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Preface

Differential geometry is the study of curves, surfaces, and higher-dimensional objects
by using techniques from linear algebra and calculus. But still, average knowledge of
linear algebra and (multivariable) calculus is sufficient so that readers can follow the
results of this book.

Once we decided to write this book, we wanted to organize it in a different format
from the many books that already exist in the literature on differential geometry. In
view of the fact that a mathematical subject can only be learned through much practice
rather than reading directly, we based the book on examples, exercises, and problems.
In this sense, we give around 300 advanced practical problems, which are placed at the
end of each chapter. Although complete solutions to these problems are provided in the
book, we encourage the reader to solve them with his or her own efforts. Just in case
they require to check the solutions, readers should consult our solutions. Furthermore,
the book contains over 45 illustrations that provide the opportunity to better visualize
the theoretical concepts.

The book, however, addresses many notable classical results such as Lancret, Shell,
Joachimsthal, and Meusnier theorems, as well as the fundamental theorems of plane
curves, space curves, surfaces, and manifolds.

We hope that the format of the present bhook will contribute to the reader’s knowl-
edge of differential geometry.

https://doi.org/10.1515/9783111501857-201
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1 CurvesinR”

In this chapter we first consider the concept of Frenet curve and then define its tangent
line, normal (hyper)plane and osculating plane. After introducing the famous Frenet for-
mulas, curvature, curvature vector, and torsion are introduced as applications. In terms
of these bhasic invariants, the local behavior of a parameterized curve around biregular
points is observed. The well-known Lancret theorem for general helices and Shell the-
orem for Bertrand curves are revisited. A rigid motion of a Euclidean space is given so
that the existence and uniqueness theorems can be stated.

1.1 Frenet curves in R"

Leta,b e R,a < b.

Definition 1.1. A curvein R" is a continuous functionf : [a,b] — R". The function f that
defines the curve is called a parameterization of the curve and the curve is a parametric
curve.

Example 1.1. Suppose that f : [1,2] — R® is given by
f)=(t-1,t,t*-5), te[L2].

Thenf : [1,2] — R®is a curve. Its graph is shown in Fig. 1.1.

Figure 1.1: A parametric curve in R® given by f(t) = (t = 1,t,t2 = 5), t € [1,2].

https://doi.org/10.1515/9783111501857-001
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Definition 1.2. A regular parameterized curve is a function f : [a,b] — R" such that
fe cY(la, b]) and

f'(t) #(0,0,...,0) foreveryt € [a,b)].

Definition 1.3. Let f : [a,b] — R" be a parameterized curve such that f ¢ Cl([a, b)).
Then the vector f'(t,) is called the tangent vector to f at ¢, and the line spanned by this
vector and passing through f(¢,) is called the tangent line to f at this point.

Example 1.2. Let [a,b] = [0,1] and f : [0,1] — R® be given by

fO)=(t,+t%), tel0,1).

Here

JAOEES

Lt =t +t5 tel0,1].
Hence,

flt =1

ity =3t +2t, te[0,1].
Thus,

1= ©.£©)
= (1,3t +2t)
#(0,0) foreveryt e [0,1].

Thus, the considered curve is a regular curve; see Fig.1.2. In addition, the tangent line
parallel to the tangent vector f'(t,) and passing through f(t,), t, € [0,1], is

(to> to +65) + A(1, 3% + 2t,),

where A is a parameter.

Example 1.3. Let f : [0,77] — R? be given by
1 .
ft) = E(cos(Zt),sm(Zt)), t e[0,m].
This curve is a circle of radius % centered at (0, 0). Here

f1(0) = %cos(Zt),
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Figure 1.2: A regular parameterized curve in R? given by f(¢t) = (¢, 3 + t?), t € [0,1].

fo(t) = %Sin(Zt), t € [0, 7).
Then

f{(t) = —sin(2¢),
f5(t) = cos(2t), te[0,7].

Hence,

JHOEXIAGYAG)
= (- sin(2t), cos(2t))
#(0,0) foreveryt e [0,m].

Thus, the considered curve is a regular curve (see Fig.1.3). In addition, the tangent line
parallel to the tangent vector f'(t,) and passing through f(¢,), t, € [0, 7], is

%(cos(Zto), sin(2t,)) + A(- sin(2ty), cos(2¢ty)),

where A is a parameter.
Example 1.4. Let f : [0,471] — R® be given by
f(t) = (cost,sint,t), te[0,4m].

This curve is called a (circular) helix. Here
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-

Figure 1.3: Acircle in R? of radius 1/2 centered at (0, 0). A regular parameterization is
f(t) = (cos(2t)/2,sin(2t)/2), t € [0, m].

fi(t) = cost,
f,(t) = sint,
frt) =t tel0,4n].

Then
fl () = -sint,
£ (t) = cost,
ft)y=1 tel0,4n].
Hence,

') = (f{(0).£,1).f 1)
= (-sint,cost,1)
#(0,0,0) foreveryt € [0,4r].

Thus, the considered curve is a regular curve and drawn in Fig. 1.4. In addition, the tan-
gent line parallel to the tangent vector f'(t,) and passing through f(¢,), t, € [0, 4], is

(cos ty, sinty, ty) + A(—sin ¢y, cos ¢y, 1),

where A is a parameter.

Exercise 1.1. Prove that the following curves are regular:
1. Forn=2,[a,b] =[-10,10],
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Figure 1.4: A circular helix in R® parameterized by f(t) = (cost,sint, t), t € [0,4r].

F(6) = @2t,-40), te[-10,20].
2. Forn =3, [a,b] =0,2m],
f(®) = (2cos(3t),3sin(4t),5t), t € [0,2n].
3. Forn=2t¢[110],
f(6) = (), te[1,10]
Exercise 1.2. Let uy(t),..., u,(t) € C'([a, b]). Prove that
f©) = (tuy(t),...,uy(t)), telab],

is always a regular parameterized curve in R".

Definition 1.4. Let [a, 8] ¢ R. Suppose ¢ : [a, ] — [a, b] is such that ¢ € ca, B]) and
@'(t) > 0, for every t ¢ [a,B]. Letalso f : [a,b] — R" be a regular parameterized curve.
Then the curves f and f o ¢ are said to be equivalent.

Example 1.5. Letf : [0, 2] — R? be given by
2 2
fO=0+tt), te [o,g}.
Here

[ =1+t

_ 2 2
£t =2, te[O,g].

Then
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and
'@ = ©.f0)

2
=(1,2t), t 0,-1,
20, telof]
ie,f:[0, %] — R%is aregular curve. Let also ¢ : [0,2] — [0, %] be given by
s
= —, 0,2].
B(s) s € (0,2]

Then ¢ : [0,2] — [0, £] and

1y St1-=5
Pls) = (s +1)?
1

= W >0 foreverys € [0,2].
+

Furthermore,

f°¢(s)=<1+ s i)

1+8 (1+5s)?
<Zs+1 s?
S+17 (s+1)>

>, s € [0,2].

Therefore, f and f - ¢ are equivalent; see Fig.1.5.

Figure 1.5: A parabola in R? of the form y = (x — 1)%. The equivalent parameterizations are () = (¢ + 1,t%),
t € [0,2/3],and f o ¢(s) = (25 + 1)/(s +1),82/(s + 1)?), s € [0,2].
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Example 1.6. Consider the Diocles cissoid

a a 1
o= <t2+1’ t(t2+1)>’ te [E’l]’

where a > 0 is a given parameter. Here

a
fi(t)_ t2+1’
a 1
fz(t) = m, te [2,1]
Then
ey 2at
hi) = (2 +1)%’
fo GG +1) [1 ]
LO= @y 2l
Hence,

'@ = ©.f0)

#(0,0) foreveryte [%1]
ie,f:[3,1] - R*is aregular curve. Let
1
o(s) = -y se[-2,-1].
Then ¢ : [-2,-1] — [%,1] and
! _ 1 f
o'(s) = 2 >0 foreveryse [-2,-1].

Also

foo(s) =f(4(s))

_ ( a a )
S\ (=822 + 17 (<1/s)((<1/s)? + 1)

2 3
as® -as
- (s2+1’ s +1>’ sel-2-1]

We have that f and f - ¢ are equivalent curves. For the value a = 1, see Fig. 1.6.



8 =—— 1 CurvesinR’
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Figure 1.6: Diocles cissoid in R? of the form x> + xy?> — y?> = 0. The equivalent parameterizations are
f6) = /@ + D,/ +0),t € [1/2,1],and f o p(s) = (s°/(s* +1), -5 /(s> + 1)), 5 € [-2,-1].

Example 1.7. Consider the witch of Maria Agnesi

f(t) = (acott,a(sint)?), te [% g]
where a > 0 is given parameter. Here
fi(t) = acott,
N2 T
t)= 05 te|l—- |
f>(t) = a(sint) e[4 2]

Then
£ () = —a(1 + cot* t),

f,(t) = asin(2t), te [Z _],
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and

f'O = 0.0)
= (-a(1 + cot* t), asin(2t))

T
0,0), te|——|
+00, te|1.7]
ie,f:15.51— R% is a regular curve. Let
s 3
¢(s)—s—§, S € [I,T[].

Then ¢ : [‘%”,71] — [7>7]and
¢'(s)=1>0 foreveryse [%ﬂ,ﬂ],

and

fod(s) =f((s)
2

=(acot{s-= |,afsin(s- =
2 2
= (atans,a(coss)?), se :%Tﬂ]

We have that f and f - ¢ are equivalent curves. For the value a = 1, see Fig.1.7.

08

06

X
0.2 0.4 0.6 0.8 1.0

Figure 1.7: Witch of Maria Agnesi in R%. The equivalent parameterizations are f(t) = (cott, (sin t)z), t e
[m/4,m/2],and f o ¢(s) = (tans, (coss)z),s € [3m/4,m].

Exercise 1.3. Prove that the following curves are equivalent:
1. (strophoid)

2at* a+(t*-1) 11
t: _)— 3 t _7_ bl
o <1+tZ 1+¢2 > E[16 4]
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and
_( 2as* a+(s4—l)> [1 1].
8(s) = < st 1est ) S lwef
2. (astroid)
f(@® = (a(cos t)°, a(sin t)3), te []—T, E],
4" 2
and
g(s)=(a(1- s) ,as’), se[
3. (cycloid)
f®) = (a(t -sint),a(l - cost)), te [7—T 7—T],
and

g(s) = (a(arcsins - s),a(l- V1-5?)), se [_,1 )

Hint 1.1. Use the following functions:
1. ¢(s) =5’ se [1 1]

2. ¢(s) = arcsins, s € [, 1];
11

S

3. ¢(s) =arcsins, s € [

Definition 1.5. Letf : [a,b] — R" be a regular parameterized curve and

F@®) = (i), @), ....f,(1), telab]

The arc length parameter Lf(t, a), t € [a, b], is defined as follows:

p(ta) = j[f (s)|ds.

Example 1.8. Consider the circle given in Example 1.3. Using the computations there,
we get

IF' )] = (@) + (7 ©)

= \/(_ sin(zt))2 + (cos(Zt))Z
= 1, t € [0,”]
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Hence,

t

Ly(t,0) = J[f’(s)lds

0
t
st

0
=t, tel0,m].

Example 1.9. Consider the circular helix given in Example 1.4. Using the computations
there, we find

If' (t)] = \/(fl'(t))2 + (fz’(t))2 + (fg’(t))2
= \/(— sint)? + (cost)? +1
=V2, te [0, 4rr].

Then

t

Ly(t,0) = J[f’(s)|ds
0
t
= J V2ds
0
=V2, te [0, 47].

Example 1.10. Consider the parabola given in Example 1.5. Using the computations

there, we find
ol = EO) + Fo)

=V1+4t2, te [0,%].

Hence,

t
L;(6,0) = J[f’(s)lds
0

t
J V1+4s2ds, te [0, ;]

0
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Note that
1 1
J 1+ 4y?dy = 5 1+4y% + Zlog(2y+ V1i+42) +c, yeR,

where c is a constant. Hence,

1 =t 1 =t
Ly(t,0) = <—y\/1 + 4y2|y: *21 log(2y + 1+ 4y2)C:0>
( tV1+ 4t + —log (2t + V1+4t2)> te [0,%].

Exercise 1.4. Find the arc length of the following curves:

1.
f@)=(t.t2), telabl
2. 2
f@O)=(tt°), telabl;
3.

f(t) = (t’log t)) te [a> b])

4. t
f(t) = <t,ccosh<z>>, t €[a,b],

where ¢ > 0 is a given constant;

ft) = (te"), telab]

Answer 1.2. 1. 1 , \
Lf(t, a) = ﬁ((4 +9t)2 — (4 + 9a)5), t € [a,b].

2. \/ 2
Ly(t,a) = 1(l‘\/1+ t?-avi+a®)+ 1log M t e la,b].
2 4 7 2a+ V1+4a?
3 Lita)=V1+ £ -1+
1 1+ V1+¢t2 1+ V1+ a?
-= lg —log , telaDb].
—V1+t? 1- V1+a?
4. . t . fa
Lf(t,a)zc sinh( — | —sinh( — ) ), ¢e€ [a,b].
¢ c

5. Le(t,a) = V1+ e — V1+ e

1 1+ 6% 1+ V1+ e
- = log —log , telab].
—V1+e2 1-V1+ e
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Definition 1.6. We will say that a regular parameterized curve is naturally parameter-
ized if

If'(s)) =1 selabl.
Usually, the natural parameter is denoted by s.

Exercise 1.5. Prove that the arc lengths of any two equivalent curves are equal.

Solution. Letf : [a,b] — R" be a regular curve, ¢ : [a, B] — [a,b], ¢(a) = a, p(B) =
¢ < C'((a,B]), ¢’ > 0 on [a, B]. Then f and f - ¢ are equivalent. Set

g=f-0.
Then
B
Ly(p.a) = [g'@ldr
B
= J[f’ )9’ (7)|dr
B
=JW ¢(1))|¢' (1)dt
B
=jV’ (7))|do(t)
b
:JV(th

This completes the proof.

Exercise 1.6. Prove that for any regular parameterized curve there is a naturally pa-
rameterized curve that is equivalent to it.

Solution. Letf : [a,b] — R" be a regular parameterized curve. Define
t
mo=JWumm telab].
a

We have that ¢ € Cl([a, b]) and
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') =f'(0] >0, telabl.

Hence, ¢’ > 0 on [a,b] and ¢ : [a,b] — [a,B] is a diffecomorphism for some interval
[a, B] c R. Note that

CRIOE m
=m, s € [a,pl.
Let
g) =f(¢7(s), selapl.
Then
g =f' (7)™ ®
1ot
O ceton

and

lg's)| =1, selapl.

This completes the proof.

Remark 1.1. Note that we have

f(t) =g(s(®), telab],
and

f'(t) =g'(s(t)s'(0)
=g (sO)f'®| telabl

Example 1.11. Consider the curve
f(6) = (at®,bt®), te[2,10],
where a,b € R are such that a® + b # 0. Here

fi(®) = at®,
f,(t) =bt®, te[2,10].

Then
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£l (t) = 3at%,
fit) = 3bt%, te(2,10],

and

'@ = (O + (o)
= V(3ar2) + (3bt2)’
= Voa2t* + 9p2tt
=3¢Va2 +b?, te[2,10].

Thus, f : [2,10] — R? is a regular curve that is not naturally parameterized. For its arc
length, we have

t

Ly(t,2) = - j[f’(s)|ds
P
t

=3Va* + szszds
2
3

N
3 ls=2
= Va2 + b2(£* -8), te[2,10].

s=t

Now set L(t,2) = ¢(t) and s = ¢(t) where s € [0,992Va? + b%]. Hence

1 3
—Ss=1t-38 s €[0,992Va? + b?],
va* + b?
3 1
t'= s+8, s¢€[0,992Va® + b,
vVa® + b*
and
1
t=7 s+8, s¢€[0,992Va?+p?].
vVa? + b?
Therefore,

gy = oL V& + 2
¢ (s) = ms+8, s € [0,992Va? + b%].

Consider the curve



16 = 1 CurvesinR"

g(s)=fo97'(s), se[0,992Va?+b?].

Then
2(s) = (a(97'(9))", b(97'(s))’)
_ 1 1 Ny
—<a<m3+8>,b(ms+8>>, s € [0,992Va? + b?].
Note that
&i(s) = a< ! S+8>,
_ 1 N
85(s) = b( ms+8), t € [0,992Va? + b?],
and
glls) = —2—,
Nrom
b
(8) = ———, te[0,992Va? + b?2].
&0 e ]
Then
18] = (&)’ + (gys))”
a’ b’

=\ + ——
a’+b%  a?+Db?

=1, s¢€[0,992Va® + b?].

Thus, g : [0,992Va? + b2 ] — R? is a naturally parameterized curve that is equivalent to
the curve f.

Example 1.12. Consider the circle

f(t) = <% cos(at), % sin(at)), t € [0,2m].

Here

1
f1() = P cos(at),

L) = %sin(at), t € [0,2m].

Then
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f{(t) = —sin(at),
£ (t) = cos(at), t e [0,27],

o1 = (O + (o)

= \/ (sin(at))z + (cos(at))2
=1, te]0,2m].

and

Thus, f : [0,27] — R? is a naturally parameterized curve.

Example 1.13. Consider the circular helix
f(®) = (ccos(at), csin(at), Bt), t € [a,b],
where a, 8, ¢ € R are such that a’c? + p* # 0. Here

fi(t) = ccos(at),
£,(t) = csin(at),
fi(t) = Bt, telab]

Then
f{(t) = —casin(at),
£ (t) = casin(at),
fity=B, telabl
and

'@ = \/(ff(t))2 +(HO) + (o)

= \/(—ca sin(ozt))2 + (ca COS(Olt))2 + p?

- \/czaz(sin(at))2 + czaz(cos(ozt))2 + p?
=\c2a® + B2, telab).

Thus, f : [a,b] — R® is a regular curve that is not naturally parameterized. For its arc
length, we have

t

Ly(ta) = J[f’(s)|ds

a
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t
= J \ca? + pAds
a
=/c2a® + At —a), t<lab],
whereupon

t-a= ;Lf(t,a), t € [a,b].

A 'C2(12 + BZ

Now set L (t,2) = ¢(t) and s = ¢(t) where s € [0, (b - a) c2a® + B2 ]. Hence,

o Ns)=a+ ;s s e [0,(b-a)yc2a® + B2].

>
et + B

Consider the curve
gs)=fo0¢7'(s), sel0,(b-a)ycia®+p].
We have
519 = (ccos{aas ) )esin(a(ar 1)),
ca? + p? m

ﬁ<a+ ;s» s € [0,(b-a)yca® + B2 ].
2 + B

Here
gi(s) = ccos(a(a + ;s»
\Jc2a? + B
&(s) = csin(a(a + ;s»,
c2a? + B
83(8) =ﬁ<a+ L s), s € [0,(b-a)\c*a® + B2 ].
2 + B2
Then

gi(s) = -

ca . ( 1 >>
—— sinfala+ ———5s ),
c2a? B < NE 2
&(8) = @ cos(a(a + ;s»
2 N Ay ‘/Czaz+ﬁz ’
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83(8) = __F s e [0,(b-a)\c2ad® + B,

>
A [CZaZ + BZ

and
2

lg'(s)| = ((—\/%Jrﬁz cos<a<a+ ms)»

2 2,1

+ (\/ﬁ sin<a<a+ \/ﬁs))) + (ﬁ) >2

a2 B2
c2a® + p? c2a2 + B
=1

, se[0,(b-a)\c2a®+ B*].

Thus, g : [0, (b — a)y/c2a? + f2] — R is a naturally parameterized curve and the curves
f and g are equivalent.

Exercise 1.7. Prove that the curves in Exercise 1.4 are not naturally parameterized.

1.2 Analytical representations of curves

LetI c R.

Definition 1.7. A subset M ¢ R" is called a regular curve or a 1-dimensional smooth
manifold of R" if for each point ¢, € M there is a regular parameterized curvef : I — R"
whose support f(I) is an open neighborhood in M of the point ¢, i.e., is a set of the
form M n U, where U is an neighborhood of ¢, in R", while the map f : I — f(I) is
a homeomorphism with respect to the topology of subspace of f(I). A parameterized
curve with these properties is called a local parametrization of the curve M around the
point ¢,. If for a curve M there is a local parametrization which is global, i.e., f(I) = M
the curve is called a simple curve.

1.2.1 Plane curves

Definition 1.8. A regular curve M ¢ R is called a plane curve if it is contained in a
plane II. We shall usually assume that the plane II coincides with the coordinate plane
Xx0y. Here O = (0, 0).

1.2.1.1 Parametric representation
We choose an arbitrary local parametrization f(t) = (f;(t).f,(t)) of a curve. Then the
support f(I) of this local parametrization is an open subset of the curve. For a global
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parametrization of a simple curve, f(I) describes the entire curve. Thus, any point ¢, of
the curve has an open neighborhood which is the support of the parameterized curve

x = f(1),

.1
¥ = fo(0).

Definition 1.9. The equations (1.1) are called the parametric equations of a curve in a
neighborhood of a point ¢,. Usually, unless the curve is simple, we cannot use the same
set of equations to describe the points of an entire curve.

Example 1.14. LetI = [0, 7]. Then

i) =tE+t+1,
1-t+t?

——— tel,
1+t2+¢4

fo(t) =10 +sint + cos ¢ +

is a parametric representation of a plane curve drawn in Fig. 1.8.

2.0

5
1.0
0.5

-05 2 4 6 8 10 12 14
-1.0

Figure 1.8: A parametric curve given by f(t) = (> +t+1,10+sint+cost+ (1 -t +t2)/(1+t* +t*)), t € [0, 7].

Example 1.15. Let I = [0, 2rr]. Then

fi(t) = a(cos t)’,
f() = aisint)®,  t e [0,27],

where a is a positive constant, is a parametric representation of the astroid. See Fig.1.9
for the value a = 1.

Example 1.16. LetI = [1,2r]. Then

fi(6) = g(t{)

fo-2(e 1) e

where a and b are positive constants, is a parametric representation of a hyperbola. See
Fig. 1.10 for the values ofa = b = 1.
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1.0

-1.0

Figure 1.9: An astroid parametrically given by f(t) = ((cos t)3, (sin t)3), t € [0, 2m].

Figure 1.10: A hyperbola parametrically given by f(t) = (t + 1/t,t — 1/t), t € [0, 2m].

1.2.1.2 Explicit representation
Suppose that I is an open interval in R and f : I — R is a smooth function, i.e., f € c'(I).
Then its graph

C={(t.f(@t):tel} (12)

is a simple curve, which has the global representation
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X =t,
y=f(), tel.
Definition 1.10. The equation
y=f

is called an explicit equation of the curve (1.2). Sometimes for the explicit representation
of a plane curve one also uses the term nonparametric form.

Example 1.17. LetI = (0, ). Then

x+1

T lix+x2 xel,

is an explicit representation of a plane curve, see Fig. 1.11.

coococoo=
rOON®O©O
x

05 1.0 1.5 20 25 3.0

x+1
T+x+x2

Figure 1.11: A curve with the explicit form y = x € [0,m].

Example 1.18. LetI = (0,15). Then

is an explicit representation of a parabola.

Example 1.19. LetI = (1,24). Then
1
=——, xe€l,
Y 1+x

is an explicit equation of a hyperbola.

1.2.1.3 Implicit representation
Let D ¢ R% Let F : D — R be a smooth function and suppose
C={(x,y) e D:F(x,y) =0}

is the 0-level set of the function F. In the general case, C is not a regular curve. Never-
theless, if at the point (xp,y,) € C the gradient vector
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grad F(xo, ) = (Fy(Xo,Y0). F; (X0, Y0))

is not vanishing, then there exists an open neighborhood U of the point (x,,y,) and a
smooth function y = f(x) defined on an open neighborhood I ¢ R of the point x; such
that

CnU={xf(x):xel}

If grad F # 0 at all points of C, then C is a regular curve.

Example 1.20. The equation
(Xz +y2)2 _ 2b2(x2 _yz) —a* -,

where a and b are positive constants, is the equation of the Cassini oval. For the values
a=v2andb = 1, see Fig. 1.12.

05

0.0

-05

-15 -1.0 -05 0.0 05 1.0 15

Figure 1.12: The Cassini oval where a = V2 and b = 1.

Example 1.21. The equation
(x*+ yz)3 —4a’x%y* =0
is the equation of the four petal rosette. See Fig.1.13 for a = 1.
Example 1.22. The equation
(O +y* - Zax)2 = 4b*(x* +y%)

is the equation of the cardioid; see Fig.1.14.
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0.5

0.0

-05 0.0 05

Figure 1.13: The four petal rosette where a = 1.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.14: The cardioid wherea =1/2and b = 1/2.

Remark 1.2. Note that the condition for nonsingularity of the grad F is only a sufficient
condition for the equation F(x,y) = 0 to represent a curve. If grad F(x,, y,) = 0 for some
(Xg>Yo) € D, then we cannot claim that the equation represents a curve in a neighbor-

hood of that point or the converse.

1.2.2 Space curves

1.2.2.1 Parametric representation
As in the case of plane curves, with local parametrization
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X = fi(0),
y =0,
z=f3(t), tel,
we can represent either the entire curve, or only a neighborhood of one of its points.

Example 1.23. LetI = [0,7]. Then

X=t+1,
y:ﬁ+L
1
z=———, telR
1+t+t2

is a parametric representation of a space curve; see Fig. 1.15.

Figure 1.15: A parametrized space curve f(t) = (t + L2+t + ’I,1/(t2 +t+1)),te[0,1].

Example 1.24. LetI = [0, ]. The equations

X = atcost,
y=atsint,

2.2

a‘t
z=——, tel,

2p

where a and p are positive constants, are a parametric representation of the Archimedes
spiral. See Fig.1.16 wherea =1and p = 2.

Example 1.25. Let] = R. The equations

X = cos(3t),

y = sin(3¢),
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Vo458 x
A

Figure 1.16: The Archimedes spiral parametrically given by f(t) = (t cos ¢, tsint, é), t € [0,m].

z=2t tel,

are a parametric representation of a circular helix.

1.2.2.2 Explicit representation
Letf,g : I — R be two smooth functions on an open interval I ¢ R. Then the set

C={(6f(0),80) cR®:x eI}
is a simple curve with a global representation given by

X=t,

y=f(@,
z=g(t), tel

Definition 1.11. The equations

y=fx,
z=g(x), xel,

are called the explicit equations of a space curve.

Example 1.26. Let = [1,20]. Then
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y=x+1

z:x2+x+1, X el,

is an explicit representation of a space curve.

Example 1.27. LetI = [0, 2r]. Then

X = cos(4z),
y = sin(4z),
z=2, z¢€l,

is an explicit representation of a circular helix.

1.2.2.3 Implicit representation
LetD c R®and F, G : D — R be smooth functions. Consider the set

C={xy.2)eD:F(x,y,z) =0, G(x,y,z) =0},
i. e, the set of solutions of the system

F(x,y,z) =0,
G(x,y,z) = 0.

In the general case, the set C is not a regular curve. Nevertheless, if, for some a =
(XanO)ZO) € C)

(F;(a) Fl(a) Fz’(a)>
rank M
Gy(@ Gj(a) Gya)

then there is an open neighborhood U c D of the point a such that C n U is a curve. If
the rank of the matrix

F, Fy’ F,

G, G)’, G

is equal to two, then C is a regular curve.

Example 1.28. The equations

2 2 2 2
X“+y +z°=4b,

(x - b)* +y* = b,

where b is a positive constant, are the equations of the temple of Viviani.
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1.3 The tangent and the normal plane

Suppose that I € R, t, € I, and f : I — R" is a curve so that f'(¢,) # 0.

Definition 1.12. The line passing through f(t,) and having direction of the vector f’(t,)
is called the tangent of the curve at the point f(¢,) (or at the point ¢,).

The equations of the tangent line read as follows:

FQ) = f(to) + ' (ty)
= (Alto). fo(to)s - > fulto)) + ACK (t0), fy (o), . (o))
= (filto) fo(to)s - - fa(te)) + (A (t0), Ay (ko) - .., Ay (k)
= (filto) + M (o). folto) + A5 (to)s ... f (o) + Afyy (ko))

with A € R.

Example 1.29. Let
fity=EE2+t1), teR
see Fig.1.17. Here

fi(t) = &,
L) = +t,
fl=t teR

Hence,

Figure 1.17: A parametric curve given by f(t) = (t,t> + t,t), t € [-2,2].
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fi =2t
ft) =35 +1,
ft)=1 teR,

and therefore the equation of the tangent line to f at an arbitrary point is given by
FO = (E+28 +t+ 235 +1),t+2), AteR,
or
(3t + 1)F;(A) + 2tFy(A) — 24(3% + t)F3(A) + 7t* - 3t* = 0.
Example 1.30. Consider the curve
f(t) = (acosht,asinht,ct), teR,
where a,c € R, ¢ # 0. In the case a = ¢ = 1, see Fig.1.18. Here

fi(t) = acosht,
fo(t) = asinht,
ft)=ct, tel

Hence,

Figure 1.18: A parametric curve given by f(t) = (cosht,sinht, t),t € [-2,2].
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f{(t) = asinht,
f,(t) = acosht,
fi)=c, teR
Then the equation of the tangent line at an arbitrary point is as follows:

(Fy(A), F5(A),F5(1)) = (acosht + Aasinh t,asinht + Aacosht,ct + cA), t, A€ R,

or

Fi(A)—acosht F,(A)—asinht F3(A) - ct

; , AteRR
asinht acosht c

Exercise 1.8. Find the equations of the tangent line at the corresponding points of the
following curves:

' f(O)=(tt*+4t+3), teR, (-1,0), (0,3), (1,8).
> () =(t£), teR, (0,0), (11).

> f(O) = (tsint), teR, (0,0), <’%1> (11,0).
* fO = (ttant), teR, (0,0), (%,1).

5.

fy=(ee ', th), teR, (eel,1).

Answer 1.3. 1.
2F(A) - F,(A)+2=0,

AF,(0) - F,() +3 =0,
6F1(A)—F2(A)+2:0, AG]R

F() =0,
3E(0) -F,(A)-2=0, AeR

F Q) = F,(),
F,) =1,
FEM+EM) =1 AcR
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4,
Fi(A) = K,A),
zaunyng—L AeR
5. mmwzgm—ﬁzam—1

AeR.

e —e! 2

Exercise 1.9. Prove that the tangent vectors of two equivalent curves are collinear at
corresponding points and the tangent lines coincide.

Solution. Let (I,f) and (J,g) be two curves that are equivalent. Let s : I — [ be the
parameter change. Then

f@)=g(st), tel

Hence,
ity =g'(s)s'(t), tel

This completes the proof.

Now, suppose that f : I — R" is a regular curve. For h, close enough to 0, or h — 0,
by the Taylor formula, we have

f(to + h) :f(to) + hf’(to) + h£,

where ¢ — 0 ash — 0. Let [ be an arbitrary line passing through f(t,) and having unit
direction vector m. Set

d(h) = d(f (¢ + h). 1),

where d(f(t, + h), 1) is the distance between f(t, + h) and L.

Exercise 1.10. Prove thattheline lis the tangentline to the regular parameterized curve
f at the point ¢, if and only if

d(h)
TR
Solution. We have
d(h) = |(f(ty + b) = f(tg)) x m
= |(hf'(ty) + he) x m|
= [R(F'(tg) x m) + h(e x m)|
= [R|(F' (&) x m) + (e x m)|
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and

iy

T |(f' (tp) x m) + (e x m)].

Hence, using that e — 0 as h — 0, we find

. d(h . ]
tim S0 = Hm| (7 (t)x m) + & x )

= |f,(t0) X ml

1. Let [ be the tangent line to f at t,. Then f'(t,) and m are collinear and

If'(ty) x m| = 0.
Hence,
d(h)
=0. 1.
h—0 |h| 0 13

2. Now, suppose that (1.3) holds. Then
V,(to) X ml =0

and f’(t,) and m are collinear. Thus, [ is a tangent line to f at ¢,. This completes the
proof.

Definition 1.13. Let (I,f) be a parametric curve in R" (n > 3) and ¢, € I. The normal (hy-
per)plane at f(¢,) is the (hyper)plane through f(¢,) that is perpendicular to the tangent
line to the curve at the point f(¢,).

The equation for the normal (hyper)plane is as follows:
(X-fty)-f'(t) =0, tyel,

where X = (xy,...,X,) is an arbitrary point on the (hyper)plane and - denotes the inner
product. We have

0= (05> Xg) = (filto)s - > fult0))) - (F (o) - . S (£0))
= (x; = fitg)s .. .. Xy — fu(tp)) - (ﬂ'(to)wwfn’(to))
= (0 ~ A (t) + - + (0 = fu(to) ) (to)-

Example 1.31. Letf : R — R be defined by

2
f= (e e ™), teR
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Here
A =2,
2
j‘z(t) — e—[ +1,
fit)=e" teR
Hence,

fie) =2t
]czl(t) — _Zte*t2+1,
fit)=-e"% teR

Then the equation of the normal plane at an arbitrary point ¢, € R is as follows:
20 (%, — £2) — 2ty 5" (x, — €761 — e0*%(x — 70*2) = 0.
Example 1.32. Letf : R — R* be defined by

fO =tet el el) teR

Here
fi =t
ft)=e™,
fity=e",
fi=et, teR
Hence,
i)y =1,
j‘z’(t) — _e*t)

£l(0) = ~2te™,

fit) = 3%, teR,
and the equation of the normal hyperplane at an arbitrary point ¢, € R is as follows:
(X —ty) —e o (x,—e ) - ZtOe’t‘§ (x5 - e’tg) - Bt(z)e*t3 (X, - e’tg) =0.
Exercise 1.11. Find the equation of the normal plane at ¢t = 0 for the following curve:

f(t) = (2cost,2sint,4t), teR.
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Answer 1.4.
Xz + X3 = O

1.4 Osculating plane

Definition 1.14. A parameterized curve f = f(t), t € I, is said to be biregular at the point
t, if the vectors f’(t,) and f"'(t,) are not collinear, i. e., if

f'(to) x " (to) # 0.
Example 1.33. Letf : R — R® be given by
)= (the,e™), teR
see Fig.1.19. Here

JAGEES
f(t) = ¢,
f)=€", teR

Hence,

£l =2t

Figure 1.19: A parametric curve given by f(t) = (£, ', %), t € [0,1/2].
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f(t) = ¢,
fitt)y=2¢", teR,
and
V(1) =2,
Z,I(t) = et)
" 2t
3 (1) =4e”, teR
Therefore
f(t) = (2t, €', 2¢™),
() = (2,€,4€"), teR,
and

1) < f(t) = (2t, €', 2¢*) x (2, €', 4€*)

(4€* — 26, 4e™ — 8te™, 2te" — 2¢")
(26%, (4 - 8t)e™, 2(t — 1)e")

+#0, telR.

Thus, the considered curve is a biregular curve.

Example 1.34. Consider the curve

fO) =(t,t%), tel[24]

We have

A1) =t

L) =15, te[24]
Then

i =1,

fity=2t, te(24],
and

£t =2 tel24].

35
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Thus,

JHGENAGNAG)
=(1L2t), te[24],

and

o =" ®.5'®)
=(0,2), tel24].

Note that ' (t) and f"' (t) are not collinear for any ¢ € [2,4] and thus the considered curve
is biregular.

Exercise 1.12. Prove that the curve
fO=(t+1L2+t+1,6%), te[24],

is a biregular curve.

Definition 1.15. Let (I,f) be a parameterized curve in R® and ¢, € I. The osculating
plane through £ (t,) that is parallel to f”(t,) and f"' () is defined by

0=(63.2) = f(ty) - (f'(t)) x f" (&), to €.
Here we have that

x-filty) y-filty) z-f3(ty)
0= fl(ty £ (to) fity) |» tel
1 (o) 5 (to) 3 (o)

is the equation of the osculating plane.

Example 1.35. Letf : R — R> be given by
fO) = (A t+t5), telR
see Fig.1.20. Here

JAGERS
fi(t) =&,
fi)=t+t5, teR

Then

fit =1,
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1.0.0
y AT~ 05

05|

Figure 1.20: A parametric curve given by f(t) = (t, 2t + tz), t € [0,1/2].

f(0) =2t
fit)=1+2t, teR,
and
1”(t) = 0)
5 (1) =2,
() =2, teR
Therefore,

'O = ©O.L0.£0)
=(1,2t,1+ 2t),
f'@® = (' O.1' 0.5 ©®)
=(0,2,2), teR,
and the equation of the osculating plane is
X—ty y-to z—ty—t
0= 1 2t0 1+ zto
0 2 2

= 2X—ty) -2y - 3) +2(z -ty - £3)
:—2x—2y+22+4t3, th e R,

37
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or
x+y—z—4tﬁ =0, teR
Example 1.36. Let f : R — R® be given by
ft) = (et,etz,ets), teR;
see Fig.1.21. Here
fiD) =€,

() =€,
f=e, teR

Figure 1.21: A parametric curve given by f(t) = (et,etz,etz),t € [0,1/2].

Hence,

fl) =é,

= 2te’

Fl0) =38%", teR,
and

111(0 _ et’
" t? 2t
5 (1) =2e +4t%e,
3 3
)V (t) = 6te’ +9t*e", teR

Therefore the equation of the osculating plane at t, = 0 is
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x-1 y-1 z-1
0= 1 0 0
1 1 0
=z-1,
or
z=1

Exercise 1.13. Find the osculating plane at an arbitrary point t; € R for the following
curve:

f(t) = (cost,sint, t), teR.

Answer 1.5.
sintgx —costyy+z—-t,=0, t;€R.

Exercise 1.14. Prove that the osculating planes of two equivalent curves coincide at the
biregular points.

Solution. Let (I,f) and (J, g) be two equivalent curves. Let also s : I — J be the param-
eter change. Then

f(©) = g(s(®),
f'(®)=g'(s)-s'v),
FlO =11 (s O) +g'(s)-s"(t), tel.

Thus, the sets {f’(t),f" (t)} and {g’(s(t)), g" (s(t))} are linearly dependent, namely these
two sets of vectors describe a unique plane. This completes the proof.

Let (I, f) be a parameterized curve in R3, t, € I, and f(t,) be biregular. Suppose that
a is a plane with a unit normal vector e and a passes through f(t,). Denote

d(h) = d(f(t, + h), a).

Exercise 1.15. Prove that the plane a is an osculating plane to the curve f = f(¢t) at the
biregular point f(¢,) if and only if

lim d(h)/|hf* = 0. 14
Solution. By the Taylor formula, we have

Flto + W = f(6) + ' (tg) + " (tg) + I,



40 — 1 CurvesinR”

where ¢ — 0 as h — 0. From here,
d(h) = |e- (f(ty + h) - f(ty))]
e.<m%%)+%h7”mp+h%>

>

e-(hf'(tp)) +e- <%h2f”(to)) +e-(h’%)

thus
dh) |1 1
? = ‘E(e f’(to)) + E(e 'f”(to)) +e-&
and
. dh .1 1
}1}&1}% :;1,13}) E(e-f’(to))+E(e-f”(to))+e~£. (1.5
1. Let (1.4) hold. Then
! —
e-fi(t) =0, (1.6)
e-f"(ty) = 0.

Thus,
el f'(t) xf" (ty)

and a is an osculating plane.
2. Assume a is an osculating plane. Then, we have (1.6) and, using (1.5), we get (1.4).
This completes the proof.

1.5 Curvature of a curve

Let (I,f) and (J, g) be two curves in R" that are equivalent with the parameter change s.
Then

f =g(s®), tel
Wehaves:I —J,s' >0onlI, and
lg'(s)] = 1.

Exercise 1.16. Prove that the vector g’’(s) in R" does not depend on the parameter
change.
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Solution. Let (J;,g;) be another naturally parameterized curve with the parameter
change s;, 1. e,

gs) =g(s1(s)), seJ,
where s; : | — J;. Then

g'(s) = g1(s1(9))s1(s), se].

Hence,
Isi(9)] =1
and
si(s)=+1, se].
Therefore

$1(8) = 5+ 5,
for some constant s, € R. Then
s/(s)=0, seJ,
and

g"(5) = &' (51(9)(51(9))” + &' (51(9))s'(5)
= &/ (51(9))(5(9))”
=g/ (s1(s)), se].

