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I N T R O D U C T I O N 

The word "topology" is derived from the Greek word TOTO?, which 
means "place," "position" or "space." Accordingly, topology is the 
science of space; it analyzes the space concept and investigates the 
properties of general spaces. It is therefore a subdiscipline of geo-
metry. This does not keep it from being in close and fruitful relation 
to analysis and algebra. It provides analysis with geometric founda-
tions; it receives, on the other hand, essential stimuli from analysis 
(cf. algebraic functions, algebraic geometry) and, in certain areas, it 
develops further in common with analysis (cf. functional analysis). 
From algebra as the fundamentally basic and auxiliary discipline of 
mathematics it takes essential helping material (e.g., linear algebra, 
group and module theory) and gives it, in turn, important new re-
sults (e.g., homological algebra). However, the proper goal of 
topology is always the acquisition of geometric knowledge. 

In topology the concept of space is considered to be as general as 
possible; it should comprise everything which in the widest sense of 
the word deserves the name space. To this concept belong, besides the 
fundamental basic models (the ordinary 3-dimensional Euclidean 
space R3 and the w-dimensional space Rn, with n = 1, 2, 3, . . . and 
all subsets of Rn), the infinite-dimensional Hilbert space H, the non-
Euclidean spaces and the spaces of Riemannian geometry, as well as 
more general formations, e.g., the 4-dimensional set of lines in R3, the 
set of ellipsoids in Rn, the phase spaces in physics, matrix spaces and 
function spaces, and many other more general spaces which will not 
be described here. Naturally, it is not a matter here of the particular 
properties of one or another of these examples, but rather of the 
characteristic properties common to all these spaces. Since topology 
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2 INTRODUCTION 

strives for the most penetrating analysis possible of the space concept, 
it has not only mathematical, but also has philosophical, characteris-
tics (e.g. concerning the theory of cognition), especially in the funda-
mental portions. Whereas a much discussed classical philosophical 
teaching (cf. I. Kant, 1724-1804) asserts that the Euclidean geometry 
of R3 is the necessary form of human space perception, the beginning 
chapters of the following presentation show how far the new in-
vestigation is removed from this standpoint. 

The point of departure and the methods of topology as well as its 
relations to its neighbor disciplines can be indicated by an especially 
important example, namely the domain of real numbers, which cer-
tainly is of fundamental importance for many other portions of 
mathematics. Real numbers can be added and multiplied, and the 
laws which addition and multiplication obey can be derived from 
fewer basic laws, the so-called field laws. Algebra investigates these 
basic laws and their consequences. I t considers more general systems 
which are defined axiomatically and in which combining operations 
similar to addition and multiplication with the same or similar basic 
rules as the axioms are present. Thus, one arrives at the concepts of 
field, ring, group, and others, and the theory of these algebraic 
structures. Topology is not interested, or in any case not directly 
interested, in the combining operations of the real numbers or their 
generalizations. I t directs its attention more toward those properties 
which the real numbers have, say, due to the fact that the numerical 
sequence 1, . has the limit zero. I t deals with the concepts of 
neighborhood, proximity or the property of being neighboring, open-
ness or closedness of sets of real numbers, continuity of real-valued 
functions, and similar concepts. From among these concepts, it 
chooses the simplest possible and the least number possible as primi-
tive concepts. From among the properties of these primitive concepts 
the simplest possible and the least number possible are chosen as 
axioms. Thus, one arrives at the fundamental concept of a general 
topological space, entirely analogous to the above-described pro-
cedure in algebra. Compare, say, the later Definitions 2.1 or 4.1. The 
structure proper of topology consists of the properties of the topo-
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logical spaces which are derived from these axioms and of such classes 
of special spaces that can be derived from them by further restrictive 
axioms. 

Moreover, from this viewpoint, the role of analysis, i.e. of the 
theory of functions of a real variable, appears as follows: I t is a com-
posite structure which rests partly on algebraic, partly on topolo-
gical, axioms, and consequently exhibits a more complicated form 
than algebra and topology. Stated precisely, a further structure, that 
of order, also plays a role, which will not be gone into here. 

Since in the sequel, an axiomatic construction of topology will be 
given, knowledge from other domains is basically not required for 
understanding. Nonetheless it is expected that the reader is to some 
extent acquainted with the fundamental facts of real analysis, with 
algebra and with elementary geometry for the following two reasons: 
First, it contributes to the understanding of and to a correct ap-
preciation of the line of reasoning in an axiomatic structure if one 
already has an approximate idea of at least the roughest features of 
what is to be expected and if one can judge the extent and the validity 
or non-validity of general theorems by comparison with already 
known special models. Furthermore, from the beginning we must 
assume as known and use for the examples of a general theory certain 
basic facts from the areas named above. For those who are less ex-
perienced in the reading of mathematical literature, let us further-
more mention the following: The discussion and, in particular, the 
proofs are generally kept concise; they require a precise thinking 
through of all details—including those which are not carried out com-
pletely. I t is best if one completes the deductions independently in 
detail (with paper and pencil!) and especially if one prepares numerous 
figures and position sketches, which can be adjoined here only in a 
few cases due to lack of space. 





Part I 

T H E O R Y OF 
GENERAL T O P O L O G I C A L S P A C E S 





Chapter 1 

A X I O M A T I C F O U N D A T I O N S 

§1. Preparation: Metric Spaces 

In this section, we shall not yet treat general topological spaces, 
but rather, as a preliminary step, a somewhat simpler but important 
special class of spaces—the so-called metric spaces. This introduction 
serves primarily to prepare examples and to lead to the axioms of 
topological spaces, to be given later, so that they appear completely 
plausible to the reader. I t is not until Chapter 6 that the theory of 
metric spaces will be developed in detail for their own sake. 

1.1 Definition: A metric structure, or, briefly, a metric, on a set X is 
given when to each pair x, y of elements of 3E there is assigned a real 
number d(x, y) 0 satisfying the axioms: 

[M 1] d(x, y) = 0 if, and only if, x = y. 
[M 2] d(y, x) = d(x, y). 
[M 3] Triangle axiom: d(x, z) d(x, y) + d(y, z). 

1.2 Definition: A set 3E together with a metric on X is called a 
metric space. We say that the set X is equipped with a metric. The set 
X is called the base set of the metric space. The elements of X are called 
points and d(x, y) is called the distance between the points x and y. 

As the examples to be given later show, there can very well be 
given different metrics on the same set X by means of different dis-
tance functions d(x, y) and d'(x, y). 
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8 AUTOMATIC FOUNDATIONS 

The distance function d(x, y) is subject to two further rules which 
are similar to the triangle inequality: 

| d(x, z) - d(z, y) | ^ d(x, y) 
(2nd triangle inequality) 

| d(x, y) - d(x', y') | ^ d(x, x') + d(y, y') 
(rectangle inequality). 

Here, the perpendicular lines denote the absolute value of the cor-
responding real numbers. The second triangle inequality follows from 
the first: We have d(x, z) — d(z, y) d(x, y); by interchange of a; and 
y and combination of the resultant two inequalities, the second tri-
angle inequality follows. The rectangle inequality follows from 
d>ix> y) ^ d(x> x') + d(x'> y') + %'> y)l therefore, d(x, y) - d(x', y') 
^ d(x; x') + d(y, y'); by interchange of x and x' and of y and y' and 
combination of the resultant two inequalitites, the rectangle in-
equality follows. 

1.3 Definition: If p is a point of 3£ and e < 0, then the set 

<Ue(i)) ={x\ d(x,p)<e} 
of all points x with d(x,p) < e is called the spherical neighborhood o f p 
with the radius e—briefly, the e-neighborhood of p. 

The spherical neighborhoods derive their name from the spheres in 
three-dimensional Euclidean space R3 as a special case of a metric 
space. In arbitrary metric spaces, they are naturally not really 
spheres; they have only a few properties in common with spheres, as 
is evident from the following examples. 

Examples of metric spaces: 
(a) Euclidean apace R". Its points are given in the form 

I = («i «„) 
with arbitrary real numbers xlt . . ., xn. The usual definition of distance 
is 

d(t, 1)) = / 1(2/, - x()\ 
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The fact that axioms [M 1] and [M 2] are valid is obvious. To prove 
[M 3], it must be shown that 

^ V K v i - + Vl(z< -y<? 
holds for arbitrary real xit y{, z{ (where the summation is over i = 1, 
. . ., n). We set yt — xt = ait z{ — y( = 6(. Then we obtain this inequality 
by tracing the following steps in reverse: 

I ( a t + b(y i ( V I a l + V W ) 2 = + V I a l i b i , 

2 g 2 V I ^ I K 

( I f l h ? ^ • 1PI 

This last inequality is the Cauchy-Schwarz inequality, which we can 
assume to be known to the reader. 

In the case n = 3, the spherical neighborhoods l l e (p) are ordinary 
solid spheres excluding the boundary of the sphere. 

(a') We again start with the same Euclidean space R b u t now we 
choose another metric: 

d'(x, I)) = Max 1 — x{ | , for i = 1, . . ., n. 

The validity of axioms [M 1] and [M 2] is again clear. We obtain [M 3] 
as follows: 

d'(x, 3) = Max \z, - x, \ = \zh - xi(> | 

= I (yto ~ *i0) + K - yi0) I 2 I yiQ - *<0 I + I zia - yio I 

g Max \yt- xt\+ Max | z, - y, \ = d'(x, y) + d'(y, z). 

Here, i0 is any one of the indices i = 1, . . ., n such that | zt — xt \ is a 
maximum. The spherical neighborhoods 1Ie(i>) are the cubes with edges 
parallel to the coordinate axes having length of edge 2e and p as center, 

(a" ) We equip Euclidean space Rn with yet another metric: 

d"(t,X>) = | l 2 / ( - x , \ . 
i-1 

The validity of the axioms is proved similar to the way this was done in 
(a'). In the case R3, the spherical neighborhoods are octahedra about p 
as midpoint and, in the case of R", they are the corresponding generalized 
polytopes. 
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(b) HUbert space H. H consists of all sequences i = (xlt x2, . . .) of real 
numbers with convergent sum of squares, summed over i = 1, 2, 
. . .. The distance is defined analogous to the way this was done in 
example (a): 

<*(*> »>) = V 2(Vi -

But here the convergence of the infinite series under the square root must 
be proved. I n fact, we have tha t 

N N N N 
l iVi - = I v l + - 2 

i = 1 ¿ = 1 i == 1 ¿ = 1 

As N increases, the first two sums in the right member remain bounded 
according to our assumption, whereas the last summand in the right 
member remains bounded according to the Cauchy-Schwarz inequality: 

N N N 
( h Y ^ 2>< • 2vl 
¿•=1 i = 1 i = 1 

Therefore, the series is convergent and the distance is well defined. The 
validity of axioms [M 1] and [M 2] is immediate. [M 3] follows by passing 
to the limit in the corresponding formula in (a). 

An especially important subset of Hilbert space H is the Hilbert cube 
(or parallelepiped) £?, which consists of points I = (x„ x2, . . .) with 

0 < xn < 1 f o r n = 1, 2, . . . 
— » — 2» ' ' 

Since E(l/2n)2 converges, these points I certainly belong to H. 
(c) Let I be the set of continuous real-valued funct ions/(x) defined on 

the interval 0 ^ x ^ 1 and let 

d ( f , 9) = Ji(9(x) - j(x))2dx. 

To prove [M 1] we observe tha t the integral of a continuous function 
h2(x) on 0 ^ x ^ 1 can vanish only when h(x) = 0 for all x. [M 3] is ob-
tained f rom the Cauchy-Schwarz inequality for integrals: 

1 l l 
(fA*M*yh>)* ^ $P(x)dx . j g*(x)dx 
0 0 0 

in a way analogous to the way this is done in example (a). 
(c') One can also introduce other metrics in the set of the preceding 

example, for instance, by the definition: 
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d'U, g) = Max I g(x) - f(x) | for 0 £ * £ 1. 

We note that a continuous real-valued function in the closed interval 
0 ^ x ^ 1 actually takes on its maximum at a point of this closed in-
terval. The proof that the axioms are satisfied is easy; [M 1] and [M 2] 
are immediate. The proof of [M 3] goes through analogous to the way 
this is done in example (a'): 

d'U, h) = Max | h(x) - f(x) | = | h(x0) - f(x0) | , 

where x0 denotes a point in the interval 0 x ^ 1 at which \ h (x) — f(x) | 
is maximal. It follows further that 

d'(J,h) = | (g(x0) - f ( x 0 ) ) + (h(x0) - g(x0)) | 

^ I 9(xa) - /(*») | + I h(x0) -g(x0)\ 

s Max I g(x) - f(x) | + Max | h(x) - g(x) \ = d ' ( f , g) + d'(g, h). 

(d) Finally, we give an example which is essentially further removed 
from geometric intuition. Let X be the set of integers and let p be a fixed 
prime number. Then, by the p-adic value, or, briefly, the p-value, | a 
of an integer a 0) from I we understand the real number | a \p = 2~' 
if a = a0p' where o0 is an integer which is relatively prime to p, whereas 
we set | 0 |p = 0. Then the following laws for p-adic values hold: (1) j a |p 

0, | a |„ = 0 if, and only if, a = 0; (2) | ab \p = | a |6 I,; (3) | a + b \„ 
^ I a |p + | b \p. Only (3) requires a special proof: If b = bap? with the 
integer b0 relatively prime to p, then | b \v = 2_/, and if, say, e ^ /, then 
a + 6 = cp', with integer c which is still possibly divisible by p. Hence, 
we have in fact that | a + b |p ^ 2" ' ^ I ® I,. + I 

i becomes a metric space by means of the following metric which is 
formed analogous to that of example (a'): 

d(a, b) = | b - a |„. 

Axioms \_M 1] and [M 2] are immediate and [M 3] follows from (3): 

d(a, c) = | c - a \p = | (6 - o ) + (c - b) \p 

^ | 6 - a | „ + | c - 6 | i ) = d(a, b) + d(b, c). 

A spherical neighborhood is simply a special case of a general 
neighborhood of a point which is defined as follows: 

1.4 Definition: A subset U of 3E is called a neighborhood of the 
point p if it contains a spherical neighborhood of p. 
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For example, in R 2 a circular disc including its boundary is a 
neighborhood of its center. In the older literature, only the so-called 
open sets were admitted as neighborhoods, whereas we make use of 
the above somewhat more expedient definition. 

The following four significant facts are valid for neighborhoods: 

(U 1) p belongs to every neighborhood U of p. This is clear according 
to the definition of a neighborhood. 

(U 2) If U is a neighborhood of p, then every superset V U is also 
a neighborhood of p. This likewise follows directly from the definition. 

(U 3) If U1 and Ua are neighborhoods of p, then their intersection 
U1 n U2 is also a neighborhood of p. Namely, the smaller of the two 
spherical neighborhoods of p contained in U1 and in U2 respectively 
is contained in U1 n U2, and this shows that U1 n U2 is a neighbor-
hood of p. The corresponding fact holds for finitely many neighbor-
hoods oip: I f Ut (i = 1, . . ., r) are neighborhoods of p, then fl Vi 

is also a neighborhood of p. 

X itself is also a neighborhood of p. This assertion can moreover be 
looked at as the limiting case r = 0 in the preceding statement (see 
intersection in the Index); for this reason, we introduce 3E as a neigh-
borhood of p in this item (i.e. under (U 3)). 

(U 4) A neighborhood U of p is also a neighborhood of all points x of 
a suitable neighborhood V of p. Namely, if He(p) is any one of the 
spherical neighborhoods contained in U (according to the definition) 
and if x is a point in U£(p), then there obviously exists a spherical 
neighborhood 1l^(a;) contained in 1le(2>). (a;) is contained in U so 
that U is a neighborhood of a;. Thus, let V = 1l£(p). 

We note that by our definition of a neighborhood, a neighborhood 
U of p is not necessarily a neighborhood of all points of U. 

At this point, we interrupt our development which we shall, how-
ever, continue in subsequent sections on a more general basis. 
Namely, we will make our further investigations depend only on the 
properties (U 1) — (U 4). We will therefore take these properties as 
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the axioms for a new, essentially more general theory—that of 
general topological spaces. 

§ 2. Topological Spaces 

Metric spaces are still not general enough for many purposes. There 
are geometric constructions to which one would like to ascribe the 
character of a space without its being necessary to assign to each 
pair of elements a real number as distance. Furthermore, the axiom 
system for metric spaces is not yet completely satisfactory insofar 
as the real numbers appear in it; the real numbers, in turn, are 
based on an extended theory which from the logical viewpoint is not 
entirely simple. We therefore make the following definition. 

2.1 Definition: A topological structure—in brief, a topology Z—for 
a set X is defined by assigning to each element pof X a system U(p) 

of subsets of X , the so-called neighborhoods U of p, satisfying the 
following four axioms: 

[U 1] p e U for every neighborhood V e U(j>). 

[17 2] If U e U(z>) and V => U, then V e VL(p). 

[U 3] If Uv U2 e U(i>), then U1 n U2e U(p); Xe U(j>). 

[U 4] For each Ue U(p), there exists a Ve U (p ) such that U e VL(y) 

for all yeV. 

2.2 Definition: A set X together with a topology X for X is called 
a topological space. The set 3E is said to be equipped with the topology 
%; the set X is called the carrier set of the topological space. The ele-
ments of X are called the points of the topological space. 

Except for slight changes, axioms [U l ] - [ (7 4] are the Hausdorff 

neighborhood axioms which were taken as the basis for topology by 
Hausdorff in his classical work on set theory (see the Bibliography: 
F . H a u s d o b f f [1] ) . 

We note that for every point p e X , the system U(j>) is non-empty 
because in every case£e VL(p). By virtue of [U 1], the empty set 0 
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surely belongs to no system U(p). The neighborhood V in [U 4] is a 
subset of U because every point yeV has U as a neighborhood and is 
therefore contained in U according to [U 1]. 

Every metric space becomes a topological space if neighborhoods 
are defined as was done a t the end of § 1; we have proved there tha t 
the neighborhoods of the points of a metric space satisfy axioms 
[U l]-[{7 4], One says briefly tha t every metric space is also a topo-
logical space—that a metric structure over a set 3c induces a topo-
logical structure. The theory of topological spaces which is developed 
in the sequel therefore yields at the same time theorems about metric 
spaces; our examples for metric spaces are a t the same time examples 
for topological spaces. 

Although every metric structure gives rise to a topological structure, 
one cannot state that , conversely, every topological structure arises from 
some metric structure. In this sense, we make the following definition. 

2.3 Definition: A given topological structure X over I , i.e. a topolog-
ical space X, is said to be metrizable if there exists a metric structure 
over X which induces this topological structure Two metric structures 
over the same set X are said to be topologically equivalent if they induce 
the same topological structure. 

We shall be concerned with the problem of the metrizability of a 
topological space in Chapter 8. 

As an example of a trivial topology which can be introduced over 
every set X, we give the discrete topology which assigns as a neighbor-
hood to each point p of X every set containing p. One verifies directly 
tha t the axioms [ U 1]—[ C7 4] are satisfied. This topology is metrizable, 
for example by means of the discrete metric which is defined by 
d(x, y) = 1 for x ^ y and d(x,x) — 0. In fact, with this metric every 
point is a neighborhood of itself, and hence every set is a neighbor-
hood of all its points. 

We give another, less trivial, example of a topological space X and, 
indeed, one which is not metrizable. The proof of the non-metrizability 
is not difficult; however, we postpone this proof until we take up the basic 
treatment of such questions in Chapter 8. 

Suppose the set X consists of all real-valued, not necessarily con-
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tinuous, functions/ over the real line R1. First, the following sets of func-
tions h of X will serve as neighborhoods of a point/ in X: 

U = U(s; xv ...,»„) = {A | | h(xt) - f{xt) | < e for i = 1 n) 

for every e > 0 and points xv . . .,xn in R1. Further, all supersets of such 
neighborhoods U(e; x1 xn) will be neighborhoods of/. One sees easily 
that with these assumptions the neighborhood axioms are satisfied. 
Axioms \U 1] and [U 2] are immediate. The intersection of U(e; x1 

xn) and U{e'; x\ x'm) evidently contains a neighborhood U(-q\ x„ . . ., 
xn, x\ x'm) with an i) ^ s, e', from which we deduce [U 3]. Also 
(U 4) is not difficult to prove (following the line of reasoning in [U 4] at 
the end of § 1). 

We note in passing the following property of the above space 3E: If 
/ £ X, geX,f ^ g, then there exists a neighborhood U of / and a neigh-
borhood V of g with ¡7 n F = 0 ; namely, if the inequality f(x0) ^ 
g(x0) holds for the real number x0, then for each e with the property 
that e f(x0) — g(x0) | one can obviously take U as a neighborhood 
U(e; x0) of / and V as a neighborhood U(e; x0) of g. We shall draw upon 
this space as an example in various ways. 

2.4 Definition: Let A be a subset of the topological space 3£. 

(1) A point <p e X is called an interior point of A if there exists a 
neighborhood UE U(p) which is contained entirely in A. The set of 
all interior points of A is called the interior of A and is denoted by A. 

(2) A point p e X is called an exterior point of A if there exists a 
neighborhood U e U(p) which is contained entirely in the comple-
ment CA. The set of exterior points of A is called the exterior of A. 

(3) A point p e X is called a boundary point of A if there exist 
points of A and points of CA in every neighborhood of p. The set of 
all boundary points is called the boundary of A and is denoted by QA . 

Exactly one of the three possibilities in Definition 2.4 occurs for 
each pointy 6 If (1) occurs, (2) cannot occur. Otherwise, the inter-
section of the two given neighborhoods would be a neighborhood of 
p, which would be contained simultaneously in A and in CA; 
naturally, (3) cannot occur then. Likewise, the case (2) excludes the 
possibilities (1) and (3) and, trivially, (3) excludes the cases (1) and 
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(2). Conversely, for each point p 6 X one of the three cases must occur: 
If (1) and (2) do not occur, the occurrence of (3) follows. 

The exterior of A coincides with the interior of CA. The boundary 
points of A are partitioned into those which belong to A and those 
which do not belong to A. 

2.5 Definition: A point p e X is called a contact point of A if there 
exist points of A in every neighborhood of p. The set of all contact 
points is called the closure of A and is denoted by A. 

The closure A is accordingly the union of the sets A and qA. AS 
simple consequences of Definitions 2.4 and 2.5, one can easily verify 
the following important equalities and inclusions: 

From the Definitions 2.4 and 2.5 and the disjunction, established 
above, among the possibilities (l)-(3) in Definition 2.4, there arise the 
following partitions of X with respect to A (into disjoint summands; 
cf. "parti t ion" in the Index), which, moreover, is clarified in Fig. 1: 

A<z Ac: A, 0 = 0 = 0, X = X = X, 

GA = CA, CA = CA, q(CA) = QA, 

and if A <= B, then A <= B, A <= B. 

CA 

- r f f** 

'-O-

Fig. 1 
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X — A uqA CA 

= A uCA = A uCA; 

qA = A - A = AnCA = C(A uCA). 

2.6 Theorem: A can also be thought of as the set of those points 
which have A as a neighborhood—as a formula, A = {x | A e U(a;)}. In 
other words, the set A is a neighborhood, of all the points of A and no 
others. 

Proof: We take a second formulation: If A is a neighborhood of x, 
then, according to Definition 2.4, (1), x is an interior point of A. 

Conversely, if x e A, then there exists a set U e U(z) with U A. 
Then A is also a neighborhood of x according to [U 2], 

2.7 Definition: A set A is said to be open if any one of the following 
three equivalent conditions is satisfied: 

(1) A consists only of interior points of A. 
(2) A = A; it suffices to require that A A. 
(3) qA C : CA. 

A set A is said to be closed if any one of the following three equivalent 
conditions is satisfied: 

(1') The set A contains all its contact points. 
(2') A = A; it suffices to require that A => A. 
(3') qA<= A. 

A set which is closed as well as open is called an open-closed set. 
The equivalence of these three conditions is clear according to our 

preceding discussion; this is most simply done using a diagram. 
There exist sets A which are neither open nor closed—for example, 

a circular disc in the Euclidean plane which includes part, but not all, 
of its circumference. A set A can very well be open and closed— 
therefore, be open-closed. One must not be disturbed on linguistic 
grounds here: the concepts "open" and "closed" are not to be con-
ceived of as being contradictory. For example, the sets 0 and X are 
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open-closed, which fact can be verified by simply applying the defini-
tion. 

The open-closed subsets of X form the point of departure of the 
theory of connectivity of topological spaces (see § 7). 

2.8 Theorem: A set A is open i f , and only i f , CA is closed; a set 
A is dosed i f , and only i f , CA is open. 

The second part of the theorem obviously asserts the same thing as 
the first. The proof is yielded most simply from the conditions (3) and 
(3') of Definition 2.7 and from QA = p(C4). 

2.9 Theorem: A set A is open i f , and only i f , it is a neighborhood of 
each of its points. 

This is an immediate consequence of Theorem 2.6 upon applying 
Definition 2.7 (2) which we introduced in the meantime. 

§ 3. Duality Principle 

In Definition 2.7 and in Theorem 2.8, there arises a duality between 
certain concepts and theorems about topological spaces which we 
shall now consider more precisely. We do this less for abbreviating the 
proofs, which is inessential, than to obtain a better organization of 
the facts to be proved. 

Let X be a topological space which contains all the sets appearing 
in the sequel as subsets. Let the set A be composed from the sets X, 
Y, . . . by means of the operations u , n and the formation of in-
teriors and closures and from the special subsets 0 and X. This we 
shall express by A = F(X, Y,...) in analogy with the notation for 
functions and their independent variables. We obtain CA by apply-
ing the following rules, already proved, on the function F: 

C ( I u 7 ) = C I n C 7 , C I = C I , C 0 = X, 

C ( I n 7 ) = C I u C r , C l = 0 1 , C X = 0 

until we arrive at the form CA = F*(CX, CY,. . .). Here, F* means 
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the function which arises from F upon replacing u by n , the formation 
of the interior by the formation of the closure and 0 by X, and con-
versely. Also, henceforth, the asterisk on a function F denotes this 
"dual" function. Let B = G(X, Y, . . .) be another set composed 
from X, Y, . . . . If A = B or A <= B is a relation between A and B, 
then it follows that CA = CB or CA => CB, respectively, and for the 
corresponding functions, say, in the last case, we have 

(*) F*(CX, CY, ...)=> G*(CX,CY,. . .). 

If the relation F(X, Y, . . .) <= Q(X, Y, . . .) holds for arbitrary 
composite sets X, Y then the relation (*) also holds for arbitrary 
X, Y, . . .. Now if X ranges over all subsets of 3E, then so does CX; 
likewise, if Y ranges over all subsets of then C Y does also, and so 
on. Therefore, one can simply replace CX, C J", . . . in the relation (*) 
again by X, Y, . . .. One thus obtains a pair of mutually dual relations 

F(X, ¥,...)<= G(X, Y, . . .), 
F*{X, Y,.. .) = G*(X, Y,.. .), 

which arise from one another by a purely mechanical replacement of 
U by n , interior by closure, 0 by X, c by =>, and by the reverse 
replacements. One calls this formation process the duality principle 
for topological spaces. 

One can add the following supplementary remarks. If some of the 
composing sets X, Y, . . . are not arbitrary, but rather are bound by 
the assumption of being open, then we obviously obtain a correct 
relation when we make in the dual relation the assumption that the 
corresponding sets are closed. If instead of a relation between two 
sets, we are dealing with the assertion that the set A = F(X, Y, . . .) 
is open, then the dual assertion that F*(X, Y, . . .) is closed holds. In 
these considerations, one can naturally interchange the words "open" 
and "closed." 

An acceptable foundation of the duality principle really requires a 
clarification of the basic logical concepts, especially of the concept of 
"proposition." But we content ourselves with the preceding sketch 
which in any case suffices for the purposes of the following sections. 
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The theorems are dually juxtaposed by pairs and we always prove 
only one of them. The reader can easily derive the other according to 
the above line of reasoning. We pay attention especially to the fact 
that in this process the theorems themselves, but not their proofs, 
are dualized. 

3.1 Theorem: Let A range over an arbitrary index set A and i over 

the natural numbers 1, . . ., n. 

(0 1) The union U Ax of an arbi-

trary number of open sets Ax is 

open. 0 is open. 

(0 2) The intersection f l Ai of a 

finite number of open sets Ai is 

open. X is open. 

(A 1) The intersection fl Aa of an 

arbitrary number of closed sets Aa 

is closed. X is closed. 

{A 2) The union U Ai of a finite 

number of closed sets Ai is closed. 

0 is dosed. 

Proof: ( 01 ) : L e t p e U AA. Then pe AX for at least one A, and there 
exists a neighborhood of p which belongs entirely to AX. This neigh-
borhood belongs also to U AX, and this proves that UAX is open. 

(0 2): Let p e f l i j . Then p e Ai for every i and there exist 
neighborhoods Ui e U (p) which are contained entirely in A{. Then 
f l Vi is likewise a neighborhood of p according to [U 3] and indeed it 
is a neighborhood contained in f l At. Therefore, D Ai is open. 

I t was already established in connection with Definition 2.7 that 
0 and X are open and closed. Concerning 0 as a union set and X as 
an intersection, see the Index under union and intersection. 

The reader should verify by counterexamples that (O 2) and (A 2) 
do not hold in general for infinitely many At. For instance, in R1 

one obtains a counterexample to (A 2) by taking for the Ai the one-
point sets {p} for all p of a non-closed set. 

3.2 Theorem: 

The interior A is open. The closure A is closed. 

The proof, which is by no means trivial, makes use of [U 4] for the 
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first time: Let x e A. Then there exists a Ue U(z) with x e U <=• A. 
According to [U 4], there exists a V e such that U e Vily) for all 
y e V. Therefore, all y are interior points of A, V <= A. This shows 
that x is an interior point of A, which is what we were required to 
prove. 

3.3 Theorem: 

A is the union of all open subsets A is the intersection of all closed 
of A; we say that A is the larg- supersets of A; we say that A is the 
est open subset of A. smallest closed superset of A. 

Proof: Since A is open, A is taken into account in the formation of 
the union V of all open subsets of A; therefore, A c V. V is a subset 
of A and, by virtue of Theorem 3.1, (0 1), V is open. Every point 
xeV therefore has a neighborhood which is contained in A and hence 
every point of V belongs to A. This means that F c i . The assertion 
follows by combining these two results. 

3.4 Theorem: A set U is a neighborhood of a point p i f , and only i f , 
there exists an open set 0 such that x e 0 c U. 

Proof: If there exists an open set 0 such that peO <= U, then 
0 e Vi{p) by virtue of Theorem 2.9, and hence also U e U(p) according 
to \U 2], Conversely, if U e Xt(p), then p e U by virtue of Theorem 
2.6, U = 0 is open by virtue of Theorem 3.2, and therefore pe U = 
0 <=• U. 

3.5 Theorem: Let Aa range over a system of arbitrarily many sets 
with the indices A. Then the following relations hold: 

a) u A, ^ u A» c) r n ; c D Aa, 

b) c n A,, d) UTX => u A,. 

Proof: a): Let xe U Aa, say, xe A0. Then x is an interior point of 
A0 and it is thus also an interior point of U Aa, i.e. x e U AA. 
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b): If x belongs to D Ax, then there exists a neigborhood of x 
which belongs entirely to fl Ax, i.e. it belongs to every Ax. Then x 
is an interior point of each set A x e Ax, and this means that x 
belongs to H Aa. 

