01+V=3)(1-vV=3)

and 2, 1 + V-3, 1 — V-3 are non-associate irreducibles. It follows that R is not a UFD.
Two useful properties of UFD’s are recorded in the next result.

(7.3.4) Let R be a unique factorization domain. Then:
(i) gcd’s existinR;
(ii) Euclid’s Lemma holds in R.

Proof. To prove (i) let a = up{'p5? ---py* and b = vp’ilp’;2 p’,‘f where u, v are units
of R, the p; belong to a complete set of irreducibles for R, and e;, f; > 0. Define d =
p§'p5 - pi* where g; is the minimum of e; and f;. Then d is a ged of a and b. For
clearly d | a and d | b, and, on the other hand, if ¢ | a and ¢ | b, the unique
factorization property shows that ¢ must have the form wpi’1 p’;2 .. pzk where wis a

unitand O < h; < g;. Hence c | d. The proof of (ii) is left to the reader as an exercise. [

Although polynomial rings in more than one variable over a field are not PID’s —
see Exercise (7.2.3) - they are in fact UFD’s. It is our aim in the remainder of the section
to prove this important result.

Primitive polynomials. Let R be a UFD and let 0 # f € R[t]. Since gcd’s exist in R
by (7.3.4), we can form the gcd of the coefficients of f; this is called the content of f,

c(f).

Keep in mind that content is unique only up to a unit of R, and equations involving
content have to be interpreted in this light. If c(f) = 1, i.e., c(f) is a unit, the polynomial f
is said to be primitive. For example 2 + 4t — 3> € Z[t] is a primitive polynomial. Next
two useful results about the content of polynomials will be established.

(7.3.5) Let O + f € R[t] where R is a unique factorization domain. Then f = cfy where
c = c(f) and fo € R[t] is primitive.
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Proof. Write f = ag + a1t + --- + ant™; then c(f) = gcd{agp, ai, ..., an} = ¢, say. Write
a; = ch; with b; € R and put fo = bg + b1t + --- + byt" € R[t]. Thus f = cfo. If
d = gcd{bg, b1, ..., by}, thend | b; and so cd | cb; = a;. Since c is the gcd of the a;, it
follows that cd divides ¢, which shows that d is a unit and fj is primitive. O

(7.3.6) Let R be a unique factorization domain and let f, g be non-zero polynomials
over R. Then c(fg) = c(f)c(g). In particular, if f and g are primitive, then so is fg.

Proof. Consider first the special case where f and g are primitive. If fg is not primitive,
c(fg) is not a unit, so it must be divisible by an irreducible element p of R. Write
f=3"oait'and g = Y7, b;t/, so that

m+n

fe=) ot
k=0

where ¢, = ZZ-;O aibi—;. (Here a; = 0ifi > mand b; = 0ifj > n). Since f is
primitive, p cannot divide all its coefficients and there is an integer r > 0 such that
plaop,ai,...,a1,butp } a,. Similarly there is an s > 0 such that p divides each of
bo, b1, ..., bs_1, but not bs. Now consider c,s, which can be written

(aobrss + arbris—1 + -+ + ar-1bsi1) + arbs + (are1bs_1 + -+ + aresho).

We know that p | c,s; also p divides both the expressions in parentheses in the
expression above. It follows that p | a,bs. By Euclid’s Lemma for UFD’s (see (7.3.4)), it
follows that p | a;, or p | bs, both of which are impossible. By this contradiction fg is
primitive.

Now we are ready for the general case. Using (7.3.5), we write f = cfp and g = dgo
where ¢ = c(f), d = c(g) and the polynomials fy, go are primitive in R[¢]. Then fg =
cd(fogo) and, as has just been shown, fygo is primitive. In consequence c(fg) = cd =
c(PHc(g). O

The next result is frequently helpful in deciding whether a polynomial is irre-
ducible.

(7.3.7) (Gauss’s Lemma) Let R be a unique factorization domain and let F denote its
field of fractions. If f € R[t], then f is irreducible over R if and only if it is irreducible over
F

Proof. We can assume that R ¢ F. Of course irreducibility over F implies irreducibility
over R. It is the converse implication that requires proof. Assume that f is irreducible
over R but reducible over F. We can assume that f is primitive on the basis of (7.3.5).
Then f = gh where g, h € F[t] are non-constant. Since F is the field of fractions of R,
there exist elements a, b # 0 in R such that g, = ag € R[t] and h; = bh € R[t]. Write
g1 = c(g1)g, where g, € R[t] is primitive. Then ag = c(g1)g>, so we can divide both
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sides by gcd{a, c(g1)}. On these grounds it is permissible to assume that c(g;) and a
are relatively prime, and for similar reasons the same can be assumed of c(h;) and b.

Next (ab)f = (ag)(bh) = g1h:. Taking the content of each side and using (7.3.6),
we obtain ab = c(g1)c(h1) since f is primitive. But c(g;) and a are relatively prime,
so a | c(hy), and for a similar reason b | c(g1). Therefore we have the factorization
f = (b 'g1)(a 1hy) in which both factors are polynomials over R. But this contradicts
the irreducibility of f over R and the proof is complete. O

For example, to show that a polynomial in Z[¢] is Q-irreducible, it is enough to
show that it is Z-irreducible, usually an easier task.

Polynomial rings in several variables. Let us now use the theory of content to show
that unique factorization occurs in polynomial rings with more than one variable. Here
one should keep in mind that such rings are not PID’s and so are not covered by (7.3.2).
The main result is:

(7.3.8) IfRis a unique factorization domain, then so is the polynomial ring R[t1, . . ., ti].

Proof. In the first place we need only prove the theorem for k = 1. Indeed if k > 1, we
have

R[tl’ L] tk] = (R[tla D) tk*l])[tk]i

so that induction on k will succeed once the case k = 1 is settled. From now on consider
the ring S = R[t]. The first step in the proof is to establish:

(i) Any non-constant polynomial f in S is expressible as a product of irreducible elements
of R and primitive irreducible polynomials over R.

The key idea in the proof is to introduce the field of fractions F of R, and exploit the
fact that F[t] is known to be a PID and hence a UFD. First of all write f = c(f)fy where
fo € S is primitive, using (7.3.5). Here c(f) is either a unit or a product of irreducibles
of R. Thus we can assume that f is primitive. Regarding f as an element of the UFD F[¢],
we write f = p1p, --- pm Where p; € F[t] is irreducible over F. Now find a; # 0 in R
such that f; = ajp; € S. Writing c(f;) = c;, we have f; = c;q; where q; € R[t] is primitive.
Hence p; = ai’1 fi= ai’lciqi and g; is F-irreducible since p; is F-irreducible. Thus g; is
certainly R-irreducible.

Combining these expressions for p;, we find that

-1 _-1 -1
f=(aj"ay ---apcica - Cm)q192 -+ qm,

and hence (a1a, -+ am)f = (€1¢2 -+ Cm)q14q2 - - - @m- Now take the content of both sides
of this equation to get aya,---a, = c1cy -+ UP to a unit, since f and the g; are
primitive. Consequently f = uq1q; - - - gm for some unit u of R. This is what was to be
proved.

(ii) The next step is to assemble a complete set of irreducibles for S. First take a com-
plete set of irreducibles C; for R. Then consider the set of all primitive irreducible
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polynomials in S. Now being associate is an equivalence relation on this set, so we
can choose an element from each equivalence class. This yields a set of non-associate
primitive irreducible polynomials C, with the property that every primitive irreducible
polynomial in R[¢] is associate to an element of C,. Now put

C=CiuC,.

Since distinct elements of C cannot be associate, C is a complete set of irreducibles
for S.If 0 # f € S, it follows from step (i) that f is expressible as a product of elements
of C and a unit of R.

(iii) There remains the question of uniqueness. Suppose that

f=uaiay---axfifs---fr=vbiby---be g182 - &s

where u, v are units, ax, be € C1 and f;, gj € C,. By Gauss’s Lemma (7.3.7) the f; and g;
are F-irreducible. Since F[t] is a UFD and C, is a complete set of irreducibles for F[t],
we conclude that r = s and f; = w;g;, (after possible relabelling), where w; € F. Write
Wi = cidl.‘1 where c;, d; € R. Then df; = c;gi, which, on taking contents, yields d; = c;
up to a unit. This implies that w; is a unit of R. Therefore f; and g; are associate and
thus f; = g;.

Cancelling the f; and g;, we are left with ua,a,---ax = vb1b; --- b,. Since R is
a UFD with a complete set of irreducibles C1, it follows that k = ¢, u = v and a; = b;
(after further relabelling). This completes the proof. O

This theorem provides us with some important new examples of UFD’s.

Corollary (7.3.9) The following rings are unique factorization domains:
Z[l’l, ey l’k] and F[tl, ceey tk]

where F is any field.

Exercises (7.3)

(1) Prove that a UFD satisfies the ascending chain condition on principal ideals, i.e.,
there does not exist an infinite strictly ascending chain of principal ideals.

(2) If Ris a UFD and C is any complete set of irreducible elements for R, show that there
is unique factorization in terms of C.

(3) If C; and C,, are two complete sets of irreducibles for a domain R, prove that |Cy| =
ICal.

(4) Show that the domain {a + bV=5 | a, b € Z} is not a UFD.

(5) Prove that £ + at + 1 € Z[t] is reducible over Q if and only if a = 0 or -2.

(6) Explain why the ring of rational numbers with odd denominators is a UFD and find
a complete set of irreducibles for it.

(7) The same question for the power series ring F[[t]] where F is a field.
(8) Prove that Euclid’s Lemma is valid in any UFD.
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7.4 Roots of polynomials and splitting fields

Let R be a commutative ring with identity, let f = bg + b1t + --- + b,t" € R[t] and let
a € R. Then the value of the polynomial f at a is defined to be

fla)=bo+bia+---+bya™ €R.

Thus we have a function 8, : R[t] — R which evaluates polynomials at a, i.e., 8,(f) =
fla). Now f + g(a) = f(a) + g(a) and (fg)(a) = f(a)g(a), because the ring elements f(a)
and g(a) are added and multiplied by the same rules as the polynomials f and g. It
follows that 8, : R[t] — R is a ring homomorphism. Its kernel consists of all f € R[¢]
such that f(a) = 0, that is, all polynomials that have a as a root.

The following criterion for an element to be a root of a polynomial should be
familiar from elementary algebra.

(7.4.1) (The Remainder Theorem) Let R be an integral domain, let f € R[t] and let a € R.
Then a is a root of f if and only if t — a divides f in the ring R[t].

Proof. If t — a divides f, then f = (t — a)g where g € R[t]. Then f(a) = 0,(f) = 0,((t -
a)g) = 0,4(t — a)f,(g) = 0. Hence a is a root of f.

Conversely, assume that f(a) = 0 and let F denote the field of fractions of R. Since
F[t] is a Euclidean domain, we can divide f by t — a to get a quotient and remainder
in F[t], say f = (t—a)q + r where g, r € F[t] and deg(r) < 1, i.e., r is constant. However,
notice that by the usual long division process g and r actually belong to R[t]. Finally,
apply the evaluation homomorphism 6, to f = (t — a)q + r to obtain O = r since r is
constant. Therefore t — a divides f. O

Corollary (7.4.2) The kernel of the evaluation homomorphism 6, is the principal ideal
(t-a).

This is simply a restatement of (7.4.1).

The multiplicity of a root. Let R be a domain and suppose that f € R[¢] is not constant
and has a root a in R; thus t — a | f. There is a largest positive integer n such that
(t—a)" | f, since the degree of a divisor of f cannot exceed deg(f). In this situation a is
said to be a root of f with multiplicity n. If n > 1, then a is called a multiple root of f.

(7.4.3) Let R be a domain and let 0 + f € R[t] have degree n. Then the sum of the
multiplicities of all the roots of f that lie in R is at most n.

Proof. Let a be aroot of f. By (74.2) t — a divides f and f = (t — a)g where g € R[t]
has degree n - 1. By induction on n the sum of the multiplicities of the roots of g is at
most n — 1. Now a root of f either equals a or else is a root of g. Consequently the sum
of the multiplicities of the roots of f isat most 1 + (n - 1) = n. O
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Example (7.4.1)

(i) The polynomial t> + 1 € Q[¢] has no roots in Q, so the sum of the multiplicities of
the roots of a polynomial can be less than the degree.

(i) Consider the polynomial t* — 1 € R[t] where R is the ring of rational quaternions
(see (6.3)). Then f has 8 roots in R, namely +1, +I, +], +K. Therefore (7.4.3) is not valid
for non-commutative rings, which is another reason to keep our rings commutative.

Next comes another well-known theorem.

(7.4.4) (The Fundamental Theorem of Algebra) Let f be a non-zero polynomial of de-
gree n over the field of complex numbers C. Then the sum of the multiplicities of the roots
of f in C equals n, i.e., f is a product of n linear factors over C.

The proof of this theorem will be postponed until Chapter Twelve — see (12.3.6).
Despite its name, all the known proofs of the theorem employ some analysis.

Derivatives. Derivatives are useful in detecting multiple roots of polynomials. Since
we are not dealing with polynomials over R here, limits cannot be used. For this reason
we adopt the following formal definition of the derivative f' of the polynomial f € R[t]
where R is a commutative ring with identity. If f = ap + a1t + - - - + ant", then

fl=ai+2axt+---+na,t" ! e R[t].

On the basis of this definition the usual rules of differentiation can be established.

(7.4.5) Let f, g € R[t] and c € R where R is a commutative ring with identity. Then

D F+9)'=f+g";

(i) (cf =cf’;

(i) (fg)' = f'g + fg'.

Proof. Only the statement (iii) will be proved. Write f = ¥{; a;t' and g = Y1, b;t/;
then

m+n i

fe=) (Z akbi—k)ti-
i=0 k=0
The coefficient of £~ in (fg)’ is therefore equal to i(ZLo akbi,k).
On the other hand, the coefficient of t1 in f'g + fg' is

i-1 i-1
Z(k +1D)age1bir-1 + Z(l' -kayb;i_x,
k=0 k=0
which equals
i-2 i-1
iaibo + z (k+ 1)ays1bi_k_1 +iagh; + Z (i-k)aybi_g.
k=0 k=1
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On adjusting the summation in the second sum, this becomes

i-2 i-2
iaibo + Y (k+ 1)axi1bix1+ Y (i —k—-1)axs1bik-1 +iaob,
k=0 k=0

which reduces to
i-2 i
i(aob,- + Z A1 bi—p-1 + aibo) = z(z akbi_k).
k=0 k=0

It follows that (fg)’ = f'g + fg'. =

Corollary (7.4.6) (f™) = mf™1f' where m is a positive integer.

This is proved by induction on m using (7.4.5). A criterion for a polynomial to have
multiple roots can now be given.

(7.4.7) Let R be a domain and let a € R be a root of a polynomial f € R[t]. Then a is a
multiple root if and only if t — a divides both f and f'.

Proof. Let ¢ be the multiplicity of the root a. Then ¢ > 1 and f = (t — a)’g where
t—a} geR[t]l.Hencef' = ¢(t-a)* g+ (t—a)g’ by (74.5) and (74.6). If a is a multiple
root of f, then £ > 2 and f'(a) = 0; by (74.1) t — a divides f’, as well as f.

Conversely, suppose thatt —a | f' = €(t - a)f" g+ (t—a)fg’. If ¢ = 1, thent—a
divides g, a contradiction. Therefore £ > 1 and a is a multiple root. O

Example (7.4.2) Let F be a field whose characteristic does not divide the positive inte-
ger n. Then t" — 1 € F[t] has no multiple roots in F.

For, with f = t" — 1, we have f' = nt""! # 0 since char(F) does not divide n. Hence
t"—1 and nt""! are relatively prime and thus f and f’ have no common roots. Therefore
f has no multiple roots by (7.4.7).

Splitting fields. We will now consider roots of polynomials over a field F. If f € F[t]
is not constant, we know that f has at most deg(f) roots in F, including multiplicities,
by (74.3). However, f need not have any roots in F, as the example t2 + 1 € R[¢] shows.
On the other hand, 2+ 1 has two roots in the larger field C.

The question to be addressed is this: can we construct a field K, larger than F in
some sense, in which f has exactly deg(f) roots up to multiplicity, i.e., over which f
splits into a product of linear factors? A smallest such field is called a splitting field
of f. In the case of the polynomial t?> + 1 € R[t], the situation is quite clear; its splitting
field is C since t? + 1 = (t + i)(t — i) where i = vV—1. However, for a general field F we
do not have a convenient larger field like C at hand. Thus splitting fields will have to
be constructed from scratch.
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We begin by formulating precisely the definition of a splitting field. If F is a field, by
a subfield of F is meant a subring containing the identity element which is closed under
forming inverses of non-zero elements. Let f be a non-constant polynomial over F. A
splitting field for f over F is a field K containing an isomorphic copy F; of F as a subfield
such that the polynomial in F;[¢] corresponding to f can be expressed in the form

a(t-cy)(t—cz)---(t—cp)

where a is in F; and K is a smallest field containing F, and the elements c1, ¢5, ... Cp.
There is nothing to be lost in assuming that F ¢ K since F can be replaced by the
isomorphic field F;. Thus F is a subfield of K.

Our first objective is to demonstrate that splitting fields actually exist.

(7.4.8) If f is a non-constant polynomial over a field F, then f has a splitting field over F.

Proof. We argue by induction on n = deg(f); note that we may assume n > 1 since
otherwise F itself is a splitting field for f. Assume the result is true for all polynomials
of degree less than n. Consider first the case where f is reducible, so f = gh where g,
h in F[t] both have degree less than n. By induction hypothesis g has a splitting field
over F, say K1, which we may suppose contains F as a subfield. For the same reason h
has a splitting field over K1, say K, with K; ¢ K. Clearly f is a product of linear factors
over K. Hence K is a splitting field of f.

Therefore we can assume f is irreducible. By (7.2.6) the ideal (f) is maximal in F[¢]
and consequently the quotient ring

Ky = F[t]/()

is a field. Next the assignment a — a + (f), where a € F, determines an injective ring
homomorphism from F to K;. The image is a subfield F; of K; and F = F;. Thus we
may regard f as a polynomial over F.

The critical observation to make is that f has a root in K1, namely a; = t + (f); for
fla1) = f(t) + (f) = (f) = Ok,. By (74.1) f = (t — a1)g where g € K;[t], and of course
deg(g) = n — 1. By induction hypothesis g has a splitting field K containing K; . Since
a; € Ky ¢ K, we see that K is a splitting field for f: for any subfield of K containing F
and the roots of f must contain K, since each element of K; has the form h + (f) = h(ay)
for some h € F[t]. This completes the proof. O

Example (7.4.3) Let f = > — 2 ¢ Q[t]. The roots of f are 21/3, c21/3, ¢221/3 where
c = e2™/3 a complex cube root of unity. Then f has as its splitting field the smallest
subfield of C containing Q, 2'/3 and c.

The next example shows how finite fields can be constructed from irreducible
polynomials.
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Example (7.4.4) Show that f = £3 + 2t + 1 € Z3([t] is irreducible and use it to construct
a field of order 27. Prove that this is a splitting field of f.

First of all notice that the only way a cubic polynomial can be reducible is if it has
a linear factor, i.e., it has a root in the field. But we easily verify that f has no roots in
Z3 = {0, 1, 2} since f(0) = f(1) = f(2) = 1. (For conciseness we have written i for the
congruence class [i]). It follows that f is irreducible and

K =275[t]/(f)

is a field.

If g € Z5[t], then by the Division Algorithm g = fq + r where g, r € Z3[t]andr =0
or 0 < degr < 3.Hence g+ (f) = r + (f). This shows that every element of K has the form
aop + ait + axt* + (f) where a; € Z3. Thus |K| < 33 = 27. On the other hand, all such
elements are distinct. Indeed, if r + (f) = s + (f) with r and s both of degree < 3, then
f| r-s,sothatr=s. Therefore |[K| = 27 and we have constructed a field of order 27.

As in the proof of (7.4.8), we see that f has the root a = t + (f) in K. To prove that
K is actually a splitting field, note that f has two further roots in K, namely a + 1 and
a-1.Thusf=(t-a)(t-a-1)(t-a+1).

Further discussion of fields is postponed until Chapter Eleven. However, we have
seen enough to realize that irreducible polynomials play a vital role in the theory of
fields. Thus a practical criterion for irreducibility is sure to be useful. Probably the best
known test for irreducibility is:

(7.4.9) (Eisenstein’s! Criterion) Let R be a unique factorization domain and let f =
ap + ait + --- + ayt™ be a non-constant polynomial over R. Suppose that there is an
irreducible element p of R such thatp | ap,p | a1, ...,p | an_1, but p + an and p? } ao.
Then f is irreducible over R.

Proof. Assume that f is reducible and
f=(bo+bit+-+bt")(co+Crt+---+cst®)

where b, cj € R, 1,5 < n,and r + s = n. By hypothesis p | ap = boco, but p? } ap; thus
p must divide exactly one of by and co, say p | bgo and p } co. Also p does not divide
an, = b,cg, so it cannot divide b,. Therefore there is a smallest positive integer k < r
such that p } by. Now p divides each of by, b1, ..., bx_1, and also p | ay because
k < r < n.Since ax = (bock + b1Ck-1 + - -+ + bx_1€1) + byco, (Where ¢; = 0if i > s), it
follows that p | byco. By Euclid’s Lemma — which by (7.3.4) is valid in a UFD - either
p | bxor p | co, both of which are forbidden. O

1 Ferdinand Gotthold Max Eisenstein (1823-1852)
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Eisenstein’s Criterion is often applied in conjunction with Gauss’s Lemma (7.3.7) to
give a test for irreducibility over the field of fractions of a domain.

Example (7.4.5) Prove that t> — 9t + 3 is irreducible over Q.

First of all f = t> — 9t + 3 is irreducible over Z by Eisenstein’s Criterion with p = 3.
Then Gauss’s Lemma shows that f is irreducible over Q.

Example (7.4.6) Show that if p is a prime, the polynomial f = 1+t + 2 +--- + P71 is
irreducible over Q.

By Gauss’s Lemma it suffices to prove that f is Z-irreducible. Since (7.4.9) is not
immediately applicable to f, we resort to a trick. Consider the polynomial g = f(t + 1);

then
(t+1)P -1

t
by the formula for the sum of a geometric series. On expanding (¢ + 1)” by the Binomial
Theorem - see Exercise (6.1.6) — we arrive at the formula

_ p-1 b p-2 . .. p b
g=t +(p—1>t + +(2>t+<1).

Now p | (1;) if 0 < i < p by (2.3.3). Therefore g is irreducible over Z by Eisenstein’s
Criterion. Clearly this implies that f is irreducible over Z. (The polynomial f is called
the cyclotomic polynomial of order p).

g=1+(t+1)+---+(t+1)P L=

1)

Exercises (7.4)
(1) Let f € F[t] have degree < 3 where F is a field. Show that f is reducible over F if and
only if it has a root in F.
(2) Find the multiplicity of the root 2 of the polynomial £3 + 2t> + t + 2 € Zs[t].
(3) List all irreducible polynomials of degree at most 3 in Z;[t].
(4) Use 3 + t + 1 € Zs[t] to construct a field of order 125.
G)Lletf=1+t+t2+t3 +t* € Q[t].
(i) Prove that K = Q[t]/(f) is a field.
(ii) Show that every element of K can be uniquely written in the form ag + a;x +
ax? + azx> wherex = t + (f) and a; € Q.
(iii) Prove that K is a splitting field of f. [Hint: note that x*> = 1 and check that x?,
x3, x* are roots of f].
(iv) Compute (1 +x2)? and (1 +x) 'inK.
(6) Show that t® + 6¢° + 4t* + 2t + 2 is irreducible over Q.
(7) Show that t® + 12¢° + 49¢* + 9683 + 99¢2 + 54t + 15 is irreducible over Q. [Hint: use
a suitable change of variable].
(8) Let F = Zp{t1}, the field of rational functions, and R = F[t] where t and ¢; are
distinct indeterminates. Prove that " — tft + t1 € Risirreducible over F foralln > 1.
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(9) Find a polynomial of degree 4 in Z[t] which has V3 - v/2 as a root and is irreducible
over Q.

(10) Prove that if n is a positive integer that is not a prime, then 1 + t + t> + - -- + t" L is
reducible over any field.

(11) Show that Q[t] contains an irreducible polynomial of every degree n > 1.

(12) Let R be a commutative ring with identity containing a zero divisor. Find a linear
polynomial in R[t] which has at least two roots in R, so that (7.4.3) fails for R.
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We have already encountered groups and rings, two of the most commonly used alge-
braic structures. A third structure of great importance is a vector space. Vector spaces
appear throughout mathematics and they also turn up in many applied areas, for
example, in quantum theory and coding theory.

8.1 Vector spaces and subspaces

Let F be a field. A vector space over F is an additively written abelian group V with an
action of F on V called scalar multiplication, that is, a function from F x V to V written
(a,v) = av, (a € F, v € V), such that the following axioms hold for all u, v € V and
a,b eF.
(i) a(u+v)=au+av;
(ii) (a+ b)v =av + bv;
(iii) (ab)v = a(bv);
(iv) 1pv = v.
Notice that (iii) and (iv) assert that the multiplicative group of F acts on the set V in the
sense of (5.1). Elements of V are called vectors and elements of F scalars. When there is
no chance of confusion, it is usual to refer to the set V as the vector space.

First of all we record two elementary consequences of the axioms.

(8.1.1) Let v be a vector in a vector space V over a field F and let a € F. Then:
(i) Opv =0y and aOy = Oy;
(i) (-1p)v =-v.

Proof. Puta = Or = b in vector space axiom (ii) to get Orv = Opv+O0rv. Hence Opv = Oy
by the cancellation law for the group (V, +). Similarly, setting u = Oy = v in (i) yields
aOy = Oy. This establishes (i).

Using axioms (ii) and (iv) and property (i), we obtain

V+ (-1p)v=1pv+ (-1p)v = (1 + (-1F))v = Opv = Oy.

Therefore (-1f)v equals —v, which completes the proof. O

Examples of vector spaces
Before proceeding further we review some standard sources of vector spaces.

(i) Vector spaces of matrices. Let F be a field and define

Mm,n(F)
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to be the set of all m x n matrices over F. This is already an abelian group with respect

to ordinary matrix addition. There is also a natural scalar multiplication here: if A =

[aij] € M n(F) and f € F, then fA is the matrix which has fa;; as its (i, j) entry. That

the vector space axioms hold is guaranteed by elementary results from matrix algebra.
Two special cases of interest are the vector spaces

Fm=Mm,1(F) and Fn=M1,n(F)-

Thus F™ is the vector space of m-column vectors over F, while Fy, is the vector space
of n-row vectors over F.

The space R" is called Euclidean n-space. For n < 3 there is a well-known geometric
interpretation of R". Consider for example R3. A vector in R3

<
Il
a o Q

is represented by a line segment v in 3-dimensional space drawn from an arbitrary
initial point (p, g, r) to the point (p + a, g + b, r + ¢). With this interpretation of vectors,
the rule of addition of vectors u and v in IR? is equivalent to the well-known triangle
rule for addition of line segments i and V; this is illustrated in the diagram below.

A detailed account of the geometric interpretations of euclidean 2-space and 3-space
may be found in any text on linear algebra — see for example [12].

(ii) Vector spaces of polynomials. The set F[t] of all polynomials in ¢t over a field F is a
vector space over F with the usual addition and scalar multiplication of polynomials.

(iii) Fields as vector spaces. Suppose that F is a subfield of a field K, i.e., F is a subring
of K containing 1 which is closed with respect to taking inverses of non-zero elements.
We can regard K as a vector space over F, using the field operations as vector space
operations. At first sight this example may seem confusing since elements of F are
simultaneously vectors and scalars. However, this point of view will be particularly
valuable when we come to investigate the structure of fields in Chapter Eleven.

Subspaces. In analogy with subgroups of groups and subrings of rings, it is natural
to introduce the concept of a subspace of a vector space. Let V be a vector space over a
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field F and let S be a subset of V. Then S is called a subspace of V if, when we restrict
the vector space operations of V to S, we obtain a vector space over F. Taking note of
the analysis of the subgroup concept in (3.3) — see especially (3.3.4)— we conclude that
a subspace is a subset of V containing Oy which is closed with respect to addition and
multiplication by scalars.

Obvious examples of subspaces of V are 0 = Oy, the zero subspace which contains
just the zero vector, and V itself, the improper subspace. A more interesting source of
examples is given in:

Example(8.1.1) Let A be an m x n matrix over a field F and define S to be the subset
of all X in F" such that AX = 0. Then S is a subspace of F", verification of the closure
properties being very easy. The subspace S is called the null space of the matrix A.

Linear combinations of vectors. Suppose that V is a vector space over a field F and
Vi, V2, ..., Vi arevectors in V. A linear combination of these vectors is a vector of the
form

aiv, +azvy +---+ axVi

where a1, as, ..., ax € F.If X is any non-empty set of vectors in V, we will write
either F(X) or, if we do not wish to emphasize the field, (X) for the set of all linear
combinations of vectors in the set X. It is a fundamental fact that this is always a
subspace.

(8.1.2) Let X be a non-empty subset of a vector space V over a field F. Then F(X) is the
smallest subspace of V that contains X.

Proof. In the first place it is easy to verify that F(X) is closed with respect to addition
and scalar multiplication; of course it also contains the zero vector Oy. Therefore F(X)
is a subspace. Also it contains X since x = 1px € F(X) for all x € X. Finally, any
subspace that contains X automatically contains every linear combination of vectors
in X, i.e., it must contain F(X) as a subset. O

The subspace (X) is called the subspace generated (or spanned) by X. If V = (X),
then X is said to generate the vector space V. If V can be generated by some finite set of
vectors, we say that V is a finitely generated vector space. What this means is that every
vector in V can be expressed as a linear combination of the vectors in some finite set.

Example (8.1.2) F"is a finitely generated vector space. To see why, consider the so-
called elementary vectors in F",

1

o
= O
o O

o
o
%]
=
I

E1= 1E2=
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A general vector in F",
a;
a

Aan

can be written as a1E1 + aE; + --- + ay,E,. Hence F" = (Eq,E>,...,E,) and F" is
finitely generated.

On the other hand, infinitely generated, i.e., non-finitely generated, vector spaces
are not hard to find.

Example (8.1.3) The vector space F[t] is infinitely generated.

Indeed suppose that F[t] could be generated by finitely many polynomials p1,
D2, ..., px and let m be the maximum degree of the p;. Then clearly ™! cannot be
expressed as a linear combination of p4, ..., pk, so a contradiction is reached.

Exercises (8.1)

(1) Which of the following are vector spaces? The operations of addition and scalar
multiplication are the natural ones.

(i) The set of of all real 2 x 2 matrices with determinant 0.

(ii) The set of all solutions y(x) of the homogeneous linear differential equation
an)Y™ + an_1 )Y 4.+ a1 (x)y' + ap(x)y = 0, where the a;(x) are given
real-valued functions of x.

(iii) The set of all solutions X of the matrix equation AX = B.

(2) In the following cases say whether S is a subspace of the vector space V.

2
i V=R?S=all [(Z],ae]R;

(if) V is the vector space of all continuous functions on the interval [0, 1] and S
consists of all infinitely differentiable functions in V;
(iii) V =F[t],S={f € V| fla) = 0} where a is a fixed element of F.
(3) Verify that the rule for adding the vectors in R? corresponds to the usual triangle
rule for addition of line segments.

(4) Does [[1‘ ;] belong to the subspace of M, (RR) generated by the matrices [i g] R

ke )

(5) Let V be a vector space over a finite field. Prove that V is finitely generated if and
only if it is finite.
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8.2 Linear independence, basis and dimension

A concept of critical importance in vector space theory is linear independence. For an
understanding of this topic some knowledge of systems of linear equations, and in
particular row and column operations on matrices, is essential and will be assumed.

Let V be a vector space over a field F and let X be a non-empty subset of V. Then X
is called linearly dependent if there exist distinct vectors x1, x2, . . ., X in X and scalars
ai,a,, ..., ay € F, not all the a; being zero, such that

aixi+ax; +---+ axxy = 0.

This amounts to saying that some x; can be expressed as a linear combination of the
others. For if, say, a; # 0, we can solve for x;, obtaining

k
xi= Y (-a;Hav;.
j=1
Jj#i
A subset which is not linearly dependent is called linearly independent. For example,
the elementary vectors E1, E, . . ., E, form a linearly independent subset of F for any
field F.

Homogeneous linear systems. To make significant progress with linear independence,
some knowledge of systems of linear equations is needed. Let F be a field and consider
a system of m homogeneous linear equations over F

aiiXq +:--+ AinXn =0

ar)1X1+---+dymxn=0

Am1X1+ -+ AmnXn =0

Here aj; € F and x4, X5, . . ., X, are the unknowns

Clearly the system has the trivial solution x; = x, = --- = x5 = 0. The interesting
question is whether there are any non-trivial solutions. A detailed account of the
theory of systems of linear equations can be found in any book on linear algebra, for
example [12].

The linear system can be written in the matrix form

AX =0,

where A = [ajj]m,n is the coefficient matrix and X is the n-column vector formed by the
unknowns x1, X3, . . ., X,. The following result is sufficient for our present purposes.

(8.2.1) The homogenous linear system AX = 0 has a non-trivial solution X if and only if
the rank of the coefficient matrix A is less than the number of unknowns.
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Proof. Write A = [ajj]. We adopt the method of systematic elimination known as
Gaussian elimination. It may be assumed that a1; # 0; for, if this is not true, replace
equation 1 by the first equation in which x; appears. Since equation 1 can be multiplied
by aﬁ, we may also assume that a;; = 1. Then, by subtracting multiples of equation 1
from equations 2 through m, the unknown x; can be eliminated from these equations.

Next find the first of equations 2 through m which contains an unknown with
smallest subscript > 1, say x;,. Move this equation up to second position. Now make
the coefficient of x;, equal to 1 and subtract multiples of equation 2 from equations 3
through m so as to eliminate x;,. Repeat this procedure until the remaining equations
involve no further unknowns, i.e., they are of the trivial form O = 0. Let us say this
happens after r steps. At this point the matrix of coefficients is in row echelon form with
r linearly independent rows. The integer r is the rank of A.

Unknowns other than x1 = x;,, xi,, ..., X;, can be given arbitrary values. The
non-trivial equations may then be used to solve back for x; , x;,_,, . . ., Xj, successively.
Therefore there is a non-trivial solution if and only if r < n; for then at least one
unknown can be given an arbitrary value. O

Corollary (8.2.2) A homogeneous linear system AX = 0 of n equations in n unknowns
has a non-trivial solution if and only if det(A) =

For det(A) = 0 if and only if the rank of A is less than n. This result is used to
establish the fundamental theorem on linear dependence in vector spaces.

(8.2.3) Letvy,va,..., Vi bevectors in a vector space V over a field F. Then any set of
k + 1 or more vectors in the subspace (v1, va, . . ., V) is linearly dependent.
Proof. Letuq, us, ..., U1 €S ={(vy,...,Vg).Itis enough to show that {uq, u,, ...,

Uk41} is a linearly dependent set. This amounts to finding field elements ay, a», ...,
ay.1, not all of them zero, such that ajuy + axus + -+ + agy1Ups1 = O.

Since u; € S, there is an expression u; = d1jv1 + dyiVvy + - -+ + diivi Where dj; € F.
On substituting for the u;, we obtain

k+1 k  k+1
AUy + QUy + -+ Aip1lkss = ) @ (Z djivj) = Z(Z djia )V,
i=1 j=1 ]: i=1

Therefore a;uy + axus + -+ - + ax+1Uk+1 = 0 if the a; satisfy the equations

k+1
zdjiai=0, j=1,...,k

But this is a system of k linear homogeneous equations in the k + 1 unknowns a;, so the
rank of the coefficient matrix [dj;] is at most k. By (8.2.1) there is a non-trivial solution
ai, az, ..., ag.1. Therefore {uq, us, ..., uxs1} is linearly dependent, as claimed. [
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Corollary (8.2.4) If a vector space V can be generated by k elements, then every subset
of V with k + 1 or more elements is linearly dependent.

Bases. A basis of a vector space V is a non-empty subset X such that:
(i) Xislinearly independent;
(ii) X generates V.

These are contrasting properties in the sense that (i) means that X is not too large and
(ii) that X is not too small.

For example, the elementary vectors E1, E,, ..., E, form a basis of the vector
space F" called the standard basis. More generally a basis of My, »(F) is obtained by
taking all the m x n matrices over F with a single non-zero entry which is equal to 1.

A important property of a basis is unique expressibility.

(8.2.5) If{vy,Vva,...,Vvy}isa basis of avector space V over a field F, then every vector v
in V is uniquely expressible in the formv = ayv1 + --- + apvy With a; € F.

Proof. In the first place such expressions for v exist by definition. If v in V had two
such expressions v = Y1 ; a;v; = Y, biv;, we would have Y[, (a; — b;)v; = 0, from
which it follows that a; = b; by linear independence of the v;. O

This result shows that a basis may be used to introduce coordinates in a vector
space. Suppose that V is a vector space over field F and that B = {v{, v, ..., vy} is
a basis of VV with its elements written in a specific order, i.e., an ordered basis. Then
by (8.2.5) each v € V has a unique expression v = Zlf’:l civi with ¢; € F. Thus v is
determined by the column vector in F" whose entries are c1, C3, . . ., Cy; this is called
the coordinate column vector of v with respect to B and is written

[Vls.

Coordinate vectors provide a concrete representation of vectors in an abstract vector
space.

The existence of bases. There is nothing in the definition of a basis to make us certain
that bases exist. Our first task will be to show that this is true for any finitely generated
non-zero vector space. Notice that the zero space does not have a basis since it has no
linearly independent subsets.

(8.2.6) Let V be a finitely generated vector space and suppose that X is a linearly
independent subset of V. Then X, is contained in a basis of V.

Proof. Suppose that V can be generated by m vectors. Then by (8.2.4) a linearly inde-
pendent subset of VV cannot contain more than m vectors. It follows that X is contained
in a largest linearly independent subset X; for otherwise it would be possible to form
ever larger finite linearly independent subsets containing Xj.
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We complete the proof by showing that X generates V. If this is false, there is a
vector uin V - F(X). Then u ¢ X, so X # X U {u} and X u {u} is linearly dependent by
maximality of X. Writing X = {vq, ..., vk}, we conclude that there is a relation of the
type

ayvi+---+agvg + bu =0,

where ay, ..., ax, b € F and not all of these scalars are 0. Now b cannot equal O: for
otherwise a1v1 +--- + axvy = 0 and hence a; = --- = ay = 0 since the v; are known to
be linearly independent. Therefore b #+ O and u = -b~'a vy —--- — b tagvy € F(X),
which is a contradiction. O

Corollary (8.2.7) Every finitely generated non-zero vector space V has a basis.

The reason is that since V # 0, we can choose a non-zero vector v from V and apply
(8.2.6) with Xy = {v}. In fact every infinitely generated vector space has a basis, but
advanced methods are needed to prove this — see (14.1.1) below.

Dimension. A vector space usually has many bases: it is an important fact that all of
them have the same number of elements.

(8.2.8) Let V be a finitely generated non-zero vector space. Then any two bases of V
have the same number of elements.

Proof. In the first place a basis of V is necessarily finite by (8.2.4). Next let {uy, ..., up}
and {vq, ..., vy} betwo bases. Then V = (vq, ..., v,) and by (8.2.4) there cannot be a
linearly independent subset of ¥V with more than n elements. Therefore m < n. By the
same reasoning n < m, so we obtain m = n, as required. O

This result enables us to define the dimension
dim(V)

of a finitely generated vector space V. If V = 0, define dim(V) to be 0, and if V # 0,
let dim(V) be the number of elements in a basis of V. By (8.2.8) this definition is
unambiguous. In the future we shall speak of finite dimensional vector spaces instead
of finitely generated ones.

(8.2.9) Let X1, X5, ..., Xy bevectors in F" where Fis a field. Let A = [X1X> ... X)] be
the n x k matrix which has the X; as columns. Then dim({X1, ..., X)) = r where r is the
rank of the matrix A.

Proof. We will use some elementary facts about matrices here. In the first place, S =
(X1, ..., Xx) is the column space of A, and it is unaffected when column operations
are applied to A. By applying column operations to A, just as we did for row operations
during Gaussian elimination in the proof of (8.2.1), we can replace A by a matrix with
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the same column space S which has the so-called column echelon form with r non-zero
columns. Here r is the rank of A. Since the r columns are linearly independent, they
form a basis of S (if r > 0). Hence dim(S) = r. O

Next we consider the relation between the dimension of a vector space and that of
a subspace.

(8.2.10) If V is a vector space with finite dimension n and U is a subspace of V, then
dim(U) < dim(V). Furthermore dim(U) = dim(V) ifand only if U = V.

Proof. 1If U = 0, thendim(U) = 0 < dim(V). Assume that U # 0 and let X be a basis of U.
By (8.2.6) the subset X is contained in a basis Y of V. Hence dim(U) = |X]| < |Y| = dim(V).
Finally, suppose that dim(U) = dim(V), but U # V. Then U # 0. As before, a basis X of
U is contained in a basis Y of V. Since |X| = |Y], it follows that X = Y. Therefore U = V,
a contradiction. O

The next result can simplify the task of showing that a subset of a finite dimensional
vector space is a basis.

(8.2.11) Let V be a finite dimensional vector space with dimension n and let X be a subset
of V with n elements. Then the following statements about X are equivalent:

(i) Xisabasisof V;

(ii) X is linearly independent;

(iii) X generates V.

Proof. Of course (i) implies (ii). Assume that (ii) holds. Then X is a basis of (X), the
subspace it generates; hence dim({X)) = n = dim(V) and (8.2.10) shows that (X) = V.
Thus (ii) implies (iii).

Finally, assume that (iii) holds. If X is not a basis of V, it must be linearly dependent,
so one of its elements can be written as a linear combination of the others. Hence V
can be generated by fewer than n elements, which is a contradiction by (8.2.4). O

Change of basis. As has been previously remarked, vector spaces usually have many
bases and a vector may be represented with respect to each basis by a coordinate
column vector. A natural question is: how are these coordinate vectors related?

Let B = {v1,Vv2,...,va}and B’ = {v}, v}, ..., v;} be two ordered bases of a finite
dimensional vector space V over a field F. Then each v} can be expressed as a linear
combination of vy, vy, ..., V4, say

n
! _ Y
Vi = Z SjiVj»
j=1

where sj; € F. The change of basis B’ — B is described by the transition matrix S = [sj;].
Observe that S is n x n and its ith column is the coordinate vector [v}] .
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To understand how S determines the change of basis B’ — B, choose an arbitrary
vector v from V and write v = Y1, civ} where c}, c, ..., c; are the entries of the
coordinate vector [v]s:. Replace v{ by z]f’:l sjiv;j to get

n

n n n
V= Z C:( SjiVj) = Z(Z SﬁCﬁ)Vj.
i=1  j=1 i

= j=1 i=1

Therefore the entries of the coordinate vector [v]g are }I', sjic; forj = 1,2,..., n.
This shows that

vl = Slvlz/,
i.e., left multiplication by the transition matrix S transforms coordinate vectors with
respect to B’ into those with respect to B.

Notice that the transition matrix S must be non-singular. For otherwise, by standard
matrix theory there would exist a non-zero X € F" such that SX = 0; however, ifu € V
is defined by [u]s: = X, then [u]g = SX = 0, which can only mean that u = 0 and
X = 0. From [v]g = S[v]s' we deduce that S~1[v]g = [v]s/. Thus S~1 is the transition
matrix for the change of basis B — B’. These conclusions are summed up in the next
result.

(8.2.12) Let B and B’ be ordered bases of an n-dimensional vector space V. Define S to
be the n x n matrix whose ith column is the coordinate vector of the ith vector of B’ with
respect to B. Then S is non-singular and for all vin V

[vls = S[vls and [v]ls = S~ [v]s.

Example (8.2.1) Let V be the vector space of all real polynomials in t with degree at
most 2. Then B = {1, t, t?} is clearly a basis of V and sois B’ = {1 +t, 2t, 4t2 - 2}, since
it is quickly seen that this set is linearly independent. Write the coordinate vectors of
1 +t, 2t, 4t> - 2 with respect to B as columns of the matrix

1 0 -2
S=]1 2 0
0 0 4

This is the transition matrix for the change of basis B’ — B. The transition matrix for
B — B'is

10 3
-1_|_1 1 1
ST=1-2 2 -3
00 3
For example, to express f = a + bt + ct? in terms of the basis B’, we compute
1
. 1 0 3 a %
Ae =S'fls=|-3 3 -3||b|=|-3a+ib-]c
0 0 1f]c ic
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Thus f = (a+ $)(1+t) + (-3a + 3b - +0)(2t) + +c(4t* - 2), which is clearly correct.

Dimension of the sum and intersection of subspaces. Since a vector space V is an
additively written abelian group, one can form the sum of two subspaces U and W;
thus

U+W={u+w|uelU we W}

It is easily verified that U + W is a subspace of V. Also U n W is a subspace. There is a
useful formula connecting the dimensions of U + Wand Un W.

(8.2.13) If U and W are subspaces of a finite dimensional vector space V, then

dim(U + W) + dim(U n W) = dim(U) + dim(W).

Proof. If U=0,then U+ W = W and Un W = 0; in this case the formula is certainly
true. Thus we can assume that U # O and W # O.
Choose a basis for Un W, say z1, ..., z, if Un W # 0; should U n W be 0, just

ignore the z;. By (8.2.6) we can extend {z1, . . ., z,} to bases of U and of W, say
{Zl,---yznunl,---;um} and {Zl,---:zr:Wle-'ywn}-
Now the vectors z1, 22, . . . Zr, Urg1s « -« » Ums Wre1, - .., Wy Surely generate U + W: for

any vector in U+ W is expressible as a linear combination of them. In fact these elements
are also linearly independent, so they form a basis of U + W. To establish this claim,
suppose there is a linear relation

r m n
Z eizi + Z Cjuj + Z diwi =0
i=1 j=r+1 k=r+1
where e, ¢j, di are scalars. Then
n r m
Y dwk =) (—ezi+ Y (—¢puj,
k=r+1 i=1 j=r+1

which belongs to U and to W and soto UnW. Hence Y}_,, ; dixwy is alinear combination
of the z;. But z1, . .., Zr, Wry1, . . ., Wy are linearly independent, which implies that
dj = 0 for all k. The linear relation now reduces to

r m
Z eizi + Z cjuj = 0.
i=1 j=r+1

Butzi,..., 2, U1, . . ., Uy are linearly independent. Therefore all the c; and e; equal
zero, which establishes the claim of linear independence.

Finally, dim(U + W) equals the number of the vectors z1, ..., Zr, Uri1, .+« Um,
Vrils « .., Vpithisis, r+ (m—r) + (n —r) = m + n — r, which equals dim(U) + dim(W) -
dim(U n W), so the required formula follows. O
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Direct sums of vector spaces. Since a vector space V is an additive abelian group, we
can form the direct sum of subspaces Uy, U,, ..., Uy — see (4.2). This is an additive
abelian group which is written

U=U1®U2-'-@Uk.

Thus U = {uy +us +--- + ux | u; € Ui} and U; N Z#i Uj = 0. Clearly U is a subspace
of V. Note that by (8.2.13) and induction on k

dim(U;e U, ®---@ Uy) = d1m(U1) +dim(U,) +--- + dlm(Uk)

Nextif {vi, v, ..., vy} beabasisof V,then V = (vi) ® (vy) ®---® (vy), so that we
have established:

(8.2.14) An n-dimensional vector space is the direct sum of n 1-dimensional subspaces.
This result is also true when n = 0 if the direct sum is interpreted as 0.

Quotient spaces. Suppose that V is a vector space over a field F and U is a subspace
of V. Since V is an abelian group and U is a subgroup, the quotient

VIU={v+U|veV}

is already defined as an abelian group. Now make V/U into a vector space over F by
defining scalar multiplication in the natural way,

av+U)=av+U, (ackF).

This is evidently a well-defined operation. After an easy check of the axioms, we
conclude that V/U is a vector space over F, the quotient space of U in V. The dimension
of a quotient space is easily computed.

(8.2.15) Let U be a subspace of a finite dimensional space V. Then dim(V/U) = dim(V) -
dim(U).

Proof. If U = 0, the statement is obviously true. Assuming U # 0, we choose a basis
{vi,Vva, ..., vy} of Uand extend it to a basis of V, say {v1, V2, ..., Vs Vms1s .+« -5 Vn}.
We will argue that {v,.1 + U, ..., v, + U} is a basis of V/U.

Assume that Zf’zmﬂ ai(vi + U) = Oyyy = U where q; is a scalar. Then Z?:m+1 aiv; €
U, so this element is a linear combination of vy, ..., vy. It follows by linear inde-
pendence that each a; = 0, which shows that {vp,41 + U, ..., v, + U} is linearly in-
dependent. Next, if v € V, write v = Z?:l a;vi, with scalars a;, and observe that
v+U-= Z}Lmﬂ ai(vi + U)since vy, ..., vy € U. It follows that vipe1 + U, ..., v+ U
form a basis of V/U and dim(V/U) = n - m = dim(V) — dim(U), as required. O
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To conclude this section let us show that the mere existence of a basis in a finite
dimensional vector space is enough to prove two important results about abelian groups
and finite fields.

Let p be a prime. An additively written abelian group A is called an elementary
abelian p-group if pa = 0 for all a in A, i.e., each element of A has order 1 or p. For
example, the Klein 4-group is an elementary abelian 2-group. The structure of finite
elementary abelian p-groups is given by the next result.

(8.2.16) Let A be a finite abelian group. Then A is an elementary abelian p-group if and
only if A is a direct sum of copies of Z.

Proof. The essential idea of the proof is to view A as a vector space over the field Z,,.
Here the scalar multiplication is the natural one, namely (i + pZ)a = ia where i €
Z, a € A. One has to verify that this operation is well-defined, which is true since
(i+ pm)a = ia + mpa = ia for all a € A. Since A is finite, it is a finite dimensional
vector space over Z,. By (8.2.14) A = A1 ®A, ®---® A, where each 4; is a I-dimensional
subspace; thus |4;| = p and A; = Z,. Conversely, any direct sum of copies of 7,
certainly satisfies pa = 0 for every element a and so is an elementary abelian p-
group. O

The second application is to prove that the number of elements in a finite field is
always a prime power. This is in marked contrast to the behavior of groups and rings,
examples of of which exist with any finite order.

(8.2.17) Let F be a finite field. Then |F| is a power of a prime.

Proof. By (6.3.9) the field F has characteristic a prime p and pa = 0 for all a € F. Thus,
as an additive group, F is elementary abelian p. It now follows from (8.2.16) that |F| is
a power of p. O

Exercises (8.2)

4 -5 1
(1) ShowthatX; = | 2|, X, = | 2|, X3 = | 3| form a basis of R?, and express the
1 -3 0]
elementary vectors E1, E, E5 in terms of X1, X5, X3.
[ 2 3 1 1
(2) Find a basis for the null space of the matrix | -3 1 4 -7].
121 0
(3) Find the dimension of the vector space M, ,(F) where F is an arbitrary field.
(4) Let vy, v, ..., v, be vectors in a vector space V. Assume that each element of V is
uniquely expressible as a linear combination of v1, v, . .., v,. Prove that the v;’s form

a basisof V.
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(5) Let B = {E1, E,, E3} be the standard ordered basis of R? and let

2 -1 1
B = of,| 2(,|1
0] 0] 1

Show that B’ is a basis of R? and find the transition matrices for the changes of bases
B' - Band B — B'.

(6) Let V be a vector space of dimension n and let i be an integer such that 0 < i < n.
Prove that V has at least one subspace of dimension i.

(7) The same as Exercise (8.2.6) with “subspace” replaced by “quotient space”.

(8) Let U be a subspace of a finite dimensional vector space V. Prove that there is a
subspace Wsuchthat V=Ue W.

(9) Let V be a vector space of dimension 2n and assume that U and W are subspaces of
dimensions n and n + 1 respectively. Prove that Un W # 0.

(10) Let the vectors vy, v, . . ., V;; generate a vector space V. Prove that some subset
of {vi,va,...,vn}isabasis of V.

8.3 Linear mappings

Just as there are homomorphisms of groups and of rings, there are homomorphisms of
vector spaces. Traditionally these are called linear mappings or transformations. Let V
and W be vector spaces over the same field F. Then a function

a: VoW

is called a linear mapping from V to W if the following rules are valid for all vi, v, € V
and a € F:
@) avi +v2) = a(vy) + a(vy);
(i) a(avq) = aa(vy).
If a is also bijective, it is called an isomorphism of vector spaces. Should there exist an
isomorphism between vector spaces V and W over a field F, then V and W are said to
be isomorphic and we write

VEW or V=W

Notice that a linear mapping is automatically a homomorphism of additive groups by
(i) above, so all results established for group homomorphisms may be carried over to
linear mappings. A linear mapping a : V — V is called a linear operator on V.

Example (8.3.1) Let A be an m x n matrix over a field F and define a function a : F* —
F™ by the rule a(X) = AX where X € F". Simple properties of matrices show that a is a
linear mapping.
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Example (8.3.2) Let V be an n-dimensional vector space over a field F and let B =
{vi,Vva2,..., vy} be an ordered basis of V. Recall that to each vector v in V there corre-
sponds a unique coordinate vector [v]g with respect to B.

Use this correspondence to define a function a : V — F" by a(v) = [v] 5. By simple
calculations we see that [u + v]s = [u]s + [v]s and [av]s = a[vs] where u,v € V,
a € F. Hence «a is a linear mapping. Clearly [v]s = O implies that v = 0; thus a is
injective and it is obviously surjective. The conclusion is that a is an isomorphism and

vEp
We state this conclusion as:

(8.3.1) If V is a vector space with dimension n over a field F, then V £ B, Thus two
finite dimensional vector spaces over F are isomorphic if and only if they have the same
dimension.

Here the converse statement follows from the observation that isomorphic vector spaces
have the same dimension.
An important way of defining a linear mapping is by specifying its effect on a basis.

(8.3.2) Let{vy,..., vy} be abasis of a vector space V over a field F and let wy, . .., wy
be any n vectors in another F-vector space W. Then there is a unique linear mapping
a:V — Wsuchthat a(v;) = wifori=1,2,...,n.

Proof. Letv € V and write v = Z?:l a;jvi, with a; € F. Define a functiona : V — W by
the rule

n
a(v) = Z a;wi.
i=1
Then an easy check shows that a is a linear mapping, and of course a(v;) = w;. If

a' : V. — W is another such linear mapping, then a’ = a; for a’(v) = Y, a;a’(v;) =
Y, aiwi = a(v). O

Our experience with groups and rings suggests it may be worthwhile to examine
the kernel and image of a linear mapping.
(8.3.3) Leta : V — W be a linear mapping. Then Ker(a) and Im(a) are subspaces of V

and W respectively.

Proof. Since a is a group homomorphism, it follows from (4.3.2) that Ker(a) and Im(a)
are additive subgroups. We leave the reader to complete the proof by showing that
these subgroups are also closed under scalar multiplication. O

Just as for groups and rings, there are isomorphism theorems for vector spaces.

(8.3.4) (First Isomorphism Theorem) If « : V — W is a linear mapping between vector
spaces over a field F, then V/Ker(a) £ Im(a).
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(8.3.5) (Second Isomorphism Theorem) Let U and W be subspaces of a vector space
over a field F. Then (U + W)W £ U/(U n W).

(8.3.6) (Third Isomorphism Theorem) Let U and W be subspaces of a vector space over
a field F such that U < W. Then (V/U)/(W/U) £ V/W.

Since the isomorphism theorems for groups are applicable, all one has to prove
here is that the functions introduced in the proofs of (4.3.4), (4.3.5) and (4.3.6) are linear
mappings, i.e., they act appropriately on scalar multiples.

For example, in (8.3.4) the function in question is 6 : V/Ker(a) — Im(a) where
6(v + Ker(a)) = a(v). Then

O(a(v + Ker(a)) = O(av + Ker(a)) = a(av) = aa(v) = ab(v + Ker(a)).

It follows that 0 is a linear mapping.
There is an important formula connecting the dimensions of kernel and image.

(8.3.7) Ifa : V — W is a linear mapping between finite dimensional vector spaces, then
dim(Ker(a)) + dim(Im(a)) = dim(V).

This follows directly from (8.3.4) and (8.2.15). There is an immediate application to
the null space of a matrix.

Corollary (8.3.8) Let A be an m x n matrix with rank r over a field F. Then the dimension
of the null space of Aisn —r.

Proof. Let a be the linear mapping from F" to F™ defined by a(X) = AX. Then Ker(a) is
the null space of A and it is readily seen that Im(a) is just the column space. By (8.2.9)
dim(Im(a)) = r, the rank of A, and by (8.3.7) dim(Ker(a)) = n - r. O

As another application of (8.3.7) we give a different proof of the dimension formula
for sum and intersection of subspaces — see (8.2.13).

(8.3.9) If U and W are subspaces of a finite dimensional vector space, then dim(U +
W) + dim(U n W) = dim(U) + dim(W).

Proof. By (8.3.5) (U + W)/W = U/(U n W). Hence, taking dimensions and applying
(8.2.15), we find that dim(U + W) - dim(W) = dim(U) - dim(U n W), and the result
follows. O

Vector spaces of linear mappings. It is useful to endow sets of linear mappings with
the structure of a vector space. Suppose that V and W are vector spaces over the same
field F. We will write

L(V, W)
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for the set of all linear mappings from V' to W. Define addition and scalar multiplication
in L(V, W) by the natural rules

(a+B)W) =a)+B(v), (a-a)v)=ala(v)),

where a, € L(V, W), v € V, a € F. It is simple to verify that a + § and a - a are linear
mappings. The basic result about L(V, W) is:

(8.3.10) Let V and W be vector spaces over a field F. Then:

(i) L(V, W) is a vector space over F;

(ii) if V and W are finite dimensional, then so is L(V, W) and
dim(L(V, W)) = dim(V) - dim(W).