This completes the proof.

Definition 1.16. The vector
k(6) = g" (s(t)

is called the curvature vector of the curve f = f(t) in R" at the point ¢t and
k() = [g" (s(t))]

is called the curvature of f at the point ¢.

Assume that n = 3. We have

i =g'(s)s't), tel,
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and

Therefore,

Furthermore,

Therefore,

from where

or

or

Consequently,

and

SO =|f't), tel

1
s'(t)

N
—If,(t)lf(t), tel.

g'(st) = 7=

s"() = If''(0)

_ AW - f1@0)?)
dt
_fO-f"

I.
For > e

F(0) = g"(s(0)(s'0) + &' (s(6)s" (1), tel,

" Y " (f’(t) 'f”(t)) ’
g'(s)s'®) ="t - Wf (), tel,

RHODMG)

" PNy " ’
t ) = t t), tel,
g @f =10 - T @, e

" '@ (@O
t)) = - , tel.
8 (W)= iop FrOF ¢

S @) o)

k(t) = tel,
= ror P ©
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K(t) = [k(t)|
"o oS oo
If" ()1 If' ()4
= Uc,(lt)|4 @O O - (F'© - £ @)f )]
1

- R VIO -F1O) @ - F10) - (P10 - F7 ()

_ '@ xf" @)l
rer

This formula is also valid for n = 2.

tel.

Example 1.37. Consider the curve
f(t) = (t,sint), teR.

We will find its curvature. Here

A =t,
fot) =sint, teR.
Then
i =1,
f(t) =cost, teR,
and
fi'ty=0,
f'(t) = -sint, teR
Hence,
f') = (f{@0.£;®)
=(1,cost), teR,
and

'@ =" o.f'®)
=(0,-sint), teR.

Then
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Thus

K(t) =

[f’(t) ><f”(f)| =|sint]|,
IF10] = (5O + B )

1
= (1+(cost)?)?, teR.

| sin t|
(1+ (cost)?)s

teR

Example 1.38. We will find the curvature of the following curve:

f(t) = (acosht,asinht, at),

where a € R is a parameter, a # 0. Here

Then

and

Hence,

f1(t) = acosht,
fo(t) = asinht,
ft)=at, teR

f{(t) = asinht,
f,(t) = acosht,
ffy=a teR,

/() = acosht,

7' (t) = asinht,

2'(t)=0, teR

JHOEXIAGN AGNAG)

= (asinht,acosht,a),

'@ =\ @5 0.5 @)

= (acosht,asinht,0),

teR,

teR,

f'(t) xf"(t) = (-a*sinh t,a* cosh t,—a*), teR,

and
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If'&) < f" ()| = \/(—a2 sinh¢)” + (a2 cosh )’ + (~a2)’

=a \/1 + (sinh t)? + (cosh t)2
=d V1 + cosh(2t),

If'@t)| = \/(a sinh )2 + (acosh t)? + a?

=lal \/1 + (sinh t)2 + (cosh t)?

= |a|V1+ cosh(2t), teR.
Therefore

'@/l
If'()F
_ aZ\/1+cosh(2t)
lal3(1 + cosh(2¢))2
1
~ lal(1 + cosh(20))’

k(t)

teR

Exercise 1.17. Find the curvature of the following curves:

1.
fy=(46), teR
2. .
f(t) =(acost,bsint), teR,
where a, b € R such that a® + b* # 0.
3.
f(t) = (acosht,bsinht), teR,
where a, b € R such that a® + b # 0.
4.
f(t) = (acost,asint,bt), teR,
where a, b € R such that a® + b* # 0.
5.

f(t) = (tcost, tsint,at), teR,

where a € R is a parameter; a # 0.

Answer 1.6. 1. 6

=———, teR
t(4 +9t2)2

k(t)

2 k(t) = ab teR

(a?(sin t)% + b2(cos t)Z)S ’

45
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3 K(t) = ab teR.

(a?(sinh t)? + b%(cosh t)z)% ’

K(t) = bZ’ teR
5. \/2 tZ
k(t) = —+, teR.
2+a?+t

1.6 The Frenet frame, Frenet formulae, and the torsion

Suppose that (I,f), f : R — R® is a biregular curve.

Definition 1.17. The Frenet frame or the moving frame at the point ¢; is an orthonormal
frame in R® with the origin at the point f (tp) and the coordinate vectors {t(ty),n(ty),b(ty)},
where

1
t(¢
(to) = e )|f (to),
which is called the unit tangent at ¢;;
2.
n(t —Kk(t
(t) = Ik(t Y (to)s
which is called the unit principal normal at ¢,;
3.
b(ty) = t(ty) x n(tp),
which is called the binormal at ¢,.
For a naturally parameterized curve (J, g), we have
t(s) = g’(so)
n(s
(So) = |g”(s )|g "(S0),
b(s S Sp)-
(Sg) = |g,,( )|g(o) g (0)
We have
tel,
|f'(t)|f ©
") f(t

|f’(t) lf’(t)l4
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and
' xf" @)
k(t) = *———~—=, tel
=" rop ¢
Hence,
1
n(t) = %k(t)
IO ey SOF"O
= B | .
|fl )(fll(t)|f (t) V‘/(t) Xf”(t)llfl(tﬂf (t) te
and
b(t) = t(t) x n(t)
1 ! "
= o< OO tel
Next,

b(t) x t(t) = (t(t) x n(t)) x t(t)

= (t(t) - t(®))n(t) - (n(t) - t((O))t(t)
=n(t), tel.

Example 1.39. Consider the curve given in Example 1.38. Using the computations there,

we get

t(t)

and

1
- |alv1 + cosh(2t)
v/1 + cosh(2t)

(asinht,acosht,a)

sign(a) (sinht,cosht,1), teR,

f'(®)-f"(t) = a*sinh t cosh t + a*sinh t cosh ¢

Then

k() = L

1
- a(1 + cosh(2t))

a*(1 + cosh(2t))
B a® sinh(2t)
a*(1 + cosh(2t))?

=2a’sinh ¢ cosh ¢

=d sinh(2t), teRR.

(acosht,asinht,0)

(asinht,acosht,a)

sinh(2t)

(cosht,sinht,0) - ————
a(1+ cosh(2t))?

(sinh ¢, cosh t,1)
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= m((l + cosh(2t)) cosh ¢ — sinh(2t) sinh ¢,
+
(1+ cosh(2t)) sinh ¢ - sinh(2t) cosh t, — sinh(2t))
= m(cosh t + cosht,sinht - sinh t, — sinh(2t))
- gy Qe 60, -snh@D), (<R

1
a(1 + cosh(2t))?

(2cosht,0,—sinh(2t)), teR,

n(t) = |a|(1 + cosh(2t)) - (2cosht, 0, —sinh(2t))

_ sign(a)
" 1+ cosh(2t)

and
b(t) = ;3(— cosh t sinh(2t), 2 cosh t + sinh t sinh(2t), —2(cosh t)z)
(1 + cosh(2t))z
= ;3(— cosh t sinh(2t),2 cosh t(1 + (sinh t)Z), —2(cosh t)z)
(1 + cosh(2t))z
= —Lta (sinh(2t), 2(cosh t)?, -2 cosh t), teR
(1 + cosh(2t))z

Definition 1.18. An orientation of a regular curve C ¢ R® is a family of local parameter-
izations {(I,, f;)}4ea Such that

1L C= UaeAfa(Ia):
2. for any connected component ijﬁ. of

Ca,B = fulla) nfﬁ(lﬁ)) a,p €A,
the parameterized curves (Ifl’ , fcf’ )and (I g , fé’ ), with

I = £, (Cap):
fo? =fa|1f;’
I;l;) =f,3_1(cgp)>
fs = fylp>

are positively equivalent.

Definition 1.19. Aregular curve C ¢ R3 with an orientation is called an oriented regular
curve.
Definition 1.20. A local parameterization (I, f) of an oriented regular curve C is called

compatible with the orientation defined by the family {(I,, f,)}4ca if on the intersections
f) nf,,) the parameterized curves (I,f) and (I, f,) are positively oriented.



1.6 The Frenet frame, Frenet formulae, and the torsion = 49

Definition 1.21. The Frenet frame of an oriented biregular curve C ata point x € Cisthe
Frenet frame of a biregular parameterized curve f = f(t) at t;, where f = f(¢) is a local
parameterization of the curve C, compatible with the orientation such that f(t;) = x.

Let (I,f) be a biregular curve. Let also {t, n, b} be the Frenet frame. Then

Ji0)
== [)
(1) Fo] te
and
l ’ frof @
o S OF O O G
If' ()12
_"OFOF - OF"® -f"©)
If'(6)P
et lf,(t) Xf”(t)| lf’(t)| Moy f’(t) 'f”(t) '
=l m'( PP >< Foxror O oI ool m)
=|f'(Olk®n(t), tel.
Furthermore,
b(t) =tt) xn(t), tel,
whereupon
b'(t) = t'(t) x n(t) + t(t) xn'(t)
= | (©]k@®)(n() x n()) + t(t) x ' (t)
=t(t)xn'(t), tel
Therefore

b'(t) Ltt), tel,

and from the equality

we get

and then

|b(t)|2 =1, tel,

b'(t)-b(t)=0, tel,

b'(t) Lb(t), tel
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Therefore, b’ (t), t € I, is collinear with
b(t) xt(t), tel,
or b'(t), t € I, is collinear with n(¢), t € I. We can write
b'(6) = -|f' @®O)|t®)n(t), tel.
From the equation

n(t) =b(t) xtt), tel,

we find
n'(t) =b' () x t(t) + b(t) x t'(¢)
= (-[f'®]z@®n(t)) x t(&) + b(e) x (|f' )|k ()n(t))
= —|f' O]t (n(t) x t(®)) + |f' (©)|(t) (b(t) x n(t))
= |f'(0)|z®b(t) - [f' (OOt
= |f' ©|(-k(Ot@) + T(Ob(t)), tel.
Therefore

t'(t) = |f'(0)|x(t)n(t),
b'(t) = -|f' )]z (t)n), (1.7
n'(0) = |[f'@)|(-x(@)t@) + 7(Ob?)), tel.

Definition 1.22. The formulae (1.7) is called Frenet formulae.

Definition 1.23. The quantity 7(¢), t € I, is called torsion or the second curvature.

Now, we will deal with a naturally parameterized curve (J,g = g(s)). Then the
Frenet formulae take the form

t'(s) = k(s)n(s),
b'(s) = —7(s)n(s),
n'(s) = —k(s)t(s) + 7(s)b(s), se]J.

The Frenet frame is as follows:

t=g',
n = (1/x)g", (1.8)
b=1/k)(g" xg").

Then



1.6 The Frenet frame, Frenet formulae, and the torsion =— 51

b'(s) - n(s) = (-z(s)n(s)) - n(s)
= -7(s)(n(s) - n(s))

=-7(8), Se€J.

Using the third equation of (1.8), we find

b(s) = (())(g ()% 8"(5)) + —(¢"(5) x8"(5)) + ——(g'(5) x £"(5))

() ()

!

- (o5) @xg©)+

K(s)

k(s )(g $)xg"(9), seJ.

Hence,

—7(s) =b'(s) - n(s)

(= )(g (5) x &(5) - n(s)

K(S)

( G )>(g (s)x g"'(s) - m(s))
g

) 8 xg"(s) - n(s))

“(
(7

1
K(s)

(
o (g (5)x£"())-8"(s))
-

(75 ) €0 (¢ x£"0)
ate

2

) (8”9 x'®) 8" )

. >(g(s)><g (5))-8"(5)), seJ.

K(s)

Therefore,

2

7(s) = <K(1)> ((g's)xg"(s)-g"(s)), seJ.

Exercise 1.18. Let (I,f = f(t)) and (J,g = g(s)) be two positively oriented equivalent
parametric curves with the parameter change s : I — J, s’ > 0 on I. Prove that they
have the same torsion at the corresponding points ¢t and s(t).

Solution. Let {t,n,b} and {t;,n;,b;} be the Frenet frames for (I,f) and (J, g), respec-
tively. Then

b,(s(t)) = b(t),
n,(s(t)) = n(t),
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@) =g'(s)s'(t), tel.
From the second equation of the Frenet formulae, we find
b'(t)-n(t) = -|f'(O)|t(t), tel

Hence,

1 p

(0 - - T )o@ -n)
1 ! ! .

- |gl(s(t))|sl(t) ((hl(s(t))s (t)) n(t))

1 /
R o CLORTE)
= ~(by(s(0) - my(s(0)))
=7(s(t), tel
This completes the proof.

Now, suppose that (I, f) and (J, g) are equivalent with the parameter change s : I —
J,s' > 0onI. Then

() = g(s(0)),
f(6) =g'(s)s' (),
F1'(0) = g"(s(0)(s' ) + &' (s0)s" (1),
F(6) = " (s0)(s' )’ + 28" (s0)s' (s (1)
+8"(s)s')s" (t) + &' (s(0)s" (t)
= &"(5(0)(5'©)’ +3¢" (s)s'©s"(©) + &' (s)s" (®), tel.

Hence,

'@ xf"@)-f" @
= (&' (s)s' ) x (8" (s)(s'©®)" + &' (51" (®)))
(g ”’(s(t))(s’(t))3 +3g¢"(s(0)s'()s" (t) + g' (s(t))s"" (1))

= (5'(0)*((g' (s(0) x 8" (s(1)))

(" (50)(s' )’ + 38" (s()s' ()" (1) + &' (s(0)s" (1))
= (5'(0)"((g'(s()) x 8" (s0))) - g"'(s(0)))
= (5'(0)" (k(s(0))) 7(s(0))
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Bl x (O
- (S (t)) |f’(t)|6

= F'O <" Of @), tel,

7(t)

whereupon

'@ xf"@)-f" ()
If'(&) x f" (t)]?

Example 1.40. Consider the curve in Example 1.38. Using the computations in Exam-
ples 1.38 and 1.39, we get

7(t) = , tel

f"'(t) = (asinht,acosht,0), teR,

and
(&) xf"(®) - f"(t) = —a’*(sinh t)* + a*(cosh t)?
=a ((cosh t)® - (sinh t)3)
=a®, teR
Then
3
T(t) =
(a®+/1 + cosh(2t))?
1
= ad+coshan) 'R

Exercise 1.19. Let
d = |f'|(zt + kb).

Prove that the Frenet formulae can be written in the form:

t'=dxt,
n =dxn,
b'=dxbh.

Solution. We have

dxt=|f"|(rt+Kb) x t
= |f'|(k(d x 1))
= ||y
=t
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dxn = (Jf'|(rt + kb)) x n
= |f'|t(txn) + |f'|k(b x n)
=|f'|th - |f'|xt
= n'
and
dxb = (|f'|(ct + kb)) x b
= (If'|7)txb) + (|f'|x)(b x b)
= =(/f'|t)n
=b".
This completes the proof.
Definition 1.24. The vector d is called Darboux vector.

Exercise 1.20. Prove that the support of a biregular curve lies in a plane if and only if
its torsion vanishes identically.

Solution. Let (I,f) be a biregular curve.
1. Suppose that (I,f) lies in a plane I, i. e., f(I) ¢ II. Then f’ and f" are parallel to this
plane. Thus, IT is the osculating plane and then

b(t) = const, tel.

Hence,
0=D'(t)
=—lf'(t)]-t(t) (o), tel
Therefore,
T(t) =0, tel
2. Let
T(t)=0, tel

Then, by the Frenet formulae, it follows that b(t) = const = by, t € I. On the other
hand,

b(t) = t(t) xn(t), tel.

Hence, f'(t) L by, t € I, and then
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0=f"(t)-by, tel
Therefore,
(f(©)-by) (t) = 0

and

(f(t) —f(to)) . bO = 0

Thus, the support of (I,f = f(t)) is contained in a plane that is perpendicular to by,
This completes the proof.

Exercise 1.21. Let (I,f = f(s)) be a naturally parameterized curve with constant curva-
ture x, > 0 and let its torsion be 0. Prove that the support of f lies on a circle of radius
1/Kp.

Solution. Since the torsion of the curve f is 0, we have that the curve f is a plane curve.
Introduce

f1=f+Kln.

0
Hence,
fl=f"+ Klon’
=t+ Klo(—KOt)
=t-t
=0 onl

Thus, f] is a constant vector ¢ and

so that

This completes the proof.
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Exercise 1.22. Let the support of the naturally parameterized curve (I,f = f(s)) lieon a
sphere with center (0, 0, 0) and radius a > 0. Prove that

1
K> -.
a
Solution. We have
P =,
whereupon
ff'=0
or
f-t=0.
We differentiate the latter equation and find
0=f"-t+f -t
=t-t+f-t
=1+f-(kn)
whereupon
-1=x(f-n).
Note that
If -n| < |flIn| = a.
Therefore,
k=t 1
If'n] ~a

This completes the proof.

1.7 Advanced practical problems

Problem 1.1. Prove that the following curves are regular:
1. forn=3,[a,b] =[0,10],

f() = (1+t+t2,t3,t), t € [0,10];
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2. (catenary)n=2,[a,b] = R,
f(t) =(t,cosht), teR;

3. forn=4,[ab]=[-11],

f(t) = <ﬁ,t2, t3,1+t+t2>, tel[-11];
4. forn=>5,[a,b] =[-24],
ft) = (et, cost,sint, t? +t,1— t), te[-24];
5. forn=2,[a,b] =[0,1],
fO) =(E1+t+ 2+ 416, te(0,1].

Problem 1.2. Prove that the following curves are equivalent:
1. (shortened cycloid)

f(t) =(at—dsint,a—dcost), te [Z —],
and
g(s) = (aarcsins — ds,a—dVi-s?), se [
2. (lengthened cycloid)
f(t)=(at-dsint,a—dcost), te [E, J—T],
and

g(t) = (as® +a—dsin(s® +1),a—dcos(s* +1)), se [\3/1 - % \3/1 - g]

3. (epicycloid)
r R+r
f() = <(R +7) cos(}—{) - rcos<7t>,

(R+r)sin<£t)—rsin<lﬂt>>, te[g,g],
R r 42

and
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_ T2\ reos( R
g(s) = <(R+s) cos(Rs > rcos( - S >
(R+r)sin<1%sz>—rsin<¥sz>>, Se€ [\/_ﬁ E].

Hint 1.7. Use the following functions:
1. t=¢(s) =arcsins, s € [\/72)1];

2 t=¢(s)=+1Lse[{1-Z,1-%];

3. t=¢(s)=shse [, \1]

Problem 1.3. Let ¢ > 0 be a constant. Find the arc length functions of the following
curves:
1

f() = <t,ccosh<£>>, t € [a,b];

f(t) = (c(cost +tsint),c(sint - tcost)), te [ab];

3 f) = <c<10g<tan<§>> + cost>,esint>, t € [a,b];

Answer 1.8. 1. olle _ gotle _ galc , goac

5 , telab];

Lf(t, a) =
Li(t.@) = 5( - a), telab)

Le(t, a) = c(log(sin t) ~ log(sina)), ¢ € [a,b].

Problem 1.4. Find Lf(b, a), where

1.
f() = (t,log(cost)), te [0, %T]
2 (1, 1 .
f(t)—(t,zt —Elogt>, te [1,4],
3. 1.
f = (t— 3 sinh(2t), 2 cosh t), t €[0,2];
4,

f(t) = (8ct?,3c(2t* - t*)), te[0,V2],
where ¢ > 0 is a given constant.

Answer1.9. 1. log(2 + V3);
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3.
4.
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B+ 1log2;
%(cosh 4-1);
24c.

Problem 1.5. Prove that the curves in Problem 1.3 are not naturally parameterized.

Problem 1.6. Find the equation of the tangent line at the corresponding points of the
following curves:

1

fO =(-25+1), teR, t=1
f(©® = (a(cos )°, a(sin t)3), teR;

f®) = (a(t -sint),a(t - cost)), teR;

1, 141, 1
f(t)=(t+§t2—1t4,§t2+§t3>, teR, t=0;

f(t) =(acost,bsint), teR;

ft) = <§<t+ %),g(t— %)) t#0, teR

f(@t) = (' cost,e'sint,e'), teR, t=0;

Answer 1.10. 1.

2Fi(A)-F,(A)+4=0, AeRR
2F;(A)sint + 2F,(A)cost —asin(2t) =0, A teR;

FyA)=2a, t=QQk+1)nm, keZ AeR
and
t t
Fi(A) = Fy,(A) tan<§> + a<2tan<z> - t> =0, AeR,
t+Q2k+Dn, kez

A =0, AelR;

bcostF;(A) + asintFy(A) —ab=0, tAeRR;
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6. b 1 a 1 ab
z<1+t—2>Fl(A)—z<1—t—2>F2(/D—T=0, t,/‘IGIR;

Fi(A) + F3(A) = 2F,(A) -2=0, AeR.
Problem 1.7. Find the equation of the normal plane at ¢t = 1 for the following curve:
f=(tt56), teR

Answer 1.11.
X+2y+3z-6=0.

Problem 1.8. Prove that following curves are biregular:
1L f(t) = (e',e¥,e%), t € [2,4];

2. ft)y=(ete X e te[L,3];

3. f(t)=(t+72tt%),t e [1,8].

Problem 1.9. Find the osculating plane at an arbitrary point for the following curve
tHeR:

(6 =(t16), teR

Answer 1.12.
3t§x—3t0y+z—tg =0, tekR

Problem 1.10. Find the curvature of the following curves:

h f®) = (a(t-sint),a(l - cost)), teR,
where a € R is a parameter, a # 0;

+ f(®) = (2cost - cos(2t),2sint - sin(2t)), teR;

3 f(t) = (a(cos t)>, a(sin t)3), teR,
where a € Ris a parameter, a # 0;

* f(®) = (a(cost + tsint),a(sint — tcost)), teR,
where a € R is a real parameter, a # 0;

§ ft)= (e, e, tV2), teR;

6.

f(t) = (2t1ogt,t?), teR, t>0;
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f(®) = ((cos )3, (sin t)3,cos(2t)), teR.

Answer 1.13. 1. 1

)= ———,
) 4al sin(3)|

. 3

2 K(t) = ——, :
16| sm(§)|

3. K(t) 2 teR;

~ 3lasin(20)]’

4 k(t) = i, teR;
|at|

5.

K(t) = V2w

(et +e7t)?2
b K(t)=—2t , teR, t>0;
(1+26%)3

7 K(t) = 3 teR

25sintcost’
Problem 1.11. Find the torsion of the curves 5, 6, and 7 in Problem 1.10.

Answer 1.14. 1.

V2
T(t)=————, teR;
® (et + e7t)?
2. 2t
T(t)=———=, teR;
® (1 + 2t2)2
3. M=—2  teRr

25sintcost’

Problem 1.12. Prove that for the following curves the curvature and torsion are equal:
1
f(t) = (acosht,asinht,at), telR;

fy=(Bt-1,353t+£3), teR
Problem 1.13. Find the values of the parameters a and b so that for the curve
f(t) = (acosht,asinht, bt), teR,

the curvature and torsion are equal.



62 — 1 CurvesinR"

Answer 1.15. a = b.

Problem 1.14. Find the points on the curve

f(t) = ((cost)’, (sint)*, cos(2t)),

at which the curvature and torsion are equal.

Answer 1.16.

t=%+kn, keZ.

Definition 1.25. A parameterized curve (I, f) is said to be a general helix if its tangents

make a constant angle with a fixed vector in R®,

Problem 1.15 (Lancret theorem). Prove that a space curve (I, f) with the curvature k > 0

is a general helix if and only if the ratio of its torsion and curvature is a constant.

Solution. Without loss of generality, suppose that (I,f) is a naturally parameterized

curve.

1. Let (I,f) be a general helix and v be a fixed direction that makes a constant angle

with its tangents. Then

t-V = cosq, = const.

Hence, differentiating we arrive at

t-v=0,
whereupon
kn-v)=0.
Since k > 0, we find
n-v=0
Thus, V L n and
b -V =sinaq,.

Now, we differentiate equation (1.9) and obtain

0=n'-v

=(-kt+7h) -V

=—k(t-V)+7(h-V)

= —-KC0S @y + T sinay,

(1.9)
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from where
T _C08Q
K sina
= cotag
= const.
Let
T
k@
where ¢, is a constant. Then
T = oK,
or
cok—7=0.
Hence,

0= (cgk—7)n
= Co(kn) — n

= Cot’ + b,,
whereupon, after integrating,

cot+b=1, 0#WweR’.

Let
O
V=—W.
[
Then
V=—"(cpt+h
|%t+bﬁ° )
1
= — (¢t +h).
1+c):
Hence,
. C
v-t= 0

A+cd)

63
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Thus, V and t make a constant angle. Therefore (I, f) is a general helix. This com-
pletes the proof.

Definition 1.26. The curves that have the same principal normals are said to be Ber-
trand curves. Usually, for a Bertrand curve there is only one curve having the same
principal normals. The two curves are said to be Bertrand mates, or associated Bertrand
curves, or conjugated Bertrand curves. If a Bertrand curve has more than one mate, then
it has infinitely many, and the curve and its Bertrand mates are said to be a circular
cylindrical helix.

Let f; and f, be Bertrand mates and f; be naturally parameterized with the param-
eter change s. Then f, depends on s and we assume that f,(s) and f;(s) have the same
principal normals. Both points will be called corresponding points.

Exercise 1.23 (Shell theorem). Suppose that f; and f, are two associated Bertrand curves
and f; is naturally parameterized with the parameter change s. Prove that the angle of
the tangents at the corresponding points is a constant.

Solution. Let I ¢ R be the range of s. Let also {t;,n;,b;} and {t;,n,, b,} be the Frenet
frames of f; and f;, respectively. Then

fo(8) = fi(s) + a(s)ny(s), sel, (1.10)
for some a € C'(I). For the principal normals n, and n,, we have the relations
ny(s) = +tny(s), sel. 111
We differentiate equation (1.10) with respect to s and find
B 5 - Y1510 dny
25 &) = g O) g5 Smals) + als)— 2 (s)
da
=1(8) + g(s)nl(s) +a(s)(—Kk1($)ty(s) + 71(S)by(8))
da
= (1- a(s)k ()t (s) + g(s)nl(s) +a(s)ry(s)by(s), sel.
Since
df
g5 S sel

is a tangent vector to f, and s € I, it is perpendicular to n,(s) and n,(s), s € I. Hence
using the latter equation, we find

_dh .
0= Is (8) - my(s)

da
= £(s), sel.
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Therefore, a is a constant on I and (1.10) can be written in the form
£(8) = fi(s) + any(s), sel, (1.12)

and
%(s) = (1= axy(9))ty(s) + ary(by(s), sel. (113)

Let now s, be the arc length parameter of f;. Then

o) = Ly
2

N
= s (s) i, (s) (1.14)

d d
- (1- axl(s))tl(s)d—ssz(s) + arl(s)hl(s)d—;(s), sel.

Let
w(s) = £(t(s), ,(5)), sel
Then
4(s) - ty(s) = cosw(s), sel
Hence,
ty(s) = cos w(s)t;(s) + sinw(s)by(s), sel, (1.15)
and

b, (s) = &(-sinw(s)t;(s) + cos w(s)by(s)), sel,
where ¢ = +1. We differentiate with respect to s equation (1.15) and find

at, , . . dw dty
s (s) = —sinw(s) s ($)ty(s) + cos w(s) s

+ CoS W(s)d—w(s)hl(s) + sin W(S)& (s)

ds ds
. dw
= —sin W(s)£(s)t1(s) + cos W(S)Kky(s)ny(s)
+ COS W(S)Z—?(s)bl(s) —sinw(s)y(s)my(s), sel.

Since
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dt,
ds,

ds,

(S2) ds

dt,
g(s) = (8)s
ds,
= —=($), I,
Koy s (), se
we have that
dt,
5 > I)
s (s), se
is collinear with ny(s), s € I. Therefore
dt
0= d_sz(s) 1y(8),
dt
0= d—sz(s) by(s), sel,
and then

dw
E(S) =0, sel.

Thus, w is a constant on I. This completes the solution.

Problem 1.16 (Bertrand theorem). Let f; be a naturally parameterized curve on I with
parameter change s. Prove that f; is a Bertrand curve if and only if its torsion and cur-
vature satisfy

aky(s) +bty(s) =1, sel, (1.16)

where a and b are constants.

Solution. We will use the notations used in the solution of Exercise 1.23.
1. Letf] and f, be Bertrand mates. Thus, from (1.14) and (1.15), we find

ds
=(1- =(s),
cosw = (1 - axy(s)) as, (s)
sinw = ar (s)ﬁ(s) sel
=4arn ds, > >

whereupon

or
(aty(s)) cotw =1-axy(s), sel.

Let
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b =acotw.
Hence,
aky(s) + bty(s) =1, sel,

i.e., we get (1.16).
Suppose that (1.16) holds. Then

%‘” = (1- ary(9))ty(s) + azy()by(s), s €.

Therefore,
d d
6{32 %(s) = (Tl(s))z(a2 +b)), sel
Note that
L) Pogs) - (dfz( Lrs )) (de( Los ))
_ [ ds, 2
-(20)
1
(ds (s)?
Consequently,

2

= (rl(s))2<£(s)> (@+b?), sel.
ds,
From here, we conclude that
7(8) ;—ssz(s) =const, sel.
As above,
(1 - axy(s)) ﬁ(s) =const, sel.
ds,

Now, we differentiate equation (1.14) with respect to the parameter change s and
find

RSg(s) = )

= (1@ (5) o (5) T ) + ) (s)dbl()
Z
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=(1- axl(s));—ssz(s)xl(s)nl(s) - arl(s)%(s)rl(s)nl(s)
= ((1 - axy(s))Kq(s) - a(rl(s))z)ﬁ(s)nl(s), sel.
ds,

Thus, n; and n, are collinear on I. Hence, we conclude that f; and f, are Bertrand
mates. This completes the proof.
Suppose thatI € R.

Definition 1.27. A rigid motion of R®isamap D : R® — R®,
Dx =Ax +Db,

where A € ngg,ATA =I,detA=1andb ¢ R3. The map

X — AXx, xe]R3,

is said to be the homogeneous part of the motion.

Problem 1.17. Let (I,f = f(t)) be a biregular curve and {t(t), n(t), b(¢)} be its Frenet
frame at ¢ € I. Let also D : R®> — R be a rigid motion with homogeneous part A. Prove
that

{At(t), An(t), Ab(t)}

is the Frenet frame of (I, f; = Df) at t, and f and f; have the same curvature and torsion.

Solution. We have
fi(®) = Af(©) + b.
Then

fl(t) = Af' (),
' (0) = Af"(0),
1’”(t) :Af”,(t).

Therefore,

0]
AG]
_A'®
Af (1)l
_Af'®)
AG]

4(t)
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f'()
“Airo
=At(t), tel,

I AGCEY O]
P

_ A0 x A" ()]
AGE
IO xf" @l
G
=k(t), tel,

Ky (t)

and

HORNAGEAHOVAG
V‘lr(t)|3 |f11|4
A" A0 -AFTO)AF ()
AP IAf"(6)|
J0) '@ -f" @)
“Aror Y roe
:<f%o_vw»ﬂmy%w
HGE THGE
=Ak(t), tel,

Kk (t) =

as well as

k(0

Ky(t)

_ kO

B AK(t)

=An(t), tel,

f () xfi'(0)

Iff (&) x f{" (®)]

_ (Af'(1) x (Af" (1))
[(Af7 (D)) x (Af" ()]

_ A x ")
IF" () x f" (0]

EWAGEIMO

IF"() x f"(©)]
=Ab(t), tel,

ny(t) =

b, () =

and
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@) xf' @) - f" (0
JHCRAGR
_ (Af'() x (A" (1) - (A x f" (1)
(A" (1)) x (Af"(t)[?
(f' @) xf"@®)-f" (0
If'(6) x f" ()|
=1(t), tel.

T(t) =

This completes the proof.

Problem 1.18. Let m,n € C'(I), m > 0 on I. Prove that there is a unique parameterized
curve (I, f = f(s)) for which

k(s)=m(s) and 7(s)=n(s), sel.

Solution. Let {e;, e, e5} be a frame in R3 at ty € R. Consider the system

x| = m(s)x,,
X, = —M($)X; + n(s)Xs,
X5 = -Nn(s)X,, sel.
Define the matrix
0 m(s) 0
A(s) = | -m(s) 0 nis) |, sel

0 -ns) 0
Then we get the Cauchy problem

X = A(S)X, sel,

X(Sg) = (eq, €y, 3).

The last Cauchy problem has a unique solution x. For it, we have

x'x) = (x")'x + x"%’
=x"ATx + x"Ax
=x"(a" +A)x

=0.
Thus,

(x"x) = const.
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Since
x' (s9)x(sp) =1,
we get
x'x=1
Define
f(s)=my+ jxl(t)dt, sel.
We have
f(s) = x4(),
If' ()] = [x4()] = 1,
f"(s) = X{(s) = m(s)x,(s), sel.
Hence,
F(8) x f"(s) = m(s)(%1(8) x Xy(s)) #0, sel.
Therefore,
f"(s) = m' ()X, () + m(s)Xy(5)
= m'(8)Xy(s) + m(s)(~m(8)x,(S) + n(s)X5(S))
= —(m(s))le(s) +m'(8)X,(8) + (m(s)n(s))X3(s), sel.
From here,
(F' &) xf"(9) - () = (m(8)(%1(8) X Xy(5)))

- (~(m(9))*xy(5) + M (5)Xy(5) + (M($)n(5))Xs(5)))
= (m(s))zn(s)((xl(s) X X,(8)) - X5(S))
= (m(s))zn(s), sel.

Therefore
') x £ ()l
AN TOTE

=m(s), sel,
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and

(') xf"(s))-f"(s)
If'(s) x f"(s)2

_ (m(s)*n(s)

(m(s))?

=n(s), sel.

T(8) =

This completes the solution.

Problem 1.19. Let (I,f) and (I, g) be two biregular parameterized curves and let
k() =Kk (D), ) =7, [f'O]=]g'® tel
Prove that there is a rigid motion D : R®> — R® such that
g =Df.

Solution. Let ¢, € I and {t,n, b}, {t;,n;,b;} be the Frenet frames of f and g, respectively
att e I. Letalso D : R® — R® be the rigid motion such that

D{t’ n, b} = {tl’ n;, hl}
Let f; = Df and {ty, ny, b,} be the Frenet frame of f,. We have

Ky (t) = k() = Ky(0),
T,(t) = 7(t) = 7y (b),
@0 =1g'®], tel

Thus, {t,, ny, by} and {t;, ny, by} satisfy the system

t' = |f'|xn,
n' = —|f'|xt + |f'|7h,
b' = -|f'|mn.

Since for f = f;, these solutions coincide, i. e.,

t2 = tl’
nz = Ill,
hz = hl on I

Hence,
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LW _ g
I, 1g'®l

>

whereupon

it =g, tel,
fo(t) —g(t) = const, tel,

and
fo(0) — g(t) = fo(tg) — g(ty) =0, tel

This completes the proof.
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2 Plane curves

In this chapter, we are interested in a particular class of curves, the plane curves. We
first introduce envelopes of families of such curves in R? which depend on a single pa-
rameter. Then, the evolutes of plane curves are defined as envelopes of their normals. A
key notion in R? is the complex structure J for studying the curvature of plane curves.
The notions of rotation angle and signed curvature are also explored.

2.1 Envelopes of plane curves
Suppose thatI,]J,A < Rand
f=ftA), tel, A€A. 2.1

Definition 2.1. The envelope of the family (2.1) is a parameterized curve tangent to a
member of the family at each point.

Exercise 2.1. Prove that the envelope of the family (2.1) is subject to the equations
f=ftA

and
fixfi=0.

Solution. Let (J,g) be the envelope of the family (2.1) and P € g. Then P is a tangency
point between g and a member of the family (2.1). Thus, its equation depends on 4, i. e.,

g=g0A), AeA
Since P lies on a curve of the family (2.1),
g =f(t@),2).
The tangency condition between g and f(t, A) is as follows:
&l fe
whereupon
g xfr=0.

Hence, using that

https://doi.org/10.1515/9783111501857-002
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& =fit' +fi
we get

0=(fit'+f,)xf;
=fi xfr.

Letf = (fi,f5). In fact, we have
Je xfi = (0,0, fupfar = frefar)-
Hence,
0=Ffixf
is equivalent to the condition
fufor = fifur = 0,

which is the equation of the classical envelope of the family (2.1). This completes the
proof.

Example 2.1. Letf : R> - R? be given by

FO) = (B + At + 255 - at+ 25, (t,1) e R

We have
[ =2+ At + 2%,
Lt =t -at+ 25 (t,A) e R~
Then
Fua(t,A) =t +24,
Fa(t,A) = =t + 24,
fue(t,A) =2t + 4,
e, =2t =4, (t,4) € R~
Hence,

fi @& 2) = (fie (6, ), for (8, 1))
=2t +A,2t - A),

HEA) = (fat. ), fu (6. )
=(t+24,-t+20), (L,A) € R
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and the equation of the envelope for the considered family is (see Fig.2.1)
0= (t+20)(2t = A) — (2t + ) (=t +22)
= 265 — th + 4At — 207 — (<2* + 4t — At + 22%)
= 2% + 30t — 2% + 2% - 3t — 20
= 4t* — 4}
=4(t-D(E+A), (L) e R

or

t=+A (t,A)eR~:

Figure 2.1: The members of the family f(t,A) = (¢2 + At + 22,12 = At +A%), t € [-2,2], and its envelope: (blue)
A =0; (orange) A = 1; (green) A = 2; and (red)A = t.

Example 2.2. Letf : R — R? be given by
FOD = (t+At-2), () e R

see Fig 2.2. We have

fl(t) A) =t+ A,

LN =t-2 (1) eR:
Hence,

flt(t’ /‘1) = 1)
f‘Z[(t> A) = 1)



2.1 Envelopes of plane curves = 77

4

Figure 2.2: The members of the family f(t,A) = (t +At,t —A), t € [-2,2]: (blue) A = 0; (orange) A = 1; (green)
A=2.

f]/'l(t’/‘{) = L
fat ) =-1, (t,1) e R,

and

ft(ta)l) = (flt(ta)l)>f2t(t) /1))
=11,

LG = (fia(t, A), foa (8, 2))
=1-1), (@A) eR?

so the equation of the envelope is

0 = fi (&, Dfaa (6, A) = fia (6, D)fo (8, A)
=1-1-1-(-1
=1+1
=2,
which is impossible. Thus, the considered family of curves has no envelope.

Exercise 2.2. Let f : R> — R® be given by
ft,0) =(A+acost,A+asint), (t,A) e R

where a > 0 is a given constant. Find the equation of the envelope of the considered
family.
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Answer 2.1.

a a
)ti—,)l_—>, AeR.
< N

Now, suppose that the family of curves is given by the equation

F(x,y,A) =0,

where F is a C*-function with respect to its arguments.

Exercise 2.3. Prove that the envelope for the family (2.2) satisfies the system

22)

2.3)

F(x,y,A) =0,
Fy(x,y,A) = 0.
Solution. Locally, a curve of the family around some point can be represented in the
form
X =x(t,A),
Y=y,

and equation (2.2) can be written as follows:
F(x(t,2),y(t,A),24) = 0.
Let
f(&2) = (x(t,2),(64)).
We have

fi(t, 1) = (x (8, ), (¢, 1)),
fit,A) = (6 (8, 2),y,(8, ).

From the equation
fexfi =0,

we get

X (£, )y (8, ) — x; (8, Ay, (£, A) = 0,

and then there is a constant K € R such that

X,(6,2) = Kx, (6, ),
YAt ) = Ky,(t, A).

2.4
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Now, we differentiate equation (2.4) with respect to t and A and find

Fuxe + By, =0,
FXXA +Fyy/1 +F)L =0,

whereupon

0 = FyKx; + FyKy, + F,
=K(Fx, + Fyyt) +F,
=F,.

This completes the solution.

