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Preface

Mathematical logic is a particular branch of mathematics that applies mathematical
tools to investigate the nature of mathematics. Consequently, in this book our atten-
tion will be focused on the language of mathematics. This will be done by discussing
formal languages, first-order logic, model-theoretic semantics, deductive systems, and
their mathematical properties and relations. Such a focus radiates a bright and direct
light on mathematics itself.

Aristotle was the first formal logician who identified several key principles of cor-
rect reasoning, namely, the syllogisms. On the other hand, modern mathematical logic
is based on the late nineteenth- and early twentieth-century innovative work of Boole,
Frege, Peano, Russell, Whitehead, Hilbert, Skolem, Godel, Tarski, Cantor, and their fol-
lowers. The material presented in this text is the result of these pioneers in mathematical
logic.

This textbook delivers an upper-division undergraduate course in mathematical
logic. This subject typically attracts students with various backgrounds, some of whom
may be quite familiar with logical notation and mathematical proof while others may
not be as familiar. The book strives to address the needs of such a course. My primary
goal was to write a book that would be accessible to all readers having a fundamental
background in mathematics. Thus, I have made an effort to write clear and complete
proofs throughout the text. In addition, these proofs favor detail over brevity. This ap-
proach should be to the benefit of all students, readers, and instructors.

Topics covered

The book presents the fundamental topics in mathematical logic that will lead to the
statements and coherent proofs of Godel’s completeness and incompleteness theorems.
The basics of logic and elementary set theory are first discussed in Chapter 1. Since stu-
dents, typically, are acquainted with these topics, one should not necessarily begin the
book by starting with this chapter. However, Section 1.1.5 and Theorem 1.1.27 should def-
initely be discussed. In particular, Theorem 1.1.27 is a recursion theorem that justifies
many of the key definitions and proofs that are presented in the text. Few books in math-
ematical logic explicitly state and prove this often applied result. Such books usually jus-
tify their definitions and proofs with the expression “by recursion;” however, we in such
cases will cite and apply Theorem 1.1.27. Understanding the statement of this theorem is
more important than reading and understanding its proof.

Chapter 2 introduces the syntax and semantics of propositional logic. The chapter
also carefully discusses an induction principle that is illustrated by correctly proving
fundamental results about the language of propositional logic. This is followed by estab-
lishing the completeness of the logical connectives, the compactness theorem, and the
deduction theorem. We also state and prove the associated soundness and completeness
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theorems. Most students who are familiar with propositional logic have not yet seen a
mathematical development of this logic. Therefore, these topics offer an important pre-
requisite for the development of first-order logic.

Chapter 3 discusses the syntax and semantics of first-order languages. First-order
logic is quite a bit more subtle than propositional logic, although they do share some
common characteristics. The chapter also introduces structures, which can be viewed as
vehicles for interpreting a given first-order language. Tarski’s definition of satisfaction
gives a precise meaning that yields a method for interpreting a first-order language in
a given structure. This is then followed by the notion of a deduction (formal proof) in a
first-order language.

The main goal of Chapter 4 is to present and prove the soundness and completeness
theorems of first-order logic. For each of these proofs, I have respectively isolated the
technical lemmas (Sections 4.1.1 and 4.2.1) that support the proofs of these important
theorems. The compactness theorem is then presented with a proof. The chapter ends
with several applications of the soundness, completeness, and compactness theorems.

In Godel’s proof of the incompleteness theorem, he encodes formulas into natural
numbers using (primitive) recursive functions. In preparation for the proof of Godel’s
theorem, Chapter 5 covers (primitive) recursive functions and relations. Since Godel’s
encoding techniques created a link between logic and computing, we begin the chapter
with an introduction to abstract computing machines and partial recursive functions.
Today, computability theory in mathematical logic is closely related to the theory of com-
putation in computer science.

In Chapter 6 the focus is on the language of elementary number theory £ and the
standard model NV for number theory. The chapter begins with the question: Is there a
decidable set of £-sentences, that hold in A, from which one can deduce all the sentences
that are true in A/? This is followed by an introduction to the Q-axioms. These axioms
allow one to deduce some of the basic statements that are true in the standard model.
Then representable relations and functions are discussed. Eventually it is established
that a function is representable if and only if the function is recursive. Then a technique
is presented that allows one to perform a Godel encoding of all of the formulas in the
language £. This is followed by a proof of the fixed-point lemma and two results of Gédel,
namely, the first and second incompleteness theorems. These two theorems are among
the most important results in mathematical logic.

How to use the book

It is strongly recommended that the reader be familiar with the basics of sets, functions,
relations, logic, and mathematical induction. These topics are typically introduced in a
“techniques of proof” course (for example, see [1]). As the emphasis will be on theorems
and their proofs, the reader should be comfortable reading and writing mathematical
proofs.



How to use the book = VII

If time is short or an instructor would like to end a one-semester course by cover-
ing Godel’s incompleteness theorems, certain topics can be bypassed. In particular, the
following sections can be omitted without loss of continuity:

— 3.2.5 Classes of structures
— 3.2.6 Homomorphisms

— 4.3.1 Nonstandard models
—  4.3.4 Prenex normal form
— 5.1 The informal concept
— 521 Turing machines

— 5.2.2 Register machines

Furthermore, an instructor could focus on the statements of the technical lemmas in Sec-
tions4.1.1and 4.2.1 rather than on the proofs of these lemmas. These proofs could then be
given as assigned reading. These technical lemmas support the respective proofs of the
soundness and completeness theorems in Chapter 4. Similarly, in Sections 5.3 and 5.4 one
could focus attention on the results rather than on the proofs. Of course, the material in
Chapter 6 is more interesting than the proofs presented in these two sections. Perhaps,
after seeing the theorems presented in Chapter 6, one would be more interested in the
meticulous proofs presented in Sections 5.3 and 5.4.

Exercises are given at the end of each section in a chapter. An exercise marked with
an asterisk = is one that is cited, or referenced, elsewhere in the book. Suggestions are
also provided for those exercises that a newcomer to upper-division mathematics may
find more challenging.
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1 Basic set theory and basic logic

1.1 Basic set theory

Fundamental definitions of set theory

A set is a collection of objects which are called its elements. As usual, we write “t € A” to
say that t is a member of A, and we write “t ¢ A” to say that t is not a member of A. We
write A = Bto mean that the sets A and B are equal, that is, they have the same elements.
For sets A and B we write A € B to mean to mean that set A is a subset of set B, that is,
every element of A is also an element of B.

Remark. Recall the following:

1. A ¢ Bmeans that for all x, if x € A, then x € B.

2. A =Bmeansthatforall x,x € Aifand only if x € B.

3. One special set is the empty set @, which has no members at all. Note that @ < A for
any set A.

4. For any object x, the set {x} is called a singleton because it has only one element,
namely, x.

We now identify some important sets that often appear in mathematics:
N = {x : x is a natural number} = {0,1,2,3,...},
Z = {x : xis aninteger} = {...,-3,-2,-1,0,1,2,3,...},

Q = {x : x is arational number}; for example, -2, % €Q,

2
)§>

W D

R = {x : x is a real number}; for example, 7,7 € R.

Given a property P(x) we can form the set of just those elements in a set A that make
P(x) true, that is, we can form the set {x € A : P(x)}. For example, let N be the set of
natural numbers. Suppose we want to collect just those elements in IN that are odd. We
can easily describe this set by {n € IN : n is odd}, that is, “the set of all n € IN such that n
isodd.” Thus, {n € N: nisodd} = {1,3,5,7,...}.

Definition 1.1.1. Given two sets A and B we define the following:

1. AnB={x:x e Aandx € B} is the intersection of A and B,

2. AUB-={x:x¢€Aorx € B}is the union of A and B,

3. A\B={x:xeAandx ¢ B} is the set difference of A and B (also stated in English as
A “minus” B),
A and B are disjoint if they have no elements in common, thatis, AN B = @,

5. to add one extra object ¢ to a set A, we will write A; t to denote the set A U {t}.

Consider a set A whose members are themselves sets. The union of A, denoted by
|JA, is the set of objects that belong to some member of 4, that is,

UA = {x : x belongs to some member of A}.

https://doi.org/10.1515/9783110782073-001
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2 —— 1 Basic set theory and basic logic

When A is nonempty, the intersection of A, denoted by (A4, is the set of objects that
belong to every member of 4, that is,

ﬂA = {x : x belongs to every member of A}.
For example, if A = {{0,1,5}, {1, 6}, {1, 5}}, then

(JA=10,1,56} and [)A={1}

In cases where we have a set A; for each i € I, the set {4; : i € I} is called an indexed
family of sets. The union [ J{4; : i € I} is usually denoted by |J;c; 4; or |J; 4;. The inter-
section ({4; : i € I} is usually denoted by [);; 4; or (); 4;. We will often be dealing with
unions of the form | J,. 4, and intersections of the form (o 4y

More generally, a set having the form {x; : i € I} is called an indexed set and each
i € I is called an index. Every element in {x; : i € I} has the form x; for some i € I. Such
sets appear frequently in mathematics and will also appear in this text.

Definition 1.1.2. Let A be a set. The power set of A, denoted by P(A), is the set whose
elements are all of the subsets of A, that is, P(A) = {X : X € A}.

Thus, X € P(A) if and only if X ¢ A. If A is a finite set with n elements, then one can
show that the set P(A4) has 2" elements. The set A = {1,2, 3} has three elements, so P(A)
has eight elements, namely,

PA) = {o,{1},{2},{3},{1,2},{1, 3}, {2, 3}, {1, 2,3}}.

1.1.1 Relations
Definition 1.1.3. An ordered pair has the form (a, b), where a is referred to as the first
component and b is identified as the second component.

Example 1.1.4. The pair (2,3) is an ordered pair, and so is (3,2). Note that these are
different ordered pairs, that is, (2,3) + (3,2).

Definition 1.1.5. Given sets A and B, the Cartesian product A x B is the set
AxB={(a,b)y:aecAandb e B}.

In other words, A x B is the set of all ordered pairs with first component in A and second
component in B.

Definition 1.1.6. Ann-sequenceis an ordered list of the form (a;, ay, ..., a,), wheren > 1
is a natural number. The term q, is called the first component, a, is the second compo-
nent, ..., and a, is the n-th component. We say that {(a;, a,,...,a,) is a proper initial
segment of (a;,ay,...,a,) whenl <k <n.
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Given an n-sequence s = {(a,a,, ..., a,) and an m-sequence t = (b;, by, ...,b,,), the
concatenation of s with ¢ is the (n+m)-sequence given by

SAt = (al,az,. ..,an,bl,bz,...,bm>.

Example 1.1.7. The sequence (3,-1,2,2) is a 4-sequence, and so is (2, -1, 3,2). Note that
these are different sequences, that is, (3,-1,2,2) # (2,-1,3,2).

We will just say that (a,, a,, ..., a,) is a sequence, when n is understood.

Definition 1.1.8. Let n > 1 and let A be a set. Then the set A" is defined to be
A" ={{a, ay,...,a,) a4y €A,ay €A,...,a, € Al

In other words, A" is the set of all n-sequences whose components are all in A.

For the record, an n-sequence (a;, a,, . .., a,) is rigorously defined to be a function
f:{12,....n} - {ag,ay,...,a,}

such that f(1) = a;, f(2) = ay,....f(n) = a,. Thus, (a,b) = (c¢,d) ifand onlyifa = ¢
and b = d. Moreover, {(a;,ay,...,a,) = {(by,by,...,b,) ifand only if n = mand q; =
bl,...,an :bm.

Definition 1.1.9. A subset R of A" is said to be an n-place relation on A. We will write
R(ay, ay,...,a,) to indicate that (a, a,, ..., a,) € R.

A 1-place relation on a set A is simply a subset of A.

Definition 1.1.10. A 2-place relation R on a set A is often just called a relation on A. The
domain of R, dom(R), is the set {x € A : (x,y) € R for some y}. The range of R, ran(R), is
theset {y € A: (x,y) € R for some x}. The union of dom(R) and ran(R) is called the field
of R, fld(R).

A relation R on A is a subset of A x A, that is, R € A x A. We shall customarily write
XRy or R(x,y) to denote (x,y) € R.

The equality relation is reflexive, symmetric, and transitive. Many relations also
have some of these properties. Relations that have all of these properties often appear
in mathematics.

Definition 1.1.11. For a relation ~ on A, we define the following:

~ is reflexive if and only if x ~ x for all x € A,
~ is symmetric if and only if whenever x ~ y, then also y ~ x,
~ is transitive if and only if whenever both x ~ yandy ~ z, then x ~ z.

Finally, we say that a relation ~ on A is an equivalence relation if and only if ~ is
reflexive, symmetric, and transitive.
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1.1.2 Equivalence classes and partitions
A partition is a way of breaking up a set into nonempty disjoint parts such that each
element of the set is in one of the parts.

Definition 1.1.12. Let A be a set. Let P be a collection of nonempty subsets of A. We say
that P is a partition of A if the following hold:

1. For every element a € AthereisasetS € Psuchthata € S.

2. ForallS, T eP,if S+ T,thenSNT = @.

Example 1.1.13. The set P = {S;, S,, S5} forms a partition of the set Z where

S;=1{..,-6,-3,0,3,6,...},
Sy =1{..,-5-2147...}
Sy=1..,-4,-1,2,5,8,...}.

Thatis, P = {S;, Sy, S3} breaks Z up into three disjoint nonempty sets and every integer
is in one of these sets.

Definition 1.1.14. Let ~be an equivalence relation ona set A andleta € A be an element
of A. The equivalence class of a, denoted by [a] _, is defined by

[al.={beA:b~a}.

We write [a] = [a]. when the relation ~ is clearly understood. So if a € A, then
aclalasa~a.

Theorem 1.1.15. Let ~ be an equivalence relation on A. Then for all a,b € A,
a~b ifandonlyif [a]= [b].

Proof. Let ~ be an equivalence relation on A. Let a,b € A. We shall prove that
a~b ifandonlyif [a] = [b].

(=). Assume that a ~ b. We prove that [a] = [b]. First we prove that [a] ¢ [b]. Let
x € [a]. We show that x € [b].Sincex € [a] and [a] = {y € A : y ~ a}, it follows that x ~ a.
By assumption, we also have a ~ b. Hence, x ~ a and a ~ b. Since ~ is transitive, we
conclude that x ~ b. Now, because [b] = {y € A : y ~ b}, it follows that x € [b]. Therefore,
[a] < [b]. The proof that [b] < [a] is very similar. So [a] = [b].

(<). Assume that [a] = [b]. We prove that a ~ b. Since a € [a] and [a] = [b], it follows
that a € [b]. But [b] = {y € A : y ~ b}. Therefore, a ~ b. O



1.1 Basic settheory =—— 5

Corollary 1.1.16. Let ~ be an equivalence relation on a set A. Then for alla € Aandb € A,
a € [b] ifand only if [a] = [D].

Theorem 1.1.17 (Fundamental theorem on equivalence relations). Whenever ~ is an equiv-
alence relation on a set A, the collection P = {[a] : a € A} is a partition of A. We denote
this partitionby P = A/~.

Proof. Let ~ be an equivalence relation on A. We prove that the set P = {[a] : a € A}isa
partition of A, that is, we prove that:

(i) for every element x € A we have x € [x],

(i) forallx,y € A,if [x] n [y] # @, then [x] = [y].

Proof of (i). Letx € A. Clearly, [x] € Pand x € [x].

Proof of (ii). Let x,y € A. Thus, [x] € P and [y] € P. We must prove that if [x] # [y],
then [x] N [y] = @. So assume [x] # [y]. Assume, for a contradiction, that [x] N [y] + @.
Since [x] N [y] # @, there exists a z € A such that z € [x] and z € [y]. However, since
xX]={beA:b~xtand[y] = {b € A: b ~ y}, it thus follows thatz ~ x and z ~ y.
Because ~ is symmetric, we conclude that x ~ z and z ~ y. As ~ is transitive, we further
conclude that x ~ y. But Theorem 1.1.15 now implies that [x] = [y], which contradicts
our assumption that [x] # [y]. Therefore, [x] N [y] = @. O

1.1.3 Functions

One of the most important concepts in mathematics is the function concept. A function
is a way of associating each element of a set A with exactly one element in another set B.
We will give a precise set-theoretic definition of a function using relations.

Definition 1.1.18. A relation R is single-valued if for each x € dom(R) there is exactly
one y such that (x,y) € R.

Thus, if R is a single-valued relation, then whenever (x,y) € R and (x,z) € R, we
can conclude thaty = z.

Definition 1.1.19. A function f is any single-valued relation; in other words, for each
x € dom(f) there is only one y such that (x,y) € f.

Let A and B be sets. A function f from A to B is a subset of A x B such that for each
x € Athere is exactly one y € B so that (x,y) € f. For example, let A = {a, b, c,d, e} and
B=1{5,6,7,8,9}. Then

f=1{(a,8),(b,7),{c,9),(d,6), (e, 5)}

is a function from A to B because for each x € A, there is exactly one y € B such that
(x,y) € f. We now express this notion in terms of a formal definition.



6 —— 1 Basicset theory and basic logic

Definition 1.1.20. Let A and B be sets and let f be a relation from A to B. Then f is said
to be a function from A to B if the following two conditions hold:

(1) dom(f) = A4, that is, for each x € A, thereisay € Bsuch that (x,y) € f,

(2) f issingle-valued, thatis, if (x,y) € f and (x,z) € f, theny = z.

The set A is the domain of f and the set B is called the codomain of f.

We write f: A — B to indicate that f is a function from the set A to the set B. Thus,
for each x € A, there is exactly one y € B such that (x,y) € f. This unique y is called “the
value of f at x” and is denoted by f(x). Therefore, (x,y) € f if and only if f(x) = y. We
will say that x € A is an input to the function f and f(x) is the resulting output. One can
also say that the function f maps x to f(x), denoted by x — f(x).

Given a function f:A — B, the set {f(x) : x € A} is called the range of f and is
denoted by ran(f). Clearly, ran(f) is a subset of B. The following lemma offers a useful
tool for showing that two functions are equal.

Lemma 1.1.21. Let f and g be functions such that dom(f) = dom(g). Then f = g if and
only if f(x) = g(x) for all x in their common domain.

Definition 1.1.22. For a natural number n > 2 and a function f: X" — ¥ from the set of
sequences X" to the set Y, we shall write f({X}, Xy, ..., X)) = f(X1, Xp,...,Xp,) for every
element of (X}, Xy,...,X,) € X". We will say that f is an n-place function or that f has
arity n.

1.1.4 Induction and recursion

Let N = {0,1,2,3,...} be the set of natural numbers. Often one can use proof by mathe-
matical induction to establish statements of the form “for all n € IN, P(n).”

Principle of mathematical induction
LetS ¢ N.If

1. 0eSand

2. forallne N,ifneS,thenn+1¢€S,

then S = IN.

Proof by mathematical induction

Let P(n) be a statement concerning a natural number variable n. If
1. P(0)istrue and

2. foralln € N, if P(n), then P(n + 1),

then P(n) is true for all natural numbers n.
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Principle of strong induction

Let P(n) be a statement about a natural number variable n. If

1. P(0)istrue and

2. the statements P(0), P(1),...,P(n — 1) imply P(n), for alln € N,

then P(n) is true for all natural numbers n.

Induction is often applied in mathematical proofs. One can also define a function by
induction (recursion). A recursively defined function is one that is defined in terms of
“previously evaluated values of the function.” A function h on N is defined recursively
ifits value at 0 is first specified and then all of the remaining values are defined by using
a value that has previously been evaluated. A proof of the following theorem is given in
[3, Theorem 4.2.1].

Theorem 1.1.23 (Recursion on N). Leta € A and let g:A — A be a function, where A is a
set. Then there exists a unique function h:IN — A such that:

1. h(0)=a,

2. h(n+1) = g(h(n)), foralln € N.

1.1.5 Defining sets by recursion

In this section, we shall develop and state a generalization of the above Theorem 1.1.23.

First we must talk about defining sets by recursion. A recursive definition of a set C has

the following form:

(a) Basis: Specify the “initial” elements of C.

(b) Induction: Give one or more operations for constructing “new” elements of C from
“old” elements of C.

(c) Closure: The set C is the smallest set that contains the initial elements and is also
closed under the operations (see Theorem 1.1.25).

Suppose that U is a set and we are given a function f: U" — U. We say thataset S € U is
closed under f if and only if whenever x;, Xy, ..., X, € Swe have f(x;,X,,...,X,) € S. For
any A ¢ U, let us define

fIA] = {f (X1, Xg, ., Xp) : Xqs Xy .o, X € AL

Now let F be a set of functions £ which have the form ¢: U" — U, where nis the arity of £.
The functions in F can have different arity. For any A ¢ U let us define F[A] = [ J{¢[A] :
¢ € F}. Given B ¢ U, in the next theorem, we show how to construct the smallest set C
such that B ¢ C ¢ U and C is closed under every function in F.

Theorem 1.1.24. Let U be a set and let F be a set of functions ¢ of the form ¢:U" — U,
where n is the arity of €. Now let B ¢ U. Define, by recursion on NN, the following sets:
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(1) CO = B,
(@) Cpy1=C,UF[C,]foralln e N.

Let C = Jpen Cp- Then B € € € U and C is closed under all the functions in F.
Proof. See Exercise 5. O

The set C, defined in Theorem 1.1.24, is referred to as the set generated from B by the
functions in F. One feature of defining the set C by the above recursion is that it yields
an induction principle that will be frequently applied in the coming pages.

Theorem 1.1.25 (Induction principle). Let U be a set and let F be a set of functions ¢ which
have the form ¢: U™ — U, where n is the arity of €. Suppose that C is the set generated from
B by the functions in F. IfI < C satisfies

(@ BcIland

(b) Iis closed under all of the functions in F,

thenI = C.

Proof. One can prove by induction on n that C,, < I using (1) and (2) of Theorem 1.1.24.
Thus, C ¢ I, and since I ¢ C, it follows that I = C. O

Suppose that U is a set and that f is a function of the form f:U" — U.Let Cc U
and suppose that C is closed under f. Then the function f:C" — C is defined by
JoO, Xg, .. X)) = f(X1, Xy, ..., Xp) for all xq, Xy, ..., X, € C.

Definition 1.1.26. Suppose that U is a set and F is a set of functions ¢ of the form
2: U™ — U, where n is the arity of £. We shall say that C is freely generated from B by the
functions in F if the following hold:

1. theset Cis generated from B by the functions in 7,

2. fcis one-to-one for every f € F,

3. therange of f- and B are disjoint, for all f € F,

4. therange of f, and the range of g, are disjoint for all distinct f, g € F.

The following theorem shows that if a set C is freely generated from B, then a func-
tion h defined on the initial elements B can be extended to a function h defined on all of
the elements in C. This theorem will justify many results to be covered in the text. The
proof requires some special set-theoretic tools and can be summarized as follows: The
intersection of all the approximations to h is in fact h.

Theorem 1.1.27 (Recursion theorem). Let U be a set and let F be a set of functions € of the
form ¢:U" — U, where n is the arity of ¢. Let B ¢ U and let C be freely generated from B
by the functions in F. Let V be a set. Assume that:

(a) we are given a function h:B — V, and

(b) foreach ¢ € F, there is an associated function F,: V' — V of the same arity as ¢.
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Then there is a unique function h: C — V such that:
(i) fl(x) = h(x) for allx € B,
(i) for each ¢ € F, we have

h(e(xy, Xy, ... s X)) = Fp(h(xy), h(Xy), ..., h(Xy))
forallx,,x,,...,x, € C, where n is the arity of ¢.

Proof. Let us call arelation R ¢ C x V suitable if the following two conditions hold:

(1) (b,h(b)) € R, for allb € B,

(2) forall ¢ € F of arity n, if X, X5, ..., X, € dom(R), then for each 1 < i < n, we have
(X;,y;) € Rfor somey; € V and

X1, X5+ o X)) FeVs Y5 - -5 Vn)) €R.

Our goal is to construct a suitable relation that is also a function.

Every suitable relation is a subset of C x V. Let S = {R : R is suitable}. Because C x V'
is a suitable relation, S is nonempty. Let h = [ S. Clearly, h < C x V, so h is a relation.
We now prove that h is suitable and that it is a function.

Claim 1. The relation h is suitable.

Proof. We need to show that h satisfies items (1) and (2). Let b € B. Every relation in S is
suitable. So (b, h(b)) is an element in every relation in S. Thus, (b, h(b)) € (S, that is,
(b, h(b)) € h for every b € B. To prove (2), let £ € F be of arity n and let x;,X,,..., X, €
dom(h). Therefore, for each 1 < i < n, {x;,y;) € hforsomey; € V.Ash = &, it
follows that each (x;,y;) belongs to every relation in S. Let R € S. Since (x;,y;) € R for
all1 < i < nand R is suitable, item (2) implies that (£(Xy, Xy, ..., Xp), Fe(V1> Y2, - - > Yn)) €
R. Thus, (¢(xq, Xy, ..., Xp), Fe(Y1, Y9, - - -, ¥n)) belongs to every relation in S and therefore,
(€(X1,Xgs > X)s FoV1, Y90 - - Yy)) € h. Hence, h is suitable. (Claim 1) O

We now must prove that h is a function with domain C.
Claim 2. The relation h is a function from C to V.

Proof. To prove that h is a function from C to V, we must show that for each x € C, there
is exactly one y € V such that (x,y) € h. LetI < C be defined by

I = {x € C: there is exactly one y € V such that (x,y) € h}.

We shall prove that I = C by applying Theorem 1.1.25. To do this, we must first prove that
B c I.Let b € B. We know that (b, h(b)) € h, because h is suitable. To prove that b € I,
we need to show there is no (b,y) € h wherey # h(b). Suppose, for a contradiction, that
(b,y) € h, where y # h(b). Consider the relation R = h\ {(b,y)}.So (a) (b,y) ¢ R.Since C
is freely generated from B by the functions in 7, it follows that whenever ¢ € F, we have
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€(X1, Xy, ..., X,) ¢ Bfor all X;,X,,...,X, € C. As h is suitable, it thus follows that R is also
suitable. Hence, R € S. Since h = (S, we conclude that h c R, and thus, (b,y) € R,which
contradicts (a). Thus, h(b) is the only element in V such that (b, h(b)) € h. Therefore,
Bcl

Now we show that I is closed under all of the functions in F. Let g: UK > Ubea
function in F and let z, z,, ..., z; € I. We need to show that g(zy, z,, .. .,z;) € I. For each
1< <k, since z; € I, there is a unique w; such that (z;, w;) € h. Because h is suitable,
we conclude that

(8(21,23, .., 2i), Fg(Wy, Wy, ..., W) € h.

To show that g(z,, 2y, .. ., Z) € I, we must show there isno (g(z,2,,. .., 2),y) € hwhere
Fo(Wy, Wy, ..., W) # Y. Su_ppose, for a contradiction, that there exists ay € V such that
(0 (g(21,2y, ..., 2¢),y) € hwhere (V) Fy(Wy, W,,...,wy) #y. Consider the relation

R=h\{{g(z,2y...,2),))}.

Clearly, (¢) {g(zy,25,...,2x),y) ¢ R. We now show that R is suitable. Let b € B. Since
C is freely generated from B by the functions in F, it follows that g(z;,2,...,2;) # b.
Since h is suitable, it follows that (b, k(b)) € R. Thus, R satisfies item (1) of the above
definition of suitability. To verify that R satisfies item (2), let £ € F be of arity n and let
Xp, Xy, ..., X, € dom(R). Since R < h, we have x;,X,,...,x, € dom(h). Since  is suitable,
it follows that

(X1, X5 - . s X)) FoV1> Yoo - - s V) € B
Soif
(€04, Xgs - X0) Fe 1y Y25 -+ 5 Y0)) # (821,235 -+, Z1)sY)s
then (£(xy, Xy, ..., X)), Fp(¥1, Y95 - - -»Yn)) € R. On the other hand, if

(€0, X+ X0), Ee 1, Y25 -5 Yn)) = (8(21,25, -, 2),y),  then
() 6(X1, X9, .. X)) = 8(24529,...,2)  and  (») Fe(Y1,Y2,--->Yn) =Y.

Because C is freely generated from B by the functions in F, (&) implies that £ = g, n = k,
and x; = z9,Xy = Zy,...,X, = Z. Therefore, x;,Xy,...,X, € I and thus, y; = wy,y, =
W, ...,y = Wy. Hence,

Fo(V1, Y255 Yn) = Fg(Wy, Wy, ..., W),

which contradicts (v) and (»). Thus, R is suitable. So R € S. Since h = NS, we con-
clude that h < R s0 (g(2,2y,...,2x),y) € R (see (<)), which contradicts (4). Therefore,
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g(21,2y,...,2;) € I. Theorem 1.1.25 now implies that I = C and, as a result, h is a function
fromCtoV. (Claim 2) O

Since the function h is suitable, it satisfies conditions (i) and (i) given in the
statement of the theorem. To prove that h is unique, let g:C — V also satisfy prop-
erties (i) and (ii). Thus, g is a suitable relation, so g € S. Since h = ﬂ S,wehave h ¢ g.
As h and g are functions with domain C, Lemma 1.1.21 implies that h = g. Hence, h is
unique. (Theorem) (I

The function h in Theorem 1.1.27, satisfying (1) and (2), is often said to be defined
by recursion. If a function is defined by recursion, then proofs of statements about this
function typically use “proof by induction.”

The proof of Theorem 1.1.27 requires that C be freely generated. To illustrate this, let
f:IN - Nandg: N — N be defined by f(n) = n? and g(n) = n.Let B = {0,1,2}. Let C be
the set generated from B by the functions in F = {f, g}. The functions in F are one-to-
one. However, their ranges are not disjoint and their ranges are not disjoint with B. So C
is not freely generated. Now let Fy: R — R be the identity function and let F,: R — R be
the cube root function. Let h:{0,1,2} — R be such that h(1) = 3. If h could be extended
to a function h: C — R as in Theorem 1.1.27, then we would have

h(f(V) = Fy(h(D)) = Fr(3) = 3,
R(g(1)) = Fy(A() = Fy(3) = ¥3.

Since f(1) = g(1) = 1, we conclude that h(1) = 3 and h(1) = V3. Thus, no such func-
tion h exists.

1.1.6 Countable sets

Let N = {0,1,2,3,...} be the set of natural numbers. A set is countable if it has the
same size as some subset of IN. In other words, a set is countable if there is a one-to-one
correspondence between the set and a subset of N. Our next definition expresses this
concept in mathematical terms.

Definition 1.1.28. A set A is countable if and only if there exists a one-to-one function
f:A—>N.

The following theorem will be used to prove that the set of all finite sequences of a
countable set is also countable (see Theorem 1.1.30). A proof of this theorem is given
in [1, Theorem 4.4.7].

Theorem 1.1.29 (Fundamental theorem of arithmetic). For every natural number n > 1,
there exist distinct primes py,ps, ..., Dy together with natural numbers a; > 1,a, >
1,...,a; > 1such that
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_ 4y G ay
n=pi'py' Py
Furthermore, given any prime factorization into distinct primes,

by by |

n=qi e q)

we have ¢ = k, the primes q; are the same as the primes p; (except for order), and the
corresponding exponents are the same.

Theorem 1.1.30. Let A be a set and let S be the set of all finite sequences of elements of A.
If A is countable, then S is countable.

Proof. Let A be a countable set and let f:A — IN be one-to-one. Let S be the set of all
finite sequences of elements of A. Thus,

S = U An+1'

nelN

Let h: S — IN be defined as follows: Let (a;, ay, . .., a,,) € S. Define
h((ay, ..., ay)) = 2@ 3@ 5@yl

where p,, is the m-th prime. To prove that h: S — NN is one-to-one, let (a;, a,, ..., a,,) and
(b1, by, ..., by) be arbitrary elements of S and assume that

h({a, ay,...,ap)) = h({by, by, ..., b,)).
Thus
of @)1 of(@)+l gfla+l .pﬁam)ﬂ = of b1 of )+l f(b)+1 'p/;(bn)ﬂ.
By Theorem 1.1.29, we conclude that m = n and
fla)+1=f) +1Lf(a) +1=f(by) +1,....f(ay) +1=f(b,) +1
Because f is one-to-one, we see that
a;=by,a5=Dby,...,ay, =b,.
Hence,
(ag,ay,...,ay) = (b, by, ..., by),

and thus h: S — IN is one-to-one. Therefore, S is countable. O
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Definition 1.1.31. Let A be a nonempty set. We shall say that A is denumerable if and
only if there is an enumeration

ay,ay,0s,...,0,, ... 1D

of all of the elements in A4, that is, every element in A appears in the above list indexed
by the positive natural numbers.

So a set is denumerable if we can list the elements of the set in the same way that we
list the set of nonzero natural numbers, namely, 1,2,3,4,5, . ... However, our definition
of a denumerable set allows elements in the list (1.1) to be repeated, or not to be repeated.

We will show below that a countable set is denumerable. Using an enumeration
of a set will allow us to construct new sets that will be useful in Chapters 2 and 4 (for
example, see the proof of Theorem 2.4.2 on page 44).

Theorem 1.1.32. Let A be a nonempty countable set. Then there is a function g:IN — A
that is onto A.

Proof. Assume that A is a nonempty countable set. Thus, there is a function f:A — N
that is one-to-one. We shall use the function f to define our desired function g:IN — A.
Let ¢ € A be some fixed element. Define g as follows: For each n € N,

a, ifnisintherangeof f and f(a) = n,

ﬂm={

¢, otherwise.

Because f: A — IN is one-to-one, one can show that g is a function and it is onto. O
Corollary 1.1.33. Let A be a nonempty countable set. Then A is denumerable.

Proof. Assume that A is a nonempty countable set. Theorem 1.1.32 implies that there is a
function g:IN — A that is onto. For each n > 1let a, = g(n-1). Since g is onto, it follows
that the enumeration a,, a,, ds, . . ., 4y, . . . lists every element in A. O

1.1.7 Cardinality

The cardinality of a set is a measure of how many elements are in the set. For example,
theset A = {1,2,3,...,10} has 10 elements, so the cardinality of A is 10, denoted by |A| =
10. The cardinality of an infinite set X will also be denoted by |X|. In this section, we
briefly discuss Georg Cantor’s method for measuring the size of an infinite set without
the use of numbers. There are two infinite sets where one of these sets has cardinality
much larger than the other infinite set. Therefore, it is possible for one infinite set to
have “many more” elements than another infinite set.

What does it mean to say that two sets have the same cardinality, that is, the same
size? Cantor discovered a simple answer to this question.
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Definition 1.1.34. For sets A and B, we say that A has the same cardinality as B, denoted
by |A| =, |B|, if there is a bijection f: A — B.

The expression |A| =, |B| looks like an equation; however, the assertion |A| =, |B]
should be viewed only as an abbreviation for the statement “A has the same cardinal-
ity as B.” In other words, |A| =, |B|] means that “there is a function f:A — B that is
one-to-one and onto B.” The relationship =, given in Definition 1.1.34, is reflexive, sym-
metric, and transitive.

The following theorem is very useful for proving many results about cardinality.
The theorem states that if there are functions f:A — B and g: B — A that are both one-
to-one, then there exists a function h: A — B that is one-to-one and onto B.

Theorem 1.1.35 (Schréder-Bernstein). Let A and B be any two sets. Suppose that |A| <, |B|
and |B| <. |A|. Then |A| =, |B|.

1.1.8 The axiom of choice

Suppose that a set S contains only nonempty sets. Is it possible to uniformly select exactly
one element from each set in S? In other words, is there a function F so that for each
A € S,we have F(A) € A? The following set-theoretic principle will allow us to positively
answer this question.

Axiom of Choice. Let C be a set of nonempty sets. Then there is a function H:C — | JC
such that H(A) e Aforall A € C.

Cantor developed a theory of infinite cardinal numbers which, assuming the axiom
of choice, allows one to measure the size of any infinite set. Thus, if A is an infinite set,
there is a cardinal number k such that k = |A|. Moreover, there is an ordering on these
cardinal numbers such that for any cardinal numbers A and k, we have A < korx < A.
Moreover, if A < k and k < A, then A = k. The cardinality of any countable infinite set
is denoted by the cardinal X,.

Zorn’slemma is an important theorem about sets that is normally used to prove the
existence of a mathematical object when it cannot be explicitly identified. The lemma
involves the concept of a chain. A chain is a collection of sets C such that for all sets x
and y in C, we have either x ¢ yory c x.

Zorn’s Lemma 1.1.36. Let F be a set of sets. Suppose that for every chain C ¢ F, | JC is
in F. Then there exists an M € F that is maximal, that is, M is not the proper subset of
any A € F.

Surprisingly, Zorn’s lemma is equivalent to the axiom of choice. There will be times
when we may apply the axiom of choice or Zorn’s lemma. However, when working with
countable sets, Corollary 1.1.33 will allow us to avoid such applications.
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Exercises 1.1.

1

*5.

*8.

*9.

Let A be a set and let 7 be a nonempty set of sets. Prove the following:

D A\UF={A\C:CeF},

2 A\NF=U{A\C:Ce F}

Consider the function h: N — N defined by the recursion

(@ h(0) =0,

(b) h(n+1) =5h(n) +1,foralln € N.

Prove by induction that h(n) = % foralln € IN.

Let A and B be countable sets. Since A is countable, there is a one-to-one func-
tion f: A — IN. Also, as B is countable, there is a one-to-one function g: B — N.
(a) Prove that the function i:A — N defined by h(a) = 2@*! is one-to-one.
(b) Prove that the function k: B — N defined by k(b) = 3¢®+1 5 one-to-one.
(c) Define the function £:AUB — N by

{h(x), ifx €A,
2(x) =
k(x), ifx eB\A,

for each x € A U B. Prove that ¢ is one-to-one. Thus, A U B is countable.

Let £: N x N — N be defined by £(x,y) = 2! . 3" and let g:IN — N be defined by

g(x) = 21, Let C be the set generated from B = {1, 2} by the set F = {¢, g}.

(a) Find C; and then find an element in C,.

(b) Show that ¢, and g, are one-to-one (use Theorem 1.1.29).

(c) Show that the set C is freely generated by B.

(d) Let h:B — R be defined by h(1) = 7 and h(2) = e. Let Fx R x R — R and
Fg:R — R be defined by F,(x,y) = x +y and Fg(x) = 5x. Let h:C — Rbe the
function given by Theorem 1.1.27. Find h(36), h(4), and h(72).

Let U be a set and let F be a set of functions ¢ of the form ¢: U" — U, where n is

the arity of ¢. Let B ¢ U and let C be generated from B by the functions in F.

(a) Prove that C is closed under the functions in 7.

(b) Let B ¢ D, where D is closed under the functions in F. Prove that C ¢ D.

Let U be a set and let F be a set of functions ¢ of the form ¢: U™ — U, where n is

the arity of £. Let B ¢ U and let C be freely generated from B by the functions in F.

Letf,g € F, X, Xy, ..., X, € C,and 24,2y, ..., Z; € C. Suppose that f(x;,Xy,...,Xy) =

8(24,29,...,2y). Explain why one can conclude that f = g,n = k, and x; = z4, X, =

Zg,. .oy Xp = Zg-

In the proof of Theorem 1.1.25, show that C,, < I for alln € IN.

Let U be a set and let F be a set of functions ¢ of the form ¢: U™ — U, where n is

the arity of ¢. Let B ¢ B' ¢ U. Let C be generated from B by the functions in 7 and

let C’ be generated from B’ by the functions in . Prove that C ¢ C'.

Let U be a set and let F be a set of functions ¢ of the form ¢: U" — U, where n is the

arity of ¢. For each ¢ € F,let F,: V" — V be of the same arity as £. Let B< B ¢ U.

Let C be freely generated from B by the functions in F and let C' be freely generated
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from B’ by the functions in . Let h: B — V and g: B’ — V be such that h(b) = g(b)
for all b € B. Show that h(x) = g(x) for all x € C.

*10. Let U be a set and let F be a set of functions ¢ of the form ¢: U" — U, where n
is the arity of ¢. For each £ € F,let F,: V" — V be of the same arity as ¢. Let
B c U,let h: B — V, and let C be freely generated from B by the functions in F as
in Theorem 1.1.24, that is, C = | ¢y C, Where:

@ ¢ =B,

(2 Cpq=CUFI[C,]forallneNN.

Suppose that:

— the function h is one-to-one;

— for each ¢ € F, F, is one-to-one and the functions h, F, have disjoint ranges;

- F, and F, have disjoint ranges whenever ¢, ¢’ € F are distinct.

Let h:C — V be as in Theorem 1.1.27. Prove by induction on n that h is one-to-one
on C,,. Then conclude that h is one-to-one.

Exercise Notes: For Exercise 8, let I = C n C’. Using Theorem 1.1.25, prove that I = C.
For Exercise 9, C ¢ C' by Exercise 8. Let] = {x ¢ C: h(x) = g(x)}. Using Theorem 1.1.25,
prove that I = C. For Exercise 10, if ¢ € C,,4, let k be the least such that ¢ € C.. If k > 0,
then c is in the range of a function in F restricted to Cy_;.

1.2 Basic logic

1.2.1 Propositions and logical connectives

A proposition is a declarative sentence that is either true or false, but not both. When
discussing the logic of propositional statements in this section, we shall use symbols to
represent these statements. Capital letters, for instance, P, Q, R, are used to symbolize
propositional statements which may be called propositional components. Using the five
logical connectives A, v, =, —, < together with the components, we can form new logical
sentences called compound sentences. For example:

1. P AQ (means “Pand Q” and is called a conjunction),

P v Q (means “P or Q” and is called a disjunction),

=P (means “not P” and is called a negation),

P — Q (means “if P, then Q” and is called a conditional),

P & Q (means “P if and only if Q” and is called a biconditional).

Gk L

Using the propositional components and the logical connectives, one can construct more
complicated sentences, for example,

(PAGQ) V(S — (-R))).

We will more formally investigate propositional logic in Chapter 2.
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1.2.2 Truth tables and truth functions

Given a collection of propositional components, say P, Q, and R, we can assign truth
values to these components. For example, we can assign the truth values T, F, Tto P, Q, R,
respectively, where T means “true” while F means “false.” The truth value of a sentence
of propositional logic can be evaluated from the truth values assigned to its components.
We shall explain what this “means” by using truth tables.

The logical connectives A, v, = yield the natural truth values given by Table 1.1.

Table 1.1: Truth tables for conjunction, disjunction, and negation.

(1) Conjunction (2) Disjunction (3) Negation
P Q PAQ P Q PVQ P -P
T T T T T T T F

T F F T F T F T

F T F F T T

F F F F F F

Table 1.1(1) has four rows (not including the header). The columns beneath P and
Q list all the possible pairs of truth values that can be assigned to the components P
and Q. For each such pair, the corresponding truth value for P A Q appears to the right.
For example, consider the third pair of truth values in this table, FT. Thus, if the propo-
sitional components P and Q are assigned the respective truth values F and T, we see
that the truth value of P A Q is F.

Table 1.1(2) shows that if P and Q are assigned the respective truth values T and F,
then the truth value of P v Q is T. Moreover, when P and Q are assigned the truth values
T and T, the truth value of P v Q is also T. In mathematics, the logical connective “or”
has the same meaning as “and/or,” that is, P v Q is true if and only if only P is true, only
Qs true, or both P and Q are true. Table 1.1(3) shows that the negation of a statement
reverses the truth value of the statement.

A truth function accepts truth values as input and yields a unique truth value as out-
put. Let V = {T, F}. The above three truth tables yield the corresponding truth functions
FuV? > V,F:V* - V,and F.:V — V, defined by

T, ifx=Tandy=T,

F\(x,y) = . (1.2)
F, otherwise,
T, ifx=Tory=T,

F,(6y) = . 13)
F, otherwise,

T, ifx=F,
F.(x)= (14
F, otherwise.
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The standard truth tables for the conditional and biconditional connectives are
given in Table 1.2, which states that when P and Q are assigned the respective truth
values T and F, then the truth value of P — Qs F; otherwise, it is T. In particular, when
Pis false, we shall say that P — Qis vacuously true. Table 1.2(5) shows that P « Qs true
when P and Q are assigned the same truth value; when P and Q have different truth
values, then the biconditional is false.

Table 1.2: Truth tables for the conditional and biconditional.

(4) Conditional (5) Biconditional

P Q P—Q P Q P—Q
T T T T T T

T F F T F F

F T T F T F

F F T F F T

Let V = {T,F}. The conditional and biconditional truth tables yield the two truth
functions F_: V2 — V and F_,: V> — V, defined by

F, ifx=Tandy=F,
F_ (x,y) = ) (1.5)
T, otherwise,
F T, ifx=y,
- (6Yy) = ) (1.6)
F, otherwise.

Using the truth tables for the sentences PAQ,PV Q, -P,P — Q,and P « Q, one
can build truth tables for more complicated compound sentences. Given a compound
sentence, the “outside” connective is the “last connective that one needs to evaluate.”
After the outside connective has been determined, one can break up the sentence into
its “parts.” For example, in the compound sentence —-P A (Q V P) we see that A is the
outside connective with two parts —=P and Q v P.

Problem 1.2.1. Construct a truth table for the sentence =P — (Q A P).

Solution. The two components P and Q will each need a column in our truth table. Since
there are two components, there are four truth assignments for P and Q. We will enter
these combinations in the two leftmost columns in the same order as in Table 1.1(1). The
outside connective of the propositional sentence =P — (Q A P) is —. We can break this
sentence into the two parts =P and Q A P. So these parts will also need a column in our
truth table. As we can break the sentences =P and Q A P only into components (namely,
P and Q), we obtain the following truth table:
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P Q -P QAP =P — (QAP)
T T F T T
T F F F T
F T T F F
F F T F F
STEP # 1 1 2 3 4

We will now describe in steps how to obtain the truth values in the above table.

STEP 1: Specify all of the truth values that can be assigned to the components.

STEP 2: In each row, use the truth value assigned to the component P to obtain the cor-
responding truth value for —P, using Table 1.1(3).

STEP 3: In each row, use the truth values assigned to Q and P to determine the corre-
sponding truth value in the column under Q A P via Table 1.1(1).

STEP 4: In each row, use the truth values assigned to —P and QAP to evaluate the match-
ing truth value for the final column under the sentence -P — (QAP), employing
Table 1.2(4).

1.2.3 Predicates and quantifiers

Variables are used throughout mathematics and logic to represent unspecified values.
They are used when one is interested in “properties” that may be true or false depending
on the values represented by the variables. A predicate is just a statement that asserts
that certain variables satisfy a property. For example, “x is an irrational number” is a
predicate. We can symbolize this predicate as Ix, where I is called a predicate symbol.
Of course, the truth or falsity of the expression Ix can be evaluated only when a value
for x is given. For example, if x is given the value V2, then Ix would be true, whereas if
x is given the value 2, then Ix would be false.

When our attention is focused on just the elements in a particular set, we will re-
fer to that set as our universe of discourse. For example, if we were just talking about
real numbers, then our universe of discourse would be the set of real numbers R. Ev-
ery statement made in a specific universe of discourse applies only to the elements in
that universe.

Given a predicate Px and variable x, we may want to assert that every element x
in the universe of discourse satisfies Px. We may also want to express the fact that at
least one element x in the universe makes Px true. We can then form logical sentences
using the quantifiers V and 3. The quantifier V means “for all” and is called the universal
quantifier. The quantifier 3 means “there exists” and it is referred to as the existential
quantifier. For example, we can form the sentences:

1.  VxPx (which means “for all x, Px”),
2. 3xPx (which means “there exists an x such that Px”).
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A statement of the form VxPx is called a universal statement. Any statement having the
form 3xPx is called an existential statement. Quantifiers offer a valuable tool for clear
thinking in mathematics, where many ideas begin with the expression “for every” or
“there exists.” Of course, the truth or falsity of a quantified statement depends on the
particular universe of discourse.

Let x be a variable that appears in a predicate Px. In the statements VxPx and 3xPx,
we say that x is a bound variable because x is bound by a quantifier. In other words,
when every occurrence of a variable in a statement is attached to a quantifier; then
that variable is called a bound variable. If a variable appears in a statement and it is
not bound by a quantifier, then the variable is said to be a free variable. Whenever a
variable is free, substitution may take place, that is, one can replace a free variable with
any particular value from the universe of discourse—perhaps 1 or 2. For example, the
assertion Vx(Px — x = y) has the one free variable y. Therefore, we can perform a
substitution to obtain Vx(Px — x = 1). In a given context, if all of the free variables
in a statement are replaced with values from the universe of discourse, then one can
determine the truth or falsity of the resulting statement.

Problem 1.2.2. Consider the predicates (properties) Px, Ox, and Dxy, where the vari-
ables x and y are intended to represent natural numbers:

1. Pxrepresents the statement “x is a prime number,”

2. Ox represents the statement “x is an odd natural number,”

3. Dxyrepresents the statement “x evenly divides y.”

Using the above predicates, determine whether or not the following logical formulas are
true or false, where the universe of discourse is the set of natural numbers:

1. Vx(Px — Ox),

2. Vy(y =2 — 3Ix(Px A Dxy)).

Solution. The expression Vx(Px — Ox) states that “all prime numbers are odd,” which
is clearly false. On the other hand, item 2 states that “every natural number greater than
or equal to 2 is divisible by a prime number” and this is true.

We will formally investigate predicates and quantifiers in Chapter 3. The under-
standing of the logic of quantifiers is (one can argue) a requisite tool for the study
of mathematics and logic. To help students learn the language of quantifier logic, Jon
Barwise and John Etchemendy created an innovative software program called Tarski’s
World. This program presents a visual display of geometric shapes sitting on a grid, re-
ferred to as a world (or universe). The shapes have a variety of colors and positions on
the grid. The user can create logic formulas and then determine whether or not these
formulas are true or false in the world. Tarski’s World is named after Alfred Tarski,
an early pioneer in mathematical logic. We end this section with our own version of
Tarski’s World. In the following problem, we are given a Tarskian World and some
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English statements. We will be given some predicates and be asked to translate these
statements into logical form.

Problem 1.2.3. Consider the following Tarskian World, where some of the individuals
are labeled with a name. The universe consists of all the objects in this Tarskian world.

N

@

_llG)

[=1] ][]

O

Define the following predicates (properties):

— Txmeans “x is a triangle.” Cx means “x is a circle.” Sx means “x is a square.”
— Ixmeans “x is white.” Gx means “x is gray.” Bx means “x is black.”

— Nxy means “x is on the northern side of y.”

—  Wxy means “x is on the western side of y.”

—  Kxy means “x has the same color as y.”

The constants a, ¢, d, g,j are the names of five individuals in the above world. Using the
given predicates, write each of the following statements in logical form, looking for pos-
sible hidden quantifiers and logical connectives.

There is a black square.

Every circle is white.

There are no black circles.

a is north of c.

ais not north of j.

Every circle is north of d.

Some circle has the same color as d.

d is west of every circle.

© NS W

Solution. Statements 2, 6, and 7 are the only ones that are false in the given Tarskian

world. We express the above sentences in the following logical forms:

1. The sentence means that “for some x, x is black and x is a square.” In logical form,
we have 3x(Bx A Sx).

2. The sentence means that “for all x, if x is a circle, then x is white.” In logical form,
Vx(Cx — Ix).



22 — 1 Basic set theory and basic logic

3. The sentence can be stated in two equivalent ways. First, the sentence means that

“it is not the case that some circle is black,” that is, =(some circle is black). In logical

form, we obtain —3x(Cx A Bx). Second, the sentence also means that “every circle is

not black” and we get Vx(Cx — -BXx).

In logical form, the sentence becomes Nac.

The logical form of this sentence is ~Ngj.

Rephrasing, we obtain “for all x, if x is a circle, then x is north of d.” In logical form,

we have Vx(Cx — Nxd).

7. The sentence asserts that “for some X, x is a circle and x has the same color as d.” In
logical form, we have 3x(Cx A Kxd).

8. Stated more clearly, we obtain “for all x, if x is a circle, then d is west of x.” In logical
form, we have Vx(Cx — Wdx).

o v

There will be cases when we will have to prove that there is exactly one value that
satisfies a property. There is another quantifier that is sometimes used. It is called the
uniqueness quantifier. This quantifier is written as 3!xPx, which means that “there exists
a unique x satisfying Px,” whereas IxPx simply asserts that “at least one x satisfies Px.”

The quantifier 3! can be expressed in terms of the other quantifiers 3 and V. In
particular, the statement 3!xPx is equivalent to

IxPx A VXYY((PX APy) — X =),

because the above statement means that “there is an x such that Px holds, and any indi-
viduals x and y that satisfy Px and Py must be the same individual.”

Quantifier negation laws

We now introduce logic laws that involve the negation of quantifiers. Let Px be any pred-
icate. The statement VxPx means that “for every x, Px is true.” Thus, the assertion =VxPx
means that “it is not the case that every x makes Px true.” Therefore, -VxPx means there
is an x that does not make Px true, which can be expressed as 3x—Px. This reasoning is
reversible, as we will now show. The assertion 3x-Px means that “there is an x that
makes Px false.” Hence, Px is not true for every x, that is, -VxPx. Therefore, -VxPx and
Ix—-Px are logically equivalent. Similar reasoning shows that -3xPx and Vx-Px are also
equivalent. We now formally present these important logic laws that connect quanti-
fiers with negation.

Quantifier Negation Laws 1.2.4. The following logical equivalences hold for any pred-
icate Px:

1. —VxPx © 3Ix-Px,

2. —3xPx & Vx-Px,

3. Vx-Px © IxPx,

4. -3Ix-Px & VxPx.
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We will be using the symbols & and = to abbreviate two English expressions. The
symbol & denotes the phrase “is equivalent to” and = denotes the word “implies.”

Quantifier interchange laws

Adjacent quantifiers have four forms: 3x3y, VxVy, ¥x3y, and IxVy. How should one in-
terpret statements that contain adjacent quantifiers? If a statement contains adjacent
quantifiers, one should address the quantifiers, one at a time, in the order in which they
are presented. This is illustrated in our solutions of the following three problems.

Problem 1.2.5. Let the universe of discourse be a group of people and let Lxy mean “x
likes y.” What do the following formulas mean in English?

1. 3x3yLxy,

2. FydxLxy.

Solution. Note that “x likes y” also means that “y is liked by x.” We will now translate

each of these formulas from “left to right” as follows:

1. 3x3JyLxy means “there is a person x such that JyLxy,” that is, “there is a person x
wholikes some person y.” Therefore, 3x3yLxy means that “someone likes someone.”

2. dy3xLxy states that “there is a person y such that IxLxy,” that is, “there is a person
y who is liked by some person x.” Thus, Jy3axLxy means that “someone is liked by
someone.”

Hence, the statements 3x3yLxy and Jy3xLxy mean the same thing.

Problem 1.2.6. Let the universe of discourse be a group of people and let Lxy mean “x
likes y.” What do the following formulas mean in English?

1. VxVyLxy,

2. VYyvVxLxy.

Solution. We will work again from “left to right” as follows:

1. VxVyLxy means “for every person x, we have VyLxy,” that is, “for every person x, x
likes every person y”; hence, VxVyLxy means that “everyone likes everyone”;

2. VyVxLxy means that “for each person y, we have VxLxy,” that is, “for each person y,
yisliked by every person x”; thus, VyvxLxy means “everyone is liked by everyone.”

So the statements VxVyLxy and VyVvxLxy mean the same thing.

Adjacent quantifiers of a different type are referred to as mixed quantifiers.

Problem 1.2.7. Let the universe of discourse be a group of people and let Lxy mean “x
likes y.” What do the following mixed quantifier formulas mean in English?

1. V¥x3yLxy,

2. 3AyvxLxy.
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Solution. We will translate the formulas as follows:

1. Vx3yLxy asserts that “for every person x, we have JyLxy,” that is, “for every per-
son x, there is a person y such that x likes y.” Thus, Vx3yLxy means that “everyone
likes someone.”

2. 3AyvxLxy states that “there is a person y such that VxLxy,” that is, “there is a person
y who is liked by every person x.” In other words, 3yVxLxy means “someone is liked
by everyone.”

We conclude that the mixed quantifier statements Vx3yLxy and JyVxLxy are not logi-
cally equivalent, that is, they do not mean the same thing.

To clarify the conclusion that we obtained in our solution of Problem 1.2.7, consider
the universe of discourse U = {a,b, ¢, d}, which consists of just four individuals with
names as given. Figure 1.1 presents a world in which Vx3yLxy is true, where we por-

. . likes .
tray the property Lxy using the “arrow notation” x —— y. In this world, “everyone
likes someone.”

likes

C C
M
d d

Figure 1.1: A world where Vx3yLxy is true, because everyone likes someone.

Let us focus our attention on Figure 1.1. Clearly, the statement Vx3yLxy is true in the
world depicted in this figure. Moreover, note that JyvxLxy is actually false in this world.
This is the case because there is no individual whom everyone likes. Thus, Vx3yLxy is
true and 3yVxLxy is false in the world of Figure 1.1. We can now conclude that Vx3yLxy
and 3yvxLxy do not mean the same thing.

Our solution to Problem 1.2.5 shows that assertions 3x3yLxy and 3y3xLxy both
mean “someone likes someone.” This supports the equivalence:

Ix3yLxy < Jy3xLxy.
Similarly, Problem 1.2.6 confirms the equivalence:
VxVyLxy & VyVvxLxy.

Therefore, interchanging adjacent quantifiers of the same kind does not change the
meaning. Problem 1.2.7, however, demonstrates that the two statements Vy3xLxy and
IxVyLxy are not equivalent. We conclude this discussion with a summary of the above
observations:
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— Adjacent quantifiers of the same type are interchangeable.
— Adjacent quantifiers of a different type may not be interchangeable.

Quantifier Interchange Laws 1.2.8. For every predicate Pxy, the following three state-
ments are valid:

1. 3Ix3yPxy & Jy3ixPxy,

2. VxVyPxy & VyVxPxy,

3. IxVyPxy = Vy3xPxy.

It should be noted that the implication in item 3 cannot, in general, be reversed.

Quantifier distribution laws

A quantifier can sometimes “distribute” over a conjunction or a disjunction. The quanti-
fier distribution laws, given below, express relationships that hold between a quantifier
and the two logical connectives v and A. Namely, the existential quantifier distributes
over disjunction (see 1.2.9(1)), and the universal quantifier distributes over conjunction
(see 1.2.9(2)). The following four quantifier distribution laws can be useful when prov-
ing certain set identities.

Quantifier Distribution Laws 1.2.9. For any predicates Px and Qx, we have the follow-
ing distribution laws:

1. 3IxPx Vv IxQx & Ix(Px Vv Qx),

2. VXPx AVXQx & Vx(Px A Qx).

If R is a predicate that does not involve the variable x, then we have:
3. RAIXQx © Ix(R A Qx),
4. RV VXQxXx © VX(RV Qx).

Exercises 1.2.

1. Let C(x) represent the predicate “x is in the class” and let Mx represent “x is a
mathematics major.” Let the universe of discourse be the set of all students. Analyze
the logical form of the following sentences.

(@) Everyone in the class is a mathematics major.
(b) Someone in the class is a mathematics major.
(c) Noone in the class is a mathematics major.

2. Determine whether the following statements are true or false in the universe R:

@ vx(x*+1>0),

(b) Vx(x2 +x=0),

() vx(x> % — )1( <3),
@ G =3),

(e) (L =0).

3. Given the properties and the Tarskian world in Problem 1.2.3 on page 21, determine
the truth or falsity of the following statements:
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(@) vx(Ix — (Tx Vv Sx)),
(b) Vx(Bx — (Tx V Sx)),
(© 3y(Cy ANyd),

(d) 3y(Cy ANay),

(e) Iy(Cy A (Nyd A Ndy)).

4. Using the Tarskian predicates given in Problem 1.2.3, translate the following English
sentences into logical sentences where b and d are names of individuals in some
Tarskian world:

(a) Something is white.

(b) Some circle is white.

(c) All squares are black.

(d) No squares are black.

(e) All triangles are west of d.

(f) A triangle is west of d.

(g) Some triangle is north of d.

(h) Some triangle is not gray.

(i) Every triangle is north of b.

() No square has the same color as b.



2 Propositional logic

In this chapter we will utilize mathematical tools, namely induction and recursion, to
formally investigate an important form of logic called propositional logic. In particular,
we will establish a number of significant theorems concerning the syntax and semantics
of propositional logic. An informal introduction to this topic is given in Section 1.2.1.

2.1 The language

The syntax of the language of propositional logic is specified by first identifying the sym-
bols (the alphabet) of the language and then defining expressions to be any finite string
of these symbols. Some expressions are meaningful while others are not. To single out
the meaningful expressions requires a recursive definition (see Section 1.1.5). The mean-
ingful expressions in propositional logic will be called well-formed formulas (wifs).

Definition 2.1.1. Our official language for propositional logic, denoted by £, consists of
the distinct symbols in the set

£ = {())’_')/\)V>_)><_>)A1,A2,'..,An,...},

where the symbols in the language £ are described in the following table:

Symbol Name Remark

( left parenthesis punctuation

) right parenthesis punctuation

- negation English: not

A conjunction English: and

\Y disjunction English: or

- conditional English: if _, then _
o biconditional English: if and only if
A, first sentence symbol

second sentence symbol

R
N

A, n-th sentence symbol

Remark. Several remarks are in order:

1. The distinct symbols —, A, v, —, < are called logical connectives.

2. The infinite number of distinct symbols A, Ay, ...,A,,... are called sentence sym-
bols. Each A, stands for a particular sentence.

Recall that (a;, a,, . .., a,) denotes a sequence (see Definition 1.1.6).

https://doi.org/10.1515/9783110782073-002
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Definition 2.1.2. An L-expression is a finite string of symbols from £ obtained by omit-
ting the sequence brackets ( ) and the commas from a finite sequence of symbols from L.
If a and S are £-expressions, then aff is the £-expression consisting of the symbols in the
expression a followed by the symbols in the expression .

Example 2.1.3. Clearly, {(,—,A;,)) is a finite sequence of symbols from £, and after re-
moving the sequence brackets and commas we obtain the £-expression (-Aq). Leta =
(=A;) and B = A;. Then a and f are £-expressions. In addition, we can write (@ — f)
to denote the £-expression ((-A;) — Ay). Also, note that = —)(Ag is an £-expression.
Moreover, af is the expression (—A)A;.

There is a one-to-one correspondence between each £-expression a and a finite se-
quence of symbols in £ denoted by (a*), where a* denotes the result of putting commas
between all of the symbols in a. So an £-expression a is a proper initial segment of the
L£-expression B when (a*) is a proper initial segment of () (see Definition 1.1.6).

Grammatically correct expressions

Is the English expression “then work not. is, Sally work is Bill if at at” a grammatically
correct sentence? No! English expressions that are not grammatically correct make no
sense. This observation motivates the following question: What does it mean for an
L-expression to be grammatically correct? Surely, the £-expression (A, — Ag) isa mean-
ingful expression. However, the expression — A,)(A; appears to be nonsensical. We
know that English has “correct grammar.” Can we give the language £ correct gram-
mar? The answer is yes.

We want to define the notion of a well-formed formula (wff) in the language £. The
wifs will be the grammatically correct £-expressions. Our definition will have the fol-
lowing consequences:

(a) Every sentence symbol is a wif.
(b) If a and S are wifs, then so are (—a), (a A B), (a V ), (a — B), and (a < B).
(c) Every wffis obtained by applying (a) or (b).

We will often use lower-case Greek characters to represent wifs and upper-case Greek
characters to represent sets of wifs.

Items (a)-(c) above declare that every sentence symbol is a wif and every other wif
is built from other wifs by using the logical connectives and parentheses in particular
ways. For example, Aqy53, (Ay — (-Aq)), and (((A) A (A — A;)) — A;) are all wifs, but
X5, (A5), 0—Ay, As — Ay), and (A, V (-A;) are not wifs.

In order to define wiffs we will need the following five formula building functions:
Let a and 8 be £-expressions. Then

& (a) = (~a),
En(a,B) = (anpB),
gv(a>ﬁ) = (aVﬁ), (21)
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&.(ap) = (a—p),
Eo(a,p) = (a < p).

Using the above operations, our next definition is an application of Theorem 1.1.24.

Definition 2.1.4. Let 7 = {£_,&,, 6,6, and let S € {Aq, Ay Ag,...} be a set of
sentence symbols in the language £. Let S be the set generated from S by the functions
in F. An L-expression a is a well-formed formula (wff or formula) with sentence symbols
in S if and only if a € S. The set S is the set of wffs that can be built from the symbols
in S using the five formula building functions in (2.1). When S is the set of all sentence
symbols, we shall just say that a is a well-formed formula (wff or formula).

For example, if S = {A5, A,}, then S consists of the wffs whose only sentence symbols
are A; and/or A;.

Remark. Let S and 7 be sets of sentence symbols. Exercise 8 on page 37 implies that if
ScT,thenScT.

Definition 2.1.4 asserts that a wif is an expression that can be built from sentence
symbols by applying the formula building functions a finite number of times (see Sec-
tion 1.1.5). Thus, a wif is constructed by using the sentence symbols as building blocks
and the formula building functions as mortar. This leads to the following definition,
which gives a road map for the construction of a particular wif.

Definition 2.1.5. A construction sequence is a finite sequence (g;, &, ..., &,) of L-expres-
sions such that for each i < n one of the following holds:

1. ¢ is a sentence symbol,

2. &= Sﬂ(ej) for somej < i,

3. & = &y(g, &) for somej < iand k < i, where & represents any of the connectives

AV, =, o,

An L-expression a is a wif whenever there is a construction sequence (&, &, . . ., &)
such that a = ¢g,, that is, the sequence ends in a.

Problem 2.1.6. Let a denote the wif ((A; AAqg) — ((-A3) V Ag)). Identify a construction
sequence that ends with a.

Solution. The following “tree” gives a picture of how the above wif a is constructed
from its sentence symbols using the formula building functions:

(A1 A A1) = ((—A3) V Ag))

(A1 ANAy)  ((HA3) V Ag)

/N

Ay A (mAy) Ag

Aj
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Thus we have the following construction sequence that ends in a:

(A1, Aqp, (A A Agg), Ag, (—A3), Ag, ((—A3) V Ag), @).

