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Preface to the First Edition

This text originated from the lecture notes I gave teaching the honours undergraduate-
level real analysis sequence at the University of California, Los Angeles, in 2003.
Among the undergraduates here, real analysis was viewed as being one of the most
difficult courses to learn, not only because of the abstract concepts being introduced
for the first time (e.g., topology, limits, measurability, etc.), but also because of the
level of rigour and proof demanded of the course. Because of this perception of
difficulty, one was often faced with the difficult choice of either reducing the level
of rigour in the course in order to make it easier, or to maintain strict standards and
face the prospect of many undergraduates, even many of the bright and enthusiastic
ones, struggling with the course material.

Faced with this dilemma, I tried a somewhat unusual approach to the subject.
Typically, an introductory sequence in real analysis assumes that the students are
already familiarwith the real numbers, withmathematical induction,with elementary
calculus, and with the basics of set theory, and then quickly launches into the heart
of the subject, for instance the concept of a limit. Normally, students entering this
sequence do indeed have a fair bit of exposure to these prerequisite topics, though
in most cases the material is not covered in a thorough manner. For instance, very
few students were able to actually define a real number, or even an integer, properly,
even though they could visualize these numbers intuitively and manipulate them
algebraically. This seemed to me to be a missed opportunity. Real analysis is one
of the first subjects (together with linear algebra and abstract algebra) that a student
encounters, in which one truly has to grapple with the subtleties of a truly rigorous
mathematical proof. As such, the course offered an excellent chance to go back to
the foundations of mathematics, and in particular the opportunity to do a proper and
thorough construction of the real numbers.

Thus the course was structured as follows. In the first week, I described some
well-known “paradoxes” in analysis, in which standard laws of the subject (e.g.,
interchange of limits and sums, or sums and integrals) were applied in a non-rigorous
way to give nonsensical results such as 0 = 1. This motivated the need to go back to
the very beginning of the subject, even to the very definition of the natural numbers,
and check all the foundations from scratch. For instance, one of the first homework
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viii Preface to the First Edition

assignmentswas to check (using only the Peano axioms) that additionwas associative
for natural numbers (i.e., that (a + b) + c = a + (b + c) for all natural numbers
a, b, c: see Exercise 2.2.1). Thus even in the first week, the students had to write
rigorous proofs using mathematical induction. After we had derived all the basic
properties of the natural numbers, we then moved on to the integers (initially defined
as formal differences of natural numbers); once the students had verified all the basic
properties of the integers, we moved on to the rationals (initially defined as formal
quotients of integers); and then from there wemoved on (via formal limits of Cauchy
sequences) to the reals. Around the same time, we covered the basics of set theory,
for instance demonstrating the uncountability of the reals. Only then (after about ten
lectures) did we begin what one normally considers the heart of undergraduate real
analysis—limits, continuity, differentiability, and so forth.

The response to this format was quite interesting. In the first few weeks, the
students found the material very easy on a conceptual level, as we were dealing
only with the basic properties of the standard number systems. But on an intellectual
level it was very challenging, as one was analyzing these number systems from a
foundational viewpoint, in order to rigorously derive the more advanced facts about
these number systems from the more primitive ones. One student told me how diffi-
cult it was to explain to his friends in the non-honours real analysis sequence (a)
why he was still learning how to show why all rational numbers are either posi-
tive, negative, or zero (Exercise 4.2.4), while the non-honours sequence was already
distinguishing absolutely convergent and convergent series, and (b) why, despite this,
he thought his homework was significantly harder than that of his friends. Another
student commented to me, quite wryly, that while she could obviously see why one
could always divide a natural number n into a positive integer q to give a quotient
a and a remainder r less than q (Exercise 2.3.5), she still had, to her frustration,
much difficulty in writing down a proof of this fact. (I told her that later in the
course she would have to prove statements for which it would not be as obvious
to see that the statements were true; she did not seem to be particularly consoled
by this.) Nevertheless, these students greatly enjoyed the homework, as when they
did perservere and obtain a rigorous proof of an intuitive fact, it solidified the link
in their minds between the abstract manipulations of formal mathematics and their
informal intuition of mathematics (and of the real world), often in a very satisfying
way. By the time they were assigned the task of giving the infamous “epsilon and
delta” proofs in real analysis, they had already had so much experience with formal-
izing intuition, and in discerning the subtleties of mathematical logic (such as the
distinction between the “for all” quantifier and the “there exists” quantifier), that
the transition to these proofs was fairly smooth, and we were able to cover material
both thoroughly and rapidly. By the tenth week, we had caught up with the non-
honours class, and the students were verifying the change of variables formula for
Riemann–Stieltjes integrals, and showing that piecewise continuous functions were
Riemann integrable. By the conclusion of the sequence in the twentieth week, we
had covered (both in lecture and in homework) the convergence theory of Taylor
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and Fourier series, the inverse and implicit function theorem for continuously differ-
entiable functions of several variables, and established the dominated convergence
theorem for the Lebesgue integral.

In order to cover this much material, many of the key foundational results were
left to the student to prove as homework; indeed, this was an essential aspect of the
course, as it ensured the students truly appreciated the concepts as they were being
introduced. This format has been retained in this text; the majority of the exercises
consist of proving lemmas, propositions and theorems in the main text. Indeed, I
would strongly recommend that one do as many of these exercises as possible—and
this includes those exercises proving “obvious” statements—if one wishes to use this
text to learn real analysis; this is not a subject whose subtleties are easily appreciated
just from passive reading. Most of the chapter sections have a number of exercises,
which are listed at the end of the section.

To the expert mathematician, the pace of this book may seem somewhat slow,
especially in early chapters, as there is a heavy emphasis on rigour (except for those
discussions explicitlymarked “Informal”), and justifyingmany steps thatwould ordi-
narily be quickly passed over as being self-evident. The first few chapters develop (in
painful detail) many of the “obvious” properties of the standard number systems, for
instance that the sum of two positive real numbers is again positive (Exercise 5.4.1),
or that given any two distinct real numbers, one can find rational number between
them (Exercise 5.4.5). In these foundational chapters, there is also an emphasis on
non-circularity—not using later, more advanced results to prove earlier, more prim-
itive ones. In particular, the usual laws of algebra are not used until they are derived
(and they have to be derived separately for the natural numbers, integers, rationals,
and reals). The reason for this is that it allows the students to learn the art of abstract
reasoning, deducing true facts from a limited set of assumptions, in the friendly and
intuitive setting of number systems; the payoff for this practice comes later, when one
has to utilize the same type of reasoning techniques to grapple with more advanced
concepts (e.g., the Lebesgue integral).

The text here evolved frommy lecture notes on the subject, and thus is very much
oriented towards a pedagogical perspective; much of the key material is contained
inside exercises, and in many cases I have chosen to give a lengthy and tedious, but
instructive, proof instead of a slick abstract proof. In more advanced textbooks, the
student will see shorter and more conceptually coherent treatments of this material,
and with more emphasis on intuition than on rigour; however, I feel it is important to
know how to do analysis rigorously and “by hand” first, in order to truly appreciate
the more modern, intuitive and abstract approach to analysis that one uses at the
graduate level and beyond.

The exposition in this book heavily emphasizes rigour and formalism; however
this does not necessarily mean that lectures based on this book have to proceed the
same way. Indeed, in my own teaching I have used the lecture time to present the
intuition behind the concepts (drawingmany informal pictures and giving examples),
thus providing a complementary viewpoint to the formal presentation in the text.
The exercises assigned as homework provide an essential bridge between the two,
requiring the student to combine both intuition and formal understanding together
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in order to locate correct proofs for a problem. This I found to be the most difficult
task for the students, as it requires the subject to be genuinely learnt, rather than
merely memorized or vaguely absorbed. Nevertheless, the feedback I received from
the students was that the homework, while very demanding for this reason, was also
very rewarding, as it allowed them to connect the rather abstract manipulations of
formal mathematics with their innate intuition on such basic concepts as numbers,
sets, and functions. Of course, the aid of a good teaching assistant is invaluable in
achieving this connection.

With regard to examinations for a course based on this text, I would recommend
either an open-book, open-notes examination with problems similar to the exercises
given in the text (but perhaps shorter, with no unusual trickery involved), or else
a take-home examination that involves problems comparable to the more intricate
exercises in the text. The subject matter is too vast to force the students to memorize
the definitions and theorems, so I would not recommend a closed-book examination,
or an examination based on regurgitating extracts from the book. (Indeed, in my own
examinations I gave a supplemental sheet listing the key definitions and theorems
which were relevant to the examination problems.) Making the examinations similar
to the homework assigned in the course will also help motivate the students to work
through and understand their homework problems as thoroughly as possible (as
opposed to, say, using flash cards or other such devices to memorize material), which
is good preparation not only for examinations but for doing mathematics in general.

Some of the material in this textbook is somewhat peripheral to the main theme
and may be omitted for reasons of time constraints. For instance, as set theory is
not as fundamental to analysis as are the number systems, the chapters on set theory
(Chapters 3, 8) can be covered more quickly and with substantially less rigour, or be
given as reading assignments. The appendices on logic and the decimal system are
intended as optional or supplemental reading and would probably not be covered in
the main course lectures; the appendix on logic is particularly suitable for reading
concurrently with the first few chapters. Also, Chapter 5 (on Fourier series) is not
needed elsewhere in the text and can be omitted.

For reasons of length, this textbook has been split into two volumes. The first
volume is slightly longer, but can be covered in about thirty lectures if the peripheral
material is omitted or abridged. The second volume refers at times to the first, but can
also be taught to students who have had a first course in analysis from other sources.
It also takes about thirty lectures to cover.

I am deeply indebted to my students, who over the progression of the real anal-
ysis course corrected several errors in the lectures notes from which this text is
derived, and gave other valuable feedback. I am also very grateful to the many
anonymous referees who made several corrections and suggested many impor-
tant improvements to the text. I also thank Adam, James Ameril, Quentin Batista,
Biswaranjan Behara, José Antonio Lara Benítez, Dingjun Bian, Petrus Bianchi,
Phillip Blagoveschensky, Tai-Danae Bradley, Brian, Eduardo Buscicchio, Carlos,
cebismellim, Matheus Silva Costa, Gonzales Castillo Cristhian, Ck, William Deng,
Kevin Doran, Lorenzo Dragani, EO, Florian, Gyao Gamm, Evangelos Georgiadis,
Aditya Ghosh, Elie Goudout, Ti Gong, Ulrich Groh, Gökhan Güçlü, Yaver Gulusoy,
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ChristianGz.,KyleHambrook,Minyoung Jeong,BartKleijngeld,ErikKoelink,Brett
Lane, David Latorre,Matthis Lehmkühler, Bin Li, Percy Li,Ming Li,Mufei Li, Zijun
Liu, Rami Luisto, JasonM.,ManoranjanMajji,MercedesMata, SimonMayer, Geoff
Mess, Pieter Naaijkens, Vineet Nair, Jorge Peña-Vélez, Cristina Pereyra, Huaying
Qiu, David Radnell, Tim Reijnders, Issa Rice, Eric Rodriquez, Pieter Roffelsen,
Luke Rogers, Feras Saad, Gabriel Salmerón, Vijay Sarthak, Leopold Schlicht, Marc
Schoolderman, SkysubO, Rainer aus dem Spring, Sundar, Rafał Szlendak, Karim
Taya, Chaitanya Tappu, Winston Tsai, Kent Van Vels, Andrew Verras, Murtaza
Wani, Daan Wanrooy, John Waters, Yandong Xiao, Sam Xu, Xueping, Hongjiang
Ye, Luqing Ye,MuhammadAtif Zaheer, Zelin, and the students ofMath 401/501 and
Math 402/502 at the University of New Mexico for corrections to the first, second,
and third editions.

Terence Tao



Preface to Subsequent Editions

Since the publication of the first edition, many students and lecturers have commu-
nicated a number of minor typos and other corrections to me. There was also some
demand for a hardcover edition of the texts. Because of this, the publishers and I
have decided to incorporate the corrections and issue a hardcover second edition of
the textbooks. The layout, page numbering, and indexing of the texts have also been
changed; in particular the two volumes are now numbered and indexed separately.
However, the chapter and exercise numbering, as well as the mathematical content,
remains the same as the first edition, and so the two editions can be used more or
less interchangeably for homework and study purposes.

The third edition contains a number of corrections that were reported for the
second edition, together with a few new exercises, but are otherwise essentially the
same text. The fourth edition similarly incorporates a large number of additional
corrections reported since the release of the third edition, as well as some additional
exercises.

Los Angeles, USA Terence Tao
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Chapter 1
Introduction

1.1 What Is Analysis?

This text is an honors-level undergraduate introduction to real analysis: the analysis
of the real numbers, sequences and series of real numbers, and real-valued functions.
This is related to, but is distinct from, complex analysis, which concerns the analysis
of the complex numbers and complex functions, harmonic analysis, which concerns
the analysis of harmonics (waves) such as sine waves, and how they synthesize other
functions via the Fourier transform, functional analysis, which focuses much more
heavily on functions (and how they form things like vector spaces), and so forth.
Analysis is the rigorous study of such objects, with a focus on trying to pin down
precisely and accurately the qualitative and quantitative behavior of these objects.
Real analysis is the theoretical foundation which underlies calculus, which is the
collection of computational algorithms which one uses to manipulate functions.

In this text we will be studying many objects which will be familiar to you from
freshman calculus: numbers, sequences, series, limits, functions, definite integrals,
derivatives, and so forth. You already have a great deal of experience of computing
with these objects; however here we will be focused more on the underlying theory
for these objects. We will be concerned with questions such as the following:

1. What is a real number? Is there a largest real number? After 0, what is the “next”
real number (i.e., what is the smallest positive real number)? Can you cut a real
number into pieces infinitely many times? Why does a number such as 2 have
a square root, while a number such as −2 does not? If there are infinitely many
reals and infinitely many rationals, how come there are “more” real numbers than
rational numbers?

2. How do you take the limit of a sequence of real numbers? Which sequences have
limits and which ones don’t? If you can stop a sequence from escaping to infinity,
does this mean that it must eventually settle down and converge? Can you add
infinitely many real numbers together and still get a finite real number? Can you
add infinitely many rational numbers together and end up with a non-rational

© Hindustan Book Agency 2022
T. Tao, Analysis I, Texts and Readings in Mathematics,
https://doi.org/10.1007/978-981-19-7261-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7261-4_1&domain=pdf
https://doi.org/10.1007/978-981-19-7261-4_1
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number? If you rearrange the elements of an infinite sum, is the sum still the
same?

3. What is a function? What does it mean for a function to be continuous? differ-
entiable? integrable? bounded? Can you add infinitely many functions together?
What about taking limits of sequences of functions? Can you differentiate an
infinite series of functions? What about integrating? If a function f (x) takes the
value 3 when x = 0 and 5 when x = 1 (i.e., f (0) = 3 and f (1) = 5), does it have
to take every intermediate value between 3 and 5 when x goes between 0 and 1?
Why?

Youmay already know how to answer some of these questions from your calculus
classes, but most likely these sorts of issues were only of secondary importance to
those courses; the emphasis was on getting you to perform computations, such as
computing the integral of x sin(x2) from x = 0 to x = 1. But now that you are
comfortable with these objects and already know how to do all the computations, we
will go back to the theory and try to really understand what is going on.

1.2 Why Do Analysis?

It is a fair question to ask, “why bother?”, when it comes to analysis. There is a
certain philosophical satisfaction in knowingwhy thingswork, but a pragmatic person
may argue that one only needs to know how things work to do real-life problems.
The calculus training you receive in introductory classes is certainly adequate for
you to begin solving many problems in physics, chemistry, biology, economics,
computer science, finance, engineering, or whatever else you end up doing—and
you can certainly use things like the chain rule, L’Hôpital’s rule, or integration by
parts without knowing why these rules work, or whether there are any exceptions to
these rules. However, one can get into trouble if one applies rules without knowing
where they came from and what the limits of their applicability are. Let me give
some examples in which several of these familiar rules, if applied blindly without
knowledge of the underlying analysis, can lead to disaster.

Example 1.2.1 (Division by zero). This is a very familiar one to you: the cancellation
law ac = bc =⇒ a = b does not work when c = 0. For instance, the identity 1 ×
0 = 2 × 0 is true, but if one blindly cancels the 0 then one obtains 1 = 2, which is
false. In this case it was obvious that one was dividing by zero; but in other cases it
can be more hidden.

Example 1.2.2 (Divergent series). You have probably seen geometric series such as
the infinite sum

S = 1 + 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · .

You have probably seen the following trick to sum this series: if we call the above
sum S, then if we multiply both sides by 2, we obtain
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2S = 2 + 1 + 1

2
+ 1

4
+ 1

8
+ · · · = 2 + S

and hence S = 2, so the series sums to 2. However, if you apply the same trick to
the series

S = 1 + 2 + 4 + 8 + 16 + · · ·

one gets nonsensical results:

2S = 2 + 4 + 8 + 16 + · · · = S − 1 =⇒ S = −1.

So the same reasoning that shows that 1 + 1
2 + 1

4 + · · · = 2 also gives that 1 + 2 +
4 + 8 + · · · = −1. Why is it that we trust the first equation but not the second? A
similar example arises with the series

S = 1 − 1 + 1 − 1 + 1 − 1 + · · · ;

we can write
S = 1 − (1 − 1 + 1 − 1 + · · · ) = 1 − S

and hence that S = 1/2; or instead we can write

S = (1 − 1) + (1 − 1) + (1 − 1) + · · · = 0 + 0 + · · ·

and hence that S = 0; or instead we can write

S = 1 + (−1 + 1) + (−1 + 1) + · · · = 1 + 0 + 0 + · · ·

and hence that S = 1. Which one is correct? (See Exercise 7.2.1 for an answer.)

Example 1.2.3 (Divergent sequences). Here is a slight variation of the previous
example. Let x be a real number, and let L be the limit

L = lim
n→∞ xn.

Changing variables n = m + 1, we have

L = lim
m+1→∞ xm+1 = lim

m+1→∞ x × xm = x lim
m+1→∞ xm .

But if m + 1 → ∞, then m → ∞, thus

lim
m+1→∞ xm = lim

m→∞ xm = lim
n→∞ xn = L ,

and thus
xL = L .
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At this point we could cancel the L’s and conclude that x = 1 for an arbitrary real
number x , which is absurd. But since we are already aware of the division by zero
problem, we could be a little smarter and conclude instead that either x = 1, or
L = 0. In particular we seem to have shown that

lim
n→∞ xn = 0 for all x �= 1.

But this conclusion is absurd if we apply it to certain values of x , for instance by
specializing to the case x = 2 we could conclude that the sequence 1, 2, 4, 8, . . .
converges to zero, and by specializing to the case x = −1 we conclude that the
sequence 1,−1, 1,−1, . . . also converges to zero. These conclusions appear to be
absurd; what is the problem with the above argument? (See Exercise 6.3.4 for an
answer.)

Example 1.2.4 (Limiting values of functions). Start with the expression limx→∞
sin(x), make the change of variable x = y + π and recall that sin(y + π) = − sin(y)
to obtain

lim
x→∞ sin(x) = lim

y+π→∞ sin(y + π) = lim
y→∞(− sin(y)) = − lim

y→∞ sin(y).

Since limx→∞ sin(x) = limy→∞ sin(y) we thus have

lim
x→∞ sin(x) = − lim

x→∞ sin(x)

and hence
lim
x→∞ sin(x) = 0.

If we then make the change of variables x = π/2 + z and recall that sin(π/2 + z) =
cos(z) we conclude that

lim
x→∞ cos(x) = 0.

Squaring both of these limits and adding we see that

lim
x→∞(sin2(x) + cos2(x)) = 02 + 02 = 0.

On the other hand, we have sin2(x) + cos2(x) = 1 for all x . Thus we have shown
that 1 = 0! What is the difficulty here?

Example 1.2.5 (Interchanging sums). Consider the following fact of arithmetic.
Consider any matrix of numbers, e.g.,

⎛
⎝
1 2 3
4 5 6
7 8 9

⎞
⎠
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and compute the sums of all the rows and the sums of all the columns, and then total
all the row sums and total all the column sums. In both cases you will get the same
number—the total sum of all the entries in the matrix:

⎛
⎝
1 2 3
4 5 6
7 8 9

⎞
⎠

6
15
24

12 15 18 45

To put it another way, if youwant to add all the entries in anm × nmatrix together,
it doesn’t matter whether you sum the rows first or sum the columns first, you end
up with the same answer. (Before the invention of computers, accountants and book-
keepers would use this fact to guard against making errors when balancing their
books.) In series notation, this fact would be expressed as

m∑
i=1

n∑
j=1

ai j =
n∑
j=1

m∑
i=1

ai j ,

if ai j denoted the entry in the i th row and j th column of the matrix.
Now one might think that this rule should extend easily to infinite series:

∞∑
i=1

∞∑
j=1

ai j =
∞∑
j=1

∞∑
i=1

ai j .

Indeed, if you use infinite series a lot in your work, you will find yourself having to
switch summations like this fairly often. Another way of saying this fact is that in an
infinite matrix, the sum of the row totals should equal the sum of the column totals.
However, despite the reasonableness of this statement, it is actually false! Here is a
counterexample: ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . .

−1 1 0 0 . . .

0 −1 1 0 . . .

0 0 −1 1 . . .

0 0 0 −1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

If you sum up all the rows, and then add up all the row totals, you get 1; but if you sum
up all the columns, and add up all the column totals, you get 0! So, does this mean
that summations for infinite series should not be swapped and that any argument
using such a swapping should be distrusted? (See Theorem 8.2.2 for an answer.)

Example 1.2.6 (Interchanging integrals). The interchanging of integrals is a trick
which occurs inmathematics just as commonly as the interchanging of sums. Suppose
onewants to compute the volume under a surface z = f (x, y) (let us ignore the limits
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of integration for the moment). One can do it by slicing parallel to the x-axis: for
each fixed value of y, we can compute an area

∫
f (x, y) dx , and then we integrate

the area in the y variable to obtain the volume

V =
∫ ∫

f (x, y)dxdy.

Or we could slice parallel to the y-axis for each fixed x and compute an area∫
f (x, y) dy and then integrate in the x-axis to obtain

V =
∫ ∫

f (x, y)dydx .

This seems to suggest that one should always be able to swap integral signs:

∫ ∫
f (x, y) dxdy =

∫ ∫
f (x, y) dydx .

And indeed, people swap integral signs all the time, because sometimes one variable
is easier to integrate in first than the other. However, just as infinite sums sometimes
cannot be swapped, integrals are also sometimes dangerous to swap. An example is
with the integrand e−xy − xye−xy . Supposewe believe that we can swap the integrals:

∞∫

0

1∫

0

(e−xy − xye−xy) dy dx =
1∫

0

∞∫

0

(e−xy − xye−xy) dx dy. (1.1)

Since
1∫

0

(e−xy − xye−xy) dy = ye−xy |y=1
y=0 = e−x ,

the left-hand side of (1.1) is
∫ ∞
0 e−x dx = −e−x |∞0 = 1. But since

∞∫

0

(e−xy − xye−xy) dx = xe−xy |x=∞
x=0 = 0,

the right-hand side of (1.1) is
∫ 1
0 0 dx = 0. Clearly 1 �= 0, so there is an error some-

where; but you won’t find one anywhere except in the step where we interchanged
the integrals. So how do we know when to trust the interchange of integrals? (See
Theorem 8.5.1 of Analysis II for a partial answer.)
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Example 1.2.7 (Interchanging limits). Suppose we start with the plausible looking
statement

lim
x→0

lim
y→0

x2

x2 + y2
= lim

y→0
lim
x→0

x2

x2 + y2
. (1.2)

But we have

lim
y→0

x2

x2 + y2
= x2

x2 + 02
= 1,

so the left-hand side of (1.2) is 1; on the other hand, we have

lim
x→0

x2

x2 + y2
= 02

02 + y2
= 0,

so the right-hand side of (1.2) is 0. Since 1 is clearly not equal to zero, this suggests
that interchange of limits is untrustworthy. But are there any other circumstances in
which the interchange of limits is legitimate? (See Exercise 2.2.9 of Analysis II for
a partial answer.)

Example 1.2.8 (Interchanging limits, again). Consider the plausible looking state-
ment

lim
x→1−

lim
n→∞ xn = lim

n→∞ lim
x→1−

xn

where the notation x → 1− means that x is approaching 1 from the left. When x
is to the left of 1, then limn→∞ xn = 0, and hence the left-hand side is zero. But
we also have limx→1− xn = 1 for all n, and so the right-hand side limit is 1. Does
this demonstrate that this type of limit interchange is always untrustworthy? (See
Proposition 3.3.3 of Analysis II for an answer.)

Example 1.2.9 (Interchanging limits and integrals). For any real number y, we have

∞∫

−∞

1

1 + (x − y)2
dx = arctan(x − y)|∞x=−∞ = π

2
−

(
−π

2

)
= π.

Taking limits as y → ∞, we should obtain

∞∫

−∞
lim
y→∞

1

1 + (x − y)2
dx = lim

y→∞

∞∫

−∞

1

1 + (x − y)2
dx = π.

But for every x , we have limy→∞ 1
1+(x−y)2 = 0. So we seem to have concluded that

0 = π . What was the problem with the above argument? Should one abandon the
(very useful) technique of interchanging limits and integrals? (See Theorem 3.6.1 of
Analysis II for a partial answer.)
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Example 1.2.10 (Interchanging limits and derivatives). Observe that if ε > 0, then

d

dx

(
x3

ε2 + x2

)
= 3x2(ε2 + x2) − 2x4

(ε2 + x2)2

and in particular that
d

dx

(
x3

ε2 + x2

)
|x=0 = 0.

Taking limits as ε → 0, one might then expect that

d

dx

(
x3

0 + x2

)
|x=0 = 0.

But the right-hand side is d
dx x = 1. Does this mean that it is always illegitimate to

interchange limits and derivatives? (See Theorem 3.7.1 of Analysis II for an answer.)

Example 1.2.11 (Interchangingderivatives). Let1 f (x, y)be the function f (x, y) :=
xy3

x2+y2 . A commonmaneuver in analysis is to interchange two partial derivatives, thus
one expects

∂2 f

∂x∂y
(0, 0) = ∂2 f

∂y∂x
(0, 0).

But from the quotient rule we have

∂ f

∂y
(x, y) = 3xy2

x2 + y2
− 2xy4

(x2 + y2)2

and in particular
∂ f

∂y
(x, 0) = 0

x2
− 0

x4
= 0.

Thus
∂2 f

∂x∂y
(0, 0) = 0.

On the other hand, from the quotient rule again we have

∂ f

∂x
(x, y) = y3

x2 + y2
− 2x2y3

(x2 + y2)2

1 One might object that this function is not defined at (x, y) = (0, 0), but if we set f (0, 0) := 0 then
this function becomes continuous and differentiable for all (x, y), and in fact both partial derivatives
∂ f
∂x ,

∂ f
∂y are also continuous and differentiable for all (x, y)!
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and hence
∂ f

∂x
(0, y) = y3

y2
− 0

y4
= y.

Thus
∂2 f

∂y∂x
(0, 0) = 1.

Since 1 �= 0, we thus seem to have shown that interchange of derivatives is untrust-
worthy. But are there any other circumstances in which the interchange of derivatives
is legitimate? (SeeTheorem6.5.4 andExercise 6.5.1 ofAnalysis II for someanswers.)

Example 1.2.12 (L’Hôpital’s rule). We are all familiar with the beautifully simple
L’Hôpital’s rule

lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)
g′(x)

,

but one can still get led to incorrect conclusions if one applies it incorrectly. For
instance, applying it to f (x) := x , g(x) := 1 + x , and x0 := 0 we would obtain

lim
x→0

x

1 + x
= lim

x→0

1

1
= 1,

but this is the incorrect answer, since limx→0
x

1+x = 0
1+0 = 0. Of course, all that is

going on here is that L’Hôpital’s rule is only applicable when both f (x) and g(x)
go to zero as x → x0, a condition which was violated in the above example. But
even when f (x) and g(x) do go to zero as x → x0 there is still a possibility for an
incorrect conclusion. For instance, consider the limit

lim
x→0

x2 sin(x−4)

x
.

Both numerator and denominator go to zero as x → 0, so it seems pretty safe to
apply L’Hôpital’s rule, to obtain

lim
x→0

x2 sin(x−4)

x
= lim

x→0

2x sin(x−4) − 4x−3 cos(x−4)

1
= lim

x→0
2x sin(x−4) − lim

x→0
4x−3 cos(x−4).

The first limit converges to zero by the squeeze test (since the function 2x sin(x−4)

is bounded above by 2|x | and below by−2|x |, both of which go to zero at 0). But the
second limit is divergent (because x−3 goes to infinity as x → 0, and cos(x−4) does
not go to zero). So the limit limx→0

2x sin(x−4)−4x−2 cos(x−4)

1 diverges. One might then

conclude using L’Hôpital’s rule that limx→0
x2 sin(x−4)

x also diverges; however we can
clearly rewrite this limit as limx→0 x sin(x−4), which goes to zerowhen x → 0 by the
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squeeze test again. This does not show that L’Hôpital’s rule is untrustworthy (indeed,
it is quite rigorous; see Sect. 10.5), but it still requires some care when applied.

Example 1.2.13 (Limits and lengths). When you learn about integration and how it
relates to the area under a curve, you were probably presented with some picture in
which the area under the curve was approximated by a bunch of rectangles, whose
area was given by a Riemann sum, and then one somehow “took limits” to replace
that Riemann sum with an integral, which then presumably matched the actual area
under the curve. Perhaps a little later, you learnt how to compute the length of a curve
by a similar method—approximate the curve by a bunch of line segments, compute
the length of all the line segments, and then take limits again to see what you get.

However, it should come as no surprise by now that this approach also can lead to
nonsense if used incorrectly. Consider the right-angled triangle with vertices (0, 0),
(1, 0), and (0, 1), and suppose we wanted to compute the length of the hypotenuse
of this triangle. Pythagoras’ theorem tells us that this hypotenuse has length

√
2,

but suppose for some reason that we did not know about Pythagoras’ theorem, and
wanted to compute the length using calculus methods. Well, one way to do so is to
approximate the hypotenuse by horizontal and vertical edges. Pick a large number N ,
and approximate the hypotenuse by a “staircase” consisting of N horizontal edges of
equal length, alternating with N vertical edges of equal length. Clearly these edges
all have length 1/N , so the total length of the staircase is 2N/N = 2. If one takes
limits as N goes to infinity, the staircase clearly approaches the hypotenuse, and so in
the limit we should get the length of the hypotenuse. However, as N → ∞, the limit
of 2N/N is 2, not

√
2, so we have an incorrect value for the length of the hypotenuse.

How did this happen?

The analysis you learn in this text will help you resolve these questions, and will
let you know when these rules (and others) are justified, and when they are illegal,
thus separating the useful applications of these rules from the nonsense. Thus they
can prevent you from making mistakes and can help you place these rules in a wider
context. Moreover, as you learn analysis you will develop an “analytical way of
thinking”, which will help you whenever you come into contact with any new rules
of mathematics, or when dealing with situations which are not quite covered by the
standard rules. For instance, what if your functions are complex-valued instead of
real-valued? What if you are working on the sphere instead of the plane? What if
your functions are not continuous, but are instead things like square waves and delta
functions? What if your functions, or limits of integration, or limits of summation,
are occasionally infinite? You will develop a sense of why a rule in mathematics
(e.g., the chain rule) works, how to adapt it to new situations, and what its limitations
(if any) are; this will allow you to apply the mathematics you have already learnt
more confidently and correctly.



Chapter 2
Starting at the Beginning:
The Natural Numbers

In this text, we will review the material you have learnt in high school and in elemen-
tary calculus classes, but as rigorously as possible. To do so we will have to begin at
the very basics - indeed, we will go back to the concept of numbers and what their
properties are. Of course, you have dealt with numbers for over ten years and you
know how to manipulate the rules of algebra to simplify any expression involving
numbers, but we will now turn to a more fundamental issue, which is: why do the
rules of algebra work at all? For instance, why is it true that a(b + c) is equal to
ab + ac for any three numbers a, b, c? This is not an arbitrary choice of rule; it can
be proven from more primitive, and more fundamental, properties of the number
system. This will teach you a new skill - how to prove complicated properties from
simpler ones. You will find that even though a statement may be “obvious”, it may
not be easy to prove; the material here will give you plenty of practice in doing so,
and in the process will lead you to think about why an obvious statement really is
obvious. One skill in particular that you will pick up here is the use of mathematical
induction, which is a basic tool in proving things in many areas of mathematics.

So in the first few chapters we will re-acquaint you with various number systems
that are used in real analysis. In increasing order of sophistication, they are the natural
numbersN; the integers Z; the rationalsQ, and the real numbersR. (There are other
number systems such as the complex numbers C, but we will not study them until
Sect. 4.6.) The natural numbers {0, 1, 2, . . .} are the most primitive of the number
systems, but they are used to build the integers, which in turn are used to build the
rationals. Furthermore, the rationals are used to build the real numbers, which are
in turn used to build the complex numbers. Thus to begin at the very beginning, we
must look at the natural numbers. We will consider the following question: how does
one actually define the natural numbers? (This is a very different question from how
to use the natural numbers, which is something you of course know how to do very
well. It’s like the difference between knowing how to use, say, a computer, versus
knowing how to build that computer.)
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This question is more difficult to answer than it looks. The basic problem is that
you have used the natural numbers for so long that they are embedded deeply into
your mathematical thinking, and you can make various implicit assumptions about
these numbers (e.g., that a + b is always equal to b + a) without even being aware
that you are doing so; it is difficult to let go and try to inspect this number system
as if it is the first time you have seen it. So in what follows I will have to ask you to
perform a rather difficult task: try to set aside, for the moment, everything you know
about the natural numbers; forget that you know how to count, to add, to multiply, to
manipulate the rules of algebra, etc. We will try to introduce these concepts one at a
time and identify explicitly what our assumptions are as we go along—and not allow
ourselves to use more “advanced” tricks such as the rules of algebra until we have
actually proven them. This may seem like an irritating constraint, especially as we
will spend a lot of time proving statements which are “obvious”, but it is necessary
to do this suspension of known facts to avoid circularity (e.g., using an advanced
fact to prove a more elementary fact, and then later using the elementary fact to
prove the advanced fact). Also, this exercise will be an excellent way to affirm the
foundations of your mathematical knowledge. Furthermore, practicing your proofs
and abstract thinking here will be invaluable when we move on to more advanced
concepts, such as real numbers, functions, sequences and series, differentials and
integrals, and so forth. In short, the results here may seem trivial, but the journey is
much more important than the destination, for now. (Once the number systems are
constructed properly, we can resume using the laws of algebra, etc., without having
to rederive them each time.)

We will also forget that we know the decimal system, which of course is an
extremely convenient way to manipulate numbers, but it is not something which is
fundamental to what numbers are. (For instance, one could use an octal or binary
system instead of the decimal system, or even the Roman numeral system, and still
get exactly the same set of numbers.) Besides, if one tries to fully explain what the
decimal number system is, it isn’t as natural as you might think. Why is 00423 the
same number as 423, but 32400 isn’t the same number as 324? Why is 123.4444 . . .
a real number, while . . . 444.321 is not? And why do we have to carry of digits when
adding or multiplying? Why is 0.999 . . . the same number as 1? What is the smallest
positive real number? Isn’t it just 0.00 . . . 001? So to set aside these problems, we
will not try to assume any knowledge of the decimal system, thoughwewill of course
still refer to numbers by their familiar names such as 1, 2, and 3 instead of using
other notation such as I, II, III or 0++, (0++)++, ((0++)++)++ (see below) so as
not to be needlessly artificial. For completeness, we review the decimal system in
Appendix B.

2.1 The Peano Axioms

We now present one standard way to define the natural numbers, in terms of the
Peano axioms, which were first laid out by Giuseppe Peano (1858–1932). This is not
the only way to define the natural numbers. For instance, another approach is to talk
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about the cardinality of finite sets; for instance one could take a set of five elements
and define 5 to be the number of elements in that set. We shall discuss this alternate
approach in Sect. 3.6. However, we shall stick with the Peano axiomatic approach
for now.

How are we to define what the natural numbers are? Informally, we could say

Definition 2.1.1 (Informal) A natural number is any element of the set

N := {0, 1, 2, 3, 4, . . .},

which is the set of all the numbers created by starting with 0 and then counting
forward indefinitely. We call N the set of natural numbers.

Remark 2.1.2 In some texts the natural numbers start at 1 instead of 0, but this is a
matter of notational convention more than anything else. In this text we shall refer
to the set {1, 2, 3, . . .} as the positive integers Z+ rather than the natural numbers.
Natural numbers are sometimes also known as whole numbers.

In a sense, this definition solves the problem of what the natural numbers are: a
natural number is any element of the set1 N. However, it is not really that satisfactory,
because it begs the question of what N is. This definition of “start at 0 and count
indefinitely” seems like an intuitive enough definition of N, but it is not entirely
acceptable, because it leaves many questions unanswered. For instance: how do we
know we can keep counting indefinitely, without cycling back to 0? Also, how do
you perform operations such as addition, multiplication, or exponentiation?

We can answer the latter question first: we can define complicated operations in
terms of simpler operations. Exponentiation is nothing more than repeated multi-
plication: 53 is nothing more than three fives multiplied together. Multiplication is
nothing more than repeated addition; 5 × 3 is nothing more than three fives added
together. (Subtraction and division will not be covered here, because they are not
operations which are well-suited to the natural numbers; they will have to wait for
the integers and rationals, respectively.) And addition? It is nothing more than the
repeated operation of counting forward, or incrementing. If you add three to five,
what you are doing is incrementing five three times. On the other hand, incrementing
seems to be a fundamental operation, not reducible to any simpler operation; indeed,
it is the first operation one learns on numbers, even before learning to add.

Thus, to define the natural numbers, we will use two fundamental concepts: the
zero number 0 and the increment operation (also known as the successor opera-
tion). In deference to modern computer languages, we will use n++ to denote2 the

1 Strictly speaking, there is another problem with this informal definition: we have not yet defined
what a “set” is or what “element of” is. Thus for the rest of this chapter we shall avoid mention of
sets and their elements as much as possible, except in informal discussion.
2 The notation Sn or S(n) is also often used in the literature to denote the successor n++ of n. One
may be tempted to use the more familiar notation n + 1 in place of n++ to denote the successor
of n, but this would introduce a circularity in our foundations, since the notion of addition will be
defined in terms of the successor operation.

http://dx.doi.org/10.1007/978-981-19-7261-4_3
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increment or successor of n, thus for instance 3++ = 4, (3++)++ = 5, etc. This
is a slightly different usage from that in computer languages such as C, where n++
actually redefines the value of n to be its successor; however in mathematics we try
not to define a variable more than once in any given setting, as it can often lead to
confusion; many of the statements which were true for the old value of the variable
can now become false, and vice versa.

So, it seems like we want to say that N consists of 0 and everything which can be
obtained from 0 by incrementing: N should consist of the objects

0, 0++, (0++)++, ((0++)++)++, etc.

If we start writing down what this means about the natural numbers, we thus see that
we should have the following axioms concerning 0 and the increment operation ++:

Axiom 2.1 0 is a natural number.

Axiom 2.2 If n is a natural number, then n++ is also a natural number.

Thus for instance, fromAxiom 2.1 and two applications of Axiom 2.2, we see that
(0++)++ is a natural number. Of course, this notation will begin to get unwieldy,
so we adopt a convention to write these numbers in more familiar notation:

Definition 2.1.3 We define3 1 to be the number 0++, 2 to be the number (0++)++,
3 to be the number ((0++)++)++, etc. (In other words, 1 := 0++, 2 := 1++, 3 :=
2++, etc. In this text I use “x := y” to denote the statement that x is defined to
equal y.)

Thus for instance, we have

Proposition 2.1.4 3 is a natural number.

Proof By Axiom 2.1, 0 is a natural number. By Axiom 2.2, 0++ = 1 is a natural
number. By Axiom 2.2 again, 1++ = 2 is a natural number. By Axiom 2.2 again,
2++ = 3 is a natural number. �

It may seem that this is enough to describe the natural numbers. However, we
have not pinned down completely the behavior of N:

Example 2.1.5 Consider a number system which consists of the numbers 0, 1, 2, 3,
in which the increment operation wraps back from 3 to 0. More precisely 0++ is
equal to 1, 1++ is equal to 2, 2++ is equal to 3, but 3++ is equal to 0 (and also equal
to 4, by definition of 4). This type of thing actually happens in real life, when one
uses a computer to try to store a natural number: if one starts at 0 and performs the
increment operation repeatedly, eventually the computer will overflow its memory
and the numberwill wrap around back to 0 (though thismay take quite a large number

3 This convention is actually an oversimplification. To see how to properly merge the usual decimal
notation for numbers with the natural numbers given by the Peano axioms, see Appendix B.
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of incrementation operations, for instance a two-byte representation of an integer will
wrap around only after 65,536 increments). Note that this type of number system
obeys Axiom 2.1 and Axiom 2.2, even though it clearly does not correspond to what
we intuitively believe the natural numbers to be like.

To prevent this sort of “wrap-around issue” we will impose another axiom:

Axiom 2.3 0 is not the successor of any natural number; i.e., we have n++ �= 0 for
every natural number n.

Now we can show that certain types of wrap around do not occur: for instance we
can now rule out the type of behavior in Example 2.1.5 using.

Proposition 2.1.6 4 is not equal to 0.

Don’t laugh! Because of the way we have defined 4—it is the increment of the
increment of the increment of the increment of 0—it is not necessarily true a priori
that this number is not the same as zero, even if it is “obvious”. (“a priori” is Latin
for “beforehand”—it refers to what one already knows or assumes to be true before
one begins a proof or argument. The opposite is “a posteriori”—what one knows to
be true after the proof or argument is concluded.) Note for instance that in Example
2.1.5, 4was indeed equal to 0, and that in a standard two-byte computer representation
of a natural number, for instance, 65,536 is equal to 0 (using our definition of 65,536
as equal to 0 incremented sixty-five thousand, five hundred and thirty-six times).

Proof By definition, 4 = 3++. By Axioms 2.1 and 2.2, 3 is a natural number. Thus
by Axiom 2.3, 3++ �= 0, i.e., 4 �= 0. �

However, even with our new axiom, it is still possible that our number system
behaves in other pathological ways:

Example 2.1.7 Consider a number system consisting of five numbers 0, 1, 2, 3,
4, in which the increment operation hits a “ceiling” at 4. More precisely, suppose
that 0++ = 1, 1++ = 2, 2++ = 3, 3++ = 4, but 4++ = 4 (or in other words that
5 = 4, and hence 6 = 4, 7 = 4, etc.). This does not contradict Axioms 2.1, 2.2 and
2.3. Another number system with a similar problem is one in which incrementation
wraps around, but not to zero, e.g., suppose that 4++ = 1 (so that 5 = 1, then 6 = 2,
etc.).

There are many ways to prohibit the above types of behavior from happening, but
one of the simplest is to assume the following axiom:

Axiom 2.4 Different natural numbers must have different successors; i.e., if n, m
are natural numbers and n �= m, then n++ �= m++. Equivalently,4 if n++ = m++
then we must have n = m.

4 This is an example of reformulating an implication using its contrapositive; see Sect. A.2 for more
details. In the converse direction, if n = m, then n++ = m++; this is the axiom of substitution (see
Sect. A.7) applied to the operation ++.
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Thus, for instance, we have

Proposition 2.1.8 6 is not equal to 2.

Proof Suppose for sake of contradiction that 6 = 2. Then 5++ = 1++, so byAxiom
2.4 we have 5 = 1, so that 4++ = 0++. By Axiom 2.4 again we then have 4 = 0,
which contradicts our previous proposition. �

Asone can see from this proposition, it now looks likewe cankeep all of the natural
numbers distinct from each other. There is however still one more problem: while the
axioms (particularly Axioms 2.3 and 2.4) allow us to confirm that 0, 1, 2, 3, . . . are
distinct elements ofN, there is the problem that there may be other “rogue” elements
in our number system which are not of this form:

Example 2.1.9 (Informal) Suppose that our number system N consisted of the fol-
lowing collection of integers and half-integers:

N := {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, . . .}.

(This example is marked “informal” since we are using real numbers, which we’re
not supposed to use yet.) One can check that Axioms 2.1–2.4 are still satisfied for
this set.

What we want is some axiom which says that the only numbers in N are those
which can be obtained from 0 and the increment operation—in order to exclude
elements such as 0.5. But it is difficult to quantify what we mean by “can be obtained
from” without already using the natural numbers, which we are trying to define.
Fortunately, there is an ingenious solution to try to capture this fact:

Axiom 2.5 (Principle of mathematical induction). Let P(n) be any property per-
taining to a natural number n. Suppose that P(0) is true, and suppose that whenever
P(n) is true, P(n++) is also true. Then P(n) is true for every natural number n.

Remark 2.1.10 We are a little vague on what “property” means at this point, but
some possible examples of P(n)might be “n is even”; “n is equal to 3”; “n solves the
equation (n + 1)2 = n2 + 2n + 1”; and so forth. Of course we haven’t defined many
of these concepts yet, but when we do, Axiom 2.5 will apply to these properties. (A
logical remark:Because this axiom refers not just to variables, but alsoproperties, it is
of a different nature than the other four axioms; indeed, Axiom 2.5 should technically
be called an axiom schema rather than an axi—it is a template for producing an
(infinite) number of axioms, rather than being a single axiom in its own right. To
discuss this distinction further is far beyond the scope of this text, though, and falls
in the realm of mathematical logic.)

The informal intuition behind this axiom is the following. Suppose P(n) is such
that P(0) is true, and such that whenever P(n) is true, then P(n++) is true. Then
since P(0) is true, P(0++) = P(1) is true. Since P(1) is true, P(1++) = P(2)
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is true. Repeating this indefinitely, we see that P(0), P(1), P(2), P(3), etc., are
all true—however this line of reasoning will never let us conclude that P(0.5), for
instance, is true. Thus Axiom 2.5 should not hold for number systems which contain
“unnecessary” elements such as 0.5. (Indeed, one can give a “proof” of this fact as
follows. Apply Axiom 2.5 to the property P(n) = n “is not a half-integer”, i.e., an
integer plus 0.5. Then P(0) is true, and if P(n) is true, then P(n++) is true. Thus
Axiom 2.5 asserts that P(n) is true for all natural numbers n, i.e., no natural number
can be a half-integer. In particular, 0.5 cannot be a natural number. This “proof”
is not quite genuine, because we have not defined such notions as “integer”, “half-
integer”, and “0.5” yet, but it should give you some idea as to how the principle of
induction is supposed to prohibit any numbers other than the “true” natural numbers
from appearing in N.)

The principle of induction gives us a way to prove that a property P(n) is true for
every natural number n. Thus in the rest of this text we will see many proofs which
have a form like this:

Proposition Template 2.1.11 Acertain property P(n) is true for every natural num-
ber n.

Proof Template We use induction. We first verify the base case n = 0, i.e., we prove
P(0). (Insert proof of P(0) here.) Now suppose inductively that n is a natural number,
and P(n) has already been proven.We now prove P(n++). (Insert proof of P(n++),
assuming that P(n) is true, here.) This closes the induction, and thus P(n) is true
for all numbers n. �

Of course we will not necessarily use the exact template, wording, or order in the
above type of proof, but the proofs using induction will generally be something
like the above form. There are also some other variants of induction which we
shall encounter later, such as backwards induction (Exercise 2.2.6), strong induction
(Proposition 2.2.14), and transfinite induction (Lemma 8.5.15).

Axioms 2.1–2.5 are known as the Peano axioms for the natural numbers. They
are all very plausible, and so we shall make

Assumption 2.6 (Informal) There exists a number system N, whose elements we
will call natural numbers, for which Axioms 2.1–2.5 are true.

We will make this assumption a bit more precise once we have laid down our
notation for sets and functions in the next chapter.

Remark 2.1.12 Wewill refer to this number systemN as the natural number system.
Onecouldof course consider the possibility that there ismore thanonenatural number
system, e.g., we could have the Hindu-Arabic number system {0, 1, 2, 3, . . .} and
the Roman number system {O, I, I I, I I I, I V, V, V I, . . .} (augmented by adding a
zero symbol O), and if we really wanted to be annoying we could view these number
systems as different. But these number systems are clearly equivalent (the technical
term is isomorphic), because one can create a one-to-one correspondence 0 ↔ O ,
1 ↔ I , 2 ↔ I I , etc., which maps the zero of the Hindu-Arabic system with the zero
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of the Roman system, and which is preserved by the increment operation (e.g., if 2
corresponds to I I , then 2++will correspond to I I++). For a more precise statement
of this type of equivalence, see Exercise 3.5.13. Since all versions of the natural
number system are equivalent, there is no point in having distinct natural number
systems, and we will just use a single natural number system to do mathematics.

We will not prove Assumption 2.6 (though we will eventually include it in our
axioms for set theory, see Axiom 3.8), and it will be the only assumption we will ever
make about our numbers. A remarkable accomplishment of modern analysis is that
just by starting from these five very primitive axioms, and some additional axioms
from set theory, we can build all the other number systems, create functions, and do
all the algebra and calculus that we are used to.

Remark 2.1.13 (Informal) One interesting feature about the natural numbers is that
while each individual natural number is finite, the set of natural numbers is infinite;
i.e., N is infinite but consists of individually finite elements. (The whole is greater
than any of its parts.) There are no infinite natural numbers; one can even prove this
using Axiom 2.5, provided one is comfortable with the notions of finite and infinite.
(Clearly 0 is finite. Also, if n is finite, then clearly n++ is also finite. Hence byAxiom
2.5, all natural numbers are finite.) So the natural numbers can approach infinity, but
never actually reach it; infinity is not one of the natural numbers. (There are other
number systems which admit “infinite” numbers, such as the cardinals, ordinals, and
p-adics, but they do not obey the principle of induction, and in any event are beyond
the scope of this text.)

Remark 2.1.14 Note that our definition of the natural numbers is axiomatic rather
than constructive. We have not told you what the natural numbers are (so we do not
address such questions as what the numbers are made of, are they physical objects,
what do they measure, etc.)—we have only listed some things you can do with them
(in fact, the only operation we have defined on them right now is the increment
one) and some of the properties that they have. This is how mathematics works—it
treats its objects abstractly, caring only about what properties the objects have, not
what the objects are or what they mean. If one wants to do mathematics, it does
not matter whether a natural number means a certain arrangement of beads on an
abacus, or a certain organization of bits in a computer’s memory, or some more
abstract concept with no physical substance; as long as you can increment them, see
if two of them are equal, and later on do other arithmetic operations such as add and
multiply, they qualify as numbers for mathematical purposes (provided they obey
the requisite axioms, of course). It is possible to construct the natural numbers from
other mathematical objects—from sets, for instance—but there are multiple ways to
construct a working model of the natural numbers, and it is pointless, at least from
a mathematician’s standpoint, as to argue about which model is the “true” one; as
long as it obeys all the axioms and does all the right things, that’s good enough to do
maths.

Remark 2.1.15 Historically, the realization that numbers could be treated axiomat-
ically is very recent, not much more than a hundred years old. Before then, numbers
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were generally understood to be inextricably connected to some external concept,
such as counting the cardinality of a set, measuring the length of a line segment, or the
mass of a physical object. This worked reasonably well, until one was forced to move
from one number system to another; for instance, understanding numbers in terms
of counting beads, for instance, is great for conceptualizing the numbers 3 and 5, but
doesn’t work so well for −3 or 1/3 or

√
2 or 3 + 4i ; thus each great advance in the

theory of numbers—negative numbers, irrational numbers, complex numbers, even
the number zero—led to a lot of unnecessary philosophical anguish. The great dis-
covery of the late nineteenth century was that numbers can be understood abstractly
via axioms, without necessarily needing a concretemodel; of course amathematician
can use any of thesemodelswhen it is convenient, to aid his or her intuition and under-
standing, but they can also be just as easily discarded when they begin to get in the
way.

One consequence of the axioms is that we can now define sequences recursively.
Suppose we want to build a sequence a0, a1, a2, . . . of numbers by first defining a0
to be some base value, e.g., a0 := c for some number c, and then by letting a1 be
some function of a0, a1 := f0(a0), a2 be some function of a1, a2 := f1(a1), and so
forth. In general, we set an++ := fn(an) for some function fn from N to N. By using
all the axioms together we will now conclude that this procedure will give a single
value to the sequence element an for each natural number n. More precisely5:

Proposition 2.1.16 (Recursive definitions). Suppose for each natural number n, we
have some function fn : N → N from the natural numbers to the natural numbers.
Let c be a natural number. Then we can assign a unique natural number an to each
natural number n, such that a0 = c and an++ = fn(an) for each natural number n.

Proof (Informal) We use induction. We first observe that this procedure gives a
single value to a0, namely c. (None of the other definitions an++ := fn(an) will
redefine the value of a0, because of Axiom 2.3.) Now suppose inductively that
the procedure gives a single value to an . Then it gives a single value to an++,
namely an++ := fn(an). (None of the other definitions am++ := fm(am) will rede-
fine the value of an++, because of Axiom 2.4.) This completes the induction,
and so an is defined for each natural number n, with a single value assigned to
each an . �

Note how all of the axioms had to be used here. In a system which had some sort
of wrap-around, recursive definitions would not work because some elements of the
sequence would constantly be redefined. For instance, in Example 2.1.5, in which
3++ = 0, then there would be (at least) two conflicting definitions for a0, either c
or f3(a3). In a system which had superfluous elements such as 0.5, the element a0.5
would never be defined.

5 Strictly speaking, this proposition requires one to define the notion of a function, which we shall
do in the next chapter. However, this will not be circular, as the concept of a function does not
require the Peano axioms. Proposition 2.1.16 can be formalized more rigorously in the language of
set theory; see Exercise 3.5.12.
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Recursive definitions are very powerful; for instance, we can use them to define
addition and multiplication, to which we now turn.

2.2 Addition

The natural number system is very bare right now: we have only one operation—
incrementation—and a handful of axioms. But now we can build up more complex
operations, such as addition.

The way it works is the following. To add three to five should be the same as
incrementing five three times—this is one increment more than adding two to five,
which is one increment more than adding one to five, which is one increment more
than adding zero to five, which should just give five. So we give a recursive definition
for addition as follows.

Definition 2.2.1 (Addition of natural numbers). Let m be a natural number. To add
zero tom, we define 0 + m := m. Now suppose inductively that we have defined how
to add n to m. Then we can add n++ to m by defining (n++) + m := (n + m)++.

Thus 0 + m is m, 1 + m = (0++) + m is m++; 2 + m = (1++) + m = (m++)

++; and so forth; for instance we have 2 + 3 = (3++)++ = 4++ = 5. From our
discussion of recursion in the previous section we see that we have defined n + m
for every natural number n. Here we are specializing the previous general discussion
to the setting where an = n + m and fn(an) = an++. Note that this definition is
asymmetric: 3 + 5 is incrementing 5 three times, while 5 + 3 is incrementing 3
five times. Of course, they both yield the same value of 8. More generally, it is a
fact (which we shall prove shortly) that a + b = b + a for all natural numbers a, b,
although this is not immediately clear from the definition.

Notice that we can prove easily, using Axioms 2.1, 2.2, and induction (Axiom
2.5), that the sum of two natural numbers is again a natural number (why?).

Right now we only have two facts about addition: that 0 + m = m, and that
(n++) + m = (n + m)++. Remarkably, this turns out to be enough to deduce every-
thing else we know about addition. We begin with some basic lemmas.6

Lemma 2.2.2 For any natural number n, n + 0 = n.

Note that we cannot deduce this immediately from 0 + m = m because we have
not yet established the commutative property a + b = b + a of addition.

6 From a logical point of view, there is no difference between a lemma, proposition, theorem,
or corollary—they are all claims waiting to be proved. However, we use these terms to suggest
different levels of importance and difficulty. A lemma is an easily proved claim which is helpful
for proving other propositions and theorems, but is usually not particularly interesting in its own
right. A proposition is a statement which is interesting in its own right, while a theorem is a more
important statement than a proposition which says something definitive on the subject, and often
takes more effort to prove than a proposition or lemma. A corollary is a quick consequence of a
proposition or theorem that was proven recently.
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Proof We use induction. The base case 0 + 0 = 0 follows since we know that
0 + m = m for every natural number m, and 0 is a natural number. Now suppose
inductively that n + 0 = n. We wish to show that (n++) + 0 = n++. But by defi-
nition of addition, (n++) + 0 is equal to (n + 0)++, which is equal to n++ since
n + 0 = n. This closes the induction. �

Lemma 2.2.3 For any natural numbers n and m, n + (m++) = (n + m)++.

Again, we cannot deduce this yet from (n++) + m = (n + m)++ because we do
not know yet that a + b = b + a.

Proof We induct on n (keeping m fixed). We first consider the base case n = 0. In
this case we have to prove 0 + (m++) = (0 + m)++. But by definition of addition,
0 + (m++) = m++ and 0 + m = m, so both sides are equal to m++ and are thus
equal to each other. Now we assume inductively that n + (m++) = (n + m)++; we
now have to show that (n++) + (m++) = ((n++) + m)++. The left-hand side is
(n + (m++))++ by definition of addition, which is equal to ((n + m)++)++ by the
inductive hypothesis. Similarly, we have (n++) + m = (n + m)++ by the definition
of addition, and so the right-hand side is also equal to ((n + m)++)++. Thus both
sides are equal to each other, and we have closed the induction. �

As a particular corollary of Lemma 2.2.2 and Lemma 2.2.3 we see that n++ =
n + 1 (why?).

As promised earlier, we can now prove that a + b = b + a.

Proposition 2.2.4 (Addition is commutative). For any natural numbers n and m,
n + m = m + n.

Proof Weshall use induction on n (keepingm fixed). First we do the base case n = 0,
i.e., we show 0 + m = m + 0. By the definition of addition, 0 + m = m, while by
Lemma 2.2.2, m + 0 = m. Thus the base case is done. Now suppose inductively
that n + m = m + n, now we have to prove that (n++) + m = m + (n++) to close
the induction. By the definition of addition, (n++) + m = (n + m)++. By Lemma
2.2.3, m + (n++) = (m + n)++, but this is equal to (n + m)++ by the inductive
hypothesis n + m = m + n. Thus (n++) + m = m + (n++) andwe have closed the
induction. �

Proposition 2.2.5 (Addition is associative). For any natural numbers a, b, c, we
have (a + b) + c = a + (b + c).

Proof See Exercise 2.2.1. �

Because of this associativity we can write sums such as a + b + c without having
to worry about which order the numbers are being added together.

Now we develop a cancellation law.

Proposition 2.2.6 (Cancellation law). Let a, b, c be natural numbers such that a +
b = a + c. Then we have b = c.
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Note that we cannot use subtraction or negative numbers yet to prove this propo-
sition, because we have not developed these concepts yet. In fact, this cancellation
law is crucial in letting us define subtraction (and the integers) later on in this text,
because it allows for a sort of “virtual subtraction” even before subtraction is officially
defined.

Proof We prove this by induction on a. First consider the base case a = 0. Then we
have 0 + b = 0 + c, which by definition of addition implies that b = c as desired.
Now suppose inductively that we have the cancellation law for a (so that a + b =
a + c implies b = c); we now have to prove the cancellation law for a++. In other
words, we assume that (a++) + b = (a++) + c and need to show that b = c. By
the definition of addition, (a++) + b = (a + b)++ and (a++) + c = (a + c)++
and so we have (a + b)++ = (a + c)++. By Axiom 2.4, we have a + b = a + c.
Since we already have the cancellation law for a, we thus have b = c as desired. This
closes the induction. �

We now discuss how addition interacts with positivity.

Definition 2.2.7 (Positive natural numbers).Anatural numbern is said to bepositive
iff it is not equal to 0. (“iff” is shorthand for “if and only if”; see Sect. A.1.)

Proposition 2.2.8 If a is a positive natural number, and b is a natural number, then
a + b is positive (and hence b + a is also, by Proposition 2.2.4).

Proof We use induction on b. If b = 0, then a + b = a + 0 = a, which is positive,
so this proves the base case. Now suppose inductively that a + b is positive. Then
a + (b++) = (a + b)++, which cannot be zero byAxiom 2.3, and is hence positive.
This closes the induction. �

Corollary 2.2.9 If a and b are natural numbers such that a + b = 0, then a = 0
and b = 0.

Proof Suppose for sake of contradiction that a �= 0 or b �= 0. If a �= 0 then a is posi-
tive, and hence a + b = 0 is positive by Proposition 2.2.8, a contradiction. Similarly
if b �= 0 then b is positive, and again a + b = 0 is positive by Proposition 2.2.8, a
contradiction. Thus a and b must both be zero. �

Lemma 2.2.10 Let a be a positive number. Then there exists exactly one natural
number b such that b++ = a.

Proof See Exercise 2.2.2. �

Once we have a notion of addition, we can begin defining a notion of order.

Definition 2.2.11 (Ordering of the natural numbers) Let n and m be natural num-
bers. We say that n is greater than or equal to m, and write n ≥ m or m ≤ n, iff we
have n = m + a for some natural number a. We say that n is strictly greater than m,
and write n > m or m < n, iff n ≥ m and n �= m.
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Thus for instance 8 > 5, because 8 = 5 + 3 and 8 �= 5. Also note that n++ > n
for any n; thus there is no largest natural number n, because the next number n++
is always larger still.

Proposition 2.2.12 (Basic properties of order for natural numbers). Let a, b, c be
natural numbers. Then

(a) (Order is reflexive) a ≥ a.
(b) (Order is transitive) If a ≥ b and b ≥ c, then a ≥ c.
(c) (Order is antisymmetric) If a ≥ b and b ≥ a, then a = b.
(d) (Addition preserves order) a ≥ b if and only if a + c ≥ b + c.
(e) a < b if and only if a++ ≤ b.
(f ) a < b if and only if b = a + d for some positive number d.

Proof See Exercise 2.2.3. �

Proposition 2.2.13 (Trichotomy of order for natural numbers). Let a and b be nat-
ural numbers. Then exactly one of the following statements is true: a < b, a = b, or
a > b.

Proof This is only a sketch of the proof; the gaps will be filled in Exercise 2.2.4.
First we show that we cannot have more than one of the statements a < b, a = b,

a > b holding at the same time. If a < b then a �= b by definition, and if a > b then
a �= b by definition. If a > b and a < b then by Proposition 2.2.12 we have a = b,
a contradiction. Thus no more than one of the statements is true.

Now we show that at least one of the statements is true. We keep b fixed and
induct on a. When a = 0 we have 0 ≤ b for all b (why?), so we have either 0 = b
or 0 < b, which proves the base case. Now suppose we have proven the proposition
for a, and now we prove the proposition for a++. From the trichotomy for a, there
are three cases: a < b, a = b, and a > b. If a > b, then a++ > b (why?). If a = b,
then a++ > b (why?). Now suppose that a < b. Then by Proposition 2.2.12, we
have a++ ≤ b. Thus either a++ = b or a++ < b, and in either case we are done.
This closes the induction. �

The properties of order allow one to obtain a stronger version of the principle of
induction:

Proposition 2.2.14 (Strong principle of induction). Let m0 be a natural number, and
let P(m) be a property pertaining to an arbitrary natural number m. Suppose that
for each m ≥ m0, we have the following implication: if P(m ′) is true for all natural
numbers m0 ≤ m ′ < m, then P(m) is also true. (In particular, this means that P(m0)

is true, since in this case the hypothesis is vacuous.) Then we can conclude that P(m)

is true for all natural numbers m ≥ m0.

Remark 2.2.15 In applications we usually use this principle withm0 = 0 orm0 = 1.

Proof See Exercise 2.2.5. �
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— Exercises —

Exercise 2.2.1 Prove Proposition 2.2.5. (Hint: fix two of the variables and induct on the third.)

Exercise 2.2.2 Prove Lemma 2.2.10. (Hint: use induction. The induction here is somewhat degen-
erate, in that the induction hypothesis is not actually used, but this does not prevent the argument
from remaining valid; cf. the discussion on implication and causality in Appendix A.2.)

Exercise 2.2.3 Prove Proposition 2.2.12. (Hint: you will need many of the preceding propositions,
corollaries, and lemmas.)

Exercise 2.2.4 Justify the three statements marked (why?) in the proof of Proposition 2.2.13.

Exercise 2.2.5 Prove Proposition 2.2.14. (Hint: define Q(n) to be the property that P(m) is true
for all m0 ≤ m < n; note that Q(n) is vacuously true when n ≤ m0.)

Exercise 2.2.6 Let n be a natural number, and let P(m) be a property pertaining to the natural
numbers such that whenever P(m++) is true, then P(m) is true. Suppose that P(n) is also true.
Prove that P(m) is true for all natural numbers m ≤ n; this is known as the principle of backwards
induction. (Hint: apply induction to the variable n.)

Exercise 2.2.7 Let n be a natural number, and let P(m) be a property pertaining to the natural
numbers such that whenever P(m) is true, P(m++) is true. Show that if P(n) is true, then P(m)

is true for all m ≥ n. (This principle is sometimes referred to as the principle of induction starting
from the base case n.)

2.3 Multiplication

In the previous section we have proven all the basic facts that we know to be true
about addition and order. To save space and to avoid belaboring the obvious, we
will now allow ourselves to use all the rules of algebra concerning addition and
order that we are familiar with, without further comment. Thus for instance we may
write things like a + b + c = c + b + a without supplying any further justification.
Nowwe introducemultiplication. Just as addition is the iterated increment operation,
multiplication is iterated addition:

Definition 2.3.1 (Multiplication of natural numbers). Let m be a natural number.
To multiply zero to m, we define 0 × m := 0. Now suppose inductively that we
have defined how to multiply n to m. Then we can multiply n++ to m by defining
(n++) × m := (n × m) + m.

Thus for instance 0 × m = 0, 1 × m = 0 + m, 2 × m = 0 + m + m, etc. By
induction one can easily verify that the product of two natural numbers is a nat-
ural number.

Lemma 2.3.2 (Multiplication is commutative). Let n,m be natural numbers. Then
n × m = m × n.

Proof See Exercise 2.3.1. �
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Wewill now abbreviate n × m as nm and use the usual convention that multiplica-
tion takes precedence over addition, thus for instance ab + cmeans (a × b) + c, not
a × (b + c). (We will also use the usual notational conventions of precedence for the
other arithmetic operations when they are defined later, to save on using parentheses
all the time.)

Lemma 2.3.3 (Positive natural numbers have no zero divisors). Let n,m be natural
numbers. Then n × m = 0 if and only if at least one of n,m is equal to zero. In
particular, if n and m are both positive, then nm is also positive.

Proof See Exercise 2.3.2. �

Proposition 2.3.4 (Distributive law). For any natural numbers a, b, c, we have
a(b + c) = ab + ac and (b + c)a = ba + ca.

Proof Since multiplication is commutative we only need to show the first identity
a(b + c) = ab + ac. We keep a and b fixed, and use induction on c. Let’s prove
the base case c = 0, i.e., a(b + 0) = ab + a0. The left-hand side is ab, while the
right-hand side is ab + 0 = ab, so we are done with the base case. Now let us
suppose inductively that a(b + c) = ab + ac, and let us prove that a(b + (c++)) =
ab + a(c++). The left-hand side is a((b + c)++) = a(b + c) + a, while the right-
hand side is ab + ac + a = a(b + c) + a by the induction hypothesis, and so we
can close the induction. �

Proposition 2.3.5 (Multiplication is associative). For any natural numbers a, b, c,
we have (a × b) × c = a × (b × c).

Proof See Exercise 2.3.3. �

Proposition 2.3.6 (Multiplication preserves order). If a, b are natural numbers such
that a < b, and c is positive, then ac < bc.

Proof Since a < b, we have b = a + d for some positive d. Multiplying by c and
using the distributive law we obtain bc = ac + dc. Since d is positive, and c is
positive, dc is positive, and hence ac < bc as desired. �

Corollary 2.3.7 (Cancellation law). Let a, b, c be natural numbers such that ac =
bc and c is non-zero. Then a = b.

Remark 2.3.8 Just as Proposition 2.2.6 will allow for a “virtual subtraction” which
will eventually let us define genuine subtraction, this corollary provides a “virtual
division” which will be needed to define genuine division later on.

Proof By the trichotomy of order (Proposition 2.2.13), we have three cases: a < b,
a = b, a > b. Suppose first that a < b, then by Proposition 2.3.6 we have ac < bc,
a contradiction. We can obtain a similar contradiction when a > b. Thus the only
possibility is that a = b, as desired. �
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With these propositions it is easy to deduce all the familiar rules of algebra involv-
ing addition and multiplication, see for instance Exercise 2.3.4.

Now that we have the familiar operations of addition and multiplication, the more
primitive notion of incrementwill begin to fall by thewayside, andwewill see it rarely
from now on. In any event we can always use addition to describe incrementation,
since n++ = n + 1.

Proposition 2.3.9 (Euclid’s division lemma). Let n be a natural number, and let q
be a positive number. Then there exist natural numbers m, r such that 0 ≤ r < q and
n = mq + r .

Remark 2.3.10 In other words, we can divide a natural number n by a positive
number q to obtain a quotient m (which is another natural number) and a remainder
r (which is less than q). This algorithmmarks the beginning of number theory, which
is a beautiful and important subject but one which is beyond the scope of this text.

Proof See Exercise 2.3.5. �

Just like one uses the increment operation to recursively define addition, and
addition to recursively definemultiplication, one can usemultiplication to recursively
define exponentiation:

Definition 2.3.11 (Exponentiation for natural numbers). Letm be a natural number.
To raise m to the power 0, we define m0 := 1; in particular, we define 00 := 1. Now
suppose recursively that mn has been defined for some natural number n, then we
define mn++ := mn × m.

Examples 2.3.12 Thus for instance x1 = x0 × x = 1 × x = x ; x2 = x1 × x = x ×
x ; x3 = x2 × x = x × x × x ; and so forth. By induction we see that this recursive
definition defines xn for all natural numbers n.

We will not develop the theory of exponentiation too deeply here, but instead
wait until after we have defined the integers and rational numbers; see in particular
Proposition 4.3.10.

— Exercises —

Exercise 2.3.1 Prove Lemma 2.3.2. (Hint:modify the proofs of Lemmas 2.2.2, 2.2.3 and Proposi-
tion 2.2.4.)

Exercise 2.3.2 Prove Lemma 2.3.3. (Hint: prove the second statement first.)

Exercise 2.3.3 Prove Proposition 2.3.5. (Hint: modify the proof of Proposition 2.2.5 and use the
distributive law.)

Exercise 2.3.4 Prove the identity (a + b)2 = a2 + 2ab + b2 for all natural numbers a, b.

Exercise 2.3.5 Prove Proposition 2.3.9. (Hint: fix q and induct on n.)



Chapter 3
Set Theory

Modern analysis, like most other subfields of modern mathematics, is concerned
with numbers, sets, and geometry. We have already introduced one type of number
system, the natural numbers. We will introduce the other number systems shortly,
but for now we pause to introduce the concepts and notation of set theory, as they
will be used increasingly heavily in later chapters. (We will not pursue a rigorous
description of Euclidean geometry in this text, preferring instead to describe that
geometry in terms of the real number system by means of the Cartesian co-ordinate
system.)

While set theory is not the main focus of this text, almost every other branch of
mathematics relies on set theory as part of its foundation, so it is important to get at
least some grounding in set theory before doing other advanced areas ofmathematics.
In this chapterwepresent themore elementary aspects of axiomatic set theory, leaving
more advanced topics such as a discussion of infinite sets and the axiom of choice
to Chap. 8. A full treatment of the finer subtleties of set theory (of which there are
many!) is unfortunately well beyond the scope of this text.

3.1 Fundamentals

In this sectionwe shall set out some axioms for sets, just aswe did for the natural num-
bers. For pedagogical reasons,wewill use a somewhat overcomplete list of axioms for
set theory, in the sense that some of the axioms can be used to deduce others, but there
is no real harm indoing this.Webeginwith an informal descriptionofwhat sets should
be.

Definition 3.1.1 (Informal) We define a set A to be any unordered collection of
objects, e.g., {3, 8, 5, 2} is a set. If x is an object, we say that x is an element of
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A or x ∈ A if x lies in the collection; otherwise we say that x /∈ A. For instance,
3 ∈ {1, 2, 3, 4, 5} but 7 /∈ {1, 2, 3, 4, 5}.

This definition is intuitive enough, but it doesn’t answer a number of questions,
such as which collections of objects are considered to be sets, which sets are equal to
other sets, and how one defines operations on sets (e.g., unions, intersections, etc.).
Also, we have no axioms yet on what sets do, or what their elements do. Obtaining
these axioms and defining these operations will be the purpose of the remainder of
this section.

We first clarify one point: we consider sets themselves to be a type of object.

Axiom 3.1 (Sets are objects). If A is a set, then A is also an object. In particular,
given two sets A and B, it is meaningful to ask whether A is also an element of B.

Example 3.1.2 (Informal) The set {3, {3, 4}, 4} is a set of three distinct elements,
one of which happens to itself be a set of two elements. See Example 3.1.9 for a
more formal version of this example.

Remark 3.1.3 There is a special case of set theory, called “pure set theory”, in which
all objects are sets; for instance the number 0 might be identified with the empty
set ∅ = {}, the number 1 might be identified with {0} = {{}}, the number 2 might be
identified with {0, 1} = {{}, {{}}}, and so forth. From a logical point of view, pure set
theory is a simpler theory, since one only has to deal with sets and not with objects;
however, from a conceptual point of view it is often easier to deal with impure set
theories inwhich some objects are not considered to be sets. The two types of theories
are more or less equivalent for the purposes of doing mathematics, and so we shall
take an agnostic position as to whether all objects are sets or not. For instance, we do
not insist that a natural number such as 3 be identified with a set as indicated above.
(The more accurate and mathematically useful statement is that natural numbers
can be the cardinalities of sets, rather than necessarily being sets themselves. See
Sect. 3.6.)

To summarize so far, among all the objects studied in mathematics, some of the
objects happen to be sets; and if x is an object and A is a set, then either x ∈ A is
true or x ∈ A is false. (If A is not a set, we leave the statement x ∈ A undefined;
for instance, we consider the statement 3 ∈ 4 to neither be true or false, but simply
meaningless, since 4 is not a set.)

Next, we try to capture the notion of equality: when are two sets considered to be
equal? We do not consider the order of the elements inside a set to be important; thus
we think of {3, 8, 5, 2} and {2, 3, 5, 8} as the same set. On the other hand, {3, 8, 5, 2}
and {3, 8, 5, 2, 1} are different sets, because the latter set contains an element that
the former one does not, namely the element 1. For similar reasons {3, 8, 5, 2} and
{3, 8, 5} are different sets. We formalize this by a further axiom:

Axiom 3.2 (Equality of sets). Two sets A and B are equal, A = B, iff every element
of A is an element of B and vice versa. To put it another way, A = B if and only if
every element x of A belongs also to B, and every element y of B belongs also to A.
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Example 3.1.4 Thus, for instance, {1, 2, 3, 4, 5} and {3, 4, 2, 1, 5} are the same set,
since they contain exactly the same elements. (The set {3, 3, 1, 5, 2, 4, 2} is also
equal to {1, 2, 3, 4, 5}; the repetition of 3 and 2 is irrelevant as it does not further
change the status of 2 and 3 being elements of the set.)

The “is an element of” relation ∈ obeys the axiom of substitution (see Section
A.7). Because of this, any new operation we define on sets will also obey the axiom
of substitution, as long as we can define that operation purely in terms of the relation
∈. This is for instance the case for the remaining definitions in this section. (On the
other hand, we cannot use the notion of the “first” or “last” element in a set in a
well-defined manner, because this would not respect the axiom of substitution; for
instance the sets {1, 2, 3, 4, 5} and {3, 4, 2, 1, 5} are the same set, but have different
first elements.)

Next, we turn to the issue of exactly which objects are sets and which objects
are not. The situation is analogous to how we defined the natural numbers in the
previous chapter; we started with a single natural number, 0, and started building
more numbers out of 0 using the increment operation. We will try something similar
here, starting with a single set, the empty set, and building more sets out of the empty
set by various operations. We begin by postulating the existence of the empty set.

Axiom 3.3 (Empty set). There exists a set ∅, known as the empty set, which contains
no elements, i.e., for every object x we have x /∈ ∅.

The empty set is also denoted {}. Note that there can only be one empty set; if
there were two sets ∅ and ∅′ which were both empty, then by Axiom 3.2 they would
be equal to each other (why?).

If a set is not equal to the empty set, we call it non-empty. The following statement
is very simple, but worth stating nevertheless:

Lemma 3.1.5 (Single choice). Let A be a non-empty set. Then there exists an object
x such that x ∈ A.

Proof We prove by contradiction. Suppose there does not exist any object x such
that x ∈ A. Then for all objects x , we have x /∈ A. Also, by Axiom 3.3 we have
x /∈ ∅. Thus x ∈ A ⇐⇒ x ∈ ∅ (both statements are equally false), and so A = ∅
by Axiom 3.2, a contradiction. �

Remark 3.1.6 The above Lemma asserts that given any non-empty set A, we are
allowed to “choose” an element x of A which demonstrates this non-emptyness.
Later on (in Lemma 3.5.11) we will show that given any finite number of non-empty
sets, say A1, . . . , An , it is possible to choose one element x1, . . . , xn from each set
A1, . . . , An; this is known as “finite choice”. However, in order to choose elements
from an infinite number of sets, we need an additional axiom, the axiom of choice,
which we will discuss in Sect. 8.4.

Remark 3.1.7 Note that the empty set is not necessarily the same thing as the natural
number 0. One is a set; the other is a number. However, it is true that the cardinality
of the empty set is 0; see Sect. 3.6.
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If Axiom 3.3 was the only axiom that set theory had, then set theory could be
quite boring, as there might be just a single set in existence, the empty set. We now
present further axioms to enrich the class of sets available.

Axiom 3.4 (Singleton sets and pair sets). If a is an object, then there exists a set
{a} whose only element is a, i.e., for every object y, we have y ∈ {a} if and only if
y = a; we refer to {a} as the singleton set whose element is a. Furthermore, if a and
b are objects, then there exists a set {a, b} whose only elements are a and b; i.e., for
every object y, we have y ∈ {a, b} if and only if y = a or y = b; we refer to this set
as the pair set formed by a and b.

Remarks 3.1.8 Just as there is only one empty set, there is only one singleton set
for each object a, thanks to Axiom 3.2 (why?). Similarly, given any two objects a
and b, there is only one pair set formed by a and b. Also, Axiom 3.2 also ensures
that {a, b} = {b, a} (why?) and {a, a} = {a} (why?). Thus the singleton set axiom
is in fact redundant, being a consequence of the pair set axiom. Conversely, the pair
set axiom will follow from the singleton set axiom and the pairwise union axiom
below (see Lemma 3.1.12). One may wonder why we don’t go further and create
triplet axioms, quadruplet axioms, etc.; however there will be no need for this once
we introduce the pairwise union axiom below.

Examples 3.1.9 Since ∅ is a set (and hence an object), the singleton set {∅}, i.e., the
set whose only element is ∅, is also a set. Similarly, the singleton set {{∅}} and the
pair set {∅, {∅}} are also sets. These four sets are not equal to each other (Exercise
3.1.2).

As the above examples show, we can now create quite a few sets; however, the
sets we make are still fairly small (each set that we can build consists of no more
than two elements, so far). The next axiom allows us to build somewhat larger sets
than before.

Axiom 3.5 (Pairwise union). Given any two sets A, B, there exists a set A ∪ B,
called the union of A and B, which consists of all the elements which belong to A
or B or both. In other words, for any object x ,

x ∈ A ∪ B ⇐⇒ (x ∈ A or x ∈ B).

Recall that “or” refers by default in mathematics to inclusive or: “X or Y is true”
means that “either X is true, or Y is true, or both are true”. See Sect. A.1.

Example 3.1.10 The set {1, 2} ∪ {2, 3} consists of those elements which either lie
on {1, 2} or in {2, 3} or in both, or in other words the elements of this set are simply
1, 2, and 3. Because of this, we denote this set as {1, 2} ∪ {2, 3} = {1, 2, 3}.
Remark 3.1.11 If A, B, A′ are sets, and A is equal to A′, then A ∪ B is equal to
A′ ∪ B (why? One needs to use Axiom 3.5 and Axiom 3.2). Similarly if B ′ is a set
which is equal to B, then A ∪ B is equal to A ∪ B ′. Thus the operation of union
obeys the axiom of substitution and is thus well-defined on sets.
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We now give some basic properties of unions.

Lemma 3.1.12 If a and b are objects, then {a, b} = {a} ∪ {b}. If A, B,C are sets,
then the union operation is commutative (i.e., A ∪ B = B ∪ A) and associative (i.e.,
(A ∪ B) ∪ C = A ∪ (B ∪ C)). Also, we have A ∪ A = A ∪ ∅ = ∅ ∪ A = A.

Proof We prove just the associativity identity (A ∪ B) ∪ C = A ∪ (B ∪ C) and
leave the remaining claims to Exercise 3.1.3. By Axiom 3.2, we need to show that
every element x of (A ∪ B) ∪ C is an element of A ∪ (B ∪ C), and vice versa.
So suppose first that x is an element of (A ∪ B) ∪ C . By Axiom 3.5, this means
that at least one of x ∈ A ∪ B or x ∈ C is true. We now divide into two cases. If
x ∈ C , then by Axiom 3.5 again x ∈ B ∪ C , and so by Axiom 3.5 again we have
x ∈ A ∪ (B ∪ C). Now suppose instead x ∈ A ∪ B, then by Axiom 3.5 again x ∈ A
or x ∈ B. If x ∈ A then x ∈ A ∪ (B ∪ C) by Axiom 3.5, while if x ∈ B then by con-
secutive applications of Axiom 3.5 we have x ∈ B ∪ C and hence x ∈ A ∪ (B ∪ C).
Thus in all cases we see that every element of (A ∪ B) ∪ C lies in A ∪ (B ∪ C). A
similar argument shows that every element of A ∪ (B ∪ C) lies in (A ∪ B) ∪ C , and
so (A ∪ B) ∪ C = A ∪ (B ∪ C) as desired. �

Because of the above lemma, we do not need to use parentheses to denote multiple
unions, thus for instance we can write A ∪ B ∪ C instead of (A ∪ B) ∪ C or A ∪
(B ∪ C). Similarly for unions of four sets, A ∪ B ∪ C ∪ D, etc.

Remark 3.1.13 While the operation of union has some similarities with addition,
the two operations are not identical. For instance, {2} ∪ {3} = {2, 3} and 2 + 3 = 5,
whereas {2} + {3} is meaningless (addition pertains to numbers, not sets) and 2 ∪ 3
is also meaningless (union pertains to sets, not numbers).

This axiom allows us to define triplet sets, quadruplet sets, and so forth: if a, b, c
are three objects, we define {a, b, c} := {a} ∪ {b} ∪ {c}; if a, b, c, d are four objects,
then we define {a, b, c, d} := {a} ∪ {b} ∪ {c} ∪ {d}, and so forth. On the other hand,
we are not yet in a position to define sets consisting of n objects for any given natural
number n; this would require iterating the above construction “n times”, but the
concept of n-fold iteration has not yet been rigorously defined. For similar reasons,
we cannot yet define sets consisting of infinitely many objects, because that would
require iterating the axiom of pairwise union infinitely often, and it is not clear at
this stage that one can do this rigorously. Later on, we will introduce other axioms
of set theory which allow one to construct arbitrarily large, and even infinite, sets.

Clearly, some sets seem to be larger than others. Oneway to formalize this concept
is through the notion of a subset.

Definition 3.1.14 (Subsets). Let A, B be sets.We say that A is a subset of B, denoted
A ⊆ B, iff every element of A is also an element of B, i.e.,

For any object x, x ∈ A =⇒ x ∈ B.

We say that A is a proper subset of B, denoted A � B, if A ⊆ B and A 	= B.
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Remark 3.1.15 Because these definitions involve only the notions of equality and
the “is an element of” relation, both of which already obey the axiom of substitution,
the notion of subset also automatically obeys the axiom of substitution. Thus for
instance if A ⊆ B and A = A′, then A′ ⊆ B.

Examples 3.1.16 Wehave {1, 2, 4} ⊆ {1, 2, 3, 4, 5}, because every element of {1, 2, 4}
is also an element of {1, 2, 3, 4, 5}. In fact we also have {1, 2, 4} � {1, 2, 3, 4, 5},
since the two sets {1, 2, 4} and {1, 2, 3, 4, 5} are not equal. Given any set A, we
always have A ⊆ A (why?) and ∅ ⊆ A (why?).

The notion of subset in set theory is similar to the notion of “less than or equal to”
for numbers, as the following proposition demonstrates (for amore precise statement,
see Definition 8.5.1):

Proposition 3.1.17 (Sets are partially ordered by set inclusion). Let A, B,C be
sets. If A ⊆ B and B ⊆ C then A ⊆ C. If A ⊆ B and B ⊆ A, then A = B. Finally,
if A � B and B � C then A � C.

Proof We shall just prove the first claim. Suppose that A ⊆ B and B ⊆ C . To prove
that A ⊆ C , we have to prove that every element of A is an element of C . So, let us
pick an arbitrary element x of A. Then, since A ⊆ B, x must then be an element of
B. But then since B ⊆ C , x is an element of C . Thus every element of A is indeed
an element of C , as claimed. �

Remark 3.1.18 The subset relation and the union operation are related to each other:
see for instance Exercise 3.1.7.

Remark 3.1.19 There is one important difference between the subset relation� and
the less than relation <. Given any two distinct natural numbers n,m, we know that
one of them is smaller than the other (Proposition 2.2.13); however, given two distinct
sets, it is not in general true that one of them is a subset of the other. For instance, take
A := {2n : n ∈ N} to be the set of even natural numbers, and B := {2n + 1 : n ∈ N}
to be the set of odd natural numbers. Then neither set is a subset of the other. This
is why we say that sets are only partially ordered, whereas the natural numbers are
totally ordered (see Definitions 8.5.1, 8.5.3).

Remark 3.1.20 We should also caution that the subset relation ⊆ is not the same
as the element relation ∈. The number 2 is an element of {1, 2, 3} but not a subset;
thus 2 ∈ {1, 2, 3}, but 2 � {1, 2, 3}. Indeed, 2 is not even a set. Conversely, while {2}
is a subset of {1, 2, 3}, it is not an element; thus {2} ⊆ {1, 2, 3} but {2} /∈ {1, 2, 3}.
The point is that the number 2 and the set {2} are distinct objects. It is important
to distinguish sets from their elements, as they can have different properties. For
instance, it is possible to have an infinite set consisting of finite numbers (the set N
of natural numbers is one such example), and it is also possible to have a finite set
consisting of infinite objects (consider for instance the finite set {N,Z,Q,R}, which
has four elements, all of which are infinite).

We now give an axiom which easily allows us to create subsets out of larger sets.
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Axiom 3.6 (Axiom of specification). Let A be a set, and for each x ∈ A, let P(x)
be a property pertaining to x (i.e., for each x ∈ A, P(x) is either a true statement or
a false statement). Then there exists a set, called {x ∈ A : P(x) is true} (or simply
{x ∈ A : P(x)} for short), whose elements are precisely the elements x in A for
which P(x) is true. In other words, for any object y,

y ∈ {x ∈ A : P(x) is true} ⇐⇒ (y ∈ A and P(y) is true).

This axiom is also known as the axiom of separation. Note that {x ∈ A :
P(x) is true} is always a subset of A (why?), though it could be as large as A or
as small as the empty set. One can verify that the axiom of substitution works for
specification, thus if A = A′ then {x ∈ A : P(x)} = {x ∈ A′ : P(x)} (why?).
Example 3.1.21 Let S := {1, 2, 3, 4, 5}. Then the set {n ∈ S : n < 4} is the set of
those elements n in S for which n < 4 is true, i.e., {n ∈ S : n < 4} = {1, 2, 3}. Sim-
ilarly, the set {n ∈ S : n < 7} is the same as S itself, while {n ∈ S : n < 1} is the
empty set.