Proof. We omit the routine proof of (i) and concentrate on (ii). Let {v1, ..., iy} and
{w1, ..., wy,} bebases of V and W respectively. By (8.3.2), fori=1,2,...,mandj =1,
2, ..., n, there is a unique linear mapping a;; : V — W such that
a (V ) W]' ifk=1i
H(V) = .
y 0 ifk#i

Thus a;; sends basis element v; to basis element w; and all other v;’s to 0. First we
show that the a;; are linearly independent in the vector space L(V, W).
Let a;; € F; then by definition of a;; we have for each k

(

Therefore Y|, ¥ ; ajja;; = 0 if and only if ay; = O for all j, k. It follows that the a;; are
linearly independent.

Finally, we claim that the a;; actually generate L(V, W). To prove thisleta € L(V, W)
and write a(vy) = Z}'zl aijw; where ay; € F. Then from the equation (x) above we see
thata =Y, Z;’zl ajjaij. Therefore the a;;’s form a basis of L(V, W) and dim(L(V, W)) =
mn = dim(V) - dim(W). O

n

Y. ajay)vi) = Y. Y. ag@i(v) = Y. agw;. *)
j=1i=1

1j=1 j=1

Mz

1

The dual space. If V' is a vector space over a field F, the vector space
V* =L(V,F)

is called the dual space of V; here F is regarded as a 1-dimensional vector space over F.
The elements of V* are linear mappings from V to F, which are called linear functionals
onV.

Example (8.3.3) Let Y € F” be fixed and define a : F* — F by the rule a(X) = Y'X
where Y7 is the transpose of Y. Then «a is a linear functional on F™.
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If V is an n-dimensional vector space over F,
dim(V*) = dim(L(V, F)) = dim(V)

by (8.3.10). Thus V, V* and the double dual V** = (V*)* all have the same dimension,
so these vector spaces are isomorphic by (8.3.1).
In fact there is a canonical linear mapping 6 : V — V**. Let v € V and define
0(v) € V** by the rule
O(v)(a) = a(v)
where a € V*. Thus 6(v) evaluates each linear functional on V at v. Regarding the
function 6, we prove:

(8.3.11) If V is a finite dimensional vector space, then 0 : V. — V** is an isomorphism.

Proof. In the first place 8(v) € V** forall v € V: indeed, ifa, 8 € V*,
o) (a+ B) = (a+ B)(v) = a(v) + B(v) = O(v)(a) + B(V)(B).

Also 6(v)(a- a) = (a- a)(v) = a(a(v)) = a(6(v)(a)) where a is a scalar.
Next for any a € V* and v; € V, we have

O(v1 +v2)(a) = a(vy +v2)

a(vi) +a(vz)
0(v1)(a) + 6(v2)(a)
= (0(v1) + 6(v2))(a),

which shows that 8(v1 + v;3) = 8(v1) + 8(v2). We leave the reader to verify that 6(a - v) =
a(6(v)) where a € F, v € V. Hence 0 is a linear mapping from V to V**.

Next suppose that 8(v) = 0. Then 0 = 8(v)(a) = a(v) for all a € V*. This can only
mean that v = 0: for if v # 0, then v can be included in a basis of V. Then by (8.3.2) we
can construct a linear functional a such that a(v) = 1r and other basis elements are
mapped by a to 0. It follows that 6 is injective.

Finally, dim(V) = dim(V*) = dim(V**) and also dim(V) = dim(Im(8)) since 6 is
injective. By (8.2.10) we have Im(6) = V**, so that 6* is an isomorphism. O

Representing linear mappings by matrices. A linear mapping between finite dimen-
sional vector spaces can be described by matrix multiplication, which provides us with
a concrete way of representing linear mappings.

Let V and W be vector spaces over a field F with respective finite dimensions
m > 0 and n > 0. Choose ordered bases for Vand W, say B = {v{,vs,...,Vy}and
C = {wq, wa, ..., wy} respectively. Now let a € L(V, W); then

n
a(vy) = Z ajjwj, i=1,2,...,m,
j=1
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where aj; € F. This enables us to form the n x m matrix over F
A = [aji],

which is to represent a. Notice that the ith column of A is precisely the coordinate
column vector of a(v;) with respect to the basis €. Thus we have a function

6 : L(V, W) = Mpn,m(F)

defined by the rule that column i of 8(a) is [a(v;)]e.
To understand how the matrix A = 6(a) reproduces the effect of a on an arbitrary
vector v =Y, b;v; of V, we compute

a(v) = ibi(a(vi)) = ibl(i ajiwj) _ i(.”’l ajibi)Wj.
i= = = =hE

Hence the coordinate column vector of a(v) with respect to C has entries Zﬁl ajib;, for
j: 19'-.,n,i-e.,itis
by

Al | =AN]s.
bm

Thus we arrive at the basic formula

[a(W)]e = Av]s = 0(a)[v]s.

Concerning the function 6 we prove:

(8.3.12) If V and W are finite dimensional vector spaces over a field F, the function
0 : L(V, W) > My, m(F) is an isomorphism of vector spaces.

Proof. In the first place 0 is a linear mapping. For, let a, 8 € L(V, W) and v € V; then
the formula above shows that

Oa+Plvls = [(a+BW)]e = [a(v) + BV)]e = [aW)]e + [BV)]e,

which equals

B()[vls + 0(B)[vlz = (B(a) + O(B))[v]z.

Hence 8(a + B) = 8(a) + 6(B), and in a similar fashion it may be shown that 6(a - a) =
a(f(a)) wherea € F.

Next if 8(a) = 0, then [a(v)]e = 0,s0 a(v) = Oforallv € Vand a = 0. Hence 6
is injective. If V and W have respective dimensions m and n, then L(V, W) =~ Im(6) ¢
Mp,m(F). But the vector spaces L(V, W) and My n(F) both have dimension mn — see
(8.3.10). Therefore Im(0) = My, (F) by (8.2.10) and 6 is an isomorphism. O
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Example (8.3.4) Consider the dual space V* = L(V, F), where V is an n-dimensional
vector space over a field F. Choose an ordered basis B of VV and use the basis {1¢} for V.
Then a linear functional « € V* is represented by an n-row vector, i.e., by X” where
X € F", according to the rule a(v) = XT[v]s. Thus the effect of a linear functional is
produced by left multiplication of coordinate vectors by a row vector, (cf. Example
(8.3.3)).

The effect of a change of basis. We have seen that any linear mapping between finite
dimensional vector spaces can be represented by multiplication by a matrix. However,
the matrix depends on the choice of ordered bases of the vector spaces. The precise
nature of this dependence will now be investigated.

Let B and C be ordered bases of respective finite dimensional vector spaces V
and W over a field F, and let a : V — W be a linear mapping. Then « is represented by
a matrix A over F where [a(v)]e = A[v]s. Now suppose now that two different ordered
bases B’ and €' are chosen for V and W respectively. Then a will be represented by
another matrix A’. The question is: how are A and A’ related?

To answer the question we introduce the transition matrices S and T for the respec-
tive changes of bases B — B’ and € — €' (see (8.2.12)). Thus foranyv € Vandw € W
we have

[vlz: =S[vlg and [w]e = T[w]e.
Therefore
[aW)]e = TlaW)]e = TA[vls = TAS [v]s,

and it follows that A’ = TAS™1. We record this conclusion in:

(8.3.13) Let V and W be non-zero finite dimensional vector spaces over the same field.
Let B, B' be ordered bases of V and C, €' ordered bases of W. Suppose further that
S and T are the transition matrices for the changes of bases B — B’ and ¢ — C'
respectively. If the linear mapping a : V — W is represented by matrices A and A’ with
respect to the respective pairs of bases (B, €) and (B', €), then A’ = TAS™1.

The case where a is a linear operator on V is especially important. Here V = W and
we cantake B = Cand B’ = @'. Thus S = Tand A’ = SAS™1,i.e., A and A’ are similar
matrices. Consequently, matrices that represent the same linear operator are similar.

The algebra of linear operators. Let V be a vector space over a field F and suppose
also that V is a ring with respect to some product operation. Then V is said to be an
F-algebra if, in addition to the vector space and ring axioms, the following law is valid:

a(uv) = (au)v = u(av)

forall a € F, u, v € V. For example, the set of all n x n matrices M, (F) is an F-algebra
with respect to the usual matrix operations.
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Now let V be any vector space over a field F; we will write

L(V)

for the vector space L(V, V) of all linear operators on V. Our aim is to make L(V) into an
F-algebra: it is already an F-vector space. There is a natural product operation on L(V),
namely functional composition. Indeed, if a1, a; € L(V), then a;a, € L(V) by an easy
check. We claim that with this product operation L(V) becomes an F-algebra.

The first step is to verify that L(V) is a ring. This is fairly routine; for example, if
aje L(V)andv e V,

ai(ay + a3)(v) = ar(ax(v) + a3(v)) = arax(v) + aja3(v),

which equals (a1 a2 + aya3)(v). Hence a1(az + a3) = a1 + aas.

Once the ring axioms have been verified, we have to check that a(a; a») = (aaq)ar =
ai(aay) for a € F. This is not hard to see; indeed all three mappings send v to
a(a1(az(v))). Therefore L(V) is an F-algebra.

A function a : A; — A, between two F-algebras is called an algebra isomorphism
if it is bijective and it is both a linear mapping of vector spaces and a homomorphism
of rings.

(8.3.14) Let V be a vector space with finite dimension n over a field F. Then L(V) and
M, (F) are isomorphic as F-algebras.

Proof. Choose an ordered basis B of V and let @ : L(V) — M, (F) be the function which
associates to a linear operator a the n x n matrix that represents a with respect to B.
Thus [a(v)]g = @(a)[v]s for all v € V. Clearly @ is bijective, so to prove that it is an
F-algebra isomorphism we need to establish @(a + f8) = @(a) + @(8), @(a-a) = a- D(a)
and @(af) = @(a)D(f).

For example, take the third statement. If v € V, then

D(ap)vlp = [aB(V)]s = D(@)[B(V)]z = P()(P(P)[v]s) = (P(@)D(B))[V]5.

Therefore @(af) = @(a)D(B). The other statements are dealt with in a similar fashion.
O

Thus (8.3.14) tells us in a precise way that linear operators on an n-dimensional
vector space over F behave in very much the same manner as n x n matrices over F.

Exercises (8.3)

(1) Which of the following functions are linear mappings?

() a:R; — Rwhere a([x1 x2 x3]) = \x} + X3 +x3;

(i) @ : My n(F) — Mp,m(F) where a(A) = AT, the transpose of 4;
(iii) a : M,(F) — F where a(A) = det(A).
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(2) A linear mapping a : R* — R3 sends [x1 x2 x3 x4]7 to [x1 — X2 + X3 — X4 2X1 + X3 —
X3 X2 — X3 + x4]7. Find the matrix which represents a when the standard bases of R*
and IR> are used.

(3) Answer Exercise (8.3.2) when the ordered basis {{1 1 1]7, [0 1 1]T, [0 0 1]T} of R3

is used, together with the standard basis of R*.
(4) Find bases for the kernel and image of the following linear mappings:

(i) a:F4 — Fwhere a maps a column vector to the sum of its entries;

(ii) a:R[t] — R[t] where a(f) = f’, the derivative of f;

(iii) a:R? — R?where a([xy]T) = [2x + 3y 4x + 6y]T.
(5) Prove that a linear mapping a : V — W is injective if and only if @ maps linearly
independent subsets of V to linearly independent subsets of W.
(6) Prove that a linear mapping a : V — W is surjective if and only if « maps generating

sets of V to generating sets of W.
(7) Let U and W be subspaces of a finite dimensional vector space V. Prove that there

is a linear operator @ on V such that Ker(a) = U and Im(a) = W if and only if dim(U) +
dim(W) = dim(V).

(8) Suppose that « : V — W is a linear mapping. Explain how to define a corresponding
“induced" linear mapping a* : W* — V*, Then prove that (af)* = f*a*.

(9) LetU Lv ﬂ W — 0 be an exact sequence of vector spaces and linear mappings.

(This means that Im(a) = Ker(8) and Im(8) = Ker(W — 0) = W, i.e., B is surjective).
Prove that the corresponding sequence of dual spaces and induced linear mappings
00— W+ ﬁ—» v 5L Uris exact, i.e., B* is injective and Im(B*) = Ker(a*). (For more
general results of this kind see (9.1.19)).

8.4 Eigenvalues and eigenvectors

Let a be a linear operator on a vector space V over a field F. An eigenvector of a is a non-
zero vector v of V such that a(v) = cv for some c € F called an eigenvalue. For example,
if a is a rotation in R3, the eigenvectors of a are the non-zero vectors parallel to the
axis of rotation and the eigenvalues are all equal to 1. A large amount of information
about a linear operator is carried by its eigenvectors and eigenvalues. In addition the
theory of eigenvectors and eigenvalues has many applications, for example to systems
of linear recurrence relations and systems of linear differential equations.

Let A be an n x n matrix over a field F. Define a to be the linear operator on F"
which sends X to AX. Then an eigenvector of a is a non-zero vector X € F" such that
AX = cX for some ¢ € F. We will call X an eigenvector and c an eigenvalue of the
matrix A.

Conversely, suppose we start with a linear operator a on a finite dimensional vector
space V over a field F. Choose an ordered basis B for V, so that a is represented by an
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n x n matrix A with respect to B and [a(v)]s = A[v]5. Let v be an eigenvector for a with
corresponding eigenvalue ¢ € F. Then a(v) = cv, which translates into A[v]3 = c[v]3.
Thus [v]3 is an eigenvector and ¢ an eigenvalue of A.

These considerations show that the theory of eigenvalues and eigenvectors can be
developed for either matrices or linear operators on a finite dimensional vector space.
We will follow both approaches here, as is convenient.

Example (8.4.1) Let D denote the vector space of infinitely differentiable real valued
functions on the interval [a, b]. Consider the linear operator « on D defined by a(f) = f’,
the derivative of the function f. The condition for f # O to be an eigenvector of a is that
f" = cf for some constant c. The general solution of this simple differential equation is
f = de® where d is a constant. Thus the eigenvectors of a are the functions de* with
d # 0, while the eigenvalues are all real numbers c.

Example (8.4.2) A linear operator a on the vector space C? is defined by a(X) = AX

where
A= [2 '1].
2 4

Thus a is represented with respect to the standard basis by the matrix A. The condition
X1

X2
This is equivalent to (cI, — A)X = 0, which asserts that X is a solution of the linear

system
c-2 1 x1| |0
-2 c-4]||x| |o]’
By (8.2.2) this linear system has a non-trivial solution [x, x]7 if and only if the deter-
minant of the coefficient matrix vanishes, i.e.,

for a vector X = [ ] to be an eigenvector of A (or a) is that AX = cX for some scalar c.

c-2 1‘

On expansion this becomes ¢ — 6¢ + 10 = 0. The roots of this quadratic equation are
c1=3+iandc, = 3 -iwherei = V-1, so these are the eigenvalues of A.

The eigenvectors for each eigenvalue are found by solving the linear systems
(c1I; —A)X =0and (caI, - A)X = 0. For example, in the case of ¢; we have to solve

(1+ix1+x2=0
-2x1+(-1+i)x =0
The general solution of this system is x; = g(—l + 1), xo = d where d is an arbitrary

scalar. Thus the eigenvectors of A associated with the eigenvalue c; are the non-zero
vectors of the form i
—1+i
dl z |.
1
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Notice that these, together with the zero vector, form a 1-dimensional subspace of C2.
In a similar manner the eigenvectors for the eigenvalue 3 — i are found to be the vectors

of the form )
_dsi

dl =2
i

where d # 0. Again these form with the zero vector a subspace of C2.

This example is an illustration of the general procedure for finding eigenvectors
and eigenvalues.

The characteristic equation. Let A be an n x n matrix over a field F and let X be a non-
zero n-column vector over F. The condition for X to be an eigenvector of A is AX = cX
or

(cl,-A)X =0,

where c is the corresponding eigenvalue. Thus the eigenvectors associated with c,
together with the zero vector, form the null space of the matrix cI,, — A. This subspace
is called the eigenspace of the eigenvalue c.

Next (cI,, - A)X = 0is a homogeneous linear system of n equations in n unknowns,
namely the entries of X. By (8.2.2) the condition for there to be a non-trivial solution of
the system is

det(cI, - A) = 0.

Conversely, if ¢ € satisfies this equation, there is a non-zero solution of the system and
c is an eigenvalue. These considerations show that the determinant

t-a;n -a2 - —ain

-a t-a - —a
det(tl, — A) = 21 22 2n

—dn1 —dn2 < t—app

plays a critical role. This is a polynomial of degree n in t with coefficients in F called
the characteristic polynomial of A. The equation obtained by setting the characteristic
polynomial equal to zero is the characteristic equation. Thus the eigenvalues of A are
the roots of the characteristic polynomial which lie in the field F.

One should keep in mind that A may well have no eigenvalues in F. For example,
the characteristic polynomial of the real matrix

0 1
-1 0
is t2 + 1, which has no real roots, so the matrix has no eigenvalues in R.

In general the eigenvalues of a linear operator or a matrix lie in the splitting field
of the characteristic polynomial — see (7.4). If F = C, all roots of the characteristic
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equation lie in C by the Fundamental Theorem of Algebra. Because of this we can be
sure that a complex matrix has all its eigenvalues in C.
Let us sum up our conclusions about the eigenvalues of matrices so far.

(8.4.1) Let A be an n x n matrix over a field F.

(i) The eigenvalues of A in F are precisely the roots of the characteristic polynomial
det(tI, — A) which liein F.

(ii) The eigenvectors of A associated with the eigenvalue c are the non-zero vectors in
the null space of the matrix cI, - A.

Example (8.4.3) Find the eigenvalues of the upper triangular matrix

apy di2 aiz -+ Qin
0 axy as - a
A= 3 n
0 0 0 - am

The characteristic polynomial of A is

t-ay;1 -aip; -aiz -+ —Ain
0 t-ax -axs -+ -—an

b
0 0 0 -+ t—apn

which equals (t — a11)(t — as3) - - - (t — ann). The eigenvalues of the matrix are therefore
just the diagonal entries ai1, az2, ..., Ann-

Example (8.4.4) Consider the 3 x 3 matrix

2 -1 -1
A=1-1 2 -1
-1 -1 0
The characteristic polynomial of A is
t-2 1 1
1 t-2 1|=£-4+t+6.
1 1 t

By inspection one root of this cubic polynomial is —1. Dividing the polynomial by
t + 1 using long division, we obtain the quotient t> — 5t + 6 = (t — 2)(t — 3). Hence
the characteristic polynomial factorizes completely as (¢t + 1)(t — 2)(t — 3) and the
eigenvalues of A are -1, 2 and 3.
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To find the corresponding eigenvectors, solve the three linear systems (-Is — A)X =
0, (2I3 - A)X = 0 and (315 — A)X = 0. On solving these, we find that the respective
eigenvectors are the non-zero scalar multiples of the vectors

1 1 1
1 9 1 I3 _1 3
2 -1 0

so that eigenspaces all have dimension 1.

Properties of the characteristic polynomial. Let us see what can be said about the
characteristic polynomial of an arbitrary n x n matrix A = [a;;] over a field F. This is

t-ai1 -ap -+ Qi

-a; t-ax; -+ -an
p(t) =

—an1 —an2 <o+ t—anpn

At this point recall the definition of a determinant as an alternating sum of n! terms,
each term being a product of n entries, one from each row and column. The term of
p(t) with highest degree in t arises from the product

(t-ay)(t—azp) - (t- ann)

and is clearly t". The terms of degree n — 1 are easily identified as they arise from the
same product. Thus the coefficient of "~ is —(a11 + @z + - -+ + @nn). The sum of the
diagonal entries of A is called the trace of A,

tr(A) =daiq1 +4az +---+ ann,

so the term in p(t) of degree n — 1 is —tr(4)¢" 1.
The constant term in p(t) is p(0) = det(-A) = (-1)"det(A). Our knowledge of p(t)
so far is summarized by the formula

p(t) = t" —tr(A)t" ! + -+« + (=1)" det(A).

The other coefficients in the characteristic polynomial are not so easy to describe,
but they are in fact expressible in terms of subdeterminants of det(A). For example, take
the case of "2, A term in t"~2 arises in two ways: from the product (t-a11)(t-az;) - - - (t-
ann) or from products like —aj,a-1(t — ass)--- (t — apn). So a typical contribution to
the coefficient of t"~2 is

apy  an
ay dax

(ar11a2; — arpaz1) =

From this one can see that the term of degree n — 2 in p(t) is t"~2 times the sum of all
the 2 x 2 sub-determinants of the form

aii  ajj
aji  ajj
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wherei < j.
In general it can be shown by similar considerations that the following is true.

(8.4.2) The characteristic polynomial of the n x n matrix A is
n . .
Z(_l)lditn—l
i=0

where d; is the sum of all the i x i subdeterminants of det(A) whose principal diagonals
are part of the principal diagonal of A.

Next let c1, c2, ..., Cy be the eigenvalues of A in the splitting field of its character-
istic polynomial p(t). Since p(t) is monic, we have

p(t) = (t—cy)(t=c2)--- (t—cn).

The constant term in this product is evidently (—~1)"c1cC; . . . cn, while the term in %1
has coefficient —(c1 + --- + ¢,). On the other hand, we found these coefficients to
be (-1)"det(A) and —tr(A) respectively. Thus we have found two important relations
between the eigenvalues and the entries of A.

Corollary (8.4.3) If A is a square matrix, the product of the eigenvalues equals det(A)
and the sum of the eigenvalues equals tr(A).

Let A and B be n x n matrices over a field F. Recall that A and B are similar over
F if there is an invertible n x n matrix S over F such that B = SAS~L. The next result
indicates that similar matrices have much in common.

(8.4.4) Similar matrices have the same characteristic polynomial. Hence they have the
same eigenvalues, trace and determinant.

Proof. Let A and S be nxn matrices over a field with S invertible. Then the characteristic
polynomial of the matrix SAS™! is

det(tI - SAS™) = det(S(¢tI - A)S™Y) = det(S) det(tI — A) det(S)™*
= det(tI - A).

(Here we have used the property of determinants, det(PQ) = det(P) det(Q)). The state-
ments about trace and determinant follow from (8.4.3). O

On the other hand, similar matrices need not have the same eigenvectors. Indeed
the condition for X to be an eigenvector of SAS~! with eigenvalue c is (SAS™1)X = cX,
which is equivalent to A(S™1X) = ¢(S~1X). Thus X is an eigenvector of SAS~! if and
only if S~1X is an eigenvector of A.



166 —— 8 Vectorspaces

Diagonalizable matrices. We now consider when a square matrix is similar to a diago-
nal matrix. This is an important question since diagonal matrices have much simpler
properties than arbitrary matrices. For example, when a diagonal matrix is raised to
the mth power, the effect is merely to raise each element on the diagonal to the mth
power, whereas there is no simple expression for the mth power of an arbitrary matrix.
Suppose we want to compute A™ where A is similar to a diagonal matrix D, with say
A = SDS™1. Then A™ = (SDS~1)™ = SD™S~1 after cancellation. Thus it is possible to
calculate A™ quite simply if we have explicit knowledge of S and D.

Let A be a square matrix over a field F. Then A is said to be diagonalizable over F if
it is similar to a diagonal matrix D over F, that is, there is an invertible matrix S over F
such that A = SDS! or equivalently D = S"1AS. We also say that S diagonalizes A.

The terminology extends naturally to linear operators on a finite dimensional
vector space V. A linear operator a on V is said to be diagonalizable if there is a basis
{vi, ..., vn}suchthat a(v;) = cijv; wherec; € F,fori =1, ..., n. Thus a is represented
by the diagonal matrix diag(cs, c2, ..., cy) with respect to this basis.

It is an important observation that if a matrix A is diagonalizable and its eigenvalues
are cy, ..., Cp, then A must be similar to the diagonal matrix with cq, ..., ¢, on the
principal diagonal. This is because similar matrices have the same eigenvalues and the
eigenvalues of a diagonal matrix are just the entries on the principal diagonal.

We aim to find a criterion for a square matrix to be diagonalizable. A key step in
the search is next.

(8.4.5) Let A be an nxn matrix overafield F andlet c4, . . ., ¢, be distinct eigenvalues of
A with associated eigenvectors X1, . .., X;. Then {X1, ..., X;} is a linearly independent
subset of F".

Proof. Assume the theorem is false; then there is a positive integer i such that {X1, ...,
X;} is linearly independent, but adjunction of the vector X;.; produces the linearly
dependent set {X1, ..., Xj, Xj;1}. Hence there are scalars d4, .. ., di;1, not all of them
zero, such that

di X1 +---+diX; +di1Xiz1 = 0.

Premultiply both sides of this equation by A and use the equations AX; = ¢;X; to get
c1di X1 + -+ + ¢idiX; + Cix1dis1Xiv1 = 0.

On subtracting c;,; times the first equation from the second, we arrive at the equation
(€1 - civ1)diX1 +-++(Ci = €41)diX; = 0.

Since X1, ..., X; are linearly independent, the coefficients (¢; - ¢;,1)d; must vanish.
But cq, ..., cis1 are all different, so it follows that dj = 0 forj = 1,...,i. Hence
diz1Xiy1 = 0 and d;;1 = 0, contrary to assumption, so the theorem is proved. O
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A criterion for diagonalizability can now be established.

(8.4.6) Let A be an n x n matrix over a field F. Then A is diagonalizable over F if and
only if A has n linearly independent eigenvectors in F™.

Proof. First of all assume that A has n linearly independent eigenvectors in F", say
X1, X5, ..., Xy, and let the associated eigenvalues be ¢y, C3, . . ., Cx. Define S to be the
n x n matrix whose columns are the eigenvectors; thus

S=[X1X2...Xnl.

The first thing to note is that S is invertible since its columns are linearly independent.
Forming the product of A and S in partitioned form, we find that

AS = [AX1 AX2 .. .AXn] = [C1X1 C2X2 Can],

so that
cc 0 O --- O
0 0O -~ 0
AS=[X1 X ... Xyl 2 - SD,
0 0 . e Cn
where D = diag(cq, c2, ..., Cp) is the diagonal matrix with diagonal entries c1, .. ., cx.
Therefore A = SDS™! and A is diagonalizable.

Conversely, assume that A is diagonalizable and S~1AS = D = diag(c1, ¢2, .. ., Cn).
Here the c¢; must be the eigenvalues of A. Then AS = SD, which implies that AX; =
ciX; where X; is the ith column of S. Therefore X1, X5, ..., X,, are eigenvectors of
A with associated eigenvalues c1, ¢, ..., cy. Since X1, X5, ..., X, are columns of
the invertible matrix S, they are linearly independent. Consequently A has n linearly
independent eigenvectors. O

Corollary (8.4.7) An n x n complex matrix with n distinct eigenvalues is diagonalizable.

This follows at once from (8.4.5) and (8.4.6). On the other hand, it is easy to find
matrices that are not diagonalizable: for example, the matrix

A= [1 1] .
0 1
Indeed, if A were diagonalizable, it would be similar to the identity matrix I,, since
both eigenvalues of A equal to 1. But then A = SI,S™! = I, for some S, a contradiction.
A feature of the proof of (8.4.6) is that it provides a method for finding a matrix S

which diagonalizes A. It suffices to find a largest set of linearly independent eigenvectors
of A; if there are enough of them, they can be taken to form the columns of the matrix S.
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Example (8.4.5) Find a matrix which diagonalizes
A= [2 _1] .
2 4

From Example (8.4.2) we know that the eigenvalues of A are 3 + i, so A is diagonal-
izable over C by (8.4.7). Also corresponding eigenvectors for A were found which form

the matrix
-1+ _1+i
S=| 2 2,
1 1

From the preceding theory we may be sure that

S1AS = 3+1i 0 .
0 3-i

Triangularizable matrices. It has been seen that not every complex square matrix is
diagonalizable. Compensating for this failure is the fact such a matrix is always similar
to an upper triangular matrix.

Let A be a square matrix over a field F. Then A is said to be triangularizable over F
if there is an invertible matrix S over F such that A = STS™! or equivalently S~1AS = T,
where T is upper triangular. It will also be convenient to say that S triangularizes A. Note
that the diagonal entries of the triangular matrix T will necessarily be the eigenvalues
of A. This is because of Example (8.4.3) and the fact that similar matrices have the same
eigenvalues. Thus a necessary condition for A to be triangularizable over F is that all
its eigenvalues belong to F. In fact the converse is also true.

(8.4.8) Asquarematrix A over afield F all of whose eigenvalues lie in F is triangularizable
over F.

Proof. We show by induction on n that A is triangularizable. If n = 1, there is nothing
to prove, so let n > 1. Assume the result is true for (n — 1) x (n — 1) matrices.

By hypothesis A has at least one eigenvalue ¢ in F, with associated eigenvector
X say. Since X # 0, it is possible to adjoin vectors to X to produce a basis of F", say
{X =X1,X5,...,Xy,}; here we have used (8.2.6). Left multiplication of the vectors of
F™ by A gives rise to linear operator a on F". With respect to the basis {X1, ..., Xy},
the linear operator a is represented by a matrix with the special form

Bl= C Az
0 A

where A, and A, are matrices over F and A; has n — 1 rows and columns. The reason
for the special form is that a(X;) = AX; = cX; since X; is an eigenvector of A with
associated eigenvalue c. The matrices A and B; are similar since they represent the
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same linear operator a. Suppose that in fact B; = SIlASl where S, is an invertible
n x n matrix.

Observe that the eigenvalues of A; are among those of B; and hence A, so they
are all distinct. By induction on n there is an invertible matrix S, with n — 1 rows and
columns such that B, = S£1A1$2 is upper triangular. Now write

1 0
S=S8 .
1[0 Sz]

This is a product of invertible matrices, so it is invertible. An easy matrix computation
shows that

1 0 1 0 1 0] (1 0
148 = Y\ = B .
STAS [o 521](51 Sl)[o 52] [0 S5t 7 o Sz]

From this we obtain

S_lAS _ 1 (_)1 c A2 1 0 _ C _Alez _ C AzSz -T
0 S;'|lo Aif[o S, 0 S;'4:S;| [0 B
The matrix T is upper triangular, so the theorem is proved. O

The preceding proof provides a method for triangularizing a matrix.

over C.

1
Example (8.4.6) Triangularize the matrix A = [

The characteristic polynomial of A is t2 — 4t +4, so both eigenvalues equal 2. Solving
(21, - A)X = 0, we find that all the eigenvectors of A are scalar multiples of X; = [1] .

Therefore by (8.4.6) the matrix A is not diagonalizable.
Let a be the linear operator on C? arising from left multiplication by A. Adjoin a

vector to X, to X1 to get a basis B, = {X1, X»} of C?: for example let X, = [(1)] Denote
by B1 the standard basis of C2. The change of basis B, — B; has transition matrix
S = [1 (1)], soS; =S51= [_1 (1)] is the transition matrix of the change of basis
B; — B,. Therefore by (8.3.13) the matrix that represents a with respect to the basis
B, is $1AS] = [(2) ;] = T.Hence A = S{'TS; = STS™! and S triangularizes A.

To conclude the chapter we show how to solve a system of linear recurrences by
using matrix diagonalization.

Example (8.4.7) In a population of rabbits and weasels it is observed that each year
the number of rabbits is equal to four times the number of rabbits less twice the number
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of weasels in the previous year. The number of weasels in any year equals the sum
of the numbers of rabbits and weasels in the previous year. If the initial numbers of
rabbits and weasels were 100 and 10 respectively, find the numbers of each species
after n years.

Let r, and w,, denote the respective numbers of rabbits and weasels after n years.
The information given translates into the two linear recurrence relations

{ Tni1 = 4rp — 2wy
Wnit =Tn + Wp

together with the initial conditions ro = 100, wo = 10. We have to solve this system of
linear recurrence relations for r, and wy,.
To see how eigenvalues enter into the problem, write the system of recurrences in

matrix form. Put X, =

r 4 -2 .
W" ] and A = [ 11 ] . Then the two recurrences are equivalent
n

to the single matrix equation
Xn+1 = AXn ’
100
10
calculate successive vectors X,; for X1 = AXo, X> = A?X, and in general X,, = A"Xj.
In principle this provides a solution to the problem. However, it involves calculating
powers of the matrix A. Fortunately A is diagonalizable since it has distinct eigenvalues

while the initial conditions assert that Xq = [ ] . These equations enable us to

. . 1 2 .
2 and 3. Corresponding eigenvectors are found to be [1] and [1] ; therefore the matrix

S= [1 i] diagonalizes A, and
S1AS = [2 O] =D.
0 3

It is now easy to compute powers since A" = (SDS™1)" = SD"S-1. Therefore X,, =
A"Xo = SD"S71X, and thus

N A s

. _[180:37-80.2"
"] 90-3"-80-2"|"

The solution to the problem can now be read off:

which leads to

rm=180-3"-80-2" and w, =90-3"-80-2".

Notice that r, and w, both increase without limit as n — oo since 3" is the domi-
nant term; however, lim,,_,oo(‘:,—';) = 2. The conclusion is that, while both populations
explode, in the long run there will be twice as many rabbits as weasels.
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Exercises (8.4)

(1) Find the eigenvectors and eigenvalues of the following matrices:

10 00
1 5 2 -l 2 2 00
[33];101;1030

4 45 0 1 -1 4

(2) Prove that tr(A + B) = tr(A) + tr(B) and tr(cA) = c tr(A) where A and Baren x n
matrices and c is a scalar.

(3) If A and B are n x n matrices, show that AB and BA have the same eigenvalues.
(4) Suppose that A is a square matrix with real entries and real eigenvalues. Prove that
each eigenvalue of A has an associated real eigenvector.

(5) A real square matrix with distinct eigenvalues is diagonalizable over R: true or
false?

(6) Let p(t) be the polynomial " + ay_1t" ! + an_»t" 2 +--- + ao over a field F. Show
that p(t) is the characteristic polynomial of the matrix

0O 0 .-+ 0 -ao
1 0 - 0 -a
o1 .- 0 -a
0O 0 -+ 1 -ap1

(This is called the companion matrix of p(t)):
(7) Find matrices which diagonalize the following matrices:

L s 1 2 -1
(a)[ ];(b) 1 0 1
33 4 -4 5

(8) For which values of a and b is the matrix [2 g] diagonalizable over C?

(9) Prove that a complex 2 x 2 matrix is not diagonalizable if and only if it is similar to

a matrix of the form [g Z] where b # 0.

(10) Let A be a diagonalizable matrix and assume that S is a matrix which diagonalizes A.
Prove that a matrix T diagonalizes A if and only if it is of the form T = CS where Cis a
matrix such that AC = CA.

(11) If A is a non-singular matrix with eigenvalues c1, . . ., ¢y, show that the eigenvalues
of A tarecyt, ..., c;l.

(12) Let a be a linear operator on a complex n-dimensional vector space V. Prove that
there is a basis {v1, ..., vs} of V such that a(v;) is a linear combination of vq, v,, ..., v;
fori=1,...,n.
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(13) Let T : P,(R) — P,(R) be the linear operator corresponding to differentiation.
Show that all the eigenvalues of a are zero. What are the eigenvectors?

(14) Letcy, . . ., cy be the eigenvalues of a complex matrix A. Prove that the eigenvalues
of A™ are CT, ..., cy where m is any positive integer.

(15) Prove that a square matrix and its transpose have the same eigenvalues.

(16) Use matrix diagonalization to solve the following system of linear recurrences:
{Xn+1 = 2xn + 10yy
Yn+1 = 2Xn + 3¥n

with the initial conditions x¢ = 0, yo = 1.



9 Introduction to modules

After groups, rings and vector spaces, the most useful algebraic structures are prob-
ably modules. A module is an abelian group on which a ring acts subject to natural
rules. Aside from their intrinsic interest as algebraic objects, modules have important
applications to linear operators, canonical forms of matrices and representations of
groups.

9.1 Elements of module theory

Let R be a ring and let M be an abelian group which is written additively. Then M is
said to be a left R-module if there is a left action of R on M, i.e., a map from R x M to M,
written (r, a) — r- a, (r € R, a € M), such that the following axioms are valid for all
r,seRanda,b € M:
i r-(a+b)=r-a+r-b;
(ii)) (r+s)-a=r-a+s-a;
(iii) (rs)-a=r-(s- a).
If the ring R has an identity element and if in addition
(iv) 1g-a=a,
for all a € M, the module M is called unitary. It will be a tacit assumption here that
whenever a ring R has identity, an R-module is unitary.

A right R-module is defined in the analogous fashion via a right action of R on M.
Sometimes it is convenient to indicate whether an R-module M is left or right by writing

RMOI'MR,

respectively
It is usually not necessary to study left and right R-modules separately since one
can always pass to modules over the opposite ring

ROPP

of R. This is the ring with the same underlying set and operation of addition as R, but
with the opposite multiplication, i.e.,

r«s=sr, (r,s €R).

It is easy to check that R°PP is a ring. Of course R = R°PP if R is a commutative ring. The
relation between left and right modules is made clear by the next result.

(9.1.1) Let R be a ring and M an R-module.
(1) If Mis aleft R-module, it is also a right R°PP-module with the right actiona -r = r- a.
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(ii) If M is a right R-module, it is also a left R°PP-module with the left actionr-a = a - r.

Proof. (i) The axioms for a right action have to be verified, the crucial one being
(a-r)y-s=(r-a)-s=s-(r-a)=(sr)-a=(rxs)-a=a-(r=s):
here * denotes the ring operation in R°PP. The proof of (ii) is similar. O

This result allows us to concentrate on left modules.

Elementary properties. The simplest consequences of the module axioms are collected
in the next result, which, as will usually be the case, is stated for left modules.

(9.1.2) Let M be a left R-module and let a € M, r € R and n € Z. Then:
(@) r-Om=0u;

(ii) Ogr-a=0u;

(iii) n(r- a) = (nr) - a = r - (na).

Proof. For (i) put a = Oy = b in module axiom (i): for (ii) put r = Og = s in axiom (ii).
The proof of (iii) requires a little more effort. If n > 0, the statements are quickly proved
by induction on n. For n = 0 they follow at once from (i) and (ii).

Next consider the case n = —1. The elements (-r) - a and r - (—a) both equal —(r - a)
since (-r)-a+r-a=(-r+r)-a=0r-a=0yandr-(-a)+r-a=r-(—a+a) =r-0Oy =0y

by (i) and (ii).
Finally, let n < 0. Then —n(r - a) = (-n)r - a = r - (—na). Take the negative of each
side and use the case n = -1 to get n(r - a) = (nr) - a = r - (na), as required. O

In future we will write O for both Og and 0.

Examples of modules. Next we list some standard sources of modules.

(i) Let R be an arbitrary ring. Define a left action of R on itself by using the ring product:
thusr-s =rs, (1, s € R). The ring axioms guarantee the validity of the module axioms.
In a similar way R can be made into a right R-module using the ring product. To
distinguish when the ring is being regarded as a left or a right module, we will often
write

RR and R R

respectively.

(ii) Let F be a field. Then a left F-module is simply a vector space over F since the vector
space axioms are just those for an F-module.

(iii) An abelian group A is a left Z-module in which the actionis n-a = na,n € Z, a € A.

Conversely, if A is a Z-module, the module actionis n - a = na. To see thisset r = 1
in (9.1.2)(iii), keeping in mind that A is a unitary module. Consequently, there is only
one way to make an abelian group into a Z-module.
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These examples show that the module concept is a broad one, encompassing rings,
abelian groups and vector spaces.

Bimodules. Let R and S be a pair of rings. An (R, S)-bimodule is an abelian group M
which is simultaneously a left R-module and a right S-module, and in which the left
and right actions are linked by the law

(r-a)-s=r-(a-s),
wherer € R,s € S, a € M. The notation
RMs

will be used to indicate an (R, S)-bimodule. For example, aring R is an (R, R)-bimodule
via the ring operations. Of course, if R is a commutative ring, R = R°PP and there is no
difference between a left R-module, a right R-module and an (R, R)-bimodule.

Submodules. Groups have subgroups, rings have subrings and vector spaces have
subspaces, so it is to be expected that submodules will play a role in module theory.
Let M be a left R-module. An R-submodule of M is a subgroup N of M which has
the additional property
aeN, reR = r-aehN.

Notice that N itself is an R-module. There is a corresponding definition for right modules.

Here are some standard examples of submodules.

(i) IfRisaring, the submodules of zR are the left ideals of R, while those of Ry are
the right ideals.

(ii) Every module has the zero submodule, containing only the zero element, and the
improper submodule, namely the module itself.

Submodules generated by subsets. Let R be aring and M a left R-module. It follows
quickly from the definition of a submodule that the intersection of a non-empty set of
submodules of M is itself a submodule. Now let X be a non-empty subset of M. There
is at least one submodule of M containing X, namely M itself. Thus we can form the
intersection of all the submodules that contain X, which is a submodule called the
submodule generated by X. It is evidently the smallest submodule of M containing X.

It is natural to ask what the elements of this submodule look like; recall that similar
questions arose for subgroups, subrings, ideals and subspaces. The answer in the case
of a ring with identity is given next.

(9.1.3) Let R be a ring with identity and M a left R-module. If X is a non-empty subset of
M, the submodule of M generated by X consists of all elements of the form

ri-X1+rx-Xp+---+rn-Xp

wherer;i €e R,xj € X,n > 0.
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Proof. Let N be the set of all elements of the formry - x; + 72 - X2 +---+ 1, - X, With r; €
R, x; € X, n > 0. (Note that when n = 0, the sum is to be interpreted as 0). It is an easy
verification that N is a submodule. Now X € N since x = 1 - x € N for all x € X. Hence
the submodule L generated by X is contained in N. On the other hand, N ¢ L, since
it is clear from their form that every element of N belongs to L. Therefore L = N. O

If R is a ring with identity and X is a subset of a left R-module, the notation
R-X

will be used to denote the submodule generated by X. (If R is a field, so that R-modules
are vector spaces, the notation used in (8.1) for R - X was (X)).

An R-module M is said to be finitely generated if it can be generated by a finite
subset X. An important special case is when X = {x}. In this situation, if R has an
identity, we write R - x for R - X; then M is called a cyclic R-module. For example,
the cyclic submodules of gR are the principal left ideals of R, i.e., those of the form
Rx={r-x|reR}.

Quotient modules and homomorphisms. Just as for groups, rings and vector spaces, it
is possible to define quotients of modules. Let N be a submodule of a left R-module M.
Since N is a subgroup of the abelian group M, the quotient M/N = {a + N | a € M},
consisting of all cosets of N in M, already has the structure of an abelian group. To
make M/N into a left R-module a left action must be specified. The natural candidate
is the rule

r-(a+N)=r-a+N, (ae M,r € R).

As usual when an operation is to be defined on a quotient structure, the question arises
as to whether it is well defined. Let b € a + N, sothat b = a + ¢ with ¢ € N. Then
r-b=r-a+r-cer-a+Nsincer-c e N.Hencer-a+ N =r-b+ N and the left action
has been well defined. The simple task of checking the validity of the module axioms is
left to the reader. The module M/N is the quotient module (or factor module) of M by N.

It is to be expected that there will be mappings between modules called module ho-
momorphisms. Let M, N be two left modules over aring R. An R-module homomorphism
from M to N is a homomorphism of abelian groups

a:M—->N

which has the additional property that a(r - a) = r - a(a) for r € R, a € M. Thus the
mapping a connects the module structures of M and N.

A standard example is the canonical homomorphism v from an R-module M to the
quotient module M/N where N is a submodule of M. This is defined by v(a) = a + N.
We already know from group theory that v is a group homomorphism. To show that it is
a module homomorphism simply observe that v(r-a) =r-a+N=r-(a+N) =r-v(a).
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(9.1.4) Let M and N be left modules over a ring R and let « : M — N be a module
homomorphism. Then Im(a) and Ker(a) are submodules of N and M respectively.

Of course group theory tells us that Im(a) and Ker(a) are subgroups of N and M. It
is just a matter of verifying that they are submodules, another simple task that is left to
the reader.

A module homomorphism which is bijective is called a module isomorphism. If
there is a module isomorphism between two R-modules M and N, they are said to be
R-isomorphic, in symbols

MEN.

It is an important observation that the inverse of a module isomorphism is also a module
isomorphism — see Exercise (9.1.4). Therefore isomorphism of R-modules is an equiva-
lence relation.

The isomorphism theorems for modules. Just as in group theory there are theorems
connecting module homomorphisms and quotient modules.

(9.1.5) (First Isomorphism Theorem) Let « : M — N be an R-module homomorphism.
Then the map 6 : M/Ker(a) — Im(a) defined by 6(a + Ker(a)) = a(a), (a € M), is an
isomorphism of R-modules.

(9.1.6) (Second Isomorphism Theorem) Let M and N be submodules of an R-module.

Then M + N and M n N are submodules and (M + N)/N S M/(M n N) via the map
a+Nw—a+MnN),(aeM).

(9.1.7) (Third Isomorphism Theorem) Let L, M, N be submodules of an R-module such

that L ¢ M < N. Then M/L is a submodule of N/L and (N/L)/(M/L) R N/M via the map
(a+L)+(M/L) — a+M, (a € N).

Proof. We know from (4.3.4), (4.3.5) and (4.3.6) that each of the specified maps is an
isomorphism of groups. To complete the proofs it is a question of showing that the
relevant maps are module homomorphisms. For example, take the case of (9.1.5). By
definition 6(r - (a + Ker(a)) = 0(r - a + Ker(a)) = a(r-a) = r-a(a) = r- 6(a + Ker(a)). In
a similar way (9.1.6) and (9.1.7) can be established. O

We mention, without writing down the details, that there is a module version of
the Correspondence Theorem — see (4.2.2). This theorem describes the submodules of
a quotient module M/N as L/N where L is a submodule of M containing N.

The structure of cyclic modules. Sufficient machinery has been developed to permit a
description of cyclic R-modules when R is a ring with identity.
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(9.1.8) Let R be a ring with identity.

(i) If Mis a cyclic left R-module, then M R rR/L where L is a left ideal of R.

(if) Conversely, if L is a left ideal of R, then gR/L is the cyclic left R-module generated by
1R + L.

Proof. Assume that M is cyclicand M = R - a where a € M. Define a function « :
rRR — M by a(r) = r - a. Check that a is an R-module homomorphism. For example, let
ri,r € Rythen a(ry - r) = a(rir) = (rir)-a=ry - (r-a) = ry - a(r). Also a is surjective
since each element of M has the form r - a = a(r) for some r € R. Set L = Ker(a) and
note that L is a left ideal by (9.1.4). Hence gR/L R Im(a) = M by 9.1.5. The converse
statement is obvious. O

The kernel of the function a in the proof of (9.1.8)(i) is the set {r € R | r - a = 0}: this
left ideal of R is called the annihilator of a in R and is denoted by

Anng(a).

Since cyclic left R-modules have been seen to correspond to left ideals of the ring
R, it is to be expected that module theory will be more complicated for rings with many
ideals. The simplest situation is, of course, for fields, which have no proper non-zero
ideals: in this case we are dealing with vector spaces over a field and every cyclic
module is a 1-dimensional space isomorphic with the field itself.

Direct sums of submodules. Just as for vector spaces, there is the notion of a direct
sum of submodules. Let M be a module with a family of submodules {M, | A € A}
Suppose that
Myn ) My =0
u#A

for all A € A. Then the M, generate their internal direct sum, which is written

b M.

AeA

This is a subgroup of M, as we know from (4.2), (where the multiplicative notation was
used). It is evidently also a submodule. We will mainly be concerned with the case
where A is finite. If A = {1, 2, ..., n}, we write the direct sum as

MioM o & M,.

It is also possible to form the external direct sum of a set of modules - see (4.2)
where external direct products of groups were defined. The commonest situation is
where there are finitely many modules {M;, M, ..., My}. The external direct sum of
these is the set product M; x M, x --- x M, where elements are added componentwise
and the action of the ring is on components. The external direct sum is also denoted
by My @ M, & --- @ My,: we will sometimes write a; @ a, & --- @ ap for (a1, aa, ..., an)
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to distinguish the direct sum from the set product. Also any external direct sum is
isomorphic with an internal direct sum - cf. the discussion for groups in (4.2).

External direct sums can be extended to the case where there are infinitely many
modules — see Exercise (9.1.13) below and also Exercises (4.2.13) and (4.2.14) for the
case of groups.

Finiteness conditions on modules. Modules are frequently studied in conjunction
with finiteness restrictions on their submodules.

(9.1.9) Let 8 be a non-empty set of submodules of a module. Then the following state-

ments about § are equivalent.

(i) The set 8 satisfies the ascending chain condition, i.e., there does not exist an infinite
ascending chain of submodules M1 ¢ M, C --- with M; € 8.

(ii) The set 8 satisfies the maximal condition, which asserts that every non-empty subset
of 8 has a maximal element, i.e., an element which is not properly contained in any
other element of 8.

The corresponding result for finiteness conditions on ideals in a ring was proved
in (6.4.1). The proof of (9.1.9) is very similar. A module for which the set of all submodules
satisfies the equivalent conditions in (9.1.9) is said to be noetherian. Notice that if R
is a ring, then gR is a noetherian R-module if and only if R is a left noetherian ring —
see (6.4).

The next result provides some insight into the nature of the noetherian condition
for modules.

(9.1.10) Let M be a module. Then M is noetherian if and only if every submodule of M is
finitely generated.

Again there was a similar result for rings and ideals (6.4.2); the proof of (9.1.10) is
nearly identical.

A noetherian module is always finitely generated, as (9.1.10) shows, but the con-
verse is false: finitely generated modules need not be noetherian — see Exercise (9.1.9).
Therefore the next result is of interest.

(9.1.11) Let R is a left noetherian ring with identity and M a finitely generated R-module.
Then M is noetherian.

Proof. By hypothesis there exist elements a;, az,...,axsuchthat M =R-a; +R -
a +---+R-ay.SinceR - a S rR/Anng(a) by (9.1.8) and gR is noetherian, we see that
R - a is a noetherian R-module. Thus the result is true when k = 1. Let k > 1 and argue
by induction on k; then N = R-a, +--- + R - ay is noetherian. Next M = R-a; + N
and M/N R ai/(R-ay) N N by (9.1.6), which is noetherian since R - a; is noetherian.
Finally, since M/N and N are both noetherian, M is noetherian by Exercise (9.1.10).
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This result provides many examples of noetherian modules. Recall from (6.4.5) that
a finitely generated commutative ring with identity is noetherian. Therefore by (9.1.11)
a finitely generated module over a finitely generated commutative ring with identity is
noetherian.

Bases and free modules. The concept of a basis of a vector space extends in a natural
way to modules. Let M be a left module over a ring R with identity. A non-empty subset
X of M is called an R-basis of M if the following hold:
(i) M=R-X,i.e., X generates M as an R-module.
(ii) X is R-linearly independent, i.e.,ifry -xq +ry-x2 ++--+ 1y - x) = Owith r; € R and
distinct x; € X, thenr; =r, =--- =1, =0.
It is easy to see that these properties taken together are equivalent to every element of
the module having a unique expression as an R-linear combination of elements of X:
cf. (8.2.5) and Exercise (8.2.4).
Unlike vector spaces, modules need not have bases. Indeed there are abelian groups
without non-trivial elements of finite order that have no bases.

Example (9.1.1) The additive group Q of rational numbers does not have a basis.

For suppose that Q has a basis X. If X contains two different elements ’r'l’—ll, ';'—22, then

m m
m2n1—1 - mlnz—z =0,
ny n»
which contradicts linear independence. Hence X has just one element x and Q = (x) =
Z.. But this is certainly wrong since Q = 2Q, whereas Z # 2Z.

Let R be a ring with identity and M a left R-module. If M has a basis X, then it
is called a free module on X. If R is a field, all non-zero modules are free since every
vector space has a basis, but, as has been seen, not every Z-module has a basis. Free
Z-modules are called free abelian groups.

We will investigate the properties of free modules next. Let M be a free R-module
with abasis X. Then M =}, .y R-xand also (R-x) N}, cx_y Ry = 0 by uniqueness of
expression as a linear combination. Hence M = D, x R - x. Next R - x is clearly a cyclic
module, soR - x = gR/L where L = Anng(x) by (9.1.8).If r € L,then0=r-x=0-x,
from which it follows by uniqueness of expression thatr = 0 and L = 0. Thus R-x R RR.
These conclusions are summed up in:

(9.1.12) Let R be a ring with identity and M a free R-module with a basis X. Then M =

D, x Mx where My R RR.

The significance of free modules in module theory becomes clear from the next
result, which shows that every module is a homomorphic image of a free module.

(9.1.13) Let R be a ring with identity and let M be a left R-module which is generated by
a subset X = {x3| A € A}. If F is a free left R-module with basis X = {%;| A € A}, thereis a
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surjective R-module homomorphism 0 : F — M such that 6(x;) = x) for all A € A. Thus
M 2 F/Ker(6).

Proof. If f € F, there is a unique expression f = ry - X, + 12 - Xp, + +++ + In - X3, with
ri € R, X), € X.Define 6(f) = r1-xa, + 72+ X3, +++-+In-Xa,. Then 6 is a surjective module
homomorphism from F to M. O

Next comes a useful property of free modules.

(9.1.14) Let M be a left R-module with a submodule N such that M/N is free. Then there
is a submodule F such that M = N & F and F X M/N.

Proof. Let X = {x) + N| A € A} be an R-basis of M/N and let F be the submodule of M
generated by all the elements x,. Certainly M = N + F. Suppose that f € Nn F. Then
f=r1-xp +---+ 1 xp, Where r; € R and the x;, are distinct. Hence

ri-(xa, +N)+---+1p-(xp, + N) =f+ N =0pyyn.

Since X is a basis of M/N, it follows that r; = O for all i and f = 0. Therefore NN F = 0
and M=NeoF. O

Finally, we address the question of the cardinality of a basis in a free module. Recall
that any two bases of a finite dimensional vector space have the same cardinal, which is
termed the dimension of the space. In general it is possible for a free module to contain
bases with different cardinalities. For present purposes the following positive result is
sufficient.

(9.1.15) Let M be a finitely generated free module over a commutative noetherian ring R
with identity. Then every basis of M is finite and any two bases have the same cardinality.

Proof. Since M is finitely generated, it can be generated by a finite subset of the basis.
Hence the basis is finite, say {x1, X2, . . ., Xp}. Since R is noetherian, there is a maximal
proper ideal S of R. Then K = R/S is a field by (6.3.7). Let N be the subgroup of M
generated by all elements of the form s - a where s € S, a € M. Then N is a submodule
and M = M/N is a K-vector space via the action (r + S) - (a + N) = r - a + N: here it is
necessary to check that this action is well defined.

Next we show that {x;+N|i =1, ..., n}isabasis of M. Clearly this subset generates
M, so it remains to establish K-linear independence. Suppose that 2111 (ri+D)-(xi+N) =
Oy where r; € R.Then Y, r; - x; € N, which shows that

n

n
Zrl--x,- = Zs,--xi
i=1 i=1
for some s; € S. Since the x; are linearly independent, it follows that r; = s; € S and
ri + S = Og. Thus the x; + N are linearly independent and therefore form a basis of
the K-space M. Hence n = dimg (M), which shows that all R-bases of M have the same
number of elements. O
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The cardinality of a basis in a free module F, when this is unique, is called the rank
of F, in symbols rank(F). A zero module is regarded as a free module of rank 0. For an
extension of (9.1.15) see (14.1.5).

Homomorphism groups. Let M and N be left modules over a ring R. The set of all
R-module homomorphisms from M to N is written

Hompg (M, N).

This set can be endowed with the structure of an abelian group in which the group
operation is defined as follows. If a, § € Homg(M, N), thena + § : V — W is given
by the rule (a + )(a) = a(a) + f(a) where a € M. It is a simple verification that
a+f = B+a e Homg(M, N). The identity element is the zero mapping and the negative
of a is —a where (—a)(a) = —(a(a)). The group axioms are quickly verified.

When R = Fis a field, Homg(V, W) = L(V, W) and Homg(V, V) = L(V) is the set of
linear operators on the F-vector space V. In particular Homp(V, W) is an F-vector space.
In general Homg (M, N) is not an R-module, but it can inherit a module structure from
M or N, as is seen from the next result.

(9.1.16) Let gkMs and g Nt be bimodules with respect to rings R, S, T as indicated. Then
Homg(M, N) is an (S, T)-bimodule in which the module actions of S and T are given by

(s-a)a)=a(a-s) and (a-t)(a) =a(a)-t
wherea e M, se S, teT.

Proof. We check the module axioms for the first action, leaving the second action
to the reader. Let « € Homg(M, N), aj,a € M,r € R,s € S;then (s- a)(a; + a;) =
a((ar + az)-s) = alar - s+az-s) = aar - s) + alaz - s) = (s- a)(ar) + (s - a)(az).
Also(s-a)(r-a) =a((r-a)-s)=a(r-(a-s)) =r-(a(a-s)) =r-((s-a)(a)). Hence
s-a € Homg(M, N).

Next it must be proved thats- (a; + a2) =S a1 +5-a2,(S1+S2)- @ =S1-a+Sy-
and s{ - (s2 - @) = (s1S2) - &, where s, s; € S, a,a; € Homg(M, N). Let us take the
third statement, leaving the others to the reader. If a € M, we have (s1 - (s; - a))(a) =
(s2-a)(a-s1)=a((a-s1)-s2) = ala-(s182)) = ((s152) - a)(a), as required.