Induction on wffs principle

To construct a wif, one starts with the sentence symbols and then applies the formula
building functions. Consequently, Theorem 1.1.25 yields the following induction on wiffs
principle and associated proof strategy.

Wff Induction Principle. Let S(a) be a statement about a wff a. If

1. $(A;) is true for every sentence symbol A; and

2. for all wifs @ and B, if S(a) and S(B), then S$((—a)) and S((a =@ B)) (here = represents
each of the connectives A, v, —, <),

then S(a) is true for all wifs a.

Proof Strategy. In order to prove a statement “for all wifs a, $(a)” by induction, use the
following diagram:

Base step: Prove $(A;) for all sentence symbols A;.
Inductive step: Let a and 8 be arbitrary wifs.
Assume S(a) and S(B).
Prove S((—a)) and S((a @ B)).

Applications of the induction principle
Theorem 2.1.7. Let a be any wff. The number of left parentheses equals the number of
right parentheses in a.

Proof. We shall use proof by induction on wifs.

Base step: Let a = A; be a sentence symbol. Then A; has zero left parentheses and the
same number of right parentheses.

Inductive step: Let a and f§ be arbitrary wifs. Assume the induction hypothesis

the number of left parentheses in a equals the number of right parentheses,
the number of left parentheses in § equals the number of right parentheses.

(IH)

We must prove that the same holds for each of the following:

(=a), (@A B), (a Vv B), (a— B),(a < p).

From the induction hypothesis (IH), it immediately follows that the number ofleft paren-
theses in (-a) equals the number of right parentheses. A similar argument applies for
the rest of the binary connectives. O
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Theorem 2.1.8. A proper initial segment of a wff has more left parentheses than right
parentheses. Thus, no proper initial segment of a wff is itself a wff.

Proof. We shall use proof by induction on wifs.

Base step: Let a = A, be a sentence symbol. Since A; has no proper initial segments, the
result follows vacuously.

Inductive step: Let a and f be arbitrary wifs. Assume the induction hypothesis

a proper initial segment of @ has more left parentheses than right parentheses,
a proper initial segment of 5 has more left parentheses than right parentheses.

(IH)

We must prove that any proper initial segment of each of the following has more left
parentheses than right parentheses:

(ma), (a A B),(av B), (a— B),(a < p).

Let us first consider the wif (a v ). Any proper initial segment of (a vV §) has one of the
following forms:

LG

2. (ay, where q; is a proper initial segment of a,

3. (a,

4. (av,

5. (aV By, where f5, is a proper initial segment of g,
6. (avp.

Case 11is clear. In cases 3, 4, and 6, Theorem 2.1.7 implies that these proper initial
segments have more left parentheses than right ones. For cases 2 and 5, the induction
hypothesis implies that these two proper initial segments have more left parentheses
than right parentheses. A similar argument applies for the other logical connectives.
Theorem 2.1.7 now implies that a proper initial segment of a wif is not a wif. O

Exercises 2.1.

1. Let B and S be sentence symbols that represent the sentences “Bill is at work” and
“Sally is at work,” respectively. Translate the following English sentences into wffs:
(a) Billis at work and Sally is not at work.
(b) IfBill is at work, then Sally is not at work.
(c) Billis not at work if and only if Sally is at work.

2. Letabethe wif ((-A;) — ((A4 V(A3 < Ay))AAz)). Identify a construction sequence
that ends with a.

3. Given any wif q, let

s(a) = the number of occurrences of sentence symbols in a,
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¢(a) = the number of occurrences of binary connectives in a.

Prove by induction on a the following statement: For all wifs q, s(a) = c(a) + 1.

4. In the inductive step in the proof of Theorem 2.1.8, using the induction hypothesis,
show that any proper initial segment of (-a) is not a wif.

5. Prove by induction on a the following statement: For every wif a there is a con-
struction sequence that ends with a (see Definition 1.1.6).

6. Letay,ay,...,a, be wifs, where n > 1. Show that ¢ya, - - - a,, is not a wif.

2.2 Truth assignments
The set of truth values {F, T} consists of two distinct items:

F, called falsity,
T, called truth.

Clearly, there are an infinite number of sentence symbols. Suppose that we have truth
values assigned to each of these sentence symbols. Can we then identify a function that
will evaluate the truth value of all the wiffs? If so, is there only one such function? In
order to address these questions, we first need to establish a unique readability theorem,
that is, we need to show that one can read a wif without ambiguity.

Theorem 2.2.1 (Unique readability). Let F = {£_,EL,E,E,,EL)} and let B = {Aq, Ay, A,
...}. When restricted to the set of wffs, we have the following:

(@) The range of each operation in F is disjoint from B.

(b) Any two distinct operations in F have disjoint ranges.

(c) Every operation in F is one-to-one.

In other words, the set of all wffs is freely generated from the set of sentence symbols by
the five operations £,,€,,,E-,E_,, €.

Proof. Let F ={,\,&,,€,€E_,,E,}and let B = {A1, Ay, As, ... }.

(a) We show that the range of £, is disjoint from B. Let a and 8 be wifs. Clearly, (a Af) #
A;, because A; hasno parentheses. Hence, the range of £, is disjoint from B. A similar
argument applies for the other operations in F.

(b) We need to show that any two distinct operations in 7 have disjoint ranges. Let
a, B, y, and o be wifs. Suppose that (a A ) = (y v 0). Then, by dropping the first
parenthesis in each expression, the resulting expressions are equal, that is,

anpB)=yvo). 2.2)

Since a and y are wifs, Theorem 2.1.8 implies that a and y cannot be proper initial
segments of the other. Thus, (2.2) implies that Af) = va). So A = v, which is a
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contradiction. So £, and &, have disjoint ranges. Similar reasoning applies in the
other cases.

(c) Finally, we must show that each operation in F is one-to-one. So let @, B, y, and ¢ be
wifs. Suppose that (a A f) = (y A 0). Reasoning as in part (b), we see that a = y and
thus, = a. Thus, &, is one-to-one on the wifs. Similar reasoning also shows that
the other operations are one-to-one. O

The unique readability theorem will allow us to positively address the questions
posed at the beginning of this section (see Theorem 2.2.4 below).

Definition 2.2.2. Let S be a set of sentence symbols. A function v: S — {F, T} is called a
truth assignment for S.

Example 2.2.3. Consider the set S = {A3, Ag, Ag} of sentence symbols. Then the function
v:S — {F, T} defined by

V(As) = T, V(AG) = F, V(As) = F

is a truth assignment for S.

Let S be a set of sentence symbols and let v:S — {F,T} be a truth assignment
for S. Let F = {£,,&,,E,E,,E,}. Theorem 2.2.1 implies that the set S of all wifs gen-
erated by S from the functions in F is freely generated. For each function in 7 we also
have the corresponding truth functions F,, F,, F_, F_,, F., introduced in Section 1.2.2
(see (1.2)—(1.6)). Theorem 1.1.27 now implies the following result.

Theorem 2.2.4. Let S be a set of sentence symbols and let v:S — {F, T} be a truth assign-
ment for S. Then there is a unique function v: S — {F, T} satisfying the following:
(i) Forevery A € S,V(A) =Vv(A).
(i) Foreverya,p € S, we have:

_ T, ifv(a)=F,

@ V((-w) = ,f_( :
F, ifv(a)=T,

T, ifv(a)=Tandv(p) =T,
F, otherwise,
T, ifv(a) =T orv(B) =T (or both),
F, otherwise,
F, ifv(a) =T andv(B) = F,
T, otherwise,
T, ifv(a) =Vv(p),

F, otherwise.

@ v((@np) ={
3 v((avp) ={
@ v((@—p))= {
) V((a—p) = {

Conditions (1)—(5) of the above theorem are given in tabular form below:
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a B (-a) (anp) (avp) (@a—p (@a—p)
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Remark 2.2.5 (On Theorem 2.2.4). Let S be a set of sentence symbols and v: S — {F, T}
be a truth assignment for S. Let v: S — {F, T} be as in Theorem 2.2.4. For all a, B e S (iff
means “if and only if”),

M v((-a)) =T iff v(a) = F,

(2) V((anP) =T iff v(a) = T and v(B) = T,

(3 v({(avp) =T iff via) = Tor v(B) = T,

@) v((a — pB)) =T iff if v(a) = T, thenv(B) =T,

6) W((a < p)) =T iff %(a) = V(B).

Example 2.2.6. Consider the set S = {Aj, Ag, Ag} of three sentence symbols and let
v:S — {F, T} be defined by

V(A3) =T, v(Ag)=F, V(Ag)=F.
Let a, B, and y be defined by

a= (A3 — (_'AG))’
Y = ((A3 = (-Ag)) < (A3 — (Ag V Ayg))).

Soa, B,y € S. What is v(a), V(B), V(y)?

Definition 2.2.7. Let ¢ be a wif. Let v be a truth assignment defined on the sentence
symbols appearing in ¢. Then v satisfies ¢ if and only if v(¢) = T.

Example 2.2.8. LetS = {A3, Ag, Ag},letv:S — {F, T}, and let a, 5, y all be as in the above
Example 2.2.6. Does v satisfy a? Answer the same question for f and y.

Definition 2.2.9. Let X be a set of wifs and let v be a truth assignment defined on the
sentence symbols appearing in any wff from X. Then v satisfies X if and only if v(p) = T
for every ¢ € X. We shall say that X is satisfiable if there is a truth assignment that
satisfies X.

Given that X is a set of wifs and 7 is a wff, our next definition will address the fol-
lowing question: When can we view 7 as a conclusion that follows from £, where X is
regarded as a set of hypotheses?
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Definition 2.2.10. Let X be a set of wifs and let 7 be a wif. Then £ tautologically implies T
(written X & 7) if and only if for every truth assignment v defined on the sentence sym-
bols that appear in wffs in £ and in 7, if v satisfies X, then v satisfies 7.

Exercise 9 on page 15 implies the following theorem.

Theorem 2.2.11. Letv;:S — {F, T} and v,: T — {F, T} be two truth assignments, where
S and T are sets of sentence symbols such that S € T. If vi(A;) = vy(A;) for all A; € S,
then Vy(a) = Vy(a) foralla € S.

Corollary 2.2.12. Let ¥ be a set of wffs and let T be a wff. Let
S ={A; : A; appears in awffin X or in t}

and let T be a set of sentence symbols such that S < T. Then X & 7 if and only if every
truth assignment for T that satisfies every member in £ also satisfies 7.

Definition 2.2.10 can be used to identify valid forms of reasoning, or inference rules.
For example, let £ = {(a — B),a} and let v be a truth assignment that satisfies X. Thus,
V((a — B)) = T and v(a) = T. So, by Remark 2.2.5(4), we conclude that v(8) = T. There-
fore, £ & B. This particular tautological implication justifies the formal inference rule
called modus ponens, represented by the diagram

a—p
a >

- B

which asserts that if (¢ — ) and a are true, we therefore can conclude that § is true. In
other words, modus ponens offers an argument that is truth preserving.

Remark 2.2.13. A few special cases concerning Definitions 2.2.7-2.2.10 deserve some

comments.

(a) IfXisthe empty set @, then every truth assignment satisfies X.

(b) Itfollows from (a) that @ E tif and only if every truth assignment satisfies 7. In this
case, we say that 7 is a tautology (written = 7). In other words, 7 is a tautology if and
only if for every truth assignment v containing the sentence symbols in 7, we have
v(r)=T.

(c) Ifthereisno truth assignment that satisfies £, then for any 7 it is vacuously true that
¥ = 7. This can occur if X contains a contradiction; for example, if (A; A (-4;)) € X.

(d) IfXisasingleton {o}, then we write o & 7 in place of {g} 7.

Problem 2.2.14. Let a and § be wifs. Show that (@ — (8 — a)) is a tautology.

Solution. We apply Remark 2.2.13(b). Let v be a truth assignment that contains the sen-
tence symbols occurring in a and . We must show that v((a — (f — a))) = T. Suppose,
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for a contradiction, that v((a — (B — a))) = F. By Theorem 2.2.4(4), (a) V(a) = T and
V((B — a)) = F. Since v((f — a)) = F, we conclude that v(a) = F, which contradicts (a).
Sov((a - (B — a))) = T.Thus, (a — (B — a)) is a tautology.

Definition 2.2.15. Let g and 7 be wifs. Then ¢ and 7 are said to be tautologically equiv-
alent (written o = 7)if o E 7and 7 = 0.

Remark 2.2.16 (On Definition 2.2.15). Let o and 7 be wffs. Then one can show that o == 7
if and only if for every truth assignment v containing the sentence symbols in ¢ and t,
we have V(o) = (7).

2.2.1 Some tautologies

For the remainder of this chapter, we will let A, B, C, ..., Z denote arbitrary sentence
symbols. We note the following.
1. Two simple tautologies:
(A—A)
(AV (-A))
2. De Morgan’s laws:
((=(AVB)) & ((=A) A (=B)))
(=(AAB)) & ((=A) v (=B)))
3. Commutative laws:
((AAB) - (BAA))
((AVB) - (BVA))
4. Associative laws:
(Av(BVC) < (AvB)VvC()
(AABAC)) < (AAB)AC)
5. Distribution laws:
(AABVC) < (AAB)V(AAQ)))
(AvV(BAC) « (AVvB)A(AV()))
6. Conditional laws:
(A — B) & ((-A)VB))
(A — B) & (=(AA(-B))))
(((-A) —» B) & (AVB))
(=(A — (=B))) « (AAB))
7. Double negation law: ((-(-A)) < A)
8. Contrapositive law: (A — B) < ((-B) — (-A)))
9. Biconditional law: (A < B) < ((A — B) A (B — A)))
10. Exportation law: (AAB) - C) & (A —» (B — (C)))
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2.2.2 Omitting parentheses

We now describe some conventions that will allow us to reduce (without any ambiguity)
the number of parentheses used in our wifs. These conventions will give us a “shortcut”
in how we can correctly express a propositional statement.

1

The outermost parentheses need not be explicitly mentioned. For example, we can
write A A B to denote (A A B).

The negation symbol shall apply to as little as possible. For example, we can write
-A A B to denote (—A) A B, that is, ((=A) A B).

The conjunction and disjunction symbols shall apply to as little as possible. For ex-
ample, we will write

AAB — =CvDtodenote (AAB) — ((=C) vD)),

using conventions 1 and 2.
When one logical connective is used repeatedly, the parentheses are assumed to be
grouped to the right. For example, we shall write

anBAytodenotean(BAy)and

a— B —ytodenotea — (f — y).
This convention allows us to observe that for n > 2,

Ay AQy A= Ny Ay, denotes ag A ay A--- A (ay A Qpaq)s 2.3)

Q> Uy — - > dy — Ay denotesay — ay — -+ = (A = Apyq)- 2.4)

In some of the following exercises, we will omit parentheses following these conven-
tions.

Exercises 2.2.

1
*2.

*4,
*5.
*6.

Using Theorem 2.2.11, prove Corollary 2.2.12.

Let X be a set of wffs and let 7 be a wff. Let 7 be either in £ or a tautology. Show that
LET.

Determine whether or not ((A — B) v (B — A)) is a tautology.

Let @ and 8 be wifs. Show that a — 8 — (a A ) is a tautology.

Let a and 8 be wffs. Show that (~a — B) — (-a — -B) — a is a tautology.

Let £ be a set of wifs and let 8, i be wifs. Suppose thatX = 8 and X = (6 — ¢). Show
that X = .

LetZ; and £, be sets of wifs and let & and  be wifs. Suppose thatZ; = a and £, = S.
Show that 2, UZ, = (a A B).

LetX = {a, qy, ..., a,} be a finite set of wifs and let 7 be a wif. Prove that if X = ,
then (¢y Aay A--- A @) — T1is a tautology.
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*9.

*10.
11.
12.
13.

*14.

15.

*16.

17.

18.
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Let £ be any set of wifs and let a and f be wffs. Show that the following hold:

@ Zuf{ate=p iff LE(a—p),

(b) a==p iff = (aep).

Suppose that (a < p) is a tautology. Show that (a — B) is a tautology.

Suppose that either £ = a or X &= . Prove that X = (a Vv f8).

Find %, a, B such that Z = (a v B), and yet £ - a and X ¥ B.

Let a, 8 be wffs. Suppose that a and (a < f) are both tautologies. Show that § is
also a tautology.

Leta, d’, B, and B’ be wifs. Suppose that a ==a’ and B == . Show that

@ (-a) == ("),

M) (@np) =@ Ap),

© (avp) E=-((-a) A (=B)),

@ (@Ap) FA-(@ — (=)

The sets of wifs below are either satisfiable or not. Determine which are satisfiable
by finding a truth assignment that satisfies the given set X. If £ is not satisfiable,
explain (that is, give an argument) why this is the case.

(@ Z={A(A—B), B}

() £ ={(A— B),-A,-B},

(c) £={(A — B),-A,B},

(d X={(AAB),-A,-B},

(e) X={(AA-A),-C, B},

) Z={-(A< B),A -B},

(® I={(A<B)-A B}

(h) £={AAB,-(CAD),D —» -A,C — —B},

(i) Z={AAB,-CAD,D — -A,C — —-B}.

Let £ be a set of wifs and let 7 be a wif. Prove that

Lt ifandonlyif X u {7} issatisfiable.

Let £ be a set of wifs and let ¢, ) be wffs. Let v be a truth assignment that satisfies
L. Prove the following statements:

@ If(pAy)eX thenv(p)=T.

(b) If (¢ — ) € £and -y € L, then v(—-¢) = T.

() If(¥ — @) e Zand —¢ € X, then V() = F.

@ If-(® — @) ek thenv(y)=T.

Determine whether or not the following statements are true. Explain (that is, give
an argument) why each statement is true or explain why it is false.

(@) LetZ={A, (A — B)}..ThenZX = B.

(b) LetXZ ={(AVvB),-B}.ThenX E A.

(c) LetZ={C— (A —B),A,C}.ThenX = (C — B).

(d) LetZ={C— (-A — B),C}.ThenX E (-B — A).

(e) LetX ={(A - B),—=C}.ThenX = (A — B).
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(f) LetZ ={(A & B),~C}.ThenZX = A.
(g) LetX = {(A < B),-C,—-B}. ThenX = -A.
(h) LetX ={(AVvB),~C}.ThenZX E A.
(i) LetZ={(AA-A),-C,B}.ThenZX E D.
19. Let S be the set of all sentence symbols. For a set I of wifs, define the truth assign-
ment vp: S — {F, T} by

{T, ifA; €T,
vr(Ay) = .
F, ifA;¢T.
Justify your answers to the following questions:
(@) LetT ={(AAB),A,-B}. Does vy satisfy I'?
(b) LetT = {(AA-A),C,B}. Does vy satisfy I'?
(c) LetT ={-(A < B),A,-B}. Does vy satisfy I'?
(d) LetT ={(A « B),-A,-B}. Does vy satisfy I'?
(e) LetT ={AAB,-(CAD),D - -A,C — —B, A,B}. Does v} satisfy I'?
(f) LetI ={D,-CAD,D — -A,C — -B}. Does vy satisfy I'?
20. (Substitution) Let a;, ay, ..., @,,... be an infinite sequence of wifs. For each wif ¢,
let ¢* be the result of replacing each occurrence of A, in ¢ with a,,.
(@) Let v be a truth assignment for the set S of all the sentence symbols. Define
u:S — {F, T} by u(A,) = v(a,). Prove that u(p) = v(¢p*) for all wifs ¢.
(b) Prove that if ¢ is a tautology, then so is ¢*.
(c) Prove thatif ¥ ==, then ™ E=¢™.

Exercise Notes: For Exercise 14, apply Remark 2.2.16. For Exercise 19, note that if T’ =
{(AAB),A,-B}, then A € T and B ¢ T. For Exercise 20(a), let P(¢) be the statement
u(p) = v(p*). Now prove “for all wffs ¢, P(¢)” by induction on ¢. (Question: Is (p A)* =
(" AY*)?)

2.3 Completeness of the logical connectives

In logic, a truth function is one that accepts truth values as input and produces a unique
truth value as output. Let V = {T,F}. Thus, an n-place truth function has the form
H:V" — V for some n > 1. Truth functions are also called Boolean functions. Such func-
tions are applied in a variety of different fields, namely, electrical engineering, computer
science, game theory, and combinatorics.

Let a be a wif whose sentence symbols are among A, A,, ..., A,,. We can now define
an n-place truth function H,: V" — V by

H, (X1, Xy, ..., Xy) = V(a), where v(A)) = Xy, V(Ay) = Xy, ..., V(A,) = Xp,. (2.5)
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So, given any wff, we can use it to define a truth function. For example, let a be the wif
(A; V -A,). Then we see that H,: V2 — V satisfies

H(T.T) =T,
H,(T,F)=T,
H,(F,T)=F,
H,(F,F)=T,

which is essentially the truth table for a. This invites an interesting question: Given any
truth function G, is there a wff y such that G = Hy? Before addressing this question, let
us look at some examples.

Example 2.3.1. Suppose that G: V° — V always has output F. Let a be the wff (A A-AY).
Since a is always false and its sentence symbols are among A;, A,, A3, by applying (2.5)
we see that H,(Xy, Xy, X3) = V(a) = F for all x, Xy, X3 € V (see Theorem 2.2.11). So G = H,,.

Example 2.3.2. Let G: V3 — V be such that

T, ilezT,XZ :F,XBZT,
G(Xy, X9, X3) = )

F, otherwise.
Thus, G(T,F,T) = T and this is the only input that produces the output value T. Let y
be the wif (A; A A, A Az) which corresponds to T, F, T. Note that v(y) = T if and only
if v(A)) = T, v(Ay) = F, v(A3) = T. Thus, by applying (2.5), we see that G(xy, Xy, X3) =
H, (X1, X3, X3) = V(p) for all x;, X, X3 € V. S0 G = H,,.

In the above two examples, we were given relatively simple truth functions G and
we were able to find a wif ¢ such that G = Hy. Our next example gives a slightly more
complicated truth function. These examples will provide a guide that will allow us to
prove that for any truth function G there is always a wff ¢ such that G = Hy.

Example 2.3.3. Suppose that truth function G: V3 > V is such that

G(T,T,T) =T,
G(T,T,F) =F,
G(T,F,T)=F,
G(T,F,F) =T, (2.6)
G(F,T,T)=F,
G(F,T,F) =T,
G(F,F,T)=T,

G(F,F,F) =F.
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Let us focus on the cases in (2.6) that produce the value T. Also, for each such case let us
identify a corresponding wif y; as was done in Example 2.3.2, namely,

G(I,T.T) =T y1=(AAAyAAy),

G(T.F,F) =T y,=(A;A~AyA-Ay),
GE,T.F)=T ;= (A AAyA-Ay),
GEF,T) =T y,=(-A; A-AyAAy).

2.7

Now let a = y; VY, V Y3V )y, that s, let a be the following wif:
(Al AN AZ AN A3) \Y (Al AN _|A2 AN _|A3) \Y (_|A1 AN AZ A\ _|A3) vV (_|A1 AN _|A2 A\ A3)
Note that v(a) = T if and only if G(v(A,), v(A;), v(A3)) = T. By applying (2.5), we see that
G(Xy, Xy, X3) = Hy (X1, X3, X3) = v(a) for all x;, x5, x3 € V. S0 G = H,,.
The above examples offer a foundation for the proof of the following theorem.

Theorem 2.3.4. Let V = {T,F} and let G:V" — V be any truth function. Then there is a
wff a such that G = H,, where H, is defined by (2.5).

Proof. If G:V" — V is always false, then let a be the wif (A; A —A;). Thus, G = H, (see
Example 2.3.1). Suppose now that G has some output values being T, say, kK many such
cases. Let us list all the cases that yield the value T. For each such case let us also identify
a corresponding wff y; as was done in Example 2.3.3 (see (2.7)), specifically,

G(Xy1, X1, - X00) =T, y1 = (B APiz A+ A Bn),

G(Xg1, Xg25 -+ > Xon) =T, Vo = (B AP Ae+ A Bo)s

G(Xk1> Xkgs - > Xin) = Ts Vie = (Bra ABra A+ A B>

where for1 <i<kand1<j<n, wehave

ﬁl] _ {Aj lel] =T,
_|Aj, lfxij =F.

Note that v(y;) = T if and only if v(A;) = X;;, V(Ay) = Xi3,..., V(A,) = Xip. Leta =y Vy, Vv
---VYg. SoV(a) = T if and only if G(v(A,), V(A,), ..., V(A,)) = T. By applying (2.5), we see
that G(xq, Xy, ..., Xp) = Hy (X4, Xp, ..., Xp) = V(@) for all x4, Xy, ..., X, € V.S0 G = H,. O

Theorem 2.3.4 shows that every truth function is equal to a function of the form H,,
for some wif a. For this reason, the set {A, Vv, -, —, <} of logical connectives can be said
to be truth functionally complete. In fact, the proof of Theorem 2.3.4 shows that {A, v, -}
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is also truth functionally complete. To clarify this assertion, let us say that a wif a is in
disjunctive normal form if

A=y Vy, V-V

where each y; is a conjunction of the form

Vi=Bu BN+ ABin)

and each f; is a sentence symbol or the negation of a sentence symbol. The proof of
Theorem 2.3.4 shows that every truth function is equal to a function of the form H,,
where « is in disjunctive normal form. Thus, {A, Vv, =} is truth functionally complete as
well. This discussion now allows us to establish the following result.

Theorem 2.3.5. Every wff ¢ is tautologically equivalent to a wff a in disjunctive normal
form.

Proof. Let ¢ be a wif and let H, be the truth function defined by (2.5). The proof of
Theorem 2.3.4 shows that H, = H,, where a is in disjunctive normal form. Exercise 3
below shows that ¢ and a are tautologically equivalent. O

Definition 2.3.6. Let C be a subset of {A,V, -, —, &}. Then C is tautologically complete
if and only if every wiff a is tautologically equivalent to a wff a’ that contains only the
connectives in C.

The following result follows from Theorem 2.3.5.
Theorem 2.3.7. The set {A,V, -} is tautologically complete.
Theorem 2.3.8. The sets {—, A} and {—, v} are both tautologically complete.

Proof. We will only prove that the set {-, A} is tautologically complete. A similar proof
shows that {-, v} is tautologically complete. By Theorem 2.3.7 we know that every wif is
tautologically equivalent to a wif which contains only the connectives in {A, v, =}. So itis
sufficient to prove by induction that every wif a containing only connectives in {A, v, -}
is tautologically equivalent to a wif @’ with connectives only in {-, A}.

Base step: Let a = A;. As a has no connectives, a’ = a as required.

Inductive step: Let a and f be arbitrary wifs that contain only the connectives in the set
{A, Vv, =}. Assume the induction hypothesis

a==a', where a’ contains only the connectives in {-, A},

IH
B==pB', where B’ contains only the connectives in {-, A}. (IH)

We prove that each of the wifs (-a), (a A B), (a v ) is tautologically equivalent to a wif
that contains only connectives in {-, A}.
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For (—a), from (IH) and Exercise 14(a) on page 38, it follows that (-a) == (-a"),
where (-a’) has connectives only in {-, A}.

For (a A B), from (IH) and Exercise 14(b) on page 38, we have (a A ) == (@' A ﬁ’ ),
where (a’ A 8') contains only connectives in {-, A}.

For (a v B), from (IH) and Exercise 14(c) on page 38, we have
(@vB) = =((=a') A (=5")),

where ~((-a’) A (=8")) contains only connectives in {-, A}. O

Remark 2.3.9. Let F = {£_,&,, &} and let S = {A, Ay, Ag, ...} be the set of all sentence
symbols in the language £. Let S be the set generated from S by the functions in F.
Theorem 1.1.25 validates the proof by induction given in Theorem 2.3.8.

Exercises 2.3.
1. For each of the following wifs a, using the tautologies in Section 2.2.1, find a wif that
is tautologically equivalent to a which contains connectives only in C:
@ a=(A—->B)o (C—>A)andC ={A,V,},
() a=(A—>B) < (C—>A)andC = {—~, AL
2. Let V = {T, F} and define the truth function G: Viov by

T, if exactly two of xy, Xy, X3 are T,
G(X1>X2)X3) = .
F, otherwise.

Find a wif a in disjunctive normal form such that G = H,, where H, is defined as
in (2.5).

*3. Let a and p be wifs with the same sentence symbols among Ay, A,,...,A,. Let H,
and Hpg be defined as in (2.5). Prove that H, = Hp if and only if a == B.

4. Using the fact that {-, A} is tautologically complete, prove (by induction) that {-, v}
is tautologically complete.

*5. Given that {—, A} is tautologically complete, prove (by induction) that {-, —} is tau-
tologically complete.

6. Let F = {£,,€_} and let S = {A, Ay, A3, ...} be the set of all sentence symbols in
the language £. Let S be the set generated from S by the functions in F. Now let
v:S — {F, T} be defined by v(A;) = T for alli = 1,2,3,.... Prove by induction on a
that v(a) = T for all a € S.Is {A, —} tautologically complete?

Exercise Notes: For Exercises 4 and 5, read the first paragraph of the proof of The-
orem 2.3.8. For Exercise 5, see Exercise 14(d) on page 38.
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2.4 Compactness

Let £ be an infinite set of wifs. Suppose that every finite subset of X is satisfiable. Thus,
every finite subset of £ has a particular truth assignment that satisfies all of the wffs
in this finite subset. Is there a truth assignment that will thus satisfy all of the infinite
number of wffs in £? The compactness theorem addresses this interesting question. In
this section, we shall give a proof of the compactness theorem, for propositional logic.
We begin by formally introducing the following pertinent definition.

Definition 2.4.1. A set of wifs X is finitely satisfiable if and only if every finite subset of
¥ is satisfiable.

The proof of the following theorem shows that a sophisticated mathematical argu-
ment can establish a powerful result about propositional logic. A similar argument will
be applied in Section 4.2.

Theorem 2.4.2 (Compactness theorem). Let X be a set of wifs. If £ is finitely satisfiable,
then X is satisfiable.

Proof. The basic idea behind the proof is as follows: Given that X is finitely satisfiable,
we first construct a set of wffs A such that:

1 XcAh

(2) Ais finitely satisfiable;

(3) for every wif a, either @ € A or (-a) € A.

We shall then use A to define a truth assignment that satisfies .

Note that Theorem 1.1.30 (on page 12) implies that the set of all wffs is a countable
set, because the set of all wifs is a subset of the set of all finite sequences of symbols in
the countable language £. Thus, let

ay, Ay, A3, ..., Ay, 2.8)

be a fixed enumeration (see Corollary 1.1.33) of all the wffs in the language £. Define by
recursion on N (see Theorem 1.1.23) the following sets:
(1) AO = Z,

. A, Ufanq}, i A, U{a,,q} is finitely satisfiable,
() Ay =

A, U{=a,,4}, otherwise.
From the above recursive definition, we see that A, € A, for all n € N. Thus,
ZongAlgAzg"'.

We shall now establish four claims.

Claim1. Foralln € N, A, is finitely satisfiable.
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Proof of Claim 1. We shall use induction on n.
Base step: Let n = 0. Then A, = £, which is finitely satisfiable by assumption.

Inductive step: Let n € N be arbitrary. Assume the induction hypothesis
A, is finitely satisfiable. (IH)

We prove that A,,,4 is finitely satisfiable. Since A, is finitely satisfiable, Exercise 1 below
implies that A, 4 is finitely satisfiable. (Claim 1) O

Let A = | J,en Ap- Clearly, Z € Aas Ay = X. Recall that A, € A, foralln € IN.
Claim 2. The set A is finitely satisfiable.

Proof of Claim 2. We show that each finite subset of A is satisfiable. Let II be a finite
subset of A. Since IT € A = J,,¢y A, and IT is finite, it follows that IT ¢ A, for some n. By
Claim 1, A,, is finitely satisfiable. Thus, II is satisfiable. (Claim 2) (J

Claim 3. For every wff a, either a € A or (—~a) € A, but not both.

Proof of Claim 3. Let a be any wif. Since (2.8) enumerates all of the wifs, thereisann € N
such that a = a,. Either a,, € A, or (-a,) € A, by (ii) of the above construction. Since
A, < A, it follows that a € A or (-a) € A.If both a € A and (—a) € A, then {a, (-a)} would
be a finite subset of A. Since A is finitely satisfiable, we must conclude that {a, (-a)} is
satisfiable. This is a contradiction, as the set {a, (—~a)} is not satisfiable. Therefore, we
cannot have both a € A and (-a) € A. (Claim 3) I

We now continue with the proof of the theorem. Note that:
M Zch
(2) Ais finitely satisfiable by Claim 2;
(3) for every wif a, either a € A or (-a) € A, but not both, by Claim 3.

We will now use A to define a truth assignment. Let S be the set of all the sentence
symbols and define v: S — {F, T} by

T, ifA; €A,
V(A) = . 2.9)
F, ifA; ¢A.

Letv: S — {F, T} be the extension of v as given by Theorem 2.2.4.

Claim 4. For every wff ¢, we have
V() =T ifandonlyif ¢ €A. (2.10)

Proof of Claim 4. We shall prove that (2.10) holds by induction on a.
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Base step: Let a = A; be any sentence symbol. Since V(4;) = v(4;), (2.9) implies that
ﬁ(Al) =T lffAl € A.

Inductive step: Let a and f§ be arbitrary wffs. Assume the induction hypothesis

va)=T iff aceA,
vp)=T iff BeA @D

We must prove that the same holds for each of the following wifs:

(=a), (@A B), (av B), (a— B),(a < p).

CASE (—a): We prove that v((-a)) = T iff (-a) € A.

(=). Assume that v((~a)) = T. Since v((~a)) = T, it follows that V(a) = F. So, a ¢ A
by (IH). Therefore, by (3), (—a) € A.

(). Assume that (—a) € A.Since (-a) € A, it follows thata ¢ A; becauseifa € A, then
by (2) {(-a), a} is a satisfiable subset of A, which is false. Thus, a ¢ A and the induction
hypothesis (IH) implies that V(a) = F, and therefore v((-a)) = T.

CASE (a A B): We must prove that V((a A B)) = T iff (a A B) € A.

(=). Assume that v((aAB)) = T. We need to show that (aAB) € A. Since v((anB)) = T,
it follows that v(a) = T and v(8) = T.So by (IH), @ € A and § € A. Suppose, for a
contradiction, that (a A §) ¢ A. Therefore, by (3), we conclude that (=(a A B)) € A. So
{a, B, ~(a A B)} is a finite subset of A and by (2) it is satisfiable, which is false. Therefore,
(anp) eA.

(<). Assume that (a A B) € A. We will show that V((a A B)) = T. As (@ A B) € A, it
must be the case that a € A and f € A. To see this, suppose that eithera ¢ Aor g ¢ A. If
a ¢ A, then by (3), we have (-a) € A. So {(a Af), (—a)} is a finite subset of A and by (2) it is
satisfiable, which is false. A similar argument shows that f € A. Hence,a € Aand § € A
and by (IH), we have v(a) = T and v(f) = T. Therefore, v((a A B)) = T by Remark 2.2.4(2).

Cases (a Vv B), (a — ), and (a < J): See Exercise 4 below. (Claim 4) I

Claim 4 implies that v satisfies A. Since £ ¢ A, it follows that v satisfies X. Therefore,
there is a truth assignment that satisfies X. (Theorem) [J

Remark 2.4.3. If we were working in a language that had uncountably many sentence
symbols, then Theorem 2.4.2 could be established by using Zorn’s lemma (Lemma 1.1.36)
to obtain a set of wifs A that satisfies items (1), (2), and (3) in the above proof. The re-
mainder of the proof would then be as that after the proof of Claim 3.

The next useful corollary is just the contrapositive of the Compactness Theorem 2.4.2.

Corollary 2.4.4. Let % be a set of wffs. If ¥ is not satisfiable, then there is a finite subset %'
of X that is not satisfiable.
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Let £ be a set of wifs and let 7 be a wif. From Exercise 16 on page 38, we have
Lt ifandonlyif Xu {-7}issatisfiable. (2.11)

The above equivalence (2.11) will be used in the proof of the following corollary.
Corollary 2.4.5. IfX & 7, then there is a finite X, € X such that L, = T.

Proof. Assume that X = 7. We shall prove that there is a finite X, ¢ X such that £, < 7.
Suppose, for a contradiction, that for every finite £, < X, we have £ # 7. The above (2.11)
implies that

for every finite y € £, Xy U {7} is satisfiable. (2.12)

Consider the set of wffs IT = £ U {~7}. The above statement (2.12) implies that every finite
subset of I is satisfiable (why?). The compactness theorem thus asserts that IT = XU {~7}
is satisfiable. Thus, by (2.11), we have that £ ¥ 7, which contradicts our assumption. [

Exercises 2.4.
*1. Let X be a set of wifs and let a be a wff. Assume that X is finitely satisfiable. Prove
that either £ U {a} or £ U {—a} is finitely satisfiable.
2. Let X be a set of wifs. Show X is not satisfiable if and only if £ = (A A (-A)).
3. Using the above Exercise 2, show that Corollary 2.4.5 implies Theorem 2.4.2.
*4. In the proof of Theorem 2.4.2, complete the proof of Claim 4.
5. Let X be the following 3-element set of wifs:

£ ={((-A v -B) AC),((-AV ~C) AB),((-CV -B) AA)}.

(@) Show that every subset of Z containing less than three elements is satisfiable.
(b) IsXissatisfiable?
6. Let X and II be sets of wffs. Suppose that for every finite II, ¢ II, the set £ U II; is
satisfiable. Using the compactness theorem, prove that £ u IT is satisfiable.
7. Let A be a set of wifs such that:
(1) Ais finitely satisfiable and
(2) for every wif a, either a € A or (-a) € A.
Let y and S be wiffs.
(@) Suppose thaty € A and f is tautologically equivalent to y. Show that 8 € A.
(b) ShowthatyApf e Aifandonlyify € Aand f € A.
(c) Showthatyv f e Aifand only if eithery € Aor 8 € A.
(d) Provethat(y — B) e Aifand onlyify ¢ Aor 8 € A.

Exercise Notes: For Exercise 1, if Lu{a} and LU {-a} are not finitely satisfiable, then
there are finite subsets X, and Z, of £ such that X, U {a} and %, U {—a} are not satisfiable.
Why? Now consider the finite set £; U Z,.
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2.5 Deductions

Let X be a set of wifs and let ¥ be a wif. We know that £ = 1 means that every truth as-
signment that satisfies every formula in £ will also satisfy ¢. Rather than working with
all such truth assignments, is it possible to “deduce” ¥ from Z? If so, what methods of
deduction would be required to demonstrate this fact? Whenever mathematicians com-
pose a proof, they justify a final conclusion by means of a series of intermediate steps.
Such steps typically appeal to some given assumptions and/or previously established
theorems. A theorem in mathematics is a statement that is true. Therefore, mathemati-
cians use assumptions and true statements to derive new results. In propositional logic,
can we use assumptions and tautologies to derive new results? In this section we will
positively address this question.

Definition 2.5.1. Let X be a set of wifs and let i be a wff. A deduction of ¥ from £ is a
finite sequence of wifs (ay, ay, ..., a,) such that a, = ¥ and for each k < n,

1 apel,

2. @y is a tautology, or

3. @y is obtained by modus ponens from some a; = (a; — @;) and q;, where i,j < k.

When there is a deduction of ¢ from X, we shall say that ¢ is deducible from % or that ¥
is a theorem of L, and we shall write £ I 1. Recall that the inference rule modus ponens
is discussed on page 35.

A deduction can be viewed as a “formal proof,” where each step is governed by
rules (1)—(3) of Definition 2.5.1. We use the term deduction to avoid confusion with our
own mathematical proofs.

We now present two examples of deductions for which each “deduction sequence”
is written in a vertical form with a parallel justification for each step.

Example 2.5.2. Let X = {a, B}. Show that £ + (a A B).

Solution. The following (vertical) sequence satisfies the conditions in Definition 2.5.1:

1a inX,

2.8 inXk,

3.a - B — (aAp) tautology (see Exercise 4 on page 37),
4.8 — (anp) from 1 and 3, by modus ponens,

5. (@np) from 2 and 4, by modus ponens.

Therefore, £ + (a A ).

Example 2.5.3. Let X = {H — -B,D — B, H}. Show that X I (-D).
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Solution. The (vertical) sequence below is a deduction:

1.H—- -B inX,

2.D—->B inZ,

3.H inZ,

4. -B from 1 and 3, by modus ponens,
5.(D - B) — (-B — —D) tautology (see contrapositive law),!
6.-B — —-D from 2 and 5, by modus ponens,
7.-D from 4 and 6, by modus ponens.

Hence, X + (D).

The definition of £  y involves truth assignments and the definition of £ + ¢ in-
volves a “deduction sequence.” On the surface, these two concepts, £ = ¥ and & + 1,
seem to be unrelated. However, they are in fact intimately related. Our next two theo-
rems will confirm this purported intimacy. The first theorem shows that if the assump-
tions in £ are true and £ + o, then the deduction ¥ is also true, that is, our deduction
system preserves truth and for this reason, it is said to be sound.

Theorem 2.5.4 (Propositional soundness). Let X be a set of wffs and  be a wff. If & + 1,
thenX & .

Proof. Suppose that X + . So let (a4, qy,...,a,), where a, = ¥, be a deduction of ¥
from X. For each natural number k, we shall prove thatif 1 < k < n, then X = a;. We
shall use strong induction on k. If k = 1, then by Definition 2.5.1, either a; € Z or a; is a
tautology. It thus follows that £ = a; (see Exercise 2 on page 37). Now let k be such that
1 < k < n and assume the induction hypothesis

LEea; foralli<k. (IH)

We must show that £ & a;. Again, if a; € X or a; is a tautology, then we have X & q;. On
the other hand, suppose that a, is obtained by modus ponens from some a; = (a; — ;)
and a;, where i,j < k. By the induction hypothesis (IH), we have £ = (a¢; — ;) and
Ik q;. Hence, I F a; (see page 35). This completes the induction, and thus, Z = 3. O

Our next theorem shows that the converse of Theorem 2.5.4 holds, that is, for every
wif ¢, if £ tautologically implies i, then there is a deduction of ¥ from X. Thus, our
deduction system is said to be complete.

Theorem 2.5.5 (Propositional completeness). Let X be a set of wffs and let Y be a wff. If
Ly, thenk + .

1 See Exercise 10 on page 38.
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Proof. Assume that I & y. Corollary 2.4.5 implies that there is a finite £, < £ such that
Ly E 7. Let Ly = {a, ay, ... a,}. Exercise 6 below implies that

G oo oY

is a tautology. By repeated use of modus ponens, it easily follows that X, - §. ASE; € %,
we conclude that X + 3. O

Theorems 2.5.4 and 2.5.5 immediately establish the following result.
Theorem 2.5.6. Let L be a set of wffs and let i be a wff. Then £ = ¢ if and only if Z + 1.

Our next theorem can sometimes be used to indirectly show that a deduction exists.
Our proof of this result applies Theorem 2.5.6.

Theorem 2.5.7 (Deduction theorem). Let X be a set of wffs and let a and B be wffs. Then
L+ (a— B)ifandonly if 2 u {a} + B.

Proof. Let X be a set of wifs and let a and § be wifs. We thus have

L+(@a—p) iff LEE(a— ) byTheorem 25.6,
iff Lu{a}e=p DbyExercise 9 on page 38,
iff Xu{a}rp  byTheorem 2.5.6. O

Example 2.5.2 shows that {y,a} + (y A g). So by Theorem 2.5.7, {y} (¢ — (y A 9)),
where £ = {y}, ais g, and B is (y A 0).

In the conditional a — B, a is called the hypothesis and S is called the conclusion. In
a mathematical proof of a conditional “if , then _”, one typically assumes the hypothe-
sis and then derives the conclusion. The deduction theorem affirms that this is a valid
technique of proof in mathematics.

Our final theorem of this section verifies that “proof by contradiction” is a valid
proof technique.

Definition 2.5.8. A set of wifs X is said to be inconsistent if there exists a wif § such that
L+ fand X  -f. Moreover, X is consistent if for no wif f we have X - fand X + —f.

Theorem 2.5.9. Let X be a set of wffs and let a be a wff. If £ U {—a} is inconsistent, then
Lha

Proof. Assume that X U {-a} is inconsistent. Hence, for some wff § we have Zu {-a} - 8
and Zu{-a} + =f. Thus, by Theorem 2.5.7 (the deduction theorem), we have X  (-a — f8)
and X + (—a — —f). By Exercise 5 on page 37,

(~ra—-pB)—> (—a—--f)—a

is a tautology. Exercise 4 below now implies that £ - a. O
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There are alternative deduction systems for propositional logic that are equivalent
to the one presented in this section. In particular, there are deduction systems that start
with a finite set of tautologies and from this finite set one can then deduce all of the other
tautologies. Consequently, the deductions in such systems can be much longer than those
presented in this text. On the other hand, there are deduction systems that consist only
of a finite number of inference rules and from these rules one can deduce all of the tau-
tologies. Again, such deductions can be longer than the ones presented here. For each
of these alternative systems, one can prove a corresponding analogue of Theorem 2.5.6,
and thus these deduction systems are equivalent. In an introductory course in mathe-
matical logic, we believe that one should present a deduction system that is succinct and
produces the desired results.

Exercises 2.5.
1. Let X be an infinite set of wffs and let a be a wff. Show that if Z + a, then there is a
finite £, ¢ X such that %, I a.
2. Let X be a set of wifs and let a be a wif. Let £; € X. Show thatif X, - a, then £ + a.
3. Let X be a set of wifs and let i be a tautology. Show that Z I .
*4. Let X be a set of wifs and let 0, ) be wifs. Suppose that X + 6 and X + (8 — ). Show
that X + ¢.
5. LetX; and X, be sets of wifs and let a and 8 be wifs. Suppose thatZ; - a and X, + S.
Show that £, U Z, + (a A ).
*6. Let n > 1be a natural number and let " = {a;,qy,...a,} be a set of n wffs. Prove
that for all wffs 6, if 2" = 6, then a¢; — @, — --- — @, — 0 is a tautology.
7. Letn > 1be a natural number and let " = {a, a,,...a,} be a set of n wffs. Prove
that for all wffs 6, if ¢; — a, — --- — a,, — 0 is a tautology, then =" = 6.
8. Give a deduction from the set £ = {-A v B,B — C, A} whose last component is C.
9. Let X be an infinite set of wiffs. Show that if X is inconsistent, then a finite subset of
¥ is inconsistent.

Exercise Notes: For Exercise 6, one can repeatedly apply Exercise 9 on page 38 (see
Remark 2.2.13(b)). A more formal proof of this result can be obtained by induction on n.
For Exercise 7, a proof of this result is obtained by induction on n (see (2.4) on page 37).



3 First-order logic

Mathematical logic is a branch of mathematics that investigates the foundations of math-
ematics. In this chapter, we shall do the same. Specifically, in Section 3.1, we discuss first-
order languages, together with some examples of first-order languages. First-order logic
is rich enough to formalize virtually all of mathematics. In Section 3.2, we will investi-
gate mathematical structures (models) and Tarski’s definition of truth (satisfaction) in a
structure. In Section 3.3, we shall examine the definition of proof (deduction) in a first-
order language.

3.1 First-order languages

In this section, we will formally define the syntax of the language of first-order logic.
First-order logic deals with formal statements that are expressed in terms of predicates,
logical connectives, variables, and quantifiers. A preview of such a logic is given in Sec-
tion 1.2.3. We will first identify the symbols of the language. An expression will then be
any finite string of these symbols. Some expressions will be nonsensical, while others
will be meaningful. Some of the meaningful expressions will denote terms which act as
the nouns and pronouns of the language; the terms can be interpreted as naming an
individual object. Once we have the terms of the language, we can define the atomic
formulas of the language. Atomic formulas are analogous to the sentence symbols of
propositional logic. We can then identify the correct rules of grammar and define the
well-formed formulas (wffs) of the language. To specify the terms and wifs requires def-
inition by recursion (see Section 1.1.5).

Definition 3.1.1. The alphabet of a first-order language £ consists of the following dis-
tinct symbols:
A. Required symbols
1. Parentheses: (, ).
2. Logical connectives: —, .
3. Variables: v{,vy,V3,Vy,...,Vp, .. ..
4. Predicate symbols: For each natural number n > 0, a (possibly empty) set of
n-place predicate symbols.
5. Quantifier symbol: V.
B. Optional symbols
1. Equality symbol: =, a 2-place relation.
2. Constant symbols: A set of symbols, for example, {c;,C5, ... }.
3. Function symbols: For each natural number n > 0, a (possibly empty) set of
n-place function symbols.

https://doi.org/10.1515/9783110782073-003
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A dot over a familiar symbol is used to emphasize that the symbol has to be inter-
preted. This is also done to make a distinction between the symbol itself and the object
that it commonly represents.

A finite string of symbols from the language £ will be called an £-expression. For
example, v3c,¢q)v5 is an L-expression that starts with the symbol v;. Moreover, vsc, is
a proper initial segment of v5c,¢;)vs. The L-expression vsc,cq)v; does not appear to be
expressive. We will soon isolate the meaningful £-expressions from those that are mean-
ingless.

There exists a one-to-one correspondence between each £-expression a and a finite
sequence of symbols in £ denoted by (a*), where a” is the result of putting commas
between all of the symbols in a. So an £-expression a is a proper initial segment of the
L-expression B when (a*) is a proper initial segment of (8*) (see Definition 1.1.6).

In the formal language £, we have listed only the logical connectives — and -. Since
these two connectives are tautologically complete (see Exercise 5 on page 43), there is
no need to add more.

We also only identified the universal quantifier V. Since —Vx-Px is equivalent to
IxPx (see Quantifier Negation Laws 1.2.4(3)), the existential quantifier 3x can be viewed
as an abbreviation for -Vx-.

In the language £, an n-place function symbol is intended to represent a function of
nrelevant £-expressions &, &,, . .., &,. Let f be a 3-place function with input &, &, &;. In
mathematics f (g, €5, €3) would be the standard notation for the output value; however,
if f is a function symbol in the language £, we shall represent this output value by using
the Polish notation fe;&,&;, where there are no parentheses or commas.

An n-place predicate symbol is intended to represent a property or relationship
of n relevant £-expressions; for example, if P is a 4-place predicate symbol in the lan-
guage £, then Pe;g,e5¢, can be viewed as an assertion about &, &, &5, ;. Predicate sym-
bols are sometimes also called relation symbols.

The predicate, constant, and function symbols can be viewed as the parameters of
the language. To specify a language we must identify the particular predicate, constant,
and function symbols that we wish to use. Suppose our language £ contains the equality
symbol, the predicate symbols P;, P,, ..., constant symbols ¢y, ¢,, ..., and function sym-
bols fi,f5,. ... In the future we shall describe a language £ by expressing it as a set of
these selected parameters, that is, we shall say that £ is the set

LZ {Pl,Pz,...,Cl,Cz,...,fl,f‘z,...,i}.

Example 3.1.2 (Language of groups). When working with groups, one employs the lan-
guage L = {e, *, =}, which has a 2-place function symbol = for the group operation and a
constant symbol e for the identity element. We can write v; * v, and v, = v, to represent
the Polish notation =v,v, and *v,v,, respectively.



54 —— 3 First-order logic

Example 3.1.3 (Language of set theory). Set theory uses the language £ = {&,=}, where
€ is a 2-place predicate symbol. We shall write v; € v, to denote év,v,.

Example 3.1.4 (Language of elementary number theory). In number theory one can use
the language £ = {<,0,S, +, x, E, =}, which has a 2-place relation symbol <, a constant
symbol 0, a 1-place function symbol $ (successor), and 2-place function symbols + (addi-
tion), x (multiplication), and E (exponentiation). Using Polish notation with these func-
tion symbols,

Sx denotes “x +1,”
+xy denotes “x +y,”
xxy denotes “x x y,”

Exy denotes “x’'.”

We will write x < y to represent <xy. The Polish notation $S0 can be translated to

lates to $(S(8(0))) and SS0 translates to $($(0)), we see that +SS0SS0 translates to
$(8(0)) + $(5(5(0))). For any natural number n, we will write

n times
§"0=385---50.

Example 3.1.5 (A language for real analysis). Inreal analysis, one could use the language
L =1{<,-,0,c,1l,f,=} which has a 2-place relation symbol < (less than), constant symbols
0 (zero) and c, a 2-place function symbol - (subtraction), and 1-place function symbols
| | (absolute value) and f.

3.1.1 Terms and atomic formulas

We will now describe how to generate the terms of a language £. The method we shall
use to construct the terms is not new; it is just an application of Theorem 1.1.24. Let U be
the set of all £-expressions. For each n-place function symbol f in the language £, define
the (mathematical) function &: U" — U by

Er (€1, 8,0, 8n) = fE165 -+ &y (3.1

Definition 3.1.6. Let 7 = {&; : fis a function symbol in £} and let 7 be the set of all
the variables and constants in the language £. Let 7 be the set generated from 7 by the
functions in F. An £-expression 7 is an £-term if and only if 7 € 7.
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So the set of £-terms T is the set of £-expressions that can be constructed by starting
with the variables and constants and by repeatedly applying the functions in F. This
may all seem a bit abstract. Let us try to make Definition 3.1.6 a little more concrete by
revisiting Theorem 1.1.24 in the current context.

Let Cy = T be the set of all the variables and constants in the language £. Constants
and variables are £-terms, and we can use these to build more £-terms. Let h be a 3-place
function symbol in £. Thus,

gh(gl’ 82, 83) = h8182€3,
by (3.1). Now, using &, the following set produces more £-terms:
gh[CO] = {h8182£3 : 81,82,83 € Co}

Thus, t € &[Cy] if and only if t = he g,e;5, where g, &, &5 are constants or variables.
For example, t; = hv,c5v; and t, = heycqv, are L-terms in &,[Cy]. This is only a small
sample of all the £-terms that can be constructed. For any other function symbol g in £,
there are new £-terms in &,[Cy] as well. To put all of these £-terms together in one set,
we define C; = Cy U L& (Gl : & € F}, where F is as in Definition 3.1.6. So t;, ¢, € C;.
Using all of the £-terms in C;, we can build more £-terms by letting C, = C; U [J{&[G] :
& € F}. So, for example, if g is a 4-place function symbol in £, then gvytiyt, € C,. Note
that

8vatiCity = gvghvycsvsciheycpv,.

By repeating this process, we get the set of £-terms
Co1 = Ca U HEIC) - & € F}

for each n. Then the set of all the £-terms is 7 = [, Gy, that is, the set T is generated
from 7 by the functions in F. Definition 3.1.6 and the previous discussion justify the
following useful remark.

Remark 3.1.7. An L-expression ¢ is an £-term of a language £ if and only if either

1. tisavariable, or

2. tisaconstant symbol, or

3. tisftt,---t,, wheref is an n-place function symbol of £ and each ¢; is an £-term.

If the language £ has no function symbols, then the terms are just the constants and
the variables.
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3.1.2 Induction on terms principle

Since there is a procedure for building all of the £-terms by starting with the variables
and constants and then repeatedly applying the function symbols of £, Theorem 1.1.25
yields the following term induction principle and associated proof strategy.

Term Induction Principle. Let S(t) be a statement about £-terms t. If

1.  S(v) and $(c) hold for all the variables v and constants ¢ and

2. for all n-place function symbols f in £ and all £-terms t;, t,, ..., t,, if S(¢;) holds for
each1<i< n, then S(ftit, - - - t,),

then $(t) is true for all £-terms t.

Proof Strategy. In order to prove an assertion “for all £-terms t, $(t)” by induction on
L-terms, use the following proof diagram:

Base step: Prove S(v) and S(c) for all the variables v and constants c.
Inductive step: Let f be an n-place function symbol and let ¢;, t,, ..., t, be £-terms.
Assume S$(t;) foreach1<i<n.
Prove S(ft;ty - - - t,).

Applications of the term induction principle
Theorem 3.1.8. Let L be a language. For all £-terms t and t, neither t nor t is a proper
initial segment of the other.

Proof. For all £-expressions 7 and t, we shall write 7 < ¢ to mean that 7 is a proper initial
segment of t and write 7 £ t to mean that 7 is not a proper initial segment of ¢. Consider
the following statement about £-terms ¢:

Forall £L-terms 7,7 £« tandt £ 7.

We prove that the above statement holds for all £-terms ¢ by induction.

Base step: Let t be a variable or a constant symbol and let 7 be any £-term. As ¢t has
no proper initial segments, we see that 7 « t. Since t is either a variable or a constant
symbol, Exercise 1 below implies that t £ 7.

Inductive step: Let f be an n-place function symbol in £ and also let ¢;,¢,,...,t, be
L-terms. Assume the induction hypothesis:

For all L-terms 7,7 £ t;and ¢; £ T, whenever1<i<n. (IH)
Let 7 be any £-term. We must prove that

T£ftyty---t, and ftit,---t, £ T
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First we show that 7 £ ft;t, - - - t,. Assume, to the contrary, that (a) 7 < ft;t,--- t,. Hence,
7 must start with the symbol f. Since f is an n-place function symbol and 7 is a term,
Tmusthave the form 7 = fry7, - - - 7, where 74, 7y, . . ., T, are £L-terms. From (a), we obtain
frty -1, < ftyty - - - t,. By dropping the common starting symbol f, we conclude that

TTy Ty < bty ty. (32)

As 7y and t; are £-terms, the induction hypothesis (IH) implies that 7; and ¢; cannot be
proper initial segments of one another. Thus, (3.2) implies that 7; = ¢;. Hence,

Ty Ty < by by (3.3)

By similar reasoning, (3.3) implies that 7, = t,. Continuing in this manner, we infer that
T =1t,T =1ly,...,Tpq = th_q. From (3.2), we now conclude that ¢, < 7,,, which contra-
dicts (IH). Hence, T £ ft;t, - - - t,. A very similar argument shows that ft;t,---t, ¢ 7. O

Theorem 3.1.9 (Unique readability of terms). Let £ be a language and let T be the set of
all the variables and constant symbols. Moreover, let T be the set of terms generated from
T by the functions in F = {&; : f is a function symbol in L}. When the functions in F are
restricted to the set of L-terms T, we have the following:

(@) The range of each function in F is disjoint from T.

(b) Any two distinct functions in F have disjoint ranges.

(c) Every function in F is one-to-one.

That is, the set of all terms is freely generated from the set T by the functions in F.

Proof. Let £, T, F, and T be as stated in the theorem and let all the functions in F be

restricted to 7.

(@) Leté& € F.Since every term in the range of & starts with the function symbol f, we
see that the range of & is disjoint from 7.

(b) Letf and g be two distinct function symbols in £. Since f # g, we see that the ranges
of & and & are disjoint.

(c) Letf be an n-place function symbol in £. We must show that & is one-to-one. Let
T Ty e .. Tp and ty, by, . . ., t, be L-terms. Assume that

5f(T1) Tosenes Tn) = gf(tl’ tz, ey tn)

Thus, fry7y -+ - 7, = ftyty - t,. Theorem 3.1.8, together with its proof, allows us to
concludethatty = t;, 7y = ty,..., T, = ty- O

The above unique readability theorem (Theorem 3.1.9) will now allow us, via Theo-
rem 1.1.27, to recursively define a function on the £-terms using a function that is only
defined on the variables and constants of a language L.

We are now able to define the atomic formulas.
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Definition 3.1.10. An atomic formula of a language £ is an expression of the form
Ptt, - - - t,, where P is an n-place predicate symbol of £ and each ¢; is an £-term.

For example, if the language £ has the 2-place equality symbol, then the expression
=v,v; is an atomic formula as the variables are £-terms. In the future, we shall let =v;v;
be denoted by v; =v;. In the language of set theory, €v;v; is an atomic formula, which we
will denote by v; € v;. As we will see, the atomic formulas will play a role similar to that
of the sentence symbols of propositional logic.

Theorem 3.1.8 directly implies an analogous result for atomic formulas.

Theorem 3.1.11. Let £ be a language. No proper initial segment of an atomic formula is
itself an atomic formula.

3.1.3 Well-formed formulas

We will now formally define the concept of a well-formed formula (wff or formula) in
first-order logic. Informally speaking, wifs are the atomic formulas and those expres-
sions that can be built up from the atomic formulas using the logical connectives and
the quantifier symbol.

Before defining wifs, we need the following formula building functions. Let a and §
be expressions. Then

. (a) = (-a),
E_(a,p)=(a— p), (3.4
SQi(a) =VYya,

where i =1,2,3,.... The following definition is a special case of Theorem 1.1.24.

Definition 3.1.12. Let £ be alanguage,let 7 = {£_,&_,, Eopp gy }, and let S be a set of
all of the atomic formulas in the language £. Let S be the set generated from S by the
functions in F. An £-expression a is a wff if and only if a € S.

We will also say that a is an £-formula, or an £-wjff, to mean that a is a wif in the
language £. The following remark is justified by Definition 3.1.12.

Remark 3.1.13. An L-expression ¢ is a wif if and only if either
1. yisan atomic formula, or

¥ has the form (-a), where a is a wff, or

¥ has the form (a — f8), where a and j are wifs, or

¥ has the form Vv;a, where aisawifand i > 1.

W

Example 3.1.14. Let £ = {P,f, ¢, =}, where P is a 2-place predicate symbol, f is a 1-place
function symbol, and c is a constant symbol. The following are £-formulas:
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1. Vv (Pvsc — vy = fr), where Py;c and v, = fc are atomic formulas,
2. W (fv, = fc — (=Pfvyc)), where f, = fc and Pfv;c are atomic formulas,
3. YW Yv(fvy = fu, — vy =vy), where fu; = fi, and v; = v, are atomic formulas.

3.1.4 Induction on wffs principle

Since Definition 3.1.12 ensures that there is a procedure for building each wff by first
starting with atomic formulas and then applying the connective symbols -, — and the
quantifier symbol V, Theorem 1.1.25 validates the following induction on wffs princi-

ple.

Wff Induction Principle. Let S(a) be a statement about an arbitrary wif a. If
1. S$(@) is true for all atomic formulas ¢ and
2. for all wifs a and B, $(a) and S$(B) imply that $((-a)), S((a — B)), and S(vv;a),

then $(a) is true for all wifs a.

Proof Strategy. In order to prove an assertion “for all wifs a, $(a)” by induction, use
the following diagram:

Base step: Prove S(¢) for all atomic formulas ¢.
Inductive step: Let a and f§ be arbitrary wifs.
Assume S(a) and S(B).

Prove $((-a)), S((a — B)), and S(Vv;a).

Applications of wff induction principle
Theorem 3.1.15. Let £ be a language. For all wffs a and f, neither a nor § is a proper
initial segment of the other.

Proof. For all £-expressions ¥ and ¢, we shall write ¥ < ¢ to mean that ¢ is a proper
initial segment of ¢ and write 1 £ ¢ to mean that ¥ is not a proper initial segment of ¢.
Consider the following statement about wifs a:

Forallwffsy,y ¢« aand a £ y.

We prove that the above statement holds for all wifs a by induction.

Base step: Let a be an atomic formula and let y be an arbitrary wif. To show that
Y £ @, assume, to the contrary, that y < a. Since a is an atomic formula, there exist
an n-place predicate symbol P and terms t;,t,,...,t, such that a = Pt;t,---t,. Hence,
(a) y < Ptyty---t,. So y starts with the predicate symbol P. As y is a wif, it follows
that y must also be an atomic formula. Thus, (a) contradicts Theorem 3.1.11. A similar
argument shows that a £ y.
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Inductive step: Let a and f§ be wifs. Assume the induction hypothesis:
For all wifsy,wehavey ¢ a,a ¢ yandy £ B, £ y. (IH)

Let y be any wiff. We must prove that y £« ¢ and ¥ # y whenever ¢ has the form
@ (na),

) (a—p),or

3) wva.

Let us first consider case (2). To show that y « (a — B), assume (for a contradiction) that
(v)y < (@ — p). So y starts with the symbol (. Thus, as y is a wif, y must have the form
(=3) or ({ — @), where 9, {, and ¢ are wffs (see Remark 3.1.13). If y had the form (=3),
then (v) would imply that the wif a starts with the symbol -, which is impossible. Hence,
¥ = ({ = ¢), and thus ({ — @) < (a — ). Therefore, by dropping the left parenthesis,
the induction hypothesis (IH) implies that { = a. It now follows that ¢ < § (why?), which
contradicts (IH). An analogous argument shows that (@ — B) £ y. The proofs of cases (1)
and (3) also follow by a similar argument. O

It is now straightforward to establish the following important theorem (see the
proof of Theorem 2.2.1).

Theorem 3.1.16 (Unique readability of wffs). Let £ be a language and let S be the set of all
the atomic formulas. Moreover, let F = {£_,E_,, Eo,r €y - 1. Let S be the set generated
from S by the functions in F. When the functions in F are restricted to the set of wffs S,
we have the following:

(@) The range of each function in F is disjoint from S.

(b) Any two distinct functions in F have disjoint ranges.

(c) Every function in F is one-to-one.

That is, the set of all wffs is freely generated from the set S by the functions in F.

Theorem 3.1.16 will now allow us, via Theorem 1.1.27, to recursively define a function
on the wifs of a language £ using a function that is only defined on the atomic formulas
of the language.

3.1.5 Free variables

A variable v is free in a wiff if it occurs at least once in the formula without being intro-
duced by the quantified expression Vv. In set theory one uses the language £ = {&,=},
which has the 2-place predicate symbol €. Here are two wifs from the language of set
theory and their translations into English.
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1. Vv (vy € vy) English: “Every set is an element of itself.”

2.Vv3(v3 €V — v3 €Vv,) English: “Every element in v, is also in v,.”

There is a critical difference between these two formulas. The first formula translates
to a complete English sentence, whereas the second formula translates to an English
expression containing the two variables v; and v,. In the second formula, we shall say
that v; and v, are “free variables.” Note the variable in the first formula is attached to a
quantifier. In this case we say that the variable is bound by a quantifier. For another ex-
ample, let £ = {P, ¢, =}, where P is a 2-place predicate symbol and c is a constant symbol.
Then the variable v, is free in the wif (Vv;Pv;v; — (=Pv;c)) because the appearance of
v; after — is not attached to the quantifier.

