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Preface

Functional analysis studies linear spaces provided with suitable topological struc-
tures and (continuous) linear transformations between such spaces. It has far reaching
applications in several disciplines. For instance, the modern theory of (partial) differ-
ential equations and the numerical approximation of their solutions rely a lot on
functional analytic techniques.

Functional analysis is now an integral part of the curriculum in any post graduate
course in Mathematics. Ideally it should be taught after having covered courses in
linear algebra, real and complex analysis, and topology. An introduction to the theory
of measure and integration is also helpful since the richest examples in functional
analysis come from function spaces whose study demands such a knowledge.

The present book grew out of notes prepared bymyself while lecturing to graduate
students at the Tata Institute of Fundamental Research (Bangalore Centre) and the
Institute of Mathematical Sciences, Chennai. The material presented in this book is
standard and is ideally suited for a course which can be followed by masters students
who have covered the necessary prerequisites mentioned earlier. While covering
all the standard material, I have also tried to illustrate the use of various theorems
via examples taken from differential equations and the calculus of variations, either
through brief sections or through the exercises. In fact, this book is well suited for
students who would like to pursue a research career in the applications of mathe-
matics. In particular, familiaritywith thematerial presented in this bookwill facilitate
studying my earlier book, published nearly two decades ago, ‘Topics in Functional
Analysis and Applications’ (Wiley Eastern, now called New Age International),
which serves as a functional analytic introduction to the theory of partial differential
equations.

Chapter 1 gives a rapid revision of linear algebra, topology and measure theory.
Important definitions, examples and results are recalled and no proofs are given. At
the end of each section, the reader is referred to a standard text on that topic. This
chapter has been included only for reference purposes and it is not intended that it
be covered in a course based on this book.

Chapter 2 introduces the notion of a normed linear space and that of continuous
linear transformations between such spaces.
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vi Preface

Chapter 3 studies the analytic and geometric versions of theHahn-Banach theorem
and presents some applications of these.

Chapter 4 is devoted to the famous ‘trinity’ in functional analysis—the Banach-
Steinhaus, the open mapping and the closed graph theorems, which are all conse-
quences of Baire’s theorem for complete metric spaces. Several applications are
discussed. The notion of an ‘unbounded linear mapping’ is introduced.

In my opinion, most texts do not emphasize the importance of weak topologies in
a course on functional analysis. That a bounded sequence in a reflexive space admits
a weakly convergent sequence is the corner stone of many an existence proof in the
theory of (partial) differential equations. These topologies also provide nice counter-
examples to show the inadequacy of sequences in a general topological space. For
instance, we will see that two topologies on a set could be different while having the
same convergent sequences. We will also see an example of a compact topological
space inwhich a sequence does not have any convergent subsequence.Chapter 5 deals
with weak and weak* topologies and their applications to the notions of reflexivity,
separability and uniform convexity.

Chapter 6 introduces the Lebesgue spaces and also presents the theory of one of
the simplest classes of Sobolev spaces. Chapter 7 is devoted to the study of Hilbert
spaces. Chapter 8 studies compact operators and their spectra.

Much of the fun in learning mathematics comes from actually doing it! Every
chapter from Chapters 2 through 8 has a fairly large collection of exercises at the
end. These illustrate the results of the text, show the optimality of the hypotheses of
the various theorems via various examples or counterexamples, or develop simple
versions of theories not elaborated upon in the text. They are of varying degrees of
difficulty. Occasionally, some hints for the solution are provided. It is hoped that the
students will benefit by solving them.

Since this is meant to be a first course on functional analysis, I have kept the
bibliographic references to a minimum, merely citing important texts where the
reader may find further details of the topics covered in this book.

No claim of originality is made with respect to the material presented in this
book. My treatment of this subject has been influenced by the writings of authors
like Simmons (whose book was my first introduction to Functional Analysis) and
Rudin. These works figure in the bibliography of this book. I would also like to
mention a charming book, hardly known outside the francophonic mathematical
community, viz. ‘Analyse Fonctionnelle’ by H. Brézis.

The preparation of this manuscript would not have been possible but for the
excellent facilities provided by the Institute of Mathematical Sciences, Chennai, and
I wish to place on record my gratitude. I also thank the Hindustan Book Agency
and the editor of the TRIM Series, Prof. R. Bhatia, for their kind cooperation in
bringing out this volume. I must thank the anonymous referees who painstakingly
went through the first draft of the manuscript. I have tried to incorporate many of
their constructive suggestions in the current version.
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Finally, I thank my family for its constant support and encouragement.

Chennai, India
May 2008

S. Kesavan



Preface to the Second Edition

It is now more than a decade since the first edition of this book appeared and I am
gratified by the reception accorded to it by mathematics students and teachers in
this country and also in many places abroad. The book has been used as a text for
Functional Analysis courses in many institutions and also as the main reference text
for several refresher courses on this subject.

