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Preface to the First Edition

This text originated from the lecture notes I gave teaching the honours undergraduate-
level real analysis sequence at the University of California, Los Angeles, in 2003.
Among the undergraduates here, real analysis was viewed as being one of the most
difficult courses to learn, not only because of the abstract concepts being introduced
for the first time (e.g., topology, limits, measurability, etc.), but also because of the
level of rigour and proof demanded of the course. Because of this perception of
difficulty, one was often faced with the difficult choice of either reducing the level
of rigour in the course in order to make it easier, or to maintain strict standards and
face the prospect of many undergraduates, even many of the bright and enthusiastic
ones, struggling with the course material.

Faced with this dilemma, I tried a somewhat unusual approach to the subject.
Typically, an introductory sequence in real analysis assumes that the students are
already familiar with the real numbers, with mathematical induction, with elementary
calculus, and with the basics of set theory, and then quickly launches into the heart
of the subject, for instance the concept of a limit. Normally, students entering this
sequence do indeed have a fair bit of exposure to these prerequisite topics, though
in most cases the material is not covered in a thorough manner. For instance, very
few students were able to actually define a real number, or even an integer, properly,
even though they could visualize these numbers intuitively and manipulate them
algebraically. This seemed to me to be a missed opportunity. Real analysis is one
of the first subjects (together with linear algebra and abstract algebra) that a student
encounters, in which one truly has to grapple with the subtleties of a truly rigorous
mathematical proof. As such, the course offered an excellent chance to go back to
the foundations of mathematics, and in particular the opportunity to do a proper and
thorough construction of the real numbers.

Thus the course was structured as follows. In the first week, I described some
well-known “paradoxes” in analysis, in which standard laws of the subject (e.g.,
interchange of limits and sums, or sums and integrals) were applied in a non-rigorous
way to give nonsensical results such as 0 = 1. This motivated the need to go back to
the very beginning of the subject, even to the very definition of the natural numbers,
and check all the foundations from scratch. For instance, one of the first homework

vii



viii Preface to the First Edition

assignments was to check (using only the Peano axioms) that addition was associative
for natural numbers (i.e., that (a + b) + ¢ = a + (b + ¢) for all natural numbers
a, b, c: see Exercise 2.2.1). Thus even in the first week, the students had to write
rigorous proofs using mathematical induction. After we had derived all the basic
properties of the natural numbers, we then moved on to the integers (initially defined
as formal differences of natural numbers); once the students had verified all the basic
properties of the integers, we moved on to the rationals (initially defined as formal
quotients of integers); and then from there we moved on (via formal limits of Cauchy
sequences) to the reals. Around the same time, we covered the basics of set theory,
for instance demonstrating the uncountability of the reals. Only then (after about ten
lectures) did we begin what one normally considers the heart of undergraduate real
analysis—limits, continuity, differentiability, and so forth.

The response to this format was quite interesting. In the first few weeks, the
students found the material very easy on a conceptual level, as we were dealing
only with the basic properties of the standard number systems. But on an intellectual
level it was very challenging, as one was analyzing these number systems from a
foundational viewpoint, in order to rigorously derive the more advanced facts about
these number systems from the more primitive ones. One student told me how diffi-
cult it was to explain to his friends in the non-honours real analysis sequence (a)
why he was still learning how to show why all rational numbers are either posi-
tive, negative, or zero (Exercise 4.2.4), while the non-honours sequence was already
distinguishing absolutely convergent and convergent series, and (b) why, despite this,
he thought his homework was significantly harder than that of his friends. Another
student commented to me, quite wryly, that while she could obviously see why one
could always divide a natural number n into a positive integer ¢ to give a quotient
a and a remainder r less than g (Exercise 2.3.5), she still had, to her frustration,
much difficulty in writing down a proof of this fact. (I told her that later in the
course she would have to prove statements for which it would not be as obvious
to see that the statements were true; she did not seem to be particularly consoled
by this.) Nevertheless, these students greatly enjoyed the homework, as when they
did perservere and obtain a rigorous proof of an intuitive fact, it solidified the link
in their minds between the abstract manipulations of formal mathematics and their
informal intuition of mathematics (and of the real world), often in a very satisfying
way. By the time they were assigned the task of giving the infamous “epsilon and
delta” proofs in real analysis, they had already had so much experience with formal-
izing intuition, and in discerning the subtleties of mathematical logic (such as the
distinction between the “for all” quantifier and the “there exists” quantifier), that
the transition to these proofs was fairly smooth, and we were able to cover material
both thoroughly and rapidly. By the tenth week, we had caught up with the non-
honours class, and the students were verifying the change of variables formula for
Riemann-Stieltjes integrals, and showing that piecewise continuous functions were
Riemann integrable. By the conclusion of the sequence in the twentieth week, we
had covered (both in lecture and in homework) the convergence theory of Taylor
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and Fourier series, the inverse and implicit function theorem for continuously differ-
entiable functions of several variables, and established the dominated convergence
theorem for the Lebesgue integral.

In order to cover this much material, many of the key foundational results were
left to the student to prove as homework; indeed, this was an essential aspect of the
course, as it ensured the students truly appreciated the concepts as they were being
introduced. This format has been retained in this text; the majority of the exercises
consist of proving lemmas, propositions and theorems in the main text. Indeed, I
would strongly recommend that one do as many of these exercises as possible—and
this includes those exercises proving “obvious” statements—if one wishes to use this
text to learn real analysis; this is not a subject whose subtleties are easily appreciated
just from passive reading. Most of the chapter sections have a number of exercises,
which are listed at the end of the section.

To the expert mathematician, the pace of this book may seem somewhat slow,
especially in early chapters, as there is a heavy emphasis on rigour (except for those
discussions explicitly marked “Informal”), and justifying many steps that would ordi-
narily be quickly passed over as being self-evident. The first few chapters develop (in
painful detail) many of the “obvious” properties of the standard number systems, for
instance that the sum of two positive real numbers is again positive (Exercise 5.4.1),
or that given any two distinct real numbers, one can find rational number between
them (Exercise 5.4.5). In these foundational chapters, there is also an emphasis on
non-circularity—not using later, more advanced results to prove earlier, more prim-
itive ones. In particular, the usual laws of algebra are not used until they are derived
(and they have to be derived separately for the natural numbers, integers, rationals,
and reals). The reason for this is that it allows the students to learn the art of abstract
reasoning, deducing true facts from a limited set of assumptions, in the friendly and
intuitive setting of number systems; the payoff for this practice comes later, when one
has to utilize the same type of reasoning techniques to grapple with more advanced
concepts (e.g., the Lebesgue integral).

The text here evolved from my lecture notes on the subject, and thus is very much
oriented towards a pedagogical perspective; much of the key material is contained
inside exercises, and in many cases I have chosen to give a lengthy and tedious, but
instructive, proof instead of a slick abstract proof. In more advanced textbooks, the
student will see shorter and more conceptually coherent treatments of this material,
and with more emphasis on intuition than on rigour; however, I feel it is important to
know how to do analysis rigorously and “by hand” first, in order to truly appreciate
the more modern, intuitive and abstract approach to analysis that one uses at the
graduate level and beyond.

The exposition in this book heavily emphasizes rigour and formalism; however
this does not necessarily mean that lectures based on this book have to proceed the
same way. Indeed, in my own teaching I have used the lecture time to present the
intuition behind the concepts (drawing many informal pictures and giving examples),
thus providing a complementary viewpoint to the formal presentation in the text.
The exercises assigned as homework provide an essential bridge between the two,
requiring the student to combine both intuition and formal understanding together
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in order to locate correct proofs for a problem. This I found to be the most difficult
task for the students, as it requires the subject to be genuinely learnt, rather than
merely memorized or vaguely absorbed. Nevertheless, the feedback I received from
the students was that the homework, while very demanding for this reason, was also
very rewarding, as it allowed them to connect the rather abstract manipulations of
formal mathematics with their innate intuition on such basic concepts as numbers,
sets, and functions. Of course, the aid of a good teaching assistant is invaluable in
achieving this connection.

With regard to examinations for a course based on this text, I would recommend
either an open-book, open-notes examination with problems similar to the exercises
given in the text (but perhaps shorter, with no unusual trickery involved), or else
a take-home examination that involves problems comparable to the more intricate
exercises in the text. The subject matter is too vast to force the students to memorize
the definitions and theorems, so I would not recommend a closed-book examination,
or an examination based on regurgitating extracts from the book. (Indeed, in my own
examinations I gave a supplemental sheet listing the key definitions and theorems
which were relevant to the examination problems.) Making the examinations similar
to the homework assigned in the course will also help motivate the students to work
through and understand their homework problems as thoroughly as possible (as
opposed to, say, using flash cards or other such devices to memorize material), which
is good preparation not only for examinations but for doing mathematics in general.

Some of the material in this textbook is somewhat peripheral to the main theme
and may be omitted for reasons of time constraints. For instance, as set theory is
not as fundamental to analysis as are the number systems, the chapters on set theory
(Chapters 3, 8) can be covered more quickly and with substantially less rigour, or be
given as reading assignments. The appendices on logic and the decimal system are
intended as optional or supplemental reading and would probably not be covered in
the main course lectures; the appendix on logic is particularly suitable for reading
concurrently with the first few chapters. Also, Chapter 5 (on Fourier series) is not
needed elsewhere in the text and can be omitted.

For reasons of length, this textbook has been split into two volumes. The first
volume is slightly longer, but can be covered in about thirty lectures if the peripheral
material is omitted or abridged. The second volume refers at times to the first, but can
also be taught to students who have had a first course in analysis from other sources.
It also takes about thirty lectures to cover.

I am deeply indebted to my students, who over the progression of the real anal-
ysis course corrected several errors in the lectures notes from which this text is
derived, and gave other valuable feedback. I am also very grateful to the many
anonymous referees who made several corrections and suggested many impor-
tant improvements to the text. I also thank Adam, James Ameril, Quentin Batista,
Biswaranjan Behara, José Antonio Lara Benitez, Dingjun Bian, Petrus Bianchi,
Phillip Blagoveschensky, Tai-Danae Bradley, Brian, Eduardo Buscicchio, Carlos,
cebismellim, Matheus Silva Costa, Gonzales Castillo Cristhian, Ck, William Deng,
Kevin Doran, Lorenzo Dragani, EO, Florian, Gyao Gamm, Evangelos Georgiadis,
Aditya Ghosh, Elie Goudout, Ti Gong, Ulrich Groh, Gokhan Gii¢lii, Yaver Gulusoy,
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Christian Gz., Kyle Hambrook, Minyoung Jeong, Bart Kleijngeld, Erik Koelink, Brett
Lane, David Latorre, Matthis Lehmkiihler, Bin Li, Percy Li, Ming Li, Mufei Li, Zijun
Liu, Rami Luisto, Jason M., Manoranjan Majji, Mercedes Mata, Simon Mayer, Geoff
Mess, Pieter Naaijkens, Vineet Nair, Jorge Pefia-Vélez, Cristina Pereyra, Huaying
Qiu, David Radnell, Tim Reijnders, Issa Rice, Eric Rodriquez, Pieter Roffelsen,
Luke Rogers, Feras Saad, Gabriel Salmerdn, Vijay Sarthak, Leopold Schlicht, Marc
Schoolderman, SkysubO, Rainer aus dem Spring, Sundar, Rafat Szlendak, Karim
Taya, Chaitanya Tappu, Winston Tsai, Kent Van Vels, Andrew Verras, Murtaza
Wani, Daan Wanrooy, John Waters, Yandong Xiao, Sam Xu, Xueping, Hongjiang
Ye, Luqing Ye, Muhammad Atif Zaheer, Zelin, and the students of Math 401/501 and
Math 402/502 at the University of New Mexico for corrections to the first, second,
and third editions.

Terence Tao



Preface to Subsequent Editions

Since the publication of the first edition, many students and lecturers have commu-
nicated a number of minor typos and other corrections to me. There was also some
demand for a hardcover edition of the texts. Because of this, the publishers and I
have decided to incorporate the corrections and issue a hardcover second edition of
the textbooks. The layout, page numbering, and indexing of the texts have also been
changed; in particular the two volumes are now numbered and indexed separately.
However, the chapter and exercise numbering, as well as the mathematical content,
remains the same as the first edition, and so the two editions can be used more or
less interchangeably for homework and study purposes.

The third edition contains a number of corrections that were reported for the
second edition, together with a few new exercises, but are otherwise essentially the
same text. The fourth edition similarly incorporates a large number of additional
corrections reported since the release of the third edition, as well as some additional
exercises.

Los Angeles, USA Terence Tao
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Chapter 1 ®)
Metric Spaces oo

1.1 Definitions and Examples

In Definition 6.1.5 we defined what it meant for a sequence (x,);,, of real numbers
to converge to another real number x; indeed, this meant that for every ¢ > 0, there
exists an N > m such that |[x — x,| < ¢ for all n > N. When this is the case, we
write lim,,_, o X, = X.

Intuitively, when a sequence (x,):°,, converges to a limit x, this means that
somehow the elements x, of that sequence will eventually be as close to x as one
pleases. One way to phrase this more precisely is to introduce the distance function
d(x, y) between tworeal numbersby d(x, y) := |x — y|. (Thusforinstanced(3, 5) =
2,d(5,3) =2,and d(3, 3) = 0.) Then we have

Lemma 1.1.1 Let (x,)°2 = be a sequence of real numbers, and let x be another real

n=m
number. Then (x,)52,, converges to x if and only if lim,_, o d(x,, x) = 0.

Proof See Exercise 1.1.1. O

One would now like to generalize this notion of convergence, so that one can take
limits not just of sequences of real numbers, but also sequences of complex numbers,
or sequences of vectors, or sequences of matrices, or sequences of functions, even
sequences of sequences. One way to do this is to redefine the notion of convergence
each time we deal with a new type of object. As you can guess, this will quickly get
tedious. A more efficient way is to work abstractly, defining a very general class of
spaces—which includes such standard spaces as the real numbers, complex numbers,
vectors, etc.—and define the notion of convergence on this entire class of spaces at
once. (A space is just the set of all objects of a certain type—the space of all real num-
bers, the space of all 3 x 3 matrices, etc. Mathematically, there is not much distinction
between a space and a set, except that spaces tend to have much more structure than
what a random set would have. For instance, the space of real numbers comes with
operations such as addition and multiplication, while a general set would not.)

It turns out that there are two very useful classes of spaces which do the job. The
first class is that of metric spaces, which we will study here. There is a more general
© Hindustan Book Agency 2022 1
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2 1 Metric Spaces

class of spaces, called topological spaces, which is also very important, but we will
only deal with this generalization briefly, in Sect.2.5.

Roughly speaking, a metric space is any space X which has a concept of distance
d(x, y)—and this distance should behave in a reasonable manner. More precisely,
we have

Definition 1.1.2 (Metric spaces) A metric space (X, d) is a space X of objects
(called points), together with a distance function or metricd : X x X — [0, 400),
which associates to each pair x, y of points in X anon-negative real numberd (x, y) >
0. Furthermore, the metric must satisfy the following four axioms:

(a) Forany x € X, we have d(x, x) = 0.

(b) (Positivity) For any distinct x, y € X, we have d(x, y) > 0.

(¢) (Symmetry) For any x, y € X, we have d(x, y) =d(y, x).

(d) (Triangle inequality) For any x, y, z € X, we have d(x, z) < d(x,y) +d(y, 2).

In many cases it will be clear what the metric d is, and we shall abbreviate (X, d) as
just X.

Remark 1.1.3 The conditions (a) and (b) can be rephrased as follows: for any x, y €
X we have d(x, y) = 0 if and only if x = y. (Why is this equivalent to (a) and (b)?)

Example 1.1.4 (The real line) Let R be the real numbers, and let d : R x R —
[0, 0o0) be the metric d(x, y) := |x — y| mentioned earlier. Then (R, d) is a metric
space (Exercise 1.1.2). We refer to d as the standard metric on R, and if we refer
to R as a metric space, we assume that the metric is given by the standard metric d
unless otherwise specified.

Example 1.1.5 (Induced metric spaces) Let (X, d) be any metric space, and let Y
be a subset of X. Then we can restrict the metric functiond : X x X — [0, +00) to
the subset ¥ x Y of X x X to create a restricted metric function d|yxy : ¥ X ¥ —
[0, +00) of Y this is known as the metric on Y induced by the metric d on X. The
pair (Y, d|y«y) is ametric space (Exercise 1.1.4) and is known the subspace of (X, d)
induced by Y. Thus for instance the metric on the real line in the previous example
induces a metric space structure on any subset of the reals, such as the integers Z, or
an interval [a, b].

Example 1.1.6 (Euclidean spaces) Let n > 1 be a natural number, and let R” be the
space of n-tuples of real numbers:

R" = {(x1, X2, ..., Xp) : X1, ..., %, € R}.

We define the Euclidean metric (also called the I> metric) dp: R” x R* — R by

dp((X1, o %)y 1+ s ) 1=V G = YD2 4 o+ (5 — ya)?

0 12
= (Z(xi - yi)2> ~
i=1
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Thus for instance, if n = 2, then dp2((1, 6), (4,2)) = +/32 + 42 = 5. This metric
corresponds to the geometric distance between the two points (xi, x2, ..., X,),
(y1, y2, - - -» yn) as given by Pythagoras’ theorem. (We remark however that while
geometry does give some very important examples of metric spaces, it is possible
to have metric spaces which have no obvious geometry whatsoever. Some examples
are given below.) The verification that (R”, d) is indeed a metric space can be seen
geometrically (for instance, the triangle inequality now asserts that the length of
one side of a triangle is always less than or equal to the sum of the lengths of the
other two sides), but can also be proven algebraically (see Exercise 1.1.6). We refer
to (R", dp) as the Euclidean space of dimension n. Extending the convention from
Example 1.1.4, if we refer to R” as a metric space, we assume that the metric is given
by the Euclidean metric unless otherwise specified.

Example 1.1.7 (Taxicab metric) Again let n > 1, and let R” be as before. But now
we use a different metric dj1, the so-called taxicab metric (or [' metric), defined by

dp((x1, %2, o0, %), (Y1, Y2, oY) =X — yil + -+ + X0 — Yal
n
= lxi —yil.
i=1

Thus for instance, if n = 2, thend,;1 ((1, 6), (4, 2)) = 3 + 4 = 7. This metric is called
the taxicab metric, because it models the distance a taxicab would have to traverse
to get from one point to another if the cab was only allowed to move in cardinal
directions (north, south, east, west) and not diagonally. As such it is always at least
as large as the Euclidean metric, which measures distance “as the crow flies”, as it
were. We claim that the space (R”, d;1) is also a metric space (Exercise 1.1.7). The
metrics are not quite the same, but we do have the inequalities

dp(x,y) <dp(x,y) < /ndp(x,y) (1.1)
for all x, y (see Exercise 1.1.8).

Remark 1.1.8 The taxicab metric is useful in several places, for instance in the theory
of error correcting codes. A string of n binary digits can be thought of as an element of
R”, for instance the binary string 10010 can be thought of as the point (1, 0, 0, 1, 0)
in R’. The taxicab distance between two binary strings is then the number of bits in
the two strings which do not match, for instance d;: (10010, 10101) = 3. The goal
of error-correcting codes is to encode each piece of information (e.g., a letter of the
alphabet) as a binary string in such a way that all the binary strings are as far away
in the taxicab metric from each other as possible; this minimizes the chance that any
distortion of the bits due to random noise can accidentally change one of the coded
binary strings to another and also maximizes the chance that any such distortion can
be detected and correctly repaired.
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Example 1.1.9 (Sup norm metric) Againletn > 1, and let R” be as before. But now
we use a different metric dj~, the so-called sup norm metric (or [*° metric), defined
by

dioo ((x1, X2, ++ s Xn), (V15 Y25 -+ Ya)) i= supf{lx; — yi| 1 1 <@ < n}.

Thus for instance, if n =2, then di~((1, 6), (4,2)) = sup(3,4) = 4. The space
(R", dj~) is also a metric space (Exercise 1.1.9) and is related to the [ 2 metric by the
inequalities
1
—ndﬂ(x, y) S dp=(x,y) =dp(x,y) (1.2)

7

for all x, y (see Exercise 1.1.10).

Remark 1.1.10 The [', I2, and [°° metrics are special cases of the more general [”
metrics, where p € [1, +o00], but we will not discuss these more general metrics in
this text.

Example 1.1.11 (Discrete metric) Let X be an arbitrary set (finite or infinite),
and define the discrete metric dgisc by setting dgisc(x, y) :=0 when x =y, and
dgisc(x,y) :=1 when x # y. Thus, in this metric, all points are equally far apart.
The space (X, dgisc) is a metric space (Exercise 1.1.11). Thus every set X has at least
one metric on it.

Example 1.1.12 (Geodesics) (Informal) Let X be the sphere {(x, y, z) € R3: x? +
y2 422 =1}, and let d((x, y, z), (x, ¥, z)) be the length of the shortest curve in
X which starts at (x, y, z) and ends at (x’, y’, z’). (This curve turns out to be an arc
of a great circle; we will not prove this here, as it requires calculus of variations,
which is beyond the scope of this text.) This makes X into a metric space; the reader
should be able to verify (without using any geometry of the sphere) that the triangle
inequality is more or less automatic from the definition.

Example 1.1.13 (Shortest paths) (Informal) Examples of metric spaces occur all
the time in real life. For instance, X could be all the computers currently connected
to the internet, and d(x, y) is the shortest number of connections it would take for
a packet to travel from computer x to computer y; for instance, if x and y are not
directly connected, but are both connected to z, then d(x, y) = 2. Assuming that all
computers in the internet can ultimately be connected to all other computers (so that
d(x, y) is always finite), then (X, d) is a metric space (why?). Games such as “six
degrees of separation” are also taking place in a similar metric space (what is the
space, and what is the metric, in this case?). Or, X could be a major city, and d (x, y)
could be the shortest time it takes to drive from x to y (although this space might not
satisfy axiom (c) in real life!).

Now that we have metric spaces, we can define convergence in these spaces.

Definition 1.1.14 (Convergence of sequences in metric spaces) Let m be an integer,
(X, d) be a metric space, and let x™)>®  be a sequence of points in X (i.e., for

n=m
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every natural number n > m, we assume that x® is an element of X). Let x be a
point in X. We say that (x™)%°  converges to x with respect to the metric d, if and
only if the limit lim,_, o d (x™, x) exists and is equal to 0. In other words, (x™)%
converges to x with respect to d if and only if for every ¢ > 0, there existsan N > m
such that d(x™, x) < e for alln > N. (Why are these two definitions equivalent?)

Remark 1.1.15 In view of Lemma 1.1.1 we see that this definition generalizes our
existing notion of convergence of sequences of real numbers. In many cases, it is
obvious what the metric d is, and so we shall often just say “(x")%° converges to
x” instead of “(x™)%°  converges to x with respect to the metric d”” when there is
no chance of confusion. We also sometimes write “x™ — x as n — 00” instead.

Remark 1.1.16 There is nothing special about the superscript n in the above defi-
nition; it is a dummy variable. Saying that (x™)%° converges to x is exactly the
same statement as saying that (x®)% converges to x, for example; and sometimes
it is convenient to change superscripts, for instance if the variable 7 is already being
used for some other purpose. Similarly, it is not necessary for the sequence x to be
denoted using the superscript (n); the above definition is also valid for sequences x,,,
or functions f(n), or indeed of any expression which depends on n and takes values
in X. Finally, from Exercises 6.1.3 and 6.1.4 we see that the starting point m of the
sequence is unimportant for the purposes of taking limits; if (x)°° converges to
x, then (x™)%  also converges to x for any m’ > m.

Example 1.1.17 We work in the Euclidean space R? with the standard Euclidean
metric dp. Let ()c(”));’f:1 denote the sequence x™ := (1/n, 1/n) in R?, i.e., we are
considering the sequence (1, 1), (1/2, 1/2), (1/3, 1/3), .. .. Then this sequence con-
verges to (0, 0) with respect to the Euclidean metric dj2, since

1 1 2
lim dp2(x™, (0,0)) = lim /= + — = lim £ =0.
n—o00 n—o00 n n n—-oo n

The sequence (x™)%°

dpi, since

| also converges to (0, 0) with respect to the taxicab metric

1 1 2
lim d;(x™, (0,0)) = lim — 4+ — = lim = = 0.
n—o0 n—-oon n n—-oo n

Similarly the sequence converges to (0, 0) in the sup norm metric dj~ (why?). How-
ever, the sequence (x ("))ff:l does not converge to (0, 0) in the discrete metric dgjsc,
since

lim dgise(x™, (0,0)) = lim 1 =1 # 0.

n—0oQ n—00

Thus the convergence of a sequence can depend on what metric one uses.'

! For a somewhat whimsical real-life example, one can give a city an “automobile metric”, with
d(x, y) defined as the time it takes for a car to drive from x to y, or a “pedestrian metric”’, where
d(x, y) is the time it takes to walk on foot from x to y. (Let us assume for sake of argument that
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In the case of the above four metrics—Euclidean, taxicab, sup norm, and
discrete—it is in fact rather easy to test for convergence.

Proposition 1.1.18 (Equivalence of / 112, 1) Let R" be a Euclidean space, and let
(x(k))}zo:m be a sequence of points in R". We write x® = (xl(k), xék), e, x,(,k)), i.e., for
j=12,...,n xﬁk) € R is the jth co-ordinate ofx(k) eR" Let x = (x1,...,x,)
be a point in R". Then the following four statements are equivalent:

(a) (x(k)),fozm converges to x with respect to the Euclidean metric dp.
(b) (x(")),‘fim converges to x with respect to the taxicab metric d.
(c) (x(k)),fczm converges to x with respect to the sup norm metric dj.

(d) Forevery 1 < j <n, the sequence (xﬁk)),fo:m converges to x ;. (Notice that this
is a sequence of real numbers, not of points in R".)

Proof See Exercise 1.1.12. O

In other words, a sequence converges in the Euclidean, taxicab, or sup norm
metric if and only if each of its components converges individually. Because of
the equivalence of (a), (b), and (c), we say that the Euclidean, taxicab, and sup
norm metrics on R” are equivalent. (There are infinite-dimensional analogues of the
Euclidean, taxicab, and sup norm metrics which are not equivalent, see for instance
Exercise 1.1.15.)

For the discrete metric, convergence is much rarer: the sequence must be eventu-
ally constant in order to converge.

Proposition 1.1.19 (Convergence in the discrete metric) Let X be any set, and let
dgisc be the discrete metric on X. Let (x(”));’lo:m be a sequence of points in X, and let
x be a point in X. Then (x™)%converges to x with respect to the discrete metric

dgise if and only if there exists an N > m such that x™ = x foralln > N.
Proof See Exercise 1.1.13. O

We now prove a basic fact about converging sequences; they can only converge
to at most one point at a time.

Proposition 1.1.20 (Uniqueness of limits) Let (X, d) be a metric space, and let
(xM)° be a sequence in X. Suppose that there are two points x, x' € X such that
(xM)%  converges to x with respect to d, and (x™)°2,also converges to x’ with
respect to d. Then we have x = x'.

Proof See Exercise 1.1.14. O

Because of the above proposition, it is safe to introduce the following notation:
if (x™)>° converges to x in the metric d, then we write d — lim,, .o, " = x, or
simply lim,,_, oo x™ = x when there is no confusion as to what d is. For instance, in
the example of (%, %), we have

these metrics are symmetric, though this is not always the case in real life.) One can easily imagine
examples where two points are close in one metric but not another.
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. 11 . 11
dp— lim (-, — ) =dp — lim | —, — ) = (0, 0),
n—oco\n n n—o00 n n

but dgisc — limn_,oo(%, %) is undefined. Thus the meaning of d — lim,_,,, x™ can
depend on what d is; however Proposition 1.1.20 assures us that once d is fixed, there
can be at most one value of d — lim,,_, o x™. (Of course, it is still possible that this
limit does not exist; some sequences are not convergent.) Note that by Lemma 1.1.1,
this definition of limit generalizes the notion of limit in Definition 6.1.8.

Remark 1.1.21 1t is possible for a sequence to converge to one point using one
metric, and another point using a different metric, although such examples are usu-
ally quite artificial. For instance, let X :=[0, 1], the closed interval from O to 1.
Using the usual metric d, we have d — lim,,_, oo % = 0. But now suppose we “swap”
the points 0 and 1 in the following manner. Let f: [0, 1] — [0, 1] be the func-
tion defined by f(0):=1, f(1):=0, and f(x):=x for all x € (0, 1), and then
define d’(x, y) :=d(f(x), f(¥)). Then (X, d’) is still a metric space (why?), but
now d’ — lim,,_, « % = 1. Thus changing the metric on a space can greatly affect the
nature of convergence (also called the fopology) on that space; see Sect.2.5 for a
further discussion of topology.

— Exercises —
Exercise 1.1.1 Prove Lemma 1.1.1.

Exercise 1.1.2 Show that the real line with the metric d(x, y) := |x — y| is indeed
a metric space. (Hint: you may wish to review your proof of Proposition 4.3.3.)

Exercise 1.1.3 Let X beaset,andletd : X x X — [0, 0o) be a function.

(a) Give an example of a pair (X, d) which obeys axioms (bcd) of Definition 1.1.2,
but not (a). (Hint: modify the discrete metric.)

(b) Give an example of a pair (X, d) which obeys axioms (acd) of Definition 1.1.2,
but not (b).

(c) Give an example of a pair (X, d) which obeys axioms (abd) of Definition 1.1.2,
but not (c).

(d) Give an example of a pair (X, d) which obeys axioms (abc) of Definition 1.1.2,
but not (d). (Hint: try examples where X is a finite set.)

Exercise 1.1.4 Show that the pair (Y, d|yxy) defined in Example 1.1.5 is indeed a
metric space.

Exercise 1.1.5 Letn > 1,andletay, as, ..., a, and by, b,, ..., b, be real numbers.
Verify the identity

(Seo) 25 o (54) (54)
i=1

i=1 j=I1



8 1 Metric Spaces

and conclude the Cauchy—Schwarz inequality

172

n ]/2 n
< (Z af) dopr| o (1.3)
i=1 j=1

n
E a;b;
i=1

Then use the Cauchy—Schwarz inequality to prove the triangle inequality

n 1/2 n
(zw,- +b,->2) - (zaf)
i=1 i=1

Exercise 1.1.6 Show that (R", d;2) in Example 1.1.6 is indeed a metric space. (Hint:
use Exercise 1.1.5.)

12 172

+[> 53
j=1

Exercise 1.1.7 Show that the pair (R", d;1) in Example 1.1.7 is indeed a metric
space.

Exercise 1.1.8 Prove the two inequalities in (1.1). (Hint: For the first inequality,
square both sides. For the second inequality, use Exercise (1.1.5).)

Exercise 1.1.9 Show that the pair (R”, dj~) in Example 1.1.9 is indeed a metric
space.

Exercise 1.1.10 Prove the two inequalities in (1.2).

Exercise 1.1.11 Show that the discrete metric (X, dgisc) in Example 1.1.11 is indeed
a metric space.

Exercise 1.1.12 Prove Proposition 1.1.18.
Exercise 1.1.13 Prove Proposition 1.1.19.

Exercise 1.1.14 Prove Proposition 1.1.20. (Hint: modify the proof of Proposition
6.1.7.)

Exercise 1.1.15 Let
oo
X:= :(an)flozo : Z la,| < oo

n=0

be the space of absolutely convergent sequences. Define the /! and /°° metrics on
this space by

[o¢]
dp ((an)p2g (bu)s2g) =Y _ lan — bul;
n=0

dl"c((an),o,O:Ov (bn)zozo) ‘= sup |an - bn|
neN
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Show that these are both metrics on X, but show that there exist sequences
xM x® . of elements of X (i.e., sequences of sequences) which are convergent
with respect to the dj~ metric but not with respect to the di metric. Conversely, show
that any sequence which converges in the d;i metric automatically converges in the
dj~ metric.

Exercise 1.1.16 Let (x,):2; and (y,)52, be two sequences in a metric space (X, d).
Suppose that (x,);>; converges to a point x € X, and (y,)52, converges to a point
y € X. Show that lim,_, o d(x,, y,) = d(x, y). (Hint: use the triangle inequality

several times.)

1.2 Some Point-Set Topology of Metric Spaces

Having defined the operation of convergence on metric spaces, we now define a
couple other related notions, including that of open set, closed set, interior, exte-
rior, boundary, and adherent point. The study of such notions is known as point-set
topology, which we shall return to in Sect. 2.5.

We first need the notion of a metric ball, or more simply a ball.

Definition 1.2.1 (Balls) Let (X, d) be a metric space, let xo be a point in X, and let
r > 0. We define the ball Bx 4)(xo, r) in X, centered at x¢, and with radius r, in the
metric d, to be the set

B(x.a)(xo,r):={x € X :d(x,xp) <r}.

When it is clear what the metric space (X, d) is, we shall abbreviate B(x 4)(xo, 1) as
just B(xo, ).

Example 1.2.2 In R? with the Euclidean metric dj2, the ball Br2.4,)((0,0), 1) is the
open disc
Bre.qp)((0,0),1) = {(x,y) e R : x> +y* < 1}.
However, if one uses the taxicab metric d;i instead, then we obtain a diamond:
Bre.,)((0,0), 1) = {(x,y) € R* : |x| + |y < 1}.

If we use the discrete metric, the ball is now reduced to a single point:

B2, ((0,0), 1) = {(0, 0)},

although if one increases the radius to be larger than 1, then the ball now encompasses
all of R%. (Why?)

Example 1.2.3 In R with the usual metric d, the open interval (3, 7) is also the
metric ball Br 4)(5, 2).
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Remark 1.2.4 Note that the smaller the radius r, the smaller the ball B(xg, ). How-
ever, B(xp, r) always contains at least one point, namely the center xp, as long as r
stays positive, thanks to Definition 1.1.2(a). (We don’t consider balls of zero radius
or negative radius since they are rather boring, being just the empty set.)

Using metric balls, one can now take a set E in a metric space X and classify
three types of points in X: interior, exterior, and boundary points of E.

Definition 1.2.5 (Interior, exterior, boundary) Let (X, d) be a metric space, let E
be a subset of X, and let xy be a point in X. We say that x is an interior point of E
if there exists a radius r > 0 such that B(xq, r) € E. We say that xq is an exterior
point of E if there exists a radius » > 0 such that B(xg, 7) N E = (). We say that x,
is a boundary point of E if it is neither an interior point nor an exterior point of E.

The set of all interior points of E is called the interior of E and is sometimes
denoted int(E). The set of exterior points of E is called the exterior of E and is
sometimes denoted ext(E). The set of boundary points of E is called the boundary
of E and is sometimes denoted 0 E.

Remark 1.2.6 If x is an interior point of E, then x( must actually be an element of
E, since balls B(x, r) always contain their center x,. Conversely, if x, is an exterior
point of E, then xy cannot be an element of E. In particular it is not possible for x
to simultaneously be an interior and an exterior point of E. If xy is a boundary point
of E, then it could be an element of E, but it could also not lie in E; we give some
examples below.

Example 1.2.7 We work on the real line R with the standard metric d. Let E be
the half-open interval E = [1, 2). The point 1.5 is an interior point of E, since
one can find a ball (for instance B(1.5,0.1)) centered at 1.5 which lies in E. The
point 3 is an exterior point of E, since one can find a ball (for instance B(3,0.1))
centered at 3 which is disjoint from E. The points 1 and 2, however, are neither
interior points nor exterior points of E and are thus boundary points of E. Thus in
this case int(E) = (1, 2), ext(E) = (—o0, 1) U (2, 0), and dE = {1, 2}. Note that
in this case one of the boundary points is an element of E, while the other is not.

Example 1.2.8 When we give a set X the discrete metric dgis., and E is any subset
of X, then every element of E is an interior point of E, every point not contained in
E is an exterior point of E, and there are no boundary points; see Exercise 1.2.1.

Definition 1.2.9 (Closure) Let (X, d) be a metric space, let E be a subset of X, and
let xo be a point in X. We say that x is an adherent point of E if for every radius
r > 0, the ball B(xy, r) has a non-empty intersection with E. The set of all adherent
points of E is called the closure of E and is denoted E.

Note that these notions are consistent with the corresponding notions on the real
line defined in Definitions 9.1.8 and 9.1.10 (why?).

The following proposition links the notions of adherent point with interior and
boundary point and also to that of convergence.
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Proposition 1.2.10 Let (X, d) be a metric space, let E be a subset of X, and let x
be a point in X. Then the following statements are logically equivalent.

(a) xo is an adherent point of E.

(b) xq is either an interior point or a boundary point of E.

(c) There exists a sequence (x,),-, in E which converges to xo with respect to the
metric d.

Proof See Exercise 1.2.2. O

From the equivalence of Proposition 1.2.10(a) and (b) we obtain an immediate
corollary:

Corollary 1.2.11 Let (X, d) be a metric space, and let E be a subset of X. Then
E =int(E) UJE = X\ext(E).

As remarked earlier, the boundary of a set E may or may not lie in E. Depending
on how the boundary is situated, we may call a set open, closed, or neither:

Definition 1.2.12 (Open and closed sets) Let (X, d) be a metric space, and let E
be a subset of X. We say that E is closed if it contains all of its boundary points,
i.e., 0E C E. We say that E is open if it contains none of its boundary points, i.e.,
0E N E = (. If E contains some of its boundary points but not others, then it is
neither open nor closed.

Example 1.2.13 We work in the real line R with the standard metric d. The set (1, 2)
does not contain either of its boundary points 1, 2 and is hence open. The set [1, 2]
contains both of its boundary points 1, 2 and is hence closed. The set [1, 2) contains
one of its boundary points 1, but does not contain the other boundary point 2, so is
neither open nor closed.

Remark 1.2.14 1t is possible for a set to be simultaneously open and closed, if it
has no boundary. For instance, in a metric space (X, d), the whole space X has no
boundary (every point in X is an interior point—why?), and so X is both open and
closed. The empty set ¥} also has no boundary (every point in X is an exterior point—
why?), and so @ is both open and closed. In many cases these are the only sets that
are simultaneously open and closed, but there are exceptions. For instance, using the
discrete metric dgsc, every set is both open and closed! (why?)

From the above two remarks we see that the notions of being open and being
closed are not negations of each other; there are sets that are both open and closed,
and there are sets which are neither open nor closed. Thus, if one knew for instance
that £ was not an open set, it would be erroneous to conclude from this that E was
a closed set, and similarly with the roles of open and closed reversed. The correct
relationship between open and closed sets is given by Proposition 1.2.15(e) below.

Now we list some more properties of open and closed sets.

Proposition 1.2.15 (Basic properties of open and closed sets) Let (X, d) be a metric
space.
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(a) Let E be a subset of X. Then E is open if and only if E = int(E). In other
words, E is open if and only if for every x € E, there exists an r > 0 such that
B(x,r) CE.

(b) Let E be a subset of X. Then E is closed if and only if E contains all its adherent
points. In other words, E is closed if and only if for every convergent sequence
(Xp)p2,, in E, the limit lim,,_, o x,, of that sequence also lies in E.

(c) For any xo € X and r > 0, then the ball B(xy, r) is an open set. The set {x €
X :d(x,x9) <r}isaclosed set. (This set is sometimes called the closed ball of
radius r centered at xy.)

(d) Any singleton set {xy}, where xy € X, is automatically closed.

(e) If E is a subset of X, then E is open if and only if the complement X\E :={x €
X :x ¢ E}isclosed.

(f) IfE, ..., E, is a finite collection of open sets in X, then E, N E; N ---NE, is
also open. If Fy, . .., F, is a finite collection of closed sets in X, then Fy U F, U
---U F, is also closed.

(g) If {Ey}act is a collection of open sets in X (where the index set I could
be finite, countable, or uncountable), then the union | J,.; Eo - ={x € X 1 x €
E, for some o € 1} is also open. If {F,}qer is a collection of closed sets in X,
then the intersection (,.; Fo :={x € X : x € F, forall @ € I} is also closed.

(h) If E is any subset of X, then int(E) is the largest open set which is contained in
E; in other words, int(E) is open, and given any other open set V. C E, we have
V Cint(E). Similarly E is the smallest closed set which contains E; in other
words, E is closed, and given any other closed set K D E, K D E.

Proof See Exercise 1.2.3. O
— Exercises —
Exercise 1.2.1 Verify the claims in Example 1.2.8.

Exercise 1.2.2 Prove Proposition 1.2.10. (Hint: for some of the implications one
will need the axiom of choice, as in Lemma 8.4.5.)

Exercise 1.2.3 Prove Proposition 1.2.15. (Hint: you can use earlier parts of the
proposition to prove later ones.)

Exercise 1.2.4 Let (X, d) be a metric space, xo be a pointin X, and r > 0. Let B be
the open ball B := B(xp,r) = {x € X : d(x, x9) < r}, and let C be the closed ball
C={xeX:dx,x) <r}.

(a) Show that B C C.
(b) Give > an example of a metric space (X, d), a point xp, and a radius r > 0 such
that B is not equal to C.
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1.3 Relative Topology

When we defined notions such as open and closed sets, we mentioned that such
concepts depended on the choice of metric one uses. For instance, on the real line R,
if one uses the usual metric d(x, y) = |x — y|, then the set {1} is not open, however
if instead one uses the discrete metric dgis., then {1} is now an open set (why?).
However, it is not just the choice of metric which determines what is open and
what is not—it is also the choice of ambient space X . Here are some examples.

Example 1.3.1 Consider the plane R? with the Euclidean metric d;>. Inside the plane,
we can find the x-axis X :={(x, 0) : x € R}. The metric d2 can be restricted to X,
creating a subspace (X, dp|xxx) of (R?, dp2). (This subspace is essentially the same
as the real line (R, d) with the usual metric; the precise way of stating this is that
(X, dp|xxx) is isometric to (R, d). We will not pursue this concept further in this
text, however.) Now consider the set

E={x,00:—1<x <1}

which is both a subset of X and of R%. Viewed as a subset of R2, it is not open,
because the point (0, 0), for instance, lies in E but is not an interior point of E. (Any
ball Bg: 4, (0, r) will contain at least one point that lies outside of the x-axis, and
hence outside of E.) On the other hand, if viewed as a subset of X, it is open; every
point of E is an interior point of E with respect to the metric space (X, dp2|xxx). For
instance, the point (0, 0) is now an interior point of E, because the ball B Xodp | xcx ©,1)
is contained in E (in fact, in this case it is E).

Example 1.3.2 Consider the real line R with the standard metric d, and let X be
the interval X := (—1, 1) contained inside R; we can then restrict the metric d to X,
creating a subspace (X, d|xxx) of (R, d). Now consider the set [0, 1). This set is not
closed in R, because the point 1 is adherent to [0, 1) but is not contained in [0, 1).
However, when considered as a subset of X, the set [0, 1) now becomes closed; the
point 1 is not an element of X and so is no longer considered an adherent point of
[0, 1), and so now [0, 1) contains all of its adherent points.

To clarify this distinction, we make a definition.

Definition 1.3.3 (Relative topology) Let (X, d) be a metric space, let Y be a subset
of X, and let E be a subset of Y. We say that E is relatively open with respect to Y
if it is open in the metric subspace (Y, d|yy). Similarly, we say that E is relatively
closed with respect to Y if it is closed in the metric space (Y, d|yxy).

The relationship between open (or closed) sets in X, and relatively open (or
relatively closed) sets in Y, is the following.

Proposition 1.3.4 Ler (X, d) be a metric space, let Y be a subset of X, and let E
be a subset of Y.
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(a) E is relatively open with respect to Y if and only if E =V N'Y for some set
V C X which is open in X.

(b) E is relatively closed with respect to Y if and only if E = K N'Y for some set
K C X which is closed in X.

Proof We just prove (a) and leave (b) to Exercise 1.3.1. First suppose that E is
relatively open with respect to Y. Then, E is open in the metric space (Y, d|yxy).
Thus, for every x € E, there exists a radius » > 0 such that the ball By 4,,,)(x, )
is contained in E. This radius r depends on x; to emphasize this we write r, instead
of r, thus for every x € E the ball By g4}, ,,)(x, ry) is contained in E. (Note that we
have used the axiom of choice, Proposition 8.4.7, to do this.)
Now consider the set
V= Bua(x. 1)

x€E

This is a subset of X. By Proposition 1.2.15(c) and (g), V is open. Now we prove
that £ = V N Y. Certainly any point x in E lies in V N Y, since it lies in ¥ and it
also lies in B(x 4)(x, ry), and hence in V. Now suppose that y is a pointin V. NY.
Then y € V, which implies that there exists an x € E such that y € Bx q4)(x, ry).
But since y is also in Y, this implies that y € By q4},,,)(x, ). But by definition of
ry, this means that y € E, as desired. Thus we have found an open set V for which
E =V NY asdesired.

Now we do the converse. Suppose that E = V N Y for some open set V; we have
to show that E is relatively open with respect to Y. Let x be any point in E; we
have to show that x is an interior point of E in the metric space (Y, d|yxy). Since
x € E, we know x € V. Since V is open in X, we know that there is a radius r > 0
such that B(x 4)(x, r) is contained in V. Strictly speaking, r depends on x, and so we
could write r, instead of r, but for this argument we will only use a single choice of
x (as opposed to the argument in the previous paragraph) and so we will not bother
to subscript r here. Since E = V NY, this means that By 4)(x, r) NY is contained
in E. But By ) (x,r)NY is exactly the same as By gq,,,)(x,r) (why?), and so
B.d)y.)(x, 1) is contained in E. Thus x is an interior point of E in the metric space
(Y, d|yxy), as desired. O

— Exercises —

Exercise 1.3.1 Prove Proposition 1.3.4(b).

1.4 Cauchy Sequences and Complete Metric Spaces

We now generalize much of the theory of limits of sequences from Chap.6 to the
setting of general metric spaces. We begin by generalizing the notion of a subsequence
from Definition 6.6.1:
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Definition 1.4.1 (Subsequences) Suppose that (x™)° is a sequence of points in a
metric space (X, d). Suppose thatny, ny, ns, .. .1s an increasing sequence of integers
which are at least as large as m, thus

m=<ny<n<n<---

Then we call the sequence (x")%, a subsequence of the original sequence
(x()ee
n=m-

oo

Example 1.4.2 The sequence ((lz, jlz)) in R? is a subsequence of the sequence
J=l1

). The sequence 1, 1, 1, 1, ... is a subsequence of

D

(( l)):i] (in this case, n := j

n’n

1,0,1,0,1,....
If a sequence converges, then so do all of its subsequences:

Lemma 1.4.3 Let (x(”));'f:m be a sequence in (X, d) which converges to some limit

xo. Then every subsequence (x" )3‘;1 of that sequence also converges to xy.
Proof See Exercise 1.4.1. O

On the other hand, it is possible for a subsequence to be convergent without the
sequence as a whole being convergent. For example, the sequence 1,0, 1,0, 1, ... s
not convergent, even though certain subsequences of it (such as 1, 1, 1, . . .) converge.
To quantify this phenomenon, we generalize Definition 6.4.1 as follows:

Definition 1.4.4 (Limit points) Suppose that (x™)>°  is a sequence of points in a

metric space (X, d), and let L € X. We say that L is a limit point of (x(”))f;o:m iff for
every N > m and ¢ > 0 there exists an n > N such that dix™ L) <e.

Proposition 1.4.5 Let (x"™)°  be a sequence of points in a metric space (X, d),

n=m

and let L € X. Then the following are equivalent:

e L is a limit point of (x™)> .
e There exists a subsequence ()c(”f))_‘]’.i1 of the original sequence (x™)° which
converges to L.

Proof See Exercise 1.4.2. ]

Next, we review the notion of a Cauchy sequence from Definition 6.1.3 (see also
Definition 5.1.8).

Definition 1.4.6 (Cauchy sequences) Let (x(”))flo:m be a sequence of points in a
metric space (X, d). We say that this sequence is a Cauchy sequence iff for every
g > 0, there exists an N > m such that d(x), x®) < ¢ forall j, k > N.

Lemma 1.4.7 (Convergent sequences are Cauchy sequences) Let (x™)®  be a

n=m
sequence in (X, d) which converges to some limit xy. Then (x (”))Z‘;m is also a Cauchy
sequence.
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Proof See Exercise 1.4.3. O

It is also easy to check that subsequence of a Cauchy sequence is also a Cauchy
sequence (why?). However, not every Cauchy sequence converges:

Example 1.4.8 (Informal) Consider the sequence
3,3.1,3.14,3.141, 3.1415, . ..

in the metric space (Q, d) (the rationals Q with the usual metric d(x, y) 1= |x — y]).
While this sequence is convergent in R (it converges to ), it does not converge in
Q (since w ¢ Q, and a sequence cannot converge to two different limits).

So in certain metric spaces, Cauchy sequences do not necessarily converge. How-
ever, if even part of a Cauchy sequence converges, then the entire Cauchy sequence
must converge (to the same limit):

Lemma 1.4.9 Let (x™)°  be a Cauchy sequence in (X, d). Suppose that there is
some subsequence (x(”f))‘;"= | of this sequence which converges to a limit xq in X.

Then the original sequence (x™)% also converges to x,.
Proof See Exercise 1.4.4. O

In Example 1.4.8 we saw an example of a metric space which contained Cauchy
sequences which did not converge. However, in Theorem 6.4.18 we saw that in the
metric space (R, d), every Cauchy sequence did have a limit. This motivates the
following definition.