Relations c) and d) are proved similarly. 
In general, the equality sign does not hold in any of the inclusions 

of the theorem. In the case a), consider in the reals R1 the sets A1 = 
{x | — 1 x ^ 0} and A2 = {x | 0 x + 1}; we have that 
A1 u A2 ^ A-L u A2. For the inclusions b) and d), we can easily find 
examples of the sort given in connection with Theorem 3.1. I t is par-
ticularly remarkable that in this case one uses an infinite number of 
sets Aa; namely, the following theorem holds. 

3.6 Theorem: A n B = A n B, AuB = A u B. 

Proof: We have already proved in the last theorem that A n B <=• 
A n B. A n B is the maximal open set contained in A n B\ A n B 
is an open set contained in A n B. Thus, A n B => A n B. Com-
bination of these results yields the first equality of the theorem. 

3.7 Theorem: 

If 0 is open and A closed, then If A is closed and 0 open, then 
0 — A is open. A — 0 is closed. 

Proof: We have that 0 — A = 0 n (C^4). 0 and CA are open; 
therefore, the intersection is also open. 

3.8 Theorem: 

If A is open, B arbitrary and 
A n B = 0 , then also A n B 
= 0 -

If A is closed, B arbitrary and 
A u B = X, then also A u B = 
X. 

Proof: A n B = 0 means that B <= CA. I t follows that B <= 
CA = CA = CA and this means that A n B — 0 . 

We now generalize the concept of neighborhood by introducing 
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neighborhoods of arbitrary subsets A of X in supplement to Theorem 
3.4. 

3.9 Definition: A set U is called a neighborhood of the set A if there 
exists an open set 0 such that 4 c O c U. 

Then, in analogy with the neighborhood axioms [U 1]-[E7 3], it is 
true that a neighborhood U of A always contains A, that together 
with U also every set V U is a neighborhood of A and, finally, that 
together with i7x and U2 also U1 C\U2 is a neighborhood of A. We 
will not need an analogue to [f7 4]. 

3.10 Theorem: V is a neighborhood of A i f , and only i f , U is a 
neighborhood of all points x in A. 

Proof: If V is a neighborhood of A, then Theorem 3.4 shows that 
U e for every xe A. Conversely, let U e Ufa;) for every xe A. By 
virtue of Theorem 3.4, then for each xe A there exists an open set 
Ox such that a ; e O , c U. We form V = UOx taken over all xe A. 
V is open according to Theorem 3.1 and is contained in U; V con-
tains A by its construction. Therefore, U is by definition a neighbor-
hood of A. 

In analysis one frequently makes use of the concept of accumula-
tion point instead of that of contact point. 

3.11 Definition: The point p is called an accumulation point of the 
set A if p is a contact point of A — {p). The point p e A is called an 
isolated point of A if there exists a neighborhood of p in which the 
only point of A is p. An accumulation point is also called a limit 
point. 

Here, {p } denotes the set consisting of the single point p. Concern-
ing the terminology accumulation point, see Theorem 13.10, at the 
end of § 13. 

3.12 Thereom: A contact point of A is either an accumulation 
point of A or it is an isolated point of A; A arises from A by adjoining 
the accumulation points of A. 
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Proof: Let be a contact point of A. If there exists a neighborhood 
of p which contains no points of A except p, then p is an isolated 
point of A. Otherwise, there exist in every neighborhood of p further 
points of A — {p}, i.e. p is an accumulation point of A. Conversely, 
every accumulation point of A and every isolated point of A is also a 
contact point of A. 

As an application, let us determine the open subsets of the real line R1 

in the usual topology. To them belong surely the open intervals of Rl; 
these are the sets (a, b) = {x \ a < x < 6}, (a, + oo) = {a; | a < xj, 
(—00, b) = {x | x < b} and ( - 00, + oo) = RK Furthermore, arbitrary 
unions of open intervals are open. We now prove the following theorem. 

3.13 Theorem: A non-empty open set 0 of the real line R1 is representable 
as the union of a denumerable number of disjoint open intervals whose end-
points belong to the complementary set CO. 

The closed subsets of R1, which are the complements of open sets, are 
a t the same time characterized by this theorem. 

Proof: (1) Let xeO. Since O is open, there exists an open interval con-
taining x and contained in O, namely a suitable neighborhood Heia;). 
Let I x be the union of all the open intervals of this sort. According to 
[O 1], I x is open. We shall show tha t I x itself is an open interval of this 
Sort—more specifically, t ha t Ix = (a, b), where a = inf Ix and b - sup Ix; 
here, 0 = — 00 or 6 = + 0 0 are also admit ted. (Concerning inf and sup, 
see the Index.) Namely, if y e (a, 6) and, say, a < y < x, then there 
exists according to the definition of a an x' e Ix with a < x' < y, and x' 
lies together with x in an open interval contained in O. Therefore, y also 
lies in this interval and hence yelx. The same is t rue when x < y < 6, 
and for y = x we likewise have tha t yslx. We therefore have the result 
t ha t for each x e 0 there exists a uniquely determined open interval Ix 
which contains x and is contained in 0 and which is contained in no 
larger open interval of this sort. 

(2) If xlf x2 are points from 0 and the corresponding intervals i ^ , 
have common points, then IXi U IXi is an open interval containing xx and 
contained in 0. Therefore IXi f l Ix% = IXl- Analogously, IXl PI Ix% = IXi, 
so tha t IXi = IXi . The distinct intervals I x are therefore disjoint. 

(3) An endpoint a of an interval Ix cannot belong to 0 for otherwise Ix 
and I a would have common points and yet not be coincident, in contra-
diction to (2). 

To complete the proof of the theorem it remains to show t h a t a t most a 
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denumerable number of distinct intervals I x are involved. The following 
somewhat more general theorem shows this. 

3.14 Theorem: Every system of disjoint open sets in Rn is finite or 
denumerable. 

Proof: We select in each of the open sets a rational point, i.e., a point 
all of whose coordinates are rational. This sets up a one-to-one correspon-
dence between the system of open sets and a subset of the rational num-
bers. Since the set of rational points in R" is denumerable, the assertion 
of the theorem follows immediately. 

§ 4. U-, 0- and K-Topologies 
In the preceding discussion, we introduced a topology for a set X 

which was based on the concept of neighborhood—more specifically, 
on a neighborhood system VL(J>) given for each pointy e 3E as a primi-
tive concept. We shall now become acquainted with another type of 
topology for the same set 3E which is based on the concept "open" as a 
primitive concept. In this connection, the concepts "neighborhood," 
"open," "interior," and so forth, appear in both topologies and refer 
in both cases to subsets of the same set X. In order to avoid confusion, 
we denote—only for the purposes of this section —the topology de-
veloped up to this point, based on the neighborhood concept, as the 
neighborhood topology or briefly, as the U-topology. We provide 
all concepts and notation with the distinguishing U, and, therefore, 
speak of ¿/-neighborhoods, the system VLu(p), ¡7-open sets, the i7-in-
terior, and so forth. In contrast to this, we now define, completely 
independently of the preceding discussion, a new 0-topology as 
follows: 

4.1 Definition: An 0-topology %0 for a set X is defined if a system 
£)0 of subsets of 3c, the 0-sets, is distinguished in such a way that the 
following axioms hold: 

[01 ] The union of 0-sets is again an 0-set. 0 is an 0-set. 
[0 2] The intersection of a finite number of 0-sets is again an 0-

set. X is an 0-set. 
The 0-sets are also called 0-open. 
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We recognize that the axioms [0 1], [0 2] are formed analogously 
to the assertions (0 1) and (0 2) of Theorem 3.1. 

4.2 Definition: A set U is called an 0-neighborhood of a point p if 
there exists an O-set 0 such that p e 0 U. 

The following theorems are valid for O-neighborhoods which are 
analogous to the previous axioms [(71], . . .,[U 4], but here they are 
not axioms, but rather theorems about the topology %0, which re-
quire a proof. 

(U 1) p is an element of every O-neighborhood U of p. 
(U 2) Together with U, every set V ^ U is also an O-neighborhood 

of P-

(U 3) The intersection of a finite number of O-neighborhoods of p is 
again an O-neighborhood of p. X is an O-neighborhood of p. 

(U 4) If U is an O-neighborhood of p, then there exists an O-neigh-
borhood V of p such that U is an O-neighborhood of all points y of V. 

(U 1) and (U 2) are clear according to the definition of O-neighbor-
hoods. (U 3) is verified directly by using [0 2]. Finally, one proves 
(U 4) by taking for the required O-neighborhood V precisely the 0-
open set 0 of Definition 4.2, which is itself certainly a neighborhood 
of p. The Theorems (U 1)—(C7 4) are thus proved. 

4.3 Theorem: A set is O-open i f , and only i f , it is an O-neighborhood 
of all its points. 

Proof: If the set A is O-open, then, by Definition 4.2, A is an 0-
neighborhood for each point x e A. Conversely, if A is an (^neighbor-
hood of all the points x e A, then there exists for each x e A an O-open 
set Ox such that xeOx<= A. Then A = UOx and by [O 1] it is O-open. 

The topology % v over X constructed in §§ 2, 3 and the topology 
%0 of X developed in this section have been considered completely 
independently. We now show their relationship. First, the state-
ments (0 1) and (0 2) of Theorem 3.1 show that the {7-open sets of 
ZJJ satisfy the axioms [01] and [0 2] of *£0. Therefore, to make cor-
respond to a topology a topology %0, one need only choose the 
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totality of the f7-open sets of as the defining system O 0 of an 0-
topology. Then the question arises in what relation do the t7-neigh-
borhoods of % v stand to the O-neighborhoods of %0. Comparison of 
Theorem 3.4 with Definition 4.2 shows that these two concepts of 
neighborhood likewise coincide. We summarize the result as follows. 

4.4 Theorem: For every U-topology %v for a set Xwith the defining 
U-neighborhood systems Up(i>), there exists exactly one O-topology %0 

for X whose defining system O0 of O-open sets coincides with the 
totality of the U-open sets of %n\ the totality of the O-neighborhoods in 
%0 of a point p e X coincides then with 91 n(p). 

Since the topology % v depends only on the [/-neighborhood sys-
tems Viuip) and the topology %0 only on the system O 0 of O-open 
sets, one can, on the basis of this theorem, identify the two topologies, 
namely % v and the topology %0 deduced from it, coextensively with 
each other. All theorems of both topologies are similar in expression, 
i.e. they differ only by the distinguishing letters U and 0. I t is only 
the starting point which is different, sometimes the neighborhood 
system and sometimes the open sets are assumed to be the primitive 
concept. We point out further the decisive role of Theorem 3.4 in 
these considerations. I t characterizes the primitive concept of neigh-
borhood of % u in terms of the concept of U-openness defined in 

The question yet remains open whether one can obtain all possible 
topologies %0 for X by assigning to each topology % v for X a topology 
Z0 for X- The following analogue to Theorem 4.4. shows that this is 
really so. 

4.5 Theorem: For each 0-topology %0 for a set X with the defining 
system O0 of the O-open sets there exists exactly one U-topology %v for 
X whose defining neighborhood system ^Ljj(p) for the points pe X coin-
cides with the 0-neighborhood systems of the point p in %0; the totality 
of the U-open sets of%jj then coincide with the system D0. 

The proof proceeds entirely analogously to that of Theorem 4.4. 
The characterizing theorem concerning %0 to be used in this case is 
Theorem 4.3; it is comparable with Theorem 2.9 concerning the 
topology %v . 
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Hereby the totality of U- and O-topologies for X correspond to one 
another in one-to-one fashion. It is immaterial for the further con-
struction of the theory which of the two axiomatic approaches, 
or %0, one chooses. The reason that we started in Sections 2, 3 from 
%JJ is that in the beginning geometric intuition is perhaps more 
important. It will be evident in the following that % 0 is in many 
ways somewhat simpler to handle. 

We will characterize axiomatically the topological spaces, in addition 
to O- and E7-topologies, in a third way. In this connection, we take as 
basic the primitive concept of the interior A of a set A. 

4.6 Definition: A K-topology ZE over a set X is defined if to every subset 
A of £ there is assigned a subset A of I so that the following axioms are 
satisfied: 

[K 1] X = X; IK 3] 4 = A; 
[K2]A <= A; [K 4] i n B = AnB. 

A is called the K-interior of A. 

4.7 Definition: A set A is called K-open if A = A. 
For example, X is K-open by virtue of [K 1] and 0 is -K-open inasmuch 

as, by virtue of [K 2], 0 <= 0 holds. 

4.8 Theorem: If A <= B, then A <= B. 

Proof: A <= B is equivalent to A = A H B. By [ K 4], it follows that 
A = AnB = A n B, and this means that A <= B. 

4.9 Theorem: (O 1) The union V = UA^ of an arbitrary number of 
K-open sets Ax is K-open. (0 2) If A1 and A3 are K-open, then A1 n A2 

is also K-open. 

Proof: (0 1): We have that Aa = Ax. I t follows from Ax V that 
4 , c 7 or that AA <= V. I t follows further that V = UAa A V and 
from this that V = V. 

('0 2): I t follows from Ax = Av A2 = A2, by [K 4], that Ax n A2 = 
At n A2 = A± n A2. 

4.10 Theorem: A is the union of all the K-open subsets of A, i.e. A is 
the largest K-open subset of A. 
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Proof: A is if-open according to [K 3] and a subset of A by virtue of 
[K 2], Now, let O be the union of all -K-open subsets of A. Q is -K-open 
according to Theorem 4.9. Therefore, A <=(?<=: A. According to Theorem 
4.8, it follows that 4 <= O <= A, i.e. A <= O <= A, and therefore O = A. 

I t is now easy, following the pattern of Theorem 4.4 and Theorem 4.5, 
to let correspond to each 0-topology for I a if-topology %K for X, and 
conversely. The open interiors in %0 obviously satisfy the axioms [K 1]— 
[K 4] and motivate the introduction of a corresponding if-topology XE. 
Comparison of Definition 4.7 for %E and Definition 2.7, (2) for %0 (or for 
%v, which amounts to the same thing according to the preceding dis-
cussion) shows that the open sets in both topologies coincide. In the 
reversed correspondence, one has to show that the interiors of the two 
topologies coincide; this is attained by comparison of the Theorems 4.10 
for !I f fand 3.3. for %0 and X v respectively. One thus recognizes the equi-
valence of the U-, O- and if-topologies for 3E. 

Naturally, one can introduce together with X0 in a dual manner a 
closure topology XA and likewise, together with XK, a closure topology Xg. 
All these topologies are equivalent. In the sequel, we omit the indices U, 
O, and so on and we shall prefer one or the other topology on grounds 
of expediency. 



Chapter 2 

DEVELOPMENT OF THE THEORY 

§ 5. Mappings and Functions 

We shall first study briefly the mappings / of a set 3t into a set 
?)—in symbols, / : X -*• 9). A mapping / assigns to each element 
xeXa, well-defined element y e ? ) . 3£ is called the domain of definition 
(or simply the domain) of / and ?) is called the range of variation (or 
simply the range) o f / . We shall also write y — f(x); y is called the 
image of x, x is called a pre-image of y. We also say tha t / is a 
function which assigns to each x of the domain X a y of the range 2). 
Each xeX has precisely one image, but one y e ? ) can have several 
pre-images. If A <= X, then f(A) — B denotes the set of images of the 
elements of A. I t may happen that f(X) is a proper subset of?). 

I f / has the property that/(jE) = ?) and hence tha t each element of 
?) is an image, then / is said to be epimorphic or a mapping onto ?). 
I f f has the property tha t each element y has at most one pre-image 
and, hence, tha t f(x1) = f(x2) implies xx = x2, then / is said to be a 
monomorphic, or reversibly single-valued, or a one-to-one, mapping of 
X into?). I f / is epimorphic as well as monomorphic, t h e n / i s called 
an isomorphic, or a one-to-one, mapping of X onto ?); / yields a reversi-
bly single-valued relation, a pairing, between the elements of X and 
?). In this case, and only in this case, there exists an inverse mapping 
f-1: ?) -> X, which maps ?) in a reversible single-valued manner onto 
X- The equations y = f(x), x = f~\y) are equivalent to one another. 
f'1 is called the inverse o f f . 

One attributes a meaning to the symbol / - 1 also for arbitrary map-
pings/ : X ?), not only for isomorphic mappings and speaks in an 

30 
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extended sense of an inverse/ - 1 t o / . If B is a subset of 3), t hen / - 1 (5 ) 
is defined as the set of all pre-images of all the elements of B. /_1(y) is 
accordingly the set of all pre-images of the element yeB; f~1(y) can 
be empty or consist of several elements. / _ 1 is therefore generally not 
a mapping of 9) into X, but r a t h e r / - 1 assigns to each subset of a, 
perhaps empty, subset of X- One recognizes immediately the validity 
of the following two inclusions for arbitrary subsets A <= £ and 
arbitrary subsets 

In the first relation, the equality sign holds for all A c: X if, and only 
if, / is monomorphic. In the second relation, the equality sign holds 
for all B cz ?) if, and only if, / is epimorphic. If 9) = U _BA is a parti-
tion of?) into sets Bx, then X = U/-1(£A) is a partition of X-

For the behavior of a mapping with respect to the formation of 
unions and intersections, the following laws are valid: 

These are simple logical facts, the establishment of which is imme-
diate. That the equality sign does not always hold in (*) is shown, say, 
by the mapping y = sin x for the intervals A^. 0 x 2n and A2: 
2tt x 477. The equation (**) is thus so much the more remarkable. 
We note further the equality f-^CB) = Cf~1(B) and point out the 
list of the fundamental set-theoretic equations and inclusions at the 
end of this little volume. 

After these set-theoretic preliminaries, we now turn to the study of 
topological spaces. 

5.1 Definition: Two topological spaces X and?) are said to be 
homeomorphic if there exists a one-to-one mapping f of X onto ?) 
whereby the system O j of the open sets of £ correspond to the system 

f-Hf(A)) o AJ(f-HB)) c B. 

f(A1 A^ = ¡(A,) u f(A2), 
f~\B, u B%) = f-\Bx) u f~HB2), 

f(A1 n A2) cz f ( A j ) n f ( A 2 ) , 

f - ^ n B j = / - 1 ( 5 1 ) n / - W 
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£)$ of open sets of 2); / is called a homeomorphic mapping or a homeo-
morphism of X onto 9). 

Two homeomorphic spaces are therefore indistinguishable as 
topological structures; by means of/, the two topologies coincide 
completely. The concept of homeomorphism corresponds to the con-
cept of isomorphism which one uses in dealing with algebraic struc-
tures, e.g. groups, rings, fields, and so on. The corresponding concept 
for metric spaces is that of an isometry. 

5.2 Definition: Two metric spaces X and 9), with metrics dx and 
dy respectively, are said to be isometric if there exists a one-to-one 
mapping/ of X onto 9) such that dx (x, x') = d^ (f(x),f(x')) for all x, 
x' e X• The mapping / is called an isometric mapping of X onto 

The concept of a continuous mapping which we will now introduce 
corresponds in many ways to the concept of a homomorphism for 
groups. 

5.3 Definition: (Local Continuity): Let/: 3t ?) be a mapping of 
the topological space X into the topological space 9) and let a; be a 
point of X and y = f(x). Then / is said to be continuous at x if either 
one of the following two equivalent conditions is satisfied: 

(1) For each neighborhood V e Vi{y) there exists a neighborhood 
U e U(®) such that /(U) <= F. 

(2) For each neighborhood V e U(y) we have that /_1(F) e U(z). 

Proof of equivalence. If (1) is satisfied, then /_1(F) => U\ since 
U e U(z), we also have that /_1(F) 6 Vi{x) according to [U 2], Con-
versely, if (2) is satisfied, then we choose f~x( V) to be that neighbor-
hood whose existence is required in (1); we then certainly have that 

f(f-HV)) c v. 

5.4 Definition: (Global Continuity): Let/: X ?) be a mapping of 
the topological space X into the topological space 9). The mapping / 
is said to be continuous, or more precisely continuous on X, if any one 
of the following four equivalent conditions is satisfied: 
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(1) / is continuous for each x e X-
(2) The pre-image set/_1(2?) of each open set B <= 9) is open. 
(2') The pre-image set f~\C) of each closed set (7 c 9) is closed. 
(3) For each set A <= X, f(A) <= f(A) holds. 

Moreover, a one-to-one mapping /: £ —> 9) is homeomorphic if and 
only if, in analogy with the last condition (3), the following condition 
holds: 

for every set A a X, f(A) = f(A). 

For, then not only is/ continuous, because of (3), but also/-1: 9) -»• X, 
inasmuch as for every set B <= 9), 

t \ B ) = f-Hff-HB)) = f-Hf(FW))) = Fh~B) 

holds. 

Proof of the equivalence of conditions (1)—(3): 
(1) => (2). Let (1) be satisfied and B <= 9) be open. Let y range over 

B, x range over f~x(y) for all y, i.e. x ranges over f~l(B). Then Be 
11 (y) and therefore, according to (1), also f~l(B) e U(a;). Thus the set 
/_1(JB) is a neighborhood of all its points and hence it is open. 

(2) => (1). Let (2) be satisfied, xeX, y =/(*)• If VeU{y), then 
there exists an open set B such that y e B <= V. It follows that 
xef-^B) <= f~1(V) with open/_1(B); thus , f -\V) e U(a;). 

(2) o (2'). As B ranges over all open sets of 9), CB ranges over all 
closed sets of 9). Then/-1(fi) and f~\C.B) are complementary sets in 
3E (fundamental equation 9). Therefore, f~x(B) is open if, and only if, 
f-l(CB) is closed. This signifies the equivalence of (2) and (2'). 

(2') => (3). Let/satisfy (2'). Let A be a subset of X andp a contact 
point of A. It is to be proved that f(A) c f(A) or that f(p) ef(A). 
Now according to assumption (2') is closed; therefore, to-
gether with A also the contact point p belongs tof~1(f(A)). This means 
precisely that f(p) ef(A). 

(3) => (2'). Let/satisfy (3). Let B be a closed subset of 9), p a con-
tact point oif~\B). It is to be shown that/_1(5) is closed or that 
p ef~1(B).Nowf(p) is a contact point of/(/_1(£)) according to assump-
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tion (3). Since fif-^B)) e B (fundamental equation 10'), f(p) eB, 
i.e. p ef-^B). 

Conditions (2), (2') are closely connected with the question whether 
the images of open sets are open and the images of closed sets are closed 
under a continuous mapping. That this is not the case in general is 
shown by the function f(x) = sin x, which maps the open interval 0 < 
x < 2w of the «-axis onto the closed interval — 1 ^ y ^ + 1 of the 
i/-axis (here the «-axis is the space I and the «/-axis is the space f)). 

Further , the entire «-axis R = R1, considered as a closed set, is mapped 
by means of the function f(x) = tanh x onto the non-closed interval 
— l < 2 / < + l o f the ^/-axis. 

Continuous mappings which always map open sets of the original 
space X into open sets of the image space are called open mappings; 
examples are formed by non-constant functions f(z) of the complex 
variable z which are everywhere regular in a region of the complex 
plane. Closed mappings are defined analogously; examples are formed by 
continuous mappings of a compact space 3c into a Hausdorff space 9) (cf. 
Theorem 18.1, below). Both classes of mappings are of great significance 
for a more thorough theory of mappings. 

If two mappings/: X -*• 9) and g: 9) -> 2 are given by the equations 
y = f(x), z = g{y), then the mapping h: X^-Z, which is defined by 
z = g(f(x)), is called the composite mapping or the product mapping 
gof = gf. One must pay particular attention here to the order of the 
factors. 

5.5 Theorem: If the mappings f:X -> 9) and g: 9) % are con-
tinuous, then the composite mapping h — gof: X—r'Xis also continuous. 

Proof: Let xe X,f(x) = y, g(y) = z. If We U (z), then, by virtue 
of the continuity of g, the set is a neighborhood of y and, by 
virtue of the continuity o f f , the set/-1(gi-1(TF)) is a neighborhood of 
x. Obviously, f-^g-HW)) = A"x(Tf). 

5.6 Theorem: A one-to-one mapping f of a topological space X onto 
a topological space 9), for which f as well as are continuous, is a 
homeomorphism. Conversely, i f f is a homeomorphism of X onto 9), then 
f as well as f-1 are continuous. 
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Proof: I t must be shown that / and / _ 1 map the systems Dx and 
of the open sets of X and 3) respectively into one another. On 

account of the continuity o f / - 1 , / maps the system into a sub-
system of If B is chosen arbitrarily from O^,, then/_1(J5) = A is 
open because/is continuous and B = f(f~x(B)) =f(A) is the image of 
the open set A from £)j. Therefore, / maps O x into the entire system 
O^, which is what was required to be proved. The converse is trivial. 

We give yet an example of a one-to-one mapping / between two 
spaces X and?), in which/ i s continuous but f'1 is not continuous— 
hence/ is not a homeomorphism. Let 3E be the interval 0 t < 2ir of 
the ¿-axis, 3) the unit circle in the (x, y)-plane R2,f(t) = (cos t, sin t); 
t h e n / - 1 is discontinuous at the point (1,0). 

§ 6. Relative Topology 

If 3E is a metric space, S a subset of X, then one can consider S as a 
metric space, since certainly for each pair of points of S a distance is 
defined which satisfies axioms \M l]-[7l/ 3] of a metric space. 

For topological spaces 3E, we apply the concept of trace to intro-
duce a topology for a subset S of X- If S c X is an arbitrary set, 
which is to be thought of as fixed, and if A ranges over arbitrary sub-
sets of X, then 

As = A nS 

is called the trace on S of the set A. The following rules hold (cf. 
fundamental formulas (4), (4')): 

(.A U B)s = As U Bs, (A n B)s = As n Bs, 

which one can verify directly; the corresponding rules for an arbitrary 
number of factors also hold. 

6.1 Theorem: A topology %s is defined in a subset S of the topolog-
ical space X with the topology Z. by taking the open sets of S to be the 
traces As on S of the open sets A of X• 
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Proof: Let O = {Aa | A from an arbitrary index set A} be the 
system of open sets of %. Let O s be the system of the traces BX — 

= AX R\S. It must be shown that £) s satisfies the axioms [0 1] 
and [0 2], In fact, 

U B, = U ( ^ ) s = (U A,)S = AS 

as A ranges over A, where A is an open set of X. [0 1] follows from 
this. [0 2] is obtained in an entirely analogous way. 

6.2 Definition: The topology % s defined in Theorem 6.1 is called 
the trace topology XSOF£ONSOT the topology induced in S by % or also 
the relative topology for S; 8 is called a subspace of X. 

If A c 3E, then CA = X — A denotes the complement in X; on the 
other hand, if B c S, then CSB = S — B denotes the complement 
in S. Then the rule (CA)S = CSAS (fundamental formula (5)) holds. 
It follows from this rule that the closed sets of % s are identical with 
the traces of the closed sets of I . One must pay special attention to 
the fact that the concepts "open," closed," "interior," and so forth, 
are meaningful only with respect to a given topology; therefore, one 
must always say' 'open in or' 'open in S," and so on, whenever there 
is danger of confusion. We make use of the abbreviated terminology 
"/S-open," "S-interior," and so on. It is not always true that an open 
subset B of S is always 36-open, as one can easily verify with very 
simple examples. Moreover, the following theorem holds. 

6.3 Theorem: If S is a subspace of the topological space X, then: All 
S-open subsets of S are also X-open i f , and only i f , 8 is open in X- This 
theorem remains true when one replaces the word "open" by "closed." 

Proof: If S is 36-open, then As = A n S is also 36-open whenever 
A is. Conversely, if the traces A^ of all the 3E-open sets A are 3E-open, 
then in particular X$ = 8 is 36-open. 

We shall describe in the next theorem the ^-neighborhoods of the 
points p e S by means of their ^-neighborhoods. 
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6.4 Theorem: The 8-neighborhoods of a point pe S are identical 
with the traces of the 3E-neighborhoods of p. 

Proof: If U e M(p) in 36, p £ S, then there exists an 3E-open set 0 
with p e 0 c U. By means of trace formation, it follows that p e O s 

<=• Us, Os is S-open, and therefore Us is an ^-neighborhood Oi p. If V 
is an ¿¡̂ -neighborhood oi pe S, thenp e B <= V for a suitable »S-open 
set B <= S. We have that B = Os for some 36-open set 0, and hence 
p e O c (Ou V). 0 u V is an ^-neighborhood of p and has the 
trace (0 u F)s = Os u F s = B u V = VThis completes the proof 
of the theorem. 

One might think that the interior and closure under the formation of 
the relative topology have behavior analogous to that of the concepts 
"open," "closed," and "neighborhood." In fact, the following proposi-
tion holds: If A <= S, then the <S-closure of A is equal to the trace in S of 
the 2E-closure of A. But by no means does a corresponding theorem hold 
for the »S-interiors as one can make clear with the simplest examples. 

§ 7. Connectedness 

7.1 Definition: A topological space is said to be connected if it does 
not allow a partition into two non-empty open subsets. 

Concerning the concept of partition, consult the index. The con-
dition of the definition is equivalent to each of the following five con-
ditions: 

(1) There do not exist subsets A and B of X with the properties: 
A 0 , B ^ 0 , A and B open, X = A \j B, A n B = 0. 

(2) If the subsets A and B of X are non-empty and open and X = 
A u B, then A n B ^ 0 . 

(3) If the subsets A and B oi X are open and X = A u B, A n B 
= 0 , then A — X and B = 0 or A = 0 and B = X. 
(4) In Definition 7.1 and in the criteria (l)-(3), one can replace the 

word "open" by the word "closed." 
(5) There exists no open-closed subsets A of except 0 and X-

(1) is only a detailed form of Definition 7.1. (2) and (3) are formal 
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reversals of (1), (4) is equivalent with (1) inasmuch as in (1) A = CB 

and likewise B = CA are open-closed. (5) holds for the same reason. 

Examples: (a) The space X which consists of two disjoint circular sur-
faces in the Euclidean plane (with the relative topology, induced from the 
plane) is not connected. 

(b) The rational line Q (with the relative topology) is not connected 
because the set A of all rational points < \/2 is open-closed. 

(c) The real line R = R1 as well as any open or closed interval I R 
(with the relative topology) is connected. 

Proof of (c): Assume that A ^ 0 , # X is an open-closed subset of X-
Then there exist points ae A and b 6 CA since X contains more than one 
point. Let, say, a < b. Then the least upper bound of the set Aa = 
[x \ x e A, x < aj is a finite real numer c, a ^ c £=6. We have that 
c e A since A is closed. An entire neighborhood of c belongs to A since A 
is open. Hence a neighborhood of c also belongs to A0, contrary to the 
definition of the least upper bound of A0. Therefore, a set A of the sort 
assumed cannot exist and so X is connected. 

7.2 Definit ion : A subset C of 3£ is called connected if C, considered 
as a subspace, is connected. An open connected subset is called a 
region. 

7 .3 Theorem: C is connected if, and only i f , any one of the following 

two conditions is satisfied: 

(1') There do not exist subsets A, B, of X with the properties that 

A nC nC^0,A,B open (in X), C <= A u B, A n B nC 

= 0 -
(3') If the subsets A and B of X are open and C A kj B, A n B 

n C = 0 , then it follows that C<= A, BnC = 0OT A 0 0 = 0 , 
G <= B. 