Finally, we check the bimodule property. Let « € Homg(M, N), s € S, t € T; then
((s-a)-t)a)=((s-a)a)-t=(a(a-s))-t=(a-t)(a-s)=(s-(a-t))(a)foralla e M.
Therefore (s-a)-t=s-(a-t). O

Of course, if we only have gk Mg or g Nt, then Homg (M, N) is merely a left S-module
or a right T-module respectively.
Induced mappings. If a homomorphism between modules is given, it can lead to an
“induced homomorphism" between homomorphism groups.

(9.1.17) Let A, B, M be left modules over a ring R and let « : A — B be a module
homomorphism. Then the following are true.
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(i) There is a group homomorphism a, : Homgr(M,A) — Homg(M, B) such that
a.(0) = ab.
(ii) There is a group homomorphism a* : Homg(B, M) — Homg(A, M) such that
a*(¢) = pa.
Proof. Only (ii) will be proved. Let ¢ € Homg(B, M). Certainly a*(¢) = ¢pa is a function
from A to M. We check that it is an R-module homomorphism. Let a, a; € A and
r € R.Firstly a*(¢)(a1 + a2) = pa(ar + a2) = p(a(ar) + a(az)) = pa(a1) + pa(az) =
a*(¢)(ar) + a*(P)(az). Then (a*(P))(r - a) = pa(r-a) = ¢(r- a(a)) = r- (pa(a)) =
r-(a*(¢)(a)). Hence a*(¢) € Homg(A, M).
Finally, we prove that a* is a group homomorphism. Let ¢p; € Homg(B, M). Then
a*(p1 + ¢2) = (1 + Pp2)a = pra + Ppra = a* (1) + a*(¢2), as required. O

The induced mappings just defined have notable properties when applied to compos-
ites.

(9.1.18) Let A, B, C, M be left modules over aring Randleta : A — BandB : B — C
be R-module homomorphisms. Then the induced mappings satisfy (i) (Ba). = B.a. and
(i) (Ba)* = a*B*.

Proof. For example, to prove (ii) let ¢ € Homg(C, M). Then (Ba)*(¢p) = ¢p(Ba) =
(PpB)a = B*(P)a = a* (B (¢)) = a*B*(¢) and hence (Ba)* = a*B*. O

Exact sequences. An exact sequence of modules over a ring R is a chain of R-modules
and R-module homomorphisms
A a;
o A1 — A — A —

such that Im(a;_;) = Ker(a;) for all i. Here the chain can be finite or infinite in either
direction. We note some important types of exact sequences:

0438l candaa st coo.

In the first sequence exactness at A means that Ker(a) = 0, i.e., a is injective: in the
second exactness at C shows that 8 is surjective. The combination of the two types

0o-438Lc-o0

is called a short exact sequence: in this case A R Im(a) = Ker(B) and B/Ker(f3) 2.
The Hom construction has the critical property of preserving exactness of se-
quences on the left.

(9.1.19) (Left exactness of Hom) Let M be a left R-module where R is an arbitrary ring.
Then the following hold.
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@If0—- A 4B ﬂ C is an exact sequence of left R-modules, the induced sequence of
abelian groups and homomorphisms

0 — Homg(M, A) % Homg(M, B) 55 Homg(M, C)

is exact.
(i) IfA 4B ﬂ C — 0is an exact sequence of left R-modules, the induced sequence of
abelian groups and homomorphisms

0 — Homg(C, M) *> Homg(B, M) % Hompg(A, M)

is exact.

Proof. Only (i) will be proved, the proof of (ii) being similar. Firstly, &, is injective. For
suppose that a.(0) = 0, i.e., a8 = 0. Since a is injective, it follows that 8 = 0 and hence
the sequence is exact at Homg(M, A).

Now for exactness at Homg (M, B), i.e., Ker(8.) = Im(a.). Since Im(a) = Ker(f3, we
have B.a. = (Ba). = 0. = 0 by (9.1.18). Hence Im(a..) < Ker(B.). Next let ¢ € Ker(8..),
so we have 0 = 8.(¢p) = f¢. If m € M, then B¢p(m) = 0, so ¢p(m) € Ker(f) = Im(a).
Hence ¢(m) = a(a) for some a € A. In fact the element a is unique: for, if also ¢(m) =
a(a'), then a = a’ by injectivity of a. This allows us to define unambiguously a function
0 : M — A by 8(m) = a where ¢(m) = a(a). It is easy to see that 6 is an R-module
homomorphism. Next (a.(0))(m) = a8(m) = a(a) = ¢(m) for all m € M. Therefore
a.(0) = ¢ and ¢ € Im(a..), so that Ker(8.) = Im(a.), as was to be proved. O

Exercises (9.1)

(1) Let L, M, N be submodules of an R-module such that N ¢ M. Prove the following
statements.

(i) (LnM)/(LnN)is R-isomorphic with a submodule of M/N.

(i) (L + M)/(L + N) is R-isomorphic with a quotient of M/N.
(2) Let L, M, N be submodules of an R-module such that Nc M.If L + M = L + N and
LnM=LnN, prove that M = N.

(3) Let X be anon-empty subset of an R-module M. If the ring R does not have an identity
element, what is the general form of an element of the submodule of M generated by
X?

(4)Ifa : M — N is a module isomorphism, show that ™! : N — M is also a module
isomorphism.

(5) State and prove the Correspondence Theorem for modules.

(6) Let R be a commutative ring with identity. Prove that R is a field if and only if every
non-zero cyclic R-module is isomorphic with R.
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(7) Let R, Sberings and let g M be a bimodule as indicated. If R has an identity element,
prove that Homg(rR, rMs) 3 M.
(8) Prove that Homg (-, M) is left exact, i.e., establish (9.1.19)(ii).

(9) Give an example of a finitely generated module which is not noetherian. [Hint: if R
is a ring with identity, then gR is a finitely generated R-module].

(10) Let M be a module with a submodule N. If N and M/N are noetherian, prove that
M is noetherian.

(11) Let M be an R-module with a submodule N such that M R M/N. If M is noetherian,
prove that N = 0.

(12) Let u, v be elements of a PID R such that gcd{u, v} = 1. Prove that R/Ru & R/Rv £
R/Ruv. Extend this result to n mutualy relatively prime elements u1, us, ..., Uy.

(13) Following Exercises (4.2.13) and (4.2.14), explain how to define the unrestricted
and restricted direct sums of an infinite set of modules.

(14) An exact sequence of R-modules and homomorphisms 0 — A 4B ﬁ» C—0is
said to split if there is a module homomorphism y : C — B such that fyis the identity

map on C. Prove that in this event B = Im(a) & Im(y) £a o C.

(15) Prove that an exact sequence 0 - A — B — F — 0 always splits if F is a free
module.

(16) Prove that the exact sequence 0 — Z — Q — Q/Z — 0 in which all the maps are
the natural ones does not split.

9.2 Modules over principal ideal domains

In this section we restrict attention to modules over commutative rings. The main
objective is to determine the structure of finitely generated modules over PID’s. This is
one of the central results of abstract algebra and it has applications to finitely generated
abelian groups, linear operators on finite dimensional vector spaces and canonical
forms of matrices.

Torsion elements. Let R be a commutative ring with identity and let M be an R-module.
Recall that we need not distinguish between left and right modules. An element a of M
is called an R-torsion element if there exists r # 0 in R such that r - a = 0. Equivalently,
the annihilator Anng(a) is a non-zero ideal of R. If every element of M is a torsion
element, M is called an R-torsion module. On the other hand, if O is the only torsion
element of M, the module is said to be R-torsion-free. (The terminology comes from
topology).

For example, a torsion element of a Z-module, i.e., an abelian group, is an element
of finite order and a torsion-free Z-module is an abelian group in which every non-trivial
element has infinite order.
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(9.2.1) Let R be an integral domain and M an R-module. Then the torsion elements of M
form a submodule T, the torsion submodule, such that M/T is torsion-free.

Proof. Let a and b be torsion elements of M; thus there exist r, s # 0 in R such that
r-a = 0 = s-b. Since Ris anintegral domain, s # 0. Now rs-(a+b) = s-(r-a)+r-(s-b) = 0,
which showsthata +b € T. Nextletu € R;thenr-(u-a)=u-(r-a)=u-0=0,so
u-a € T.Hence T is a submodule.

Now suppose that a + T is a torsion element of M/T.Thenr-(a+T) =Opyr =T
for some r # O0in R, thatis, r- a € T. Therefore s - (r- a) = 0 for some s # 0 in R. Hence
(sr)-a =0andsr # 0, from which it follows thata e Tanda+ T = T = Oyyr. O

p-Torsion modules. Next the concept of a torsion module will be refined. Let p denote
an irreducible element of an integral domain R. An element a of an R-module M is
termed a p-torsion element if p' - a = 0 for some i > 0. If every element of M is p-torsion,
then M is called a p-torsion module.

(9.2.2) Let M be a module over a principal ideal domain R and let p be an irreducible

element of R. Then the following statements are true.

(i) The p-torsion elements form a submodule My, of M, (called the p-torsion submod-
ule).

(ii) IfRis a principal ideal domain, a non-zero element a in M is a p-torsion element if
and only if Anng(a) = (p') for some i > 0.

Proof. The proof of (i) is a simple exercise. As for (ii), let I = Anng(a); then I = (s)
where s € R is a non-zero, non-unit, since R is a PID. If a is a p-torsion element, pi € (s)
for some j > 0 and hence s divides p’. Since R is a UFD by (7.3.2), it follows that s = piu
where 0 < i < j and u a unit of R. Therefore I = (s) = (p?). The converse is clear. O

The first really significant result about torsion modules is:

(9.2.3) (The Primary Decomposition Theorem) Let M be a torsion module over a princi-
palideal domain R and let P be a complete set of irreducible elements for R. Then M is
the direct sum of the p-torsion components M, for p € P.

Proof. Let 0 # a € M. Since M is a torsion module, there exists r # 0 in R such that
r-a = 0. Note that r cannot be a unit of R since otherwise a = 0. Write r = up{'p5? - -- p3*
where the p; are distinct elements of P, e; > 0 and u is a unit of R. Let r; denote the
product that remains when the factor pf” is deleted from r. Then rq, 1>, ..., ry are
relatively prime since they have no common irreducible factors. By (7.2.3) applied
repeatedly, there exist s; € R such that rys; + 1282 + --- + riSg = 1. Consequently
a=1.a=(ris1)-a+(r:s2)-a+-- -+(rksk)-a.Nowpl.e"-((ris,-)-a) = (sipfir,-)-a = s;(r-a) =0.
Hence (r;s;) - a € Mp,, from which it follows that M is the sum of the submodules M,
with p € P.

To complete the proof it must be shown that the sum is direct. Suppose that b €
Mp N ¥ gep_ipy Mg- Then p™ - b = 0 for some m > 0 and also there is an expression
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b =bi+by+ -+ bewith b; € My, and g; € P - {p}. Thus q;"" - b; = 0 for some
m; > 0, and hence g - b = 0 where g = ¢} 5" --- g, Since none of the g; can equal p,
the elements g and p™ are relatively prime and hence there exist u, v € R such that
p™u + qv = 1. Therefore

b=1-b=@pM™u+qv)-b=u-(p™-b)+v-(q-b)=0,
and it follows that Mp N ¥, _(»y Mq = 0, so the sum is direct. O

In essence this theorem reduces the study of torsion modules over a PID to the case
of p-torsion modules.

Submodules of free modules. Before we can proceed further with the study of finitely
generated modules over PID’s, we need to gain a better understanding of free modules.
As a first step we consider submodules of free modules and show these are also free.
For simplicity we will discuss only free modules of finite rank, although the results are
true in the infinite case as well.

(9.2.4) Let S be a submodule of a finitely generated free module F over a principal ideal
domain R. Then S is a free module with rank less than or equal to the rank of F.

Proof. By hypothesis F has finite rank, say r. If S = 0, it is free with rank 0, so we can
assume that S # 0 and thus r > 0. Suppose first that r = 1, so that F X R Identifying F
with R, we see that that S is an ideal of R and thus S = (s) for some s, since R is a PID.
The assignment x — xs, (x € R), determines a surjective R-module homomorphism
from R to S. It is also injective because R is a domain, i.e., it is a module isomorphism
and S s R. Thus S is a free module of rank 1.

Next assume that r > 1 and let {x1, x>, . .., x;} be a basis of F. Define F; to be the
submodule of F generated by x1, X2, . . ., Xj, SO we have the chain of submodules of F

O=FycF,cF,c---cF,=F.

Clearly F; is free with basis {x1, X2, .. ., x;} and rank i. Define S; = S N F;, a submodule
of F; then there is a chain of submodules0 = Sy € S; €S, €--- € S, = S. By (9.1.6)

R
Si+1/Si =SNFiy1/SNFi = (SN Fiy1) + Fi)/Fi € Fiq/Fi.

Since F;.1/F; £ R, either S; = Si,1 or Si+1/S; £R by the rank 1 case. From (9.1.14) we
obtain S;,1 = S; ® Tj,1, from which it follows that S = Ty ® T> & --- ® T,. In addition
Ti1 £ Si+1/Si and hence either T;.1 = 0 or Tj;q £ R. Therefore S is a free module with
rank at most r. O

An important consequence of the last result is:

Corollary (9.2.5) Let R be a principal ideal domain and let M be an R-module which can
be generated by n elements. If N is a submodule of M, then N can be generated by n or
fewer elements.
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Proof. By (9.1.13) we have M R F /L where F is a free module of rank n and L is a
submodule. By the Correspondence Theorem for modules, N R S/L for some submodule
S of F containing L. By (9.2.4) S can be generated by n or fewer elements, from which it
follows that N also has this property. O

We are now equipped with sufficient knowledge of free modules over PID’s to
determine the structure of finitely generated, torsion-free modules.

(9.2.6) Let M be a finitely generated torsion-free module over a principal ideal domain R.
Then M is a free module.

Proof. We can assume that M # 0. Suppose that M is generated by non-zero elements
ai,a,...,ap.Ifn=1,thenM =R -a; and M £ R/Anng(a;) by (9.1.8). However,
Anng(a;) = 0 since a; # 0 and M is torsion-free. Hence M £ R and M is a free module
of rank 1.

Let n > 1 and use induction on n. For convenience let us write a = a;. Denote by
N/R - a the torsion-submodule of M/R - a. By (9.2.1) the module M/N is torsion-free, and
clearly it can be generated by n — 1 elements. Therefore by induction hypothesis M/N
is free and (9.1.14) shows that there is a submodule L such that M = N @ L; moreover,
Lim /N, so L is free. Thus it is enough to prove that N is a free module.

By (9.2.5) N can be finitely generated, say by b1, ba, ..., by. Since b; € N, there
existsr; # Oin Rsuch thatr;-b; € R-a. Writingr =ryr,---r, # O,wehaver-b; e R-a
fori=1,2,...,k whichimpliesthatr-N cR-a.ButR-a S R since Anng(a) = 0, so
r- N is free by the case n = 1. Finally, N R . N via the map b — r- b and consequently
N is a free module. O

Corollary (9.2.7) Let M be a finitely generated module over a principal ideal domain R
and let T be the torsion submodule of M. Then M = T & F where F is a free module of
finite rank.

Proof. By (9.2.1) M/T is torsion-free and it is evidently finitely generated. Hence M/T is
free by (9.2.6). From (9.1.14) we deduce that M = T & F where F Em /T,so Fisfree. O

Combining (9.2.7) with the Primary Decomposition Theorem (9.2.3), we see that
the remaining obstacle to determining the structure of finitely generated modules over
a PID is the case of a finitely generated p-torsion module. This is overcome in the next
major result.

(9.2.8) Let M be a finitely generated module over a principal ideal domain R. Assume
that M is a p-torsion module for some irreducible element p of R. Then M is a direct sum
of finitely many cyclic p-torsion modules.

Notice that by (9.1.8) and (9.2.2) a cyclic p-torsion R-module is isomorphic with
R/(p!) for some i > 0. Thus (9.2.8) shows that the module M is completely determined
by certain powers of irreducible elements of R.
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The proof of (9.2.8) is one of the harder proofs in this book. The reader is advised
to look out for the main ideas behind the proof and try not to get bogged down in the
details.

Proof of (9.2.8). We can suppose that M # 0; let it be generated by non-zero elements
b1, by, ..., bx. Then pé - b; = 0 where e; > 0. Let e be the largest of the e;, so that
p¢ - b; = 0 for all i and thus p® - M = 0. Choose e to be the smallest positive integer
with this property. Hence there exists a € M such that p¢1.a # 0, and thus Anng(a) =
(p®) = Anng(M).

The main step in the proof is to establish the following statement.

For any a € M such that Anng(a) = (p¢) = Anng(M), the cyclic submodule R - a is
a direct summand of M. (%)

Let us assume the statement (x) is false: a series of contradictions will then en-
sue. By (9.2.5) every submodule of M is finitely generated and hence M is noetherian
by (9.1.10). We claim that M contains a submodule Mo which is maximal subject to
having the following properties:
(i) M = M/Mj has an element @ such that Anng(a) = (p®) = Ann(M);
(i) R-aisanota direct summand of M.

Certainly there are submodules with these properties, for example the zero submodule
qualifies. The maximal condition on submodules guarantees that there is a maximal
one. Since we are only looking for a contradiction, we can just well work with the
module M: thus we will assume that Mo = 0 and M = M. Consequently (+) is true for
every proper quotient of M, but false for M itself.

Suppose first that there exists b € M — R - a such that p- b = 0. Notice that R- bisa
module over the field R/(p) since p - b = 0; thus it is a 1-dimensional vector space over
R/(p). Therefore (R - a) n (R - b), being a subspace of R - b, is either 0 or R - b. In the
secondcaseR-b € R-aand b € R-a, contrary to the choice of b. Thus (R-a)n(R-b) = 0.
Next p¢~1.(a+R-b) = p®1.a+R-b,which cannot equal Oy/r.p, since otherwise
p¢l.ae(R-a)n(R-b) = 0, another contradiction. Therefore p¢~*-(a+R-b) # Op/r.p
and Anng(a + R - b) = (p®) = Anng(M/R - b). This means that the module M/R - a and
the element a + R - a satisfy the hypotheses of (x) above. Since M/R - b is a proper
quotient of M, there is a direct decomposition M/R-b = R-(a+ R -b) ® N/(R - b).
Consequently M = (R-a)+ N, while(R-a)nN<c (R-a)n(R-b)=0andM=R-aeN,
contradicting the fact that (x) is false for M.

From the discussion of the previous paragraph, we conclude that R - a contains all
elements b of M such that p-b = 0. Let c € M—(R-a) be chosen such that Anng(c) = (p")
with k minimal. Then 1 < k < e since p - ¢ cannot equal 0. Next 0 = p*.c = p*1.(p-0),
and by minimality of k we have p - ¢ € R - a: now write p - ¢ = r - a with r € R. Thus
0=pk.c=pct.(p-c)=p*t.(r-a) = (p*1r) - a, from which it follows that p®
divides p*~1r. Since k - 1 < e, we deduce that p divides r. Write r = pr’ with ' € R.
Thenp-c=r-a=(pr')-aandhencep-(c-r'-a)=0.Consequentlyc-r'-aeR-a
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and hence c € R - a. This contradiction finally establishes the truth of the statement (*)
above.

From this point it is but a short step to finish the proof. Writing a; for a, we have
shown that M = R - a; ® M; for some finitely generated submodule M;. Either M; = 0,
in which event M = R - a; and we are done, or else M; # 0 and the same argument may
be applied to M, yielding M1 =R-a, @ M and M = R-a; @ R - a; ® M, for a suitable
element a, and finitely generated submodule M. The argument may be repeated if M,
is non-zero, and so on. Because the ascending chain condition is valid in the noetherian
module M, we will eventually reach a direct decomposition M = R-a; ®R-a,®---®R-ay,
and the theorem is proved. O

The Structure Theorem for finitely generated modules over a PID can now be stated.

(9.2.9) Let M be a finitely generated module over a principal ideal domain R. Then M is
the direct sum of finitely many cyclic R-modules. More precisely

M=FeMioM>,®---&Mj
where F is a free module of finite rank r > 0 and
M;=Mi1eMQ2)e---oMt;),i=1,2,...,k,

where M;(j) is the direct sum of n;; isomorphic copies of R/(p’l:), G=1,2,...,¢),
njj > 0, nj; > 0 and the p; are distinct elements in a complete set of irreducible elements
forR.

Proof. From (9.2.7) we have M = F @ T where T is the torsion submodule of M and F
is a finitely generated free module. Next T is finitely generated since M is noetherian,
soby (9.23) T = M; ® M, & - -- ® My where M; # O is the p;-torsion submodule of M
and the p; are distinct elements in a complete set of irreducibles. Finally, by (9.2.8) M;
is a direct sum of cyclic p;-torsion modules each of which is isomorphic with some
R/ (p’i). By grouping together isomorphic cyclic modules in the direct sum, we obtain
the desired result. O

While the last theorem gives a clear picture of the structure of the module M, it
leaves a natural question open, namely, what is the significance of the data r, k, p;, ¢,
n;;? The module M will usually have many direct decompositions of the type in (9.2.9),
so the question arises as to whether different sets of data could arise from different
decompositions. In other words we are asking if 7, k, p;, ¢;, n;; are true invariants of
the module M. The answer is supplied by the result that follows.

(9.2.10) Let M be a finitely generated module over a principal ideal domain R and
suppose that M has two direct decompositions into cyclic submodules of the type in (9.2.9),

M=FeM,eM,o---oMy=FoM,oM, ®---0& M,

with corresponding data r, k, pi, ¢;, ni; and ¥, k, pi, i, nij. Thenr = 7,k = k,p; =
Di, €i = i, nij = nyj, after possible reordering of the M;.
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Proof. In the first place the torsion submodule of M is evidently

T=MioM;&---oMy=Myo M & & M;.

Hence F 2 M /T 2 Fand by (9.1.15) we deduce that r = 7. Also the p; and p; are the
irreducible elements with non-trivial torsion components in M. Thus k = k and the
pi can be relabelled so that p; = p;. Consequently we can assume that M itself is a
p-torsion module for some irreducible element p, and that

M=M1)eMQ2)®---& M) =M1 eMR2)e---&M®),

where M(j) and M(j) are direct sums of n;j and 7; copies of R/ (p) respectively. Note
that ng, 71 > 0. Our task is to prove that nj = fij and € = 2.

We introduce the useful notation M[p] = {a € M | p - a = 0}: notice that M[p] an
R-submodule of M, indeed it is a vector space over the field R/(p). Observe also that
p™ - R/ X R/ ™) if m < j, while p™ - (R/(p)) = 0if m > j.

A consequence of these observations is that p™ - M(j) = 0 if m > j and p™ - M(j) is
the direct sum of n; copies of R/(p"~™) if m < j. Therefore (p™ - M)[p] is an R/(p)-vector
space with dimension np1 + np42 + - -+ + ne. Of course, the same argument may be
applied to the second direct decomposition. Now clearly (p™ - M)[p] depends only on
the module M, not on any particular direct decomposition of it. Therefore, on equating
dimensions, we obtain the system of linear equations

M1 + Mma2 000+ Mg = Mped + a2 + 000 + 1

form = 1,2,....Since ng, fi; > 0, it follows that £ = €. Back solution of the linear
systemyields n; = nj, forj=1,2,...,¢. O

Elementary divisors and invariant factors. If M is a finitely generated module over a
PID R, the invariants p} for which R/(p)) is isomorphic with one of the direct sum-
mands of M in (9.2.9) are called the elementary divisors of M. The torsion submodule
is determined by the elementary divisors together with their multiplicities. The ele-
mentary divisors are invariants of the module and do not depend on a particular direct
decomposition.

Let us suppose that the elementary divisors are arranged to form a rectangular

array as shown below,
ri T2 e

Dy bq O 2
p;u pgzz . p;ze
p;kl pl:kz . kae

where 0 < rj1 < rjp <--- < rjp, at least one element in each row and column is different
from 1, and ¢ is the maximum of ¢4, ¢>, ..., £x. Here in order to ensure that all the
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rows of the array have the same length, it may be necessary to introduce several 1’s at
the beginning of a row.
Now define

rj 1 Tkj .
Sj =p1”p22’ ...pk"’, j=1,2,...,¢,
the product of the elements in column j. The ring elements s1, S, . . . , S¢, Which cannot
be units, are called the invariant factors of M. These are also invariants of the module
since they are expressed in terms of the elementary divisors. The invariant factors have
the noteworthy divisibility properties

Splsa|---1se

since rjj < rij1.

We remark that if u, v € R are relatively prime, then R/(u) ® R/(v) £ R/(uv),
which is Exercise (9.1.12). This observation allows us to combine all the cyclic modules
associated with entries in the jth column of the array of elementary divisors into a
single cyclic submodule R/(s;). In this way we obtain an alternative form of (9.2.9).

(9.2.11) Let M be a finitely generated module over a principal ideal domain R. Then
MZF®R/(s1)®R/(s2) @ ®R/(s¢)

where F is a free module of finite rank and the s; are the invariant factors of M.

Here is an example with R = Z to illustrate the procedure for finding the invariant
factors when the elementary divisors are known.

Example (9.2.1) Consider the finite abelian group
A =Zz€BZz®Zz®Z3$Z5 EBZ52.

The elementary divisors of A are quickly identified from the direct decomposition as
2,2,2,3,5,52. Arrange these to form an array with 1’s inserted appropriately,

2 2 2
11 3
1 5 52

Forming the products of the columns, we find the invariant factors to be 2, 10, 150.
Therefore A =~ Z, & Z10 ® Z150.

Presentations of modules Let R be a PID and M a finitely generated R-module gen-
erated by elements ai, a, ..., a,. Suppose that F is a free R-module with basis
{x1, X2, ..., xn}. Then by (9.1.13) there is a surjective R-module homomorphism 8 :

F — M such that 8(x;) = a; fori = 1, ...,n. Thus M X F/N where N = Ker(6). By
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(9.2.5) N is a finitely generated R-module, say with generators y1, y2, ..., ym, Where
m < n, and there are expressions y; = Yy_; Ujk - Xx with uj; € R.

Conversely, suppose we start with a free R module F with basis {x1, x2, ..., xn}
and elements y1,y>,...,ym of F where y; = Y} | i - X, and ujx € R.Let N =
R-{y1,¥2,...,¥m} and put M = F/N. Then M is a finitely generated R-module which
may be written in the form

M= (Xl,Xz,---,Xn|Y1y)’2,---,)’m>-

This called a presentation of the R-module M: the x; are the generators and the y; are the
relators of the presentation. We should think of the generators x1, x2, .. ., X, as being
subject to the relations y; = 0,y, =0, ..., ym = 0. The presentation is determined by
the presentation matrix

U = [ujjlmn € Mm,n(R).

Since every finitely generated R-module has a presentation which determines it up
to isomorphism, a natural question arises: given a presentation, how can one discover
the structure of the module? We will answer the question in the case of modules over a
Euclidean domain by describing a procedure which, when applied to a presentation
matrix, gives the invariant factors and hence the structure of the module determined
by the presentation.

The key observation is that there three types of matrix operation that can be applied
to a presentation matrix U without changing the isomorphism type of the associated
module M. These are:

(I) Interchange of two rows or columns.
(II) Addition of an R-multiple of one row to another.
(II1) Addition of an R-multiple of one column to another

Clearly interchange of two rows merely changes the order of the relators and of two
columns the order of generators. Adding a multiple of row i to row j produces a new
relator which is a consequence of the relator associated with row j and which also
implies it.

Justification of interchange of two columns requires a little more thought. Suppose
we add c times column i to column j where ¢ € R. This amounts to replacing the
generator x; by a new generator x} = x; — ¢ - x; with corresponding changes in the
relators, as can be seen from the equation

!
Uyi - X; + (Urj + CUyi) - Xj = Uy - X + Uyj - Xj.

The important point to keep in mind is that, while these operations change the presen-
tation, they do not change the isomorphism type of the corresponding module.

If a matrix V is obtained from a matrix U € M, »(R) by means of a finite sequence
of operations of types (I), (II), (IIT) above, then V is said to be R-equivalent to U, in
symbols

R

U=T
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This is obviously an equivalence relation on presentation matrices. The critical result
needed is the following.

(9.2.12) Let R be a Euclidean domain and U an m x n matrix with entries in R. Then U
is R-equivalent to an m x n diagonal matrix

VIdiag(dl,dz,...,dk,O,...,O)

where 0 # dj € R,k > 0and dy|d;|-- - |d.

Note that the matrix Vin (9.2.12) has d4, d>, . . ., d, O, . . ., O on the principal diagonal
and zeroes elsewhere.

Proof of (9.1.12). Let 6 : R — {0} — NN be the associated function for the Euclidean
domain R and recall that R is a PID by (7.2.1). We can assume that U # 0. To initiate the
procedure move a non-zero entry b; to the (1, 1) position by using row and column
interchanges. Suppose that b; does not divide some entry ¢ in row 1 or column 1: let
us say the latter, the case of a row being similar. Using the division algorithm for R,
write ¢ = b1q + b, where g, b, € R and 6(b,) < 6(b1). Subtract g times row 1 from
the row containing c, the effect of which is to replace c by b,. Then move b, up to the
(1, 1) position.

If b, does not divide some entry in row 1 or column 1, repeat the procedure.
Continuation of this process yields a sequence of elements b1, b,, ..., in R such that
6(b1) > 8(by) > ....Since the §; are non-negative integers, the process must terminate
and when this happens, we will have a matrix R-equivalent to U with an element a;
in the (1, 1) position which divides every entry in row 1 and column 1. By further row
and column subtractions we can clear out all the entries in row 1 and column 1 except
the (1, 1) entry to obtain a matrix of the form

ay 0

0o U
which is R-equivalent to U; here of course U; is an (m—1)x(n—1) matrix. By induction on
m the matrix U; is R-equivalent to a matrix diag(a», as, ..., ax, 0..., 0) and therefore

R
U = D = diag(aq, a», as,...,ax,0...,0).

Suppose that a; does not divide a,. Let d = va; + wa; be a gcd of a; and a, with
v, w € R. Then, using the operations of types (I), (II), (III), we obtain

a O a vap+way| |ay d d a d 0
0 a 0 a; o0 a a; 0 0w |’

Note that d divides “.#2. Use this routine to replace a; by d in the diagonal matrix D.

(11"
=
=

Repeating the procedure for as, ..., ay, we get U

diag(dl, ary ..., &k,o, N ,0)
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where d; is a gcd, and hence alinear combination, of a4, a,, as, .. ., ay, and d; divides
eachof a,, ..., ax. By induction we conclude that

U2 diag(dy, dy, ..., ds,0...,0)

where d;|ds|---|dy and d; is an R-linear combination of a,, as, ..., ax. Hence d;|d>
since a», as, ..., ai are divisible by d;. This completes the proof. O

The diagonal matrix V in (9.2.12) is called the Smith normal form! of U. Its entries
are determined only up to units. Let us apply this method to the presentation matrix U

for a finitely generated module M = F/N over a Euclidean domain R. Then U g V where
V = diag(d{, d2,...,dy,0,...,0),0 # d; € Rand d,|d>|---|dk. The matrix V is the
Smith normal form of U; it gives a new presentation of M which is much simpler in
form, having generators x}, x5, .. ., x; and relators d1 x}, d»x}, . . ., dix}. From this
presentation we read off that

MER/(d)®R/(d) e ®R/(d) ®Re--@R.
n-k

Thus n - k is the number of cyclic summands isomorphic with R, while the the non-unit
d;’s are the invariant factors, up to units.

Example (9.2.2) Let A be the abelian group with generators x, y, z and relations
3x+4y+3z=0, 6x+4y+6z=0, 3x+8y+3z=0.

In this example R = Z and the presentation matrix is

. 1 0 O
U=|0 12 0|=1V,
0O 0 O

which is the Smith normal form of U. Hence A ~Z, © Z1; ® Z, i.e.,
A=71,02Z=730Z4® 7.

The single invariant factor is 12 and the elementary divisors are 3, 4.

1 Henry John Stephen Smith (1826-1883)
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The description of finite abelian groups afforded by the preceding theory is precise
enough for us to make an exact count of the groups of given order.

(9.2.13) Let n > 1 be an integer and write n = p{' p5? - - p;* where e; > 0 and the p; are
distinct primes. Then the number of isomorphism types of abelian groups of order n is

Aleq)A(er) -~ Alex)

where A(i) is the number of partitions of i.

Proof. First let A be an abelian group of order p¢ > 1 where p is a prime. By (9.2.8) A is
the direct sum of £; copies of Z,,, £, copies of Z, etc, where ¢; > Oand e = £1 + 26, +
3¢5 + - --. Thus we have partition of e into £; 1-subsets, £, 2-subsets, etc. Conversely,
every partition of e leads to an abelian group of order p¢ and different partitions yield
non-isomorphic groups since the invariant factors are different. Therefore the number
of possible isomorphism types for A is A(e).

Now let A be an abelian group of order n = p{'p5* -+ p;*; then A = A1 @A, @---® Ay
where A; is the p;-torsion component and |4;| = pl.e". There are A(e;) possible isomor-
phism types for A;, so the number of isomorphism types for Ais A(e1)A(ez) ---A(ex). O

Example (9.2.3) Find all abelian groups of order 600.

Since 600 = 23352, the number of abelian groups of order 600 is A(3)A(1)A(2) =
3 x 1 x 2 = 6. The isomorphism types are determined by the partitions of 3 and 2,
namely3=1+2=1+1+1,and 2 =1 + 1. Hence the six isomorphism types are:

28 @73 &2, Zg§DZ3d s ® s, ) ®Zy&7Z3®Zs2,
Zr)®Zy 30l dls, ZpdZ)dZ) ® 723 ®Z52, Zry®Z)®lr®ls3 L5 dZs.

Notice that Zg & Z3 & Zs: is the cyclic group of order 600.

Of course the task of counting the non-abelian groups of given finite order is a
much more formidable one.

Exercises (9.2)

(1) Let R be a domain with field of fractions F and R ¢ F. Regard F as an R-module via
the field operations. Prove that F is torsion-free and F/R is a torsion module.

(2) Let R = Zg, the ring of congruence classes modulo 6. Find the torsion elements
in the module R. Deduce that the torsion elements in a module do not always form a
submodule.

(3) Let p1, pa, . . . be the sequence of primes and let (a;) be an additively written group
of order p;. Define A to be the set of all sequences (x1, X2, ...) where x; € {(a;). Make
A into an abelian group by adding components.
(i) Show that the torsion subgroup T consists of all sequences in which all but a
finite number of components are 0.
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(i) Provethat A = A/T has the property A = pA for all primes p.
(iii) Prove that (p PA =0.
(iv) Deduce from (ii) and (iii) that T is not a direct summand of A.
(4) Find the elementary divisors and invariant factors of the group Z, & Z3o & Z3s.

(5) Find all abelian groups of order 1350.

(6) Let A be a torsion-free abelian group and define D = (,_; , . nA. Prove that (i)
A/D is torsion-free and (ii) D = nD for all n > 0.

(7) A finitely generated abelian group A is given by a presentation with generators
x,y,z,uandrelatorsx -y -z -u,3x+y-z+u,2x+ 3y — 2z + t. Find the invariant
factors of A and hence its structure.

(8) Let A be a finite abelian group and denote by v,(A) the number of elements of A
which have order exactly n.
(i) Ifn=p]p5 .- py* with distinct primes p;, show that

Va(A) = Ve (A (A) - v, (A).

(ii) Let A be a finite abelian p-group. Define A[pi] = {a € A | pla = 0}. Prove that
Vpe(A) = |A[p®]| - |A[p¢!]| for e > 1.
(9) Let A be a finite abelian p-group. Assume that A is the direct sum of r; cyclic groups
of order p! wherei = 1,2...,¢. Prove that |A[p']| = p* where s; = r1 + 2ry + - --
(i-Driqy+i(ri+rigi+---+rp)forl<i<e.
(10) Let A and B be finite abelian groups. If v,(4) = v,(B) for all positive integers n,
prove that A =~ B. [Use Exercises (9.2.8) and (9.2.9)].

9.3 Applications to linear operators

One of the most convincing applications of modules over PID’s is to the study of linear
operators on a finite dimensional vector spaces. Since the relation between modules
and linear operators is not obvious, some explanation is called for.

Let V be a finite dimensional vector space over a field F with n = dim(V) > 0 and
let a be a fixed linear operator on V. Set R = F[t], the ring of polynomials in ¢ over F,
and recall that R is a PID by (7.2.2). The fundamental idea is to make V into an R-module
by defining

frv=fa)v), (feR,vel).

The notation here is as follows: if f = ag + a1t +--- + ant™ € R, then f(a) is the linear
operator agl + a,a + --- + apa™. (Here 1 is the identity linear operator on V). It is
straightforward to check the validity the module axioms for the specified action.
Next the properties of the R-module V will be investigated. Let v € V; since
dim(V) = n, the subset
v, a(v), a*(v), ..., a"(v)}
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must be linearly dependent by (8.2.3). Hence there exist elements ag, ai, ..., an of
F, not all equal to zero, such that apv + a1a(v) +--- + a,a™(v) = 0. Put g = ap + a1t +
-+ + ant™ € R, noting that g # 0. Then g - v = g(a)(v) = 0, so V is a torsion R-module.
In fact more is true. Let {v1, v,, ..., v} be a basis of V. Then there exist g; # 0in R
suchthatg;-vi=0fori=1,2,...,n.Puth=g18,---gn # O;then h-v; = 0 for all i
andthush-v=0forallv € V,i.e., h(a) = 0. It follows that Anng(V) # 0.

Since R is a PID, Anng (V) = (f) for some f € R and clearly we may choose the
polynomial f to be monic. Thus a polynomial g belongs to Anng(V) if and only if f
divides g, and consequently f is the unique monic polynomial of smallest degree such
that f(a) = 0. These conclusions are summed up in:

(9.3.1) Let a be a linear operator on a finite dimensional vector space V over a field F.
Then there is a unique monic polynomial f in F[t] of smallest degree such that f(a) = 0.
Moreover, g(a) = 0 if and only if f divides g in F[t].

The polynomial f is called the minimum polynomial of a. The next step forward is to
apply the Primary Decomposition Theorem (9.2.3) to the torsion module V. According
to this result there is a direct decomposition

V=VieVy®---0 Vi

where V; # 0 is the p;-torsion submodule of V and p1, p», .. ., pk are distinct monic
irreducible elements of R = F[t]. There are only finitely many such V; since V is finite
dimensional. The restriction of a to V; is a linear operator a;, which has minimum
polynomial of the form pf". If g € R, then g(a) = Oif and only if g(a;) = 0, i.e., pie" |g, for
all i. It follows that the minimum polynomial of a is f = p{'p3? -+ p*. Thus we have
proved the following theorem.

(9.3.2) Let a be a linear operator on a finite dimensional vector space V over a field F,
and suppose that the minimum polynomial of ais f = p$'p3’ --- p', where the p; are
distinct monic irreducibles in F[t] and e; > 0. Then V = Vi o V, @ ---® Vi where V; is
the pi-torsion submodule of V. Moreover, pf" is the minimum polynomial of a; = aly,.

The case of an algebraically closed field. Up to this point the field has been arbitrary.
However, important simplifications occur for an algebraically closed field F: for then
an irreducible polynomial over F has degree 1. In particular these apply to the complex
field C by the Fundamental Theorem of Algebra — see (12.3.6).

Consider the situation of (9.3.2) when F is algebraically closed and p; = t — a; with
a; € F. The minimum polynomial of a is

f=(t-—a)®(t-ay)®---(t-ap®.

Let V=Vi®V,®---® Vi be the primary decomposition of the F[t]-module V, with
V; the p;-torsion component. Thus &; = a|y, has minimum polynomial (t — a;)¢ and
(a;—a;1)¢ = 0. This means that a; —a;1 is a nilpotent linear operator, i.e., some positive
power of it equals to zero.
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Define two new linear operators 6, von V by 8|y, = a;1,fori=1,2,...,k, and
v=a-0.Thenv; =v|y, = a; — a;1 and hence vff = 0, which implies that v¢ = 0 where
e is the largest of e1, e, . . ., ex. Thus v is a nilpotent linear operator on V. Notice that

6;, being multiplication by a;, commutes with v;, from which it follows that 6v = vé.
The important feature of the linear operator § is that it is diagonalizable, since v
acts on V; by multiplication by a;. This leads to the following result.

(9.3.3) Let V be a finite dimensional vector space over an algebraically closed field F
and let a be a linear operator on V. Then there are linear operators 6, v on V such that
a =6 +vand 8v = v8, where § is diagonalizable and v is nilpotent.

Notice that (9.3.3) can be applied to an n x n matrix A if we take a to be the linear
operator X — AX on F". The statement then takes the form that A = D+ Nand DN = ND
where D is diagonalizable and N is nilpotent.

-7 27
-3 11
The minimum polynomial is also (t — 2)?, either by direct matrix multiplication or
by (9.3.5) below. Thus k = 1 and V = V; in the previous notation; hence D = 2I,. Put

- 2
N=A-D-= [ 2 97],sothatA = D + N and N? = 0; also note that DN = ND.

Example (9.3.1) Let A = [ ] The characteristic polynomial of A is (t — 2)2.

Rational canonical form. It is time to apply the full force of the structure theorem for
modules over a PID to a linear operator « on an n-dimensional vector space V over
an arbitrary field F. Bear in mind that V is a torsion module over R = F[t] via the ring
action f- v = f(a)(v). Thus by (9.2.11)

V=VieVr®---0V,

where V; = R - v; £ R/(s;) and Anng(v;) = (s;). Here s1, S5, ..., S¢ are the invariant
factors, which satisfy s1|s»]. . .|se. Recall that the s; can be chosen to be monic. Let
a; = aly,.Ifg € R, then g(a) = Oifand onlyif g(a;) = O, thatis,g € (s;)fori=1,2...,¢.
The divisibility property of the s; implies that this happens precisely when s, divides g.
Consequently, the final invariant factor s, is the minimum polynomial of a.

Next we will show that dimg(R/(s;) = deg(s;). Write

si=t"+ aini,ltni_l +---+aj1t + ajo, (a; € R).

If g € R, then g = gs; + r; where g, r; € Rand r; = 0 or deg(r;) < deg(s;) = n;. Then
g+(si) = ri+(s;), so that dimg(R/(s;)) < n;. Suppose that 1+(s;), t+(s;), . .., "1 +(s;)
are linearly dependent and ap1 + ayt +--- + an,.,lz‘"i’1 + (si) = Or/(s;) Where not all the
aj € Farezero.Letg = ap + ajt+---+ an,._lt"i’l; thus g # 0. Since g + (si) = Orys))>
we have g € (s;) and s; divides g. But deg(g;) < deg(s;), which can only mean that
g = 0. By this contradiction 1 + (s;), t + (S;), . . ., t"~1 + (s;) are linearly independent
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and these elements form an F-basis of R/(s;). Hence dim(V;) = dim(R/(s;) = n; and
dim(V) = ¥¢_, n;.

Since V; £ R/(s;) via the assignment r - v; — r + (s;), the subspace V; has the basis
{vi, a(vi), a2(vy), ..., &1 (v;)}. Let us identify the matrix which represents a; with
respect to this ordered basis. Now a(a/ (v;)) = a/*1(v;) if 0 < j < n; — 1 and

._1 . ._1
a(@™  (vy) = a"(vy) = —aiovi — ana(vi) — -+ — Ain—1 Q" (V)

since s;j(a;) = 0. Therefore qa; is represented by the n; x n; matrix

0 0 ... 0 -ajp

1 0 ... O —-aip
Ri=(0 1 ... 0 -ap

0 0 ... 1 -ajn-1

This is the companion matrix of the polynomial s; — see Exercise (8.4.6). Note that s; is
the minimum polynomial of a; and hence of R;.

Now form the union of the chosen bases of the V; to obtain a basis of VV with respect
to which a is represented by the block matrix

R, O ... 0
0 R, ... O
C= 2
0 0 ... Ry

This is called the rational canonical form of a.
Recall that the characteristic polynomial of a is det(tI, — R). Now

U"1 -R 0 e 0
dettl,—c)=| ° tm-R ... 0
0 0 .e. thy, -R,
which is equal to the product det(tI,, — R1)det(tl,, — Ry)---det(ln, — R¢). Also

t 0 0 ... 0 aio
-1 t 0 ... 0 a1
det(tIn,. - Ri) =0 -1 ¢t ... 0 aip s
0 0 0 ... -1 t+ap,

which by direct determinantal expansion equals a;g + aj t +--- + ami,lt"f‘l + " = s;.
Therefore det(tl, — C) = S1S5 - - - Sp.
These conclusions are summed up in the following fundamental result.

(9.3.4) (Rational canonical form) Let a be a linear operator on a finite dimensional
vector space V over an arbitrary field. Then the following statements hold.
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(i) a can be represented with respect to a suitable basis of V by a matrix in rational
canonical form.

(ii) The final invariant factor of a is the minimum polynomial.

(iii) The product of the invariant factors of a equals the characteristic polynomial.

Corollary (9.3.5) (The Cayley-Hamilton Theorem) The minimum polynomial of a linear
operator divides its characteristic polynomial and these polynomials have the same
irreducible factors.

This follows directly from (9.3.4). The preceding very powerful results have been
stated for a linear operator. Of course, they apply equally to an nxn matrix A over a field
F, since the mapping X — AX is a linear operator on F". Thus by (9.3.4) every square
matrix is similar to a matrix in rational canonical form and also the Cayley-Hamilton
Theorem is valid.

Nilpotent linear operators. Rational canonical form is particularly effective when ap-
plied to a nilpotent linear operator a on an n-dimensional vector space V over an
arbitrary field F. Since ak = 0 for some k > 0, the minimum polynomial must divide tk
and thus has the form t™ where m < k. The invariant factors satisfy s1|sz|---|s, = t™
by (9.3.4). Hence s; = t" where n; < n, < --- < n, = m. The characteristic polynomial
of @ equals s1s;---s, = t" and thus n = Zle n;.

The companion matrix of s; is the n; x n; matrix

0O 0 ... 00O
1 0 ... 0O
Ri=|0 1 ... 0 O
0O 0 ... 1 0
and the rational canonical form of a is the block matrix formed by Ry, R, .. ., R.. This

is a lower triangular matrix with zeros on the diagonal, a type of matrix called lower
zero triangular. Applying this in matrix form, we deduce:

(9.3.6) A nilpotent matrix is similar to a lower zero triangular matrix.

Rational canonical form allows us to make an exact count of the similarity types
of nilpotent n x n matrix.

(9.3.7) The number of similarity types of nilpotent n x n matrices over any field equals
A(n) where A is the partition function.

Proof. Let A be an n x n nilpotent matrix. Let m; denote the number of rational blocks
with exactly i 1’s on the subdiagonal. Thus m; > Oand 0 < i < n- 1. Thenn =
Zlf’z‘ol(i + 1)m;, so that we have a partition of n. Conversely, each partition of n allows
us to assemble a nilpotent matrix, the rational blocks coming from the subsets in the
partition. Moreover, different partitions give rise to non-similar matrices by uniqueness
of the invariant factors. O
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Example (9.3.2) Since A(3) = 3, there are three similarity types of nilpotent 3 x 3
matrices, corresponding to the partitions of 3, whichare 1 + 1 + 1, 1 + 2, 3. The
respective types of matrix are

0 0 O 0 0 O 0 0 O
0 0 of, |0 O Of, |1 O O
0O 0 O 01 0 01 0

Jordan form. Let a be a linear operator on an n-dimensional vector space V over a field
F and let f denote the minimum polynomial of a. Assume that f splits into linear factors
over F, which by the Cayley-Hamilton Theorem amounts to requiring all eigenvalues of
a to be in F, which will certainly be true if F is algebraically closed.

In this case there is a simpler canonical form for a called Jordan normal form. Write

f=(t-a)(t-a)®---(t-ap®

where e; > 0 and the a; are distinct elements of the field F. By (9.3.5) the roots of f are
the roots of the characteristic polynomial, so ai, a», .. ., ax are the distinct eigenvalues
of a. By the Primary Decomposition Theorem V = V; & V, & - - - @ Vi where V; is the
pi = (t — a;)-torsion submodule of V. Write n; = dim(V;), so that n = Z{le n;. Then
a; = aly, has (t — a;)® as its minimum polynomial by (9.3.2); thus (a; — a;1,,)% = 0
and a; — a;1y, is a nilpotent linear operator on V;. By the discussion of nilpotent linear
operators above, a; — a;1,, is represented with respect to a suitable basis of V; by a
matrix consisting of €;; nj; x njj blocks of the type

0 0 0 0
1 0 0 0
0 1 0 0
0 0 ... 1 0
forj=1,2,...,e;. Herenj; < np < -+ < nye, and Zfz"l ¢ijn;j = dim(V;) = n;. Con-

sequently, a; is represented by a matrix consisting of £;; nj; x n;; blocks J;; with the
form

a 0 ... 0 O O
1 a O O ... O
Ji={0 1 a 0 ... O
0O O ... 0 1 a

Such matrices are called Jordan blocks and they are unique up to order since they are
determined by the elementary divisors of a. Therefore we can state:

(9.3.8) (Jordan normal form) Let a be a linear operator on a finite dimensional vector
space over a field F. Assume that the minimum polynomial of a splits into linear factors
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over F. Then a can be represented with respect to a suitable basis by a matrix with Jordan
blocks on the diagonal which are unique up to order.

The matrix form of (9.3.8) asserts that an nxn matrix A whose minimum polynomial
is a product of linear factors over F is similar to a matrix with Jordan blocks on the
diagonal. Therefore, in particular, A is similar to a lower triangular matrix over F, i.e.,
with zeros above the diagonal - cf. (8.4.8).

Example (9.3.3) Find all similarity types of complex 3 x 3 matrices A which satisfy the
equation A(A - 2I)? = 0.

From the information furnished the minimum polynomial f of A divides (t — 2)2.
Hence there are five possibilities for f, which are listed below with the corresponding
Jordan canonical form J of A:

(i) f=t:inthiscaseA=]=0.
(i) f=t-2:]=2I.

2 00
(i) f=@t-2)2J=|1 2 o].
0 0 2
0 0O 0 0O
(v) f=tt-2:J=|0 2 Olor|{0 0 0
0 0 2 0 0 2
0 00
W) f=tt-2)%:J=0 2 o0].
01 2

Hence there are six types of matrix up to similarity.

Smith normal form of a matrix. We end the chapter by describing a method for calcu-
lating the invariant factors of a linear operator or matrix. It is stated for matrices.

(9.3.9) Let A be an n x n matrix over a field F. Then the Smith normal form of the
matrix tI - A is diag(1,1,...,1,s1,S2, ..., Se¢) up to signs, where s1, Sz, ..., S¢ are
the invariant factors of A.

Proof. Let S denote the rational canonical form of A. Then S = XAX~! for some non-
singular matrix X over F. It follows that S and A have the same invariant factors since
they represent the same linear operator on F", but with respect to different bases. Also
tI - S = X(tI - S)X~1, so by the same reasoning tI — S and tI — A have the same Smith
normal form. Therefore we may assume that A = S, i.e., A is in rational canonical form.

Let Ry, R,, ..., R, be the rational blocks in A, corresponding to the invariant
factors s1|s| ... |s¢ of A. It is enough to prove that the Smith normal form of ¢I — R;
is diag(1, 1,..., 1, s;); for then tI — A will have diag(1, 1,...,1, 51, S2,...,Sp) asits
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Smith normal form. Let s; = ajo + aj1t +--- + a,-ni_ll‘"f‘1 + t"; thus

0O 0 ... 0 -aj

1 0 ... O —-ai
Ri=|10 1 ... 0 -ap

0 0 ... 1 -aim

Since F[t] is a Euclidean domain, we can transform the matrix

t 0 O ... 0 aio
-1 t 0 ... 0 air
tI-Rj= 0 -1 ¢t ... 0 a; ,
0O 0 . ... -1 t+aip-
into Smith normal form using the algorithm of (9.2.12). This is readily seen to be
diag(1,1,..., 1, s;), as the reader should verify at least for n; < 3. (Note the absence
of zeros since V is a torsion module). The required result now follows. O

Example (9.3.4) Consider the rational matrix

0 4 1
A=|-1 -4 2
0 0 -2

Apply suitable row and column operations to put the matrix

t -4 -1
tI-A=|1 t+4 =2
0 0 t+2
into its Smith normal form, which is
1 0 0
0 1 0
0 0 (t+2)°

Hence there is just one invariant factor s; = (¢ + 2)3. The rational canonical form of A
can now be written down immediately as

0 0 -8
1 0 -12
01 -6

The minimum polynomial is (¢ + 2)3, so the Jordan normal form is

-2 0 O
1 -2 0
o 1 -2
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Exercises (9.3)
(1) Find all similarity types of 3 x 3 rational matrices A which satisfy the equation
A% = A°.

(2) Find the invariant factors and rational canonical form of the rational

2 3 1
matrix [1 2 1.
0 0 -4

(3) Find the Jordan normal form and minimum polynomial of the rational matrix
310
-1 1 0].
0 0 2

(4) Let A be an n x n matrix over Q and let p be a prime. Assume that A? = I. Prove that
the number of similarity types of Ais 1 + [p%l]. [Hint: recall from Example (74.6) that
the rational polynomial 1 + t + t? + - -- + P~ is irreducible)].

(5) Prove that a square matrix A over a field is similar to its transpose. (You may assume
the field contains all roots of the minimum polynomial of A).

(6) Prove that every square matrix is similar to an upper triangular matrix.

(7) Let A be a non-singular n x n matrix over an algebraically closed field F and let
Ji,J2, ..., Jx be the blocks in the Jordan normal form of A. Prove that A has finite order
if and only if each J; has finite order and in that case |A| = lcm{|J1], [J2], - . . 5 Jkl}-

(8) Let J be an n x n Jordan block over a field F, with diagonal elements equal to
a # 0.1If n > 1, prove that J has finite order if and only if a has finite order in F* and
p = char(F) # 0.

(9) Let A be a non-singular n x n matrix over an algebraically closed field of character-
istic 0. Let a1, ay, .. ., a, be the eigenvalues of A. Prove that A has finite order if and
only if each a; has finite order and then |A| = lcm{|a4], |azl, . . ., |acl}.

0 0 1
(10) Find the Jordan normal form of the matrix A= |1 0 4 | over GF(7), the field

0 1 3
of seven elements. Then use it to prove that |A| = 7.
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In this chapter we pursue the study of groups at a deeper level. A common method of
investigation in algebra is to break up a complex structure into simpler substructures.
The hope is that by repeated application of this procedure one will eventually arrive at
substructures that are easy to understand. It may then be possible in some sense to
synthesize these substructures to reconstruct the original structure. While it is rare for
the procedure just described to be brought to such a perfect state of completion, the
analytic-synthetic method can yield valuable information and suggest new concepts.
We will consider some instances where this procedure can be employed in group theory.

10.1 The Jordan-Holder Theorem

A basic concept in group theory is that of a series in a group G. By this is meant a finite
chain of subgroups 8 = {G; | i =0, 1, ..., n} leading from the identity subgroup to G,
with each term normal in its successor, that is, a chain of the form

1=Gog<Gy1<---<aG, =0G.

The G; are the terms of the series and the quotient groups Gj,1/G; are the factors.
The length of the series is defined to be the number of non-trivial factors. Keep in
mind that G; may not be normal in G since normality is not a transitive relation — see
Exercise (4.2.6).

A subgroup H which appears in a series in a group G is called a subnormal subgroup;
clearly this is equivalent to there being a chain of normality relations leading from H
to G,

H=Hy<Hy<---<H, =0G.

A partial order on the set of series in a group G is defined as follows. A series 8 is
called a refinement of a series 7 if every term of T is also a term of 8. If § has at least
one term that is not a term of 7, then 8 is a proper refinement of 7. It is easy to see that
the relation of being a refinement is a partial order on the set of all series in G.

Example (10.1.1) The symmetric group S, has the series 1 < V < A4 1 S, where V is the
Klein 4-group. This is a refinement of the series 1 < A4 < S4.

Isomorphic series. Two series 8 and 7 in a group G are called isomorphic if there is a
bijection from the set of non-trivial factors of § to the set of non-trivial factors of T such
that corresponding factors are isomorphic groups. Isomorphic series must have the
same length, but the isomorphic factors may occur at different points in the series.

Example (10.1.2) In Zg¢ the series 0 < {[2]) < Zg and 0 < {[3]) < Z¢ are isomorphic
since ([2]) = Z¢/([3]) and {[3]) = Zs/([2]).
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The foundation for the theory of series in groups is the following technical result.
It can be viewed as a generalization of the Second Isomorphism Theorem.

(10.1.1) (Zassenhaus’s! Lemma) Let A1, A, B1, B, be subgroups of a group such that
Ay < A, and By < B,. Define Dij = A; n Bj, (i,j = 1,2). Then A1D»; < A1Dy; and
B1D1> <« B1D>y5. Furthermore

A1D3;/A1Dy1 = B1Dy3/B1D1;.

Proof. The Hasse diagram below displays the relevant subgroups.

Azo Bzo

A1Dy; BiD2

\/
S

A1Dy1 4 Dj, BiD12

Ay D12D71 B

o

D1y Da1

/
/ \
\ o /

From B; < B, we obtain D,; < D, by intersecting with A,. Since A; < A,, it
follows that A1D1 < A1D;, on applying the canonical homomorphism A, — A,/A;.
Similarly B1Dy> < B1D;,. Now we invoke (4.3.5) with H = D, and N = A1D>; to
give HN/N = H/Hn N. But HN = A1D»; and HN N = Dy, N (A1D>1) = D12Dyq
by (4.1.11). The conclusion is that Ay D55/A1D21 = D32/D15D51. By the same argument
BlDzz/BlDlz = Dzz/D12D21, from which the result follows. O

The main use of Zassenhaus’s Lemma is to prove a theorem about refinements: its
statement is remarkably simple.