Example 2.3. Consider the following family of curves:
Fooy )= (x -+ (- -a*=0, (xy)eR:, AeR,
where a > 0 is a given parameter. See Fig. 2.3 for the value of a = 1. We have
F06ypA) =-2x-A)=2y=-2), () eR: AeR
Hence, we get the system

-2 +@y-1*-d*=0,
2= =2y-2) =0, () eR:, AeR,

Figure 2.3: The members of the family F(x,y,A) = (x —A)Z +( —/1)2 —¢?=0,wherea=1andt € [-m

(blue) A = 0; (orange) A = 1; (green) A = 2; and (red) A = (x + y)/2.
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or
-2 +@-N*-a* =0,
X+y-2A=0, (x,y)e]Rz, AeR,

or

X+y

A:_:
2
<_x+y> <_x+y) —d (y) eR: AeR
2 2
whereupon
Y )
(x 4)’) L« 4)’) —d (ny) e R

or

(x-y?=2d% (xy) € R
Thus, the envelopes of the considered family of curves are
X-y=1+V2a, (xy)eR~:
Example 2.4. Consider the family of curves
FOx,y,A) =(x+y —/1)2 —2% =0, (x,y) € R’ AeR
We have

EF(Gy,A) =2x+y+A) —4A
=2x+y-24), (xy)e R>, AeR

Hence, we get the system

(x+y+)t)2—2/12=0,
2x+y-N=0, (xy)eR:, AeR,

whereupon

A=Xx+Y,
Ax+y -20+y)%=0, (y)eR:L AeR

Thus, the envelope of the considered family is



2.2 Theevolute = 81

y=-x, (x,y)e€ R

Exercise 2.4. Find the envelopes of the following families of curves:
1.
FOoy )= -+ -D"-2=0, (xy)eR, AeR

2 F(x,y,A) =xcosA+ysinA-p=0, (x,y)elRZ, AER,
where p > 0 is a given constant;
> F(x,y,A):y—(X—A)Z:O, x.y) e]RZ, AeR;
4. F(x,y,/l):yz—(x—/l)zzo, (x,y)eIRz, AeR.
Answer 2.2. 1.
y=0, (xy)eR%
2. 2 +y2 _ pz) (x,y) € R,
> y=0, (xy)eR}
4.

y=0, (xy)e R%.

2.2 The evolute

Suppose thatI ¢ R.

Definition 2.2. Let (I,f = f(t)) be a parameterized curve. The envelope of the family of
the normals to f is said to be evolute of f.

Let

f@) = (RO.£(1), tel

Suppose that f € C2(I). The equation of the normals to f is as follows:

X -AOF O+ Y -LO)f®) =0, tel,

or

fLOX +£,0Y = i) ©) +fLOf, (1), tel

We differentiate it with respect to t and find
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(X + £ (DY =[O0 + HOF® + (FO) + (1)

Therefore the evolute of f satisfies the system

fLOX +£,0Y = fOF (©) + f,OF (©),
1 (0X + £ (DY = RO O + KO © + FO) + (f©), tel.

Example 2.5. We will find the evolute of the ellipse
f(t) =(acost,bsint), t e [0,2rn].
Here

fi(t) = acost,
f,(t) = asint, te[0,2m].

Then

fi(t) = —asint,

£ (t) = acost,

' (t) = —acost,

7'(t) = -bsint, t e [0,27].

Hence, the equations of the evolute of the ellipse are as follows:

—asintX + bcostY = acost(—asint) + bsin t(bcost),
—acostX —bsintY = acost(—acost) + bsint(-bsint)

+ (asin t)2 + (b cos t)z, t € [0,2m],

or
—asintX +bcosty = (b* - a*)sint cost,
—acostX —bsintY = (b2 - az)((cos t)? - (sin t)z), t € [0,2m],
or
2_ g2
—asintX + bcostY = sin(2t),

2.5)
—acostX — bsinty = (b2 - az) cos(2t), t e [0,2m).

Multiplying the first equation of the latter system by sin ¢ and the second by cos t, we
get
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(b2 - az)((sin t)? cos t + (cost)® — (sint)? cos t)

= (b2 - az)(cos 0%, tel0,2m),

-aX

whereupon

2 2

x="""cost)®, telo,2m].

Now, we multiply the first equation of the system (2.5) by cos t and the second by —sin ¢
and find

by (b2 - az)(sin t(cos t)® — sin t(cos t)* + (sin t)3)

= (b* - a)(sint)®, te[0,2m],

or

b - @

Y = sint)®, ¢ e [0,27].

Thus, the evolute of the ellipse is

2 p2 2 2
(a b (cos t)3, b—a(sin t)3>, t € [0, 2m].
a b
Exercise 2.5. Find the evolutes of the following curves:
1
f(t)=(t-sint,1-cost), te[0,2m];
2. 2 2
Y =2px, (x,y)eR’

where p > 0is a given parameter;

3.
f(t) = (acosht,bsinht), teR,

where a,b € R, (a,b) # (0,0);

4.
f(®) = (a(cost)®,a(sint)®), t e [0,27],

where a € R;

5.
y= x* keN, (x,y) € R%.
Answer 2.3. 1.
(t+sint,-1+cost), te][0,2m];

2.

27py* = 8(x -p)’, (%)) € R%
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2
3 @)7 +(by)T = (@ -1D)°, (xy) e RS
4. 2 2 2 2
x+y)? +(x-y)3 =2a3, (xy)eR%
5. 1 1 1+ 2k(4k — 1)t¥?
——((2k - 2)t — 4k N, > teR.
< 2k -1 (¢ ) ) 2k(2k — 1)t2k-2 €

2.3 The complex structure on IR?

Definition 2.3. The complex structure on R? is the map J : R* — R? defined by
Ju = (=uy, uy), U= (uy,Uy) € R%.
Suppose that {e,, e,, e;} is an orthonormal basis in R* and
U= (Up,Uy), v=(v,Vy) € R%.

Exercise 2.6. Prove that

Ju-Jv=u-v.
Solution. We have

]u = (_u2>u1):

Jv = (=vy,vy).

Then

Ju-Jv = (up)(=vy) + uyvy

=Uu-v.

This completes the solution.

Exercise 2.7. Prove that
Ju-u=0.
Solution. We have
Ju = (—uy, uy)

and
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Ju-u=(-uy)(uy) + uguy = 0.

This completes the solution.

Exercise 2.8. Prove that

V-Ju=([uxv)-es.

Solution. We have

€
125)
V)

U
V)

€3

= (v, — Uyvy)e;

and

Ju = (—uy, uy),

(u X V) . 63 = U1V2 - uzvl,

as well as

v ']u = (—uZ)V1 + U1V2

= U1V2 - qul.

Thus, we get the desired result. This completes the proof.

Exercise 2.9. Show that

JJu) = -u.

Solution. We have

Ju = (=g, uy)

and

JUuw) = (=uy, —uy)
= (—ly, —Uy)

= —(uy, Uy)

=-uU

This completes the solution.
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2.4 Curvature of plane curves

Suppose that (I, f = f(t)) is a parameterized plane curve.

Definition 2.4. The signed curvature of f is defined by

k. - fII ]fl .
* |fl|3
Let
f=W0rh).
Then
f'=W.5)
f” _ 11/’ 2”)’

I =(AHH).
Example 2.6. Letf : R — R? be defined by

fO)=(t+t5), teR

Here
A =2,
L =t+t5, teR
Then
fl®) =2t
ft)=1+2t, teR,
and
HOENA
() =2, teR
Then

JHOEXAGNAG))
= (2t,1+ 2t),

JF' (1) = (-1-2t,20),
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'@ = (' @©.f'®)

=(2,2), teR,
and
'@ - Jfle)=2-(-1-2t) +2-2t
=-2-4t+4t
=-2, teR,
as well as

3
2

o)+ F o))

ol = (¢
(at+u+mﬁ%
(
(

4t* +1+4t+4t)

8t +4t+1) teR

Therefore the signed curvature of the considered curve is

2
K(f)=———= teR

(8t2 + 4t +1)?

Example 2.7. We will find the signed curvature of the following curve:

y=sinx, xe€[0,2m].

Here

f(x) = (x,sinx),

A0 =x,

fo(x) =sinx, x € [0,2m].
Then

flx) =1,

£, (x) = cosx,

1II(X) _

5 (x) = -sinx, x € [0,27],

and

87
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f100 = (F (20, £ (0)
= (1,cos x),

JF' () = (= cosx, 1),

') = (' 0. £5' ()

=(0,-sinx), x € [0,2m].
Hence,
") - Jf' (x) = —sinx,
ool = ((F'00)° + (5 00)°)

=(1+ (cosx)z)%, x € [0, 27].

3
2

Therefore the curvature of the considered curve is

K, = —La, x € [0,2m].
(1+ (cosx)?)z

Exercise 2.10. Find the signed curvature of the following curves:
1

y= acosh(%), x e R

2 y2 =2px, XeR,
where p € R, p > 0, is a parameter;
3.
f =), teR
4, .
f(t)=(acost,bsint), ¢t e [0,2m],
where a,b € R are parameters;
5.
f(t) = (acosht,bsinht), teR,
where a,b € R are parameters.
Answer 2.4. 1.
2
R X, € IR 5
o )
2. - _p?
VP P - (X,y) € R%

p+201  (P+pd)i



3.
4.
5.
Note that
Thus,

2.4 Curvature of plane curves

6
t(4+9t2)7

teR;

ab

- te[0,2m];
(a2(sin t)% + b%(cos t)?)z

—-ab

(a?(sinh t)? + b*(cosh t)?)

K. | =K.

89

Exercise 2.11. Let (I,f = f(t)) be a parameterized curve and (J,g = g(s(¢))) be a natu-
rally parameterized curve which is equivalent to f. Prove that

Solution. We have

and

Hence,

KE(st)) = ki(t), tel

f)=g(s), tel

f'(0) = g'(s®))s'(0),
£ = g"(s0)(s' ) + g (s0)s" @), tel.

(F"®) - (f ) = (&" (s(0)(s' ®) + &' (s0)s" (1) - (Jg (s(1)s' (1)

= (&"(sO)(' ) - (5" g (s(1))
+(g'(s)s" () - (5" )8 (s(1)))

= (5'©)’(g"(s(0) -Jg' (1)) + (" ()" (©) (' (5(0)) - T&' (s(8)))

= (s'(0)*(8" (s(0)) - J&'(s(®)))

= (5'(0) K (s(0)

= If' @0k (st), tel,
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whereupon

" t . ! t
(s0) - 0 I0
=il(t), tel

This completes the solution.

Exercise 2.12. Let (I,f = f(s)) be a naturally parameterized curve. Prove that

f(s) =k, (8)f'(s), sel.

Solution. We have

f's)-fls)=1, sel.

Then
f's)-f"(s)=0, sel,

and

ffif” onlL
Since

f'LJf" onlI,
we get

fUJf onl

and there is a function a on I such that

f'(s) = a(s)f'(s), sel.
Hence,

K. (s) = f"(s) - Jf'(s)
= a(s)(Jf'(s) - Jf'(s))
= a(s)(f'(s) - f'(s))

=a(s), sel.

Consequently,
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(s) =k, (S)Jf'(s), sel

This completes the proof.

2.5 Rotation angle of plane curves

Let (I,f = f(t)) be a parameterized plane curve.

Definition 2.5. The rotation angle of f is the function 6 : I — R defined by
t(t) = (cos 6(t),sin 6(t)), tel.

Here t is the unit tangent vector to f.

Exercise 2.13. Prove that
0'(t) =k, (Of'(®)], tel

Solution. We have

f'(t)

) I.
For '

t(t) =

Then

!

tw 1 oy 1 '
O = "0+ (g )10 <l

and

t'(t) = (-sin 6(1)6'(t), cos O(1)0' ()
= 0'(t)Jt(t)
/ JHG)
-0
7y ( 7o) >
f'(t)
1&0) ) tel

-0y

Thus,

1 1 N e SO
For “”(lf’(tn)f ® e(t)]<|]f'(t)|>’

Hence,
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F O D) IO + <f’(t)<|f,%> ) @

! 1 ! !
or
<L>(f”(t) J'®) = 6" Olif' (o)
If' ()]
=0'O|f't)] tel
whereupon

6'(t) = (") - Jf O)(f' ©OF)
=k )" (®)], tel

This completes the proof.

Example 2.8. Consider the curve in Example 2.6. Using the computations in Example 2.6,
we find

0(t) = —arctan(4t +1) +a, teR,

for some constant a.

Example 2.9. Consider the curve in Example 2.7. Using the computations in Example 2.7,
we find

0(x) = —arctan(cosx) +a, xe€R,

for some constant a.

Exercise 2.14. Find derivatives of the rotation angle of the curves in Exercise 2.10.

Answer 2.5. 1. a
) (Xay) € IRZ)
y
2. 1 2
, , , R
p+2x  y*+p? () €
3. L, teR;
4 +9¢2
4, ab
, te]l0,2m];
a’(sin t)% + b%(cos t)? [ ]
5. ab

, te]0,2m].
a%(sinh t)2 + b%(cosh t)2 < [0,27]
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2.6 The curvature center

Definition 2.6. Supposethatf : I — R*isa parameterized plane curve. A point g € R*is
said to be the curvature center at f; = f(t,), t, € I, of the plane curve f if there is a circle
¥, centered at g, which is tangent to the curve f at ¢;, such that the signed curvatures of
f and y at ¢, coincide. Thus, the position of the point g for arbitrary ¢ € I is given by

1 ')
k() If (O

g =f(t) +

Example 2.10. Let f be the curve as in Example 2.6. Using the computations in Exam-
ple 2.6, we get

2 3
g(t) = (A1 + ) - BE AL L
2 (8t2 + 4t + 1)1
= (At+8) - W( 1-2t,2t)

8t? 4t 1
<t2+ A t(8t2+4t+1),t+t2—8t3—4t2—t>

<2t + 8t +4t+1+16t3+8t + 2t

2
_<wﬁ+wﬂ+m+1
B 2

7t2—3t—1>

, -8t - 3t2>, teR.

Example 2.11. Let f be the curve as in Example 2.7. Using the computations in Exam-
ple 2.7, we get

2.1
g2(x) = (x,sinx) — a+ (C.OSX) ): ! -(-cosx,1)
SInx (1 + (cos X)2)z
2
= (x,sinx) — M(— cosx,1)
sin x
< cos x + (cos x)3 . 1+ (cos x)2 )
=[x+ —, X— —
sin x sin x

>

_ (X sin x + cos x + (cos x)3 (sin x)2 —1-(cos x)2 )
sin x sin x

B <xsinx + COS X + (cosx)3 -1 - cos(2x)

- , - ) X € [0, 2m].
sin x sin x

Exercise 2.15. Find the curvature center of the curves in Exercise 2.10.

<x asmh< >2acosh<zx>>, XeR;
a a

Answer 2.6. 1.
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2. 2 2 3
(_y +2p _y_2> yeR;
2p p
3. 2 4 3
(_Zt +9t! 4t+12t > R
2 3
4, 2 p2 2 2
<a ab (costy®, =4 (sint)3>, t € [0,277];
5. 2, p2 2, 32
(a Zb (cosht)B,—a Zb (sinht)3>, teR.

2.7 Theinvolute

Definition 2.7. Letf : I — R? be a naturally parameterized curve and ¢ ¢ I. The invo-
lute of f with origin at f(c) is the parameterized curve

gs)=f(s)+(c-9)f'(s), sel
If f : I — R? is an arbitrary parameterized curve, then we can replace the parameter ¢t
by the arc length

t

s = J[f’(u)]du

0

and define the involute of f as being the involute of the naturally parameterized curve
equivalent to it. In this case, the involute is given by the equation

IO

&) =) + (c - s(t)) For

tel,

where s = s(t) is the arc length of f.

Example 2.12. Consider the circle
f(t) = (cost,sint), t e [0,2rm].

We have thatf : [0,271] — R?is a naturally parameterized curve and, for any ¢ € [0, 277],
the equation of the involute of the considered circle is (see Fig. 2.4 for ¢ = 0)

gty =fO) +(c-0f'(t)
= (cost,sint) + (c — t)(-sint,cost)

= (cost—(c - t)sint,sint + (c - t)cost), t e [0,27].
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Figure 2.4: The involute of a unit circle given by (cost + tsint,sint — tcost), t € [0,2m]: (blue) the circle;
(orange) the involute.

Exercise 2.16. Find the involute of the curve
y= acoshg, x €R,

where a > 0 is a given parameter.

Answer 2.7.
¢ —sinh(2
<t + —X(“),acosh<)—(> + <c - sinh<{)>tanh<)—(>>, teR
cosh(a) a a a

Exercise 2.17. Letf : I — R® be a naturally parameterized curve and g be the involute
of f with the origin at ¢ € I. Prove that

K(s) = sign(ki(s))

lc— sl

Solution. By the definition of involute, we have
8) =f() +(c-9f'(s) sel

whereupon, after differentiating with respect to s, we get
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g's) =f'(s)~f'(s) + (c = s)f" ()
=(c-9)f"(s), sel
By the definition for curvature, we have

"(s) = 1k(s)jf'(s), sel.

Hence,
g's) = (c- s s)f' (), sel,
and
£"(s) = = (Yf'(9) + (€ = )(<L) (S)f'(5) + (c = L) (9)
= (K() + (c = )KL OF'(®) + (c - LS (s), s el
Note that
k() =f"(5)JF'(s), sel,
from where
K(s) = Jf"(S) - f(5), sel,
and
J"(s) = -k(9)f'(s), sel.
Then
g"(s) = (-kL(s) + (¢ = )(K)) SN () ~ (¢ - )(KL() ' (8), s e,
and
Jg'(s) = ~(c - ()" (s),
g')] = lc - sllcl(s)|, sel
Therefore
-5
= m((—d(s) + (=)L) ©OVF () - (€ - H(K(9)'F'(9))

(~(c - (9 (9))
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S S 3
el (.(s))
_signls)
= Teos sel.

This completes the proof.

Exercise 2.18. Let f : I — R® be a naturally parameterized curve and g be its involute
with the origin at ¢ € I. Prove that the evolute of g is f.

Solution. The evolute of g is given by the equation

1 Jg'(s)
KE(s) 18" ()l

&i(s) = g(s) +

lc—s| (- KL ()
sign(x(9)) I(c - KL (S)F' ()]
lc-sl  (c- KL ()
sign(k.(s)) Ic - sIIKL() 1" ()]
=f(s) + (c = S)f'(s) + (c - )*f'(s)
=f(s)+ (c-9)f'(s) - (c-9)f'(s)
=f(s), sel

=f(s) + (c - 8)f'(s) +

=f(s) + (c - 8)f'(s) +

This completes the proof.

2.8 The osculating circle of a curve

Definition 2.8. Let f : I — R? be a parameterized curve. The osculating circle of f at a

point ¢ € I is the circle centered at the curvature center g(t) with radius equal to KL(I)

Exercise 2.19. Let f : I — RR® be a plane parameterized curve and t; < t, < t; € I,
C(ty, ty, t3) be the circle passing through f(t,), f(t,), and f(t3), and assume thereisat € I
such that . (t) # 0. Prove that the osculating circle of f at the point ¢ is the circle

C(t) = tllmt C(tl, tz, t3)
1—)
t,—t

t;—t

Solution. Let A(t, t,, t3) be the center of the circle C(t;,t),t;) and h : I — R be the
function defined by

h(t) = |f(t) - Alty b 1), tel.

Then h is a smooth function and
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R =f'(t)- (f(t) - Aty ty, 13)) + (F () = Alty, . 1)) - (8)
=21 (1) - (F(t) - A(ty, ty, t3)),

R (t) = 2f" (1) - (f(£) - A(ty, b, t3)) + 2 ' (8) - £ (8)
=2f"(0) - (F(D) - Alty, by 1)) + 2 (O, tel.

(2.6)

Since h is differentiable and
h(t)) = h(ty) = h(t3),

applying the mean value theorem, we get that there are points u,, u, so that
< <ty<ly<ts

and
h'(uy) = h'(wy) = 0.

Now, we apply again the mean value theorem, and we find that there is a point v; €
(uy, uy) such that

h"(vy) = 0.
By (2.6), we obtain
h () = 2f' () - (f () - Alty, . 1)),

R (uy) = 2f () - (f (uy) — A(ty, b, t3)),
1 (vy) = 2" (v) - (F () — Aty b, 1)) + 2" ()

Hence, letting t;, t,, t; — t, we arrive at

- (ft)-Aw®) =0,

M e ey el @2.7)
'@ (f@©) - A®) = -|f' @),

where

A(t) = tllmtA(tl, tz, tg)
1—)

t,—t
t3—-t

By the first equality of (2.7), we conclude

(f&) - AWm) - Jf' ()

FOF Jf' ().

JORVIOE
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Considering in the second equality of (2.7), we obtain
(@) - I O)(F©) - AQ) -JF'®) = -If @)

Here, because |f'(t)* = Jf'(¢) - Jf' (1),
(@ - I O)(F© - A®) = - OFT ©),

whereupon
'O J' @ e 1
Faop U0 -A0)=imaf O
1
K (O(f () - A(t)) = [f,(t)lff (),
and
-4 = +(t)|f’(t)| I,
or
1 )
f) =A®) - m}f ().

This completes the proof.

Exercise 2.20. Letm : I — R be a continuous function.
1. Prove that there is a regular naturally parameterized curve g : I — R* such that

K. (g)(s) =m(s), sel
2. Prove that g is unique up to a proper motion of R?.

Hint 2.8. Use the solution of Problem 1.18.

Example 2.13. Leta € R,a # 0,and m : R — R be a function defined by
mt)=a, telR.

By Exercise 2.20, it follows that there exists a unique curve g : R — R? such that
K(s)=a, seR

Let 6 be the rotation angle of g. Then

0'(s)=a, seR,
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whereupon
0(s)=as+0y;, seR,
where 6 is a constant. Let now t be the unit tangent vector of g. Then

t(s) = (81(5),&(9))
= (cos(6(s)), sin(6(s)))

= (cos(as + 6y), sin(as + 6y)), sel
Thus, we get the system

&1(s) = cos(as + 6y),

g(s) =sin(as + 6;), seR.
Hence,
g1(8) = % sin(as + 0y) + &10>
FAOE —% cos(as + 0y) + 8y, S€l,

where gy, 82 are given constants, or

g1(8) = % sin(as) cos 6, + % cos(as) sin By + g19»
&(8) = —% cos(as) cos O + %sin(as) sinf + gy, Se€l,

or

<g1(s)> _ ( %sin(as) cos O + % cos(as) sin 6, ) . <g10>

8(s) —% cos(as) cos O + é sin(as) sin 6, 820

_ cos(3 —6y)  sin(7 - 6) écos(as) . <g10>, SeR
- sin(% - 6p) cos(% - 0p) }1 sin(as) &2

We here conclude that any plane curve of constant signed curvature can be obtained by
1
gi(s) = " cos(as),
82(8) = %sin(as), seR.

Here a rotation following by a translation, i. e., a rigid motion was applied. Thus, the
only plane curve of constant positive curvature a is the circle of radius %
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Definition 2.9. Natural equations of a curve are equations of the following form:

K =K. (5),
F(x,s) =0,

{K = K, (1),
s = s(t),

where s is the arc length of the curve.

Example 2.14. Let] = (0,c0)and f : [ — IRZ,f(s) = (f1(5).£5(5)), s € I, be a curve for
which

1
K. ($)=—, sel,
+(8) = —
where a > 0 is a given parameter. Let 0 be the rotation angle of the curve f. Then
0'(s) = l sel,
as
whereupon
0(s) = 1logs+ é sel, beR,
a a
and

S = eaG(s)—b’

ds = ae®9Pag(s), sel
Then, if t is the unit normal vector to f, we get

t(s) = (cos 6(s), sin 6(s))
= ({(s)f(5), sel.

Thus, we get the following system:

f{(s) = cos 6(s),
f,(s) =sin6(s), sel,

whereupon

fi(s) = J cos 6(s)ds

=a J cos 0(s)e®®@bqg(s)
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aeaG(s)—b

= (acos 6(s) + sin 6(s)),

fo(s) = J sin 6(s)ds

=a J sin 0(s)e®® P qg(s)

a eae(s)—b

= W(a sin6(s) - cos B(s)), sel.

Thus, the parametric equations of the considered curve are

ae?®)b .
fi(s) = m(a cos 0(s) + sin 8(s)),

aeaO(s)—b )
f(s) = W(a sin (s) — cos 6(s)), sel.

Exercise 2.21. Let a > 0 be a given parameter. Find the curves that are determined by
the following natural equations:

1.
K.(S)=a, selk
2. 1 2
=a(l+s”), sel;
3. s*+ 1 2:16a2, seR;
(k.(5))

Answer 2.9. 1. 1
X +y2 = 2 (x,y) € IRZ;

2 y = acosh 2, xy) € R

3. 1/1 2
—<—sV16a2 -84 arcsin<i>, S—), teR
4a\ 2 da ) 2

2.9 Advanced practical problems

Problem 2.1. Find the envelopes of the following families of curves:
1
F(x,y,A) = (x = ) +y2 —a*=0, x,y) € R%, AeR,

where a > 0 is a given constant;
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2.
FOOoyD) =y - (x-2*=0, (x,y)eR:, AeR;
3. _ 2 3 _ 2
FOo,y,A)=3y-A)"-2(x-4)"=0, (y eR’,, AeR;
4. F(x,y,A):(l—)lZ)x+2)ty—a:O, (x,y)eIRz, AeR,
where a > 0 is a given constant;
5.

F(x,y,A) = AZ(X -a)-Aly-a=0, (xy)e€ IRZ, AeR,
where a > 0 is a given constant.

Answer 2.10. 1.
y==*a, (X)y)ce€ 1R2;

2 y=0, (xy)eR%
3. 2
x-y=0, (xy) eR5;
4, 2, .2 _ 2.
X +y" —ax =0, (x,y)eR%
5.

y2 +4a(x-a)=0, (x,y)e R

Problem 2.2. Find the evolutes of the following curves:

1.
y= X keN, (x,y) € R
2.
y=logx, xeR, x>0
3. .
y=sinx, xelR;
4.

Vs
y=tanx, xe¢ <—§,

SR

5.
(a(log(tan(%)) + cos t>,asin t), teRR,

where a € R;

r=(1+cos¢), ¢ e€][0,2n].

— 103
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Answer 2.11. 1 )
t k-1 sk Ck+1D" g
<t+ K + 2k + )t Qk+Dt™ + o tr,

t+ 2k 2k + Dt + 2k + 12

), teR;

2k(2k + 1)tk
2. 1 2
2t+;,logt—t—1, teR, t>0
3. 2 2
<t+cost1+(,COSt) )_Z(Cf)st) ) —
sin t sin t

4. < 1+ (cost)* 1+ (cost)* ) < T )

t— - ,tant + - te|l—-——=,=};

(cos t)? sin(2t) sin(2t) 272

5.
(alog(tan<£>>, i) teR,
2 sint
or
(t,acosh(g», teR;
a

<g(cos ¢ — 2(cos (j))3 +2), % sin ¢(1 - cos ¢)>, ¢ € [0,27].
Problem 2.3. Find the curvature of the following curves:

1

f(®) = (a(t —sint),a(-cost)), teR,

where a € R s a given positive parameter;

2.
f(® = (a(1 + m) cos(mt) — amcos((1 + m)t),
a1+ m)sin(mt) — amsin((1 + m)t)), t € [0,27],

where a, m € R are given positive parameters;

3.
f(®) = (a(cos )%, a(sint)®), t € [0,27],

where a € R s a given positive parameter;

4.

f() = (a(cost + tsint),a(sint —tcost)), te[0,2m],

where a € R is a given positive parameter;
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5.
r=ap, ¢el0,2m],
where a € R is a given positive parameter;
6.
r= aeh¢, ¢ € [0,2r7],
where a, h € R are given positive parameters;
7.
r=a(l+cos¢), ¢e€]l0,2r],
where a € R is a given positive parameter;
8.
r?=a? cos(2¢), ¢ € [0,2m],
where a € R is a given positive parameter;
9.
22
Xy 2
¥+ﬁ:1, (x,y) € R,
where a, b € R are given positive parameters;
10.
22
Xy 2
E—ﬁzl, (x,y) € R,

where a,b € R are given positive parameters.

Answer 2.12. 1.

— L tepo,m
4a|sm(§)|
2 LYIM e jo,2m)
dam(m +1)| sm(z)l
3. 2
— 0, tel0,2n];
saismen L0
4. l, teR;
at
5. 2
2+—¢3’ ¢E[0,ZT[];
a(l+ ¢?)z
6. 1
—, ¢ €[0,27];
rvl+h?
7 & 6 < [0,27];

4a|cos("§)|’
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8. 3r
2 ¢ € [0,2m];
9. 474
(b4X2 + a4y2)5
10. dpd
a’b T (x,y)ele.

(b4X2 + a4y2)§
Problem 2.4. Find the derivatives of rotation angle of the curves in Problem 2.3.

Answer 2.13. 1.

1
=, tel0,2m];
5 € [0, 2]
2 1+2m, t € [0,27];
3. 1, tel0,271];
4. 1, tekR;
5. 2
2+9 , ¢ €l0,2r];
1+ ¢?
6. 1, ¢ el0,271];
7 2, ¢pelo2m);
2
8 3, ¢e[0,2n];
9. a’p’ 2
TA9 49 X) € ]R 5
b4X2 + a4y2 ( y)
10. a3b3 2
m, (x,y) e R".

Problem 2.5. Find the curvature center of the curves in Problem 2.3.

Answer 2.14. 1.
(a(t - 3sint),a(1-3cost)), te[0,27];

2. < a(l+m) cos((1 + m)t),

cos(mt) + am
1+2m 1+2m

ad +m) sin(mt) +

1+2m T7om Sm(@+ m)f)>, t € [0,271];
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3. (a((cos t)? - 3(sin t)z) cos t, a((sin t)? - 3(cos t)z) sint), te[0,27];
4 (acost,asint), te|[0,2r];
5. 1+¢* a¢
<—a2 Y sing + 21 47 cos @,
a1+ ¢%) ap . > .
TR pe cos P + 21 47 sing |, ¢ € [0,2n];
6. (—ahe" sin ¢, ahe" cos ), ¢ € [0,271];
7. . 2. 2 .
<a<cos¢ + (cos @)” — 3 sin¢ — 3 sm(2¢)>,
. 1. 2 1
a(smd) *3 sin(2¢) + 3 cos ¢ + 3 cos(2¢)>>, ¢ € [0,2m];
8. 2 a’sin2¢)sing 4 . a® sin(2¢) cos ¢ '
<§rcos¢ + R E— §rsm¢ - 3—r> ¢ € [0,27];
9. 232 3 (12 _ 2\(cin )3
((a b”)(cos 9) , (b” - a”)(sin ¢) ) 6 € [0, 27;
a b
10. (@*b® - a*y* - b*x®)x (@®b* + b*x* + aty?)y
< a*p? ’ a’b* ) (xy) € R

Problem 2.6. Prove that the evolute of a plane curve is the geometrical locus of the cur-
vature centers of the curve.

Hint 2.15. Use the definition of the evolute.

Problem 2.7. Find the involute of the following curve:

(t,1t2>, teR.
4

<§+ 2 (c—log(t+ VZ 1 4)),

t2 +

Answer 2.16.

S

t
t2+4

(c —log(t + Vt? +4))>, teR

Problem 2.8. Find the curves that are determined by the following natural equations:
1
s? 1

-+t —————=1, R,
2 Ru,er 0 CF
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where a,b > 0 are given parameters;

(Ki(—S))Z:ZaS, seR,

where a > 0 is a given parameter;

25
a2=a2€’ a, SeR,

)2

where a > 0 is a given parameter.

Answer 2.17. 1.
s =asint,

R=bcost,

at
O(t)= —, tel;
() b
(a(cost + tsint),a(sint — tcost)), teRR;

3. i
<a cos t,a(log(lJr smt) —sin t>> teR
cost

Problem 2.9. Find the natural equations of the following curves:
1

3
y=x, x>0

(a(cost +tsint),a(sint —tcost)), teRR;

3.
<a<log<tan %) + oS t), asin t), teRR;

r=all+cos¢), ¢eR

Answer 2.18. 1. s

(27s + 8)° = <4+$> , SseR;
(k. (5))%(27s + 8)?
2 1 2
=2as, SeR;
K. (S)
3 2 s
< 1 ) +a2:a2e’2a, selR;
K. (S)
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4, 2

X +—2:16a2, seR.
(k.(8))

Problem 2.10. Let a > 0 be a given parameter. Find the parametric equations of the
curves for which:

1 1 s

(Ki(—s))z(sin 0(s)) =a seR;
2. s=atanf(s), seR;
3.

s=acosf(s), seR
Answer 2.19. 1.

a
<—m,—acot 6(3)), seRR;

2. T 0(s) a )
<a10g<tan<z + T)) c0s605) ) SeER;

(_2(1 - ¢0s(26(s))),

—%(29(3) - sin(29(s)))>, seR.



3 General theory of surfaces

In this chapter we first define parametrized surfaces and their equivalence under dif-
feomorphisms. Regular surfaces are also given and studied with examples. We revisit
curves by means of parametrized surfaces. The equations of the tangent plane and the
normal to a surface are derived in different forms: parametric, nonparametric, and im-
plicit. Considering the notion of differentiability of a map between two surfaces, we
introduce the shape operator of a surface and investigate its properties. In addition, we
deal with intrinsic invariants of a surface (the first fundamental form and the Gauss
curvature) and extrinsic invariants (the second fundamental form, the principal cur-
vatures and the mean curvature). Finally, the well-known Joachimsthal and Meusnier
theorems are proved.

3.1 Parameterized surfaces

Suppose that U < R%.

Definition 3.1. A regular parameterized surface in R® is a smoothmap f : U — RS,
(t;, ) = f(t;, 1), and

fi, xfy, #0 on U. BD

Definition 3.2. The requirement (3.1) is called the regularity condition.

Example 3.1. Let f : R* - R3 be given by

2 2
(t, b)) = (& + t,, €172, e172)  (£,,t,) € R%.
1> 82 1 2 1> 2

Here

[t ) =t + 1y,

Lt t) = elite,

Filtity) = €7, (6,1,) € B2,
Then

fie, (1, 1) =1,
fi,(t, ) =1,
Jor, (ty, 1) = 2t1etf*‘2,
for, (1, ) = e,
for, (G, 1) = e,

https://doi.org/10.1515/9783111501857-003
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2
fétz(tl’ tz) = 2t2€t1+t2, (tl’ tz) € ]RZ.

Hence,
ot ) = (fig, (1, 1), for, (81, ), for, (11, )
_ (1,2t1etf+t2, et1+t§))
Jo, (6 83) = (fig, (61, &), for, (81, &), fae, (81, 8))
2 2
= (1,171,267, (t,t) € R,
and
2 2
[ (61, 6) X f, (11, 1) = ((4tyt, — 1)e" 00,
2 2
(1-2t,)e"™, (1 - 26)e"1%%2), (13, t,) € R%
Then

fo(tit) x fi, (41, ) # 0

ifand onlyift; + % ort, # % Thus, the considered surface is regular for those (t;, t,) € R?
with t; # 1 or t; # 3; see Fig.3.1.

Figure 3.1: A reqular parameterized surface f(t;, t,) = (t; + tz,e“z”?,e“”%), (t;, 1) € [0,2/5].
Example 3.2. Consider the unit sphere (see Fig. 3.2)
. . T
f(t, ;) = (costy costy,sinty costy,sint,), t; €(0,2m), ¢t,¢€ <_§’ E)'

Here
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05"

Figure 3.2: The unit sphere f(t;, t,) = (cos t; cos tp, sint; cost,,sint), t; € (1/10,6), t, € (-17/10,17/10).

fi(t, ty) = costy costy,

foty, ty) = sint; costy,

fé(tl’ tz) =sin tz, tl € (0,27T), tz € <—%[, %T)

Then

fie, (t1, 1) = —sint, cos t,,

fie,(t1: &) = —cos ty sinty,

for, (t1, ;) = cOS ty COS 1,

for,(t1, 1) = —sint; sint,,

o, (t1, 1) = 0,

T

for,(t 1) =costy, t €(0,2m), ;€ (_E’ §>,

and

fo (6, ) = (e, (&1, £2), for, (61, &), fo, (81, £5))

= (-sint; cost,, cost; cost,, 0),

o, (6 6) = (fir, (61, &), for, (81, 69, S, (81, )

. . . o
= (—costsint,,—sint; sint,,cost,), t; €(0,2m), ¢t)e€ <—§, E)'

Hence,
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Jo, (i, ) X £, (1, 1)
= (cos t;(cos t2)2, sin t;(cos tz)z, (sin t1)2 sin t, cos t, + (cos t1)2 sint, cost,)
= (cos t;(cos tz)z, sin t;(cos tz)z, sint, cost,)

T 7T
0, t€(0,2m), tel-= %)
# 1 € (0,2m) zé( 22)

Thus, the unit sphere is a regular surface in (0,27) x (-7, 7).

Example 3.3. Consider the torus
f(t;, ty) = ((@+bcosty) costy, (a+bcosty)sinty, bsinty), (t,t,) € [0,27] x [0, 27],

wherea,b € R,a > 2,b € (0,1). Here

fi(ti, &) = (a+ bcosty) cost,,
fo(ty, ty) = (a+bcosty)sint,,
f;‘}(tl’ tz) = bsin tl’ (tl’ tz) € [0, 271'] X [0, 27'[]

Then

fie, (t1, &) = =bsint; cos ty,

fie, (t1,ty) = —(a+ beos ty) sinty,

for, (t1, 1) = =bsint; sinty,

for, (t1> 1) = (@ + bos ty) cos t,

fa, (t1, 1) = beost,

for,(t1, t2) = 0, (81, 8) € [0,27] x [0, 27],
and

o, (t 65) = (fig, (&1, ), for, (B4, ), for, (1, 85))

= (-bsint, cost,,—bsint, sint,,bcost),

Jo,(t 6) = (for, (61, &), for, (11, ), far, (81, 15))
= (—(a+bcosty)sinty, (a+bcosty) costy,0), (t,ty) € [0,27] x [0, 27].

Hence,

fi,(ti, ) x fr, (1, t) = (-b(a + bcosty) cost, costy, —b(a + bcos t;) sint, cos ty,
— b(a + bcosty) sint;(cos tz)Z — b(a + bcosty) sint(sin tz)z)
= (-b(a + bcos t;) cos t; cos ty, —b(a + b cos t;) cos t; sin t,,

—b(a +bcost))sint)
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or
o (t1, 1) X f (t1, ) # (0,0,0), (8, t,) € [0,27] x [0, 271].

Thus, the considered torus is a regular surface; see Fig. 3.3, for the valuesa = 3,b = 1/2.

Figure 3.3: The torus f(t;,t;) = (3 + % costy)costy, 3+ % costy)sinty, % sinty), (t;,t,) € [0,2m] x [0, 2m].

Exercise 3.1. Prove that the elliptic cylinder (see Fig. 3.4)
f(t,t;) = (acosty, bsinty, ty), t; €[0,2n], ¢, €[0,2],

where a,b € R, a,b > 0, is a regular surface.

20¢
154
z, 0%
“10}
05}
00}

Figure 3.4: The elliptic cylinder f(t;,t;) = (3cost;, 4sinty, ), t; € [0,2m], ¢, € [0,2].

Definition 3.3. The set f(U) c R® is said to be the support of the parameterized surface
(U.N).
Example 3.4. Let U = R? and

f(t,ty) = (ty +2,3t, + 4ty + 5,6t + Tty +8), (t;,t;) € R?
(see Fig. 3.5). We will find the support of f. Here

filty, ) =6, +2,
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f‘z(tl, tz) = 3t1 + 4t2 + 5,
jé(tl’ tz) = 6t1 + 7t2 + 8, (tl’ tz) € IRZ.

Then
tbb=H-2
fo=3t +4(fi —2) +5,
fa =6t +7(f; -2)+8,
or
tb=fi-2
fo =3t +4f; -3,
f3:6t1+7f1—6,
whereupon
t2 :fl—l,
; _f-44+3
1 3 >
: _f3-7+6
1 6 .
Hence,
f-4h+3 _f-7fi+6
3 6
and
2(f, -4 +3)=f3-Tf; +6,
or

2f, - 8fi—-6=[f;-T7f1 -6,
i. e, the support of the considered surface is the plane
fi-2f,+f3=0.
Example 3.5. Let U = R? and

f(t,ty) = (costycosty, costy sinty,sinty), (f,ty) € R?,
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Figure 3.5: The line f(t;, t,) = (£, + 2,3t + 4t, + 5,6t; + 7t, + 8), (t;,£,) € (0,1/10).