One can also replace in (1') and (3') the word "open" by the word 

"closed." 

Proof: Again, (3') is simply the formal converse of (1'); the inter-
change of "open" and "closed" is obtained as just above. W e 
shall prove (3'): Let C be connected. I f A and B are open subsets of 
X in the sense of (3') with C^A\jB,AC\Br\C = 0, then the 
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traces Ac = A n C and Bc — B n C satisfy the assumption of con-
dition (3), applied to the space C. Therefore, according to (3), Ac = 
0 or Bc = 0 , and this is what is to be proved in (3'). 

Conversely, let (3') be satisfied. In the space C, let A' and B' be 
C-open in the sense of (3), with C = A' u B', A' r\B' = 0 . Then A' 
and B' are traces of open sets A and B from X, A' = A n C, B' = 
Br\C. A and B satisfy the assumptions of condition (3'); therefore, 
we have either Ar~\C = 0 or Br\C = 0, and hence A' = 0 or 
B' = 0 , as is required in (3). 

7.4 Theorem: If f: X X' is a continuous mapping and C is a 
connected subset of X, then C = f{C) is also connected. 

Proof: Let A' and B' be open subsets of X' in the sense of (3') with 
C <= A' U B', A' n B' nC' = 0 . Then f-^A') = A, f-^B') = B 
are open subsets of £ with C A u B, A C\ B C\C = 0 . According 
to (3') for the space C it follows that C <= A or C c B, and therefore 
either O' c 4 ' or C' c B', which is what had to be proved. 

7.5 Theorem: If {C }̂ (A from an arbitrary index set A) are connected 
subsets of X such that C\, n Cx« ^ 0 for A' ^ A", then the union C = 
UCA is also connected. 

Proof: Let A and B be open subsets of X in the sense of (3') with 
C<=A\jB,AnBnC = 0. Then a fortiori we have C1 <= A u B 
and A n B r\ C\ = 0 ; the assumption of (3') therefore holds for 
Cv and hence C\ c A or Cx <= B. Let, say, C1 <=• A. Analogously, one 
concludes that Cx ci A or CA c: B. Of these two possibilities, only the 
first one, CA c A, comes into consideration since C\ 0 and 
A n f i n C = 0 . Since this holds for all A, (3') follows, i.e. C is 
connected. 

According to this, a convex set C in Rn, for example, is connected; 
for, an arbitrarily chosen fixed point peC can be joined by a polygonal 
arc with every point x e C , and a polygonal arc is, according to 
example (c), connected. 
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7.6 Theorem: If C is a connected subset of X, C c D c C, then D 
is also connected. 

Proof: We apply (3') in the formulation for closed A, B. Let A, B 
be closed subsets of X with D c A yj B, A n B n D = 0 . Then 
we have a fortiori that C<=-A\jB, Ar\Br\C = 0. I t follows 
according to (3'), say, that C <r A. I t follows further that D c: C <= 
A = A, and therefore D c A. According to (3'), this shows that D is 
connected. 

As an example for this theorem, we consider the set A of all points 
(x, y) of the plane R2 with 0 < x 1 and y = sin (l/z). A arises from 
A by the adjunction of the set Ag of all (0, y) with — 1 y +1. 
If A'Q is an arbitrary subset of A0, then, according to the theorem, 
A u A'0 is also connected. 

7.7 Theorem: If G is connected, D an arbitrary subset of X and C 
intersects D as well as CD, then G also intersects the boundary QD. 

Proof: Assume that C n QD = 0 . Since X = D u CD u QD, 
then the open sets A = D, B = CD would have the properties 
that C ^ A kj B, C n A n B = 0 . Since, moreover, according to 
assumption, C n A = CnD=CnD^0, and C n B ^ 0 , 
C would not be connected, according to Theorem 7.3 (1'), contrary to 
our assumption. This completes the proof of the theorem. 

7.8 Theorem: If X is connected and D is a subset of X which is dis-
tinct from 0 and X, then QD ^ 0. 

The proof follows from the preceding theorem if we identify the set 
C occurring there with X-

Let X be an arbitrary topological space. If we define two points x, 
y e X to be equivalent if x and y are contained in one connected sub-
set G of X, then this defines a reflexive, symmetric and transitive 
relation among the points of X. Transitivity is verified as follows: If 
x and y are contained in tbe connected set C, y and z in the connected 
set D, then x and z are contained in the set G u D, which, according 
to Theorem 7.5, is connected. The equivalence classes, relative to this 
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equivalence relation, are called the connectivity components, or briefly 
the components, of X• A component C of X is therefore a maximal con-
nected subset of X- The component C(x) of a point x e X, the set of all 
those points of X which together with x lie in a connected subset oi 
X, can also be defined as the largest connected subset of X containing 
x. Every open-closed subset of 36, which contains the point x, contains 
the entire component C(x) as a subset. Theorem 7.6 implies the next 
theorem. 

7.9 Theorem: The components of a topological space are closed sets. 
Moreover, components in general are not open, as, for instance, 

example (b) at the beginning of this section shows. We conclude with 
the following definition. 

7.10 Definition: A space is called totally disconnected if each of its 
components consists of one point. 

§ 8. Connectedness of Point Sets in Rn 

Special assertions can be made about the connectedness of subsets in 
Euclidean space R". We first consider connected sets on the real line R1. 
To them belong, as we saw, the intervals and indeed the open intervals 
(a, b) = [x ] a < x < 6}, the closed intervals [a, 6] — {x \ a $ a; | i } 
and the half-open intervals, e.g., [a, b) = {x | a x < 6}. Among the 
open intervals we also count the sets (— 00, 6) = {x | x < 6}, (a, + oo) 
= {a; | x> o} and ( — oo, + oo) = R1. Now the following theorem is 
valid. 

8.1 Theorem: The only connected sets in R1 are the one-point sets and 
arbitrary intervals. The only regions are the open intervals. 

Proof: Let C be a connected set in R1. 
(1) Let xlt x2eC and y e(xlf x2). I f we had y then the sets A = 

{x | x e C, x < y] and B = {x \ x e C, x > j/} would form a partition of 
C into two non-empty open subsets, which, according to the definition of 
connectedness, do not exist. Therefore, together with each pair of points 
xlt x2 e C, the entire interval [a^, x2] belongs to C. 

(2) Let a = inf C, b = sup C,a < b and x e(o, b). According to the 
definition of inf and sup, there exist xlt x2eC with a ^ xl < x < xt ^ 
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6; according to (1), it follows that x e C. I t should be clear how these in-
equalities are meant i f o = — oo or 6 = + oo. Therefore, C = (a, b) or 
= [a, 6] or = (a, 6] or = [a, b), which is what was to be proved. 

By a polygonal arc in Euclidean space Rn with the vertices XQ, • • •« xm 

we understand the union of the finitely many segments for i = 
1, . . ., m. Here, we allow the segments to overlap. We say that x0 and xm 

are joined, by the polygonal arc. 

8.2 Theorem: An open set 0 in R" is connected i f , and only i f , any pair 
of its points can be joined by a polygonal arc in O. 

Proof: A polygonal arc is a connected set as one recognizes by apply-
ing Theorem 7.5 a finite number of times. I f every pair of points of 0 can 
be joined by a polygonal arc in 0, then, according to Theorem 7.5, 0 is 
connected. 

Conversely, now let 0 be connected. Let aeO and C be the set of all 
x 6 0 which can be joined to a by a polygonal arc. G is connected and non-
empty. When we show that C is open-closed in 0, it will follow from this 
according to Definition 7.1, (5) that ( 7 = 0 ; and therefore the theorem 
holds. We shall first prove that C is open: Let x e C be joinable with a by 
a polygonal arc. Since O is open, there exists an e-neighborhood U of x 
which is contained in O. Every point y e U is joinable with a; by a recti-
linear segment and hence with a by a polygonal arc, and therefore it 
belongs to C, and this proves the assertion. We show further that C is 
closed: I f y e O is a contact point of C, then there exist points x e C in 
every e-neighborhood U «= O of y. y is joinable with x by a rectilinear 
segment, and x is joinable with a by a polygonal arc; therefore y is also 
joinable with a by a polygonal arc, i.e. y eC. This proves that C is closed 
and completes the proof of the theorem. 

I f instead of starting in the preceding discussion with the concept of a 
polygonal arc one starts with the concept of a simple polygonal arc in 
which the above-named segments [a^-j, xt~] do not intersect (except at 
their endpoints), then Theorem 8.2 remains valid without modification; 
its proof offers no fundamental difficulties. 

8.3 Theorem: The components of an open set in R" are open and hence 
they are regions. 

Proof: Let the set C be a component of the open set O, xeC. Then an 
e-neighborhood U of x likewise belongs to 0. U is connected and has 
points in common with the connected set C. Therefore C \j U is connected 
and, because of the maximality property of C, it follows that U <= C. 
Therefore x is an interior point of C and so C is open. 
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In particular, according to this and by Theorem 8.1, the components of 

an open set in R1 are open intervals. The representation of an open set O 
in R1 as the union of disjoint open intervals, as was stated in Theorem 
3.13, is therefore nothing else than the decomposition of the set O into 
its components; this decomposition is unique. 

8.4 Theorem: An open set in Rn is the union of at most a denumerable 
number of regions. 

This generalization of Theorem 3.13 follows immediately from the last 
theorem. 

§ 9. Density 

9.1 Definition: A subset A of the space X is said to be dense in X 
(also everywhere dense in X) when either one of the following two 
equivalent conditions is satisfied: (1) A = X, (2) every non-empty 
open subset of X contains points of A. 

The equivalence of the two conditions is almost self-evident: Both 
mean that every neighborhood of a point of X contains points of A. 
For example, the set A of rational points on the real line R1 is dense. 
The same statement holds for the set of irrational points. Therefore A 
as well as CA can be dense in 3t. If A is dense in 36, then every subset 
A' of X such that A' => A is dense in X. 

9.2 Definition: A subset A of the space X is said to be nowhere 
dense in X if either one of the following two equivalent conditions is 
satisfied: 

(1') A has no interior points; 
(2') For each non-empty open subset 0 oi X there exists a non-

empty open set 0 ^ 0 with 01 C\ A = 0 . 
Proof of equivalence: Let (1') be satisfied and let 0 be a non-empty 

open subset of X. If there were points of A in every non-empty open 
set 01 <=• O, then we should have 0 <= A, contrary to (1'). 

Conversely, let (2') be satisfied. If a; is an arbitrary point in X and 
V an open neighborhood of a;, then there exists a non-empty open set 
01 <= U which belongs entirely to CA. Since the points of 01 do not 
belong to A, a; is not an interior point of A. 
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For example, a line is nowhere dense in R2. If A is nowhere dense 
in X, then A is also. (1) and (1') show that a set cannot be simul-
taneously dense and nowhere dense in X. If A is nowhere dense in X, 
then C A is dense in X, as follows directly from (2'). The converse does 
not hold as our preceding examples show. On the other hand, one can 
make the following assertion. 

9.3 Theorem: A closed set A is nowhere dense in X i f , and only i f , 
CA is dense in X. 

Proof: For closed sets A, (1') means that A has no interior points, 
that therefore A = 0 . Because C A = CA, this is equivalent to 
CA =X. 

In the sequel, we shall give an example of a totally disconnected set 
which is nowhere dense on the real line R1 and which is of fundamental sig-
nificance for many topological investigations—this is the so-called 
Cantor discontinuum i f . I t is constructed as follows: In the closed "C-
interval of zero r ank" C — [0, 1] we delete af ter trisection the open 

"-B-interval of zero r ank" B = Q , so tha t the two closed C-intervals 

of the first rank CQ — |o, | J and C1 = | J , l j remain. From C0 and C „ 
we delete af ter trisection the open B-intervals of the first rank B0 = 
I i , and B1 = U-, respectively, so tha t the closed ©-intervals of the 
\9 y/ «7/ 
second rank C00 = [o, i ] , C01 = [ | | ] , C10 = [ | J ] , and C n = [ | l ] 

remain. 
We continue this process analogously: If one has already constructed 

2n~1 closed C-intervals of the (n — l)-st rank G^ , ^ . . . , i„_ 1 = 0 
or 1), then we delete from each C4j ^ i by trisection the open B-inter-
val of the (n — l)-st rank B, so tha t the two closed C-intervals of *1 ' • • *7l - 1 

the n-th rank C^ _ _ _, 0 and C^ ^ l j remain. For each n — 0,1, 2 , . . . , 

one thus obtains 2" closed C-intervals of the n-th rank C, { of length -L. 

which are separated from one another by the open B-intervals which 

have a rank < n; their length is > Every subinterval of [0, 1] with 
a length > i therefore contains points from ¿-intervals of rank < n. 
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Now let C""1 be the union of all C-intervals of the n-th rank, B'n> = 
[0, 1] — C i n ) the union of all B-intervals of all ranks < n. C' n > is closed, 

B { n ) is open; each of the intervals on [0, 1] having length > contains 

points of B i nK We form 

= n C(n) = [0, 1] - u -B(n). 

Coo Cm 
- k r f -

1 3 

Cio 
-h-rf-

C11 
-+rH 

Fig. 2 

This set is the Cantor discontinuum shall prove that i? has the follow-
ing six properties: (1) is closed, and therefore compact in the sense of 
Chapter 5. (2) The endpoints of all the -B-intervals including the points 0 
and 1 form a set We have that eS1 <= since in the construction pro-
cess of the points of ^ are never deleted. They are called points of the 
first type of <€. The remaining points of are called points of the second 
type; they form the set if2 ; we have that 1 = u <if2. (3) Every point 
p of is an accumulation point of , even more, an accumulation point 
of For, p lies in a C-interval of the n-th rank and hence has points of 
the first type arbitrarily close to it. (4) To e a c h p s ^ there corresponds 
a uniquely determined sequence 

C => C- = C- C • => . . . 

of C-intervals all of which contain p. So, p arises from a uniquely deter-
mined sequence i 2 i 3 . . . , where ¿,. = 0 or 1. Conversely, to each such 
sequence there corresponds a uniquely determined point pe<i£. There-
fore is related in a one-to-one fashion with the set of all these sequences, 
and, since this set has the cardinality c of the continuum, also has this 
cardinality. Since ^ x is denumerable, it follows from this, in particular, 
that i f 2 is non-empty and moreover it has the cardinality c. (5) i f is no-
where dense in [0, 1] because every open interval of [0, 1] (hence every 

open set) contains points of B l n > when n is so large that i is smaller than 

the length of the interval. (6) is zero-dimensional, by which the follow-
ing is understood (cf. §§ 32, 33): For each real e > 0, ^ is representable as 
the union of a finite number of disjoint closed subsets in C of diameter 
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< e. Obviously, the sets <€ O C'̂  . . . t form such subsets and indeed of 

diameter < — when the C,- . . . ranee over all C-intervals of the n-th — gn >i «„ o 
rank. We note without proof that one can define i? in an especially simple 
way as the set of all those real numbers a which can be written as triadic 
fractions a = 0. vx v2 . . . , which require only the digits 0 and 2 but not 
the digit 1. 



Chapter 3 

R E L A T I O N S H I P OF V A R I O U S 
T O P O L O G I E S TO ONE A N O T H E R 

§ 10. Bases 

A topology % for a set X is completely determined by the system O 
of the open sets or by the systems H(p) of neighborhoods of the points 
p. Conversely, these systems are uniquely determined by For 
many purposes, in particular for the construction of topologies for 
a given set, it is desirable to describe % by means of less compre-
hensive systems which might not be uniquely determined by %. This 
occurs in the case of space bases and neighborhood bases, which we 
shall now introduce. 

10.1 Definition: A system SB = {Bx | A from an arbitrary index 
set A} of open sets Bx of the topological space X is called a basis of X 
or a basis of Z if each open set of X is the union of elements from 23. 

We point out that we include 0 in every case as a union (see the 
index); therefore, 0 need not occur in 58. 

Examples: (a) £) itself is a basis of X. (b) In a metric space X, the 
totality of all spherical neighborhoods of all points of X form a basis. 
Namely, if 0 is an open set in X, x e 0, then there exists a neighbor-
hood Ux = lle(a;) such that x e Ux c 0. Then 0 = UUX taken over 
all xeO. (c) In Rn the spherical neighborhoods with rational radii 
about rational points (i.e. those with rational coordinates) form a basis. 
Namely, if 0 is an open set in Rn, xe 0, then there exists a spherical 
neighborhood <U2£(as) with rational radius 2s about x, which lies en-

47 
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tirely in 0. Then surely a rational point a lies in t l j z ) and for Vx = 
Ue(a) we have that xe Vx <= 0. Then 0 = U Vx, taken over all x e 0. 
Since the set of rational points in Rn and thereby also the set of 
spheres with rational radii about these points is denumerable, one can 
say: Rn possesses a denumerable basis, (d) One can easily show that 
also the Hilbert space H possesses a denumerable basis. One takes, 
say, all spherical neighborhoods with rational radii about the points 
of the form (rx rn, 0, 0, . . .) with rational rv ... , rn. 

10.2 Theorem: In a given topological space. 36, let $8 = {BA | A from 
an arbitrary index set A} be a system of open sets. 23 is a basis of 36 i f , 
and only i f , to each open set 0 <= 36 and to each point peO there exists a 

such that y c ^ c 0. 

Proof: First, let 23 be a basis of 36- If 0 is open, peO, then 0 is, 
according to the definition, the union of certain Bxe 23; at least one of 
these sets Bx must contain p, p e Bx cz 0. Conversely, let the condi-
tion of the theorem be satisfied and let 0 be an open subset of 36- For 
each peO there exists a Bx = Bx(p) with pe Bx<= 0. Then ob-
viously 0 = UBa (p), where the union is taken over all peO. Thus, 
SB is a basis. 

10.3 Definition: A system 25(p) of neighborhoods of a point p in 
the topological space 36 is called a neighborhood basis of p (also a 
fundamental system of neighborhoods of p) if to each neighborhood 
U e U (p) there exists a V e 23(p) such that V c U.If 93(p) consists 
of open neighborhoods only, then 2Mp) is called an open neighborhood 
basis of p. A closed neighborhood basis is defined in a corresponding 
manner. 

Examples: (a) U(p) itself is a neighborhood basis of p. (b) The 
spherical neighborhoods of a point of a metric space form an open 
neighborhood basis of p. 

The following theorem shows that there always exist open neigh-
borhood bases; the existence of closed neighborhood bases is, however, 
assured only for special classes of spaces, as we shall see later. 
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10.4 Theorem: Those sets Bx of a basis 93 = {-BA | A from an 
arbitrary index set A} of the topological space X, which contain a fixed 
point p, form an open neighborhood basis of p. If for each point peX 
the system 93(p) is an open neighborhood basis, then SB = U23(p), taken 
over all pe X, is a basis of X. 

Proof: If U e VL{p), then there exists an open set 0 such that p e 
0 <= U (Theorem 3.4). 0 is the union of sets from SB; at least one of 
them, say BA, contains p. Then we have that pe Bxcz U. Therefore 
U contains an element of which was first to be shown. 

If 0 is an open set of X, p e 0, then there exists by assumption an 
open set Bp e 33 (p) such that pe Bp cz 0. Thus U 33 (p) is proved to be 
a basis according to Theorem 10.2. 

After having considered bases of a given topological space 3E, we 
now ask under what conditions is a system of subsets of a set X suit-
able for a basis of a topology over 3E- In this connection, the following 
theorem is valid. 

10.5 Theorem: In a set X, let a system 93 — {Bx | A from an arbi-
trary index set A} of subsets be given with the property that: If Bx, Bx, 
e SB and if pe BXC\ By, then there exists a B^ e SB such that pe B^c 
BA n Bx'\ moreover, assume X = UBx. Then there exists precisely one 

teA 
topology Z for X in which 93 is a basis of 

Proof: Let O be the system of all unions of sets Bx, including 0 . 
If there exists a topology of the required sort, then D must be the 
system of the open sets of ¡1. Therefore there exists at most one 
topology % of the required sort. On the other hand t O actually satis-
fies axioms [0 1] and [0 2]; it therefore really defines a topology %. 
This is clear for [0 1], In order to also prove [O 2], we choose 01( 0 2 e 
£). If Oi n 02 = 0 , then 01 n 02 is in £). If 01 n 02 ^ 0 , 
then let peOx n 02. Since 0lt 02 are unions of Bx, there exist Blt 

B2ei8 such thatjp e £ , c 0v p e B2 c: 02. Hence there exists a B^ = 
BJp) e SB such that peB^cz B1r\ B2. Clearly, 0 , n 0 2 = U B^p), 
taken over all pe01 n 02, which proves that 0X n 0 2 e C . Since 
also I e O , this proves [0 2], 
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Without going further into the various bases of a topological space X, 
we remark yet that the smallest of the cardinalities of these bases is 
called the weight of the space I ; such a smallest cardinality exists since 
the set of cardinal numbers is well ordered (cf. E . K A M K E [1], § 44, 
Theorem 3). Only the case of denumerable weights will still be treated 
briefly. 

10.6 Theorem: If the topological space X possesses a denumerable basis, 
then there exists in X a denumerable dense point set. 

Proof: I f 33 = {Bi \i = 1, 2, . . is a denumerable basis of X, then 
we choose in each B{ a point p(. The denumerable set of the pt is then 
dense in X: Namely, if O is open, then there exists a Bt <=• O and hence 
PieO. 

10.7 Theorem: A metric space X possesses a denumerable basis i f , and 
only i f , there exists a denumerable dense set in X. 

Proof: Taking the preceding theorem into consideration, we must yet 
show only that in a metric space the existence of a denumerable dense 
set implies the existence of a denumerable basis. This verification is car-
ried out literally as in the proof of example (c) at the end of Definition 
10.1. 

10.8 Theorem: In a topological space X with denumerable basis, the 
system of open sets and likewise the system of the closed sets has at most the 
cardinality c of the continuum. 

Proof: Let 93 = {Bt \ i = 1, 2, . . .J be a denumerable basis of X. Each 
open set O c l i s the union of certain sets Biand therefore O determines, 
by means of the corresponding indices i, a subset of natural numbers. 
Distinct open sets obviously determine distinct subsets of this sort. The 
system of all open sets is therefore equivalent to a subset of the set of all 
subsets of natural numbers and hence it has cardinality c. The system 
of closed sets is put into correspondence with the open sets in one-to-one 
fashion by the formation of complements, and therefore it likewise has 
cardinality c. 

A topological space, in which there exists a denumerable dense set, is 
sometimes called separable. For example, the Euclidean space R" and its 
subsets are separable. Theorem 10.7 asserts that for metric spaces the 
concepts of separability and of having denumerable weight coincide. 
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§ 11. Coarser and Finer Topologies 

11.1 Definition: Let two topologies X and X' with the systems O and 
O ' of open sets be given for a set X. X is said to be finer than X', and X' 
is said to be coarser than X, if O £>'. 

I n general, of two topologies X and X' for X, one will not be finer than 
the other; O and O ' may overlap in an arbitrary fashion. I t is noted tha t 
X is said to be finer than X' also in the case X = X'. An example is 
yielded by the two topologies in § 1, examples (c) and (c'). The topology 
of (c) is coarser than tha t of (c'), and indeed they are not equal as one can 
easily verify. I n contrast, the topologies of examples (a), (a') and (a") are 
the same; they are only generated by different metrics. The metrics 
d(x, y), d'(x, y) and d"(x, y) are topologically equivalent in these three 
cases (see Definition 2.3). 

There is a finest topology for a set X which is finer than all the remain-
ing topologies for I ; it is obviously the discrete topology, which we have 
considered immediately after Definition 2.3. I n this topology, O con-
sists of the set of all subsets of I ; all subsets of X are open and all of them 
are closed. VL(p) consists all the sets which contain p. For every subset 
A <= X we have tha t A = A = A. Furthermore, there exists a coarsest 
topology for X. I n this topology, O consists of 0 and X only, and these 
are also the only closed sets. Every point has only I as a neighborhood, 
and for arbi t rary A ^ 0 , ^ X, we have tha t A = 0 , A = X. 

11.2 Theorem: Let 2 and X' be two topologies for the same set X. Then 
X is finer than X' i f , and only i f , any one of the following equivalent con-
ditions is satisfied: 

(1) For the systems of open sets in I and X', we have that £> ̂  O' holds. 
(1') For the systems of closed sets in X and X', we have that 31 => 91' 

holds, where 91, 91' are the systems of closed sets for X, X', respectively. 
(2) For the neighborhood systems in X and X', we have that VL(p) 3 VL'(p) 

holds for every pe X. 
(3) The interior in X of a set A contains the interior in X' of A. 
(3') The closure in X of a set A is contained in the closure in X' of A. 

The proof follows from the theorems of § § 2, 3, which give a dual 
characterization of the fundamental concepts "open," "closed," "neigh-
borhood," and so forth. Thus, say, the interior of A is the largest open 
subset of A; since O contains more open sets than £>', the interior in X of 
A is more comprehensive than the interior in X'. 
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11.3 Theorem: If the systems SB and SB' are bases of the topologies X and 
X' for the same set X, then X is finer than X' i f , and only i f , for each set B^ e 
SB' and each p e B^ there exists a Bx e SB such that pe Bx 

Proof: I f X is finer than X', then B^ is the union of sets Bx, and a t least 
one of these sets B,\ must contain p, pe Bx <= 

Conversely, if the condition of the theorem is satisfied, then each set Bj, 
is the union of sets B^: Namely, if p e B^, then there is a Bx = BA(p) such 
that p e Bx(p) <= B^. Obviously, Z?M = U Bh(p), taken over all pe B^. 

Now, let one further, not necessarily topologized, set X be given. In 
§ 10, we asked which systems of subsets of X are suitable for bases for a 
topology X for X. We generalize this formulation of the question: Let 
(£ = {(7a I A from an arbitrary index set Aj be an arbitrary given system 
of subsets of X. t)oes there exist a topology X for X for which the C\ are 
open sets? Surely this is the case for the discrete topology on X. Now, let 
X be any topology for which the C\ are open sets and let £> be the system 
of all open sets in X. Then, according to [O 2], all finite intersections of 
sets Gx are also open in X. Let SB = {B^ \ ¡i from an arbitrary index set 
M } be the system of these finite intersections; we include X among 
these intersections (see Index under "intersection"). We have that 
SB <= O. Further, according to [0 1], arbitrary unions of sets B^ are open 
in 21; let O 0 be the system of these unions, we include 0 in O 0 . Therefore 
we have that O 0 <= ©. We now assert that the system O 0 already satisfies 
axioms [0 1] and [O 2]. [O 1] is immediate as a consequence of the general 
associative law for the formation of unions, and [O 2] follows similarly 
from the distributive law for intersections and unions (fundamental 
formula (2)). Thus, D 0 determines a topology X0 for X and indeed a 
coarser topology than X. We summarize this result in the next theorem. 

11.4 Theorem: Let £ = {C^ | A from an arbitrary index set Aj be a 
system of subsets of a set X. There exists a uniquely determined coarsest 
topology X0for X in which the C\ are open sets, d is called a generating sys-
tem or a subbasisfor X0. 

The possibility of generating topologies in a set X, given by means of 
this theorem, is especially useful in the construction of examples and 
other special topologies. 

§ 12. Product Topology and Quotient Topology 

We precede our discussion with some set-theoretical considera-
tions. Let Xlt .Xjbe two sets; the set 3E — Xx x X2 of all pairs x = 
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xl x x2 with x1 e X1 and x2 e X2 is called the product set of X1 and X2 

and 2lx, XZ are called the factor sets of X. x1 and x2 are called the co-
ordinates of the element x = x1 x x2. The mapping tpf X -> XI (i = 
1, 2) with rp^x) = xi is called the projection mapping, or briefly the 
projection, of X onto X{. The coordinate xi is also called the projection 
of x in If AI <= XI for i = 1,2, then the subset of X consisting of 
all y1 x y2 with yi e AI is called the product set A1 x A2 of AX and 
A2. The (untopologized) plane E2, for instance, is an example, being 
the product of two (untopologized) lines R1. If A is a subset of X, then 
<Pi(A), the projection of A onto X{, denotes the set of all 9 \ (y ) with 
YE A. The following rules are valid: 

9i(A u B) = <pAA) u <p&B), <pi(A n B) <= 9i(A) n 9i(B). 

That the equality sign does not hold generally in the above inclusion 
is shown, say, by the example of two lines A, B in the Euclidean 
plane R2 = R1 x R1 which are parallel to the «-axis and their 
projections on the «-axis. 

Fig. 3 

If/." X, -> X2 is a mapping of Xx into X2, then the subset 

[ / ] ={x = x1xx2\x2 =f(x1)} 

in X = Xx x X2 is called the graph of / . Conversely, [ / ] completely 
determines / . The frequent use outside of topology (even outside of 
mathematics) of the graph [ / ] to depict the function / , is well known. 

If Xv X2 and 2) are three sets, then a rule which assigns to each 
pair x1 e Xv x2 e X2 one and only one element / (x1, x2) e 2) is called a 
function f of two variables xv x2. One interprets / expediently as the 
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ordinary function / : x X2) ->-?). The case Xx = X2 = X occurs 
especially often, in which case / : (3c x 3E) 

Now let Xi (i = 1,2) be two topological spaces with the topologies 
<Xi and the systems of open setsOj. In order to equip the product set 
3E = X1 x X2 with a topology, we consider the system © of all pro-
ducts 0l x 02 of open sets 01 in with open sets 0 2 in X2. 58 can 
serve as a basis of a topology 2! in X- Namely, if 0X x 0 2 and 0l x 
02 are two sets in 18, then the intersection 

(0! x 02) n (0; x 0't) = (Oi n 0[) x (02 n 0'2) 

is also a set from 58; the criterion of Theorem 10.5 is therefore trivially 
satisfied for a basis. 

12.1 Definition: I f (i = 1 ,2) are topologies for the sets Xit 

then the topology Z defined in the product set 3E = X1 x X2, which 
has as basis the products of the open sets of X1 and X2, is called the 
product topology l = l 1 x i ! over X. X = Xx x X2, equipped with 
this topology Z, is called the product, or the topological product, of 
X1 and X2. 

As examples, we point out the plane i?2 as the product of two lines 
R 1 and the torus as the product of two circumferences. One can 
easily clarify for himself that Definition 12.1 applies in these cases. 

Of the many theorems which one obtains upon comparison of the 
topologies % i of the factors Xi with the topology % of X, we mention 
here only the following facts: The projection mappings <p{ (i = 1, 2) 
are continuous. I f A is an open set in 3£, then <pi{A) is also open in X 
and thus also open in Xt. This follows from the fact that it is valid for 
the open sets of a basis © of the sort indicated above, and it carries 
over to the general case by means of [0 1]. One must note, however, 
that the projection <pi{A) of a closed set A c: X is in general not 
closed; the example of the closed set A consisting of the branch of the 
hyperbola y = xin the first quadrant of the (x, i/)-plane R2 whose 
projection on the «-axis is the open interval (0, + oo) shows this. A 
function/ = / (xv x2) in two variables,/: X t x X2->- ?), is continuous 
at (pv p2) if, and only if, to each neighborhood U e U ( / (pv p2)) in 
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3) there exist neighborhoods U1 e U(i>i) in X l t U2 e \l(p2) i n such 
that / ( U l t U2) c U, i.e. / (xv x2) e U, if xx e Ulf x2 e XJ2. 

