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INTRODUCTION

The word “‘topology’’ is derived from the Greek word témos, which
means ‘‘place,” ‘“‘position” or ‘‘space.” Accordingly, topology is the
science of space; it analyzes the space concept and investigates the
properties of general spaces. It is therefore a subdiscipline of geo-
metry. This does not keep it from being in close and fruitful relation
to analysis and algebra. It provides analysis with geometric founda-
tions; it receives, on the other hand, essential stimuli from analysis
(cf. algebraic functions, algebraic geometry) and, in certain areas, it
develops further in common with analysis (cf. functional analysis).
From algebra as the fundamentally basic and auxiliary discipline of
mathematics it takes essential helping material (e.g., linear algebra,
group and module theory) and gives it, in turn, important new re-
sults (e.g., homological algebra). However, the proper goal of
topology is always the acquisition of geometric knowledge.

In topology the concept of space is considered to be as general as
possible; it should comprise everything which in the widest sense of
the word deserves the name space. To this concept belong, besides the
fundamental basic models (the ordinary 3-dimensional Euclidean
space R? and the n-dimensional space R", withn =1,2,3,... and
all subsets of R"), the infinite-dimensional Hilbert space H, the non-
Euclidean spaces and the spaces of Riemannian geometry, as well as
more general formations, e.g., the 4-dimensional set of lines in R3, the
set of ellipsoids in R™, the phase spaces in physics, matrix spaces and
function spaces, and many other more general spaces which will not
be described here. Naturally, it is not a matter here of the particular
properties of one or another of these examples, but rather of the
characteristic properties common to all these spaces. Since topology
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2 INTRODUOTION

strives for the most penetrating analysis possible of the space concept,
it has not only mathematical, but also has philosophical, characteris-
tics (e.g. concerning the theory of cognition), especially in the funda-
mental portions. Whereas a much discussed classical philosophical
teaching (cf. I. Kant, 1724-1804) asserts that the Euclidean geometry
of B3 is the necessary form of human space perception, the beginning
chapters of the following presentation show how far the new in-
vestigation is removed from this standpoint.

The point of departure and the methods of topology as well as its
relations to its neighbor disciplines can be indicated by an especially
important example, namely the domain of real numbers, which cer-
tainly is of fundamental importance for many other portions of
mathematics. Real numbers can be added and multiplied, and the
laws which addition and multiplication obey can be derived from
fewer basic laws, the so-called field laws. Algebra investigates these
basic laws and their consequences. It considers more general systems
which are defined axiomatically and in which combining operations
similar to addition and multiplication with the same or similar basic
rules as the axioms are present. Thus, one arrives at the concepts of
field, ring, group, and others, and the theory of these algebraic
structures. Topology is not interested, or in any case not directly
interested, in the combining operations of the real numbers or their
generalizations. It directs its attention more toward those properties
which the real numbers have, say, due to the fact that the numerical
sequence 1, §, }, . . . has the limit zero. It deals with the concepts of
neighborhood, proximity or the property of being neighboring, open-
ness or closedness of sets of real numbers, continuity of real-valued
functions, and similar concepts. From among these concepts, it
chooses the simplest possible and the least number possible as primi-
tive concepts. From among the properties of these primitive concepts
the simplest possible and the least number possible are chosen as
axioms. Thus, one arrives at the fundamental concept of a general
topological space, entirely analogous to the above-described pro-
cedure in algebra. Compare, say, the later Definitions 2.1 or 4.1. The
structure proper of topology consists of the properties of the topo-



INTRODUCTION 3

logical spaces which are derived from these axioms and of such classes
of special spaces that can be derived from them by further restrictive
axioms.

Moreover, from this viewpoint, the role of analysis, i.e. of the
theory of functions of a real variable, appears as follows: It is a com-
posite structure which rests partly on algebraic, partly on topolo-
gical, axioms, and consequently exhibits a more complicated form
than algebra and topology. Stated precisely, a further structure, that
of order, also plays a role, which will not be gone into here.

Since in the sequel, an axiomatic construction of topology will be
given, knowledge from other domains is basically not required for
understanding. Nonetheless it is expected that the reader is to some
extent acquainted with the fundamental facts of real analysis, with
algebra and with elementary geometry for the following two reasons:
First, it contributes to the understanding of and to a correct ap-
preciation of the line of reasoning in an axiomatic structure if one
already has an approximate idea of at least the roughest features of
what is to be expected and if one can judge the extent and the validity
or non-validity of general theorems by comparison with already
known special models. Furthermore, from the beginning we must
agsume as known and use for the examples of a general theory certain
basic facts from the areas named above. For those who are less ex-
perienced in the reading of mathematical literature, let us further-
more mention the following: The discussion and, in particular, the
proofs are generally kept concise; they require a precise thinking
through of all details—including those which are not carried out com-
pletely. It is best if one completes the deductions independently in
detail (with paper and pencil!) and especially if one prepares numerous
figures and position sketches, which can be adjoined here only in a
few cases due to lack of space.
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Chapter 1

AXIOMATIC FOUNDATIONS

§1. Preparation: Metric Spaces

In this section, we shall not yet treat general topological spaces,
but rather, as a preliminary step, a somewhat simpler but important
special class of spaces—the so-called metric spaces. This introduction
serves primarily to prepare examples and to lead to the axioms of
topological spaces, to be given later, so that they appear completely
plausible to the reader. It is not until Chapter 6 that the theory of
metric spaces will be developed in detail for their own sake.

1.1 Definition: A metric structure, or, briefly, a metric, on a set X is
given when to each pair z, y of elements of X there is assigned a real
number d(z, y) = O satisfying the axioms:

[ 1] d(z,y) = Oif, and only if, z = .
(M 2] dy, z) = d(z, y).
[M 3] Triangle axiom: d(x, z) < d(z, y) + d(y, z).

1.2 Definition: A set ¥ together with a metric on X is called a
metric space. We say that the set X is equipped with a metric. The set
X is called the base set of the metric space. The elements of X are called
points and d(x, y) is called the distance between the points z and y.

As the examples to be given later show, there can very well be
given different metrics on the same set X by means of different dis-
tance functions d(x, y) and d'(z, y).

7



8 AXIOMATIC FOUNDATIONS

The distance function d(z, ) is subject to two further rules which
are similar to the triangle inequality:

I d(xr Z) - d(z, 1'/) I é d(x) 2’/)
(2nd triangle inequality)

|d@,y) — d@',y) | < d(z, @) + d(y, ¥)
(rectangle inequality).

Here, the perpendicular lines denote the absolute value of the cor-
responding real numbers. The second triangle inequality follows from
the first: We have d(z, z) — d(z, y) < d(z, y); by interchange of x and
y and combination of the resultant two inequalities, the second tri-
angle inequality follows. The rectangle inequality follows from
diz,y) S d{x, 2') + d(z', y') + d(y’, y); therefore, d(z, y) — d(z’, y')
< d(z; ') + d(y, ¥'); by interchange of  and =’ and of y and ¥’ and
combination of the resultant two inequalitites, the rectangle in-
equality follows.

1.3 Definition: If p is a point of X and ¢ < 0, then the set

U(p) = {2 | d(=, p) < ¢}
of all points 2 with d(z, p) < eis called the spherical neighborhood of p
with the radius e—briefly, the e-neighborhood of p.

The spherical neighborhoods derive their name from the spheres in
three-dimensional Euclidean space R? as a special case of a metric
space. In arbitrary metric spaces, they are naturally not really
spheres; they have only a few properties in common with spheres, as
is evident from the following examples.

Ezxamples of metric spaces:
(a) Euclidean space R". Its points are given in the form
= (2 ...,
with arbitrary real numbers «,, .. ., z,. The usual definition of distance

is
d(z, v) = /\/igl(y‘ — z)2
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The fact that axioms [M 1] and [M 2] are valid is obvious. To prove
[M 3], it must be shown that

'\/Z(zo -z) = '\/Z(@/s —x‘)z—l-\/Z(z‘ - ¥,)?

holds for arbitrary real x,, y,, z; (wWhere the summation is over ¢ = 1,
. »n). Wesety; — »; = a,, 2, — y; = b,. Then we obtain this inequality
by tracing the following steps in reverse:

Sl + b2 S (V ZaE + /2D = Tai + Sbi+ 24/ Daf 3bi,
2>ab, £ 24/ Sa; Db,
(2ab) < 2ai. 2bi
This last inequality is the Cauchy-Schwarz inequality, which we can
assume to be known to the reader.
In the case n = 3, the spherical neighborhoods U.(p) are ordinary
solid spheres excluding the boundary of the sphere.

(a’) We again start with the same Euclidean space R", but now we
choose another metric:

d'(x,9) = Max |y, —z;|,fore =1,...,n
The validity of axioms [M 1] and [M 2] is again clear. We obtain [M 3]

as follows:

d(x,3) = Max |z, — x| = |2, — = |

=Wy — %) + @y — ) | Sy, — 2 L+ 12 — ¥y, |
S Max |y, — ;| + Max |z — y;| = d'(2,y) + d'(y, 2).

Here, %, is any one of the indices ¢ = 1,...,n such that |z, — z,|is a

maximum. The spherical neighborhoods U.(p) are the cubes with edges

parallel to the coordinate axes having length of edge 2¢ and p as center.
(a’’) We equip Euclidean space R" with yet another metric:

n
d”(z, v) =21| Y — x|
q=

The validity of the axioms is proved similar to the way this was done in
(a’). In the case R?, the spherical neighborhoods are octahedra about p
as midpoint and, in the case of R", they are the corresponding generalized
polytopes.
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(b) Hilbert space H. H consists of all sequences x = (x;, %, . . .) of real
numbers with convergent sum of squares, >z}, summed over ¢ = 1, 2,
. ... The distance i8 defined analogous to the way this was done in

example (a):
adxny) =/ Sy — z)

But here the convergence of the infinite series under the square root must
be proved. In fact, we have that

N N N N
.Z(yi -2 =Jyi +.Zw? - 23xy.
i=1 i=1 i=1 i=1

As N increases, the first two sums in the right member remain bounded
according to our assumption, whereas the last summand in the right
member remains bounded according to the Cauchy-Schwarz inequality:

N N N
(2xy:)® < a2y
i=1 t=1 1=1

Therefore, the series is convergent and the distance is well defined. The
validity of axioms [M 1] and [M 2] isimmediate.[M 3]follows by passing
to the limit in the corresponding formula in (a).

An especially important subset of Hilbert space H is the Hilbert cube
(or parallelepiped) £, which consists of points x = (z,, @5, . . .) with

0z < 4

"S5 forn =1,2,.
Since X(1/2")2 converges, these points x certainly belong to H.

(c) Let X be the set of continuous real-valued functions f(x) defined on
the interval 0 < 2 < 1 and let

—
a(f.9) = A/ {(g(w) — flx))*dw.

To prove [M 1] we observe that the integral of a continuous function
h*x)on 0 £ z < 1 can vanish only when A(z) = 0 for all . [M 3] is ob-
tained from the Cauchy-Schwarz inequality for integrals:

1 1 1
([ f)g@)dz)? £ [ fia)dz . [ g (x)dw
0 0 0

in a way analogous to the way this is done in example (a).

(c’) One can also introduce other metrics in the set of the preceding
example, for instance, by the definition:
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d'(f,g) = Max |g(z) — flz) [for0 S 2 £ L.

We note that a continuous real-valued function in the closed interval
0 < 2 £ 1 actually takes on its maximum at a point of this closed in-
terval. The proof that the axioms are satisfied is easy; [M 1] and [M 2]
are immediate. The proof of [M 3] goes through analogous to the way
this is done in example (a’):

a’(f, k) = Max | h(z) — flx) | = | h(zo) — flzo) | ,

where 2, denotes a point in the interval 0 £ 2 < 1 at which | & (z) — f(z) |
is maximal. It follows further that

a(f, h) | (g(xg) — flxo)) + (A{x) — glo)) |
| g(zo) — flzo) | + | Alao) — glap) |
< Max | g(z) - f(z) | + Max | h(z) — g(z) | = &'(f, 9) + d’(g, h).

(d) Finally, we give an example which is essentially further removed
from geometric intuition. Let X be the set of integers and let p be a fixed
prime number. Then, by the p-adic value, or, briefly, the p-value, | a |,
of an integer a (# 0) from X we understand the real number | a |, = 2~*
if a = a,p° where q, is an integer which is relatively prime to p, whereas
weset | 0 |, = 0. Then the following laws for p-adic values hold: (1) {a |, 2
0,|al, =0if, and only if,a = 0; (2) |ab|, = |a |, |b],;(3)|a+ b],
= |la|, + | b ;. Only (3) requires a special proof: If b = byp’ with the
integer b, relatively prime to p, then | b |, = 2-/, and if, say, e < f, then
a + b = cp*, with integer ¢ which is still possibly divisible by p. Hence,
we have in fact that |a +-b |, £ 27 Z |a |, 4 | b]|,.

X becomes a metric space by means of the following metric which is
formed analogous to that of example (a’):

d(a,b) = |b —al,
Axioms [M 1] and [M 2] are immediate and [M 3] follows from (3):

da,c)=|c—al,=|(b-a)+(c—-D)],
<|b-al,+|c—b]|, =da,b) + db,c).

IIA

A spherical neighborhood is simply a special case of a general
neighborhood of a point which is defined as follows:

1.4 Definition: A subset U of X is called a neighborhood of the
point p if it contains a spherical neighborhood of p.
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For example, in R? a circular disc including its boundary is a
neighborhood of its center. In the older literature, only the so-called
open sets were admitted as neighborhoods, whereas we make use of
the above somewhat more expedient definition.

The following four significant facts are valid for neighborhoods:

(U 1) p belongs to every neighborhood U of p. This is clear according
to the definition of a neighborhood.

(U 2) If U is a neighborhood of p, then every superset V. > U is also
a neighborhood of p. This likewise follows directly from the definition.

(U 3) If U, and U, are neighborhoods of p, then their intersection
U, N U, is also a neighborhood of p. Namely, the smaller of the two
spherical neighborhoods of p contained in U, and in U, respectively
is contained in U; N U,, and this shows that U, N U, is a neighbor-
hood of p. The corresponding fact holds for finitely many neighbor-
hoods of p: If U, (+ = 1, ..., r) are neighborhoods of p, then NU,
is also a neighborhood of p.

X atself is also a neighborhood of p. This assertion can moreover be
looked at as the limiting case r = 0 in the preceding statement (see
tntersection in the Index); for this reason, we introduce X as a neigh-
borhood of  in this item (i.e. under (U 3)).

(U 4) A neighborhood U of p is also a neighborhood of all points x of
a suttable neighborhood V of p. Namely, if U (p) is any one of the
spherical neighborhoods contained in U (according to the definition)
and if z is a point in U (p), then there obviously exists a spherical
neighborhood U, (x) contained in U,(p). U, () is contained in U so
that U is a neighborhood of . Thus, let V = U,(p).

We note that by our definition of a neighborhood, a neighborhood
U of p is not necessarily a neighborhood of all points of U.

At this point, we interrupt our development which we shall, how-
ever, continue in subsequent sections on a more general basis.
Namely, we will make our further investigations depend only on the
properties (U 1) — (U 4). We will therefore take these properties as
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the axioms for a new, essentially more general theory—that of
general topological spaces.

§ 2. Topological Spaces

Metric spaces are still not general enough for many purposes. There
are geometric constructions to which one would like to ascribe the
character of a space without its being necessary to assign to each
pair of elements a real number as distance. Furthermore, the axiom
system for metric spaces is not yet completely satisfactory insofar
as the real numbers appear in it; the real numbers, in turn, are
based on an extended theory which from the logical viewpoint is not
entirely simple. We therefore make the following definition.

2.1 Definition: A topological structure—in brief, a topology T—for
a set X is defined by assigning to each element pof X a system M(p)
of subsets of X, the so-called neighborhoods U of p, satisfying the
following four axioms:

{(U 1] p € U for every neighborhood U € U(p).
(U2 If Ue W(p)and V > U,then V e U(p).
(U 3] If Uy, Uye W(p), then Uy N Uye U(p); X e U(p).

(U 4] For each U € U(p), there exists a V € Y(p) such that U € Uly)
forallye V.

2.2 Definition: A set X together with a topology T for X is called
a topological space. The set X is said to be equipped with the topology
T; the set X is called the carrier set of the topological space. The ele-
ments of X are called the points of the topological space.

Except for slight changes, axioms [U 1]-[U 4] are the Hausdorff
neighborhood axioms which were taken as the basis for topology by
Hausdorff in his classical work on set theory (see the Bibliography:
F. HAusDORFF [1]).

We note that for every point p € X, the system U(p) is non-empty
because in every case X € U(p). By virtue of [U 1], the empty set &
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surely belongs to no system {(p). The neighborhood V in [U 4] is a
subset of U because every point ¥ € V has U as a neighborhood and is
therefore contained in U according to [U 1].

Every metric space becomes a topological space if neighborhoods
are defined as was done at the end of § 1; we have proved there that
the neighborhoods of the points of a metric space satisfy axioms
[U 1}-{U 4]. One says briefly that every metric space is also a topo-
logical space—that a metric structure over a set X induces a topo-
logical structure. The theory of topological spaces which is developed
in the sequel therefore yields at the same time theorems about metric
spaces; our examples for metric spaces are at the same time examples
for topological spaces.

Although every metric structure gives rise to a topological structure,
one cannot state that, conversely, every topological structure arises from
some metric structure. In this sense, we make the following definition.

2.3 Definition: A given topological structure I over X, i.e. a topolog-
ical space X, is said to be metrizable if there exists a metric structure
over X which induces this topological structure ¥. Two metric structures
over the same set X are said to be topologically equivalent if they induce
the same topological structure.

We shall be concerned with the problem of the metrizability of a
topological space in Chapter 8.

As an example of a trivial topology which can be introduced over
every set X, we give the discrete topology which assigns as a neighbor-
hood to each point p of X every set containing p. One verifies directly
that the axioms [U 1]-[U 4] are satisfied. This topology is metrizable,
for example by means of the discrete metric which is defined by
d(z,y) = 1forzx = y and d(z,x) = 0. In fact, with this metric every
point is a neighborhood of itself, and hence every set is a neighbor-
hood of all its points.

We give another, less trivial, example of a topological space X and,
indeed, one which is not metrizable. The proof of the non-metrizability
is not difficult; however, we postpone this proof until we take up the basic
treatment of such questions in Chapter 8.

Suppose the set X consists of all real-valued, not necessarily con-
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tinuous, functions f over the real line R!. First, the following sets of func-
tions A of X will serve as neighborhoods of a point f in X:

U=U@E2y..0x,) =1{||kz) —flz)] <efori=1,...,n}

for every ¢ > 0 and points z,, . . ., #, in R Further, all supersets of such
neighborhoods Ufe; ,, . . ., ,) will be neighborhoods of f. One sees easily
that with these assumptions the neighborhood axioms are satisfied.
Axioms [U 1] and [U 2] are immediate. The intersection of Ulg; @y, . . .,
z,) and U(e’; zy, . . ., @) evidently contains a neighborhood Uiz, o v oy
X, T3, o« o Z,) With an 5 < ¢, &/, from which we deduce [U 3]. Also
(U 4) is not difficult to prove (following the line of reasoning in [U 4] at
the end of § 1).

We note in passing the following property of the above space X: If
feX, geX, f# g, then there exists a neighborhood U of f and a neigh-
borhood V of g with U N V = (; namely, if the inequality f(z,} #
g(xy) holds for the real number z,, then for each ¢ with the property
that € <4 | f(@,) — g(z,) | one can obviously take U as a neighborhood
Uls; @) of f and V as a neighborhood U(g; z,) of g. We shall draw upon
this space as an example in various ways.

2.4 Definition: Let 4 be a subset of the topological space X.

(1) A point pe X is called an interior point of A if there exists a
neighborhood U € U(p) which is contained entirely in 4. The set of
all interior points of 4 is called the interior of A and is denoted by 4.

(2) A point pe X is called an exterior point of A if there exists a
neighborhood U € U{p) which is contained entirely in the comple-
ment CA. The set of exterior points of A is called the exterior of A.

(3) A point pe X is called a boundary point of A if there exist
points of 4 and points of CA in every neighborhood of p. The set of
all boundary points is called the boundary of A and is denoted by pA.

Exactly one of the three possibilities in Definition 2.4 occurs for
each point p € X: If (1) occurs, (2) cannot occur. Otherwise, the inter-
section of the two given neighborhoods would be a neighborhood of
p, which would be contained simultaneously in 4 and in C4;
naturally, (3) cannot occur then. Likewise, the case (2) excludes the
possibilities (1) and (3) and, trivially, (3) excludes the cases (1) and



16 AXIOMATIC FOUNDATIONS

(2). Conversely, for each point p € X one of the three cases must ocour:
If (1) and (2) do not occur, the occurrence of (3) follows.

The exterior of 4 coincides with the interior of CA. The boundary
points of A are partitioned into those which belong to A and those
which do not belong to 4.

2.5 Definition: A point p € X is called a contact point of A if there
exist points of 4 in every neighborhood of p. The set of all contact
points is called the closure of A and is denoted by 4.

The closure 4 is accordingly the union of the sets 4 and g4. As
simple consequences of Definitions 2.4 and 2.5, one can easily verify
the following important equalities and inclusions:

ACACZ, @=®=@) §=x=§,
CA=TA, CA=C4, o(CA)-=e4,
andif A € B,then A < B, 4 < B.

From the Definitions 2.4 and 2.5 and the disjunction, established
above, among the possibilities (1)-(3) in Definition 2.4, there arise the
following partitions of X with respect to 4 (into disjoint summands;
cf. “partition” in the Index), which, moreover, is clarified in Fig. 1:

i
it

A
R| 14
4

Fig. 1
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X=AueduC4
=AuC4 = 4uC4;
eA =4 - A4 =4nC4 = C(4uC4).

2.6 Theorem: A can also be thought of as the set of those points
which have A as a neighborhood—as a formula, A = {z | A € W(z)}. In
other words, the set A is a neighborhood of all the points of A and no
others.

Proof: We take a second formulation: If 4 is a neighborhood of z,
then, according to Definition 2.4, (1), « is an interior point of 4.

Conversely, if x€ 4, then there exists a set U e U(z) with U < 4.
Then A4 is also a neighborhood of z according to [U 2].

2.7 Definition: A set A issaid to be open if any one of the following
three equivalent conditions is satisfied:

(1) A consists only of interior points of A.
(2) A = 4; it suffices to require that 4 < A.
(3) 04 < CA.

A set A is said to be closed if any one of the following three equivalent
conditions is satisfied:

(1') The set A contains all its contact points.
(2) A = 4; it suffices to require that 4 > 4.
(3') o4 < A.

A set which is closed as well as open is called an open-closed set.

The equivalence of these three conditions is clear according to our
preceding discussion; this is most simply done using a diagram.

There exist sets 4 which are neither open nor closed—for example,
a circular disc in the Euclidean plane which includes part, but not all,
of its circumference. A set A can very well be open and closed—
therefore, be open-closed. One must not be disturbed on linguistic
grounds here: the concepts “open’ and ‘“‘closed” are not to be con-
ceived of as being contradictory. For example, the sets (¥ and X are
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open-closed, which fact can be verified by simply applying the defini-
tion.

The open-closed subsets of X form the point of departure of the
theory of connectivity of topological spaces (see § 7).

2.8 Theorem: A4 set A is open if, and only if, CA 1is closed; a set
A is closed if, and only if, CA is open.

The second part of the theorem obviously asserts the same thing as
the first. The proof is yielded most simply from the conditions (3) and
(3) of Definition 2.7 and from ¢4 = o(C4).

2.9 Theorem: A set A is open if, and only if, it is a neighborhood of
each of its points.

This is an immediate consequence of Theorem 2.6 upon applying
Definition 2.7 (2) which we introduced in the meantime.

§ 3. Duality Principle

In Definition 2.7 and in Theorem 2.8, there arises a duality between
certain concepts and theorems about topological spaces which we
shall now consider more precisely. We do this less for abbreviating the
proofs, which is inessential, than to obtain a better organization of
the facts to be proved.

Let X be a topological space which contains all the sets appearing
in the sequel as subsets. Let the set 4 be composed from the sets X,
Y, ... by means of the operations U, N and the formation of in-
teriors and closures and from the special subsets ( and X. This we
shall express by 4 = F(X, Y,...) in analogy with the notation for
functions and their independent variables. We obtain CA4 by apply-
ing the following rules, already proved, on the function F':

C(XUY) = CX(\CY,CE =ﬁ,C® =£,
CXnY)=CXyuC?,CX =C0X,CX=0
until we arrive at the form C4 = F¥(CX, CY,.. .). Here, F* means
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the function which arises from ¥ upon replacing U by N, the formation
of the interior by the formation of the closure and @j by X, and con-
versely. Also, henceforth, the asterisk on a function F denotes this
“dual” function. Let B = G(X, Y,...) be another set composed
from X, Y,....If A = Bor A < B is a relation between 4 and B,
then it follows that CA = CBor C4 > CB, respectively, and for the
corresponding functions, say, in the last case, we have

(*) F*CX,CY,...)> GXCX,CY,...).
If the relation F(X,Y,...) < G(X,7Y,...) holds for arbitrary
composite sets X, ¥, . . ., then the relation (*) also holds for arbitrary

X,7Y,... Nowif X ranges over all subsets of X, then so does CX;;
likewise, if ¥ ranges over all subsets of X, then CY does also, and so
on, Therefore, one can simply replace CX, CY, . .. in the relation (*)
again by X, 7, . . .. One thus obtains a pair of mutually dual relations

FX,Y,..)<GX,7Y,...),
FYX,Y,..)> G%X, Y,...),

which arise from one another by a purely mechanical replacement of
U by N, interior by closure, @3 by ¥, < by >, and by the reverse
replacements. One calls this formation process the duality principle
for topological spaces.

One can add the following supplementary remarks. If some of the
composing sets X, Y, ... are not arbitrary, but rather are bound by
the assumption of being open, then we obviously obtain a correct
relation when we make in the dual relation the assumption that the
corresponding sets are closed. If instead of a relation between two
sets, we are dealing with the assertion that theset 4 = F(X, Y,...)
is open, then the dual assertion that F*(X, Y, .. .)is closed holds. In
these considerations, one can naturally interchange the words “open”
and “closed.”

An acceptable foundation of the duality principle really requires a
clarification of the basic logical concepts, especially of the concept of
“proposition.” But we content ourselves with the preceding sketch
which in any case suffices for the purposes of the following sections.
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The theorems are dually juxtaposed by pairs and we always prove
only one of them. The reader can easily derive the other according to
the above line of reasoning. We pay attention especially to the fact
that in this process the theorems themselves, but not their proofs,
are dualized.

3.1 Theorem: Let X range over an arbitrary index set A and ¢ over
the natural numbers 1, .. ., n.

(O 1) The union U A, of an arbi-
trary number of open sets A, is

open. () 18 open.
(0 2) The intersection N A; of a

finite number of open sets A; is
open. X is open.

(A 1) The intersection N 4, of an
arbitrary number of closed sets A,
18 closed. X s closed.

(4 2) The union U A, of a finite
number of closed sets A; is closed.
& s closed.

Proof: (0 1): Let pe U A,. Then p € A, for at least one A, and there
exists a neighborhood of p which belongs entirely to 4,. This neigh-
borhood belongs also to U A4,, and this proves that U4, is open.

(02): Let p eNA;. Then pe A, for every ¢ and there exist
neighborhoods U; e U (p) which are contained entirely in 4;. Then
N U, is likewise a neighborhood of p according to [U 3] and indeed it
is a neighborhood contained in N 4;. Therefore, N A4; is open.

It was already established in connection with Definition 2.7 that
@ and X are open and closed. Concerning (¥ as a union set and X as
an intersection, see the Index under union and intersection.

The reader should verify by counterexamples that (O 2) and (4 2)
do not hold in general for infinitely many 4,. For instance, in R!
one obtains a counterexample to (4 2) by taking for the 4, the one-
point sets {p} for all p of a non-closed set.

3.2 Theorem:

The interior A is open.

The closure A is closed.

The proof, which is by no means trivial, makes use of [U 4] for the
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first time: Let z € A. Then there exists a U e U(zx) with ze U < 4.
According to [U 4], there exists a V € Y(«) such that U e U(y) for all
y € V. Therefore, all y are interior points of 4, V < A. This shows
that z is an interior point of 4, which is what we were required to
prove.

3.3 Theorem:

A is the union of all open subsets A is the intersection of all closed
of A; we say that A is the larg- supersets of A; we say that A is the
est open subset of A. smallest closed superset of A.

Proof: Since A4 is open, 4 is taken into account in the formation of
the union V of all open subsets of 4; therefore, A < V. V is a subset
of 4 and, by virtue of Theorem 3.1, (O 1), V is open. Every point
z € V therefore has a neighborhood which is contained in 4 and hence
every point of ¥V belongs to A. This means that V < 4. The assertion
follows by combining these two results.

3.4 Theorem: A set U is a neighborhood of a point p if, and only f,
there exists an open set O suchthat e 0 < U.

Proof: If there exists an open set O such that pe O < U, then
0 € U(p) by virtue of Theorem 2.9, and hence also U € U{p) according
to [U 2]. Conversely, if U € 1(p), then p e U by virtue of Theorem
2.6, U = O is open by virtue of Theorem 3.2, and therefore pe U =
OcVU.

3.5 Theorem: Let A, range over a system of arbitrarily many sets
with the indices A. Then the following relations hold:
a) U4,>2U4, o N4 <nA,
b) N4,=N4, dU4,>UAd,

Proof: a): Let xe U 4,, say, x € 4,. Then z is an interior point of
A, and it is thus also an interior point of U 4,,ie. xe U 4,.
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b): If x belongs to N 4,, then there exists a neigborhood of x
which belongs entirely to N 4,, i.e. it belongs to every 4,. Then z
is an interior point of each set 4,, € A4,, and this means that z
belongs to N 4,.

Relations c¢) and d) are proved similarly.

In general, the equality sign does not hold in any of the inclusions
of the theorem. In the case a), consider in the reals R! the sets 4, =
f£] -1<2<0} and 4, ={xr|0=<2z< + 1}; we have that
Ay U A4, # A4, L 4,. For the inclusions b) and d), we can easily find
examples of the sort given in connection with Theorem 3.1. It is par-
ticularly remarkable that in this case one uses an infinite number of
sets 4,; namely, the following theorem holds.

3.6 Theorem: AN B=ANB AUB=4yu B.

Proof: We have already proved in the last theorem that A " B <
A N B. AN Bisthe maximal open set containedin4 N B; 4 N B
is an open set contained in A N B. Thus, An B> 4 N B. Com-
bination of these results yields the first equality of the theorem.

3.7 Theorem:
If O is open and A closed, then If A is closed and O open, then
O — A is open. A — O is closed.

Proof: We have that 0 — A = 0 N (CA). O and CA are open;
therefore, the intersection is also open.