Here

fi(t, ty) = cost; costy,

fo(ty, &) = cos ty sin ¢y,

fé(tl, tz) = Sin tl’ (tl, tz) € ]RZ.
Observe that

fl2 +f22 +f3z = (cos tl)z(cos tz)2 + (cos tl)z(sin tz)2 + (sin tl)z
= (cos tl)2 + (sin t1)2

=1,
i. e, the support of the considered surface is the sphere
f12 + fz2 + 32 =1
Exercise 3.2. Find the support of the surface
fti,ty) = (t cOS by ty SiNty, 1), (5, ty) € RE

Answer 3.1. The helicoid
f

tanf; = ]71

Definition 3.4. Letm,n e N,M c R™,N c R". Amapf : M — N is called a homeomor-
phism if it is bijection, f € C(M), and its inverse f* : N — M is also continuous.

Definition 3.5. Let m,n € N, M ¢ R™, N ¢ R". A differentiable map f : M — N is
called a diffeomorphism if it is bijection and its inverse f ' : N — M is differentiable. If
fec (M)andf e C"(N), then f is said to be C"-diffeomorphism.

Example 3.6. Consider the map f : R — R? given by
fltut) = (G +6,6-86), (t6) R, 4t #0,

Here
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2 3
At t) =t + 6,
2 3 2
f‘z(tl, tz) = tl - tZ’ (tl’ tz) € IR 5 tltz :/: 0

Then

fi, (4, ) = 24,
Jfie,(t: 1) = 313,
for, (61, 1) =28y,
St 1) = =385, (b, 1) € RS, ity # 0.

In the considered case, the Jacobian matrix is

_ fltl(tl’tz) fltz(tlytz)>
It ty) = (fzﬁ(tl, t)  for,(t1o )

2, 36 )
= R (tl’ tz) e R, tltz +0,
2, -3t

and for its determinant we have

detJ;(ty, t;) = —6t;t; — 6ty
=248, (4, t) € R, ity # 0.

— 117

From here, we conclude that the considered map is a diffeomorphism away from the ;-

and t,-axis.

Example 3.7. Consider the map f : R — R? given by
flty,ty) = (sin(& + £),cos(E + £5)), (b, t) € R%.
Here

fity, ty) = sin(& + £5),
fltnt) = cos(t +65), (i, t) € R™

Then

fi, (1, ) =24 cos(&f +£5),

fi, (1, ) = 2t cos(&f +£5),

for, (1, ) = -2t sin(t; + 13),

fo, (6 ) = =26, SIn(8] + ), (43, 1,) € R,
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The Jacobian matrix is

fir, (s ty)  fi, (G, tz))
t,t,) = (11 :
Jrtv ) <f2t1(t1’ ty)  fo, (1)

2t cos( + ) 2t, cos(th + t5)
2t sin(t + 65)  ~2t,sin(& + £2)

>,(mmew,

and its determinant is
detJ(ty, ty) = —4tyty sin(t; + ) cos(6f + 63) + Atyty sin(&; + 83) cos(t] + )
=0, (t,t) e R%
Thus, the considered map is not a diffeomorphism.

Exercise 3.3. Prove that the map f : [1,2] x [1,2] — R? given by
f(t, ) = (t1costy, tysinty), (4, t) € [1,2] x [1,2],

is a diffeomorphism.

Definition 3.6. The two parameterized surfaces (U, f) and (V, g) are said to be equiva-
lent if there is a diffeomorphism ¢ : U — V such that

f=g).

Definition 3.7. A subset S of R® is called a regular surface if for each point a € S there is
a neighborhood W in S and a homeomorphism f : U — W so that f(U) = W and (U, f)
is a parameterized surface. The pair (U, f) is said to be a local parameterization of the
surface S. The support f(U) is called the domain of the parameterization. If f(U) = S,
then the surface S is said to be a simple surface.

We have the following representations of the surfaces:
1. If(U,f)is a parametrized surface and

ftity) = (ilty, ). folty, ). 581, 1)), (b, 8) € U,

then the equations

fi = fity, ),
fo = oty ty),
fi=f3(t, ), (. 8) € U,

are said to be parametric equations of the parameterized surface (U, f).
2. Ifg:U—-R,gecCU)and
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[t ty) = (b, b, 8(t3, 1)),

then this representation of the parameterized surface (U, f) is said to be an explicit
representation.
3. LetW cR®andF e CY(R®).

Definition 3.8. The set
S = {(tl’ tz, t3) € ]R3 ZF(tl, tz, tg) = 0}

is said to be 0-level set of F.

Definition 3.9. The vector
gl‘adF(tl, by, t3) = (le(tp t, tg),th(t1, ty, tg)»FtS(tl, b, t3)), (t, ty, t3) € W,

is said to be gradient vector of F.

Exercise 3.4. Let
grad F(t;, t, t3) # (0,0,0), (t;, 85, t3) € W.

Prove that S is a regular surface.

Solution. Let (tf, tg, tg ) € W. Without loss of generality, suppose that
0,0 .0
Ft3(t1>t2’t3) #0.

Then, by the implicit function theorem, there is a neighborhood M of (t{, ¢, tJ) and
f € ¢! such that

t3 :f(tb t2)> (t], tz, tg) e M.

This completes the proof.

We call
F(t;,t,t3) =0
the implicit representation of the parameterized surface
ts=f(t;, ), (t,ty,t3) € M.

Example 3.8. We will find the parametric equations of the ellipsoid

2 2 2

X Z
S5 =1
a b c
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where a,b,c € R, (a, b, c) # (0,0,0). Let

X = acost; Costy,
y =bsint, cost,,

z=csint,, t€[0,2n], ¢t €[0,m].
We have

X z 1 s 1 2 1, . 9
—+—+C— = E(acostlcostz) + ﬁ(bsmtlcostz) +g(csmtz)

= (cos tl)z(cos tz)2 + (sin tl)z(cos tz)2 + (sin tz)2
= ((cos t1)2 + (sin tl)z)(cos t2)2 + (sin tz)2

= (cos t2)2 + (sin tz)2

=1 t €[0,2n], vel0,m].

Thus, the parametric equation of the ellipsoid is
f(t, t) = (acostycosty, bsint, costy, csinty), t € [0,2m], ¢, € [0,7].

See Fig. 3.6 for the valuesa=1,b =2,and ¢ = 3.

Figure 3.6: The ellipsoid f(f1,t;) = (cost; costy,2sint; costy,3sint,y), t; € [0,2m], ¢, € [0, m].
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Example 3.9. Consider the hyperboloid of one sheet

2 2 2
y Z 1)

_+__
at b

where a,b,c € R, (a,b, c) # (0,0,0). Let

X = acosht; cost,,
y =bcosh¢ sint,,
z=csinht;, t eR, t €[0,2m].

Then

— — i— = %(a cosh t; cos tz)2 + %(b cosh t; sin tz)2 - C—lz(c sinh t1)2
= (cosh tl)z(cos t2)2 + (cosh tl)z(sin tz)2 — (sinh t1)2

= (cosh tl)z((cos tz)2 + (sin t2)2) — (sinh t1)2

= (cosh t;)* — (sinh t;)*

=1

Thus, the parametric equation of the hyperboloid of one sheet is
f(t, &) = (acosht;costy, beosh ¢ty sinty, csinhty), t e€R, & €[0,2n].

See Fig. 3.7 for the valuesa=1,b = 2,and ¢ = 3.

Example 3.10. Consider the two-sheeted hyperboloid

where a,b,c € R, (a,b,c) # (0,0,0). Let

X = asinht; cost,,
y =bsinht; sint,

z=ccosht;, t eR, t,el0,2m].

Then

2 2 2

X z 1 . 1 . . 1

P 2)_2 -k ?(a sinh ¢; cos t2)2 + ﬁ(smh t; sin t2)2 - c_Z(C cosh t1)2
= (sinh tl)z(cos tz)2 + (sinh tl)z(sin tz)2 — (cosh tl)2

= (sinh tl)z((cos tz)2 + (sin t2)2) — (cosh tl)2
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X 1

Figure 3.7: The hyperboloid of one sheet f(t;,t,) = (cosht; cost,,2cosht;sint,,3sinht;), t; € [-1,1],
t € [0, 2m].

= (sinh t,)? - (cosh ;)
=-1.

Thus, the parametric equation of the two-sheeted hyperboloid is
f(t, &) = (asinht; costy, bsinh ¢ sinty, ccoshty), t e€R, ¢ €[0,2n].

See Fig.3.8 for the valuesa=1,b=2,and c = 3.
Example 3.11. Consider the elliptic paraboloid

XZ yz
2t =5
a b

where a,b € R, (a,b) + (0,0). Let
X = atl Cos tz,
y =Dbt;sint,,
zZ= tf, tieR, t,€[0,2n].
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Figure 3.8: The two-sheeted hyperboloid f(t;,t,) = (cosht; cost,,2cosht;sint,,3sinht;), t; € [-1,1],
tz € [0, 2”].

Then

A %(atl cost,)” + l%(btl sint,)?
= tf(cos t2)2 + tf(sin tz)2

= tf((cos t,)* + (sin t,)%)

- tf

=z, tHeR, ¢t el02m].
Thus, the parametric equation of the elliptic paraboloid is
f(t;,t,) = (at, costy, bty sinty, £2), t € R, t, € [0,27].

See Fig. 3.9 for the valuesa =1and b = 2.
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-05

/-05

0.0 )
05
~.J/-10
1.0

Figure 3.9: The elliptic paraboloid f(t;, t,) = (t; cos t,, 2t; sintz,tf), t € [-1,1],t, € [0, 2m].

Example 3.12. Consider the elliptic cylinder

2 2
Yy
S+ =1
a* b
where a,b € R, (a,b) + (0,0). Let
X =acosty,
y=asint,

z=v, t€[0,2n], t eR

Then

2 2

X 1 1 .

o i—z = E(a cost)” + ﬁ(b sint;)°
= (cos tl)2 + (sin tl)2

=1 t€[0,2n], t,eR.
Thus, the parametric equation of the elliptic cylinder is
f(t, ) =(acost, bsinty, t,), t; €[0,2m], t,eR

See Fig. 3.10 for the valuesa =1and b = 2.

Example 3.13. Consider the cone

P 7
— 4+ = —
al b %

where a,b,c € R, (a,b,c) + (0,0,0). Let

X = at1 Ccos tz,
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Figure 3.10: The elliptic cylinder f(t;,t,) = (a cost;, 2sint;, t), t; € [-1,1], ¢, € [0, 2m].

y=bt;sint,,

z=ct;, teR, t,el0,2m].
Then

XZ yZ

o + W = g(at1 cos v)2 + b—lz(btl sin t2)2
= tf(cos tz)2 + tf(sin tz)2
= tf((cos tz)2 + (sin tz)z)
-
2
-3
Thus, the parametric equation of the cone is

f(t, &) = (aty costy, bty sint,, cty), ueR, t,€[0,2m].

See Fig.3.11 for the valuesa=1,b =1,and ¢ = 2.

Example 3.14. Consider the hyperbolic paraboloid

where a,b € R, (a,b) + (0,0). Let

X =a(ty + 1),
y = b(tZ - tl))

Z= ZtltZ’ (tl’ tz) € ]Rz.

— 125
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Figure 3.11: The cone f(t;,t;) = (t; costy, 2t; sinty, 3t), t € [-1,1], ¢, € [0, 2m].

We have

— -5 = %(a(ﬁ + tz))2 - %(b(tz - t1))2
= (b + ) - (t - t))*
= oty + - (6 -2ty + )
= 4t,t,

=2z, (Wv)e R%.
Thus, the parametric equation of the hyperbolic paraboloid is
ftt) = (a(ty + ), b(t, - ), 248),  (t.t,) € R%

See Fig. 3.12 for the valuesa = 1and b = 2.

Exercise 3.5. Prove that the equations

u v 1
W+ v2 w2 +v2 w2

fu,v) = < ) (u,v) € IRZ,
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Figure 3.12: The cone f(t, t;) = (& + &, 2(t; — t1), 2t185), 4 € [-1,1], £, € [-1,1].

and
gt ty) = (fcosty, tysinty, t2), t € R, t, € [0,27],

determine the same surface.

3.2 The equivalence of local representations

Definition 3.10. Let S be a surface, (U, f) be its local parameterization, and W = f(U).
Then the map f™' : W — U is a bijection and is called a curvilinear coordinate system
on S, or a charton S.

Exercise 3.6. Let (U,f) be a local parameterization of the surface S, f(U) = W, and
f1: W - U. Then for each point a € W, there is an open set B in the topology of R>
and a smooth map G : B — V such thata € B, V c U is an open subset, and

|_1 = Gl .
WnB WnB

Solution. Let

ftity) = (it ). foty, &), f3(t1, 1)), (b, 8) € U,
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and
0,0
a=f(t, ).
Note that
f1t1 flt2
rank fot, fo, | =2
f, fa

Without loss of generality, suppose that

tftl fltz
2
Then, by the inverse function theorem, it follows that there is an open neighborhood V
of the point (tf, tg) in U and an open neighborhood V; of the point (fl(tf, tg),fz(tf, tg))
such thatf : V — V; is a diffeomorphism. Because f : U — W is a homeomorphism, we

have that f(V) is an open neighborhood in S of the point a. Therefore there is an open
neighborhood of the point a such that

#0.

f(V)=BnS=BnW.
Now, define the map ¢ : R® — R? as follows:
Bty b ty) = (t 1), (b, t,) € RE
Let
G=(f"9),:B—U.

Note that G is a smooth map. Next, to each point (s;, S5, S3) € BN W corresponds a single
point

(t1,t)) = f1(51,85,85) € V.
Also, to each point (s;, s,) € V; corresponds the point
(tity) = f (s, 85) € V.
Thus, if (s, 55, 53) € BN W, then

F(51,85,85) = (o )
=f(s189)
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=N ((s1.55.53))

= G(Sl, Sz, 33).

This completes the solution.

Exercise 3.7. Let (U,f) and (Uy,f;) be two local parameterizations of a surface S and
f(U) = fi(Uy). Then there is a diffeomorphism ¢ : U — Uj such that

f=f(9).
Solution. Let W = f(U) = f1(U;) and
$=fi'f.

Then ¢ : U — U;. Since f; : Uy — W is a homeomorphism, we have that fl‘1 WU
is a homeomorphism. Therefore ¢ : U — U is a homeomorphism. Now, we will prove
that each point (tf, tg) € U has an open neighborhood V' ¢ U such that the map ¢, is
smooth. Let

a=f(6(4,5)).

By Exercise 3.6, it follows that there is an open set B of R® such that G : B — U, is a
smooth map so that

1 v = Gl
and
V=Ff1Bnw).
Then
9, =f fi, =Gef,

and ¢, is a smooth map. As above, ¢! is a smooth map. This completes the solution.

Exercise 3.8. Let (U, f) be a regular parametrized surface. Then each point (tf, tg) eU
has an open neighborhood V ¢ U such that f(V) is a simple surface in R® for which
v, f|V) is a global representation.

Solution. Let

fti, ) = (filty, &), oty 1), f3(t1, 1)), (g, 1) € U,

and
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0,0 0,0
1§1z1(t1’t2) fir, (615 83)

0,0 0,0
2, (4> 6)  for, (45 85)

Then, by the inverse function theorem, there is an open neighborhood V ¢ U of the
point (tf , tg ) and an open neighborhood V; of the point (s1y, Sy, S39) = f (tf , tg ) such that
f:V — V;is a diffecomorphism. Let now (t;,t,), (¥1,y5) € V be such that

At 6) = fi1.Y,),
fo(ti ty) = f,(01,Y2)-

Since f : V — V; is a diffeomorphism, it is an injective map and then

(ti, t) = V1. Y2)-

Sincef : U — R is continuous, we have that f, + V = f(V) is continuous. Note that
x3,2) €f(V) = Wv,w) € V; — (b, 8) = f W, v,w).

Thus, the inverse map of fi : V — f(V) is continuous. This completes the solution.

3.3 Curves on surfaces

Exercise 3.9. Let (U,f) be a parameterization of the surface S and (I,g = g(t)) be a
smooth parameterized curve whose support is included in f(U). Then there is a unique
smooth parameterized curve (I, g;) on U such that

80 =f(&(®), tel 32)
Conversely, any smooth parametrized curve g; on U defines, through (3.2), a smooth

curve on f(U). The regularity of g at ¢ is equivalent to the regularity of g; at t.

Solution. Sincef : U — f(U) is a homeomorphism and g(I) c f(U), we get
g=f"g

We have that g is continuous because it is a composition of two continuous maps. Let
t € I. Then g(t) € f(U). By Exercise 3.6, it follows that there is an open neighborhood B
of the point g(¢t) and a smooth map G : B — U such that

-1 _
lBfoy — G|Bﬁf(U)'
Therefore, the map g; can be represented in a neighborhood of the point ¢ as a compo-
sition of g and G. Since G and g are smooth, we have that g; is smooth. For the converse
assertion, by (3.2) and the smoothness of f and g, it follows that g is smooth. Let
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&) = (u(t),v(t)), tel.
Then, by (3.2), we find
86 = f(u@®,v(®), tel.
Now, we differentiate the latter equation with respect to ¢ and find
g'(t) = fi, (u®), vt))u' () + f,, (u(t), vOW' (1), tel
Since
fo, xft, #0 onU,
we have that f, and f; are not collinear. Therefore
g't)=0, tel,
if and only if
gt =0, tel

This completes the solution.

Definition 3.11. Let U, f, g, gy, and I be as in Exercise 3.9. Then the parameterized curve
gy on U is called a local parameterization of g in (U, f). The equations

u = u(t),
v=v(t), tel,

are called local equations of g.

3.4 The tangent vector space, tangent plane, and normal to a
surface

Let a € R®. Denote by ]Ri the space of all vectors with the origin a.

Definition 3.12. A vector w € R® is called a tangent vector to the surface S if there is a
parameterized curve (I,g = g(t)) on S and ¢, € I such that g(t,) = a and

w=g'(t).

Thus, a tangent vector to a surface is a tangent vector to a parameterized curve on the
surface S.
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By T,S we will denote the set of all tangent vectors to S at a. If
g =f(u),v(), tel,
then
g'(®) = f,(u@®), viO)u' (t) + f,(u@®), vO' (1), tel.

Exercise 3.10. The set T,S is a two-dimensional vector subspace of R®. If (U, f) is a local
parameterization of S, a = f(uy, vy), then f, (uy, vy) and f,(uy, vy) become a basis to T,S.

Solution. Let (I, g = g(t)) be a parameterized curve on S and g(t,) = a for some ¢, € I.
Assume that g(I) ¢ f(U) and

g =f(ut),v(®), tel.

Then

8'(0) = fu(u®.vON (O +£,(u®, VOV (©), tel.
Note that any vector in the form

w = afy, (Ug, Vo) + Bf, (Uo» Vo),
for some a, B € R, is a tangent vector to the curve with equations

u=uy+at,
V=V, +ft,
whichisa curve on S passing through the pointafort = ¢,. Thus, w € T,S. This completes

the solution.

Definition 3.13. The vector space T,S is called the tangent space to S at a. The plane
passing through a and having T,S as a directing plane is called the tangent plane of S
ata.

If

a=(f(t. t).A(t. 6).f(8.5)),
then the equation of the tangent plane is given by
X-AE.0) Y-HEE) Z-£E.6)

fi, @8)  for (6,8 fo (8],89) | =0
fi, 1) fo,(.8)  far, (], 1))
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or, equivalently,
(X -A(6.6). Y - /(4. 6).Z - 5(4.8)) - (, (6. ) < f, (6. 2)) = 0.
If the surface S is given by
z=f(xy), Xy eU,

where U ¢ R? and f e c}(U), then the equation of the tangent plane at (xg, Yy, Zp),
(X0-Y0) € U, 2o = f(Xg,¥9), is given by

z = Zy = (X0, Y0) (X = Xo) + £, (X0, Y0) (Y = Yo)-
If the surface S is given by
Fix,y,z)=0, (x,y,z) eV,
where V ¢ R3, F € C'(V), then the equation of the tangent plane at (x,, Y, Zo) € V is
Fy (X0, Y0, 20) (X — Xo) + F (X0, Y0, Zo) (Y = Yo) + F (X0, Y05 Z0)(Z — Zp) = 0.
Example 3.15. We will find the equation of the tangent plane to the surface
z=xy, (xy)e R?,

at the point (2,1,2). We have

Zy(%,y) =Y,
Z,06)) =X, (6Y) € R,
2,2 =1,
z)(2,1) =2

Then the equation of the tangent plane is
z-2=(x-2)+2(y-1)
or
X+2y-z=2

see Fig. 3.13.

Example 3.16. We will find the equation of the tangent plane to the surface

X +y2 + 2% = 169, x,y,z) € R®,



134 —— 3 General theory of surfaces

Figure 3.13: The surface z = xy (left) and its tangent plane x + 2y —z = 2 (right) at (2,1,2), x,y € [-2,2].

at the point (3,4, —12). Let

F(x,y,z) = X +yZ + 725 - 169, (X, y,z) € RS

Then
F,(x,y,z) = 2x,
Fy(x.y,2) =2y,
F,06y,2) =22, (x,y,2) € R,
and
F,(3,4,-12) = 6,
F,(3,4,-12) =8,

F,(3,4,-12) = -24.
Thus, the equation of the tangent plane is
6(x—3)+8(y-4)-24(z+12)=0

or
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3x + 4y - 12z = 169;

see Fig.3.14.

Figure 3.14: The sphere x? +y? +2% = 169 (left) and its tangent plane 3x+4y —12z = 169 (right) at (3,4, —12).

Example 3.17. We will find the equation of the tangent plane to the surface
fltpt) = (L +tpE+E,E+8), (tt) € R,
at the point (3,5,9). Here

filt, ) =t +ty,
2 2
flt,t) =t +t5,
filtbt) =B +6, (t,t,) € RE

Then

fi, () =1,

fir,(t1 ) =1,

for, (61, 1) = 23,

for, (1, ) = 28y,

far, (t, 1) = 3t,

it t) =36, (t,6) € R,

Next, we have
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or

t1+t2:3,

t+6 =5,

B+t=9
t2:3—t1,

t+@3-t) =5

£+3-4)7°=9

From the second equation of the latter system, we find

whereupon

or

Thus,

11
(t,8) =

From here, we get

and

5=t2+(3-1)
2 2
=t +9-6t +1
=2t -6t +9,

26 -6t +4 =0,

~3t,+2=0.

1,2), (&6)=

f1t1(t1» t) =1,
fltz(tl’ t) =1,
fzrl(t%’ t;) =2
fzrz(t%» t;) =4
f3t1(t%’ t;) =3,
for,(61,) = 12

fltl(t >t2) =1
fltz(t >t2) =1

(2,1).
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foo (8, 85) = 4,
foo(1.85) = 2,
for, (6,83) =12,
ﬁitz(tl’tZ) 3.

The equation of the tangent plane is

x-3 y-5 z-9
0=|1 2 3
1 4 12

=24x-3)+3(y-5+4(z-9)-2(z-9) -12(x - 3) - 12(y - 5),

or

12x -9y +2z=9;

see Fig. 3.15.

Figure 3.15: The surface f(t;, t;) = (t; +t,, t12 + t%, t13 + tg) (left) and its tangent plane 12x — 9y + 2z = 9 (right)
at (3,5,9), .t € [0,2].
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Exercise 3.11. Find the equation of the tangent plane to the following surfaces at the

given points:
1.
z=xX+y%, (1L,12)
2. ) 2
z=2x"-4y", (-2,1,4);
3. _ 2
Z—(X_))) _X+2y’ (1)1)1))
4,

z=x"-3xy+y’, (1,1,-1);

5. Z = \|x2 +y2 -xy, (=3,4,17);

6. W2 =12, (1L2,2)
7. X +y3 L xyz=6, (1,2,-1);
8.

xyz(z2 - x2) =6 +y5, (1,2,-1);

2 VE+y2E+z22=x+y+z-4, (2,3,6);

10. ¢ -z+xy=3 (21,0)
1. (t, & = 2t,ty, £ - 3t2t,),  (1,3,4).
Answer 3.2. 1.

2X+2-2=2
2.

8 +8y+z+4=0;
3 X-2y+z=0;
4. z= -1,
5.
23x —19y + 5z = —60;

6. X+y+3z=9;
7.

X +1ly + 5z = 18;
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8. X — 20y + z = —-40;
9 5X +4y +z = 28;
10. X +2y =4

11.

6x +3y -2z = -11.
Letnow (U, f = f(t;, t,)) be a parameterized surface and (tf , t(z) ) € U. Then

f(& +ah, 6] + Bh) = f(£, 6) + h(af, (7, 5) + Bf,, (6], 1)) + he,
where q, f € R and

lime = 0.

h—0

Let ITbe a plane in R® passing through the point Po=f (tf , tg ) and d be the distance from
the point

p=f(t) +ah,t + ph)
to the plane IT and 6§ be the distance between p, and p.

Exercise 3.12. Prove that the plane I is the tangent plane to S at p, if and only if for any
a,pe 1R,0¢2+,B2 + 0, we have

lim g =0. 3.3
h—0 &

Solution. Let n be the normal vector to IT and (, ) the inner product. Then

d=(f(t] + aht3 + Bh) - (1], 1), n),
§ = (€ +ah, & + Bh) - (£, 8)|.
Then
i @ — i @ +ah, 6 + ph) - (&, 9), n)
=08  h=0 |f(t) +ah, vy + Bh) - f(tD,vp)]
(h(af, (], 1)) + Bf,, (], 1)) + he, n)
= 11m
=0 |h(af, (&), t9) + Bf;, (t), t2)) + he|
(af, (89, 89) + Bf, (9, £9),n)
laf, (¢9,89) + Bf, (&0, )|

=+
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Thus, (3.3) holds if and only if
(af, (8 2) + Bfi, (&, ), m) = 0. (3.4)
1. LetII be the tangent plane to S at f (tf , tg). Then
nLfy(6.8), nif,(8.6)

and (3.4) holds. Hence, (3.3) holds.
2. Let(3.3) hold. Then (3.4) holds. For a = 1, 8 = 0, we get

{f, (8, 85).,n) = 0.
Fora =0, =1,we find
(£, (1. 53).n) =0.
Thus,
RLAEE), n L)

and IT is the tangent plane to S at f (tf, tg ). This completes the proof.

Definition 3.14. Let p € S. The straight line passing through p and perpendicular to T,,S
is called the normal to the surface S at p.

Let (U,f =f(t;,t;)) be a surface S, p =f(tf, tg) € S, and
f(tp t) = (f1(t1> tz),fz(tl) tz))fé,(tptz))) (ti, ty) € U.
Then the equations of the normal to S at p are given by

X-f&.e)  Y-pelg)  Z-fE.6)

0,0 0,0y B 0,0 ’
lle(tl’tz) fa, (6, 8) Kltl(tl’tz) Jar, (g, Vo)

0,0 0,0
K&l(ﬁ’tz) fir, (6, 89)

0,0 0,0 0,0 0,0 0,0 0,0
2, (4> 0) [, (4, 6) 36U G) i, (4, 6) 1,4 0) o, (4 8)

If the surface S is given by

z=fy), (xy) eU,
where U ¢ R? then the equation of the normal to S at (Xy,Y,,Zo), (Xo.Yo) € U, Zp =
f(x0,0), s given by

X-Xo _ Y-Yo _Z2-%
f&o.y0) £y (xo0:0) -1
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If the surface S is given by
F(x,y,z)=0, (x,y,z) eV,

where V ¢ R, then the equation of the normal at (x,, Yo, 2g) € V is given by

X=X __Y=Yo __Z2-2%
Fy(X0:Y0:20)  Fy(X0:Y0:20)  F;(X0,Y0,20)

Example 3.18. Consider the surface in Example 3.15. Then the equation of the normal
at the point (1,1,2) is

x-1 y-1 z-2
1 1

Example 3.19. Consider the surface in Example 3.16. Then the equation of the normal
at the point (3, 4, -12) is

x-3 y-4 z+12
6 8 -2

or

x-3 y-4 z+12
3. 4 127

Example 3.20. Consider the surface in Example 3.17. Then the equation of the normal
at the point (3,5,9) is

x-3 y-5 z-9
2 3 3 1 1 2
4 12 12 1 1 4

or

x-3 y-5 z-9
2 -9 2

Exercise 3.13. Find the equation of the normal to the surfaces in Exercise 3.11.

Answer 3.3. 1. x-1 y-1 z-2
2 2

5 x+2 y-1
T =L T -z7-4
8 8

3. x—1=y;1=l—1>
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5 x+3 y-4 z-17
23 19 5 °
6 z-2
X-1=y-2=—;
Y 3
7 X—1:L:Z+1,
11 5
8 x-1=22% =z+1
-80
9 X-2_y-3_, &
5 4
10. x—Z:y—_1=E;
2 0
11. x-1 y-3 z-4
6 3 -2

Exercise 3.14. Let (xy, Vo, Zp) be a given point of the surface given by the equation
F(x,y,z) = 0.
Prove that the gradient vector
grad F(xo, Yo, Z) = (Fx(Xg» Y05 Z0)> Fy (X0, Y0» Z0)» F2 (X0, Y- Z9))
is perpendicular to the tangent plane of the surface at this point.
Solution. Let
[, ) = (X(ty, 1), Y(ty, 1), 2(t3, 1))

be a local parameterization of the considered surface. Then

Jo, = e Ve Z¢)s

Jt, = X5 Y45 21,),
and

0 =Fyx, +Fy, +F,z,,
= (gradF.f; )
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and
0 = Foxq, + By, + Fy24,
= (gradF,ftz).

Thus,
gradF L f,, gradF Lf.

This completes the solution.
Definition 3.15. An orientation of a surface S is a choice of a normal vector n to TpS.

Definition 3.16. Let S be an oriented surface with orientation n(p). A local parameteri-
zation (U, f) of S is said to be compatible if

Rk,
Fo % ful

3.5 Differentiable maps on a surface

LetU c R%, V c R%.

Definition 3.17. Suppose that S is a surface in R®. Amap g : S — V is said to be differ-
entiable if for any local parameterization (U,f) of Sthemap g f : U — V is smooth.
The map g o f is said to be a local representation of g with respect to the local parame-
terization (U, f) of the surface S.

Example 3.21. Let S ¢ V be a surface. The inclusion i : S — V is defined by
ip)=p, peS.

Note that the inclusion i is a smooth map for any local parameterization (U, f) of S. The
parameterization of i is given by

if=iof =f.

Now, suppose that S is a surface with a local parameterization (U, f).Letg:S —» V
be a smooth map. We have

fti, ) = (ilty, &), oty 1), f3(t1, 1)), (b, 1) € U,

and

gt ty) = (810N (&, ), &(F) (b1, 1), 85N (t1, 1)), (b4, 8) € U.
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Moreover,

81, (Nt &) = 8y, () (1, ) (01, ) + 8y, (F) (81, &)y (1, 8)
+ 81, (Nt B)fs (6, 1), (b, 1) € U,

withl e {1,2,3},j € {1,2}.

Definition 3.18. Let S;,S, ¢ R® be two surfaces. Amap F : §; — S, is called smooth if
the map

i° F : 51 b ]R3
is smooth.

Definition 3.19. Let S;,S, < R® be two surfaces. Amap F : §; — S, is said to be a
diffeomorphism if F is bijective and F, F~* are smooth maps.

3.6 The differential of a smooth map between two surfaces
LetICR,V C IR3, and G : V — R® be a smooth mabp,
G(6.y,2) = (81061, 2), £,(6.3,2), 83(X. 3, 2)), (X, y,2) € V.
Definition 3.20. For any p = (xy,Yq,Zo) € V, the differential of G at p,
G : ]R; - ]Rz(p)’
is a linear map with the matrix

8ux(X0:Y0:20)  8ax(X0, Y0, Z0)  83x(X0, V0> Z0)
G(X0:Y0,20) = | 81y(X0:Y0:20)  Z2y(X0:Y052Z0)  &3y(X0> Y0 Zo)
812X0:Y0,20)  82x(X0: Y05 Z0)  83:(X0> Y05 Z0)

Let now
O = (). L0).f0), tel,

be a parameterized curve. Then

G f(0) = (&1L, L. (1), &(fi(0). /(0. f3(0), &(fi(0). /(0. 5D)),  tel.

Hence,

(G o) (t) = (g, (RO LO. HO () + &, (D), L0, 5Oy (£)
+ 817, (i, (0, f5(O)f3 (6), &ar, (L0, /(0. f5(D)F ()
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+ &, (L), (0, f50)f5 () + ap, (i, (0, f5(O)f (0),
LGN AGNAGY AGEF- A IAGN (N AGY A
+ &1, (RO.LO.LO)F©), tel

Thus, d,G assigns to any tangent vector to f(t) at t = ¢, a tangent vector to G(f)(t) at
G(f)(to).

Definition 3.21. Let S; and S, be two surfaces, F : §; — S, be a smooth map between
Sy and S,, and p € S;. Then the smooth curve (I, F » f) on S, corresponds to any smooth
curve (I,f) on S;. If p = f(¢ty), ty € I, then F o f(¢) passes through F(p) at t = t;. The map
T,S; — Tp(p)S, assigning to each tangent vector f(t,) to a parameterized curve f(t) on
S, with f(t,) = p, the tangent vector (F o f)(¢,) to the parameterized curve F o f at t = ¢,
is said to be the differential of the smooth map F : §; — S, at the point p.

3.7 The spherical map. The shape operator

Let S ¢ R® be an oriented surface and $* be the unit sphere in R® centered at the origin
(0,0,0). Let p € S and the orientation of S be the unit normal n to S.

Definition 3.22. ThemapT:S — S?,

I(p)=n(p), peS,

is said to be the spherical map of the surface S.
Exercise 3.15. Prove that the spherical map T : S — $? is a smooth map.

Solution. Let (U, f) be a local parameterization of S that is compatible with the orien-
tation of S. Then

fo x 1,
fe xfo,|

n(ty, ) =

Hence,

r °f(t1> tz) = F(f(tl, tz))
= n(tl, tz), (tl’ tz) € U

Therefore I - f is a smooth map. This completes the solution.

Definition 3.23. The linear operator
4l T,S > T,S

is called the shape operator of S at p. It will be denoted by A or 4.
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Below, suppose that (U,f) is a local parameterization of S that is compatible with
the orientation of S, and the orientation of S is given by n(¢, ;). Then

fo x 1y,
fy xfo,l

n(t, ) =

Letv € Ty, +)S, v = (v, vy) with respect to the orthonormal basis {f; , f; }. Then
A(V) = ving +vony,.
In particular, we have

Alfy) =ng,
Alfy) = ny,.

Exercise 3.16. Prove that the shape operator A is a self-adjoint, i. e.,
AW)-w=w-A(v),

forany v, w € T,S.

Solution. Consider the equations

n.ft1:0,
n.ftZ:O,

where we differentiate with respect to ¢, and t;, respectively, and get

0=ng fo +Nfre,

0=ny fo, + 1 frp,
Using the latter two equations, we conclude that
n, .ﬁl =Ny .ftz'

Letv = (vy,vy), w = (wy, wy) € T,S with respect to the basis {f; , f;, }. Then
V= vlft1 + sztz>
w= w]ft1 + Wzﬁ2>
A(V) = Vi + Vol

Aw) = wyn, +wyn, .

Hence,
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AW) - w = (Vng +vong,) - (Wify + Wofy)
= (n) - (Wify)) + (nng) - (Wofy) + (V) - (Wafy) + (Vany,) - (Wafy)
= (W), - fi) + wy) (g, - i) + (vuwy)(ng, - f) + (Vawy) (1, - )
= wy)(fy, - ) + VW) (fr, - y,) + (VW) (fr, - ) + (VaW)(fy - 1)
= (fy) - Wing) + (Uify) - (Wang)) + (Vofy) - (Wyny ) + (Wofy) - (Wny)
= (nfy,) - AW) + (Vofy,) - A(w)
=v-A(w).

This completes the solution.

Exercise 3.17. Prove that for each tangent space T,S there is an orthonormal basis of
the eigenvectors of the shape operator A.

Solution. Let 41,4, € R, A; # A,, be eigenvalues of the operator A that correspond to
eigenvectors v and w, respectively. Then

A(v) = Ay,
A(w) = A,w.
Hence,
AW)-w=Aw)-w=A4V-w)
and

v-Aw) =v- (Aw) = A, (v-w).
Now, by Exercise 3.16, we have that
AW)-w=v-Aw).
From here, we find
AV w) = 2y w),
hence
A -A)v-w) =0

and

Let
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5o v
lv|’
_ w
w=—.
(w
Then
V=1 |w=1
and

This completes the solution.

3.8 The first fundamental form of a surface

Suppose that S is an oriented surface.

Definition 3.24. For any p € Sand v,w € T}, the first fundamental form of S at p is
defined by

o (v, w) =v-w.

Let (U,f) be a local parameterization of S that is compatible with the orientation
of S. Let also v = (v, vy), w = (wy, wy) € T,S with respect to the basis {f; , f;, }. Then

v=vify +0of,
W =Wyfy + Wofy .
Thus

p1(v,w)=v-w
= (Wfy, + ofy) - (Wafy, + Wofy)
= W) (fy, - fi) + o) (fy, - f,) + (aw)(fy, - fr,) + (awp)(fy, - )

Define

E(ty, ) = fo,  fo»
F(ty,t) =fi, - fr,»
Gty t) =fi, fry () €U,

and the matrix
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E(ty, ty)  F(ty, ty)

F(ty, 1) G(tl,t2)>’ (ti.) € U,

G(ty, b)) = <

Then
¢1(v,w) = (VwE(ty, &) + (W Wo)F(ty, &) + (VawF (8, &) + (VaWe)G(t, ty)
= v (E(ty, ty)wy + F(ty, t))wy) + vy (F(ty, ty)wy + G(ty, t)w,)
= vg(tl, tz)W

Definition 3.25. The matrix G is said to be the matrix of the first fundamental form for S.

Example 3.22. We will find the matrix of the first fundamental form for the surface
f(t, ) = (costy costy, costysinty,sinty), (&) € [0,27] x [0, 27].
Here

fi(ty, ty) = cos t; cos ty,
f(t;, t;) = cost; sint,,
fa(t,, ) =sinty,  (t5,t,) € [0,27] x [0, 271].

Then

fie,(t1, &) = —sint; cos ty,

for, (1, t5) = —sint; sin ty,

far,(ty, 1) = costy,

fie, (t1 &) = —cos ty sin ty,

for,(t1, ) = cOS £y COS 1,

fa, (t1: 1) = 0, (13, 15) € [0,271] x [0, 271],

and
[t t5) = (fig, (E1, t2), for, (B, t), for, (81, 8))
= (—sint; cost,,—sin t; sint,, cos t;),

ftz(tl’ tZ) = (fltz(u’ tZ))thz(u’ tZ)’f\:itz(u’ tZ))

= (—cost;sint,,cost; costy,0), (t,ty) € [0,2m] x [0, 2m].
Hence,

Ji, (6 ty) - fy, (8, ) = (—sint, cos tz)2 + (—=sint sin tz)2 + (cos t1)2
= (sint )z(cost )2 + (sint )Z(Sint )2 + (cost )2
1 2 1 2 1

= (sin tl)2 + (cos tz)2
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=1,
i, (1, ) - fi, (G, ) = sint; cos ¢y sint, cost, — sint; cos ¢ sint, cost,
= 0)
N 2
Ji,(t1, ) - fi, (1, t) = (= cos ty sin &))" + (cos t; cos ty)
= (cos tl)z(sin tz)2 + (cos tl)z(cos tz)2

= (costy)’,  (tpty) € [0,271] x [0, 271].