I myself have used it to teach a course on Functional Analysis in institutions like
the Chennai Mathematical Institute (CMI) and the Indian Institute of Technology
Madras (IITM). I have also used it to deliver a course on this subject under the
NPTEL banner. While giving these lectures, I have faced questions from students,
prepared exercises for weekly assignments and examinations and have also improved
my own appreciation of the finer points of the subject. These factors encouraged me
to prepare this revised version of the book, and I hope it will be more useful and
user-friendly than the first edition.

In the present (second) edition, I have completely overhauled the presentation
without changing the basic structure of the book. The statements of results, definitions
and remarks have been modified wherever necessary, and many proofs have been
rewritten, in view of greater clarity of the exposition. Some examples have been
added to illustrate the results proved in the text. Several exercises have been added to
the existing collection in each chapter. It is hoped that students will have fun solving
them.

Section 3.1, which originally dealt with the Hahn-Banach theorem and intro-
duced the notion of reflexivity, has now been bifurcated into two sections. In the
new framework, Sect. 3.1 deals with the Hahn-Banach theorem (extension version)
and its immediate consequences. Section 3.2 is devoted to reflexivity. Several exam-
ples of continuous linear functionals, which do not realize their norm on the unit
sphere, are presented, thereby proving the non-reflexivity of many familiar Banach
spaces. Similarly, Sect. 8.3, which originally introduced the notion of the spectrum
of an operator and described that of a compact operator, has been bifurcated into
two sections. Section 8.3 introduces the notion of the spectrum. Several examples
are presented, and the spectra of some special operators on a Hilbert space are
characterized. Section 8.4 deals with the spectrum of a compact operator.

ix



x Preface to the Second Edition

The final preparation of the manuscript was done while I was working from
home, partly due to the COVID-19 pandemic, and this was possible because of the
help rendered by the system administration team of the Institute of Mathematical
Sciences (IMSc). In particular, I thank Mr. G. S. Vasan for his help. I also thank my
colleagues Profs. Amritanshu Prasad and S. Viswanath for introducingme to the joys
of teaching on the NPTEL platform. I use this opportunity to thank the NPTEL team
at IIT Madras, headed by Ms. Bharathi and ably assisted by Ms. Lakshmi Priya, for
their support and help when preparing my NPTEL courses. Finally, I thank Shri J.
K. Jain of the Hindustan Book Agency and Prof. Rajendra Bhatia, the chief editor
of the TRIM Series, for encouraging me to bring out this new edition.

Chennai, India
April 2022

S. Kesavan



Notations

Certain general conventions followed throughout the text regarding notations are
described below. All other specific notations are explained as and when they appear
in the text.

• The set of natural numbers is denoted by the symbol N, the integers by Z, the
rationals by Q, the reals by R and the complex numbers by C.

• Sets (including vector spaces and their subspaces) and also linear transformations
between vector spaces are denoted by uppercase Latin letters.

• Elements of sets (and, therefore, vectors as well) are denoted by lowercase Latin
letters.

• Scalars are denoted by lowercase Greek letters.
• To distinguish between the scalar zero and the null (or zero) vector, the latter is

denoted by the zero in boldface, i.e. 0. This is also used to denote the zero linear
transformation and the zero linear functional.

• Column vectors in Euclidean space are denoted by lowercase Latin letters in
boldface, and matrices are denoted by uppercase Latin letters in boldface.

• Elements of L p spaces (cf. Chap. 6) are equivalence classes of functions under
the equivalence relation of ‘equality almost everywhere’. To emphasize this fact,
all elements of L p spaces (and hence of Sobolev spaces as well) are denoted
by lowercase Latin letters in the san serif font. A generic representative of that
equivalence class is denoted by the same lowercase Latin letter (in italics). Thus,
if f ∈ L1(0, 1), a generic representative of this class will be denoted by f and will
feature in all computations involving this element. For instance, we have

‖f‖1 =
1∫

0

| f (t)| dt.

xi



xii Notations

• The norm in a normed linear space V will be denoted by ‖.‖, or by ‖.‖V , if wewish
to distinguish it from other norms that may be entering the argument. Similarly,
the inner product in a Hilbert space H will, in general, be denoted by (., .) (or by
(., .)H in case we wish to stress the role played by H ).
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Chapter 1
Preliminaries

1.1 Linear Spaces

Functional analysis is the study of vector spaces endowed with topological struc-
tures (that are compatible with the linear structure of the space) and of (linear) map-
pings between such spaces. Throughout this book we will be working with vector
spaces whose underlying field is the field of real numbers R or the field of complex
numbers C.

For completeness, we will recall some basic definitions and some important
results.