Definition 1.4.10 (Complete metric spaces) A metric space (X, d) is said to be
complete iff every Cauchy sequence in (X, d) is in fact convergent in (X, d).

Example 1.4.11 By Theorem 6.4.18, the reals (R, d) are complete; by Example
1.4.8, the rationals (Q, d), on the other hand, are not complete.

Complete metric spaces have some nice properties. For instance, they are intrin-
sically closed: no matter what space one places them in, they are always closed sets.
More precisely:

Proposition 1.4.12 (a) Let (X, d) be a metric space, and let (Y, d|yxy) be a sub-
space of (X, d). If (Y, d|yxy) is complete, then Y must be closed in X.

(b) Conversely, suppose that (X, d) is a complete metric space, and Y is a closed
subset of X. Then the subspace (Y, d|y«y) is also complete.

Proof See Exercise 1.4.7. O

In contrast, an incomplete metric space such as (Q, d) may be considered closed
in some spaces (for instance, Q is closed in Q) but not in others (for instance, Q is
not closed in R). Indeed, it turns out that given any incomplete metric space (X, d),
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there exists a completion (X, d), which is a larger metric space containing (X, d)
v&iliczl is complete, a_nd such that X is not closed in X (indeed, the closure of X in
(X, d) will be all of X); see Exercise 1.4.8. For instance, one possible completion of
QisR.

— Exercises —
Exercise 1.4.1 Prove Lemma 1.4.3. (Hint: review your proof of Proposition 6.6.5.)

Exercise 1.4.2 Prove Proposition 1.4.5. (Hint: review your proof of Proposition
6.6.6.)

Exercise 1.4.3 Prove Lemma 1.4.7. (Hint: review your proof of Proposition 6.1.12.)
Exercise 1.4.4 Prove Lemma 1.4.9.

Exercise 1.4.5 Let (x (”));”;m be a sequence of points in a metric space (X, d), and
let L € X. Show that if L is a limit point of the sequence (x™)° . then L is an

n=m?
adherent point of the set {x™ : n > m}. Is the converse true?
Exercise 1.4.6 Show that every Cauchy sequence can have at most one limit point.
Exercise 1.4.7 Prove Proposition 1.4.12.

Exercise 1.4.8 The following construction generalizes the construction of the reals
from the rationals in Chap. 5, allowing one to view any metric space as a subspace
of a complete metric space. In what follows we let (X, d) be a metric space.

(a) Given any Cauchy sequence (x,);2, in X, we introduce the formal limit
LIM, - o x,. We say that two formal limits LIM,,_, o, x, and LIM,_, », y,, are
equal if lim,,_, o, d (x,,, y,) is equal to zero. Show that this equality relation obeys
the reflexive, symmetry, and transitive axioms.

(b) Let X be the space of all formal limits of Cauchy sequences in X, with the above
equality relation. Define a metric di: X x X — [0, +00) by setting

dY(LIMn»oo X, LIM, 00 Y0) i= n]l»n;o d(Xp, yn)-

Show that this function is well-defined (this means not only that the limit
lim,_, » d(x,, ¥,) exists, but also that the axiom of substitution is obeyed; cf.
Lemma 5.3.7) and gives X the structure of a metric space.

(c) Show that the metric space X, dx) is complete.

(d) We identify an element x € X with the corresponding formal limit LIM,,_, o x
in X; show that this is legitimate by verifying that x = y <= LIM,_ o X =
LIM,_, » y. With this identification, show that d(x, y) = dx(x, y), and thus
(X, d) can now be thought of as a subspace of (7, dx).

(e) Show that the closure of X in X is X (which explains the choice of notation X).

(f) Show that the formal limit agrees with the actual limit, thus if (x,)52, is any

Cauchy sequence in X, then we have lim,,_, » x, = LIM,,_, oc X, in X.
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1.5 Compact Metric Spaces

We now come to one of the most useful notions in point-set topology, that of com-
pactness. Recall the Heine—Borel theorem (Theorem 9.1.24), which asserted that
every sequence in a closed and bounded subset X of the real line R had a convergent
subsequence whose limit was also in X. Conversely, only the closed and bounded
sets have this property. This property turns out to be so useful that we give it a name.

Definition 1.5.1 (Compactness) A metric space (X, d) is said to be compact iff
every sequence in (X, d) has at least one convergent subsequence. A subset ¥ of a
metric space X is said to be compact if the subspace (Y, d|yxy) is compact.

Remark 1.5.2 The notion of a set Y being compact is intrinsic, in the sense that it
only depends on the metric function d|yy restricted to Y, and not on the choice
of the ambient space X. The notions of completeness in Definition 1.4.10, and of
boundedness below in Definition 1.5.3, are also intrinsic, but the notions of open and
closed are not (see the discussion in Sect. 1.3).

Thus, Theorem 9.1.24 shows that in the real line R with the usual metric, every
closed and bounded set is compact, and conversely every compact set is closed and
bounded.

Now we investigate how the Heine—Borel extends to other metric spaces.

Definition 1.5.3 (Bounded sets) Let (X, d) be a metric space, and let Y be a subset
of X. We say that Y is bounded iff for every x € X there exists a ball B(x, r) in X
of some finite radius r which contains Y. We call the metric space (X, d) bounded
if X is bounded.

Remark 1.5.4 This definition is compatible with the definition of a bounded set in
Definition 9.1.22 (Exercise 1.5.1).

Proposition 1.5.5 Let (X, d) be a compact metric space. Then (X, d) is both com-
plete and bounded.

Proof See Exercise 1.5.2. O

From this proposition and Proposition 1.4.12(a) we obtain one half of the Heine—
Borel theorem for general metric spaces:

Corollary 1.5.6 (Compact sets are closed and bounded) Let (X, d) be a metric
space, and let Y be a compact subset of X. Then Y is closed and bounded.

The other half of the Heine—Borel theorem is true in Euclidean spaces:

Theorem 1.5.7 (Heine—-Borel theorem) Let (R", d) be a Euclidean space with either
the Euclidean metric, the taxicab metric, or the sup norm metric. Let E be a subset
of R". Then E is compact if and only if it is closed and bounded.
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Proof See Exercise 1.5.3. O

However, the Heine—Borel theorem is not true for more general metrics. For
instance, the integer Z with the discrete metric is closed (indeed, it is complete)
and bounded, but not compact, since the sequence 1,2, 3,4, ... is in Z but has no
convergent subsequence (why?). Another example is in Exercise 1.5.8. However, a
version of the Heine—Borel theorem is available if one is willing to replace closedness
with the stronger notion of completeness and boundedness with the stronger notion
of total boundedness; see Exercise 1.5.10.

One can characterize compactness topologically via the following, rather strange-
sounding statement: every open cover of a compact set has a finite subcover.

Theorem 1.5.8 Let (X, d) be a metric space, and let Y be a compact subset of X.
Let (Vy)gea be a collection of open sets in X, and suppose that

YgUVa.

acA

(i.e., the collection (Vy)gueca covers Y ). Then there exists a finite subset F of A such

that
Y C U V,.

aelF

Proof We assume for sake of contradiction that there does not exist any finite subset
F of A for which Y € |J,cr Ve

Let y be any element of Y. Then y must lie in at least one of the sets V,,. Since
each V, is open, there must therefore be an r > 0 such that B(x 4 (y, r) € V,. Now
let r(y) denote the quantity

r(y):=sup{r € (0,00) : Bix,ay(y,r) € Vy for some o € A}.

By the above discussion, we know that r(y) > 0 for all y € Y. Now, let ry denote
the quantity
ro:= inf{r(y): y e Y}.

Since r(y) > 0 for all y € Y, we have ry > 0. There are three cases: ry =0, 0 <
ro < 00, and rg = o0.

e Case 1: rp = 0. Then for every integer n > 1, there is at least one point y in ¥
such that r(y) < 1/n (why?). We thus choose, for each n > 1, a point y™ in
Y such that »(y™) < 1/n (we can do this because of the axiom of choice, see
Proposition 8.4.7). In particular we have lim,,_, o, 7 (y™) = 0, by the squeeze test.
The sequence (y™)° | is a sequence in Y; since Y is compact, we can thus find a
subsequence (y(”f'))i‘;l which converges to a point yy € Y.

As before, we know that there exists some « € A such that y, € V,,, and hence
(since V,, is open) there exists some ¢ > 0 such that B(yg, &) S V,. Since y®)
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converges to Yo, there must existan N > 1 such that y'/) € B(yo, £/2) foralln >
N. In particular, by the triangle inequality we have B(y", £/2) € B(yo, ¢), and
thus B(y"), £/2) C V,. By definition of r(y"), this implies that r (y"))) > ¢/2
for all n > N. But this contradicts the fact that lim,,_, o, r () = 0.

e Case 2: 0 < rg < oo. In this case we now have r(y) > ro/2 for all y € Y. This
implies that for every y € Y there exists an o € A such that B(y,ry/2) C V,
(why?).
We now construct a sequence y, y® .. by the following recursive procedure.
We let y( be any point in Y. The ball B(y", ry/2) is contained in one of the
V, and thus cannot cover all of Y, since we would then obtain a finite cover, a
contradiction. Thus there exists a point y® which does not lie in B(y(", ry/2), so
in particular d(y®, y() > ry/2. Choose such a point y». The set B(y", ry/2) U
B( y(2>, ro/2) cannot cover all of Y, since we would then obtain two sets V,, and Vy,
which covered Y, a contradiction again. So we can choose a point y® which does
not lie in B(y(", rg/2) U B(y?, ry/2), so in particular d(y®, y) > ry/2 and
d(y®, y@) > ry/2. Continuing in this fashion we obtain a sequence (y)>, in ¥
with the property that d(y®, y/)) > ry/2 forall k > j.In particular the sequence
(y™)° | is not a Cauchy sequence, and in fact no subsequence of (y™)° | can be
a Cauchy sequence either. But this contradicts the assumption that Y is compact
(by Lemma 1.4.7).

e Case 3: ryp = oo. For this case we argue as in Case 2, but replacing the role of (/2

by (say) 1.
|

It turns out that Theorem 1.5.8 has a converse: if Y has the property that every
open cover has a finite subcover, then it is compact (Exercise 1.5.11). In fact, this
property is often considered the more fundamental notion of compactness than the
sequence-based one. (For metric spaces, the two notions, that of compactness and
sequential compactness, are equivalent, but for more general fopological spaces, the
two notions are slightly different, though we will not show this here.)

Theorem 1.5.8 has an important corollary: that every nested sequence of non-
empty compact sets is still non-empty.

Corollary 1.5.9 Let (X, d) be a metric space, and let K, K, K3, . .. be a sequence
of non-empty compact subsets of X such that

Ki2K,2K3;2---.
Then the intersection (., K, is non-empty.
Proof See Exercise 1.5.6. O
We close this section by listing some miscellaneous properties of compact sets.

Theorem 1.5.10 Let (X, d) be a metric space.
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(a) IfY is a compact subset of X, and Z C Y, then Z is compact if and only if Z is
closed.

(b) If Y1, ...,Y, are a finite collection of compact subsets of X, then their union
YiU...UY, is also compact.

(c) Every finite subset of X (including the empty set) is compact.

Proof See Exercise 1.5.7. O
— Exercises —

Exercise 1.5.1 Show that Definitions 9.1.22 and 1.5.3 match when talking about
subsets of the real line with the standard metric.

Exercise 1.5.2 Prove Proposition 1.5.5. (Hint: prove the completeness and bound-
edness separately. For both claims, use proof by contradiction. You will need the
axiom of choice, as in Lemma 8.4.5.)

Exercise 1.5.3 Prove Theorem 1.5.7. (Hint: use Proposition 1.1.18 and Theorem
9.1.24.)

Exercise 1.5.4 Let (R, d) be the real line with the standard metric. Give an example
of a continuous function f: R — R, and an open set V C R, such that the image
f(V):={f(x):x € V}of Vis not open.

Exercise 1.5.5 Let (R, d) be the real line with the standard metric. Give an example
of a continuous function f: R — R, and a closed set F C R, such that f(F) is not
closed.

Exercise 1.5.6 Prove Corollary 1.5.9. (Hint: work in the compact metric space
(K1, d|k,xk,), and consider the sets V, := K\ K,,, which are open on K. Assume
for sake of contradiction that (1)), K, = ¥, and then apply Theorem 1.5.8.)

Exercise 1.5.7 Prove Theorem 1.5.10. (Hint: for part (c), you may wish to use (b),
and first prove that every singleton set is compact.)

Exercise 1.5.8 Let (X, d;1) be the metric space from Exercise 1.1.15. For each nat-

ural number n, let ™ = (eﬁ."))‘j?o:o be the sequence in X such that e}") :=1 when

n=j and e;") :=0 when n # j. Show that the set {e"™ : n € N} is a closed and
bounded subset of X, but is not compact. (This is despite the fact that (X, dj1) is even
a complete metric space—a fact which we will not prove here. The problem is that
not that X is incomplete, but rather that it is “infinite-dimensional”, in a sense that
we will not discuss here.)

Exercise 1.5.9 Show that a metric space (X, d) is compact if and only if every
sequence in X has at least one limit point.

Exercise 1.5.10 A metric space (X, d) is called totally bounded if for every ¢ > 0,
there exists a natural number n and a finite number of balls B(x(", ¢), ..., B(x™, ¢)
which cover X (i.e., X = JI_, B(x?, ¢).
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(a) Show that every totally bounded space is bounded.

(b) Show the following stronger version of Proposition 1.5.5: if (X, d) is compact,
then complete and totally bounded. (Hint: if X is not totally bounded, then there
is some ¢ > 0 such that X cannot be covered by finitely many e-balls. Then
use Exercise 8.5.20 to find an infinite sequence of balls B(x™, ¢ /2) which are
disjoint from each other. Use this to then construct a sequence which has no
convergent subsequence.)

(c) Conversely, show that if X is complete and totally bounded, then X is com-
pact. (Hint: if (xV)>, is a sequence in X, use the total boundedness hypothe-
sis to recursively construct a sequence of subsequences (x /)% | of (x™)>,
for each positive integer j, such that for each j, the elements of the sequence
(x:1))% | are contained in a single ball of radius 1/, and also that each sequence
(xmiTD)> s a subsequence of the previous one (x/))> . Then show that
the “diagonal” sequence (x)>  is a Cauchy sequence, and then use the
completeness hypothesis.)

Exercise 1.5.11 Let (X, d) have the property that every open cover of X has a finite
subcover. Show that X is compact. (Hint: if X is not compact, then by Exercise 1.5.9,
there is a sequence (x™)°° | with no limit points. Then for every x € X there exists
a ball B(x, €) containing x which contains at most finitely many elements of this
sequence. Now use the hypothesis.)

Exercise 1.5.12 Let (X, dgisc) be a metric space with the discrete metric dgsc.

(a) Show that X is always complete.

(b) When is X compact, and when is X not compact? Prove your claim. (Hint: the
Heine—Borel theorem will be useless here since that only applies to Euclidean
spaces.)

Exercise 1.5.13 Let E and F be two compact subsets of R (with the standard metric
d(x,y) = |x — y|). Show that the Cartesian product £ x F:={(x,y) :x € E,y €
F'} is a compact subset of R? (with the Euclidean metric dj2).

Exercise 1.5.14 Let (X, d) be a metric space, let E be a non-empty compact subset
of X, and let x( be a point in X. Show that there exists a point x € E such that

d(xg, x) = inf{d(xp,y) : y € E},

i.e., x is the closest point in E to xq. (Hint: let R be the quantity R := inf{d(xq, y) :
y € E}. Construct a sequence (x™)% , in E such that d (xo, x™) < R + L, and then
use the compactness of E.)

Exercise 1.5.15 Let (X, d) be a compact metric space. Suppose that (Kg)uc; is @
collection of closed sets in X with the property that any finite subcollection of these
sets necessarily has non-empty intersection, thus (1), Ko 7 @ for all finite F C 1.
(This property is known as the finite intersection property.) Show that the entire
collection has non-empty intersection, thus [,.; Ko # 9. Show by counterexample
that this statement fails if X is not compact.

el



Chapter 2 ®)
Continuous Functions on Metric Spaces oo

2.1 Continuous Functions

In the previous chapter we studied a single metric space (X, d), and the various types
of sets one could find in that space. While this is already quite a rich subject, the
theory of metric spaces becomes even richer, and of more importance to analysis,
when one considers not just a single metric space, but rather pairs (X, dx) and (Y, dy)
of metric spaces, as well as continuous functions f: X — Y between such spaces.
To define this concept, we generalize Definition 9.4.1 as follows:

Definition 2.1.1 (Continuous functions) Let (X, dx) be a metric space, and let
(Y, dy) be another metric space, and let f: X — Y be a function. If xo € X, we
say that f is continuous at xy iff for every ¢ > 0, there exists a § > 0 such that
dy(f(x), f(xg)) < & whenever dx(x, x9) < §. We say that f is continuous iff it is
continuous at every point x € X.

Remark 2.1.2 Continuous functions are also sometimes called continuous maps.
Mathematically, there is no distinction between the two terminologies.

Remark 2.1.3 1If f: X — Y is continuous, and K is any subset of X, then the
restriction f|g : K — Y of f to K is also continuous (why?).

We now generalize much of the discussion in Chap.9. We first observe that con-
tinuous functions preserve convergence:

Theorem 2.1.4 (Continuity preserves convergence) Suppose that (X, dx) and
(Y, dy) are metric spaces. Let f: X — Y be a function, and let xy € X be a point
in X. Then the following three statements are logically equivalent:

(a) f is continuous at x.
(b) Whenever (x("));'l": | is a sequence in X which converges to xo with respect to

the metric dyx, the sequence (f (x (’l))),‘j":1 converges to f(xg) with respect to the
metric dy.

© Hindustan Book Agency 2022 23
T. Tao, Analysis 11, Texts and Readings in Mathematics,
https://doi.org/10.1007/978-981-19-7284-3_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7284-3_2&domain=pdf
https://doi.org/10.1007/978-981-19-7284-3_2

24 2 Continuous Functions on Metric Spaces

(c) For every open set V. C Y that contains f(xg), there exists an open set U C X
containing xo such that f(U) C V.

Proof See Exercise 2.1.1. O
Another important characterization of continuous functions involves open sets.

Theorem 2.1.5 Let (X, dx) be a metric space, and let (Y, dy) be another metric

space. Let f: X — Y be a function. Then the following four statements are equiva-

lent:

(a) f is continuous.

(b) Whenever ()c(")),‘ii1 is a sequence in X which converges to some point xo € X
with respect to the metric dy, the sequence (f (x™))% | converges to f(xo) with

n=1
respect to the metric dy.
(c) Whenever V is an open setin'Y, the set f (V) :={x e X : f(x) € V}isan

open setin X.
(d) Whenever F is a closed set in Y, the set f~'(F) :={xe X: f(x) e F}isa

closed setin X.
Proof See Exercise 2.1.2. O
Remark 2.1.6 1t may seem strange that continuity ensures that the inverse image of

an open set is open. One may guess instead that the reverse should be true, that the
forward image of an open set is open; but this is not true; see Exercises 1.5.4, 1.5.5.

As a quick corollary of the above two theorems we obtain

Corollary 2.1.7 (Continuity preserved by composition) Let (X, dx), (Y, dy), and

(Z, dz) be metric spaces.

(a) If f: X — Y is continuous at a point xo € X, and g: Y — Z is continuous at
f (xo), then the composition g o f: X — Z, defined by g o f(x) := g(f(x)),
is continuous at x.

(b) If f: X — Y is continuous, and g: Y — Z is continuous, thengo f: X — Z
is also continuous.

Proof See Exercise 2.1.3. O

Example 2.1.8 If f: X — R is a continuous function, then the function 2 : X —
R defined by f2(x) := f(x)? is automatically continuous also. This is because we
have f? = go f, where g: R — R is the squaring function g(x) := x2, and g is a
continuous function.

— Exercises —
Exercise 2.1.1 Prove Theorem 2.1.4. (Hint: review your proof of Proposition 9.4.7.)

Exercise 2.1.2 Prove Theorem 2.1.5. (Hint: Theorem 2.1.4 already shows that (a)
and (b) are equivalent.)

Exercise 2.1.3 Use Theorem 2.1.4 and Theorem 2.1.5 to prove Corollary 2.1.7.
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Exercise 2.1.4 Give an example of functions f: R — R and g: R — R such that

(a) f is not continuous, but g and g o f are continuous.
(b) g is not continuous, but f and g o f are continuous.
(c) f and g are not continuous, but g o f is continuous.

Explain briefly why these examples do not contradict Corollary 2.1.7.

Exercise 2.1.5 Let (X, d) be a metric space, and let (E, d|gxg) be a subspace of
(X,d). Letig_x : E — X be the inclusion map, defined by setting (g x (x) := x
for all x € E. Show that (g_, x is continuous.

Exercise 2.1.6 Let f: X — Y be a function from one metric space (X, dy) to
another (Y, dy). Let E be a subset of X (which we give the induced metric dx|gx£),
andlet f|g : E — Y be the restriction of f to E, thus f|g(x) := f(x) whenx € E.
If xo € E and f is continuous at x, show that f|g is also continuous at xg. (Is the
converse of this statement true? Explain.) Conclude that if f is continuous, then
flEg is continuous. Thus restriction of the domain of a function does not destroy
continuity. (Hint: use Exercise 2.1.5.)

Exercise 2.1.7 Let f: X — Y be a function from one metric space (X, dy) to
another (Y, dy). Suppose that the image f(X) of X is contained in some subset
E CYofY.Let g: X — E be the function which is the same as f but with the
codomain restricted from Y to E, thus g(x) = f(x) for all x € X. We give E the
metric dy|gxg induced from Y. Show that for any xy € X, that f is continuous at
xo if and only if g is continuous at xy. Conclude that f is continuous if and only
if g is continuous. (Thus the notion of continuity is not affected if one restricts the
codomain of the function.)

2.2 Continuity and Product Spaces

Given two functions f: X — Y and g: X — Z, one can define their pairing
(f,8): X = Y x Z defined by (f, g)(x) := (f(x), g(x)), i.e., this is the function
taking values in the Cartesian product ¥ x Z whose first coordinate is f(x) and
whose second coordinate is g(x) (cf. Exercise 3.5.7). For instance, if f: R - R
is the function f(x) := x2+3, and g: R — R is the function g(x) = 4x, then
(f, g): R = R? is the function (f, g)(x) := (x> + 3, 4x). The pairing operation
preserves continuity:

Lemma 2.2.1 Let f: X — Randg: X — Rbe functions, andlet (f, g): X — R?
be their direct sum. We give R? the Euclidean metric.

(a) Ifxy € X, then f and g are both continuous at xq ifand only if (f, g) is continuous
at xg.
(b) f and g are both continuous if and only if (f, g) is continuous.
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Proof See Exercise 2.2.1. O
To use this, we first need another continuity result:

Lemma 2.2.2 The addition function (x, y) — x + y, the subtraction function (x, y)
> x — y, the multiplication function (x, y) — xy, the maximum function (x, y) >
max(x, y), and the minimum function (x, y) — min(x, y) are all continuous func-
tions from R?* to R. The division function (x,y) — x/y is a continuous function
from R x (R\{0}) = {(x, y) € R : y # 0} to R. For any real number c, the func-
tion x + cx is a continuous function from R to R.

Proof See Exercise 2.2.2. O
Combining these lemmas we obtain

Corollary 2.2.3 Let (X, d) be a metric space, and let f: X — Rand g: X - R
be functions. Let ¢ be a real number.

(a) If xg € X and f and g are continuous at xo, then the functions f + g: X — R,
f—g¢: X—=R fg: X— R max(f,g): X - R min(f, g): X - R, and
cf: X — R (see Definition 9.2.1 for definitions) are also continuous at xy. If
g(x) #Oforallx € X, then f/g: X — R s also continuous.

(b) If f and g are continuous, then the functions f +g: X - R, f —g: X - R,
fg: X > R max(f,g): X - R min(f,g): X > R, and cf: X — R are
also continuous at xo. If g(x) # 0 for all x € X, then f/g: X — R is also
continuous at x.

Proof We first prove (a). Since f and g are continuous at xy, then by Lemma 2.2.1
(f,e): X — R? is also continuous at xo. On the other hand, from Lemma 2.2.2
the function (x, y) — x + y is continuous at every point in R? and in particular is
continuous at (f, g)(xp). If we then compose these two functions using Corollary
2.1.7 we conclude that f + g: X — R is continuous. A similar argument gives the
continuity of f — g, fg, max(f, g), min(f, g), and cf. To prove the claim for f/g,
we first use Exercise 2.1.7 to restrict the codomain of g from R to R\{0}, and then
one can argue as before. The claim (b) follows immediately from (a). |

This corollary allows us to demonstrate the continuity of a large class of functions;
we give some examples below.

— Exercises —

Exercise 2.2.1 Prove Lemma 2.2.1. (Hint: use Proposition 1.1.18 and Theorem
2.14))

Exercise 2.2.2 Prove Lemma 2.2.2. (Hint: use Theorem 2.1.5 and limit laws (The-
orem 6.1.19).)

Exercise 2.2.3 Show that if f: X — R is a continuous function, so is the function
|f]: X — Rdefined by | f|(x) := | f(x)].
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Exercise 2.2.4 Let 7;: R> — R and 7, : R*> — R be the functions 7 (x, y) 1= x
and mp(x, y) := y (these two functions are sometimes called the coordinate functions
on R?). Show that 7; and 7, are continuous. Conclude that if f: R — X is any
continuous function into a metric space (X, d), then the functions g; : R? - X and
g : R? — X definedby g (x, y) := f(x)and g2(x, y) := f(y) are also continuous.

Exercise 2.2.5 Letn, m > 0 be integers. Suppose that forevery 0 <i <nand0 <
J < m we have a real number ¢;;. Form the function P : R? — R defined by

P(x,y) := Z Zcijxiyj.

i=0 j=0

(Such a function is known as a polynomial of two variables; a typical example of such
a polynomial is P(x, y) = x* + 2xy?> — x> 4+ 3y + 6.) Show that P is continuous.
(Hint: use Exercise 2.2.4 and Corollary 2.2.3.) Conclude that if f: X — R and
g: X — Rare continuous functions, then the function P(f, g) : X — R defined by
P(f,g)(x) = P(f(x), g(x)) is also continuous.

Exercise 2.2.6 LetR"” and R"” be Euclidean spaces. If f: X — R"andg: X — R”
are continuous functions, show that ( f, g): X — R™™" is also continuous, where we
have identified R” x R” with R”*" in the obvious manner. Is the converse statement
true?

Exercise 2.2.7 Let k > 1, let I be a finite subset of N¥, and let ¢c: I — R be a
function. Form the function P: R¥ — R defined by

P(xi,...,x5) = Z ity ..o, i)xy .o x

(Such a function is known as a polynomial of k variables; a typical example of
such a polynomial is P(xy, x2, x3) = 3x7x2%3 — x2x3 + x1 + 5.) Show that P is
continuous. (Hint: use induction on k, Exercise 2.2.6, and either Exercise 2.2.5 or
Lemma 2.2.2.)

Exercise 2.2.8 Let (X, dx) and (Y, dy) be metric spaces. Define the metric dxxy :
(X xY) x (X xY)— [0, 0c0) by the formula

dxxy((x,y), (&', ) :==dx(x,x) +dy(y, Y.

Show that (X x Y, dx«y) is a metric space, and deduce an analogue of Proposition
1.1.18 and Lemma 2.2.1.

Exercise 2.2.9 Let f: R> — R be a function from R? to R. Let (xg, o) be a point
inR2.If f is continuous at (xg, yo), show that

lim limsup f(x,y) = hm limsup f(x,y) = f(x0, yo)

X=X y—y, Yo x—x
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and
lim liminf f(x,y) = hm lim 1nf f(x,y) = f(xo0, Y0).

X—=>X0 Y—>Yo x—

(Recall  that limsup,_, . f(x) = inf,~o SUP |y _ x| <r f(x) and liminf,_,
f(x) := sup,_qinf |y < f(x).) In particular, we have

lim lim f(x,y) = 11m 11m f(x,y)

X—>X0 Y—> Yo

whenever the limits on both sides exist. (Note that the limits do not necessarily existin
general; consider for instance the function f: R> — R such that f(x, y) = ysin %
when xy # 0 and f(x, y) = 0 otherwise.) Discuss the comparison between this
result and Example 1.2.7.

Exercise 2.2.10 Let f: R> — R be a continuous function. Show that for each x
R, the function y — f(x, y) is continuous on R, and for each y € R, the function
Xx = f(x,y)iscontinuous on R. Thus a function f (x, y) which is jointly continuous
in (x, y) is also continuous in each variable x, y separately.

Exercise 2.2.11 Let f: R?> — R be the function defined by f (x, y) := ﬁ when
(x,y) #(0,0), and f(x,y) = 0 otherwise. Show that for each fixed x € R, the
function y — f(x, y) is continuous on R, and that for each fixed y € R, the function
X — f(x,y)is continuous on R, but that the function f: R> — R is not continuous
on R2. This shows that the converse to Exercise 2.2.10 fails; it is possible to be
continuous in each variable separately without being jointly continuous.

Exercise 2.2.12 Let f: R? — R be the function defined by f(x, y) := x%/y when
y #0, and f(x,y):=0 when y =0. Show that lim,_¢ f(tx, ty) = f(0,0) for
every (x, y) € R?, but that f is not continuous at the origin. Thus being continuous
on every line through the origin is not enough to guarantee continuity at the origin!

2.3 Continuity and Compactness

Continuous functions interact well with the concept of compact sets defined in Def-
inition 1.5.1.

Theorem 2.3.1 (Continuous maps preserve compactness) Let f: X — Y be a con-
tinuous map from one metric space (X, dx) to another (Y, dy). Let K C X be any
compact subset of X. Then the image f(K) := {f(x) : x € K} of K is also compact.

Proof See Exercise 2.3.1. O

This theorem has an important consequence. Recall from Definition 9.6.5 the
notion of a function f: X — R attaining a maximum or minimum at a point. We
may generalize Proposition 9.6.7 as follows:
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Proposition 2.3.2 (Maximum principle) Let (X, d) be a compact metric space, and
let f: X — R be a continuous function. Then f is bounded. Furthermore, if X is
non-empty, then f attains its maximum at some point x,,,x € X and also attains its
minimum at some point Xy, € X.

Proof See Exercise 2.3.2. O

Remark 2.3.3 As was already noted in Exercise 9.6.1, this principle can fail if X is
not compact. This proposition should be compared with Lemma 9.6.3 and Proposition
9.6.7.

Another advantage of continuous functions on compact sets is that they are uni-
formly continuous. We generalize Definition 9.9.2 as follows:

Definition 2.3.4 (Uniform continuity) Let f: X — Y be a map from one metric
space (X, dx) to another (Y, dy). We say that f is uniformly continuous if, for every
e > 0, there exists a § > 0 such that dy (f(x), f(x’)) < & whenever x, x’ € X are
such that dx (x, x’) < 6.

Every uniformly continuous function is continuous, but not conversely (Exercise
2.3.3). But if the domain X is compact, then the two notions are equivalent:

Theorem 2.3.5 Let (X, dx) and (Y, dy) be metric spaces, and suppose that (X, dx)
is compact. If f: X — Y is function, then f is continuous if and only if it is uniformly
continuous.

Proof If f is uniformly continuous then it is also continuous by Exercise 2.3.3.
Now suppose that f is continuous. Fix ¢ > 0. For every xo € X, the function f
is continuous at xo. Thus there exists a §(xg) > 0, depending on xy, such that
dy(f(x), f(x0)) < &/2 whenever dy(x, xg) < 8(xp). In particular, by the triangle
inequality this implies that dy (f (x), f(x")) < & whenever x € B(x ay)(x0, 8(x0)/2)
and dy (x', x) < 8(x0)/2 (why?).

Now consider the (possibly infinite) collection of balls

{B(x,dy) (X0, 8(x0)/2) : x0 € X}.

Each ball in this collection is of course open, and the union of all these balls covers
X, since each point xy in X is contained in its own ball B(x 4,)(Xo, 6(x0)/2). Hence,
by Theorem 1.5.8, there exist a finite number of points xi, ..., x, such that the balls
Bx,ay)(xj,8(x;)/2) for j =1,...,n cover X:

X S | Bxan (x). 8(x)/2).
j=1

Now let § := min;’-=1 8(x;)/2. Since each of the §(x;) is positive, and there are only
a finite number of j, we see that § > 0. Now let x, x” be any two points in X such that
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dx(x, x") < 8. Since the balls B(x,q,)(x;, 8(x;)/2) cover X, we see that there must
exist 1 < j <n such that x € B(x q,)(x;, 8(x;)/2). Since dx(x, x") < §, we have
dx(x, x") < 8(x;)/2, and so by the previous discussion we have dy (f (x), f(x)) <
€. We have thus found a § such that dy (f(x), f(x")) < & whenever d(x, x’) < §,
and this proves uniform continuity as desired. O

— Exercises —
Exercise 2.3.1 Prove Theorem 2.3.1.

Exercise 2.3.2 Prove Proposition 2.3.2. (Hint: modify the proof of Proposition
9.6.7.)

Exercise 2.3.3 Show that every uniformly continuous function is continuous, but
give an example that shows that not every continuous function is uniformly contin-
uous.

Exercise 2.3.4 Let (X, dy), (Y,dy), (Z, dz) be metric spaces, and let f: X — Y
and g: Y — Z be two uniformly continuous functions. Show that g o f: X — Z is
also uniformly continuous.

Exercise 2.3.5 Let (X, dx) be a metric space, and let f: X - Rand g: X - R
be uniformly continuous functions. Show that the pairing (f, g): X — R? defined
by (f, g)(x) := (f(x), g(x)) is uniformly continuous.

Exercise 2.3.6 Show that the addition function (x, y) — x + y and the subtraction
function (x, y) — x — y are uniformly continuous from R? to R, but the multipli-
cation function (x, y) + xy is not. Conclude that if f: X - Rand g: X - R
are uniformly continuous functions on a metric space (X, d), then f +g: X - R
and f — g: X — R are also uniformly continuous. Give an example to show that
fg: X — Rneed not be uniformly continuous. What is the situation for max( f, g),
min(f, g), f/g, and cf for a real number c?

2.4 Continuity and Connectedness

We now describe another important concept in metric spaces, that of connectedness.

Definition 2.4.1 (Connected spaces) Let (X, d) be a metric space. We say that X
is disconnected iff there exist disjoint non-empty open sets V and W in X such that
V UW = X. (Equivalently, X is disconnected if and only if X contains a non-empty
proper subset which is simultaneously closed and open.) We say that X is connected
iff it is non-empty and not disconnected.

We declare the empty set  as being special—it is neither connected nor discon-
nected; one could think of the empty set as “unconnected”.
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Example 2.4.2 Consider the set X := [1, 2] U [3, 4], with the usual metric. This set
is disconnected because the sets [1, 2] and [3, 4] are open relative to X (why?).

Intuitively, a disconnected set is one which can be separated into two disjoint open
sets; a connected set is one which cannot be separated in this manner. We defined
what it means for a metric space to be connected; we can also define what it means
for a set to be connected.

Definition 2.4.3 (Connected sets) Let (X, d) be a metric space, and let Y be a subset
of X. We say that Y is connected iff the metric space (Y, d|yxy) is connected, and
we say that Y is disconnected iff the metric space (Y, d|yxy) is disconnected.

Remark 2.4.4 This definition s intrinsic; whether a set Y is connected or not depends
only on what the metric is doing on Y, but not on what ambient space X one placing
Y in.

On the real line, connected sets are easy to describe.

Theorem 2.4.5 Let X be a non-empty subset of the real line R. Then the following
statements are equivalent.

(a) X is connected.
(b) Whenever x,y € X and x <y, the interval [x, y] is also contained in X.
(c) X is an interval (in the sense of Definition 9.1.1).

Proof First we show that (a) implies (b). Suppose that X is connected, and suppose
for sake of contradiction that we could find points x < y in X such that [x, y] is not
contained in X. Then there exists a real number x < z < y such that z ¢ X. Thus
the sets (—o00,z) N X and (z, 00) N X will cover X. But these sets are non-empty
(because they contain x and y, respectively) and are open relative to X, and so X is
disconnected, a contradiction.

Now we show that (b) implies (a). Let X be a set obeying the property (b). Suppose
for sake of contradiction that X is disconnected. Then there exist disjoint non-empty
sets V, W which are open relative to X, such that V.U W = X. Since V and W are
non-empty, we may choose an x € V and y € W. Since V and W are disjoint, we
have x # y; without loss of generality we may assume x < y. By property (b), we
know that the entire interval [x, y] is contained in X.

Now consider the set [x, y] N V. This setis both bounded and non-empty (because
it contains x). Thus it has a supremum

z:= sup([x, y]NV).

Clearly z € [x, y], and hence z € X. Thus either z € V or z € W. Suppose first that
z€ V.Thenz # y (since y € W and V is disjoint from W). But V is open relative to
X, which contains [x, y], so there is some ball B((x,,1,4)(z, 7) whichis contained in V.
But this contradicts the fact that z is the supremum of [x, y] N V. Now suppose that
z € W.Then z # x (since x € V and V is disjoint from W). But W is open relative
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to X, which contains [x, y], so there is some ball B, y) 4)(z, r) which is contained

in W. But this again contradicts the fact that z is the supremum of [x, y] N V. Thus

in either case we obtain a contradiction, which means that X cannot be disconnected
and must therefore be connected.

It remains to show that (b) and (c) are equivalent; we leave this to Exercise 2.4.3.

O

Continuous functions map connected sets to connected sets:

Theorem 2.4.6 (Continuity preserves connectedness) Let f: X — Y be a contin-
uous map from one metric space (X, dx) to another (Y, dy). Let E be any connected
subset of X. Then f(E) is also connected.

Proof See Exercise 2.4.4. O

An important corollary of this result is the intermediate value theorem, general-
izing Theorem 9.7.1.

Corollary 2.4.7 (Intermediate value theorem) Let f: X — R be a continuous map
from one metric space (X, dx) to the real line. Let E be any connected subset of X,
and let a, b be any two elements of E. Let y be a real number between f (a) and f (b),
i.e, either f(a) <y < f(b)or f(a) =y > f(b). Then there exists c € E such that

fl)=y.
Proof See Exercise 2.4.5. O
— Exercises —

Exercise 2.4.1 Let (X, dy;sc) be a metric space with the discrete metric. Let E be a
subset of X which contains at least two elements. Show that E is disconnected.

Exercise 2.4.2 Let f: X — Y be a function from a connected metric space (X, d)
to a metric space (Y, dyisc) With the discrete metric. Show that f is continuous if and
only if it is constant. (Hint: use Exercise 2.4.1.)

Exercise 2.4.3 Prove the equivalence of statements (b) and (c) in Theorem 2.4.5.

Exercise 2.4.4 Prove Theorem 2.4.6. (Hint: the formulation of continuity in Theo-
rem 2.1.5(c) is the most convenient to use.)

Exercise 2.4.5 Use Theorem 2.4.6 to prove Corollary 2.4.7.

Exercise 2.4.6 Let (X, d) be a metric space, and let (Ey)qc; be a collection of
connected sets in X with I non-empty. Suppose also that (,.; E, is non-empty.
Show that | J,,.; E. is connected.

ael

ael

Exercise 2.4.7 Let (X, d) be a metric space, and let E be a subset of X. We say
that E is path-connected iff, for every x, y € E, there exists a continuous function
y : [0, 1] — E from the unit interval [0, 1] to E such that y(0) = x and y (1) = y.
Show that every non-empty path-connected set is connected. (The converse is false,
but is a bit tricky to show and will not be detailed here.)
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Exercise 2.4.8 Let (X,d) bea met_ric space, and let E be a subset of X. Show that
if E is connected, then the closure E of E is also connected. Is the converse true?

Exercise 2.4.9 Let (X, d) be a metric space. Let us define a relation x ~ y on X by
declaring x ~ y iff there exists a connected subset of X which contains both x and
y. Show that this is an equivalence relation (i.e., it obeys the reflexive, symmetric,
and transitive axioms). Also, show that the equivalence classes of this relation (i.e.,
the sets of the form {y € X : y ~ x} for some x € X) are all closed and connected.
(Hint: use Exercise 2.4.6 and Exercise 2.4.8.) These sets are known as the connected
components of X.

Exercise 2.4.10 Combine Proposition 2.3.2 and Corollary 2.4.7 to deduce a the-
orem for continuous functions on a compact connected domain which generalizes
Corollary 9.7.4.

2.5 Topological Spaces (Optional)

The concept of a metric space can be generalized to that of a topological space. The
idea here is not to view the metric d as the fundamental object; indeed, in a general
topological space there is no metric at all. Instead, it is the collection of open sets
which is the fundamental concept. Thus, whereas in a metric space one introduces the
metric d first, and then uses the metric to define first the concept of an open ball and
then the concept of an open set, in a topological space one starts just with the notion
of an open set. As it turns out, starting from the open sets, one cannot necessarily
reconstruct a usable notion of a ball or metric (thus not all topological spaces will
be metric spaces), but remarkably one can still define many of the concepts in the
preceding sections.

We will not use topological spaces at all in this text, and so we shall be rather
brief in our treatment of them here. A more complete study of these spaces can of
course be found in any topology textbook or a more advanced analysis text.

Definition 2.5.1 (Topological spaces) A topological space is a pair (X, F), where
X is a set and F C 2% is a collection of subsets of X, whose elements are referred
to as open sets. Furthermore, the collection F must obey the following properties:

e The empty set ¢ and the whole set X are open; in other words, ¥ € F and X € F.

e Any finite intersection of open sets is open. In other words, if V1, . . ., V,, iselements
of F,then ViN...NV,isalsoin F.

e Any arbitrary union of open sets is open (including infinite unions). In other words,
if (Vy)aes is a family of sets in F, then | ,; V, is also in F.

ael

In many cases, the collection F of open sets can be deduced from context, and we
shall refer to the topological space (X, F) simply as X.
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From Proposition 1.2.15 we see that every metric space (X, d) is automatically
also a topological space (if we set F equal to the collection of sets which are open in
(X, d)). However, there do exist topological spaces which do not arise from metric
spaces (see Exercise 2.5.1, 2.5.6).

We now develop the analogues of various notions in this chapter and the previous
chapter for topological spaces. The notion of a ball must be replaced by the notion
of a neighbourhood.

Definition 2.5.2 (Neighborhoods) Let (X, F) be atopological space, andletx € X.
A neighborhood of x is defined to be any open set in F which contains x.

Example 2.5.3 1f (X, d) is a metric space, x € X, and r > 0, then B(x,r) is a
neighborhood of x.

Definition 2.5.4 (Topological convergence) Let m be an integer, (X, F) be a topo-
logical space and let (x")%°  be a sequence of points in X. Let x be a point in X.
We say that (x()%  converges to x if and only if, for every neighborhood V of x,
there exists an N > m such that x®™ € V foralln > N.

This notion is consistent with that of convergence in metric spaces (Exercise
2.5.2). One can then ask whether one has the basic property of uniqueness of limits
(Proposition 1.1.20). The answer turns out to usually be yes—if the topological space
has an additional property known as the Hausdor{f property—but the answer can be
no for other topologies; see Exercise 2.5.4.

Definition 2.5.5 (Interior, exterior, boundary) Let (X, F) be a topological space,
let E be a subset of X, and let x¢ be a point in X. We say that x is an interior point
of E if there exists a neighborhood V of xj such that V C E. We say that x is an
exterior point of E if there exists a neighborhood V of xy such that VN E = 1. We
say that xo is a boundary point of E if it is neither an interior point nor an exterior
point of E.

This definition is consistent with the corresponding notion for metric spaces (Exer-
cise 2.5.3).

Definition 2.5.6 (Closure) Let (X, F) be a topological space, let E be a subset of
X, and let xo be a point in X. We say that xq is an adherent point of E if every
neighborhood V of xy has a non-empty intersection with E. The set of all adherent
points of E is called the closure of E and is denoted E.

There is a partial analogue of Theorem 1.2.10, see Exercise 2.5.9.

We define a set K in a topological space (X, F) to be closed iff its complement
X\K is open; this is consistent with the metric space definition, thanks to Proposition
1.2.15(e). Some partial analogues of that proposition are true (see Exercise 2.5.10).

To define the notion of a relative topology, we cannot use Definition 1.3.3 as this
requires a metric function. However, we can instead use Proposition 1.3.4 as our
starting point:
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Definition 2.5.7 (Relative topology) Let (X, F) be a topological space, and Y be a
subset of X. Then we define Fy := {V NY : V e F} and refer this as the topology
on Y induced by (X, F). We call (Y, Fy) a topological subspace of (X, F). This is
indeed a topological space, see Exercise 2.5.11.

From Proposition 1.3.4 we see that this notion is compatible with the one for
metric spaces.
Next we define the notion of continuity.

Definition 2.5.8 (Continuous functions) Let (X, Fx) and (Y, Fy) be topological
spaces, and let f: X — Y be a function. If xy € X, we say that f is continuous at
xo iff for every neighborhood V of f(x(), there exists a neighborhood U of x( such
that f(U) C V. Wesay that f is continuous iff it is continuous at every pointx € X.

This definition is consistent with that in Definition 2.1.1 (Exercise 2.5.14). Partial
analogues of Theorems 2.1.4 and 2.1.5 are available (Exercise 2.5.15). In particular,
a function is continuous iff the pre-images of every open set are open.

There is unfortunately no notion of a Cauchy sequence, a complete space, or a
bounded space, for general topological spaces. However, there is certainly a notion
of a compact space, as we can see by taking Theorem 1.5.8 as our starting point:

Definition 2.5.9 (Compact topological spaces) Let (X, F) be a topological space.
We say that this space is compact if every open cover of X has a finite subcover. If
Y is a subset of X, we say that Y is compact if the topological space on Y induced
by (X, F) is compact.

Many basic facts about compact metric spaces continue to hold true for compact
topological spaces, notably Theorem 2.3.1 and Proposition 2.3.2 (Exercise 2.5.16).
However, there is no notion of uniform continuity, and so there is no analogue of
Theorem 2.3.5.

We can also define the notion of connectedness by repeating Definition 2.4.1
verbatim and also repeating Definition 2.4.3 (but with Definition 2.5.7 instead of
Definition 1.3.3). Many of the results and exercises in Sect. 2.4 continue to hold for
topological spaces (with almost no changes to any of the proofs!).

— Exercises —

Exercise 2.5.1 Let X be an arbitrary set, and let F := {#J, X}. Show that (X, F) is
a topology (called the trivial topology on X). If X contains more than one element,
show that the trivial topology cannot be obtained from by placing a metric d on X.
Show that this topological space is both compact and connected.

Exercise 2.5.2 Let (X, d) be a metric space (and hence a topological space). Show
that the two notions of convergence of sequences in Definition 1.1.14 and Definition
2.5.4 coincide.

Exercise 2.5.3 Let (X, d) be a metric space (and hence a topological space). Show
that the two notions of interior, exterior, and boundary in Definition 1.2.5 and Defi-
nition 2.5.5 coincide.
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Exercise 2.5.4 A topological space (X, F) is said to be Hausdorff if given any two
distinct points x, y € X, there exists a neighborhood V of x and a neighborhood W
of y such that V. N W = {J. Show that any topological space coming from a metric
space is Hausdorff, and show that the trivial topology is not Hausdorff. Show that
the analogue of Proposition 1.1.20 holds for Hausdorff topological spaces, but give
an example of a non-Hausdorff topological space in which Proposition 1.1.20 fails.
(In practice, most topological spaces one works with are Hausdorff; non-Hausdorff
topological spaces tend to be so pathological that it is not very profitable to work
with them.)

Exercise 2.5.5 Given any totally ordered set X with order relation <, declare a
set V C X to be open if for every x € V there exists a set I which is an interval
{veX:a<y<b}forsomea,be X,aray{y € X :a < y} forsomea € X, the
ray {y € X : y < b} for some b € X, or the whole space X, which contains x and
is contained in V. Let F be the set of all open subsets of X. Show that (X, F)
is a topology (this is the order topology on the totally ordered set (X, <)) which
is Hausdorff in the sense of Exercise 2.5.4. Show that on the real line R (with
the standard ordering <), the order topology matches the standard topology (i.e.,
the topology arising from the standard metric). If instead one applies this to the
extended real line R*, show that R is an open set with boundary {—o0, +o0}. If
(x,)52 is a sequence of numbers in R (and hence in R*), show that x,, converges
to 400 if and only if lim inf,_, - x, = 400, and x,, converges to —oo if and only if
limsup,,_, ,, X, = —o0.

Exercise 2.5.6 Let X be an uncountable set, and let F be the collection of all subsets
E in X which are either empty or cofinite (which means that X\ E is finite). Show
that (X, F) is a topology (this is called the cofinite topology on X) which is not
Hausdorff in the sense of Exercise 2.5.4 and is compact and connected. Also, show
that if x € X (V,)72, is any countable collection of open sets containing x, then
(o2, Vi # {x}. Use this to show that the cofinite topology cannot be obtained by
placing a metric d on X. (Hint: what is the set (-, B(x, 1/n) equal to in a metric

space?)

Exercise 2.5.7 Let X be an uncountable set, and let F be the collection of all subsets
E in X which are either empty or cocountable (which means that X\ E is at most
countable). Show that (X, F) is a topology (this is called the cocountable topology
on X) which is not Hausdorff in the sense of Exercise 2.5.4, and connected, but
cannot arise from a metric space and is not compact.