3.8 Theorem:

If A is open, B arbitrary and If A is closed, B arbitrary and
ANB=g, thenalso ANB Ay B=2X,thenalsoAdu B =
= ®~ x~

Proof: A N B = @ means that B = CA. It follows that B <

CA4 = CA = CA and this means that 4 N B = .
We now generalize the concept of neighborhood by introducing
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neighborhoods of arbitrary subsets 4 of X in supplement to Theorem
3.4.

3.9 Definition: A set U is called a neighborhood of the set A4 if there
exists an open set O such that A < 0 < U.

Then, in analogy with the neighborhood axioms [U 1]-{U 3], it is
true that a neighborhood U of 4 always contains A4, that together
with U also everyset ¥V © U is a neighborhood of 4 and, finally, that
together with U; and U, also U; N U, is a neighborhood of 4. We
will not need an analogue to [U 4].

3.10 Theorem: U is a neighborhood of A if, and only if, U is a
netghborhood of all points x in A.

Proof: If U is a neighborhood of 4, then Theorem 3.4 shows that
U € U(xz) for every z € A. Conversely, let U € U (z) forevery z € 4. By
virtue of Theorem 3.4, then for each x € 4 there exists an open set
0, such that xe O, < U. We form ¥V = UOQ, taken over all z€ 4.
¥V is open according to Theorem 3.1 and is contained in U; V con-
tains A by its construction. Therefore, U is by definition a neighbor-
hood of 4.

In analysis one frequently makes use of the concept of accumula-
tion point instead of that of contact point.

3.11 Definition: The point p is called an accumulation point of the
set A if p is a contact point of 4 — {p}. The point p € 4 is called an
solated point of A if there exists a neighborhood of p in which the
only point of 4 is p. An accumulation point is also called a limt
point.

Here, {p} denotes the set consisting of the single point p. Concern-
ing the terminology accumulation point, see Theorem 13.10, at the
end of §13.

3.12 Thereom: A contact point of A is either an accumulation
point of A or it is an isolated point of A; A arises from A by adjoining
the accumulation points of A.
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Proof: Let p be a contact point of 4. If there exists a neighborhood
of p which contains no points of 4 except p, then p is an isolated
point of A. Otherwise, there exist in every neighborhood of p further
points of 4 — {p}, i.e. p is an accumulation point of 4. Conversely,
every accumulation point of 4 and every isolated point of 4 is also a
contact point of A.

As an application, let us determine the open subsets of the real line R!
in the usual topology. To them belong surely the open intervals of R!;
these are the sets (a,b) = {z|a <z < b}, (@, + o) = {x |a < z},
(— o0, b) = {z |z < byand (— oo, + oo) = R Furthermore, arbitrary
unions of open intervals are open. We now prove the following theorem.

3.13 Theorem: A non-empty open set O of thereal line R 18 representable
as the union of a denumerable number of disjoint open intervals whose end-
points belong to the complementary set CO.

The closed subsets of R}, which are the complements of open sets, are
at the same time characterized by this theorem.

Progf: (1) Let z € O. Since O is open, there exists an open interval con-
taining z and contained in O, namely a suitable neighborhood ().
Let I, be the union of all the open intervals of this sort. According to
[0 1], I, is open. We shall show that I, itself is an open interval of this
gort—more specifically, that I, = (a,b), wherea = inf I_and b = sup I ;
here,a = — ocoorb = 4 ooare also admitted. (Concerning inf and sup,
see the Index.) Namely, if y € (a, b) and, say, ¢ < y < @z, then there
exists according to the definition of @ an 2’ € I, with a < #’ < y, and «’
lies together with z in an open interval contained in O. Therefore, y also
lies in this interval and hence y € I,. The same is true when z < y < b,
and for y = = we likewise have that y € I,. We therefore have the result
that for each z € O there exists a uniquely determined open interval I,
which contains « and is contained in O and which is contained in no
larger open interval of this sort.

(2) If 2, ®, are points from O and the corresponding intervals I, I,,
have common points, then I, Ur -, 18 8n open interval containing z, and
contained in O. Therefore I, n I,, = I,,. Analogously, I, n 1, =1,
so that I, = I,,. The distinct intervals I, are therefore disjoint.

(3) An endpoint a of an interval I, cannot belong to O for otherwise I,
and I, would have common points and yet not be coincident, in contra-
diction to (2).

To complete the proof of the theorem it remains to show that at most a



§ 4. U-, 0- AND K-TOPOLOGIES 25

denumerable number of distinct intervals I, are involved. The following
somewhat more general theorem shows this.

3.14 Theorem: Every system of disjoint open sets in R" is finite or
denumerable.

Proof: We select in each of the opensets a rational point, i.e., a point
all of whose coordinates are rational. This sets up a one-to-one correspon-
dence between the system of open sets and a subset of the rational num-
bers. Since the set of rational points in R" is denumerable, the assertion
of the theorem follows immediately.

§ 4. U-, 0- and K-Topologies

In the preceding discussion, we introduced a topology for a set X
which was based on the concept of neighborhood—more specifically,
on a neighborhood system (p) given for each point p € X as a primi-
tive concept. We shall now become acquainted with another type of
topology for the same set X which is based on the concept “open” as a
primitive concept. In this connection, the concepts ‘“‘neighborhood,”
“open,” “interior,” and so forth, appear in both topologies and refer
in both cases to subsets of the same set X. In order to avoid confusion,
we denote—only for the purposes of this section —the topology de-
veloped up to this point, based on the neighborhood concept, as the
neighborhood topology Iy, or briefly, as the U-topology. We provide
all concepts and notation with the distinguishing U, and, therefore,
speak of U-neighborhoods, the system Wy (p), U-open sets, the U-in-
terior, and so forth. In contrast to this, we now define, completely
independently of the preceding discussion, a new O-topology as
follows:

4.1 Definition: An O-topology T, for a set X is defined if a system
D, of subsets of X, the O-sets, is distinguished in such a way that the
following axioms hold:

[O 1] The union of O-sets is again an O-set. @ is an O-set.

[0 2] The intersection of a finite number of O-sets is again an O-
set. X is an O-set.

The O-sets are also called O-open.
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We recognize that the axioms [0 1], [0 2] are formed analogously
to the assertions (O 1) and (O 2) of Theorem 3.1.

4.2 Definition: A set U is called an O-neighborhood of a point p if
there exists an O-set O such that pe O < U.

The following theorems are valid for O-neighborhoods which are
analogous to the previous axioms [U 1], . . ., [U 4], but here they are
not axioms, but rather theorems about the topology I,, which re-
quire a proof.

(U 1) p is an element of every O-neighborhood U of p.

(U 2) Together with U, every set V > U 1is also an O-neighborhood
of p.

(U 3) The intersection of a finite number of O-neighborhoods of p is
again an O-neighborhood of p. X is an O-neighborhood of p.

(U 4) If U is an O-neighborhood of p, then there exists an O-neigh-
borhood V of p such that U is an O-neighborhood of all points y of V.

(U 1) and (U 2) are clear according to the definition of O-neighbor-
hoods. (U 3) is verified directly by using [O 2]. Finally, one proves
(U 4) by taking for the required O-neighborhood V precisely the O-
open set O of Definition 4.2, which is itself certainly a neighborhood
of p. The Theorems (U 1)—(U 4) are thus proved.

4.3 Theorem: A set is O-open if, and only if, it is an O-neighborhood
of all its poinis.

Proof: If the set 4 is O-open, then, by Definition 4.2, 4 is an O-
neighborhood for each point z € A. Conversely, if 4 is an O-neighbor-
hood of all the points z € 4, then there exists for each 2 € 4 an O-open
set O such thatz€ 0, € 4. Then A = UO, and by [0 1]it is O-open.

The topology X, over X constructed in §§ 2, 3 and the topology
T, of X developed in this section have been considered completely
independently. We now show their relationship. First, the state-
ments (O 1) and (O 2) of Theorem 3.1 show that the U-open sets of
Ty satisfy the axioms[0 1] and [0 2] of T,. Therefore, to make cor-
respond to a topology Ty a topology I, one need only choose the
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totality of the U-open sets of Ty as the defining system O, of an O-
topology. Then the question arises in what relation do the U-neigh-
borhoods of I stand to the O-neighborhoods of I,,. Comparison of
Theorem 3.4 with Definition 4.2 shows that these two concepts of
neighborhood likewise coincide. We summarize the result as follows.

4.4 Theorem: For every U-topology Ty for a set X with the defining
U-neighborhood systems Wy (p), there exists exactly one O-topology X,
for X whose defining system O, of O-open sets coincides with the
totality of the U-open sets of Ty the totality of the O-neighborhoods in
Ty of a point p € X coincides then with Wy (p).

Since the topology I;; depends only on the U-neighborhood sys-
tems W (p) and the topology T, only on the system O, of O-open
sets, one can, on the basis of this theorem, identify the two topologies,
namely I;; and the topology I, deduced from it, coextensively with
each other. All theorems of both topologies are similar in expression,
i.e. they differ only by the distinguishing letters U and O. It is only
the starting point which is different, sometimes the neighborhood
system and sometimes the open sets are assumed to be the primitive
concept. We point out further the decisive role of Theorem 3.4 in
these considerations. It characterizes the primitive concept of neigh-
borhood of ¥ in terms of the concept of U-openness defined in I;;.

The question yet remains open whether one can obtain all possible
topologies I, for X by assigning to each topology Ty, for X a topology
T, for X. The following analogue to Theorem 4.4. shows that this is
really so.

4.5 Theorem: For each O-topology X, for a set X with the defining
system O, of the O-open sets there exists exactly one U-topology Ty for
X whose defining neighborhood system Wy (p) for the points p € X coin-
cides with the O-neighborhood systems of the point p in X,; the totality
of the U-open sets of Ty then coincide with the system O,.

The proof proceeds entirely analogously to that of Theorem 4.4.
The characterizing theorem concerning I, to be used in this case is
Theorem 4.3; it is comparable with Theorem 2.9 concerning the
topology Iy.
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Hereby the totality of U- and O-topologies for X correspond to one
another in one-to-one fashion. It is immaterial for the further con-
struction of the theory which of the two axiomatic approaches, Ty
or I, one chooses. The reason that we started in Sections 2, 3 from
Ty is that in the beginning geometric intuition is perhaps more
important. It will be evident in the following that I, is in many
ways somewhat simpler to handle.

We will characterize axiomatically the topological spaces, in addition

to O- and U-topologies, in a third way. In this connection, we take as
basic the primitive concept of the interior 4 of a set A.

4.8 Definition: A K-topology I, over aset X is defined if to every subset
A of X there is assigned a subset 4 of X so that the following axioms are
satisfied:
[K1]1X =%; [K3]1d =4;
[K21A < A; [K4]ANnB=A4ANB.

A is called the K-interior of 4.

4.7 Definition: A set A is called K-open if A = A.
For example, X is K-open by virtue of [K 1] and (7 is K-open inasmuch
as, by virtue of [K 2], J < (J holds.

4.8 Theorem: If A < B, then A < B.

Proof: A < Bisequivalentto 4 = 4 N B. By [K 4], it follows that
A =AN B =4 N B, and this means that 4 < B.

4.9 Theorem: (O 1) The union V = UA, of an arbitrary number of
K-open sets A, ts K-open. (O 2) If A, and A, are K-open, then A, N A,
18 also K-open.

Proof: (O 1): We have that 4, = A,. It follows from 4, < V that
4, © V or that 4, < V. It follows further that V = U4, < JV and
from this that V = V.

(0 2): It follows from A, = A;, A, = A,, by [K 4], that 4, N 4, =
4,N4;, =4,NA,

4.10 Theorem: A is the union of all the K-open subsets of A, i.e. A is
the largest K-open subset of A.
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Proof: A is K-open according to [K 3] and a subset of A by virtue of
[K 2]. Now, let G be the union of all K-open subsets of 4. ¢ is K-open
according to Theorem 4.9. Therefore,4 < ¢ < 4. According to Theorem
4.8, it follows that 4 ©« G < 4,ie. A = G < A, and therefore G = 4.

It is now easy, following the pattern of Theorem 4.4 and Theorem 4.5,
to let correspond to each O-topology I, for X a K-topology T for X, and
conversely. The open interiors in I, obviously satisfy the axioms [K 1]-
[K 4] and motivate the introduction of a corresponding K-topology ¥ ;.
Comparison of Definition 4.7 for Tz and Definition 2.7, (2) for I, (or for
X, which amounts to the same thing according to the preceding dis-
cussion) shows that the open sets in both topologies coincide. In the
reversed correspondence, one has to show that the interiors of the two
topologies coincide; this is attained by comparison of the Theorems 4.10
for Tz and 3.3. for T,and I, respectively. One thus recognizes the equi-
valence of the U-, O- and K-topologies for X.

Naturally, one can introduce together with ¥, in a dual manner a
closure topology I , and likewise, together with T, a closure topology ¥ 5.
All these topologies are equivalent. In the sequel, we omit the indices U,
O, and so on and we shall prefer one or the other topology on grounds
of expediency.



Chapter 2
DEVELOPMENT OF THE THEORY

§ 5. Mappings and Functions

We shall first study briefly the mappings f of a set X into a set
P—in symbols, f: ¥ - ). A mapping f assigns to each element
z € X a well-defined element y € ). X is called the domain of definition
(or simply the domain) of f and9) is called the range of variation (or
simply the range) of f. We shall also write y = f(z); y is called the
image of z, x is called a pre-image of y. We also say that fis a
Junction which assigns to each z of the domain X a y of the range .
Fach z € X has precisely one image, but one y € ¥) can have several
pre-images. If 4 < X, then f(4) = B denotes the set of images of the
elements of 4. It may happen that f(X) is a proper subset of ).

If f has the property that f(X) = ) and hence that each element of
9) is an image, then f is said to be epimorphic or a mapping onto J).
If f has the property that each element y has at most one pre-image
and, hence, that f(x,) = f(z,) implies x; = z,, then f is said to be a
monomorphic, or reversibly single-valued, or a one-to-one, mapping of
X into 9). If f is epimorphic as well as monomorphic, then f is called
an isomorphic, or a one-to-one, mapping of X onto ; f yields a reversi-
bly single-valued relation, a pairing, between the elements of X and
9. In this case, and only in this case, there exists an inverse mapping
f:9Y — X, which maps J) in a reversible single-valued manner onto
X. The equations y = f(x), x = f~'(y) are equivalent to one another.
f is called the ¢nverse of f.

One attributes a meaning to the symbol f-! also for arbitrary map-
pings f: X — 9), not only for isomorphic mappings and speaks in an

30
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extended sense of an inverse f-! to f. If B is a subset of ¥J), then f-1(B)
is defined as the set of all pre-images of all the elements of B. f-1(y) is
accordingly the set of all pre-images of the element y € B; f-1(y) can
be empty or consist of several elements. f-1 is therefore generally not
a mapping of J) into X, but rather f~ assigns to each subset of 9 a,
perhaps empty, subset of X. One recognizes immediately the validity
of the following two inclusions for arbitrary subsets 4 < X and
arbitrary subsets B < 9):

FHf(4)) = 4, f(f~(B)) = B.

In the first relation, the equality sign holds for all 4 < X if, and only
if, f is monomorphic. In the second relation, the equality sign holds
for all B < ) if, and only if, f is epimorphic. If ) = UB, is a parti-
tion of Y into sets B,, then X = Uf-1(B,) is a partition of X.

For the behavior of a mapping with respect to the formation of
unions and intersections, the following laws are valid:

J4; 0 4,) = f(4y) U f(4y),
JHByU By) = fYB) U fB,),

*) fl4, N 4,) < f(4,) N f(d,),
**) JHBy 0 By) = fYBy) NfHBy).

These are simple logical facts, the establishment of which is imme-
diate. That the equality sign does not always hold in (*) is shown, say,
by the mapping y = sin x for the intervals 4,: 0 < x < 27 and 4,:
2n < 2 < 4. The equation (**) is thus so much the more remarkable.
We note further the equality f-}(CB) = Cf-1(B) and point out the
list of the fundamental set-theoretic equations and inclusions at the
end of this little volume.

After these set-theoretic preliminaries, we now turn to the study of
topological spaces.

5.1 Definition: Two topological spaces X and §) are said to be
homeomorphic if there exists a one-to-one mapping f of X onto )
whereby the system Oy of the open sets of X correspond to the system
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Dgof open sets of ; f is called a homeomorphic mapping or a homeo-
morphism of X onto ).

Two homeomorphic spaces are therefore indistinguishable as
topological structures; by means of f, the two topologies coincide
completely. The concept of homeomorphism corresponds to the con-
cept of isomorphism which one uses in dealing with algebraic struc-
tures, e.g. groups, rings, fields, and so on. The corresponding concept
for metric spaces is that of an isometry.

5.2 Definition: Two metric spaces X and ), with metrics dy and
dg respectively, are said to be isometric if there exists a one-to-one
mapping f of X onto 9 such that dy (z, 2') = dg (f(x), f(2')) for all =,
z’ € X. The mapping f is called an isometric mapping of X onto Y-

The concept of a continuous mapping which we will now introduce
corresponds in many ways to the concept of a homomorphism for

groups.

5.3 Definition: (Local Continuity): Let f: X — %) be a mapping of
the topological space X into the topological space ¥) and let  be a
point of X and y = f(z). Then f is said to be continuous at « if either
one of the following two equivalent conditions is satisfied:

(1) For each neighborhood V € U(y) there exists a neighborhood
U e U(z) such that f(U) = V.
(2) For each neighborhood V e U(y) we have that f-1(V)e U(x).

Proof of equivalence. If (1) is satisfied, then f-1(V) > U; since
U € U(x), we also have that f~1(¥) e U(x) according to [U 2]. Con-
versely, if (2) is satisfied, then we choose f-1(V) to be that neighbor-
hood whose existence is required in (1); we then certainly have that

fF) < 7.

5.4 Definition: (Global Continuity): Let f: X — ) be a mapping of
the topological space X into the topological space ). The mapping f
is said to be continuous, or more precisely continuous on X, if any one
of the following four equivalent conditions is satisfied:
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(1) f is continuous for each z € X.

(2) The pre-image set f~1(B) of each open set B < J) is open.
(2) The pre-image set f~(C) of each closed set C' < 9 is closed.
(8) For each set 4 = X, f(4) < f(4) holds.

Moreover, a one-to-one mapping f: X — ) is homeomorphic if and
only if, in analogy with the last condition (3), the following condition
holds:

for every set A < X, f(4) = f(4).

For, then not only is f continuous, because of (3), butalso f-1: Y — X,
inasmuch as for every set B < ),

fAB) = fHFHB) = B = fAB)

holds.

Proof of the equivalence of conditions (1)~(3):

(1) = (2). Let (1) be satisfied and B < 9) be open. Let y range over
B, z range over f-(y) for all y, i e. z ranges over f~1(B). Then Be
U(y) and therefore, according to (1), also f~1(B) € U(x). Thus the set
f~UB) is a neighborhood of all 1ts pomts and hence it is open.

(2) = (1). Let (2) be satisfied, 2 X, y = f(z). If V € U(y), then
there exists an open set B such that ye B < V. It follows that
z e f-Y(B) < f-YV) with open f-1(B); thus, f-Y(V)e U(z).

(2) <> (2"). As Branges over all open sets of §), CB ranges over all
closed sets of 9. Then f-1(B) and f~1(CB) are complementary sets in
X (fundamental equation 9). Therefore, f~1(B) is open if, and only if,
fYCB) is closed. This signifies the equivalence of (2) and (2').

(2') = (3). Let fsatisfy (2'). Let 4 be a subset of X and p a contact
point of A. It is to be proved that f(4) < f(4) or that f(p)e f(4).
Now according to assumption (2') f-1(f(4)) is closed; therefore, to-
gether with A also the contact point p belongs to f-1(f(4)). This means
precisely that f(p) € f(4).

(3) = (2'). Let fsatisfy (3). Let B be a closed subset of ), p a con-
tact point of f-1(B). It is to be shown that f-}(B) is closed or that
pef-YB).Nowf(p) isa contact point of f(f-1(B)) according to assump-
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tion (3). Since f(f-1(B)) < B (fundamental equation 10’), f(p)eB,
ie. pef-1(B).

Conditions (2), (2’) are closely connected with the question whether
the images of open sets are open and the images of closed sets are closed
under a continuous mapping. That this is not the case in general is
shown by the function f(x) = sin z, which maps the open interval 0 <
z < 27 of the z-axis onto the closed interval — 1 < y £ 4 1 of the
y-axis (here the x-axis is the space X and the y-axis is the space J)).

Further, the entire z-axis R = R1, considered as a closed set, is mapped
by means of the function f(x) = tanh = onto the non-closed interval
-1 < y < +1 of the y-axis.

Continuous mappings which always map open sets of the original
space X into open sets of the image space are called open mappings;
examples are formed by non-constant functions f(z) of the complex
variable z which are everywhere regular in a region 2 of the complex
plane. Closed mappings are defined analogously; examples are formed by
continuous mappings of a compact space X into a Hausdorff space 9 (cf.
Theorem 18.1, below). Both classes of mappings are of great significance
for a more thorough theory of mappings.

Iftwo mappingsf: X — %) and g: §) — T are given by the equations
y = f(x), z = ¢g(y), then the mapping k: X — I, which is defined by
z = g(f(x)), is called the composite mapping or the product mapping
gof = gf. One must pay particular attention here to the order of the
factors.

5.5 Theorem: If the mappings f: X — 9 and g: P > I are con-
tinuous, then the composite mappingh = gof: X — T is also continuous.

Proof: Let xe X, f(x) = y, g(y) = z. If W e U (z), then, by virtue
of the continuity of g, the set g-1(W) is a neighborhood of ¥ and, by
virtue of the continuity of f, the set f-1(g~1(W)) is a neighborhood of
z. Obviously, f~Xg-X(W)) = A Y(W).

5.6 Theorem: A one-to-one mapping f of a topological space X onto
a topological space ), for which f as well as f-1 are continuous, is a
homeomorphism. Conversely, if f is a homeomorphism of X onto ), then
S as well as f~! are continuous.
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Proof: It must be shown that f and f~! map the systems O and
Opg of the open sets of X and 9) respectively into one another. On
account of the continuity of f-1, f maps the system D into a sub-
system of Og. If B is chosen arbitrarily from Dy, then f~Y(B) = 4 is
open because f is continuous and B = f(f-1(B)) = f(4) is the image of
the open set A from Oy. Therefore, f maps Dy into the entire system
Dy, which is what was required to be proved. The converse is trivial.

We give yet an example of a one-to-one mapping f between two
spaces X and 9), in which f is continuous but f-! is not continuous—
hence f is not a homeomorphism. Let X be the interval 0 < ¢t < 27 of
the ¢-axis, 9) the unit circle in the (z, y)-plane R2, f(t) = (cos?, sin t);
then f-! is discontinuous at the point (1, 0).

§ 6. Relative Topology

If X is a metric space, S a subset of X, then one can consider S as a
metric space, since certainly for each pair of points of § a distance is
defined which satisfies axioms [M 1]-[M 3] of a metric space.

For topological spaces X, we apply the concept of trace to intro-
duce a topology for a subset S of X. If § < X is an arbitrary set,
which is to be thought of as fixed, and if 4 ranges over arbitrary sub-
sets of X, then

AS=A NS

is called the trace on S of the set A. The following rules hold (cf.
fundamental formulas (4), (4')):

(Au B)g = A3 Bg, (4 N B)g = Ag N By,
which one can verify directly; the corresponding rules for an arbitrary

number of factors also hold.

6.1 Theorem: A4 topology X is defined in a subset S of the topolog-
ical space X with the topology T by taking the open sets of S to be the
traces Ag on S of the open sets A of X.
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Proof: Let O = {4,|X from an arbitrary index set A} be the
system of open sets of T. Let Og be the system of the traces B, =
(4,))s = 4, N 8. It must be shown that Og satisfies the axioms [0 1]
and [0 2]. In fact,

U BA = U(AA)S = (U A,\)s = As

as A ranges over /, where 4 is an open set of X. {0 1] follows from
this. [O 2] is obtained in an entirely analogous way.

6.2 Definition: The topology ¢ defined in Theorem 6.1 is called
the trace topology T g of T on 8 or the topology induced in S by T or also
the relative topology for S; S is called a subspace of X.

If 4 « X,then CA = X — A denotes the complement in X; on the
other hand, if B < §, then C;B = 8 — B denotes the complement
in 8. Then the rule (CA)g = CgA4; (fundamental formula (5)) holds.
It follows from this rule that the closed sets of T5 are identical with
the traces of the closed sets of T. One must pay special attention to
the fact that the concepts “open,” closed,” “interior,” and so forth,
are meaningful only with respect to a given topology; therefore, one
mustalwayssay “openin” or “‘openinS,” and so on, whenever there
is danger of confusion. We make use of the abbreviated terminology
“S-open,” “S-interior,” and so on. Itis not always true that an S-open
subset B of 8 is always X-open, as one can easily verify with very
simple examples. Moreover, the following theorem holds.

6.3 Theorem: If S is a subspace of the topological space X, then: All
S-open subsets of 8 are also X-open if, and only if, 8 is open in X. This
theorem remains true when one replaces the word “‘open’ by “closed.”

Proof: If S is X-open, then Ag = A N 8 is also X-open whenever
A is. Conversely, if the traces A of all the X-open sets A are X-open,
then in particular Xg = § is X-open.

We shall describe in the next theorem the S-neighborhoods of the
points p € 8 by means of their X-neighborhoods.
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6.4 Theorem: The S-neighborhoods of a point pe S are identical
with the traces of the X-neighborhoods of p.

Proof: If Ue U(p) in X, p €S, then there exists an X-open set O
with pe O < U. By means of trace formation, it follows that p € Og
< Ug, Oy is S-open, and therefore Ug is an S-neighborhood 0. p. If V
is an S-neighborhood of p € 8, then pe B < V¥ for a suitable S-open
set B < 8. We have that B = Og for some X-open set O, and hence
pe0 < (Ou V). Oy V is an X-neighborhood of p and has the
trace (O U V)g = Ogu Vg = By V = V. This completes the proof
of the theorem.

One might think that the interior and closure under the formation of
the relative topology have behavior analogous to that of the concepts
“open,” ‘“‘closed,” and ‘‘neighborhood.’” In fact, the following proposi-
tion holds: If 4 < 8, then the S-closure of 4 is equal to the trace in S of
the X-closure of 4. But by no means does a corresponding theorem hold
for the S-interiors as one can make clear with the simplest examples.

§ 7. Connectedness

7.1 Definition: A topological space is said to be connected if it does
not allow a partition into two non-empty open subsets.

Concerning the concept of partition, consult the index. The con-
dition of the definition is equivalent to each of the following five con-
ditions:

(1) There do not exist subsets 4 and B of X with the properties:
A# @, B# @, Aand Bopen, X =4Au B, A nB =g

(2) If the subsets 4 and B of X are non-empty and open and ¥ =
Av B, then4d n B+ Q.

(3) If the subsets A and Bof Xareopenand X = Au B, AN B

= @,then 4 = Xand B=QgorAd = gand B = X.

(4) In Definition 7.1 and in the criteria (1)—(3), one can replace the
word “open” by the word “closed.”

(5) There exists no open-closed subsets 4 of X except ¢ and X.

(1) is only a detailed form of Definition 7.1. (2) and (3) are formal
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reversals of (1), (4) is equivalent with (1) inasmuch asin (1) 4 = CB
and likewise B = CA are open-closed. (5) holds for the same reason.

Examples: (a) The space X which consists of two disjoint circular sur-
faces in the Euclidean plane (with the relative topology, induced from the
plane) is not connected.

(b) The rational line @ (with the relative topology) is not connected
because the set 4 of all rational points < 4/2 is open-closed.

(c) The real line R = R! as well as any open or closed interval I < R
(with the relative topology) is connected.

Proof of (c): Assume that 4 # (¥, # X is an open-closed subset of X.
Then there exist points a € 4 and be CA since X contains more than one
point. Let, say, @ < b. Then the least upper bound of the set 4, =
{x jzed, x < a} is a finite real numer ¢, £ ¢ £ b. We have that
¢ € 4 since 4 is closed. An entire neighborhood of ¢ belongs to A4 since 4
is open. Hence a neighborhood of ¢ also belongs to 4,, contrary to the
definition of the least upper bound of 4,. Therefore, a set 4 of the sort
assumed cannot exist and so X is connected.

7.2 Definition: A subset C of X is called connected if C, considered
as a subspace, is connected. An open connected subset is called a
region.

7.3 Theorem: C is connected if, and only if, any one of the following
two conditions s satisfied:

(1) There do not exist subsets A, B, of X with the properties that
AnC#p, BNCHAP, A, Bopen (inX),0 <« Au B, AN BNC
= @_

(8") If the subsets A and B of X are openandC < 4 y B,A n B
N C = @, thenit followsthat C € 4, BN C = gord NnC =,
C < B.

One can also replace in (1') and (3') the word “open” by the word
“closed.”

Proof: Again, (3') is simply the formal converse of (1’); the inter-
change of “open” and ‘“‘closed” is obtained as just above. We
shall prove (3'): Let C be connected. If A and B are open subsets of
X in the sense of (3') withC = 4 U B, 4 " B N C = @, then the
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traces A, = A N C and B, = B N C satisfy the assumption of con-
dition (3), applied to the space C. Therefore, according to (3), 4, =
@ or B, = (, and this is what is to be proved in (3').

Conversely, let (3') be satisfied. In the space C, let 4" and B’ be
C-open in the sense of (3), withC =4’ U B', 4"’ N B’ = . Then A4’
and B’ are traces of open sets 4 and B from X, 4" =4 NnC, B =
BN C. 4 and B satisfy the assumptions of condition (3'); therefore,
we have either 4 N C = @jor B N C = (), and hence 4" = @ or
B' = @y, as is required in (3).

7.4 Theorem: If f: X — X' is a continuous mapping and C is a
connected subset of X, then C' = f(C) is also connected.

Proof: Let A’ and B’ be open subsets of X’ in the sense of (3’) with
CcAyB,AANB NC =@ Then fY4') = A, f-Y(B)=B
are open subsetsof X withC = 4 U B, A n B N C = @. According
to (3") for the space C it follows that C < A4 or C < B, and therefore
either " € A’ or ¢' = B’, which is what had to be proved.

7.5 Theorem: If {C,} (A from an arbitrary index set A1) are connected
subsets of X such that C,» N C,» 7= @ for X' £ X, then the union C =
UC, s also connected.

Proof: Let A and B be open subsets of X in the sense of (3') with
Cc Ay B,4A n B NC = @. Then afortiori wehaveC; <« AU B
and 4 N B N C, = @; the assumption of (3') therefore holds for
C,, and hence C; © 4 or C; < B. Let, say, C; = A. Analogously, one
concludes that C, = 4 or C, < B. Of these two possibilities, only the
first one, C, = A, comes into consideration since C; N €, % @ and
A N B nC = @. Since this holds for all A, (3) follows, i.e. C is
connected.