Definition 1.1.1 A vector space or a linear space over a field F (whose elements
are called scalars) is a set V , whose elements are called vectors, on which two
operations—addition and scalar multiplication—are defined such that the follow-
ing properties hold:
Addition: (x, y) ∈ V × V �→ x + y ∈ V such that

(i) (commutativity) for all x and y in V , we have

x + y = y + x;

(ii) (associativity) for all x, y and z in V , we have

x + (y + z) = (x + y) + z;

(iii) there exists a unique vector 0 ∈ V , called the zero or the null vector, such that,
for every x ∈ V ,

x + 0 = x;

(iv) for every x ∈ V , there exists a unique vector −x ∈ V such that

© Hindustan Book Agency 2023
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2 1 Preliminaries

x + (−x) = 0.

Scalar multiplication: (α, x) ∈ F × V �→ αx ∈ V such that

(v) for every x ∈ V , 1x = x where 1 is the multiplicative identity in F;

(vi) for all α and β in F and for every x ∈ V ,

α(βx) = (αβ)x;

(vii) for all α and β in F and for every x ∈ V ,

(α + β)x = αx + βx;

(viii) for every α ∈ F and for all x and y in V ,

α(x + y) = αx + αy. �

Remark 1.1.1 The conditions (i)–(iv) above imply that V is an abelian group with
respect to vector addition. The conditions (vii) and (viii) above are known as the
distributive laws. �

Example 1.1.1 Let N ≥ 1 be a positive integer. Define

R
N = {x = (x1, . . . , xN ) |xi ∈ R for all 1 ≤ i ≤ N }.

Wedefine addition and scalarmultiplication componentwise, i.e. if x = (x1, . . . , xN )

and y = (y1, . . . , yN ) are elements of RN and if α ∈ R, we define

x + y = (x1 + y1, . . . , xN + yN )

and
αx = (αx1, . . . ,αxN ).

It is now easy to see that RN is a vector space over R with the zero vector being that
element in R

N with all its components zero. In the same way, we can define CN as
a vector space over C.

Setting N = 1, we see that R (respectively C) is a vector space over itself, the
scalar multiplication being the usual multiplication operation. �

Definition 1.1.2 Let V be a vector space and let W ⊂ V . Then W is said to be a
subspace of V if W is a vector space in its own right for the same operations of
addition and scalar multiplication. �
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Definition 1.1.3 Let V be a vector space and let x1, . . . , xn be vectors in V . A linear
combination of these vectors is any vector of the form α1x1 + · · · + αnxn , where
the αi , 1 ≤ i ≤ n are scalars. A linear relation between these vectors is an equation
of the form

α1x1 + · · · + αnxn = 0. �

Definition 1.1.4 A finite set of vectors in a vector space is said to be linearly inde-
pendent if there does not exist any linear relation between them other than the trivial
one, i.e. when all the scalar coefficients are zero. If there exists a non-trivial linear
relation, then the set of vectors is said to be linearly dependent. An infinite set of
vectors is said to be linearly independent if there does not exist any finite linear
relation amongst vectors in that set. �

Given a vector space V and a set S of vectors, the collection of all finite linear
combinations of vectors from S will form a subspace of V . In fact, it is clear that this
subspace is the smallest subspace containing S and is called the linear span of the
set S or the subspace generated by S. This subspace is denoted by span{S}.
Definition 1.1.5 A maximal linearly independent subset of a vector space is called
a basis. �

In otherwords, a basis is a linearly independent subset such that, if any other vector
is adjoined to the set, the enlarged set becomes linearly dependent. This implies that
every vector in the space can be expressed as a (finite) linear combination of the
members of the basis. Thus, the vector space is generated by its basis.

Proposition 1.1.1 (i) Every vector space has a basis;
(ii) any two bases of a vector space have the same cardinality. �

The above proposition leads us to the following definition.

Definition 1.1.6 Avector space V is said to be finite dimensional if it admits a basis
with a finite number of elements. Otherwise, it is said to be infinite dimensional.
The dimension of a vector space is the number of elements in a basis, if it is finite
dimensional, and infinity if it is infinite dimensional and is denoted dim(V ). �

Example 1.1.2 The space R
N (respectively, CN ) has a basis which is defined as

follows. Let 1 ≤ i ≤ N . Let ei be the vector whose i th component is unity and all
other components are zero. Then {e1, . . . , eN } is a basis for RN (respectively, CN )
and is called the standard basis. �

Example 1.1.3 Let P denote the collection of all polynomials in one variable with
real coefficients. Let p(x) = ∑n

i=0 ai x
i and q(x) = ∑m

i=0 bi x
i where the ai and bi

are real numbers and x is the variable. Letα ∈ R. Assume, without loss of generality,
that m ≤ n. Define

(p + q)(x) =
n∑

i=0

(ai + bi )x
i



4 1 Preliminaries

where we set bi = 0 for m < i ≤ n if m < n. Define

(αp)(x) =
n∑

i=0

αai x
i .