We sometimes write {x ∈ A
∣
∣
∣P(x)} instead of {x ∈ A : P(x)}; this is useful when

we are using the colon “:” to denote something else, for instance to denote the domain
and codomain of a function f : X → Y . We can also describe {x ∈ A : P(x)} in
words as “the set of all x in A such that P(x) is true”.

We can use this axiom of specification to define some further operations on sets,
namely intersections and difference sets.

Definition 3.1.22 (Intersections). The intersection S1 ∩ S2 of two sets is defined to
be the set

S1 ∩ S2 := {x ∈ S1 : x ∈ S2}.

In other words, S1 ∩ S2 consists of all the elements which belong to both S1 and S2.
Thus, for all objects x ,

x ∈ S1 ∩ S2 ⇐⇒ x ∈ S1 and x ∈ S2.

Remark 3.1.23 Note that this definition is well-defined (i.e., it obeys the axiom of
substitution, see Sect. A.7) because it is defined in terms ofmore primitive operations
which were already known to obey the axiom of substitution. Similar remarks apply
to future definitions in this chapter andwill usually not bementioned explicitly again.

Examples 3.1.24 Wehave {1, 2, 4} ∩ {2, 3, 4} = {2, 4}, {1, 2} ∩ {3, 4} = ∅, {2, 3} ∪
∅ = {2, 3}, and {2, 3} ∩ ∅ = ∅.
Remark 3.1.25 By the way, one should be careful with the English word “and”:
rather confusingly, it can mean either union or intersection, depending on context.
For instance, if one talks about a set of “boys and girls”, one means the union of a
set of boys with a set of girls, but if one talks about the set of people who are single
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and male, then one means the intersection of the set of single people with the set of
male people. (Can you work out the rule of grammar that determines when “and”
means union and when “and” means intersection?) Another problem is that “and” is
also used in English to denote addition, thus for instance one could say that “2 and
3 is 5”, while also saying that “the elements of {2} and the elements of {3} form the
set {2, 3}” and “the elements in {2} and {3} form the set ∅”. This can certainly get
confusing! One reason we resort to mathematical symbols instead of English words
such as “and” is that mathematical symbols always have a precise and unambiguous
meaning, whereas one must often look very carefully at the context in order to work
out what an English word means.

Two sets A, B are said to be disjoint if A ∩ B = ∅. Note that this is not the same
concept as being distinct, A 	= B. For instance, the sets {1, 2, 3} and {2, 3, 4} are
distinct (there are elements of one set which are not elements of the other) but not
disjoint (because their intersection is non-empty). Meanwhile, the sets ∅ and ∅ are
disjoint but not distinct (why?).

There is an operation on sets that is somewhat analogous to subtraction:

Definition 3.1.26 (Difference sets). Given two sets A and B, we define the set A − B
or A\B to be the set A with any elements of B removed:

A\B := {x ∈ A : x /∈ B};

for instance, {1, 2, 3, 4}\{2, 4, 6} = {1, 3}. In many cases B will be a subset of A,
but not necessarily.

We now give some basic properties of unions, intersections, and difference sets.

Proposition 3.1.27 (Sets form a boolean algebra). Let A, B,C be sets, and let X be
a set containing A, B,C as subsets.

(a) (Minimal element) We have A ∪ ∅ = A and A ∩ ∅ = ∅.
(b) (Maximal element) We have A ∪ X = X and A ∩ X = A.
(c) (Identity) We have A ∩ A = A and A ∪ A = A.
(d) (Commutativity) We have A ∪ B = B ∪ A and A ∩ B = B ∩ A.
(e) (Associativity) We have (A ∪ B) ∪ C = A ∪ (B ∪ C) and (A ∩ B) ∩ C = A ∩

(B ∩ C).
(f ) (Distributivity)Wehave A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)and A ∪ (B ∩ C) =

(A ∪ B) ∩ (A ∪ C).
(g) (Partition) We have A ∪ (X\A) = X and A ∩ (X\A) = ∅.
(h) (De Morgan laws) We have X\(A ∪ B) = (X\A) ∩ (X\B) and X\(A ∩ B) =

(X\A) ∪ (X\B).

Remark 3.1.28 The de Morgan laws are named after the logician Augustus De
Morgan (1806–1871), who identified them as one of the basic laws of set theory.

Proof See Exercise 3.1.6. �
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Remark 3.1.29 The reader may observe a certain symmetry in the above laws
between ∪ and ∩, and between X and ∅. This is an example of duality—two distinct
properties or objects being dual to each other. In this case, the duality is manifested
by the complementation relation A �→ X\A; the de Morgan laws assert that this
relation converts unions into intersections and vice versa. (It also interchanges X
and the empty set.) The above laws are collectively known as the laws of Boolean
algebra, after the mathematician George Boole (1815–1864), and are also applicable
to a number of other objects other than sets; they play a particularly important rôle
in mathematical logic.

We have now accumulated a number of axioms and results about sets, but there
are still many things we are not able to do yet. One of the basic things we wish to do
with a set is take each of the objects of that set, and somehow transform each such
object into a new object; for instance we may wish to start with a set of numbers, say
{3, 5, 9}, and increment each one, creating a new set {4, 6, 10}. This is not something
we can do directly using only the axioms we already have, so we need a new axiom:

Axiom 3.7 (Replacement). Let A be a set. For any object x ∈ A, and any object
y, suppose we have a statement P(x, y) pertaining to x and y, such that for each
x ∈ A there is at most one y for which P(x, y) is true. Then there exists a set
{y : P(x, y) is true for some x ∈ A}, such that for any object z,

z ∈{y : P(x, y) is true for some x ∈ A}
⇐⇒ P(x, z) is true for some x ∈ A.

Example 3.1.30 Let A := {3, 5, 9}, and let P(x, y) be the statement y = x++, i.e.,
y is the successor of x . Observe that for every x ∈ A, there is exactly one y for which
P(x, y) is true—specifically, the successor of x . Thus the above axiom asserts that
the set {y : y = x++ for some x ∈ {3, 5, 9}} exists; in this case, it is clearly the same
set as {4, 6, 10} (why?).
Example 3.1.31 Let A = {3, 5, 9}, and let P(x, y) be the statement y = 1. Then
again for every x ∈ A, there is exactly one y for which P(x, y) is true—specifically,
the number 1. In this case {y : y = 1 for some x ∈ {3, 5, 9}} is just the singleton set
{1}; we have replaced each element 3, 5, 9 of the original set A by the same object,
namely 1. Thus this rather silly example shows that the set obtained by the above
axiom can be “smaller” than the original set.

We often abbreviate a set of the form

{y : y = f (x) for some x ∈ A}

as { f (x) : x ∈ A} or { f (x)
∣
∣
∣x ∈ A}. Thus for instance, if A = {3, 5, 9}, then {x++ :

x ∈ A} is the set {4, 6, 10}. We can of course combine the axiom of replacement
with the axiom of specification, thus for instance we can create sets such as { f (x) :
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x ∈ A; P(x) is true} by starting with the set A, using the axiom of specification to
create the set {x ∈ A : P(x) is true}, and then applying the axiom of replacement
to create { f (x) : x ∈ A; P(x) is true}. Thus for instance {n++ : n ∈ {3, 5, 9}; n <

6} = {4, 6}.
In many of our examples we have implicitly assumed that natural numbers are in

fact objects. Let us formalize this as follows.

Axiom 3.8 (Infinity). There exists a set N, whose elements are called natural num-
bers, as well as an object 0 inN, and an object n++ assigned to every natural number
n ∈ N, such that the Peano axioms (Axioms 2.1–2.5) hold.

This is themore formal version ofAssumption 2.6. It is called the axiomof infinity
because it introduces the most basic example of an infinite set, namely the set of
natural numbers N. (We will formalize what finite and infinite mean in Sect. 3.6.)
From the axiom of infinity we see that numbers such as 3, 5, and 7 are indeed objects
in set theory, and so (from the pair set axiom and pairwise union axiom) we can
indeed legitimately construct sets such as {3, 5, 9} as we have been doing in our
examples.

One has to keep the concept of a set distinct from the elements of that set; for
instance, the set {n + 3 : n ∈ N, 0 ≤ n ≤ 5} is not the same thing as the expression
or function n + 3. We emphasize this with an example:

Example 3.1.32 (Informal) This example requires the notion of subtraction, which
has not yet been formally introduced. The following two sets are equal,

{n + 3 : n ∈ N, 0 ≤ n ≤ 5} = {8 − n : n ∈ N, 0 ≤ n ≤ 5}, (3.1)

(see below), even though the expressions n + 3 and 8 − n are never equal to each
other for any natural number n. Thus, it is a good idea to remember to use those
curly braces {} when you talk about sets, lest you accidentally confuse a set with its
elements. One reason for this counterintuitive situation is that the letter n is being
used in two different ways on the two sides of (3.1). To clarify the situation, let
us rewrite the set {8 − n : n ∈ N, 0 ≤ n ≤ 5} by replacing the letter n by the letter
m, thus giving {8 − m : m ∈ N, 0 ≤ m ≤ 5}. This is exactly the same set as before
(why?), so we can rewrite (3.1) as

{n + 3 : n ∈ N, 0 ≤ n ≤ 5} = {8 − m : m ∈ N, 0 ≤ m ≤ 5}.

Now it is easy to see (using Axiom 3.2) why this identity is true: every number of the
form n + 3, where n is a natural number between 0 and 5, is also of the form 8 − m
where m := 5 − n (note that m is therefore also a natural number between 0 and 5);
conversely, every number of the form 8 − m, wherem is a natural number between 0
and 5, is also of the form n + 3, where n := 5 − m (note that n is therefore a natural
number between 0 and 5). Observe howmuch more confusing the above explanation
of (3.1) would have been if we had not changed one of the n’s to an m first!
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Formally, we can refer to N as “the set of natural numbers”, but we shall often
abbreviate this to simply “the natural numbers”. Similarly for some other sets that
we will introduce later in this text; for instance Z will be “the set of integers” but
also the “integers”, R will be the “set of real numbers” but also “the real numbers”
or even just “the reals”, and so forth.

— Exercises —

Exercise 3.1.1 Let a, b, c, d be objects such that {a, b} = {c, d}. Show that at least one of the two
statements “a = c and b = d” and “a = d and b = c” hold.

Exercise 3.1.2 Using only Axiom 3.2, Axiom 3.1, Axiom 3.3, and Axiom 3.4, prove that the sets
∅, {∅}, {{∅}}, and {∅, {∅}} are all distinct (i.e., no two of them are equal to each other).

Exercise 3.1.3 Prove the remaining claims in Lemma 3.1.12.

Exercise 3.1.4 Prove the remaining claims in Proposition 3.1.17.

Exercise 3.1.5 Let A, B be sets. Show that the three statements A ⊆ B, A ∪ B = B, A ∩ B = A
are logically equivalent (any one of them implies the other two).

Exercise 3.1.6 Prove Proposition 3.1.27. (Hint: one can use some of these claims to prove others.
Some of the claims have also appeared previously in Lemma 3.1.12.)

Exercise 3.1.7 Let A, B,C be sets. Show that A ∩ B ⊆ A and A ∩ B ⊆ B. Furthermore, show
that C ⊆ A and C ⊆ B if and only if C ⊆ A ∩ B. In a similar spirit, show that A ⊆ A ∪ B and
B ⊆ A ∪ B, and furthermore that A ⊆ C and B ⊆ C if and only if A ∪ B ⊆ C .

Exercise 3.1.8 Let A, B be sets. Prove the absorption laws A ∩ (A ∪ B) = A and A ∪ (A ∩ B) =
A.

Exercise 3.1.9 Let A, B, X be sets such that A ∪ B = X and A ∩ B = ∅. Show that A = X\B
and B = X\A.
Exercise 3.1.10 Let A and B be sets. Show that the three sets A\B, A ∩ B, and B\A are disjoint,
and that their union is A ∪ B.

Exercise 3.1.11 Show that the axiom of replacement implies the axiom of specification.

Exercise 3.1.12 Suppose that A, B, A′, B ′ are sets such that A′ ⊆ A and B ′ ⊆ B.

(i) Show that A′ ∪ B ′ ⊆ A ∪ B and A′ ∩ B ′ ⊆ A ∩ B.
(ii) Give a counterexample to show that the statement A′\B ′ ⊆ A\B is false. Can you find a

modification of this statement involving the set difference operation \ which is true given the
stated hypotheses? Justify your answer.

Exercise 3.1.13 Euclid famously defined a point to be “that which has no part”. This exercise
should be reminiscent of that definition. Define a proper subset of a set A to be a subset B of A
with B 	= A. Let A be a non-empty set. Show that A does not have any non-empty proper subsets
if and only if A is of the form A = {x} for some object x .
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3.2 Russell’s Paradox (Optional)

Many of the axioms introduced in the previous section have a similar flavor: they
allow us to form a set consisting of all the elements which have a certain property.
These axioms are plausible, but one might think that they could be unified, for
instance by introducing the following axiom:

Axiom 3.9 (Universal specification). (Dangerous!) Suppose for every object x we
have a property P(x) pertaining to x (so that for every x , P(x) is either a true
statement or a false statement). Then there exists a set {x : P(x) is true} such that
for every object y,

y ∈ {x : P(x) is true} ⇐⇒ P(y) is true.

This axiom is also known as the axiom of comprehension. It asserts that every
property corresponds to a set; if we assumed that axiom, we could talk about the set
of all blue objects, the set of all natural numbers, the set of all sets, and so forth.
This axiom also implies most of the axioms in the previous section (Exercise 3.2.1).
Unfortunately, this axiom cannot be introduced into set theory, because it creates a
logical contradiction known as Russell’s paradox, discovered by the philosopher and
logician Bertrand Russell (1872–1970) in 1901. The paradox runs as follows. Let
P(x) be the statement

P(x) ⇐⇒ “x is a set, and x /∈ x”;

i.e., P(x) is true only when x is a set which does not contain itself. For instance,
P({2, 3, 4}) is true, since the set {2, 3, 4} is not one of the three elements 2, 3, 4 of
{2, 3, 4}. On the other hand, if we let S be the set of all sets (which we would know
to exist from the axiom of universal specification), then since S is itself a set, it is an
element of S, and so P(S) is false. Now use the axiom of universal specification to
create the set

� := {x : P(x) is true} = {x : x is a set and x /∈ x},

i.e., the set of all sets which do not contain themselves. Now ask the question: does
� contain itself, i.e. is � ∈ �? If � did contain itself, then by the definition of �

this means that P(�) is true, i.e., � is a set and � /∈ �. On the other hand, if � did
not contain itself, then by the definition of P P(�) would be true, and hence by the
definition of�we have� ∈ �. Thus in either case we have both� ∈ � and� /∈ �,
which is absurd.
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The problemwith the above axiom is that it creates setswhich are far too “large”—
for instance, we can use that axiom to talk about the set of all objects (a so-called
universal set). Since sets are themselves objects (Axiom 3.1), this means that sets are
allowed to contain themselves, which is a somewhat silly state of affairs. One way to
informally resolve this issue is to think of objects as being arranged in a hierarchy.
At the bottom of the hierarchy are the primitive objects—the objects that are not
sets,1 such as the natural number 37. Then on the next rung of the hierarchy there are
sets whose elements consist only of primitive objects, such as {3, 4, 7} or the empty
set ∅; let’s call these “primitive sets” for now. Then there are sets whose elements
consist only of primitive objects and primitive sets, such as {3, 4, 7, {3, 4, 7}}. Then
we can form sets out of these objects, and so forth. The point is that at each stage of
the hierarchy we only see sets whose elements consist of objects at lower stages of
the hierarchy, and so at no stage do we ever construct a set which contains itself.

To actually formalize the above intuition of a hierarchy of objects is actually rather
complicated, and we will not do so here. Instead, we shall simply postulate an axiom
which ensures that absurdities such as Russell’s paradox do not occur.

Axiom 3.10 (Regularity). If A is a non-empty set, then there is at least one element
x of A which is either not a set, or is disjoint from A.

The point of this axiom (which is also known as the axiom of foundation) is
that it is asserting that at least one of the elements of A is so low on the hierarchy
of objects that it does not contain any of the other elements of A. For instance, if
A = {{3, 4}, {3, 4, {3, 4}}}, then the element {3, 4} ∈ A does not contain any of the
elements of A (neither 3 nor 4 lies in A), although the element {3, 4, {3, 4}}, being
somewhat higher in the hierarchy, does contain an element of A, namely {3, 4}. One
particular consequence of this axiom is that sets are no longer allowed to contain
themselves (Exercise 3.2.2).

One can legitimately ask whether we really need this axiom in our set theory,
as it is certainly less intuitive than our other axioms. For the purposes of doing
analysis, it turns out in fact that this axiom is never needed; all the sets we consider
in analysis are typically very low on the hierarchy of objects, for instance being sets
of primitive objects, or sets of sets of primitive objects, or at worst sets of sets of
sets of primitive objects. However it is necessary to include this axiom in order to
perform more advanced set theory, and so we have included this axiom in the text
(but in an optional section) for sake of completeness.

1 In pure set theory, there will be no primitive objects, but there will be one primitive set ∅ on the
next rung of the hierarchy.
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— Exercises —

Exercise 3.2.1 Show that the universal specification axiom, Axiom 3.9, if assumed to be true,
would imply Axioms 3.3, 3.4, 3.5, 3.6, and 3.7. (If we assume that all natural numbers are objects,
we also obtain Axiom 3.8.) Thus, this axiom, if permitted, would simplify the foundations of set
theory tremendously (and can be viewed as one basis for an intuitive model of set theory known as
“naive set theory”). Unfortunately, as we have seen, Axiom 3.9 is “too good to be true”!

Exercise 3.2.2 Use the axiom of regularity (and the singleton set axiom) to show that if A is a set,
then A /∈ A. Furthermore, show that if A and B are two sets, then either A /∈ B or B /∈ A (or both).
(One corollary of this exercise is worth noting: given any set A, there exists a mathematical object
that is not an element in A, namely A itself. Thus one can always “add one more element” to a set
A to create a larger set, namely A ∪ {A}.)
Exercise 3.2.3 Show (assuming the other axioms of set theory) that the universal specification
axiom, Axiom 3.9, is equivalent to an axiom postulating the existence of a “universal set” �

consisting of all objects (i.e., for all objects x , we have x ∈ �). In other words, if Axiom 3.9 is true,
then a universal set exists, and conversely, if a universal set exists, then Axiom 3.9 is true. (This
helps explain why Axiom 3.9 is called the axiom of universal specification.) Note that if a universal
set � existed, then we would have � ∈ � by Axiom 3.1, contradicting Exercise 3.2.2. Thus the
axiom of foundation specifically rules out the axiom of universal specification.

3.3 Functions

In order to do analysis, it is not particularly useful to just have the notion of a set;
we also need the notion of a function from one set to another. Informally, a function
f : X → Y from one set X to another set Y is an operation which assigns to each
element (or “input”) x in X , a single element (or “output”) f (x) in Y ; we have
already used this informal concept in the previous chapter when we discussed the
natural numbers. The formal definition is as follows.

Definition 3.3.1 (Functions) Let X,Y be sets, and let P(x, y) be a property per-
taining to an object x ∈ X and an object y ∈ Y , such that for every x ∈ X , there is
exactly one y ∈ Y for which P(x, y) is true (this is sometimes known as the verti-
cal line test). Then we define the function f : X → Y defined by P on the domain
X and codomain2 to be the object which, given any input x ∈ X , assigns an output
f (x) ∈ Y , defined to be the unique object f (x) ∈ Y for which P(x, f (x)) is true.
Thus, for any x ∈ X and y ∈ Y ,

y = f (x) ⇐⇒ P(x, y) is true.

Functions are also referred to as maps or transformations, depending on the con-
text. They are also sometimes called morphisms, although to be more precise, a
morphism refers to a more general class of object, which may or may not correspond
to actual functions, depending on the context.

2 In some texts the codomain is referred to as the range; however we will use the term range to refer
instead to the image f (X) of the domain, defined after Definition 3.4.1.
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Remark 3.3.2 Implicit in the above definition is an assumption that whenever one
is given two sets X, Y and a property P obeying the vertical line test, one can form a
functionobject f . Strictly speaking, the assumptionof the existenceof such a function
object f should be stated as an explicit axiom. However, we will not do so here, as
it turns out to be redundant. (More precisely, in view of Exercise 3.5.10, it is always
possible to encode a function f as an ordered triple (X,Y, {(x, f (x)) : x ∈ X})
consisting of the domain, codomain, and graph of the function, which gives a way
to build functions as objects using the operations provided by the preceding axioms
of set theory.) Also implicit in the above definition is the understanding that every
function f is automatically associatedwith a domain X , a codomainY , and a defining
property P .

Example 3.3.3 Let X = N, Y = N, and let P(x, y) be the property that y = x++.
Then for each x ∈ N there is exactly one y ∈ N for which P(x, y) is true, namely
y = x++. Thus we can define a function f : N → N associated to this property, so
that f (x) = x++ for all x ; this is the increment function onN, which takes a natural
number as input and returns its increment as output. Thus for instance f (4) = 5,
f (2n + 3) = 2n + 4 and so forth.Onemight also hope to define adecrement function
g : N → N associated to the property P(x, y) defined by y++ = x , i.e., g(x) would
be the number whose increment is x . Unfortunately this does not define a function,
because when x = 0 there is no natural number y whose increment is equal to x
(Axiom 2.3). On the other hand, we can legitimately define a decrement function
h : N\{0} → N associated to the property P(x, y) defined by y++ = x , because
when x ∈ N\{0} there is indeed exactly one natural number y such that y++ = x ,
thanks to Lemma 2.2.10. Thus for instance h(4) = 3 and h(2n + 3) = 2n + 2, but
h(0) is undefined since 0 is not in the domain N\{0}.
Example 3.3.4 (Informal) This example requires the real numbers R, which we
will define in Chap. 5. One could try to define a square root function √: R → R
by associating it to the property P(x, y) defined by y2 = x , i.e., we would want

√
x

to be the number y such that y2 = x . Unfortunately there are two problems which
prohibit this definition from actually creating a function. The first is that there exist
real numbers x for which P(x, y) is never true, for instance if x = −1 then there is no
real number y such that y2 = x . This problem however can be solved by restricting
the domain from R to the right half-line [0,+∞). The second problem is that even
when x ∈ [0,+∞), it is possible for there to be more than one y in the codomain
R for which y2 = x , for instance if x = 4 then both y = 2 and y = −2 obey the
property P(x, y), i.e., both +2 and −2 are square roots of 4. This problem can
however be solved by restricting the codomain ofR to [0,+∞). Once one does this,
then one can correctly define a square root function √ : [0,+∞) → [0,+∞) using
the relation y2 = x ; thus

√
x is the unique number y ∈ [0,+∞) such that y2 = x .

One common way to define a function is simply to specify its domain, its
codomain, and how one generates the output f (x) from each input; this is known
as an explicit definition of a function. For instance, the function f in Example 3.3.3
could be defined explicitly by saying that f has domain and codomain equal to N,
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and f (x) := x++ for all x ∈ N. In other cases we only define a function f by speci-
fying what property P(x, y) links the input x with the output f (x); this is an implicit
definition of a function. For instance, the square root function

√
x in Example 3.3.4

was defined implicitly by the relation (
√
x)2 = x . Note that an implicit definition is

only valid if we know that for every input there is exactly one output which obeys
the implicit relation. In many cases we omit specifying the domain and codomain
of a function for brevity, and thus for instance we could refer to the function f
in Example 3.3.3 as “the function f (x) := x++”, “the function x �→ x++”, “the
function x++”, or even the extremely abbreviated “++”. However, too much of this
abbreviation can be dangerous; sometimes it is important to know what the domain
and codomain of the function is.

We observe that functions obey the axiom of substitution: if x = x ′, then f (x) =
f (x ′) (why?). In other words, equal inputs imply equal outputs. On the other hand,
unequal inputs do not necessarily ensure unequal outputs, as the following example
shows:

Example 3.3.5 Let X = N, Y = N, and let P(x, y) be the property that y = 7. Then
certainly for every x ∈ N there is exactly one y for which P(x, y) is true, namely
the number 7. Thus we can create a function f : N → N associated to this property;
it is simply the constant function which assigns the output of f (x) = 7 to each input
x ∈ N. Thus it is certainly possible for different inputs to generate the same output.

Remark 3.3.6 We are now using parentheses () to denote several different things in
mathematics; on one hand, we are using them to clarify the order of operations (com-
pare for instance 2 + (3 × 4) = 14 with (2 + 3) × 4 = 20), but on the other hand
we also use parentheses to enclose the argument x of a function f (x) or of a prop-
erty such as P(x). However, the two usages of parentheses usually are unambiguous
from context. For instance, if a is a number, then a(b + c) denotes the expression
a × (b + c), whereas if f is a function, then f (b + c) denotes the output of f when
the input is b + c. Sometimes the argument of a function is denoted by subscripting
instead of parentheses; for instance, a sequence of natural numbers a0, a1, a2, a3, . . .
is, strictly speaking, a function from N to N, but is denoted by n �→ an rather than
n �→ a(n).

Remark 3.3.7 We do not necessarily require functions to be sets, nor do we require
sets to be functions. Thus, it does not necessarily make sense to ask whether an object
x is an element of a function f , and it does not necessarily make sense to apply a
set A to an input x to create an output A(x). On the other hand, it is permissible to
start with a function f : X → Y and construct its graph {(x, f (x)) : x ∈ X}, which
describes the function completely once the domain X and codomain Y are specified:
see Sect. 3.5.

We now define some basic concepts and notions for functions. The first notion is
that of equality.

Definition 3.3.8 (Equality of functions). Two functions f : X → Y , g : X ′ → Y ′
are said to be equal if their domains and codomains agree (i.e., X = X ′ and Y = Y ′),
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and furthermore that f (x) = g(x) for all x ∈ X . If f (x) and g(x) agree for some
values of x in the domain, but not others, then we do not consider f and g to be
equal.3 If two functions f, g have different domains, or different ranges, we also do
not consider them to be equal.

Remark 3.3.9 According to this definition, two functions that havedifferent domains
or different codomains are, strictly speaking, distinct functions. However, when it is
safe to do so without causing confusion, it is sometimes useful to “abuse notation” by
identifying together functions of different domains or codomains if their values agree
ontheir common domain of definition; this is analogous to the practice of “overload-
ing” an operator in software engineering. See the discussion after Definition 9.4.1
for one instance of this.

Example 3.3.10 (Informal) The functions x �→ x2 + 2x + 1 and x �→ (x + 1)2 are
equal on the domain R. The functions x �→ x and x �→ |x | are equal on the positive
real axis, but are not equal onR; thus the concept of equality of functions can depend
on the choice of domain.

Example 3.3.11 Arather boring example of a function is the empty function f : ∅ →
X from the empty set to a given set X . Since the empty set has no elements, we do
not need to specify what f does to any input. Nevertheless, just as the empty set is
a set, the empty function is a function, albeit not a particularly interesting one. Note
that for each set X , there is only one function from ∅ to X , since Definition 3.3.8
asserts that all functions from ∅ to X are equal (why?).

Remark 3.3.12 It is not immediately apparent that Definition 3.3.8 is compatible
with the axioms of equality in Appendix A.7, although Exercise 3.3.1 provides evi-
dence toward this compatibility. There are at least three ways to address this issue.
One is to regard Definition 3.3.8 as an axiom about equality of functions rather than a
definition. Another is to provide amore explicit definition of a function in whichDef-
inition 3.3.8 becomes a theorem; for instance, one can define a function f : X → Y
to be an ordered triple (X,Y,G) consisting of a domain set X , a codomain set Y ,
and a graph G = {(x, f (x)) : x ∈ X} that obeys the vertical line test and use this
latter graph to define the value of f (x) ∈ Y for each element x of the domain; see
Exercise 3.5.10. A third way is to start with a mathematical universe U without any
functions in it and use Definition 3.3.8 to create a larger extension of this universe
that contains function objects that behave as specified as in Definition 3.3.8. This
final procedure however requires a bit more of the formalism of logic and model
theory than is provided by this text, and so will not be detailed here.

A fundamental operation available for functions is composition.

Definition 3.3.13 (Composition). Let f : X → Y and g : Y → Z be two functions,
such that the codomain of f is the same set as the domain of g. We then define the

3 In Chap. 8 of Analysis II, we shall introduce a weaker notion of equality, that of two functions
being equal almost everywhere.
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composition g ◦ f : X → Z of the two functions g and f to be the function defined
explicitly by the formula

(g ◦ f )(x) := g( f (x)).

If the codomain of f does not match the domain of g, we leave the composition
g ◦ f undefined.

It is easy to check that composition obeys the axiom of substitution (Exercise
3.3.1).

Example 3.3.14 Let f : N → N be the function f (n) := 2n, and let g : N → N be
the function g(n) := n + 3. Then g ◦ f is the function

g ◦ f (n) = g( f (n)) = g(2n) = 2n + 3,

thus for instance g ◦ f (1) = 5, g ◦ f (2) = 7, and so forth. Meanwhile, f ◦ g is the
function

f ◦ g(n) = f (g(n)) = f (n + 3) = 2(n + 3) = 2n + 6,

thus for instance f ◦ g(1) = 8, f ◦ g(2) = 10, and so forth.

The above example shows that composition is not commutative: f ◦ g and g ◦ f
are not necessarily the same function. However, composition is still associative:

Lemma 3.3.15 (Composition is associative). Let f : Z → W, g : Y → Z, and
h : X → Y be functions. Then f ◦ (g ◦ h) = ( f ◦ g) ◦ h.

Proof Since g ◦ h is a function from X to Z , f ◦ (g ◦ h) is a function from X toW .
Similarly f ◦ g is a function from Y to W , and hence ( f ◦ g) ◦ h is a function from
X to W . Thus f ◦ (g ◦ h) and ( f ◦ g) ◦ h have the same domain and codomain. In
order to check that they are equal, we see fromDefinition 3.3.8 that we have to verify
that ( f ◦ (g ◦ h))(x) = (( f ◦ g) ◦ h)(x) for all x ∈ X . But by Definition 3.3.13

( f ◦ (g ◦ h))(x) = f ((g ◦ h)(x))

= f (g(h(x))

= ( f ◦ g)(h(x))

= (( f ◦ g) ◦ h)(x)

as desired. �

Remark 3.3.16 Note that while g appears to the left of f in the expression g ◦ f ,
the function g ◦ f applies the right-most function f first, before applying g. This is
often confusing at first; it arises because we traditionally place a function f to the
left of its input x rather than to the right. (There are some alternate mathematical
notations in which the function is placed to the right of the input; thus we would
write x f instead of f (x), but this notation has often proven to be more confusing
than clarifying and has not as yet become particularly popular.)
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We now describe certain special types of functions: one-to-one functions, onto
functions, and invertible functions.

Definition 3.3.17 (One-to-one functions). A function f is one-to-one (or injective)
if different elements map to different elements:

x 	= x ′ =⇒ f (x) 	= f (x ′).

Equivalently, a function is one-to-one if

f (x) = f (x ′) =⇒ x = x ′.

Example 3.3.18 (Informal) The function f : Z → Z defined by f (n) := n2 is not
one-to-one because the distinct elements −1, 1 map to the same element 1. On the
other hand, if we restrict this function to the natural numbers, defining the function
g : N → Z by g(n) := n2, then g is now a one-to-one function. Thus the notion of
a one-to-one function depends not just on what the function does, but also what its
domain is.

Remark 3.3.19 If a function f : X → Y is not one-to-one, then one can find distinct
x and x ′ in the domain X such that f (x) = f (x ′), thus one can find two inputs which
map to one output. Because of this, we say that f is two-to-one instead of one-to-one.

Definition 3.3.20 (Onto functions). A function f is onto (or surjective) if every
element in Y comes from applying f to some element in X :

For every y ∈ Y, there exists x ∈ X such that f (x) = y.

Example 3.3.21 (Informal) The function f : Z → Z defined by f (n) := n2 is not
onto because the negative numbers are not in the image of f . However, if we restrict
the codomain Z to the set A := {n2 : n ∈ Z} of square numbers, then the function
g : Z → A defined by g(n) := n2 is now onto. Thus the notion of an onto function
depends not just on what the function does, but also what its range is.

Remark 3.3.22 The concepts of injectivity and surjectivity are in many ways dual
to each other; see Exercises 3.3.2, 3.3.4, 3.3.5 for some evidence of this.

Definition 3.3.23 (Bijective functions). Functions f : X → Y which are both one-
to-one and onto are also called bijective or invertible.

Example 3.3.24 Let f : {0, 1, 2} → {3, 4} be the function f (0) := 3, f (1) := 3,
f (2) := 4. This function is not bijective because if we set y = 3, then there is more
than one x in {0, 1, 2} such that f (x) = y (this is a failure of injectivity). Now let
g : {0, 1} → {2, 3, 4} be the function g(0) := 2, g(1) := 3; then g is not bijective
because if we set y = 4, then there is no x for which g(x) = y (this is a failure of
surjectivity). Now let h : {0, 1, 2} → {3, 4, 5} be the function h(0) := 3, h(1) := 4,
h(2) := 5. Then h is bijective, because each of the elements 3, 4, 5 comes from
exactly one element from 0, 1, 2.
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Example 3.3.25 The function f : N → N\{0} defined by f (n) := n++ is a bijec-
tion (in fact, this fact is simply restating Lemma 2.2.10). On the other hand, the
function g : N → N defined by the same definition g(n) := n++ is not a bijection.
Thus the notion of a bijective function depends not just on what the function does,
but also what its domain and codomain are.

Remark 3.3.26 If a function x �→ f (x) is bijective, then we sometimes call f a
perfect matching or a one-to-one correspondence (not to be confused with the notion
of a one-to-one function) and denote the action of f using the notation x ↔ f (x)
instead of x �→ f (x). Thus for instance the function h in the above example is the
one-to-one correspondence 0 ↔ 3, 1 ↔ 4, 2 ↔ 5.

Remark 3.3.27 A common error is to say that a function f : X → Y is bijective iff
“for every x in X , there is exactly one y in Y such that y = f (x)”. This is not what it
means for f to be bijective; rather, this is merely stating what it means for f to be a
function. A function cannot map one element to two different elements, for instance
one cannot have a function f for which f (0) = 1 and also f (0) = 2. The functions
f , g given in Example 3.3.25 are not bijective, but they are still functions, since each
input still gives exactly one output.

If f is bijective, then for every y ∈ Y , there is exactly one x such that f (x) = y
(there is at least one because of surjectivity, and at most one because of injectivity).
This value of x is denoted f −1(y); thus f −1 is a function from Y to X . We call f −1

the inverse of f .

— Exercises —

Exercise 3.3.1 Show that the definition of equality in Definition 3.3.8 is reflexive, symmetric, and
transitive. Also verify the substitution property: if f, f̃ : X → Y and g, g̃ : Y → Z are functions
such that f = f̃ and g = g̃, then g ◦ f = g̃ ◦ f̃ . (Of course, these statements are immediate from
the axioms of equality in Appendix A.7 applied directly to the functions in question, but the point of
the exercise is to show that they can also be established by instead applying the axioms of equality
to elements of the domain and codomain of these functions, rather than to the functions itself.)

Exercise 3.3.2 Let f : X → Y and g : Y → Z be functions. Show that if f and g are both injective,
then so is g ◦ f ; similarly, show that if f and g are both surjective, then so is g ◦ f .

Exercise 3.3.3 When is the empty function into a given set X injective? surjective? bijective?

Exercise 3.3.4 In this section we give some cancellation laws for composition. Let f : X → Y ,
f̃ : X → Y , g : Y → Z , and g̃ : Y → Z be functions. Show that if g ◦ f = g ◦ f̃ and g is injective,
then f = f̃ . Is the same statement true if g is not injective? Show that if g ◦ f = g̃ ◦ f and f is
surjective, then g = g̃. Is the same statement true if f is not surjective?

Exercise 3.3.5 Let f : X → Y and g : Y → Z be functions. Show that if g ◦ f is injective, then
f must be injective. Is it true that g must also be injective? Show that if g ◦ f is surjective, then g
must be surjective. Is it true that f must also be surjective?

Exercise 3.3.6 Let f : X → Y be a bijective function, and let f −1 : Y → X be its inverse. Verify
the cancellation laws f −1( f (x)) = x for all x ∈ X and f ( f −1(y)) = y for all y ∈ Y . Conclude
that f −1 is also invertible and has f as its inverse (thus ( f −1)−1 = f ).
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Exercise 3.3.7 Let f : X → Y and g : Y → Z be functions. Show that if f and g are bijective,
then so is g ◦ f , and we have (g ◦ f )−1 = f −1 ◦ g−1.

Exercise 3.3.8 If X is a subset of Y , let ιX→Y : X → Y be the inclusion map from X to Y , defined
by mapping x �→ x for all x ∈ X , i.e., ιX→Y (x) := x for all x ∈ X . The map ιX→X is in particular
called the identity map on X .

(a) Show that if X ⊆ Y ⊆ Z then ιY→Z ◦ ιX→Y = ιX→Z .
(b) Show that if f : A → B is any function, then f = f ◦ ιA→A = ιB→B ◦ f .
(c) Show that, if f : A → B is a bijective function, then f ◦ f −1 = ιB→B and f −1 ◦ f = ιA→A.
(d) Show that if X and Y are disjoint sets, and f : X → Z and g : Y → Z are functions, then there

is a unique function h : X ∪ Y → Z such that h ◦ ιX→X∪Y = f and h ◦ ιY→X∪Y = g.
(e) Show that the hypothesis that X and Y are disjoint can be dropped in (d) if one adds the

additional hypothesis that f (x) = g(x) for all x ∈ X ∩ Y .

3.4 Images and Inverse Images

We know that a function f : X → Y from a set X to a set Y can take individual
elements x ∈ X to elements f (x) ∈ Y . Functions can also take subsets in X to
subsets in Y :

Definition 3.4.1 (Images of sets). If f : X → Y is a function from X to Y , and S is
a subset of X , we define4 f (S) to be the set

f (S) := { f (x) : x ∈ S};

this set is a subset of Y and is sometimes called the image of S under the map f . We
sometimes call f (S) the forward image of S to distinguish it from the concept of the
inverse image f −1(S) of S, which is defined below.

Note that the set f (S) is well-defined thanks to the axiom of replacement (Axiom
3.7). One can also define f (S) using the axiom of specification (Axiom 3.6) instead
of replacement, but we leave this as an exercise to the reader. The image f (X) of
the domain is also known as the range of the function f : X → Y ; it is a subset of
the codomain Y .

Example 3.4.2 If f : N → N is the map f (x) = 2x , then the forward image of
{1, 2, 3} is {2, 4, 6}:

f ({1, 2, 3}) = {2, 4, 6}.

More informally, to compute f (S), we take every element x of S and apply f to
each element individually, and then put all the resulting objects together to form a
new set.

4 In principle this notation could collide with the existing notation f (x) for the evaluation of f at x ,
if S turns out to both be a subset of X and an element of X . However, we will ignore this potential
collision as it rarely occurs in practice.
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In the above example, the image had the same size as the original set. But some-
times the image can be smaller, because f is not one-to-one (see Definition 3.3.17):

Example 3.4.3 (Informal) Let Z be the set of integers (which we will define rigor-
ously in the next section) and let f : Z → Z be the map f (x) = x2, then

f ({−1, 0, 1, 2}) = {0, 1, 4}.

Note that f is not one-to-one because f (−1) = f (1).

Note that
x ∈ S =⇒ f (x) ∈ f (S)

but in general
f (x) ∈ f (S) � x ∈ S;

for instance in the above informal example, f (−2) lies in the set f ({−1, 0, 1, 2}),
but −2 is not in {−1, 0, 1, 2}. The correct statement is

y ∈ f (S) ⇐⇒ y = f (x) for some x ∈ S

(why?).

Example 3.4.4 From Definition 3.3.20 we see that a function f : X → Y is onto if
and only if f (X) = Y .

Definition 3.4.5 (Inverse images) If U is a subset of Y , we define the set f −1(U )

to be the set
f −1(U ) := {x ∈ X : f (x) ∈ U }.

In other words, f −1(U ) consists of all the elements of X which map into U :

f (x) ∈ U ⇐⇒ x ∈ f −1(U ).

We call f −1(U ) the inverse image of U .

Example 3.4.6 If f : N → N is the map f (x) = 2x , then f ({1, 2, 3}) = {2, 4, 6},
but f −1({1, 2, 3}) = {1}. Thus the forward image of {1, 2, 3} and the backwards
image of {1, 2, 3} are quite different sets. Also note that

f ( f −1({1, 2, 3})) 	= {1, 2, 3}

(why?).

Example 3.4.7 (Informal) If f : Z → Z is the map f (x) = x2, then

f −1({0, 1, 4}) = {−2,−1, 0, 1, 2}.
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Note that f does not have to be invertible in order for f −1(U ) to make sense. Also
note that images and inverse images do not quite invert each other, for instance we
have

f −1( f ({−1, 0, 1, 2})) 	= {−1, 0, 1, 2}

(why?).

Remark 3.4.8 If f is a bijective function, then we have defined f −1 in two slightly
different ways, but this is not an issue because the two definitions agree in this case
(Exercise 3.4.1).

As remarked earlier, functions are not necessarily sets. However, we do consider
functions to be a type of object, and in particular we should be able to consider sets
of functions. In particular, we should be able to consider the set of all functions from
a set X to a set Y . To do this we need to introduce another axiom to set theory:

Axiom 3.11 (Power set axiom). Let X and Y be sets. Then there exists a set, denoted
Y X , which consists of all the functions from X to Y , thus

f ∈ Y X ⇐⇒ ( f is a function with domain X and codomain Y ).

Example 3.4.9 Let X = {4, 7} and Y = {0, 1}. Then the set Y X consists of four
functions: the function that maps 4 �→ 0 and 7 �→ 0; the function that maps 4 �→ 0
and 7 �→ 1; the function that maps 4 �→ 1 and 7 �→ 0; and the function that maps
4 �→ 1 and 7 �→ 1. The reason we use the notation Y X to denote this set is that if Y
has n elements and X has m elements, then one can show that Y X has nm elements;
see Proposition 3.6.14(f).

One consequence of this axiom is

Lemma 3.4.10 Let X be a set. Then the set

{Y : Y is a subset of X}

is a set. That is to say, there exists a set Z such that

Y ∈ Z ⇐⇒ Y ⊆ X

for all objects Y .

Proof See Exercise 3.4.6. �
Remark 3.4.11 The set {Y : Y is a subset of X} is known as the power set of X and
is denoted 2X . For instance, if a, b, c are distinct objects, we have

2{a,b,c} = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Note that while {a, b, c} has 3 elements, 2{a,b,c} has 23 = 8 elements. This gives a
hint as to why we refer to the power set of X as 2X ; we return to this issue in Chap. 8.
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For sake of completeness, let us now add one further axiom to our set theory,
in which we enhance the axiom of pairwise union to allow unions of much larger
collections of sets.

Axiom 3.12 (Union). Let A be a set, all of whose elements are themselves sets.
Then there exists a set

⋃
A whose elements are precisely those objects which are

elements of the elements of A, thus for all objects x

x ∈
⋃

A ⇐⇒ (x ∈ S for some S ∈ A).

Example 3.4.12 If A = {{2, 3}, {3, 4}, {4, 5}}, then ⋃
A = {2, 3, 4, 5} (why?).

The axiom of union, combined with the axiom of pair set, implies the axiom of
pairwise union (Exercise 3.4.8). Another important consequence of this axiom is that
if one has some set I , and for every element α ∈ I we have some set Aα , then we
can form the union set

⋃

α∈I Aα by defining

⋃

α∈I
Aα :=

⋃

{Aα : α ∈ I },

which is a set thanks to the axiom of replacement and the axiom of union. Thus
for instance, if I = {1, 2, 3}, A1 := {2, 3}, A2 := {3, 4}, and A3 := {4, 5}, then
⋃

α∈{1,2,3} Aα = {2, 3, 4, 5}. More generally, we see that for any object y,

y ∈
⋃

α∈I
Aα ⇐⇒ (y ∈ Aα for some α ∈ I ). (3.2)

In situations like this, we often refer to I as an index set, and the elements α of this
index set as labels; the sets Aα are then called a family of sets and are indexed by the
labels α ∈ I . Note that if I was empty, then

⋃

α∈I Aα would automatically also be
empty (why?).

We can similarly form intersections of families of sets, as long as the index set is
non-empty. More specifically, given any non-empty set I , and given an assignment
of a set Aα to each α ∈ I , we can define the intersection

⋂

α∈I Aα by first choosing
some element β of I (which we can do since I is non-empty), and setting

⋂

α∈I
Aα := {x ∈ Aβ : x ∈ Aα for all α ∈ I }, (3.3)

which is a set by the axiom of specification. This definition may look like it depends
on the choice of β, but it does not (Exercise 3.4.9). Observe that for any object y,

y ∈
⋂

α∈I
Aα ⇐⇒ (y ∈ Aα for all α ∈ I ) (3.4)

(compare with (3.2)).



3.4 Images and Inverse Images 51

Remark 3.4.13 The axioms of set theory that we have introduced (Axioms 3.1
and 3.12, excluding the dangerous Axiom 3.9) are known as the Zermelo–Fraenkel
axioms of set theory,5 after Ernest Zermelo (1871–1953) and Abraham Fraenkel
(1891–1965). There is one further axiom we will eventually need, the famous axiom
of choice (see Sect. 8.4), giving rise to the Zermelo–Fraenkel–Choice (ZFC) axioms
of set theory, but we will not need this axiom for some time.

— Exercises —

Exercise 3.4.1 Let f : X → Y be a bijective function, and let f −1 : Y → X be its inverse. Let V
be any subset of Y . Prove that the forward image of V under f −1 is the same set as the inverse image
of V under f ; thus the fact that both sets are denoted by f −1(V ) will not lead to any inconsistency.

Exercise 3.4.2 Let f : X → Y be a function from one set X to another set Y , let S be a subset of
X , and let U be a subset of Y .

(i) What, in general, can one say about f −1( f (S)) and S?
(ii) What about f ( f −1(U )) and U?
(iii) What about f −1( f ( f −1(U ))) and f −1(U )?

Exercise 3.4.3 Let A, B be two subsets of a set X , and let f : X → Y be a function. Show that
f (A ∩ B) ⊆ f (A) ∩ f (B), that f (A)\ f (B) ⊆ f (A\B), f (A ∪ B) = f (A) ∪ f (B). For the first
two statements, is it true that the ⊆ relation can be improved to =?

Exercise 3.4.4 Let f : X → Y be a function fromone set X to another setY , and letU, V be subsets
of Y . Show that f −1(U ∪ V ) = f −1(U ) ∪ f −1(V ), that f −1(U ∩ V ) = f −1(U ) ∩ f −1(V ), and
that f −1(U\V ) = f −1(U )\ f −1(V ).

Exercise 3.4.5 Let f : X → Y be a function from one set X to another set Y . Show that
f ( f −1(S)) = S for every S ⊆ Y if and only if f is surjective. Show that f −1( f (S)) = S for
every S ⊆ X if and only if f is injective.

Exercise 3.4.6

(i) Prove Lemma 3.4.10. (Hint: start with the set {0, 1}X and apply the replacement axiom, replac-
ing each function f with the object f −1({1}).) See also Exercise 3.5.11.

(ii) Conversely, show that Axiom 3.11 can be deduced the preceding axioms of set theory if one
accepts Lemma 3.4.10 as an axiom. (This may help explain why we refer to Axiom 3.11 as
the “power set axiom”.)

Exercise 3.4.7 Let X, Y be sets. Define a partial function from X to Y to be any function f : X ′ →
Y ′ whose domain X ′ is a subset of X , and whose codomain Y ′ is a subset of Y . Show that the
collection of all partial functions from X to Y is itself a set. (Hint: use Exercise 3.4.6, the power set
axiom, the replacement axiom, and the union axiom.)

Exercise 3.4.8 Show that Axiom 3.5 can be deduced fromAxiom 3.1, Axiom 3.4, and Axiom 3.12.

Exercise 3.4.9 Show that if β and β ′ are two elements of a set I , and to each α ∈ I we assign a set
Aα , then

{x ∈ Aβ : x ∈ Aα for all α ∈ I } = {x ∈ Aβ ′ : x ∈ Aα for all α ∈ I },
and so the definition of

⋂

α∈I Aα defined in (3.3) does not depend on β. Also explain why (3.4) is
true.

5 These axioms are formulated slightly differently in other texts, but all the formulations can be
shown to be equivalent to each other.
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Exercise 3.4.10 Suppose that I and J are two sets, and for all α ∈ I ∪ J let Aα be a set. Show
that (

⋃

α∈I Aα) ∪ (
⋃

α∈J Aα) = ⋃

α∈I∪J Aα . If I and J are non-empty, show that (
⋂

α∈I Aα) ∩
(
⋂

α∈J Aα) = ⋂

α∈I∪J Aα .

Exercise 3.4.11 Let X be a set, let I be a non-empty set, and for all α ∈ I let Aα be a subset of X .
Show that

X\
⋃

α∈I
Aα =

⋂

α∈I
(X\Aα)

and
X\

⋂

α∈I
Aα =

⋃

α∈I
(X\Aα).

This should be compared with De Morgan’s laws in Proposition 3.1.27 (although one cannot derive
the above identities directly from De Morgan’s laws, as I could be infinite).

3.5 Cartesian Products

In addition to the basic operations of union, intersection, and differencing, another
fundamental operation on sets is that of the Cartesian product. To define this notion,
we first need the concept of an ordered pair.

Definition 3.5.1 (Ordered pair). If x and y are any objects (possibly equal), we
define the ordered pair (x, y) to be a new object, consisting of x as its first component
and y as its second component. Two ordered pairs (x, y) and (x ′, y′) are considered
equal if and only if both their components match, i.e.,

(x, y) = (x ′, y′) ⇐⇒ (x = x ′ and y = y′). (3.5)

This notion of equality is consistent with the usual axioms of equality (Exercise
3.5.3). Thus for instance, the pair (3, 5) is equal to the pair (2 + 1, 3 + 2), but is
distinct from the pairs (5, 3), (3, 3), and (2, 5). (This is in contrast to sets, where
{3, 5} and {5, 3} are equal.)
Remark 3.5.2 Strictly speaking, this definition is partly an axiom, because we have
simply postulated that given any two objects x and y, that an object of the form (x, y)
exists. However, it is possible to define an ordered pair using the axioms of set theory
in such a way that we do not need any further postulates (see Exercise 3.5.1).

Remark 3.5.3 We have now “overloaded” the parenthesis symbols () once again;
they now are not only used to denote grouping of operators and arguments of func-
tions, but also to enclose ordered pairs. This is usually not a problem in practice as
one can still determine what usage the symbols () were intended for from context.

Definition 3.5.4 (Cartesian product). If X and Y are sets, then we define the Carte-
sian product X × Y to be the collection of ordered pairs, whose first component lies
in X and second component lies in Y , thus
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X × Y = {(x, y) : x ∈ X, y ∈ Y }

or equivalently

a ∈ (X × Y ) ⇐⇒ (a = (x, y) for some x ∈ X and y ∈ Y ).

One can show that the Cartesian product X × Y is in fact a set; see Exercise 3.5.1.

Example 3.5.5 If X := {1, 2} and Y := {3, 4, 5}, then

X × Y = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}

and
Y × X = {(3, 1), (4, 1), (5, 1), (3, 2), (4, 2), (5, 2)}.

Thus, strictly speaking, X × Y and Y × X are different sets, although they are very
similar. For instance, they always have the same number of elements (Exercise 3.6.5).

Let f : X × Y → Z be a function whose domain X × Y is a Cartesian product of
two other sets X and Y . Then f can either be thought of as a function of one variable,
mapping the single input of an ordered pair (x, y) in X × Y to an output6 f (x, y) in
Z , or as a function of two variables, mapping an input x ∈ X and another input y ∈ Y
to a single output f (x, y) in Z . While the two notions are technically different, we
will not bother to distinguish the two, and think of f simultaneously as a function of
one variable with domain X × Y and as a function of two variables with domains X
and Y . Thus for instance the addition operation + on the natural numbers can now
be re-interpreted as a function +: N × N → N, defined by (x, y) �→ x + y.

Once one has the notion of an ordered pair, one can also define an ordered triple
(x, y, z) of three objects (x, y, z) by the formula (x, y, z) := ((x, y), z). One could
continue in this fashion and define ordered quadruples, etc., but we shall instead use
a different construction to build ordered n-tuples:

Definition 3.5.6 (Ordered n-tuple and n-fold Cartesian product). Let n be a natural
number. An ordered n-tuple (xi )1≤i≤n (also denoted (x1, . . . , xn)) is a collection of
objects xi , one for every natural number i between 1 and n; we refer to xi as the
i th component of the ordered n-tuple. Two ordered n-tuples (xi )1≤i≤n and (yi )1≤i≤n

are said to be equal iff xi = yi for all 1 ≤ i ≤ n. If (Xi )1≤i≤n is an ordered n-
tuple of sets, we define their Cartesian product

∏

1≤i≤n Xi (also denoted
∏n

i=1 Xi or
X1 × . . . × Xn) by

∏

1≤i≤n

Xi := {(xi )1≤i≤n : xi ∈ Xi for all 1 ≤ i ≤ n}.

6 Here (and in the rest of this text) we adopt the very common practice of abbreviating f ((x, y)) as
f (x, y).
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Again, this definition simply postulates that an ordered n-tuple and a Cartesian
product always exist when needed, but using the axioms of set theory one can explic-
itly construct these objects; see Exercise 3.5.2.

Remark 3.5.7 One can generalize this construction to infinite Cartesian products;
see Definition 8.4.1.

Example 3.5.8 Let a1, b1, a2, b2, a3, b3 be objects, and let X1 := {a1, b1}, X2 :=
{a2, b2}, and X3 := {a3, b3}. Then we have

X1 × X2 × X3 = {(a1, a2, a3), (a1, a2, b3), (a1, b2, a3), (a1, b2, b3),
(b1, a2, a3), (b1, a2, b3), (b1, b2, a3), (b1, b2, b3)}
(X1 × X2) × X3 = {((a1, a2), a3), ((a1, a2), b3), ((a1, b2), a3), ((a1, b2), b3),
((b1, a2), a3), ((b1, a2), b3), ((b1, b2), a3), ((b1, b2), b3)}
X1 × (X2 × X3) = {(a1, (a2, a3)), (a1, (a2, b3)), (a1, (b2, a3)), (a1, (b2, b3)),
(b1, (a2, a3)), (b1, (a2, b3)), (b1, (b2, a3)), (b1, (b2, b3))}.

Thus, strictly speaking, the sets X1 × X2 × X3, (X1 × X2) × X3, and X1 × (X2 ×
X3) are distinct. However, they are clearly very related to each other (for instance,
there are obvious bijections between any two of the three sets), and it is common
in practice to neglect the minor distinctions between these sets and pretend that
they are in fact equal. Thus a function f : X1 × X2 × X3 → Y can be thought of
as a function of one variable (x1, x2, x3) ∈ X1 × X2 × X3, or as a function of three
variables x1 ∈ X1, x2 ∈ X2, x3 ∈ X3, or as a function of two variables x1 ∈ X1,
(x2, x3) ∈ X2 × X3, and so forth; we will not bother to distinguish between these
different perspectives.

Remark 3.5.9 An ordered n-tuple (x1, . . . , xn) of objects is also called an ordered
sequence of n elements, or a finite sequence for short. In Chap. 5 we shall also
introduce the very useful concept of an infinite sequence.

Example 3.5.10 If x is an object, then (x) is a 1-tuple, which we shall identify with
x itself (even though the two are, strictly speaking, not the same object). Then if X1

is any set, then the Cartesian product
∏

1≤i≤1 Xi is just X1 (why?). Also, the empty
Cartesian product

∏

1≤i≤0 Xi gives, not the empty set {}, but rather the singleton set
{()} whose only element is the 0-tuple (), also known as the empty tuple.

If n is a natural number, we often write Xn as shorthand for the n-fold Cartesian
product Xn := ∏

1≤i≤n X . Thus X1 is essentially the same set as X (if we ignore
the distinction between an object x and the 1-tuple (x)), while X2 is essentially the
Cartesian product X × X . The set X0 is a singleton set {()} (why?).

We can now generalize the single choice lemma (Lemma 3.1.5) to allow for
multiple (but finite) number of choices.

Lemma 3.5.11 (Finite choice). Let n ≥ 1 be a natural number, and for each natural
number 1 ≤ i ≤ n, let Xi be a non-empty set. Then there exists an n-tuple (xi )1≤i≤n
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such that xi ∈ Xi for all 1 ≤ i ≤ n. In other words, if each Xi is non-empty, then the
set

∏

1≤i≤n Xi is also non-empty.

Proof We induct on n (starting with the base case n = 1; the claim is also vacuously
true with n = 0 but is not particularly interesting in that case). When n = 1 the
claim follows from Lemma 3.1.5 (why?). Now suppose inductively that the claim
has already been proven for some n; we will now prove it for n++. Let X1, . . . , Xn++
be a collection of non-empty sets. By induction hypothesis, we can find an n-tuple
(xi )1≤i≤n such that xi ∈ Xi for all 1 ≤ i ≤ n. Also, since Xn++ is non-empty, by
Lemma 3.1.5 wemay find an object a such that a ∈ Xn++. If we thus define the n++-
tuple (yi )1≤i≤n++ by setting yi := xi when 1 ≤ i ≤ n and yi := a when i = n++ it
is clear that yi ∈ Xi for all 1 ≤ i ≤ n++, thus closing the induction. �
Remark 3.5.12 It is intuitively plausible that this lemma should be extended to allow
for an infinite number of choices, but this cannot be done automatically; it requires
an additional axiom, the axiom of choice. See Section 8.4.

— Exercises —

Exercise 3.5.1 (i) Supposewe define the ordered pair (x, y) for any objects x and y by the formula
(x, y) := {{x}, {x, y}} (thus using several applications of Axiom 3.4). Thus for instance (1, 2)
is the set {{1}, {1, 2}}, (2, 1) is the set {{2}, {2, 1}}, and (1, 1) is the set {{1}}. Show that such a
definition (known as the Kuratowski definition of an ordered pair) indeed obeys the property
(3.5).

(ii) Suppose we instead define an ordered pair using the alternate definition (x, y) := {x, {x, y}}.
Show that this definition (known as the short definition of an ordered pair) also verifies (3.5)
and is thus also an acceptable definition of ordered pair. (Warning: this is tricky; one needs the
axiom of regularity, and in particular Exercise 3.2.2.)

(iii) Show that regardless of the definition of ordered pair, the Cartesian product X × Y of any two
sets X, Y is again a set. (Hint: first use the axiom of replacement to show that for any x ∈ X ,
that {(x, y) : y ∈ Y } is a set, and then apply the axiom of union.)

Exercise 3.5.2 Suppose we define7 an ordered n-tuple to be a surjective function x : {i ∈ N : 1 ≤
i ≤ n} → X whose codomain is some arbitrary set X (so different ordered n-tuples are allowed to
have different ranges); we then write xi for x(i) and also write x as (xi )1≤i≤n . Using this definition,
verify that we have (xi )1≤i≤n = (yi )1≤i≤n if and only if xi = yi for all 1 ≤ i ≤ n. Also, show that
if (Xi )1≤i≤n are an ordered n-tuple of sets, then the Cartesian product, as defined in Definition
3.5.6, is indeed a set. (Hint: use Exercise 3.4.7 and the axiom of specification.)

Exercise 3.5.3 Show that the definitions of equality for ordered pair and ordered n-tuple are con-
sistent with the reflexivity, symmetry, and transitivity axioms, in the sense that if these axioms are
assumed to hold for the individual components x, y of an ordered pair (x, y), then they hold for the
ordered pair itself.

Exercise 3.5.4 Let A, B,C be sets. Show that A × (B ∪ C) = (A × B) ∪ (A × C), that A × (B ∩
C) = (A × B) ∩ (A × C), and that A × (B\C) = (A × B)\(A × C). (One can of course prove
similar identities inwhich the rôles of the left and right factors of the Cartesian product are reversed.)

7 Technically, this construction of orderedn-tuple is not compatiblewith the constructions of ordered
pairs in Exercise 3.5.1, but this does not cause a difficulty in practice; for instance, one can use the
definition of an ordered 2-tuple here to replace the construction in Exercise 3.5.1, or one can make
a rather pedantic distinction between an ordered 2-tuple and an ordered pair in one’s mathematical
arguments.
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Exercise 3.5.5 Let A, B,C, D be sets. Show that (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D). Is it
true that (A × B) ∪ (C × D) = (A ∪ C) × (B ∪ D)? Is it true that (A × B)\(C × D) = (A\C) ×
(B\D)?

Exercise 3.5.6 Let A, B,C, D be non-empty sets. Show that A × B ⊆ C × D if and only if A ⊆ C
and B ⊆ D, and that A × B = C × D if and only if A = C and B = D. What happens if some or
all of the hypotheses that the A, B,C, D are non-empty are removed?

Exercise 3.5.7 Let X, Y be sets, and let πX×Y→X : X × Y → X and πX×Y→Y : X × Y → Y be
the maps πX×Y→X (x, y) := x and πX×Y→Y (x, y) := y; these maps are known as the co-ordinate
functions on X × Y . Show that for any functions f : Z → X and g : Z → Y , there exists a unique
function h : Z → X × Y such that πX×Y→X ◦ h = f and πX×Y→Y ◦ h = g. (Compare this to the
last part of Exercise 3.3.8, and to Exercise 3.1.7.) This function h is known as the pairing of f and
g and is denoted h = ( f, g).

Exercise 3.5.8 Let X1, . . . , Xn be sets. Show that the Cartesian product
∏n

i=1 Xi is empty if and
only if at least one of the Xi is empty.

Exercise 3.5.9 Suppose that I and J are two sets, and for all α ∈ I let Aα be a set, and for all β ∈ J
let Bβ be a set. Show that (

⋃

α∈I Aα) ∩ (
⋃

β∈J Bβ) = ⋃

(α,β)∈I×J (Aα ∩ Bβ). What happens if one
interchanges all the union and intersection symbols here?

Exercise 3.5.10 If f : X → Y is a function, define the graph of f to be the subset of X × Y defined
by {(x, f (x)) : x ∈ X}.
(i) Show that two functions f : X → Y , f̃ : X → Y are equal if and only if they have the same

graph.
(ii) Conversely, if G is any subset of X × Y with the property that for each x ∈ X , the set {y ∈ Y :

(x, y) ∈ G} has exactly one element (or in other words, G obeys the vertical line test), show
that there is exactly one function f : X → Y whose graph is equal to G.

(iii) Suppose we define8 a function f to be an ordered triple f = (X, Y,G), where X, Y are sets,
and G is a subset of X × Y that obeys the vertical line test. We then define the domain of such
a triple to be X , the codomain to be Y and for every x ∈ X , we define f (x) to be the unique
y ∈ Y such that (x, y) ∈ G. Show that this definition is compatible with Definition 3.3.1 in the
sense that every choice of domain X , codomain Y , and property P(x, y) obeying the vertical
line test produces a function as defined here that obeys all the properties required of it in that
definition, and is also similarly compatible with Definition 3.3.8.

Exercise 3.5.11 Show that Axiom 3.11 can in fact be deduced from Lemma 3.4.10 and the other
axioms of set theory, and thus Lemma 3.4.10 can be used as an alternate formulation of the power
set axiom. (Hint: for any two sets X and Y , use Lemma 3.4.10 and the axiom of specification to
construct the set of all subsets of X × Y which obey the vertical line test. Then use Exercise 3.5.10
and the axiom of replacement.)

Exercise 3.5.12 This exercise will establish a rigorous version of Proposition 2.1.16 that avoids
circularity (in particular, avoiding the use of any object that required Proposition 2.1.16 to construct).

(i) Let X be a set, let f : N × X → X be a function, and let c be an element of X . Show that there
exists a function a : X → X such that

a(0) = c

and
a(n++) = f (n, a(n)) for all n ∈ N,

8 Note that this definition is not circular, because the notion of a function was not used to define
ordered triples or a Cartesian product of two sets.
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and furthermore that this function is unique. (Hint: first show inductively, by a modification
of the proof of Lemma 3.5.11, that for every natural number N ∈ N, there exists a unique
function aN : {n ∈ N : n ≤ N } → X such that aN (0) = c and aN (n++) = f (n, aN (n)) for
all n ∈ N such that n < N .)

(ii) (Warning: this is challenging.) Prove (i) without using any properties of the natural numbers
other than the Peano axioms directly (in particular, without using the ordering of the natural
numbers, and without appealing to Proposition 2.1.16). (Hint: first show inductively, using
only the Peano axioms and basic set theory, that for every natural number N ∈ N, there exists
a unique pair AN , BN of subsets ofNwhich obeys the following properties: (a) AN ∩ BN = ∅,
(b) AN ∪ BN = N, (c) 0 ∈ AN , (d) N++ ∈ BN , (e) Whenever n ∈ BN , we have n++ ∈ BN .
(f) Whenever n ∈ AN and n 	= N , we have n++ ∈ AN . Once one obtains these sets, use AN
as a substitute for {n ∈ N : n ≤ N } in the previous argument.)

Exercise 3.5.13 The purpose of this exercise is to show that there is essentially only one version
of the natural number system in set theory (cf. the discussion in Remark 2.1.12). Suppose we have
a set N′ of “alternative natural numbers”, an “alternative zero” 0′, and an “alternative increment
operation”which takes any alternative natural number n′ ∈ N′ and returns another alternative natural
number n′++′ ∈ N′, such that the Peano axioms (Axioms 2.1-2.5) all holdwith the natural numbers,
zero, and increment replaced by their alternative counterparts. Show that there exists a bijection
f : N → N′ from the natural numbers to the alternative natural numbers such that f (0) = 0′, and
such that for any n ∈ N and n′ ∈ N′, we have f (n) = n′ if and only if f (n++) = n′++′. (Hint:
use Exercise 3.5.12.)

3.6 Cardinality of Sets

In the previous chapter we defined the natural numbers axiomatically, assuming
that they were equipped with a 0 and an increment operation, and assuming five
axioms on these numbers. Philosophically, this is quite different from one of ourmain
conceptualizations of natural numbers—that of cardinality, or measuring how many
elements there are in a set. Indeed, the Peano axiom approach treats natural numbers
more like ordinals than cardinals. (The cardinals are One, Two, Three, ..., and are
used to count how many things there are in a set. The ordinals are First, Second,
Third, ..., and are used to order a sequence of objects. There is a subtle difference
between the two, especially when comparing infinite cardinals with infinite ordinals,
but this is beyond the scope of this text.) We paid a lot of attention to what number
came next after a given number n—which is an operation which is quite natural for
ordinals, but less so for cardinals—but did not address the issue of whether these
numbers could be used to count sets. The purpose of this section is to address this
issue by noting that the natural numbers can be used to count the cardinality of sets,
as long as the set is finite.

The first thing is to work out when two sets have the same size. For instance, it
seems clear that the sets {1, 2, 3} and {4, 5, 6} have the same size, but that both have
a different size from {8, 9}. As an initial attempt to define a notion of size, we could
try to say that two sets have the same size if they have the same number of elements,
but we have not yet defined what the “number of elements” in a set is. Besides, this
runs into problems when a set is infinite.
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The right way to define the concept of “two sets having the same size” is not
immediately obvious, but can be worked out with some thought. One intuitive rea-
son why the sets {1, 2, 3} and {4, 5, 6} have the same size is that one can match the
elements of the first set with the elements in the second set in a one-to-one correspon-
dence: 1 ↔ 4, 2 ↔ 5, 3 ↔ 6. (Indeed, this is how we first learn to count a set: we
correspond the set we are trying to count with another set, such as a set of fingers on
your hand.) We will use this intuitive understanding as our rigorous basis for “having
the same size”.

Definition 3.6.1 (Equal cardinality) We say that two sets X and Y have equal car-
dinality iff there exists a bijection f : X → Y from X to Y .

Example 3.6.2 The sets {0, 1, 2} and {3, 4, 5} have equal cardinality, since we can
find a bijection between the two sets. Note that we do not yet know whether {0, 1, 2}
and {3, 4} have equal cardinality; we know that one of the functions f from {0, 1, 2}
to {3, 4} is not a bijection, but we have not proven yet that there might still be some
other bijection from one set to the other. (It turns out that they do not have equal
cardinality, but we will prove this a little later.) Note that this definition makes sense
regardless of whether X is finite or infinite (in fact, we haven’t even defined what
finite means yet).

Remark 3.6.3 The fact that two sets have equal cardinality does not preclude one of
the sets from containing the other. For instance, if X is the set of natural numbers and
Y is the set of even9 natural numbers, then themap f : X → Y defined by f (n) := 2n
is a bijection from X to Y (why?), and so X and Y have equal cardinality, despite Y
being a subset of X and seeming intuitively as if it should only have “half” of the
elements of X .

The notion of having equal cardinality is an equivalence relation:

Proposition 3.6.4 Let X, Y , Z be sets. Then X has equal cardinality with X. If X
has equal cardinality with Y , then Y has equal cardinality with X. If X has equal
cardinality with Y and Y has equal cardinality with Z, then X has equal cardinality
with Z.

Proof See Exercise 3.6.1. �

Let n be a natural number. Now we want to say when a set X has n elements.
Certainly we want the set {i ∈ N : 1 ≤ i ≤ n} = {1, 2, . . . , n} to have n elements.
(This is true even when n = 0; the set {i ∈ N : 1 ≤ i ≤ 0} is just the empty set.)
Using our notion of equal cardinality, we thus define:

Definition 3.6.5 Let n be a natural number. A set X is said to have cardinality n, iff
it has equal cardinality with {i ∈ N : 1 ≤ i ≤ n}. We also say that X has n elements
iff it has cardinality n.

9 A natural number is even if it is of the form 2n for some natural number n.
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Remark 3.6.6 One can use the set {i ∈ N : i < n} instead of {i ∈ N : 1 ≤ i ≤ n},
since these two sets clearly have equal cardinality. (Why? What is the bijection?)

Example 3.6.7 Let a, b, c, d be distinct objects. Then {a, b, c, d} has the same cardi-
nality as {i ∈ N : i < 4} = {0, 1, 2, 3} or {i ∈ N : 1 ≤ i ≤ 4} = {1, 2, 3, 4} and thus
has cardinality 4. Similarly, the set {a} has cardinality 1.

There might be one problem with this definition: a set might have two different
cardinalities. But this is not possible:

Proposition 3.6.8 (Uniqueness of cardinality) Let X be a set with some cardinality
n. Then X cannot have any other cardinality, i.e., X cannot have cardinality m for
any m 	= n.

Before we prove this proposition, we need a lemma.

Lemma 3.6.9 Suppose that n ≥ 1, and X has cardinality n. Then X is non-empty,
and if x is any element of X, then the set X − {x} (i.e., X with the element x removed)
has cardinality10 n − 1.

Proof If X is empty then it clearly cannot have the same cardinality as the non-
empty set {i ∈ N : 1 ≤ i ≤ n}, as there is no bijection from the empty set to a non-
empty set (why?). Now let x be an element of X . Since X has the same cardinality
as {i ∈ N : 1 ≤ i ≤ n}, we thus have a bijection f from X to {i ∈ N : 1 ≤ i ≤ n}.
In particular, f (x) is a natural number between 1 and n. Now define the function
g : X − {x} → {i ∈ N : 1 ≤ i ≤ n − 1} by the following rule: for any y ∈ X − {x},
we define g(y) := f (y) if f (y) < f (x), and define g(y) := f (y) − 1 if f (y) >

f (x). (Note that f (y) cannot equal f (x) since y 	= x and f is a bijection.) It is easy
to check that this map is also a bijection (why?), and so X − {x} has equal cardi-
nality with {i ∈ N : 1 ≤ i ≤ n − 1}. In particular X − {x} has cardinality n − 1, as
desired. �

Now we prove the proposition.

Proof of Proposition 3.6.8 We induct on n. First suppose that n = 0. Then X must
be empty, and so X cannot have any non-zero cardinality. Now suppose that the
proposition is already proven for some n; we now prove it for n++. Let X have
cardinality n++; and suppose that X also has some other cardinality m 	= n++.
By Lemma 3.6.9, X is non-empty, and if x is any element of X , then X − {x}
has cardinality n and also has cardinality m − 1, by Lemma 3.6.9. By induction
hypothesis, thismeans thatn = m − 1,which implies thatm = n++, a contradiction.
This closes the induction. �

10 Strictly speaking, n − 1 has not yet been defined in this text. For the purposes of this lemma, we
define n − 1 to be the unique natural number m such that m++ = n; this m is given by Lemma
2.2.10.
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Thus, for instance, we now know, thanks to Propositions 3.6.4 and 3.6.8, that the
sets {0, 1, 2} and {3, 4} do not have equal cardinality, since the first set has cardinality
3 and the second set has cardinality 2.

Definition 3.6.10 (Finite sets). A set is finite iff it has cardinality n for some natural
number n; otherwise, the set is called infinite. If X is a finite set, we use #(X) to
denote the cardinality of X .

Example 3.6.11 The sets {0, 1, 2} and {3, 4} are finite, as is the empty set (0 is a
natural number), and #({0, 1, 2}) = 3, #({3, 4}) = 2, and #(∅) = 0.

Now we give an example of an infinite set.

Theorem 3.6.12 The set of natural numbers N is infinite.

Proof Suppose for sake of contradiction that the set of natural numbers N was
finite, so it had some cardinality #(N) = n. By Lemma 3.6.9,N\{0}would then have
cardinality n − 1. But N has equal cardinality with N\{0} (using x �→ x + 1 as the
bijection from the latter to the former), hence n = n − 1, which gives the desired
contradiction. �

Remark 3.6.13 One can also use similar arguments to show that any unbounded
set11 is infinite; for instance the rationalsQ and the reals R (which we will construct
in later chapters) are infinite. However, it is possible for some sets to be “more”
infinite than others; see Sect. 8.3.

Now we relate cardinality with the arithmetic of natural numbers.

Proposition 3.6.14 (Cardinal arithmetic).

(a) Let X be a finite set, and let x be an object which is not an element of X. Then
X ∪ {x} is finite and #(X ∪ {x}) = #(X) + 1.

(b) Let X and Y be finite sets. Then X ∪ Y is finite and #(X ∪ Y ) ≤ #(X) + #(Y ).
If in addition X and Y are disjoint (i.e., X ∩ Y = ∅), then #(X ∪ Y ) = #(X) +
#(Y ).

(c) Let X be a finite set, and let Y be a subset of X. Then Y is finite, and #(Y ) ≤ #(X).
If in addition Y 	= X (i.e., Y is a proper subset of X ), then we have #(Y ) < #(X).

(d) If X is a finite set, and f : X → Y is a function, then f (X) is a finite set with
#( f (X)) ≤ #(X). One has equality #( f (X)) = #(X) if and only if f is one-to-
one.

(e) Let X and Y be finite sets. Then Cartesian product X × Y is finite and #(X ×
Y ) = #(X) × #(Y ).

(f ) Let X and Y be finite sets. Then the set Y X (defined in Axiom 3.11) is finite and
#(Y X ) = #(Y )#(X).

Proof See Exercise 3.6.4. �

11 The notion of a bounded or unbounded set is defined in Definition 9.1.22.
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Remark 3.6.15 Proposition 3.6.14 suggests that there is another way to define the
arithmetic operations of natural numbers; not defined recursively as in Definitions
2.2.1, 2.3.1, 2.3.11, but instead using the notions of union, Cartesian product, and
power set. This is the basis of cardinal arithmetic, which is an alternative foundation
to arithmetic than the Peano arithmetic we have developed here; we will not develop
this arithmetic in this text, but we give some examples of how one would work with
this arithmetic in Exercises 3.6.5, 3.6.6.

This concludes our discussion of finite sets. We shall discuss infinite sets in Chap.
8, oncewe have constructed a fewmore examples of infinite sets (such as the integers,
rationals, and reals).

— Exercises —

Exercise 3.6.1 Prove Proposition 3.6.4.

Exercise 3.6.2 Show that a set X has cardinality 0 if and only if X is the empty set.

Exercise 3.6.3 Let n be a natural number, and let f : {i ∈ N : 1 ≤ i ≤ n} → N be a function. Show
that there exists a natural number M such that f (i) ≤ M for all 1 ≤ i ≤ n. (Hint: induct on n. You
may also want to peek at Lemma 5.1.14.) Thus finite subsets of the natural numbers are bounded.
Use this to give an alternate proof of Theorem 3.6.12 that does not use Lemma 3.6.9.

Exercise 3.6.4 Prove Proposition 3.6.14.

Exercise 3.6.5 Let A and B be sets. Show that A × B and B × A have equal cardinality by con-
structing an explicit bijection between the two sets. Then use Proposition 3.6.14 to conclude an
alternate proof of Lemma 2.3.2.

Exercise 3.6.6 Let A, B, C be sets. Show that the sets (AB)C and AB×C have equal cardinality by
constructing an explicit bijection between the two sets. Conclude that (ab)c = abc for any natural
numbers a, b, c. Use a similar argument to also conclude ab × ac = ab+c.

Exercise 3.6.7 Let A and B be sets. Let us say that A has lesser or equal cardinality to B if there
exists an injection f : A → B from A to B. Show that if A and B are finite sets, then A has lesser
or equal cardinality to B if and only if #(A) ≤ #(B).

Exercise 3.6.8 Let A and B be sets such that there exists an injection f : A → B from A to B (i.e.,
A has lesser or equal cardinality to B). Assume also that A is non-empty. Show that there exists a
surjection g : B → A from B to A. (The converse to this statement requires the axiom of choice;
see Exercise 8.4.3.)

Exercise 3.6.9 Let A and B be finite sets. Show that A ∪ B and A ∩ B are also finite sets, and that
#(A) + #(B) = #(A ∪ B) + #(A ∩ B).

Exercise 3.6.10 Let A1, . . . , An be finite sets such that #(
⋃

i∈{1,...,n} Ai ) > n. Show that there
exists i ∈ {1, . . . , n} such that #(Ai ) ≥ 2. (This is known as the pigeonhole principle.)

Exercise 3.6.11 Let f : X → Y be a function between two sets X, Y . Show that the following are
equivalent:

(a) f is injective.
(b) Whenever E ⊆ X has cardinality #(E) equal to 2, then the image f (E) also has cardinality

#( f (E)) = 2.
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(Note that if X has cardinality less than 2 then the claim in (b) is vacuously true; nevertheless, the
equivalence still holds in this case!) Because of this equivalence, one could refer to an injective
function as a two-to-two function. (This observation is due to John Conway (1937–2020).)

Exercise 3.6.12 For any natural number n, let Sn be the set of all bijections φ : {i ∈ N : 1 ≤ i ≤
n} → {i ∈ N : 1 ≤ i ≤ n} from the set {i ∈ N : 1 ≤ i ≤ n} to itself (such bijections are also known
as permutations of {i ∈ N : 1 ≤ i ≤ n}.
(i) For any natural number n, show that Sn is finite, and #(Sn++) = (n++) × #(Sn). (Hint: parti-

tion Sn++ into n++ subsets, depending on the value φ(n++) a permutation φ : {i ∈ N : 1 ≤
i ≤ n++} → {i ∈ N : 1 ≤ i ≤ n} from the set {i ∈ N : 1 ≤ i ≤ n++} assigns to n++.

(ii) Define the factorial n! of a natural number n recursively by 0! := 1 and (n++)! := (n++) × n!
for all natural numbers n. Show that #(Sn) = n! for all natural numbers n.



Chapter 4
Integers and Rationals

4.1 The Integers

In Chap. 2 we built up most of the basic properties of the natural number system, but
we have reached the limits of what one can do with just addition and multiplication.
We would now like to introduce a new operation, that of subtraction, but to do that
properly we will have to pass from the natural number system to a larger number
system, that of the integers.

Informally, the integers are what you can get by subtracting two natural numbers;
for instance, 3 − 5 should be an integer, as should 6 − 2. This is not a complete def-
inition of the integers, because (a) it doesn’t say when two differences are equal (for
instance we should know why 3 − 5 is equal to 2 − 4, but is not equal to 1 − 6), and
(b) it doesn’t say how to do arithmetic on these differences (how does one add 3 − 5
to 6 − 2?). Furthermore, (c) this definition is circular because it requires a notion of
subtraction, which we can only adequately define once the integers are constructed.
Fortunately, because of our prior experience with integers we knowwhat the answers
to these questions should be. To answer (a), we know from our advanced knowl-
edge in algebra that a − b = c − d happens exactly when a + d = c + b, so we can
characterize equality of differences using only the concept of addition. Similarly,
to answer (b) we know from algebra that (a − b) + (c − d) = (a + c) − (b + d)

and that (a − b)(c − d) = (ac + bd) − (ad + bc). So we will take advantage of
our foreknowledge by building all this into the defn of the integers, as we shall do
shortly.

We still have to resolve (c). To get around this problem we will use the following
work around: we will temporarily write integers not as a difference a − b, but instead
use a new notation a— b to define integers, where the — is a meaningless place-
holder, similar to the comma in the Cartesian co-ordinate notation (x, y) for points
in the plane. Later when we define subtraction we will see that a— b is in fact equal
to a − b, and so we can discard the notation — ; it is only needed right now to avoid
circularity. (These devices are similar to the scaffolding used to construct a building;
they are temporarily essential to make sure the building is built correctly, but once
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the building is completed they are thrown away and never used again.) This may
seem unnecessarily complicated in order to define something that we already are
very familiar with, but we will use this device again to construct the rationals, and
knowing these kinds of constructions will be very helpful in later chapters.

Definition 4.1.1 (Integers). An integer is an expression1 of the form a— b, where a
and b are natural numbers. Two integers are considered to be equal, a— b = c— d,
if and only if a + d = c + b. We let Z denote the set of all integers.

Thus for instance 3—5 is an integer, and is equal to 2—4, because 3 + 4 = 2 + 5.
On the other hand, 3—5 is not equal to 2—3 because 3 + 3 �= 2 + 5. This notation
is strange looking and has a few deficiencies; for instance, 3 is not yet an integer,
because it is not of the form a— b! We will rectify these problems later.

We have to check that this is a legitimate notion of equality. We need to verify
the reflexivity, symmetry, transitivity, and substitution axioms (see Sect. A.7). We
leave reflexivity and symmetry to Exercise 4.1.1 and instead verify the transitivity
axiom. Suppose we know that a— b = c— d and c— d = e— f . Then we have
a + d = c + b and c + f = d + e. Adding the two equations together we obtain
a + d + c + f = c + b + d + e. By Proposition 2.2.6 we can cancel the c and d,
obtaining a + f = b + e, i.e., a— b = e— f . Thus the cancellation lawwas needed
to make sure that our notion of equality is sound. As for the substitution axiom, we
cannot verify it at this stage because we have not yet defined any operations on the
integers. However, when we do define our basic operations on the integers, such
as addition, multiplication, and order, we will have to verify the substitution axiom
at that time in order to ensure that the definition is valid. (We will only need to
do this for the basic operations; more advanced operations on the integers, such as
exponentiation, will be defined in terms of the basic ones, and so we do not need to
reverify the substitution axiom for the advanced operations.)

Now we define two basic arithmetic operations on integers: addition and multi-
plication.

Definition 4.1.2 The sum of two integers, (a— b) + (c— d), is defined by the for-
mula

(a— b) + (c— d) := (a + c)— (b + d).

The product of two integers, (a— b) × (c— d), is defined by

(a— b) × (c— d) := (ac + bd)— (ad + bc).

1 In the language of set theory, what we are doing here is starting with the space N × N of ordered
pairs (a, b) of natural numbers. Then we place an equivalence relation∼ on these pairs by declaring
(a, b) ∼ (c, d) iff a + d = c + b. The set-theoretic interpretation of the symbol a— b is that it is the
space of all pairs equivalent to (a, b): a— b := {(c, d) ∈ N × N : (a, b) ∼ (c, d)}; the existence of
the set Z = {a— b : (a, b) ∈ N × N} of integers then follows from two applications of the axiom
of replacement. However, this interpretation plays no role in how we manipulate the integers and
we will not refer to it again. A similar set-theoretic interpretation can be given to the construction
of the rational numbers later in this chapter, or the real numbers in the next chapter.
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Thus for instance, (3—5) + (1—4) is equal to (4—9). There is however one
thing we have to check before we can accept these definitions—we have to check
that if we replace one of the integers by an equal integer, that the sum or product does
not change. For instance, (3—5) is equal to (2—4), so (3—5) + (1—4) ought to
have the same value as (2—4) + (1—4), otherwise this would not give a consistent
definition of addition. Fortunately, this is the case:

Lemma 4.1.3 (Addition and multiplication are well-defined). Let a, b, a′, b′, c, d
be natural numbers. If (a— b) = (a′ — b′), then (a— b) + (c— d) = (a′ — b′) +
(c— d) and (a— b) × (c— d) = (a′ — b′) × (c— d), and also (c— d) + (a—
b) = (c— d) + (a′ — b′)and (c— d) × (a— b) = (c— d) × (a′ — b′). Thus addi-
tion andmultiplication are well-defined operations (equal inputs give equal outputs).

Proof To prove that (a— b) + (c— d) = (a′ — b′) + (c— d), we evaluate both
sides as (a + c)— (b + d) and (a′ + c)— (b′ + d). Thus we need to show that
a + c + b′ + d = a′ + c + b + d. But since (a— b) = (a′ — b′), we have a + b′ =
a′ + b, and so by adding c + d to both sides we obtain the claim. Now we
show that (a— b) × (c— d) = (a′ — b′) × (c— d). Both sides evaluate to (ac +
bd)— (ad + bc) and (a′c + b′d)— (a′d + b′c), so we have to show that ac +
bd + a′d + b′c = a′c + b′d + ad + bc. But the left-hand side factors as c(a + b′) +
d(a′ + b), while the right factors as c(a′ + b) + d(a + b′). Since a + b′ = a′ + b,
the two sides are equal. The other two identities are proven similarly. �

The integers n—0 behave in the same way as the natural numbers n; indeed
one can check that (n—0) + (m—0) = (n + m)—0 and (n—0) × (m—0) =
nm—0. Furthermore, (n—0) is equal to (m—0) if and only if n = m. (The math-
ematical term for this is that there is an isomorphism between the natural numbers
n and those integers of the form n—0.) Thus we may identify the natural numbers
with integers by setting n ≡ n—0; this does not affect our definitions of addition
or multiplication or equality since they are consistent with each other. For instance
the natural number 3 is now considered to be the same as the integer 3—0, thus
3 = 3—0. In particular 0 is equal to 0—0 and 1 is equal to 1—0. Of course, if we
set n equal to n—0, then it will also be equal to any other integer which is equal to
n—0, for instance 3 is equal not only to 3—0, but also to 4—1, 5—2, etc.

We can now define incrementation on the integers by defining x++ := x + 1
for any integer x ; this is of course consistent with our definition of the increment
operation for natural numbers. However, this is no longer an important operation for
us, as it has been now superceded by the more general notion of addition.

Now we consider some other basic operations on the integers.

Definition 4.1.4 (Negation of integers). If (a— b) is an integer, we define the nega-
tion −(a— b) to be the integer (b— a). In particular if n = n—0 is a positive
natural number, we can define its negation −n = 0— n.

For instance −(3—5) = (5—3). One can check this definition is well-defined
(Exercise 4.1.2).

We can now show that the integers correspond exactly to what we expect.
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Lemma 4.1.5 (Trichotomy of integers). Let x be an integer. Then exactly one of the
following three statements is true: (a) x is zero; (b) x is equal to a positive natural
number n; or (c) x is the negation −n of a positive natural number n.