According to this, a convex set C in R", for example, is connected;
for, an arbitrarily chosen fixed point peC can be joined by a polygonal
arc with every point x€C, and a polygonal arc is, according to
example (c), connected.
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7.6 Theorem: If C is a connected subset of ¥,C < D < C, then D
18 also connected.

Proof: We apply (3') in the formulation for closed 4, B. Let 4, B
be closed subsets of X with D < 4y B, A "B NnD = . Then
we have a fortiori that C< 4 U B, A " B NnC = @. It follows
according to (3'), say, that C = A. It follows further that D = 0 <
A = A, and therefore D = A4. According to (3'), this shows that D is
connected.

As an example for this theorem, we consider the set 4 of all points
(2, y) of the plane R2with 0 << # << 1and y = sin (I/z). 4 arises from
A by the adjunction of the set 4, of all (0, ) with —1 <y < +1.
If A4, is an arbitrary subset of 4,, then, according to the theorem,
A U 4, is also connected.

7.7 Theorem: If C is connected, D an arbitrary subset of X and C
intersects D as well as CD, then C also intersects the boundary oD.

Proof: Assume that € N gD = @. Since X = Dy CD v ¢D,
then the open sets 4 = D, B = CD would have the properties
that Cc A uBCnAd N B = @.*Since, moreover, according to
assumption, C N4 =CND =Cn D#¢g, and C N B # ,
C would not be connected, according to Theorem 7.3 (1'), contrary to
our assumption. This completes the proof of the theorem.

7.8 Theorem: If X is connected and D is a subset of X which is dis-
tinct from @5 and X, then oD +# .

The proof follows from the preceding theorem if we identify the set
C occurring there with X.

Let X be an arbitrary topological space. If we define two points z,
y € X to be equivalent if  and y are contained in one connected sub-
set C of X, then this defines a reflexive, symmetric and transitive
relation among the points of X. Transitivity is verified as follows: If
z and y are contained in th2 connected set C, y and z in the connected
set D, then x and 2 are contained in the set C U D, which, according
to Theorem 7.5, is connected. The equivalence classes, relative to this
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equivalence relation, are called the connectivity components, or briefly
the components, of X. A component C of X is therefore a maximal con-
nected subset of X. The component C{x) of a point z € X, the set of all
those points of X which together with z lie in a connected subset ot
X, can also be defined as the largest connected subset of X containing
z. Every open-closed subset of X, which contains the point z, contains
the entire component C(x) as a subset. Theorem 7.6 implies the next
theorem.

7.9 Theorem: The components of a topological space are closed sets.

Moreover, components in general are not open, as, for instance,
example (b) at the beginning of this section shows. We conclude with
the following definition.

7.10 Definition: A space is called totally disconnected if each of its
components consists of one point.

§ 8. Connectedness of Point Sets in R®

Special assertions can be made about the connectedness of subsets in
Euclidean space R*. We first consider connected sets on the real line R2.
To them belong, as we saw, the intervals and indeed the open intervals
(@, b) = {x|a < x < b}, the closed intervals [a,b] = {z |a £ = < b}
and the half-open intervals, e.g., [a,b) = {x le 2z < b}. Among the
open intervals we also count the sets (— 00,b) = {z | # < b}, (@, + ©0)
= {w|2> a} and ( — 00, + ) = RL Now the following theorem is
valid.

8.1 Theorem: The only connected sets in R! are the one-point sets and
arbitrary intervals. The only regions are the open intervals.

Proof: Let C be a connected set in RL.

(1) Let zy, 2, € C and y €(xy, x,). If we had y ¢ C, then the sets 4 =
{x|zeC, 2 <y} and B = {w |xeC,x > y} would form a partition of
C into two non-empty open subsets, which, according to the definition of
connectedness, do not exist. Therefore, together with each pair of points
x,, Z, € C, the entire interval [x,, z,] belongs to C.

(2) Let ¢ =inf C, b = supC,a < b and z€(a, b). According to the
definition of inf and sup, there exist #;, x,€C witha = oz, < x < 23 <
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b; according to (1), it follows that x € C. It should be clear how these in-
equalities are meant if a = — o0 or b = 4 00. Therefore, C = (a, b) or
= [a@, b] or = (a, b] or = [a, b), which is what was to be proved.

By a polygonal arc in Euclidean space R" with the vertices z,, . . ., z,,
we understand the union of the finitely many segments [x,_,, z,] for ¢ =
1, ..., m. Here, we allow the segments to overlap. We say that z, and z,,
are joined by the polygonal arc.

8.2 Theorem: An open set O in R" 18 connected if, and only if, any pair
of its points can be joined by a polygonal arc in O.

Proof: A polygonal arc is a connected set as one recognizes by apply-
ing Theorem 7.5 a finite number of times. If every pair of points of O can
be joined by a polygonal arc in O, then, according to Theorem 7.5, O is
connected.

Conversely, now let O be connected. Let a € O and C be the set of all
« € O which can be joined to a by a polygonal are. C is connected and non-
empty. When we show that C is open-closed in O, it will follow from this
according to Definition 7.1, (5) that C = O; and therefore the theorem
holds. We shall first prove that C is open: Let « € C be joinable with a by
a polygonal arc. Since O is open, there exists an e-neighborhood U of =
which is contained in O. Every point y € U is joinable with = by a recti-
linear segment and hence with ¢ by a polygonal arc, and therefore it
belongs to C, and this proves the assertion. We show further that C is
closed: If y € O is a contact point of C, then there exist points z € C in
every g-neighborhood U < O of y. y is joinable with « by a rectilinear
segment, and x is joinable with a by a polygonal arc; therefore y is also
joinable with @ by a polygonal arc, i.e. ¥ € C. This proves that C is closed
and completes the proof of the theorem.

If instead of starting in the preceding discussion with the concept of a
polygonal arc one starts with the concept of a simple polygonal arc in
which the above-named segments [z;_;, ;] do not intersect (except at
their endpoints), then Theorem 8.2 remains valid without modification;
its proof offers no fundamental difficulties.

8.3 Theorem: The components of an open set in R" are open and hence
they are regions.

Proof: Let the set C be a component of the open set 0, z € C. Then an
¢-neighborhood U of z likewise belongs to 0. U is connected and has
points in common with the connected set C. Therefore C \y U is connected
and, because of the maximality property of C, it follows that U < C.
Therefore 2 is an interior point of C and so C is open.
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In particular, according to this and by Theorem 8.1, the components of
an open set in R! are open intervals. The representation of an open set O
in R?! as the union of disjoint open intervals, as was stated in Theorem
3.13, is therefore nothing else than the decomposition of the set O into
its components; this decomposition is unique.

8.4 Theorem: An open set in R" is the union of at most a denumerable
number of regions.

This generalization of Theorem 3.13 follows immediately from the last
theorem.

§ 9. Density

9.1 Definition: A subset 4 of the space X is said to be dense in X
(also everywhere dense in X) when either one of the following two
equivalent conditions is satisfied: (1) 4 = X, (2) every non-empty
open subset of ¥ contains points of 4.

The equivalence of the two conditions is almost self-evident: Both
mean that every neighborhood of a point of X contains points of 4.
For example, the set 4 of rational points on the real line E!is dense.
The same statement holds for the set of irrational points. Therefore A
ag well as CA can be dense in X. If 4 is dense in X, then every subset
A’ of X such that A’ > A is dense in X.

9.2 Definition: A subset 4 of the space X is said to be nowhere
dense in X if either one of the following two equivalent conditions is
satisfied:

(1) 4 has no interior points;

(2') For each non-empty open subset O of X there exists a non-
empty open set O; < O with O, N4 = .

Proof of equivalence: Let (1’) be satisfied and let O be a non-empty
open subset of X. If there were points of 4 in every non-empty open
set O, < O, then we should have O < 4, contrary to (1').

Conversely, let (2') be satisfied. If x is an arbitrary point in X and
U an open neighborhood of z, then there exists a non-empty open set
0, <= U which belongs entirely to CA. Since the points of 0; do not
belong to 4,  is not an interior point of 4.
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For example, a line is nowhere dense in R2. If 4 is nowhere dense
in X, then 4 is also. (1) and (1’) show that a set cannot be simul-
taneously dense and nowhere dense in X. If 4 is nowhere dense in X,
then CA4 is dense in X, as follows directly from (2’). The converse does
not hold as our preceding examples show. On the other hand, one can
make the following assertion.

9.3 Theorem: A closed set A is nowhere dense in X if, and only if,
CA4 is dense in X.

Proof: For closed sets 4, (1’) means that 4 has no interior points,
that therefore 4 = (5. Because CA = CA, this is equivalent to
C4 =%

In the sequel, we shall give an example of a totally disconnected set
which is nowhere dense on the real line B! and which is of fundamental sig-
nificance for many topological investigations—this is the so-called
Cantor discontinuum €. It is constructed as follows: In the closed “C-
interval of zero rank’” C = [0, 1] we delete after trisection the open
‘‘ B-interval of zero rank” B = (%, %) s0 that the two closed C-intervals

of the first rank C, = [O, %] and C; = [%, 1] remain. From C, and C,,
we delete after trisection the open B-intervals of the first rank B, =

(%, g) and B, = (%, g) respectively, so that the closed C-intervals of the
second rank Cy, = [0, %], Cn = [g, g], Cy = [g, %], and C,; = [g, 1]
remain.

We continue this process analogously: If one has already constructed
2"~1 closed C-intervals of the (n — 1)-strank C; , .,  (G,...,%_1 =0
or 1), then we delete from each C,,...s,_, by trisection the open B-inter-
val of the (n — 1)-st rank B,.1 iy, SO that the two closed C-intervals of

the n-th rank C,-’ iig_ g0 and C’,-1 iy 1 remain. For eachn = 0,1,2,.. .,
one thus obtains 2" closed C-intervals of the n-th rank C; _,; of length %,
which are separated from one another by the open B-intervals which

have a rank < n; their length is = % Every subinterval of [0, 1] with

a length > %therefore contains points from B-intervals of rank < n.
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Now let C™ be the union of all C-intervals of the n-th rank, B™ =
[0, 1] — O™ the union of all B-intervals of all ranks < n. C* is closed,

B™ is open; each of the intervals on [0, 1] having length > 3—1,‘ contains
points of B™, We form

© ©
€ =nNnC™ =[0,1] — y B™,

n=0 n=(Q

Coo Cor Cro Crr

0 1

win

1
3
Fig. 2

This set is the Cantor discontinuum %.We shall provethat € hasthe follow-
ing six properties: (1) % is closed, and therefore compact in the sense of
Chapter 5. (2) The endpoints of all the B-intervals including the points 0
and 1 form a set ¢,. We have that &, = € since in the construction pro-
cess of € the points of €, are never deleted. They are called points of the
first type of €. The remaining points of % are called points of the second
type; they form the set &,; we have that € = €, U %.,. (3) Every point
p of € is an accumulation point of ¢, even more, an accumulation point
of €,. For, p lies in a C-interval of the n-th rank and hence has points of
the first type arbitrarily close to it. (4) To each p € € there corresponds
a uniquely determined sequence

C’:>0,.l:>0 > C

i1 g #1913

of C-intervals all of which contain p. So, p arises from a uniquely deter-
mined sequence %, ¢, %3 . . . , where ¢, = 0 or 1. Conversely, to each such
sequence there corresponds a uniquely determined point p € &. There-
fore € is related in a one-to-one fashion with the set of all these sequences,
and, since this set has the cardinality ¢ of the continuum, ¥ also has this
cardinality. Since %, is denumerable, it follows from this, in particular,
that €, is non-empty and moreover it has the cardinality ¢. (5) € is no-
where dense in [0, 1] because every open interval of [0, 1] (hence every

open set) contains points of B™ when n is so large that 3#1" is smaller than

the length of the interval. (6) € is zero-dimensional, by which the follow-
ing is understood (cf. §§ 32, 33): For each real € > 0, € isrepresentable as
the union of a finite number of disjoint closed subsets in C of diameter
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< &. Obviously, the sets € N C; ..., form such subsets and indeed of

diameter < % when the G, ... ;, Tange over all C-intervals of the n-th
rank. We note without proof that one can define € in an especially simple
way as the set of all those real numbers « which can be written as triadic
fractions o = 0. v; ¥, . . ., which require only the digits 0 and 2 but not

the digit 1.



Chapter 3

RELATIONSHIP OF VARIOUS
TOPOLOGIES TO ONE ANOTHER

§ 10. Bases

A topology T for a set X is completely determined by the system O
of the open sets or by the systems U(p) of neighborhoods of the points
p. Conversely, these systems are uniquely determined by I. For
many purposes, in particular for the construction of topologies for
a given set, it is desirable to describe T by means of less compre-
hensive systems which might not be uniquely determined by ¥. This
occurs in the case of space bases and neighborhood bases, which we
shall now introduce.

10.1 Definition: A system B = {B, | A from an arbitrary index
set A} of open sets B, of the topological space X is called a basis of X
or a basis of T if each open set of X is the union of elements from B.

We point out that we include @5 in every case as a union (see the
index); therefore, (2 need not occur in B.

Ezamples: (a) O itself is a basis of X. (b) In a metric space X, the
totality of all spherical neighborhoods of all points of X form a basis.
Namely, if O is an open set in X, x € O, then there exists a neighbor-
hood U, = U,(x) such that ze U, < 0. Then O = UU, taken over
all ze 0. (¢) In R" the spherical neighborhoods with rational radii
about rational points (i.e. those with rational coordinates)form a basis.
Namely, if O is an open set in RB", z € O, then there exists a spherical
neighborhood U, (x) with rational radius 2¢ about =, which lies en-
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tirely in O. Then surely a rational point a lies in U (z) and for ¥V, =
U, (a) we have that xe ¥V, = 0. Then O = UV, taken over all z € O.
Since the set of rational points in B™ and thereby also the set of
spheres with rational radii about these points is denumerable, one can
say: R" possesses a denumerable basis. (d) One can easily show that
also the Hilbert space H possesses a denumerable basis. One takes,
say, all spherical neighborhoods with rational radii about the points
of the form (ry, ..., r,, 0,0, ...) with rational r, . . ., r,.

10.2 Theorem: In a given topological space X, let B = {B, | A from
an arbitrary index set A} be a system of open sets. B is a basis of X if,
and only if, to each open set O < X and to each point p € O there exists a
B,e B such that pe ., < O.

Proof: First, let B be a basis of X. If O is open, p € O, then O is,
according to the definition, the union of certain B,c B; atleast one of
these sets B, must contain p, p € B, < 0. Conversely, let the condi-
tion of the theorem be satisfied and let O be an open subset of X. For
each pe O there exists a B, = B)(p) with pe B, < 0. Then ob-
viously O = UB, (p), where the union is taken over all p € O. Thus,
B is a basis.

10.3 Definition: A system B(p) of neighborhoods of a point p in
the topological space X is called a neighborhood basis of p (also a
Sfundamental system of neighborhoods of p) if to each neighborhood
U € U (p) there exists a V € B(p) such that V <= U. If B(p) consists
of open neighborhoods only, then B(p) is called an open neighborhood
basis of p. A closed neighborhood basis is defined in a corresponding
manner.

Examples: (a) U(p) itself is a neighborhood basis of p. (b) The
spherical neighborhoods of a point of a metric space form an open
neighborhood basis of p.

The following theorem shows that there always exist open neigh-
borhood bases; the existence of closed neighborhood basesis, however,
assured only for special classes of spaces, as we shall see later.
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10.4 Theorem: Those sets B, of a basis B = {B,|A from an
arbitrary index set A} of the topological space X, which contain a fixed
point p, form an open neighborhood basis of p. If for each point pe X
the system B(p) 1s an open neighborhood basis, then B = UB(p), taken
over oll pe X, is a basis of X.

Proof: If U e U(p), then there exists an open set O such that pe
O < U (Theorem 3.4). O is the union of sets from B; at least one of
them, say B,, contains p. Then we have that p € B, < U. Therefore
U contains an element of B(p), which was first to be shown.

If O is an open set of X, p € O, then there exists by assumption an
open set B, € B(p) such that pe B, < 0. Thus U B(p) is proved to be
a basis according to Theorem 10.2.

After having considered bases of a given topological space ¥, we
now ask under what conditions is a system of subsets of a set X suit-
able for a basis of a topology over X. In this connection, the following
theorem is valid.

10.5 Theorem: In a set X, let a system B = {B, | A from an arbi-
trary index set A} of subsets be given with the property that: If B,, B,
€ B and if pe B, N By, then there exists a B, e B such that pe B, <

B, N Bys; moreover, assume X = UB,. Then there exists precisely one
AeA

topology X for X in which B is a basis of T.

Proof: Let O be the system of all unions of sets B,, including .
If there exists a topology of the required sort, then O must be the
system of the open sets of . Therefore there exists at most one
topology T of the required sort. On the other hand, O actually satis-
fies axioms [0 1] and [O 2]; it therefore really defines a topology ¥.
This is clear for [O 1]. In order to also prove [O 2], we choose Oy, O, €
. f0, N0, = @, then O, N O, isin O. If O, N 0, £ @,
then let p € O, N O,. Since 0,, O, are unions of B,, there exist B,
By,e Bsuchthatpe B, = 0,, pe B, = 0,. Hence thereexists a B, =
B,(p) € B such that pe B, < B, N B,. Clearly, 0O, N 0, = U B,(p),
taken over all pe O; N O,, which proves that O, N 0, 0. Since
also X € O, this proves [0 2].
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Without going further into the various bases of a topological space %,
we remark yet that the smallest of the cardinalities of these bases is
called the weight of the space X; such a smallest cardinality exists since
the set of cardinal numbers is well ordered (cf. E. KaMKE [1], § 44,
Theorem 3). Only the case of denumerable weights will still be treated
briefly.

10.6 Theorem: If the topological space X possesses a denumerable basis,
then there exists in X a denumerable dense point set.

Proof: If 8 = {B; |1 = 1,2,...} is a denumerable basis of X, then
we choose in each B; a point p,. The denumerable set of the p, is then
dense in X: Namely, if O is open, then there exists a B; < O and hence
p;€0.

10.7 Theorem: A metric space X possesses a denumerable basis if, and
only if, there exists a denumerable dense set in X.

Proof: Taking the preceding theorem into consideration, we must yet
show only that in a metric space the existence of a denumerable dense
set implies the existence of a denumerable basis. This verification is car-
ried out literally as in the proof of example (¢) at the end of Definition
10.1.

10.8 Theorem: In a topological space X with denumerable basis, the
system of open sets and likewise the system of the closed sets has at most the
cardinality ¢ of the continuum.

Proof: Let B = {B;|i = 1, 2, ...} be a denumerable basis of X. Each
openset O < X isthe union of certain sets B, and therefore O determines,
by means of the corresponding indices ¢, a subset of natural numbers.
Distinct open sets obviously determine distinct subsets of this sort. The
system of all open sets is therefore equivalent to a subset of the set of all
subsets of natural numbers and hence it has cardinality < ¢. The system
of closed sets is put into correspondence with the open sets in one-to-one
fashion by the formation of complements, and therefore it likewise has
cardinality < ¢.

A topological space, in which there exists a denumerable dense set, is
sometimes called separable. For example, the Euclidean space R* and its
subsets are separable. Theorem 10.7 asserts that for metric spaces the
concepts of separability and of having denumerable weight coincide.
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§ 11. Coarser and Finer Topologies

11.1 Definition: Let two topologies I and I’ with the systems O and
D’ of open sets be given for a set X. T is said to be finer than I/, and I’
is said to be coarser than T, if O > O’.

In general, of two topologies T and X’ for X, one will not be finer than
the other; O and D’ may overlap in an arbitrary fashion. It is noted that
T is said to be finer than I’ also in the case T = T’. An example is
yielded by the two topologies in § 1, examples (¢) and (¢’). The topology
of (c) is coarser than that of (¢’), and indeed they are not equal as one can
easily verify. In contrast, the topologies of examples (a), (a’) and (a’’) are
the same; they are only generated by different metrics. The metrics
d(z, y), d’(x, y) and d”(z, y) are topologically equivalent in these three
cases (see Definition 2.3).

There is a finest topology for a set X which is finer than all the remain-
ing topologies for X; it is obviously the discrete topology, which we have
considered immediately after Definition 2.3. In this topology, O con-
sists of the set of all subsets of X; all subsets of X are open and ell of them
are closed. U(p) consists all the sets which contain p. For every subset
A < X we have that A = A = A. Furthermore, there exists a coarsest
topology for X. In this topology, O consists of ¢ and X only, and these
are also the only closed sets. Every point has only X as a neighborhood,
and for arbitrary 4 # J, # X, wehavethat 4 = J, 4 = X.

11.2 Theorem: Let T and T’ be two topologies for the same set X. Then
I 8 finer than I’ if, and only if, any one of the following equivalent con-
ditions 18 satisfied:

(1) For the systems of open sets in T and IT’, we have that O > O’ holds.

(1) For the systems of closed sets in T and T’, we have that A > W
holds, where N, W are the systems of closed sets for T, T, respectively.

(2) For the neighborhood systems in T and T, we have that U(p) = U (p)
holds for every p e X.

(3) The interior in T of a set A contains the interior in I’ of A.

(3’) The closure in T of a set A is contained in the closure in T’ of A.

The proof follows from the theorems of §§ 2, 3, which give a dual
characterization of the fundamental concepts “open,” ‘‘closed,” ‘“‘neigh-
borhood,” and so forth. Thus, say, the interior of 4 is the largest open
subset of 4; since O contains more open sets than O’, the interior in T of
4 is more comprehensive than the interior in I’.
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11.3 Theorem: If the systems B and B’ are bases of the topologies T and
T’ for the same set X, then T is finer than T’ if, and only if, for each set B, €
B’ and each p e B:‘ there exists a B) e B such that pe B, < B;.

Proof: If T is finer than ', then B‘: is the union of sets B,, and at least
one of these sets B, must contain p, pe By < Bj.

Conversely, if the condition of the theorem is satisfied, then each set B;,
is the union of sets B;: Namely, if p € B,,, then there is a B, = B)(p)such
that p e By(p) « B,,. Obviously, B;, = U B)(p), taken over all pe B,,.

Now, let one further, not necessarily topologized, set X be given. In
§ 10, we asked which systems of subsets of X are suitable for bases for a
topology ¥ for X. We generalize this formulation of the question: Let
€ = {Ca| A from an arbitrary index set A} be an arbitrary given system
of subsets of X. Does there exist a topology T for X for which the C, are
open sets? Surely this is the case for the discrete topology on X. Now, let
T be any topology for which the C, are open sets and let O be the system
of all open sets in I. Then, according to [O 2], all finite intersections of
sets C) are also open in T. Let B = {B” | ufrom an arbitrary index set
M } be the system of these finite intersections; we include X among
these intersections (see Index under ‘‘intersection’’). We have that
B < O. Further, according to [0 1], arbitrary unions of sets B,, are open
in T; let O, be the system of these unions, we include (% in O, Therefore
we have that O, < . We now assert that the system D, already satisfies
axioms [0 1]and [0 2]. [0 1] is immediate as a consequence of the general
associative law for the formation of unions, and [O 2] follows similarly
from the distributive law for intersections and unions (fundamental
formula (2)). Thus, D, determines a topology T, for X and indeed a
coarser topology than ¥. We summarize this result in the next theorem.

11.4 Theorem: Let € = {C,\ | A from an arbitrary index set A} be a
system of subsets of a set X. There exists a uniquely determined coarsest
topology T, for X in which the C) are open sets. § s called a generating sys-
tem or a subbasis for I,.

The possibility of generating topologies in a set X, given by means of
this theorem, is especially useful in the construction of examples and
other special topologies.

§ 12. Product Topology and Quotient Topology

We precede our discussion with some set-theoretical considera-
tions. Let X, X, be two sets; the set X = X, x X, of all pairsx =
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x, X Z, with z, € X, and z, € X, is called the product setof X,and X,
and X,, X, are called the factor setsof X. z, and =z, are called the co-
ordinates of the element z = x; x z,. The mapping ¢;: X - X; (¢ =
1, 2) with g,(x) = z; is called the projection mapping, or briefly the
projection, of X onto X;. The coordinate z; is also called the projection
ofzin X, If 4, < X, for ¢ = 1, 2, then the subset of X consisting of
all y; x y, with y, € 4, is called the product set 4, x 4, of 4, and
A,. The (untopologized) plane E2, for instance, is an example, being
the product of two (untopologized) lines R. If 4 is a subset of X, then
@{(4), the projection of 4 onto X;, denotes the set of all ¢,(y) with
y € A. The following rules are valid:

@4 U B) = ¢(d) U ¢(B), p(4 N B) < ¢,(4) N ¢,(B).

That the equality sign does not hold generally in the above inclusion
is shown, say, by the example of two lines 4, B in the Euclidean
plane R?2 = R! x R! which are parallel to the z-axis and their
projections on the z-axis.

7]
Fig. 3

Iff: X, — X, is a mapping of X, into X,, then the subset
[fl={zr =2 x 2|2 = f ()}

in X = X, x X, is called the graph of f. Conversely, [ f] completely
determines f. The frequent use outside of topology (even outside of
mathematics) of the graph [ f] to depict the function f, is well known.

If X,, X, and Q) are three sets, then a rule which assigns to each
pair z, € X;, z,€ X, one and only one element f (z,, x,) € T} is called a
SJunction f of two variables x,, ,. One interprets f expediently as the
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ordinary function f: (X; x X,) - 9. The case X, = X, = X occurs
especially often, in which case f: (X x X) —>9).

Nowlet X, (¢ = 1, 2) be two topological spaces with the topologies
T, and the systems of open sets ;. In order to equip the product set
X = X, x X, with a topology, we consider the system B of all pro-
ducts O; x O, of open sets O, in X, with open sets O, in X,. B can
serve as a basis of a topology ¥ in X. Namely, if 0, x 0, and 0 x
0, are two sets in B, then the intersection

(01 x 09) N (0] x 03) = (0; N OF) x (0, Of)

is also a set from B ; the criterion of Theorem 10.5 is therefore trivially
satisfied for a basis.

12.1 Definition: If I, (i = 1,2) are topologies for the sets X,
then the topology I defined in the product set X = X; x X,, which
has as basis the products of the open sets of X, and X, is called the
product topology T = I, x I, over X. X = X, x X,, equipped with
this topology I, is called the product, or the topological product, of
X, and X,.

As examples, we point out the plane R2 as the product of two lines
R! and the torus as the product of two circumferences. One can
easily clarify for himself that Definition 12.1 applies in these cases.

Of the many theorems which one obtains upon comparison of the
topologies I, of the factors X; with the topology T of X, we mention
here only the following facts: The projection mappings ¢, (¢ = 1, 2)
are continuous. If 4 is an open set in X, then ¢,(4) is also open in ¥
and thus also open in X;. This follows from the fact that it is valid for
the open sets of a basis B of the sort indicated above, and it carries
over to the general case by means of [O 1]. One must note, however,
that the projection ¢;(4) of a closed set 4 = X is in general not
closed; the example of the closed set A consisting of the branch of the
hyperbola y = z-1in the first quadrant of the (, y)-plane R? whose
projection on the xz-axis is the open interval (0, + o0) shows this. A
function f = f (,, ,) in two variables, f: X, x X,— ), is continuous
at (p,, p,) if, and only if, to each neighborhood U € M(f (p,, p,)) in
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) there exist neighborhoods U, € W(p,) in X,, U, U(p,) in X, such
that f (U,, U,) = U,ie. f(x,, )€ U, if ¢, € U,, 2, U,

There are no difficulties to extend the considerations of this section and
the Definition 12.1 to any finite number of factors X, (¢ =1, ..., n) and
to interpret the product

n
¥ =1IIX,

i=1

In the definition of the product IIX, with an arbitrary number—even an
infinite number—of factor spaces X, (A from a suitable index set A), one
proceeds, however, because of necessity, somewhat differently: The pro-
duct set ¥ = I1X, and the projection mappings ¢ ,: X — X, are defined
analogously to the way this is done in the finite case. Now we consider
for each open set O, of X, the “strip” ®;1(0,) in X, i.e. the set of all points
of X whose projection @, falls on 0,. From the set of all strips, we form
the set B of all finite intersections of strips. This set satisfies the con-
ditions of Theorem 10.5 since the intersection of two such finite inter-
sections is again one of the same sort. Thus, B is a basis of a topology T
for X. X = IIX, is called the product space of the X, and ¥ is called the
product topology of the topologies T, of the X),.

The basis for this sort of definition of the product topology ¥ lies in the
following fact. We seek a topology over the product set X = IIX,, which
in any case has the property that the projection mappings @, are con-
tinuous functions. We easily recognize that the discrete topology of X
has this property; if a topology I’ for X has this property, then every
finer topology for X also has this property. The product topology just de-
fined is now the coarsest topology for X which has the named property,
as one can easily verify.

As an example, we consider for each < = 1, 2, . .. a copy of the closed
unit segment I} ={¢ : 0 < ¢ <1}, The product of the I} is the infinite-
dimensional unit cube I® whose points are described by the infinite
sequences ¢ = (f,, ¢, . . .) of real numbers with 0 < ¢; < 1; the topology
of I is the product topology given above. One can depict it by mapping
I* onto the Hilbert cube PB (example (b) of § 1), and indeed by means of

the mapping ¢ = f(¢), which is given by means of z; = (%,-)t,. (t=12,

...). f is amonomorphic and epimorphic mapping of I® onto P, and it is
not very difficult to verify that f as well as f~1is continuous. I® and B are
therefore homeomorphic. The topology of P appears in I® in an especially
intuitive form which is symmetric in all coordinates.
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We shall now go briefly into the quotient topology. First of all, let a
partition of an arbitrary set X into non-empty subsets P, (A from a suit-
able index set 4, Py N\ Py = @ if X’ # A) be given. Such a partition is
produced by means of an equivalence relation among the points of ¥. We
think of the P, as the elements pj of a new set X’. If p € X, and indeed
p € P,, then we set ¢(p) = p); therefore, ¢ denotes the natural mapping
of X onto X’, which assigns to each element p of ¥ the set P, containing
it or its representative pj in X’.

Now if atopology T is given for X, then we can obtain from it a topology
T’ for X’ in the following way. We define a subset 0” < X’ to be open if
@1 (0’)is open in X, i.e. if the totality of all p € ¥ with ¢(p) € O’is open in
X. We recognize immediately the validity of the axioms [O 1], [O 2] for
these open sets of ¥’; they follow immediately from [O 1], [O 2] in X. The
topology T’ arising thus is called the quotient topology I’ of the topology
T with respect to the given partition of X; X’ is called the quotient space.

As an example, let us consider on the real line ¥ = R?!the equivalence
relation £ = 2’ (mod 1) and the partition of X resulting from it. The
quotient space X’ is the closed circumference of a circle. Analogously, one
can obtain the torus from the real plane R? as the quotient space with
respect to the partition of R? into equivalent points relative to a
periodic lattice.