Exercise 2.5.8 Let (X, F) be acompact topological space. Assume that this space is
first countable, which means that for every x € X there exists a countable collection
Vi, Va, ... of neighborhoods of x, such that every neighborhood of x contains one of
the V,,. Show that every sequence in X has a convergent subsequence, by modifying
Exercise 1.5.11.

Exercise 2.5.9 Prove the following partial analogue of Proposition 1.2.10 for topo-
logical spaces: (c) implies both (a) and (b), which are equivalent to each other. Show
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that in the cocountable topology in Exercise 2.5.7, it is possible for (a) and (b) to
hold without (c) holding.

Exercise 2.5.10 Let E be a subset of a topological space (X, F). Show that E is
open if and only if every element of E is an interior point, and show that E is closed
if and only if E contains all of its adherent points. Prove analogues of Proposition
1.2.15(e)-(h) (some of these are automatic by definition). If we assume in addition
that X is Hausdorff, prove an analogue of Proposition 1.2.15(d) also, but give an
example to show that (d) can fail when X is not Hausdorff.

Exercise 2.5.11 Show that the pair (Y, Fy) defined in Definition 2.5.7 is indeed a
topological space.

Exercise 2.5.12 Generalize Corollary 1.5.9 to compact sets in a Hausdorff topolog-
ical space.

Exercise 2.5.13 Generalize Theorem 1.5.10 to compact sets in a Hausdorff topo-
logical space.

Exercise 2.5.14 Let (X, dx) and (Y, dy) be metric spaces (and hence a topological
space). Show that the two notions continuity (both at a point, and on the whole
domain) of a function f: X — Y in Definition 2.1.1 and Definition 2.5.8 coincide.

Exercise 2.5.15 Show that when Theorem 2.1.4 is extended to topological spaces,
that (a) implies (b). (The converse is false, but constructing an example is difficult.)
Show that when Theorem 2.1.5 is extended to topological spaces, that (a), (c), (d)
are all equivalent to each other and imply (b). (Again, the converse implications are
false, but difficult to prove.)

Exercise 2.5.16 Generalize both Theorem 2.3.1 and Proposition 2.3.2 to compact
sets in a topological space.



Chapter 3 ®)
Uniform Convergence oo

In the previous two chapters we have seen what it means for a sequence (x™)> |
of points in a metric space (X, dx) to converge to a limit x; it means that lim,_,
dx (x™, x) = 0, or equivalently that for every & > 0 there exists an N > 0 such that
dx(x™, x) < e foralln > N.(We have also generalized the notion of convergence
to topological spaces (X, F), but in this chapter we will focus on metric spaces.)

In this chapter, we consider what it means for a sequence of functions (™),
from one metric space (X, dx) to another (Y, dy) to converge. In other words, we
have a sequence of functions V', f@® .. with each function f™: X — Y being
a function from X to Y, and we ask what it means for this sequence of functions to
converge to some limiting function f.

It turns out that there are several different concepts of convergence of functions;
here we describe the two most important ones, pointwise convergence and uniform
convergence. (There are other types of convergence for functions, such as L' conver-
gence, L? convergence, convergence in measure, almost everywhere convergence,
and so forth, but these are beyond the scope of this text.) The two notions are related,
but not identical; the relationship between the two is somewhat analogous to the
relationship between continuity and uniform continuity.

Once we work out what convergence means for functions, and thus can make sense
of such statements as lim,_, o, f™ = f, we will then ask how these limits interact
with other concepts. For instance, we already have a notion of limiting values of
functions: lim,_, x,.xex f (x). Can we interchange limits, i.e.,

lim lim f®&)= lim lim f™(x)?

n—00 x—>xp;x€X xX—>Xxg;x€X n—>00

As we shall see, the answer depends on what type of convergence we have for £,
We will also address similar questions involving interchanging limits and integrals,
or limits and sums, or sums and integrals.
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3.1 Limiting Values of Functions

Before we talk about limits of sequences of functions, we should first discuss a
similar, but distinct, notion, that of limiting values of functions. We shall focus on
the situation for metric spaces, but there are similar notions for topological spaces
(Exercise 3.1.3).

Definition 3.1.1 (Limiting value of a function) Let (X, dx) and (Y, dy) be metric
spaces, let E be a subset of X, and let f: E — Y be a function. If xy € X is an
adherent point of £, and L € Y, we say that f (x) convergesto L in Y as x converges
to xqo in E, or write lim,_, .xep f(x) = L, if for every ¢ > 0 there exists a § > 0
such that dy (f(x), L) < ¢ for all x € E such that dx (x, x9) < §.

Remark 3.1.2 Some authors exclude the case x = xy from the above definition,
thus requiring 0 < dx(x, x9) < 8. In our current notation, this would correspond
to removing xy from E, thus one would consider lim,_, . ye£\(x,} f(*) instead of
lim,_, ,.xee f(x). See Exercise 3.1.1 for a comparison of the two concepts.

Comparing this with Definition 2.1.1, we see that f is continuous at x if and only
if
lim__ f(x) = f(x0).

X—>X0;XE

Thus f is continuous on X if we have

lim Xf(x) = f(xg) for all xy € X.

X—>X0;XE

Example 3.1.3 If f: R — R is the function f(x) = x? — 4, then

since f is continuous.

Remark 3.1.4 Often we shall omit the condition x € X, and abbreviate limy_, . xex
f(x) as simply lim,_,, f(x) when it is clear what space x will range in.

One can rephrase Definition 3.1.1 in terms of sequences:

Proposition 3.1.5 Let (X, dx) and (Y, dy) be metric spaces, let E be a subset of X,
andlet f: E — Y be a function. Let xy € X be an adherent point of E and L € Y.
Then the following four statements are logically equivalent:

(@) limy_,vee f(x) = L.

(b) For every sequence (x("));'f:l in E which converges to x, with respect to the
metric dy, the sequence (f ()c(”))),‘i":1 converges to L with respect to the metric
dy.
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(c) For every open set V.C Y which contains L, there exists an open set U C X
containing xo such that f(UNE) C V.

(d) If one defines the function g: E U {xo} — Y by defining g(xo) := L, and g(x) :=
f(x) for x € E\{xo}, then g is continuous at xo. Furthermore, if xy € E, then

Sfxo) = L.
Proof See Exercise 3.1.2. O

Remark 3.1.6 Observe from Propositions 3.1.5(b) and 1.1.20 that a function f(x)
can converge to at most one limit L as x converges to x¢. In other words, if the limit

lim  f(x)

x—>x0;XEE
exists at all, then it can only take at most one value.

Remark 3.1.7 The requirement that xy be an adherent point of E is necessary for
the concept of limiting value to be useful, otherwise xy will lie in the exterior of
E, the notion that f(x) converges to L as x converges to xy in E is vacuous (for §
sufficiently small, there are no points x € E so that d(x, xp) < 8).

Remark 3.1.8 Strictly speaking, we should write

dy— lim f(x)insteadof lim f(x),

x—>xo;x€eE x—xp;x€E

since the convergence depends on the metric dy. However in practice it will be
obvious what the metric dy is and so we will omit the dy— prefix from the notation.

— Exercises —

Exercise 3.1.1 Let (X, dx) and (Y, dy) be metric spaces, let E be a subset of X,
let f: E — Y be a function, and let xy be an element of E. Assume that x( is an
adherent point of E\{x(} (or equivalently, that x( is not an isolated point of E). Show
that the limit lim,_, ,.veg f(x) exists if and only if the limit lim,_, x;; ve £\ (xo) S (%)
exists and is equal to f(xg). Also, show that if the limit lim,_, ,.xer f(x) exists at
all, then it must equal f (xo).

Exercise 3.1.2 Prove Proposition 3.1.5. (Hint: review your proof of Theorem 2.1.4.)

Exercise 3.1.3 Use Proposition 3.1.5(c) to define a notion of a limiting value of a
function f: E — Y from one topological space (X, Fyx) to another (Y, Fy), with E
asubset of X. If X is a topological space and Y is a Hausdorff topological space (see
Exercise 2.5.4), prove the equivalence of Proposition 3.1.5(c) and (d), as well as an
analogue of Remark 3.1.6. What happens to these statements if Y is not assumed to
be Hausdorff?
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Exercise 3.1.4 Recall from Exercise 2.5.5 that the extended real line R* comes
with a standard topology (the order topology). We view the natural numbers N as
a subspace of this topological space, and +o0o as an adherent point of N in R*.
Let (a,);2, be a sequence taking values in a topological space (Y, Fy), and let
L € Y. Show that lim,_, ; oo.nen @, = L (in the sense of Exercise 3.1.3) if and only
if lim,,_, o a, = L (in the sense of Definition 2.5.4). This shows that the notions of
limiting values of a sequence, and limiting values of a function, are compatible.

Exercise 3.1.5 Let (X, dx), (Y, dy), (Z, dz) be metric spaces, let E be a subset of
X,and let xo € X, yoeY,zpe Z. Let f: E— Y and g: Y — Z be functions,
and let E be a set. If we have lim,_, y.xeg f(x) = yo and limy_, . ye r(£) () = 20,
conclude that limy_, y.xeg g © f(x) = 20.

Exercise 3.1.6 State and prove an analogue of the limit laws in Proposition 9.3.14
when X is now a metric space rather than a subset of R. (Hint: use Corollary 2.2.3.)

3.2 Pointwise and Uniform Convergence

The most obvious notion of convergence of functions is pointwise convergence, or
convergence at each point of the domain:

Definition 3.2.1 (Pointwise convergence) Let (™) be a sequence of functions
from one metric space (X, dx) to another (Y, dy), and let f: X — Y be another
function. We say that (f™)%, converges pointwise to f on X if we have

lim £ (x) = f(x)

forall x € X, i.e.,
lim dy (f™(x), f(x)) =0.

Or in other words, for every x and every & > O there exists N > 0 such that
dy (f™ (x), f(x)) < & for every n > N. We call the function f the pointwise limit
of the functions .

Remark 3.2.2 Notethat £ (x)and f (x) are points in Y, rather than functions, so we
are using our prior notion of convergence in metric spaces to determine convergence
of functions. Also note that we are not really using the fact that (X, dy) is a metric
space (i.e., we are not using the metric dy); for this definition it would suffice for X
to just be a plain old set with no metric structure. However, later on we shall want
to restrict our attention to continuous functions from X to Y, and in order to do so
we need a metric on X (and on Y), or at least a topological structure. Also when we
introduce the concept of uniform convergence, then we will definitely need a metric
structure on X and Y'; there is no comparable notion for topological spaces.
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Example 3.2.3 Consider the functions f™: R — R defined by f™(x):=x/n,
while f: R — R is the zero function f(x):=0. Then f™ converges pointwise
to f, since for each fixed real number x we have lim,_, oo £ (x) = lim,_ oo x/n =
0= f().

From Proposition 1.1.20 we see that a sequence (), of functions from one
metric space (X, dy) to another (Y, dy) can have at most one pointwise limit f (this
explains why we can refer to f as the pointwise limit). However, it is of course
possible for a sequence of functions to have no pointwise limit (can you think of an
example?), just as a sequence of points in a metric space do not necessarily have a
limit.

Pointwise convergence is a very natural concept, but it has a number of disadvan-
tages: it does not preserve continuity, derivatives, limits, or integrals, as the following
three examples show.

Example 3.2.4 Consider the functions £ : [0, 1] — R defined by f™ (x) :=x",
and let f: [0, 1] — R be the function defined by setting f(x) :=1 when x = 1 and
f(x):=0 when 0 < x < 1. Then the functions ™ are continuous, and converge
pointwise to f on [0, 1] (why? Treat the cases x = 1 and 0 < x < 1 separately),
however the limiting function f is not continuous. Note that the same example
shows that pointwise convergence does not preserve differentiability either.

Example 3.2.5 If lim,_, .xc f M (x) = L for every n, and f ) converges point-
wise to f, we cannot always take limits conclude that lim,_, y.xeg f(x) = L. The
previous example is also a counterexample here: observe that lim,_, .x¢[0,1) x" = 1
for every n, but x" converges pointwise to the function f defined in the previous
paragraph, and lim,_, 1.x¢[0,1) f (x) = O. In particular, we see that

lim lim f™x)# lim lim f® ).

n—00 x—xp;x€X xX—>Xxp;x€X n—>00

(cf. Example 1.2.8). Thus pointwise convergence does not preserve limits.

Example 3.2.6 Suppose that f™: [a, b] — R a sequence of Riemann-integrable
functions on the interval [a, b]. If f[a, b f M = for every n, and f ) converges

pointwise to some new function f, this does not mean that fla, b]
comes by setting [a, b] := [0, 1], and letting £ be the function £ (x) :=2n when
x € [1/2n, 1/n], and f™(x):=0 for all other values of x. Then ™ converges
pointwise to the zero function f(x):=0 (why?). On the other hand, f[o, y =1

for every n, while f[0,1] f = 0. In particular, we have an example where

f = L. Anexample

lim [ f™ # / lim £,

n—o0o n—o00

[a,b] [a,b]

One may think that this counterexample has something to do with the f™ being
discontinuous, but one can easily modify this counterexample to make the £ con-
tinuous (can you see how?).
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Another example in the same spirit is the “moving bump” example. Let f™: R —
R be the function defined by f™(x):=1if x € [n,n + 1] and £ (x) :=0 other-
wise. Then [, £ = 1 forevery n (where [, f is defined as the limit off[iN,N] f as
N goes to infinity). On the other hand, £ converges pointwise to the zero function
0 (why?), and fR 0 = 0. In both of these examples, functions of area 1 have somehow
“disappeared” to produce functions of area 0 in the limit. See also Example 1.2.9.

These examples show that pointwise convergence is too weak a concept to be
of much use. The problem is that while £ (x) converges to f(x) for each x, the
rate of that convergence varies substantially with x. For instance, consider the first
example where £ : [0, 1] — R was the function f™ (x) :=x",and f: [0,1] — R
was the function such that f(x):=1 when x = 1, and f(x) :=0 otherwise. Then
for each x, £ (x) converges to f(x) as n — oo; this is the same as saying that
lim, o x" =0 when 0 < x < 1, and that lim,_, o x" = 1 when x = 1. But the
convergence is much slower near 1 than far away from 1. For instance, consider the
statement that lim, . .o x" = 0 for all 0 < x < 1. This means, for every 0 < x < 1,
that for every ¢, there exists an N > 1 such that |[x"| < ¢ for all n > N—or in other
words, the sequence 1, x, x2, %3, . will eventually get less than e, after passing
some finite number N of elements in this sequence. But the number of elements
N one needs to go out to depends very much on the location of x. For instance,
take ¢ :=0.1. If x = 0.1, then we have |x"| < ¢ for all n > 2—the sequence gets
underneath ¢ after the second element. But if x = 0.5, then we only get [x"| < ¢ for
n > 4—you have to wait until the fourth element to get within ¢ of the limit. And if
x = 0.9, then one only has |x"| < ¢ when n > 22. Clearly, the closer x gets to 1, the
longer one has to wait until £ (x) will get within & of f(x), although it still will get
there eventually. (Curiously, however, while the convergence gets worse and worse
as x approaches 1, the convergence suddenly becomes perfect when x = 1.)

To put things another way, the convergence of £ to f is not uniform in x—the
N that one needs to get £ (x) within & of f depends on x as well as on &. This
motivates a stronger notion of convergence.

Definition 3.2.7 (Uniform convergence) Let (f™)>, be a sequence of functions
from one metric space (X, dx) to another (¥, dy), and let f: X — Y be another
function. We say that ()%, converges uniformly to f on X if for every ¢ > 0
there exists N > 0 such that dy (" (x), f(x)) < e foreveryn > N andx € X. We
call the function f the uniform limit of the functions f.

Remark 3.2.8 Note that this definition is subtly different from the definition for
pointwise convergence in Definition 3.2.1. In the definition of pointwise conver-
gence, N was allowed to depend on x; now it is not. The reader should compare
this distinction to the distinction between continuity and uniform continuity (i.e.,
between Definitions 2.1.1 and 2.3.4). A more precise formulation of this analogy is
given in Exercise 3.2.1.

It is easy to see that if £ converges uniformly to f on X, then it also converges
pointwise to the same function f (see Exercise 3.2.2); thus when the uniform limit
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and pointwise limit both exist, then they have to be equal. However, the converse is
not true; for instance the functions £ : [0, 1] — R defined earlier by £ (x) :=x"
converge pointwise, but do not converge uniformly (see Exercise 3.2.2).

Example 3.2.9 Let f™: [0,1] — R be the functions f™(x):=x/n, and let
£:10, 1] — R be the zero function f(x):=0. Then it is clear that f* converges
to f pointwise. Now we show that in fact £ converges to f uniformly. We have
to show that for every & > 0, there exists an N such that | f™ (x) — f(x)| < & for
every x € [0, 1] and every n > N. To show this, let us fix an ¢ > 0. Then for any
x €[0,1]and n > N, we have

lf? ) — f(x)] = |x/n—0|=x/n < 1/n <1/N.

Thus if we choose N such that N > 1/¢ (note that this choice of N does not depend
on what x is), then we have | f®(x) — f(x)| < e foralln > N and x € [0, 1], as
desired.

We make one trivial remark here: if a sequence f": X — Y of functions con-
verges pointwise (or uniformly) to a function f: X — Y, then the restrictions
f®W|g: E— Y of f™ to some subset E of X will also converge pointwise (or
uniformly) to f|g. (Why?)

— Exercises —

Exercise 3.2.1 The purpose of this exercise is to demonstrate a concrete relationship
between continuity and pointwise convergence, and between uniform continuity and
uniform convergence. Let f: R — R be a function. Foranya € R, let f, : R - R
be the shifted function f,(x):= f(x — a).

(a) Show that f is continuous if and only if, whenever (a,);2, is a sequence of real
numbers which converges to zero, the shifted functions f,, converge pointwise
to f.

(b) Show that f is uniformly continuous if and only if, whenever (a,);2, is a
sequence of real numbers which converges to zero, the shifted functions f,
converge uniformly to f.

Exercise 3.2.2 (a) Let (f ("));’lo: | be a sequence of functions from one metric space
(X, dx) to another (Y, dy), and let f: X — Y be another function from X to Y.
Show that if £ converges uniformly to f, then £ also converges pointwise
to f.

(b) For each integer n > 1, let f™: (=1, 1) — R be the function f™ (x):=x".
Prove that £ converges pointwise to the zero function 0, but does not converge
uniformly to any function f: (—1,1) — R.

(¢) Letg: (—1,1) — R be the function g(x) :=x/(1 — x). With the notation as in
(b), show that the partial sums Z,[:/:l f™ converge pointwise as N — 0o to g,
but does not converge uniformly to g, on the open interval (—1, 1). (Hint: use
Lemma 7.3.3.) What would happen if we replaced the open interval (—1, 1) with
the closed interval [—1, 1]?
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Exercise 3.2.3 Let (X, dy) ametric space, and for every integern > 1,let f,: X —
R be a real-valued function. Suppose that f, converges pointwise to another func-
tion f: X — R on X (in this question we give R the standard metric d(x, y) =
|x — y]). Let h: R — R be a continuous function. Show that the functions % o f,
converge pointwise to Ao f on X, where ho f,: X — R is the function & o
fu(x) :=h(f,(x)), and similarly for & o f.

Exercise 3.2.4 Let f,: X — Y be asequence of bounded functions from one metric
space (X, dy) to another metric space (Y, dy). Suppose that f,, converges uniformly
to another function f: X — Y. Suppose that f is a bounded function; i.e., there
exists a ball B(y,4,)(yo, R) in Y such that f(x) € B.q4,)(Yo, R) forallx € X. Show
that the sequence f,, is uniformly bounded; i.e., there exists a ball B(y,4,)(y0, R) in
Y such that f,(x) € Byq,)(yo, R) for all x € X and all positive integers n.

3.3 Uniform Convergence and Continuity

We now give the first demonstration that uniform convergence is significantly better
than pointwise convergence. Specifically, we show that the uniform limit of contin-
uous functions is continuous.

Theorem 3.3.1 (Uniform limits preserve continuity 1) Suppose (™), is a
sequence of functions from one metric space (X, dx) to another (Y, dy), and suppose
that this sequence converges uniformly to another function f: X — Y. Let xy be a
point in X. If the functions ™ are continuous at xo for each n, then the limiting
function f is also continuous at x.

Proof See Exercise 3.3.1. O
This has an immediate corollary:

Corollary 3.3.2 (Uniform limits preserve continuity II) Let ( f ™), be a sequence
of functions from one metric space (X, dx) to another (Y, dy), and suppose that this
sequence converges uniformly to another function f: X — Y. If the functions
are continuous on X for each n, then the limiting function f is also continuous on

X.

This should be contrasted with Example 3.2.4. There is a slight variant of Theorem
3.3.1 which is also useful:

Proposition 3.3.3 (Interchange of limits and uniform limits) Let (X, dx) and (Y, dy)
be metric spaces, with Y complete, and let E be a subset of X. Let (f™)>,
be a sequence of functions from E to Y, and suppose that this sequence con-
verges uniformly in E to some function f: E — Y. Let xo € X be an adherent
point of E, and suppose that for each n the limit lim,_, ,,.ccr f™ (x) exists. Then
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the limit limy_, y.xcr f(x) also exists, and is equal to the limit of the sequence
(imy o yyixer £ (x))22,; in other words we have the interchange of limits

lim lim f™x)= lim lim f%™(x).
n—>00 x—>xg;x€E x—>xp;x€E n—00
Proof See Exercise 3.3.2. O

This should be contrasted with Example 3.2.5. Finally, we have a version of these
theorems for sequences:

Proposition 3.3.4 Let (f™)%, be a sequence of continuous functions from one
metric space (X, dx) to another (Y, dy), and suppose that this sequence converges
uniformly to another function f: X — Y. Let x™ be a sequence of points in X

which converge to some limit x. Then ™ (x™) converges (inY) to f(x).
Proof See Exercise 3.3.4. O
A similar result holds for bounded functions:

Definition 3.3.5 (Bounded functions) A function f: X — Y from one metric space
(X, dx) to another (Y, dy) is bounded if f(X) is a bounded set, i.e., there exists a
ball B(y’dy)(yo, R) in Y such that f(x) S B(y’dy)(y(), R) forall x € X.

Proposition 3.3.6 (Uniform limits preserve boundedness) Let (f ("))20: | be a
sequence of functions from one metric space (X, dx) to another (Y, dy), and suppose
that this sequence converges uniformly to another function f: X — Y. If the func-
tions " are bounded on X for each n, then the limiting function f is also bounded
on X.

Proof See Exercise 3.3.6. O

Remark 3.3.7 The above propositions sound very reasonable, but one should caution
that it only works if one assumes uniform convergence; pointwise convergence is not
enough. (See Exercises 3.3.3, 3.3.5 and 3.3.7.)

— Exercises —

Exercise 3.3.1 Prove Theorem 3.3.1. Explain briefly why your proof requires uni-
form convergence, and why pointwise convergence would not suffice. (Hints: it is
easiest to use the “epsilon-delta” definition of continuity from Definition 2.1.1. You
may find the triangle inequality

dy (f (x), f(x0)) < dy(f(x), f™ @) +dy (f"x), £ (x0))
+ dy (f "™ (x0), f(x0))
useful. Also, you may need to divide ¢ as ¢ = ¢/3 + ¢/3 + ¢/3. Finally, it is pos-

sible to prove Theorem 3.3.1 from Proposition 3.3.3, but you may find it easier
conceptually to prove Theorem 3.3.1 first.)
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Exercise 3.3.2 Prove Proposition 3.3.3. (Hint: this is very similar to Theorem 3.3.1.
Theorem 3.3.1 cannot be used to prove Proposition 3.3.3, however it is possible to
use Proposition 3.3.3 to prove Theorem 3.3.1.)

Exercise 3.3.3 Compare Proposition 3.3.3 with Example 1.2.8. Can you now
explain why the interchange of limits in Example 1.2.8 led to a false statement,
whereas the interchange of limits in Proposition 3.3.3 is justified?

Exercise 3.3.4 Prove Proposition 3.3.4. (Hint: again, this is similar to Theorem 3.3.1
and Proposition 3.3.3, although the statements are slightly different, and one cannot
deduce this directly from the other two results.)

Exercise 3.3.5 Give an example to show that Proposition 3.3.4 fails if the phrase
“converges uniformly” is replaced by “converges pointwise”. (Hint: some of the
examples already given earlier will already work here.)

Exercise 3.3.6 Prove Proposition 3.3.6. Discuss how this proposition differs from
Exercise 3.2.4.

Exercise 3.3.7 Give an example to show that Proposition 3.3.6 fails if the phrase
“converges uniformly” is replaced by “converges pointwise”. (Hint: some of the
examples already given earlier will already work here.)

Exercise 3.3.8 Let (X, d) be a metric space, and for every positive integer n, let
fa»: X > Randg,: X — Rbefunctions. Suppose that ( f;,)72 ; converges uniformly
to another function f: X — R, and that (g,);2, converges uniformly to another
function g: X — R. Suppose also that the functions (f,);2 and (g,);2, are uni-
formly bounded, i.e., there exists an M > 0 such that | f,, (x)| < M and |g,(x)| < M
foralln > 1 and x € X. Prove that the functions f,g,: X — R converge uniformly

to fg: X - R.

3.4 The Metric of Uniform Convergence

We have now developed at least four, apparently separate, notions of limit in this
text:

(a) limits lim,_, o, x™ of sequences of points in a metric space (Definition 1.1.14;
see also Definition 2.5.4);

(b) limiting values lim,_, v,.xe£ f (x) of functions at a point (Definition 3.1.1);

(c) pointwise limits f of functions £ (Definition 3.2.1); and

(d) uniform limits f of functions ™ (Definition 3.2.7).

This proliferation of limits may seem rather complicated. However, we can reduce
the complexity slightly by observing that (d) can be viewed as a special case of (a),
though in doing so it should be cautioned that because we are now dealing with
functions instead of points, the convergence is not in X or in Y, but rather in a new
space, the space of functions from X to Y.
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Remark 3.4.1 Ifoneis willing to work in topological spaces instead of metric spaces,
we can also view (a) as a special case of (b), see Exercise 3.1.4, and (c) is also a
special case of (a), see Exercise 3.4.4. Thus the notion of convergence in a topological
space can be used to unify all the notions of limits we have encountered so far.

Definition 3.4.2 (Metric space of bounded functions) Suppose (X, dx) and (Y, dy)
are metric spaces. We let B(X — Y) denote the space' of bounded functions from
XtoY:

B(X — Y):={f|f: X — Y is abounded function}.

If X is non-empty, we define a metric dy, : B(X - Y) x B(X — Y) — [0, +00)
by defining

doo(f, 8) := supdy (f(x), g(x)) = sup{dy (f(x), g(x)) : x € X}

xeX

for all f, g € B(X — Y). This metric is sometimes known as the uniform metric,
sup norm metric or the L* metric. We will also use dp(x—.y) as a synonym for du.
If X is empty, we instead define doo(f, g) = 0.

Notice that the distance do, (f, g) is always finite because f and g are assumed
to be bounded on X.

Example 3.4.3 Let X:=[0,1]and Y = R. Let f:[0,1] - Rand g: [0,1] - R
be the functions f(x) :=2x and g(x) :=3x. Then f and g are both bounded functions
and thus live in B([0, 1] — R). The distance between them is

doo(f. ) = sup |2x —3x| = sup |x| = 1.
xel0,1] xe[0,1]

This space turns out to be a metric space (Exercise 3.4.1). Convergence in this
metric turns out to be identical to uniform convergence:

Proposition 3.4.4 Let (X, dx) and (Y, dy) be metric spaces. Let (f (”));'f:l be a
sequence of functions in B(X — Y), and let f be another function in B(X — Y).
Then (f(”));'f:] converges to f inthe metric dpx—. vy if and only if(f(”))j;o:1 converges
uniformly to f.

Proof See Exercise 3.4.2. O

Now let C(X — Y) be the space of bounded continuous functions from X to Y:

C(X = Y):={f € B(X — Y)|f is continuous}.

1 Note that this is a set, thanks to the power set axiom (Axiom 3.11) and the axiom of specification
(Axiom 3.6).
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This set C(X — Y) is clearly a subset of B(X — Y). Corollary 3.3.2 asserts that
this space C(X — Y) is closed in B(X — Y) (why?). Actually, we can say a lot
more:

Theorem 3.4.5 (The space of continuous functions is complete) Let (X, dx) be
a metric space, and let (Y,dy) be a complete metric space. The space (C(X —
Y), dpix—v)lc(x—r)xcx—v)) is a complete subspace of (B(X — Y), dpx—v)). In
other words, every Cauchy sequence of functions in C(X — Y) converges to a func-
tioninC(X — Y).

Proof See Exercise 3.4.3. O
— Exercises —

Exercise 3.4.1 Let (X,dx) and (Y, dy) be metric spaces. Show that the space
B(X — Y) defined in Definition 3.4.2, with the metric dp(x— ), is indeed a metric
space.

Exercise 3.4.2 Prove Proposition 3.4.4.

Exercise 3.4.3 Prove Theorem 3.4.5. (Hint: this is similar, but not identical, to the
proof of Theorem 3.3.1).

Exercise 3.4.4 Let (X, dx) and (Y, dy) be metric spaces, andlet Y X := {f‘f: X —

Y} be the space of all functions from X to Y (cf. Axiom 3.11). If xp € X and V is
an open set in Y, let V0 C Y X be the set

V@ = (fe¥¥: f(xo) € V}.

If E is a subset of Y*, we say that E is open if for every f € E, there exists a finite
number of points x;, ..., x, € X and open sets V|, ..., V, € Y such that

(x1) n
fevin...nv® CE.

(a) Show that if F is the collection of open sets in Y X, then (Y ¥, JF) is a topological
space.

(b) For each natural number n, let f . X — Y be a function from X to Y, and let
f: X — Y be another function from X to Y. Show that f converges to f in
the topology F (in the sense of Definition 2.5.4) if and only if £ converges to
f pointwise (in the sense of Definition 3.2.1).

The topology F is known as the topology of pointwise convergence, for obvious
reasons; it is also known as the product topology. It shows that the concept of point-
wise convergence can be viewed as a special case of the more general concept of
convergence in a topological space.
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3.5 Series of Functions; the Weierstrass M -Test

Having discussed sequences of functions, we now discuss infinite series > -, f;, of
functions. Now we shall restrict our attention to functions f: X — R from a metric
space (X, dx) to the real line R (which we of course give the standard metric); this
is because we know how to add two real numbers, but don’t necessarily know how
to add two points in a general metric space Y. Functions whose codomain is R are
sometimes called real-valued functions.

Finite summation is, of course, easy: given any finite collection £\, ..., f®™ of
functions from X to R, we can define the finite sum Y~ | f@: X — R by

N N
(Z f“) @)=Y fOw.

i=1 i=1

Example 3.5.1 If f: R — R is the function f"(x):=x, f®: R — R is the
function f®(x):=x2, and f®: R — R is the function f®(x):=x3, then
fi=30, £ is the function f: R — R defined by f(x) :=x + x* + x°.

It is easy to show that finite sums of bounded functions are bounded, and finite
sums of continuous functions are continuous (Exercise 3.5.1).
Now to add infinite series.

Definition 3.5.2 (Infinite series) Let (X, dx) be a metric space. Let (f™)>, be
a sequence of functions from X to R, and let f be another function from X
to R. If the partial sums 2,11\7:1 f® converge pointwise to f on X as N — oo,
we say that the infinite series Y oo, f™ converges pointwise to f, and write
=50 f™.If the partial sums Zflvzl f™ converge uniformly to f on X
as N — oo, we say that the infinite series Y o, f converges uniformly to
f, and again write f =Y 2 f™. (Thus when one sees an expression such as
f =302, f™, one should look at the context to see in what sense this infinite series

converges.)

Remark 3.5.3 A series Y oo, f™ converges pointwise to f on X if and only if
Y2 f™(x) converges to f(x) for every x € X. (Thusif Y o2, ™ does not con-
verge pointwise to f, this does not mean that it diverges pointwise; it may just be
that it converges for some points x but diverges at other points x.)

If a series Y-, f™ converges uniformly to f, then it also converges pointwise
to f; but not vice versa, as the following example shows.

Example 3.5.4 Let f™: (=1, 1) — R be the sequence of functions f™ (x) :=x".
Then Y 2, f™ converges pointwise, but not uniformly, to the function x /(1 — x)
(see Exercise 3.2.2 and Example 3.5.8).

It is not always clear when a series Y -, £ converges or not. However, there
is a very useful test that gives at least one test for uniform convergence.
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Definition 3.5.5 (Sup norm) If f: X — R is a bounded real-valued function, and
X is non-empty, we define the sup norm || f ||~ of f to be the number

Il flloo := sup{|f(x)] : x € X}.

In other words, || f |loo = doo(f, 0), where O : X — R is the zero function 0(x) :=0,
and d., was defined in Definition 3.4.2. (Why is this the case?) If X is empty, we
instead define || f||o0 :=0.

Example 3.5.6 Thus, for instance, if f: (=2, 1) — R is the function f(x):=2x,
then || f|loo = sup{|2x| : x € (=2, 1)} = 4 (why?). Notice that when f is bounded
then || f]loo Will always be a non-negative real number.

Theorem 3.5.7 (Weierstrass M-test) Let (X, d) be a metric space, and let ( f (”));‘f:l
be a sequence of bounded real-valued continuous functions on X such that the series
Zzozl | £ ||loo is convergent. (Note that this is a series of plain old real numbers,
not of functions.) Then the series Y .-, f" converges uniformly to some function
f on X, and that function f is also continuous.

Proof See Exercise 3.5.2. O

To put the Weierstrass M-test succinctly: absolute convergence of sup norms
implies uniform convergence of functions.

Example 3.5.8 Let 0 < r < 1 be a real number, and let ™ : [—r, 7] — R be the
series of functions £ (x):=x". Then each f™ is continuous and bounded, and
|| f™]loo = r" (why?). Since the series Y o, r" is absolutely convergent (e.g., by
the root test, Theorem 7.5.1 from Analysis I), we thus see that ZZOZI f () converges
uniformly in [—7, r] to some continuous function; in Exercise 3.2.2(c) we see that
this function must in fact be the function f: [—r, r] — Rdefinedby f(x):=x/(1 —
x). In other words, the series Y .- x" is pointwise convergent, but not uniformly
convergent, on (—1, 1), but is uniformly convergent on the smaller interval [—r, r]
forany 0 <r < 1.

The Weierstrass M -test is especially useful in relation to power series, which we
will encounter in the next chapter.

— Exercises —

Exercise 3.5.1 Let £, ..., f™ be a finite sequence of bounded functions from a
metric space (X, dx) toR. Show that Z,N=1 f© is also bounded. Prove a similar claim
when “bounded” is replaced by “continuous”. What if “continuous” was replaced by
“uniformly continuous”?

Exercise 3.5.2 Prove Theorem 3.5.7. (Hint: first show that the sequence ZIN=1 fo
is a Cauchy sequence in C(X — R). Then use Theorem 3.4.5.)
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3.6 Uniform Convergence and Integration

We now connect uniform convergence with Riemann integration (which was dis-
cussed in Chap. 11), by showing that uniform limits can be safely interchanged with
integrals.

Theorem 3.6.1 Let[a, b] be an interval, and for each integern > 1, let f M [a, b]
— R be a Riemann-integrable function. Suppose ™ converges uniformly on [a, b]
to a function f: [a, b] — R. Then f is also Riemann integrable, and

lim | f™ = / f

n—o00
[a,b] [a,b]

Proof We first show that f is Riemann integrable on [a, b]. This is the same as
Lo = Jiant

Lete > 0. Since f™ converges uniformly to f, we see that there exists an N > 0
such that |f(”) (x) — f(x)] <eforallm > N and x € [a, b]. In particular we have

showing that the upper and lower Riemann integrals of f match: |

P —e < fx) < fP) +e

for all x € [a, b]. Integrating this on [a, b] we obtain

/ (f“”—e)f/ f= ff/ (F® +e).
< _la,b] Y_la,b) [a,b] [a,b]

Since f™ is assumed to be Riemann integrable, we thus see

[ ) -co-a=| r<f se [ 1) +ew-a.
< a,b] la,b]

a,b] a,b]

In particular, we see that

05/ ff f <2 —a).
la.b] < _{a,b]

Since this is true for every ¢ > 0, we obtain f f f a.b] f as desired.

The above argument also shows that for every & > 0 there exists an N > 0 such

that
/f“”—ff <sb—a)

a,b] [a,b]
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for 'all n > N. Since ¢ is arbitrary, we see that /[a,b] f™ converges to f[a’b] f as
desired. m|

To rephrase Theorem 3.6.1: we can rearrange limits and integrals (on compact
intervals [a, b]),

lim [ f®= / lim f®™,
n— o0 n—oo
[a,b] [a,b]

provided that the convergence is uniform. This should be contrasted with Examples
1.2.9 and 3.2.5.
There is an analogue of this theorem for series:

Corollary 3.6.2 Let [a, b] be an interval, and let (f (”))Z":l be a sequence of
Riemann-integrable functions on [a, b] such that the series Y .- | f @ js uniformly
convergent. Then we have

o0 o0
> =X
”zl[a,h] [a.b] n=1
Proof See Exercise 3.6.1. O

This corollary works particularly well in conjunction with the Weierstrass M-test
(Theorem 3.5.7):

Example 3.6.3 (Informal) From Lemma 7.3.3 of Analysis I we have the geometric
series identity

for x € (—1, 1), and the convergence is uniform (by the Weierstrass M-test) on
[—r,r] forany O < r < 1. By adding 1 to both sides we obtain

and the converge is again uniform. We can thus integrate on [0, r] and use Corollary
3.6.2 to obtain

o0

Z/x”dx:/lixdx.

n=09 1| [0,7]

The left-hand side is Y oo, 7! /(n + 1). If we accept for now the use of logarithms
(we will justify this use in Sect. 4.5), the anti-derivative of 1/(1 — x) is — log(1 — x),
and so the right-hand side is — log(1 — r). We thus obtain the formula
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o0
—log(l—r) = "r"'/(n+1)
n=0
forall0 <r < 1.
— Exercises —

Exercise 3.6.1 Use Theorem 3.6.1 to prove Corollary 3.6.2.

3.7 Uniform Convergence and Derivatives

We have already seen how uniform convergence interacts well with continuity, with
limits, and with integrals. Now we investigate how it interacts with derivatives.

The first question we can ask is: if f, converges uniformly to f, and the functions
fn are differentiable, does this imply that f is also differentiable? And does f, also
converge to f'?

The answer to the second question is, unfortunately, no. To see a counterexample,
we will use without proof some basic facts about trigonometric functions (which we
will make rigorous in Sect.4.7). Consider the functions f,: [0, 27] — R defined
by f,(x):=n""2sin(nx), and let f: [0, 2] — R be the zero function f(x):=0.
Then, since sin takes values between -1 and 1, we have duoo(f,,, f) < n~'/2, where
we use the uniform metric doo (f, &) := SUP, (027 |/ () — g(x)| introduced in Def-
inition 3.4.2. Since n~!'/? converges to 0, we thus see by the squeeze test that f,
converges uniformly to f. On the other hand, f(x) = n'/2 cos(nx), and so in par-
ticular | £/(0) — f'(0)| = n'/?. Thus f/ does not converge pointwise to f’, and so in
particular does not converge uniformly either. In particular we have

d d
Ix nli)lgo Ja(x) # nli{go Efn(x)’

The answer to the first question is also no. An example is the sequence of functions

fn: [—1,1] - R defined by f,(x) :=,/ n% + x2. These functions are differentiable
(why?). Also, one can easily check that

1
Xl = fux) < fxl 4

for all x € [—1, 1] (why? square both sides), and so by the squeeze test f,, converges
uniformly to the absolute value function f(x) :=|x|. But this function is not differ-
entiable at O (why?). Thus, the uniform limit of differentiable functions need not be
differentiable. (See also Example 1.2.10.)

So, in summary, uniform convergence of the functions f, says nothing about
the convergence of the derivatives f,. However, the converse is true, as long as f,
converges at at least one point:
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Theorem 3.7.1 Let [a, b] be an interval, and for every integer n > 1, let f,: [a, b]
— R be a differentiable function whose derivative f,: [a, b] — R is continuous.
Suppose that the derivatives f, converge uniformly to a function g: [a, b] — R.
Suppose also that there exists a point xo such that the limit lim,,_, » f,(x) exists.
Then the functions f, converge uniformly to a differentiable function f, and the
derivative of f equals g.

Informally, the above theorem says that if f, converges uniformly, and f,(xo)
converges for some xy, then f, also converges uniformly, and [% lim, o f(x) =

limys o0 2 £ (x).

Proof We only give the beginning of the proof here; the remainder of the proof will
be an exercise (Exercise 3.7.1).

Since f, is continuous, we see from the fundamental theorem of calculus (Theo-
rem 11.9.4) that

fn(x) - fn(-xo) = / fn/

[x0,x]

when x € [xg, b], and

Jn(x) = fa(xo) = — / I

[x,x0]

when x € [a, xo].
Let L be the limit of f,,(x¢) as n — oo:

L:= lim f,(xo).
n—o00

By hypothesis, L exists. Now, since each f, is continuous on [a, b], and f, converges
uniformly to g, we see by Corollary 3.3.2 that g is also continuous. Now define the
function f: [a, b] — R by setting

fx):=L— / g+/g
[a,xo] [a,x]

for all x € [a, b]. To finish the proof, we have to show that f, converges uniformly
to f, and that f is differentiable with derivative g; this shall be done in Exercise
3.7.1. O

Remark 3.7.2 1t turns out that Theorem 3.7.1 is still true when the functions f, are
not assumed to be continuous, but the proof is more difficult; see Exercise 3.7.2.

By combining this theorem with the Weierstrass M -test, we obtain
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Corollary 3.7.3 Let [a, b] be an interval, and for every integern > 1, let f,: [a, b]
— R be a differentiable function whose derivative f,: [a, b] — R is continuous.
Suppose that the series Y, | f,|loo is absolutely convergent, where

I fulloo = sup [£, ()]

x€la,b]

is the sup norm of f,, as defined in Definition 3.5.5. Suppose also that the series
Y2 | fa(xo) is convergent for some xo € [a, b]. Then the series y .. | f, converges
uniformly on [a, b] to a differentiable function, and in fact

d & >\ d
- ; ARSI 15

n=1

forall x € [a, b].
Proof See Exercise 3.7.3. O

We now pause to give an example of a function which is continuous everywhere,
but differentiable nowhere (this particular example was discovered by Weierstrass).
Again, we will presume knowledge of the trigonometric functions, which will be
covered rigorously in Sect.4.7.

Example 3.7.4 Let f: R — R be the function

fx):= Z 47" cos(32"x).

n=1

Note that this series is uniformly convergent, thanks to the Weierstrass M-test, and
since each individual function 47" cos(32" x) is continuous, the function f is also
continuous. However, it is not differentiable (Exercise 4.7.10); in fact it is a nowhere
differentiable function, one which is not differentiable at any point, despite being
continuous everywhere!

— Exercises —

Exercise 3.7.1 Complete the proof of Theorem 3.7.1. Compare this theorem with
Example 1.2.10, and explain why this example does not contradict the theorem.

Exercise 3.7.2 Prove Theorem 3.7.1 without assuming that f, is continuous. (This
means that you cannot use the fundamental theorem of calculus. However, the
mean value theorem (Corollary 10.2.9) is still available. Use this to show that
if doo (f,s f) < & then [(fu(x) — fn(x)) — (fu(x0) — fin(x0))| < €]x — xo] for all
x € [a, b], and then use this to complete the proof of Theorem 3.7.1.)

Exercise 3.7.3 Prove Corollary 3.7.3.
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3.8 Uniform Approximation by Polynomials

As we have just seen, continuous functions can be very badly behaved, for instance
they can be nowhere differentiable (Example 3.7.4). On the other hand, functions
such as polynomials are always very well behaved, in particular being always dif-
ferentiable. Fortunately, while most continuous functions are not as well behaved
as polynomials, they can always be uniformly approximated by polynomials; this
important (but difficult) result is known as the Weierstrass approximation theorem,
and is the subject of this section.

Definition 3.8.1 Let [a, b] be an interval. A polynomial on [a, b] is a function
f: la,b] - R of the form f(x):= Z?:o cjxf, where n > 0 is an integer and
co, - . ., C, are real numbers. If ¢, # 0, then # is called the degree of f.

Example 3.8.2 The function f: [1,2] — R defined by f(x):=3x* 4 2x3 — 4x +
5 is a polynomial on [1, 2] of degree 4.

Theorem 3.8.3 (Weierstrass approximation theorem) If [a,b] is an interval,
f:la, b] — R is a continuous function, and & > 0, then there exists a polynomial
P on [a, b] such that do (P, ) < € (i.e.,, |P(x) — f(x)| < e forall x € [a,b]).

Another way of stating this theorem is as follows. Recall that C([a, b] — R)
was the space of continuous functions from [a, b] to R, with the uniform metric
ds. Let P([a, b] — R) be the space of all polynomials on [a, b]; this is a sub-
space of C([a, b] — R), since all polynomials are continuous (Exercise 9.4.7). The
Weierstrass approximation theorem then asserts that every continuous function is an
adherent point of P([a, b] — R); or in other words, that the closure of the space of
polynomials is the space of continuous functions:

P([a,b] - R) = C([a, b] — R).

In particular, every continuous function on [a, b] is the uniform limit of polynomials.
Another way of saying this is that the space of polynomials is dense in the space of
continuous functions, in the uniform topology.

The proof of the Weierstrass approximation theorem is somewhat complicated and
will be done in stages. We first need the notion of an approximation to the identity.

Definition 3.8.4 (Compactly supported functions) Let [a, b] be an interval. A func-
tion f: R — R is said to be supported on [a, b] if f(x) = 0 for all x ¢ [a, b]. We
say that f is compactly supported if it is supported on some interval [a, b]. If f
is continuous and supported on [a, b], we define the improper integral f_oooo f tobe

ffooo f= f[a,b] I

Note that a function can be supported on more than one interval, for instance a
function which is supported on [3, 4] is also automatically supported on [2, 5] (why?).
In principle, this might mean that our definition of | fooo f isnot well defined, however
this is not the case:
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Lemma 3.8.5 If f: R — Ris continuous and supported on an interval [a, b], and
is also supported on another interval [c, d], then f[a’b] f= f[c’d] f-

Proof See Exercise 3.8.1. O

Definition 3.8.6 Approximation to the identity) Let ¢ > 0 and 0 < § < 1. A func-
tion f: R — R is said to be an (&, §)-approximation to the identity if it obeys the
following three properties:

(a) f issupported on [—1, 1], and f(x) > Oforall -1 <x < 1.
(b) f is continuous, and [°0 f = 1.
© |f(x)| <eforalld < |x| <.

Remark 3.8.7 For those of you who are familiar with the Dirac delta function,
approximations to the identity are ways to approximate this (very discontinuous)
delta function by a continuous function (which is easier to analyze). We will not
however discuss the Dirac delta function in this text.

Our proof of the Weierstrass approximation theorem relies on three key facts. The
first fact is that polynomials can be approximations to the identity:

Lemma 3.8.8 (Polynomials can approximate the identity) For every e > 0and 0 <
8 < 1 there exists an (g, §)-approximation to the identity which is a polynomial P
on[—1,1].

Proof See Exercise 3.8.2. O

We will use these polynomial approximations to the identity to approximate con-
tinuous functions by polynomials. We will need the following important notion of a
convolution.

Definition 3.8.9 (Convolution)Let f: R — Rand g: R — R be continuous, com-
pactly supported functions. We define the convolution f % g: R — R of f and g to
be the function

(f %)) = / FOgx — ) dy.

Note that if f and g are continuous and compactly supported, then for each x
the function f(y)g(x — y) (thought of as a function of y) is also continuous and
compactly supported, so the above definition makes sense.

Remark 3.8.10 Convolutions play an important role in Fourier analysis and in partial
differential equations (PDE), and are also important in physics, engineering, and
signal processing. An in-depth study of convolution is beyond the scope of this text;
only a brief treatment will be given here.

Proposition 3.8.11 (Basic properties of convolution) Let f: R - R, g: R —> R,
and h: R — R be continuous, compactly supported functions. Then the following
Statements are true.
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(a) The convolution f * g is also a continuous, compactly supported function.

(b) (Convolution is commutative) We have f x g = g * f.

(c) (Convolution is linear) We have f x (g + h) = f x g + f * h. Also, for any real
number ¢, we have f x (cg) = (c¢f) x g = c(f * g).

Proof See Exercise 3.8.4. O

Remark 3.8.12 There are many other important properties of convolution, for
instance it is associative, (f * g) * h = f % (g x h), and it commutes with deriva-
tives, (f * g) = f'*g = f =g/, when f and g are differentiable. The Dirac delta
function § mentioned earlier is an identity for convolution: f % § = § % f = f.These
results are slightly harder to prove than the ones in Proposition 3.8.11, however, and
we will not need them in this text.