There are no difficulties to extend the considerations of this section and 
the Definition 12.1 to any finite number of factors Xi (i = 1, . . . , n) and 
to interpret the product 

n 
x = nx{. 

i = 1 

In the definition of the product n X h with an arbitrary number—even an 
infinite number—of factor spaces XA (A from a suitable index set A), one 
proceeds, however, because of necessity, somewhat differently: The pro-
duct set X = nXx and the projection mappings <p y. X —> are defined 
analogously to the way this is done in the finite case. Now we consider 
for each open set 0A of Xx the "strip" 1(0A) in 3E, i.e. the set of all points 
of X whose projection <ph falls on Ox. From the set of all strips, we form 
the set SB of all finite intersections of strips. This set satisfies the con-
ditions of Theorem 10.5 since the intersection of two such finite inter-
sections is again one of the same sort. Thus, SB is a basis of a topology X 
for 3£. X = I I X x is called the product space of the X^ and I is called the 
product topology of the topologies X a of the 

The basis for this sort of definition of the product topology X lies in the 
following fact. We seek a topology over the product set X = ilX^, which 
in any case has the property that the projection mappings <Pn are con-
tinuous functions. We easily recognize that the discrete topology of X 
has this property; if a topology %' for X has this property, then every 
finer topology for X also has this property. The product topology just de-
fined is now the coarsest topology for X which has the named property, 
as one can easily verify. 

As an example, we consider for each i = 1, 2, . . . a copy of the closed 
unit segment I} = {t : 0 < t < 1}. The product of the I) is the infinite-
dimensional unit cube whose points are described by the infinite 
sequences t = (tv ia, . . .) of real numbers with 0 ^ ^ 1; the topology 
o f /® is the product topology given above. One can depict it by mapping 

onto the Hilbert cube (example (b) of § 1), and indeed by means of 

the mapping x = /(<), which is given by means of xi =  = 1> 2, 

. . . ) . / is a monomorphic and epimorphic mapping of I™ onto and it is 
not very difficult to verify that / as well a s / - 1 is continuous. 100 and are 
therefore homeomorphic. The topology of SJ} appears in 100 in an especially 
intuitive form which is symmetric in all coordinates. 
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We shall now go briefly into the quotient topology. First of all, let a 
partition of an arbitrary set X into non-empty subsets Pa (A from a suit-
able index set A, P\ O Py = 0 if A' ^ A) be given. Such a partition is 
produced by means of an equivalence relation among the points of X. We 
think of the P\ as the elements px of a new set X'. I f p e X, and indeed 
p e PA, then we set <p(p) = p>i; therefore, <p denotes the natural mapping 
of X onto X', which assigns to each element p of X the set PA containing 
it or its representative p'\ in X'. 

Now if a topology X is given for X, then we can obtain from it a topology 
Z' for X' in the following way. We define a subset 0' <= X' to be open if 
f'1 (O')ia open in X, i.e. if the totality of all p e X with <p(p) e 0' is open in 
X. We recognize immediately the validity of the axioms [O 1], [0 2] for 
these open sets of X'; they follow immediately from [0 1], [0 2] in X. The 
topology Z' arising thus is called the quotient topology Z' of the topology 
Z with respect to the given partition of X; X' is called the quotient space. 

As an example, let us consider on the real line X — R1 the equivalence 
relation x = x' (mod 1) and the partition of X resulting from it. The 
quotient space X' is the closed circumference of a circle. Analogously, one 
can obtain the torus from the real plane R 2 as the quotient space with 
respect to the partition of ii2 into equivalent points relative to a 
periodic lattice. 
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Chapter 4 

SPACES DEFINED BY SEPARATION 
AXIOMS 

§ 13. HausdorfF Spaces 

The spaces considered up to this point are still so general that they 
bear many characteristics which deviate strongly from the usual idea 
of a space. This is illustrated, for example, by the coarsest topology 
for a set 3E and also by the following example. Let R2 be the set of all 
pairs (x, y) of real numbers. A "strip neighborhood" of (a;0, y0) is given 
by all (x, y) with | x — x0 | < e where e > 0, and general neighbor-
hoods are all sets that contain strip neighborhoods. The neighbor-
hood axioms are satisfied; therefore, we have here a topological space. 
In every neighborhood of (x0, y0) there lie all points (x0, y0 + c) with 
arbitrary real c of the perpendicular through (x0, y0). Actually, this 
perpendicular is the closure of the point set consisting of the single 
point (x0, y0). The point set consisting of (x0, y0) is not closed. 

We shall now subject our spaces to a series of stronger and stronger 
restricting axioms, whereby the point sets, such as those introduced 
above, will be closed. The spaces so defined are more special than 
those treated up to this point, and hence they possess a more develo-
ped structure which is indicated by the theorems which are added to 
the previous theory. 

We shall first of all exclude by means of an axiom the situation 
that the intersection of all the closed neighborhoods of a point p 
contains points other than p. 

69 
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13.1 Definition: A topological space X is called a Hausdorff space 
and its topology % is called Hausdorff if either one of the following 
two equivalent axioms is satisfied: 

[Hd] If p, q (p ^ q) are any two points of X, then there exist neigh-
borhoods U e Vi(p) and V e U(g) such that U n V = 0 (Hausdorff's 
separation axiom). 

[Hd'] The intersection of all closed neighborhoods of a point p con-
tains p only. 

[Hd] is called a separation axiom because it separates the two 
points p and q by means of the neighborhoods U and V; it is named 
after F. Hausdorff who was the first to recognize its significance. 

Furthermore, in [Hd] one can take U and V to be open without 
modifying its content. 

In the sequel, we shall deal almost exclusively with Hausdorff spaces. 
Proof of the equivalence [Hd] o [Hd']: We first prove that [Hd] => 

[Hd']. Let [Hd] be satisfied and suppose p is a fixed point in X- Let x 
range over all points p in 3£. According to [Hd], there exist neigh-
borhoods Ux eU (p) and Vx e which we take to be open, with 
U, H F , = 0 . CVX is a closed neighborhood of p which does not 
contain x. This proves that [Hd] => [Hd']. 

We shall now prove that [Hd'] => [Hd], lip q, then there exists 
a closed neighborhood U e U(i?) which does not contain q. Then CU 
is open and it is a neighborhood of q since qe CU; we always have 
that U n CU = 0 , which is what we had to prove. 

13.2 Theorem: Every subspace of a Hausdorff space is Hausdorff. 
The proof follows directly from [Hd] and Theorem 6.4. 

13.3 Theorem: In a Hausdorff space, every set consisting of only one 
point is closed. 

The proof follows from [Hd'] and axiom [A 1] (see § 3). 

13.4 Theorem: Every topology for a set X which is finer than a 
Hausdorff topology for X is itself Hausdorff. 

The proof follows quite easily from [Hd] and Theorem 11.2, (2). 
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13.5 Theorem: The product X = IT.Xx of an arbitrary set of topolo-
gical spaces XA 0 is Hausdorff i f , and only i f , all the factors are 
Hausdorff. 

Proof: Suppose all the Xx are Hausdorff and let p, qe X, p q. 
Then the projections <px(p) = pM <px(q) = <?A of p, q along XA are dis-
tinct for at least one index A. Since XA is Hausdorff, there are neigh-
borhoods C/A e U(pA), Fa e U(^) with Ux n Fa = 0 in X. Then 

and 93a~1(F/() are separating neighborhoods for p and q. 
Conversely, let X be Hausdorff. Let Xx be a fixed factor of 36. Those 

points of X whose A-th coordinate ranges over Xx, whose remaining 
coordinates, however, are chosen fixed in an arbitrary manner, 
obviously form a subspace of X which is homeomorphic to Xx. 
According to Theorem 13.2, this subspace is Hausdorff and there-
fore XA is also Hausdorff. 

13.6 Definition: The point p of a Hausdorff space X is called a 
limit of the point sequence xv x2. . . , in symbols, 

P = lim xn, n-ya> 
if for each neighborhood U e U(p) there exists an n0 = n0(U) such 
that xneU for n > n0. If the sequence possesses a limit, we say tha t 
the sequence is convergent in X. 

Note that the points of a sequence need not all be distinct. For 
example, the terms of a sequence can be constant (= p) from some 
index n on; then surely the sequence has p as a limit. 

Obviously a sequence need not have a limit. 
A subsequence of a convergent sequence is also convergent and it 

has the same limit. 

13.7 Theorem: A sequence in a Hausdorff space has at most one limit. 

Proof: If p is a limit of the sequence xv x2, . . . and q ^ p , then 
there are neighborhoods U e and V e U(<7) with U r> V = 0 . 
For all n > n0, we have xn e U and therefore xn<£ V; hence q cannot 
be a limit of the sequence. 
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13.8 Theorem: I f f : X —> ?) is a continuous mapping at p, then the 
following assertion is valid: 

lim xn = p implies lim/(a;B) = f (p). 
n—>00 n—><x> 

Proof: Let VeU(f(p)). U = f~\V) is a neighborhood of p 
because / is continuous at p. Therefore, there exists an n0, which 
depends on U, such that xn e U provided n > nQ. I t follows that 
f(xn)e V for these n; this completes the proof of the above limit 
equation. 

13.9 Definition: I f A is a subset of then p e X is called a 
sequential limit point of A provided p is the limit of a sequence of 
points in A. 

According to this, a sequential limit point of A is surely a contact 
point of A. The converse assertion is not valid in general. We shall show 
this using the function space which we introduced as an example im-
mediately before Definition 2.4. Let A be the subset of X which consists 
of the functions / having the value 1 almost everywhere and the value 
0—rather than 1—only in a finite number of places. Suppose/0 has every-
where the value 0. Evidently,/0 is a contact point of A, but we assert that 
it is not a sequential limit point of A. Namely, i f / 1 ( / 2 , . . . is any sequence 
from A with the limit/*, then/* can be 0 at most at the places at which 
one of the functions/1(/2, . . . is 0, and this means finitely many for each 
of these functions, and therefore altogether at most denumerably many. 
At all other places,/* has the value 1; hence we have tha t / * # /„. I f we 
wish to take into consideration the contact points as well as the sequen-
tial limit points of a set, then we must introduce so-called "filters," 
which, however, lie outside the scope of our presentation. (See N. 
BOTJRBAKI [ 1 ] o r H . J . K O W A L S K Y [ 2 ] . ) 

In a HausdorfF space, one can say still more about the accumula-
tion points p of a set A over and above Definition 3.11. Namely, if 
Ui is a neighborhood oip, then there is still a point x1 ^ p in A which 
according to our definition lies in Uv I f U2 is a neighborhood of p 
which does not contain x1 (the existence of such a neighborhood is 
guaranteed by [Hd]), then there is a corresponding x2 p, x2 ^ a^ in 
U1 n U2. Proceeding in this way, we obtain in U1 a sequence xlt 
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x2, . . . of distinct points of A. We can therefore state the following 
theorem. 

13.10 Theorem: In a Hausdorff space, every neighborhood of an 
accumulation point p of a set A contains an infinite number of points of 
A. 

§ 14. Regular Spaces 

14.1 Definition: A topological space X and its topology are called 
regular if X is Hausdorff and any one of the following three equivalent 
conditions is satisfied: 

[Rg] For every closed set A c £ and each p o i n t A there exist 
neighborhoods U of A and V of p such that U o V = 0 . 

[Rg'] Every neighborhood of a point p contains a closed neighbor-
hood ofp\ in other words, the closed neighborhoods of form a neigh-
borhood basis of p. 

[Rg"] Every neighborhood U of a point p contains an open neigh-
borhood W of p such that W <= U. 

Proof of the equivalence: 
[Rg'] => [Rg"]. According to [Rg'}, the neighborhood U of p con-

tains the closed neighborhood V of p. By Theorem 3.4, V contains an 
open neighborhood W of p. Then ffc f = f c [/ and therefore 
W <=• U, which is what we were required to prove. 

[Rg"] => [Rg]- It A is closed and p A, then CA is open and hence 
it is a neighborhood of p. According to [Rg"], there exists an open 
neighborhood W of p such that W c CA. CW is open and CW A; 
C W is therefore a neighborhood of A. [i?§r] is then satisfied with U — 
CW and V = W. 

[ify] => [-Rg'']. I t suffices to prove [Rg'] for an open neighborhood 
W oip. Then CW is closed and, according to [Rg], there exist neigh-
borhoods V of C W and V of p such that U n V = 0 ; U and V can 
be taken to be open. We have V c CU and therefore F <= CC7 = 
CV = CU. Since U ^ CW, therefore CU cz W and it follows that 
V W; this completes the proof of [Rg']-
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14.2 Theorem: Every subspace 3) of a regular space X is regular. 

Proof: First, 9) is Hausdorff according to Theorem 13.2. We shall 
prove that 9) satisfies the axiom [Rg'~\. If U is a 9)-neighborhood (cf. 
§ 6) of a point p e 9), then U is the trace U = = V n 9) of an 
^-neighborhood V of p (cf. Theorem 6.4). V contains a closed X-
neighborhood V0 of p. (F0)^ = F 0 n 9) is then a closed ^-neighbor-
hood of p contained in U. 

We shall now give an example of a space which is Hausdorff but not 
regular, but we shall however leave the verification of these properties 
to the reader. Let R be the real line. Let a subbasis in the sense of 
Theorem 11.4 for a topology for R consist of all open intervals in R in the 
usual sense and of the set of those rational numbers which have a power 
of 2 in the denominator (i.e. the dyadic fractions). 

§ 15. Normal Spaces 

15.1 Definition: A topological space X and its topology are said to 
be normal if X is Hausdorff and any one of the following equivalent 
conditions is satisfied: 

[.Nm] For any two closed disjoint sets A, B cz X there exist neigh-
borhoods U of A and V of B such that U n V = 0 . 

[JVm'] Every neighborhood of a closed set A contains a closed 
neighborhood of A. 

[Nm"] Every neighborhood U of a closed set A contains an open 
neighborhood V of A such that V c: U. 

The equivalence of these three conditions follows verbatim as in the 
preceding sections for the equivalence of the regularity conditions if 
one replaces there the point p by the set B. 

Since a one-point set is closed in a Hausdorff space (see Theorem 
13.3), normal spaces are special cases of regular spaces (i.e. every nor-
mal space is regular). 

An example of a regular but not normal space is the following: let X 
be the upper half-plane y S 0 of the Euclidean (x, y)-plane. Neighbor-
hoods of points with y > 0 are defined as usual; neighborhoods of the 
points (x, 0) are formed by the open circular discs which are tangent to 
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the »-axis at (x, 0) and including the point (x, 0) itself. We leave to the 
reader to prove the regularity of X and to show that the closed set A = 
{(x, 0) | a; is rational} and the closed set B = {(a:, 0) | x is irrational} do 
not satisfy the axiom [Nm], 

There is no analogue to Theorem 14.2 for normal spaces. I f one 
attempts to carry over the proof of Theorem 14.2 to normal spaces, 
one founders because of the fact that a closed set is not neces-
sarily 3E-closed. 

The following two theorems due to P. Urysohn bring the normal 
space X into an important and consequential relationship with the 
real-valued functions on X-

15.2 Theorem: A Hausdorff space X is normal i f , and only i f , the 
following Urysohn axiom is valid in it: 

[ U] If A and B are any two disjoint closed sets in 31, then there exists 
a continuous real-valued function f (x) on X, 0 ^ / (x) <[ 1, such that 
f (x) = 0 on A and f (x) — 1 on B. 

Proof: First, let X be a Hausdorff space in which [E7] holds; we 
shall prove that [iVm] is then valid. We consider the sets 

U ={x\f(x)<$,V ={x\f(x)>$. 

U is open. Namely, if x0 e U so that f(x0) < then, since / is con-
tinuous, a neighborhood W oix0 can be found so that | f (x) — f (a;0) | 
< e, where e = 2_M for large fi, for all x e W. For sufficiently 
small choice of e then also / (x) < i.e. x belongs to U. Likewise, V 
is open. Since 4 c U, B c V, U n V = 0 , [Nm] is valid. 

Now, conversely, let 3C be a normal space and suppose A, B are two 
disjoint closed subsets of X. CA is an open neighborhood of B; we set 
CA = U0. According to [Nm"], we then choose Ux as an open neigh-
borhood of B so that U0 => Uv 

Continuing inductively, we assume that for all integers 0, 1 
n open sets 

with v = 1, . . . , 2" and U^ => Uv_ 
2» 2n 2n 
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have already been constructed as they were just constructed for n = 
0. We choose in accordance with [Nm"] an open neighborhood U2v _ 1 

2n + l 
with v = 1 2" of U „ so that U„_1 => U2v^1. Thus, we proceed 

2 " 2 " 2 n + 1 

from n ton + 1. Continuing further, we obtain for all dyadic fractions 
r with 0 r 1 open neighborhoods Ur of B with 

C/r=> U,j if r < r'. 

For an arbitrary real number a between 0 and 1, we set Ua = U Ur' 
taken over all r a. If a < a', then there exist dyadic fractions r,r', 
with a < r < r' < a', and for these r, r' we have that Ua => Ur, 
Ur, => Ufrom which it follows, inasmuch as Ur ^ Ur,, that Ua => 
Ua>. Further, if we set Ua = 3t for a < 0 and Ua = 0 for a > 1 , 
then 

E7a 3 Ua, if a < a' 

holds for all real a. The set of those a for which a given point x e 3£ lies 
in Ua is obviously a left half-line on the real axis which is determined 
by a real number / (x). We assert that this function / (x) satisfies the 
Urysohn axiom [17], Certainly we have/ (x) = 0 for x e A and/ (x) = 
1 for x e B. The continuity of / (x) is directly evident: In order to ob-
tain \f (q) — f (p) | ^ e, where e = 2 -1 ' for large ¡JL, one has only to 
choose q in the set U _ c — Uwhich is an open set (by Theorem 
3.7) and hence is a neighborhood of p. This completes the proof of 
Theorem 15.2. 

15.3 Theorem: (Supplement to Urysohn's Theorem 15.2): Let the 
open set 0 of the normal space X be the union of denumerably many 
dosed sets. Then there exists a continuous real-valued function f (x) on 2E, 
0 ~ f (x) = 1> which is greater than 0 for precisely the points of 0. 

Proof: Let 0 = UBn for n = 1,2, We set Bl = B, CO = A 
and then apply the line of reasoning of the preceding proof in a some-
what modified form: U0, Uv C/j, Ui have the above meaning. is 
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however chosen as an open neighborhood of the closed set Ui u B2 

and furthermore again so that £/j is contained in U0. Accordingly, 
_ » 

suppose U „ with v = 1 2n and => U „ and U1 U Bm 
2" 2" 2" 2" m — 1 

have already been constructed. Then the determination of the U2v _ i 
2 » + l 

remains the same up to U1 : This set is chosen as an open neigh-

borhood of £7X u Bn+1 whose closure is contained in U0; otherwise, we 
2" 

proceed as above. Then we obtain for every real a an open set J7a with 

f 7 a o C 7 a , i f a < « ' ; £ / a ^ U 5 m i f « = i . m = 1 * 
The definition of/ (p) is as above; the proof of continuity also remains 
the same. Now, if peO, then pe Bn c U1 for suitable n. I t follows 2» 

that / (p) ^ and therefore / (p) > 0; this completes the proof 

of the theorem. 
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S P A C E S D E F I N E D BY C O V E R I N G 
P R O P E R T I E S : C O M P A C T S P A C E S 

§ 16. Compactness 

The compact spaces which we shall treat now are especially impor-
tant and are distinguished by many geometric properties. They are 
defined by means of the covering properties which present essentially 
sharper restrictions than the separation axioms. By a covering of a 
space X one understands a system X) = {DA | A e A} of subsets Dx c 
X with indices A from an arbitrary index set A, for which U DA = X', 
hence, every point is "covered" by at least one of the sets DA. X) is 
called finite or infinite depending on whether we are dealing with a 
finite or infinite number of Z>A's. 35 is called open if all the Z)A's are 
open sets; a closed covering is specified analogously. If A' is a subset 
of A and I) ' = {DA | A e A'J is also a covering of X—in other words, 
the Da with A eA ' already suffice as a covering of 3t, then X)' is called 
a subcovering of X); one also says that X)' is contained in X). A covering 
(£ = {E^ | ¡J. e M) of X is called a refinement of the covering £) of 3E if 
to each there exists a D^ e X) with E^ a J)x. If A is a subset of 
36, then one says that the system X) = {-DA | A e A} of subsets of X 
covers A if A c UDA. 

Paraphrasing the Heine-Borel covering theorem on point-sets in 
Jtn, we make the following definition. 

16.1 Definition: A topological space X and its topology are called 
compact if X is Hausdorff and any one of the following equivalent 
axioms is satisfied: 
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\Kp\ Each open covering of 3i possesses a finite subcovering. 
[Kp'~\ Each system 21 of closed subsets of X with intersection equal to 

0 possesses a finite subsystem with intersection 0. 
\Kp"\ A system 21 of closed subsets of X, each finite subsystem of 

which has non-empty intersection, itself has non-empty intersection. 
The equivalence of these axioms is immediate. [Kp'~\ is the dual of 

[Kp], [Kp"] is a formal reversal of [Kp'~[. 

16.2 Definition: A subset A of X is called compact if A, considered 
as a subspace, is compact. 

As examples of compact spaces, we introduce the following: 

(1) Every finite set with any topology. 
(2) A convergent sequence including its limit (in the induced 

topology, of course); one recognizes compactness immediately from 
the definition of the limit. 

(3) In Rn, the compact sets are identical with the sets which are 
simultaneously closed and bounded. 

Concerning example (3), it is namely the Heine-Borel covering 
theorem from analysis which shows, on the one hand, that these sets 
are compact, whereas, on the other hand, Theorem 17.2, below, shows 
that a compact set in Rn is closed so that one sees immediately that 
an unbounded set in R n cannot be compact. We shall give an in-
dependent proof of this assertion in § 23. 

16.3 Theorem: A subset A c £ is compact i f , and only i f , each 
covering of A by open sets of X contains a finite subcovering. 

Proof: Let A be compact and suppose the open system X) = {D*} 
of sets DH X covers A. Then the traces {D>)A = D^N A are .4-open 
and form a covering of A. By [Kp], a finite number of these traces 
(DX)A suffice for a covering of A; therefore, also a finite number of the 
corresponding sets DX suffice for a covering of A, which is what we 
were required to prove. 

In an entirely analogous way, one proves the converse by observing 
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that the A -open subsets of A are representable as the traces of X-
open sets. 

16.4 Theorem: For a Hausdorff space X, the following three pro-
perties are equivalent: 

(1) Each denumerable open covering of X possesses a finite sub-
covering. 

(2) Each infinite subset A of X has at least one accumulation point. 
(3) Each decreasing sequence A1 => A2 ^ . . . of non-empty closed 

subsets of X has non-empty intersection. 

Compact sets have these properties. 

Proof: (1) => (2). Let us assume that the infinite set A has no 
accumulation point. Let A0 = {xi | i = 1, 2, . . .} be a denumerable 
subset of A consisting only of distinct points x{. Also A0 has no 
accumulation point; it is therefore closed and hence CA0 is open. For 
each xi there exists an open neighborhood Ui e Ufo) which contains 
no point of A0 except CA0 and the V/s form a denumerable open 
covering of which, by (1), possesses a finite subcovering. But this is 
obviously impossible and therefore our assumption was false. 

(2) => (3). If in a given sequence of non-empty closed sets Ai 

(i = 1 , 2 , . . .) all Ai are equal to one another from some index on, 
then surely f\A{ ^ 0 . Otherwise, one can choose a subsequence of 
mutually distinct Ai; we may assume in advance that Ai ^¡L Ai+1. 
Then one chooses at e At — Ai+1 and by (2) there exists an accumula-
tion point a of the infinite set of a{'s. Since Ai is closed and all the 
«j,with j i lie in Ai} we therefore have that a eA^ Hence, a e f l A i 

which shows that f)Ai is non-empty. 
(3) => (1). Let X) = [Di [¿ = 1 , 2 , . . . } be a denumerable open 

covering of X. The sets Ai = C(D1 u • • • U DJ, i = 1 , 2 , . . . , form 
a decreasing sequence of closed sets having intersection 0 . Hence, 
according to (3), there certainly is an An = 0 and therefore 0 = 
C(DX u . . . U Dn), X = D1 u . . . U Dn, whereby we have con-
structed a finite subcovering of X). 
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Without any further stipulations, condition (1) shows that compact 
sets have these properties. 

A Hausdorff space with the properties (1)—(3) need not be compact. 
An example of a non-compact Hausdorff space with properties (1)-
(3) can be found, say, in the book by Alexandroff-Hopf (see A L E X A N -

D R O F F - H O P F [1], page 86). [In the Russian literature and in Alexan-
droff-Hopf (see A L E X A N D R O F F - H O P F [1]), compact spaces are desig-
nated as "bicompact" whereas Hausdorff spaces with the properties 
(l)-(3) are called "compact." The "Russian-compact" spaces 
characterized by the properties (l)-(3) (a more objective and suit-
able terminology would be "X0-compact") therefore form a somewhat 
larger class than the compact spaces. For spaces with denumerable 
weight (Theorem 16.5) and for metric spaces (Theorem 23.2) the two 
concepts coincide.] But the following theorem holds. 

16.5 Theorem: A Hausdorff space X with a denumerable basis, 
which possesses the properties (l)-(3) of the last theorem, is compact. 

Proof: Let © = ) i = 1, 2, . . .} be a denumerable basis of 3E 
and let X) = {-DA | A e A ) with arbitrary index set/1 be an open cover-
ing of X. We must construct a finite subcovering of X. 

Every set DA is representable as the set-theoretic union of certain 
basis sets B{. The system of all the Bi occurring in these representa-
tions of Da obviously form a denumerable open covering of X. From 
this denumerable covering, a finite subsystem I) ' = {.B^ . . . , Bn\ 
suffices, by (1), to cover X. Every set Bj ( j = 1, ... ,n) is contained 
in at least one set DA. These n sets Dx evidently form a finite sub-
covering of D. 

§ 17. Subspaces of Compact Spaces 

The following two theorems form a correlated pair of theorems. 

17.1 Theorem: Every closed subset of a compact space is compact. 



72 5 . S P A C E S D E F I N E D B Y C O V E R I N G P R O P E R T I E S 

17.2 Theorem: In a Hausdorff space, every compact subset is dosed. 

Proof of Theorem 17.1: Let X be compact, A <= X, A closed. We 
appeal to [Kp'~\: Let 91 = {Ax | A from an arbitrary index set A} be a 
system of ̂ 4-closed subsets of A with intersection 0 . Since A is closed, 
all the Aa are also 36-closed (cf. Theorem 6.3, second half). [Kp'], 
applied to asserts that 21 possesses a finite subsystem with inter-
section 0 . But this means also that [Kp'] is valid for the space A, i.e. 
that A is compact. 

Proof of Theorem 17.2: Let A be a compact set of the Hausdorff 
space X- We shall show that CA is open. Let p ^ A; we shall show that 
an entire neighborhood of p belongs to CA. Let x range over the 
points of A. By [Hd], there exist neighborhoods Ux e U(^), Vx e VL(p) 
with UXC\ Vx = 0 . Ux and Vx can be taken as open. A finite number 
of these Ur, say V, Ur , suffice to cover A. We then have that 

u = u uH, V = n vx. 
i—1 i-1 

are open and therefore they are neighborhoods of A andp with ZJC\V 
= 0 . In particular, V is a neighborhood of p which does not intersect 

A, which is what we were required to prove. 
Our proof yielded somewhat more—namely, that A and p possess 

separated neighborhoods, which fact we shall make use of immediately. 
According to the last two theorems, in a compact space the con-

cepts of "closed" and "compact" are equivalent. 

17.3 Theorem: A compact Hausdorff space is normal. 

Proof: We shall first prove regularity and then normality. Let X 
be compact, A <=• X, A closed, p $ A. We shall prove [iJgr]: According 
to Theorem 17.1, A is compact. By the remark at the end of the last 
proof, there exist neighborhoods U of A and V of p such that U n V 
= 0 , which is what we had to prove. 

Now let A and B be disjoint and closed—therefore, compact in 36. 
We shall prove [Nm]: Let y e B . As above, there exist open neigh-
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borhoods Uy of A and Vy of y such that Vy n Vy = 0 . A finite num-
ber of the Vy, say 7 , . . . , VVn, suffice to cover B. 

Then 

U = 0 U„. and 7 = U 7„. 
i-1 Vl <-i Vl 

are open neighborhoods of A and B such that U n V = 0 , as is 
required in [Nm\. 

17.4 Theorem: In a Hausdorff space, if A and B are compact then 

so are A u B and A n B. 

Proof: (1) Let X) = {Dx | A from an arbitrary index set A) be an 
open covering of A \j B by means of sets Dx <=• 3i (in the sense of 
Theorem 16.3). X> also covers A, and a finite number of the Dx suffice 
to cover A. The same holds for B, and therefore a finite number of the 
Da suffice to cover A u B. 

(2) A and B are closed according to Theorem 17.2; A n B is an A-

clo^ed subset of the compact set A, and moreover by Theorem 17.1 it 
is compact. 

17.5 Theorem: The product X0 = £ x 3) of two topological spaces 

X ^t 0 , 0 is compact if, and only if, both factors X and ?) are 

compact. 

Proof: First, 3E0 is Hausdorff if, and only if, X and ?) are Hausdorff 
(cf. Theorem 13.5). Let Xa be compact. The projection mappings <pj 
and <p2 are continuous. According to Theorem 18.1, which we will 
assume here, X0 therefore has compact factors X, 9). 

Conversely, let X and 9) be compact. Let X) = {Dx | A e A} be an 
open covering of X0, A a suitable index set. It is to be shown that X) 
possesses a finite subcovering. Every DA is the union of sets of the 
form 0 = A x B with open i c J and open Let £) be the 
set of all these 0. O is likewise a covering of X0, and indeed it is a 
refinement of 35; it obviously suffices to show that O possesses a 
finite subcovering. Let xe X and = x i ) . is homeomorphic 
to 9) and is therefore compact. O is also a covering of therefore 
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there exist a finite number of sets A{ x Bi (i = 1, . . . , r) from O 
which intersect and cover If we set Ax = fl Ai, taken over i = 1, 
. . . , r, then Ax is an open neighborhood of x and the sets Ai x Bi 

also cover Tx = Ax x 9). The proof will be finished when we show 
that X0 is covered by a finite number of sets of the form Tx, corres-
ponding to a finite number of points x e X- By the procedure de-
scribed above, there is assigned to each x e X a neighborhood Ax. 
Because of the compactness of X, a finite number of the Ax suffice to 
cover X- The corresponding finite number of the Tx then cover 3£0. 
This completes the proof of the theorem. 

The theorem carries over without modification to finite products of 
compact spaces. I t holds also in the same form for infinite products (this 
is the so-called Tikhonov theorem); however, we do not need this 
generalization in the sequel. Therefore we will not go into the somewhat 
more difficult proof here which utilizes the well-ordering theorem (see, for 
instance, J . L . KELLEY [1]). 