(10.1.2) (The Schreier? Refinement Theorem) Any two series in a group have isomorphic
refinements.

Proof. Let1 = Hy<xHy<---<aH;j=Gand 1 = Ky 94Ky <--- 4K, = G be two series
in a group G. Define subgroups Hjj = Hi(Hi;1 NKj)for0 <i<1-1,0 <j < mand

1 Hans Zassenhaus (1912-1991)
2 Otto Schreier (1901-1929)
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Kij=Kj(HinKj;1)for0<i<l,0<j<m-1.Apply (10.1.1) with Ay = H;, A> = Hj,q,
B: = Kj and B, = Kj,1; the conclusion is that H;; < Hyj,1 and Kj; < Kj1j, and also that
Hjj.1/Hjj = Ki,1j/Kjj. Therefore the series {H;; | i = 0,1,...,1-1,j =0,1,...m}
and {K; |i=0,1,...,1,j=0,1,...,m- 1} are isomorphic refinements of {H; | i =
0,1,...,}and {K;|j=0,1,..., m}respectively. O

Composition series. A series which has no proper refinements is called a composition
series and its factors are composition factors. If G is a finite group, we can start with
any series, for example 1 <« G, and keep refining it until a composition series is reached.
Thus every finite group has a composition series. However, not every infinite group has
a composition series, as is shown by (10.1.6) below.

A composition series can be recognized from the nature of its factors.

(10.1.3) A series is a composition series if and only if all its factors are simple groups.

Proof. Let X/Y be a factor of a series in a group G. If X/Y is not simple, there is a
subgroup W such that Y < W < X and W < X; here the Correspondence Theorem (4.2.2)
has been invoked. Adjoining W to the given series, we obtain a new series which is a
proper refinement, with the terms Y <« W <« X replacing Y < X.

Conversely, if a series in G has a proper refinement, there must be two consecutive
terms Y < X of the original series with additional terms of the refined series between
them. Hence there is a subgroup W in the refined series such that Y < W < X and W« X.
But then W/Y is a proper non-trivial normal subgroup of X/Y and the latter cannot be
simple. Hence the result is proved. O

The main result about composition series is a celebrated theorem associated with
the names of two prominent 19th Century algebraists, Camille Jordan (1838-1922) and
Otto Holder (1859-1937).

(10.1.4) (The Jordan—Holder Theorem) Let 8§ be a composition series in a group G and
suppose that T is any series in G. Then T has a refinement which is isomorphic with 8.

The most important case is when 7 itself is a composition series and the conclusion
is that T is isomorphic with 8. Thus we obtain:

Corollary (10.1.5) Any two composition series in a group are isomorphic.

Proof of (10.1.4). By the Refinement Theorem (10.1.2), the series § and T have isomorphic
refinements. But 8 is a composition series, so it is isomorphic with a refinement of 7. [

Example (10.1.3) Consider the symmetric group S,. It has a series

1<C<aVaAu<S,
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where |C| = 2 and V is the Klein 4-group. Now C, V/C and S4/A4 all have order 2,
while A4/V has order 3, so all factors of the series are simple. By (10.1.3) the series is a
composition series with composition factors Z,, 7., Zs, Z.,.

The next result demonstrates that not every group has a composition series.

(10.1.6) An abelian group A has a composition series if and only if it is finite.

Proof. Only necessity is in doubt, so assume that A has a composition series. Each
factor of the series is simple and abelian, and thus has no proper non-trivial subgroups.
By (4.1.9) the factors have prime order and therefore A is finite. O

Example (10.1.4) Composition series in Z.,.

Let n be an integer greater than 1. The group Z, has a composition series with
factors of prime order. Since the product of the orders of the composition factors is
equal to n, the group order, it follows that n is a product of primes, which is the first part
of the Fundamental Theorem of Arithmetic. In fact we can also obtain the uniqueness
part.

Suppose that n = p1p, - - - px is an expression for n as a product of primes. Define
H; to be the subgroup of Z, generated by the congruence class [pi+1pi+2 - - - Px] Where
O <i< kandlet H, = Z,. Then

O=Ho<H{<--<Hy.1<Hy =7y

is a series in Z,. Now clearly |H;| = p1p> --- p; and hence |H;,1/H;| = pi+1. Thus we
have constructed a composition series in Z, with factors of orders p4, p», ..., Pk.

If n = q1q; - - - q; is another expression for n as product of primes, there is a corre-
sponding composition series with factors of orders g1, g>, . . . , ;. By the Jordan-Holder
Theorem these composition series are isomorphic. Consequently, k = £ and the g;’s
must be the p;’s in some order. Thus we have recovered the Fundamental Theorem of
Arithmetic from the Jordan—-Ho6lder Theorem.

Some simple groups. The investigation so far shows that in a sense a finite group
decomposes into a number of simple groups, namely its composition factors. The only
simple groups we currently know are the groups of prime order and the alternating
group As — see (5.3.10). It is definitely time to expand this list, which we do by proving:
(10.1.7) The alternating group Ay, is simple if and only if n + 1, 2 or 4.

The proof uses the following property of 3-cycles.

(10.1.8) If n > 3, the alternating group A,, is generated by 3-cycles.
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Proof. First of all note that 3-cycles are even and hence belong to A,. Next each ele-
ment of A, is the product of an even number of transpositions by (3.1.7). Finally, note
the equations (ac)(ab) = (abc) and (ab)(cd) = (adb)(adc), where a, b, c, d are all
different; these demonstrate that every element of A, is a product of 3-cycles. O

Proof of (10.1.7). In the first place A, has a normal subgroup of order 4, so it cannot
be simple. Also A; and A, have order 1, so these are also excluded. However, As is
simple because its order is 3. Thus we can assume that n > 5 and aim to show that A,
is simple. If this is false, there is a proper, non-trivial normal subgroup N. The proof
analyzes the possible forms of elements of N.

Assume first that N contains a 3-cycle (abc). If (a’b’c’) is another 3-cycle and 7
in S, sends a, b, c to a’, b, ¢’ respectively, then m(abc)m™! = (a'b'c’). If m is even,
it follows that (a’b’c’) € N. If, on the other hand, 7 is odd, it can be replaced by the
even permutation 77 o (ef) where e, f are different from a’, b’, ¢’ — notice that this uses
n > 5. We will still have n(abc)n~! = (a’b’c’). Consequently N contains all 3-cycles
and by (10.1.8) N = A, a contradiction. Hence N cannot contain a 3-cycle.

Assume next that N contains a permutation 77 whose disjoint cycle decomposition
involves a cycle of length at least 4, say

m=(aiaazas---)---

where the final dots indicate the possible presence of further disjoint cycles. Now N
also contains the conjugate of 7

' = (a1axa3)n(a1a2a3)t = (ayazarag ) - .

Therefore N contains /77! = (a1a,a,): here the point to note is that the other cycles
cancel. Since this conclusion is untenable, elements in N must have disjoint cycle
decompositions involving cycles of length at most 3. Furthermore, such elements
cannot involve just one 3-cycle, otherwise by squaring we would obtain a 3-cycle in N.

Assume next that N contains a permutation with at least two disjoint 3-cycles, say
7= (abc)(a'b’c’)---. Then N contains the conjugate

7 = (@b cyn@b'c)?! = (aba')cc'b')---,

and hence it contains 7z7r’ = (aca’bb’)---, which has been seen to be impossible.
Therefore each non-trivial element of N must be the product of an even number of
disjoint transpositions.

If m = (ab)(a'b’) € N, then N contains i’ = (ach)m(ach)™! = (ac)(a’b’) for any c
unaffected by 7. But then N will contain 7t = (ach), which is false. Consequently, if
1+ me N, thenm = (aib1)(azb,)(asbs)(asby)---, with at least four transpositions. It
follows that N also contains

n' = (ashy)(axb1)n(azb1)(asb,) = (ai1az)(asb1)(babs)(ashs)---

and hence N contains 7t = (a1b>as)(a>b1b3), a final contradiction. O
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As a consequence of (10.1.8) there are infinitely many simple alternating groups.
The simplicity of A, will now be used to determine the composition series of S,,.

(10.1.9) Ifn=3 orn > 5, then1 < A, < Sy, is the unique composition series of Sy.

Proof. In the first place this is a composition series since A, and S,/A, = Z, are
simple. Suppose that N is a non-trivial, proper normal subgroup of S,. We will show
that N = A,, which will settle the matter. First note that N n A, < A,, so that either
NnA,=1orA, < Nsince A, is simple. Now |S,, : A,| = 2,s0if A, < N, then N = A,,.
Suppose that NN A, = 1. Then NA, = S,, and |[N| = [INA,/A,| = |Sh/An| = 2. Thus
N contains a single non-identity element 77, (necessarily an odd permutation). Since
N « S,,, the permutation  belongs to the center of S,;; however Z(S,) = 1 by Exercise
(4.2.10), so a final contradiction is reached. O

Projective linear groups. We mention in passing another infinite family of finite simple
groups. Let F be any field. It is not difficult to prove by direct matrix calculations that
the center of the general linear group GL,(F) is just the subgroup of all scalar matrices
fI,, where f € F — cf. Exercise (4.2.12). The projective general linear group of degree n
over F is defined to be

PGLy(F) = GLn(F)/Z(GLn(F)).

Recall that SL,(F) is the special linear group consisting of all matrices in GL,(F) with
determinant equal to 1. The center of SL,,(F) can be shown to be Z(GL, (F)) n SL,(F).
Therefore by (4.3.5)

SLa(F)Z(GLn(F))/Z(GLn(F)) = SLn(F)/Z(SLn(F)).
The latter is called the projective special linear group
PSL,(F).

The projective special linear groups are usually simple, as the following result shows.

(10.1.10) Let F be a field and let n > 1. Then PSL,(F) is simple if and only if n > 3 or
n = 2 and F has more than three elements.

This result can be proved by direct, if tedious, matrix calculations — see for exam-
ple [12]. If F is a finite field, its order is a prime power g by (8.2.17). Moreover, by (11.3.5)
below, there is up to isomorphism just one field of order q. If F is a field of order g, it is
better notation to write
GLn(q), PGLx(q), PSLy(q)

instead of GL,,(F), PGL,(F), PSL,(F).
It is not hard to compute the orders of these groups. In the first place, |Z(GL,(F)| =
|F*| = g — 1, where F* = U(F) = F - 0, and also |Z(SL,(F))| = gcd{n, g — 1}. For the last
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statement we need to know that F* is cyclic: for a proof see (11.3.6) below. The orders
of the projective groups can now be read off. A simple count of the non-singular n x n
matrices over F reveals that

IGLn(@)l = (¢" - 1)(¢" - @)--- (¢" - " 1),

while |SL,(q)| = |GL,(q)|/(q — 1). Thus we have formulas for the orders of the projective
groups.

(10.1.11)
(1) [PGLA(q)| = IGLn(q)l/(g - 1);
(ii) [PSLn(q)| = ISLn(q)l/ gcd{n, g - 1}.

For example, PSL;(5) is a simple group of order 60. In fact there is only one simple
group of this order — see Exercise (10.2.18) — so PSL,(5) must be isomorphic with As.
But PSL,(7) of order 168 and PSL,(8) of order 504 are simple groups that are not of
alternating type.

Projective groups and projective space. We indicate briefly how the projective
groups arise in geometry. Let V be an (n + 1)-dimensional vector space over a field F
and let V* denote the set of all non-zero vectors in V. An equivalence relation ~ on V*
is introduced by the following rule: u ~ v if and only if u = fv for some f + O in F. Let
[v] be the equivalence class of the vector v, so this is just the set of non-zero multiples
of v. The set

V={vllveV

is called n-dimensional projective space over F.
Next let a be a bijective linear operator on V. Then there is an induced mapping
& : V — V defined by the rule
a([v]) = [a(v)].

Here @ is called a collineation on V. It is not hard to see that the collineations on V form
a group PGL(V) with respect to functional composition.

It is also straightforward to verify that the assignment a — & gives rise to a surjec-
tive group homomorphism from GL(V), the group of invertible linear operators on V,
to PGL(V), with kernel equal to the subgroup of all scalar linear operators. Therefore
PGL(V) = PGL,(F), while PSL,(F) corresponds to the subgroup of collineations arising
from matrices with determinant equal to 1.

The classification of finite simple groups. The projective special linear groups form
one of a number of infinite families of finite simple groups known collectively as the
simple groups of Lie type. They arise as groups of automorphisms of simple Lie algebras.
In addition to the alternating groups and the groups of Lie type, there are 26 isolated
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simple groups, the so-called sporadic simple groups. The smallest of these, the Mathieu?
group M1, has order 7920, while the largest one, the so-called Monster, has order

246.320.59.76.112.133.17-19-23-29-31-41-47-59-71,

or approximately 8.08 x 10%3.

It is now widely accepted that the alternating groups, the simple groups of Lie type
and the sporadic simple groups account for all the finite non-abelian simple groups.
While a complete proof of this result has yet to appear, it is the subject of a multi-volume
work currently in preparation. The classification of finite simple groups is a synthesis of
the work of many mathematicians and is by any standard one of the greatest scientific
achievements of all time.

To conclude the section let us assess how far we have come in trying to understand
the structure of finite groups. If the aim is to construct all finite groups, the Jordan—
Hoélder Theorem shows that two steps are necessary:

(i) find all finite simple groups;
(ii) construct all possible group extensions of a given finite group N by a finite simple
group S.

In step (ii) we have to construct all groups G with a normal subgroup M such that
M = N and G/M = S.

Let us accept that step (i) has been accomplished. A formal description of the
extensions arising in (ii) is possible, but the general problem of deciding when two of the
constructed groups are isomorphic is intractable. Thus the practicality of the scheme
is questionable. However, this does not mean that the enterprise was not worthwhile
since a vast amount of knowledge about finite groups has been accumulated during
the course of the program.

Exercises (10.1)
(1) Show that isomorphic groups have the same composition factors.
(2) Find two non-isomorphic groups with the same composition factors.

(3) Show that S3 has a unique composition series, while S, has exactly three composi-
tion series.

(4) Let G be a finite group and let N <« G. How are the composition factors of G related
to those of N and G/N?

(5) Suppose that G is a group generated by normal subgroups Ny, N>, ..., N each of
which is simple. Prove that G is the direct product of certain of the N;. [Hint: choose
r maximal subject to the existence of normal subgroups Nj,, .. ., N;, which generate
their direct product. Then show that the direct product equals G].

3 Emile Léonard Mathieu (1835-1890)
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(6) Let G be as in the previous exercise. If N < G, prove that N is a direct factor of G. [Hint:
write G = N1 x N x --- x N5. Choose r maximal subject to N, Nj,, ..., N; generating
their direct product; then prove that this direct product equals G].

(7) Let G be a group with a series in which each factor is either infinite cyclic or finite.
Prove that any other series of this type in G has the same number of infinite factors,
but not necessarily the same number of finite ones.

(8) Suppose that G is a group with a composition series. Prove that G satisfies the
ascending and descending chain conditions for subnormal subgroups, i.e., there cannot
exist an infinite ascending chain H; < H, < H3 < --- or an infinite descending chain
H, > H, > H3 > --- where the H; are subnormal subgroups of G. (For more on chain
conditions see Exercise (3.3.10)).

(9) Prove that a group G which satisfies both the ascending and descending chain
conditions on subnormal subgroups has a composition series. [Hint: start by choosing
a minimal non-trivial subnormal subgroup of G].

(10) Let D, denote the subgroup of S,, generated by all the derangements where n > 1.
Prove that D, = S, if n # 3, but D3 = A3. Conclude that if n # 3, every permutation
is a product of derangements. (Suggestion: first prove that D,, <« S, and thatif n # 3,
odd derangements exist. Deal first with the case n = 4. Then note that if n > 4, then
D, = S, by (10.1.9)).

10.2 Solvable and nilpotent groups

In this section we will discuss certain types of group which are wide generalizations of
abelian groups, but which retain vestiges of commutativity. The basic concept is that
of a solvable group, which is defined to be a group with a series all of whose factors
are abelian. The terminology derives from the classical problem of solving algebraic
equations by radicals, which is discussed in detail in Chapter Twelve. The length of a
shortest series with abelian factors is called the derived length of the solvable group.
Thus abelian groups are the solvable groups with derived length at most 1. Solvable
group with derived length 2 or less are called metabelian.

Finite solvable groups are easily characterized in terms of their composition factors.

(10.2.1) A finite group is solvable if and only if its composition factors have prime orders.
In particular a simple group is solvable if and only if it has prime order.

Proof. Let G be a finite solvable group, so that G has a series § with abelian factors.
Refine 8 to a composition series of G. The factors of this series are simple and they
are also abelian since they are isomorphic with quotients of abelian groups. By (4.1.9)
a simple abelian group has prime order. Hence composition factors of G have prime
orders. The converse is an immediate consequence of the definition of solvability. O
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Solvability is well-behaved with respect to the formation of subgroups, quotient
groups and extensions.

(10.2.2)

(i) If Gis asolvable group, then every subgroup and every quotient group of G is solvable.

(ii) Let G be a group with a normal subgroup N such that N and G/N are solvable. Then
G is solvable.

Proof. (i) Let1 = Go < Gy < --- < Gy = G be a series with abelian factors and let H be a
subgroup of G. Then

1=GonH<«GiNH<---aGy,NH=H

is a series in H. Let x, y € Gi,1 N H. Then the commutator [x, y] = xyx 1y~ belongs
to Gj, because Gi;1/Gj is abelian, and clearly [x, y] € H. Therefore [x, y] € G; n H and
Gi;1 N H/G; n H is abelian, which shows that H is a solvable group.

Next let N <« G. Then G/N has the series

1=GoN/N< G N/N«---<4GyN/N = G/N.

Also (Gi;1N/N)/(GiN/N) = Gi;1N/G;N by (4.3.6). The assignment xG; — xG;N deter-
mines a well defined, surjective homomorphism from G;,1/G; to Gi;1N/G;iN. Since
Gi.1/Gi is abelian, the group Gi;1N/G;N is abelian and hence G/N is solvable.

(ii) The proof is left to the reader as an exercise. O

The derived series. Recall from (4.2) that the derived subgroup G’ of a group G is the
subgroup generated by all the commutators in G,

G =([x,yllx,y€G).

The derived chain G?,i =0, 1, 2, ..., is defined to be the descending sequence of
subgroups formed by repeatedly taking derived subgroups: thus

GO = G, G+ = (G(i))f_

Note that G?) « G and G?/G*V is an abelian group.
The important properties of the derived chain are that in a solvable group it reaches
the identity subgroup and of all series with abelian factors it has shortest length.

(10.2.3) Let 1 = Go < G1 < --- < G = G be a series with abelian factors in a solvable
group G. Then GY < Gy_; for 0 < i < k. In particular G = 1, so that the length of the
derived chain equals the derived length of G.

Proof. The containment is certainly true when i = 0. Assume that it is true for i. Since
Gr-i/Gi—i_1 is abelian, GV = (GD) < (Gy_;)' < Gi-i_1, as required. On setting i = k,
we find that G% = 1. O
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Notice the consequence: a solvable group has a normal series, i.e., one in which
every term is normal, with abelian factors: indeed the derived series is of this type.

It is sometimes possible to deduce solvability of a finite group from the properties
of its order. Some group orders for which this can be done are given in the next result.

(10.2.4) Let p, q, r be primes. Then a group whose order has the form p™, p?q?, p™q or
pqr is solvable.

Proof. First observe that in each case it is enough to show that there are no non-abelian
simple groups with the order. For once this fact has been established, by applying it
to the composition factors the general case will follow. If G is a simple group of order
p™ # 1, then Z(G) + 1 by (5.3.6) and Z(G) < G, so G = Z(G) and G is abelian.

Now consider the case of a simple group G with order p™q. We can of course
assume that p # g. Thenn, = 1 (mod p) and nnp, | g, so that n, = ¢, sincen, =1
would mean that there is a normal Sylow p-subgroup.

Choose two distinct Sylow p-subgroups P; and P, whose intersection I = P, N P,
has largest order. First of all suppose that I = 1. Then each pair of distinct Sylow
p-subgroups intersects in 1, which makes it easy to count the number of non-trivial
elements with order a power of p; indeed this number is g(p™ - 1) since there are g
Sylow p-subgroups. This leaves p™q — q(p™ — 1) = q elements of order prime to p.
These elements must form a single Sylow g-subgroup, which is therefore normal in G,
contradicting the simplicity of the group G. It follows that I + 1.

By Exercise (5.3.14) or (10.2.7) below, I < N; = Np,(I) fori = 1,2. ThusI <« J =
(N1, N3). Suppose for the moment that J is a p-group. By Sylow’s Theorem J is contained
in some Sylow subgroup P53 of G. But Py n P3 > Py nJ > I since N; < P, nJ, which
contradicts the maximality of the intersection I. Therefore J is not a p-group.

By Lagrange’s Theorem |]| divides |G| = p™q and it is not a power of p, from which
it follows that ¢ must divide |J|. Let Q be a Sylow g-subgroup of J. By (4.1.12)

IP1l-1QI _ p™q _

PQ:—_
P1Ql= 55 = 1

|Gl,
and thus G = P1Q.Nowlet g € Gand writeg = abwherea € P1,b € Q.ThenbIb~! =
since ] «Jand Q < J. Hence glg~! = a(bIb-Y)a~! = ala™! < P; < G. But this means
thatI = (glg™' | g € G) < P < Gand also 1 # I < G, a final contradiction.

The remaining group orders are left as exercises with appropriate hints — see
Exercise (10.2.5) and (10.2.6). O

We mention two much deeper arithmetic criteria for a finite group to be solvable.
The first states that a group of order p™q" is solvable if p and q are primes. This is the
celebrated Burnside p-q Theorem. It is best proved using group characters and thus
lies beyond the scope of this book.
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An even more difficult result is the Odd Order Theorem, which asserts that every
group of odd order is solvable. This famous theorem is due W. Feit # and J.G. Thompson:
the original proof, published in 1963, was over 250 pages long.

These results indicate that there are many finite solvable groups: indeed finite
non-abelian simple groups should be regarded as a rarity among finite groups.

Nilpotent groups. Nilpotent groups form an important subclass of the class of solvable
groups. A group G is said to be nilpotent if it has a central series, by which is meant
a series of normal subgroups 1 = Gg < G1 4 G < --- <4 G, = G such that G;;1/G; is
contained in the center of G/G; for all i. The length of a shortest central series is called
the nilpotent class of G. abelian groups are just the nilpotent groups with class < 1.
Clearly every nilpotent group is solvable, but Ss is a solvable group that is not nilpotent
since its center is trivial.
The great source of finite nilpotent groups is the groups of prime power order.

(10.2.5) Let G be a group of order p™ where p is a prime. Then G is nilpotent, and if
m > 1, the nilpotent class of G is at most m — 1.

Proof. Define a sequence of subgroups {Z;} by repeatedly forming centers. Thus Zp = 1
and Z;,1/Z; = Z(G/Z;). By (5.3.6), if Z; + G, then Z(G/Z;) # 1 and Z; < Z;,1. Since G
is finite, there is a smallest integer n such that Z, = G, and clearly n < m. Suppose
that n = m. Then |Z,;,_»| > p™ 2 and thus |G/Zu—_>| < p™/p™ 2 = p?, which means
that G/Z,,_, is abelian by (5.3.7). This yields the contradiction Z,,_1 = G; therefore
n<m-1. O

The foregoing proof suggests a general construction, the upper central chain of a
group G. This is the chain of subgroups defined by repeatedly forming centers,

Zo(G) =1,  Zi1(6)/Zi(G) = Z(G/Zi(G)).

Thus 1 =2y < Z; <--- and Z; < G. If G is finite, this chain will certainly terminate,
although it may it not reach G. The significance of the upper central chain for nilpotency
is shown by the next result.

(10.2.6) Let1 = Go < G1 < --- < G = G be a central series in a nilpotent group G. Then
G;i < Zi(G) for 0 < i < k. In particular, Zx(G) = G and the length of the upper central
chain equals the nilpotent class of G.

Proof. We argue that G; < Z;(G) by induction on i, which is certainly true for i = 0. If it
is true for i, then, since G;;1/G;i < Z(G/Gj;), we have

Gi+1Zi(G)/Zi(G) < Z(G/Zi(G)) = Zi+1(G)/Zi(G).

4 Walter Feit (1930-2004)
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Thus Gi;+1 < Zi+1(G), which completes the induction. Consequently G = G < Zx(G)
and G = Zx(G). O

Example (10.2.1) Let p be a prime and let n > 1. Denote by U,(p) the group of all n x n
upper unitriangular matrices over the field Z,, i.e., matrices which have 1’s on the
diagonal and O’s below it. Counting the matrices of this type by enumerating possible
superdiagonals, we find that |U,(p)| = p" 1 - p"2-..p -1 = p""-1/2 Therefore Uy,(p)
is a nilpotent group, and in fact its class is n — 1, (see Exercise (10.2.11)).

Characterizations of finite nilpotent groups. There are several different descriptions
of finite nilpotent groups which shed light on the nature of the property of nilpotency.

(10.2.7) Let G be a finite group. Then the following statements are equivalent:
(i) G isnilpotent;

(ii) every subgroup of G is subnormal;

(iii) every proper subgroup of G is smaller than its normalizer;

(iv) G is the direct product of its Sylow subgroups.

Proof. (i) implies (ii). Let 1 = Go < G1 < --- < G, = G be a central series and let H be a
subgroup of G. Then G;,1/G; < Z(G/G;), so HG;/G; <« HGj,1/G;. Hence there is a chain
of subgroups H = HGo < HG1 < --- < HG, = G and H is subnormal in G.

(ii) implies (iii). Let H < G; then H is subnormal in G, so there is a chain H = Hy < H{ «
---aqHpy = G.Thereis aleast i > 0 such that H # H;, and then H = H;_; < H;. Therefore
H; < Ng(H) and Ng(H) + H.

(iii) implies (iv). Let P be a Sylow p-subgroup of G. If P is not normal in G, then Ng(P) <
G, and hence Ng(P) is smaller than its normalizer. But this contradicts Exercise (5.3.15).
Therefore P <« G and P must be the unique Sylow p-subgroup, which will be written Gp,.

Evidently G, < Gand G, N (G4 | g # p) = 1 since orders of elements from the inter-
secting subgroups are relatively prime. Clearly G is generated by its Sylow subgroups,
so G is the direct product of the G,.

(iv) implies (i). This follows quickly from the fact that a finite p-group is nilpotent. [

The unique Sylow p-subgroup G, is called the p-component of the nilpotent
group G.

The Frattini® subgroup. A very intriguing subgroup that can be formed in any group G
is the Frattini subgroup

#(G).

5 Giovanni Frattini (1852-1925)
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This is defined to be the intersection of all the maximal subgroups of G. Here a maximal
subgroup is a proper subgroup which is not contained in any larger proper subgroup.
If G has no maximal subgroups, as is the case if G is trivial and might happen if G is
infinite, then ¢(G) is defined to be G. Note that ¢p(G) is normal in G. For example, S3
has one maximal subgroup of order 3 and three of order 2: these intersect in 1, so
¢(S3) = 1.

There is another, very different, way of describing the Frattini subgroup, which
involves the notion of a non-generator. An element g of a group G is called a non-
generator if G = (g, X) always implies that G = (X) where X is a non-empty subset of G.
Thus a non-generator can be omitted from any generating set for G.

(10.2.8) If G is a finite group, ¢(G) is the set of all non-generators of G.

Proof. Let g be a non-generator of G and assume that g is not in ¢(G). Then there
is at least one maximal subgroup of G which does not contain g, say M. Thus M
is definitely smaller than (g, M), which implies that G = (g, M) since M is maximal.
Therefore G = M by the non-generator property, which is a contradiction since maximal
subgroups are proper.

Conversely, let g € ¢(G) and suppose that G = (g, X), but G # (X). Then (X)
must be contained in some maximal subgroup of G, say M. But g € ¢(G) < M, so
G = (g, M) = M, another contradiction. O

Actually (10.2.8) is valid for infinite groups as well, but the proof requires the use
of Zorn’s Lemma - see Exercise (14.1.6). Next we establish an important property of the
Frattini subgroup of a finite group.

(10.2.9) If G is a finite group, then ¢(G) is nilpotent.

Proof. The proof depends on a useful trick known as the Frattini argument. Write
F = ¢(G) and let P be a Sylow p-subgroup of F. If g € G, then gPg~! < F since
F 4 G: also |gPg™!| = |P|. Therefore gPg~! is a Sylow p-subgroup of F, and as such
it must be conjugate to P in F by Sylow’s Theorem. Thus gPg~! = xPx~! for some x
in F. This implies that x 1gP(x"1g)™! = P, i.e., x"'g € Ng(P) and g € FNg(P). Thus
the conclusion of the Frattini argument is that G = FNg(P). Now the non-generator
property comes into play, allowing us to omit the elements of F one at a time, until
eventually we get G = Ns(P), i.e., P < G. In particular P < F, so that all the Sylow
subgroups of F are normal and F is nilpotent by (10.2.7). O

The Frattini subgroup of a finite p-group. The Frattini subgroup plays an especially
significant role in the theory of finite p-groups. Suppose that G is a finite p-group. If M is
a maximal subgroup of G, then, since G is nilpotent, M is subnormal and hence normal
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in G. Furthermore G/M cannot have proper non-trivial subgroups by maximality of M.
Thus |G/M| = p. Define the pth power of the group G to be

GP = (g’ | g€ G).

Then GPG' < M for all M and GPG' < ¢(G).

On the other hand, G/GP G’ is a finite abelian group in which every pth power is
the identity, i.e., it is an elementary abelian p-group. By (8.2.16) such a group is a direct
product of groups of order p. This fact enables us to construct maximal subgroups
of G/GP G' by omitting all but one factor from the direct product. The resulting maximal
subgroups of G/GP G’ clearly intersect in the identity subgroup, which shows that
¢(G) < GPG'. We have therefore proved:

(10.2.10) If G is a finite p-group, then ¢(G) = GPG'.

Next suppose that V = G/GPG' has order p?; thus d is the dimension of V as a
vector space over the field Z,. Consider an arbitrary set X of generators for G. Now
the subset {xGPG' | x € X} clearly generates V as a vector space. By Exercise (8.2.10)
there is a subset Y of X such that {yG’G’ | y € Y} is a basis of V. Of course |Y| = d.
We claim that Y generates G. Certainly we have that G = (Y, GPG') = (Y, ¢(G)). The
non-generator property of ¢(G) shows that G = (Y).

Summing up these conclusions, we have the following basic result on finite p-
groups.

(10.2.11) Let G be a finite p-group and assume that G/¢(G) has order p“. Then every
set of generators of G has a d-element subset that generates G. In particular G can be
generated by d and no fewer elements.

Example (10.2.2) A group Gisconstructed as the semidirect product of a cyclic group (a)
of order 2" with a Klein 4-group V = (x,y) wheren > 3, xax™! = a™! and yay™! =
a*2"" . Thus |G| = 2™*2. Observe that G' = (a2) and thus G/G' is elementary abelian
of order 8. Hence ¢(G) = G2G' = (a?). By (10.2.11) the group G can be generated by 3
and no fewer elements, and in fact G = (a, x, y).

Exercises (10.2)

(1) Let M < G and N <« G where G is any group. If M and N are solvable, prove that MN
is solvable.

(2) Let M <« G and N « G for any group G. If G/M and G/N are solvable, prove G/M N N
is solvable.

(3) Explain why a solvable group with a composition series is necessarily finite.

(4) Let G be a finite group with two non-trivial elements a and b such that |a|, |b]|, |ab|

are relatively prime in pairs. Prove that G cannot be solvable. [Hint: put H = {(a, b) and
consider H/H'].
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(5) Prove that if p, g, r are primes, then every group of order pqr is solvable. [Hint:
assume that G is a simple group of order pqr where p < q < r and show that n, = pgq,
ng > rand np, > q. Now count elements to obtain a contradiction].

(6) Prove that if p and q are primes, then every group of order p2g? is solvable. [Hint:
follow the method of proof for groups of order p™q in (10.2.4). Deal first with the
case where each pair of Sylow p-subgroups intersects in 1. Then choose two Sylow
subgroups P; and P, such that I = P; n P, has order p and note that I < J = (P, P5)].

(7) Establish the commutator identities
Dy =y 6yl Dy and  [x,yz] = [x,yl(y[x, 2y ).

(8) Let G be a group and let z € Z,(G). Prove that the assignment x — [z, x] determines
a homomorphism from G to Z(G) whose kernel contains G'.

(9) Let G be a group such that Z;(G) < Z,(G). Use Exercise (10.2.8) to show that G > G'.

(10) Find the upper central series of the group G = Dih(2™) where m > 2. Hence
compute the nilpotent class of G.

(11) Let n > 1 and let G = Uy(p), the group of n x n upper unitriangular matrices over
Zp. Define G; to be the subgroup of all elements of G in which the first i superdiagonals
consist of 0’s, where O < i < n. Show that the G; are terms of a central series of G. Then
find the nilpotent class of G.

(12) Let G be a nilpotent group with a non-trivial normal subgroup N. Prove that N n
Z(G) + 1.

(13) Let A be a maximal abelian normal subgroup of a nilpotent group G. Prove that
Cs(A) = A. [Hint: assume this is false and apply Exercise (10.2.12) to Cg(A)/A < G/A].

(14) If every abelian normal subgroup of a nilpotent group is finite, prove that the group
is finite.

(15) The lower central sequence {y;(G)} of group G is defined by 1 (G) = G and y1,1(G) =
[y:(G), G]. If G is a nilpotent group, prove that the lower central sequence reaches 1
and its length equals the nilpotent class of G. (If H, K are subgroups of a group, then
[H, K] is the subgroup generated by all commutators [h, k], h € H, k € K].

(16) Find the Frattini subgroup of the groups A, S, and Dih(2n) where n is odd.

(17) Use (10.2.4) to show that a non-solvable group of order at most 100 must have
order 60. (Note that the only orders requiring attention are 60, 72, 84 and 90).

(18) Prove that As is the only non-solvable group with order < 100. [Hint: it is enough
to show that a simple group of order 60 must have a subgroup of index 5. Consider the
number of Sylow 2-subgroups].
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10.3 Theorems on finite solvable groups

The final section of the chapter will take us deeper into the theory of finite solvable
groups and several famous theorems will be proved.

Schur’s splitting and conjugacy theorem. Suppose that N is a normal subgroup of a
group G. A subgroup X such that G = NX and N n X = 1 is called a complement of N
in G. In this case G is said to split over N and G is the semidirect product of N and X. A
splitting theorem is theorem asserting that a group splits over a normal subgroup. One
can think of such a theorem as resolving a group into a product of potentially simpler
groups. The most celebrated splitting theorem in group theory is undoubtedly Schur’s
theorem.

(10.3.1) (Schuré) Let A be an abelian normal subgroup of a finite group G such that |A|
and |G : A| are relatively prime. Then G splits over A and all complements of A are
conjugate in G.

Proof. (i) Existence of a complement. To start the proof choose an arbitrary transversal
to Ain G, say {ty | x € Q = G/N} where x = At,. Most likely this transversal will
not be a subgroup. The idea behind the proof is to transform the transversal into
one which is a subgroup. Let x,y € Q: then x = Aty and y = Afy, and in addition
Atyy = xy = AtyAty = Atyty,. Thus it is possible to write

txty = a(x, y)tyy

for some a(x, y) € A.
The associative law (tyty)t, = tx(tyt,) imposes a condition on the elements a(x, y).
For, applying the above equation twice, we obtain

(txty)tz = a(x, y)a(xy, Z)txyz,
and similarly
tx(tyty) = tya(y, 2)ty, = (txa(y, Z)t;l)txtyz = (txa(y, Z)t;l)a(x» YZ)txyz.

Now conjugation of elements of A by t, induces an automorphism of A which
depends only on x: for, if a, b € A, then (bt,)a(bty)™! = tyat;! since A is abelian. Let
us write *a for txat;l. Then on equating (txty)t, and ty(tyt,) and cancelling tyy,, we
arrive at the equation

a(x,y)a(xy, z) = *a(y, z)a(x, yz), (%)

6 Issai Schur (1875-1941)
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which is valid for all x, y, z, € Q. A function a : Q x Q — A that satisfies the condition
(*) is called a factor set or 2-cocycle.
Next define
bx = H a(x, y)’
yeQ

noting that the order of the factors in the product is immaterial since A is abelian. On
forming the product of the equations () above for all z in Q with x and y fixed, we
obtain the equation

a(x, )/)m bxy = xbybx, (%)

where m = |Q| = |G : A|. Note here that the product of all the *a(y, z) is *by, and the
product of all the a(x, yz) is by.

Since m is relatively prime to |A|, the mapping a — a™ is an automorphism of A.
Thus we can write by as an mth power, say by = c;™ where c, € A. Substituting for b
in equation (x ), we get (a(x, y)cy;)™ = ((*cycx)™")™, from which it follows that

cxy = cx(*cy)alx, y).

We are now ready to form the new transversal. Write sy = cyt, and observe that
the sy, (x € Q), form a transversal to A. Moreover

SxSy = CxtxCyty = cx(cy)txty = cx(*cy)alx, Y)tyy = Cxytyy = Sxy.

This demonstrates that the transversal H = {s, | x € Q} is a subgroup. Since G = AH
and A n H = 1, it follows that H is a complement of A in G and G splits over A.

(ii) Conjugacy of complements. Let H = {sx | x € Q}and H* = {s} | x € Q} be two
complements of A in G. If x € Q, we can write x = Asy = As}; where sy and s; belong
to H and H* respectively. Thus s, and s are related by an equation of the form

Sy = d(X)sx

where d(x) € A. Since Asy, = xy = AsxAsy, = AsySy, we have sys, = sy, and similarly
SxSy = Sy.-In the last equation make the substitutions s; = d(x)sx, sy = d(y)sy,
Sxy = d(xy)sxy to get d(x)sxd(y)sy = d(xy)sxy and hence

d(xy) = dx)(*d(y))

forall x,y € Q. Such a function d : Q — A is called a derivation or 1-cocycle.

Put d = [],.q d(x) and take the product of all the equations dyy = d(x)(*d(y)) for
y € Q with x fixed. This leads to d = (d(x)™)(*d). Writing d = e™ with e € A, we obtain
e™ = (d(x) *e)™ and hence e = d(x)(*e). Thus d(x) = e(*e)L. Since *e = sxes;l, we
have

st =d(x)sy = e(*e) sy = e(sye 15 1)sy = esye L.

Therefore H* = eHe !, so H and H* are conjugate. O
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In fact(10.3.1) is true even when A is non-abelian, a result which is known as the
Schur-Zassenhaus Theorem. The proof of conjugacy of complements requires the Odd
Order Theorem: see for example [11] and also Exercise (10.3.7).

Hall’s theorems on finite solvable groups. To illustrate the usefulness of Schur’s split-
ting theorem we will make a foray into the theory of finite solvable groups by proving
the following celebrated result.

(10.3.2) (P. Hall?) Let G be a finite solvable group and write |G| = mn where the positive
integers m, n are relatively prime. Then G has a subgroup of order m and all subgroups
of this order are conjugate.

Proof. (i) Existence. We argue by induction on |G| > 1. The group G has a non-trivial
abelian normal subgroup A, for example the smallest non-trivial term of the derived
series. Since A is the direct product of its primary components, we can assume that A
is a p-group, with |A| = pX, say. There are two cases to consider.

Suppose first that p does not divide m. Then pX | n because m and n are relatively
prime. Since |G/A| = m - (n/p"), the induction hypothesis may be applied to the
group G/A to show that it has a subgroup of order m, say K/A. Now |A] is relatively
prime to m = |K : A|, so (10.3.1) may be applied to K. Hence there is a complement of A
in K: this has order m, as required.

Now assume that p divides m; then pk | m since p cannot divide n. Since |G/A| =

(m/p¥) - n, induction shows that G/A has a subgroup of order m/p¥, say H/A. Then
|H| = |A| - |H/A| = p*(m/p¥) = m, as required.
(ii) Conjugacy. Let H and H* be two subgroups of order m, and choose A as in (i). If
p does not divide m,then AnH =1=AnH*,and AH/A and AH* /A are subgroups
of G/A with order m. By induction on |G| these subgroups are conjugate and thus
AH = g(AH*)g™! = A(gH*g™!) for some g ¢ G. By replacing H* by gH*g!, we can
assume that AH = AH*. But now H and H* are two complements of A in HA, so (10.3.1)
guarantees that they are conjugate.

Finally, assume that p divides m. Then p does not dividen = |G : H| = |G : H*|.
Since |AH : H| is a power of p and it also divides n, we conclude that |AH : H| = 1 and
A < H. Similarly A < H*. By induction H/A and H* /A are conjugate in G/A, as must H
and H* bein G. O

Hall -subgroups. Let us now assess the significance of Hall’s theorem. Let 7 denote
a non-empty set of primes and let 7’ be the complementary set of primes. A positive
integer is called a m-number if it is a product of powers of primes from the set 71. A finite
group is said to be a r1-group if its order is a m-number.

7 Philip Hall (1904-1982)
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Now let G be a finite solvable group and write |G| = mn where m is a m-number
and n is a 7’-number. Then (10.3.2) tells us that G has a subgroup H of order m and
index n. Thus H is a 1-group and |G : H| is a 7’-number: such a subgroup is called a
Hall m-subgroup of G. Thus (10.3.2) actually asserts that Hall 77-subgroups exist in a
finite solvable group for any set of primes 7, and that any two Hall -subgroups are
conjugate.

Hall’s theorem can be regarded as an extension of Sylow’s Theorem since if 77 = {p},
a Hall m-subgroup is simply a Sylow p-subgroup. However, Sylow’s Theorem is valid
for any finite group, whereas Hall subgroups need not exist in an insolvable group. For
example As has order 60 = 3 - 20, but it has no subgroups of order 20, as the reader
should verify.

This example is no coincidence since there is in fact a strong converse of Hall’s
theorem: the mere existence Hall p’-subgroups for all primes p dividing the group order
is enough to imply solvability of the group. Here p’ is the set of all primes different
from p. The proof of this result uses the Burnside pg-Theorem: a group of order p™g"
is solvable if p and q are primes.

(10.3.3) (P. Hall) Let G be a finite group and suppose that for every prime p dividing |G|
there is a Hall p'-subgroup in G. Then G is solvable.

Proof. Assume the theorem is false and let G be a counterexample of smallest order.
We look for a contradiction. Suppose that N is proper non-trivial normal subgroup of G.
If H is a Hall p’-subgroup of G, then by consideration of order and index we see that
Hn N and HN/N are Hall p’-subgroups of N and G/N respectively. Therefore N and
G/N are solvable by minimality of |G|, and thus G is solvable. By this contradiction G
is a simple group.

Write |G| = p{'p5’ -~ py* where e; > 0 and the p; are distinct primes. The Burnside
pgq-Theorem shows that k > 2. Let G; be a Hall p}-subgroup of G; thus |G : G;| = pl.e".
Put H = G3 n--- N Gy and observe that

k k
G:H =]]I6:Gil=]]p{"
i=3 i=3

by (4.1.13). Therefore |H| = |G|/|G : H| = p$'p3 and H is solvable by Burnside’s
Theorem.
Since H # 1, it contains a minimal normal subgroup M. By Exercise (10.3.2) below

M is an elementary abelian p-group where p = p; or p,: without loss of generality let
p =p1. Now

k

IG:HN Gyl =G : H|-|G: Go| = [ [ p]”

i=2
by (4.1.13) once again. Thus |H N G,| = p‘fl, i.e., H N G, is a Sylow p;-subgroup of H.
Hence M(HNG,)is a py-group, from which it follows that M < HNG,. Also |[HNG1| = pgz
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by the same argument and therefore

G
I(H 1 61)Ga| = [H Gy - |Gl =p§21'7—92' - 161,

2

Consequently G = (H n G1)G;,. Next consider the normal closure of M in G — see
Example (4.2.1)(vi). This is

(MCy = (MWHNGIG2y = (G2 < G, < G,

since M < H. It follows that (MC) is a proper non-trivial normal subgroup of G, so G is
not simple, a contradiction. O

Hall’s theorems are the starting point for a rich theory of finite solvable groups
which has been developed over the last eight decades; the standard reference for this
is [3].

Exercises (10.3)

(1) Give an example of a finite group G with an abelian normal subgroup A such that G
does not split over A.

(2) If G is a finite solvable group with a minimal (non-trivial) normal subgroup N, prove
that N is an elementary abelian p-group for some p dividing |G|. [Hint: note that N’ <« G].

(3) If M is a maximal subgroup of a finite solvable group G, prove that |G : M| is equal
to a prime power. [Hint: use induction on |G| to reduce to the case where M contains
no non-trivial normal subgroups of G. Let A be a minimal normal subgroup of G. Show
that G = MAand MnA =1].

(4) For which sets of primes 7 does the group As contain a Hall 7-subgroup?

(5) Let G be a finite solvable group and p a prime dividing the order of G. Prove that G
has a maximal subgroup with index a power of p. [Hint: apply (10.3.2)].

(6) Let G be a finite group and 7 a set of primes. Let L be a solvable normal subgroup of
G and assume that H is a Hall ri-subgroup of L. Prove that G = LN (H).

(7) Let G be a finite group with a normal subgroup N. Assume that |N| and |G : N| are
relatively prime and that N is solvable. Prove that G splits over N and all complements
of N are conjugate. [Hint: assume that N # 1 and find a non-trivial abelian subgroup
A of G which is contained in N. By induction on the group order the result is true for
G/Al.

(8) Let G be a finite group and let p be a prime dividing the order of G. Prove that p
divides |G/¢(G)|. [Hint: assume this is false, so G/¢(G) is a p’-group. Since ¢(G) is
nilpotent, there exists P < G such that P < ¢»(G), P is a p-group and G/P a p’-group.
Now apply Exercise (10.3.7)].



11 The Theory of fields

Field theory is one of the most attractive parts of algebra. It contains many powerful
results on the structure of fields, for example, the Fundamental Theorem of Galois
Theory, which establishes a correspondence between subfields of a field and subgroups
of the Galois group. In addition field theory can be applied to a wide variety of problems,
some of which date from classical antiquity. Among the applications to be described
here and in the following chapter are: ruler and compass constructions, solution of
equations by radicals, orthogonal latin squares and Steiner systems. In short field
theory is algebra at its best — deep theorems with convincing applications to problems
which might otherwise be intractible.

11.1 Field extensions

Recall from (7.4) that a subfield of a field F is a subring containing 1 which is closed
with respect to inversion of its non-zero elements. The following is an immediate
consequence of the definition.

(11.1.1) The intersection of any set of subfields of a field is a subfield.

Suppose that X is a (non-empty) subset of a field F. By (11.1.1) the intersection of all
the subfields of F that contain X is a subfield, which is evidently the smallest subfield
containing X. We call this the subfield of F generated by X. It is easy to describe the
elements of the subfield generated by a given subset.

(11.1.2) If X is a subset of a field F, the subfield generated by X consists of all elements
of the form
f(X1’ e ’Xm)g(yl’ e ,)/n)71

wheref € Z[t1,...,tml, g € Z[t1,...,tul, xi,yj € Xand g(y1,...,yn) # 0.

To prove this, first observe that the set S of elements with the specified form is a
subfield of F containing X. Then note that any subfield of F which contains X must
also contain all the elements of S, so that S is the smallest subfield that contains X.

Prime subfields. In a field F one can form the intersection of all its subfields. This is
the unique smallest subfield of F and it is called the prime subfield of F. A field which
equals its prime subfield is called a prime field. It is easy to identify the prime fields.

(11.1.3) A prime field of characteristic O is isomorphic with Q: a prime field of prime
characteristic p is isomorphic with Z,,. Conversely, Q and Z,, are prime fields.



228 — 11 The Theory of fields

Proof. Assume that F is a prime field and put I = {(1r) = {nlfr | n € Z}. Suppose first
that F has characteristic 0, so I is infinite cyclic. Define a surjective mappinga : Q — F
by the rule a(%) = (m1p)(nlp)~1, where n # 0. It is easily checked that a is a well
defined ring homomorphism and its kernel is therefore an ideal of Q. Now 0 and Q
are the only ideals of Q and a(1) = 1f # Of, so Ker(a) # Q. It follows that Ker(a) = 0
and Q = Im(a). Since F is a prime field and Im(a) is a subfield, Im(a) = F and a is an
isomorphism. Thus F = Q.

Now suppose that F has prime characteristic p, so that |I| = p. In this situation we
define a : Z — F by a(n) = n1g. Thus a(n) = Of if and only if n1f = 0, i.e., p divides n.
Hence Ker(a) = pZ and Im(a) = Z/pZ = Z,. It follows that Z,, is isomorphic with
a subfield of F and, since F is prime, Z, = F. It is left to the reader to check that Q
and Z,, are prime fields. O

Field extensions. Consider two fields F and E and suppose there is an injective ring
homomorphism a : F — E. Then F is isomorphic with Im(a), which is a subfield of E:
under these circumstances we say that E is an extension of F. Often we prefer to assume
that F is actually a subfield of E. This is usually a harmless assumption since F can be
replaced by the isomorphic field Im(a). Notice that by (11.1.3) every field is an extension
of either Z,, or Q, according as the characteristic is a prime p or 0.

If E is an extension of F, then E can be regarded as a vector space over F by using
the field operations. The vector space axioms are consequences of the field axioms.
This simple idea is critical since it allows us to define the degree of E over F as

(E : F) = dimp(E),

assuming that this dimension is finite. Then E is called a finite extension of F.

Simple extensions. Let F be a subfield and X a non-empty subset of a field E. The
subfield of E generated by F U X is denoted by

F(X).
It follows readily from (11.1.2) that F(X) consists of all elements of the form

fOt, o X8, e yn)

where f € Flt1,...,tml, g8 € Flt1,...,tal, xi,y; € Xand g(y1,...,yn) # 0. If X =
{x1, X2, .. ., x1}, we write
F(x1,%2,...,x1)

instead of F({x1, X2, ..., x;}). The most interesting case for us is when X = {x} and
a typical element of F(x) has the form f(x)g(x)"! where f, g € F[t] and g(x) # 0. If
E = F(x) for some x € E, then E is said to be a simple extension of F.

We proceed at once to determine the structure of simple extensions.
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(11.1.4) Let E = F(x) be a simple extension of a field F. Then one of the following must
hold:

(i) f(x) £0forall0 # f € F[t] and E = F{t}, the field of rational functions in t over F;
(ii) f(x) = O for some monic irreducible polynomial f € F[t] and E = F[t]/(f).

Proof. We assume that F ¢ E. Define a mapping 6 : F[t] — E by evaluation at x, i.e.,
0(f) = f(x). This is a ring homomorphism whose kernel is an ideal of F[t], say I.

Assume first that I = 0, i.e., f(x) = O implies that f = 0. Then 6 can be extended
to a function a : F{t} — E by the rule a(é) = f(x)g(x)™1; this function is also a ring
homomorphism. Notice that a(g) = 0 implies that f(x) = 0 and hence f = 0. Therefore
Ker(a) = 0 and F{t} is isomorphic with Im(a), which is a subfield of E. Now Im(a)
contains F and x since a(a) = a if a € F and a(t) = x. Because E is a smallest field
containing F and x, it follows that E = Im(a) = F{t}.

Now suppose that I # 0. Then F[t]/I is isomorphic with a subring of the field E,
so it is a domain and hence I is a prime ideal. Since F[t] is a PID, we can apply (7.2.6)
to get I = (f) where f is a monic irreducible polynomial in F[¢]. Thus F[t]/I is a field
which is isomorphic with Im(6), a subfield of E containing F and x for reasons given
above. Therefore F[t]/I ~ Im(6) = E. O

Algebraic elements. Consider a field extension E of F and let x € E. There are two
possible forms for the subfield F(x), as indicated in (11.1.4). If f(x) + 0 whenever
0 # f € F[t], then F(x) = F{t} and x is said to be transcendent over F.

The other possibility is that x is a root of a monic irreducible polynomial f in F[¢].
In this case F(x) = F[t]/(f) and x is said to be algebraic over F. The polynomial f is the
unique monic irreducible polynomial over F which has x as a root: for if g is another
such polynomial, then g € (f) and f | g, so f = g by irreducibility and monicity. We call
f the irreducible polynomial of x over F, in symbols

Irrp(x):

thus F(x) = F[t]/(Irrp(x)).

Now let f = Irrr(x) have degree n. For any g in F[t] write g = fg+r where g, r € F[t]
and deg(r) < n, by the Division Algorithm for F[t], (see (7.1.3)). Then g + (f) = r + (f),
which shows that F(x) is generated as an F-vector space by 1, x, x2, ..., x"" 1. In fact
these elements are linearly independent over F. For, if ag + a1x + -+ + @p_1x™1 = 0
with a; € F, then g(x) = O where g = ap + a1t + --- + ay_1t" 1, and hence f | g. But
deg(g) < n — 1, which can only mean that g = 0 and all the a; are zero. It follows that
the elements 1, x, x, ..., x"~! form an F-basis of the vector space F(x) and hence
(F(x) : F) = n = deg(f).

These conclusions are summarized in:

(11.1.5) Let E = F(x) be a simple field extension of F.
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(i) If xis transcendent over F, then E = F{t}.
(ii) If x is algebraic over F, then E =~ F[t]/(Irtp(x)) and (E : F) = deg(Irrp(x)).

Example (11.1.1) Show that V3 — V2 is algebraic over Q, by finding its irreducible
polynomial and hence the degree (Q(+v3 - V2) : Q).

Put x = V3 - V2. The first move is to find a rational polynomial with x as a root.
Now x2 = 5 - 26, so (x2 = 5)2 = 24 and x* — 10x2 + 1 = 0. Hence x is a root of
f = t* - 10t2 + 1 and thus is algebraic over Q. If we can show that f is irreducible
over Q, it will follow that Irrg(x) = f and (Q(x) : Q) = 4.

By Gauss’s Lemma (7.3.7) it is enough to show that f is irreducible over Z. Now
clearly f has no integer roots, for +1 are the only candidates and neither one is a root.
Thus, if f is reducible, there must be a decomposition of the form

f=(+at+b)(t*+ait+b1)

where a, b, a1, by are integers. On equating coefficients of 1, t3, 2 on both sides, we
arrive at the equations

bby=1, a+a,; =0, aa,+b+by=-10.

Hence b = b; = +1 and a; = —a, so that —a® + 2 = —10. Since this equation has no
integer solutions, f is irreducible.

Algebraic extensions. Let E be an extension of a field F. If every element of E is alge-
braic over F, then E is called an algebraic extension of F. Extensions of finite degree
are an important source of algebraic extensions.

(11.1.6) An extension E of a field F with finite degree is algebraic.

Proof. Let x € E. By hypothesis E has finite dimension as a vector space over F, say n;
consequently the set {1, x, x2, ..., x"} is linearly dependent and there are elements
ao, a1, . .., a of F, not all zero, such that ag + a1x + azx% + --- + ayx™ = 0. Thus x
is a root of the non-zero polynomial ag + a;t + - - - + a,t"™ and it is therefore algebraic
over F. O

The next result is useful in calculations with degrees.

(11.1.7) Let F c K < E be successive field extensions. If K is finite over F and E is finite
over K, then E is finite over F and (E : F) = (E : K) - (K : F).

Proof. Let {x1,...,xm}bean F-basis of K and {y1, ..., yn} a K-basis of E. Then each
e € E can be written as e = Z?zl kiyi where k; € K. Also each k; can be written
ki = Y1, fijx; with fi; € F. Therefore e = Y., Y, fijx;yi and it follows that the
elements x;y; generate the F-vector space E.
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Next assume there is an F-linear relation among the x;y;,

n
i=1

fixjyi=0

|M§

j=1

where fi; € F. Then Z{‘:l(zj"ilﬁ,-xj)y,- = 0, so that Y7, fijx; = O for all §, since the y;
are K-linearly independent. Finally, f;; = O for all i and j by linear independence of
the x; over F. Consequently the elements x;y; form an F-basis of Eand (E : F) = nm =
(E:K)-(K:F). O

Corollary (11.1.8) Let F < K < E be successive field extensions with E algebraic over K
and K algebraic over F. Then E is algebraic over F.

Proof. Let x € E, so that x is algebraic over K; let its irreducible polynomial be f =
ao+ art + - + ap_1t"™ 1 + t" where a; € K. Put K; = F(ag, a1, ..., a;). Then q; is
algebraic over F and hence over K;_;. Since K; = K;_1(a;), it follows via (11.1.5) that
(K;j : Kj_q) is finite fori = 0,1,...,n -1, where K_; = F. Hence (K,_; : F) is finite
by (11.1.7). Also x is algebraic over K,,_1, so that (K,_1(x) : K,_1) is finite and therefore
(Kp-1(x) : F) is finite. It follows via (11.1.6) that x is algebraic over F. O

Algebraic and transcendental numbers. Next let us consider the complex field C as
an extension of the rational field Q. If x € C is algebraic over Q, then x is called an
algebraic number: otherwise x is a transcendental number. Thus the algebraic numbers
are the real and complex numbers which are roots of non-zero rational polynomials.

(11.1.9) The algebraic numbers form a subfield of C.