As mentioned earlier, the proof of the Weierstrass approximation theorem relies
on three facts. The second key fact is that convolution with polynomials produces
another polynomial:

Lemma 3.8.13 Ler f: R — R be a continuous function supported on [0, 1], and
let g: R — R be a continuous function supported on [—1, 1] which is a polynomial
on [—1,1]. Then f * g is a polynomial on [0, 1]. (Note however that it may be
non-polynomial outside of [0, 1].)

Proof Since g is polynomial on [—1, 1], we may find an integer n > 0 and real
numbers cg, ¢1, ..., ¢, such that

glx) = chxf forallx e [—1, 1].
j=0

On the other hand, for all x € [0, 1], we have

f*gx)= / feglx —y)dy = / feglx —y)dy

[0.1]

since f is supported on [0, 1]. Since x € [0, 1] and the variable of integration y is
also in [0, 1], we have x — y € [—1, 1]. Thus we may substitute in our formula for
g to obtain

Frgm = [ 100 eite = dy,

[0,1] j=0

We expand this using the binomial formula (Exercise 7.1.4) to obtain

n J .
J! k j—k
f*g<x>:/f<y>§:c~§j I kyydy,
=0 ' i kG — o

[0,1]
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We can interchange the two summations (by Corollary 7.1.14) to obtain
frgm= [ Yy e T Y
(01] k=0 j=k
(why did the limits of summation change? It may help to plot j and k on a graph). Now

we interchange the k summation with the integral, and observe that x is independent
of y, to obtain

f*g(x)sz"/f(y)Z ’k'( )( vy td

k=0 [0.1]

If we thus define

ff(y)Z ,k,( (—y) ™ dy

k)!
[0,1]
foreach k =0, ..., n, then C; is a number which is independent of x, and we have
frgl) =) Cuxt
for all x € [0, 1]. Thus f * g is a polynomial on [0, 1]. O

The third key fact is that if one convolves a uniformly continuous function with an
approximation to the identity, we obtain a new function which is close to the original
function (which explains the terminology “approximation to the identity”):

Lemma 3.8.14 Ler f: R — R be a continuous function supported on [0, 1], which
is bounded by some M > 0 (i.e., | f(x)| < M forall x € R), and let ¢ > 0 and 0 <
8 < 1 be such that one has | f (x) — f(y)| < € whenever x,y € Rand |x — y| < é.
Let g be any (e, 8)-approximation to the identity. Then we have

If*gx)— f) = +4M)e
forall x € [0, 1].
Proof See Exercise 3.8.6. O

Combining these together, we obtain a preliminary version of the Weierstrass
approximation theorem:

Corollary 3.8.15 (Weierstrass approximation theorem I) Let f: R — R be a con-
tinuous function supported on [0, 1]. Then for every & > 0, there exists a function
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P : R — R which is polynomial on [0, 1] and such that |P(x) — f(x)| < ¢ for all
x € [0, 1].

Proof See Exercise 3.8.7. O

Now we perform a series of modifications to convert Corollary 3.8.15 into the
actual Weierstrass approximation theorem. We first need a simple lemma.

Lemma 3.8.16 Ler f: [0, 1] — R be a continuous function which equals 0 on the
boundary of [0, 1], i.e., f(0) = f(1) =0. Let F: R — R be the function defined
by setting F(x) := f(x) for x € [0, 1] and F(x):=0 for x ¢ [0, 1]. Then F is also
CONtinuous.

Proof See Exercise 3.8.9. O

Remark 3.8.17 The function F obtained in Lemma 3.8.16 is sometimes known as
the extension of f by zero.

From Corollary 3.8.15 and Lemma 3.8.16 we immediately obtain

Corollary 3.8.18 (Weierstrass approximation theorem II) Let f: [0, 1] - R be a
continuous function such that f(0) = f(1) = 0. Then for every ¢ > 0 there exists a
polynomial P : [0, 1] — R such that |P(x) — f(x)| < e forall x € [0, 1].

Now we strengthen Corollary 3.8.18 by removing the assumption that f(0) =
f() =0.

Corollary 3.8.19 (Weierstrass approximation theorem III) Let f: [0, 1] — R be a
continuous function. Then for every ¢ > 0 there exists a polynomial P : [0, 1] — R
such that |P(x) — f(x)| < e forall x € [0, 1].

Proof Let F: [0, 1] — R denote the function
F(x):= f(x) — f(0) —x(f(1) = f(0)).
Observe that F is also continuous (why?), and that F(0) = F (1) = 0. By Corollary

3.8.18, we can thus find a polynomial Q : [0, 1] — Rsuchthat |Q(x) — F(x)| < ¢
for all x € [0, 1]. But

Q(x) = F(x) =0+ f(0) +x(f(1) = f(0) — f(x),

so the claim follows by setting P to be the polynomial P(x):= Q(x) + f(0) +
x(f(1) = f(0)). o

Finally, we can prove the full Weierstrass approximation theorem.
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Proof of Theorem 3.8.3 Let f: [a, b] — R be a continuous function on [a, b]. Let
g: [0, 1] — R denote the function

gx):=f(a+ (b—a)x)forall x € [0, 1]
Observe then that

fO) =gy —a)/(b—a))forall y € [a,b].

The function g is continuous on [0, 1] (why?), and so by Corollary 3.8.19 we may
find a polynomial Q : [0, 1] — R such that |Q(x) — g(x)| < e forall x € [0, 1]. In
particular, for any y € [a, b], we have

1Q((y —a)/(b—a)) —g((y —a)/(b —a))| <.

If we thus set P(y) := Q((y —a)/(b — a)), then we observe that P is also a poly-
nomial (why?), and so we have |P(y) — f(y)| < e forall y € [a, b], as desired.

Remark 3.8.20 Note that the Weierstrass approximation theorem only works on
bounded intervals [a, b]; continuous functions on R cannot be uniformly approx-
imated by polynomials. For instance, the exponential function f: R — R defined
by f(x) :=e* (which we shall study rigorously in Sect.4.5) cannot be approximated
by any polynomial, because exponential functions grow faster than any polynomial
(Exercise 4.5.9) and so there is no way one can even make the sup metric between
f and a polynomial finite.

Remark 3.8.21 There is a generalization of the Weierstrass approximation theorem
to higher dimensions: if K is any compact subset of R” (with the Euclidean metric
dp), and f: K — R is a continuous function, then for every ¢ > 0 there exists
a polynomial P : K — R of n variables xi, ..., x, such that d(f, P) < ¢. This
general theorem can be proven by a more complicated variant of the arguments here,
but we will not do so. (There is in fact an even more general version of this theorem
applicable to an arbitrary metric space, known as the Stone-Weierstrass theorem, but
this is beyond the scope of this text.)

— Exercises —
Exercise 3.8.1 Prove Lemma 3.8.5.

Exercise 3.8.2 (a) Prove that for any real number 0 < y < 1 and any natural num-
bern > 0,that (1 — y)" > 1 — ny. (Hint: inducton n. Alternatively, differentiate
with respect to y.)

(b) Show that f_ll (1 —x>"dx > \/Lﬁ (Hint: for |x| < 1/4/n, use part (a); for |x| >
1/4/n, just use the fact that (1 — x?) is positive. It is also possible to proceed
via trigonometric substitution, but I would not recommend this unless you know
what you are doing.)
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(c) Prove Lemma 3.8.8. (Hint: choose f(x) toequal c(1 — xH)N forx € [—1, 1]and
to equal zero for x ¢ [—1, 1], where N is a large number N, where c is chosen
so that f has integral 1, and use (b).)

Exercise 3.8.3 Let f: R — R be a compactly supported, continuous function.
Show that f is bounded and uniformly continuous. (Hint: the idea is to use Proposi-
tion 2.3.2 and Theorem 2.3.5, but one must first deal with the issue that the domain
R of f is non-compact.)

Exercise 3.8.4 Prove Proposition 3.8.11. (Hint: to show that f % g is continuous,
use Exercise 3.8.3.)

Exercise 3.8.5 Let f: R — Rand g: R — R be continuous, compactly supported
functions. Suppose that f is supported on the interval [0, 1], and g is constant on
the interval [0, 2] (i.e., there is a real number ¢ such that g(x) = c for all x € [0, 2]).
Show that the convolution f * g is constant on the interval [1, 2].

Exercise 3.8.6 (a) Let g be an (&, §) approximation to the identity. Show that 1 —

2e < f[_mg <1.
(b) Prove Lemma 3.8.14. (Hint: begin with the identity

Frglo) = / Fx— g0y dy = / £ =gl dy

[—4.4]

+/f(x—y)g(y)dy+ f fx—y)g(y) dy.

[6,1] [—1,-6]

The idea is to show that the first integral is close to f(x), and that the second
and third integrals are very small. To achieve the former task, use (a) and the fact
that f(x) and f(x — y) are within ¢ of each other; to achieve the latter task, use
property (c) of the approximation to the identity and the fact that f is bounded.)

Exercise 3.8.7 Prove Corollary 3.8.15. (Hint: combine Exercise 3.8.3 and Lemmas
3.8.8,3.8.13,3.8.14.)

Exercise 3.8.8 Let f: [0,1] — R be a continuous function, and suppose that
f[o,u f(x)x™ dx =0 for all non-negative integers n =0, 1,2, .... Show that f
must be the zero function f = 0. (Hint: first show that f[O,I] f(x)P(x) dx =0 for
all polynomials P. Then, using the Weierstrass approximation theorem, show that

Joy F@) f(x) dx =0))

Exercise 3.8.9 Prove Lemma 3.8.16.



Chapter 4 ®)
Power Series Creck for

4.1 Formal Power Series

‘We now discuss an important subclass of series of functions, that of power series. As
in earlier chapters, we begin by introducing the notion of a formal power series and
then focus in later sections on when the series converges to a meaningful function
and what one can say about the function obtained in this manner.

Definition 4.1.1 (Formal power series) Let a be a real number. A formal power
series centered at a is any series of the form

i Cn(x - a)n

n=0

where ¢y, ¢y, . .. is a sequence of real numbers (not depending on x); we refer to ¢,
as the n'" coefficient of this series. Note that each term ¢, (x — a)” in this series is a
function of a real variable x.

Example 4.1.2 The series ) .-, n!(x —2)" is a formal power series centered at 2.
The series ) -, 2" (x — 3)" is not a formal power series, since the coefficients 2*
depend on x.

We call these power series formal because we do not yet assume that these series
converge for any x. However, these series are automatically guaranteed to converge
when x = a (why?). In general, the closer x gets to a, the easier it is for this series
to converge. To make this more precise, we need the following definition.

Definition 4.1.3 (Radius of convergence) Let Zf[o:o cp(x —a)" be a formal power
series. We define the radius of convergence R of this series to be the quantity

1
" limsup, . |c, V"
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where we adopt the convention that é = 400 and #O =0.

Remark 4.1.4 Each number |c,|'/" is non-negative, so the limit lim sup, _, .. |c,|"/"
can take on any value from 0 to 4-c0, inclusive. Thus R can also take on any value
between 0 and +oo inclusive (in particular it is not necessarily a real number). Note
that the radius of convergence always exists, even if the sequence |c,|'/” is not
convergent, because the lim sup of any sequence always exists (though it might be
+00 or —o00).

Example 4.1.5 The series 230:0 n(—2)"(x — 3)" has radius of convergence

1 1 1

limsup, . [n(—=2)"[/* _ limsup,_,_2nl/" _ 2’

The series Z;’io o (x + 2)" has radius of convergence

1 1 1

- 3 = - = = 0.
limsup,_ ., [2%|V/7  limsup, 2" 400
The series Z;’;O 2 (x + 2)" has radius of convergence
1 1 1 .
= = - = Q.
limsup, .., [277°|'/*  limsup,, 27" O

The significance of the radius of convergence is the following.

Theorem 4.1.6 Let ZZO:O cn(x —a)" be a formal power series, and let R be its
radius of convergence.

(a) (Divergence outside of the radius of convergence) If x € Ris suchthat|x — a| >
R, then the series y .- c,(x — a)" is divergent for that value of x.

(b) (Convergence inside the radius of convergence) If x € R is such that |x — a| <
R, then the series Y o c,(x — a)" is absolutely convergent for that value of x.

For parts (c)-(e) we assume that R > 0 (i.e., the series converges at at least
one other point than x = a). Let f: (a — R, a + R) — R be the function f(x) :=
Y ol oa(x — a)"; this function is guaranteed to exist by (b).

(c) (Uniform convergence on compact sets) For any O < r < R, the series Z:io Cn
(x —a)" converges uniformly to f on the compact interval [a —r,a +r]. In
particular, f is continuous on (a — R, a + R).

(d) (Differentiation of power series) The function f is differentiable on (a — R, a +
R), andforany0 < r < R, the series y .- nc,(x — a)"~! converges uniformly
to f’ on the interval [a — r,a + r].

(e) (Integration of power series) For any closed interval [y, z] contained in (a —
R,a + R), we have
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00

(Z _ a)n+1 _ (y _ a)n+1
/ f= ch pa— .
[y.z] n=0

Proof See Exercise 4.1.1. O

Theorem 4.1.6 (a) and (b) of the above theorem give another way to find the radius
of convergence, by using your favorite convergence test to work out the range of x
for which the power series converges:

Example 4.1.7 Consider the power series Y .- n(x — 1)". The ratio test shows that
this series converges when |x — 1| < 1 and diverges when |x — 1| > 1 (why?). Thus
the only possible value for the radius of convergence is R =1 (if R < 1, then we
have contradicted Theorem 4.1.6(a); if R > 1, then we have contradicted Theorem
4.1.6(b)).

Remark 4.1.8 Theorem 4.1.6 is silent on what happens when |x —a| = R, i.e., at
the points @ — R and a + R. Indeed, one can have either convergence or divergence
at those points; see Exercise 4.1.2.

Remark 4.1.9 Note that while Theorem 4.1.6(b) assures us that the power series
Z:o:o cp(x — a)™ will converge pointwise on the interval (¢ — R, a + R), it need
not converge uniformly on that interval (see Exercise 4.1.2(e)). On the other hand,
Theorem 4.1.6(c) assures us that the power series will converge on any smaller
interval [a — r, a + r]. In particular, being uniformly convergent on every closed
subinterval of (@ — R, a + R) is not enough to guarantee being uniformly convergent
onallof (a — R,a + R).

—Exercise—

Exercise 4.1.1 Prove Theorem 4.1.6. (Hints: for (a) and (b), use the root test (Theo-
rem 7.5.1). For (¢), use the Weierstrass M -test (Theorem 3.5.7). For (d), use Theorem
3.7.1. For (e), use Corollary 3.6.2.)

Exercise 4.1.2 Give examples of a formal power series ) .-, c,x" centered at 0
with radius of convergence 1, which

(a) divergesatbothx =1andx = —1;

(b) diverges at x = 1 but converges at x = —1;
(c) converges at x = 1 but diverges at x = —1;
(d) converges atboth x =1 and x = —1.

(e) converges pointwise on (—1, 1), but does not converge uniformly on (—1, 1).

4.2 Real Analytic Functions

A function f(x) which is lucky enough to be representable as a power series has a
special name; it is a real analytic function.



68 4 Power Series

Definition 4.2.1 (Real analytic functions) Let E be asubsetof R,andlet f: E — R
be a function. If a is an interior point of E, we say that f is real analytic at a if
there exists an open interval (@ — r, a 4 r) in E for some r > 0 such that there exists
a power series > . ¢,(x — a)" centered at a which has a radius of convergence
greater than or equal to  and which convergesto f on (a — r,a + r). If E is an open
set, and f is real analytic at every point a of E, we say that f is real analytic on E.

Example 4.2.2 Consider the function f: R\{l} — R defined by f(x) :=1/(1 —
x). This function is real analytic at 0 because we have a power series Y .-, x"
centered at O which converges to 1/(1 —x) = f(x) on the interval (—1, 1). This
function is also real analytic at 2 because we have a power series Z,‘iio( —)"*l(x —
2)" which converges to #}(72» = ﬁ = f(x) on the interval (1, 3) (why? Use
Lemma 7.3.3). In fact this function is real analytic on all of R\ {1}; see Exercise 4.2.2.
Remark 4.2.3 The notion of being real analytic is closely related to another notion,
that of being complex analytic, but this is a topic for complex analysis, and will not
be discussed here.

We now discuss which functions are real analytic. From Theorem 4.1.6(c) and
(d) we see that if f is real analytic at a point a, then f is both continuous and
differentiable on (a — r, a + r) for some r > 0. We can in fact say more:

Definition 4.2.4 (k-times differentiability) Let E be a subset of R with the property
that every element of E is a limit point of E. We say a function f: E — R is
once differentiable on E iff it is differentiable (so in particular f': E — R is also
a function on E. More generally, for any k > 2 we say that f: E — R is k times
differentiable on E, or just k times differentiable, iff f is differentiable, and f” is
k — 1 times differentiable. If f is k times differentiable, we define the k' h derivative
f®: E — Rbytherecursiverule fV := f’,and f® := (f*=Dy forallk > 2. We
also define f© := f (thisis f differentiated O times), and we allow every function
to be zero times differentiable (since clearly f© exists for every f). A function is
said to be infinitely differentiable (or smooth) iff it is k times differentiable for every
k> 0.

Example 4.2.5 The function f(x) := |x|? is twice differentiable on R, but not three
times differentiable (why?). Indeed, f® = f” = 6|x|, which is not differentiable,
at 0.

Proposition 4.2.6 (Real analytic functions are k-times differentiable) Let E be a
subset of R, let a be an interior point of E, and and let f be a function which is real
analytic at a, thus there is an r > 0 for which we have the power series expansion

f) =) elx —a)”
n=0

forall x € (a —r,a+r). Then for every k > 0, the function f is k-times differen-
tiable on (a — r, a + r), and for each k > 0 the k'" derivative is given by
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fP@ =) e+ D0 +2) . 1+ —a)"

n=0
> (n+k)! .
=) @ —a)
= n!
forallx € (a—r,a+r).
Proof See Exercise 4.2.3. O

Corollary 4.2.7 (Real analytic functions are infinitely differentiable) Let E be an
open subset of R, and let f: E — R be a real analytic function on E. Then f is
infinitely differentiable on E. Also, all derivatives of f are also real analytic on E.

Proof For every point a € E and k > 0, we know from Proposition 4.2.6 that f
is k-times differentiable at a (we will have to apply Exercise 10.1.1 k times here,
why?). Thus f is k-times differentiable on E for every k£ > 0 and is hence infinitely
differentiable. Also, from Proposition 4.2.6 we see that each derivative f® of f has
a convergent power series expansion at every x € E and thus f® is real analytic. [J

Example 4.2.8 Consider the function f: R — Rdefinedby f(x) := |x|. This func-
tion is not differentiable at x = 0 and hence cannot be real analytic at x = 0. It is
however real analytic at every other point x € R\{0} (why?).

Remark 4.2.9 The converse statement to Corollary 4.2.7 is not true; there are
infinitely differentiable functions which are not real analytic. See Exercise 4.5.4.

Proposition 4.2.6 has an important corollary, due to Brook Taylor (1685-1731).

Corollary 4.2.10 (Taylor’s formula) Let E be a subset of R, let a be an interior
point of E, and let f: E — R be a function which is real analytic at a and has the

power series expansion
o0

f) =) e —a)”

n=0

forall x € (a —r,a +r) and some r > 0. Then for any integer k > 0, we have
1Y@ = Klex,

wherek! :=1 x 2 x ... X k (andwe adopt the convention that 0! = 1). In particular,
we have Taylor’s formula

o0

(n)
=317 n!(“) (x —a)"

n=0

forallx in (a —r,a+r).
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Proof See Exercise 4.2.4. O

. o . . .
The power series Z:o:o %(x — a)" is sometimes called the Taylor series of

f around a. Taylor’s formula thus asserts that if a function is real analytic, then it is
equal to its Taylor series.

Remark 4.2.11 Note that Taylor’s formula only works for functions which are real
analytic; there are examples of functions which are infinitely differentiable but for
which Taylor’s theorem fails (see Exercise 4.5.4).

Another important corollary of Taylor’s formula is that a real analytic function
can have at most one power series at a point:

Corollary 4.2.12 (Uniqueness of power series) Let E be a subset of R, let a be an
interior point of E, and let f: E — R be a function which is real analytic at a.
Suppose that f has two power series expansions

f0)=>aE-a)"
n=0

and

) =) dy(x —a)"

n=0

centered at a, each with a nonzero radius of convergence. Then ¢, = d,, foralln > 0.

Proof By Corollary 4.2.10, we have f(k) (a) = k!¢, for all k > 0. But we also have
f®(a) = k!dy, by similar reasoning. Since k! is never zero, we can cancel it and
obtain ¢, = d for all k > 0, as desired. O

Remark 4.2.13 While a real analytic function has a unique power series around
any given point, it can certainly have different power series at different points. For
instance, the function f(x) := 1# defined on R — {1}, has the power series

—x?

fx) = Zx”
n=0

around O, on the interval (—1, 1), but also has the power series

foy=— =2
R I R Y

-2e((-3)) -2 ()

around 1/2, on the interval (0, 1) (note that the above power series has a radius of
convergence of 1/2, thanks to the root test; see also Exercise 4.2.8).
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—Exercise—

Exercise 4.2.1 Let n > 0 be an integer, let ¢, a be real numbers, and let f be
the function f(x) := c(x —a)". Show that f is infinitely differentiable, and that
FO @) = c(nf—’k)!(x — a)"* for all integers 0 < k < n. What happens when k > n?

Exercise 4.2.2 Show that the function f defined in Example 4.2.2 is real analytic
on all of R\({1}.

Exercise 4.2.3 Prove Proposition4.2.6. (Hint: induct on k and use Theorem 4.1.6(d).)
Exercise 4.2.4 Use Proposition 4.2.6 and Exercise 4.2.1 to prove Corollary 4.2.10.

Exercise 4.2.5 Let a, b be real numbers, and let n > 0 be an integer. Prove the
identity

n

n!

— n_ - (h- n—m — pym
(x —a) n;m!(n_m)!( a)"™"(x — b)
for any real number x. (Hint: use the binomial formula, Exercise 7.1.4.) Explain why
this identity is consistent with Taylor’s theorem and Exercise 4.2.1. (Note however
that Taylor’s theorem cannot be rigorously applied until one verifies Exercise 4.2.6
below.)

Exercise 4.2.6 Using Exercise 4.2.5, show that every polynomial P (x) of one vari-
able is real analytic on R.

Exercise 4.2.7 Let m > 0 be a positive integer, and let 0 < x < r be real numbers.
Use Lemma 7.3.3 to establish the identity

r o0
= E x"r"
n=0

r—x

for all x € (—r, r). Using Proposition 4.2.6, conclude the identity

]

r — Z n! n—m,—n
(r — x)m+l m!(n —m)!

n=m

for all integers m > 0 and x € (—r, r). Also explain why the series on the right-hand
side is absolutely convergent.

Exercise 4.2.8 Let E be a subset of R, let a be an interior point of E, and let
f: E — Rbeafunction which is real analytic at a and has a power series expansion

f) =) elx—a)”
n=0

at a which converges on the interval (a — r, a + r). Let (b — s, b + s) be any subin-
terval of (a — r, a + r) for some s > 0.
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(a) Provethat |a — b| <r — s, so in particular |[a — b| < r.

(b) Show that forevery 0 < ¢ < r, thereexistsa C > Osuchthat|c,| < C(r —e)™"
for all integers n > 0. (Hint: what do we know about the radius of convergence
of the series Y - ¢, (x —a)"?)

(c) Show that the numbers dy, d, . .. given by the formula

> n! n—m .
dy = nzzm m(l) —a)"' "¢, for all integers m > 0
are well-defined, in the sense that the above series is absolutely convergent.
(Hint: use (b) and the comparison test, Corollary 7.3.2, followed by Exercise
4.2.7)
(d) Show that for every 0 < ¢ < s there exists a C > 0 such that

|dm| = C(S - 8)_m

for all integers m > 0. (Hint: use the comparison test, and Exercise 4.2.7.)

(e) Show that the power series Y - d,(x —b)™ is absolutely convergent for
x € (b —s,b+ s) and converges to f(x). (You may need Fubini’s theorem for
infinite series, Theorem 8.2.2 of Analysis I, as well as Exercise 4.2.5. One may
also need to study a variant of the d,, in which the ¢, are replaced by |c,|.)

(f) Conclude that f is real analytic at every pointin (a —r,a +r).

4.3 Abel’s Theorem

Let f(x) = Zf;ozo cp(x —a)" be a power series centered at a with a radius of con-
vergence 0 < R < oo strictly between 0 and infinity. From Theorem 4.1.6 we know
that the power series converges absolutely whenever |x — a| < R and diverges when
|x —a| > R. However, at the boundary |x — a| = R the situation is more compli-
cated; the series may either converge or diverge (see Exercise 4.1.2). However, if the
series does converge at the boundary point, then it is reasonably well-behaved; in
particular, it is continuous at that boundary point.

Theorem 4.3.1 (Abel’s theorem) Let f(x) = Zf;o cu(x —a)" be a power series
centered at a with radius of convergence 0 < R < 00. If the power series converges
ata + R, then f is continuous at a + R, i.e.,

00 00
lim E c(x —a)' = E c, R".
x—>a+R:xe(a—R,a+R)
n=0 n=0

Similarly, if the power series converges ata — R, then f is continuous ata — R, i.e.,
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o0
lim cpn(x —a)? cn(—R)".
x—a—R:xe(a— Ra+R)Z n( ) Z n( )

n=0

Before we prove Abel’s theorem, we need the following lemma.

Lemma 4.3.2 (Summation by parts formula) Let (a,)5, and (b,);2, be sequences
of real numbers which converge to limits A and B, respectively, i.e., lim, . a, = A
and lim,_, o, b, = B. Suppose that the sum Zi‘io (an+1 — an)b, is convergent. Then
the sum Z:O:(] an+1(byy1 — by) is also convergent, and

o0 [e.¢]
Y (@us1 —ap)b, = AB —aohy — ) _ an1(bus1 — by).
n=0 n=0

Proof See Exercise 4.3.1. ([

Remark 4.3.3 One should compare this formula with the more well-known integra-
tion by parts formula

/f’(X)g(x) dx = f(x)g(0)g’ —ff(X)g’(X) dx,
0 0

see Proposition 11.10.1.

Proof of Abel’s theorem 1t will suffice to prove the first claim, i.e., that

lim ci(x —a)! e R"
x—a+R:xe(a— Ra+R)Z n( ) Z "

n=0

wheneverthesum ) -, ¢, R" converges; the second claim will then follow (why?) by
replacing ¢, by (—1)"¢, in the above claim. If we make the substitutions d,, := ¢, R"
and y := *2%, then the above claim can be rewritten as

Zdny = Zdn

y—>1: ye( 1, 1)

whenever thesum ) - ; d, converges. (Why is this equivalent to the previous claim?)
Write D = ano d,, and for every N > 0 write

(54

so in particular Sy = —D. Then observe that limy_. ., Sy = 0, and thatd,, = S,,+1 —
S,. Thus for any y € (—1, 1) we have
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00 )
Zdn}’" = Z(Sn-H - Sn)y
n=0 n=0

Applying the summation by parts formula (Lemma4.3.2), and noting thatlim,,_, o, ¥"
= 0, we obtain

[0¢] o0
Doy = =500 =D S " = .
n=0

n=0

Observe that —.S, y0 = +D. Thus to finish the proof of Abel’s theorem, it will suffice
to show that

lim ZS A" =y =0.

y—liye(—1, 1)

Since y converges to 1, we may as well restrict y to [0, 1) instead of (—1, 1); in
particular we may take y to be positive.
From the triangle inequality for series (Proposition 7.2.9), we have

ZS IV

n=0

< Z|Sn+1(y"“ — "

[ee]

=Y 1Sural " = ",

n=0

so by the squeeze test (Corollary 6.4.14) it suffices to show that

lim Z|Sn+1|(y -y =0

y—1:y€[0,1)

The expression Zsio [S,41](Y" — y"*1) is clearly non-negative, so it will suffice to
show that

lim sup Z|Sn+1|(y yh=o.
y—=1Lyel0,) ;=5

Lete > 0. Since S, converges to 0, there exists an N such that |S,| < eforalln > N.
Thus we have

oo N oo
D ISl =y < Y ISlo" =yt + DD e =yt
n=0 n=0 n=N+1

The last summation is a telescoping series, which sums to eyN +1 (See Lemma 7.2.14,
recalling from Lemma 6.5.2 that y* — 0 as n — 00), and thus
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o0 N
D 1St " =" < Y 1Sl =yt ey
n=0 n=0

Now take limits as y — 1. Observe that y" — y"*! — 0 as y — 1 for every n €
0,1,..., N. Since we can interchange limits and finite sums (Exercise 7.1.5), we
thus have

[o¢]
limsup Y [S,1](" — ") <&
y—1:y€[0,1) n=0

But ¢ > 0 was arbitrary, and thus we must have
o0
limsup > 1S,411G" — ") =0
y—1:y€[0,1) n=0
since the left-hand side must be non-negative. The claim follows. ([
—Exercise—

Exercise 4.3.1 Prove Lemma 4.3.2. (Hint: first work out the relationship between
the partial sums Z;V:O(anﬂ —a,)b, and Z::I:o api1(buy1 — b))
4.4 Multiplication of Power Series

We now show that the product of two real analytic functions is again real analytic.

Theorem 4.4.1 Let f: (a—r,a+r) —> Rand g: (a —r,a+r) — R be func-
tions analytic on (a — r, a + r), with power series expansions

f) =) elx —a)”
n=0

and
o0
g) =Y dy(x —a)'
n=0
, respectively. Then fg: (a —r,a +r) — Ris also analytic on (a — r,a + r), with
power series expansion

fg) =) enlx —a)"
n=0

where e, := Y o Culn—m.
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Remark 4.4.2 The sequence (e, )52, is sometimes referred to as the convolution of
the sequences (c,)52, and (d,);2; it is closely related (though not identical) to the
notion of convolution introduced in Definition 3.8.9.

Proof We have to show that the series Y - e,(x — a)" converges to f (x)g(x) for
allx € (a —r,a + r).Now fix x to be any pointin (a — r, a + r). By Theorem 4.1.6,
we see that both f and g have radii of convergence at least r. In particular, the series
Yo ocn(x —a)"and Y o2 dy(x — a)" are absolutely convergent. Thus if we define

=) lealx —a)"|
n=0

and
o0

Z L (x —a)"|

then C and D are both finite.
For any N > 0, consider the partial sum

N oo

D0 lemx — a)"dy(x — a)"|.

n=0 m=0

We can rewrite this as

N [ee]
D ldax =)' Y lem(x — )™,
n=0 m=0

which by definition of C is equal to

N

D ldu(x —a)'|C,

n=0

which by definition of D is less than or equal to DC. Thus the above partial sums
are bounded by DC for every N. In particular, the series

DY lew(x = a)"dy(x — a)"|

n=0 m=0
is convergent, which means that the sum

oo o0

Z Z cm(x —a)"d,(x —a)"

n=0 m=0
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is absolutely convergent.
Let us now compute this sum in two ways. First of all, we can pull the d, (x — a)"
factor out of the ZZLO:O summation, to obtain

idn(x —a)" icm(x —a)".
n=0 m=0

By our formula for f(x), this is equal to
o0
> dix —a)" f(x);
n=0
by our formula for g(x), this is equal to f(x)g(x). Thus
fO)EE) =Y enlx —a)"dy(x —a)".
n=0 m=0
Now we compute this sum in a different way. We rewrite it as
o0 [e.¢]
F@E) =YY cndy(x —a)"*™.
n=0 m=0

By Fubini’s theorem for series (Theorem 8.2.2), because the series was absolutely
convergent, we may rewrite it as

oo o0

g =Y Y enda(x —a)"™.

m=0 n=0
Now make the substitution n’ := n + m, to rewrite this as
o0 o0
f(x)g(x) = Z Z Cmdn’fm(x - a)n .
m=0n'=m
If we adopt the convention that d; = O for all negative j, then this is equal to
[e¢] o
fEX) =Y cndy—m(x —a)".
m=0n'=0

Applying Fubini’s theorem again, we obtain
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fEEE) =YY endym(x —a)",

n’'=0m=0
which we can rewrite as
o0 o0
gD =Y (x—a)" Y cudum.
n'=0 m=0

Since d; was 0 when j is negative, we can rewrite this as

00 n'
fEx) =Y (x=a)" Y cndwm,
n'=0 m=0
which by definition of e is
[0 ]
f@)gx) =) ew(x —a)",
'=0

as desired. O

4.5 The Exponential and Logarithm Functions

We can now use the machinery developed in the last few sections to develop a
rigorous foundation for many standard functions used in mathematics. We begin
with the exponential function.

Definition 4.5.1 (Exponential function) For every real number x, we define the
exponential function exp(x) to be the real number

o0 xn
exp(x) := Z ok
n=0 "~

Theorem 4.5.2 (Basic properties of exponential)

(a) For every real number x, the series -, ):T': is absolutely convergent. In partic-
ular, exp(x) exists and is real for every x € R, the power series Y - fT',’ has an
infinite radius of convergence, and exp is a real analytic function on (—00, 00).

(b) exp is differentiable on R, and for every x € R, exp’(x) = exp(x).

(c) exp is continuous on R, and for every interval [a, b], we have f[a‘ b exp(x)dx =
exp(b) — exp(a).

(d) Foreveryx,y € R, we have exp(x + y) = exp(x) exp(y).
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(e) We have exp(0) = 1. Also, for every x € R, exp(x) is positive, and exp(—x) =
1/ exp(x).

(f) exp is strictly monotone increasing: in other words, if x,y are real numbers,
then we have exp(y) > exp(x) if and only if y > x.

Proof See Exercise 4.5.1. (Il

One can write the exponential function in a more compact form, introducing
famous Euler’s number e = 2.71828183 .. ., also known as the base of the natural
logarithm:

Definition 4.5.3 (Euler’s number) The number e is defined to be

]

AR B S B B
emexp()=) —=r+gty Tyt

n=0
Proposition 4.5.4 For every real number x, we have exp(x) = e*.
Proof See Exercise 4.5.3. O

In light of this proposition we can and will use e* and exp(x) interchangeably.

Since e > 1 (why?), we see that e* — +00 as x — +00, and ¢* — 0 as x —
—o00. From this and the intermediate value theorem (Theorem 9.7.1) we see that the
range of the function exp is (0, 00). Since exp is strictly increasing, it is injective, and
hence exp is a bijection from R to (0, co) and thus has an inverse from (0, co) — R.
This inverse has a name:

Definition 4.5.5 (Logarithm) We define the natural logarithm function log: (0, 0o)
— R (alsocalled In) to be the inverse of the exponential function. Thus exp(log(x)) =
x and log(exp(x)) = x.

Since exp is continuous and strictly monotone increasing, we see that log is also
continuous and strictly monotone increasing (see Proposition 9.8.3). Since exp is
also differentiable, and the derivative is never zero, we see from the inverse function
theorem (Theorem 10.4.2) that log is also differentiable. We list some other properties
of the natural logarithm below.

Theorem 4.5.6 (Logarithm properties)

(a) For every x € (0, 00), we have In'(x) = )lC In particular, by the fundamental
theorem of calculus, we have f[a,b] % dx = In(b) — In(a) for any interval [a, b]
in (0, 00).

(b) We have In(xy) = In(x) + In(y) for all x, y € (0, 00).

(c) We have In(1) = 0 and In(1/x) = — In(x) for all x € (0, 00).

(d) Forany x € (0,00) and y € R, we have In(x”) = y In(x).
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(e) Foranyx € (—1, 1), we have

[ o
1n(1—x)=—2 —.
n

n=1

In particular, In is analytic at 1, with the power series expansion

o —1)ntl
mm:Z(J (x — )"

n=1
for x € (0, 2), with radius of convergence 1.
Proof See Exercise 4.5.5. O

Example 4.5.7 We now give a modest application of Abel’s theorem (Theorem

n+l
4.3.1): from the alternating series test we see that Y - = 1’2 -
Abel’s theorem we thus see that

o (_l)nJrl S
>0y 3D

n=1

el is convergent. By

_ )n+1

_ l)n

= lim2 In(x) = In(2),

thus we have the formula

In2) =1 l—i-l l—i-l
n2)=1--+-—-—-4+-—....
2 3 45

—Exercise—

Exercise 4.5.1 Prove Theorem 4.5.2. (Hints: for part (a), use the ratio test. For parts
(bc), use Theorem 4.1.6. For part (d), use Theorem 4.4.1. For part (e), use part (d).
For part (f), use part (d), and prove that exp(x) > 1 when x is positive. You may find
the binomial formula from Exercise 7.1.4 to be useful.)

Exercise 4.5.2 Show that for every integer n > 3, we have

1 1 1

St Tar T T

(Hint: first show that (n + k)! > 2%n! for all k = 1,2, 3, ....) Conclude that n!e is
not an integer for every n > 3. Deduce from this that e is irrational. (Hint: prove by
contradiction.)

Exercise 4.5.3 Prove Proposition 4.5.4. (Hint: first prove the claim when x is a
natural number. Then prove it when x is an integer. Then prove it when x is a rational
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number. Then use the fact that real numbers are the limits of rational numbers to
prove it for all real numbers. You may find the exponent laws (Proposition 6.7.3) to
be useful.)

Exercise 4.5.4 Let f: R — R be the function defined by setting f(x) :=
exp(—1/x) whenx > 0,and f(x) := 0 whenx < 0. Prove that f is infinitely differ-
entiable, and f* (0) = O for every integer k > 0, but that f is not real analytic at 0.

Exercise 4.5.5 Prove Theorem 4.5.6. (Hints: for part (a), use the inverse function
theorem (Theorem 10.4.2) or the chain rule (Theorem 10.1.15). For parts (bcd), use
Theorem 4.5.2 and the exponent laws (Proposition 6.7.3). For part (e), start with the
geometric series formula (Lemma 7.3.3) and integrate using Theorem 4.1.6).

Exercise 4.5.6 Prove that the natural logarithm function is real analytic on (0, +00).

Exercise 4.5.7 Let f: R — (0, c0) be a positive, real analytic function such that
f'(x) = f(x) for all x € R. Show that f(x) = Ce* for some positive constant C;
justify your reasoning. (Hint: there are basically three different proofs available. One
proof uses the logarithm function, another proof uses the function ¢, and a third
proof uses power series. Of course, you only need to supply one proof.)

Exercise 4.5.8 Letm > 0 be an integer. Show that

X

lim — = +o0.
x—>+4oo x™M

(Hint: what happens to the ratio between et1/(x + 1)" and ¥ /x™ as x — +007)

Exercise 4.5.9 Let P(x) be apolynomial, and letc > 0. Show that there exists a real
number N > 0 such that e** > |P(x)| for all x > N; thus an exponentially growing
function, no matter how small the growth rate ¢, will eventually overtake any given
polynomial P (x), no matter how large. (Hint: use Exercise 4.5.8.)

Exercise 4.5.10 Let f: (0, +00) x R — Rbethe exponential function f(x, y) :=

x”. Show that f is continuous. (Hint: note that Propositions 9.4.10, 9.4.11 only show
that f is continuous in each variable, which is insufficient, as Exercise 2.2.11 shows.
The easiest way to proceed is to write f(x, y) = exp(y Inx) and use the continuity
of exp() and In(). For an extra challenge, try proving this exercise without using the
logarithm function.)

4.6 A Digression on Complex Numbers

To proceed further we need the complex number system C, which is an extension of
the real number system R. A full discussion of this important number system (and in
particular the branch of mathematics known as complex analysis) is beyond the scope
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of this text; here, we need the system primarily because of a very useful mathematical
operation, the complex exponential function z — exp(z), which generalizes the real
exponential function x +— exp(x) introduced in the previous section.

Informally, we could define the complex numbers as

Definition 4.6.1 (Informal definition of complex numbers) The complex numbers C
are the set of all numbers of the form a + bi, where a, b are real numbers and i is a
square root of —1, i2=—1.

However, this definition is a little unsatisfactory as it does not explain how to
add, multiply, or compare two complex numbers. To construct the complex numbers
rigorously we will first introduce a formal version of the complex number a + bi,
which we shall temporarily denote as (a, b); this is similar to how in Chap. 4, when
constructing the integers Z, we needed a formal notion of subtraction a—»b before the
actual notion of subtraction a — b could be introduced, or how when constructing
the rational numbers, a formal notion of division a//b was needed before it was
superceded by the actual notion a/b of division. It is also similar to how, in the
construction of the real numbers, we defined a formal limit LIM,,_, o, a,, before we
defined a genuine limit lim,,—, » a,.

Definition 4.6.2 (Formal definition of complex numbers) A complex number is any
pair of the form (a, b), where a, b are real numbers, thus for instance (2, 4) is
a complex number. Two complex numbers (a, b), (¢, d) are said to be equal iff
a = c and b = d, thus for instance (2 + 1,3 +4) = (3,7), but (2, 1) # (1,2) and
(2,4) # (2, —4). The set of all complex numbers is denoted C.

At this stage the complex numbers C are indistinguishable from the Cartesian
product R? = R x R (also known as the Cartesian plane). However, we will intro-
duce a number of operations on the complex numbers, notably that of complex
multiplication, which are not normally placed on the Cartesian plane R?. Thus one
can think of the complex number system C as the Cartesian plane R? equipped with
anumber of additional structures. We begin with the notion of addition and negation.
Using the informal definition of the complex numbers, we expect

(a,b)+(c,d)=(@+bi)+(c+di)=@+c)+b+di=@+c,b+d)
and similarly
—(a,b) = —(a + bi) = (—a) + (=b)i = (—a, —b).

As these derivations used the informal definition of the complex numbers, these
identities have not yet been rigorously proven. However we shall simply encode
these identities into our complex number system by defining the notion of addition
and negation by the above rules:

Definition 4.6.3 (Complex addition, negation, and zero) If z = (a,b) and w =
(c,d) are two complex numbers, we define their sum z + w to be the complex
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number z + w := (a + ¢, b + d). Thus for instance (2,4) + (3, —1) = (5, 3). We
also define the negation —z of z to be the complex number —z := (—a, —b), thus for

instance —(3, —1) = (=3, 1). We also define the complex zero Oc to be the complex
number O¢c = (0, 0).

It is easy to see that notion of addition is well-defined in the sense that if z = 7’
and w = w’ then 7 + w = 7/ + w’. Similarly for negation. The complex addition,
negation, and zero operations obey the usual laws of arithmetic:

Lemma 4.6.4 (The complex numbers are an additive group) If z1, z2, 73 are com-
plex numbers, then we have the commutative property z\ + 2o = 2o + 21, the asso-
ciative property (z1 + z2) + z3 = z1 + (22 + z3), the identity property z; + O¢c =
Oc + z1 = z1, and the inverse property 71 + (—z1) = (—z1) + z1 = Oc.

Proof See Exercise 4.6.1. O

Next, we define the notion of complex multiplication and reciprocal. The informal
justification of the complex multiplication rule is

(a,b) - (c,d) = (a+bi)(c+di)
=ac +adi + bic + bidi
= (ac — bd) + (ad + bc)i
= (ac — bd, ad + bc)

2

since i~ is supposed to equal —1. Thus we define

Definition 4.6.5 (Complex multiplication)If z = (a, b) and w = (c, d) are complex
numbers, then we define their product zw to be the complex number zw := (ac —
bd, ad + bc). We also introduce the complex identity 1¢ := (1, 0).

This operation is easily seen to be well-defined, and also obeys the usual laws of
arithmetic:

Lemma 4.6.6 Ifz), z», 23 are complex numbers, then we have the commutative prop-
erty 2122 = 2221, the associative property (21z2)z3 = 21(2223), the identity property
z1lc = lcz1 = z1, and the distributivity properties z1(z2 + z3) = 2122 + 2123 and
(z2 + 23)71 = 2221 + 2321

Proof See Exercise 4.6.2. O

The above lemma can also be stated more succinctly, as the assertion that C is a
commutative ring. As is usual, we now write z — w as shorthand for z + (—w).

We now identify the real numbers R with a subset of the complex numbers C by
identifying any real number x with the complex number (x, 0), thus x = (x, 0). Note
that this identification is consistent with equality (thus x = yiff (x, 0) = (y, 0)), with
addition (x; 4+ xp = x3 iff (x1,0) + (x2, 0) = (x3,0)), with negation (x = —y iff
(x,0) = —(y, 0)), and multiplication (x;x, = x3 iff (x1, 0)(x2, 0) = (x3, 0)), so we
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will no longer need to distinguish between “real addition” and “complex addition”,
and similarly for equality, negation, and multiplication. For instance, we can compute
3(2, 4) by identifying the real number 3 with the complex number (3, 0) and then
computing (3,0)(2,4) =3 x2—-0x4,3x4+0x2)=(6,12). Note also that
0=0c and 1 = 1¢, so we can now drop the C subscripts from the zero 0 and the
identity 1.

We now define i to be the complex number i := (0, 1). We can now reconstruct
the informal definition of the complex numbers as a lemma:

Lemma 4.6.7 Every complex number z € C can be written as z = a + bi for exactly
one pair a, b of real numbers. Also, we have i*> = —1, and —z7 = (—=1)z.

Proof See Exercise 4.6.3. O

Because of this lemma, we will now refer to complex numbers in the more usual
notation a + bi and discard the formal notation (a, b) henceforth.

Definition 4.6.8 (Real and imaginary parts) If z is a complex number with the
representation z = a + bi for some real numbers a, b, we shall call a the real part of
z and denote N (z) := a, and call b the imaginary part of z and denote J(z) := b, thus
for instance M (3 4+ 4i) = 3 and I(3 + 4i) = 4, and in general z = NR(z) + iJ(2).
Note that z is real iff J(z) = 0. We say that z is imaginary iff R(z) = 0, thus for
instance 4i is imaginary, while 3 4 4i is neither real nor imaginary, and 0 is both real
and imaginary. We define the complex conjugate 7 of z to be the complex number
7 := M(z) — iJ(z), thus for instance 3 + 4i =3 —4i,i = —i, and 3 = 3.

The operation of complex conjugation has several nice properties:

Lemma 4.6.9 (Complex conjugation is an involution) Let z, w be complex numbers,
thenz +w=7+w, —z = —7, and Zw = Z w. Also 7 = z. Finally, we have 7 = W
ifand only if 7 = w, and 7 = z if and only if 7 is real.

Proof See Exercise 4.6.4. O

The notion of absolute value |x| was defined for rational numbers x in Definition
4.3.1, and this definition extends to real numbers in the obvious manner. However,
we cannot extend this definition directly to the complex numbers, as most complex
numbers are neither positive nor negative. (For instance, we do not classify i as
either a positive or negative number; see Exercise 4.6.11 for some reasons why.)
However, we can still define absolute value by generalizing the formula |x| = Vx?
from Exercise 5.6.4:

Definition 4.6.10 (Complex absolute value) If z = a + bi is a complex number, we
define the absolute value |z| of z to be the real number |z| := Va2 + b2 = (a* +
b2,

From Exercise 5.6.4 we see that this notion of absolute value generalizes the notion
of real absolute value. The absolute value has a number of other good properties:
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Lemma 4.6.11 (Properties of complex absolute value) Let z, w be complex numbers.
Then |z| is a non-negative real number, and |z| = O if and only if z = 0. Also we have
the identity zZ = |z|%, and so |z| = «/zZ. As a consequence we have |zw| = |z||w|
and |Z| = |z|. Finally, we have the inequalities

—lzl =N@) = zls —lzl =) =zl 2] = R+ 13)]

as well as the triangle inequality |z + w| < |z| + |w|.
Proof See Exercise 4.6.6. O
Using the notion of absolute value, we can define a notion of reciprocal:

Definition 4.6.12 (Complex reciprocal) If z is a nonzero complex number, we
define the reciprocal z=' of z to be the complex number z~! := |z|7?Z (note
that |z|=2 is well-defined as a positive real number because |z| is positive real,
thanks to Lemma 4.6.11). Thus for instance (1 + 2i)~" = |1 +2i|72(1 —2i) =
(1P+2H" 11 -2i) = % — %i. If z is zero, z = 0, we leave the reciprocal 0~! unde-
fined.

From the definition and Lemma 4.6.11, we see that

2 ==z Pz = 12 PP = 1,

and so z~! is indeed the reciprocal of z. We can thus define a notion of quotient z/w

for any two complex numbers z, w with w # 0 in the usual manner by the formula
Z/w:=zw .

The complex numbers can be given a distance by defining d(z, w) = |z — w|.

Lemma 4.6.13 The complex numbers C with the distance d form a metric space. If
(2n)2, is a sequence of complex numbers, and z is another complex number; then we
have lim,,_, », 2, = 7 in this metric space if and only if lim,_, o, R(z,) = R(z) and
lim, 00 S(z) = S(2).

Proof See Exercise 4.6.9. (]

Observe that with our choice of definitions, the space C of complex numbers is
identical (as a metric space) to the Euclidean plane R?, since the complex distance
between two complex numbers (a, b), (a’, b’) is exactly the same as the Euclidean
distance \/ (a — a’)? + (b — b’)? between these points. Thus, every metric property
that R? satisfies is also obeyed by C; for instance, C is complete and connected, but
not compact.