§ 18. Mappings of Compact Spaces 

18.1 Theorem: I f f : X^-ty is a continuous mapping of a compact 
space X into the Hausdorff space 9), then the image set f {X) is compact. 

Proof: Let 9)0 = / (£). Let X) = {Z)A | A from an arbitrary index 
set A} be an open covering of 9)0. Then the sets /_1(Z)A) are open and 
the system {/_ 1(A0} forms an open covering of X. A finite number of 
the f~1(D>) suffices to cover X and therefore the corresponding finite 
number of the Dx suffices as a cover of 9)0. 

The continuous mappings of a compact space X into a Hausdorff 
space 9) are therefore closed (cf. the remark on p. 34). 

18.2 Theorem: A monomorphic continuous mapping f : X 9) of a 
compact space 36 into a Hausdorff space 9) is a homeomorphism of X 
onto a subspace ofty.A monomorphic continuous mapping f which is 
also an epimorphism of X into 9) is a homeomorphism of X onto 9); the 
existence of such a mapping exhibits X and 9) as homeomorphic. 

We shall prove the first part of the theorem; the second part is a 
special case of it. We must prove the continuity of the inverse map-
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ping f_1:f (X) -> 3£. Now, / , the inverse mapping to / _ 1 , maps closed 
sets in 3E into compact, and therefore closed, sets o f f (36) as we have 
just established. Hence, by the criterion (2') of Definition 6.4, f-1 is 
continuous. 

Let / be a continuous real-valued function on a compact space X— 
hence, / is a continuous mapping from X into the real line R1. f (X) is 
a compact subset of R1. f (X) is bounded because an unbounded sub-
set of R1 would surely not satisfy the compactness axiom [Kp~\; more-
over, / (X) is closed (by Theorem 17.2). Therefore, / (X) has a finite 
greatest lower bound a and a finite least upper bound b and these two 
numbers are themselves function values, a = / (x),b = / (y), where 
x, y e X. Therefore, the following theorem is valid. 

18.3 Theorem: A continuous real-valued function f (x) on a compact 
set X possesses a finite maximum and a finite minimum, each of which 
is assumed at at least one point of X. I f f (x) is furthermore always posi-
tive on X, then there exists a S > 0 with the property thatf (x) > Son X. 

§ 19. Locally Compact Spaces. Compactification 

19.1 Definition: A topological space 3E is called locally compact if it is 
Hausdorff and each of its points possesses a compact neighborhood. 

The real line R 1 and, more generally, Bn are examples. 

19.2 Theorem: A locally compact space X is regular. 

Proof: Let peX, A a compact neighborhood of p . If U is an 3t-neigh-
borhood of p, then UA = U n A is an A -neighborhood of p and, there-
fore, because of the regularity of A (by Theorem 17.3, A is even normal), 
it contains an A-closed ^.-neighborhood V of p. Since A is 3E-closed, V is 
also X-cloaed (see Theorem 6.3, second half); V is the trace of an X-
neighborhood V0 of p, V = A Pi V0 (Theorem 6.4). Thus, V being the 
intersection of two X-neighborhoods is itself an ^-neighborhood. Accord-
ing to the criterion [i?^'], this proves the regularity of X. 

19.3 Theorem: A locally compact, non-compact space X can be em-
bedded in a compact space X' = X \j {m} by the adjunction of one further 
point u. More precisely: For a given topology X of X there exists one and 
only one topology %' on X' which is compact and has I as its trace. 



7 6 5 . SPACES D E F I N E D B Y COVERING P R O P E R T I E S 

As an example of this compactification process, we mention the intro-
duction of the infinitely distant point of the Riemann number sphere in 
the theory of functions of a complex variable. The significance of this 
one-point adjunction, as is well known, is rather great. 

A. Uniqueness of X'. 
In order to prove the existence of a topology X' of the required sort, 

let us first of all assume—following a classical method—the existence of 
a X' and then prove tha t under this assumption the system £>' of X' -open 
sets is uniquely determined by O and u. To this end, we make the resolu-
tion = Oi U 0'2 into the system Oi of those open sets which contain 
u and the system £)2 of those open sets which do not contain u. We first 
of all assert t ha t £)[ consists of the complementary sets (in X') of compact 
sets of X. Namely, if 0' e £)[, then CO' is i ' -closed and hence it is com-
pact, according to Theorem 17.1, and does not contain u. Conversely, if 
A is a compact subset of X, then A is X'-closed, by Theorem 17.2, and 
hence CA is X'-open. Thus, O, is defined. 

We assert further tha t 0'2 consists of the X-open sets of X. Namely, if 
O ' e O 2, then the trace in I — a n d this is 0' itself— is X-open. Conversely, 
if 0 is iE-open, then 0 is the trace of an 3£'-open set 0' and therefore 0 = 
0' n X. Both factors, 0' and X, are 3c'-open and hence 0 itself is X'-
open. Thus, 0'2 is defined. 

Hence, there exists only one topology X' of the desired sort. 

B. Construction of X'. 
We now omit the assumption in A, above, and construct a set O ' as 

the union of two sets £>i and 0'2 which are defined as in A, above; these 
definitions are given in italics in A. Using the fundamental formulas (1), 
(1') through (3), (3'), one easily verifies tha t the axioms [O 1] and [0 2] 
are satisfied so tha t O ' really defines a topology X' in X'. 

X' is Hausdorff; axiom [Hd] holds: For any two points p, qe X, this is 
clear because of the form of £),; for a point p e X and the point u one uses 
the local compactness a t p; a compact neighborhood U of p and its com-
plement CU are separating neighborhoods in this case. 

That X is the trace of X' follows directly f rom the form of O j and 0 2 . 

C. Compactness of X'. 
Let 3) = {-Da} be a n open covering of X'. u occurs in a t least one Dx 

say D0. D0 belongs to Oi and therefore CD0 is compact. A finite number 
of the suffice to cover CD0. If one also adjoins D0, then one has a finite 
number of the D^, which cover X'. Hence, X' is, in fact, compact. 



Part III 

METRIC S P A C E S 





Chapter 6 

THEORY OF METRIC S P A C E S 

§ 20. Distance between Points and Distance between Sets 

In this chapter, we extend to a fuller theory our earlier (§1) and 
later, incidental remarks about metric spaces. We first of all restrict 
the definition of continuity. 

20.1 Definition: The mapping / : 3t ->• 9) of a metric space X into 
a metric space 9) is said to be uniformly continuous if for arbitrarily 
given e > 0 there exists a 8 = 8(e) > 0 such that d(f (x'), / (a;)) < e 
provided d(x', x) < 8. 

One must make positively clear to himself how this differs from the 
definition of ordinary continuity (Definition 5.3 (1) or Definition 5.4 
(1)); the number 8 = 8(e) is uniform, i.e. it can be chosen the same 
for all x e X . 

Now and then we also need the concept of continuity and the con-
cept of uniform continuity of functions / (x, y) which assign to each 
pair x, y of points in X a pointy = / (x, y) in 9). Here, in analogy with 
Definition 20.1, the condition for uniform continuity reads, for in-
stance, as follows: 

d{f (z', y'),f(x, V)) < e provided d(x', x) < 8 and d(y', y) < 8. 

For general topological spaces, it is impossible to define a uniform 
continuity inasmuch as neighborhoods of distinct points cannot be 
compared with respect to magnitude. Nonetheless, there is a large 
class of topological spaces in which this is possible on the basis of 
special axioms—these are the uniform spaces introduced by A. Weil 
(see N.BouRBAKi[l]);but they lie outside the scope of this little book. 

79 
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20.2 Theorem: The distance d(x, y) in a metric space is a continuous, 
even a uniformly continuous, function of both variables x and y. 

The proof follows directly from the triangle inequality (see § 1): 

I d(x', y') - d(x, y) | d(x', x) + d(y', y). 

20.3 Definition: If A ^ 0 and pe£, then d(p, A) = inf d (p,x), 
as x ranges over the set A, is called the distance from p to A. HA 0 , 
B ^ 0 , then d(A, B) = inf d{x, B) = inf d(A, y) = inf d(x, y) 
with arbitrary xe A, y e B, is called the distance from A to B. 

For ps A,d(p, A) = 0, but this situation can also exist w h e n p $ A . 
For A n B 0 , d(A, B) = 0, but this equation can also be valid 
for A n B = 0 . More precisely, the following theorem is valid. 

20.4 Theorem: d(p, A) = 0 i f , and only i f , pe A. 
To prove this, one has only to establish that both facts assert that 

points of A lie in every e-neighborhood of p. 
Hence, if A is closed, then p $ A implies that d(p, A) ^ 

0. But there are disjoint closed sets A, B with d(A, B) = 0, for 
example, the set A of all points of the hyperbola y = a;-1 in the (x, y)-
plane R2 and the closed fourth quadrant in R2 as the set B. 

20.5 Theorem: For every subset A 0 of di, d(x, A) is a con-
tinuous, even a uniformly continuous, function of x. 

Proof: Let x, x' be arbitrary points of X- To each e > 0 there 
exists a y = y(e) e A such that 

d(x', y) ^ d(x', A) + e; 

d(x, y) d{x, x') + d(x', y) <1 d(x, x') + d(x', A) + s. 

Since d(x, A) ^ d(x, y), it follows that 

d{x, A) d(x, x') + d(x', A) + e. 

Since this is valid for every e > 0, it holds also for e = 0: 

d(x, A) - d(x', A) <; d(x, a;'). 
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This, together with the inequality arising upon the interchange of x 
and x', yields 

| d(x, A) — d(x', A) | ^ d(x, x'), 

from which the uniform continuity of d(x, A) follows. 

20.6 Theorem: A metric space is normal. 
We shall prove the axiom [ N m ] : if and B are disjoint closed sets, 

then the sets 

U = {x | d(x, A) < d(x, B)}, V = {x | d(x, A) > d(x, B)} 

are open because of the continuity of d(x, A) and d(x, B) using 
the same line of reasoning as, say, in Theorem 15.2. For xe A, we 
have that d(x, A) = 0, but d(x, B) > 0 by Theorem 20.4. Thus, A c 
U and likewise B a V. Hence, U and V satisfy the axiom [Nm], 

We shall now generalize the concept of e-neighborhood (cf. § 1) 
il£ and simultaneously introduce an analogous set Ac by means of the 
following definition. Let A be an arbitrary subset of 3E. Let 

11,(^1) ={x\xe Ut(;p) for s o m e p e A } = U 11,(2?), 
p e A 

A,(A) = {x | tl£(z) c A} = C(<U.(C4)). 

11,(^4) contains A, it is open according to the second representation, 
and therefore it is a neighborhood of A. If A 0 , then we also have 
1 1 . ( ^ 0 . 

The equivalence of the two representations of Ae(A) requires proof: 
We shall show that CAt(A) = 1lc(Cv4). That a point x belongs to the 
left member of this equation and hence not to Ae(A) signifies that the 
e-sphere about x contains a point y e CA. This means that x lies in an 
e-sphere about y and this signifies that x belongs to the right member. 
We have thus shown that C</le(^4) c 11, (QA)\ that the reverse in-
clusion holds is proved analogously. The second representation of 
¿1,(^4) shows that Ae(A) is closed. Obviously, Ae(A) a A; Ac(A) can 
be empty even when A ^ 0 . 
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Fig. 4 

As an example, we introduce the set A of points (x, y) in R2 with 
x2 + y2 ^ 1 including the points (x, 0) with 1 x 2 but excluding 
the points (x, 0) with — 1 x 0. In Fig. 4, il£(^4) is bounded by the 
dotted curve and At(A) is shown hatched. 

We shall now prove some simple facts about U£ and Ae which will 
be used later. 

20.7 Theorem: 11£(</1£(.4)) c i ; 4 c ^(U^)). 

Proof of the first inclusion: If the point x belongs to 11£(</1£(̂ 4)), then 
we have that x e 1l£ (y) for some y e At(A). But <U£(?/) c A and hence 
x also belongs to A. One proves as easily the second inclusion. 

20.8 Theorem: d(CA, Ac(A)) e provided both sets are 0. 

Proof: The totality of those points which have a distance < e from 
AC(A) belongs, according to Theorem 20.7, to A. Thus, every point of 
C A has a distance ^ e from AC(A). 

20.9 Theorem: In a metric space, every open set 0 is representable 
as the union of a denumerable number of dosed sets and every closed set 
A as the intersection of a denumerable number of open sets. 

Proof: Such a representation for an open set 0 is 

0 = U A^O). 
n = l n 

Namely, if p e 0, then also <U1(̂ )) c 0 for suitable n; therefore, every 
n 
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point peO occurs in the union. On the other hand, it is clear that the 
union is contained in 0 . The second part of the theorem is the dual of 
the first. 

§ 21. Limit Values. Completeness 

We shall first show that for metric spaces, in contrast to general 
topological spaces (see the remark following Definition 13.9) the con-
cepts of limit point and contact point coincide. 

21.1 Theorem: In a metric space, a point p is a contact point of a 
set A i f , and only i f , p is a limit point of A. 

One must only prove that a contact point p of A can be represented 
as the limit of a sequence of points in A. Now for n = 1 , 2 , . . . there 
exists at least one point xn in each neighborhood U^Cp). The sequence 

n 
xn converges to p, which proves the theorem. 

21.2 Definition: A sequence xv x2, . . . is called a Cauchy sequence 
if for each e > 0 there exists a natural number n0 = n0(e) such that 
d(xn, xn,) < s for n, n' > n0. 

We note in this definition, which is similar to the definition of 
uniform continuity at the beginning of the preceding section, that in 
general topological spaces there is no possibility for defining the 
concept of a Cauchy sequence. 

Every subsequence of a Cauchy sequence is obviously again a 
Cauchy sequence. 

One should not be misled by the theorem usually proved in ele-
mentary analysis according to which every Cauchy sequence in the 
space R 1 of the real numbers is convergent and possesses a limit; this 
theorem is not valid in arbitrary metric spaces. On the rational line 
Q, for example, the sequence of approximating fractions for \/2 
forms a Cauchy sequence which is not convergent in Q. 

A convergent sequence xv x2, . . . in a metric space is always a 
Cauchy sequence. Namely, for each e > 0 there exists an n0 so that 
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£ £ for the limit value x we have that d(xn, x) < -, d(xn>, x) < - when 
2 2 

n, n' > w0; it follows that d(xn, xn,) < e. 

21.3 Theorem: If a Cauchy sequence possesses a convergent sub-
sequence, then the sequence itself converges and has the same limit. 

Proof: Suppose the Cauchy sequence xlt x2, . . . has the sub-
sequence xni, xn2, . . . which converges to x. For a given s > 0, there 

g 
then exists an n0 with d(xni, x) < - for ni > n0 and an n0 with 

2 
£ 

d(xn, xn,) < - for n, n > n0. Therefore, for all m > n0, the inequality 
2 

d(xm, x) d(xm, x j + d{xH, x)<e 

is valid for a suitable ni > n0, n0. 
Thus there are two types of Cauchy sequences—the convergent 

ones for which every subsequence converges to the same limit and 
those which do not converge and for which also no subsequence con-
verges. We now make the following definition. 

21.4 Definition: The metric space X is called complete if every 
Cauchy sequence converges in 3£. 

The real line R 1 is an example of a complete space; the rational line 
is an example of a non-complete space. 

The following pair of theorems are similar to the two Theorems 
17.2 and 17.1. 

21.5 Theorem: In a metric space, a complete subspace is closed. 

21.6 Theorem: In a complete space, a closed subspace is complete. 

Proof of Theorem 21.5: Let A be a complete subspace of the metric 
space X and let p be an arbitrary point in A. According to Theorem 
21.1, there exists a sequence xlt x2, . . . m A having the limit p. The 
sequence is Cauchy and has, because of the completeness of A, a limit 
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in A also. Because of the uniqueness of the limit, the latter is equal to 
p; therefore, p e A. This completes the proof of the theorem. 

Proof of Theorem 21.6: Let be a complete space and suppose A is 
a closed subspace of X- If xv x2, . . . is a Cauchy sequence in A, then 
it has a limit p in X. Thus, p is a contact point of A = A, which 
proves the completeness of A. 

I t follows from the preceding pair of theorems that in a complete 
space—for example, on the real line i?1—the concepts "complete" 
and "closed" coincide. 

The following theorem is important for the development of many 
subareas of topology, and we shall also use it decisively later 
(in § 35). 

21.7 Theorem: (Baire Density Theorem): Let X be a complete 
space and let Bit i = 1, 2, . . . , be a denumerable number of dense 
sets which are open in X. Then the intersection D Bi is not empty and it 
is even dense in X-

Proof: Let p be an arbitrary point in X and let U0 be an arbitrary 
(open) spherical neighborhood of p. We shall show that U0 contains 
at least one point a from C\Bi and the theorem will thus be proved. 

U0 n B1 is open and since B1 is dense this intersection is not empty. 
We can therefore choose an ate U0r\ B1 and, because of the regular-
ity o f X , there is an open spherical neighborhood U1 of ai such that U1 

is contained in V0 n Bv Moreover, the radius of U1 can be chosen 
smaller than 1. Again, Ux f> B2 is open and, because of the density of 
B2, this intersection is not empty so that we can choose a2 and U2 in 
a way analogous to that above. Continuing in this manner, for i = 1, 
2, . . . , points ai and spherical neighborhoods Ui can be chosen with 
the properties that ai e Ui,Ui <= n B{, and the radius of Ui is 
smaller than 1 /i. 

If n0 is a natural number and n, n' > n0, then an, an, e U^, and 
therefore we have that d(an, a„,)<2/w0. Thus the sequence av a2, . . . 
is Cauchy and has a limit a in the complete space X. The subsequence 
ai> «i+i. • • • a l s o has the limit a. All its terms are contained in [/¿and, 
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since Ui is closed, a is also contained in U^ This means that ae Ui 

c: Ui-1 n Bi<=^ Bi and a e U0. Thus, we have that also a e fl Bit 

which is what we were required to prove. 

One can show that for each metric space I there exists a complete 
A A 

space X which contains X. The construction of X from X proceeds accord-
ing to the pattern of the well-known Cantor-Meray procedure for the 
construction of the real numbers from the rational numbers with the aid 
of rational Cauchy sequences (which are also called fundamental 
sequences). This construction is of basic importance for many areas of 
mathematics. We shall first formulate this fact somewhat more exactly. 

21.8 Theorem: Each metric space I can be embedded in a complete 
A ' 

space X; more specifically, to each metric space X there exists a complete 
A A 

space, X which contains X as a aubspace and in which X is dense. X is 
uniquely determined up to isometry by these two requirements. 

Since we do not need this theorem in the sequel, we shall not carry out 
the rather wearisome proof in detail, but rather only give six individual 
steps in the proof, each of which is not too difficult to prove. 

(1) Two Cauchy sequences xlf x2, • • • and yx, yz, . . . are said to be 
equivalent if the real sequence d(xn, yn) is a null sequence; let X be the 
set of equivalence classes. 

(2) One defines a metric in X by assigning the distance d = 
lim d(yn, xn) to two arbitrary Cauchy sequences which are denoted as above. 
We have to show that this limit exists and depends only on the equiva-
lence class of the Cauchy sequences and further tha t the axioms [M 1]-
[M 3] are satisfied. I thus becomes a metric space. 

(3) X contains the subspace £ 0 of constant sequences—more specifi-
cally, those equivalence classes which contain the constant sequences. 

A 

3E0 is isometric to X and can be identified with X so tha t X X holds. 
A 

(4) X is complete. In order to show this, we must form a Cauchy 
sequence of Cauchy sequences of X and prove it converges in the sense of 
the metric just introduced. We obtain the limit as the diagonal sequence 
from the sequences a t hand. 

(5) X is dense in 3E. 
(6) Uniqueness: Two spaces and X2 of the type specified in the 

theorem are isometric. 
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§ 22. Diameter. Boundedness 

22.1 Definition: If A ^ 0 is a subset of a metric space X, then the 
least upper bound 

d(A) = sup d(x,y), taken over arbitrary x,yeA, (provided it is finite) 
is called the diameter d(A) of A, and, in this case, A is said to be 
bounded. If the least upper bound is not finite, then A is said to be 
unbounded. 

d(A) = 0 means tha t A consists of only one point. 
The diameter of a triangle in R2 is equal to the length of its longest 

side (also see Theorem 29.2, below). 

22.2 Theorem: For every set A ^ 0 , we have that d(A) = d(A). 

Proof: Certainly d(A) d(A). Let x, y e A; then for every e > 0 
there exist points x',y' e A such tha t d(x, x') < s and d(y, y') < e so 
tha t d(x, y) <; d(x, x') + d(x', y') + d(y', y) < d(x', y') + 2e d(A) 
+ 2e. Since this holds for every e > 0, it follows tha t d(x, y) <¡ d(A) 
and therefore d(A) = sup d(x, y) fS d(A). This completes the proof of 
the theorem. 

A covering D = {Dx | A from an arbitrary index set AJ of a space 
X or of a set A <= is called an e-covering provided all the d(Dx) are 
< e. 

22.3 Definition: A set i c J i s called totally bounded if it allows 
a finite e-covering for every e > 0. 

A totally bounded set A is also bounded. Namely, if for any fixed 
s > 0, D = {D{ | i = 1, . . . , m} is a finite e-covering of A, ai is a 
fixed point in D{, and d = Max d(ait ak) for i, k = 1, . . . , m, then 
d(x, y) d(x, a{) + d(ait ak) + d(ak, y) ^ d + 2e holds for any two 
points x, y e A and suitable i and k. 

On the other hand, a bounded set need not be totally bounded, as 
the set of unit points = (0, . . . ,0, 1 , 0 , . . .) (1 in the i-th place) in 
Hilbert space shows. This set has the diameter \/2 but admits no 
finite 1-covering. 
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22.4 Theorem: The metric space X is totally bounded i f , and only i f , 
every sequence in 31 has a Cauchy subsequence. 

Proof: First, let X be totally bounded. We start with an arbitrary 
sequence xv x2 For n = 1, 2, . . . , we consider the finite (1 jri)-
coverings T)n ofX- At least one of the finitely many sets of T)1 contains 
an infinite number of terms of the sequence; let these be (in the new 
notation) the points of the subsequence 

(1) 

This sequence, or more precisely the set of the points of this sequence, 
has diameter < 1. At least one of the finite number of sets of J)2 con-
tains an infinite number of terms of the sequence (1); let these be, 
again in the new notation, the points of the subsequence of (1) 

(2) xf\x<i\xf\.... 

This sequence has diameter < Continuing further in this manner, 
Ai 

we obtain a sequence (n) for every natural number n; if n > n', then 
the sequence (n) is a subsequence of the sequence (nr) and all sequences 
are subsequences of the initial sequence. The sequence (n) has dia-
meter < - . We now assert that the diagonal sequence 

» 3 . ( 1 ) ~ ( 2 ) r ( 3 ) 

is a Cauchy subsequence of the initial sequence. In any case, the sub-
sequence beginning with zjjf* is a subsequence of the sequence (k) and 

therefore it has diameter < i . Hence, if n, n' > n0, then it follows 
k 

that d(x%\ a4"')) < —and this completes the proof of our assertion 
n0 

and hence the first part of the theorem. 
Conversely, suppose X is not totally bounded. Then, for sufficiently 

small e = e0, there exists no finite £-covering of X- Choose the point 

ax arbitrarily in X- The -neighborhood of a1 has diameter < eand 
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hence it cannot cover all of 3E. Let a2 be chosen outside this neigh-

borhood. The union of the two j -neighborhoods of at and a2 cannot 

cover all of X- Hence an a3 can be chosen situated outside this union. 
Continuing further in this manner, we choose a sequence av a2, . . . 

£ 
in which every two points have a distance ^ - . Such a sequence 

o 
obviously has no Cauchy subsequence; this proves the second part of 
the theorem. 



Chapter 7 

COMPACTA 

§ 23. Characteristics of Compacta 

23.1 Definition: A compact metric space is called a compactum. 

23.2 Theorem: A compactum can also be described as a metric space 
X which satisfies any one of the following three equivalent conditions. 

(1) Every denumerable open covering of 3£ possesses a finite sub-
covering. 

(2) Every infinite subset of X has at least one accumulation point. 

(3) Every decreasing sequence Ax => A2 ~=> ... of non-empty closed 
subsets of X has a non-empty intersection. 

Proof: That a compactum has these properties was established 
earlier (see Theorem 16.4). In order to show, conversely, that each of 
the properties (l)-(3) implies the compactness of 3£, it suffices, accord-
ing to Theorem 16.5, to show that a metric space X with the property 
(2) possesses a denumerable basis. To this end, we choose an e > 0; 
the existence of infinitely many points ai e X with d(ait a ;) e (i, j = 
1 , 2 , . . . ) would obviously contradict (2) and, therefore, there exists 
a finite number of points ai(i = 1, . . . , k) such that every point x e 
X has a distance d(x, a j < e from at least one a{. Such a finite system 

of points is called an e-net. If for each e = - (n = 1 ,2 , . . . ) , we choose 
n 

an e-net, then we obtain in all a denumerable set which is dense in X. 
By Theorem 10.7, X thus has a denumerable basis, which is what we 
were required to prove. 

90 
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23.3 Theorem: A compactum can also be described as a metric space 
with the property that every sequence of points in X has a convergent 
subsequence. 

Proof: Let 3E be a compactum and suppose xt(i = 1, 2, . . .) is a 
sequence of points in X- Either there are a finite number of distinct 
points xit in which case one of them occurs infinitely often in the 
sequence and represents a convergent subsequence, or we can select 
from the sequence of the points a subsequence consisting of dis-
tinct points and then directly assume that the xi themselves 
are distinct. They form an infinite set which, because of the 
compactness of 3£, has an accumulation point p. If we choose for n = 
1, 2 , . . . one xi in each of the neighborhoods Hj(p), then the sub-

it 
sequence of the xi so chosen converges to p, and the property of the 
theorem is therefore proved. 

Conversely, suppose the metric space X has the property of the 
theorem. If A is an infinite set, then one can select from A a sequence 
x^i = 1 , 2 , . . . ) consisting of distinct points which then has a sub-
sequence which converges to a point p. Thus, p is an accumulation 
point of the set of the x{ and hence an accumulation point of A. 
Therefore, X is compact according to condition (2) of the preceding 
theorem. 

23.4 Theorem: A metric space X is a compactum i f , and only i f , it 
is complete and totally bounded. 

Proof: Let X be a compactum. The preceding theorem shows tha t 
every sequence from 3E always has a Cauchy subsequence, which ac-
cording to Theorem 22.4 means that X is totally bounded. By the pre-
ceding theorem, a Cauchy sequence has a convergent subsequence 
and hence it itself converges (see Theorem 21.3); this means tha t X is 
complete. 

Conversely, if X is complete and totally bounded, then every 
sequence has a Cauchy subsequence (by Theorem 22.4) and this 
Cauchy subsequence converges. Thus, X is compact (see Theorem 
23.3). 
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For the real space K*, this theorem asserts tha t in R" the complete sets 
are identical with the closed sets (cf. Theorems 21.5,21.6 and the a t tached 
remark), and tha t the compacta in R" are identical with the bounded 
closed sets, which proves a result already obtained along the way in § 16. 

We note further tha t the Hilbert cube (cf. example (b) in § 1) is com-
pact . Since, according to § 12, ip is homeomorphic to the infinite product 
I m of a denumerable number of unit segments, which is compact by the 
Tikhonov theorem (which we did not prove) (see end of § 17), our asser-
tion tha t the Hilbert cube ip is compact follows. An independent proof 
can be given by proving the completeness of the Hilbert space H and the 
total boundedness of Both can be proved without any particular 
difficulty. 

$ 24. Distance, Coverings and Connectivity 

24.1 Theorem: The following assertions are valid for arbitrary sub-
sets A ^ 0 , B ^ 0 of a metric space X: 

(1) If A is compact, B arbitrary, then there exists a point pe A such 
that d(A, B) = d{p, B). 

(2) If A is compact, B closed, A n B = 0 , then d(A, B) > 0. 

(3) If A and B are compact, then there exist points pe A, qe Bsuch 
that d(A, B) = d(p, q). 

(4) If A is compact, then there exist points x0,y0e A such that d(A) = 
d(x0, y0). 

Proof: (1) d is a continuous real-valued function (Theorem 20.5) 
on the compact set A. By Theorem 18.3, it takes on its minimum 
value d(p, B) for at least one point pe A. 

(2) d(p, B) = 0 would mean (by Theorem 20.4) that pe B, con-
trary to the assumption that A C\ B = 0 . 

(3) d is a continuous real-valued function on the compact space 
A x B (Theorem 17.5). I t takes on its minimum value d (p,q) for 
at least one point (p,q) in A x B. We then have that d(p,q) = 
d{A, B). 

(4) Analogous statements hold for the maximum value of the 
function d on the compact set A x A. 
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24.2 Theorem: (The Lebesgue Lemma): For every open covering 

X) = {Da | A from an arbitrary index set Aj of a compactum X there 

exists a real number r > 0 such that every set A £ with diameter 

d(A) < r is contained entirely in one set Dx. (Every number of this sort 
is called a Lebesgue number of X)). 

Proof: Suppose such an r did not exist. Then for each r = 

^(fc = 1 ,2 , . . . ) there exists a set Ak with d(Ak) < j- which is not 

contained entirely in one DA. In each Ak we choose a point ak and 
search for the limit a of a convergent subsequence of the sequence of 
the ak. The limit a lies in a set Dx and also an entire «-neighborhood 
1le(a) with suitable e > 0 is contained in this Dx. For all k, for which 

£ 1 € 
(1) d(ak, a) < (2) - < -,ak and Ak lie entirely in Dx, contrary to our 

2 k 2 
assumption. 

24.3 Theorem: In a compactum 3 f o r each system 91 = {Ax | A 
from an arbitrary index set A} of closed sets Ax with intersection CiAx = 

0 there exists an s > 0 such that the system 2l£ and the system where 

% = {B, = %(AJ | A e A}, % = {B, = I T O \\eA}, 

also have intersection D.BA = 0 and fl Bx — 0 . 

Proof: I t suffices to prove the assertion DfiA = 0 . Suppose that 

there existed no s of the required sort. Then, for every e = i (k = 1, 

2, . . .), the sets Bx of the system have an intersection which con-
it 

tains at least one point ak. The sequence of the points ak possesses 
in the compactum X at least one convergent subsequence which con-
verges to a point a. The points ak and all the ae with e > k belong to 
the intersection of the sets of SIj and therefore the same holds for a. 

k 

Then the following assertion holds for every index A e A : In every 

-neighborhood of a there lie points of Ah. Because of the fact that 



94 7 . COMPACTA 

Ax is closed, a therefore also lies in A^. Hence a also belongs to the 
intersection D 4̂A, contrary to the assumption that f)Ax = 0 . This 
completes the proof of the theorem. 