The above descriptions of “free” and “not free” variables may seem a bit vague. We
shall now give a precise mathematical definition for the concept of a variable occurring
free in a wff. The following definition by recursion is an application of Theorems 1.1.27
and 3.1.16, as will be demonstrated. It is this definition that one should use to determine
whether or not a variable appears free in a wif.

Definition 3.1.17. Let £ be a language with variable v. The concept that v occurs free in
a wif of £ is defined recursively as follows:

1. voccurs free in ¢ if ¢ is an atomic formula and v appears as a symbol in ¢;

2. voccurs free in (-a) if and only if v occurs free in q;

3. voccurs freein (a — p) if and only if v occurs free in a or v occurs free in f5;

4. voccurs free in Vv;a if and only if v occurs free in a and v + v;.

We will now formally justify the validity of Definition 3.1.17. Before continuing, it is
recommended that one revisit Theorem 1.1.27. Let £ be a language and let V be the set of
all finite sets of the variables of £. Let 7 = {£_,£_,, &g, &y, - - }, 1et S be the set of atomic
formulas, and let S be the set generated from S by the functions in F. Of course, S is the
set of all the wffs. For each function in 7 we define the associated functions F_: V — V,
F . .VP5v, Fp:V — V (for each i > 1) as follows:

F.(a) =a,
F_(a,b)=aub,
Fo (@) = a\ {v;}.

Now let h: S — V be defined by
h(¢) = set of variables, if any, that occur in the atomic formula ¢.
Theorems 1.1.27 and 3.1.16 imply that there is a unique h: S — V such that:

() h(a) = h(a) if a is an atomic formula,
@ h((-~a)) = h(a),
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3 h((@— B)) = h(@ Uh(B),
@ h(va) = h(a) \ {v;}.

For every wff a, it follows that E(a) isthe set of all the free variables in a. Thus, if E(a) =g,
then a has no free variables.

Definition 3.1.18. Let a be a wif in a language £. If no variable occurs free in a, then a
is called a sentence, or an L-sentence.

Let a be a sentence. When one translates a into English, one will obtain a complete
English sentence. On the other hand, if  is a wif in which variables occur free, then an
English translation of f will lead to an English expression containing variables.

3.1.6 Notational abbreviations

The limitations that our first-order languages have imposed upon us should be clear.
For example, we cannot use the logical connectives A and v, and we cannot use the
existential quantifier 3v. These restrictions will now be removed by using the method
of “abbreviations,” which will translate our wiffs into a more readable form. This method
does not change our formal definition of a wff; it will only enhance the readability of our
wifs. However, whenever we define or prove new results about a first-order language,
we will use Definition 3.1.12 as our definition of a wiff.

Since the set of logical connectives {-, —} is tautologically complete, the usage of
the logical connectives A and Vv can be expressed in terms of the connectives - and —.
Moreover, the existential quantifier 3 can be expressed in terms of - and V (recall the
Quantifier Negation Law 1.2.4(3)). Hence, we will be using the following abbreviations
and conventions. The word “abbreviated” is intended to mean “easier to read.”

1. The expression (a A f) is the abbreviated form of (~(a — (—f))).

2. The expression (a v p) is the abbreviated form of ((-a) — B).

3. The expression (a < f) is equivalent to ((a — B) A (B — a)) and thus the abbrevi-
ated form of

(=((a = B) = (=( — 0))).

The expression Jva is the abbreviated form of (=Vv(-a)).

5. x=yisthe abbreviated form of =xy. Similar abbreviations will apply to several other
2-place predicate and function symbols; namely, x <y is the abbreviated form of <xy
and x + y is the abbreviated form of +xy.

6. x # yisthe abbreviated form of —=xy. Similar abbreviations apply to the negation
of a few other 2-place predicate symbols. For example, x £y is the abbreviated form
of = <xy.
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7. The outermost parentheses need not be explicitly written. So we can write Vxa — 8
rather than (Vxa — f) and —a rather than (-a).

8. -, V,and 3 apply to as little as possible. For example,
(@) —a A B denotes (-a) A B, and not =(a A B);
(b) Vxa — B denotes (Vxa — B), and not Vx(a — f);
(c) Ixa A B denotes (Ixa A B), and not Ix(a A ).

9. Aand v will apply to as little as possible, given that convention 8 is observed. For
example, a A f — -y v § denotes ((a A ) — ((my) V 8)).

10. When one connective is used repeatedly, grouping is to the right. For example, we
will writea A Ay todenotea A (BAy)anda — f — ytodenotea — (B — )).

11. We will add parentheses when necessary to ensure readability.

Given an abbreviated wff, one can eliminate all of the abbreviations and obtain the un-
abbreviated version. For example, consider the abbreviated wif 3x(a A §). We can begin
to “expand” it to the original wif as follows:

Ax(aAB) & (~vx(=(anp))) by item 4 above,
& (=vx(=(=(a — (=B))))) byitem 1above.

Thus, Ix(a A B) expands to (-¥x(~(=(a — (=f))))). Now, if required, expand a and f,
and do a substitution. For another example, let us rewrite Ixa — . We obtain

Ixa - f o (Ixa - f) adding parentheses,
& ((=vx(-a)) — B) by item 4 above.

Throughout the text, we will attempt to use the following conventions:
— Predicate symbols: Upper-case symbols. Also, €, <, and =.

— Variables: v;, u, v, x, y, z.

— Function symbols: f, g, h. Also, S, +, -, x, etc.

—  Constant symbols: ¢;,¢y,...,a, b, c, .... Also, 0.

— Terms:t, .

—  Wifs: Lower-case Greek letters.

—  Sets of wffs: Upper-case Greek letters.

3.1.7 Examples of languages

Example 3.1.19 (Language of groups). The language £ = {e, *, =} is used in group theory.
The language £ has a 2-place function symbol = for the group operation and a constant
symbol e for the identity element. The quantifier V is intended to mean “for all elements
in the group.” Using £ and writing =xy as x * y, we can express the following group ax-
ioms:
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1 YV VWV (Vg * (Vg % Vg) = (Vg * Vy) * V3), (associativity)
Vv (Vg * e =), (identity element)
3. Vv avy(vy vy =e). (inverses exists)

Example 3.1.20 (Language of set theory). In set theory one employs the language £ =
{é,=}, which has a 2-place predicate symbol €. It is intended that ¥ should mean “for all
sets.” Using £ and writing €xy as x € y, one can express the following:

1 Vv aAvy(vy €vy): “every set is an element of some set,”
2. Yvg(v3 €V > V3 EVy): “every element in v, is also in v,,”
3. YW VYU3((V3 €V AVy € V) — Vy = Vg): “y; has at most one element.”

Example 3.1.21 (A language for real analysis). If we are working in real analysis, then we
could use a language like £ = {<, -, 0,¢,¢,| |,f}, which has a 2-place relation symbol <
(less than); constant symbols 0 (zero), c,and ¢; a 2-place function symbol - (subtraction);
the 1-place function symbol | | (absolute value); and the 1-place function symbol f. It is
intended that V should mean “for all real numbers.” The following wif in the language
L asserts that lim,_,. f(x) = ¢

YV, (0 < vy — Yug((0 < Jvs — ¢ Alvs — | < vy) — [fvg — €] < vy)).

Example 3.1.22 (Language of elementary number theory). In elementary number theory
one can use the language £ = {<,0,S, +, %, E, =}, which has a 2-place relation symbol <
(less than), a constant symbol 0, a 1-place function symbol S (successor; SO denotes 1,
$50 denotes 2, etc.), and three 2-place function symbols + (addition), x (multiplication),
and E (exponentiation; Exy usually denotes x”). The universal quantifier V is intended
to mean “for all natural numbers.” The wif

W1 ((8880 < vy v vy = 8880) — Y, VusWv, (Evyvy + Evavy # Evgyy))

inthelanguage £ asserts Fermat’slast theorem: “For all v; > 3, the equation v‘z’1 +v;1 = le
has no solutions.”

Exercises 3.1.

1. Prove that every £-term cannot have a variable or constant symbol as a proper
initial segment.
Prove Theorem 3.1.11.
Let £ be alanguage. Prove that every wif has an even number of parentheses.
Lett;, ty,...,t, be L-terms, where n > 1. Show that ¢, - - - t,, is not an £-term.
Let £ be alanguage and let a;, ay, . . ., @, be wifs, where n > 1. Show that ¢;a, - - - a,
is not a wif.
6. Let £ be a language and let a;, ay, ..., ay, B1> B> - - - By, be wifs, where n > 1. Show

thatif ayay - -~ a, = BB, -+ By, then a; = B; for alli < n.

ISE I e O
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Let £ be a language and let a;, ay, ..., ax, By, By, . . ., B, be wifs, where 1 < k < n.
Show that ayay - - - ay # BBy Bn-

. Let£bealanguageandletay, ay, ..., ay, b1, By - - - » By be wifs, where n,m > 1. Show

thatif qyay - - a, = p1fy - By thenm =nand a; = f; for alli < n.

In the proof of Theorem 3.1.15, complete the proof of the inductive step by estab-
lishing cases (1) and (3).

Let £ = {£,0,8, +, %, E, =} be as in Example 3.1.22.

(@) Construct one term using all of the function symbols S, %, and +.

(b) Construct one term using all of the function symbols S, +, %, and E.

(c) Using only your terms in (a) and (b), give an example of an atomic formula.
Let £ be a language and let 7 be the set of all the variables and constant symbols.
Let 7 be the set of the terms of £. Let x € 7 be a variable and let t € 7. Define
h:T — T by

h(v) =

t, ifv=yx,
{ (3.5)

v, ifv#x.

By Theorems 3.1.9 and 1.1.27, there is a unique function h: 7 — 7 such that:

() h(v) = h(v) for eachv € T

@) h(ftity---t,) = fh(t)h(t,) - - - h(t,) for each n-place function symbol f and terms
t by s by

Forallt € T, let T = h(7). Prove by induction on terms that for all terms 7, 7} is

the term obtained by replacing all occurrences of x in 7 with .

Let £ = {£,0,S, +, %, E, =} be as in Example 3.1.22. For each of the following wifs,

find the free variables, if any:

(@) x <880,

(b) 0< 880,

(©) x <SSy,

(d x=80vy=0,

(&) Vx(x<880) » (x=80vx=0),

) Vx(x <880 — (x =80 v x = 0)).

Which of these wifs are sentences?

Eliminate all of the abbreviations and obtain the unabbreviated version of the fol-

lowing wffs, where P, H, C, D are 1-place predicate symbols:

(@ 3IvyPvyV Py,

(b) Vv Py AHvy — Fvy,-Cvy V Dy,

Prove Theorem 3.1.16.

Let £ = {£,0,8,+, %, E,=} be as in Example 3.1.22. Write wiffs that express each of

the following:

(@) “vgiseven,”

(b) “vgisodd,”
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() “vsisaprime number”

(d) “there isno largest even number,”

(e) “vqisa perfect square,”

(f) “every natural number is the sum of four perfect squares.”

16. Let £ = {P, c}, where P is a 3-place predicate symbol and c is a constant symbol.
Using the induction on wifs principle, prove that for every wif a, the number of
symbols n (counting repetitions and parentheses) in a can be written as a linear
combination of 2 and 3, that is, n = 2a + 3b, where a and b are integers. (Note:
abbreviations are not allowed and a variable v; is counted as one symbol.)

Exercise Notes: For Exercise 1, use induction on terms. For Exercise 2, no induction is
required. Read the inductive step of the proof of Theorem 3.1.15. For Exercise 7, use proof
by contradiction and then conclude that a; = Bxfxs1- " Pn-

3.2 Truth and structures

In Section 3.1, we investigated the syntax of first-order languages. This syntax involves
certain rules of grammar that dictate the correct formation of a wff. Semantics, on the
other hand, involves giving meaning to these logical formulas. In this section, we will
pursue the semantics of these languages and attach meaning to their wifs. This involves
the definition of a structure which interprets the parameters of the language. To define
the concept of a wif being “true” in such a structure requires a precise mathematical
definition. This formidable definition is due to Alfred Tarski and formalizes the intuitive
meanings of the logical connectives and the quantifiers. Because of its mathematical
precision, Tarski’s semantic conception of truth is often said to be the best formulation
of truth in a structure.

3.2.1 Structures for first-order languages

In order to determine the truth value of a wff that contains quantified variables, we must
investigate structures in which one can deal with the possible values that the variables
may possess. Structures will also address the following questions:

— What are the objects that the universal quantifier V refers to?

— What objects do the constant, function, and predicate symbols represent?

Given a language of the form

£: {Pl)PZ""’Cl’C2>'"’fi’fZ""’i}’

a structure 2 for the language £, or an L-structure, is a sequence of the form
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2A A A2 A A
A= (AP Py 03 Ch s fy oy 5ee)

such that:

1. ThesetAisnonempty and is called the domain of 2. The set A is sometimes denoted
by |21].

2l assigns to each n-place predicate symbol P an n-place relation P* ¢ A",

2l assigns to each constant symbol ¢ a member ¢ of the universe A.

2L assigns to each n-place function symbol f an n-place function f%: A" — A.

The equality symbol = will always be interpreted as “equality.”

AR i N

The idea is that 2( assigns meaning to each of the parameters of the language £. The
quantifier V is to mean “for every element in A.” The symbol c is the name of an element
¢ in A. Each atomic formula Pt;t, - - - t,, is to be interpreted as asserting that the n-tuple
of elementsin A, named by t,, ..., t,,isin the relation P*. Each term of the form ft;t, - - - t,,
can be interpreted as being the value of the function f*: A" — A when applied to the
elements in A which are named by ¢;, ..., t,.

Example 3.2.1 (Groups). Consider the language £ = {e, *, =} of groups discussed in Ex-
ample 3.1.19. A structure for this language is 2 = (Q*; e%, *m), where Q7 is the set
of all positive rational numbers, e = 1, and +2 is the usual multiplication of rational
numbers. This structure is a group as it satisfies the following group axioms:

1 YV VWV (Vg * (Vg % Vg) = (Vg % Vy) * V3), (associativity)
2. Vvy(vy = e=vy), (identity element)
3. Yy 3vy(vy x vy =e). (inverses exists)

Example 3.2.2 (Set theory). Let £ = {&,=} be the language of set theory presented in
Example 3.1.20. A structure for this language is 21 = (N; €), where

¢ = {(m,n) :m <nandm,n € N}.

The structure 2 satisfies the sentence Vv, 3v, (v, €v,), as for every v; € Nthereisav, € N
such that v; < v,.

Example 3.2.3. Consider the language £ = {L,f, c}, where L is a 2-place predicate sym-
bol, f is a 1-place function symbol, and c is a constant symbol. Now let 2( be the structure
A = (N;Lg‘,fm,cm), where:

@ A=N,

() L*is the set of pairs (m, n) such that m < n,

(c) fQ[ = S is the successor function S(n) = n +1,

(d) c* = 0is the natural number zero.

The sentence VxLxfx is true in the structure 2I, becausen < n+1foralln € IN.
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In the above examples, we have used the ambiguous notions that “Q satisfies ¢”
or that “g is true in 2,” where ¢ is a sentence of the language. Is the concept of being
true in a structure so vague that one cannot hope to give an accurate formalization of
this concept? That is, can one give a precise mathematical definition for the concept of
a formula being “true in a structure”?

In 1933, the mathematician Alfred Tarski published a paper in which he discussed
the conditions that a definition for a “true sentence” should satisfy. In 1956, he and his
colleague Robert Vaught at UC Berkeley published a revised version of this paper to serve
as a definition of truth in a structure for first-order languages. In the next section, we
shall present Tarski’s definition of truth.

3.2.2 Satisfaction (Tarski’s definition)

We will define a satisfaction relation between a structure and wffs. Let 2 be a structure
for a language £ with domain A. The satisfaction relation between 2 and a wif will be
defined by means of the following ordered steps:

(a) We first assign each variable in £ to an element in A.

(b) Using the assignment in (a), we assign each term in £ to an element in A.

(c) Using the assignment in (b), we define the satisfaction relation on the wffs.

Definition 3.2.4. Let 2 be an £-structure with domain A. Let V be the set of all the vari-
ables of £. A function v: V — A is called a variable assignment. Now let T be the set of
all the variables and constant symbols in £. Given a variable assignment v, we shall call
the function s: 7 — A defined by

2 (3.6)

) = v(v;), ifv =y, avariable,
c, if v = ¢, a constant symbol,

an assignment.

Let 2 be a structure for a language £, with domain A. Let s: 7 — A be an assignment
as defined in (3.6). Let F = {Sf : is a function symbol in £} (see (3.1)). Theorem 3.1.9
implies that 7 is the set of all the terms and is freely generated from 7 by the functions
in 7. For each function & in F, we also have the corresponding function f % assigned
by the structure 2. Theorem 1.1.27 now implies the following result.

Theorem 3.2.5. Let 2 be an L-structure with domain A and let s: T — A be an assign-

ment. Then there is a unique function’s: T — A satisfying the following:

D s(v) = s(v) for each variable v;

) 5(c) = c® for each constant symbol c;

3) s(ftyty---ty) =1 o (5(t1),5(Ly), - .., S(ty)) for each n-place function symbol f and terms
tistys ...ty
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Theorem 3.2.5 shows that for any given assignment s, the extension s assigns all of
the terms in £ to elements in A. So each term ¢ in £ can be viewed as a name for the
element s(t) in A.

As we will see, a wif is satisfiable in a structure if it holds under some assignment
of its variables. In the definition below, the satisfaction relation is first defined on the
atomic formulas. The atomic formulas are the building blocks for constructing all of
the wifs. Then we define the satisfaction relation by recursion on the more complicated
formulas which are built from the building blocks using -, —, and V. The validity of this
recursive definition follows from Theorems 1.1.27 and 3.1.16, as will be shown.

Definition 3.2.6 (Tarski’s definition). Let £ be alanguage and let 2( be an £-structure. We
define the relation 2 = ¢[s], for all assignments s and all formulas ¢, by recursion as
follows:

D A& =tty[s] iff s(t;) = 5(ty), for terms ¢; and t,;

(2) A& Pty ---t,[s] if (5(t),...,8(ty)) € P%, for atomic formulas Pty -ty

Q) AE (-o)[s] iff A @[s];

@) AE(p - Y)[s] iff (if2A = @[s], then A = P[s]);

(6) 2 & Vvgl[s] iff foralld € A, A E @[s,4].

In (5), the assignment s, ; is exactly like s except at the variable v, where s, ;(v) = d, that
is,

swh, ifv #v,

Salv) = { G

d, ifv' = v.

Example 3.2.7. Let £ = {L,f,c} and let A = (N;L*,f%, c¥) be the structure for this
language as defined in Example 3.2.3, that is,

(@ A=N,

(b) L* is the set of pairs (m, n) such that m < n,

© f % = S is the successor function Sn)=n+1,

() ¢ = 0is the natural number zero.

Let 7 be the set of all the variables and constant symbols and let s: 7 — IN be the
assignment satisfying (a) s(v;) =i—1fori=1,2,....So s(v;) = 0, s(v,) = 1. Thus,

(1 s(c) =0, by Theorem 3.2.5(2);

@) 5(ffc) = FAE(f) = FAF2((c))) = S(S(0)) = 2, by Theorem 3.2.5(3) and (c);

(2) s(ffv3) = S(S(2)) = 4 and s(fvg) = S(5) = 6, by Theorem 3.2.5(3) and (c);

(3) 2= Lcfvg[s], because (s(c), s(fvg)) = (0,6) € L% by Definition 3.2.6(2);

(4) 2 = VYvyLcfiy[s], because
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2 = VYvyLcfi,[s]

iff
iff
iff
iff
iff
iff
iff

foralln € N, = Lefvg[sy, ],

for all n € I, (S, (), Sy, 1n (fV)) € L,
foralln e IN, (O,fm(E‘,Zm(vz))) eL?,
foralln € N, (0,f%(n)) € L*,
foralln € N, (0,S(n)) € L*,

foralln e N,{(0,n+1) € L,

foralln e N,0<n+1;

Definition 3.2.6(5)
Definition 3.2.6(2)
Theorem 3.2.5(2)(3)
by (3.7)

since fQl =S
Sn)=n+1

by (b)

thus, 2 &= Vv,Lcfv,y[s] because it is true that foralln e N,0 < n+1;
(5) 20 ¥ YvyLvafi,[s]; otherwise,

A = YV Lvafv,[s]

iff
iff
iff
iff
iff
iff
iff
iff

foralln € N, & Lvafiy[s,,ja],
foralln € N, (5,,1n(v3), S,n(f2)) € L?,
foralln € N, (2,5,,1,(f)) € L,
foralln € N, (2,fm(§vz|n(vz))> eL?,
foralln e N, (2,f*(n)) € L?,

foralln € N, (2,5(n)) € L%,

foralln e N, (2,n+1) € L*,

foralneN,2<n+1;

thus, 2 # Vv, Lvsfiy[s],as2 ¢ 0+1and 0 € IN.

Definition 3.2.6(5)
Definition 3.2.6(2)
by (3.7) and (a)
Theorem 3.2.5(3)
by (3.7)

asf Ao
Sn)=n+1

a falsehood

Remark 3.2.8 (Extended definition of satisfaction). The abbreviations presented in Sec-
tion 3.1.6 allow us to extend Definition 3.2.6. Let 2 be an £-structure. Then for all as-
signments s and all formulas a and S, one can establish the following extension of Defi-
nition 3.2.6:
A = =ty ty[s] iff s(t;) = s(t,), for terms ¢; and ¢,;
Ak Pty - ty[s] iff (3(t;),...,5(t,)) € P%, for atomic formulas Pt, - - - t,;
A= (—a)[s] iff A afs];

A= (anp)ls] iff A= als]and A = B[s];
AE (avp)ls] iff A E a[s]orAE Bs]);

AE (a - P)ls] iff (A= als], then A = B[s]);
AE (a o P)[s] iff (A= afs]iffA = B[s]);

2= Vva(s] iff foralld € A, E a[sy4];

2l = Jva(s] iff for some d € A, 2 & afs,4].

oy
@
(©)
@
(@)
(6)
M
8
9

When applying Remark 3.2.8 on a wif with multiple quantifiers, note the next re-
mark.



3.2 Truth and structures =— 71

Remark 3.2.9. Let 2 be an £-structure and let s: 7 — A be an assignment, where 7 is
the set of the variables and constant symbols in £. For a variable vand d € A, recall that
the function s, 4 is exactly like s, except at v, where s,4(v) = d, that is,

s, ifv #v,
d, ifv = .

Svld(vl) = {

Let x be a variable where x # v and let e € A. Then, the function (s ;) is exactly like s,
except at the variables v and x, where

(Svld)x|e(v) =d and (Svld)xle(x) =e.

Observe that

(svld)xle = (sxle)vld' (3.8)

On the other hand, one can show that (s4),je = Syje a0d (Sxje)xja = Sxja-

We end this section by showing, as promised, that Definition 3.2.6 is an application
of Theorems 1.1.27 and 3.1.16. Let 2 be an £-structure with domain A. Let S be the set of
all the atomic formulas of £, let 7 = {£_,£_,, &y, &g, - - } (see (34)), and let S be the set
generated from S by the functions in . By Theorem 3.1.16, we know that S is the set of
all the wffs and that S is freely generated from the set S by the functions in F. Let U be
the set of all assignments and let ¢/ be the set of all subsets of U. For each function in 7
we define the associated functions F_: U/ — U, }.'-“H:Z/I2 - U, Foﬁ“ — U (foreachi>1)
as follows:

F.(a)=U\a,
F_(a,b)=(U\a)ub,
Fo(a)={seU: foralld € A, s, € a}.

Now define h: S — U by

h(ztity) = {s € U : s(t;) = 5(t,)},
h(Ptity---t,) = {s € U : (5(t,),...,5(t)) € P},

for each atomic formula =t;t, and Pt,t, - - - t,. Theorems 1.1.27 and 3.1.16 now imply that
there is a unique function h: S — ¢/ such that:

() h(a) = h(a) if a is an atomic formula,

) h((-a)) = U\ h(a),

3 h((a— B)) = U\ k(@) Uh(p), ~

(4) h(Vv;a) ={seU: foralld € A, Syl € h(a)}.
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Define the relation 2 = ¢[s] between ¢ and s by
2 £ @[s] ifandonlyif s e h(e) (3.9)

for all wifs ¢ and all assignments s. Using (3.9) and conditions (1)—(4), one can show that
the relation 2 = ¢[s] satisfies Definition 3.2.6.

Satisfaction relation for sentences

A sentence in a first-order language has no free variables. So given a structure for this
language, one may suspect that if a sentence is true in the structure, then its truth should
be independent of any assignment to the variables in the language. Our focus in this
section is on addressing this suspicion. First we must show that if two assignments agree
on all of the variables in a term, then the two assignments will assign the term to the
same element in the domain of the structure.

Lemma 3.2.10. Let 2 be a structure for a language L. Suppose that s and s' are assign-
ments that agree on all of the variables in a term t. Then'5(t) = 5'(t), wheres' = s'.

Proof. We prove the following statement by induction on terms: Whenever assign-
ments s and s’ agree on all of the variables in a term t, then s(t) = 5 (1)

Base step: Let ¢ and v be a constant and a variable, respectively, of the language L.
Clearly, 5(c) = §'(c) by the definition of § and ', for any two assignments s and s'. If
sand s’ agree on the variables in v, then s(v) = s'(v), and thus 5(v) = 5 ().

Inductive step: Let f be an arbitrary n-place function symbol in £ and let ¢, ¢,,...,t, be
arbitrary terms. Assume the induction hypothesis

For each i < n, if s and s’ agree on the variables in t;, then 5(¢;) = E'(ti). (IH)

We must prove that the same holds for the term ft;t, - - - t,,. Let s and s’ be assignments
that agree on the variables in ft;t, - - - t,. Then for each i < n s and s” agree on the vari-
ables in t;. Hence
S(ftyty -+ ty) = £2(5(t)),5(ty), ...,5(t,)) by Theorem 3.2.5(3),
=25 (t).5(ty),....5'(ty) by (H),
=5 (ftity - t,) by Theorem 3.2.5(3). O
We can now extend Lemma 3.2.10 to formulas as well.
Theorem 3.2.11. Let A be an L-structure. For all assignments s and s' that agree on all

of the free variables in the wff ¢, we have

Ak o[s] ifandonlyif AE @[s'].
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Proof. We prove the following statement by induction on wifs: If assignments s and s'
agree on all of the free variables in ¢, then 2 = @[s] if and only if 2 & ¢[s'].

Base step: Let ¢ = Ptyt, - -- t,, be an atomic formula and let s and s’ be assignments that
agree on all of the free variables in Pt; ---t,. Hence, s and s’ agree on all of the free
variablesin t, ..., t,. Thus,

Ak Ptity---ty[s] iff ((t,),...,5(t,)) € P* by Definition 3.2.6(2),
iff  (s'(t,),...,5'(t,)) € P* byLemma 3.2.10,
iff A= Ptyty---ty[s'] by Definition 3.2.6(2).

Therefore, the proof of the base step is complete.

Inductive step: Let a and f be arbitrary wifs. Assume the induction hypothesis

AEals] iff AEals],

Ak Pls] iff Ae Bls'], )

for all assignments s and s’ that agree on the free variables in the formulas a and j,
respectively. We must prove that the same holds for each of the following:

(—a), (a — B), Vva.

CASE (—a): Let s and s’ be assignments that agree on all of the free variables in (-a). It
follows that s and s’ agree on all of the free variables in a. Therefore, the first part of the
induction hypothesis (IH) holds. Hence

A& (~a)[s] iff A als] by Definition 3.2.6(3),
iff A w afs'] by (IH),
iff A (-a)[s'] by Definition 3.2.6(3).

CASE (@ — p): Let s and s’ be assignments that agree on all of the free variables in the
wif (@ — p). It follows that s and s agree on all of the free variables in both a and g.
Therefore, the induction hypothesis (IH) holds. Hence

AE(a—- P)s] iff Ak als]implies A = B[s] by Definition 3.2.6(4),
iff 2 & afs'] implies A = B[s'] Dby (IH),
iff Ak (a—P[s'] by Definition 3.2.6(4).
CASE Vva: Let s and s’ be assignments that agree on all of the free variables in Vva. Since

v is not free in Vva, it does not follow that s and s’ agree on the variable v. However, for
any d € A, it does follow that s,; and s"}ld agree on v and hence on all the variables in
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a. Thus, the induction hypothesis (IH) implies that 2 = a[s,4] if and only if A = 0([3",| als
for any d € A. Therefore,

2= Yva[s] iff foreveryd € A, = ¢[s,4] by Definition 3.2.6(5),
iff foreveryd e A,2 = @[sy,] by (IH),
iff 2k VYva[s'] by Definition 3.2.6(5). O

The following corollary shows that for a sentence ¢, the truth or falsity of 2 = @[s]
is independent of the assignment s. Thus, we can write = ¢ if for some (hence every)
assignment s, we have 2( = ¢[s].

Corollary 3.2.12. Let 2 be a structure for a language L. Let ¢ be a sentence. Then
2 £ @[s] for every assignment s if and only if 2 = ¢[s'] for some assignment s’

Proof. Let 2 be a structure for a language £ with domain A. Let ¢ be any sentence.

(=). Assume that 2 = ¢[s] for every assignment s. Then (since A is nonempty) it
follows that 2 = ¢[s'] for some assignment s’.

(&). Assume that 2 = ¢[s'] for some assignment s’. We shall show that 2 & ¢[s] for
every assignment s. Let s be an arbitrary assignment. Since ¢ is a sentence, it has no free
variables. Thus, s and s’ agree on all the free variables in ¢. Theorem 3.2.11 now implies
that 2 = ¢[s]. O

Corollary 3.2.12 supports our next definition.

Definition 3.2.13. Let 2 be an £-structure. Let ¢ be any sentence. We shall say that ¢ is
true in 2 or that 2 is a model of ¢, denoted by 2 = ¢, if for some (or every) assignment s,
we have 2 = ¢[s]. In addition, let £ be a set of sentences. We shall say that 2 is a model
of Zif 2 = ¢ for all ¢ in X.

Example 3.2.14. Let £ = {0,1, +, %, =} be the language having equality, two 2-place func-
tion symbols + and %, and two constant symbols 0, 1. Now consider the two structures
R = (R;0,1,+,x) and Q = (Q;0,1,+, x), where + and x are the standard addition and
multiplication operations. Find a sentence ¢ in the language £ that is true in one of these
structures but false in the other.

Solution. Let ¢ be the sentence 3v(v x v = 1 + 1). Then % & ¢ since V2 € R. However,
9 # @ because V2 ¢ Q.

3.2.3 Logical implication
Logical implication is a truth preserving relation between a given set of premises and

a conclusion; namely, whenever the premises are all true, the conclusion is true. The
definition of logical implication in first-order logic is very similar to the definition of



3.2 Truth and structures =—— 75

tautological implication in propositional logic (see Definition 2.2.10). However, the fol-
lowing definition of logical implication is more complicated than that of tautological
implication, in part because Tarski’s definition of satisfaction is complex.

For the duration of this section, let £ be a given language and let 7 be the set of all
the variables and constant symbols in £.

Definition 3.2.15. Let I be a set of wffs and let ¢ be a wff. Then T logically implies ¢,
denoted by I' = ¢, if and only if for every structure 2l and every assignment s: 7 — A, if
2 = a[s] for every a in T, then 2L = ¢[s].

Remark 3.2.16. Some special cases concerning Definition 3.2.15 deserve mention.

(@) IfTis the empty set @, then every structure models I'.

(b) Itfollows from (a) that @ = ¢ ifand only if 2 = ¢[s] for every structure 2 and every
assignment s.

(c) Ifthere is no structure and assignment that will satisfy all of the wifs in T, then it is
vacuously true that T = ¢, for any ¢.

(d) IfTis asingleton {y}, then we write y = ¢ in place of {y} = ¢.

Definition 3.2.17. Let ¢ be a wif. Then ¢ is logically valid (written as = @) if and only if
for every structure 2 and every assignment s: 7 — A, we have 2 = ¢[s].

Definition 3.2.18. Two wffs ¢ and i are logically equivalent (denoted by ¢ == y)if ¢ = ¢
and ¥ = ¢.

Corollary 3.2.12 implies that for sentences, Definition 3.2.15 does not depend on the
assignments. So logical implication can be stated more concisely for sentences.

Corollary 3.2.19. Let X be a set of sentences and let i be a sentence. Then:
1. X E ¢y ifand only if every model of X is also a model of ¥;
2. Yislogically valid if and only if Y is true in every structure.

Example 3.2.20. Let £ = {Q, P}, where Q is a 1-place predicate symbol and P is a 2-place
predicate symbol. Show that the following hold:

1 VvQvy E Qv,,

Quy ¥ YV;1Qvy,

E-a—a,

Yv1Qv; E 3v,Qv,,

IxVyPxy = Vy3xPxy,

Vy3xPxy ¥ IxVyPxy,

E 3x(Qx — VyQy).

Noue e

Solution. We will show why items 1-7 hold.
1. To show Vv;Qv; = Qv,, let 2 be an £-structure with assignment s: 7 — A such that
A = Yv;Qv,[s]. We must show that2( = Qv,[s], thatis, we must show that s(v,) € QQ[.
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Letd = s(v,). Since A = Vv, Qv [s], it follows that A = Qvy[s,,q]. Thus, s, 14(v1) € 0*,
so d € Q*. Therefore, s(v,) € Q2.

2. To show Qv; ¥ Vv;Qv;, we must find a structure 2 and an assignment s: 7 — A
such that 2 = Qu;[s] and 2 # Vv,Qv,[s]. Let A = {1,2}, Q* = {2}, P* = & and let
A = (A; Qm,Pm). For an assignment s such that s(v;) = 2, one can now show that
A = Qvy[s] and A ¥ Yv,Qvy[s].

3. Toshow E -—a — a, let 2 be an £-structure with assignment s: 7 — A. Assume
that 2 £ ——a[s]. We must show that 2l £ a[s]. Since 2( £ --a[s], it follows that
2 # -a[s] by Remark 3.2.8(3). Since 2 i -a[s], it follows that 2 = a[s], again by
Remark 3.2.8(3).

4. To show VYv;Qv; = 3v,Qv,, let A be an £-structure with assignment s: 7 — A. As-
sume that 2 = Vv;Qv;[s]. We must show that 2( = 3v,Qv,[s], that is, we must show
that for some d € A we have 2 & Qv,[s,,q]. Since A = Yv;Qv,[s], it follows that for
alld € A, 2 E Qvs,, 4] Thus, because the universe of 2 is nonempty, there is a
d € Asuch that 2 = Qv[s,, 4]. Hence, s, 14(v;) = d € Q%0 Sy,1a(vy) = d € 0*. We
conclude that 2( = 3v,Qv,[s].

5. To show IxVyPxy = VyaxPxy, let 2 be an £-structure and let s: 7 — A be such that
20 = IxVyPxy[s]. By Remark 3.2.8(8)(9), there exists a d € A such that for all e € A,
we have 21 & Pxy[(Syq)yje] (see Remark 3.2.9). So, for all e € A, thereisad € A
such that 2 = Pxy[(sye)xq] (see equation (3.8)). Therefore, by Remark 3.2.8(8)(9),
A = Vy3axPxy|s].

6. To show Vy3xPxy i 3xVyPxy, we must find a structure 2 and s: 7 — A such that
2 £ VyaxPxy[s] and A = IxVyPxy[s]. Let A = Z, P* = < (the standard less than
relation), QQL = g and let A = (A4; Qm,PQl). For any assignment s, one can now
show that 2 = VyaxPxy[s] (because there is no largest integer) and A & 3xVyPxy|s]
(because there is no smallest integer).

7. To show that = 3x(Qx — VyQy), let 2l be an L-structure and let s: 7 — A. We must
show that 2 = Ix(Qx — VyQy)[s]. There are two cases to consider.

Case (i): Q™ = A. Letd € A. As Q% = A, we see thatd € Q%.So 2 Qx[syq] and
2 = YYQy[syql- It thus follows that A = (Qx — VYyQy)[sy 4], by Remark 3.2.8(6).
Therefore, 2 £ Ix(Qx — VyQy)[s], by Remark 3.2.8(9).

Case (i): Q* # A.Letd € Abe such thatd ¢ Q*. We see that 2 # Qx[8yq]. It thus fol-
lows (vacuously) that if 2 & Qx[sy 4], then 21 = VyQy[s]. Hence, by Remark 3.2.8(6),
2 = (Qx — VyQy)[syq]- Therefore, 2 = Ix(Qx — VyQy)[s], by Remark 3.2.8(9).

3.2.4 Definability over a structure

Let 2 be an £-structure with universe A. Some subsets of A and relations on A can be
singled out by using a wff and the satisfaction relation. In this case, we can say that the
subset or relation is definable over 2I. This is an important concept that we will pursue
in this section. Theorem 3.2.11 justifies the following definition.
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Definition 3.2.21. Let 2 be an £-structure and let ¢ be a wff having all of its free vari-
ables in the list v;, v,,...,vg. For all a;, a,, . .., a; in 4, the notation

A= ofa,ay,...,a]
means that for some (hence for any) assignment s: 7 — A such that s(v;) = a; for each
i=12,...,k, wehave 2 £ ¢[s].

Example 3.2.22. Let £ = {L,f,c} and let 2 be as in Example 3.2.7. Let ¢ be the wiff
v, Lfvyvy. Then 2 = ¢[2] and 2 ¥ ¢[1].

Let £ = {0,1, +, %, =} be the language having equality, two 2-place function symbols
+ and %, and two constant symbols 0,1 Let ® = (R;0,1, +, x) be the structure, where
+ and x are the standard operations of addition and multiplication. The structure A is
called the real field. Note that for any a € R, it follows that a > 0 if and only if a = x* for
some x € R. This fact implies that there is a wif ¢ with a free variable such that

REopla] iff a=0.
Let ¢ be the wif 3x(v; = x x x). Then
RE (v =xxx)[a] iff a=0.
For this reason, we shall say that the interval [0, co) is definable over R and that the
formula Ix(v; = x x x) defines [0, co) in A.
Moreover, for any a,b € R,a < bifand onlyif b = a + x? for some x € R. Thus, the

ordering relation “less than or equal to” is also definable over the structure 4, that is,
there is a wif ¢ with two free variables such that

RE=yYla,b] iff a<b.
Let ¢ be the wif 3x(v, = v; + x x x). Then
R E Ix(vy=vy +xxx)[a,b] if a<b.

Thus, we can say that the relation {{a,b) € R x R|a < b} is definable over R and that
the formula 3x(v, = v; + x % x) defines this relation in fR.
We now give a precise description of the concept of definability over a structure.

Definition 3.2.23. Let 2 be an £-structure with domain A. Let ¢ be a wif having all of
its free variables in the list v;, v,, ..., vy. Then the k-ary relation on A

{{a, ag,...,a.) | A = @lag, ay, ..., a ]}

is definable over 2A and the formula ¢ defines this k-ary relation in 2.
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Example 3.2.24 (Sublanguage of elementary number theory). Recall the language of
number theory £ = {<,0,S,+,%,E,=} in Example 3.1.4. Consider the sublanguage
L' = {0,8,+,% =} of £ and also the £'-structure N’ = (N;0,S, +, x), where 0 = 0,
SN - s (successor function), and W= +, s = x are the standard operations of
addition and multiplication, respectively. We identify some subsets of IN and relations
on N that are definable over \V:
1. Letm,n € N. Clearly, m < nif and only if n = m + k for some k € N, where k > 1.
Moreover, k > 1when k = i + 1 for ani € N. This allows us to now show that the

relation {{m,n) : m < n} is definable over N. The formula
Fvg(vy = vy + Svg)
is such that
m<n iff N E 3vs(vy = vy + Svg)[m,n].

2. Foreach n € N, it follows that {n} is definable. For example, for the wff v; = 550,
we see that {3} = {n: N £ v; = S8S0[n]}.

3. The set of prime numbers is also definable over . Observe that p € N is a prime
ifand onlyif1 < pand for all m,n € N,if m-n = p,thenm = 1orn = 1. Let us
first try the following formula, where 1is represented by S0, p is represented by the
variable v;, and v, and v; represent m and n, respectively. Thus, we obtain

S0 < vy AVVYV3(Vy X V3 = vy — (v, =80 v vg = §0)).

As < is not part of the language £', we must replace SO < v, with an appropriate
£'-wff. By item 1, we have 1 < p if and only if A" £ Jvs(v; = SO + Svs)[p]. Thus, the
set of primes is definable over A by the £'-wff

Fvg(vy = 80 + Svg) A VY, VVs(vy X Vg = vy — (v, = 80 V vy = S0)).

Some relations on a structure are definable over the structure and some are not.
The concept of a homomorphism (see Section 3.2.6) can sometimes be used to show that
a relation is not definable over a given structure.

3.2.5 Classes of structures

A structure consists of a set along with functions and relations that are defined on the
set. In mathematics, one often studies a particular collection of structures because they
each satisfy a specific set of axioms. For example, groups, rings, fields, and vector spaces
are four types of structures that each satisfy four different sets of axioms. In this section,
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we want to pursue this theme in terms of structures of a particular language that satisfy
all of the sentences in a specific set.

Definition 3.2.25. Let £ be a set of sentences in a given language £. Then Mod(X) de-
notes the class (collection) of all £-structures in which every sentence in X is true, that
is, Mod(Z) is the collection of all £-structures 2 such that A = ¢ for all ¢ € L.

For a single sentence i we shall write Mod(y) rather than Mod({y}).

Example 3.2.26. Consider the language £ = {e, *,=} of groups as discussed in Exam-
ple 3.2.1. Let X be the set consisting of the following three group axioms:

1 VYV VW VVg(vy * (Vg * V) = (Vg * V) * V3),

2. V(v e=vy),

3. Vv vy (vy * vy =e).

Then Mod(Z) is the collection of all groups.

Let K be a collection of structures for a language. Suppose that every structure in
K satisfies one particular sentence and any structure that satisfies this sentence is also
in K. When this is the case, K is called an elementary class (EC).

Definition 3.2.27. Let K be a class of structures for a given language £. Then K is said
to be an EC if € = Mod(y) for some L-sentence 1.

The term “elementary” is a synonym for “first-order” and the term “class” is a
synonym for the word “collection.” Our next definition is just an extension of Defini-
tion 3.2.27.

Definition 3.2.28. A class K of £-structures is said to be an EC in the wider sense (EC,)
if K = Mod(Z) for some set of £-sentences Z.

Two structures for a language may be different, but they may be alike with respect
to satisfying the exact same sentences in the language.

Definition 3.2.29. Let 2 and B be £-structures. Then 2 and B are elementarily equiva-
lent, denoted by 2 = B, if and only if for every sentence ¢
A= iff BEo.
That is, two structures are elementarily equivalent if they satisfy the same sen-
tences. Different worlds can sometimes share the same truths.

Definition 3.2.30. Let K be a class of £-structures. Then K is elementarily closed if for
all £-structures 2 and B, if 2 € K and 2 = B, then B € K.

Let X be a set of sentences in a language £. Then X = Mod(Z) is elementarily closed,
because if A € K and 2 = B, then*B = ¢ forall ¢ € X,50 B € K.
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Definition 3.2.31. Let A be an £-structure. The theory of 2, denoted by Th(2l), is the set
of all £-sentences true in 2, that is,

Th(2() = {¢ : ¢ is a sentence and A = ¢}.

Let 2 be an £-structure. Then 2 € Mod(Th(2()) and, as noted above, Mod(Th(2())
is elementarily closed. So, in particular, given any £-structure 2 there is always a set of
sentences X such that 2 € Mod(X).

3.2.6 Homomorphisms

In linear algebra there is an interest in functions from one vector space V into another
vector space W that preserve vector addition and scalar multiplication.

Definition. If T:V — W is a function from a vector space (V, +, -) to the vector space
(W, e, *), then T is called a linear transformation if for all vectors x and y in V and for
all scalars c, the following hold:

D T+y)=Tx oTI(y),

2) T(c-x)=c=*Tx).

In group theory one defines what it means for a function from one group G to an-
other group G’ to preserve the algebraic structure of the group G.

Definition. Let (G, *) and (G’, ®) be two groups. A function ¢ : G — G’ is called a homo-
morphism iffor all a,b € G, ¢p(a * b) = p(a) ® p(b).

In this section, we will generalize these fundamental concepts to structures.

Functions that preserve operations and relations of structures

In mathematics, one uses a function to relate one set to another set. In mathematical
logic, a homomorphism relates one structure with another structure. More specifically,
a homomorphism is a structure preserving function between two structures of the same
language. The word homomorphism is derived from ancient Greek, where “homos”
means “same” and “morphe” means “form.”

Definition 3.2.32. Let2( = (4;...)and*B = (B;...) be £-structures. A function h:A — B
is called a homomorphism if h has the following properties:
(1) For each n-place predicate symbol P and for all a;, ay, ..., a, € A, we have

(ag, ay, ..., a,) € P* iff  (h(ay),h(ay),...,h(a,)) € P®.

(2) For each n-place function symbol f and for all a;, a,, ..., a, € A, we have
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h(f*(ay, ay, ..., a,)) = f* (h(ay), h(ay), ..., h(ay,)).

(3) For each constant symbol ¢, we have h(c®) = ¢®.

Conditions (1)-(3) are often expressed, respectively, as: “h preserves the relations,
the functions, and the constants.”

Example 3.2.33. Consider the language £ = {+ x} and let A = (IN; +Ql, >'<Ql), where
+* and x™ are the standard addition and multiplication operations, respectively, on
the natural numbers. Define a new structure, whose domain has just two elements, by
B = ({o,e}; Jr%, k%), where + % and x* are given by the following addition and multi-
plication tables:

R Q|
S o |O

The addition table can be viewed as saying that “even plus even is even,” “even plus odd
is odd,” and “odd plus odd is even,” and similarly for the multiplication table.
Now define h: N — {o, e} by

e, ifniseven,
h(n) =
0, ifnisodd.

Then h is a homomorphism, as clause (2) of Definition 3.2.32 is satisfied as follows:

h(n+™ m) = h(n) +® h(m),
h(n x* m) = h(n) x® h(m).

For example, if m and n are both odd, then n x* m is odd. Thus, h(n <2 m) = o and
h(n) x> h(im)=o0 x20=o. Hence, h(n x m) = h(n) x> h(m).

Definition 3.2.34. Let 2 = (4;...) and B = (B;...) be structures for the language L.

Let h: A — B be a homomorphism.

- We sshall say h is a homomorphism of 2/ into B.

— We shall say that h: A — B is an isomorphism or an isomorphic embedding if h is
one-to-one. In this case, we shall say that h is an isomorphism of 2 into 5.

— When h: A — Bis onto B, we shall say that h is a homomorphism of 2 onto 5.

— If his both one-to-one and onto B, then 2 and ®B are isomorphic, denoted by 2 = 8.
In this case, we shall say that h is an isomorphism of 2 onto B.

Example 3.2.35. Let £ = {<} and let P = (IP; &P), where P = {1,2,3,...} and <7 is the
standard “less than” relation on P. Let A" = (IN; N Y, where N = {0,1,2,3,...} and N
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is the standard “less than” relation on N. Define h: P — N by h(n) = n-1. Then hisa
homomorphism, as clause (1) of Definition 3.2.32 is satisfied as follows:

n<Pm it hn) <Y h(m).

Since h is one-to-one, we conclude that h is an isomorphic embedding. In addition, be-
cause h is onto IN, we see that the structures P and A are isomorphic.

Definition 3.2.36. Let 2 = (4;...) and B = (B;...) be L-structures. We shall say that
is a substructure of 98 if A ¢ B and the following conditions hold:
(a) For each n-place predicate symbol P and for all a;, ay, ..., a, € A, we have

(ay,ay,...,a,) epP? iff (q,ay,...,a,) e P®.
(b) For each n-place function symbol f and for all a;, a,, ..., a, € A, we have

fg‘(al, a,...,a,) :f%(al, a,...,a).
(c) For each constant symbol ¢, we have % =%,
Example 3.2.37. Consider the language £ = {+} and let Q = (Q; JrQ), where Q is the set
of rational numbers and +< is the standard addition operation on Q. Let R = (R; +R),
where R is the set of real numbers and + " is the standard addition operation on R.
Then Q is a substructure of R because clause (b) of Definition 3.2.36 is satisfied, that is,
the operations +2and +7 agree on the rational numbers.

Let 21 and B be structures for the language £. Then 2 is a substructure of 9 if and
only if A ¢ B and the identity function i: A — B is a homomorphism.

The homomorphism theorem

We will soon state and prove our primary theorem about homomorphisms. The last part
of this theorem will provide us with a technique for showing that some relations are not
definable over a structure (see Theorem 3.2.41).

We begin by making some relevant remarks. Let 2{ = (4;...) and 6 = (B;...) be
L-structures and let 7 be the set of all the variables and constants of £. Lets: 7 — A
be an assignment. Thus, by Theorem 3.2.5, there is a unique extension s: T — A, where
T is the set of all the terms of £. Suppose that h is a homomorphism of 2 into 8. Then
hos: 7T — Bis also an assignment, where (h o s)(v) = h(s(v)) for all v € 7. Thus, by
Theorem 3.2.5, there is a unique extension hos:7 — B. We also note that a quantifier-
free wff is one in which no quantifier appears in the formula.

Theorem 3.2.38 (Homomorphism theorem). Let 2( and ®B be L-structures, let h be a ho-
momorphism of 2 into B, and let s: T — A be an assignment, where T is the set of all the
variables and constant symbols of £ and A is the domain of 2.
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For every term t of the language, h(s(t)) = h o s(t).
For every quantifier-free wff ¢ that does not contain the equality symbol,

AEols] iff BEoelhes].

If h is one-to-one, then for every quantifier-free wff ¢ that can contain the equality
symbol,

AE=o[s] iff BEoelhes].

If his onto B, then for every wif ¢ that does not contain the equality symbol,
AEols] iff BEoelhos].

If h is one-to-one and onto B, then for every wff ¢,

AEols] iff BEoehos].

Proof. We shall prove (a)-(e) below. Let h be a homomorphism of 2 into 5. In the proofs
of (a)—(c), let s: 7 — A be an arbitrary assignment.

(@

We must first prove that for every term ¢ of the language, h(s(t)) = h o s(t). This will
be accomplished by induction on terms (see Section 3.1.2 on page 56).

Base step: For a constant symbol ¢, we have h(s(c)) = h(cQL) =c® by Theorem 3.2.5(2)
and Definition 3.2.32(3). Also, m(c) = ¢? by Theorem 3.2.5(2) applied to hos.

Therefore, h(s(c)) = h - s(c). In the case where v is a variable,

h(s(v)) = h(s(v)) = (ho$)(v) = ho 5(v),

by Theorem 3.2.5(1) applied to S and h o s.

Inductive step: Let f be an n-place function symbol in £ and let t;, ,, ..., t,, be terms.
Assume the induction hypothesis

For each i < n, we have h(s(t;)) = ho s(t,). (IH)
We prove that the same holds for the term ft;¢, - - - t,,, that is, we prove that
h(s(ftyty -+ t,)) = ho S(ftyty -+ t,).

We do this as follows:

h(5(ftyty - ) = R(F(3(t), 5(ty), ..., 5(ty))) by Theorem 3.2.5(3),
=2 (h(5(t)), h(5(ty)),..., h(3(t,))) by Definition 3.2.32(2),
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=P (hos(ty),hos(ty),...,hos(t,)) by (H),
=hos(ftity--- t,) by Theorem 3.2.5(3).

(b) For every ¢ that is a quantifier-free wif not containing the symbol =, we prove that
AEols] iff BEg@hos]. (a)

We use induction on wiffs.
Base step: We show that (a) holds for all atomic formulas. So, let P be an n-place
predicate symbol and let ¢, .. ., t, be terms. We show that

Qllzptltztn[s] lff %':Ptltztn[hf’s]

as follows:

AEPtity---t,[s] iff (5(ty),...,5(t,)) € P* by Definition 3.2.6(2),
iff  (h(3(t),...,(5(t,))) € P® by Definition 3.2.32(1),
iff (hos(ty),...,hos(t,)) € PP by part (a) above,
iff B Pty ty[hos] by Definition 3.2.6(2).

Inductive step: Let a and 8 be quantifier-free formulas that do not contain the equal-
ity symbol. Assume the induction hypothesis

AEals] iff BEalhos],

Ak Pls] iff B plhos]. (IH)

One must now prove that (-a) and (a — f) both satisfy condition (a). We first prove
that (—a) satisfies condition (a) with the following argument:

A e -als] iff A als] by Definition 3.2.6(3),
iff B alhos] asasatisfies (IH),
iff B & -alhos] by Definition 3.2.6(3).

We now prove that (@ — f) satisfies condition (a) as follows:

AE(a— P)s] iff Ak als]implies A = B[s] by Definition 3.2.6(4),
iff B Ealhos]implies B = B[hos] asa,p satisfy (IH),
iff BE(a—-p)lhos] by Definition 3.2.6(4).

(c) We must show that if h is one-to-one, then for every quantifier-free formula ¢,

AEo@ls] iff BEg@hos]
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The argument is by induction, just as in the above proof of part (b). However, in the
base step of (b), we need to add the following proof showing that the atomic formula
=t, ¢, satisfies (a). Let t; and t, be terms. We then have the following:

AE =t [s] iff s(¢) =5(t) by Definition 3.2.6(1),
iff h(s(t;)) = h(s(t;)) because h is one-to-one,
iff hos(t;)=hos(t,) bypart(a)above,
iff B E=tity[hos] by Definition 3.2.6(1).

The rest of the argument is exactly like the one given for (b).
(d) Let h be onto B. For every formula ¢ not containing the symbol =, we prove that

A= o[s] iff BEoelhos], forall assignmentss. (3.10)

The argument is by induction. For atomic formulas ¢, the proof of (3.10) is as in
the above proof of part (b). However, in the inductive step, we need to include the
quantifier symbol V. The proof of this case follows. Let a be a formula that does not
contain the equality symbol. Assume the induction hypothesis

AEals] iff BEalhes], forall assignmentss. (IH)
We must show that
A= Vva[s] iff 9B E=Vvalhos], forallassignmentss.
Let s: 7 — A be an arbitrary assignment and let B be the domain of 9. Thus,

A= vvafs] iff foralla e A, A afsy,] by Definition 3.2.6(5),
iff forallaeA, B alhos,,] by (IH); sy, is an assignment,
iff forallaeA, B a[(hos)yyq] ashes,,=eS)yn@q),
iff forallb e B, Bk af(hos),,) as h:A — Bis onto B,
iff B Evva[(hos)] by Definition 3.2.6(5).

(e) Suppose that h is one-to-one and onto B. We must show that for every formula ¢,
AEpls] iff B Eg@lhos], forall assignmentss.

The argument is by induction on wifs. For the base step one uses the arguments
given for the base steps in the above proofs of (b) and (c). For the inductive step one
uses the arguments given for the inductive steps in the above proofs of (b) and (d).

This completes the proof of the homomorphism theorem. O
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Applications of the homomorphism theorem

Before we state and prove the next theorem, recall that h is said to be an isomorphism
of 20 onto B when h: A — Bis both a one-to-one and onto homomorphism. In this case,
20 and %5 are said to be isomorphic, denoted by 2 = 9. Also, recall Definition 3.2.29.

Theorem 3.2.39. Let 2l and B be structures for a language L. Suppose that 2L and 95 are
isomorphic. Then 2l = 8.

Proof. Assume that 2l = *B. Let ¢ be a sentence. We will show that 2( = ¢ iff B = ¢. Let
h be an isomorphism of 2 onto 8 and let s: 7 — A be an assignment, where 7 is the set
of all the variables and constant symbols of £. Then

Ao iff AE@[s] by Definition 3.2.13,
iff B Eo@lhos] byTheorem 3.2.38(e),
iff Beo by Definition 3.2.13. O
Application 1. Let £ = {<,=} and let P = (IP; &P), where P = {1,2,3,...} and <7 is the

standard “less than” relation on P. Let N = (IN; N Y, where N = {0,1,2,3,...} and N
is the standard “less than” relation on IN. Now define h: P — N by

h(n)=n-1.

As discussed in Example 3.2.35, h is a one-to-one and onto homomorphism, and thus
P and N are isomorphic. So by Theorem 3.2.39, for any £-sentence ¢, we have P &
@ iff V' = ¢, that is, P and A are elementarily equivalent.

On the other hand, let us define h': P — NN to be

h(n) =n.

Then k' is also a homomorphism and is one-to-one, but it is not onto N. Let s: T — IP be
an assignment. Hence, by Theorem 3.2.38(c), if ¢ is quantifier-free, then

PrEols] iff NEg[h os]. 3.11)

The equivalence (3.11) may fail for a formula ¢ that contains quantifiers. To illustrate
this, let s be an assignment such that s(v,) = 1. Since k' is the identity function, it follows
that b’ o s = s. Let ¢ be the quantified statement

YV (vy # Vg = vy <),

Since s(v;) = 1and (h' o s)(v;) = 1, it follows that P &= @[s] and A # @[h’ - s]. So, because
h' is one-to-one and not onto N, (3.11) can fail when ¢ contains quantifiers.

Definition 3.2.40. Let 2 = (4;...) be an £-structure. A function hi:A — A is called an
automorphism of the structure 2l if h is an isomorphism of 2 onto 2I.
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Let 20 = (4;...) be a structure for a language £. Recall that a k-ary relation R on A
is definable over 2 if there is a wif ¢ with free variables v, ..., v such that

(a1, ay,...,a;) € R iff Ak @lag,ay,...,aq;]

for all a;, ay,...,q; € A.

Theorem 3.2.41. Let 2 be a structure for a language £ and let h be an automorphism of
the structure 2. Let R be a k-ary relation that is definable over 2. Then

(ar,ay,...,a;) €R iff (h(a),h(ay),...,h(ay)) € R

forallay,a,,...,aq; € A.
Proof. Let ¢ be a wif that defines R. For all a, a,, ..., a, € A, we have
(a1, ay,...,ar) € R iff AE @lag,ay,...,a] because ¢ defines R,

iff A& @[h(ay),h(ay),...,h(a,)] by Theorem 3.2.38(e),
iff (h(a),h(ay),...,h(ay)) € R because ¢ definesR. [

Application 2. Let £ = {<,=} and let R = (RR; <), where R is the set of real numbers and
< is the usual “less than” relation on R. Define h: R — R by

h(x) = X,
Then h is a homomorphism, because clause (1) of Definition 3.2.32 holds as follows:
x <y iff h(X) < h@y).

Since h is one-to-one and onto R, we conclude that h is an automorphism of the struc-
ture R. Note that N ¢ R. We can now show that IN is not definable over 3. Suppose, for
a contradiction, that there is a wif ¢ such that

aeN iff REola]
for all a € R. Theorem 3.2.41 then implies that for all a € R,
aelN iff h(a) e N.

Let a = V2. Since h(a) = 2 € N, the above equivalence implies that ¥2 € N. This
contradiction shows that IN is not definable over fA.

Exercises 3.2.
1. Verify item (9) of Remark 3.2.8.
2. Let 20 be an £-structure and let s be an assignment, as in Definition 3.2.4. Let ¢ be
a wif. Show that either 2 = y[s] or 2 = (=¥)[s], but not both.
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Let £ = {L,f,c} and let 2 be as in Example 3.2.7. Let s: 7 — N be an assignment

satisfying s(v;) = i + 1. So, s(v;) = 2 and s(v,) = 3. Show that:

(@ 2= Iv,Lvyfcls],

(b) 2 &= JvyLvyvy[s],

(©) A ¥ Iv,Lvyc[s].

Let £ = {L,f, c} and let 2 be as in Example 3.2.7. Show that:

(@ A= Vv Iv,Lfny,,

(b) A ¥ v Vv Ly v,.

Let £ = {+,0,1,2,=}, where + is a 2-place function symbol and 0, 1,2 are constant

symbols.

(a) Find a structure for the language £ in which the two sentences 1 + 1 = 2 and
wv(v + 0 = v) are true.

(b) Find a structure for the language £ in which the two sentences 1 + 1 = 2 and
Yv(v + 0 = v) are false.

Let £ = {f, =} be alanguage where f is a 1-place function symbol.

(a) Find a sentence ¢ so that 2 k= ¢ if and only if f*: A — A is one-to-one, for any
structure 2 = (4;f Ql).

(b) Find a sentence ¢ so that 24 = ¢ if and only if f*:A — A is onto A, for any
structure 2 = (4;f sz[>_

Let £ = {<} be the language having just the 2-place relation symbol <. Consider the

structures 2 = (IN; &Q[) and B = (R; ?B), where <* and <® are to be interpreted

as the standard “less than” relation. Find a sentence ¢ in the language £ that is true

in one of the structures but false in the other.

Let £ = {x, =} be the language having equality and %, a 2-place function symbol.

Let 2 = (R; >'<Q[) and B = (R"; >'<%) be structures where R* is the set of nonzero

real numbers and x> and x> are both the usual multiplication operation. Find a

sentence ¢ in the language £ that is true in one of the structures but false in the

other.

Let a, i, ¢ be wifs and let I' be a set of wifs in a language £. Show that

(@ Tu{a}EgifandonlyifT E (a — @),

(b) p==yifandonlyif= (¢ « ¥).

Show that the set of any two of the following sentences does not logically imply the

third sentence:

(@) Vxvyvz(Pxy — Pyz — Pxz),

(b) VxVy(Pxy — Pyx — x =y),

(c) Vx3yPxy — JyVxPxy.

Let 2 be a structure and let s be an assignment such that s(x) = s(y), where x and

y are variables.

(a) Prove that for all terms ¢, if t’ is obtained from ¢ by replacing some, none, or
all of the occurrences of x in t with y, then s(t) = s(t").
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(b) LetPtyt,---t, be an atomic formula and let Pt;t; - - - t/ be the result of replacing
some, none, or all of the occurrences of x in Pt;t, - - - £, with y. Show that 2 &
Ptit, - t,[s] if and only if A = Ptjt) - -t [s].

Show that {Vx(a — B), Vxa} £ Vxp.

Show that if x does not occur free in a, then a = Vxa.

Show that a wif 6 is logically valid if and only if ¥x6 is logically valid.

Let £ = {+,x,=} and let ¥ = (IN;+, x) be an £-structure, where +* = + and

sV = x are the usual operations of addition and multiplication, respectively. Show

that each of the following sets are definable over V:

(@ {0},

() {1},

(¢) {{m,n) : nis the successor of m},

(d) {{mn):m<n}

Let £ = {+, %, =} be the language having equality and 2-place function symbols +

and x. Consider the £-structure R = (RR; +, x), where + and x are the usual addition

and multiplication operations.

(a) Show that [0, co) is definable over fR.

(b) Show that {1} is definable over fA.

(c) Show that {2} is definable over fA.

Let £ and I' be sets of sentences in a language £. Show that:

(@) ifT ¢ X, then Mod(Z) < Mod(T),

(b) Mod(I') n Mod(Z) = Mod(I' U X),

() Mod(l') u Mod(Z) € Mod(T N X).

Let X = {91, 0,,...,9,} be a finite set of £-sentences and let ) = ¢; A--- A @,,. Show

that Mod(X) = Mod(y).

Let 2( and 8 be £-structures.

(@) Show that for every £-sentence ¥, either ¢ € Th(B) or - € Th(B).

(b) Show thatif A = Th(®8), then 2( and 8 are elementarily equivalent.

Let £ = {<,=} and let R = (IR; <), where R is the set of real numbers and < is the

standard “less than” relation on R.

(@) What subsets of R are definable over R?

(b) Let R c R? be such that (a,a) € Rand (b,b) ¢ R.Is R definable over R?

(c) LetR ¢ R? be such that {(a,b) € Rand (c,d) ¢ R. Show thatifa < bandc < d,
then R is not definable over fR.

Let £ = {<, =}, where < is a 2-place predicate symbol. Let Z = (Z; <) be the struc-

ture, where Z is the set of integers and < is the standard less than relation.

(a) Prove that for all n € Z, the set {n} is not definable over Z.

(b) Let 6 be a wif with one free variable v;. Suppose that Z = 6[2]. Using Theo-
rem 3.2.38, prove that Z &= vv,6.

Let £ = {<, %, =} be a language with a 2-place predicate symbol < and 2-place func-

tion symbol x. Let R = (IP; <, x) be the structure, where P is the set of positive real

N
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numbers, < is the standard less than relation, and x is the standard multiplication

function on the positive real numbers.

(a) Define the function h: P — P by h(x) = x%. Prove that h is an automorphism of
the structure R.

(b) LetA={{(x,y,z) € P?:x+ y = z}. Prove that A is not definable over R.

Exercise Notes: For Exercise 1, use Definition 3.2.6 and abbreviation 4 on page 62. For
Exercise 3 and Exercise 4, use Remark 3.2.8. For Exercise 11, use induction on terms. For
Exercise 21(b), show that Z & 6[n] for alln € Z.

3.3 Deductions

What is proof?

In Section 3.1 we described a formal language £ and also defined what it means for
a formula of the language to be grammatically correct. In addition, in Section 3.2 we
defined the notion of “truth” in a structure, that is, 2( = @, where ¢ is a sentence. Recall
that a sentence ¢ is logically implied by a set of sentences I, denoted by I' & ¢, if every
model of T is a model of ¢. In this section we shall define the notion of “proof” from a
set of axioms (or formulas), that is, we shall define when ¢ is deducible from the axioms
inT, denoted by I I ¢.

Surely the most important discovery for mathematics by the ancient Greeks was
the notion of proof, turning mathematics into a deductive science. Each theorem ¢ must
have a proof from a set I' of more or less explicitly stated assumptions, or axioms. The
proof must demonstrate that the conclusion ¢ follows from the axioms in I by the laws
of logic alone. The natural question is:

Can the notions of “laws of logic” and “proof” be made mathematically precise?