Part 11

SPECIAL CLASSES OF SPACES






Chapter 4

SPACES DEFINED BY SEPARATION
AXIOMS

§ 13. Hausdorff Spaces

The spaces considered up to this point are still so general that they
bear many characteristics which deviate strongly from the usual idea
of a space. This is illustrated, for example, by the coarsest topology
for a set X and also by the following example. Let R? be the set of all
pairs (z, y) of real numbers. A “‘strip neighborhood” of (z,, y,) is given
by all (2, y) with | z — 2, | < & where ¢ > 0, and general neighbor-
hoods are all sets that contain strip neighborhoods. The neighbor-
hood axioms are satisfied; therefore, we have here a topological space.
In every neighborhood of (z,, y,) there lie all points (z,, y, + ¢) with
arbitrary real ¢ of the perpendicular through (x,, y,). Actually, this
perpendicular is the closure of the point set consisting of the single
point (%,, o). The point set consisting of (x,, y,) is not closed.

We shall now subject our spaces to a series of stronger and stronger
restricting axioms, whereby the point sets, such as those introduced
above, will be closed. The spaces so defined are more special than
those treated up to this point, and hence they possess a more develo-
ped structure which is indicated by the theorems which are added to
the previous theory.

We shall first of all exclude by means of an axiom the situation
that the intersection of all the closed neighborhoods of a point p
contains points other than p.

59
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13.1 Definition: A topological space X is called a Hausdorff space
and its topology ¥ is called Hausdorff if either one of the following
two equivalent axioms is satisfied:

[Hd] If p, ¢ (p # q) are any two poinis of X, then there exist neigh-
borhoods U € U(p) and V € U(g) such that U N V = @ (Hausdorff’s
separation axiom).

[Hd'] The intersection of all closed neighborhoods of a point p con-
tains p only.

[Hd] is called a separation axiom because it separates the two
points p and ¢ by means of the neighborhoods U and V; it is named
after F. Hausdorff who was the first to recognize its significance.

Furthermore, in [Hd] one can take U and V to be open without
modifying its content.

Inthesequel, we shall deal almost exclusively with Hausdorffspaces.

Proof of the equivalence [Hd] < [Hd']: We first prove that [Hd] =
[Hd']. Let [Hd] be satisfied and suppose p is a fixed point in X. Let z
range over all points 7 p in X. According to [Hd], there exist neigh-
borhoods U, €l (p) and V, e U(zx), which we take to be open, with
U,nV,=g. CV,is a closed neighborhood of p which does not
contain x. This proves that [Hd] = [Hd'].

We shall now prove that [Hd'] = [Hd]. If p -~ q, then there exists
a closed neighborhood U € U(p) which does not contain ¢. Then CU
is open and it is a neighborhood of ¢ since g € CU; we always have
that U N CU = @, which is what we had to prove.

13.2 Theorem: Every subspace of a Hausdorff space is Hausdorff.
The proof follows directly from [Hd] and Theorem 6.4.

13.3 Theorem: In a Hausdorff space, every set consisting of only one
point is closed.
The proof follows from [Hd'] and axiom [4 1] (see § 3).

13.4 Theorem: Every topology for a set X which is finer than a
Hausdorff topology for X is itself Hausdorff.
The proof follows quite easily from [Hd] and Theorem 11.2, (2).
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13.5 Theorem: The product X = IIX, of an arbitrary set of topolo-
gical spaces X, £~ @ is Hausdorff if, and only if, all the factors are
Hausdorff.

Proof: Suppose all the X, are Hausdorff and let p, g€ X, p #~¢.
Then the projections ¢,(p) = p,, ¢.(q) = g, of p, ¢ along X, are dis-
tinet for at least one index A. Since X, is Hausdorff, there are neigh-
borhoods U, e U(p,), V,e U(g,) with U, n V, = ¢ in X. Then
¢34(U,) and @,"%(¥,) are separating neighborhoods for p and g.

Conversely, let X be Hausdorff. Let X, be a fixed factor of X. Those
points of X whose A-th coordinate ranges over X,, whose remaining
coordinates, however, are chosen fixed in an arbitrary manner,
obviously form a subspace of X which is homeomorphic to X,.
According to Theorem 13.2, this subspace is Hausdorff and there-
fore X, is also Hausdorff.

13.6 Definition: The point p of a Hausdorff space X is called a
limit of the point sequence z,, @, . . . , in symbols,
p = limz,
n—»w
if for each neighborhood U € Y(p) there exists an n, = ny(U) such
that z, € U for n > n,. If the sequence possesses a limit, we say that
the sequence is convergent in X.

Note that the points of a sequence need not all be distinet. For
example, the terms of a sequence can be constant (= p) from some
index n on; then surely the sequence has p as a limit.

Obviously a sequence need not have a limit.

A subsequence of a convergent sequence is also convergent and it
has the same limit.

13.7 Theorem: A sequence in a Hausdorff space has at most one limit.

Proof: If p is a limit of the sequence 2,, @,, . . . and ¢ £ p, then
there are neighborhoods U e U(p) and Ve U(g) with UNV = .
For all n > n,, we have z, € U and therefore z,¢ V; hence ¢ cannot
be a limit of the sequence.
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13.8 Theorem: If f: X — ) is a continuous mapping at p, then the
Jollowing assertion ts valid:
lim z, = pimplies lim f (z,) = f (p).
n~» 0 n—>D0
Proof: Let Ve U(f(p)). U = fXV) is a neighborhood of p
because f is continuous at p. Therefore, there exists an n,, which
depends on U, such that z,€ U provided » > n,. It follows that
f(x,)e V for these n; this completes the proof of the above limit
equation.

13.9 Definition: If A4 is a subset of X, then pe X is called a
sequential limit point of A provided p is the limit of a sequence of
points in 4.

According to this, a sequential limit point of A is surely a contact
point of 4. The converse assertion is not valid in general. We shall show
this using the function space which we introduced as an example im-
mediately before Definition 2.4. Let A be the subset of X which consists
of the functions f having the value 1 almost everywhere and the value
O—rather than 1—only in a finite number of places. Suppose f, has every-
where the value 0. Evidently, f, is a contact point of A, but we assert that
it is not a sequential limit point of A. Namely, if f,, f,, . . . is any sequence
from A with the limit f*, then f* can be 0 at most at the places at which
one of the functions f, f,, . . . is 0, and this means finitely many for each
of these functions, and therefore altogether at most denumerably many.
At all other places, f*has the value 1; hence we have that f* # f,. If we
wish to take into consideration the contact points as well as the sequen-
tial limit points of a set, then we must introduce so-called ‘‘filters,’
which, however, lie outside the scope of our presentation. (See N.
Boursaxi [1] or H. J. KowaLsky [2].)

In a Hausdorff space, one can say still more about the accumula-
tion points p of a set 4 over and above Definition 3.11. Namely, if
U, is a neighborhood of p, then there is still a point 2, 7% p in 4 which
according to our definition lies in U,. If U, is a neighborhood of p
which does not contain x; (the existence of such a neighborhood is
guaranteed by [Hd]), then there is a corresponding x, 7 p, x, 7 , in
U, N U,. Proceeding in this way, we obtain in U, a sequence z,,
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Z,, . . . of distinet points of 4. We can therefore state the following
theorem.

13.10 Theorem: In a Hausdorff space, every meighborhood of an
accumulation point p of a set A contains an infinite number of points of
A.

§ 14. Regular Spaces

14.1 Definition: A topological space X and its topology are called
regular if X is Hausdorff and any one of the following three equivalent
conditions is satisfied:

[Rg] For every closed set A < X and each point p¢ 4 there exist
neighborhoods U of 4 and V of p such that UNn V = .

[Rg'] Every neighborhood of a point p contains a closed neighbor-
hood of p; in other words, the closed neighborhoods of » form a neigh-
borhood basis of p.

[Rg"] Every neighborhood U of a point p contains an open neigh-
borhood W of p such that W < U.

Proof of the equivalence:

[Rg’'] = [Rg"]. According to [Rg’'], the neighborhood U of p con-
tains the closed neighborhood V of p. By Theorem 3.4, V contains an
open neighborhood W of p. Then W < ¥V = V < U and therefore
W < U, which is what we were required to prove.

[Rg"] = [Rg). If A is closed and p¢ A, then CA is open and hence
it is a neighborhood of p. According to [Rg”], there exists an open
neighborhood W of p such that W < CA. CW isopenand CW > 4;
CW is therefore a neighborhood of 4. [ Rg] is then satisfied with U =
CWand V = W.

[Rg] = [Rg']. It suffices to prove [Ryg’] for an open neighborhood
W of p. Then CW is closed and, according to [ Rg], there exist neigh-
borhoods U of CW and V of psuch that UN V = @; U and V can
be taken to be open. We have ¥V < CU and therefore V < CU =
CU = CU. Since U > CW, therefore CU = W and it follows that
V < W; this completes the proof of [Rg'].



64 4. SPACES DEFINED BY SEPARATION AXIOMS
14.2 Theorem: Every subspacel) of a regular space X is regular.

Proof: First, J) is Hausdorff according to Theorem 13.2. We shall
prove that ) satisfies the axiom [Ryg’]. If U is a Y)-neighborhood (cf.
§ 6) of a point pe 9), then U is the trace U = Vg = VN Y of an
X-neighborhood V of p (cf. Theorem 6.4). V contains a closed X-
neighborhood ¥V, of p. (Vy)g = V, N P is then a closed Y-neighbor-
hood of p contained in U.

We shall now give an example of a space which is Hausdorff but not
regular, but we shall however leave the verification of these properties
to the reader. Let E be the real line. Let a subbasis in the sense of
Theorem 11.4 for a topology for R consist of all open intervals in R in the
usual sense and of the set of those rational numbers which have a power
of 2 in the denominator (i.e. the dyadic fractions).

§ 15. Normal Spaces

15.1 Definition: A topological space X and its topology are said to
be normal if X is Hausdorff and any one of the following equivalent
conditions is satisfied: ‘

[Nm] For any two closed disjoint sets 4, B < X there exist neigh-
borhoods U of A and V of B such that Un V = .

[Nm'] Every neighborhood of a closed set 4 contains a closed
neighborhood of 4.

[Nm"] Every neighborhood U of a closed set 4 contains an open
neighborhood V of 4 such that V < U.

The equivalence of these three conditions follows verbatim as in the
preceding sections for the equivalence of the regularity conditions if
one replaces there the point p by the set B.

Since a one-point set is closed in a Hausdorff space (see Theorem
13.3), normal spaces are special cases of regular spaces (i.e. every nor-
mal space is regular).

An example of a regular but not normal space is the following: let X
be the upper half-plane y 2 0 of the Euclidean (2, y)-plane. Neighbor-
hoods of points with y > 0 are defined as usual; neighborhoods of the
points (x, 0) are formed by the open circular discs which are tangent to
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the z-axis at (x, 0) and including the point (z, 0) itself. We leave to the
reader to prove the regularity of X and to show that the closed set 4 =
{(w, 0) |z is ra.tiona,l} and the closed set B = {(x, 0)|zis irmtional} do
not satisfy the axiom [Nm)].

There is no analogue to Theorem 14.2 for normal spaces. If one
attempts to carry over the proof of Theorem 14.2 to normal spaces,
one founders because of the fact that a 9)-closed set is not neces-
sarily X-closed.

The following two theorems due to P. Urysohn bring the normal
space X into an important and consequential relationship with the
real-valued functions on X.

15.2 Theorem: A Hausdorff space X is normal if, and only if, the
Jollowing Urysohn axiom is valid in it:

(U] If A and B are any two disjoint closed sets in X, then there exists
a continuous real-valued function f (x) on X,0 < f (x) < 1, such that
J@) =0o0onAand f(x) = 1on B.

Proof: First, let X be a Hausdorff space in which [U] holds; we
shall prove that [Nm] is then valid. We consider the sets

U=lf@<hV=flfo>h

U is open. Namely, if ¢, € U so that f(x,) < }, then, since f is con-
tinuous, a neighborhood W of z, can be found so that | f (x) — f () |
< g, where ¢ = 2* for large u, for all ze W. For sufficiently
small choice of ¢ then also f (x) < 4, i.e.  belongs to U. Likewise, V
isopen.Since A <« U, B< V,UNV = @, [Nm] is valid.

Now, conversely, let X be a normal space and suppose 4, B are two
disjoint closed subsets of X. CA4 is an open neighborhood of B; we set
C4 = U,. According to [Nm"], we then choose U, as an open neigh-
borhood of B so that Uy > U,.

Continuing inductively, we assume that for all integers 0,1, ...,
7 open sets

v

U,withy=1,...,2"and U,_, > T
b 2n n
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have already been constructed as they were just constructed for » =
0. We choose in accordance with [Nm"] an open neighborhood U,, _,

on+1

withy = 1,...,2"of U, so that U,_, = U,, ;. Thus, we proceed

on “on PLESY
from n ton + 1.Continuing further, we obtain for all dyadic fractions
r with 0 < r < 1 open neighborhoods U, of B with

Uf o 17,1 lfr < ”".

For an arbitrary real number « between 0 and 1, weset U, = UU,*
taken over all » = a. If & < o, then there exist dyadic fractionsr,r’,
with & < r < 7’ < o', and for these r,  we have that U, > U,,
U, > U,, from which it follows, inasmuch as U, > U,., that U, >
(7¢,. Further, if we set U, = X for « < 0 and U, = @ for a >1,
then

Ua ) [7“1 ifa < ac'

holds for all real «. The set of those « for which a given point z € X lies
in U, is obviously a left half-line on the real axis which is determined
by a real number f (z). We assert that this function f (x) satisfies the
Urysohn axiom [U]. Certainly we have f () = Oforze 4 and f (x) =
1 for x € B. The continuity of f (z) is directly evident: In order to ob-
tain | f (g) — f(p) | £ e, where ¢ = 2-* for large p, one has only to
choose gin theset Uy, , — Uy, ., whichis an open set (by Theorem
3.7) and hence is a neighborhood of p. This completes the proof of
Theorem 15.2.

15.3 Theorem: (Supplement to Urysohn’s Theorem 15.2): Let the
open set O of the normal space X be the union of denumerably many
closed sets. Thenthere exists a continuous real-valued function f (x) on X,
0 < f(x) < 1, which is greater than O for precisely the points of O.

Proof: Let O = UB, forn =1,2,.... Weset B, = B,CO =4
and then apply the line of reasoning of the preceding proof in a some-
what modified form: U,, U,, U,, U, have the above meaning. U, is
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however chosen as an open neighborhood of the closed set U, U B,
and furthermore again so that U, is contained in U,. Accordingly,

_ n
suppose U, withv=1,...,2%and U,_, 2 U, and U, > UB,,
Z " b 7 m=1
have already been constructed. Then the determination of the U,, _,
on+1
remains the same up to U; :This set is chosen as an open neigh-
ZiT1

borhood of U, U B, ,, whose closure is contained in U,; otherwise, we
on

proceed as above. Then we obtain for every real « an open set U, with
. kd
U,>U,ifa<o;U, > UByifa =
m=1 2

The definition of f (p) is as above; the proof of continuity also remains

the same. Now, if p € O, then p e B, < U, for suitable ». It follows
o

that f(p) = %; and therefore f (p) > 0; this completes the proof

of the theorem.



Chapter 5

SPACES DEFINED BY COVERING
PROPERTIES: COMPACT SPACES

§ 16. Compactness

The compact spaces which we shall treat now are especially impor-
tant and are distinguished by many geometric properties. They are
defined by means of the covering properties which present essentially
sharper restrictions than the separation axioms. By a covering of a
space X one understands a system D = {D, | A€ 4} of subsets D, <
X with indices A from an arbitrary index set A, for which U D, = X;
hence, every point is “covered’’ by at least one of the sets D,. D is
called finite or infinite depending on whether we are dealing with a
finite or infinite number of D,’s. D is called open if all the D,’s are
open sets; a closed covering is specified analogously. If A’ is a subset
of 4 and D’ = {D, | Ae A’} is also a covering of X—in other words,
the D, with A € A’ already suffice as a covering of X, then D’ is called
a subcovering of D; one also says that D’ is contained in D. A covering
€ = {E,| p e M} of X is called a refinement of the covering D of X if
to each E, € € there exists a D, e ® with E, = D,. If 4 is a subset of
X, then one says that the system D = {D, | Ae A4} of subsets of X
covers 4 if A < UD,.

Paraphrasing the Heine-Borel covering theorem on point-sets in
R", we make the following definition.

16.1 Definition: A topological space X and its topology are called
compact if X is Hausdorff and any one of the following equivalent
axioms is satisfied:

68
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[Kp] Each open covering of X possesses a finite subcovering.

[Kp'] Each system W of closed subsets of X with intersection equal to
5 possesses a finite subsystem with intersection (5.

[Kp"] A system W of closed subsets of X, each finite subsystem of
which has non-empty intersection, itself has non-empty intersection.

The equivalence of these axioms is immediate. [Kp'] is the dual of
[Kp], [Kp”] is a formal reversal of [Kp'].

16.2 Definition: A subset 4 of X is called compact if A, considered
as a subspace, is compact.
As examples of compact spaces, we introduce the following:

(1) Every finite set with any topology.

(2) A convergent sequence including its limit (in the induced
topology, of course); one recognizes compactness immediately from
the definition of the limit.

(3) In R", the compact sets are identical with the sets which are
simultaneously closed and bounded.

Concerning example (3), it is namely the Heine-Borel covering
theorem from analysis which shows, on the one hand, that these sets
are compact, whereas, on the other hand, Theorem 17.2, below, shows
that a compact set in R" is closed so that one sees immediately that
an unbounded set in R" cannot be compact. We shall give an in-
dependent proof of this assertion in § 23.

16.3 Theorem: A subset A < X is compact if, and only if, each
covering of A by open sets of X contains a finite subcovering.

Proof: Let A be compact and suppose the open system D = {D,}
of sets D, = X covers 4. Then the traces (D,), = D, N A are 4-open
and form a covering of 4. By [Kp], a finite number of these traces
(D,) 4 suffice for a covering of A4; therefore, also a finite number of the
corresponding sets D, suffice for a covering of 4, which is what we
were required to prove.

In an entirely analogous way, one proves the converse by observing
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that the A-open subsets of 4 are representable as the traces of X-
open sets.

16.4 Theorem: For a Hausdorff space X, the following three pro-
perties are equivalent:

(1) Each denumerable open covering of X possesses a finite sub-
covering.

(2) Each infinite subset A of X has at least one accumulation point.

(3) Each decreasing sequence A, > A, > ... of non-empty closed
subsets of X has non-empty intersection.

Compact sets have these properties.

Proof: (1) = (2). Let us assume that the infinite set 4 has no
accumulation point. Let 4y = {r;|i = 1,2, ...} be a denumerable
subset of 4 consisting only of distinct points x;. Also A4, has no
accumulation point; it is therefore closed and hence CA4,, is open. For
each z; there exists an open neighborhood U; € U(x;) which contains
no point of 4, except ;. CA4,and the U,’s form a denumerable open
covering of X, which, by (1), possesses a finite subcovering. But this is
obviously impossible and therefore our assumption was false.

(2) = (3). If in a given sequence of non-empty closed sets A,
(¢t =1,2,...)all 4; are equal to one another from some index on,
then surely N4; -~ . Otherwise, one can choose a subsequence of
mutually distinet A4;; we may assume in advance that 4,5 4, ;.
Then one chooses a, € 4;— 4, , and by (2) there exists an accumula-
tion point @ of the infinite set of @;’s. Since 4, is closed and all the
a; with j = iliein 4, we therefore have thataec 4, Hence, aeN4;
which shows that NA, is non-empty.

(3) = (1). Let ® = {D;|¢ =1,2,...} be a denumerable open
covering of X. Thesets 4, = C(D,;u...u D), ¢ =1,2,...,form
a decreasing sequence of closed sets having intersection @j. Hence,
according to (3), there certainly is an 4, = @ and therefore ¢ =
CDyu...uD),X=Dyu...uD, whereby we have con-
structed a finite subcovering of D.
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Without any further stipulations, condition (1) shows that compact
sets have these properties.

A Hausdorff space with the properties (1)—(3) need not be compact.
An example of a non-compact Hausdorff space with properties (1)—
(3) can be found, say, in the book by Alexandroff-Hopf (see ALEXAN-
DROFF-HoPF [1], page 86). [In the Russian literature and in Alexan-
droff-Hopf (see ALEXANDROFF-HOPF [1]), compact spaces are desig-
nated as “bicompact’ whereas Hausdorff spaces with the properties
(1)~(3) are called ‘“‘compact.” The ‘‘Russian-compact” spaces
characterized by the properties (1)-(3) (a more objective and suit-
able terminology would be ‘‘®,-compact’’) therefore form a somewhat
larger class than the compact spaces. For spaces with denumerable
weight (Theorem 16.5) and for metric spaces (Theorem 23.2) the two
concepts coincide.] But the following theorem holds.

16.5 Theorem: A Hausdorff space X with a denumerable basis,
which possesses the properties (1)—(3) of the last theorem, is compact.

Proof: Let B = {B;|i = 1,2,...} be a denumerable basis of X
and let ® = {D, | A A} with arbitrary index set A be an open cover-
ing of X. We must construct a finite subcovering of X.

Every set D, is representable as the set-theoretic union of certain
basis sets B,. The system of all the B; occurring in these representa-
tions of D, obviously form a denumerable open covering of X. From

this denumerable covering, a finite subsystem D’ = {B’l, e, Bn}
suffices, by (1), to cover X. Every set B; (j =1,...,mn)is contained

in at least one set D,. These n sets D, evidently form a finite sub-
covering of .

§ 17. Subspaces of Compact Spaces

The following two theorems form a correlated pair of theorems.

17.1 Theorem: Every closed subset of a compact space is compact.
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17.2 Theorem: In a Hausdorff space, every compact subset is closed.

Proof of Theorem 17.1: Let X be compact, A < X, A closed. We
appeal to [Kp']: Let A = {4, | A from an arbitrary index set A} be a
system of A4-closed subsets of A with intersection @. Since 4 is closed,
all the A, are also X-closed (cf. Theorem 6.3, second half). [Kp'],
applied to X, asserts that U possesses a finite subsystem with inter-
section (. But this means also that [Kp’'] is valid for the space 4, i.e.
that 4 is compact.

Proof of Theorem 17.2: Let A be a compact set of the Hausdorff
space X. We shall show that CA isopen. Let p ¢ 4; we shall show that
an entire neighborhood of p belongs to CA. Let x range over the
points of A. By [Hd], there exist neighborhoods U, € U(x), V€ U(p)
with U, NV, = @. U, and V, can be taken as open. A finite number
of these U, say U, e U o suffice to cover A. We then have that

n n
U=Uvu, V=NV,
i=1 i=1
are open and therefore they are neighborhoods of 4 and p with UnV
= @. Inparticular, V is a neighborhood of p which does not intersect
A, which is what we were required to prove.
Our proof yielded somewhat more—namely, that 4 and p possess
separated neighborhoods, which fact weshall make use of immediately.
According to the last two theorems, in a compact space the con-
cepts of “closed” and “‘compact’ are equivalent.

17.3 Theorem: A compact Hausdorff space is normal.

Proof: We shall first prove regularity and then normality. Let X
be compact, 4 < X, A4 closed, p ¢ A. We shall prove { Rg): According
to Theorem 17.1, 4 is compact. By the remark at the end of the last
proof, there exist neighborhoods U of 4 and V of p such that U n V
= ¥, which is what we had to prove.

Now let 4 and B be disjoint and closed—therefore, compact in X.
We shall prove [Nm]: Let y € B. As above, there exist open neigh-
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borhoods U, of 4 and V, of y such that U, N V,, = (. A finite num-
ber of the V,, say V, NERRE Vf/n’ suffice to cover B.
Then

n n

U=NU,andV =UV,

i=1 i=1
are open neighborhoods of 4 and B such that U N V = @, as is
required in [Nm].

17.4 Theorem: In a Hausdorff space, if A and B are compact then
soare AU Band A N B.

Proof: (1) Let D = {D, | A from an arbitrary index set A} be an
open covering of A U B by means of sets D, < X (in the sense of
Theorem 16.3). D also covers 4, and a finite number of the D, suffice
to cover A. The same holds for B, and therefore a finite number of the
D, suffice to cover 4 U B.

(2) A4 and B are closed according to Theorem 17.2; 4 N Bisan 4-
cloged subset of the compact set 4, and moreover by Theorem 17.1 it
is compact.

17.5 Theorem: The product X, = X x ) of two topological spaces
X # 0, Y # @ is compact if, and only if, both factors X and ) are
compact.

Proof: First, X, is Hausdorff if, and only if, X and %) are Hausdorff
(cf. Theorem 13.5). Let X, be compact. The projection mappings ¢,
and ¢, are continuous. According to Theorem 18.1, which we will
assume here, X, therefore has compact factors X, ).

Conversely, let X and ) be compact. Let ® = {D, | Ac A} be an
open covering of X,, 4 a suitable index set. It is to be shown that D
possesses a finite subcovering. Every D, is the union of sets of the
form O = 4 x B with open 4 = X and open B = 9).Let O be the
set of all these 0. D is likewise a covering of X,, and indeed it is a
refinement of D; it obviously suffices to show that O possesses a
finite subcovering. Let z € X and 9), = {x} x 9. 9, is homeomorphic
to Y and is therefore compact. O is also a covering of 9),; therefore
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there exist a finite number of sets 4; x B, (s = 1,..., r) from O
which intersect and cover §),. If we set 4, = N 4, takenover¢ = 1,
..., r, then 4, is an open neighborhood of x and the sets 4, x B;
also cover T, = 4, x 9. The proof will be finished when we show
that X, is covered by a finite number of sets of the form 7',, corres-
ponding to a finite number of points z € X. By the procedure de-
scribed above, there is assigned to each z€ X a neighborhood 4,.
Because of the compactness of X, a finite number of the 4, suffice to
cover X. The corresponding finite number of the T, then cover X,.
This completes the proof of the theorem.

The theorem carries over without modification to finite products of
compact spaces. It holds also in the same form for infinite products (this
is the so-called Tikhonov theorem); however, we do not need this
generalization in the sequel. Therefore we will not go into the somewhat

more difficult proof here which utilizes the well-ordering theorem (see, for
instance, J. L. KELLEY [1]).

§ 18. Mappings of Compact Spaces

18.1 Theorem: If f: X — ) is a continuous mapping of a compact
space X into the Hausdorff space ), then the image set f (X) is compact.

Proof: Let Yo = f(X).- Let D = {D, | A from an arbitrary index
set A} be an open covering of 9),. Then the sets f-1(D,) are open and
the system {f-1(D,)} forms an open covering of X. A finite number of
the f-1(D,) suffices to cover X and therefore the corresponding finite
number of the D, suffices as a cover of ¥),.

The continuous mappings of a compact space X into a Hausdorff
space ) are therefore closed (cf. the remark on p. 34).

18.2 Theorem: A monomorphic continuous mapping f: X = of a
compact space X into a Hausdorff space)) ts a homeomorphism of X
onto a subspace of Y. A monomorphic continuous mapping f which is
also an epimorphism of X into Y is a homeomorphism of X ontoY); the
existence of such @ mapping exhibits X and Y} as homeomorphic.

We shall prove the first part of the theorem; the second part is a
special case of it. We must prove the continuity of the inverse map-
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ping f1: f (X) > X. Now, f, the inverse mapping to f~1, maps closed
sets in X into compact, and therefore closed, sets of f (X)as we have
just established. Hence, by the criterion (2') of Definition 5.4, f-! is
continuous.

Let f be a continuous real-valued function on a compact space X—
hence, f is a continuous mapping from X into the real line R!. f (X)is
a compact subset of R!. f (X) is bounded because an unbounded sub-
set of B! would surely not satisfy the compactness axiom [Kp]; more-
over, f (¥X) is closed (by Theorem 17.2). Therefore, f (X) has a finite
greatest lower bound a and a finite least upper bound b and these two
numbers are themselves function values, @ = f(x), b = f (y), where
x, y € X. Therefore, the following theorem is valid.

18.3 Theorem: A continuous real-valued function f (z) on a compact
set X possesses a finite maximum and a finite minimum, each of which
is assumed at at least one point of X If f (x)1s furthermore always posi-
tive on X, then there exists a 8 > O with the property thatf (x) > 8 on X.

§ 19. Locally Compact Spaces. Compactification

19.1 Definition: A topological space X is called locally compact if it is
Hausdorff and each of its points possesses a compact neighborhood.
The real line R! and, more generally, R" are examples.

19.2 Theorem: A locally compact space X is regular.

Proof: Let pe ¥, 4 a compact neighborhood of p. If U is an X-neigh-
borhood of p, then U, = U N A is an 4-neighborhood of p and, there-
fore, because of the regularity of A (by Theorem 17.3, 4 is even normal),
it contains an A4-closed 4-neighborhood V of p. Since 4 is X-closed, V is
also X-closed (see Theorem 6.3, second half); V is the trace of an X-
neighborhood V, of p, V = A N V, (Theorem 6.4). Thus, V being the
intersection of two X-neighborhoods is itself an X-neighborhood. Accord-
ing to the criterion [Rg’], this proves the regularity of X.

19.3 Theorem: A locally compact, non-compact space X can be em-
bedded in a compact space ¥’ = X U {u} by the adjunction of one further
point u. More precisely: For a given topology T of X there exists one and
only one topology T’ on X’ which is compact and has T as its trace.
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As an example of this compactification process, we mention the intro-
duction of the infinitely distant point of the Riemann number sphere in
the theory of functions of a complex variable. The significance of this
one-point adjunction, as is well known, is rather great.

A. Unigueness of T'.

In order to prove the existence of a topology T’ of the required sort,
let us first of all assumne—following a classical method—the existence of
a T and then prove that under this assumption the system O’ of X’-open
sets is umquely determined by O and u. To this end, we make the resolu-
tion O’ = O] U Dj; into the system O] of those open sets which contain
u and the system Dz of those open sets which do not contain «. We first
of all assert that O] consists of the complementary sets (in X’) of compact
sets of X. Namely, if O’ € O, then CO’ is ¥’-closed and hence it is com-
pact, according to Theorem 17.1, and does not contain u. Conversely, if
A is a compact subset of X, then A4 is ¥’-closed, by Theorem 17.2, and
hence CA is X’-open. Thus, O] is defined.

We assert further that O consists of the X-open sets of ¥. Namely, if
0’ € O, then the trace in ¥—and this is 0’ itself— is X-open. Conversely,
if O is X-open, then O is the trace of an X’-open set O’ and therefore O =
0’ N X. Both factors, O’ and X, are X’-open and hence O itself is X’-
open. Thus, O} is defined.

Hence, there exists only one topology I’ of the desired sort.

B. Construction of I'.

We now omit the assumption in A, above, and construct a set O’ as
the union of two sets O, and D; which are defined as in A, above; these
definitions are given in italics in A. Using the fundamental formulas (1),
(1) through (3), (3’), one easily verifies that the axioms [0 1] and [0 2]
are satisfied so that O’ really defines a topology I’ in X’.