Proof. Let a and b be algebraic numbers. It is sufficient to show that a+ b, ab and ab™!
(if b # 0) are algebraic numbers. To see this note that (Q(a) : Q) is finite by (11.1.5). Also
Q(a, b) = (Q(a))(b) is finite over Q(a) for the same reason. Therefore (Q(a, b) : Q) is
finite by (11.1.7) and hence Q(a, b) is algebraic over Q by (11.1.6). The required result
now follows. O

The next result shows that not every complex number is an algebraic number.

(11.1.10) There are countably many algebraic numbers, but uncountably many complex
numbers.

Proof. Of course C is uncountable by (1.4.7). To see that there are countably many
algebraic numbers, observe that Q[¢t] is countable since it is a countable union of
countable sets — see Exercise (1.4.5). Also each non-zero polynomial in Q[¢] has finitely
many roots. It follows that there are only countably many roots of non-zero polynomials
in Q[t]: these are precisely the algebraic numbers. O
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The existence of transcendental numbers is demonstrated by (11.1.10), but without
giving a single example. Indeed it is a good deal harder to find specific examples.
The best known transcendental numbers are the numbers 7 and e. The fact that 7 is
transcendental underlies the impossibility of “squaring the circle” - for this see (11.2).
A good reference for the transcendence of 71, e and many other interesting numbers is
[10].

A subfield of C which is a finite extension of Q is called an algebraic number field:
the elements of algebraic number fields constitute all the algebraic numbers. The theory
of algebraic number fields is very well developed and is one of the most active areas of
algebra.

Exercises (11.1)

(1) Give examples of infinite field extensions of Q and of Z,.

(2) Leta = 21% where p is a prime. Prove that (Q(a) : Q) = p and that Q(a) has only
two subfields.

(3) Let n be an arbitrary positive integer. Construct an algebraic number field of degree n
over Q.

(4) Let a be a root of t® — 4t + 2 € Q[¢]. Prove that (Q(a) : Q) = 6.

(5) Let p and q be distinct primes and set F = Q(+/p, v/q)- Prove the following state-
ments.

) (F:Q=4

(i) F=Q(Vp+ VO

(iii) the irreducible polynomial of \/p + /g over Qis t* - 2(p + @)t* + (p - q)°.
(6) Let K be a finite extension of a field F and let F; be a subfield such that F ¢ F; ¢ K.
Prove that F; is finite over F and K is finite over F;.

(7) Prove that every non-constant element of Q{t} is transcendent over Q.
(8) Let @ = 37 — 25. Show that (Q(a) : Q) = 6 and find Irrg(a).

(9) Let p be a prime and put a = e2/P a complex primitive pth root of unity. Prove
thatIrrq(a@) =1+t +t2 +---+ P 1and (Q(a) : Q) =p - 1.

11.2 Constructions with ruler and compass

One of the most striking applications of field theory is to solve certain famous geometric
problems dating back to classical Greece. Each problem asks whether it is possible
to construct a geometric object using ruler and compass only. Here one has to keep in
mind that to the ancient Greeks only mathematical objects constructed by such means
had any reality, since Greek mathematics was based on geometry. We will describe four
constructional problems and then translate them to field theory.
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(i) Duplication of the cube. A cube of side one unit is given. The problem is to construct
a cube with double the volume using ruler and compass. This problem is said to
have arisen when the oracle at Delphi commanded the citizens of Delos to double
the size of the altar to the god Apollo, which had the shape of a cube.

(ii) Squaring the circle. Here the question is whether it is possible to construct, using
ruler and compass, a square whose area equals that of a circle with radius one
unit? This is perhaps the most notorious of the ruler and compass problems. It is
really a question about the nature of the number 7.

(iii) Trisection of an angle. Another notorious problem asks whether it is always possible
to trisect a given angle using ruler and compass.

(iv) Construction of a regular n-gon. Here the problem is to construct by ruler and
compass a regular n-sided plane polygon with side equal to one unit where n > 3.

These problems defied the efforts of mathematicians for more than 2000 years despite
many ingenious attempts to solve them. It was only with the rise of abstract algebra
in the 18th and 19th centuries that it was realized that all four problems had negative
solutions.

Constructibility. Our first move must be to formulate precisely what is meant by a
ruler and compass construction. Let S be a set of points in the plane containing the
points O(0, 0) and I(1, 0); note that O and I are one unit apart. A point P in the plane
is said to be constructible from S by ruler and compass if there is a finite sequence of
points Py, P1, ..., P, = Pwith Py in S where P;,; is obtained from Py, P4, ..., P; by
a procedure of the following type:

(i) draw a straight line joining two of Pg, P, ..., P;;
(ii) draw a circle with center one of Py, P, ..., P; and radius equal to the distance
between two of these points.

Then P;, is to be a point of intersection of two lines, of a line and a circle or of two
circles, where the lines and circles are as described as in (i) and (ii).

Finally, a real number r is said to be constructible from S if the point (r, 0) is con-
structible from S. The reader will realize that these definitions are designed to express
precisely the intuitive idea of a construction by ruler and compass. Each of the four
problems asks whether a certain real number is constructible from some given set of
points. For example, in the problem of duplicating a cube of side 1, take S to be the
set {0, I}: the question is whether ¥2 is constructible from S.

We begin by showing that the real numbers which are constructible from a given
set of points form a field: this explains why field theory is relevant to constructional
problems.

(11.2.1) Let S be a set of points in the plane containing 0(0, 0) and I(1, 0) and let S* be
the set of all real numbers constructible from S. Then S* is a subfield of R. Also va € S*
whenever a € S* and a > 0.
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Proof. This is entirely elementary plane geometry. Let a, b € S*; we have first to prove
that a + b, ab and a~! (if a # 0) belong to S*. Keep in mind here that by hypothesis a
and b are constructible.

To construct a+b, where say a > b, draw the circle with center A(a, 0) and radius b.
This intersects the x-axis at the points B(a — b, 0) and C(a + b, 0). Hence a + b and
a — b are constructible from S and belong to S*. (If a < b, the argument is similar.)

y

A

It is a little harder to construct ab. Assume that a < 1 < b: in other cases the
procedure is similar. Let A and B be the points (a, 0) and (b, 0). Mark the point B’ (0, b)
on the y-axis; thus |OB’| = |0B|. Draw the line IB’ and then draw AC’ parallel to IB’
with C' on the y-axis: elementary geometry tells us how to do this. Mark C on the x-axis
so that |OC| = |0C'|.

BI

o A C I B

By similar triangles |OC’|/|OB’| = |0A|/|0I|; therefore |OC| = |OC'| = |OA| -|0B'| = ab.
Hence (ab, 0) is constructible and ab € S*.
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Next we show how to construct a~! where, say, a > 1. Let A be the point (a, 0)
and mark the point I’(0, 1) on the y-axis. Draw the line IC' parallel to AI’ with C’' on
the y-axis. Mark C on the x-axis so that |OC| = |OC'|. Then |OC'|/|OI'| = |0I|/|0A], so
|OC| = |0C'| = a~1. Thus (a”1, 0) is constructible and a~! € S*.

y

A

II

C’\
>~ X

0 C I A

Finally, let a € S* where a > 0. We show how to construct the point (v/a, 0): it will
then follow that v/a € S*. We can assume that a > 1 — otherwise replace a by a~!. First
mark the point A{(a + 1, 0). Let C be the mid-point of the line segment OA1; thus C is
the point (%1, 0) and it is clear how to construct this. Now draw the semicircle with
center C and radius |0C| = %1,

y
D,

I D C Ay

Then draw the perpendicular to the x-axis through the point I(1, 0) and let it meet the
semicircle at D1. Mark D on the x-axis so that |OD| = |ID4|. Then

|0DP = |ID4)? = |D1C2 = |ICP? = (“T”)2 (@ . 1)2 _a

Hence |OD| = va and (+/a, 0) is constructible. O
It is now time to explain the field theoretic aspect of constructibility.
(11.2.2) Let S be a set of points in the plane containing 0(0, 0) and I(1, 0), and denote

by F the subfield of R generated by the coordinates of the points of S. Let a be any real
number. If a is constructible from S, then (F(a) : F) is equal to a power of 2.
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Proof. Let P be the point (a, 0). Since P is constructible from S, there is by definition
a sequence of points Py, Py, ..., P, = Pwith Py € S, where P;,1 is obtained from Py,
P4, ..., P; by intersecting lines and circles as explained above. Let P; be the point
(aj, b;) and put E; = F(ay, ..., ai, b1,...,b;)and Eg = F. Then F(a) € E, = E. If P;;;
is the point of intersection of two lines whose equations have coefficients in Ej;, then
ai;1 and by,1 are in Ej, as can be seen by solving two linear equations, i.e., E; = Ej;1.
If P;,1 is a point of intersection of a line and a circle whose equations have coefficients
in Ej, then aj,; is a root of a quadratic equation over E;. Hence (Ej(aj;+1) : E;) < 2.
Clearly we can solve for b;,1 in terms of a;,1, so bj;1 € Ei(ai;1) and Eiy1 = Ei(aiy1)-
Therefore (E;, 1 : E;) < 2. If P;,4 is a point of intersection of two circles over E;, subtract
the equations of the circles (in standard form) to realize P;,; as a point of intersection
of a line and a circle. Thus (Ej, : E;) < 2 in all cases and it follows that

n-1
(E: F) =[] (Ei1 ¢ E)
i=0
is a power of 2, asis (F(a) : F) since (E : F) = (E : F(a))(F(a) : F) by (11.1.7). O

The first two ruler and compass problems can now be resolved.

(11.2.3) It is impossible to duplicate a cube of side 1 or to square a circle of radius 1 by
ruler and compass.

Proof. Let S consist of the points O(0, 0) and I(1, 0). In the case of the cube, con-
structibility would imply that (Q(+¥2) : Q) is a power of 2 by (11.2.2). But (Q(V?2) :
Q) = 3 since Irr(¥/2) = £ - 2, a contradiction.

If it were possible to square the circle, /77 would be constructible from S. By (11.2.2)
this implies that (Q(~+/77) : Q) is a power of 2, asis (Q(m) : Q), since (Q(r) : Q(v/m)) < 2.
But in fact 7 is transcendental over Q by a famous result of Lindemann?, so (Q(rr) : Q)
is actually infinite. Therefore it is impossible to square the circle. O

With a little more effort we can determine which angles can be trisected.

(11.2.4) An angle a can be trisected by ruler and compass if and only if the polynomial
4¢3 - 3t — cos a is reducible over the field Q(cos a).

Proof. In this problem the angle « is given, so we can construct its cosine by drawing a
right angled triangle with angle a and hypotenuse 1. Now let S consist of the points
0, I and (cos a, 0). Let F = Q(cos a) and put 6 = %a. The problem is to decide if 6, or
equivalently cos 0, is constructible from S. If this is the case, (F(cos 6) : F) must be a
power of 2.

1 Carl Ferdinand von Lindemann (1852-1939).
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Recall the well-known trigonometric identity
cos 360 = 4 cos® 6 — 3 cos 6.

Hence 4 cos3 0 — 3cosf — cosa = 0, so that cos @ is a root of the polynomial f =
463 - 3t — cosa € F[t]. If 0 is constructible, Irrr(cos a) has degree a power of 2 and
therefore f is reducible.

Conversely, suppose that f is reducible, so that cos 8 is a root of a linear or quadratic
polynomial over F; thus cos 6 has the form u + v4/w where u, v, w € Fand w > 0. Since
F ¢ §*, it follows from (11.2.1) that v/w € S*. Hence cos 8 € S* and cos @ is constructible
from S, as required. O

Example (11.2.1) The angle 7 is trisectible by ruler and compass.
Since cos 7 = %, the polynomial f in (11.2.4) equals 4¢> — 3t - %, which has the

root —% in Q(cos(rr/4)) = Q(V2). Hence f is reducible. Now apply (11.2.4) to get the
result.

Example (11.2.2) The angle 7 is not trisectible by ruler and compass.

In this case cos £ = 1 and f = 4t - 3t - 1. This polynomial is irreducible over
Q(%) = Q since it has no rational roots. Hence § is not trisectible.

A complete discussion of the problem of constructing a regular n-gon calls for
some Galois theory and is deferred until (12.3).

Exercises (11.2)

(1) Complete the proof that ab € S* in (11.2.1) by dealing with the cases 1 < a < b,
anda<b<1.

(2) A cube of side a can be duplicated if and only if 2a is the cube of a rational number.

(3) Consider the problem of doubling the surface area of a cube of side 1. Can a cube
with double the surface area be constructed by ruler and compass?

(4) Determine which of the following angles are trisectible: (i) J; (ii) Z; (i) 5.

(5) Let p be a prime and suppose that a = e2/? is constructible from 0(0, 0) and I(1, 0).
Show that p must have the form 22° + 1 for some integer ¢ > 0, i.e., p is a Fermat prime.
(The known Fermat primes occur for O < ¢ < 4).

11.3 Finite fields

It was shown in (8.2.17) that the order of a finite field is always a power of a prime. More
precisely, if F is a finite field of prime characteristic p and (F : Z,) = n, then |F| = p™.
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Our main purpose in this section is to show that there are fields with arbitrary prime
power order and that fields with the same order are isomorphic.

We begin by identifying finite fields with the splitting fields of certain polynomials.
Let F be a field of order g = p™ where p is a prime, namely the characteristic of F. The
multiplicative group U(F) has order q — 1 and Lagrange’s Theorem shows that the order
of every element of U(F) divides g — 1. This means that a?~! = 1 for everya # 0in F,
so a? — a = 0. Since the zero element also satisfies the last equation, every element
of F is a root of the polynomial t7 — t € Zy[t]. But ¢ — t cannot have more than q roots,
so we conclude that the elements of F constitute all the roots of {7 — ¢, so that F is a
splitting field of 7 - t.

The foregoing discussion suggests that the existence of finite fields can be estab-
lished by using splitting fields, a hope that is borne out by the next result.

(11.3.1) Let g = p™ where p is a prime and n > 0. Then:
(i) a splitting field of the polynomial t4 — t € Z,[t] has order g;
(ii) if F is any field of order q, then F is a splitting field of t9 — t over Z,.

Proof. We have already proved (ii), so let us consider the assertion (i) and write F for a
splitting field of t9 — t. Define S = {a € F | a? = a}, i.e., the set of roots of t7 — t in F. First
we show that S is a subfield of F. For this purpose let a, b € S. Recall that p divides (1‘1J )
if 1 < i < p by (2.3.3); therefore the Binomial Theorem for the field F takes the form
(a + b)P = aP + bP, (see Exercise (6.1.6)). On taking further powers of p, we conclude
that

(atb)¥=a?+b?=a+b,

which shows that a + b € S. Also (ab)? = a?b? = gb and (a™1)4 = (a9)"! = g7t if
a # 0, so it follows that ab € Sand a! € S. Therefore S is a subfield of F.

Next the roots of the polynomial ¢4 — t are all different. For (t9—t)' = qt4~1-1 = -1,
so that t7 - t and its derivative (t7 - t)’ are relatively prime; therefore by (7.4.7) the
polynomial ¢ — t has no repeated roots and it follows that |S| = q. Finally, since F is a
splitting field of ¢4 - ¢, it is generated by Z,, and the roots of t7 - t. Therefore F = S and
|Fl =q. O

Our next objective is to show that fields with the same finite order are isomorphic.
Since every finite field has been identified as a splitting field, our strategy is to prove
the general result that any two splitting fields of a given polynomial are isomorphic,
plainly a result of independent interest. In proving this we employ a useful lemma
which shows how to extend an isomorphism between two given fields to extensions of
these fields.

(11.3.2) Let E = F(x) and E* = F*(x*) be simple algebraic extensions of fields F and F*.
Further assume there is an isomorphism « : F — F* such that a(Irrp(x)) = Irrp- (x*).
Then there is an isomorphism 6 : E — E* such that 0| = a and 6(x) = x*.
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In the statement of this result a has been extended in the obvious way to a ring
isomorphism a : F[t] — F*[t], by the rule 0‘(2121 aiti) = Y™, a(a;)t where a; € F.

Proof of (11.3.2). Put f = Irrp(x) and f* = Irrg- (x*); then by hypothesis a(f) = f*. This
fact permits us to define a mapping

6o : Ft1/(f) — F*[t]/(f*)

by the rule 0y(g + (f)) = a(g) + (f*); a simple check shows this to be a well defined
isomorphism. Next by (11.1.4) we have F(x) = F[t]/(f) and F*(x*) = F*[t]/(f*) via
the respective assignments g(x) — g + (f) and g*(x*) — g* + (f*), (g € F[t],g* €
F*[t]). Composition with 8 yields an isomorphism 6 : F(x) — F*(x*) where 6(g(x)) =
a(g(x*)), asindicated in the sequence of maps F(x) — F[t]/(f) @) F*[t]/(f*) — F*(x*).

O

The uniqueness of splitting fields is a special case of the next result.

(11.3.3) Let a : F — F* be an isomorphism of fields, and let f € F[t] and f* = a(f) €
F*[t]. If E and E* are splitting fields of f and f* respectively, there is an isomorphism
0: E — E* such that 0| = a.

Proof. Argue by induction on n = deg(f). If n = 1, then E = F, E* = F* and 0 = a.
Assume that n > 1. Let a be a root of f in E and put g = Irrg(a). Choose any root a*
of g* = a(g) € F*[t]. Then g* = Irrg-(a*). By (11.3.2) we can extend a to an isomorphism
01 : F(a) — F*(a*) such that 81| = a and 81 (a) = a*.

Now regard E and E* as splitting fields of the polynomials f/(t — a) and f*/(t — a*)
over F(a) and F*(a*) respectively. By induction on n we can extend 6, to an isomor-
phism 6 : E — E*; furthermore 8|r = 01|F = @, as required. O

Corollary (11.3.4) Let f be a non-constant polynomial over a field F. Then up to isomor-
phism f has a unique splitting field.

This follows from (11.3.3) by taking F = F* and a to be the identity map. Since a
finite field of order q is a splitting field of t7 — t, we deduce from (11.3.4) the fundamental
theorem:

(11.3.5) (E.H. Moore?) Finite fields of the same order are isomorphic.

It is customary to write
GF(q)

for the unique field of order g: here “GF” stands for Galois field.

2 Eliakim Hastings Moore (1862-1932)
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It is a very important fact about finite fields that their multiplicative groups are
cyclic. Somewhat more generally we prove:

(11.3.6) If F is any field, every finite subgroup of its multiplicative group U(F) is cyclic. If
F has finite order q, then U(F) is a cyclic group of order q — 1.

Proof. Let X be a finite subgroup of U(F). Then X is a finite abelian group, so by
the Primary Decomposition Theorem (9.2.3), X = P; x P, x --- x Py where P; is a
finite p;-group and p1, pa, ..., px are different primes. Choose an element x; of P;
with maximum order, say pf", and put x = x1x2 -+ Xg. Now x™ = x'x7'---x}' and,
since X is the direct product of the P;, it follows that x™ = 1 if and only if x"* = 1,
ie., pf" divides m for all i. Consequently x has order d = p‘il p‘; pik and |X| >
|x| = d. ,
Next let y be any element of X and write y = y1y; - - - yx with y; € P;. Then yfil =1
since pf” is the largest order of an element of P;. Therefore yl‘.j =1foralliandy? = 1.
It follows that every element of X is a root of the polynomial ¢4 — 1 and hence |X| < d.
Therefore |X| = d = |[{x)| and X = (x). O

This result provides another way to represent the elements of a field F of order g.
If UF) = (a), then F = {0,1, a, a?, ..., a? 2} where a?! = 1. This representation is
useful for computational purposes.

Corollary (11.3.7) Every finite field F is a simple extension of its prime subfield.

For if U(F) = (a), then clearly F = Zy(a) where p is the characteristic of F.

Example (11.3.1) Let F = GF(27) be the Galois field of order 27. Exhibit F as a simple
extension of GF(3) and find a generator of U(F).

The field F may be realized as the splitting field of the polynomial t?7 — ¢, but it
is simpler to choose an irreducible polynomial of degree 3 over GF(3), for example
f =t —-t+1.Then F = (GF(3)[t])/(f) is a field of order 33, which by (11.3.5) must
be GF(27). Put x = t + (f). Then, because f has degree 3, each element b of F has the
unique form b = ag + a1t + axt* + (f), i.e., b = ap + a1x + a>x%. Thus F = GF(3)(x) and
II‘I’GF(g)(X) =f= B -t+1.

Next we argue that U(F) = (x). Since |U(F)| = 26, it is enough to prove that |x| = 26.
Certainly |x| divides 26, so it suffices to show that x? # 1 and x> # 1. The first statement
is true because f } t? — 1. To show that x'3 # 1, use the relation x> = x — 1 to compute
x12 = (x-1)* =x2 +2;thus x3 = -1 # 1.

Exercises (11.3)

(1) Let F be a field of order p™ where p is a prime, and let K a subfield of F. Prove that
|K| = p4 where d divides m.
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(2) If F is a field of order p™ and d is a positive divisor of m, show that F has exactly
one subfield of order p?.

(3) Find an element of order 7 in the multiplicative group of Z,[t]/(£> + t + 1) = GF(8).
(4) Find elements of order 3, 5 and 15 in the multiplicative group of Z,[t]/(t* +t+ 1) =
GF(16).

(5) Prove that t*" — t € GF(p)[t] is the product of the distinct monic irreducible polyno-
mials with degrees dividing n.

(6) Let p(n) denote the number of monic irreducible polynomials of degree n in GF(p)(t]
where p is a fixed prime.
(i) Prove that p™ = Y.ain 4P (d) where the sum is over all positive divisors d of n.
(ii) Deduce that y(n) = L ¥ 4, u(d)p™'¢ where p is the Mobius? function, which is
defined as follows: pu(1) = 1, pu(n) equals (-1)" where r is the number of distinct
prime divisors of n if n is square-free, and p(n) = 0 otherwise. [You will need
the M6bius Inversion Formula: if f(n) = Zdln g(d), then g(n) = Zdln u(df(n/a).
For an account of the M6bius function see (12.2) below].
(7) Find all monic irreducible polynomials over GF(2) with degrees 2, 3, 4 and 5, using
Exercise (11.3.6) to check your answer.

11.4 Latin squares and Steiner triple systems

In this section we will describe two applications of finite fields to combinatorics, which
demonstrate the efficacy of algebraic methods in solving difficult combinatorial prob-
lems.

Latin squares. A latin square of order n is an n x n matrix with entries from a set of n
symbols such that each symbol occurs exactly once in each row and exactly once in

each column. Examples of latin squares are easily found.

Example (11.4.1)

a b c
(i) The matrices [Z z] and | b ¢ a | arelatin squares of orders 2 and 3 respec-
c a b

tively.

(ii) Let G = {g1, &2, . . . , gn} be a (multiplicatively written) group of order n. Then the
multiplication table of G is a latin square of order n. For, if the first rowis g1, g2, ..., &n,
the entries of the ith row are g;g1, gig2, - . - , 8§ign, Which are clearly all different. A
similar argument applies to the columns. On the other hand, not every latin square

3 August Ferdinand Mébius (1790-1868)
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determines a group table since the associative law may not hold. In fact a latin square
determines a more general algebraic structure called a quasigroup — for this concept
see Exercises (11.4.4) and (11.4.5) below. Latin squares frequently occur in puzzles, but
they also have a serious use in the design of statistical experiments. Here is an an
example to illustrate this use.

Example (11.4.2) Five types of washing powder Py, P,, P3, P,, Ps are to be tested in
five machines A, B, C, D, E over five days D1, D, D3, D4, Ds. Each washing powder is
to be used once each day and tested once on each machine. How can this be done?

Here the intention is to allow for differences in the machines and in the water
supply on different days, while keeping the number of tests to a minimum. A schedule
of tests can be given in the form of a latin square of order 5 whose rows correspond to
the washing powders and whose columns correspond to the days; the symbols are the
machines. For example, we could use the latin square

A B C D E

B C D E A
C D E A B
D E A B C
E A B C D

This would mean, for example, that washing powder P53 will be used on day D4 in
machine A. There are of course many other possible schedules.

The number of latin squares. Let L(n) denote the number of latin squares of order n
which can be formed from a given set of n symbols. It is clear that L(n) must increase
rapidly with n. A rough upper bound for L(n) can be found by counting derangements.

(11.4.1) The number L(n) of latin squares of order n that can be formed from n given
symbols satisfies the inequality

1 1 —1)"\n-
stmwﬁ—ﬁ+im“ﬁn3){

and hence L(n) = O((n!)"/e™1).

Proof. Taking the symbolstobe 1, 2, ..., n, we note that each row of a latin square
of order n corresponds to a permutation of {1, 2, ..., n}, i.e., to an element of the
symmetric group S,. Thus there are n! choices for the first row. Now rows 2 through n
must be derangements of row 1 since no column can have a repeated element. Recall
from (3.1.11) that the number of derangements of n symbols is

1 1 FDU'

1T

dy = n!(l -

Hence rows 2 through n of the latin square can be chosen in at most (d,)""! ways.
Therefore L(n) < (n!)(d,)™ ! and the result follows. O
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It can be shown that L(n) > ('%" — for details see [2].

Orthogonal latin squares. Suppose that A = [a;;] and B = [b;;] are two latin squares
of order n. Then A and B are called mutually orthogonal latin squares (or MOLS) if the n?
ordered pairs (ajj, bj;) are all different.

Example (11.4.3) The latin squares

a b c a B vy
b ¢ al and [y a pB
c a b By a

are mutually orthogonal, as can be seen by listing the nine pairs of entries. On the
other hand, there are no pairs of MOLS of order 2 since these would have to be of the

form
a b a b
b a|’ |[b a
and the pair (a, a’) is repeated.
One reason for the interest in mutually orthogonal latin squares is that they have

statistical applications, as can be seen from an elaboration of the washing powder
example.

Example (11.4.4) Suppose that in Example (11.4.2) there are also five washing machine
operators a, f8, y, 6, €. Each operator is to test each powder once and to carry out one
test per day. In addition, for reasons of economy, we do not want to repeat the same
combination of machine and operator for any powder and day.

What is required here is a pair of MOLS of order 5. A latin square with the schedule
of machines was given in Example (11.4.2). By a little experimentation another latin
square for the machines can be found such that the pair are mutually orthogonal. The
pair of MOLS is

A B C D E a By 6 €
B C D E A y 6 € a B
C D E A B|, |[e a By 6
D E A B C By 6 € a
E A B C D 6 ¢ a B vy

Direct enumeration of the 25 pairs of entries from the two latin squares reveals that all
are different. The two latin squares tell us the schedule of operations: thus, for example,
powder Ps is to be tested on day D, by operator y in machine A.

We are interested in determining the maximum number of MOLS of order n, say

f(n).
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In the first place there is an easy upper bound for f(n).

(11.4.2) Ifn>1,thenf(n) <n-1.

Proof. Assume that there exist r MOLS of order n, namely A1, A,, ..., A,, and let the
(1, 1) entry of A; be a;. Consider row 2 of A;. It has an a; in the (2, i;) position for
some i; # 1 since there is already an a; in the first column. Hence there are n — 1
possibilities for i;. Next in A, there is an a, in row 2, say as the (2, i) entry where
i, # 1;also i, # iy since the pair (a1, a;) has already occurred and cannot be repeated.
Therefore there are n — 2 possibilities for i,. Continuing this line of argument until A4, is
reached, we conclude that a, is the (2, i,) entry of A, where there are n — r possibilities
for i,. Therefore n —r > 0 and r < n - 1, as required. O

The question to be addressed is whether f(n) > 1 for n > 2; note that f(2) = 1 since,
as already observed, there cannot exist two MOLS of order 2.

The intervention of field theory. The mere existence of finite fields of every prime
power order is enough to make a decisive advance in the construction of MOLS of prime
power order.

(11.4.3) Let p be a prime and m a positive integer. Then f(p™) = p™ - 1.

Proof. Let F be a field of order p™, which exists by (11.3.1). For each a # 0 in F define
a p™ x p™ matrix A(a) over F with rows and columns labelled by the elements of F,
written in some fixed order: the (u, v) entry of A(a) is to be computed from the formula

[A(@)]u,y =ua+v

where u, v € F. In the first place A(a) is a latin square of order p™. Forua+v=u'a+v
implies that ua = u'aand u = u’ since O # a € F. Also ua + v = ua + v' implies that
v=yv.

Next we show that A(a)’s are mutually orthogonal. Suppose that A(a;) and A(a;)
are not orthogonal where a; # a,: then

(uai +v,uar +v) = (Was +v',u'ay +v")

for some u, v, u’,v' € F.Thenua; +v =u'a; +v' and ua, + v = u'a, + v'. Subtraction
of the second equation from the first leads to u(a; — a,) = u’(a; —a,).Since a; —a, + 0
and F is a field, it follows that u = u’ and hence v = v'. Thus we have constructed
p™-1MOLS of order p™, which is the maximum number permitted by (11.4.2). Therefore

fe™ =p™ - 1. O

Example (11.4.5) Construct three MOLS of order 4.
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In the first place f(4) = 3. To construct three MOLS, start with a field F of order 4,
obtained from t? + t + 1, the unique irreducible polynomial of degree 2 in Z,[t]. If a
is a root of this polynomial, F = {0, 1, a, 1 + a} where a® = a + 1. Now form the three
MOLS A(1), A(a), A(1 + a), using the formula indicated in the proof of (11.4.3): thus

0 1 a 1+a
1 0 1
A(L) = +a a ,
a l+a 0 1
L1+a a 1 0 ]
0 1 a 1+al
1 0 1
Aa) = a +a ’
l+a a 1 0
1 0 1+a a |
0 1 a 1+al
1+a a 1 0
Al+a)=|" "
1 0 1+a a
| a 1+a 0 1 |

To construct MOLS whose order is not a prime power, a direct product construction
can be used. Let A and B be latin squares of orders m and n respectively. The direct
product A x B is defined to be the mn x mn matrix whose entries are pairs of elements
(aij, byjr). The matrix can be visualized in the block form

(a11,B) (aiz2,B) (aim, B)
(a1, B) (azz,B) (azm, B)
(am1,B) (amz,B) (amm, B)

where (a;j, B) means that a;; is paired with each entry of B in the natural matrix order.
It is easy to see that A x B is a latin square of order mn.

a By
Example (11.4.6) Given latin squares A = [Z Z] andB=|f 1y a|,wecanform
Yy a B
[(a,2) (a,B) (a,y) (b,a) (b,p) (b, ]
(a,B) (a,y) (a,a) (b,B) (b,y) (b,a)
Axp- | @V (@a (a.p) (by (b a (bp)
(b,a) (b,B) (b,y) (a,a) (a,B) (a,y)
(b,B) (b,y) (b,a) (a,B) (a,p) (a,q)
| (b,y) (b,a) (b,B) (a,y) (a,a) (a,p)]

which is a latin square of order 6.
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Suppose that we have MOLS A, A, ..., A, of order m and B4, B,, ..., Bs of
order n where r < s; then the latin squares Ay x By, Ay X B3, ..., Ay x B, have order mn
and they are mutually orthogonal, as a check of the entry pairs shows. On the basis of
this observation we can state:

(11.4.4) If n = nyny, then f(n) > min{f(ny), f(ny)}.

This result can be used to give further information about the integer f(n). Let
n = p{'p5 - p* be the primary decomposition of n. Then

f(n) >min{p;" -11i=1,2,...,k}

by (11.4.3) and (11.4.4). Therefore f(n) > 1 provided that p].e" + 2 for all i. This will be
the case if either n is odd or it is divisible by 4, i.e., n # 2 (mod 4). Hence we have:

(11.4.5) Ifn # 2 (mod 4), then f(n) > 1, so there exist at least two mutually orthogonal
latin squares of order n.

In 1782 Euler conjectured that the converse is true, i.e. if n = 2 (mod 4), there
cannot be a pair of n x n MOLS. As evidence for this, in 1900 Tarry* was able to confirm
that there does not exist a pair of 6 x 6 MOLS; thus f(6) = 1. However, in the end it
turned out that Euler was wrong; for in a remarkable work Bose, Shrikhande and Parker
were able to prove that there is a pair of n x n MOLS for all even integers n + 2, 6.

The case n = 6 is Euler’s celebrated Problem of the Thirty Six Officers. Suppose
there are thirty six officers of six ranks and six regiments, with six of each regiment
and six of each rank. Euler asked if it is possible for the officers to march in six rows of
six, so that in each row and in each column there is exactly one officer of each rank and
one of each regiment, with no combination of rank and regiment being repeated. Euler
was really asking if there are two mutually orthogonal latin squares of order 6, the
symbols of the first latin square being the ranks and those of the second the regiments
of the officers. By Tarry’s result the answer is negative.

Steiner triple systems. Another striking use of finite fields is to construct combina-
torial objects known as Steiner® triple systems. We begin with a brief explanation of
these. A Steiner triple system of order n is a pair (X, 7) where X is a set with n elements,
called the points, and 7 is a set of 3-element subsets of X, called the triples, such that
every pair of points occurs in exactly one triple. Steiner triple systems belong to a wide
class of combinatorial objects called designs which are frequently used in statistics.

Example (11.4.7) A Steiner system of order 7.

4 Gaston Tarry (1843-1913)
5 Jakob Steiner (1796-1863).
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Consider the diagram consisting of a triangle with the three medians drawn. Let X
be the set of seven points consisting of the vertices, the midpoints of the sides and the
centroid, labelled A, B, C, D, E, F, G. Let the triples be the sets of three points lying on
each line and on the circle DEF. Thus

T ={ADB, BEC, CFA, AGE, BGF, CGD, DEF},

where, for example, we have written ADF for the triple {A, D, F}. It is clear from the
diagram that each pair of points belongs to a unique triple.

A

B E

In fact this configuration is well known as the projective plane over Z, with seven
points and seven lines.

We will consider the question: for which positive integers n do there exist Steiner
triple systems of order n? It is quite easy to derive necessary conditions on n; these will
follow from the next result.

(11.4.6) Suppose that (X, T) is a Steiner triple system of order n. Then:
(i) each point belongs to exactly "5* triples;

(ii) the number of triples is w.

Proof. (i) Let x, y € X with x fixed. The idea behind the proofis to count in two different
ways the pairs (y, T) such thaty € T,y # x, T € T. There are n — 1 choices for y; then,
once y has been chosen, there is a unique T € T containing x and y, so the number of
such pairs is n — 1. On the other hand, let r denote the number of triples in 7 to which
x belongs. Once a T € T containing x has been chosen, there are two choices for y in T.

Thus the number of pairs is 2r. Therefore 2r =n-1andr = "%1

(i) In a similar vein we count in two different ways the pairs (x, T) such that x € T and
T € 7. If t is the total number of triples, the number of pairs is 3¢ since there are three
choices for x in T. On the other hand, we may also choose x in n ways and a triple T
containing x in %51 ways by (i). Therefore 3t = @ and t = gn(n-1). O

From this result we deduce a necessary condition on n for a Steiner triple system
of order n to exist.

Corollary (11.4.7) If a Steiner triple system of order n exists, thenn = 1 or 3 (mod 6).
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Proof. In the first place % must be an integer, so n is odd. Thus we can write n = 6k+¢
where £ = 1,3 or 5.1f ¢ = 5, then tn(n—1) = 3(6k + 5)(3k +2), which is not an integer.
Hencel=1or3andn=1or3 (mod 6). O

The fundamental theorem on Steiner triple systems asserts that the converse of
(11.4.7) is true. If n = 1 or 3 (mod 6), there is a Steiner triple system of order n. We will
prove a special case of this theorem to illustrate how field theory can be applied.

(11.4.8) If q is a prime power such that ¢ = 1 (mod 6), there is a Steiner triple system of
order q.

Proof. Let F be a finite field of order q. Recall from (11.3.6) that U(F) is a cyclic group of
order g - 1. Since 6 | g — 1 by hypothesis, it follows from (4.1.6) that U(F) contains an
element z of order 6. Thus |U(F) : {z)| = q%l. Choose a transversal to (z) in U(F), say

{t1,t2, ..., t%}. Now define subsets
T; = {0, t;, t;z}

fori:1,2,...,q%1.
The points of the Steiner triple system are to be the elements of the field F, while

the set of triples is designated as
_ , . q-1
T —{a+Tl|aeF, 1—1,2,...,—6 }

Here a + T; denotes the set {a + x | x € T;}. We claim that (X, 7) is a Steiner triple
system. First we make an observation. Let D; denote the set of differences of pairs
of elements in Tj; thus D; = {0, +t;, +tjz, +t;(1 — z)}. Now z has order 6 and 0 =
26-1=( -D(z+1)(z2-z+1),sothatz? —z+1 = 0and z2 = z - 1. Hence
23 = -1, 2% = -z, z° = 1 — z. From these equations it follows that D; is simply the coset
ti(z) = {tiz" | 0 < k < 5} with 0 adjoined.

To show that (X, 7) is a Steiner triple system, we need to prove that any two distinct
elements x and y of F belong to a unique triple a + T;. Let f = x — y € U(F). Now
f belongs to a unique coset t;(z), and by the observation above f € Dj, so that f is
expressible as the difference between two elements in the set T}, say f = u; — v;. Writing
a=y-vi,wehavex=f+y=(y-vi)+ujea+Tiandy =(y—-v;) +vi € a+ Tj.

Now suppose that x and y belong to another triple b + Tj, with x = b + d; and
y = b +ejwheredj,ej € Tj. Then 0 + f = x -y = dj — ej and hence f ¢ D;. Thus
f € tj(z), which means that j = i. Also there is clearly only one way to write f as the
difference between two elements of T;. Therefore d; = u; and e; = v;, from which it
follows that a = y — v; = y — e; = b. The proof is now complete. O

The construction just described produces Steiner triple systems of order 7, 13, 19,
25. Trivially there are Steiner triple systems of orders 1 and 3. In addition there are no
Steiner systems of orders 2, 4, 5, 6, 8, 10, 11, 12 by (11.4.7). In Exercise (11.4.6) below
it is indicated how to construct a Steiner triple system of order 9.
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Exercises (11.4)

(1) Show L(1) =1,L(2)=2,L(3) =12.

(2) Explain how to construct the following objects: (i) four 5 x 5 MOLS; (ii) eight 9 x 9
MOLS.

(3) Show that there are at least 48 MOLS of order 6125.

(4) A quasigroup is a set Q together with a binary operation (x, y) — xy such that, given
X,y € Q, there is a unique u € Q such that ux = y and a unique v € Q such that xv = y.
Prove that the multiplication table of a finite quasigroup is a latin square.

(5) Conversely, prove that every latin square determines a finite quasigroup.

(6) Construct a Steiner triple system of order 9 by using the following geometric proce-
dure. Start with a 3 x 3 array of 9 points. Draw all horizontals, verticals and diagonals
in the figure. Then draw four curves connecting exterior points.

(7) (Kirkman’sé schoolgirl problem) Show that it is possible for nine schoolgirls to walk
in three groups of three for four successive days in such a way that each pair of girls
walks together on exactly one day.

(8) Let n be a positive integer such that n = 3 (mod 6). Assuming the existence of
Steiner triple systems of order n, generalize the preceding problem by showing that it
is possible for n schoolgirls to walk in § groups of three on "T‘l days without two girls
walking together on more than one day.

(9) Use the method of (11.4.8) to construct a Steiner triple system of order 13.

(10) Construct a Steiner triple system of order 25 by starting with the field Zs[t]/
(t2 - t + 1). [Note that a root of t2 — ¢ + 1 has order 6].

6 Thomas Penyngton Kirkman (1806-1895)
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In this chapter the Galois group of a field extension is introduced. This establishes
the critical link between field theory and group theory in which subfields correspond
to subgroups of the Galois group. A major application is to the classical problem of
solving polynomial equations by radicals, which is an excellent illustration of the rich
rewards that can be reaped when connections are made between different mathematical
theories.

12.1 Normal and separable extensions

We begin by introducing two special types of field extension, leading up to the concept
of a Galois extension. Let E be an extension of a field F with F ¢ E. Then E is said to be
normal over F if it is algebraic over F and if every irreducible polynomial in F[¢] having
aroot in E has all its roots in E; thus the polynomial is a product of linear factors over E.

Example (12.1.1) Consider the field E = Q(a) where a = 2'/3, Then E is algebraic
over Q since (E : Q) is finite, but it is not normal over Q. This is because > — 2 has one
root a in E but not the complex roots aw, aw? where w = 27/3,

Example (12.1.2) Let E be an extension of a field F with (E : F) = 2. Then E is normal
over F.

In the first place E is algebraic over F. Suppose that x € E is a root of some monic
irreducible polynomial f € F[t]. Then f = Irrp(x) and deg(f) = (F(x) : F) < (E : F) = 2,
which means that deg(f) = 1 or 2. In the first case x is the only root of f. Suppose
that deg(f) = 2 withsay f = t> + at + band a, b € F; if x' is another root of f, then
xx' = b € F, so that x’ € E. Therefore E is normal over F.

That there is a close connection between normal extensions and splitting fields of
polynomials is demonstrated by the following fundamental result.

(12.1.1) Let E be a finite extension of a field F. Then E is normal over F if and only if E is
the splitting field of some polynomial in F[t].

Proof. First of all assume that E is normal over F. Since (E : F) is finite, we can write
E = F(x1, X2, ..., xx). Let fi = Irrp(x;). Now f; has the root x; in E, so by normality of
the extension all roots of f; are in E. Put f = f1f> - - - fx € F[t]. Then f has all its roots in
E and these roots with F generate the field E. Hence E is the splitting field of f.

The converse is harder to prove. Suppose that E is the splitting field of some f € F[¢],
and denote the roots of f by a4, a, ..., ar, sothat E = F(a;, as, ..., a,). Let ghe an
irreducible polynomial over F with a root b in E. Furthermore let K be the splitting field
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of gover E. Then F ¢ E ¢ K. Let b* € K be another root of g. Our task is to show that
b* €E.

Since g = Irrp(b) = Irrp(b*), there is an isomorphism 6y : F(b) — F(b*) such
that 6(b) = b* and 6yF is the identity map: here we have applied (11.3.2). Put g, =
Irtrpy(a1) and note that g; divides f over F(b) since f(a1) = 0. Now consider g7 =
Oo(g1) € F(b*)[t]. Then g} divides 8y(f) = f over F(b*). Hence the roots of gj are
among dq, ds, . .., dy.

Let a;, be any root of g;. By (11.3.2) once again, there is an isomorphism 6, :
F(b,a1) — F(b*, a;,) such that 01(a1) = a;, and (81)|rp) = 0o. Next write g, =
Irtpp,ay)(a2) and g5 = 01(g2). The roots of g5 are among a1, ay, ..., a,, by the ar-
gument used above. Let g;, be any root of g5. Now extend 6, to an isomorphism
0, : F(b, a1, ay) — F(b*, a;,, ai,) such that 6,(a;) = a;, and (02)|rwp,a,) = 1.

After r applications of this argument we will have an isomorphism

G:F(b’alya21-~-yar)_)F(b*,ail’aizx""air)

such that 0(a;) = ai, 0(b) = b* and 0| is the identity map. But b € E = F(a,, ay, ...,
ar) by hypothesis, so b* = 0(b) € F(a;,, ai,, ..., ai,) < E, as required. O

Separable polynomials. Contrary to what one might first think, it is possible for an ir-
reducible polynomial to have repeated roots. This phenomenon is called inseparability.

Example (12.1.3) Let p be a prime and let f denote the polynomial ¢’ — x in Z,{x}[t]:
here x and t are distinct indeterminates and Z,{x} is the field of rational functions
in x over Z,. Then f is irreducible over Z,[x] by (7.4.9) since x is clearly an irreducible
element of Z,[x]. Gauss’s Lemma (7.3.7) shows that f is irreducible over Z,{x}. Let a
be aroot of f in its splitting field. Then f = t? — a? = (t — a)? since (’1’) =0 (mod p) if
0 < i < p. It follows that f has all its roots equal to a.

An irreducible polynomial f over a field F is said to be separable if all its roots are
different, i.e., f is a product of distinct linear factors over its splitting field. The example
above shows that tP — x is inseparable over Z,,{x}, a field with prime characteristic. The
criterion which follows shows that the phenomenon of inseparability can only occur
for fields of prime characteristic.

(12.1.2) Let f be an irreducible polynomial over a field F.

(i) Ifchar(F) = 0, then f is separable.

(ii) Ifchar(F) = p > 0, then f is inseparable if and only if f = g(tP) for some irreducible
polynomial g over F.

Proof. There is no loss in supposing f to be monic. Assume first that char(F) = 0
and let a be a root of f in its splitting field. If a has multiplicity greater than 1, then
(74.7) shows that t — a | f' where f’ is the derivative of f. Thus f’(a) = 0. Writing
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f=ao+ait+---+ant",wehave f' = a; +2at +--- + na,t"1. But f = Irrr(a), so
f divides f’. Since deg(f’) < deg(f), this can only mean that f’ = 0, i.e., ia; = O for
alli > 0 and so a; = 0. Thus f is constant, which is impossible. Therefore a is not a
repeated root and f is separable.

Now assume that char(F) = p > 0 and again let a be a multiple root of f. Arguing
as before, we conclude that ia; = 0 for i > 0. In this case all we can deduce is that
a; = 0 if p does not divide i. Hence

f=ao+apt? +ayt? +---+apt”

where rp is the largest positive multiple of p not exceeding n. It follows that f = g(t?)
where g = ag + apt +--- + aypt’. Notice that g is irreducible since if it were reducible,
so would f be.

Conversely, assume that f = g(t?) where g = Y!_; a;t; € F[t]. We claim that f
is inseparable. Let b; be a root of t? — a; in the splitting field E of the polynomial
(P — a1)(t? - ay)--- (t? - a,). Then a; = b} and hence

f= i a;it? = i bPAP = (i bit')',
i=0 i=0 i=0

from which it follows that every root of f has multiplicity at least p. Hence f is insepa-
rable. =

Separable extensions. Let E be an extension of a field F. An element x of E is said
to be separable over F if x is algebraic and its multiplicity as a root of Irrp(x) is 1. If
x is algebraic but inseparable, the final argument of the proof of (12.1.2) shows that
its irreducible polynomial is a prime power of a polynomial, so that all its roots have
multiplicity greater then 1. Therefore x € E is separable over F if and only if Irrp(x) is a
separable polynomial.

If every element of E is separable over F, then E is called a separable extension
of F. Finally, a field F is said to be perfect if every algebraic extension of F is separable.
Since any irreducible polynomial over a field of characteristic O is separable, all fields of
characteristic O are perfect. There is a simple criterion for a field of prime characteristic
to be perfect.

(12.1.3) Let F be a field of prime characteristic p. Then F is perfect if and only if F = FP
where FP is the subfield {a? | a € F}.

Proof. In the first place F? is a subfield of F since (a + b)? = a? + bP, (a~1)P = (aP)!
and (ab)? = aPbP for a, b € F. Now assume that F = FP.If f € F[t] is irreducible but
inseparable, then f = g(t?) for some g € F[t] by (12.1.2). Letg = Y7 _, a;t'; then a; = bf
for some b; € F since F = FP. Therefore f = Y a;tP! = Yo bV tPl = (Y1, bit!)?,
which is impossible since f is irreducible. Thus f is separable. This shows that if E is
an algebraic extension of F, then it is separable. Hence F is a perfect field.
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Conversely, assume that F # FP and choose a € F — FP. Consider the polynomial
f = t? —a. First we claim that f is irreducible over F. Suppose this is false, so that f = gh
where g and h in F[t] are monic with smaller degrees than f. Now f =t — a = (t — b)?
where b is a root of f in its splitting field, so it follows that g = (t — b)! and h = (t — by
wherei+j =pandO < i,j < p. Since gcd{i, p} = 1, we can write 1 = iu + pv for
suitable integers u, v. Therefore b = (b))“(b?)" = (b')¥a" ¢ F since b € F, and hence
a = b? € FP, a contradiction. Thus f is irreducible and by (12.1.2) it is inseparable. It
follows that F cannot be a perfect field. O

(12.1.4) Every finite field is perfect.

Proof. Let F be a field of order p™ with p a prime. Every element f of F satisfies the
equation t*" — t = 0 by (11.3.1). Hence F = FP and F is perfect. O

On the other hand, the field F = Z,{t} is not perfect because F¥ = Z,{t’} is a
proper subfield of F.

It is desirable to have a practical criterion for a finite extension of prime character-
istic to be separable.

(12.1.5) Let E be a finite extension of a field F with prime characteristic p. Then E is
separable over F if and only if E = F(EP).

Proof. Assume that E is separable over F and let a € E. Writing f = Irtpr)(a), we
observe that f divides t? — aP = (t — a)?. Since f is a separable polynomial, it follows
that f = t — a and thus a € F(aP) c F(EP).

Conversely, assume that E = F(EP) and let x € E; we need to prove that f = Irrp(x)
is separable over F. If this is false, then f = g(¢”) for some g = Zﬁ‘;o a;t' € F[t]. Since

0 = g(x?) = ap + a1X? + -+ + aix*?, the field elements 1, X, ..., x*? are linearly
dependent over F. On the other hand, k < kp = deg(f) = (F(x) : F),sothat1, x, ...,
x¥ must be linearly independent over F. Extend {1, x, . . . , xX} to an F-basis of E, say

{¥1,¥2,...,yn}, using (8.2.6).

We have E = Fy; + Fy, +--- + Fy, and thus EP ¢ Fy + Fy} +--- + Fy}. Therefore
E = F(EP) = Fy} + Fy} +--- + Fyh. It follows that y¥, y5, . . ., y; are F-linearly indepen-
dent since n = (E : F). This shows that 1, x?, ..., xXP are F -linearly independent, a
contradiction. O

Corollary (12.1.6) Let E = F(a1, aa, ..., ax) be an extension of a field F such that each
a; is separable over F. Then E is separable over F.

Proof. We may assume that char(F) = p > 0. Since a; is separable over F, we have
a; € F (a’fJ ), as in the first paragraph of the preceding proof. Hence a; € F(EP) and
E = F(EP). Therefore E is separable over F by (12.1.5). O



254 —— 12 Galois Theory

Notice the consequence of the last result: the splitting field of a separable polynomial
is a separable extension.

We conclude this section by addressing a question which may already have oc-
curred to the reader: when is a finite extension E of F a simple extension, i.e., when is
E = F(x) for some x? An important result on this problem is:

(12.1.7) (The Theorem of the Primitive Element) Let E be a finite separable extension of
a field F. Then there is an element a such that E = F(a).

Proof. The proof is easy when E is finite. For then E - {0} is a cyclic group by (11.3.6),
generated by a, say. Then E = {0, 1, a, ..., a9} where g = |E|, and hence E = F(a).
From now on assume E is infinite. Since (E : F) is finite, E = F(uqy, us, ..., uy) for
some u; in E. The proof proceeds by induction on n.If n > 2, then F(uq, Uz, ..., Up-1) =
F(v) for some v, by induction hypothesis, and hence E = F(v, u,) = F(a) for some a by
the case n = 2. Therefore it is enough to deal with the case n = 2. From now on write

E=F(u,v).

We introduce the polynomials f = Irrp(u) and g = Irrp(v); these are separable
polynomials since E is separable over F. Let the roots of f and g be u = x1, X2, ..., Xm
and v = y1, Y2, ..., Yn respectively, in the splitting field of fg over F. Here all the x;
are different, as are all the y;. From this we conclude that for j # 1 there is at most one
element z;; in F such that

u+ zjjv = Xi + zjjyj,

namely z;; = (x; — u)(v - yj)‘l. Since F is infinite, it is possible to choose an element z
in F which is different from each of the finitely many z;;. Then u + zv # x; + zy; if
(i,)) # (1, 1).

With this choice of z, put a = u + zv € E. We will show that E = F(a). Since
g(v) =0 = f(u) = f(a - zv), the element v is a common root of the polynomials g and
f(a - zt) € F(a)[t]. Now these polynomials have no other common roots. For if y; were
one, then a-zy; = x; for some i, which implies that u+zv = a = x; +zyj; this is contrary
to the choice of z. It follows that ¢ — v is the unique (monic) gcd of g and f(a - zt) in E[t].
Now the gcd of these polynomials actually lies in the subring F(a)[t]: for the gcd can
be computed by using the Euclidean Algorithm, which is valid for F(a)[t]. Therefore
veF(a)andu = a - zv € F(a). Finally E = F(u, v) = F(a). O

Since an algebraic number field is by definition a finite extension of Q, we deduce:
Corollary (12.1.8) IfE is an algebraic number field, then E = Q(a) for some a in E.

Exercises (12.1)

(1) Which of the following field extensions are normal?
(i) QBY3) of Q; (ii) Q(3Y/3, e2™/3) of Q; (iii) R of Q; (V) C of R.
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(2) Let F c K ¢ E be field extensions with all degrees finite. If E is normal over F, show
that it is normal over K, but K need not be normal over F.

(3) Let f € F[t] where char(F) = p > 0, and assume that f is monic with degree p". If
all roots of f are equal in its splitting field, prove that f = t”" — a for some a € F.

(4) Let E be a finite extension of a field F of characteristic p > 0 and assume that (E : F)
is not divisible by p. Prove that E is separable over F.

(5) Let F ¢ K ¢ E be field extensions with all degrees finite and E separable over F.
Prove that E is separable over K.

(6) Let F c K < E be field extensions with all degrees finite. If E is separable over K
and K is separable over F, show that E is separable over F.

(7) Let E be a finite separable extension of a field F. Prove that there is a finite extension
K of E such that K is separable and normal over F.

12.2 Automorphisms of field extensions

Fields, like groups, possess automorphisms and these play a crucial role in field theory.
An automorphism of a field F is defined to be a bijective ring homomorphism a : F — F;
thus a(x+y) = a(x)+a(y) and a(xy) = a(x)a(y). The automorphisms of a field are easily
seen to form a group with respect to functional composition. If E is a field extension of F,
we interested in automorphisms of E over F, i.e., automorphisms of E whose restriction
to F is the identity function. For example, complex conjugation is an automorphism
of C over R. The set of automorphisms of E over F is a subgroup of the group of all
automorphisms of F and is denoted by

Gal(E/F) :

this is the Galois* group of E over F.

Suppose that E = F(a)is a simple algebraic extension of F with degree n. Then every
element of E has the form x = Z?;ol cjal with ¢; € Fand thus a(x) = ?;01 cia(a)! where
a € Gal(E/F). If b is any root of the polynomial f = Irrg(a), then 0 = a(f(b)) = f(a(b)),
so that a(b) is also a root of f in E. Thus each a in Gal(E/F) gives rise to a permutation
m(a) of X, the set of distinct roots of f in E. What is more, the mapping

7 : Gal(E/F) — Sym(X)

is evidently a group homomorphism, i.e., @ is a permutation representation of the
Galois group on X.

In fact 7 a faithful permutation representation of Gal(E/F) on X. For, if (a) is the
identity permutation, a(a) = a and hence « is the identity automorphism of E. For this

1 Evariste Galois (1811-1831)
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reason it is often useful to think of the elements of Gal(E/F) as permutations of the set
of distinct roots X.

Next let b be any element of X. Then F ¢ F(b) ¢ E = F(a), and also (F(b) : F) =
deg(f) = (F(a) : F) by (11.1.4) since f = Irrp(b). It follows that F(b) = F(a) = E by (11.1.7).
Since Irrp(a) = f = Irre(b), we may apply (11.3.2) to produce an automorphism «
of E over F such that a(a) = b. Therefore the group Gal(E/F) acts transitively on the
set X. Finally, if @ in Gal(E/F) fixes some b in X, then a must equal the identity since
E = F(b). This shows that Gal(E/F) acts regularly on X and it follows from (5.2.2) that
|X| = |Gal(E/F)|.

These conclusions are summed up in the following fundamental result.

(12.2.1) Let E = F(a) be a simple algebraic extension of a field F. Then Gal(E/F) acts
regularly on the set X of distinct roots of Irrr(a) in E. Therefore

|Gal(E/F)| = |X| < (E : F).

An extension of a field F which is finite, separable and normal is said to be Galois
over F. For such extensions we have:

Corollary (12.2.2) IfE is a Galois extension of a field F with degree n, then Gal(E/F) is
isomorphic with a regular subgroup of S,, and

|Gal(E/F)| =n=(E: F).

For (12.1.7) shows that E = F(a) for some a € E. Also Irrrp(a) has n distinct roots
in E by normality and separability.

The Galois group of a polynomial. Suppose that f is a non-constant polynomial over
a field F and let E be the splitting field of f: recall from (11.3.4) that this field is unique
up to isomorphism. Then the Galois group of the polynomial f is

Gal(f) = Gal(E/F).

This is always a finite group by (12.2.1). The basic properties of the Galois group are
given in the next result.

(12.2.3) Let f be a non-constant polynomial of degree n over a field F. Then:

(i) Gal(f) is isomorphic with a permutation group on the set of distinct roots of f; thus
|Gal(f)| divides n!;

(ii) ifalltheroots of f are distinct, then f is irreducible if and only if Gal(f) acts transitively
on the set of roots of f.
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Proof. Let E denote the splitting field of f, so that Gal(f) = Gal(E/F). Let a € Gal(f). If
ais aroot of f in E, then f(a(a)) = a(f(a)) = 0, so that a(a) is also a root of f. If a fixes
every root of f, then a is the identity automorphism since E is generated by F and the
roots of f. Hence Gal(f) is isomorphic with a permutation group on the set of distinct
roots of f. If there are r such roots, then r < n and |Gal(f)| | r! | n!, so that |Gal(f)| | n!.

Next assume that all the roots of f are different. Let f be irreducible. If a and b are
roots of f, then Irrp(a) = f = Irrp(b), and by (11.3.2) there exists a € Gal(f) such that
a(a) = b. It follows that Gal(f) acts transitively on the roots of f.