With these operations, P becomes a vector space over R. It is easy to check that the
collection of monomials {pi }∞i=0 where p0(x) ≡ 1 and pi (x) = xi for i > 1 forms a
basis for P . Thus, P is an infinite dimensional vector space. �

We will come across numerous examples of infinite dimensional vector spaces in
the sequel (cf. Sect. 2.2, for instance).

Let V be a vector space and let Wi , 1 ≤ i ≤ n be subspaces. The span of the Wi

is the subspace of all vectors of the form

v = w1 + · · · + wn

where wi ∈ Wi for each 1 ≤ i ≤ n. The spaces are said to be independent if an
element in the span is zero if, and only if each, wi = 0. In particular, it follows
that, if the Wi are independent, then for all 1 ≤ i, j ≤ n such that i 
= j , we have
Wi ∩ Wj = {0}. Further, every element in the span will have a unique decomposition
into vectors from the spaces Wi .

Definition 1.1.7 Let V be a vector space and letWi , 1 ≤ i ≤ n be subspaces. Then,
V is said to be the direct sum of the Wi if the spaces Wi are independent and their
span is the space V . In this case we write

V = W1 ⊕ W2 ⊕ . . . ⊕ Wn = ⊕n
i=1Wi . �

We now study mappings between vector spaces which preserve the linear struc-
ture.

Definition 1.1.8 Let V andW be vector spaces (over the same base field). A linear
transformation, or linear operator, is a mapping T : V → W such that for all x
and y ∈ V and for all scalars α and β, we have

T (αx + βy) = αT (x) + βT (y).

IfW is the base field (which is a vector space over itself), then a linear transformation
from V into W is called a linear functional on V . �

Definition 1.1.9 Let V and W be vector spaces and let T : V → W be a linear
transformation. The image of T is a subspace ofW and is called the range of T . The
dimension of the range is called the rank of T . The set

{x ∈ V |T (x) = 0}



1.1 Linear Spaces 5

is a subspace of V and is called the null space or kernel of T . �
Definition 1.1.10 Let V and W be vector spaces and T a linear transformation
between them. The transformation is said to be invertible if T is a bijection. �

It is easy to see that a linear transformation which is an injection maps a linearly
independent set onto a linearly independent set. In particular, if T : V → W is an
injection, then, necessarily, dim(V ) ≤ dim(W ). On the other hand, if T : V → W is
a surjection, clearly, dim(V ) ≥ dim(W ). Thus, if T is invertible, then the two spaces
must have the same dimension.

We now focus our attention on finite dimensional spaces. Let V be a space of
dimension n with basis {v1, . . . , vn} and W a space of dimension m with basis
{w1, . . . , wm}. A linear map T : V → W is completely defined, once it is defined
on a basis. So let us write

T (v j ) =
m∑

i=1

ti jwi , 1 ≤ j ≤ n. (1.1.1)

The coefficients (ti j ) in the above relation form amatrixwithm rows and n columns.
Such a matrix is referred to as an m × n matrix. The j-th column of the matrix
represents the coefficients in the expansion of T (v j ) in terms of the basis {wi }mi=1 of
W . Of course, if we change the bases for V and W , the same linear transformation
will be given by another matrix. In particular, let dim(V ) = n and let T : V → V be
a linear operator. Let T be represented by the n × n matrix (also known as a square
matrix of order n) T = (ti j ) with respect to a given basis. If we change the basis,
then T will be represented by another n × n matrix T̃ = (t̃i j ) and the two will be
connected by a relation of the form:

T = PT̃P−1

where P is called the change of basis matrix and represents the linear transformation
whichmaps one basis to another. ThematrixP−1 represents the inverse of this change
of basis mapping and is the inverse matrix of P. In this case, the matrices T and T̃
are said to be similar. The identity matrix I represents the identity mapping x �→ x
for all x ∈ V for any fixed basis of V . For a given basis, if T : V → V is invertible,
then the matrix representing T−1 will be the inverse of the matrix representing T .

A square matrix is said to be diagonal if all its off-diagonal entries are zero. A
n × n square matrix A = (ai j ) is said to be upper triangular (respectively, lower
triangular) if ai j = 0 for all 1 ≤ j < i ≤ n (respectively, ai j = 0 for all 1 ≤ i <

j ≤ n). If F = C, it can be shown that every matrix is similar to an upper triangular
matrix. A matrix is said to be diagonalizable if it is similar to a diagonal matrix.