A proof is an argument that you give to someone else which completely convinces him
or her of the correctness of your assertion. Thus, a proof should be finitely long, as you
cannot give an infinite argument to another person. If the set of axioms I'is infinite, that
is fine, but they cannot all be used in one proof (otherwise, we would have an infinitely
long proof). Another essential feature of a proof is that it must be possible for another
person to check the proof to ascertain that it contains no fallacies.

In Section 2.5, we presented a system of deduction for propositional logic, where
our axioms were the tautologies of propositional logic and our one rule of inference
was modus ponens. Our system of deduction for first-order logic will be similar. We will
select a set A of wifs to be called logical axioms and we will use modus ponens as our
one rule of inference. This will enable us to deduce a new wif from other wiffs. Then
for a set T’ of wifs, the theorems of T’ will be the wffs which can be deduced from I U A.
A wif ¢ will be a theorem of T (written I' + ¢) if and only if there a finite sequence of
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wifs which identifies how ¢ was derived from I' U A. Such a derivation, which uses the
logical axioms and the rule of inference, will be called a deduction of ¢ from I'. The term
deduction will be used to avoid confusion with our own mathematical proofs.

There are other deduction systems for first-order logic that are equivalent to the
one we shall present. Each such system of deduction may have a different version of A
and different rules of inference, but each system will produce the same theorems.

Before we identify the set of logical axioms A, we must first discuss tautologies, gen-
eralizations, and substitutions in first-order logic.

3.3.1 Tautologies in first-order logic

In Remark 2.2.13, we defined the concept of a tautology in propositional logic. The def-
inition of a tautology can be extended to wifs in first-order logic, where the wff may
contain quantifiers—an attribute absent from wifs in propositional logic.

Definition 3.3.1 (First-order tautologies). Let £ be a first-order language and let Ay, A,,
A,, ... be the sentence symbols of propositional logic. Let ¢ be a tautology in proposi-
tional logic containing only the connectives — and —. Suppose that the sentence sym-
bolsin ¢ are in the list A, Ay, ..., A,,. Let ™ be the result of replacing A;, A,, ..., A, with
ay, dy, . .., 4y, where each a; is a first-order wif in £. We shall then say that ¢* is a first-
order tautology.

First-order tautologies are simple generalizations of the tautologies of propositional
logic. For example, the propositional wff

(A—-B)— (-B— -A) 3.12)

is a tautology where A and B are two sentence symbols. We can use this tautology to
create first-order tautologies. Let ¢ and ¥ be wifs of first-order logic. Then

(@ —=¥) = (=¥ - -0)

is a first-order tautology. All the first-order tautologies are obtained in this manner, that
is, from the tautologies of propositional logic.

For another example, consider the propositional tautology (3.12). Let a and Pt be any
two formulas of first-order logic, where Pt is an atomic formula. Then

(Yva — Pt) — ((=Pt) — (=Vva))

is a first-order tautology. We now present four more examples of first-order tautologies.
In these examples, we reverse the replacement procedure and then determine if we get
a propositional tautology. If so, we have a first-order tautology.
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1. (VzPzVv —VzPz)
Replace the wif VzPz with the sentence symbol A. Thus, item 1 is a first-order tau-
tology, because (A v -A) is a tautology.

2. (3zPz — VxQx) — (~VxQx — —3zPz)
Replace 3zPz with the sentence symbol A and replace VxQx with B. Item 2 is a first-
order tautology, because (A — B) — (-B — —A) is a tautology.

3. ~(VzPz — Qx) — VzPz
Replace VzPz with A and replace Qx with B. Item 3 is a first-order tautology because
-(A — B) — Ais a tautology.

4, =(VzPz — Qx) — —Qx
Replace VzPz with A and replace Qx with B. Item 4 is a first-order tautology because
-(A — B) — —B s a tautology,

Propositional logic revisited

We will now apply certain concepts from propositional logic, covered in Chapter 2, to
first-order logic. We will also refer to a first-order wif as being an £-formula. In proposi-
tional logic, the concept of a truth assignment is based on having sentence symbols. Can
the concept of a sentence symbol be extended to first-order logic?

Definition 3.3.2 (Prime formulas). We divide the £-formulas into two groups:
1. A wffis called prime if it is an atomic formula or has the form Vva for a wif a.
2. A wffis called nonprime if it has the form (-a) or (a — f) for wffs @ and B.

Thus, -Vz-Pz is a nonprime formula, whereas Vz-Pz is a prime formula. The prime
formulas of first-order logic can be viewed as analogues of the sentence symbols in
propositional logic.

Definition 3.3.3. Let S be a set of prime formulas. Then we shall let S be the set of wffs
that can be built from the prime formulas in S by using the two formula building func-
tions £ and £_,.

Every wif of first-order logic can be built up from the prime formulas by the opera-
tions £, and £_,. Thus, if one considers the prime formulas as “sentence symbols,” then
the wifs of first-order logic can also be seen, from a global point of view, as “formulas of
propositional logic.”

Definition 3.3.4. Let S be a set of prime formulas in a first-order language £. A function
u:S — {F, T}is called an £-truth assignment for S.

Let She asetof prime formulas andletu: S — {F, T} be an £-truth assignment for S.
Let F = {£.,£_}. Theorem 2.2.1 implies that the set S of all wffs generated by S from
the functions in F is freely generated. Thus, there is a unique function &:S — {F, T}
satisfying the analogous conclusions of Theorem 2.2.4(1)(4).
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Let ¢ be a wif of first-order logic. Recall Definition 3.3.1. One can now show that ¢
is a first-order tautology if and only if for every £-truth assignment u, defined on the
prime formulas in ¥, we have u(y)) = T.

Remark 3.3.5. Let 2 be an £-structure with domain A and also let s: 7 — A be an as-
signment, where 7 is the set of all the variables and constant symbols of £. Now let u be
an L-truth assignment. It is possible that u(Vva) = F, while 2( i Vva[s]. Thus, an £-truth
assignment may disagree with the satisfaction relation of Definition 3.2.6.

Definition 3.3.6. Let ¢ be an £-formula and let u be an £-truth assignment that is de-
fined on the prime formulas in ¢. Then u satisfies ¢ if and only if u(¢) = T.

Let ¢ and  be two £-wifs. Then ¢ tautologically implies ¥ if and only if for every
L-truth assignment u defined on all of the prime formulas that appear in ¢ and ¥, if u
satisfies @, then u satisfies 1. Moreover, ¢ and ¥ are tautologically equivalent if ¢ tauto-
logically implies 1 and the converse holds as well.

Definition 3.3.7. Let X be a set of £-wffs. Then X is £-satisfiable if there is an £-truth
assignment u that is defined on the prime formulas in every ¢ € £ such that u(p) = T
for every ¢ € L.

Definition 3.3.8. A set of £-formulas X is finitely £-satisfiable if and only if every finite
subset of £ is £-satisfiable.

The notion of tautological implication can now be applied to first-order logic.

Definition 3.3.9. Let X be a set of £-formulas and let ¢ be an £-formula. Then X tauto-
logically implies ¢ if and only if for every £-truth assignment u, defined on the prime
formulas occurring in formulas in X and in ¢, if u satisfies %, then u(p) = T.

Theorem 2.4.2, the compactness theorem of propositional logic, and its corollaries
now extend to first-order logic.

Theorem 3.3.10. Let ¥ be a set of L-formulas. If ¥ is finitely L-satisfiable, then ¥ is
L-satisfiable.

The above extension of the propositional compactness theorem holds even when
the set of prime formulas is uncountable (see Remark 2.4.3). The proof of Corollary 2.4.5
establishes the following result.

Corollary 3.3.11. If a set of L-formulas X tautologically implies an L-formula ¢, then ¥,
tautologically implies ¢ for some finite L, C X.
3.3.2 Generalization and substitution

Given an £-formula ¥, a generalization of ¥ is the result of putting universal quantifiers
prior to y.
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Definition 3.3.12 (Generalization). Let £ be a first-order language. Let ¢ be a wif. A wif
¢ is a generalization of ¥ if and only if for some n > 0 and some variables xq, Xy, . . ., Xy,

0 =X VXy -+ - VX .

In particular, when n = 0, any wif is a generalization of itself.

Substitution

In mathematics, one often replaces a variable with some expression that represents a
possible value of the variable. We will also need to do this in first-order logic. In particu-
lar, we will need to substitute a free variable appearing in a wff a with a term. We shall
write a; to denote the wiff obtained by replacing the free occurrences of the variable x
in the wif a with the term ¢.

Before we give a mathematical definition of the operation a;, we give an example of
what the operation a} should not do. Let £ = {+, 0}, where + is a 2-place function symbol
and 0 is a constant symbol. Consider the wff Vx(x+0=x). If we replace the variable x with
the term 0, then we obtain the expression Y0(0 + 0 = 0), which is not a wif. One cannot
“quantify over a constant.” So, the definition of the operation a; must avoid replacing a
quantified variable with the term ¢ (see item 4 of the following definition).

Definition 3.3.13 (The operation ;). Let £ be alanguage where x is a variable and t is a
term. Let a be a wff. The wff a} is defined recursively as follows:
1. @ is the result of replacing all occurrences of x in a with ¢, when a is atomic;
2. (@) =ap;
3. (@-PBf=a —-pB5
M {Vva, ifx=v,

4. (Yva); = ]

vvay, ifx#v.

In the right hand side of the equalities in items 2 and 3 of Definition 3.3.13, we have
dropped the outermost parentheses (see 7 on page 63). Exercise 5 shows that Defini-
tion 3.3.13 is an application of Theorems 1.1.27 and 3.1.16.

We offer some observations and examples that illustrate Definition 3.3.13:

(@) ¢} = o for all wifs ¢;
() ¢f = ¢ when x is not a free variable in ¢;
(c) observe that

(Qx — VyPy)y = Qx; — (VyPy), = Qy — VyPy

by items 3, 1, and 4 of Definition 3.3.13;
(d) note that

(~VyLxy), = ~(VyLxy), = ~VyLxy, = -VyLzy
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by items 2, 4, and 1 of Definition 3.3.13;
(e) observe that

VX-VYLXy — (~VyLxy), = VXx-VyLxy — -VyLzy
by item (c). This example has the form Vxa — af , Where t is a term.

One might wonder why we have the two-case distinction in item 4 of Definition 3.3.13.
Suppose that instead, item 4 was defined to be (vVa)’t‘ = Waf even if v = x. Then this
version of Definition 3.3.13 would allow us to conclude that

(Fx(x # ), = (Y # y),

which is false in all structures and all assignments. This illustrates why item 4 is defined
as it is in Definition 3.3.13.

The next two examples (i) and (ii) illustrate the concept of being and not being “sub-
stitutable,” respectively. Let £ = {L,f, c}, where L is a 2-place predicate symbol, f is a
1-place function symbol, and c is a constant symbol. Consider the wif a = VvLvx. Note
that a contains the two distinct variables v and x. Using the terms fy and fv, let us eval-
uate the new formulas aj, and ag;:

@ a]i_fy = (Vvax)g, = VvLvfy
So, when the term fy is substituted for the variable x, the quantifier “vv” does not
“capture” the variable y in fj.

(ii) a]’ﬁ‘) = (Vvax)ﬁ = YVLvfv
Thus, when the term fv is substituted for the variable x, the quantifier “vv” does
“capture” the variable v in fv.

In (i) we shall say that fy is “substitutable” for x, whereas in (ii) we shall say that fv is not
“substitutable” for x. We want to avoid substitutions, as in (ii), that result in a variable
in a term being “captured” by a quantifier. Why? See Example 3.3.14, below.

Example 3.3.14. The wif Vxa — a; asserts that “if a is true of everything, then a is true
of t.” This appears to be obviously true. Let £ = {=} and let 2 be an £-structure whose
domain contains at least two elements. Now let a be the formula (-Vy(x = y)). Observe
thata, = (AVy(x =y)); = ~Vy(y =). Thus, the conditional Vxa — a is

VXYY (X = y) — aVy(y =y). (3.13)

The hypothesis Vx—-Vy(x =y) in (3.13) is equivalent to Vx3y(x # y), which is true in 2. On
the other hand, the conclusion =Vy(y = y) in (3.13) is equivalent to 3y(y # y), so it is false
in L. Thus, sentence (3.13) is also false in 2. The problem here is that the substitution
(=vy(x iy));,‘ resulted in a variable being “captured” by a quantifier.
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We conclude from Example 3.3.14 that when performing a substitution, we must
avoid capturing a variable by a quantifier. Thus, we must identify a specific restriction
that will prevent a variable from being so captured. A term will be said to be substi-
tutable for a variable in a formula if its substitution does not produce a captured vari-
able. The formal definition follows.

Definition 3.3.15 (Substitutable). Let £ be a language with variable x and term ¢. Then
“t is substitutable for x in a” is defined recursively as follows:

1. tis always substitutable for x in @ when a is an atomic formula;'

2. tis substitutable for x in (-a) iff t is substitutable for x in a;

3. tissubstitutable for x in (@ — p) iff ¢ is substitutable for x in both a and S;
4. tis substitutable for x in (Vva) iff either

(@) x does not occur free in (Vva)? or

(b) v doesnotoccurin t and t is substitutable for x in al

It follows from Definition 3.3.15 that a variable x is substitutable for x in every wif.

Remark. Given a wif @ and a term ¢, the operation a; is always defined, but it may be
the case that t is not substitutable for x in a. However, if a term ¢ is a constant symbol or
contains no variables, then ¢t will always be substitutable for x in a.

Problem 3.3.16. Let £ = {P, Q,f, g, c}, where P, Q are 2-place predicate symbols, f, g are
1-place function symbols, and c is a constant symbol. Let ¢ be the wif (Pxy — VxQgxz)
and consider the term fx. Evaluate the wif gofcx and decide if fx is substitutable for z in ¢.

Solution. We evaluate ¢, as follows:

(P)Z“x = (Pxy — VXQgXZ)JZ«X by definition of ¢,
= Pxy}, — (¥xQgxz)f, by Definition 3.3.13(3),
= Pxy — (VxQgxz);, by Definition 3.3.13(1),
= Pxy — VxQgxfx by Definition 3.3.13(4).

Thus, (pfx is the wif Pxy — VxQgxfx. However, the term fx is not substitutable for z in ¢
because fx is not substitutable for z in VxQgxz by condition 4(b) of Definition 3.3.15 (x in
the term fx is captured by Vx).

1 There are no quantifiers in an atomic formula, so no variable in ¢ can be captured.
2 In this case, (Yva); = Vva.

3 This ensures that the quantifier “vv” does not capture any variable in ¢ and that no variable in ¢ will
get captured in af.
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3.3.3 The logical axioms

There are some formulas in a first-order language that are logically valid, that is, these
formulas are satisfied by every structure and every assignment. Usually one selects a
minimal set of such formulas to be identified as the logical axioms. From a selected set
of logical axioms, one must be able to deduce all the other logically valid formulas. Our
discussions on first-order tautologies, generalizations, and substitutions will now allow
us to present a set A of the logical axioms, which are arranged in six groups.

Logical Axioms 3.3.17. Let £ be a language of first-order logic. Let A be the set of all
generalizations of wifs having the following forms, where x, y are any variables, a, § are
any wifs, and t is any term:

1. first-order tautologies;

2. Vxa — af, where t is substitutable for x in a;

3. V¥x(a — B) — (¥xa — VxB);

4. a — Vxa, where x does not occur free in a.

If the language £ includes the equality symbol =, then we add the following forms:
5 x=x;
6. x=y—(a— a;,‘ ), where a is an atomic formula.

We shall call the resulting set A the set of logical axioms.

We prove in Section 4.1 that every logical axiom in A is logically valid (see Defini-
tion 3.2.17), that is, each logical axiom holds in all structures and for all assignments.

Remark (On the logical axioms). In Logical Axiom 1, the first-order tautologies will also
be called tautologies. They are included to handle the propositional connective sym-
bols. Logical Axiom 2 reflects the intended meaning of the quantifier symbol, that is, if
a statement is true of all objects in the domain, then the statement is true of an individ-
ual denoted by ¢. Logical Axioms 3 and 4 are used to prove the generalization theorem
(Theorem 3.3.29) later in this section. Logical Axioms 1 and 2 are used to deduce the im-
portant properties of equality (see Theorem 3.3.54). Logical Axiom 6 is an application of
Leibniz’s law: If two things are equal, then whatever is true of one is true of the other.
Generalizations of logical axioms are also logical axioms.

In the following problem, one is asked to identify whether or not a given wif is a
logical axiom.

Problem 3.3.18. Let £ = {P,Q,R,c}, where P,(Q are 1-place predicate symbols, R is a
2-place predicate symbol, and c is a constant symbol. To which logical axiom groups, if
any, do each of the following wifs belong?

1. (3zPz — VxQx) — (-VxQx — -3JzPz).

2. Vx(VzPz v -VzPz).
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3. VzQz - Qc.

4. VxVzQz — Qc.

5. VxVyRxy — VyRcy.

6. VxVyRxy — VyRyy.

7. Vx(3zPz — VzPz) — (Vx3zPz — VxVzPz).

8. 3zPz — Vx3zPz.

Solution.

1. (3zPz — VxQx) — (~VXxQx — —3zPz)
The above wif belongs to axiom group 1. To verify this, let a be the wif 3zPz and let
B be the wif VxQx. The above can then be written as

(@a—p)— (- -a),

which is a tautology.

2. Vx(VzPz Vv -VzPz)
The above wif belongs to axiom group 1, since it is a generalization of a tautology.
To see this, let a be the wif VzPz. The above can then be written as a generalization
of (a v —a), which is a tautology.

3. VzQz — Qc
This wif belongs to axiom group 2. To affirm this, let a be the wif Qz. The above can
then be written as Vza — a’ and c is substitutable for z in a.

4. VxVzQz - Qc
The above wif is not a logical axiom. Note that the above wif is not a generalization
of an axiom in group 2.

5. VxVyRxy — VyRcy
The given wif belongs to axiom group 2. To see this, let a be the wif VyRxy. The above
can then be written as Vxa — a and c is substitutable for x in a.

6. VxVyRxy — VyRyy
The above wif is not a logical axiom, for the following reason. Let a be the wif VyRxy.
Then the above wif has the form Vxa — a; . Howevery, y is not substitutable for x in
a. So, the above wif is not a logical axiom.

7. Vx(3zPz — VzPz) — (Vx3zPz — VxVzPz)
The above wif belongs to axiom group 3. To confirm this, let a be the wif 3zPz and
let B be the wif VzPz. The above wif can then be written as

Vx(a — B) — (Vxa — Vxp).
8. JzPz — V¥x3zPz

This wif belongs to axiom group 4. To see this, let a be the wff 3zPz. The above can
then be written as a — Vxa and x is not free in a.
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3.3.4 Formal deductions

A deduction in first-order logic, as in propositional logic, is going to be a finite list of
formulas that satisfies certain conditions.

Definition 3.3.19 (An inference rule). Let £ be a language of first-order logic. Let a and
B be wffs in the language £. Modus ponens is the rule of inference: From the formulas a
and a — B we can infer B, that is,

a—p
‘e
B (modus ponens)

Definition 3.3.20. Let I’ be a set of formulas. A deduction of ¢ from T is a sequence

(ay,...,ay,) of formulas such that a, = ¢ and for all 1 < k < n, either

(@ agisinTUA, or

(b) a; is obtained by modus ponens from two earlier wifs in the sequence, that is, for
some i and j less than k, the wifs ; and a; = (a; — ;) are in the sequence.

Definition 3.3.21. Let I be a set of formulas. A formula ¢ is a theorem of T, denoted by
T + ¢, if there is a deduction of ¢ from I'. When I' = {} we shall write ¥ + ¢ to denote
that there is a deduction of ¢ from the wif ). When I' = @ we shall write - ¢ to denote
that there is a deduction of ¢ from the logical axioms alone.

In Definition 3.3.21, T can be viewed as a set of assumptions. The notation I + ¢
means that one can deduce ¢ from the assumptions and the logical axioms.

Example 3.3.22. Let £ contain two 1-place predicate symbols P, Q and a constant sym-
bol c. Let T = {¥x(Px — Qx),VzPz}. Show thatT + Qc.

Solution. A deduction of Qc from I' (with explanation) is given below:

1. Vx(Px - Qx) inT,

2. VzPz inT,

3. Vx(Px — Qx) — (Pc — Qc) by Logical Axiom 2,

4. VzPz — Pc by Logical Axiom 2,

5. Pc— Qc from 1 and 3, by modus ponens,
6. Pc from 2 and 4, by modus ponens,
7. Qc from 5 and 6, by modus ponens.

Therefore, I' - Qc.

Example 3.3.23. Let P be a 1-place predicate symbol. Show that - Px — 3xPx.
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Solution. A deduction of Px — —Vx-xPx (with explanation) is given below:

1. Vx-Px — -Px by Logical Axiom 2,
2. (Vx-Px — -Px) » (Px — ~Vx~PXx) by Logical Axiom 1,
3. Px — ~Vx-Px from 1 and 2, by modus ponens.

Since ~Vx—Px is abbreviated by 3xPx, we conclude that + Px — 3xPx.

In the above step 1 we used —Px as a and t = x in Logical Axiom 2, that is, Vxa — ajﬁ
is the instance of Logical Axiom 2 that we used. Moreover, in step 2 we used the tautology
(A - -B) - (B — —A).

Example 3.3.24. Let P be a 1-place predicate symbol. Show that - Vx(Px — 3yPy).

Solution. A deduction of Vx(Px — —Vy-Py) (with explanation) is given below:

1. Vx(Vy-Py — —Px) Logical Axiom 2 (gen),
. Vx((Vy-Py — =Px) — (Px — =Vy-Py)) Logical Axiom 1 (gen),
3. VX((¥y=Py — =PX) = (PX — =¥y=Py))
— (Vx(Vy-Py — =Px) — Vx(Px — =Vy-Py)) Logical Axiom 3,
. Vx(Yy-Py — —PX) — VX(PX — —Vy-Py) modus ponens: 2 and 3,
5. Vx(Px — =Vy-Py) modus ponens: 1 and 4.

Thus, + Vx(Px — 3yPy).

In the above solution, “gen” means “generalization.” In step 1 we used -Py as a and
t = xin Logical Axiom 2, that is, Vya — @, is the instance of Logical Axiom 2 we applied.
In step 2 we used the tautology (A — -B) — (B — —A). In step 3we used (Vy—-Py — —Px)
as a and (Px — —Vy-Py) as § in Logical Axiom 3.

Example 3.3.25. Let £ have a 1-place predicate symbol Q. Show that VyQy I VxQx.

Solution. A deduction of ¥xQx from VyQy (with explanation) is given below:

1. VyQy given,

2. Vx(VyQy — Qx) Logical Axiom 2 (gen),
3. VyQy — VxVyQy Logical Axiom 4,

4. Vx(VyQy — Qx) — (VxVyQy — VxQx) Logical Axiom 3,

5. VxVyQy — VxQx modus ponens: 2 and 4,
6. VxVyQy modus ponens: 1 and 3,
7. VXQx modus ponens: 5 and 6.

So YyQy F VxQx.

All of the standard proof techniques that are used in mathematics hold for deduc-
tions as well; for example, “proof by contradiction” can be used to show that a deduction
exists in first-order logic (see Corollary 3.3.37 below).
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We will now present and prove lemmas and theorems about deductions. In our first
such result we identify some useful observations about deductions. Each item in the
following lemma follows directly from Definition 3.3.20.

Lemma 3.3.26. Let T be a set of formulas and let a, B, 8, and y be formulas.
1. IfaeToracAthenTlt a.

If+a, thenT + a.

Ifav-BandBry, thenaty.

IfTraandat B, thenT + B.

IfTH8andT + (6 — B), thenT + B.

Gk W

The proof of our next result can be seen as an application of the compactness theo-
rem of propositional logic.

Theorem 3.3.27. Let T be a set of wffs of first-order logic and let ¢ be a wff of first-order
logic. ThenT + ¢ if and only if T' U A tautologically implies ¢.

Proof. (=): Assume that I' - ¢. We shall show that I' U A tautologically implies ¢. Let
(ay, @y, ..., a,) be a deduction of ¢ from the set I' of wifs. We shall prove the following
statement: For all k < n, T'UA tautologically implies a;.. We shall use strong induction on
the natural number variable k.

Base step: Let k = 1. Since q is the first step in the deduction, we must have a; € T U A.
Thus, I U A tautologically implies a;.

Inductive step: Assume the strong induction hypothesis
I' U A tautologically implies q; for all i < k. (SIH)

We show that 'UA tautologically implies a;. As ay is in the deduction, either (a) a;, € TUA
or (b) ay is obtained by modus ponens from some a; and a; = (a; — @;), where i,j < k.
If (a) holds, then T' U A tautologically implies a; just as in the above base step. If (b)
holds, then by the strong induction hypothesis (SIH), we conclude that TUA tautologically
implies a; and I' U A tautologically implies (@; — a;). Hence, I' U A tautologically implies
ay, (see page 35).

(<): Assume that ' U A tautologically implies ¢. As T U A tautologically implies ¢,
Corollary 3.3.11 implies that there exists a finite subset I'; of T U A such that T'; tautolog-
ically implies ¢. Since T; is finite, let Ty = {y1,¥5,...,Vn}. It follows (see Exercise 6 on
page 51) that

NMh—=Ve—= >V —0

is a tautology. By repeated use of modus ponens, it easily follows that 'y + ¢. AsT € T,
we conclude that T + ¢. O
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Note that the above Theorem 3.3.27 was established by giving a mathematical proof
in English. That is, we proved a theorem about deductions. Hence, one is now in a po-
sition to prove theorems about “mathematical proof.” It is generally accepted that all
proofs in classical mathematics can be expressed as a deduction in first-order logic.
Thus, one can now ask and answer questions about the limits of mathematical proof.

3.3.5 Metatheorems about deductions

IfT I a, then we say that a is a theorem of I'. However, we have also been using the word
“theorem” in a different way when proving theorems in English about deductions. These
English theorems are sometimes referred to as being metatheorems to emphasize that
they are statements in English about deductions and first-order logic.

We now pose a question about deductions.

HOW CAN WE SHOW THAT A DEDUCTION EXISTS WITHOUT ACTUALLY GIVING ONE?

Answer: One must first prove metatheorems about deductions.

Induction on deductions

Let S be a set of wifs. Then S is said to be closed under modus ponens if whenever a € S
and (a — B) € S, we have f8 € S. Since there is a procedure for building all the theorems
of T using the formulas in I' U A and applying modus ponens, we have the following
induction principle.

Theorem 3.3.28 (Induction principle). Let S be a set of wffs such that:
1 TUAcS,
(2) S is closed under modus ponens.

Then{p : T + ¢} C S, that is, S contains all the theorems of T.

Proof. LetSandT be as stated. Assume thatT' - ¢. Now let (ay, @y, . .., @,) be a deduction
of ¢ from the set I' of wifs. Thus, a, = ¢. We shall prove that for allk < n, a; € S. We
shall use strong induction on the natural number variable k.

Base step: Let k = 1. Since q, is the first step in the deduction, we must have a; e TUA.
Thus, a; € Sby (D).

Inductive step: Assume the strong induction hypothesis
a; € Sforalli< k. (SIH)

We show that a; € S. As a; is in the deduction, either (a) a; € TuA or (b) a; is obtained by
modus ponens from some ¢; and @; = (a; — ay), where i,j < k. If (a) holds, then g; € S.
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If (b) holds, then by the induction hypothesis we see that a; € S and (a; — a;) € S. By
(2), S is closed under modus ponens. Hence, a; € S. Therefore, forallk < n, q; € S.In
particular, ¢ € S. O

Theorem 3.3.28 validates the following strategy, which will allow us to prove results
about formulas ¢ that are deducible from a set of wffs T

Proof Strategy. Let S(¢) be a statement about a wif ¢. In order to prove an assertion
“for all wifs ¢, if T + ¢, then S(¢)” by induction, use the following diagram:

Base step: Prove S(¢) for all formulas ¢ e TUA.
Inductive step: Let a and f8 be wifs.
Assume $(a) and S(a — f).
Prove S(f).

The above proof strategy is Theorem 3.3.28 applied to the set S = {¢ is a wif : S(¢)}.
We will apply this strategy in the proof of our next theorem, where $(¢) is “T + Vx¢.” In
this proof we will tacitly be using Lemma 3.3.26.

Theorem 3.3.29 (Generalization theorem). Suppose that x does not occur free in any for-
mula inT. For all wffs ¢, if T + ¢, thenT + Vxo.

Proof. Assume that the variable x does not occur free in any formula in I'. Using the
induction principle, we shall prove the following: For all wifs ¢, if T ¢, then T + Vxo.

Base step: Let ¢ be in T U A. If ¢ € T, then x does not occur free in ¢. Thus, (¢ — Vx¢)
is in axiom group 4 of the logical axioms (page 97). Since T + ¢ and T + (¢ — Vx¢), we
conclude (by modus ponens) thatT' - Vx@. If ¢ € A, then ¢ is a logical axiom. Thus, the
generalization Vx¢ is also a logical axiom. Therefore, I' - Vx¢.

Inductive step: Let a and § be wifs. Assume the induction hypothesis
I'+Vxa and T+ Vx(a — f). (IH)

We need to prove that I' - VxB. Note that (a) Vx(a — ) — (Vxa — Vxp) is in axiom
group 3 of the logical axioms. By (IH) we have I' + Vx(a — ) and I' + Vxa. Thus, by
applying modus ponens twice to (a), we have I + Vxp. O

A converse of the generalization theorem (Theorem 3.3.29) holds, whether or not x
occurs free in a formula in T

Theorem 3.3.30. For all wffs ¢, if T - Vxg, thenT | ¢.

Proof. Assume that I' - Vx¢. By Logical Axiom 2, we have I'  (Vx¢ — ¢). Thus, by
modus ponens, we conclude that T + ¢. O

Given that certain deductions exist, the following “tautology rule” allows one to
show that another deduction exists.
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Theorem 3.3.31 (RuleT). IfT + a,...,T + a, and {ay,...,a,} tautologically implies B,
thenT + B.

Proof. AssumethatT + ay,...,I + a, and that {a;, .. ., a,} tautologically implies . Thus,
a — a, — -+ — a, — B1is a tautology (see Exercise 6 on page 51), so it is in axiom
group 1 of the logical axioms. SinceT + qy,...,I + a,, we conclude that T - § by applying
modus ponens n times. O

Note that ~(p — 0) tautologically implies ¢ and -6 and that {1, =6} tautologically
implies —(¥ — 6). We therefore have the following corollary.

Corollary 3.3.32. We haveT + =(y — 0) ifand only if T + Y and T + 6.
In order to simplify our notation, we shall write I'; i as an abbreviation for I' U {}}.

Theorem 3.3.33 (Deduction theorem). LetT be a set of wffs andy, ¢ be wffs. ThenT;y \ ¢
ifandonly if T + (y — ¢).

Proof. LetT be a set of wifs and let y, ¢ be wiffs. Then

L;yre iff T;yuA tautologically implies ¢ by Theorem 3.3.27,
iff T u A tautologically implies (y — @) by Exercise 9 on page 38,
ifft TH(y—o9) by Theorem 3.3.27. O

Thus, to deduce a conditional, one can assume the hypothesis and then deduce the
conclusion, just like in mathematics.

Corollary 3.3.34. Let T be a set of wffs. If a and B are tautologically equivalent, then:
D Tra if THB,
2 Tiavro iff T;8+ o, for any wif o.

Proof. LetT be a set of wifs and let a and 8 be wifs that are tautologically equivalent.
Thus, @ — f and B — a are tautologies. To prove (1), assume thatI' - a. Sincea — S is
a tautology, we see that T + . The converse holds in a similar fashion.

To prove (2), let ¢ be a wff. Since a and § are tautologically equivalent, it follows
that (a) a — ¢ and  — ¢ are tautologically equivalent. Thus,

Liare iff T+ (a— ¢) byTheorem 3.3.33,
iff TH(—¢9) by@ and(a),
iff T;58F0@ by Theorem 3.3.33. O

Corollary 3.3.35 (Contraposition). We haveT; ¢ + - iff T; ¢ + —o.

Proof. LetT be a set of wifs and let ¢, ) be wifs. Since

(¢ — —¥) and (¥ — —@) are tautologically equivalent, (a)
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we have

Lor-y iff T+ (¢ - -1) byTheorem 3.3.33,
iff T+ (Y- —-@) by Corollary 3.3.34(1) and (a),
iff TsYF-g by Theorem 3.3.33. O

Definition 3.3.36. A set I' of wifs is consistent if there is no formula § such thatT + 8
and T + —f; I'is inconsistent if T - f and I + —f3 for some formula f.

If a set of wifs I is inconsistent, then for any wff a, we have I - a. The reason for
this follows. Let f such thatT + fand T + —f. Since § — (= — a) is a tautology, it
follows that I' - a via modus ponens.

Proof by contradiction is often used in mathematical proofs. It can also be used in
first-order logic to show that a deduction exists.

Corollary 3.3.37 (Reductio ad absurdum). If T; ¢ is inconsistent, thenT + —@.

Proof. Assume that I'; ¢ is inconsistent. So, there is a formula f such that I3 ¢ + § and
;o - =p. Thus,T + (¢ — B)andT + (¢ — —p) by the deduction theorem. Since
{o — B,p — B} tautologically implies -¢, we conclude that I' - =¢ by Rule T. O

Theorem 3.3.38. Ifa set of formulasT is inconsistent, then a finite subset of T is inconsis-
tent.

Proof. See Exercise 12. O

Strategies to show that deductions exist

To show that a deduction exists without having to explicitly present a deduction, one

may be able to use the following eight deduction strategies:

(S1) To show thatT + (¥ — 0), it is sufficient to show that I; § + 6, by the deduction
theorem.

(S2) To show that I; -y + -0, it is sufficient to show that I;0 + y, by contraposition.
Also, T3 a + —Vxy iff T; V¢ + —a.

(S3) To show that T + ¥xu, it is sufficient to show that I + ¢ when x does not occur free
in T, by the generalization theorem (Theorem 3.3.29).

(S4) To show thatT + =(y — 0), it is sufficient to show that T ¢ and T + -6, by Rule T
and the fact that {y, -0} tautologically implies —(¥ — 6).

(S5) To show that T + =, it is sufficient to show that I ++ i, by Rule T and the fact that
{1} tautologically implies ——.

(S6) To show that T I -, it is sufficient to show that I'; § is inconsistent, by reductio ad
absurdum.

(S7) To show that T  =Vxy, it is sufficient to show that I' + -} for some term t. Note
that T + (~¢} — -Vxy) by Logical Axiom 2 and Corollary 3.3.34(1). Thus, T + —Vxi
would follow by modus ponens. (If this is not useful, try (S6).)
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(S8) To show that I'; Vya + —~Vxy, try to show that I Vxy + -a. Thus, I a - -Vxy, and

since Vya — aisalogical axiom, we haveT;Vya - =Vxt. Now apply contraposition,
Corollary 3.3.35, to conclude that I'; Vya + =Vxy.

Problem 3.3.39. Using the above strategies, show that:

oy
2
(€)

+ VXxPx — 3xPX,
VXVyPxy + VyVzPzy,
VXPX F VXQx — VX~ (PXx — —Qx).

Solution. For each of the above items, we will show that such a deduction exists.

™

(4]

(€)

To show that + VxPx — 3xPx, we will apply (S1). By the deduction theorem, we
just need to show that VxPx + 3xPx. Theorem 3.3.30 implies that VxPx + Px. By
Example 3.3.23 on page 99 and the deduction theorem, we have Px + 3xPx. Since
VxPx + Px and Px + 3xPx, Lemma 3.3.26(4) implies that VxPx + 3xPx. Therefore,
F VxPx — IxPx.

We shall show that VxVyPxy + VyVvzPzy. Two applications of Logical Axiom 2 and
modus ponens shows that VxVyPxy + Pzy. Since z is not free in VxVyPxy, we see
that VxVyPxy + VzPzy, by applying (S3). Similarly, as y is not free in VxVyPxy, we
conclude that VxVyPxy + VyVzPzy.

We will show that VXPx + VxQx — Vx—(Px — —Qx). By the deduction theorem, it
is sufficient to show that {VxPx, VxQx} + V¥x—(Px — —Qx). So by strategy (S3), we
just need to show that {VxPx, VxQx} + ~(Px — —=Qx). By Logical Axiom 2 and modus
ponens, we see that

{VxPx, ¥xQx} + Px and {VxPx, VXQx} + Qx.

Thus, {VxPx, VxQx} + Px, and {VxPx, VxQx}  ==Qx by Corollary 3.3.34(1). Applying
strategy (S4), we conclude that {¥xPx,VxQx} + —~(Px — =Qx). Therefore, VxPx +
VXQx — Vx—(Px — -Qx).

Problem 3.3.40. Show that - IxVyp — Vy3xo.

Solution. We will show that a deduction of AxVy¢ — Vy3Ixe exists. By the deduction the-
orem it is sufficient to show that IxVy¢ + Vy3xe. Hence, by the generalization theorem
(Theorem 3.3.29), it is sufficient to show that 3xVy¢ + 3x¢. Removing the abbreviations,
we need to show that =Vx-Vyg  —-Vx-¢. By contraposition, this reduces to showing
that Vx—-¢ + Vx-Vye (see Corollary 3.3.35). So, by the generalization theorem (Theo-
rem 3.3.29), we must show that Vx-¢ + —Vy¢ and thus, by reductio ad absurdum, it is
now sufficient to show that X = {Vx—¢, Vyg} is inconsistent. Note that £ + -@ and £ + ¢
by Logical Axiom 2 and modus ponens. Hence, X is inconsistent. Therefore, it follows
that there is a deduction of IxVyp — Vy3Ixe.

Proposition 3.3.41. Let a be a wff. Then + -Vxa < 3x-a and - ~3xa < VX~a.
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Proposition 3.3.42. If x does not occur free in a, then

F(a — VxpB) & Vx(a — p).

Proof. By Rule T, it is sufficient to show that

F(a — ¥xB) — Vx(a — B), ()
FVx(a — B) — (a — VxB). (%*)

To prove (), by the deduction theorem, we must show that

(a — VxB) + Vx(a — B).

By assumption, x does not occur free in a. Hence, x does not occur free in (a — Vxp).
Therefore, by Theorem 3.3.29, it is now enough to show that (a — VxB) + (a — f).
Again, by the deduction theorem, it is enough to show that {(a — VxB),a} + B. Let
I' = {(a — Vxp),a}. We argue that I - B as follows:

@
)
3)
©)
(5)

I'+a—-Vxf inT,

I'+a inT,

T'+Vxp by (D), (2), and modus ponens,
I'+Vxp — B by Logical Axiom 2,

I by (3), (4), and modus ponens.

This completes the proof of (x). Note that the above list (1)-(5) is not a deduction. It is
just part of a proof showing that a deduction of (x) exists.
To establish (x %), we need to show, by the deduction theorem, that

vx(a — B) + (a — VxpB).

So, again by the deduction theorem, we must show that {Vx(a — f),a} + VxB. Since x
does not occur free in Vx(a — B) or in q, the generalization theorem (Theorem 3.3.29)
implies that we just need to show {Vx(a — f5),a} + B. LetT = {¥x(a — f),a}. We show
thatT I B as follows:

@
@
©)
4
©)

T+Vx(a— pB) inT,
l'ta inT,
T'+Vx(a — B) - (@ — B) by Logical Axiom 2,

Tra—-p by (1), (3), and modus ponens,

THp

by (2), (4), and modus ponens. O

Proposition 3.3.43. Ifx is not free in a, then + (a — 3xP) < Ix(a — P).
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Proposition 3.3.44. Ifx is not free in B, then + (Vxa — p) < Ix(a — P).
Proposition 3.3.45. Ifx is not free in B, then + (Ixa — B) < Vx(a — P).
Proof. By Rule T, it is sufficient to show that

F (3xa — B) — Vx(a — B), (%)
FVx(a — B) — (Ixa — B). (%%)

We shall first prove (x). It is sufficient to show that
(Ixa — B) + Vx(a — ), (3.14)

by the deduction theorem. By assumption, x does not occur free in . Thus, x does not
occur free in (3xa — ). To establish (3.14), the generalization theorem (Theorem 3.3.29)
implies that it is enough to verify that (3xa — B) + (a — f). Again, by the deduction
theorem, we now just need to show that {(Ixa — f),a} + B.LetT = {(Ixa — PB),a}.
Thus, as Ixa is an abbreviation for -Vx-a, we have

1 T'kr-Vx-a—p inT,

2 Tra inT,

(3) T'+Vx-a— -a byLogical Axiom 2,

(4) Tra— -Vx-a by (3)and Corollary 3.3.34(1),
(5) T+ -Vx-a by (2), (4), and modus ponens,
6) THB by (1), (5), and modus ponens.

In (4) we used the fact that (Vx-a — —a) and (¢ — -Vx—a) are tautologically equivalent.
We shall now prove (). By the deduction theorem we need to show that

vx(a — B) + (3xa — P).

So, by the deduction theorem and contraposition, it is sufficient to show that
{vx(a — B), B} + ~3xa.

By Corollary 3.3.34(1), we only need to show that
{vx(a — B), ~B} F Vx-a.

Since x does not occur free in 8, we see that x does not occur free in any formula in the
set {¥Vx(a — B),f}. So, by the generalization theorem (Theorem 3.3.29), it is enough to
show that

{vx(a - B), B} + —a.
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Furthermore, by contraposition, we just need to show that

{¥x(a — B),a} + B.

LetT = {Vx(a — fB),a}. We show that I' - § as follows:

1 T'rVx(a—p) inT,

2 Tra inT,

(3) TrVx(a—p)— (a— p) DbyLogical Axiom 2,

4 Tra-p by (D), (3), and modus ponens,

5) T'+p by (2), (4), and modus ponens. O

The following theorem can be useful to show that certain deductions exist.

Theorem 3.3.46. Let a and B be wffs. If - a — P, then - Vxa — Vxp.

3.3.6 Equality

As you may recall, the logical axioms have two groups of axioms that concern equality.
However, as yet, we have not discussed deductions that involve the equality symbol =.
In this section, we will examine deductions in languages £ that contain the equality
symbol. Using the logical axioms, we will show that all of the common properties of
equality can be deduced from the axioms. One should go to page 97 and review the
logical axioms and the equality axioms before continuing.

Proposition 3.3.47. We have + Vx(x = x).

Proof. Since x = x is a logical axiom, Vx(x = x) is also a logical axiom by generalization
(a generalization of a logical axiom is a logical axiom). O

Proposition 3.3.48. LetT be any set of wffs and let t be a term. ThenT + t = t.

Proof. The following holds for any set I', even the empty set:

1) TrVYX(x=x) by Proposition 3.3.47,
(2) TrHVYX(x=x)—>t=t byLogical Axiom 2,
3) Trt=t by (), (2), and modus ponens.
In (2) we are using x = x as a in Logical Axiom 2 and (x = x)} is t = t. O

Before we prove our next result, we introduce some temporary notation. Let a be an
atomic formula. The formula a may have multiple occurrences of a particular variable,
say x. To identify all of the occurrences of x that appear in a, we shall use the nota-
tion a(x, ..., x). In our next proposition, we will discuss the result of replacing some of



110 — 3 First-order logic

these occurrences of x with another variable. To distinguish the occurrences of the vari-
able x that are to be kept from those that are to be replaced, we shall use the notation
a(x,...,x|x,...,x), where the occurrences of x on the left of | are to be kept and the oc-
currences on the right are to be replaced. Again, this somewhat ambiguous notation is
only temporary. Recall that I'; (x = y) is the set T U {x = y}.

Proposition 3.3.49. Suppose thatT; (x=y) - a, where a is an atomic formula and x,y are
variables. Let a' be the result of replacing some or all of the occurrences of x in a with y.
ThenT;(x=y) - a'.

Proof. We are given that I'; (x = y) I a. As discussed above, we shall use the notation
a(x,...,x|x,...,x) toindicate that the occurrences of x on the right of | are to be replaced
by y. Thus, a’' = a(x,...,x]y,...,y). Now let z be a variable that is distinct from x, y, and
all of the variables that appear in a. Consider the new atomic formula a(z, ..., z|x, ..., X).
We observe that the formula

X=y - a(z,...,z|X,...,X) - a(z,...,zlx,...,x); (3.15)

is in logical axiom group 6. Since a(z,...,zlx,...,x);‘ = a(z,...,zly,...,y), we see
that (3.15) is the same as

x=y—-az....z|Ix,....,x) > a(z,...,Z[]y,..., ). (3.16)

Let B denote the formula in (3.16). Therefore, by generalization, Vzp is in logical axiom
group 6 and Vzp — B is in logical axiom group 2. By modus ponens, we infer that

I;(x=y) + B;.

Since a(z,...,zIx,...,x): =aand a(z,...,zly,...,y)- = a, we see that B is the formula
X=y — a — a'. Hence,

Lxzy)Fxzy—»a—a.

AsT;(x =y) I a, by applying modus ponens twice, we see that T; (x = y)  a’. O
Proposition 3.3.50. We have - VxVy(x =y — y = X).

Proof. By Theorem 3.3.29, it is sufficient to show that - (x =y — y = x), and by the
deduction theorem, we just need to show that {x = y}  y = x. We do this as follows:

1) {x=y}rx=x asx=xisalogical axiom,

(2) {x=y}ry=x DbyProposition 3.3.49.

In (2) we are using x = x as a in Proposition 3.3.49. O

The proof of the following result is requested in Exercise 19.
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Proposition 3.3.51. We have - VxVyVz(x =y »y=z - X =2).
Proposition 3.3.52. We have I VxVx,Vy1VY,(Xq =Y1 — X3 =Yy — PXyXy — Py,y,).

Proof. By the generalization theorem (Theorem 3.3.29), it is sufficient to show that

F X1 =Y = Xy =Yy = PXiXy = Pyyy,.

By the deduction theorem we need to prove that

X4 = Y1, X = Y2, PX1 X0} F Pyry,.
LetT = {xq =y, X; =¥,, PxyX,}. We now show that I' - Py,y, as follows:

1 TrFPxx, inT,
(2) T+ Pyx, by Proposition 3.3.49,
(3) T+ Pyy, byProposition 3.3.49. O

Proposition 3.3.53. We have - Vx;VXoVy VYo (Xy = Y1 — Xy =Yy — Xy Xy = i y,).

Proof. By the generalization theorem (Theorem 3.3.29), it is sufficient to show that

B X1 =Y = Xy =Y, = X, = iy,

By the deduction theorem we need to prove that

X1 =y1, X3 =Y} + faxy = fy1ys.
LetT = {Xx; =y;,X; =¥,}. We now prove that T + fx;x, = fy;y, as follows:

(1) T+ fxqxy = fx1x, by Proposition 3.3.48,
(2) TFfxyxy=fnx, by Proposition 3.3.49,
(3) T+ fxyx,=fyy, by Proposition 3.3.49. O

The following theorem follows directly from Propositions 3.3.47-3.3.53.

Theorem 3.3.54. We have:

1. FVx(x=x),

2. FVXYYy(x=y —>y=X),

3. FVXYYWZI(X=y > y=Z > X=2),

4. VXYV VY (X =Y — Xy =Y, — PxyXy — Py,y,), where P is a 2-place predicate
symbol, and similarly for n-place predicate symbols,

5. F VX VXY VY (X = Y1 — Xy =Yy — XXy = fy1y,), Where f is a 2-place function
symbol, and similarly for n-place function symbols.
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Items 1-3 of Theorem 3.3.54 show that equality is reflexive, symmetric, and transi-
tive, respectively. Items 4 and 5 show that the substitution property of equality holds,
that is, if two quantities are equal, then one can replace one with the other. Thus, the
important properties of equality can be deduced from the logical axioms alone.

3.3.7 More metatheorems about deductions

The next problem illustrates an ability to “generalize on a constant.”

Problem 3.3.55. Let £ contain a constant symbol ¢ and 1-place predicate symbols P
and Q. LetT' = {Vx(Px — Qx),VzPz}. One can show that I' + Qc. Since ¢ does not ap-
pear in any formula in T, can one then show that I + VxQx?

Solution. We show, in steps, that such a deduction exists.
@ T'+Qc

A deduction confirming (a) is given in Example 3.3.22 on page 99.
() THQy

To confirm (b), in the deduction given in Example 3.3.22, replace ¢ with y.
(© T'FVyQy

This follows from (b) by Theorem 3.3.29, as y does not occur in T'.
(d) VyQy r VxQx

This is proven in Example 3.3.25 on page 100.
(e) T+ vxQx

This follows from (c) and (d).

Our next theorem shows that the steps in the solution of the above problem can
be generalized. Let a be a wif and let y be a variable that does not occur in a. Define
af, to be the wif obtained by replacing all occurrences of the constant symbol c in a
with y.

Theorem 3.3.56 (Generalization on constants). Suppose thatT + ¢ and let ¢ be a constant
symbol that occurs in no formula inT. Then there is a variable y which does not appear in
¢ such thatT + Vy(p;. Moreover, there is a deduction of Vy(p; from T in which c does not
occur.

Proof. Assume I + ¢ and assume that c is a constant symbol that occurs in no formula
inT. Let{ay,...,a,) be a deduction of ¢ from I, where a,, = ¢. So for all k < n, either
(@ apisinTUA, or

(b) ay is obtained by modus ponens from two earlier wifs in the sequence (a;, ..., ay).

Now, let y be a variable that does not occur in a; for all 1 < k < n. We will show that
(ayy, ..., Gpy) is a deduction of ¢y from T. Let k be so that1 < k < n.
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CasE (a): Suppose that a; isin ' U A. If a;, € T, then ¢ does not occur in qj. Thus,
@y = @, and therefore a;y, € I. If a; € A, then ay, is also a logical axiom (for each a
that appears in a logical axiom, by replacing a with af, we get another logical axiom).
Therefore, ak; €A

Cask (b): If a;, is obtained by modus ponens from two earlier wifs in the sequence
(ay;...,a), then for some i and j less than k, the wffs q; and ¢; = (a; — @;) are in the
sequence (qy, ..., ;). Since

C C C Cc
a]'y = (al- — ak)y = (aiy — aky),

we see that ak; is obtained by modus ponens from two earlier wffs in the sequence
[ C
(Qyys ... Ay

S0 (ay, .. .»Ayy) is @ deduction of ¢, from I'. Let
®={a;:aq;eTand 0 <i<n}

Since aif, = q; for all a; € @, we see that ® (o§. As y does not occur in any formula
in @, the generalization theorem (Theorem 3.3.29) implies that ® Vy(p§. Since ® ¢ T,
we conclude that T + VygJ.

Therefore, (ayy, ..., ayy) is a deduction of ¢} from I' that does not involve the con-
stant c. As the proof of Theorem 3.3.29 adds no new symbols to a deduction, we conclude

there is a deduction of Vy(p; from I' in which ¢ does not occur. O

Lemma 3.3.57 (Re-replacement). Let x be a variable and let ¢ be a wff in which the vari-
able y does not appear. Then x is substitutable for y in the wff ¢}, and (pj,?( = Q.

Proof. See Exercise 21. O

Corollary 3.3.58. AssumeT + ¢, where c is a constant symbol that does not occur in ¢
and c does not occur in any formula inT. Then T + Vx¢. In addition, there is a deduction
of ¥xg fromT in which c does not occur.

Proof. AssumeT F @7, where cis a constant symbol that occurs neither in ¢ nor in any
formula in T. Theorem 3.3.56 implies that there is a variable y which does not occur in
@, such that T + Vygofyc. In addition, there is a deduction of Vy(p’éyC from I' in which ¢
does not occur. Since ¢ does not occur in ¢, we see that ¢j;, = ¢j. Hence, (a) ' - Vygj.

o
Lemma 3.3.57 asserts that x is substitutable for y in go;‘ . Thus,

Vyey — o5
is in axiom group 2. Since Lemma 3.3.57 also asserts that (pyxyx = @, we conclude that

vyey — ¢
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is a logical axiom. Thus, - qu); — ¢. So, by the deduction theorem, we have Vy(p; Fo.
Since x does not occur free in Vy(p;, the generalization theorem (Theorem 3.3.29) implies
that Vy(p;,‘ + Vx¢. Because I' - Vy(p;‘ by (a), we conclude that T + Vxg. O

In mathematics, suppose that one can prove a result by using an arbitrary constant.
Afterwards, one can then ask: Is there a proof that does not use the constant? The next
corollary positively addresses this question.

Corollary 3.3.59. Let ¢ be a constant symbol that does not occur in ¢, in i, or in any
formula inT. If T; ¢} + ¢, then T; 3x¢ + 1. Moreover; there is a deduction of Y from T; 3x¢
in which ¢ does not occur.

Proof. Let c be a constant symbol that does not occur in ¢, in ¥, or in any formula in T.
Suppose that T; ¢} + 1. By contraposition (Corollary 3.3.35), we see that I; =y + —¢y.
Corollary 3.3.58 implies that I'; =¢ - Vx—¢ and this can be confirmed by a deduction in
which ¢ does not appear. Thus, by contraposition, I'; =Vx-¢ + 1. Hence, I'; 3x¢ + 1 and
this can be verified by a deduction in which ¢ does not occur. O

Alphabetic variants

We begin with some terminology. Let v be a variable and consider a wif of the form Vxo.

If v occurs in ¢, then v is said to be within the scope of the quantifier V. An alphabetic

variant of wif a is a wif a that is the result of a one-to-one replacement of some, none, or

all of the quantified variables of @ with variables that are not in the scope of a quantifier

in a. A precise definition of an alphabetic variant can be given by recursion (see the proof

of Theorem 3.3.61 below). Here are some examples:

1. The wff YwVxPwx is an alphabetic variant of VyVzPyz, because the change of quan-
tified variables y — w, z — x is one-to-one and w, x do not occur in VyvzPyz.

2. The wff VzVzPzz is not an alphabetic variant of VyVzPyz, because the change of the
quantified variable y + z is such that z is in the scope of V in VyVzPyz.

Here are two examples which indicate that one can deduce alphabetic variants:
1. VyQy + VxQx (see Example 3.3.25),
2. YYVzPyz - VXVWPxw.

The above examples illustrate that one can deduce a “change of quantified variables.”
In Theorem 3.3.61 below, such a “change of variables” result is established in general.
Consequently, when a term is not substitutable for a variable in a given wff, one can
change the quantified variables so that the term will become substitutable.

The following is essentially a restatement of Theorem 3.3.46.

Lemma 3.3.60. Let a and 8 be wffs and let x be any variable. If a \ B, then Vxa + Vxp.
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Given a term t and a wif ¢, the term ¢t may not be substitutable for a specific variable
in @. The following theorem shows that one can change the quantified variables in ¢ to
get an equivalent formula ¢ in which t is substitutable.

Theorem 3.3.61 (Alphabetic variants). Let ¢ be a wff, t a term, and x a variable. There
exists an alphabetic variant ¢ of ¢ such that:

(@ oroando+ o

(b) tis substitutable for x in .

Proof. Let the variable x and let term ¢ be fixed. If ¢ is substitutable for x in ¢, then let
@ = ¢. Otherwise, we will define ¢ and prove the following statement by induction on
©: 0+ 0,0+ ¢, and t is substitutable for x in ¢.

Base step: Let ¢ = Pt;t, - - - t, be an atomic sentence. Let ¢ = ¢. Clearly, ¢ - ¢, ¢ - ¢, and
t is substitutable for x in ¢.

Inductive step: Let a and 8 be arbitrary wffs. Assume the induction hypothesis that there
are wifs a and § such that

ala, at a, and tis substitutable for x in a,

- = _ IH
B+ B, B+ B, and t is substitutable for x in B. (IH)

We must prove that the same holds for each of the following: ~a,a — B, Vya.

CASE —a: Let =a = —a. By (IH), contraposition, and Definition 3.3.15, we see that -~a + —a,
-a + —a, and t is substitutable for x in —a.

CASEa — B:Leta — = @ — fB. By (IH), Exercise 22, and Definition 3.3.15, we see that
(a—= P+ (a— p),(a— p)+ (a— B),andtis substitutable for x ina — B.

CASE Vya : Choose a variable z # x that occurs neither in @ nor in ¢. Let Vya = Vza,. We
must prove that

Vya + Vza,, Vz&, +- Vya, and t is substitutable for x in Vza).

We first show that ¢ is substitutable for x in Vza,. By the induction hypothesis (IH),
the term t is substitutable for x in a. Since x # z and z does not occur in t, it follows
that t is substitutable for x in Eﬁ Thus, by Definition 3.3.15(4)(b), we conclude that ¢t is
substitutable for x in Vza).

By the induction hypothesis we have a I a. Since z does not occur in a, we see that
(%) z is substitutable for y in a. Also, as z does not occur in @, it follows that z does not
occur free in «a (if it occurred free in a, it would occur in @). Therefore, (xx) z does not
occur free in Vya. We now prove that Vya  Vz(@)), as follows:

ara by (IH),
Vya - Vya by Lemma 3.3.60,
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vya @ by modus ponens as Vy@ — @, is a logical axiom (group 2) via (x),

Vya - VZE’Z by (%) and the generalization theorem (Theorem 3.3.29).

We now prove that ¥z, + Vya. Recall that z does not appear in @. Lemma 3.3.57 thus

implies that y is substitutable for z in @, and that @,; = @. Also, we note that (a) y does
not occur free in Vza,. Since Vz&, — @,y is a logical axiom, we see that (¥) Vz@, + @,
Finally, we prove that Vz@, + Vya as follows:

vza, - @y by (v)

Vz@, @  because @, =@,

V@ + a by (IH) a + a, and so Lemma 3.3.26(4) applies,

Vza, + Yya Dy (a) and the generalization theorem (Theorem 3.3.29). O

Exercises 3.3.

*1.

*2.

*5.

Let S be the set of all prime formulas in a language £. Let F = {£.,£_} and let S
be the set of all wifs generated by S from the functions in 7. Prove by induction on
wifs that every wif is in S.

Let 2 be an £-structure with domain A. Let V be the set of all the variables of £. Let
s:V — A be a variable assignment. Define a truth assignment on the set of prime
wifs a by

T, if2AEals],
F, ifA ¥ als].

(a) Show that for all wifs 0,
u@) =T iff AE 0[s].

(b) LetT be a set of wifs and let ¢ be a wff. Show that if T tautologically implies ¢,
then I' logically implies ¢.

Show that the wff Vv, (v;=v;) — v;=v;, islogically valid and that it is not a first-order

tautology.

Let £ = {c,f, =}, where c is a constant symbol and f is a 1-place function symbol. For

each of the following wiffs ¢ and terms ¢, evaluate ¢} and decide if ¢ is substitutable

for x in ¢:

@ Vx(x=y - fx=fy)and tisfc,

(b) Vyx=y > fx=fy)and tisfy,

(©) (x=y - Vx(fx=fy))and tis fy.

Let £ be a language, let x be a variable in £, and, in particular, let x = Vi, Now let

t be a term. Let A be the set of all the atomic formulas and let X be the set of wffs

defined by



*10.
11
*12.
13.
14.
15.
16.
17.

18.
*19.
*20.
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X= {Wioa: a is a wif}.

Thus, X is the set of wiffs of the form Vxa, where a is some wff. Let S = AU X, a
disjoint union. Let Q = {&y, : i # ip}. Let F = {€,E_} U Q (see (3.4)) and let S be
the set generated from S by the functions in 7. Theorem 3.1.16 implies that S is
the set of all the wifs and is freely generated from the set S by the functions in F.
By Exercise 11 on page 65, for each term 7, 7" is the term obtained by replacing all
occurrences of x in 7 with t. Define h: S — S by

hv) = {Prl’t‘fzf 1Y, ifv=Prr,--T,isin 4, .

Vxa, ifv=VxaisinX.

Theorem 1.1.27 implies there is a unique function h: S — S such that

() h(a)=h(@ifacs,

@ h(-a)=-h@,

B h((a — B)) = h(a) — h(B),

4) E(Vva) = val(a) whenever v # Xx.

Prove, by induction on wifs, that for all wifs a, ﬁ(a) = af .

Let £ = {P,Q,c}, where P is a 1-place predicate symbol, Q is a 2-place predicate
symbol, and c is a constant symbol. To which logical axiom groups, if any, do each
of the following wifs belong?

(@ ((vxPx — YyPy) — Pz) — (VxPx — (VyPy — Pz)).

(h) Vy(¥Vx(Px — Px) — (Pc — Px)).

(©) VxIyQxy — IyQyy.

Using Definition 3.3.20, prove Lemma 3.3.26.

Suppose that I is consistent and I’ + ¢. Show that I' U {¢} is consistent.

Let I = {Vxa, Vx—a}, where a is a wff. Show that I' is inconsistent.

Suppose that the term ¢ is substitutable for x in wff a. Show that + a} — 3xa.
Show that - Vx¢ — 3x¢ by presenting an explicit deduction.

Prove Theorem 3.3.38.

Prove Proposition 3.3.41.

Prove Proposition 3.3.43.

Prove Proposition 3.3.44.

Prove Theorem 3.3.46.

Show the following:

(@ + Ix(Px — VxPx),

(b) {Qx,Vy(Qy — VzPz)} I VXPx.

Show that VxVyPxy — VyVxPyx.

Prove Proposition 3.3.51.

Let f be a 1-place function symbol and let t and 7 be terms. Show that:

@ FVxWy(x=y - fx=fy),

d) +(t=1 - ft=fr).
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*21.
*22.

23.

*24.

*25.

26.

*21.

28.

29.
30.

= 3 First-order logic

Prove Lemma 3.3.57 by induction on ¢.

Suppose that:

1. araandat q,

2. BrpBandBrpB.

Prove that (@ — ) + (@ — B) and (@ — B) + (a — ).

Let I and A be sets of wifs. Suppose that I - ¢ for all ¢ € A and that A + ¢. Prove
thatT I o.

Prove that a set of wifs I' is consistent if and only if every finite subset of T is con-
sistent.

Suppose that T is a consistent set of wifs and let ¢ be a wif. Show that if T i ¢, then
I' U {—-¢} is consistent.

Suppose I is a set of sentences, ¢ is any wif, and x is any variable. Prove that £ - ¢
if and only if Z +- Vxo.

Show that + =Vva — —Vv--a.

Show that + 3xf — Vxp if x does not occur free in .

Show that + Ix(3IxPx — Px).

LetX, € £, € X, € X5 C --- be sets of wifs. Suppose that each Z; is consistent. Show
that | ;e Z; is consistent.

Exercise Notes: For Exercise 11, Vx¢ — ¢ and Vx—¢ — -¢ are logical axioms. In addi-

tion,

(VX9 — —¢) — (¢ — ~Vx~¢) and
(VxQ — @) = (¢ = VX~9) = (VX — ~VXQ)

are tautologies. For Exercise 17, use reductio ad absurdum by showing that

Vx=(Px — VXPx) v VXPx

(via Logical Axiom 2, a tautology, and generalization) and showing, via Logical Axiom 2
and a tautology, that Vx—-(Px — VxPx) + ~VxPx. For Exercise 18, use Problem 3.3.39(2) on
page 106. For Exercise 20, by Theorem 3.3.61 one can assume that x and y do not appear
intorrt.



4 Soundness and completeness

Is there a relationship between the concept of truth and the concept of proof? In the
previous chapter we investigated what it means for a structure to satisfy a first-order
formula and then we discussed deductions of first-order formulas. In this chapter we
will establish two consequential relationships between satisfaction and deduction. The
first relationship is called the soundness theorem, which implies that every first-order
formula that is deducible, from the logical axioms alone, is logically valid. The second
relationship, the completeness theorem, shows that every first-order formula that is log-
ically valid is deducible.

4.1 The soundness theorem

The soundness theorem asserts that “deductions preserve truth,” that is, if I' is a set of
well-formed formulas (wffs) and each wff in T holds in a structure, then any wiff that is
deducible from I will also hold in this structure. The goal of this section is to prove the
soundness theorem.

Theorem (Soundness). LetT be a set of formulas. If T + ¢, thenT & .

The soundness theorem shows that if a formula ¢ is deducible from a set of wifs T,
then the set I logically implies ¢ (see Definition 3.2.15). Therefore, deductions produce
valid conclusions, that is, these deduced conclusions will hold in every structure in
which the assumptions hold. This confirms why proof in mathematics is so important.
Before we present the proof of this theorem, we need to state and prove some technical
lemmas.

4.1.1 Technical lemmas

Our first two technical lemmas are used to prove that all the logical axioms are logically
valid, that is, every logical axiom is true in every structure. Recall that for a wif a, we
defined the wff a} in Definition 3.3.13 so that a; is the result of “replacing the variable x
in @ with the term t,” with one exception (item 4 of Definition 3.3.13). Now, given a term 7,
let us define 7} to be the term obtained by replacing the variable x in 7 with the term ¢
(see Exercise 11 on page 65). Also recall that, given an assignment s, s, is the function
which is exactly like s except for one thing: at the variable x it assumes the value d,
that is,

s(v), ifv+#x,

Syja(v) = {

d, ifv=x.

https://doi.org/10.1515/9783110782073-004
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Given an assignment s, we will show in our next lemma that the value of E(Tf ) can be
obtained by using the assignment s, 5,).

Lemma 4.1.1. Let 2 be a structure and let s be an assignment. For terms 7, t and variable
x we have 3(y) = Sy (7).

Proof. Let 2 be a structure, s an assignment, t a term, and x a variable. We shall prove
that §(T§‘ ) = Syjs(r)(7) by induction on terms 7.