Therefore

Gty t,) = <ft1(t1’ t) fr(tt)  fi () 'fv(tbtz))
v fo,(t6) - f, (4, 1) £, (6, t) - £, (81, 1)

1 0
=<0 (cost1)2>’ (61, t) € [0,271] x [0, 27,

Exercise 3.18. Let a, ¢ € R. Find the matrix of the first fundamental form for the follow-
ing surfaces:

1
(acostcosty,acostysinty,csinty), (&,t) € [0,21] x [0, 27];
2 (acosht costy,acosht;sint,, csinhty), (t,t)) € R%
3 (asinht; costy, asinht;sinty, ccoshty), (t,6) € R%
4 (t;costy, tysinty ), t €R, t, € [0,27];
> (Reosty, Rsintyt), t €R, t, ¢ [0,27],
where R € R.
Answer 3.4. 1.
(az(sin tl)z + cz(cos t1)2 0 ) (t..6,) € [0,27] x [0, 27];
0 a*(cost))?)’ "2 ’ e
2. a’(sinh t;)? + c*(cosh t;)? 0
( ( 1) ( 1) , 2>, (tpty) € R,
0 a“(cosh t;)
3. a’(cosh t;)? + c*(sinh t;)? 0
< ( 1)+ c( 1) ) 2>, (toty) € RS
0 a“(sinht;)
4. 1+42 0 5
( 0 1 t%>) (t1>t2) € R
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5.
<3 122> t e R, t €[0,2m].
3.9 Applications of the first fundamental form

Let S be an oriented surface with a local parameterization (U, f) that is compatible with
the orientation of S.

3.9.1 The length of a segment of a curve on a surface
Let (I,g = g(s)) be a parameterized curve on S, g(s) c f(U). Let also

g(s) = (t(5), t5(8)), tel
Then
g'(s) = (tj(s), ty(s)), tel,

and

g'(s)-&'(s) = g'(5)G(t1(5), t(s))g" (5)

_ (4 ' E(t1(S), t5(8))  F(t1(S), ty(8)) <t1(5)>
(609 &(9)) (F(tl(s),tz(s)) G(ty(s), tz(s))> t(s)

E(ty(9), t())t1(5) + F(ty(9), tz(S))t£(8)>
F(ty(5), t())t(5) + G(t1(8), ty(8))t(S)

= (£1(5)) E(ty(), t(8)) + 2F (£5(5), 1,(9)) L1 (8)Eh(s)
+ (té(S))zG(tl(S), t,(s)), tel

- (), 4(9)) (

Definition 3.26. The length of the segment of the curve g(s) between s; and s, on the
surface S is defined by

Sz

I(sy,8,) = J]g’(s)lfds.
We have

Sz

I(s},$7) = J((t{(s))ZE(tl(s), t(8)) + 2F (£,(S), t,(8))t; ()t (S)

$1

+ (£h(5))6(ty(s), t,(s)))? ds.
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Example 3.23. Consider the sphere in Example 3.22 and the curve given by the local
equations

t, =5 s¢€[0,2m].

Using the computations in Example 3.22, we find

1 0 1 0
g(tl(s)> tZ(S)) = <0 (COS t1)2> - <O 1) '

Next,

tl(s) = 0,
ty(s)=1, sel0,2m].

Then

V1-02+42.0-0-1+1-12dt

Il

Nl a N\N%:l N\:l_.:l
. U
~

/:\
S

)

Exercise 3.19. Consider the surface (see Fig. 3.16)

2 2 2 2 2
(t+t6,t - t,tt), (t.t) € R

Figure 3.16: The surface (t12 + t%, t12 - t%, tity), by, t, € [0,2].
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1. Find the matrix of the first fundamental form.
2. Find the length of the segment of the curve between s; and s,

tlz]..

3. Find the length of the segment of the curve between s; and s,

t2:1.

4. Find the length of the segment of the curve between s; and s,

where a € R.

Answer 3.5. 1.

tz = atl,

<8t§+t§ tity )
tt, 8G+t)

(680 + 1) - (886659 + 1))

(680 + 1% - (86659 + 1))

V2at + a2 + 2(t(sy) - t4(sy)).

3.9.2 The angle between two curves on a surface
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Let (I,g; = g1(t)) and (J, &, = 8»(5)) be two parameterized curves on S such that

Let also

Then

81(ty) = &2(80) = f(up, vy).

&t = (W), (), tel,
82(8) = (Uy(s),v5(8)), s €.

gl = (W), vi), tel
85(8) = (up(9), vy(s)), seJ.
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Definition 3.27. The angle 6 between the curves g; and g, at the point f (i, vy) is defined
as follows:

0 = g{(to) ‘gzl(so)
lg1 (to)1g3(so)|
We have
E(uy, vg) F(uo,v0)><u§(so)>
F(uo, Vo) G(uo, Vo) Vé(sO)

E(ug, vo)uy(so) + F(uo,vo)vé(so)>
F(ug, vo)uh (o) + G(Ug, vg)Vi(So)

g1(60) - 850 = (1, (to) V! (to)) (

= (uy(to), vy (tp)) <
= (uy(to)uy(S9)) E (o, Vo)
+ (U (V5 (o) + vy (te)uy(Sg) ) F (U, Vo)
+ (V] (tg)v5(S0)) G (tg, Vo)
and
E(ug, vg) F(uo,v0)><u{(to)>
F(ug,vg)  G(ug,vg)/ \vi(ty)

E(ug, vo)uy(ty) + F(uo,vo)v{(t0)>
F(ug, vo)uy(ty) + G(ug, vo)vi (ty)

81t0) - 81(t) = (w10 v t0)

= (uy(tp), vi(ty)) (

= (Ul(t9)) E(ug, vo) + 2(1 (t)V}(£0))F (g, Vo)

+ (v)(t)) Glug, vo),
and
E(ug,vp) F(uo,vo)><u£(so)>
F(ug,vy)  G(ug,vg)/ \vy(sq)

E(ug, vo)uy(sp) + F(u0>V0)V2(So)>
F(ug, vo)uy(sp) + G(ug, vo)Va(Sp)

= (ub(50)) E(ug> Vo) + 2(ul(59)V(S0) ) E (g, o)

+ (Vh(50)) G (g, vo)-

4(60) - 84650 = (15 vi(50)

- (atsvitsn)

Example 3.24. We will find the angle between the lines
u+v=0 and u-v=0
on the helicoid (see Fig. 3.17)

f(u,v) = (ucosv,usinv,av), ueR, vel02mr],
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Figure 3.17: The helicoid (v cosv,usinv,v), u € [-2,2],v € [0, 2m].

where a € Ris a given parameter. We have

fuw,v) = (cosv,sinv, 0),

fi(w,v) = (—usinv,ucosv,a), ueR, vel0,2r].
Then

fuw,v) - f,(u,v) = (cos v)2 + (sin v)2 =1,
fu,v) - f,(u,v) = —usinvcosv + usinvcosv = 0,

o, v) - fi,(u,v) = (~usin v)2 + (ucos v)2 +d

= uz(sin v)2 + uz(cos v)2 +d
2

=u +az, uelR, vel0,2n],

and the matrix of the first fundamental form of the considered helicoid is as follows:

1 0
Q(u,v)-(o u2+a2>’ ueR, vel0,2m].
Note that

tO:SOZUO:VOZO
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and

gl(t) = (t: _t): teR,
2,(8)=(s,8), seR

Hence,

g =00-1), teR,
&) =11, seR,

and

80 g(s) = D(o uw 2a><11)

“an( )

1+l +db
/ / 0 '
81(0) - 8(s) = (1, -1) <0 u + az) <1>

o (p)

:l—uz—a,

£(5) - 83(5) = G w? + a >( >
-9 (2 )

—1+u2+a2 t,s,uelR, vel0,2m].

Consequently,

_ £1(0)-£(0)
gl (0)11g2(0)]
1-d
V1+ a2V1+ a?
1-d®
1+ a

Exercise 3.20. Find the angle between the curves

v=2u and v=-2u
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on the surface with a matrix of its first fundamental form given by
(o 1)
0 1)’

Answer 3.6.
3
cosf = 5

3.9.3 The area of a parameterized surface

Definition 3.28. The area of a surface S is defined as follows:

A= ” (Ety, t)G(ty ty) — (E(ty 1)) dtydty.
U

Example 3.25. We will find the area of the surface in Example 3.22. We have

v/ (cos t))?dt,

=
Il

| cos t|dt;

|
Sty O} O —— ¥

cos tydt; — | cost;dty — J cos tydt; + J cos tydt
n Eli

[T

. ty=m 271
—sint|/} i

.=t
=sinty|'_? |t1:,

le=0
=1+1+1+1
=4.

sin t1|t T, sin t1|

Exercise 3.21. Find the area of the rectangle bounded by the helicoid
f(tpty) = (t; costy, ty sinty, aty),  (t,ty) € R,
and the lines
=0, =a, t,=0, t,=1

Here a € R is a given parameter.

Answer 3.7.

‘—21(\/§+ log(1 + V2)).
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3.10 The matrix of the shape operator

Let (U,f) be a local parameterization of S. Let also {f; , f; } be the basis. By .A we will
denote the matrix of the shape operator A. We have

A(fy) =ne,
Alfy) =ny,.
Then
(g, ne,) = (fe fr,) A 3.5)
Note that
<ft1> (ng,ny,) = (ftl Ty Ty nt2> .
i, fo, M, Ji, g,
Let
L= —f[1 Ny,
M =—f, -n, =-f, -ny,
N=-f, n,.
Set
2 = (L M )
"\M N
Therefore

Hence using (3.5), we get

:_<ft1 Ny fy 'ntz>

fo, e, S, oy,

== <21> (ng,> ny,)

LA
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G w

E F
o (F G) A
= _gA)
whereupon
A=-G'ny
Note that
a4 1 ( G —F>
" EG-F2\-F E )
Thus,

~ 1 <G —F><L M)
" EG-F2\-F EJ)\M N
1 <GL—FM GM—FN)
" EG-F2\EM-FL EM-IN

Now, we differentiate the following equation:
ft1 -n=0
with respect to ¢; and obtain
0=fu n+fy Ny
whereupon
L=n- ftltl'
We differentiate equation (3.6) with respect to t, and arrive at
0="Ffie n+fy Ny
from where
M= ftltz -n.
We differentiate the following equation:

fi, n=0

(3.6)
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with respect to ¢, and find

0=fi, n+fy, Ny

whereupon
N=n 'fr2r2~
Note that
(e, xfe,) - o, ¥ fi,)) = (e, - S )W, - fo) — e - fo) U, - o)
= EG- F*
and
I, xfol = (EG - F*)*.
Let
W = (EG - FZ)%.
Then
If xfil = W
and

L= (i }f) fie)
M= (6 %fo) for)
N = (<) fu):
Example 3.26. Consider the surface (see Fig. 3.18)
fltty) = (t + t, & + 65, 1t,),  (t, 1) € R™
Then

fo(t1, 1) = (1,283, 1y),
fi,(t ) = (1,285, 1y),
frr, (61, ) = (0,2,0),
frt, (G 1) = (0,0,1),
fop, (1 t2) = (0,2,0),  (t5,8) € R%,
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Figure 3.18: The surface f(t;, £,) = (t; + by, 2 + t2,t1t), (t1, 1) € [0, 2].

and

E(t;, ) = f (1, &) - f, (8, 1)
=1+ 4tf + t%,

F(ty, ty) = fi, (4, t) - f, (8, 1)
= 1+4tt, + tit,
=1+ 5tt,,

G(ty, ) = fi, (4, ) - f, (4, )
=1+8 448, (4t € R

and
Wit ) = (E(ty )Gt ) - (Flt, )
= (1+4+ )+ +42) -1+ 5t1t2)2)%
= (1+ 6 + 465 + 46 + 4] + 166265 + & + 212 + 4t
- 1-10t;t, - 25tft§)%

= (5t + 565 + 4t; + 4t; — 10t;t, — ZStftg)%,

=1t - 61(4t + ) +5) (tut) € R,
and

fi, (6, 6) x £, (ty, ty) = 2 - 6),t, - 15,20t - 1)),
W (ty, t)L(ty, tp) = (fr, (11, 1) X fi (1, 12)) - foor, (01, 1)

=2(t, - ty),
W(ty, )My, ty) = (fy, (6, &) X fi, (81, 1)) - o, (615 )
=2t - t),

W(ty, t)N(ty, t) = (f, (41, t5) * fi, (61, &) - frop, (6, 1)
=2ty 1), (4t) € R,

— 161
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and

W(ty, t,)(G(ty, tp)L(ty, ty) — F(ty, )Mty t5)) = 2(1+ £ + 465 )(t, — t;) — 2(1 + 5tyt) (6 — t;)
=2t - t) (4t + £ - 5t,ty),

W(ty, t,)(G(ty, )Mty ty) — F(ty, t)N(ty, 1)) = 2(1+ 4t + £1)(t, — t;) — 2(1 + 5tyt) (6 — t;)
= 2(t, - t) (48 + £ 5t,t,),

W (ty, t)(E(ty, ty)M(ty, t5) — F(ty, t)L(t, t)) = 2(1+ 482 + £2)(t, — t;) — 21+ 5t,8) (6, — )
= 2(t, - ) (48 + £ - 5t,t,),

W(ty, t;)(E(ty, t)M(ty, ty) - F(ty, )N (63, 1)) = 2(1+ 46 + 6)(t; — ;) = 2(1+ 5t;8,) (8, — ty)
=2t - )48 + & - 5tt,), (1) € R%

Therefore

gt t)_<1+4tf+t§ 1+54t, >
PN 1est, 1+t +48)
2ty — t)) <1 1)
H t ,t = >
(. ) It; — 6,)(4(t + )2 + 52 \1 1
2t, —t
Altyty) = 2~ 1)

Ity — &3 (4(t; + ty)* + 5
2 a42 2 442
&+ 4t —5tt, o+ A4t -5t )

) o s 5 » () € R

A + 65 -5ty AL+ -5ty

Exercise 3.22. For the surface in Example 3.17 find

L Gt ty), (6, ) € R

2. Htnb), (b t) € RY

3. Altyty), (t, t,) € RE

Answer 3.8. 1.
1+42 +9tF  1+4tt, + 9826
Gty ty) = o ) ety eRG
1+46t, +9t7t;  1+4t; +9¢,
2. 1
H(t;, t,) =
(6 t) Ity - 6,1(36t2t, + 9(t; + t,)2 + 4)1/2
6(t; — t,)(t, — 11t 0
x( (ty = t)(ty 1) >, (tpty) € RZ;
0 6(t; — t))(t, — 11ty)
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3. 6(11 — 1) (¢, — 11ty)
A(tl, tZ) = 3 ! 2 L2 : 2 3/2
Ity — 633682, + 9(t; + t,) + 4)3

( 1+48+9  1+4tt, + 988
X

. () € R
1+4tt, + 966 1+46t, + 9tft§)

3.11 The second fundamental form of a surface

Let S be an oriented surface.
Definition 3.29. For any p € S, the second fundamental form is defined by
G (v, W) = —¢1(A(V), w), v, weT,S.
Exercise 3.23. For each p € S, prove that the second fundamental form is a symmetric
bilinear form.

Solution. Letv,w ¢ TpS. Then

G2 (v, w) = ~¢1 (A(v), w)
= —¢1(v, Aw))
= —¢1(Aw), V)
= ¢, (w, V).

Letnow v, v, w,w € TS, a;, @y, By, B, € R. Then
Oy (v + a3, w) = ¢ (A(qqV + @y V), w)
= —¢1(,AW) + RAD), W)
= ~a1¢1(A(V), W) - a1 (A(D), w)
= (11¢2(V, W) + (12¢)2(\7, W)
and
G2(v, Bw + o) = ~¢1 (A(V), Byw + By W)
= —B1$1(A(W), W) = By$1(A(v), W)
= B192(v, W) + Bopy (v, W).
This completes the solution.

Let (U, f) be alocal representation of S that is compatible with the orientation of S.
Then
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&2 fo) = ~41(A(f,). f)

= =¢1(ny,. fr,)
=Ny .ﬁl
=L.
As above,
G2 (fe fi,) = 1y - fr, = M,
G2 (fepo fr)) = 1y, - fr, = M,
¢2(feofe,) = -1y, fr, = N.
Consequently,

(6Ff) Balfif)
(021 = <¢z(fz1’fz2) ¢z<ftz,ftz>>

__ <nt1 S N ftz)

n-fi, n,-f,

(e )

is the matrix of the second fundamental form ¢,. Recall here that

L=n-f,
M=n 'ffﬁz’
N=n-f.

Example 3.27. Consider the surface in Example 3.26. Then the matrix of its second fun-
damental form is

[921(t1, 1) =

2ty - ty) (1 1

, (4, t,) € R
It; — t,](4(t; + t,)2 + 5)1/2 \1 1> (6 &)

Exercise 3.24. Find the matrix of the second fundamental form of the following sur-
faces:
1

f(t, t) = (Rcosty costy, Reos ty sinty, Rsinty), (,t,) € [0,2m] x [0, 27],

where R > 0;
f(t, t) = (acost;costy,acostsint,, csint,), (4,t,) € [0,2m] x [0, 27],

where a,c € R;
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3.
(t;,t,) = (acosht, costy,acosht;sint,,csinht)), t e€R, t,€][0,2n],
10 1 2 18Int, 1 1 2
where a,c € R;
4,
(t;,ty) = (asinh t, cost,,asinht;sint,,ccosht)), t;e€R, t,€]0,2n],
10 1 2 18Nt 1 1 2
where a,c € R;
5.
flti,ty) = (tcosty, tysinty, t2), t; € R, t, € [0,27].
Answer 3.9. 1.
R cost 0
[@2]1(t1, tp) = m( 0 ! (cos t1)3>’ (t1, t) € [0, 2] x [0, 27];
2. a’csint
(921(t1, 1) = =ib!
|asin t,] \/az(cos t)% + c%(cos ty)?
< 0 _Smtl“’“z) (t,,t,) € [0,271] x [0, 277];
—sintcost, —costysint,)’ ’ e
3. 2 —cosh2t 0
[6,1(t1, ) = 1< cos e L (tpty) € R
21(l1: By 0 (cosh t;)? )
lal\/aX(sinh £;)? + c2(cosh ;)2 shiy
4. a’csinht
[9.](t1, 8y) = 1
|asinht,| \/az(cosh t)? + c%(sinh t;)?
1 0
X <0 (sinh t1)2>’ tieR, t, €[0,27];
5. 2t 1 0
[@,)(t), ) = ——— (o 2t2>, teR, t,e[0,27].
|ty|\1 + 482 1

3.12 The normal curvature. Meusnier theorem

Let S be a surface and (U, f) be a local parameterization that is compatible with the
orientation of S. Suppose that (I,g = g(t)) be a parameterized curve lying on S and
n(g(t)), t € I, be the normal vector of S at g(¢). Set

0(t) = £(n(t),n(g(®))), tel,

where n is the principal normal vector field of g.



166 —— 3 General theory of surfaces

Definition 3.30. The normal curvature of g is defined as follows:
K,(t) = k(t)cosO(t), tel,
where x(t) is the curvature of g.

Example 3.28. Consider a plane curve. Then 6(t) = ]ET and cos 6(t) = 0. Hence, k,(t) = 0.

Example 3.29. Suppose that the support of a parameterized curve is a straightline. Then
its normal curvature is zero, independently of the surface which includes the curve.

Exercise 3.25 (Meusnier theorem). Prove that

Ka(0) = $2(8'(0,8'(1)/91(8"(1.8'(1)),  tel.

Solution. Let g; be the naturally parameterized curve that is equivalent to g with arc
length parameter s. Let also

&1(s) = f(u(s), v(s)).

Then
glr :fuu’ +f;/vr>
2 2
g1” :fuu(u,) +fuvu’v’ +fuvurvl +f;;v(vl)
:fuu(u,)z + zfuvulvl +fvv(vl)2-
Hence,

Kn(S) = 81 (5) - n(g1(s))
= (@) (e 1) + 20V (1) + (V) oy 1)
=L@ - 2Mu'v - N(V')
= 0,(81(5), &1 (9)).

Now, using that

g'(t)
lg' 1

81(s) =

we get

(&M g
k() = "’2< 2O ig 0 )

oo 8O
-8 0 g5 )
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_ 98" (0,8 (0)
P1(g'(1),8' (1)’

This completes proof.

Exercise 3.26. If two curves on S have a common point and they have the same tangent
lines at the common point, prove that they have the same normal curvature.

Solution. Let v and w be the tangent vectors to both curves. Then
w=av, acR.
Hence,

Po(w, W) Py(av,av)

& (w, w) - ¢4 (av, av)
_ dgm,v)
a2y (v,v)
_ $,(v,v)
AL

This completes the proof.

3.13 Asymptotic directions and lines

Let S be an oriented surface and (U, f) be its local representation that is compatible with
the orientation of S.

Definition 3.31. For any p € S, a direction v € T,,S is said to be asymptotic if
dy(v,v) = 0.
Exercise 3.27. For any p € S, a direction v € T,S is asymptotic direction if and only if
LN -M*<0. 3.7

Solution. Letv # 0andv = (v3,v,) € T,S. Without loss of generality, suppose that v, # 0.
We have

0= ¢2(v> V)

s )

Lv1+Mv2>
= (v
Wyv2) <Mv1 + Nv,

2 2
= Lvy + 2Mv,v, + Nv,
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if and only if
L(vy/v,)* + 2M(vy/v,) + N = 0

if and only if (3.7) holds. This completes the solution.

Definition 3.32. A point p € S is said to be

1. elliptic if the second fundamental form is positive definite at p.

2. hyperbolic if the second fundamental form is negative definite at p.

3. parabolic if the determinant of the second fundamental form is 0 and at least one
of its coefficients is different from 0 at p.

4. planar if the coefficients of the second fundamental form are 0 at p.

3.14 Principal directions and curvatures. Gauss and mean
curvatures

Suppose that S is an oriented surface and (U, f) is a local parameterization of S that is
compatible with the orientation of S.

Definition 3.33. The directions on the tangent plane to S at a point p € S that are eigen-
vectors of the shape operator of S are called the principal directions of S.

Definition 3.34. A curve on S is called a principal line if its tangent directions at each
point are principal directions.

Definition 3.35. A principal curvature of S is the normal curvature of S in a principal
direction.

Exercise 3.28. Prove that the normal curvatures of S are the eigenvalues of the shape
operator with opposite sign.

Solution. Let e be an eigenvector of A. Then there is a constant A € R such that
A(e) = e

Hence,

_ ¢2(e> e)
Ky(e) = —¢1(€, o)
_Ale)-e

T e-e

e-e

A—
e-e
A

This completes the proof.
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In what follows, suppose that k; and k, are the principal curvatures of S and k; > k.
Let {e;, e,} be an orthonormal basis of the principal directions. Then

A(e]) = _kjej ] € {1,2}.

Let |e| = 1. Then
e=e,c080 +e,sinob,
and

P, (e, e) = —(A(e; cos O + e, sin ) - (e; cos O + e, sin 6))

= —((~ky€, cos 0 — kye, sin 6) - (e; cos O + e, sin ))

= ky(cos 9)2 + ky(sin 9)2,
as well as
pi(e.e) = 1.
Hence,
K,(€) = ky(cos 0)* + ky(sin 6)%. (3.8)

Definition 3.36. Equation (3.8) is called the Euler formula.

Definition 3.37. The quantity

K = klkz
is called the Gaussian curvature of S.
Definition 3.38. The quantity

H=h+h
2
is called the mean curvature of S.
We have that
K=detA

and

H=-TrA.
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Exercise 3.29 (Joachimsthal theorem). Let S; and S, be two oriented surfaces and y be a
parameterized curve that lies on the intersection of S; and S,. Let also S; and S, inter-
sect under a constant angle. Prove that y is a curvature line on S; if and only if y, is a
curvature line on S,.

Solution. Let (I,f = f(t)) be alocal parameterization of y. Let also n; and n, be normal
directions to S; and S,, respectively. Then

n, - ny = const.
Hence,
0 _ ! !
=Ny Ny + Ny N,
Suppose that y is a curvature line on S;. Then
! !
n =-lf",

where [ is one of the principal curvatures of ;. Since y lies on S,, we have that

flony=0
Thus,
0=(-If")-ny+ny-my
=nn)
Hence,
n -ny =0.

Since n, L nj and f’ 1 ny, we conclude that n, || f" and there is an m € R such that
n, = -mf’,

i.e., yis a curvature line on S,. This completes the proof.

Let S be an oriented surface and (U, f) be a local representation of S that is compat-
ible with the orientation of S.

Exercise 3.30. Prove that

2
K:LN M’
WZ
GL - 2FM + EN
=22t

2W?
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Solution. We have

P <GL—FM GM—FN)
" W2\EM-FL EN-FM)’
Then
det A = % (GELN — GFLM - FEMN + F*M* - EGM*
+ EFMN - F’LN + FGLM)
= %(EG(LN - M%) - (LN - M*)F?)
= 2 (BG - PN - M)
= #(LN - M.
Next,
H= %TrA
_ GL-2FM +EN
- 2W2 '

This completes the solution.

3.15 Advanced practical problems
Problem 3.1. Prove that the hyperbolic paraboloid
f(tl’ tz) = (a(tl + tz),b(tz - tl)’ 2t1t2), (tl’ tz) S ]Rz,

wherea,b € R,a > 0,b > 0,is a regular surface. See Fig.3.19 for the valuesofa = b = 1.

Problem 3.2. Find the support of the surface

t t, 4+t
2.2 .1 12242112, 12
t1+t2+1 t1+t2+1 g+t +

ft,t) = ( 1), (t.t,) € R%

Answer 3.10. The sphere

flef+f5 =1

or

gefie(f-3) -
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Figure 3.19: The surface f(t1,t;) = (t; + tp, t; — t1, 244t5), (1, t,) € [-2,2].

Problem 3.3. Find the implicit equation of the surface

(Xg + acost, costy,yy + bsint costy, zy + csinty), t €[0,2m], ¢, €[0,7],

where Xy, Vg, 29, a,b,¢ € R, (a,b,¢) # (0,0,0).

Answer 3.11.

xX-x)*  -y)* (z-2)°
Z T T a =1

Problem 3.4. Find the equation of the tangent plane to the following surfaces at the
given points:

1.
z=1x2+y% (0,0,0);
2.
z=x-y++lxyl, (0,0,0);
3.

z=log\x*+y%, (0,1,0);



10.

11

12.

13.

14.

15.

Answer 3.12. 1.
2. Not exist;
3.
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zZ= sin<)—(>, (1,1,0);
Yy
2=, (1,0,e);
zZ= arctan<X>, <1, 1, E);
X 4
Z=y+ 10g<§), 1,1,1);

2: 425 =8, (22,1)

(tl + log tz, t2 - log tl’ Ztl + tz), (1, 1, 3),

(costy cosh ty, sin t; cosh t,, sinh t,), <cosh< € > 0, sinh( 1 >>

V2 V2

(t+ 1t — b, tity),  (2,1);

(t, & =26, 6 = 3t1t;),  (1,3,4);
. bis
(ty costy, by sint,, ty), <2, 1 );
z
— t+ =+ C_ = 1; (XO>yO>ZO);

() cos 63, ) sint3, aty), (£2,69).

y-z=1
X-my+z=0;
ex-z=0;

Vs
X — 2Z = —;
y+ 2

X+y-2z=0;
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8. X+y—-4z=0;
9. 3 ~

X -y—-22+4=0;
10. 1 1

cosh< — )x - sinh<— )z =1

V2 V2
11. 3x-y-2z=4;
12. 6x+3y-22=7
13. X+y-V2z=0;
14. XXo  Wo , ZZ¢ _ ..

2t tptet
15.

(asint))x - a(cos )y + (t9)z — atdt) = 0.
Problem 3.5. Find the equation of the normal line to the surfaces in Problem 3.4 at the
given points.

Answer 3.13. 1. Does not exist;
2. Does not exist;

3. X
—=y-1=-z
0 y
4 x—nzy;lzz,
-
5 x—l_X_z—e'
e 0 -1’
6 _ z-2
X—1:y—1= 4.
-1 2
7. x—l:y—lzz—_ ;
8. z-1
X-2=y-2=—;
Y -4
9. x-1 z-3
—_— = —1:—;
3 7 2
10. x—cosh(\/i?) y —z+sinh(\/i§)

2,1 = 1o 1y
cosh (5) 0 cosh(5) sinh( )



11.

12.

13.

14.

15.
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)(;2—_ +1—ﬂ.
3 YT T T
x-1 y-3 z-4
-8 3 2
x—\/Z_y—\/f_z—Z.
V2 w20
X=Xo _Y—Yo _Z-2p,
2% 2y 2z
ra 3 ra

0 e £0 0 i 0 0
X-tjcost;, y-tsint, z-at

in 0 0 0
asm t2 —acos l'z tl

Problem 3.6. Find the matrix of the first fundamental form for the following surfaces:

1

(tycosty, tysinty, kty), teR, vel0,2m],
where k € R;
((a+bcosty)costy, (a+bcosty)sint,, bsinty), t,t, € [0,27],
where a,b € R;
<a cosh % cos t,, a cosh % sint,, t1>, tteR, t,€[0,2m],

wherea € R, a # 0;

<a sin t; cos ty, asint,; sint,, a<log<tan %) + oS t1>>,
t;, b, € [0,2rr], where a € R;
(tycosty, tysinty, aty), t €R, vel0,2r],
wherea € R;
(t;costy, ty sinty, h(t;) + aty), (t;,t,) € R,

where h € Cl(]R) and a € R.

Answer 3.14. 1.

<1+k2 0

0 tf) tieR, t,€l0,2r];
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2. B2 0 .
, bt , ;
<0 (a+bcost1)2> 11y €[0,27]
3. (cosh &)? 0
¢ , teR, te[0,27];
< 0 (acosh %)2> 1€ 2 € 10,271]
4 a*(cott)? 0
> » L >2 5
( 0 az(Sintl)2> tl 2 € [0 T[]
> 1 0
(0 &+ tf)’ tteR, t,€l0,2m];
6. 1+ (h'(t))* ah'(t
< +( ! (t) a2 (12)>’ (tuty) € R,
ah'(t) a”+t

Problem 3.7. Let S be a surface and the matrix of its first fundamental form be

1 0 ,
S t;, t R
<o (sinht1)2> (1) €

Find the length of the segment of the curve
tl = tz
; 0 40 1 41
between the points (¢}, t;) and (&, t;).

Answer 3.15.

|sinh ¢; - sinh ¢]).
Problem 3.8. On the helicoid
(tycosty, tysinty, aty), t €R, t,e0,2m],

where a € R, consider the following curves:

t, =log(ty + \t2 + a?) +c,

where g, ¢ € R. Find the lengths of the segments of the curve between the points (tf, tg)
141
and (t;, t,).

Answer 3.16.
V2|t - 8.
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Problem 3.9. On the pseudosphere
. . . t
(a sin t; cos ty, asint; sint,, a<log<tan El) + cos t1>>, t, ty € [0,2r],
where a € R, consider the curves
b
t, = talog| tan 5t c,

where ¢ € R. Find the lengths of the segments of the curves between the points (tf, tg )
1 41
and (&, t;).

Answer 3.17.
lc, — ¢
2 bl
where
0o G +C
ty = +——,
2 2
Cy+C
=2~
2

Problem 3.10. Find the angle between the curves
tL=t+1 and =3-¢
on the surface
fltit) = (tcosty, tysint,, ), t € R, t, € [0,27].

Answer 3.18.
2
cosf = 3

Problem 3.11. Find the area of the curvilinear triangle
tl = iatz, t2 = 1

on the surface with a matrix of its first fundamental form given by

1 0 2

, t, L) € R
<O tf + a2> (. )

Here a € R is a given parameter.

Answer 3.19.

a2<§ - ? +log(1+ \/2)>.
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Problem 3.12. Consider the helicoid
f(tl’ tz) = (tl CcoS tz, tl Sin tz, atl), (tl’ tz) € ]Rz,

where a > 0. Find:

L Gltpty), (tpty) € R
2. H(tpt), (b)) € RY;
3. Altyty), (t, t,) € RE

Answer 3.20. 1.
1 0

0 tf+a2

g, ty) = < >> (t, ) € R

0 0

H(ty, ty) = < sign(u) ) (t, ) € IRZ;

0 =—(au)
va*+u?

0 sign(t;) (atl)
-1 yat+t?
Aty ty) = Tid !

+ (12 sign(t;) (atl) ’

Problem 3.13. Find the matrix of the second fundamental form of the following sur-
faces:

(t,1) € R%.

1.
f(t, ) = (Reosty, Rsinty, ty), &, t, € [0,27],
where R > 0;
2.
f(tl’ tz) = (tl Ccos tz, t1 Sin tz, ktl), tl’ tz € [0, Zﬂ],
3. f(t,t;)) = ((a+bcosty) costy, (a+bcosty)sint,, bsint,), t,t, € [0,27],
where a,b € R, (a,b) # (0,0);
4,

t t .
ft, 6) = <a cosh El oS ty, a cosh El sin tz,t1>, ti1eR, t,€l0,2r];

. . . t
fl,t) = <a sin t; cos ty, asin ¢; sin t2,a<log(tan %) + Cos t1>>, t, by € [0,27].

Answer 3.21. 1.

0 0), tteR, t,€[0,2r];

[92](6, 1) = <0 R
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2. 0 0
[P,](t;, 1) = ( sign(t,) ), tieR, t,€l0,2m];
0 ool (ku)

> w]at)—anwm+bmun<b 0 > ty, t, € [0,27];

2/t ) = 818 Y7N0 costi(a+bcost))’ T
4. h(i o

[¢,](t;, t,) = sign(a) cosh = <a ) tieR, t,el[0,27];
a\0 a

5. —asign(a) cot ty 0

(#2161 = < 0 asign(a) sin t; cos t1>’ bty € 10 27].

Problem 3.14. Find the principal curvatures of the following surfaces at the given

points:
1.
z=xy, (1,11
2. 22
XY Z22 (0,0,0);
P q
3.

2 2 2 2
(G +t6,t - t,tt), (L1).

Answer 3.22. 1.

V3
kl = —?,

V3

ky = —°.

273

2.

ki = 2p,

k2 :Zq

3. 1
k - T~ =

125

Problem 3.15. Find the Gauss and mean curvatures of the following surfaces:
1
z2=f(xy), (xy)eR%

2 2=f(\2+y)), (xy) e R
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Answer 3.23. 1. 5
_ ZxxZyy — (ZW)
A+

2 2
~ 1+ zx)zyy +(1+ Zy)ZXX - szzyzxy.

(1+22 +22)>
2. K _ flfl!
X2 +y2(1 + (f/)2)3
" !
P L f

AR ey T (2

Problem 3.16. Let S be a surface with a matrix of its first fundamental form being

< 1 cos w>
Cos W 1 )

Prove that

Problem 3.17. Let S be a surface with a matrix of its first fundamental form being
1
< (X2+y*+c?)? (1) )

Problem 3.18. Classify the points of the following surfaces:

Prove that K is a constant.

1. ellipsoid;
2. elliptic paraboloid,;
3. hyperbolic paraboloid;
4. elliptic cylinder;
5. parabolic cylinder;
6. hyperbolic cylinder;
7. cone;
8.
z=f(\ -y, (6y) e RY
9. 3

X+y=2, (x,y)e]Rz.

Answer 3.24. 1. elliptic;
2. elliptic;



N

3.15 Advanced practical problems =— 181

hyperbolic;

parabolic;

parabolic;

parabolic;

parabolic;

if f'f" < 0, then elliptic; if f'f"” > 0, then hyperbolic; if f'f" = 0, then parabolic;
parabolic.



4 Fundamental equations of a surface. Special
classes of surfaces

In this chapter introducing the Christoffel symbols, the fundamental equations of a sur-
face, Gauss and Codazzi—-Mainardi equations, are established, which are important due
to their role as existence and uniqueness theorems for surfaces. Geodesics playing the
role of a line on a surface are introduced as a notable class of curves on surfaces. Some
special surfaces such as Liouville, ruled, and minimal surfaces are also given.

4.1 Some relations

Suppose that (U,f) is a regular parameterized surface. Then {f; ,f, ,n} is a basis in
Rj, .,)- We have

E=fo fu
F=f -t
G=f, 1o
Then
E. =foe, fo, 1o Jon,
= 2(ft1t1 'ftl)’
whereupon
1
ftltl 'ftl = EEtl'
Also,
Etz :fuv 'ftl +ft1 'ftltz
= Z(ft1 'ftltz)
and

1
ft1 'ftltz = EEfz'
Consider the component G. We have

Gy, =fot, T, 1o, Ty,
= Z(ftltz 'ftz)’

https://doi.org/10.1515/9783111501857-004
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whereupon

and

from where

Moreover,

whereupon

and

from where

4.2 The Christoffel symbols

1
ﬁltz 'ftz = Zth’

Gy, = for, Jo, t 1o, Tty
= z(ftztz 'ft2)>

1
ft2t2 'ftz = EGtZ'

Fy :ftltl 'ftz +ft1 'ftltz

1
=fot, Sfo, + zEtz’

1
ZE,,

ft1t1'ft2:Ft —2 )

Fo =foe, fo, t 1 fo,

1
= ith + (ftl 'ftztz)’

1

ftl 'ftztz = th - EGt-

1

4.2 The Christoffel symbols

— 183

In this section, we will represent f; ; , f; ., and f; ,, in terms of the basis {f; ,f, ,n} in the

following way:

1 2

foo, = Tufy, + Tufy, + L0,
1 2

ftlt2 = Fufq + 1"12]‘}Z + Mn,
1 2

ftzt2 = 1"2th1 + Fthz + Nn,

where L, M, N are the components of the second fundamental form.

4.1
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Definition 4.1. The coefficients 1"5 i,j,k € {1,2}, are called the Christoffel symbols.

From the first equation of the system (4.1), we find

1 2
foo, fo, =Tulf - fo) + Ty - f)s
1 2
foe, S, =Tulfy, - i) + Ty, - 1)
or
M E+TAF = L
1 ut = ke

1
IyF +THG =F, -

P

Q)

Since W? = EG - F* # 0, the above system has a unique solution, namely

1 1
E,G-F,F+31E,F

1 _
1—‘11 - Wz ’
1 1
2 _ 3B F +EF, - 3EE,
1~ Wz .

Analogously, using the second equation of the system (4.1), we obtain

1 2

foo, fo =Tl - fo) + Ty, - fiy)s
1 2

Joo, Jo, = Ty, - fi) + T(fy, - fo)s

or

1
TpE +THF = -E,,

2

I F+ 12,6 = 26

12 12 7t
The solutions are

o E,G-G.F
12 ZWZ >
2 _ —E,F + EGy,
12 ZWZ .

Finally, from the third equation of the system (4.1), we obtain

oty fo = Toa(Fe - o) + Tonfe - fr):
2
oty fo, = Toafiy i) + T, o)

or
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1 2 1
IpE+TF =F, - 56‘1’
1 2 1
Iy F +T5,G = EGtz’
The solutions are

1 1
F,G-1G6,G- 1G,F

1
FZZ = W2 >
1 1
12 _ PRy 3FGy + 3G,
22 W2 .

Example 4.1. Letf,g € C2(D), (f'(t),g'(t)) # (0,0),t € I,I ¢ R. Assume that S is a surface
obtained by rotating the following curve:

x = u(t),

z=v(t), tel,
around the z-axis. Then S can be represented parametrically as follows:
f(t,0) = (u(t)cosO,u(t)sinf,v(t)), tel, 06¢€l0,2m].

We have

fi(t,0) = (u'(t) cos 0, u' (t) sin 6,V' (1)),
fo(t,0) = (-u(t)sin O, u(t) cos 6,0), tel, 6e€l[0,2n],

and

E(t,0) = f,(t,0) - f;(t,0)
= (W' () cos ) + (W' (H)sin6)" + (V' (1))
= (' () (cos 0) + (' () (sin 0) + (V' (1))
= (@) + (V)
F(t,0) = f,(t,0) - fp(t, 0)
= —u(t)u'(t) sin O cos 8 + u(t)u'(t) sinH cos O
-0,
G(t,0) = fy(t,0) - fo(t,0)
= (-u(t) sin (9)2 + (u(t) cos 0)2
= (u(t))*(cos 0)* + (u(t))*(sin 6)*
= (u(t))z, tel, 0¢]0,2m],
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and

E,(t,0) = 2u' (t)u" (t) + 2V (e (b),
Ey(t,0) =0,

F(t,0) =0,

Fy(t,0) = 0,

G,(t,0) = 2u(t)u'(t),

Go(t,0)=0, tel, 0¢][0,2m],

as well as

W(t,0) = E(t,0)G(t,0) - (F(t,0))°
= W)W ®) + (V' ©)), tel, 0e0,2m].