We also have the usual limit laws:

Lemma 4.6.14 (Complex limit laws) Let (z,);2, and (w,)52, be convergent

sequences of complex numbers, and let ¢ be a complex number. Then the sequences

(@n F+wn)2 s @ — ey, (€Zn)osy, (Zawy)oe,, and (Z,)52, are also convergent,

with
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lim z, + w, = lim z, + lim w,

n—o0 n—oo n—oo
lim z, — w, = lim z, — lim w,
n—oo n—0oQ n—oo

lim cz, = c lim gz,

n—o0 n—oo
lim z,w, = <1im z,,) (lim w,,)
n—oo n— 00 n— 00

lim z, = lim z,
n—0oQ n— o0

Also, if the w,, are all nonzero and lim,_, . w, is also nonzero, then (z,,/wy,),2 | is
also a convergent sequence, with

lim z,/w, = (lim z,)/(lim wn).
n—oQ n— 00 n—0oQ

Proof See Exercise 4.6.10. O

Observe that the real and complex number systems are in fact quite similar;
they both obey similar laws of arithmetic, and they have similar structure as metric
spaces. Indeed many of the results in this textbook that were proven for real-valued
functions are also valid for complex-valued functions, simply by replacing “real”
with “complex” in the proofs but otherwise leaving all the other details of the proof
unchanged. Alternatively, one can always split a complex-valued function f into
real and imaginary parts R(f), I(f), thus f = R(f) +iI(f), and then deduce
results for the complex-valued function f from the corresponding results for the
real-valued functions N( f), I(f). For instance, the theory of pointwise and uniform
convergence from Chapter 3, or the theory of power series from this chapter, extends
without any difficulty to complex-valued functions. In particular, we can define the
complex exponential function in exactly the same manner as for real numbers:

Definition 4.6.15 (Complex exponential) If z is a complex number, we define the
function exp(z) by the formula

X _n
z
exp(z) := E PR

n=0 "

Inspired by Proposition 4.5.4, we shall use exp(z) and e® interchangeably. It is
also possible to define a* for complex z and other real numbers a > 0, but we will
not need to do so in this text.

One can state and prove the ratio test for complex series and use it to show that
exp(z) converges for every z. It turns out that many of the properties from Theorem
4.5.2 still hold: we have that exp(z + w) = exp(z) exp(w), for instance; see Exercise
4.6.12. (The other properties require complex differentiation and complex integra-
tion, but these topics are beyond the scope of this text.) Another useful observation
is that exp(z) = exp(2); this can be seen by conjugating the partial sums Zf:o %
and taking limits as N — oo. .
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The complex logarithm turns out to be somewhat more subtle, mainly because exp
is no longer invertible, and also because the various power series for the logarithm
only have a finite radius of convergence (unlike exp, which has an infinite radius of
convergence). This rather delicate issue is beyond the scope of this text and will not
be discussed here.

—Exercise—
Exercise 4.6.1 Prove Lemma 4.6.4.
Exercise 4.6.2 Prove Lemma 4.6.6.
Exercise 4.6.3 Prove Lemma 4.6.7.
Exercise 4.6.4 Prove Lemma 4.6.9.

z+z ~ _ =z
> and 3(z) = 5=,

Exercise 4.6.5 If z is a complex number, show that R(z) =

Exercise 4.6.6 Prove Lemma 4.6.11. (Hint: to prove the triangle inequality, first
prove that R (zw) < |z||w], and hence (from Exercise 4.6.5) that zw + zw < 2|z||w|.
Then add |z|> + |w|? to both sides of this inequality.)

Exercise 4.6.7 Show that if z, w are complex numbers with w # 0, then |z/w| =

|z|/lw].

Exercise 4.6.8 Let z, w be nonzero complex numbers. Show that |z + w| = |z| +
|w| if and only if there exists a positive real number ¢ > 0 such that z = cw.

Exercise 4.6.9 Prove Lemma 4.6.13.

Exercise 4.6.10 Prove Lemma 4.6.14. (Hint: split z,, and w, into real and imaginary
parts and use the usual limit laws, Lemma 6.1.19, combined with Lemma 4.6.13.)

Exercise 4.6.11 The purpose of this exercise is to explain why we do not try to
organize the complex numbers into positive and negative parts. Suppose that there
was a notion of a “positive complex number” and a “negative complex number”
which obeyed the following reasonable axioms (cf. Proposition 4.2.9):

e (Trichotomy) For every complex number z, exactly one of the following statements
is true: z is positive, z is negative, z is zero.

e (Negation) If 7 is a positive complex number, then —z is negative. If z is a negative
complex number, then —z is positive.

e (Additivity) If z and w are positive complex numbers, then z + w is also positive.

e (Multiplicativity) If z and w are positive complex numbers, then zw is also positive.

Show that these four axioms are inconsistent,, i.e., one can use these axioms to
deduce a contradiction. (Hints: first use the axioms to deduce that 1 is positive, and
then conclude that —1 is negative. Then apply the Trichotomy axiom to z = i and
obtain a contradiction in any one of the three cases.)

Exercise 4.6.12 Prove the ratio test for complex series, and use it to show that the
series used to define the complex exponential is absolutely convergent. Then prove
that exp(z + w) = exp(z) exp(w) for all complex numbers z, w.
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4.7 Trigonometric Functions

‘We now discuss the next most important class of special functions, after the exponen-
tial and logarithmic functions, namely the trigonometric functions. (There are several
other useful special functions in mathematics, such as the hyperbolic trigonometric
functions and hypergeometric functions, the gamma and zeta functions, and elliptic
functions, but they occur more rarely and will not be discussed here.)

Trigonometric functions are often defined using geometric concepts, notably those
of circles, triangles, and angles. However, it is also possible to define them using more
analytic concepts and in particular the (complex) exponential function.

Definition 4.7.1 (Trigonometric functions) If z is a complex number, then we define

eiZ +e*iZ
cos(z) i= —
(2) 3
and i :
] iz _ p=iz
sin(z) 1=
(2) 2

We refer to cos and sin as the cosine and sine functions, respectively.

These formulae were discovered by Leonhard Euler (1707-1783) in 1748, who
recognized the link between the complex exponential and the trigonometric functions.
Note that since we have defined the sine and cosine for complex numbers z, we
automatically have defined them also for real numbers x. In fact in most applications
one is only interested in the trigonometric functions when applied to real numbers.

From the power series definition of exp, we have

and

and so from the above formulae we have

2 4 00 2,
z Z (=Drz™"
COS(Z)_l_E_’_I_.“_nE:OW
and N
3 5 n.,2n+1
) 0z (=D"z
Sin@) == 3+ 5 == ) en+ 1)
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In particular, cos(x) and sin(x) are always real whenever x is real. From the ratio
test we see that the two power series Y -, %, > % are absolutely
convergent for every x, thus sin(x) and cos(x) are real analytic at O with an infinite
radius of convergence. From Exercise 4.2.8 we thus see that the sine and cosine
functions are real analytic on all of R. (They are also complex analytic on all of
C, but we will not pursue this matter in this text.) In particular the sine and cosine
functions are continuous and differentiable.

We list some basic properties of the sine and cosine functions below.

Theorem 4.7.2 (Trigonometric identities) Let x, y be real numbers.

(a) We have sin(x)? + cos(x)?> = 1. In particular, we have sin(x) € [—1, 1] and
cos(x) € [—1, 1] forall x € R.

(b) We have sin’ (x) = cos(x) and cos'(x) = — sin(x).

(c) We have sin(—x) = — sin(x) and cos(—x) = cos(x).

(d) We have cos(x 4+ y) = cos(x) cos(y) — sin(x) sin(y) and sin(x + y) = sin(x)
cos(y) 4 cos(x) sin(y).

(e) We have sin(0) = 0 and cos(0) = 1.

() We have e'* = cos(x) + i sin(x) and e™™* = cos(x) — i sin(x). In particular
cos(x) = M(e'™) and sin(x) = J(e').

Proof See Exercise 4.7.1. O
Now we describe some other properties of sin and cos.
Lemma 4.7.3 There exists a positive number x such that sin(x) is equal to 0.

Proof Suppose for sake of contradiction that sin(x) # O forallx € (0, c0). Observe
that this would also imply that cos(x) # O for all x € (0, c0), since if cos(x) =0
then sin(2x) = 0 by Theorem 4.7.2(d) (why?). Since cos(0) = 1, this implies by the
intermediate value theorem (Theorem 9.7.1) that cos(x) > 0 for all x > 0 (why?).
Also, since sin(0) = 0 and sin’(0) = 1 > 0, we see that sin increasing near 0, hence
is positive to the right of 0. By the intermediate value theorem again we conclude
that sin(x) > 0 for all x > 0 (otherwise sin would have a zero on (0, c0)).

In particular if we define the cotangent function cot(x) := cos(x)/ sin(x), then
cot(x) would be positive and differentiable on all of (0, c0). From the quotient
rule (Theorem 10.1.13(h)) and Theorem 4.7.2 we see that the derivative of cot(x)
is —1/ sin(x)? (why?). In particular, we have cot’(x) < —1 for all x > 0. By the
fundamental theorem of calculus (Theorem 11.9.1) this implies that cot(x + s) <
cot(x) — s for all x > 0 and s > 0. But letting s — oo we see that this contradicts
our assertion that cot is positive on (0, co) (why?). O

Let E be the set E := {x € (0, +00) : sin(x) = 0}, i.e., E is the set of roots of
sin on (0, +00). By Lemma 4.7.3, E is non-empty. Since sin’(0) > 0, there exists
a ¢ > 0 such that £ C [c, +00) (see Exercise 4.7.2). Also, since sin is continuous
in [c, +00), E is closed in [c, +00) (why? Use Theorem 2.1.5(d)). Since [c, 4+00)
is closed in R, we conclude that E is closed in R. Thus E contains all its adherent
points, and thus contains inf (E). Thus if we make the definition
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Definition 4.7.4 We define 7 to be the number
= inf{x € (0, c0) : sin(x) = 0}

then we have w € E C [c, 400) (so in particular 7 > 0) and sin(;r) = 0. By def-
inition of m, sin cannot have any zeroes in (0, ), and so in particular must be
positive on (0, i), (cf. the arguments in Lemma 4.7.3 using the intermediate value
theorem). Since cos’(x) = — sin(x), we thus conclude that cos(x) is strictly decreas-
ing on (0, 7). Since cos(0) = 1, this implies in particular that cos(w) < 1; since
sin(1) + cos?(r) = 1 and sin(7r) = 0, we thus conclude that cos() = —1.

In particular we have Euler’s famous formula

€™ = cos(w) +isin(m) = —1.

We now conclude with some other properties of sine and cosine.

Theorem 4.7.5 (Periodicity of trigonometric functions) Let x be a real number.

(a) We have cos(x + ) = — cos(x) and sin(x + w) = — sin(x). In particular we
have cos(x + 2mw) = cos(x) andsin(x + 2m) = sin(x), i.e., sin and cos are peri-
odic with period 2.

(b) We have sin(x) = 0 if and only if x /7 is an integer.

(c) We have cos(x) = 0 if and only if x /7 is an integer plus 1/2.

Proof See Exercise 4.7.3. O

We can of course define all the other trigonometric functions: tangent, cotangent,
secant, and cosecant, and develop all the familiar identities of trigonometry; some
examples of this are given in the exercises.

—Exercise—

Exercise 4.7.1 Prove Theorem 4.7.2. (Hint: write everything in terms of exponen-
tials whenever possible.)

Exercise 4.7.2 Let f: R — R be a function which is differentiable at x(, with
f(x0) =0and f'(xg) # 0. Show that there exists a ¢ > 0 such that f(y) is nonzero
whenever 0 < |xo — y| < c. Conclude in particular that there exists ac > 0 such that
sin(x) # Oforall0 < x < c.

Exercise 4.7.3 Prove Theorem 4.7.5. (Hint: for (c), you may wish to first compute
sin(;r/2) and cos(r/2), and then link cos(x) to sin(x + 7 /2).)

Exercise 4.7.4 Let x, y be real numbers such that x> 4+ y? = 1. Show that there is
exactly one real number 6 € (—m, ] such that x = sin(0) and y = cos(0). (Hint:
you may need to divide into cases depending on whether x, y are positive, negative,
or Zero.)
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Exercise 4.7.5 Show that if r, s > 0 are positive real numbers, and 6, @ are real
numbers such that re’® = se'®, then r = s and @ = « + 27k for some integer k.

Exercise 4.7.6 Let z be a nonzero complex number. Using Exercise 4.7.4, show
that there is exactly one pair of real numbers r, € such thatr > 0,6 € (—m, 7], and
z = re'?. (This is sometimes known as the standard polar representation of z.)

Exercise 4.7.7 For any real number 6 and integer n, prove the de Moivre identities
cos(nf) = N((cosh +isinh)"); sin(nh) = JI((cosO + i sinbh)").

Exercise 4.7.8 Let tan: (—x/2,7/2) — R be the tangent function tan(x) :=
sin(x)/ cos(x). Show that tan is differentiable and monotone increasing, with
% tan(x) = 1 + tan(x)?, and that lim,_, > tan(x) = 400 and lim,_, ;> tan(x) =
—00. Conclude that tan is in fact a bijection from (—mx /2, w/2) — R, and thus has
an inverse function tan™ R — (—m/2,7/2) (this function is called the arctangent

function). Show that tan~! is differentiable and £ tan‘1 (x) = +x2

Exercise 4.7.9 Recall the arctangent function tan~' from Exercise 4.7.8. By modi-
fying the proof of Theorem 4.5.6(e), establish the identity

o (_1)nx2n+1

—1 _
tan ()C) = ZW

n=0

for all x € (—1, 1). Using Abel’s theorem (Theorem 4.3.1) to extend this identity to
the case x = 1, conclude in particular the identity

4 4 °°(1)”
=44
d 357 ;

(Note that the series converges by the alternating series test, Proposition 7.2.11.)

Conclude in particular that 4 — % < <4. (One can of course compute 7w =

3.1415926. .. to much higher accuracy, though if one wishes to do so it is advisable
to use a different formula than the one above, which converges very slowly.)

Exercise 4.7.10 Let f: R — R be the function

fx) = Z 47" cos(32" 7 x).

n=1

(a) Show that this series is uniformly convergent, and that f is continuous.
(b) Show that for every integer j and every integer m > 1, we have

J+1 J _
7 (5r) -7 (5 ) 124
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(Hint: use the identity

00 m—1 [}
Zan = (Zan> +an + Z Ap
n=1

n=1 n=m+1

for certain sequences a,. Also, use the fact that the cosine function is periodic
with period 27, as well as the geometric series formula ) - r" = 1lTr for any
|r| < 1. Finally, you will need the inequality | cos(x) — cos(y)| < |x — y| for
any real numbers x and y; this can be proven by using the mean value theorem
(Corollary 10.2.9), or the fundamental theorem of calculus (Theorem 11.9.4).)

(c) Using (b), show that for every real number x, the function f is not differentiable
at xg. (Hint: for every xo and every m > 1, there exists an integer j such that
Jj <32"xy < j + 1, thanks to Exercise 5.4.3.)

(d) Explain briefly why the result in (c) does not contradict Corollary 3.7.3.



Chapter 5 ®)
Fourier Series Creck for

In the previous two chapters, we discussed the issue of how certain functions (for
instance, compactly supported continuous functions) could be approximated by poly-
nomials. Later, we showed how a different class of functions (real analytic functions)
could be written exactly (not approximately) as an infinite polynomial, or more pre-
cisely a power series.

Power series are already immensely useful, especially when dealing with spe-
cial functions such as the exponential and trigonometric functions discussed earlier.
However, there are some circumstances where power series are not so useful, because
one has to deal with functions (e.g., «/x) which are not real analytic, and so do not
have power series.

Fortunately, there is another type of series expansion, known as Fourier series,
which is also a very powerful tool in analysis (though used for slightly different
purposes). Instead of analyzing compactly supported functions, it instead analyzes
periodic functions; instead of decomposing into polynomials, it decomposes into
trigonometric polynomials. Roughly speaking, the theory of Fourier series asserts
that just about every periodic function can be decomposed as an (infinite) sum of
sines and cosines.

Remark 5.0.1 Jean-Baptiste Fourier (1768-1830) was, among other things, an
administrator accompanying Napoleon on his invasion of Egypt, and then a Pre-
fect in France during Napoleon’s reign. After the Napoleonic wars, he returned to
mathematics. He introduced Fourier series in an important 1807 paper in which he
used them to solve what is now known as the heat equation. At the time, the claim
that every periodic function could be expressed as a sum of sines and cosines was
extremely controversial, even such leading mathematicians as Euler declared that
it was impossible. Nevertheless, Fourier managed to show that this was indeed the
case, although the proof was not completely rigorous and was not totally accepted
for almost another hundred years.
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There will be some similarities between the theory of Fourier series and that of
power series, but there are also some major differences. For instance, the convergence
of Fourier series is usually not uniform (i.e., not in the L* metric), but instead we
have convergence in a different metric, the L%-metric. Also, we will need to use
complex numbers heavily in our theory, while they played only a tangential role in
power series.

The theory of Fourier series (and of related topics such as Fourier integrals and
the Laplace transform) is vast, and deserves an entire course in itself. It has many,
many applications, most directly to differential equations, signal processing, electri-
cal engineering, physics, and analysis, but also to algebra and number theory. We will
only give the barest bones of the theory here, however, and almost no applications.

5.1 Periodic Functions

The theory of Fourier series has to do with the analysis of periodic functions, which
we now define. It turns out to be convenient to work with complex-valued functions
rather than real-valued ones.

Definition 5.1.1 Let L > 0 be a real number. A function f: R — C is periodic
with period L, or L-periodic, if we have f(x 4+ L) = f(x) for every real number x.

Example 5.1.2 Thereal-valued functions f(x) = sin(x) and f (x) = cos(x) are27w-
periodic, as is the complex-valued function f(x) = e'*. These functions are also 4 -
periodic, 6 -periodic, etc. (why?). The function f(x) = x, however, is not periodic.
The constant function f(x) = 1 is L-periodic for every L.

Remark 5.1.3 1If a function f is L-periodic, then we have f(x + kL) = f(x) for
every integer k (why? Use induction for the positive k, and then use a substitution to
convert the positive k result to a negative k result. The k = 0 case is of course trivial).
In particular, if a function f is 1-periodic, then we have f(x + k) = f(x) for every
k € Z. Because of this, 1-periodic functions are sometimes also called Z-periodic
(and L-periodic functions called LZ-periodic).

Example 5.1.4 For any integer n, the functions cos(2nx), sin(2nx), and e> "~

are all Z-periodic. (What happens when # is not an integer?) Another example of
a Z-periodic function is the function f: R — C defined by f(x):=1 when x €
[n,n+ %) for someintegern,and f(x):=0whenx € [n + %, n + 1) for some integer
n. This function is an example of a square wave.

Henceforth, for simplicity, we shall only deal with functions which are Z-periodic
(for the Fourier theory of L-periodic functions, see Exercise 5.5.6). Note that in order
to completely specify a Z-periodic function f: R — C, one only needs to specify
its values on the interval [0, 1), since this will determine the values of f everywhere
else. This is because every real number x can be written in the form x =k +y
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where k is an integer (called the integer part of x, and sometimes denoted [x]) and
y € [0, 1) (this is called the fractional part of x, and sometimes denoted {x}); see
Exercise 5.1.1. Because of this, sometimes when we wish to describe a Z-periodic
function f we just describe what it does on the interval [0, 1), and then say that it is
extended periodically to all of R. This means that we define f (x) for any real number
x by setting f (x):= f(y), where we have decomposed x = k 4 y as discussed above.
(One can in fact replace the interval [0, 1) by any other half-open interval of length
1, but we will not do so here.)

The space of complex-valued continuous Z-periodic functions is denoted C (R /Z;
C). (The notation R/Z comes from algebra, and denotes the quotient group of the
additive group R by the additive group Z; more information in this can be found in any
algebra text.) By “continuous” we mean continuous at all points on R; merely being
continuous on an interval such as [0, 1] will not suffice, as there may be a discontinuity
between the left and right limits at 1 (or at any other integer). Thus for instance, the
functions sin(2wnx), cos(2wnx), and e2*"* are all elements of C(R/Z; C), as are
the constant functions, however the square wave function described earlier is not in
C(R/Z; C) because it is not continuous. Also the function sin(x) would also not
qualify to be in C(R/Z; C) since it is not Z-periodic.

Lemma 5.1.5 (Basic properties of C(R/Z; C))

(a) (Boundedness) If f € C(R/Z; C), then f is bounded (i.e., there exists a real
number M > 0 such that | f (x)| < M for all x € R).

(b) (Vector space and algebra properties) If f, g € C(R/Z; C), then the functions
f+g f—g and fgarealsoin C(R/Z; C). Also, if ¢ is any complex number,
then the function cf is also in C(R/Z; C).

(c) (Closure underuniform limits)If (f,);2 , is a sequence of functions in C(R/Z; C)
which converges uniformly to another function f: R — C, then f is also in
C(R/Z; C).

Proof See Exercise 5.1.2. O

One can make C (R/Z; C) into a metric space by re-introducing the now familiar
sup norm metric

doo(f, g) = sup | f(x) —g(x)| = sup [f(x) —gx)]
xeR x€l0,1)

of uniform convergence. (Why is the first supremum the same as the second?) See
Exercise 5.1.3.

— Exercise —

Exercise 5.1.1 Show that every real number x can be written in exactly one way in
the form x = k 4 y, where k is an integer and y € [0, 1). (Hint: to prove existence
of such a representation, set k:=sup{/ € Z : [ < x}.)
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Exercise 5.1.2 Prove Lemma 5.1.5. (Hint: for (a), first show that f is bounded on
[0, 1].)

Exercise 5.1.3 Show that C (R/Z; C) with the sup norm metric d, is a metric space.
Furthermore, show that this metric space is complete.

5.2 Inner Products on Periodic Functions

From Lemma 5.1.5 we know that we can add, subtract, multiply, and take limits of
continuous periodic functions. We will need a couple more operations on the space
C(R/Z; C), though. The first one is that of inner product.

Definition 5.2.1 (Inner product) If f, g € C(R/Z; C), we define the inner product
(f. &) to be the quantity

(f.g) = / F()g0) d.

[0.1]

Remark 5.2.2 In order to integrate a complex-valued function, f(x) = g(x) +
ih(x), we use the definition that f[a’b] fi= f[a!b] g+i f[a‘b] h; i.e., we integrate the
real and imaginary parts of the function separately. Thus for instance f[1,2]u +
ix)dx = [, ldx+i [ xdv=1+ 2i.Itis easy to verify that all the standard
rules of calculus (integration by parts, fundamental theorem of calculus, substitution,
etc.) still hold when the functions are complex-valued instead of real-valued.

Example 5.2.3 Let f be the constant function f(x):=1, and let g(x) be the function
g(x):=e**, Then we have

(f7 g> — / 162nix dx
[0,1]
— 6727rix dx

[0.1]
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Remark 5.2.4 1In general, the inner product ( f, g) will be a complex number. (Note
that f(x)g(x) will be Riemann integrable since both functions are bounded and
continuous.)

Roughly speaking, the inner product (f, g) is to the space C(R/Z; C) what the
dot product x - y is to Euclidean spaces such as R”. We list some basic properties of
the inner product below; a more in-depth study of inner products on vector spaces
can be found in any linear algebra text but is beyond the scope of this text.

Lemma 5.2.5 Let f, g, h € C(R/Z; C).

(a) (Hermitian property) We have (g, f) = (f, g).

(b) (Positivity) We have { f, ) > 0. Furthermore, we have (f, f) = 0 if and only if
f=0(.e., f(x) =0forall x € R).

(c) (Linearity in the first variable) We have (f + g, h) = (f, h) + (g, h). For any
complex number c, we have (cf, g) = c(f, g)-

(d) (Antilinearity in the second variable) We have (f, g + h) = {f, g) + ([, h). For
any complex number c, we have {f, cg) = ¢(f, g).

Proof See Exercise 5.2.1. O

From the positivity property, it makes sense to define the L? norm || f||, of a
function f € C(R/Z; C) by the formula

12 1/2

1 f =7 ) = / ﬂm?G3m: _ /|fan2w

[0,1] [0,1]

Thus || f]l, > O for all f. The norm || ||, is sometimes called the root mean square

of f.
Example 5.2.6 If f(x) is the function e?**, then

172 172

£l = ‘/émfﬁ”m _ /1m TR

[0,1] [0,1]

This L2 normis related to, but is distinct from, the L% norm || f ||oo:= Sup,cr | f(X)].
For instance, if f(x) = sin(2wx), then || f|loo = 1 but || f|l» = \/LE In general, the
best one can say is that 0 < || f|l» < || flleo; See Exercise 5.2.3.

Some basic properties of the L? norm are given below.

Lemma 5.2.7 Let f, g € C(R/Z; C).

(a) (Non-degeneracy) We have || f|l» = 0 ifand only if f = 0.
(b) (Cauchy-Schwarz inequality) We have |(f, g)| < | fll21Igll2-
(c) (Triangle inequality) We have || f + gll2 < [ fll2 + lIgll2-
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(d) (Pythagoras’ theorem) If (f, g) = O, then || f + gll3 = || f1I3 + llgll3-
(e) (Homogeneity) We have | cfll2 = |c||| f 2 forall c € C.

Proof See Exercise 5.2.2. O

In light of Pythagoras’ theorem, we sometimes say that f and g are orthogonal
iff (f, g) = 0.
We can now define the L? metric d;» on C(R/Z; C) by defining

172

di(f, 9)=1f — gllz = / 1) — g d
[0,1]

Remark 5.2.8 One can verify that d; is indeed a metric (Exercise 5.2.4). Indeed,
the L? metric is very similar to the /> metric on Euclidean spaces R", which is why
the notation is deliberately chosen to be similar; you should compare the two metrics
yourself to see the analogy.

Note that a sequence f, of functions in C(R/Z; C) will converge in the L* metric
to f € C(R/Z; C)ifdi2(f,, f) = 0asn — oo, or in other words that

lim / fa(0) = FGOP dx = 0.

[0,1]

Remark 5.2.9 The notion of convergence in L? metric is different from that of
uniform or pointwise convergence; see Exercise 5.2.6.

Remark 5.2.10 The L? metric is not as well-behaved as the L metric. For instance,
it turns out the space C(R/Z; C) is not complete in the L? metric, despite being
complete in the L> metric; see Exercise 5.2.5.

— Exercise —

Exercise 5.2.1 Prove Lemma 5.2.5. (Hint: the last part of (b) is a little tricky. You
may need to prove by contradiction, assuming that f is not the zero function, and
then show that f[o.l] | £ (x)|? is strictly positive. You will need to use the fact that £,
and hence | f|, is continuous, to do this.)

Exercise 5.2.2 Prove Lemma 5.2.7. (Hint: use Lemma 5.2.5 frequently. For the
Cauchy-Schwarz inequality, begin with the positivity property ( f, f) > 0, but with f
replaced by the function f|| g ||% — (f, g)g, and then simplify using Lemma 5.2.5. You
may have to treat the case ||g||» = 0 separately. Use the Cauchy—Schwarz inequality
to prove the triangle inequality.)

Exercise 5.2.3 If f € C(R/Z; C) is a non-zero function, show that 0 < || f]l, <
|| fllz=. Conversely, if 0 < A < B are real numbers, show that there exists a non-
zero function f € C(R/Z; C) such that || f], = A and || f|l.c = B. (Hint: let g
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be a non-constant non-negative real-valued function in C(R/Z; C), and consider
functions f of the form f = (c + dg)'/? for some constant real numbers ¢, d > 0.)

Exercise 5.2.4 Prove that the L? metric d;» on C(R/Z;C) does indeed turn
C(R/Z; C) into a metric space. (cf. Exercise 1.1.6).

Exercise 5.2.5 Find a sequence of continuous periodic functions which converge
in L? to a discontinuous periodic function. (Hint: try converging to the square wave
function.)

Exercise 5.2.6 Let f € C(R/Z, C), and let (f,);2, be a sequence of functions in
CR/Z; C).

(a) Show thatif f, converges uniformly to f, then f, also converges to f in the L?
metric.

(b) Give an example where f,, converges to f in the L? metric, but does not converge
to f uniformly. (Hint: take f = 0. Try to make the functions f, large in sup
norm.)

(c) Give an example where f, converges to f in the L2 metric, but does not converge
to f pointwise. (Hint: take f = 0. Try to make the functions f, large at one
point.)

(d) Give an example where f, converges to f pointwise, but does not converge to
£ in the L? metric. (Hint: take f = 0. Try to make the functions f, large in L
norm.)

5.3 Trigonometric Polynomials

We now define the concept of a trigonometric polynomial. Just as polynomials are
combinations of the functions x” (sometimes called monomials), trigonometric poly-
nomials are combinations of the functions ¢>”"* (sometimes called characters).

Definition 5.3.1 (Characters) For every integer n, we let e, € C(R/Z; C) denote
the function

ey (x):=e> i,

This is sometimes referred to as the character with frequency n.

Definition 5.3.2 (Trigonometric polynomials) A function f in C(R/Z; C) is said
to be a trigonometric polynomial if we can write f = Z;V:_ ~ Cney for some integer
N > 0 and some complex numbers (c,) f:’:_ N-

Example 5.3.3 The function f =4e_, +ie_; — 2ey + Oe; — 3e; is a trigonomet-
ric polynomial; it can be written more explicitly as

f(x) — 46—4m'x 4 l-e—Zm'x —2_ 3e4nix'
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Example 5.3.4 For any integer n, the function cos(2wnx) is a trigonometric poly-

nomial, since
2minx +e—27rinx 1 1

cosanx) = ——— = —e_, + —e,.

( ) 5 76t e

Similarly the function sin(2rnx) = E—i'e_,, + %en is a trigonometric polynomial. In
fact, any linear combination of sines and cosines is also a trigonometric polynomial,
for instance 3 + i cos(2wx) + 4i sin(4mx) is a trigonometric polynomial.

The Fourier theorem will allow us to write any function in C (R/Z; C) as a Fourier
series, which is to trigonometric polynomials what power series is to polynomials.
To do this we will use the inner product structure from the previous section. The key
computation is

Lemma 5.3.5 (Characters are an orthonormal system) For any integers n and m,
we have (e,, e,) =1 when n = m and (e, e,,) = 0 when n # m. Also, we have
lenll = 1.

Proof See Exercise 5.3.2. O

As a consequence, we have a formula for the coefficients of a trigonometric
polynomial.

Corollary 5.3.6 Let f = Zf;’:_ ~ Cnen be atrigonometric polynomial. Then we have
the formula

= {f en)

for all integers —N <n < N. Also, we have 0 = (f, e,) whenever n > N or n <
—N. Also, we have the identity

N
2 2
L3 = D" leal
n=—N

Proof See Exercise 5.3.3. O
We rewrite the conclusion of this corollary in a different way.

Definition 5.3.7 (Fourier transform) For any function f € C(R/Z;R), and any
integer n € Z, we define the n"" Fourier coefficient of f, denoted f(n), by the
formula

f(n):<f, €n) = / f(x)e*ZTrinx dx,

[0,1]

The function f : Z. — C is called the Fourier transform of f.
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N

n=

From Corollary 5.3.6, we see that whenever f = >
polynomial, we have

_y Cnéy 1s a trigonometric

0]

N
f=Y (feden= Y (fenen

n=—N n=-—00

and in particular we have the Fourier inversion formula

f=2" fme,

n=—0oQ

or in other words

fo)y =Y fme™.

n=—0oQ

The right-hand side is referred to as the Fourier series of f. Also, from the second
identity of Corollary 5.3.6 we have the Plancherel formula

LF3 =Y IfmlP

n=—00

Remark 5.3.8 We stress that at present we have only proven the Fourier inversion
and Plancherel formulae in the case when f is a trigonometric polynomial. Note
that in this case that the Fourier coefficients f (n) are mostly zero (indeed, they can
only be non-zero when —N < n < N), and so this infinite sum is really just a finite
sum in disguise. In particular there are no issues about what sense the above series
converge in; they both converge pointwise, uniformly, and in L? metric, since they
are just finite sums.

In the next few sections we will extend the Fourier inversion and Plancherel
formulae to general functions in C(R/Z; C), not just trigonometric polynomials. (It
is also possible to extend the formula to discontinuous functions such as the square
wave, but we will not do so here.) To do this we will need a version of the Weierstrass
approximation theorem, this time requiring that a continuous periodic function be
approximated uniformly by trigonometric polynomials. Just as convolutions were
used in the proof of the polynomial Weierstrass approximation theorem, we will also
need a notion of convolution tailored for periodic functions.

— Exercise —

Exercise 5.3.1 Show that the sum or product of any two trigonometric polynomials
is again a trigonometric polynomial.

Exercise 5.3.2 Prove Lemma 5.3.5.



102 5 Fourier Series

Exercise 5.3.3 Prove Corollary 5.3.6. (Hint: use Lemma 5.3.5. For the second iden-
tity, either use Pythagoras’ theorem and induction, or substitute f = Zi\;f N Cnén
and expand everything out.)

5.4 Periodic Convolutions

The goal of this section is to prove the Weierstrass approximation theorem for trigono-
metric polynomials:

Theorem 5.4.1 Let f € C(R/Z; C), and let ¢ > 0. Then there exists a trigonomet-
ric polynomial P such that || f — Plleo < &.

This theorem asserts that any continuous periodic function can be uniformly
approximated by trigonometric polynomials. To put it another way, if we let
P(R/Z; C) denote the space of all trigonometric polynomials, then the closure of
P(R/Z; C) in the L*™ metric is C(R/Z; C).

It is possible to prove this theorem directly from the Weierstrass approximation
theorem for polynomials (Theorem 3.8.3), and both theorems are a special case of a
much more general theorem known as the Stone-Weierstrass theorem, which we will
not discuss here. However we shall instead prove this theorem from scratch, in order
to introduce a couple of interesting notions, notably that of periodic convolution.
The proof here, though, should strongly remind you of the arguments used to prove
Theorem 3.8.3.

Definition 5.4.2 (Periodic convolution) Let f, g € C(R/Z; C). Then we define the
periodic convolution f x g: R — C of f and g by the formula

frgloy= / FO)g(x — y) dy.
[0,1]

Remark 5.4.3 Note that this formula is slightly different from the convolution for
compactly supported functions defined in Definition 3.8.9, because we are only
integrating over [0, 1] and not on all of R. Thus, in principle we have given the symbol
f = g two conflicting meanings. However, in practice there will be no confusion,
because it is not possible for a non-zero function to both be periodic and compactly
supported (Exercise 5.4.1).

Lemma 5.4.4 (Basic properties of periodic convolution) Let f, g, h € C(R/Z; C).

(a) (Closure) The convolution f * g is continuous and Z-periodic. In other words,
fxgeCR/Z;C).

(b) (Commutativity) We have f « g = g x f.

(c) (Bilinearity) Wehave f x (g +h) = f*xg+ fxhand(f +g)xh= fxh+
g * h. For any complex number c, we have c(f * g) = (cf) x g = f * (cg).
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Proof See Exercise 5.4.2. U

Now we observe an interesting identity: for any f € C(R/Z; C) and any integer
n, we have

f * ey = f(n)en
To prove this, we compute

Fram = [ Foeme
[0,1]

— eZninx / f(y)e—ZHi”y dy = f(n)eZHinx = f(l’l)en

[0.1]

as desired.
More generally, we see from Lemma 5.4.4(iii) that for any trigonometric polyno-
mial P = Zﬁiﬂv Chen, We have

n=N n=N
fxP=Y clfxe)= Y fn)cren.
n=—N n=—N

Thus the periodic convolution of any function in C(R/Z; C) with a trigonometric
polynomial, is again a trigonometric polynomial. (Compare with Lemma 3.8.13.)
Next, we introduce the periodic analogue of an approximation to the identity.

Definition 5.4.5 (Periodic approximation to the identity) Let ¢ > 0 and 0 < § <
1/2. A function f € C(R/Z; C) is said to be a periodic (g, §) approximation to the
identity if the following properties are true:

(@) f(x)>0forallx € R, andfOl =1.
(b) We have f(x) < eforall§ < |x| <1-6.

Now we have an analogue of Lemma 3.8.8:

Lemma 5.4.6 Foreverye > 0and0 < § < 1/2, there exists a trigonometric poly-
nomial P which is an (g, §) approximation to the identity.

Proof We sketch the proof of this Lemma here, and leave the completion of it to
Exercise 5.4.3. Let N > 1 be an integer. We define the Fejér kernel Fy to be the

function
N

Fy=)" (1—';—')6,,.

n=—N

Clearly Fy is a trigonometric polynomial. We observe the identity



104 5 Fourier Series

2

1
Fy=

N-1
E €n
n=0

(why?). But from the geometric series formula (Lemma 7.3.3) we have

N-1 ; .
ey —eg €TV D¥gin(r Nx)

E €n (x) = = -

ot el —ep sin(rx)

when x is not an integer, (why?) and hence we have the formula

sin(;r Nx)?

)= NinGro?

When x is an integer, the geometric series formula does not apply, but one has
Fn(x) = N in that case, as one can see by direct computation. In either case we see
that Fy(x) > 0O for any x. Also, we have

N

/FN(x)dxz _Z <1—%>fen=<1—%)1=1

[0.1] n=-N [0.1]
(why?). Finally, since sin(m Nx) < 1, we have

1
F < <
V) = nen? = Nsin(re)?

whenever § < |x| < 1 — § (this is because sin is increasing on [0, 7 /2] and decreas-
ing on [7r/2, r]). Thus by choosing N large enough, we can make Fy (x) < ¢ for all
d < x| <1-34. O

Proof of Theorem 5.4.1 Let f be any element of C(R/Z; C); we know that f is
bounded, so that we have some M > 0 such that | f (x)| < M for all x € R.

Let € > 0 be arbitrary. Since f is uniformly continuous, there exists a § > 0
such that | f(x) — f(y)| < & whenever |x — y| < §. Now use Lemma 5.4.6 to find
a trigonometric polynomial P which is a (g, §) approximation to the identity. Then
f = P is also a trigonometric polynomial. We now estimate || f — f * P||co-

Let x be any real number. We have



5.4 Periodic Convolutions 105
|f(x) = fxPx)|=|f(x)—Px* f(x)

= f(X)—/f(x—y)P(y)dy

[0.1]

= /f(x)P(y) dy — / f(x—=y)P(y)dy

0,1] [0,1]
= f (f(x) = fx—y)P(y)dy
0,1]

< / £ () = fx — IP(G) dy.
[0,1]

The right-hand side can be split as

/If(x)—f(x—y)IP(y)dy+ / [f ) = fx = y)IP(y) dy

[0,8] [6,1-6]

+ / [f(x) = fx —y)IP(y)dy
[1-8,1]

which we can bound from above by

5/8P(y)dy+ f 2Me dy
[0,5] [8,1-8]

+ / [f(x =1 — f(x —y)P(y)dy
[1-3,1]
S/EP(y)dy—i- / 2Me dy + / eP(y)dy
[0,5] [5.1-5] [1-5,1]
<e+2Me—+c¢
= 2M + 2)e.

Thus we have || f — f % Plloo < (2M + 2)¢. Since M is fixed and ¢ is arbitrary, we
can thus make f * P arbitrarily close to f in sup norm, which proves the periodic
Weierstrass approximation theorem. ([

— Exercise —

Exercise 5.4.1 Show thatif f: R — Cisboth compactly supported and Z-periodic,
then it is identically zero.
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Exercise 5.4.2 Prove Lemma 5.4.4. (Hint: to prove that f * g is continuous, you
will have to do something like use the fact that f is bounded, and g is uniformly
continuous, or vice versa. To prove that f % g = g * f, you will need to use the
periodicity to “cut and paste” the interval [0, 1].)

Exercise 5.4.3 Fill in the gaps marked (why?) in Lemma 5.4.6. (Hint: for the first
identity, use the identities |z|* = zZ, &, = e_,, and e, e, = €ypm.)

5.5 The Fourier and Plancherel Theorems

Using the Weierstrass approximation theorem (Theorem 5.4.1), we can now gener-
alize the Fourier and Plancherel identities to arbitrary continuous periodic functions.

Theorem 5.5.1 (Fourier theorem) For any f € C(R/Z; C), the series Y .-
(n)e, converges in L? metric to f. In other words, we have

n=—o0o

=0.
2

N
lim Hf— > e,

n=—N

Proof Lete > 0. We have to show that there exists an Ny such that || f — 2527 N f
(n)e,|l2 < e for all sufficiently large N.

By the Weierstrass approximation theorem (Theorem 5.4.1), we can find a trigono-
metric polynomial P = Zf:’i_NU cnen such that | f — Plle < &, for some Ny > 0.
In particular we have || f — P|, < e.

Now let N > N, and let Fy:=Y""=" f(n)e,. We claim that || f — Fy|, < .
First observe that for any |m| < N, we have

N

(f_FN’ em) f em Z ena em f(m)_f(m)z()’

where we have used Lemma 5.3.5. In particular we have
(f—Fy,Fy—P)=0

since we can write Fy — P as a linear combination of the e,, for which |m| < N. By
Pythagoras’ theorem we therefore have

If =PI =IIf - Fxl3+IFx — PI3

and in particular
If—Fyll2=<Ilf —Pll2<¢

as desired. O
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Remark 5.5.2 Note that we have only obtained convergence of the Fourier series
) f (n)e, to f in the L? metric. One may ask whether one has convergence
in the uniform or pointwise sense as well, but it turns out (perhaps somewhat sur-
prisingly) that the answer is no to both of those questions. However, if one assumes
that the function f is not only continuous, but is also differentiable, then one can
recover pointwise convergence; if one assumes continuously differentiable, then one
gets uniform convergence as well. These results are beyond the scope of this text and
will not be proven here. However, we will prove one theorem about when one can

improve the L? convergence to uniform convergence.

Theorem 5.5.3 Ler f € C(R/Z; C), and suppose that the series Zf;foo |f(n)| is

absolutely convergent. Then the series Y f (n)e, converges uniformly to f. In
other words, we have

=0.
n=—N

N
ngnoo Hf_ Z f(n)en

[ee]

Proof By the Weierstrass M-test (Theorem 3.5.7), we see that Z:ifoo f (n)e, con-
verges to some function F, which by Lemma 5.1.5(iii) is also continuous and Z-
periodic. (Strictly speaking, the Weierstrass M test was phrased for series from
n = 1ton = oo, but also works for series from n = —o0 to n = +00; this can be
seen by splitting the doubly infinite series into two pieces.) Thus

N
lim |F — Fn)ea|| =0
Ngnoo ZN f(n)e
n=— 50
which implies that
N
li - f =
Jlim |7 > fmen 0
n=—N 2

since the L? norm is always less than or equal to the L> norm. But the sequence
fo:f N f (n)e, is already converging in L? metric to f by the Fourier theorem, so
can only converge in L? metric to F if F = f (cf. Proposition 1.1.20). Thus F = f,
and so we have

=0

N
Jim "f - ;N fme,

as desired. O
As a corollary of the Fourier theorem, we obtain

Theorem 5.5.4 (Plancherel theorem) Forany f € C(R/Z; C), the series fo:_oo | f
(n)|? is absolutely convergent, and
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o0
2 2o\ 2
IFz =Y Ifml
n=—0o0
This theorem is also known as Parseval’s theorem.
Proof Let ¢ > 0. By the Fourier theorem we know that

N A
Hf— Y. fme,

n=—N

<e

2

if N is large enough (depending on ¢). In particular, by the triangle inequality this
implies that

N A
Y. fme,

n=—N

[ fll2—€ =< = Ifll2+e.

2

On the other hand, by Corollary 5.3.6 we have

N 1/2
= (Z |f<n>|2)
2

n=—N

N ~
> fme,

n=—N

and hence

N
(Il =& < Y 1f P < lfll+e).

n=—N
Taking lim sup, we obtain
N
(£l — ) <limsup Y |fm)* < (I fll2+#)*.
N—o0 n=—N
Since ¢ is arbitrary, we thus obtain by the squeeze test that

N
limsup > |f ) = I f1I3

N—oo H=—N

and the claim follows. O

There are many other properties of the Fourier transform, but we will not develop
them here. In the exercises you will see a small number of applications of the Fourier
and Plancherel theorems.

— Exercise —
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Exercise 5.5.1 Let f be a function in C(R/Z; C), and define the trigonometric
Fourier coefficients a,, b, forn =0, 1,2,3,... by

an::Z/f(x)cos(2nnx)dx; bn:=2/f(x)sin(2nnx)dx.
[0.1] [0,1]

(a) Show that the series

—1 + ( 2mnx) + b, sin(2 )
E  COS , sin (2
ao 2 a nx nx

converges in L> metric to f. (Hint: use the Fourier theorem, and break up
the exponentials into sines and cosines. Combine the positive n terms with the
negative n terms.)

(b) Show thatif Y 2, a, and ) .- b, are absolutely convergent, then the above
series actually converges uniformly to f, and not just in L? metric. (Hint: use
Theorem 5.5.3.)

Exercise 5.5.2 Let f(x) be the function defined by f(x) = (1 — 2x)*> when x €
[0, 1), and extended to be Z-periodic for the rest of the real line.

(a) Using Exercise 5.5.1, show that the series

o0

Z cos(2n nx)

converges uniformly to f.
(b) Conclude that Zso 1 12 =z Z_ . (Hint: evaluate the above series at x = 0.)

(c¢) Conclude that Zn 1 n4 = 90 (Hmt expand the cosines in terms of exponentials,
and use Plancherel’s theorem.)

Exercise 5.5.3 If f € C(R/Z; C) and P is a trigonometric polynomial, show that
f*Pn) = fm)c, = f(n)P(n)
for all integers n. More generally, if f, g € C(R/Z; C), show that

Fgm) = fm)gmn)

for all integers n. (A fancy way of saying this is that the Fourier transform intertwines
convolution and multiplication.)

Exercise 5.5.4 Let f € C(R/Z; C) be afunction which is differentiable, and whose
derivative f’ is also continuous (where we define derivatives of complex-valued
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functions in exactly the same way as for their real-valued counterparts). Show that
f’ also lies in C(R/Z; C), and that f'(n) = 2min f (n) for all integers n.

Exercise 5.5.5 Let f, g € C(R/Z; C). Prove the Parseval identity

1
n / f0g@) dx =Ry Fm)Em).
0

neZ

(Hint: apply the Plancherel theoremto f + g and f — g, and subtract the two.) Then
conclude that the real parts can be removed, thus

1
/ fg@) dx =) f(mgmn).
0

neZ

(Hint: apply the first identity with f replaced by if.)

Exercise 5.5.6 In this exercise we shall develop the theory of Fourier series for
functions of any fixed period L.

Let L > 0,andlet f: R — C be a complex-valued function which is continuous
and L-periodic. Define the numbers ¢, for every integer n by

1 .
c,,::z / f(x)e_z’”"x/L dx.
[0,L]

(a) Show that the series

00
§ CneZJme/L

n=—00
converges in L? metric to f. More precisely, show that
N
Nhinoo / 1f(x) — Z C, 2L 2 dy = 0,
(0L] n=—N

(Hint: apply the Fourier theorem to the function f(Lx).)

(b) If the series ) o~ |c,| is absolutely convergent, show that
[o.¢]
Z Cne2rrinx/L
n=—00

converges uniformly to f.
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(c) Show that
o[ rwre= Y lap

[0,L] n=—c0

(Hint: apply the Plancherel theorem to the function f(Lx).)
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Chapter 6 ®)
Several Variable Differential Calculus Chack or

6.1 Linear Transformations

We shall now switch to a different topic, namely that of differentiation in several
variable calculus. More precisely, we shall be dealing with maps f : R” — R™ from
one Euclidean space to another, and trying to understand what the derivative of such
a map is.

Before we do so, however, we need to recall some notions from linear algebra,
most importantly that of a linear transformation and a matrix. We shall be rather brief
here; a more thorough treatment of this material can be found in any linear algebra
text.

Definition 6.1.1 (Row vectors) Let n > 1 be an integer. We refer to elements of R”
as n-dimensional row vectors. A typical n-dimensional row vector may take the form
x = (x1,x2, ..., Xx,), which we abbreviate as (x;)|<;<,; the quantities x;, xa, ..., x,
are of course real numbers. If (x;);<;<, and (y;)1<i<, are n-dimensional row vectors,
we can define their vector sum by

(xi)lsisn + Q’i)lsisn = (x; +)’i)15i§n,
and also if ¢ € R is any scalar, we can define the scalar product c(x;)<i<, by
C(xi)lfifn::(cxi)lfifn-

Of course one has similar operations on R™ as well. However, if n # m, then we
do not define any operation of vector addition between vectors in R” and vectors in
R™ (e.g., (2,3,4) + (5, 6) is undefined). We also refer to the vector (0, ..., 0) in R"
as the zero vector and also denote it by 0. (Strictly speaking, we should denote the
zero vector of R” by Og», as they are technically distinct from each other and from
the number zero, but we shall not take care to make this distinction.) We abbreviate
(—1)x as —x.
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https://doi.org/10.1007/978-981-19-7284-3_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7284-3_6&domain=pdf
https://doi.org/10.1007/978-981-19-7284-3_6
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The operations of vector addition and scalar multiplication obey a number of basic
properties:

Lemma 6.1.2 (R” is a vector space) Let x, y, z be vectors in R", and let ¢, d be
real numbers. Then we have the commutativity property x +y =y + x, the addi-
tive associativity property (x +y) +z = x + (y + z), the additive identity prop-
erty x +0 =04 x = x, the additive inverse property x + (—x) = (—x) +x =0,
the multiplicative associativity property (cd)x = c(dx), the distributivity properties
c(x+y) =cx+ cyand (c + d)x = cx + dx, and the multiplicative identity property
Ix ==x.