I’ is Hausdorff; axiom [Hd] holds: For any two points p, ¢ € ¥, this is
clear because of the form of Dj; for a point p € ¥ and the point « one uses
the local compactness at p; a compact neighborhood U of p and its com-
plement CU are separating neighborhoods in this case.

That T is the trace of I’ follows directly from the form of O, and D;.

C. Compactness of T'.

Let ® = {D,\} be an open covering of X’. 4 occurs in at least one D,
say D,. D, belongs to D) and therefore CD, is compact. A finite number
of the D, suffice to cover CD,. If one also adjoins D,, then one has a finite
number of the D,, which cover X’. Hence, I’ is, in fact, compact.
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Chapter 6

THEORY OF METRIC SPACES

§ 20. Distance between Points and Distance between Sets

In this chapter, we extend to a fuller theory our earlier (§ 1) and
later, incidental remarks about metric spaces. We first of all restrict
the definition of continuity.

20.1 Definition: The mapping f: X — ) of a metric space X into
a metric space ) is said to be uniformly continuous if for arbitrarily
given ¢ > 0 there exists a § = 8(¢) > 0 such that d(f (z'), f (v)) < ¢
provided d(x’, x) < 8.

One must make positively clear to himself how this differs from the
definition of ordinary continuity {Definition 5.3 (1) or Definition 5.4
(1)); the number 6 = 8(¢) is uniform, i.e. it can be chosen the same
forallze X.

Now and then we also need the concept of continuity and the con-
cept of uniform continuity of functions f (z, y) which assign to each
pair z, y of points in X a point p = f (x, ) in §). Here, in analogy with
Definition 20.1, the condition for uniform continuity reads, for in-
stance, as follows:

d(f @', ¥'), f (%, y)) < e provided d(z’, ) < 8 and d(y’, y) < 8.

For general topological spaces, it is impossible to define a uniform
continuity inasmuch as neighborhoods of distinet points cannot be
compared with respect to magnitude. Nonetheless, there is a large
class of topological spaces in which this is possible on the basis of
special axioms—these are the uniform spaces introduced by A. Weil
(see N.BourBaKI[1]); but theylie outside the scope of this little book.

79
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20.2 Theorem: Thedistanced(x, y) in a metric space is a continuous,
even a uniformly continuous, function of both variables z and y.
The proof follows directly from the triangle inequality (see § 1):

I d(:l?,, Z'/') - d(x’ ?/) | é d(x,’ x) + d(y,: :’/)'

20.3 Definition: If 4 £ @ and p e X, then d(p, 4) = inf d (p,x),
as z ranges over the set 4, is called the distance from pto A. If A £ @,
B =£ 5, then d(4, B) = inf d(x, B) = inf d(4, y) = inf d(z, y)
with arbitrary x € 4, y € B, is called the distance from A to B.

Forpe 4,d(p, A) = 0, but this situation can also exist when p ¢ 4.
For A N B # @, d(4, B) = 0, but this equation can also be valid
for A N B = . More precisely, the following theorem is valid.

20.4 Theorem: d(p, A) = 0 if, and only if, p€ A.

To prove this, one has only to establish that both facts assert that
points of A4 lie in every e-neighborhood of p.

Hence, if 4 is closed, then p ¢ 4 implies that d(p, 4) #
0. But there are disjoint closed sets 4, B with d(4, B) = 0, for
example, the set 4 of all points of the hyperbola y = z-1in the (z, y)-
plane R? and the closed fourth quadrant in R? as the set B.

20.5 Theorem: For every subset A # @jof X,d(x, A) is a con-
tinuous, even a uniformly continuous, function of .

Proof: Let z, 2" be arbitrary points of X. To each & > 0 there
exists a y = y(e) € A such that

de', y) = d(@', 4) + ¢
dz,y) S dz, 2') + diz',y) < diz, &) + d(', 4) + &
Since d(x, 4) < d(x, y), it follows that
diz, A) < d(z, 2') + d(z', 4) + e.
Since this is valid for every ¢ > 0, it holds also for ¢ = 0:
d(z, 4) - d(z', 4) < d(z, z').
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This, together with the inequality arising upon the interchange of x
and z', yields

|d(z, 4) — d(z’, 4) | < d(=, 2'),

from which the uniform continuity of d(x, 4) follows.

20.6 Theorem: A metric space is normal.
We shall prove the axiom [Nm]: if 4 and B are disjoint closed sets,
then the sets

U ={x|d, 4) <d(z, B)}, V = {z|d(x, 4) > d(, B)}

are open because of the continuity of d(x, 4) and d(x, B) using
the same line of reasoning as, say, in Theorem 15.2. For z€ 4, we
have that d(z, A) = 0, but d(z, B) > 0 by Theorem 20.4. Thus, 4 <
U and likewise B < V. Hence, U and V satisfy the axiom [Nm].
We shall now generalize the concept of e-neighborhood (cf. § 1)
U, and simultaneously introduce an analogous set 4, by means of the
following definition. Let 4 be an arbitrary subset of X. Let

U,(4) = {x| ze U (p) for some pe 4} = U U (p),

ped

A4) = {z| W,(x) = 4} = C(U(CA)).

U,(4) contains A, it is open according to the second representation,
and therefore it is a neighborhood of 4. If 4 £ @, then we also have
U, (4) = &

The equivalence of the two representations of #,(4) requires proof:
We shall show that CA (4) = U,(CA). That a point « belongs to the
left member of this equation and hence not to A, (A4) signifies that the
e-sphere about z contains a point y € CA4. This means that 2 liesin an
g-sphere about y and this signifies that x belongs to the right member.
We have thus shown that CA (4) < U, (C4); that the reverse in-
clusion holds is proved analogously. The second representation of
A, (A4) shows that A,(A4) is closed. Obviously, 4,(4) = 4; A(A4) can
be empty even when 4 £ .
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As an example, we introduce the set 4 of points (#, ) in R? with
2% + y?* < 1including the points (z, 0) with 1 < 2 < 2 but excluding
the points (z, 0) with —1 < # < 0.InFig. 4, U,(4) is bounded by the
dotted curve and #,(4) is shown hatched.

We shall now prove some simple facts about U, and A, which will
be used later.

20.7 Theorem: U (A,(4)) < 4; A © A,(U,(4)).

Proof of the first inclusion.: If the point z belongs to U,(+,(4)), then
we have that z € U, (y) for some y € A,(4). But U,(y) = 4 and hence
z also belongs to 4. One proves as easily the second inclusion.

20.8 Theorem: d(CA, A,(A4)) = & provided both sets are 7= (7.

Proof: The totality of those points which have a distance < & from
A,(A) belongs, according to Theorem 20.7, to 4. Thus, every point of
CA has a distance = ¢ from #A,(4).

20.9 Theorem: In a metric space, every open set O is representable
as the union of a denumerable number of closed sets and every closed set
A as the intersection of a denumerable number of open sets.

Proof: Such a representation for an open set O is

0 = U 4,(0).

n=1 §

Namely, if p € O, then also U;(p) = O for suitable n; therefore, every
f
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point p € O occurs in the union. On the other hand, it is clear that the
union is contained in O. The second part of the theorem is the dual of
the first.

§ 21. Limit Values. Completeness

We shall first show that for metric spaces, in contrast to general
topological spaces (see the remark following Definition 13.9) the con-
cepts of limit point and contact point coincide.

21.1 Theorem: In a metric space, a point p is a contact point of a
set A if, and only if, p is a limit point of 4.

One must only prove that a contact point p of 4 can be represented
as the limit of a sequence of pointsin 4. Now forn = 1, 2, . . . there

exists at least one point z, in each neighborhood U,(p). The sequence

n
x, converges to p, which proves the theorem.

21.2 Definition: A sequence z,, x,, . . . is called a Cauchy sequence
if for each ¢ > O there exists a natural number n, = n(¢) such that
d(z,, x,) < € for n, n’ > n,.

We note in this definition, which is similar to the definition of
uniform continuity at the beginning of the preceding section, that in
general topological spaces there is no possibility for defining the
concept of a Cauchy sequence.

Every subsequence of a Cauchy sequence is obviously again a
Cauchy sequence.

One should not be misled by the theorem usually proved in ele-
mentary analysis according to which every Cauchy sequence in the
space R! of the real numbers is convergent and possesses a limit; this
theorem is not valid in arbitrary metric spaces. On the rational line
{Q, for example, the sequence of approximating fractions for 4/2
forms a Cauchy sequence which is not convergent in {Q.

A convergent sequence I, Zp, . .. in a metric space is always a
Cauchy sequence. Namely, for each £ > 0 there exists an ng so that
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for the limit value x we have that d(z,, ) < %, d(zx,, x) < % when

n, n' > ng; it follows that d(z,, z,/) < e.

21.3 Theorem: If a Cauchy sequence possesses a convergent sub-
sequence, then the sequence itself converges and has the same limst.

Proof: Suppose the Cauchy sequence x,,x,, ... has the sub-

sequence , , &,,, - - - which converges to x. For a given ¢ > 0, there

then exists an n, with d(z,, z) < gfor n; > ny and an 7, with

d(z,, x,) < gfor n,n’ > n,. Therefore, for all m > n,, the inequality

A2, ) = A(Tyy, ) + ATy, ) < €

is valid for a suitable n; > ng, n,.

Thus there are two types of Cauchy sequences—the convergent
ones for which every subsequence converges to the same limit and
those which do not converge and for which also no subsequence con-
verges. We now make the following definition.

21.4 Definition: The metric space X is called complete if every
Cauchy sequence converges in X.

The real line R!is an example of a complete space; the rational line
is an example of a non-complete space.

The following pair of theorems are similar to the two Theorems
17.2 and 17.1.

21.5 Theorem: In a metric space, a complete subspace is closed.

21.6 Theorem: In a complete space, a closed subspace ts complete.

Proof of Theorem 21.5: Let A be a complete subspace of the metric
space X and let p be an arbitrary point in 4. According to Theorem
21.1, there exists a sequence z;, Z,, . . . in 4 having the limit p. The
sequence is Cauchy and has, because of the completeness of 4, a limit
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in 4 also. Because of the uniqueness of the limit, the latter is equal to
p; therefore, p € A. This completes the proof of the theorem.

Proof of Theorem 21.6: Let X be a complete space and suppose 4 is
a closed subspace of X. If z, z,, . . . is a Cauchy sequence in A4, then
it has a limit p in X. Thus, p is a contact point of 4 = 4, which
proves the completeness of 4.

It follows from the preceding pair of theorems that in a complete
space—for example, on the real line R'—the concepts ‘“‘complete”
and “‘closed” coincide.

The following theorem is important for the development of many
subareas of topology, and we shall also use it decisively later
(in §35).

21.7 Theorem: (Baire Density Theorem): Let X be a complete
space and let B, i = 1,2, ..., be a denumerable number of dense
sets which are open in X. Then the intersection N B, is not empty and it
is even dense in X.

Proof: Let p be an arbitrary point in X and let U, be an arbitrary
(open) spherical neighborhood of p. We shall show that U, contains
at least one point @ from N B, and the theorem will thus be proved.

U, N B, is open and since B, is dense this intersection is not empty.
We can therefore choose an a, € U, N B, and, because of the regular-
ity of X, there is an open spherical neighborhood U, of a, such that U,
is contained in Uy, N B,. Moreover, the radius of U, can be chosen
smaller than 1. Again, U, N B, is open and, because of the density of
B,, this intersection is not empty so that we can choose @, and U, in
a way analogous to that above. Continuing in this manner, fors = 1,
2, ..., points a; and spherical neighborhoods U; can be chosen with
the properties that a;e U;,U; = U,_, N B;, and the radius of U, is
smaller than 1/¢.

If n, is a natural number and », »" > n,, then a,, a,,€ U,,, and
therefore we have that d(a,, a,,)<<2[/n,. Thus the sequence a,, a,, . . .
is Cauchy and has a limit @ in the complete space X. The subsequence
@;, @; 41, . - . also has the limit a. All its terms are containedin U; and,
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since U, is closed, a is also contained in U,. This means that ac U,
< U,_; N B, B;and ae U,. Thus, we have that also ac N B,,
which is what we were required to prove.

One can show that for each metric space X there exists a complete

space £ which contains X. The construction of ¥ from X proceeds accord-
ing to the pattern of the well-known Cantor-Méray procedure for the
construction of the real numbers from the rational numbers with the aid
of rational Cauchy sequences (which are also called fundamental
sequences). This construction is of basic importance for many areas of
mathematics. We shall first formulate this fact somewhat more exactly.

21.8 Theorem: Each metric space X can be embedded in a complete
space X; more specifically, to each metric space X there exists a complete

space i which contains X as a subspace and in which X is dense. Ai 8
uniquely determined up to isometry by these two requirements.

Since we do not need this theorem in the sequel, we shall not carry out
the rather wearisome proof in detail, but rather only give six individual
steps in the proof, each of which is not too difficult to prove.

(1) Two Cauchy sequences x;, %y, ... and ¥;, ¥, . . . are said to be

equivalent if the real sequence d(x,, ¥,) is a null sequence; let ﬁ be the
set of equivalence classes.

(2) One defines a metric in X by assigning the distance d =
lim d(y,, z,) totwo arbitrary Cauchy sequences which are denoted asabove.
We have to show that this limit exists and depends only on the equiva-
lence class of the Cauchy sequences and further that the axioms [M 1]-

[M 3] are satisfied. % thus becomes a metric space.

(3) X contains the subspace X, of constant sequences—imore specifi-
cally, those equivalence classes which contain the constant sequences.

X, is isometric to X and can be identified with X so that X < % holds.
(4) i is complete. In order to show this, we must form a Cauchy

sequence of Cauchy sequences of X and prove it converges in the sense of
the metric just introduced. We obtain the limit as the diagonal sequence
from the sequences at hand.

(5) X is dense in X.

(6) Uniqueness: Two spaces il and fz of the type specified in the
theorem are isometric.
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§ 22. Diameter. Boundedness

22.1 Definition: If 4 7~ (jis a subset of a metric space X, then the
least upper bound

d(A) = supd(z,y), taken over arbitrary z,yc A, (provided it is finite)
is called the diameter d(A) of 4, and, in this case, 4 is said to be
bounded. If the least upper bound is not finite, then 4 is said to be
unbounded.

d(A) = 0 means that A consists of only one point.

The diameter of a triangle in R? is equal to the length of its longest
gide (also see Theorem 29.2, below).

22.2 Theorem: For every set A - (¥, we have that d(4) = d(A).

Proof: Certainly d(4) = d(4). Let z, y € 4; then for every ¢ > 0
there exist points 2, ¥’ € 4 such that d(z, 2') < cand d(y, ¥') < e 80
that d(z, y) < d(z, 2') + d(@', y') + A, y) < d(', ¥') + 2¢ < d(4)
+ 2e&. Since this holds for every ¢ > 0, it follows that d(z, y) < d(A4)
and therefore d(4) = sup d(z, y) < d(4). This completes the proof of
the theorem.

A covering © = {D, | A from an arbitrary index set A} of a space
X or of a set A = X is called an e-covering provided all the d(D,) are
<&

22.3 Definition: A set A < X is called totally bounded if it allows
a finite e-covering for every ¢ > 0.

A totally bounded set 4 is also bounded. Namely, if for any fixed
e>0,D={D;|i=1,...,m}is a finite e-covering of 4, a; is a
fixed point in D,, and d = Max d(a;, a;) for ¢, &k = 1,..., m, then
dz, y) < d(z, a) + d(a;, a;) + d(a,, y) < d + 2¢ holds for any two
points z, y € A and suitable ¢ and k.

On the other hand, a bounded set need not be totally bounded, as
the set of unit pointse; = (0,...,0,1,0,...) (1 in the i-th place) in
Hilbert space shows. This set has the diameter 4/2 but admits no
finite 1-covering.
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22.4 Theorem: T'he metric space X is totally bounded if, and only if,
every sequence in X has a Cauchy subsequence.

Proof: First, let X be totally bounded. We start with an arbitrary
sequence &, %,, . . . . Forn = 1,2, ..., we consider the finite (1/n)-
coverings D, of X. At least one of the finitely many sets of D, contains
an infinite number of terms of the sequence; let these be (in the new
notation) the points of the subsequence

(1) 2V, 2D, 2,

This sequence, or more precisely the set of the points of thissequence,
has diameter < 1. At least one of the finite number of sets of D, con-
tains an infinite number of terms of the sequence (1); let these be,
again in the new notation, the points of the subsequence of (1)

2 P, 2P, 2P, . ...
. . 1 _ s
This sequence has diameter < 5 Continuing furtherin this manner,

we obtain a sequence (n) for every natural number n; if n > #’, then
the sequence (n)is a subsequence of the sequence (n’) and all sequences
are subsequences of the initial sequence. The sequence (z) has dia-

1 .
meter < -. We now assert that the diagonal sequence
n
20, 2D, o9, ..

is a Cauchy subsequence of the initial sequence. In any case, the sub-
sequence beginning with z{*) is a subsequence of the sequence (k) and

. 1 . .
therefore it has diameter < A Hence, if n, n’ > n,, then it follows

that d(z(”, 2{%)) < ! and this completes the proof of our assertion
Mo
and hence the first part of the theorem.

Conversely, suppose X is not totally bounded. Then, for sufficiently
small ¢ = &, there exists no finite e-covering of X. Choose the point

a, arbitrarily in X. The (g) -neighborhood of a; has diameter < eand
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hence it cannot cover all of X. Let a, be chosen outside this neigh-
borhood. The union of the two (g) -neighborhoods of @, and a, cannot

cover all of X. Hence an a, can be chosen situated outside this union.
Continuing further in this manner, we choose a sequence a,, a,, . . .

in which every two points have a distance = g Such a sequence

obviously has no Cauchy subsequence; this proves the second part of
the theorem.



Chapter 7
COMPACTA

§ 23. Characteristics of Compacta

23.1 Definition: A compact metric space is called a compactum.

23.2 Theorem: A compactum can also be described as a metric space
X which satisfies any one of the following three equivalent conditions.

(1) Every denumerable open covering of X possesses a finite sub-
covering.

(2) Every infinite subset of X has at least one accumulation poind.

(3) Every decreasing sequence A, > A, > ... of non-empty closed
subsets of X has a non-empty intersection.

Proof: That a compactum has these properties was established
earlier (see Theorem 16.4). In order to show, conversely, that each of
the properties (1)-(3) implies the compactness of X, it suffices, accord-
ing to Theorem 16.5, to show that a metric space X with the property
(2) possesses a denumerable basis. To this end, we choose an ¢ > 0;
the existence of infinitely many points a; € X with d(a;, ;) = € (3, j =
1,2, ...) would obviously contradict (2) and, therefore, there exists
a finite number of pointsa, (¢ = 1, . . ., k) such that every point z €
X has a distance d(x, a;) < e from at least one a,. Such a finite system

of points is called an ¢-net. If for eache = % (n=12,...), we choose

an e-net, then we obtain in all a denumerable set which is dense in X.
By Theorem 10.7, X thus has a denumerable basis, which is what we
were required to prove.

90
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23.3 Theorem: A compactum can also be described as a metric space
with the property that every sequence of points in X has a convergent
subsequence.

Proof: Let X be a compactum and suppose z;(t = 1,2,...)is a
sequence of points in X. Either there are a finite number of distinct
points x;, in which case one of them occurs infinitely often in the
sequence and represents a convergent subsequence, or we can select
from the sequence of the points z; a subsequence consisting of dis-
tinct points and then directly assume that the a; themselves
are distinct. They form an infinite set which, because of the
compactness of X, has an accumulation point p. If we choose for n =
1,2,... one z; in each of the neighborhoods U,{p), then the sub-

sequence of the x; so chosen converges to p, and tnhe property of the
theorem is therefore proved.

Conversely, suppose the metric space X has the property of the
theorem. If 4 is an infinite set, then one can select from A4 a sequence
z;(¢ = 1,2,...) consisting of distinct points which then has a sub-
sequence which converges to a point p.Thus, p is an accumulation
point of the set of the z; and hence an accumulation point of 4.
Therefore, X is compact according to condition (2) of the preceding
theorem.

23.4 Theorem: A metric space X is a compactum if, and only if, it
is complete and totally bounded.

Proof: Let X be a compactum. The preceding theorem shows that
every sequence from X always has a Cauchy subsequence, which ac-
cording to Theorem 22.4 means that X is totally bounded. By the pre-
ceding theorem, a Cauchy sequence has a convergent subsequence
and hence it itself converges (see Theorem 21.3); this means that X is
complete.

Conversely, if X is complete and totally bounded, then every
sequence has a Cauchy subsequence (by Theorem 22.4) and this
Cauchy subsequence converges. Thus, X is compact (see Theorem
23.3).
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For the real space R", this theorem asserts that in R"the complete sets
areidentical with the closed sets (cf. Theorems 21.5, 21.6 and the attached
remark), and that the compacta in R" are identical with the bounded
closed sets, which proves a result already obtained along the way in § 16.

We note further that the Hilbert cube P (cf. example (b) in § 1) is com-
pact. Since, according to § 12, B is homeomorphic to the infinite product
I of a denumerable number of unit segments, which is compact by the
Tikhonov theorem (which we did not prove) (see end of § 17), our asser-
tion that the Hilbert cube P is compact follows. An independent proof
can be given by proving the completeness of the Hilbert space H and the
total boundedness of P. Both can be proved without any particular
difficulty.

§ 24. Distance, Coverings and Connectivity

24.1 Theorem: The following assertions are valid for arbitrary sub-
sets A +# 3, B # @ of a metric space X:

(1) If A is compact, B arbitrary, then there exists a point p € A such
that d(A, B) = d(p, B).

(2) If A is compact, B closed, A N B = @, then d(4, B) > 0.

(3) If A and B are compact, then there exist points pe A,q € Bsuch
that d(4, B) = d(p, q).

(4) If A is compact, then there exist points zy, yo€ A suchthat d(4) =
d(xq, Yo)-

Proof: (1) d is a continuous real-valued function (Theorem 20.5)
on the compact set 4. By Theorem 18.3, it takes on its minimum
value d(p, B) for at least one point p € 4.

(2) d(p, B) = 0 would mean (by Theorem 20.4) that p € B, con-
trary to the assumption that A N B = .

(3) d is a continuous real-valued function on the compact space
A x B (Theorem 17.5). It takes on its minimum value d (p,q) for
at least one point (p,g) in 4 x B. We then have that d(p,9) =
d(4, B).

(4) Analogous statements hold for the maximum value of the
function d on the compact set 4 x 4.
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24.2 Theorem: (The Lebesgue Lemma): For every open covering
D = {D,| A from an arbitrary index set A} of a compactum X there
exists a real number r > 0 such that every set A < X with diameter
d(A4) < r is contained entirely in one set D,. (Every number of this sort
is called a Lebesgue number of D).

Proof: Suppose such an r did not exist. Then for each r =
1
k
contained entirely in one D,. In each 4, we choose a point a, and
search for the limit a of a convergent subsequence of the sequence of
the a,. The limit a lies in a set D, and also an entire e-neighborhood
U, (@) with suitable ¢ > 0 is contained in this D,. For all k, for which

(1) dlay, ) < 5, (2) ]

k
assumption.

(t =1,2,...) there exists a set 4, with d(4;) < % which is not

< g, a, and 4, lie entirely in D,, contrary to our

24.3 Theorem: In a compactum X, for each system W = {4, | A
from an arbitrary index set A} of closed sets A, with intersection N4, =
@) there exists an & > 0 such that the system W_and the system A, where

A = {B, = U,(4,) | Aed}, A, = {B, = U,(4,) | red},
also have intersection NB, = @y and NB, = Q.
Proof: It suffices to prove the assertion NB, = . Suppose that
there existed no ¢ of the required sort. Then, for every ¢ = % k=1,
2, . ..), the sets B, of the system U, have an intersection which con-

tains at least one point a,. The se(;uence of the points a, possesses
in the compactum X at least one convergent subsequence which con-
verges to a point a. The points a, and all the a, with e > k belong to
the intersection of the sets of A, and therefore the same holds for a.

E
Then the following assertion holds for every index A e A: In every
(;)-neighborhood of a there lie points of 4,. Because of the fact that
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A, is closed, a therefore also lies in 4,. Hence @ also belongs to the
intersection N4,, contrary to the assumption that N4, = (. This
completes the proof of the theorem.

For compacta, the concept of connectivity can be stated in a some-
what simpler way than for arbitrary spaces. We first make a definition:
If ¢ > 01is a real number, then two points 2, y of a metric space X are
said to be e-chained if there exists a finite sequence of points z = «,,
Zy,...,2x, = yin Xsuch thatd(z,_,, 2;)) < e i =1,...,n Foreach
fixed ¢ > O the existence of an ¢-chain yields an equivalence relation
among the points of X. The classes of ¢-chained points are called ¢-
components C, of X; each point z € X lies in one and only one of the
g-components C, = C,(x), which contains all the points of X which
are e-chained to «. The ¢-components C, are open; for, together with
each z e (, also all the points of the spherical neighborhood U, (%)
obviously belong to C.. The sets C, are also closed because CC, is the
union of all the e-components of X which are different from C, and
hence it is the union of open sets and therefore it is itself open. The
C, are therefore open-closed. Now if X is connected, X can contain
only a single ¢-component, namely itself. This proves the following
theorem.

24.4 Theorem: In a connected metric space, every pair of points are
e-chained for every ¢ > 0.

For compact spaces X, this theorem has a converse and yields the
above-mentioned criterion for a space to be connected.

24.5 Theorem: A compactum X is connected if, and only if, every
pasr of its points are e-chained for every ¢ > 0.

It is sufficient to show that in a compactum X which is not con-
nected, the condition of the theorem is not satisfied, i.e. that there
exist points z, y in X and a real number ¢ > 0 such that « and y are
not e-chained. In fact, if X is not connected, then there exists a parti-
tion X=X,U X,. X, and X, are compact and we have that d(X,, X,)
= & > 0 (Theorem 24.1 (2)). Obviously, no point of X is e-chained to
a point of X,. This completes the proof of the theorem.
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The space of rational numbers (which is not connected) shows that
the theorem is not valid in general for metric spaces.

24.6 Theorem: In a compactum X, the connectivity component
C(x) of a point x is identical with the intersection D(x) of all the open-
closed subsets of X which contain x and identical with the intersection
D' (z) of all e-components C (x) for all ¢ > 0.

Proof: Evidently, C(x) < D(x) < D’(x) (even for arbitrary metric
spaces). It suffices to show that C(x) = D’(x). Whene, (: = 1,2,...)
is a monotonically decreasing null sequence and if F = F(x) =
NC, (x), then it suffices to simply show that C(z) > F. To this end,

it finally suffices, because of the maximality property of the com-
ponent C(x), to prove that the set F' is connected. In order to show
this indirectly, we assume that F is not connected. Then there exist
in F, considered as a subspace, non-empty disjoint closed subsets 4,
B with F = 4 u B. Since the C.(x) and hence also F are closed, we

have that 4 and B are also X-closed and compact, and we have that
d(4, B) = € > 0. Suppose the point z lies, say, in 4, and let y be an
arbitrary point in B. We form

U=14(4),V =YU(B),d=X—-(UuV).
1 1

We have that d(U, V) = % Now, x and y are ¢;-chained for every &;.
Whenever ¢; is < %, G must obviously contain a point of a sequence of
points joining z and y with the distance between successive points of
this sequence << ¢;. Hence, G N O'%(x) 7 @, whenever ¢; < g The

closed monotonically decreasing sets G N Cei (x) have an intersection
which is different from @5 (see Theorem 23.2):

@1 % NG N C.lz)) =GN (N C.2) =GnF,

which contradicts the “efinition of F = 4 U B. This completes the
proof of the theorem.
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However, in general, C(z) 7%= D(x) # D'(zx) holds for spaces X
which are not compact.

24.7 Definition: A non-empty connected compactum is called a
continuum. If it contains more than one point, it is called a proper
continuum.

Examples of continua are the finite closed intervals of R! and also the
bounded closed connected subsets of R".

The image of a continuum under a continuous mapping into a metric
space is again a continuum (see Theorems 7.4 and 18.1).

Concerning continua, we prove the following theorem.

24.8 Theorem: A proper continuum X has the cardinality ¢ of the
continuum.

Proof: A continuum X, being a compactum, has a denumerable basis
(cf. Theorem 23.2, Proof), i.e the system of closed sets of X therefore has
at most the cardinality ¢ (Theorem 10.8). The same therefore holds for
the subsystem of all one-point subsets of X, i.e. for X itself.

On the other hand, we can construct a subset of X having the cardinal-
ity ¢: Let pg, 1y, Do # Pp» be two points of X; let U, and U, be

spherical neighborhoods of p, and p, respectively with a radius < % and

with Uy, N T, = . For every € > 0, p, and p, are e-chained; from this
we can conclude that U, contains, besides p,, at least one more point
Por # Poo = Po- Let Uy, © Uy and Uy, < U, be spherical neighborhoods

of pge and p,, respectively with a radius < 2—12 and with Ugy N Ty, 1= -
Analogously, let Uy « U, and U,; < U, with a diameter < 3 and

with U,y N U, = @ be determined. Continuing further this way, we
obtain for every natural number r = 1,2, ..., 2" non-empty disjoint
withd(U—,.l...‘r)<§1,and(7‘l... ST, ...,
where the indices ¢,, %5, . . . are either 0 or 1. For every such infinite
sequence 1%y, %5, . . . there exists a nested sequence of closed sets whose
diameters form a null sequence, i.e. there results a weli-defined point in
X. Distinct sequences obviously correspond to distinet points of X. Since
the set of all such sequences has the cardinality c, this proves the existence
of a subset of X having the cardinality ¢. This completes the proof of the
theorem.

closed sets U, ..., ot



§ 25. MAPPINGS OF COMPACTA 97
§ 25. Mappings of Compacta

We first recall that a continuous image of a compact space is
compact (see Theorem 18.1) and generalize this assertion now to
compacta.

25.1 Theorem: A continuous mapping [ of a compactum X into a
melric space 1s uniformly continuous.

Proof: Let £ > 0 be given. For every z€ X, let U, denote the
8,-neighborhood of « which is determined by a 8, with the property
that

d(f (&), f (%)) < e provided d(z’, z) < §,.

The totality of all U, forms an open covering of X. Let » be a Lebesgue
number of this covering (see Theorem 24.2). If z,, x, € X and d(z,, x,)
< r, then z,, , lie in one neighborhood U ,; i.e., there existsan x € X
such that x,, z, € U,. Then we have that

a(f (), f (23)) =< A(f (1), f (%)) + d(f (=), f (23)) < 2¢,

which proves the uniform continuity of f inasmuch as » depends only
on the covering—therefore only on e—and not on the point z € X.

We shall now prove several simple facts about function spaces. Let
X be a compactum, J) a metric space, and f, g two continuous map-
pings of X into ). d(f (z), g(z)) is a continuous real-valued function on
X and hence has a finite maximum which it takes on at at least one
point of X. We set (as in §1, example (¢')) d(f, g) = Max d(f (z),
g(x)), where Max is taken over all # € X. Thus the set of all continuous
mappings of X into ¥) becomes a metric space F(X, ). The validity
of axioms [M 1] and [M 2] is immediate; one proves the triangle
axiom [M 3] as in § 1, example (c).