Hence,

1E(t,0)G(t,0) - F,(t,0)F(t,0) + 1 Ey(t, O)F(t,0)
(W(t,0))*

TP u' (ou 6 + 2" (v (1)

@) (W' (1))* + (V' (1)?)
U @Ou" @) +V eV ()
W' ()2 + (vV'(1))?

%5@ﬁf@®+£@@ﬂﬁﬁ%€£&@%aﬁ)_0
(W(t,0))> ’

Eq(t,0)G(t,0) - G,(t, O)F(t,0)

2(W(t,0))>
~Ey(t,0)F(t,0) + E(t, 0)G,(t,0)
2(W(t, 6))>
(@ @) + ' @) 2u@u' (t)
@)XW (1))* + (V'(£))%)

v

u(t)’

Fy(t,0)G(t, 0) — 3G, (t,0)G(t, 0) — 3 Gy(t, O)F(t, 0)
(W(t,0))?

— ()’ 2u(du’ (1)

U)X () + (V' (1))

_umu'®)

@@+ V(0

I2(t,0) =

Ty, (t,0) = 0,

I,6,t) =

Th,(t,0) =
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—F(t,0)Fy(t,0) + 3F(t,0)G,(t,0) + SE(t, 0)Gy(t, 0)
(W(t,0))?*
=0, tel, 0¢€]l0,2m].

T2,(t,0) =

Exercise 4.1. Prove that

r%l + F%z = (log(VEG - F?)), ,

1
I, + I3, = (log(VEG - F2)), .
Solution. For the first equality, we have
VEG - F?
(log(VEG - F?)), = WEG - F)y

E, G +EG, - 2FF,
_ 4 1 1
2(EG — F2)

On the other hand,
1 1
L2 - iEth—FtlF + QEQF . —EtZF +}5Gt1
1 12 Wz 2W2
E,G+EG, - 2FF,
© 2(EG-F?)

>

proving the first equality. The second equality can be proved in a similar way.

Exercise 4.2. Let F = 0. Find the Christoffel coefficients.

Answer 4.1.
r%l = %’
r%l = _%’
riz = %
= oo,
1"%2 = _%>
T3 = %

Exercise 4.3. Find a;;, i,j € {1,2}, such that

ij;
ng, = ayufy + apf,

4.2)
ng, = aZ]ﬁ1 + a22ft2'
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Definition 4.2. The coefficients a;;, ,j € {1, 2}, are called the Weingarten coefficients.

ij)
Solution. By the first equation of the system (4.2), we find

n - fi, = anlfy, - fi) + aplfy, - 1)
ng - fy, = anlfy, - fi) + an(f, - fi)s

or
anE + ale = —L,
a11F + alzc = —M.
Therefore
FM - GL
g1 = wZ
FL -EM
app = W2

Using the second equation of the system (4.2), we arrive at

n, - fo, = an(fy - f) + anlfy, - fi,)
ng, - fi, = an(fe, - fi,) + an(f, - fr,)

or
a21E + azzF = —M,
a21F + azzG = —N.
Consequently,
_ -GM +FN
ay = w2
FM - EN
Ap = W2

Exercise 4.4. Prove that
1 1 20 2l
(T11)y, = (Tip)y, + Tl — Tppl'pp = —anL + ayM,

2 2 112 2 12 1 2 2 \2

(rll)tz B (lﬂlz)t1 +IyIpy + Ty Ly — Tl — (T3p)” = May, — Lag, 43)
1 1 112 | 12 12 11 2l '

(rlz)tz - (1"22)t1 +(Typ)” + Tl — Iyplyy — Tyl = anN — May,,
2 2 12 ,p2pl  plp2 22

(Ti2)y, = (T3g)y, + Tl + TipTy = IpTy — Ty = AN — apM,

and



4.2 The Christoffel symbols =—— 189

L, - M, = -TyM - THN + Tj,L + T M, w
M, N, = -T,M ~ TN + Tp,L + T3, M. '

Definition 4.3. The equations (4.3) are called the Gauss equations.

Definition 4.4. The equations (4.4) are called Codazzi-Mainardi equations.

Solution. To deduce the Gauss and Codazzi—-Mainardi equations, we will use the rela-
tions

ftftz = foug 4.5)
and
foe = fiu- 4.6)
We have
fo = Tfy +Thfy, +Ln
and then
ftftz = (Th)tzle + ri]ftltz + (ril)tszz + r%]ftztz +Lyn+Ln,
= (ril)tzfﬁ + (F%)tzftz +Lyn+ rh(rizftl + F%Jtz +Mn)
+ T3 (Tafy, + Toft, + Nn) + L(af, + axf,)
= ((r%l)tz + rilr%z + r%ll—%z + LaZl)ftl
+ ((Fil)tz + rhr%z + r%lr%z + Lazz)fz2 + (Lt2 + FhM + F%lN n,
ie,

1 1l 2l
ftftz = ((rn)zz + Iy + Tyl + La21)ft1

2 12 272 1 2 .7
+ ((Fn)tz + Iyl + Tl + Lazz)ftZ + (LtZ + Ty M + Ty N)n.

Now, using that

1 2
ftlt2 = FlJtl + Fl?ftz + Mn,

we obtain

1 1 2 2
fotye, = (Flz)t1ﬁ1 + rlzftf + (rlz)tlftz +Ifee, + Myn+ Mny
1 2 1l 2
= (F12)t1ft1 + (Flz)tlftz +M n+ l“12(1“11](}1 +Ifi, + Ln)
2 il 2
+ Ty (Toofy, + Tipfy, + Mn) + M(ayf;, + arf;)
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1 1 2l
= ((1"12)t1 + Ty + Tl + ayM)f,
2 2 2 \2 2
+ ((ru)tl + T3l + (Th)” + apM)f,, + (Mg, + L + T M)n,
ie,
1 1 2l
oty = (Tiz), + Tipl'yy + TppLyp + anM)fy,
2 1 2 2 \2 1 2
+ ((ru)tl + Ty + (T)” + apM)fy, + (M, + TppL + T, M)n.

Using the latter equation with (4.5) and (4.7), we find the first two of Gauss equations
and the first of the Codazzi—Mainardi equations. Next,

foe = (F%Z)tzfq + F%thltZ + (F%Z)foz + F%Jtztz +Mn+Mn,
= (I‘iZ)tszl + (F%Z)[thz + M, n+ F%Z(F%Jtl + F%Jtz +Mn)
+ l"fz(l"ézft1 + l"ﬁzftZ +Nn) + M(ayf, + ayf;,)
= ((FiZ)tz +TT + (T,) + THTY, + May)f;,
+ ((I‘%Z)tz + r%zriz + r%zréz + Mazz)ft2 + (Mtz + F%ZM * Fsz n,

ie,

1 12 1\2 21
ftltg = ((r12)tz + T3l + (Tpp)” + Tl + Mam)ft1

2 1 12 2 12 1 2 (4.8)
+ ((ru)zz + Iy + Ty + Mazz)ft2 + (Mtz +T;p,M + T N)n.

Now, using that

1 2
fot, = Tooft, + Tpf, + NI,
we arrive at
1 1 2 2
feo, = To)o o, + Toofe + (T2) fi, + Toftys, + N+ Ny,
1 2 1l 2
= (FZZ)tlftl + (lﬂzz)clft2 +Nyn+ 1“22(1"11ft1 +Ifp, + Ln)
2l 2
+Tpp(Tpafy, + Tpft, + M) + N(ayf;, + ayf;)
1 101, 2l
= ((rzz)t1 +TopT'yy + Tyl + Ny )f,

2 102 | 122 1 2
+ ((rzz)t1 + Iyl + Tl + apN)fy, + (N, + TpL + T M)n,
i.e,

1 10l 2l
ft§t1 = ((rzz)zl + Topl'yy + Tplyy + Nan)le
2 102 22 1 2
+ ((lﬂzz)z1 + Iyl + Tl + apN)fy, + (N + TypL + T M)n.
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Now, applying (4.6), (4.8), and the latter expression, we find the third and fourth of Gauss
equations and the second of Codazzi—-Mainardi equations. This completes the proof.

4.3 The fundamental theorem in the theory of surfaces
Suppose that U ¢ R" is an open set. There are two symmetric matrices on U given by
hy h
(gn glz> and < 11 12)
82 8» hy  hy
of classes 2 and C', respectively. Here, for any (t;, t,) € U, the quadratic for an associated
bilinear form whose matrix is (gij), i,j € {1,2}, is positive definite and, moreover, its

components verify the Gauss and Codazzi—-Mainardi compatibility conditions. Choose
qo = (tf,tg) €U, f(qy) =po € R® and the vectors

1:,(90) £, (q0), n(qo) € T,,OIR3

such that

J,(0) - f,(q0) = &u(qo),

J1,(q0) - £,(q0) = 812(q0);

Jt,(q0) - f1,(40) = 822(q0)>
n(qo) - fz,(qo) = 0,
n(qo) - f,(qo) = 0,
n(qo) - n(qy) =1

and {f; (qo).f;,(90), n(qp)} is a right-handed basis of the vector space Ty, R3. Set

(811)1,822 — 2(812)1, 812 + (811)1,812
2(gugn - &)
—(811), 812 + 2811 (812)e, — 811811y,
2(gugn - 85)

o (811)1,822 — (822)1, 812

12 = 2
2811822 — 81)
2 - —(811)1,812 + 811(82)y,
12~ 2
2(81182 — 81)

1 _
Iy =

>

2
Iy =

>

>

1
Iy =Thy
2 2
Iy =T3
o 2(812)1,822 — (822)1,822 — (822)1,812
2=
2(gn&xn - 85)

>
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—2815(812)e, + 812(822)r, + 811(&2)y,

2 _
Iy =

2088 - 85)

Consider the Cauchy problem

Here

of 1 2

- = Tyre, + Tft, + hun,
ot

of; 1 2

1= l"lzrtl + l"lzftz + hlzn,
at,

of; 1 2

= = Iogre, + Tfy, + humt,
at,

on

on

r (o) =f»
ro (o) =fo»

n(qp) = ny.

2 2
W* = 81182 — 813-

Exercise 4.5. Prove that:

1

Solution. 1.

o’f,  Of,
ot,ot,  ot,ot,

of, azfzz'
ot,ot, ot,ot,

*n 3 *n
ot,ot, ot,ot,

We have

azft aft t a 1 2
atzaltl - atlzl = a_tz(rllftl +Tyyfy, + hyyn)

ary, , Ofy, or 2 O
- L2, -1 | "
2f‘1+ 1ot, " atszer 1at,

oty

or; 1 1 2
= ﬁftl + 1"11(1"1Jt1 +Ipfy, + hyyn)

Ohy
at,

1
a_tl = W((glzhlz = &phify, + (Gr2hn - gnhlz)fzz)s

1
at, W((gmhzz - &nhafy, — (§ha — Euh)f:,),

on
n+ hlla_tz

(4.9)
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Mh o, 2
?zlftz + rn@zzftl +Ify, + hyyn)

oh 1
+ a—t;ln + Whn((gmhzz - 8y, + (uhn - Suhlf,)
orl 5 h
= (7121 + T3y, + ThTg + #(321’122 - 8nhp) Ify,

or?
+ < atzl + T3y Th + THTg, + 112 (812h12 — 811han)
oh
( 11h12 + I111hzz + atn >n
= Alft1 + Azft2 +A3n

and

™ e 0 4.
=—==—(T T h
oy ot, oty at1( 1w, + Tofy, + 12N)

F%Z ftl ar%z 2 ffz ah1z
T oot st * T at, ot ot T Ty at, Tt T hlza_t1
BI'

f;.‘l + rlZ(rllftl + 1"11ftz +hyyn)

ar , oh
+ a_tllzftz + F%z(réjftl +Tyfy, + hyn) + ?12"

h
+ #((guhlz = 8phfy, + @rhn - guhw)f;,)
:(r—%hrlrl +T4T} +h(g Ry, — 8xhuy)
or, " Tl + Tl + 37 (8he = 8nhn

or 2
+ < at112 + F12F11 + F12F21 + 122 (glzhll = g11h12)>ft2

ohy,
< 12h11+ ot +r12h21>

= Blﬁl + Bzf;:z + B3n.

Now, applying the Gauss equations, we find
81"%1 2 hy
ot 1"111“12 Tl + 25

BI‘%Z 2 1 h12
at, 1"121"11 [l - W(gIZhu - &nhy)

Ay -B; = (g21h22 - 82hy1)

ary ar%z 2 11 1 2
= a_tz at, 1“111"22 [Ty + gmm(hnhzz ~hip)
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h h
—i(—gzzhlz + g12hg) + W—lzz(glzhlz - 82hn)
+ g21 (hnhzz hiz)

—glzm(hnhzz h12)+321 (hnhzz h%z)

=0
and
81"%1 hy
Ay-By = o, + Ty T5 + ThTg, + 1L W2 (812M12 — S1ha)
oMy 12 22 h
atlz [Ty — Tl — ﬁ(gﬂhll - &nhiz)
Oy o 10 22 w2 @@
= 6_1.‘2 - a_t1 + Il + T Ly — Tyl — Tl

+ g11 (hnhzz hi,
1

= h12—2 (81211 — g1hyz) — Ay W(glzhu = 8nhy)

+ gn (hnhzz hi,)

2 1 2
= —gn (hnhzz hi,) + gnw(hnhzz — hy)
=0.
Now, we apply the Codazzi-Mainardi equations and find

ot

ahlZ 2

Ag - By =Tjihyy + Thhy + =2 —Th,hy; -

_ Ohy _ ohy,
~ o, o
=0.

1 2
+ 1—‘11}112 + l—‘11hZZ - 1—‘12hll - l—‘12th

Therefore

2 2
7, _ P
oLot, | 94,01

Hint 4.2. Use the solution of part 1.

Hint 4.3. Use the solution of part 1.
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Exercise 4.6. Prove that there exists an open neighborhood Q ¢ U of the point g, and
a set of C* vector functions fipfpn e W — R® which are solutions to the initial value
problem (IVP) (4.9).

Solution. By Exercise 4.5, it follows that the IVP is completely integrable. Hence, the
desired result follows.

Exercise 4.7. Prove that the vectors

Je, () = (\/8'11(%)s 0,0),

£ (a0 _< &1((q0)) \/gn(%)gzz(%)—(glz(%))z 0)
6o VEn (o))’ V&1(qo) ,

n(qO) = (0’ 0> 1)

satisfy all the hypotheses.

Hint 4.4. Use that the matrix

<gl1(%) 8'12(%)>
Z12(q0)  £2(q0)

is positive definite.

Exercise 4.8. Consider the IVP

of
o
oS _, (4.10)
o, ¥
f(qo) = po-

Prove that there exist an open neighborhood V ¢ W ¢ U of u° and a single ¢ function
f: V — R that is a solution to the IVP (4.10).

Solution. By the second and third equations of (3.2), we find
of %
ot,0t; oty
=Tpf, +Thf, +hyn
= r%lftl + F%lftz +hyn

_9f
ooty

Thus, (4.10) is completely integrable and the desired result follows.
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Exercise 4.9. Prove that the surface f in Exercise 4.8 satisfies the following relations:

1.
ofy, - f)
tc-l)t - Z(I‘il(rq Ty) + l"fl(rt1 Ty + hyy (e, n);
1
2 of,, 1)
i’itz - = Z(F%z(ftl ft1) + I‘%Z(ftl ftz) + hlZ(ftl . Tl));
5 o, - f,)
tétl b _ F%Z(ftl fe) + (1"}1 + 1"%2)(]31 )+ F%(ftz 1)
+ hlZ(n ftl) + hn(n ~ft2);
4 of;, )
tatz L7 _ r;z(ftl ftl) + (F}z + I‘%Z)(ftl ftz) + I‘%Z(ftz ftz)
+hy(n-fo) + hp(n- fi.);
5. ofy, - fr,)
tatl == Z(F%Z(ftl flz) + r%z(]ctz ftz) +hy(n 'ftz));
6. of,, 1)
tatz b Z(Féz(ftl Jo)+ ng(ftz i) + hyp(n- f);
;tl - 1ﬂl(ﬁ-‘l ’ n) + r%l(ftz ' n) + hn(n . n)
1 1
= gz (g + gl (1) = 377 (o + haagn)fy - fo )
;t = riz(ﬁ‘l “n) + r%z(ftz -n) + hyy(n-n)
2
1 1
_ W(hmgn +hygu)(f, - fi) - W(hmglz + hygn)(fi, - fi)s
9. of, - n)
;t = I‘%Z(ftl -n) +r%2(ft2 -n)+ hy(n-n)
1
1 1
_ W(hngn +hipg)(fe, - fr) - W(hnglz + hig)(fi, - fi);
gtz - lgz(ftl ’ n') + F%Z(ftz : n) + hzz(n . n,)
1 1
_ W(hmgn +hypgu)fe, - fi) - W(hmgu + hypg)(fi, - S
11. a(n . n) 3

2
o W(—(hngn + hypg)(fy, - 1) — (M gy + huag2a) (fy, - n);
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12. omn-n 2
at, W2

(~(hygu + hy:812)(fr, + 1) — (h81z + hya&a)(fy, - n)).

Solution. Using the Gauss—Weingarten equations, we have

1 2
Joo = Tufy, + Tufy, + hun.

Then

of - fi,)

% = (fflfl ffl) + (ftl 'ftltl)

1
= Z(ftlt1 'ftl)

= 2(Fi]ftl + rﬁfzz +hyyn) 1,

= 2Th(fy, - f) + Tafy - fi) + hu(n- 1)),
Hint 4.5. For parts 2-12, use the solution of part 1.

Exercise 4.10. Prove that

fi i, = 80>
fo 1, = 812

fo, S, = 82
ftl-n:O,

fi, n=0,

n-n=1

satisfy all the relations in Exercise 4.9.

Hint 4.6. Use the definition of TX

K L)k € (1,2,

Exercise 4.11. Let f be the surface in Exercise 4.8. Prove that the matrix
<g11 ng)
812 8x
is the matrix of its first fundamental form.

Hint 4.7. Use Exercise 4.10.

Exercise 4.12. Let f be the surface in Exercise 4.8. Prove that the matrix

<h11 h12>
hiy

is the matrix of its second fundamental form.
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Hint 4.8. Use Exercise 4.11.

Exercise 4.13 (Bonnet theorem). Prove that there exists a single regular surface of class

s, f:Vv- R, with V c U an open set such that the following conditions hold:

L f(4o) = Po-

2. fi(q0) :ft?’ Jt,(q0) =ft(2)-

3. n(qy) = n°.

4. gjand hy,i,j € {1,2}, are the elements of the matrices of the first and second funda-
mental forms of f, respectively.

Hint 4.9. Use Exercises 4.5-4.12.

4.4 The Darboux frame

Let S be an oriented surface and (U, f) be a local representation of S that is compatible
with the orientation of S, and (I, g) be a parameterized curve whose support lies on S.
Let also t be the unit tangent vector of g, and n be the unit normal of S. Take

N=nxt.

Definition 4.5. The frame {t, n, N} is called the Darboux frame of S along the curve g.
Exercise 4.14. Express the vectors nand N in the terms of the Frenet frame {t, n, b} of g.

Solution. Let

0= /(n,n).
We have that
n = cos(N,n)N + sin(N,n)n,
b = cos(N,b)N + sin(N, b)n.
Since
b4
N,n)=— -0,
/(N,n) 5
L(N,b)=m-6,
we find

n = sin 6N + cos 6n,

b = —cosON +sin6n,
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and

N = sin 6n - cos 6b,

n = cos 6n + sin 6b.

Exercise 4.15. Prove that:
1. t.n=-t-n;

2. t'-N=-t-N';

3. n-N' =-n"-N.

Here the differentiation is with respect to the arc length parameter s of the curve.

Solution. 1. We have
t-n=0.
Differentiating with respect to s, we find
0=t -n+t-n',

whereupon we get the desired result.

Hint 4.10. Use the solution of part 1.

Hint 4.11. Use the solution of part 1.

Exercise 4.16. Find representations of t', N’, and n’ in the terms of the Darboux frame
{t,n, N} with respect to the arc length of the curve.

Solution. It is obvious that the derivative of a vector of the Darboux frame is perpen-
dicular to itself. Then
t' = a(s)N + b(s)n,
N' = c(s)t+d(s)n, 4.11)
n' =e(s)t +f(s)N,

where a, b, ¢, d, e, f are smooth functions of the arc length parameter s. Using the first
and second equations of (4.11), we find

t'-N = (a(s)N +b(s)n) - N
=a(s)
=_t-N'
=-t- (c(s)t+d(s)n)

= —c(s),
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ie,
a(s) = —c(s).
From the first and third equations of (4.11), we obtain

t'-n=(a(s)N +b(s)n) -n
= b(s)
=—t-n
= -t (e(s)T + f(s)n)

= —e(s),
ie.,
b(s) = —e(s).
From the second and third equations of (4.11), we obtain

N'-n=(c(s)t+ds)n)-n
=d(s)
=-N-n'
=-N-(e(s)t +f(s)N)
=—f(s),

ie,
d(s) = —f(s).
Thus, the system (4.11) can rewritten in the form

7' = a(s)N + b(s)n,
N' = —a(s)T + d(s)n,
n' = —b(s)t — d(s)N.

We have, using the Frenet formulae,

t' =xn

= Kk sin ON + k cos On.

Therefore

a(s) = ksin 6,
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b(s) = kcos 6.
Now, we differentiate the equation
N =sin6n - cos 6b
with respect to the arc length parameter and, using the Frenet formula, arrive at

N' =6 cos6n +sinfn’ + 6’ sin 6b — cos 6b
=0 cosOn + sin O(-kt + th) + ' sin 6b + 7 cos Hn
= —ksin Ot + (0 + 7)(cos On + sin 6b)

= —ksin6t+ (0’ + 7)n.
Therefore,
dis) =60 +1.
So, we find

=k sinON + k cos 6n,
—ksin Ot + (6" + 7)n,

tl
NI
n' = —kcosft - (0' + 7)N.

Definition 4.6. The quantity k, = ksin@ is called the geodesic curvature or tangent
curvature of the line g.

Definition 4.7. The quantity 7, = 0’ + s called the geodesic torsion.

4.5 The geodesic curvature. Geodesic lines

In this section, we will deduct some expressions for the geodesic curvature. We will use
the notations in the previous section.

Exercise 4.17. Suppose that g is naturally parameterized. Prove that:
L Kk,=t'-N=-(t-N');
2. K=t -(nxt)=(txt)-n

Hint 4.12. Use the definition for k, and the representations of t' and N'.

Exercise 4.18. Let g = g(u(t), v(t)) and s be the arc length parameter. Prove that

1
Ky = g x8")n
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Solution. We have

Hence,
dt
t ==
ds
_dtat
T dtds

1 gll ! g’s”
SI (S’)Z
g’s”
(S')3 '

Now, using Exercise 4.17, we get

gl gll ! glsll
o (G (Fe)

1 n.! r.n
= @(g x(g's'-g's"))-n
1 n ./
= w(g (g"s"))-n
" & )3(g xg")-n

Exercise 4.19. Let g = g(u(t), v(t)) and s be the arc length parameter. Prove that:

1.
g" = () + 2ruv + TH(V))g,

() + 202V + T () )g, + 0y(g'8') -+ g, + "',

where ¢, is the second fundamental form of the surface.

2.
g, < gl 2 2 1 2
Kg = lés )3V ( 1(u ) +(21"12 F D)V + (T - 20 (V)
_ I%Z(VI)S UV v'u");
3. . _ lgu <8l det u U+ )T + 20T, + (V)T
" (s VooV ()T + 2u'V'TE, + ()T,

Definition 4.8. The curve g is called a geodesic line if k, = 0.
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Exercise 4.20. Let g be a geodesic line. Prove that

0= Th(u)’ + (2, - TR)()V + (I - AR (V) - T (') + u'v" —v/u'".
Hint 4.13. Use Exercise 4.19.
Exercise 4.21. Let g be a geodesic line. Prove that

w4 ()Tl + 20T + (V)T = 0,

V' ()T + 20V T + (V) TS = 0.

4.6 Geodesics of Liouville surfaces

Definition 4.9. A surface S is called a Liouville surface if its first fundamental form is
given by

(U(u)+ V(v) 0 )
0 Uu) +V(v))’

where U(u) and V(v) are smooth functions.
Let S be a Liouville surface. Then

E(u,v) =U(u) + V(v),
F(u,v) =0,
G(u,v) =U) + V(v).

Exercise 4.22. Find the Christoffel coefficients of a Liouville surface.

Answer 4.14.
1 _ U'(u)
720w +v(v)
2 V'(v)
72U +v)’
1 _ V'(v)
272U + vv)y
2 U'(u)
272U + Vv
1 U
272U +Vw)
2 V'(v)

27 2UW) + V(©v)’

where the prime denotes the derivative with respect to the related variable.
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Exercise 4.23. Let S be a Liouville surface. Find the equations of the geodesics.

Answer 4.15.
2u" (Uu) + V(v)) + (u')ZU'(u) —2uV'V'(v) - (v')zU'(u) =0,
2" (U@) + V(v)) - (u')zV'(v) +2uV'U (w) - (v')zU'(u) =0.

4.7 Ruled surfaces

Let I ¢ R, and let S be an oriented surface with a local parameterization (I x R, f) that
is compatible with the orientation of S.

Definition 4.10. The surface S is called a ruled surface if its local parameterization has
the form

fu,v) =g)+vb(u), (Wv)elxR,

where g,b € C*(I) and |b(w)| = L u € I.
Exercise 4.24. Let S be a ruled surface. Find the matrix of its first fundamental form.

Solution. We have

fu(u,v) = g'(w) + vb' (u),
fo(w,v) = b(u).

The components of the first fundamental form are:

E=gyu=g & +@ug b+ b,
F=g,=g-b,
G=gp=1

Hence, the sought matrix is

<g’~g’+(2v)g’-b’+(v2)b’-b’ g’~b>
g b 1)

Exercise 4.25. Let S be a ruled surface. Find the equation of its tangent plane at an ar-
bitrary point.

Solution. Using the calculations of the previous solution, we have
(V) x f,(u,v) = g’ (u) x b(u) + vb'(u) x b(u).

Let R be some point in the tangent plane of S at an arbitrary point. Then, its equation is
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(R-g-vb)-(g'xb+vb' xb)=0,
or
(R-2)-(g" xb+vb' xb)=0.

Exercise 4.26. Let S be a ruled surface. Find the coefficients L, M, N of the second fun-
damental form.
Answer 4.16.
L= (8" +vb) xb)- (8" +ub"),
1 ! !
M=— b)-b'),
(g xb)-b)
N =0,

where W = VEG - F2.
Exercise 4.27. Let S be a ruled surface. Find its Gauss curvature.

Answer 4.17.

(&' xb) -y

K= Wi

4.8 Minimal surfaces

Let S be an oriented surface with a local parameterization (U, f) that is compatible with
the orientation of S.

Definition 4.11. The surface S is said to be minimal if its mean curvature H = 0.

In other words, the surface S is minimal if and only if
GL -2FM +EN = 0.
Definition 4.12. Alocal parameterization (U, f) of S is said to be isothermic if
E=G, F=0.

Note that the expression F = 0 describes that the coordinate lines are orthogonal.

Exercise 4.28. Prove that a surface S is minimal if and only if its asymptotic directions
are orthogonal.

Solution. We choose an isothermic representation of S. Then

E=G=2, F=0.
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Hence, the minimality condition is equivalent to the condition
E(L+N)=0,
whereupon
L+N=0.
The equation of the asymptotic directions is
Lt +2Nt + M = 0

and the condition that they are orthogonal is

tity = -1,
whereupon
L=-N,
or
L+N=0.

This completes the solution.

4.9 Advanced practical problems

Problem 4.1. Find the Christoffel coefficients of the following surfaces:
1
f(t,t;) = (acosty costy,acost; sint,,csinty), (t,t,) € [0,2m] x [0, 2],

where a,c € R;

2.
fltit) = (tcosty, tysint,, t2), t; € R, t, € [0,27];
3 f(t, ) = (Reosty, Rsinty, t;), & €R, t,€[0,2m],
where R € R;
4,

f(tl’ tz) = (tl Ccos tz, tl Sin tz, ktl), tl € ]R, tz € [0, 27[],

where k € R;
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f(tl’ tz) = (tl Ccos tz, t1 Sin tz, atz), tl € ]R, V€ [0, 27T],

where a € R.

Answer 4.18. 1. s 9
(a® - ¢®)sin(2ty)

(a%(sin t;)? + c%(cos t;)?)’
I%(tp tz) =0,
I‘%Z(tl’ tz) = 0,

I2,(t, b)) = —tant,,

T(t, ) = 3

Ty,(ty, b)) = —tanty,

T2,(t, ) =0, (ty,t,) € [0,27] x [0, 271];

2. 1 4t1
[t t) = m,
r%(tp tz) =0,
Thy(ty, t) = 0,
2 1
rlz(tlytz) = a,
t
Ty (t, ty) = ——1—,
(e t) = =37 4
To(tyt) =0, tieR, t#0, tel0,27];
3.
Ti(t, t) =0,
T3t ty) = 0,
F%Z(tl’ tz) = 0,
r%z(tp tz) =0,
I‘;Z(tl’ tz) = 0,
F%Z(tl’ tz) = 0, tl € ]R, tz € [0,27‘[],
4,

Tt t) = 0,
Th(t,t) =0,
Ty, (ty, t) = 0,

1
T2, (t;, b)) = =
1

T (t,t) = ——2—,
2t k) 1T Kk
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To(tt) =0, t e€R, t,e[0,27];

1
Fll(tl’ tz) = 0,
2
Fu(tp tz) = 0,
Tp,(ty, t) = 0,
t
T5(t, ) = ——1—
12t ) 40
1
Iop(ty, ) = -y,

To(t,t,) =0, teR, t,€[0,27].
Problem 4.2. Let U ¢ R? and fe C%(U). Find the Christoffel coefficients for the surface
z=f(x,X), (x,X%)eU.
Answer 4.19.

fxixj (1> X9)fy, (X1, X2)

T+ (fy, 04 X)) + (fy, (3, Xp))%

T (0, Xp) = (X, Xp) € U,

with i,j, k € {1,2}.

Problem 4.3 (Gauss theorem). Prove that Gauss curvature of a surface of class atleast c
depends only on the coefficients of the first fundamental form of the surface and their
derivatives up to second order.

Hint 4.20. Start with the formula

_ LN - M?
- EG-F?

and rewrite it in the form
K(EG - F*) = LN - M%.
Then, use the representation
K(EG = F*) = ((fye, % fi) - fo) (o, % i) Fo) = (g, % i) o)

After this, use the well-known formula

((axb)-c)((dxe)-f) =

o T Q
QU AU
o T Q
® D

oS Q
S S

and the relations
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ftltl 'ftl = %Et1>

ftlzz 'ftl = % ty>

ftzt2 'ft2 = %Gtz’

ftltz 'ftz = %th

ft1t1 'ftz = Ftl - %Etz’
1

ftztz 'ftl = th - Eth-

Then, differentiate the fourth and fifth equations of the latter system with respect to t;
and t,, respectively, and get the system

1
frote, Jo, tJot, Jot, = Ethtl’

1
ftltltz 'ftz +ft1t1 'ftztz =Fpe, - EEt2t2>
whereupon
1 1
fth 'ftztz _ftltz 'ftltz = Ftltz - EEtZtZ - Ethtz-

Combining everything, obtain the representation

1 1 1 1
_zthtl + Ftltz - EEtztz EEH Ftl - iEfz

1

— 1
- (EG — F2)? th - EGQ E F
3Gy, F G
1 1
1 0 fEtz EGH
1
- (EG - FZ)Z fEfz E F
36, F G

Problem 4.4 (Frobenius theorem). Prove that Gauss curvature of a surface can be writ-
ten in the form

., [F E E
K=—sie-pp|f To T
G G, G,

() (=)
2VEG - F2\O4 \\EG - F2/ Ot \\EG - F2

Hint 4.21. Use Problem 4.3.
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Problem 4.5 (Liouville theorem). Prove that Gauss curvature of a surface can be repre-
sented in the form

K=— 1 (i(Gt1+thz_2Ef1>+i<Etz_gGH))
2VEG - F2\ 04 VEG - F2 ot \ VEG - F?

Hint 4.22. Use Problems 4.3 and 4.4.

Problem 4.6. Find the geodesic curvature of the circle with radius r < R on a sphere
with radius R.

Answer 4.23.
RZ _ rZ
R-r

Problem 4.7. Find the geodesic curvature of the line ¢; = const. on the surface
(t costy, tysinty, aty), t e€R, t, €[0,2m],

where a > 0.

Answer 4.24.
[t
2, a2
t+a




5 Differential forms

In this chapter we first give the differential forms and the operations among them. Exte-
rior differentiation is introduced as the derivations of differential forms. In view of exte-
rior differentiation the exact and closed differential forms are studied. Finally, we con-
centrate on the well-known operators such as gradient, curl, and divergence operators.

5.1 Algebra of differential forms

We will be interested in R® for convenience. Let {x, y, z} be canonical coordinates in R®.
At the end of this chapter, we will briefly indicate what happens in R".

Definition 5.1. 1. A 0-differential form is a smooth function f : R® — R.
2. Al-differential form is

¢ = fdx + gdy + hdz,

where f,g,h : R> > R are given smooth functions.
3. A2-differential form is

¢ = fdxdy + gdydz + hdxdz,

where f,g,h : R> > R are given smooth functions.
4. A 3-differential form is

¢ = fdxdydz,
where f : R® - Ris a given smooth function.
Example 5.1. The form
O=x+y+z
is a O-differential form.
Example 5.2. The form
¢ = xdx + ydy + zdz
is a 1-differential form.
Example 5.3. The form
¢ = dydx + dxdz
is a 2-differential form.

https://doi.org/10.1515/9783111501857-005
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Example 5.4. The form
¢ = sin(x +y + z)dxdydz

is a 3-differential form.

Definition 5.2. Let

¢1 :fldX + gldy + hle,
¢ = fodx + grdy + hydz

be two 1-differential forms. Then we define

¢1+ 0y = (fy + f)dx + (81 + &)dy + (hy + hy)dz
and

¢1- ¢, = (L —f)dx + (g1 — &)dy + (hy — hy)dz.
Definition 5.3. Let

@, = fidxdy + gdydz + hydxdz,
¢, = frdxdy + g,dydz + hydxdz

be given 2-differential forms. Then we define

¢1 + @y = (fy + fr)dxdy + (g + g2)dydz + (hy + hy)dxdz
and

01— ¢, = (fy — f)dxdy + (g, — §)dydz + (hy — hy)dxdz.
Definition 5.4. Let

¢1 = frdxdydz,
¢, = frdxdydz

be two 3-differential forms. Then we define

¢y + ¢y = (fy + fo)dxdydz

and

¢1 — ¢, = (fy — fo)dxdydz.
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Remark 5.1. Note that the addition and subtraction make sense only for k-differential
forms, k € {0,1,2,3}, and not for a k-differential form and for an [-differential form,
k+1Lk1e{0,1,2,3}.

Example 5.5. Let

¢ = (X + 2xy)dx + (xy - Ddy + x°dz,
Y = (X - 2xy)dx + dy + x°dz.
Then
o+y= 2x%dx + xydy + 2x°dz
and

¢ - = dxydx + (xy - 2)dy.

Exercise 5.1. Let

¢ = (x -y + 3y*)dxdy — dxdz,

Y = (X +y —2y")dxdy + (x - 3x%y)dydz + 3dxdz.
Find
1 o+
2. -y

Answer 5.1. 1.
(X + x +y ) dxdy + (x - 3x*y)dydz + 2dxdz;

(x = x* = 2y + 5y*)dxdy + (3x*y — X)dydz — dxdz.
Definition 5.5. Let m,f,g,h: R - R and
¢ = fdx + gdy + hdz.

Then, we define m¢ as follows:

m¢ = mfdx + mgdy + mhdz.
Definition 5.6. Letm,f,g,h: R®* —» Rand

¢ = fdxdy + gdydz + hdxdz.
Then, we define m¢ as follows:

m¢ = mfdxdy + mgdydz + mhdxdz.
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Definition 5.7. Letm,f : R®> —» R and
¢ = fdxdydz.
Then, we define m¢ as follows:
m¢ = mfdxdydz.

Example 5.6. Let

¢ = 2x3dxdy + xdydz + x*y*dxdz.
Then

3¢ = 6x°dxdy + 3xdydz + 3x*y*dxdz.

Next,

)-1(¢ = 2xdxdy + dydz + xy*dxdz.
Exercise 5.2. Let

O = 2x%dx + (x +y)dy,
¢y = —xdx + (x — 2y)dy.

Find
L 2¢1+0y
2. ¢1-X@,.

Answer 5.2. 1.
(4x* - x)dx + 3xdy;

3x%dx + (X" + 2xy + X +y)dy.
For the multiplication of differential forms, we introduce the following rules:

dxdx =0,
dydy = 0,
dzdz = 0,

and

dxdy = —dydx,
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dxdz = —dzdx,
dydz = —dzdy.

Example 5.7. We have

dxdydx + dxdy + 2dydx = —dxdxdy + dxdy — 2dxdy
= dxdy — 2dxdy
= —dxdy.

Example 5.8. We have

dx(dx + dy + dz) = dxdx + dxdy + dxdz
= dxdy + dxdz
= dxdy — dzdx.

Example 5.9. Let

¢ = Xydx +ydy,
Y= xtdx + xdy + Zdz,

and
p = xyzdzdx.
Then
oY = (Cydx +ydy)(x*dx + xdy + 7°dz)

= x7ydxdx + x4ydydx + x4ydxdy + yxdydy + xgyzzdxdz + zzydydz

= —x4ydxdy + x4ydxdy + xgyzzdxdz + zzydydz

= x3yzzdxdz + zzydydz.
Next,

¢p = (Cydx + ydy)xyzdzdx
= x4yzzdxdzdx + xyzzdydzdx
= xy*zdxdydz.

Exercise 5.3. Let

o1 = 2x%dx + (x +y)dy,
¢y = —xdx + (x — 2y)dy,
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¢ = X2dx +yzdy — (X* +y* + 2)dz,
04 :yzzdx - xzdy + (2x + 1)dz.

Find
L 910y
2. ¢193;
3. 9194
4. 903
5. 204
6. ¢304
Answer 5.3. 1.
(2x° - 4xy + x* + xy)dxdy;
2 —(x + ) +y* + 28)dydz + 2P (X + y* + 27)dzdx + (2xXPyz - x* - XPy)dxdy;
3. (x +y)(2x + 1)dydz - 2x%(2x + 1)dzdx — (ZXSZ + xyzz + ysz)dxdy;
4 ~(x = 20) (X +y* + 2V dydz — x(x* + y* + 25)dzdx — (xyz + x* — 2x°y)dxdy;
5. (x = 2y)(2x + )dydz + x(2x + 1)dzdx + (xzz - )QIZZ + 2y32)dxdy;
6. (yz(2x +1) = xz2(x* + y* + 22))dydz — (y*z(x* + y* + 2%) + 2x* + x*)dzdx

- (x*z +y*z*)dxdy.
Example 5.10. Let ¢ be a k-differential form. We will prove that
¢* =0.