Proof See Exercise 6.1.1. O

Definition 6.1.3 (Transpose) If (x;)1<i<n = (X1, X2, ..., X,) is an n-dimensional row
vector, we can define its transpose (x;){_;_, by

X1

T T *2
(xi)lsisy, = (-xlv-va e sxn) =

‘xn

We refer to objects such as (x;)T_;_, as n-dimensional column vectors.

Remark 6.1.4 There is no functional difference between a row vector and a column
vector (e.g., one can add and scalar multiply column vectors just as well as we
can row vectors); however we shall (rather annoyingly) need to transpose our row
vectors into column vectors in order to be consistent with the conventions of matrix
multiplication, which we will see later. Note that we view row vectors and column
vectors as residing in different spaces; thus for instance we will not define the sum
of a row vector with a column vector, even when they have the same number of
elements.

Definition 6.1.5 (Standard basis row vectors) We identify n special vectors in R”,
the standard basis row vectors ey, ..., e,. Foreach 1 < j < n, ¢; is the vector which
has 0 in all entries except for the j-th entry, which is equal to 1.

Forinstance, in R?, wehave e, = (1,0, 0), e, = (0, 1, 0), ande3 = (0, 0, 1). Note
that if x = (x;)1<j<x is a vector in R", then

n
X =x1e; +xe3 + ...+ x5, = E Xjej,
Jj=1

or in other words every vector in R" is a linear combination of the standard basis
vectors ey, .. ., e,. (The notation Z;:l xje; is unambiguous because the operation of
vector addition is both commutative and associative). Of course, just as every row
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vector is a linear combination of standard basis row vectors, every column vector is
a linear combination of standard basis column vectors:

n

T T T T T

X =x1e; +xe +...+xe, = E xje; .
Jj=1

There are (many) other ways to create a basis for R”, but this is a topic for a linear
algebra text and will not be discussed here.

Definition 6.1.6 (Linear transformations) A linear transformation T : R" — R™ is
any function from one Euclidean space R” to another R” which obeys the following
two axioms:

(a) (Additivity) For every x, x" € R", we have T (x + x7) = Tx + Tx/.
(b) (Homogeneity) For every x € R" and every ¢ € R, we have T(cx) = cTx.

Example 6.1.7 The dilation operator T;: R? — R? defined by T x:=5x (i.e., it
dilates each vector x by a factor of 5) is a linear transformation, since 5(x + x') =
5x 4+ 5x’ for all x, X’ € R? and 5(cx) = ¢(5x) forallx € R* and ¢ € R.

Example 6.1.8 The rotation operator T>: R*> — R? defined by a counterclock-
wise rotation by /2 radians around the origin (so that 7,(1, 0) = (0, 1), 7>(0, 1) =
(—1,0), etc.) is a linear transformation; this can best be seen geometrically rather
than analytically.

Example 6.1.9 The projection operator Tz : R3 — R?defined by T3 (x, v, 2):=(x, y)
is a linear transformation (why?). The inclusion operator Ty : R> — R? defined by
T4 (x,y):=(x,y, 0) is also a linear transformation (why?). Finally, the identity opera-
tor I, : R" — R”, defined for any n by I,,x:=x is also a linear transformation (why?).

As we shall shortly see, there is a connection between linear transformations and
matrices.

Definition 6.1.10 (Matrices) An m x n matrix is an object A of the form

ayip dypp ... Ay

az) dyy ... dy,
A:

aml Am2 - .. Ayp

we shall abbreviate this as
A= (aij)lfifm;lgjgn-

In particular, n-dimensional row vectors are 1 x n matrices, while n-dimensional
column vectors are n x 1 matrices.
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Definition 6.1.11 (Matrix product) Given an m x n matrix A and an n X p matrix
B, we can define the matrix product AB to be the m x p matrix defined as

n
(@) 1=izm;1=j=n (D)1 j<ni1 <k=p'= Zaijbjk

=1 I<i<m;1<k<p

: . T _ T . . . _
In particular, if x* = (x)); <j<n 1S an n-dimensional column vector, and A =
(@jj)1<i<m;1<j<n 1S an m X n matrix, then AxT is an m-dimensional column vector:

T

n
Ax' = E @;iX;
j=1

1<i<m

‘We now relate matrices to linear transformations. If A is an m x n matrix, we can
define the transformation L4 : R” — R™ by the formula

Lax)T:=Ax".

Example 6.1.12 1f A is the matrix

123
A=<456>’

and x = (x1, x2, x3) is a 3-dimensional row vector, then L, x is the 2-dimensional row
vector defined by

X1
123 X1 + 2x + 3x
T _ _(x 2 3
@ax)” = <4 5 6) e)= <4x1 + 5%, +6x3>
or in other words
Ly(x1, %2, x3) = (X1 + 2x2 + 3x3, 4x1 + 5x2 + 6x3).
More generally, if

ay a2 ...d4d
dzy dxy ... Qay,

aml Am2 - - - Amp
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then we have

n
Ly(X)1<j<n = Zaijxj

J=1 1<i<m

For any m x n matrix A, the transformation L, is automatically linear; one can easily
verify that Ly (x +y) = Lsyx 4+ Lay and L4 (cx) = c(Lax) for any n-dimensional row
vectors x, y and any scalar c. (Why?)

Perhaps surprisingly, the converse is also true, i.e., every linear transformation
from R” to R™ is given by a matrix:

Lemma 6.1.13 Let T: R" — R™ be a linear transformation. Then there exists
exactly one m x n matrix A such that T = Ly.

Proof Suppose T: R" — R is a linear transformation. Let ey, e, ..., e, be the
standard basis row vectors of R”. Then Te,, Te,, . . ., Te, are vectors in R™. For each
1 <j < n, we write Te; in co-ordinates as

Te; = (aij, azj, . . ., Qi) = (@ij) 1<i<m;

i.e., we define a;; to be the i component of Te;. Then for any n-dimensional row
vector x = (xq, ..., X,), we have

n
ITx=T ijej ,
j=1
which (since T is linear) is equal to
n
= Z T(Xjéj)
j=1
n
= Z XjTEj
j=1
n
= %@ iizn
j=1
n
= Z(aijxj)lsigm
J=1

n
=D a
j=1

1<i<m
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But if we let A be the matrix

ap a2 ...4a

dzy dxy ... Qay,
A=

Aml A2 -« - - Ap

then the previous vector is precisely Lsx. Thus Tx = Lyx for all n-dimensional vectors
x,and thus 7 = L4.
Now we show that A is unique, i.e., there does not exist any other matrix

bii by ... by,
byt by ... by,
b1 by ... by

for which T is equal to L. Suppose for sake of contradiction that we could find such
a matrix B which was different from A. Then we would have L4 = Lg. In particular,
we have Lye; = Lge; for every 1 < j < n. But from the definition of L4 we see that

Lyej = (aij)1<i<m

and
Lgej = (bij)1<i<m

and thus we have a; = b;; forevery 1 <i <mand1 < j < n, thus A and B are equal,
a contradiction. O

Remark 6.1.14 Lemma 6.1.13 establishes a one-to-one correspondence between
linear transformations and matrices, and is one of the fundamental reasons why
matrices are so important in linear algebra. One may ask then why we bother dealing
with linear transformations at all, and why we don’t just work with matrices all the
time. The reason is that sometimes one does not want to work with the standard basis
el, ..., ey, butinstead wants to use some other basis. In that case, the correspondence
between linear transformations and matrices changes, and so it is still important to
keep the notions of linear transformation and matrix distinct. More discussion on
this somewhat subtle issue can be found in any linear algebra text.

Remark 6.1.15 1f T = L,, then A is sometimes called the matrix representation of
T and is sometimes denoted A = [T']. We shall avoid this notation here, however.

The composition T o § of two linear transformations 7', S is again a linear trans-
formation (Exercise 6.1.2). It is customary in linear algebra to abbreviate such com-
positions 7" o S simply as T'S. The next lemma shows that the operation of composing
linear transformations is connected to that of matrix multiplication.
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Lemma 6.1.16 LetA be anm x nmatrix, and let Bbe ann x p matrix. Then LaLp =
LAB.

Proof See Exercise 6.1.3. O
— Exercise —
Exercise 6.1.1 Prove Lemma 6.1.2.

Exercise 6.1.2 If 7: R" — R™is alinear transformation, and S : R? — R" is alin-
ear transformation, show that the composition 7.5 : R” — R” of the two transforms,
defined by 7S (x):=T (S (x)), is also a linear transformation. (Hint: expand 7S (x + y)
and TS (cx) carefully, using plenty of parentheses.)

Exercise 6.1.3 Prove Lemma 6.1.16.

Exercise 6.1.4 Let T: R" — R" be a linear transformation. Show that there exists
anumber M > O such that ||7x|| < M ||x|| for allx € R". (Hint: use Lemma 6.1.13 to
write 7 in terms of a matrix A, and then set M to be the sum of the absolute values of
all the entries in A. Use the triangle inequality often—it’s easier than messing around
with square roots, etc.) Conclude in particular that every linear transformation from
R" to R™ is continuous.

6.2 Derivatives in Several Variable Calculus

Now that we’ve reviewed some linear algebra, we turn now to our main topic of
this chapter, which is that of understanding differentiation of functions of the form
f:R" — R", ie., functions from one Euclidean space to another. For instance, one
might want to differentiate the function f : R> — R* defined by

fx,y,2) = (xy, yz, X2, xy2).

In single-variable calculus, when one wants to differentiate a functionf : E — R
at a point xp, where E is a subset of R that contains xy, this is given by

Fog= lim L0/

x—>x0;X€E\{x0} X — X0

One could try to mimic this definition in the several variable case f : E — R™, where
E is now a subset of R"; however we encounter a difficulty in this case: the quantity
f(x) —f(xp) will live in R™, and x — xp lives in R", and we do not know how to
divide an m-dimensional vector by an n-dimensional vector.

To get around this problem, we first rewrite the concept of derivative (in one
dimension) in a way which does not involve division of vectors. Instead, we view
differentiability at a point xq as an assertion that a function f is “approximately linear”
near xy.
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Lemma 6.2.1 Let E be a subset of R, f: E — R be a function, and L € R. Let x
be a limit point of E. Then the following two statements are equivalent.

(a) f is differentiable at xo, and f'(xy) = L.
(b) We have lim,_ - xcr— xo) FO=(Fo+Lx=xo))l _

[x—xo]
Proof See Exercise 6.2.1. O

In light of the above lemma, we see that the derivative f’(x) can be interpreted
as the number L for which |f (x) — (f (xo) + L(x — xp))| is small, in the sense that it
tends to zero as x tends to xp, even if we divide out by the very small number |x — x].
More informally, the derivative is the quantity L such that we have the approximation
S @) —f(x0) & L(x — xp).

This does not seem too different from the usual notion of differentiation, but the
point is that we are no longer explicitly dividing by x — xy. (We are still dividing by
|x — xp|, but this will turn out to be OK.) When we move to the several variable case
f: E— R" where E C R", we shall still want the derivative to be some quantity
L such that f(x) — f (xo) & L(x — xo). However, since f (x) — f (xo) is now an m-
dimensional vector and x — x( is an n-dimensional vector, we no longer want L to
be a scalar; we want it to be a linear transformation. More precisely:

Definition 6.2.2 (Differentiability) Let E be a subset of R”, f: E — R be a func-
tion, xo € E be a limit point of E, and let L : R* — R” be a linear transformation.
We say that f is differentiable at xy with derivative L if we have

I ) = (F Cxo) + Lx = X))l _

lim 0.
x—x0;x€E—{x0} lx — xoll
Here ||x|| is the length of x (as measured in the /> metric):
2, .2 2172
I X2, Xl = O 4+ X5 4.+ x)' 2

Example 6.2.3 Let f: R*> — R? be the map f (x, y):=(x?, y*), let xy be the point
x0:=(1,2), and let L : R> — R? be the map L(x, y):=(2x, 4y). We claim that f is
differentiable at xy with derivative L. To see this, we compute

; Ilf (x,y) — (F(1,2) + L((x,y) — (1, 2))]l
()= (1,2):003) £(1,2) (x,y) — (1, 2)] '

Making the change of variables (x, y) = (1, 2) + (a, b), this becomes

If (1 +a,2+b) — (f(1,2) + L(a, b)) ||
(@) (0,0):(a.b)#(0,0) ll(a, b)| '

Substituting the formula for f and for L, this becomes

(A +a)?, 2+b)?) —(1,4) — (2a,4b))|
(a,b)—(0,0):(a,b) #(0,0) l(a, b)|l
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which simplifies to
(@, )|

mm —_—.
(@)= 0,0:(@b)£0,0) ||(a, b)]

ll@, 62l
I (a.B)ll

We use the squeeze test. The expression
hand, we have by the triangle inequality

is clearly non-negative. On the other

@, b)) < 1@, 0)| + [0, bD) || = a* + b*

and hence

2 2
l(a”, o)l <Ja 1o

l[(a, b

Since /a2 + b* — 0 as (a, b) — 0, we thus see from the squeeze test that the above
limit exists and is equal to 0. Thus f is differentiable at xo with derivative L.

As you can see, verifying that a function is differentiable from first principles can
be somewhat tedious. Later on we shall find better ways to verify differentiability,
and to compute derivatives.

Before we proceed further, we have to check a basic fact, which is that a function
can have at most one derivative at any interior point of its domain:

Lemma 6.2.4 (Uniqueness of derivatives) Let E be a subset of R", f : E — R" bea
function, xy € E be an interior point of E, and let L, : R" — R™ and L, : R" — R"
be linear transformations. Suppose that f is differentiable at xo with derivative Ly,
and also differentiable at xo with derivative L,. Then Ly = L,.

Proof See Exercise 6.2.2. O

Because of Lemma 6.2.4, we can now talk about the derivative of f at interior
points xg, and we will denote this derivative by f’(xo). Thus f’ (xo) is the unique linear
transformation from R” to R” such that

i Il @) — (f (o) +f" (o) (x — x0)) ||
1m =

X X0 xF X0 llx — xol

0.

Informally, this means that the derivative f’(xp) is the linear transformation such that
we have

fx) —f(x0) & f'(x0) (x — x0)

or equivalently

f ) ~ f(x0) +f'(x0) (x — x0)

(this is known as Newton’s approximation; compare with Proposition 10.1.7).
Another consequence of Lemma 6.2.4 is that if you know that f (x) = g(x) for all
x € E, and f, g are differentiable at x,, then you also know that f"(xp) = g’(xo) at
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every interior point of E. However, this is not necessarily true if x( is a boundary point
of E; for instance, if E is just a single point E = {x(}, merely knowing that f (xp) =
g(xp) does not imply that f'(xo) = g’(xp). We will not deal with these boundary
issues here and only compute derivatives on the interior of the domain.

We will sometimes refer tof” as the total derivative of f , to distinguish this concept
from that of partial and directional derivatives below. The total derivative f is also
closely related to the derivative matrix Df , which we shall define in the next section.

— Exercise —
Exercise 6.2.1 Prove Lemma 6.2.1.

Exercise 6.2.2 Prove Lemma 6.2.4. (Hint: prove by contradiction. If L; # L,, then
there exists a vector v such that L;v # L,v; this vector must be nonzero (why?). Now
apply the definition of derivative, and try to specialize to the case where x = xy + tv
for some scalar ¢, to obtain a contradiction.)

6.3 Partial and Directional Derivatives
We now connect the notion of differentiability with that of partial and directional
derivatives, which we now introduce.

Definition 6.3.1 (Directional derivative) Let E be a subset of R*,f: E — R™ bea
function, let xo be an interior point of £, and let v be a vector in R”. If the limit

i f(xo 4+ tv) —f (x0)
im

t—0;t>0,x0+tveEE t

exists, we say that f is differentiable in the direction v at xy, and we denote the above
limit by D, f (xo):

va(xo):=t lim [ o+ 1) _f(xo)'

—0;t>0 t

Remark 6.3.2 One should compare this definition with Definition 6.2.2. Note that
we are dividing by a scalar ¢, rather than a vector, so this definition makes sense, and
D, f (xp) will be a vector in R”. It is sometimes possible to also define directional
derivatives on the boundary of E, if the vector v is pointing in an “inward” direction
(this generalizes the notion of left derivatives and right derivatives from single-
variable calculus); but we will not pursue these matters here.

Example 6.3.3 1f f: R — R is a function, then D, f (x) is the same as the right
derivative of f (x) (if it exists), and similarly D_f (x) is the same as the negative of
the left derivative of f (x) (if it exists).
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Example 6.3.4 We use the function f : R — R? defined by f (x, y):=(x?, y?) from
before, and let xo:=(1, 2) and v:=(3, 4). Then

D,f (xo) = lim JA+3t,2+4) —f(1,2)

t—0;1>0 t

— lim (14 6t+9:%, 4+ 16t + 16t>) — (1,4)
1—0;1>0 t

= H11rr11> (6 4+ 91,16 + 16t) = (6, 16).

Directional derivatives are connected with total derivatives as follows:

Lemma 6.3.5 Let E be a subset of R", f: E — R™ be a function, xy be an interior
point of E, and let v be a vector in R". If f is differentiable at xy, then f is also
differentiable in the direction v at xy, and

D,f (xo) = f"(xo)v.

Proof See Exercise 6.3.1. O

Remark 6.3.6 One consequence of this lemma is that total differentiability implies
directional differentiability. However, the converse is not true; see Exercise 6.3.3.

Closely related to the concept of directional derivative is that of partial derivative:

Definition 6.3.7 (Partial derivative) Let E be a subset of R*, letf: E — R™ be a
function, let xy be an interior point of E, and let 1 < j < n. Then the partial derivative
of f with respect to the x; variable at x, denoted g‘—)’;(xo), is defined by

]

af ) f(xo +te)) — f (xo)
—(x0):= lim
Bx] t—0;17#£0,x0+1e;€E t

d
= af(xo + tej)]i=o

provided of course that the limit exists. (If the limit does not exist, we leave % (x0)
J

undefined.)
We say that f is continuously differentiable if the partial derivatives ;f . %
exist and are continuous on E.

Informally, the partial derivative can be obtained by holding all the variables
other than x; fixed and then applying the single-variable calculus derivative in the x;

variable. Note that if f takes values in R, then so will ; Indeed, if we write f in
components as f = (f], ..., fi), it is easy to see (why?) that

i( 0) = (a—fl( 0), - %( o)>

i.e., to differentiate a vector-valued function one just has to differentiate each of the
components separately.



124 6 Several Variable Differential Calculus

We sometimes replace the variables x; in - % with other symbols. For instance if
we are dealing with the function f (x, y) = (x, y2) then we might refer to and

instead of "f and "f . (In this case, 9 ~(x,y) = (2x,0) and "f S () = (0, 2y) ) One
should cautlon however that one should only relabel the varlables if it is absolutely
clear which symbol refers to the first variable, which symbol refers to the second vari-
able, etc.; otherwise one may become unintentionally confused. For instance, in the
above example, the expression % (x, x) is just (2x, 0); however one may mistakenly
compute

of

oo = x(x2,x2> = (2x, 2x);

the problem here is that the symbol x is being used for more than just the first variable
of f. (On the other hand, it is true that C%f (x, x) is equal to (2x, 2x); thus the operation
of total differentiation % is not the same as that of partial differentiation i J)

From Lemma 6.3.5 (and Proposition 9.5.3 from Analysis I), we know that if a
function is differentiable at a point xy, then all the partial derivatives a—f exist at xg,
and that

of

a—(xo) = Df (x0) = —D_.f (xo) =f"(x0)e;.
Xj

Also, if v=(vi,...,v,) = Zj vje;, then we have

Dof (x0) =f'(x0) Y _viej = »_vif (xo)e;
J

J

(since f'(xp) is linear) and thus
Dyf (xo) = Z V,—(xO)

Thus one can write directional derivatives in terms of partial derivatives, provided
that the function is actually differentiable at that point.

Just because the partial derivatives exist at a point xy, we cannot conclude that
the function is differentiable there (Exercise 6.3.3). However, if we know that the
partial derivatives not only exist, but are continuous, then we can in fact conclude
differentiability, thanks to the following handy theorem:

Theorem 6.3.8 Let E be a subset of R", f: E — R™ be a function, F be a subset
of E, and xo be an interior point of F. If all the partial derivatives % exist on F
and are continuous at xy, then f is differentiable at xo, and the linear transformation

f'(xo0) : R" — R™ is defined by

S
I G0)0)1gjzn = Zvja—f(xo).
= 7
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Proof Let L : R" — R" be the linear transformation

L(Vj)l_/<n ZV/_(XO)
J

We have to prove that

i IIf ) — (f (x0) + L(x — x0)) I
m

x—>x0;x€E—{xo} ||X — X()“

=0.

Let ¢ > 0. It will suffice to find a radius § > O such that

IIf ) — (f (x0) + L(x — x0))l

llx = xol

for all x € B(xg, §)\{xo}. Equivalently, we wish to show that

If (%) = f (x0) — L(x — xo) || < ellx — X0l

for all x € B(xo, 8)\{xo0}.
Because x is an interior point of F, there exists a ball B(xy, ) which is contained
of

inside F'. Because each partial derivative o exists on F' and is continuous at x, there
J

thusexistsan 0 < §; < rsuchthat || df x) — (xo)|| < s/nmforeveryx € B(xp, 6;).
If we take § = min(dy, ..., §,), then we thus have || af x) — _(xo)|| < g¢/nm for
every x € B(xg, §) and every 1 <j < n.

Let x € B(xg, §). We write x = xg + vie; + v2e + ... + v,e, for some scalars
Vi, ..., V,. Note that

llx — xoll =\/v%+v§+...+v3

and in particular we have |v;| < ||x — xo| for all I < j < n. Our task is to show that

£ (o + vier + ...+ vuen) — f (x0) — Zv,—(m) < éllx —xoll.

Write f in components as f = (i, f2, . . . , /i) (so each f; is a function from E to R).
From the mean value theorem in the x; variable, we see that

af;
filxo +vier) — fi(xo) = a—j;(xo + tie))vi

for some ¢; between 0 and v;. But we have
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af; af; d 0
i(xo + fie1) — i()Co) < —f(xo + fiey) — —f(xo) < e¢&/nm
8xj an an 8xj
and hence
of;
i(xo + vier) — fi(xo) — g(xo)w < elvl/nm.
1
Summing this over all 1 < i < m (and noting that ||(y1, ..., Yyl < [yil + ... + [Vl
from the triangle inequality) we obtain
of
f (xo +vier) —f(xo) — aT(xo)W <ewnl/n;
1

since |vq| < ||x — xol|, we thus have

<elx —xol/n.
3)61

of
Hf(xo +vier) —f(x) — —xo)v1

A similar argument gives

d
Hf(xo +vier +wmer) — f(xo +vie)) — %(Xo)vz <elx—xoll/n
2

and so forth up to

If (xo +vier + - +vuen) —f(xo +vier + -+ v 1€,1)

(xXo)va|| < € llx — xoll /n.

0x,

If we sum these n inequalities and use the triangle inequality ||x + y|| < ||x|| + |y,
we obtain a telescoping series which simplifies to

n

0
fxo+vier + ...+ vee,) —fxo) — Z 8—£(Xo)vj <eéllx —xoll
=t

as desired. O

From Theorem 6.3.8 and Lemma 6.3.5 we see that if the partial derivatives of a
function f : E — R’ exist and are continuous on some set F', then all the directional
derivatives also exist at every interior point xp of F', and we have the formula

— 9
Dy...onf (0) = ) Vja—f(xo)-
=t
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In particular, if f: £ — R is a real-valued function, and we define the gradient
Vf (xo) of f at xg to be the n-dimensional row vector Vf (xo):z(%(xo), ey %(xo)),
then we have the familiar formula

D, f (xo) = v - Vf (x0)

whenever x; is in the interior of the region where the gradient exists and is continuous.

More generally, if f: E — R™ is a function taking values in R™, with f =
(f1, - - - ,fm), and xp is in the interior of the region where the partial derivatives of f
exist and are continuous, then we have from Theorem 6.3.8 that

£ 60) 0 1zj2n = Zv,—(m)

n

=X v giuo) :

=1 .
J= 1<i<m

which we can rewrite as
Lpf vy (V) 1<j<n

where Df (xp) is the m x n matrix

afi
(i(xo))
0 I<i<m;1<j<n

L (x0) Lxo) .. 2 (x0)

2L (x) f (x0) - af;", (x0)

X2

Df (xo):

o (xy) 2o " (x0) - ey

ax] T 0x,

Thus we have

(Dof x0))" = (f' (o))" = Df (xo)v".

The matrix Df (xp) is sometimes also called the derivative matrix or differential
matrix of f at xy and is closely related to the total derivative f'(xy). One can also

write Df as
a a 8
Df (xo) = <—f( o)T f ( o’ f )

i.e., each of the columns of Df (x) is one of the partial derivatives of f, expressed as
a column vector. Or one could write
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Vfi (x0)
V£ (xo)
Df (xo) = | .

Vﬁn ()C() )

i.e., the rows of Df (xy) are the gradient of various components of f. In particular, if
f is scalar-valued (i.e., m = 1), then Df is the same as Vf.

Example 6.3.9 Letf: R*> — R?be the functionf (x, y) = (x> + xy, y*). Then % =
2x +y,0) and % = (x, 2y). Since these partial derivatives are continuous on R2?,

we see that f is differentiable on all of R?, and

2
Df(x,y>=<0x+y§y>.

Thus for instance, the directional derivative in the direction (v, w) is
Dg wf (x,¥) = (2x + y)v + xw, 2yw).
— Exercise —

Exercise 6.3.1 Prove Lemma 6.3.5. (This will be similar to Exercise 6.2.1).

Exercise 6.3.2 Let E be a subset of R”, let f : E — R™ be a function, let xy be an
interior point of £, and let 1 < j < n. Show that g—; (x0) exists if and only if D, f (xo)
and D_,.f (xp) exist and are negatives of each other (thus D, f (xo) = —D_.f (x0));
furthermore, one has %(xo) = D.,f (xo) in this case.

Exercise 6.3.3 Let f: R> — R be the function defined by f (x, y)::)ﬁByz when
(x,y) # (0,0), and £ (0, 0):=0. Show that f is not differentiable at (O, 0), despite
being differentiable in every direction v € R? at (0, 0). Explain why this does not
contradict Theorem 6.3.8.

Exercise 6.3.4 Letf: R” — R™ be a differentiable function such that f’(x) = 0 for
all x € R". Show that f is constant. (Hint: you may use the mean value theorem or
fundamental theorem of calculus for one-dimensional functions, but bear in mind
that there is no direct analogue of these theorems for several variable functions. I
would not advise proceeding via first principles.) For a tougher challenge, replace
the domain R” by an open connected subset 2 of R”.



6.4 The Several Variable Calculus Chain Rule 129

6.4 The Several Variable Calculus Chain Rule

We are now ready to state the several variable calculus chain rule. Recall that if
f:X — Yand g: Y — Z are two functions, then the composition gof: X — Zis
defined by g o f (x):=g(f (x)) forall x € X.

Theorem 6.4.1 (Several variable calculus chain rule) Let E be a subset of R", and
let F be a subset of R™. Letf : E — F be a function, and let g: F — R? be another
function. Let xy be a point in the interior of E. Suppose that f is differentiable at x,
and that f (xo) is in the interior of F. Suppose also that g is differentiable at f (xp).
Then g of : E — RP? is also differentiable at xo, and we have the formula

(g of) (x0) = &'(f (xo))f ' (x0).

Proof See Exercise 6.4.3. O

One should compare this theorem with the single-variable chain rule, Theorem
10.1.15; indeed one can easily deduce the single-variable rule as a consequence of
the several variable rule.

Intuitively, one can think of the several variable chain rule as follows. Let x be
close to xo. Then Newton’s approximation asserts that

F ) —f(x0) & f'(x0) (x — x0)

and in particular f (x) is close to f (xp). Since g is differentiable at f (xp), we see from
Newton’s approximation again that

g(f () — g(f (xo)) ~ &'(f (xo)) (f (x) — f (x0)).

Combining the two, we obtain

gof(x)—gof(xo) =~ g (f (xo))f (x0)(x — xo)

which then should give (g of) (xo) = g'(f (x9))f’(x0). This argument however is
rather imprecise; to make it more precise one needs to manipulate limits rigorously;
see Exercise 6.4.3.

As a corollary of the chain rule and Lemma 6.1.16 (and Lemma 6.1.13), we see
that

D(g o f)(x0) = Dg(f (x0))Df (x0);

i.e., we can write the chain rule in terms of matrices and matrix multiplication, instead
of in terms of linear transformations and composition.

Example 6.4.2 Let f: R" — R and g: R" — R be differentiable functions. We
form the combined function 4#: R* — R? by defining A(x):=(f (x), g(x)). Now let
k: R*? — R be the multiplication function & (a, b):=ab. Note that
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Vf (xo0)

Dh X0) =
(o) <Vg<xo>

while
Dk(a, b) = (b, a)

(why?). By the chain rule, we thus see that

Vf (xo)

Dk o h)(xo) = (8(x0)..f (x0) (Vg(xo)

) = g(x0) Vf (x0) + f (x0) Vg (xp).

Butk o h = fg (why?), and D(f g) = V(f g). We have thus proven the product rule

V(fg) =gVf +fVg.

A similar argument gives the sum rule V(f + g) = Vf + Vg, or the difference
rule V(f — g) = Vf — Vg, as well as the quotient rule (Exercise 6.4.4). As you can
see, the several variable chain rule is quite powerful and can be used to deduce many
other rules of differentiation.

We record one further useful application of the chain rule. Let 7: R" — R"
be a linear transformation. From Exercise 6.4.1 we observe that T is continuously
differentiable at every point, and in fact 7’(x) = T for every x. (This equation may
look a little strange, but perhaps it is easier to swallow if you view it in the form
%(Tx) = T.) Thus, for any differentiable functionf : E — R",weseethat7f : E —
R™ is also differentiable, and hence by the chain rule

(TF) (x0) = T (f" (x0)).

This is a generalization of the single-variable calculus rule (¢f)’ = ¢(f’) for constant
scalars c.

Another special case of the chain rule which is quite useful is the following:
if f: R" — R™ is some differentiable function, and x; : R — R are differentiable
functions for eachj = 1, ... n, then

d . 9
3/ 0,00, . xnm) = Zx}(r)—f<x1<r>,xz(t), (D).
! dxj

j=1
(Why is this a special case of the chain rule?).
— Exercise —

Exercise 6.4.1 Let 7: R" — R” be a linear transformation. Show that 7' is con-
tinuously differentiable at every point, and in fact 7’(x) = T for every x. What is
DT?
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Exercise 6.4.2 Let E be a subset of R". Prove that if a function f: E — R™ is
differentiable at an interior point x( of E, then it is also continuous at xy. (Hint: use
Exercise 6.1.4.)

Exercise 6.4.3 Prove Theorem 6.4.1. (Hint: you may wish to review the proof of the
ordinary chain rule in single-variable calculus, Theorem 10.1.15. The easiest way to
proceed is by using the sequence-based definition of limit (see Proposition 3.1.5(b)),
and use Exercise 6.1.4.)

Exercise 6.4.4 State and prove some version of the quotient rule for functions of
several variables (i.e., functions of the form f : E — R for some subset E of R"). In
other words, state a rule which gives a formula for the gradient of f / g; compare your
answer with Theorem 10.1.13(h). Be sure to make clear what all your assumptions
are.

Exercise 6.4.5 Let x: R — R? be a differentiable function, and let » : R — R be
the function r(¢):=||x(¢) ||, where ||x|| denotes the length of x as measured in the usual
12 metric. Let # be a real number. Show that if r(fy) # 0, then r is differentiable at
to, and

_ X(t9) - x(to)

r' (1) o

(Hint: use Theorem 6.4.1.)

6.5 Double Derivatives and Clairaut’s Theorem

We now investigate what happens if one differentiates a function twice.

Definition 6.5.1 (Twice continuous differentiability) Let E be an open subset of R”,
and letf: E — R be a function. We say that f is twice continuously differentiable
if it is continuously differentiable, and the partial derivatives %, R :_;{1 are them-
selves continuously differentiable.

Remark 6.5.2 Continuously differentiable functions are sometimes called C' func-
tions; twice continuously differentiable functions are sometimes called C? functions.
One can also define C3, C*, etc., but we shall not do so here.

Example 6.5.3 Let f: R*> — R? be the function f(x,y) = (x? + xy, y?). Then f
is continuously differentiable because the partial derivatives %(x, y)=2x+y,0)
and g—l;(x, y) = (x, 2y) exist and are continuous on all of R2. It is also twice con-
tinuously differentiable, because the double partial derivatives %%(x y) = (2,0),
%%(x, y) = (1,0), %g_{;(x, y) = (1,0), %%(x,y) = (0, 2) all exist and are contin-
uous.
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Observe in the above example that the double derivatives {,i = and aax Z; are the
same. This is in fact a general phenomenon:

Theorem 6.5.4 (Clairaut’s theorem) Let E be an open subset of R", and let f E —
R™ be a twice continuously differentiable function on E. Then we have ai e (x0) =

9

s ax (xo)foralll <i,j<n

Proof By working with one component of f at a time we can assume that m = 1.
The claim is trivial if i = j, so we shall assume that i # j. We shall prove the theorem
for xy = 0; the general case is similar. (Actually, once one proves Clairaut’s theorem
for xo = 0, one can immediately obtain it for general xy by applying the theorem
with f (x) replaced by f (x + xo) )

Let a be the number a: —g g (0) and a’ denote the quantity a":= 32)’6 pre = (0). Our

task is to show that @’ = a.
Lete > 0. Because the double derivatives of f/ are continuous, we canfinda$ > 0
such that

Jd d
——f(x)—a <e
0x; dx;

and 5 9
__f(x)_a/ 58
ax,‘ 8Xj

whenever ||x| < 26.
Now we consider the quantity

X:=f(8e; + bej) — f(8e;) — f(8e;) + f(0).

From the fundamental theorem of calculus in the ¢; variable, we have

f(c‘Se,» + 8€j) —f(5€j) = / g—i(xie,' + Sé‘j) dx,-
0 i

and

E)
0
F(Se) —f(0) = / a—f(x,-ei) dx;
Xi
0

and hence

8
X = / (—(x,e, + dej) — 8f (x,e ))
0

But by the mean value theorem, for each x; we have
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of of 3 of
a_xi(xiei +dej) — a—xi(xiet) = 5a—xja—xi(xiei + xjej)

for some 0 < x; < 4. By our construction of §, we thus have

a a
—f(x[e,- + dej) — —f(x,-ei) — da| < 6.
Bx,- axi

Integrating this from O to §, we thus obtain
X — 8%a| < e8°.

We can run the same argument with the role of i and j reversed (note that X is
symmetric in i and j), to obtain

X — §%d| < &8°.
From the triangle inequality we thus obtain
|8%a — 8%d’| < 2¢82,

and thus
la —d'| < 2e.

But this is true for all ¢ > 0, and a and @’ do not depend on ¢, and so we must have
a = d’, as desired. O

One should caution that Clairaut’s theorem fails if we do not assume the double
derivatives to be continuous; see Exercise 6.5.1.

— Exercise —

3

Exercise 6.5.1 Let f: R> — R be the function defined by f (x, ¥)i=gpz When
(x,¥) # (0,0), and £ (0, 0):=0. Show that f is continuously differentiable, and the
double derivatives %g—{c and %% exist, but are not equal to each other at (0, 0).
Explain why this does not contradict Clairaut’s theorem.

6.6 The Contraction Mapping Theorem

Before we turn to the next topic—namely the inverse function theorem—we need
to develop a useful fact from the theory of complete metric spaces, namely the
contraction mapping theorem.

Definition 6.6.1 (Contraction) Let (X, d) be a metric space, and let f: X — X be
a map. We say that f is a contraction if we have d(f (x),f(y)) < d(x,y) for all
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x,y € X. We say that f is a strict contraction if there exists a constant 0 < ¢ < 1
such thatd (f (x), f (y)) < cd(x,y) forallx, y € X; we call c the contraction constant

of f.

Examples 6.6.2 Themapf: R — Rdefined by f (x):=x 4+ 1is acontraction but not
a strict contraction. The map f : R — R defined by f (x):=x/2 is a strict contraction.
The map f : [0, 1] — [0, 1] defined by f (x):=x — x? is a contraction but not a strict
contraction. (For justifications of these statements, see Exercise 6.6.5.)

Definition 6.6.3 (Fixed points) Letf: X — X be a map, and x € X. We say that x
is a fixed point of f if f (x) = x.

Contractions do not necessarily have any fixed points; for instance, the map
f: R — R defined by f(x) = x 4+ 1 does not. However, it turns out that strict con-
tractions always do, at least when X is complete:

Theorem 6.6.4 (Contraction mapping theorem) Let (X, d) be a metric space, and
let f: X — X be a strict contraction. Then f can have at most one fixed point.
Moreover, if we also assume that X is non-empty and complete, then f has exactly
one fixed point.

Proof See Exercise 6.6.7. (Il

Remark 6.6.5 The contraction mapping theorem is one example of a fixed point
theorem—a theorem which guarantees, assuming certain conditions, that a map will
have a fixed point. There are a number of other fixed point theorems which are also
useful. One amusing one is the so-called hairy ball theorem, which (among other
things) states that any continuous map f : S — S? from the sphere S>:={(x, y, z) €
R3 : x? +y? 4+ 72 = 1} to itself, must contain either a fixed point, or an anti-fixed
point (a point x € S? such that f (x) = —x). A proof of this theorem can be found in
any topology text; it is beyond the scope of this text.

We shall give one consequence of the contraction mapping theorem which is
important for our application to the inverse function theorem. Basically, this says
that any map f on a ball which is a “small” perturbation of the identity map, remains
one-to-one and cannot create any internal holes in the ball.

Lemma 6.6.6 Let B(0, r) be aballin R" centered at the origin, andlet g: B(0,r) —
R" be a map such that g(0) = 0 and

1
lg@) = gWll = Sllx =yl

for all x,y € B(0, r) (here ||x| denotes the length of x in R"). Then the function
f:B(0,r) — R" defined by f(x):=x+ g(x) is one-to-one, and furthermore the
image f (B(0, r)) of this map contains the ball B(0, r/2).
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Proof We first show that f is one-to-one. Suppose for sake of contradiction that we
had two different points x,y € B(0, r) such that f(x) = f(y). But then we would
have x + g(x) =y + g(y), and hence

lg(x) —gWIl = llx =yl

The only way this can be consistent with our hypothesis ||g(x) — g()|| < %Hx -yl
isif |x —y|| =0, i.e., if x = y, a contradiction. Thus f is one-to-one.

Now we show that f (B(0, r)) contains B(0, r/2). Let y be any point in B(0, r/2);
our objective is to find a point x € B(0, r) such that f (x) = y, or in other words that
x =y — g(x). So the problem is now to find a fixed point of the map x > y — g(x).

Let F: B(0,r) — B(0, r) denote the function F(x):=y — g(x). Observe that if
x € B(0, r), then

r ro 1 roor
F < < - —o(0)| <=4+ =|Ix—=0 4=
IEOT =Myl +lgWl = 5+ 18 —gOl = 7 + Sk =0l < 5+ 5 =7,
so F does indeed map B(0, r) toitself. The same argument shows that for a sufficiently
small ¢ > 0, F maps the closed ball B(0, r — ¢) to itself. Also, for any x, x’ in B(0, r)
we have

1
IF(x) = F&OHI = llg(x) — gl < EIIX’ — x|

so F is a strict contraction on B(0, r), and hence on the complete space B(0, r — ¢).
By the contraction mapping theorem, F has a fixed point, i.e., there exists an x such
that x = y — g(x). But this means that f (x) = y, as desired. ([

— Exercise —

Exercise 6.6.1 Let f: [a, b] — [a, b] be a differentiable function of one variable
such that |f'(x)| < 1 for all x € [a, b]. Prove that f is a contraction. (Hint: use the
mean value theorem, Corollary 10.2.9.) If in addition |f'(x)| < 1 for all x € [a, b]
and f is continuous, show that f is a strict contraction.

Exercise 6.6.2 Show that if f: [a, b] — R is differentiable and is a contraction,
then |[f'(x)| < 1.

Exercise 6.6.3 Give an example of a function f : [a, b] — R which is continuously
differentiable and such that |f (x) — f (y)| < |x — y| for all distinct x, y € [a, b], but
such that |f'(x)| = 1 for at least one value of x € [a, b].

Exercise 6.6.4 Given an example of a function f: [a, b] — R which is a strict
contraction but which is not differentiable for at least one point x in [a, b].

Exercise 6.6.5 Verify the claims in Examples 6.6.2.

Exercise 6.6.6 Show that every contraction on a metric space X is necessarily con-
tinuous.
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Exercise 6.6.7 Prove Theorem 6.6.4. (Hint: to prove that there is at most one fixed
point, argue by contradiction. To prove that there is at least one fixed point, pick
any xo € X and define recursively x| = f (xg), xo = f(x1), x3 = f (x2), etc. Prove
inductively that d (x,,+1, x,) < ¢"d(x1, xp), and conclude (using the geometric series
formula, Lemma 7.3.3) that the sequence (x,,);2, is a Cauchy sequence. Then prove
that the limit of this sequence is a fixed point of f.)

Exercise 6.6.8 Let (X,d) be a complete metric space, and let f: X — X and
g: X — X be two strict contractions on X with contraction coefficients ¢ and ¢’,
respectively. From Theorem 6.6.4 we know that f has some fixed point x,, and
g has some fixed point yy. Suppose we know that there is an ¢ > 0 such that
d(f(x),gx)) <eforall x € X (i.e., f and g are within ¢ of each other in the uni-
form metric). Show that d (xg, yo) < &/(1 — min(c, ¢’)). Thus nearby contractions
have nearby fixed points.

6.7 The Inverse Function Theorem in Several Variable
Calculus

We recall the inverse function theorem in single-variable calculus (Theorem 10.4.2),
which asserts that if a function f : R — R is invertible, differentiable, and f’(xp) is
nonzero, then £ ~! is differentiable at f (xy), and

—1y/ _ 1
G = 5o

In fact, one can say something even when f” is not invertible, as long as we know
that f is continuously differentiable. If f/(xo) is nonzero, then f’(xy) must be either
strictly positive or strictly negative, which implies (since we are assuming f” to be
continuous) that f’(x) is either strictly positive for x near xg, or strictly negative
for x near xy. In particular, f must be either strictly increasing near xg, or strictly
decreasing near xy. In either case, f will become invertible if we restrict the domain
and codomain of f to be sufficiently close to xp and to f(xp), respectively. (The
technical terminology for this is that f is locally invertible near xy.)

The requirement that f be continuously differentiable is important; see Exercise
6.7.1.

It turns out that a similar theorem is true for functions f: R” — R” from one
Euclidean space to the same space. However, the condition that f’(x() is nonzero
must be replaced with a slightly different one, namely that f/(xo) is invertible. We
first remark that the inverse of a linear transformation is also linear:

Lemma 6.7.1 Let T: R" — R”" be a linear transformation which is also invertible.
Then the inverse transformation T~': R* — R" is also linear.

Proof See Exercise 6.7.2. O
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We can now prove an important and useful theorem, arguably one of the most
important theorems in several variable differential calculus.

Theorem 6.7.2 (Inverse function theorem) Let E be an open subset of R", and let
f: E — R"beafunctionwhich is continuously differentiable on E. Suppose xy € E is
such that the linear transformation f'(xo) : R" — R”" is invertible. Then there exists
an open set U in E containing xo, and an open set V in R" containing f (xo), such
thatf is a bijection from U to V. In particular, there is an inverse map f ~' : V. — U.
Furthermore, this inverse map is differentiable at f (xo), and

F'(Fx0) = (F o))"

Proof We first observe that once we know the inverse map f ~! is differentiable, the
formula (f =" (f (x0)) = (f'(x0))~! is automatic. This comes from starting with the
identity

I=f"of

on U, where I: R" — R” is the identity map Ix:=x, and then differentiating both
sides using the chain rule at x, to obtain

I'(xo) = (F ™1 (f (x0))f ' (x0).

Since I’ (xg) = I, we thus have (f 71 (f (xo)) = (f'(x0)) " as desired.

We remark that this argument shows that if f/(xo) is not invertible, then there is
no way that an inverse f ~! can exist and be differentiable at f (xp).

Next, we observe that it suffices to prove the theorem under the additional assump-
tion f (x9) = 0. The general case then follows from the special case by replacing f by
a new function f (x):=f (x) — f (x0) and then applying the special case to f (note that
V will have to shift by f (x)). Note that f = (y) = f (v — f (xo)) (why?). Henceforth
we will always assume f (xp) = 0.

In a similar manner, one can make the assumption xy = 0. The general case
then follows from this case by replacing f by a new function f (x):=f(x + x0) and
applying the special case to f (note that E and U will have to shift by xp). Note that
F71) =1 (y) + xo - why? Henceforth we will always assume xo = 0. Thus we
now have that £ (0) = 0 and that f'(0) is invertible.

Finally, one can assume that f'(0) = I, where /: R" — R” is the identity trans-
formation Ix = x. The general case then follows from this case by replacing f with
a new function f : E — R” defined by fx):=f"(0)""f (x), and applying the special
case to this case. Note from Lemma 6.7.1 that £/(0) ! is a linear transformation. In
particular, we note that f (0) = 0 and that

FO) = O ) =1,

so by the special case of the inverse function theorem we know that there exists an
open set U’ containing 0, and an open set V' containing 0, such that f is a bijection
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from U’ to V', and that f ' : V/ — U’ is differentiable at 0 with derivative /. But we
have f (x) = f/(O)f (x), and hence f is a bijection from U’ to f'(0)(V") (note that f'(0)
is also a bijection). Since f”(0) and its inverse are both continuous, f'(0)(V’) is open,
and it certainly contains 0. Now consider the inverse functionf ~! : f/(0)(V') — U'.
Since f(x) = f/(0)f (x), we see that £~ (y) = f~'(/(0)"'y) for all y € f'(0)(V')
(why? use the fact that f is a bijection from U’ to V’). In particular we see that f
is differentiable at 0.

So all we have to do now is prove the inverse function theorem in the special
case, when xo = 0, f (xg) = 0, and f'(xp) = I. Let g: E — R” denote the function
g(x):=f (x) — x. Then g(0) = 0 and g’(0) = 0. In particular

—0)=0
ax] 0=
forj =1, ..., n.Since g is continuously differentiable, there thus exists a ball B(0, r)
in E such that
ij ( )H = 2

for all x € B(0, r). (There is nothing particularly special about 5 7, we just need a
nice small number here.) In particular, for any x € B(0, r) and v = (v{, ..., v,) we
have

n ag
D, = 2
ID,g ()| ,;V’ 7 (x)

n

n

But now for any x, y € B(0, r), we have by the fundamental theorem of calculus

d
g0 — g(v) = / gt iy~ ) d

0

= /Dy_xg(x + t(y — x)) dt,
0
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where the integral of a vector-valued function is defined by integrating each com-
ponent separately. By the previous remark, the vectors D,_,g(x + t(y — x)) have a
magnitude of at most ﬁ lly — x||. Thus every component of these vectors has magni-
tude at most i lly — x||. Thus every component of g(y) — g(x) has magnitude at most
zin lly — x||, and hence g(y) — g(x) itself has magnitude at most % lly — x|l (actually, it
will be substantially less than this, but this bound will be enough for our purposes).
In other words, g is a contraction. By Lemma 6.6.6, the map f = g + [ is thus one-
to-one on B(0, r), and the image f (B(0, r)) contains B(0, r/2). In particular we have
an inverse mapf’1 : B(0, r/2) — B(0, r) defined on B(0, r/2).
Applying the contraction bound with y = 0 we obtain in particular that

1
g = = lxl

for all x € B(0, r), and so by the triangle inequality

1I| I|<|lf()I|<3I| I
—||X X —||X
2 - -2

for all x € B(0, r).

Now we set V:=B(0, r/2) and U:=f~"(V) N B(0, r). Then by construction f is
a bijection from U to V. V is clearly open, and U is also open since f is continuous.
(Notice that if a set is open relative to B(0, r), then it is open in R" as well.) Now
we want to show that f ~! : V — U is differentiable at O with derivative I~! = I. In
other words, we wish to show that

IF =) =f~'(0) = Tx = 0] _

x—>0;x€V\{0} [|]|

0.

Since £ (0) = 0, we have £ ~!(0) = 0, and the above simplifies to

I~ —xl _

x—0;xeV\{0} ”x”

0.

Let (x,)o2, be any sequence in V'\{0} that converges to 0. By Proposition 3.1.5(b),
it suffices to show that .
I~ ) =l _

n—00 [l I

Write y,:=f ~'(x,). Then y, € B(0, r) and x,, = f (y,). In particular we have

1|| < llxll < 3II [
SUYnll = IXnll = S 1Yn
2" 2"

and so since ||x,|| goes to 0, ||y, || goes to zero also, and their ratio remains bounded.
It will thus suffice to show that
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1im”y”_—f(y")”=0

n=o0 |yl

But since y, is going to 0, and f is differentiable at 0, we have

i O —f0) =[O =0l _
1m =

n—00 [yl

0

as desired (since f (0) = 0 and f'(0) = I). |

The inverse function theorem gives a useful criterion for when a function is
(locally) invertible at a point x, - all we need is for its derivative ' (xg) to be invertible
(and then we even get further information, for instance we can compute the derivative
of f~! at f (xo)). Of course, this begs the question of how one can tell whether the lin-
ear transformation f”(xo) is invertible or not. Recall that we have f'(xo) = Lpy(x,), SO
by Lemmas 6.1.13 and 6.1.16 we see that the linear transformation f'(xo) is invertible
if and only if the matrix Df (xp) is. There are many ways to check whether a matrix
such as Df (xp) is invertible; for instance, one can use determinants, or alternatively
Gaussian elimination methods. We will not pursue this matter here, but refer the
reader to any linear algebra text.