25.2 Theorem: If X is a compactum and ) ts complete, then F(X,9)
s complete.

Proof: Let fi, f,, . . . be a Cauchy sequence in F(X, )). We must
show that it possesses a limit in §(X,J)). For every ¢ > 0, an n, =
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no(€) can be found such that d(f,(z), fu(x)) < d(f,, f») <& for all n,
n’ > ny and all z. Therefore, for every fixed z € X, f(2), fo(z), . . . isa
Cauchy sequence in the complete space J). Denote its limit by f (x).
We shall prove that f is continuous at every point # = z, € X and that
it is a limit value of our Cauchy sequence; this will then complete the
proof of the theorem.

The sequence f,,(x) is convergent to f(x); therefore, because of the
continuity of the distance function d, the sequence d(f,(z), f,/ (%)) is
convergent to d(f,(x), f(x)). From the last inequality, i.e. d(f,(x),
fw@) = d(f,, ) < ¢ it therefore follows upon this passage to the
limit that

d(f.(@), f(z)) < eforall n > nyand all 2.

(This signifies the “uniform convergence” of the image sequence
S1(@), folz), . . . to f(x), from which we deduce the continuity of f in
the well-known way.) We have that

According to what we have already proved, the first and third sum-
thands are < ¢ provided n > n, for arbitrary z; the middle summand
is smaller than ¢ provided d(x, z,) < & because of the continuity of
fo Thus, d(f (), f (x,)) < 3¢ for d(z, x,) < 8, and this means that fis
continuous at z,.

The uniform convergence proved above now shows that f is the
limit value of the sequence fi, f,, . . . in FX, D).

25.3 Definition: If¢ > Oand f: X — 9 is a continuous mapping of
the metric space X into the metric space 9), then f is called an &-
mapping provided d(f-'(y)) < ¢ for all y e f (X).

For an e-mapping, it therefore follows from f (z,) = f (x,) that
d(xy, x,) << &, or, expressed differently, that d(x;, z,) = ¢ implies that
[ (x1) #~ f (z,). But we note that the satisfaction of the definition con-
dition d(f~(y)) < & still does not completely suffice to guarantee that
f is monomorphic. The ¢-mappings surely are a forerunner to the
monomorphic mappings. We denote the space of all e-mappings of the
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compactum X into the metric space P by §.(X, 7). Then N F.(X,D),

taken over alle > O or overall ¢ = 1 (n =1,2,...),is equal to the
n

space of monomorphic continuous mappings of ¥ into 9.

25.4 Theorem: For every s-mapping f of the compactum X into the
metric space ), there exists an 7 > O with the property that d(f (z,),
[ (x,)) < n implies d(x,, ) < &.

We shall prove that d(z,, x,) = ¢ implies that d(f (z,), f (z;)) =7
> 0. The set 4 of points (x,, z,) of the compact space X x X with
d(z,, x,) = ¢ is closed and therefore compact. The function d is posi-
tive, real-valued and continuous on 4. This yields the existence of an
n > 0 of the desired sort (cf. Theorem 18.3).

25.5 Theorem: If X is a compactum and ) is an arbitrary metric
space, then §(X,%)) is obviously an open subspace of FX, ).

Proof: Letfe §.(X,D)andd(f,g) < gwith the real number 4 > 0

from the preceding theorem. We shall show that g is also an e-map-
ping; the theorem will then be proved. Let us assume for x,, z,€ X
that g(z,) = g(z,) = y. It then follows that

a(f (1), f (%) < d(f (1), 9(x1) + d(g(@1), 9(x2)) + d(g(w5), f (o))

Wi n_
<gtO+gz=m
It follows from the preceding theorem that d(z,, #,) < . From this
one can at first only deduce that d(g-1(y)) < &. But now ¢~1(y), as the
pre-image of a closed set, is itself closed and hence compact. Appeal-
ing to Theorem 24.1, (4), we thus obtain that d(g—(y)) < &, whichis
what was to be shown.



Chapter 8

METRIZATION OF
TOPOLOGICAL SPACES

§ 26. The Principal Theorems

We have already established in § 2 that every metric on a set X
induces a topology on X—and further that quite different metries on
X can induce the same topology on X. Conversely, however, not every
topology T on a set X is metrizable (cf. Definition 2.3), i.e. not every
topology is induced by a metric. In this chapter, we shall deal with
the question of which topologies I are metrizable. In any case, the
normality of T is necessary for the metrizability of T (see Theorem
20.6)—furthermore, that every point of X possesses a denumerable
neighborhood basis is necessary. But these conditions are in general
not sufficient. An answer to the metrization problem was first given
by P. Urysohn, who proved the following two theorems.

26.1 First Theorem of Urysohn: A4 topological space, which is
normal and possesses a denumerable bastis, is homeomorphic to a subset
of a Hilbert space and therefore it is metrizable.

26.2 Second Theorem of Urysohn: 4 compact topological space ts
metrizable if, and only if, it possesses a denumerable basis.

In this chapter, we shall prove both these theorems within the
framework of the general metrization theorem. This theorem, which
yields the complete solution of the metrization problem in the form of
a necessary and sufficient condition, was discovered—after previous

100
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long and vain attempts in this direction had been made—in the years
1950-1951 by Yu. M. Smirnov, J. Nagata and R. H. Bing, indepen-
dently of one another. In order to be able to formulate it suitably,
we first introduce some definitions and auxiliary observations.

26.3 Definition: A system of subsets D = {D, | Afrom an arbitrary
index set A} of a topological space X is called a discrete system of sets
if for each x € X there exists a neighborhood U of 2 which intersects
at most one D,. A system of subsets € = {£, | u from an arbitrary
index set M} is called a locally finite system of sets if for each x € X
there exists a neighborhood U which intersects at most a finite num-
ber of the K.

The sets E, of the definition are not necessarily meant to be
mutually distinet; i.e., we can very well have thatue M, u' e M, p
w', but E, = E,. One can also say:To each index ue M there corres-
ponds a subset E, = X where distinct indices do not necessarily
correspond to distinct subsets. Such systems are sometimes called
“indexed systems.”” This remark holds as well for all the systems of
sets subsequently discussed.

On the other hand, the sets D, in the first part of Definition 26.3
are by definition disjoint. The totality of all one-point subsets of X
yields an example of a disjoint system which, in general, is neither a
discrete, nor a locally finite, system. A discrete system of sets is
locally finite, but not conversely. Every subsystem of a discrete sys-
tem is again discrete; every subsystem of a locally finite system is
again locally finite.

26.4 Theorem: A locally finite system of sets and a fortiori a dis-
crete system of sets of a compact space X is finite.

Proof: For each x e X there exists a neighborhood U, of  which
intersects only a finite number of the E,, (in the notation of Definition
26.3). A finite number of the U, cover X and therefore there are only
a finite number of the E,.
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26.5 Theorem: For a locally finite system (in the notation of
Definition 26.3),

holds.

Proof: According to Theorem 3.5, we have that @u > UE,
trivially. In order to prove the reverse inclusion, let us take an 2z €
UE,and a neighborhood U, of z which intersects only a finite num-
ber of the £, say Ey, . . ., B,. Thenxz e E, U . . . UE, must obviously

hold. It thus follows (see Theorem 3.6) that
xcE,U.. . UE,=EU...UE, cVUE,

26.6 Definition: A system of sets D is called o-discrete if it is the
union of a denumerable number of discrete systems D, (» = 1, 2,
...). A system of sets € is called o-locally finite if it is the union of a
denumerable number of locally finite systems §,(» =1, 2,...).

We write o-discrete and the corresponding o-locally finite systems
and their sets in the form

D=UD, =U{D,|red} ={D,|n=12,...;)e4}.
n=1 n=1

Here, the index set A should really have been denoted by A, and the

indices A really as A; but, for the sake of brevity, we omit the index »

by taking a correspondingly larger index set /1, say the union of such

A, and assuming a corresponding number of empty sets for the D,,.
We can now formulate the next theorem.

26.7 Metrization Theorem: An arbitrary topological space X is
metrizable if, and only if, it satisfies any one of the following two
equivalent conditions:

[Mb] X is regular and possesses a o-discrete basis.

[Mb'] X is regular and possesses a o-locally finite basis.

The condition [Mb'] is due to Smirnov and Nagata; [Mb] is due to
Bing. It appears to be astonishing that such a straightforward con-
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dition governs the metrizability of an arbitrary topological space.
Moreover, in both conditions, the word ‘‘regular” can be relaced by
“normal” as the following proofs show; then [Mb] and [Mb'], res-
pectively, assert formally somewhat more as a necessary condition
and somewhat less as a sufficient condition. We note that the condi-
tions [Mb] and [Md'] hold exactly the middle road between the con-
dition of denumerable neighborhood bases which is well-known to be
a necessary condition and the sufficient condition of denumerable
bases in the first Urysohn Theorem.

We shall first prove that the Urysohn theorems follow from the
metrization theorem. If X is normal with denumerable basis B, then
X is also regular and B is o-discrete. Therefore, according to the metri-
zation theorem, ¥ is metrizable. This is the first Urysohn Theorem; a
later proof (see § 28) shows that X is homeomorphic to a subspace of
a Hilbert space.

Now, let X be a compact space. Then X is normal. If X has a de-
numerable, hence a o-discrete, basis, then according to the metriza-
tion theorem X is metrizable. Conversely, if the space X is metrizable,
then X is normal and according to the metrization theorem it
possesses a o-discrete basis. According to Theorem 26.4, this o-
discrete basis is a denumerable union of finite systems and hence it is
itself denumerable. This is the second Urysohn Theorem.

We shall prove in § 27 that [Mb] is necessary for metrizability and
in § 28 that [Mb'] is sufficient for metrizability. Since [Mb'] is a con-
sequence of [Mb], this will complete the proof of the metrization
theorem.

§ 27. Necessary Conditions

We have to show that a metric space satisfies the condition [Mb].
As we shall see, this will be yielded essentially by the following
theorem which was first proved by A. H. Stone.

27.1 Theorem: Every open covering D of a metric space X possesss
an open o-discrete refinement.



104 8. METRIZATION OF TOPOLOGICAL SPACES

A Hausdorff topological space which possesses the property which
is stated in this theorem for metric spaces is called paracompact. This
concept, which is important in many modern investigations, is used
only implicitly within the framework of this little volume.

Proof: Let ® = {D, | A€ A} be a given open covering. We assume
the index set /1 to be well-ordered (cf. E. KaMke [1], § 41) so that for
each pair of indices u, ve A it is determined whether u = v, u > v,
¢ < v and that every non-empty subset of /A has a first element; 0 is
the first element of A. Let » denote a natural number 1, 2, . . . which
is first of all chosen fixed. We then define, by transfinite induction
(see E. KaMmke [1], § 36),

Ay = Ay (D) Ay = A, (D, = U 4,).

1

2n v <y
Then 4,, = D, and even every 2ln -open-neighborhood of a point in
A, is contained in D,. Further, we have that d(4,,, 4,,) = %pro-

vided v 7= and both sets are £ (. Namely, if say u < v, then 4, is
contained in the complementary set CB of B = D, — UA,, and the
asserted inequality follows from Theorem 20.8. We form further the
open sets
Env = cu# (Anv)’
2n+ 2

which are likewise contained in D,, and assert that the system of sets
€, = {E,,} is discrete (always with fixed »n). Namely, let p be an

arbitrary point in X. We assert, more specifically,t hat the

e open-

neighborhood U of p intersects at most one E,,. Namely, if we
assume that U intersects &, in a point , and £,, with pn £ vina
point z,, then we would have that

1 1
d(p, z,) < T d(p, z,) < onFe

According to the definition of the E,,, we have that

ny?
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d(xv’ yv) < d(xy,’ yy) <

2n+2 2n+2

for suitable point y, € 4,,and y, € 4,,,. It would follow from this that

1

4 1
Ay, y,) < iz = g contrary to d(A ) = o

Thus, the system of sets € = UE, = {E,,|» =1,2,...;ved}
is o-discrete. We shall prove that § represents a covering of X, which

will thus prove the theorem. Let p be an arbitrary point in X and
suppose A is the smallest index with the property that p € D,. Then

ny>

some (21 ) -open-neighborhood Uof p lies, for suitable n, entirely in D,.

U has no point in common with 4,,,- (A" <C A) for otherwise p would lie
in D,,. Hence U lies entirely in D, — UA,,,. Therefore p lies in 4,,
and consequently in E,,, which completes the proof of the theorem.

It is now easy to verify [Mb]. Let D,,, with m = 1,2, ..., be the

covering of X which consists of all (21 ) -open-sphericalneighborhoods

o-discrete covering €, be a refinement according to the preceding
theorem of the covering D,,; the diameters of the sets from §,, are

> =1,2,...,1s likewise

still o-discrete and we assert that it is a basis of X. Appealing to the
criterion of Theorem 10.2, we choose an open set O and a point peO
and we have now to prove the existence of a set £ inE withpe F <

0. Together with p, a suitable ( . ) -open-neighborhood V of p also be-
longsto 0. In the covering €, ,, piscovered by atleastoneset Ec €, . ,

of diameter < 2ln For each point z € E, we have that d(p, ) < gt

< él»ﬁ; therefore, x liesin V. Thus, p € E < O, which is what we had to
prove. Since a metric space is regular, and even normal, [Mb] is thus
completely proved.
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§ 28. Sufficient Conditions

In this section, we assume that a topological space X satisfies the
condition [Mb']. We have to prove the metrizability of X. The follow-
ing two lemmas establish first of all the subassertions.

28.1 Lemma: If a topological space X satisfies the condition [Mb'],
then every open set in X is the union of a denumerable number of closed
sets.

To understand this lemma, the reader should refer to Theorem
20.9.

Proof: Let O be an open subset of X and suppose ze 0. Because of
the regularity condition [ Rg”], there exists an open neighborhood ¥V
of  with ze V < ¥V < 0. We choose an element E,, from the
o-locally finite basis  of X (which exists by [Mb']) suchthatzeE,, <
V as is always possible for a basis according to Theorem 10.2. Be-
cause E,, = V, it follows that z € E,, < 0. In this way, to each ze 0
there corresponds an E,, = E, (), in particular an index n = n(z),
such that z e E',w(x) <0.Fork=1,2,..., we form the sets £ =
UE, (x) taken over those xcO for which »{x) = k. According to
Theorem 26.5, we can deduce that

E,=UE,< 0.

The E,, are closed and contained in O. The union UE;, of all the E, con-
tains all the ze O and thus is identical with O; this completes the
proof of the theorem.

28.2 Lemma: If the topological space X satisfies the condition
[Mb'], then X is normal.

Proof: Let A and B be disjoint closed subsets of X; let 2 range over
the points of A and let y range over the points of B. For each z, we
take, as in the preceding proof, a set £, (x) € € with the property that
ze B, (xr) < E, (x) < CB, where the open set O of the preceding
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proof is to be identified with CB. For 4 and correspondingly for B we
form

F, = UE, () over all xe 4 with n(z) =k,
G, = UE, (y) over all ye B with n(y) = 1L

Both of these sets are open and we have that F, = UE, (z) = CB
(see Theorem 26.5); therefore, F, N B = (. It follows in exactly the
same way that ;N 4 = Q.

Further, we form

U, = F, — UG, overall | < k;
V, =G — UF,overallk < 1.

These sets are also open. U, contains all z with n(z) = k and V; con-
tains all y with »(y) = l. Finally, we form

U=UU,withk =1,2,...;7V = UV, withl =1,2,....

U is open and contains all z€ 4,i.e. U contains 4; thus, U is a
neighborhood of 4 and V is a neighborhood of B. Further, U, N V,
= @; for | < k, this follows from the definition of U, and for k < I
it follows from the definition of V;. From this it follows that U N V
= ¥ which shows the normality of X.

We now arrive at the metrization proper of X. As before, we assume
that X satisfies the condition [Mb'] and accordingly possesses a o-
locally finite basis

(E:UG"={EM|7L=1,2,...;VEA}

which consists of the locally finite systems (,. Moreover, we can
assume according to the last theorem that X is normal.

Each of the open sets E,, is, according to Theorem 28.1, the union
of a denumerable number of closed sets. Thus, we can apply the
Urysohn Theorem 15.3 to each set K, : For each E,, there exists a
continuous real-valued function ¢,, with 0 < ¢, () < 1 for which
Pnl®) > 01if, and only if, z € E,,. For each fixed z, we set

_ Pr(®)
hul) = V1 + Sgp(2)
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summed over all v’ € A. Since for fixed n a point z lies in only a finite
number of the E,,, the sum under the radical is finite. The function
¥,,(x) has the following properties:

(1) 0= ¢,(2) < 1;4,,(x) #0if, and only if, xe E,;
(2) for fixed » and fixed z, only a finite number of , () are 7% 0;

(8) for fixed n, Y2, (z) < 1, S, (%) — ¥,,(¥))? < 2, where both
sums range over all ve 4.

(3) follows from the definition of ,,,(x) and by deleting the paren-
theses in the well-known way.

We now form a generalized Hilbert space H using the set of allindex
pairs (n, v). Let a point p of H be a system of real numbers p,,,, one
for each index pair (n, v), which are called the coordinates of p;
suppose that only a denumerable number of the coordinates of a point
p are % 0 and that the sum > p2, overall coordinates of p is conver-
gent. H becomes a metric space by the definition

d(p’ q) = \/Z(qnv - pnv)z’

summed over all index pairs (#, v). One verifies that the sum is finite,
that d(p, ¢) is therefore well-defined, and that the axioms [M 1]-
[M 3] hold exactly as is the case in ordinary Hilbert space (§1,
example (b)). This reduces to a special case for our present construc-
tion if A consists of only one element.

We define a mapping f: X — H by assigning to the point € X the
point p = f (x) € H whose coordinates are given by

Pul) = vl?sbm(x).

In fact, for each z, according to (2), only a finite number of the
Pn() are % 0 and the sum >p2, = %(2—{‘) - Sy2 (x) is, according
to (3), smaller than Z(%) = 1 and converges so that in this way a

point p = f (z) of H is actually determined. Concerning f, we now
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prove: («) f is a monomorphism; (8) f is continuous; (y) f~! is conti-
nuous. This then exhibits f as a homeomorphic mapping of X into a
subset of H and the metric of H evidently induces a metric in X, as
we wished to construct.

(«): If z, y, ¢ £ y, are two points of X, then there exists a neigh-
borhood of z which does not contain y and thus there exists a set
E,, which contains x but not y. Then ¢, (z) 7= 0 but ¢,,(y) = 0 and
Pp(®) > 0 but p,,(y) = 0. Therefore, p = f () and g = f (y) differ
in these coordinates and are thus distinct points of H. It is thus
shown that f is a monomorphism.

(B): Let ze X and & > 0 be given. We must find a W € U(z) with
the property that

{d(f @), f DN = 2(Pny) — Pu(@))? < €

nv
provided ye W.
For every natural number N,

Z (pnv( ) — .pnv )2 = 2 Z (‘/’nv(y '/’m(x))z

n>N,w

2
PR REE

JIA

holds. The sum becomes << %when 2y > éz We choose N so that this
£

is the case.

Because of the local-finiteness of €,, for every fixed n, there exists
a neighborhood U, of  which intersects only a finite number of the
E,,. If n ranges over the finite number of natural numbers < N, then
also only a finite number of the E,, meet the intersection neighbor-
hood U = NU,. For the moment, this finite number of E,, can be
called the essential £,, and let the number of them be s. The corres-
ponding s “essential” functions p, () are continuous in x so that one
can find neighborhoods V,, of # such that for these p,, (),

| Prly) — Pl@) | < \/_ providedy e V,,.
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For the non-essential p,, with » << N, we have, according to the
definition of U, that p, (x) = 0 as well as p,,(y) = 0 when ye U, so0
that for these p,,,, | 2,,(y) = P,.(x) | = 0 holds, if we restrict y to U.
If we form the intersection neighborhood W = (NV,,) N U, where
only a finite number of “‘essential’” V,, are meant, then, combining
all essential and non-essential p,, with n << N and arbitrary », we can
conclude that: If xe W, then

\ &

né%f,v (pnv(y) - pnu(x)) <s é:? = E’

holds. The desired result follows from this formula together with the
end formula of the first subsection under (8) by addition.

(y) f! maps f(X) monomorphically onto X. If again z = f-(p),
then we have to show that: For each neighborhood U € U(x) there
exists a & = §(U) such that y = f-Y(g)e U provided d{q, p) < 8.
Hence, let U be given. There exists an £,  withze B, , < U. We

novo novo

shall show that is suffices to set § = p, , (x). Namely we have that

| Pagro(¥) = Paowe®) | £ V'3 (0,,y) — P (@) = d(D, 9).

n,
But it follows from | 9,0,.(#) — Dpguo(®) | < Prgso(®) that p,, () 70
and therefore that y € £, , < U, which is what we had to prove. We
have thus shown that X can be embedded homeomorphically in H
and hence the metrization theorem is completely proved.
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Chapter 9

POLYHEDRA

§ 29. Simplexes

We shall now study a very much more special class of spaces—the
so-called polyhedra. They serve first of all in the next chapter to
build up dimension theory. Later, they will form the foundation for
algebraic topology. Polyhedra will be defined in an altogether different
way than the spaces studied up to this point. Namely, we combine
them from simple, perfectly obvious building blocks. This occurs
within an N-dimensional Euclidean space RY. Accordingly, we discuss
first the simplest properties of RY, but we must assume a certain
familiarity with the fundamental geometric and algebraic facts—
since we must start at some definite point in order to make progress.
Still some basic material is needed in order that our subsequent dis-
cussion be as clear as possible.

1. We denote the points of R¥ by small German letters which simul-
taneously mean the corresponding position vectors, x = (%, ..., Ty).
The unit pointse; (¢ = 1, ..., N)have i-th coordinate equal to 1 whereas
all the other coordinates are zero. We say that the n + 1 points p,, . . .,
p, (n = 1) are independent if the n vectors p, — Py, ..., P, — Po are
linearly independent; furthermore, a single point p, is said to be in-
dependent. For example, the zero point 0 and e, . .. ,e, are independent.
The maximal number of independent points in RY is N + 1.

Every non-empty subsystem of an independent system of points is
again independent. The considerations of the following subsection 3 show
that the definition of independence is symmetric in the n + 1 points

Pose ++ + s Py

2. First of all, let p,, . .., p, be arbitrary points in R”. The set of
points x of the form

113
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[

Fig. 5

=P+ (P — Po) + -+ palPn — Po)s
with arbitrary real u,, . . . , p,, is called the (linear) subspace spanned by
Pos - - - » P, (see Fig. 5). These points can also be written in the form

n
= (1 “,ZII‘/)PI) + P + ...+ HaPn
]B

n 7n
=Y Ap;with 3 A = 1.
i=0 i=0
Here, as in the sequel, we sum over ¢ from 0 to » whereas over j from 1
to n.
n ”
Also, conversely, every point x = > Ap, with > A, = 1 belongs to the
i=0 i=0

subspace thus spanned since

x =.20A‘p‘ = Po + AilP1 — Po) + - -« + APy — Po)-
1=

3. The following theorem holds: p,, ..., p, are independent if, and
only if, the representation x = > Ap, with ), = 1 of the points of the
spanned subspace is unique. That is, if these points are independent,
then it follows from

n n . n n
T=2Ap =20 ppWithy 4 =3 p =1
i=0 i=0 iso <o
that

Z()‘. — p)py =0, Z(/\i — ppg = 0, Z(Ai — )P —P) =0

and therefore A, = yu;forj = 1,..., n and then also Ay = p,.
Conversely, if this representation is unique, then it follows from

2.0(p; — Po) = O that
n

n n n
2P — 2 aPe = 05 (1 — 3 o) Po + 2 & P; = Po.
j=1 j=1 1 j=1
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Here, the sum of the coefficients equals 1; because of the uniqueness of
the representation we therefore have that ¢y = Ofor j = 1,..., n,ie.
the py, . . ., p, are independent. For n = 1, we obtain the line joining p,
and p,, i.e. the set of points x = Apy 4+ (1 — A)p;; (1 — A): A denotes the
divigion ratio into which the segment (pyp,) is divided by z.

4. We say that the subspace spanned by the n + 1 independent
points p, (¢ = 0, ..., n) has the (algebraic) dimension n. If one chooses
the fixed independent points p; as the spanning points, then, according
to what we have already proved, the representation ¥ = > \p; with
SA = 1 (sunmed from ¢ = 0 to ¢ = n) of the points of the subspace is
unique. Therefore, the A, can be considered to be the coordinates of the
points x of the subspace. They are called the barycentric coordinates of the
subspace with the reference points py, . . . , p,. This nomenclature goes
back to an interpretation in mechanics: Imagine masses with a total sumn
of 1 distributed at the points p,; then x is the center of gravity of these
masses. In this interpretation, the uniqueness of the A, also appears
plausible; one has naturally to allow negative masses. The spanning
points p, have the coordinates of the unit vectors (0,...,0,1,0,...,0)
as barycentric coordinates. If one takes the unit vectors ¢, as spanning
vectors of an (N — l)-dimensional subspace, the so-called unit hyper-
plane, then there the barycentric coordinates coincide with the ordinary
cartesian coordinates.

6. Let m points g, (k =1,...,m),
n n
5 =2 ApwithY A, =1
i=0 i=0

be given in the subspace spanned by the independent points p, (s = 0,
OB
We assert: These m points ¥, are independent if, and only if, the
coefficient matrix (A;) has the rank m.In fact, the %, are independent if,

and only if, the representation of the points 3 = > ux, with Du, =1
(summed from k& = 1 to & = m) spanned by them is unique. Now,

m n m n _ . n _
3 =2 mh =,Z ( 2 #ed)Py =.Z Ap,with> & =1
k=1 i=0 k=1 i=0 i=0
and the ), are uniquely determined by 3; this yields n -+ 1 equations

m
A= 2 e =0em
=
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for the m ‘“‘unknowns” ,, and the solution is unique if, and only if, the
rank of the coefficient matrix is m. Thus, » 4+ 1 is the maximal number of
independent points in the subspace spanned by py, . . ., p,.

29.1 Definition: Let p,, ..., p, be independent points of the
Euclidean space R¥. The set of all points x of the form x = JA;p,
with JA; = 1 (summed over¢ = 0, ..., n) and A; > 0 is called the
open n-dimensional simplex (a) = (¢") = (P, . . . P,) With the vertices
Pos - - +» P,. If one demands instead of A; > 0 only that A, = 0, then
the corresponding set is called the closed n-dimensional simplex
fe] = [e"] = [Po...P,)- By simply the n-dimensional simplex
o = o" = py...D, we understand the open or closed simplex. The
set 6" = [¢"] — (o") is called the boundary of the simplex ¢". For
dl, we write ¢.

The ‘“‘dimension’ n of the n-simplex ¢" will, to distinguish it from
geometric dimension to be introduced in the next chapter, also be
called the algebraic dimension of o™.

Forn = 0, the n-simplex is a point; for n = 1 it is an open interval
(a, b) or a closed interval [a, b]; for » = 2 it is a triangle (including the
inside of the triangle); for » = 3 a tetrahedron. ¢" can be thought of
as the simplest n-dimensional figure in the geometry of the space R”.

We have that [0°] = (o°) and therefore the boundary of o® = @, as
one can verify directly on the basis of the definition.

[o"] is a closed and bounded point set in Y and hence it is a com-
pact point set in RY. (o") is in general not open in R¥, but it is
however open in the embedded =-dimensional subspace. The
(N — 1)-dimensional simplex, with the vertices e, . . ., ey, situated
in the unit hyperplane is called the unit simplex of R”.

(o] and (o) are convex point sets of RY. Namely, if x, = J,,p, and
X = DxP; With D), = Sdy, = 1, summed over 2 =0,..., n, Ay =
0, Ay, 2 0 are points from {o] and if x is a point on the segment [z,%,]
joining x; and %, x = px;, + (1 — u)zy with 0 £ u £ 1, then

n
r= _zo(l‘)‘u + (1 — p)Ag)ps
-

where the sum of the coefficients is again equal to 1 and the individual
coefficients are not negative; therefore, x likewise lies in [o].
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One shows the convexity of (o) in a similar way. Moreover, [¢] is the
convex hull of the spanning points pg, . . . , Py-

The r-dimensional simplexes which are spanned by arbitrary » + 1
of the » + 1 vertices of o are called the r-dimensional face simplexes
—briefly, the faces 0" of 0 = o”. The points of o" are characterized by
the fact that those barycentric coordinates which correspond to the
vertices which are not involved in ¢" vanish. The number of all r-

. . n+1
dimensional faces of o equals (r +1
n+1

2
improper face of o; the lower-dimensional faces of o are called the
proper faces. In case r is << n, we say that o” is incident with o = o”
and we write ¢” < o".

The faces [6¢"] of o are subsets of [¢]. The totality of all open face
simplexes of o, including o itself, forms a partition of [a].

For each r-dimensional face simplex ¢" with 0 < r < n — 1 of o,
there exists an opposite (2 — r — 1)-dimensional face simplex o"~"-1,
which is spanned by the (n + 1) — (r + 1) = » — r vertices of o
which are not involved in o". ¢*~"~1is also called the simplex oppo-
site to o”. Only o itself has no opposite simplex.

). For r =0, thesearethen + 1

vertices of o, for r = 1, the ( )edges. oitself isconsidered tobean

29.2 Theorem: The diameier of an n-simplex o" is equal to the
length 1 of its longest edge.

Proof: If x and y are two points of o and if, for instance, p, is one
of the vertices of o which is the farthest removed from x, then the
length d(z, y) of the segment [x, y] is at most equal to the length
d(x, po) of the segment [x, p,}. For, the closed sphere with center x and
with the radius d(x, p,) contains all the vertices p,, . . . , p, of o and
hence all of o and, in particular, 1) also. If, say, p, is one of the vertices
of o which is the farthest removed from p,, then d(x, p) < d(pg, P1)
for the same reason. The assertion now follows from d(x, ) <

d(x, o) S d(po P) S 1
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29.3 Theorem: (o) = (py...p,) withn = 1 consists of all points x of
the open interval (p,, 3) with arbitrary 3 from (py...p,).

Proof: Let x € (o) with the representation x = YA, p, Dk =LA >0
summed over ¢ = 0, ..., n. If we set

n n
> A = Aand hence A, + A = 1,2%’ =1,
j=1 j=1
then it follows that

n n
£ = Mbo+ SN0, = Mo+ A5 T By = o+ 25

with 3 € (p, . . . p,). This representation £ = Ayp, + A3 with Ay +~ A =1
is obviously unique.