For this, we will consider the following cases:
1. Let

¢ = fdx + gdy + hdz,
where f,g,h : R> - R. Then
¢* = (fdx + gdy + hdz)(fdx + gdy + hdz)
= f2dxdx + fgdxdy + fhdxdz + gfdydx + g*dydy + ghdydz
+ hfdzdx + hgdzdy + h*dzdz

= fedxdy — fgdxdy + fhdxdz — fhdxdz + ghdydz — ghdydz
- 0.
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2. Let
6 = fdxdy + gdydz + hdxdz,
where f,g,h : R> - R. Then

¢* = (fdxdy + gdydz + hdxdz)(fdxdy + gdydz + hdxdz)
= f2dxdydxdy + fgdxdydydz + fhdxdzdxdz + gfdydzdxdy
+ ghdydzdydz + ghdxdzdxdz
+ hfdxdzdxdy + hgdxdzdydz + h*dxdzdxdz
=0.

3. Let
¢ = fdxdydz,

where f : R®> - R. Then

= (fdxdydz)(fdxdydz)
= f2dxdydzdxdydz
= 0.

This completes the solution.
Example 5.11. Let

¢1 =f1dX + gldy + hle,
¢2 =f2dX +g2dy + hde

We will show that

019, = (18, — if)dxdy + (fihy, — hify)dxdz + (g1hy — hygy)dydz.

Really, we have

019, = (fidx + g1dy + hydz)(fodx + g,dy + h,dz)
= fifodxdx + fig,dxdy + fihydxdz + g1, dydx + g18,dydy + g1 hydydz
+ hyfydzdx + hyg,dzdy + hyhydzdz
= (fig — &uf)dxdy + (fihy — hyfy)dxdz + (g1hy — hygy)dzdy.
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Example 5.12. Let

@y = fidx + g dy + hydz,
¢, = frdxdy + g,dydz + hydzdx.

We will prove that

0102 = (g2 + &1hy + hify)dxdydz.

Really, we have

10, = (f1dX + gdy + h1dZ)(f2dxdy + g,dydz + hydzdx)
= fifsdxdxdy + f,8,dxdydz + fhydxdzdx
+ gifpdydxdy + 8,8, dydydz + g hydydzdx
+ hfydzdxdy + higydzdydz + hyhydzdzdx
= (fig, + &1hy + hyfy)dxdydz.

5.2 Exterior differentiation

In this section, we introduce exterior differentiation of differential forms.

Definition 5.8. Let f be a 0-differential form. Then its exterior derivative is defined by

df = fdx + f,dy + fdz.

Example 5.13. Let

Do

2

fooy,2) =% ;y . (oy.z) e R
Then
2X
f;((X,_y, Z) = 7)
2
fj)(xay: Z) = ?y,
X +y? 3
f6y,2) = ———=, (%y.2) € R
Hence,

df = fodx + fydy + f,dz

2 2y X +y? 3
= 7dX+ 7dy— Z—zdz, (x.,2) € R”.
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Example 5.14. Let

foy.z)=x+y+z, (6y2) € R

Then

fi6y,z) =1,

Hxy.2) =1,

Looy,z) =1, (xy,2) € R
Therefore,

df (x.y,2) = f(x,y, 2)dx + f,(x,, 2)dy + f,(x,y, 2)dz

=dx+dy+dz, (x,y,z) ¢ R,

Exercise 5.4. Let

fi6y,2) = X*y’z - 292,

Hxy,z) = X +y2 - 324,

fxy.2) = Xy +y'z,

fax,y,z) =2x+3y—-4z+5, (x,y,2) € R3.

Find

1 dfy;

2. dfy;

3. dfs;

4. df,.

Answer 5.4. 1.

(2x°z - 2yz%)dx + (3x*y*z - 2x2%)dy + (X*y* - 4xyz)dz, (x,y,z) € R>;
2. 3 3,
2xdx +2ydy - 12z°dz, (x,y,z) € R’;

3. 2 2 3,
2xydx + (x° +2yz)dy + y“dz, (x,y,z) € R’;

4.

2dx +3dy - 4dz, (x,y,z) € R,

Definition 5.9. Let ¢ be a k-differential form. Then its exterior derivative d¢ is a
(k + 1)-differential form obtained from ¢ by applying d to each of the functions included

in ¢.
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1

Let
¢ = fdx + gdy + hdz,
where f,g,h : R® — R are given functions. Then

do = (df)dx + (dg)dy + (dh)dz
= (fudx + fydy + f,dz)dx + (gydx + g,dy + g,dz)dy
+ (hedx + hydy + h,dz)dz
= fydydx + f,dzdx + g, dxdy + g,dzdy + h,dxdz + h,dydz
= (g~ fy)dxdy + (hy ~ f,)dxdz + (h, - g,)dydz.

Example 5.15. Let
o= +2)dx+ (x+2)dy + (x +y*)dz, (x,y,2) € R,
We have

fooy,2) =y +2°,

gx,y,z) =x+ zg,

h(x,y,2) = x+y*,  (6),2) € R,
Hence,

£y.2) =2,
f6y,2) =32,

&y.2) =1,

8:063,2) = 32,

h,(x,y,2) =1,

hy(x.y,2) =2y, (x,y,2) € R,

and

dp = (1 - 2y)dxdy + (1 - 32%)dxdz + (2y - 32°)dydz,
for (x,y,z) € RS
Exercise 5.5. Let

¢ = (X +y+2)dx + (X +y* + 2%)dy + (x + 2y + 32)dz.

Find do.
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Answer 5.5.

(2x = 1)dxdy + 2(1 - z)dydz, (x,y,z) € R3.
Let
¢ = fdxdy + gdydz + hdzdx,
where f,g,h : R> - R. Then

d¢ = (fydx + f,dy + f,dz)dxdy
+(gydx + g,dy + g,dz)dydz
+ (hydx + hydy + h,dz)dzdx
= fdxdydz + g, dxdydz + h,dxdydz
= (f, + 8« + hy)dxdydz.

Example 5.16. Let

¢ = (xX* —y* - Z5)dxdy + (x + z)dydz + y*dzdx.

Here
fooy.2) =x* -y -2,
gx,y,z)=x+2,
h(x,y,z) =y3, x,y,z) € ]RS,
and
f‘Z(X:y)Z) = _ZZ)
gX(X’y’Z) = 1)
hy(x,y, Z) = 3y2, x,y,2) € R3.
Therefore,

dp = (~2z + 1 + 3y*)dxdydz.

Exercise 5.6. Let

X+y+z

= m(dxdy +dydz + dzdx), (X, y,z) € R,

Find dg.

—_ 221



222 — 5 Differential forms

Answer 5.6.

do = 1+x2+y2+zz—4xy—4xz—4yz

(1+x%+y? + 22)?

dxdydz, (x,y,z)¢€ R

5.3 Properties of the exterior differentiation

In this section, we will deduce some of the properties of the exterior differentiation of
the differential forms:
1. The exterior differentiation is a linear operation.

For the proof, we will consider the following cases.

a. Let ¢y, ¢, be O-differential forms and a;, a, € R. Then

Ay = P dX + dyydy + ¢q,dz,
d(a1¢1) = (a¢1,)dx + (a19y)dy + (a101,)dz
= a1 (P dX + Pyydy + ¢1,d2)
= ayde,,
Ay = Py dx + oy dy + ¢, dz,
d(ayd;) = (AyP2,)dX + (Ay02,)dy + (A202,)dz
= Ay (Do X + Doy dy + §5,0d2)
= ayde,

and

d(a¢1 + a307) = (@191 + A3P2,)AX + (a1¢1y + A3¢P9y)dy
+ (@, + ay0y,)dz
= (@mPr)dx + (a1¢1y)dy + (a161,)dz
+ ay(Poxdx + Pyydy + ¢9,d2)
= Ay + ayde,.

b. Let ¢, and ¢, be two 1-differential forms, i. e.,

¢1 = frdx + gydy + hydz,
¢2 =fde + gzdy + hde,

where f, f,, 81, £, hy» hy : R* — R are given smooth functions. Let also a;, a, € R.
Then

dpy = (81 — fiy)dxdy + (fy, — hy)dzdx + (hyy - gy,)dydz,
d(a191) = (mg1x — mfyy)dxdy + (arfi, — ashyy)dzdx + (a by — a,84,)dydz
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= al((glx _fly)dXdy + (flz - hlx)dZdX + (hly _glz)dydz)

= aydey,
and
d¢2 = (g?.x _ny)dXdy + (sz - h?.x)dZdX + (th - gZz)dde’
d(ay;) = (A282x — Gafyy)dxdy + (ayfy, — azhyy)dzdx
+(ayhyy — ay8,,)dydz
= aZ((gZX _ny)dXdy + (sz - th)dZdX + (th _gZZ)dde)
= azd¢2.
Consequently,
a1 + Ay = (Aif; + Afy)dX + (@181 + ay8,)Ady + (ahy + azhy)dz
and

d(ay¢1 + ay07) = (W81 + Ax80 — Mafyy — Aofiyy)dXdy
+ (fiy + Qofo, — arhyy — azhyy )dzdx
+ (@ hyy + ayhyy — ar81, — a85,)dydz
= ay((g — fy)dxdy + (fy, — hyy)dzdx + (hyy - gy,)dydz)
+ ay((gox — foy)dxdy + (fy, — hy,)dzdx
+ (hyy — 8,)dydz)
= aqydo, + a,do,.

Let ¢, and ¢, be two 2-differential forms, i. e.,

o1 = fidxdy + g1dydz + hydzdy,
¢, = frdxdy + g,dydz + h,dzdy,

where f,, £, &> &y, by : R — R are given functions. Let also a;,a, € R. Then

dey = (fiz + gix + hyy)dxdydz,
d(a¢1) = (arfy; + @&y + Ay dxdydz
= ay(fi; + §ix + hyy)dxdydz
= q;dey,

and

d¢2 = (f2z +8ox t+ hzy)dXdde,
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d(ay ;) = (anfp; + Ay82x + Axhyy)dxdydz
=0y(fo; + 8ox + th)dXdde
= a2d¢2.

Consequently,

Py + Ay = ayfrdxdy + a1 8,dydz + a;hydzdx
+ ayfodxdy + a,g,dydz + a,h,dzdx
= (afi + ayfy)dxdy + (a,81 + ay8,)dydz
+ (a1hy + ayhy)dzdx

and

d(ay91 + ay0,) = (aify; + Qofp; + Q&1x + a8y + Qrhyy + APy )dXdydz
= ay(fi; + Gix + hy)dxdydz + a,(fy; + gox + hyy)dxdydz

= a;d¢; + a,de,.

This completes the proof.
2. Let ¢4 and ¢, be 0-differential forms. Then

Ad(9197) = 91dd; + Pode,.

For the proof, we have

d¢1 = (ledX + ¢1ydy + ¢1zdz’
Ay = PoxdxX + Popdy + ¢y, dz,

and

A(P19) = (P192)xAX + (P102)ydy + (¢19,),dz
= (1P2x + P1xP2)AX + (D109 + Pr1yP2)AY + (@102, + P1,0;)dz
= Q1(Pox X + DAy + 9,dZ) + Do (P15 AX + Prydy + P1,dZ)
= 1dp, + Pyddy.

This completes the proof.
3. Let ¢, be a 0-differential form and ¢, be a 1-form,

¢, = fdx + gdy + hdz.
Then

A(P107) = P1d, + Py d;.
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For the proof, we have

dg, = (& — fy)dxdy + (f, — hy)dzdx + (h, - g,)dydz

and

G192 = (@1f)dx + (§18)dy + (p1h)dz.

Hence,

d(9192) = (P18 + P18x — Pufy — P1yf)dxdy
+ (91 + O1f, — Pich — 1y )dzax
+ (Pyh + p1hy — 91,8 — ¢18,)dydz
= 01(8y — fy)dxdy + ¢ (f, — hy)dzdx
+ ¢1(hy — g,)dydz + (¢1,f — ¢ h)dzdx
+ (P18 — Pf)dxdy + (pyyh — ¢1,8)dydz
= ¢1de + (9148 — Py )dxdy
+(@1f — P )dzdx + (Pryh — dy,8)dydz.

Next,
Ay = P dX + Py dy + ¢,dz
and

A1 = (P1dX + Pyydy + ¢1,dz)(fdx + gdy + hdz)
= ¢y fadxdx + ¢y gdxdy + ¢y hdxdz + ¢y fdydx
+ @1, 8dydy + d1yhdydz + ¢y, fdzdx + ¢1,8dzdy + ¢y,hdzdz
= (¢1f — P )dzdx + (Pryh — ¢1,8)dydz + (P18 — P1f)dxdy.

Consequently,
d(P19;) = dp1¢; + 1A,

This completes the proof.
Let ¢, be a 0-differential form and

¢, = fdxdy + gdydz + hdzdx.

Then

Ad(p102) = dp1¢; + $1dg,.
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For the proof, we have
do, = (f, + 8 + hy)dxdydz
and

019, = (pof)dxdy + (§18)dydz + (¢ h)dzdx.
Hence,

d(197) = ((91f); + ($18)x + ($1h)y)dxdydz
= (@1 + Dify + D18 + D18y + Pryh + P11y )dxdydz
= ¢1(f; + 8 + hy)dxdydz + (¢1,f + 1,8 + ¢y P)dxdydz
= 01d¢; + (P1f + P18 + Py h)dxdydz.

Also,

A9, = (P dX + Py dy + ¢1,dz)(fdxdy + gdydz + hdzdx)
= ¢ fdxdxdy + ¢y, gdxdydz + ¢y, hdxdzdx
+ g fdydxdy + dy,gdydydz + ¢y, hdydzdx
+ ¢y fdzdxdy + ¢y gdzdydz + ¢, hdzdzdx

= (P18 + Pyyh + ¢1,f)dxdydz.
Consequently,
d(¢1¢,) = dp1¢, + P1de,.

This completes the proof.
5. Let

¢1 =f1dX +g1dy + hle,
¢2 =f2dX +g2dy + hde

Then

A(p107) = dp,p; — P1dP,.

For the proof, we have

O10, = (18y — &uf)dxdy + (hyf, — fihy)dzdx + (gyhy — hygy)dydz.

Hence,
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d($16,) = (82 — 8u2); + (fy = fihy)y — (§1hy — Mugy)x)dxdydz
= (fi282 + [182: — §12fs — 81foz + My + Mufyy — fiyhy — fihyy
+ 8uchy + Zihox — hix8y — higay)dxdydz

and
doy = (81 — fiy)dxdy + (fi, — hy)dzdx + (hy — g1,)dydz,
and
dd1¢; = ((§1x - fy)axdy + (fi, — hy)dzdx + (hyy - §1,)dydz)
- (fodx + gy dy + hydz)
= fo(hyy — g1)dydzadx + g;(fi, — hyy)dzdxdy + hy(g1y - fiy)dxdydz
= (fZ(hly = 817) + 82(fiz — M) + My (8 _fly))dXdde'
Moreover,
doy = (8ax — foy)dxdy + (fo; — hyy)dzdX + (hyy, — 85,)dydz,
and
¢1dp, = (fidx + g1dy + hydz)
' ((gZX _ny)dXdy + (fZZ - hZX)dZdX + (th - gZZ)dde)
= (fl(hzy = 822) + 812z — hyy) + My(goy — foy))dxdydz.
Therefore,

Adp1§ + $1d¢; = (f1,82 + [1822 — 122 — &1z
+hyyfo + hafoy — fiyhs — fihyy
+ 81y + 81y — hix&y — higoy)dxdydz
= d(¢192).

This completes the proof.
Let ¢ be a 0-differential form. Then

d(d¢) = 0.
For the proof, we have
dg = ¢,dx + ¢,dy + ¢,dz

and
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d(dg) = d(¢,dx + ¢,dy + ¢,dz)
= (¢yx - ¢xy)dXdy + (¢xz - ¢zx)dZdX + (¢zy - ¢yz)dydz
=0.

This completes the proof.
7. Let ¢ be a 1-differential form,

¢ = fdx + gdy + hdz.
Then
d(de¢) = 0.
For the proof, we have
d¢ = (8 - fy)dxdy + (f, — hy)dzdx + (h, - g,)dydz.
Then

d(d¢) = d((gx _B)dXdy +(f, — hydzdx + (hy —gz)dde)
= ((gx _f)‘/)z +(f; - hx)y + (hy - gz)x)dXdde
= (8x _f;)z +fzy - hxy + hyx - &) dxdydz
=0.

This completes the proof.

5.4 Closed and exact differential forms

Definition 5.10. A differential form ¢ is said to be closed if d¢ = 0.

Example 5.17. Let

o(x,y,z) = 5x4y223dx + szyzgdy + 3x5yzzzdz, x,y,2) € R

Here

fy,2) = 5x*y*2,

gx.,2) = 2x°y2’,

h(x.y,2) = 3°Y*2%,  (x.y.2) € R®.
Then

jg,(x, ¥, z) = 10x4y23,
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f,6y,2) = 15)(4))222

8(%.y.2) = 10x*yz’,
g, (x,y,z) = 6x5yzz
h,(x,y,2) = 15x4yzz2

hy(x.y.2) = 6x°yz",  (x.,2) € K.
Hence,

dp(x,y,z) = (8x(X.,2) - f, (X, y, 2))dxdy
+ (f,(x,,2) — hy(x,y,z))dzdx
+ (hy(x,y,2) - &,(x,y,2))dydz
= (10x*yz® — 10x*yz®)dxdy + (15x*y?*z* — 15x*y*2%)dzdx
+ (6x°yz? — 6x°yz?)dydx
=0.

Thus, ¢ is a closed differential form on RS,

Example 5.18. Let

o(x,y,z) = (; - Zz>dydz + (xzz —%)dzdx (x,y,2) € R

We have
gx.y,z) = = -2z,
h(x,y,z) = x z—%, x,y,z) € ]RS,
and
gX(X)y> Z) = -
1 3
hy(x,y,z) = - (x,y,2z) e R".
Therefore,

(%,9,2) + by (x,y, 2))dxdydz

dp(x,,2) = (
<- - —)dxd dz
0.

Thus, ¢ is a closed differential form.
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Exercise 5.7. Prove that

(.Y, 2) = (2xy2° +y* + 4z + 2)dx
+ (X2 + 2xy + 22° — 1)dy
+ (3xyz* + 6yz* + 4x — 4z)dz

is a closed differential form on R>.

Definition 5.11. A differential form ¢ is said to be exact if there is a closed differential
form 1 such that

¢ = dy.
Example 5.19. Let ¢ be as in Example 5.17. Let also

Yoy, 2) = Xy 2, (xy.2) € R,

Then

Y, (X, y,2) = 5x4y223,

Yy(x.y,2) = 2°y2°,

Y, (x,y,2) = 3x5y222, X, y,z) € R,
Thus,

0(6,Y,2) = dp(x,,2), (x,y,2) € R>.

Consequently, ¢ is an exact differential form.

Example 5.20. Let ¢ be as in Example 5.18. Let also

2.2
Yy, z) = %dx +Z%dy + %ydz, oy, 2) € R

Set
2,2
fooy2) = X2,
2
g(X’)’»Z) = Zza
h(x,y,z) = ? 6y, 2) € R
We have

8(x,y,2) =0,
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g2,(x,y,2) =2z,
f(x.y,2) =0,
f(xy,2) = xzz,
hy(x,y,2) = %
X
hy(x>y’z) = 2) (X’y’z) € ]R3°
Therefore,
o =dy.

Thus, ¢ is an exact differential form.
Exercise 5.8. Prove that any exact differential form is closed.

Solution. Let ¢ be an exact differential form. Then there is a differential form ¥ such
that

o =dy.
Hence,
d¢ =d(dy) = 0.

Thus, ¢ is a closed differential form. This completes the proof.

Exercise 5.9. Let ¢ be any differential form and ¢ be a closed differential form. Prove
that

d(@ + ) = do.
Solution. Since ¥ is a closed differential form, we have
dy = 0.
Hence,
d(¢ + ) = do + dy = do.

This completes the proof.

Exercise 5.10. Let ¢; and ¢, be two differential forms such that

doy = dp,.

Prove that
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Oy =01+,
where ¢ is a closed differential form.
Solution. Let
b=0-¢1
Then
dy = d(¢, - ¢1)
= do, - d¢,
=0.

Thus, ¥ is a closed differential form. This completes the proof.

5.5 Gradient, curl, and divergence

Suppose that
e] = (1) 0) 0))
e2 = (0) 1> 0))
e; =(0,0,1).

Let also Q be a region in R®.

Definition 5.12. A vector field on Q is a vector-valued function

F(x,,2) = f(x,y,2)e; + g(X,y,z)e; + h(Xx,y, z)es,

where f,g,h : R> > R are given functions.

Example 5.21. Let

fx,y,z) = x* = sinx,
gx,y,z) =y + €,
h(x,y,z) = z-tan(xy), (x,y,z) € RS

Then
F(x,y,2) = (x2 —sinx)e; + (y + €°)e, + (z - tan(xy))es,

is a vector field.

(xy,2) € Q,

x,y,z) € IR3,
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Definition 5.13. Let f € C}(Q). Then the gradient of f is defined by

gradf(x.y,z) = f,(x.y, 2)e; + f,(x, y, 2)e; + f,(x,,2)es,  (x,¥,2) € Q.
Example 5.22. Let @ = R® and let

fooy.2) =X +y' +2°,  (xy.2) e R®.

Then

f(x.y,2) = 2x,

f(xy,2) =2y,

f,xy,z2) =2z, (x,y,z) € R3.
Then

gradf(x,y,z) = 2xe; + 2ye, + 2ze;,  (X,y,Z) € R

Example 5.23. LetQ = R® - {6¥,0) : x,y € R} and let

2 2
fx,y,z) = % (x,y,2) € Q.

Then
2x
fxy,z) = —,
z
2
f6y,2) = %
22
X°+
f(xy,2) = - zzy , (%y,z) e Q.
Therefore,

2 2
gradf(x,y,z) = 27)(91 + Z;yez X ;y e, (x),2) €Q.

Exercise 5.11. Let @ = R® — {(x,y,0) : x,y € R} and let

3 2
X7 =2y" +
foy,z) = % (x,y,2) € Q.

Find

gradf(x,y,z), (x,y,2) € Q.
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Answer 5.7. ) 3 )
33X+ -4y +x 2(x° = 2y° + xy)
gradf(x,y,z) = = 34 e+ )z) €~ 2)3’ X

Definition 5.14. Let
F(x,y,z) = f(x,y,2)e; + g(x,y,2)e; + h(x,y,2)e3, (x,y,2Z) € Q,
where f, g, h € c(Q). We define the curl of F as follows:
curl F = (hy - g,)e; + (f, — hyey + (8 — f)es.
Example 5.24. Let Q = R® and let

F(,y,2) = (X* +y*2)e, + (V" = 3xz)e, + (x* +y* = 2%)es,  (x,,2) € R®.

Here
fy,z) = X +yzz,
gx.y,2) = y* - 3xz,
hooy.z) =xt+y* - 24 (xp.2) e R
Then
f(x.y,2) = 2yz,
fz(X:y: Z) = yz,
g,(x,y,z) = -3z,
gZ(X:y,Z) = _?’Xa
h (x,y,z) = 4x3,
hy(x,y, Z) = 3y2, (x,y,2) € RS
Consequently,

curl F(x,y,z) = (3y* + 3x)e; + (y* — 4x%)e, + (=3x — 2yz)e;,  (x,y,2) € R.

Definition 5.15. Let F be given by (5.1). Then its divergence is defined by
div F(x,y,z) = f,(x,y,2) +gy(x,y,z) +h,(xy,2), (x,y,z) € Q.
Example 5.25. Let Q = R® and

F(x,y,z) = xze1 +y2e2 - zzeg, x,y,z) € R,

e, (X, y,z) € Q.

(5.1
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Here

f6y,2) = X,

g06y,2) =y,

h(X,y,Z) = _ZZ) (X,y)Z) € ]R3~
Hence,

fi(x,y,2) = 2x,

gy(X’y»Z) =2y,

h,(x,y,z) = -2z, (x,y,z) € R,
and

divF(x,y,z) =2x +2y -2z, (x,y,z) € R®

Exercise 5.12. Let Q = R® and
2 .2 2 .3 3
Fx,y,z) = (X" +y°z)e; + xyze, + (X" —y’)es, (x,y,2) € R°.
Find

1. curlF(x,y,2), (x,y,2) € IRg;
2. divF(x,y,z), (x,y,2z) € RS

Answer 5.8. 1.
(—3y2 -xy)e; + (y2 —2X)ey +2(x —yz)es, (X,y,Z) € Rr3;

2X+Xxz, (X,y,z) ¢ RS

5.6 Differential forms in R"
Definition 5.16. A 0-differential form ¢ is a function f(xy,..., X,), (X3, ..., X,) € R™.
Definition 5.17. A k-differential form is a sum of terms of the form

f(Xl, . ’Xn)dle cee dX]k

Addition of differential forms is defined in the usual way. The multiplication of dif-
ferential forms is subject to the following rules:

deka = —kade, ],k € {1, .,n},

dxjdxj:O, jefl,....n}
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Definition 5.18. For a 0-differential form ¢, we define
d¢ = ¢x1dxl Tt ¢xndxn~

Definition 5.19. Let ¢ be a k-differential form. Its exterior derivative d¢ is the (k + 1)-
differential form obtained from ¢ by applying d to each function involved in ¢.

Let
e, =(1,0,...,0),
e,=(0,1,...,0),
e, =(0,0,...,1).

Definition 5.20. A vector field on R" is a vector-valued function of the form

flel +f2e2 T +fnen’

where f; : R" — R, j € {1,...,n}, are given functions.

5.7 Advanced practical problems
Problem 5.1. Let

¢y = X3dx +yzdy — (X* +y* + 2%)dz,
Oy = yzzdx —xzdy + (2x + 1)dz.
Find

1 3¢, —40y;
2. X¢1 +y¢2.

Answer 5.9. 1.

(3% - 4y*z)dx + (3yz + 4xz)dy — (3x* + 3y* + 32% + 8x + 4)dz;
(x* +y*2)dx + (-x° = xy* — xz* + 2xy + y)dz.

Problem 5.2. Let

¢y = 2x%dx + (x +y)dy,
¢, = —xdx + (x — 2y)dy,
¢ = Xdx + yzdy — (X* + y* + 2°)dz,
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04 = yzzdx —xzdy + (2x + 1)dz,
05 = xdx +y2dy +2°dz,
g = dx + 2dy + 3dz.

Find

1 @305
2. 9306
3. Puds;
4. 940
5. @50

Answer 5.10. 1.
(Cy* - xyz)dxdy + (yz* - y*(x* + y* + 22))dydz — (° + xy* + xz* - X*2%)dxdz;

2 (2x3 —yz)dxdy + (3yz + 2(x* +y* + 2%))dydz — (x* +y* + 2* + 3x°)dzdx;
3 'z + X*z)dxdy — (xz* + 2xy* + y*)dydz + (2x* + x — y*z*)dzdx;

4 (2y%z + xz)dxdy — (3xz + 4x + 2)dydz + (2x + 1 - 3y*z)dzdx;

5.

(2x = y*)dxdy + (3y? - 22°)dydz + (2° - 3x)dzdx.
Problem 5.3. Let ¢j,j €{1,2,3,4,5, 6}, be as in Problem 5.2. Let also

Y1 = (" -y )dxdy,

¥y = (x - y)dxdy,

3 = (X +y*)dydz + (x — y*)dzdx + 3xdxdy,

Yy = (¢ —y)dydz + (x +y — z*)dzdx — 6xydxdy.

Find

Yy + le/’zi
=Py + (X +Y)y;
Xy + Yy
2y, + Yy,
1Yy
b1y
b1
G212

- Q3

10. ¢3¥hy;

© P Ne U wN e
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11 @4ys;
12. 944
13, s
14. @13y
15. ¢o1hs;
16. @y94;
17. ¢3yy;
18. ¢3thy;
19. @a¥y;
20. ¢u0,.

Answer5.11. 1. (x* - y*)dxdy;

0;

(X =)0 + Xy + y)dxdy;

(X =)@ +2xy + Ddxdy;

0;

0;

0;

0;

(xs"(x2 +y2) +yz(x —yz) - 3)(()(2 +yZ + zz))dxdydz;
()(3(x2 —yz) +yz(x +y - zz) + 6)01(x2 +y2 + zz))dxdydz;
. (yzz(x2 +y2) - xz(x —yz) + 3x(2x + 1))dxdydz;
(yzz(x2 —yz) -Xz(x+y - zz) - 6xy(2x + 1))dxdydz;
@ + YY) + (x + y)(x* - y*)dxdydz;

2x?(x* —yz) +(x+y)(x+y- Zz))dxdydz;

(X0 +Y°) + (x - 29) (x - y*))dxdydz;

(-X( =y*) + (X - 2y)(x +y - 2°))dxdydz;

— + yz + 250 - yz)dxdydz;

.= +y2 +22)(x - y)dxdydz;

@2x + 1)(x* - y*)dxdydz;

20. (2x + 1)(x - y)dxdydz.

© P NP G W
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Problem 5.4. Let ¢j,j € {1,...,6},be asin Problem 5.2 and

o, = xzyzdx - nySzdy + ,\yz4dz,
¢y = yZidx + (x + 20)dy + (¢ - y)dz,  (x,y,2) € R.

Find

1. doy;
do,;
dgs;
dgy;

FRTN
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dgs;
dgs;
dos;
dog.

© N oW

Answer 5.12. 1. dxdy;

dxdy;

=3ydydz + 2xdzdx;

—(z + 2yz)dxdy + xdydz + (y* — 2)dzdx;
0;
0;

(2x3 + xz4)dydz + (xzy - yz4)dzdx - (xzz + 2y3z)dxdy;
(1 - Z%)dxdy — (2z + 1)dydz + (2yz — 2x)dzdx.

© N>R wN

Problem 5.5. Lety;,j € {1,...,4}, be as in Problem 5.3 and

s = x*yzdydz + 2xyzdzdx + xyz* dxdy,
Y = (X + 2y — 32)dydz — (3x + 4yz*)dzdx + (9xz* — 4xy)dxdy.

Find

dyy;
dy,;
ds;
dy;
ays;
dys.

S

Answer5.13. 1. 0, (x,y,z) € RS

2. 0, (x,yz) e 1R3;

3. (2x-2y)dxdydz, (x,y,z) € IR3;

4. (2x+1)dxdydz, (x,y,z) € R

5. (2xyz - 2xz + 3xyz%)dxdydz, (X,y,z) € R>;
6. (1- 47 + 18xz)dxdydz, (x,y.z) € RS

Problem 5.6. Let q’)]-,j € {1,...,4}, be asin Problem 5.2. Find

d(¢19,);
d(p193);
d(P194);
d(9,93);
d(¢294);
d(p3¢4)-

IS o

Answer5.14. 1. 0, (x,y,2) ¢ R3;
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(—(x2 +y2 + zz) -2X(xX+y) + 6x2y)dxdydz, x,y,2) € R

(4x +2y +1-2X - xy* - y)dxdydz, (x,y,z) € R;

—(3x% +y* + 22 - xy)dxdydz, (x,y,z) € R%;

(X — 4y + 1+ x* = x? + 2%)dxdydz, (x,y,z) € R%;

Qyz -3x*z - Y’z - 22 - 2X*yz — 6y°z - 297° — xMdxdydz, (x,y,z) € R

oG W N

Problem 5.7. Let q’)j,j € {1,...,6}, be asin Problem 5.2. Check

1 d(gd) = (dd))¢; + ¢;ddy, j. L€ {L,..., 6}
2. d*¢;=0,je{l,....6).

Problem 5.8. Prove that the differential form

y X 3
¢ = 2 +y2dx+ 2 +y2dy, (x.y,2) e R”-{(0,0,2) : z € R},

is closed, but not exact.

Problem 5.9. Prove that

o= — X dydz+—2 _dzdx+ —— > dxdy,

- (x? +y2+zz)% (x? +y2+zz)% (x2 +y2+22)%
for (x,y,z) € R3 \ {(0,0,0)}, is closed, but not exact.

Problem 5.10. Let

fix.y,2) = x*y’z - 2xyz?,
fH(xy,z) = X +y2 - 324,
fr(x.y,2) = xzy +yzz - zzx,
fa,y,z) =2x+3y—-4z+5, (x,y,2) € R,
Find
1. gradf;;
2. gradfy;
3. gradfs;
4. gradf;.

Answer 5.15. 1.

(2°z - 2978 )e; + (3x™y*z - 2x2%)e, + (XY — dxyz)es,  (x,y,2) € R®.
2xeq + 2ye, — 1223e3, x,y,z) € R’

(2xy - 2%)e, + (X* + 2yz)e, + (y* — 2x2)e;,  (X,Y,2) € RY;
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2e; +3e, —4e;, (X,),2) € R,

Problem 5.11. Let

Fi(x,y,z) = szel + (X +y)e,,

F(x,y,2) = —xe; + (X - 2y)e,,

F3(x,y,2) = X", + yze, — (X" +y* + 2%)e,,
F,(x,y,z) = yzzel —Xzey + (2X + 1)e,,
Fs(x,y,2) = xe; +yze2 + 23e3,

Fs(X,y,2) = e + 2e5 + 3e3,

F,(x,y,z) = xzyzel - 2xy3zez + 3)912483,

Fy(x,y,2) = y'ze, + (x + 2%)e, + (X* = y)es,  (x,y,2) € R,

Find

1
2
3.
4.
5
6
7
8

curl F;;
curl Fy;
curl Fs;
curl Fy;
curl Fs;
curl Fg;
curl F;;
curl Fg.

Answer5.16. 1. e;, (x,y,2) € R%;

© NP Uk W

e, (x,),z) € ]R3;

-3ye; +2xe,, (X, ),Z) € R

Xeq + (y2 —2)ey +(z—-2yz)e;, (X,¥,2) € R3;

0, (xy.z)e R3;

0, (xy.z)e ]R3;

(2xy3 + ?;Xz‘l)e1 + (xzy - 3yz4)e2 - (XZZ + 2y32)e3, x,y,z) € R3;
(1-2yz)e; + (y2 - 2x)e; + (1 - zz)eg, x,y,z) € R3.

Problem 5.12. Let

Gi(6Y,2) = (x" = y")es,

Gy(x,y,2) = (X - y)es,

G3(X,y,2) = (X* +y*)e, + (X —y*)e, + 3xe,,
Gy(x.3,2) = (x=y)ey + (x +y - 2*)e - 6xyes,
Gs5(X,y,2) = xzyze1 — 2Xyze, + xyz3e3,

—_ 241
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Ge(X,y,2) = (X + 2y — 32)e; — (3X + 4yz°)e, + (9xz% — 4xy)es, (X, y,2) € R,

Find

div Gy;
div Gy;
div Gs;
div Gy;
div Gs;
div Gg.

SR

Answer5.17. 1. 0, (x,y,z) € R®.

2. 0, (x,y2) e 1R3;

2x =2y, (x,y,z) ¢ ]R3;

2, (X, y.z)e 1R3;

2Xyz — 2Xz + 3xyzz, x,y,z) € R
1-47% + 18xz, (x,y,z) € RS

S



6 The nature connection

In this chapter we first define the notions of directional and covariant derivatives acting
on the set of vector fields. Analogously, the Lie brackets are also considered.

6.1 Directional derivatives

Let x’ = (},...,xJ) € R" and v be a nonzero vector in R" such that

V=V191+-~-+vnen.
Let also 9]- =/(v, ej),j =1,...,n. Then
v; v;
cosf; = Lo I j=1,...,n
ME 22
We have that
2 2
(cos6y)" +---+(cos )" =1
Setvy = ;. Then
Vg = cosB0je; +--- + cosO,e,.

Let I be a line through the point x° and parallel to v. Then

Xy = xf +tcos 0y,

Xy = xg +tcos B,

where t > 0 is the distance between the points x = (x;,...,X,) € [ and x°. We have
indeed

d(x,x°) = \/(tcos 0,)% +--- + (t cos 0,,)?

= \/tz((cos 0,)% + -+ (cos 6,)%)

=1t

Suppose that the function f is defined in a neighborhood of the point x°.

https://doi.org/10.1515/9783111501857-006
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Definition 6.1. The derivative of f at x° in the direction v is defined by

s
ov

0 xox®  d(x,x%)

0
_ hm f(X) —f(X )

Let f be differentiable at x°. Then

fO +tcos@y,...,x0 +tcos,) - FOL,...,x0)

f
ov

=lim
t—0 t

X0

= if(xf +£c080y,..., Xy + tcos,)
dt 0
= (") cos 0y + -+ f, (x”) cos 6,

= (gradf(x°), vo).
Example 6.1. We will find g—c |p, where

O, X)) = 3xf + ng, (X1, X9) € IRZ,

1 1 )
=\ 7 = 7= ) 151 .
() vo
We have
e\ ()
v2) T \\z
_JrL T
N2 2
=1
Then,
1
c0sf, = ——,
V2
1
cosf, = —.
Y}
Next,
fio (X1 X3) = 6xq,
[ (1, X) =10xp, (x4, X;) € R
Hence,

@ =f, 11 =6,
fo, () = £, (1,1) =10,
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and

15}
—f‘ = f,. (p) cos 6, +f, (p) cos 6,
ovl, M 2

o))
6({?)”’(?)

Example 6.2. We will find % |p, where

X, X9, X3) = xf + 2X1x§ + 3x2x§, (X45 X9, X3) € R’

221
=\5°5°5 ) >’1~
Y (333) P&3D

We have

Thus,

cosf; =

cos O, =

W= WihNwlN

cos 05 =

Next,
fxl(xpxz,xg) = 3X% + ng,
fxz(xlaX2> X3) = 4X1X2 + 3X§,
fxg(xl’xz,xs) =6XyX3, (X1,Xp,X3) € RS
Hence,
[ @) = £,3,3,1)

=3.324+2.3
= 45,
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fo® = £, 3.3,

=4.3.3
=39,
fo(p) zfx3(3>3>1)
=6-3-1
=18,
and
o ?) ?) [?)
E;fxl(p)cos 1+ [, (D) €0s 0, + £y () cos 63
—45.2139.2 4181
3 3 3
=30+26+6
= 62.

Example 6.3. We will find g—c |p, where

n
[ ox) = Y aresiny,  (x,...,X,) € RY, |0,

j=1

We have
vl = (1)2 +<L>2
n vn
/1 1
= — 4 —
n n
=1
Thus,
cos9~—i =1 n
'j \/ﬁ) ] > >
Next,
1 n
f 0o xp) = — (X1, ... X) €RY, (X, ..
— X?
j

Therefore,

)| <1,

SX)| <L
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1@ =1y(7)
1

1
1-%
4
= —, =1,...,n,
N
and
n
af z (p) cos

. . of
Exercise 6.1. Find 5;|,, where

1
Flx, %) = Xy sin(xy + X,), (X3, X,) € R?,
v =(-1,0), p<g, %)
2 04X x3) = 10g(¢ + 5 +X5), (X1, X0 X3) € R, X3 + X5 + X5 # 0,
R
3. 22

2 4
FX, X, X3, Xy) = x1 +X5 — X3+ Xy, (X(, X9, X3, Xy) € R,

21 2
= _,_10,__ > 133)2,1.
(330-3) pas2

Answer6.1. 1. -1;

3.
2. 5
3. 2
Exercise 6.2. Let f and g be differentiable at x°. Prove that
1.
daf +bg)| _ af ag
ov oo 8\) X0 8\} 0

foranya,b € R;
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o(fg)
ov

N %
e +fonE|

Exercise 6.3 (Euler identity). Let @ ¢ R", f : @ — R be a homogeneous function with
degree of homogeneity a, and f € C*(Q). Then

af (Xp, .5 X0) = Xafi, s e X)) + o+ X fy (X, X)X X)) € Q. 6.1
Definition 6.2. The identity (6.1) is said to be the Euler identity.

Solution. Since f is a homogeneous function with degree of homogeneity a on Q, for
anyt € Rand (x,...,X,) € Qwe have (txy,...,tx,) € Q such that

Fltxg, ... tx) =t (X5 %)y (Xpse s Xp) € Q.

We differentiate with respect to t and find

1
at (X X)) = (tXg, ..., tX) + - (tX, ..., 1X).

) of
M3tx) RIS

Putting t = 1in the latter equation, we find (6.1). This completes the proof.

6.2 Tangent spaces

Let Tp(]R") be the tangent space with a point of application p € R" and (xy,..., x,) be the
canonical coordinates of R".