Proof We first show that at least one of (a), (b), (c) is true. By definition, x = a— b
for some natural numbers a, b. We have three cases: a > b, a = b, or a < b. If
a > b then a = b + c for some positive natural number c, whichmeans that a— b =
c—0 = c, which is (b). If a = b, then a— b = a— a = 0—0 = 0, which is (a).
If a < b, then b > a, so that b— a = n for some natural number n by the previous
reasoning, and thus a— b = −n, which is (c).

Nowwe show that nomore than one of (a), (b), (c) can hold at a time. By definition,
a positive natural number is non-zero, so (a) and (b) cannot simultaneously be true.
If (a) and (c) were simultaneously true, then 0 = −n for some positive natural n;
thus (0—0) = (0— n), so that 0 + n = 0 + 0, so that n = 0, a contradiction. If
(b) and (c) were simultaneously true, then n = −m for some positive n,m, so that
(n—0) = (0—m), so that n + m = 0 + 0, which contradicts Proposition 2.2.8.
Thus exactly one of (a), (b), (c) is true for any integer x . �

If n is a positive natural number, we call n a positive integer, and −n a negative
integer. Thus every integer is positive, zero, or negative, but not more than one of
these at a time.

One could well ask why we don’t use Lemma 4.1.5 to define the integers; i.e., why
didn’t we just say an integer is anything which is either a positive natural number,
zero, or the negative of a natural number. The reason is that if we did so, the rules for
adding and multiplying integers would split into many different cases (e.g., negative
times positive equals positive; negative plus positive is either negative, positive, or
zero, depending on which term is larger, etc.) and to verify all the properties would
end up being much messier.

We now summarize the algebraic properties of the integers.

Proposition 4.1.6 (Laws of algebra for integers). Let x, y, z be integers. Then we
have

x + y = y + x

(x + y) + z = x + (y + z)

x + 0 = 0 + x = x

x + (−x) = (−x) + x = 0

xy = yx

(xy)z = x(yz)

x1 = 1x = x

x(y + z) = xy + xz

(y + z)x = yx + zx .
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Remark 4.1.7 The above set of nine identities have a name; they are asserting that
the integers form a commutative ring. (If one deleted the identity xy = yx , then they
would only assert that the integers form a ring). Note that some of these identities
were already proven for the natural numbers, but this does not automatically mean
that they also hold for the integers because the integers are a larger set than the natural
numbers. On the other hand, this proposition supercedes many of the propositions
derived earlier for natural numbers.

Proof There are two ways to prove these identities. One is to use Lemma 4.1.5 and
split into a lot of cases depending on whether x, y, z are zero, positive, or negative.
This becomes very messy. A shorter way is to write x = (a— b), y = (c— d), and
z = (e— f ) for some natural numbers a, b, c, d, e, f , and expand these identities
in terms of a, b, c, d, e, f and use the algebra of the natural numbers. This allows
each identity to be proven in a few lines. We shall just prove the longest one, namely
(xy)z = x(yz):

(xy)z = ((a— b)(c— d)) (e— f )

= ((ac + bd)— (ad + bc)) (e— f )

= ((ace + bde + ad f + bc f )— (ac f + bd f + ade + bce)) ;
x(yz) = (a— b) ((c— d)(e— f ))

= (a— b) ((ce + d f )— (c f + de))

= ((ace + ad f + bc f + bde)— (ac f + ade + bce + bd f ))

and so one can see that (xy)z and x(yz) are equal. The other identities are proven in
a similar fashion; see Exercise 4.1.4. �

We now define the operation of subtraction x − y of two integers by the formula

x − y := x + (−y).

We do not need to verify the substitution axiom for this operation, since we have
defined subtraction in terms of two other operations on integers, namely addition and
negation, and we have already verified that those operations are well-defined.

One can easily check now that if a and b are natural numbers, then

a − b = a + −b = (a—0) + (0— b) = a— b,

and so a— b is just the same thing as a − b. Because of this we can now discard the
— notation, and use the familiar.

We can nowgeneralize Lemma2.3.3 andCorollary 2.3.7 from the natural numbers
to the integers:

Proposition 4.1.8 (Integers have no zero divisors) Let a and b be integers such that
ab = 0. Then either a = 0 or b = 0 (or both).
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Proof See Exercise 4.1.5. �

Corollary 4.1.9 (Cancellation law for integers) If a, b, c are integers such that
ac = bc and c is non-zero, then a = b.

Proof See Exercise 4.1.6. �

We now extend the notion of order, which was defined on the natural numbers, to
the integers by repeating the definition verbatim:

Definition 4.1.10 (Ordering of the integers) Let n and m be integers. We say that n
is greater than or equal to m, and write n ≥ m or m ≤ n, iff we have n = m + a for
some natural number a. We say that n is strictly greater than m, and write n > m or
m < n, iff n ≥ m and n �= m.

Thus for instance 5 > −3, because 5 = −3 + 8 and 5 �= −3. Clearly this defini-
tion is consistent with the notion of order on the natural numbers, since we are using
the same definition.

Using the laws of algebra in Proposition 4.1.6 it is not hard to show the following
properties of order:

Lemma 4.1.11 (Properties of order). Let a, b, c be integers.

(a) a > b if and only if a − b is a positive natural number.
(b) (Addition preserves order) If a > b, then a + c > b + c.
(c) (Positivemultiplication preserves order) If a > b and c is positive, then ac > bc.
(d) (Negation reverses order) If a > b, then −a < −b.
(e) (Order is transitive) If a > b and b > c, then a > c.
(f ) (Order trichotomy) Exactly one of the statements a > b, a < b, or a = b is true.

Proof See Exercise 4.1.7. �

— Exercises —

Exercise 4.1.1 Verify that the definition of equality on the integers is both reflexive and symmetric.

Exercise 4.1.2 Show that the definition of negation on the integers is well-defined in the sense that
if (a— b) = (a′ — b′), then −(a— b) = −(a′ — b′) (so equal integers have equal negations).

Exercise 4.1.3 Show that (−1) × a = −a for every integer a.

Exercise 4.1.4 Prove the remaining identities in Proposition 4.1.6. (Hint: one can save some work
by using some identities to prove others. For instance, once you know that xy = yx , you get for
free that x1 = 1x , and once you also prove x(y + z) = xy + xz, you automatically get (y + z)x =
yx + zx for free.)

Exercise 4.1.5 ProveProposition 4.1.8. (Hint:while this proposition is not quite the sameasLemma
2.3.3, it is certainly legitimate to use Lemma 2.3.3 in the course of proving Proposition 4.1.8.)

Exercise 4.1.6 Prove Corollary 4.1.9. (Hint: there are twoways to do this. One is to use Proposition
4.1.8 to conclude that a − b must be zero. Another way is to combine Corollary 2.3.7 with Lemma
4.1.5.)
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Exercise 4.1.7 Prove Lemma 4.1.11. (Hint: use the first part of this lemma to prove all the others.)

Exercise 4.1.8 Show that the principle of induction (Axiom 2.5) does not apply directly to the
integers. More precisely, give an example of a property P(n) pertaining to an integer n such that
P(0) is true, and that P(n) implies P(n++) for all integers n, but that P(n) is not true for all
integers n. Thus induction is not as useful a tool for dealing with the integers as it is with the natural
numbers. (The situation becomes even worse with the rational and real numbers, which we shall
define shortly.)

Exercise 4.1.9 Show that the square of an integer is always a natural number. That is to say, prove
that n2 ≥ 0 for every integer n.

4.2 The Rationals

We have now constructed the integers, with the operations of addition, subtraction,
multiplication, and order and verified all the expected algebraic and order-theoretic
properties. Now we will use a similar construction to build the rationals, adding
division to our mix of operations.

Just like the integers were constructed by subtracting two natural numbers, the
rationals can be constructed by dividing two integers, though of course we have to
make the usual caveat that the denominator should be non-zero.2 Of course, just as
two differences a − b and c − d can be equal if a + d = c + b, we know (frommore
advanced knowledge) that two quotients a/b and c/d can be equal if ad = bc. Thus,
in analogy with the integers, we create a new meaningless symbol // (which will
eventually be superceded by division), and define

Definition 4.2.1 A rational number is an expression of the form a//b, where a and
b are integers and b is non-zero; a//0 is not considered to be a rational number. Two
rational numbers are considered to be equal, a//b = c//d, if and only if ad = cb.
The set of all rational numbers is denoted Q.

Thus for instance 3//4 = 6//8 = −3// − 4, but 3//4 �= 4//3. This is a valid def-
inition of equality (Exercise 4.2.1). Nowwe need a notion of addition, multiplication,
and negation. Again, we will take advantage of our pre-existing knowledge, which
tells us that a/b + c/d should equal (ad + bc)/(bd) and that a/b ∗ c/d should equal
ac/bd, while −(a/b) equals (−a)/b. Motivated by this foreknowledge, we define

Definition 4.2.2 If a//b and c//d are rational numbers, we define their sum

(a//b) + (c//d) := (ad + bc)//(bd)

2 There is no reasonable way we can divide by zero, since one cannot have both the identities
(a/b) ∗ b = a and c ∗ 0 = 0 hold simultaneously if b is allowed to be zero and a is non-zero.
Similarly, the identities a/a = 1 and 2 ∗ (a/a) = (2 ∗ a)/a cannot simultaneously hold if 0/0 is
defined. However, we can eventually get a reasonable notion of dividing by a quantity which
approaches zero-think of L’Hôpital’s rule (see Sect. 10.5), which suffices for doing things like
defining differentiation.
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their product
(a//b) ∗ (c//d) := (ac)//(bd)

and the negation
−(a//b) := (−a)//b.

Note that if b and d are non-zero, then bd is also non-zero, by Proposition 4.1.8,
so the sum or product of two rational numbers remains a rational number.

Lemma 4.2.3 The sum, product, and negation operations on rational numbers are
well-defined, in the sense that if one replaces a//b with another rational number
a′//b′ which is equal to a//b, then the output of the above operations remains
unchanged, and similarly for c//d.

Proof We just verify this for addition; we leave the remaining claims to Exercise
4.2.2. Suppose a//b = a′//b′, so that b and b′ are non-zero and ab′ = a′b. We
now show that a//b + c//d = a′//b′ + c//d. By definition, the left-hand side is
(ad + bc)//bd and the right-hand side is (a′d + b′c)//b′d, so we have to show that

(ad + bc)b′d = (a′d + b′c)bd,

which expands to
ab′d2 + bb′cd = a′bd2 + bb′cd.

But since ab′ = a′b, the claim follows. Similarly if one replaces c//d by c′//d ′. �

Wenote that the rational numbers a//1 behave in amanner identical to the integers
a:

(a//1) + (b//1) = (a + b)//1;
(a//1) × (b//1) = (ab//1);

−(a//1) = (−a)//1.

Also, a//1 and b//1 are only equal when a and b are equal. Because of this, we will
identify a with a//1 for each integer a: a ≡ a//1; the above identities then guarantee
that the arithmetic of the integers is consistent with the arithmetic of the rationals.
Thus just as we embedded the natural numbers inside the integers, we embed the
integers inside the rational numbers. In particular, all natural numbers are rational
numbers, for instance 0 is equal to 0//1 and 1 is equal to 1//1.

Observe that a rational number a//b is equal to 0 = 0//1 if and only if a × 1 =
b × 0, i.e., if the numerator a is equal to 0. Thus if a and b are non-zero then so is
a//b.

We now define a new operation on the rationals: reciprocal. If x = a//b is a
non-zero rational (so that a, b �= 0) then we define the reciprocal x−1 of x to be
the rational number x−1 := b//a. It is easy to check that this operation is consistent
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with our notion of equality: if two rational numbers a//b, a′//b′ are equal, then
their reciprocals are also equal. (In contrast, an operation such as “numerator” is not
well-defined: the rationals 3//4 and 6//8 are equal, but have unequal numerators,
so we have to be careful when referring to such terms as “the numerator of x”.) We
however leave the reciprocal of 0 undefined.

We now summarize the algebraic properties of the rationals.

Proposition 4.2.4 (Laws of algebra for rationals) Let x, y, z be rationals. Then the
following laws of algebra hold:

x + y = y + x

(x + y) + z = x + (y + z)

x + 0 = 0 + x = x

x + (−x) = (−x) + x = 0

xy = yx

(xy)z = x(yz)

x1 = 1x = x

x(y + z) = xy + xz

(y + z)x = yx + zx .

If x is non-zero, we also have

xx−1 = x−1x = 1.

Remark 4.2.5 The above set of ten identities have a name; they are asserting that the
rationals Q form a field. This is better than being a commutative ring because of the
tenth identity xx−1 = x−1x = 1. Note that this proposition supercedes Proposition
4.1.6.

Proof To prove this identity, one writes x = a//b, y = c//d, z = e// f for some
integers a, c, e and non-zero integers b, d, f , and verifies each identity in turn using
the algebra of the integers.We shall just prove the longest one, namely (x + y) + z =
x + (y + z):

(x + y) + z = ((a//b) + (c//d)) + (e// f )

= ((ad + bc)//bd) + (e// f )

= (ad f + bc f + bde)//bd f ;
x + (y + z) = (a//b) + ((c//d) + (e// f ))

= (a//b) + ((c f + de)//d f )

= (ad f + bc f + bde)//bd f

and so one can see that (x + y) + z and x + (y + z) are equal. The other identities
are proven in a similar fashion and are left to Exercise 4.2.3. �
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We can now define the quotient x/y of two rational numbers x and y, provided
that y is non-zero, by the formula

x/y := x × y−1.

Thus, for instance

(3//4)/(5//6) = (3//4) × (6//5) = (18//20) = (9//10).

Using this formula, it is easy to see that a/b = a//b for every integer a and every
non-zero integer b. Thus we can now discard the // notation, and use the more
customary a/b instead of a//b.

In a similar spirit, we define subtraction on the rationals by the formula

x − y := x + (−y),

just as we did with the integers.
Proposition 4.2.4 allows us to use all the normal rules of algebra; we will now

proceed to do so without further comment.
In the previous section we organized the integers into positive, zero, and negative

numbers. We now do the same for the rationals.

Definition 4.2.6 A rational number x is said to be positive iff we have x = a/b for
some positive integers a and b. It is said to be negative iff we have x = −y for some
positive rational y (i.e., x = (−a)/b for some positive integers a and b).

Thus for instance, every positive integer is a positive rational number, and every
negative integer is a negative rational number, so our new definition is consistent
with our old one.

Lemma 4.2.7 (Trichotomy of rationals) Let x be a rational number. Then exactly
one of the following three statements is true: (a) x is equal to 0. (b) x is a positive
rational number. (c) x is a negative rational number.

Proof See Exercise 4.2.4. �

Definition 4.2.8 (Ordering of the rationals) Let x and y be rational numbers.We say
that x > y iff x − y is a positive rational number, and x < y iff x − y is a negative
rational number. We write x ≥ y iff either x > y or x = y, and similarly define
x ≤ y.

Proposition 4.2.9 (Basic properties of order on the rationals) Let x, y, z be rational
numbers. Then the following properties hold.

(a) (Order trichotomy) Exactly one of the three statements x = y, x < y, or x > y
is true.

(b) (Order is antisymmetric) One has x < y if and only if y > x.
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(c) (Order is transitive) If x < y and y < z, then x < z.
(d) (Addition preserves order) If x < y, then x + z < y + z.
(e) (Positivemultiplication preserves order) If x < y and z is positive, then xz < yz.

Proof See Exercise 4.2.5. �

Remark 4.2.10 The above five properties in Proposition 4.2.9, combined with the
field axioms in Proposition 4.2.4, have a name: they assert that the rationals Q form
an ordered field. It is important to keep in mind that Proposition 4.2.9(e) only works
when z is positive, see Exercise 4.2.6.

— Exercises —

Exercise 4.2.1 Show that the definition of equality for the rational numbers is reflexive, symmetric,
and transitive. (Hint: for transitivity, use Corollary 4.1.9.)

Exercise 4.2.2 Prove the remaining components of Lemma 4.2.3.

Exercise 4.2.3 Prove the remaining components of Proposition 4.2.4. (Hint: as with Proposition
4.1.6, you can save some work by using some identities to prove others.)

Exercise 4.2.4 Prove Lemma 4.2.7. (Note that, as in Proposition 2.2.13, you have to prove two
different things: firstly, that at least one of (a), (b), (c) is true; and secondly, that at most one of (a),
(b), (c) is true.)

Exercise 4.2.5 Prove Proposition 4.2.9.

Exercise 4.2.6 Show that if x , y, z are rational numbers such that x < y and z is negative, then
xz > yz.

4.3 Absolute Value and Exponentiation

We have already introduced the four basic arithmetic operations of addition, sub-
traction, multiplication, and division on the rationals. (Recall that subtraction and
division came from the more primitive notions of negation and reciprocal by the
formulae x − y := x + (−y) and x/y := x × y−1.) We also have a notion of order
<, and have organized the rationals into the positive rationals, the negative rationals,
and zero. In short, we have shown that the rationals Q form an ordered field.

One can now use these basic operations to construct more operations. There are
many such operations we can construct, but we shall just introduce two particularly
useful ones: absolute value and exponentiation.

Definition 4.3.1 (Absolute value) If x is a rational number, the absolute value |x | of
x is defined as follows. If x is positive, then |x | := x . If x is negative, then |x | := −x .
If x is zero, then |x | := 0.

Definition 4.3.2 (Distance) Let x and y be rational numbers. The quantity |x −
y| is called the distance between x and y and is sometimes denoted d(x, y), thus
d(x, y) := |x − y|. For instance, d(3, 5) = 2.
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Proposition 4.3.3 (Basic properties of absolute value and distance) Let x, y, z be
rational numbers.

(a) (Non-degeneracy of absolute value) We have |x | ≥ 0. Also, |x | = 0 if and only
if x is 0.

(b) (Triangle inequality for absolute value) We have |x + y| ≤ |x | + |y|.
(c) We have the inequalities −y ≤ x ≤ y if and only if y ≥ |x |. In particular, we

have −|x | ≤ x ≤ |x |.
(d) (Multiplicativity of absolute value)Wehave |xy| = |x | |y|. In particular, | − x | =

|x |.
(e) (Non-degeneracy of distance) We have d(x, y) ≥ 0. Also, d(x, y) = 0 if and

only if x = y.
(f ) (Symmetry of distance) d(x, y) = d(y, x).
(g) (Triangle inequality for distance) d(x, z) ≤ d(x, y) + d(y, z).

Proof See Exercise 4.3.1. �

Absolute value is useful for measuring how “close” two numbers are. Let us make
a somewhat artificial definition:

Definition 4.3.4 (ε-closeness) Let ε > 0 be a rational number, and let x, y be ratio-
nal numbers. We say that y is ε-close to x iff we have d(y, x) ≤ ε.

Remark 4.3.5 This definition is not standard in mathematics textbooks; we will use
it as “scaffolding” to construct the more important notions of limits (and of Cauchy
sequences) later on, and once we have those more advanced notions we will discard
the notion of ε-close.

Examples 4.3.6 Thenumbers 0.99and1.01are 0.1-close, but they are not 0.01close,
because d(0.99, 1.01) = |0.99 − 1.01| = 0.02 is larger than 0.01. The numbers 2
and 2 are ε-close for every positive ε.

We do not bother defining a notion of ε-close when ε is zero or negative, because
if ε is zero then x and y are only ε-close when they are equal, and when ε is negative
then x and y are never ε-close. (In any event it is a long-standing tradition in analysis
that the Greek letters ε, δ should only denote small positive numbers.)

Some basic properties of ε-closeness are the following.

Proposition 4.3.7 Let x, y, z, w be rational numbers.

(a) If x = y, then x is ε-close to y for every ε > 0. Conversely, if x is ε-close to y
for every ε > 0, then we have x = y.

(b) Let ε > 0. If x is ε-close to y, then y is ε-close to x.
(c) Let ε, δ > 0. If x is ε-close to y, and y is δ-close to z, then x and z are (ε + δ)-

close.
(d) Let ε, δ > 0. If x and y are ε-close, and z and w are δ-close, then x + z and

y + w are (ε + δ)-close, and x − z and y − w are also (ε + δ)-close.
(e) Let ε > 0. If x and y are ε-close, they are also ε′-close for every ε′ > ε.
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(f ) Let ε > 0. If y and z are both ε-close to x, and w is between y and z (i.e.,
y ≤ w ≤ z or z ≤ w ≤ y), then w is also ε-close to x.

(g) Let ε > 0. If x and y are ε-close, and z is non-zero, then xz and yz are ε|z|-close.
(h) Let ε, δ > 0. If x and y are ε-close, and z and w are δ-close, then xz and yw

are (ε|z| + δ|x | + εδ)-close.

Proof We only prove the most difficult one, (h); we leave (a)–(g) to Exercise 4.3.2.
Let ε, δ > 0, and suppose that x and y are ε-close. If we write a := y − x , then we
have y = x + a and that |a| ≤ ε. Similarly, if z and w are δ-close, and we define
b := w − z, then w = z + b and |b| ≤ δ.

Since y = x + a and w = z + b, we have

yw = (x + a)(z + b) = xz + az + xb + ab.

Thus

|yw − xz| = |az + bx + ab| ≤ |az| + |bx | + |ab| = |a||z| + |b||x | + |a||b|.

Since |a| ≤ ε and |b| ≤ δ, we thus have

|yw − xz| ≤ ε|z| + δ|x | + εδ

and thus that yw and xz are (ε|z| + δ|x | + εδ)-close. �

Remark 4.3.8 One should compare statements (a)–(c) of this proposition with the
reflexive, symmetric, and transitive axioms of equality. It is often useful to think of
the notion of “ε-close” as an approximate substitute for that of equality in analysis.

Now we recursively define exponentiation for natural number exponents, extend-
ing the previous definition in Definition 2.3.11.

Definition 4.3.9 (Exponentiation to a natural number) Let x be a rational number.
To raise x to the power 0, we define x0 := 1; in particular we define 00 := 1. Now
suppose inductively that xn has been defined for some natural number n, then we
define xn+1 := xn × x .

Proposition 4.3.10 (Properties of exponentiation, I) Let x, y be rational numbers,
and let n,m be natural numbers.

(a) We have xnxm = xn+m, (xn)m = xnm, and (xy)n = xn yn.
(b) Suppose n > 0. Then we have xn = 0 if and only if x = 0.
(c) If x ≥ y ≥ 0, then xn ≥ yn ≥ 0. If x > y ≥ 0 and n > 0, then xn > yn ≥ 0.
(d) We have |xn| = |x |n.
Proof See Exercise 4.3.3. �

Now we define exponentiation for negative integer exponents.
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Definition 4.3.11 (Exponentiation to a negative number) Let x be a non-zero ratio-
nal number. Then for any negative integer −n, we define x−n := 1/xn .

Thus for instance x−3 = 1/x3 = 1/(x × x × x). Note that when n = 1, the defi-
nition of x−1 provided by Definition 4.3.11 coincides with the reciprocal of x defined
in Sect. 4.2, so there is no incompatibility of notation caused by this new definition.

We now have xn defined for any integer n, whether n is positive, negative, or
zero. Exponentiation with integer exponents has the following properties (which
supercede Proposition 4.3.10):

Proposition 4.3.12 (Properties of exponentiation, II) Let x, y be non-zero rational
numbers, and let n,m be integers.

(a) We have xnxm = xn+m, (xn)m = xnm, and (xy)n = xn yn.
(b) If x ≥ y > 0, then xn ≥ yn > 0 if n is positive, and 0 < xn ≤ yn if n is negative.
(c) If x, y > 0, n �= 0, and xn = yn, then x = y.
(d) We have |xn| = |x |n.
Proof See Exercise 4.3.4. �

— Exercises —

Exercise 4.3.1 Prove Proposition 4.3.3. (Hint: while all of these claims can be proven by dividing
into cases, such as when x is positive, negative, or zero, several parts of the proposition can be
proven without such a tedious division into cases. For instance one can use earlier parts of the
proposition to prove later ones.)

Exercise 4.3.2 Prove the remaining claims in Proposition 4.3.7.

Exercise 4.3.3 Prove Proposition 4.3.10. (Hint: use induction.)

Exercise 4.3.4 Prove Proposition 4.3.12. (Hint: induction is not suitable here. Instead, use Propo-
sition 4.3.10.)

Exercise 4.3.5 Prove that 2N ≥ N for all positive integers N . (Hint: use induction.)

4.4 Gaps in the Rational Numbers

Imagine that we arrange the rationals on a line, arranging x to the right of y if x > y.
(This is a non-rigorous arrangement, since we have not yet defined the concept of a
line, but this discussion is only intended to motivate the more rigorous propositions
below.) Inside the rationals we have the integers, which are thus also arranged on the
line. Now we work out how the rationals are arranged with respect to the integers.

Proposition 4.4.1 (Interspersing of integers by rationals). Let x be a rational num-
ber. Then there exists an integer n such that n ≤ x < n + 1. In fact, this integer is
unique (i.e., for each x there is only one n for which n ≤ x < n + 1). In particular,
there exists a natural number N such that N > x (i.e., there is no such thing as a
rational number which is larger than all the natural numbers).
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Remark 4.4.2 The integer n for which n ≤ x < n + 1 is sometimes referred to as
the integer part of x and is sometimes denoted n = 
x�.
Proof See Exercise 4.4.1. �

Also, between every two rational numbers there is at least one additional rational:

Proposition 4.4.3 (Interspersing of rationals by rationals). If x and y are two ratio-
nals such that x < y, then there exists a third rational z such that x < z < y.

Proof We set z := (x + y)/2. Since x < y, and 1/2 = 1//2 is positive, we have
from Proposition 4.2.9 that x/2 < y/2. If we add y/2 to both sides using Proposition
4.2.9 we obtain x/2 + y/2 < y/2 + y/2, i.e., z < y. If we instead add x/2 to both
sides we obtain x/2 + x/2 < y/2 + x/2, i.e., x < z. Thus x < z < y as desired. �

Despite the rationals having this denseness property, they are still incomplete;
there are still an infinite number of “gaps” or “holes” between the rationals, although
this denseness property does ensure that these holes are in some sense infinitely
small. For instance, we will now show that the rational numbers do not contain any
square root of two.

Proposition 4.4.4 There does not exist any rational number x for which x2 = 2.

Proof We only give a sketch of a proof; the gaps will be filled in Exercise 4.4.3.
Suppose for sake of contradiction that we had a rational number x for which x2 = 2.
Clearly x is not zero. We may assume that x is positive, for if x were negative then
we could just replace x by −x (since x2 = (−x)2). Thus x = p/q for some positive
integers p, q, so (p/q)2 = 2, which we can rearrange as p2 = 2q2. Define a natural
number p to be even if p = 2k for some natural number k, and odd if p = 2k + 1
for some natural number k. Every natural number is either even or odd, but not both
(why?). If p is odd, then p2 is also odd (why?), which contradicts p2 = 2q2. Thus
p is even, i.e., p = 2k for some natural number k. Since p is positive, k must also
be positive. Inserting p = 2k into p2 = 2q2 we obtain 4k2 = 2q2, so that q2 = 2k2.

To summarize, we started with a pair (p, q) of positive integers such that p2 =
2q2, and ended up with a pair (q, k) of positive integers such that q2 = 2k2. Since
p2 = 2q2, we have q < p (why?). If we rewrite p′ := q and q ′ := k, we thus can
pass from one solution (p, q) to the equation p2 = 2q2 to a new solution (p′, q ′)
to the same equation which has a smaller value of p. But then we can repeat this
procedure again and again, obtaining a sequence (p′′, q ′′), (p′′′, q ′′′), etc., of solutions
to p2 = 2q2, each one with a smaller value of p than the previous, and each one
consisting of positive integers. But this contradicts the principle of infinite descent
(see Exercise 4.4.2). This contradiction shows that we could not have had a rational
x for which x2 = 2. �

On the other hand, we can get rational numbers which are arbitrarily close to a
square root of 2:
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Proposition 4.4.5 For every rational number ε > 0, there exists a non-negative
rational number x such that x2 < 2 < (x + ε)2.

Proof Let ε > 0 be rational. Suppose for sake of contradiction that there is no non-
negative rational number x for which x2 < 2 < (x + ε)2. This means that whenever
x is non-negative and x2 < 2, we must also have (x + ε)2 < 2 (note that (x + ε)2

cannot equal 2, by Proposition 4.4.4). Since 02 < 2, we thus have ε2 < 2, which
then implies (2ε)2 < 2, and indeed a simple induction shows that (nε)2 < 2 for
every natural number n. (Note that nε is non-negative for every natural number n -
why?) But, by Proposition 4.4.1 we can find an integer n such that n > 2/ε, which
implies that nε > 2, which implies that (nε)2 > 4 > 2, contradicting the claim that
(nε)2 < 2 for all natural numbers n. This contradiction gives the proof. �
Example 4.4.6 If3 ε = 0.001, we can take x = 1.414, since x2 = 1.999396 and
(x + ε)2 = 2.002225.

Proposition 4.4.5 indicates that, while the setQ of rationals does not actually have√
2 as a member, we can get as close as we wish to

√
2. For instance, the sequence

of rationals
1.4, 1.41, 1.414, 1.4142, 1.41421, . . .

seem to get closer and closer to
√
2, as their squares indicate:

1.96, 1.9881, 1.99396, 1.99996164, 1.9999899241, . . .

Thus it seems that we can create a square root of 2 by taking a “limit” of a sequence of
rationals. This is how we shall construct the real numbers in the next chapter. (There
is another way to do so, using something called “Dedekind cuts”, which we will not
pursue here. One can also proceed using infinite decimal expansions, but there are
some sticky issues when doing so, e.g., one has to make 0.999 . . . equal to 1.000 . . .,
and this approach, despite being the most familiar, is actuallymore complicated than
other approaches; see Appendix B.)

— Exercises —

Exercise 4.4.1 Prove Proposition 4.4.1. (Hint: use Proposition 2.3.9.)

Exercise 4.4.2 Adefinition: a sequence a0, a1, a2, . . . of numbers (natural numbers, integers, ratio-
nals, or reals) is said to be in infinite descent if we have an > an+1 for all natural numbers n (i.e.,
a0 > a1 > a2 > . . .).

(a) Prove the principle of infinite descent: that it is not possible to have a sequence of natural
numbers which is in infinite descent. (Hint: assume for sake of contradiction that you can find
a sequence of natural numbers which is in infinite descent. Since all the an are natural numbers,
you know that an ≥ 0 for all n. Now use induction to show in fact that an ≥ k for all k ∈ N
and all n ∈ N, and obtain a contradiction.)

3 We will use the decimal system for defining terminating decimals, for instance 1.414 is defined
to equal the rational number 1414/1000. For a formal discussion on the decimal system, see
Appendix B.
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(b) Does the principle of infinite descent work if the sequence a1, a2, a3, . . . is allowed to take
integer values instead of natural number values? What about if it is allowed to take positive
rational values instead of natural numbers? Explain.

Exercise 4.4.3 Fill in the gaps marked (why?) in the proof of Proposition 4.4.4. Is the axiom of
choice required to establish this proposition?



Chapter 5
The Real Numbers

To review our progress to date, we have rigorously constructed three fundamental
number systems: the natural number system N, the integers Z, and the rationals Q.1

We defined the natural numbers using the five Peano axioms and postulated that such
a number system existed; this is plausible, since the natural numbers correspond to
the very intuitive and fundamental notion of sequential counting. Using that number
system one could then recursively define addition and multiplication, and verify that
they obeyed the usual laws of algebra. We then constructed the integers by taking
formal2 differences of the natural numbers, a— b. We then constructed the rationals
by taking formal quotients of the integers, a//b, althoughwe need to exclude division
by zero in order to keep the laws of algebra reasonable. (You are of course free to
design your own number system, possibly including one where division by zero
is permitted; but you will have to give up one or more of the field axioms from
Proposition 4.2.4, among other things, and youwill probably get a less useful number
system in which to do any real-world problems.)

The rational system is already sufficient to do a lot of mathematics—much of high
school algebra, for instance, works just fine if one only knows about the rationals.
However, there is a fundamental area of mathematics where the rational number
system does not suffice—that of geometry (the study of lengths, areas, etc.). For
instance, a right-angled triangle with both sides equal to 1 gives a hypotenuse of√
2, which is an irrational number, i.e., not a rational number; see Proposition 4.4.4.

1 The symbols N, Q, and R stand for “natural”, “quotient”, and “real” respectively. Z stands for
“Zahlen”, the German word for “numbers”. There is also the complex numbers C, which obviously
stands for “complex”, which you will see in Sect. 4.6 of Analysis II.
2 Formal means “having the form of”; at the beginning of our construction the expression a— b
did not actually mean the difference a − b, since the symbol — was meaningless. It only had the
form of a difference. Later on we defined subtraction and verified that the formal difference was
equal to the actual difference, so this eventually became a non-issue, and our symbol for formal
differencing was discarded. Somewhat confusingly, this use of the term “formal” is unrelated to the
notions of a formal argument and an informal argument.
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Things get even worse when one starts to deal with the subfield of geometry known
as trigonometry, when one sees numbers such as π or cos(1), which turn out to
be in some sense “even more” irrational than

√
2. (These numbers are known as

transcendental numbers, but to discuss this further would be far beyond the scope
of this text.) Thus, in order to have a number system which can adequately describe
geometry—or even something as simple as measuring lengths on a line—one needs
to replace the rational number systemwith the real number system. Since differential
and integral calculus is also intimately tied up with geometry—think of slopes of
tangents, or areas under a curve—calculus also requires the real number system in
order to function properly.

However, a rigorous way to construct the reals from the rationals turns out to
be somewhat difficult—requiring a bit more machinery than what was needed to
pass from the naturals to the integers, or the integers to the rationals. In those two
constructions, the task was to introduce one more algebraic operation to the number
system—e.g., one can get integers from naturals by introducing subtraction, and get
the rationals from the integers by introducing division. But to get the reals from the
rationals is to pass from a “discrete” system to a “continuous” one and requires the
introduction of a somewhat different notion—that of a limit. The limit is a concept
which on one level is quite intuitive, but to pin down rigorously turns out to be quite
challenging. (Even such great mathematicians as Euler and Newton had difficulty
with this concept. It was only in the nineteenth century that mathematicians such as
Cauchy and Dedekind figured out how to deal with limits rigorously.)

In Sect. 4.4 we explored the “gaps” in the rational numbers; now we shall fill in
these gaps using limits to create the real numbers. The real number system will end
up being a lot like the rational numbers but will have some new operations—notably
that of supremum, which can then be used to define limits and thence to everything
else that calculus needs.

The procedurewe give here of obtaining the real numbers as the limit of sequences
of rational numbers may seem rather complicated. However, it is in fact an instance
of a very general and useful procedure, that of completing one metric space to form
another; see Exercise 1.4.8 of Analysis II.

5.1 Cauchy Sequences

Our construction of the real numbers shall rely on the concept of aCauchy sequence.
Before we define this notion formally, let us first define the concept of a sequence.

Definition 5.1.1 (Sequences). Let m be an integer. A sequence (an)∞n=m of rational
numbers is any function from the set {n ∈ Z : n ≥ m} to Q, i.e., a mapping which
assigns to each integer n greater than or equal to m, a rational number an . More
informally, a sequence (an)∞n=m of rational numbers is a collection of rationals am ,
am+1, am+2, . . ..



5.1 Cauchy Sequences 83

Example 5.1.2 The sequence (n2)∞n=0 is the collection 0, 1, 4, 9, . . . of natural num-
bers; the sequence (3)∞n=0 is the collection 3, 3, 3, . . . of natural numbers. These
sequences are indexed starting from 0, but we can of course make sequences starting
from 1 or any other number; for instance, the sequence (an)∞n=3 denotes the sequence
a3, a4, a5, . . ., so (n2)∞n=3 is the collection 9, 16, 25, . . . of natural numbers.

We want to define the real numbers as the limits of sequences of rational numbers.
To do so, we have to distinguish which sequences of rationals are convergent and
which ones are not. For instance, the sequence

1.4, 1.41, 1.414, 1.4142, 1.41421, . . .

looks like it is trying to converge to something, as does

0.1, 0.01, 0.001, 0.0001, . . .

while other sequences such as

1, 2, 4, 8, 16, . . .

or
1, 0, 1, 0, 1, . . .

do not. To do this we use the definition of ε-closeness defined earlier. Recall from
Definition 4.3.4 that two rational numbers x , y are ε-close if d(x, y) = |x − y| ≤ ε.

Definition 5.1.3 (ε-steadiness).Let ε > 0. A sequence (an)∞n=0 is said to be ε-steady
iff each pair a j , ak of sequence elements is ε-close for every natural number j, k. In
other words, the sequence a0, a1, a2, . . . is ε-steady iff |a j − ak | ≤ ε for all j, k.

Remark 5.1.4 This definition is not standard in the literature; we will not need it
outside of this section; similarly for the concept of “eventual ε-steadiness” below.
We have defined ε-steadiness for sequences whose index starts at 0, but clearly we
can make a similar notion for sequences whose indices start from any other number:
a sequence aN , aN+1, . . . is ε-steady if one has |a j − ak | ≤ ε for all j, k ≥ N .

Example 5.1.5 The sequence 1, 0, 1, 0, 1, . . . is 1-steady but is not 1/2-steady. The
sequence 0.1, 0.01, 0.001, 0.0001, . . . is 0.1-steady, but is not 0.01-steady (why?).
The sequence 1, 2, 4, 8, 16, . . . is not ε-steady for any ε (why?). The sequence
2, 2, 2, 2, . . . is ε-steady for every ε > 0.

The notion of ε-steadiness of a sequence is simple, but does not really capture the
limiting behavior of a sequence, because it is too sensitive to the initial members of
the sequence. For instance, the sequence

10, 0, 0, 0, 0, 0, . . .
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is 10-steady, but is not ε-steady for any smaller value of ε, despite the sequence
converging almost immediately to zero. Soweneed amore robust notion of steadiness
that does not care about the initial members of a sequence.

Definition 5.1.6 (Eventual ε-steadiness).Let ε > 0.A sequence (an)∞n=0 is said to be
eventually ε-steady iff the sequence aN , aN+1, aN+2, . . . is ε-steady for some natural
number N ≥ 0. In other words, the sequence a0, a1, a2, . . . is eventually ε-steady iff
there exists an N ≥ 0 such that |a j − ak | ≤ ε for all j, k ≥ N .

Example 5.1.7 The sequence a1, a2, . . . defined by an := 1/n, (i.e., the sequence
1, 1/2, 1/3, 1/4, . . .) is not 0.1-steady, but is eventually 0.1-steady, because the
sequence a10, a11, a12, . . . (i.e., 1/10, 1/11, 1/12, . . .) is 0.1-steady. The sequence
10, 0, 0, 0, 0, . . . is not ε-steady for any ε less than 10, but it is eventually ε-steady
for every ε > 0 (why?).

Now we can finally define the correct notion of what it means for a sequence of
rationals to “want” to converge.

Definition 5.1.8 (Cauchy sequences). A sequence (an)∞n=0 of rational numbers is
said to be a Cauchy sequence iff for every rational ε > 0, the sequence (an)∞n=0 is
eventually ε-steady. In other words, the sequence a0, a1, a2, . . . is a Cauchy sequence
iff for every ε > 0, there exists an N ≥ 0 such that d(a j , ak) ≤ ε for all j, k ≥ N .

Remark 5.1.9 At present, the parameter ε is restricted to be a positive rational; we
cannot take ε to be an arbitrary positive real number, because the real numbers have
not yet been constructed. However, once we do construct the real numbers, we shall
see that the above definition will not change if we require ε to be real instead of
rational. In other words, we will eventually prove that a sequence is eventually ε-
steady for every rational ε > 0 if and only if it is eventually ε-steady for every real
ε > 0; see Proposition 6.1.4. This rather subtle distinction between a rational ε and
a real ε turns out not to be very important in the long run, and the reader is advised
not to pay too much attention as to what type of number ε should be.

Example 5.1.10 (Informal) Consider the sequence

1.4, 1.41, 1.414, 1.4142, . . .

mentioned earlier. This sequence is already 0.1-steady. If one discards the first ele-
ment 1.4, then the remaining sequence

1.41, 1.414, 1.4142, . . .

is now 0.01-steady, which means that the original sequence was eventually 0.01-
steady. Discarding the next element gives the 0.001-steady sequence 1.414, 1.4142,
. . .; thus the original sequence was eventually 0.001-steady. Continuing in this way
it seems plausible that this sequence is in fact ε-steady for every ε > 0, which seems
to suggest that this is a Cauchy sequence. However, this discussion is not rigorous
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for several reasons, for instance we have not precisely defined what this sequence
1.4, 1.41, 1.414, . . . really is. An example of a rigorous treatment follows next.

Proposition 5.1.11 The sequence a1, a2, a3, . . . defined by an := 1/n (i.e., the
sequence 1, 1/2, 1/3, . . .) is a Cauchy sequence.

Proof We have to show that for every ε > 0, the sequence a1, a2, . . . is eventually
ε-steady. So let ε > 0 be arbitrary. We now have to find a number N ≥ 1 such that
the sequence aN , aN+1, . . . is ε-steady. Let us see what this means. This means that
d(a j , ak) ≤ ε for every j, k ≥ N , i.e.

|1/j − 1/k| ≤ ε for every j, k ≥ N .

Nowsince j, k ≥ N , we know that 0 < 1/j, 1/k ≤ 1/N , so that |1/j − 1/k| ≤ 1/N .
So in order to force |1/j − 1/k| to be less than or equal to ε, it would be sufficient
for 1/N to be less than ε. So all we need to do is choose an N such that 1/N is less
than ε, or in other words that N is greater than 1/ε. But this can be done thanks to
Proposition 4.4.1. �

As you can see, verifying from first principles (i.e., without using any of the
machinery of limits, etc.) that a sequence is a Cauchy sequence requires some effort,
even for a sequence as simple as 1/n. The part about selecting an N can be particularly
difficult for beginners—one has to think in reverse, working out what conditions on
N would suffice to force the sequence aN , aN+1, aN+2, . . . to be ε-steady, and then
finding an N which obeys those conditions. Later we will develop some limit laws
which allow us to determine when a sequence is Cauchy more easily.

We now relate the notion of a Cauchy sequence to another basic notion, that of a
bounded sequence.

Definition 5.1.12 (Bounded sequences). Let M ≥ 0 be rational. A finite sequence
a1, a2, . . . , an is bounded by M iff |ai | ≤ M for all 1 ≤ i ≤ n. An infinite sequence
(an)∞n=1 is bounded by M iff |ai | ≤ M for all i ≥ 1. A sequence is said to be bounded
iff it is bounded by M for some rational M ≥ 0.

Example 5.1.13 The finite sequence 1,−2, 3,−4 is bounded (in this case, it is
bounded by 4, or indeed by anyM greater than or equal to 4). But the infinite sequence
1,−2, 3,−4, 5,−6, . . . is unbounded. (Can you prove this? Use Proposition 4.4.1.)
The sequence 1,−1, 1,−1, . . . is bounded (e.g., by 1), but is not a Cauchy sequence.

Lemma 5.1.14 (Finite sequences are bounded).Every finite sequence a1, a2, . . . , an
is bounded.

Proof We prove this by induction on n. When n = 1 the sequence a1 is clearly
bounded, for if we chooseM := |a1| then clearly we have |ai | ≤ M for all 1 ≤ i ≤ n.
Now suppose that we have already proved the lemma for some n ≥ 1; we now
prove it for n + 1, i.e., we prove every sequence a1, a2, . . . , an+1 is bounded. By
the induction hypothesis we know that a1, a2, . . . , an is bounded by some M ≥ 0;



86 5 The Real Numbers

in particular, it must be bounded by M + |an+1|. On the other hand, an+1 is also
bounded by M + |an+1|. Thus a1, a2, . . . , an, an++ is bounded by M + |an+1|, and
is hence bounded. This closes the induction. �

Note that while this argument shows that every finite sequence is bounded, no
matter how long the finite sequence is, it does not say anything about whether an
infinite sequence is bounded or not; infinity is not a natural number. However, we
have

Lemma 5.1.15 (Cauchy sequences are bounded). Every Cauchy sequence (an)∞n=1
is bounded.

Proof See Exercise 5.1.1. �

— Exercises —

Exercise 5.1.1 Prove Lemma 5.1.15. (Hint: use the fact that an is eventually 1-steady, and thus can
be split into a finite sequence and a 1-steady sequence. Then use Lemma 5.1.14 for the finite part.
Note there is nothing special about the number 1 used here; any other positive number would have
sufficed.)

Exercise 5.1.2 If (an)∞n=1 and (bn)∞n=1 are bounded sequences, show that (an + bn)∞n=1, (an −
bn)∞n=1, and (anbn)∞n=1 are also bounded.

5.2 Equivalent Cauchy Sequences

Consider the two Cauchy sequences of rational numbers:

1.4, 1.41, 1.414, 1.4142, 1.41421, . . .

and
1.5, 1.42, 1.415, 1.4143, 1.41422, . . .

Informally, both of these sequences seem to be converging to the same number, the
square root

√
2 = 1.41421 . . . (though this statement is not yet rigorous because

we have not defined real numbers yet). If we are to define the real numbers from
the rationals as limits of Cauchy sequences, we have to know when two Cauchy
sequences of rationals give the same limit, without first defining a real number (since
that would be circular). To do this we use a similar set of definitions to those used to
define a Cauchy sequence in the first place.

Definition 5.2.1 (ε-close sequences). Let (an)∞n=0 and (bn)∞n=0 be two sequences,
and let ε > 0. We say that the sequence (an)∞n=0 is ε-close to (bn)∞n=0 iff an is ε-close
to bn for each n ∈ N. In other words, the sequence a0, a1, a2, . . . is ε-close to the
sequence b0, b1, b2, . . . iff |an − bn| ≤ ε for all n = 0, 1, 2, . . ..
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Example 5.2.2 The two sequences

1,−1, 1,−1, 1, . . .

and
1.1,−1.1, 1.1,−1.1, 1.1, . . .

are 0.1-close to each other. (Note however that neither of them are 0.1-steady).

Definition 5.2.3 (Eventually ε-close sequences). Let (an)∞n=0 and (bn)∞n=0 be two
sequences, and let ε > 0. We say that the sequence (an)∞n=0 is eventually ε-close to
(bn)∞n=0 iff there exists an N ≥ 0 such that the sequences (an)∞n=N and (bn)∞n=N are
ε-close. In other words, a0, a1, a2, . . . is eventually ε-close to b0, b1, b2, . . . iff there
exists an N ≥ 0 such that |an − bn| ≤ ε for all n ≥ N .

Remark 5.2.4 Again, the notions of Oε-close sequences and eventually ε-close
sequences are not standard in the literature, and we will not use them outside of
this section.

Example 5.2.5 The two sequences

1.1, 1.01, 1.001, 1.0001, . . .

and
0.9, 0.99, 0.999, 0.9999, . . .

are not 0.1-close (because the first elements of both sequences are not 0.1-close to
each other). However, the sequences are still eventually 0.1-close, because if we start
from the second elements onwards in the sequence, these sequences are 0.1-close. A
similar argument shows that the two sequences are eventually 0.01-close (by starting
from the third element onwards), and so forth.

Definition 5.2.6 (Equivalent sequences). Two sequences (an)∞n=0 and (bn)∞n=0 are
equivalent iff for each rational ε > 0, the sequences (an)∞n=0 and (bn)∞n=0 are even-
tually ε-close. In other words, a0, a1, a2, . . . and b0, b1, b2, . . . are equivalent iff for
every rational ε > 0, there exists an N ≥ 0 such that |an − bn| ≤ ε for all n ≥ N .

Remark 5.2.7 As with Definition 5.1.8, the quantity ε > 0 is currently restricted to
be a positive rational, rather than a positive real. However, we shall eventually see
that it makes no difference whether ε ranges over the positive rationals or positive
reals; see Exercise 6.1.10.

From Definition 5.2.6 it seems that the two sequences given in Example 5.2.5
appear to be equivalent. We now prove this rigorously.

Proposition 5.2.8 Let (an)∞n=1 and (bn)∞n=1 be the sequences an = 1 + 10−n and
bn = 1 − 10−n. Then the sequences an, bn are equivalent.
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Remark 5.2.9 This proposition, in decimal notation, asserts that 1.0000 . . . = 0.9999
. . .; see Proposition B.2.3.

Proof We need to prove that for every ε > 0, the two sequences (an)∞n=1 and (bn)∞n=1
are eventually ε-close to each other. So we fix an ε > 0. We need to find an N > 0
such that (an)∞n=N and (bn)∞n=N are ε-close; in other words, we need to find an N > 0
such that

|an − bn| ≤ ε for all n ≥ N .

However, we have

|an − bn| = |(1 + 10−n) − (1 − 10−n)| = 2 × 10−n.

Since 10−n is a decreasing function of n (i.e., 10−m < 10−n whenever m > n; this
is easily proven by induction), and n ≥ N , we have 2 × 10−n ≤ 2 × 10−N . Thus we
have

|an − bn| ≤ 2 × 10−N for all n ≥ N .

Thus in order to obtain |an − bn| ≤ ε for all n ≥ N , it will be sufficient to choose
N so that 2 × 10−N ≤ ε. This is easy to do using logarithms, but we have not yet
developed logarithms yet, so we will use a cruder method. First, we observe 10N

is always greater than N for any N ≥ 1 (see Exercise 4.3.5). Thus 10−N ≤ 1/N ,
and so 2 × 10−N ≤ 2/N . Thus to get 2 × 10−N ≤ ε, it will suffice to choose N so
that 2/N ≤ ε, or equivalently that N ≥ 2/ε. But by Proposition 4.4.1 we can always
choose such an N , and the claim follows. �

— Exercises —

Exercise 5.2.1 Show that if (an)∞n=1 and (bn)∞n=1 are equivalent sequences of rationals, then (an)∞n=1
is a Cauchy sequence if and only if (bn)∞n=1 is a Cauchy sequence.

Exercise 5.2.2 Let ε > 0. Show that if (an)∞n=1 and (bn)∞n=1 are eventually ε-close, then (an)∞n=1
is bounded if and only if (bn)∞n=1 is bounded.

5.3 The Construction of the Real Numbers

We are now ready to construct the real numbers. We shall introduce a new formal
symbol LIM, similar to the formal notations — and // defined earlier; as the notation
suggests, this will eventually match the familiar operation of lim, at which point the
formal limit symbol can be discarded.

Definition 5.3.1 (Real numbers). A real number is defined to be an object of the
formLIMn→∞ an , where (an)∞n=1 is a Cauchy sequence of rational numbers. Two real
numbers LIMn→∞ an and LIMn→∞ bn are said to be equal iff (an)∞n=1 and (bn)∞n=1
are equivalent Cauchy sequences. The set of all real numbers is denoted R.
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Example 5.3.2 (Informal) Let a1, a2, a3, . . . denote the sequence

1.4, 1.41, 1.414, 1.4142, 1.41421, . . .

and let b1, b2, b3, . . . denote the sequence

1.5, 1.42, 1.415, 1.4143, 1.41422, . . .

then LIMn→∞ an is a real number, and is the same real number as LIMn→∞ bn ,
because (an)∞n=1 and (bn)∞n=1 are equivalent Cauchy sequences: LIMn→∞ an =
LIMn→∞ bn .

We will refer to LIMn→∞ an as the formal limit of the sequence (an)∞n=1. Later on
we will define a genuine notion of limit, and show that the formal limit of a Cauchy
sequence is the same as the limit of that sequence; after that, we will not need formal
limits ever again. (The situation is much like what we did with formal subtraction
— and formal division //.)

In order to ensure that this definition is valid, we need to check that the notion of
equality in the definition obeys the first three axioms of equality:

Proposition 5.3.3 (Formal limits are well-defined). Let x = LIMn→∞ an, y =
LIMn→∞ bn, and z = LIMn→∞ cn be real numbers. Then, with the above defini-
tion of equality for real numbers, we have x = x. Also, if x = y, then y = x. Finally,
if x = y and y = z, then x = z.

Proof See Exercise 5.3.1. �

Because of this proposition, we know that our definition of equality between two
real numbers is legitimate. Of course, when we define other operations on the reals,
we have to check that they obey the axiom of substitution: two real number inputs
which are equal should give equal outputs when applied to any operation on the real
numbers.

Now we want to define on the real numbers all the usual arithmetic operations,
such as addition and multiplication. We begin with addition.

Definition 5.3.4 (Addition of reals). Let x = LIMn→∞ an and y = LIMn→∞ bn be
real numbers. Then we define the sum x + y to be x + y := LIMn→∞(an + bn).

Example 5.3.5 The sumofLIMn→∞ 1 + 1/n andLIMn→∞ 2 + 3/n isLIMn→∞ 3 +
4/n.

We now check that this definition is valid. The first thing we need to do is to
confirm that the sum of two real numbers is in fact a real number:

Lemma 5.3.6 (Sum of Cauchy sequences is Cauchy). Let x = LIMn→∞ an and y =
LIMn→∞ bn be real numbers. Then x + y is also a real number (i.e., (an + bn)∞n=1
is a Cauchy sequence of rationals).
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Proof Weneed to show that for every ε > 0, the sequence (an + bn)∞n=1 is eventually
ε-steady. Now from hypothesis we know that (an)∞n=1 is eventually ε-steady, and
(bn)∞n=1 is eventually ε-steady, but it turns out that this is not quite enough (this can
be used to imply that (an + bn)∞n=1 is eventually 2ε-steady, but that’s not what we
want). So we need to do a little trick, which is to play with the value of ε.

We know that (an)∞n=1 is eventually δ-steady for every value of δ. This implies not
only that (an)∞n=1 is eventually ε-steady, but it is also eventually ε/2-steady. Similarly,
the sequence (bn)∞n=1 is also eventually ε/2-steady. This will turn out to be enough
to conclude that (an + bn)∞n=1 is eventually ε-steady.

Since (an)∞n=1 is eventually ε/2-steady, we know that there exists an N ≥ 1 such
that (an)∞n=N is ε/2-steady, i.e., an and am are ε/2-close for every n,m ≥ N . Similarly
there exists an M ≥ 1 such that (bn)∞n=M is ε/2-steady, i.e., bn and bm are ε/2-close
for every n,m ≥ M .

Let max(N , M) be the larger of N and M (we know from Proposition 2.2.13 that
one has to be greater than or equal to the other). If n,m ≥ max(N , M), then we know
that an and am are ε/2-close, and bn and bm are ε/2-close, and so by Proposition
4.3.7 we see that an + bn and am + bm are ε-close for every n,m ≥ max(N , M).
This implies that the sequence (an + bn)∞n=1 is eventually ε-steady, as desired. �

The other thing we need to check is the axiom of substitution (see Sect. A.7): if
we replace a real number x by another number equal to x , this should not change the
sum x + y (and similarly if we substitute y by another number equal to y).

Lemma 5.3.7 (Sums of equivalent Cauchy sequences are equivalent). Let x =
LIMn→∞ an, y = LIMn→∞ bn, and x ′ = LIMn→∞ a′

n be real numbers. Suppose that
x = x ′. Then we have x + y = x ′ + y.

Proof Since x and x ′ are equal, we know that the Cauchy sequences (an)∞n=1 and
(a′

n)
∞
n=1 are equivalent, so in other words they are eventually ε-close for each ε > 0.

We need to show that the sequences (an + bn)∞n=1 and (a′
n + bn)∞n=1 are eventually

ε-close for each ε > 0. But we already know that there is an N ≥ 1 such that (an)∞n=N
and (a′

n)
∞
n=N are ε-close, i.e., that an and a′

n are ε-close for each n ≥ N . Since bn
is of course 0-close to bn (where we extend the notion of ε-closeness to the ε = 0
case in the obvious fashion), we thus see from Proposition 4.3.7 (extended to cover
the 0-close case) that an + bn and a′

n + bn are ε-close for each n ≥ N . This implies
that (an + bn)∞n=1 and (a′

n + bn)∞n=1 are eventually ε-close for each ε > 0, and we are
done. �
Remark 5.3.8 The above lemma verifies the axiom of substitution for the “x” vari-
able in x + y, but one can similarly prove the axiom of substitution for the “y”
variable. (A quick way is to observe from the definition of x + y that we certainly
have x + y = y + x , since an + bn = bn + an .)

We can define multiplication of real numbers in a manner similar to that of addi-
tion:

Definition 5.3.9 (Multiplicationof reals).Let x = LIMn→∞ an and y = LIMn→∞ bn
be real numbers. Then we define the product xy to be xy := LIMn→∞ anbn .
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The following proposition ensures that this definition is valid, and that the product
of two real numbers is in fact a real number:

Proposition 5.3.10 (Multiplication is well-defined). Let x = LIMn→∞ an, y =
LIMn→∞ bn, and x ′ = LIMn→∞ a′

n be real numbers. Then xy is also a real number.
Furthermore, if x = x ′, then xy = x ′y.

Proof See Exercise 5.3.2. �

Of course we can prove a similar substitution rule when y is replaced by a real
number y′ which is equal to y.

At this point we embed the rationals back into the reals, by equating every rational
number q with the real number LIMn→∞ q. For instance, if a1, a2, a3, . . . is the
sequence

0.5, 0.5, 0.5, 0.5, 0.5, . . .

then we set LIMn→∞ an equal to 0.5. This embedding is consistent with our defini-
tions of addition and multiplication, since for any rational numbers a, b we have

(LIMn→∞ a) + (LIMn→∞ b) = LIMn→∞(a + b) and

(LIMn→∞ a) × (LIMn→∞ b) = LIMn→∞(ab);

this means that when one wants to add or multiply two rational numbers a, b it
does not matter whether one thinks of these numbers as rationals or as the real
numbers LIMn→∞ a, LIMn→∞ b. Also, this identification of rational numbers and
real numbers is consistent with our definitions of equality (Exercise 5.3.3).

We can now easily define negation −x for real numbers x by the formula

−x := (−1) × x,

since −1 is a rational number and is hence real. Note that this is clearly consistent
with our negation for rational numbers since we have−q = (−1) × q for all rational
numbers q. Also, from our definitions it is clear that

−LIMn→∞ an = LIMn→∞(−an)

(why?). Once we have addition and negation, we can define subtraction as usual by

x − y := x + (−y),

note that this implies

LIMn→∞ an − LIMn→∞ bn = LIMn→∞(an − bn).

We can now easily show that the real numbers obey all the usual rules of algebra
(except perhaps for the laws involving division, which we shall address shortly):
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Proposition 5.3.11 All the laws of algebra from Proposition 4.1.6 hold not only for
the integers, but for the reals as well.

Proof We illustrate this with one such rule: x(y + z) = xy + xz. Let x = LIMn→∞
an , y = LIMn→∞ bn , and z = LIMn→∞ cn be real numbers. Then by definition, xy =
LIMn→∞ anbn and xz = LIMn→∞ ancn , and so xy + xz = LIMn→∞(anbn + ancn).
A similar line of reasoning shows that x(y + z) = LIMn→∞ an(bn + cn). But we
already know that an(bn + cn) is equal to anbn + ancn for the rational numbers an ,
bn , cn , and the claim follows. The other laws of algebra are proven similarly. �

The last basic arithmetic operation we need to define is reciprocation: x → x−1.
This one is a little more subtle. One obvious first guess for how to proceed would be
define

(LIMn→∞ an)
−1 := LIMn→∞ a−1

n ,

but there are a few problems with this. For instance, let a1, a2, a3, . . . be the Cauchy
sequence

0.1, 0.01, 0.001, 0.0001, . . . ,

and let x := LIMn→∞ an . Then by this definition, x−1 would be LIMn→∞ bn , where
b1, b2, b3, . . . is the sequence

10, 100, 1000, 10000, . . .

but this is not a Cauchy sequence (it isn’t even bounded). Of course, the problem here
is that our original Cauchy sequence (an)∞n=1 was equivalent to the zero sequence
(0)∞n=1 (why?), and hence that our real number x was in fact equal to 0. So we should
only allow the operation of reciprocal when x is non-zero.

However, even when we restrict ourselves to non-zero real numbers, we have a
slight problem, because a non-zero real numbermight be the formal limit of a Cauchy
sequence which contains zero elements. For instance, the number 1, which is rational
and hence real, is the formal limit 1 = LIMn→∞ an of the Cauchy sequence

0, 0.9, 0.99, 0.999, 0.9999, . . .

but using our naive definition of reciprocal, we cannot invert the real number 1,
because we can’t invert the first element 0 of this Cauchy sequence!

To get around these problems we need to keep our Cauchy sequence away from
zero. To do this we first need a definition.

Definition 5.3.12 (Sequences bounded away from zero). A sequence (an)∞n=1 of
rational numbers is said to be bounded away from zero iff there exists a rational
number c > 0 such that |an| ≥ c for all n ≥ 1.

Examples 5.3.13 The sequence 1, −1, 1, −1, 1, −1, 1, . . . is bounded away
from zero (all the coefficients have absolute value at least 1). But the sequence
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0.1, 0.01, 0.001, . . . is not bounded away fromzero, andneither is 0, 0.9, 0.99, 0.999,
0.9999, . . .. The sequence 10, 100, 1000, . . . is bounded away from zero, but is not
bounded.

We now show that every non-zero real number is the formal limit of a Cauchy
sequence bounded away from zero:

Lemma 5.3.14 Let x be a non-zero real number. Then x = LIMn→∞ an for some
Cauchy sequence (an)∞n=1 which is bounded away from zero.

Proof Since x is real, we know that x = LIMn→∞ bn for some Cauchy sequence
(bn)∞n=1. But we are not yet done, because we do not know that bn is bounded away
from zero. On the other hand, we are given that x 	= 0 = LIMn→∞ 0, which means
that the sequence (bn)∞n=1 is not equivalent to (0)∞n=1. Thus the sequence (bn)∞n=1
cannot be eventually ε-close to (0)∞n=1 for every ε > 0. Therefore we can find an
ε > 0 such that (bn)∞n=1 is not eventually ε-close to (0)∞n=1.

Let us fix this ε. We know that (bn)∞n=1 is a Cauchy sequence, so it is eventually ε-
steady. Moreover, it is eventually ε/2-steady, since ε/2 > 0. Thus there is an N ≥ 1
such that |bn − bm | ≤ ε/2 for all n,m ≥ N .

On the other hand, we cannot have |bn| ≤ ε for all n ≥ N , since this would imply
that (bn)∞n=1 is eventually ε-close to (0)∞n=1. Thus there must be some n0 ≥ N for
which |bn0 | > ε. Since we already know that |bn0 − bn| ≤ ε/2 for all n ≥ N , we thus
conclude from the triangle inequality (how?) that |bn| ≥ ε/2 for all n ≥ N .

This almost proves that (bn)∞n=1 is bounded away from zero. Actually, what it
does is show that (bn)∞n=1 is eventually bounded away from zero. But this is easily
fixed, by defining a new sequence an , by setting an := ε/2 if n < N and an := bn if
n ≥ N . Since bn is a Cauchy sequence, it is not hard to verify that an is also a Cauchy
sequence which is equivalent to bn (because the two sequences are eventually the
same), and so x = LIMn→∞ an . And since |bn| ≥ ε/2 for all n ≥ N , we know that
|an| ≥ ε/2 for all n ≥ 1 (splitting into the two cases n ≥ N and n < N separately).
Thus we have a Cauchy sequence which is bounded away from zero (by ε/2 instead
of ε, but that’s still OK since ε/2 > 0), and which has x as a formal limit, and so we
are done. �

Once a sequence is bounded away from zero, we can take its reciprocal without
any difficulty:

Lemma 5.3.15 Suppose that (an)∞n=1 is a Cauchy sequence which is bounded away
from zero. Then the sequence (a−1

n )∞n=1 is also a Cauchy sequence.

Proof Since (an)∞n=1 is bounded away from zero, we know that there is a c > 0 such
that |an| ≥ c for all n ≥ 1. Nowwe need to show that (a−1

n )∞n=1 is eventually ε-steady
for each ε > 0. Thus let us fix an ε > 0; our task is now to find an N ≥ 1 such that
|a−1

n − a−1
m | ≤ ε for all n,m ≥ N . But

|a−1
n − a−1

m | =
∣
∣
∣
∣

am − an
aman

∣
∣
∣
∣
≤ |am − an|

c2
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(since |am |, |an| ≥ c), and so to make |a−1
n − a−1

m | less than or equal to ε, it will
suffice to make |am − an| less than or equal to c2ε. But since (an)∞n=1 is a Cauchy
sequence, and c2ε > 0, we can certainly find an N such that the sequence (an)∞n=N
is c2ε-steady, i.e., |am − an| ≤ c2ε for all n ≥ N . By what we have said above, this
shows that |a−1

n − a−1
m | ≤ ε for all m, n ≥ N , and hence the sequence (a−1

n )∞n=1 is
eventually ε-steady. Since we have proven this for every ε, we have that (a−1

n )∞n=1 is
a Cauchy sequence, as desired. �

We are now ready to define reciprocation:

Definition 5.3.16 (Reciprocals of real numbers). Let x be a non-zero real num-
ber. Let (an)∞n=1 be a Cauchy sequence bounded away from zero such that x =
LIMn→∞ an (such a sequence exists by Lemma 5.3.14). Then we define the recip-
rocal x−1 by the formula x−1 := LIMn→∞ a−1

n . (From Lemma 5.3.15 we know that
x−1 is a real number.)

We need to check one thing before we are sure this definition makes sense: what
if there are two different Cauchy sequences (an)∞n=1 and (bn)∞n=1 which have x as
their formal limit, x = LIMn→∞ an = LIMn→∞ bn . The above definition might con-
ceivably give two different reciprocals x−1, namely LIMn→∞ a−1

n and LIMn→∞ b−1
n .

Fortunately, this never happens:

Lemma 5.3.17 (Reciprocation is well-defined). Let (an)∞n=1 and (bn)∞n=1 be two
Cauchy sequences bounded away from zero such that LIMn→∞ an = LIMn→∞ bn
(i.e., the two sequences are equivalent). Then LIMn→∞ a−1

n = LIMn→∞ b−1
n .

Proof Consider the following product P of three real numbers:

P := (LIMn→∞ a−1
n ) × (LIMn→∞ an) × (LIMn→∞ b−1

n ).

If we multiply this out, we obtain

P = LIMn→∞ a−1
n anb

−1
n = LIMn→∞ b−1

n .

On the other hand, since LIMn→∞ an = LIMn→∞ bn , we can write P in another way
as

P = (LIMn→∞ a−1
n ) × (LIMn→∞ bn) × (LIMn→∞ b−1

n )

(cf. Proposition 5.3.10). Multiplying things out again, we get

P = LIMn→∞ a−1
n bnb

−1
n = LIMn→∞ a−1

n .

Comparing our different formulae for P we see that LIMn→∞ a−1
n = LIMn→∞ b−1

n ,
as desired. �

Thus reciprocal is well-defined (for each non-zero real number x , we have
exactly one definition of the reciprocal x−1). Note it is clear from the definition that
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xx−1 = x−1x = 1 (why?); thus all the field axioms (Proposition 4.2.4) apply to the
reals as well as to the rationals. We of course cannot give 0 a reciprocal, since 0
multiplied by anything gives 0, not 1. Also note that if q is a non-zero rational,
and hence equal to the real number LIMn→∞ q, then the reciprocal of LIMn→∞ q is
LIMn→∞ q−1 = q−1; thus the operation of reciprocal on real numbers is consistent
with the operation of reciprocal on rational numbers.

Once one has reciprocal, one can define division x/y of two real numbers x, y,
provided y is non-zero, by the formula

x/y := x × y−1,

just as we did with the rationals. In particular, we have the cancelation law: if x , y,
z are real numbers such that xz = yz, and z is non-zero, then by dividing by z we
conclude that x = y. Note that this cancelation law does not work when z is zero.

We now have all four of the basic arithmetic operations on the reals: addition,
subtraction, multiplication, and division, with all the usual rules of algebra. Next we
turn to the notion of order on the reals.

— Exercises —

Exercise 5.3.1 Prove Proposition 5.3.3. (Hint: you may find Proposition 4.3.7 to be useful.)

Exercise 5.3.2 Prove Proposition 5.3.10. (Hint: again, Proposition 4.3.7 may be useful.)

Exercise 5.3.3 Let a, b be rational numbers. Show that a = b if and only if LIMn→∞ a =
LIMn→∞ b (i.e., the Cauchy sequences a, a, a, a, . . . and b, b, b, b . . . equivalent if and only if
a = b). This allows us to embed the rational numbers inside the real numbers in a well-defined
manner.

Exercise 5.3.4 Let (an)∞n=0 be a sequence of rational numbers which is bounded. Let (bn)∞n=0 be
another sequence of rational numbers which is equivalent to (an)∞n=0. Show that (bn)∞n=0 is also
bounded. (Hint: use Exercise 5.2.2.)

Exercise 5.3.5 Show that LIMn→∞ 1/n = 0.

5.4 Ordering the Reals

We know that every rational number is positive, negative, or zero. We now want to
say the same thing for the reals: each real number should be positive, negative, or
zero. Since a real number x is just a formal limit of rationals an , it is tempting to
make the following definition: a real number x = LIMn→∞ an is positive if all of the
an are positive, and negative if all of the an are negative (and zero if all of the an are
zero). However, one soon realizes some problems with this definition. For instance,
the sequence (an)∞n=1 defined by an := 10−n , thus

0.1, 0.01, 0.001, 0.0001, . . .
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consists entirely of positive numbers, but this sequence is equivalent to the zero
sequence 0, 0, 0, 0, . . . and thus LIMn→∞ an = 0. Thus even though all the rationals
were positive, the real formal limit of these rationals was zero rather than positive.
Another example is

0.1,−0.01, 0.001,−0.0001, . . . ;

this sequence is a hybrid of positive and negative numbers, but again the formal limit
is zero.

The trick, as with the reciprocals in the previous section, is to limit one’s attention
to sequences which are bounded away from zero.

Definition 5.4.1 Let (an)∞n=1 be a sequence of rationals. We say that this sequence
is positively bounded away from zero iff we have a positive rational c > 0 such that
an ≥ c for all n ≥ 1 (in particular, the sequence is entirely positive). The sequence
is negatively bounded away from zero iff we have a negative rational −c < 0 such
that an ≤ −c for all n ≥ 1 (in particular, the sequence is entirely negative).

Examples 5.4.2 The sequence 1.1, 1.01, 1.001, 1.0001, . . . is positively bounded
away from zero (all terms are greater than or equal to 1). The sequence−1.1,−1.01,
−1.001,−1.0001, . . . is negatively bounded away from zero. The sequence 1,−1, 1,
−1, 1,−1, . . . is bounded away from zero but is neither positively bounded away
from zero nor negatively bounded away from zero.

It is clear that any sequence which is positively or negatively bounded away from
zero is bounded away from zero. Also, a sequence cannot be both positively bounded
away from zero and negatively bounded away from zero at the same time.

Definition 5.4.3 A real number x is said to be positive iff it can be written as x =
LIMn→∞ an for some Cauchy sequence (an)∞n=1 which is positively bounded away
from zero. x is said to be negative iff it can be written as x = LIMn→∞ an for some
sequence (an)∞n=1 which is negatively bounded away from zero.

Proposition 5.4.4 (Basic properties of positive reals). For every real number x,
exactly one of the following three statements is true: (a) x is zero; (b) x is positive;
(c) x is negative. A real number x is negative if and only if −x is positive. If x and y
are positive, then so are x + y and xy.

Proof See Exercise 5.4.1. �

Note that if q is a positive rational number, then the Cauchy sequence q, q, q, . . .

is positively bounded away from zero, and hence LIMn→∞ q = q is a positive real
number. Thus the notion of positivity for rationals is consistent with that for reals.
Similarly, the notion of negativity for rationals is consistent with that for reals.

Once we have defined positive and negative numbers, we can define absolute
value and order.

Definition 5.4.5 (Absolute value). Let x be a real number. We define the absolute
value |x | of x to equal x if x is positive,−x when x is negative, and 0 when x is zero.
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Definition 5.4.6 (Ordering of the real numbers). Let x and y be real numbers. We
say that x is greater than y, and write x > y, iff x − y is a positive real number, and
x < y iff x − y is a negative real number. We define x ≥ y iff x > y or x = y, and
similarly define x ≤ y.

Comparing this with the definition of order on the rationals from Definition 4.2.8
we see that order on the reals is consistent with order on the rationals, i.e., if two
rational numbers q, q ′ are such that q is less than q ′ in the rational number system,
then q is still less than q ′ in the real number system, and similarly for “greater than”.
In the same way we see that the definition of absolute value given here is consistent
with that in Definition 4.3.1.

Proposition 5.4.7 All the claims in Proposition 4.2.9 which held for rationals con-
tinue to hold for real numbers.

Proof We just prove one of the claims and leave the rest to Exercise 5.4.2. Suppose
we have x < y and z a positive real, and want to conclude that xz < yz. Since x < y,
y − x is positive, hence by Proposition 5.4.4we have (y − x)z = yz − xz is positive,
hence xz < yz. �

As an application of these propositions, we prove

Proposition 5.4.8 Let x be a positive real number. Then x−1 is also positive. Also,
if y is another positive number and x > y, then x−1 < y−1.

Proof Let x be positive. Since xx−1 = 1, the real number x−1 cannot be zero (since
x0 = 0 	= 1). Also, from Proposition 5.4.4 it is easy to see that a positive number
times a negative number is negative; this shows that x−1 cannot be negative, since
this would imply that xx−1 = 1 is negative, a contradiction. Thus, by Proposition
5.4.4, the only possibility left is that x−1 is positive.

Now let y be positive as well, so x−1 and y−1 are also positive. Suppose that
x > y. If x−1 ≥ y−1, then by Proposition 5.4.7 we have xx−1 > yx−1 ≥ yy−1, thus
1 > 1, which is a contradiction. Thus we must have x−1 < y−1. �

Another application is that the laws of exponentiation (Proposition 4.3.12) that
were previously proven for rationals, are also true for reals; see Sect. 5.6.

Wehave already seen that the formal limit of positive rationals neednot be positive;
it could be zero, as the example 0.1, 0.01, 0.001, . . . showed. However, the formal
limit of non-negative rationals (i.e., rationals that are either positive or zero) is non-
negative.

Proposition 5.4.9 Let a1, a2, a3, . . . be a Cauchy sequence of non-negative rational
numbers. Then LIMn→∞ an is a non-negative real number.

Eventually, we will see a better explanation of this fact: the set of non-negative
reals is closed, whereas the set of positive reals is open. See Sect. 1.2.
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Proof Weargue by contradiction, and suppose that the real number x := LIMn→∞ an
is a negative number. Then by definition of negative real number, we have x =
LIMn→∞ bn for some sequence bn which is negatively bounded away from zero, i.e.,
there is a negative rational −c < 0 such that bn ≤ −c for all n ≥ 1. On the other
hand, we have an ≥ 0 for all n ≥ 1, by hypothesis. Thus the numbers an and bn
are never c/2-close, since c/2 < c. Thus the sequences (an)∞n=1 and (bn)∞n=1 are not
eventually c/2-close. Since c/2 > 0, this implies that (an)∞n=1 and (bn)∞n=1 are not
equivalent. But this contradicts the fact that both these sequences have x as their
formal limit. �

Corollary 5.4.10 Let (an)∞n=1 and (bn)∞n=1 be Cauchy sequences of rationals such
that an ≥ bn for all n ≥ 1. Then LIMn→∞ an ≥ LIMn→∞ bn.

Proof Apply Proposition 5.4.9 to the sequence an − bn . �

Remark 5.4.11 Note that the above corollary does not work if the ≥ signs are
replaced by >: for instance if an := 1 + 1/n and bn := 1 − 1/n, then an is always
strictly greater than bn , but the formal limit of an is not greater than the formal limit
of bn , instead they are equal.

We now define distance d(x, y) := |x − y| just as we did for the rationals. In
fact, Propositions 4.3.3 and 4.3.7 hold not only for the rationals, but for the reals; the
proof is identical, since the real numbers obey all the laws of algebra and order that
the rationals do.

We now observe that while positive real numbers can be arbitrarily large or small,
they cannot be larger than all of the positive integers, or smaller in magnitude than
all of the positive rationals:

Proposition 5.4.12 (Bounding of reals by rationals).Let x be a positive real number.
Then there exists a positive rational number q such that q ≤ x, and there exists a
positive integer N such that x ≤ N.

Proof Since x is a positive real, it is the formal limit of some Cauchy sequence
(an)∞n=1 which is positively bounded away from zero. Also, by Lemma 5.1.15, this
sequence is bounded. Thus we have rationals q > 0 and r such that q ≤ an ≤ r
for all n ≥ 1. But by Proposition 4.4.1 we know that there is some integer N such
that r ≤ N ; since q is positive and q ≤ r ≤ N , we see that N is positive. Thus
q ≤ an ≤ N for all n ≥ 1. Applying Corollary 5.4.10 we obtain that q ≤ x ≤ N , as
desired. �

Corollary 5.4.13 (Archimedean property). Let x be a real number, and let ε be a
positive real number. Then there exists a positive integer M such that Mε > x.

Proof If x is zero or negative, one can just take M = 1, so suppose that x is positive.
Then the number x/ε is positive, and hence by Proposition 5.4.12 there exists a
positive integer N such that x/ε ≤ N . If we set M := N + 1, then x/ε < M . Now
multiply by ε. �
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This property is quite important; it says that no matter how large x is and how
small ε is, if one keeps adding ε to itself, one will eventually overtake x .

Proposition 5.4.14 Given any two real numbers x < y, we can find a rational num-
ber q such that x < q < y.

Proof See Exercise 5.4.5. �

Wehave now completed our construction of the real numbers. This number system
contains the rationals and has almost everything that the rational number system has:
the arithmetic operations, the laws of algebra, the laws of order. However, we have
not yet demonstrated any advantages that the real numbers have over the rationals;
so far, even after much effort, all we have done is shown that they are at least as good
as the rational number system. But in the next few sections we show that the real
numbers can do more things than rationals: for example, we can take square roots in
a real number system.

Remark 5.4.15 Up until now, we have not addressed the fact that real numbers can
be expressed using the decimal system. For instance, the formal limit of

1.4, 1.41, 1.414, 1.4142, 1.41421, . . .

is more conventionally represented as the decimal 1.41421 . . .. We will address this
in an Appendix (B), but for now let us just remark that there are some subtleties in
the decimal system, for instance 0.9999 . . . and 1.000 . . . are in fact the same real
number.

— Exercises —

Exercise 5.4.1 Prove Proposition 5.4.4. (Hint: if x is not zero, and x is the formal limit of some
sequence (an)∞n=1, then this sequence cannot be eventually ε-close to the zero sequence (0)∞n=1
for every single ε > 0. Use this to show that the sequence (an)∞n=1 is eventually either positively
bounded away from zero or negatively bounded away from zero.)

Exercise 5.4.2 Prove the remaining claims in Proposition 5.4.7.

Exercise 5.4.3 Show that for every real number x there is exactly one integer N such that N ≤
x < N + 1. (This integer N is called the integer part of x and is sometimes denoted N = 
x�.)
Exercise 5.4.4 Show that for any positive real number x > 0 there exists a positive integer N such
that x > 1/N > 0.

Exercise 5.4.5 Prove Proposition 5.4.14. (Hint: use Exercise 5.4.4. You may also need to argue by
contradiction.)

Exercise 5.4.6 Let x, y be real numbers and let ε > 0 be a positive real. Show that |x − y| < ε if
and only if y − ε < x < y + ε, and that |x − y| ≤ ε if and only if y − ε ≤ x ≤ y + ε.

Exercise 5.4.7 Let x and y be real numbers. Show that x ≤ y + ε for all real numbers ε > 0 if and
only if x ≤ y. Show that |x − y| ≤ ε for all real numbers ε > 0 if and only if x = y.



100 5 The Real Numbers

Exercise 5.4.8 Let (an)∞n=1 be a Cauchy sequence of rationals, and let x be a real number. Show
that if an ≤ x for all n ≥ 1, then LIMn→∞ an ≤ x . Similarly, show that if an ≥ x for all n ≥ 1, then
LIMn→∞ an ≥ x . (Hint: prove by contradiction. Use Proposition 5.4.14 to find a rational between
LIMn→∞ an and x , and then use Proposition 5.4.9 or Corollary 5.4.10.)

Exercise 5.4.9 If x, y are real numbers, define the maximum max(x, y) of x and y to equal x if
x ≥ y, and y if x < y. Similarly, define the minimum min(x, y) of x and y to equal x if x ≤ y, and
y if x > y.
(i) If x, y are real numbers, show that max(x, y) = −min(−x,−y) andmin(x, y) = −max(−x,

−y).
(ii) x, y, z are real numbers, show that max(x, y) = max(y, x), max(x, x) = x , and max(x +

z, y + z) = max(x, y) + z. If z is non-negative, show that max(xz, yz) = zmax(x, y). What
happens to the last claim if z is negative?

(iii) Show that all the claims in (ii) also hold if max is replaced with min.
(iv) If x, y are positive real numbers, show that max(x, y)−1 = min(x−1, y−1) andmin(x, y)−1 =

max(x−1, y−1).

5.5 The Least Upper Bound Property

We now give one of the most basic advantages of the real numbers over the rationals;
one can take the least upper bound sup(E) of any (non-empty, upper-bounded) subset
E of the real numbers R.

Definition 5.5.1 (Upper bound). Let E be a subset ofR, and let M be a real number.
We say that M is an upper bound for E , iff we have x ≤ M for every element x in
E .

Example 5.5.2 Let E be the interval E := {x ∈ R : 0 ≤ x ≤ 1}. Then 1 is an upper
bound for E , since every element of E is less than or equal to 1. It is also true that 2
is an upper bound for E , and indeed every number greater or equal to 1 is an upper
bound for E . On the other hand, any other number, such as 0.5, is not an upper bound,
because 0.5 is not larger than every element in E . (Merely being larger than some
elements of E is not necessarily enough to make 0.5 an upper bound.)

Example 5.5.3 Let R+ be the set of positive reals: R+ := {x ∈ R : x > 0}. Then
R+ does not have any upper bounds3 at all (why?).

Example 5.5.4 Let ∅ be the empty set. Then every number M is an upper bound for
∅, because M is greater than every element of the empty set (this is a vacuously true
statement, but still true).

It is clear that ifM is an upper bound of E , then any larger numberM ′ ≥ M is also
an upper bound of E . On the other hand, it is not so clear whether it is also possible
for any number smaller than M to also be an upper bound of E . This motivates the
following definition:

3 More precisely, R+ has no upper bounds which are real numbers. In Sect. 6.2 we shall introduce
the extended real number system R∗, which allows one to give the upper bound of +∞ for sets
such as R+.
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Definition 5.5.5 (Least upper bound). Let E be a subset of R, and M be a real
number. We say that M is a least upper bound for E iff (a) M is an upper bound for
E , and also (b) any other upper bound M ′ for E must be larger than or equal to M .

Example 5.5.6 Let E be the interval E := {x ∈ R : 0 ≤ x ≤ 1}. Then, as noted
before, E has many upper bounds, indeed every number greater than or equal to 1
is an upper bound. But only 1 is the least upper bound; all other upper bounds are
larger than 1.

Example 5.5.7 The empty set does not have a least upper bound (why?).

Proposition 5.5.8 (Uniqueness of least upper bound). Let E be a subset of R. Then
E can have at most one least upper bound.

Proof Let M1 and M2 be two least upper bounds, say M1 and M2. Since M1 is a
least upper bound and M2 is an upper bound, then by definition of least upper bound
we have M2 ≥ M1. Since M2 is a least upper bound and M1 is an upper bound,
we similarly have M1 ≥ M2. Thus M1 = M2. Thus there is at most one least upper
bound. �

Now we come to an important property of the real numbers:

Theorem 5.5.9 (Existence of least upper bound). Let E be a non-empty subset of
R. If E has an upper bound, (i.e., E has some upper bound M), then it must have
exactly one least upper bound.

Proof This theorem will take quite a bit of effort to prove, and many of the steps
will be left as exercises.

Let E be a non-empty subset of R with an upper bound M . By Proposition 5.5.8,
we know that E has at most one least upper bound; we have to show that E has at
least one least upper bound. Since E is non-empty, we can choose some element x0
in E .

Let n ≥ 1 be a positive integer. We know that E has an upper bound M . By
the Archimedean property (Corollary 5.4.13), we can find an integer K such that
K/n ≥ M , and hence K/n is also an upper bound for E . By the Archimedean
property again, there exists another integer L such that L/n < x0. Since x0 lies in
E , we see that L/n is not an upper bound for E . Since K/n is an upper bound but
L/n is not, we see that K ≥ L .

Since K/n is an upper bound for E and L/n is not, we can find an integer
L < mn ≤ K with the property that mn/n is an upper bound for E , but (mn − 1)/n
is not (see Exercise 5.5.2). In fact, this integer mn is unique (Exercise 5.5.3). We
subscript mn by n to emphasize the fact that this integer m depends on the choice of
n. This gives a well-defined (and unique) sequence m1,m2,m3, . . . of integers, with
each of the mn/n being upper bounds and each of the (mn − 1)/n not being upper
bounds.

Now let N ≥ 1 be a positive integer, and let n, n′ ≥ N be integers larger than or
equal to N . Since mn/n is an upper bound for E and (mn′ − 1)/n′ is not, we must
have mn/n > (mn′ − 1)/n′ (why?). After a little algebra, this implies that
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mn

n
− mn′

n′ > − 1

n′ ≥ − 1

N
.

Similarly, since mn′/n′ is an upper bound for E and (mn − 1)/n is not, we have
mn′/n′ > (mn − 1)/n, and hence

mn

n
− mn′

n′ ≤ 1

n
≤ 1

N
.

Putting these two bounds together, we see that

∣
∣
∣
mn

n
− mn′

n′
∣
∣
∣ ≤ 1

N
for all n, n′ ≥ N ≥ 1.

This implies that mn
n is a Cauchy sequence (Exercise 5.5.4). Since the mn

n are rational
numbers, we can now define the real number S as

S := LIMn→∞
mn

n
.

From Exercise 5.3.5 we conclude that

S = LIMn→∞
mn − 1

n
.

To finish the proof of the theorem, we need to show that S is the least upper bound
for E . First we show that it is an upper bound. Let x be any element of E . Then, since
mn/n is an upper bound for E , we have x ≤ mn/n for all n ≥ 1. Applying Exercise
5.4.8, we conclude that x ≤ LIMn→∞ mn/n = S. Thus S is indeed an upper bound
for E .

Now we show it is a least upper bound. Suppose y is an upper bound for E . Since
(mn − 1)/n is not an upper bound, we conclude that y ≥ (mn − 1)/n for all n ≥ 1.
Applying Exercise 5.4.8, we conclude that y ≥ LIMn→∞(mn − 1)/n = S. Thus the
upper bound S is less than or equal to every upper bound of E , and S is thus a least
upper bound of E . �

Definition 5.5.10 (Supremum). Let E be a subset of the real numbers. If E is non-
empty and has some upper bound, we define sup(E) to be the least upper bound of E
(this is well-defined by Theorem 5.5.9). We introduce two additional symbols, +∞
and −∞. If E is non-empty and has no upper bound, we set sup(E) := +∞; if E is
empty, we set sup(E) := −∞. We refer to sup(E) as the supremum of E , and also
denote it by sup E .

Remark 5.5.11 At present, +∞ and −∞ are meaningless symbols; we have no
operations on them at present, and none of our results involving real numbers apply
to +∞ and −∞, because these are not real numbers. In Sect. 6.2 we add +∞ and
−∞ to the reals to form the extended real number system, but this system is not as
convenient to work with as the real number system, because many of the laws of
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algebra break down. For instance, it is not a good idea to try to define +∞ + −∞;
setting this equal to 0 causes some problems.

Now we give an example of how the least upper bound property is useful.

Proposition 5.5.12 There exists a positive real number x such that x2 = 2.

Remark 5.5.13 Comparing this result with Proposition 4.4.4, we see that certain
numbers are real but not rational. The proof of this proposition also shows that the
rationalsQ do not obey the least upper bound property, otherwise one could use that
property to construct a square root of 2, which by Proposition 4.4.4 is not possible.