Base step: Let ¢ and v be a constant and a variable, respectively, of the language L.
Clearly, ¢ = c, so s(c) = c* = 150 (€) by Definition 3.2.4. If v # x, then vi = v, s0
5(v) = s(V) = Sy (V). If v = X, then X} = t, 50 S(x;") = 5(t) = Syj5(0)(X)

Inductive step: Let f be an n-place function symbol in £ and let 7,..., 7, be terms. As-
sume the induction hypothesis

For each i < n we have s(z;}) = Sxiscn) (To)- (IH)

We must prove that the same holds for the term fz; - - - 7,,. Thus,

S((fry - t)f) =s(fr} -+ Tt Exercise 11(2), page 65,
=260, ..., 5(t))) by Theorem 3.2.5(3),
= Sas0(T)s - > S (@) by (H),
= Syso T o) by Theorem 3.2.5(3). O

Lemma 4.1.2 (Substitution). If the term t is substitutable for the variable x in the wff ¢,
then for every structure 21 and every assignment s, we have

AE (sl iff Ak olsyse)-

Proof. Let2 be an arbitrary structure. We shall prove the following statement by induc-
tion on wifs: If t is substitutable for x in ¢, then

AE@[s] iff Ak O[Sxs(p] for all assignments s.

Base step: Let Pty --- 7, be an atomic formula. Let s be an assignment. We note that
(*) (Pty -+ Ty} = Py} -~ 7,5 Thus,

AE (Pry - [s] iff APy -1, (8] by (%),
iff  (5(z,)),...,5(t,))) € P* by Definition 3.2.6(2),
iff <3X|§(t)(T1)’ e leg(t)('[n)> € PSZl by Lemma 4.1.1,
iff & Pty T[Sy by Definition 3.2.6(2).

Inductive step: Let a and f be arbitrary wifs. Assume the induction hypothesis
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if ¢ is substitutable for x in a, then 2 = a; [s] iff A = a[sy5( ],

e . . . (IH)
if ¢ is substitutable for x in §, then 2 = B} [s] iff A = B[Sy5()]

for all assignments s. We must prove that the same holds for each of the following:

(—a), (a — B),Vva.

CASE (—a): Let s be an assignment and let ¢ be substitutable for x in (-a). It follows that
t is substitutable for x in a (see Definition 3.3.15) and that (-a)} = -a}. Hence

A E (~ay[s] iff Aw a)[s] by Definition 3.2.6(3),
iff A ¥ a[leg(t)] bY (IH);
iff A (=a)[syse] by Definition 3.2.6(3).

CASE (@ — B): Let s be an assignment and let ¢ be substitutable for x in (@ — ). Thus, t
is substitutable for x in a and in B, and (a — )} = (a; — B;). Hence

Ak (a— Prls] iff A& a;[s] implies A = B[s] by Definition 3.2.6(4),
iff 2 & afsyse] implies A = Blsysp] by (IH),
iff A& (a— B)Sxse] by Definition 3.2.6(4).

CASE Vva: Let s be an assignment and ¢ be substitutable for x in Vva. By Definition 3.3.15,

either (a) x does not occur free in (VYva) or (b) v does not occur in t and ¢ is substitutable

for x in a.

(a) Suppose x does not occur free in VYva. Thus, (a) (Yva)} = Vva. Also, it follows that
s and s,5;) agree on the free variables in Vva. Thus, by Theorem 3.2.11 we have
2 E VYva[s] if and only if 2 &= Vva([s,sp]. So, by (A), 2 & (Vva){[s] if and only if
A E Yva[sysp]-

(b) Assume v does not occur in ¢ and ¢ is substitutable for x in a. By Definition 3.3.13, we
have

X Yva, ifx=v,
(Yva); =

way, ifx#v.

If x = v, then x does not occur free in Vva, and this is just case (a) above. If x + v,
then (Vva)’t‘ = Waf . Therefore, letting A be the domain of 2, we have

A (Wa)i[s] iff foreveryd e A 2 E af[syq] by Definition 3.2.6(5),
iff foreveryd e A, E @[Sygxs] by (IH),
iff A= Yvalsyge] by Definition 3.2.6(5).

This completes the proof of the substitution lemma. O
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Recall that an alphabetic variant of wif ¢ is obtained by replacing some, none, or all
of the quantified variables of ¢ with different variables (see page 114). Lemma 4.1.2 and
Theorem 3.3.61 imply the following observation.

Corollary 4.1.3. Lett be aterm, x avariable, and ¢ a wff. There is an alphabetic variant ¢
of ¢ such that

O+, ¢+ o, tis substitutable for x in @,
and for every structure 2 and every assignment s, we have
AE (sl i AEBlsyse):

Lemma 4.1.4. Every logical axiom is logically valid.

Proof. By Exercise 14 on page 89, we know that any generalization of a logically valid
formula is also logically valid. Therefore, we only need to prove the logical validity of
the axioms described in the six groups of Logical Axioms 3.3.17. Let 2 be a structure and
let s be an assignment. We shall show that 2 = ¢[s] for every ¢ that belongs to one of
the six categories in Logical Axioms 3.3.17.

1. Suppose ¢ is a tautology. Exercise 2(b) on page 116 (where I' = @) implies that = ¢,
and therefore 2 = ¢[s].

2. Assume that ¢ has the form Vxa — af, where t is substitutable for x in a. We must
show that 2 £ (Vxa — aj‘ )[s]. So, assume that 2 = Vxa[s]. We conclude that 2 =
a[Syj5(r))- The substitution lemma (Lemma 4.1.2) implies that 2 = a; [s]. Therefore,
2 = (Yxa — a)[s].

3. Let ¢ have the form Vx(a — ) — (¥xa — Vxp). To show that

2A & (Vx(a — B) — (Vxa — VxPB))[s],

assume that 2 = Vx(a — B)[s] and & Vxa[s]. Exercise 12 on page 89 implies that
A = VxB[s].

4. Let ¢ be of the form a — Vxa, where x does not occur free in a. To show that 2 =
(a — Vxa)[s], assume 2 = a[s]. Thus, % = Vxa[s] by Exercise 13 on page 89.

5. Suppose ¢ has the form x = x. We must show that 2 = (x =x)[s]. This follows imme-
diately from Definition 3.2.6(1), the definition of satisfaction.

6. Assume that ¢ has the formx=y — (a — a; ), where a is an atomic formula. We
must show that

Ak (x=y - (a - a@))s].

To affirm this, assume that 2 = (x=y)[s]. Thus, s(x) = s(y). By Exercise 11 on page 88,
we have 2 = a[s] iff A = a; [s]. It thus follows that 2 = (x =y — (a — a;,‘))[s]. 0
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4.1.2 Proof of the soundness theorem

Theorem 4.1.5 (Soundness). Let I be a set of formulas. IfT ¢, thenT & .

Proof. Assume thatT I ¢.Let (a;,a,,...,a,) be adeduction from the set I of wifs, where
a, = ¢. We shall prove the following statement: For allk < n, T &= a;. We shall use strong
induction on the natural number variable k.

Base step: Let k = 1. We must show that T = ;. Since a; is the first item in the deduction,
either (a) a; € T or (b) a; is a logical axiom. If a; € T, then clearly we have T E a;. If q; is
a logical axiom, then Lemma 4.1.4 implies that T = a;.

Inductive step: Let k < n. Assume the strong induction hypothesis
F'Eq foralli<k. (SIH)

We must show that T’ = a;. Since a; is in the deduction, either (a) a; € T, or (b) ay is
a logical axiom, or (c) ay is obtained by modus ponens from an ¢; and q; = (@; — @),
where i,j < k. If (a) or (b) hold, then we can conclude that T = q just as in the base
step. So, suppose that (c) holds. By the strong induction hypothesis (SIH), we conclude
thatT = a; and T & (a; — ai). It now follows that I' = ay. O

Corollary 4.1.6. LetT be a set of formulas. If T i ¢, thenT ¥ ¢.
Corollary 4.1.7. Let ¢ be a wff. If + @, then = ¢.
Corollary 4.1.8. IfI- (¢ < V), then the wffs ¢ and y are logically equivalent.

Proof. Assume + (¢ < ). By the soundness theorem, we conclude that = (¢ < ¥).
Exercise 9(b) on page 88 implies that ¢ and ¥ are logically equivalent. O

Recalling Theorem 3.3.61, a wif ¢ is an alphabetic variant of ¢ when o differs from
¢ only in the choice of quantified variables. For example, VxVwPxw is an alphabetic
variant of VxVzPxz.

Corollary 4.1.9. Suppose that ¢ is an alphabetic variant of ¢. Then ¢ and ¢ are logically
equivalent.

Proof. Let ¢ be an alphabetic variant of ¢. It follows from Theorem 3.3.61 that ¢ - ¢ and
@ F 9. By the soundness theorem, we have ¢ = ¢ and ¢ = @'. Therefore, ¢ and @ are
logically equivalent. O

Definition 4.1.10. A set of wifs I' is satisfiable if for some structure 2( and some assign-
ment s we have 2 = ¢[s] forall ¢ e T.

Corollary 4.1.11. IfT is satisfiable, then T is consistent.

Proof. Assume that I is satisfiable. We will show that I' is consistent. Suppose, for a con-
tradiction, that there is a wff f such thatT' + f and I' - —f. Since T is satisfiable, let 2
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be a structure and let s be an assignment that satisfies every wif in I. The soundness
theorem now implies that 2( = B[s] and 2 # fS[s], which is a contradiction. O

Exercises 4.1.
1. Let c be a constant symbol and let a be a wif. So ¢ is substitutable for x in a. Let 2
be a structure and let s be an assignment. Let s(c) = d. Show that

Ak ay(s] iff AE alsygl

Conclude that if 2 = a’c‘ [s], then A £ Ixa[s].

2. Let ¢ be a constant symbol, let I' be a set of wifs, and let ¥ be a wif. Suppose that
I & §7. Using Exercise 1, show that T = 3xy.

*3. Let t be a term that is substitutable for x in the wff ¢. Show that {¢}, x = t} = ¢.

4. Show that Px ¥ VxPx. Conclude that {Px, =VxPx} is consistent.

5. LetT = {=Vv,Pvy, Pv,, Pv3, Py,, ... }. IsT is consistent?

6. A set of wifs I'is said to be independent if for every wif ¢ € I, T'\ {p} ¥ ¢. Suppose
that for every ¢ € T, the set of wifs (T' \ {¢}) U {-¢} is satisfiable. Show that T is
independent.

7. Let £ = {=} and let a be the sentence 3xVy(y = x). Show that ¥ a and ¥ -a.

4.2 The completeness theorem

The completeness theorem is the converse of the soundness theorem, but it is a much
deeper result. Given a set I' of wifs, the completeness theorem shows that if T logically
implies a formula, then that formula is deducible from I'. The completeness theorem
and its proof first appeared in the 1930 doctoral dissertation of Kurt Gédel. The proof of
the completeness theorem presented below is due to Leon Henkin.

Theorem (Completeness). Let T be a set of first-order formulas and let ¢ be a wff.
@ IfTE o, thenT + ¢.
(b) IfT is consistent, thenT is satisfiable.

The basic idea behind the proof of (b) is as follows: Given that I is consistent, we
first construct a set of wffs A such that:
(1) for each wif ¢ and variable x, the wff 3x¢ — ¢ is in A for a constant symbol c;
2 Tch
(3) Ais consistent;
(4) for every wif q, either @ € A or (-a) € A.

We shall then use A to build a structure that satisfies I'. Before we present the proof of
the completeness theorem, we need to state and prove some technical lemmas that will
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allow us to complete the above steps (1)-(4). In the proof of the completeness theorem,
we will then focus on the construction of the structure that satisfies I.

4.2.1 Technical lemmas

On page 2 we discussed indexed sets, that is, sets of the form {x; : i € I}, where I is an
unspecified set. Such notation will be used in this section.

Definition 4.2.1. Let £ be a first-order language. Let £' = £ U {c¢; : i € I}, where each
¢; is a new constant symbol that does not appear in £ and ¢; # ¢; whenever i,j € I are
distinct. Then £’ is an extension of £ by new constants.

Lemma 4.2.2 (Adding constants). SupposeT is a consistent set of wffs in a language L. Let
L' be an extension of £ by new constants. Then T remains a consistent set of wffs in the
extended language L'.

Proof. Assume that I' is a consistent set of wifs in the language £. Suppose, for a con-
tradiction, that T is an inconsistent set of wffs in the language £'. Therefore, there is
an £'-formula ¢ such that T + ¢ and T + -¢, where the deductions take place in the
language £'. Let (a, ay, ..., ¢) be an £'-deduction of ¢ and let (;, B, ..., ~¢) be an £'-
deduction of —¢. Since these two deductions are finite, there is only a finite number of
the new constant symbols that appear in these deductions. Suppose that the finite list
¢y, - .., Cy contains all of the new constant symbols that appear in these deductions. The
proof of Theorem 3.3.56 implies that there are variables y,, ..., Yy, that do not appear in
the two deductions (ay, a,, . .., @) and (B, B, . . ., 7¢) such that the replacement of each
new constant symbol ¢; in the deductions with the variable y; results in £-deductions
(aj,aj,...,9") and (B, B, ..., ') from T. We conclude that I is inconsistent in £. This
contradiction completes the proof. O

In our next lemma, we will be adding constants to £ that act as “witnesses.” They
are called Henkin constants and will allow us to construct a structure in which each
existential formula that holds in the structure can be verified by a witness among the
new constants. Recall that Jva is an abbreviation of ~Vv-a.

Lemma 4.2.3 (Ensuring witnesses). Let £ be a first-order language and let T be a consis-

tent set of wffs in the language L. Let L' = L U {c{ : i € I} be an extension of L by new

constants where £ and I have the same cardinality. Then there is a set © of wffs in the

language L' such that:

D Trco;

(2) for every £'-wff ¢ and every variable x, the wff 3xp — ¢ is in © for some new con-
stant symbol c¢;

(3) @ is consistentin L'.
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Before we present the proof, we make a comment. Let S = {c], ¢}, c}, ...} be an in-
finite set of new constant symbols. Given a finite subset A of S we shall be referring to
the “first new constant symbol ¢ not in A”. This will mean that ¢ = c,'(, where k is the
smallest k such that c;, ¢ A. For example, if A = {c}, ¢}, ¢}, c¢}, then ¢ = ¢y is the first new
constant symbol not in A.

Proof. Let £ be a countable first-order language and let £’ = £ U {c{, ¢}, ¢},...} be an
extension of £ by new constants. Consider the set

P = {{p,v) : ¢ is an £'-wff and v is a variable of the language}.

Theorem 1.1.30 (on page 12) implies that the set of all wffs in the language £’ is a count-
able set, because the set of all wifs is a subset of the set of all finite sequences of symbols
in the countable language £'. From this it follows that the set P of pairs is also a count-
able set. Thus, let

<(01’X1>> <(P2:X2>) <¢3’X3>) XS] <(prp Xn>) LR (41)
be a fixed enumeration of all the pairs in P. Let 6, be the wif
W — P

where ¢, is the first new constant symbol not occurring in ¢;. In general, let us define
(by recursion on IN) 8, to be the wif

X, Pn — ((pn))c(:’
where c,, is the first new constant symbol not occurring in ¢, or in 6, for all k < n. Let
@ = FU{91,92,...,9n,...}.

Clearly T satisfies conditions (1) and (2) of the statement of this lemma. We thus need to
show that O satisfies condition (3), that is, we must show that © is consistent.

Suppose, for a contradiction, that © is inconsistent. Theorem 3.3.38 implies that a
finite subset of © is inconsistent. Thus, there is a natural number m such that

TU{0),6y....00.)

is inconsistent. Assume that m is the least such m. Since T is consistent, we must have
m > 0. By the reductio ad absurdum corollary (Corollary 3.3.37), it follows that

TU {91, 92,...,0m} = _|9m+1.

That is,
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TU{0,0,,...,0,} - -(3xp — ¢f)

for some @, x, ¢. As =(3x¢p — ¢}) — Ixp and ~(Ixp — @) — - are tautologies, rule T
(Theorem 3.3.31) implies that

Tu{6,0,,...,0,} + 3xo, (*)
FU {91, 92""’0”1} = _‘(p)c( (**)

Since the constant symbol ¢ occurs neither in ¢ nor in any formulainT'u{6,,0,,..., 6.},
Corollary 3.3.58 with (**) implies that

F U {61, 62, ey em} l_ VX_|(D.
However, (x) implies (after removing the abbreviation) that
Tu{6,0,,...,0,} - ~Vx-o.

So,Tu{6;,0,,...,6,,} is inconsistent. This contradicts the leastness of m if m > 0, and
contradicts the consistency of T'if m = 0. O

Remark 4.2.4. The proof of Lemma 4.2.3 assumes that the language £ is countable. The
lemma still holds for uncountable languages by a modification of this proof, which re-
quires knowledge of cardinal numbers. Suppose that £ and I both have cardinality x,
where k is an uncountable cardinal. We can presume that I = «. In the above proof,
replace (4.1) with the sequence of pairs

<(py> Xy)yeK

indexed by the ordinals y € k. For each y € k, define (by recursion) 6, to be the wif
X9y — (‘/’V))c(: ’

where ¢, is the first new constant symbol not occurring in ¢, or in 6, for all n € y. It
then follows that ® =T U {6, : nj € k} is consistent.

Let © be as in Lemma 4.2.3. Our next result will allow us to extend © to a maximal
consistent set of wffs.

Lemma 4.2.5 (Going to the max). Let L be a first-order language and suppose that © is a
consistent set of wffs in the language L. Then there is a set A of wffs in the language L such
that:

M echy

(2) Ais consistent;

(3) for every wff g, either ¢ € A or (-¢) € A but not both;

(4) foreverywffo, if A+ ¢, then g € A



128 —— 4 Soundness and completeness

Proof. Let £ be a countable first-order language. Theorem 1.1.30 (on page 12) implies that
the set of all wifs is a countable set, because the set of all wffs is a subset of the set of all
finite sequences of symbols in the language £. Thus, let

81,83 83r-.» 8. 4.2)

be a fixed enumeration of all the wffs in the language £. Define by recursion on N the
following sets:
(1) AO = @

A US4},  ifA,U{S is consistent,
(ii) An+1 ={ n { n+1} n { n+1}

A, U{=6,,1}, otherwise.

We shall now establish four claims.

Claim1. Foralln € N, A, is consistent.

Proof of Claim 1. We shall use induction on n.

Base step: Let n = 0. Then A, = 0, which is consistent by assumption.

Inductive step: Let n € IN be arbitrary. Assume the induction hypothesis
A, is consistent. (IH)

We will prove that A, 4 is consistent. Suppose, for a contradiction, that A, 4 is not consis-
tent. Thus, it follows from the above definition (ii) of A4 that A, U {§,,,} is inconsistent
and A, U{=6,,,} is inconsistent. By the reductio ad absurdum corollary (Corollary 3.3.37),
it follows that

Dy b 28541,
Ap F8ppqe
Thus, A, is inconsistent, contradicting the induction hypothesis (IH). (Claim 1) O
Let A = | J,en Ay Clearly, © € A(as © = Ag), and (a) A, < A,  foralln e N,
Claim 2. The set A is consistent.

Proof of Claim 2. Suppose, to the contrary, that A is inconsistent. By Theorem 3.3.38 there
is a finite subset IT of A that is inconsistent. Since IT € A = | J,x A, and II is finite, it
follows, from (a), that IT ¢ A, for some n. Hence, A, must be inconsistent, contradicting
Claim 1. (Claim 2) O

Claim 3. For every wff a, either a € A or (-a) € A, but not both.

Proof of Claim 3. Let a be any wff. Since (4.2) lists all of the wffs, there is an n € IN such
that a = a,. So either a,, € A, or (-a,) € A, by (i) above. Since A, € A, it follows that
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ae€Aor(-a) € AIfa € Aand (-a) € A, then A would be inconsistent, contradicting
Claim 2. Hence, we cannot have a € A and (-a) € A. (Claim 3) [J

Claim 4. For every wff o, if A + ¢, then ¢ € A.

Proof of Claim 4. Let a be any wif. Assume that A + ¢. To prove that ¢ € A, suppose
to the contrary that ¢ ¢ A. By Claim 3, we see that -¢ ¢ A. Thus, A + —¢. Hence, A is
inconsistent, contradicting Claim 2. (Claim 4) O

Therefore, A satisfies conditions (1)-(4) stated in the lemma. (Lemma) OJ

Remark 4.2.6. The proof of Lemma 4.2.5 assumes that the language £ is countable. How-
ever, Lemma 4.2.5 also holds when £ is uncountable. In this case, one can obtain the set
A by applying Zorn’s lemma (Lemma 1.1.36).

4.2.2 Proof of the completeness theorem

Given a consistent set of £-wifs I, the upcoming proof of the completeness theorem con-
structs a structure 2( and an assignment s. It is then shown that 2 = a[s] for all a € I. To
do this, one first lets £’ be an extension of £ by adding infinitely many new constants.
The structure 2/ is then constructed, surprisingly, by using the terms of £’.

Definition 4.2.7. Let £ be a language. For each wif a, let n(a) be the number of places
at which connectives and quantifier symbols appear in a.

For example, let a be the wif Vv(Pv — -Qt). Then n(a) = 3 and n(Qt) = 0. Now let
a be any wif. For any variable x and term ¢, note that the resulting substitution a; does
not add any connectives and quantifier symbols to a. In fact, n(a) = n(af ).

Theorem 4.2.8 (Completeness). Let T be a set of L-wffs and let ¢ be an L-wff.
(@ IfT = o, thenT + ¢.
(b) IfTis consistent, thenT is satisfiable.

Proof. We only provide a proof of (b), as (b) implies (a) (see Exercise 2). So, let T be

a consistent set of formulas in a language £. We must prove that I' is satisfiable, that

is, we must identify a structure and an assignment that satisfies every wif ¢ in I'. Let

L' = £U{c; : i € I} be an extension of £ by new constants where £ and I have the same

cardinality. By the “adding constants” Lemma 4.2.2, we know that I remains consistent

in the language £'. By the “ensuring witnesses” Lemma 4.2.3, we know that there is a set

0 of wifs in the language £’ such that

D rco;

(2) for every £'-wff ¢ and every variable x, the wif Ixp — ¢ is in © for some new
constant symbol c;

(3) @is consistent in £'.
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By the “going to the max” Lemma 4.2.5, there is a set A of £-wffs such that:
4 ech

(5) Ais consistent;

(6) for every wif g, either ¢ € A or (—¢) € A, but not both;

(7) for every wff g, if A + @, then ¢ € A.

We will now construct a structure. There are two cases to consider. The first case is when
the language £ does not contain the equality symbol =. The second case is when the
language does contain =.

Case 1: The language £ does not contain the equality symbol

Note that T' ¢ ® ¢ A. We shall now use the set A to construct a structure 2/ for the
language £’ as follows:
(a) LetA, the domain of 2, be the set of all terms in the language .
(b) For each n-place predicate symbol P define P* by

(t, by, s ty) € P* iff the atomic formula Pt;t, - - - t, belongs to A.

(c) For each n-place function symbol f define f* by

A
f (tl) tZ""’tn) =ft1t2...tn.

(d) For each constant symbol ¢ define c® by c® = c.

Now define an assignment s by

v, ifvisavariable,
s(v) = (a)

¢, ifvisa constant symbol c.
Note that s: 7 — 7, where 7 consists of the variables and constant symbols of £’ and
T is the set of all the terms of £'. Also note that A = 7.
Claim 1. For all terms t, we have s(t) = t.
Proof. One can prove this by using induction on terms using (4). (Claim 1) O
Claim 2. For every wff ¢, we have 2l = ¢[s] if and only if ¢ € A.

Proof. Let2(and s be defined as above. We shall prove the following statement by strong
induction on the natural number k:

For all £'-wffs @, if n(p) = k, then 2 £ ¢[s] iff € A.

Base step: Let k = 0. If n(¢p) = 0, then ¢ = Pt - - - t,, for some atomic formula. Thus,
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APty ---t,[s] iff (S(ty),...,5(t,)) € P* by Definition 3.2.6(2),
iff  (t,...,t,) € P¥ by Claim 1,
iff Ptity---t, €A by (b), above.

Inductive step: Let k > 0. Assume the strong induction hypothesis:

For all £'-wffs ¢, if n() < k, then )
AE=o[s] iff @eA

Let 6 be an £'-wff such that n(9) = k. We must prove that A = 9[s] iff 6 € A. Since k > 0,
0 must have one of the following forms:

(-a), (a — ), Vva,

where n(a) < k and n(f) < k. Thus, the induction hypothesis applies to @ and S.

CASE (—a): We show that 2 = (~a)[s] iff (-a) € A as follows:

A (-a)[s] iff A als] by Definition 3.2.6(3),
iff a¢A by (IH),
iff —aeA by (6), above.

CaSE (a — p): We show that 2 = (a — B)[s] iff (@ — B) € A as follows:

AE (a— P)s] iff ifAE afs], thenA = B[s] by Definition 3.2.6(4),
iff ifaeA thenfeA by (IH),
iff (@a—p)eh by Exercise 1.

CASE Vva: We must show that 2 = Vva[s] iff Yva € A.
(=). Assume that 21 = Vva(s], that is, assume that 2 & afs,], for all t € A (by
Definition 3.2.6(5) and as A = 7). Thus, in particular, we have

2 & afsyc], for all constant symbols ¢ € A. 4.3)

We shall prove that Vva € A. Suppose, for a contradiction, that Vva ¢ A. By (6) we infer
that =Vva € A. By Exercise 27 on page 118, we have  -Vva — -Vv--a. Thus, A + Jv-a
(using the abbreviation). So, by (2), (4), and (7), we conclude that

-a) € A for some constant symbol c. (4.4)

Asn(a}) = n(a) < k, the induction hypothesis (IH) and (4.4) imply that 2 = -a}[s]. Thus,
A = ~a[sys] by Lemma 4.1.2. As s(c) = c by Claim 1, we conclude that 2 = —afs,.] and
this contradicts (4.3). Therefore, Vva € A.
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(). Assume that Yva € A. We will show that 2 = Vva[s], that is, we will show that
2A = afsy], for all t € A. To do this, let t € A. Corollary 4.1.3 implies that there is a wif @
such that n(a) = n(a), a + a, a @, t is substitutable for vin a, and

AEals] iff Ak Tlsy, 45)

as s(t) = t by Claim 1. We now show that 2 = a[s,]. Since a I- @, Lemma 3.3.60 implies
that Yva + Vva. As Yva € A, we conclude that Vva € A by (7). Because ¢ is substitutable
for v in @, we see that Yva — g, is a logical axiom. Hence, A @, so @, € A. Since
n(@,) = n(a) < k, the induction hypothesis (IH) implies that 2 = @/[s]. By (4.5), we
conclude that 2 & @fs,]. Since @ I a, the soundness theorem (Theorem 4.1.5) implies
that 2 = a[s,) ]. Therefore, 2  Vva(s]. (Claim 2) OJ

Thus, the structure 2( and the assignment s satisfy every formula in A and, because
I' ¢ A 2 and s satisfy every formula in T. Recall, however, that 2 is a structure for
the language £'. By restricting the structure A to the language £ (that is, by removing
the interpretations of new constant symbols from (), we shall then have our desired
structure for the language L.

Case 2: The language £ does contain the equality symbol

Recall thatT < © < A. By ignoring the equality symbol, we can construct the struc-
ture 2{ just as was done in case 1. Thus, the domain of the structure 2/ is the set A of all
the terms of the language £’. We can now use 2! to build a new structure whose domain
is a set of equivalence classes of A, also called a quotient structure.

Before we construct our new structure, we first define an equivalence relation on
the set A of terms. For any ¢, 7 € A, define the relation ¢ ~ 7 as follows:

T~t iff (t=t)eA (4.6)

One can now prove that ~ is a symmetric relation on A as follows. Assume that t; ~ t,.
Then (¢, = t,) € A, and thus A + ¢; = t,. Using Logical Axiom 2, Theorem 3.3.54(2) implies
that A + t, = t;, and thus (t; = t;) € A. So t, ~ t;. Similar reasoning will confirm the
following claim.

Claim 3. Let ~ be the relation on A defined by (4.6). Then:
(1) ~ is an equivalence relation on A;
(i) for all terms t,,t, and 7y, Ty, if t; ~ Ty and t, ~ Ty, then

Ptit, e A iff Pyt €,
where P is a 2-place predicate symbol, and similarly for n-place predicate symbols;

(iii) for all terms t,, t, and ty, T, if t; ~ Ty and t, ~ Ty, then ft,t, ~ fr;T,, wheref is a 2-place
function symbol, and similarly for n-place function symbols.
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Proof Sketch. Note that for all 7, t € A, we have
T~t iff (t=t)edA iff ArT=t

One proves items (i), (ii), and (iii) as follows:

(1) To show that ~ is an equivalence relation on A, one uses items (1), (2), and (3) of
Theorem 3.3.54 and Logical Axiom 2.

(i) One applies (4) of Theorem 3.3.54 to show that for all terms ¢;,t, and 7y, T, if t; ~ 74
and t, ~ 7,, then

Pyt, e A Iff Pyt €A,

where P is a 2-place predicate symbol, and similarly, for n-place predicate symbols.
(iii) One employs (5) of Theorem 3.3.54 to show that for all terms ¢, t, and 7y, 7y, if t; ~ 74
and t, ~ 7,, then ft;t, ~ fr;7,, where f is a 2-place function symbol, and similarly for
n-place function symbols. (Claim 3) O

Since £ contains equality, we use the set A, together with the equivalence relation
~, to construct a structure 95 for the language £’ (see Section 1.1.2) as follows:
(@) Letthe domain of B be B=A/~ = {[t] : t € A}, the set of all equivalence classes.
(b) For each n-place predicate symbol P, define P* by

(], [6), ..., [ty]) € P® iff the atomic formula Ptt, - - t, belongs to A.

(c) For each n-place function symbol f, define f* by

f%([tl], (6], ..., [ty]) = [ftity -+ ty].

(d) For each constant symbol c, define ¢® by ¢ = [c].

Claim 3 implies that every P® and f* are “compatible” with ~. Thus, each P and f*
is “well-defined.” Now define an assignment s by

s(v) =

[v], ifvisa variable,
4.7

[c], ifvisa constant symbol c.

Using Claim 3, the proofs of the following two claims are very similar to the proofs of
the corresponding Claims 1 and 2 in case 1. For the proof of Claim 5 below, in the “base
step” one must include the atomic formula ¢; = ¢, for terms ¢; and ¢,.

Claim 4. For all terms t, we have s(t) = [t].

Claim 5. For every wff ¢, we have B & ¢[s] if and only if ¢ € A.
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As before, after restricting the structure 5 to the language £, we have our desired struc-
ture in the language £ and an assignment that satisfies everywff ¢ inI.  (Theorem) [

So, given a consistent set of formulas T, it has a model. The early attempts to prove
Euclid’s parallel postulate by contradiction would have benefited from the knowledge of
the completeness theorem. An historical remark: Girolamo Saccheri tried to prove the
parallel postulate by reductio ad absurdum, that is, he denied the parallel postulate and
assumed the other axioms of geometry, hoping to derive a contradiction. This failed at-
tempt could make one wonder if the negation of the parallel postulate is consistent with
the other axioms. In any case, Saccheri made no attempt to find a model of geometry
in which the parallel postulate is false. He had no idea that the result of his investiga-
tions were theorems about non-Euclidean geometry. Saccheri gave up his study of the
negation of the parallel postulate and, as a result, was not credited with the discovery
of non-Euclidean geometry.

The soundness theorem (Theorem 4.1.5) and the completeness theorem (Theo-
rem 4.2.8) clearly imply the following equivalence.

Corollary 4.2.9. LetT be a set of formulas. ThenT + ¢ if and only if T = ¢.

4.2.3 The compactness theorem

The next theorem is the key result that led the logician Abraham Robinson to discover
nonstandard analysis. Nonstandard analysis revives the notion of an “infinitesimal”—a
number that is infinitely small yet greater than zero (see Section 4.3.1). New theorems
in analysis, functional analysis, and other areas of mathematics have been discovered
as a result of Robinson’s work. Apparently, mathematical logic is an applicable branch
of mathematics.

Theorem 4.2.10 (Compactness theorem). Let T be a set of wffs and let ¢ be a wff.
(@) IfT E o, then for some finite Ty < T, we have T, = ¢.
(b) Ifevery finite subset of T is satisfiable, then T is satisfiable.

Proof. LetT be a set of formulas.

(@) Assume thatT' = ¢. The completeness theorem thus implies that ' - ¢. Since de-
ductions are finite, there is a finite subset I'y < T such that I; + ¢. Thus, by the
soundness theorem, we conclude that I'y = ¢.

(b) Assume that every finite subset of T is satisfiable. Thus, every finite subset of T is
consistent by Corollary 4.1.11. Hence, by Exercise 24 on page 118, I is consistent. So
I is satisfiable by part (b) of the completeness theorem (Theorem 4.2.8). O

The following definition is presented here for some of the exercises.
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Definition 4.2.11. A set of formulas X is maximally consistent if ¥ is consistent but Zu{¢}
is inconsistent for any ¢ ¢ X.

Exercises 4.2.

*1.

*2.

10.

11.

12.

13.

Let a, B, and A be as in the proof of Theorem 4.2.8. Show that
ifaeAthenfeA iff (a— p)eA

In Theorem 4.2.8, show that (b) implies (a).

Let T be a set of £-wffs and let ¢ be a logically valid wiff. Show that T - ¢.

Let T be a set of £-wffs, let 2 be an £-structure with domain A, and let V be the set
of variables in £. We write 20 £* T to mean that 2 = ¢[s] for every assignment
s:V — A and for every ¢ € I. Now let I' and £ be sets of £-wifs. Suppose that for
every L-structure 2, we have

AE"T iff A"
Show that
forallwifso, T+ iff EZt ¢.

Let 2 be a structure and let s be an assignment. Prove that £ = {¢ : 2 & ¢[s]} is
maximally consistent.

Let X be a maximally consistent set of formulas. Prove that if ¢ is a formula and
L+ ¢, theng €L

Let t be a term that is substitutable for x in the wif ¢. Show that {¢},x = t} + ¢.
Suppose that X is a maximally consistent set of formulas and ¢ is a formula. Prove
that -¢ € Zifand only if ¢ ¢ .

Let I be a set of sentences in a language £. Suppose that for every £-structure A,
there is a sentence g € I such that 2 & o. Using the compactness theorem, show
that there must be a finite number of sentences oy, 0,,...,0, in I such that the
sentence g; V g, V - -- V g, is logically valid.

Let T be a set of sentences in a language £. Suppose that I' is finitely satisfiable. Let
¢ be a wff. Show that either I' U {p} or T' U {-¢} is finitely satisfiable.

LetZy € X; € X, € X3 C --- be sets of wifs where each ; is finitely satisfiable.
Show that | Z; is finitely satisfiable. Conclude that there is a structure 2 and an
assignment s such that 2 = ¢[s] for all ¢ € [ J;ep Z;-

Let ¢ be a constant symbol that does not appear in the wifs ¢, ¢, or in any wffin T.
Suppose that T; 1} = ¢. Show that T; 3xy = ¢.

Let T be a set of £-wffs and let £’ be an extension of £ by new constants. Show that
for every £-wff ¢, if there is a deduction of ¢ from T in the language £', then there
is a deduction of ¢ from I' in the language L.
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Exercise Notes: For Exercise 1, ~(a — ) — a and -(a — ) — —f are tautologies. For
Exercise 2, see Exercise 25 on page 118. For Exercise 7, see Exercise 3 on page 124. For
Exercise 12, see Theorem 3.3.56.

4.3 Applications

In this section, we will present some applications of the soundness, completeness, and
compactness theorems. We first give an application of the compactness theorem. Recall
that the compactness theorem implies that if every finite subset of a set of sentences ©
has a model, then X also has a model.

Theorem 4.3.1. Let £ be a set of sentences in the language L. If ¥ has arbitrarily large
finite models, then ¥ has an infinite model.

Before we prove this theorem, we discuss the idea behind the proof. One first identi-
fies an infinite set I of sentences which describes the desired properties. Then one shows
that every finite subset of I has a model. The compactness theorem then implies that T
has a model and this model will have all of the desired properties.

Proof of Theorem 4.3.1. Let £ be a set of sentences. Suppose that £ has arbitrarily large
finite models. Let us assume that the language contains the equality symbol =. For each
k = 2,1et A, be an £-sentence that asserts “there are at least k things;” for example,

Az = vV, Fvg(vy # Vy A Vg # V3 AV, # Vg)

asserts “there are at least three things.” We show thatT' = £ U {A,,4;,...} has a model.
Let IT < T be finite. We can write II = II, U II;, where II; € Z and II; € {A;,4;,...}. Since
I1, is finite, it has the form

I = {4;,...,4;}, wherek e N.

Let n = max{i,...,}. Thus, n is the largest natural number so that A, € II;. By our
assumption, there is a model 2 of £ with at least n elements. Thus, 2 = A, and hence,
20 = II;. Since IT; ¢ X, 2 satisfies all of the sentences in II;. It now follows that 2( must
also satisfy all of the sentences in II. So every finite subset of I has a model and thus, by
the compactness theorem (Theorem 4.2.10), I has a model 8. Since £ ¢ T'and B & A,
for all k > 2, it follows that 3 is an infinite model of X.

If the language does not contain the equality symbol =, then one can add it to the
language £ and then argue as above to get the model B of £. Then we remove =% from
B to get an infinite £-model of X. O
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4.3.1 Nonstandard models
In mathematical logic, a nonstandard model is a structure that is a proper elementary
extension of a standard model.

Definition 4.3.2. Let 2 and B be £-structures, where 2( is a substructure of 8. Then B
is said to be an elementary extension of 2, denoted by 2 < 95, if and only if for every
assignment s: 7 — A and every £-formula ¢, we have

AE@ls] iff BEo[s],

where 7 is the set of all the variables and constants in £ and A is the domain of 2.

Consider the language £ = {<,0,S, +, %, E, =} and the £-structure
N =(N;0,8, <, + %, E),

where 0V = 0, N -5 (successor function), &N = < (the usual “less than” relation),
and +V N - x, EN' = E are the usual operations of addition, multiplication, and
exponentiation, respectively. The structure A is called the standard model of arithmetic
because it is a number system that is commonly used in mathematics and its domain is
the set of the standard natural numbers

=+, X

N=1{0,1,2,3,4,...}.

A nonstandard model of arithmetic is one that contains nonstandard numbers. Using
the compactness theorem, we can construct a nonstandard model of arithmetic.

Let T = Th(N\) (see Definition 3.2.31) and let £’ = £ U {c} be an extension of £ by one
new constant symbol. Let £ be the following infinite set of atomic £'-formulas

r=1{0<c §0<¢S8S0<c,....,$"0<c,...},

n times
—t—

where $"0 denotes the term $$ - - - $ 0. Note that (5"0)"" = n for each natural number n >
1. LetII ¢ T'U X be finite. Let IT = I, U II;, where IT; < T and II; <€ X. Since N E I,
we just need to interpret ¢ so that we can use A to get a model of II; as well. Since II; is
finite, it has the form

M ={8"0<c,....,8"0<c}, whereieN.
Let k = max{n,,...,n;} + 1. Thus, (§m0Y" <k, ..., (§"0)" < k. Therefore, the structure

Ny = (IN;0,S,<,+,%,E, k), where N = k,
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is a model of II; and thus it is a model of II, because N & II;. By the compactness
theorem (Theorem 4.2.10), T U £ has a model

M = (M; OM, §M M M MM My,
Now let M be the following restriction of M to the original language £, that is, let
M = (M; 6M §M M M M EMY,

Thus, M is a model of Th(\). As every n € N can be identified with "M, we can
view IN as being a subset of M. However, since M contains the “infinite” number CM,
it follows that M and A are not isomorphic. Nevertheless, Exercise 19(b) on page 89
implies that A and M are elementarily equivalent. Moreover, one can show that M is
a proper elementary extension of the standard model A/ (see Definition 4.3.2).

The standard ordered field of real numbers is the structure (IR; +, x, <, 0,1) for the
language £ = {+,%, <, 0,1, =}, where +, x are two 2-place function symbols, < is a 2-place
relation symbol, 0,1 are constant symbols, and = is the equality symbol. We will now
discuss how to construct a nonstandard “real” field. Let

L' =1{+%<%01,zufc, :reR},
where c, is a constant symbol for each real number r. Consider the £-structure

R = (R;+,%,<,0,1, {cF : 7 € R}),

n times

where ¢ = r for eachr € R. For each n > 2, let 7t denote the £'-term + 1 4 --- + 1. Thus,
7 = nforalln > 2. NowletT = Th(R) and let £* = £’ U{c} be an extension of £’ by the
one new constant symbol c. Let X be the following infinite set of atomic £*-formulas:

LetIT ¢ T' U X be finite. Let IT = I U II;, where I, € T and I1; ¢ . Since R k IIj, we just
need to interpret ¢ so that we can use R to get a model of I1; as well. Since II; is finite, it
has the form

I, ={n;<c,...,n;<c}, whereieN.

Let n = max{ny,...,n;}. Thus, n is the largest natural number so that (n < ¢) € II;. Let
k = n + 1. Thus, the structure

Ry = (Rs+,%,<,0,1, {c : 7 € Rl,k), wherec™ =k,
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is a model of IT; and therefore it is a model of II, because R, & II;. By the compactness
theorem (Theorem 4.2.10), I' U £ has a model
M = (M; #M MMM AM (M r e R, M),

Since M is a model of Th(R), it follows that M is an ordered field that contains the
“infinite” number ¢™. Moreover, M contains infinitesimals. Since M = (0 < n < c¢) for
all n > 2, it follows that M = (0 < % < %) for alln > 2, where % and % denote the inverses,
respectively, of ¢ and 71 in M. Hence, the inverse of ¢ in M is an infinitesimal. Now
let M be the restriction of M to the original language £, namely,

M = (M; +M MM oM MY,

Clearly, M is also an ordered field and c™ e M. Asevery r ¢ R can be identified with
cf‘/‘, we can view R as being a subset of M. Moreover, M contains infinite numbers
and infinitesimals. It thus follows that R and M and are not isomorphic; but R and M
are elementarily equivalent. Moreover, one can show that A is a proper elementary
extension of the standard model (R; +, %, <, 0,1).

In this section we have shown that there is a structure that contains all the natural
numbers and satisfies all of the first-order sentences that hold in the standard model \/,
but this new structure also includes infinite numbers. Thus, we have constructed a new
number system.

We have also shown that there exists a structure that contains all the real numbers
and satisfies all of the first-order sentences that hold in the ordered field of real numbers.
However, this structure contains infinitely large and infinitely small numbers. Again, we
have constructed a new system of numbers.

4.3.2 Lowenheim-Skolem theorems

Suppose that a set of wifs I in a countable language has an uncountable model. Thus, I'is
satisfiable. Does I have a countable model? This question will be addressed by our next
theorem. Leopold Lowenheim and Thoralf Skolem were two mathematicians who asked
such questions and, as a result, established theorems on the existence and cardinality
of structures.

Theorem 4.3.3 (Lowenheim-Skolem). Let I be a satisfiable set of wffs in a countable lan-
guage L. Then there is a countable model 2! that satisfies T.

Proof. Let T be a satisfiable set of formulas in a countable language £. First, we shall
assume that £ does not contain equality. Recall the proof of the completeness theorem
(Theorem 4.2.8) in this case. In the proof, as £ is countable, we considered the extension
L' = £LuU{cy, ¢y, 5.}, where the ¢;’s are new constant symbols. It thus follows that £’
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is countable. Consequently, the set of terms of the language £’ is countable. Now, in the
proof of case 1 of Theorem 4.2.8 we constructed a model 2 of I' consisting of the terms
in the language £'. Therefore, 2 is a countable model satisfying T.

Suppose that the language £ does contain equality. Under case 2 in the proof of The-
orem 4.2.8, we constructed a model B of I consisting of equivalence classes of the terms
in the language £'. Since the set of these equivalence classes cannot have more elements
than the set of terms in the language £, it follows that the model 8 is a countable model
of T. O

Corollary 4.3.4. Let 2 be an uncountable structure for a countable language. Then there
is a countable structure B such that 2 = B.

Proof. LetT = Th(2). Theorem 4.3.3 implies that there exists a countable structure B
that satisfies I. Exercise 19 on page 89 implies that 2( = 8. O

The proof of the above theorem adapts to establish our next result, which is referred
to as the downward Lowenheim—Skolem theorem. The remainder of this section assumes
familiarity with cardinal numbers.

Theorem 4.3.5 (Lowenheim-Skolem). Let T be a satisfiable set of wffs, where L has cardi-
nality k. Then there is a model 2l of cardinality < k that satisfies T.

The following theorem is called the upward Léwenheim—Skolem theorem.

Theorem 4.3.6 (Tarski). Let £ be of cardinality A and let T be a set of L-wffs. If an infinite
structure satisfies T, then for every cardinal k > A, there is a structure 5 of cardinality x
that satisfies I

Proof. Let £ be of cardinality A and let T be a set of £-wffs. Assume that I is satisfiable
in an infinite structure 2/ with domain A. Let x > Aand let £’ = £ U {c; : 1 € K} bean
extension of £ by new constant symbols. It follows that £’ has cardinality x. Let

L ={c#¢:1j € kare distinct}.

We now show that I' U £ is finitely satisfiable. Let IT ¢ ' U X be finite. Let IT = II, U II;,
where ITy ¢ T and IT; ¢ X. Clearly 2 satisfies ITy, and II, is finite. Let ¢; ... ¢; be a finite
list of all the new constant symbols that appear in II;. Since 2 is infinite, we can assign
the distinct constant symbolsinc; ,...c; todistinct elements g; ,...a; in A. Now extend
2 by adding c?l‘ = Q... cf = a; to 2 and get a structure that satisfies II. Therefore,
' U X is finitely satisfiable. By Theorem 4.3.5, there is a structure 9 of cardinality < «
that satisfies T' U X. Since any model of X must have cardinality > k, we conclude that 8

has cardinality . O

Corollary 4.3.7. Let 2 be an infinite structure for a countable language L. Then for every
infinite cardinal x, there is a structure B of cardinality k such that A = 8.
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Proof. LetI' = Th(2() and let k be an infinite cardinal. As £ is countable, it has cardinality
< k. Thus, by Theorem 4.3.6, there is a structure B of cardinality « that satisfies I'. By
Exercise 19 on page 89, 2 = 5. O

4.3.3 Theories

A theory is a set of sentences in a language which contains all the sentences that are
logically implied by the set.

Definition 4.3.8. Let T be a set of sentences of a language. Then T is said to be a theory
if and only if T is closed under logical implication, that is, for any sentence g of the
language,

ifTEo, thenoeT.

A theory T is said to be complete if for every sentence ¢, either ¢ € T or ~¢ € T.

Let 2( be a structure. Recalling Definition 3.2.31, Th(2l) is the set of all sentences ¢
such that 2 = ¢. It thus follows that Th(2() is a complete theory. The proof of the next
result is established in Exercise 1.

Theorem 4.3.9. Let T be a theory in a language L. Then T is complete if and only if for all
L-structures A and B, if A = T and *B = T, then A = 8.

Theorem 4.3.9 provides a method for determining whether or not a theory is com-
plete. We will present another such method that depends on the next definition. As you
may recall, X, is the cardinality of any countable infinite set.

Definition 4.3.10. Let T be a theory in a language £ and let k > X, be a cardinal. Then
T is k-categorical if all models of T having cardinality k are isomorphic.

In 1954, Jerzy L.o$ and Robert L. Vaught independently proved our next theorem.

Theorem 4.3.11 (to$-Vaught test). Let T be a theory in a countable language. If T has no
finite models and is k-categorical for some cardinal k > R, then T is complete.

Proof. Let k > N be a cardinal and let T be a theory in a countable language. Assume
that T is k-categorical and has no finite models. We shall apply Theorem 4.3.9. Let 2
and B be models of T. Because T has no finite models, 2 and 28 must be infinite. Corol-
lary 4.3.7 implies that there are structures 21’ and 8’ of cardinality k such that 21" = 2/
and ‘B’ = 5. Since T is k-categorical, we conclude that 2l = 2’ = B8’ = 9. Theorem 3.2.39
now implies that 2 = *8. Thus, by Theorem 4.3.9, T is complete. O

Definition 4.3.12. Let K be a class of structures of a given language. We define the theory
of K, denoted as Th(K), to be the set of sentences defined by
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Th(K) = {¢ : ¢ is a sentence such that 2 = ¢ for all A € K}. 4.8)

Theorem 4.3.13. Let K be a class of structures of a given language. Then Th(K) is a theory.
Moreover, Th(K) is a complete theory if and only if for all structures 21,8 € K, we have
A =B.

Proof. Let g be a sentence of the language. Assume that Th(K) = ¢. We must prove that
o € Th(K). In order to prove that o € Th(K), we must show that 2 = o for all 2 € K. To
do this, let 2( € K. Since 2 € K, it follows from (4.8) that 2 = ¢ for all ¢ € Th(K). Because
Th(K) g, it now follows that 2( = ¢. Thus, Th(K) is a theory. For the remainder of the
proof, see Exercise 2. O

For example, let £ = {e, *,=} be the language of groups (Example 3.1.2). So, if G is
the class of all groups, then the theory Th(G) is the set of all £-sentences that are true in
all groups. Since some groups are Abelian and others are not, it follows that Th(G) is not
complete.

Let £ be a set of sentences in a language £. Recalling Definition 3.2.25, Mod(Z) is
the class of all £-structures 2 such that 2 = ¢ for all ¢ € Z. Thus, by Definition 4.3.12,
Th(Mod(Z)) is the set of all £-sentences that are true in all models of %, that is, ¢ €
Th(Mod(Z)) if and only if £  ¢.

Definition 4.3.14. Let £ be a set of sentences in a language £. The consequences of Z,
denoted by Cn(Z), are the set

Cn(X) = {¢ : p is a sentence and X < ¢}.

Of course, Cn(X) = Th(Mod(X)) and Cn(X) is a theory. One can confirm that X is a
theory if and only if Cn(X) = X (see Exercise 3). For a single sentence ¢, we write Cn(¢)
for Cn({p}).

Definition 4.3.15. A theory T is finitely axiomatizable if T = Cn(Z) for some finite set £
of sentences.

We will apply the compactness theorem in the proof of the following result.

Theorem 4.3.16. Let £ be a set of sentences. If Cn(X) is finitely axiomatizable, then there
is a finite set ¥, < X such that Cn(Z,) = Cn(%).

Proof. Let X be a set of sentences such that Cn(Z) is finitely axiomatizable. So there is a
finite set II = {a;, ay, . .., a,} of sentences such that (a) Cn(Z) = Cn(II). Let

(0:a1/\a2/\"'/\an.

It follows that Cn(II) = Cn(g). Thus, by (a), Cn(¢) = Cn(X), and therefore £ = ¢. The
compactness theorem (Theorem 4.2.10(a)) implies that there is a finite X, < X such that
Ly E @.Since Xy = ¢ and I, < X, Exercise 7 implies that
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Cn(p) ¢ Cn(Zy) < Cn(X).

Since Cn(¢p) = Cn(X), we conclude that Cn(Z,) = Cn(Z). O

We now give an example of a finitely axiomatizable theory. Let £ = {<, =} and let ¥
be the set consisting of the following axioms for a dense linear order without endpoints:

Asymmetry:  VxVy(x<y -y £X)
Trichotomy:  VxVy(x<yvXx=yVvy<Xx)
Transitivity: ~ VxVyVz(x<y - y<z - x<z)
Density: VxVy(x <y — Jz(x < 2 <Y))
No endpoints: VxJy3z(y < x < z).

G e

The theory Cn(W) is called the theory of dense linear orders without endpoints. Let Q =
(Q; <) and R = (R; <), where Q is the set of rational numbers, R is the set of real num-
bers, and < is the usual “less than” relation on Q and R. Clearly, Q = Y and R = Y.
These two structures are not isomorphic because Q is countable and R is uncountable
(see [3]); nevertheless, are the structures Q and R elementarily equivalent? The follow-
ing theorem is due to Georg Cantor, and its proof appears below.

Theorem 4.3.17. Let £ = {<,=} and let ¥ be the set of axioms for a dense linear order
without endpoints. Any two countable models of ¥ are isomorphic.

Before proving Theorem 4.3.17, we need to make several preparatory remarks. First
of all, Exercise 10 shows that any model of ¥ must be infinite. Let 2( and B be countable
models of ¥ with the respective domains A = {a;,a,,...} and B = {by,b,,...}. Let <
denote <* and let < denote <™. Let n > 1and

A'={aj,aj,...,a)} <A and B ={b},bj,....b)} <B
be such that

! ! ! ! !
A <Ay << < Qg <+ < Ay,

! ! ! ! !
by <by<---<b;<bj 4 <--<b,

Leta ¢ A\ A' and b € B\ B'. We will say that b has the same relationship to B’ as a does
to A’ when the following items hold:

() ifa/ < a<aj,, thenb] < b < b, whenever1<i<n;

(2) ifa < aj, thenb < b}, and if @, < a, then b}, < b.

Since 2 and B are models of ¥, it follows that for alla € A\ A’, thereisa b € B\ B’ such
that a and b satisfy (1) and (2). Inversely, we shall say that a has the same relationship to
A’ as b does to B', when the following items hold:

(3) ifb] < b < b}, thena) < a < aj,,, whenever1<i<n;
(4) ifb < b}, thena < aj, and if b}, < b, then a;, < a.
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It also follows that for all b € B\ B, there exists an a € A\ A’ such that a and b satisfy (3)
and (4). We will say that h’: A" — B’ is a partial isomorphism if i’ is a bijection such that

x <y ifandonlyif h'(x)<h'(y), forallx,y € A'.

Finally, let X = {x;, X,, X3, ... }. For any nonempty X’ ¢ X, we will say that x is the “least”
element in X' if x = x,, and n is the least natural number such that x,, € X'.

Proof of Theorem 4.3.17. Let 2( and B be two countable models of ¥ with respective do-
mains A = {ay,ay,...}and B = {b;, by, ...}. Let < denote <* and let < denote <. We will
construct an isomorphism h: A — B by recursion on the natural numbers.

Base step: Let A; = {a;} and B; = {b;}. Define h;: A; — B; by hy(a;) = b;. The function hy
is vacuously a partial isomorphism.

Inductive step: Let n > 1. Assume that A, B,,, and h,: A, — B, have been defined such
that A, < A and B, ¢ B, where A, and B, have n elements, and h,: A, — B,, is a partial
isomorphism. If nis odd, then let a be the “least” elementina € A\ A,. Nowletb € B\ B,
be so that b has the same relationship to B, as a does to 4,,. If nis even, then let b be the
“least” elementin b € B\ B,. Nowlet a € A\ 4, be so that a has the same relationship to
A, asbdoestoB,.LetA,,; = A, U{a}, B,,; = B, U {b}, and define h,,1: A;,1 — By by

h,(v), ifveA,,
b, ifv=a

Rpq (V) = { 4.9)

Clearly, h,,,, is a partial isomorphism.

One can now show that A = [J,514,, B = Ups1 By, and that h = 54 h,, is an isomor-
phism between 2 and B. O

The method used in the above proofis referred to as Cantor’s back-and-forth method.

Corollary 4.3.18. The theory Cn(¥) is complete and the structures Q = (Q;<) and R =
(R; <) are elementarily equivalent.

Proof. Theorem 4.3.17 implies Cn(¥) is NX,-categorical. Theorems 4.3.17 and 4.3.11 imply
that Cn(W) is a complete theory. So by Theorem 4.3.9, Q and R are elementarily equiva-
lent. O

Since Q £ ¥, Corollary 4.3.18 and Exercise 5 imply that Th(Q) = Cn(¥). Therefore,
Th(Q) is finitely axiomatizable. The same holds for Th(R).

Corollary 4.3.19. Let £ = {<,=} and Q = (Q; <). Then for every L-sentence ¢, we have
Qkgifandonly if ¥ I ¢.

Proof. Let ¢ be an £-sentence. Since Th(Q) = Cn(¥), we conclude that O = ¢ ifand only
if ¥ = ¢. Corollary 4.2.9 implies that Q = ¢ if and only if ¥ - ¢. O



4.3 Applications = 145

4.3.4 Prenex normal form

We establish a result that follows (indirectly) from the soundness theorem (Theo-
rem 4.1.5). Given a wif a with quantifiers, is it the case that a is logically equivalent
to a wif ¢ where all of the quantifiers in ¢ appear at the beginning of ¢? In this section,
we prove that this is the case. First we present a formal definition.

Definition 4.3.20. A prenex formula is a wif that has the form

Q1X1Q2X; -+ QX B>
where each Q; is V or 3 and f is quantifier-free.

For example, the formula
Vx3yvz(Pxy — Qyz)

is a prenex formula.

Corollary 4.1.8 and Propositions 3.3.41-3.3.45 imply the following theorem, which
concerns quantifier manipulation and logical equivalence. This theorem presents
“rules” that can be applied to transform any wif into an equivalent formula that is
in prenex form. In fact, we will use these “rules” to prove that every formula is logically
equivalent to a prenex formula. However, in order to apply these “rules,” one may have
to first apply Theorem 3.3.61 (on alphabetic variants).

Theorem 4.3.21. The following six logical equivalences identify valid operations that in-
volve quantifier manipulation:

1. —3xa E=4VXx-a,

2. ~Vxa E=3x-a,

3. (a — VxB) e2Vx(a — B) ifx is not free in q,

4. (a — 3xP) == 3x(a — P) ifx isnot free in a,

5. (Vxa — B) =4 3x(a — P) if x is not free in B,

6. (Ixa — B) == Vx(a — P) if x is not free in B.

Theorem 4.3.22. Every wffis logically equivalent to a prenex formula.

Proof. We prove the following statement by induction on wifs: For all wffs ¢, there exists
a prenex formula ¥ such that ¢ ==1.

Base step: Let ¢ = Ptjt,---t, be an atomic formula. Since ¢ has no quantifiers, ¢ is
already a prenex formula and it is logically equivalent to itself.

Inductive step: Let a and f be arbitrary wifs. Assume the induction hypothesis

a F= Q1X105X; - - OnXp)s

(IH)
B E=1 Q1102 - -~ Qiyibs
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where y and 6 are quantifier-free and Q; and Q! are quantifiers. We must prove that the
same holds for each of the following:

(—a), (a - B),Vva.

CASE (—a): From (IH), by repeatedly applying Theorem 4.3.21(1)(2), we obtain

—Q F= =0Q1X7Q9X; - - - QXY E QX1 QoXy - - - QX Y,

where ¥V = 3and 3 = V. Since -y is quantifier-free, we see that —a is logically equivalent
to a prenex formula.

CASE (a — f): After applying Theorem 3.3.61 (if necessary), we can be assured that the
variables Xy, ..., Xy, V1, ... Vi in (IH) are all distinct, that none of the variables x;,...,x,
occur free in 0, and that none of the variables y;, ..., y, occur free in y. From (IH), by
repeatedly applying Theorem 4.3.21(3)-(6), we obtain

(@— B) E=0140p% - QX Q1Q5Y2 - Qi (y — 6).
As (y — 0) is quantifier-free, (a — pB) is logically equivalent to a prenex formula.

CASE VYva : From (IH), we conclude that
Yva == YvQix1QoXy - - - QpXp Vs

and this completes the proof. O

Exercises 4.3.
*1. Prove Theorem 4.3.9.
*2. Let K be a class of structures of a given language. Prove that Th(K) is a complete
theory if and only if for all structures 21,8 € K, we have 2 = 5.
*3. Let X be a set of sentences in a language £. Prove that X is a theory if and only if
Cn(X) = L.

4. Let X be a set of sentences in a language £ and let 2 be an £-structure. Show that
if A = X, then A = Cn(X).

*5. LetX be a set of sentences in a language £ and let 2 be an £-structure. Suppose that
Cn(Z) is a complete theory and 2 = X. Show that Th(2() = Cn(%).

6. Let £ be a set of sentences in a language £ and let 2 be an £-structure such that
Th(2() = Cn(X). Show that 2 = ¢ if and only if = I ¢, for every £-sentence ¢. Now
show that for any £-sentence ¢, either £ + ¢ or X +- —¢, but not both.

*7. Let £; and X, be sets of sentences in a language L.
(a) Suppose that Z; < £,. Show that Cn(Z,) < Cn(Z,).
(b) Suppose that %, & a for all a € £,. Show that Cn(Z,) € Cn(Zy).

8. LetXy, X,, X be sets of £-sentences and let &y, Ky, K be classes of £-structures.

(a) Show thatif Z; € X, then Mod(Z,) € Mod(Z).
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(b) Show that £ ¢ Th(Mod(Z)).
(c) Show thatif Ky € Ky, then Th(K,) < Th(K,).
(d) Show that K ¢ Mod(Th(K)).
(e) Using (a), (b), and (d), show that Mod(X) = Mod(Th(Mod(X))).
(f) Using (b), (c), and (d), show that Th(K) = Th(Mod(Th(K))).
9. Find prenex formulas that are logically equivalent to the following:

(@ (IxPx — VxQx),
(b) —(3IxPx — 3AxQx),
() Vv(VxPxv — VxQvx).

*10. Let £ = {<,=} and let ¥ be the set of £-sentences given on page 143. Show that ¥
has no finite models.

11. LetA = {a;,a,,...} and let | J,5; A, be as in the proof of Theorem 4.3.17. From the
proof, we have A; ¢ A, < ---and |J,51 4, < A. Prove that A € [J,51 4,

12. Let 20 and B be as in the proof of Theorem 4.3.17. Complete this proof by showing
that A = U;s1An B = Ups1 By, and that h = 54 hy, is an isomorphism between 2
and 8.

13. Let £ = {<}, where < is a 2-place relation symbol. Consider the £-structure N =
(IN; <), where < is the usual ordering. Show that there is a model M with domain
M that is elementarily equivalent to A/ such that there is a sequence (a; : i € N) of
elements in M such that M & (a;4 < a;), for all i € N.

14. Suppose that the sentence ¢ is true in all infinite models of a theory T. Show that
there is a natural number k > 1such that ¢ is true in all models of T whose domain
has at least k many elements.

Exercise Notes: For Exercise 11, use proof by contradiction. Let k > 1 be the least such
that a; € A and ay is not in | J,5q A,. Thus, {a;,ay, ..., a4} € Ups1 4y It follows that
{aj,ay,..., a4} € A, for some odd n (why?). Derive a contradiction. For Exercise 13, let
L' = L U{cy, ¢y Cs,... ), Where the ¢;’s are new constant symbols. For each k > 1, let A,
be the sentence

Cp <Cr g NCrq <CrgN-+NC <Cp.

Apply the compactness theorem. For Exercise 14, assume, for a contradiction, that for
all k > 2 there is a model 2( of T such that 2 = -~ and 2( has at least k elements. Review
the proof (and its notation) of Theorem 4.3.1. Show that from this assumption there is a
model of T U {-0} U {45, 43,...}.



5 Computability

What is computability theory?

Computability theory arose from the concept of an algorithm. Computability theory, also
called recursion theory, is now a branch of mathematical logic that originated in the
1930s, before there were computers, with the study of computable functions and Turing
degrees. The field has grown to include the study of generalized computability and defin-
ability. For the computer scientist, computability theory shows that there is a theoretical
limit to what computer programs can actually do.

Let N ={0,1,2,3,4,...} be the set of natural numbers and let f be a function of the
form f:IN — IN. What does it mean to say that f is computable? One could say that f is
computable if there is an algorithm such that for each n € N, the algorithm with input
n will produce the output f(n). This of course would require one to define the meaning
of an algorithm.

Questions

1. Consider the function f: IN — N defined by f(n) = n + 123,572. Is f computable?

2. Consider the function f:IN — N defined by f(n) = 7n. Is f computable?

3. Consider the function f:IN — N defined by f(n) = r, where r is the remainder
obtained after dividing n by 5. Is f computable?

4. Suppose that the functions f:IN — N and g:IN — NN are computable. Define the
function h: N — N by h(n) = f(n) + g(n). Is h computable?

5. Are all functions of the form f:IN — IN computable?
How many computable functions are there?

7. Suppose that the function f:IN — N is computable and suppose that a function
g:IN — N satisfies g(n) < f(n) for all n € N. Is g computable?

Is it possible to give a mathematically precise definition of a computable function? Yes!
Alan Turing was one of the first mathematicians to give such a definition.

5.1 The informal concept

Computability theory is the branch of mathematical logic that studies and identifies
problems that are computationally solvable using different models of computation.
A central question of computer science is to address the limits of computing devices by
understanding the problems that computers can solve. In this section we shall discuss
the basic concepts that appear in the theory of computation.

https://doi.org/10.1515/9783110782073-005
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5.1.1 Decidable sets

A function f: NK — Nis computable if there is an effective (algorithmic) procedure that
can evaluate f, that is, given any input ny, ..., n;, of k natural numbers, the algorithm
will evaluate f(ny, ..., ng).

In this section, we will use pseudocode to describe our algorithms and procedures.
As you may know, pseudocode is a compact and informal high-level description of an
algorithm. Programmers use pseudocode to develop their algorithms.

The first computability concept that we discuss is the concept of a decidable set.
A set is decidable if there is an effective procedure which will determine whether or not
any legitimate candidate is a member of the set. An effective procedure is an algorithm
that can be carried out by following the specific steps of an algorithm.

Definition 5.1.1. Given any set S of natural numbers, we will say that S is decidable if
there is an effective procedure such that whenever one applies the procedure to any
natural number n, the procedure will eventually end and respond “yes” if n € S and
“no”ifn ¢ S.

Definition 5.1.1 applies only to subsets of IN, the set of natural numbers. This defini-
tion can be generalized to other sets as well.

Example 5.1.2. LetS = {n € N : nis a prime number}. Show that S is decidable.

Solution. Let n be a natural number. The procedure can be described as follows:

Begin Procedure
If n=0o0rn =1, then let A=No.
If n > 1, then perform the following:
Let A=Yes.
Forj=2ton-1;
Ifj | n, then let A=No.
End of For Loop
Return A
End of Procedure

The above algorithm is summarized as follows: Given a natural number n, if n < 1,
then return No and halt. If n > 1, then search the numbers 2, 3,4, ...,n —1for a number
jsuch thatj | n (j evenly divides n). If you find one, then return No and halt. If you do
not find such a number, then return Yes and halt. We note thatj | nif and only if n = jk
for some k € IN.