If f/(x() exists but is non-invertible, then the inverse function theorem does not
apply. In such a situation it is not possible for f ~! to exist and be differentiable at f (xg);
this was remarked in the above proof. But it is still possible for f to be invertible. For
instance, the single-variable function f : R — R defined by f (x) = X3 is invertible
despite f(0) not being invertible.

— Exercise —

Exercise 6.7.1 Let f: R — R be the function defined by f (x):=x + X% sin(1 /x4
for x # 0 and f(0):=0. Show that f is differentiable and f'(0) = 1, but f is not
increasing on any open set containing O (Hint: show that the derivative of f can turn
negative arbitrarily close to 0. Drawing a graph of f may aid your intuition.)

Exercise 6.7.2 Prove Lemma 6.7.1.

Exercise 6.7.3 Letf: R” — R”" be a continuously differentiable function such that
f/(x) is an invertible linear transformation for every x € R”. Show that whenever V
is an open set in R”, that f (V) is also open. (Hint: use the inverse function theorem.)

Exercise 6.7.4 Let the notation and hypotheses be as in Theorem 6.7.2. Show that
after shrinking the open sets U, V as necessarily (while still keeping xo in U and
f (xg) in V), the derivative map f'(x) is invertible for all x € U, and that the inverse
map f~! is differentiable at every point of V with (f 1) (f (x) = (f'(x))~! for all
x € U. Finally, show that f ~! is continuously differentiable on V.
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6.8 The Implicit Function Theorem

Recall (from Exercise 3.5.10) that a function f : R — R gives rise to a graph

{(x,f(x) : x € R}

which is a subset of R2, usually looking like a curve. However, not all curves are
graphs, they must obey the vertical line test, that for every x there is exactly one y
such that (x, y) is in the curve. For instance, the circle {(x, y) € R? : x +y? = 1} is
not a graph, although if one restricts to a semicircle such as {(x, y) € R? : x> + y?> =
1,y > 0} then one again obtains a graph. Thus while the entire circle is not a graph,
certain local portions of it are. (The portions of the circle near (1, 0) and (—1, 0) are
not graphs over the variable x, but they are graphs over the variable y).

Similarly, any function g: R” — R gives rise to a graph {(x, g(x)) : x € R’} in
R"*!, which in general looks like some sort of n-dimensional surface in R"*! (the
technical term for this is a hypersurface). Conversely, one may ask which hypersur-
faces are actually graphs of some function, and whether that function is continuous
or differentiable.

If the hypersurface is given geometrically, then one can again invoke the vertical
line test to work out whether it is a graph or not. But what if the hypersurface is given
algebraically, for instance the surface {(x, y, z) € R® : xy + yz + zx = —1}? Or more
generally, a hypersurface of the form {x € R" : g(x) = 0}, where g: R" — Rissome
function? In this case, it is still possible to say whether the hypersurface is a graph,
locally at least, by means of the implicit function theorem.

Theorem 6.8.1 (Implicit function theorem) Let E be an open subset of R", let
f: E — R be continuously differentiable, and let y = (y1, ..., Y,) be a point in E
such that f (y) = 0 and ;—Q(y) # 0. Then there exists an open subset U of R"™! con-
taining (y1, . . ., Yu—1), anopen subset V of E containing y, and a functiong: U — R
such that g(yi, ..., Yn—1) = Y, and

{x1, ..y x) eV ifxg,...,x,) =0}
={(x1, e X1, 81, ooy X)) (X1, ey X—) € UYL

In other words, the set {x € V : f (x) = 0} is a graph of a function over U. Moreover,

g is differentiable at (y1, ..., Y,—1), and we have
d a a
8—g<y1,...,yn,1>:——f<y>/ " (6.1)
X 0x; 0x,

foralll <j<n-—1.

Remark 6.8.2 Equation (6.1) is sometimes derived using implicit differentiation.
Basically, the point is that if you know that
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fr, .o, x) =0

then (as long as 3 Y ;é 0) the variable x,, is “implicitly” defined in terms of the other
n — 1 variables, and one can differentiate the above identity in, say, the x; direction
using the chain rule to obtain

af of ox,
— +
ox;  0x, 0x;

which is (6.1) in disguise (we are using g to represent the implicit function defining
X, in terms of xi, ..., x,). Thus, the implicit function theorem allows one to define
a dependence implicitly, by means of a constraint rather than by a direct formula of
the form x, = g(xy, ..., X—1)-

Proof This theorem looks somewhat fearsome, but actually it is a fairly quick con-
sequence of the inverse function theorem. Let F : E — R” be the function

F(-xlv ~--axn)::(xlv ~-~axn—lvf(-xla ...,Xn)).

This function is continuously differentiable. Also note that

F(y) =(y1,...,yn_],0)

and

DF )—(8—F )" a—F<>T i
W=7z 35" 3

)

1 0 ... 0 0
0 1 ... 0 0
0 0 ...1 0

Bxl (y) sz (y) . ax,, | (y) (y)

Since %(y) is assumed by hypothesis to be nonzero, this matrix is invertible; this
can be seen either by computing the determinant, or using row reduction, or by
computing the inverse explicitly, which is

1 0 ... 0 0
1 ... 0 0

DF(y)'=1: : : ,
0 0 | 0

—mO/a —gEm/a ... —zl=()/a 1/a
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where we have written a = %(y) for short. Thus the inverse function theorem
applies, and we can find an open set V in E containing y, and an open set W in
R” containing F'(y) = (1, - - -, Yn—1, 0), such that F is a bijection from V to W, and
that F~! is differentiable at (y1, ...,y,—1, 0).

Let us write F~! in co-ordinates as

F7'0) = (@), (), ..., hy(x))

where x € W. Since F(F~!'(x)) = x, we have hi(xi,...,x,) =x; forall 1 <j<
n—1landx € W, and

f(xly"'axn—]’hn(xlv"'5xl’l))an'

Also, h,, is differentiable at (yq, ..., y,_1, 0) since F~lis.

Now we set U:={(x1, ..., %,—1) € R"7": (x1, ..., x,—1,0) € W}. Note that U is
open and contains (y1, ..., y,—1). Now wedefineg: U — Rbyg(xy, ..., x,—1):=h,
(x1, ..., X—1,0). Then g is differentiable at (y, ..., y,—1). Now we prove that

{Gry ooy x) € Viflxg, ..., x,) =0}

={01, o X, g e X)) T (X X1) € UL

First suppose that (x;, ..., x,) € Vandf(xy, ..., x,) = 0. Then we have F(xy, ...,
Xp) = (X1, ..., X4—1,0), which lies in W. Thus (x, ..., x,—;) lies in U. Applying
F~!, weseethat (x|,...,x,) =F '(x1,...,x,_1,0). In particular x,, = h,(xq, ...,
Xn—1,0), and hence x, = g(xy, ..., x,—1). Thus every element of the left-hand set lies

in the right-hand set. The reverse inclusion comes by reversing all the above steps
and is left to the reader.

Finally, we show the formula for the partial derivatives of g. From the preceding
discussion we have

f@n X, 800,00, x1) =0

for all (xy,...,x,—1) € U. Since g is differentiable at (yi, ..., y,—1), and f is differ-
entiable at (v, ..., Yn—1, 801, ..., Yn—1)) =y, we may use the chain rule, differen-
tiating in x;, to obtain

of of g ~
B_xj(y) + a_xn(y)a_x,(y" o) =0

and the claim follows by simple algebra. ([

Example 6.8.3 Consider the surface S:={(x,y,z) € R :xy+yz+zx = —1},
which we rewrite as {(x,y,z) € R3 :f(x,y,z) =0}, where f: R3® — R is the
function f (x, y, z):=xy + yz + zx + 1. Clearly f is continuously differentiable, and

gl = y 4 x. Thus for any (xo, o, 20) in S with yy + xo 7~ 0, one can write this surface
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(near (xg, Yo, Z0)) as a graph of the form {(x, y, g(x, y)) : (x,y) € U} for some open
set U containing (xg, o), and some function g which is differentiable at (x, yo).
Indeed one can implicitly differentiate to obtain that

g Yo + 2o g Xo + 20
—(x0, Y0) = — and — (xo, yo) = — .
ox Yo + Xo ay Yo + Xo

In the implicit function theorem, if the denvatwe K equals Zero at some point,
then it is unlikely that the set {x € R" : f(x) = 0} can be written as a graph of the x,
variable in terms of the other n — 1 variables near that point. However, if some other
derivative ; % is nonzero, then it would be possible to write the x; variable in terms of
the other 1 — 1 variables, by a variant of the implicit function theorem. Thus as long
as the gradient Vf is not entirely zero, one can write this set {x € R" : f(x) = 0}
as a graph of some variable x; in terms of the other n — 1 variables. (The circle
{(x,y) € R? : x> +y? — 1 = 0} is a good example of this; it is not a graph of y in
terms of x, or x in terms of y, but near every point it is one of the two. And this is
because the gradient of x> + y> — 1 is never zero on the circle.) However, if Vf does
vanish at some point x(, then we say that f has a critical point at xy and the behavior
there is much more complicated. For instance, the set {(x,y) € R? : x> — y> = 0}
has a critical point at (0, 0) and there the set does not look like a graph of any sort
(it is the union of two lines).

Remark 6.8.4 Sets which look like graphs of continuous functions at every point
have a name, they are called manifolds. Thus {x € R" : f (x) = 0} will be a manifold
if it contains no critical points of f. The theory of manifolds is very important in
modern geometry (especially differential geometry and algebraic geometry), but we
will not discuss it here as it is a graduate level topic.

— Exercise —

Exercise 6.8.1 Let the notation and hypotheses be as in Theorem 6.8.1. Show that,
after shrinking the open sets U, V as necessary, that the function g becomes contin-
uously differentiable on all of U, and the Eq. (6.1) holds at all points of U.



Chapter 7 ®)
Lebesgue Measure e

In the previous chapter we discussed differentiation in several variable calculus. It is
now only natural to consider the question of integration in several variable calculus.
The general question we wish to answer is this: given some subset €2 of R”, and some
real-valued function f: Q — R, is it possible to integrate f on €2 to obtain some
number fQ f? (Itis possible to consider other types of functions, such as complex-
valued or vector-valued functions, but this turns out not to be too difficult once one
knows how to integrate real-valued functions, since one can integrate a complex or
vector-valued function, by integrating each real-valued component of that function
separately.)

In one dimension we already have developed (in Chap. 11) the notion of a Riemann
integral f[a, b f, which answers this question when €2 is an interval 2 = [a, b], and
f is Riemann integrable. Exactly what Riemann integrability means is not important
here, but let us just remark that every piecewise continuous function is Riemann
integrable, and in particular every piecewise constant function is Riemann integrable.
However, not all functions are Riemann integrable. It is possible to extend this notion
of a Riemann integral to higher dimensions, but it requires quite a bit of effort and
one can still only integrate “Riemann integrable” functions, which turn out to be a
rather unsatisfactorily small class of functions. (For instance, the pointwise limit of
Riemann integrable functions need not be Riemann integrable, and the same goes for
an L? limit, although we have already seen that uniform limits of Riemann integrable
functions remain Riemann integrable.)

Because of this, we must look beyond the Riemann integral to obtain a truly satis-
factory notion of integration, one that can handle even very discontinuous functions.
This leads to the notion of the Lebesgue integral, which we shall spend this chapter
and the next constructing. The Lebesgue integral can handle a very large class of
functions, including all the Riemann integrable functions but also many others as
well; in fact, it is safe to say that it can integrate virtually any function that one actu-
ally needs in mathematics, at least if one works on Euclidean spaces and everything
is absolutely integrable. (If one assumes the axiom of choice, then there are still some
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pathological functions one can construct which cannot be integrated by the Lebesgue
integral, but these functions will not come up in real-life applications.)

Before we turn to the details, we begin with an informal discussion. In order
to understand how to compute an integral fQ f, we must first understand a more
basic and fundamental question: how does one compute the length/area/volume of
Q7 To see why this question is connected to that of integration, observe that if one
integrates the function 1 on the set €2, then one should obtain the length of € (if €2 is
one-dimensional), the area of 2 (if €2 is two-dimensional), or the volume of €2 (if 2
is three-dimensional). To avoid splitting into cases depending on the dimension, we
shall refer to the measure of 2 as either the length, area, volume, (or hypervolume,
etc.) of 2, depending on what Euclidean space R" we are working in.

Ideally, to every subset 2 of R" we would like to associate a non-negative
number m(£2), which will be the measure of Q2 (i.e., the length, area, volume,
etc.). We allow the possibility for m(€2) to be zero (e.g., if Q is just a sin-
gle point or the empty set) or for m(€2) to be infinite (e.g., if Q2 is all of R").
This measure should obey certain reasonable properties; for instance, the mea-
sure of the unit cube (0, 1)" :={(x1,...,x,) :0 < x; < 1} should equal 1, we
should have m(A U B) = m(A) + m(B) if A and B are disjoint (and similarly that
m (Unei An) = Y02 m(A,) when the A, are disjoint), we should have m(A) <
m(B) whenever A C B, and we should have m(x + A) = m(A) for any x € R”
(i.e., if we shift A by the vector x the measure should be the same).

Remarkably, it turns out that such a measure does not exist; one cannot assign
a non-negative number to every subset of R” which has the above properties. This
is quite a surprising fact, as it goes against one’s intuitive concept of volume; we
shall prove it later in these notes. (An even more dramatic example of this failure of
intuition is the Banach-Tarski paradox, in which a unit ball in R3is decomposed into
five pieces, and then the five pieces are reassembled via translations and rotations to
form two complete and disjoint unit balls, thus violating any concept of conservation
of volume; however we will not discuss this paradox here.)

What these paradoxes mean is that it is impossible to find a reasonable way to
assign a measure to every single subset of R”. However, we can salvage matters by
only measuring a certain class of sets in R"—the measurable sets. These are the
only sets €2 for which we will define the measure m(£2), and once one restricts one’s
attention to measurable sets, one recovers all the above properties again. Furthermore,
almost all the sets one encounters in real life are measurable (e.g., all open and closed
sets will be measurable), and so this turns out to be good enough to do analysis.

7.1 The Goal: Lebesgue Measure

Let R” be a Euclidean space. Our goal in this chapter is to define a concept of
measurable set, which will be a special kind of subset of R”, and for every such
measurable set 2 C R”, we will define the Lebesgue measure m(£2) to be a certain
number in [0, oo]. The concept of measurable set will obey the following properties:
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(i) (Borel property) Every open set in R” is measurable, as is every closed set.

(i) (Complementarity) If €2 is measurable, then R"\2 is also measurable.

(iii) (Boolean algebra property) If (2;) ;s is any finite collection of measurable
sets (so J is finite), then the union (., 2, and intersection [, 2; are also
measurable.

(iv) (o-algebra property) If (€2;);c; are any countable collection of measurable
sets (so J is countable), then the union | J ;_, €2; and intersection ) jes $2j are
also measurable.

jes

Note that some of these properties are redundant; for instance, (iv) will imply
(iii), and once one knows all open sets are measurable, (ii) will imply that all closed
sets are measurable also. The properties (i—-iv) will ensure that virtually every set
one cares about is measurable; though as indicated in the introduction, there do exist
non-measurable sets.

To every measurable set €2, we associate the Lebesgue measure m(2) of 2, which
will obey the following properties:

(v) (Empty set) The empty set ¥ has measure m () = 0.
(vi) (Positivity) We have 0 < m(£2) < +oo for every measurable set 2.
(vii) (Monotonicity) If A € B, and A and B are both measurable, then m(A) <
m(B).
(viii) (Finite sub-additivity) If (A ;) j, are afinite collection of measurable sets, then

m (Uje] Aj) <Y jesm(A).

(ix) (Finite additivity) If (A ) jc; are a finite collection of disjoint measurable sets,
then m(UjEJ Aj) = Zjej m(Aj).

(x) (Countable sub-additivity) If (A;) jcs are a countable collection of measurable
sets, then m (Ujej Aj> < Zjej m(Aj).

(xi) (Countable additivity) If (A;);c; are a countable collection of disjoint mea-

surable sets, then m (Ujej AJ-) = Zjej m(Aj).

(xii) (Normalization) The unit cube [0, 11" = {(x,...,x,) € R":0=<x; <1
forall 1 < j < n} has measure m ([0, 1]") = 1.

(xiii) (Translation invariance) If € is a measurable set, and x € R”, then x +
Q:={x +y:y e Q}isalso measurable, and m(x + Q) = m(L2).

Again, many of these properties are redundant; for instance the countable additiv-
ity property can be used to deduce the finite additivity property, which in turn can be
used to derive monotonicity (when combined with the positivity property). One can
also obtain the sub-additivity properties from the additivity ones. Note that m(£2) can
be +00, and so in particular some of the sums in the above properties may also equal
+o00; in this chapter we adopt the convention that an infinite sum jey aj of non-
negative quantities a; is equal to +o0 if the sum is not absolutely convergent. (Since
everything is non-negative we will never have to deal with indeterminate forms such
as —oo0 + +00.)

Our goal for this chapter can then be stated thus:
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Theorem 7.1.1 (Existence of Lebesgue measure). There exists a concept of a mea-
surable set, and a way to assign a number m(S2) to every measurable subset 2 C R",
which obeys all of the properties (i)—(xiii).

It turns out that Lebesgue measure is pretty much unique; any other concept of
measurability and measure which obeys axioms (i)—(xiii) will largely coincide with
the construction we give. However there are other measures which obey only some
of the above axioms; also, we may be interested in concepts of measure for other
domains than Euclidean spaces R”. This leads to measure theory, which is an entire
subject in itself and will not be pursued here; however we do remark that the concept
of measures is very important in modern probability, and in the finer points of analysis
(e.g., in the theory of distributions).

7.2 First Attempt: Outer Measure

Before we construct Lebesgue measure, we first discuss a somewhat naive approach
to finding the measure of a set—namely, we try to cover the set by boxes, and then
add up the volume of each box. This approach will almost work, giving us a concept
called outer measure which can be applied to every set and obeys all of the properties
(v)—(xiii) except for the additivity properties (ix), (xi). Later we will have to modify
outer measure slightly to recover the additivity property.

We begin by starting with the notion of an open box.

Definition 7.2.1 (Open box) An open box (or box for short) B in R" is any set of
the form

B =[] .b):={(x.....x,) €R":x; € (a;. by) forall 1 <i < n},

i=l1

where b; > a; are real numbers. We define the volume vol(B) of this box to be the
number

vol(B) := [ [(bi — i) = (b1 — an)(by — @) ... (by — ay).

i=1

For instance, the unit cube (0, 1)” is a box, and has volume 1. In one dimension
n = 1, boxes are the same as open intervals. One can easily check that in general
dimension that open boxes are indeed open. Note that if we have b; = a; for some
i, then the box becomes empty, and has volume 0, but we still consider this to be a
box (albeit a rather silly one). Sometimes we will use vol,, (B) instead of vol(B) to
emphasize that we are dealing with n-dimensional volume, thus for instance vol; (B)
would be the length of a one-dimensional box B, vol,(B) would be the area of a
two-dimensional box B, etc.
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Remark 7.2.2 We of course expect the measure m (B) of a box to be the same as the
volume vol(B) of that box. This is in fact an inevitable consequence of the axioms
(1)—(xiii) (see Exercise 7.2.5).

Definition 7.2.3 (Covering by boxes) Let Q2 C R” be a subset of R". We say that a
collection (B;) je; of boxes cover Qiff @ € |, B;.

Suppose €2 € R" can be covered by a finite or countable collection of boxes
(Bj) jes- If we wish €2 to be measurable, and if we wish to have a measure obeying the
monotonicity and sub-additivity properties (vii), (viii), (x) and if we wish m(B;) =
vol(B;) for every box j, then we must have

m@ <m || JB;| =) m®B) =) vol(B)).

jel jet jel

We thus conclude

m(2) < inf Zvol(Bj) 1 (Bj)jes covers 2; J at most countable
jeJ

Inspired by this, we define

Definition 7.2.4 (Outer measure) If Q is a set, we define the outer measure m*(S2)
of Q to be the quantity

m*(2) := inf Zvol(Bj) : (Bj) jey covers Q; J at most countable
jeJ

Since Z?‘;l vol(B;) isnon-negative, we know thatm* (£2) > 0 for all 2. However,
it is quite possible that m*(£2) could equal +oc. Note that because we are allowing
ourselves to use a countable number of boxes, that every subset of R” has at least
one countable cover by boxes; in fact R” itself can be covered by countably many
translates of the unit cube (0, 1)” (how?). We will sometimes write m; (£2) instead
of m*(£2) to emphasize the fact that we are using n-dimensional outer measure.

Note that outer measure can be defined for every single set (not just the measurable
ones), because we can take the infimum of any non-empty set. It obeys several of the
desired properties of a measure:

Lemma 7.2.5 (Properties of outer measure) Outer measure has the following six
properties:

(v) (Empty set) The empty set ) has outer measure m*(J) = 0.
(vi) (Positivity) We have 0 < m*(2) < +oo for every measurable set Q.
(vii) (Monotonicity) If A € B C R”, then m*(A) < m*(B).
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(viii) (Finite sub-additivity) If (A;)je; are a finite collection of subsets of R", then
m* (Uje] A.i) <D e mi(A)).
(x) (Countable sub-additivity) If (A;);cs are a countable collection of subsets of
R, thenm* (s As) = 50, m*(A)).
(xiii) (Translation invariance) If 2 is a subset of R", and x € R", then m*(x + Q) =
m*(2).

Proof See Exercise 7.2.1. (I
The outer measure of a closed box is also what we expect:
Proposition 7.2.6 (Outer measure of closed box) For any closed box
B = H[a,-, bil:={(x1,...,xp) € R": x; € [a;,b;]forall 1 <i < n},
i=1

we have

m*(B) = [ [ (b — a).
i=1

Proof Clearly, we can cover the closed box B = []/_[a;, b;] by the open box
[T:_, (@ — &, b; + ¢) for every & > 0. Thus we have

n

m*(B) < vol (H(a,- —e b + e)) = H(b,- —a; + 2¢)
i=1

i=1

for every ¢ > 0. Taking limits as ¢ — 0, we obtain
m*(B) < [ [(bi — a.
i=1
To finish the proof, we need to show that
m*(B) = [ [ — a.
i=1

By the definition of m™*(B), it suffices to show that

n

D vol(B)) = [ [(bi — a)

jeJ i=1

whenever (B}) ey is a finite or countable cover of B.
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Since B is closed and bounded, it is compact (by the Heine—Borel theorem, Theo-
rem 1.5.7), and in particular every open cover has a finite subcover (Theorem 1.5.8).
Thus to prove the above inequality for countable covers, it suffices to do it for finite
covers (since if (B}) ey is a finite subcover of (B;)jc; then Zje] vol(B;) will be
greater than or equal to 3, _;, vol(B;)).

To summarize, our goal is now to prove that

n

Y _vol(BY) = T —an) (7.1

JjeJ i=1

whenever (B) ¢, is a finite cover of []'_,[a;, b;]; we have changed the subscript
B; to superscript BY) because we will need the subscripts to denote components.

To prove the inequality (7.1), we shall use induction on the dimension n. First we
consider the base case n = 1. Here B is just a closed interval B = [a, b], and each
box BY) is just an open interval BY) = (a;, b;). We have to show that

> (bj—ay = b-a).
jeJ

To do this we use the Riemann integral. Foreach j € J,let f0): R — R be the func-
tion such that f)(x) = 1 when x € (a;, b;) and f“)(x) = 0 otherwise. Then we
have that £/ is Riemann integrable (because it is piecewise constant, and compactly
supported) and

o0

/ O —b, —ay.

—00
Summing this over all j € J, and interchanging the integral with the finite sum, we

have N
/ Zf(j) = Zb/ —daj.

0o JE€J jed

But since the intervals (a;, b;) cover [a, b], we have 3~ ., f)(x) > 1 forall x €
[a, b] (why?). For all other values of x, we have Zje] F9(x) = 0. Thus

f2f<f>z/1=b—a

A [a,b]

and the claim follows by combining this inequality with the previous equality. This
proves (7.1) whenn = 1.
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Now assume inductively that n > 1, and we have already proven the inequality

(7.1) for dimensions n — 1. We shall use a similar argument to the preceding one.
Each box B is now of the form

n
BY =[Jw@?. 6.
i=1

We can write this as
() — AU j )
BYW = AU « (ar(lj)vb;(lj )
where A is the n — 1-dimensional box AY) := ['Z (@', b). Note that

vol(BY) = vol,_1 (A)(bY) — a))

where we have subscripted vol,—; by n — 1 to emphasize that this is n — 1-
dimensional volume being referred to here. We similarly write

B = A x [a,, b,]
where A := ]_[;’;11 la;, b;], and again note that
vol(B) = vol,_,(A)(b, — ay).
For each j € J, let £ be the function such that ) (x,) = vol,_; (AY) for all

X, € (@, b, and £ (x,,) = 0 for all other x,. Then £ is Riemann integrable

and
o0

/ f(j) — VO]nfl(AU))(b;j) _ aﬁl.i)) — VOl(B(j))
—00
and hence
o0
ZVOI(BU)) — / Zf(j)‘
jeJ oo J€J
Now letx, € [a,, by]and (x{, ..., x,—1) € A.Then (xy, ..., x,) liesin B, and hence
lies in one of the BY). Clearly we have x, € (a\”, b\’), and (x1, ..., x,_1) € AV,

In particular, we see that for each x, € [a,, b,], the set
AV j e Jix, € @ b))

of n — I-dimensional boxes covers A. Applying the inductive hypothesis (7.1) at
dimension n — 1 we thus see that
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Y volii(AY) = vol,_i(A),

jeunea b

or in other words

Z f(j)(xn) > VOlnfl(A)~

jeJ

Integrating this over [a,, b, ], we obtain

> 9 = vol,_1(A) (b, — a,) = vol(B)

lan,bal 1€/

and in particular

o0

/ 3 £ = vol,_ 1 (A) by — a,) = vol(B)

jeJ

—00

since Y jes f 2 i§ always non-negative. Combining this with our previous identity
for ffooo > jes f (/) we obtain (7.1), and the induction is complete. O

Once we obtain the measure of a closed box, the corresponding result for an open
box is easy:

Corollary 7.2.7 For any open box

n
B = H(ai,bi):z{(xl, oy xp) €R" 1 x; € (a;, by) forall1 <i <n},
i=1

we have
n

m*(B) = [ [ — an.
i=1

In particular, outer measure obeys the normalization (xii).

Proof We may assume that b; > q; forall i, since if b; = q; this follows from Lemma
7.2.5(v). Now observe that

ﬁ[ai +e,bi—¢€]C li[(aiv b)) < ﬁ[ai, b;]
i=1 i=1 i=1

forall ¢ > 0, assuming that ¢ is small enough that b; — ¢ > a; + ¢ foralli. Applying
Proposition 7.2.6 and Lemma 7.2.5(vii) we obtain
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ﬁ(bi —a; —2¢&) <m* (ﬁ(ai’ bi)) < ﬁ(bi —a;).
i=1 i=1 i=1

Sending ¢ — 0 and using the squeeze test (Corollary 6.4.14), one obtains the result.
O

We now compute some examples of outer measure on the real line R.

Example 7.2.8 Letus compute the one-dimensional measure of R. Since (—R, R) €
R for all R > 0, we have

m*(R) = m*((—R, R)) = 2R

by Corollary 7.2.7. Letting R — 400 we thus see that m*(R) = +o0.

Example 7.2.9 Now let us compute the one-dimensional measure of Q. From Propo-
sition 7.2.6 we see that for each rational number Q, the point {¢} has outer measure
m*({¢g}) = 0. Since Q is clearly the union Q = quQ{q} of all these rational points
g, and Q is countable, we have

m Q) <) m*(fgh) =) 0=0,
q€Q q€Q

and so m*(Q) must equal zero. In fact, the same argument shows that every countable
set has measure zero. (This, incidentally, gives another proof that the real numbers
are uncountable, Corollary 8.3.4.)

Remark 7.2.10 One consequence of the fact that m*(Q) = O is that given any ¢ > 0,
it is possible to cover the rationals Q by a countable number of intervals whose total
length is less than ¢. This fact is somewhat un-intuitive; can you find a more explicit
way to construct such a countable covering of Q by short intervals?

Example 7.2.11 Now let us compute the one-dimensional measure of the irrationals
R\ Q. From finite sub-additivity we have

m*(R) = m*(R\Q) + m*(Q).

Since Q has outer measure 0, and m*(R) has outer measure +o00, we thus see that the
irrationals R\ Q have outer measure +00. A similar argument shows that [0, 1]\Q,
the irrationals in [0, 1], have outer measure 1 (why?).

Example 7.2.12 By Proposition 7.2.6, the unit interval [0,1] in R has
one-dimensional outer measure 1, but the unit interval {(x,0) : 0 < x < 1} in R?
has two-dimensional outer measure 0. Thus one-dimensional outer measure and
two-dimensional outer measure are quite different. Note that the above remarks and
countable sub-additivity imply that the entire x-axis of R? has two-dimensional outer
measure 0, despite the fact that R has infinite one-dimensional measure.
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— Exercises —

Exercise 7.2.1 Prove Lemma 7.2.5. (Hint: you will have to use the definition of inf,
and probably introduce a parameter €. You may have to treat separately the cases
when certain outer measures are equal to +o00. (viii) can be deduced from (x) and
(v). For (x), label the index set J as J = {ji, j2, j3, ...}, and for each A, pick a
covering of A; by boxes whose total volume is no larger than m*(A;) + ¢/2/.)

Exercise 7.2.2 Let A be a subset of R”, and let B be a subset of R”. Note
that the Cartesian product {(a, b) : a € A, b € B} is then a subset of R"*". Show
thatmy_, (A x B) < m}(A)m},(B). Here we adopt the convention that ¢ x +00 =
400 X c is equal to +o0 for any 0 < ¢ < 400 < and equal to zero for ¢ = 0. (It
is in fact true that m;; (A x B) = m}(A)m},(B), but this is substantially harder to

n+m
prove.)

In Exercises 7.2.3-7.2.5, we assume that R” is a Euclidean space, and we have a
notion of measurable set in R” (which may or may not coincide with the notion of
Lebesgue measurable set) and a notion of measure (which may or may not coincide
with Lebesgue measure) which obeys axioms (i)—(xiii).

Exercise 7.2.3 (a) Show that if A € A, € As... is an increasing sequence of
measurable sets (so A; € A;; for every positive integer j), then we have
m (U3 Aj) = limj oo m(A)).

(b) Show that if A} D Ay D Ajz... is a decreasing sequence of measurable sets
(so A; O A for every positive integer j), and m(A;) < 400, then we have

m (mj‘;l Aj) = lim o0 m(A}).

Exercise 7.2.4 Show that for any positive integer ¢ > 1, that the open box
O, 1/g)" :={(x1,...,x,) e R": 0 < x; <1/gforalll < j <n}
and the closed box
[0,1/q]" :={(x1,...,xs,) e R": 0 <x; <1/gforalll < j <n}

both measure ¢~". (Hint: first show that m((0, 1/q)") < g¢™" for every ¢ > 1 by
covering (0, 1)" by some translates of (0, 1/¢)". Using a similar argument, show that
m([0, 1/q]*) = g™". Then show that m([0, 1/4]"\(0, 1/¢g)") < ¢ for every ¢ > O,
by covering the boundary of [0, 1/¢g]" with some very small boxes.)

Exercise 7.2.5 Show that for any box B, that m(B) = vol(B). (Hint: first prove
this when the co-ordinates a;, b; are rational, using Exercise 7.2.4. Then take limits
somehow (perhaps using Q1) to obtain the general case when the co-ordinates are
real.)

Exercise 7.2.6 Use Lemma 7.2.5 and Proposition 7.2.6 to furnish another proof that
the reals are uncountable (i.e., reprove Corollary 8.3.4 from Analysis I).
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7.3 Outer Measure Is not Additive

Inlight of Lemma 7.2.5, it would seem now that all we need to do is to verify the addi-
tivity properties (ix), (xi), and we have everything we need to have a usable measure.
Unfortunately, these properties fail for outer measure, even in one dimension.

Proposition 7.3.1 (Failure of countable additivity) There exists a countable collec-
tion (A}) jey of disjoint subsets of R, such that m*(UJ.EJ Aj) # Zjej m*(Aj).

Proof We shall need some notation. Let Q be the rationals, and R be the reals. We
say that a set A C R is a coset of Q if it is of the form A = x + Q for some real
number x. For instance, v/2 + Q is a coset of Q, as is Q itself, since Q = 0 + Q.
Note that a coset A can correspond to several values of x; for instance 2 + Q is
exactly the same coset as 0 + Q. Also observe that it is not possible for two cosets to
partially overlap; if x + Q intersects y + Q in even just a single point z, then x — y
must be rational (why? Use the identity x — y = (x — z) — (y — z)),and thus x + Q
and y + Q must be equal (why?). So any two cosets are either identical or disjoint.

We observe that every coset A of the rationals Q has a non-empty intersection
with [0, 1]. Indeed, if A is a coset, then A = x + Q for some real number x. If we
then pick a rational number ¢ in [—x, 1 — x] then we see that x + ¢g € [0, 1], and
thus A N[0, 1] contains x + g.

Let R/Q denote the set of all cosets of Q; note that this is a set whose elements are
themselves sets (of real numbers). For each coset A in R/Q, let us pick an element
x4 of AN[O, 1]. (This requires us to make an infinite number of choices, and thus
requires the axiom of choice, see Sect.8.4.) Let E be the set of all such x4, i.e.,
E:={x4 : A € R/Q}. Note that E C [0, 1] by construction.

Now consider the set

x= |J @+6.

q€QN[—-1.1]

Clearly this set is contained in [—1, 2] (since ¢ + x € [—1, 2] whenever g € [—1, 1]
and x € E C [0, 1]). We claim that this set contains the interval [0, 1]. Indeed, for
any y € [0, 1], we know that y must belong to some coset A (for instance, it belongs
to the coset y + Q). But we also have x4 belonging to the same coset, and thus
¥y — x4 is equal to some rational g. Since y and x4 both live in [0, 1], then g lives in
[—1,1]. Since y = g + x4, we have y € ¢ + E, and hence y € X as desired.

Note that the translates g + E for g € Q are all disjoint. For, if there were two
distinct g, ¢’ € Q with g + E intersecting ¢’ + E, then there wouldbe A, A’ € R/Q
suchthatg + x4 = ¢’ +x4.Butthen A = x4 + Q =x4 + Q= A" and thus x4 =
x4 which implies that ¢ = ¢’, contradicting the hypothesis.

We claim that

m(X)#£ Y mig+E),

q€QN[-1.1]

which would prove the claim. To see why this is true, observe that since [0, 1] C
X C [—1, 2], that we have 1 < m*(X) < 3 by monotonicity and Proposition 7.2.6.
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For the right-hand side, observe from translation invariance that

Yo omg+E)= ) m'E).

geQN[—1,1] geQN[—1,1]

The set Q N [—1, 1] is countably infinite (why?). Thus the right-hand side is either
0 (it m*(E) = 0) or +o00 (if m*(E) > 0). Either way, it cannot be between 1 and 3,
and the claim follows. O

Remark 7.3.2 The above proof used the axiom of choice. This turns out to be abso-
lutely necessary; one can prove using some advanced techniques in mathematical
logic that if one does not assume the axiom of choice, then it is possible to have a
mathematical model where outer measure is countably additive.

One can refine the above argument, and show in fact that m* is not finitely additive
either:

Proposition 7.3.3 (Failure of finite additivity) There exists afinite collection (A;) je s
of disjoint subsets of R, such that

m* UAj # Zm*(Aj).

jeJ jeJ

Proof This is accomplished by an indirect argument. Suppose for sake of contradic-
tion that m* was finitely additive. Let £ and X be the sets introduced in Proposition
7.3.1. From countable sub-additivity and translation invariance we have

m(X)< Y miqg+E)= ) mi(E).

q€QN[-1.1] q€QN[-1.1]

Since we know that 1 < m*(X) < 3, we thus have m*(E) # 0, since otherwise we
would have m*(X) < 0, a contradiction.

Since m*(E) # 0, there exists a finite integer n > 0 such that m*(E) > 1/n. Now
let J be a finite subset of Q N [—1, 1] of cardinality 3n. If m* were finitely additive,
then we would have

§ _ . _ . I_
m* [ Jg+E]| =) m@q+E)=) m (E) > 3n— =3.

qgel qgelJ qgelJ

But we know that |_J ges 4t E is a subset of X, which has outer measure at most 3.
This contradicts monotonicity. Hence m* cannot be finitely additive. O

Remark 7.3.4 The examples here are related to the Banach-Tarski paradox, which
demonstrates (using the axiom of choice) that one can partition the unit ball in R
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into a finite number of pieces which, when rotated and translated, can be reassembled
to form two complete unit balls! Of course, this partition involves non-measurable
sets. We will not present this paradox here as it requires some group theory which is
beyond the scope of this text.

7.4 Measurable Sets

In the previous section we saw that certain sets were badly behaved with respect
to outer measure, in particular they could be used to contradict finite or countable
additivity. However, those sets were rather pathological, being constructed using the
axiom of choice and looking rather artificial. One would hope to be able to exclude
them and then somehow recover finite and countable additivity. Fortunately, this can
be done, thanks to a clever definition of Constantin Carathéodory (1873-1950):

Definition 7.4.1 (Lebesgue measurability) Let E be a subset of R”. We say that E
is Lebesgue measurable, or measurable for short, iff we have the identity

m*(A) = m*(A N E) + m*(A\E)

for every subset A of R”. If E is measurable, we define the Lebesgue measure of E
to be m(E) = m*(E); if E is not measurable, we leave m (E) undefined.

In other words, E being measurable means that if we use the set E to divide up an
arbitrary set A into two parts, we keep the additivity property. Of course, if m* were
finitely additive then every set E would be measurable; but we know from Proposition
7.3.3 that not every set is finitely additive. One can think of the measurable sets as
the sets for which finite additivity works. We sometimes subscript m(E) as m,,(E)
to emphasize the fact that we are using n-dimensional Lebesgue measure.

The above definition is somewhat hard to work with, and in practice one does
not verify a set is measurable directly from this definition. Instead, we will use this
definition to prove various useful properties of measurable sets (Lemmas 7.4.2—
7.4.11), and after that we will rely more or less exclusively on the properties in those
lemmas, and no longer need to refer to the above definition.

We begin by showing that a large number of sets are indeed measurable. The
empty set £ = (J and the whole space E = R" are clearly measurable (why?). Here
is another example of a measurable set:

Lemma 7.4.2 (Half-spaces are measurable) The half-space
{(x1,...,x,) € R" 1 x,, > 0}

is measurable.

Proof See Exercise 7.4.3. O
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Remark 7.4.3 A similar argument will also show that any half-space of the form
{(x1,...,x) € R" 1 x; > 0}or{(x1,...,x,) € R" : x; < O}forsomel < j <nis
measurable.

Now for some more properties of measurable sets.

Lemma 7.4.4 (Properties of measurable sets)

(a) If E is measurable, then R"\ E is also measurable.

(b) (Translation invariance) If E is measurable, and x € R", then x + E is also
measurable, and m(x + E) = m(E).

(c) If E\ and E, are measurable, then E; N E, and E{ U E, are measurable.

(d) (Boolean algebra property) If E1, E», ..., Eyx are measurable, then U;V:] E;

and ﬂ;vzl E; are measurable.
(e) Every open box, and every closed box, is measurable.
(f) Any set E of outer measure zero (i.e., m*(E) = 0) is measurable.

Proof See Exercise 7.4.4. ([l

From Lemma 7.4.4, we have proven properties (ii), (iii), (xiii) on our wish list of
measurable sets, and we are making progress toward (i). We also have finite additivity
(property (ix) on our wish list):

Lemma 7.4.5 (Finite additivity) If (E;) jes are a finite collection of disjoint mea-
surable sets, then for any set A (not necessarily measurable), we have

m* AN JE; | =) m"(ANE)).
jeJ jeJ
Furthermore, we have m (Ujej Ej) =2 jesm(E)).
Proof See Exercise 7.4.6. O

Remark 7.4.6 Lemma 7.4.5 and Proposition 7.3.3, when combined, imply that there
exist non-measurable sets: see Exercise 7.4.5.

Corollary 7.4.7 If A C B are two measurable sets, then B\ A is also measurable,
and
m(B\A) + m(A) = m(B).

Proof See Exercise 7.4.7. O
Now we show countable additivity.
Lemma 7.4.8 (Countable additivity) If (E;) je; are a countable collection of dis-

joint measurable sets, then |J. , E j is measurable, and m(UjE S E j) =

Zjejm(Ej)-

jeJ
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Proof Let E:= |, E;. Our first task will be to show that E is measurable. Thus,
let A be an arbitrary set (not necessarily measurable); we need to show that

m*(A) = m* (AN E) +m*(A\E).

Since J is countable, we may write J = {ji, j», J3, .. .}. Note that

o0
ANE=J@AnE)
k=1

(why?) and hence by countable sub-additivity

o0
m* (ANE) < Zm*(A NE;).
k=1

‘We rewrite this as
N

m*(ANE) <sup Y m*(ANE,;).
Nzl '

Let Fy be the set Fiy := U]iv:l E; . Since the AN E}, are all disjoint, and their
union is A N Fy, we see from Lemma 7.4.5 that

N
Zm*(A NE;)=m"(AN Fy)
k=1

and hence
m*(ANE) <supm*(AN Fy).

N=>1

Now we look at A\E. Since Fy C E (why?), we have A\E C A\ Fy (why?). By
monotonicity, we thus have

m*(A\E) < m*(A\Fy)
for all N. In particular, we see that

m*(AN E) +m*(A\E) < sup (m*(A N Fy) + m*(A\E))
N>1

< sup (m*(A N Fy) +m*(A\Fy)) .
N>1

But from Lemma 7.4.4(d) we know that Fy is measurable, and hence

m*(A N Fy) +m*(A\Fy) = m*(A).
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Putting this all together we obtain

m* (AN E) +m*(A\E) < m*(A).
But from finite sub-additivity we have

m*(ANE)+m*(A\E) > m*(A)

and the claim follows. This shows that E is measurable.
To finish the lemma, we need to show that m(E) is equal to jesm(Ej). We first
observe from countable sub-additivity that

m(E) < Zm(Ej) = Zm(Ejk).

jel k=1

On the other hand, by finite additivity and monotonicity we have

N
m(E) = m(Fy) =Y _m(Ej).
k=1
Taking limits as N — 0o we obtain

m(E) = > m(Ej)

k=1

and thus we have

m(E) =Y "m(E;) =Y m(E))
k=1

jeJ
as desired. O

This proves property (xi) on our wish list. Next, we do countable unions and
intersections.

Lemma 7.4.9 (o-algebra property) If (2) je; are any countable collection of mea-
surable sets (so J is countable), then the union | ), , Q j and the intersection
(jes ) are also measurable.

jed

Proof See Exercise 7.4.8. (Il

The final property left to verify on our wish list is (a). We first need a preliminary
lemma.

Lemma 7.4.10 Every open set can be written as a countable or finite union of open
boxes.
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Proof We first need some notation. Call a box B = ]_[;'zl(ai, b;) rational if all of
its components a;, b; are rational numbers. Observe that there are only a countable
number of rational boxes (this is since a rational box is described by 2n rational
numbers, and so has the same cardinality as Q?".But Qis countable, and the Cartesian
product of any finite number of countable sets is countable; see Corollaries 8.1.14,
8.1.15).

We make the following claim: given any open ball B(x, r), there exists a rational
box B which is contained in B(x, r) and which contains x. To prove this claim, write
x = (x1,...,x,). Foreach 1 <i < n, let q; and b; be rational numbers such that

r r
xi——<a,~<x,~<b,~<x,~+—.
n n

Then it is clear that the box []/_, (a;, b;) is rational and contains x. A simple com-
putation using Pythagoras’ theorem (or the triangle inequality) also shows that this
box is contained in B(x, r); we leave this to the reader.

Now let E be an open set, and let ¥ be the set of all rational boxes B which are
subsets of £, and consider the union | J ;5. B of all those boxes. Clearly, this union is
contained in E, since every box in X is contained in E by construction. On the other
hand, since E is open, we see that for every x € E there is a ball B(x, r) contained
in E, and by the previous claim this ball contains a rational box which contains x.
In particular, x is contained in | ;.5 B. Thus we have

E=|JB

Bex

as desired; note that X is countable or finite because it is a subset of the set of all
rational boxes, which is countable. O

Lemma 7.4.11 (Borel property) Every open set, and every closed set, is Lebesgue
measurable.

Proof 1t suffices to do this for open sets, since the claim for closed sets then follows
by Lemma 7.4.4(a) (i.e., property (ii)). Let E be an open set. By Lemma 7.4.10, E
is the countable union of boxes. Since we already know that boxes are measurable,
and that the countable union of measurable sets is measurable, the claim follows. [J

The construction of Lebesgue measure and its basic properties are now complete.
Now we make the next step in constructing the Lebesgue integral—describing the
class of functions we can integrate.

— Exercises —

Exercise 7.4.1 If A is an open interval in R, show that m*(A) = m*(A N (0, 00)) +
m*(A\(0, 00)).

Exercise 7.4.2 If AisanopenboxinR",and E isthe half-plane E :={(xy, ..., x,) €
R" : x,, > 0}, show that m*(A) = m*(ANE) +m*(A\E). (Hint: use Exercise
7.4.1.)
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Exercise 7.4.3 Prove Lemma 7.4.2. (Hint: use Exercise 7.4.2.)

Exercise 7.4.4 Prove Lemma 7.4.4. (Hints: for (c), first prove that
m*(A) =m* (AN E1 N Ep) +m*(ANE\E) +m*(AN Ey\Ep) +m™(A\(E1 U E»)).

A Venn diagram may be helpful. Also you may need the finite sub-additivity property.
Use (c) to prove (d), and use (bd) and the various versions of Lemma 7.4.2 to prove

(e)).

Exercise 7.4.5 Show that the set E used in the proof of Propositions 7.3.1 and 7.3.3
is non-measurable.

Exercise 7.4.6 Prove Lemma 7.4.5.
Exercise 7.4.7 Use Lemma 7.4.5 to prove Corollary 7.4.7.

Exercise 7.4.8 Prove Lemma 7.4.9. (Hint: for the countable union problem, write
J ={j1, jo, ...}, write Fy := U/iv=1 Q,,, and write E := Fy\ Fy_;, with the under-
standing that Fj is the empty set. Then apply Lemma 7.4.8. For the countable inter-
section problem, use what you just did and Lemma 7.4.4(a).)

Exercise 7.4.9 Let A € R? be the set A:=]0, 1]2\Q2; i.e., A consists of all the
points (x, y) in [0, 117 such that x and y are not both rational. Show that A is
measurable and m(A) = 1, but that A has no interior points. (Hint: it’s easier to use
the properties of outer measure and measure, including those in the exercises above,
than to try to do this problem from first principles.)

Exercise 7.4.10 Let A € B C R”". Show that if B is Lebesgue measurable with
measure zero, then A is also Lebesgue measurable with measure zero.

7.5 Measurable Functions

In the theory of the Riemann integral, we are only able to integrate a certain class
of functions—the Riemann integrable functions. We will now be able to integrate a
much larger range of functions—the measurable functions. More precisely, we can
only integrate those measurable functions which are absolutely integrable—but more
on that later.

Definition 7.5.1 (Measurable functions) Let Q2 be a measurable subset of R”, and
let f:  — R” be a function. A function f is measurable iff f~'(V) is measurable
for every open set V. C R™.

As discussed earlier, most sets that we deal with in real life are measurable, so it is
only natural to learn that most functions we deal with in real life are also measurable.
For instance, continuous functions are automatically measurable:
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Lemma 7.5.2 (Continuous functions are measurable) Let 2 be a measurable subset
of R", and let f: Q2 — R™ be continuous. Then f is also measurable.

Proof Let V be any open subset of R”. Then since f is continuous, f~'(V) is
open relative to €2 (see Theorem 2.1.5(c)), i.e., f’1 (V) = W N Q for some open set
W C R” (see Proposition 1.3.4(a)). Since W is open, it is measurable; since 2 is
measurable, W N  is also measurable. O

Because of Lemma 7.4.10, we have an easy criterion to test whether a function is
measurable or not:

Lemma 7.5.3 Let Q2 be a measurable subset of R", and let f: Q — R™ be a func-
tion. Then f is measurable if and only if f~'(B) is measurable for every open box
B.

Proof See Exercise 7.5.1. (I

Corollary 7.5.4 Let Q2 be a measurable subset of R", and let f: 2 — R™ be a
Sfunction. Suppose that f = (f1, ..., fn), where f;: Q — Ris the jth co-ordinate
of f. Then f is measurable if and only if all of the f; are individually measurable.