Given anm × nmatrix and two vector spaces of dimensions n andm, respectively,
along with a basis for each of them, the matrix can be used, as in relation (1.1.1), to
define a linear transformation between these two spaces. Thus, there is a one-to-one
correspondence between matrices and linear transformations between vector spaces
of appropriate dimension, once the bases are fixed.
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Definition 1.1.11 If T = (ti j ) is anm × n matrix, then the n × m matrix T′ = (t ji ),
formed by interchanging the rows and the columns of the matrix T, is called the
transpose of the matrixT. IfT = (ti j ) is anm × n matrix with complex entries, then
the n × m matrix T∗ = (t∗i j )where t

∗
i j = t ji (the bar denoting complex conjugation),

is called the adjoint of the matrix T. �

If x and y ∈ R
n (respectively, Cn), then y′x (respectively, y∗x) represents the

‘usual’ scalar product of vectors inRn (respectively,Cn) given by
∑n

i=1 xi yi (respec-
tively,

∑n
i=1 xi yi ). If the scalar product is zero, we say that the vectors are orthogonal

to each other and write x ⊥ y. If W is a subspace and x is a vector orthogonal to all
vectors in W , we write x ⊥ W .

Definition 1.1.12 Let T be an m × n matrix. Then its row rank is defined as the
number of linearly independent row vectors of the matrix and the column rank is
the number of independent column vectors of the matrix. �

The column rank is none other than the rank of the linear transformation defined
by T, and the row rank is the rank of the transformation defined by the transpose.
We have the following important result.

Proposition 1.1.2 For any matrix, the row and column ranks are equal and the
common value is called the rank of the matrix. �

Definition 1.1.13 The nullity of a matrix is the dimension of the null space of the
linear transformation defined by the matrix. �

Proposition 1.1.3 LetT be anm × n matrix. The sum of the rank ofT and the nullity
of T is equal to n.

Corollary 1.1.1 An n × n matrix is invertible if, and only if, its nullity is zero or,
equivalently, its rank is n. Equivalently, a linear operator on a finite dimensional
space is one-to-one if, and only if, it is onto. �

Definition 1.1.14 Let T be an n × n matrix with complex entries and T∗ its adjoint.
The matrix is said to be normal if

TT∗ = T∗T.

The matrix is said to be unitary if

TT∗ = T∗T = I.

The matrix is said to be self-adjoint or hermitian if T = T∗. �

Definition 1.1.15 Let T be an n × n matrix with complex entries. It is said to be
positive semidefinite if for every n × 1 matrix with complex entries, i.e. a column
vector, x, we have

x∗Tx ≥ 0.
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The matrix T is said to be positive definite if, in addition, the above inequality is
strict if x 
= 0. �

Remark 1.1.2 A hermitian matrix is equal to its adjoint and the inverse of a unitary
matrix is its adjoint. A matrix T, with real entries, which is equal to its transpose
is called symmetric and one whose inverse is its own transpose is called orthogo-
nal. In case the matrix T has real entries, we can still define positive semidefinite-
ness (or positive definiteness) by considering real column vectors x in the above
definition. �

We now introduce an important notion, viz. that of the determinant. Before we do
this, we need some notation. Let Sn denote the set of all permutations of n symbols.
A transposition is a permutation wherein two symbols exchange places with each
other and all other symbols are left invariant. It is known that every permutation is the
product (in the sense of composition ofmappings) of transpositions. A permutation is
even if it is the product of an even number of transpositions and odd if it is the product
of an odd number of transpositions. The signature of a permutation σ, denoted sgn σ,
is +1 if the permutation is even and −1 if it is odd.

Definition 1.1.16 LetT = (ti j ) be an n × n matrix. The determinant ofT, denoted
det(T), is given by the formula

det(T) =
∑

σ∈Sn
(sgn σ)t1,σ(1) . . . tn,σ(n).

�

We list below the important properties of the determinant.

Proposition 1.1.4 (i) If I is the identity matrix of order n, then det(I) = 1;
(ii) if T and S are two n × n matrices, then

det(ST) = det(S).det(T).

In particular, T is invertible if, and only if, det(T) 
= 0 and

det(T−1) = (det(T))−1.

(iii) if T is an n × n matrix, then

det(T′) = det(T). �

Definition 1.1.17 An invertible matrix is also said to be a non-singular matrix.
Otherwise, it is said to be singular. �
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If T is a non-singular matrix of order n, then, given any n × 1 column vector b,
there exists a unique n × 1 column vector x such that

Tx = b.

This is because the corresponding linear transformation is invertible and hence onto
(which gives the existence of the solution) and one-to-one (which gives the unique-
ness of the solution). If T is singular, this is no longer the case and we have the
following result.

Proposition 1.1.5 (Fredhölm Alternative) LetT be a singular matrix of order n and
let b be an n × 1 column vector. Then, either the system of n linear equations in n
unknowns (written in matrix notation)

Tx = b

has no solution or has an infinite number of solutions. The latter possibility occurs
if, and only if

b′u = 0

for all (column) vectors u such that T′u = 0. �

We now come to a very important notion in linear algebra and functional analysis.