Proof Let E be the set {y ∈ R : y ≥ 0 and y2 < 2}; thus E is the set of all non-
negative real numbers whose square is less than 2. Observe that E has an upper
bound of 2 (because if y > 2, then y2 > 4 > 2 and hence y /∈ E). Also, E is non-
empty (for instance, 1 is an element of E). Thus by the least upper bound property,
we have a real number x := sup(E) which is the least upper bound of E . Then x
is greater than or equal to 1 (since 1 ∈ E) and less than or equal to 2 (since 2 is an
upper bound for E). So x is positive. Now we show that x2 = 2.

We argue this by contradiction. We show that both x2 < 2 and x2 > 2 lead to
contradictions. First suppose that x2 < 2. Let 0 < ε < 1 be a small number; then we
have

(x + ε)2 = x2 + 2εx + ε2 ≤ x2 + 4ε + ε = x2 + 5ε

since x ≤ 2 and ε2 ≤ ε. Since x2 < 2, we see that we can choose an 0 < ε < 1
such that x2 + 5ε < 2, thus (x + ε)2 < 2. By construction of E , this means that
x + ε ∈ E ; but this contradicts the fact that x is an upper bound of E .

Now suppose that x2 > 2. Let 0 < ε < 1 be a small number; then we have

(x − ε)2 = x2 − 2εx + ε2 ≥ x2 − 2εx ≥ x2 − 4ε

since x ≤ 2 and ε2 ≥ 0. Since x2 > 2, we can choose 0 < ε < 1 such that x2 − 4ε >

2, and thus (x − ε)2 > 2. But then this implies that x − ε ≥ y for all y ∈ E . (Why?
If x − ε < y then (x − ε)2 < y2 ≤ 2, a contradiction.) Thus x − ε is an upper bound
for E , which contradicts the fact that x is the least upper bound of E . From these
two contradictions we see that x2 = 2, as desired. �
Remark 5.5.14 In Chap. 6 we will use the least upper bound property to develop
the theory of limits, which allows us to do many more things than just take square
roots.

Remark 5.5.15 Wecan of course talk about lower bounds and greatest lower bounds,
of sets E ; the greatest lower bound of a set E is also known as the infimum4 of E and

4 Supremummeans “highest” and infimummeans “lowest”, and the plurals are suprema and infima.
Supremum is to superior, and infimum to inferior, as maximum is to major, and minimum to minor.
The root words are “super”, which means “above”, and “infer”, which means “below” (this usage
only survives in a few rare English words such as “infernal”, with the Latin prefix “sub” having
mostly replaced “infer” in English).
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is denoted inf(E) or inf E . Everything we say about suprema has a counterpart for
infima; we will usually leave such statements to the reader. A precise relationship
between the two notions is given by Exercise 5.5.1. See also Sect. 6.2.

— Exercises —

Exercise 5.5.1 Let E be a subset of the real numbersR, and suppose that E has a least upper bound
M which is a real number, i.e., M = sup(E). Let −E be the set

−E := {−x : x ∈ E}.
Show that −M is the greatest lower bound of −E , i.e., −M = inf(−E).

Exercise 5.5.2 Let E be a non-empty subset ofR, let n ≥ 1 be an integer, and let L < K be integers.
Suppose that K/n is an upper bound for E , but that L/n is not an upper bound for E . Without using
Theorem 5.5.9, show that there exists an integer L < m ≤ K such that m/n is an upper bound for
E , but that (m − 1)/n is not an upper bound for E . (Hint: prove by contradiction, and use induction.
It may also help to draw a picture of the situation.)

Exercise 5.5.3 Let E be a non-empty subset ofR, let n ≥ 1 be an integer, and letm,m′ be integers
with the properties that m/n and m′/n are upper bounds for E , but (m − 1)/n and (m′ − 1)/n are
not upper bounds for E . Show that m = m′. This shows that the integer m constructed in Exercise
5.5.2 is unique. (Hint: again, drawing a picture will be helpful.)

Exercise 5.5.4 Let q1, q2, q3, . . . be a sequence of rational numbers with the property that |qn −
qn′ | ≤ 1

M whenever M ≥ 1 is an integer and n, n′ ≥ M . Show that q1, q2, q3, . . . is a Cauchy
sequence. Furthermore, if S := LIMn→∞ qn , show that |qM − S| ≤ 1

M for every M ≥ 1. (Hint:
use Corollary 5.4.10 or Exercise 5.4.8.)

Exercise 5.5.5 Establish an analogue of Proposition 5.4.14, in which “rational” is replaced by
“irrational”.

5.6 Real Exponentiation, Part I

In Sect. 4.3 we defined exponentiation xn when x is rational and n is a natural
number, or when x is a non-zero rational and n is an integer. Now that we have
all the arithmetic operations on the reals (and Proposition 5.4.7 assures us that the
arithmetic properties of the rationals that we are used to, continue to hold for the
reals) we can similarly define exponentiation of the reals.

Definition 5.6.1 (Exponentiating a real by a natural number). Let x be a real num-
ber. To raise x to the power 0, we define x0 := 1. Now suppose recursively that xn

has been defined for some natural number n, then we define xn+1 := xn × x .

Definition 5.6.2 (Exponentiating a real by an integer). Let x be a non-zero real
number. Then for any negative integer −n, we define x−n := 1/xn .

Clearly these definitions are consistent with the definition of rational exponenti-
ation given earlier. We can then assert
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Proposition 5.6.3 All the properties in Propositions 4.3.10 and 4.3.12 remain valid
if x and y are assumed to be real numbers instead of rational numbers.

Instead of giving an actual proof of this proposition, we shall give a meta-proof
(an argument appealing to the nature of proofs, rather than the nature of real and
rational numbers).

Meta-proof. If one inspects the proof of Propositions 4.3.10 and 4.3.12 we see that
they rely on the laws of algebra and the laws of order for the rationals (Propositions
4.2.4 and 4.2.9). But by Propositions 5.3.11 and 5.4.7, and the identity xx−1 =
x−1x = 1 we know that all these laws of algebra and order continue to hold for real
numbers as well as rationals. Thus we can modify the proof of Proposition 4.3.10
and 4.3.12 to hold in the case when x and y are real. �

Now we consider exponentiation to exponents which are not integers. We begin
with the notion of an nth root, which we can define using our notion of supremum.

Definition 5.6.4 Let x ≥ 0 be a non-negative real, and let n ≥ 1 be a positive integer.
We define x1/n , also known as the nth root of x , by the formula

x1/n := sup{y ∈ R : y ≥ 0 and yn ≤ x}.

We often write
√
x for x1/2.

Note we do not define the nth root of a negative number. In fact, we will leave the
nth roots of negative numbers undefined for the rest of the text (one can define these
nth roots once one defines the complex numbers, but we shall refrain from doing so).

Lemma 5.6.5 (Existence of nth roots). Let x ≥ 0 be a non-negative real, and let
n ≥ 1 be a positive integer. Then the set E := {y ∈ R : y ≥ 0 and yn ≤ x} is non-
empty and is also bounded above. In particular, x1/n is a real number.

Proof The set E contains 0 (why?), so it is certainly not empty. Now we show it has
an upper bound. We divide into two cases: x ≤ 1 and x > 1. First suppose that we
are in the case where x ≤ 1. Then we claim that the set E is bounded above by 1.
To see this, suppose for sake of contradiction that there was an element y ∈ E for
which y > 1. But then yn > 1 (why?), and hence yn > x , a contradiction. Thus E
has an upper bound. Now suppose that we are in the case where x > 1. Then we
claim that the set E is bounded above by x . To see this, suppose for contradiction
that there was an element y ∈ E for which y > x . Since x > 1, we thus have y > 1.
Since y > x and y > 1, we have yn > x (why?), a contradiction. Thus in both cases
E has an upper bound, and so x1/n is finite. �

We list some basic properties of nth roots below.

Lemma 5.6.6 Let x, y ≥ 0 be non-negative reals, and let n,m ≥ 1 be positive inte-
gers.
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(a) If y = x1/n, then yn = x.
(b) Conversely, if yn = x, then y = x1/n.
(c) x1/n is a non-negative real number, and is positive iff x is positive.
(d) We have x > y if and only if x1/n > y1/n.
(e) If x > 1, then x1/k is a decreasing function of k, where k ranges over the positive

integers; that is to say, x1/k < x1/ l whenever k > l. If 0 < x < 1, then x1/k is
an increasing function of k (i.e., x1/k > x1/ l whenever k > l). If x = 1, then
x1/k = 1 for all k.

(f ) We have (xy)1/n = x1/n y1/n.
(g) We have (x1/n)1/m = x1/nm.

Proof See Exercise 5.6.1. �

The observant reader may note that this definition of x1/n might possibly be
inconsistent with our previous notion of xn when n = 1, but it is easy to check that
x1/1 = x = x1 (why?), so there is no inconsistency.

One consequence of Lemma 5.6.6(b) is another proof of the cancelation law from
Proposition 4.3.12(c) and Proposition 5.6.3: if y and z are positive and yn = zn , then
y = z. (Why does this follow fromLemma 5.6.6(b)?) Note that this only works when
y and z are positive; for instance, (−3)2 = 32, but we cannot conclude from this that
−3 = 3.

Now we define how to raise a positive number x to a rational exponent q.

Definition 5.6.7 Let x > 0 be a positive real number, and let q be a rational number.
To define xq , we write q = a/b for some integer a and positive integer b, and define

xq := (x1/b)a .

Note that every rational q, whether positive, negative, or zero, can be written in
the form a/b where a is an integer and b is positive (why?). However, the rational
number q can be expressed in the form a/b in more than one way, for instance 1/2
can also be expressed as 2/4 or 3/6. So to ensure that this definition is well-defined,
we need to check that different expressions a/b give the same formula for xq :

Lemma 5.6.8 Let a, a′ be integers and b, b′ be positive integers such that a/b =
a′/b′, and let x be a positive real number. Then we have (x1/b

′
)a

′ = (x1/b)a.

Proof There are three cases: a = 0, a > 0, a < 0. If a = 0, then we must have
a′ = 0 (why?) and so both (x1/b

′
)a

′
and (x1/b)a are equal to 1, so we are done.

Nowsuppose thata > 0.Thena′ > 0 (why?), andab′ = ba′.Write y := x1/(ab
′) =

x1/(ba
′). By Lemma 5.6.6(g) we have y = (x1/b

′
)1/a and y = (x1/b)1/a

′
; by Lemma

5.6.6(a) we thus have ya = x1/b
′
and ya

′ = x1/b. Thus we have

(x1/b
′
)a

′ = (ya)a
′ = yaa

′ = (ya
′
)a = (x1/b)a

as desired.
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Finally, suppose thata < 0. Thenwehave (−a)/b = (−a′)/b′. But−a is positive,
so the previous case applies and we have (x1/b

′
)−a′ = (x1/b)−a . Taking the reciprocal

of both sides we obtain the result. �

Thus xq is well-defined for every rational q. Note that this new definition is
consistent with our old definition for x1/n (why?) and is also consistent with our old
definition for xn (why?).

Some basic facts about rational exponentiation:

Lemma 5.6.9 Let x, y > 0 be positive reals, and let q, r be rationals.

(a) xq is a positive real.
(b) xq+r = xq xr and (xq)r = xqr .
(c) x−q = 1/xq .
(d) If q > 0, then x > y if and only if xq > yq .
(e) If x > 1, then xq > xr if and only if q > r . If x < 1, then xq > xr if and only if

q < r .
(f ) (xy)q = xq yq .

Proof See Exercise 5.6.2. �

We still have to do real exponentiation; in other words, we still have to define x y

where x > 0 and y is a real number—but we will defer that until Sect. 6.7, once we
have formalized the concept of limit.

In the rest of the text we shall now just assume the real numbers to obey all the
usual laws of algebra, order, and exponentiation.

— Exercises —

Exercise 5.6.1 Prove Lemma 5.6.6. (Hints: review the proof of Proposition 5.5.12. Also, you will
find proof by contradiction a useful tool, especially when combined with the trichotomy of order
in Proposition 5.4.7 and Proposition 5.4.12. The earlier parts of the lemma can be used to prove
later parts of the lemma. With part (e), first show that if x > 1 then x1/n > 1, and if x < 1 then
x1/n < 1.)

Exercise 5.6.2 Prove Lemma 5.6.9. (Hint: you should relymainly on Lemma 5.6.6 and on algebra.)

Exercise 5.6.3 If x is a real number and n is an even natural number (thus n = 2m for some natural
number m), show that xn ≥ 0.

Exercise 5.6.4 If x is a real number, show that |x | = (x2)1/2.

Exercise 5.6.5 If x, y are positive reals, and q is a positive rational with q ≥ 1, show that
max(xq , yq ) = max(x, y)q and min(xq , yq ) = min(x, y)q , where the operations min,max were
defined in Exercise 5.4.9. What happens if we have q < 1 instead of q ≥ 1?



Chapter 6
Limits of Sequences

6.1 Convergence and Limit Laws

In the previous chapter, we defined the real numbers as formal limits of ratio-
nal (Cauchy) sequences, and we then defined various operations on the real num-
bers. However, unlike our work in constructing the integers (where we eventually
replaced formal differences with actual differences) and rationals (where we even-
tually replaced formal quotients with actual quotients), we did not completely finish
the job of constructing the real numbers, because we never got around to replacing
formal limits LIMn→∞ an with actual limits limn→∞ an . In fact, we haven’t defined
limits at all yet. This will now be rectified.

We begin by repeating much of the machinery of ε-close sequences, etc., again—
but this time, we do it for sequences of real numbers, not rational numbers. Thus
this discussion will supercede what we did in the previous chapter. First, we define
distance for real numbers:

Definition 6.1.1 (Distance between two real numbers). Given two real numbers x
and y, we define their distance d(x, y) to be d(x, y) := |x − y|.

Clearly this definition is consistent with Definition 4.3.2. Further, Proposition
4.3.3 works just as well for real numbers as it does for rationals, because the real
numbers obey all the rules of algebra that the rationals do.

Definition 6.1.2 (ε-close real numbers). Let ε > 0 be a real number. We say that
two real numbers x, y are ε-close iff we have d(y, x) ≤ ε.

Again, it is clear that this definition of ε-close is consistent with Definition 4.3.4.
Now let (an)∞n=m be a sequence of real numbers; i.e., we assign a real number

an for every integer n ≥ m. The starting index m is some integer; usually this will
be 1, but in some cases we will start from some index other than 1. (The choice of
label used to index this sequence is unimportant; we could use for instance (ak)∞k=m
and this would represent exactly the same sequence as (an)∞n=m .) We can define the
notion of a Cauchy sequence in the same manner as before.
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Definition 6.1.3 (Cauchy sequences of reals). Let ε > 0 be a real number. A
sequence (an)∞n=N of real numbers starting at some integer index N is said to be
ε-steady iff a j and ak are ε-close for every j, k ≥ N . A sequence (an)∞n=m starting at
some integer indexm is said to be eventually ε-steady iff there exists an N ≥ m such
that (an)∞n=N is ε-steady.We say that (an)∞n=m is aCauchy sequence iff it is eventually
ε-steady for every ε > 0.

To put it another way, a sequence (an)∞n=m of real numbers is a Cauchy sequence
if, for every real ε > 0, there exists an N ≥ m such that |an − an′ | ≤ ε for all n, n′ ≥
N . These definitions are consistent with the corresponding definitions for rational
numbers (Definitions 5.1.3, 5.1.6, 5.1.8), although verifying consistency for Cauchy
sequences takes a little bit of care.

Proposition 6.1.4 Let (an)∞n=m be a sequence of rational numbers starting at some
integer index m. Then (an)∞n=m is a Cauchy sequence in the sense of Definition 5.1.8
if and only if it is a Cauchy sequence in the sense of Definition 6.1.3.

Proof Suppose first that (an)∞n=m is a Cauchy sequence in the sense of Definition
6.1.3; then it is eventually ε-steady for every real ε > 0. In particular, it is eventually
ε-steady for every rational ε > 0, which makes it a Cauchy sequence in the sense of
Definition 5.1.8.

Now suppose that (an)∞n=m is a Cauchy sequence in the sense of Definition 5.1.8;
then it is eventually ε-steady for every rational ε > 0. If ε > 0 is a real number, then
there exists a rational ε′ > 0 which is smaller than ε, by Proposition 5.4.12. Since ε′
is rational, we know that (an)∞n=m is eventually ε′-steady; since ε′ < ε, this implies
that (an)∞n=m is eventually ε-steady. Since ε is an arbitrary positive real number, we
thus see that (an)∞n=m is a Cauchy sequence in the sense of Definition 6.1.3. �

Because of this proposition, we will no longer care about the distinction between
Definition 5.1.8 and Definition 6.1.3 and view the concept of a Cauchy sequence as
a single unified concept.

Now we talk about what it means for a sequence of real numbers to converge to
some limit L .

Definition 6.1.5 (Convergence of sequences). Let ε > 0 be a real number, and let
L be a real number. A sequence (an)∞n=N of real numbers is said to be ε-close to L
iff an is ε-close to L for every n ≥ N , i.e., we have |an − L| ≤ ε for every n ≥ N .
We say that a sequence (an)∞n=m is eventually ε-close to L iff there exists an N ≥ m
such that (an)∞n=N is ε-close to L . We say that a sequence (an)∞n=m converges to L iff
it is eventually ε-close to L for every real ε > 0.

One can unwrap all the definitions here and write the concept of convergence
more directly; see Exercise 6.1.2.

Example 6.1.6 The sequence

0.9, 0.99, 0.999, 0.9999, . . .
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is 0.1-close to 1 but is not 0.01-close to 1, because of the first element of the sequence.
However, it is eventually 0.01-close to 1. In fact, for every real ε > 0, this sequence
is eventually ε-close to 1, hence is convergent to 1.

Proposition 6.1.7 (Uniqueness of limits). Let (an)∞n=m be a real sequence starting
at some integer index m, and let L �= L ′ be two distinct real numbers. Then it is not
possible for (an)∞n=m to converge to L while also converging to L ′.

Proof Suppose for sake of contradiction that (an)∞n=m was converging to both L and
L ′. Let ε = |L − L ′|/3; note that ε is positive since L �= L ′. Since (an)∞n=m converges
to L , we know that (an)∞n=m is eventually ε-close to L; thus there is an N ≥ m such that
d(an, L) ≤ ε for all n ≥ N . Similarly, there is an M ≥ m such that d(an, L ′) ≤ ε for
all n ≥ M . In particular, if we set n := max(N , M), then we have d(an, L) ≤ ε and
d(an, L ′) ≤ ε, hence by the triangle inequality d(L , L ′) ≤ 2ε = 2|L − L ′|/3. But
then we have |L − L ′| ≤ 2|L − L ′|/3, which contradicts the fact that |L − L ′| > 0.
Thus it is not possible to converge to both L and L ′. �

Now that we know limits are unique, we can set up notation to specify them:

Definition 6.1.8 (Limits of sequences). If a sequence (an)∞n=m converges to some
real number L , we say that (an)∞n=m is convergent and that its limit is L; we write

L = lim
n→∞ an

to denote this fact. If a sequence (an)∞n=m is not converging to any real number L , we
say that the sequence (an)∞n=m is divergent and we leave limn→∞ an undefined.

Note that Proposition 6.1.7 ensures that a sequence can have at most one limit.
Thus, if the limit exists, it is a single real number, otherwise it is undefined.

Remark 6.1.9 The notation limn→∞ an does not give any indication about the start-
ing indexm of the sequence, but the starting index is irrelevant (Exercise 6.1.3). Thus
in the rest of this discussion we shall not be too careful as to where these sequences
start, as we shall be mostly focused on their limits.

We sometimes use the phrase “an → x as n → ∞” as an alternate way of writing
the statement “(an)∞n=m converges to x”. Bear in mind, though, that the individual
statements an → x and n → ∞ do not have any rigorous meaning; this phrase is
just a convention, though of course a very suggestive one.

Remark 6.1.10 The exact choice of letter used to denote the index (in this case n)
is irrelevant: the phrase limn→∞ an has exactly the same meaning as limk→∞ ak ,
for instance. Sometimes it will be convenient to change the label of the index to
avoid conflicts of notation; for instance, we might want to change n to k because n is
simultaneously being used for some other purpose, and we want to reduce confusion.
See Exercise 6.1.4.
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As an example of a limit, we present

Proposition 6.1.11 We have limn→∞ 1/n = 0.

Proof Wehave to show that the sequence (an)∞n=1 converges to 0,wherean := 1/n. In
other words, for every ε > 0, we need to show that the sequence (an)∞n=1 is eventually
ε-close to 0. So, let ε > 0 be an arbitrary real number. We have to find an N such
that |an − 0| ≤ ε for every n ≥ N . But if n ≥ N , then

|an − 0| = |1/n − 0| = 1/n ≤ 1/N .

Thus, if we pick N > 1/ε (which we can do by the Archimedean principle), then
1/N < ε, and so (an)∞n=N is ε-close to 0. Thus (an)∞n=1 is eventually ε-close to 0.
Since ε was arbitrary, (an)∞n=1 converges to 0. �

Proposition 6.1.12 (Convergent sequences are Cauchy). Suppose that (an)∞n=m is a
convergent sequence of real numbers. Then (an)∞n=m is also a Cauchy sequence.

Proof See Exercise 6.1.5. �

Example 6.1.13 The sequence 1,−1, 1,−1, 1,−1, . . . is not a Cauchy sequence
(because it is not eventually 1-steady), and is hence not a convergent sequence, by
Proposition 6.1.12.

Remark 6.1.14 For a converse to Proposition 6.1.12, see Theorem 6.4.18.

Nowwe show that formal limits can be superceded by actual limits, just as formal
subtraction was superceded by actual subtraction when constructing the integers,
and formal division superceded by actual division when constructing the rational
numbers.

Proposition 6.1.15 (Formal limits are genuine limits). Suppose that (an)∞n=1 is a
Cauchy sequence of rational numbers. Then (an)∞n=1 converges to LIMn→∞ an, i.e.

LIM
n→∞ an = lim

n→∞ an .

Proof See Exercise 6.1.6. �

Definition 6.1.16 (Bounded sequences). A sequence (an)∞n=m of real numbers is
bounded by a real number M iff we have |an| ≤ M for all n ≥ m. We say that
(an)∞n=m is bounded iff it is bounded by M for some real number M > 0.

This definition is consistent with Definition 5.1.12; see Exercise 6.1.7.
Recall from Lemma 5.1.15 that every Cauchy sequence of rational numbers is

bounded. An inspection of the proof of that Lemma shows that the same argument
works for real numbers; every Cauchy sequence of real numbers is bounded. In
particular, from Proposition 6.1.12 we have
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Corollary 6.1.17 Every convergent sequence of real numbers is bounded.

Example 6.1.18 The sequence 1, 2, 3, 4, 5, . . . is not bounded, and hence is not
convergent.

We can now prove the usual limit laws.

Theorem 6.1.19 (Limit Laws).Let (an)∞n=m and (bn)∞n=m be convergent sequences of
real numbers, and let x, y be the real numbers x := limn→∞ an and y := limn→∞ bn.

(a) The sequence (an + bn)∞n=m converges to x + y; in other words,

lim
n→∞(an + bn) = lim

n→∞ an + lim
n→∞ bn.

(b) The sequence (anbn)∞n=m converges to xy; in other words,

lim
n→∞(anbn) =

(
lim
n→∞ an

) (
lim
n→∞ bn

)
.

(c) For any real number c, the sequence (can)∞n=m converges to cx; in other words,

lim
n→∞(can) = c lim

n→∞ an.

(d) The sequence (an − bn)∞n=m converges to x − y; in other words,

lim
n→∞(an − bn) = lim

n→∞ an − lim
n→∞ bn.

(e) Suppose that y �= 0, and that bn �= 0 for all n ≥ m. Then the sequence (b−1
n )∞n=m

converges to y−1; in other words,

lim
n→∞ b−1

n =
(
lim
n→∞ bn

)−1
.

(f ) Suppose that y �= 0, and that bn �= 0 for all n ≥ m.Then the sequence (an/bn)∞n=m
converges to x/y; in other words,

lim
n→∞

an
bn

= limn→∞ an
limn→∞ bn

.

(g) The sequence1 (max(an, bn))∞n=m converges to max(x, y); in other words,

lim
n→∞max(an, bn) = max

(
lim
n→∞ an, lim

n→∞ bn
)

.

1 The operations min,max are defined in Exercise 5.4.9.
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(h) The sequence (min(an, bn))∞n=m converges to min(x, y); in other words,

lim
n→∞min(an, bn) = min

(
lim
n→∞ an, lim

n→∞ bn
)

.

Proof See Exercise 6.1.8. �

— Exercises —

Exercise 6.1.1 Let (an)∞n=0 be a sequence of real numbers, such that an+1 > an for each natural
number n. Prove that whenever n andm are natural numbers such thatm > n, thenwe have am > an .
(We refer to these sequences as strictly increasing sequences.)

Exercise 6.1.2 Let (an)∞n=m be a sequence of real numbers, and let L be a real number. Show that
(an)∞n=m converges to L if and only if, given any real ε > 0, one can find an N ≥ m such that
|an − L| ≤ ε for all n ≥ N .

Exercise 6.1.3 Let (an)∞n=m be a sequence of real numbers, let c be a real number, and let m′ ≥ m
be an integer. Show that (an)∞n=m converges to c if and only if (an)∞n=m′ converges to c.

Exercise 6.1.4 Let (an)∞n=m be a sequence of real numbers, let c be a real number, and let k ≥ 0 be
a non-negative integer. Show that (an)∞n=m converges to c if and only if (an+k)

∞
n=m converges to c.

Exercise 6.1.5 Prove Proposition 6.1.12. (Hint: use the triangle inequality, or Proposition 4.3.7.)

Exercise 6.1.6 Prove Proposition 6.1.15, using the following outline. Let (an)∞n=1 be a Cauchy
sequence of rationals, and write L := LIMn→∞ an . We have to show that (an)∞n=1 converges to L .
Let ε > 0. Assume for sake of contradiction that sequence an is not eventually ε-close to L . Use this,
and the fact that (an)∞n=1 is Cauchy, to show that there is an N ≥ m such that either an > L + ε/2
for all n ≥ N , or an < L − ε/2 for all n ≥ N . Then use Exercise 5.4.8.

Exercise 6.1.7 Show that Definition 6.1.16 is consistent with Definition 5.1.12 (i.e., prove an
analogue of Proposition 6.1.4 for bounded sequences instead of Cauchy sequences).

Exercise 6.1.8 Prove Theorem 6.1.19. (Hint: you can use some parts of the theorem to prove others,
e.g., (b) can be used to prove (c); (a),(c) can be used to prove (d); and (b), (e) can be used to prove
(f). The proofs are similar to those of Lemma 5.3.6, Proposition 5.3.10, and Lemma 5.3.15. For (e),
you may need to first prove the auxiliary result that any sequence whose elements are non-zero, and
which converges to a non-zero limit, is bounded away from zero.)

Exercise 6.1.9 Explain why Theorem 6.1.19(f) fails when the limit of the denominator is 0. (To
repair that problem requires L’Hôpital’s rule, see Section 10.5.)

Exercise 6.1.10 Show that the concept of equivalent Cauchy sequence, as defined in Definition
5.2.6, does not change if ε is required to be positive real instead of positive rational. More precisely,
if (an)∞n=0 and (bn)∞n=0 are sequences of reals, show that (an)∞n=0 and (bn)∞n=0 are eventually ε-close
for every rational ε > 0 if and only if they are eventually ε-close for every real ε > 0. (Hint:modify
the proof of Proposition 6.1.4.)
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6.2 The Extended Real Number System

There are some sequences which do not converge to any real number but instead
seem to be wanting to converge to +∞ or −∞. For instance, it seems intuitive that
the sequence

1, 2, 3, 4, 5, . . .

should be converging to +∞, while

−1,−2,−3,−4,−5, . . .

should be converging to −∞. Meanwhile, the sequence

1,−1, 1,−1, 1,−1, . . .

does not seem to be converging to anything (although we shall see later that it does
have +1 and −1 as “limit points”—see below). Similarly the sequence

1,−2, 3,−4, 5,−6, . . .

does not converge to any real number, and also does not appear to be converging to
+∞ or converging to −∞. To make this precise we need to talk about something
called the extended real number system.

Definition 6.2.1 (Extended real number system). The extended real number system
R∗ is the real line R with two additional elements attached, called +∞ and −∞.
These elements are distinct from each other and also distinct from every real number.
An extended real number x is called finite iff it is a real number, and infinite iff it is
equal to +∞ or −∞. (This definition is not directly related to the notion of finite
and infinite sets in Section 3.6, though it is of course similar in spirit.)

These new symbols, +∞ and −∞, at present do not have much meaning, since
we have no operations to manipulate them (other than equality = and inequality
�=). As with many of the other mathematical concepts considered here, the precise
construction of +∞ and −∞ is not important, but (by Exercise 3.2.2) one could
for instance set +∞ := {R} and −∞ := {R ∪ {∞}} if desired. Now we place a few
operations on the extended real number system.

Definition 6.2.2 (Negation of extended reals). The operation of negation x 
→ −x
on R, we now extend to R∗ by defining −(+∞) := −∞ and −(−∞) := +∞.

Thus every extended real number x has a negation, and −(−x) is always equal to
x .

Definition 6.2.3 (Ordering of extended reals).Let x and y be extended real numbers.
We say that x ≤ y, i.e., x is less than or equal to y, iff one of the following three
statements is true:
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(a) x and y are real numbers, and x ≤ y as real numbers.
(b) y = +∞.
(c) x = −∞.

We say that x < y if we have x ≤ y and x �= y. We sometimes write x < y as
y > x , and x ≤ y as y ≥ x .

Example 6.2.4 3 ≤ 5, 3 < +∞, and −∞ < +∞, but 3 � −∞.

Some basic properties of order and negation on the extended real number system:

Proposition 6.2.5 Let x, y, z be extended real numbers. Then the following state-
ments are true:

(a) (Reflexivity) We have x ≤ x.
(b) (Trichotomy) Exactly one of the statements x < y, x = y, or x > y is true.
(c) (Transitivity) If x ≤ y and y ≤ z, then x ≤ z.
(d) (Negation reverses order) If x ≤ y, then −y ≤ −x.

Proof See Exercise 6.2.1. �

One could also introduce other operations on the extended real number system,
such as addition and multiplication. However, this is somewhat dangerous as these
operationswill almost certainly fail to obey the familiar rules of algebra. For instance,
to define addition it seems reasonable (given one’s intuitive notion of infinity) to set
+∞ + 5 = +∞ and +∞ + 3 = +∞, but then this implies that +∞ + 5 = +∞ +
3, while 5 �= 3. So things like the cancelation law begin to break down once we try
to operate involving infinity. To avoid these issues we shall simply not define any
arithmetic operations on the extended real number system other than negation and
order.

Remember that we defined the notion of supremum or least upper bound of a
set E of reals; this gave an extended real number sup(E), which was either finite or
infinite. We now extend this notion slightly.

Definition 6.2.6 (Supremum of sets of extended reals). Let E be a subset of R∗.
Then we define the supremum sup(E) or least upper bound of E by the following
rule.

(a) If E is contained in R (i.e., +∞ and −∞ are not elements of E), then we let
sup(E) be as defined in Definition 5.5.10.

(b) If E contains +∞, then we set sup(E) := +∞.
(c) If E does not contain +∞ but does contain −∞, then we set sup(E) :=

sup(E\{−∞}) (which is a subset of R and thus falls under case (a)).

We also define the infimum inf(E) of E (also known as the greatest lower bound
of E) by the formula

inf(E) := − sup(−E)

where −E is the set −E := {−x : x ∈ E}.
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Example 6.2.7 Let E be the negative integers, together with −∞:

E = {−1,−2,−3,−4, . . .} ∪ {−∞}.

Then sup(E) = sup(E\{−∞}) = −1, while

inf(E) = − sup(−E) = −(+∞) = −∞.

Example 6.2.8 The set {0.9, 0.99, 0.999, 0.9999, . . .} has infimum 0.9 and supre-
mum 1. Note that in this case the supremum does not actually belong to the set, but
it is in some sense “touching it” from the right.

Example 6.2.9 The set {1, 2, 3, 4, 5 . . .} has infimum 1 and supremum +∞.

Example 6.2.10 Let E be the empty set. Then sup(E) = −∞ and inf(E) = +∞
(why?). This is the only case in which the supremum can be less than the infimum
(why?).

One can intuitively think of the supremum of E as follows. Imagine the real line
with +∞ somehow on the far right, and −∞ on the far left. Imagine a piston at +∞
moving leftward until it is stopped by the presence of a set E ; the location where
it stops is the supremum of E . Similarly if one imagines a piston at −∞ moving
rightward until it is stopped by the presence of E , the location where it stops is the
infimum of E . In the case when E is the empty set, the pistons pass through each
other, the supremum landing at −∞ and the infimum landing at +∞.

The following theorem justifies the terminology “least upper bound” and “greatest
lower bound”:

Theorem 6.2.11 Let E be a subset of R∗. Then the following statements are true.

(a) For every x ∈ E we have x ≤ sup(E) and x ≥ inf(E).
(b) Suppose that M ∈ R∗ is an upper bound for E, i.e., x ≤ M for all x ∈ E. Then

we have sup(E) ≤ M.
(c) Suppose that M ∈ R∗ is a lower bound for E, i.e., x ≥ M for all x ∈ E. Then

we have inf(E) ≥ M.

Proof See Exercise 6.2.2. �

— Exercises —

Exercise 6.2.1 Prove Proposition 6.2.5. (Hint: you may need Proposition 5.4.7.)

Exercise 6.2.2 Prove Theorem 6.2.11. (Hint: you may need to break into cases depending on
whether +∞ or −∞ belongs to E . You can of course use Definition 5.5.10, provided that E
consists only of real numbers.)
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6.3 Suprema and Infima of Sequences

Having defined the notion of a supremum and infimum of sets of reals, we can now
also talk about the supremum and infimum of a sequence.

Definition 6.3.1 (Suprema and infima of sequences). Let (an)∞n=m be a sequence of
real numbers. Thenwe define sup(an)∞n=m to be the supremumof the set {an : n ≥ m},
and inf(an)∞n=m to the infimum of the same set {an : n ≥ m}.
Remark 6.3.2 The quantities sup(an)∞n=m and inf(an)∞n=m are sometimes written as
supn≥m an and infn≥m an respectively.

Example 6.3.3 Let an := (−1)n; thus (an)∞n=1 is the sequence −1, 1,−1, 1, . . ..
Then the set {an : n ≥ 1} is just the two-element set {−1, 1}, and hence sup(an)∞n=1
is equal to 1. Similarly inf(an)∞n=1 is equal to −1.

Example 6.3.4 Let an := 1/n; thus (an)∞n=1 is the sequence 1, 1/2, 1/3, . . .. Then
the set {an : n ≥ 1} is the countable set {1, 1/2, 1/3, 1/4, . . .}. Thus sup(an)∞n=1 = 1
and inf(an)∞n=1 = 0 (Exercise 6.3.1). Notice here that the infimum of the sequence is
not actually a member of the sequence, though it becomes very close to the sequence
eventually. (So it is a little inaccurate to think of the supremum and infimum as the
“largest element of the sequence” and “smallest element of the sequence”, respec-
tively.)

Example 6.3.5 Let an := n; thus (an)∞n=1 is the sequence 1, 2, 3, 4, . . .. Then the
set {an : n ≥ 1} is just the positive integers {1, 2, 3, 4, . . .}. Then sup(an)∞n=1 = +∞
and inf(an)∞n=1 = 1.

As the last example shows, it is possible for the supremum or infimum of a
sequence to be+∞ or−∞. However, if a sequence (an)∞n=m is bounded, say bounded
by M , then all the elements an of the sequence lie between −M and M , so that the
set {an : n ≥ m} has M as an upper bound and −M as a lower bound. Since this
set is clearly non-empty, we can thus conclude that the supremum and infimum of a
bounded sequence are real numbers (i.e., not +∞ and −∞).

Proposition 6.3.6 (Least upper bound property). Let (an)∞n=m be a sequence of real
numbers, and let x be the extended real number x := sup(an)∞n=m. Then we have
an ≤ x for all n ≥ m. Also, whenever M ∈ R∗ is an upper bound for an (i.e., an ≤ M
for all n ≥ m), we have x ≤ M. Finally, for every extended real number y for which
y < x, there exists at least one n ≥ m for which y < an ≤ x.

Proof See Exercise 6.3.2. �

Remark 6.3.7 There is a corresponding Proposition for infima, but with all the ref-
erences to order reversed, e.g., all upper bounds should now be lower bounds, etc.
The proof is exactly the same.
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Now we give an application of these concepts of supremum and infimum. In the
previous sectionwe saw that all convergent sequences are bounded. It is natural to ask
whether the converse is true: are all bounded sequences convergent? The answer is
no; for instance, the sequence 1,−1, 1,−1, . . . is bounded, but not Cauchy and hence
not convergent. However, if we make the sequence both bounded andmonotone (i.e.,
increasing or decreasing), then it is true that it must converge:

Proposition 6.3.8 (Monotone bounded sequences converge). Let (an)∞n=m be a
sequence of real numbers which has some finite upper bound M ∈ R, and which
is also increasing (i.e., an+1 ≥ an for all n ≥ m). Then (an)∞n=m is convergent, and
in fact

lim
n→∞ an = sup(an)

∞
n=m ≤ M.

Proof See Exercise 6.3.3. �

One can similarly prove that if a sequence (an)∞n=m is bounded below and decreas-
ing (i.e., an+1 ≤ an), then it is convergent, and that the limit is equal to the infimum.

A sequence is said to be monotone if it is either increasing or decreasing. From
Proposition 6.3.8 and Corollary 6.1.17 we see that a monotone sequence converges
if and only if it is bounded.

Example 6.3.9 The sequence 3, 3.1, 3.14, 3.141, 3.1415, . . . is increasing, and is
bounded above by 4. Hence by Proposition 6.3.8 it must have a limit, which is a real
number less than or equal to 4.

Proposition 6.3.8 asserts that the limit of a monotone sequence exists, but does
not directly say what that limit is. Nevertheless, with a little extra work one can often
find the limit once one is given that the limit does exist. For instance:

Proposition 6.3.10 Let 0 < x < 1. Then we have limn→∞ xn = 0.

Proof Since 0 < x < 1, one can show that the sequence (xn)∞n=1 is decreasing
(why?). On the other hand, the sequence (xn)∞n=1 has a lower bound of 0. Thus by
Proposition 6.3.8 (for infima instead of suprema) the sequence (xn)∞n=1 converges to
some limit L . Since xn+1 = x × xn , we thus see from the limit laws (Theorem6.1.19)
that (xn+1)∞n=1 converges to xL . But the sequence (xn+1)∞n=1 is just the sequence
(xn)∞n=2 shifted by one, and so they must have the same limits (why?). So xL = L .
Since x �= 1, we can solve for L to obtain L = 0. Thus (xn)∞n=1 converges to 0. �

Note that this proof does not work when x > 1 (Exercise 6.3.4).

— Exercises —

Exercise 6.3.1 Verify the claim in Example 6.3.4.

Exercise 6.3.2 Prove Proposition 6.3.6. (Hint: use Theorem 6.2.11.)

Exercise 6.3.3 Prove Proposition 6.3.8. (Hint: use Proposition 6.3.6, together with the assumption
that an is increasing, to show that an converges to sup(an)∞n=m .)
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Exercise 6.3.4 Explain why Proposition 6.3.10 fails when x > 1. In fact, show that the sequence
(xn)∞n=1 diverges when x > 1. (Hint: prove by contradiction and use the identity (1/x)nxn = 1 and
the limit laws in Theorem 6.1.19.) Compare this with the argument in Example 1.2.3; can you now
explain the flaws in the reasoning in that example?

6.4 Limsup, Liminf, and Limit Points

Consider the sequence

1.1,−1.01, 1.001,−1.0001, 1.00001, . . . .

If one plots this sequence, then one sees (informally, of course) that this sequence
does not converge; half the time the sequence is getting close to 1, and half the time
the sequence is getting close to −1, but it is not converging to either of them; for
instance, it never gets eventually 1/2-close to 1, and never gets eventually 1/2-close
to−1. However, even though−1 and+1 are not quite limits of this sequence, it does
seem that in some vague way they “want” to be limits. To make this notion precise
we introduce the notion of a limit point.

Definition 6.4.1 (Limit points). Let (an)∞n=m be a sequence of real numbers, let x be
a real number, and let ε > 0 be a real number. We say that x is ε-adherent to (an)∞n=m
iff there exists an n ≥ m such that an is ε-close to x . We say that x is continually
ε-adherent to (an)∞n=m iff it is ε-adherent to (an)∞n=N for every N ≥ m. We say that x
is a limit point or adherent point of (an)∞n=m iff it is continually ε-adherent to (an)∞n=m
for every ε > 0.

Remark 6.4.2 The verb “to adhere” means much the same as “to stick to”; hence
the term “adhesive”.

Unwrapping all the definitions, we see that x is a limit point of (an)∞n=m if, for
every ε > 0 and every N ≥ m, there exists an n ≥ N such that |an − x | ≤ ε. (Why
is this the same definition?) Note the difference between a sequence being ε-close to
L (which means that all the elements of the sequence stay within a distance ε of L)
and L being ε-adherent to the sequence (which only needs a single element of the
sequence to stay within a distance ε of L). Also, for L to be continually ε-adherent to
(an)∞n=m , it has to be ε-adherent to (an)∞n=N for all N ≥ m, whereas for (an)∞n=m to be
eventually ε-close to L , we only need (an)∞n=N to be ε-close to L for some N ≥ m.
Thus there are some subtle differences in quantifiers between limits and limit points.

Note that limit points are only defined for finite real numbers. It is also possible to
rigorously define the concept of +∞ or −∞ being a limit point; see Exercise 6.4.8.

Example 6.4.3 Let (an)∞n=1 denote the sequence

0.9, 0.99, 0.999, 0.9999, 0.99999, . . . .
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The number 0.8 is 0.1-adherent to this sequence, since 0.8 is 0.1-close to 0.9, which
is a member of this sequence. However, it is not continually 0.1-adherent to this
sequence, since once one discards the first element of this sequence there is no
member of the sequence to be 0.1-close to. In particular, 0.8 is not a limit point of
this sequence. On the other hand, the number 1 is 0.1-adherent to this sequence, and
in fact is continually 0.1-adherent to this sequence, since no matter how many initial
members of the sequence one discards, there is still something for 1 to be 0.1-close
to. In fact, it is continually ε-adherent for every ε, and is hence a limit point of this
sequence.

Example 6.4.4 Now consider the sequence

1.1,−1.01, 1.001,−1.0001, 1.00001, . . . .

The number 1 is 0.1-adherent to this sequence; in fact it is continually 0.1-adherent to
this sequence, because no matter how many elements of the sequence one discards,
there are some elements of the sequence that 1 is 0.1-close to. (As discussed earlier,
one does not need all the elements to be 0.1-close to 1, just some; thus 0.1-adherent
is weaker than 0.1-close, and continually 0.1-adherent is a different notion from
eventually 0.1-close.) In fact, for every ε > 0, the number 1 is continually ε-adherent
to this sequence and is thus a limit point of this sequence. Similarly, −1 is a limit
point of this sequence; however 0 (say) is not a limit point of this sequence, since it
is not continually 0.1-adherent to it.

Limits are of course a special case of limit points:

Proposition 6.4.5 (Limits are limit points). Let (an)∞n=m be a sequence which con-
verges to a real number c. Then c is a limit point of (an)∞n=m, and in fact it is the only
limit point of (an)∞n=m.

Proof See Exercise 6.4.1. �

Now we will look at two special types of limit points: the limit superior (lim sup)
and limit inferior (lim inf).

Definition 6.4.6 (Limit superior and limit inferior). Suppose that (an)∞n=m is a
sequence. We define a new sequence (a+

N )∞N=m by the formula

a+
N := sup(an)

∞
n=N .

More informally, a+
N is the supremum of all the elements in the sequence from

aN onwards. We then define the limit superior of the sequence (an)∞n=m , denoted
lim supn→∞ an , by the formula

lim sup
n→∞

an := inf(a+
N )∞N=m .

Similarly, we can define
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a−
N := inf(an)

∞
n=N

and define the limit inferior of the sequence (an)∞n=m , denoted lim infn→∞ an , by the
formula

lim inf
n→∞ an := sup(a−

N )∞N=m .

Example 6.4.7 Let a1, a2, a3, . . . denote the sequence

1.1,−1.01, 1.001,−1.0001, 1.00001, . . . .

Then a+
1 , a+

2 , a+
3 , . . . is the sequence

1.1, 1.001, 1.001, 1.00001, 1.00001, . . .

(why?), and its infimum is 1. Hence the limit superior of this sequence is 1. Similarly,
a−
1 , a−

2 , a−
3 , . . . is the sequence

−1.01,−1.01,−1.0001,−1.0001,−1.000001, . . .

(why?), and the supremum of this sequence is −1. Hence the limit inferior of this
sequence is −1. One should compare this with the supremum and infimum of the
sequence, which are 1.1 and −1.01 respectively.

Example 6.4.8 Let a1, a2, a3, . . . denote the sequence

1,−2, 3,−4, 5,−6, 7,−8, . . .

Then a+
1 , a+

2 , . . . is the sequence

+∞,+∞,+∞,+∞, . . .

(why?) and so the limit superior is +∞. Similarly, a−
1 , a−

2 , . . . is the sequence

−∞,−∞,−∞,−∞, . . .

and so the limit inferior is −∞.

Example 6.4.9 Let a1, a2, a3, . . . denote the sequence

1,−1/2, 1/3,−1/4, 1/5,−1/6, . . .

Then a+
1 , a+

2 , . . . is the sequence

1, 1/3, 1/3, 1/5, 1/5, 1/7, . . .
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which has an infimum of 0 (why?), so the limit superior is 0. Similarly, a−
1 , a−

2 , . . .

is the sequence
−1/2,−1/2,−1/4,−1/4,−1/6,−1/6, . . .

which has a supremum of 0. So the limit inferior is also 0.

Example 6.4.10 Let a1, a2, a3, . . . denote the sequence

1, 2, 3, 4, 5, 6, . . .

Then a+
1 , a+

2 , . . . is the sequence

+∞,+∞,+∞, . . .

so the limit superior is +∞. Similarly, a−
1 , a−

2 , . . . is the sequence

1, 2, 3, 4, 5, . . .

which has a supremum of +∞. So the limit inferior is also +∞.

Remark 6.4.11 Some authors use the notation limn→∞an instead of lim supn→∞ an ,
and limn→∞an instead of lim infn→∞ an . Note that the starting index m of the
sequence is irrelevant (see Exercise 6.4.2).

Returning to the piston analogy, imagine a piston at +∞ moving leftward until
it is stopped by the presence of the sequence a1, a2, . . .. The place it will stop is the
supremum of a1, a2, a3, . . ., which in our new notation is a+

1 . Now let us remove the
first element a1 from the sequence; this may cause our piston to slip leftward, to a
new point a+

2 (though in many cases the piston will not move and a+
2 will just be

the same as a+
1 ). Then we remove the second element a2, causing the piston to slip a

little more. If we keep doing this the piston will keep slipping, but there will be some
point where it cannot go any further, and this is the limit superior of the sequence. A
similar analogy can describe the limit inferior of the sequence.

We now describe some basic properties of limit superior and limit inferior.

Proposition 6.4.12 Let (an)∞n=m be a sequence of real numbers, let L+ be the limit
superior of this sequence, and let L− be the limit inferior of this sequence (thus both
L+ and L− are extended real numbers).

(a) For every x > L+, there exists an N ≥ m such that an < x for all n ≥ N. (In
other words, for every x > L+, the elements of the sequence (an)∞n=m are even-
tually less than x.) Similarly, for every y < L− there exists an N ≥ m such that
an > y for all n ≥ N.

(b) For every x < L+, and every N ≥ m, there exists an n ≥ N such that an > x.
(In other words, for every x < L+, the elements of the sequence (an)∞n=m exceed
x infinitely often.) Similarly, for every y > L− and every N ≥ m, there exists an
n ≥ N such that an < y.
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(c) We have inf(an)∞n=m ≤ L− ≤ L+ ≤ sup(an)∞n=m.
(d) If c is any limit point of (an)∞n=m, then we have L− ≤ c ≤ L+.
(e) If L+ is finite, then it is a limit point of (an)∞n=m. Similarly, if L

− is finite, then it
is a limit point of (an)∞n=m.

(f ) Let c be a real number. If (an)∞n=m converges to c, then we must have L+ = L− =
c. Conversely, if L+ = L− = c, then (an)∞n=m converges to c.

Proof We shall prove (a) and (b) and leave the remaining parts to the exercises.
Suppose first that x > L+. Then by definition of L+, we have x > inf(a+

N )∞N=m . By
Proposition 6.3.6, there must then exist an integer N ≥ m such that x > a+

N . By
definition of a+

N , this means that x > sup(an)∞n=N . Thus by Proposition 6.3.6 again,
we have x > an for all n ≥ N , as desired. This proves the first part of (a); the second
part of (a) is proven similarly.

Now we prove (b). Suppose that x < L+. Then we have x < inf(a+
N )∞N=m . If we

fix any N ≥ m, then by Proposition 6.3.6, we thus have x < a+
N . By definition of a

+
N ,

this means that x < sup(an)∞n=N . By Proposition 6.3.6 again, there must thus exist
n ≥ N such that an > x , as desired. This proves the first part of (b), the second part
of (b) is proven similarly.

The proofs of (c), (d), (e), (f) are left to Exercise 6.4.3. �

Parts (d) and (e) of Proposition 6.4.12 say, in particular, that L+ is the largest limit
point of (an)∞n=m , and L− is the smallest limit point (provided that L+ and L− are
finite). Proposition 6.4.12 (f) then says that if L+ and L− coincide (so there is only
one limit point) and are finite, then the sequence in fact converges. This gives a way
to test if a sequence converges: compute its limit superior and limit inferior, and see
if they are equal.

We now give a basic comparison property of limit superior and limit inferior.

Lemma 6.4.13 (Comparison principle). Suppose that (an)∞n=m and (bn)∞n=m are two
sequences of real numbers such that an ≤ bn for all n ≥ m. Thenwe have the inequal-
ities

sup(an)
∞
n=m ≤ sup(bn)

∞
n=m

inf(an)
∞
n=m ≤ inf(bn)

∞
n=m

lim sup
n→∞

an ≤ lim sup
n→∞

bn

lim inf
n→∞ an ≤ lim inf

n→∞ bn

Proof See Exercise 6.4.4. �

Corollary 6.4.14 (Squeeze test). Let (an)∞n=m, (bn)
∞
n=m, and (cn)∞n=m be sequences

of real numbers such that
an ≤ bn ≤ cn

for all n ≥ m. Suppose also that (an)∞n=m and (cn)∞n=m both converge to the same
limit L. Then (bn)∞n=m is also convergent to L.
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Proof See Exercise 6.4.5. �

Example 6.4.15 We already know (see Proposition 6.1.11) that limn→∞ 1/n = 0.
By the limit laws (Theorem 6.1.19), this also implies that limn→∞ 2/n = 0 and
limn→∞ −2/n = 0. The squeeze test then shows that any sequence (bn)∞n=1 for which

−2/n ≤ bn ≤ 2/n for all n ≥ 1

is convergent to 0. For instance, we can use this to show that the sequence (−1)n/n +
1/n2 converges to zero, or that 2−n converges to zero. Note one can use induction to
show that 0 ≤ 2−n ≤ 1/n for all n ≥ 1.

Remark 6.4.16 The squeeze test, combined with the limit laws and the principle
that monotone bounded sequences always have limits, allows one to compute a large
number of limits. We give some examples in the next chapter.

One commonly used consequence of the squeeze test is

Corollary 6.4.17 (Zero test for sequences). Let (an)∞n=M be a sequence of real num-
bers. Then the limit limn→∞ an exists and is equal to zero if and only if the limit
limn→∞ |an| exists and is equal to zero.

Proof See Exercise 6.4.7. �

We close this section with the following improvement to Proposition 6.1.12.

Theorem 6.4.18 (Completeness of the reals). A sequence (an)∞n=1 of real numbers
is a Cauchy sequence if and only if it is convergent.

Remark 6.4.19 Note that while this is very similar in spirit to Proposition 6.1.15, it
is a bit more general, since Proposition 6.1.15 refers to Cauchy sequences of rationals
instead of real numbers.

Proof Proposition 6.1.12 already tells us that every convergent sequence is Cauchy,
so it suffices to show that every Cauchy sequence is convergent.

Let (an)∞n=1 be a Cauchy sequence. We know from Lemma 5.1.15 (or more
precisely, from the extension of this lemma to the real numbers, which is proven
in exactly the same fashion) that the sequence (an)∞n=1 is bounded; by Lemma
6.4.13 (or Proposition 6.4.12(c)) this implies that L− := lim infn→∞ an and L+ :=
lim supn→∞ an of the sequence are both finite. To show that the sequence converges,
it will suffice by Proposition 6.4.12(f) to show that L− = L+.

Now let ε > 0 be any real number. Since (an)∞n=1 is a Cauchy sequence, it must
be eventually ε-steady, so in particular there exists an N ≥ 1 such that the sequence
(an)∞n=N is ε-steady. In particular, we have aN − ε ≤ an ≤ aN + ε for all n ≥ N . By
Proposition 6.3.6 (or Lemma 6.4.13) this implies that

aN − ε ≤ inf(an)
∞
n=N ≤ sup(an)

∞
n=N ≤ aN + ε
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and hence by the definition of L− and L+ (and Proposition 6.3.6 again)

aN − ε ≤ L− ≤ L+ ≤ aN + ε.

Thus we have
0 ≤ L+ − L− ≤ 2ε.

But this is true for all ε > 0, and L+ and L− do not depend on ε; so wemust therefore
have L+ = L−. (If L+ > L− then we could set ε := (L+ − L−)/3 and obtain a
contradiction.) By Proposition 6.4.12(f) we thus see that the sequence converges. �

Remark 6.4.20 In the language of metric spaces (see Chap. 1 of Analysis II), The-
orem 6.4.18 asserts that the real numbers are a complete metric space—that they do
not contain “holes” the same way the rationals do. (Certainly the rationals have lots
of Cauchy sequences which do not converge to other rationals; take for instance the
sequence 1, 1.4, 1.41, 1.414, 1.4142, . . . which converges to the irrational

√
2.) This

property is closely related to the least upper bound property (Theorem 5.5.9), and
is one of the principal characteristics which make the real numbers superior to the
rational numbers for the purposes of doing analysis (taking limits, taking derivatives
and integrals, finding zeroes of functions, that kind of thing), as we shall see in later
chapters.

— Exercises —

Exercise 6.4.1 Prove Proposition 6.4.5.

Exercise 6.4.2 State andprove analogues ofExercises 6.1.3 and6.1.4 for limit points, limit superior,
and limit inferior.

Exercise 6.4.3 Prove parts (c), (d), (e), (f) of Proposition 6.4.12. (Hint: you can use earlier parts
of the proposition to prove later ones.)

Exercise 6.4.4 Prove Lemma 6.4.13.

Exercise 6.4.5 Use Lemma 6.4.13 to prove Corollary 6.4.14.

Exercise 6.4.6 Give an example of two bounded sequences (an)∞n=1 and (bn)∞n=1 such that an < bn
for all n ≥ 1, but that sup(an)∞n=1 �< sup(bn)∞n=1. Explain why this does not contradict Lemma
6.4.13.

Exercise 6.4.7 Prove Corollary 6.4.17. Is the corollary still true if we replace zero in the statement
of this corollary by some other number?

Exercise 6.4.8 Let us say that a sequence (an)∞n=M of real numbers has +∞ as a limit point iff
it has no finite upper bound, and that it has −∞ as a limit point iff it has no finite lower bound.
With this definition, show that lim supn→∞ an is a limit point of (an)∞n=M , and furthermore that it is
larger than all the other limit points of (an)∞n=M ; in other words, the limit superior is the largest limit
point of a sequence. Similarly, show that the limit inferior is the smallest limit point of a sequence.
(One can use Proposition 6.4.12 in the course of the proof.)

Exercise 6.4.9 Using the definition in Exercise 6.4.8, construct a sequence (an)∞n=1 which has
exactly three limit points, at −∞, 0, and +∞.

http://dx.doi.org/10.1007/978-981-19-7261-4_1
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Exercise 6.4.10 Let (an)∞n=N be a sequence of real numbers, and let (bm)∞m=M be another sequence
of real numbers such that each bm is a limit point of (an)∞n=N . Let c be a limit point of (bm)∞m=M .
Prove that c is also a limit point of (an)∞n=N . (In other words, limit points of limit points are
themselves limit points of the original sequence.)

6.5 Some Standard Limits

Armed now with the limit laws and the squeeze test, we can now compute a large
number of limits.

Aparticularly simple limit is that of the constant sequence c, c, c, c, . . .;we clearly
have

lim
n→∞ c = c

for any constant c (why?).
Also, in Proposition 6.1.11, we proved that limn→∞ 1/n = 0. This now implies

Corollary 6.5.1 We have limn→∞ 1/n1/k = 0 for every integer k ≥ 1.

Proof From Lemma 5.6.6 we know that 1/n1/k is a decreasing function of n, while
being bounded below by 0. By Proposition 6.3.8 (for decreasing sequences instead
of increasing sequences) we thus know that this sequence converges to some limit
L ≥ 0:

L = lim
n→∞ 1/n1/k .

Raising this to the kth power and using the limit laws (or more precisely, Theorem
6.1.19(b) and induction), we obtain

Lk = lim
n→∞ 1/n.

By Proposition 6.1.11 we thus have Lk = 0; but this means that L cannot be positive
(else Lk would be positive), so L = 0, and we are done. �

Some other basic limits:

Lemma 6.5.2 Let x be a real number. Then the limit limn→∞ xn exists and is equal
to zero when |x | < 1, exists and is equal to 1 when x = 1, and diverges when x = −1
or when |x | > 1.

Proof See Exercise 6.5.2. �

Lemma 6.5.3 For any x > 0, we have limn→∞ x1/n = 1.

Proof See Exercise 6.5.3. �
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We will derive a few more standard limits later on, once we develop the root and
ratio tests for series and for sequences.

— Exercises —

Exercise 6.5.1 Show that limn→∞ 1/nq = 0 for any rational q > 0. (Hint: use Corollary 6.5.1 and
the limit laws, Theorem 6.1.19.) Conclude that the limit limn→∞ nq does not exist. (Hint: argue by
contradiction using Theorem 6.1.19(e).)

Exercise 6.5.2 Prove Lemma 6.5.2. (Hint: use Proposition 6.3.10, Exercise 6.3.4, and the squeeze
test.)

Exercise 6.5.3 Prove Lemma 6.5.3. (Hint: you may need to treat the cases x ≥ 1 and x < 1 sepa-
rately. You might wish to first use Lemma 6.5.2 to prove the preliminary result that for every ε > 0
and every real number M > 0, there exists an n such that M1/n ≤ 1 + ε.)

6.6 Subsequences

This chapter has been devoted to the study of sequences (an)∞n=m of real numbers,
and their limits. Some sequences were convergent to a single limit, while others had
multiple limit points. For instance, the sequence

1.1, 0.1, 1.01, 0.01, 1.001, 0.001, 1.0001, . . .

has two limit points at 0 and 1 (which are incidentally also the lim inf and lim sup
respectively), but is not actually convergent (since the lim sup and lim inf are not
equal). However, while this sequence is not convergent, it does appear to contain
convergent components; it seems to be a mixture of two convergent subsequences,
namely

1.1, 1.01, 1.001, . . .

and
0.1, 0.01, 0.001, . . . .

To make this notion more precise, we need a notion of subsequence.

Definition 6.6.1 (Subsequences).Let (an)∞n=0 and (bn)∞n=0 be sequences of real num-
bers. We say that (bn)∞n=0 is a subsequence of (an)∞n=0 iff there exists a function
f : N → N which is strictly increasing (i.e., f (n + 1) > f (n) for all n ∈ N) such
that

bn = a f (n) for all n ∈ N.

More generally, we say that (bn)∞n=m ′ is a subsequence of (an)∞n=m if there exists a
strictly increasing function f : {n ∈ N : n ≥ m ′} → {n ∈ N : n ≥ m} such that bn =
a f (n) for all n ∈ N with n ≥ m ′.
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Example 6.6.2 If (an)∞n=0 is a sequence, then (a2n)∞n=0 is a subsequence of (an)∞n=0,
since the function f : N → N defined by f (n) := 2n is a strictly increasing function
fromN toN. Note that we do not assume f to be obijective, although it is necessarily
injective (why?). More informally, the sequence

a0, a2, a4, a6, . . .

is a subsequence of
a0, a1, a2, a3, a4, . . . .

Example 6.6.3 The two sequences

1.1, 1.01, 1.001, . . .

and
0.1, 0.01, 0.001, . . .

mentioned earlier are both subsequences of

1.1, 0.1, 1.01, 0.01, 1.001, 0.001, 1.0001, . . .

The property of being a subsequence is reflexive and transitive, though not sym-
metric:

Lemma 6.6.4 Let (an)∞n=0, (bn)
∞
n=0, and (cn)∞n=0 be sequences of real numbers. Then

(an)∞n=0 is a subsequence of (an)∞n=0. Furthermore, if (bn)∞n=0 is a subsequence of
(an)∞n=0, and (cn)∞n=0 is a subsequence of (bn)∞n=0, then (cn)∞n=0 is a subsequence of
(an)∞n=0.

Proof See Exercise 6.6.1. �

We now relate the concept of subsequences to the concept of limits and limit
points.

Proposition 6.6.5 (Subsequences related to limits). Let (an)∞n=0 be a sequence of
real numbers, and let L be a real number. Then the following two statements are
logically equivalent (each one implies the other):

(a) The sequence (an)∞n=0 converges to L.
(b) Every subsequence of (an)∞n=0 converges to L.

Proof See Exercise 6.6.4. �

Proposition 6.6.6 (Subsequences related to limit points). Let (an)∞n=0 be a sequence
of real numbers, and let L be a real number. Then the following two statements are
logically equivalent.

(a) L is a limit point of (an)∞n=0.
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(b) There exists a subsequence of (an)∞n=0 which converges to L.

Proof See Exercise 6.6.5. �
Remark 6.6.7 The above two propositions give a sharp contrast between the notion
of a limit and that of a limit point. When a sequence has a limit L , then all subse-
quences also converge to L . But when a sequence has L as a limit point, then only
some subsequences converge to L .

We can now prove an important theorem in real analysis, due to Bernard Bolzano
(1781–1848) and Karl Weierstrass (1815–1897): every bounded sequence has a con-
vergent subsequence.

Theorem 6.6.8 (Bolzano–Weierstrass theorem) Let (an)∞n=0 be a bounded sequence
(i.e., there exists a real number M > 0 such that |an| ≤ M for all n ∈ N). Then there
is at least one subsequence of (an)∞n=0 which converges.

Proof Let L be the limit superior of the sequence (an)∞n=0. Since we have −M ≤
an ≤ M for all natural numbers n, it follows from the comparison principle (Lemma
6.4.13) that −M ≤ L ≤ M . In particular, L is a real number (not +∞ or −∞). By
Proposition 6.4.12(e), L is thus a limit point of (an)∞n=0. Thus by Proposition 6.6.6,
there exists a subsequence of (an)∞n=0 which converges (in fact, it converges to L). �

Note that we could as well have used the limit inferior instead of the limit superior
in the above argument.

Remark 6.6.9 The Bolzano–Weierstrass theorem says that if a sequence is bounded,
then eventually it has no choice but to converge in some places; it has “no room” to
spread out and stop itself from acquiring limit points. It is not true for unbounded
sequences; for instance, the sequence 1, 2, 3, . . . has no convergent subsequences
whatsoever (why?). In the language of topology, this means that the interval {x ∈
R : −M ≤ x ≤ M} is compact, whereas an unbounded set such as the real line R
is not compact. The distinction between compact sets and non-compact sets will be
very important in later chapters - of similar importance to the distinction between
finite sets and infinite sets.

— Exercises —

Exercise 6.6.1 Prove Lemma 6.6.4.

Exercise 6.6.2 Can you find two sequences (an)∞n=0 and (bn)∞n=0 which are not the same sequence,
but such that each is a subsequence of the other?

Exercise 6.6.3 (For this exercise you may assume the well-ordering principle, Proposition 8.1.4.)
Let (an)∞n=0 be a sequence which is not bounded. Show that there exists a subsequence (bn)∞n=0
of (an)∞n=0 such that limn→∞ 1/bn exists and is equal to zero. (Hint: for each natural number j ,
recursively introduce the quantity n j := min{n ∈ N : |an | ≥ j; n > n j−1} (omitting the condition
n > n j−1 when j = 0), first explaining why the set {n ∈ N : |an | ≥ j; n > n j−1} is non-empty.
Then set b j := an j . To ensure the existence and uniqueness of the minimum, one either needs to
invoke the well-ordering principle (which we have placed in Proposition 8.1.4, but whose proof
does not rely on any material not already presented), or the least upper bound principle (Theorem
5.5.9).)
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Exercise 6.6.4 Prove Proposition 6.6.5. (Note that one of the two implications has a very short
proof.)

Exercise 6.6.5 ProveProposition 6.6.6. (Hint: to show that (a) implies (b), define the numbersn j for
each natural numbers j by the formula n j := min{n > n j−1 : |an − L| ≤ 1/j}, with the convention
n0 := 0, explaining why the set {n > n j−1 : |an − L| ≤ 1/j} is non-empty. Then consider the
sequence an j .)

6.7 Real Exponentiation, Part II

We finally return to the topic of exponentiation of real numbers that we started in
Sec. 5.6. In that section we defined xq for all rational q and positive real numbers x ,
but we have not yet defined xα when α is real. We now rectify this situation using
limits (in a similar way as to how we defined all the other standard operations on the
real numbers). First, we need a lemma:

Lemma 6.7.1 [Continuity of exponentiation] Let x > 0, and let α be a real number.
Let (qn)∞n=1 be any sequence of rational numbers converging to α. Then (xqn )∞n=1 is
also a convergent sequence. Furthermore, if (q ′

n)
∞
n=1 is any other sequence of rational

numbers converging to α, then (xq
′
n )∞n=1 has the same limit as (xqn )∞n=1:

lim
n→∞ xqn = lim

n→∞ xq
′
n .

Proof There are three cases: x < 1, x = 1, and x > 1. The case x = 1 is rather easy
(because then xq = 1 for all rational q). We shall just do the case x > 1, and leave
the case x < 1 (which is very similar) to the reader.

Let us first prove that (xqn )∞n=1 converges. By Proposition 6.4.18 it is enough to
show that (xqn )∞n=1 is a Cauchy sequence.

To do this, we need to estimate the distance between xqn and xqm ; let us say for
the time being that qn ≥ qm , so that xqn ≥ xqm (since x > 1). We have

d(xqn , xqm ) = xqn − xqm = xqm (xqn−qm − 1).

Since (qn)∞n=1 is a convergent sequence, it has some upper bound M ; since x > 1,
we have xqm ≤ xM . Thus

d(xqn , xqm ) = |xqn − xqm | ≤ xM(xqn−qm − 1).

Now let ε > 0. We know by Lemma 6.5.3 that the sequence (x1/k)∞k=1 is eventually
εx−M -close to 1. Thus there exists some K ≥ 1 such that

|x1/K − 1| ≤ εx−M .
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Now since (qn)∞n=1 is convergent, it is a Cauchy sequence, and so there is an N ≥ 1
such that qn and qm are 1/K -close for all n,m ≥ N . Thus we have

d(xqn , xqm ) ≤ xM(xqn−qm − 1) ≤ xM(x1/K − 1) ≤ xMεx−M = ε

for every n,m ≥ N such that qn ≥ qm . By symmetry we also have this bound when
n,m ≥ N and qn ≤ qm . Thus the sequence (xqn )∞n=N is ε-steady. Thus the sequence
(xqn )∞n=1 is eventually ε-steady for every ε > 0, and is thus a Cauchy sequence as
desired. This proves the convergence of (xqn )∞n=1.

Now we prove the second claim. It will suffice to show that

lim
n→∞ xqn−q ′

n = 1,

since the claim would then follow from limit laws (since xqn = xqn−q ′
n xq

′
n ).

Write rn := qn − q ′
n; by limit laws we know that (rn)∞n=1 converges to 0. We have

to show that for every ε > 0, the sequence (xrn )∞n=1 is eventually ε-close to 1. But
from Lemma 6.5.3 we know that the sequence (x1/k)∞k=1 is eventually ε-close to 1.
Since limk→∞ x−1/k is also equal to 1 by Lemma 6.5.3, we know that (x−1/k)∞k=1 is
also eventually ε-close to 1. Thus we can find a K such that x1/K and x−1/K are both
ε-close to 1. But since (rn)∞n=1 is convergent to 0, it is eventually 1/K -close to 0, so
that eventually −1/K ≤ rn ≤ 1/K , and thus x−1/K ≤ xrn ≤ x1/K . In particular xrn

is also eventually ε-close to 1 (see Proposition 4.3.7(f)), as desired. �

We may now make the following definition.

Definition 6.7.2 (Exponentiation to a real exponent). Let x > 0 be real, and let α

be a real number. We define the quantity xα by the formula xα = limn→∞ xqn , where
(qn)∞n=1 is any sequence of rational numbers converging to α.

Let us check that this definition is well-defined. First of all, given any real number
α we always have at least one sequence (qn)∞n=1 of rational numbers converging to
α, by the definition of real numbers (and Proposition 6.1.15). Secondly, given any
such sequence (qn)∞n=1, the limit limn→∞ xqn exists by Lemma 6.7.1. Finally, even
though there can be multiple choices for the sequence (qn)∞n=1, they all give the same
limit by Lemma 6.7.1. Thus this definition is well-defined.

If α is not just real but rational, i.e., α = q for some rational q, then this defini-
tion could in principle be inconsistent with our earlier definition of exponentiation in
Section 5.6. But in this case α is clearly the limit of the sequence (q)∞n=1, so by defini-
tion xα = limn→∞ xq = xq . Thus the new definition of exponentiation is consistent
with the old one.

Proposition 6.7.3 All the results of Lemma 5.6.9, which held for rational numbers
q and r, continue to hold for real numbers q and r.

Proof We demonstrate this for the identity xq+r = xq xr (i.e., the first part of Lemma
5.6.9(b)); the other parts are similar and are left to Exercise 6.7.1. The idea is to start
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with Lemma 5.6.9 for rationals and then take limits to obtain the corresponding
results for reals.

Let q and r be real numbers. Then we can write q = limn→∞ qn and r =
limn→∞ rn for some sequences (qn)∞n=1 and (rn)∞n=1 of rationals, by the definition
of real numbers (and Proposition 6.1.15). Then by the limit laws, q + r is the limit
of (qn + rn)∞n=1. By definition of real exponentiation, we have

xq+r = lim
n→∞ xqn+rn ; xq = lim

n→∞ xqn ; xr = lim
n→∞ xrn .

But by Lemma 5.6.9(b) (applied to rational exponents) we have xqn+rn = xqn xrn .
Thus by limit laws we have xq+r = xq xr , as desired. �

— Exercises —

Exercise 6.7.1 Prove the remaining components of Proposition 6.7.3.



Chapter 7
Series

Now that we have developed a reasonable theory of limits of sequences, we will use
that theory to develop a theory of infinite series

∞∑

n=m

an = am + am+1 + am+2 + . . . .

But before we develop infinite series, we must first develop the theory of finite series.

7.1 Finite Series

Definition 7.1.1 (Finite series) Let m, n be integers, and let (ai )ni=m be a finite
sequence of real numbers, assigning a real number ai to each integer i between
m and n inclusive (i.e., m ≤ i ≤ n). Then we define the finite sum (or finite series)∑n

i=m ai by the recursive formula

n∑

i=m

ai := 0 whenever n < m;
n+1∑

i=m

ai :=
(

n∑

i=m

ai

)
+ an+1 whenever n ≥ m − 1.

Thus for instance we have the identities

m−2∑

i=m

ai = 0;
m−1∑

i=m

ai = 0;
m∑

i=m

ai = am;
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m+1∑

i=m

ai = am + am+1;
m+2∑

i=m

ai = am + am+1 + am+2

(why?). Because of this, we sometimes express
∑n

i=m ai less formally as

n∑

i=m

ai = am + am+1 + . . . + an.

Remark 7.1.2 The difference between “sum” and “series” is a subtle linguistic one.
Strictly speaking, a series is an expression of the form

∑n
i=m ai ; this series is math-

ematically (but not semantically) equal to a real number, which is then the sum of
that series. For instance, 1 + 2 + 3 + 4 + 5 is a series, whose sum is 15; if one were
to be very picky about semantics, one would not consider 15 a series and one would
not consider 1 + 2 + 3 + 4 + 5 a sum, despite the two expressions having the same
value. However, we will not be very careful about this distinction as it is purely
linguistic and has no bearing on the mathematics; the expressions 1 + 2 + 3 + 4 + 5
and 15 are the same number, and thus mathematically interchangeable, in the sense
of the axiom of substitution (see Sect.A.7), even if they are not semantically inter-
changeable.

Remark 7.1.3 Note that the variable i (sometimes called the index of summation)
is a bound variable (sometimes called a dummy variable); the expression

∑n
i=m ai

does not actually depend on any quantity named i . In particular, one can replace the
index of summation i with any other symbol, and obtain the same sum:

n∑

i=m

ai =
n∑

j=m

a j .

We list some basic properties of summation below.

Lemma 7.1.4 (a) Let m ≤ n < p be integers, and let ai be a real number assigned
to each integer m ≤ i ≤ p. Then we have

n∑

i=m

ai +
p∑

i=n+1

ai =
p∑

i=m

ai .

(b) Let m ≤ n be integers, k be another integer, and let ai be a real number assigned
to each integer m ≤ i ≤ n. Then we have

n∑

i=m

ai =
n+k∑

j=m+k

a j−k .
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(c) Let m ≤ n be integers, and let ai , bi be real numbers assigned to each integer
m ≤ i ≤ n. Then we have

n∑

i=m

(ai + bi ) =
(

n∑

i=m

ai

)
+

(
n∑

i=m

bi

)
.

(d) Let m ≤ n be integers, and let ai be a real number assigned to each integer
m ≤ i ≤ n, and let c be another real number. Then we have

n∑

i=m

(cai ) = c

(
n∑

i=m

ai

)
.

(e) (Triangle inequality for finite series) Let m ≤ n be integers, and let ai be a real
number assigned to each integer m ≤ i ≤ n. Then we have

∣∣∣∣∣

n∑

i=m

ai

∣∣∣∣∣ ≤
n∑

i=m

|ai |.

(f) (Comparison test for finite series) Let m ≤ n be integers, and let ai , bi be real
numbers assigned to each integer m ≤ i ≤ n. Suppose that ai ≤ bi for all m ≤
i ≤ n. Then we have

n∑

i=m

ai ≤
n∑

i=m

bi .

Proof See Exercise 7.1.1. �

Remark 7.1.5 In the future we may omit some of the parentheses in series expres-
sions, for instance we may write

∑n
i=m(ai + bi ) simply as

∑n
i=m ai + bi . This is

reasonably safe from being mis-interpreted, because the alternative interpretation
(
∑n

i=m ai ) + bi does not make any sense (the index i in bi is meaningless outside of
the summation, since i is only a dummy variable).

One can use finite series to also define summations over finite sets:

Definition 7.1.6 (Summations over finite sets) Let X be a finite set with n elements
(where n ∈ N), and let f : X → R be a function from X to the real numbers (i.e., f
assigns a real number f (x) to each element x of X ). Then we can define the finite
sum

∑
x∈X f (x) as follows. We first select any bijection g from {i ∈ N : 1 ≤ i ≤ n}

to X ; such a bijection exists since X is assumed to have n elements. We then define

∑

x∈X
f (x) :=

n∑

i=1

f (g(i)).
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The same definition also permits us to define
∑

x∈X f (x) when f is defined on a
larger set Y than X .

Example 7.1.7 Let X be the three-element set X := {a, b, c}, where a, b, c are dis-
tinct objects, and let f : X → R be the function f (a) := 2, f (b) := 5, f (c) := −1.
In order to compute the sum

∑
x∈X f (x), we select a bijection g : {1, 2, 3} → X ,

e.g., g(1) := a, g(2) := b, g(3) := c. We then have

∑

x∈X
f (x) =

3∑

i=1

f (g(i)) = f (a) + f (b) + f (c) = 6.

One could pick another bijection from {1, 2, 3} to X , e.g., h(1) := c, h(2) := b,
h(3) = a, but the end result is still the same:

∑

x∈X
f (x) =

3∑

i=1

f (h(i)) = f (c) + f (b) + f (a) = 6.

To verify that this definition actually does give a single, well-defined value to∑
x∈X f (x), one has to check that different bijections g from {i ∈ N : 1 ≤ i ≤ n} to

X give the same sum. In other words, we must prove

Proposition 7.1.8 (Finite summations are well-defined) Let X be a finite set with n
elements (where n ∈ N), let f : X → R be a function, and let g : {i ∈ N : 1 ≤ i ≤
n} → X and h : {i ∈ N : 1 ≤ i ≤ n} → X be bijections. Then we have

n∑

i=1

f (g(i)) =
n∑

i=1

f (h(i)).

Remark 7.1.9 The issue is somewhatmore complicatedwhen summing over infinite
sets; see Section 8.2.

Proof We use induction on n; more precisely, we let P(n) be the assertion that
“For any set X of n elements, any function f : X → R, and any two bijections g,
h from {i ∈ N : 1 ≤ i ≤ n} to X , we have

∑n
i=1 f (g(i)) = ∑n

i=1 f (h(i))”. (More
informally, P(n) is the assertion that Proposition 7.1.8 is true for that value of n.)
We want to prove that P(n) is true for all natural numbers n.

We first check the base case P(0). In this case
∑0

i=1 f (g(i)) and
∑0

i=1 f (h(i))
both equal to 0, by definition of finite series, so we are done.

Now suppose inductively that P(n) is true; we now prove that P(n + 1) is true.
Thus, let X be a set with n + 1 elements, let f : X → R be a function, and let g and
h be bijections from {i ∈ N : 1 ≤ i ≤ n + 1} to X . We have to prove that

n+1∑

i=1

f (g(i)) =
n+1∑

i=1

f (h(i)). (7.1)
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Let x := g(n + 1); thus x is an element of X . By definition of finite series, we can
expand the left-hand side of (7.1) as

n+1∑

i=1

f (g(i)) =
(

n∑

i=1

f (g(i))

)
+ f (x).

Now let us look at the right-hand side of (7.1). Ideally wewould like to have h(n + 1)
also equal to x—this would allow us to use the inductive hypothesis P(n)muchmore
easily—but we cannot assume this. However, since h is a bijection, we do know that
there is some index j , with 1 ≤ j ≤ n + 1, for which h( j) = x . We now use Lemma
7.1.4 and the definition of finite series to write

n+1∑

i=1

f (h(i)) =
(

j∑

i=1

f (h(i))

)
+

⎛

⎝
n+1∑

i= j+1

f (h(i))

⎞

⎠

=
(

j−1∑

i=1

f (h(i))

)
+ f (h( j)) +

⎛

⎝
n+1∑

i= j+1

f (h(i))

⎞

⎠

=
(

j−1∑

i=1

f (h(i))

)
+ f (x) +

⎛

⎝
n∑

i= j

f (h(i + 1))

⎞

⎠ .

We now define the function h̃ : {i ∈ N : 1 ≤ i ≤ n} → X − {x} by setting h̃(i) :=
h(i) when i < j and h̃(i) := h(i + 1) when i ≥ j . We can thus write the right-hand
side of (7.1) as

=
(

j−1∑

i=1

f (h̃(i))

)
+ f (x) +

⎛

⎝
n∑

i= j

f (h̃(i))

⎞

⎠ =
(

n∑

i=1

f (h̃(i))

)
+ f (x)

where we have used Lemma 7.1.4 once again. Thus to finish the proof of (7.1) we
have to show that

n∑

i=1

f (g(i)) =
n∑

i=1

f (h̃(i)). (7.2)

But the function g (when restricted to {i ∈ N : 1 ≤ i ≤ n}) is a bijection from {i ∈
N : 1 ≤ i ≤ n} → X − {x} (why?). The function h̃ is also a bijection from {i ∈ N :
1 ≤ i ≤ n} → X − {x} (why? cf. Lemma 3.6.9). Since X − {x} has n elements (by
Lemma 3.6.9), the claim 7.2 then follows directly from the induction hypothesis
P(n). �

Remark 7.1.10 Suppose that X is a set, that P(x) is a property pertaining to an
element x of X , and f : {y ∈ X : P(y) is true} → R is a function. Then we will
often abbreviate
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∑

x∈{y∈X :P(y) is true}
f (x)

as
∑

x∈X :P(x) is true f (x) or even as
∑

P(x) is true f (x) when there is no chance
of confusion. For instance,

∑
n∈N:2≤n≤4 f (n) or

∑
2≤n≤4 f (n) are both short-hand

for
∑

n∈{2,3,4} f (n) = f (2) + f (3) + f (4). (This convention is currently limited to
cases in which {y ∈ X : P(y) is true} is finite, but in later sections we will also
define sums over infinite sets, in which case this convention will also extend to such
settings.)

The following properties of summation on finite sets are fairly obvious but do
require a rigorous proof:

Proposition 7.1.11 (Basic properties of summation over finite sets)

(a) If X is empty, and f : X → R is a function (i.e., f is the empty function), we
have ∑

x∈X
f (x) = 0.

(b) If X consists of a single element, X = {x0}, and f : X → R is a function, we
have ∑

x∈X
f (x) = f (x0).

(c) (Substitution, part I) If X is a finite set, f : X → R is a function, and g : Y → X
is a bijection, then ∑

x∈X
f (x) =

∑

y∈Y
f (g(y)).

(d) (Substitution, part II) Let n ≤ m be integers, and let X be the set X := {i ∈ Z :
n ≤ i ≤ m}. If ai is a real number assigned to each integer i ∈ X, then we have

m∑

i=n

ai =
∑

i∈X
ai .

(e) Let X, Y be disjoint finite sets (so X ∩ Y = ∅), and f : X ∪ Y → R is a function.
Then we have

∑

z∈X∪Y
f (z) =

(
∑

x∈X
f (x)

)
+

⎛

⎝
∑

y∈Y
f (y)

⎞

⎠ .

(f) (Linearity, part I) Let X be a finite set, and let f : X → R and g : X → R be
functions. Then

∑

x∈X
( f (x) + g(x)) =

∑

x∈X
f (x) +

∑

x∈X
g(x).
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(g) (Linearity, part II) Let X be a finite set, let f : X → R be a function, and let c
be a real number. Then ∑

x∈X
c f (x) = c

∑

x∈X
f (x).

(h) (Monotonicity) Let X be a finite set, and let f : X → R and g : X → R be
functions such that f (x) ≤ g(x) for all x ∈ X. Then we have

∑

x∈X
f (x) ≤

∑

x∈X
g(x).

(i) (Triangle inequality) Let X be a finite set, and let f : X → R be a function, then

|
∑

x∈X
f (x)| ≤

∑

x∈X
| f (x)|.

Proof See Exercise 7.1.2. �

Remark 7.1.12 The substitution rule in Proposition 7.1.11(c) can be thought of as
making the substitution x := g(y) (hence the name). Note that the assumption that g
is a bijection is essential; can you see why the rule may fail when g is not one-to-one
or not onto? From Proposition 7.1.11(c) and (d) we see that

m∑

i=n

ai =
m∑

i=n

a f (i)

for any bijection f from the set {i ∈ Z : n ≤ i ≤ m} to itself. Informally, this means
that we can rearrange the elements of a finite sequence at will and still obtain the
same value.

Now we look at double finite series—finite series of finite series—and how they
connect with Cartesian products.

Lemma 7.1.13 Let X, Y be finite sets, and let f : X × Y → R be a function. Then

∑

x∈X

⎛

⎝
∑

y∈Y
f (x, y)

⎞

⎠ =
∑

(x,y)∈X×Y

f (x, y).

Proof Let n be the number of elements in X . We will use induction on n (cf. Propo-
sition 7.1.8); i.e., we let P(n) be the assertion that Lemma 7.1.13 is true for any set
X with n elements, and any finite set Y and any function f : X × Y → R. We wish
to prove P(n) for all natural numbers n.

The base case P(0) is easy, following from Proposition 7.1.11(a) (why?). Now
suppose that P(n) is true; we now show that P(n + 1) is true. Let X be a set with
n + 1 elements. In particular, by Lemma 3.6.9, we can write X = X ′ ∪ {x0}, where
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x0 is an element of X and X ′ := X − {x0} has n elements. Then by Proposition
7.1.11(e) we have

∑

x∈X

⎛

⎝
∑

y∈Y
f (x, y)

⎞

⎠ =
⎛

⎝
∑

x∈X ′

⎛

⎝
∑

y∈Y
f (x, y)

⎞

⎠

⎞

⎠ +
⎛

⎝
∑

y∈Y
f (x0, y)

⎞

⎠ ;

by the induction hypothesis this is equal to

∑

(x,y)∈X ′×Y

f (x, y) +
⎛

⎝
∑

y∈Y
f (x0, y)

⎞

⎠ .

By Proposition 7.1.11(c) this is equal to

∑

(x,y)∈X ′×Y

f (x, y) +
⎛

⎝
∑

(x,y)∈{x0}×Y

f (x, y)

⎞

⎠ .

By Proposition 7.1.11(e) this is equal to

∑

(x,y)∈X×Y

f (x, y)

(why?) as desired. �

Corollary 7.1.14 (Fubini’s theorem for finite series) Let X, Y be finite sets, and let
f : X × Y → R be a function. Then

∑

x∈X

⎛

⎝
∑

y∈Y
f (x, y)

⎞

⎠ =
∑

(x,y)∈X×Y

f (x, y)

=
∑

(y,x)∈Y×X

f (x, y)

=
∑

y∈Y

(
∑

x∈X
f (x, y)

)
.

Proof In light of Lemma 7.1.13, it suffices to show that

∑

(x,y)∈X×Y

f (x, y) =
∑

(y,x)∈Y×X

f (x, y).
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But this follows from Proposition 7.1.11(c) by applying the bijection h : Y × X →
X × Y defined by h(y, x) := (x, y). (Why is this a bijection, and why does Propo-
sition 7.1.11(c) give us what we want?) �

Remark 7.1.15 This should be contrasted with Example 1.2.5; thus we anticipate
something interesting to happen when we move from finite sums to infinite sums.
However, see Theorem 8.2.2.

— Exercises —

Exercise 7.1.1 Prove Lemma 7.1.4. (Hint: you will need to use induction, but the base case might
not necessarily be at 0.)

Exercise 7.1.2 Prove Proposition 7.1.11. (Hint: this is not as lengthy as it may first appear. It is
largely a matter of choosing the right bijections to turn these sums over sets into finite series, and
then applying Lemma 7.1.4.)

Exercise 7.1.3 Form a definition for the finite products
∏n

i=1 ai and
∏

x∈X f (x). Which of the
above results for finite series have analogues for finite products? (Note that it is dangerous to apply
logarithms because some of the ai or f (x) could be zero or negative. Besides, we haven’t defined
logarithms yet.)

Exercise 7.1.4 Define the factorial function n! for natural numbers n by the recursive definition
0! := 1 and (n + 1)! := n! × (n + 1). If x and y are real numbers, prove the binomial formula

(x + y)n =
n∑

j=0

n!
j !(n − j)! x

j yn− j

for all natural numbers n. (Hint: induct on n.)

Exercise 7.1.5 Let X be a finite set, let m be an integer, and for each x ∈ X let (an(x))∞n=m be
a convergent sequence of real numbers. Show that the sequence (

∑
x∈X an(x))∞n=m is convergent,

and
lim
n→∞

∑

x∈X
an(x) =

∑

x∈X
lim
n→∞ an(x).