Conversely, suppose that Gal(f) acts transitively on the roots of f, but f is reducible;
write f = g18> --- gk Where g; € F[t] is irreducible and k > 2. Let a; and a, be roots
of g1 and g, respectively. By transitivity there exists a € Gal(f) such that a(a;) = a.
But 0 = a(gi(a)) = g1(a(a)) = g1(a,). Hence g, = Irrp(a;) divides g;. Therefore g%
divides f and the roots of f cannot all be different, a contradiction which shows that f
is irreducible. O

Corollary (12.2.4) Let f be a separable polynomial of degree n over a field F and let E
be its splitting field. Then |Gal(f)| = (E : F) and |Gal(f)| is divisible by n.

Proof. Note that E is separable and hence Galois over F by (12.1.6). Hence |Gal(f)| =
|Gal(E/F)| = (E : F) by (12.2.2). Further f is irreducible by definition, so Gal(f) acts
transitively on the n roots of f; therefore n divides |Gal(f)| by (5.2.2). O

Let us consider some polynomials whose Galois groups can be readily computed.

Example (12.2.1) Letf = £3 — 2 € Q[t]. Then Gal(f) = Ss.

To see this let E denote the splitting field of f; thus E is Galois over Q. Then
E = Q(21/3, e2m/3) and one can easily check that (E : Q) = 6, so that |Gal(f)| = 6. Since
Gal(f) is isomorphic with a subgroup of Ss, it follows that Gal(f) =~ Ss.

In fact it is not difficult to write down the six elements of the group Gal(f). Put
a =23 and w = e2™/3; then E = Q(a, w). Since E = Q(a)(w) and 3 - 2 is the
irreducible polynomial of both a and aw over Q(w), there is an automorphism «a of E
over Q such that a(a) = aw, a(w) = w. Clearly a has order 3. Also a?(a) = aw? and
a?(w) = w. It is easy to identify an automorphism B such that (a) = a and f(w) = w?;
indeed f is just complex conjugation. Two more automorphisms of order 2 are formed
by composition: y = af and § = a?B. It is quickly seen that y maps w to w? and a to aw,
while 6 maps w to w? and a to aw?. Thus the elements of the Galois group Gal(f) are 1,
a,a%, B, vy, 6.

Example (12.2.2). Let p be a prime and put f = t? — 1 € Q[t]. Then Gal(f) = U(Z,), a
cyclic group of order p — 1.

To see this put a = e2mlp g primitive pth root of unity; the roots of f are 1, a,
a?,...,aP ! andits splitting fieldis E = Q(a). Now f = (t-1)(1 +t+t2+---+tP~1)and
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the second factor is Q-irreducible by Example (74.6). Hence the irreducible polynomial
ofaisl+t+t?+---+tPland|Gal(f)| = (E: Q) =p - 1.
To show that Gal(f) is cyclic, we construct a group isomorphism

0 : U(Zp) — Gal(f).

If 1 <j < p, define 6(j + pZ) to be 6; where 0;(a) = @ and 0; is trivial on Q; this is an
automorphism by (11.3.2). Obviously 6; is the identity only if j = 1, so 8 is injective.
Since U(Zy) and Gal(f) both have order p — 1, they are isomorphic.

Conjugacy in field extensions. Let E be an extension of a field F. Two elements a
and b of E are said to be conjugate over F if a(a) = b for some a € Gal(E/F). In normal
extensions conjugacy amounts to the elements having the same irreducible polynomial,
as the next result shows.

(12.2.5) Let E be a finite normal extension of a field F. Then two elements a and b of E
are conjugate over F if and only if they have the same irreducible polynomial.

Proof. If a and b have the same irreducible polynomial, (11.3.2) shows that there is
a field isomorphism 6 : F(a) — F(b) such that 8(a) = b and 8 is the identity map
on F. By (12.1.1) E is the splitting field of some polynomial over F and hence over F(a).
Consequently, (11.3.3) can be applied to extend 0 to an isomorphism « : E — E such
that 6 is the restriction of a to F(a). Hence a € Gal(E/F) and a(a) = b, which shows
that a and b are conjugate over F.

To prove the converse, suppose that b = a(a) where a, b € E and a € Gal(E/F).
Put f = Irrp(a) and g = Irrp(b). Then O = a(f(a)) = f(a(a)) = f(b). Therefore g divides f
and it follows that f = g since f and g are monic and irreducible. O

The next result is of critical importance in Galois theory: it asserts that the only
elements of an extension that are fixed by every automorphism are the elements of the
base field.

(12.2.6) Let E be a Galois extension of a field F and let a € E. Then a(a) = a for all
automorphisms a of E over F if and only if a € F.

Proof. Assume that a(a) = a for all a € Gal(E/F) and put f = Irrg(a). Since E is normal
over F, all the roots of f are in E. If b is any such root, it is conjugate to a by (12.2.5),
so there exists a in Gal(E/F) such that a(a) = b. Hence b = a and the roots of f are all
equal. But f is separable since E is separable over F. Therefore f = t — a and a belongs
to F. The converse is obvious. O

Roots of unity. We will postpone further development of the theory of Galois extensions
until the next section and concentrate on roots of unity. Let F be a field and n a positive
integer. A root a of the polynomial t" — 1 € F[t] is called an nth root of unity over F;



12.2 Automorphisms of field extensions = 259

thus a" = 1. If a™ + 1 for all proper divisors m of n, then |a| = n and a is said to be
a primitive nth root of unity. If char(F) = p divides n, there are no primitive nth roots
of unity over F: for then t" — 1 = (t"/P — 1)? and every nth root of unity has order at
most n/p. However, if char(F) does not divide n, primitive nth roots of unity over F
always exist, as will now be shown.

(12.2.7) Let F be a field whose characteristic does not divide the positive integer n and

let E be the splitting field of t" — 1 over F. Then:

(i) primitive nth roots of unity exist in E; furthermore these generate a cyclic subgroup
of order n.

(ii) Gal(E/F) is isomorphic with a subgroup of U(Z,) and is therefore abelian with order
dividing ¢(n).

Proof. (i) Set f = t" — 1, so that f' = nt™ L. Since char(F) does not divide n, the
polynomials f and f' are relatively prime. It follows via (7.4.7) that f has n distinct roots
in its splitting field E, namely the nth roots of unity. Clearly these roots form a subgroup
H of U(E) with order n, and by (11.3.6) it is cyclic, say H = (x). Here x has order n and
thus it is a primitive nth root of unity.

(ii) Let a be a primitive nth root of unity in E. Then the roots of t" — 1 are ai, i =
0,1,...,n-1,and E = F(a). If @ € Gal(E/F), then a is completely determined by
a(a) = a' where 1 < i < nand i is relatively prime to n. Furthermore, the assignment
a — 1+ nZ yields an injective homomorphism from the Galois group into U(Z,). By
Lagrange’s Theorem |Gal(E/F)| divides |U(Zy)| = ¢(n). O

Corollary (12.2.8) The number of primitive nth roots of unity over a field whose charac-
teristic does not divide n is ¢(n), where ¢ is Euler’s function.

For, if a is a fixed primitive nth root of unity, the primitive nth roots of unity are
just the powers a! where 1 < i < n and i is relatively prime to n.

Cyclotomic polynomials. Assume that F is a field whose characteristic does not di-
vide the positive integer n and denote the primitive nth roots of unity over F by a;,
as, ..., agm. The cyclotomic polynomial of order n over F is defined to be

¢(n)

n=[]-a,

i=1
which is a monic polynomial of degree ¢(n). Since every nth root of unity is a primitive
dth root of unity for some divisor d of n, we have immediately that

-1= H(Dd-
dln

This leads to the formula "1
t —

Op= ———,
" Hdlln(Dd
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where d | n means that d is a proper divisor of n. Using this formula, we can compute @,
recursively, i.e., if we know @, for all proper divisors d of n, then we can calculate @,,.
The formula also shows that @, € F[t]. For @, = t - 1 € F[t] and if @, € F[t] for all
proper divisors d of n, then @, € F[t].

Example (12.2.3) Since @; =t -1,

t2-1 -1
D, = =t+1, @3 = =t +t+1,
t-1 t-
and
tt -1
(D :—=t2+1.
T E-DE+ D

There is in fact an explicit formula for @,. This involves the Mébius function u,
which is well-known from number theory. It is defined by the rules:

(1) =1, pu@ip2---pr) = (DK,

if p1, p2, ..., px are distinct primes, and
u(n) =0

if n is divisible by the square of a prime.

(12.2.9) The cyclotomic polynomial of order n over any field whose characteristic does
not divide n is given by
@y = [ ]t - 1D,
din

Proof. First we note an auxiliary property of the M6bius function,

1 ifn=1
Zu(d)=<l N

din 0 ifn>1

This is obvious if n = 1, so assume that n > 1 and write n = p{'p3? --- p;* where the p;
are distinct primes. If d is a square-free divisor of n, then d has the form p;, p;, - - - pi,
where 1 <i; < i <--- < i, < n, which corresponds to the term (-1)"t;, t;, - - - t;, in the
product (1 —£1)(1 —t;)--- (1 — t,); note also that u(d) = (-1)". Therefore we obtain the
identity

(1-t)(A - t2)--- (1= ta) = Y ui,pi, - Pitisti, - i,

where the sum is over all i satisfying 1 < iy < i <--- < i, < n.Setallt; = 1 to get
> u(pi,» pi,» - - - pi,) = 0. Since u(d) = 0 if d is not square-free, we can rewrite the last
equation as } 5, u(d) = 0.
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We are now in a position to establish the formula for @,,. Let

W = [ ]t - e,

eln

so that ¥, = t — 1 = @1. Assume that ¥, = @ for all d < n. Then by definition of ¥y,
we have

H Y, = 1_[ H(te _ 1)u(d/e) - H(tf _ 1)Zﬂd\n}1(d/f).

din din eld fin

Next for a fixed f dividing d we have

Y ud/p =y pdlp,

d
fdin Iy

which equals 1 or 0 according as f = n or f < n. It therefore follows that

]‘[lpd=t"—1=]'[cpd.

dln dln

Since ¥, = @4 if d < n, cancellation yields ¥,, = @, and the proof is complete. O

Example (12.2.4) Use the formula of (12.2.9) to compute the cyclotomic polynomial of
order 12 over Q.

The formula yields
@1y = (6= DD - 1OE - POt - 1O (e - 12 - 1p,
which reduces to
- - 1) N - 1) e - =t - 2+ 1,
since u(12) = u(4) =0, u(2) = u(3) = -1 and u(6) = u(1) = 1.
Example (12.2.5) Ifpisaprime, @y =1+t +t? +--- + P71,

For @) = (t - DFPI(P - 1D = E=L =1 4 ¢4 2 + - + P71, since p(p) = -1.

Since we are interested in computing the Galois group of a cyclotomic polynomial
over Q, it is important to know if @, is irreducible. This is certainly true when n is
prime by Example (7.4.6). The general result is:

(12.2.10) The cyclotomic polynomial @, is irreducible over Q for all integers n.
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Proof. Assume that @, is reducible over Q; then Gauss’s Lemma (7.3.7) tells us that it
must be reducible over Z. Since @, is monic, it follows that it is a product of monic
irreducible polynomials in Z[t]. Let f be one such polynomial and choose a root a
of f; then f = Irrg(a). Now a is a primitive nth root of unity, so, if p is any prime not
dividing n, then a” is also a primitive nth root of unity and is thus a root of @,,. Hence
aP is a root of some monic Q-irreducible divisor g of @, in Z[t]. Of course g = Irrg(a®).

Suppose first that f # g. Thus t" — 1 = fgh for some h € Z][t] since f and g are
distinct Q-irreducible divisors of " — 1. Also g(aP) = 0 implies that f divides g(t’) and
thus g(¢?) = fk where k € Z[t]. The canonical homomorphism from Z to Z, induces
a homomorphism from Z[t] to Z,[t]; let f, g, h, k, denote images of f, g, h, k under
this homomorphism. Then fk = g(t?) = (g(t))P since x? = x (mod p) for any integer x.
Now Z,[t] is a PID and hence a UFD. Since fk = g, the polynomials f and g have a
common irreducible divisor in Z,[¢]. This means that fah e Z,|t] is divisible by the
square of this irreducible factor and hence " — 1 € Z,[t] has a multiple root in its
splitting field. However, (" - 1)’ = nt""! is relatively prime to " - 1 in Z,[t] since p
does not divide n. This is a contradiction by (7.4.7). It follows that f = g.

We have proved that a? is a root of f for all primes p not dividing n. It follows that
a™ is a root of f whenever 1 < m < n and gcd{m, n} = 1. Therefore deg(f) > ¢(n) =
deg(®,,), which shows that f = @, and @, is irreducible. O

We can now compute the Galois group of a cyclotomic polynomial.

(12.2.11) Ifnis a positive integer, the Galois group of @, over Q is isomorphic with U(Z,,),
an abelian group of order ¢p(n).

Proof. Let E denote the splitting field of @, over Q and let a be a primitive nth root of
unity in E. The roots of @,, are awherei=1,2,...,n-1and ged{i, n} = 1. Hence
E = Q(a) and @, is the irreducible polynomial of a by (12.2.10). Thus |Gal(E/F)| =
deg(®p) = ¢n. If 1 < i < nandiis relatively prime to n, there is an automorphism a;
of E over Q such that a;(a) = a' since a and a’ have the same irreducible polynomial.
Moreover the map i + nZ — q; is easily seen to be an injective group homomorphism
from U(Z) to Gal(E/F). Since both these groups have order ¢(n), they are isomorphic.

O

The splitting field of @,, € Q[t] is called a cyclotomic number field. Thus the Galois
group of a cyclotomic number field is abelian.

Exercises (12.2)

(1) Give an example of a finite simple extension E of a field F such that |Gal(E/F)| = 1,
but E # F.

(2) If E = Q(+/5), find Gal(E/F).
(3) IfE = Q(v2, V3), find Gal(E/F).
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(4) Find the Galois groups of the following polynomials in Q[¢t]: (i) 2 + 1; (ii) £ — 4;
(iii) £ - 2t + 4.

(5) Let f € F[t] and suppose that f = f1f> - - - fx where the f; are polynomials over the
field F. Prove that Gal(f) is isomorphic with a subgroup of the direct product Gal(f;) x
Gal(fy) x - -- x Gal(fy).

(6) Prove that the Galois group of GF(p™) over GF(p) is a cyclic group of order m and
that it is generated by the automorphism in which a — a”.

(7) Give an example to show that Gal(®,) need not be cyclic.

(8) Let p be a prime not dividing the positive integer n. Prove that if @, is irreducible
over GF(p), then ¢(n) is the smallest positive integer m such that p™ = 1 (mod n).

(9) Show that @5 is reducible over GF(11) and find an explicit factorization of it in
terms of irreducibles.

12.3 The Fundamental Theorem of Galois theory

Armed with the techniques of the last two sections, we can now approach the celebrated
theorem of the title. First some terminology: let E be an extension of a field F. By an
intermediate field is meant a subfield S such that F ¢ S ¢ E. If H is a subgroup
of Gal(E/F), the fixed field of H

Fix(H)

is the set of elements of E which are fixed by every element of H. It is quickly verified
that Fix(H) is a subfield and F ¢ Fix(H) € E, i.e., Fix(H) is an intermediate field.

(12.3.1) Let E be a Galois extension of a field F. Let S be an intermediate field and let H

be a subgroup of the Galois group G = Gal(E/F). Then:

(i) the mappings H — Fix(H) and S — Gal(E/S) are mutually inverse, inclusion revers-
ing bijections;

(ii) (E : Fix(H)) = |H| and (Fix(H) : F) = |G : H|;

(iii) (E : S) = |Gal(E/S)| and (S : F) = |G : Gal(E/S)|.

Thus the theorem asserts the existence of a bijection from the set of subfields
between E and F to the set of subgroups of the Galois group G; furthermore the bijec-
tion reverses set inclusions. Such a bijection is called a Galois correspondence. The
Fundamental Theorem allows us to translate a problem about subfields into one about
subgroups, which sometimes makes the problem easier to solve.

Proof of (12.3.1). (i) In the first place Fix(Gal(E/S) = S by (12.2.6). To show that we have
mutually inverse bijections we must still prove that Gal(E/Fix(H)) = H. By the Theorem
of the Primitive Element (12.1.7), E = F(a) for some a in E. Define a polynomial f in E[t]
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by
f=1]¢-a@).
acH
Note that all the roots of f are distinct: for a;(a) = a,(a) implies that a; = a, since
E = F(a). Hence deg(f) = |H|. Also elements of H permute the roots of f, so that a(f) = f
for all @ € H. Therefore the coefficients of f lie in K = Fix(H). In addition f(a) = 0, so
Irrg(a) divides f, and since E = K(a), it follows that

(E : K) = deg(Irrg(a)) < deg(f) = |H|.

Hence |Gal(E/K)| < |H|. But clearly H < Gal(E/K), so that H = Gal(E/K), as required.

(ii) Since E is Galois over Fix(H), we have
(E : Fix(H)) = |Gal(E/Fix(H)| = |H|
by (12.3.1)(i). The second statement follows from

(E : Fix(H)) - (Fix(H) : F) = (E: F) = |G| = |H| - |G : H|.

(iii) The first statement is obvious. For the second statement we have (E : S)(S: F) =
(E : F)and (E : S) = Gal(E/S), while (E : F) = |G]. The result now follows. O

Normal extensions and normal subgroups. If E is a Galois extension of a field F, inter-
mediate subfields which are normal over F surely correspond to subgroups of Gal(E/F)
which are in some way special. In fact these are exactly the normal subgroups of
Gal(E/F). To prove this a simple lemma about Galois groups of conjugate subfields is
called for. If a € Gal(E/F) and F ¢ S ¢ E, write a(S) = {a(a) | a € S}. Clearly a(S) is a
subfield and F ¢ a(S) ¢ E: the subfield a(S) is called a conjugate of S.

(12.3.2) Let E be an extension of a field F and let S be an intermediate field. If a €
Gal(E/F), then Gal(E/a(S)) = aGal(E/S)a1.

Proof. Let B € Gal(E/F). Then 8 € Gal(E/a(S)) if and only if f(a(a)) = a(a), i.e.,
a~'Ba(a) = a, forall a € S, or equivalently a~!Ba € Gal(E/S). Hence B € Gal(E/a(S))
if and only if 8 € aGal(E/S)a"". O

The connection between normal extensions and normal subgroups is now within
reach.

(12.3.3) Let E be a Galois extension of a field F and let S be an intermediate field. Then
the following statements about S are equivalent:

(i) Sisnormalover F;

(ii) a(S) = S forall a € Gal(E/F);

(iii) Gal(E/S) < Gal(E/F).
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Proof. (i) implies (ii). Let a € S and write f = Irrp(a). Since S is normal over F and f
has aroot in S, all the roots of f are in S. If a € Gal(E/F), then a(a) is also a root of f
since f(a(a)) = a(f(a)) = 0. Therefore a(a) € S and a(S) ¢ S. By the same argument
a1(S) ¢ S, sothat S ¢ a(S) and a(S) = S.
(ii) implies (iii). Suppose that a € Gal(E/F). By (12.3.2)

aGal(E/S)a! = Gal(E/a(S)) = Gal(E/S),
which shows that Gal(E/S) < Gal(E/F).
(iii) implies (i). Starting with Gal(E/S) < Gal(E/F), we have for any a € Gal(E/F)
that Gal(E/S) = aGal(E/S)a~! = Gal(E/a(S)) by (12.3.2). Apply the function Fix to
Gal(E/S) = Gal(E/a(S)) to obtain S = a(S) by the Fundamental Theorem of Galois
Theory. Next let f in F[t] be irreducible with a root a in S and suppose b is another root
of f. Then b € E since E is normal over F. Because Irrr(a) = f = Irrr(b), there there

exists a € Gal(E/F) such that a(a) = b. Therefore b € a(S) = S, from which it follows
that S is normal over F. O

(12.3.4) If E is a Galois extension of a field F and S is an intermediate field which is
normal over F, then
Gal(S/F) = Gal(E/F)/Gal(E/S).

Proof. Leta € Gal(E/F);then a(S) = Sby(12.3.3) and thus a|s € Gal(S/F). What is more,
the restriction map @ — a|s is a homomorphism from Gal(E/F) to Gal(S/F) with kernel
equal to Gal(E/S). The First Isomorphism Theorem then tells us that Gal(E/F)/Gal(E/S)
is isomorphic with a subgroup of Gal(S/F). In addition

|Gal(E/F)/Gal(E/S)| = (E : F)/(E : S) = (S : F) = |Gal(S/F)|

since S is Galois over F. Therefore Gal(E/F)/Gal(E/S) =~ Gal(S/F). O

Example (12.3.1) Let E denote the splitting field of > — 2 € Q[t]. Thus E = Q(a, w)
where a = 213 and w = €2™/3, By Example (12.2.1) (E : Q) = 6 and G = Gal(E/F) = Ss.
Now G has exactly six subgroups, which are displayed in the Hasse diagram below.

.G

(B)e

(a) «(p) «(6)

o1
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Here a(a) = aw and a(w) = w; f(a) = a and f(w) = w?; Y(a) = aw and p(w) = w?;
8(a) = aw? and 8(w) = w?. Each subgroup H corresponds to its fixed field Fix(H) under
the Galois correspondence. For example, Fix({a)) = Q(w) and Fix({8)) = Q(a). The
normal subgroups of G are 1, (a) and G; the three corresponding normal extensions
are E, Q(w) and Q.

The six subfields of E are displayed in the Hasse diagram below.

)

Q(a)e Q(w) «Q(aw?)  Qaw)

Q

Since every subgroup of an abelian group is normal, we deduce at once from
(12.3.3):

Corollary (12.3.5) If E is a Galois extension of a field F and Gal(E/F) is abelian, then
every intermediate field is normal over F.

For example, by (12.2.11) the Galois group of the cyclotomic polynomial @, € Q[t]
is abelian. Therefore every subfield of a cyclotomic number field is normal over Q.

As a demonstration of the power of Galois theory, let us prove the Fundamental
Theorem of Algebra, which was mentioned in (7.4). All known proofs of this theorem
employ some analysis. Here only the Intermediate Value Theorem is used: if f is a
continuous function of a real variable which assumes the values a and b, then f
assumes all values between a and b. In fact this result is only required for polynomial
functions.

(12.3.6) Let f be a non-constant polynomial over C. Then f is the product of linear factors
over C.

Proof. First note that the polynomial ff has real coefficients. Since we can replace
f by this polynomial, there is no loss in assuming that f has real coefficients. It can
also be assumed that deg(f) > 1. Let E be the splitting field of f over C. Then E is the
splitting field of (£2 + 1)f over R. Hence E is Galois over R, the characteristic being 0.
Put G = Gal(E/R). Then |G| = (E: R) = (E: C)-(C : R) = 2(E : C), and we conclude
that |G| is even.

Let H be a Sylow 2-subgroup of G and put F = Fix(H). Then R ¢ F ¢ F and
(F:R) = |G : H|isodd. Let a € F and set g = Irrg(a). Since deg(g) = (R(a) : R),



12.3 The Fundamental Theorem of Galois theory =—— 267

which divides (F : R), we conclude that deg(g) is odd. Also g is monic, so g(x) > 0
for large positive x and g(x) < 0 for large negative x. This is our opportunity to apply
the Intermediate Value Theorem, the conclusion being that g(x) = 0 for some real
number x. But g is irreducible over R, so deg(g) = 1; hence a € R and F = R. This
implies that H = G and G is a 2-group.

Let Go = Gal(E/C) < G; thus Gg is a 2-group. Now Gy = 1 implies that E = C
and f is a product on linear factors over C. So assume that Gy # 1. Hence there is a
maximal (proper) subgroup M of Go. Now Gy is nilpotent, so M <« Gg and |G : M| = 2
by (10.2.7)(ii). Now put S = Fix(M). By (12.3.1) we have

. O = . _1Gol _
(5:C) =|Gal(E/C) : Gal(E/S)| = ™ 2.
Hence any s in S — C has irreducible polynomial over C of degree 2, say ¢ + at + b.
By the quadratic formula s = —%(a + Va2 - 4b) € C and it follows that S = C, a
contradiction. O

Constructing regular n-gons. We return to the last of the ruler and compass problems
discussed in (11.2), which was left unresolved. The problem is to construct a regular
n-gon of side 1 unit using ruler and compass only.

Consider a regular n-gon with vertices A, A,, ..., A, and centroid C. Let 6, be
the angle between lines joining the centroid C to neighboring vertices; thus 8,, = 27”
By elementary geometry, if d is the the distance from the centroid C to a vertex, then
dsin 16, = § and hence

1 1

d= .
2sin(36,)  v2(1 - cos 6y)

It follows from the discussion of constructibility in (11.2) that the regular n-gon is
constructible by ruler and compass if and only if cos 8, is constructible from the set
{(0,0), (1, 0)}.

The definitive result can now be proved.

(12.3.7) A regular n-gon of side 1 can be constructed by ruler and compass if and only
if n has the form 2Xp1p, - - - px where k > 0 and the pj are distinct Fermat primes, i.e., of
the form 227 + 1.

Proof. Assume that the regular n-gon is constructible, so that cos 6, is constructible.
Then (Q(cos 8y,) : Q) must be a power of 2 by (11.2.2). Put ¢ = e2™/", a primitive nth root
of unity. Then cos 8, = %(c+ c1), so that Q(cos 8,) € Q(c). Since c+c~1 = 2 cos 8, we
have c2—2c¢ cos 6,+1 = 0. Hence (Q(c) : Q(cos 8y)) = 2 and (Q(c) : Q) = 2 for some d.
Recall from (12.2.10) that Irrg(c) = @y, which has degree ¢(n). Writing n = 2Kp$* - .. p7"
with distinct odd primes p; and e; > 0, we have ¢(n) = 2K 1(p¢' —p*™1)... (p¢ -p& )
by (2.3.8). This must equal 2¢. Hence ej = 1and p; — 1is a power of 2 for all j. Since
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2% + 1 cannot be a prime if s is not a power of 2 (see Exercise (2.2.13)), it follows that p;
is a Fermat prime.

Conversely, assume that n has the form indicated. Since Q(c) is Galois over Q,
we have (Q(c) : Q) = ¢(n), which is a power of 2 by the formula for ¢p(n). Hence
Gal(Q(c)/Q) is a finite abelian 2-group and therefore G = Gal(Q(cos 8)/Q), being
isomorphic with a quotient of it, is also a finite abelian 2-group. Therefore, all the
factors in a composition series of G have order 2 and by the Fundamental Theorem of
Galois Theory there is a chain of subfields

Q=FycFic---cFp=Q(cos0)

such that Fj,1 is Galois over Fj and (Fj;1 : Fj) = 2.

We argue by induction on j that every element of Fj is constructible. Let x € Fj,1 —F;.
Then Irrp, (x) = t? + at + b where a, b € Fj and thus x> + ax + b = 0. Hence (x + 3a)* =
#a* — b > 0 since x is real. Writing x' = x + 3a, we have x’ 2 ¢ Fj. By induction
hypothesis x’ 2 is constructible and (11.2.1) shows that x’ is constructible, whence so
is x. Finally we deduce that cos 6 is constructible. O

Example (12.3.2). Aregular n-gon is constructible for n = 3, 4, 5, 6, but not forn = 7.

The only known Fermat primes are 3, 5, 17, 257 = 22” + 1 and 65, 537 = 22" + 1.
Since 7 is not a Fermat prime, it is impossible to construct a regular 7-gon using ruler
and compass.

Exercises (12.3).

(1) For each of the following polynomials over Q display the lattice of subgroups of the
Galois group and the corresponding lattice of subfields of the splitting field: (i) t> - 5;
(ii) ¢ — 55 (iii) (£2 + 1)(¢* + 3).

(2) Determine the normal subfields of the splitting fields in Exercise (12.3.1).

(3) Use the Fundamental Theorem of Galois Theory and Exercise (12.2.6) to prove that

GF(p™) has exactly one subfield of order p< for each positive divisor d of m and no
subfields of other orders - see also Exercise (11.3.2).

(4) Let E = Q(V2, V3). Find all the subgroups of Gal(E/Q) and hence all subfields of E.

(5) Find all finite fields with exactly two subfields and also those with exactly three
subfields.

(6) Let E be a Galois extension of a field F and let pX be the largest power of a prime
p dividing (E : F). Prove that there is an intermediate field S such that (E : S) = p*. If
Gal(E/F) is solvable, prove that there is an intermediate field T such that (T : F) = p*.

(7) If E is a Galois extension of a field F and there is exactly one proper intermediate
field, what can be said about Gal(E/F)?
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(8) If E is a Galois extension of F and (E : F) is the square of a prime, show that each
intermediate field is normal over F.

(9) Prove that a regular 2X-gon of side 1 is constructible if k > 2.

(10) For which values of n in the range 10 to 20 can a regular n-gon of side 1 be
constructed?

(11) Show that if a is a real number such that (Q(a) : Q) is a power of 2 and Q(a) is
normal over Q, then a is constructible from the points (0, 0) and (1, 0).

(12) Let p be a prime and let f = t? — t — a € F[t] where F = GF(p). Denote by E the
splitting field of f over F.
(i) Ifxisarootoff in E, show that the set of all roots of fis {x + b | b € F}, and
that E = F(x).
(ii) Prove that f is irreducible over F if and only if a # 0.
(iii) Prove that |Gal(f)| = p unless a = 0, when Gal(f) = 1.

12.4 Solvability of equations by radicals

One of the oldest parts of algebra is concerned with the problem of solving equations
of the form f(t) = 0 where f is a non-constant polynomial over Q or R. The object
is to find a formula for the solutions of the equation which involves the coefficients
of f, square roots, cube roots, etc. The easiest cases are when deg(f) < 2; if the degree
is 1, we are solving a single linear equation. If the degree is 2, there is the familiar
formula for the solutions of a quadratic equation. For equations of degree 3 and 4 the
problem is harder, but methods of solution had been found by the 16th Century. Thus
for deg(f) < 4 there are explicit formulas for the roots of f(t) = 0, which in fact involve
radicals of the form ¢/ for k < 4.

The problem of finding formulas for the solutions of equations of degree 5 and
higher is one that fascinated mathematicians for hundreds of years. An enormous
amount of ingenuity was expended in attempts to solve the general equation of the fifth
degree. It was only with the work of Abel, Galois and Ruffini? in the early 19th Century
that it became clear that all these efforts had been in vain. It is a fact that solvability
of a polynomial equation is inextricably linked to the solvability of the Galois group
of the polynomial. The symmetric group S, is solvable for n < 5, but is insolvable for
n > 5. This explains why early researchers were able to solve the general equation of
degree n only for n < 4. Without the aid of group theory it is impossible to comprehend
the reason for this failure. Our aim here is explain why the solvability of the Galois
group governs the solvability of a polynomial equation.

2 Paolo Ruffini (1765-1822)
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Radical extensions. Let E be an extension of a field F. Then E is called a radical exten-
sion of F if there is a chain of subfields

F=EycE,cE,c---CEyn=E

such that E;;1 = Ej(a;i+1) where aj,1 has irreducible polynomial over E; of the form
=1 — p;. It is natural to refer to aj,1 as a radical and write aj,1 = "*{/b;, but here one
has to keep in mind that a;;; may not be uniquely determined by b;. Since

E=F("{b1, ¥by,..., "\bm),

elements of E are expressible as polynomial functions of the radicals %/b;.

Let f be a non-constant polynomial over F with splitting field K. Then f, or the
equation f = 0, is said to be solvable by radicals if K is contained in some radical
extension of F. This means that the roots of f are obtained by forming a finite sequence
of successive radicals, starting with elements of F. The definition gives a precise ex-
pression of our intuitive idea of what it means for a polynomial equation to be solvable
by radicals.

To make progress with the problem of describing the radical extensions it is neces-
sary to have a better understanding of polynomials of the form t" — a.

(12.4.1) Let F be a field and n a positive integer. Assume that F contains a primitive nth
root of unity. Then for any a in F the group Gal(t" — a) is cyclic with order dividing n.

Proof. Let z be a primitive nth root of unity in F and denote by b aroot of f = t" —a in its
splitting field E. Then the roots of f are sz,j =0,1,...,n-1.Ifa € Gal(f) = Gal(E/F),
then a(b) = bz/@ for some j(a) and a is completely determined by j(a): this is because
a|r is the identity map and E = F(b) since z € F. The assignment a +— j(a) + nZ
is an injective homomorphism from Gal(f) to Zy: for af(b) = a(bz/¥) = a(b)z/® =
bz @+ and thus j(ap) = j(a)+j(B) (mod n). It follows that Gal(f) is isomorphic with
a subgroup of Z,, whence it is a cyclic group with order dividing n. O

We will need the following simple result.
(12.4.2) Let E be a Galois extension of a field F and let K1 and K, be subfields interme-
diate between F and E . If H; = Gal(E/K;), then Gal(E/Ky N K;) = (Hy, H,).

Proof. Clearly H; and H; are contained in Gal(E/K1 N K) and hence J = (Hy, Hy) <
Gal(E/Ky n K5,). Next suppose that x € E — K;. Then there exists a € H; such that
a(x) + x. Hence x ¢ Fix(J) and consequently Fix(J) ¢ K1 n K. Taking the Galois group
of E over each side and applying (12.3.1), we obtain J > Gal(E/K; N K3). O

The principal theorem is now within reach.

(12.4.3) Let f be a non-constant polynomial over a field F of characteristic 0. If f is
solvable by radicals, then Gal(f) is a solvable group.
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Proof. Let E denote the splitting field of f over F. By hypothesis E ¢ R where R is a
radical extension of F. Hence there are subfields R; such that

F=Rp<Ri<---<R,=R

where Ri;1 = Ri(ais1) and Irrg,(aiy1) = t"+ — b; with b; € R;. It follows that (Ri.1 :
R;) = nj;1 and hence (R : F) = nyny --- ny = n, say.

Let K and L be the splitting fields of the polynomial ¢" — 1 over F and R respectively.
Note that L may not be normal over F. Let N be the the splitting field over F of the
product of t" — 1 and all the polynomials Irrg(a;),i =1,2,...,m.Then L € Nand N
is normal over F. Clearly (N : F) is finite and N is separable since the characteristic is
zero. Thus N is Galois over F. Put L; = K(R;), so there is the chain of subfields

K=LocLic---cLyp=LcN.

The relevant subfields are displayed in the Hasse diagram below.

Ne
Ly, =Le
NG
Lim_qe
. 'Rm =R
|
'Rm—l\ oF
Ly .
K=Loe 5
eRo=F

Note that L;, is the splitting field of "+ — b; over L; since K contains all n;,;th
roots of unity. Thus L;, 1 is normal and hence Galois over L;. Now set G = Gal(N/F) and
G; = Gal(N/L;); hence Gi;1 < G; by (12.3.3). Also write V = Gal(N/K) and U = Gal(N/E),
noting that U< G and V<G since E and K are normal over F. Thus we have the truncated
series of subgroups

Gal(N/L) = G <Gp1<4---<4G1 <G =W

Notice that G;/Gi,1 =~ Gal(Li+1/L;) = Gal(t™*! — b;), and the latter is cyclic by (12.4.1).
Since G, < U, there is a series

1=G6nU/U<1Gn-1U/U<---<1G1U/UaGoU/U = UV/T,

and the factors of this series are cyclic since the G;/Gj;1 is cyclic. Therefore UV/U is a
solvable group. Now from (12.4.2) we have Gal(N/K N E) = UV < G and K N E is normal
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over F. Moreover,
G/UV = Gal(N/F)/Gal(N/K n E) = Gal(K n E/F)

and therefore G/UV = Gal(K/F)/Gal(K/K n E). Since Gal(K/F) is abelian by (12.2.7), it
follows that G/UV is abelian. Therefore G/U is solvable. Finally,

Gal(E/F) =~ Gal(N/F)/Gal(N/E) = G/U,

so that Gal(f) = Gal(E/F) is solvable, as required. O

It can be shown - although we will not do so here — that the converse of (12.4.3)
is valid: see [1] or [15] for a proof. As a consequence there is the following definitive
result.

(12.4.4) Let f be a non-constant polynomial over a field of characteristic 0. Then f is
solvable by radicals if and only if Gal(f) is a solvable group.

Let n = deg(f). Then Gal(f) is isomorphic with a subgroup of the symmetric
group S, by (12.2.3). If n < 4, then S,,, and hence Gal(f), is solvable. Therefore by (12.4.4)
every polynomial with degree 4 or less is solvable by radicals.

On the other hand, when n > 5, the symmetric group S, is not solvable since A is
simple by (10.1.7). Thus we are led to suspect that not every polynomial equation of
degree 5 is solvable by radicals. Actual examples of polynomials that are not solvable
by radicals are furnished by the next result.

(12.4.5) Let f € Q[t] be an irreducible polynomial of prime degree p and assume that f
has exactly two complex roots. Then Gal(f) = S, and hence f is not solvable by radicals

ifp=5.

Proof. Label the roots of f in its splitting field a;, ay, .. ., ap; these are all different
since f is separable. Two of these roots are complex conjugates, say a; = a,, while
the other roots are all real. We can think of Gal(f) as a group of permutations of the
set of roots {ay, ay, . .., ap} and indeed Gal(f) acts transitively since f is irreducible.
Therefore p divides |Gal(f)| by (5.2.2), and Cauchy’s Theorem (5.3.9) shows that there is
an element of order p in Gal(f). Hence Gal(f) contains a p-cycle, say 7 = (a1 4, . . . a;,).
Replacing m by a suitable power, we may assume that i, = 2. Now relabel the remaining
roots as, as, ..., ap sothat m = (a1azas . .. ap).

Complex conjugation, i.e., 0 = (aia;), is an element of Gal(f) with order 2. Conju-
gation of o by powers of 7 shows that Gal(f) contains all the adjacent transpositions
(ajaj;1), fori =1, 2, ..., p — 1. But any permutation is expressible as a product of
adjacent transpositions — see Exercise (3.1.4)— and therefore Gal(f) = Sj,. O

Example (12.4.1) The polynomial f = > — 6t + 3 € Q[¢] is not solvable by radicals.
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In the first place f is irreducible over Q by Eisenstein’s Criterion and Gauss’s Lemma.
In addition calculus tells us that the curve f(t) = O crosses the t-axis exactly three times,
so there are three real roots and two complex ones. Thus Gal(t* - 6t + 3) = S5 and the
result follows via (12.4.3).

Example (12.4.2) The polynomial f = > + 8¢ — t? + 12t - 2 is solvable by radicals.

Here the situation is different since f factorizes as (t2 + 2)(t> + 6t — 1). Therefore
Gal(f) is isomorphic with a subgroup of Gal(t? + 2) x Gal(t> + 6¢ — 1) by Exercise (12.2.5).
The latter is a solvable group. Hence by (10.2.2) the group Gal(f) is solvable and f is
solvable by radicals.

Symmetric functions. As the final topic of the chapter, we present an account of the el-
ementary theory of symmetric functions and explore its relationship with Galois theory.
Let F be an arbitrary field and put E = F{x1, x2, ..., Xn}, the field of rational functions
over F in distinct indeterminates x1, x», . . ., Xn. A Symmetric functionin x1, X2, . . . , Xn
over F an element g € E such that

g(xﬂ(1)9 XH(Z); ) ’Xn(n)) = g(xly X250 9XTI)

forall 7 € Sy,. Thus gis unaffected by permutations of the indeterminates x4, x2, . . . , Xp.
It is easy to verify that the symmetric functions form a subfield of E. Next consider the
polynomial

f=@{-x1)(t-x2)---(t - xn) € E[t]

where t is another indeterminate. Then expansion shows that
f=tt—sit" 45t - (-1)"s,

wheres; = YL, X, S = Z:Lj:l xixj, and in general

n
Sj= Z Xilxiz---X,'].,
i1<iz<<ij=1
the last sum being over all tuples (i1, i,..., i) suchthat1 < iy < i) <--- <ij < n.
It is evident that the s; are symmetric functions: they are known as the elementary
symmetric functions in x1, X2, ..., Xn. For example, when n = 3, there are three
elementary symmetric functions,

S1=X1+X32+X3, S2=X1X3+X2X3+X1X3, S3=X1X2X3.

PutS = F(s1, S2, ..., Sn), Which is a subfield of E. Then f € S[t] and E is generated
by S and the roots of f, i.e., x1, x2, ..., x. Hence E is the splitting field of f over S.
Since all the roots of f are distinct, (12.1.6) shows that E is separable and hence Galois
over S. Therefore Gal(f) = Gal(E/S) has order (E : S). We now proceed to determine the
Galois group of f over S. With the same notation the definitive result is:

(12.4.6) Gal(f) = Sp.
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Proof. Since Gal(f) permutes the roots x1, x2, . . ., X, faithfully, we may identify it with
a subgroup of S,. Let 7 € S, and define a; : E — E by the rule

An(8(X1, X2, + s Xn)) = 8(Xn(1)> Xn(2)s - -  » Xn(n))3

then a, is evidently an automorphism of E. Since aj, fixes all the elementary symmetric
functions, it fixes every element of S = F(s1, Sz, . . ., Sp) and therefore a, € Gal(E/S) =
Gal(f). Finally, all the a, are different, so Gal(f) = S,. O

From this we quickly deduce a famous theorem.
Corollary (12.4.7) (The Symmetric Function Theorem) If F is an arbitrary field and s,
S2, ..., Sy are the elementary symmetric functions in indeterminates x1, X2, . .., Xn,

then F(s1, S2, . .., Sp) is the field of all symmetric functions in x1, x5, . . ., Xn. Also the
symmetric polynomials form a subring which is generated by F and the s1, S2, . . ., Sp.

Proof. LetS = F(s1,S2,...,Sn) € E = F{x1,x2,...,Xn}. By (12.4.6) Gal(E/S) effec-

tively consists of all permutations of {x1, x2, . . ., x,}. Hence Fix(Gal(E/S) is the sub-
field of all symmetric functions. But by (12.3.1) this is also equal to S. The statement
about polynomials is left as an exercise. O

Generic polynomials. Let F be an arbitrary field and write K for the rational function
field in indeterminates x1, x2, ..., X, over F. The polynomial

F=t" x4t - (1)

is called a generic polynomial. The point to note here is that we can obtain from f any
monic polynomial of degree n in F[t] by replacing x1, X2, . . ., X, by suitable elements
of F. Tt is therefore not surprising that the Galois group of f over K is as large as it
could be.

(12.4.8) With the above notation, Gal(f) = Sy,.

Proof. Let uy, uy, ..., u, be the roots of f in its splitting field E over K. Then f =
(t—uq)(t—uz)--- (t—up) and thus x; = s;(uq, Uz, ..., Uy) where s; is the ith elementary
symmetric function in n indeterminates y1, y2, . . ., ¥, all of which are different from
X1y X2y e vuyXp, L.

The assignment x; — s; determines a ring homomorphism

¢05F{X1,X2,---,Xn}HF{YlyYZ,---,Yn}i

observe here that g(si1,...,5,) = 0 implies that g(x1,...,xy) = 0 because x; =
Si(U1, ..., Upn). So ¢y is actually an isomorphism from K = F{x1,x2,..., Xz} toL =
F(s1,S52,...,5n) S F{y1,¥2,...,¥Yn}. Set f* = ¢o(f) with f as above; thus

fr=t—sit" st =+ (“D) sy = (E-y1)(E = Y2) - (E=Yn)s

by definition of the elementary symmetric functions s;.
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By (11.3.3) we can extend ¢ to an isomorphism ¢ from E, the splitting field of f
over K, to the splitting field of f* over L. Therefore ¢ induces a group isomorphism
from Gal(f) to Gal(f*). But we know that Gal(f*) = S, by (12.4.6). Hence Gal(f) = S,,. O

Corollary (12.4.9) (Abel, Ruffini) If F is a field of characteristic O, the generic polynomial
" — x1 "1 4 xpt"2 — ...+ (=1)"x,, is insolvable by radicals over F(x1, X3, ..., Xp) if
n>>5.

Thus, as one would expect, there is no general formula for the roots of a polynomial
of degree n > 5 in terms of its coefficients.

Exercises (12.4)

(1) Let F ¢ K ¢ E be field extensions with K radical over F and E radical over K. Prove
that E is radical over F.

(2) Let F c K ¢ E be field extensions with E radical and Galois over F. Prove that E is
radical over K.

(3) Show that the polynomial t> — 3¢ + 2 in Q[¢] is solvable by radicals.
(4) If p is a prime larger than 11, show that t> — pt + p in Q[¢] is not solvable by radicals.
(5)If f € F[t]is solvable by radicals and g | f in F[t], prove that g is solvable by radicals.

(6) Let f = f1f> where f1, f> € F[t] and F has characteristic 0. If f; and f, are solvable
by radicals, show that f is too. Deduce that every non-constant reducible polynomial
of degree less than 6 over Q is solvable by radicals.

(7) Let F be a field of characteristic O and let f € F[t] be non-constant with splitting
field E. Prove that there is a unique smallest intermediate field S such that S is normal
over F and f is solvable by radicals over S. [Hint: show first that there is a unique
maximum solvable normal subgroup in any finite group].

(8) For each integer n > 5 exhibit a polynomial of degree n over Q which is insolvable
by radicals.

(9) Let G be any finite group. Prove that there is a Galois extension E of some algebraic
number field F such that Gal(E/F) = G. [You may assume there is an algebraic number
field whose Galois group over Q is isomorphic with S,]. (Remark: the general problem
of whether every finite group is the Galois group of some algebraic number field over
Q is still open; it is known to be true for solvable groups.)

(10) Write each of the following symmetric polynomials as a polynomial in the elemen-
tary symmetric functions s, s, 3 in x1, x2, x3.
; 22,2,
1) x7+x5+x5;
(i) x3x2 +X1X3 + X3X3 + X2X3 + X3x3 + X1%3;

see 3 3 3
(i) x7 +x3 +x3.
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13.1 Definition of the tensor product

The tensor product is a very widely used construction in algebra which can be applied
to modules, linear operators and matrices. We will begin by describing the tensor
product of modules: here the distinction between left and right modules is essential.

Let R be an arbitrary ring and let M and gz N be right and left R-modules as indi-
cated. Denote by F the free abelian group whose basis is the set product

MxN ={(a,b)|aeM,b e N}

Thus each element f of F can be uniquely written in the form f = Zf;l ¢i(ai, b;) where
¢; € Z,a; € M, b; € N. Define S to be the (additive) subgroup of F generated by all
elements of the forms
(i) (ay+az,b)-(a,b)-(az,b),
(i) (a, b1 +b2) - (a, b1) - (a, by),
(iii (a-r,b)-(a,r-b),
where a, a; € M, b, b; € N and r € R. Then the tensor product of M and N is defined to
be the quotient group

M®gr N = F/S.

Thus M ®g N is an abelian group generated by all elements of the form
a®b=(a,b)+S, (aeM, beN)

the elements a ® b are called tensors. When R = Z, which is a very common case, it is
usual to write M ® N instead of M®yN.

The next result is an immediate consequence of the definition of the tensor product.
It demonstrates the essentially bilinear nature of tensor products.

(13.1.1) Let Mg and gN be modules over a ring R. In the tensor product M ®g N the
following rules are valid:

(i) (ar+a)eb=a1®b+a,®b;

(11) a®(b1+b2) =a®bi+a®by;

(iii) (a-rY®eb=ae (r-b)

where a,a; € M, b, b; € N, r € R.

We record two simple consequences of (13.1.1),
OM®b=OM®RN=a®ON, (a eM, b GN).

These follow from (i) and (ii) on setting a; = Oy = a> and b; = Oy = b,, respectively.
It should be stressed that the tensor product M ®g N is only an abelian group at this
point: later we will see when it can be given a module structure.
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The mapping property of tensor products. We continue the previous notation with
modules My and g N over a ring R. A critical property of the tensor product M ®g N is a
certain mapping property; this involves the concept of a middle linear map, which will
now be explained.

Let A be an (additively written) abelian group: a mapping a : M x N — A is said to
be R-middle linear if it has the three properties listed below for all a, a; € M, b, b; €
N, r € R:

() a((ar +az, b)) = a((az, b)) + a((az, b));

(i) a((a, b1 + b2)) = a((a, b1)) + a((a, b2));

(iii) a((a - r, b)) = a((a, r - b)).

For example, the canonical mappingv : M x N - M ® N in which v((a, b)) =a® b is
middle linear because of the properties listed in (13.1.1). The crucial mapping property
of the tensor product is as follows.

(13.1.2) Let Mg and gN be modules over a ring R.

(i) Given a middle linear map a : M x N — A with A an abelian group, there is a unique
group homomorphism 8 : M®gr N — A such that a = fv wherev : Mx N - M ®g N
is the canonical middle linear map in which (a, b) —» a® b.

(ii) Conversely, if T is an abelian group and ¢ : M x N — T is a middle linear map such
that the pair (T, ¢) has the mapping property in (i), then T ~ M ®g N.

The assertion of (13.1.2)(i) is most easily remembered from the triangle diagram

below.
A

a n NG
MxN — Meg N

Indeed the relation a = v expresses the commutativity of the diagram, in the sense
that if we start with an element x € M x N and follow it in both directions around the
triangle, applying the maps indicated by the arrows, we end up with the same element
of A, namely a(x) = Bv(x).

When (i) and (ii) of (13.1.2) are combined, they demonstrate that the tensor product
M ®g N, together with the canonical middle linear mapping v, is characterized by the
mapping property. Another way of looking at the mapping property is that if a function
with codomain an abelian group A is defined on tensors and arises from a middle linear
mapping, then it can be extended to a homomorphism from M ®g N to A. It is this form
of the mapping property that makes it an indispensable tool in working with tensor
products.

Proof of (13.1.2). (i). Let F be the free abelian group with basis M x N. By (9.1.13) there
is a homomorphism ' : F — A such that 8/((a, b)) = a((a, b)) foralla € M, b € N. By
definition M ®g N = F/S where S is generated by all elements of F of the three types in
the definition of the tensor product. Now 8’ maps each of the listed generators of S to 0
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since a is middle linear, and hence /(s) = O for all s € S. This observation allows us to
define in a unique manner a function

B:Mer N — A
by therule B(f+S) = B'(f). Notice that 8 is a homomorphism since B’ is one. Furthermore

Bv((a, b)) = B((a, b) + S) = B'((a, b)) = a((a, b))

forall a € M, b € N. Therefore v = a.

The uniqueness of  remain to be established. Suppose that 8 : M@z N — A is
another homomorphism with the property Bv = a. Then Bv = Bv, so that  and j8 agree
on Im(v), i.e., on the set of all tensors. But the tensors generate M ®g N, so it follows
that 8 = B, which completes the proof of (i).

(ii) By the mapping property for the pair (M ®g N, B) there is a homomorphism S :
M er N — T such that ¢ = Bv, and by the mapping property for (T, ¢) there is a
homomorphism 8 : T — M ®g N such that v = B¢. Thus we have the two commutative
triangles that follow:

T
¢ B
MxN — Meg N
M®RN
v N
MxN — T
¢

Therefore B¢ = Bv = ¢ and BBv = B¢ = v, equations that express the commutativity
of the two triangles below

T
b BB
MxN — T
¢
M®r N
v o \ﬁﬁ
MxN — M®grN

v

But clearly these triangles will also commute if B and 8 are replaced by the appro-
priate identity maps. At this point the uniqueness clause in the mapping property is
invoked to show that B and j are identity maps. Hence j is an isomorphism and

T2 Mer N. 0
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Tensor products and homomorphisms. When homomorphisms between pairs of mod-
ules are given, there are induced homomorphisms between the tensor products of these
modules.

(13.1.3) Let there be given modules Mg, M'g and gN, g N' over a ring R, together with
R-module homomorphisms a : M — M' and 8 : N — N'. Then there is a homomorphism
ofgroupsa® B : Mog N — M' ®g N' such that

k k
a® B( z ¢i(a;® b)) = Z ¢i(a(a;) ® B(by)),

i=1 i=1
wherea; e M, b; € N, ¢; € Z.

Proof. The first point to realise here is that one cannot simply use the formula in
the statement as the definition of a ® f, the reason being that there is no unique
expressibility for an element of M ®g N as a linear combination of tensors. However,
an indirect approach using the mapping property succeeds.

To exploit this property we first introduce a function 8 : M x N — M' ®¢ N' by
defining 8((a, b)) = a(a) ® B(b). Then we check the middle linearity of 8, which is easy.
By the mapping property there is a group homomorphism ¢ : M®g N — M’ @ N’
such that ¢v = O wherev : M x N — M ®g N is the canonical middle linear map
(a, b) — a ® b. Thus the triangle below commutes

M’®RN’
b N
MxN - M®r N

Now define a ® f to be the map ¢ and check that it has the required property:
k k k k

(Y tiai®by)) =) tipai®by) =Y Lipv((ai, b)) = Y €0((ai, b)),
i=1 i=1 i=1 i=1

which equals ¥¥ , ¢;(a(a;) ® B(b;)) by definition of . O

This use of the mapping property is typical in situations where a mapping from a
tensor product is to be defined and the problem of non-uniqueness of expression in
terms of tensors must be faced.

Important special cases of (13.1.3) arise when a or § is an identity map. Specifically,
given module homomorphisms a : Mg — M'g and B : gkN — gN’, we can form the
induced homomorphisms

a, =a®idyand B, =idy ® .

Thus a. and . are homomorphisms from M ®g N to M’ g N and M g N to M ®g N’
respectively. Moreover, a.(a®b) = a(a)®b and . (a®b) = a®f(b) wherea € M, b € N.
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Tensor products as modules. As has been observed, in general a tensor product is an
abelian group with no module structure other than over Z. However, when the modules
in a tensor product have additional module structures, this is inherited by the tensor
product.

(13.1.4) Let sMg and gNt be modules overrings R, S, T as indicated. Then M ®g N is an
(S, T)-bimodule with respect to the ring actions s-(a®b) = (s-a)®b and (a®b)-t = a®(b-t)
wherea e M, be N,se S, teT.

Proof. Fix s in S and consider the mapping a® : Mg — Mz in which a®(a) = s - a.
This is a homomorphism of right R-modules, as an easy check reveals. By (13.1.3) we
can form the induced homomorphism (a®)), : M ® N — M &g N. This enables us
to define a left action of Son M ®; N by s - x = (a®),(x) for x € M ® N. This is
certainly well defined, but we still need to verify the module axioms. First note that
s-(a®h)=(a¥).(aeb)=(a®)eb=(s-a)ebwhereaeM,b e N.

Turning to the module axioms, we have s- (X1 +x3) = (a'®),. (x1 +x2) = (@), (x1) +
(@), (x2) =s-x1+5-x2, where s € Sand x; € M ®g N, since a® is a homomorphism.
Nextlets; € S;then (s1+53)-(a®b) = ((S1+S2)-a)®b = (s1-a+s,-a)®b = s1-(a®b) +
Sy-(a®b). This implies that (s +53)-x = s1-x+S5-x forall xin M®g N, since the latter
is generated by the tensors a® b and (a'®), is a homomorphism. As for the last module
axiom, s1-(s2-(a®b)) = s1-((s2-@)®b) = (s1-(52-a))®b = ((5152)-@)®b = (s152)-(a®b),
which is sufficient for the proof since M ®r N is generated by the tensors a ® b.

The right action of T arises in a similar fashion from the map
B :x N g N, (t € T), in which O(b) = b -t for b € N. Thus x - t is defined to
be (8?). (x). To complete the proof the reader should verify the bimodule condition,
s-(x-t)=(s-x)-tfors e S,t e T,x € Mog N, noting that it is enough to do this when
and x is a tensor. O

We remark that there are versions of (13.1.4) applicable to the module situations
sMg, RN and Mg, gNT, when M ®g N is only either a left S-module or a right T-module
respectively.

In the case of a commutative ring there is no difference between left and right
modules, as we saw (9.1), so the tensor product is always a bimodule.

(13.1.5) Let M and N be modules over a commutative ring R. Then M ® N is an (R, R)-
bimodule. Furthermore,

r-(aeb)=(r-a)eb=a®(b-r)=(aeb)-r

wherea e M,b € N,r € R.
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Exercises (13.1)

(1) Let R, S, T be rings and sMg, rNt modules. State what module structure the fol-
lowing tensor products possess and give the module action in each case: R ®g N and
M ®R R.

(2) Let M and N be R-modules where R is a commutative ring. Prove that M @z N £
N ®gr M.

(3) Let A be an abelian torsion group, i.e., each element of A has finite order. Prove that
AQ=0.

(4) Let A and B be abelian torsion groups such that elements from A and B have
relatively prime orders. Prove that A ® B = 0.

(5) Let R be aring and let My and g N be modules. Prove that M®g N = N ®gorr M. (Here
ROPP is the opposite ring of R — see (9.1)).

(6) Leta: A - A1, B: B — By, y: A1 - Ay, § : By — B, be module homomor-
phisms. Prove that (y® 6)(a ® B) = (ya) ® (6p).

(7) Let A be the multiplicative group of all complex p-power roots of unity where p is a
prime. Prove that A® A = 0.

(8) Let R be a ring and M a right R-module. Alsoleta : A - Band 8 : B — C be
homomorphisms of left R-modules. Form the induced homomorphism a., = idy ®
and similarly form . and (8a).. Prove that (8a). = S.a.. (Compare this with (9.1.18)).

13.2 Properties of tensor products.

In this section we present a sequence of results about tensor products which aid in
their calculation.

(13.2.1) Let R be a ring with identity and let Mg and g N be modules. Then

i) MegREM,

(i) Reg N2 N,

via the respective isomorphisms in whicha®r — a-randr®b — r-b,(a € M, b €
N,r € R).