Definition 6.3. The set

{i 9 }
oxilp 70Xy lp
is said to be the basis of Tp(]R").
Any vector field V can be represented as
n
0
V=)>)Vi—
Z Jox;’
j=1
Definition 6.4. Let
n
0
V=) V—
] b
a ax]
n
0
W=y W,—,
Z T ox;
j=1 ]
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where V;, W; : R" —» R,j =1,...,n. Letalsof : R" — R. We define

and

Example 6.4. Let

Then

and

Exercise 6.4. Let

Find

1. V+Ww,;

2. V-W,;

3. (X +x)V;
4. xx,W.
Answer 6.2. 1.
2.

n
0
V+bW = Vi+ bW;)—, ,b e R,
av + j;(a]+ ’)axj a,b e

LoD
V=2 V)a

j=1 j

d 5]
V=(3+X1+X2)a—Xl+X%a—X2,
0 0
W= (04— x) > + 2.
04 X2)8X1 " 0X,

d 0
V+W:(3+2x1)a—xl+(xf+1)a—x2

2 0 3 0
xV =(3x + X +x1x2)a—x1 +Xla_x2'
0 0
V=x + Xy —,
Yox; ~ ox,
W = (X3 — Xxy) +X 9
= —X 15
1 0X,

d 2
(le - Xz)a—Xl + lea—xz;

X.
2 0xq
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3. 0 0
Xl(Xl + Xz) a— + 5

X, 0Xy

(XX — x%)i + xlxzi.
0Xy 0Xy

6.3 Covariant derivatives

Letpe R",ve Tp(lR"), and

0
W‘_

Tox

W= ,
J

M=

J

Il
UN

where w is differentiable at p.

Definition 6.5. The covariant derivative of W with respect to v is defined by

nowi| 9
_ J
VVW —_ Z W 67 .
j=1 p%lp
Exercise 6.5. Let
n
0
Wl = z le—,
a0 %%
n
0
Wy =) Wy=—,
a7

and a,b € R. Prove that
Vv(aW1 + bWz) = aVVW1 + bvaZ.

Solution. We have

n an. a
VVW1= _] - >
}; ov |p0Xjlp

L owy| 9
VWy=Y —2| =,
v }; ov |p0x;p

and

n

aWwy + bW, = ) (awy; + bsz)ai~
i X
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Then
L olawy; + bwy) | 9
V,(aWy + bW,) = Z — 9 =
j=1 ov p9%ilp
L [ aowy; owy; 0
_];< o lp o p>a—xjp
(2] 2] 2] 2
A ov anj P ov anj P
B S N
= v oxilp 5 v poxlp
I S NS )
= v poxily 5 oV oXlp
= aV‘,Wl + bvaZ-
This completes the proof.
Exercise 6.6. Let
n
0
W=) ws-
j=1 J

andf : R" - R, f € C'(R"). Prove that

- S
V,(fW) =fV,W + 3 w.

P
Solution. We have
noow
w=y 9
=t oV |pox;lp
and
L 0
fW=j;<ﬁmj>a—Xj.
Then
Lo(fw)| o
v, (fW) e
v ]; v [,0x;lp
ow; of 0
=Y(f=2| +wp)= >—
j;( vl v, R
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n j of 0
Z( | UGk )
of
—Zf ax 215,, J
_ v M| o I
—f}; ov ax- ij;w](p)

YW —| W),

This completes the proof.

Example 6.5. Letn =2 and
0 0 2
W(xp, X,) = (X +X2)ax1 + 2x1xza—xz, (X1, Xy) € R%.
Also,letp = (1,1) and v = (—%, \irz) € TleZ. Here

2
WXy, Xp) = X§ + X,

2
Wy (X1, X3) = 2X1Xp, (X3, Xp) € R™.

Then

Wlxl (Xl’ X2) = 2X1,

Wiy, (X3, X) =1,

szl (Xl’ Xz) = ZXZ’

WZXZ (Xl’ Xz) = 2X1, (Xl’XZ) € ]RZ,
and

ow

= | = Wigvi + wivo)(p)

vVip

~((-g)evr 7)o

- (—%(z)q - 1>)(p),

as well as
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ow,

ov

= (W2X1V1 + WZXZVZ)(p)

_ <<—%>(sz) + %(zm)(p)

= —V20x, - x1)(P),
=0.

p

Hence,

0

_ow| o om
p 90Xy

VW = —
v ov [pox;  ov
__ 129
V2 0x

>
p

or

- (-L o)

Exercise 6.7. Letn=2andv = (—iz, iz). Find V, W, where
1.
W(Xy, Xy) = (xf +x§’ - 3)(1)(2)8i + XX —X) 0

X1 X% aXZ ’

(X1,Xy) € ]Rz;

. 2., 0 . (X X\ 0 2
W(x(, X,) = (sinx; — x;x,)=— +sin[ = Jcos[ == |=—, (x,Xy) € R
(x4, Xp) = (sinx; - x; 2)8x1 <x2> <X1>ax2 (X1, X3)

> . o edoxy g :
WXy, Xy) = €(cos Xy + Xq SinXy) — + log<—>—, (X1, %) € R
oxy X2+ X2 + X 0X;
4 X -x2\ 9 logx, O
W(xg, X,) = arcsin( 2 %)— +(1+ (sinx)?) B2,  (x,xp) € RZ.
X + X5/ 0Xq 0X,
Answer 6.3. 1.
3 2 2 0 X% - X1Xy — ZX% 5} 2
VWX, X)) = —=(X5 + X =Xy = X{ ) =— + ————F———, (X1, Xp) €RY
WW (X1, Xp) \/E(Z 27X 1)6)(1 Vil % (X1, X2)
2.

1 . . 0
V, W (X1, X9) = —e*(x4(Cos X, — Sin Xy) — 281N Xy — COS Xy ) —
WW (X3, X3) N (x4(cos x, 2) 2 2)ax1
X1 + X 0
V21122 F (X, X9) € IRZ;
X X3 + x5 %2
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3. 1 X1X2(X1|X1|+X2|X2|)\/M a

ViW(xy, X)) = —
SR x| 1xa 1O — X&) ax

log x,-1

1/. .
+ 7 (sm(le) log X, (4 + (sin x;)%)

_ l(l + (sinxl)z)logx2 log(1+ (sinx1)2)>i, (X, Xy) € R%
X 0X,

6.4 The Lie brackets

Suppose that
0
W—Z%
a ax
0
W—Z%
a ax

where V; : R" — R, Vj; € CY(R"), fork =1,2andj=1,...,n

Definition 6.6. Letf : R" — R be a differentiable function. Define

Vi(Vy(f)) = ZVya <z 2kaxk>

Example 6.6. Let

2 2y O 0
V104, %) = (4 +X2)a_x1 +X1Xza—xz>

0 0
Vo (Xq, Xg) = (xf —xﬁ)a—x1 + 0 + Xz)a_xz’

flx, %) = (x1 +x§’) (X1, Xy) € R

Here

Vi (%, %) = X; + X3,

Vip(X1, X3) = X1Xp,

Vo (6, %) = X4 = X3,

V(X X0) = X+, (X3, %) € R,
We have

Vi, (X1, X3) = 2Xy,
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Vi, (X1, X3) = 2X3,
Vigw, (X1, X3) = X,
Vigx, (X1, X3) = Xq,
Vore, (X1, X2) = 23,
Vo, (X1> Xp) = =2Xy,
Voox, (X1 Xp) =1,
Voo, (X1, X3) = 1,

fr, (X1, X3) = 3X%>

sz(X1>X2) = ng, (Xl,xz) € ]Rz.

Therefore,
Z VZk(X1»X2)$(X1»X2) = Vo1 O, X)fy, (1, X3) + Vi (x4, Xp)ff, (X4, X3)
k=1 k
= 3O - x2) + 3 + X5)
= 3)(;1 - 3xfx§ + 3x1x§ + 3x§ , o (X xp) € R%.
Let
h(xy, x,) = 3x;l - 3xfx§ + 3x1x§ + 3x§, (1, %) € RZ.
Then
hy, (X1, %) = 12xf - 6x1x§ + 3x§,
hy, (X1, X%5) = —6xfx2 + 6X1X5 + 9X§, (X1, %) € R>.
Hence,

Vi(V2 () (x40, xp) = Vig (%1, X))y, (X0, Xp) + Vg (Xg, Xp) Py, (X3, X3)
2

= (¢ +x3)(126 - 6xX% +335) + X, (~6XE X + 6X1X, + 9X5)

1945 3,2 2,2 3.2 4
= 12x7 - 6X7X; + 3X7 X, + 12X7X; — 6X1X,
4 3,2 2.2 3

+ 3%, — 6XX) + 6XX5 + 9X1X;

= 12xf + 3)(51 - 6)(1x;l + 9x12x% + 9x1x§ , (X)) € R%
Next,

Vi (X1, X)f (X1, Xo) + Vi (X, X)f,, (X1, Xp) = 3 (X +X5) + 3X5(x1X,)

4 2,2 3 2
=3x; +3x7X; +3X1X5, (X1, Xp) € R,

Let
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g(x,xy) = 3)(1l + 3x12x§ + 3x1x§’, (X, x9) € R%.
Then

8y, (X1 Xp) = 12xf + 6xlx§ + 3)(; ,

2 2 2
8x, (X1, X3) = 6X7X; + IX1 Xy, (Xg,Xp) € R%
Therefore,

Vo(V1(F) 01, Xp) = Vg (%, X2) 8, (X4, X3) + Vi (37, X5) 8y, (X4, X3)
= (X2 = x5) (126 + 6x1X5 + 3% + (X1 + X5)(6XX, + 9x;X5)
= 12xf - 6xi°’x§ + 3xfx§' - 6)(1)(;l - 3x§’ + 6xi°’x2

2,2 2,2 3 2
+9X7X5 + 6X1X; +9x1X5,  (Xp,Xp) € R™.

Exercise 6.8. Let

3,2 0 3 0
Vilxp, xp) = €970 — 4 72—,
0xq 0X;
2.2 0 _ 2 0
VZ(Xl:XZ) _ exlxz_ + exl 3x2+4x1_’
X1 0X;,
4.5 0 6_,3 0
Va(Xp, xp) = €972 — 4 72 —
0Xq 0X,

2 0 2 0
Vi, X,) = €1 — + 2 —
4(X1, Xp) % %

4 2
fOa, %) = X%, (X3, X;) € R%.

Prove that

Vi(Va(f)) # Vo(Va(f));
Vi(V5(F)) # V5(Vi(F));
Vi(Vy(f) # Vo (Vi(F));
Vo (V3(F) # Va(Va(f));
Vo(Va(F)) # Va(Va(f));
V3(V4(N) # V4 (V3(f)).

@ Uk W=

Exercise 6.9. Let V;, k =1,...,4, be vector fields such that

n
0

Vk:szjaT, kzl,...,4.
j=1 k

Let also, a, b, c,d € R. Prove that

(aVl + bVZ)(CV3 + dV4) = ach(V3) + adVl(V4) + bCVz(Vg) + deZ(V4)



6.4 The Lie brackets == 257

Solution. We have

n a n a
aVl =a Z Vl]a? = Z(avlj)a7>
j=1 ] j=1 )
n a n a
j=1 ] j=1 ]
n ) n
V3 = C(Z V3j$> = Z(CVSJ)aX"
j=1 ) j=1 )
n a n a
dV4 = d(z V4]§> = Z(dV@)a,
j=1 ] j=1 )
and
n a n a
j=1 J J
0
= Z(avlj +bVy) =
J=1 '
9] & 5]
cVy +dVy = Z(cVSj)a—Xj + Z(dv4k)a_)<,~
a
= Z(cvgj + dV4})
j=1
Hence,

) )
(aVy + bVy)(cVy +dV,) = Z(aVU +bVy) = (Z(eV3, +dVy) ]>
j=1

—aciV 9 (ZV J )

- 5, 35,

j= T j= 0
z 0 (& d
+adZVl-—<ZV4~—>
5 o\ 5 Yoy
+bczvz,a (z 3jax>
0 0
+bdZV2j$<ZV4j$>
j=1 7 \j=1 j

= aCVl(Vg) + adVl(V4) + bCVZ(V3) + dez(V4)

This completes the proof.
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Definition 6.7. Let V; and V, be vector fields. The expression
V1, Vol = Vi(Vy) = Vp(Vy)

is called the Lie bracket of V; and V.

Example 6.7. Let V3, V,, and f be as in Example 6.6. Then

[V, Vpl = 12x15 + 3x§1 - 6x1x;1 + 9x12x§ + 9x1x§ - 12xf + 6xfx§ - 3xfx§ + 6x1x§l + 3x§
3 2.2 2,2 3
= 6X7X; — IXT Xy — 6X7X; — 9X; X,

= 3x;l + 6xfx§ - 3xfx§ + 3x§’ - 6xfx2 - 6x12x§, (0, %) € RZ,
Exercise 6.10. Let V; and V, be vector fields. Prove that
[V, Vol = =[V, 1.
Exercise 6.11. Let V; and V, be vector fields. Prove that

[Vl’ V2] = VVl Vz - VVZ Vl'

6.5 Advanced practical problems

Problem 6.1. Find %|p, where

1
fx,xy) = 5% + 10xfx2 + xg, (X1, xy) € R?,
v=(4,-3), p@,2)
2.
g, X9, X3) = xlxgxg, (X9, X9, X3) € ]R?’,
V= (4> 3) 0)) p(3> 2) 1);
3. _ . X3 3
O, X, X3) = aresin ——=—, (X3, X3, X3) € R°,  (X3,Xp) # (0,0),
X+ X2
v=1(0,43), pl1L1);
4, Xy

F (X0 Xgo Xy Xy) = (X1, %3, X3, X4) € R*\ (0,0,0,0),

X2+ X5+ X2+ x5
V= (3> 1) 0) 0): p(O) 1) 1) O)'

Answer6.4. 1. -18;

52.
2. %
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1.
3 5
4. 0.
Problem 6.2. Find max g—ﬂp, where
1
i, %) = xlxg - 3xfx§, p(1,1);
2. X1 + /X
fx,xp) = 1—\/_2) p(2,1);
X2
3.
f(Xl’XZ’X3) = log(X1X2X3)) p(1> _2) _3);
4. . . 3 T
f (X, X9, X3) = tan xy — xq + 3sinx, — (sinx,)” + 2x3 + cot X3, p(z, 3 E)

Answer 6.5. 1. V290;

V.

2. =5
7.

3. L

Problem 6.3. Find an unit vector v such that g—f achieves its maximum at p, where

v
1
FOQX) = X5 =X + X5, p(=1,2);

2.

fO, %) =x1 - 3%, + \/3x1x2, p(3,1);
3. f(x1, Xy, X3) = arcsin(x;x,) + arcsin(x,x3), p(1,0,5,0);
4.

f0a,%,%3) = XpG% p(=3,2,1);

Answer 6.6. 1. (==, =-);

1 _ 1\,
2 (L,-1y
3. (%, L _ﬁ)-
TNV’ V23 VB
1 6
4. (ﬁ’o’_x/_eﬁ)'

Problem 6.4. Using the Euler identity, find

of o o

X —_
1ax1

where
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1.
X
fx, %) = ﬁ;
X{ +X;
2. X1+ X
fx, X9, X3) = ﬁ;
X{ + X3
3. 4
FO, X9, X3) = (X + 2X5 + 3X3) "3
4, X
fx1, %9, X3) = (logx; —log x,) %
5.

X1X3 X2 X3
(X1, X9, X3) = —=logx; + X (——
J (X1, X3, X3 X g X1 + X0 X %)

where ¢ is a differentiable function.

Answer 6.7. 1.

X1
T2 2
1+X
2. X1 +X3 |
bl
3/v2 2
3 X§ + X3
3.
0;
4,

X1Xy Xy X3
— 21 +logxy) +x ¢ —“£ =)
X3 ( & 1) 1 <X1 X1>

Problem 6.5. Let

0 0
Vy = (0 +Xx6) — + (X; — 2X,) —,
O R R

Find

1 2Vi+Vy;
V-3V,
(xf + X)) V1,
X1 Vs.

FTN

Answer 6.8. 1. 5 5
2X2 42X, X + Xg + X0)— + 2x —;
( 1 1X2 X1 2)ax1 1aXz
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0 15}
(¢ + X0, - 3%, — E}xg)a—x1 +0q - 8x2)a—X2;

0 0
(6 +x)( 0 +x0) 5 + 01~ 2030 )

Problem 6.6. Letn=3andv = (i, L is). Find V,W, where

3 V3’
1
1 0 X3 X1\ O
W (X, X2, X3) = (X9Xg + XoX3 + X4 X3) —— + ———=— + <— + —)—,
for (xq, x5, X3) € IR3;
2. N
b% . (X X x \
W(xy, Xg, X3) = <—2 + arcsm<—3> + arctan<—1>>i +x;‘1"Zi + <—1> i
X3 Xq X3/ /) 0xq X, Xy /) 0X3
for (xq, x5, X3) € R,
Answer 6.9. 1. ) 3 3
X + Xy + X
VW (X, Xg, X3) = 7()(1 X +X3)a— - #a—t
3 X B+ +td) o
1 x3 1 x\ o0
o 2 n )
3 1 1 3 3
for (xq, x5, X3) € R3;
2.

VVW(Xl’XZ’XS) = -

for (xq, x5, X3) € R,

Problem 6.7. Let

Xy 0 1 XX, xx,—1y O
— + —= (X172 (X + X)) l0g X5 + X XX, ) —
\/§x§ o \/§( 3 1+ X3) 108 X3 + X1 X X5 )axz

1 /x X X X % 0

3 3 1 1
+ — ___+10g<_>><_> —_
\/§<X1 Xy Xy Xy aX3

x1+2x§i+ 34x2 0

Vilx, X)) =€ —
s 00X, 0X;
Vz(xl XZ) — eX%+X§+X1XZi + eX1X2+X%+Xgi
0xq X,
V3(Xl, Xz) — eXil+X2+Xf i X%+X§ i,

0xq 0X,
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Xf+X1XZi + X%+X§i
00X 0X,

2 2
fOax) =172, (

Vi(x,x5) = e

X1, Xo) € RZ.

Prove that

Vi(Vo(F) # Vo (Vi(F));
Vi(V3(F)) # Va(Vi(f));
Vi(Vy(f) # Vo (Vi(F));
Vo (V3(F) # V3(Va(f));
Vo(Va(f)) # Va(Vo(F));
V3 (V4 () # Va(V3(f)).

IS o

Problem 6.8. Let

0 5]
Vi(xg, Xp) = (xil +xf’ +X2)a_x1 + (e3x1 - e4x§)a—xz,
o s 0
Vo, Xp) = (X = X)) =— + Xy =—,
204, X) = (4 )ax1 +texg ox,

O, %) = x4 +x§, (X1, %) € R
Prove that
[V, VRI(F) # [Va, AI().
Problem 6.9. Let V] Jj =1,2,3bevector fields and a, b € R. Prove that
[aV; + bVy, V3] = a[Vy, V3] + B[V, V3.
Problem 6.10. Let V] Jj =1,2,3, be vector fields. Prove that

V1, [Vo, V1] + [V, [V, V1] + [V5, [V, V,]] = 0.



7 Riemannian manifolds

In this chapter introducing the notion of a manifold, we study open sets and differen-
tiable maps on manifolds. Lie brackets and Riemannian connection acting on the set of
tangent vector fields to manifolds are given. Finally, the Koszul formula is proved.

7.1 The notion of a manifold

Definition 7.1. An m-dimensional differentiable manifold is a Hausdorff space M to-
gether with a family {U;};¢; of subsets such that

L McUqU;.
2. Foranyj € I, there is a homeomorphism ¢; : U; — R™ such that ¢;(U;) is open
inR™.

3. ForU;nU; #0,¢;(U;nU;)is openin R™ and
o G(U; N UY) - (T N T
is differentiable for any j,[ € I.

Each ¢;,j € I, is called a chart and ¢}.‘1, j € I, is referred to as a parametrization. In
addition, ¢]~(Uj), J € I,1is said to be a parameter domain and {(Uj, d)j)}je, is said to be an
atlas. The maps

$ro¢; U NU) > U NTY, jilel
are said to be coordinate transformations, or transition functions.

Example 7.1. Every open subset of R™ is a manifold.

Example 7.2. Let
M ={(x;....x) € R": F(xq,...,X,) = 0},
where F : R" - R™, F € C{(R") and
Rank(dF) = n-m.

See Exercise 7.3 for the definition of dF. Then, by the implicit function theorem, there
are Xpy.,1> - - - » X, such that

X1 = Xma (X35 - > X))

Xp = Xp (X, . -5 Xp)-

https://doi.org/10.1515/9783111501857-007
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The map

X5 e 5 X)) = (X e e s X Xy - - > Xpp)

is a parametrization and the map

X5 Xp) = (X o5 Xpy)

is a chart.

Exercise 7.1. Prove that the hemispheres
{01, %9, X3) € 2 DX # 0}, j=123

define an atlas.
Hint 7.1. Use the definition for an atlas.

Definition 7.2. If ¢; - ¢j‘1 € C(¢;(U;nUp), for any j, 1 € I, then M is called a topological
manifold.

Definition 7.3. If ¢, o ¢j‘1 € Ck(qb]-(Uj nU)),j,l € I,k € NU {oo}, then M is called a
c*-manifold.

Definition 7.4. A subset O ¢ M is said to be open if ¢;(0), j € I, is open in R™. This
defines a topology on M as the set of all open sets.

7.2 Differentiable maps

Suppose that M is an m-dimensional differentiable manifold and N is an n-dimensional
differentiable manifold. Let also f : M — N be a given map.

Definition 7.5. The map f is said to be differentiable if for all charts ¢ : M — R,
¥ : N — R" with f(M) € N, the map
pofop :R" > R"
is also differentiable.
This notion of differentiability is independent on the choice of the charts ¢ and .

Definition 7.6. A diffeomorphism f : M — N is defined to be a bijective map which is
differentiable in both directions. Then the two manifolds M and N are said to be diffeo-
morphic.

Two diffeomorphic manifolds necessarily have the same dimensions because there
exists no diffeomorphism between R™ and R", m # n.
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For a chart ¢, we denote by (i, . .., u;) the coordinates of R¥ and by (xq,...,x;) the
corresponding coordinates in M. Thus, x;(p) is the function given by the jth coordinate

of ¢(p),
xi(p) = u;(d(p)).
Then, for a function f : M — R, we set

LA

0%

_ 9 (rogt
p 0

¢(p).

7.3 Tangent spaces

Let M be an m-dimensional differentiable manifold and p € M.

Definition 7.7 (Geometric definition). Let a : (-c,c) ¢ R — M be a differentiable curve
onM and f : M — R be a function of class Cl(M ). The map a’(0) is called a tangent
vector at p € M, where

o= 00

t=0

Definition 7.8 (Algebraic definition). Set
Cl(M )={f : M — R: f continuously has the first derivatives}.

A tangent vector X, at p € M isamap X, : C(M) — R with the following two properties:
1

X,laf +bg] = aX,[f] + bX,[g],
for any a,b € R and for any f, g € C'(M);
Xp[fg] :pr[g] +Xp[f]g>
for any f,g € C(M).

The set of all tangent vectors of M at p is called the tangent space of M at p, denoted
by T,M.

Example 7.3. Let X, € T,M and f be a constant map. We will prove that
X[f]1=0.

In fact, we have
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X[1] = X[1-1]
=1-X[1]+1-X[1]
= 2X[1].

Hence,
X[1]=0
Take ¢ € R arbitrarily. Then, using the linearity of X, we find

X[c] =X[c-1]
=c-X[1]
=0.

Exercise 7.2. Prove that for any tangent vector X,,, we have the following representa-
tion:

X, ZX(X) l

Solution. Consider a chart ¢ : M — U, where, without any loss of generality, we assume
that U is an open ¢-ball with ¢(p) = 0. Hence,

X(p) =+ = Xn(p) = 0

Let h : U — R be a differentiable function and

f=hoo
Introduce
; 0
ho) = | S @
0
Observe that
oh d(tu )
5@#_ (m
—me@u

Hence,
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m 1 m
> o = [ Y S
j=1 0]:1 u
( oh
- [ S
0
= h(y) - h(0).
Since
f=hog
fi=lye
Xj=uo¢, je{l..., n}
we find
f@-f®) = f@x(@.
j=1
Consequently,
ol _.
a_,.‘q - £(@).

Now, using the properties of a tangent vector, we find
m
X(f) = X(f(p) +) f,»x,-)
j=1
m
= X(F)) + X(ZJ%-)
j=1

=0+ ZX(];X]-)

E

=S XGEN®) + Y fEX0)

j=1 j=1

1]
Ms

S (D)X (x;)

j=1

~.
L

f

X(x)

NER M5
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Note that
0 1 ifj+#1
a—(Xl) = { . ]
X; 0 ifj=1
Thus,
0 .
) 1) BRI >
ox, jed m}

are linearly independent. This completes the solution.

Exercise7.3. Let F : M — N be a differentiable map, p € M, and F(p) = q € N. The
differential of F at p is defined to be the map

dF|, : T,M — T,N,
where
(dF1,(X))If] = X, [f o F),
for any f € C1(N). For this differential, we have
d(G o F) = dGlp, o dF|p,
where F: M — N,G: N — S, or briefly
d(GoF)=dGodF.
Solution. Letg € Cl(S). We have

aG °F)|p(Xp)[g] = Xp[g °GoF]
= (dF|,(X,))(g * G)
= (dGly(dF|,(X,)))(&).
This completes the solution.

Definition 7.9. A vector field X on a differentiable manifold is an association p — X), €
T,M,p € M, such that, in any chart ¢ : M — U with coordinates Xy, ..., X, the coeffi-
cients §; : M — R in the representation

m 0
X, - E~(p)—|
14 }; J| an »

are differentiable functions.
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Exercise 7.4. Let (x},...,x™) and (y},...,y™) be two coordinate systems on a manifold.
Let also F be the identity. Prove that

7.4 Riemannian metrics

Let M be an m-dimensional manifold and p € M. Denote by T; M the dual space of the
space T,,M.

Definition 7.10. The basis of T; M is defined by {dxj}]’.':l, where

0 1 ifi=j,
>=5ij: L
P 0 ifi+j.

51 5

Definition 7.11. Set
T,M®T,M = {a: T,M x T,M — Ris differentiable}.
Define a basis
dxil, ® dxjl,,  Ljefl,....n}

where

0

0
ax;l, ®de|p<%’p, ax

d d
w3
p> ilp an » jlp aXI » ik “jl

For the coefficients of the representation

a=Y aydx; ® dx;,
5]

we have the expression

a.._a<i i)
v axi)aX]' '

Definition 7.12 (Riemannian metrics). A Riemannian metric g on M is a bilinear associ-
ationp — g, € T,M ® T,M, p € M, that satisfies the following conditions:

1 g&.Y)=g,(Y,X) forany X,Y € T,U;

2. gp(X,X) >0forany X € T,U,X #0;

3. The coefficients g in the representation
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8p = &ydxil, ® dxjl,
i

are differential functions.
Then the pair (M, g) is called a Riemannian manifold. The Riemannian metric is also
referred to as a metric tensor.

Example 7.4. The pair (M, g) = (R", {-,-)) is a Riemannian manifold, where

1 0 ... 0

0 1 0
(<’>)l] =

00 ... 1

and (-, -) is the standard inner product. This space is also referred as a Euclidean space
denoted by E".

Example 7.5. The following is an example of a Riemannian metric in matrix form

1+ 0 ... 0

0 1+x ... 0
(&) = .

0 0 ... 1+¥

n

A Riemannian metric g defines an inner product g, in T,M for any p € M and
therefore the notation (X, Y) instead of g,(X, Y) is also used.

Exercise 7.5. Let 0 < b < a. Prove that on (0, 277) x (0, 277),

b? 0
(gij) - < 0 (a+bcos u)2>

defines a Riemannian metric.

7.5 The Riemann connection

Suppose that (M, g) is a Riemannian manifold.

Definition 7.13 (Lie bracket). Let X and Y be two differentiable vector fields on M and
f : M — Rbe adifferentiable function. The Lie bracket of X and Y is defined by

X, YI(f) = X(Y(f)) - Y(X(f)).

It is also called the Lie derivative £y Y of Y in the direction X. At p € M, we have
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X, Y1,() = X,(Y()) - Y, (X(F)).

Suppose that X, Y, Z are differentiable vector fieldson M, f, h, ¢ : U — R are differ-
entiable functions, and a, 8 € R. In what follows, we will deduce some of the properties
of the Lie brackets:

1. [aX+PBY,Z] =alX,Z] + BIY.Z].

Proof. We have

[aX + BY, Z](f) = (aX + BY)(Z(f)) - Z((aX + BY)(f))

= aX(Z() + BY(Z()) - Z(aX (f) + BY (/)
= aX(Z(f)) + BY(2(f)) - aZ(X(f)) - BZ(Y(f))
= a(X(Z() - Z(X(N)) + B(Y(Z()) - Z(Y()))
= a[X, Z](f) + BLY, Z](f).

This completes the proof. O

2. [X,Y]=-[Y,X].
Proof. We have

(X, Y1(F) = X(Y() - Y(X()
=—(Y(X(F) - X(Y())
= -[Y, X](f).
This completes the proof. O

3. [fX,hY] =fhlX,Y] +fX(h)Y - hY(f)X.
Proof. We have

(X, hY1(¢) = (fX)(hY () - (hY)(fX(¢))
= X(hY(9)) - hY (fX(¢))
= fRX(Y(9)) + Y ($)X(h) - WY (X(¢)) - hY () X(¢)
= (X (Y(9) - Y(X(9))) + X (MY (¢) - hY () X(¢)
= fhlX, Y1(¢) + X (W)Y (¢) - hY (f)X(¢).

This completes the proof. O
4. X [Y,.ZI1+ Y, [Z,X]]+[Z,[X, Y]] = 0.
Proof. We have

[X,[Y,Z1](9) + [Y,[Z,X]](9) + [Z, [X, Y]](9)
= X([Y,Z1(#)) - (Y, Z])(X(9))
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+Y(1Z,X1(¢)) - (12, X]1)(Y(9))

+Z(1X,Y1(9)) - [X,Y](Z(¢))
=X(Y(Z(9)) - X(2(Y(9))) - Y(Z(X(9))) + Z(Y(X(9)))

+Y(Z(X(9)) - Y(X(Z(9))) - Z(X(Y())) + X(Z(Y(9)))

+Z(X(Y(9))) - Z(Y(X(9)) - X(Y(Z(9))) + Y (X(Z(9)))
= 0(9).

This completes the proof.

5. [,

%’ Bxl] 0, jlet,..., nl.

Proof. We have

This completes the proof.

0 v, O _vy(z9m _ ‘a_f,>i
[foaxj’zmax,]_z<ffax- Tiox: ox;’
j 1 Tl j j

Proof. We have

—
-
o

QJ
><
M
=
&
_‘
3
M
o
/-~
Hlo
/N
/
~M
QJ|QJ
~
=
N————
N———

HERR) B

This completes the proof.
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Definition 7.14 (Riemann connection). A Riemann connection V on a Riemannian mani-
fold (M, (,)) is a map

(X,Y) > VyY

that satisfies the following conditions:
VX1+X2Y = VX] Y+ VXZ Y,

VX(Yl + Yz) = VXY1 + VXYZ;
Vx(fY) = fVxY + X(f)Y;

X<Y) Z) = (VXY> Z> + <Y> VXZ>;
VyY -VpX - [X,Y] =0.

O Uk W=

Exercise 7.6 (Koszul formula). Prove that, for any three vector fields X, Y, Z, we have the
following equation:

2Z,VyY)=X{Y,Z) +Y(X,Z) - Z(X,Y)

(7.1
-V, [X,Z]) - (X,[Y,Z]) - (Z,]Y,X]).

Solution. By Property 5, we get

X(Y,Z) = (WY, Z) + (Y, VyZ),
Y(X,Z) = (VyX,Z) + (X, VyZ),
~Z(X,Y) = —~(V,X,Y) — (X,V,Y).

Hence,

X(Y,Z) + Y(X,Z) — Z(X, Y)
= <Y, VXZ - VZX> + <X, VYZ - VZY> + (Z, VXY + VYX>
= (Y,[X,Z]) + (X, [Y,Z]) + (Z,[V,X] + 2VyY).

Using the latter equation, we obtain

2Z,VyY) = X(Y,Z) + Y(X,Z) - Z(X,Y)
= (Y, [X,Z]) - (X, [Y,Z]) - (Z,[Y,X]).
This completes the proof.

Exercise 7.7. Prove that on any Riemannian manifold (M, (-, -)) there is a uniquely de-
termined Riemann connection.

Solution. 1. Uniqueness. Note that for a given Z, the right-hand side of (7.1) is uniquely
determined. Hence, VyY is uniquely determined.
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2. Existence. We define V by the equality (7.1). We will check that it satisfies all the
requirements of Definition 7.14.
a. Wehave

2Z,Vy Y) = X((Y.Z) + Y(X,,Z) - Z(X,,Y)
(Y, (X, Z]) - (X, [V, Z]) - (Z, [V, X;]),
UZ VK Y) = X (Y, Z) + Y(X,,Z) ~ Z(X,, V)
(Y, [X,, Z]) — (X,,[Y, Z]) — (Z,[Y,X,]),
§UZ, Vg Y) + AZ, YY) = XV, Z) + Y Xy, Z) - Z(X,, Y)
(Y, 1%, 2]) - (%, [V, 2]) ~ (Z,[V. %)
+ X,(Y,Z) + Y(Xp, Z) — Z(X,,Y)
(Y, 1%, 21) ~ (X, [, Z]) — (Z. [V, X,])

and

2UZ,Vx 5, Y) = Xy + X (V. Z) + Y(Xy + X0, Z) — Z(Xy + X, Y)
Y, [X; + X0 Z]) — (X, + Xy, [V, Z]) = (Z, [V, X + Xp])
=X\ (Y, Z) + X,(Y, Z) + VX, Z) + Y (Xp, Z)
~Z(X, Y) - Z(Xp, Y) = (Y, [X, Z]) = (Y, [X,, Z])
= (X0, [V, Z]) - (X, [Y, Z]) = (Z, [V, X1]) = (Z,[Y, X]).

Consequently,
2Z,Vx,1x,Y) = 2Z,Vy Y) + 2Z,Vy,Y),
and from here
Vxx,Y = Vg ¥V + Vg V.
b. We have

2Z,VxY) = [X(Y,Z) + Y{(X,Z) - Z{fX,Y)

(Y, [X,Z]) - (X, [V, Z]) - (Z,[Y./X])

=fX(Y,Z) + Y(F (X, Z) + fY(X,Z)
-Z(FX,Y) - fZ(X,Y)
~(YV.fIX,Z] - Z(f)X) - f(X,[Y,Z])
—{Z,-Y(H)X +f[X,Y])

=fX(Y,Z) + Y(f)(Z,X) + fY(X,Z)
-Z(FX,Y) - fZ(X,Y)
-f{YIX,Z]) + Z(f (Y, X) - f(X, Y, Z])
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-Y(FZ,X) - f(Z,[X,Y])
=f(X(Y,Z) +Y(X,Z)-Z(X,Y)
—(Y,1X,Z]) - (X,[Y,Z]) - (Z,[X,Y]))

and

vixY :fVXY.
We have

2Z, Vg (Y + V)Y = X(¥y + Y, Z) + (Y + Vo) (X, Z) — Z(X, Yy + V)
— (Y, + Yy [X,Z]) = (X, [Yy + Y5, Z]) — (Z,[V; + Yy, X])
= X(Yy, Z) + Yi(X, Z) - Z(X, V)
+ X(Yy, Z) + Yo (X, Z) — Z(X, Yy)
(Y, 1X,Z]) - (X, [V, Z]) - (Z, [V, X])
(Yo [X,Z]) = (X, [Yy, Z]) = (Z,[Y5, X])

and

VX(Yl + Yz) = VXY1 + VXYZ'

. Wehave

2Z,VyfY) = X(fY,Z) + fY(X,Z) - Z(X,fY)

~{fY,[X,Z]) - (X, [fY.Z]) - (Z, [fY.X])

= X(fY,Z) +fX(Y,Z) +fY(X,Z)
- Z(F)(X,Y) - fZ(X,Y)
-f(Y,[X,Z]) + Z(F)(X, Y) - f(X,[Y,Z])
-f(Z,1Y,X]) + X(f )Y, Z)

=2X(f)(Y,Z) +f(X(Y,Z) +Y{(X,Z)
-ZX,Y) - (Y, [X,Z]) - (X, Y, Z]) - (Z,[Y.X]))

and
We have

2Z,VxY) + 2(Y,VxZ) = XY, Z) + Y(X,Z) - Z(X,Y) - (Y, [X,Z])
- (X, [Y,Z]) - (Z, [Y,X]) +X{(Z,Y)+Z{X,Y)
~Y(X,Z) - (Z,[X,Y]) - (X, (2, Y]) - (¥, [Z,X))
=2X(Y,Z)
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and
X(Y,Z) = (Z,VxY) + (Y, VxZ).

f.  We have

2Z,VyY) - 2Z,VyX) = X(Y,Z) + Y(X,Z) - Z(X,Y) - (Y, [X,Z])
—(X,[V,Z]) - (Z,[V,X]) - Y(X,Z) - X(Y,Z)
+Z(Y,X) + (X, [V, Z]) + (Y, [X,Z]) + (Z, [X, Y])
=2z, [X,Y])

and
VXy - VYZ = [X, Y]

This completes the proof.

7.6 The Christoffel coefficients

Setg; = %. We will find a representation of
J
in the form

k
k

By the Koszul formula, we get

2<vajal, ak> = a]<al’ ak> + 8,(a],ak) - 8k(a],a,)
_ % %k _ %
Coox; o oxp oxg

Therefore,

_1(0gu . %k 6gﬂ>
(V9,0 9 = 2< 0x; " ox;  oxg /)
Let

1<aglk 98jk agﬂ)
Fjl,k:_ _—t —— - — .
2 aX] aXl an
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Thus, we have

Tjixe = (V3,01 k)

=<zquq>
m

= T3 (Oms )
m
= Z r}?gmk'
m
Let
£ = ()™
Then

ki
I =) Tiug
k

Definition 7.15. The symbols I';; and 1"5. are called the Christoffel coefficients.

Let
X= ZEiai,
i
]
Then
VXY=ZfiVa,-<Z’7jaj>
i j
= z Z §iV3,(;9))
i
on:
=ZZ§W%@+ZZ§Q$@>
i) i) i
on:
DD PRI PR
T 1 i i
. on:
=YY Y anra+ Y Y a5y
i1 i i
on; j
= Z(Z Sim + Z‘fi”lriz>aj-
FNT X g
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Definition 7.16. A vector field Y is said to be parallel if
VxY =0

for any X.

Definition 7.17. A vector field Y along a regular curve c is said to be parallel along c if
VoY =0.

Definition 7.18. A regular curve c is said to be geodesic if

VC/C, =0.

7.7 Advanced practical problems

Problem 7.1. Prove that the Cartesian product M; x M, of two differentiable manifolds
is a differentiable manifold.

Hint 7.2. Use the definition of a differentiable manifold.

Problem 7.2. Let M be a given differentiable manifold. Prove that the set of all pairs
(p.X),X € TpM ,is a differentiable manifold. It is called the tangent bundle of M, denoted
by TM.

Hint 7.3. For any chart ¢ in M, consider

(p, M) = (p(p),E'(p),...,E"(p)) e R" x R,

where &1,..., £" are the components of X in the corresponding basis, i. e.,
n
i .0
=N dp L
X =285
Jj=1
Problem 7.3. Let

M = {(X, X X3, X3) € R* : X3 + X5 = X5 + x5 = 1},

Prove that M is a two-dimensional manifold.

Problem 7.4. Prove that the metrics of two Riemannian manifolds (M, g;) and (M,, g,)
induce a Riemannian metric g; x g, on M; x M,.

Problem 7.5. In 1R3, set

VyY =Dy Y + %(X x Y).



7.7 Advanced practical problems

Check if
VXY - VYX = [X, Y]

Answer 7.4. No.

Problem 7.6. Prove that the Poincaré upper half-plane
{(6y) e R 1y > 0}
with the metric

1/1 0

is a Riemannian manifold.
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