(Hint: induct on the cardinality of X , and use Theorem 6.1.19(a).) Thus we may always interchange
finite sums with convergent limits. Things however get trickier with infinite sums; see Corollary
8.2.11 of Analysis II.

Exercise 7.1.6 Let I be a finite set, and for each i ∈ I , let Ei be a finite set. Suppose that the
Ei are pairwise disjoint, which means that Ei ∩ E j = ∅ whenever i, j ∈ I are distinct. For each
x ∈ ⋃

i∈I Ei , let f (x) be a real number. Show that
∑

x∈⋃
i∈I Ei

f (x) = ∑
i∈I

∑
x∈Ei

f (x).

Exercise 7.1.7 Let n,m be natural numbers, and for each 1 ≤ i ≤ n let ai be a natural number with
ai ≤ m. Establish the identity

n∑

i=1

ai =
m∑

j=1

#({1 ≤ i ≤ n : ai ≥ j}).

(Hint: apply Corollary 7.1.14 to compute a sum
∑n

i=1
∑m

j=1 ci, j in two different ways, for a well
chosen choice of summands ci, j .) Use of identities such as this is known as the double counting
method, and is often useful in combinatorics.
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7.2 Infinite Series

We are now ready to sum infinite series.

Definition 7.2.1 (Formal infinite series) A (formal) infinite series is any expression
of the form ∞∑

n=m

an,

where m is an integer, and an is a real number for any integer n ≥ m. We sometimes
write this series as

am + am+1 + am+2 + . . . .

At present, this series is only defined formally; we have not set this sum equal
to any real number; the notation am + am+1 + am+2 + . . . is of course designed to
look very suggestively like a sum, but is not actually a finite sum because of the
“. . .” symbol. To rigorously define what the series actually sums to, we need another
definition.

Definition 7.2.2 (Convergence of series) Let
∑∞

n=m an be a formal infinite series.
For any integer N ≥ m, we define the Nth partial sum SN of this series to be SN :=∑N

n=m an; of course, SN is a real number. If the sequence (SN )∞N=m converges to some
limit L as N → ∞, then we say that the infinite series

∑∞
n=m an is convergent, and

converges to L; we also write L = ∑∞
n=m an , and say that L is the sum of the infinite

series
∑∞

n=m an . If the partial sums SN diverge, then we say that the infinite series∑∞
n=m an is divergent, and we do not assign any real number value to that series.

Remark 7.2.3 Note that Proposition 6.1.7 shows that if a series converges, then it
has a unique sum, so it is safe to talk about the sum L = ∑∞

n=m an of a convergent
series.

Example 7.2.4 Consider the formal infinite series

∞∑

n=1

2−n = 2−1 + 2−2 + 2−3 + · · · .

The partial sums can be verified to equal

SN =
N∑

n=1

2−n = 1 − 2−N

by an easy induction argument (or byLemma7.3.3); the sequence 1 − 2−N converges
to 1 as N → ∞, and hence we have
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∞∑

n=1

2−n = 1.

In particular, this series is convergent. On the other hand, if we consider the series

∞∑

n=1

2n = 21 + 22 + 23 + · · ·

then the partial sums are

SN =
N∑

n=1

2n = 2N+1 − 2

and this is easily shown to be an unbounded sequence, and hence divergent. Thus
the series

∑∞
n=1 2

n is divergent.

Now we address the question of when a series converges. The following propo-
sition shows that a series converges iff the “tail” of the sequence is eventually less
than ε for any ε > 0:

Proposition 7.2.5 Let
∑∞

n=m an be a formal series of real numbers. Then
∑∞

n=m an
converges if and only if, for every real number ε > 0, there exists an integer N ≥ m
such that ∣∣∣∣∣

q∑

n=p

an

∣∣∣∣∣ ≤ ε for all p, q ≥ N .

Proof See Exercise 7.2.2. �

This proposition, by itself, is not very handy, because it is not so easy to compute
the partial sums

∑q
n=p an in practice. However, it has a number of useful corollaries.

For instance.

Corollary 7.2.6 (Zero test) Let
∑∞

n=m an be a convergent series of real numbers.
Then wemust have limn→∞ an = 0. To put this another way, if limn→∞ an is non-zero
or divergent, then the series

∑∞
n=m an is divergent.

Proof See Exercise 7.2.3. �

Example 7.2.7 The sequence an := 1 does not converge to 0 as n → ∞, sowe know
that

∑∞
n=1 1 is a divergent series. (Note however that 1, 1, 1, 1, . . . is a convergent

sequence; convergence of series is a different notion from convergence of sequences.)
Similarly, the sequence an := (−1)n diverges, and in particular does not converge to
zero; thus the series

∑∞
n=1(−1)n is also divergent.

If a sequence (an)∞n=m does converge to zero, then the series
∑∞

n=m an may or may
not be convergent; it depends on the series. For instance, we will soon see that the
series

∑∞
n=1 1/n is divergent despite the fact that 1/n converges to 0 as n → ∞.
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Definition 7.2.8 (Absolute convergence) Let
∑∞

n=m an be a formal series of real
numbers. We say that this series is absolutely convergent iff the series

∑∞
n=m |an| is

convergent.

Proposition 7.2.9 (Absolute convergence test) Let
∑∞

n=m an be a formal series of
real numbers. If this series is absolutely convergent, then it is also convergent. Fur-
thermore, in this case we have the triangle inequality

∣∣∣∣∣

∞∑

n=m

an

∣∣∣∣∣ ≤
∞∑

n=m

|an|.

Proof See Exercise 7.2.4. �

Remark 7.2.10 The converse to this proposition is not true; there exist series which
are convergent but not absolutely convergent. See Example 7.2.12. Series that are
convergent but not absolutely convergent are also known as conditionally convergent
series.

Proposition 7.2.11 (Alternating series test) Let (an)∞n=m be a sequence of real num-
bers which are non-negative and decreasing, thus an ≥ 0 and an ≥ an+1 for every
n ≥ m. Then the series

∑∞
n=m(−1)nan is convergent if and only if the sequence an

converges to 0 as n → ∞.

Proof From the zero test, we know that if
∑∞

n=m(−1)nan is a convergent series,
then the sequence ((−1)nan)∞n=m converges to 0, which implies that (an)∞n=m also
converges to 0, since (−1)nan and an have the same distance from 0.

Now suppose conversely that (an)∞n=m converges to 0. For each N ≥ m, let SN be
the partial sum SN := ∑N

n=m(−1)nan; our job is to show that (SN )∞N=m converges.
Observe that

SN+2 = SN + (−1)N+1aN+1 + (−1)N+2aN+2

= SN + (−1)N+1(aN+1 − aN+2).

But by hypothesis, (aN+1 − aN+2) is non-negative. Thus we have SN+2 ≥ SN when
N is odd and SN+2 ≤ SN if N is even.

Now suppose that N is even. From the above discussion and induction we see
that SN+2k ≤ SN for all natural numbers k (why?). Also we have SN+2k+1 ≥ SN+1 =
SN − aN+1 (why?). Finally, we have SN+2k+1 = SN+2k − aN+2k+1 ≤ SN+2k (why?).
Thus we have

SN − aN+1 ≤ SN+2k+1 ≤ SN+2k ≤ SN

for all k. In particular, we have

SN − aN+1 ≤ Sn ≤ SN for all n ≥ N
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(why?). In particular, the sequence Sn is eventually aN+1-steady. But the sequence
(aN )∞N=m converges to 0 as N → ∞, thus this implies that Sn is eventually ε-steady
for every ε > 0 (why?). Thus (Sn)∞n=m converges, and so the series

∑∞
n=m(−1)nan is

convergent. �

Example 7.2.12 The sequence (1/n)∞n=1 is non-negative, decreasing, and converges
to zero. Thus

∑∞
n=1(−1)n/n is convergent (but it is not absolutely convergent,

because
∑∞

n=1 1/n diverges, see Corollary 7.3.7). Thus lack of absolute convergence
does not imply lack of convergence, even though absolute convergence implies con-
vergence.

Some basic identities concerning convergent series are collected below.

Proposition 7.2.13 (Series laws)

(a) If
∑∞

n=m an is a series of real numbers converging to x, and
∑∞

n=m bn is a series of
real numbers converging to y, then

∑∞
n=m(an + bn) is also a convergent series,

and converges to x + y. In particular, we have

∞∑

n=m

(an + bn) =
∞∑

n=m

an +
∞∑

n=m

bn.

(b) If
∑∞

n=m an is a series of real numbers converging to x, and c is a real number,
then

∑∞
n=m(can) is also a convergent series, and converges to cx. In particular,

we have ∞∑

n=m

(can) = c
∞∑

n=m

an.

(c) Let
∑∞

n=m an be a series of real numbers, and let k ≥ 0 be an integer. If one of
the two series

∑∞
n=m an and

∑∞
n=m+k an are convergent, then the other one is

also, and we have the identity

∞∑

n=m

an =
m+k−1∑

n=m

an +
∞∑

n=m+k

an.

(d) Let
∑∞

n=m an be a series of real numbers converging to x, and let k be an integer.
Then

∑∞
n=m+k an−k also converges to x.

Proof See Exercise 7.2.5. �

FromProposition 7.2.13(c)we see that the convergence of a series does not depend
on the first few elements of the series (though of course those elements do influence
which value the series converges to). Because of this, we will usually not pay much
attention as to what the initial index m of the series is.

There is one type of series, called telescoping series, which are easy to sum:
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Lemma 7.2.14 (Telescoping series) Let (an)∞n=0 be a sequence of real numbers
which converge to 0, i.e., limn→∞ an = 0. Then the series

∑∞
n=0(an − an+1) con-

verges to a0.

Proof See Exercise 7.2.6. �

— Exercises —

Exercise 7.2.1 Is the series
∑∞

n=1(−1)n convergent or divergent? Justify your answer. Can you
now resolve the difficulty in Example 1.2.2?

Exercise 7.2.2 Prove Proposition 7.2.5. (Hint: use Proposition 6.1.12 and Theorem 6.4.18.)

Exercise 7.2.3 Use Proposition 7.2.5 to prove Corollary 7.2.6.

Exercise 7.2.4 Prove Proposition 7.2.9. (Hint: use Proposition 7.2.5 and Proposition 7.1.4(e).)

Exercise 7.2.5 Prove Proposition 7.2.13. (Hint: use Theorem 6.1.19.)

Exercise 7.2.6 Prove Lemma 7.2.14. (Hint: First work out what the partial sums
∑N

n=0(an − an+1)

should be, and prove your assertion using induction.) How does the proposition change if we assume
that an does not converge to zero, but instead converges to some other real number L?

7.3 Sums of Non-negative Numbers

Now we specialize the preceding discussion in order to consider sums
∑∞

n=m an
where all the terms an are non-negative. This situation comes up, for instance, from
the absolute convergence test, since the absolute value |an| of a real number an is
always non-negative. Note that when all the terms in a series are non-negative, there
is no distinction between convergence and absolute convergence.

Suppose
∑∞

n=m an is a series of non-negative numbers. Then the partial sums
SN := ∑N

n=m an are increasing, i.e., SN+1 ≥ SN for all N ≥ m (why?). From Propo-
sition6.3.8 andCorollary 6.1.17,we thus see that the sequence (SN )∞N=m is convergent
if and only if it has an upper bound M . In other words, we have just shown

Proposition 7.3.1 Let
∑∞

n=m an be a formal series of non-negative real numbers.
Then this series is convergent if and only if there is a real number M such that

N∑

n=m

an ≤ M for all integers N ≥ m.

A simple corollary of this is

Corollary 7.3.2 (Comparison test) Let
∑∞

n=m an and
∑∞

n=m bn be two formal series
of real numbers, and suppose that |an| ≤ bn for all n ≥ m. Then if

∑∞
n=m bn is

convergent, then
∑∞

n=m an is absolutely convergent, and in fact
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∣∣∣∣∣

∞∑

n=m

an

∣∣∣∣∣ ≤
∞∑

n=m

|an| ≤
∞∑

n=m

bn.

Proof See Exercise 7.3.1. �

We can also run the comparison test in the contrapositive: if we have |an| ≤
bn for all n ≥ m, and

∑∞
n=m an is not absolutely convergent, then

∑∞
n=m bn is not

convergent. (Why does this follow immediately from Corollary 7.3.2?)
A useful series to use in the comparison test is the geometric series

∞∑

n=0

xn,

where x is some real number:

Lemma 7.3.3 (Geometric series) Let x be a real number. If |x | ≥ 1, then the series∑∞
n=0 x

n is divergent. If however |x | < 1, then the series is absolutely convergent
and ∞∑

n=0

xn = 1/(1 − x).

Proof See Exercise 7.3.2. �

We now give a useful criterion, known as the Cauchy criterion, to test whether a
series of non-negative but decreasing terms is convergent.

Proposition 7.3.4 (Cauchy criterion) Let (an)∞n=1 be a decreasing sequence of non-
negative real numbers (so an ≥ 0 and an+1 ≤ an for all n ≥ 1). Then the series∑∞

n=1 an is convergent if and only if the series

∞∑

k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + . . .

is convergent.

Remark 7.3.5 An interesting feature of this criterion is that it only uses a small
number of elements of the sequence an (namely, those elements whose index n is a
power of 2, n = 2k) in order to determine whether the whole series is convergent or
not.

Proof Let SN := ∑N
n=1 an be the partial sums of

∑∞
n=1 an , and let TK := ∑K

k=0 2
ka2k

be the partial sums of
∑∞

k=0 2
ka2k . In light of Proposition 7.3.1, our task is to show that

the sequence (SN )∞N=1 is bounded if and only if the sequence (TK )∞K=0 is bounded.
To do this we need the following claim: �

Lemma 7.3.6 For any natural number K , we have S2K+1−1 ≤ TK ≤ 2S2K .
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Proof We use induction on K . First we prove the claim when K = 0, i.e.

S1 ≤ T0 ≤ 2S1.

This becomes
a1 ≤ a1 ≤ 2a1

which is clearly true, since a1 is non-negative.
Now suppose the claim has been proven for K , and now we try to prove it for

K + 1:
S2K+2−1 ≤ TK+1 ≤ 2S2K+1 .

Clearly we have
TK+1 = TK + 2K+1a2K+1 .

Also, we have (using Lemma 7.1.4(a) and (f), and the hypothesis that the an are
decreasing)

S2K+1 = S2K +
2K+1∑

n=2K+1

an ≥ S2K +
2K+1∑

n=2K+1

a2K+1 = S2K + 2Ka2K+1

and hence
2S2K+1 ≥ 2S2K + 2K+1a2K+1 .

Similarly we have

S2K+2−1 = S2K+1−1 +
2K+2−1∑

n=2K+1

an

≤ S2K+1−1 +
2K+2−1∑

n=2K+1

a2K+1

= S2K+1−1 + 2K+1a2K+1 .

Combining these inequalities with the induction hypothesis

S2K+1−1 ≤ TK ≤ 2S2K

we obtain
S2K+2−1 ≤ TK+1 ≤ 2S2K+1

as desired. This proves the claim.
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From this claimwe see that if (SN )∞N=1 is bounded, then (S2K )∞K=0 is bounded, and
hence (TK )∞K=0 is bounded.Conversely, if (TK )∞K=0 is bounded, then the claim implies
that S2K+1−1 is bounded, i.e., there is an M such that S2K+1−1 ≤ M for all natural
numbers K . But one can easily show (using induction) that 2K+1 − 1 ≥ K + 1, and
hence that SK+1 ≤ M for all natural numbers K , hence (SN )∞N=1 is bounded. �

Corollary 7.3.7 Let q > 0 be a real number. Then the series
∑∞

n=1 1/n
q is conver-

gent when q > 1 and divergent when q ≤ 1.

Proof The sequence (1/nq)∞n=1 is non-negative and decreasing (by Lemma 5.6.9(d)
and Lemma 6.7.3), and so the Cauchy criterion applies. Thus this series is convergent
if and only if

∞∑

k=0

2k
1

(2k)q

is convergent. But by the laws of exponentiation (Lemma 5.6.9 and Lemma 6.7.3)
we can rewrite this as the geometric series

∞∑

k=0

(21−q)k .

As mentioned earlier, the geometric series
∑∞

k=0 x
k converges if and only if |x | < 1.

Thus the series
∑∞

n=1 1/n
q will converge if and only if |21−q | < 1, which happens

if and only if q > 1 (why? Try proving it just using Lemma 5.6.9 and Lemma 6.7.3,
and without using logarithms). �

In particular, the series
∑∞

n=1 1/n (also knownas theharmonic series) is divergent,
as claimed earlier. However, the series

∑∞
n=1 1/n

2 is convergent.

Remark 7.3.8 The quantity
∑∞

n=1 1/n
q , when it converges, is called ζ(q), the

Riemann-zeta function of q. This function is very important in number theory, and in
particular in the distribution of the primes; there is a very famous unsolved problem
regarding this function, called the Riemann hypothesis, but to discuss it further is far
beyond the scope of this text. I will mention however that there is a US$ 1 million
prize—and instant fame among all mathematicians—attached to the solution to this
problem.
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— Exercises —

Exercise 7.3.1 Use Proposition 7.3.1 to prove Corollary 7.3.2.

Exercise 7.3.2 Prove Lemma 7.3.3. (Hint: for the first part, use the zero test. For the second part,
first use induction to establish the geometric series formula

N∑

n=0

xn = (1 − xN+1)/(1 − x)

and then apply Lemma 6.5.2.)

Exercise 7.3.3 Let
∑∞

n=0 an be an absolutely convergent series of real numbers such that
∑∞

n=0|an | = 0. Show that an = 0 for every natural number n.

7.4 Rearrangement of Series

One feature of finite sums is that nomatter howone rearranges the terms in a sequence,
the total sum is the same. For instance,

a1 + a2 + a3 + a4 + a5 = a4 + a3 + a5 + a1 + a2.

Amore rigorous statement of this, involving bijections, has already appeared earlier,
see Remark 7.1.12.

One can ask whether the same thing is true for infinite series. If all the terms are
non-negative, the answer is yes:

Proposition 7.4.1 Let
∑∞

n=0 an be a convergent series of non-negative real numbers,
and let f : N → N be a bijection. Then

∑∞
m=0 a f (m) is also convergent, and has the

same sum: ∞∑

n=0

an =
∞∑

m=0

a f (m).

Proof We introduce the partial sums SN := ∑N
n=0 an and TM := ∑M

m=0 a f (m). We
know that the sequences (SN )∞N=0 and (TM)∞M=0 are increasing.Write L := sup(SN )∞n=0
and L ′ := sup(TM)∞M=0. By Proposition 6.3.8 we know that L is finite, and in fact
L = ∑∞

n=0 an; by Proposition 6.3.8 again we see that we will thus be done as soon
as we can show that L ′ = L .

Fix M , and let Y be the set Y := {m ∈ N : m ≤ M}. Note that f is a bijection
between Y and f (Y ). By Proposition 7.1.11, we have

TM =
M∑

m=0

a f (m) =
∑

m∈Y
a f (m) =

∑

n∈ f (Y )

an .
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The sequence ( f (m))Mm=0 is finite, hence bounded, i.e., there exists an N such that
f (m) ≤ N for all m ≤ M . In particular f (Y ) is a subset of {n ∈ N : n ≤ N }, and so
by Proposition 7.1.11 again (and the assumption that all the an are non-negative)

TM =
∑

n∈ f (Y )

an ≤
∑

n∈{n∈N:n≤N }
an =

N∑

n=0

an = SN .

But since (SN )∞N=0 has a supremum of L , we thus see that SN ≤ L , and hence that
TM ≤ L for all M . Since L ′ is the least upper bound of (TM)∞M=0, this implies that
L ′ ≤ L .

A very similar argument (using the inverse f −1 instead of f ) shows that every
SN is bounded above by L ′, and hence L ≤ L ′. Combining these two inequalities we
obtain L = L ′, as desired. �

Example 7.4.2 From Corollary 7.3.7 we know that the series

∞∑

n=1

1/n2 = 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + · · ·

is convergent. Thus, if we interchange every pair of terms, to obtain

1/4 + 1 + 1/16 + 1/9 + 1/36 + 1/25 + · · ·

we know that this series is also convergent, and has the same sum. (It turns out that
the value of this sum is ζ(2) = π2/6, a fact which we shall prove in Exercise 5.5.2.)

Now we ask what happens when the series is not non-negative. Then as long as the
series is absolutely convergent, we can still do rearrangements:

Proposition 7.4.3 (Rearrangement of series) Let
∑∞

n=0 an be an absolutely conver-
gent series of real numbers, and let f : N → N be a bijection. Then

∑∞
m=0 a f (m) is

also absolutely convergent, and has the same sum:

∞∑

n=0

an =
∞∑

m=0

a f (m).

Proof (Optional) We apply Proposition 7.4.1 to the infinite series
∑∞

n=0 |an|, which
by hypothesis is a convergent series of non-negative numbers. If we write L :=∑∞

n=0 |an|, then by Proposition 7.4.1 we know that
∑∞

m=0 |a f (m)| also converges to
L .

Now write L ′ := ∑∞
n=0 an . We have to show that

∑∞
m=0 a f (m) also converges to

L ′. In other words, given any ε > 0, we have to find an M such that
∑M ′

m=0 a f (m) is
ε-close to L ′ for every M ′ ≥ M .
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Since
∑∞

n=0 |an| is convergent, we can use Proposition 7.2.5 and find an N1 such
that

∑q
n=p |an| ≤ ε/2 for all p, q ≥ N1. Since

∑∞
n=0 an converges to L ′, the partial

sums
∑N

n=0 an also converge to L ′, and so there exists N ≥ N1 such that
∑N

n=0 an is
ε/2-close to L ′.

Now the sequence ( f −1(n))Nn=0 is finite, hence bounded, so there exists anM such
that f −1(n) ≤ M for all 0 ≤ n ≤ N . In particular, for any M ′ ≥ M , the set { f (m) :
m ∈ N;m ≤ M ′} contains {n ∈ N : n ≤ N } (why?). So by Proposition 7.1.11, for
any M ′ ≥ M

M ′∑

m=0

a f (m) =
∑

n∈{ f (m):m∈N;m≤M ′}
an =

N∑

n=0

an +
∑

n∈X
an

where X is the set

X = { f (m) : m ∈ N;m ≤ M ′}\{n ∈ N : n ≤ N }.

The set X is finite, and is therefore bounded by some natural number q; we must
therefore have

X ⊆ {n ∈ N : N + 1 ≤ n ≤ q}

(why?). Thus ∣∣∣∣∣
∑

n∈X
an

∣∣∣∣∣ ≤
∑

n∈X
|an| ≤

q∑

n=N+1

|an| ≤ ε/2

by our choice of N . Thus
∑M ′

m=0 a f (m) is ε/2-close to
∑N

n=0 an , which as mentioned

before is ε/2-close to L ′. Thus
∑M ′

m=0 a f (m) is ε-close to L ′ for all M ′ ≥ M , as
desired. �

Surprisingly,when the series is not absolutely convergent, then the rearrangements
are very badly behaved.

Example 7.4.4 Consider the series

1/3 − 1/4 + 1/5 − 1/6 + 1/7 − 1/8 + · · · .

This series is not absolutely convergent (why?), but is convergent by the alternating
series test, and in fact the sum can be seen to converge to a positive number (in
fact, it converges to ln(2) − 1/2 = 0.193147 . . ., see Example 4.5.7). Basically, the
reason why the sum is positive is because the quantities (1/3 − 1/4), (1/5 − 1/6),
(1/7 − 1/8) are all positive, which can then be used to show that every partial sum
is positive. (Why? you have to break into two cases, depending on whether there are
an even or odd number of terms in the partial sum.)

If, however, we rearrange the series to have two negative terms to each positive
term, thus
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1/3 − 1/4 − 1/6 + 1/5 − 1/8 − 1/10 + 1/7 − 1/12 − 1/14 + · · ·

then the partial sums quickly become negative (this is because (1/3 − 1/4 − 1/6),
(1/5 − 1/8 − 1/9), and more generally (1/(2n + 1) − 1/4n − 1/(4n + 2)) are all
negative), and so this series converges to a negative quantity; in fact, it converges to

(ln(2) − 1)/2 = −.153426 . . . .

There is in fact a surprising result of Riemann, which shows that a series which is
conditionally convergent (that is, convergent but not absolutely convergent) can in
fact be rearranged to converge to any value (or rearranged to diverge, in fact—see
Exercise 8.2.6); see Theorem 8.2.8.

To summarize, rearranging series is safe when the series is absolutely convergent,
but is somewhat dangerous otherwise. (This is not to say that rearranging a series that
is not absolutely convergent necessarily gives you the wrong answer—for instance,
in theoretical physics one often performs similar maneuvres, and one still (usually)
obtains a correct answer at the end—but doing so is risky, unless it is backed by a
rigorous result such as Proposition 7.4.3.)

— Exercises —

Exercise 7.4.1 Let
∑∞

n=0 an be an absolutely convergent series of real numbers. Let f : N → N
be an increasing function (i.e., f (n + 1) > f (n) for all n ∈ N). Show that

∑∞
n=0 a f (n) is also an

absolutely convergent series. (Hint: try to compare each partial sum of
∑∞

n=0 a f (n) with a (slightly
different) partial sum of

∑∞
n=0 an .) What happens if we assume f is merely one-to-one, rather than

increasing?

Exercise 7.4.2 Obtain an alternate proof of Proposition 7.4.3 using Proposition 7.4.1, Proposition
7.2.13, and expressing an as the difference of an + |an | and |an |. (This argument is due to Will
Ballard.)

7.5 The Root and Ratio Tests

Now we can state and prove the famous root and ratio tests for convergence.

Theorem 7.5.1 (Root test) Let
∑∞

n=m an be a series of real numbers, and let α :=
lim supn→∞ |an|1/n.
(a) If α < 1, then the series

∑∞
n=m an is absolutely convergent (and hence conver-

gent).
(b) If α > 1, then the series

∑∞
n=m an is not convergent (and hence cannot be abso-

lutely convergent either).
(c) If α = 1, we cannot assert any conclusion.
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Proof By Proposition 7.2.13(c), we may assume without loss of generality that
m ≥ 1; in particular |an|1/n is well-defined for any n ≥ m.

First suppose thatα < 1.Note thatwemust haveα ≥ 0, since |an|1/n ≥ 0 for every
n. Then we can find an ε > 0 such that 0 < α + ε < 1 (for instance, we can set ε :=
(1 − α)/2). By Proposition 6.4.12(a), there exists an N ≥ m such that |an|1/n ≤ α +
ε for all n ≥ N . In other words, we have |an| ≤ (α + ε)n for all n ≥ N . But from the
geometric serieswehave that

∑∞
n=N (α + ε)n is absolutely convergent, since 0 < α +

ε < 1 (note that the fact that we start from N is irrelevant by Proposition 7.2.13(c)).
Thus by the comparison test, we see that

∑∞
n=N an is absolutely convergent, and thus∑∞

n=m an is absolutely convergent, by Proposition 7.2.13(c) again.
Now suppose that α > 1. Then by Proposition 6.4.12(b), we see that for every

N ≥ m there exists an n ≥ N such that |an|1/n > 1, and hence that |an| > 1. In
particular, (an)∞n=N is not 1-close to 0 for any N , and hence (an)∞n=m is not eventually
1-close to 0. In particular, (an)∞n=m does not converge to zero. Thus by the zero test,∑∞

n=m an is not convergent.
For α = 1, see Exercise 7.5.3. �

The root test is phrased using the limit superior, but of course if limn→∞ |an|1/n
converges then the limit is the same as the limit superior. Thus one can phrase the
root test using the limit instead of the limit superior, but only when the limit exists.

The root test is sometimes difficult to use; however we can replace roots by ratios
using the following lemma.

Lemma 7.5.2 Let (cn)∞n=m be a sequence of positive numbers. Then we have

lim inf
n→∞

cn+1

cn
≤ lim inf

n→∞ c1/nn ≤ lim sup
n→∞

c1/nn ≤ lim sup
n→∞

cn+1

cn
.

Proof There are three inequalities to prove here. The middle inequality follows from
Proposition 6.4.12(c). We shall prove the last inequality, and leave the first one to
Exercise 7.5.1.

Write L := lim supn→∞
cn+1

cn
. If L = +∞ then there is nothing to prove (since

x ≤ +∞ for every extended real number x), so we may assume that L is a finite real
number. (Note that L cannot equal −∞; why?). Since cn+1

cn
is always positive, we

know that L ≥ 0.
Let ε > 0. By Proposition 6.4.12(a), we know that there exists an N ≥ m such that

cn+1

cn
≤ L + ε for all n ≥ N . without loss of generality we may assume that N ≥ 1.

This implies that cn+1 ≤ cn(L + ε) for all n ≥ N . By induction this implies that

cn ≤ cN (L + ε)n−N for all n ≥ N

(why?). If we write A := cN (L + ε)−N , then we have

cn ≤ A(L + ε)n
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and thus
c1/nn ≤ A1/n(L + ε)

for all n ≥ N . But we have

lim
n→∞ A1/n(L + ε) = L + ε

by the limit laws (Theorem 6.1.19) and Lemma 6.5.3. Thus by the comparison prin-
ciple (Lemma 6.4.13) we have

lim sup
n→∞

c1/nn ≤ L + ε.

But this is true for all ε > 0, so this must imply that

lim sup
n→∞

c1/nn ≤ L

(why? prove by contradiction), as desired. �

From Theorem 7.5.1 and Lemma 7.5.2 (and Exercise 7.5.3) we have

Corollary 7.5.3 (Ratio test) Let
∑∞

n=m an be a series of non-zero numbers. (The
non-zero hypothesis is required so that the ratios |an+1|/|an| appearing below are
well-defined.)

• If lim supn→∞
|an+1|
|an | < 1, then the series

∑∞
n=m an is absolutely convergent (hence

convergent).
• If lim infn→∞ |an+1|

|an | > 1, then the series
∑∞

n=m an is not convergent (and thus
cannot be absolutely convergent).

• In the remaining cases, we cannot assert any conclusion.

Another consequence of Lemma 7.5.2 is the following limit:

Proposition 7.5.4 We have limn→∞ n1/n = 1.

Proof By Lemma 7.5.2 we have

lim sup
n→∞

n1/n ≤ lim sup
n→∞

(n + 1)/n = lim sup
n→∞

1 + 1/n = 1

by Proposition 6.1.11 and limit laws (Theorem 6.1.19). Similarly we have

lim inf
n→∞ n1/n ≥ lim inf

n→∞ (n + 1)/n = lim inf
n→∞ 1 + 1/n = 1.

The claim then follows from Proposition 6.4.12(c) and (f). �

Remark 7.5.5 In addition to the ratio and root tests, another very useful convergence
test is the integral test, which we will cover in Proposition 11.6.4.
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— Exercises —

Exercise 7.5.1 Prove the first inequality in Lemma 7.5.2.

Exercise 7.5.2 Let x be a real number with |x | < 1, and q be a real number. Show that the series∑∞
n=1 n

q xn is absolutely convergent, and that limn→∞ nq xn = 0.

Exercise 7.5.3 Give an example of a divergent series
∑∞

n=1 an of positive numbers an such that

limn→∞ an+1/an = limn→∞ a1/nn = 1, and give an example of a convergent series
∑∞

n=1 bn of

positive numbers bn such that limn→∞ bn+1/bn = limn→∞ b1/nn = 1. (Hint: use Corollary 7.3.7.)
This shows that the ratio and root tests can be inconclusive even when the summands are positive
and all the limits converge.



Chapter 8
Infinite Sets

We now return to the study of set theory, and specifically to the study of cardinality
of sets which are infinite (i.e., sets which do not have cardinality n for any natural
number n), a topic which was initiated in Sect. 3.6.

8.1 Countability

From Proposition 3.6.14c we know that if X is a finite set, and Y is a proper subset
of X , then Y does not have equal cardinality with X . However, this is not the case
for infinite sets. For instance, from Theorem 3.6.12 we know that the setN of natural
numbers is infinite. The set N − {0} is also infinite, thanks to Proposition 3.6.14a
(why?), and is a proper subset ofN. However, the setN − {0}, despite being “smaller”
than N, still has the same cardinality as N, because the function f : N → N − {0}
defined by f (n) := n + 1, is a bijection from N to N − {0}. (Why?) This is one
characteristic of infinite sets; see Exercise 8.1.1.

We now distinguish two types of infinite sets: the countable sets and the uncount-
able sets.

Definition 8.1.1 (Countable sets) A set X is said to be countably infinite (or just
countable) iff it has equal cardinality with the natural numbers N. A set X is said to
be at most countable iff it is either countable or finite.We say that a set is uncountable
if it is infinite but not countable.

Remark 8.1.2 Countably infinite sets are also called denumerable sets.

Examples 8.1.3 From the preceding discussion we see that N is countable, and so
is N − {0}. Another example of a countable set is the even natural numbers {2n :
n ∈ N}, since the function f (n) := 2n provides a bijection between N and the even
natural numbers (why?).
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Let X be a countable set. Then, by definition, we know that there exists a bijection
f : N → X . Thus, every element of X can be written in the form f (n) for exactly
one natural number n. Informally, we thus have

X = { f (0), f (1), f (2), f (3), . . .}.

Thus, a countable set can be arranged in a sequence, so that we have a zeroth element
f (0), followed by a first element f (1), then a second element f (2), and so forth, in
such a way that all these elements f (0), f (1), f (2), . . . are all distinct, and together
they fill out all of X . (This is why these sets are called countable; because we can
literally count them one by one, starting from f (0), then f (1), and so forth.)

Viewed in this way, it is clear why the natural numbers

N = {0, 1, 2, 3, . . .},

the positive integers
N − {0} = {1, 2, 3, . . .},

and the even natural numbers

{0, 2, 4, 6, 8, . . .}

are countable. However, it is not as obvious whether the integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

or the rationals
Q = {0, 1/4,−2/3, . . .}

or the reals
R = {0,√2,−π, 2.5, . . .}

are countable or not; for instance, it is not yet clear whether we can arrange the
real numbers in a sequence f (0), f (1), f (2), . . .. We will answer these questions
shortly.

From Proposition 3.6.4 and Theorem 3.6.12, we know that countable sets are
infinite; however it is not so clear whether all infinite sets are countable. Again, we
will answer those questions shortly. We first need the following important principle.

Proposition 8.1.4 (Well-ordering principle) Let X be a non-empty subset of the
natural numbersN. Then there exists exactly one element n ∈ X such that n ≤ m for
all m ∈ X. In other words, every non-empty set of natural numbers has a minimum
element.

Proof See Exercise 8.1.2. �
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Wewill refer to the element n given by thewell-ordering principle as theminimum
of X , andwrite it asmin(X). Thus for instance theminimumof the set {2, 4, 6, 8, . . .}
is 2. This minimum is clearly the same as the infimum of X , as defined in Definition
5.5.10 (why?).

Proposition 8.1.5 Let X be an infinite subset of the natural numbers N. Then there
exists a unique bijection f : N → X which is increasing, in the sense that f (n + 1) >

f (n) for all n ∈ N. In particular, X has equal cardinality with N and is hence
countable.

Proof We will give an incomplete sketch of the proof, with some gaps marked by a
question mark (?); these gaps will be filled in Exercise 8.1.3.

We now define a sequence a0, a1, a2, . . . of natural numbers recursively by the
formula

an := min{x ∈ X : x �= am for all m < n}.

Intuitively speaking, a0 is the smallest element of X ; a1 is the second smallest element
of X , i.e., the smallest element of X once a0 is removed; a2 is the third smallest
element of X ; and so forth. Observe that in order to define an , one only needs to
know the values of am for all m < n, so this definition is recursive. Also, since X is
infinite, the set {x ∈ X : x �= am for all m < n} is infinite(?), hence non-empty. Thus
by the well-ordering principle, the minimum, min{x ∈ X : x �= am for all m < n} is
always well-defined.

One can show(?) that an is an increasing sequence, i.e.,

a0 < a1 < a2 < . . .

and in particular that(?) an �= am for all n �= m. Also, we have(?) an ∈ X for each
natural number n.

Now define the function f : N → X by f (n) := an . From the previous paragraph
we know that f is one-to-one. Now we show that f is onto. In other words, we claim
that for every x ∈ X , there exists an n such that an = x .

Let x ∈ X . Suppose for sake of contradiction that an �= x for every natural number
n. Then this implies(?) that x is an element of the set {x ∈ X : x �= am for all m < n}
for all n. By definition of an , this implies that x ≥ an for every natural number n.
However, since an is an increasing sequence, we have an ≥ n (?), and hence x ≥ n for
every natural number n. In particular we have x ≥ x + 1, which is a contradiction.
Thus we must have an = x for some natural number n, and hence f is onto.

Since f : N → X is both one-to-one and onto, it is a bijection. We have thus
found at least one increasing bijection f from N to X . Now suppose for sake of
contradiction that there was at least one other increasing bijection g from N to X
which was not equal to f . Then the set {n ∈ N : g(n) �= f (n)} is non-empty, and
define m := min{n ∈ N : g(n) �= f (n)}, thus in particular g(m) �= f (m) = am , and
g(n) = f (n) = an for all n < m. But we then must have(?)

g(m) = min{x ∈ X : x �= at for all t < m} = am,
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a contradiction. Thus there is no other increasing bijection from N to X other than
f . �

Since finite sets are at most countable by definition, we thus have

Corollary 8.1.6 All subsets of the natural numbers are at most countable.

Corollary 8.1.7 If X is an at most countable set, and Y is a subset of X, then Y is
at most countable.

Proof If X is finite then this follows from Proposition 3.6.14c, so assume X is
countable. Then there is a bijection f : X → N between X and N. Since Y is a
subset of X , and f is a bijection from X and N, then when we restrict f to Y , we
obtain a bijection between Y and f (Y ). (Why is this a bijection?) Thus f (Y ) has
equal cardinality with Y . But f (Y ) is a subset of N, and hence at most countable by
Corollary 8.1.6. Hence Y is also at most countable. �

Proposition 8.1.8 Let Y be a set, and let f : N → Y be a function. Then f (N) is at
most countable.

Proof See Exercise 8.1.4. �

Corollary 8.1.9 Let X be a countable set, and let f : X → Y be a function. Then
f (X) is at most countable.

Proof See Exercise 8.1.5. �

Proposition 8.1.10 Let X be a countable set, and let Y be a countable set. Then
X ∪ Y is a countable set.

Proof See Exercise 8.1.7. �

To summarize, any subset or image of a countable set is at most countable, and
any finite union of countable sets is still countable.We can now establish countability
of the integers.

Corollary 8.1.11 The integers Z are countable.

Proof We already know that the set N = {0, 1, 2, 3, . . .} of natural numbers are
countable. The set −N defined by

−N := {−n : n ∈ N} = {0,−1,−2,−3, . . .}

is also countable, since the map f (n) := −n is a bijection between N and this set.
Since the integers are the union of N and −N, the claim follows from Proposition
8.1.10 �

To establish countability of the rationals, we need to relate countability with
Cartesian products. In particular, we need to show that the set N × N is countable.
We first need a preliminary lemma:
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Lemma 8.1.12 The set

A := {(n,m) ∈ N × N : 0 ≤ m ≤ n}

is countable.

Proof Define the sequence a0, a1, a2, . . . recursively by setting a0 := 0, and an+1 :=
an + n + 1 for all natural numbers n. Thus

a0 = 0; a1 = 0 + 1; a2 = 0 + 1 + 2; a3 = 0 + 1 + 2 + 3; . . . .

By induction one can show that an is increasing, i.e., that an > am whenever n > m
(why?).

Now define the function f : A → N by

f (n,m) := an + m.

We claim that f is one-to-one. In other words, if (n,m) and (n′,m ′) are any two
distinct elements of A, then we claim that f (n,m) �= f (n′,m ′).

To prove this claim, let (n,m) and (n′,m ′) be two distinct elements of A. There
are three cases: n′ = n, n′ > n, and n′ < n. First suppose that n′ = n. Then we must
have m �= m ′, otherwise (n,m) and (n′,m ′) would not be distinct. Thus an + m �=
an + m ′, and hence f (n,m) �= f (n′,m ′), as desired.

Now suppose that n′ > n. Then n′ ≥ n + 1, and hence

f (n′,m ′) = an′ + m ′ ≥ an′ ≥ an+1 = an + n + 1.

But since (n,m) ∈ A, we have m ≤ n < n + 1, and hence

f (n′,m ′) ≥ an + n + 1 > an + m = f (n,m),

and thus f (n′,m ′) �= f (n,m).
The case n′ < n is proven similarly, by switching the rôles of n and n′ in the

previous argument. Thus we have shown that f is one-to-one. Thus f is a bijection
from A to f (A), and so A has equal cardinality with f (A). But f (A) is a subset of
N, and hence by Corollary 8.1.6 f (A) is at most countable. Therefore A is at most
countable. But, A is clearly not finite. (Why? Hint: if A was finite, then every subset
of A would be finite, and in particular {(n, 0) : n ∈ N} would be finite, but this is
clearly countably infinite, a contradiction.) Thus, A must be countable. �

Corollary 8.1.13 The set N × N is countable.

Proof We already know that the set

A := {(n,m) ∈ N × N : 0 ≤ m ≤ n}
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is countable. This implies that the set

B := {(n,m) ∈ N × N : 0 ≤ n ≤ m}

is also countable, since themap f : A → B given by f (n,m) := (m, n) is a bijection
from A to B (why?). But since N × N is the union of A and B (why?), the claim
then follows from Proposition 8.1.10. �

Corollary 8.1.14 If X and Y are countable, then X × Y is countable.

Proof See Exercise 8.1.8. �

Corollary 8.1.15 The rationals Q are countable.

Proof We already know that the integers Z are countable, which implies that the
non-zero integers Z − {0} are countable (why?). By Corollary 8.1.14, the set

Z × (Z − {0}) = {(a, b) : a, b ∈ Z, b �= 0}

is thus countable. If one lets f : Z × (Z − {0}) → Q be the function f (a, b) :=
a/b (note that f is well-defined since we prohibit b from being equal to 0), we
see from Corollary 8.1.9 that f (Z × (Z − {0})) is at most countable. But we have
f (Z × (Z − {0})) = Q (why? This is basically the definition of the rationals Q).
Thus Q is at most countable. However, Q cannot be finite, since it contains the
infinite set N. Thus Q is countable. �

Remark 8.1.16 Because the rationals are countable, we know in principle that it is
possible to arrange the rational numbers as a sequence:

Q = {a0, a1, a2, a3, . . .}

such that every element of the sequence is different from every other element, and
that the elements of the sequence exhaust Q (i.e., every rational number turns up as
one of the elements an of the sequence). However, it is quite difficult (though not
impossible) to actually try and come up with an explicit sequence a0, a1, . . . which
does this; see Exercise 8.1.10.

— Exercises —

Exercise 8.1.1 Let X be a set. Show that X is infinite if and only if there exists a proper subset
Y � X of X which has the same cardinality as X . (This exercise requires the axiom of choice,
Axiom 8.1)

Exercise 8.1.2 Prove Proposition 8.1.4. (Hint: you can either use induction, or use the principle of
infinite descent, Exercise 4.4.2, or use the least upper bound (or greatest lower bound) principle,
Theorem 5.5.9.) Does the well-ordering principle work if we replace the natural numbers by the
integers? What if we replace the natural numbers by the positive rationals? Explain.

Exercise 8.1.3 Fill in the gaps marked (?) in Proposition 8.1.5.
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Exercise 8.1.4 Prove Proposition 8.1.8. (Hint: the basic problem here is that f is not assumed to
be one-to-one. Define A to be the set

A := {n ∈ N : f (m) �= f (n) for all 0 ≤ m < n};
informally speaking, A is the set of natural numbers n for which f (n) does not appear in the
sequence f (0), f (1), . . . f (n − 1). Prove that when f is restricted to A, it becomes a bijection
from A to f (N). Then use Corollary 8.1.6.)

Exercise 8.1.5 Use Proposition 8.1.8 to prove Corollary 8.1.9.

Exercise 8.1.6 Let A be a set. Show that A is at most countable if and only if there exists an injective
map f : A → N from A to N.

Exercise 8.1.7 Prove Proposition 8.1.10. (Hint: by hypothesis, we have a bijection f : N → X ,
and a bijection g : N → Y . Now define h : N → X ∪ Y by setting h(2n) := f (n) and h(2n + 1) :=
g(n) for every natural number n, and show that h(N) = X ∪ Y . Then use Corollary 8.1.9, and show
that X ∪ Y cannot possibly be finite.)

Exercise 8.1.8 Use Corollary 8.1.13 to prove Corollary 8.1.14.

Exercise 8.1.9 Suppose that I is an at most countable set, and for each α ∈ I , let Aα be an at most
countable set. Show that the set

⋃
α∈I Aα is also at most countable. In particular, countable unions

of countable sets are countable. (This exercise requires the axiom of choice, see Sect. 8.4.)

Exercise 8.1.10 Find a bijection f : N → Q from the natural numbers to the rationals. (Warning:
this is actually rather tricky to do explicitly; it is difficult to get f to be simultaneously injective
and surjective.)

8.2 Summation on Infinite Sets

We now introduce the concept of summation on countable sets, which will be well-
defined provided that the sum is absolutely convergent.

Definition 8.2.1 (Series on countable sets)Let X be a countable set, and let f : X →
R be a function. We say that the series

∑
x∈X f (x) is absolutely convergent iff for

some bijection g : N → X , the sum
∑∞

n=0 f (g(n)) is absolutely convergent.We then
define the sum of

∑
x∈X f (x) by the formula

∑

x∈X
f (x) =

∞∑

n=0

f (g(n)).

From Proposition 7.4.3, one can show that these definitions do not depend on the
choice of g, and so are well-defined.

We can now give an important theorem about double summations.

Theorem 8.2.2 (Fubini’s theorem for infinite sums) Let f : N × N → R be a func-
tion such that

∑
(n,m)∈N×N f (n,m) is absolutely convergent. Then we have
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∞∑

n=0

( ∞∑

m=0

f (n,m)

)

=
∑

(n,m)∈N×N

f (n,m)

=
∑

(m,n)∈N×N

f (n,m)

=
∞∑

m=0

( ∞∑

n=0

f (n,m)

)

.

In other words, we can switch the order of infinite sums provided that the entire
sum is absolutely convergent. You should go back and compare this with Example
1.2.5.

Proof (A sketch only; this proof is considerablymore complex than the other proofs,
and is optional reading.) The second equality follows easily from Proposition 7.4.3
(and Proposition 3.6.4). We shall just prove the first equality, as the third is very
similar (basically one switches the rôle of n and m).

Let us first consider the case when f (n,m) is always non-negative (we will deal
with the general case later). Write

L :=
∑

(n,m)∈N×N

f (n,m);

our task is to show that the series
∑∞

n=0(
∑∞

m=0 f (n,m)) converges to L .
One can easily show that

∑
(n,m)∈X f (n,m) ≤ L for all finite sets X ⊆ N × N.

(Why? Use a bijection g between N × N and N, and then use the fact that g(X)

is finite, hence bounded.) In particular, for every n ∈ N and M ∈ N we have∑M
m=0 f (n,m) ≤ L , which implies by Proposition 6.3.8 that

∑∞
m=0 f (n,m) is con-

vergent for each m. Similarly, for any N ∈ N and M ∈ N we have (by Corollary
7.1.14)

N∑

n=0

M∑

m=0

f (n,m) ≤
∑

(n,m)∈X
f (n,m) ≤ L

where X is the set {(n,m) ∈ N × N : n ≤ N ,m ≤ M}which is finite by Proposition
3.6.14. Taking suprema of this as M → ∞ we have (by limit laws, and an induction
on N )

N∑

n=0

∞∑

m=0

f (n,m) ≤ L .

By Proposition 6.3.8, this implies that
∑∞

n=0

∑∞
m=0 f (n,m) converges, and

∞∑

n=0

∞∑

m=0

f (n,m) ≤ L .
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To finish the proof, it will suffice to show that

∞∑

n=0

∞∑

m=0

f (n,m) ≥ L − ε

for every ε > 0. (Whywill this be enough? Prove by contradiction.) So, let ε > 0. By
definitionof L ,we can thenfindafinite set X ⊆ N × N such that

∑
(n,m)∈X f (n,m) ≥

L − ε. (Why?) This set, being finite, must be contained in some set of the form
Y := {(n,m) ∈ N × N : n ≤ N ;m ≤ M}. (Why?Use induction.) Thus byCorollary
7.1.14

N∑

n=0

M∑

m=0

f (n,m) =
∑

(n,m)∈Y
f (n,m) ≥

∑

(n,m)∈X
f (n,m) ≥ L − ε

and hence

∞∑

n=0

∞∑

m=0

f (n,m) ≥
N∑

n=0

∞∑

m=0

f (n,m) ≥
N∑

n=0

M∑

m=0

f (n,m) ≥ L − ε

as desired.
This proves the claim when the f (n,m) are all non-negative. A similar argument

works when the f (n,m) are all non-positive (in fact, one can simply apply the
result just obtained to the function − f (n,m), and then use limit laws to remove
the −. For the general case, note that any function f (n,m) can be written (why?)
as f+(n,m) + f−(n,m), where f+(n,m) is the positive part of f (n,m) (i.e., it
equals f (n,m) when f (n,m) is positive, and 0 otherwise), and f− is the negative
part of f (n,m) (it equals f (n,m) when f (n,m) is negative, and 0 otherwise). It
is easy to show that if

∑
(n,m)∈N×N f (n,m) is absolutely convergent, then so are∑

(n,m)∈N×N f+(n,m) and
∑

(n,m)∈N×N f−(n,m). So now one applies the results just
obtained to f+ and to f− and adds them together using limit laws to obtain the result
for a general f . �

There is another characterization of absolutely convergent series.

Lemma 8.2.3 Let X be a countable set, and let f : X → R be a function. Then the
series

∑
x∈X f (x) is absolutely convergent if and only if

sup

{
∑

x∈A

| f (x)| : A ⊆ X, A finite

}

< ∞.

Proof See Exercise 8.2.1. �

Inspired by this lemma, we may now define the concept of an absolutely conver-
gent series even when the set X could be uncountable. (We give some examples of
uncountable sets in the next section.)
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Definition 8.2.4 Let X be a set (which could be uncountable), and let f : X → R
be a function. We say that the series

∑
x∈X f (x) is absolutely convergent iff

sup

{
∑

x∈A

| f (x)| : A ⊆ X, A finite

}

< ∞.

Note that we have not yet said what the series
∑

x∈X f (x) is equal to. This shall
be accomplished by the following lemma.

Lemma 8.2.5 Let X be a set (which could be uncountable), and let f : X → R be
a function such that the series

∑
x∈X f (x) is absolutely convergent. Then the set

{x ∈ X : f (x) �= 0} is at most countable. (This result requires the axiom of choice,
see Sect.8.4.)

Proof See Exercise 8.2.2. �
Because of this, we can define the value of

∑
x∈X f (x) for any absolutely con-

vergent series on an uncountable set X by the formula

∑

x∈X
f (x) :=

∑

x∈X : f (x)�=0

f (x),

since we have replaced a sum on an uncountable set X by a sum on the at most
countable set {x ∈ X : f (x) �= 0}. (Note that if the former sum is absolutely conver-
gent, then the latter one is also.) Note also that this definition is consistent with the
definitions we already have for series on countable sets.

We give some laws for absolutely convergent series on arbitrary sets.

Proposition 8.2.6 (Absolutely convergent series laws) Let X be an arbitrary set
(possibly uncountable), and let f : X → R and g : X → R be functions such that
the series

∑
x∈X f (x) and

∑
x∈X g(x) are both absolutely convergent.

(a) The series
∑

x∈X ( f (x) + g(x)) is absolutely convergent, and

∑

x∈X
( f (x) + g(x)) =

∑

x∈X
f (x) +

∑

x∈X
g(x).

(b) If c is a real number, then
∑

x∈X c f (x) is absolutely convergent, and

∑

x∈X
c f (x) = c

∑

x∈X
f (x).

(c) If X = X1 ∪ X2 for some disjoint sets X1 and X2, then
∑

x∈X1
f (x) and∑

x∈X2
f (x) are absolutely convergent, and

∑

x∈X1∪X2

f (x) =
∑

x∈X1

f (x) +
∑

x∈X2

f (x).
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Conversely, if h : X → R is such that
∑

x∈X1
h(x) and

∑
x∈X2

h(x) are abso-
lutely convergent, then

∑
x∈X1∪X2

h(x) is also absolutely convergent, and

∑

x∈X1∪X2

h(x) =
∑

x∈X1

h(x) +
∑

x∈X2

h(x).

(d) If Y is another set, and φ : Y → X is a bijection, then
∑

y∈Y f (φ(y)) is abso-
lutely convergent, and ∑

y∈Y
f (φ(y)) =

∑

x∈X
f (x).

(This result requires the axiom of choice when X is uncountable, see Sect.8.4.)

Proof See Exercise 8.2.3. �

Recall in Example 7.4.4 that if a series was conditionally convergent, then its
behavior with respect to rearrangements was bad. We now analyze this phenomenon
further.

Lemma 8.2.7 Let
∑∞

n=0 an be a series of real numbers which is conditionally con-
vergent (convergent but not absolutely convergent). Define the sets A+ := {n ∈ N :
an ≥ 0} and A− := {n ∈ N : an < 0}, thus A+ ∪ A− = N and A+ ∩ A− = ∅. Then
both of the series

∑
n∈A+ an and

∑
n∈A− an are not absolutely convergent.

Proof See Exercise 8.2.4. �

We are now ready to present a remarkable theorem of Georg Riemann (1826–
1866), which asserts that a series which converges conditionally but not absolutely
can be rearranged to converge to any value one pleases!

Theorem 8.2.8 Let
∑∞

n=0 an be a series which is conditionally convergent (i.e.,
convergent, but not absolutely convergent), and let L be any real number. Then there
exists a bijection f : N → N such that

∑∞
m=0 a f (m) converges conditionally to L.

Proof (Optional) We give a sketch of the proof, leaving the details to be filled in
in Exercise 8.2.5. Let A+ and A− be the sets in Lemma 8.2.7; from that lemma
we know that

∑
n∈A+ an and

∑
n∈A− an both fail to be absolutely convergent. In

particular A+ and A− are infinite (why?). By Proposition 8.1.5 we can then find
increasing bijections f+ : N → A+ and f− : N → A−. Thus the sums

∑∞
m=0 a f+(m)

and
∑∞

m=0 a f−(m) both fail to be absolutely convergent (why?). The plan shall be to
select terms from the divergent series

∑∞
m=0 a f+(m) and

∑∞
m=0 a f−(m) in awell-chosen

order in order to keep their difference converging toward L .
We define the sequence n0, n1, n2, . . . of natural numbers recursively as follows.

Suppose that j is a natural number, and that ni has already been defined for all i < j
(this is vacuously true if j = 0). We then define n j by the following rule:
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(I) If
∑

0≤i< j ani < L , then we set

n j := min{n ∈ A+ : n �= ni for all i < j}.

(II) If instead
∑

0≤i< j ani ≥ L , then we set

n j := min{n ∈ A− : n �= ni for all i < j}.

Note that this recursive definition is well-defined because A+ and A− are infi-
nite, and so the sets {n ∈ A+ : n �= ni for all i < j} and n j := min{n ∈ A− : n �=
ni for all i < j} are never empty. (Intuitively, we add a non-negative number to the
series whenever the partial sum is too low, and add a negative number when the sum
is too high.) One can then verify the following claims:

• The map j �→ n j is injective. (Why?)
• Case I occurs an infinite number of times, and Case II also occurs an infinite
number of times. (Why? prove by contradiction.)

• The map j �→ n j is surjective. (Why?)
• We have lim j→∞ an j = 0. (Why? Note fromCorollary 7.2.6 that limn→∞ an = 0.)
• We have lim j→∞

∑
0≤i≤ j ani = L . (Why?)

The claim then follows by setting f (i) := ni for all i . �

— Exercises —

Exercise 8.2.1 Prove Lemma 8.2.3. (Hint: you may find Exercise 3.6.3 to be useful.)

Exercise 8.2.2 Prove Lemma 8.2.5. (Hint: first show that if M is the quantity

M := sup

{
∑

x∈A

| f (x)| : A ⊆ X, A finite

}

then the sets {x ∈ X : | f (x)| > 1/n} are finite with cardinality atmostMn for every positive integer
n. Then use Exercise 8.1.9 (which uses the axiom of choice, see Sect. 8.4).)

Exercise 8.2.3 Prove Proposition 8.2.6. (Hint: you may of course use all the results from Chap.7
to do this.)

Exercise 8.2.4 Prove Lemma 8.2.7. (Hint: prove by contradiction, and use limit laws.)

Exercise 8.2.5 Explain the gaps marked (why?) in the proof of Theorem 8.2.8.

Exercise 8.2.6 Let
∑∞

n=0 an be a series which is conditionally convergent (i.e., convergent but
not absolutely convergent). Show that there exists a bijection f : N → N such that

∑∞
m=0 a f (m)

diverges to +∞, or more precisely that

lim inf
N→∞

N∑

m=0

a f (m) = lim sup
N→∞

N∑

m=0

a f (m) = +∞.

(Of course, a similar statement holds with +∞ replaced by −∞.)
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8.3 Uncountable Sets

We have just shown that a lot of infinite sets are countable - even such sets as
the rationals, for which it is not obvious how to arrange as a sequence. After such
examples, one may begin to hope that other infinite sets, such as the real numbers,
are also countable - after all, the real numbers are nothing more than (formal) limits
of the rationals, and we’ve already shown the rationals are countable, so it seems
plausible that the reals are also countable.

It was thus a great shock when Georg Cantor (1845–1918) showed in 1873 that
certain sets—including the real numbers R are in fact uncountable—no matter how
hard you try, you cannot arrange the real numbersR as a sequence a0, a1, a2, . . .. (Of
course, the real numbers R can contain many infinite sequences, e.g., the sequence
0, 1, 2, 3, 4, . . .. However, what Cantor proved is that no such sequence can ever
exhaust the real numbers; no matter what sequence of real numbers you choose,
there will always be some real numbers that are not covered by that sequence.)

Recall from Remark 3.4.11 that if X is a set, then the power set of X , denoted
2X := {A : A ⊆ X}, is the set of all subsets of X . Thus for instance 2{1,2} =
{∅, {1}, {2}, {1, 2}}. The reason for the notation 2X is given in Exercise 8.3.1.

Theorem 8.3.1 (Cantor’s theorem)Let X be an arbitrary set (finite or infinite). Then
the sets X and 2X cannot have equal cardinality.

Proof Suppose for sake of contradiction that the sets X and 2X had equal cardinality.
Then there exists a bijection f : X → 2X between X and the power set of X . Now
consider the set

A := {x ∈ X : x /∈ f (x)}.

Note that this set is well-defined since f (x) is an element of 2X and is hence a
subset of X . Clearly A is a subset of X , hence is an element of 2X . Since f is a
bijection, there must therefore exist x ∈ X such that f (x) = A. There are now two
cases, depending on whether x ∈ A or x /∈ A. If x ∈ A, then by definition of A we
have x /∈ f (x), hence x /∈ A, a contradiction. But if x /∈ A, then x /∈ f (x), hence
by definition of A we have x ∈ A, a contradiction. Thus in either case we have a
contradiction. �

Remark 8.3.2 The reader should compare the proof of Cantor’s theorem with the
statement of Russell’s paradox (Sect. 3.2). The point is that a bijection between X
and 2X would come dangerously close to the concept of a set X “containing itself”.

Corollary 8.3.3 2N is uncountable.

Proof By Theorem 8.3.1, 2N cannot have equal cardinality with N, hence is either
uncountable or finite. However, 2N contains as a subset the set of singletons {{n} :
n ∈ N}, which is clearly bijective to N and hence countably infinite. Thus 2N cannot
be finite (by Proposition 3.6.14) and is hence uncountable. �

Cantor’s theorem has the following important (and unintuitive) consequence.
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Corollary 8.3.4 R is uncountable.

Proof Let us define the map f : 2N → R by the formula

f (A) :=
∑

n∈A

10−n .

Observe that since
∑∞

n=0 10
−n is an absolutely convergent series (by Lemma 7.3.3),

the series
∑

n∈A 10
−n is also absolutely convergent (by Proposition 8.2.6c). Thus

the map f is well-defined. We now claim that f is injective. Suppose for sake of
contradiction that there were two distinct sets A, B ∈ 2N such that f (A) = f (B).
Since A �= B, the set (A\B) ∪ (B\A) is a non-empty subset of N. By the well-
ordering principle (Proposition 8.1.4), we can then define the minimum of this set,
say n0 := min(A\B) ∪ (B\A). Thus n0 either lies in A\B or B\A. By symmetry
we may assume it lies in A\B. Then n0 ∈ A, n0 /∈ B, and for all n < n0 we either
have n ∈ A, B or n /∈ A, B. Thus

0 = f (A) − f (B)

=
∑

n∈A

10−n −
∑

n∈B
10−n

=
(

∑

n<n0:n∈A

10−n + 10−n0 +
∑

n>n0:n∈A

10−n

)

−
(

∑

n<n0:n∈B
10−n +

∑

n>n0:n∈B
10−n

)

= 10−n0 +
∑

n>n0:n∈A

10−n −
∑

n>n0:n∈B
10−n

≥ 10−n0 + 0 −
∑

n>n0

10−n

≥ 10−n0 − 1

9
10−n0

> 0,

a contradiction, where we have used the geometric series lemma (Lemma 7.3.3) to
sum

∑

n>n0

10−n =
∞∑

m=0

10−(n0+1+m) = 10−n0−1
∞∑

m=0

10−m = 1

9
10−n0 .
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Thus f is injective, which means that f (2N) has the same cardinality as 2N and is
thus uncountable. Since f (2N) is a subset of R, this forces R to be uncountable also
(otherwise this would contradict Corollary 8.1.7), and we are done. �

Remark 8.3.5 We will give another proof of this result using measure theory in
Exercise 7.2.6 of Analysis II.

Remark 8.3.6 Corollary 8.3.4 shows that the reals have strictly larger cardinality
than the natural numbers (in the sense of Exercise 3.6.7). One could ask whether
there exist any sets which have strictly larger cardinality than the natural numbers,
but strictly smaller cardinality than the reals. The Continuum Hypothesis asserts that
no such sets exist. Interestingly, it was shown in separate works of Kurt Gödel (1906–
1978) and Paul Cohen (1934–2007) that this hypothesis is independent of the other
axioms of set theory; it can neither be proved nor disproved in that set of axioms
(unless those axioms are inconsistent, which is highly unlikely).

— Exercises —

Exercise 8.3.1 Let X be a finite set of cardinality n. Show that 2X is a finite set of cardinality 2n .
(Hint: use induction on n.)

Exercise 8.3.2 Let A, B, C be sets such that A ⊆ B ⊆ C , and suppose that there is a injection
f : C → A. Define the sets D0, D1, D2, . . . recursively by setting D0 := B\A, and then Dn+1 :=
f (Dn) for all natural numbers n. Prove that the sets D0, D1, . . . are all disjoint from each other (i.e.,
Dn ∩ Dm = ∅ whenever n �= m). Also show that if g : A → B is the function defined by setting
g(x) := f −1(x) when x ∈ ⋃∞

n=1 Dn , and g(x) := x when x /∈ ⋃∞
n=1 Dn , then g does indeed map

A to B and is a bijection between the two. In particular, A and B have the same cardinality.

Exercise 8.3.3 Recall from Exercise 3.6.7 that a set A is said to have lesser or equal cardinality
than a set B iff there is an injective map f : A → B from A to B. Using Exercise 8.3.2, show that
if A, B are sets such that A has lesser or equal cardinality to B and B has lesser or equal cardinality
to A, then A and B have equal cardinality. (This is known as the Schröder–Bernstein theorem, after
Ernst Schröder (1841–1902) and Felix Bernstein (1878–1956).)

Exercise 8.3.4 Let us say that a set A has strictly lesser cardinality than a set B if A has lesser
than or equal cardinality to B (in the sense of Exercise 3.6.7) but A does not have equal cardinality
to B. Show that for any set X , that X has strictly lesser cardinality than 2X . Also, show that if A
has strictly lesser cardinality than B, and B has strictly lesser cardinality than C , then A has strictly
lesser cardinality than C .

Exercise 8.3.5 Show that no power set (i.e., a set of the form 2X for some set X ) can be countably
infinite.

8.4 The Axiom of Choice

We now discuss the final axiom of the standard Zermelo–Fraenkel–Choice system
of set theory, namely the axiom of choice. We have delayed introducing this axiom
for a while now, to demonstrate that a large portion of the foundations of analysis
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can be constructed without appealing to this axiom. However, in many further devel-
opments of the theory, it is very convenient (and in some cases even essential) to
employ this powerful axiom. On the other hand, the axiom of choice can lead to
a number of unintuitive consequences (for instance the Banach–Tarski paradox, a
simplified version of which we will encounter in Sect. 7.3) and can lead to proofs
that are philosophically somewhat unsatisfying. Nevertheless, the axiom is almost
universally accepted by mathematicians. One reason for this confidence is a theorem
due to the great logicianKurt Gödel, who showed that a result proven using the axiom
of choice will never contradict a result proven without the axiom of choice (unless all
the other axioms of set theory are themselves inconsistent, which is highly unlikely).
More precisely, Gödel demonstrated that the axiom of choice is undecidable; it can
neither be proved nor disproved from the other axioms of set theory, so long as those
axioms are themselves consistent. (From a set of inconsistent axioms one can prove
that every statement is both true and false.) In practice, this means that any “real-life”
application of analysis (more precisely, any application involving only “decidable”
questions) which can be rigorously supported using the axiom of choice, can also be
rigorously supportedwithout the axiom of choice, though inmany cases it would take
a much more complicated and lengthier argument to do so if one were not allowed to
use the axiom of choice. Thus one can view the axiom of choice as a convenient and
safe labor-saving device in analysis. In other disciplines of mathematics, notably in
set theory in which many of the questions are not decidable, the issue of whether to
accept the axiom of choice is more open to debate and involves some philosophical
concerns as well as mathematical and logical ones. However, we will not discuss
these issues in this text.

We begin by generalizing the notion of finite Cartesian products from Definition
3.5.6 to infinite Cartesian products.

Definition 8.4.1 (Infinite Cartesian products) Let I be a set (possibly infinite), and
for each α ∈ I let Xα be a set. We then define the Cartesian product

∏
α∈I Xα to be

the set
∏

α∈I
Xα =

⎧
⎨

⎩
(xα)α∈I ∈ (

⋃

β∈I
Xβ)I : xα ∈ Xα for all α ∈ I

⎫
⎬

⎭
,

where we recall (fromAxiom 3.11) that (
⋃

α∈I Xα)I is the set of all functions (xα)α∈I
which assign an element xα ∈ ⋃

β∈I Xβ to each α ∈ I . Thus
∏

α∈I Xα is a subset of
that set of functions, consisting instead of those functions (xα)α∈I which assign an
element xα ∈ Xα to each α ∈ I .

Example 8.4.2 For any sets I and X , we have
∏

α∈I X = X I (why?). If I is a set
of the form I := {i ∈ N : 1 ≤ i ≤ n}, then ∏

α∈I Xα is essentially the same set as
the set

∏
1≤i≤N Xi defined in Definition 3.5.6, in the sense that there is a canonical

bijection between the two sets (why?).

Recall from Lemma 3.5.11 that if X1, . . . , Xn were any finite collection of non-
empty sets, then the finite Cartesian product

∏
1≤i≤n Xi was also non-empty. The

axiom of choice asserts that this statement is also true for infinite Cartesian products:
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Axiom 8.1 (Choice) Let I be a set, and for each α ∈ I , let Xα be a non-empty set.
Then

∏
α∈I Xα is also non-empty. In other words, there exists a function (xα)α∈I

which assigns to each α ∈ I an element xα ∈ Xα .

Remark 8.4.3 The intuition behind this axiom is that given a (possibly infinite)
collection of non-empty sets Xα , one should be able to choose a single element xα

from each one, and then form the possibly infinite tuple (xα)α∈I from all the choices
one has made. On the one hand, this is a very intuitively appealing axiom; in some
sense one is just applying Lemma 3.1.5 over and over again. On the other hand, the
fact that one is making an infinite number of arbitrary choices, with no explicit rule
as to how to make these choices, is a little disconcerting. Indeed, there are many
theorems proven using the axiom of choice which assert the abstract existence of
some object x with certain properties, without saying at all what that object is, or
how to construct it. Thus the axiom of choice can lead to proofs which are non-
constructive—demonstrating existence of an object without actually constructing
the object explicitly. This problem is not unique to the axiom of choice—it already
appears for instance in Lemma 3.1.5—but the objects shown to exist using the axiom
of choice tend to be rather extreme in their level of non-constructiveness. However, as
long as one is awareof thedistinctionbetween anon-constructive existence statement,
and a constructive existence statement (with the latter being preferable, but not strictly
necessary inmany cases), there is no difficulty here, except perhaps on a philosophical
level.

Remark 8.4.4 There are many equivalent formulations of the axiom of choice; we
give some of these in the exercises below.

In analysis one often does not need the full power of the axiom of choice. Instead,
one often only needs the axiom of countable choice, which is the same as the axiom
of choice but with the index set I restricted to be at most countable. We give a typical
example of this below.

Lemma 8.4.5 Let E be a non-empty subset of the real line with sup(E) < ∞ (i.e.,
E is bounded from above). Then there exists a sequence (an)∞n=1 whose elements an
all lie in E, such that limn→∞ an = sup(E).

Proof For each positive natural number n, let Xn denote the set

Xn := {x ∈ E : sup(E) − 1/n ≤ x ≤ sup(E)}.

Since sup(E) is the least upper bound for E , then sup(E) − 1/n cannot be an upper
bound for E , and so Xn is non-empty for each n. Using the axiom of choice (or
the axiom of countable choice), we can then find a sequence (an)∞n=1 such that an ∈
Xn for all n ≥ 1. In particular an ∈ E for all n, and sup(E) − 1/n ≤ an ≤ sup(E)

for all n. But then we have limn→∞ an = sup(E) by the squeeze test (Corollary
6.4.14). �
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Remark 8.4.6 In many special cases, one can obtain the conclusion of this lemma
without using the axiom of choice. For instance, if E is a closed set (Definition
1.2.12), then one can define an without choice by the formula an := inf(Xn); the
extra hypothesis that E is closed will ensure that an lies in E .

Another formulation of the axiom of choice is as follows.

Proposition 8.4.7 Let X and Y be sets, and let P(x, y) be a property pertaining to
an object x ∈ X and an object y ∈ Y such that for every x ∈ X there is at least one
y ∈ Y such that P(x, y) is true. Then there exists a function f : X → Y such that
P(x, f (x)) is true for all x ∈ X.

Proof See Exercise 8.4.1. �

— Exercises —

Exercise 8.4.1 Show that the axiom of choice implies Proposition 8.4.7. (Hint: consider the sets
Yx := {y ∈ Y : P(x, y) is true} for each x ∈ X .) Conversely, show that if Proposition 8.4.7 is true,
then the axiom of choice is also true.

Exercise 8.4.2 Let I be a set, and for each α ∈ I let Xα be a non-empty set. Suppose that all the
sets Xα are disjoint from each other, i.e., Xα ∩ Xβ = ∅ for all distinct α, β ∈ I . Using the axiom of
choice, show that there exists a set Y such that #(Y ∩ Xα) = 1 for all α ∈ I (i.e., Y intersects each
Xα in exactly one element). Conversely, show that if the above statement was true for an arbitrary
choice of sets I and non-empty disjoint sets Xα , then the axiom of choice is true. (Hint: the problem
is that in Axiom 8.1 the sets Xα are not assumed to be disjoint. But this can be fixed by the trick by
looking at the sets {α} × Xα = {(α, x) : x ∈ Xα} instead.)
Exercise 8.4.3 Let A and B be sets such that there exists a surjection g : B → A. Using the axiom
of choice, show that there then exists an injection f : A → B with g ◦ f : A → A the identity map;
in particular, A has lesser or equal cardinality to B in the sense of Exercise 3.6.7. (Hint: consider
the inverse images g−1({a}) for each a ∈ A.) Compare this with Exercise 3.6.8. Conversely, show
that if the above statement is true for arbitrary sets A, B and surjections g : B → A, then the axiom
of choice is true. (Hint: use Exercise 8.4.2.)

8.5 Ordered Sets

The axiom of choice is intimately connected to the theory of ordered sets. There are
actually many types of ordered sets; we will concern ourselves with three such types,
the partially ordered sets, the totally ordered sets, and the well-ordered sets.

Definition 8.5.1 (Partially ordered sets)A partially ordered set (or poset) is a set X ,
together1 with a relation ≤X on X (thus for any two objects x, y ∈ X , the statement
x ≤X y is either a true statement or a false statement). Furthermore, this relation is
assumed to obey the following three properties:

1 Strictly speaking, a partially ordered set is not a set X , but rather a pair (X,≤X ). But in many
cases the ordering ≤X will be clear from context, and so we shall refer to X itself as the partially
ordered set even though this is technically incorrect.
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• (Reflexivity) For any x ∈ X , we have x ≤X x .
• (Antisymmetry) If x, y ∈ X are such that x ≤X y and y ≤X x , then x = y.
• (Transitivity) If x, y, z ∈ X are such that x ≤X y and y ≤X z, then x ≤X z.

We refer to ≤X as the ordering relation. In most situations it is understood what the
set X is from context, and in those cases we shall simply write ≤ instead of ≤X . We
write x <X y (or x < y for short) if x ≤X y and x �= y.

Examples 8.5.2 Thenatural numbersN togetherwith the usual less-than-or-equal-to
relation ≤ (as defined in Definition 2.2.11) forms a partially ordered set, by Propo-
sition 2.2.12. Similar arguments (using the appropriate definitions and propositions)
show that the integers Z, the rationals Q, the reals R, and the extended reals R∗ are
also partially ordered sets. Meanwhile, if X is any collection of sets, and one uses the
relation of is-a-subset-of ⊆ (as defined in Definition 3.1.14) for the ordering relation
≤X , then X is also partially ordered (Proposition 3.1.17). Note that it is certainly
possible to give these sets a different partial ordering than the standard one; see for
instance Exercise 8.5.3.

Definition 8.5.3 (Totally ordered set) Let X be a partially ordered set with some
order relation ≤X . A subset Y of X is said to be totally ordered if, given any two
y, y′ ∈ Y , we either have y ≤X y′ or y′ ≤X y (or both). If X itself is totally ordered,
we say that X is a totally ordered set (or chain) with order relation ≤X .

Examples 8.5.4 The natural numbersN, the integersZ, the rationalsQ, realsR, and
the extended reals R∗, all with the usual ordering relation ≤, are totally ordered (by
Proposition 2.2.13, Lemma 4.1.11, Proposition 4.2.9, Proposition 5.4.7, and Propo-
sition 6.2.5, respectively). Also, any subset of a totally ordered set is again totally
ordered (why?). On the other hand, a collection of sets with the ⊆ relation is usually
not totally ordered. For instance, if X is the set {{1, 2}, {2}, {2, 3}, {2, 3, 4}, {5}},
ordered by the set inclusion relation ⊆, then the elements {1, 2} and {2, 3} of X are
not comparable to each other (i.e., {1, 2} � {2, 3} and {2, 3} � {1, 2}).
Definition 8.5.5 (Maximal and minimal elements) Let X be a partially ordered set,
and let Y be a subset of X . We say that y is a minimal element of Y if y ∈ Y and
there is no element y′ ∈ Y such that y′ < y. We say that y is a maximal element of
Y if y ∈ Y and there is no element y′ ∈ Y such that y < y′.

Example 8.5.6 Using the set X from the previous example, {2} is aminimal element,
{1, 2} and {2, 3, 4} are maximal elements, {5} is both a minimal and a maximal
element, and {2, 3} is neither a minimal nor a maximal element. This example shows
that a partially ordered set can have multiple maxima and minima; however, a totally
ordered set cannot (Exercise 8.5.7).

Example 8.5.7 The natural numbers N (ordered by ≤) have a minimal element,
namely 0, but no maximal element. The set of integers Z has no maximal and no
minimal element.
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Definition 8.5.8 (Well-ordered sets) Let X be a partially ordered set, and let Y be a
totally ordered subset of X . We say that Y is well-ordered if every non-empty subset
Z of Y has a minimal element min(Z).

Examples 8.5.9 The natural numbers N are well-ordered by Proposition 8.1.4.
However, the integersZ, the rationalsQ, and the real numbersR are not (see Exercise
8.1.2). Every finite totally ordered set is well-ordered (Exercise 8.5.8). Every subset
of a well-ordered set is again well-ordered (why?).

One advantage of well-ordered sets is that they automatically obey a principle of
strong induction (cf. Proposition 2.2.14):

Proposition 8.5.10 (Principle of strong induction) Let X be a well-ordered set with
an ordering relation ≤, and let P(n) be a property pertaining to an element n ∈ X
(i.e., for each n ∈ X, P(n) is either a true statement or a false statement). Suppose
that for every n ∈ X, we have the following implication: if P(m) is true for all m ∈ X
with m <X n, then P(n) is also true. Then P(n) is true for all n ∈ X.

Remark 8.5.11 It may seem strange that there is no “base” case in strong induction,
corresponding to the hypothesis P(0) in Axiom 2.5. However, such a base case is
automatically included in the strong induction hypothesis. Indeed, if 0 is the minimal
element of X , then by specializing the hypothesis “if P(m) is true for allm ∈ X with
m <X n, then P(n) is also true” to the n = 0 case, we automatically obtain that P(0)
is true. (Why?)

Proof See Exercise 8.5.10. �

So far we have not seen the axiom of choice play any rôle. This will come in once
we introduce the notion of an upper bound and a strict upper bound.

Definition 8.5.12 (Upper bounds and strict upper bounds) Let X be a partially
ordered set with ordering relation ≤, and let Y be a subset of X . If x ∈ X , we say
that x is an upper bound for Y iff y ≤ x for all y ∈ Y . If in addition x /∈ Y , we say
that x is a strict upper bound for Y . Equivalently, x is a strict upper bound for Y iff
y < x for all y ∈ Y . (Why is this equivalent?)

Example 8.5.13 Let us work in the real number system R with the usual ordering
≤. Then 2 is an upper bound for the set {x ∈ R : 1 ≤ x ≤ 2} but is not a strict upper
bound. The number 3, on the other hand, is a strict upper bound for this set.

Lemma 8.5.14 Let X be a partially ordered set with ordering relation ≤, and let x0
be an element of X. Then there is a well-ordered subset Y of X which has x0 as its
minimal element and which has no strict upper bound.

Proof The intuition behind this lemma is that one is trying to perform the following
algorithm: we initalize Y := {x0}. If Y has no strict upper bound, then we are done;
otherwise, we choose a strict upper bound and add it to Y . Then we look again to see
if Y has a strict upper bound or not. If not, we are done; otherwise we choose another
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strict upper bound and add it to Y . We continue this algorithm “infinitely often”
until we exhaust all the strict upper bounds; the axiom of choice comes in because
infinitely many choices are involved. This is however not a rigorous proof because
it is quite difficult to precisely pin down what it means to perform an algorithm
“infinitely often”. Instead, what we will do is that we will isolate a collection of
“partially completed” sets Y , which we shall call good sets, and then take the union
of all these good sets to obtain a “completed” object Y∞ which will indeed have no
strict upper bound.

We now begin the rigorous proof. Suppose for sake of contradiction that every
well-ordered subset Y of X which has x0 as its minimal element has at least one strict
upper bound. Using the axiom of choice (in the form of Proposition 8.4.7), we can
thus assign a strict upper bound s(Y ) ∈ X to each well-ordered subset Y of X which
has x0 as its minimal element.

Henceforth we fix a single such strict upper bound function s. Let us define a
special class of subsets Y of X . We say that a subset Y of X is good iff it is well-
ordered, contains x0 as its minimal element, and obeys the property that

x = s({y ∈ Y : y < x}) for all x ∈ Y\{x0}.

Note that if x ∈ Y\{x0} then the set {y ∈ Y : y < x} is a subset of X which is well-
ordered and contains x0 as its minimal element. Let � := {Y ⊆ X : Y is good} be
the collection of all good subsets of X . This collection is not empty, since the subset
{x0} of X is clearly good (why?).

We make the following important observation: if Y and Y ′ are two good subsets
of X , then every element of Y ′\Y is a strict upper bound for Y , and every element
of Y\Y ′ is a strict upper bound for Y ′ (Exercise 8.5.13). In particular, given any two
good sets Y and Y ′, at least one of Y ′\Y and Y\Y ′ must be empty (since they are
both strict upper bounds of each other). In other words, � is totally ordered by set
inclusion: given any two good sets Y and Y ′, either Y ⊆ Y ′ or Y ′ ⊆ Y .

Let Y∞ := ⋃
�, i.e., Y∞ is the set of all elements of X which belong to at least

one good subset of X . Clearly x0 ∈ Y∞. Also, since each good subset of X has x0 as
its minimal element, the set Y∞ also has x0 as its minimal element (why?).

Next, we show that Y∞ is totally ordered. Let x, x ′ be two elements of Y∞. By
definition of Y∞, we know that x lies in some good set Y and x ′ lies in some good
set Y ′. But since � is totally ordered, one of these good sets contains the other. Thus
x, x ′ are contained in a single good set (either Y or Y ′); since good sets are totally
ordered, we thus see that either x ≤ x ′ or x ′ ≤ x as desired.

Next, we show that Y∞ is well-ordered. Let A be any non-empty subset of Y∞.
Then we can pick an element a ∈ A, which then lies in Y∞. Therefore there is a
good set Y such that a ∈ Y . Then A ∩ Y is a non-empty subset of Y ; since Y is
well-ordered, the set A ∩ Y thus has a minimal element, call it b. Now recall that for
any other good set Y ′, every element of Y ′\Y is a strict upper bound for Y , and in
particular is larger than b. Since b is a minimal element of A ∩ Y , this implies that
b is also a minimal element of A ∩ Y ′ for any good set Y ′ with A ∩ Y ′ �= ∅ (why?).
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Since every element of A belongs to Y∞ and hence belongs to at least one good set
Y ′, we thus see that b is a minimal element of A. Thus Y∞ is well-ordered as claimed.

Since Y∞ is well-ordered with x0 as its minimal element, it has a strict upper
bound s(Y∞). But then Y∞ ∪ {s(Y∞)} is well-ordered (why? see Exercise 8.5.11)
and has x0 as its minimal element (why?).

We now claim that Y∞ ∪ {s(Y∞)} is good. By the preceding discussion, it suffices
to show that x = s({y ∈ Y∞ ∪ {s(Y∞)} : y < x} when x ∈ (Y∞ ∪ {s(Y∞)})\{x0}. If
x = s(Y∞), this is clear since {y ∈ Y∞ ∪ {s(Y∞)} : y < x} = Y∞ in this case. If
instead x ∈ Y∞, then x ∈ Y for some good Y . Then the set {y ∈ Y∞ ∪ {s(Y∞)} :
y < x} is equal to {y ∈ Y : y < x} (why? Use the previous observation that every
element of Y ′\Y is an upper bound for x for every good Y ′), and the claim then
follows since Y is good.

By definition of Y∞, we conclude that the good set Y∞ ∪ {s(Y∞)} is contained in
Y∞. But this is a contradiction since s(Y∞) is a strict upper bound for Y∞. Thus we
have constructed a set with no strict upper bound, as desired. �

The above lemma has the following important consequence:

Lemma 8.5.15 (Zorn’s lemma) Let X be a non-empty partially ordered set, with
the property that every non-empty totally ordered subset Y of X has an upper bound.
Then X contains at least one maximal element.

Proof See Exercise 8.5.14. �

We give some applications of Zorn’s lemma in the exercises below.

— Exercises —

Exercise 8.5.1 Consider the empty set ∅ with the empty order relation ≤∅ (this relation is vacuous
because the empty set has no elements). Is this set partially ordered? totally ordered? well-ordered?
Explain.

Exercise 8.5.2 Give examples of a set X and a relation ≤ such that

(a) The relation ≤ is reflexive and antisymmetric, but not transitive;
(b) The relation ≤ is reflexive and transitive, but not antisymmetric;
(c) The relation ≤ is antisymmetric and transitive, but not reflexive.

Exercise 8.5.3 Given two positive integers n,m ∈ N\{0}, we say that n divides m, and write n|m,
if there exists a positive integer a such that m = na. Show that the set N\{0} with the ordering
relation | is a partially ordered set but not a totally ordered one. Note that this is a different ordering
relation from the usual ≤ ordering of N\{0}.
Exercise 8.5.4 Show that the set of positive realsR+ := {x ∈ R : x > 0} have nominimal element.

Exercise 8.5.5 Let f : X → Y be a function from one set X to another set Y . Suppose that Y is
partially ordered with some ordering relation ≤Y . Define a relation ≤X on X by defining x ≤X x ′
if and only if f (x) <Y f (x ′) or x = x ′. Show that this relation ≤X turns X into a partially ordered
set. If we know in addition that the relation ≤Y makes Y totally ordered, does this mean that the
relation ≤X makes X totally ordered also? If not, what additional assumption needs to be made on
f in order to ensure that ≤X makes X totally ordered?
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Exercise 8.5.6 Let X be a partially ordered set. For any x in X , define the order ideal (x) ⊆ X to
be the set (x) := {y ∈ X : y ≤ x}. Let (X) := {(x) : x ∈ X} be the set of all order ideals, and let
f : X → (X) be the map f (x) := (x) that sends every element of X to its order ideal. Show that f
is a bijection, and that given any x, y ∈ X , that x ≤X y if and only if f (x) ⊆ f (y). This exercise
shows that any partially ordered set can be represented by a collection of sets whose ordering
relation is given by set inclusion.

Exercise 8.5.7 Let X be a partially ordered set, and let Y be a totally ordered subset of X . Show
that Y can have at most one maximum and at most one minimum.

Exercise 8.5.8 Show that every finite non-empty subset of a totally ordered set has a minimum
and a maximum. (Hint: use induction.) Conclude in particular that every finite totally ordered set
is well-ordered.

Exercise 8.5.9 Let X be a totally ordered set such that every non-empty subset of X has both
a minimum and a maximum. Show that X is finite. (Hint: assume for sake of contradiction that
X is infinite. Start with the minimal element x0 of X and then construct an increasing sequence
x0 < x1 < . . . in X .)

Exercise 8.5.10 Prove Proposition 8.5.10, without using the axiom of choice. (Hint: consider the
set

Y := {n ∈ X : P(m) is false for some m ∈ X with m ≤X n},
and show that Y being non-empty would lead to a contradiction.)

Exercise 8.5.11 Let X be a partially ordered set, and let Y and Y ′ be well-ordered subsets of X .
Show that Y ∪ Y ′ is well-ordered if and only if it is totally ordered.

Exercise 8.5.12 Let X and Y be partially ordered sets with ordering relations ≤X and ≤Y , respec-
tively. Define a relation ≤X×Y on the Cartesian product X × Y by defining (x, y) ≤X×Y (x ′, y′) if
x <X x ′, or if x = x ′ and y ≤Y y′. (This is called the lexicographical ordering on X × Y , and is
similar to the alphabetical ordering of words; a word w appears earlier in a dictionary than another
word w′ if the first letter of w is earlier in the alphabet than the first letter of w′, or if the first letters
match and the second letter of w is earlier than the second letter of w′, and so forth.) Show that
≤X×Y defines a partial ordering on X × Y . Furthermore, show that if X and Y are totally ordered,
then so is X × Y , and if X and Y are well-ordered, then so is X × Y .