Proof. First observe that M®g R and R®g N are respectively a right R-module and a left
R-module by (13.1.4). Only the first isomorphism will be proved. Consider the map from
M x R to M defined by (a, r) — a - r. This is clearly middle linear, so by the mapping
property there is a group homomorphism @ : M ®g R — M such thata(a®r)=a-r.In
fact a is a homomorphism of right R-modules because

k k k
a((Y ti@i®r)-r)=a( ) tilaie (rin)) = Y tia(a; ® (rir))
i=1 i=1 i=1
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k k k
=Y tia;-(rin) = (Y tiai-r)) - r=a( ) t(ai®ry) -,
i=1 i=1 i=1
where a; € M, 1,1; € R, £; € Z.
To show that a is an isomorphism we produce an inverse function. Define § : M —
M ®g R by (a) = a ® 1g. This is certainly well defined and a simple check reveals that
af and Ba are identity functions. Thus § = a™1. O

(13.2.2) (Associativity of tensor products) Let R and S be rings and Lg, gMs, sN mod-
ules as indicated. Then there is an isomorphism of groups

a:(Leg M)®s N —» L®g (M®s N)

such thata((a®b)®c)=a® (b®c)wherea e L,b e M,c € N.

Proof. First note that these tensor products exist. Choose and fix ¢ € N; then observe
that the assignment (a, b) — a®(b®c), wherea € L, b € M, is an R-middle linear map
from L x M to L g (M ®s N). By the mapping property there is a group homomorphism
Bec:Leg M — L®g (M®s N)such that f.(a® b) =a® (be®c).

Next the assignment(x, c) — B.(x) determines an S-middle linear map from (L ®g
M) x N to Leg (M®s N) — notice that B¢, +c, = Bc, +Bc,- Hence there is a homomorphism
a:(Leg M)®s N —» L g (M®s N)suchthata((ae®b)®c) =(a®b)=ae (b c).
By a similar argument — which the reader should supply — there is a homomorphism
y:Ler (M®sN) — (Leor M)®s Nsuchthaty(ae® (b®c)) =(a®b)®c.Since aand y
are inverse functions, a is an isomorphism. O

Here it should be noted that if there is additional module structure in (13.2.2),
the map @ may be a module isomorphism. Specifically, if we have gLz or sNt with
rings Q and T, then a is a homomorphism of left Q-modules or of right T-modules
respectively. For example, in the first case, ifa € L, b € M, c € N, q € Q, then we have
a(g-((a®b)®c)) = a(((q-a)@b)®c) = (q-a)®(bec) = q-(a®(bec)) = g-a((a®b)®c),
which implies that a is a Q-module homomorphism.

(13.2.3) (Distributivity of tensor products) Let R be a ring and let Ly, rM, grN be
modules. Then there is a group homomorphism

a:Legr (MeN) — (Legr M)a (LerN)

suchthata(a® (boc))=(aob)®(a®c), whereaec L,b € M, c € N.
(Here, in order to improve the notation, we are writing b @ ¢ for (b, ¢) € M@ N, etc).

Proof. Leta € L,b € M, c € N. Then the assignment (a,b®c) — (a® b) ® (a® c)
determines a middle linear map from L x (M @ N) to (L ®g M) @ (L ®g N), so there is a
group homomorphism a : Leg (M@®N) — (L®g M)® (L ®g N) suchthat a(a® (b c)) =
(a®b)® (a®c).
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Next the canonical injections iy : M - MeNand ty : N > M@ N lead to induced
homomorphisms (1)« : L& M — L®gr (M@ N)and (iy)« : Leg N - L ®g (M & N).
Combine (i), and (ty). to produce a homomorphism 8 : (L ®g M) @ (L g N) —
L®gr (M® N)whichsends (a®b)®0toa®(be0)and 0@ (a®c))toa® (0&c). Hence
B((a®b)®(a®c)) = a®(bac). Since a and f are inverse maps, a is an isomorphism. [

Once again, given the extra module structure sLg or kM7 and gNr, it is easy to
verify that a is a left S- or a right T-module isomorphism respectively.

Tensor products of quotients. There is a useful technique for computing the tensor
product of two quotient modules. Let R be a ring and let Mg, rN be modules with
respective submodules My and Ng. Define

S=(a®b|aeMporb e Ny),

which is a subgroup of M ®g N. With this notation we have the fundamental result that
follows.

(13.2.4) There is an isomorphism
o : (M/Mo) ® (N/No) — (M ®g N)/S

such that a((a + Mp)® (b+ Np)) =a® b + S.

Proof. In the first place the assignment (a + Mo, b + No) — a® b + S gives rise to a
well defined middle linear mapping from M/Mg x N/Ng to (M ®g N)/S, by definition
of S. Hence there is a homomorphism a : (M/Mg) ®g (N/Ng) — (M ®g N)/S such that
a((a+Mp)®(b+Ng))=ae®b +S.Nextletm: M - M/Mgand 0 : N — N/Ng denote
the canonical homomorphisms. Now form the homomorphism j = 7 ® o; thus f sends
a®b to (a+Mg)®(b+Np). Observe that  maps each generator of S to 0, so that |5 = 0.
Therefore we can define unambiguously a mapping

B: (MegrN)/S — (M/Mo) ®r (N/No)

by B(x + S) = B(x). Note that B(a® b + S) = B(a ® b) = (a + My) ® (b + Ny). Finally, a
and f are inverse maps, so a is an isomorphism. O

As usual when additional module structure in M or N is present, a is a module
isomorphism. A first application of (13.2.4) is to compute tensor products in which one
factor is a cyclic module. But first recall from (9.1.8) that if R is a ring with identity, a
cyclic left R-module is isomorphic with a module gR/I where I is a left ideal of R, and
there is a corresponding statement for cyclic right modules.

(13.2.5) Let R be a ring with identity and let I, ] be left and right ideals of R respectively.
Let My and g N be modules. Then
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(i) Meg (RR/D =M/(M-D);
(ii) (Rr/))®r N =N/(J-N).

In the statement of this result M - I denotes the subgroup generated by all elements

of the form a - i where a € M and i € I, with a similar explanation for J - N.

Proof. Only (i) will be proved. Apply (13.2.4) with My = O and Ng = I. Then M®g (rR/I) =
(M ®g R)/S and it is just a question of identifying the subgroup S = (a®i|a € M,i € I).
By (13.2.1) the assignment a ® r — a - r determines an isomorphism a : M ®g gR — M.
The image of S under a is generated by the elements a - i, where a € M, i € I; therefore
a(S)=M-Iand M ®g (RR/I) =~ M/(M - I). O

Corollary (13.2.6) IfI and J are respectively left and right ideals of a ring R with identity,
the mapping (r1 +J) ® (r2 + I) — riro + (I +]) yields an isomorphism

(Rr/)) ®r (RR/I) = R/(I1 +]).
Moreover, if I and ] are two sided ideals, the isomorphism is of (R, R)-bimodules.

Proof. From (13.2.5)(i) we have

(Rr/D) ®r (RR/D) = (R/D/((R/]) - 1) = (R/D/T +]]]),

which by (9.1.7) is isomorphic with R/(I + J). Composition of the isomorphisms yields
the map stated. If I and J are two sided ideals, each module is an (R, R)-bimodule and
clearly the isomorphism is of R-modules. O

For example, if m, n are positive integers with d = gcd{m, n}, then dZ = mZ+nZ =
(m) + (n) and it follows from (13.2.6) that

Zm®Zn =7Z/(m)®Z[(n) = Z[((m) + (n)) = Z/(d) = Za. ()

Example (13.2.1) Let A = Z® Z3 ® Z52 and B = Z & Z3: & Zs2 & Z7. Applying the
distributive property together with (13.2.1) and the isomorphism (*), we obtain

ARB=7Z0&73023023 ®Zs5: ® 252 ®Zs2 ® 7.

Tensor products of free modules. A tensor product of free modules over a commutative
ring with identity is in fact always a free module. For simplicity of presentation we will
discuss only the case where the free modules are finitely generated.

(13.2.7) Let R be a commutative ring with identity and let M and N be finitely generated
free R-modules with respective bases {x1, X2, ..., Xm}and{y1,y2, ..., ¥n}. Then M®g N
is a free R-module with basis {x;®yj|i=1,2,...,m,j=1,2,...,n}L
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Proof. Wehave N=R-y;®R-y,®---®R -y, and hence by the distributive law
R
MerN=(Me&r(R-y1))®(M® (R-y2)) @ &(M®&g (R yn)).

Now R - y; £ R, since r - y; = 0 implies that r = 0. Thus M ®r (R - y}) R M®grR 2 M, and
the image of x; ® y; under the composite of these isomorphisms is x;. Therefore the
xi®yj, i=1,2,...,m,are R-linearly independent, so they form a basis of M®g (R-y;),
which implies the result. O

Corollary (13.2.8) Let M and N be free modules with finite rank over R, a commutative
noetherian ring with identity. Then rank(M ®g N) = rank(M) - rank(N).

For the concept of rank see (9.1.15) and its sequel. Note that for a vector space rank
equals dimension; thus if V and W are finite dimensional vector spaces over a field F,
then V ®¢ W is finite dimensional and dim(V ®¢ W) = dim(V) - dim(W).

Tensor products of matrices. We have seen how to form the tensor product of module
homomorphisms in (13.1.3). The close connection between matrices and linear map-
pings suggests that there should be a corresponding way to form tensor products of
matrices.

Let A and B be m x n and p x g matrices respectively over a field F. Then there
are corresponding linear transformations « : F* — F™ and f§ : F¢ — FP defined
by equations a(X) = AX and B(Y) = BY. Let EE") denote the ith column of the n x n
identity matrix I,. Thus {EE") |i=1,...,n}is the standard basis of F". The linear
transformation a is represented with respect to the bases {El(.")} and {E](.m)} by the
matrix A. There is a similar statement for S.

By definition of the linear mapping a® f8 : F" @ F4 — F™ ®f FP,

aepE" e E?) = a(E") ® BE),

which equals
C e ) _ N % m )
m
Y anwEy” ® Y bgES =) Y awibg(E[" ® EY).
k=1 =1 k=1¢=1

Now (13.2.7) shows that the Egn) ®E}(.q) form a basis for F" @ F4, as do the E ;{m) ®E£,p )
for F™ ®F FP. Let these bases be ordered lexicographically, i.e., by first subscript, then
second subscript. With this choice of ordered bases we can read off the mp x ng matrix
M which represents the linear mapping a ® 8. The rows of M are labelled by the pairs
[k,€],1 <k <m,1 < £ < p, and the columns by the pairs [i,j], 1 <i<n,1<j<gq.
Therefore the ([k, €], [i, j]) entry of M is

ak,-bg.

The foregoing discussion suggests that we define the tensor product A ® B of A
and B to be the mp x nq matrix M. In essence the entries of A ® B are formed by taking
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all possible products of an entry of A and an entry of B. Writing the matrix in block
form, we obtain the more easily remembered formula

allB (1123 e alnB
M=A®B-= a21B azzB aZnB
amB amB ... amnB

The tensor product of matrices is sometimes called the Kronecker product.*

Example (13.2.2). Consider the matrices

A= [an 6112] and B = [bn b12:| )
a1 dz b21 b22

The tensor product is

aiibi1 aunbiy  apbin anbi
aiiby1 aiby  apbi anbxn
aribi1 axiby; axbir axnbi
axiby1 axibyy  axbri  axnb

A®B-=

Right exactness of tensor products. The section concludes with a discussion of the
right exactness property of tensor products, a fundamental result that is used constantly
in advanced work.

(13.2.9) Let Mg and grN be modules over a ring R.

(i) Let A %B i C — 0 be an exact sequence of left R-modules. Then there is an exact
sequence of abelian groups and induced homomorphisms

MopA ™ MepB "5 Meg C — 0.

(ii) Let A 4B ﬁ» C — 0 be an exact sequence of right R-modules. Then there is an exact
sequence of abelian groups and induced homomorphisms

Aer NS Bor N 25 Cap N - 0.

Proof. Only (i) will be proved. The first step is to show that . is surjective. Let m € M
and c € C. Since f is surjective, ¢ = B(b) for some b € B. Hence f.(m ® b) = (idy ®

1 Leopold Kronecker (1823-1891)
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B)(m®b) =me f(b) = mec.Since M g C is generated by the tensors m ® c, it follows
that B. is surjective.

It remains to prove that Im(a.) = Ker(B.), which is harder. In the first place,
B.a. = (Ba). = 0, = 0 by Exercise (13.1.8), so that Im(a.) ¢ Ker(B.). To establish the
reverse inclusion we form the commutative triangle

C
B A Y
B e B/Ker(f)

where v is the canonical homomorphism and y is the isomorphism in the First Isomor-
phism Theorem which sends b + Ker(f) to f(b). Commutativity of the diagram is easily
checked, so yv = B. This implies that y.v. = (yv). = B.. Since yis an isomorphism, so
is the induced map y. and hence Ker(.) = Ker(v.).
Define
S=(mek|meM, keKer(f)).

Then S = Im(a..) since Ker() = Im(a). Next S ¢ Ker(v..); for, if m € M and k € Ker(B),
we have v.(m® k) = m® (k + Ker()) = m® 0 = 0. Hence v, induces a homomorphism
A: (Me®g B)/S — M &g (B/Ker(B)) such that A(u + S) = v.(u) for u € M ®g B. Thus
Am® b +S) = vi(m® b) = m e (b + Ker(B)). By (13.2.4) there is an isomorphism
0 : M (B/Ker(B)) — (M®g B)/S such that 6(m ® (b + Ker(f))) = m® b + S. Notice that
0 and A are mutually inverse maps, so A = 8~ is an isomorphism. If u € Ker(v,.), then,
since v, induces A, we have u + S € Ker(A) = Ope,p/s and u € S. Hence Ker(v,) < Sand
finally Ker(8.) = Ker(v,) ¢ S = Im(a. ), so that Ker(8.) = Im(a. ), as required. O

The right exactness property of tensor products should be compared with the
left exactness of Hom in Chapter Nine — see (9.1.19). The “duality" between the the
tensor product and Hom indicated by (13.2.9) and (9.1.19) is just the beginning of a
fundamental duality in homological algebra between homology and cohomology.

Exercises (13.2)

(1) Given a module g Ns where R and S are rings and R has identity, prove that Reg N 3 N.
(2) Simplify (Z e Q ® Z13) ® (Q ® Zs & Z,,) as far as possible.

(3) Show by an example that the tensor product does not have the left exactness
property, i.e., if M is a right R-module and 0 — A LB i C is an exact sequence of

left R-modules, the induced sequence 0 - M ®r A S M ®r B B—> M ®p C is not exact
in general. [Hint: apply Z, ® - to the sequence 0 — Z — Q — Q/Z].

(4) Let A and B be m x m and n x n matrices over a field. Prove that det(A ® B) =
(det(A))"(det(B))™. Deduce that the tensor product of non-singular matrices is non-
singular. [Hint: define A to be the mn x mn block matrix whose (i, j) block is ajjl, and
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let B! be the mn x mn block matrix with B on the diagonal and 0 elsewhere. Show that
A ® B = AB!. Then take the determinant of both sides].

(5) Let Q, R, Sberings and gLr, RMs, sN modules as indicated. Prove that there is an
isomorphism of left Q-modules a : (L ®x M) ®s N — L ®g (M ®s N).

(6) Let gN be a module over an arbitrary ring R. Suppose that A 4B i C — Oisan
exact sequence of right R-modules. Prove that the sequence of abelian groups and
induced homomorphisms

Aor NS Bog N5 Cop N — 0

is exact.

(7) (Adjoint associativity). Let R and S be rings and Ag, rBs, Cs modules. (i) Explain
why Homg(B, C) is a right R-module. (ii) Establish the isomorphism Homg(A ® B, C) =
Homg (A, Homg(B, C)).

13.3 Extending the ring of operators.

Suppose we have a module over a ring R: is there a way to make it into a module over
a different ring S? Of course the question is vague, but one situation in which this is
possible is if a ring homomorphism ¢ : S — R is given. For, if M is a left R-module, a
left action of S on M can be defined by the rule s - a = ¢(s) - a for s € Sand a € M. The
simple task of verifying the module axioms is left to the reader.

It is a less trivial exercise to go in the opposite direction: let M be a left R-module
and let ¢ : R — S be a ring homomorphism. The question is: how can one associate a
left S-module with M? At this point tensor products come to our aid. First observe that
Sis a (S, R)-bimodule where the left action comes from the ring product in S and the
right action of R on Sis given by s - r = s¢)(r), (s € S, r € R). Again verification of the
module axioms is easy. Therefore we can form the tensor product S ®g M, which is a
left S-module by (13.1.4), and also a left R-module via ¢.

One can ask how the new R-module S ® M is related to the original module M. If
S has an identity element, there is an obvious mapping

0:M—>SerM

given by 6(a) = 1s®a. Observe that 0(r-a) = 1s®(r-a) = (1s-r)®a = (1sP(r)) ®a =
(p(Nls)®a=(r-1s)®@a=r-(ls®a) =r-(0(a)), wherer € R, a € M. Therefore 6 is
a homomorphism of left R-modules.

A case of particular interest is where ¢ is injective, so that R is essentially a subring
of S. In this circumstance we are extending the ring of operators on a module from
the subring R to S. The interesting question is whether 8 is also injective. A detailed
investigation of the problem would take us too far afield, so we will restrict ourselves to
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the special, but important, case where R is a domain and ¢ is the canonical injection
from R into its field of fractions F. Thus we are trying to embed an R-module in an
F-vector space.

Tensor products and localizations. Let R be a domain with field of fractions F. Recall
from (6.3) that each element of F is a fraction over R with the form % where r; € R and
r2 # 0. Also there is an injective ring homomorphism ¢ : R — F in which r — {: this
is by (6.3.10).

Assume now that M is a torsion-free R-module. We are interested in the mapping
Y : M - F®g M where {(a) = 1r ® a, the aim being to prove that it is injective. Before
this can be done, a better understanding of F g M is needed and for this purpose a
“model" of this F-module will be constructed.

We start by forming the set

S={(a,r)|aeM, O+reR}
and then introduce a binary relation ~ on S by
(a,r)~@,MNer-a=r-a.

The motivation here is the rule for equality of two rational numbers. By a simple check
~ is an equivalence relation on S, but notice that for the transitive law to hold it is
essential that M be torsion-free. The ~-equivalence class of (a, r) will be written

a
r

and referred to as a fraction over R. Denote the set of all such fractions by R™! - M.
The plan is to turn R~ - M into an F-module by defining
ai +a2 _ r-ay+ry-as
r r B rira

r a ri-a
and (—1)‘ —=1=,
r r rira

Since these are operations on equivalence classes, it is essential to verify that they are
well defined, i.e., there is no dependence on the choice of elements (a;, r;) from ‘f—: or
(a, r) from % All of this is routine calculation, which, as usual, we urge the reader to
perform.

Then the module axioms must be checked. For example,

r-ap+ri-4aj rry-aq +rri1-Aaz

(o) (2o Dy
r ri r r

rir; r'rir;

Also . .
r aig r as r-ai r-aj rrr-ay +rrry-az
(L (e (=0 T o ; :

r r r r r'ri r'r) r! rirz

which is seen to equal the previous expression after allowing for cancellation of the
common factor r’ in the numerator and denominator.
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The module R~! - M is called the localization of M. The statement we are aiming
for is next.

(13.3.1) Let R be an integral domain and F its field of fractions. If M is a torsion-free
R-module, then
RY.ME Fep M.

Proof. The assignment (:—;, a) — % yields a well defined R-middle linear mapping

from F x M to R~! - M. For example, the map sends (%, a, +ap) - (%, a,) - (%, a) to

rn-(a+a) n-ai rn-a
r r r

=0.

The other verifications are at a similar level of difficulty.
It follows that there is a homomorphism 77 : F % M — R~1. M such that n(% ®a) =

ri-a

ot Now check that 77 is an F-module homomorphism. Letr, ', r; € R, a € M; then

rrq

r r rri-a r
(= - (Loa)=n—ea)=——=
ror r'ry

n-a,_r.
r'r, 1 ( rs )_r’

(2 e a)),
L)

which is sufficient because F ®g M is generated by the tensors % ®da.
Next define a mapping 1 : R™! - M — F eg M by () = 1 ® a. To show that i is
well defined, suppose that (a, r) ~ (a’,r'). Thusr-a’' =r' - a and
1 r 1 1 r
~®a=—®a=—00 (1 -a)= =0 ((-a)=—od =
r rr! rr! rr! r
as required.

Finally, 77 and y are mutually inverse maps: for mip(%) = (3 ® a) = 12 = 4, while

ri-a 1 r
! ):—®(r1~a):—1®a.
r2 r r2

¢n§§®a)=¢<

Again this is sufficient since F ®g M is generated by the tensors ;—; ® a. Therefore Y is
an F-isomorphism. O

Corollary (13.3.2) Let R be an integral domain and F its field of fractions. If M is a
torsion-free R-module, the assignment a — 1 ® a determines an injective R-module
homomorphism 6 : M — F ®g M.

Proof. Assume that 6(a) = 0 for some a € M, so that 1 ® a = 0. Apply the isomorphism
m in the proof of (13.3.1) to both sides of this equation to get § = n(1 ® a) = %, which
implies that a = 0. O

This corollary provides some insight into the nature of torsion-free abelian groups,
but first some terminology. A torsion-free abelian group A is said to have finite rank if it



13.3 Extending the ring of operators. =—— 291

has no infinite linearly independent subsets. In this event A must possess a maximal
linearly independent subset {ai, a», ..., a,} since otherwise there would exist infinite
linearly independent subsets.

(13.3.3) If A is a torsion-free abelian group, then A is isomorphic with a subgroup of the
rational vector space V = Q ® A. If A has finite rank, then V has finite dimension.

Proof. Let 6 : A —» Q ® A be the mapping a — 1 ® a. By (13.3.2) 6 is an injective
homomorphism, which proves the first statement. Now assume that A has finite rank
and S = {ay, ..., a,} is a maximal linearly independent subset of A. Then T = 6(S)
is linearly independent since 8 is injective. If % ® a is a typical tensor in V with r; €
Z,a € A, then rz(:—; ®a) =r1(1® a) € (T), which shows that every element of Q ® A
is a Q-linear combination of elements of T and consequently that T is a Q-basis for V.
Hence dimq(V) = r is finite. O

Notice that the proof shows that all maximal linearly independent subsets of A
have the same number of elements, namely dimg(Q ® A).

While (13.3.3) provides a familiar setting for torsion-free abelian groups of finite
rank, in the sense that they “live" inside finite dimensional rational vector spaces,
this placement does not materially advance the classification of these groups. In fact
torsion-free abelian groups of finite rank can have extremely complex structure, far
beyond that of finitely generated abelian groups: the standard reference for infinite
abelian groups is [5].

Exercises (13.3)

(1) Let F be a subfield of a field K and let V be an n-dimensional vector space over F.
Prove that V ®F K is an n-dimensional vector space over K.

[In the exercises that follow R is a domain with field of fractions F with R ¢ F, and

M is an R-module].
(2) Prove that the module operations specified for R~! - M are well defined.
(3) Prove that every element of F ®; M has the form % ® awherer ¢ R, a € M.
(4) Let T denote the torsion submodule of M.

(i) Provethat F®gr T =0.

(ii) Provethat Feg M 2F ®g (M/T). [Hint: start with the exact sequence 0 — T —

M — M/T — 0 and apply the right exactness property of tensor products].

(5) (The flatness property of F). Let « : A — Bbe an injective R-module homomorphism.
Prove that the induced map a. : F ®g A — F ®g B is also injective. [Hint: by Exercise
(13.3.4) A and B can be assumed to be torsion-free. Form the commutative square with
horizontal sides A > B and F ®Rr A L F ®g B, and vertical sides the canonical maps
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A — F®g A and B — F ®g B. The vertical maps are injective by (13.3.2). Argue that the
lower horizontal map is also injective by using Exercise (13.3.3)].

6)If0— A gy ﬁ) C — 0is an exact sequence of R-modules, show that the induced
sequence 0 —» Fep A 4 FerB 'B—> F®g C — 0is also exact.

(7) Prove that F ®g F R F. [Hint: apply F ® — to the exact sequence0 - R — F —
F/R - 0].



14 Further topics

The final chapter begins with an account of Zorn’s! Lemma and includes such critical
applications as the existence of a basis in a vector space and the algebraic closure of a
field. It also gives an introduction to free groups and presentations of groups, as well
as to coding theory, an important recent application of algebra. The other sections tie
up some loose ends left over from earlier chapters.

14.1 Zorn’s Lemma with applications

The background to Zorn’s Lemma lies in the kind of set theory that is being used. Up
to this point we have been functioning — quite naively — in what is called the Gddel-
Bernays Theory. In this the primitive, or undefined, notions are class, membership
and equality. On the basis of these concepts and the accompanying axioms, the usual
elementary properties of sets can be derived. In addition we have made extensive
use of the Well Ordering Axiom for Z, and its corollary the Principle of Mathematical
Induction - see (2.1).

However, the set theory just described does not provide an adequate basis for
dealing with infinite sets. For example, suppose that H is a subgroup of infinite index
in a group G. We might wish to form a left transversal to H in G. This would involve
making a simultaneous choice of one element from each of the infinitely many left
cosets of H. That such a choice is possible is asserted by the well-known Axiom of
Choice. However, this axiom is known to be independent of the Godel-Bernays axioms.
Thus, in order to be able to form left transversals in infinite groups, we must assume
the Axiom of Choice or else something equivalent to it. For many purposes in algebra
the most useful additional axiom is what has become known as Zorn’s Lemma. Despite
the name, this is an axiom that must be assumed and not a lemma.

Zorn’s Lemma. Let (S, <) be a non-empty partially ordered set with the property that
every chain in S has an upper bound in S. Then S contains at least one maximal element.

The terminology here calls for some explanation. Recall from (1.2) that a chain in
the partially ordered set S is a subset C which is linearly ordered by the partial order <.
An upper bound for C is an element s of S such that ¢ < s is valid for all c in C. Finally,
a maximal element of S is an element m such that m < s € S implies that m = s. Note
that in general a partially ordered set may contain several maximal elements or none
atall.

We will now demonstrate how Zorn’s Lemma can be used to prove a number of
critical theorems in algebra.

1 Max August Zorn (1906-1993)
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Existence of a basis in a vector space. It was shown in Chapter Eight that every finitely
generated non-zero vector space has a basis — see (8.2.7). Zorn’s Lemma can be used to
extend this fundamental result to infinitely generated vector spaces.

(14.1.1) Every non-zero vector space has a basis.

Proof. Let V be a non-zero vector space over a field F and define § to be the set of
all linearly independent subsets of V. The set § is non-empty since it contains the
singleton set {v} where v is any non-zero vector in V. Furthermore, inclusion is a partial
order on §, so (8, <) is a partially ordered set. To apply Zorn’s Lemma, we need to verify
that every chain in 8§ has an upper bound.

Let € be a chain in 8. There is an obvious candidate for an upper bound, namely
the union U = Jx.e X. Certainly U is linearly independent: for any relation of linear
dependence in U will involve a finite number of elements of § and so the relation will
hold in some X € C. Here it is vital that C be linearly ordered. Thus U € 8 and obviously
U is an upper bound for C.

It is now possible to apply Zorn’s Lemma to obtain a maximal element in 8, say B.
By definition B is linearly independent: to show that B is a basis we must prove that B
generates V. Assume this is false and let v be a vector in V that is not expressible as a
linear combination of vectors in B; then certainly v ¢ B and hence B is a proper subset of
{v}u B = B'. By maximality of B, the set B’ does not belong to § and hence it is linearly
dependent. Therefore there is a linear relation aju; + axus + -+ + apum + cv = 0
where u; € B and c, a; € F, with not all the coefficients being zero. If ¢ = 0, then
ajui +auy +---+ apum = 0,sothata; = a; =--- = ay, = 0since ug, Uz, ..., Uy are
linearly independent. Therefore ¢ + 0 and we can solve the equation for v, obtaining

v=(=cltapus +(=ctax)va + -+ (=c tam)um,

which contradicts the choice of v. Hence B generates V. O

In fact any two bases of a vector space have the same cardinal, so that it is possible
to define the dimension of an infinitely generated vector space to be this cardinal. The
proof below requires some facts from cardinal arithmetic.

(14.1.2) Let X and Y be bases of a vector space V over a field F. Then |X| = |Y].

Proof. In the first place, if one basis is finite, the result follows from (8.2.8), so we may
assume that both X and Y are infinite. Let Ps(Y) denote the set of all finite subsets
of Y. Define a function a : X — Pf(Y) as follows. If x € Xand x = kiyq1 + - + kn¥n
with distinct y; € Y and O # k; € F, define a(x) = {ky, ..., kp}. The function a is not
injective, so we will modify it.

LetT ={y1,¥2,...,yn} € Y,sothat T € P¢(Y). We claim that T={xeX|ax) e T}
is finite. For if not, there are infinitely many elements of X that are linear combinations
of y1,¥2, ..., Yn, contradicting (8.2.3). Let the elements of each T be linearly ordered
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in some way. Next define a function 8 : X — Im(a) x N by the rule S(x) = (T, m) where
a(x) = T - so that x € T — and x is the mth element of T. It is clear that f is injective.
Therefore

1X] < [Im(a) x N| < [Pe(Y)] - Ro = |Y] - Ro = |Y].

In a similar way |Y| < |X|, so by the Cantor-Bernstein Theorem (1.4.2) we arrive at
|X| = Y]. O

In the foregoing proof we used two facts about cardinals: (i) |Pf(Y)| = |Y] - cf. Exer-
cise (1.4.8); (ii) | Y| - Ro = |Y| if Y is infinite. For the latter statement see for example [8].

Maximal ideals in rings. Recall from (6.3) that a maximal ideal I of a ring R is a largest
proper ideal. If R is commutative and has an identity, then by (6.3.7) this is equivalent
to I being an ideal such that R/I is a field. Maximal left ideals and maximal right ideals
are defined in a similar manner. Maximal ideals were used in (7.4) to construct fields,
but only in circumstances where it was clear that they existed, for example when the
ascending chain on ideals held. Zorn’s Lemma can be used to produce maximal ideals
under more general circumstances.

(14.1.3) An arbitrary ring R with identity has at least one maximal ideal.

Proof. Let 8 denote the set of all proper ideals of R. Now the zero ideal is proper since
it does not contain 1, so S is not empty. Of course, 8 is partially ordered by inclusion.
Let C be a chain in 8 and define U to be | J;.¢ I. It is easily seen that U is an ideal. If
U = R, then 1 belongs to some I in €, from which it follows that R = RI c Iand I = R.
From this contradiction we infer that U # R, so that U € 8. Now Zorn’s Lemma can be
applied to produce a maximal element of 8, i.e., a maximal ideal of R. O

In a similar manner one can show that a ring with identity has a maximal left ideal
and a maximal right ideal. An immediate consequence of (14.1.3) is:

(14.1.4) If R is a commutative ring with identity, it has a quotient ring which is a field.

On the other hand, not every commutative ring has a maximal ideal.

Example (14.1.1) There exist non-zero commutative rings without maximal ideals.

An easy way to get an example is to take the additive abelian group Q and turn
it into a ring by declaring all products to be 0. Then Q becomes a commutative ring
in which subgroups and ideals are the same. But Q cannot have a maximal subgroup:
for if S were one, Q/S would be a group without proper non-trivial subgroups and so
|Q/S| = p, a prime. But this is impossible since Q = pQ. It follows that the ring has no
maximal ideals.

A noteworthy application of (14.1.4) is to generalize (9.1.15) and (14.1.2) to free
modules over arbitrary commutative rings with identity.
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(14.1.5) Let R be a commutative ring with identity and let M be a free R-module. If X and
Y are bases of M, then |X| = |Y|.

Proof. By (14.1.4) there is a quotient K of R which is a field. The argument of (9.1.15)
can now be applied with an appeal to (14.1.2) at the appropriate point. O

The existence of algebraic closures. Another important application of Zorn’s Lemma
is to show that for every field F there is a largest algebraic extension, its algebraic
closure. The construction of such a largest extension is the kind of task to which Zorn’s
Lemma is well-suited.

Let E be a field extension of F with F ¢ E. Then E is called an algebraic closure of F
if the following conditions hold:
(i) Eis algebraic over F;
(if) every irreducible polynomial in E[t] has degree 1.

Notice that by the second condition if K is an algebraic extension of E, then K = E, so
that E is a maximal algebraic extension of F. A field that coincides with its algebraic
closure is called an algebraically closed field. For example, the complex field C is
algebraically closed by the Fundamental Theorem of Algebra (12.3.6).

Our objective is to prove the following theorem:

(14.1.6) Every field has an algebraic closure.

Proof. Let F be an arbitrary field. The first step is to choose a set that is large enough
to accommodate the algebraic closure. In fact what is needed is a set S with cardinal
greater than N - |F|: for example the set P(IN x F) will do — see (1.4.5). In particular
|F|] < |S], so there is an injection @ : F — S. Now use the map a to turn Im(a) into a
field, by defining

a(x)+a(y)=a(x+y) and a(x)a(y) = a(xy)

where x, y € F, and a(Or) and a(1F) are the zero element and identity element respec-
tively. Clearly Im(a) is a field isomorphic with F. Thus, replacing F by Im(a), we may
assume that F ¢ S.

To apply Zorn’s Lemma we need to introduce a suitable partially ordered set. Let X
denote the set of all subsets E such that F ¢ E ¢ S and the field operations of F may
be extended to E in such a way that E becomes a field which is algebraic over F. Quite
obviously F € X, so that X is not empty. A partial order < on X is defined as follows:
if E1,E, € X, then E; < E, means that E; ¢ E, and the field operations of E, are
consistent with those of E;. So E; is actually a subfield of E. It is quite easy to see that
< is a partial order on X. Thus we have our partially ordered set (X, <).

Next the union U of a chain € in X is itself in X. For, by the definition of the
partial order <, the field operations of all members of € are consistent, so they may be
combined to give the field operations of U. It follows that U € X and clearly U is an



14.1 Zorn’s Lemma with applications =— 297

upper bound for € in K. Zorn’s Lemma may now be applied to yield a maximal element
of X, say E.

By definition E is algebraic over F. What needs to be established is that any ir-
reducible polynomial f in E[t] has degree 1. Suppose that in fact deg(f) > 1. Put
E' = E[t]/(f), which is an algebraic extension of E and hence of F by (11.1.8). If we write
Eo ={a+(f) | a € E}, then Ey ¢ E' and there is an isomorphism 8 : E; — E given by
Bla+ () = a.

It is at this point that the cardinality of the set S is important. One can show without
too much trouble that |[E' — Eg| < |S - E|, by using the inequalities |E| < Rq - |F| and
|E[t]] < |S|. Accepting this fact, we can choose an injective map 8, : E' - Eg — S - E.
Combine f; with f : Eg — E to produce an injection y : E' — S. Thus y(a + (f)) = a
forainE.

Next we use the map y to make J = Im(y) into a field, by defining y(x1) + y(x2) =
p(x1 + x2) and p(x1)p(x2) = p(x1x2). Then y : E' — ] is an isomorphism of fields
and p(Ey) = E. Since E’ is algebraic over Ej, it follows that ] is algebraic over E and
therefore J € X. However, E # ] since Eq + E', which contradicts the maximality of E
and completes the proof. O

While some details in the above proof may seem tricky, the essential idea is clear:
build a largest algebraic extension of F by using Zorn’s Lemma. It can be shown,
although we shall not do so here, that every field has a unique algebraic closure up to
isomorphism - see [8] for a proof.

For example, the algebraic closure of R is C, while the algebraic closure of Q is the
field of all algebraic numbers. Another example of interest is the algebraic closure of
the Galois field GF(p), which is an algebraically closed field of prime characteristic p.

As a final illustration of the power of Zorn’s Lemma, we will prove a result on
cardinal numbers which was stated without proof in (1.4).

(14.1.7) (The Law of Trichotomy) If A and B are sets, then exactly one of the following
must hold,
|Al <|Bl, |Al=1|B|, |Bl<]IAl.

Proof. Because of the Cantor-Bernstein Theorem (1.4.2), it is enough to prove that
either |A| < |B]| or |B| < |A| holds. Clearly A and B can be assumed non-empty.

Consider the set F of all pairs (X, @) where X € A and a : X — B is an injective
function. A partial order < on ¥ is defined by (X, @) < (X', a')if X c X' and &'|x = . It
is obvious that F is not empty. Let € = {(X;, ;) | i € I} bea chainin F. Put U = | J;; Xi
and define « : U — B by extending the a;, which are consistent functions, to U. Then
(U, a) is an upper bound for € in F.

We can now apply Zorn’s Lemma to obtain a maximal element (X, &) of . We claim
that either X = A or Im(a) = B. For suppose that both statements are false, and let
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aeA-Xandb € B-Im(a). Put Y = XU {a} and define 8 : Y — B by (a) = b and
Blx = a. Then B is injective since b ¢ Im(a), and clearly (a, X) < (B8, Y), which is a
contradiction. Therefore, either X = A and hence |A| < |B| by definition of the linear
ordering of cardinals, or else Im(a) = B. In the latter case for each b in B choose an ay
in A such that a(ap) = b: then the map b — aj is an injection from B to A and therefore
|B] < |Al. O

Axioms equivalent to Zorn’s Lemma. We mention in passing three axioms that are
logically equivalent to Zorn’s Lemma.

(i) The Axiom of Well-Ordering. Every non-empty set can be well-ordered.

Recall from (1.2) that a well order on a set is a linear order such that each non-empty
subset has a first element. Compare the Axiom of Well-Ordering with the Well-Ordering
Law in (2.1), which implies that < is a well-order on IN.

(ii) The Principle of Transfinite Induction. Let S be a well-ordered set and T a non-empty
subset of S. Let t € S and assume that t € T whenever it is true that x € T forall xin S
suchthatx < t. Then T = S.

This result, which is the basis for the method of proof by transfinite induction,
should be compared with the Principal of Mathematical Induction (2.1.1).

(iii) The Axiom of Choice. Let {S; | i € I} be a non-empty set whose elements S; are non-
empty sets. Then there is at least one choice function a : I — J;.; Si, i.e., a function a
such that a(i) € S;.

Informally we may express this by saying that it is possible to choose an element
simultaneously from every set S;. For a clear account of the equivalence of these axioms
see [7].

Exercises (14.1)
(1) Let R be a ring with identity. Prove that R has a maximal left ideal and a maximal
right ideal. Use these results to construct simple left and right R-modules.

(2) Let R be a commutative ring and let O # r € R. Prove that there is an ideal I which is
maximal subject to not containing r. Then prove that I is an irreducible ideal, i.e., it is
not the intersection of two larger ideals.

(3) Deduce from Exercise (14.1.2) that every proper ideal of a commutative ring R is an
intersection of irreducible ideals. Interpret this result when R is a PID.

(4) Let G be a non-trivial finitely generated group. Prove that G has at least one maximal
subgroup. Deduce that ¢(G) + G where ¢(G) is the Frattini subgroup of G.

(5) Let G be a group, let X be a subset and let g be an element of G such that g ¢ X.
Prove that there is a subgroup H which is maximal subjectto X c Hand g ¢ H.
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(6) Generalize (10.2.8) by showing that in an arbitrary group G the Frattini subgroup
¢(G) consists of all non-generators. [Hint: let g € ¢(G) and assume that G = (g, X),
but G + (X). Apply Exercise (14.1.5)].

(7) Let G be an arbitrary group and p a prime. Show that G has a maximal p-subgroup,
i.e., a subgroup which is maximal subject to every element having order a power of a
prime p. Then prove that the maximal p-subgroups of a finite group are just the Sylow
p-subgroups.

(8) Let P be a prime ideal of R, a commutative ring with identity. Prove that there is a
largest prime ideal Q containing P. Then show that Q is a maximal ideal.

(9) Let v be a non-zero element in a vector space V. Prove that there is a linear operator
a on V such that a(v) # 0.

14.2 Roots of polynomials and discriminants

In this section we will complete certain topics that were begun in Chapter Twelve. In
particular, the concept of the discriminant of a polynomial is introduced and this is
applied to the Galois groups of polynomials of degree < 4.

The discriminant of a polynomial. Let f be a non-constant monic polynomial in ¢ over
a field F and let n = deg(f). Let the roots of f in its splitting field E be aq, a,, ..., a
and define .
A= T](ai-ap,
i<j=1

which is an element of E. Note that A depends on the order in which the roots are
written, so it is only determined up to sign. Also f has all its roots distinct if and only if
A # 0: let us assume this to be the case. Thus E is Galois over F.

If a € Gal(f) = Gal(E/F), then a permutes the roots ay, a, ..., a,, and a(A) = +A.
Indeed a(A) = A precisely when a produces an even permutation of the a;’s. Thus in
any event a fixes

D =A%,

The element D is called the discriminant of f: it is independent of the order of the
roots of f. Since D is fixed by every automorphism a and E is Galois over F, it follows
from (12.2.6) that D belongs to F. The question arises as to how D is related to the
coefficients of the original polynomial f.

(14.2.1) Let f be a non-constant polynomial over a field F. Then the discriminant D of f
is expressible as a polynomial in the coefficients of f.
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Proof. 1t can be assumed that f is monic and that it has distinct roots ay, a», ..., an
since otherwise D = 0. Then f = (t — a1 )(t — ay) - -- (t — ay), so that

f=tt—sit" 45" % — o 4 (1),

where sq, S>3, ..., S, are the elementary symmetric functions of degree 1, 2, ..., n
inaq, az, ..., ap. Now D = H?<j=1(ai - aj)2 is obviously a symmetric function of
ai, as, ..., a,. By the Symmetric Function Theorem (12.4.7), D is expressible as a
polynomial in s1, Sy, . .., Sp, i.e., in the coefficients of f. O

Next we examine the discriminants of polynomials of degrees 2 and 3 over a field.

Example (14.2.1) Letf = t> + ut+v.Ifthe roots of f are a; and a,, then A = a; —a, and
D = (a1 — ay)?. This can be rewritten in the form D = (ay + a»)? — 4aia,. Now clearly
u=—(a; +ay)and v = a;a,, so we arrive at the familiar formula for the discriminant
of the quadratic 2 + ut + v,

D =u? - 4v.

Example (14.2.2) Consider a cubic polynomial f = 3 + ut? + vt + w and let ay, ay,
as be its roots. Then D = (a1 — a2)%(az — az)%(a; - a3)?. Alsou = —(a; + az + asz),
vV =aia; + aas + ayas and w = —a;aas. By a rather laborious calculation we can
expand D and write it in terms of the elements u, v, w. What emerges is the formula

D =u?v? - 4v3 - adw - 27w? + 18uvw.

This expression can be simplified by a judicious change of variable. Put t’ = t + %u, o)
that ¢t = ¢' - u. On substituting for tin f = £ + ut? + vt + w, we find that f = t" + pt' +¢q
wherep =v - %uz andg=w+ 2%113 - %uv. Hence no generality is lost in assuming
that f does not have a term in ¢* and

f=+pt+q.
Now the formula for the discriminant reduces to the more manageable expression
D =-4p3 -274°.
Next we relate the discriminant to the Galois group of a polynomial.
(14.2.2) Let F be a field whose characteristic is not 2 and let f be a monic polynomial

in F[t] with distinct roots a1, as, ..., a,. Write A = ]_[,f’q-:l(ai - aj). If G = Gal(f) is
identified with a subgroup of S, then Fix(G n A,) = F(A).

Proof. Let H =GN A, and note that H< G and |G : H| < 2. If E is the splitting field of f,
then F € F(A) € Fix(H) < E since elements of H, being even permutations, fix A. Now
E is Galois over F, so we have

(F(4): F) < (Fix(H): F) = |G : H| < 2.
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If H = G, it follows that F = F(A) = Fix(H) and A € F. The statement is therefore true in
this case.

Now suppose that |G : H| = 2 and let a € G — H. Then a(A) = —-A as a is odd.
Since char(F) # 2, we have A #+ -A and hence A ¢ F. Therefore (F(A) : F) = 2 and
Fix(H) = F(A). O

Corollary (14.2.3) With the above notation, Gal(f) < A, ifand only if A € F.

These ideas will now be applied to investigate the Galois groups of polynomials of
low degree.

Polynomials of degree at most 4. Let F be a field such that char(F) + 2.

(i) Consider a quadratic f = t? + ut + v € F[t]. Then |Gal(f)] = 1 or 2. By (14.2.3)
|Gal(f)| = 1 precisely when A € F, i.e., Vu? — 4v € F. This is the familiar condition
for f to have both its roots in F. Of course |Gal(f)| = 2 if and only if A ¢ F, which is the
irreducible case.

(ii) Next let f be the cubic £ + pt + q € F[t]. We saw that
A =D = \-4p3 - 2742

If f is reducible over F, it must have a quadratic factor f; and clearly Gal(f) = Gal(f1),
which has order 1 or 2. Thus we can assume f is irreducible. We know from (12.2.3)
that Gal(f) < Ss3, and that |Gal(f)| is divisible by 3 since it acts transitively on the roots
of f. Hence Gal(f) = As or S3. By (14.2.3) Gal(f) = As if and only if A € F; otherwise
Gal(f) =S3.

(iii) Finally, let f be a monic polynomial of degree 4 in F[t]. If f is reducible and f = f f>
with deg(f;) < 3, then Gal(f) is isomorphic with a subgroup of Gal(f;) x Gal(f>), (see
Exercise (12.2.5)). The structure of Gal(f;) is known from (i) and (ii), so assume that f is
irreducible. Then Gal(f) < S; and 4 divides |Gal(f)|. The subgroups of S, whose orders
are divisible by 4 are Z,, V (the Klein 4-group), Dih(8), A, and S4; thus Gal(f) must be
one of these. In fact all five cases can occur, although we will not prove this here.

Explicit formulas for the roots of cubic and quartic equations over R were found in
the early 16th century by Scipione del Ferro (1465-1526), Gerolamo Cardano (1501-1576),
Niccolo Tartaglia (1499-1526) and Lodovico Ferrari (1522-1565). An interesting account
of their discoveries and of the mathematical life of the times can be found in [17].

Exercises (14.2)

(1) Find the Galois groups of the following quadratic polynomials over Q: (i) t> - 5t + 6,
(i) t2 + 5¢ + 1, (iii) (¢ + 1)2.

(2) Find the Galois group of the following cubic polynomials over Q: (i) £ + 4t? + 2t — 7;
(ii) 3 — t — 1; (iii) £ = 3t + 1; (iv) £3 + 6% + 11t + 5.
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(3) Let f be a cubic polynomial over Q with discriminant D. Show that f has three real
roots if and only if D > 0. Apply this to the polynomial £ + pt + q.

(4) Let f be an irreducible quartic polynomial over Q with exactly two real roots. Show
that Gal(f) = Dih(8) or S,.

(5) (How to solve cubic equations). Let f = t3 + pt + q € R[t]. The following procedure,
due essentially to Scipione del Ferro, will give a root of f.

(@) Ift=u-visarootof f, show that (1> - v3) + (p - 3uv)(u - v) = —q.

(ii) Find a root of the form u — v by solving the equations u3 - v> = —gand uv = 13—’

for u and v.

(6) The procedure of Exercise (14.2.5) yields one root u — v of f = 3 + pt + q. Prove that
the other two roots of f are wu — w?v and w?u — wv where w = e2™/3, (These are known
as Cardano’s formulas.)

(7) Use the methods of the last two exercises to find the roots of the polynomial t3 +3¢+1.

(8) Solve the cubic equation t3 + 3t? + 6t + 3 = 0 by first transforming it to one of the
form t"> + pt' + q = 0.

14.3 Presentations of groups

When groups entered the mathematical arena towards the close of the 18th century, they
were exclusively permutation groups and were studied in connection with the theory of
equations. A hundred years later groups arose from a different source, geometry, and
usually these groups were most naturally described by listing a set of generators and
a set of defining relations which the generators had to satisfy. A very simple example
is where there is just one generator x and a single defining relation x = 1 where n is
a positive integer. Intuitively one would expect these to determine a cyclic group of
order n.

As another example, suppose that a group has two generators x and y subject to
the three relations x> = 1 = y? and xy = yx. Now the Klein 4-group fits this description,
with x = (12)(34) and y = (13)(24). Thus it seems reasonable that a group with
these generators and relations should be a Klein 4-group. Of course this cannot be
substantiated until we have explained exactly what is meant by a group with given
sets of generators and defining relations. Even when the generators are subject to no
defining relations, a precise definition is still lacking: this is the important case of a
free group. Thus our first task is to define free groups.

Free groups. A free group is best defined in terms of a certain mapping property. Let F
be a group, X a non-empty set and ¢ : X — F a function. Then F, or more precisely the
pair (F, o), is said to be free on X if, for each function a from X to a group G there is a
unique homomorphism 8 : F — G such that So = @, i.e., the triangle below commutes:
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X G
a

First a comment on the definition. The function o : X — F is necessarily injective. For
suppose that o(x1) = 0(x;) and x; # x,. Let G be any group with two or more elements
and choose a function a : X — G such that a(x;) # a(x2). We have fo(x1) = Ba(xz)
and hence a(x1) = a(x>), a contradiction.

This indicates that we can replace X by the set Im(a), which has the same cardinal-
ity, and take X to be a subset of F with ¢ the inclusion map. What the mapping property
then asserts is that every mapping from the subset X to a group G can be extended to a
unique homomorphism from F to G. This property of free groups should be compared
with properties of free modules. Free groups and free modules are special cases of free
objects in a category.

At first sight the definition of a free group may seem abstract, but soon concrete
descriptions of free groups will emerge. In the meantime the first order of business
must be to show that free groups actually exist, something that is not obvious from the
definition.

(14.3.1) Let X be any non-empty set. Then there exist a group F and a functiono : X — F
such that (F, o) is free on X and F is generated by Im(0).

Proof. Roughly speaking, the idea of the proof is to construct F by forming “words”
in X which are combined in a formal manner by juxtaposition, while at the same time
allowing for cancellation of word segments like xx~! or x"1x where x € X.

The first step is to choose a set disjoint from X with the same cardinality. Since the
purpose of this move is to accommodate inverses of elements of X, it is appropriate to
denote the set of inverses by X~ = {x~! | x € X}. But keep in mind that x~! is merely a
symbol at this point and does not denote an inverse. By a word in X is meant any finite
sequence w of elements of the set X U X~1, written for convenience in the form

w=xIxd o,
where gq; = +1, xi1 =x; € Xand r > 0. The case r = 0, when the sequence is empty, is
the empty word, which is written 1. Two words are equal if they have the same entries
in each position, i.e., they look exactly alike.
The product of words w = x¥* ... x" and v = yJ" .- y%* is formed in the obvious

way by juxtaposition, i.e.,

WV:x‘lh...X?'ylljl...ygs,
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with the convention that w1l = w = 1w. This is clearly an associative binary operation
on the set S of all words in X. The inverse of the word w is defined to be

wl= X;‘Ir . XIql ,
with the convention that 1! = 1. Thus far S, together with the product operation, is a
semigroup with an identity element, i.e., a monoid. Next a device is introduced that
permits the cancellation of segments of a word with the form xx~1 or x"x. Once this is
done, instead of a monoid, we will have a group.

A relation ~ on the set S is defined in the following way: w ~ v means that it is
possible to pass from w to v by means of a finite sequence of operations of the following
types:

(i) insertion of xx~! or x"1x as consecutive symbols in a word where x € X;
(ii) deletion of any such sequences from a word.

For example, xyy 'z ~ t"ltxz where x,y,z,t € X. It is easy to check that ~ is an
equivalence relation on S. Let F denote the set of all equivalence classes of words
[w], w € S. Our aim is to make F into a group: this will turn out to be a free group on
the set X.

Ifw ~ w'and v ~ v/, then it is readily seen that wv ~ w'v’. It is therefore meaningful
to define the product of the equivalence classes [w] and [v] by the rule

(w]v] = [wv].

It follows from this that [w][1] = [w] = [1][w] for all words w. Also [w][w™!] = [1] =
[w1][w], since ww™! and w~lw ares plainly equivalent to 1. Finally, we verify the
associative law:

([ullvDIw] = [uv][w] = [(uv)w] = [u(vw)] = [u][vw] = [u]([v][w]).

Consequently, F is a group in which [1] is the identity element and [w~!] is the inverse of
[w]. Furthermore, F is generated by the subset X = {[x] | x € X}; for, if w = x¥'x22 ... x]"

with x; € X, q; = =1, then
W] = [x1]7 [x2]% -+ [x,]9" € (X).

It remains to prove that F is a free group on X. To this end define a function
0 : X — F by the rule (x) = [x]; thus Im(0) = X and this subset generates F. Next let
a : X — G be amap from X into some group G. To show that (F, o) is free on X we need
to produce a unique homomorphism f : F — G such that o = a. There is only one
reasonable candidate here: define 8 by the rule

BUX] x5 -] = abc) T a(x)® - a(xn) ¥, (xi € X, gi = *1).

The first thing to observe is that 8 is well-defined: for any other element in the equiva-

lence class [x?'x%* ... x}"] differs from x?'x% ... x" only by segments of the form xx~*
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or x 'x, (x € X), and these will contribute to the image under 8 merely a(x)a(x)™?
or a(x)"la(x), i.e., the identity. It is a simple direct check that f is a homomorphism.
Notice also that Bo(x) = B([x]) = a(x), so that fo = a.

Finally, we have to establish the uniqueness of 8. If 8’ : F — G is another homo-
morphism for which f’o = a, then fo = 0 and thus  and B’ agree on Im(0). But
Im(0) generates the group F, so B = B’. Therefore (F, o) is free on X. O

Reduced words. Now that free groups are known to exist, we would like to find a
convenient form for their elements. Let F be the free group on the set X just constructed.
A word in X is called reduced if it contains no pairs of consecutive symbols xx~! or
x~x with x € X. The empty word is considered to be reduced. Now if w is any word,
we can delete subsequences xx~! and x1x from w until a reduced word is obtained.
Thus each equivalence class [w] contains at least one reduced word. The important
point to establish is that there is a unique reduced word in each equivalence class.

(14.3.2) Each equivalence class of words on X contains a unique reduced word.

Proof. There are likely to be many different ways to cancel segments xx~ ! or x"1x from

a word. For this reason a direct approach to proving uniqueness would be complicated.
An indirect argument will be used which avoids this difficulty.

Let R denote the set of all reduced words in X. The idea behind the proof is to
introduce a permutation representation of the free group F on the set R. Let u € XuX~1:
then a function u’ : R — R is determined by the following rule

G ) = {uxglxgz ox¥ifu xgz |

q> qr s v
X5 Xy ifu=x;

Here x‘flxg2 ---x}" is a reduced word; observe that after applying the function u’ the

word is still reduced. Next u’ is a permutation of R since its inverse is the function
(u™1). Nowlet a : X — Sym(R) be defined by the assignment u — u’. By the mapping
property of the free group F there is a homomorphism 8 : F — Sym(R) such that
Bo = a: hence a(x) = Bo(x) = B([x]) for x € X.

F

X *  Sym(R)
a

Now suppose that v and w are two equivalent reduced words; we will show that
v = w. Certainly [v] = [w], so B([v]) = B(w]). If v = xI'x%...x7", then [v] =

xT1[x%] - [x'] and we have

B(IvD) = B(xT DBUXE D -+~ BUXT]) = BUIxa )T B(LxaD® -+ B D,
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which equals

a(x)a()® - a(x)? = ()T ()% - ()T
Applying the function B([v]) to the empty word 1, which is reduced, we obtain )('171 .
x{" = v since this word is reduced. Similarly ([w]) sends the empty word to w. Therefore
vV=w. O

Normal form. The argument of the proof of (14.3.2) is a subtle one and it is well worth
rereading. But the main point to appreciate is that (14.3.2) provides a unique way of
representing the elements of the constructed free group F on the set X. Each element of F
has the form [w] where w is a uniquely determined reduced word, say w = x'{l xgz cxlr
where g¢; = 1, r > 0. No consecutive terms xx~! or x"1x occur in w. Now [w] =
[x1]9'[x2]92 - - - [x,]7; on combining consecutive terms of this product which involve

the same x;, we conclude that the element [w] can be uniquely written in the form
W] = [x1]9 2] -+ [x]%,

where s > 0, ¢; is a non-zero integer and x; # x;.1. (Strictly speaking the x; may have
been relabelled here).

To simplify the notation let us drop the distinction between x and [x], so that now
X ¢ F. Then every element w of F has the unique form

w= xS Xl
where s > 0, ¢; # 0 and x; # x;,1. This is called the normal form of w. For example, if
X = {x}, each element of F has the unique normal form x¢, where ¢ € Z. Thus F = (x)
is an infinite cyclic group.
The existence of a normal form is characteristic of free groups in the sense of the
next result.

(14.3.3) Let X be a subset of a group G and suppose that each element g of G can be
uniquely written in the form g = xil x‘; . -xﬁs wherex; € X,s >0, ¢; # 0, and X; # Xji1.

Then G is free on X.

Proof. Let F be the free group of equivalence classes of words in the set X constructed
in (14.3.1), and let 0 : X — F be the associated injection; thus o(x) = [x]. Apply the
mapping property with the inclusion map a : X — G, i.e., a(x) = x for all x € X. Hence
there is a homomorphism 8 : F — G such that o = a, so Im(a) ¢ Im(f). Since X =
Im(a) generates G, it follows that Im(8) = G and f is surjective. Finally, the uniqueness
of the normal form guarantees that § is injective. For, if B([x1]% --- [x,]¢) = 1 with
r>0,x; # Xit1, & # 0, then (Ba(x1)) --- (Bo(x;))¥ = 1, and hence xil xf=1,a
contradiction. Therefore f§ is an isomorphism and F = G, so that G is free on X. O
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Thus far we have worked with a particular free group on a set X, the group con-
structed from equivalence classes of words in X. However, all free groups on the same
set are isomorphic, a fact which allows us to deal only with free groups of words. This
follows from the next result.