For compacta, the concept of connectivity can be stated in a some-
what simpler way than for arbitrary spaces. We first make a definition: 
I f e > 0 is a real number, then two points x, y of a metric space X are 
said to be e-chained if there exists a finite sequence of points x = x0, 
xv . . . ,xn = y'mX such that d(xi-1, x{) <e; i = 1, . . . ,n. For each 
fixed e > 0 the existence of an e-chain yields an equivalence relation 
among the points of X The classes of e-chained points are called e-
components Ce of 3E; each point xeX lies in one and only one of the 
e-components Ce = Cc(x), which contains all the points of X which 
are e-chained to x. The e-components Ct are open; for, together with 
each x e C e also all the points of the spherical neighborhood H£(x) 
obviously belong to Ce. The sets Ce are also closed because CCc is the 
union of all the e-components of X which are different from Cc and 
hence it is the union of open sets and therefore it is itself open. The 
Cc are therefore open-closed. Now if X is connected, X can contain 
only a single e-component, namely itself. This proves the following 
theorem. 

24.4 Theorem: In a connected metric space, every pair of points are 
e-chained for every e > 0. 

For compact spaces this theorem has a converse and yields the 
above-mentioned criterion for a space to be connected. 

24.5 Theorem: A compactum X is connected i f , and only i f , every 
pair of its points are e-chained for every e > 0. 

I t is sufficient to show that in a compactum X which is not con-
nected, the condition of the theorem is not satisfied, i.e. that there 
exist points x, y in X and a real number e > 0 such that x and y are 
not e-chained. In fact, if X is not connected, then there exists a parti-
tion 3E = ^ U X2. X j and X 2 are compact and we have that d(X1, X2) 
= e > 0 (Theorem 24.1 (2)). Obviously, no point of X j i s e-chained to 
a point of X2. This completes the proof of the theorem. 
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The space of rational numbers (which is not connected) shows that 
the theorem is not valid in general for metric spaces. 

24.6 Theorem: In a compactum X, the connectivity component 
C(x) of a point x is identical with the intersection D(x) of all the open-
closed subsets of X which contain x and identical with the intersection 
D'(x) of all e-components C\(x) for all e > 0. 

Proof: Evidently, C(x) <= D(x) D'(x) (even for arbitrary metric 
spaces). I t suffices to show that C(x) => D'(x). When ei (i = 1, 2, . . .) 
is a monotonically decreasing null sequence and if F = F(x) = 
ClCe.(x), then it suffices to simply show that C(x) F. To this end, 
it finally suffices, because of the maximality property of the com-
ponent C(x), to prove that the set F is connected. In order to show 
this indirectly, we assume that F is not connected. Then there exist 
in F, considered as a subspace, non-empty disjoint closed subsets A, 
B with F = A u B. Since the Ce.(x) and hence also F are closed, we 
have that A and B are also 3£-closed and compact, and we have that 
d(A, B) = e > 0. Suppose the point x lies, say, in A, and let y be an 
arbitrary point in B. We form 

U = 11,(4), V = %(B), G = X - (UuV). 
4 4 

£ 
We have that d(U, V) ^ Now, x and y are ^-chained for every s^. 

2 £ 
Whenever ei is < G must obviously contain a point of a sequence of 

2 
points joining x and y with the distance between successive points of 

g 
this sequence < eHence, G n Cc.(x) ^ 0 , whenever ei < - . The 

1 2 
closed monotonically decreasing sets G n Ce. (x) have an intersection 
which is different from 0 (see Theorem 23.2): 

0 ^ n (On CH(x)) = Gn( fl CH(x)) = G n F, 

which contradicts the efinition of F = A \j B. This completes the 
proof of the theorem. 
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However, in general, C(x) D(x) ^ D'(x) holds for spaces X 
which are not compact. 

24.7 Definition: A non-empty connected compactum is called a 
continuum. If it contains more than one point, it is called a proper 
continuum. 

Examples of continua are the finite closed intervals of R1 and also the 
bounded closed connected subsets of i f . 

The image of a continuum under a continuous mapping into a metric 
space is again a continuum (see Theorems 7.4 and 18.1). 

Concerning continua, we prove the following theorem. 

24.8 Theorem: A proper continuum X has the cardinality c of the 
continuum. 

Proof: A continuum X, being a compactum, has a denumerable basis 
(cf. Theorem 23.2, Proof), i.e the system of closed sets of 3E therefore has 
at most the cardinality c (Theorem 10.8). The same therefore holds for 
the subsystem of all one-point subsets of X, i.e. for X itself. 

On the other hand, we can construct a subset of X having the cardinal-
ity c: Let p0, pv p0 # Pi, be two points of I ; let U0 and Ux be 

spherical neighborhoods of p0 and px respectively with a radius < - and 
2 

with U0 O Ux = 0 . For every e > 0, p0 and pt are e-chained; from this 
we can conclude that U0 contains, besides p0, at least one more point 
Poi # Poo = Po- Let Uoo <= U„ and U01 c U0 be spherical neighborhoods 
of Po„ and p01 respectively with a radius < and with U00 O U01 = 0 . 

1 Analogously, let U10 <= U^ and f7n <= U1 with a diameter < — and 
A 

with U10 O Uu = 0 be determined. Continuing further this way, we 
obtain for every natural number r = 1, 2, . . . , 2r non-empty disjoint 
closed sets Vh . . . ^ with <1(0^ • • • ,r) < ~ and tJh . . . v v + x c Uh . . . v 

where the indices ix, . . . are either 0 or 1. For every such infinite 
sequence ilt i2, . . . there exists a nested sequence of closed sets whose 
diameters form a null sequence, i.e. there results a well-defined point in 
X. Distinct sequences obviously correspond to distinct points of X- Since 
the set of all such sequences has the cardinality c, this proves the existence 
of a subset of X having the cardinality c. This completes the proof of the 
theorem. 
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§ 25. Mappings of Compacta 

97 

We first recall that a continuous image of a compact space is 
compact (see Theorem 18.1) and generalize this assertion now to 
compacta. 

25.1 Theorem: A continuous mapping f of a compactum X into a 
metric space is uniformly continuous. 

Proof: Let s > 0 be given. For every xeX, let Ux denote the 
8X-neighborhood of x which is determined by a 8X with the property 
that 

d(f (x'),f (x)) < e provided d(x', x) < 8X. 

The totality of all Ux forms an open covering of X- Let r be a Lebesgue 
number of this covering (see Theorem 24.2). If xlt x2 E X and d(x1, x2) 
< r, then xlt x2 lie in one neighborhood Ux; i.e., there exists an x e 
such that xv x2 e Ux. Then we have that 

¿(/(®i)./(*.)) ^ d(f{xi),f(x)) + d(f(x),f(x2)) < 2e, 
which proves the uniform continuity o f f inasmuch as r depends only 
on the covering—therefore only on e—and not on the point xe X-

We shall now prove several simple facts about function spaces. Let 
£ be a compactum, 3) a metric space, and / , g two continuous map-
pings of 3t into 3). d(f (x), g(x)) is a continuous real-valued function on 
X and hence has a finite maximum which it takes on at at least one 
point of X. We set (as in § 1, example (c')) d ( f , g) = Max d(f (x), 
g(x)), where Max is taken over all x e X. Thus the set of all continuous 
mappings of X into 9) becomes a metric space <%(X, 9)). The validity 
of axioms [M 1] and \M 2] is immediate; one proves the triangle 
axiom [M 3] as in § 1, example (c'). 

25.2 Theorem: If X is a compactum and 3) is complete, then 3)) 
is complete. 

Proof: Let / 1 ; / 2 , . . . be a Cauchy sequence in ^(X, 9)). We must 
show that it possesses a limit in g(3E, 9)). For every e > 0, an n0 = 
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nQ{e) can be found such that d(fn(x), fn>(x)) ̂  d(fn,fn,) < s for all n, 
n' > n0 and all x. Therefore, for every fixed x e X,fi(x),f2(x), . . . is a 
Cauchy sequence in the complete space 5). Denote its limit by / (x). 
We shall prove that/ is continuous at every point a; = s ; 0 e l and that 
it is a limit value of our Cauchy sequence; this will then complete the 
proof of the theorem. 

The sequence/„/(«) is convergent to /(«); therefore, because of the 
continuity of the distance function d, the sequence d(fn(x), fni(x)) is 
convergent to d(fn(x), f(x)). From the last inequality, i.e. d(fn(x), 
fn'(x)) = d(fnJn') < e it therefore follows upon this passage to the 
limit that 

d(fn(x),f(x)) e for all n > n0 and all x. 

(This signifies the "uniform convergence" of the image sequence 
fi(x),f2(x), . . . to f(x), from which we deduce the continuity of/ in 
the well-known way.) We have that 

d(f (x), f (x0)) <L d(f (x), fn(x)) + d(fn(x),fn(x0)) + d(fn(x0),f(x,)). 

According to what we have already proved, the first and third sum-
ftiands are e provided n > n0 for arbitrary x; the middle summand 
is smaller than s provided d(x,x0) < 8 because of the continuity of 
/„. Thus, d(f (x),f (a;0)) < 3e for d(x, x0) < S, and this means tha t/ i s 
continuous at x0. 

The uniform convergence proved above now shows that / is the 
limit value of the sequence fv f2, . . . in 3(3E, ?)). 

25.3 Definition: If e > 0 and/: X -»• 9) is a continuous mapping of 
the metric space 3E into the metric space 9), then / is called an e-
mapping provided d(f~1(y)) < s for all y e / (X). 

For an e-mapping, it therefore follows from / (xx) = / (x2) that 
d(xv x2) < e, or, expressed differently, that d(xv x2) ^ e implies that 
/ (a^) ̂ ¿zf (x2). But we note that the satisfaction of the definition con-
dition d(f~1(y)) < s still does not completely suffice to guarantee that 
/ is monomorphic. The e-mappings surely are a forerunner to the 
monomorphic mappings. We denote the space of all e-mappings of the 
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compactum X into the metric space 3) by ^C(X, 9)). Then fl ^S{X, 9)), 

taken over all e > 0 or over all e = - (n = 1, 2, . . .), is equal to the 
n 

space of monomorphic continuous mappings of 3E into 3). 

25.4 Theorem: For every e-mapping f of the compactum X into the 
metric space 3), there exists an rj > 0 with the property that d(f (x^), 
f (xi)) < V implies d(xlt x2) < e. 

We shall prove that d(xlt x2) ^ s implies that d(f (a^),/ (x2)) ^ rj 
> 0. The set A of points (xlt x2) of the compact space X x X with 
d(xx, x2) e is closed and therefore compact. The function d is posi-
tive, real-valued and continuous on A. This yields the existence of an 
r/ > 0 of the desired sort (cf. Theorem 18.3). 

25.5 Theorem: If X is a compactum and 3) is an arbitrary metric 
space, then <5£(3£, ?)) is obviously an open subspace of ?)). 

Proof: Let / e g £ (X 9)) and d ( f , g) < - with the real number t? > 0 
2 

from the preceding theorem. We shall show that g is also an e-map-
ping; the theorem will then be proved. Let us assume for xv x2eX 
that g(xj) = g(x2) = y. I t then follows that 

d(f(x1),f(x2))^d(f(x1),g(x1)) + <%(*!), ¡7(*2)) + d(g(x2), f (x2)) 

< l + o + | . „ 

I t follows from the preceding theorem that d(xlt x2) < e. From this 
one can at first only deduce that d(g'1(y)) e. But now g~l(y), as the 
pre-image of a closed set, is itself closed and hence compact. Appeal-
ing to Theorem 24.1, (4), we thus obtain that d(g~1(y)) < s, which is 
what was to be shown. 



Chapter 8 

M E T R I Z A T I O N OF 
T O P O L O G I C A L S P A C E S 

§ 26. The Principal Theorems 

We have already established in § 2 that every metric on a set X 
induces a topology on X—and further that quite different metrics on 
X can induce the same topology on X- Conversely, however, not every 
topology Z on a set X is metrizable (cf. Definition 2.3), i.e. not every 
topology is induced by a metric. In this chapter, we shall deal with 
the question of which topologies ¡X are metrizable. In any case, the 
normality of % is necessary for the metrizability of X (see Theorem 
20.6)—furthermore, that every point of X possesses a denumerable 
neighborhood basis is necessary. But these conditions are in general 
not sufficient. An answer to the metrization problem was first given 
by P. Urysohn, who proved the following two theorems. 

26.1 First Theorem of Urysohn: A topological space, which is 
normal and possesses a denumerable basis, is homeomorphic to a subset 
of a Hilbert space and therefore it is metrizable. 

26.2 Second Theorem of Urysohn: A compact topological space is 
metrizable i f , and only i f , it possesses a denumerable basis. 

In this chapter, we shall prove both these theorems within the 
framework of the general metrization theorem. This theorem, which 
yields the complete solution of the metrization problem in the form of 
a necessary and sufficient condition, was discovered—after previous 

100 
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long and vain attempts in this direction had been made—in the years 
1950-1951 by Yu. M. Smirnov, J . Nagata and R. H. Bing, indepen-
dently of one another. In order to be able to formulate it suitably, 
we first introduce some definitions and auxiliary observations. 

26.3 Definition: A system of subsets D = {DÀ | A from an arbitrary 
index set A} of a topological space 3E is called a discrete system of sets 
if for each xeX there exists a neighborhood U of x which intersects 
at most one DÀ. A system of subsets (£ = {¿?M | p. from an arbitrary 
index set M} is called a locally finite system of sets if for each xe X 
there exists a neighborhood U which intersects at most a finite num-
ber of the 

The sets E of the definition are not necessarily meant to be 
mutually distinct; i.e., we can very well have that ju.e M, ¡x e M, fi 
fi', but E ̂  = Eyt. One can also say: To each index fj,eM there corres-
ponds a subset E^ <= X where distinct indices do not necessarily 
correspond to distinct subsets. Such systems are sometimes called 
"indexed systems." This remark holds as well for all the systems of 
sets subsequently discussed. 

On the other hand, the sets DÀ in the first part of Definition 26.3 
are by definition disjoint. The totality of all one-point subsets of X 
yields an example of a disjoint system which, in general, is neither a 
discrete, nor a locally finite, system. A discrete system of sets is 
locally finite, but not conversely. Every subsystem of a discrete sys-
tem is again discrete; every subsystem of a locally finite system is 
again locally finite. 

26.4 Theorem : A locally finite system of sets and a fortiori a dis-
crete system of sets of a compact space X is finite. 

Proof: For each xe X there exists a neighborhood Ux of x which 
intersects only a finite number of the E^ (in the notation of Definition 
26.3). A finite number of the Ux cover X and therefore there are only 
a finite number of the E . 
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26.5 Theorem: For a locally finite system (in the notation of 

Definition 26.3), 

= U ^ 
holds. 

Proof: According to Theorem 3.5, we have that UE^ 3 

trivially. In order to prove the reverse inclusion, let us take an x e 
U a n d a neighborhood Ux of x which intersects only a finite num-
ber of the Ep say E0, . . . , Er. Then x e E0 U . . . UEr must obviously 
hold. I t thus follows (see Theorem 3.6) that 

x e E0 U . . . U Er = £ 0 U . . . U l f c U £ „ . 

26.6 Definition: A system of sets I ) is called a-discrete if it is the 
union of a denumerable number of discrete systems T>n (n = 1 ,2 , 
...). A system of sets (£ is called a-locally finite if it is the union of a 
denumerable number of locally finite systems <£n(n = 1 , 2 , . . . ) . 

We write tr-discrete and the corresponding cr-locally finite systems 
and their sets in the form 

D = UD„ = U {Dn![ | A e / I } = {Dnli \ n = 1, 2, . . . ; Aeyl}. 
n- l n=1 

Here, the index set A should really have been denoted by An and the 
indices A really as Are; but, for the sake of brevity, we omit the index n 
by taking a correspondingly larger index set A, say the union of such 
An, and assuming a corresponding number of empty sets for the DnX. 

We can now formulate the next theorem. 

26.7 Metrization Theorem: An arbitrary topological space 3i is 
metrizable i f , and only i f , it satisfies any one of the following two 
equivalent conditions: 

\Mb\ 3c is regular and possesses a cr-discrete basis. 
\Mb'~\ X is regular and possesses a a-locally finite basis. 
The condition [Mb'] is due to Smirnov and Nagata; [Mb] is due to 

Bing. I t appears to be astonishing that such a straightforward con-
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dition governs the metrizability of an arbitrary topological space. 
Moreover, in both conditions, the word "regular" can be relaced by 
"normal" as the following proofs show; then [Mb] and [Mb'], res-
pectively, assert formally somewhat more as a necessary condition 
and somewhat less as a sufficient condition. We note that the condi-
tions fMb] and [Mb'] hold exactly the middle road between the con-
dition of denumerable neighborhood bases which is well-known to be 
a necessary condition and the sufficient condition of denumerable 
bases in the first Urysohn Theorem. 

We shall first prove that the Urysohn theorems follow from the 
metrization theorem. If X is normal with denumerable basis SB, then 
X is also regular and SB is cr-discrete. Therefore, according to the metri-
zation theorem, X is metrizable. This is the first Urysohn Theorem; a 
later proof (see § 28) shows that X is homeomorphic to a subspace of 
a Hilbert space. 

Now, let X be a compact space. Then X is normal. If X has a de-
numerable, hence a cr-discrete, basis, then according to the metriza-
tion theorem X is metrizable. Conversely, if the space X is metrizable, 
then X is normal and according to the metrization theorem it 
possesses a tr-discrete basis. According to Theorem 26.4, this a-
discrete basis is a denumerable union of finite systems and hence it is 
itself denumerable. This is the second Urysohn Theorem. 

We shall prove in § 27 that [Mb] is necessary for metrizability and 
in § 28 that [Mb1] is sufficient for metrizability. Since [Mb'] is a con-
sequence of [Mb], this will complete the proof of the metrization 
theorem. 

§ 27. Necessary Conditions 

We have to show that a metric space satisfies the condition [Mb]. 
As we shall see, this will be yielded essentially by the following 
theorem which was first proved by A. H. Stone. 

27.1 Theorem: Every open covering T> of a metric space X possesss 
an open a-discrete refinement. 
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A Hausdorff topological space which possesses the property which 
is stated in this theorem for metric spaces is called paracompact. This 
concept, which is important in many modern investigations, is used 
only implicitly within the framework of this little volume. 

Proof: Let £> = {DA | A e A} be a given open covering. W e assume 
the index set A to be well-ordered (cf. E . K A M K E [ 1 ] , § 4 1 ) so that for 
each pair of indices ¡i, v e A it is determined whether fi = v, n > v, 
ju < v and that every non-empty subset of A has a first element; 0 is 
the first element of A. Let n denote a natural number 1 , 2 , . . . which 
is first of all chosen fixed. We then define, by transfinite induction 
( s e e E . K A M K E [ 1 ] , § 3 6 ) , 

An0 = A±(D0), Am = A±{D, - U Anv,). 
2» 2» / O 

Then Anv c D„ and even every — -open-neighborhood of a point in 
2 " j 

Anv is contained in Dv. Further, we have that d(Anv, Anil) Si — pro-
Zi 

vided v ^ ju. and both sets are 0 . Namely, if say fj. < v, then Anii is 
contained in the complementary set CB of B = Dv — UAni>, and the 
asserted inequality follows from Theorem 20.8. We form further the 
open sets 

Em - ( A J , 
2»+ 2 

which are likewise contained in Dy, and assert that the system of sets 
(S„ = {Env} is discrete (always with fixed n). Namely, let p be an 

arbitrary point in X- We assert, more specifically,t hat the ^ ^ - o p e n -

neighborhood XJ of p intersects at most one Env. Namely, if we 
assume that U intersects Em in a point xv and Entl with (j. v in a 
point x^, then we would have that 

dip, xv) < dip, xJ < 

According to the definition of the Em , we have that 



§ 2 7 . N E C E S S A B Y C O N D I T I O N S 1 0 5 

<*(*„ y.) < yJ < ^ 

for suitable point yv e and y^ e Anfl. I t would follow from this that 

<%„ y„) < = contrary to ^ i . 

Thus, the system of sets (£ = U(£„ = {Env \ n = 1, 2, . . . ; v e A] 
is a-discrete. We shall prove that (£ represents a covering of 36, which 
will thus prove the theorem. Let p be an arbitrary point in X and 
suppose A is the smallest index with the property that p e Dx. Then 

some (— j -open-neighborhood Uof p lies, for suitable n, entirely in Dx. 

U has no point in common with AnX> (A' < A) for otherwise p would lie 
in Dy. Hence U lies entirely in Dx — \JAny. Therefore p lies in AnX 

and consequently in EnA, which completes the proof of the theorem. 
I t is now easy to verify [Mb], Let Dm , with m = 1, 2, . . . , be the 

covering of £ which consists of all ( — )-open-sphericalneighborhoods 

of all points of 36. The sets of X)m have diameter ^ m_r Let the open 

cr-discrete covering (£m be a refinement according to the preceding 
theorem of the covering Dm ; the diameters of the sets from (£m are 

likewise < ——T. (£ = UGL, taken over all m = 1, 2, . . . . is likewise 

still CT-discrete and we assert that it is a basis of 36. Appealing to the 
criterion of Theorem 10.2, we choose an open set 0 and a point peO 
and we have now to prove the existence of a set E in (£ with ps E <= 

0. Together with p, a suitable ( M -open-neighborhood F of p also be-

longs to 0 . In the covering (£re+ 2, p is covered by at least one set EeQ. n + 2 

of diameter < For each point xe E, we have that d(p, x) <[ ^ 
2 2 

< - - ; therefore, x lies in V. Thus, pe E cz 0, which is what we had to 
2" 

prove. Since a metric space is regular, and even normal, [Mb~\ is thus 
completely proved. 
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§ 28. Sufficient Conditions 

In this section, we assume that a topological space X satisfies the 
condition [Mb']. We have to prove the metrizability of X- The follow-
ing two lemmas establish first of all the subassertions. 

28.1 Lemma: If a topological space X satisfies the condition \Mb'~\, 
then every open set in X is the union of a denumerable number of closed 
sets. 

To understand this lemma, the reader should refer to Theorem 
20.9. 

Proof: Let 0 be an open subset of X and suppose xsO. Because of 
the regularity condition [Rg"~\, there exists an open neighborhood V 
of x with xe V <= V c: 0. We choose an element Env from the 
<7-locally finite basis (£ of £ (which exists by [Mb']) such that a;ei?ni, e 
V as is always possible for a basis according to Theorem 10.2. Be-
cause Env c V, it follows that x e Env <= 0. In this way, to each xeO 
there corresponds an Env = Em(x), in particular an index n = n(x), 
such that x e Env(x) c 0. For k = 1, 2, . . . , we form the sets Ek = 
UEnv(x) taken over those xeO for which n(x) = k. According to 
Theorem 26.5, we can deduce that 

Ek = UE m c 0. 

The Ek are closed and contained in 0. The union UEk of all the Ek con-
tains all the xeO and thus is identical with 0 ; this completes the 
proof of the theorem. 

28.2 Lemma: If the topological space X satisfies the condition 
[Mb'], then X is normal. 

Proof: Let A and B be disjoint closed subsets of £ ; let x range over 
the points of A and let y range over the points of B. For each x, we 
take, as in the preceding proof, a set Env(x) e (£ with the property that 
x 6 Env(x) c Em(x) <= CB, where the open set 0 of the preceding 
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proof is to be identified with C B. For A and correspondingly for B we 
form 

Fk = U E n v ( x ) over all x e A with n(x) = k, 

Gl = \JEnv(y) over all y e B with n ( y ) = I. 

Both of these sets are open and we have that Fk = U E n v ( x ) <=• CB 

(see Theorem 26.5); therefore, Fk n B = 0 . It follows in exactly the 
same way that Ot n A =0. 

Further, we form 

Uk = Fk- over all I <; k; 

Vl =Gt - UFk over all k ^ I. 
These sets are also open. Uk contains all x with n(x) = k and Vl con-
tains all y with n(y) = I. Finally, we form 

U = UUk with k = 1, 2, . . . ; V = UF, with I = 1,2, 
U is open and contains all xeA, i.e. U contains A; thus, U is a 
neighborhood of A and V is a neighborhood of B. Further, Uk n Vl 

= 0 ; for I k, this follows from the definition of Uk and for k ^¡L I 
it follows from the definition of Vt. From this it follows that U O V 
= 0 which shows the normality of £ . 

We now arrive at the metrization proper of As before, we assume 
that X satisfies the condition [Mb'] and accordingly possesses a o-
locally finite basis 

(£ = U(£„ = {Em\n = 1 , 2 , . . . ; veA} 

which consists of the locally finite systems (¿n. Moreover, we can 
assume according to the last theorem that X is normal. 

Each of the open sets Env is, according to Theorem 28.1, the union 
of a denumerable number of closed sets. Thus, we can apply the 
Urysohn Theorem 15.3 to each set Eny: For each Env there exists a 
continuous real-valued function <pm„ with 0 <pw(x) = 1 f° r which 
<pnv(x) > 0 if, and only if, x e Env. For each fixed x, we set 

<PnAX) 
<i>nA*) = 

V l + 
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summed over all v' e A. Since for fixed n a point x lies in only a finite 
number of the Env,, the sum under the radical is finite. The function 
>pm(x) has the following properties: 

(1) 0 ^ 4>Jx) ^ 1; 4,nv(x) 0 if, and only if, z e Em; 

(2) for fixed n and fixed x, only a finite number of <pn„(x) are ^ 0; 

(3) for fixed n, < 1, Zi^x) - ^nv(y)f < 2, where both 
sums range over all ve A. 

(3) follows from the definition ofi/)ni,(x) and by deleting the paren-
theses in the well-known way. 

We now form a generalized Hilbert space H using the set of all index 
pairs (n, v). Let a point p of H be a system of real numbers pnv, one 
for each index pair (n, v), which are called the coordinates of p; 
suppose that only a denumerable number of the coordinates of a point 
p are ^ 0 and that the sum over all coordinates of p is conver-
gent. H becomes a metric space by the definition 

summed over all index pairs (n, v). One verifies that the sum is finite, 
that d(p, q) is therefore well-defined, and that the axioms [M 1]-
\M 3] hold exactly as is the case in ordinary Hilbert space (§ 1, 
example (b)). This reduces to a special case for our present construc-
tion if A consists of only one element. 

We define a mapping / : X -> H by assigning to the point xe£ the 
point p = f (x)e H whose coordinates are given by 

In fact, for each x, according to (2), only a finite number of the 

to (3), smaller than 2 

point p = / (x) of H is actually determined. Concerning / , we now 

d{p, q) = VHq„ - iV)2> |2. 

pnv{x) are 0 and tl 



§ 2 8 . S U F F I C I E N T CONDITIONS 1 0 9 

prove: (a) / is a monomorphism; (/J) / is continuous; (y) / - 1 is conti-
nuous. This then exhibits/as a homeomorphic mapping of X into a 
subset of H and the metric of H evidently induces a metric in X, as 
we wished to construct. 

(a): I f x,y,x^ y, are two points of X, then there exists a neigh-
borhood of x which does not contain y and thus there exists a set 
Em which contains x but not y. Then <pn„(x) 0 but <pm(y) = 0 and 
pnv(x) > 0 but pnv(y) = 0. Therefore, p = / (x) and q - f (y) differ 
in these coordinates and are thus distinct points of H. It is thus 
shown that / is a monomorphism. 

(jS): Let xe X and e > 0 be given. We must find a We U(a;) with 
the property that 

{d(f(x),f(y))Y = 2(Pn , (y) - i U * ) ) 2 < £2 
n,v 

provided y e W . 
For every natural number N, 

I (Pn,(y) - *v(*))2 = 1 ¿ 1 (<P«,(y) - ¿ » ) 2 

n>N,v n>N 4 » 

< v 1 . 2 _ 2 

holds. The sum becomes < —when 2N > —. We choose N so that this 
2 e2 

is the case. 
Because of the local-finiteness of (£„, for every fixed n, there exists 

a neighborhood Ux of x which intersects only a finite number of the 
Entl. I f n ranges over the finite number of natural numbers N, then 
also only a finite number of the Env meet the intersection neighbor-
hood U = D Un. For the moment, this finite number of Env can be 
called the essential Env and let the number of them be s. The corres-
ponding s "essential" functions pnv(x) are continuous in x so that one 
can find neighborhoods Vn„ of x such that for these pnv(x), 

I Pn»iy) ~ PnAx) I < 7 7 = provided y e Vn„. 
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For the non-essential pnv with n ^ N, we have, according to the 
definition of U, that pnv{x) = 0 as well as pm(y) = 0 when y e U, so 
that for these pnv, \ pm(y) — pnv(x) \ = 0 holds, if we restrict y to U. 
I f we form the intersection neighborhood W = (fl Vnv) n U, where 
only a finite number of "essential" Vnv are meant, then, combining 
all essential and non-essential pnv with n < N and arbitrary v, we can 
conclude that: I f a; e W, then 

ez E2 

2 (pn,(y) - iU*))2 <«v.= ^ 
n S N,v 2 3 2 

holds. The desired result follows from this formula together with the 
end formula of the first subsection under (j8) by addition. 

{y) f'1 maps / (X) monomorphically onto X- I f again x =f~1(p), 
then we have to show that: For each neighborhood U e U(aO there 
exists a 8 = S(U) such that y — f^iq) e U provided d(q,p) < S. 
Hence, let U be given. There exists an E^^ with x e EnaVo c U. We 
shall show that is suffices to set S = p ^ ^ x ) . Namely we have that 

I P„0,0(y) - Pno*„(*) I ^ V 2 {pnv{y) - pnv(x)f = d(p, q). 
n,v 

But it follows from | pnoJy) - pnoJx) \ < pnoJx) that p^Jy) ^ 0 
and therefore that y e En0„0 c U, which is what we had to prove. We 
have thus shown that X can be embedded homeomorphically in H 
and hence the metrization theorem is completely proved. 
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Chapter 9 

POLYHEDRA 

§ 29. Simplexes 

We shall now study a very much more special class of spaces—the 
so-called polyhedra. They serve first of all in the next chapter to 
build up dimension theory. Later, they will form the foundation for 
algebraic topology. Polyhedra will be defined in an altogether different 
way than the spaces studied up to this point. Namely, we combine 
them from simple, perfectly obvious building blocks. This occurs 
within an ^-dimensional Euclidean space RN . Accordingly, we discuss 
first the simplest properties of RN , but we must assume a certain 
familiarity with the fundamental geometric and algebraic facts— 
since we must start at some definite point in order to make progress. 
Still some basic material is needed in order that our subsequent dis-
cussion be as clear as possible. 

1. We denote the points of R" by small German letters which simul-
taneously mean the corresponding position vectors, I = (xv . . . , xs). 
The unit points e{(i = 1 , . . ., N) have i-th coordinate equal to 1 whereas 
all the other coordinates are zero. We say that the n + 1 points p0, . . . , 
p„ (n & 1) are independent if the n vectors Pj — p0, . . . , p„ — p„ are 
linearly independent; furthermore, a single point p0 is said to be in-
dependent. For example, the zero point 0 and e 1 ; . . . ,eA. are independent. 
The maximal number of independent points in RN is N + 1. 