Exercise 8.5.13 Prove the claim in the proof of Lemma 8.5.14, namely that every element of Y ′\Y
is an upper bound for Y and vice versa. (Hint: Show using Proposition 8.5.10 that

{y ∈ Y : y ≤ a} = {y ∈ Y ′ : y ≤ a} = {y ∈ Y ∩ Y ′ : y ≤ a}
for all a ∈ Y ∩ Y ′. Conclude thatY ∩ Y ′ is good, and hence s(Y ∩ Y ′) exists. Show that s(Y ∩ Y ′) =
min(Y ′\Y ) if Y ′\Y is non-empty, and similarly with Y and Y ′ interchanged. Since Y ′\Y and Y\Y ′
are disjoint, one can then conclude that one of these sets is empty, at which point the claim becomes
easy to establish.)

Exercise 8.5.14 Use Lemma 8.5.14 to prove Lemma 8.5.15. (Hint: first show that if X had no
maximal elements, then any subset of X which has an upper bound, also has a strict upper bound.)

Exercise 8.5.15 Let A and B be two non-empty sets such that A does not have lesser or equal
cardinality to B. Using Zorn’s lemma, prove that B has lesser or equal cardinality to A. (Hint:
for every subset X ⊆ B, let P(X) denote the property that there exists an injective map from X
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to A.) This exercise (combined with Exercise 8.3.3) shows that the cardinality of any two sets is
comparable, as long as one assumes the axiom of choice.

Exercise 8.5.16 Let X be a set, and let P be the set of all partial orderings of X . (For instance,
if X := N\{0}, then both the usual partial ordering ≤, and the partial ordering in Exercise 8.5.3,
are elements of P .) We say that one partial ordering ≤∈ P is coarser than another partial ordering
≤′∈ P if for any x, y ∈ X , we have the implication (x ≤ y) =⇒ (x ≤′ y). Thus for instance the
partial ordering in Exercise 8.5.3 is coarser than the usual ordering ≤. Let us write ≤�≤′ if ≤ is
coarser than ≤′. Show that � turns P into a partially ordered set; thus the set of partial orderings
on X is itself partially ordered. There is exactly one minimal element of P; what is it? Show that
the maximal elements of P are precisely the total orderings of X . Using Zorn’s lemma, show that
given any partial ordering ≤ of X there exists a total ordering ≤′ such that ≤ is coarser than ≤′.

Exercise 8.5.17 Use Zorn’s lemma to give another proof of the claim in Exercise 8.4.2. (Hint: let
� be the set of all Y ⊆ ⋃

α∈I Xα such that #(Y ∩ Xα) ≤ 1 for all α ∈ I , i.e., all sets which intersect
each Xα in at most one element. Use Zorn’s lemma to locate a maximal element of �.) Deduce that
Zorn’s lemma and the axiom of choice are in fact logically equivalent (i.e., they can be deduced
from each other).

Exercise 8.5.18 Using Zorn’s lemma, prove Hausdorff’s maximality principle: if X is a partially
ordered set, then there exists a totally ordered subset Y of X which is maximal with respect to set
inclusion (i.e., there is no other totally ordered subset Y ′ of X which contains Y ). Conversely, show
that if Hausdorff’s maximality principle is true, then Zorn’s lemma is true. Thus by Exercise 8.5.17,
these two statements are logically equivalent to the axiom of choice.

Exercise 8.5.19 Let X be a set, and let � be the space of all pairs (Y,≤), where Y is a subset
of X and ≤ is a well-ordering of Y . If (Y,≤) and (Y ′,≤′) are elements of �, we say that (Y,≤)

is an initial segment of (Y ′,≤′) if there exists an x ∈ Y ′ such that Y := {y ∈ Y ′ : y <′ x} (so in
particular Y � Y ′), and for any y, y′ ∈ Y , y ≤ y′ if and only if y ≤′ y′. Define a relation� on� by
defining (Y,≤) � (Y ′,≤′) if either (Y,≤) = (Y ′,≤′), or if (Y,≤) is an initial segment of (Y ′,≤′).
Show that � is a partial ordering of �. There is exactly one minimal element of �; what is it? Show
that the maximal elements of � are precisely the well-orderings (X,≤) of X . Using Zorn’s lemma,
conclude the well-ordering principle: every set X has at least one well-ordering. Conversely, use
the well-ordering principle to prove the axiom of choice, Axiom 8.1. (Hint: place a well-ordering
≤ on

⋃
α∈I Xα , and then consider the minimal elements of each Xα .) We thus see that the axiom

of choice, Zorn’s lemma, and the well-ordering principle are all logically equivalent to each other.

Exercise 8.5.20 Let X be a set, and let� ⊆ 2X be a collection of subsets of X . Assume that� does
not contain the empty set ∅. Using Zorn’s lemma, show that there is a subcollection �′ ⊆ � such
that all the elements of �′ are disjoint from each other (i.e., A ∩ B = ∅ whenever A, B are distinct
elements of�′), but that all the elements of� intersect at least one element of�′ (i.e., for allC ∈ �

there exists A ∈ �′ such that C ∩ A �= ∅). (Hint: consider all the subsets of � whose elements are
all disjoint from each other, and locate a maximal element of this collection.) Conversely, if the
above claim is true, show that it implies the claim in Exercise 8.4.2, and thus this is yet another
claim which is logically equivalent to the axiom of choice. (Hint: let � be the set of all pair sets of
the form {(0, α), (1, xα)}, where α ∈ I and xα ∈ Xα .)



Chapter 9
Continuous Functions on R

In previous chapters we have been focusing primarily on sequences. A sequence
(an)∞n=0 can be viewed as a function from N to R, i.e., an object which assigns a real
number an to each natural number n. We then did various things with these functions
from N to R, such as take their limit at infinity (if the function was convergent), or
form suprema, infima, etc., or computed the sum of all the elements in the sequence
(again, assuming the series was convergent).

Nowwewill look at functions not on the natural numbersN, which are “discrete”,
but instead look at functions on a continuum1 such as the real line R, or perhaps on
an interval such as {x ∈ R : a ≤ x ≤ b}. Eventually we will perform a number of
operations on these functions, including taking limits, computing derivatives, and
evaluating integrals. In this chapter we will focus primarily on limits of functions,
and on the closely related concept of a continuous function.

Before we discuss functions, though, we must first set out some notation for
subsets of the real line.

9.1 Subsets of the Real Line

Very often in analysis we do not work on the whole real lineR, but on certain subsets
of the real line, such as the positive real axis {x ∈ R : x > 0}. Also, we occasionally
work with the extended real lineR∗ defined in Sect. 6.2, or in subsets of that extended
real line.

1 We will not rigorously define the notion of a discrete set or a continuum in this text, but roughly
speaking a set is discrete if each element is separated from the rest of the set by some non-zero
distance, whereas a set is a continuum if it is connected and contains no “holes”.
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There are of course infinitely many subsets of the real line; indeed, Cantor’s
theorem (Theorem 8.3.1; see also Exercise 8.3.4) shows that there are even more
such sets than there are real numbers. However, there are certain special subsets of
the real line (and the extended real line) which arise quite often. One such family of
sets are the intervals.

Definition 9.1.1 (Intervals) Let a, b ∈ R∗ be extended real numbers. We define the
closed interval [a, b] by

[a, b] := {x ∈ R∗ : a ≤ x ≤ b},

the half-open intervals [a, b) and (a, b] by

[a, b) := {x ∈ R∗ : a ≤ x < b}; (a, b] := {x ∈ R∗ : a < x ≤ b},

and the open interval (a, b) by

(a, b) := {x ∈ R∗ : a < x < b}.

We call a the left endpoint of these intervals, and b the right endpoint.

Remark 9.1.2 Once again, we are overloading the parenthesis notation; for instance,
we are now using (2, 3) to denote both an open interval from 2 to 3 and an ordered
pair in the Cartesian plane R2 := R × R. This can cause some genuine ambiguity,
but the reader should still be able to resolve which meaning of the parentheses is
intended from context. In some texts, this issue is resolved by using reversed brackets
instead of parenthesis, and thus for instance [a, b)would now be [a, b[, (a, b]would
be ]a, b], and (a, b) would be ]a, b[.
Examples 9.1.3 If a and b are real numbers (i.e., not equal to +∞ or −∞), then
all of the above intervals are subsets of the real line, for instance [2, 3) = {x ∈ R :
2 ≤ x < 3}. The positive real axis {x ∈ R : x > 0} is the open interval (0,+∞),
while the non-negative real axis {x ∈ R : x ≥ 0} is the half-open interval [0,+∞).
Similarly, the negative real axis {x ∈ R : x < 0} is (−∞, 0), and the non-positive
real axis {x ∈ R : x ≤ 0} is (−∞, 0]. Finally, the real lineR itself is the open interval
(−∞,+∞), while the extended real line R∗ is the closed interval [−∞,+∞]. We
sometimes refer to an interval in which one endpoint is infinite (either +∞ or −∞)
as half-infinite intervals, and intervals in which both endpoints are infinite as doubly
infinite intervals; all other intervals are bounded intervals. Thus [2, 3) is a bounded
interval, the positive and negative real axes are half-infinite intervals, and R and R∗
are infinite intervals.

Example 9.1.4 If a > b, then all four of the intervals [a, b], [a, b), (a, b], and (a, b)
are the empty set (why?). If a = b, then the three intervals [a, b), (a, b], and (a, b)
are the empty set, while [a, b] is just the singleton set {a} (why?). Because of this,
we call these intervals degenerate; most (but not all) of our analysis will be restricted
to non-degenerate intervals.
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Of course intervals are not the only interesting subsets of the real line. Other
important examples include the natural numbers N, the integers Z, and the rationals
Q. One can form additional sets using such operations as union and intersection
(see Sect. 3.1); for instance one could have a disconnected union of two intervals
such as (1, 2) ∪ [3, 4], or one could consider the set [−1, 1] ∩ Q of rational numbers
between −1 and 1 inclusive. Clearly there are infinitely many possibilities of sets
one could create by such operations.

Just as sequences of real numbers have limit points, sets of real numbers have
adherent points, which we now define.

Definition 9.1.5 (ε-adherent points)Let X be a subset ofR, let ε > 0, and let x ∈ R.
We say that x is ε-adherent to X iff there exists a y ∈ X which is ε-close to x (i.e.,
|x − y| ≤ ε).

Remark 9.1.6 The terminology “ε-adherent” is not standard in the literature. How-
ever, we shall shortly use it to define the notion of an adherent point, which is
standard.

Example 9.1.7 The point 1.1 is 0.5-adherent to the open interval (0, 1), but is not
0.1-adherent to this interval (why?). The point 1.1 is 0.5-adherent to the finite set
{1, 2, 3}. The point 1 is 0.5-adherent to {1, 2, 3} (why?).
Definition 9.1.8 (Adherent points) Let X be a subset of R, and let x ∈ R. We say
that x is an adherent point of X iff it is ε-adherent to X for every ε > 0.

Example 9.1.9 The number 1 is ε-adherent to the open interval (0, 1) for every
ε > 0 (why?) and is thus an adherent point of (0, 1). The point 0.5 is similarly an
adherent point of (0, 1). However, the number 2 is not 0.5-adherent (for instance) to
(0, 1) and is thus not an adherent point to (0, 1).

Definition 9.1.10 (Closure) Let X be a subset of R. The closure of X , sometimes
denoted X is defined to be the set of all the adherent points of X .

Lemma 9.1.11 (Elementary properties of closures)Let X andY be arbitrary subsets
of R. Then X ⊆ X, X ∪ Y = X ∪ Y , and X ∩ Y ⊆ X ∩ Y . If X ⊆ Y , then X ⊆ Y .

Proof See Exercise 9.1.1. �

We now compute some closures.

Lemma 9.1.12 (Closures of intervals) Let a < b be real numbers, and let I be any
one of the four intervals (a, b), (a, b], [a, b), or [a, b]. Then the closure of I is [a, b].
Similarly, the closure of (a,∞) or [a,∞) is [a,∞), while the closure of (−∞, a)

or (−∞, a] is (−∞, a]. Finally, the closure of (−∞,∞) is (−∞,∞).

Proof Wewill just show one of these facts, namely that the closure of (a, b) is [a, b];
the other results are proven similarly (or one can use Exercise 9.1.6).
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First let us show that every element of [a, b] is adherent to (a, b). Let x ∈ [a, b].
If x ∈ (a, b), then it is definitely adherent to (a, b). If x = b, then x is also adherent
to (a, b) (why?). Similarly when x = a. Thus every point in [a, b] is adherent to
(a, b).

Now we show that every point x that is adherent to (a, b) lies in [a, b]. Suppose
for sake of contradiction that x does not lie in [a, b], then either x > b or x < a. If
x > b then x is not (x − b)-adherent to (a, b) (why?) and is hence not an adherent
point to (a, b). Similarly, if x < a, then x is not (a − x)-adherent to (a − b) and is
hence not an adherent point to (a, b). This contradiction shows that x is in fact in
[a, b] as claimed. �

Lemma 9.1.13 The closure of N is N. The closure of Z is Z. The closure of Q is R,
and the closure of R is R. The closure of the empty set ∅ is ∅.
Proof See Exercise 9.1.2. �

The following lemma shows that adherent points of a set X can be obtained as
the limit of elements in X :

Lemma 9.1.14 Let X be a subset of R, and let x ∈ R. Then x is an adherent point
of X if and only if there exists a sequence (an)∞n=0, consisting entirely of elements in
X, which converges to x.

Proof See Exercise 9.1.4. �

Definition 9.1.15 A subset E ⊆ R is said to be closed if E = E , or in other words
that E contains all of its adherent points.

Examples 9.1.16 From Lemma 9.1.12 we see that if a < b are real numbers, then
[a, b], [a,+∞), (−∞, a], and (−∞,+∞) are closed, while (a, b), (a, b], [a, b),
(a,+∞), and (−∞, a) are not. From Lemma 9.1.13 we see that N, Z, R, ∅ are
closed, while Q is not.

From Lemma 9.1.14 we can define closure in terms of sequences:

Corollary 9.1.17 Let X be a subset ofR. If X is closed, and (an)∞n=0 is a convergent
sequence consisting of elements in X, then limn→∞ an also lies in X. Conversely, if
it is true that every convergent sequence (an)∞n=0 of elements in X has its limit in X
as well, then X is necessarily closed.

When we study differentiation in the next chapter, we shall need to replace the
concept of an adherent point by the closely related notion of a limit point.

Definition 9.1.18 (Limit points) Let X be a subset of the real line. We say that x is a
limit point (or a cluster point) of X iff it is an adherent point of X\{x}. We say that x
is an isolated point of X if x ∈ X and there exists some ε > 0 such that |x − y| > ε

for all y ∈ X\{x}.
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Example 9.1.19 Let X be the set X = (1, 2) ∪ {3}. Then 3 is an adherent point of
X , but it is not a limit point of X , since 3 is not adherent to X\{3} = (1, 2); instead,
3 is an isolated point of X . On the other hand, 2 is still a limit point of X , since 2 is
adherent to X\{2} = X ; but it is not isolated (why?).

Remark 9.1.20 From Lemma 9.1.14 we see that x is a limit point of X iff there
exists a sequence (an)∞n=0, consisting entirely of elements in X that are distinct from
x , and such that (an)∞n=0 converges to x . It turns out that the set of adherent points
splits into the set of limit points and the set of isolated points (Exercise 9.1.9).

Lemma 9.1.21 Let I be an interval (possibly infinite), i.e., I is a set of the form
(a, b), (a, b], [a, b), [a, b], (a,+∞), [a,+∞), (−∞, a), or (−∞, a], with a < b
in the first four cases. Then every element of I is a limit point of I .

Proof We show this for the case I = [a, b]; the other cases are similar and are left
to the reader. Let x ∈ I ; we have to show that x is a limit point of I . There are
three cases: x = a, a < x < b, and x = b. If x = a, then consider the sequence
(x + 1

n )
∞
n=N . This sequence converges to x and will lie inside I\{a} = (a, b] if N

is chosen large enough (why?). Thus by Remark 9.1.20 we see that x = a is a limit
point of [a, b]. A similar argument works when a < x < b. When x = b one has
to use the sequence (x − 1

n )
∞
n=N instead (why?) but the argument is otherwise the

same. �
Next, we define the concept of a bounded set.

Definition 9.1.22 (Bounded sets) A subset X of the real line is said to be bounded
if we have X ⊆ [−M, M] for some real number M > 0. A subset X of the real line
is unbounded if it is not bounded.

Example 9.1.23 For any real numbers a, b, the interval [a, b] is bounded, because it
is contained inside [−M, M], where M := max(|a|, |b|). However, the half-infinite
interval [0,+∞) is unbounded (why?). In fact, no half-infinite interval or doubly
infinite interval can be bounded. The sets N, Z,Q, and R are all unbounded (why?).

A basic property of closed and bounded sets is the following.

Theorem 9.1.24 (Heine–Borel theorem for the line) Let X be a subset of R. Then
the following two statements are equivalent:

(a) X is closed and bounded.
(b) Given any sequence (an)∞n=0 of real numberswhich takes values in X (i.e., an ∈ X

for all n), there exists a subsequence (an j )
∞
j=0 of the original sequence, which

converges to some number L in X.

Proof See Exercise 9.1.13. �
Remark 9.1.25 This theorem shall play a key rôle in subsequent sections of this
chapter. In the language of metric space topology, it asserts that every subset of the
real line which is closed and bounded and is also compact; see Sect. 1.5. A more
general version of this theorem, due to Eduard Heine (1821–1881) and Emile Borel
(1871–1956), can be found in Theorem 1.5.7.
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— Exercises —

Exercise 9.1.1 Prove Lemma 9.1.11.

Exercise 9.1.2 Prove Lemma 9.1.13. (Hint: for computing the closure of Q, you will need Propo-
sition 5.4.14.)

Exercise 9.1.3 Give an example of two subsets X, Y of the real line such that X ∩ Y �= X ∩ Y .

Exercise 9.1.4 Prove Lemma 9.1.14. (Hint: in order to prove one of the two implications here you
will need axiom of choice, as in Lemma 8.4.5.)

Exercise 9.1.5 Let X be a subset of R. Show that X is closed (i.e., X = X ). Furthermore, show
that if Y is any closed set that contains X , then Y also contains X . Thus the closure X of X is the
smallest closed set which contains X .

Exercise 9.1.6 Let X be any subset of the real line, and let Y be a set such that X ⊆ Y ⊆ X . Show
that Y = X .

Exercise 9.1.7 Let n ≥ 1 be a positive integer, and let X1, . . . , Xn be closed subsets of R. Show
that X1 ∪ X2 ∪ . . . ∪ Xn is also closed.

Exercise 9.1.8 Let I be a non-empty set (possibly infinite), and for each α ∈ I let Xα be a closed
subset of R. Show that the intersection

⋂
α∈I Xα (defined in (3.3)) is also closed.

Exercise 9.1.9 Let X be a subset of the real line. Show that every adherent point of X is either a
limit point or an isolated point of X , but cannot be both. Conversely, show that every limit point
and every isolated point of X is an adherent point of X .

Exercise 9.1.10 If X is a non-empty subset of R, show that X is bounded if and only if inf(X) and
sup(X) are finite.

Exercise 9.1.11 Show that if X is a bounded subset of R, then the closure X is also bounded.

Exercise 9.1.12 Show that the union of any finite collection of bounded subsets of R is still a
bounded set. Is this conclusion still true if one takes an infinite collection of bounded subsets of R?

Exercise 9.1.13 Prove Theorem 9.1.24. (Hint: to show (a) implies (b), use the Bolzano–Weierstrass
theorem (Theorem 6.6.8) and Corollary 9.1.17. To show (b) implies (a), argue by contradiction,
using Corollary 9.1.17 to establish that X is closed. You will need the axiom of choice to show that
X is bounded, as in Lemma 8.4.5.)

Exercise 9.1.14 Show that any finite subset of R is closed and bounded.

Exercise 9.1.15 Let E be a bounded non-empty subset ofR, and let S := sup(E) be the least upper
bound of E . (Note from the least upper bound principle, Theorem 5.5.9, that S is a real number.)
Show that S is an adherent point of E and is also an adherent point of R\E .
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9.2 The Algebra of Real-Valued Functions

You are familiar with many functions f : R → R from the real line to the real
line. Some examples are: f (x) := x2 + 3x + 5; f (x) := 2x/(x2 + 1); f (x) :=
sin(x) exp(x) (we will define sin and exp formally in Chap.4). These are functions
from R to R since to every real number x they assign a single real number f (x). We
can also consider more exotic functions, e.g.,

f (x) :=
{
1 if x ∈ Q
0 if x /∈ Q.

This function is not algebraic (i.e., it cannot be expressed in terms of x purely by
using the standard algebraic operations of +, −, ×, /, √, etc.; we will not need this
notion in this text), but it is still a function from R to R, because it still assigns a real
number f (x) to each x ∈ R.

We can take any one of the previous functions f : R → R defined on all of R,
and restrict the domain to a smaller set X ⊆ R, creating a new function, sometimes
called f |X , from X to R. This is the same function as the original function f , but is
only defined on a smaller domain. (Thus f |X (x) := f (x) when x ∈ X , and f |X (x)
is undefined when x /∈ X .) For instance, we can restrict the function f (x) := x2,
which is initially defined from R to R, to the interval [1, 2], thus creating a new
function f |[1,2] : [1, 2] → R, which is defined as f |[1,2](x) = x2 when x ∈ [1, 2]
but is undefined elsewhere.

One could also restrict the codomain from R to some smaller subset Y of R,
provided of course that all the values of f (x) lie inside Y . For instance, the function
f : R → R defined by f (x) := x2 could also be thought of as a function from R to
[0,∞), instead of a function fromR toR. Formally, these two functions are different
functions, but the distinction between them is so minor that we shall often be careless
about the range of a function in our discussion.

Strictly speaking, there is a distinction between a function f , and its value f (x) at
a point x . f is a function; but f (x) is a number (which depends on some free variable
x). This distinction is rather subtle and we will not stress it too much, but there are
times when one has to distinguish between the two. For instance, if f : R → R is
the function f (x) := x2, and g := f |[1,2] is the restriction of f to the interval [1, 2],
then f and g both perform the operation of squaring, i.e., f (x) = x2 and g(x) = x2,
but the two functions f and g are not considered the same function, f �= g, because
they have different domains. Despite this distinction, we shall often be careless,
and say things like “consider the function x2 + 2x + 3” when really we should be
saying “consider the function f : R → R defined by f (x) := x2 + 2x + 3”. (This
distinctionmakesmore of a differencewhenwe start doing things like differentiation.
For instance, if f : R → R is the function f (x) = x2, then of course f (3) = 9, but
the derivative of f at 3 is 6, whereas the derivative of 9 is of course 0, so we cannot
simply “differentiate both sides” of f (3) = 9 and conclude that 6 = 0.)
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If X is a subset of R, and f : X → R is a function, we can form the graph
{(x, f (x)) : x ∈ X} of the function f ; this is a subset of X × R, and hence a subset
of the Euclidean plane R2 = R × R. One can certainly study a function through
its graph, by using the geometry of the plane R2 (e.g., employing such concepts as
tangent lines, area, and so forth).We howeverwill pursue amore “analytic” approach,
in which we rely instead on the properties of the real numbers to analyze these
functions. The two approaches are complementary; the geometric approach offers
more visual intuition, while the analytic approach offers rigor and precision. Both
the geometric intuition and the analytic formalism become useful when extending
analysis of functions of one variable to functions of many variables (or possibly even
infinitely many variables).

Just as numbers can be manipulated arithmetically, so can functions: the sum of
two functions is a function, the product of two functions is a function, and so forth.

Definition 9.2.1 (Arithmetic operations on functions)Given two functions f : X →
R and g : X → R, we can define their sum f + g : X → R by the formula

( f + g)(x) := f (x) + g(x),

their difference f − g : X → R by the formula

( f − g)(x) := f (x) − g(x),

their maximum max( f, g) : X → R by

max( f, g)(x) := max( f (x), g(x)),

their minimum min( f, g) : X → R by

min( f, g)(x) := min( f (x), g(x)),

their product f g : X → R (or f · g : X → R) by the formula

( f g)(x) := f (x)g(x),

and (provided that g(x) �= 0 for all x ∈ X ) the quotient f/g : X → R by the formula

( f/g)(x) := f (x)/g(x).

Finally, if c is a real number, we can define the function c f : X → R (or c · f : X →
R) by the formula

(c f )(x) := c × f (x).

Example 9.2.2 If f : R → R is the function f (x) := x2, and g : R → R is the
function g(x) := 2x , then f + g : R → R is the function ( f + g)(x) := x2 + 2x ,
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while f g : R → R is the function f g(x) = 2x3. Similarly f − g : R → R is the
function ( f − g)(x) := x2 − 2x , while 6 f : R → R is the function (6 f )(x) = 6x2.
Observe that f g is not the same function as f ◦ g, which maps x �→ 4x2, nor is it
the same as g ◦ f , which maps x �→ 2x2 (why?). Thus multiplication of functions
and composition of functions are two different operations.

— Exercises —

Exercise 9.2.1 Let f : R → R, g : R → R, h : R → R. Which of the following identities are true,
and which ones are false? In the former case, give a proof; in the latter case, give a counterexample.

( f + g) ◦ h = ( f ◦ h) + (g ◦ h)

f ◦ (g + h) = ( f ◦ g) + ( f ◦ h)

( f + g) · h = ( f · h) + (g · h)

f · (g + h) = ( f · g) + ( f · h)

9.3 Limiting Values of Functions

In Chap.6 we defined what it means for a sequence (an)∞n=0 to converge to a limit
L . We now define a similar notion for what it means for a function f defined on the
real line, or on some subset of the real line, to converge to some value at a point. Just
as we used the notions of ε-closeness and eventual ε-closeness to deal with limits of
sequences, we shall need a notion of ε-closeness and local ε-closeness to deal with
limits of functions.

Definition 9.3.1 (ε-closeness) Let X be a subset ofR, let f : X → R be a function,
let L be a real number, and let ε > 0 be a real number. We say that the function f is
ε-close to L iff f (x) is ε-close to L for every x ∈ X .

Example 9.3.2 When the function f (x) := x2 is restricted to the interval [1, 3], then
it is 5-close to 4, sincewhen x ∈ [1, 3] then 1 ≤ f (x) ≤ 9, and hence | f (x) − 4| ≤ 5.
When instead it is restricted to the smaller interval [1.9, 2.1], then it is 0.41-close to
4, since if x ∈ [1.9, 2.1], then 3.61 ≤ f (x) ≤ 4.41, and hence | f (x) − 4| ≤ 0.41.

Definition 9.3.3 (Local ε-closeness) Let X be a subset of R, let f : X → R be a
function, let L be a real number, x0 be an adherent point of X , and ε > 0 be a real
number. We say that f is ε-close to L near x0 iff there exists a δ > 0 such that f
becomes ε-close to L when restricted to the set {x ∈ X : |x − x0| < δ}.
Example 9.3.4 Let f : [1, 3] → R be the function f (x) := x2, restricted to the
interval [1, 3]. This function is not 0.1-close to 4, since for instance f (1) is not 0.1-
close to 4. However, f is 0.1-close to 4 near 2, since when restricted to the set {x ∈
[1, 3] : |x − 2| < 0.01}, the function f is indeed 0.1-close to 4. This is because when
|x − 2| < 0.01, we have 1.99 < x < 2.01, and hence 3.9601 < f (x) < 4.0401, and
in particular f (x) is 0.1-close to 4.
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Example 9.3.5 Continuing with the same function f used in the previous example,
we observe that f is not 0.1-close to 9, since for instance f (1) is not 0.1-close to
9. However, f is 0.1-close to 9 near 3, since when restricted to the set {x ∈ [1, 3] :
|x − 3| < 0.01}—which is the same as the half-open interval (2.99, 3] (why?), the
function f becomes 0.1-close to 9 (since if 2.99 < x ≤ 3, then 8.9401 < f (x) ≤ 9,
and hence f (x) is 0.1-close to 9).

Definition 9.3.6 (Convergence of functions at a point) Let X be a subset of R, let
f : X → R be a function, let E be a subset of X , x0 be an adherent point of E ,
and let L be a real number. We say that f converges to L at x0 in E and write
limx→x0;x∈E f (x) = L , iff f , after restricting to E , is ε-close to L near x0 for every
ε > 0. If f does not converge to any number L at x0, we say that f diverges at x0,
and leave limx→x0;x∈E f (x) undefined.

In other words, we have limx→x0;x∈E f (x) = L iff for every ε > 0, there exists a
δ > 0 such that | f (x) − L| ≤ ε for all x ∈ E such that |x − x0| < δ. (Why is this
definition equivalent to the one given above?)

Remark 9.3.7 In many cases we will omit the set E from the above notation (i.e.,
we will just say that f converges to L at x0, or that limx→x0 f (x) = L), although
this is slightly dangerous. For instance, it sometimes makes a difference whether
E actually contains x0 or not. To give an example, if f : R → R is the func-
tion defined by setting f (x) = 1 when x = 0 and f (x) = 0 when x �= 0, then one
has limx→0;x∈R\{0} f (x) = 0, but limx→0;x∈R f (x) is undefined. Some authors only
define the limit limx→x0;x∈E f (x) when E does not contain x0 (so that x0 is now a
limit point of E rather than an adherent point), or would use limx→x0;x∈E f (x) to
denote what we would call limx→x0;x∈E\{x0} f (x), but we have chosen a slightly more
general notation, which allows the possibility that E contains x0.

Example 9.3.8 Let f : [1, 3] → R be the function f (x) := x2.We have seen before
that f is 0.1-close to 4 near 2. A similar argument shows that f is 0.01-close to 4
near 2 (one just has to pick a smaller value of δ).

Definition 9.3.6 is rather unwieldy. However, we can rewrite this definition in
terms of a more familiar one, involving limits of sequences.

Proposition 9.3.9 Let X be a subset of R, let f : X → R be a function, let E be a
subset of X, let x0 be an adherent point of E, and let L be a real number. Then the
following two statements are logically equivalent:

(a) f converges to L at x0 in E.
(b) For every sequence (an)∞n=0 which consists entirely of elements of E and con-

verges to x0, the sequence ( f (an))∞n=0 converges to L.

Proof See Exercise 9.3.1. �

In view of the above proposition, we will sometimes write “ f (x) → L as x → x0
in E” or “ f has a limit L at x0 in E” instead of “ f converges to L at x0”, or
“limx→x0 f (x) = L”.
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Remark 9.3.10 With the notation of Proposition 9.3.9, we have the following corol-
lary: if limx→x0;x∈E f (x) = L , and limn→∞ an = x0, then limn→∞ f (an) = L .

Remark 9.3.11 We only consider limits of a function f at x0 in the case when x0 is
an adherent point of E . When x0 is not an adherent point then it is not worth it to
define the concept of a limit. (Can you see why there will be problems?)

Remark 9.3.12 The variable x used to denote a limit is a dummy variable; we could
replace it by any other variable and obtain exactly the same limit. For instance, if
limx→x0;x∈E f (x) = L , then limy→x0;y∈E f (y) = L , and conversely (why?).

Proposition 9.3.9 has some immediate corollaries. For instance, we now know
that a function can have at most one limit at each point:

Corollary 9.3.13 Let X be a subset ofR, let E be a subset of X, let x0 be an adherent
point of E, and let f : X → R be a function. Then f can have at most one limit at
x0 in E.

Proof Suppose for sake of contradiction that there are two distinct numbers L and
L ′ such that f has a limit L at x0 in E , and such that f also has a limit L ′ at x0
in E . Since x0 is an adherent point of E , we know by Lemma 9.1.14 that there is a
sequence (an)∞n=0 consisting of elements in E which converges to x0. Since f has a
limit L at x0 in E , we thus see by Proposition 9.3.9, that ( f (an))∞n=0 converges to L .
But since f also has a limit L ′ at x0 in E , we see that ( f (an))∞n=0 also converges to
L ′. But this contradicts the uniqueness of limits of sequences (Proposition 6.1.7). �

Using the limit laws for sequences, one can now deduce the limit laws for func-
tions:

Proposition 9.3.14 (Limit laws for functions) Let X be a subset of R, let E be a
subset of X, let x0 be an adherent point of E, and let f : X → R and g : X → R
be functions. Suppose that f has a limit L at x0 in E, and g has a limit M at x0 in
E. Then f + g has a limit L + M at x0 in E, f − g has a limit L − M at x0 in E,
max( f, g) has a limitmax(L , M) at x0 in E,min( f, g) has a limitmin(L , M) at x0
in E and f g has a limit LM at x0 in E. If c is a real number, then c f has a limit
cL at x0 in E. Finally, if g is non-zero on E (i.e., g(x) �= 0 for all x ∈ E) and M is
non-zero, then f/g has a limit L/M at x0 in E.

Proof We just prove the first claim (that f + g has a limit L + M); the others are
very similar and are left to Exercise 9.3.2. Let (an)∞n=0 be an arbitrary sequence
of elements in E that converges to x0. Since f has a limit L at x0 in E , we thus
see from Proposition 9.3.9 that ( f (an))∞n=0 converges to L . Similarly (g(an))∞n=0
converges to M . By the limit laws for sequences (Theorem 6.1.19) we conclude
that (( f + g)(an))∞n=0 converges to L + M . By Proposition 9.3.9 again, this implies
that f + g has a limit L + M at x0 in E as desired (since (an)∞n=0 was an arbitrary
sequence in E converging to x0). �
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Remark 9.3.15 One can phrase Proposition 9.3.14 more informally as saying that

lim
x→x0

( f ± g)(x) = lim
x→x0

f (x) ± lim
x→x0

g(x)

lim
x→x0

max( f, g)(x) = max

(

lim
x→x0

f (x), lim
x→x0

g(x)

)

lim
x→x0

min( f, g)(x) = min

(

lim
x→x0

f (x), lim
x→x0

g(x)

)

lim
x→x0

( f g)(x) = lim
x→x0

f (x) lim
x→x0

g(x)

lim
x→x0

( f/g)(x) = limx→x0 f (x)

limx→x0 g(x)

(where we have dropped the restriction x ∈ E for brevity) but bear in mind that these
identities are only true when the right-hand sidemakes sense, and furthermore for the
final identity we need g to be non-zero, and also limx→x0 g(x) to be non-zero. (See
Example 1.2.4 for some examples of what goes wrong when limits are manipulated
carelessly.)

Using the limit laws in Proposition 9.3.14 we can already deduce several limits.
First of all, it is easy to check the basic limits

lim
x→x0;x∈R

c = c

and
lim

x→x0;x∈R
x = x0

for any real numbers x0 and c. (Why? Use Proposition 9.3.9.) By the limit laws we
can thus conclude that

lim
x→x0;x∈R

x2 = x20

lim
x→x0;x∈R

cx = cx0

lim
x→x0;x∈R

x2 + cx + d = x20 + cx0 + d

etc., where c, d are arbitrary real numbers.
If f converges to L at x0 in X , and Y is any subset of X such that x0 is still

an adherent point of Y , then f will also converge to L at x0 in Y (why?). Thus
convergence on a large set implies convergence on a smaller set. The converse,
however, is not true:

Example 9.3.16 Consider the signum function sgn : R → R, defined by
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sgn(x) :=
⎧
⎨

⎩

1 if x > 0
0 if x = 0
−1 if x < 0

Then limx→0;x∈(0,∞) sgn(x) = 1 (why?), whereas limx→0;x∈(−∞,0) = −1 (why?) and
limx→0;x∈R sgn(x) is undefined (why?). Thus it is sometimes dangerous to drop the
set E from the notation of limit.However, inmany cases it is safe to do so; for instance,
since we know that limx→x0;x∈R x2 = x20 , we know in fact that limx→x0;x∈X x2 = x20
for any set X with x0 as an adherent point (why?). Thus it is safe towrite limx→x0 x

2 =
x20 .

Example 9.3.17 Let f (x) be the function

f (x) :=
{
1 if x = 0
0 if x �= 0.

Then limx→0;x∈R\{0} f (x) = 0 (why?), but limx→0;x∈R f (x) is undefined (why?).
(When this happens, we say that f has a “removable singularity” or “removable
discontinuity” at 0. Because of such singularities, it is sometimes the convention
when writing limx→x0 f (x) to automatically exclude x0 from the set; for instance, in
some textbooks, limx→x0 f (x) is used as shorthand for limx→x0;x∈X\{x0} f (x).)

On the other hand, the limit at x0 should only depend on the values of the function
near x0; the values away from x0 are not relevant. The following proposition reflects
this intuition:

Proposition 9.3.18 (Limits are local) Let X be a subset of R, let E be a subset of
X, let x0 be an adherent point of E, let f : X → R be a function, and let L be a real
number. Let δ > 0. Then we have

lim
x→x0;x∈E

f (x) = L

if and only if
lim

x→x0;x∈E∩(x0−δ,x0+δ)
f (x) = L .

Proof See Exercise 9.3.3. �

Informally, the above proposition asserts that

lim
x→x0;x∈E

f (x) = lim
x→x0;x∈E∩(x0−δ,x0+δ)

f (x).

Thus the limit of a function at x0, if it exists, only depends on the values of f near
x0; the values far away do not actually influence the limit.

We now give a few more examples of limits.
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Example 9.3.19 Consider the functions f : R → R and g : R → R defined by
f (x):=x + 2 and g(x) := x + 1.Then limx→2;x∈R f (x) = 4and limx→2;x∈R g(x) =
3.Wewould like to use the limit laws to conclude that limx→2;x∈R f (x)/g(x) = 4/3,
or in other words that limx→2;x∈R x+2

x+1 = 4
3 . Strictly speaking, we cannot use Propo-

sition 9.3.14 to ensure this, because x + 1 is zero at x = −1, and so f (x)/g(x) is
not defined. However, this is easily solved, by restricting the domain of f and g from
R to a smaller domain, such asR\{−1}. Then Proposition 9.3.14 does apply, and we
have limx→2;x∈R\{−1} x+2

x+1 = 4
3 .

Example 9.3.20 Consider the function f : R\{1} → R defined by f (x) := (x2 −
1)/(x − 1). This function is well-defined for every real number except 1, so f (1)
is undefined. However, 1 is still an adherent point of R\{1} (why?), and the limit
limx→1;x∈R−{1} f (x) is still defined. This is because on the domainR\{1}we have the
identity (x2 − 1)/(x − 1) = (x + 1)(x − 1)/(x − 1) = x + 1, and limx→1;x∈R−{1}
x + 1 = 2.

Example 9.3.21 Let f : R → R be the function

f (x) :=
{
1 if x ∈ Q
0 if x /∈ Q.

We will show that f (x) has no limit at 0 inR. Suppose for sake of contradiction that
f (x) had some limit L at 0 inR. Then we would have limn→∞ f (an) = L whenever
(an)∞n=1 is a sequence of non-zero numbers converging to 0. Since (1/n)∞n=1 is such
a sequence, we would have

L = lim
n→∞ f (1/n) = lim

n→∞ 1 = 1.

On the other hand, since (
√
2/n)∞n=1 is another sequence of non-zero numbers con-

verging to 0—but now these numbers are irrational instead of rational—we have

L = lim
n→∞ f (

√
2/n) = lim

n→∞ 0 = 0.

Since 1 �= 0, we have a contradiction. Thus this function does not have a limit at 0.

— Exercises —

Exercise 9.3.1 Prove Proposition 9.3.9.

Exercise 9.3.2 Prove the remaining claims in Proposition 9.3.14.

Exercise 9.3.3 Prove Proposition 9.3.18.

Exercise 9.3.4 Propose a definition for limit superior lim supx→x0;x∈E f (x) and limit inferior
lim infx→x0;x∈E f (x), and then propose an analogue of Proposition 9.3.9 for your definition. (For
an additional challenge: prove that analogue.)
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Exercise 9.3.5 (Continuous version of squeeze test) Let X be a subset of R, let E be a subset of
X , let x0 be an adherent point of E , and let f : X → R, g : X → R, h : X → R be functions such
that f (x) ≤ g(x) ≤ h(x) for all x ∈ E . If we have limx→x0;x∈E f (x) = limx→x0;x∈E h(x) = L
for some real number L , show that limx→x0;x∈E g(x) = L .

9.4 Continuous Functions

We now introduce one of the most fundamental notions in the theory of functions -
that of continuity.

Definition 9.4.1 (Continuity) Let X be a subset of R, and let f : X → R be a func-
tion. Let x0 be an element of X . We say that f is continuous at x0 iff we have

lim
x→x0;x∈X

f (x) = f (x0);

in other words, the limit of f (x) as x converges to x0 in X exists and is equal to
f (x0). We say that f is continuous on X (or simply continuous) iff f is continuous
at x0 for every x0 ∈ X . We say that f is discontinuous at x0 iff it is not continuous
at x0.

We also extend these notions to functions f : X → Y that take values in a subset
Y of R, by identifying such functions (by abuse of notation) with the function f̃ :
X → R that agrees everywhere with f (so f̃ (x) = f (x) for all x ∈ X ) but where
the codomain has been enlarged from Y to R.

Example 9.4.2 Let c be a real number, and let f : R → R be the constant function
f (x) := c. Then for every real number x0 ∈ R, we have

lim
x→x0;x∈R

f (x) = lim
x→x0;x∈R

c = c = f (x0),

thus f is continuous at every point x0 ∈ R, or in other words f is continuous on R.

Example 9.4.3 Let f : R → R be the identity function f (x) := x . Then for every
real number x0 ∈ R, we have

lim
x→x0;x∈R

f (x) = lim
x0∈x;x∈R

x = x0 = f (x0),

thus f is continuous at every point x0 ∈ R, or in other words f is continuous on R.

Example 9.4.4 Let sgn : R → R be the signum function defined in Example 9.3.16.
Then sgn(x) is continuous at every non-zero value of x ; for instance, at 1, we have
(using Proposition 9.3.18)
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lim
x→1;x∈R

sgn(x) = lim
x→1;x∈(0.9,1.1)

sgn(x)

= lim
x→1;x∈(0.9,1.1)

1

= 1

= sgn(1).

On the other hand, sgn is not continuous at 0, since the limit limx→0;x∈R sgn(x) does
not exist.

Example 9.4.5 Let f : R → R be the function

f (x) :=
{
1 if x ∈ Q
0 if x /∈ Q.

Then by the discussion in the previous section, f is not continuous at 0. In fact, it
turns out that f is not continuous at any real number x0 (can you see why?).

Example 9.4.6 Let f : R → R be the function

f (x) :=
{
1 if x ≥ 0
0 if x < 0.

Then f is continuous at every non-zero real number (why?), but is not continuous
at 0. However, if we restrict f to the right-hand line [0,∞), then the resulting func-
tion f |[0,∞) now becomes continuous everywhere in its domain, including 0. Thus
restricting the domain of a function can make a discontinuous function continuous
again.

There are several ways to phrase the statement that “ f is continuous at x0”:

Proposition 9.4.7 (Equivalent formulations of continuity) Let X be a subset of R,
let f : X → R be a function, and let x0 be an element of X. Then the following four
statements are logically equivalent:

(a) f is continuous at x0.
(b) For every sequence (an)∞n=0 consisting of elements of X with limn→∞ an = x0,

we have limn→∞ f (an) = f (x0).
(c) For every ε > 0, there exists a δ > 0 such that | f (x) − f (x0)| < ε for all x ∈ X

with |x − x0| < δ.
(d) For every ε > 0, there exists a δ > 0 such that | f (x) − f (x0)| ≤ ε for all x ∈ X

with |x − x0| ≤ δ.

Proof See Exercise 9.4.1. �

Remark 9.4.8 A particularly useful consequence of Proposition 9.4.7 is the fol-
lowing: if f is continuous at x0, and an → x0 as n → ∞, then f (an) → f (x0) as
n → ∞ (provided that all the elements of the sequence (an)∞n=0 lie in the domain of
f , of course). Thus continuous functions are very useful in computing limits.
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The limit laws in Proposition 9.3.14, combined with the definition of continuity
in Definition 9.4.1, immediately imply

Proposition 9.4.9 (Arithmetic preserves continuity) Let X be a subset of R, and
let f : X → R and g : X → R be functions. Let x0 ∈ X. Then if f and g are both
continuous at x0, then the functions f + g, f − g,max( f, g),min( f, g) and f g are
also continuous at x0. If g is non-zero on X, then f/g is also continuous at x0.

In particular, the sum, difference,maximum,minimum, and product of continuous
functions are continuous; and the quotient of two continuous functions is continuous
as long as the denominator does not become zero.

One can use Proposition 9.4.9 to show that a lot of functions are continuous.
For instance, just by starting from the fact that constant functions are continuous,
and the identity function f (x) = x is continuous (Exercise 9.4.2), one can show
that the function g(x) := max(x3 + 4x2 + x + 5, x4 − x3)/(x2 − 4), for instance,
is continuous at every point of R except the two points x = +2, x = −2 where the
denominator vanishes.

Some other examples of continuous functions are given below.

Proposition 9.4.10 (Exponentiation is continuous, I) Let a > 0 be a positive real
number. Then the function f : R → R defined by f (x) := ax is continuous.

Proof See Exercise 9.4.3. �

Proposition 9.4.11 (Exponentiation is continuous, II) Let p be a real number. Then
the function f : (0,∞) → R defined by f (x) := x p is continuous.

Proof See Exercise 9.4.4. �

There is a stronger statement than Propositions 9.4.10 and 9.4.11, namely that
exponentiation is jointly continuous in both the exponent and the base, but this is
harder to show; see Exercise 4.5.10.

Proposition 9.4.12 (Absolute value is continuous) The function f : R → R defined
by f (x) := |x | is continuous.
Proof This follows since |x | = max(x,−x) and the functions x,−x are already
continuous. �

The class of continuous functions is not only closed under addition, subtraction,
multiplication, and division, but is also closed under composition:

Proposition 9.4.13 (Composition preserves continuity) Let X and Y be subsets of
R, and let f : X → Y and g : Y → R be functions. Let x0 be a point in X. If f is
continuous at x0, and g is continuous at f (x0), then the composition g ◦ f : X → R
is continuous at x0.

Proof See Exercise 9.4.5. �
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Example 9.4.14 Since the function f (x) := 3x + 1 is continuous on all of R, and
the function g(x) := 5x is continuous on all of R, the function g ◦ f (x) = 53x+1 is
continuous on all of R. By several applications of the above propositions, one can
show that far more complicated functions, e.g., h(x) := |x2 − 8x + 7|

√
2/(x2 + 1),

are also continuous. (Why is this function continuous?) There are still a few functions
though that are not yet easy to test for continuity, such as k(x) := xx ; this function
can be dealt with more easily once we have the machinery of logarithms, which we
will see in Sect. 4.5 of Analysis II.

— Exercises —

Exercise 9.4.1 Prove Proposition 9.4.7. (Hint: this can largely be done by applying the previous
propositions and lemmas. Note that to prove (a),(b), and (c) are equivalent, you do not have to prove
all six implications, but you do have to prove at least three; for instance, showing that (a) implies
(b), (b) implies (c), and (c) implies (a) will suffice, although this is not necessarily the shortest or
simplest way to do this question.)

Exercise 9.4.2 Let X be a subset of R, and let c ∈ R. Show that the constant function f : X → R
defined by f (x) := c is continuous, and show that the identity function g : X → R defined by
g(x) := x is also continuous.

Exercise 9.4.3 Prove Proposition 9.4.10. (Hint: you can use Lemma 6.5.3, combined with the
squeeze test (Corollary 6.4.14) and Proposition 6.7.3.)

Exercise 9.4.4 Prove Proposition 9.4.11. (Hint: from limit laws (Proposition 9.3.14) one can show
that limx→1 xn = 1 for all integers n. From this and the squeeze test (Corollary 6.4.14) deduce that
limx→1 x p = 1 for all real numbers p. Finally, apply Proposition 6.7.3.)

Exercise 9.4.5 Prove Proposition 9.4.13.

Exercise 9.4.6 Let X be a subset ofR, and let f : X → R be a continuous function. If Y is a subset
of X , show that the restriction f |Y : Y → R of f to Y is also a continuous function. (Hint: this is
a simple result, but it requires you to follow the definitions carefully.)

Exercise 9.4.7 Let n ≥ 0 be an integer, and for each 0 ≤ i ≤ n let ci be a real number. Let P :
R → R be the function

P(x) :=
n∑

i=0

ci x
i ;

such a function is known as a polynomial of one variable; a typical example is P(x) = 6x4 − 3x2 +
4. Show that P is continuous.

9.5 Left and Right Limits

We now introduce the notion of left and right limits, which can be thought of as two
seperate “halves” of the complete limit limx→x0;x∈X f (x).

Definition 9.5.1 (Left and right limits) Let X be a subset of R, f : X → R be a
function, and let x0 be a real number. If x0 is an adherent point of X ∩ (x0,∞), then
we define the right limit f (x0+) of f at x0 by the formula
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f (x0+) := lim
x→x0;x∈X∩(x0,∞)

f (x),

provided of course that this limit exists. Similarly, if x0 is an adherent point of
X ∩ (−∞, x0), then we define the left limit f (x0−) of f at x0 by the formula

f (x0−) := lim
x→x0;x∈X∩(−∞,x0)

f (x),

again provided that the limit exists. (Thus in many cases f (x0+) and f (x0−) will
not be defined.)

Sometimes we use the shorthand notations

lim
x→x0+

f (x) := lim
x→x0;x∈X∩(x0,∞)

f (x);
lim

x→x0−
f (x) := lim

x→x0;x∈X∩(−∞,x0)
f (x)

when the domain X of f is clear from context.

Example 9.5.2 Consider the signum function sgn : R → R defined in Example
9.3.16. We have

sgn(0+) = lim
x→0;x∈R∩(0,∞)

sgn(x) = lim
x→0;x∈R∩(0,∞)

1 = 1

and
sgn(0−) = lim

x→0;x∈R∩(−∞,0)
sgn(x) = lim

x→0;x∈R∩(−∞,0)
−1 = −1,

while sgn(0) = 0 by definition.

Note that f does not necessarily have to be defined at x0 in order for f (x0+) or
f (x0−) to be defined. For instance, if f : R\{0} → R is the function f (x) := x/|x |,
then f (0+) = 1 and f (0−) = −1 (why?), even though f (0) is undefined.

From Proposition 9.3.9 we see that if the right limit f (x0+) exists, and (an)∞n=0
is a sequence in X converging to x0 from the right (i.e., an > x0 for all n ∈ N), then
limn→∞ f (an) = f (x0+). Similarly, if (bn)∞n=0 is a sequence converging to x0 from
the left (i.e., bn < x0 for all n ∈ N), then limn→∞ f (bn) = f (x0−).

Let x0 be an adherent point of both X ∩ (x0,∞) and X ∩ (−∞, x0). If f is
continuous at x0, it is clear from Proposition 9.4.7 that f (x0+) and f (x0−) both
exist and are equal to f (x0). (Can you see why?) A converse is also true (compare
this with Proposition 6.4.12f):

Proposition 9.5.3 Let X be a subset ofR containing a real number x0, and suppose
that x0 is an adherent point of both X ∩ (x0,∞) and X ∩ (−∞, x0). Let f : X → R
be a function. If f (x0+) and f (x0−) both exist and are both equal to f (x0), then f
is continuous at x0.
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Proof Let us write L := f (x0). Then by hypothesis we have

lim
x→x0;x∈X∩(x0,∞)

f (x) = L (9.1)

and
lim

x→x0;x∈X∩(−∞,x0)
f (x) = L . (9.2)

Let ε > 0 be given. From (9.1), Definition 9.3.6, and Definition 9.3.3 (applied to
the restriction of f to X ∩ (x0,+∞)), we know that there exists a δ+ > 0 such that
| f (x) − L| < ε for all x ∈ X ∩ (x0,∞) for which |x − x0| < δ+. From (9.2) we
similarly know that there exists a δ− > 0 such that | f (x) − L| < ε for all x ∈ X ∩
(−∞, x0) for which |x − x0| < δ−. Now let δ := min(δ−, δ+); then δ > 0 (why?),
and suppose that x ∈ X is such that |x − x0| < δ. Then there are three cases: x > x0,
x = x0, and x < x0, but in all three cases we know that | f (x) − L| < ε. (Why? The
reason is different in each of the three cases.) By Proposition 9.4.7 we thus have that
f is continuous at x0, as desired. �

As we saw with the signum function in Example 9.3.16, it is possible for the left
and right limits f (x0−), f (x0+) of a function f at a point x0 to both exist, but not
be equal to each other; when this happens, we say that f has a jump discontinuity at
x0. Thus, for instance, the signum function has a jump discontinuity at zero. Also, it
is possible for the left and right limits f (x0−), f (x0+) to exist and be equal each
other, but not be equal to f (x0); when this happens we say that f has a removable
discontinuity (or removable singularity) at x0. For instance, if we take f : R → R
to be the function

f (x) :=
{
1 if x = 0
0 if x �= 0,

then f (0+) and f (0−) both exist and equal 0 (why?), but f (0) equals 1; thus f has
a removable discontinuity at 0.

Remark 9.5.4 Jump discontinuities and removable discontinuities are not the only
way a function can be discontinuous. Another way is for a function to go to infinity at
the discontinuity: for instance, the function f : R\{0} → R defined by f (x) := 1/x
has a discontinuity at 0 which is neither a jump discontinuity or a removable singu-
larity; informally, f (x) converges to +∞ when x approaches 0 from the right and
converges to −∞ when x approaches 0 from the left. These types of singularities
are sometimes known as asymptotic discontinuities. There are also oscillatory dis-
continuities, where the function remains bounded but still does not have a limit near
x0. For instance, the function f : R → R defined by

f (x) :=
{
1 if x ∈ Q
0 if x /∈ Q
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has an oscillatory discontinuity at 0 (and in fact at any other real number also). This
is because the function does not have left or right limits at 0, despite the fact that the
function is bounded.

The study of discontinuities (also called singularities) continues further, but is
beyond the scope of this text. For instance, singularities play a key rôle in complex
analysis.

— Exercises —

Exercise 9.5.1 Let E be a subset ofR, let f : E → R be a function, and let x0 be an adherent point
of E . Write down a definition of what it would mean for the limit limx→x0;x∈E f (x) to exist and
equal +∞ or −∞. If f : R\{0} → R is the function f (x) := 1/x , use your definition to conclude
f (0+) = +∞ and f (0−) = −∞. Also, state and prove some analogue of Proposition 9.3.9 when
L = +∞ or L = −∞.

9.6 The Maximum Principle

In the previous two sectionswe saw that a large number of functionswere continuous,
though certainly not all functions were continuous. We now show that continuous
functions enjoy a number of other useful properties, especially if their domain is a
closed interval. It is here that we shall begin exploiting the full power of the Heine–
Borel theorem (Theorem 9.1.24).

Definition 9.6.1 Let X be a subset of R, and let f : X → R be a function. We say
that f is bounded from above iff there exists a real number M such that f (x) ≤ M
for all x ∈ X . We say that f is bounded from below iff there exists a real number M
such that f (x) ≥ −M for all x ∈ X . We say that f is bounded iff there exists a real
number M such that | f (x)| ≤ M for all x ∈ X .

Remark 9.6.2 A function is bounded if and only if it is bounded both from above
and below. (Why? Note that one part of the “if and only if” is slightly trickier than
the other.) Also, a function f : X → R is bounded if and only if its image f (X) is
a bounded set in the sense of Definition 9.1.22 (why?).

Not all continuous functions are bounded. For instance, the function f (x) := x
on the domain R is continuous but unbounded (why?), although it is bounded on
some smaller domains, such as [1, 2]. The function f (x) := 1/x is continuous but
unbounded on (0, 1) (why?), though it is continuous and bounded on [1, 2] (why?).
However, if the domain of the continuous function is a closed and bounded interval,
then we do have boundedness:

Lemma 9.6.3 Let a < b be real numbers, and let f : [a, b] → R be a function
continuous on [a, b]. Then f is a bounded function.

Proof Suppose for sake of contradiction that f is not bounded. Thus for every real
number M there exists an element x ∈ [a, b] such that | f (x)| ≥ M .
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In particular, for every natural number n, the set {x ∈ [a, b] : | f (x)| ≥ n} is non-
empty.We can thus choose2 a sequence (xn)∞n=0 in [a, b] such that | f (xn)| ≥ n for all
n. This sequence lies in [a, b], and so by Theorem 9.1.24 there exists a subsequence
(xn j )

∞
j=0 which converges to some limit L ∈ [a, b], where n0 < n1 < n2 < . . . is

an increasing sequence of natural numbers. In particular, we see that n j ≥ j for all
j ∈ N (why? Use induction).

Since f is continuous on [a, b], it is continuous at L , and in particular we see that

lim
j→∞ f (xn j ) = f (L).

Thus the sequence ( f (xn j ))
∞
j=0 is convergent, and hence it is bounded. On the other

hand, we know from the construction that | f (xn j )| ≥ n j ≥ j for all j , and hence the
sequence ( f (xn j ))

∞
j=0 is not bounded, a contradiction. �

Remark 9.6.4 There are two things about this proof that are worth noting. Firstly, it
shows how useful the Heine–Borel theorem (Theorem 9.1.24) is. Secondly, it is an
indirect proof; it doesn’t say how to find the bound for f , but it shows that having f
unbounded leads to a contradiction.

We now improve Lemma 9.6.3 to say something more.

Definition 9.6.5 (Maxima and minima) Let X be a set, let f : X → R be a function,
and let x0 ∈ X . We say that f attains its maximum at x0 if we have f (x0) ≥ f (x)
for all x ∈ X (i.e., the value of f at the point x0 is larger than or equal to the value
of f at any other point in X ). We say that f attains its minimum at x0 if we have
f (x0) ≤ f (x).

Remark 9.6.6 If a function attains itsmaximumsomewhere, then itmust be bounded
from above (why?). Similarly if it attains its minimum somewhere, then it must be
bounded from below. These notions ofmaxima andminima are global; local versions
will be defined in Definition 10.2.1.

Proposition 9.6.7 (Maximumprinciple)Let a < b be real numbers, and let f : [a, b]
→ R be a function continuous on [a, b]. Then f attains its maximum at some point
xmax ∈ [a, b] and also attains its minimum at some point xmin ∈ [a, b].
Remark 9.6.8 Strictly speaking, “maximumprinciple” is amisnomer, since the prin-
ciple also concerns the minimum. Perhaps a more precise name would have been
“extremum principle”; the word “extremum” is used to denote either a maximum or
a minimum.

Proof We shall just show that f attains its maximum somewhere; the proof that it
attains its minimum also is similar but is left to the reader.

2 Strictly speaking, this requires the axiom of choice, as in Lemma 8.4.5. However, one can also
proceed without the axiom of choice, by defining xn := sup{x ∈ [a, b] : | f (x)| ≥ n}, and using the
continuity of f to show that | f (xn)| ≥ n. We leave the details to the reader.
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From Lemma 9.6.3 we know that f is bounded, thus there exists an M such that
−M ≤ f (x) ≤ M for each x ∈ [a, b]. Now let E denote the set

E := { f (x) : x ∈ [a, b]}.

(In other words, E := f ([a, b]).) By what we just said, this set is a subset of
[−M, M]. It is also non-empty, since it contains for instance the point f (a). Hence
by the least upper bound principle, it has a supremum sup(E)which is a real number.

Write m := sup(E). By definition of supremum, we know that y ≤ m for all
y ∈ E ; by definition of E , this means that f (x) ≤ m for all x ∈ [a, b]. Thus to show
that f attains its maximum somewhere, it will suffice to find an xmax ∈ [a, b] such
that f (xmax ) = m. (Why will this suffice?)

Let n ≥ 1 be any integer. Then m − 1
n < m = sup(E). As sup(E) is the least

upper bound for E ,m − 1
n cannot be an upper bound for E , thus there exists a y ∈ E

such that m − 1
n < y. By definition of E , this implies that there exists an x ∈ [a, b]

such that m − 1
n < f (x).

We now choose a sequence (xn)∞n=1 by choosing, for each n, xn to be an element of
[a, b] such thatm − 1

n < f (xn). (Again, this requires the axiom of choice; however it
is possible to prove this principle without the axiom of choice. For instance, you will
see a better proof of this proposition using the notion of compactness in Proposition
2.3.2.) This is a sequence in [a, b]; by the Heine–Borel theorem (Theorem 9.1.24),
we can thus find a subsequence (xn j )

∞
j=1, where n1 < n2 < . . ., which converges to

some limit xmax ∈ [a, b]. Since (xn j )
∞
j=1 converges to xmax , and f is continuous at

xmax , we have as before that

lim
j→∞ f (xn j ) = f (xmax ).

On the other hand, by construction we know that

f (xn j ) > m − 1

n j
≥ m − 1

j
,

and so by taking limits of both sides we see that

f (xmax ) = lim
j→∞ f (xn j ) ≥ lim

j→∞m − 1

j
= m.

On the other hand, we know that f (x) ≤ m for all x ∈ [a, b], so in particu-
lar f (xmax ) ≤ m. Combining these two inequalities we see that f (xmax ) = m as
desired. �

Note that the maximum principle does not prevent a function from attaining its
maximum or minimum at more than one point. For instance, the function f (x) := x2

on the interval [−2, 2] attains its maximum at two different points, at −2 and at 2.
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Let us write supx∈[a,b] f (x) as shorthand for sup{ f (x) : x ∈ [a, b]}, and similarly
define inf x∈[a,b] f (x). The maximum principle thus asserts thatm := supx∈[a,b] f (x)
is a real number and is the maximum value of f on [a, b]; i.e., there is at least one
point xmax in [a, b] for which f (xmax ) = m, and for every other x ∈ [a, b], f (x) is
less than or equal tom. Similarly inf x∈[a,b] f (x) is the minimum value of f on [a, b].

We now know that on a closed interval, every continuous function is bounded and
attains its maximum at least once and minimum at least once. The same is not true
for open or infinite intervals; see Exercise 9.6.1.

Remark 9.6.9 You may encounter a rather different “maximum principle” in com-
plex analysis or partial differential equations, involving analytic functions and har-
monic functions, respectively, instead of continuous functions. Thosemaximumprin-
ciples are not directly related to this one (though they are also concernedwithwhether
maxima exist, and where the maxima are located).

— Exercises —

Exercise 9.6.1 Give examples of

(a) a function f : (1, 2) → R which is continuous and bounded, attains its minimum somewhere,
but does not attain its maximum anywhere;

(b) a function f : [0,∞) → R which is continuous, bounded, attains its maximum somewhere,
but does not attain its minimum anywhere;

(c) a function f : [−1, 1] → R which is bounded but does not attain its minimum anywhere or
its maximum anywhere.

(d) a function f : [−1, 1] → R which has no upper bound and no lower bound.

Explain why none of the examples you construct violate the maximum principle. (Note: read the
assumptions of that principle carefully!)

Exercise 9.6.2 If f, g : X → R are bounded functions, show that f + g, f − g, and f · g are also
bounded functions. If we furthermore assume that g(x) �= 0 for all x ∈ X , is it true that f/g is
bounded? Prove this or give a counterexample.

9.7 The Intermediate Value Theorem

We have just shown that a continuous function attains both its maximum value and
its minimum value. We now show that f also attains every value in between. To do
this, we first prove a very intuitive theorem:

Theorem 9.7.1 (Intermediate value theorem) Let a < b, and let f : [a, b] → R be
a continuous function on [a, b]. Let y be a real number between f (a) and f (b), i.e.,
either f (a) ≤ y ≤ f (b) or f (a) ≥ y ≥ f (b). Then there exists c ∈ [a, b] such that
f (c) = y.

Proof We have two cases: f (a) ≤ y ≤ f (b) or f (a) ≥ y ≥ f (b). We will assume
the former, that f (a) ≤ y ≤ f (b); the latter is proven similarly and is left to the
reader.
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If y = f (a) or y = f (b), then the claim is easy, as one can simply set c = a or
c = b, so we will assume that f (a) < y < f (b). Let E denote the set

E := {x ∈ [a, b] : f (x) < y}.

Clearly E is a subset of [a, b] and is hence bounded. Also, since f (a) < y, we see
that a is an element of E , so E is non-empty. By the least upper bound principle, the
supremum

c := sup(E)

is thus finite. Since E is bounded by b, we know that c ≤ b; since E contains a, we
know that c ≥ a. Thus we have c ∈ [a, b]. To complete the proof we now show that
f (c) = y. The idea is to work from the left of c to show that f (c) ≤ y and to work
from the right of c to show that f (c) ≥ y.

Let n ≥ 1 be an integer. The number c − 1
n is less than c = sup(E) and hence

cannot be an upper bound for E . Thus there exists a point, call it xn , which lies in E
and which is greater than c − 1

n . Also xn ≤ c since c is an upper bound for E . Thus

c − 1

n
≤ xn ≤ c.

By the squeeze test (Corollary 6.4.14) we thus have limn→∞ xn = c. Since f is
continuous at c, this implies that limn→∞ f (xn) = f (c). But since xn lies in E for
every n, we have f (xn) < y for every n. By the comparison principle (Lemma6.4.13)
we thus have f (c) ≤ y. Since f (b) > f (c), we conclude c �= b.

Since c �= b and c ∈ [a, b], we must have c < b. In particular there is an N > 0
such that c + 1

n < b for all n > N (since c + 1
n converges to c as n → ∞). Since c

is the supremum of E and c + 1
n > c, we thus have c + 1

n /∈ E for all n > N . Since
c + 1

n ∈ [a, b], we thus have f (c + 1
n ) ≥ y for all n ≥ N . But c + 1

n converges to c,
and f is continuous at c, thus f (c) ≥ y. But we already knew that f (c) ≤ y, thus
f (c) = y, as desired. �

The intermediate value theorem says that if f takes the values f (a) and f (b),
then it must also take all the values in between. Note that if f is not assumed to be
continuous, then the intermediate value theorem no longer applies. For instance, if
f : [−1, 1] → R is the function

f (x) :=
{−1 if x ≤ 0
1 if x > 0

then f (−1) = −1, and f (1) = 1, but there is no c ∈ [−1, 1] for which f (c) = 0.
Thus if a function is discontinuous, it can “jump” past intermediate values; however
continuous functions cannot do so.

Remark 9.7.2 Acontinuous functionmay take an intermediate valuemultiple times.
For instance, if f : [−2, 2] → R is the function f (x) := x3 − x , then f (−2) = −6
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and f (2) = 6, so we know that there exists a c ∈ [−2, 2] for which f (c) = 0. In fact,
in this case there exists three such values of c: we have f (−1) = f (0) = f (1) = 0.

Remark 9.7.3 The intermediate value theorem gives another way to show that one
can take nth roots of a number. For instance, to construct the square root of 2, consider
the function f : [0, 2] → R defined by f (x) = x2. This function is continuous, with
f (0) = 0 and f (2) = 4.Thus there exists a c ∈ [0, 2] such that f (c) = 2, i.e., c2 = 2.
(This argument does not show that there is just one square root of 2, but it does prove
that there is at least one square root of 2.)

Corollary 9.7.4 (Images of continuous functions)Let a < b, and let f : [a, b] → R
be a continuous function on [a, b]. Let M := supx∈[a,b] f (x) be themaximum value of
f , and let m := inf x∈[a,b] f (x) be theminimum value. Let y be a real number between
m and M (i.e., m ≤ y ≤ M). Then there exists a c ∈ [a, b] such that f (c) = y.
Furthermore, we have f ([a, b]) = [m, M].
Proof See Exercise 9.7.1. �

— Exercises —

Exercise 9.7.1 Prove Corollary 9.7.4. (Hint: you may need Exercise 9.4.6 in addition to the inter-
mediate value theorem.)

Exercise 9.7.2 Let f : [0, 1] → [0, 1] be a continuous function. Show that there exists a real num-
ber x in [0, 1] such that f (x) = x . (Hint: apply the intermediate value theorem to the function
f (x) − x .) This point x is known as a fixed point of f , and this result is a basic example of a fixed
point theorem, which play an important rôle in certain types of analysis.

9.8 Monotonic Functions

We now discuss a class of functions which is distinct from the class of continuous
functions, but has somewhat similar properties: the class ofmonotone (ormonotonic)
functions.

Definition 9.8.1 (Monotonic functions)Let X be a subset ofR, and let f : X → R be
a function.We say that f ismonotone increasing iff f (y) ≥ f (x)whenever x, y ∈ X
and y > x . We say that f is strictly monotone increasing iff f (y) > f (x) whenever
x, y ∈ X and y > x . Similarly, we say f is monotone decreasing iff f (y) ≤ f (x)
whenever x, y ∈ X and y > x , and strictly monotone decreasing iff f (y) < f (x)
whenever x, y ∈ X and y > x .We say that f ismonotone if it ismonotone increasing
or monotone decreasing, and strictly monotone if it is strictly monotone increasing
or strictly monotone decreasing.

Examples 9.8.2 The function f (x) := x2, when restricted to the domain [0,∞),
is strictly monotone increasing (why?), but when restricted instead to the domain



9.8 Monotonic Functions 209

(−∞, 0], is strictly monotone decreasing (why?). Thus the function is strictly mono-
tone on both (−∞, 0] and [0,∞), but is not strictly monotone (or monotone) on the
full real line (−∞,∞). Note that if a function is strictly monotone on a domain X ,
it is automatically monotone as well on the same domain X . The constant function
f (x) := 6, when restricted to an arbitrary domain X ⊆ R, is both monotone increas-
ing and monotone decreasing, but is not strictly monotone (unless X consists of at
most one point - why?).

Continuous functions are not necessarily monotone (consider for instance the
function f (x) = x2 on R), and monotone functions are not necessarily continuous;
for instance, consider the function f : [−1, 1] → R defined earlier by

f (x) :=
{−1 if x ≤ 0
1 if x > 0.

Monotone functions obey the maximum principle (Exercise 9.8.1), but not the inter-
mediate value principle (Exercise 9.8.2). On the other hand, it is possible for a
monotone function to have many, many discontinuities (Exercise 9.8.5).

If a function is both strictly monotone and continuous, then it has many nice
properties. In particular, it is invertible:

Proposition 9.8.3 Let a < b be real numbers, and let f : [a, b] → R be a function
which is both continuous and strictly monotone increasing. Then f is a bijection
from [a, b] to [ f (a), f (b)], and the inverse f −1 : [ f (a), f (b)] → [a, b] is also
continuous and strictly monotone increasing.

Proof See Exercise 9.8.4. �

There is a similar Proposition for functions which are strictly monotone decreas-
ing; see Exercise 9.8.4.

Example 9.8.4 Let n be a positive integer and R > 0. Since the function f (x) := xn

is strictly increasing on the interval [0, R], we see from Proposition 9.8.3 that this
function is a bijection from [0, R] to [0, Rn], and hence there is an inverse from
[0, Rn] to [0, R]. This can be used to give an alternate means to construct the nth

root x1/n of a number x ∈ [0, R] than what was done in Lemma 5.6.5.

— Exercises —

Exercise 9.8.1 Explain why the maximum principle remains true if the hypothesis that f is con-
tinuous is replaced with f being monotone, or with f being strictly monotone. (You can use the
same explanation for both cases.)

Exercise 9.8.2 Give an example to show that the intermediate value theorem becomes false if
the hypothesis that f is continuous is replaced with f being monotone, or with f being strictly
monotone. (You can use the same counterexample for both cases.)
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Exercise 9.8.3 Let a < b be real numbers, and let f : [a, b] → R be a function which is both
continuous and one-to-one. Show that f is strictly monotone. (Hint: divide into the three cases
f (a) < f (b), f (a) = f (b), f (a) > f (b). The second case leads directly to a contradiction. In the
first case, use contradiction and the intermediate value theorem to show that f is strictly monotone
increasing; in the third case, argue similarly to show f is strictly monotone decreasing.)

Exercise 9.8.4 Prove Proposition 9.8.3. (Hint: to show that f −1 is continuous, it is easiest to use
the “epsilon-delta” definition of continuity, Proposition 9.4.7c.) Is the proposition still true if the
continuity assumption is dropped, or if strict monotonicity is replaced just by monotonicity? How
should one modify the proposition to deal with strictly monotone decreasing functions instead of
strictly monotone increasing functions?

Exercise 9.8.5 In this exercise we give an example of a function which has a discontinuity at every
rational point, but is continuous at every irrational. Since the rationals are countable, we can write
them as Q = {q(0), q(1), q(2), . . .}, where q : N → Q is a bijection from N to Q. Now define a
function g : Q → R by setting g(q(n)) := 2−n for each natural number n; thus g maps q(0) to 1,
q(1) to 2−1, etc. Since

∑∞
n=0 2

−n is absolutely convergent, we see that
∑

r∈Q g(r) is also absolutely
convergent. Now define the function f : R → R by

f (x) :=
∑

r∈Q:r<x

g(r).

Since
∑

r∈Q g(r) is absolutely convergent, we know that f (x) is well-defined for every real number
x .

(a) Show that f is strictly monotone increasing. (Hint: you will need Proposition 5.4.14.)
(b) Show that for every rational number r , f is discontinuous at r . (Hint: since r is rational,

r = q(n) for some natural number n. Show that f (x) ≥ f (r) + 2−n for all x > r .)
(c) Show that for every irrational number x , f is continuous at x . (Hint: first demonstrate that the

functions

fn(x) :=
∑

r∈Q:r<x,g(r)≥2−n

g(r)

are continuous at x , and that | f (x) − fn(x)| ≤ 2−n .)

9.9 Uniform Continuity

We know that a continuous function on a closed interval [a, b] remains bounded (and
in fact attains its maximum and minimum, by the maximum principle). However,
if we replace the closed interval by an open interval, then continuous functions
need not be bounded any more. An example is the function f : (0, 2) → R defined
by f (x) := 1/x . This function is continuous at every point in (0, 2) and is hence
continuous at (0, 2), but is not bounded. Informally speaking, the problem here is
that while the function is indeed continuous at every point in the open interval (0, 2),
it becomes “less and less” continuous as one approaches the endpoint 0.

Let us analyze this phenomenon further, using the “epsilon-delta” definition of
continuity—Proposition 9.4.7c. We know that if f : X → R is continuous at a point
x0, then for every ε > 0 there exists a δ such that f (x) will be ε-close to f (x0)
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whenever x ∈ X is δ-close to x0. In other words, we can force f (x) to be ε-close to
f (x0) if we ensure that x is sufficiently close to x0. One way of thinking about this
is that around every point x0 there is an “island of stability” (x0 − δ, x0 + δ), where
the function f (x) doesn’t stray by more than ε from f (x0).

Example 9.9.1 Take the function f (x) := 1/x mentioned above at the point x0 = 1.
In order to ensure that f (x) is 0.1-close to f (x0), it suffices to take x to be 1/11-
close to x0, since if x is 1/11-close to x0 then 10/11 < x < 12/11, and so 11/12 <

f (x) < 11/10, and so f (x) is 0.1-close to f (x0). Thus the “δ” one needs to make
f (x) 0.1-close to f (x0) is about 1/11 or so, at the point x0 = 1.
Now let us look instead at the point x0 = 0.1. The function f (x) = 1/x is still

continuous here, but we shall see the continuity is much worse. In order to ensure
that f (x) is 0.1-close to f (x0), we need x to be 1/1010-close to x0. Indeed, if x is
1/1010 close to x0, then 10/101 < x < 102/1010, and so 9.901 < f (x) < 10.1, so
f (x) is 0.1-close to f (x0). Thus one needs a much smaller “δ” for the same value
of ε, i.e., f (x) is much more “unstable” near 0.1 than it is near 1, in the sense that
there is a much smaller “island of stability” around 0.1 as there is around 1 (if one is
interested in keeping f (x) 0.1-stable).

On the other hand, there are other continuous functions which do not exhibit this
behavior. Consider the function g : (0, 2) → R defined by g(x) := 2x . Let us fix
ε = 0.1 as before and investigate the island of stability around x0 = 1. It is clear that
if x is 0.05-close to x0, then g(x) is 0.1-close to g(x0); in this case we can take δ

to be 0.05 at x0 = 1. And if we move x0 around, say if we set x0 to 0.1 instead, the
δ does not change—even when x0 is set to 0.1 instead of 1, we see that g(x) will
stay 0.1-close to g(x0) whenever x is 0.05-close to x0. Indeed, the same δ works for
every x0. When this happens, we say that the function g is uniformly continuous.
More precisely:

Definition 9.9.2 [Uniform continuity] Let X be a subset of R, and let f : X → R
be a function. We say that f is uniformly continuous if, for every ε > 0, there exists
a δ > 0 such that f (x) and f (x0) are ε-close whenever x, x0 ∈ X are two points in
X which are δ-close.

Remark 9.9.3 This definition should be compared with the notion of continuity.
From Proposition 9.4.7c, we know that a function f is continuous if for every ε > 0,
and every x0 ∈ X , there is a δ > 0 such that f (x) and f (x0) are ε-close whenever
x ∈ X is δ-close to x0. The difference between uniform continuity and continuity
is that in uniform continuity one can take a single δ which works for all x0 ∈ X ;
for ordinary continuity, each x0 ∈ X might use a different δ. Thus every uniformly
continuous function is continuous, but not conversely.

Example 9.9.4 (Informal) The function f : (0, 2) → R defined by f (x) := 1/x is
continuous on (0, 2), but not uniformly continuous, because the continuity (or more
precisely, the dependence of δ on ε) becomes worse and worse as x → 0. (We will
make this more precise in Example 9.9.10.)
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Recall that the notions of adherent point and of continuous function had several
equivalent formulations, both had “epsilon-delta” type formulations (involving the
notion of ε-closeness), and both had “sequential” formulations (involving the con-
vergence of sequences); see Lemma 9.1.14 and Proposition 9.3.9. The concept of
uniform continuity can similarly be phrased in a sequential formulation, this time
using the concept of equivalent sequences (cf. Definition 5.2.6, but we now gener-
alize to sequences of real numbers instead of rationals, and no longer require the
sequences to be Cauchy):

Definition 9.9.5 (Equivalent sequences) Let m be an integer, let (an)∞n=m and
(bn)∞n=m be two sequences of real numbers, and let ε > 0 be given. We say that
(an)∞n=m is ε-close to (bn)∞n=m iff an is ε-close to bn for each n ≥ m. We say that
(an)∞n=m is eventually ε-close to (bn)∞n=m iff there exists an N ≥ m such that the
sequences (an)∞n=N and (bn)∞n=N are ε-close. Two sequences (an)∞n=m and (bn)∞n=m
are equivalent iff for each ε > 0, the sequences (an)∞n=m and (bn)∞n=m are eventually
ε-close.

Remark 9.9.6 One could debate whether ε should be assumed to be rational or real,
but a minor modification of Proposition 6.1.4 shows that this does not make any
difference to the above definitions.

The notion of equivalence can be phrased more succinctly using our language of
limits:

Lemma 9.9.7 Let (an)∞n=1 and (bn)∞n=1 be sequences of real numbers (not necessarily
bounded or convergent). Then (an)∞n=1 and (bn)∞n=1 are equivalent if and only if
limn→∞(an − bn) = 0.

Proof See Exercise 9.9.1. �

Meanwhile, the notion of uniform continuity can be phrased using equivalent
sequences:

Proposition 9.9.8 Let X be a subset of R, and let f : X → R be a function. Then
the following two statements are logically equivalent:

(a) f is uniformly continuous on X.
(b) Whenever (xn)∞n=0 and (yn)∞n=0 are two equivalent sequences consisting of ele-

ments of X, the sequences ( f (xn))∞n=0 and ( f (yn))∞n=0 are also equivalent.

Proof See Exercise 9.9.2. �

Remark 9.9.9 The reader should compare this with Proposition 9.3.9. Proposition
9.3.9 asserted that if f was continuous, then f maps convergent sequences to conver-
gent sequences. In contrast, Proposition9.9.8 asserts that if f isuniformly continuous,
then f maps equivalent pairs of sequences to equivalent pairs of sequences. To see
how the two Propositions are connected, observe from Lemma 9.9.7 that (xn)∞n=0
will converge to x∗ if and only if the sequences (xn)∞n=0 and (x∗)∞n=0 are equivalent.
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Example 9.9.10 Consider the function f : (0, 2) → R defined by f (x) := 1/x
considered earlier. From Lemma 9.9.7 we see that the sequence (1/n)∞n=1 and
(1/2n)∞n=1 are equivalent sequences in (0, 2). However, the sequences ( f (1/n))∞n=1
and ( f (1/2n))∞n=1 are not equivalent (why? Use Lemma 9.9.7 again). So by Propo-
sition 9.9.8, f is not uniformly continuous. (These sequences start at 1 instead of 0,
but the reader can easily see that this makes no difference to the above discussion.)

Example 9.9.11 Consider the function f : R → R defined by f (x) := x2. This
is a continuous function on R, but it turns out not to be uniformly continuous;
in some sense the continuity gets “worse and worse” as one approaches infin-
ity. One way to quantify this is via Proposition 9.9.8. Consider the sequences
(n)∞n=1 and (n + 1

n )
∞
n=1. By Lemma 9.9.7, these sequences are equivalent. But

the sequences ( f (n))∞n=1 and ( f (n + 1
n ))

∞
n=1 are not equivalent, since f (n + 1

n ) =
n2 + 2 + 1

n2 = f (n) + 2 + 1
n2 does not become eventually 2-close to f (n). By

Proposition 9.9.8 we can thus conclude that f is not uniformly continuous.

Another property of uniformly continuous functions is that they map Cauchy
sequences to Cauchy sequences.

Proposition 9.9.12 Let X be a subset of R, and let f : X → R be a uniformly
continuous function. Let (xn)∞n=0 beaCauchy sequence consisting entirely of elements
in X. Then ( f (xn))∞n=0 is also a Cauchy sequence.

Proof See Exercise 9.9.3. �

Example 9.9.13 Once again, we demonstrate that the function f : (0, 2) → R
defined by f (x) := 1/x is not uniformly continuous. The sequence (1/n)∞n=1 is a
Cauchy sequence in (0, 2), but the sequence ( f (1/n))∞n=1 is not a Cauchy sequence
(why?). Thus by Proposition 9.9.12, f is not uniformly continuous.

Corollary 9.9.14 Let X be a subset of R, let f : X → R be a uniformly continuous
function, and let x0 be an adherent point of X. Then the limit limx→x0;x∈X f (x) exists
(in particular, it is a real number).

Proof See Exercise 9.9.4. �

We now show that a uniformly continuous function will map bounded sets to
bounded sets.

Proposition 9.9.15 Let X be a subset of R, and let f : X → R be a uniformly
continuous function. Suppose that E is a bounded subset of X. Then f (E) is also
bounded.

Proof See Exercise 9.9.5. �

As we have just seen repeatedly, not all continuous functions are uniformly con-
tinuous. However, if the domain of the function is a closed interval, then continuous
functions are in fact uniformly continuous:
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Theorem 9.9.16 Let a < b be real numbers, and let f : [a, b] → R be a function
which is continuous on [a, b]. Then f is also uniformly continuous.

Proof Suppose for sake of contradiction that f is not uniformly continuous. By
Proposition 9.9.8, there must therefore exist two equivalent sequences (xn)∞n=0 and
(yn)∞n=0 in [a, b] such that the sequences ( f (xn))∞n=0 and ( f (yn))∞n=0 are not equiva-
lent. In particular, we can find an ε > 0 such that ( f (xn))∞n=0 and ( f (yn))∞n=0 are not
eventually ε-close.

Fix this value of ε, and let E be the set

E := {n ∈ N : f (xn) and f (yn) are not ε-close}.

We must have E infinite, since if E were finite then ( f (xn))∞n=0 and ( f (yn))∞n=0
would be eventually ε-close (why?). By Proposition 8.1.5, E is countable; in fact
from the proof of that proposition we see that we can find an infinite sequence

n0 < n1 < n2 < . . .

consisting entirely of elements in E . In particular, we have

| f (xn j ) − f (yn j )| > ε for all j ∈ N. (9.3)

On the other hand, the sequence (xn j )
∞
j=0 is a sequence in [a, b], and so by the

Heine–Borel theorem (Theorem 9.1.24) theremust be a subsequence (xn jk
)∞k=0 which

converges to some limit L in [a, b]. In particular, f is continuous at L , and so by
Proposition 9.4.7,

lim
k→∞ f (xn jk

) = f (L). (9.4)

Note that (xn jk
)∞k=0 is a subsequence of (xn)∞n=0, and (yn jk

)∞k=0 is a subsequence of
(yn)∞n=0, by Lemma 6.6.4. On the other hand, from Lemma 9.9.7 we have

lim
n→∞(xn − yn) = 0.

By Proposition 6.6.5, we thus have

lim
k→∞(xn jk

− yn jk
) = 0.

Since xn jk
converges to L as k → ∞, we thus have by limit laws

lim
k→∞ yn jk

= L

and hence by continuity of f at L

lim
k→∞ f (yn jk

) = f (L).
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Subtracting this from (9.4) using limit laws, we obtain

lim
k→∞( f (xn jk

) − f (yn jk
)) = 0.

But this contradicts (9.3) (why?). From this contradiction we conclude that f is in
fact uniformly continuous. �

Remark 9.9.17 One should compareLemma9.6.3, Proposition 9.9.15, andTheorem
9.9.16 with each other. Note in particular that the lemma follows from combining
the proposition with the theorem.

— Exercises —

Exercise 9.9.1 Prove Lemma 9.9.7.

Exercise 9.9.2 Prove Proposition 9.9.8. (Hint: you should avoid Lemma 9.9.7, and instead go back
to the definition of equivalent sequences in Definition 9.9.5.)

Exercise 9.9.3 Prove Proposition 9.9.12. (Hint: use Definition 9.9.2 directly.)

Exercise 9.9.4 Use Proposition 9.9.12 to prove Corollary 9.9.14. Use this corollary to give an
alternate demonstration of the results in Example 9.9.10.

Exercise 9.9.5 Prove Proposition 9.9.15. (Hint: mimic the proof of Lemma 9.6.3. At some point
you will need either Proposition 9.9.12 or Corollary 9.9.14.)

Exercise 9.9.6 Let X, Y, Z be subsets of R. Let f : X → Y be a function which is uniformly
continuous on X , and let g : Y → Z be a function which is uniformly continuous on Y . Show that
the function g ◦ f : X → Z is uniformly continuous on X .

9.10 Limits at Infinity

Until now, we have discussed what it means for a function f : X → R to have a limit
as x → x0 as long as x0 is a real number. We now briefly discuss what it would mean
to take limits when x0 is equal to +∞ or −∞. (This is part of a more general theory
of continuous functions on a topological space; see Sect. 11.12.)

First, we need a notion of what it means for +∞ or −∞ to be adherent to a set.

Definition 9.10.1 (Infinite adherent points) Let X be a subset ofR. We say that+∞
is adherent to X iff for every M ∈ R there exists an x ∈ X such that x > M ; we
say that −∞ is adherent to X iff for every M ∈ R there exists an x ∈ X such that
x < M .

In other words, +∞ is adherent to X iff X has no upper bound, or equivalently
iff sup(X) = +∞. Similarly −∞ is adherent to X iff X has no lower bound, or iff
inf(X) = −∞. Thus a set is bounded if and only if +∞ and −∞ are not adherent
points.
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Remark 9.10.2 This definition may seem rather different from Definition 9.1.8, but
can be unified using the topological structure of the extended real line R∗, which we
will not discuss here.

Definition 9.10.3 (Limits at infinity) Let X be a subset ofRwith+∞ as an adherent
point, and let f : X → R be a function.We say that f (x) converges to L as x → +∞
in X , and write limx→+∞;x∈X f (x) = L , iff for every ε > 0 there exists an M such
that f is ε-close to L on X ∩ (M,+∞) (i.e., | f (x) − L| ≤ ε for all x ∈ X such that
x > M). Similarly we say that f (x) converges to L as x → −∞ iff for every ε > 0
there exists an M such that f is ε-close to L on X ∩ (−∞, M).

Example 9.10.4 Let f : (0,∞) → R be the function f (x) := 1/x . Then we have
limx→+∞;x∈(0,∞) 1/x = 0. (Can you see why, from the definition?)