(14.3.4) Let F; be a free group on X;, i = 1, 2, where |X1| = |X5|. Then F; = F5.

Proof. Let o1 : X1 — F; and 0, : Xo — F, be the respective injections associated
with the free groups F; and F;, and let a : X; — X, be a bijection, which exists since
|X1] = |X3]. By the mapping property there are commutative diagrams

Fy F
01 B1 032 B2

Xy F, X5 Fy
opYid orat

in which B and B, are homomorphisms. Thus 101 = 0,a and B,0;, = o1~ *. Hence
B2B101 = B202a = 01a~'a = 01 and consequently the diagram below commutes,

Fy

01 B2B1

X1 * F 1
01
But the identity map on F; will also make this diagram commute, so ;81 must
equal this identity map by the uniqueness clause of the mapping property. In a similar
fashion it can be shown that 81 8, equals the identity map on F;, so that 81 : F; — F;
is an isomorphism. O

Examples of free groups. At this point free groups may appear to the reader as myste-
rious abstract objects, despite our success in constructing them. It is time to remedy
this by exhibiting some real life examples.

Example (14.3.1) Consider the functions a and 8 on the set C U {oo} which are defined

by the rules
1

a(x) =x+2 and B(x) = 5
+

> =

Here the symbol co is required to satisfy the formal rules L =0, = 00, 2 + 00 = c0.
Thus a(co) = 00, (0) = 0 and S(c0) = % The first thing to notice is that a and f are
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bijections since they have inverses given by a ! (x) = x - 2 and f~1(x) = %_2 This can
be checked by computing the composites aa™1, a~1a, Bg~1, B~1B. )

Define F to be the subgroup (a, ) of the symmetric group on the set C U {oo}. We
are going to prove that F is a free group on {a, }. To accomplish this it is enough to
show that no non-trivial reduced word in a and 8 can equal 1: for then each element
of F has a unique normal form and (14.3.3) can be applied.

Since direct calculations with the functions a and 8 would be tedious, a geometric
approach is adopted. Observe that each non-trivial power of a maps the interior of
the unit circle in the complex plane to its exterior. Also a non-trivial power of f maps
the exterior of the unit circle to its interior with (0, 0) removed: the truth of the last
statement is seen from the equation (1) = 1. It follows from this observation that

X+2°
no mapping of the form a® g™ - .. a® ™ can be trivial unless all the I; and m; are 0.

Example (14.3.2) An even more concrete example of a free group is provided by the

matrices
A= L2 and B-= 1o ;
0 1 2 1

for these generate a subgroup F; of GL,(Z) which is free on {A, B}.
To see why this is true, first consider a matrix

a b
U:[C d]eGLz((C).

Thus ad - bc + 0. There is a corresponding permutation 8(U) of C U {co} defined by

ax+b a+?
6(U) : = X,
) Xch+d c+§

Note that 6(U)(co) = ¢ if ¢ # 0 and oo otherwise. This is called a linear fractional
transformation. It is easy to verify that 6(UV) = 6(U)0(V), so that 6 : GL,(C) —
Sym(C U {co}) is a homomorphism. Thus the linear fractional transformations form a
subgroup Im(6) of Sym(Cu{oo}). Now 8(A) = a and 8(B) = 8. Hence, if some non-trivial
reduced word in A and B were to equal the identity matrix, the corresponding word in a
and B would equal the identity permutation, which is impossible by Example (14.3.1).
Therefore F; is free on {4, B} by (14.3.3).

Next we will use normal form to obtain some structural information about free
groups.

(14.3.5) Let F be a free group on a set X. Then
(i) each non-trivial element of F has infinite order;
(ii) if F is not infinite cyclic, i.e. |X| > 1, then Z(F) = 1.
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Proof. (i) Let1 # f € F and suppose that f = xil xgz ---xﬁs is the normal form. If x; = x,
we can replace f by the conjugate xﬁs fx;eS = x‘ilwsxgz -~X§S: 1, which has the same

order as f. For this reason there is nothing to be lost in assuming that x; # xs. Let m be
a positive integer; then

¢ 14 14 4 e 14
fm = (Xll '”XSS)(Xll ...)(Ss)...()(l1 "‘Xss),

with m factors, which is in normal form since x; # xs. It follows that f™ # 1 and f has
infinite order.

(ii) Assume that 1 # f € Z(F) and let f = x'x%* - - x%* be the normal form of f. Then
s > 1: for otherwise, f = xil and if x; # x € X, then xf # fx. By conjugating f as in (i),

we may assume that x; # x;. Then fx; = xilxgz . ~x§sx1 and xf = x‘i”lxgz ~--x£s are
both in normal form, except that xi”l is trivial if £; = —1; but in any event fx; # x1f
andso f ¢ Z(G). O

Generators and relations. The next result shows why free groups are worth studying:
in fact they occupy a key position in group theory since their quotients account for all
groups. The next result should be compared with (9.1.13) on free modules.

(14.3.6) Let G be a group and X a set of generators for G. If F is a free group on the set
X, there is a surjective homomorphism 6 : F — G and hence G = F/ Ker(6).

Proof. Let (F, o) be free on X. The existence of the homomorphism 8 follows on applying
the mapping property of the free group F to obtain the commutative diagram

F

X 2 G
l
where ( is the inclusion map. Thus x = 1(x) = 6o(x) € Im(6) for all x in X. Hence
G = Im(0) = F/Ker(0). O

We are now ready to define a group given by a set of generators and defining
relations. Let X be a non-empty set and F the free group on X with X ¢ F. Let Rbea
subset of F and define

N =(R"),

the normal closure of R in F: thus N is the subgroup generated by all conjugates in F
of elements of R — see (4.2). Let
G = F/N.

Certainly the group G is generated by the elements xN where x € X; also r(xN) =
r(x)N = N = 15 for all r € R. Hence the relations r = 1 hold in G. Here r(xN) is the
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element of G obtained from r by replacing each x by xN. Then G is called the group
with generators X and defining relations r = 1 where r € R: in symbols

G=(X|r=1,VreR).
Elements of R are called defining relators and the group may also be written
G=(X|R).

The pair (X, R) is called a presentation of G. An element w in the normal subgroup N
is a relator; it is expressible as a product of conjugates of defining relators and their
inverses. Also the relator w is said to be a consequence of the defining relators in R.
Finally, a presentation (X, R) is called finite if X and R are both finite.

Our first concern is to prove that every group can be defined by a presentation,
which is the next result.

(14.3.7) Every group has a presentation.

Proof. Let G be an arbitrary group and choose a set X of generators for it, for exam-
ple X = G will do. Let F be a free group on X. Then by (14.3.6) there is a surjective
homomorphism 6 : F — G and G = F/Ker(6). Next choose a subset R of Ker(6)
whose normal closure in F is Ker(6) — for example we could take R to be Ker(6). Then
G = F/Ker(0) = (X | R), which is a presentation of G. O

In the proof just given there are many possible choices for X and R, so a group has
many presentations. This is one reason why it can be difficult to extract information
about the structure of a group from a given presentation. Another, deeper reason for
this difficulty arises from the insolvability of the word problem. Roughly speaking, this
means that it is impossible to write a computer program which can decide if a word in
the generators of a group given by a finite presentation equals the identity element.
(For a very readable account of the word problem see [14]). As a consequence of this
failure, special features of a group presentation will have to be exploited if we hope to
derive structural information about the group from it.

Despite the difficulties inherent in working with presentations of groups, there is
one very useful tool available.

(14.3.8) (Von Dyck’s? Theorem) Let G and H be groups with presentations (X | R)
and (Y | S) respectively. Assume that there is given a surjective map a : X — Y such
that a(x1)c a(x2)% - - a(xy)t is a relator of H, i.e., a consequence of the words in S,
whenever x‘il xgz e xik is a defining relator of G. Then there is a surjective homomorphism

6 : G — Hsuchthat 0|x = a.

2 Walter von Dyck (1856-1934)
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Proof. Let F be the free group on X; then G = F/N where N is the normal closure of R
in F. By the mapping property of free groups there is a homomorphism 8y : F - H
such that 6y|x = a. By hypothesis 6y(r) = 1 for all r € R and thus 6y(a) = 1 forall a
in N = (RF). Hence 8 induces a homomorphism 8 : G — H such that 8(fN) = 6, (f).
Finally, Y ¢ Im(6y) since a is surjective, so 8y, and hence 6, is surjective. O

We will shortly show how Von Dyck’s Theorem can be used to obtain information
about a group from a presentation, but first it will be used to establish:

(14.3.9) Every finite group has a finite presentation, i.e., a presentation with finitely many
generators and finitely many relators.

Proof. Let G = {g1,82,...,8n}, Where g1 = 1, be a finite group of order n. Then
8igj = 8v(i,j and gi‘1 = gy() where u(i), v(i,j) € {1, 2, ..., n}. Now let G be the group
with generators g1, g2, . . ., 8 and defining relations gigj = §v(,j)» gi’l = Zu(i), Where
i,j=1,2,...,n.Clearly G has a finite presentation. Apply Von Dyck’s Theorem to G
and G where a is the assignment g; — g;, noting that each defining relator of G is
mapped to a relator of G. It follows that there is a surjective homomorphism 6 : G — G
such that 6(g;) = gi.

Now every element g of G is expressible as a product of g;’s and their inverses.
Moreover, repeated use of the defining relations for G shows that g equals some gy and
it follows that |G| < n. But G = G/Ker(8), so |[Ker(8)| = |G|/|G| < 1. Hence Ker(9) = 1
and G = G. O

Next we consider some explicit examples of groups given by a finite presentation.

Example (14.3.3) Let G = (x | x) where n is a positive integer.

The free group F on {x} is generated by x: thus F =~ Z and G = F/F" = Z/nZ. = Z.,,
a cyclic group of order n, as expected.

Example (14.3.4) Let G = (x,y | xy = yx, x> = 1 = y?).

Since xy = yx, the group G is abelian; also every element of G has the form x'y/
where i,j € {0, 1}, because x? = 1 = y2; hence |G| < 4. On the other hand, the Klein
4-group V is generated by the permutations a = (12)(34) and b = (13)(24), and the
relations ab = baand a? = 1 = b? hold in V. Hence Von Dyck’s Theorem can be applied
to yield a surjective homomorphism 8 : G — V such that 6(x) = a and 6(y) = b. Thus
G/Ker(0) = V. Since |G| < 4 = |V], it follows that Ker(8) = 1 and 6 is an isomorphism.
Therefore G is a Klein 4-group.

For a greater challenge consider the following presentation.

Example (14.3.5) Let G = (x,y | x? = y® = (xy)? = 1).

Our first move is to find an upper bound for |G|. Let H = (y); this is a subgroup of
order 1 or 3. Write 8§ = {H, xH}; we will argue that 8 is the set of all left cosets of H in G.
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To establish this it is sufficient to show that x8 = § = y8, since it will then follow that
$ contains every left coset of H. Certainly x$ = 8 since x? = 1. Next xyxy = (xy)? = 1
and hence yx = xy?, since y~! = y2. It follows that yxH = xy*H = xH and thus y$ = 8.
Since |H| < 3 and |G : H| = |8] < 2, we deduce that |G| < 6.

Next observe that the symmetric group Ss is generated by the permutations a =
(12)(3) and b = (123), and that a®> = b> = (ab)? = 1since ab = (1)(23). By Von Dyck’s
theorem there is a surjective homomorphism 6 : G — Ss. Since |G| < 6, it follows that
0 is an isomorphism and G = Ss.

The method of the last two examples can be useful when a finite group is given
by a presentation. The procedure is to choose a subgroup for whose order one has an
upper bound, and then by coset enumeration to find an upper bound for the index.
This gives an upper bound for the order of the group. The challenge is then to identify
the group by comparing it with a known group for which the defining relations hold.

Exercises (14.3)

(1) Let F be the free group on a set X. Prove that an element f of F belongs to the derived
subgroup F’ if and only if the sum of the exponents of x in f is O for every x in X.

(2) If F is a free group, prove that F/F' is a direct product of infinite cyclic groups.

1 a

(3) Let G be the subgroup of GL,(C) generated by [O 1

] and [1 0] where a is real
a 1

and a > 2. Prove that G is a free group.

(4) (The projective property of free groups). Let there be given groups and homomor-
phisms a : F —» Hand 8 : G — H where F is a free group and f is surjective. Show
that there is a homomorphism y : F — G such that fy = a, i.e., the triangle below

commutes,
F

G H
B

(5) Let G be a group with a normal subgroup N such that G/N is a free group. Prove
that there is free subgroup H such that G = HNand HNn N = 1.

(6) Let H be a subgroup with finite index in a free group F. If 1 # K < F, prove that
HnK + 1.

[In the next three exercises identify the groups with the given presentations].
(M) (xy x> =1=y% xy =yx).
@) (y X =(y)? =y’ =1).
©) (x,y X2 =(xy)? =y> = 1).
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(10) Let G be a group which has a presentation with n generators and r defining relators.
If r < n, prove that G is infinite. [Hint: consider the abelian group G/G' and use Exercise
(14.3.2)].

(11) Let F; and F> be free groups on sets X; and X, respectively. If F; =~ F,, prove that
|X1| = |X3]. Thus a free group is determined up to isomorphism by the cardinality of
the set on which it is free. [Hint: consider F;/F 12 as a vector space over GF(2)].

14.4 Introduction to error correcting codes

In this, the age of information technology, enormous amounts of data are transmitted
electronically over vast distances every second of every day. The data are generally in the
form of bit strings, i.e., sequences of 0’s and 1’s. Inevitably errors occur from time to time
during the process of transmission, so that the message received may differ from the one
transmitted. An error correcting code allows the detection and correction of erroneous
messages. The essential idea here is that the possible transmitted codewords should
not be too close to one another, i.e., they should not agree in too many entries. This
makes it more likely that an error can be detected and the original message recovered.
Over the last fifty years an entire mathematical theory of error-correcting codes has
evolved.

Fundamental concepts. Let Q be a finite set with g elements; this is called the alphabet.
A word w of length n over Q is an n-tuple of elements of Q, written for convenience in
the form

w=(Wiwy---Wp), Ww;eQ.

The set of all words of length n over Q is called n-dimensional Hamming? space and is
denoted by
Hn(q).

This is the set of possible messages of length n: notice that |H,(q)| = q". If Q is a finite
field, H,(Q) is an n-dimensional vector space over Q. In practice Q is usually the field
with two elements, when Hamming n-space is the set of all bit strings of length n.

It is important to have a measure of how far apart two words are: the natural
measure to use is the number of entries in which the words differ. If v and w belong
to Hy(q), the distance between v and w is defined to be

d(v, w) = [{i | vi # wi}l,

i.e., the number of positions where v and w have different entries. The weight of a
word v is its distance from the zero word,

wt(v) = d(v, 0),

3 Richard Wesley Hamming (1915-1998)
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so wt(v) is just the number of non-zero entries of v. Clearly, d(u, v) is the number of
errors that have been made if the word u is transmitted and it is received wrongly as v.
The basic properties of the distance function are given in the following result.

(14.4.1) Let u, v, w € H,(q). Then:
(i) d(v,w)=0andd(v,w)=0ifonlyifv=w;
(i) d(v,w) =d(w, v);
(iii) d(u, w) < d(u, v) + d(v, w).
These properties assert that the function d : H,(q) x H,(q) — N is a metric on the
Hamming space Hy(q).

Proof of (14.4.1) Statements (i) and (ii) are obviously true. To prove (iii) note that u can
be changed to v by d(u, v) entry changes and v can then be changed to w by d(v, w)
changes. Thus u can be changed to w by d(u, v) + d(v, w) entry changes. Therefore
d(u,w) <d(u,v) +d(v,w). O

Codes. A code of length n over an alphabet Q with g elements, or briefly a g-ary code
of length n, is a subset C of H,(Q) with at least two elements. The elements of C, which
are transmitted in an actual message, are called codewords.

A code C is said to be e-error detecting if c1, ¢; € C and d(c1, c2) < e always imply
that ¢; = c¢,. Thus the distance between distinct codewords is always greater than e.
Equivalently, a codeword cannot be transmitted and received as a different codeword
if e or fewer errors have occurred. In this sense the code C is able to detect up to e errors.

Next a g-ary code of length n is called e-error correcting if, for every w in H,(q),
there is at most one codeword ¢ such that d(w, ¢) < e. This means that if a codeword ¢
is received as a different word w and at most e errors have occurred, it is possible to
recover the original codeword by examining all words v in H,(q) such that d(w, v) < e:
exactly one of these is a codeword and it must have been the transmitted codeword c.
Clearly a code which is e-error correcting is e-error detecting.

An important parameter of a code is the shortest distance between distinct code-
words; this is called the minimum distance of the code. The following result is basic.

(14.4.2) Let C be a code with minimum distance d. Then:
(i) Cis e-error detecting if and only if d > e + 1;
(ii) Cis e-error correcting if and only if d > 2e + 1.

Proof. (i) Suppose that d > e + 1. If ¢y, ¢, are distinct codewords, then d(cq, c;) > d =
e + 1. Hence C is e-error detecting. For the converse, assume that d < e. By definition
of d there exist ¢; # ¢, in C such that d(c1,c;) = d < e, so that C is not e-error
detecting.

(ii) Assume that C is not e-error correcting, so there is a word w and codewords c; # ¢»
such that d(cy, w) < eand d(w, ¢,) < e. Then

d<d(ci,cy) <d(cr,w) +d(w, cy) <2e
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by (14.4.1). Hence d < 2e + 1.

Conversely, assume that d < 2e + 1 and let ¢; and ¢, be codewords at distance d
apart. Put f = [3d], i.e., the greatest integer < 1d; thus f < 1d < e. We claim that
d - f < e. This is true when d is even since d - f = d - 3d = 1d < e.If d is odd,
f= % andd-f = % < e + 1; therefore d - f < e. Next we can pass from c; to ¢, by
changing exactly d entries. Let w be the word obtained from c; after the first f entry
changes. Then d(c1, w) = f < e, while d(c,, w) = d — f < e. Therefore C is not e-error
correcting. O

Corollary (14.4.3) If a code has minimum distance d, then its maximum error detection
capacity is d — 1 and its maximum error correction capacity is [%].

Example (14.4.1) Consider the binary code C of length 5 with the three codewords
c1 =(10010), ¢ =(01100), c3=(10101).

Clearly the minimum distance of C is 3. Hence C is 2-error detecting and 1-error
correcting. For example, suppose that c; is transmitted and is received as w = (11000),
so that two entry errors have occurred. The error can be detected since w ¢ C. But C
is not 2-error detecting since if v = (11100), then d(c,, v) = 1 and d(cs3, v) = 2. Thus
if v is received and up to two errors occurred, we cannot tell whether c; or c3 was the
transmitted codeword.

Bounds for the size of a code. It is evident from (14.4.2) that for a code to have good
error correcting capability it must have large minimum distance. But the price to be
paid for this is that fewer codewords are available. An interesting question is: what is
the maximum size of a g-ary code with length n and minimum distance d. We begin
with a lower bound, which guarantees the existence of a code of a certain size.

(14.4.4) (The Varshamov-Gilbert lower bound) Let n, g, d be positive integers with
d < n. Then there is a g-ary code of length n and minimum distance d in which the
number of codewords is at least

YEL (M@ -1

Before embarking on the proof we introduce the important concept of the r-ball
with center w,
B,(w).

This is the set of all words in H,(g) at distance r or less from w. Thus a code C is e-error
correcting if and only if the e-balls B.(c) with c in C are pairwise disjoint.
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Proof of (14.4.4). The first step is to establish a formula for the size of an r-ball,

r n X
B,(w)| = ) - 1)L
|B; (w)| ,-_Zo<l)(q )
To see this observe that in order to construct a word in B,(w), we must alter at most r
entries of w. Choose the i entries to be altered in (}) ways and then replace each one by
an element of Q in (g — 1)! ways. This gives a count of ('i‘)(q - 1)! words at distance i
from w; the formula now follows at once.

To start the construction choose any g-ary code Cy of length n with minimum
distance d; for example, Cy might consist of the zero word and a single word of weight d.
If the union of the B4_1(c) with ¢ € Cq is not H,(q), there is a word w whose distance
from every word in Cy is at least d. Let C; = Co U{w}; this is a larger code than Cy which
has the same minimum distance d. Repeat the procedure for C; and then as often as
possible. Eventually a code C with minimum distance d will be obtained which cannot
be enlarged; when this occurs, we have Hy(q) = ¢ Ba-1(c). Therefore

q" = 1Hn(q)l = | | J Ba-1(c)l < ICI - |Bg-1(c)|

ceC
for any fixed ¢ € C. Hence |C| > q"/|B4-1(c)| and the bound has been established. [

Next we give an upper bound for the size of an e-error correcting code.

(14.4.5) (The Hamming upper bound) Let C be a g-ary code of length n which is e-error
correcting. Then
qn
ICl € ————.
Yo (g-1)
Proof. Since C is e-error correcting, the e-balls B.(c) for ¢ € C are pairwise disjoint.
Hence

I U Be(c)l = |Cl - |Be(c)l < |Hn(q)| = q",

ceC

for any fixed c € C. Therefore |C| < q"/|B(c)|, as required. O

A g-ary code C of length n for which the Hamming upper bound is attained is
called a perfect code. In this case

qn
o (D@-1”
and clearly this happens precisely when Hy(q) is the union of the disjoint balls Be(c),
c € C, i.e., every word lies at distance < e from exactly one codeword. Perfect codes are

desirable since they have the largest number of codewords for the given error correcting
capacity; however they are also quite rare.

ICl =



14.4 Introduction to error correcting codes = 317

Example (14.4.2) (The binary repetition code) A very simple example of a perfect code
is the binary code C of length 2e + 1 with just two codewords,

c=(0,0,...,0) and c¢;=(1,1,...,1).

Clearly C has minimum distance d = 2e + 1 and its maximum error correction capacity
is e by (14.4.3). A word w belongs Be(co) if more of its entries equal O than 1; otherwise
w € Be(c1). Thus Be(co) N Be(c1) = @ and Be(co) U Be(€1) = Haer1(2).

Linear codes. Let Q denote GF(g), the field of g elements, where g is now a prime
power. The Hamming space H,(q) is the n-dimensional vector space Q,, of all n-row
vectors over Q. A g-ary code C of length n is called linear if it is a subspace of H,(Q).
Linear codes form an important class of codes; they have the advantage that they can
be specified by a basis instead of listing all the codewords. Linear codes can also be
described by matrices, as will be seen in the sequel.

A computational advantage of linear codes is indicated by the next result.

(14.4.6) The minimum distance of a linear code equals the minimal weight of a non-zero
codeword.

Proof. Let C bealinear code.If c1, c; € C, then d(cq, c3) = wt(cy —c2)and ¢y —c; € C.
Hence the minimum distance equals the minimum weight. O

A point to keep in mind here is that to find the minimum distance of a code C
one must compute (/') distances, whereas to find the minimum weight of C only the
distances from the zero word need be found, so that at most |C| — 1 computations are
necessary.

As with codes in general, it is desirable to have linear codes with large minimum
distance and as many codewords as possible. There is a version of the Varshamov-
Gilbert lower bound for linear codes.

(14.4.7) Let d and n be positive integers with d < n and let q be a prime power. Then
there is a linear g-ary code of length n and minimum distance d for which the number of
codewords is at least
qu
Yo (g-1)

Proof. We refer to the proof of (14.4.4). To start the construction choose a linear g-ary
code Cy of length n and minimum distance d; for example, the subspace generated
by a single word of weight d will suffice. If UceCo Bga-1(c) + Hy(q), choose a word w
in H,(q) which belongs to no B4_1(c) with c in Co. Thus w ¢ Co. Define C; to be the
subspace generated by Cy and w. We claim that C; still has minimum distance d. To



318 —— 14 Further topics

prove this it is sufficient to show that wt(c’) > d for any ¢’ in C; — Cy; this is because
of (14.4.6). Write ¢’ = co + aw where ¢g € Coand O # a € Q. Then

wt(c') = wt(co + aw) = wt(-a ‘co - w) = d(-a tco, w) = d

by choice of w, since —a~'cg € Co. Note also that dim(Co) < dim(Cy).

Repeat the argument above for C1, and then as often as possible. After at most
n steps we arrive at a subspace C with minimum distance d such that | J..c Ba-1(¢) =
Hy(q). It now follows that |C| - |[B4-1(c)| = q" for any c in C, which gives the bound. [

Example (14.4.3) Let g = 2, d = 3 and n = 31. According to (14.4.7) there is a linear
binary code C of length 31 with minimum distance 3 such that

31

IC| = = 4,320,892, 652.

1+31+(%)
In addition C is a subspace of H31(2), so its order is a power of 2. Hence |C| > 223 =
8, 388, 608. In fact there is a larger code of this type with 226 codewords, a so-called
Hamming code — see Example (14.4.7) below.

The generator matrix and check matrix. Let C be a linear g-ary code of length n and
let k be the dimension of C as a subspace of H,(q). Thus k < nand |C| = gX. Choose an

ordered basis {c1, C2, ..., cx} for C and write
C1
2
G=| .
Ck

This k x n matrix over Q = GF(q) is called a generator matrix for C. If c is any codeword,
Cc =ajcy +---+ aicy for suitable a; € Q. Thus ¢ = aG where a = (ay, ..., ax) € Hx(q).
Hence each codeword is uniquely expressible in the form aG with a € Hy(q). It follows
that the code C is the row space of the matrix G, i.e., the subspace of H,(q) generated by
all the rows of G. Notice that the rank of G is k since its rows are linearly independent.

Recall from (8.1) that the null space N of G consists of all n-column vectors x” such
that GxT = 0: here of course x € Hy(g). Choose an ordered basis for N and use the
transposes of its elements to form the rows of a matrix H. This is called a check matrix
for C. Since G has rank k, we can apply (8.3.8) to obtain dim(N) = n - k, so that H is an
(n - k) x n matrix over Q. Since the columns of H” belong to N, the null space of G, we
obtain the important equation

GHT = 0.

Keep in mind that the matrices G and H depend on choices of bases for C and N. At
this point the following result about matrices is relevant.
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(14.4.8) Let G and H be k x n and (n - k) x n matrices respectively over Q = GF(q), each
having linearly independent rows. Then the following statements are equivalent:

(i) GHT =0;

(ii) row space(G) = {x € Hn(q) | xHT = 0};

(iii) row space(H) = {x € Hu(q) | xGT = 0}.

Proof. Let S = {x € Hy(q) | xHT = 0}; then x € Sifand onlyif 0 = (xHT)T =
HxT,i.e., xT belongs to null space(H). This implies that S is a subspace and dim(S) =
n - (n-k) = k. Now assume that GHT = 0. If x € row space(G), then x = yG for
some k-row vector y. Hence xH” = yGHT = 0 and x € S. Thus row space(G) < S. But
dim(row space(G)) = k = dim(S), so that S = row space(G). Thus (i) implies (ii). It is
clear that (ii) implies (i), and thus (i) and (ii) are equivalent.

Next observe that GHT = 0 if and only if HGT = 0, by applying the transpose.
Thus the roles of G and H are interchangeable, which means that (i) and (iii) are
equivalent. O

Let us now return to the discussion of a linear g—ary code C of length n with
generator matrix G and check matrix H. From (14.4.8) we conclude that

C = row space(G) = {w € Hn(q) | wHT = 0}.

So the check matrix H provides a convenient way to determine if a given word w is a
codeword. At this point we have proved half of the next result.

(14.4.9)

(@) IfCisalinear q-ary code with generator matrix G and check matrix H, then GHT = 0
and C = {w € Hn(q) | wHT = 0}.

(ii) If G and H are k x n and (n - k) x n matrices respectively over GF(q) with linearly
independent rows and if GHT = 0, then C = {w € H,(q) | wHT = 0} is a linear q-ary
code of length n and dimension k with generator matrix G and check matrix H.

Proof. To prove (i) note that C = row space(G) and we showed that GHT = 0, so
the result follows at once from (14.4.8). Now for (ii): clearly C is a subspace of H,(q)
and hence is linear g-ary code of length n. By (14.4.8) C is the row space of G. Hence
dim(C) = k and G is a generator matrix for C. Finally, the null space of G consists of
all w in Hy,(q) such that GwT = 0, i.e., wGT = 0; this is the row space of H by (14.4.8).
Hence G and H are corresponding generator and check matrices for C. O

On the basis of (14.4.9) we show how to construct a linear g-ary code of length n
and dimension n — £ with check matrix equal to a given ¢ x n matrix H over GF(q) of
rank ¢. Define C = {x € Hy(q) | xHT = 0}; this is a linear g-ary code. Pass from H to
its reduced row echelon form H' = [I, | A] where A is an € x (n — £) matrix: note that
interchanges of columns, i.e., of word entries, may be necessary to achieve this and
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H' = EHF for some non-singular E and F. Writing G’ for [-AT | I,,_¢], we have
GHT = [-AT [ L | | =
= [_ | I’lff] AT =0.
Hence 0 = G'H'T = (G'FT)HTET, so (G'FT)HT = 0 because ET is non-singular. Put
G = G'FT; thus GHT = 0 and by (14.4.9) G is a generator matrix and H a check matrix
for C. Also dim(C) = rank(G) = n — £. Note that if no column interchanges are needed

togofrom Hto H',then F =T and G = G'.

Example (14.4.4) Consider the matrix

H =

R R
O = =
[ = R
™)
o O -
S = O
= O O

over GF(2). Here ¢ = 2, n = 7 and ¢ = 3. The rank of H is 3, so it determines a linear
binary code C of dimension 7 — 3 = 4. Put H in reduced row echelon form,

1 0 O 01 1 1
H=(0 10| 110 1|=[5 | 4].

0O 0 1 1 1 1 0

No column interchanges were necessary here, so
0111 0 0O
1 1 01 0 O
G=G=[-AT | L]=

1 01 0 0 1 O
1 1 0 0 0 0 1

is a generator matrix for C. The rows of G form a basis for the linear code C.
A useful feature of the check matrix is that from it one can read off the minimum
distance of the code.

(14.4.10) Let H be a check matrix for a linear code C. Then the minimum distance of C
equals the largest integer m such that every set of m — 1 columns of H is linearly inde-
pendent.

Proof. Let d be the minimum distance of C and note that d is the minimum weight of
a non-zero codeword, say d = wt(c). Then cHT = 0, which implies that there exist d
linearly dependent columns of H. Hence m — 1 < d and m < d. Also by maximality
of m there exist m linearly dependent columns of H, so wHT = 0 where w is a non-zero
word with wt(w) < m. But w € C; thus d < m and hence d = m. O

Example (14.4.5) Consider the code C in Example (14.4.4). Every pair of columns of the
check matrix H is linearly independent, i.e., the columns are all different. On the other
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hand, columns 1, 4 and 5 are linearly dependent since their sum is zero. Therefore
m = 3 for this code and the minimum distance is 3 by (14.4.10). Consequently C is a
1-error correcting code.

Using the check matrix to correct errors. Let C be a linear g-ary code with length n
and minimum distance d. Let H be a check matrix for C. Note that by (14.4.3) C is e-error
correcting where e = [%]. Suppose that a codeword c is transmitted and received as
a word w and that at most e errors in the entries have been made. Here is a procedure
that will correct the errors and recover the original codeword c.

Write w = u + ¢ where u is the error; thus wt(u) < e. Now |Hp(q) : C| = g where
k = dim(C). Choose a transversal to C in Hy(q), say {v1, V2, ..., Vgn-t}, by requiring
that v; be a word of smallest length in its coset v; + C. (There may may be more than one
choice for v;). For any cg € C we have (v; + co)HT = v;H", which depends only on i.
Now suppose that w belongs to the coset v; + C. Then wHT = v;HT, which is called the
syndrome of w. Writing w = v; + ¢1 with ¢; € C, wehaveu = w - ¢ € v; + C, so that
wt(vi) < wt(u) < e by choice of v;. Hence w = u + ¢ = v; + ¢1 belongs to B(c) N Be(C1).
But this implies that ¢ = ¢ since C is e-error correcting. Therefore ¢ = w — v; and the
transmitted codeword has been identified.

In summary here is the procedure to identify the transmitted codeword c. It is
assumed that the transversal {vy, v2, ..., Vgn«} has been chosen as described above,
with each v; of smallest length in its coset.

n-k

(i) Suppose that w is the word received with at most e errors; first compute the syn-
drome wH'.

(i) By comparing wHT with the syndromes v;H”, find the unique i such that wHT =
ViHT.

(iii) Then the transmitted codeword was ¢ = w — v;.

Example (14.4.6) The matrix

ey

1l
O
= O O
S -
_ = e
=)

determines a linear binary code C with length 5 and dimension 5 — 3 = 2; thus H is a
check matrix for C. Clearly C has minimum distance 3, so it is 1-error correcting. Also
|C| = 22 = 4 and |H5(2) : C| = 2°/4 = 8. By reducing H to reduced row echelon form
as in Example (14.4.4), we find a generator matrix for C to be

G:01110.
1 01 0 1

Thus C is generated by (01110) and (10101), so in fact C consists of (00000), (01110),
(10101) and (11011).
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Next enumerate the eight cosets of C in Hs(2) with C; = C and choose a word of
minimum weight from each coset; these are shown in bold face.

C: ={(00000), (01110), (10101), (11011)}
C, ={(10000), (11110), (00101), (01011)}
C; ={(01000), (00110), (11101), (10011)}
C, =1{(00100), (01010), (10001), (11111)}
Cs ={(11000), (10110), (01101), (00011)}
C¢ ={(01100), (00010), (11001), (10111)}
C; ={(10100), (11010), (00001), (01111)}
Cs ={(11100), (10010), (01001), (00111)}

The coset syndromes are computed as
(000), (101), (001), (110), (100), (111), (011), (010).

Now suppose that the word w = (11111) is received with at most one error in its
entries: note that w ¢ C, so w is not a codeword. The syndrome of w is wHT = (110),
which is the syndrome of elements in the coset C4, with coset representative v, =
(00100). Hence the transmitted codeword was ¢ = w — v4 = (11011).

Hamming codes. Let C be a linear g-ary code of length n and dimension k. Assume
that the minimum distance of C is at least 3, so that C is 1-error correcting. A check
matrix H for C has size £ x n where £ = n — k, and by (14.4.10) no column of H can be a
multiple of another column.

Now consider the problem of constructing such a linear code which is as large
as possible for given g and ¢ > 1. Then H should have as many columns as possible,
subject to no column being a multiple of another one. Now there are g — 1 non-zero
£-column vectors over GF(q), but each of these is a multiple of g — 1 other columns. So
the maximum possible number of columns for His n = %. Note that the columns
of the identity £ x £ matrix can be included among those of H, so that H has rank ¢. It
follows that the matrix H determines a linear g-ary code C of length

e _
n:q 1.
q-1

The minimum distance of H is at least 3 by construction, and in fact it is exactly 3 since
we can include among the columns of H three linearly dependent ones, (10...0)7,
(110...0)7,(010...0)T. Thus C is I-error correcting: its dimension is k = n - £ and its
order is g". Such a code is known as a Hamming code. It is not surprising that Hamming
codes have optimal properties.

(14.4.11) Hamming codes are perfect.
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Proof. Let C be a g-ary Hamming code of length n constructed from a check matrix
with € rows. Then

€

ICl=q"*=4q"/q" =q" /(1 +n(q-1))
q--1

sincen = S Thus C attains the Hamming upper bound of (14.4.5), so it is a perfect
code. O

Example (14.4.7) Let g = 2 and ¢ = 4. A Hamming code C of length n = 2247—‘1 =15can

1
be constructed from the 4 x 15 check matrix

0 0 O 0]

S O O m
SO O P
O R O
_ O O R
_ O =L O
= = O O
=== O
R R O R
_ O = R
O R R
R R R

1 0 O 1
0 1 0 1
0O 0 1 0
Here |C| = 2"¢ = 211 = 2048. Similarly, by taking g = 2 and £ = 5 we can construct a
perfect linear binary code of length 31 and dimension 26.

Perfect codes. We conclude with an analysis of perfect codes which will establish the
unique position of the Hamming codes.

(14.4.12) Let C be a perfect q-ary code where q = p? and p is a prime. Assume that C is
1-error correcting. Then:

(i) C has length % forsomes > 1;

(ii) if C is linear, it is a Hamming code.

Proof. (i) Let C have length n. Then |C| = #;71) since C is perfect and 1-error correct-
ing. Hence 1 + n(q - 1) divides q", so it must be a power of p, say 1 + n(q — 1) = p". By

the Division Algorithm we can write r = sa + t where s, t € Z and O < t < a. Then
l+n(@-1)=p" =@)°p'=¢’p' = (@°-1p' +p".

Therefore g — 1 divides p! - 1. However pf —1 < p? -1 = g - 1, which shows that p! = 1

and 1+ n(qg - 1) = p% = q°. It follows that n = ‘f;_—’ll.

(ii) Now assume that C is linear. Since |C| = #;71) and we have shown in (i) that
1+n(q-1) = g5, it follows that |C| = ¢"/q° = q" 5. Hence dim(C) = n - s and a
check matrix H for C has size s x n. The number of columns of His n = %, which is
the maximum number possible, and no column is a multiple of another one since C
is 1-error correcting and thus has minimum distance > 3. Therefore C is a Hamming

code. O

Almost nothing is known about perfect g-ary codes when g is not a prime power.
Also there are very few perfect linear g-ary codes which are e-error correcting with
e > 1. Apart from binary repetition codes of odd length — see Exercise (14.4.3) below —
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there are just two examples, a binary code of length 23 and a ternary code of length 11.
These remarkable examples, known as the Golay codes, are of great importance in
algebra: see [18] for details.

Exercises (14.4)

(1) Give an example of a code for which the minimum distance is different from the
minimum weight of a non-zero codeword.

(2) Find the number of g-ary words with weights in the range i to i + k.

(3) Let C be the set of all words (aa - - - a) of length n where a € GF(q).

(i) Show that C is a linear g-ary code of dimension 1.

(ii) Find the minimum distance and error correcting capacity of C.

(iii) Write down a generator matrix and a check matrix for C.

(iv) Show that when g = 2, the code C is perfect if and only if n is odd.
(4) Let C be a g-ary code of length n and minimum distance d. Establish the Singleton
upper bound |C| < ¢"~%*1, [Hint: two codewords with the same first n — d + 1 entries
are equal].

(5) If C is a linear g-ary code of length n and dimension k, prove that the minimum
distance of Cisat mostn — k + 1.

(6) Let C be a linear g-ary code of length n and dimension k. Suppose that G is a
generator matrix for C and that G’ = [I | A] is the reduced row echelon form of G.
Prove that there is a check matrix for C of the form [-AT | I,,_] up to a permutation of
columns.

(7) A linear binary code C has basis {(101110), (011010), (001101)}. Find a check
matrix for C and use it to determine the error-correcting capacity of C.

(8) A check matrix for a linear binary code C is

O
_ R e
= O O
O O =
O R

(i) Find a basis for C.

(if) Find the minimum distance and error correcting capacity of C.

(iii) If a word (01111) is received and at most one entry is erroneous, use the

syndrome method to find the transmitted codeword.

(9) (An alternative decoding procedure). Let C be a linear g-ary code of length n with error
correcting capacity e. Let H be a check matrix for C. Suppose that a word w is received
with at most e errors. Show that the following procedure will find the transmitted
codeword.

(i) Enumerate all words u in H,(q) of weight < e; these are the possible errors.

(ii) Find the syndrome uHT of each word u from (i).
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(iii) Compute the syndrome wHT and compare it with each uHT: prove that there
is a unique word u in Hy(q) of with weight at most e such that uH” = wHT.
(iv) Show that the transmitted codeword was w — u.
(10) Prove that the number of possible words u in Exercise (14.4.9) is a polynomial in n.

(11) Use the method of Exercise (14.4.9) to find the transmitted codeword in Exer-
cise (14.4.8).

(12) (Dual codes). Let C be a linear g-ary code of length n and dimension k. Define the
dot product of two words v, win H,(q) by v-w = Z?:l viw;. Then define C*+ = {w ¢
Hy(q)|w-c=0,Vce C}.
(i) Show that C* is a linear g-ary code of length n: this is called the dual code
of C.
(ii) Let G and H be a generator matrix and a check matrix for C. Prove that G is a
check matrix and H a generator matrix for C*.
(iii) Prove thatdim(C*) = n—kand |C*| = g"*.
(13) Let C be a binary Hamming code of length 7. Find a check matrix for the dual
code C*+ and show that its minimum distance is 4.
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A,B,...: sets
a,b,...: elements of sets
ac A: aisanelement of the set A

|A|: the cardinal of a set
A c B, AcB: Aisasubset, proper subset of B
0: the empty set

N, Z,Q, R, C: the sets of natural numbers, inte-
gers, rational numbers, real numbers, com-

plex numbers
U, M union and intersection
Ay x---x Ap: aset product
A - B, A: complementary sets
P(A): the power set
S R: the composite of relations or functions
[x]g: the E-equivalence class of x
a: A — B: afunction from A to B
Im(a): the image of the function a
ida, id: theidentity function on the set A
a~': theinverse of a bijective function a
Fun(A4, B): the set of all functions from A to B
Fun(A): the set of all functions on A

gcd, lem: greatest common divisor, least com-
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¢: Euler’s function
u: the Mobius function
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sign(m): the sign of a permutation
(iyiz ---iy): acyclic permutation
Stg(x): the stabilizerof xin G
G- a: the G-orbit of a
Fix(G): the set of points fixed by a group G
(X): the subgroup or subspace generated by X
|x|: the order of a group element x
XY, X+ Y: product, sum of subsets of a group

H<G, H<G: H is a subgroup, proper sub-

group of the group G
Drpea Gp, G X -+ X Gp: direct
groups
Sym(X): the symmetric group on a set X

products of

Sn, Ap: symmetric and alternating groups of de-

green
Dih(2n): the dihedral group of order 2n

GLn(R), GLn(q): generallinear groups

SLn(R), SLn(q): special linear groups

|G : H|: theindexof Hin G

N < G: Nisanormal subgroup of the group G

G/N: the quotient group of Nin G

=: anisomorphism

Ker(a): the kernel of a homomorphism

Z(G): the center of the group G

[x,y]: the commutator xyx~1y~1

G': the derived subgroup of a group G

G®D: the ith term of the derived chain of the
group G

Zi(G): theith term of the upper central chain of
the group G

¢(G): the Frattini subgroup of a group G

Ng(H), Cg(H): normalizer and centralizer of H
inG

Aut(G), Inn(G): the automorphism and inner au-
tomorphism groups of a group G

Out(G): the outer automorphism group of a
group G

(X' | R): apresentation of a group or module

U(R), R*: the group of units of aring R

ROPP: the opposite ring of R

RX, (x): ideals generated by a set of elements

R[t1,...,ty]: thering of polynomialsinty,...,
tn, overaring R
F{ti,...,ty}: The field of rational functions in

t1,...,tpoverafield F
M n(R): the set of m x n matrices over aring R

diag(dy, d>, ..., dy): the diagonal matrix with
dy, ds, ..., dyonthe principal diagonal

det(A4), tr(A): the determinant and trace of a ma-
trix A

dim(V): the dimension of a vector space V

F(X), (X): subspace generated by a subset of an
F-vector space

[vlg: the coordinate vector of v with respect to a
basis B

Cla, b]: thevector space of continuous functions
on the interval [a, b]

L(V, W), L(V): vector spaces of linear mappings

GF(q): the field with g elements

(E : F): the degree of E over F

Gal(E/F), Gal(f): Galois groups

deg(f): the degree of a polynomial f
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f': the derivative of a polynomial f

Irrp(x): theirreducible polynomial of x over F

@p: the cyclotomic polynomial of order n

rM and Ng: left and right R-modules.

rMs: an (R, S)-bimodule.

R-X, R-a: submodules generated by a set of
elements

Drea My, M1 @ --- & My:
ules

rank(F): the rank of a free module.

My: the p-torsion component of a module

Anng(X), Anng(x): annihilatorsinaring R

direct sums of mod-

Hompg(M, N): a group of homomorphisms

a., a*: induced mappings

a® b: atensor

Mg N,M® N: tensor products of modules

a®f,A®B: tensor products of homomor-
phisms, matrices

H,(q): Hamming n-space over a set with g ele-
ments

By (v): the n-ball with center v

d(a, b): the distance between points a and b

wt(v): the weight of the word v
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collineation 212

column echelon form 147
column space 146

common divisor 20
commutative

—diagram 277

—law 2

-ring 100

commutator 63
—subgroup 63

companion matrix 171
complement

-of a subgroup 222
—relative 2

complete

—group 73, 88

—set of irreducibles 126
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- of functions 10

- of relations 8
composition

—factor 208

—series 208

congruence 24

—arithmetic 25

—class 24

—linear 26

conjugacy class 83

—in the symmetric group 86
conjugate elementsina
—field 258

—group 62

conjugate subfield 264
conjugation homomorphism 73
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content of a polynomial 128
coordinate column vector 145

Correspondence Theorem for
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—modules 177

—rings 109
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countable set 15

crossover diagram 36

cubic equation 300, 302
cycle 33
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—group 48

—module 176

- permutation 33
cyclotomic number field 262
cyclotomic polynomial 259
— Galois group of 262
—irreducibility of 261

De Morgan, Augustus 3

De Morgan’s laws 3

Dedekind, Richard 59

defining relator

—of agroup 310

—of amodule 193

degree of

—an extension 228

—a polynomial 101

del Ferro, Scipione 301
derangement 38, 214, 242
derivation 223

derivative 133

derived

—chain 215

—length 214

—subgroup 63

descending chain condition 214
diagonalizable

—linear operator 166

- matrix 166

dihedral group 43

dimension of a vector space 146
direct product of

—groups 65

- latin squares 245

direct sum of

—modules 178

—vector spaces 150

Dirichlet, Johann Peter Gustav Lejeune 29
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- permutations 33
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distance between words 313
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Division Algorithm 20
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—of a function 9

dual

—code 325

—double 156

—space 155

duplication of the cube 233

edge of a graph 96
eigenspace 162
eigenvalue 160
eigenvector 160
Eisenstein, Ferdinand Gotthold Max 136
Eisenstein’s Criterion 136
element of a set 1
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—abelian p-group 151
—divisor 191
—symmetric function 273
—vector 141
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—set 2

—word 303

equation of the fifth degree 269
equipollent sets 13
equivalence

—class 5

—relation 5

equivalent matrices 193
Euclid of Alexandria 21
Euclidean

—algorithm 21

—domain 121

—space 140

Euclid’s Lemma 22
—forrings 124

Euler, Leonhard 27
Euler’s function 27
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even permutation 35
exact sequence of
—groups 74
—-modules 183
—vector spaces 160
exactness

—-of Hom 183

—of tensor product 286
extension field 228
—algebraic 230
—finite 228

- Galois 256
—-normal 250
—radical 270
—separable 252
—-simple 228
external direct

- product 66

-sum 178

factor set 223

faithful

—group action 80
—representation 80

Feit, Walter 217
Feit-Thompson Theorem 217
Fermat, Pierre de 24
Fermat’s Little Theorem 26
Fermat prime 24

Ferrari, Lodovico 301

Ferro, Scipione del 301
field 111

—algebraic number 232
—algebraically closed 296
—extension 228

- finite 151, 237

- Galois 239

- of fractions 114

- of rational functions 116

- perfect 252

- prime 227

- splitting 134
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finite dimensional vector space 146
finite p-group 88
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—group 48

—module 176
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—-ring 106

—vector space 141
finiteness conditions on
—ideals 117

—subgroups 52, 214
—-submodules 179

fixed field 263

fixed point set 84

formal power series 104
fractions, field of 114
Frattini, Giovanni 218
Frattini argument 219
Frattini subgroup 218, 299
- of a finite p-group 219
free abelian group 180
free groups 302
—examples of 307,308
—mapping property of 302
— projective property of 312
free module 180

free monoid 42
Frobenius, Ferdinand Georg 84
Frobenius-Burnside Theorem 84
function 9

- bijective 10
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—injective 10
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—surjective 10

- symmetric 273
Fundamental Theorem of
—Algebra 266

— Arithmetic 22

- Galois Theory 263

Galois, Evariste 255
Galois

- correspondence 263
—extension 256

- field 239

—group 255

—of an extension 255
—of a polynomial 256

Galois Theory, Fundamental Theorem of 263

Gauss, Carl Friedrich 24
Gaussian elimination 144
Gaussian integer 122

Gauss’s Lemma 129
general linear group 41
generator matrix of a code 318
generators and defining relations
—of a group 309

-of a module 193

generic polynomial 274
Godel-Bernays Theory 293
graph 96

—counting 98

greatest common divisor 21
—inrings 124

greatest lower bound 8
group 40

—abelian 40

—alternating 37

—circle 64

—complete 73, 88

—cyclic 48

—dihedral 43

- elementary abelian p- 151
—finite p- 88

—free 302

—general linear 41
—nilpotent 217

—of prime order 55

- permutation 79
—quotient 63

—-simple 62

—solvable 214

—special linear 62
—symmetric 31, 41

—table 46

group action 79

group extension 213

group of unitsin aring 103

Hall, Philip 224
Hall subgroup 224, 225

Hall’s theorems on finite solvable groups 224

Hamilton, William Rowan 111
Hamming, Richard Wesley 313
Hamming

—-code 322

—space 313

—upper bound 316

Hasse, Helmut 6

Hasse diagram 6



Hilbert, David 118

Hilbert’s Basis Theorem 118
Holder, Otto 208
homomorphism 68
—canonical 69
—conjugation 73

—module 176

—ring 106

—trivial 69

homomorphism group 182

ideal 105

—generated by a subset 106
- left 105

—maximal 113, 295
—prime 113

—principal 105, 123
—right 105

identity

—element 40

—function 10

—subgroup 48

image of

—an element 9

—a function 9
Inclusion-Exclusion Principle 38
index of a subgroup 54
induced mapping 182, 279
infinite set 15

injective function 10
inner automorphism 72
inseparability 251
integer 17

integral domain 110
intermediate field 263
internal direct

—product 65

-sum 178

intersection 2

invariant factor 192
inverse

—element 40

—function 11

irreducible

—element 121

—ideal 298

- polynomial 121
irreducibility, test for 136
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isometry 42
isomorphic series 206
isomorphism of
—algebras 159
—graphs 97

—groups 45

—modules 177

-rings 107

—vector spaces 152
Isomorphism Theorems for
—groups 70

—modules 177

—-rings 108

—vector spaces 153, 154

Jordan, Camille 208
Jordan-Hélder Theorem 208
Jordan normal form 202

kernel of a

—homomorphism 69

- linear mapping 153

Kirkman, Thomas Penyngton 249
Klein, Felix 44

Klein 4-group 44, 46
Kronecker, Leopold 286
Kronecker product 286

labelling problem 94
Lagrange, Joseph Louis 54
Lagrange’s Theorem 54
latin squares 46, 241
—mutually orthogonal 243
—number of 242

lattice 8

- of subgroups 49

Law of Trichotomy 14, 297
Laws of Exponents 47
least common multiple 24
least upper bound 7
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—action 79

—coset 53

—ideal 105

—module 173

-regular representation 80
—transversal 53
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linear

—code 317

—combination 141
—equations, system of 143

- fractional transformation 308
—functional 155

—mapping 152

—and matrices 156

—operator 152

—order 7

—recurrence 169
—transformation 152

linearly

—dependent 143,180
—independent 143, 180
—ordered set 7

localization 290

lower central sequence 221
lower zero triangular matrix 201

mapping 9

mapping property of

—free groups 302

—tensor products 277
mathematical induction 18
Mathieu, Emile Léonard 213
Mathieu group 213
maximal

- condition 52,117
—element 293

—ideal 113, 295

—normal subgroup 65

- p-subgroup 299
—subgroup 219

maximal condition on
—ideals 117

—subgroups 52, 214
—submodules 179

middle linear mapping 277
minimum distance of a code 314
minimum polynomial 198
Modular Law 59

module 173

-cyclic 176,177

—finitely generated 176
—free 180

- left 173

- presentation of 192

—quotient 176

-right 173

—torsion 185

—torsion-free 185

—unitary 173

modules over a PID 185, 190

—application to linear operators 197

monic polynomial 125

monoid 40

monster simple group 213
Moore, Eliakim Hastings 239
multiple root 132
multiplication table 46
Moébius, August Ferdinand 241
Mobius function 241, 260

next state function 12
nilpotent

—class 217

—groups 217

— characterization of 218
—linear operator 198
—matrix 201
Noether, Emmy 117
noetherian

—module 179

—-ring 117
non-generator 219
norm 82

normal

—closure 62

—core 81
—extension 250
—subgroup 62
normal form

—Jordan 202
—rational 199
—Smith 195

normal form in a free group 306
normalizer 83

null space 141

0dd Order Theorem 217
odd permutation 35
one-one 10

one-one correspondence 10
onto 10

opposite ring 173
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—group element 49

ordered basis 145

orthogonal latin squares 243
outer automorphism group 73
output function 12

partial order 5

partially ordered set 6
partition 6, 87
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—code 316

—field 252

permutation 31
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—disjoint 33

—even 35

—group 79

—matrix 78

—-odd 35
—representation 79
Poincaré, Henri 60
Polya, George 94
Polya’s Theorem 94
polynomial 101
—cyclotomic 259
—generic 274
—irreducible 121
—monic 125
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power series, ring of 104
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presentation of a
—group 310

—module 192

Primary Decomposition Theorem 186
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- field 227

—ideal 113

—number 22

primes, infinity of 23
primitive

—polynomial 128
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Primitive Element, Theorem of 254
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principal ideal 105, 123
principal ideal domain 123
—modules over 185

Principle of Mathematical Induction 17,18

product of subgroups 58
projective

—space 212

—special linear group 211
proper subset 1

quartic equation 301
quasigroup 242,249
quaternion 111
quotient

—group 63
—module 176

—-ring 108

—space 150

radical extension 270
radicals, solution by 269
rank of a

—free module 182

—matrix 146

rational canonical form 199
rational functions, field of 116
reduced word 305
refinement of a series 206
Refinement Theorem 207
reflexive law 5
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—group action 83
—representation 83
relation

—in a presentation 193, 310
- between sets 4

relatively prime 21,124
relator 193, 310

remainder 20

Remainder Theorem 132
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—action 79
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—ideal 105

—module 173

—regular representation 80
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row echelon form 144
RSA-cryptosystem 29
Ruffini, Paulo 269
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scalar 139

Schoolgirl Problem, Kirkman’s 249
Schreier, Otto 207

Schreier’s Refinement Theorem 207
Schur, Issai 222

Schur’s theorem 222
semidirect product 76
semigroup 40

semiregular representation 83
separable
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—extension 252

— polynomial 251
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—composition 208
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sign of a permutation 35
similar matrices 165
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—sporadic 213
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Singleton upper bound 324
Smith, Henry John Stephen 195

Smith normal form 195
—of a matrix 203
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solvable group 214

special linear group 62, 211
split exact sequence 185
splitting field 134
—uniqueness of 239
splitting theorem 222
squaring the circle 233
stabilizer 83

standard basis 145
Steiner, Jakob 246

Steiner triple system 246
subfield 135, 227
—generated by a subset 227
—prime 227

subgroup 47

—cyclic 48

- Frattini 218

—generated by a subset 48
—Hall 224

—identity 48

—maximal 219

—-normal 61

—Sylow 89

—trivial 48

subnormal subgroup 206
subring 104

—generated by a subset 105
submodule 175
—generated by a subset 175
—torsion 186

subset 1

subspace 140

—finitely generated 141
—generated by a subset 141
—zero 141

sum of subspaces 149
surjective function 10

Sylow, Peter Ludwig Mejdell 89

Sylow subgroup 89
Sylow’s Theorem 89
symmetric
—function 273
—group 31, 41
—relation 5

Symmetric Function Theorem 274

symmetry group 42
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syndrome 321 upper bound 293
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Tarry, Gaston 246

Tartaglia, Niccolo 301 value of a polynomial 132
tensor 276 Varshamov-Gilbert bound 315
tensor product 276 vector 139

—as a module 280 —column 140

—associativity of 282 —elementary 141
—distributivity of 282 —-row 140

—mapping property of 277 vector space 139

- of homomorphisms 279 —basis of 145

—of matrices 285 —dimension of 146, 294

- of quotients 283 - of linear mappings 154
—right exactness of 286 vertex of a graph 96

Thirty Six Officers, Problem of 246 von Dyck, Walter 310

torsion von Dyck’s Theorem 310
—element 185 von Lindemann, Carl Ferdinand 236

—submodule 186
torsion-free module 185
trace of a matrix 164
transcendent element 229
transcendental number 231

Wedderburn, Joseph Henry Maclagan 112
Wedderburn’s Theorem 112
weight of a word 313

well order 7
transfinite induction 298 Well-Ordering, Axiom of 298
transition matrix 147 Well-Ordering Law 17
transitive Wilson, John 51
—action 83 Wilson’s Theorem 51
- permutation representation 83 word,
—relation 5 —-empty 303
transposition 33 —inacode 314
transversal —in afree group 303
- left 53 -reduced 305
—right 53 word problem 310

triangle rule 140
triangularizable matrix 168
Trichotomy, Law of 297
trisection of an angle 233

Zassenhaus, Hans 207
Zassenhaus’s Lemma 207

trivial zero

—homomorphism 69 - divisor 110

—subgroup 48 —element 100
—-submodule 175
—subring 104

union 2 —subspace 141

unique factorization domain 126 —triangular matrix 201

unitinaring 103 Zorn, Max August 293

unitriangular matrix 218, 221 Zorn’s Lemma 293
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