Definition 1.1.18 Let T be a square matrix of order n with complex entries. A
complex number λ is said to be an eigenvalue of T if there exists an n × 1 vector
u 
= 0 such that

Tu = λu.

Such a vector u is called an eigenvector of T associated to the eigenvalue λ. The set
of all eigenvectors associated to an eigenvalue λ is a subspace of Cn and is called
the eigenspace associated to λ. �

From the above definition, we see that λ ∈ C is an eigenvalue of a square matrix
T if, and only if the matrix T − λI is not invertible. Thus, λ will be an eigenvalue of
T if, and only if,

det(T − λI) = 0. (1.1.2)

The expression on the left-hand side of (1.1.2) is a polynomial of degree equal to
the order of T and is called the characteristic polynomial of T. Thus, every eigen-
value is a root of the characteristic polynomial and so every matrix of order n has
a non-empty set of at most n distinct eigenvalues. Counting multiplicity, there are
exactly n eigenvalues. The equation (1.1.2) is called the characteristic equation of
the matrix T.
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Remark 1.1.3 If a matrix has only real entries, the eigenvalues can still be all purely
complex. In that case, considered as a linear transformation on a real vector space,
there will be no eigenvalues in the sense of the preceding definition. �
Definition 1.1.19 Let λ be an eigenvalue of a matrixT. Its algebraic multiplicity is
its multiplicity as a root of the characteristic polynomial. Its geometric multiplicity
is the dimension of the eigenspace associated to it. �
Proposition 1.1.6 The geometric multiplicity of an eigenvalue does not exceed its
algebraic multiplicity. �
Definition 1.1.20 The set of all eigenvalues of a matrix is called its spectrum. The
maximum of the absolute values of the eigenvalues is called its spectral radius. �

The sum of the diagonal entries of a square matrix T is called its trace and is
denoted by tr(T). It is easy to see from the characteristic equation that the trace
is the sum of all the eigenvalues taking into account their multiplicities. Similarly
the determinant of a matrix is the product of all its eigenvalues (again counting
multiplicity).

Proposition 1.1.7 (i) The eigenvalues of the adjoint of a matrix are the complex
conjugates of the eigenvalues of the original matrix;

(ii) the eigenvalues of a hermitian matrix are all real;
(iii) the eigenvalues of a hermitian and positive definite matrix are positive;
(iv) the eigenvalues of a unitary matrix lie on the unit circle of the complex

plane. �
The eigenvalues of a hermitianmatrix admit a ‘variational characterization’. LetT

be a hermitian matrix of order n. Its eigenvalues are all real and let them be numbered
in increasing order as follows:

λ1 ≤ λ2 ≤ · · · ≤ λn.

Let vi , 1 ≤ i ≤ n be a collection of eigenvectors, where vi is associated to λi . Set
V0 = {0} and

Vi = span{v1, . . . , vi }

for 1 ≤ i ≤ n.
We define the Rayleigh quotient associated to the matrix T as follows:

RT(x) = x∗Tx
x∗x

, x 
= 0,

which is real valued, since T is hermitian.

Proposition 1.1.8 (i) The eigenvectors vi can be chosen such that

v∗
i v j =

{
1 if i = j,
0 if i 
= j;
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(ii) for each 1 ≤ i ≤ n, we have

λi = RT(vi )

= maxx∈Vi RT(x)
= minx⊥Vi−1 RT(x)
= minW⊂Cn ,dim(W )=imaxx∈W RT(x).

In particular,
λ1 = min

x∈Cn
RT(x), and λn = max

x∈Cn
RT(x). �

By analogy, if T is a real symmetric matrix, a similar result holds with the adjoint
being replaced by the transpose in the definition of the Rayleigh quotient and C

n

being replaced by R
n in the formulae above.

Remark 1.1.4 Amatrix is diagonalizable if, and only if, it admits a basis of eigenvec-
tors. In particular, if all the eigenvalues of a matrix are distinct, it is diagonalizable.
All normal matrices are diagonalizable. In particular, hermitian matrices are diago-
nalizable. �

For more details on linear spaces, the reader is referred to, for instance, Artin [1].

1.2 Topological Spaces

In this section, we recall the important definitions and results of topology which will
be used in the sequel.

Definition 1.2.1 A topology on a set X is a collection T of subsets of X such that

(i) X and ∅ are in T ;
(ii) the union of any collection of members in T is a member of T ;
(iii) the intersection of any finite collection of members of T is a member of T . The

pair {X, T } is said to be a topological space, and the members of the topology
T are called open sets. The complements of open sets are called closed sets.
If x ∈ X , then a neighbourhood of x is any open set containing x . �

It is clear from the above definition that X and ∅ are both open and closed. Further,
a finite union and an arbitrary intersection of closed sets are closed. It then follows
that given any set A ⊂ X , there is a smallest closed set containing it. This is called
the closure of the set A and is usually denoted by A. If A = X , we say that A is
dense in X . Similarly, given any set A ⊂ X , there is a largest open set contained in
A. This set is called the interior of A and is denoted by A◦. A set A ⊂ X is said to
be nowhere dense if (A)◦ = ∅.
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If {X, T } is a topological space and if Y ⊂ X , then Y inherits a natural topology
from that of X . The open sets are those of the form U ∩ Y , where U is open in X .