One can do many of the same things with these limits at infinity as we have been
doing with limits at other points x0; for instance, it turns out that all of the limit laws
continue to hold. However, as we will not be using these limits much in this text,
we will not devote much attention to these matters. We will note though that this
definition is consistent with the notion of a limit limn→∞ an of a sequence (Exercise
9.10.1).

— Exercises —

Exercise 9.10.1 Let (an)∞n=0 be a sequence of real numbers, then an can also be thought of as a
function from N to R, which takes each natural number n to a real number an . Show that

lim
n→+∞;n∈N an = lim

n→∞ an

where the left-hand limit is defined by Definition 9.10.3 and the right-hand limit is defined by
Definition 6.1.8. More precisely, show that if one of the above two limits exists then so does the
other, and then they both have the same value. Thus the two notions of limit here are compatible.



Chapter 10
Differentiation of Functions

10.1 Basic Definitions

We can now begin the rigorous treatment of calculus in earnest, starting with the
notion of a derivative. We can now define derivatives analytically, using limits, in
contrast to the geometric definition of derivatives,whichuses tangents. The advantage
of working analytically is that (a) we do not need to know the axioms of geometry,
and (b) these definitions can be modified to handle functions of several variables, or
functions whose values are vectors instead of scalar. Furthermore, one’s geometric
intuition becomes difficult to rely on once one has more than three dimensions in
play. (Conversely, one can use one’s experience in analytic rigor to extend one’s
geometric intuition to such abstract settings; as mentioned earlier, the two viewpoints
complement rather than oppose each other.)

Definition 10.1.1 (Differentiability at a point)Let X be a subset ofR, and let x0 ∈ X
be an element of X which is also a limit point of X . Let f : X → R be a function.
If the limit

lim
x→x0;x∈X\{x0}

f (x) − f (x0)

x − x0

converges to some real number L , then we say that f is differentiable at x0 on X
with derivative L and write f ′(x0) := L . If the limit does not exist, or if x0 is not an
element of X or not a limit point of X , we leave f ′(x0) undefined and say that f is
not differentiable at x0 on X .

Remark 10.1.2 Note that we need x0 to be a limit point in order for x0 to be adherent
to X\{x0}, otherwise the limit

lim
x→x0;x∈X\{x0}

f (x) − f (x0)

x − x0

© Hindustan Book Agency 2022
T. Tao, Analysis I, Texts and Readings in Mathematics,
https://doi.org/10.1007/978-981-19-7261-4_10

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7261-4_10&domain=pdf
https://doi.org/10.1007/978-981-19-7261-4_10


218 10 Differentiation of Functions

would automatically be undefined. In particular, we do not define the derivative of
a function at an isolated point; for instance, if one restricts the function f : R → R
defined by f (x) := x2 to the domain X := [1, 2] ∪ {3}, then the restriction of the
function ceases to be differentiable at 3. (See however Exercise 10.1.1 below.) In
practice, the domain X will almost always be an interval, and so by Lemma 9.1.21
all elements x0 of X will automatically be limit points and we will not have to care
much about these issues.

Example 10.1.3 Let f : R → R be the function f (x) := x2, and let x0 be any real
number. To see whether f is differentiable at x0 on R, we compute the limit

lim
x→x0;x∈R\{x0}

f (x) − f (x0)

x − x0
= lim

x→x0;x∈R\{x0}
x2 − x20
x − x0

.

We can factor the numerator as (x2 − x20 ) = (x − x0)(x + x0). Since x ∈ R\{x0},
we may legitimately cancel the factors of x − x0 and write the above limit as

lim
x→x0;x∈R\{x0}

x + x0

which by limit laws is equal to 2x0. Thus the function f (x) is differentiable at x0
and its derivative there is 2x0.

Remark 10.1.4 This point is trivial, but it is worth mentioning: if f : X → R is
differentiable at x0, and g : X → R is equal to f (i.e., g(x) = f (x) for all x ∈
X ), then g is also differentiable at x0 and g′(x0) = f ′(x0) (why?). However, if two
functions f and g merely have the same value at x0, i.e., g(x0) = f (x0), this does
not imply that g′(x0) = f ′(x0). (Can you see a counterexample?) Thus there is a
big difference between two functions being equal on their whole domain and merely
being equal at one point.

Remark 10.1.5 One sometimes writes d f
dx instead of f ′. This notation is of course

very familiar and convenient, but one has to be a little careful, because it is only safe
to use as long as x is the only variable used to represent the input for f ; otherwise
one can get into all sorts of trouble. For instance, the function f : R → R defined by
f (x) := x2 has derivative d f

dx = 2x , but the function g : R → R defined by g(y) :=
y2 would seem to have derivative dg

dx = 0 if y and x are independent variables, despite
the fact that g and f are exactly the same function. Because of this possible source
of confusion, we will refrain from using the notation d f

dx whenever it could possibly
lead to confusion. (This confusion becomes even worse in the calculus of several
variables, and the standard notation of ∂ f

∂x can lead to some serious ambiguities.
There are ways to resolve these ambiguities, most notably by introducing the notion
of differentiation along vector fields, but this is beyond the scope of this text.)

Example 10.1.6 Let f : R → R be the function f (x) := |x |, and let x0 = 0. To see
whether f is differentiable at 0 on R, we compute the limit
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lim
x→0;x∈R\{0}

f (x) − f (0)

x − 0
= lim

x→0;x∈R\{0}
|x |
x

.

Now we take left limits and right limits. The right limit is

lim
x→0;x∈(0,∞)

|x |
x

= lim
x→0;x∈(0,∞)

x

x
= lim

x→0;x∈(0,∞)
1 = 1,

while the left limit is

lim
x→0;x∈(−∞,0)

|x |
x

= lim
x→0;x∈(−∞,0)

−x

x
= lim

x→0;x∈(−∞,0)
−1 = −1,

and these limits do not match. Thus limx→0;x∈R\{0} |x |
x does not exist, and f is not

differentiable at 0 on R. However, if one restricts f to [0,∞), then the restricted
function f |[0,∞) is differentiable at 0 on [0,∞), with derivative 1:

lim
x→0;x∈[0,∞)\{0}

f (x) − f (0)

x − 0
= lim

x→0;x∈(0,∞)

|x |
x

= 1.

Similarly, when one restricts f to (−∞, 0], the restricted function f |(−∞,0] is dif-
ferentiable at 0 on (−∞, 0], with derivative −1. Thus even when a function is not
differentiable, it is sometimes possible to restore the differentiability by restricting
the domain of the function.

If a function is differentiable at x0, then it is approximately linear near x0:

Proposition 10.1.7 (Newton’s approximation) Let X be a subset of R, let x0 ∈ X
be a limit point of X, let f : X → R be a function, and let L be a real number. Then
the following statements are logically equivalent:

(a) f is differentiable at x0 on X with derivative L.
(b) For every ε > 0, there exists a δ > 0 such that f (x) is ε|x − x0|-close to f (x0) +

L(x − x0) whenever x ∈ X is δ-close to x0, i.e., we have

| f (x) − ( f (x0) + L(x − x0))| ≤ ε|x − x0|

whenever x ∈ X and |x − x0| ≤ δ.

Remark 10.1.8 Newton’s approximation is of course named after the great scientist
and mathematician Isaac Newton (1642–1727), one of the founders of differential
and integral calculus.

Proof See Exercise 10.1.2.

Remark 10.1.9 We can phrase Proposition 10.1.7 in a more informal way: if f is
differentiable at x0, then one has the approximation f (x) ≈ f (x0) + f ′(x0)(x − x0),
and conversely.
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As the example of the function f : R → R defined by f (x) := |x | shows, a
function can be continuous at a point without being differentiable at that point.
However, the converse is true:

Proposition 10.1.10 (Differentiability implies continuity) Let X be a subset of R,
let x0 ∈ X be a limit point of X, and let f : X → R be a function. If f is differentiable
at x0, then f is also continuous at x0.

Proof See Exercise 10.1.3.

Definition 10.1.11 (Differentiability on a domain) Let X be a subset of R, and let
f : X → R be a function. We say that f is differentiable on X if, for every limit
point x0 ∈ X , the function f is differentiable at x0 on X .

From Proposition 10.1.10 and the above definition, as well as the fact that a
function is automatically continuous at every isolated point of its domain, we have
an immediate corollary:

Corollary 10.1.12 Let X be a subset of R, and let f : X → R be a function which
is differentiable on X. Then f is also continuous on X.

Now we state the basic properties of derivatives which you are all familiar with.

Theorem 10.1.13 [Differential calculus] Let X be a subset of R, let x0 ∈ X be a
limit point of X, and let f : X → R and g : X → R be functions.

(a) If f is a constant function, i.e., there exists a real number c such that f (x) = c
for all x ∈ X, then f is differentiable at x0 and f ′(x0) = 0.

(b) If f is the identity function, i.e., f (x) = x for all x ∈ X, then f is differentiable
at x0 and f ′(x0) = 1.

(c) (Sum rule) If f and g are differentiable at x0, then f + g is also differentiable
at x0, and ( f + g)′(x0) = f ′(x0) + g′(x0).

(d) (Product rule) If f and g are differentiable at x0, then f g is also differentiable
at x0, and ( f g)′(x0) = f ′(x0)g(x0) + f (x0)g′(x0).

(e) If f is differentiable at x0 and c is a real number, then c f is also differentiable
at x0, and (c f )′(x0) = c f ′(x0).

(f) (Difference rule) If f and g are differentiable at x0, then f − g is also differen-
tiable at x0, and ( f − g)′(x0) = f ′(x0) − g′(x0).

(g) If g is differentiable at x0, and g is non-zero on X (i.e., g(x) 	= 0 for all x ∈ X ),
then 1/g is also differentiable at x0, and ( 1g )

′(x0) = − g′(x0)
g(x0)2

.
(h) (Quotient rule) If f and g are differentiable at x0, and g is non-zero on X, then

f/g is also differentiable at x0, and

(
f

g

)′
(x0) = f ′(x0)g(x0) − f (x0)g′(x0)

g(x0)2
.
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Remark 10.1.14 The product rule is also known as the Leibniz rule, after Gottfried
Leibniz (1646–1716), who was the other founder of differential and integral calculus
besides Newton.

Proof See Exercise 10.1.4.

As you are well aware, the above rules allow one to compute many derivatives
easily. For instance, if f : R\{1} → R is the function f (x) := x−2

x−1 , then it is easy
to use the above rules to show that f ′(x0) = 1

(x0−1)2 for all x0 ∈ R\{1}. (Why? Note
that every point x0 in R\{1} is a limit point of R\{1}.)

Another fundamental property of differentiable functions is the following:

Theorem 10.1.15 [Chain rule] Let X, Y be subsets of R, let x0 ∈ X be a limit
point of X, and let y0 ∈ Y be a limit point of Y . Let f : X → Y be a function
such that f (x0) = y0, and such that f is differentiable at x0. Suppose that g : Y →
R is a function which is differentiable at y0. Then the function g ◦ f : X → R is
differentiable at x0, and

(g ◦ f )′(x0) = g′(y0) f ′(x0).

Proof See Exercise 10.1.7.

Example 10.1.16 If f : R\{1} → R is the function f (x) := x−2
x−1 , and g : R → R is

the function g(y) := y2, then g ◦ f (x) = ( x−2
x−1 )

2, and the chain rule gives

(g ◦ f )′(x0) = 2

(
x0 − 2

x0 − 1

)
1

(x0 − 1)2
.

Remark 10.1.17 If one writes y for f (x), and z for g(y), then the chain rule can be
written in themore visually appealingmanner dz

dx = dz
dy

dy
dx . However, this notation can

be misleading (for instance it blurs the distinction between dependent variable and
independent variable, especially for y) and leads one to believe that the quantities
dz, dy, dx can be manipulated like real numbers. However, these quantities are
not real numbers (in fact, we have not assigned any meaning to them at all), and
treating them as such can lead to problems in the future. For instance, if f depends
on x1 and x2, which depend on t , then chain rule for several variables asserts that
d f
dt = ∂ f

∂x1
dx1
dt + ∂ f

∂x2
dx2
dt , but this rule might seem suspect if one treated d f , dt , etc. as

real numbers. It is possible to think of dy, dx , etc. as “infinitesimal real numbers”
if one knows what one is doing, but for those just starting out in analysis, I would
not recommend this approach, especially if one wishes to work rigorously. (There
is a way to make all of this rigorous, even for the calculus of several variables, but
it requires the notion of a tangent vector and the derivative map, both of which are
beyond the scope of this text.)
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— Exercises —

Exercise 10.1.1 Suppose that X is a subset of R, x0 is a limit point of X , and f : X → R is a
function which is differentiable at x0. Let Y ⊆ X be such that x0 ∈ Y , and x0 is also a limit point
of Y . Prove that the restricted function f |Y : Y → R is also differentiable at x0 and has the same
derivative as f at x0. Explain why this does not contradict the discussion in Remark 10.1.2.

Exercise 10.1.2 Prove Proposition 10.1.7. (Hint: the cases x = x0 and x 	= x0 have to be treated
separately.)

Exercise 10.1.3 Prove Proposition 10.1.10. (Hint: either use the limit laws (Proposition 9.3.14) or
use Proposition 10.1.7.)

Exercise 10.1.4 Prove Theorem 10.1.13. (Hint: use the limit laws in Proposition 9.3.14. Use earlier
parts of this theorem to prove the latter. For the product rule, use the identity

f (x)g(x) − f (x0)g(x0)

= f (x)g(x) − f (x)g(x0) + f (x)g(x0) − f (x0)g(x0)

= f (x)(g(x) − g(x0)) + ( f (x) − f (x0))g(x0);
this trick of adding and subtracting an intermediate term is sometimes known as the “middle-man
trick” and is very useful in analysis.)

Exercise 10.1.5 Let n be a natural number, and let f : R → R be the function f (x) := xn . Show
that f is differentiable on R and f ′(x) = nxn−1 for all x ∈ R, adopting the convention that nxn−1

is 0 when n = 0. (Hint: use Theorem 10.1.13 and induction.)

Exercise 10.1.6 Let n be a negative integer, and let f : R\{0} → R be the function f (x) := xn .
Show that f is differentiable on R\{0}, and that f ′(x) = nxn−1 for all x ∈ R\{0}. (Hint: use
Theorem 10.1.13 and Exercise 10.1.5.)

Exercise 10.1.7 Prove Theorem 10.1.15. (Hint: one way to do this is via Newton’s approxima-
tion, Proposition 10.1.7. Another way is to use Proposition 9.3.9 and Proposition 10.1.10 to con-
vert this problem into one involving limits of sequences; however with the latter strategy one
has to treat the case f ′(x0) = 0 separately, as some division-by-zero subtleties can occur in that
case.)

10.2 Local Maxima, Local Minima, and Derivatives

As you learnt in your basic calculus courses, one very common application of using
derivatives is to locate maxima and minima. We now present this material again, but
this time in a rigorous manner.

The notion of a function f : X → R attaining a maximum or minimum at a point
x0 ∈ X was defined in Definition 9.6.5. We now localize this definition:

Definition 10.2.1 (Local maxima and minima) Let X be a subset of R, let f : X →
R be a function, and let x0 ∈ X . We say that f attains a local maximum at x0 iff there
exists a δ > 0 such that the restriction f |X∩(x0−δ,x0+δ) of f to X ∩ (x0 − δ, x0 + δ)

attains a maximum at x0. We say that f attains a local minimum at x0 iff there exists
a δ > 0 such that the restriction f |X∩(x0−δ,x0+δ) of f to X ∩ (x0 − δ, x0 + δ) attains
a minimum at x0.
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Remark 10.2.2 If f attains a maximum at x0, we sometimes say that f attains a
global maximum at x0, in order to distinguish it from the local maxima defined here.
Note that if f attains a global maximum at x0, then it certainly also attains a local
maximum at this x0, and similarly for minima.

Example 10.2.3 Let f : R → R denote the function f (x) := x2 − x4. This function
does not attain a global minimum at 0, since for example f (2) = −12 < 0 = f (0),
however it does attain a local minimum, for if we choose δ := 1 and restrict f to
the interval (−1, 1), then for all x ∈ (−1, 1) we have x4 ≤ x2 and thus f (x) =
x2 − x4 ≥ 0 = f (0), and so f |(−1,1) has a (global) minimum at 0.

Example 10.2.4 Let f : Z → R be the function f (x) = x , defined on the integers
only. Then f has no global maximum or global minimum (why?), but attains both a
local maximum and local minimum at every integer n (why?).

Remark 10.2.5 If f : X → R attains a localmaximumat a point x0 in X , andY ⊆ X
is a subset of X which contains x0, then the restriction f |Y : Y → R also attains a
local maximum at x0 (why?). Similarly for minima.

The connection between local maxima, minima, and derivatives is the following.

Proposition 10.2.6 (Local extrema are stationary) Let a < b be real numbers, and
let f : (a, b) → R be a function. If x0 ∈ (a, b), f is differentiable at x0, and f attains
either a local maximum or a local minimum at x0, then f ′(x0) = 0.

Proof See Exercise 10.2.1.

Note that f must be differentiable for this proposition towork; seeExercise 10.2.2.
Also, this proposition does not work if the open interval (a, b) is replaced by a closed
interval [a, b]. For instance, the function f : [1, 2] → R defined by f (x) := x has a
local maximum at x0 = 2 and a local minimum x0 = 1 (in fact, these local extrema
are global extrema), but at both points the derivative is f ′(x0) = 1, not f ′(x0) = 0.
Thus the endpoints of an interval can be localmaxima orminima even if the derivative
is not zero there. Finally, the converse of this proposition is false (Exercise 10.2.3).

By combining Proposition 10.2.6 with the maximum principle, one can obtain

Theorem 10.2.7 [Rolle’s theorem] Let a < b be real numbers, and let g : [a, b] →
R be a continuous functionwhich is differentiable on (a, b). Suppose also that g(a) =
g(b). Then there exists an x ∈ (a, b) such that g′(x) = 0.

Proof See Exercise 10.2.4.

Remark 10.2.8 Note that we only assume f is differentiable on the open interval
(a, b), though of course the theorem also holds if we assume f is differentiable on
the closed interval [a, b], since this is larger than (a, b).

Rolle’s theorem has an important corollary.
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Corollary 10.2.9 (Mean-value theorem)Let a < b be real numbers, and let f : [a, b]
→ R be a function which is continuous on [a, b] and differentiable on (a, b). Then
there exists an x ∈ (a, b) such that f ′(x) = f (b)− f (a)

b−a .

Proof See Exercise 10.2.5.

— Exercises —

Exercise 10.2.1 Prove Proposition 10.2.6.

Exercise 10.2.2 Give an example of a function f : (−1, 1) → R which is continuous and attains
a global maximum at 0, but which is not differentiable at 0. Explain why this does not contradict
Proposition 10.2.6.

Exercise 10.2.3 Give an example of a function f : (−1, 1) → Rwhich is differentiable, andwhose
derivative equals 0 at 0, but such that 0 is neither a local minimum nor a local maximum. Explain
why this does not contradict Proposition 10.2.6.

Exercise 10.2.4 Prove Theorem 10.2.7. (Hint: use the maximum principle, Proposition 9.6.7, fol-
lowed by Proposition 10.2.6. Note that the maximum principle does not tell you whether the max-
imum or minimum is in the open interval (a, b) or is one of the boundary points a, b, so you have
to divide into cases and use the hypothesis g(a) = g(b) somehow.)

Exercise 10.2.5 Use Theorem 10.2.7 to prove Corollary 10.2.9. (Hint: consider a function of the
form f (x) − cx for some carefully chosen real number c.)

Exercise 10.2.6 Let M > 0, and let f : [a, b] → R be a function which is continuous on [a, b]
and differentiable on (a, b), and such that | f ′(x)| ≤ M for all x ∈ (a, b) (i.e., the derivative of f
is bounded). Show that for any x, y ∈ [a, b] we have the inequality | f (x) − f (y)| ≤ M |x − y|.
(Hint: apply the mean-value theorem (Corollary 10.2.9) to a suitable restriction of f .) Functions
which obey the bound | f (x) − f (y)| ≤ M |x − y| are known as Lipschitz continuous functionswith
Lipschitz constant M ; thus this exercise shows that functions with bounded derivative are Lipschitz
continuous.

Exercise 10.2.7 Let f : R → R be a differentiable function such that f ′ is bounded. Show that f
is uniformly continuous. (Hint: use the preceding exercise.)

10.3 Monotone Functions and Derivatives

In your elementary calculus courses, you may have come across the assertion that a
positive derivative meant an increasing function, and a negative derivative meant a
decreasing function. This statement is not completely accurate, but it is pretty close;
we now give the precise version of these statements below.

Proposition 10.3.1 Let X be a subset of R, let x0 ∈ X be a limit point of X, and let
f : X → R be a function. If f is monotone increasing and f is differentiable at
x0, then f ′(x0) ≥ 0. If f is monotone decreasing and f is differentiable at x0, then
f ′(x0) ≤ 0.

Proof See Exercise 10.3.1.
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Remark 10.3.2 Wehave to assume that f is differentiable at x0; there existmonotone
functionswhich are not always differentiable (see Exercise 10.3.2), and of course if f
is not differentiable at x0 we cannot possibly conclude that f ′(x0) ≥ 0 or f ′(x0) ≤ 0.

One might naively guess that if f were strictly monotone increasing, and f was
differentiable at x0, then the derivative f ′(x0) would be strictly positive instead of
merely non-negative. Unfortunately, this is not always the case (Exercise 10.3.3).

On the other hand, we do have a converse result: if function has strictly positive
derivative, then it must be strictly monotone increasing:

Proposition 10.3.3 Let a < b, and let f : [a, b] → R be a differentiable function. If
f ′(x) > 0 for all x ∈ [a, b], then f is strictly monotone increasing. If f ′(x) < 0 for
all x ∈ [a, b], then f is strictly monotone decreasing. If f ′(x) = 0 for all x ∈ [a, b],
then f is a constant function.

Proof See Exercise 10.3.4.

— Exercises —

Exercise 10.3.1 Prove Proposition 10.3.1.

Exercise 10.3.2 Give an example of a function f : (−1, 1) → Rwhich is continuous andmonotone
increasing, but which is not differentiable at 0. Explain why this does not contradict Proposition
10.3.1.

Exercise 10.3.3 Give an example of a function f : R → R which is strictly monotone increasing
and differentiable, but whose derivative at 0 is zero. Explainwhy this does not contradict Proposition
10.3.1 or Proposition 10.3.3. (Hint: look at Exercise 10.2.3.)

Exercise 10.3.4 Prove Proposition 10.3.3. (Hint: you do not have integrals or the fundamental
theorem of calculus yet, so these tools cannot be used. However, one can proceed via the mean-
value theorem, Corollary 10.2.9.)

Exercise 10.3.5 Give an example of a subset X ⊆ R and a function f : X → R which is differen-
tiable on X , is such that f ′(x) > 0 for all x ∈ X , but f is not strictly monotone increasing. (Hint:
the conditions here are subtly different from those in Proposition 10.3.3. What is the difference,
and how can one exploit that difference to obtain the example?)

10.4 Inverse Functions and Derivatives

Wenowask the following question: if we know that a function f : X → Y is differen-
tiable, and it has an inverse f −1 : Y → X , what can we say about the differentiability
of f −1? This will be useful for many applications, for instance if we want to differ-
entiate the function f (x) := x1/n .

We begin with a preliminary result.
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Lemma 10.4.1 Let X,Y be subsets of R, and let f : X → Y be an invertible func-
tion, with inverse f −1 : Y → X. Suppose that x0 ∈ X and y0 ∈ Y are limit points of
X,Y , respectively, such that y0 = f (x0) (which also implies that x0 = f −1(y0)). If
f is differentiable at x0, and f −1 is differentiable at y0, then

( f −1)′(y0) = 1

f ′(x0)
.

Proof From the chain rule (Theorem 10.1.15) we have

( f −1 ◦ f )′(x0) = ( f −1)′(y0) f ′(x0).

But f −1 ◦ f is the identity function on X , and hence by Theorem 10.1.13(b) ( f −1 ◦
f )′(x0) = 1. The claim follows.

As a particular corollary of Lemma 10.4.1, we see that if f is differentiable at x0
with f ′(x0) = 0, then f −1 cannot be differentiable at y0 = f (x0), since 1/ f ′(x0) is
undefined in that case. Thus for instance, the function g : [0,∞) → [0,∞) defined
by g(y) := y1/3 cannot be differentiable at 0, since this function is the inverse g =
f −1 of the function f : [0,∞) → [0,∞) defined by f (x) := x3, and this function
has a derivative of 0 at f −1(0) = 0.

If one writes y = f (x), so that x = f −1(y), then one can write the conclusion
of Lemma 10.4.1 in the more appealing form dx/dy = 1/(dy/dx). However, as
mentioned before, this way of writing things, while very convenient and easy to
remember, can be misleading and cause errors if applied too carelessly (especially
when one begins to work in the calculus of several variables).

Lemma 10.4.1 seems to answer the question of how to differentiate the inverse
of a function; however it has one significant drawback: the lemma only works if one
assumes a priori that f −1 is differentiable. Thus, if one does not already know that
f −1 is differentiable, one cannot use Lemma 10.4.1 to compute the derivative of
f −1.
However, the following improved version of Lemma 10.4.1 will compensate for

this fact, by relaxing the requirement on f −1 from differentiability to continuity.

Theorem 10.4.2 [Inverse function theorem] Let X,Y be subsets of R, and let
f : X → Y be an invertible function, with inverse f −1 : Y → X. Suppose that
x0 ∈ X and y0 ∈ Y are limit points of X,Y , respectively, such that f (x0) = y0.
If f is differentiable at x0, f −1 is continuous at y0, and f ′(x0) 	= 0, then f −1 is
differentiable at y0 and

( f −1)′(y0) = 1

f ′(x0)
.

Proof We have to show that

lim
y→y0;y∈Y\{y0}

f −1(y) − f −1(y0)

y − y0
= 1

f ′(x0)
.
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By Proposition 9.3.9, it suffices to show that

lim
n→∞

f −1(yn) − f −1(y0)

yn − y0
= 1

f ′(x0)

for any sequence (yn)∞n=1 of elements in Y\{y0} which converge to y0.
To prove this, we set xn := f −1(yn). Then (xn)∞n=1 is a sequence of elements in

X\{x0}. (Why? Note that f −1 is a bijection). Since f −1 is continuous by assumption,
we know that xn = f −1(yn) converges to f −1(y0) = x0 as n → ∞. Thus, since f
is differentiable at x0, we have (by Proposition 9.3.9 again)

lim
n→∞

f (xn) − f (x0)

xn − x0
= f ′(x0).

But since xn 	= x0 and f is a bijection, the fraction f (xn)− f (x0)
xn−x0

is non-zero. Also, by
hypothesis f ′(x0) is non-zero. So by limit laws

lim
n→∞

xn − x0
f (xn) − f (x0)

= 1

f ′(x0)
.

But since xn = f −1(yn) and x0 = f −1(y0), we thus have

lim
n→∞

f −1(yn) − f −1(y0)

yn − y0
= 1

f ′(x0)

as desired.

We give some applications of the inverse function theorem in the exercises below.

— Exercises —

Exercise 10.4.1 Let n ≥ 1 be a natural number, and let g : (0,∞) → (0,∞) be the function
g(x) := x1/n .

(a) Show that g is continuous on (0,∞). (Hint: use Proposition 9.4.11.)
(b) Show that g is differentiable on (0,∞), and that g′(x) = 1

n x
1
n −1 for all x ∈ (0,∞). (Hint:

use the inverse function theorem and (a).)

Exercise 10.4.2 Let q be a rational number, and let f : (0,∞) → R be the function f (x) = xq .

(a) Show that f is differentiable on (0,∞) and that f ′(x) = qxq−1. (Hint: use Exercise 10.4.1
and the laws of differential calculus in Theorem 10.1.13 and Theorem 10.1.15.)

(b) Show that limx→1;x∈(0,∞)\{1} xq−1
x−1 = q for every rational number q. (Hint: use part (a) and

Definition 10.1.1. An alternate route is to apply L’Hôpital’s rule from the next section.)

Exercise 10.4.3 Let α be a real number, and let f : (0,∞) → R be the function f (x) = xα .

(a) Show that limx→1;x∈(0,∞)\{1} f (x)− f (1)
x−1 = α. (Hint: use Exercise 10.4.2 and the comparison

principle; you may need to consider right and left limits separately. Proposition 5.4.14 may
also be helpful.)

(b) Show that f is differentiable on (0,∞) and that f ′(x) = αxα−1. (Hint: use (a), exponent laws
(Proposition 6.7.3), and Definition 10.1.1.)
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10.5 L’Hôpital’s Rule

Finally, we present a version of a rule you are all familiar with.

Proposition 10.5.1 (L’Hôpital’s rule I) Let X be a subset of R, let f : X → R
and g : X → R be functions, and let x0 ∈ X be a limit point of X. Suppose that
f (x0) = g(x0) = 0, that f and g are both differentiable at x0, but g′(x0) 	= 0. Then
there exists a δ > 0 such that g(x) 	= 0 for all x ∈ (X ∩ (x0 − δ, x0 + δ))\{x0}, and

lim
x→x0;x∈(X∩(x0−δ,x0+δ))\{x0}

f (x)

g(x)
= f ′(x0)

g′(x0)
.

Proof See Exercise 10.5.1.

The presence of the δ here may seem somewhat strange, but is needed because
g(x) might vanish at some points other than x0, which would imply that quotient
f (x)
g(x) is not necessarily defined at all points in X\{x0}.

A more sophisticated version of L’Hôpital’s rule is the following.

Proposition 10.5.2 (L’Hôpital’s rule II)Let a < b be real numbers, and let f : [a, b]
→ R and g : [a, b] → R be functions which are continuous on [a, b] and differ-
entiable on (a, b]. Suppose that f (a) = g(a) = 0, that g′ is non-zero on (a, b]
(i.e., g′(x) 	= 0 for all x ∈ (a, b]), and limx→a;x∈(a,b] f ′(x)

g′(x) exists and equals L. Then

g(x) 	= 0 for all x ∈ (a, b], and limx→a;x∈(a,b] f (x)
g(x) exists and equals L.

Remark 10.5.3 This proposition only considers limits to the right of a, but one can
easily state and prove a similar proposition for limits to the left of a, or around both
sides of a. Speaking very informally, the proposition states that

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)
g′(x)

,

though one has to ensure all of the conditions of the proposition hold (in particular,
that f (a) = g(a) = 0, and that the right-hand limit exists), before one can apply
L’Hôpital’s rule.

Proof (Optional) We first show that g(x) 	= 0 for all x ∈ (a, b]. Suppose for sake of
contradiction that g(x) = 0 for some x ∈ (a, b]. But since g(a) is also zero, we can
apply Rolle’s theorem to obtain g′(y) = 0 for some a < y < x , but this contradicts
the hypothesis that g′ is non-zero on [a, b].

Now we show that limx→a;x∈(a,b] f (x)
g(x) = L . By Proposition 9.3.9, it will suffice

to show that

lim
n→∞

f (xn)

g(xn)
= L

for any sequence (xn)∞n=1 taking values in (a, b] which converges to a.
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Consider a single xn , and consider the function hn : [a, xn] → R defined by

hn(x) := f (x)g(xn) − g(x) f (xn).

Observe that hn is continuous on [a, xn] and equals 0 at both a and xn and is differen-
tiable on (a, xn)with derivative h′

n(x) = f ′(x)g(xn) − g′(x) f (xn). (Note that f (xn)
and g(xn) are constants with respect to x .) By Rolle’s theorem (Theorem 10.2.7), we
can thus find yn ∈ (a, xn) such that h′

n(yn) = 0, which implies that

f (xn)

g(xn)
= f ′(yn)

g′(yn)
.

Since yn ∈ (a, xn) for all n, and xn converges to a as n → ∞, we see from the
squeeze test (Corollary 6.4.14) that yn also converges to a as n → ∞. Thus f ′(yn)

g′(yn)

converges to L , and thus f (xn)
g(xn)

also converges to L , as desired.

— Exercises —

Exercise 10.5.1 Prove Proposition 10.5.1. (Hint: to show that g(x) 	= 0 near x0, you may wish to
use Newton’s approximation (Proposition 10.1.7). For the rest of the proposition, use the limit laws,
Proposition 9.3.14.)

Exercise 10.5.2 Explain why Example 1.2.12 does not contradict either of the propositions in this
section.



Chapter 11
The Riemann Integral

In the previous chapter we reviewed differentiation—one of the two pillars of single
variable calculus. The other pillar is, of course, integration, which is the focus of the
current chapter. More precisely, we will turn to the definite integral, the integral of a
function on a fixed interval, as opposed to the indefinite integral, otherwise known
as the antiderivative. These two are of course linked by the Fundamental theorem of
calculus, of which more will be said later.

For us, the study of the definite integral will start with an interval I which could
be open, closed, or half-open, and a function f : I → R, and will lead us to a number∫
I f ; we can write this integral as

∫
I f (x) dx (of course, we could replace x by any

other dummy variable), or if I has endpoints a and b, we shall also write this integral
as

∫ b
a f or

∫ b
a f (x) dx .

To actually define this integral
∫
I f is somewhat delicate (especially if one does

not want to assume any axioms concerning geometric notions such as area), and
not all functions f are integrable. It turns out that there are at least two ways to
define this integral: the Riemann integral, named after Georg Riemann (1826–1866),
which we will do here and which suffices for most applications, and the Lebesgue
integral, named after Henri Lebesgue (1875–1941), which supercedes the Riemann
integral and works for a much larger class of functions. The Lebesgue integral will be
constructed in Chapter 8. There is also the Riemann–Stieltjes integral

∫
I f (x) dα(x),

a generalization of the Riemann integral due to Thomas Stieltjes (1856–1894), which
we will discuss in Sect. 11.8.

Our strategy in defining the Riemann integral is as follows. We begin by first
defining a notion of integration on a very simple class of functions—the piecewise
constant functions. These functions are quite primitive, but their advantage is that
integration is very easy for these functions, as is verifying all the usual properties.
Then, we handle more general functions by approximating them by piecewise con-
stant functions.
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11.1 Partitions

Before we can introduce the concept of an integral, we need to describe how one
can partition a large interval into smaller intervals. In this chapter, all intervals will
be bounded intervals (as opposed to the more general intervals defined in Definition
9.1.1).

Definition 11.1.1 Let X be a subset of R. We say that X is connected iff X is non-
empty and the following property is true: whenever x, y are elements in X such that
x < y, the bounded interval [x, y] is a subset of X (i.e., every number between x
and y is also in X ).

Remark 11.1.2 Later on, in Section 2.4 we will define a more general notion of
connectedness, which applies to any metric space.

Examples 11.1.3 The set [1, 2] is connected, because if x < y both lie in [1, 2], then
1 ≤ x < y ≤ 2, and so every element between x and y also lies in [1, 2]. A similar
argument shows that the set (1, 2) is connected. However, the set [1, 2] ∪ [3, 4] is not
connected (why?). The real line is connected (why?). All singleton sets such as {3}
are connected, but for rather trivial reasons (these sets do not contain two elements
x, y for which x < y).

Lemma 11.1.4 Let X be a non-empty subset of the real line. Then the following two
statements are logically equivalent:

(a) X is bounded and connected.
(b) X is a bounded interval.

Proof See Exercise 11.1.1. �

Remark 11.1.5 Recall that intervals are allowed to be singleton points (e.g., the
degenerate interval [2, 2] = {2}), or even the empty set.

Corollary 11.1.6 If I and J are bounded intervals, then the intersection I ∩ J is
also a bounded interval.

Proof See Exercise 11.1.2. �

Example 11.1.7 The intersection of the bounded intervals [2, 4] and [4, 6] is {4},
which is also a bounded interval. The intersection of (2, 4) and (4, 6) is ∅.

We now give each bounded interval a length.

Definition 11.1.8 (Length of intervals) If I is a bounded interval, we define the
length of I , denoted |I | as follows. If I is one of the intervals [a, b], (a, b), [a, b),
or (a, b] for some real numbers a < b, then we define |I | := b − a. Otherwise, if I
is a point or the empty set, we define |I | = 0.
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Example 11.1.9 For instance, the length of [3, 5] is 2, as is the length of (3, 5);
meanwhile, the length of {5} or the empty set is 0.

Definition 11.1.10 (Partitions) Let I be a bounded interval. A partition of I is a
finite set P of bounded intervals contained in I , such that every x in I lies in exactly
one of the bounded intervals J in P.

Remark 11.1.11 Note that a partition is a set of intervals, while each interval is itself
a set of real numbers. Thus a partition is a set consisting of other sets.

Examples 11.1.12 The set P = {{1}, (1, 3), [3, 5), {5}, (5, 8],∅} of bounded inter-
vals is a partition of [1, 8], because all the intervals inP lie in [1, 8], and each element
of [1, 8] lies in exactly one interval in P. Note that one could have removed the empty
set from P and still obtain a partition. However, the set {[1, 4], [3, 5]} is not a parti-
tion of [1, 5] because some elements of [1, 5] are included in more than one interval
in the set. The set {(1, 3), (3, 5)} is not a partition of (1, 5) because some elements
of (1, 5) are not included in any interval in the set. The set {(0, 3), [3, 5)} is not a
partition of (1, 5) because some intervals in the set are not contained in (1, 5).

Now we come to a basic property about length:

Theorem 11.1.13 (Length is finitely additive) Let I be a bounded interval, n be a
natural number, and let P be a partition of I of cardinality n. Then

|I | =
∑

J∈P
|J |.

Proof We prove this by induction on n. More precisely, we let P(n) be the property
that whenever I is a bounded interval, and whenever P is a partition of I with
cardinality n, that |I | = ∑

J∈P |J |.
The base case P(0) is trivial; the only way that I can be partitioned into an empty

partition is if I is itself empty (why?), at which point the claim is easy. The case
P(1) is also very easy; the only way that I can be partitioned into a singleton set {J }
is if J = I (why?), at which point the claim is again very easy.

Now suppose inductively that P(n) is true for some n ≥ 1, and now we prove
P(n + 1). Let I be a bounded interval, and let P be a partition of I of cardinality
n + 1.

If I is the empty set or a point, then all the intervals in P must also be either the
empty set or a point (why?), and so every interval has length zero and the claim is
trivial. Thus we will assume that I is an interval of the form (a, b), (a, b], [a, b), or
[a, b].

Let us first suppose that b ∈ I , i.e., I is either (a, b] or [a, b]. Since b ∈ I , we
know that one of the intervals K in P contains b. Since K is contained in I , it must
therefore be of the form (c, b], [c, b], or {b} for some real number c, with a ≤ c ≤ b
(in the latter case of K = {b}, we set c := b). In particular, this means that the set
I − K is also an interval of the form [a, c], (a, c), (a, c], [a, c) when c > a, or a
point or empty set when a = c. Either way, we easily see that
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|I | = |K | + |I − K |.

On the other hand, since P forms a partition of I , we see that P − {K } forms a
partition of I − K (why?). By the induction hypothesis, we thus have

|I − K | =
∑

J∈P−{K }
|J |.

Combining these two identities (and using the laws of addition for finite sets, see
Proposition 7.1.11) we obtain

|I | =
∑

J∈P
|J |

as desired.
Now suppose that b /∈ I , i.e., I is either (a, b) or [a, b). Then one of the intervals

K also is of the form (c, b) or [c, b) (see Exercise 11.1.3). In particular, this means
that the set I − K is also an interval of the form [a, c], (a, c), (a, c], [a, c) when
c > a, or a point or empty set when a = c. The rest of the argument then proceeds
as above. �

There are two more things we need to do with partitions. One is to say when one
partition is finer than another, and the other is to talk about the common refinement
of two partitions.

Definition 11.1.14 (Finer and coarser partitions) Let I be a bounded interval, and
let P and P′ be two partitions of I . We say that P′ is finer than P (or equivalently,
that P is coarser than P′) if for every J in P′, there exists a K in P such that J ⊆ K .

Example 11.1.15 Thepartition {[1, 2), {2}, (2, 3), [3, 4]} is finer than {[1, 2], (2, 4]}
(why?). Both partitions are finer than {[1, 4]}, which is the coarsest possible partition
of [1, 4]. Note that there is no such thing as a “finest” partition of [1, 4]. (Why? recall
all partitions are assumed to be finite.) We do not compare partitions of different
intervals, for instance if P is a partition of [1, 4] and P′ is a partition of [2, 5] then
we would not say that P is coarser or finer than P′.

Definition 11.1.16 (Common refinement) Let I be a bounded interval, and let P and
P′ be two partitions of I . We define the common refinement P#P′ of P and P′ to be
the set

P#P′ := {K ∩ J : K ∈ P and J ∈ P′}.

Example 11.1.17 LetP := {[1, 3), [3, 4]} andP′ := {[1, 2], (2, 4]} be two partitions
of [1, 4]. Then P#P′ is the set {[1, 2], (2, 3), [3, 4],∅} (why?).
Lemma 11.1.18 Let I be a bounded interval, and let P and P′ be two partitions of
I . Then P#P′ is also a partition of I , and is both finer than P and finer than P′.

Proof See Exercise 11.1.4. �
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— Exercises —

Exercise 11.1.1 Prove Lemma 11.1.4. (Hint: in order to show that (a) implies (b) in the case when
X is non-empty, consider the supremum and infimum of X .)

Exercise 11.1.2 Prove Corollary 11.1.6. (Hint: use Lemma 11.1.4, and explainwhy the intersection
of two bounded sets is automatically bounded, and why the intersection of two connected sets is
automatically connected.)

Exercise 11.1.3 Let I be a bounded interval of the form I = (a, b) or I = [a, b) for some real
numbers a < b. Let I1, . . . , In be a partition of I . Prove that one of the intervals I j in this partition
is of the form I j = (c, b) or I j = [c, b) for some a ≤ c ≤ b. (Hint: prove by contradiction. First
show that if I j is not of the form (c, b) or [c, b) for any a ≤ c ≤ b, then sup I j is strictly less than
b.)

Exercise 11.1.4 Prove Lemma 11.1.18.

11.2 Piecewise Constant Functions

We can now describe the class of “simple” functions which we can integrate very
easily.

Definition 11.2.1 (Constant functions) Let X be a subset of R, and let f : X → R
be a function. We say that f is constant iff there exists a real number c such that
f (x) = c for all x ∈ X . If E is a subset of X , we say that f is constant on E if the
restriction f |E of f to E is constant, in other words there exists a real number c such
that f (x) = c for all x ∈ E . We refer to c as the constant value of f on E .

Remark 11.2.2 If E is a non-empty set, then a function f which is constant on E
can have only one constant value; it is not possible for a function to always equal 3
on E while simultaneously always equalling 4. However, if E is empty, every real
number c is a constant value for f on E (why?).

Definition 11.2.3 (Piecewise constant functions I) Let I be a bounded interval, let
f : I → R be a function, and let P be a partition of I . We say that f is piecewise
constant with respect to P if for every J ∈ P, f is constant on J .

Example 11.2.4 The function f : [1, 6] → R defined by

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

7 if 1 ≤ x < 3
4 if x = 3
5 if 3 < x < 6
2 if x = 6

is piecewise constant with respect to the partition {[1, 3), {3}, (3, 6), {6}} of [1, 6].
Note that it is also piecewise constant with respect to some other partitions as well;
for instance, it is piecewise constant with respect to the partition {[1, 2), {2}, (2, 3),
{3}, (3, 5), [5, 6), {6},∅}.
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Definition 11.2.5 (Piecewise constant functions II) Let I be a bounded interval, and
let f : I → R be a function. We say that f is piecewise constant on I if there exists
a partition P of I such that f is piecewise constant with respect to P.

Example 11.2.6 The function used in the previous example is piecewise constant
on [1, 6]. Also, every constant function on a bounded interval I is automatically
piecewise constant (why?).

Lemma 11.2.7 Let I be a bounded interval, letP be a partition of I , and let f : I →
R be a function which is piecewise constant with respect to P. Let P′ be a partition
of I which is finer than P. Then f is also piecewise constant with respect to P′.

Proof See Exercise 11.2.1. �

The space of piecewise constant functions is closed under algebraic operations:

Lemma 11.2.8 Let I be a bounded interval, and let f : I → R and g : I → R be
piecewise constant functions on I . Then the functions f + g, f − g, max( f, g) and
f g are also piecewise constant functions on I . Here of course max( f, g) : I → R
is the functionmax( f, g)(x) := max( f (x), g(x)). If g does not vanish anywhere on
I (i.e., g(x) �= 0 for all x ∈ I ), then f/g is also a piecewise constant function on I .

Proof See Exercise 11.2.2. �

We are now ready to integrate piecewise constant functions. We begin with a
temporary definition of an integral with respect to a partition.

Definition 11.2.9 (Piecewise constant integral I) Let I be a bounded interval, let P
be a partition of I . Let f : I → R be a function which is piecewise constant with
respect to P. Then we define the piecewise constant integral p.c.

∫
[P] f of f with

respect to the partition P by the formula

p.c.
∫

[P]
f :=

∑

J∈P
cJ |J |,

where for each J in P, we let cJ be the constant value of f on J .

Remark 11.2.10 This definition seems like it could be ill-defined, because if J is
empty then every number cJ can be the constant value of f on J , but fortunately in
such cases |J | is zero and so the choice of cJ is irrelevant. The notation p.c.

∫
[P] f

is rather artificial, but we shall only need it temporarily, en route to a more useful
definition. Note that since P is finite, the sum

∑
J∈P cJ |J | is always well-defined (it

is never divergent or infinite).

Remark 11.2.11 The piecewise constant integral corresponds intuitively to one’s
notion of area, given that the area of a rectangle ought to be the product of the
lengths of the sides. (Of course, if f is negative somewhere, then the “area” cJ |J |
would also be negative.)
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Example 11.2.12 Let f : [1, 4] → R be the function

f (x) =
⎧
⎨

⎩

2 if 1 ≤ x < 3
4 if x = 3
6 if 3 < x ≤ 4

and let P := {[1, 3), {3}, (3, 4]}. Then

p.c.
∫

[P]
f = c[1,3)|[1, 3)| + c{3}|{3}| + c(3,4]|(3, 4]|

= 2 × 2 + 4 × 0 + 6 × 1

= 10.

Alternatively, if we let P′ := {[1, 2), [2, 3), {3}, (3, 4],∅} then

p.c.
∫

[P′]
f = c[1,2)|[1, 2)| + c[2,3)|[2, 3)| + c{3}|{3}|

+ c(3,4]|(3, 4]| + c∅|∅|
= 2 × 1 + 2 × 1 + 4 × 0 + 6 × 1 + c∅ × 0

= 10.

This example suggests that this integral does not really depend on what partition
you pick, so long as your function is piecewise constant with respect to that partition.
That is indeed true:

Proposition 11.2.13 (Piecewise constant integral is independent of partition) Let I
be a bounded interval, and let f : I → R be a function. Suppose that P and P′ are
partitions of I such that f is piecewise constant both with respect to P and with
respect to P′. Then p.c.

∫
[P] f = p.c.

∫
[P′] f .

Proof See Exercise 11.2.3. �

Because of this proposition, we can now make the following definition:

Definition 11.2.14 (Piecewise constant integral II) Let I be a bounded interval,
and let f : I → R be a piecewise constant function on I . We define the piecewise
constant integral p.c.

∫
I f by the formula

p.c.
∫

I
f := p.c.

∫

[P]
f,

where P is any partition of I with respect to which f is piecewise constant. (Note
that Proposition 11.2.13 tells us that the precise choice of this partition is irrelevant.)

Example 11.2.15 If f is the function given in Example 11.2.12, then p.c.
∫
[1,4] f =

10.
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We now give some basic properties of the piecewise constant integral. These laws
will eventually be superceded by the corresponding laws for the Riemann integral
(Theorem 11.4.1).

Theorem 11.2.16 (Laws of integration)Let I be a bounded interval, and let f : I →
R and g : I → R be piecewise constant functions on I .

(a) We have p.c.
∫
I ( f + g) = p.c.

∫
I f + p.c.

∫
I g.

(b) For any real number c, we have p.c.
∫
I (c f ) = c(p.c.

∫
I f ).

(c) We have p.c.
∫
I ( f − g) = p.c.

∫
I f − p.c.

∫
I g.

(d) If f (x) ≥ 0 for all x ∈ I , then p.c.
∫
I f ≥ 0.

(e) If f (x) ≥ g(x) for all x ∈ I , then p.c.
∫
I f ≥ p.c.

∫
I g.

(f) If f is the constant function f (x) = c for all x in I , then p.c.
∫
I f = c|I |.

(g) Let J be a bounded interval containing I (i.e., I ⊆ J ), and let F : J → R be
the function

F(x) :=
{
f (x) if x ∈ I
0 if x /∈ I

Then F is piecewise constant on J , and p.c.
∫
J F = p.c.

∫
I f .

(h) Suppose that {J, K } is a partition of I into two intervals J and K . Then the
functions f |J : J → R and f |K : K → R are piecewise constant on J and K
respectively, and we have

p.c.
∫

I
f = p.c.

∫

J
f |J + p.c.

∫

K
f |K .

Proof See Exercise 11.2.4. �
This concludes our integration of piecewise constant functions. We now turn to

the question of how to integrate bounded functions.

— Exercises —

Exercise 11.2.1 Prove Lemma 11.2.7.

Exercise 11.2.2 Prove Lemma 11.2.8. (Hint: use Lemmas 11.1.18 and 11.2.7 to make f and g
piecewise constant with respect to the same partition of I .)

Exercise 11.2.3 Prove Proposition 11.2.13. (Hint: first use Theorem 11.1.13 to show that both
integrals are equal to p.c.

∫
[P#P′] f .)

Exercise 11.2.4 Prove Theorem 11.2.16. (Hint: you can use earlier parts of the theorem to prove
some of the later parts of the theorem. See also the hint to Exercise 11.2.2.)

11.3 Upper and Lower Riemann Integrals

Now let f : I → R be a bounded function defined on a bounded interval I . We want
to define the Riemann integral

∫
I f . To do this we first need to define the notion of



11.3 Upper and Lower Riemann Integrals 239

upper and lower Riemann integrals
∫

I f and
∫

I
f . These notions are related to the

Riemann integral in much the same way that the lim sup and lim inf of a sequence
are related to the limit of that sequence.

Definition 11.3.1 (Majorizationof functions)Let f : I → R and g : I → R.We say
that g majorizes f on I if we have g(x) ≥ f (x) for all x ∈ I , and that g minorizes
f on I if g(x) ≤ f (x) for all x ∈ I .

The idea of the Riemann integral is to try to integrate a function by first majorizing
orminorizing that function by a piecewise constant function (whichwe already know
how to integrate).

Definition 11.3.2 (Upper and lowerRiemann integrals)Let f : I → R be abounded
function defined on a bounded interval I . We define the upper Riemann integral

∫
I f

by the formula

∫

I
f := inf{p.c.

∫

I
g : g is a p.c. function on I which majorizes f }

and the lower Riemann integral
∫

I
f by the formula

∫

I

f := sup{p.c.
∫

I
g : g is a p.c. function on I which minorizes f }.

We give a crude but useful bound on the lower and upper integral:

Lemma 11.3.3 Let f : I → R be a function on a bounded interval I which is
bounded by some real number M, i.e., −M ≤ f (x) ≤ M for all x ∈ I . Then we
have

−M |I | ≤
∫

I

f ≤
∫

I
f ≤ M |I |.

In particular, both the lower and upper Riemann integrals are real numbers (i.e.,
they are not infinite).

Proof The function g : I → R defined by g(x) = M is constant, hence piecewise
constant, and majorizes f ; thus

∫
I f ≤ p.c.

∫
I g = M |I | by definition of the upper

Riemann integral. A similar argument gives−M |I | ≤ ∫
I
f . Finally, we have to show

that
∫

I
f ≤ ∫

I f . Let g be any piecewise constant function majorizing f , and let h
be any piecewise constant function minorizing f . Then g majorizes h, and hence
p.c.

∫
I h ≤ p.c.

∫
I g. Taking suprema in h, we obtain that

∫
I
f ≤ p.c.

∫
I g. Taking

infima in g, we thus obtain
∫

I
f ≤ ∫

I f , as desired. �

We now know that the upper Riemann integral is always at least as large as the
lower Riemann integral. If the two integrals match, then we can define the Riemann
integral:
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Definition 11.3.4 (Riemann integral) Let f : I → R be a bounded function on a
bounded interval I . If

∫
I
f = ∫

I f , then we say that f is Riemann integrable on I
and define ∫

I
f :=

∫

I

f =
∫

I
f.

If the upper and lower Riemann integrals are unequal, we say that f is not Riemann
integrable.

Remark 11.3.5 Compare this definition to the relationship between the lim sup, lim
inf, and limit of a sequence an that was established in Proposition 6.4.12(f); the lim
sup is always greater than or equal to the lim inf, but they are only equal when the
sequence converges, and in this case they are both equal to the limit of the sequence.
The definition given above may differ from the definition you may have encountered
in your calculus courses, based on Riemann sums. However, the two definitions turn
out to be equivalent; this is the purpose of the next section.

Remark 11.3.6 Note that we do not consider unbounded functions to be Riemann
integrable; an integral involving such functions is known as an improper integral. It is
possible to still evaluate such integrals using more sophisticated integration methods
(such as the Lebesgue integral); we shall do this in Chap. 8.

The Riemann integral is consistent with (and supercedes) the piecewise constant
integral:

Lemma 11.3.7 Let f : I → R be a piecewise constant function on a bounded inter-
val I . Then f is Riemann integrable, and

∫
I f = p.c.

∫
I f .

Proof See Exercise 11.3.3. �

Remark 11.3.8 Because of this lemma, we will not refer to the piecewise constant
integral p.c.

∫
I again, and just use the Riemann integral

∫
I throughout (until this

integral is itself superceded by the Lebesgue integral in Chapter 8). We observe one
special case of Lemma 11.3.7: if I is a point or the empty set, then

∫
I f = 0 for all

functions f : I → R. (Note that all such functions are automatically constant.)

We have just shown that every piecewise constant function is Riemann integrable.
However, the Riemann integral is more general and can integrate a wider class of
functions; we shall see this shortly. For now, we connect the Riemann integral we
have just defined to the concept of a Riemann sum, which you may have seen in other
treatments of the Riemann integral.

Definition 11.3.9 (Riemann sums) Let f : I → R be a bounded function on a
bounded interval I , and let P be a partition of I . We define the upper Riemann
sum U ( f,P) and the lower Riemann sum L( f,P) by

U ( f,P) :=
∑

J∈P:J �=∅
(sup
x∈J

f (x))|J |
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and
L( f,P) :=

∑

J∈P:J �=∅
(inf
x∈J

f (x))|J |.

Remark 11.3.10 The restriction J �= ∅ is requiredbecause thequantities inf x∈J f (x)
and supx∈J f (x) are infinite (or negative infinite) if J is empty.

We now connect these Riemann sums to the upper and lower Riemann integral.

Lemma 11.3.11 Let f : I → R be a bounded function on a bounded interval I , and
let g be a function which majorizes f and which is piecewise constant with respect
to some partition P of I . Then

p.c.
∫

I
g ≥ U ( f,P).

Similarly, if h is a function which minorizes f and is piecewise constant with respect
to P, then

p.c.
∫

I
h ≤ L( f,P).

Proof See Exercise 11.3.4. �

Proposition 11.3.12 Let f : I → R be a bounded function on a bounded interval
I . Then ∫

I
f = inf{U ( f,P) : P is a partition of I }

and ∫

I

f = sup{L( f,P) : P is a partition of I }

Proof See Exercise 11.3.5. �

— Exercises —

Exercise 11.3.1 Let f : I → R, g : I → R, and h : I → R be functions. Show that if f majorizes
g and g majorizes h, then f majorizes h. Show that if f and g majorize each other, then they must
be equal.

Exercise 11.3.2 Let f : I → R, g : I → R, and h : I → R be functions. If f majorizes g, is it
true that f + h majorizes g + h? Is it true that f · h majorizes g · h? If c is a real number, is it true
that c f majorizes cg?

Exercise 11.3.3 Prove Lemma 11.3.7.

Exercise 11.3.4 Prove Lemma 11.3.11.

Exercise 11.3.5 Prove Proposition 11.3.12. (Hint: you will need Lemma 11.3.11, even though this
Lemma will only do half of the job.)
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11.4 Basic Properties of the Riemann Integral

Just as we did with limits, series, and derivatives, we now give the basic laws for
manipulating the Riemann integral. These laws will eventually be superceded by the
corresponding laws for the Lebesgue integral (Proposition 8.3.3).

Theorem 11.4.1 (Laws of Riemann integration) Let I be a bounded interval, and
let f : I → R and g : I → R be Riemann integrable functions on I .

(a) The function f + g is Riemann integrable, and we have
∫
I ( f + g) = ∫

I f +∫
I g.

(b) For any real number c, the function c f is Riemann integrable, and we have∫
I (c f ) = c(

∫
I f ).

(c) The function f − g is Riemann integrable, and we have
∫
I ( f − g) = ∫

I f −∫
I g.

(d) If f (x) ≥ 0 for all x ∈ I , then
∫
I f ≥ 0.

(e) If f (x) ≥ g(x) for all x ∈ I , then
∫
I f ≥ ∫

I g.
(f) If f is the constant function f (x) = c for all x in I , then

∫
I f = c|I |.

(g) Let J be a bounded interval containing I (i.e., I ⊆ J ), and let F : J → R be
the function

F(x) :=
{
f (x) if x ∈ I
0 if x /∈ I

Then F is Riemann integrable on J , and
∫
J F = ∫

I f .
(h) Suppose that {J, K } is a partition of I into two intervals J and K . Then the

functions f |J : J → R and f |K : K → R are Riemann integrable on J and K ,
respectively, and we have

∫

I
f =

∫

J
f |J +

∫

K
f |K .

Proof See Exercise 11.4.1. �

Remark 11.4.2 We often abbreviate
∫
J f |J as

∫
J f , even though f is really defined

on a larger domain than just J . We also observe from Theorem 11.4.1(h) and Remark
11.3.8 that if f : [a, b] → R is Riemann integrable on a closed interval [a, b], then∫
[a,b] f = ∫

(a,b] f = ∫
[a,b) f = ∫

(a,b) f .

Theorem 11.4.1 asserts that the sum or difference of any two Riemann integrable
functions is Riemann integrable, as is any scalar multiple c f of a Riemann integrable
function f . We now give some further ways to create Riemann integrable functions.

Theorem 11.4.3 (Max and min preserve integrability) Let I be a bounded inter-
val, and let f : I → R and g : I → R be a Riemann integrable function. Then the
functions max( f, g) : I → R and min( f, g) : I → R defined by max( f, g)(x) :=
max( f (x), g(x))andmin( f, g)(x) := min( f (x), g(x))arealsoRiemann integrable.
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Proof We shall just prove the claim for max( f, g), the case of min( f, g) being
similar. First note that since f and g are bounded, then max( f, g) is also bounded.

Let ε > 0. Since
∫
I f = ∫

I
f , there exists a piecewise constant function f : I →

R which minorizes f on I such that

∫

I
f ≥

∫

I
f − ε.

Similarly we can find a piecewise constant g : I → R which minorizes g on I such
that ∫

I
g ≥

∫

I
g − ε,

and we can find piecewise functions f , g which majorize f , g respectively on I such
that ∫

I
f ≤

∫

I
f + ε

and ∫

I
g ≤

∫

I
g + ε.

In particular, if h : I → R denotes the function

h := ( f − f ) + (g − g)

we have ∫

I
h ≤ 4ε.

On the other hand, max( f , g) is a piecewise constant function on I (why?) which

minorizesmax( f, g) (why?), whilemax( f , g) is similarly a piecewise constant func-
tion on I which majorizes max( f, g). Thus

∫

I
max( f , g) ≤

∫

I

max( f, g) ≤
∫

I
max( f, g) ≤

∫

I
max( f , g),

and so

0 ≤
∫

I
max( f, g) −

∫

I

max( f, g) ≤
∫

I
max( f , g) − max( f , g).

But we have
f (x) = f (x) + ( f − f )(x) ≤ f (x) + h(x)
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and similarly
g(x) = g(x) + (g − g)(x) ≤ g(x) + h(x)

and thus
max( f (x), g(x)) ≤ max( f (x), g(x)) + h(x).

Inserting this into the previous inequality, we obtain

0 ≤
∫

I
max( f, g) −

∫

I

max( f, g) ≤
∫

I
h ≤ 4ε.

To summarize, we have shown that

0 ≤
∫

I
max( f, g) −

∫

I

max( f, g) ≤ 4ε

for every ε. Since
∫

I max( f, g) − ∫
I
max( f, g) does not depend on ε, we thus see

that ∫

I
max( f, g) −

∫

I

max( f, g) = 0

and hence that max( f, g) is Riemann integrable. �

Corollary 11.4.4 (Absolute values preserve Riemann integrability) Let I be a
bounded interval. If f : I → R is a Riemann integrable function, then the positive
part f+ := max( f, 0) and the negative part f− := min( f, 0) are also Riemann inte-
grable on I . Also, the absolute value | f | defined by | f |(x) := | f (x)| is also Riemann
integrable on I . (This latter claim follows from the observation that | f | = f+ − f−.)

Theorem 11.4.5 (Products preserve Riemann integrability) Let I be a bounded
interval. If f : I → R and g : I → R are Riemann integrable, then f g : I → R
is also Riemann integrable.

Proof This one is a little trickier. We split f = f+ + f− and g = g+ + g− into
positive and negative parts; by Corollary 11.4.4, the functions f+, f−, g+, g− are
Riemann integrable. Since

f g = f+g+ + f+g− + f−g+ + f−g−

then it suffices to show that the functions f+g+, f+g−, f−g+, f−g− are individually
Riemann integrable. We will just show this for f+g+; the other three are similar.

Since f+ and g+ are bounded and positive, there are M1, M2 > 0 such that

0 ≤ f+(x) ≤ M1 and 0 ≤ g+(x) ≤ M2
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for all x ∈ I . Now let ε > 0 be arbitrary. Then, as in the proof of Theorem 11.4.3,
we can find a piecewise constant function f+ minorizing f+ on I , and a piecewise

constant function f+ majorizing f+ on I , such that

∫

I
f+ ≤

∫

I
f+ + ε

and ∫

I
f+ ≥

∫

I
f+ − ε.

Note that f+ may be negative at places, but we can fix this by replacing f+ by
max( f+, 0), since this still minorizes f+ (why?) and still has integral greater than
or equal to

∫
I f+ − ε (why?). So without loss of generality we may assume that

f+(x) ≥ 0 for all x ∈ I . Similarly we may assume that f+(x) ≤ M1 for all x ∈ I ;
thus

0 ≤ f+(x) ≤ f+(x) ≤ f+(x) ≤ M1

for all x ∈ I .
Similar reasoning allows us to find piecewise constant g+ minorizing g+, and g+

majorizing g+, such that ∫

I
g+ ≤

∫

I
g+ + ε

and ∫

I
g+ ≥

∫

I
g+ − ε,

and
0 ≤ g+(x) ≤ g+(x) ≤ g+(x) ≤ M2

for all x ∈ I .
Notice that f+g+ is piecewise constant and minorizes f+g+, while f+g+ is piece-

wise constant and majorizes f+g+. Thus

0 ≤
∫

I
f+g+ −

∫

I

f+g+ ≤
∫

I
f+g+ − f+g+.

However, we have

f+(x)g+(x) − f+(x)g+(x) = f+(x)(g+ − g+)(x) + g+(x)( f+ − f+)(x)

≤ M1(g+ − g+)(x) + M2( f+ − f+)(x)

for all x ∈ I , and thus
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0 ≤
∫

I
f+g+ −

∫

I

f+g+ ≤ M1

∫

I
(g+ − g+) + M2

∫

I
( f+ − f+)

≤ M1(2ε) + M2(2ε).

Again, since ε was arbitrary, we can conclude that f+g+ is Riemann integrable,
as before. Similar argument show that f+g−, f−g+, f−g− are Riemann integrable;
combining them we obtain that f g is Riemann integrable. �

— Exercises —

Exercise 11.4.1 Prove Theorem 11.4.1. (Hint: you may find Theorem 11.2.16 to be useful. For
part (b): First do the case c > 0. Then do the case c = −1 and c = 0 separately. Using these cases,
deduce the case of c < 0. You can use earlier parts of the theorem to prove later ones.)

Exercise 11.4.2 Let I be a bounded interval, let f : I → R be a Riemann integrable function, and
let P be a partition of I . Show that ∫

I
f =

∑

J∈P

∫

J
f.

Exercise 11.4.3 Without repeating all the computations in the above proofs, give a short explanation
as to why the remaining cases of Theorem 11.4.3 and Theorem 11.4.5 follow automatically from the
cases presented in the text. (Hint: from Theorem 11.4.1 we know that if f is Riemann integrable,
then so is − f .)

11.5 Riemann Integrability of Continuous Functions

We have already said a lot about Riemann integrable functions so far, but we have
not yet actually produced any such functions other than the piecewise constant ones.
Now we rectify this by showing that a large class of useful functions are Riemann
integrable. We begin with the uniformly continuous functions.

Theorem 11.5.1 Let I be a bounded interval, and let f be a function which is
uniformly continuous on I . Then f is Riemann integrable.

Proof From Proposition 9.9.15 we see that f is bounded. Now we have to show that∫
I
f = ∫

I f .
If I is a point or the empty set then the theorem is trivial, so let us assume that I is

one of the four intervals [a, b], (a, b), (a, b], or [a, b) for some real numbers a < b.
Let ε > 0 be arbitrary. By uniform continuity, there exists a δ > 0 such that

| f (x) − f (y)| < εwhenever x, y ∈ I are such that |x − y| < δ. By theArchimedean
principle, there exists an integer N > 0 such that (b − a)/N < δ.

Note that we can partition I into N intervals J1, . . . , JN , each of length (b −
a)/N . (How? One has to treat each of the cases [a, b], (a, b), (a, b], [a, b) slightly
differently.) By Proposition 11.3.12, we thus have
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∫

I
f ≤

N∑

k=1

(sup
x∈Jk

f (x))|Jk |

and
∫

I

f ≥
N∑

k=1

( inf
x∈Jk

f (x))|Jk |

so in particular

∫

I
f −

∫

I

f ≤
N∑

k=1

(sup
x∈Jk

f (x) − inf
x∈Jk

f (x))|Jk |.

However, we have | f (x) − f (y)| < ε for all x, y ∈ Jk , since |Jk | = (b − a)/N < δ.
In particular we have

f (x) < f (y) + ε for all x, y ∈ Jk .

Taking suprema in x , we obtain

sup
x∈Jk

f (x) ≤ f (y) + ε for all y ∈ Jk,

and then taking infima in y we obtain

sup
x∈Jk

f (x) ≤ inf
y∈Jk

f (y) + ε.

Inserting this bound into our previous inequality, we obtain

∫

I
f −

∫

I

f ≤
N∑

k=1

ε|Jk |,

but by Theorem 11.1.13 we thus have

∫

I
f −

∫

I

f ≤ ε(b − a).

But ε > 0 was arbitrary, while (b − a) is fixed. Thus
∫

I f − ∫
I
f cannot be positive.

By Lemma 11.3.3 and the definition of Riemann integrability we thus have that f is
Riemann integrable. �

Combining Theorem 11.5.1 with Theorem 9.9.16, we thus obtain
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Corollary 11.5.2 Let [a, b] be a closed interval, and let f : [a, b] → R be contin-
uous. Then f is Riemann integrable.

Note that this Corollary is not true if [a, b] is replaced by any other sort of interval,
since it is not even guaranteed then that continuous functions are bounded. For
instance, the function f : (0, 1) → R defined by f (x) := 1/x is continuous but not
Riemann integrable. However, if we assume that a function is both continuous and
bounded, we can recover Riemann integrability:

Proposition 11.5.3 Let I be a bounded interval, and let f : I → R be both contin-
uous and bounded. Then f is Riemann integrable on I .

Proof If I is a point or an empty set then the claim is trivial; if I is a closed interval
the claim follows from Corollary 11.5.2. So let us assume that I is of the form (a, b],
(a, b), or [a, b) for some a < b.

We have a bound M for f , so that −M ≤ f (x) ≤ M for all x ∈ I . Now let
0 < ε < (b − a)/2 be a small number. The function f when restricted to the interval
[a + ε, b − ε] is continuous, and hence Riemann integrable by Corollary 11.5.2. In
particular, we can find a piecewise constant function h : [a + ε, b − ε] → R which
majorizes f on [a + ε, b − ε] such that

∫

[a+ε,b−ε]
h ≤

∫

[a+ε,b−ε]
f + ε.

Define h̃ : I → R by

h̃(x) :=
{
h(x) if x ∈ [a + ε, b − ε]
M if x ∈ I\[a + ε, b − ε]

Clearly h̃ is piecewise constant on I and majorizes f ; by Theorem 11.2.16 we have

∫

I
h̃ = εM +

∫

[a+ε,b−ε]
h + εM ≤

∫

[a+ε,b−ε]
f + (2M + 1)ε.

In particular we have

∫

I
f ≤

∫

[a+ε,b−ε]
f + (2M + 1)ε.

A similar argument gives

∫

I

f ≥
∫

[a+ε,b−ε]
f − (2M + 1)ε

and hence
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∫

I
f −

∫

I

f ≤ (4M + 2)ε.

But ε is arbitrary, and so we can argue as in the proof of Theorem 11.5.1 to conclude
Riemann integrability. �

This gives a large class of Riemann integrable functions already; the bounded
continuous functions. But we can expand this class a little more, to include the
bounded piecewise continuous functions.

Definition 11.5.4 Let I be a bounded interval, and let f : I → R. We say that f is
piecewise continuous on I iff there exists a partitionP of I such that f |J is continuous
on J for all J ∈ P.

Example 11.5.5 The function f : [1, 3] → R defined by

F(x) :=
⎧
⎨

⎩

x2 if 1 ≤ x < 2
7 if x = 2
x3 if 2 < x ≤ 3

is not continuous on [1, 3], but it is piecewise continuous on [1, 3] (since it is con-
tinuous when restricted to [1, 2) or {2} or (2, 3], and those three intervals partition
[1, 3]).
Proposition 11.5.6 Let I be a bounded interval, and let f : I → R be both piece-
wise continuous and bounded. Then f is Riemann integrable.

Proof See Exercise 11.5.1. �

— Exercises —

Exercise 11.5.1 Prove Proposition 11.5.6. (Hint: use Theorem 11.4.1(a) and (g).)

Exercise 11.5.2 Let a < b be real numbers, and let f : [a, b] → R be a continuous, non-negative
function (so f (x) ≥ 0 for all x ∈ [a, b]). Suppose that

∫
[a,b] f = 0. Show that f (x) = 0 for all

x ∈ [a, b]. (Hint: argue by contradiction.)

11.6 Riemann Integrability of Monotone Functions

In addition to piecewise continuous functions, another wide class of functions is
Riemann integrable, namely the monotone functions. We give two instances of this:

Proposition 11.6.1 Let [a, b] be a closed and bounded interval and let f : [a, b] →
R be a monotone function. Then f is Riemann integrable on [a, b].
Remark 11.6.2 From Exercise 9.8.5 we know that there exist monotone functions
which are not piecewise continuous, so this proposition is not subsumed by Propo-
sition 11.5.6.
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Proof Without loss of generality we may take f to be monotone increasing (instead
of monotone decreasing). From Exercise 9.8.1 we know that f is bounded. Now let
N > 0 be an integer, and partition [a, b] into N half-open intervals {[a + b−a

N j, a +
b−a
N ( j + 1)) : 0 ≤ j ≤ N − 1} of length (b − a)/N , together with the point {b}.

Then by Proposition 11.3.12 we have

∫

I
f ≤

N−1∑

j=0

(

sup
x∈[a+ b−a

N j,a+ b−a
N ( j+1))

f (x)

)
b − a

N
,

(the point {b} clearly giving only a zero contribution). Since f is monotone increas-
ing, we thus have

∫

I
f ≤

N−1∑

j=0

f

(

a + b − a

N
( j + 1)

)
b − a

N
.

Similarly we have
∫

I

f ≥
N−1∑

j=0

f

(

a + b − a

N
j

)
b − a

N
.

Thus we have

∫

I
f −

∫

I

f ≤
N−1∑

j=0

(

f

(

a + b − a

N
( j + 1)

)

− f

(

a + b − a

N
j

))
b − a

N
.

Using telescoping series (Lemma 7.2.14) we thus have

∫

I
f −

∫

I

f ≤
(

f

(

a + b − a

N
(N )

)

− f

(

a + b − a

N
0

))
b − a

N

= ( f (b) − f (a))
b − a

N
.

But N was arbitrary, so we can conclude as in the proof of Theorem 11.5.1 that f is
Riemann integrable. �

Corollary 11.6.3 Let I be a bounded interval, and let f : I → R be both monotone
and bounded. Then f is Riemann integrable on I .

Proof See Exercise 11.6.1. �

We now give the famous integral test for determining convergence of monotone
decreasing series.



11.7 A Non-riemann Integrable Function 251

Proposition 11.6.4 (Integral test) Let f : [0,∞) → R be a monotone decreas-
ing function which is non-negative (i.e., f (x) ≥ 0 for all x ≥ 0). Then the sum∑∞

n=0 f (n) is convergent if and only if supN>0

∫
[0,N ] f is finite.

Proof See Exercise 11.6.3. �

Corollary 11.6.5 Let p be a real number. Then
∑∞

n=1
1
np converges absolutely when

p > 1 and diverges when p ≤ 1.

Proof See Exercise 11.6.5. �

— Exercises —

Exercise 11.6.1 Use Proposition 11.6.1 to prove Corollary 11.6.3. (Hint: adapt the proof of Propo-
sition 11.5.3.)

Exercise 11.6.2 Formulate a reasonable notion of a piecewise monotone function, and then show
that all bounded piecewise monotone functions are Riemann integrable.

Exercise 11.6.3 Prove Proposition 11.6.4. (Hint: what is the relationship between the sum
∑N

n=1

f (n), the sum
∑N−1

n=0 f (n), and the integral
∫
[0,N ] f ?)

Exercise 11.6.4 Give examples to show that both directions of the integral test break down if f is
not assumed to be monotone decreasing.

Exercise 11.6.5 Use Proposition 11.6.4 to prove Corollary 11.6.5. (For this exercise, you may use
the second Fundamental Theorem of Calculus (Theorem 11.9.4); there is no circularity, because
Corollary 11.6.5 is not used in the proof of that theorem.)

11.7 A Non-riemann Integrable Function

We have shown that there are large classes of bounded functions which are Riemann
integrable. Unfortunately, there do exist bounded functions which are not Riemann
integrable:

Proposition 11.7.1 Let f : [0, 1] → R be the discontinuous function

f (x) :=
{
1 if x ∈ Q
0 if x /∈ Q

considered in Example 9.3.21. Then f is bounded but not Riemann integrable.

Proof It is clear that f is bounded, so let us show that it is not Riemann integrable.
Let P be any partition of [0, 1]. For any J ∈ P, observe that if J is not a point or

the empty set, then
sup
x∈J

f (x) = 1

(by Proposition 5.4.14). In particular we have
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(

sup
x∈J

f (x)

)

|J | = |J |.

(Note this is also true when J is a point, since both sides are zero.) In particular we
see that

U ( f,P) =
∑

J∈P:J �=∅
|J | = |[0, 1]| = 1

by Theorem 11.1.13; note that the empty set does not contribute anything to the total
length. In particular we have

∫
[0,1] f = 1, by Proposition 11.3.12.

A similar argument gives that

inf
x∈J

f (x) = 0

for all J (other than points or the empty set), and so

L( f,P) =
∑

J∈P:J �=∅
0 = 0.

In particular we have
∫

[0,1] f = 0, by Proposition 11.3.12. Thus the upper and lower

Riemann integrals do not match, and so this function is not Riemann integrable. �

Remark 11.7.2 As you can see, it is only rather “artificial” bounded functions which
are not Riemann integrable. Because of this, the Riemann integral is good enough
for a large majority of cases. There are ways to generalize or improve this integral,
though. One of these is the Lebesgue integral, which we will define in Chapter 8.
Another is the Riemann–Stieltjes integral

∫
I f dα, where α : I → R is a monotone

increasing function, which we define in the next section.

11.8 The Riemann–Stieltjes Integral

Let I be a bounded interval, let α : I → R be a monotone increasing function, and
let f : I → R be a function. Then there is a generalization of the Riemann integral,
knownas theRiemann–Stieltjes integral. This integral is defined just like theRiemann
integral, but with one twist: instead of taking the length |J | of intervals J , we take
the α-length α[J ], defined as follows.

Definition 11.8.1 (α-length)] Let I be a bounded interval, let X be a interval that
is closed (in the sense of Definition 9.1.15) containing I , and let α : X → R be a
monotone increasing function (i.e., α(y) ≥ α(x) whenever x, y ∈ X are such that
y ≥ x). Then we define the α-length α[I ] of I by the following rules.
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(i) If I is empty, then α[I ] := 0.
(ii) If I = {a} is a point, then α[I ] := limx→a+:x∈X α(x) − limx→a−:x∈X α(x), with

the convention that limx→a+:x∈X α(x) (resp. limx→a−:x∈X α(x)) is equal to α(a)

when X is the right-endpoint (resp. left-endpoint) of X ).
(iii) If I = (a, b), set α[I ] := limx→b−:x∈X α(x) − limx→b+:x∈X α(x).
(iv) If I is equal to (a, b], [a, b), or [a, b], set α[I ] equal to α((a, b)) + α({b}),

α({a}) + α((a, b)), or α({a}) + α((a, b)) + α({b}), respectively.
This definition is complicated, but note that in the special case where α is contin-

uous, we have the simpler formula

α[I ] = α(b) − α(a) (11.1)

whenever a ≤ b and I is equal to (a, b), (a, b], [a, b), or [a, b]. Using this simpli-
fied formula, one can also define α[I ] for other continuous functions that are not
necessarily monotone increasing.

Example 11.8.2 Letα : [0,+∞) → R be the functionα(x) := x2. Thenα[[2, 3]] =
α(3) − α(2) = 9 − 4 = 5, α[{2}] = 0 and α[∅] = 0.

Example 11.8.3 Letα : R → R be the identity functionα(x) := x . Thenα[I ] = |I |
for all bounded intervals I (why?) Thus the notion of length is a special case of the
notion of α-length.

We sometimes write α|ba or α(x)|x=b
x=a instead of α[[a, b]].

One of the key theorems for the theory of the Riemann integral was Theorem
11.1.13, which concerned length and partitions, and in particular showed that |I | =∑

J∈P |J | whenever P was a partition of I . We now generalize this slightly.

Lemma 11.8.4 Let I be a bounded interval, let α : X → R be a monotone increas-
ing or continuous function defined on some interval X is closed and which contains
I , and let P be a partition of I . Then we have

α[I ] =
∑

J∈P
α[J ].

Proof See Exercise 11.8.1. �
We can now define a generalization of Definition 11.2.9.

Definition 11.8.5 (P.c. Riemann–Stieltjes integral) Let I be a bounded interval, and
let P be a partition of I . Let α : X → R be a monotone increasing or continuous
function definedon some interval X which is closed and contains I , and let f : I → R
be a function which is piecewise constant with respect to P. Then we define

p.c.
∫

[P]
f dα :=

∑

J∈P
cJα[J ]

where cJ is the constant value of f on J .
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Example 11.8.6 Let f : [1, 3] → R be the function

f (x) =
{
4 when x ∈ [1, 2)
2 when x ∈ [2, 3],

let α : [0,+∞) → R be the function α(x) := x2, and let P be the partition P :=
{[1, 2), [2, 3]}. Then

p.c.
∫

[P]
f dα = c[1,2)α[[1, 2)] + c[2,3]α[[2, 3]]

= 4(α(2) − α(1)) + 2(α(3) − α(2)) = 4 × 3 + 2 × 5 = 22.

Example 11.8.7 Let α : R → R be the identity function α(x) := x . Then for any
bounded interval I , any partitionP of I , and any function f that is piecewise constant
with respect to P, we have p.c.

∫
[P] f dα = p.c.

∫
[P] f (why?).

We can obtain an exact analogue of Proposition 11.2.13 by replacing all the
integrals p.c.

∫
[P] f in the proposition with p.c.

∫
[P] f dα (Exercise 11.8.2). We can

thus define p.c.
∫
I f dα for any piecewise constant function f : I → R and any

α : X → R defined on an interval that is closed and contains I , in analogy to before,
by the formula

p.c.
∫

I
f dα := p.c.

∫

[P]
f dα

for any partition P on I with respect to which f is piecewise constant.
Let us now assume that α is monotone increasing. This implies that α(I ) ≥ 0

for all intervals in X (why?). From this one can easily verify that all the results
from Theorem 11.2.16 continue to hold when the integrals p.c.

∫
I f are replaced by

p.c.
∫
I f dα, and the lengths |I | are replaced by the α-lengths α(I ); see Exercise

11.8.3.
We can then define upper and lower Riemann–Stieltjes integrals

∫
I f dα and∫

I
f dα whenever f : I → R is bounded and α is defined on an interval that is

closed and contains I , by the usual formulae

∫

I
f dα := inf{p.c.

∫

I
g dα : g is p.c. on I and majorizes f }

and ∫

I

f dα := sup{p.c.
∫

I
g dα : g is p.c. on I and minorizes f }.

We then say that f is Riemann–Stieltjes integrable on I with respect to α if the upper
and lower Riemann–Stieltjes integrals match, in which case we set
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∫

I
f dα :=

∫

I
f dα =

∫

I

f dα.

As before, when α is the identity function α(x) := x then the Riemann–Stieltjes
integral is identical to the Riemann integral; thus the Riemann–Stieltjes integral is a
generalization of the Riemann integral. (We shall see another comparison between
the two integrals a little later, in Corollary 11.10.3.) Because of this, we sometimes
write

∫
I f as

∫
I f dx or

∫
I f (x) dx .

Most (but not all) of the remaining theory of the Riemann integral then can be
carried over without difficulty, replacing Riemann integrals with Riemann–Stieltjes
integrals and lengths with α-lengths. There are a couple results which break down;
Theorem 11.4.1(g), Proposition 11.5.3, and Proposition 11.5.6 are not necessarily
true when α is discontinuous at key places (e.g., if f and α are both discontinuous
at the same point, then

∫
I f dα is unlikely to be defined). However, Theorem 11.5.1

is still true (Exercise 11.8.4).

— Exercises —

Exercise 11.8.1 Prove Lemma 11.8.4. (Hint: modify the proof of Theorem 11.1.13.)

Exercise 11.8.2 State and prove a version of Proposition 11.2.13 for theRiemann–Stieltjes integral.

Exercise 11.8.3 State and prove a version of Theorem 11.2.16 for the Riemann–Stieltjes integral.

Exercise 11.8.4 State and prove a version of Theorem 11.5.1 for the Riemann–Stieltjes integral.

Exercise 11.8.5 Let sgn : R → R be the signum function

sgn(x) :=
⎧
⎨

⎩

1 when x > 0
0 when x = 0
−1 when x < 0.

Let f : [−1, 1] → R be a continuous function. Show that f is Riemann–Stieltjes integrable with
respect to sgn, and that ∫

[−1,1]
f d sgn = 2 f (0).

(Hint: for every ε > 0, find piecewise constant functions majorizing and minorizing f whose
Riemann–Stieltjes integral is ε-close to 2 f (0).)

11.9 The Two Fundamental Theorems of Calculus

We now have enough machinery to connect integration and differentiation via the
familiar fundamental theorem of calculus. Actually, there are two such theorems,
one involving the derivative of the integral, and the other involving the integral of
the derivative.
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Theorem 11.9.1 (First Fundamental Theorem of Calculus) Let a < b be real num-
bers, and let f : [a, b] → R be a Riemann integrable function. Let F : [a, b] → R
be the function

F(x) :=
∫

[a,x]
f.

Then F is continuous. Furthermore, if x0 ∈ [a, b] and f is continuous at x0, then F
is differentiable at x0, and F ′(x0) = f (x0).

Proof Since f is Riemann integrable, it is bounded (by Definition 11.3.4). Thus we
have some real number M such that −M ≤ f (x) ≤ M for all x ∈ [a, b].

Now let x < y be two elements of [a, b]. Then notice that

F(y) − F(x) =
∫

[a,y]
f −

∫

[a,x]
f =

∫

[x,y]
f

by Theorem 11.4.1(h). By Theorem 11.4.1(e) we thus have

∫

[x,y]
f ≤

∫

[x,y]
M = p.c.

∫

[x,y]
M = M(y − x)

and ∫

[x,y]
f ≥

∫

[x,y]
−M = p.c.

∫

[x,y]
−M = −M(y − x)

and thus
|F(y) − F(x)| ≤ M(y − x).

This is for y > x . By interchanging x and y we thus see that

|F(y) − F(x)| ≤ M(x − y)

when x > y. Also, we have F(y) − F(x) = 0 when x = y. Thus in all three cases
we have

|F(y) − F(x)| ≤ M |x − y|.

This implies that F is uniformly continuous (in fact it is Lipschitz continuous, see
Exercise 10.2.6), and hence continuous.

Now suppose that x0 ∈ [a, b], and f is continuous at x0. Choose any ε > 0. Then
by continuity, we can find a δ > 0 such that | f (x) − f (x0)| ≤ ε for all x in the
interval I := [x0 − δ, x0 + δ] ∩ [a, b], or in other words

f (x0) − ε ≤ f (x) ≤ f (x0) + ε for all x ∈ I.
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We now show that

|F(y) − F(x0) − f (x0)(y − x0)| ≤ ε|y − x0|

for all y ∈ I , since Proposition 10.1.7 will then imply that F is differentiable at x0
with derivative F ′(x0) = f (x0) as desired.

Now fix y ∈ I . There are three cases. If y = x0, then F(y) − F(x0) − f (x0)(y −
x0) = 0 and so the claim is obvious. If y > x0, then

F(y) − F(x0) =
∫

[x0,y]
f.

Since x0, y ∈ I , and I is a connected set, then [x0, y] is a subset of I , and thus we
have

f (x0) − ε ≤ f (x) ≤ f (x0) + ε for all x ∈ [x0, y],

and thus

( f (x0) − ε)(y − x0) ≤
∫

[x0,y]
f ≤ ( f (x0) + ε)(y − x0)

and so in particular

|F(y) − F(x0) − f (x0)(y − x0)| ≤ ε|y − x0|

as desired. The case y < x0 is similar and is left to the reader. �

Example 11.9.2 Recall in Exercise 9.8.5 that we constructed a monotone function
f : R → R which was discontinuous at every rational and continuous everywhere
else. ByProposition 11.6.1, thismonotone function isRiemann integrable on [0, 1]. If
we define F : [0, 1] → R by F(x) := ∫

[0,x] f , then F is a continuous function which
is differentiable at every irrational number. On the other hand, F is non-differentiable
at every rational number; see Exercise 11.9.1.

Informally, the first fundamental theorem of calculus asserts that

(∫

[a,x]
f

)′
(x) = f (x)

given a certain number of assumptions on f . Roughly, this means that the derivative
of an integral recovers the original function. Now we show the reverse, that the
integral of a derivative recovers the original function.

Definition 11.9.3 (Antiderivatives) Let I be a bounded interval, and let f : I → R
be a function. We say that a function F : I → R is an antiderivative of f if F is
differentiable on I and F ′(x) = f (x) for all limit points x of I .
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Theorem 11.9.4 (Second Fundamental Theorem of Calculus) Let a ≤ b be real
numbers, and let f : [a, b] → R be a Riemann integrable function. If F : [a, b] → R
is an antiderivative of f , then

∫

[a,b]
f = F(b) − F(a).