Every non-empty subsystem of an independent system of points is 
again independent. The considerations of the following subsection 3 show 
that the definition of independence is symmetric in the n + 1 points 
Po P»-

2. First of all, let p0 p„ be arbitrary points in RN. The set of 
points x of the form 

113 
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Fig. 5 

* = Po + (Pi - Po) + • • • + /¿„(P„ - Vo), 

with arbitrary real ¡j.x /¿n, is called the (linear) subspace spanned by 
p0, . . . , p„ (see Fig. 5). These points can also be written in the form 

n 
X = (1 - J H)Vo + fhPl + • • • + f̂ nVn 

n n 
= 2 *(P< with = 

¿=o ¿-o 
Here, as in the sequel, we sum over i from 0 to n whereas over j from 1 
to M. 

n n 
Also, conversely, every point 1 = 2 \P< with 2 ^ = 1 belongs to the 

¿«0 i - 0 
subspace thus spanned since 

n 
3E = 2 = Po + Al(Pl - Po) + • • • + ^n(P* - Po)-

i-0 

3. The following theorem holds: p0, . . . , p„ are independent if, and 
only if, the representation i = 2^<P. with 2 ^ = 1 of the points of the 
spanned subspace is unique. That is, if these points are independent, 
then it follows from 

3E = 2 = 2 F<Pi with 2 A( = 2 H-i = 1 

i - 0 i - 0 ¿"0 i - 0 
that 

- m)Vi = o, 2 a - = o, 2(A, - (Pi - Po) = 0 
and therefore A, = for j = 1 w and then also A0 = /¿0. 

Conversely, if this representation is unique, then it follows from 
2a,(p, - Po) = 0 that 

n n n n 

2 aiVf ~ 2 «/Po = 0 ; (1 - 2 «/) Po + 2 ai Vi = Po-
j-1 j-1 j-1 j-1 
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Here, the sum of the coefficients equals 1; because of the uniqueness of 
the representation we therefore have that a, = 0 for j = 1, . . . ,n, i.e. 
the p0 p„ are independent. For n = 1, we obtain the line joining p0 

and px, i.e. the set of points I = Ap0 + (1 — A)px; (1 — A): A denotes the 
division ratio into which the segment (PoPi) is divided by i . 

4. We say that the subspace spanned by the n + 1 independent 
points p( (i = 0, . . . , n) has the (algebraic) dimension n. If one chooses 
the fixed independent points p( as the spanning points, then, according 
to what we have already proved, the representation I = 2\P< with 
2Aj = 1 (summed from i = 0 to i = n) of the points of the subspace is 
unique. Therefore, the A, can be considered to be the coordinates of the 
points I of the subspace. They are called the barycentric coordinates of the 
subspace with the reference points p 0 , . . . , p„. This nomenclature goes 
back to an interpretation in mechanics: Imagine masses with a total sum 
of 1 distributed at the points p(; then i is the center of gravity of these 
masses. In this interpretation, the uniqueness of the A< also appears 
plausible; one has naturally to allow negative masses. The spanning 
points Pj have the coordinates of the unit vectors (0, . . . , 0, 1, 0, . . ., 0) 
as barycentric coordinates. If one takes the unit vectors e, as spanning 
vectors of an (N — l)-dimensional subspace, the so-called unit hyper -
plane, then there the barycentric coordinates coincide with the ordinary 
cartesian coordinates. 

5. Let m points i* (k = 1, . .., m), 
n n 

I* = 2 A« P, With 2 A„ = 1 
¿-0 <-o 

be given in the subspace spanned by the independent points p( (i = 0, 
. . . , n ) . 

We assert: These m points xk are independent if, and only if, the 
coefficient matrix (Aw) has the rank m.In fact, the xk are independent if, 
and only if, the representation of the points 3 = Jftt1* with 2 f t = 1 
(summed from k = 1 to k = m) spanned by them is unique. Now, 

m n m n n 
3 = 2 M*1* = 2 ( 2 /^ Jp i = 2 w i t h 2 \ = 1 

*- l i_o*- l i-0 i -0 

and the \ are uniquely determined by 3; this yields n + 1 equations m 
^ = 2 * = 0 n 

t - i 
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for the m "unknowns" fik> and the solution is unique if, and only if, the 
rank of the coefficient matrix is m. Thus, n + 1 is the maximal number of 
independent points in the subspace spanned by p0, . . . , pn. 

29.1 Definition: Let p0 pB be independent points of the 
Euclidean space RN. The set of all points i of the form i = 
with 2A¿ = 1 (summed over i = 0 n) and A¿ > 0 is called the 
open n-dimensional simplex (a) = (<rn) = (p0 . . . pB) with the vertices 
p0 pn. If one demands instead of A¿ > 0 only that Ai 0, then 
the oorresponding set is called the closed n-dimensional simplex 
[cr] = [<rn] = [p0. . . pn], By simply the n-dimensional simplex 
a = on = p 0 . . . pn we understand the open or closed simplex. The 
set a" = [an] — (an) is called the boundary of the simplex an. For 
a1, we write ó. 

The "dimension" n of the »-simplex a" will, to distinguish it from 
geometric dimension to be introduced in the next chapter, also be 
called the algebraic dimension of a". 

For n = 0, the w-simplex is a point; for n = 1 it is an open interval 
(a, b) or a closed interval [a, 6]; for n = 2 it is a triangle (including the 
inside of the triangle); for n = 3 a tetrahedron, a" can be thought of 
as the simplest n-dimensional figure in the geometry of the space RN. 

We have that [o°] = (a0) and therefore the boundary of a0 = 0 , as 
one can verify directly on the basis of the definition. 

[*"] is a closed and bounded point set in RN and hence it is a com-
pact point set in RN. (an) is in general not open in RN, but it is 
however open in the embedded »-dimensional subspace. The 
(N — l)-dimensional simplex, with the vertices tv . . . , tN, situated 
in the unit hyperplane is called the unit simplex of RN. 

[a] and (a) are convex point sets of R". Namely, if i j = jAuPi and 
*2 = 2*a<P< = Z-^i = 1. summed over i = 0, . . . , nt Ají 9 
0, A2< ^ 0 are points from [o] and if x is a point on the segment [ i ^ ] 
joining i j and 3ta> * = + (1 - /i)ia with 0 ^ /x ^ 1, then 

n 
1=2 (Ai + (1 - f*)Ati)Vi, i-0 

where the sum of the coefficients is again equal to 1 and the individual 
coefficients are not negative; therefore, x likewise lies in [o]. 
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One shows the convexity of (a) in a similar way. Moreover, [®] is the 
convex hull of the spanning points p0 p„. 

The r-dimensional simplexes which are spanned by arbitrary r + 1 
of the n + 1 vertices of a are called the r-dimensional face simplexes 
—briefly, the faces ar of a = cr". The points of aT are characterized by 
the fact that those barycentric coordinates which correspond to the 
vertices which are not involved in ar vanish. The number of all r-

dimensional faces of a equals ^ ^ J j • For r = 0, these are the n + 1 

vertices of a, for r = 1, the ^ j edges. a itself is considered to be an 

improper face of a; the lower-dimensional faces of a are called the 
proper faces. In case r is < n, we say that ar is incident with a = an 

and we write ar -< a". 
The faces [ar] of a are subsets of [cr]. The totality of all open face 

simplexes of a, including a itself, forms a partition of [cr]. 
For each r-dimensional face simplex aT with O f S r i ^ w — 1 of a, 

there exists an opposite (n — r — l)-dimensionalface simplex <jn~r'1, 
which is spanned by the (w + 1) — (r + 1) = w — r vertices of a 
which are not involved in aT. on~r~1 is also called the simplex oppo-
site to ar. Only a itself has no opposite simplex. 

29.2 Theorem: The diameter of an n-simplex an is equal to the 
length I of its longest edge. 

Proof: If x and t) are two points of a and if, for instance, p0 is one 
of the vertices of a which is the farthest removed from i, then the 
length d(i, t)) of the segment [i, q] is at most equal to the length 
d(x, p0) of the segment [i, p0]. For, the closed sphere with center i and 
with the radius d(i, p0) contains all the vertices p0, . . . , pn of a and 
hence all of a and, in particular, 5 also. If, say, px is one of the vertices 
of a which is the farthest removed from p0, then d(x, p0) ^ d(p0, Pj) 
for the same reason. The assertion now follows from d(x, t)) ^ 
d(x, p0) ^ d(p0. Pi) ^ I• 
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29.3 Theorem: (a) = (p0 . . . pn) with n > 1 consists of all points t of 
the open interval (p0, 3) with arbitrary $from (pt . . . p„). 

Proof: Let 1 e (o) with the representation x = = 1» A< > 0 
summed over i = 0, . . . , n. If we set 

n n ^ 

2 A/ = A and hence A0 + A = 1 > 2 V = 1> 
j-i j-iA 

then it follows that 

n n \t 
* = AoPo + 2 = A0P0 + A 2 J V, = A0P0 + A3 

i-i /=iA 

with 3 e (px . . . p„). This representation 1 = AoPo + A3 with A,, + A = 1 
is obviously unique. 

The set (a) and likewise the set [a] determines the vertices p( (i = 0, 
. . ., n) uniquely. Since [<r] is the closure of (a), if suffices to show this 
for [<t]. This will be accomplished by the following assertion: Every 
point 1 ?! p, of [a] is the midpoint of a suitable segment [93] with t), 3 e 
[a], T) ± 3; however, this does not hold for the p(. We give an indication 
of the proof: For the 1 ^ pi; the assertion follows from the last theorem 
since every such point 1 belongs to an open face simplex of a of dimension 
^ 1. We easily recognize that a vertex p, cannot be the midpoint of a 

segment [5, 3], i.e. we cannot have p( = ^(t) + 3), if we write this equa-
£1 

tion in barycentric coordinates. 

§ 30. Simplicial Complexes and Polyhedra 

30.1 Definition: A set K of a finite number of simplexes in a 
Euclidean space RN is called a simplicial complex—briefly a complex— 

if the following two conditions are satisfied: 
[(S 1] Together with every simplex, each of its faces also occurs in K. 
[<S 2] I f ox and <r2 are two distinct simplexes of K, then (o-j) n (cr2) = 

0 -
The largest of the (algebraic) dimensions of the simplexes of K is 

called the (algebraic) dimension of K. A subset A of a complex K is 
called a subcomplex of K if A is a simplicial complex, i.e. the condi-
tion [$ 1] of Definition 30.1 is satisfied; the condition [<S 2] holds in 
this case automatically. 
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For every integer q ^ 0, the simplexes of a complex K having 
dimension at most q obviously form a subcomplex; it is called the 
q-dimensional skeleton K? of K. If o-j and <t2 are two distinct simplexes 
of K, which have the vertices p 0 , . . . , pf, and only these, in common, 
then we surely have that [<rx] n [o-2] [ p 0 . . . p,]. Any common 
point z of [<rx] and [ct2] lies in a well-defined open face simplex (a\) of 
a i and in a well-defined open face simplex (a2) of a2. The condition 
[<S 2] then asserts that = a2. The simplex is then a face of 
[p0 . . . pr]. Therefore the following assertion holds: 

2'] If ctj and ct2 are two distinct simplexes of K, then [o-j] n [<r2] 
is empty or a common closed face simplex of o1 and a2. 

Since, as we have seen, not only is [$ 2'] a consequence of[S 2], but 
also, obviously, [<S 2] is a consequence of [<S 2'], and the condition 
[<S 2'] is equivalent to the condition 2] in Definition 30.1. 

Examples: (1) The totality of all the faces of a simplex a = CT", 
including a itself, forms an «-dimensional complex Tn. 

(2) The totality of all the proper faces of a simplex a = a n + 1 form 
an re-dimensional complex 2"-

A further example of a 2-dimensional complex is sketched in Fig. 
6. 

Fig. 6 

30.2 Definition: Two simplicial complexes Kj and K2 are said to 
be isomorphic—in symbols, « K2—if the simplexes of Kj and K2 

correspond, in every dimension q = 0,1, 2, . . . , in one-to-one fashion 
such that incident simplexes always correspond to incident simplexes. 
One also says that Ka is a realization of Kx. 



120 9. POLYHEDBA 

Every simplicial complex Kadmits two distinguished realizations: 

I. Unit realization. We correspond to the vertices p̂  (i = 1 a0) 
of K the unit points e4 in the Euclidean space R*0; to a simplex of 
K, which is spanned by certain of the vertices pi, we correspond the 
simplex in R?° which is spanned by the corresponding vertices. 

It is clear that we obtain as the image K' of K a simplicial complex 
K', and indeed a subcomplex of the unit simplex of R*0 and that K' is 
isomorphic to K: Each r-simplex of K goes over into an »--simplex of 
K', two simplexes ar and a' of K which are disjoint or have the com-
mon face a1 go over, because of the independence of the unit points, 
into simplexes which are disjoint or have the image of a' as a common 
face. 

In order to introduce the second realization, we first recall the follow-
ing two theorems of elementary geometry of R ". Any m points py ( j = 1, 
. . . , m) of R" are said to be in general position provided every subsystem 
of the Py of N + 1 or fewer points is independent. In particular, every 
independent point system is in general position. Then, as is well known, 
the following assertions hold: 

A. If the points p/ ( j = 1, . . . , m) of Rx are in general position, then 
there exist spherical neighborhoods (U£(pJ) of the py such that every sys-
tem of points (j, with e H£(p>) is in general position. 

B. If p, ( j — 1, . . . , m) are abritrary, but not necessarily 
distinct points of R", and if the 1i£(py) are arbitrary spherical neighbor-
hoods of the Py, then there exist points e 1lt(Py) which taken together 
form a system in general position. 

II. Realization in R2n+1. Suppose the complex K of dimension n 
has the vertices p{ (t = 1, . . . , a0). In i i 2 n + 1 we choose a0 points in 
general position and assign to each (¡'-simplex aq of K, which is spanned 
by certain of the p i ; that simplex in R2n+1 which is spanned by the 
vertices with the same indices. 

In this way, one obtains as the image K' of K a simplicial complex 
which is really isomorphic to K: To each g-simplex of K and its q + 1 
independent vertices there correspond q + 1 independent vertices in 
K' and thus really a g-simplex. If ap and ag are disjoint simplexes of 
K, then their (q + 1) + (p -f 1) vertices correspond under this cor-
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respondence to certain vertices of K' which because of their number 
p + q + 2^2n + 2 are independent, and which therefore span dis-
joint image simplexes. If a p and aq have a ar as a common face, then 
for the same reason the same holds for the image simplexes in K'. 

30.3 Definition: The field of a simplicial complex K of RN, i.e. the 
set of points of all the simplexes of K equipped with the topology in-
duced by RN, is called a rectilinear polyhedron R = | K |. K is called a 
simplicial decomposition or a triangulation of R. Every homeomorphic 
image of a rectilinear polyhedron R = | K | in an arbitrary Hausdorff 
space is called a (curvilinear) polyhedron-, in this connection, the sim-
plexes of K are called (curvilinear) simplexes and the image of K is 
called a (curvilinear) triangulation of the polyhedron. 

B y a polyhedron R = | K | without further requirements we there-
fore understand a curvilinear polyhedron. Curvilinear triangulations 
and simplexes for this reason will play a minor role for us inasmuch 
as we can study their properties just as well from their rectilinear pre-
images. A rectilinear polyhedron and thus also an arbitrary poly-
hedron is a compact space. 

We note that by definition a polyhedron R = | K | is always given 
together with a triangulation K. If K and K' are isomorphic simplicial 
complexes, then the corresponding polyhedra | K | and | K' | are ob-
viously homeomorphic, since each pair of corresponding simplexes 
are, as simplexes of the same dimension, mapped on one another by 
an affine mapping and these affine mappings can obviously be com-
bined into a homeomorphism of | K | and | K' |. The converse of this 
theorem is not valid. Two distinct triangulations of the same poly-
hedron are not interrelated in a simple relation. Even two edges of 
a curvilinear polyhedron, for instance, can be situated with respect 
to one another as are the segment — ir^Lx^ +77-of the (x, y)-plane and 

the curve y = x sin - for —irf^x<L augmented by y = 0 for 
x 

x = 0, which have an infinite number of intersection points with one 
another. It is not immediately clear a priori whether a polyhedron 
can possess triangulations of different algebraic dimensions; in 
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any case, we shall show in the last chapter that this is not the case. A 
polyhedron R = | K| carries a metric according to the embedding of 
K in the Euclidean space RN, and therefore it is a metric space. The 
different metrics, which arise from the different realizations of K, are 
topologically equivalent (see Definition 2.3). The metric resulting 
from the unit representation of K is called the unit metric of R = | K |. 

Examples of polyhedra: (1) The points of an w-simplex [a] = [aB] 
form a polyhedron i™ with the triangulation T" of example (1) 
associated with Definition 30.1. T 1 is called an »-dimensional ele-
ment; every homeomorphic image of Tn, for example, a closed n-
dimensional sphere or a closed w-dimensional ellipsoid, is also called 
an ra-dimensional element. 

(2) The points on the proper (at most w-dimensional) faces of an 
(n + l)-simplex a"+ 1 form a polyhedron with the triangulation 

of example (2) adjoined to Definition 30.1. S" is called the n-
dimensional sphere; also every homeomorphic image of Sn, for 
example, the boundary of an (n + l)-dimensional ball is called an 
n-dimensional sphere. 

The open simplexes of a triangulation K of the polyhedron R = 
| K | form, because of 2], a decomposition of R (cf. the Index). In 
regard to this, we make the following definition. 

30.4 Definition: If j is a point of the polyhedron R = | K | with 
the triangulation K, then the uniquely determined simplex of K 
which contains x as an open simplex is called the carrier simplex or 
briefly the carrier of i . 

30.5 Definition: Let p be a vertex of the simplicial complex K. 
The set of all the points of the polyhedron R = | K |, whose carrier 
simplex has p as a vertex, is called the (open) star, st p, of p. 

si p is an open set in R. For, we have that st p = R — | K* | where 
K* is that simplicial complex which consists of all the simplexes of K 
which do not have p as a vertex; | K* | is closed and therefore st p is 
open in R. 
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30.6 Theorem: The vertices pi (i = 1 , . . . , m) of a simplicial 
complex K are the vertices of the same simplexes of K i f , and only i f , the 
stars st Pi have an intersection which is ^t 0. 

Proof: If the vertices p4 are situated on a simplex of K, then we 
obviously have that l"l st Pi ^ 0 - Conversely, if this inequality is 
satisfied and if 2 is a point of this intersection, then all the p,- lie on 
the carrier simplex of x. 

§ 31. Subdivisions 

By the center of gravity a = an of a simplex a = a" = p0 . . . pn we 
understand the point whose barycentric coordinates are all equal to 

\—-—. The line connecting the centers of gravity of two opposite 
n + 1 
simplex faces of a, say a1 and an~T~1, is called the median of a. As a 
generalization of a well-known theorem about the medians of a 
triangle, we prove the following theorem. 

31.1 Theorem: The medians of a simplex on pass thro/ugh the center 
of gravity of a; if a median joins the center of gravity of ar with the 
center of gravity ofan~r~1, then it is divided in the ratio (n — r): (r + 1) 
by 5. 

Proof: The coordinates of the centers of gravity of aT and crn_r_1 

are, for a suitable numbering of the vertices of a: 

i T f i ' - • •' r r r • • •' ° ) * ( r + 1 z e r o s ) ' 

¿«-r-1. jo o, — , . . . , — — ) , (n - r zeros). 
\ n — r n — r) 

Now one can form the vector 6 which was just given as a linear com-
r + 1 bination of these two vectors and indeed with the factors and 

n - r n + 1 

, which make evident the asserted division ratio. 
n + 1 
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31.2 Definition: Let K be a rectilinear simplicial complex. The 
simplicial complex K' is called a subdivision of K if the following two 
conditions are satisfied: 

[T 1] | K' | = | K |, i.e. the corresponding polyhedra are identical; 

[T 2] Each open simplex (a1) of K' is contained in an open simplex 
(o) of K. 

The concept of a subdivision carries over, meaningfully, to cur-
vilinear simplicial complexes. 

31.3 Theorem: For every rectilinear simplicial complex K there 
exists a subdivision K', the so-called normal subdivision of K, with the 
following properties: 

(a) The vertices of K' are the centers of gravity a of the simplexes a 
of K. 

(b) The vertices a0, . . . , am are the vertices of a simplex a = a'm of 
K' i f , and only i f , the corresponding simplexes a0,. . ., <rm of K form, 

Fig. 7 

In Figure 7, T1 and T2 are pointed out as examples of normal sub-
divisions of complexes, which correspond to the segment a1 and the 
triangle a2 (in the sense of the example associated with Definition 
30.1). 

We preface the proof with several observations. If o0 -< <rx -< . . . 
-< <Tm, then all the vertices <r0, . . . , am lie in [<7m]; all the a0, . . . , am 

are simplex faces of om. If we write down the barycentric coordinates 
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of ct0, . . . , CTm (with the vertices of am as reference points), we recog-
nize the independence of the coordinate vectors and thus (§ 29, 5.) 
the independence of the points o0, . . . , om; thus, (b) really determines 
the simplexes a' = a 0 . . . 6m. More specifically, we recognize thereby 
tha t (<x') <= (<Tm). To this end, we must identify the points xk (k = 1, 
. . . , m) with the 6k. If the point 3 lies in (a'), i.e. all the ¡Mk are > 0, 
then all the \ are also > 0, i.e. 3 lies in (om). 

The vertices <5̂  of a simplex a' of K' allow, according to (b), a natural 
correspondence, namely, according to the dimension vi of the corres-
ponding simplexes oj = a*'. a0 is called the "first" vertex of a', dm is 
called the "last" vertex of a . We can make this explicitly clear for all 
the simplexes a of the above figure. 

We must prove tha t the simplexes a form a simplicial complex K', 
i.e. that [<S 1] and [<S 2] hold and further that K' is a subdivision of 
K, i.e. tha t [T 1] and [T 2] hold. [<S 1] is evident according to the con-
struction of K', namely, according to (b). We have just proved [T 2] 
by means of the relation (a') c: (am). Both remaining assertions [<S 2] 
and [T 1] are indeed intuitively evident, but for a rigorous 
proof they require the following theorem which is not so evident. 

31.4 Theorem: Let ¿be a point of the. simplex (a). The following asser-
tions are valid: (a) If 1, t), 1 / r), are two points of ¿, then the open in-
tervals (51) and (st)) have no points in common, (b) Every point 3 distinct 
from s of the open simplex (a) lies in an open interval (53) with suitable 1 e <j. 
[a is defined in Definition 29.1.] 

In toto, the theorem asserts that the projection rays completely fill the 
simplex without intersections from s to the boundary a of the simplex. 

Proof: (a) Lets = ^X'P« = 1. where we always sum over i = 0 
n, \ > 0. Let 1 = 2fiP<. Zfi = 1, £ ii 0, lie on 6 so that $t = 0 for at 
least one index. Likewise, let I) = ^«P»' = 1> Vi = r)k, = 0 lie on 
a. Let 3 be a point common to (51) and (si)); then 

3 = ax + (1 - a)s = fa + (1 - /3)S with 0 < a < 1, 0 < j8 < 1. 

For the two distinguished indexes j and k, this signifies in barycentric 
coordinates that 

(1 — a)\f = fa + (1 — fi) and hence that (/J — a)\, = 
of t + (1 — a)Xk = (1 — j8)At, and hence that (o — )S)At = af t . 
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Since Ay, Xk, a, fi > 0 and ijy, g 0, it follows that /? ^ a, a ^ o = 
I t follows from the representation of 3 that at = ag and that 1 = 1 ) , con-
trary to our assumption; therefore, there does not exist a 3 of the assumed 
sort. 

(b) Let 3 = 2fiP<> = 1> ft > 0- We must find a point x with 

I = a3 + (1 — a)S and I e 6. 

In barycentric coordinates, this signifies that a is to be determined so 
that 

(= 0 for at least one i, 
^ 0 for all i. 

Since not all = Aj, there exist indices i with solutions a for the equa-
tion; since = = 1> there even exist indices with — A( < 0 and 
therefore positive solutions a. We now fix a as the smallest positive 
solution; suppose it occurs for the index j so that 

fy = «(£, - Ay) + Ay = 0. 

Let 1 be fixed in a corresponding manner. If £4 — Af ^ 0, then = 
a(£( — Aj) + Aj ^ 0. For the indices i with — A( < 0. there exists an 
o with a(fj — Aj) + Aj = 0 and, because of the choice of a as minimal, 
surely a ^ a > 0. From this it follows that = a(f4 — Aj) + AJ ^ 0. 
Thus, in reality I e <j. Moreover, 

3 = - * + 

1 r 
with 1 = > 0. This completes the proof of the theorem. a Ay 

We now conclude the proof of Theorem 31.3 by proving the re-
maining assertions [<S 2] and [T 1] by induction on the dimension q of 
the 5-dimensional skeleton K ? of K = K„. For q = 0, K0 = (K0) ' ; 
hence, | K0 | = | (K0)' | and there is nothing to prove. Suppose 2] 
and [T 1] have already been proved for (K9)'. K i + 1 arises from K ? by 
the adjunction of the (q + l)-dimensional simplexes a i + 1 of K. 
( K ? + 1 ) ' arises from (K9)' by the adjunction of the vertices a 9 + 1 and all 
the simplexes a' of K' which have a a i + 1 as last vertex. For these a', 
( a ) c (o- i+1); therefore, these (a') have no point in common with any 
open simplex of (K ?)'. They also have no points in common among 
themselves, inasmuch as they consist, since their dimension is > 0 
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(cf. Theorem 29.3), of the points of the open intervals (icr?+1) with an 
X from a (aq) in (K})'; these (a) are by our induction assumption dis-
joint so that the (</) are disjoint by part (a) of the last theorem. Thus 
[S 2] is proved for ( K i+1)'. 

In order to prove [T 1] for (K i+1)', it suffices, since [T 2] is already 
proved, to show that | (K?+1)' | => | K J+11. Therefore, on the basis of 
our induction assumption, we have still to show that every point of 
a (a«+1) occurs in | (K?+1)' |. But part (b) of the last theorem shows this. 
This completes the proof of Theorem 31.3. 

31.5 Theorem: If the simplex a" has the diameter d, then every sim-
plex a of the normal subdivision TM' of the simplicial complex T* of all 

faces of on has diameter < ——- d. J J ~ n + 1 
The proof is by induction. For n = 0, the theorem is trivial. 

Suppose it has already been proved for dimensions 0, 1, . . . , » — 1. 
According to Theorem 29.2, we have to show that the length of the 
longest edge of the normal subdivision of Tn satisfies the inequality 
of the theorem. The edges which lie on a boundary face of on are, ac-

n — 1 cording to the induction assumption, at most of length equal to d. 
n n 

This number is in fact < d. Edges of the normal subdivision 
~ n + 1 

of T" which lie in the interior of the open simplex (an) arise from the 
medians of an by division in the center of gravity an. The entire 
medians have a length <j d\ each of their parts has, according to 
Theorem 31.1, at most the length 

w - r n r + 1 n d S: d or d <L —-—d n + 1 n + 1 n + 1 n + 1 

for r = 0, . . . , n — 1. This completes the proof of the theorem. 
One can iterate further the process of the normal subdivision of a 

simplicial complex K and thus obtain the second normal subdivision 
K" and the further v-th normal subdivisions K(v) of K (i> = 1, 2, 
. . .). If K is w-dimensional and the diameter any simplex of K is 
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at most equal to d, then the diameter of all simplexes of K' is at most 
71 equal to d and the diameter of all the simplexes of the v-th nor-

n + 1 / n V mal subdivision K(l,) of K is at most I — j - 1 d. Since this expression 

tends to zero as v increases, we can state the following theorem. 

31.6 Theorem: The diameters of the simplexes of the v-th normal sub-
division K{v)of a complex K tend to zero uniformly as v increases to oo. 



Chapter 10 

DIMENSION OF COMPACTA 

§ 32. Paving Dimension 

In this chapter, we pose the problem of how to assign to a topolo-
gical space 3E an integer n as "dimension," dim X = n. Naturally, the 
definition should depend only on the space X and its topology "X but 
not, for example, on a metric on X based on the topology By the 
definition, homeomorphic spaces should be assigned the same dimen-
sion, i.e. dimension should be a topological invariant. I t turns out 
that this problem contains many more difficult problems than may 
appear at first glance. For example, if we require—as is natural— 
that the dimension of a simplex an of the algebraic dimension n be 
precisely dim an = n, then the problem arises—according to our pre-
vious deliberations—whether two simplexes am and on with m ^ n 
can be homeomorphic. If this were the case, then there would be no 
dimension concept of the type outlined. 

However improbable it now appears that, say, [am] and [a"} could 
be homeomorphic for m ^ n—that there could exist a one-to-one 
continuous mapping / of [am] onto [an] such t h a t / - 1 is also con-
tinuous—the following two possibilities are still, however, conceivable: 

(I) There exists a one-to-one mapping / of [crm] onto [ct"J, at least 
one which may not be continuous. Such mappings are considered 
in set theory (see, for instance, E. KAMKE [I], §§ 11, 12, in 
particular, p. 43), where the example/: a1 -> a2 is discussed in detail. 

(II) For arbitrary m and n, there exists an epimorphic continuous 
mapping / of [am] onto [an], at least one which maynot be one to one. 

129 
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In the case m = 1, n = 2, such mappings are given by the so-called 
Peano curves (for example, see F. HAUSDORFF [2], § 36). We shall 
later prove that one can even represent every non-empty compactum 
as a continuous image of the zero-dimensional Cantor discontinuum 
(cf. Theorem 32.2). 

It was not excluded a priori that one could construct a one-to-one 
and continuous mapping of [am] onto [an] by combining the charac-
teristic features of both examples. That this is in reality impossible 
was first shown in 1911 by L. E. J. Brouwer (cf. Beweis der Invarianz 
der Dimensionszahl, Math. Ann. 70, 161-165). Brouwer proved the 
following theorem. 

32.1 Theorem: Two simplexes [o-m] and [an\ of different (algebraic) 
dimensions m and n are not homeomorphic. 

With the proof of this theorem, dimension theory began as an in-
dependent discipline of topology. We shall prove this theorem within 
the framework of a more comprehensive theory, by introducing a 
dimension concept, on the basis of a topologically invariant property 
which is defined for arbitrary compacta, which assigns, in particular, 
to a simplex ¡an] the dimension n. One knows today very many such 
properties which characterize dimension; we stop on the first one, 
historically speaking, discovered by H. Lebesgue in 1913, i.e. the 
"paving property" which distinguishes itself by its simplicity and 
elementary geometrical intuitiveness. It is based on the following 
concept. 

32.2 Definition: The natural number o 1 is called the order of 
the covering I ) = {Dx | A from an arbitrary index set A j of the space 
3£ 0 if there exists at least one point p e X which belongs to o 
distinct sets Dx but no point of X belongs to more than o sets Dx. If 
there does not exist a natural number o of this sort, then X> is said to 
be of infinite order. 

We now recall how one paves a street with square paving stones— 
not so that a quadratic lattice is formed, but rather displaced one 
with respect to another, row by row, as is apparent from Fig. 8. If 
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Fig. 8 

one thinks of the figure as a covering of a rectangle by small closed 
squares, then one sees that the order of the covering is 3. I t is accord-
ingly plausible that a plane rectangle admits an e-covering of order 3 
for every e > 0. I t likewise naturally admits coverings of order 4, 5, 
and so on; but one would exert himself in vain if one tried to form e-
coverings of order 2 with small e. One can picture analogous con-
siderations in the space R3\ here, one would find e-coverings of a 3-
dimensional square of order 4, 5, and so on, but none of order 2 or 
even 3. These considerations motivate the following definition of the 
paving dimension of a space X- We must limit ourselves within the 
framework of this little volume to compacta X-

32.3 Definition: The integer n is called the dimension of the com-
pactum X, dim 3£ = n, if X possesses the following two properties: 

(an) For every e > 0 there exists a finite closed e-covering of 3£ 
with order n + 1. 