Definition 1.2.2 A topological space {X, T } is said to be Hausdorff if for every
pair of distinct elements x and y in X , there exist disjoint open sets U and V such
that x ∈ U and y ∈ V . �

Definition 1.2.3 A metric on a set X is a function d : X × X → [0,∞) such that

(i) d(x, y) = 0 if, and only if, x = y;
(ii) for all x and y in X , we have

d(x, y) = d(y, x);

(iii) for all x, y and z in X , we have

d(x, z) ≤ d(x, y) + d(y, z). (1.2.1)

The pair {X, d} is called ametric space. �

Remark 1.2.1 The notion of a metric generalizes that of a distance, as we know it,
in the Euclidean spaces R2 and R3. The inequality (1.2.1) is just an abstract version
of a familiar theorem from Euclidean plane geometry which states that the sum of
the lengths of two sides of a triangle is greater than the length of the third side. For
this reason, it is called the triangle inequality. Of all the conditions on a metric, this
one will need the most non-trivial verification. �

If {X, d} is a metric space, then it is easy to see that we have a topology (called
the metric topology) induced on X by the metric d which is defined as follows. A
non-empty set U ⊂ X is open if, and only if, for every x ∈ U , there exists r > 0
such that

B(x; r) def= {y ∈ X |d(x, y) < r} ⊂ U.

The set B(x; r) described above is called the (open) ball centred at x and of radius
r . It is a simple exercise to check that open balls themselves are open sets. It is also
immediate to see that this topology is Hausdorff.

On R or C, we have the ‘usual’ metric defined by

d(x, y) = |x − y|.

The topology induced by this metric will be called the ‘usual’ topology onR orC, as
the case may be. Similarly, on R

N (or CN ), we have the ‘usual’ Euclidean distance
which defines a metric on that space: if x = (x, . . . , xN ) and y = (y1, . . . , yN ) are
vectors in RN (respectively, CN ), then
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d(x, y) =
(

N∑

i=1

|xi − yi |2
) 1

2

.

The topology induced by this metric will be referred to as the ‘usual’ topology on
R

N (respectively, CN ).
In the metric topology defined above, we see that every open set is the union of

open balls. In a general topological space a collection B of open sets is called a base
for the topology if every open set can be expressed as the union of members of B.

Definition 1.2.4 Let {X, T } be a topological space and let S be a collection of open
sets in X . We say that S is a subbase for the topology T if every open set can be
expressed as unions of finite intersections of members of S. �

Clearly any topology containing S will have to contain T . Thus T is the smallest
topology containing S. The set of finite intersections of members of S form a base
for the topology.

Definition 1.2.5 Let {X, T } be a topological space and let A be an arbitrary subset
of X . A point x ∈ X is said to be a limit point of A if every neighbourhood of x
contains a point of A (different from x , in case x ∈ A). �

Definition 1.2.6 Let {X, T } be a topological space and let {xn} be a sequence of
elements in X . We say that the sequence converges to a point x ∈ X if for every
neighbourhood U of x , we can find a positive integer N (depending on U ) such that
xk ∈ U for all k ≥ N . In this case, we write xn → x in X. �

Definition 1.2.7 Let {Xi , Ti }, i = 1, 2, be two topological spaces and let f : X1 →
X2 be a given function. We say that f is continuous if f −1(U ) is an open set in
X1 for every open set U in X2. If f is a bijection such that both f and f −1 are
continuous, then f is said to be a homeomorphism and the two topological spaces
are said to be homeomorphic to each other. �

The following propositions are easy to prove.

Proposition 1.2.1 Let {X, d} be a metric space and let {xn} be a sequence in X.
Then xn → x in X if, and only if, for every ε > 0, there exists a positive integer N
such that

d(xk, x) < εfor every k ≥ N . �

In particular, every convergent sequence is bounded, i.e., it can be contained in a
(sufficiently large) ball.

Proposition 1.2.2 Let {Xi , di }, i = 1, 2, be metric spaces and let f : X1 → X2 be
a given function. The following are equivalent:
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(i) f is continuous;
(ii) for every x ∈ X and for every ε > 0, there exists δ > 0 such that whenever

d1(x, y) < δ, we have d2( f (x), f (y)) < ε;
(iii) if xn → x in X1, then f (xn) → f (x) in X2. �

Remark 1.2.2 When property (ii) (or, equivalently, (iii)) holds for a particular point
x ∈ X , we say that f is continuous at x . Thus, f is continuous if, and only if, it is
continuous at each point of X . If f is continuous and, for a given ε > 0, the δ > 0
described in statement (ii) above does not depend on the point x , then the function
is said to be uniformly continuous on X. �

Let {X, d} be a metric space and let E be an arbitrary subset of X . Let x ∈ X .
Define

d(x, E) = inf
y∈E d(x, y).