Proof The claim is trivial for a = b, so suppose that a < b; in particular every point
in [a, b] is now a limit point. We will use Riemann sums. The idea is to show that

U ( f,P) ≥ F(b) − F(a) ≥ L( f,P)

for every partition P of [a, b]. The left inequality asserts that F(b) − F(a) is a lower
bound for {U ( f,P) : P is a partition of [a, b]}, while the right inequality asserts
that F(b) − F(a) is an upper bound for {L( f,P) : P is a partition of [a, b]}. But by
Proposition 11.3.12, this means that

∫

[a,b]
f ≥ F(b) − F(a) ≥

∫

[a,b]
f,

but since f is assumed to be Riemann integrable, both the upper and lower Riemann
integral equal

∫
[a,b] f . The claim follows.

We have to show the bound U ( f,P) ≥ F(b) − F(a) ≥ L( f,P). We shall just
show the first inequality U ( f,P) ≥ F(b) − F(a); the other inequality is similar.

LetP be apartition of [a, b]. FromLemma11.8.4 (noting fromProposition 10.1.10
that F is continuous) we have

F(b) − F(a) =
∑

J∈P
F[J ] =

∑

J∈P:J �=∅
F[J ],

while from definition we have

U ( f,P) =
∑

J∈P:J �=∅
sup
x∈J

f (x)|J |.

Thus it will suffice to show that

F[J ] ≤ sup
x∈J

f (x)|J |

for all J ∈ P (other than the empty set).
When J is a point then the claim is clear, since both sides are zero. Now suppose

that J = [c, d], (c, d], [c, d), or (c, d) for some c < d. Then the left-hand side is
F[J ] = F(d) − F(c). (Note that as F is continuous, we may use the simplified
formula (11.1) for F[J ].) By the mean-value theorem, this is equal to (d − c)F ′(e)
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for some e ∈ J . But since F ′(e) = f (e), we thus have

F[J ] = (d − c) f (e) = f (e)|J | ≤ sup
x∈J

f (x)|J |

as desired. �

Of course, as you are all aware, one can use the second fundamental theorem
of calculus to compute integrals relatively easily provided that you can find an
antiderivative of the integrand f . Note that the first fundamental theorem of calcu-
lus ensures that every continuous Riemann integrable function has an antiderivative.
For discontinuous functions, the situation is more complicated and is a graduate-
level real analysis topic which will not be discussed here. Also, not every function
with an antiderivative is Riemann integrable; as an example, consider the func-
tion F : [−1, 1] → R defined by F(x) := x2 sin(1/x3)when x �= 0, and F(0) := 0.
Then F is differentiable everywhere (why?), so F ′ has an antiderivative, but F ′ is
unbounded (why?), and so is not Riemann integrable.

We now pause to mention the infamous “+C” ambiguity in antiderivatives:

Lemma 11.9.5 Let I be a bounded interval, and let f : I → R be a function. Let
F : I → R and G : I → R be two antiderivatives of f . Then there exists a real
number C such that F(x) = G(x) + C for all x ∈ I .

Proof See Exercise 11.9.2. �

— Exercises —

Exercise 11.9.1 Let f : [0, 1] → R be the function in Exercise 9.8.5. Show that for every rational
number q ∈ Q ∩ (0, 1), the function F : [0, 1] → R defined by the formula F(x) := ∫ x

0 f (y) dy is
not differentiable at q.

Exercise 11.9.2 Prove Lemma 11.9.5. (Hint: apply the mean-value theorem, Corollary 10.2.9,
or Proposition 10.3.3, to the function F − G. One can also prove this lemma using the second
Fundamental theorem of calculus (how?), but one has to be careful since we do not assume f to be
Riemann integrable.)

Exercise 11.9.3 Let a < b be real numbers, and let f : [a, b] → R be a monotone increasing
function. Let F : [a, b] → R be the function F(x) := ∫

[a,x] f . Let x0 be an element of (a, b). Show
that F is differentiable at x0 if and only if f is continuous at x0. (Hint: one direction is taken care
of by one of the fundamental theorems of calculus. For the other, consider left and right limits of f
and argue by contradiction.)

11.10 Consequences of the Fundamental Theorems

We can now give a number of useful consequences of the fundamental theorems of
calculus (beyond the obvious application, that one can now compute any integral for
which an antiderivative is known). The first application is the familiar integration by
parts formula.
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Proposition 11.10.1 (Integration by parts formula) Let I = [a, b], and let F : [a, b]
→ R and G : [a, b] → R be differentiable functions on [a, b] such that F ′ and G ′
are Riemann integrable on I . Then we have

∫

[a,b]
FG ′ = F(b)G(b) − F(a)G(a) −

∫

[a,b]
F ′G.

Proof See Exercise 11.10.1. �

Next,we show that under certain circumstances, one canwrite aRiemann–Stieltjes
integral as a Riemann integral. We begin with piecewise constant functions.

Theorem 11.10.2 Let α : [a, b] → R be a monotone increasing function, and sup-
pose that α is also differentiable on [a, b], with α′ being Riemann integrable. Let
f : [a, b] → R be a piecewise constant function on [a, b]. Then f α′ is Riemann
integrable on [a, b], and ∫

[a,b]
f dα =

∫

[a,b]
f α′.

Proof Since f is piecewise constant, it is Riemann integrable, and since α′ is also
Riemann integrable, then f α′ is Riemann integrable by Theorem 11.4.5.

Suppose that f is piecewise constant with respect to some partition P of [a, b];
without loss of generality we may assume that P does not contain the empty set.
Then we have ∫

[a,b]
f dα = p.c.

∫

[P]
f dα =

∑

J∈P
cJα[J ]

where cJ is the constant value of f on J . On the other hand, from Theorem 11.4.1(h)
(generalized to partitions of arbitrary length—why is this generalization true?) we
have ∫

[a,b]
f α′ =

∑

J∈P

∫

J
f α′ =

∑

J∈P

∫

J
cJα

′ =
∑

J∈P
cJ

∫

J
α′.

But by the second fundamental theorem of calculus (Theorem 11.9.4),
∫
J α′ = α[J ],

and the claim follows. �

Corollary 11.10.3 Let α : [a, b] → R be a monotone increasing function, and sup-
pose that α is also differentiable on [a, b], with α′ being Riemann integrable. Let
f : [a, b] → R be a function which is Riemann–Stieltjes integrable with respect to
α on [a, b]. Then f α′ is Riemann integrable on [a, b], and

∫

[a,b]
f dα =

∫

[a,b]
f α′.

Proof Note that since f and α′ are bounded, then f α′ must also be bounded. Also,
since α is monotone increasing and differentable, α′ is non-negative.
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Let ε > 0. Then, we can find a piecewise constant function f majorizing f on
[a, b], and a piecewise constant function f minorizing f on [a, b], such that

∫

[a,b]
f dα − ε ≤

∫

[a,b]
f dα ≤

∫

[a,b]
f dα ≤

∫

[a,b]
f dα + ε.

Applying Theorem 11.10.2, we obtain

∫

[a,b]
f dα − ε ≤

∫

[a,b]
f α′ ≤

∫

[a,b]
f α′ ≤

∫

[a,b]
f dα + ε.

Since α′ is non-negative and f minorizes f , then f α′ minorizes f α′. Thus∫
[a,b] f α

′ ≤ ∫
[a,b] f α

′ (why?). Thus

∫

[a,b]
f dα − ε ≤

∫

[a,b]
f α′.

Similarly we have ∫

[a,b]
f α′ ≤

∫

[a,b]
f dα + ε.

Since these statements are true for any ε > 0, we must have

∫

[a,b]
f dα ≤

∫

[a,b]
f α′ ≤

∫

[a,b]
f α′ ≤

∫

[a,b]
f dα

and the claim follows. �

Remark 11.10.4 Informally, Corollary 11.10.3 asserts that f dα is essentially equiv-
alent to f dαdxdx , when α is differentiable. However, the advantage of the Riemann–
Stieltjes integral is that it still makes sense even when α is not differentiable.

We now build up to the familiar change of variables formula. We first need a
preliminary lemma.

Lemma 11.10.5 [Change of variables formula I] Let [a, b] be a closed interval,
and let φ : [a, b] → [φ(a), φ(b)] be a continuous monotone increasing function.
Let f : [φ(a), φ(b)] → R be a piecewise constant function on [φ(a), φ(b)]. Then
f ◦ φ : [a, b] → R is also piecewise constant on [a, b], and

∫

[a,b]
f ◦ φ dφ =

∫

[φ(a),φ(b)]
f.

Proof We give a sketch of the proof, leaving the gaps to be filled in Exercise 11.10.2.
Let P be a partition of [φ(a), φ(b)] such that f is piecewise constant with respect to
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P; we may assume that P does not contain the empty set. For each J ∈ P, let cJ be
the constant value of f on J , thus

∫

[φ(a),φ(b)]
f =

∑

J∈P
cJ |J |.

For each interval J , let φ−1(J ) be the set φ−1(J ) := {x ∈ [a, b] : φ(x) ∈ J }. Then
φ−1(J ) is connected (why?) and is thus an interval. Furthermore, cJ is the constant
value of f ◦ φ on φ−1(J ) (why?). Thus, if we defineQ := {φ−1(J ) : J ∈ P} (ignor-
ing the fact thatQ has been used to represent the rational numbers), thenQ partitions
[a, b] (why?), and f ◦ φ is piecewise constant with respect to Q (why?). Thus

∫

[a,b]
f ◦ φ dφ =

∫

[Q]
f ◦ φ dφ =

∑

J∈P
cJφ[φ−1(J )].

But φ[φ−1(J )] = |J | (why?), and the claim follows. �

Proposition 11.10.6 (Change of variables formula II)Let [a, b] be a closed interval,
and let φ : [a, b] → [φ(a), φ(b)] be a continuous monotone increasing function.
Let f : [φ(a), φ(b)] → R be a Riemann integrable function on [φ(a), φ(b)]. Then
f ◦ φ : [a, b] → R is Riemann–Stieltjes integrable with respect to φ on [a, b], and

∫

[a,b]
f ◦ φ dφ =

∫

[φ(a),φ(b)]
f.

Proof This will be obtained from Lemma 11.10.5 in a similar manner to how Corol-
lary 11.10.3 was obtained from Theorem 11.10.2. First observe that since f is Rie-
mann integrable, it is bounded, and then f ◦ φ must also be bounded (why?).

Let ε > 0. Then, we can find a piecewise constant function f majorizing f on
[φ(a), φ(b)], and a piecewise constant function f minorizing f on [φ(a), φ(b)],
such that

∫

[φ(a),φ(b)]
f − ε ≤

∫

[φ(a),φ(b)]
f ≤

∫

[φ(a),φ(b)]
f ≤

∫

[φ(a),φ(b)]
f + ε.

Applying Lemma 11.10.5, we obtain

∫

[φ(a),φ(b)]
f − ε ≤

∫

[a,b]
f ◦ φ dφ ≤

∫

[a,b]
f ◦ φ dφ ≤

∫

[φ(a),φ(b)]
f + ε.

Since f ◦ φ is piecewise constant and minorizes f ◦ φ, we have

∫

[a,b]
f ◦ φ dφ ≤

∫

[a,b]
f ◦ φ dφ
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while similarly we have

∫

[a,b]
f ◦ φ dφ ≥

∫

[a,b]
f ◦ φ dφ.

Thus

∫

[φ(a),φ(b)]
f − ε ≤

∫

[a,b]
f ◦ φ dφ ≤

∫

[a,b]
f ◦ φ dφ ≤

∫

[φ(a),φ(b)]
f + ε.

Since ε > 0 was arbitrary, this implies that

∫

[φ(a),φ(b)]
f ≤

∫

[a,b]
f ◦ φ dφ ≤

∫

[a,b]
f ◦ φ dφ ≤

∫

[φ(a),φ(b)]
f

and the claim follows. �

Combining this formula with Corollary 11.10.3, one immediately obtains the
following familiar formula:

Proposition 11.10.7 (Change of variables formula III) Let [a, b] be a closed inter-
val, and let φ : [a, b] → [φ(a), φ(b)] be a differentiable monotone increasing func-
tion such that φ′ is Riemann integrable. Let f : [φ(a), φ(b)] → R be a Riemann
integrable function on [φ(a), φ(b)]. Then ( f ◦ φ)φ′ : [a, b] → R is Riemann inte-
grable on [a, b], and ∫

[a,b]
( f ◦ φ)φ′ =

∫

[φ(a),φ(b)]
f.

— Exercises —

Exercise 11.10.1 Prove Proposition 11.10.1. (Hint: first use Corollary 11.5.2 and Theorem 11.4.5
to show that FG ′ and F ′G areRiemann integrable. Then use the product rule (Theorem10.1.13(d)).)

Exercise 11.10.2 Fill in the gaps marked (why?) in the proof of Lemma 11.10.5.

Exercise 11.10.3 Let a < b be real numbers, and let f : [a, b] → R be a Riemann integrable func-
tion. Let g : [−b,−a] → R be defined by g(x) := f (−x). Show that g is also Riemann integrable,
and

∫
[−b,−a] g = ∫

[a,b] f .

Exercise 11.10.4 What is the analogue of Proposition 11.10.7 when φ is monotone decreasing
instead of monotone increasing? (When φ is neither monotone increasing or monotone decreasing,
the situation becomes significantly more complicated.)



Appendix A
The Basics of Mathematical Logic

The purpose of this appendix is to give a quick introduction to mathematical logic,
which is the language one uses to conduct rigorous mathematical proofs. Knowing
how mathematical logic works is also very helpful for understanding the mathemat-
ical way of thinking, which once mastered allows you to approach mathematical
concepts and problems in a clear and confident way—including many of the proof-
type questions in this text.

Writing logically is a very useful skill. It is somewhat related to, but not the same
as, writing clearly, or efficiently, or convincingly, or informatively; ideally one would
want to do all of these at once, but sometimes one has to make compromises, though
with practice you’ll be able to achieve more of your writing objectives concurrently.
Thus a logical argument may sometimes look unwieldy, excessively complicated, or
otherwise appear unconvincing. The big advantage of writing logically, however, is
that one can be absolutely sure that your conclusionwill be correct, as long as all your
hypotheses were correct and your steps were logical; using other styles of writing
one can be reasonably convinced that something is true, but there is a difference
between being convinced and being sure.

Being logical is not the only desirable trait in writing, and in fact sometimes it
gets in the way; mathematicians for instance often resort to short informal arguments
which are not logically rigorous when they want to convince other mathematicians
of a statement without going through all of the long details, and the same is true of
course for non-mathematicians as well. So saying that a statement or argument is
“not logical” is not necessarily a bad thing; there are often many situations when
one has good reasons not to be emphatic about being logical. However, one should
be aware of the distinction between logical reasoning and more informal means of
argument, and not try to pass off an illogical argument as being logically rigorous.
In particular, if an exercise is asking for a proof, then it is expecting you to be logical
in your answer.

Logic is a skill that needs to be learnt like any other, but this skill is also innate
to all of you—indeed, you probably use the laws of logic unconsciously in your
everyday speech and in your own internal (non-mathematical) reasoning. However,
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it does take a bit of training and practice to recognize this innate skill and to apply it to
abstract situations such as those encountered in mathematical proofs. Because logic
is innate, the laws of logic that you learn should make sense—if you find yourself
having to memorize one of the principles or laws of logic here, without feeling a
mental “click” or comprehending why that law should work, then you will probably
not be able to use that law of logic correctly and effectively in practice. So, please
don’t study this appendix the way you might cram before a final—that is going to
be useless. Instead, put away your highlighter pen, and read and understand this
appendix rather than merely studying it!

A.1 Mathematical Statements

Any mathematical argument proceeds in a sequence of mathematical statements.
These are precise statements concerning various mathematical objects (numbers,
vectors, functions, etc.), the operations between them (addition, multiplication, dif-
ferentiation, etc.), and the relations between them (equality, inequality, etc.). These
objects can either be constants or variables; more on this later. Statements1 are either
true or false.

Example A.1.1 2 + 2 = 4 is a true statement; 2 + 2 = 5 is a false statement.

Not every combination of mathematical symbols is a statement. For instance,

= 2++ 4 = − = 2

is not a statement; we sometimes call it ill-formed or ill-defined. The statements in
the previous example are well-formed or well-defined. Thus well-formed statements
can be either true or false; ill-formed statements are considered to be neither true
nor false (in fact, they are usually not considered statements at all). A more subtle
example of an ill-formed statement is

0/0 = 1;

division by zero is undefined, and so the above statement is ill-formed. A logical
argument should not contain any ill-formed statements, thus for instance if an argu-
ment uses a statement such as x/y = z, it needs to first ensure that y is not equal to
zero. Many purported proofs of “0=1” or other false statements rely on overlooking
this “statements must be well-formed” criterion.

Many of you have probably written ill-formed or otherwise inaccurate statements
in your mathematical work, while intending to mean some other, well-formed and
accurate statement. To a certain extent this is permissible—it is similar tomisspelling

1 More precisely, statements with no free variables are either true or false. We shall discuss free
variables later on in this appendix.
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some words in a sentence, or using a slightly inaccurate or ungrammatical word in
place of a correct one (“She ran good” instead of “She ran well”). In many cases,
the reader (or grader) can detect this misstep and correct for it. However, it looks
unprofessional and suggests that you may not know what you are talking about.
And if indeed you actually do not know what you are talking about, and are applying
mathematical or logical rules blindly, thenwriting an ill-formed statement canquickly
confuse you intowritingmore andmore nonsense—usually of the sortwhich receives
no credit in grading. So it is important, especially when just learning a subject, to
take care in keeping statements well-formed and precise. Once you have more skill
and confidence, of course you can afford once again to speak loosely, because you
will know what you are doing and won’t be in as much danger of veering off into
nonsense.

One of the basic axioms ofmathematical logic is that every well-formed statement
is either true or false, but not both. (Though if there are free variables, the truth
of a statement may depend on the values of these variables. More on this later.)
Furthermore, the truth or falsity of a statement is intrinsic to the statement and does
not depend on the opinion of the person viewing the statement (as long as all the
definitions and notations are agreed upon, of course). So to prove that a statement
is true, it suffices to show that it is not false, while to show that a statement is false,
it suffices to show that it is not true; this is the principle underlying the powerful
technique of proof by contradiction, which we discuss later. This axiom is viable as
long as one is working with precise concepts, for which the truth or falsity can be
determined (at least in principle) in an objective and consistent manner. However,
if one is working in very non-mathematical situations, then this axiom becomes
much more dubious, and so it can be a mistake to apply mathematical logic to
non-mathematical situations. (For instance, a statement such as “this rock weighs 52
pounds” is reasonably precise andobjective, and so it is fairly safe to usemathematical
reasoning to manipulate it, whereas vague statements such as “this rock is heavy”,
“this piece of music is beautiful”, or “God exists” are much more problematic. So
while mathematical logic is a very useful and powerful tool, it still does have some
limitations of applicability.) One can still attempt to apply logic (or principles similar
to logic) in these cases (for instance, by creating a mathematical model of a real-life
phenomenon), but this is now science or philosophy, not mathematics, and we will
not discuss it further here.

Remark A.1.2 There are othermodels of logicwhich attempt to dealwith statements
that are not definitely true or definitely false, such as modal logic, intuitionist logic,
or fuzzy logic, but these are well beyond the scope of this text.

Being true is different from being useful or efficient. For instance, the statement

2 = 2

is true but unlikely to be very useful. The statement

4 ≤ 4
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is also true, but not very efficient (the statement 4 = 4 is more precise). It may also
be that a statement may be false yet still be useful, for instance

π = 22/7

is false, but is still useful as a first approximation. In mathematical reasoning, we
only concern ourselves with truth rather than usefulness or efficiency; the reason is
that truth is objective (everybody can agree on it), and we can deduce true statements
from precise rules, whereas usefulness and efficiency are to some extent matters of
opinion and do not follow precise rules. Also, even if some of the individual steps in
an argument may not seem very useful or efficient, it is still possible (indeed, quite
common) for the final conclusion to be quite non-trivial (i.e., not obviously true) and
useful.

Statements are different from expressions. Statements are true or false; expressions
are a sequence of mathematical symbols which produces some mathematical object
(a number, matrix, function, set, etc.) as its value. For instance

2 + 3 ∗ 5

is an expression, not a statement; it produces a number as its value. Meanwhile,

2 + 3 ∗ 5 = 17

is a statement, not an expression. Thus it does not make any sense to ask whether
2 + 3 ∗ 5 is true or false. As with statements, expressions can be well-defined or
ill-defined; 2 + 3/0, for instance, is ill-defined. More subtle examples of ill-defined
expressions arise when, for instance, attempting to add a vector to a matrix or eval-
uating a function outside of its domain, e.g., sin−1(2).

One can make statements out of expressions by using relations such as =, <,
≥, ∈, ⊂ or by using properties (such as “is prime”, “is continuous”, “is invertible”)
For instance, “30 + 5 is prime” is a statement, as is “30 + 5 ≤ 42 − 7”. Note that
mathematical statements are allowed to contain English words.

One can make a compound statement from more primitive statements by using
logical connectives such as and, or, not, if-then, if-and-only-if. We give some exam-
ples below, in decreasing order of intuitiveness.

Conjunction. If X is a statement and Y is a statement, the statement “X and Y ”
is true if X and Y are both true and is false otherwise. For instance, “2 + 2 = 4
and 3 + 3 = 6” is true, while “2 + 2 = 4 and 3 + 3 = 5” is not. Another example:
“2 + 2 = 4 and 2 + 2 = 4” is true, even if it is a bit redundant; logic is concerned
with truth, not efficiency.

Due to the expressiveness of the English language, one can reword the statement
“X and Y ” in many ways, e.g., “X and also Y ”, or “Both X and Y are true”, etc.
Interestingly, the statement “X , but Y ” is logically the same statement as “X and Y ”,
but they have different connotations (both statements affirm that X and Y are both
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true, but the first version suggests that X and Y are in contrast to each other, while
the second version suggests that X and Y support each other). Again, logic is about
truth, not about connotations or suggestions.

Disjunction. If X is a statement and Y is a statement, the statement “X or Y ” is true
if either X or Y is true, or both. For instance, “2 + 2 = 4 or 3 + 3 = 5” is true, but
“2 + 2 = 5 or 3 + 3 = 5” is not. Also “2 + 2 = 4 or 3 + 3 = 6” is true (even if it is
a bit inefficient; it would be a stronger statement to say “2 + 2 = 4 and 3 + 3 = 6”).
Thus by default, the word “or” in mathematical logic defaults to inclusive or. The
reason we do this is that with inclusive or, to verify “X or Y ”, it suffices to verify
that just one of X or Y is true; we don’t need to show that the other one is false.
So we know, for instance, that “2 + 2 = 4 or 2353 + 5931 = 7284” is true without
having to look at the second equation. As in the previous discussion, the statement
“2 + 2 = 4 or 2 + 2 = 4” is true, even if it is highly inefficient.

If one really does want to use exclusive or, use a statement such as “Either X or
Y is true, but not both” or “Exactly one of X or Y is true”. Exclusive or does come
up in mathematics, but nowhere near as often as inclusive or.

Negation. The statement “X is not true” or “X is false”, or “It is not the case that
X”, is called the negation of X and is true if and only if X is false, and is false if and
only if X is true. For instance, the statement “It is not the case that 2 + 2 = 5” is a
true statement. Of course we could abbreviate this statement to “2 + 2 �= 5”.

Negations convert “and” into “or”. For instance, the negation of “Jane Doe has
black hair and Jane Doe has blue eyes” is “Jane Doe doesn’t have black hair or
doesn’t have blue eyes”, not “Jane Doe doesn’t have black hair and doesn’t have
blue eyes” (can you see why?). Similarly, if x is an integer, the negation of “x is
even and non-negative” is “x is odd or negative”, not “x is odd and negative”. (Note
how it is important here that or is inclusive rather than exclusive.) Or the negation of
“x ≥ 2 and x ≤ 6” (i.e., “2 ≤ x ≤ 6”) is “x < 2 or x > 6”, not “x < 2 and x > 6”
or “2 < x > 6”.

Similarly, negations convert “or” into “and”. The negation of “John Doe has
brown hair or black hair” is “John Doe does not have brown hair and does not have
black hair”, or equivalently “John Doe has neither brown nor black hair”. If x is
a real number, the negation of “x ≥ 1 or x ≤ −1” is “x < 1 and x > −1” (i.e.,
−1 < x < 1).

It is quite possible that a negation of a statement will produce a statement which
could not possibly be true. For instance, if x is an integer, the negation of “x is either
even or odd” is “x is neither even nor odd”,which cannot possibly be true. Remember,
though, that even if a statement is false, it is still a statement, and it is definitely
possible to arrive at a true statement using an argument which at times involves false
statements. (Proofs by contradiction, for instance, fall into this category. Another
example is proof by dividing into cases. If one divides into three mutually exclusive
cases, Case 1, Case 2, and Case 3, then at any given time two of the cases will be
false and only one will be true; however this does not necessarily mean that the proof
as a whole is incorrect or that the conclusion is false.)
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Negations are sometimes unintuitive to work with, especially if there are multiple
negations; a statement such as “It is not the case that either x is not odd, or x is not
larger than or equal to 3, but not both” is not particularly pleasant to use. Fortunately,
one rarely has to work with more than one or two negations at a time, since often
negations cancel each other. For instance, the negation of “X is not true” is just
“X is true”, or more succinctly just “X”. Of course one should be careful when
negating more complicated expressions because of the switching of “and” and “or”,
and similar issues.

If and only if (iff). If X is a statement, and Y is a statement, we say that “X is true if
and only if Y is true”, whenever X is true, Y has to be also, and whenever Y is true,
X has to be also (i.e., X and Y are “equally true”). Other ways of saying the same
thing are “X and Y are logically equivalent statements”, or “X is true iff Y is true”, or
“X ↔ Y ”. Thus for instance, if x is a real number, then the statement “x = 3 if and
only if 2x = 6” is true: this means that whenever x = 3 is true, then 2x = 6 is true,
and whenever 2x = 6 is true, then x = 3 is true. On the other hand, the statement
“x = 3 if and only if x2 = 9” is false; while it is true that whenever x = 3 is true,
x2 = 9 is also true, it is not the case that whenever x2 = 9 is true, that x = 3 is also
automatically true (think of what happens when x = −3).

Statements that are equally true are also equally false: if X and Y are logically
equivalent, and X is false, then Y has to be false also (because if Y were true, then
X would also have to be true). Conversely, any two statements which are equally
false will also be logically equivalent. Thus for instance 2 + 2 = 5 if and only if
4 + 4 = 10.

Sometimes it is of interest to show that more than two statements are logically
equivalent; for instance, one might want to assert that three statements X , Y , and Z
are all logically equivalent. This means whenever one of the statements is true, then
all of the statements are true; and it also means that if one of the statements is false,
then all of the statements are false. This may seem like a lot of logical implications to
prove, but in practice, once one demonstrates enough logical implications between
X , Y , and Z , one can often conclude all the others and conclude that they are all
logically equivalent. See for instance Exercises A.1.5, A.1.6.

— Exercises —

Exercise A.1.1 What is the negation of the statement “either X is true, or Y is true, but not both”?

Exercise A.1.2 What is the negation of the statement “X is true if and only if Y is true”? (There
may be multiple ways to phrase this negation.)

Exercise A.1.3 Suppose that you have shown that whenever X is true, then Y is true, and whenever
X is false, then Y is false. Have you now demonstrated that X and Y are logically equivalent?
Explain.

Exercise A.1.4 Suppose that you have shown that whenever X is true, then Y is true, and whenever
Y is false, then X is false. Have you now demonstrated that X is true if and only if Y is true? Explain.

Exercise A.1.5 Suppose you know that X is true if and only if Y is true, and you know that Y is
true if and only if Z is true. Is this enough to show that X, Y, Z are all logically equivalent? Explain.
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Exercise A.1.6 Suppose you know that whenever X is true, then Y is true; that whenever Y is true,
then Z is true; and whenever Z is true, then X is true. Is this enough to show that X, Y, Z are all
logically equivalent? Explain.

A.2 Implication

Now we come to the least intuitive of the commonly used logical connectives—
implication. If X is a statement, and Y is a statement, then “if X , then Y ” is the
implication from X to Y ; it is also written “when X is true, Y is true”, or “X implies
Y ” or “Y is true when X is” or “X is true only if Y is true” (this last one takes a
bit of mental effort to see). What this statement “if X , then Y ” means depends on
whether X is true or false. If X is true, then “if X , then Y ” is true when Y is true,
and false when Y is false. If however X is false, then “if X , then Y ” is always true,
regardless of whether Y is true or false! To put it another way, when X is true, the
statement “if X , then Y ” implies that Y is true. But when X is false, the statement
“if X , then Y ” offers no information about whether Y is true or not; the statement is
true, but vacuous (i.e., does not convey any new information beyond the fact that the
hypothesis is false).

Examples A.2.1 If x is an integer, then the statement “If x = 2, then x2 = 4” is true,
regardless of whether x is actually equal to 2 or not (though this statement is only
likely to be useful when x is equal to 2). This statement does not assert that x is equal
to 2 and does not assert that x2 is equal to 4, but it does assert that when and if x is
equal to 2, then x2 is equal to 4. If x is not equal to 2, the statement is still true but
offers no conclusion on x or x2.

Some special cases of the above implication: the implication “If 2 = 2, then
22 = 4” is true (true implies true). The implication “If 3 = 2, then 32 = 4” is true
(false implies false). The implication “If −2 = 2, then (−2)2 = 4” is true (false
implies true). The latter two implications are considered vacuous—they do not offer
any new information since their hypothesis is false. (Nevertheless, it is still possible
to employ vacuous implications to good effect in a proof—a vacously true statement
is still true. We shall see one such example shortly.)

As we see, the falsity of the hypothesis does not destroy the truth of an impli-
cation, in fact it is just the opposite! (When a hypothesis is false, the implication
is automatically true.) The only way to disprove an implication is to show that the
hypothesis is true while the conclusion is false. Thus “If 2 + 2 = 4, then 4 + 4 = 2”
is a false implication. (True does not imply false.)

One can also think of the statement “if X , then Y ” as “Y is at least as true as
X”—if X is true, then Y also has to be true, but if X is false, Y could be as false
as X , but it could also be true. This should be compared with “X if and only if Y ”,
which asserts that X and Y are equally true.

Vacuously true implications are often used in ordinary speech, sometimes without
knowing that the implication is vacuous. A somewhat frivolous example is “If wishes
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were wings, then pigs would fly”. (The statement “hell freezes over” is also a popular
choice for a false hypothesis.) A more serious one is “If John had left work at 5 pm,
then he would be here by now”. This kind of statement is often used in a situation
in which the conclusion and hypothesis are both false; but the implication is still
true regardless. This statement, by the way, can be used to illustrate the technique
of proof by contradiction: if you believe that “If John had left work at 5 pm, then he
would be here by now”, and you also know that “John is not here by now”, then you
can conclude that “John did not leave work at 5 pm”, because John leaving work at
5 pm would lead to a contradiction. Note how a vacuous implication can be used to
derive a useful truth.

To summarize, implications are sometimes vacuous, but this is not actually a
problem in logic, since these implications are still true, and vacuous implications
can still be useful in logical arguments. In particular, one can safely use statements
like “If X , then Y ” without necessarily having to worry about whether the hypothesis
X is actually true or not (i.e., whether the implication is vacuous or not).

Implications can also be true even when there is no causal link between the
hypothesis and conclusion. The statement “If 1 + 1 = 2, then Washington D.C. is
the capital of the United States” is true (true implies true), although rather odd;
the statement “If 2 + 2 = 3, then New York is the capital of the United States” is
similarly true (false implies false). Of course, such a statement may be unstable (the
capital of the United States may one day change, while 1 + 1 will always remain
equal to 2) but it is true, at least for the moment. While it is possible to use a causal
implications in a logical argument, it is not recommended as it can cause unneeded
confusion. (Thus, for instance, while it is true that a false statement can be used to
imply any other statement, true or false, doing so arbitrarily would probably not be
helpful to the reader.)

To prove an implication “If X , then Y ”, the usual way to do this is to first assume
that X is true, and use this (together with whatever other facts and hypotheses you
have) to deduce Y . This is still a valid procedure even if X later turns out to be false;
the implication does not guarantee anything about the truth of X and only guarantees
the truth of Y conditionally on X first being true. For instance, the following is a
valid proof of a true proposition, even though both hypothesis and conclusion of the
proposition are false:

Proposition A.2.2 If 2 + 2 = 5, then 4 = 10 − 4.

Proof Assume 2 + 2 = 5. Multiplying both sides by 2, we obtain 4 + 4 = 10. Sub-
tracting 4 from both sides, we obtain 4 = 10 − 4 as desired. �

On the other hand, a common error is to prove an implication by first assuming the
conclusion and then arriving at the hypothesis. For instance, the following proposition
is correct, but the proof is not:

Proposition A.2.3 Suppose that 2x + 3 = 7. Show that x = 2.

Proof (Incorrect) x = 2; so 2x = 4; so 2x + 3 = 7. �
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When doing proofs, it is important that you are able to distinguish the hypothesis
from the conclusion; there is a danger of getting hopelessly confused if this distinction
is not clear.

Here is a short proof which uses implications which are possibly vacuous.

Theorem A.2.4 Suppose that n is an integer. Then n(n + 1) is an even integer.

Proof Since n is an integer, n is even or odd. If n is even, then n(n + 1) is also even,
since any multiple of an even number is even. If n is odd, then n + 1 is even, which
again implies that n(n + 1) is even. Thus in either case n(n + 1) is even, and we are
done. �

Note that this proof relied on two implications: “if n is even, then n(n + 1) is
even”, and “if n is odd, then n(n + 1) is even”. Since n cannot be both odd and even,
at least one of these implications has a false hypothesis and is therefore vacuous.
Nevertheless, both these implications are true, and one needs both of them in order
to prove the theorem, because we don’t know in advance whether n is even or odd.
And even if we did, it might not be worth the trouble to check it. For instance, as a
special case of this theorem we immediately know

Corollary A.2.5 Let n = (253 + 142) ∗ 123 − (423 + 198)342 + 538 − 213. Then
n(n + 1) is an even integer.

In this particular case, one canwork out exactly which parity n is—even or odd—
and then use only one of the two implications in the above theorem, discarding the
vacuous one. Thismay seem like it is more efficient, but it is a false economy, because
one then has to determine what parity n is, and this requires a bit of effort—more
effort than it would take if we had just left both implications, including the vacuous
one, in the argument. So, somewhat paradoxically, the inclusion of vacuous, false,
or otherwise “useless” statements in an argument can actually save you effort in the
long run! (I’m not suggesting, of course, that you ought to pack your proofs with lots
of time-wasting and irrelevant statements; all I’m saying here is that you need not
be unduly concerned that some hypotheses in your argument might not be correct,
as long as your argument is still structured to give the correct conclusion regardless
of whether those hypotheses were true or false.)

The statement “If X , then Y ” is not the same as “If Y , then X”; for instance, while
“If x = 2, then x2 = 4” is true, “If x2 = 4, then x = 2” can be false if x is equal to
−2. These two statements are called converses of each other; thus the converse of
a true implication is not necessarily another true implication. We use the statement
“X if and only if Y ” to denote the statement that “If X , then Y ; and if Y , then X”.
Thus for instance, we can say that x = 2 if and only if 2x = 4, because if x = 2 then
2x = 4, while if 2x = 4 then x = 2. One way of thinking about an if-and-only-if
statement is to view “X if and only if Y ” as saying that X is just as true as Y ; if one
is true then so is the other, and if one is false, then so is the other. For instance, the
statement “If 3 = 2, then 6 = 4” is true, since both hypothesis and conclusion are
false. (Under this view, “If X , then Y ” can be viewed as a statement that Y is at least
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as true as X .) Thus one could say “X and Y are equally true” instead of “X if and
only if Y ”.

Similarly, the statement “If X is true, then Y is true” is not the same as “If X is
false, then Y is false”. Saying that “if x = 2, then x2 = 4” does not imply that “if
x �= 2, then x2 �= 4”, and indeed we have x = −2 as a counterexample in this case.
If-then statements are not the same as if-and-only-if statements. (If we knew that “X
is true if and only if Y is true”, then we would also know that “X is false if and only
if Y is false”.) The statement “If X is false, then Y is false” is sometimes called the
inverse of “If X is true, then Y is true”; thus the inverse of a true implication is not
necessarily a true implication.

If you know that “If X is true, then Y is true”, then it is also true that “If Y is false,
then X is false” (because if Y is false, then X can’t be true, since that would imply Y
is true, a contradiction). For instance, if we knew that “If x = 2, then x2 = 4”, then
we also know that “If x2 �= 4, then x �= 2”. Or if we knew “If John had left work at
5 pm, he would be here by now”, then we also know “If John isn’t here now, then he
could not have left work at 5 pm”. The statement “If Y is false, then X is false” is
known as the contrapositive of “If X , then Y ”, and both statements are equally true.

In particular, if you know that X implies something which is known to be false,
then X itself must be false. This is the idea behind proof by contradiction or reductio
ad absurdum: to show something must be false, assume first that it is true, and show
that this implies something which you know to be false (e.g., that a statement is
simultaneously true and not true). For instance:

Proposition A.2.6 Suppose that x be a positive number such that sin(x) = 1. Then
x ≥ π/2.

Proof Suppose for sake of contradiction that x < π/2. Since x is positive, we thus
have 0 < x < π/2. Since sin(x) is increasing for 0 ≤ x ≤ π/2, and sin(0) = 0 and
sin(π/2) = 1, we thus have 0 < sin(x) < 1. But this contradicts the hypothesis that
sin(x) = 1. Hence x ≥ π/2. �

Note that one feature of proof by contradiction is that at some point in the proof
you assume a hypothesis (in this case, that x < π/2) which later turns out to be false.
Note however that this does not alter the fact that the argument remains valid, and
that the conclusion is true; this is because the ultimate conclusion does not rely on
that hypothesis being true (indeed, it relies instead on it being false!).

Proof by contradiction is particularly useful for showing “negative” statements—
that X is false, that a is not equal to b, that kind of thing. But the line between
positive and negative statements is sort of blurry. (Is the statement x ≥ 2 a positive
or negative statement? What about its negation, that x < 2?) So this is not a hard and
fast rule.

Logicians often use special symbols to denote logical connectives; for instance “X
impliesY ” can bewritten “X =⇒ Y ”, “X is not true” can bewritten “∼ X”, “!X”, or
“¬X”, “X and Y ” can be written “X ∧ Y ” or “X&Y ”, and so forth. But for general-
purpose mathematics, these symbols are not often used; English words are often
more readable and don’t take up much more space. Also, using these symbols tends
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to blur the line between expressions and statements; it’s not as easy to understand
“((x = 3) ∧ (y = 5)) =⇒ (x + y = 8)” as “If x = 3 and y = 5, then x + y = 8”.
So in general I would not recommend using these symbols (except possibly for =⇒ ,
which is a very intuitive symbol).

A.3 The Structure of Proofs

To prove a statement, one often starts by assuming the hypothesis and working one’s
way toward a conclusion; this is the direct approach to proving a statement. Such a
proof might look something like the following:

Proposition A.3.1 A implies B.

Proof Assume A is true. Since A is true, C is true. Since C is true, D is true. Since
D is true, B is true, as desired. �

An example of such a direct approach is

Proposition A.3.2 If x = π , then sin(x/2) + 1 = 2.

Proof Let x = π . Since x = π , we have x/2 = π/2. Since x/2 = π/2, we have
sin(x/2) = 1. Since sin(x/2) = 1, we have sin(x/2) + 1 = 2. �

In the above proof, we started at the hypothesis and moved steadily from there
toward a conclusion. It is also possible to work backward from the conclusion and
seeing what it would take to imply it. For instance, a typical proof of Proposition
A.3.1 of this sort might look like the following:

Proof To show B, it would suffice to show D. Since C implies D, we just need to
show C . But C follows from A. �

As an example of this, we give another proof of Proposition A.3.2:

Proof To show sin(x/2) + 1 = 2, it would suffice to show that sin(x/2) = 1. Since
x/2 = π/2 would imply sin(x/2) = 1, we just need to show that x/2 = π/2. But
this follows since x = π . �

Logically speaking, the above two proofs of Proposition A.3.2 are the same,
just arranged differently. Note how this proof style is different from the (incorrect)
approach of starting with the conclusion and seeing what it would imply (as in
Proposition A.2.3); instead, we start with the conclusion and see what would imply
it.

Another example of a proof written in this backward style is the following:

Proposition A.3.3 Let 0 < r < 1 be a real number. Then the series
∑∞

n=1 nr
n is

convergent.
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Proof To show this series is convergent, it suffices by the ratio test to show that the
ratio ∣

∣
∣
∣
rn+1(n + 1)

rnn

∣
∣
∣
∣ = r

n + 1

n

converges to something less than 1 as n → ∞. Since r is already less than 1, it will
be enough to show that n+1

n converges to 1. But since n+1
n = 1 + 1

n , it suffices to
show that 1

n → 0. But this is clear since n → ∞. �

One could also do any combination of moving forward from the hypothesis and
backward from the conclusion. For instance, the following would be a valid proof of
Proposition A.3.1:

Proof To show B, it would suffice to show D. So now let us show D. Since we have
A by hypothesis, we have C . Since C implies D, we thus have D as desired. �

Again, from a logical point of view this is exactly the same proof as before. Thus
there are many ways to write the same proof down; how you do so is up to you, but
certainways ofwriting proofs aremore readable and natural than others, and different
arrangements tend to emphasize different parts of the argument. (Of course, when
you are just starting out doing mathematical proofs, you’re generally happy to get
some proof of a result and don’t care so much about getting the “best” arrangement
of that proof; but the point here is that a proof can take many different forms.)

The above proofs were pretty simple because there was just one hypothesis and
one conclusion. When there are multiple hypotheses and conclusions, and the proof
splits into cases, then proofs can get more complicated. For instance a proof might
look as tortuous as this:

Proposition A.3.4 Suppose that A and B are true. Then C and D are true.

Proof Since A is true, E is true. From E and B we know that F is true. Also, in
light of A, to show D it suffices to show G. There are now two cases: H and I . If H
is true, then from F and H we obtain C , and from A and H we obtain G. If instead
I is true, then from I we have G, and from I and G we obtain C . Thus in both cases
we obtain both C and G, and hence C and D. �

Incidentally, the above proof could be rearranged into a much tidier manner,
but you at least get the idea of how complicated a proof could become. To show
an implication there are several ways to proceed: you can work forward from the
hypothesis; you canwork backward from the conclusion; or you can divide into cases
in the hope to split the problem into several easier subproblems. Another is to argue
by contradiction, for instance you can have an argument of the form

Proposition A.3.5 Suppose that A is true. Then B is false.

Proof Suppose for sake of contradiction that B is true. This would imply that C is
true. But since A is true, this implies that D is true; which contradicts C . Thus B
must be false. �
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As you can see, there are several things to try when attempting a proof. With
experience, it will become clearer which approaches are likely to work easily, which
ones will probably work but require much effort, and which ones are probably going
to fail. In many cases there is really only one obvious way to proceed. Of course,
there may definitely be multiple ways to approach a problem, so if you see more than
one way to begin a problem, you can just try whichever one looks the easiest, but be
prepared to switch to another approach if it begins to look hopeless.

Also, it helps when doing a proof to keep track of which statements are known
(either as hypotheses, or deduced from the hypotheses, or coming from other theo-
rems and results) and which statements are desired (either the conclusion, or some-
thingwhichwould imply the conclusion, or some intermediate claim or lemmawhich
will be useful in eventually obtaining the conclusion). Mixing the two up is almost
always a bad idea and can lead to one getting hopelessly lost in a proof.

A.4 Variables and Quantifiers

One can get quite far in logic just by starting with primitive statements (such as “2 +
2 = 4” or “John has black hair”), then forming compound statements using logical
connectives, and then using various laws of logic to pass from one’s hypotheses
to one’s conclusions; this is known as propositional logic or Boolean logic. (It is
possible to list a dozen or so such laws of propositional logic, which are sufficient
to do everything one wants to do, but I have deliberately chosen not to do so here,
because you might then be tempted to memorize that list, and that is not how one
should learn how to do logic, unless one happens to be a computer or some other
non-thinking device. However, if you really are curious as to what the formal laws
of logic are, look up “laws of propositional logic” or something similar in the library
or on the internet.)

However, to do mathematics, this level of logic is insufficient, because it does not
incorporate the fundamental concept of variables—those familiar symbols such as
x or n which denote various quantities which are unknown, or set to some value, or
assumed to obey some property. Indeed we have already sneaked in some of these
variables in order to illustrate some of the concepts in propositional logic (mainly
because it gets boring after a while to talk endlessly about variable-free statements
such as 2 + 2 = 4 or “Jane has black hair”).Mathematical logic is thus the same as
propositional logic but with the additional ingredient of variables added.

A variable is a symbol, such asn or x ,whichdenotes a certain typeofmathematical
object—an integer, a vector, a matrix, that kind of thing. In almost all circumstances,
the type of object that the variable represents should be declared, otherwise it will be
difficult to make well-formed statements using it. (There are very few true statements
that one can make about variables without knowing the type of variables involved.
For instance, given a variable x of any type whatsoever, it is true that x = x , and if
we also know that x = y, then we can conclude that y = x . But one cannot say, for
instance, that x + y = y + x , until we know what type of objects x and y are and
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whether they support the operation of addition; for instance, the above statement is
ill-formed if x is a matrix and y is a vector. Thus if one actually wants to do some
useful mathematics, then every variable should have an explicit type.)

One can form expressions and statements involving variables, for instance, if x is
a real variable (i.e., a variable which is a real number), x + 3 is an expression, and
x + 3 = 5 is a statement. But now the truth of a statement may depend on the value
of the variables involved; for instance the statement x + 3 = 5 is true if x is equal to
2, but is false if x is not equal to 2. Thus the truth of a statement involving a variable
may depend on the context of the statement—in this case, it depends on what x is
supposed to be. (This is a modification of the rule for propositional logic, in which
all statements have a definite truth value.)

Sometimes we do not set a variable to be anything (other than specifying its type).
Thus, we could consider the statement x + 3 = 5 where x is an unspecified real
number. In such a case we call this variable a free variable; thus we are considering
x + 3 = 5 with x a free variable. Statements with free variables might not have a
definite truth value, as they depend on an unspecified variable. For instance, we have
already remarked that x + 3 = 5 does not have a definite truth value if x is a free
real variable, though of course for each given value of x the statement is either true
or false. On the other hand, the statement (x + 1)2 = x2 + 2x + 1 is true for every
real number x , and so we can regard this as a true statement even when x is a free
variable.

At other times, we set a variable to equal a fixed value, by using a statement
such as “Let x = 2” or “Set x equal to 2”. In this case, the variable is known as a
bound variable, and statements involving only bound variables and no free variables
do have a definite truth value. For instance, if we set x = 342, then the statement
“x + 135 = 477” now has a definite truth value, whereas if x is a free real variable
then “x + 135 = 477” could be either true or false, depending on what x is. Thus,
as we have said before, the truth of a statement such as “x + 135 = 477” depends
on the context—whether x is free or bound, and if it is bound, what it is bound to.

One can also turn a free variable into a bound variable by using the quantifiers
“for all” or “for some”. For instance, the statement

(x + 1)2 = x2 + 2x + 1

is a statement with one free variable x and need not have a definite truth value, but
the statement

(x + 1)2 = x2 + 2x + 1 for all real numbers x

is a statement with one bound variable x and now has a definite truth value (in this
case, the statement is true). Similarly, the statement

x + 3 = 5

has one free variable and does not have a definite truth value, but the statement
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x + 3 = 5 for some real number x

is true, since it is true for x = 2. On the other hand, the statement

x + 3 = 5 for all real numbers x

is false, because there are some (indeed, there are many) real numbers x for which
x + 3 is not equal to 5.

Universal quantifiers. Let P(x) be some statement depending on a free variable
x . The statement “P(x) is true for all x of type T ” means that given any x of type
T , the statement P(x) is true regardless of what the exact value of x is. In other
words, the statement is the same as saying “if x is of type T , then P(x) is true”.
Thus the usual way to prove such a statement is to let x be a free variable of type
T (by saying something like “Let x be any object of type T ”), and then proving
P(x) for that object. The statement becomes false if one can produce even a single
counterexample, i.e., an element x which lies in T but for which P(x) is false. For
instance, the statement “x2 is greater than x for all positive x” can be shown to be
false by producing a single example, such as x = 1 or x = 1/2, where x2 is not
greater than x .

On the other hand, producing a single example where P(x) is true will not show
that P(x) is true for all x . For instance, just because the equation x + 3 = 5 has a
solution when x = 2 does not imply that x + 3 = 5 for all real numbers x ; it only
shows that x + 3 = 5 is true for some real number x . (This is the source of the often-
quoted, though somewhat inaccurate, slogan “One cannot prove a statement just by
giving an example”. The more precise statement is that one cannot prove a “for all”
statement by examples, though one can certainly prove “for some” statements this
way, and one can also disprove “for all” statements by a single counterexample.)

It occasionally happens that there are in fact no variables x of type T . In that case
the statement “P(x) is true for all x of type T ” is vacuously true—it is true but has
no content, similar to a vacuous implication. For instance, the statement

6 < 2x < 4 for all 3 < x < 2

is true, and easily proven, but is vacuous. (Such a vacuously true statement can still
be useful in an argument, though this doesn’t happen very often.)

One can use phrases such as “For every” or “For each” instead of “For all”, e.g.,
one can rephrase “(x + 1)2 = x2 + 2x + 1 for all real numbers x” as “For each
real number x , (x + 1)2 is equal to x2 + 2x + 1”. For the purposes of logic these
rephrasings are equivalent. The symbol ∀ can be used instead of “For all”, thus
for instance “∀x ∈ X : P(x) is true” or “P(x) is true ∀x ∈ X” is synonymous with
“P(x) is true for all x ∈ X”.

Existential quantifiers. The statement “P(x) is true for some x of type T ” means
that there exists at least one x of type T for which P(x) is true, although it may be
that there is more than one such x . (One would use a quantifier such as “for exactly
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one x” instead of “for some x” if one wanted both existence and uniqueness of such
an x .) To prove such a statement it suffices to provide a single example of such an x .
For instance, to show that

x2 + 2x − 8 = 0 for some real number x

all one needs to do is find a single real number x for which x2 + 2x − 8 = 0, for
instance x = 2 will do. (One could also use x = −4, but one doesn’t need to use
both.) Note that one has the freedom to select x to be anything one wants when
proving a for some statement; this is in contrast to proving a for all statement, where
one has to let x be arbitrary. (One can compare the two statements by thinking of
two games between you and an opponent. In the first game, the opponent gets to pick
what x is, and then you have to prove P(x); if you can always win this game, then
you have proven that P(x) is true for all x . In the second game, you get to choose
what x is, and then you prove P(x); if you can win this game, you have proven that
P(x) is true for some x .)

Usually, saying something is true for all x is much stronger than just saying it is
true for some x . There is one exception though, if the condition on x is impossible
to satisfy, then the for all statement is vacuously true, but the for some statement is
false. For instance

6 < 2x < 4 for all 3 < x < 2

is true, but
6 < 2x < 4 for some 3 < x < 2

is false.
One can use phrases such as “For at least one” or “There exists …such that”

instead of “For some”. For instance, one can rephrase “x2 + 2x − 8 = 0 for some real
number x” as “There exists a real number x such that x2 + 2x − 8 = 0”. The symbol
∃ can be used instead of “There exists…such that”, thus for instance “∃x ∈ X : P(x)
is true” is synonymous with “P(x) is true for some x ∈ X”.

A.5 Nested Quantifiers

One can nest two or more quantifiers together. For instance, consider the statement

For every positive number x , there exists a

positive number y such that y2 = x .

What does this statement mean? It means that for each positive number x , the
statement

There exists a positive number y such that y2 = x
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is true. In otherwords, one canfind apositive square root of x for each positive number
x . So the statement is saying that every positive number has a positive square root.

To continue the gaming metaphor, suppose you play a game where your opponent
first picks a positive number x , and then you pick a positive number y. You win the
game if y2 = x . If you can always win the game regardless of what your opponent
does, then you have proven that for every positive x , there exists a positive y such
that y2 = x .

Negating a universal statement produces an existential statement. The negation
of “All swans are white” is not “All swans are not white”, but rather “There is some
swan which is not white”. Similarly, the negation of “For every 0 < x < π/2, we
have cos(x) ≥ 0” is “For some 0 < x < π/2, we have cos(x) < 0, not “For every
0 < x < π/2, we have cos(x) < 0”.

Negating an existential statement produces a universal statement. The negation
of “There exists a black swan” is not “There exists a swan which is non-black”,
but rather “All swans are non-black”. Similarly, the negation of “There exists a real
number x such that x2 + x + 1 = 0” is “For every real number x , x2 + x + 1 �= 0”,
not “There exists a real number x such that x2 + x + 1 �= 0”. (The situation here is
very similar to how “and” and “or” behave with respect to negations.)

If you know that a statement P(x) is true for all x , then you can set x to be
anything you want, and P(x) will be true for that value of x ; this is what “for all”
means. Thus for instance if you know that

(x + 1)2 = x2 + 2x + 1 for all real numbers x,

then you can conclude for instance that

(π + 1)2 = π2 + 2π + 1,

or for instance that

(cos(y) + 1)2 = cos(y)2 + 2 cos(y) + 1 for all real numbers y

(because if y is real, then cos(y) is also real), and so forth. Thus universal statements
are very versatile in their applicability—you can get P(x) to hold for whatever x
you wish. Existential statements, by contrast, are more limited; if you know that

x2 + 2x − 8 = 0 for some real number x

then you cannot simply substitute in any real number you wish, e.g., π , and conclude
thatπ2 + 2π − 8 = 0. However, you can of course still conclude that x2 + 2x − 8 =
0 for some real number x , it’s just that you don’t get to pick which x it is. (To continue
the gaming metaphor, you can make P(x) hold, but your opponent gets to pick x for
you, you don’t get to choose for yourself.)
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Remark A.5.1 In the history of logic, quantifiers were formally studied thousands
of years before Boolean logic was. Indeed, Aristotlean logic, developed of course by
Aristotle (384BC – 322BC) and his school, deals with objects, their properties, and
quantifiers such as “for all” and “for some”. A typical line of reasoning (or syllogism)
in Aristotlean logic goes like this: “All men are mortal. Socrates is a man. Hence,
Socrates is mortal”. Aristotlean logic is a subset of mathematical logic, but is not
as expressive because it lacks the concept of logical connectives such as and, or, or
if-then (although “not” is allowed) and also lacks the concept of a binary relation
such as = or <.

Swapping the order of two quantifiers may or may not make a difference to the
truth of a statement. Swapping two “for all” quantifiers is harmless: a statement such
as

For all real numbers a, and for all real numbers b,

we have (a + b)2 = a2 + 2ab + b2

is logically equivalent to the statement

For all real numbers b, and for all real numbers a,

we have (a + b)2 = a2 + 2ab + b2

(why?The reason has nothing to dowithwhether the identity (a + b)2 = a2 + 2ab +
b2 is actually true or not). Similarly, swapping two “there exists” quantifiers has no
effect:

There exists a real number a, and there exists a real number b,

such that a2 + b2 = 0

is logically equivalent to

There exists a real number b, and there exists a real number a,

such that a2 + b2 = 0.

However, swapping a “for all” with a “there exists” makes a lot of difference.
Consider the following two statements:

(a) For every integer n, there exists an integer m which is larger
than n.

(b) There exists an integer m such that m is larger than n for every integer n.

Statement (a) is obviously true: if your opponent hands you an integer n, you
can always find an integer m which is larger than n. But Statement (b) is false: if
you choose m first, then you cannot ensure that m is larger than every integer n;
your opponent can easily pick a number n bigger than m to defeat that. The crucial
difference between the two statements is that in Statement (a), the integer n was
chosen first, and integer m could then be chosen in a manner depending on n; but in
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Statement (b), one was forced to choose m first, without knowing in advance what
n is going to be. In short, the reason why the order of quantifiers is important is that
the inner variables may possibly depend on the outer variables, but not vice versa.

— Exercises —

Exercise A.5.1 What does each of the following statements mean, and which of them are true? Can
you find gaming metaphors for each of these statements?

(a) For every positive number x , and every positive number y, we have y2 = x .
(b) There exists a positive number x such that for every positive number y, we have y2 = x .
(c) There exists a positive number x , and there exists a positive number y, such that y2 = x .
(d) For every positive number y, there exists a positive number x such that y2 = x .
(e) There exists a positive number y such that for every positive number x , we have y2 = x .

A.6 Some Examples of Proofs and Quantifiers

Here we give some simple examples of proofs involving the “for all” and “there
exists” quantifiers. The results themselves are simple, but you should pay attention
instead to how the quantifiers are arranged and how the proofs are structured.

Proposition A.6.1 For every ε > 0 there exists a δ > 0 such that 2δ < ε.

Proof Let ε > 0 be arbitrary. We have to show that there exists a δ > 0 such that
2δ < ε. We only need to pick one such δ; choosing δ := ε/3 will work, since one
then has 2δ = 2ε/3 < ε. �

Notice how ε has to be arbitrary, because we are proving something for every ε;
on the other hand, δ can be chosen as you wish, because you only need to show that
there exists a δ which does what you want. Note also that δ can depend on ε, because
the δ-quantifier is nested inside the ε-quantifier. If the quantifiers were reversed, i.e.,
if you were asked to prove “There exists a δ > 0 such that for every ε > 0, 2δ < ε”,
then you would have to select δ first before being given ε. In this case it is impossible
to prove the statement, because it is false (why?).

Normally, when one has to prove a “There exists...” statement, e.g., “Prove that
there exists an ε > 0 such that X is true”, one proceeds by selecting ε carefully, and
then showing that X is true for that ε. However, this sometimes requires a lot of
foresight, and it is legitimate to defer the selection of ε until later in the argument,
when it becomes clearer what properties ε needs to satisfy. The only thing to watch
out for is to make sure that ε does not depend on any of the bound variables nested
inside X . For instance:

Proposition A.6.2 There exists an ε > 0 such that sin(x) > x/2 for all 0 < x < ε.

Proof We pick ε > 0 to be chosen later, and let 0 < x < ε. Since the derivative of
sin(x) is cos(x), we see from the mean-value theorem (Corollary 10.2.9) we have
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sin(x)

x
= sin(x) − sin(0)

x − 0
= cos(y)

for some 0 < y < x . Thus in order to ensure that sin(x) > x/2, it would suffice to
ensure that cos(y) > 1/2. To do this, it would suffice to ensure that 0 ≤ y < π/3
(since the cosine function takes the value of 1 at 0, takes the value of 1/2 at π/3, and
is decreasing in between). Since 0 < y < x and 0 < x < ε, we see that 0 ≤ y < ε.
Thus if we pick ε := π/3, then we have 0 ≤ y < π/3 as desired, and so we can
ensure that sin(x) > x/2 for all 0 < x < ε. �

Note that the value of ε that we picked at the end did not depend on the nested vari-
ables x and y. This makes the above argument legitimate. Indeed, we can rearrange
it so that we don’t have to postpone anything:

Proof We choose ε := π/3; clearly ε > 0. Now we have to show that for all 0 <

x < π/3, we have sin(x) > x/2. So let 0 < x < π/3 be arbitrary. By themean-value
theorem we have

sin(x)

x
= sin(x) − sin(0)

x − 0
= cos(y)

for some 0 ≤ y ≤ x . Since 0 ≤ y ≤ x and 0 < x < π/3, we have 0 ≤ y < π/3.
Thus cos(y) > cos(π/3) = 1/2, since cos is decreasing on the interval [0, π/3].
Thus we have sin(x)/x > 1/2 and hence sin(x) > x/2 as desired. �

If we had chosen ε to depend on x and y then the argument would not be valid,
because ε is the outer variable and x, y are nested inside it.

A.7 Equality

As mentioned before, one can create statements by starting with expressions (such
as 2 × 3 + 5) and then asking whether an expression obeys a certain property, or
whether two expressions are related by some sort of relation (=, ≤, ∈, etc.). There
are many relations, but the most important one is equality, and it is worth spending
a little time reviewing this concept.

Equality is a relation linking twoobjects x, y of the same type T (e.g., two integers,
or two matrices, or two vectors, etc.). Given two such objects x and y, the statement
x = y may or may not be true; it depends on the value of x and y and also on how
equality is defined for the class of objects under consideration. For instance, as real
numbers, the two numbers 0.9999 . . . and 1 are equal. In modular arithmetic with
modulus 10 (in which numbers are considered equal to their remainders modulo 10),
the numbers 12 and 2 are considered equal, 12 = 2, even though this is not the case
in ordinary arithmetic.

How equality is defined depends on the class T of objects under consideration,
and to some extent is just a matter of definition. However, for the purposes of logic
we require that equality obeys the following four axioms of equality:
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• (Reflexive axiom). Given any object x , we have x = x .
• (Symmetry axiom). Given any two objects x and y of the same type, if x = y, then

y = x .
• (Transitive axiom). Given any three objects x , y, z of the same type, if x = y and

y = z, then x = z.
• (Substitution axiom). Given any two objects x and y of the same type, if x = y,
then f (x) = f (y) for all functions or operations f . Similarly, for any property
P(x) depending on x , if x = y, then P(x) and P(y) are equivalent statements.

The first three axioms are clear; together, they assert that equality is an equivalence
relation. To illustrate the substitution we give some examples.

Example A.7.1 Let x and y be real numbers. If x = y, then 2x = 2y, and sin(x) =
sin(y). Furthermore, x + z = y + z for any real number z.

Example A.7.2 Let n andm be integers. If n is odd and n = m, thenm must also be
odd. If we have a third integer k, and we know that n > k and n = m, then we also
know that m > k.

Example A.7.3 Let x, y, z be real numbers. If we know that x = sin(y) and y = z2,
then (by the first form of the substitution axiom)we have sin(y) = sin(z2), and hence
(by the transitive axiom) we have x = sin(z2). One can also obtain the conclusion
x = sin(z2) more directly by using the second form of the substitution axiom.

Thus, from the point of view of logic, we can define equality on a class of objects
however we please, so long as it obeys the reflexive, symmetry, and transitive axioms,
and is consistent with all other operations on the class of objects under discussion in
the sense that the substitution axiomwas true for all of those operations. For instance,
if we decided one day to modify the integers so that 12 was now equal to 2, one could
only do so if one also made sure that 2 was now equal to 12, and that f (2) = f (12)
for any operation f on these modified integers. For instance, we now need 2 + 5 to
be equal to 12 + 5. (In this case, pursuing this line of reasoning will eventually lead
to modular arithmetic with modulus 10.)

For most applications in analysis, one should not need to compare objects of
different types: for instance, if x is a set, and y is a number, then one should not need
to consider the question of whether x = y is true or false. But for the purposes of
doing set theory, it is convenient to adopt the convention that the statement x = y is
automatically false if x, y are of different types; for instance, if one is treating natural
numbers and vectors as objects of different types, then a natural number would not be
equal to a vector. But sometimes we override this convention by identifying objects
of one type with some objects of another type, e.g., when we identified natural
numbers with their counterparts in the integers, or integers with their counterparts
in the rationals, and so forth. This is technically an “abuse of notation”, but can be
tolerated as long as one verifies that no violation of the axioms of equality occur by
doing so. We will sometimes use the notation x ≡ y to indicate that a mathematical
object x is being identified with a mathematical object y.



286 Appendix A: The Basics of Mathematical Logic

— Exercises —

Exercise A.7.1 Suppose you have four real numbers a, b, c, d and you know that a = b and c = d.
Use the above four axioms to deduce that a + d = b + c.



Appendix B
The Decimal System

In Chaps. 2, 4, and 5 we painstakingly constructed the basic number systems of
mathematics: the natural numbers, integers, rationals, and reals. Natural numbers
were simply postulated to exist, and to obey five axioms; the integers then came via
(formal) differences of the natural numbers; the rationals then came from (formal)
quotients of the integers; and the reals then came from (formal) limits of the rationals.

This is all very well and good, but it does seem somewhat alien to one’s prior
experience with these numbers. In particular, very little use was made of the decimal
system, in which the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are combined to represent these
numbers. Indeed, except for a number of examples which were not essential to the
main construction, the only decimals we really used were the numbers 0, 1, and 2,
and the latter two can be rewritten as 0++ and (0++)++.

The basic reason for this is that the decimal system itself is not essential to math-
ematics. It is very convenient for computations, and we have grown accustomed to
it thanks to a thousand years of use, but in the history of mathematics it is actually a
comparatively recent invention. Numbers have been around for about ten thousand
years (starting from scratch marks on cave walls), but the modern Hindu-Arabic
base 10 system for representing numbers only dates from the eleventh century or so.
Some early civilizations relied on other bases; for instance the Babylonians used a
base 60 system (which still survives in our time system of hours, minutes, and sec-
onds, and in our angular system of degrees, minutes, and seconds). And the ancient
Greeks were able to do quite advanced mathematics, despite the fact that the most
advanced number representation system available to them was the Roman numeral
system I, I I, I I I, I V, . . ., which was horrendous for computations of even two-
digit numbers. And of course modern computing relies on binary, hexadecimal, or
byte-based (base 256) arithmetic instead of decimal, while analog computers such
as the slide rule do not really rely on any number representation system at all. In fact,
now that computers can do the menial work of number-crunching, there is very little
use for decimals in modern mathematics. Indeed, we rarely use any numbers other
than one-digit numbers or one-digit fractions (as well as e, π , i) explicitly in modern
mathematical work; any more complicated numbers usually get called more generic
names such as n.
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Nevertheless, the subject of decimals does deserve an appendix, because it is so
integral to the way we use mathematics in our everyday life, and also because we do
want to use such notation as 3.14159 . . . to refer to real numbers, as opposed to the
far clunkier “LIMn→∞ an , where a1 = 3.1, a2 := 3.14, a3 := 3.141, . . .”.

We begin by reviewing how the decimal system works for the positive integers
and then turn to the reals. Note that in this discussion we shall freely use all the
results from earlier chapters.

B.1 The Decimal Representation of Natural Numbers

In this section we will avoid the usual convention of abbreviating a × b as ab, since
this would mean that decimals such as 34 might be misconstrued as 3 × 4.

Definition B.1.1 (Digits)A digit is any one of the ten symbols 0, 1, 2, 3, . . . , 9. We
equate these digits with natural numbers by the formulae 0 ≡ 0, 1 ≡ 0++, 2 ≡ 1++,
etc. all the way up to 9 ≡ 8++. We also define the number ten by the formula
ten := 9++. (We cannot use the decimal notation 10 to denote ten yet, because that
presumes knowledge of the decimal system and would be circular.)

Definition B.1.2 (Positive integer decimals)A positive integer decimal is any string
anan−1 . . . a0 of digits, where n ≥ 0 is a natural number, and the first digit an is non-
zero. Thus, for instance, 3049 is a positive integer decimal, but 0493 or 0 is not. We
equate each positive integer decimal with a positive integer by the formula

anan−1 . . . a0 ≡
n∑

i=0

ai × teni .

Remark B.1.3 Note in particular that this definition implies that

10 = 0 × ten0 +1 × ten1 = ten

and thus we can write ten as the more familiar 10. Also, a single-digit integer decimal
is exactly equal to that digit itself, e.g., the decimal 3 by the above definition is equal
to

3 = 3 × ten0 = 3

so there is no possibility of confusion between a single digit and a single digit decimal.
(This is a subtle distinction, and not one which is worth losing much sleep over.)

Now we show that this decimal system indeed represents the positive integers. It
is clear from the definition that every positive decimal representation gives a positive
integer, since the sum consists entirely of natural numbers, and the last term an tenn

is non-zero by definition.
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Theorem B.1.4 (Uniqueness and existence of decimal representations) Every pos-
itive integer m is equal to exactly one positive integer decimal.

Proof We shall use the principle of strong induction (Proposition 2.2.14, withm0 :=
1). For any positive integer m, let P(m) denote the statement “m is equal to exactly
one positive integer decimal”. Suppose we already know P(m ′) is true for all positive
integers m ′ < m; we now wish to prove P(m).

First observe that either m ≥ ten or m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. (This is easily
proved by ordinary induction.) Suppose first that m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. Then
m clearly is equal to a positive integer decimal consisting of a single digit, and
there is only one single-digit decimal which is equal to m. Furthermore, no decimal
consisting of two or more digits can equalm, since if an . . . a0 is such a decimal (with
n > 0) we have

an . . . a0 =
n∑

i=0

ai × teni ≥ an × tenn ≥ ten > m.

Now suppose that m ≥ ten. Then by the Euclidean algorithm (Proposition 2.3.9)
we can write

m = s × ten+r

where s is a positive integer, and r ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Since

s < s × ten ≤ s × ten+r = m

we can use the strong induction hypothesis and conclude that P(s) is true. In partic-
ular, s has a decimal representation

s = bp . . . b0 =
p∑

i=0

bi × teni .

Multiplying by ten, we see that

s × ten =
p∑

i=0

bi × teni+1 = bp . . . b00,

and then adding r we see that

m = s × ten+r =
p∑

i=0

bi × teni+1 +r = bp . . . b0r.

Thus m has at least one decimal representation. Now we need to show that m has at
most one decimal representation. Suppose for sake of contradiction that we have at
least two different representations
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m = an . . . a0 = a′
n′ . . . a′

0.

First observe by the previous computation that

an . . . a0 = (an . . . a1) × ten+a0

and
a′
n′ . . . a′

0 = (a′
n′ . . . a′

1) × ten+a′
0

and so after some algebra we obtain

a′
0 − a0 = (an . . . a1 − a′

n′ . . . a′
1) × ten .

The right-hand side is a multiple of ten, while the left-hand side lies strictly between
− ten and + ten. Thus both sides must be equal to 0. This means that a0 = a′

0 and
an . . . a1 = a′

n′ . . . a′
1. But by previous arguments, we know that an . . . a1 is a smaller

integer than an . . . a0. Thus by the strong induction hypothesis, the number an . . . a1
has only one decimal representation, which means that n′ must equal n and a′

i must
equal ai for all i = 1, . . . , n. Thus the decimals an . . . a0 and a′

n′ . . . a′
0 are in fact

identical, contradicting the assumption that they were different. �

We refer to the decimal given by the above theorem as the decimal representation
ofm. Once one has this decimal representation, one can then derive the usual laws of
long addition and long multiplication to connect the decimal representation of x + y
or x × y to that of x or y (Exercise B.1.1).

Once one has decimal representation of positive integers, one can of course rep-
resent negative integers decimally as well by using the − sign. Finally, we let 0 be a
decimal as well. This gives decimal representations of all integers. Every rational is
then the ratio of two decimals, e.g., 335/113 or−1/2 (with the denominator required
to be non-zero, of course), though there may be more than one way to represent a
rational as such a ratio, e.g., 6/4 = 3/2.

Since ten = 10, we will now use 10 instead of ten throughout, as is customary.

— Exercises —

Exercise B.1.1 The purpose of this exercise is to demonstrate that the procedure of long addition
taught to you in elementary school is actually valid. Let A = an . . . a0 and B = bm . . . b0 be positive
integer decimals. Let us adopt the convention that ai = 0 when i > n, and bi = 0 when i > m; for
instance, if A = 372, then a0 = 2, a1 = 7, a2 = 3, a3 = 0, a4 = 0, and so forth. Define the numbers
c0, c1, . . . and ε0, ε1, . . . recursively by the following long addition algorithm.

• We set ε0 := 0.
• Now suppose that εi has already been defined for some i ≥ 0. If ai + bi + εi < 10, we set ci :=

ai + bi + εi and εi+1 := 0; otherwise, if ai + bi + εi ≥ 10, we set ci := ai + bi + εi − 10 and
εi+1 = 1. (The number εi+1 is the “carry digit” from the i th decimal place to the (i + 1)th

decimal place.)

Prove that the numbers c0, c1, . . . are all digits, and that there exists an l such that cl �= 0 and
ci = 0 for all i > l. Then show that clcl−1 . . . c1c0 is the decimal representation of A + B.
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Note that one could in fact use this algorithm to define addition, but it would look extremely
complicated, and to prove even such simple facts as (a + b) + c = a + (b + c) would be rather
difficult. This is one of the reasons why we have avoided the decimal system in our construction of
the natural numbers. The procedure for long multiplication (or long subtraction, or long division)
is even worse to lay out rigorously; we will not do so here.

B.2 The Decimal Representation of Real Numbers

We need a new symbol: the decimal point “.”.

Definition B.2.1 (Real decimals) A real decimal is any sequence of digits, and a
decimal point, arranged as

±an . . . a0.a−1a−2 . . .

which is finite to the left of the decimal point (so n is a natural number), but infinite
to the right of the decimal point, where ± is either + or −, and an . . . a0 is a natural
number decimal (i.e., either a positive integer decimal, or 0). This decimal is equated
to the real number

±an . . . a0.a−1a−2 . . . ≡ ±1 ×
n∑

i=−∞
ai × 10i .

The series is always convergent (Exercise B.2.1). Next, we show that every real
number has at least one decimal representation:

Theorem B.2.2 (Existence of decimal representations) Every real number x has at
least one decimal representation

x = ±an . . . a0.a−1a−2 . . . .

Proof We first note that x = 0 has the decimal representation 0.000 . . .. Also, once
we find a decimal representation for x , we automatically get a decimal representation
for−x by changing the sign±. Thus it suffices to prove the theorem for positive real
numbers x (by Proposition 5.4.4).

Let n ≥ 0 be any natural number. From the Archimedean property (Corollary
5.4.13) we know that there is a natural number M such that M × 10−n > x . Since
0 × 10−n ≤ x , we thus see that there must exist a natural number sn such that sn ×
10−n ≤ x and sn++ × 10−n > x . (If no such natural number existed, one could use
induction to conclude that s × 10−n ≤ x for all natural numbers s, contradicting the
Archimedean property.)

Now consider the sequence s0, s1, s2, . . .. Since we have

sn × 10−n ≤ x < (sn + 1) × 10−n
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we thus have

(10 × sn) × 10−(n++) ≤ x < (10 × sn + 10) × 10−(n++).

On the other hand, we have

sn+1 × 10−(n+1) ≤ x < (sn+1 + 1) × 10−(n+1)

and hence we have

10 × sn < sn+1 + 1 and sn+1 < 10 × sn + 10.

From these two inequalities we see that we have

10 × sn ≤ sn+1 ≤ 10 × sn + 9

and hence we can find a digit an+1 such that

sn+1 = 10 × sn + an+1

and hence
sn+1 × 10−(n+1) = sn × 10−n + an+1 × 10−(n+1).

From this identity and induction, we can obtain the formula

sn × 10−n = s0 +
n∑

i=0

ai × 10−i .

Now we take limits of both sides (using Exercise B.2.1) to obtain

lim
n→∞ sn × 10−n = s0 +

∞∑

i=0

ai × 10−i .

On the other hand, we have

x − 10−n ≤ sn × 10−n ≤ x

for all n, so by the squeeze test (Corollary 6.4.14) we have

lim
n→∞ sn × 10−n = x .
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Thus we have

x = s0 +
∞∑

i=0

ai × 10−i .

Since s0 already has a positive integer decimal representation by Theorem B.1.4, we
thus see that x has a decimal representation as desired. �

There is however one slight flaw with the decimal system: it is possible for one
real number to have two decimal representations.

Proposition B.2.3 (Failure of uniqueness of decimal representations) The number
1 has two different decimal representations: 1.000 . . . and 0.999 . . ..

Proof The representation 1 = 1.000 . . . is clear. Now let’s compute 0.999 . . .. By
definition, this is the limit of the Cauchy sequence

0.9, 0.99, 0.999, 0.9999, . . . .

But this sequence has 1 as a formal limit by Proposition 5.2.8. �

It turns out that these are the only two decimal representations of 1 (Exercise
B.2.2). In fact, as it turns out, all real numbers have either one or two decimal
representations—two if the real is a terminating decimal, and one otherwise (Exercise
B.2.3).

— Exercises —

Exercise B.2.1 If an . . . a0.a−1a−2 . . . is a real decimal, show that the series
∑n

i=−∞ ai × 10i is
absolutely convergent.

Exercise B.2.2 Show that the only decimal representations

1 = ±an . . . a0.a−1a−2 . . .

of 1 are 1 = 1.000 . . . and 1 = 0.999 . . ..

Exercise B.2.3 Areal number x is said to be a terminating decimal if we have x = n/10−m for some
integers n,m. Show that if x is a terminating decimal, then x has exactly twodecimal representations,
while if x is not at terminating decimal, then x has exactly one decimal representation.

Exercise B.2.4 Rewrite the proof of Corollary 8.3.4 using the decimal system.
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of composition, 43, 44
of multiplication in N, 24

Asymptotic discontinuity, 202
Axiom(s)

of choice, 29, 54, 175
of comprehension:, seeAxiom of univer-
sal specification

of countable choice, 175
of the empty set, 29
of equality, 284
of foundation:. see Axiom of regularity
of induction:, see principle of mathemat-
ical induction

of infinity, 36
in mathematics, 18
of natural numbers:, see Peano axioms
of pairwise union, 30
of power set, 49
of reflexivity, 285
of regularity, 39
of replacement, 35
of separation, 33
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of set theory, 28–30, 32, 35–36, 39, 49
of singleton sets and pair sets, 30
of specification, 33
of substitution, 42, 285
of symmetry, 285
of transitivity, 285
of union, 50
of universal specification, 38

B
Bijection, 45
Binomial formula, 143
Bolzano–Weierstrass theorem, 130
Boolean algebra, 34
Boolean logic, 277
Bounded

from above and below, 203
function, 203
interval, 184
sequence, 85, 112
sequence away from zero, 92, 96
set, 187

Bound variable, 136, 278, 283

C
Cancellation law

of addition in N, 21
of multiplication in N, 25
of multiplication in Z, 68
of multiplication in R, 94

Cantor’s theorem, 171
Cardinality

arithmetic of, 60
of finite sets, 60
uniqueness of, 60

Cartesian product, 52, 53
infinite, 174

Cauchy criterion, 149
Cauchy sequence, 84, 110
Chain:, see totally ordered set
Chain rule, 221
Change of variables formula, 261–271
Choice

arbitrary, 175
countable, 175
finite, 54
single, 29

Closed
interval, 184
set, 186

Closure, 185

Cluster point:, see limit point
Codomain, 40
Common refinement, 234
Commutativity

of addition in N, 21
of multiplication in N, 24

Comparison principle (or test)
for finite series, 137
for infinite series, 148
for sequences, 124

Completeness
of the reals, 125

Composition of functions, 43
Conjunction (and), 268
Connectedness, 232
Constant

function, 42, 235
sequence, 127

Continuity, 197
and convergence, 192

Continuum, 183
hypothesis, 173

Contrapositive, 274
Convergence

absolute:, see absolute convergence
conditional, 146
of a function at a point, 192
of sequences, 110
of series, 144

Converse, 273
Corollary, 20
Countability, 159

of the integers, 162
of the rationals, 164

D
Decimal

negative integer, 290
non-uniqueness of representation, 293
point, 291
positive integer, 290
real, 291

De Morgan laws, 34
Denumerable:, see countable
Derivative, 217
Difference rule, 220
Difference set, 34
Differentiability

at a point, 217
Digit, 288
Discontinuity:, see singularity
Disjoint sets, 34
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Disjunction (or), 269
inclusive vs. exclusive, 269

Distance
in Q, 73
in R, 109

Distributive law
See also laws of algebra
for natural numbers, 24

Divergence
of sequences, 3
of series, 2, 144

Divisibility, 180
Division

formal (//), 69
of functions, 190
of rationals, 72
by zero, 2

Domain, 40
Doubly infinite, 184
Dummy variable:, see bound variable

E
Empty

Cartesian product, 54
function, 43
sequence, 54
series, 140
set, 29

Equality, 284
for functions, 42
for sets, 28
of cardinality, 58

Equivalence
of sequences, 87, 212
relation, 285

Euclid’s division lemma, 26
Exponentiation

with base and exponent in N, 26
with base inQ and exponent in Z, 75, 76
with base in R and exponent in Z, 104
with base in R+ and exponent in Q, 106
with base in R+ and exponent in R, 132
of cardinals, 60

Expression, 268
Extended real number system R∗, 102, 115
Extremum:, see maximum, minimum

F
Factorial, 62, 143
Family, 50
Field, 71

ordered, 73
Finite set, 60
Fixed point theorem, 208
Forward image:, see image
Free variable, 278
Fubini’s theorem

for finite series, 142
for infinite series, 165
See also interchanging integrals/sums
with integrals/sums

Function, 40
implicit definition, 42

Fundamental theorems of calculus, 256, 258

G
Geometric series, 144, 149

formula, 149, 152
Graph, 42, 56, 190
Greatest lower bound:, see least upper bound

H
Half-infinite, 184
Half-open, 184
Harmonic series, 151
Hausdorff maximality principle, 182
Heine–Borel theorem

for the real line, 187

I
Identity map (or operator), 47
If:, see implication
Iff (if and only if), 22
Ill-defined, 266, 268
Image

inverse image, 47
of sets, 47

Implication (if), 271
Improper integral, 240
Inclusion map, 47
Inconsistent, 173, 174
Index of summation:, see dummy variable
Index set, 50
Induction:, see Principle of mathematical

induction
Infimum:, see supremum
Infinite

interval, 184
set, 60

Injection:, see one-to-one function
Integer part, 77, 99
Integers Z
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definition, 63
identification with rationals, 70
interspersing with rationals, 76

Integral test, 251
Integration

by parts, 260–261
laws, 238, 242
piecewise constant, 236, 237
Riemann:, see Riemann integral

Interchanging
derivatives with derivatives, 8
finite sums with finite sums, 141, 143
integrals with integrals, 1
limits with derivatives, 8
limits with integrals, 7
limits with length, 10
limits with limits, 7
sums with sums, 4, 165

Intermediate value theorem, 206
Intersection

pairwise, 33
Interval, 184
Inverse

function theorem, 226
image, 47
in logic, 274
of functions, 46

Irrationality, 81
of

√
2, 77, 103

Isolated point, 186

J
Jump discontinuity, 202

L
l1, l2, l∞, L1, L2, L∞

See also supremum as norm
Label, 50
Laws of algebra

for integers, 66
for rationals, 71
for reals, 91

Laws of exponentiation, 75, 76, 105, 107
Least upper bound, 101

least upper bound property, 101, 118
See also supremum

Leibniz rule, 221
Lemma, 20
Length of interval, 232
L’Hôpital’s rule, 9, 228
Limit

formal (LIM), 89, 112
at infinity, 216
laws, 113, 193
left and right, 200
limiting values of functions, 4, 191
of sequences, 111
uniqueness of, 111, 193

Limit inferior, see limit superior
Limit point

of sequences, 120
of sets, 186

Limit superior, 121
Linearity

of finite series, 140
of infinite series, 147
of integration, 237, 242
of limits, 113

Lipschitz constant, 224
Lipschitz continuous, 224
Logical connective, 268
Lower bound:, see upper bound

M
Majorize, 239
Maximum, 100, 177, 222

local, 222
of functions, 190, 204
principle, 204

Mean value theorem, 224
Meta-proof, 105
Metric

see also distance
Minimum, 100, 177, 222

local, 222
of a set of natural numbers, 160
of functions, 190, 204

Minorize:, see majorize
Monotone (increasing or decreasing)

function, 208, 254
sequence, 119

Morphism:, see function
Multiplication

of cardinals, 60
of functions, 191
of integers, 64
of natural numbers, 24
of rationals, 69, 70
of reals, 90

N
Natural numbers N
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axioms:, see Peano axioms
informal definition, 13

Natural numbers N
are infinite, 60
identification with integers, 65
in set theory:, see Axiom of infinity
uniqueness of, 57

Negation
of extended reals, 115
of integers, 65
in logic, 269
of rationals, 69
of reals, 91

Negative:, see negation, positive
Newton’s approximation, 219
Non-constructive, 175

O
Objects, 28

primitive, 39
One-to-one correspondence:, see bijection
One-to-one function, 45
Onto, 45
Open

interval, 184
Or:, see disjunction
Ordered n-tuple, 52
Ordered pair, 52

construction of, 55
Order ideal, 181
Ordering

lexicographical, 181
of cardinals, 173
of the extended reals, 115
of the integers, 68
of the natural numbers, 22
of orderings, 182
of partitions, 234
of the rationals, 72
of the reals, 97
of sets, 177

Oscillatory discontinuity, 202

P
Pair set, 30
Partial function, 51
Partially ordered set, 32, 176
Partial sum, 144
Partition, 233
Peano axioms, 14–17
Perfect matching:, see bijection

Permutation, 62
Piecewise

constant, 235
constant Riemann–Stieltjes integral, 253
continuous, 249

Pigeonhole principle, 61
Polynomial, 200
Positive

integer, 65
natural number, 22
rational, 72
real, 96

Power set, 49
Principle of infinite descent, 78
Principle of mathematical induction, 16

backwards induction, 24
strong induction, 23, 178

Product rule. see Leibniz rule
Proof

abstract examples, 275–277, 283–284
by contradiction, 267, 274

Proper subset, 31
Property, 268
Propositional logic, 277

Q
Quantifier, 278

existential (for some), 279
negation of, 281
nested, 280
universal (for all), 279

Quotient rule, 220
Quotient:, see division

R
Range, 47
Rational numbers Q

definition, 69
identification with reals, 91
interspersing with rationals, 76
interspersing with reals, 98

Ratio test, 157
Real numbers R

definition, 88
Rearrangement

of absolutely convergent series, 153
of divergent series, 154, 169
of finite series, 140
of non-negative series, 152

Reciprocal
of rationals, 71
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of reals, 94
Recursive definitions, 19, 57
reductio ad absurdum:, see proof by contra-

diction
Removable discontinuity:, see removable

singularity
Removable singularity, 195, 202
Restriction of functions, 189
Riemann hypothesis, 151
Riemann integrability, 240

of bounded continuous functions, 248
closure properties, 242–246
of continuous functions on compacta,
248

failure of, 251
of monotone functions, 249
of piecewise continuous bounded func-
tions, 249

of uniformly continuous functions, 246
Riemann integral, 240

upper and lower, 239
Riemann–Stieltjes integral, 254
Riemann sums (upper and lower), 242
Riemann zeta function, 151
Ring, 67

commutative, 67
Rolle’s theorem, 223
Root, 105

test, 155
Russell’s paradox, 38

S
Scalar multiplication

of functions, 191
Schröder–Bernstein theorem, 173
Sequence, 82

finite, 54
Series

on arbitrary sets, 168
on countable sets, 165
finite, 135, 137
formal infinite, 144
laws, 147, 168
vs. sum, 136

Set
axioms:, see axioms of set theory
informal definition, 27

Signum function, 194
Singleton set, 30
Singularity, 203
Square root, 41
Squeeze test

for sequences, 124
Statement, 266
Strict upper bound, 178
Subsequence, 128
Subset, 31

proper, 37, 60
Substitution:, see rearrangement
Subtraction

formal (−−), 64
of functions, 190
of integers, 67

Successor, 14
Sum rule, 220
Supremum (and infimum)

of a set of extended reals, 117, 118
of a set of reals, 102, 104
of sequences of reals, 118

Surjection:, see onto

T
Tangent:, see trigonometric function
Telescoping series, 148
Ten, 288
Theorem, 20
Totally ordered set, 32, 177
Transformation:, see function
Triangle inequality

for finite series, 137, 141
in R, 74

Trichotomy of order
of extended reals, 116
for integers, 68
for natural numbers, 22
for rationals, 72
for reals, 96

Two-to-one function, 45

U
Unbounded set, 187
Uncountability, 159

of the reals, 171
Undecidable, 174
Uniform continuity, 211
Union, 50

pairwise, 30
Universal set, 39
Upper bound

of a partially ordered set, 178
of a set of reals, 100
see also least upper bound
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V
Variable, 277
Vertical line test, 40, 56

W
Well ordering principle

for arbitrary sets, 182
for natural numbers, 160

Well-defined, 266

Well-ordered sets, 178

Z
Zermelo–Fraenkel(–Choice) axioms, 51

see also axioms of set theory
Zero test

for sequences, 125
for series, 145

Zorn’s lemma, 180
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