The set (o) and likewise the set [¢] determines the vertices p, ( = 0,

. , ») uniquely. Since [¢] is the closure of (o), if suffices to show this
for [0]. This will be accomplished by the following assertion: Every
point ¥ # p,; of [0] is the midpoint of a suitable segment [y3] with 1, 3 €
[o], v # 3; however, this does not hold for the p,. We give an indication
of the proof: For the ¥ # p;, the assertion follows from the last theorem
since every such point ¥ belongs to an open face simplex of o of dimension
2 1. We easily recognize that a vertex p, cannot be the midpoint of a

segment [1, 3], i.e. we cannot have p, = %(t) + 3), if we write this equa-

tion in barycentric coordinates.

§ 30. Simplicial Complexes and Polyhedra

30.1 Definition: A set K of a finite number of simplexes in a
Euclidean space R is called a simplicial complex—briefly a complez—
if the following two conditions are satisfied:

[8 1] Together with every simplex, each of its faces also oceurs in K.

[8 2] If o, and o, are two distinct simplexes of K, then (o,) N (a,) =

The largest of the (algebraic) dimensions of the simplexes of K is
called the (algebraic) dimension of K. A subset A of a complex K is
called a subcomplex of K if A is a simplicial complex, i.e. the condi-
tion [S 1] of Definition 30.1 is satisfied; the condition [S 2] holds in
this case automatically.
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For every integer ¢ = 0, the simplexes of a complex K having
dimension at most g obviously form a subcomplex; it is called the
g-dimensional skeleton K, of K. If o, and o, are two distinct simplexes
of K, which have the vertices py, . . . , p,, and only these, in common,
then we surely have that [oy] N [o3] = [Py ... p,]. Any common
point ¥ of [¢,] and [o,] lies in a well-defined open face simplex (o;) of
o, and in a well-defined open face simplex (o) of o, The condition
[S 2] then asserts that o, = o, The simplex is then a face of
[Po - + « p,). Therefore the following assertion holds:

[82'] If o, and o, are two distinct simplexes of K, then [o;] N [o]
is empty or a common closed face simplex of o; and o,.

Since, as we have seen, not only is [§ 2'] a consequence of [§ 2], but
also, obviously, [S 2] is a consequence of [S 2’], and the condition
[S 2'] is equivalent to the condition [S 2] in Definition 30.1.

Ezxamples: (1) The totality of all the faces of a simplex ¢ = o",
including o itself, forms an n-dimensional complex T

(2) The totality of all the proper faces of a simplex ¢ = ¢"*1form
an n-dimensional complex >,

A further example of a 2-dimensional complex is sketched in Fig.
6.

Fig. 6

30.2 Definition: Two simplicial complexes K, and K, are said to
be isomorphic—in symbols, K, &~ K,—if the simplexes of K, and K,
correspond, inevery dimensiong = 0, 1, 2, . . . , in one-to-one fashion
such that incident simplexes always correspond to incident simplexes.
One also says that K, is a realization of K.
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Every simplicial complex Kadmits two distinguished realizations:

L. Unit realization. We correspond to the verticesp, (t = 1, ..., ap)
of K the unit points ¢; in the Euclidean space B*; to a simplex of
K, which is spanned by certain of the vertices p;, we correspond the
simplex in B* which is spanned by the corresponding vertices.

It is clear that we obtain as the image K’ of K a simplicial complex
K’, and indeed a subcomplex of the unit simplex of B* and that K’ is
isomorphic to K: Each r-simplex of K goes over into an r-simplex of
K’, two simplexes ¢” and o’ of K which are disjoint or have the com-
mon face of go over, because of the independence of the unit points,
into simplexes which are disjoint or have the image of o’ as a common
face.

In order to introduce the second realization, we first recall the follow-
ing two theorems of elementary geometry of R¥. Any m points p, (j = 1,

. , m) of R¥ are said to be in general position provided every subsystem
of the p, of N + 1 or fewer points is independent. In particular, every
independent point system is in general position. Then, as is well known,
the following assertions hold:

A. If the points p, (j = 1, ..., m) of R¥ are in general position, then
there exist spherical neighborhoods 1l.(p;) of the p, such that every sys-
tem of points g, with q; € U.(p;) is in general position.

B. If p, (j = 1,..., m) are abritrary, but not necessarily
distinct points of R?, and if the U,(p,) are arbitrary spherical neighbor-
hoods of the p,, then there exist points q;€ U,(p,) which taken together
form a system in general position.

II. Realization in R2**1. Suppose the complex K of dimension n
has the vertices p, (1 = 1, . . ., &,). In R2"*1 we choose a, points ¥; in
general position and assign to each g-simplex o? of K, which is spanned
by certain of the p,, that simplex in R?"*1 which is spanned by the
vertices ¥; with the same indices.

In this way, one obtains as the image K’ of K a simplicial complex
which is really isomorphic to K: To each g-simplex of Kanditsgq + 1
independent vertices there sorrespond ¢ + 1 independent vertices in
K’ and thus really a g-simplex. If o? and o7 are disjoint simplexes of
K, then their (¢ + 1) + (p + 1) vertices correspond under this cor-
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respondence to certain vertices of K’ which because of their number
p + ¢ + 2 < 2n + 2 are independent, and which therefore span dis-
joint image simplexes. If o” and ¢? have a ¢” as a common face, then
for the same reason the same holds for the image simplexes in K'.

30.3 Definition: The field of a simplicial complex K of R¥,i.e. the
set of points of all the simplexes of K equipped with the topology in-
duced by R”, is called a rectilinear polyhedron R = | K|. K is called a
simplicial decomposition or a triangulation of B. Every homeomorphic
image of a rectilinear polyhedron R = | K | inan arbitrary Hausdorff
space is called a (curvilinear) polyhedron; in this connection, the sim-
plexes of K are called (curvilinear) simplexes and the image of K is
called a (curvilinear) triangulation of the polyhedron.

By a polyhedron R = | K | without further requirements we there-
fore understand a curvilinear polyhedron. Curvilinear triangulations
and simplexes for this reason will play a minor role for us inasmuch
as we can study their properties just as well from their rectilinear pre-
images. A rectilinear polyhedron and thus also an arbitrary poly-
hedron is a compact space.

We note that by definition a polyhedron R = | K | is always given
together with a triangulation K. If K and K’ are isomorphic simplicial
complexes, then the corresponding polyhedra | K | and | K’ | are ob-
viously homeomorphic, since each pair of corresponding simplexes
are, as simplexes of the same dimension, mapped on one another by
an affine mapping and these affine mappings can obviously be com-
bined into a homeomorphism of | K | and | K’ |. The converse of this
theorem is not valid. Two distinet triangulations of the same poly-
hedron are not interrelated in a simple relation. Even two edges of
a curvilinear polyhedron, for instance, can be situated with respect
toone another asare thesegment —w < x < + 7 of the (z,y)-planeand

the curve y = z sin 1 for —r < 2 £ +m, augmented by y = 0 for
z

z = 0, which have an infinite number of intersection points with one
another. It is not immediately clear a priori whether a polyhedron
can possess triangulations of different algebraic dimensions; in
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any case, we shall show in the last chapter that this is not the case. A
polyhedron R = | K| carries a metric according to the embedding of
K in the Euclidean space EY, and therefore it is a metric space. The
different metrics, which arise from the different realizations of K, are
topologically equivalent (see Definition 2.3). The metric resulting
from the unit representation of K is called the unit metricof R = | K |.

Examples of polyhedra: (1) The points of an n-simplex [o] = [o"]
form a polyhedron 7™ with the triangulation 7™ of example (1)
associated with Definition 30.1. 7™ is called an n-dimensional ele-
ment; every homeomorphic image of 7™, for example, a closed n-
dimensional sphere or a closed n-dimensional ellipsoid, is also called
an n-dimensional element.

{(2) The points on the proper (at most n-dimensional) faces of an
(n + 1)-simplex o"*1 form a polyhedron 8" with the triengulation
>" of example (2) adjoined to Definition 30.1. 8" is called the n-
dimensional sphere; also every homeomorphic image of S*, for
example, the boundary of an (n + 1)-dimensional ball is called an
n-dimensional sphere.

The open simplexes of a triangulation K of the polyhedron R =
| K | form, because of [S 2], a decomposition of R (cf. the Index). In
regard to this, we make the following definition.

30.4 Definition: If x is a point of the polyhedron R = | K | with
the triangulation K, then the uniquely determined simplex of K
which contains ¥ as an open simplex is called the carrier simplex or
briefly the carrier of x.

30.5 Definition: Let p be a vertex of the simplicial complex K.
The set of all the points of the polyhedron R = | K |, whose carrier
simplex has p as a vertex, is called the (open) star, st p, of p.

st p is an open set in R. For, we have that st p = R — | K* | where
K* is that simplicial complex which consists of all the simplexes of K
which do not have p as a vertex; | K* | is closed and therefore st p is
open in R.
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80.6 Theorem: The vertices p; (1 = 1,..., m) of a simplicial
complex K are the vertices of the same simplexes of K if, and only if, the
stars st p; have an intersection which is 5= .

Proof: If the vertices p; are situated on a simplex of K, then we
obviously have that N st p, = @. Conversely, if this inequality is
satisfied and if ¥ is a point of this intersection, then all the p; lie on
the carrier simplex of x.

§ 31. Subdivisions

By the center of gravity 6 = 6" of a simplex ¢ = o" = p, ... p, We
understand the point whose barycentric coordinates are all equal to

1
n +
simplex faces of o, say o” and ¢"~"1,is called the median of 5. As a
generalization of a well-known theorem about the medians of a
triangle, we prove the following theorem.

\

T The line connecting the centers of gravity of two opposite

31.1 Theorem: The medians of a simplex o™ pass through the center
of gravity of o, if @ median joins the center of gravity of o with the
center of gravity of o™ "=, then it is divided in the ratio (n — r): (r + 1)
by 6.

Proof: The coordinates of the centers of gravity of ¢ and """
are, for a suitable numbering of the vertices of o:

1 1
AL,
a.(r+1,-.-,r+1)0,--‘,0),(T+lzeros)’
C AR (0, , 0, L e 1 ),(n—rzeros).
n—r n—r

Now one can form the vector & which was just given as a linear com-

r+1

bination of these two vectors and indeed with the factors 1 and
n

n : ;, which make evident the asserted division ratio.
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31.2 Definition: Let K be a rectilinear simplicial complex. The
simplicial complex K’ is called a subdivision of K if the following two
conditions are satisfied:

[T lﬁ | K'| = | K|, t.e. the corresponding polyhedra are identical;
[T 2] Each open simplex (o') of K’ is contained in an open simplex
(o) of K.

The concept of a subdivision carries over, meaningfully, to cur-
vilinear simplicial complexes.

31.3 Theorem: For every rectilinear simplicial complex K there
exists a subdivision K, the so-called normal subdivision of K, with the
Jollowing properties:

(a) The vertices of K’ are the centers of gravity & of the simplexes o
of K.

(b) The vertices 6, . . . , 6, are the vertices of a simplex ¢’ = o'™ of
K’ if, and only if, the corresponding simplexes oy, . . ., o, of K form,
with a suitable numbering, an incidence sequence oy < 0y < . .. < o,,.

Fig. 7

In Figure 7, T! and T2 are pointed out as examples of normal sub-
divisions of complexes, which correspond to the segment o and the
triangle o? (in the sense of the example associated with Definition
30.1).

We preface the proof with several observations. If 0y < 0y <. ..
< o, then all the vertices gy, . . . , 0,, lie in [0,,]; all the 6y, ..., 0,
are simplex faces of a,,. If we write down the barycentric coordinates
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of é,, . . ., 6,, (with the vertices of o™ as reference points), we recog-
nize the independence of the coordinate vectors and thus (§ 29, 5.)
the independence of the points &,, . . . , 6,,; thus, (b) really determines
the simplexes o’ = &, . .. 6,,. More specifically, we recognize thereby
that (o) < (o,). To this end, we must identify the points x, (k = 1,

., m) with the ;. If the point 3 lies in (¢’), i.e. all the u, are > 0,
then all the A, are also > 0, i.e. 3 lies in (o,,).

The vertices &; of a simplex ¢’ of K’ allow, according to (b), a natural
correspondence, namely, according to the dimension »; of the corres-
ponding simplexes o; = o}*. &, is called the “first” vertex of o’, 6,, is
called the “last’” vertex of o’. We can make this explicitly clear for all
the simplexes ¢’ of the above figure.

We must prove that the simplexes ¢’ form a simplicial complex K’,
i.e. that {S 1] and [S 2] hold and further that K’ is a subdivision of
K,i.e. that [7 1]and [T 2] hold. [§ 1] is evident according to the con-
struction of K’, namely, according to (b). We have just proved [T 2]
by means of the relation (o) < (¢,,). Both remaining assertions [S 2]
and [T 1] are indeed intuitively evident, but for a rigorous
proof they require the following theorem which is not so evident.

31.4 Theorem: Let s be a point of the simplex (a). The following asser-
tions are valid: (a) If %, v, x # v, are two points of G, then the open in-
tervals (sx) and (1) have no points in common. (b) Every point 3 distinct
from s of the open simplex (o) lies in an open interval (s3) with suitable x € g.
[¢ is defined in Definition 29.1.]

In toto, the theorem asserts that the projection rays completely fill the
simplex without intersections from s to the boundary ¢ of the simplex.

Proof: (a) Lets = DAp,, DA = 1, where wealways sum overi = 0,.. .,
n, > 0. Letx = D&p, & =1, & 2 0, lie on ¢ so that & = 0 for at
least one index. Likewise, let y = Ynp;, >y = 1,9, = 0, 9,, = 0 lieon
¢. Let 3 be a point common to (s5x) and (sy); then

3=+ (l—-ea)s=pFp)+ (1 —Bswithd<a<l,0<B<I.

For the two distinguished indexes j and k, this signifies in barycentric
coordinates that

(1 — «)A = By, + (1 — B) A, and hence that (8 — «)A,
af, + (1 — a)A, = (1 — B)A,, and hence that (« — B)A,

By
afy.
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Since A, Ay, @, B> Oand y, £, = 0, it follows that 8 2 «,« Z B, = B.
It follows from the representation of 3 that «x = a1 and that x = 1, con-
trary to our assumption; therefore, there does not exist a 3 of the assumed
sort.

(b) Let 3 = >¢p, 24 = 1, {; > 0. We must find a point ¥ with

£=a3+ (1 —a)sandzegq.

In barycentric coordinates, this signifies that « is to be determined so

that
= 0 for at least one ¢,
fomafb (L= =l = M)+ A LS g
Since not all {; = A, there exist indices ¢ with solutions « for the equa-
tion; since > ¢, = >, = 1, there even exist indices with {, — A, < 0 and
therefore positive solutions «. We now fix « as the smallest positive
solution; suppose it occurs for the index j so that

g] = a(cl - A;) + A/ = 0.

Let x be fixed in a corresponding manner. If {; — X; = 0, then ¢, =
«(; — A) + A, 2 0. For the indices 7 with {; — A, < 0. there exists an
o with «({, — A;) + A, = 0 and, because of the choice of « as minimal,
surely « = o > 0. From this it follows that ¢ = o({; — A) + A, 2 0.
Thus, in reality x € . Moreover,

1 1
-

! > 0. This completes the proof of the theorem.

with 1 —

2|

R|m

We now conclude the proof of Theorem 31.3 by proving the re-
maining assertions [S 2] and [7' 1] by induction on the dimension ¢ of
the g-dimensional skeleton K, of K = K,. For ¢ = 0, K, = (Kg)’;
hence, | Ko | = | (K)' | and there is nothing to prove. Suppose [S 2]
and [T 1] have already been proved for (K,)". K, , arises from K, by
the adjunction of the (g + 1)-dimensional simplexes o?t1 of K.
(Kg+1) arises from (K,)" by the adjunction of the vertices o?*1and all
the simplexes o’ of K’ which have a o?%1as last vertex. For these o',
(0’) © (0%71); therefore, these (¢') have no point in common with any
open simplex of (K,)'. They also have no points in common among
themselves, inasmuch as they consist, since their dimension is > 0
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(cf. Theorem 29.3), of the points of the open intervals (¥¢?+1) with an
x from a (o'q) in (K,)’; these (") are by our induction assumption dis-
joint so that the (¢”) are disjoint by part (a) of the last theorem. Thus
[S 2] is proved for (K, ,,)".

In order to prove [T 1] for (K, ,)’, it suffices, since [T’ 2] is already
proved, to show that | (K, ;)" | = | K, |. Therefore, on the basis of
our induction assumption, we have still to show that every point of
a (6?11) occursin| (K, )’ |. But part (b) of the last theorem shows this.
This completes the proof of Theorem 31.3.

31.5 Theorem: If the simplex o™ has the diameter d, then every sim-
plex o' of the normal subdivision T" of the simplicial complex T* of all

n
n N <
faces of o™ has diameter < P d.

The proof is by induction. For n = 0, the theorem is trivial.
Suppose it has already been proved for dimensions 0, 1, ..., n — 1.
According to Theorem 29.2, we have to show that the length of the
longest edge of the normal subdivision of T" satisfies the inequality
of the theorem. The edges which lie on a boundary face of o™ are, ac-

cording to the induction assumption, at most of length equal o — 1d .

This number is in fact < % d. Edges of the normal subdivision
n

of T* which lie in the interior of the open simplex (0®) arise from the
medians of ¢" by division in the center of gravity 6". The entire
medians have a length < d; each of their parts has, according to
Theorem 31.1, at most the length

n—r n r+1

< d or d "
n+1l —n+4+1 n+ 1 n+1

IA

forr = 0,...,n — 1. This completes the proof of the theorem.
One can iterate further the process of the normal subdivision of a
simplicial complex K and thus obtain the second normal subdivision
K” and the further »-th normal subdivisions K® of K (v = 1, 2,
...). If K is n-dimensional and the diameter any simplex of K is
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at most equal to d, then the diameter of all simplexes of K’ is at most

n

equal to d and the diameter of all the simplexes of the »-th nor-

n
malsubdivisionK® of K is at most (

n ) d. Since this expression
n+ 1

tends to zero as v increases, we can state the following theorem.

31.6 Theorem: Thediameters of the simplexes of the v-th normal sub-
division K of a complex K tend to zero uniformly as v increases to 0.



Chapter 10

DIMENSION OF COMPACTA

§ 32. Paving Dimension

In this chapter, we pose the problem of how to assign to a topolo-
gical space X an integer » as “‘dimension,” dim X = ». Naturally, the
definition should depend only on the space X and its topology T but
not, for example, on a metric on X based on the topology I. By the
definition, homeomorphic spaces should be assigned the same dimen-
sion, i.e. dimension should be a topological invariant. It turns out
that this problem contains many more difficult problems than may
appear at first glance. For example, if we require—as is natural—
that the dimension of a simplex " of the algebraic dimension n be
precisely dim ¢” = %, then the problem arises—according to our pre-
vious deliberations—whether two simplexes ¢™ and o™ with m £ »
can be homeomorphic. If this were the case, then there would be no
dimension concept of the type outlined.

However improbable it now appears that, say, {¢™] and [¢"] could
be homeomorphic for m £ n—that there could exist a one-to-one
continuous mapping f of [¢™] onto [¢"] such that f~1 is also con-
tinuous—the following two possibilities are still, however, conceivable:

(I) There exists a one-to-one mapping f of [¢™] onto [¢"], at least
one which may not be continuous. Such mappings are considered
in set theory (see, for instance, E. Kamge [1], §§ 11, 12, in
particular, p. 43), where the example f: o! — o2 is discussed in detail.

(I1) For arbitrary m and n, there exists an epimorphic continuous
mapping f of [0™] onto [¢"], at least one which may not be one to one.
129
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In the case m = 1, n = 2, such mappings are given by the so-called
Peano curves (for example, see F. HAuspor¥F [2], § 36). We shall
later prove that one can even represent every non-empty compactum
as a continuous image of the zero-dimensional Cantor discontinuum
(cf. Theorem 32.2).

It was not excluded a prior: that one could construct a one-to-one
and continuous mapping of [¢™] onto [¢"] by combining the charac-
teristic features of both examples. That this is in reality impossible
was first shown in 1911 by L. E. J. Brouwer (cf. Beweis der Invarianz
der Dimensionszahl, Math. Ann. 70, 161-165). Brouwer proved the
following theorem.

32.1 Theorem: Two simplexes [¢™] and [o"] of different (algebraic)
dimensions m and n are not homeomorphic.

With the proof of this theorem, dimension theory began as an in-
dependent discipline of topology. We shall prove this theorem within
the framework of a more comprehensive theory, by introducing a
dimension concept, on the basis of a topologically invariant property
which is defined for arbitrary compacta, which assigns, in particular,
to a simplex [¢"] the dimension ». One knows today very many such
properties which characterize dimension; we stop on the first one,
historically speaking, discovered by H. Lebesgue in 1913, i.e. the
“paving property”’ which distinguishes itself by its simplicity and
elementary geometrical intuitiveness. It is based on the following
concept.

32.2 Definition: The natural number o = 1 is called the order of
the covering® = {D, | A from an arbitrary index set A} of the space
X £ @ if there exists at least one point p € X which belongs to o
distinct sets D, but no point of X belongs to more than o sets D,. If
there does not exist a natural number o of this sort, then® is said to
be of infinite order.

We now recall how one paves a street with square paving stones—
not 8o that a quadratic lattice is formed, but rather displaced one
with respect to another, row by row, as is apparent from Fig. 8. If
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Fig. 8

one thinks of the figure as a covering of a rectangle by small closed
squares, then one sees that the order of the covering is 3. It is accord-
ingly plausible that a plane rectangle admits an &-covering of order 3
for every ¢ > 0. It likewise naturally admits coverings of order 4, 5,
and so on; but one would exert himself in vain if one tried to form &-
coverings of order 2 with small . One can picture analogous con-
siderations in the space R3; here, one would find e-coverings of a 3-
dimensional square of order 4, 5, and so on, but none of order 2 or
even 3. These considerations motivate the following definition of the
paving dimension of a space X. We must limit ourselves within the
framework of this little volume to compacta X.

32.3 Definition: The integer n is called the dimension of the com-
pactum X, dim X = n, if X possesses the following two properties:

(a,) For every ¢ > O there exists a finite closed e-covering of X
with order < »n + 1.

(b,) There exists an ¢ > 0 such that every finite closed e-covering
of X has an order = n + 1.

A compactum ¥ which does not possess the property (a,) for any
n is called infinite dimensional.

For the understanding of this definition, let the following be noted.
It is clear that by this definition, every non-empty compactum X is
assigned a well-defined dimension, namely, infinite dimension or an
integern = 0, 1,2, ...as dimension. (The empty set ¢ is usually
agsigned the dimension — 1.) The property (a,) asserts that
X has dimension at most #, i.e. that dim X < n; the property (b,)
asserts that X has dimension at least n, i.e. that dim X > =.
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One could also make the following definition: dim X = n if the
property (a,), but not (a,_;), is satisfied, i.e. if X has dimension at
most n but does not have dimension at most » — 1. In fact, (b,) is
exactly the negation of (a,_,), which one can make explicitly clear.
The shortest formal definition would be: dim X = n if n is the smallest
integer for which (a,) holds.

We shall first show that dimension so defined is a topological in-
variant. To this end, we must show that: If X and X’ are compacta
with dim X = n and if f: X — X’ is a one-to-one continuous mapping
of X onto X', then dim X’ = n. Because of the uniform continuity
of f (cf. Theorem 25.1) one can determine, for given £ > 0, a

8 = 8(g) so that d(f (z), f (%)) < %holds for d(z,y) < 8, and z,y € X.

If D={D;|7 =1,...,m}isa finite closed 5-covering of X of order
n + L, then {f (D;) |4 = 1,. .., m}islikewise a finite closed covering

of X’ of order n + 1. d(D,) <C 8 implies that d(f (D,)) < §< & (a,)

is thus proved for X', from which it follows thatdim X' < »n = dim X.
In exactly the same way, it follows that dim X < dim X’ so that
dim X' = dim X.

If X has infinite dimension, then by this X’ also has infinite dimen-
sion. This completes the proof of our assertion.

32.4 Thereom: If X and X' are compacta, X < X', then dim X <
dim X'

Proof: Suppose dim X’ = n. For each ¢ > 0 there exists a finite
closed e-covering of X' of order » + 1. This induces in X a

finite closed e-covering of at most the same order, from which it
follows that dim X < dim X'

We will further prove that in Definition 32.3 one can also use open
coverings in place of closed coverings. To this end, we need two theorems
which compare open and closed coverings of a compactum. Both depend
on Theorem 24.3.

32.5 Theorem: (Refinement of Open Coverings): If D = {D‘ e =1,
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ey m} %8 a finite open covering of the compactum X, then there exists a
closed covering § = {F;|i=1,..., m} with F, < D,fori=1,...,m.

Proof: The system of closed sets CD, has intersection (JJ so that one
can apply Theorem 24.3 to it. According to Theorem 24.3, there exist
open sets F; > CD, which also have intersection (. The sets CF; < F,
are therefore closed, they cover ¥, and we have that F, < D,; this com-
pletes the proof of the theorem.

32.6 Theorem: (Enlargement of Closed Coverings): If D = {D; |2 =
1,..., m} 8 a finite closed covering of the compactum X, then there exists a
8 > 0 such that the open covering D and the closed covering Ds,

Ds ={Us(D) [¢ =1,...,m},Ds = {Us(Dy) |4 = 1,...,m},
have the same order as D.

Proof: Let D have the order o. Since the order can at most increase
for an enlargement of the sets D,, it suffices to show that, for suitable 8,
Ds also has an order £ o.

Every subsystem of D consisting of o 4 1 of the sets D, has intersec-
tion (7J. By Theorem 24.3, there exists an € > 0such that the correspond-
ing sets 4l,(D,) have intersection (. If one finds for each subsystem of
D of the indicated sort an associated real number ¢ and chooses § as the
smallest of these e, then each collection of 0 + 1 sets of the form [4(D,)
has intersection (. This means that the order of D, is at most o, which
is what we were required to prove.

32.7 Theorem: In Definition 32.3 of the dimension of a compactum X%,
the word ““closed” can be replaced by the word “open.”

Proof: We denote the conditions (a,) and (b,) of Definition 32.3 by
(a,) and (b)) respectively if in them “closed” is replaced by ‘‘open.” We
first prove that under the assumption that dim X = n, (b,) as well as
(a,) holds.

(a,) Let ¢ > 0 be given. According to (a,), there exists a finite closed

%-covering D of X of order £ n 4 1. According to Theorem 32.6, for
suitable § > 0, D; also has order < n + 1. If one chooses § furthermore

e )
s0 that § < i then the sets from D; surely have diameter < ¢, and
hence represent an g-covering of the sort required in (a,).

(b,) Let € be chosen in accordance with (b,). If D is a finite open

e-covering of X, then by Theorem 32.5 there exists a closed e-covering &
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whose sets are eventually contained in those of D and which thus have
diameter < ¢. According to (b,), & has order = n + 1 and this holds a
fortiori for D.

If X is infinite dimensional, one shows in an exactly analogous fashion
that X does not satisfy (a,) for any integer n.

Conversely, we now assume that the conditions (a,) and (b.) are satis-
fied. Then if dim X = m, (a,) and b,,) hold and so, according to the first
part of the proof, (a,,) and (b,) follow. Since, however, the number = is
uniquely determined by (a,) and (b;), it follows that m = n. This com-
pletes the proof of the theorem.

§ 33. Zero-Dimensional Compacta

Compacta of dimension 0 can be described relatively edsily, as we
shall see in this section. For a non-empty compactum X to have dimen-
sion 0, condition (a,) in the definition of dimension in the preceding sec-
tion is obviously sufficient. It asserts that for each £¢ > 0, there exists a
finite closed g-covering of X of order 1, i.e. a covering by disjoint sets.

The following are examples of zero-dimensional compacta:

(a) a finite number of points with the discrete topology;

(b) the set of numbers 0, ;lb (n =1,2,...) on the real line;

(c) the Cantor discontinuum ¢’; we have already established the zero-
dimensionality of & in § 9 as property (6).

33.1 Theorem: A non-empty compactu.m X s zero-dimensional if, and
only if, any one of the following three equivalent conditions <3 satisfied:

(1) For each ¢ > 0, there exists a finite closed g-covering of X consisting
of disjoint sets.

(2) For each pair of points x, y, x # y, from X, there exist open-closed
subsets A, B of X withxe A,y B.

(3) X 43 totally disconnected.

In condition (1), the word “closed’ can also be replaced by ““open’ and
also by “open-closed.”

Proof: (1) is the condition (a,) in the definition of dimension. A cover-
ing set D from the covering (1) is open, since it is the complement of the
union of the remaining finitely many closed covering sets; every D is
therefore open-closed, as is asserted at the end of the theorem.

(1) = (2) Let d(z, y) = € > 0. Every g-covering yields according to
(1) a covering set A with x€ 4, but, because d(4) <e,y¢ A and
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analogously a covering set B with ye B, x ¢ B. 4 and B are of the re-
quired sort.

(2) = (3) Let z € X and C(z) be the connectivity components of . For
every y€ X, y # =, there exists according to (2) an open-closed set 4
withze 4,y ¢ A. C(z) < A (compare the remark before Theorem 7.9);
therefore, y ¢ C(x). C(x) therefore contains no point y different from z,
which is what we were required to prove.

(3) =(1) Let x € X and let U be an open neighborhood of «. For every
real number 7 > 0 we consider the 5-components C,(r) whose union is
an open-closed set (see the proof of Theorem 24.4). If 5 ranges over a
monotonically decreasing null sequence, then the C,(x) form a decreasing
sequence of closed sets in the interior of the compactum ¥, and the same
holds for the closed sets C(x) — U.Ifall the Cy(x) — U were non-empty,
then they would have a common point; however, the intersection
N Cy,(x) of all the Cy(x) equals the connectivity component C(x) (cf.
Theorem 24.6), which, according to (3), consists of z only, so that certainly
C(x) — U = (i holds. Therefore C,(x) — U is empty for sufficiently
small 7, i.e., Oy(x) = U for these . We thus have the present result:
The 5-component C,(z) of & point x € X has an arbitrarily small diameter
for sufficiently small .

Now let € be the real number indicated in the assertion (1). To each =
€ X we assign an y-component C,(x) with d(0,(x)) < € which is possible,
according to what we have already proved, by means of a suitable choice
of 5. These Cy(x) form an open covering of X, from which one can select a
finite covering

D={D]i= 1,...,m}

which consequently consists of open-closed sets D, with d(D,) < . We
then have that

D" ={Dy, D, — Dy, Dy — (Dyu D,y),...,D, - (Dyu...uD,_,)}

is likewise a closed g-covering and indeed one which consists of disjoint
sets having a diameter < ¢, as was required in (1).

In the preceding section, we have, by mentioning the Peano curves,
pointed out that for continuous mappings the dimension can increase.
‘We shall show that one can even map the zero-dimensional Cantor dis-
continuum % continuously onto a cube of arbitrarily high dimension, onto
the co-dimensional Hilbert parallelepiped, and onto an arbitrary com-
pactum,

33.2 Theorem: Every non-empty compactum X is a continuous image of
the Cantor discontinuum.
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Proof: Being a totally bounded space, ¥ admits for every real € > 0
finite e-coverings ® = {D;|¢ = 1,..., n}. In this connection, one can
consider the D, as closed since otherwise one can replace the D; by D, and
then d(D,) = d(D,).