In every step of an effective procedure, one must be able to use an algorithm to
decide if a condition is true. Can the truth of the condition “ | n” be checked by an
algorithm? One can effectively decide whether or not j | n holds by carrying out the
algorithm called long division. If the remainder is 0, then j | n. Otherwise, j { n.
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Example 5.1.3. Let S = {n € N : n = 7q + 3 for some natural number g}. Show that S is
decidable.

Solution. Let n be a natural number. The procedure can be described as follows:

Begin Procedure

Perform long division by dividing n by 7.
If the remainder is 3, then return Yes.

If the remainder is not 3, then return No.
End of Procedure

In other words, given a number n, divide n by 7. If the remainder is 3, then return
Yes and halt. If the remainder is not 3, then return No and halt.

Example 5.1.4. Suppose that S € N is decidable. Show that IN'\ S is decidable.

Solution. Let n be a natural number. The procedure can be described as follows:

Begin Procedure

Perform the procedure for deciding whether or notn € S.
If n € S, then return No.

Ifn ¢ S, then return Yes.

End of Procedure

That is, given n, using the decision procedure for S, check to see if n belongs to S or
not. If n € S, then return No and halt. If n ¢ S, then return Yes and halt.

Example 5.1.5. Let A < N and B ¢ N be decidable. Show that A \ B is decidable.

Solution. Let n be a natural number. The procedure can be described as follows:

Begin Procedure

Perform the procedure for deciding whether or not n € A.
Perform the procedure for deciding whether or not n € B.
Ifn e Aand n ¢ B, then return Yes.

Ifn ¢ Aorn € B, then return No.

End of Procedure

Given n, using the decision procedure for A, check to see if n is a member of A or
not. Using the decision procedure for B, check to see if n belongs to B or not. If n € A and
n ¢ B, then return Yes and halt. If n ¢ A or n € B, then return No and halt.

Example 5.1.6. Let A < IN be a finite set. Show that A is decidable.
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Solution. Let A = {k;, ky,...,k,} and n € N. The procedure is described as follows:

Begin Procedure

Let R=No.

If n = ky, then let R=Yes.
If n = ky, then let R=Yes.

If n = k,, then let R=Yes.
Return R.
End of Procedure

That is, given n, check to see if n is in the finite list ky, k5, ..., k, or not. If n is not in
the list, then return No and halt. If n is in the list, then return Yes and halt.

The notion of an effective procedure is somewhat vague and we have not yet given
a precise mathematical definition. We will shortly be giving just such a definition. There
are at least two different but equivalent ways to define an effective procedure: Turing
machines and register machines. There is also a more mathematical way of defining
computable functions which involves the definition of partial recursive functions.

Are all subsets of N decidable? One can show that there are only countably many
effective procedures. Since P(IN) (power set of IN) is uncountable, it follows that the
majority of sets of natural numbers are not decidable.

5.1.2 Computable functions

Definition 5.1.7. Let k > 1 be a natural number. A k-place total function has the form
f: NX — N and its domain is the entire set N, A k-place partial function is a function
whose domain is a subset of N* and whose values are in N. A total function will also be
viewed as a partial function. The empty function is the partial function that is undefined
for every input. When we say that f: N* — N is a partial function, we mean that the
domain of f is a subset of N¥.

Example 5.1.8. Define the 2-place total function f: N> — N and the 2-place partial func-
tion g:IN* - N by

m-n, ifm>n, m-n, ifm>n,

f(m,n) = { gim,n) = {

0, ifm<n, T, ifm<n,

where T means that g(m, n) is undefined. So g(5,2) is defined and (5, 2) is in the domain
of g; but g(2,5) is undefined and thus, (2, 5) is not in the domain of g.
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We write ¥ ¢ NX to indicate that X is a k-tuple of the form xy, ..., X, 0T (Xq,...,Xg),
depending on the context.

Definition 5.1.9. Let f be a k-place partial function. The function f is effectively com-

putable if there exists an effective procedure that satisfies the following:

1. Given a k-tuple X in the domain of f, the procedure eventually halts and returns the
correct value for f(X).

2. Given a k-tuple X not in the domain of f, the procedure will not halt and thereby
will not return a value.

For example, the partial function for subtraction

m-n, ifm>n,

g(m)n) = ‘

T, ifm<n

is effectively computable because there is a procedure for subtracting natural numbers,
which we learned in elementary school. The procedure can be described as follows:

Begin Procedure
Ifm>n
compute r = m — n, return r and halt.
Else
Infinite Loop.
End of Procedure

An infinite loop is a procedure that does not terminate, that is, it runs forever. The
empty function is effectively computable by the following procedure:

Begin Procedure
Infinite Loop.
End of Procedure

The concept of a decidable set can now be described in terms of functions. Let
S < NK. we say that S is decidable if its characteristic function (which is total)

1, ifXesS,

Cs(X) =
s {o, ifX ¢S

is effectively computable. Thus, S is decidable if its characteristic function Cg is a com-
putable total function.
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Remark 5.1.10. If S ¢ N¥ is decidable, we can use the computable total function Cg to
construct another effectively computable partial function, namely, we can use the fact
that C¢(X) = 1if X isin S and C¢(X) = 0if X isnotin S, for any X € Nk,

Definition 5.1.11. A set S ¢ INX is semi-decidable if its semi-characteristic function

e(¥) = 1, ifxes,
s T, ifx¢sS

is an effectively computable partial function.

Remark 5.1.12. Thus, a set S is semi-decidable if there is an effective procedure so that
for any input X € N the procedure will halt and return “yes” if and only if X € S. Thus,
if X ¢ S, then the procedure will not halt (that is, cg(X) is undefined).

Any decidable set is also semi-decidable; for example, suppose that S is a decidable
subset of N¥. Then the following procedure shows that S is semi-decidable.

Begin Procedure
Run Cs(X)
If output = 1

return 1 and halt.
Else

Infinite Loop.
End of Procedure

A universal 2-place partial function

Now, let us just consider those effective procedures that have only one natural num-
ber as input and return at most one natural number as output. Suppose that we have
adopted a fixed method of encoding each of these procedures P by a single natural num-
ber w. Suppose, further, that each such code w can be effectively decoded in such a way
to retrieve the program P (this can be done). Then the following 2-place “universal func-
tion”

®(w, x) = the result of applying the procedure coded by w to the input x

is an effectively computable partial function. It is to be understood that ®(w, x) is unde-
fined (that is, does not halt) when the procedure coded by w fails to halt and return an
output.

Remark 5.1.13. We present an effective procedure that can be used to show that ® is
effectively computable. The procedure has inputs w and x.
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Begin Procedure
Decode w into a procedure P.
If P is not a valid procedure, then infinite loop.
Execute procedure P with input x; set r = return value.
If r = empty
Infinite Loop.
Else
Return r and halt.
End of Procedure

The function @ is not total for at least two reasons: Some natural numbers w will
not decode and produce a procedure. If w does decode into a valid procedure, then this
procedure may not yield an output. We shall write ®(w, x)| to mean that the procedure
in Remark 5.1.13 halts with inputs w and x and returns an output value. Thus, ®(w, x)|
means that the procedure coded by w with input x halts and returns an output value.
The notation ®(w, x)T means that the procedure fails to halt.

Using the universal function ® we can enumerate all of the 1-place effectively com-
putable partial functions. First, note that for any 1-place effectively computable partial
function f there is a natural number e that encodes the procedure for f. Thus,

f(x)=®(e,x) forallx e N.

For this reason, we shall use the notation [e] to denote the corresponding function f.
Hence, [e](x) = f(x) = ®(e, x) for all x € N.

Thus, for any natural number e, we will now let [e] be the partial computable func-
tion defined by [e](x) = ®(e,x). Of course, some natural numbers e may not code a
procedure and then [e] may be the empty function. In any case, we can conclude that
every 1-place effectively computable partial function appears in the list

[01, [11, 12D [3]. 4], - ... G.1)

Since an effectively computable function can be computed by more than one procedure,
a computable function may have more than one representation in the list (5.1).

In computability theory, the halting problem can be stated as follows: Given a com-
puter program, decide whether the program will eventually halt when it is executed
with a given input or the program will run forever.

Definition 5.1.14 (Turing). Define the halting relation H on N hy
(w,x) e H iff [w](x)],

where [w](x)| means that the procedure coded by w with input x halts and has an output
value.
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Of course, [W](x)] is equivalent to ®(w, x)]. Is the relation H decidable? Is there a
procedure that will determine whether or not a program coded by w with input x halts?
Alan Turing proved in 1936 that no such procedure exists.

Theorem 5.1.15 (Turing). The halting relation H is not decidable.

Proof. Suppose, to the contrary, that H is decidable. Thus, the characteristic function Cy
defined by

{1, if (w,x) € H,
Cy(w,x) = (5.2)
0, if{(w,x)¢H

is effectively computable. Define the partial function f:IN — N by

) = {1, %f Cy(n,n) =0, 53)
T, ifCyx(n,n)=1

It follows that f is an effectively computable partial function (see Remark 5.1.10). Thus,
there is a procedure P that evaluates f. So, if C;;(n, n) = 1, then the procedure P with in-
put n, which attempts to evaluate f(n), will not halt. Since f is an effectively computable
partial function, there is a natural number e such that [e] = f. There are two cases to
consider: Either Cy(e,e) = 0 or Cy(e,e) = 1.

Cask 1. Suppose Cy(e,e) = 0. Thus, f(e) = 1 and so [e](e) = 1. Hence, (e, e) € H because
the procedure coded by e with input e halts. Therefore, (5.2) implies that Cy(e,e) = 1,
which is a contradiction.

CASE 2. Suppose Cy (e, e) = 1. Thus, by (5.3), f (e) is undefined because the procedure that
attempts to evaluate f(e) does not halt. Since [e] = f, we conclude that [e](e) does not
halt. Hence, Cy (e, e) = 0, which is a contradiction. O

Turing’s proof presents an example of a diagonal argument, which was introduced
by Georg Cantor in 1873 to prove that the set of real numbers is uncountable.

Even though the halting relation is not decidable, it is semi-decidable as (w, x) € H
if and only if ®(w, x)|. Thus, the semi-characteristic function ¢y satisfies

1, if (w,x) eH,

e (W:X) = {T, if (w,x) ¢ H

and is an effectively computable partial function. The following psuedocode offers an
effective procedure for evaluating ¢z (w, x) (see Remark 5.1.12 and Definition 5.1.9):
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Begin Procedure

Execute procedure ®(w, x).
Return 1 and halt.

End of Procedure

Definition 5.1.16. Define the subset K on N by
K={xeN:®(xx)|}={xeN:[x]x)|}

The set K is semi-decidable as the following procedure indicates:

Begin Procedure

Execute procedure ®(x, x).
Return 1 and halt.

End of Procedure

Theorem 5.1.17 (Kleene). Let S be a subset of]Nk. Then S is decidable if and only if both S
and its complement S = NK\ S are semi-decidable.

Proof. LetS ¢ NK,

(=). Assume that S is decidable. Then, as we have seen before, S is semi-decidable be-
cause the following effective procedure applies:

Begin Procedure
Run Cs(X)
If output = 1

return 1 and halt.
Else

Infinite Loop.
End of Procedure

By replacing “output = 1” in the above procedure with “output = 0,” we obtain an
effective procedure that shows that S is semi-decidable.

(). Assume that S and S are semi-decidable. Thus, the partial functions cg and cg are
effectively computable. We shall prove that S is decidable, using a “system timer” as
follows: Run the cg(X)-procedure for one minute and then freeze it. Now, in another
part of executable memory, run the cg(X)-procedure for one minute and then freeze it.
Now continue the c¢(X)-procedure for one minute and then freeze it, and then continue
the cg(X)-procedure for one minute and then freeze it. Keep alternating this “sharing of
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system time” until one of the procedures halts and yields an output of 1. If ¢g(X) = 1, then
return 1. If c5(X) = 1, then return 0. O

Theorem 5.1.18. Let k be a natural number.

1

A k-place relation is semi-decidable if and only if the relation is the domain of some
effectively computable partial function.

A partial function f is effectively computable if and only if {{(X,y) : f(X) = y}isa
semi-decidable relation.

Proof. LetS ¢ NX,

1

We prove that a k-place relation is semi-decidable if and only if the relation is the
domain of some effectively computable partial function.

(=). Suppose that S ¢ NF is semi-decidable. Thus, by definition, the function cg is
an effectively computable function. Since

cs(X) = {1’
s 1, ifxX ¢S,

we see that S is the domain of some effectively computable partial function.

(<). Suppose that S ¢ N is the domain of some effectively computable partial
function, say f. We note that the following procedure evaluates cg:

Begin Procedure

Run f(X).

Return 1 and halt.
End of Procedure

Since the procedure f(X) halts if and only if X € S, we conclude that cg is an effec-
tively computable function.

We shall prove that a partial function f is effectively computable if and only if the
set G = {(X,y) : f(X) = y} is a semi-decidable relation.

(=). Let f be effectively computable. Consider the following procedure with inputs
X andy:

Begin Procedure
Run f(X).
If output = y

Return 1 and halt.
Else

Infinite Loop
End of Procedure
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Thus, the above effective procedure evaluates c;. Therefore, G is semi-decidable.

(&). Let G = {{X,y) : f(X) = y} be a semi-decidable relation and let c;; be the semi-
characteristic function of G, which is a computable partial function. Given X, execute
the following procedure:

Begin Procedure
Letn=0.
(L) Forj=0ton;
Run ¢ (%, /) for n + 1 minutes.
If c5 (X, /) has halted and cs(X, /) = 1, then return j and go to (E).
End for Loop
Letn=n+1andgo to(L).
(E)  Halt (End of Procedure)

If f(X)], then this procedure will eventually halt and return the value f(x). If f(X)T,
then this procedure will not halt. Therefore, f is effectively computable.

Let us explain what the above procedure does. We know that G is semi-decidable.
Thus, there is a procedure P such that when given an input (X, y), the procedure
will halt and return “yes” if and only if (X,y) € G. We now try to compute f(X), if
it is defined. The plan is to use the procedure P to check (X, 0), (X, 1), (X,2),... for
membership in G. To do this, we must budget our time by using a method called
“dovetailing.” We execute the following steps:

(1) Spend 1 minute testing whether (X, 0} is in G.

(2) Spend 2 minutes each on (X, 0) and (X, 1) testing for membership in G.

(3) Spend 3 minutes each on (X, 0, (X, 1), (X, 2) testing for membership in G.

If at a step we find an (X, k) € G, then we return the value k and halt. If f(X) |, then
this process will eventually halt and return the correct value for f(X). On the other
hand, if f(X)T, then this process will not halt, that is, the process will run forever.
Therefore, the partial function f is effectively computable. O

Exercises 5.1.

1.

U W

Let A < N and B ¢ N be decidable. Show that A n B is decidable, thatis,letn ¢ N
and identify an effective procedure that decides whether or notn € An B.

. Let A and B be decidable subsets of N. Show that A U B is decidable.

. Let A and B be semi-decidable subsets of IN. Show that A n B is semi-decidable.

. Let A and B be semi-decidable subsets of N. Show that A u B is semi-decidable.

. Let R ¢ IN? be a decidable relation. Show that the set {x : {x,i) € R}, domain of R,

is semi-decidable. (Review the proof of Theorem 5.1.18(2).)

. Suppose that f: N — N is a computable partial function. Show that the domain of

f,{x e N: f(x)|}, is semi-decidable.
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7. Letf:IN — N be a total computable function. Show that the range {f(x) : x € N} is
semi-decidable.

5.2 Formalizations—an overview

In the preceding section, we used the term “effectively computable” to refer to an in-
tuitive notion of an effective (algorithmic) procedure. In this section we present an
overview of three different (but equivalent) methods that allow one to replace the no-
tion of effectively computable with one that is mathematically precise. One of these
methods will be developed in more detail in Sections 5.3 and 5.4. It is important to
emphasize that these three approaches are equivalent (see Theorems 5.2.20 and 5.2.11).

5.2.1 Turing machines

A Turing machine is a device that manipulates symbols on a tape according to a set of
instructions. Despite its simplicity, a Turing machine can be adapted to simulate the logic
of any computer algorithm. The Turing machine is not intended as a practical method for
implementing algorithms, but rather as a hypothetical device representing a computing
machine. Turing machines help computer scientists understand the limits of mechanical
computation.

A Turing machine has a potentially infinite tape, marked into squares and a tape
head which has an arrow pointing at the square on the tape that is currently being ad-
dressed. Each square can hold a symbol or a blank space. The symbols must be taken
from a given alphabet £. Initially, the tape contains only the input string (word) and is
blank everywhere else (see Figure 5.1).

AT TP efsfelsf PTTTT T

Figure 5.1: A tape with an input string from the alphabet ¥ = {a, t, 3}.

A Turing machine instruction commands the machine to perform the simple steps
indicated below:

(a) read the tape square under the tape head,

(b) write a symbol on the tape in that square,

(c) move the tape head to the left or right, and

(d) proceed to a new instruction.

Steps (b) through (d) all depend upon what symbol appears on the tape square being
scanned before the instruction is executed. The machine can be in any one of finitely
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many “states” q;, (s, - - -, - Amachine instruction has the form (state, read, write, move,
next-state). A program for a Turing machine consists of a finite set of Turing machine
instructions.

Words and alphabets
Consider the set consisting of the English alphabet {a,b,c,d,...,x,y,z}. A finite string
or word over this alphabet is a string of letters; for example, aaactu and zadw are two
strings (words) of letters over the English alphabet.

We will now consider more general alphabets. Let £ be a finite set of symbols. Then
L* is the set of all words over the alphabet X (including the empty word A). For example,
let X = {1, b, c}. Then

¥ = {A,1,a,b,1a, al, bbb, abcabc, . . .}.

We shall denote the “empty” word with the symbol A, and this symbol is not allowed to
occur in any alphabet.

Turing machine instructions
An instruction has the form (g;, S;, S, D, ¢,n), where g; is the current state, S; and Sy are
symbols in X (the given alphabet), D is either R or L (right or left), and g, is the next
state. If the machine is in state g;, then the instruction (g;, S;, S D, @) tells the machine
to look at the square currently under the tape head (the arrow) and do the following (in
order):
1. If the square contains symbol §;, then replace it with the symbol S;.
2. If D = R, then move the tape head to the next square on the right; if D = L, then
move the tape head to the next square on the left.
3. Gointo state qp,.
Let S be the current symbol in the square under the tape head.
5. Now execute the instruction that has state g,, and symbol S as its first two compo-
nents. If there is no such instruction, then halt!

We will not allow the symbol B to be used in any alphabet. The capital letter B will
be used to represent a “blank” symbol (that is, an empty square). Thus, an instruction
(4> S, B, D, qp,) means to “erase” symbol S; and the instruction (g;, B, Sy, D, q,) means
that if the square is blank, then write the given symbol S, into this square. A Turing
machine cannot have two different instructions that have the same first two components.
Suppose that we are working in the two-letter alphabet £ = {a, b} and we want to
write a Turing machine that takes a word in this alphabet as input and will append the
letter a to each such word (on the right). For example, if the tape has the initial input
abb, then after running the machine the tape should have the output abba. Figure 5.2
illustrates another example. Such a Turing machine is given in Example 5.2.1 below.
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Input

L LT [oJafofa]ofef T T T T

L LI [oJafola]bfo]a] [ ] ]

Output

Figure 5.2: The Turing input and output.

Example 5.2.1. Let £ = {a, b} be a two-letter alphabet. We will present a Turing ma-
chine 9t which consists of six instructions with just three states gy, ¢,, g3, where ¢, is
designated as being the initial state. The state g; will be the halt state, that is, the ma-
chine will stop operating. When we start this machine in state g, it will scan the first
letter and then will eventually append the letter a to the word on the right. We show in
Figure 5.3 how this machine executes the program on the input word ab. The box above
the tape head identifies the “current” state of the machine. We have

(91,4, 0, R, qy)
(q1,b,b, R, q1)
(q1,B,a,L, qy)
(@2, a,a,L,qy)
(q3,b,b,L, q3)
(42 B, B, R, q3).

o

Example 5.2.2. Let £ = {a, b} be a two-letter alphabet. Let f:Z* — E* be the 1-place
function defined by f(w) = wa, where w € £* is any word in the alphabet Z. The machine
20t in Example 5.2.1 computes the total function f. So we can say that the function f is
Turing computable. Note that f(4) = a, where A is the empty word.

Now suppose that X is a finite alphabet (the blank B does not count as a member
of £). Let £* be the set of all words over this alphabet (that is, Z* is the set of all finite
strings, including the empty string, consisting of members of X).

Definition 5.2.3. Suppose that f is a k-place partial function from (Z* )¥ into £*. We will
say that f is Turing computable if there exists a Turing machine 9% that, when started
in its initial state scanning the first symbol of a k-tuple W of words (written on the tape,
with a blank square between words, and with the rest of the tape blank), behaves as
follows:

1. Iff(w)| (. e. Wisin the domain of f), then 91 eventually halts and returns the value
f (W), which is the word on the tape whose first letter is under the tape head and
whose last letter is followed by a blank square.

2. Iff(W)7 (.e., Wis not in the domain of f), then 9t never halts.
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SEEEENDEEEEEEEES
SEEEEODEEEEEEEES
SEEEEDEEEEEEEEE
A Pl [ Jefofef TP T [
HEEEDOEEEEEER
HEREDOEEEEEER
HEEEDOEEEEEER
L Jefofef TP [T [ ] [

Figure 5.3: The machine runs with input ab and halts with output aba.

Turing developed these ideas prior to the introduction of modern digital computers.
After World War II, Turing played an active role in the development of early comput-
ers and in the emerging field of artificial intelligence. During the war, he also worked
on deciphering the German battlefield code Enigma, which was militarily important
work that remained classified until after Turing’s death. Turing’s remarkable contribu-
tions to the war effort have been celebrated in recent years. However, before his death,
Turing was persecuted by the English judicial system on account of his sexual orienta-
tion.

Turing computability of functions on IN¥

The definition of Turing computability can be adapted to k-place functions on IN. One
way to do this is to use the single-letter alphabet £ = {1} and represent the natural num-
bers 0,1,2,3,4,... as follows: 1,11, 111, 1111, 11111, .. .. Thus, the 3-tuple (3,0,5) would be
represented on a Turing tape as
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(fafafa] faf [afafafa]a]z].

It turns out that every computable function (like the ones in Section 5.1.2) on the nat-
ural numbers is Turing computable. For example, the function f(m,n) = mn is Turing
computable. Thus, there is a Turing machine such that when given the input (m, n), the
machine will halt with the output mn. For example, if this machine were given the input
(3,4) represented on the tape as

(fafafa] [afafa]a]x

>

then the machine would halt with the output

ARRRARAARRRAAER

>

which represents 12.

5.2.2 Register machines

In theoretical computer science a register machine is an abstract machine that is used in

a manner similar to that of a Turing machine. Furthermore, every Turing computable

function on the natural numbers can be computed by a register machine and vice

versa.

A register machine is a conceptual computing device with a finite number of regis-
ters, numbered 0,1,2,..., K. Each register is capable of storing a natural number of any
magnitude—there is no limit to the size of this number. The operation of the machine
is determined by a program. A program is a finite sequence of instructions, drawn from
the following list:

— Ir(where 0 < r < K). “Increment r.” This instruction results in an increase of the
contents of register r by 1. The machine then proceeds to the next instruction in the
program (if any).

— Dr (where 0 < r < K). “Decrement r.” The effect of this instruction depends on
the number in register r. If that number is nonzero, it is decreased by 1 and the
machine proceeds not to the next instruction, but to the following one. However, if
the number in register r is zero, then the machine proceeds to the next instruction.
In other words, the machine attempts to decrement register r and if it is successful,
then it skips one instruction.

— J q(where gis an integer—positive, negative, or zero). “Jump q.” All registers remain
unchanged. The machine takes as its next instruction the g-th instruction following
this one (if g > 0) or the |g|-th instruction preceding this one (if ¢ < 0). The machine
halts if there is no such instruction in the program. Thus, the instruction J 0 results
in an infinite loop, by repeating this one instruction over and over again.
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This programming language has only these three types of instructions. (Strictly speak-
ing, in these instructions, r and q are numerals, not numbers, that is, an instruction
should be a sequence of symbols. If we use base-10 numerals, then the alphabet is
1,D,],0,1,2,3,4,5,6,7,8,9,—. An instruction is a correctly formed word over this alpha-
bet.) A register program will halt when the machine cannot find the “next” instruction.

Example 5.2.4 (CLEAR 7). Consider the following program, called “CLEAR 7,” which will
replace the contents of register 7 with the number 0. The comments (on the right) are
added to explain the individual steps in the program.

D 7  Try to decrement register 7.
J 2 Haltwhen zero.
] -2 Gobackand repeat.

The program has three instructions and halts by seeking a fourth instruction. In
addition, we can replace 7 with any register number and obtain a program that will
clear that particular register, for example, the following program CLEAR 3 will clear
register 3.

Example 5.2.5 (MOVE r to s). Letr and s be different register numbers. Consider the fol-
lowing program, called “MOVE r to s,” which will move the number in register r into
register s. This program “calls” on the CLEAR program.

CLEAR Ensure that register s is set to zero.
Decrement register r.

Halt when zero.

Increment register s.

-3 Goback and repeat.

n WS un

—_— = e

The above program leaves a zero in register r and contains seven instructions. The
program halts by seeking an eighth instruction.

Example 5.2.6 (ADD 1to 2 and 3). Consider the following program, called “ADD 1 to 2
and 3,” which will add the number in register 1 to the numbers in register 2 and regis-
ter 3.
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Decrement register 1.
Halt when zero.
Increment register 2.
Increment register 3.
-4 Go back and repeat.

— = —~— O
w N R

This program leaves a zero in register 1. Moreover, the program has five instructions
and halts by seeking a sixth instruction. It is clear how to adapt this program to add any
register to one or more registers.

Example 5.2.7 (COPY from r to s (using t)). Consider the following program, called “COPY
from r to s (using ¢t),” which copies the number in register r to register s (leaving register
r unchanged). The program “calls” on the programs CLEAR, MOVE, and ADD.

CLEAR s Set register s to zero.
MOVE rtot
ADD ttorands

When this program terminates, register r contains the same value as it did when
the program began. The program contains 15 instructions and halts by seeking a 16th
instruction.

Example 5.2.8. Let R0, R1, R2, R3 denote registers 0, 1, 2, and 3. Suppose that x and y
are in registers 1 and 2. The following program will put the sum x + y in register 0. The
comments on the right depict the register contents at each step of the program.

RO R1 R2 R3

CLEAR 0 0 X y

MOVE 1to3 0 0 y x
ADD 3toland0 «x X oy 0

MOVE 2to3 X X 0 vy
ADD 3to2and0 x+y x y 0

At the end of this program, registers 1 and 2 contain the same value as they did
when the program began. The program has 27 instructions and halts by seeking a 28th
instruction.

Definition 5.2.9. Suppose that f:IN" — N is an n-place partial function. Then f
is register-machine computable if there exists a register program P that, whenever
X = (X4, Xy, ..., X,) and Xy is in register 1, x, is in register 2,..., x, is in register n, and 0
is in the other registers, behaves as follows:



166 —— 5 Computability

1. Iff(X)] (e, X is in the domain of f), then P eventually halts and returns the value
f(X) in register 0. Furthermore, the program halts by seeking a (p + 1)st instruction
when the program P contains p instructions.

2. Iff(X)7 (. e, Xisnotin the domain of f), then P never halts.

Example 5.2.10. Letf: N?> — N be defined by f(x,y) = x +y. Example 5.2.8 shows that f
is register-machine computable.

Theorem 5.2.11. Let f: N> — N be a partial function. Then f is Turing computable if and
only if f is register-machine computable.

5.2.3 Primitive recursiveness and partial search

For a third formalization of the computability concept, we will define a certain class of
partial functions on IN to be the smallest class that contains a few simple functions and is
also closed under certain constructions that generate more complicated functions. This
particular formalization requires no particular type of computing device.

For the initial functions, we take the following very simple total functions:
— For each k > 0, the zero function f :NF = N defined by the equation

f(xl,...,xk)zo

is an initial function. The constant 0 is viewed as a 0-place initial function.
—  The successor function S: N — N defined by the equation

SX)=x+1

is an initial function.
— For all natural numbers 1 < i < k, the projection function Iik :N¥ - N defined by
the equation

k
L (X505 X)) = X;
is an initial function. The function Iik just selects the i-th component as its value.

We next identify two ways to generate new functions from the initial functions and those
that have already been constructed. Recall that when f:IN — N and g:IN — N, we can
construct the composite function (f - g): N — N defined by

(f - &)(n) = f(g(n))

for all n € IN. We will generalize this operation in our next definition.
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Definition 5.2.12. Letn > 1and k > 1. Suppose that f: N" — N and g;: NK - N for each
i=1,2,...,n. Then we can define the function h: N* - N by composition as follows:

h(X) = f(g1(X), &%), ..., &, (X))

In Definition 5.2.12, if f and gy, 85, . . ., &, are partial functions, then h(X) is defined if
and only if g;(X), £,(X), ..., g,(X) and f(g,(X), &,(X), . .., g,(X)) are all defined.

Example 5.2.13. Let n = 3, let k = 2, let f:N® — N be defined by f(a, b, c) = ab + ¢, and
let g1(x,y) = 2x, 8,(x,y) = 2y, and g3(x,y) = x + y. Then

h(x,y) = f(g1(6,), &%), &3(X,)) = f(2x,2y, X +)
=2X)2) + (X +y) =4y + X + Y.

Another method that we will use to generate functions is called primitive recursion.
Recall (Section 1.1.4) that if we have a function g:IN — N and an element a € N, then
we can define a function h: N — N by the following recursion:

1. h0)=a,
2. h(n+1)=g(h(n)),foralln e N.

We will now generalize this definition.

Definition 5.2.14. Let k > 1 and suppose that f: N - Nand g N2 _, N. Then we
can define a function h: N*! - N by the following primitive recursion:

(@) h(x,0)=fX),

(2) h(x,n+1)=g(hX,n),x,n),foralln e N.

In Definition 5.2.14, if f and g are partial functions, then h(X,n + 1) is defined if
and only if h(X, n) and g(h(x, n), X, n) are both defined. Furthermore, the function h is
uniquely defined by the above conditions (1) and (2). In fact, Theorem 1.1.27 implies that
the function h exists and is unique.

Example 5.2.15. Letk = 2. Letf: N> — N be defined by f(a,b) = (a+1)band g: N* —» N
be defined by g(w, x,y,z) = wx + yz. Then we can define a function h: N® — N by the
following primitive recursion:

@M h(6y,0) =fx.y) = (x+1)y,

(2) h(x,y,n+1)=g(h(x,y,n),x,y,n),foralln € N.
Since we have the value h(x, y, 0), we can evaluate h(x, y, 1) as follows:
h(x,y,1) = g(h(x,¥,0),x,,0) = g((x + Dy, x,y,0) = (x + Dyx +y-0 = (x +X)y.

Now that we have the value h(x,y, 1), we can evaluate h(x,y, 2) as follows:
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h(x,y,2) = g(h(%,y,1),,3,1) = g((* + X)y, 5, 3,1) = (¢ + X )y +y-1= (x* + x> + 1)y.

Continuing in this manner we can evaluate h(x, y, n) for any natural number n.

Now that we have the initial functions and two methods of producing functions, we
can define the smallest set that contains the initial functions and all the functions that
can be generated from the initial functions using composition and primitive recursion.

Definition 5.2.16. A function f: NK - Nis said to be primitive recursive if f can be con-
structed starting with the zero, successor, and projection functions using composition
and primitive recursion.

Thus, if the functions f: N" — Nand g;: N¥ — Nforeachi =1,2,...,nareprimitive
recursive, then function h: N¥ — N defined by the composition

h(X) = f(g1(%), £,(X), ..., £,(X))

is also primitive recursive. Furthermore, if f: N* — N and g: N**? — N are primitive
recursive, the function h: N¥*! — N that satisfies

@ h(x,0) =fX),

(2) hx,n+1)=ghEn),x,n),foralln e N,

is also primitive recursive.

Again, the collection of all primitive recursive functions is the smallest set that
contains the initial functions and is closed under composition and primitive recursion.
Thus, the collection of primitive recursive functions is the smallest set C that contains
the zero, successor, and projection functions and whenever a function f is constructed
from functions in C using composition or primitive recursion, f is also in C.

Example 5.2.17. Show that the function h: N* — N that satisfies
(D hix.y,0) =y,
2) h(x,y,n+1)=h(x,y,n)+2,foralln e N,

is primitive recursive.

Solution. According to Definition 5.2.14, we need to find primitive recursive functions
f and g that satisfy:

(@ h(x,y,0) = f(x,y), where f is a 2-place function,

(b) h(x,y,n+1) = g(h(x,y,n),x,y,n), for all n € N, where g is a 4-place function.

The function h has two parts of its definition, namely (1) and (2). We will find the func-
tions f and g by using the following tree to show how h is built up from certain primitive
recursive functions. The left branch below focuses on part (1) of the definition of h and
the right branch addresses part (2) of this definition.
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w = h(x,y,n)
h(x,y,n+1)=w+2
h(x,y,0) =y =w+1)+1
= I2(x,y) =S(w) +1
=f(x.y) =S(S(w))
=SS, x.y.m)
=gw,x,y,n)

The function f defined by f(x,y) = IZZ (x,y) is an initial function, so f is primitive recur-
sive. The function g defined by g(w,x,y,n) = S(S(If(w, X,y,n))) is primitive recursive
because g is the result of composing initial functions. Thus, h is a primitive recursive
function.

We note that every primitive recursive function is a total function. This is because
the initial functions are all total, the composition of total functions is total, and a function
obtained by primitive recursion from total functions is also total.

We will show in Section 5.3 that many of the common functions on IN are primitive
recursive. For example, we shall show that the operations of addition and multiplication
on the natural numbers are primitive recursive.

It seems clear that every primitive recursive function should be regarded as be-
ing effectively computable. The initial functions are computable and the composition of
computable functions produces a computable function. Whenever his obtained by prim-
itive recursion from computable functions f and g, then it is easy to see how one can ef-
fectively find h(X, 99), by first finding h(X, 0) and then working one’s way up as in Exam-
ple 5.2.15. Therefore, h is computable. However, in order to generate all of the effectively
computable functions on the natural numbers, we need to have one more operation.
Before we formally identify this new operation, we begin with a motivating discussion.

Let us take a function g(x,y). Let x € IN and suppose there is at least one value of y
which makes g(x,y) = 0 and we want to find the least value of y for which g(x,y) = 0.
There is an effective method for doing this. We know that y is a natural number. We
first set y = 0 and then compute g(x,y); if we get 0 we stop, because we have found
the least y such that g(x,y) = 0; but if not, we try the next natural number 1. We try
y=0,1,2,3... until we reach the first value such that g(x,y) = 0. Then we define h(x) =
y and thereby get a new function. When we know that there is such a value, then this
method will terminate in a finite amount of time with the correct answer. Moreover, if
h(x) is a function that computes the least y such that g(x,y) = 0, then h is computable.
We will say that h is produced from g by minimization.

However, we do not always know that there is a y where g(x,y) = 0. Hence the
project of testingy = 0,1,2,3,... may never terminate. If we run the test anyway, which
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is called unbounded minimization, we will get h to be a partial function. For this reason,
we will refer to unbounded minimization as partial search because such searches may
not be successful and thus can produce a partial function.

Since we will be working with partial functions, we will use the notation h(X)| to
indicate that the function h is defined at X, and we will write h(X)] when h is undefined
at X. Moreover, when we say that h: N - Nisa partial function, we mean that the
domain of h may be a proper subset of IN¥. We now introduce the u-operator, which
searches for the least natural number that yields a functional value of 0.

Definition 5.2.18. Letg be a (k+1)-place function on IN. We say that the k-place function
h is obtained (constructed) from g by partial search if h satisfies

h(X) = uy(g(x,y) = 0),

thatis, for each X € N, we have h(X)| and h(X) = yif and only if y satisfies the following
two conditions:

1. g&y)|and g(x,y) =0,

2. g(x,s)] and g(X,s) > 0foralls <y.

When the function g in Definition 5.2.18 is effectively computable, then so is h be-
cause we can evaluate h(X) by investigating the values g(X, 0), g(X,1), ..., g(X, i) (in this
order) until we find the first solution y to the equation g(X,y) = 0. If there is no such y,
then the search will never end.

Using the initial functions and the operations of composition, primitive recursion,
and partial search, we can now define a class of functions that includes the primitive
recursive functions.

Definition 5.2.19. A function is partial recursive if it can be generated by starting with
the initial functions and using the operations of composition, primitive recursion, and
partial search.

The collection of partial recursive functions is the smallest set that contains the ini-
tial functions and is closed under composition, primitive recursion, and partial search.
Such functions can be partial functions, because the operation of partial search can pro-
duce partial functions. However, the expression “partial recursive” is an inseparable
phrase, that is, it should be thought of as “partial-recursive.”

In Section 5.2.1, we said that a partial function f: NK - Nis Turing computable
when there is a Turing machine that will evaluate f. Thus, the definition of a Turing
computable function is very different from the definition of a partial recursive function.
Is there a connection between these two dissimilar ways of defining functions? Alan
Turing was the first to prove the following striking result.

Theorem 5.2.20 (Turing). Letf: NK = Nbea partial function. Then f is partial recursive
ifand only if f is Turing computable.
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There are mathematically formal definitions of a function being Turing computable,
register-machine computable, and partial recursive. All three of these computational
processes are equivalent, that is, all three approaches define the same class of functions.
However, we have not given a formal definition of a function being computable. This is
because the notion of being computable is intuitive and consequently cannot be given a
precise formal definition. A thesis identified by Alonzo Church and Alan Turing relates
the informal idea of being computable to the formal ideas presented in this section. It is
an observation that has been verified by very strong evidence.

Church-Turing Thesis. Let f be a partial function on the natural numbers. Then the fol-
lowing are equivalent:

— fis computable;

—  fis Turing computable;

— fisregister-machine computable;

— fispartial recursive.

Exercises 5.2.
1. Let £ = {a,b} be a two-letter alphabet. Let f:Z* — I* be the 1-place Turing com-
putable function defined by the Turing machine (TM), where g, is the initial state.
Evaluate f(aabb), f (aba), and f (bbaa). We have

(91>, b, R, q3)
(q1,b,a, R, q5)
(q1-B,a,R, q3)
(@2 a,b, L, q3)
(9, b, a4, R, q3)
(q2,B.a, L, q3).

(TM)

2. LetZ = {a, b} be atwo-letter alphabet. Let f: Z* — Z* be the 1-place function defined
by f(w) = wbb for all w € £*. Show that the function f is Turing computable. Then
verify that your machine, when given the input ab, will produce abbb as its output.

3. Let X = {a, b} be a two-letter alphabet. Let f:£* — Z* be the 1-place function that
will switch the first letter of every nonempty word in Z* to the “other” letter. For
example, f(aabb) = babb and f (bbb) = abb. Show that f is Turing computable. Then
verify that your machine, when given the input aab, will produce bab as its output.

4. Let £ = {a, b} be a two-letter alphabet. Let f:Z* — Z* be the 1-place function that
will take any nonempty word in Z* and change every occurrence of the letter a in
the word to the letter b and will not change any occurrence of letter b in the word.
For example, f(aaba) = bbbb and f(baa) = bbb. Show that f is Turing computable.
Then verify that your machine, when given the input aab, will produce bbb as its
output.

5. Give a register-machine program that computes f(x,y) = max{x -y, 0}.

6. Give a register-machine program that computes f(x,y) = x - y.
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7. Give a register-machine program that computes f(x,y) = max{x, y}.

8. Let :N* > N,f:N — N, g:N — N be primitive recursive functions. Using
Definitions 5.2.12 and 5.2.16, show that the function k(x,y,z) = h(f(x),z,g(),2) is
primitive recursive.

9. Show that function p defined by (a) and (b) below is a primitive recursive function:
(@ p(m,0)=m,

(b) pm,n+1) =pm,n) +1.
Prove that p(m, n) = m + n by induction on n.
10. Show that function h defined by (a) and (b) below is a primitive recursive function:
(@ h(m,0) =0,
() h(m,n+1) = h(m,n) + m.
Prove that h(m, n) = mn by induction on n.

Exercise Notes: For Exercise 5, x is in register 1 and y is in register 2. Now move
register 1into register 0. Keep decrementing registers 2 and 0 until register 2 contains 0.
For Exercise 6, x is in register 1and y is in register 2. Register 0 initially contains the value
0. Copy register 1 into register 3. Each time you can decrement register 2, add register 3
to register 0 and then copy register 1 into register 3. For Exercise 7, x is in register 1
and y is in register 2. Copy registers 1 and 2 into registers 3 and 4, respectively. Start
decrementing registers 1 and 2. The first such register who gets to 0 had the smallest
initial value.

5.3 Recursive functions

In the previous section, we discovered that the concept of a computable function on the
natural numbers has several equivalent definitions (there are more). In this section, we
will focus our attention on the class of functions that are recursive. Recursive functions
include the primitive recursive functions and are closed under a search operation sim-
ilar to that of partial search (see Definition 5.2.18).

Recalling Definition 5.2.16, a function f from N¥ to N is primitive recursive if it can
be constructed starting with the zero, successor, and projection functions using com-
position and primitive recursion. Primitive recursion and composition are the key op-
erations that are used to build the primitive recursive functions. Primitive recursive
functions are the computable functions that form an important building block on the
way to capture all of the computable functions. Most of the functions normally studied
in number theory are primitive recursive; for example, addition, division, factorial, ex-
ponentiation, and the n-th prime are all primitive recursive functions. Let us revisit the
initial functions that were introduced in Section 5.2.3 and the operations of composition
and primitive recursion.
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Definition 5.3.1. The initial functions are defined as follows:
— For each k > 0, the zero function f: NK - N is defined by f(xq,...,x;) = 0. The
constant 0 is viewed as a 0-place zero function.
— The successor function S:IN — N is defined by S(x) = x + 1.
— Foralll < i < k, the projection function Il-k :NK = N is defined by the equation
k -
I (Xps . Xg) = X

Definition 5.3.2. Letn > 1and k > 1. Suppose that f: N" — N and g;: N¥ - N for each
i=12,...,n. We can then form the composite function h: N¥ = N, which is defined by

h(X) = f(&1(X), £(X), ..., gn(X)).

The composition

h(X) = f(g1(%), &%), ..., g (X))

can be illustrated as a tree with a vertex having (n + 1) branches:

h

2N

f &1 ) o &n

Here, f must be an n-place function and g, ..., g, must all have the same number of
places as the function h.

The projection functions can be used to avoid the apparent rigidity in terms of the
arity of the functions used in composition. By using compositions with various projec-
tion functions, it is possible to pass a subset of the arguments of one function to another
function. For example, if g and h are 2-place functions, then the function

f(a,b,c) = g(h(c,a), h(a, b))
can be obtained by a composition of projection functions, namely,
f(a,b,c) = g(h(I3(a,b,c),(a, b, c)), h(I} (a, b, ), I; (a, b, ¢))).

Definition 5.3.3. Let k > 1 and suppose that f: NK - N and g: N2 — N. Then we can
define a function h: N**! — N by the following primitive recursion:

@) h(x,0)=fX),

(2) h(x,n+1) =g, n),x,n),foralln e N.

We note that Theorem 1.1.27 implies that the function h in Definition 5.3.3 exists and
is unique. The construction of this function h from the functions f and g is illustrated
by the following tree, where the left branch illustrates the “base step” (1) and the right
branch illustrates the “inductive step” (2).
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T w = h(X,n)
hx.0) =1 %) h(tn+1) = g(w, %, n)

Note that g must have two more places than f and one more place than h. For example, if
his a2-place function, then g must be a 3-place function and f must be a 1-place function.

Definition 5.3.4. Afunction f from N¥to Nis primitive recursive if it can be constructed
starting with the zero, successor, and/or projection functions using composition and/or
primitive recursion.

Recall that the operation of partial search may not be successful. Consequently, this
operation can produce a partial function. The set of recursive functions is obtained by
requiring an additional closure condition which is a modification of the partial search
operation. This modification, when applicable, will always produce a total function.

Definition 5.3.5. Let g: N*! — N be a total function. Suppose that for all ¥ ¢ N,
there is a y € IN such that g(X,y) = 0. We say that the k-place function h is obtained
(constructed) from g by total search if h satisfies

h(X) = w(g(x.y) = 0),
that is,
h(X) = the least y such that g(X,y) = 0.

Definition 5.3.6. A function f from N¥ to N is recursive if it can be constructed start-
ing with the zero, successor, and/or projection functions using composition, primitive
recursion, and/or total search.

We observe that every recursive function is a total function. Moreover, every prim-
itive recursive function is a recursive function, and every recursive function is a partial
recursive function. We note that there are recursive functions that are not primitive re-
cursive, and there are partial recursive functions that are not recursive. In Chapter 6,
we will show that there is a close relationship between deductions in number theory
and recursive functions.

The set of recursive functions can be defined by recursion (see Section 1.1.5). Let B
be the set that consists of the zero, successor, and projection functions. Let F be the set of
operations that correspond to composition, primitive recursion, and total search. Then,
as in Theorem 1.1.24, we can inductively define the sets of functions:

1 ¢, =3B,
(2 Cpq=CoUFI[Cyl,foralln e N.
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Then C = |J,en Gy, 18 the set of all the recursive functions. Moreover, if a set contains
the zero, successor, and projection functions and is closed under composition, primitive
recursion, and total search, then the set contains all of the recursive functions.

We will now begin to show that many of the functions on the natural numbers that
we use in mathematics are (primitive) recursive. Each function that we construct can
be used to construct additional (primitive) recursive functions.

Proposition 5.3.7. The addition function h(x,y) = X +y IS primitive recursive.

Proof. Observe that:
- x+0=x,
- x+(n+1)=(Kx+n)+1,foralln e N.

Thus, letting h(x,y) = x +y, we have:
- h(x,0)=x,
- h(x,n+1)=h(x,n)+1,foralln € N.

We will now show that h is primitive recursive. We must find primitive recursive func-
tions f and g that satisfy Definition 5.3.3:

(1) h(x,0) = f(x), where f is a 1-place function,

(2) h(x,n+1) = g(h(x,n),x,n), for all n € N, where g is a 3-place function.

The function h has two parts of its definition, namely items (1) and (2). We will find the
two functions f and g by using the following tree to show how h is built up from certain
primitive recursive functions. The left branch focuses on part (1) of the definition of h
and the right branch addresses part (2) of this definition.

h
w = h(x,n)
h(x,0) =x hx,n+1l)=w+1
- [ (x) = S(w)

= S(If'(w, x,n))

The desired function f is f(x) = Ill(x), which is an initial function and therefore prim-
itive recursive. The desired function g is g(w,x,n) = S(If(w, X, n)), which is primitive
recursive because it is the result of composing initial functions. Hence, h is a primitive
recursive function. O

The symbol “” is read as “maps to.” This symbol gives us an easier way to identify
a function. The notation (x,y) — x + y indicates that the function is a 2-place function
with input (x,y) and output x + y.
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Proposition 5.3.8. Let k € IN. The constant function X +— k is primitive recursive.

Let k € N. The constant function X — k is primitive recursive because it is the
result of composing initial functions. For example, suppose k = 3and let h(x,y,z, w) = 3.
Observe that

h(x,y, z,w) =3 = S(S(S(0))) = $°(0) = S’ (f(x,y, z,w)),

where f is the 4-place zero function. Since h is the composition of initial functions, it is
primitive recursive. For k > 1 we shall let k f denote the constant function k f(X) = k, for
all X € NX. The constant i = §'(0) shall be viewed as a 0-place constant function.

Proposition 5.3.9. The multiplication function (x,y) — X Xy is primitive recursive.

Proof. We note that:
@D xx0=0,
@2) xx(n+1)=xxn)+x,foralln e N.

We will find the functions f and g by using the following tree to show how h is built up
from certain primitive recursive functions. The following left branch focuses on part (1)
of the definition of h and the right branch addresses part (2) of this definition.

h
/\W: h(X’ n)
h(X’O):(.,) hGon+1l)=w+x
=f(x)

= If(w,x, n) + Izs(w, X, n)

The desired function f is f(x) = f (x), the zero function which is primitive recursive. The
desired function g is g(w,x,n) = If(w, X, n) + If(w,x, n), which is primitive recursive
because addition is primitive recursive. Therefore, h is primitive recursive. O

Since the function h(x, y) = x x y is primitive recursive, we see that

h(IF06Y), H(GY)) = X x x = X,
hCFY), XX, )) = 3 x X = 3x

are primitive recursive. Propositions 5.3.7, 5.3.8, and 5.3.9 imply that any polynomial
function with coefficients from N is primitive recursive. Thus, p(z,y,z) = 3xy® + Z% is
primitive recursive.

Remark 5.3.10. Given any (primitive) recursive function f, we can define another func-
tion by replacing any of the variables in f with constants or by interchanging and/or
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repeating the variables of f. The new function will then be (primitive) recursive. This
follows by composing f with the appropriate projection and constant functions.

Proposition 5.3.11. The exponentiation function {x,y) — X’ is primitive recursive.

Proof. Since
- xX0= 1,

- X" = x"xxforalln e N,

one can now show, in a manner similar to that in the proof of Proposition 5.3.9, that
exponentiation is primitive recursive. O

The exponentiation function (x,y) ~ y* is also primitive recursive. This is estab-
lished by composing certain projection functions with the primitive recursive function
in Proposition 5.3.11; namely, let h(x,y) = ¥’. Define the function g by

£06Y) = H(I;06Y), [H06Y)) = h(y, ) = y*.
Since g is constructed by composing primitive recursive functions, it follows that g is
primitive recursive. Since h(3,4) # £(3,4), ¥’ and y* are different functions.
Proposition 5.3.12. The factorial function x — x! is primitive recursive.

Proof. We have:
- 0'=1,
- (m+D)!'=n'x(n+1),foralln e N.

Thus, letting h(x) = x!, we see that:
- h(0)=1,
— h(n+1)=h(n)x (n+1),foralln e N.

The following tree shows that h is primitive recursive.

w = h(n)
hin+l)=wx(n+1)
h(0) =1 =wx S(n)

= Ilz(w, n) x S(Izz(w, n))

Here, 11is a 0-place primitive recursive function and g(w,n) = Ilz(w, n) x S(Izz(w, n))isa
2-place primitive recursive function. O
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Proposition 5.3.13. The predecessor function pred(x) = x — 1 (where pred(0) = 0) is
primitive recursive.

Proof. We have:
— pred(0) =0,
— pred(n+1)=n,foralln e N.

Thus, letting h(x) = pred(x), we see that:
- h(0)=0,
— h(n+1)=n,foralln e N.

The following tree shows that h is primitive recursive.

h
w = h(n)
h(0)=0 hin+1)=n
= IZZ(W, n)

Here, 0 is a 0-place primitive recursive function and g(w, n) = IZZ(W, n) is a 2-place prim-
itive recursive function. O

Proposition 5.3.14. The proper subtraction function x =y is primitive recursive, where
X =y is defined by x =~ y = max{x -y, 0}.

Proof. To see this, observe that:

- x20=x,

- x>(n+1) =pred(x = n),foralln e N.

Thus, letting h(x,y) = x = y, we see that:
- h(x,0)=x,
—  h(x,n+1) = pred(h(x,n)),foralln € N.

The following tree shows that h is primitive recursive.

h
/\W: o
h(x,0) =x -
=L () h(x,n +1) = pred(w)

= pred(I; (w, x, n))
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Here, 111 is a 1-place projection function and g(w,x,n) = pred(If(w, x,n)) is a 3-place
primitive recursive function. O

We are now ready to show that bounded sums and products are recursive. First,
we review summation and product notation. Let f:IN — N and n € N. The summation
notation ', f(t) and the product notation [, f(t) are defined as follows:

Y @) =F©0) +f @) +£2) +---+f(n-1),

t<n

[1/® =F0) xf@) xf(2) x -+ x f(n-1),

t<n

where Y, f(t) = 0 and [, f(t) = 1. Observe that

> f0=(Yr0)+fm and ] 10 (T]r0) s

t<(n+1) t<n t<(n+1) t<n

Proposition 5.3.15. Suppose that f: N o Nois (primitive) recursive. Then the summa-
tion function s and the product function p defined by

sy =Y f& and py) =[[fx0

t<y t<y
are (primitive) recursive.

Proof. Since addition and multiplication are primitive recursive, the functions s and p
are defined, respectively, by primitive recursion as follows:

(1) s(x,0)=0,

(@) s(x,n+1)=sXn)+f(xn),forallneN;

D p&x,0) =1

(@) pX,n+1)=pEn)xfx,n),foralneN. O

Proposition 5.3.16. Define the function z by

200) = 11, ifx=0,
0, ifx>0.

Then z is primitive recursive.

Proof. We have z(x) =1= x, and 1 = x is primitive recursive (see Remark 5.3.10). To see
why z(x) = 1= x, observe that:

- z(x)=1ifandonlyifx = 0ifand onlyif1=x =1,

- z(x)=0ifand onlyif x > Oifand only if1 = x = 0.

Another way to show that z is primitive recursive is to observe that:
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D z(0) =1,
@2) z(n+1)=0,foralln € N.

Thus, one can define z by primitive recursion as illustrated in the following tree.

z
w = z(n)
z(0) =1 zin+1) =0
=fw,n)
Here, 11is a 0-place constant function and f (w, n) is the 2-place zero function. O
Proposition 5.3.17. Define the function h by
1, ifx<y,
hooy) = |2 TX=Y (5.4)
0, ifx>y.

Then h is primitive recursive.

Proof. Clearly the function z(x < y) is the composition of primitive recursive functions.
To see that h(x,y) = z(x + y) satisfies (5.4), note that:

- h(x,y)=1lifandonlyifx <yifandonlyifx =y =0ifandonlyifz(x = y) =1,

- h(x,y)=0ifand only if x > yifand only if x = y > 0 if and only if z(x < y) = 0.

Thus, the function defined by (5.4) is primitive recursive. O

We have been bhuilding recursive functions. We can thus build a recursive relation
by using its characteristic function.

Definition 5.3.18. Let k > 1. We say that a k-place relation R on IN is (primitive) recur-
sive if its characteristic function is (primitive) recursive.

In other words, a k-place relation R on N is (primitive) recursive if the function

1, i (XX, X)) €R,

Cp(Xq, X9y .o s Xg) =
K , {O, if (X9, X9,...,Xk) ¢ R
is (primitive) recursive. Thus, Proposition 5.3.17 shows that the 2-place relation

{06y) x <y}

is primitive recursive. Proposition 5.3.16 shows that the set {0} is primitive recursive.
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Given an n-place (primitive) recursive relation R and n k-place (primitive) recursive
functions gy, 8y, . . . »&n, We can define the k-place relation Q by

Q = {52 : <g1(}))g2()?)> rgn()?)> € R}

Since the characteristic function for Q is equal to the composition

Co(X) = C(£1(X), &(X), - .., &n(X)),

it follows that the relation Q is also (primitive) recursive. This observation shall be re-
ferred to as the substitution rule.

For any n-place relation R on IN, we shall write R(X) to mean X € R. Thus, the substi-
tution rule states that if R is (primitive) recursive and gy, g5, . . . , 8, are k-place (primitive)
recursive functions, then a relation Q that satisfies

Q) ifandonlyif R(gy(X),gy(X),...,&,(X)) (5.5)

is also (primitive) recursive.

Proposition 5.3.19. Show that the relation {(x,y) : x > y} is primitive recursive.

Proof. Let Q = {{x,y) : x > y}. We know by Proposition 5.3.17 that < is primitive recur-
sive. Recall that x > y if and only if y < x. Since

Q(x,y) if and only if IZZ(X, y) < Ilz(x, ),

the substitution rule implies that the relation Q is primitive recursive. O
Example 5.3.20. Show that the relation {(x,y) : x <y + 1} is primitive recursive.

Solution. Let Q be the relation {({x,y) : x < y+1}. We know that < is primitive recursive
by Proposition 5.3.17. Since the successor function S(y) = y +1is primitive recursive and

0xy) iff x<SE)
iff  12(x,y) < S(IE(x,y)),

the substitution rule implies that the relation {(x,y) : x <y + 1} is primitive recursive.

From two k-place relations R and Q on IN, we define the following three new rela-
tions:
- R={%xeN:notR®)},
- RNQ-={XeN:R®X) and QX)},
- RUQ-={X% e NK:R®) orQ®)}.
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The relation R is called the complement of R and satisfies R(X) if and only if X ¢ R. The
relation R n Q is the intersection of R and Q, and the relation R U Q is the union of the
relations R and Q.

Theorem 5.3.21. Suppose that R and Q are k-place (primitive) recursive relations. Then
the following relations are also (primitive) recursive:

1. R={xeN:notR)}

2. RnQ={% e N:RX) and Q(X)},

3. RUQ-={X e NK:R®) orQR)}.

Proof. Let Cy and C,, be the respective characteristic functions of the relations R and Q.
Assuming that C and C,, are (primitive) recursive, we shall show that the relations &,
RN Q,and R U Q are also (primitive) recursive.

1. First we show that Cx(X) = z(Cg(X)). Observe that

Cp) =1 iff Cp(X)=0
iff 2(Cr(X) = 1.

Furthermore,

Cx(0) =0 iff CpR) =1
iff 2(Cx(®)) = 0.

Thus, CE(X) = z(Cr(X)), which is a composition of (primitive) recursive functions.
Hence, R is a (primitive) recursive relation.

2. One can easily check that CROQ()?) = Cp(X) x Co (X), which is a composition of (prim-
itive) recursive functions. Hence, R N Q is a (primitive) recursive relation.

3. First we show that CRUQ()?) =12 z(Cp(X) + CQ()?)). Note that

iff z(CR()?) + CQ()?)) =0
iff 1=z(CrX) + CQ()?)) =1
Moreover,
CRUQ()?) =0 iff Cp(X)+ CQ()?) =0
iff 1= z(CR()?) + CQ()?)) =0.

Thus, CRUQ()?) =12z(Cy (7()+CQ (X)), a composition of (primitive) recursive functions.
Therefore, R U Q is a (primitive) recursive relation. O
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By a pertinent application of the projection functions, Theorem 5.3.21 implies that
the conjunction and disjunction of any two (primitive) recursive relations are also
(primitive) recursive. For example, if R(x,y) and S(y,z) are recursive, then the rela-
tion P(x,y, z) defined by “R(x,y) and S(y, z)” is also recursive.

From Theorem 5.3.21(2)(3), using a proof by induction, one can now show that any
finite intersection or union of recursive sets is also recursive.

Corollary 5.3.22. Letn € N and suppose that Ri,R,, . .., R, are k-place (primitive) recur-
sive relations. Then

(1R and | R

I<i<n 1<i<n

are (primitive) recursive.

We now apply Theorem 5.3.21 to show that the relations <, >, and = are primitive
recursive.

Proposition 5.3.23. The following relations are primitive recursive:
L {6y) i x <yl
2. {{6y) x>y},
3. {(xy):x=ykL

Proof. We show that the relations are primitive recursive as follows:

1. Theorem 5.3.21(1) implies that {{x,y) : x < y} is primitive recursive, since < is the
complement of the relation >, which is primitive recursive by Proposition 5.3.19.

2. Theorem 5.3.21(1) implies that {(x,y) : x > y} is primitive recursive, as > is the
complement of the relation <, which is primitive recursive by Proposition 5.3.17.

3. Clearly, E = {{(x,y) : x = y} is the intersection of < and >. Propositions 5.3.17
and 5.3.19 and Theorem 5.3.21(2) imply that E is primitive recursive. O

We can now prove that any finite set of natural numbers is primitive recursive.

Proposition 5.3.24. Let A = {ny,ny, ..., Ny} be a finite set of natural numbers. Then A is
primitive recursive.

Proof. Letn; € A, where1 < i < k. We first show that the singleton {n;} is primitive
recursive. Let "f be the constant function defined by "if (x) = n;, for all x € N. The
function "if is primitive recursive by Proposition 5.3.8. Clearly, x € {n;} if and only if
x = n;. It follows from the substitution rule that {n;} is primitive recursive. To formally
establish this, let 111 be the 1-place projection function. By Proposition 5.3.23, the relation
X =y is primitive recursive. As

x e fn} iff L) ="if (),
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the substitution rule (see (5.5)) implies that {n;} is primitive recursive. Hence, since A =
Ur<i<k {ny}, Corollary 5.3.22(2) implies that A is primitive recursive. O

We now show that the graph of a recursive function is itself recursive. The converse
also holds (see Exercise 14).

Proposition 5.3.25. Let f:N" — N be a (primitive) recursive function. Then the relation
G = {{X,y) : f(X) =y}, the graph of f, is (primitive) recursive.

Proof. Since the relation = is primitive recursive and
G(X,y) ifandonlyif f(X)=y,

it follows from the substitution rule that G is a (primitive) recursive relation. More
specifically, since X denotes the n-tuple xq, x5, ..., X, we see that Il-"”()?, y) = x; for each
1<i<nandI™](%y) =y. Forevery X € N" and y € NN, define

&Y = fEY), ... ['(%y) and g&y) = [ (%.y).

Then g; and g, are (primitive) recursive, where g;(X,y) = f(X) and g,(X,y) = y. Thus,
G(X,y) ifandonlyif g Xy)=g,(Xy).

As the relation = is primitive recursive, the substitution rule (see (5.5)) implies that the
relation G is (primitive) recursive. O

The next theorem gives a condition for which one can define a (primitive) recursive
function by cases.

Theorem 5.3.26. Let Q be a k-place (primitive) recursive relation. If f and g are k-place

(primitive) recursive functions, then the k-place function h defined by

mm=r@’7m”q
g(%), ifnot Q)
is also (primitive) recursive.

Proof. Note that
h®) = (f(X) x Co)) + (§X) x C(X),

which is (primitive) recursive by Propositions 5.3.9 and 5.3.7 and Theorem 5.3.21. O

Theorem 5.3.26 can be extended to more than just two exclusive cases. For example,
suppose that f3, f,, f3, f4 are k-place (primitive) recursive functions and suppose that R
and Q are k-place (primitive) recursive relations. Then Theorem 5.3.21 implies that the
function h: N¥ - N defined by
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AX),  if Q(X) and R(X),

f>(X), if Q(X) and not R(X),
f3(X), if R(X) and not Q(X),
fi(X), ifnot Q(X) and not R(X)

h(x) =

is also (primitive) recursive. In the above definition of h, no two of the four cases occur
at the same time, that is, the cases are exclusive. Furthermore, for each X exactly one of
these cases holds.

As another example, let fi, f5, f5, f2 be k-place (primitive) recursive functions and
let Qy, Q,, Q3 be k-place (primitive) recursive relations. Suppose that the relations are
exclusive, that is, for any X, no two of the relations Q;(X), Q,(X), and Q5(X) hold at the
same time. Then the function h: N¥ — N defined by

AX), i Q(X),
ney = 120 Q)
fE’,(X)) lf QS(X):
fa(X), if none of the above hold

is (primitive) recursive.

Bounded number quantifiers are very useful when one wants to put some restric-
tion on the numbers being quantified. To say that all natural numbers x < 9 satisfy the
property P(x), we shall write (Vx < 9)P(x). Similarly, to say that some natural num-
ber x < 4 satisfies P(x), we can write (3x < 4)P(x).

Definition 5.3.27 (Bounded number quantifiers). When a is a specific number, we write
(Vx < a)P(x) to mean that for every natural number x < a, P(x) is true. We also write
(3x < a)P(x) to assert that for some natural number x < a, P(x) is true.

In our proof of the next theorem we will be using the 1-place function pos defined by

1, ifx>0,

5.6
0, ifx=0. (56)

pos(x) = {

In Exercise 3, one is asked to prove that pos is primitive recursive.

Theorem 5.3.28. If Q is a (k +1)-place (primitive) recursive relation, then the two follow-
ing (k + 1)-place relations are also (primitive) recursive:

1 R={&Y): (V¢ <y)QG O},

2. P={(Yy): (3t <yO& 0.

Proof. Let Q be a (k + 1)-place (primitive) recursive relation. Thus, the characteristic
function Cj is (primitive) recursive. The characteristic function of the relation R is

CR()?J)) = 1_[ CQ()?) t))
t<y
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which is (primitive) recursive by Proposition 5.3.15. Furthermore, the characteristic
function of the relation P is

Cp(X,y) = pos(Z Co(X, t)>,

t<y
which is also (primitive) recursive by Exercise 3 and Proposition 5.3.15. O

Theorem 5.3.28 implies that whenever Q is a (k + 1)-place (primitive) recursive re-
lation and we define a (k + 1)-place relation R by

R(x,y) ifandonlyif (Vt<y)Q(X,t),
then R is (primitive) recursive. Similarly, if we define a (k + 1)-place relation P by
P(x,y) ifandonlyif (3t<y)QX,t),

we can conclude that P is (primitive) recursive.

Example 5.3.29. Show that the 2-place relation R = {{(x,y) : (3 < y+D(x x q = y)} is
primitive recursive.

Solution. Observe that the 3-place relation Q defined by
Q(x,q,y) ifandonlyif xxqg=y
is primitive recursive by Proposition 5.3.25. Define the 3-place relation P by
P(x,y,z) ifandonlyif (3g<z)(xxq=Y).
Theorem 5.3.28(2) implies that P is primitive recursive. Now let g;(x,y) = Ilz(x, ),

&H(xy) = Izz(x, y), and g3(x,y) = S(Izz(x, ). Clearly, g4, g, and g5 are primitive recursive
functions. By the substitution rule (see page 181) the relation

P(g1(X)y):gz(XJ))gs(X))’))

is primitive recursive. Observe that
P(g1(x.y), £06Y),85(x,)) iff  P(x,y,y +1)

iff Ag<y+Dxxq=y)
iff R(x,y).

Therefore, the relation R is primitive recursive.