(bn) There exists an e > 0 such that every finite closed e-covering 
of X has an order ^ n + 1. 

A compactum X which does not possess the property (an) for any 
n is called infinite dimensional. 

For the understanding of this definition, let the following be noted. 
I t is clear that by this definition, every non-empty compactum X is 
assigned a well-defined dimension, namely, infinite dimension or an 
integer n = 0 , 1 , 2 , . . . a s dimension. (The empty set 0 is usually 
assigned the dimension — 1.) The property (an) asserts tha t 
X has dimension at most n, i.e. that dim X ^ n; the property (bn) 
asserts that X has dimension at least n, i.e. that dim X 2i n. 
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One could also make the following definition: dim 3t = n if the 
property (an), but not (aM_j), is satisfied, i.e. if X has dimension at 
most n but does not have dimension at most n — 1. In fact, (bn) is 
exactly the negation of (an_1), which one can make explicitly clear. 
The shortest formal definition would be: dim 3E = n if n is the smallest 
integer for which (an) holds. 

We shall first show that dimension so defined is a topological in-
variant. To this end, we must show that: I f X and X' are compacta 
with dim X = n and if/: £ ->• jC' is a one-to-one continuous mapping 
of X onto X', then dim X' = n. Because of the uniform continuity 
of / (cf. Theorem 25.1) one can determine, for given e > 0, a 

£ 
8 = 8(e) so that d(f (x),f(y)) < -holds for d(x, y) < 8, and x,y e X. 

¿t 

I f T) = {Di | i = 1, . . . , m} is a finite closed S-covering of X of order 
n + 1, then {/ (D{) | i = 1, . . . , m} is likewise a finite closed covering 

of X' of order n + 1. < 8 implies that d(f (DJ) ^ | < e. (an) 

is thus proved for from which it follows that dim X' ^ n = dim X 

In exactly the same way, it follows that dim X ^ dim X' so that 
dim = dim 

I f X has infinite dimension, then by this X' also has infinite dimen-
sion. This completes the proof of our assertion. 

32.4 Thereom: If X and X' are compacta, X c X', then dim X Si 

dim X'-

Proof: Suppose dim X' = n. For each s > 0 there exists a finite 
closed e-covering of 3E' of order n + 1. This induces in J a 
finite closed e-covering of at most the same order, from which it 
follows that dim X dim X' • 

We will further prove that in Definition 32.3 one can also use open 
coverings in place of closed coverings. To this end, we need two theorems 
which compare open and closed coverings of a compactum. Both depend 
on Theorem 24.3. 

32.5 Theorem: (Refinement of Open Coverings): If D = {Dt \ i = 1, 
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. . . , tnj is a finite open covering of the compactum X, then there exists a 
closed covering g = {i1, | i = 1, . . . , mj with F( <= Dtfor i = 1, . . ., m. 

Proof: The system of closed sets CDf has intersection 0 so that one 
can apply Theorem 24.3 to it. According to Theorem 24.3, there exist 
open sets F[ CDi which also have intersection 0 . The sets CF[ c F( 

are therefore closed, they cover I , and we have that F, <= D{; this com-
pletes the proof of the theorem. 

32.6 Theorem: (Enlargement of Closed Coverings): If D = {D i | i = 
1, . . . , mj is a finite closed covering of the compactum X, then there exists a 
8 > 0 such that the open covering X>s and the closed covering £>e, 

®3 = { l l s (A) | * = 1, . . . , m}, ®4 = {lUCDT) | i = 1, . . . , m), 

have the same order as D. 

Proof: Let X> have the order o. Since the order can at most increase 
for an enlargement of the sets Dt, it suffices to show that, for suitable 8, 
X)s also has an order g o. 

Every subsystem of I) consisting of o + 1 of the sets Dt has intersec-
tion 0 . By Theorem 24.3, there exists an e > 0 such that the correspond-
ing sets <U£( JDJ) have intersection 0 . I f one finds for each subsystem of 
I) of the indicated sort an associated real number e and chooses 8 as the 
smallest of these e, then each collection of o + 1 sets of the form <US(£>.) 
has intersection 0 . This means that the order of X)s is at most o, which 
is what we were required to prove. 

32.7 Theorem: In Definition 32.3 of the dimension of a compactum X, 
the word "closed" can be replaced by the word "open." 

Proof: We denote the conditions (o„) and (&„) of Definition 32.3 by 
(a'n) and (b'„) respectively if in them "closed" is replaced by "open." We 
first prove that under the assumption that dim X = n, (b'n) as well as 
(a'n) holds. 

(a'„) Let e > 0 be given. According to (a„), there exists a finite closed 

|-covering I) of X of order ^ n + 1. According to Theorem 32.6, for 

suitable 8 > 0, X>s also has order ^ n + 1. I f one chooses 8 furthermore 

so that 8 < then the sets from I) s surely have diameter < e, and 

hence represent an s-covering of the sort required in (a'n). 
(b'H) Let e be chosen in accordance with (bn). I f I) is a finite open 

e-covering of X, then by Theorem 32.5 there exists a closed e-covering 5 
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whose sets are eventually contained in those of D and which thus have 
diameter < e. According to (&„), 3 has order ^ n + 1 and this holds a 
fortiori for £). 

If X is infinite dimensional, one shows in an exactly analogous fashion 
tha t X does not satisfy (a'n) for any integer n. 

Conversely, we now assume tha t the conditions (a'n) and (b'n) are satis-
fied. Then if dim X = m, (am) and bm) hold and so, according to the first 
par t of the proof, (a'm) and (b'm) follow. Since, however, the number n is 
uniquely determined by (a'n) and (b'n), it follows tha t m = n. This com-
pletes the proof of the theorem. 

§ 33. Zero-Dimensional Compacta 
Compacta of dimension 0 can be described relatively easily, as we 

shall see in this section. For a non-empty compactum I to have dimen-
sion 0, condition (a0) in the definition of dimension in the preceding sec-
tion is obviously sufficient. I t asserts tha t for each e > 0, there exists a 
finite closed e-covering of I of order 1, i.e. a covering by disjoint sets. 

The following are examples of zero-dimensional compacta: 
(a) a finite number of points with the discrete topology; 

(b) the set of numbers 0, - (n = 1, 2, . . .) on the real line; 
n 

(c) the Cantor discontinuum i f ; we have already established the zero-
dimensionality of "jf in § 9 as property (6). 

33.1 Theorem: A non-empty compactum I is zero-dimensional i f , and 
only i f , any one of the following three equivalent conditions is satisfied: 

(1) For each z > 0, there exists a finite closed e-covering of X consisting 
of disjoint sets. 

(2) For each pair of points x,y,x ^ y, from X, there exist open-closed 
subsets A, B of X with x e A, y e B. 

(3) X is totally disconnected. 

In condition (1), the word "closed" can also be replaced by "open" and 
also by "open-closed." 

Proof: (1) is the condition (a0) in the definition of dimension. A cover-
ing set D f rom the covering (1) is open, since it is the complement of the 
union of the remaining finitely many closed covering sets; every D is 
therefore open-closed, as is asserted a t the end of the theorem. 

(1) => (2) Let d(x, y) = e > 0. Every e-covering yields according to 
(1) a covering set A with xeA, but , because d(A) < e, y $ A and 
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analogously a covering set B with y e B, x $ B. A and B are of the re-
quired sort. 

(2) => (3) Let xeX and C(x) be the connectivity components of x. For 
every yeX,y x, there exists according to (2) an open-closed set A 
with x e A, y ^ A. C(x) <= A (compare the remark before Theorem 7.9); 
therefore, y $C(x). C(x) therefore contains no point y different from x, 
which is what we were required to prove. 

(3) =>(1) Let xeX and let U be an open neighborhood of x. For every 
real number y > 0 we consider the •»¡-components Cv(x) whose union is 
an open-closed set (see the proof of Theorem 24.4). I f TJ ranges over a 
monotonically decreasing null sequence, then the Cn(x) form a decreasing 
sequence of closed sets in the interior of the compactum X, and the same 
holds for the closed sets Cv{x) — U. I f all the Cv(x) — U were non-empty, 
then they would have a common point; however, the intersection 
f"| Cv(x) of all the Cv(x) equals the connectivity component G(x) (cf. 
Theorem 24.6), which, according to (3), consists of x only, so that certainly 
C(x) — U = 0 holds. Therefore Cv(x) — U is empty for sufficiently 
small 7j, i.e., Cn(x) = U for these 17. We thus have the present result: 
The t)-component Cv(x) of a point xeX has an arbitrarily small diameter 
for sufficiently small 77. 

Now let e be the real number indicated in the assertion (1). To each x 
e X we assign an t;-component Cv(x) with d(Cv(x)) < e which is possible, 
according to what we have already proved, by means of a suitable choice 
of T). These Cn(x) form an open covering of X, from which one can select a 
finite covering 

D = {£>,. | i = 1, . . ., m) 

which consequently consists of open-closed sets Di with d(Dt) < s. We 
then have that 
D' = {Dv A, - Dlt D3 - [Dl u Dt), ...,Dm-(Div...\jDm_1)} 

is likewise a closed e-covering and indeed one which consists of disjoint 
sets having a diameter < e, as was required in (1). 

In the preceding section, we have, by mentioning the Peano curves, 
pointed out that for continuous mappings the dimension can increase. 
We shall show that one can even map the zero-dimensional Cantor dis-
continuum i f continuously onto a cube of arbitrarily high dimension, onto 
the 00 -dimensional Hilbert parallelepiped, and onto an arbitrary com-
pactum. 

33.2 Theorem: Every non-empty compactum, Xis a continuous image of 
the Cantor discontiwuum. 
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P r o o f : Being a totally bounded space, X admits for every real e > 0 
finite g-coverings X) = [Di \ i = 1, . . . , n}. In this connection, one can 
consider the Di as closed since otherwise one can replace the Dt by Dt and 
then d ( D { ) = d ( D { ) . 

We first consider a covering T)1 = {Dh \ i1 = 1, . . . ,nl = 2™'} of X by 

non-empty closed Dti having diameters < i . We note here t h a t X is 

non-empty and tha t we can extend the number n of the covering sets to 
an arbitrary power of 2, say 2mi, if one agrees to admit equal sets -D, 
in I) and in the enumeration certain sets Dh are repeated. Every Dh is 
itself a non-empty compactum. We cover it by 2m' non-empty closed sets 

Dh,t (i2 = 1, . . . , 2"") with d ( D h i t ) < i - . Also the number of these 
A 

covering sets can be increased to the same power of 2, say 2m', for all D h . 
There results a covering X>2 

= \H = 1 2"'; ia = 1, . . . , 2""} 
ofX by n2 = 2'"1+m, sets. Continuing in this way, we obtain, for each r = 
1, 2, . . . , a covering = {Dtl • . . ir\ iv = 1, • . . , 2my with v = 1 r} 
of 3E by nr = 2mi+ • • • +m" non-empty compacta having a diameter < 

We now introduce a modification in the definition of the Cantor dis-
continuum W (see § 9) in order to be able to compare it easily with our 
compactum X. I n the definition of <<i, we consider the (7-intervals of rank 
m1 and denote them in a way which is changed with respect to § 9 by C"1 

(ix = 1, . . . , 2"") in their natural ordering on the interval [0, 1]. Fur ther , 
we consider the n2 = 2mi+m' C-intervals of rank (ml + m2). I n each C'1, 
there are contained 2m' of them which are now denoted correspondingly 
by Ct'h (i"2 = 1, . . . , 2mi). I n an analogous manner, the nr = 2m'+ •• +mr 

C-intervals of rank (mx-\-. . . + m,) are denoted by C h - i r . Let C { m t + •••+»"•> 

be as before the union of all C-intervals of rank (m t + . . . + m r) . Then 

= n C " ™ 1 + • • • + " " • ' . 
r = l 

We have tha t d(Ch• • ir) ^ + m r . The points x e are determined in 

one-to-one fashion by sequences Ch => C"''' => . . . and by sequences 
. . .) respectively where x e C"1 <r and now i„ ranges over the values 

1 , . . . , 2mv. 

Now let x be an arbi trary point of with the corresponding sequence 
(«! i% . . .). The sequence of decreasing compacta 
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A , = Dia = . . . 

in I then determines uniquely a point peX which is contained in all these 
sets, which we denote as the image p — / (x) of x. We assert t h a t / is an 
epimorphic mapping onto X which furthermore is continuous. With the 
proof of this assertion, the theorem is then proved. 

If pa e 3£ is arbitrarily prescribed, then one determines a Dh with 
p0 g Dh, next a Dhii (with the same with pa e Dhh, and continuing 
in this manner a sequence D h => Dh i t => . . . which contains the single 
common point x0. Then we seek out in the uniquely determined point 
x0 which is common to the sequence C"1 => C"1'* = > . . . . We obviously 
have tha t p0 = f (x0), which completes the proof tha t / is epimorphic. 

Fur ther , let e > 0 be given and let r be so large tha t i-r< e. As above, 
¿i 

l e tp 0 = / (x0). Every x with d(x, x0) < ^ +m lies together with x0 in the 
u 

same set C'---ir. Therefore p = / (x) and p0 both lie in Dh ir, and hence 

we have tha t d(p, p0) ^ d{Dh ir) < ^ < e. This also proves the con-

tinuity of / and thus the theorem is completely proved. 
An infinite number of isolated points cannot form a compactum; but a 

compactum can very well contain an infinite number of isolated points, 
as the example (b) a t the beginning of this section shows. Among all com-
pacta , those without isolated points are of special interest. I n this spirit, 
we give the following definition. 

33.3 Definition: A zero-dimensional (non-empty) compactum 3E with-
out isolated points is called a discontinuum. 

The Cantor discontinuum whose nomenclature "discontinuum" is 
consequently in agreement with Definition 33.3 forms an example. Now 
the theorem asserting tha t from the topological standpoint all discontinua 
are already exhausted by if holds. 

33.4 Theorem: Every discontinuum X is homeomorphic to the Cantor 
discontinuum. 

The proof consists in a sharpening of the considerations of the preced-
ing proof. We first assert t ha t : For every s > 0, X admits e-coverings 
® = {Z)j | i = 1, . . . , r} by (non-empty) disjoint open-closed discontinua 
Dit the number of which equals a sufficiently high power of 2, say 2m. 
One first recognizes tha t because of its zero dimensionality, X allows 
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finite closed e-coverings by non-empty disjoint sets £>,. Each Di is zero-
dimensional and, being the complement of the union of the remaining 
finitely many covering sets, it is also open, and therefore open-closed. 

No Dt, regarded as a subspace equipped with the topology induced by 
X in D j ( has isolated points. Namely, if we suppose tha t p were such a 
point, then there would exist a Dt-neighborhood U of p containing no 
points of Di except p. Since Di is open, U would also be an 3£-neigh-
borhood of p (cf. Theorem 6.3) and therefore p would also be an iso-
lated point of X, which contradicts the definition of a discontinuum. 
Consequently, the Dt are discontinua. We have tha t d(Dt) = e{ > 0. If 
we subdivide a set -D, in the same way as we have just subdivided X into 

finitely many disjoint discontinua with a diameter < then as a result 
¿t 

we obtain a t least two such sub-discontinua, and, by forming the union, 
we can form therefrom exactly two (non-empty) discontinua with a 
diameter < e,. This means tha t one can increase the number r of the sets 
in I) by 1 and by iteration of the process increase i t by an arbi t rary 
number. In particular, one can bring it to a power of 2, say 2™. This com-
pletes the proof of the above assertion. 

The remainder of the proof of the theorem proceeds completely analo-
gously to the preceding proof. The only difference is t ha t the covering 
sets D{ are now chosen disjoint so tha t they are even uniquely deter-
mined by the sequence Dtl n D(iii => . . . determined by the point p0 e 
X. Hence the mapping p = / (x) turns out to be one-to-one. The con-
tinuity of the inverse m a p p i n g / " 1 need not be proved separately because 
of the compactness of (€. This completes the proof of the theorem. 

§ 34. Paving Theorem 

W e shall show in th is section t h a t a closed «-simplex [<j] = [a"] 
really has t h e dimension n in t he sense of t h e dimension concept 
which we int roduced. For th is purpose, t h e condit ions (an) a n d (bn) of 
t h e Definit ion 32.3 of dimension or (an) a n d (b'n) of Theorem 32.7, 
respectively, m u s t be proved for t h e space X = [a]. For (an) a n d (an) 
respectively this is relat ively easy. On the o ther hand , t he assert ion 
(bn) or (bn), respectively, of t h e paving theorem proper for t he simplex 
[a] is no t so easy to prove and requires some prepara t ion , which is com-
prised in t h e so-called Sperner L e m m a (cf. Theorem 34.1). 

I t has a l ready been established by Theorem 30.6 t h a t 3E = [<r] 
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possesses the property (an): The open stars of the triangulation T of 
[a] consisting of all the faces of a and likewise the stars of every nor-
mal subdivision T w of T form an open covering of [<r] of the order 
n + 1. Since the simplex diameter of the successive normal sub-
divisions become very small according to Theorem 31.6, (an) and 
thus that dim [<r] = n is proved. I t is also easy to give closed e-cover-
ings of order n + 1 of [CT]. In the case n = 2, we obtain such a one in 
the form of the paving figure preceding Definition 32.3. There are no 
fundamental difficulties to generalize this paving to n = 3 and by 
induction to all n. 

One obtains other closed e-coverings of the order n + 1 as follows: 
We subdivide an arbitrary one of the triangulations T(l,) just con-
sidered still further to T(">' and form the closures of those stars of 
T w ' which are assigned to the vertices of T w as is indicated in Fig. 9. 
I t is easily seen that in analogy to Theorem 30.6, such stars have 
points in common if, and only if, they belong to the vertices of the 
same simplex of T(l,), from which we recognize that the order of this 
covering is really n + 1. 

34.1 The Sperner Lemma: Let a = an = p0 . . . pn be an n-
simplex, T = T" the corresponding triangulation of [cr], T' an arbitrary 
subdivision of T. If to each vertex p' of T' there is assigned a vertex 
<p(p') = (i = 0 or 1 . . . or n) of its carrier simplex in T, then there 
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exists at least one n-dimensional simplex a0 in T whose vertices can be 
mapped by <p into the set of all vertices p0, . . . , p„. 

Proof: Let the number of w-simplexes a0 of T' of the sort indi-
cated in the theorem be a. We shall prove, over and above the asser-
tion of the theorem, by means of induction on n, that a is odd. For n 
= 0, the assertion of the theorem is trivial. Suppose it has already 
been proved for the dimensions 0 ,1 , . . . , to — 1. Suppose the totality 
of all w-simplexes of T' are (i = 1, . . . , s). A face simplex r ' = 
Tm -1 0f a CTi w j n b e called a distinguished face of oi if the vertices of 
t ' are mapped by <p into the set of all the vertices px, . . . , pM. Let af 

be the number of distinguished faces of a{. If a i has the property of 
the theorem, then a i obviously possesses precisely one distinguished 
face—it is ai = 1. If does not have the property of the theorem, 
then either all the p1; . . . , pre occur among the images of the vertices 
of a i t moreover each one twice, and then obviously a i = 2, or at 
least one of these vertices is lacking among the images, and then ai = 
0. Summarizing, we have in all cases that a = (2ai) mod 2, and it 
suffices to prove that 2a% is odd. 

Let T be an (n — l)-simplex which is mapped by q> into (p 1 ; . . . , pn). 
Either r ' is an interior simplex of <r, and then it is a distinguished 
simplex consisting of precisely two of the a[\ therefore, it is counted 
twice in Or, r ' lies on one (n — l)-dimensional face of cr; this 
must be the face (p t . . . pM) inasmuch as others cannot map into 
(Pi . . . p j under <p because of the carrier condition of the theorem. 
Then r ' is a distinguished face of precisely one of the a i and hence is 
counted exactly once in 2<V The number of simplexes of the second 
indicated sort is odd according to the induction assumption; the 
number of the first-named sort is odd, as we have just established, 
and thus is odd. This completes the proof of the theorem. 

34.2 Paving Theorem: For each n-simplex a = a", there exists an 
e > 0 such that every finite open e-covering of [cr] has order = to + 1. 

Proof: Let T be a triangulation of [a] consisting of all the face 
simplexes of a including a itself. The n + 1 stars of T form an open 
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covering of [a]. Let e be a Lebesgue number of this covering. We 
assert that every finite open e-covering of [cr] has at least the order n + 1. 
To prove this, we consider an open e-covering D = {Di \ i = 1, . . . , 
m} of [a]. Let A be a Lebesgue number of X) and suppose T' is so fine a 
normal subdivision of T that the diameters of the simplexes of T' are 

all < - .and that the diameters of the stars of T' are therefore all < A. 
2 

Let p' be an arbitrary vertex of T'. On account of the choice of A, 
the star of p' is contained entirely in at least one of the sets D{\ we 
choose one of these sets Dit call it D and set D = </i(p'). Thus, each 
vertex p' of T' is assigned to a well-defined set D v Because of the 
choice of e, each set Di is contained entirely in one of the n + 1 stars 
of T. We choose one of these stars, denote its midpoint by p, and set 
p = x(Di). Thus, each set D i is assigned a well-defined vertex of a. 

Now if we let the vertex p = <p(p') = X'P(P') correspond to each 
vertex p' of T', then this is obviously a correspondence as is con-
sidered in the Sperner Lemma. Therefore, there exists an «.-dimen-
sional simplex a' = pò . . . Tp'n of V whose n + 1 vertices are mapped 
by <p into all the n + 1 vertices of a. Hence, the sets i/«(Pj), 
j = 0, . . . , n, are n -f 1 distinct sets Di: and, for these indices j, we 
have that 

0 ^ (a') c f l s i p j c n 0(P;). 
j=o j-o 

Hence, X) has at least the order n + 1, which is what we had to prove. 
This proves completely the assertion (bn) and thus the equation 

dim a = n. The Brouwer Theorem 32.1 is proved at the same time. 
Also the dimension of an w-dimensional parallelepiped is thereby 
recognized to be n\ one can certainly inscribe a suitable a'n in the 
parallelepiped and then apply Theorem 32.4. The corresponding fact 
holds for the dimension of a polyhedron with a triangulation of 
algebraic dimension n. We summarize all this in the next theorem. 

34.3 Theorem : A simplex, a parallelepiped, and a polyhedron with 
a triangulation of algebraic dimension n have the (paving) dimension n. 
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§ 35. Embedding Theorem 

From the comprehensive area of dimension theory, we can prove 
only one more, in any case, especially important and interesting, 
theorem—namely, the embedding theorem which was first proved by 
K. Menger and G. Nobeling: A compactum of dimension n ^ 0 is 
homeomorphic to a subspace of the Euclidean space R2n+1. We have 
already seen earlier that a polyhedron of dimension n can always be 
geometrically realized in Euclidean space R2n+1 (see Assertion II in 
§ 30). The embedding theorem generalizes this assertion to arbitrary 
compacta and shows the significance of the dimension concept 
insofar as the measure giving embedding dimension 2n + 1 for poly-
hedra also suffices for the embedding of compacta of dimension n. 
Also if one ignores the exact dimension in the embedding theorem, 
one still obtains a significant result: The compact subsets of Eucli-
dean spaces can be recognized as the compacta of finite dimension. 
The proof, which we subsequently will carry out in conjunction with 
the Alexandroff concept formation, makes use of a whole series of our 
previous principal results and distinguishes itself by the originality 
of its line of reasoning and special geometric intuitiveness. 

We first introduce the concept of a nerve of a finite covering. Let 
X) = {Di | i = 1, . . . , m} be a finite covering of a space X- We assign 
to each set Di the unit point ei of the Euclidean space Rm. I f a sub-
system of the Di has a non-empty intersection Dio n ... n Dir 96 0 , 
then we span the simplex (eio. . . zit) by the corresponding vertices ê . 
In this way, we obtain a subcomplex N of the unit simplex of Rm 

because the two conditions [$ 1] and [$ 2] of Definition 30.1 are 
satisfied; [<S' 1] is immediate according to the definition of N and 
[<S* 2] holds for every set of simplexes of the unit simplex. N and like-
wise every other realization of N is called a nerve of I) . Obviously the 
order of the covering J) diminished by 1 is equal to the dimension n of 
its nerve N. According to Proposition I I of § 30, N can be realized 
in Euclidean space R2n+1. 

We now specialize and let I ) be a finite open e-covering of the com-
pactum X and letN be a realization of the nerve of I ) in a Euclidean 
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space. Let the vertices of N be pi (i = 1, . . . , m). We will give a con-
tinuous e-mapping a: |N | —the so-called Alexandroff mapping 
of X into | N |. To this end, let x be a point of X . For i — 1, ... ,m, 
we define a real-valued function q>i as follows: 

9i(x) = d(x, CD,). 
Since the Di are open, the CDi are closed and <Pi(x) > 0 if, and only if, 
xe Di (see Theorem 20.4). For no x are all the <Pi(x) zero, so that one 
can form 

Af = \(x) = V^3^ summed over j = 1, ... ,m. 
2jpAx) 

Then we have = 1- We set a(x) = p = If x lies in the 
sets D^, . . . , Dir, but in no other set Diy then the A ,̂ . . . , Air are ^ 
0 but all the other A; are = 0, and p lies in the simplex (pio. . . pir) 
belonging to N. Therefore, p = oc(x) lies in | N |. 

That the Alexandroff mapping a(x) is an e-mapping results from 
the fact that a ' 1 (p) is always entirely contained in a set Di inasmuch 
as it follows from A{ 0 that x e Di and that d(D^) < e. The con-
tinuity of OL(X) follows from the continuity of the functions d(x, CD{) 
(cf. Theorem 20.5). We formulate the above result as follows. 

35.1 Theorem: If X) = {Z^ | i = 1, ... ,m} is an open e-covering 
of the compactum X , then the Alexandroff mapping <x(x) = p yields a 
continuous e-mapping of X into the field | N | of nerves N of 35. 

Now let £ be a compactum of dimension n, dim X = n. Then for 
every e > 0 there exists a finite open e-mapping X) of order n + 1. 
Suppose the nerve N of Dis realized in a fixed Euclidean space R2n+1. 
The Alexandroff mapping therefore yields a continuous e-mapping of 
X into thisJ22"+1. Now the space g(3£, R2n+1) of all continuous map-
pings of X into ii2 n + 1 is complete according to Theorem 25.2. The 
space R2n+1) of all e-mappings of X into R2n+1 is, according to 
Theorem 25.5, anopensubspaceof R2n+1). The intersection of all 
the % e ( X , R2n+1)or even the intersection of all R2n+1), k = 1,2,..., 

k 
is the space of all homeomorphic mappings of X into R2n+1, as was 
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already noted in conjunction with Definition 25.3. I f we can prove this 
intersection to be non-empty, our goal will have been reached. The 
Baire density theorem (see Theorem 21.7) serves us to this end. From 
its assumptions, the following is satisfied: 5(3E, R 2 n + 1 ) is complete and 
the R2n+1) are open. I f we furthermore show that all the 

k 
R2n+1) are dense in R2n+1), we can deduce that the inter-

k 

section of all the R2n+1) is non-empty, and thus the embedding 
k 

theorem would be proved. We shall accordingly next prove that 
R2n+1) is dense in g(3£, R2n+1). 

Besides e > 0, let a function g 6 5(3E, R2n+l) and an arbitrary > 0 
be given. We shall construct an Alexandroff e-mapping a e 
R2n+1) with d(a, g) < ij; then everything will be proved. We 
first use the uniform continuity of g; there exists a 8 > 0 such that 

d(x, y) < 8 implies that d(g(x), g(y)) < Moreover, S can also be 
6 

taken < e. 
Let X) = {Di | i = 1, . . . , m} be an open S-covering of X of order 

n + 1. I ) is also an e-covering. I t follows from d{D^ < 8 that 

d(g(Di)) ^ We choose a point qj in each set ̂ (-Dj) and in the spherical 
6 

neighborhood of radius ^ about qi we choose a point p4 such that the 

system of m points pf is in general position, which is possible accord-
ing to Proposition B of § 30. We take these p4 as the vertices of a 
realization of the nerve N of I ) and construct a for this. We first esti-
mate the diameters of the simplexes of N by estimating the lengths of 
the edges p{ p̂  of N (Theorem 29.2). I f p4p. is an edge of N, then Di 

and Dj have at least one point y in common and hence also g(D,i) and 
g(Dj) have the point t) = g(y) in common. Then 

2 
¿(Pi> P;) ^ <*(Pi> <li) + <%> 9) + dj) + <%> Pj) < 4 | = g V 

2 
holds. The diameter of a simplex in N is therefore at most equal to -77. 
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Now we estimate the distance d(<x(x), g(x)) between the two images 
of a point x e 3E under a and g. Let x e Dit g(x) e g{D{); then a(x) is in 
every case contained in a simplex of N with the vertices p4, and 

2 
therefore d(ct(x), p j < - Combining, we have that 

3 
d{oc(x), g(x)) ^ d(cc(x), p^ + q4) + d(qi; g{x)) 

From this we can conclude that d(oc, g) < 77 since d(a, g) = ij does not 
have to be considered according to Theorem 18.3. The result is the 
following. 

35.2 Embedding Theorem: A compactum X of dimension n can be 
homeomorphically embedded in the Euclidean space Jt2n+1. 



B A S I C F O R M U L A S F R O M S E T T H E O R Y 

Let X be a fixed basic set, and let A, B,... be subsets of X. Let ?) be 
another fixed set, and let 91, © , . . .be subsets of 2). Union and inter-
section: 

Associative laws: 

(1) A (B \j C) = {A \j B) kj C = A \j B \j C, 

(1') A n (B n G) = (A n B) n C = A n B nC. 

An arbitrary number of sets can also be combined associatively. 

Distributive laws: 

(2) Av(BnC) = (Av B)n(A<u G), 

(2') A n (B uG) = (A n B) v (A n G). 

(2) and (2') respectively are valid for an arbitrary number of factors 
instead of B nC and B u C respectively. 

The complementary set CD = X — D: 

(3) C ( A u B) = CA n CB, 

(3') C ( A n B) = CA u CB. 

(3) and (3') respectively are valid for arbitrarily many factors in the 
parentheses. 

Trace XT = X n T of X with a subset T of X-

(4) (A U B)t = Atkj Bt\ (4') {A n B)T = AT n BT. 
146 
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(4) and (4') respectively are valid for arbitrarily many factors in 
the parentheses. 

(5) CjAt = (T - At) = {CA)t. 

Mappings f of X into : 

(6) / (A u B) = f (A) u f (B), 

(&') f (A n B) cz f (A) n / (B). 

(7) / -*(« u ©) = / - W u / - 1 (58), 

(7') /-i(«i n 33) = / - 1 (21) n /-i(93). 

(6)-(7') are valid for arbitrarily many factors in place of A <j B, 
A n'B, 91 u 93, 91 n 93, respectively. 

(8) If ?) = U % (i = 1 n) is a partition of 3), then X = 
i 

U /_1(UTi) is a partition of 3£. 
i 

(9) f-HCW) = C/-M9I). 

( 1 0 ) f - H f ( A ) ) = A• ( 1 0 ' ) f ( f ^ m c 
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