We first considera covering ®; = {D, |4, = 1,...,n, = 2"} of X by

non-empty closed D, having diameters < 5 We note here that X is

non-empty and that we can extend the number n of the covering sets to
an arbitrary power of 2, say 2™, if one agrees to admit equal sets D,
in D and in the enumeration certain sets D, are repeated. Every D, is
itself a non-empty compactum. We cover it by 2™ non-empty closed sets

D, (i, =1,..., 2™) with d(D;,) < ;—2 Also the number of these

covering sets can be increased to the same power of 2, say 2™, for all D, .
There results a covering D, = {Dm. I, =1,...,2™ 4, =1,..., 2""}
of X by n, = 2™*™ gets. Continuing in this way, we obtain, for each » =
1,2,..., acovering

D, ={D,...;l% =1,...,2"withv = 1,... 1}
of X by n, = 2™* - *™ non-empty compacta having a diameter < %

We now introduce a modification in the definition of the Cantor dis-
continuum € (see § 9) in order to be able to compare it easily with our
compactum X. In the definition of &, we consider the C-intervals of rank
m, and denote them in a way which is changed with respect to § 9 by C%
(¢, = 1, ..., 2™)in their natural ordering on the interval [0, 1]. Further,
we consider the n, = 2™*™ (C.intervals of rank (m, + m,). In each C*,
there are contained 2™ of them which are now denoted correspondingly
by C% (¢, = 1,..., 2™). In an analogous manner, the n, = 2™* - +mr
C-intervals of rank (m,+ . . .+m,) are denoted by C*---*, Let C™* --- +mr)
be as before the union of all C-intervals of rank (m; 4+ ... + m,). Then

[e22
(g = n 0(m1+ ...+m,-).

r=1

ﬁ . The points z € ¥ are determined in

We have that d(C*- i) =

one-to-one fashion by sequences C* > C"* > ... and by sequences
(¢, %5 . . .) respectively where x € C"*- -* and now 4, ranges over the values
1,...,2™.

Now let = be an arbitrary point of ¥ with the corresponding sequence
(%1 %3 . . .). The sequence of decreasing compacta
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D, > D, >...
in X then determines uniquely a point p € X which is contained in all these
sets, which we denote as the image p = f (x) of . We assert that f is an
epimorphic mapping onto ¥ which furthermore is continuous. With the
proof of this assertion, the theorem is then proved.

If p,€ X is arbitrarily prescribed, then one determines a D, with

po € D, next a D,; (with the same %,) with p,€ D,,,, and continuing

182

in this manner a sequence D; > D,, > ... which contains the single
common point z,. Then we seek out in € the uniquely determined point
x, which is common to the sequence C* > C%% > ., .. We obviously

have that p, = f (%), which completes the proof that f is epimorphic.
Further, let ¢ > 0 be given and let r be so large that %r < &. As above,

let py = f (z,). Everyx with d(x, z,) < ﬁ liestogether withzyinthe

same set C* - ¥, Therefore p = f (x) and p, both lie in D, ,, andhence
we have that d(p, p,) £ d(D,, ;)< %,< ¢. This also proves the con-
tinuity of f and thus the theorem is completely proved.

An infinite number of isolated points cannot form a compactum; but a
compactum can very well contain an infinite number of isolated points,
as the example (b) at the beginning of this section shows. Among all com-
pacta, those without isolated points are of special interest. In this spirit,
we give the following definition.

33.3 Definition: A zero-dimensional (non-empty) compactum X with-
out isolated points is called a discontinuum.

The Cantor discontinuum % whose nomenclature ‘“discontinuum” is
consequently in agreement with Definition 33.3 forms an example. Now
the theorem asserting that from the topological standpoint all discontinua
are already exhausted by ¥ holds.

33.4 Theorem: Every discontinuum X is homeomorphic to the Cantor
discontinuum.

The proof consists in a sharpening of the considerations of the preced-
ing proof. We first assert that: For every ¢ > 0, X admits s-coverings
D = {D,- le=1,... ,r} by (non-empty) disjoint open-closed discontinua
D,, the number of which equals a sufficiently high power of 2, say 2™.
One first recognizes that because of its zero dimensionality, X allows
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finite closed ¢-coverings by non-empty disjoint sets D;. Each D; is zero-
dimensional and, being the complement of the union of the remaining
finitely many covering sets, it is also open, and therefore open-closed.
No D,, regarded as a subspace equipped with the topology induced by
X in D,, has isolated points. Namely, if we suppose that p were such a
point, then there would exist a D;-neighborhood U of p containing no
points of D, except p. Since D, is open, U would also be an X-neigh-
borhood of p (cf. Theorem 6.3) and therefore p would also be an iso-
lated point of X, which contradicts the definition of a discontinuum.
Consequently, the D, are discontinua. We have that d(D,) = g; > 0. If
we subdivide a set D, in the same way as we have just subdivided ¥ into

finitely many disjoint discontinua with a diameter < %‘, then as a result

we obtain at least two such sub-discontinua, and, by forming the union,
we can form therefrom exactly two (non-empty) discontinua with a
diameter << ¢, This means that one can increase the number r of the sets
in D by 1 and by iteration of the process increase it by an arbitrary
number. In particular, one can bring it to a power of 2, say 2™. This com-
pletes the proof of the above assertion.

The remainder of the proof of the theorem proceeds completely analo-
gously to the preceding proof. The only difference is that the covering
sets D, are now chosen disjoint so that they are even uniquely deter-
mined by the sequence D; > D,, = ... determined by the point p, €
X. Hence the mapping p = f (x) turns out to be one-to-one. The con-
tinuity of the inverse mapping f~ ! need not be proved separately because
of the compactness of €. This completes the proof of the theorem.

§ 34. Paving Theorem

We shall show in this section that a closed n-simplex [¢] = [¢"]
really has the dimension % in the sense of the dimension concept
which we introduced. For this purpose, the conditions (a,) and (b,,) of
the Definition 32.3 of dimension or (a;) and (b,) of Theorem 32.7,
respectively, must be proved for the space X = [o]. For (a,) and (a,)
respectively this is relatively easy. On the other hand, the assertion
(b,) or (b,,), respectively, of the paving theorem proper for the simplex
[o]isnot so easy to prove and requires some preparation, which is com-
prised in the so-called Sperner Lemma (cf. Theorem 34.1).

It has already been established by Theorem 30.6 that X = [o]
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possesses the property (a,): The open stars of the triangulation T of
[a] consisting of all the faces of o and likewise the stars of every nor-
mal subdivision T® of T form an open covering of [¢] of the order
n + 1. Since the simplex diameter of the successive normal sub-
divisions become very small according to Theorem 31.6, (a,) and
thus that dim [¢] = n is proved. It is also easy to give closed &-cover-
ings of order n + 1 of [¢]. In the case n = 2, we obtain such a one in
the form of the paving figure preceding Definition 32.3. There are no
fundamental difficulties to generalize this paving to » = 3 and by
induction to all n.

Fig. 9

One obtains other closed ¢-coverings of the order n +- 1 as follows:
We subdivide an arbitrary one of the triangulations T® just con-
sidered still further to T®” and form the closures of those stars of
T® which are assigned to the vertices of T® ag is indicated in Fig. 9.
It is easily seen that in analogy to Theorem 30.6, such stars have
points in common if, and only if, they belong to the vertices of the
same simplex of T®, from which we recognize that the order of this
covering is really n + 1.

34.1 The Sperner Lemma: Let 0 =d" =p,...p, be an n-
simplex, T = T" the corresponding triangulation of (o], T' an arbitrary
subdivision of T. If to each vertex p’ of T’ there is assigned a vertex
o) =p; (€ =0o0rl...orna)of its carrier simplex in T, then there
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exists at least one n-dimensional simplex oy in T whose vertices can be
mapped by ¢ into the set of all vertices py, . . ., P,

Proof: Let the number of n-simplexes o, of T’ of the sort indi-
cated in the theorem be a. We shall prove, over and above the asser-
tion of the theorem, by means of induction on =, that e is odd. For »
= 0, the assertion of the theorem is trivial. Suppose it has already
been proved for the dimensions 0, 1, . . . ,» — 1. Suppose the totality
of all n-simplexes of T are o, (: = 1, ..., s). A face simplex ' =
7"~1 of a g; will be called a distinguished face of o; if the vertices of
7' are mapped by @ into the set of all the vertices p,, . .., p,. Let g,
be the number of distinguished faces of o;. If o, has the property of
the theorem, then ; obviously possesses precisely one distinguished
face—it is @; = 1. If o does not have the property of the theorem,
then either all the p,, . . . , p, occur among the images of the vertices
of ¢}, moreover each one twice, and then obviously a; = 2, or at
least one of these vertices is lacking among the images, and then a; =
0. Summarizing, we have in all cases that ¢ = (3a,) mod 2, and it
suffices to prove that Ya, is odd.

Let 7" be an (r — 1)-simplex which is mapped by ¢into (py,...,p,).
Either + is an interior simplex of o, and then it is a distinguished
simplex consisting of precisely two of the o;; therefore, it is counted
twice in >a,. Or, 7’ lies on one (n — 1)-dimensional face of o; this
must be the face (p,...p,) inasmuch as others cannot map into
(py . - - p,) under ¢ because of the carrier condition of the theorem.
Then +' is a distinguished face of precisely one of the 0; and hence is
counted exactly once in >a,. The number of simplexes of the second
indicated sort is odd according to the induction assumption; the
number of the first-named sort is odd, as we have just established,
and thus >a, is odd. This completes the proof of the theorem.

34.2 Paving Theorem: For each n-simplex ¢ = o", there exists an
& > 0 such that every finite open g-covering of [o] has order = n + 1.

Proof: Let T be a triangulation of [o] consisting of all the face
simplexes of ¢ including o itself. The » + 1 stars of T form an open
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covering of [o]. Let ¢ be a Lebesgue number of this covering. We
assert that every finite open g-covering of [o] has at least the order n + 1.
To prove this, we consider an open ¢-covering D = {D;|i =1, ...,
m} of [0]. Let X be a Lebesgue number of D and suppose T’ is so fine a
normal subdivision of T that the diameters of the simplexes of T are

all < %,and that the diameters of the stars of T’ are therefore all < A.

Let p’ be an arbitrary vertex of T'. On account of the choice of A,
the star of p’ is contained entirely in at least one of the sets D;; we
choose one of these sets D;, call it D and set D = (p’). Thus, each
vertex p’ of T’ is assigned to a well-defined set D,. Because of the
choice of ¢, each set D, is contained entirely in one of the n + 1 stars
of T. We choose one of these stars, denote its midpoint by p, and set
p = x(D;). Thus, each set D, is assigned a well-defined vertex of o.

Now if we let the vertex p = @(p’) = yy(p’) correspond to each
vertex p’ of T’, then this is obviously a correspondence as is con-
sidered in the Sperner Lemma. Therefore, there exists an n-dimen-
sional simplex o’ = py ... P, of T' whose n + 1 vertices are mapped
by ¢ into all the » + 1 vertices of o. Hence, the sets zﬁ(p;),
j=0,...,n,aren + 1 distinct sets D;, and, for these indices j, we
have that

@ # (') = Nstp; <= N (p)).
i=0 j=0

Hence, D has at least the order » + 1, which is what we had to prove.
This proves completely the assertion (b,) and thus the equation
dim ¢ = n. The Brouwer Theorem 32.1 is proved at the same time.
Also the dimension of an n-dimensional parallelepiped is thereby
recognized to be n; one can certainly inscribe a suitable ¢'* in the
parallelepiped and then apply Theorem 32.4. The corresponding fact
holds for the dimension of a polyhedron with a triangulation of
algebraic dimension ». We summarize all this in the next theorem.

34.3 Theorem: A simplex, a parallelepiped, and a polyhedron with
a triangulation of algebraic dimension n have the (paving) dimension n.
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§ 35. Embedding Theorem

From the comprehensive area of dimension theory, we can prove
only one more, in any case, especially important and interesting,
theorem—namely, the embedding theorem which was first proved by
K. Menger and G. Nobeling: A compactum of dimension n = 0 is
homeomorphic to a subspace of the Euclidean space R*"t1. We have
already seen earlier that a polyhedron of dimension n can always be
geometrically realized in Euclidean space R*"*! (see Assertion II in
§ 30). The embedding theorem generalizes this assertion to arbitrary
compacta and shows the significance of the dimension concept
insofar as the measure giving embedding dimension 2n + 1 for poly-
hedra also suffices for the embedding of compacta of dimension .
Also if one ignores the exact dimension in the embedding theorem,
one still obtains a significant result: The compact subsets of Eucli-
dean spaces can be recognized as the compacta of finite dimension.
The proof, which we subsequently will carry out in conjunction with
the Alexandroff concept formation, makes use of a whole series of our
previous principal results and distinguishes itself by the originality
of its line of reasoning and special geometric intuitiveness.

We first introduce the concept of a nerve of a finite covering. Let
D ={D;|7 =1,...,m}bea finite covering of a space X. We assign
to each set D, the unit point e; of the Euclidean space R™. If a sub-
system of the D, has a non-empty intersection D, N ... N D, 7,
then we span the simplex (e, . . . ¢;) by the corresponding vertices e,.
In this way, we obtain a subcomplex N of the unit simplex of R™
because the two conditions [S 1] and [8 2] of Definition 30.1 are
satisfied; [S 1] is immediate according to the definition of N and
[S 2] holds for every set of simplexes of the unit simplex.N and like-
wise every other realization of N is called a nerve of D. Obviously the
order of the covering D diminished by 1 is equal to the dimension n of
its nerve N. According to Proposition II of § 30, N can be realized
in Euclidean space R?"*1,

We now specialize and let D be a finite open e-covering of the com-
pactum X and letN be a realization of the nerve of ® in a Euclidean
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space. Let the verticesof Nbe p; ¢ =1, ..., m). We will give a con-
tinuous e-mapping o: X — |N | —the so-called Alexandroff mapping
of X into |N |. To this end, let x be a point of X. Fors = 1,...,m,
we define a real-valued function ¢; as follows:

@i(x) = d(z, CD)).

Since the D; are open, the CD, are closed and ¢;(x) > 0if, and only if,
z € D, (see Theorem 20.4). For no x are all the ¢,(z) zero, so that one
can form

A= M) = 2(7;:2) summed overj = 1,...,m.
Then we have A, = 1. We set «(x) = p = DA;p;. If x lies in the
sets D,, ..., D,, but in no other set D,, then the A, ..., A, are 2~
0 but all the other A; are = 0, and p lies in the simplex (p;, ... p;)
belonging to N. Therefore, p = a(z) lies in |N |.

That the Alexandroff mapping «(x) is an e-mapping results from
the fact that « ~1 (p)is always entirely contained in a set D, inasmuch
as it follows from A; 7= 0 that z € D; and that d(D;) < &. The con-
tinuity of «(x) follows from the continuity of the functions d(z, CD,)
(cf. Theorem 20.5). We formulate the above result as follows.

85.1 Theorem: If D = {D; |i = 1,...,m} is an open e-covering
of the compactum X, then the Alexandroff mapping «(x) = p yields a
continuous e-mapping of X into the field | N | of nerves N of D.

Now let X be a compactum of dimension », dim X = . Then for
every ¢ > 0 there exists a finite open e-mapping D of order n + 1.
Suppose the nerve N of D1is realized in a fixed Euclidean space R?"t1.
The Alexandroff mapping therefore yields a continuous e-mapping of
X into this«R?**1. Now the space F(X, R?"*1) of all continuous map-
pings of X into R2**1is complete according to Theorem 25.2. The
space &,(X, B2"*1) of all e-mappings of X into R2"*1is, according to
Theorem 25.5,an opensubspaceof §,(X, R2"*1). The intersection of all
the (X, R?"*1)oreven theintersectionofall (X, R2"™1), k=1,2,...,

%
is the space of all homeomorphic mappings of X into R2"*1, as was
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already noted in conjunction with Definition 25.3. If we can prove this
intersection to be non-empty, our goal will have been reached. The
Baire density theorem (see Theorem 21.7) serves us to this end. From
its assumptions, the following is satisfied: §(¥, RZ"*1)is complete and
the §,(X, R®™*1) are open. If we furthermore show that all the

E

F(X, R?**1) are dense in F(X, R®*1), we can deduce that the inter-
k

section of all the ‘[y_l(f, E?*1y is non-empty, and thus the embedding

theorem would bz proved. We shall accordingly next prove that
&.(X, R?t1)is dense in (X, R*"H1).

Besides £ > 0, let a function g € (X, R***') and an arbitrary » > 0
be given. We shall construct an Alexandroff e-mapping « € §,(%,
R?+1) with d(e, g) < 7; then everything will be proved. We
first use the uniform continuity of g; there exists a 6 > 0 such that

d(z, y) < & implies that d(g(z), g(¥)) < g Moreover, § can also be

taken < e.
Let ® = {D;|¢ = 1,..., m} be an open 8-covering of X of order
n + 1. D is also an e-covering. It follows from d(D;) < & that

d(g(D,)) < g We choose a point g, in each set g(.D;) and in the spherical
neighborhood of radius % about g; we choose a point p, such that the

system of m points p; is in general position, which is possible accord-
ing to Proposition B of §30. We take these p, as the vertices of a
realization of the nerve N of D and construct « for this. We first esti-
mate the diameters of the simplexes of N by estimating the lengths of
the edges p; p; of N (Theorem 29.2). If p,p; is an edge of N, then D;
and D; have at least one point y in common and hence also g(D;) and
g(D;) have the point y = g(y) in common. Then

[

ap; p)) = d(py, q;) + d(a;, v) + d(n, g;) + d(g;, p;) < 4

13

holds. The diameter of a simplex in N is therefore at most equal to g—'r].
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Now we estimate the distance d(«(x), g(x)) between the twoimages
of a point z € X under « and g. Let x € D,, g(z) e g(D,); then a(z) is in
every case contained in a simplex of N with the vertices p;, and

therefore d(x(x), p;) < g‘r]. Combining, we have that

d(a(z), 9(2)) = d(x(z), p;) + d(P;, 0)) + d(q;, 9(x))

2 7
< 2L =
3" %
From this we can conclude that d(«, g) < 7 since d(«, g) = 5 does not
have to be considered according to Theorem 18.3. The result is the
following.

35.2 Embedding Theorem: A compactum X of dimension n can be
homeomorphically embedded in the Euclidean space R¥1,



BASIC FORMULAS FROM SET THEORY

Let X be a fixed basic set, and let 4, B, ... besubsets of X. Let ) be
another fixed set, and let %, B, . . . be subsets of ). Union and inter-
section:

Assoctative laws:
(1) Av(BuCy=AuB)uC=4uBuUC,
Q1YAN(BNC)=ANnBNC=4ANnBnNnC.

An arbitrary number of sets can also be combined associatively.

Distributive laws:

2) Au(BNnC)=(AuB)n(4u0),

2)AnNn(Bul)=(AnNnB)u(A4n().

(2) and (2') respectively are valid for an arbitrary number of factors
instead of B N C and B u C respectively.

The complementary set CD = X — D:

3) C(4uB)y=CAnCB,

(3) C(4n B) = C4uCB.

(3) and (3') respectively are valid for arbitrarily many factors in the
parentheses.
Trace X; = X N T of X with a subset T of X.

4) (AuB)yp=Ap,UBp; @) (AN B)y = Ap N By
146
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(4) and (4') respectively are valid for arbitrarily many factors in
the parentheses.

(6) Cpdp = (T — Ap) = (CA)q.

Mappings f of X intoY):

6) f(4u B) =f(4) v /f(B)
(6)f (4 N B) < f(4) 0 f(B)

M UV B) =W OUSf(B)
() U A B) = 71 (AW N fHB).

(6)-(7') are valid for arbitrarily many factors in place of 4 U B,
AN'B, Ay B, AN B, respectively.

8) IfP = U, (i =1,...,n) is a partition of Y, then X =
U f-4(U,) is a partition of X.
i

@) FHCYA) = CfYA).
(10) f(f (4)) = 4; 10') f (f1(W) = A



BIBLIOGRAPHY

Only the most important books are listed here which will enable the
reader to go more deeply into the material treated in this little volume or
to supplement it.

ALEXANDROFF, P. S.

[1] Combinatorial topology, Moscow-Leningrad, 1947 (Russian).

[2] Combinatorial topology, Graylock, Rochester, 1956 (English
edition of [1]).

[3] Introduction to set theory and the theory of functions, Moscow, 1948
(Russian).

[4] Einfithrung in die Mengenlehre und die Theorie der reellen
Funktionen, Berlin, 1956 (German edition of [3]).

ALEXANDROFF, P. 8. and H. Hopr

[1] Topologie, Springer, Berlin, 1935.

BaumMm, J. D.
[1] Elements of point set topology, Prentice-Hall, Englewood Cliffs,
1964.
BERGE, C.
[1] Espaces topologiques, Dunod, Paris, 1959.

BorTyansky, V. G.
[1]1 Homotopy theory of continuous mappings and of vector fields,
Trudy Mat. Inst. Steklova, No. 47 (1955) (Russian). Also see
AMS Translations, Ser. 2, Vol. 7.
Boursaxkr, N.
[1] Eléments de mathématiques, Livre II1: Topologie générale, Paris,
Hermann, 1951.
Bourain, D. G.
[1] Modern algebraic topology, Macmillan, New York, 1963.
148



BIBLIOGRAPHY 149

Buseaw, D.
[1] Elements of general topology, Wiley, New York-London, 1963.

Camrns, S. S.
[11 Introductory topology, Ronald, New York, 1961.

Cecn, E.
[1] Topologické prostory, Nakladatelstvi Ceskoslovenské Akademie
Véd, Praguse, 1959.
Hair, D. W. and G. L. SPENCER
[1] Elementary topology, Wiley, New York-London, 1955.

HaLmos, P.
[1] Naive set theory, Princeton Univ. Press, Princeton, 1960.

Havusporrr, F.

[1] Grundziige der Mengenlehre, Leipzig, 1914.

[2] Mengenlehre, 3rd edition, Berlin, 1935.

[3] Set theory, Chelsea, New York, 1957 (English edition of [2]).
Hocking, J. G. and G. S. Youna

[1] Topology, Addison-Wesley, Reading-London, 1961.

Horewicz, W. and H. WAaLLMAN
[1] Dimension theory, Princeton Univ. Press, Princeton, 1941.

KaMEKE, E.

[1] Mengenlehre, Sammlung Goschen 999/999a, de Gruyter, Berlin,
1955.
[2] Theory of sets, Dover, New York, 1950 (English edition of [1]).

KeLLEY, J. L.

[1] General topology, Van Nostrand, Toronto-New York-London,
1955,

KeLLEY, J. L., I. NAMIOKA and co-authors
[1] Lenear topological spaces, Van Nostrand, Princeton, 1963.

KoOTHE, G.
[1] Topologische lineare Rdume, Springer, Berlin, 1960.



150 BIBLIOGRAPHY
KowaLsxy, H. J.
[1] Topologische Rdaume, Birkhéuser, Basel-Stuttgart, 1961.
[2] Topological Spaces, Academic Press, New York, 1965 (English
edition of [1] edited by William J. Pervin).
KuraTowskr, K.
[1] Topologie, I, I1. Warsaw, 1948, 1950,
[2] Introduction to set theory and topology, Addison-Wesley, Reading,
1960.
LEFSCHETZ, S.
[1] Introduction to topology, Princeton Univ. Press, Princeton, 1942,
[2] Algebratc topology, AMS, Providence, 1942.
Mawmvuzid, Z. P.
[1] Introduction to general topology, Noordhoff, Groningen, 1963.

NoBELING, G.
[1] Grundlagen der analytischen Topologie, Springer, Berlin-
Gottingen-Heidelberg, 1954.
ParTERSON, E. M.
[1] Topology, Oliver and Boyd, Edinburgh-London, 1956.

PErvIN, W. J.
[1] Foundations of general topology, Academic Press, New York-
London, 1964.
PoNTRYAGIN, L. S.
[1] Foundations of combinatorial topology, Moscow, 1947 (Russian),
[2] Foundations of combinatorial topology, Rochester, Graylock.
1952 (English edition of [1]).
SerFerT, H. and W. THRELFALL
[1] Lehrbuch der Topologie, Teubner, Leipzig, 1934, and Chelsea,
New York, 1947.
SiErPINSKI, W.
[1] General topology, Toronto Univ. Press, Toronto, 1952.

Surees, P.
[1] Axiomatic set theory, Van Nostrand, Princeton, 1960.



BIBLIOGRAPHY 151
VAIDYANATHASWAMY, R.
[1] Set topology, 2nd edition, Chelsea, New York, 1960.

WALLACE, A. H.
[1] An introduction to algebraic topology, Pergamon Press, New York-
London-Paris, 1957.
WHaYBURN, G.
[1] Analytic topology, AMS, New York, 1942.

‘WILDER, R. L.
[1]1 Topology of manifolds, AMS, New York, 1949.



INDEX

Including notes on some key terms

Accumulation point 23
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Axiomatic foundations 7
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Barycentric coordinates 115
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Bicompact space 71
Bing 101

Boundary 15, 116

point 15

Bounded set 87
Bourbaki 62, 79
Brouwer 130

theorem 130

Cantor discontinuum 44
Cantor-Méray procedure 86
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simplex 122

Cauchy sequence 83
Cauchy-Schwarz inequality 9, 10
Center of gravity 123

Closed covering 68

mapping 34

—— n-dimensional simplex 116
neighborhood basis 48

set 17

Closure 16

Coarser topology 51
Compact set 69

space 68
Compactification 75
Compactum 90
Complete space 84
Complex 118
Composite mapping 34
Component 41
Connected set 38

space 37
Connectivity 92
components 41
Contact point 16
Continuous mapping 32
Continuum 96
Convergent sequence 61
Convex point set 116
Coordinates 53
Covering 68, 92
Curvilinear polyhedron 121
simplex 121
triangulation 121

Decomposition (see Partition)

Dense set 43

Denumerable: finite or equivalent
to the set of natural numbers

Diameter 87

Difference set A-B: set of all
points which occur in A but
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not in B (it is not required
that B C A)

Dimension 129, 131

Discontinuum 137

Disjoint: equivalent to having no
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Discrete metric 14

system of sets 101

topology 14
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Distinguished face 140
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Duality principle 18
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Embedding theorem 142, 144

Enlargement of closed coverings
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Epimorphic mapping 30
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e-components 94

e-covering 87

e-mapping 98
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Euclidean space R” 8
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simplex 117
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First triangle inequality 7
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Functions 30
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Generalized Hilbert space 108

163

Geometric dimension 131
Global continuity 32
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separation axiom 60
space 59, 60

topology 60
Heine-Borel covering theorem 68
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space 9

Homeomorphic mapping 32
spaces 31
Homeomorphism 32

Hopf 71

Image 30

Incidence 117

Independent points 113

Indexed systems 101

Induced topology 36

Inf (see Sup)

Infinite-dimensional compactum
131

Interior 15

point 15

Intersection A M B: set of all
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in B (analogously for a
system (5 of an arbitrary
number of subsets of a space
X—if S is the empty set, then
the intersection is X)

Inverse 30

Isolated point 23

Isometric mapping 32

spaces 32

Isomorphic complexes 119

mapping 30, 32

simplicial complexes 119
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K-topology 25, 28
Kowalsky 62

Lebesgue 130

Lemma 93
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point 23, 61

value 83

Linear subspace 114

Local continuity 32

Locally compact space 75
finite system of sets 101

Mapping 30

onto 30

Median 123

Menger 142

Metric 7

space 7, 79

axioms 7

structure 7

Metrizable topological space 14
Metrization of topological spaces
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theorem 100, 102
Monomorphic mapping 30
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n-dimensional element 122
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axioms 13
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Nobeling 142
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Open covering 68
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Opposite simplex 117
Order of a covering 130
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Paracompact space 104
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Paving dimension 129

theorem 138, 140

Peano curves 130

Points of a metric space 7

—— of a topological space 13

Polygonal arc 42

Polyhedra 113

Pre-image 30
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set 53

—— space 55

topology 52, 54, 55

Projection 53

mapping 53

Proper continuum 96

q-dimensional skeleton 119
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Realization 119

Rectangle inequality 8

Rectilinear polyhedron 121

Refinement of a covering 68
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Regular space 63

Relative topology 35, 36

Reversibly single-valued mapping
30

Second triangle inequality 8

Separable space 50

Sequential limit point 62
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g-discrete system 102

o-locally finite system 102

Simple polygonal arc 42

Simplex boundary 116

Simplicial complex 118

decomposition 121

Skeleton 119

Smirnov 101

Sperner Lemma 139

Spherical neighborhood 8

Star 122

Stone 103

Subbasis 52

Subcomplex 118

Subcovering 68

Subdivision of a simplicial com-
plex 124

Subset A of B: A is a subset of B
provided every element of A
belongs to B, for example,
$CB

Subspace 36, 114

Sup of a set A of real numbers:
smallest upper bound of A,

166

i.e., the smallest number «
such thata < aforeveryacA
(analogously for the greatest
lower bound, inf-—inf A =
—o0 and sup A = 4 o0 are
allowed)

Tikhonov theorem 74, 92

Topological product 54

spaces 13

structure 13

Topologically equivalent metric
structures 14

Topology 1, 13

Totally bounded set 87

disconnected space 41

Trace 35

topology 36

Triangle axiom 7

Triangulation 121

Unbounded set 87

Uniform space 79

Uniformly eontinuous mapping 79

Union A y B: set of all elements
which oceur in either A or B
or both (analogously for a
system S of an arbitrary num-
ber of subsets of a space X—if
© is the empty set, then the
union is ¢)

Unit hyperplane 115

—— metric 122

points 113

realization 120

simplex 116

Urysohn 100

axiom 65
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theorem 65
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Weil 79

Zero-dimensional compacta 134









	CONTENTS
	INTRODUCTION
	Part I. THEORY OF GENERAL TOPOLOGICAL SPACES
	Chapter 1. AXIOMATIC FOUNDATIONS
	Chapter 2. DEVELOPMENT OF THE THEORY
	Chapter 3. RELATIONSHIP OF VARIOUS TOPOLOGIES TO ONE ANOTHER
	Part II. SPECIAL CLASSES OF SPACES
	Chapter 4. SPACES DEFINED BY SEPARATION AXIOMS
	Chapter 5. SPACES DEFINED BY COVERING PROPERTIES: COMPACT SPACES
	Part III METRIC SPACES
	Chapter 6. THEORY OF METRIC SPACES
	Chapter 7. COMPACTA
	Chapter 8. METRIZATION OF TOPOLOGICAL SPACES
	Part IV. RUDIMENTS OF DIMENSION THEORY
	Chapter 9. POLYHEDRA
	Chapter 10. DIMENSION OF COMPACTA
	BASIC FORMULAS FROM SET THEORY
	BIBLIOGRAPHY
	INDEX