Proposition 5.3.30. The divisibility relation x | y is primitive recursive.
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Proof. Since x | yif and only if x x g = y for some g, we must show that the relation
{¢,y) : x x q =y for some g}
is primitive recursive. To verify this, observe that

x|y iff 3gxxq=y)
iff (3g<y)(xxq=y)
iff Ag<y+Dxxq=Yy).
Example 5.3.29 now implies that the divisibility relation x | y is primitive recursive. [

Remark 5.3.31. It now follows that if we define a relation using bounded quantifiers,
constants, (primitive) recursive relations, (primitive) recursive functions, and the three
logical connectives “and”, “or”, and “not”, then the relation is (primitive) recursive.

Proposition 5.3.32. The set {2,3,5,7,...} of prime numbers is primitive recursive.
Proof. We show that the 1-place relation {x € N : x is a prime} is primitive recursive.
Observe that

xisaprime iff 1< xand(Va<x)(Vb<x)(@axbh +x),

where the relations < and # are primitive recursive, and the function x is also primitive
recursive. Therefore, the set of primes forms a primitive recursive set. O

5.3.1 Bounded search

The total search operator (see Definition 5.3.5), also called the y-operator, provides a
method for defining a function whose value is the least number that satisfies a particular
condition. We will now define a search operation that will only perform a search when
there is an upper bound on the number of the searches allowed, that is, the search will
terminate after looking at finitely many cases.

Definition 5.3.33. Let R be a (k + 1)-place relation on IN. For each X ¢ ]Nk, define the
number (ut < y)R(X, t) by

o the least t that satisfies t < y and R(X, t),
(ut <y)R(x, 1) = | D sfles ¢ <y and RX, O
, ifno such t exists.

Thus, for any (k + 1)-place relation R on IN, we can define the following total (k +1)-
place function f: N¥*! - N by

f&.y) = (ut < y)RRX, ).
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The function f is said to be defined by bounded minimization or bounded search. Observe
that f(X,y) = y if and only if there is no t < y that satisfies R(X, t).

For example, consider the 2-place relation “t is a prime and ¢ > x.” So we can define
the 2-place function f: N* — N by

f(x,y) = (ut < y)[tisaprime and ¢ > x].
To illustrate how to evaluate this function, we obtain

f(4,9) = (ut < 9)[tisaprimeand ¢ > 4] =5,
f(4,20) = (ut < 20)[tisaprimeand ¢ > 4] =5,
f(9,4) = (ut < 4)[tisaprime and t > 9] =4,
f(9,0) = (ut < 0)[tisaprimeandt>9] =0

Theorem 5.3.34. IfR is a (primitive) recursive relation, then the function

f(X.y) = (ut < y)R(X, t)

is (primitive) recursive.
Proof. We will show that f can be defined by primitive recursion. Observe that:
D fx0)=0,
fx,n), iff(xX,n)<n,
(2 f&n+1)=14n, iff(X,n) =nand R(X,n), forallneN.

n+1, iff(X,n) =nandnot R(X,n),

Thus, we get the following tree, where g is (primitive) recursive (see Proposition 5.3.23,
Remark 5.3.31, and Theorem 5.3.26).

f
w = f(X,n)
2.0) =0 w, ifw<n,
Je );f(y() fGn+1)=1n, ifw=n&R(X,n),

n+1, ifw=n&-RX,n)

=g(w,X,n) O

Euclid proved that there are infinitely many prime numbers. So the function
h: N — N defined in our next theorem is a total function.
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Theorem 5.3.35. Let h:IN — N be defined by
h(x) = the smallest prime number that is strictly larger than x. 5.7

Then h is primitive recursive.

Proof. First we prove that for every natural number x there is a prime number p such
that x < p < x!' +1. Note that every prime number g < x evenly divides x!. We know that
every natural number greater than 1 is divisible by a prime. Since x! + 1 > 1, the natural
number x! + 1is divisible by a prime p. Because p evenly divides x! + 1, it follows that p
does not evenly divide x!. Therefore, x < p < x! + 1. It now follows that

h(x) = (ut < (x! +2))[t is a prime and t > x]. (5.8)
The predicate
tisaprimeandt > x

is primitive recursive by Propositions 5.3.32 and 5.3.23 and Theorem 5.3.21(2). Also, the
function x — x! is primitive recursive by Proposition 5.3.12. So f:IN — N defined by
f(x) = x! + 2is primitive recursive. Theorem 5.3.34 implies that the function

(x,y) — (ut < y)[tisaprimeandt > x]

is primitive recursive. Therefore, by composition, the function h satisfying (5.8) is also
primitive recursive. O

For each x € N, let p, be the (x + 1)-st prime number. Thus,

pOIZ, p1:3, p2:5, p3:7, p4:11,...,p25:101,....

One can easily prove, by induction, that p, > x +1for all x € N.
Proposition 5.3.36. The function x — p, is primitive recursive.

Proof. Let g be defined by g(x) = p,. Now let h be the primitive recursive function in
Theorem 5.3.35. Then g can be defined by primitive recursion as follows:

D g0)=2

(2) g(n+1)=nh(gn)),foralln e N.

Thus, the function g is primitive recursive. O

An important feature of the natural numbers is that one can code a finite sequence
of natural numbers by a single natural number. The fundamental theorem of arithmetic
(see Theorem 1.1.29 on page 11) states that every natural number x has a unique prime
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factorization. This theorem allows us to encode any finite tuple of natural numbers by
a single natural number using the following bracket notation:

[1=1
[X,y] _ 2x+13y+1)
[X,y,Z] _ 2x+13y+152+1) (5.9)

X +1

_ 2x0+13x1+15x2+1 . 'pk ,

[Xg> X1> - - > Xg]
where [ ] encodes the “empty” tuple and p; denotes the (k + 1)-st prime. For example,
[2,1] = 72 and [2,1,0] = 360. Let S be the set of all finite sequences (tuples) of natural
numbers. Then the function h: S — N defined by h({xy, Xy, ..., Xx)) = [Xg» X1, ---» Xg] IS
one-to-one; however, h is not onto since 10 = 2 x 5 is not a value of this function.

Theorem 5.3.37. Let k be a natural number. The function h: N**! — N defined by
h(Xgs X5 - - > Xpe) = [Xgs X5+ - -5 Xpe] (5.10)

is primitive recursive.

Proof. Letk € N. As h(xg, X, ..., X) = 20t1gatigtl -p’li"”, it follows from Proposi-
tion 5.3.15 that h is primitive recursive because exponentiation is primitive recursive

(see Propositions 5.3.11). O

Let s be a natural number which codes a sequence, that is, s = [ag, a1, 4y, ..., 0]
for some finite (k + 1)-tuple of natural numbers a,, a;, ay, . . ., a;. We will next show that
there is a primitive recursive “decoding” function (s,7) — (s); such that (s); = a; for
each i < k. For example, since [2,1] = 72, we have (72), = 2 and (72); = 1.

Proposition 5.3.38. A primitive recursive decoding function (s, i) — (S); exists.

Proof. For a prime number g, the largest exponent e such that ¢° | s is also the least
natural number k such that qk+1 t s, thatis, e = yk(qk+1 } s). Since ¢ > 2 and ¢° | s,
we have e < ¢° < s. Hence, e = (uk < s)(qk+1 1 8). Thus, the exponent of g in the prime
factorization of s is equal to

(uk < $)(q“™ ¥ 5).
When q = p;, the (i + 1)-st prime, define

)] = (uk < )P ts),
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which is the largest exponent of p; in the prime factorization of s. For our decoding
function we need one less than the exponent of the prime p; in the prime factorization
of s. Thus, we have

(9); = () =1=(uk <s)(p{™ $5)=1,

which is primitive recursive since the far right hand side of the above equations involves
the composition of primitive recursive functions (see Theorems 5.3.34 and 5.3.21(1) and
Propositions 5.3.36 and 5.3.14). O

Note that (s); is defined for all s5,i € IN, even when s does not code a sequence.

Definition 5.3.39. A natural number s is called a sequence number if s = [ ] ors =
lag, a4, ay, . .., ai] for some (k + 1)-tuple of natural numbers ay, a;, ay, ..., a.

For example, 1 and 108 are sequence numbers because1 = [ ] and [1,2] = 2233 =108,
but 10 is not a sequence number.

Proposition 5.3.40. The set of sequence numbers is primitive recursive.
Proof. See Exercise 11. O

One can prove (by induction) that n + 1 < p, for all natural numbers n. Let x ¢ N
and let k be the smallest such that p; 1 x. Sox > 1.If k = 0, then k < x. If k > 0, then
Pr-1 | x. Thus, p;,_4 < x and hence, k = (k- 1) + 1 < py_; < x, thatis, k < x. Therefore, if
k is the smallest such that p;, 1 x, then k < x. This justifies the upper bound of x on the
u-operator in the following proposition.

Proposition 5.3.41. The function lh(x) = (uk < x)(py 1 Xx) is primitive recursive.

Proof. This holds because 1h(x) = (uk < x)(pr + x) and the right hand side of this
equation is primitive recursive. O

The function lh(x) is called the length function and gives the length of a sequence
coded by x; for example, since 360 = 23 x 3> x 5 = [2,1,0] and p; = 7 is the least prime
that does not divide 360, we have 1h(360) = 3. In general, if x = [ay, a;, dy, ..., a;], then
Ih(x) = k + 1. In addition, (X)lh(x)il = a; is the last component of the sequence. We note
that 1h(0) = 0 by Definition 5.3.33.

Let x = [ag,ay,ay,...,a;] be a sequence number and let y < k + 1. Consider the
function {x,y) — x [ y defined by

X [y = [ao,al,az,...,ay,l]_

We say that x [ y is the restriction of x to y and gives us the code for the sequence
consisting of the first y components of the sequence coded by x.

Proposition 5.3.42. The function (x,y) — X [ yis primitive recursive.
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Proof. This holds because

x1y=T]p" (5.11)
t<y

and the right hand side of (5.11) is a composition of primitive recursive functions. O

For example, if x = [ay, ay,...,a;] andy < k + 1, then

ag+1_ a;+1 a,_;+1
xy=lagay,....ay 4] =py py" p)y
()5 005 (x)y_ )
:po Opl 1 ...py_i'l :Hpt L.

t<y

Furthermore, if kK = Ih(x) = 1, then x [ k = [ag, a4, ay, . . ., a;_4] results in the deletion of
the last component in the sequence coded by x.

Letx = [ay, a4, Ay, ..., a;] and y = [by, by, by, ..., b,] be two sequence numbers. Con-
sider the function (x,y) — x * y defined by

X *y = [ao,al,az,...,ak,bo,bl,bz,...,be].

We say that x = y is the concatenation of x to y.
Proposition 5.3.43. The concatenation function (x,y) — X =y is primitive recursive.

Proof. We must show that there is a 2-place primitive recursive function such that if x
and y are sequence numbers, then (x,y) — x = y. This is done by defining

0
X*Yy=XxX H pt+llh(x)’
t<lh(y)

which is a composition of primitive recursive functions. O

Since [2,1] =22 x 32 = 72,
72572 =[21] % [2,1] = [21,2,1] = 72 x 5° x 7 = 441, 000.

Moreover, if x is a sequence number and i € N, then x = [i] is the sequence number of
the sequence obtained by adjoining i at the end of the sequence coded by x. We note that
x =y is defined for all x and y in IN, even if x and y are not sequence numbers.

We can define the operation of concatenation of more than two sequence numbers.
Suppose that Xy, xq,...X;_1 are sequence numbers. Then we can concatenate all of the
sequences coded by xg, Xy, ... X1, denoted by 3k, _, X;, as follows:

KX =X xxg x e x X,
t<k

where on the right hand side of the above equation the operation = is associative.
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Proposition 5.3.44. Let f be a (primitive) recursive (k + 1)-place function. Then the func-
tion (X,y) — 3k t<y f(X, t) is (primitive) recursive.

Proof. Note that the function (X, y) — sk ey f(X,t) can be defined by primitive recursion
as follows:

@ =k Kof()?, =1,
2 =k re(nsl) f&x 0=k ren fx,t) = f(x,n), foralln € N.

Therefore, the function (X,y) — sk t<y f(X, t) is (primitive) recursive. O
For any (k + 1)-place function f, we define a new (k + 1)-place function f by

F&Y) = f& 0, fG1),....f Gy - D] = [T}

t<y

So the function f encodes the first y values f(¥,0),f(X,1),...,f(X,y — 1) of f as a single
natural number. For example, f()?, 0) =[] =1land f()?, 2) = [f(X,0),f(X,1)]. Clearly,
f(%,y) is always a sequence number of length y.

Proposition 5.3.45. Let f be a (primitive) recursive (k +1)-place function. Then the (k +1)-
place function f is (primitive) recursive.

Proof. Since f(%,y) =[], pl®Y*1 we see that the right hand side of this equation is a
composition of (primitive) recursive functions. O

Given any (k +2)-place function g, there exists a unique (k +1)-place function h that
satisfies the equation

h(x,y) = g(h(%,),X.y),
where we must first know the value of
h(x.y) = [A(X,0),A(X,1),..., h(X,y - 1)]

before we can evaluate h(X, y). For example,

h(x,0) = g([1,%,0),
h(x,1) = g([h(X, 0)],%,1),
h(x,2) = g([h(X, 0), h(X, D], X, 2), (a)

h(,n) = g([h(X,0), h(X,1),..., h(Z n - 1)], % n),
h(,n +1) = g([h(X,0), A%, 1),..., (%, n - 1), A%, )], %, n + 1).



194 — 5 Computability

The definition of a function by primitive recursion allows one to define the value
of a function h(X,n + 1) in terms of its preceding value h(X, n) (see Definition 5.2.14).
The above (a) clearly illustrates how to define the value of a function in terms of all
its preceding values, namely, by coding the sequence of preceding values as a sequence
number. In computability theory, a course-of-values recursion is a technique for defining
number-theoretic functions by recursion.

Proposition 5.3.46 (Course of values recursion). Let g be a (primitive) recursive (k + 2)-
place function. Then the (k + 1)-place function h that satisfies

h(x,n) = g(h(X,n),X,n), for all X and n,

is (primitive) recursive.

Proof. To prove that h is (primitive) recursive, we first show (paradoxically) that h is
(primitive) recursive. Note that T satisfies the primitive recursion:

M h(x0)=1,

2 h&,n+1) = h(x,n) = [g(h(X,n)),X,n)], foralln € N.

Thus, h is (primitive) recursive. Since (h(X,n+ 1)), = h(X, n), we conclude that h is (prim-
itive) recursive. From (2), we also conclude that

(h(X,n+1), = (h(X,n) * [g(R(Z, ), %, N)])y.

Thus, h(¥, n) = g(h(X,y), X, n). O

We end this section by showing how the total search operation can be used to con-
struct a recursive function.

Proposition 5.3.47. Let R ¢ N**! be a recursive relation such that for all X € N there is
ap € N such that R(X, p). Then the function f:IN* — N defined by

f(X) = the least p € N such that R(X, p) (5.12)

is recursive and R(X, f (X)) for all X € NF,

Proof. Since forallX € NX there existsap € N such that R(%, p), the function f: N* —» N
defined by (5.12) satisfies f(X) = up(1 = Cx(X,p) = 0). Therefore, f is recursive and
R, f(X)) for all X € NK, O

Exercises 5.3.
1. Show that the function f: N — N defined by f(x) = x* is primitive recursive.
2. Show that the function f:IN — IN defined by

1, ifniseven,
fn) = .
0, ifnisodd
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is primitive recursive.

Show that the function pos defined by (5.6) is primitive recursive.

Let f:IN — N and the 2-place relation Q be (primitive) recursive. Show, as in Ex-
ample 5.3.29, that R = {{x,y) : (3q < f(¥))Q(x, @)} is (primitive) recursive.

5. Show that the set {i2 : I € N} is primitive recursive.
6. Show that the set {2' : i € IN} is primitive recursive.
7. Using definition by cases, show that the following functions f: N* — N are primi-

10.

*11.
12.

13.

*14.

tive recursive:

@ fxy) =Ix-yl

(®) f(xy) = maxix,y},

(©) f(x,y)=min{x,y}.

Find a nontotal 2-place function g such that the function h defined by

h(x) = wy(g(x,y) = 0),
that is,
h(x) = the least y such that g(x,y) = 0,

is a total function.

For each i € N, by Proposition 5.3.38, the function t + (t); is primitive recursive.
Evaluate (24),, (24);, (45)¢, (45)1, (45)4, (23)y, and (23);.

Define m: N¥*! — N by m(X,n) = max{f(%,i) : 0 < i < n}, where f: N**! — N s
(primitive) recursive. Show that m is (primitive) recursive.

Prove Proposition 5.3.40.

For each n € N, let 4, be a recursive subset of N. Show that (L, 4; and [ Ji_, 4; are
recursive, for alln € N.

Let g:N — N be (primitive) recursive. Let g”(i) = i and whenever p > 1, let

gV =gogeoog.

p-times

Define f: N* — N by f(i,n) = g™ (i). Show that f is (primitive) recursive.
Let f: N¥ — N be a total function. Show that if the graph of f is recursive, then f is
recursive.

5.4 Recursively enumerable sets and relations

Some sets of natural numbers are recursive and some are almost recursive. Recall that
a recursive nonempty set A ¢ IN is one whose characteristic function Cy is recursive.
Using C,, one can effectively enumerate the elements of A. Let k; € A and define the
function f: N — N by
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ﬂm={m %ﬂﬂm:L

kg, 1ifC4(n) = 0.

Clearly, f is a recursive function and the range of f is equal to A. Thus, we can list all the
values of f as follows: £(0), (1), f(2), . ... This listing also effectively enumerates all of the
elements of A. Theorem 5.3.21 implies that IN \ A is recursive. Thus, in a similar manner,
we can effectively enumerate the elements of IN \ A (if nonempty). This motivates our
next definition.

Definition 5.4.1. A setA ¢ Nis recursively enumerable if and only if A = & or there is a
recursive function f: IN — IN such that A is the range of f.

The function f in Definition 5.4.1 is not required to be one-to-one. However, Exer-
cise 7 shows that every infinite recursively enumerable subset of IN is the range of a
one-to-one recursive function.

A recursively enumerable set of natural numbers can be viewed as being “almost
recursive.” A recursively enumerable set is also said to be semi-recursive. There is an
alternative interpretation of a set being recursively enumerable.

Proposition 5.4.2. A set A ¢ N is recursively enumerable if and only if there is a 2-place
recursive relation R such that A = {n € N : 3pR(n, p)}.

Proof. LetA c IN.
(=). Assume that A is recursively enumerable. Let f:IN — N be a recursive function

such that A equals the range of f. Consider the relation

R={(n,p):n=f(p)}

Since the relation = is primitive recursive, the substitution rule (see (5.5) on page 181)
implies that the relation R is recursive. Clearly, A = {n € N : 3pR(n, p)}.

(<). Assume that A = {n € IN : 3pR(n, p)} for some recursive relation R. If A = &, then
we are done. So let k € A. By Proposition 5.3.38, the “decoding” operation (s); is defined
foralls,i € N.Let f:IN — N be defined by

(Mg, I R((N)g, (N)1),

fn) = {k, if not R((n)g, (n)y).

Then f is recursive (see Proposition 5.3.38) and the range of f is A. O

Proposition 5.4.2 allows us to broaden the definition of recursively enumerable.

Definition 5.4.3. A relation P ¢ N is recursively enumerable if and only if there is a
(k + 1)-place recursive relation R such that
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P(x) iff JpRX,p)

for all ¥ € N,

Our goal now is to establish a surprising result: Every total partial recursive func-
tion is, in fact, a recursive function (see Theorem 5.4.12).

Theorem 5.4.4 (Selection theorem). LetS < N<*1 pe recursively enumerable and suppose
that for allx € INK there exists ani € N such that S(%, i). Then there is a recursive function
f:N¥ = N such that S(%,f (X)) for all X € NX.

Proof. Given that S is recursively enumerable, there is a recursive relation R such that
S(x, i) iff FR(X,ij).

Suppose that for all ¥ ¢ N¥ there exists an i € N such that S(¥, i). Thus, for all X € N¥

there are i,j € N such that R(X, i,j). Define h: N > N by

h(X) = the least p € IN such that R(X, (p)g, (P)1)-

Note that h(X) = up(1 = Cx(X, (p)y>(p);) = 0) and this is obtained from the recursive
function g(X, p) = 1= Cx(X, (p)g, (p)1) by a total search (Definition 5.3.5). So h is recursive.
Define f: Nf - N by f(X) = (h(X)),. Thus, f is recursive and S(X, f (X)) for all X € NK. O

We now show that the set of recursively enumerable relations is closed under re-
cursive substitutions, conjunction, and disjunction.

Lemma 5.4.5. Suppose that P is an n-place recursively enumerable relation and that

81,80, - - -8y are k-place recursive functions. Then the k-place relation Q defined by

QX)) iff P(g(X),&,X),...,8.,(X))

is recursively enumerable.

Proof. Given that Pisrecursively enumerable, there is an (n+1)-place recursive relation
R such that P(x;, ..., X,) iff JiR(X,, .. ., X,, ). Thus, for all X € N¥, we have

QR) Iff P(Gi(R).....6u(%) Iff JHR(GH)..... 8%, 0).

By the substitution rule, the relation R(g;(X),...,g,(X),1) is recursive. Therefore, Q is
recursively enumerable. O

Lemma 5.4.6. Let R ¢ N* and Q c N¥,

1. IfRis arecursive relation, then R is recursively enumerable.

2. IfR and Q are recursively enumerable relations, then the following relations are also
recursively enumerable:
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(@ RNQ={X e N:RX) and Q(X)},
() RUQ={X e N*:R®) or Q)}.

Proof. Suppose that R < N¥ and Q < N¥.

1. Let R be a recursive relation. The relation S ¢ N**! defined by S(X, p) iff R(X) is
recursive, as S is the result of a composition of R with the projection functions
Il-k”(xl, .- Xio D) = X;, where 1 < i < k. Clearly, R(X) iff 3pS(X, p). So R is recursively
enumerable.

2. Assume that R and Q are recursively enumerable. Therefore, there are recursive
relations § < N**! and U ¢ N**! such that

(R(X) iff 3pS(X.p)) and (Q(X) iff 3IpUX,p)).
Thus,

(RZ) and S(®)) iff  Ip(S(%, (p)o) and U(X, (p)1)),
(RE) or S()) iff 3Ip(S(,p) or UK, p)).

Therefore, Theorem 5.3.21 and the substitution rule imply that the conjunction
“R(X) and S(X)” and disjunction “R(X) or S(X)” are recursively enumerable. O

By a suitable use of the projection functions, part 2 of Lemma 5.4.6 implies that
the conjunction and disjunction of any two recursively enumerable relations are re-
cursively enumerable. For example, if R(x,y) and S(y,z) are recursively enumerable,
then the relation P(x,y, z) defined by “R(x,y) and S(y, z)” is recursively enumerable.
Moreover, by applying a proof by induction, part 2 of Lemma 5.4.6 implies that the con-
junction or disjunction of any finite number of recursively enumerable relations is also
recursively enumerable.

Corollary 5.4.7. Let n € N and suppose that Ry, R,, ..., R, are k-place recursively enu-
merable relations. Then

1 AL Ri(X) = Ri(X) ARy(X) A -+ AR, (X) is recursively enumerable,

2. Vi R(X) = R{(X) VRy(X) V -+ V Ry(X) is recursively enumerable.

We will now show that the set of recursively enumerable relations is closed under
the bounded number quantifiers and the existential quantifier.

Lemma5.4.8. Let Q < N**! pe recursively enumerable and let n € N. Then:
1. Therelation (Vi < n)Q(X, i) is recursively enumerable.

2. Therelation (3i < n)Q(X, i) is recursively enumerable.

3. Therelation 3iQ(X, i) is recursively enumerable.

Proof. Let Q ¢ N1 pe recursively enumerable. Thus, there is a recursive relation R
such that
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Q(x,0) iff FHRKX,ij).
The desired conclusion follows from the following equivalences:

(Vi < n)Q(X,1) iff (Vi<n)FRE,ij) iff Ij(Vi < MR, 1, (),), (.13)
@i < n)Q&,i) iff (3 <n)FHRE ij) iff IJj@3i < nRE,ij), (5.14)
JiQ, i) iff iFR(X,i,j) iff 3IKR(X, (k)g, (K);). (5.15)

To confirm (5.13), given that for each i < n there is a j; € N such that R(X, i, j;), let j be the
sequence number j = [jg, i, .. .»jn_1]- Then (Vi < n)R(X, i, (j);). Thus, Fj(Vi < n)R(X, i, (j);).
The converse holds similarly. Theorem 5.3.28 implies that the right hand sides of (5.13)
and (5.14) are recursively enumerable, and the substitution rule implies that the right
hand side of (5.15) is recursively enumerable. O

The set of partial recursive functions can be defined by induction (see Section 1.1.5).
Let B be the set consisting only of the zero, successor, and projection functions. Let F
be the set of functional operations that correspond to composition, primitive recursion,
and partial search. Then, as in Theorem 1.1.24, we inductively define the following sets
of functions:
1 C, =B,
(2) Chpq=CyUF[Cyl,forallneNN.

Then C = [, Cn is the set of all the partial recursive functions. Moreover, whenever
a set contains the zero, successor, and projection functions and it is closed under com-
position, primitive recursion, and partial search, then the set contains all of the partial
recursive functions (see Exercise 5(b) on page 15). We will apply this observation in the
proof of our next theorem. First we give a definition.

Definition 5.4.9. Let h be a k-place partial recursive function. Then the graph of h is the
(k + 1)-place relation

Gy = {(%y) : h(X) = y}.
The next theorem shows that there exists a close connection between partial recur-
sive functions and recursively enumerable relations.

Theorem 5.4.10. For every partial recursive function h, the graph of h is recursively enu-
merable.

Proof. Let S be the set of all partial recursive functions whose graph is recursively enu-
merable. We shall prove by induction that S contains all partial recursive functions.

Base step: We must show that every initial function is in S. To do this, let h be an
initial function. Since h is a recursive function, G is recursive by Proposition 5.3.25.
Lemma 5.4.6(1) now implies that the relation Gy, is recursively enumerable.
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Inductive step: We must show that S is closed under (1) composition, (2) primitive re-
cursion, and (3) partial search. Let f, g, 81, &, . . ., &, be partial recursive functions and
assume that all of these functions are in S, that is, assume the induction hypothesis

Gf, Gg, Ggl’ cies Gg" are recursively enumerable. (IH)

We now establish closure under the above identified operations (1), (2), and (3).
(1) Assume that f: N"* — N and g;: N* — N for each i = 1,2,...,n. We must show that
function h: N — N defined by the composition

h(X) = f(8:(%), £, ..., 8, (X))
isalsoin S. Since
n
hx)=y iff Fv;--- E!vn</\gi()?) =v;and f(vy, vy, ..., Vp) :y>,
i=1

(IH), Corollary 5.4.7, and Exercise 11 imply that Gy, is recursively enumerable.
(2) Assume that f:N¥ — N and g:N**? — N. We must show that the function
h: N**! - N defined by the primitive recursion
@ h(%,0) =fX),
(b) hx,n+1)=ghEn),x,n),foralln e N,
is alsoin S. Because

h(x,n) =y iff 3Ip(f(X) = (p)o and (Vi < n)(g((p)y. X, 1) = (P)i41) and (p),, =),

Lemmas 5.4.5,5.4.6, and 5.4.8(1)(2) and (IH) imply that G, is recursively enumerable.
(3) Assume that g is a (k + 1)-place function. We must show that the k-place function h
defined by the partial search

h(X) = w(g(x.y) = 0)
isin S. Since
h®@) =y iff g®Xy)=0and (Vi<y)3Iv(gXs)=vandv > 0),

Lemmas 5.4.6 and 5.4.8(1)(2) and (IH) imply that G, is recursively enumerable. [

Theorem 5.4.10 and a modification of the proof of Theorem 5.4.4 (see Exercise 5) now
imply the following equivalence.

Theorem 5.4.11. Let h: N — N be a partial function. Then h is partial recursive if and
only if Gy, is recursively enumerable.

Theorems 5.4.10 and 5.4.4 also imply that every total partial recursive function is
recursive.
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Theorem 5.4.12. Leth: N — Nbeatotal partial recursive function. Then his arecursive
function.

Proof. Let h be a total partial recursive function. Theorem 5.4.10 implies the relation
Gy(x,y) iff h(x)=y (5.16)

is recursively enumerable. Since h is total, we know that for all ¥ € N, there is a y
such that G, (X, y). The selection theorem (Theorem 5.4.4) implies that there is a recursive
function f: N — N such that Gp(X, f(X))forallX € NK. Therefore, by (5.16), we conclude
that h(X) = f(X) for all X € INK, that is, h is a recursive function. O

5.4.1 Decidability revisited

In Section 5.1.1 we presented a definition of a decidable (semi-decidable) set. However,
this definition was given in terms of the intuitive concept of an “effective procedure.”
Because of Theorems 5.2.11 and 5.2.20 and the Church-Turing thesis, we can now give a
mathematically precise definition of a set being decidable (semi-decidable).

Definition 5.4.13. Let S ¢ NX. Then S is decidable if its characteristic function

o 1, ifxesS,
Ci(X) =
s&) {o, ifx ¢S

is partial recursive. Moreover, S is semi-decidable if its semi-characteristic function

is partial recursive.

In light of Theorem 5.4.12, the above definition of a set being decidable can be made
stronger. Our next result confirms this by showing that a relation is decidable if and only
if its characteristic function is recursive.

Theorem 5.4.14. Let S ¢ NX. Then S is decidable if and only if S is recursive.

Proof. Assume that S is decidable. Thus, the characteristic function Cg is total and par-
tial recursive. Theorem 5.4.12 implies that C is recursive, so S is recursive. Conversely,
suppose that S is recursive. Then Cg is recursive and hence, it is partial recursive. There-
fore, S is decidable. O

Theorem 5.4.15. Let S < N¥. Then S is semi-decidable if and only if S is recursively enu-
merable.

Proof. Assume that S is semi-decidable. So cs is partial recursive. By Theorem 5.4.10, the
graph G, (X, y) of cs is recursively enumerable. Since
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XeS iff G, (Xy)

Lemma 5.4.8(3) implies that S is recursively enumerable.
For the converse, suppose that S is recursively enumerable. Definition 5.4.3 implies
that there is a recursive (k + 1)-place relation R such that

S(x) iff 3FpR(X,p).

Since R is recursive, the characteristic function Cy, is recursive. Let h be the partial re-
cursive function

h(X) = up(1+ Cp(X,p) = 0),

where h is the result of applying partial search (see Definition 5.2.18) to the recursive
function g(X,p) = 1= Cx(X, p). Then Cx(X, h(X)) is the semi-characteristic function of S.
Therefore, S is semi-decidable. O

We now show that a relation is recursive if and only if the relation and its comple-
ment are recursively enumerable.

Theorem 5.4.16. Let P ¢ N. Then P is recursive ifand only if P and NK\Pare recursively
enumerable.

Proof. LetP ¢ N, Then P and N¥ \ P are recursive. Lemma 5.4.6(1) implies that both
of these sets are recursively enumerable. Now assume that P and N\ Pare recursively
enumerable. Thus, there are recursive (k + 1)-relations R and S such that

X eP iff 3JiR(X,iQ), (5.17)
Xe¢P iff 3FiS(X, i), (5.18)

for all X ¢ NX. Hence, for all ¥ € NX, there exists an i such that R(%, i) or S(X,i). By
Lemma 5.4.6(2b), the relation “R(X, i) or S(X, i)” is recursive. So, by total search, the func-
tion h: N — N defined by

h(X) = ui(R(X,i) or S(X,1i))

is recursive. Since X € P iff R(X, h(X)), it follows that P is recursive. O

In Section 5.1.1 we presented an intuitive argument that was designed only to con-
firm Theorem 5.1.17. Theorems 5.4.14, 5.4.15, and 5.4.16 now provide a mathematically
rigorous proof of Theorem 5.1.17, which is restated below.

Theorem 5.4.17 (Kleene). Let S ¢ NX. Then S is decidable if and only if S and its comple-
ment IN¥ \ S are semi-decidable.
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Exercises 5.4.

1

*5.

*6.

*7.

10.
*11.

Let f:IN — N be recursive. Show that the semi-characteristic function of the range

of f, {f(x) : x € N}, is partial recursive.

Let f:N — N be a recursive bijection. Show that £ is recursive.

Let A ¢ N be the nonempty range of a partial recursive function. Show that A is

recursively enumerable.

Let A ¢ N be recursively enumerable. Show that A is the domain of a partial re-

cursive function.

Let h: N¥ — N be a partial function. Show that if Gy, is recursively enumerable,

then h is partial recursive.

Let f:IN — N be a recursive function. Show that if f is strictly increasing, then its

range {f(x) : x € N} is recursive.

Let f:IN — IN be recursive, where ran(f) = {f(x) : x € N} is infinite.

(@) Forall n € N, show that there is an i > n such that (Vj < n)(f(j) # f(i)).

(b) Foralln € N, let i be the least such thati > n and (Vj < n)(f(j) # f(i)). Show
that (vj < )(f() # F(D).

(c) Define g:IN — N by

g(n) = theleasti € N such thati > nand (Vj < ))(f(j) # f(0)).

Show that g is recursive. Clearly, n < g(n) for alln € IN.

(d) Define : N — N by h(0) = 0 and h(n + 1) = g(h(n)). Thus, h is recursive.
Show that h(n) < h(n + 1) for all n € IN. Hence, h is one-to-one and strictly
increasing.

(e) Show that f(h(n)) + f(j) for all j < h(n), for each n € N.

() Show that v:IN — N defined by v(n) = f(h(n)) is one-to-one.

(g) Lety e ran(f) and let i € N be the least such that f(i) = y. Therefore, (Vj <
D(f(§) + f(i)). Show that i = h(n) for some n. Now conclude that ran(v) =
ran(f).

Let A ¢ N be an infinite recursive set. Show that A is the range of a strictly increas-

ing recursive function.

Let A ¢ IN be an infinite recursively enumerable set. Show that there is an infinite

recursive set B such that B € A.

Prove Corollary 5.4.7.

Let Q < N¥*" be recursively enumerable. Prove that the relation

30,30y ... J R by, by i)

where X € NX| is recursively enumerable.

Exercise Notes: For Exercise 7(c), see Proposition 5.3.47. For Exercise 7(f), if not, then
by (d) there exists an n such that h(n) < i < h(n + 1). Exercise 7 shows that every infi-
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nite recursively enumerable subset of N is the range of a one-to-one recursive function.
For Exercise 9, by Definition 5.4.1 there is a recursive function f:IN — N such that A
is the range of f. Use f to construct a strictly increasing recursive function h such that
the range of h is a subset of A; Exercise 6 (above) implies that the range of h is recur-
sive.



6 Undecidability and incompleteness

6.1 Introduction

Let £ be a language that is commonly used in mathematics. Let us say that a set of
L-sentences is decidable if there is an effective procedure to decide whether or not a
sentence belongs to the set. In particular, a finite set of sentences is decidable. Now let
2 be an £-structure.

Can we find a decidable set T of £-sentences such that 2( = I’ and QD
A = g if and only if T I ¢, for each £-sentence ¢?

That is, is there a reasonable set of axioms that can be used to deduce the statements
that are true in the structure 2? This is a question that is often posed in mathematics. If
one is going to make deductions from a set of axioms, then one must be able to clearly
identify the axioms, that is, the set of axioms must be decidable.

Let us direct question (Q1) to some mathematical languages and structures. Let
L = {<,=} and let ¥ be the axioms for dense linear orders without endpoints (see
page 143). Recall that Q = W. Corollary 4.3.19 shows that Q = ¢ if and only if ¥ + ¢, for
all £-sentences ¢. Thus, in this case, there is a positive answer to question (Q1). More-
over, let 6 be an £-sentence. Corollary 4.3.19 implies that either ¥ + 6 or ¥ + -6, but
not both. Since ¥ is finite and the set of logical axioms is decidable, we can effectively
enumerate all of the deductions from ¥ and eventually find a deduction of either 6 or
—0. So we can effectively answer the question: Does ¥ |- 6?

Now let us consider the language of elementary number theory (see Section 4.3.1)
£ =1{,0,8,+, % E, =} and the standard model of arithmetic (see page 137)

N =(N;0,S,<,+,x,E).
Let us rephrase question (Q1) with respect to £ and N:

Is there a decidable set of £-sentences I' such that A" = T and Q2
N E ¢ if and onlyif T +- ¢, for each £-sentence ¢?

Our development in Sections 5.3 and 5.4 on recursive functions and decidability will
allow us to address question (Q2). As we will see, mathematical logic and computability
are intimately connected.

Remark. The above question (Q2) inspired much of the early growth of mathematical
logic. At the International Congress of Mathematicians, a meeting held in Paris in 1900,
David Hilbert challenged mathematicians to identify a set of axioms for number theory
that would positively address question (Q2). David Hilbert (1862-1943), whose name is
attached to the concept of a Hilbert space, was one of the most influential and compre-
hensive mathematicians of the late nineteenth and early twentieth centuries.

https://doi.org/10.1515/9783110782073-006
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6.2 Basic axioms for number theory

In our quest to address the preceding question (Q2), we will first identify a finite set of
axioms for number theory which will help us to answer this question. These axioms are
first-order sentences in the language £ = {<, 0, S, +, %, E, =} and hold in .\, the standard
model of arithmetic. We will use x <y as an abbreviation for (x <yvx=y) and use x £y,
X #y to respectively abbreviate —(x < y), =(x = y).

Basic Axioms 6.2.1. Let £ = {<,0,$,+, %, E, =}. Let Q consist of the following 11 axioms,
where X, y are variables:

(A1) Vx(Sx#0),

(A2) VxVy(Sx =S8y - x=y),
(A3) VxVy(x <S8y & x <),

(A4) Vx(x % 0),

(A5) VxVy(x<yVvVXx=yVvy<Xx),
(A6) Vx(x+0=x),

(A7) VxVy(x + Sy = S(x +y)),
(A8) Vx(x x0=0),

(A9) VxVy(x xSy = (x xy) + X),
(A10) Vx(Ex0 = §0),

(A11) VxVY(ExSy = Exy x X).

These 11 sentences shall be called the Q-axioms (Omega axioms).

Axioms (A1)-(A5) concern the successor operation and the less than relation. The
other six axioms, (A6)—(A11), relate to the steps used to generate the primitive recursive
operations of addition, multiplication, and exponentiation (see the proofs of Proposi-
tions 5.3.7, 5.3.9, and 5.3.11, respectively). Clearly, V' E Q. Thus, Q is consistent by Corol-
lary 4.1.11. Let Z be a set of £-sentences such that Q ¢ X. If N = L, then for any £-sentence
@ weknow that £ + ¢ implies A/ = ¢, by the soundness theorem. Can we find a decidable
set X so that the converse implication holds?

We will now show that some basic sentences that are true in A/ are deducible from
the Q-axioms. For any natural number n, to simplify the notation, we will let n denote
the £-term $"0, that is,

_n times
n=8"0=85...50. 6.1)
Son+1=5n1=350,and 0 = 0. The terms 7 are called numerals, and we have ¥ = n,
where ﬁN is the term n interpreted in A/. Our next lemma shows that when n > 0, one

can deduce from Q that the only objects less than 71 are 0,1,2,...,n — 1. So in any model
of Q, the interpretation of the terms 0,1,2,... are ordered like the standard natural num-
bers.
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Lemma 6.2.2. For every natural number n > 0, we have

QFx<ne (x=0vx=1v.--vxzn-1).

Proof. We shall use natural number induction on n.

Base step: Let n = 1. We must show that Q  (x <1 < x = 0). Since 1 = 50, we have
Q I x <1 & x <0 by axiom (A3). Moreover, by axiom (A4), we see that Q - x<0 < x =0.
Therefore, Q - (x <1 & x = 0).

Inductive step: Let n € N be such that n > 1. Assume the induction hypothesis

Qbx<ne (x=0vx=1v---vx=n-1) (IH)
From the induction hypothesis we conclude that
Qr(x<navxzn) o (x=0vxzlv...vx=n-1vx=n).
Since x < 1 is an abbreviation for (x < v x = i), axiom (A3) implies

Qrx<n+le (x=0vx=1v---vx=n). O

Thus, any nonstandard “number” x in a model of Q satisfiesn < x for alln € IN.

We now introduce two more abbreviations. For any £-formula ¢(x) and n > 0, we
let (Vx < n)p(x) abbreviate the wff Vx(x <1 — ¢(x)) and we let (3x < n)p(x) abbrevi-
ate the wff Ix(x < n A ¢(x)). The quantifiers (Vx < n) and (3x < n) are called bounded
quantifiers.

Let ¢4, 95, 93 be £L-wifs. To show that Q - ¢; < ¢, and Q F ¢, & @5, it can be more
illuminating to derive these consecutive results by using the vertical list

Qoo
< @3
and thereby conclude that Q - ¢; < ¢5. This will be done in the proof of Lemma 6.2.3.

Lemma 6.2.3. Let ¢(x) be an L-formula. For any natural number n > 0,
M Qr (VX <MeX) < (p(0) AP A--- A p(n - 1)),
2 QF @x<MeX) < (PO) Vo) V---Vvem-1)).

Proof. We now prove (1). We first observe that

QF (VX <n)e(x) o Vx(x <n — ¢(x)) abbreviation,
oVX(x=0vx=1v---vx=n-1) - ¢(x)) byLemma 6.2.2,
P ((p(O) A (p(i) A---Apn-1)) logical equivalence.
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AsVx(x=0vx=1v-..vx=n-1) — ¢x)) and ((0) A (1) A --- A (n - 1)) are
logically equivalent, the completeness theorem justifies the above derivation. Therefore,
Q- (Vx < )o(x) < (9(0) A @(T) A--- A @(n —1)). A similar argument proves (2). O

The following lemma will be used to show that for every £-term t which contains
no variables, there is a natural number n such that Q + t = n.

Lemma 6.2.4. For all natural numbers m and n,
1 Qrm+in=m+n,

2) Qrmxn=mxn,

() QrEmn=m

Proof. Let m € N. We will prove (1) by induction on n.

Base step: Let n = 0. We must show that @ + m + 0 = m + 0. By axiom (A6), we have
Q +m+0=m. Therefore, Q- m+0=m+0,asm=m+0.

Inductive step: Let n € N be arbitrary. Assume the induction hypothesis

Qrm+n=m+n. (IH)

We need to prove that Q - m+ n+1=m+n+1 Since n +1 = Si, axiom (A7) implies
that @ + m + n+1 = 8@ + n). From the induction hypothesis (IH), we conclude that
Qrmin+1=S(M+n).AsS(M+n) =m+n +1, we see that

Qrm+n+l=m+n+1
The proofs of (2) and (3) follow in a similar manner using axioms (A8)-(A9) and
(A10)-(A11), respectively. O
We now show that Q-axioms “agree” with \V about equality.

Lemma 6.2.5. For all natural numbers m and n,
D ifm=nthenQrm=n;
(2) ifm+n,thenQrm#n.

Proof. For (1), if m = n, then the terms m and n are identical, that is, m = n. Hence,
Q + m = n. The proof of (2) is by the following induction on n.

Base step: Let n = 0 and assume that m # 0. We must show that Q + m # 0.Sincem # 0,
there is an x € N such that m = x + 1. Thus, m = $X. Axiom (A1) implies that Q - $X # 0.
Thus, Q + m # 0.

Inductive step: Let n € N be arbitrary. Assume the induction hypothesis

forallm e N,if m # n,thenQ + m#n. (IH)
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Let m € N be such that m # n + 1. We prove that Q + m#n+1Ifm=0,thenm=0and
Q + S+ 0 by axiom (A1). Thus, @ - M+ n+1.If m > 0, then m = x + 1 for some x € N.
Som = $X and x # n. The induction hypothesis (IH) implies that Q - X # 7. Axiom (A2)
now implies that @ - $X # $n, thatis, Q - m#n + 1. O

Lemma 6.2.6. For each variable-free L-termt, thereis auniquen € N such thatQ - t=n.

Proof. Uniqueness follows from Lemma 6.2.5(2). We use induction on terms to prove
that for all terms t*,

if t* is variable-free, then Q + t* =7, for some natural number n. (6.2)
Base step: t* = 0. Since 0 = 0, we clearly have Q I- 0 = 0.
Inductive step: Let t and 7 be variable-free £-terms. Assume the induction hypothesis
Qrt=k and QF7=m, (IH)
for k, m € N. We must prove that (6.2) holds for each of the variable-free terms
St, t+7, txT, Ett.

Since @ + t = k, we have Q + St = Sk. Thus, as Sk = k + 1, Q + St = k + 1. The induction
hypothesis (IH) implies that Q + ¢ + 7 = k + m. So, by Lemma 6.2.4(1), Q + t + T=k + m.
The argument for the terms ¢ x 7 and Etr is similar. O

The Q-axioms also “agree” with A about inequality.

Lemma 6.2.7. For all natural numbers n and m,
(1) ifm<n thenQrm<n,
(2 ifm¢n thenQrmén.

Proof. The proofs of both conditionals (1) and (2) are by induction on n.
(1) Letm € IN. We prove the above item (1) by the following induction on n.

Base step: Let n = 0. In this case, the conditional (1) is vacuously true.

Inductive step: Let n € IN be arbitrary. Assume the induction hypothesis
ifm<n, thenQ+m<n (IH)

Assume that m < n + 1. So either m < n or m = n. By the induction hypothesis and
Lemma 6.2.5(1), we have either @ - m < nor Q - m = n. Hence,

Qr(m<nvm=n).

So Q + m <. Axiom (A3) implies that Q + m < Sn. Therefore, Q - m<n + 1.
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(2) Letm € N. We now prove the above item (2) by induction.
Base step: Let n = 0. Axiom (A4) implies that Q I m £ 0. So (2) holds for n = 0.

Inductive step: Let n € IN be arbitrary. Assume the induction hypothesis
ifm¢«n, thenQrmé¢n. (IH)

Assume that m ¢ n + 1. Thus, m ¢ nand m # n. By the induction hypothesis and
Lemma 6.2.5(2), we have Q  m ¢ n and Q  m # n. Hence,

QF (Mm&nAm#+n).

S0 Q ++ ~(m < nvm=n) (De Morgan’s law), that is, @  —(m < n). Axiom (A3) implies
that Q - ~(m < $7), thatis, Q FmM ¢ n + 1. O

Lemmas 6.2.5-6.2.7 imply a partial answer to question (Q2) posed on page 205.

Theorem 6.2.8. For every quantifier-free sentence ¢,
1) ifN E o thenQtr o,
() IfN E -, thenQ + —o.

Proof. The proof is by induction on the construction of the quantifier-free sentences as
outlined in Exercise 2. O

An existential sentence has the form 3x; - - - 3x,,0, where 0 is quantifier-free. Our
next result is an extension of Theorem 6.2.8.

Corollary 6.2.9. Let ¢ be an existential sentence. If N = ¢, then Q + ¢.

Proof. Let ¢ be an existential sentence of the form 3xa, where a is quantifier-free. Sup-
pose that A/ = Ixa. Thus, for some natural number n, we have NV & a%. Since a% is
a quantifier-free sentence, Theorem 6.2.8 implies that Q + a}. Exercise 10 on page 117
implies that Q + a; — 3xa. Thus, @ + 3xa. One can now extend this argument, by
induction, to existential sentences with more than one such quantifier. O

Corollary 6.2.9 does not hold, in general, for the negation of an existential sentence.

Exercises 6.1.
1. Letm,n € N.Showthatif Q¥ m<n,thenQ+ (m=nvn<m).
*2. Let t and 7 be variable-free terms in the language £ = {<,0,S, +, %, E, =}. Prove

Theorem 6.2.8 by induction as follows:

Base step:

(a) Showthatif Vet=7,thenQrt=T1.

(b) Showthatif VEt+#7,thenQ K t+7.

(c) Showthatif VEt<t,thenQFrt<rt.

(d) Showthatif V=t# 7, thenQ Kt ¢r7.
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Inductive step: Let ¢ and ¢ be quantifier-free sentences. Assume the following:
(@ IfN =@, thenQt o.
(b) IfN E -¢, then Q  —¢.
(© IfN E ¢, thenQ + ¢
(d) N E -y, then Q + —1.
Let § € {p, ¢} and i € {1, ~}. Show the following:
- INE@®— ), thenQ+ (§ — ¥),
- IfNE-© - ), thenQF (@ — ).
*3, Show that for all natural numbers n, @ + $n = Sn.
4. Show that there is a formula ¢(x,y) such that for all m,n € N, m|n if and only if
Q + o(m, n).
5. Prove Proposition 6.2.4(2).
6. Prove Proposition 6.2.4(3).
7. Let ¢(x) be an £-formula. Let n € N. Suppose that for all k < n + 1, Q  ¢(k). Show
that Q F (Vx < n + 1)o(x).
8. ShowthatQ+m+n=n+m,forallm,n e N.
9. ShowthatQ+n<n+1 forallneN.
10. Let ¢(x) be an £-formula. Show that if Q  ¢(4), then Q F (3x < 44)p(x).
11. Let ¢(x) be an £-formula. Show thatif Q ﬂ(p(i), then Q + —=(Vx < Z)go(x).

6.3 Representable relations and functions

Again, let £ = {<,0,S, +,%,E, =} be the language for elementary number theory and
let Q be the basic axioms of number theory. In this section, we present a concept called
representability, which shows that recursive functions and relations can be represented
by formulas that can be deduced from the Q-axioms. In Section 6.2, we have already
shown that the relation < and the operations + and x, when applied to specific natural
numbers, can be interpreted as £-sentences that are deducible from Q. In particular
Lemma 6.2.7 shows that if m < n, then Q - m < n, where m < n is an atomic sentence.
Moreover, Propositions 5.3.23, 5.3.7, and 5.3.9 show that <, +, and x are all recursive. In
this section, we will show that these results can be extended to include all recursive
relations and functions.

We will use the notation 6(x;, X, . . ., X;) to indicate that the free variables in the wif
0 are among the distinct variables xq, Xy, . .., X;,. Moreover, the notation 6(ny, n,, ..., ny)
will be used to denote the result of substituting the free variables in 6 with the corre-
sponding terms 7, 7y, .. ., where we let 7i; = $™0 fori = 1,..., k, that is, we let

- — - X
0y, ny,..., M) = 9;15’;

Similarly, for a term 7, the notation 7(xy, Xy, . .., X;) will be used to indicate that the vari-
ables which appear in 7 are among the distinct variables x;, X,, . . ., X;. We will also let
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T(ﬁl,ﬁz, vee ,ﬁk) =T "71(’

that is, T(ny, ny, . .., Ny ) is the result of replacing the variables xq, X, . .., X; in T with the
respective terms ny, n,, .. ., N, (see Exercise 11 on page 65).

Definition 6.3.1. A relation R ¢ N is representable if there exists an £-formula
©(Xy, Xy, ..., Xy) such that for all ny, ny, ...,y € N,

@) if(ng,ny,....,ng) € R, then Q + oy, ny, ..., Ny),

(2) if(ng,ny,...,ng) ¢ R, then Q + =Ny, ny, ..., Ny).

When (1) and (2) hold, we shall say that ¢ represents the relation R.

Lemma 6.2.7 shows that the formula x; < X, represents the relation <. Similarly,
Lemma 6.2.5 implies that the relation = is representable.

The representability concept bears resemblance to that of definability over /. How-
ever, definability over A/ involves truth in the structure . Representability, on the other
hand, involves deductions from the Q-axioms. Nevertheless, in our next lemma we es-
tablish a connection between representability and definability over N

Definition 6.3.2. Let ¢(xy, Xy, ...,X;) be an £-well-formed formula (£-wif) where all of
the free variables in ¢ are among Xy, X,, . . ., Xx. We say that ¢ is numeralwise determined
if for all natural numbers ny, n, ..., n,, we have either

QF o(ng,n,,...,n), or
P T 1) 63)
Qo ny, ..., Ny).

The following lemma shows that a relation is representable if the relation is defin-
able over A by means of a formula that is numeralwise determined. First observe that
if o(xq,...,Xg) is numeralwise determined and NV = ¢(ny, ..., ng), then it follows that
Q + o(ny,...,ny). Otherwise, Definition 6.3.2 would imply that Q@ + -¢(n,,...,n,) and
hence, N = =¢(ny,..., ) as N = Q.

Lemma 6.3.3. A formula ¢ represents a relation R if and only if ¢ is numeralwise deter-
mined and ¢ defines R over N.

Proof. Recall that (a) V' E Q. If ¢ represents R, then by Definition 6.3.1(1)(2) we see
that ¢ is numeralwise determined and, by the soundness theorem, ¢ defines R over .
Conversely, if (a) ¢ is numeralwise determined and (b) ¢ defines R over AV, then

(ng,ny,...,ng) e R=NEo(n,ny,...,n,) hyd),
= QF oMy, ny,...,n) by (a),(6.3), and (a).

Similarly, (ny, n,,...,n;) ¢ Rimplies Q - ~¢(ny, Ny, ..., Ny). SO ¢ represents R. O
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So if a formula ¢ is numeralwise determined, then ¢ identifies a representable re-

lation. Our next result shows how one can take advantage of Lemma 6.3.3 to build new
representable relations from existing ones. Recall that (¥Vx < y)¢ and (3x < y)p are the
abbreviated forms of Vx(x <y — @) and 3x(x < y A @), respectively.

Theorem 6.3.4. Let ¢ and i be L-wffs.

M
@
Q)

If ¢ is an atomic formula, then ¢ is numeralwise determined.
If o and Y are numeralwise determined, then so are ~¢ and ¢ — .
If ¢ is numeralwise determined, then so are (¥Vx < y)p and (3x < y)o.

Proof. Let ¢ and ¥ be wifs in the language L.

)]

)]
Q)

Let ¢ be the atomic formula ¢ < 7, where ¢ and 7 are both terms. Let ny, n, ..., ny be
natural numbers. Theorem 6.2.8 implies that either

QF t(ny, Ny, ..., Ng) < T(Ny, Ny,...,Ng), O

QF t(ny, Ny, ..., M) £ TNy, Ny, ..., ).
Similarly, if ¢ is the atomic formula ¢ = 7, then Theorem 6.2.8 implies that either

Qrtny,ny,...,m) =t(Ny,Ny,...,Ng), O
QF t(y, Ny, ..., M) #1(Ny, Ny, ..., T,).
See Exercise 4.
Let ¢(X,y,Xy,...,X;) be numeralwise determined. Let n,ny,n,,...,n, be natural

numbers and let §(x) denote the wif ¢(x,n,ny, Ny, ..., ny). If n = 0, then one can
show that

QF (Vx<0)@(x) and QF ~(3x < 0)p(x).
So let n > 0. We first show that either

QF (VX <np((x), or
QF (VX < n)p(x).

By Lemma 6.2.2, there are two cases two consider.

Case 1: For every m < n, we have Q  @(m). In this case, Lemma 6.2.3(1) implies that
Q F (Vx < n)p(x).

Case 2: For some m < n, we have Q ¥ ¢@(m). Since ¢ is numeralwise determined,
we conclude that Q + —~@(m). Lemma 6.2.3(1) now implies that Q + —(Vx < n)@(x).
Using Lemma 6.2.3(2), one can similarly prove that (3x < y)¢ is also numeralwise
determined. O
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Theorem 6.3.4 is a useful tool for showing that many relations are representable.
Let ¢(v) be the formula

S0 < v A (VX <V)(YY < V)(X Xy # V).
Theorem 6.3.4 implies that ¢(v) is numeralwise determined. Since ¢(v) defines the set
of primes in NV, Lemma 6.3.3 shows that the set of primes is representable.
Definition 6.3.5. A function f: N¥ - Nis said to be functionally representable if there
is an £-formula ¢(xy, Xy, . . ., Xg, v) such that for all ny, ny, ..., n, € N,

QF YV, ny,...,N,v) o v=f(n,n,,...,ng)). (6.4)

When (6.4) holds, we will say that ¢ functionally represents f.
Remark 6.3.6. Let f satisfy (6.4). Thus,

QW =f(n,ny,...,n) — @y, Ny,..., M, V), (6.5)
Q FW(p(My, Ay, ... My, V) — V= (N, Ny, ..., ). (6.6)

The above (6.5) implies that
Qro(ny,ny,. .. )ﬁk»m))
and therefore Q  Jve(ny, ny, ..., N, v). Thus, (6.5) and (6.6) imply that
Q+ Ave(ny, ny, ..., 0, V),

where 3! is the uniqueness quantifier (see page 22).

The substitution property of equality asserts that if two quantities are equal, then
one can replace one with the other. Theorem 3.3.54 shows that this substitution property
is formally deducible. Thus, Lemma 6.2.4(1) and Theorem 3.3.54 imply that

Qrv(m+nzvev=m+n)

for all m,n € N. Let ¢(xq, Xy, v) be the £-formula x; + x, =v. Thus, the particular formula
©(Xy, X5, V) is an equation and functionally represents +, that is, it represents the func-
tion f: N* — N defined by f(x;,X,) = X; + X,. Furthermore, Lemma 6.2.4 and Exercise 3
on page 211 imply that the three equational formulas x; x x, = v, Ex;X, = v, and §x; = v
functionally represent the operations x, E, and S, respectively. These four examples mo-
tivate a generalization. Again, 7(xq, Xy, . . ., X;) denotes a term whose variables, if any, are
among Xy, Xy, . . . , Xy
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Lemma 6.3.7. Let (X, Xy, ..., Xy) be an L-term and define f;: N - N by
fr(ny,ny, ..., ng) = the unique n such that Q + (t(ny, Ny, ..., Ny) = N).

Then the equational formula T(xq, X, . .., X) = v functionally represents f;.

Proof. Letny,ny,...,n, € N.Lemma 6.2.6 implies that there exists a unique n € N such
that Q + 7(ny, Ny, ..., n,) = n. Thus, by definition of f;, n = f;(ny, ny, ..., ny). Therefore,
QF1(ny,ny,...,ny) =f.(ng, Ny, ..., n), and this implies that

Q+W(t(ny, Ny, ..., M) =V o v=f(ng,ny, ..., n)).

Hence, the equation 7(xy, Xy, ..., X) = v functionally represents f. O

Corollary 6.3.8. Let f:N* — N and let T be a term so that for all ny,n,, ..., n,n € N,
funy,...,m)=n iff NeEt,n,....n) =n (6.7)

Then the equational formula 7(xy, X, . . ., X;) = v functionally represents f.

Proof. For all ny,n,,...,n;,n e N, Theorems 6.2.8 and 4.1.5 imply that
N Et(ng,ny,....,n)=n iff Qrt(ng,ny,....,ng) =n.
Thus, from (6.7), we conclude that
f(ng,ny,...,n) = the unique n such that Q + (7(ny, Ny, ..., Ng) =N).

So, by Lemma 6.3.7, f = f; and 7(xy, Xy, ..., X;) = v functionally represents f. O

We now illustrate how to apply Corollary 6.3.8. Let f:IN* — N and 7 be defined by
FO,X) =S0q) xx, and  7(xp, X,) = Sxq X Xy.

Since f and 7 satisfy condition (6.7) of Corollary 6.3.8, we conclude that the formula
(x4, X,) = v functionally represents f. For a second example, let f: N?> — N be defined
by f(x4,X,) = 0 and let 7 = 0. Clearly, f and 7 satisfy condition (6.7). Therefore, by Corol-
lary 6.3.8, the equational formula 0 = v functionally represents f.

Corollary 6.3.9. The initial and constant functions are functionally representable.

Proof. Corollary 6.3.8 implies the following:

1. The zero function f :NK - N, as defined by f (X4, ...,Xx) = 0, is functionally repre-
sented by the equational formula 0 = v.

2. Form e N, the constant function ™f:N¥ — N, defined by "f(xy,...,X;) = m, is
functionally represented by the equational formula m = v.

3. The successor function S(x) is represented by the equational formula Sx = v.
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4. For all natural numbers 1 < i < k, the projection function Iik :NK — N, defined by
Il-k (X4, .. .»Xx) = X;, is functionally represented by the formula x; = v. O

Corollary 6.3.8 therefore implies that many functions are represented by an equa-
tional formula. However, this is not true for all representable functions.
There is another natural notion that concerns the representability of a function.

Definition 6.3.10. A function f: N — N is said to be graph representable if the graph
of f

Gr = {{ny,ny, ...,y ) < f(ng, ny, ..., y) = n}

is representable as a relation, that is, there is a formula ¢(x;, . .., X, X) such that for all
ng,Ny,...,Ng, N €N,

@ iff(ng,ny,...,n) =nthen Q + @y, Ny, ..., N, N),

(2) iff(ng,ny,....,ng) # n,then Q + ~@(ny, Ny, ..., N, N).

It turns out that a function is functionally representable if and only if the function
is graph representable. However, the proof of this equivalence is a bit subtle. The next
lemma will be used to prove Theorem 6.3.12 below, which establishes this equivalence.

Lemma 6.3.11. Letf: N - N and let ny, Ny, ..., N € N. Let 9(xq, ..., Xy, X) be such that
(1) and (2) of Definition 6.3.10 hold for alln € N. If f(ny, n,, ..., ng) = n, then

Q = (D(ﬁl,ﬁz, cee ’ﬁk’ ﬁ) AN (Vy < ﬁ)-@(ﬁl, ﬁz, cee ,ﬁk,y). (68)

Proof. Let ny,ny,...,n, € N and f be as stated and let f(ny,ny,...,n;) = n. Therefore,
Q + ¢(ny,ny,..., N, n) by Definition 6.3.10(1). Let m < n. Thus, f(ny, ny,...,n,) # m.
Definition 6.3.10(2) implies that Q + —¢(ny, ny, ..., N, m). Lemma 6.2.3 now implies that
Q+ (Vy <n)-(ny,ny, ..., N, y). Hence, (6.8) holds. O

Theorem 6.3.12. Let f: N — N. Then f is functionally representable if and only if f is
graph representable.

Proof. Letf: NK 5 N.

(=). Assume that f is functionally representable. By Definition 6.3.5, there exists an
L-formula ¢(xq, ..., X, V) such that for all ny, ny, ..., n, € N,

Q+ (o, ny, ..., N, V) © v=Ff(ng,ny, ..., n)).
By Logical axiom 3.3.17(2), we conclude that

Q [ (p(ﬁl,ﬁz, N ,ﬁk,ﬁ) A ﬁif(nl, n.2, e ,nk) (69)
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for all ny,ny,...,n,n € N. Lemma 6.2.5 and (6.9) now easily imply (1) and (2) of Defini-
tion 6.3.10. Therefore, f is graph representable.

(). Assume that f is graph representable. Let ¢(xy, ..., Xk, X) be a formula that sat-
isfies (1) and (2) of Definition 6.3.10 for all ny, n,, ..., ng, n € N. We need to find a formula
0(Xy, ..., Xy, v) such that for all n, ny, ..., n, € N,

Q FW(0(My, My, ..., Ty, V) < V=f(Ng, Ny, .., Ny)).

Letng,ny,...,n, € N be arbitrary and let ¢(v) denote the £-wif ¢(n;, 1y, ... ., 1y, v). Now
consider the formula

(V) A (Vy <v)=0(y),
which appears in (6.8) of Lemma 6.3.11 (where v replaces n). We will now show that
Q FYV((@W) A (VY <v)=@Y)) & v=Ff(ng,ny, ..., M) (6.10)

Let f(ny,ny,...,n,) = n. Since n and f(ny, ny, ..., n;) are exactly the same term, we can
replace f(ny, ny, ..., ng) in (6.10) with 7. By Theorem 3.3.29 and the biconditional law, it
is now enough to show that

Q+ (W) A (Vy <v)=(y)) > v=T, (6.11)
Qrv=n— (BV) A (Vy <v)=d()). (6.12)

To establish (6.11), Theorem 3.3.33 implies that we just need to prove that
QU{PW) A (VY <v)=pW} FVv=T. (6.13)
To do this, we will first show that

{PO) A (Vy <v)=pW)} HV &7, (6.14)
7

Qu
QU{BW) A (VY <v)=p()} + 1 £ . (6.15)

Recall that (Vy < v)-@(y) is the abbreviated form of Vy(y < v — -9(y)). To verify (6.14),
we shall use Corollary 3.3.37. Let

T=Qu{pV) A (Yy <v)~p(y),v < n}.
We will show that I' is inconsistent. By Lemma 6.3.11, we have

QF (Yy <n)-o(y).
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Therefore, T + (Vy <n)-@(y). Since v<nisinT, we conclude that (a) T + ~@(v). However,
as @(v) isin T, we also have I' - @(v). This together with (a) shows that I is inconsistent.
Therefore, (6.14) holds by Corollary 3.3.37.

We now prove (6.15). By Lemma 6.3.11, we have (v) Q + ¢(n). Let

I =QU{PW) A (Vy < v)=@(y),n < v}

SoT™* + =@(n) and I'* is inconsistent by (¥). Hence, (6.15) is confirmed. Axiom (A5), to-
gether with (6.14) and (6.15), establishes (6.13), that is,

QU{P(W) A (VY <v)=pW)} Fv=T.
To prove (6.12), we only need to show that
QuU{v=n} kW) A Yy < V)=o)
Lemma 6.3.11 implies that Q + @(n) A (Vy < n)-9(y). Hence, by Exercise 7 on page 135,
Qu{v=n}+ o)A (Yy < v)-d(y). Therefore, f is functionally representable. O

By Theorem 6.3.12, we can now say that a function f is representable to mean that f is
functionally representable and/or graph representable. The next theorem summarizes
some of the observations made in this section.

Theorem 6.3.13. The relations < and = and the functions +, x, E, and S defined on the
natural numbers are all representable.

We end this section by proving that all representable relations give rise to repre-
sentable functions.

Theorem 6.3.14. Let R ¢ N¥ be a relation. Then R is representable if and only if its char-
acteristic function Cy is representable.

Proof. Let R < N* be a relation.