Proof See Exercise 7.5.2. (I

Unfortunately, it is not true that the composition of two measurable functions
is automatically measurable; however we can do the next best thing: a continuous
function applied to a measurable function is measurable.

Lemma 7.5.5 Let Q2 be a measurable subset of R, and let W be an open subset of
R"™. If f: Q — W ismeasurable, and g: W — R? is continuous, then g o f: Q2 —
R? is measurable.

Proof See Exercise 7.5.3. O
This has an immediate corollary:

Corollary 7.5.6 Let 2 be a measurable subset of R". If f: Q — R is a measurable
function, then so is | f|, max(f, 0), and min(f, 0).

Proof Apply Lemma 7.5.5 with g(x):=|x|, g(x):= max(x,0), and g(x):=
min(x, 0). O

A slightly less immediate corollary:

Corollary 7.5.7 Let Q2 be a measurable subset of R". If f: 2 — Randg: Q2 - R
are measurable functions, then sois f + g, f — g, fg, max(f, g), and min(f, g).
If g(x) # 0 for all x € Q, then f/g is also measurable.
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Proof Consider f + g. We can write this as k o &, where #: Q — R? is the function
h(x) = (f(x), g(x)),andk : R> — Risthe functionk(a, b) :=a + b. Since f, g are
measurable, then 4 is also measurable by Corollary 7.5.4. Since k is continuous, we
thus see from Lemma 7.5.5 that k o & is measurable, as desired. A similar argument
deals with all the other cases; the only thing concerning the f/g case is that the
space R? must be replaced with {(a, b) € R?: b # 0} in order to keep the map
(a, b) — a/b continuous and well-defined. O

Another characterization of measurable functions is given by

Lemma 7.5.8 Let 2 be a measurable subset of R", and let f: Q2 — R be afunction.
Then f is measurable ifand only if f~'((a, 00)) is measurable for every real number
a.

Proof See Exercise 7.5.4. O

Inspired by this lemma, we extend the notion of a measurable function to the
extended real number system R* :=R U {400} U {—00}:

Definition 7.5.9 (Measurable functions in the extended reals) Let 2 be ameasurable
subset of R”. A function f: & — R* is said to be measurable iff f~'((a, +0o0]) is
measurable for every real number a.

Note that Lemma 7.5.8 ensures that the notion of measurability for functions
taking values in the extended reals R* is compatible with that for functions taking
values in just the reals R.

Measurability behaves well with respect to limits:

Lemma 7.5.10 (Limits of measurable functions are measurable) Let Q be a mea-
surable subset of R". For each positive integer n, let f, : Q@ — R* be a measurable
function. Then the functions sup,,~. fn, inf,>1 fn, limsup,_, ., fu, andliminf,_, » f,
are also measurable. In particular, if the f, converge pointwise to another function
f: Q2 — R* then f is also measurable.

Proof We first prove the claim about sup,,..; f,,. Call this function g. We have to prove
that g~ ((a, +-00]) is measurable for every a. But by the definition of supremum, we
have

g~ ((a, +ool) = | £, (@, +00)])

n>1

(why?), and the claim follows since the countable union of measurable sets is again
measurable.
A similar argument works for inf,,>; f,. The claim for lim sup and lim inf then
follow from the identities
limsup f, = ]ivnf sup f,

n—00 =ly>N
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and
liminf f, = sup inf f,

n—00 N>11=N

(see Definition 6.4.6). O

As you can see, just about anything one does to a measurable function will pro-
duce another measurable function. This is basically why almost every function one
deals with in mathematics is measurable. (Indeed, the only way to construct non-
measurable functions is via artificial means such as invoking the axiom of choice.)

— Exercises —

Exercise 7.5.1 Prove Lemma 7.5.3. (Hint: use Lemma 7.4.10 and the o-algebra
property.)

Exercise 7.5.2 Use Lemma 7.5.3 to deduce Corollary 7.5.4.
Exercise 7.5.3 Prove Lemma 7.5.5.

Exercise 7.5.4 Prove Lemma 7.5.8. (Hint: use Lemma 7.5.3. As a preliminary step,
you may need to show that if f~!((a, 00)) is measurable for all a, then f~'([a, 00))
is also measurable for all a.)

Exercise 7.5.5 Let f: R” — R be Lebesgue measurable, and let g: R* — Rbea
function which agrees with f outside of a set of measure zero, thus there exists a set
A C R” of measure zero such that f(x) = g(x) for all x € R"\ A. Show that g is
also Lebesgue measurable. (Hint: use Exercise 7.4.10.)



Chapter 8 ®)
Lebesgue Integration i

In Chap. 11, we approached the Riemann integral by first integrating a particularly
simple class of functions, namely the piecewise constant functions. Among other
things, piecewise constant functions only attain a finite number of values (as opposed
to most functions in real life, which can take an infinite number of values). Once one
learns how to integrate piecewise constant functions, one can then integrate other
Riemann integrable functions by a similar procedure.

We shall use a similar philosophy to construct the Lebesgue integral. We shall
begin by considering a special subclass of measurable functions—the simple func-
tions. Then we will show how to integrate simple functions, and then from there we
will integrate all measurable functions (or at least the absolutely integrable ones).

8.1 Simple Functions

Definition 8.1.1 (Simple functions) Let Q2 be a measurable subset of R”, and let
f: 2 — R be a measurable function. We say that f is a simple function if the
image f(€2) is finite. In other words, there exists a finite number of real numbers
1, €2, ..., cy such that for every x € 2, we have f(x) =c; forsome 1 < j < N.

Example 8.1.2 Let 2 be a measurable subset of R”, and let E be a measurable
subset of 2. We define the characteristic function g : Q2 — R by setting xg(x):=1
ifx € E,and xg(x):=0if x ¢ E. (In some texts, x g is also written 1z and is referred
to as an indicator function.) Then x g is a measurable function (why?) and is a simple
function, because the image xg(2) is {0, 1} (or {0} if E is empty, or {1} if E = Q).

We remark on three basic properties of simple functions: that they form a vec-
tor space, that they are linear combinations of characteristic functions, and that they
approximate measurable functions. More precisely, we have the following three lem-
mas:
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Lemma 8.1.3 Let 2 be a measurable subset of R", andlet f: Q@ — Randg: Q@ —
R be simple functions. Then f + g is also a simple function. Also, for any scalar
c € R, the function cf is also a simple function.

Proof See Exercise 8.1.1. |

Lemma 8.1.4 Let Q2 be a measurable subset of R", and let f: Q — R be a simple
function. Then there exists a finite number of real numbers cy, . .., cy, and a finite
number of disjoint measurable sets E1, E,, ..., Ex inQ, such that f = ZZN=1 Ci XE;-

Proof See Exercise 8.1.2. O

Lemma 8.1.5 Let Q2 be a measurable subset of R", and let f: Q — [0, +00] be a
measurable function. Then there exists a sequence fi, f>, f3, ... of simple functions,
fn: Q — R, such that the f, are non-negative and increasing,

0< fix) < ox) < f3(x) <... forallx € Q
and converge pointwise to f:

ll)ngo fu(x) = f(x) forall x € Q.

Proof See Exercise 8.1.3. (I
We now show how to compute the integral of simple functions.

Definition 8.1.6 (Lebesgue integral of simple functions) Let Q be a measurable
subset of R”, and let f: 2 — R be a simple function which is non-negative; thus f
is measurable and the image f(€2) is finite and contained in [0, c0). We then define
the Lebesgue integral [, f of f on Q by

/f:: Z am({x € Q: f(x) =A)).
Q

rEF(Q);1>0

We will also sometimes write | o fas /: o J dm (to emphasize the role of Lebesgue
measure m) or use a dummy variable such as x, e.g., fQ f(x) dx.

Example 8.1.7 Let f: R — R be the function which equals 3 on the interval [1, 2],

equals 4 on the interval (2, 4), and is zero everywhere else. Then

/f::Sxm([1,2])+4xm((2,4))=3X 1+4x2=11.
Q

Or if g: R — R is the function which equals 1 on [0, co) and is zero everywhere
else, then
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/g=1><m([0,00))=1x+oo=+oo.
Q

Thus the simple integral of a simple function can equal +o00. (The reason why
we restrict this integral to non-negative functions is to avoid ever encountering the
indefinite form +o00 + (—00).)

Remark 8.1.8 Note that this definition of integral corresponds to one’s intuitive
notion of integration (at least of non-negative functions) as the area under the graph
of the function (or volume, if one is in higher dimensions).

Another formulation of the integral for non-negative simple functions is as follows.

Lemma 8.1.9 Let Q be a measurable subset of R", and let E, ..., Ey br a finite
number of disjoint measurable subsets in Q. Let cy, . . ., ¢y be non-negative numbers
(not necessarily distinct). Then we have

N N
/ZCjXE, = chm(Ej).
5 J=1 j=1

Proof We can assume that none of the c; are zero, since we can just remove them
from the sum on both sides of the equation. Let f:= Z?/:l cjxe;- Then f(x) is either
equal to one of the ¢; (if x € E;) orequal to 0 (if x ¢ U?/:1 E;). Thus f is a simple
function, and f(2) € {0} U{c; : 1 < j < N}. Thus, by the definition,

/f= Y. mlxe:f()=2)

Q re{cj:1<j<N}
= >  m U E
refcj:1<j<N} 1<j<N:c;j=h

But by the finite additivity property of Lebesgue measure, this is equal to

oo ) m(Ep

re{cj:1<j<N} 1<j<N:icj=X

= Z Z c;m(E;).

re{cj:1<j<SN}1<j<N:c;j=A
Each j appears exactly once in this sum, since c; is only equal to exactly one value
of A. So the above expression is equal to lejgzv cjm(E;) as desired. (]
Some basic properties of Lebesgue integration of non-negative simple functions:

Proposition 8.1.10 Ler Q2 be a measurable set, and let f: Q@ — Rand g: 2 — R
be non-negative simple functions.
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(a) We have 0 < [, f < oo. Furthermore, we have [, f = 0 if and only if m({x €
Q:fx)#0hH=0.

(b) Wehave [o(f +8) = [, f+ /o8

(¢) For any positive number c, we have [, cf =c [, f-

(d) If f(x) < g(x) forall x € Q, then we have [, f < [, g.

We make a very convenient notational convention: if a property P(x) holds for
all points in €2, except for a set of measure zero, then we say that P holds for almost
every point in 2. Thus (a) asserts that fQ f = 0if and only if f is zero for almost
every point in 2.

Proof From Lemma 8.1.4 or from the formula

f= Z AXixeQ:f(x)=1})
}

ref(ED\{0

we can write f as a combination of characteristic functions, say

N
f= Z CiXE;»
im1

where Ey, ..., Ey are disjoint subsets of €2 and the c; are positive. Similarly we can
write
M
g=) dixr
k=1
where Fi, ..., F), are disjoint subsets of €2 and the d; are positive.

(a) Since fQ f= Z?:l cjm(E;)itis clear that the integral is between 0 and infinity.
If f is zero almost everywhere, then all of the E; must have measure zero (why?)
and so [, f = 0. Conversely, if [, f = 0, then Zyzl c;m(E;) = 0, which can
only happen when all of the m(E;) are zero (since all the c¢; are positive). But
then Ull.V:l E ; has measure zero, and hence f is zero almost everywhere in .

(b) Write Ey:=\ U;v:1 E; and cy:=0, then wehave Q = Eg U E; U ... U Ey and

N
f= ZC]'XE/-
j=0

Similarly if we write Fy:=Q\ U,iwzl F, and dy:=0 then

M
g= Z di XF, -
k=0
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Since Q = EgU...UEy = FyU...U Fy, we have

N M
£=Y cixenn
j=0 k=0
and
M N
8= szkXE,ma
k=0 j=0
and hence
f+eg= Z (¢j + d)XE;nF -

=J =V USRS

By Lemma 8.1.9, we thus have

/(f +o= Y. (¢j+dom(E;NFy).
Q

=)=V USRS

On the other hand, we have

ff = Z ij(Ej) = Z ij(Ej N Fk)
Q

0<j<N 0<j<N;0<k<M

and similarly

Q/g

and the claim (b) follows.

(c) Since cf = Z;V:] ccjxe,» we have [,cf = Zyzl ce;m(Ej). Since [, f =
Z?’Zl c;m(E ), the claim follows.

(d) Write h:=g — f. Then h is simple and non-negative and g = f + h, hence by
(b) we have [, g = [, f + [ h. But by (a) we have [, h > 0, and the claim
follows.

Y dm(Fo= > dum(E;NF)

0<k<M 0<j<N;0<k<M

O
— Exercise —
Exercise 8.1.1 Prove Lemma 8.1.3.
Exercise 8.1.2 Prove Lemma 8.1.4.

Exercise 8.1.3 Prove Lemma 8.1.5. (Hint: set
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: Jo.. Jo_ "
fa@)=sup{S0 1 j € Z, -0 < min(f(x), 2},

,i.e., fn(x) is the greatest integer multiple of 27" which does not exceed either f(x)
or 2". You may wish to draw a picture to see how fi, f>, f3, etc., works. Then prove
that f, obeys all the required properties.)

8.2 Integration of Non-negative Measurable Functions

‘We now pass from the integration of non-negative simple functions to the integration
of non-negative measurable functions. We will allow our measurable functions to
take the value of 400 sometimes.

Definition 8.2.1 (Majorization) Let f: Q — R and g: 2 — R be functions. We
say that f majorizes g, or g minorizes f, if we have f(x) > g(x) forall x € Q.

We sometimes use the phrase “f dominates g” instead of “f majorizes g”.

Definition 8.2.2 (Lebesgue integral for non-negative functions) Let Q2 be a measur-
able subset of R”, and let f: Q2 — [0, oo] be measurable and non-negative. Then
we define the Lebesgue integral fQ f of fon 2 tobe

/ fi=sup / s : s is simple and non-negative, and minorizes f

Q Q

Remark 8.2.3 The reader should compare this notion to that of a lower Riemann
integral from Definition 11.3.2. Interestingly, we will not need to match this lower
integral with an upper integral here.

Remark 8.2.4 Note that if Q' is any measurable subset of €2, then we can define
Jo [ as well by restricting f to ', thus [o, f:= [, fla.

We have to check that this definition is consistent with our previous notion of
Lebesgue integral for non-negative simple functions; in other words, if f: 2 — R
is a non-negative simple function, then the value of fQ f given by this definition
should be the same as the one given in the previous definition. But this is clear
because f certainly minorizes itself, and any other non-negative simple function s
which minorizes f will have an integral fQ s less than or equal to fQ f, thanks to
Proposition 8.1.10(d).

Remark 8.2.5 Note that fQ f is always at least 0, since 0O is simple, non-negative,
and minorizes f. Of course, fQ f could equal +o0.

Some basic properties of the Lebesgue integral on non-negative measurable func-
tions (which supercede Proposition 8.1.10):
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Proposition 8.2.6 Let Q2 be a measurable set, and let f: Q — [0, 00]and g: Q —
[0, oo] be non-negative measurable functions.

(a) WehaveO < [, f < oo. Furthermore, we have [, f = O ifand only if f (x) = 0
for almost every x € Q.

(b) For any positive number c, we have fQ cf = CfQ f-

(¢) If f(x) < g(x) forall x € Q, then we have [, f < [, g.

(d) If f(x) = g(x) for almost every x € Q, then [, f = [ g.

(e) If Q' C Qis measurable, then [, f = [, fxe < [ f-

Proof See Exercise 8.2.1. O

Remark 8.2.7 Proposition 8.2.6(d) is quite interesting; it says that one can modify

the values of a function on any measure zero set (e.g., you can modify a function on

every rational number), and not affect its integral at all. It is as if no individual point,

or even a measure zero collection of points, has any “vote” in what the integral of a
function should be; only the collective set of points has an influence on an integral.

Remark 8.2.8 Note that we do not yet try to interchange sums and integrals. From
the definition it is fairly easy to prove that [, (f + &) > [, f + [ g (Exercise 8.2.2),
but to prove equality requires more work and will be done later.

As we have seen in previous chapters, we cannot always interchange an integral
with a limit (or with limit-like concepts such as supremum). However, with the
Lebesgue integral it is possible to do so if the functions are increasing:

Theorem 8.2.9 (Lebesgue monotone convergence theorem) Let 2 be a measurable
subset of R", and let (f,);2, be a sequence of non-negative measurable functions
from Q to [0, +00] which are increasing in the sense that

0< fi(x) < fo(x) < f3(x) <... forallx € Q.

(Note we are assuming that f,(x) is increasing with respect to n; this is a different
notion from f,(x) increasing with respect to x.) Then we have

OSQ/fligffzfgfﬁf-.-
Q/S‘ipf":S‘in/f"'

Proof The first conclusion is clear from Proposition 8.2.6(c). Now we prove the
second conclusion. From Proposition 8.2.6(c) again we have

/supfm > /fn
" Q

Q

and
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for every n; taking suprema in n we obtain

/Supfm ESUP/fn
m n Q

Q

which is one half of the desired conclusion. To finish the proof we have to show
/ sup fm < sup/ fa-
a " "2

From the definition of fQ sup,, fm, it will suffice to show that

/sssup/fn
Q "2

for all simple non-negative functions which minorize sup,, f,.

Fix s. We will show that
(1—8)/s§sup/f,,
Q "

for every 0 < ¢ < 1; the claim then follows by taking limits as & — 0.
Fix ¢. By construction of s, we have

s(x) <sup f,(x)

for every x € Q. Hence, for every x € Q2 there exists an N (depending on x) such
that

fv(x) = (1 —g)s(x).

Since the f,, are increasing, this will imply that f,(x) > (1 — ¢)s(x) foralln > N.
Thus, if we define the sets E, by

Ep={x € Q: fu(x) > (1 —¢&)s(x)}
then we have Ey C E; C E3 C...and ;2 E, = Q.

It is not difficult to check that all the E, are measurable. From Proposition
8.2.6(bce) we have

(1—8)/S=/(1—8)85ffn§/fn
E, E, E, Q
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so to finish the argument it will suffice to show that
sup / s = / s.
n
E, Q

Since s is a simple function, we may write s = Y
and positive c¢;. Since

N
j=1 CiXF, for some measurable F;

N
/s = chm(Fj)
Q j=l

and
N N
ZCJ'XFJ.QE” = ZCJ'W[(F]' N En)

j=1 j=1

-

n n

it thus suffices to show that

supm(F_,- n En) = m(F,)

for each j. But this follows from Exercise 7.2.3(a). ([l

This theorem is extremely useful. For instance, we can now interchange addition
and integration:

Lemma 8.2.10 (Interchange of addition and integration) Let Q2 be a measurable
subset of R", and let f: Q2 — [0, 0] and g: 2 — [0, oo] be measurable functions.

Then fsz(f +8) = fQ f+ fQ 8

Proof By Lemma 8.1.5, there exists a sequence 0 < s; < s < --- < f of simple
functions such that sup, s, = f, and similarly a sequence 0 < # <# < ... < gof
simple functions such that sup, f, = g. Since the s, are increasing and the #, are
increasing, it is then easy to check that s, + ¢, is also increasing and sup,, (s, + t,) =
f + g (why?). By the monotone convergence theorem (Theorem 8.2.9) we thus have

/f:supfs,,
Q "2
/g=sup/t,,

Q Q
/(f+g) = Sup/(sn +1,).
Q " Q



176 8 Lebesgue Integration

But by Proposition 8.1.10(db) we have [, (s, + 1) = [, $u + [, ts- By Proposition
8.1.9(d), [, s» and [, 1, are both increasing in n, so

sup fs,,—i—/tn = sup/s,, + sup/t,,
n nQ ilQ

Q Q
and the claim follows. O

Of course, once one can interchange an integral with a sum of two functions,
one can handle an integral and any finite number of functions by induction. More
surprisingly, one can handle infinite sums as well of non-negative functions:

Corollary 8.2.11 If Q is a measurable subset of R", and g1, g2, . .. are a sequence
of non-negative measurable functions from Q2 to [0, oo], then

[£0-5n

n=1 Q
Proof See Exercise 8.2.3. O

Remark 8.2.12 Note that we do not need to assume anything about the convergence
of the above sums; it may well happen that both sides are equal to +0o0. However,
we do need to assume non-negativity; see Exercise 8.3.4.

One could similarly ask whether we could interchange limits and integrals; in
other words, is it true that

/lim fo= lim/f,,.
n—0oQ n—0oQ
Q

Q

Unfortunately, this is not true, as the following “moving bump” example shows. For
eachn =1,2,3..,,let f,: R — Rbe the function f, = xs.n+1). Thenlim,_,« f;
(x) = O forevery x, but [, f, = 1forevery n, and hence lim, o [ fu =1 #0.In
other words, the limiting function lim,,_, o, f, can end up having significantly smaller
integral than any of the original integrals. However, the following very useful lemma
of Fatou shows that the reverse cannot happen—there is no way the limiting function
has larger integral than the (limit of the) original integrals:

Lemma 8.2.13 (Fatou’s lemma) Let Q2 be a measurable subset of R", and let
f1, f2, ... be a sequence of non-negative functions from 2 to [0, co]. Then

/lim inf f, <lim inf/ Jn-
n—o0o n— oo
Q

Q
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Proof Recall that
lim inf f, = sup (inf fm)
n—00 n m>n

and hence by the monotone convergence theorem

/lim inf f, = sup/ <inf fm).
n—00 n m>n
Q Q

By Proposition 8.2.6(c) we have

[ ()= [

for every j > n; taking infima in j we obtain

[ (int ) <ot [
Q a

/lim inf f, < supinf/fj =1iminf'/f,Z
n— 00 n Jj=n n— 00
Q Q Q

Thus

as desired. O

Note that we are allowing our functions to take the value 400 at some points. It is
even possible for a function to take the value +oo but still have a finite integral; for
instance, if E is a measure zero set, and f: € — R s equal to +00 on E but equals
0 everywhere else, then fQ f = 0 by Proposition 8.2.6(a). However, if the integral
is finite, the function must be finite almost everywhere:

Lemma 8.2.14 Let Q2 be a measurable subset of R", and let f: Q — [0, 0o] be a
non-negative measurable function such that fQ f is finite. Then f is finite almost
everywhere (i.e., the set {x € Q : f(x) = +00} has measure zero).

Proof See Exercise 8.2.4. O
Form Corollary 8.2.11 and Lemma 8.2.14 one has a useful lemma:

Lemma 8.2.15 (Borel-Cantelli lemma) Let 21, 2, ... be measurable subsets of

R” such that Z;.,O:1 m(82,) is finite. Then the set

{x € R" : x € Q, for infinitely many n}

is a set of measure zero. In other words, almost every point belongs to only finitely
many 2.
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Proof See Exercise 8.2.5. O
— Exercise —

Exercise 8.2.1 Prove Proposition 8.2.6. (Hint: do not attempt to mimic the proof
of Proposition 8.1.10; rather, try to use Proposition 8.1.10 and Definition 8.2.2. For
one direction of part (a), start with fQ f = 0and conclude that m({x € Q: f(x) >
1/n}) =0 for every n = 1,2,3, ..., and then use the countable subadditivity. To
prove (e), first prove it for simple functions.)

Exercise 8.2.2 Let 2 be a measurable subset of R”, and let f: Q2 — [0, +00] and
g: Q2 — [0, 4-00] be measurable functions. Without using Theorem 8.2.9 or Lemma

8.2.10, prove that [, (f +8) = [ f + /5 &-

Exercise 8.2.3 Prove Corollary 8.2.11. (Hint: use the monotone convergence theo-
rem with fy:= Z,’:lzl gn-)

Exercise 8.2.4 Prove Lemma 8.2.14.

Exercise 8.2.5 Use Corollary 8.2.11 and Lemma 8.2.14 to prove Lemma 8.2.15.
(Hint: use the indicator functions xg,.)

Exercise 8.2.6 Let p > 2 and ¢ > 0. Using the Borel-Cantelli lemma, show that
the set

{x e[0,1]:|x — g| < i} for infinitely many positive integers a, q}
9 q°

has measure zero. (Hint: one only has to consider those integers a in the range

0 < a < g (why?). Use Corollary 11.6.5 to show that the sum } "~ | C(‘;}Ll) is finite.)

Exercise 8.2.7 Call a real number x € R diophantine if there exist real numbers
p, C > 0 such that [x — $| > C/|q|? for all nonzero integers ¢ and all integers a.
Using Exercise 8.2.6, show that almost every real number is diophantine. (Hint: first
work in the interval [0, 1]. Show that one can take p and C to be rational and one
can also take p > 2. Then use the fact that the countable union of measure zero sets
has measure zero.)

Exercise 8.2.8 For every positive integer n, let f,: R — [0, 0c0) be a non-negative
measurable function such that 1
/fn < —.

4n
R

Show that for every & > 0, there exists a set E of Lebesgue measure m(E) < ¢
such that f, (x) converges pointwise to zero for all x € R\ E. (Hint: first prove that

m({x eR: f,(x) > 8%}) < 23 foralln = 1,2, 3, ..., and then consider the union

of all the sets {x € R: f,,(x) > —:}.)
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Exercise 8.2.9 For every positive integer n, let f,: [0, 1] — [0, 00) be a non-
negative measurable function such that f, converges pointwise to zero. Show that
for every ¢ > 0, there exists a set E of Lebesgue measure m(E) < ¢ such that f,(x)
converges uniformly to zero for all x € [0, 1]\ E. (This is a special case of Egoroff’s
theorem. To prove it, first show that for any positive integer m, we can findan N > 0
such that m({x € [0, 1] : f,(x) > I/m foralln > N}) < ¢&/2™.) Is the claim still
true if [0, 1] is replaced by R?

Exercise 8.2.10 Give an example of a bounded non-negative function f: N x N —
R™ such that anozl f(n, m) converges for every n, and such that lim,,_, o, f(n, m)
exists for every m, but such that

lim Y f(n.m)# Y lim f(n,m).
m=1 m=1

(Hint: modify the moving bump example. It is even possible to use a function f which
only takes the values 0 and 1.) This shows that interchanging limits and infinite sums
can be dangerous.

8.3 Integration of Absolutely Integrable Functions

We have now completed the theory of the Lebesgue integral for non-negative func-
tions. Now we consider how to integrate functions which can be both positive and
negative. However, we do wish to avoid the indefinite expression 400 + (—00), so
we will restrict our attention to a subclass of measurable functions—the absolutely
integrable functions.

Definition 8.3.1 (Absolutely integrable functions) Let Q2 be a measurable subset of
R”. A measurable function f: 2 — R* is said to be absolutely integrable if the
integral [, | 1 is finite.

Of course, | f| is always non-negative, so this definition makes sense even if f
changes sign. Absolutely integrable functions are also known as L'(2) functions.

If f: Q — R* is a function, we define the positive part f: Q — [0, oc] and
negative part f~: Q — [0, oo] by the formulae

fri=max(f,0); f :=—min(f,0).

From Corollary 7.5.6 (which can be extended to R*-valued functions without diffi-
culty) we know that f* and f~ are measurable. Observe also that f* and f~ are
non-negative, that f = f* — f~,and | f| = f* + f~. (Why?).

Definition 8.3.2 (Lebesgue integral) Let f: Q — R* be an absolutely integrable
function. We define the Lebesgue integral fQ f of f to be the quantity
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i

Note that since f is absolutely integrable, fQ f*and fQ f~ are less than or equal
to fQ | f| and hence are finite. Thus fQ f is always finite; we are never encountering
the indeterminate form +o00 — (400).

Note that this definition is consistent with our previous definition of the Lebesgue
integral for non-negative functions, since if f is non-negative then f* = f and
f~ = 0. We also have the useful triangle inequality

[l s [r=[in .1)
Q Q Q Q
(Exercise 8.3.1).

Some other properties of the Lebesgue integral:

Proposition 8.3.3 Let Q2 be a measurable set, and let f: 2 — Rand g: Q2 - R
be absolutely integrable functions.

(a) For any real number c (positive, zero, or negative), we have that cf is absolutely
integrable and [, cf =c [, f.

(b) The function f + g is absolutely integrable, and fQ(f +g) = fQ f+ fQ g.

(¢) If f(x) < g(x) forall x € Q, then we have [, f < [, g.

(d) If f(x) = g(x) for almost every x € , then [, f = [, g.

Proof See Exercise 8.3.2. O

As mentioned in the previous section, one cannot necessarily interchange limits
and integrals, lim [ f, = [ lim f,, as the “moving bump example” showed. How-
ever, it is possible to exclude the moving bump example and successfully interchange
limits and integrals, if we know that the functions f, are all majorized by a single
absolutely integrable function. This important theorem is known as the Lebesgue
dominated convergence theorem and is extremely useful:

Theorem 8.3.4 (Lebesgue dominated convergence thm) Let Q2 be a measurable
subset of R", and let fi, f>, ... be a sequence of measurable functions from Q2 to R*
which converge pointwise. Suppose also that there is an absolutely integrable function
F: Q — [0, c0]suchthat|f,(x)| < F(x)forallx € Qandalln =1,2,3,....Then

/ lim f, = lim [ f,.
n—oo n—oo

Q Q

Proof If F was infinite on a set of positive measure then F would not be absolutely
integrable; thus the set where F is infinite has zero measure. We may delete this set
from €2 (this does not affect any of the integrals) and thus assume without loss of
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generality that F(x) is finite for every x € 2, which implies the same assertion for
the f,(x).

Let f: Q — R* be the function f(x):=1lim,_ « f,(x); this function exists by
hypothesis. By Lemma 7.5.10, f is measurable. Also, since | f,(x)| < F(x) for all
n and all x € €2, we see that each f, is absolutely integrable, and by taking limits
we obtain | f(x)| < F(x) for all x € 2, so f is also absolutely integrable. Our task
is to show that lim, . [ fu = [ f

The functions F + f, are non-negative and converge pointwise to F + f. So by
Fatou’s lemma (Lemma 8.2.13)

/F—l—ffliminf/F—i—f,,
n—o00

Q Q
and thus

f < 11m1nf/fn

n—oo

But the functions F — f, are also non-negative and converge pointwise to F — f.
So by Fatou’s lemma again

/F—fgnminffF—fn.
n—oo
Q Q

Since the right-hand side is [, F — limsup,_, , [, f» (Why did the lim inf become
a lim sup?), we thus have

f > lim sup/fn

n—o0

Thus the lim inf and lim sup of [, f, are both equal to [, f, as desired. O

Finally, we record a lemma which is not particularly interesting in itself, but will
have some useful consequences later in these notes.

Definition 8.3.5 ((Upperandlower Lebesgue integral) Let Q2 be ameasurable subset
of R",and let f: Q — R_be a function (not necessarily measurable). We define the

upper Lebesgue integral [ of tobe
/ f:=inf i / g : g is an absolutely integrable function

from 2 to R that majorizes f }

and the lower Lebesgue integral | o f tobe
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/ fi= sup{ / g : g is an absolutely integrable function
Z.Q
Q
from 2 to R that minorizes f }
It is easy to see that f f < fﬂf (why? Use Proposition 8.3.3(c)). When f is
absolutely integrable then equahty occurs (why?). The converse is also true:

Lemma 8.3.6 Let $2 be a measurable subset of R", and let f: 2 — R be a function
(not necessarily measurable). Let A be a real number, and suppose | of = f o f=
A. Then f is absolutely integrable, and

!f=Jf=£J=A.

Proof By definition of upper Lebesgue integral, for every integer n > 1 we may find
an absolutely integrable function f,": € — R which majorizes f such that

/ﬁfﬁA+l
n
Q

Similarly we may find an absolutely integrable function f, : & — R which
minorizes f such that
==

Let Ft:=inf, f,} and F~:=sup, f, . Then F and F~ are measurable (by Lemma
7.5.10) and absolutely integrable (because they are squeezed between the abso-
lutely integrable functions f;" and f,~, for instance). Also, F™ majorizes f and
F~ minorizes f. Finally, we have

/F*s/f,jsA+l
n
Q

Q

for every n, and hence

Similarly we have
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but F majorizes F~, and hence fQ F™> fQ F~. Hence we must have

/F*:/F’:A.
Q Q
/F*—F*:O.
Q

By Proposition 8.2.6(a), we thus have F*(x) = F~(x) for almost every x. But since
f issqueezed between F~ and F T, we thus have f(x) = FT(x) = F~(x) for almost
every x. In particular, f differs from the absolutely integrable function F* only on
a set of measure zero and is thus measurable (see Exercise 7.5.5) and absolutely

integrable, with
[r=fr=[r=
Q Q Q

as desired. O

In particular

— Exercise —

Exercise 8.3.1 Prove (8.1) whenever Q2 is a measurable subset of R” and f is an
absolutely integrable function.

Exercise 8.3.2 Prove Proposition 8.3.3. (Hint: for (b), break f, g, and f + g up
into positive and negative parts, and try to write everything in terms of integrals of
non-negative functions only, using Lemma 8.2.10.)

Exercise 8.3.3 Let f: R — Rand g: R — Rbe absolutely integrable, measurable
functions such that f(x) < g(x) for all x € R, and that [, f = [, g. Show that
f(x) = g(x) for almost every x € R (i.e., that f(x) = g(x) for all x € R except
possibly for a set of measure zero).

Exercise 8.3.4 For each n =1,2,3,..., let f,: R— R be the function f, =
Xinn+1) — Xin+1.n+2)5 1.€., let f,(x) equal +1 when x € [n, n + 1), equal —1 when
x € [n+ 1,n 4+ 2), and 0 everywhere else. Show that

/§ﬁ¢i/n

n=1 R

Explain why this does not contradict Corollary 8.2.11.
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8.4 Comparison with the Riemann Integral

We have spent a lot of effort constructing the Lebesgue integral, but have not yet
addressed the question of how to actually compute any Lebesgue integrals, and
whether Lebesgue integration is any different from the Riemann integral (say for
integrals in one dimension). Now we show that the Lebesgue integral is a generaliza-
tion of the Riemann integral. To clarify the following discussion, we shall temporarily
distinguish the Riemann integral from the Lebesgue integral by writing the Riemann
integral [, f as R. [, f.
Our objective here is to prove

Proposition 8.4.1 Let I C R be a bounded interval, and let f: I — R be a Rie-
mann integrable function. Then f is also absolutely integrable, and |, ; f=R. /, [

Proof Write A:=R. [, ; f. Since f is Riemann integrable, we know that the upper
and lower Riemann integrals are equal to A. Thus, for every ¢ > 0, there exists a
partition P of 7 into smaller intervals J such that

A—e<) [Jlinf f) <A <) [J|supf(x) < Ate,
jep € Jep €/

where |J| denotes the length of J. Note that |J| is the same as m(J), since J is a
box.
Let f7 : I — Rand f,* : I — R be the functions

foGy =Y inf f0xs @)

JeP

and

£ = sup £ ) xu ()

JeP xelJ

these are simple functions and hence measurable and absolutely integrable. By
Lemma 8.1.9 we have

/ﬁ=Zugwm
JeP

1

and

fﬁ=2umwm

xelJ
T JeP

and hence

A—eg/f;gAg/fng+s.
1 1
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Since f;" majorizes f, and f,” minorizes f, we thus have

A—ei/fi/f§A+s
J ‘

/lf=17f=A

for every ¢, and thus

and hence by Lemma 8.3.6, f is absolutely integrable with || ; f = A, asdesired. [J

Thus every Riemann integrable function is also Lebesgue integrable, at least on
bounded intervals, and we no longer need the R. || ; Jf notation. However, the converse
is not true. Take for instance the function f: [0, 1] — R defined by f(x):=1 when
x is rational, and f(x):=0 when x is irrational. Then from Proposition 11.7.1 we
know that f is not Riemann integrable. On the other hand, f is the characteristic
function of the set Q N [0, 1], which is countable and hence measure zero. Thus f is
Lebesgue integrable and f[o,l] f = 0. Thus the Lebesgue integral can handle more
functions than the Riemann integral; this is one of the primary reasons why we use
the Lebesgue integral in analysis. (The other reason is that the Lebesgue integral
interacts well with limits, as the Lebesgue monotone convergence theorem, Fatou’s
lemma, and Lebesgue dominated convergence theorem already attest. There are no
comparable theorems for the Riemann integral.)

8.5 Fubini’s Theorem

In one dimension we have shown that the Lebesgue integral is connected to the
Riemann integral. Now we will try to understand the connection in higher dimensions.
To simplify the discussion we shall just study two-dimensional integrals, although
the arguments we present here can easily be extended to higher dimensions.

We shall study integrals of the form fRZ f - Note that once we know how to integrate
on R2, we can integrate on measurable subsets €2 of R2, since f o f can be rewritten
as fR2 fXQ

Let f(x,y) be a function of two variables. In principle, we have three dif-
ferent ways to integrate f on RZ. First of all, we can use the two-dimensional
Lebesgue integral, to obtain fRﬁ f. Secondly, we can fix x and compute a one-
dimensional integral in y, and then take that quantity and integrate in x, thus obtaining
fR( fR f(x,y) dy) dx. Thirdly, we could fix y and integrate in x, and then integrate
in y, thus obtaining [ (fg f(x, y) dx) dy.

Fortunately, if the function f is absolutely integrable on f, then all three integrals
are equal:
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Theorem 8.5.1 (Fubini’s theorem) Let f: R?> — R be an absolutely integrable
Sfunction. Then there exists absolutely integrable functions F: R — Rand G: R —
R such that for almost every x, f(x,y) is absolutely integrable in y with

F(x) Z/f(x,y) dy,
R

and for almost every y, f(x,y) is absolutely integrable in x with

G(y) = /f(x,y) dx.
R

/F(x)dx:ff:/G(y)dy.
R2

R R

Finally, we have

Remark 8.5.2 Very roughly speaking, Fubini’s theorem says that

[{[rava)a=[r=[{[ramna]a
R R2 R R

R

This allows us to compute two-dimensional integrals by splitting them into two one-
dimensional integrals. The reason why we do not write Fubini’s theorem this way,
though, is that it is possible that the integral fR f(x,y) dy does not actually exist
for every x, and similarly fR f(x, y) dx does not exist for every y; Fubini’s theorem
only asserts that these integrals only exist for almost every x and y. For instance,
if f(x, y) is the function which equals 1 when y > 0 and x = 0, equals —1 when
y < 0 and x = 0, and is zero otherwise, then f is absolutely integrable on R? and
Jge f =0 (since f equals zero almost everywhere in R?), but [ f(x, y) dy is not
absolutely integrable when x = 0 (though it is absolutely integrable for every other
X).

Proof The proof of Fubini’s theorem is quite complicated, and we will only give a
sketch here. We begin with a series of reductions.
Roughly speaking (ignoring issues relating to sets of measure zero), we have to

show that
[{[renar)a=[r
R2

R R

together with a similar equality with x and y reversed. We shall just prove the above
equality, as the other one is very similar.
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First of all, it suffices to prove the theorem for non-negative functions, since the
general case then follows by writing a general function f as a difference f* — f~ of
two non-negative functions, and applying Fubini’s theorem to f* and f~ separately
(and using Proposition 8.3.3(a) and (b)). Thus we will henceforth assume that f is
non-negative.

Next, it suffices to prove the theorem for non-negative functions f supported on
a bounded set such as [-N, N] x [—N, N] for some positive integer N. Indeed,
once one obtains Fubini’s theorem for such functions, one can then write a general
function f as the supremum of such compactly supported functions as

S = sup fX-NNIx[-N.N]»
N=>0

apply Fubini’s theorem to each function f x[—n njx[—n~,n~] Separately, and then take
suprema using the monotone convergence theorem. Thus we will henceforth assume
that f is supported on [-N, N] x [-N, N].

By another similar argument, it suffices to prove the theorem for non-negative
simple functions supported on [-N, N] x [—N, N1, since one can use Lemma 8.1.5
to write f as the supremum of simple functions (which must also be supported on
[—N, N1]), apply Fubini’s theorem to each simple function, and then take suprema
using the monotone convergence theorem. Thus we may assume that f is a non-
negative simple function supported on [-N, N] x [-N, N].

Next, we see that it suffices to prove the theorem for characteristic functions
supported in [-N, N] x [—N, N]. This is because every simple function is a linear
combination of characteristic functions, and so we can deduce Fubini’s theorem for
simple functions from Fubini’s theorem for characteristic functions. Thus we may
take f = xg for some measurable E C [—N, N] x [—N, N]. Our task is then to
show (ignoring sets of measure zero) that

/ / xe(x,y)dy | dx = m(E).

[-N,N] [-N,N]

It will suffice to show the upper Lebesgue integral estimate

/ / xe(x,y)dy | dx < m(E). (8.2)

[=N.N] \[=N,N]

We will prove this estimate later. Once we show this for every set E, we may substitute
E with [-N, N] x [—N, N]\E and obtain

/ / (1 = xe(x, y)) dy | dx < 4N* — m(E).

[=N.N] \[=N,N]
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But the left-hand side is equal to

/(ZN—/ X6 (e, y) dy) d
[-N,N]

[=N,N] _

which is in turn equal to

4N2—f (/ xe(x, y) dy) dx
Y [-N,N] \ “—[-N,N]

and thus we have

/ ( f xe(x,y) dy) dx > m(E).
LN \ LN

In particular we have
/ / xe(x, y)dy | dx = m(E)
NN\ Yy

and hence by Lemma 8.3.6 we see that 7[_
and

NN X e(x, y) dy is absolutely integrable

xe(x,y) dy | dx = m(E).
[-N,N] —N,N]|

A similar argument shows that
(f Xe(x, y) dy) dx =m(E)
(NN NN

and hence

/ / xE(x,y)dy—/ Xxe(x,y) |dx =0.
~—[-N,N]

[-N,N] —N,N]

Thus by Proposition 8.2.6(a) we have

/ xe(x,y)dy = /XE(x,y)dy
“—[-N,N]

[=N.N]
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for almostevery x € [—N, N]. Thus yg(x, y) is absolutely integrable in y for almost
every x, and f[_ NN X g(x, y) is thus equal (almost everywhere) to a function F(x)
such that

F(x)dx = m(E)
[-N.N]
as desired.
It remains to prove the bound (8.2). Let ¢ > 0 be arbitrary. Since m(E) is the

same as the outer measure m*(E), we know that there exists an at most countable

collection (B;) je; of boxes such that E € | J,., B; and

> m(B;) <m(E) +e.

jeJ

Each box B; can be written as B; = I; x I} for some intervals /; and [}. Observe

that
m(B,>=|1,-||I;|=/|I;|dx:/ /dy ax
1

I I

= / /XIszl;(x,y)dx dy

[-N.N] \ [-N.N]
= / x5, (x,y) dx | dy.
[-N,N] [-N,N]

Adding this over all j € J (using Corollary 8.2.11) we obtain

> m(Bj) = / /ngj(x,y)dx dy.

jed NN \[_N.N] i€
In particular we have

/ / > xs,(x,y) dx | dy < m(E) +e.
[=N.N]

Nl \[=n,N] €7
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But } ;. x5, majorizes xg (why?) and thus

xe(x,y)dx | dy <m(E) +e.

[=N,N] [-N,N]

But ¢ is arbitrary, and so we have (8.2) as desired. This completes the proof of
Fubini’s theorem. O
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Approximation to the identity, 59, 61, 103
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of scalar multiplication, 117
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Banach-Tarski paradox, 146, 157
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Cauchy sequence, 15
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in higher dimensions, 128, 130
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Clairaut’s theorem, see interchanging

derivatives with derivatives

Closed
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Closure, 10, 34
Cocountable topology, 36
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Column vector, 114
Commutativity, 102
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of convolution, 60, 102
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of the space of continuous functions, 50
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Complex numbers C, 82

complex conjugation, 84
Connectedness, 30

connected component, 33
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of a function at a point, 40

of sequences, 4, 34

pointwise, see pointwise convergence

uniform, see uniform convergence
Convolution, 59, 76, 102
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Cosine, see trigonometric functions
Cotangent, see trigonometric functions
Cover, 149

see also open cover, 151
Critical point, 144

D
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in higher dimensions, 120, 123, 127, 130
matrix, 127
partial, 123
total, 122, 130
uniqueness of, 121
Differentiability
continuous, 131
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infinite, 68
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Differential matrix, see derivative matrix
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Euler’s formula, 88, 90
Euler’s number, see e

Subject Index

Exponential function, 78, 86
Exterior (point), 10, 34

F
Fatou’s lemma, 176
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Fixed point theorem, 134
Fourier
coefficients, 100
inversion formula, 101
series, 101
series for arbitrary periods, 110
theorem, 106
transform, 100
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Frequency, 99
Fubini’s theorem, 185
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Hairy ball theorem, 134
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Hausdorff space, 36
Heine-Borel theorem, 18
Hermitian form, 97
Homogeneity, 98, 115
Hypersurface, 141

1
Identity map (or operator), 115
Imaginary, 84
Implicit differentiation, 141
Implicit function theorem, 141
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Indicator function, see characteristic func-
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Induced
metric, 2, 13
topology, 13, 35
Inner product, 96
Integer part, 95
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by parts, 73
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Interchanging
derivatives with derivatives, 132
integrals with integrals, 176, 185
limits with derivatives, 56
limits with integrals, 56, 173, 180
limits with limits, 46
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sums with derivatives, 57, 66
sums with integrals, 54, 66, 176, 178
Interior (point), 10, 34
Intermediate value theorem, 32
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function theorem, 137
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Laws of algebra
for complex numbers, 82, 83
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Lebesgue dominated convergence theorem,
180
Lebesgue integral
of absolutely integrable functions, 179
of simple functions, 168
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upper and lower, 181
vs. the Riemann integral, 184
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Lebesgue measure, 148
motivation of, 146148
Lebesgue monotone convergence theorem,
173
Leibniz rule, 130
Limit
formal (LIM), 17
laws, 85
limiting values of functions, 40
pointwise, 42
uniform, see uniform limit
uniqueness of, 6, 41
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of sequences, 15
Linear combination, 114
Linearity
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approximate, 119

of convolution, 62, 102

of inner product, 97

of integration, 170, 175

of transformations, 115
Logarithm (natural), 79

power series of, 54, 80

M
Majorize, 172
Manifold, 144
Map, see function
Matrix, 115
identification with linear transforma-
tions, 116-119
Maximum
principle, 29
Measurability
for functions, 163, 164
for sets, 158
motivation of, 146
see also Lebesgue measure, outer mea-
sure, 148
Metric, 2
ball, see ball
on C, 85
onR, 2
space, 2
Monomial, 99
Monotone (increasing or decreasing)
convergence, see Lebesgue monotone
convergence theorem
measure, 147, 150
Moving bump example, 44, 176
Multiplication
of complex numbers, 83
of matrices, 115, 118

N
Negation

of complex numbers, 83
Neighbourhood, 34
Newton’s approximation, 121
Non-degenerate, 97
Nowhere differentiable function, 57, 91

(0]
Of sets

adherent point, 34
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box, 148
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cover, 19
set, 11
Order topology, 36
Orthogonality, 98
Orthonormal, 100
non-additivity of, 157
Outer measure, 149
non-Additivity of, 156

P
Parseval identity, 101, 110
Path-connected, 32
Periodic, 94
extension, 95
, 90,91
Plancherel formula (or theorem), 101, 107
Pointwise convergence, 42
of series, 51
topology of, 50
Polar representation, 91
Polynomial, 58
and convolution, 60
approximation by, 58, 61
Positive
complex number, 83, 87
inner product, 97
measure, 147, 149
Power series, 65
formal, 65
multiplication of, 75
uniqueness of, 70
Pre-image, see inverse image
Product topology, 50
Projection, 115
Pythagoras’ theorem, 98

Q

Quotient rule, 131

R
Radius of convergence, 65
Real analytic, 68
Real numbers R
are uncountable, see uncountability of
the reals
Real part, 84
Real-valued, 51
Reciprocal
of complex numbers, 85
Relative topology, see induced topology
Ring
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commutative, 83
Root

mean square, see L?
Row vector, 113

S
Scalar multiplication, 113
Series

of functions, 54
o-algebra, 147, 161
Simple function, 167
Sine, see trigonometric functions
Space, 2
Square wave, 94, 99
Stone-Weierstrass theorem, 63, 102
Sub-additive measure, 147, 150
Subsequence, 15
Summation by parts, 73
Sup norm, see supremum as norm
Support, 58
Supremum (and infimum)

as metric, 4

as norm, 4, 52

T
Taxi-cab metric, 3
Taylor series, 69
Taylor’s formula, see Taylor series
Topological space, 33
Totally bounded, 21
Translation invariance, 147, 150, 159
Transpose, 114
Triangle inequality
for integrals, 180
in C, 85
in Euclidean space, 8
in inner product spaces, 97
in metric spaces, 2
Trigonometric functions, 88, 92
and Fourier series, 109
power series, 88, 91
trigonometric polynomials, 99
Trivial topology, 35

U
Uniform continuity, 29
Uniform convergence, 44
and anti-derivatives, 55
and derivatives, 47
and integrals, 54
and limits, 46



Subject Index

and radius of convergence, 65
as a metric, 49, 95
of series, 51

Uniform limit
and Riemann integration, 53
of bounded functions, 47
of continuous functions, 46

\4
Vector space, 114
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Vertical line test, 59
Volume, 148

W

Weierstrass approximation theorem, 58, 61—
62, 101

Weierstrass example, see nowhere differen-
tiable function

Weierstrass M-test, 52
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