(=). Assume the relation R is representable. By Definition 6.3.1, let ¢(xy,...,Xy)
represent R. Thus, (a) ¢ is numeralwise determined and (v) ¢ defines R over N/, by
Lemma 6.3.3. We will show that Cp is graph representable. Let ¢ be the £-wiff

(OO X)) AVE=T)V (20X, ..., X)) AV =0). (6.16)

Clearly, by (), the formula ¥ defines the graph of C, over A. Moreover, by (4), ¥ is
numeralwise determined (see Exercises 1 and 1). Therefore, by Lemma 6.3.3, C is graph
representable.

(). Assume Cy is representable. So let 0(x;, . .., X, v) be a formula that verifies that
Cy is graph representable. The formula 8(x;, . .., X, 1) thus represents R. O
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6.3.1 Recursive relations and functions are representable

We have shown that the initial functions are representative (see Corollary 6.3.9). So,
to prove that every recursive function is representable, we need to prove that the set
of all representable functions is closed under composition, total search, and primitive
recursion.

Theorem 6.3.15. The composition of representable functions is representable.

Proof. Let gj,...,g; be functionally representable functions from N¥ to N and let
f:N = N be functionally representable. We will show that the composition

f(gl(X17' )Xk))~)g'](X1,. ’Xk))

is functionally representable. Let 6;(Xy, ..., Xy, V1), ..., 0;(Xy, ..., Xy, v;) functionally rep-
resent gy, ... gj, respectively. Thus, for each i, where 1 < i < j, we have

Q+wi(0;(ny, ..., My, v) o v =gi(ny,...,ny)), forallng,...,n € N. (6.17)
Also let (xy, ..., x;, v) functionally represent f, that is,

QFW((ny,...,n,v) o v=f(n,...,n;)), forallny,...,n; € N. (6.18)

Remark 6.3.6 shows that (6.17) implies, for each i, that Q + 3!v;6;(ny, ny, . . ., Ny, v;), that is,
there is exactly one such v;, namely, g;(n,, . .., ny). Now let 9(xy, . .., Xy, v) be the formula

vy (0106, - Xio Vi) A A (X, - X6 V) APV, L,V V).

Since (6.17) holds for each i, where 1 < i < j, and (6.18) holds, it follows that each of the
following successive biconditionals are deducible from Q:

oy, ..., n,V)
© vy W01y, .M v) A e A G TG V) APV, YY)
© vy AWy =gy, m) A AV =GNy, y) APV, VD))
o Pgr(ng, ..., 8 (g, .o ), V)

- vif(gl(nl,...,nk),...,g}-(nl,...,nk)).

Therefore,

QFW(e(y, ..., V) & v=F(gi(ng, ..y, 8 (g, .. ).

Hence, the composition is functionally representable. O
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Theorems 6.3.15 and 6.3.14 imply that representable relations are also closed under
composition with representable functions.

Theorem 6.3.16. Let gy,...,g; be representable functions from N¥toNandletR c N be
representable. Then the relation S € N defined by

SO X, X)) U R(§106, -, X5, -5 &K+ X))

is representable.

Corollary 6.3.9 confirms that the projection functions are representable. Therefore,
by Theorem 6.3.15, one can compose a representable function with a projection function
and thereby obtain a representable function. Theorems 6.3.15 and 6.3.16 assume that the
functions gj,..., g; have the same arity. However, the projection functions can be used
to circumvent this apparent rigidity. By applying compositions with various projection
functions, one can apply Theorems 6.3.15 and 6.3.16 when the functions g, ..., g have
different arity. For example, let f:IN* — N and let g;: N> — N and g,: N — N. Then the
function

h(a’ b) :f(gl(a> b)’gZ(b))

can be obtained by a composition with a projection function, namely,

h(a,b) = f(g1(a,b), &,(I*(a, b))).

We have now shown that the set of representable functions contains all of the initial
functions and is also closed under composition. The next theorem shows that the set of
representable functions is closed under the total search operation (see Definition 5.3.5).
Upon completing its proof, we will be closer to showing that all recursive functions are
representable. To complete this task, we will need to show that the set of representable
functions is closed under primitive recursion.

Theorem 6.3.17. Let g: NK*1 5 N be representable. Suppose that for all X € INX, there is
ay € N such that g(%,y) = 0. Then the function h: N* — N defined by

h(x) = uy(g(x,y) = 0)

is representable.

Proof. We will show that h is graph representable. Let ¥(X,y, z) affirm that g is graph
representable. Since

h(X) = the least y such that g(X,y) = 0,

we see that
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h@) =y iff g&y) =0A(W<y)gXv) +0. (6.19)
Now let (X, y) be the £-wff
(X, y,0) A (Vv < y)-1(X, v, 0).

This wif 6(X, y) formalizes the right hand side of (6.19) and thus defines the graph of
h over V. Since o is representable, Theorem 6.3.4 implies that 6(X,y) is numeralwise
determined. Therefore, the graph of h is representable by Lemma 6.3.3. O

Corollary 6.3.18. LetR ¢ N pe a representable relation. Suppose that for all X € Nk
thereis ay € N such that R(X,y). Then the function f: N — N defined by

f(X) = the least y € N such that R(X,y) (6.20)

is representable. Moreover;, R(X, (X)) for all X € NK,

Proof. LetR < N“!bea representable relation. Let R = N**1\ R. By Exercise 2 and
Theorem 6.3.14, the characteristic function Cy is representable. Since for all X e N¥
there is a y € N such that R(X,y), the function f: NK — N defined by (6.20) satisfies
f(X) = uy(Cx(X,y) = 0). Thus, f is representable by Theorem 6.3.17. In addition, R(X, f (X))
for all X € NX. O

Recall that prime numbers and exponents are very useful for coding finite se-
quences of natural numbers. In Section 5.3, we showed how to encode any finite se-
quence (X, Xy, . . . , Xy of natural numbers by a single natural number which is denoted
by [Xg, X1, ..., Xx] (see (5.9) on page 190). Any such natural number is called a sequence
number. To show that representable functions are closed under primitive recursion,
we will show that there exists a representable function that can decode any sequence
number. We first formally repeat an observation that was made earlier.

Proposition 6.3.19. The set of prime numbers is a representable set.

Proof. Let (v) be the formula
S0 <v A (VX <V)(VY V(X Xy #V). (6.21)

Theorem 6.3.4 implies that 77(v) is numeralwise determined. Since 7(v) defines the set
of primes in \, Lemma 6.3.3 shows that the set of primes is representable. O

Two prime numbers x and y are said to be adjacent primes when x < y and no other
prime number is strictly between x and y.

Proposition 6.3.20. Let R = {(x,y) € N? : x and y are adjacent primes}. Then R is repre-
sentable.
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Proof. Let m(v) be the formula (6.21) in the above proof that represents the set of prime
numbers. Let a(x, y) be the formula

TX) ATY) A (VZ<Y)((X<zZAZ<Y) - ~71(2)).

Clearly, a(x,y) defines the relation R over N. Proposition 6.3.19, Theorem 6.3.4, and
Lemma 6.3.3 imply that a(x, y) represents R. O

For each x € N, let p, be the (x + 1)-st prime number and let g: N — N be defined
by g(x) = p,. In the proof of Proposition 5.3.36, the function g is defined by primitive
recursion. Since we have not yet shown that such functions are representable, we will
show that g is representable by proving that its graph is representable.

Let k € N and consider the natural number z which is a product of adjacent primes,

Z=p8-pi~p§'p§'-~p;'§=2°'31'52~73~114~-pﬁ,

where each succeeding exponent is the successor of the previous exponent. So, 2 { z.
Let p be a prime number such that p*|z and p* } z. What is p? Yes,p = p; = 7. In
fact, by the definition of z, we see that p; = 7 if and only if 7|z and 7* } z. Note that
20.3'.52.7% <71.72. 73 < 7% One can show in general that

z=2"3 .52 7.t pk < (6.22)

Also, each of the above exponents on the left hand side of < are strictly less than z. These
observations will be employed in the obscure proof of our next proposition.

Proposition 6.3.21. Let function g:IN — N defined by g(x) = p, be representable.

Proof. We show that g is graph representable. Consider the representable relations:
1. II(p): “pisaprime,”

2. A(q,r): “q and r are adjacent primes,”

3. E(qi, z,r*: “qi | z if and only if ril 2>

4. B, z,p"Y:“p*|zand p**t § 27

The divisibility relation m | n is representable by Exercise 1. Also, items 3 and 4 are rep-
resentable by Theorems 6.3.13 and 6.3.16. It now follows that p, = p if and only if

H(P) A (EZ < pxz)(z + ZN (Vq < p)(vr < p)(A(q, r) - (Vl < Z)E(qi,Z, ri+1))
AB(P,z,p™)).

The conjunction above B(p*, z, p**) ensures that z has the form in (6.22), at least up to Dy-

Thus, g is graph representable. So g is representable by Theorem 6.3.12. O
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Now, let s be a natural number that codes a sequence, that is, s = [ay, a4, Gy, . . ., Qi ].
For i < k, we let (s); = a;. Therefore, the function (s, i) — (s); acts as a “decoding” func-
tion. Proposition 5.3.38 shows this decoding function is primitive recursive. Our next
proposition shows that this function is representable.

Proposition 6.3.22. The function (s, i) — (s); is functionally representable.

Proof. Let R be the representable relation defined by
Rs,iy) iff s=0vp/”ts.

Clearly, for all natural numbers s and i, there exists a y such that R(s, 1, y). Therefore,
(8); = wyR(s,1,y) and is representable by Corollary 6.3.18. O

Note that (s); is defined for all 5,i € IN, even when s does not code a sequence.

Using Proposition 6.3.22, we can now prove that a function defined by primitive
recursion, using representable functions, is itself representable. The proof is similar to
item (2) in the proof of Theorem 5.4.10.

Theorem 6.3.23. Let f: N — N and g: N**? — N be representable. Then the function
hNF N defined by the primitive recursion

(@ h(x,0)=f(X),

(b) h(X,n+1)=g(hx,n),X,n), foralln e N,

is also representable.

Proof. Letf:N¥ — N and g: N*2 — N be graph representable. We will show that the
same holds for h. Consider the relation R ¢ N**? defined by

RX,n,s) iff (fX)=(s)y and (Vi< n)(g((s)yX,i)=(8)i1))-

Proposition 6.3.22, Lemma 6.3.3, Theorem 6.3.4, and Theorem 6.3.16 imply that R is rep-
resentable. Clearly, for all X € Nfandn ¢ N, there is an s € IN such that R(X, n, s).
Corollary 6.3.18 thus implies that there is a representable function ¢: N1 — N such
that R(X, n, £(X, n)), for every X € N and n € N. Because h(¥,n) = (£(X, n)), for each
% ¢ N and n € N, Theorem 6.3.15 implies that h is representable. O

Representability Theorem 6.3.24. Every recursive function and recursive relation is rep-
resentable.

Proof. The initial functions are representable by Corollary 6.3.9. Furthermore, the set
of representable functions is closed under composition, total search, and primitive re-
cursion by Theorems 6.3.16, 6.3.17, and 6.3.23. Thus, as discussed on page 175, the set of
representable functions contains all of the recursive functions. Since a recursive rela-
tion is one whose characteristic function is recursive, we also see that every recursive
relation is representable. O
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Lemma 6.3.3 implies that every representable relation is definable over N. Thus,

the following corollary follows from Theorem 6.3.24.

Corollary 6.3.25. Every recursive relation is definable over N.

The converse of Theorem 6.3.24 also holds (see Theorem 6.4.26).

Exercises 6.2.

*1.
*2.
3.

*4,

*5.

*6.

*7.

10.

11.
12.
13.

Let R = {{m,n) : m|n}. Show that R, the divisibility relation, is representable.
Let R ¢ NX. Show that R is representable if and only if N¥\Ris representable.
Let ~ be an equivalence relation on IN. Suppose that ~ is representable. Show that
each equivalence class is representable.
Let ¢ and ¥ be numeralwise determined. Show that each of the following formulas
is also numeralwise determined:
@ -9,
b) o -,
© @AY,
(d ov.
Let k € IN. Show that each formula listed below is numeralwise determined:
@ v=k,
b) v<k,
(© k<v.
Let R ¢ N¥ be representable. Show that there is an £-formula O(Xy, X, ... Xg) such
that for all ny, n,,...,n, € N,
@ (n,ny,...,n;) e Rifand only if Q + @(ny, ny, ..., M),
2 (ny,ny,...,n,) ¢ Rifand only if Q + —@(ny, ny, ..., Ny).
Let @(vq, vy,...,Vy) represent a relation R N*. Show that (ng,ny,...,n;) € Rif
and only if N = @[ny, ny, ..., niJ, for all (ny,ny, ..., ny) € NX.
LetR < Nfand S ¢ N¥ be representable relations. Show that RnSand RuU S are
representable.
Let 7(x) be a term and let g: IN — IN be representable. Let h: N — N be defined by
h(x) = g(TN (x)). Show that h is representable.
LetR c Nfbea representable relation and let f: NK - N and g: NK - N be rep-
resentable functions. Show that the function h: N¥ — N is representable, where
hGE) = {f(x), ifX e R,
gx), ifx¢R
Prove Corollary 6.3.25.
Let R ¢ NX be decidable. Show that R is representable.
Show that if ¢ is numeralwise determined, then so are (vx < y)@ and (3x < y)o.
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6.4 Arithmetization of the formal language

The next important step which will allow us to address question (Q2) on page 205 is to
take our formal language for number theory and define an effective correspondence
between the formulas of this language and a recursive set of natural numbers. Such a
correspondence is called an arithmetization, or Godel numbering, of the language. Using
our primitive recursive coding of sequences (via powers of primes) developed in Sec-
tion 5.3, we can assign a unique natural number to each formula. We can then ask if the
set of natural numbers that code all the valid formulas is decidable.

Again, let £ = {<, 0,8, +, %, E, =}. We will assign natural numbers, called Godel num-
bers, to all the terms and wffs of £. We denote this assignment function by #. Thus, for
every wif ¢, #(¢) will be the Godel number of ¢. Recall that the operation [x, Xy, ..., Xk]
denotes a sequence number (see Definition 5.3.39) which encodes the finite sequence of
natural numbers (xg, Xy, X5, . . ., X ) by a single natural number. Let Sq denote the set of
sequence numbers.

Definition 6.4.1. Let V = {v,v,,Vs,...} be the set of all the variables of £. Let 7 be the
set of all the variables and the constant symbol in £. Define #: 7 — N by

#() =

{[21’], ifv =,
(6.23)

[1, ifv=0.

Let V¥ = {#(v)) : v; € V}. Since m € V* if and only if m = [2i] for an i such that
0 < i < m, it follows that V* is primitive recursive. Theorem 1.1.27 implies that we can
extend the function # to all of the terms of £ as in our next definition.

Definition 6.4.2. Let T be the set of terms of £. Define the function #: T — N by

#(St) = [3,#(0)],
#(t+7) = [5#(t), #(0)],
#(t x T) = [7,#(t), #(0)),

#(Etr) = [9,#(t), #(7)].

Let T* = {#(t) : t is a term} be the set consisting of all the Gédel numbers of £-terms.
Now let C be the characteristic function of T# and let m € IN. How can we evaluate C(m)?
Ifm = [1] or m = #(v;), then C(m) = 1.If mis a sequence number oflength 2 and (m), = 3,
then C(m) = C((m),). If m is a sequence number of length 3 and either (m), = 5,7, or 9,
then C(m) = C((m),) - C((m),). If none of the previous conditions hold, then C(m) = 0.
Note that (m),, (m)y, (m), are all strictly less than m. Thus, we can evaluate C(m) using
the values C(0), C(1),...,C(m —-1) and m.

We now expand the function # in Definition 6.4.2 to include the atomic formulas.
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Definition 6.4.3. Let A be the set of all the atomic formulas of £ and define the function
#:A — Nby

#(t < 1) = [10,#(1), #(1)],
#(t=1) = [13,#(t), #(1)].

Let A" = {#(¢) : ¢isan atomic formula} and m € IN. How can we evaluate C(m),
when C is the characteristic function of A*? If m is a sequence number of length 3 and
(m)q = 11 or (m), = 13, and (m), (m), € T* then C(m) = 1. Otherwise, C(m) = 0.

Theorem 1.1.27 again implies that the function # given in Definition 6.4.3 can be ex-
tended, as in the next definition, to all the wifs of the language L.

Definition 6.4.4. Let W be the set of wifs of £. Define the function #: W — N by

#(-y) = [15,#(¥)],
#Y — ) = [17,#y), #(9)],
#(Vvi) = [19,#(v), #(¥)].

Let W# = {#(p) : pis awif} and m € N. How can we evaluate C(m), when C is the
characteristic function of W#? If m € A* then C(m) = 1. If mis a sequence number of
length 2 and (m), = 15, then C(m) = C((m),). When m is a sequence number of length 3
and (m), = 17, then C(m) = C((m)) - C((m),). If m is a sequence number of length 3,
(m)y =19, and (m), = [2i], where i > 1, then C(m) = C((m),). If all of these conditions
fail to hold, then C(m) = 0.

The observations we made on the characteristic functions of 7%, A*, and W* are
formalized in the proof of our next result.

Proposition 6.4.5. The following sets of natural numbers are primitive recursive:
1. T*={#¢): tisan L-term};

2. A" = {#(9) : ¢ is an L-atomic formula};

3. W'={#0): ¢isan L-wff}.

Proof. We will be applying Proposition 5.3.46, by defining a course-of-values recursion.

Recall that if C:N — N and s = C(m) = [C(0),C(1),...,C(m - 1)], then (s); = C(i) for

i < m. Let Sq be the set of sequence numbers and let 1h be the length function.

1. LetC be the characteristic function of T*. We shall define a primitive recursive func-
tion g such that C(m) = g(C(m), m) for all m. Define g: N’ > N by

1, ifm=[1]orme V¥,

S , if m € Sq,lh(m) = 2, and (m), = 3,

g(s,m) = S, l < 5q, Ihm) (m)o
(s)(m)1 X (s)(m)z, if m € Sq, Ih(m) = 3, and (m), = 5,7, or 9,

0, otherwise.
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By letting s = C(m) = [C(0),C(1),...,C(m - 1)] for each m € N, we infer (see the
discussion after Definition 6.4.2) that

C(m) = g(C(m),m). (6.24)

One can formally prove (6.24) by induction on m. Since Sq and lh are primitive recur-
sive by Propositions 5.3.40 and 5.3.41, one can now easily confirm that the conditions
in the definition of g are all primitive recursive. Proposition 5.3.46 thus implies that
C is primitive recursive.

2. Let C be the characteristic function of A*. Then

cm) = {1, if m € Sq, Ih(m) = 3, (m), = 11 or 13, (m), € T*, and (m), € T*,
0, otherwise.
Since T* is primitive recursive and the conditions in the description of C are all
primitive recursive, we conclude that A" is primitive recursive.
3. Asin item 1, one can evaluate C(m), the characteristic function of W*, using the
values C(0), C(1),...,C(m —1) and m. See Exercise 4. O

When applying the function # to a term 7 or formula ¢, we may write #7 and #¢ to
denote, respectively, #(7) and #(¢). In particular, #7; = #(z}) and #¢} = #(¢}). We note
that Exercise 10 on page 16 implies that the function # is one-to-one.

Given a wif a, a term ¢, and a variable x, Definition 3.3.13 presents a recursive defi-
nition of the substitution operation a;. Given the Godel numbers of g, t, and x, can we
effectively get the Godel number of a;? The answer is yes.

First we address this question when a is a term 7. Consider the Gédel number #7)0,
where 7,t are terms and v; is a variable. How can we evaluate the natural number #T}"'
using the natural numbers #t, #v;, #7? Consider the following recursive attempt:

#t, if#7 = #v;,
3, #q;'], if #7 = [3, #q)], where ¢ is a term,

poi - | [5,#q,,#z,'], if #7 = [5,#q, #z], where ¢, z are terms,
[7,#q,,#z/'], if #7 = [7,#q, #z], where g, z are terms,
[9,#q,", #2]'], if #7 = [9,#q,#z], where g, z are terms,
#T, otherwise.

This attempt motivates our subsequent proof where, in the definition of g, the inputs
u, i, m correspond, respectively, to the above #t, #v;, #7.

Proposition 6.4.6. There is a primitive recursive function Sh':IN* — N such that for any
L-term t and variable v;, we have Sb' (#t, #v;, #7) = #T;) ' for all terms 7.
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Proof. Define g: N* — N by

u, ifm = #v,, ()

[(M)o> (3)(m)1]> ifm e Sq, (m)y =3,andlh(m) =2, (2

(s, 1im) = - [(m)o, (s)(m>1, (S)(m)2]> %fm € 8q, (m)y =5,andIh(m) =3, (3)
[(M)o» (s)(m)l, (s)(m)z], ifm e Sq, (m)y =7,andlh(m) =3, 4

[(m)o, (s)(m)l, (s)(m)z], ifm e Sq, (m); =9,andlh(m) =3, (5

L m, otherwise. (6)

Define h: N® — N by h(u,i,m) = g(ﬁ(u, i,m),u,i,m). Since g is primitive recursive, h is
primitive recursive by Proposition 5.3.46. Let t be a term and let v; be a variable.

Claim. For all terms t, h(#t, #v;, #7) = #z,".
Proof of claim. We prove that h(#t, #v;, #7) = #7,", by induction on terms 7.

Base step: If T = v;, then #7 = #v;. Thus, by (1) of the definition of g, we see that
h(#t, #v;, #T) = g(h(#L, #v;, #v;), #, #v;, #V;) = #2.
Ift= v, wherej # i, then #7 = #v;. Thus, by (6) of the definition of g,

h(#t, #v;, #v;) = g(h(#E, #vy, #)), #8 #v;, #;) = #v;.

If 7 = 0, then #7 = #0, and by (6) of the definition of g,
h(it, #v;, #0) = g(h(#t, #v;, #0), #t, #v;, #0) = #0.

Inductive step: Let T and 7 be arbitrary terms. Assume the induction hypothesis

V;

h(#t, #v;, #7) = #7,'  and  h(#t, #v;, #7) = #T,". (IH)

We must prove that the same holds for each of the terms S7, 7 + 7, T x 7, and E77. It is
important to note that, by the definition of h, we have

(h(#t, #v;, m)), = h(#t, #v;, k), whenever k < m. (6.25)

We now show that h(#t, #v;, #57) = #(87),'. By Definition 6.4.2, #St = [3, #7]. Also note
that (%) ([3, #7]); = #7. Thus,

h(#t, #v;, #87) = g(h(#t, #v;, [3, #7]), #t, #v;, [3, #7]) by definition of h,
= [3, (h(#t, #v;, [3,#1)),,] by () and (2) of the definition of g,
= [3, h(#t, #v;, #7)] by (6.25) as #7 < [3,#1],

= [3,#1)"] = #(S7)! by (IH) and Definition 6.4.2.
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Therefore, h(#t, #v;, #57) = #(S7),". The proofs for the terms 7 + 7, 7 x 7, and E77 are
similar (see Exercise 5). (Claim) O

Let Sb’ = h. Thus, Sb’ is as required. (Proposition) O]
Therefore, Sb' (#t, #v, #7) is the Godel number obtained when “t replaces v in 7.”

Corollary 6.4.7. There is a primitive recursive relation O ¢ IN* such that for every term T
and variable v;,

(#v;, #T) € O ifandonly if v;occurs inthe termt.

Proof. Clearly, (#v;,#7) € O if and only if Sb’ (#0, #v;, #7) # #. O

Now let Sh(#t, #v;, #a) denote the G6del number #atvf ,where a is a wif, v; isa variable,
and t is a term. Can we evaluate #atv" using only the natural numbers #t, #v;, and #a?
Consider the recursive attempt, which is modeled after Definition 3.3.13:

(11, #q,", #z,'],  if #a = [11, #q, #z], where g, z are terms,
[13,#q,", #z/'], if #a = [13,#q, #z], where ¢, z are terms,
v, . .
#a‘;" ] (15, #l,bf} .], . ?f #a = [15, #], where ¢ is a formula,
17, #Y,, #o,'], if#a = [17,#Y, #¢], where 1), ¢ are formulas,
[19, #v;, #,"],  if #a = [19, #v;, #1], where #v; # #v; and ¥ is a wif,

#a, otherwise.

The above “recursive attempt” is presented only to assist the reader in extending
the proof of Proposition 6.4.6 and thereby prove the following result (see Exercise 6).

Proposition 6.4.8. There is a primitive recursive function Sh: N> — N such that for any
L-term t and variable v;, we have Sb(#t, #v;, #a) = #a;' for all wifs a.

Sh(i#t, #v, #a) is the Godel number obtained when “t replaces vin a,” if vis free in a.

Corollary 6.4.9. There is a primitive recursive relation F < IN? such that for every term
or formula a and variable v;,

(#v;, #a) € F ifandonly if v; occurs free in a.
Proof. Define F by
(k,ay e F iff (aeT"andSb'(#0,k,a) #a) or (ae W"andSh(#0,k, a) # a).

Thus, F is primitive recursive and satisfies the required condition. O
Let S* = {#¢ : ¢ is an L-sentence}. We can now prove that S* is primitive recursive.

Proposition 6.4.10. The set S* of Gédel numbers of sentences is primitive recursive.
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Proof. Let S* be the set of Gédel numbers of sentences. Then
aeS" iff aew" and (Vb < a)(@ifb e V*, then (b,a) ¢ F).

Since W*, V¥, and F are primitive recursive, S* is primitive recursive. O

Recall that a term ¢ is substitutable for a variable x in a formula « if the resulting
substitution a; does not produce a captured variable. We will next show that, with re-
spect to Godel numbers, the substitutability relation is primitive recursive. This is done
by a course-of-values recursion (one should review Proposition 5.3.46).

As you may remember, Definition 3.3.15 recursively defines the notion of a term be-
ing substitutable for a variable in a formula (one should also review Definition 3.3.15).
This definition has multiple technical cases. The proof of our next proposition will there-
fore also have multiple technical cases.

To prepare for the proof, let us revisit the definition of substitutability via Godel
numbers. Let t be a term and let v; be a variable. Let K: N — {0, 1} be such that for any
wif a, K(#a) = 1if and only if “t is substitutable for v; in a.” For each wif a, K (#a) can be
defined recursively, as in Definition 3.3.15, by

1, if #a € A",
K(#Y), if #ta = [15, #y],
K#Y) x K(#), if #a = [17, #1, #0),
K@#a) = {1, if #a = [19, #v;, #y] and (#v;, #a) ¢ F, (6.26)
K#y), if #a = [19,#\)]-,#1/)], (#v;, #a) € F,
and (#vj,#t) ¢ 0,
0, otherwise.

Since K is defined recursively, one might reasonably infer that K is recursive, as defined
by Definition 5.3.6. In the proof of our next proposition, we will prove that K is, in fact,
primitive recursive. However, the proof is rather technical because it applies a “course-
of-values” argument.

Here is a summary of the proof: The above recursive definition of K will guide us
in defining a primitive recursive function g(s, x,y, m) where the variables x,y, m cor-
respond to the above #t, #v;, #a. Using g, we will apply a course-of-values recursion to
show that the notion of being substitutable can be interpreted, via the Godel numbering,
as being primitive recursive.

Proposition 6.4.11. Let Sbl be the 3-place relation on Godel numbers defined by
(#t, #v;, #a)y € Sbl ifandonly if tis substitutable for v; in a, (6.27)

whenever t is a term, v; is a variable, and a is a formula. Then the relation Sbl is primitive
recursive.
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Proof. Define the primitive recursive function g: N* — N by

1, it m e A", (6]
($)my,» if m € Sq, Ih(m) = 2, and (m), = 15, 2
($)gmy, % (8)my,» ifm e Sq,1h(m) = 3,and (m), =17,  (3)
gsxym=1 " if m € Sq, In(m) =3, (m), = 19, @)
and (y,m) ¢ F,
($)m),> if m € Sq, lh(m) = 3, (m), = 19, (5)
(y,m) € F,and ((m);,x) ¢ O,
0, otherwise. (6)

The cases in the definition of g are exclusive. Define h: N> — N
h(x,y,m) = g(h(x,y,m), Xy, m). (6.28)

Since g is primitive recursive, h is also primitive recursive by Proposition 5.3.46. Let
K:IN® - {0,1} be the characteristic function of Shl. Let t be a term and let v; be avariable.
By induction on a, we prove that for every formula q,

h(#t, #v;, #a) = K(#t, #v;, #a). (6.29)
Base step: Let a be an atomic formula. By Definition 3.3.15 and (1) of the definition of g,
we see that h(#t, #v;, #a) = K(#t, #v;, #a).
Inductive step: Let ¥ and ¢ be arbitrary wifs. Assume the induction hypothesis

R(#t, #v;, #1) = K(#t, #v;, #1),

(IH)
h(i#t, #v;, #9) = K(#t, #v;, #¢).

We must prove that the same holds for the wifs -9,  — ¢, and Vv;). Let us first con-
sider the formula ijl/). Thus, (¥) #(Vle/)) =[19, #v;, #1]. Thus, either (4), (5), or (6) in the
definition of g holds. Note that ([19, #v;, #1p]), = #1. Hence,

h(#t, #v;, #(9v;p)) = g(h(#t, #v;, #(9V;Y)), 8, #V;, #(YV;)) by (6.28)
= g(h(#t, #v;, #(VV;)), #8, #v;, 19, #v;, #Y]) by (v)
1, if (4) of the definition of g holds,
= 1 h(#t, #v;, #(YV;))y,  if (5) of the definition of g holds,
L0, if (6) of the definition of g holds
1, if (4) holds,
= 1 h(#t, #v;, #), if (5) holds, as #y < #(Vle/)),
0, if (6) holds
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1, if (4) holds,
= {1 K(#t, #v;, #1), if (5) holds, by (IH),
0, if (6) holds

= K(#t, #v;, #(Yv;1)),
where the last equality follows from (6.26). Hence,
h(#t, #v;, #(v\;jw)) = K(#t, #v;, #(ij)).

The completion of the induction proof for the two wffs -1 and (¢ — ¢) is an exercise.
Thus, (6.29) holds for all terms ¢, variables v;, and wifs a. Hence, for all x,y,m € N,

(x,y,m) € Sbl ifandonlyif xeT" ye V¥, meW?* andh(x,y,m) =1

Therefore, Shl is primitive recursive. O

Proposition 6.4.12. Define the 2-place relation Gen on the Godel numbers by Gen(#, #¢)
if and only if ¢ is a generalization of . Then Gen is primitive recursive.

Proof. Let K:IN? — {0,1} be such that K (#1, #¢) = 1if and only if Gen(#1, #¢), whenever
Y and ¢ are wifs. By applying Definition 3.3.12, the function K satisfies the following
recursive definition:

1, if #g = #1,
K@y, #9) = 1 K#Y, #B), if #9 = [19, #v;, #B] and #Y < #0,
0, otherwise,

for all wifs ¢ and ¢. Using the above recursive definition as a guide, one can now prove
that Gen is primitive recursive using a course-of-values recursion (see Exercise 8). [

6.4.1 The logical axioms revisited

Recall that the logical axioms are generalizations of the following, where x and y denote
any of the variables in V:

first-order tautologies;

vxa — af , where t is substitutable for x in a;

vx(a — B) — (¥xa — VxPB);

a — Vxa, where x does not occur free in a;

X=X

@ Gk W

x=y—-(a— a;), where a is an atomic formula.
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In this section, we will show that the set of Godel numbers of each of the sixlogical axiom
groups is primitive recursive. First we address tautologies.

The subformulas of a wff a are defined by the following recursion:

If a is atomic, then a is its only subformula.

If a is ), then the subformulas of a are a and the subformulas of ¥.

Ifais  — @, then the subformulas of a are a and the subformulas of ¥ and ¢.

If a is Vx1, then the subformulas of a are a and the subformulas of y.

B W N

Let a be a wff. It follows that if B is a subformula of a, then #§ < #a. Thus, as # is one-to-
one, the number of subformulas of a is less than or equal to #a.

It also follows from Exercise 1 on page 116 that every wif a is generated by the prime
subformulas of a (see Definition 3.3.2). Hence, to determine whether or not a wiff a is a
tautology, it is sufficient to assign truth values to every subformula of a such that the as-
signment agrees with the truth table assignments for negations and conditionals. More
specifically, let S be the set of all the subformulas of @ and let v: S — {T, F} be a truth as-
signment. Suppose that -1 and § — ¢ are subformulas of a. In order for v to agree with
the truth table assignments for negation and the conditional, we must have v(-y) = T if
and only if w(¥) = Fand v(§ — ¢) = T ifand only if v(8) = T implies v(¢) = T. Given any
such truth assignment v, v(a) determines the truth value of a. So if v(a) = T for every
such truth assignment, then a is a tautology. This conclusion depends only on the values
that these truth assignments give to the prime subformulas of a. Thus, having S contain
all the subformulas of a (or more) is a harmless overkill (see Theorem 2.2.11).

Since we are involved with number theory, we will now view a truth assignment
as a sequence number v of a finite sequence of 0’s and 1’s, where 0, 1 represent F, T,
respectively. For example, v = [1,0,1,0] will be understood to be a truth assignment,
where (v), = 1. Now let @ be a wif. Since #p < #a for every subformula § of a, we need
to use truth assignments v of length #a + 1 in order to evaluate the value of (v),,. Such
a truth assignment that always assigns the value of 1 satisfies an inequality:

#a + 1 times
— e

2 2 2 2 2 2 2#a+l
(LLL,...,1] = pj - Py Paq < Pia Pia"" Pia :p#(;m ).

Moreover, this truth assignment is larger than all other truth assignments v of length
#a + 1. These inequalities justify an upper bound used in the proof of our next result.
Let Taut = {#a € W" : a is a tautology}, the set of Godel numbers of tautologies.

Proposition 6.4.13. The set Taut is primitive recursive.
Proof. Using logical notation, let Ta(v) be the primitive recursive relation
v e SqA (Vi <lh()((v); <1)

A\ (Vl < 1h(\)))([15, l] < 1h(V) i ((V)[ls,i] =1le (V)l = 0))
A (VL] <IhW)([17,1,j] <Ih(V) = (V7,5 =1 < (V); =1 = (v); = D)).



234 — 6 Undecidability and incompleteness

Ta(v) asserts that v is a truth assignment that agrees with the truth table assignments for
the Godel numbers of the negations and conditionals in its domain. Thus, again using
logical notation, we have

#a e Taut iff #a € W* A (W < p2FD)((Taw) A (Th(v) = #a +1)) — (V) = 1).

a

Therefore, Taut is primitive recursive. O

Proposition 6.4.14. The set of Godel numbers of formulas of the form Vv;a — a‘t”', where
t is substitutable for v; in a, is primitive recursive.

Proof. If a wif ¢ has the form Vv;a — af", then #¢ = #(¥v;a — a'). Hence, by Defini-
tion 6.4.4 and Proposition 6.4.8, we have

#o = [17,#Vv;a, #a,'] = [17, [19, #v;, #a], Sh(#t, #v;, #a)].

It thus follows that #v;, #t, #a < #¢. By using logical notation and Proposition 6.4.11, we
therefore see that #¢ is the G6del number of a wif of the desired form if and only if

(v < #0)(3x < #p)(Ta < #p)(v € ViAxeT" haew?
A#Q = [17,[19,v,a], Sb(x, v, @)] A (x,v,a) € Sbl).

Therefore, the set of such Godel numbers is primitive recursive. O

Proposition 6.4.15. The set of Godel numbers of formulas of the form
WYi(a — B) — (Yv;a — Yv,f)

is primitive recursive.
Proof. 1f a wif ¢ has the form Vv;(a — B) — (Vv;a — Vv;$), then
#o = #(Vv(a — B) — (Yva — Yvp)).
Hence, by Definition 6.4.4, we have
#o = [17,#Vv;(a — B), #(¥v;a — Yv;B)], (6.30)
where
(@) #vv;(a — B) = [19, #v;, [17, #a, #p]],

(b) #(Vv;a — Vv;B) = [17,#Vv;a, #Vv;B] = [17, [19, #v;, #a], [19, #v;, #B]].

After substituting (a) and (b) into (6.30), it follows that the set of Gédel numbers #¢ sat-
isfying (6.30) is primitive recursive, as in the proof of Proposition 6.4.14. O
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Proposition 6.4.16. The set of Godel numbers of formulas of the form a — Vv;a, where
v; does not occur free in a, is primitive recursive.

Proof. The proof is similar to that of Proposition 6.4.14, using the primitive recursive
relation F in Corollary 6.4.9. O

Proposition 6.4.17. The set of Godel numbers of formulas of the form v; = v; is primitive
recursive.

Proof. By Definition 6.4.3, #¢ is the G6del number of a wif of the form v; = v; if and only
if Qv < #9)(AV' < #)(v € V¥ AV e V* A#o = [13,v,V']). Therefore, the set of Godel
numbers of formulas of this form is primitive recursive. O

Proposition 6.4.18. The set of Godel numbers of formulas of the form

vi=v; > (a > @),

where a is an atomic formula, is primitive recursive.

Proof. The proof is similar to that of Proposition 6.4.14, using the primitive recursive
function Sb in Corollary 6.4.8. O

Definition 6.4.19. Let Q* be the set of Godel numbers of all the sentences in Q and let
MP be the relation defined by

MP = {(#(p — V), #0,#) : ¢ — 1, ¢, ) are wifs}.

Let LA/ be the set of Godel numbers of the wifs in logical axiom group i, where i =
1,2,...,6. For each such i, let

LA; = LA} U {#9¢ : (F#a < #9)(Gen(a, ) A a € LA])}.

Now let LA = J;.; LA;.

Therefore, the set LA consists of the Godel numbers of all the logical axioms and
their generalizations.

Proposition 6.4.20. The sets LA, Q* and the relation MP are primitive recursive.

Proof. Propositions 6.4.13-6.4.18 imply, respectively, that LA] is primitive recursive for
eachi=1,2,...,6.Proposition 6.4.12 implies that the relation Gen is primitive recursive.
Thus, for each such i, LA; is primitive recursive. Since LA = | J;_;.¢ LA;, Corollary 5.3.22(2)
implies that LA is primitive recursive. Because Q is a finite set, Proposition 5.3.24 implies
that Q" is primitive recursive. Finally, since

(#(p - ¥), #o,#P) € MP iff #¢ € W* and #1 ¢ W* and #(¢ — ¥) = [17, #o, #1],

it follows that MP is primitive recursive. O
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LetI'be aset of £-wffs and let A be the set oflogical axioms and their generalizations.
Recalling Definition 3.3.20, a deduction is a sequence of formulas (qa;, ..., a,) such that
for all1 < k < n, either
(@ apisinTUA, or
(b) ay is obtained by modus ponens from two earlier wifs in the sequence, that is, for

some i and j less than k, the wifs q; and a; = (a; — @) are in the sequence.

We now rephrase this definition in terms of sequence numbers consisting of Gédel num-
bers. We then show that the set of such sequence numbers is primitive recursive.

Definition 6.4.21. LetT be a set of £-wffs. Then:
(1) Dr={[#ay,...,#a,] : n>1and {(ay,...,a,) is a deduction from I'};
(2) Pr={(s,m):Dr(s) and (Sins)-1 = m}.

In Definition 6.4.21, Dy(s) asserts that “s codes a deduction from I',” and Pp(s,m)
asserts that “s codes a deduction (proof) of the formula with Godel number m.” For any
set I' of wifs, we will let I* = {#¢ : ¢ € T}. Note that if Dy(s), then (s); € W* for all
i < Ih(s). Of course, Dy(s) means that s € Dy.

Theorem 6.4.22. For any set T of wffs, if I is (primitive) recursive, then the set Dy and
the relation Pr are (primitive) recursive.

Proof. Assume that I'* is (primitive) recursive. Let U = I U LA. Since
Dr(s) iff Sq(s) A (Vk <1h($))(((8)x € U) v 3i < k)(Fj < K)MP((5);; (8);5 (S)k))s

we see that Dy is (primitive) recursive. Hence, Py is (primitive) recursive. O

Corollary 6.4.23. For any set T of wffs, if I” is (primitive) recursive, then the set of Godel
numbers {#¢ : T + @} is recursively enumerable.

Proof. Assume that T* is (primitive) recursive. Let D = {#¢ : T - ¢}. Then m € D if and
only if 3sPPr(s, m). Thus, D is recursively enumerable. O

Theorem 6.3.24 shows that every recursive function and relation is representable.
We will soon establish the converse. Recall that for any natural number n, we let n denote
the £-term S™0, that is,

n times
n=8"0=8S---$0.
Son+1 = 38n,1 = 80,and 0 = 0. Given any natural number n, can we recursively
compute the Godel number #n of the term n? Yes.

Lemma 6.4.24. The function f:IN — N defined by f(n) = #n is primitive recursive.
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Proof. Since f satisfies the primitive recursion
@ f(0) = #0,
2 f(n+1)=[3,f(n)]foralln e N,

we conclude that f is primitive recursive. O

Lemma 6.4.25. Let 0(xq, Xy, ..., X;) be awff whose free variables are among x, Xy, . . . , Xi.
The function g: N — N defined by

g(nl, ny,..., nk) = #G(ﬁl,ﬁz, cen ’ﬁk)

is primitive recursive.

Proof. Let f:IN — N be as in Lemma 6.4.24. Thus, f(n;) = #n; for 1 < i < k. Using
Proposition 6.4.8, we observe that
L #0(1y, Xp, ..., Xg) = #021 = Sh(f(ny), #xy, #0),
1
— = X1 X:
2. #0(n1, nz, ce ’Xk) = #gﬁiﬁzz = Sb(f(nz), #Xz, #0%1)
= sb(f(nz), #Xz, Sb(f(nl), #Xl’ #6)),

Ko #O(A . i) = HOR X6 = SB(F (), g, HOL - X

e nny Ny

= Sb(f(nk),#Xk,sb(f(nk_l),#xk_l, Sb( ...... )))

As Sb and f are primitive recursive, it follows, for each i = 1,2,..., k, that the natural
number #0;1;2 %’ is the value of a composition of primitive recursive functions. In
172 i

particular, g(ny, ny,...,n) = #0(, My, ..., M) = #0272 ... s the value of a (finite)
1152 k
composition of primitive recursive functions. Thus, g is primitive recursive. O

Theorem 6.4.26. Every representable relation and function is recursive.

Proof. LetP ¢ Nfbea representable relation. Thus, by Exercise 6 on page 224, there is
a formula @(xq, Xy, ..., Xx) such that for all n, ny, ..., n; € N,

1 (ny,ny,...,ng) € Pifand only if Q + o(ny, ny, ..., 1y,),

(@) (ny,ny,...,n,) ¢ Pifand only if Q - -y, Ny, . ..., ).

Define g: NS N by (&) g(ny, ny, ..., ng) = #p(ny, Ny, ..., Ng). Hence,

(n,ny,....,ng) e P it Q+ om,ny,...,N) by (1),
iff 3sPq(s, #o(ny, Ny, ..., M) by Definition 6.4.21,
iff 3sPg(s,g(ny,...,ny)) by (a).

Since Q" is primitive recursive (by Proposition 6.4.20), Theorem 6.4.22 implies that the
relation Py, is primitive recursive. Lemma 6.4.25 implies that the function g is primitive
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recursive. Lemma 5.4.5 and the above equivalences now allow us to conclude that Pis re-
cursively enumerable. A similar argument shows that N¥\ P is recursively enumerable.
Therefore, by Theorem 5.4.16, P is recursive.

If a function f is representable, then Theorem 6.3.12 and the above argument shows
that the graph of f is recursive. Thus, by Exercise 14 on page 195, f is recursive. O

Theorem 6.3.24 and Theorem 6.4.26 show that a function (relation) is representable
if and only if the function (relation) is recursive.

Exercises 6.3.
1. Suppose that #Vv;a = #vv;8, where a and 8 are wifs in £ = {<,0, S, +, %, E, =}. Show
that #a = #8.
2. Show that there is a primitive recursive function f such that for all wiffs a, if #a is
the Godel number of a, then f(#a) is the Godel number of Vv;a.
3. Complete the proof of item 1 of Proposition 6.4.5 by proving that C satisfies (6.24)
forallm e N.
*4. Prove item 3 of Proposition 6.4.5.
*5. Complete the proof of the claim in the proof of Proposition 6.4.6.
*6. Prove Proposition 6.4.8.
7. Complete the induction proof of Proposition 6.4.11 for the wffs - and ¥ — ¢.
*8. Prove Proposition 6.4.12.
9. Let R be the 2-place relation on Gédel numbers defined by R(#, #a) if and only if
Y is a subformula of a. Show that R is primitive recursive.
10. Let P ¢ N¥ be recursively enumerable. Show that there is a (k + 1)-place primitive
recursive relation R such that P() if and only if IpR(X, p), for all X € N,
11. Show that every representable relation is decidable.

Exercise Notes: For Exercise 10, first show that it holds when P is just recursive. Con-
sider applying Theorem 6.3.24 and the proof of Theorem 6.4.26.

6.5 The incompleteness theorems

We are working with the language £ = {<,0,$,+,%,E, =} and the standard model of
arithmetic

N =(N;0,S,<,+,x,E).
We now repeat the question that opened this chapter:

Is there a decidable set of £-sentences I' such that A = T and @
N E ¢ ifand only if T + ¢, for each £-sentence ¢?
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Kurt Godel was the first to answer this question. His resulting theorems in this area are
among the most significant results produced in modern mathematical logic.

The next amazing lemma follows from arguments first presented by Kurt Gédel in
[4]. The proof of this lemma is rather tricky, but the following proof is designed to ensure
validity and readability. With this result, we will have sentences that indirectly refer to
themselves. We let x denote an arbitrary variable.

Fixed-Point Lemma 6.5.1. For any formula 6(x) in which only x occurs free, there is a
sentence o such that

Qo 0(#).
Proof. Let the variable x be fixed. Define the function f: N> — N by

Sh(#n, #x,m), ifm e W¥,
f(m,n) = ,
0, otherwise.

It follows from Proposition 6.4.8 that the function f is primitive recursive. Recall that
Sh(#n, #x, #a) = #a% and #a%‘ = #a(n) when x is the only free variable in the wif a.
Hence, in such a case,

f(#a, #a) = Sh(##a, #x, #a) = #a - = #a(#a), (6.31)

#a

where #a is the term $**0 in the language £ (see page 236). Theorem 6.3.24 implies that
f is functionally representable. Therefore, there is an £-formula ¢(v;, v5, v) whose free
variables are among vy, v, v, such that for all n;,n, € N,

0 k(o Ty, v) & v =g, ny) ). (6.32)

By means of an alphabetic variant, we can assume that the variable x does not appear
in @(vq, vy, v). Now let a(x) be the formula

Y(p(x, x,v) - 6(v)), (6.33)

where we assume that v is substitutable for x in 6 (otherwise replace v with a variable
that is substitutable for x). Let e = #a be the Godel number of the formula a(x) in (6.33).
Note that this formula has only x as a free variable. Hence, a(e) is the sentence

vv(g(e e v) — 0(v)). (6.34)
Since e = #a, (6.31) implies that f(e, ) = #a(e). So from (6.32), we conclude that

Qr Vv((p(é, BV) v #a(E)). (6.35)
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Furthermore, by Logical axiom 3.3.17(2), (6.35) implies that

0+ 92,2 #a(@)) < #a(@) = #a(@). (6.36)

Therefore, from (6.36) and Proposition 3.3.48, it follows that (a) Q + ¢(e, e, #a(e)).

Claim. We have Q I a(e) < 0(#0((@)).

Proof. WefirstshowthatQ I a(e) — 9(#(1(@)). Since a(e) is the formula in (6.34), Logical
axiom 3.3.17(2) and (6.34) imply that

%a@) + 9(e.2 #a@) — 0(#a(@) ).
Thus, by (a) and modus ponens, Q; a(e) + 9(#(1(@)). Hence, Q + a(e) — 9(#a(§)), by the
deduction theorem (Theorem 3.3.33).

Now we show that Q + 9(#a(?3))—> a(e). Since a(e) is the formula in (6.34), we must
show, by the deduction theorem, that

0;60(#a@®) - W(p@e,v) - 6(v)). (6.37)

By the generalization theorem (Theorem 3.3.29) and the deduction theorem (Theo-
rem 3.3.33), to prove (6.37), it is sufficient to show that

ou {6(#a@), (€& v)} + 6(). (6.38)

Note that (6.35) implies that

Qu{peev)} Fv=t#a(e). (6.39)

Moreover, Exercise 7 on page 135 implies that

{6(#a@),v=#a@®} + 6). (6.40)
Clearly, (6.39) and (6.40) imply (6.38). Therefore, (6.37) holds. (Claim) O
Now let ¢ be the sentence a(e). The claim implies that Q - 0 < 0(#0). (Lemma) (1

Lemma 6.5.1 and Theorem 4.1.5 imply the following corollary.

Corollary 6.5.2. For any formula 6(x) in which only x occurs free, there is a sentence o
suchthat N = o < 0(#0).

The above corollary, together with the fixed-point lemma, will allow us to prove a
significant theorem due to Alfred Tarski. As you may recall, Tarski provided, in English,
a definition of truth in a structure for a first-order language (see Definition 3.2.6). Using
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this definition, one can determine which £-sentences are true in the standard model A
and which are false. The next theorem shows that Tarski’s definition of truth, when
applied to the structure ./, cannot be translated into the language L.

Recall that the theory of NV, denoted by Th(\), is the set of all £-sentences that are
true in . Consequently, Th(NV)* = {#¢ : ¢ € Th(\)} is the set of Gédel numbers of
L-sentences that are true in N.

Tarski Undefinability Theorem 6.5.3. The set Th(\)” is not definable over N.

Proof. Suppose, for a contradiction, that the set Th(N * is definable over N. Thus, let
0(v,) be a formula with one free variable such that for all £-sentences ¢,

NEe iff N EO[#e]. (6.41)

Since —6(v;) has only one free variable, Corollary 6.5.2 asserts that there exists an
L-sentence o such that N £ 0 « —0(#0). Since FroA #0, we conclude that

NEo if N E-0O[#],

which contradicts (6.41) by letting ¢ = a. O
Theorem 5.4.14 justifies our next definition.

Definition 6.5.4. Let I be a set of wffs. Then I'is decidable if and only if I* is recursive.
Definition 6.5.4 and Theorem 6.5.3 imply that the theory of NV is undecidable.

Lemma 6.5.5. The set Th(\)* is not recursive.

Proof. If Th(NV Y* were recursive, then, by Corollary 6.3.25, it would be definable over A/,
contradicting Theorem 6.5.3. O

6.5.1 Gddel’s first incompleteness theorem

We are now in a position to answer the question that was posed at the beginning of this
chapter, namely:

Is there a decidable set of £-sentences I such that A &= T and Q)
N E pifand only if T + ¢, for each £-sentence ¢?

We begin by reviewing some relevant definitions. A set T of £-sentences is said to be a
theory if and only if T is closed under logical implication, that is, by the completeness
theorem (Theorem 4.2.8), for any sentence g,

ifTHo, thenoeT.
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A theory T is complete if for every sentence ¢, either T - ¢ or T + —¢.

In Definition 4.3.14, we defined Cn(T) to be the set of consequences of T, where T is
a set of L-sentences. By the completeness theorem (Theorem 4.2.8), we can also define
Cn(T) to be the set of sentences ¢ such that I' - ¢. We let Cn(D)* = {#¢ : T + ¢}. Thus,
if T is a theory, then Cn(T') = I Finally, recall that T is consistent if there is no formula
psuchthatT + fand T + -f.

The next definition is a relevant extension of Definition 4.3.15.

Definition 6.5.6. A theory T is said to be axiomatizable if T = Cn(T) for some set of
sentences I such that I* is recursive.

Definitions 6.5.4 and 6.5.6 allows us to rephrase question (Q2) as follows:
Is the theory Th(N') axiomatizable?

Lemma 6.5.7. Let T be a consistent set of L-sentences. If T'* is recursive and Cn(T) is a
complete theory, then Cn(T')* is recursive.

Proof. Assume that I'is consistent, I* is recursive, and Cn(T) is also a complete theory.
Let S* be the set of Godel numbers of sentences. By Proposition 6.4.10, S* is recursive.
Let A = Cn(I')*. As in the proof of Corollary 6.4.23, we have #¢ € A if and only if #¢ € S*
and 3sPr(s, #¢). Therefore, by Theorem 6.4.22 and Proposition 6.4.10, A is recursively
enumerable. Now let B = {#¢ € S* : T I -¢}. By similar reasoning, we see that B is
recursively enumerable. Since T is consistent, we see that A n B = @. Moreover, because
Cn(T) is a complete theory, it follows that AU B = §* Since S* is recursive, Exercise 4
implies that A is recursive, that is, Cn(D)* is recursive. O

Lemma 6.5.7 demonstrates that a complete axiomatizable theory is recursive.

Gddel Incompleteness Theorem 6.5.8. Let I be a set of L-sentences such that N = I. If
I is recursive, then Cn(T) is not a complete theory.

Proof. Let T be a set of £-sentences such that A" = T and I is recursive. Suppose, for
a contradiction, that Cn(T') is a complete theory. Lemma 6.5.7 thus implies that Cn(I')* is
recursive. Moreover, Exercise 5 on page 146 implies that Cn(T') = Th(\). Hence, Cn(I')* =
Th(\)*. Thus, Th(NV)* is recursive, which contradicts Lemma 6.5.5. O

Theorem 6.5.8 provides a clear negative answer to question (Q2) (see page 241). The
theorem implies there is no decidable set T of £-sentences such that (1) A/ = T and
(2) every sentence that is true in A is also deducible from I. Thus, for any decidable
set I such that A/ = T, there is a sentence § such thatT ¥ fand ' ¥ —f. Since either
N E Bor N E —f, it follows that there is a sentence that is true in A and yet, it is not
deducible from T.

Corollary 6.5.9. The theory Cn(Q) is not complete.
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Lemma 6.5.10. Let T be a set of L-sentences and let ¢ be an L-sentence. If Cn(T)" is recur-
sive, then Cn(T; 0)* is recursive.

Proof. Let T and o be as stated and assume that Cn(T')* is recursive. By the deduction
theorem (Theorem 3.3.33), for any wif ¢, we have

Liore iff Tk (o— 9).
Hence,
#¢ € Cn(T; a)# iff #(o — @) € Cn(T). (6.42)

Let g:IN — N be defined by g(m) = [17, #0, m] (see Definition 6.4.4). Clearly, g is primi-
tive recursive and (6.42) implies that

m e Cn(T; a)# iff g(m) e Cn(l“)#.

Thus, by the substitution rule (5.5), we conclude that Cn(T; o)* is recursive. O
By induction, we have the following corollary.

Corollary 6.5.11. Let T be a set of L-sentences and let . be a finite set of L-sentences. If
cn()* is recursive, then Cn(T U £)* is recursive.

Theorem 6.5.12. Let T be a set of L-sentences such that T U Q is consistent. Then Cn(T')*
iS not recursive.

Proof. LetT be such that TUQ is consistent. Suppose, to the contrary, that Cn(I')* is recur-
sive. Hence, by Corollary 6.5.11, Cn(T'u Q)" is recursive. Thus, Cn(T U Q)" is representable
by Theorem 6.3.24. Therefore, by Definition 6.3.1, there exists a formula 6(x) such that
for each £-sentence o,

TuQ + o implies Q + 6(#0), (6.43)
T'UQ ¢ o implies Q + -6(#0). (6.44)

By Lemma 6.5.1, there is a particular sentence ¢ such that
QLo e ﬂ@(%). (6.45)
Logical axiom 3.3.17(1) and (6.45) imply that
(A)QF0(#0) » -0 and (¥)QF -0(#0)— 0.

There are two cases to consider: EitherTUQ F ocorTuQ ¢ 0. IfTU Q + o, then we infer
that
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TUQFo=QF 6(%a) by (6.43),

=Q+ -0 by (a) and modus ponens.

SoTuQ I g and Q + —o. This contradicts our assumption that I' U Q is consistent.
IfT U Q ¥ g, then we conclude that

TUQyo=Q+ -0(#a7) by (6.44),

=Qto by (v) and modus ponens.

SoTUQ ¥ ¢ and Q + g, which are contradictory. Hence, Cn(T)* is not recursive. O
Corollary 6.5.13. The set cn(Q)* is not recursive.

The following corollary is an extension of Godel’s incompleteness theorem. It is the
result of replacing “N = I” in Theorem 6.5.8 with “T U Q is consistent.”

Corollary 6.5.14. Let T be a set of L-sentences. If the set T'* is recursive and T U Q is con-
sistent, then the theory Cn(T') is not complete.

The completeness theorem implies that an £-sentence ¢ islogically valid if and only
if - g, that is, ¢ is deducible from the logical axioms. Let V be the set of all £-sentences
that are logically valid. It follows that Cn(V) = V.

Corollary 6.5.15 (Alonzo Church). The set V* is not recursive.

Godel’s (1931) incompleteness theorem (Theorem 6.5.8) shows that no matter how
one selects a consistent recursive set of axioms, which hold in A/, these axioms will be
incomplete, that is, there will always be a true statement that cannot be deduced from
the axioms. Godel’s incompleteness theorem shows that there exists a limitation to the
axiomatic method. In the next section we will explore another limitation that Godel dis-
covered.

6.5.2 Godel’s second incompleteness theorem

After proving his first incompleteness theorem, Gédel pursued the following question:
Can an axiomatic system prove its own consistency? Before we investigate Godel’s an-
swer to this question, we revisit some pertinent topics. Recalling Definition 6.4.21, we let:
(1) Dr={[#ay,...,#a,] : n>1and {(ay,...,a,) is a deduction from I'},

(2) Pr = {{s,m) : Dr(s) and (S)p(s5-1 = M},

for a set T of £-wffs. In Theorem 6.4.22 we showed that if I* is (primitive) recursive,
then the relations Dp(s) and Py(s,m) are (primitive) recursive. Thus, if I' is a set of
£-sentences and I'* is recursive, then for any L-sentence g,
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I'+o iff 3sPp(s, #o). (6.46)

Therefore, Cn(I)* is recursively enumerable. Thus, in particular, Cn(Q)* is recursively
enumerable and, by Corollary 6.5.13, Cn(Q)’qt is not recursive. This provides an example
of a recursively enumerable set that is not recursive.

Now let I be recursive, where T is a set of £-sentences. Since the relation Py is
recursive, itis also representable. So, for any such set I', we will let 1 (x, y) be the formula
that represents Pr. If a deduction exists, then can one deduce that it exists?

Lemma 6.5.16. Let T be a set of L-sentences such that @ < T and T* is recursive. Then, for
any L-sentence g, if T + g, thenT + 3syr(s, #0).

Proof. LetT be asstated and let o be an £-sentence. Assume thatI' - g. Thus, there exists
a deduction of g from I. Let d = [#q;, ..., #a,] be the sequence number that consists of
the Godel numbers of the formulas as they appear in the deduction of ¢ from I'. Hence,
Pr(d, #0). Since Yr(x,y) represents Py, we conclude that

Q- Yr(d. o).
Since d is a term with no variables, Logical axioms 3.3.17(1)(2) imply that
Q + ¥p(d, #0) — sy (s, #0).

Therefore, by modus ponens, we have T + 3sir(s, #0). O

By Lemma 6.5.1, there is an £-sentence ¢ such that
Qg « ~3syp(s, #0). (6.47)

The sentence o indirectly asserts that “I am not deducible from I.” If T is consistent, then
our next lemma shows that “o is not lying.”

Lemma 6.5.17. Let T be a set of L-sentences such that Q < T and T is recursive. Let o be
as in (6.47). If T is consistent, thenT ¥ o.

Proof. LetT and o be as stated above and assume that I is consistent. Suppose, for a
contradiction, that I  g. Then we conclude that

I'+o =T+ 3syp(s,#0) by Lemma 6.5.16,
>T+-0 by (647)asQ ¢ T.

Hence, T is inconsistent, contradicting our assumption. Therefore, I' ¥ a. O

LetI'and o be asin Lemma 6.5.17. We now show that the conditional in Lemma 6.5.17

“if T is consistent, then T ¥ ¢” (6.48)
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can be translated into the first-order language £. Note that
I'is consistent if and only if T j 0 # 0.
Let Con(I') be the £-sentence —Elswr(s,M). Thus, our translation of (6.48) is
Con(T) — —3syr(s, #0). (6.49)
The proof of Lemma 6.5.17 was quite straightforward. Thus, one may suspect that
T + (Con(T) — —3syr(s, #a)).

How strong must I' be so that the above holds?

Definition 6.5.18. Let I be a set of £-sentences such that @ < T and T contains all the
universal closures of formulas having the form

(0(0) A Vx(0(x) = 0(8x))) — Vxp(X). (6.50)

Then T is called an extension of Peano arithmetic.

An extension of Peano arithmetic contains all of the “induction axioms” that have
the form (6.50). These axioms all hold in the standard model A and allow one to deduce
many additional valid properties about the natural numbers.

The proof of our next lemma is quite technical and, as a result, we will not present
the proof here. For a complete proof, see Section 5.3 of [5].

Lemma 6.5.19. Let T be a set of L-sentences such that T* is recursive and T is a consistent
extension of Peano arithmetic. Also, let o be as in (6.47). Then

T + (Con(T) — —3syr(s, #0)).

We can now state and prove Godel’s second incompleteness theorem, which shows
that the £-sentence Con(T) is not deducible from I whenever I is a consistent extension
of Peano arithmetic and I'* is recursive.

Godel’s Second Incompleteness Theorem 6.5.20. Let T be a set of L-sentences. If T is a
consistent extension of Peano arithmetic and I* is recursive, then T ¥ Con(T).

Proof. Let T be a consistent extension of Peano arithmetic such that I* is recursive.
Suppose, for a contradiction, that I' + Con(I') and let ¢ be as in (6.47). Therefore, by
Lemma 6.5.19 and modus ponens, we have T + ~3sir(s, #0). Since Q ¢ T, (6.47) implies
that T + o, and this contradicts Lemma 6.5.17. O
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6.5.3 Epilogue

In the early 1920s, the German mathematician David Hilbert (1862-1943) put forward
a new proposal for the foundation of classical mathematics. This program is referred
to as Hilbert’s Program. With respect to number theory, David Hilbert proposed that
mathematicians find a single formal system from which one can deduce all of the true
statements in number theory and also prove that the system is consistent.

Kurt Godel’s theorems show that Hilbert’s program is unattainable. In his first theo-
rem, Godel proves that any consistent recursive set of axioms for Peano arithmetic can
never be complete as there will always exist true statements about the natural numbers
that cannot be deduced from the given axioms. In his second incompleteness theorem,
Godel shows that such a system cannot prove its own consistency.

Moreover, Godel’s theorems can be extended to other recursive axiomatic systems
in which an extension of Peano arithmetic can be interpreted. In particular, one can
show that the standard axiomatic system for set theory (ZFC) is incomplete and cannot
prove its own consistency, unless it is inconsistent.

Godel’s two incompleteness theorems transformed research in the foundations of
mathematics, both in mathematics and in philosophy. Moreover, these theorems have
also become important in theoretical computer science, as they show that there are lim-
itations on the kinds of problems that can be solved computationally.

Exercises 6.4.
1. Let 6(x) and (x) be wifs in which only x occurs free. Show that there is a sentence @
such that Q + 0 — 6(#0) and Q + 0 — Y(#0).
2. Let O(x) be a wif in which only x occurs free. Suppose that Q I ¥x0(x).
(a) ByLemma 6.5.1there isa o’ such that Q + ¢’ & 6(#c’). Show that Q - ¢’
(b) By Lemma 6.5.1 there is a ¢ such that Q +- ¢ < -60(#0). Show that Q I -a.
3. Prove Corollary 6.5.2.
*4. LetAand Bberecursively enumerable sets of natural numbers. Suppose that AUB =
C isrecursive and A N B = @. Prove that A is recursive.
5. Prove Corollary 6.5.9.
6. Show that Th(/NV) is not finitely axiomatizable.
7. Show that there does not exist a recursive set A € N such that {#¢ : Q - ¢} < Aand
{#o: QF @} Cc N\ A.
8. LetT be a set of £-sentences. Show that if A = T, then Cn(I')* is not recursive.
9. Prove Corollary 6.5.13.
10. Prove Corollary 6.5.14.
11. Prove Corollary 6.5.15.
12. LetT be a set of £-sentences. Suppose that Q ¢ T, I* is recursive, and A = I. Show
that if T + 3syr(s, #0), thenT + 0.
13. Let W be the set of all logically valid £-wffs. Show that W is not recursive.
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14.

15.

16.

17.

Let T be a set of £-sentences such that Q@ ¢ T and I'* is recursive. Let ¢ represent
the relation PPj as defined in Definition 6.4.21 and let ¢ be an £-sentence. Suppose
that M = T'and V = 3syr(s, #9). Show that V' = ¢.

Let g represent the relation PPg as defined in Definition 6.4.21. By Lemma 6.5.1, let
o be a sentence such that Q + 0 < —=3sYy(s, #0). Thus, by Lemma 6.5.17, Q ¥ 0.
Show that N o. Conclude that Q ¥ —a.

Let T be a set of £-sentences such that Q ¢ T'and I'* is recursive. Let o represent the
relation Py as defined in Definition 6.4.21. Now, by Lemma 6.5.1, let o be a sentence
such that T + ¢ < Vs-(s, #0). Show that T + —ir(n, #0), for every n € N. Also
show that T ¥ Vs—yr(s, #0).

Let I be an extension of Peano arithmetic. Suppose that I'* is recursive. Show that
if T' + Con(T), then I is not consistent.

Exercise Notes: For Exercise 7, use proof by contradiction and Theorem 6.3.24. Then
apply Lemma 6.5.1 with a negation. For Exercise 9, show that Cn(Cn(Q)) = Cn(Q). For
Exercise 10, note that if TUQ is consistent, then Cn(T)uQ is also consistent. For Exercise 12,
see Lemma 6.5.16, its proof, and (6.46). For Exercise 14 and Exercise 15, see Exercise 7 on
page 224. Exercise 16 provides an example of a deduction system in which the “w-rule”
does not hold.
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