This is called the distance of the point x from the set E . The following proposition
is easy to prove.

Proposition 1.2.3 Let {X, d} be a metric space and let E ⊂ X. Then
(i) for all x and y ∈ X, we have

|d(x, E) − d(y, E)| ≤ d(x, y).

Thus, the function x �→ d(x, E) is a uniformly continuous function on X;
(ii) if E is a closed set, then, d(x, E) = 0 if, and only if, x ∈ E; more generally, if
E is any subset of X, we have

E = {x ∈ X |d(x, E) = 0}.

Definition 1.2.8 Let {X, d} be a metric space. A sequence {xn} in X is said to be
Cauchy if, for every ε > 0, there exists a positive integer N such that

d(xk, xl) < ε

for every k ≥ N , l ≥ N . �

It is simple to verify that every Cauchy sequence is bounded. It is also easy to see
that every convergent sequence in a metric space is Cauchy. The converse is not true,
and this leads to the following important definition.

Definition 1.2.9 A metric space is said to be complete if every Cauchy sequence is
convergent. �

With their usual metric, the spaces R and C are complete.
We now introduce an important notion which we will study in detail in later

chapters.
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Definition 1.2.10 Let I be an arbitrary indexing set. Let X be a set and {Xi , Ti }i∈I
be topological spaces. Let fi : X → Xi be given functions. The weak topology
generated by the functions fi , i ∈ I, is the smallest topology on X such that all the
fi are continuous. �

From the above definition it follows that a subbase for theweak topologygenerated
by the fi is the collection of all sets of the form f −1

i (U )whereU is an arbitrary open
set in Xi and the index i ranges over the indexing set I. A typical neighbourhood
of a point x ∈ X will therefore be a finite intersection of sets of the form f −1

i (Ui )

where Ui is a neighbourhood of fi (x) in Xi .

Definition 1.2.11 Let I be an indexing set and let {Xi , Ti }, i ∈ I be topological
spaces. Set X = �i∈IXi . Let x = (xi )i∈I . Let pi : x ∈ X �→ xi ∈ Xi be the i-th
coordinate projection. The product topology on X is the weak topology generated
by the coordinate projections, i.e. it is the smallest topology such that the projections
are all continuous. �

Thus, sets of the form�i∈IUi , whereUi = Xi for all i 
= i0 (an arbitrary element
of I) and Ui0 is open in Xi0 , form a subbase for the product topology. A base for the
topology is the collection of all sets of the form �i∈IUi where Ui = Xi for all but a
finite number of indices and, for those indices, Ui is an open set in Xi .

Definition 1.2.12 Let {X, T } be a topological space and let ∅ 
= K ⊂ X . A collec-
tion of open sets F is said to be an open cover of K if the union of the members of
F contains K . A subcover of F is a subcollection of members of F which is also
an open cover of K . �

Definition 1.2.13 Let {X, T } be a topological space and let ∅ 
= K ⊂ X . The set K
is said to be a compact set if every open cover of K admits a finite subcover. �

If X is itself a compact set, we say that it is a compact space. We can also describe
compactness via closed sets.

Definition 1.2.14 A collection A of subsets of a set X is said to have finite inter-
section property if every finite subcollection has non-empty intersection. �

The following proposition is easily proved.

Proposition 1.2.4 A non-empty subset K of a topological space is compact if, and
only if, every collection of closed sets in K having finite intersection property has
non-empty intersection. �

Definition 1.2.15 Let {X, T } be a topological space and let ∅ 
= K ⊂ X . The set
K is said to be sequentially compact if every sequence in K has a convergent
subsequence. �

We list important facts about compact sets in the following proposition.

Proposition 1.2.5 (i) Every continuous image of a compact set is compact;
(ii) the product of compact sets is compact;
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(iii) compact subsets of Hausdorff spaces are closed;
(iv) a compact subset of a metric space is closed and bounded;
(v) for the usual topology on R

N , a subset is compact if, and only if, it is closed
and bounded;

(vi) every continuous real-valued function on a compact space is bounded and
attains its maximum and minimum values in that set.

(vii) Every continuous real-valued function on a compact metric space is uniformly
continuous. �

Compact metric spaces are very special. In order to characterize them, we need
the following notion.

Definition 1.2.16 A metric space {X, d} is said to be totally bounded if, for every
ε > 0, there exists finite set of points {xi }k(ε)i=1 such that

X ⊂ ∪k(ε)
i=1B(xi ; ε). �

Proposition 1.2.6 Let {X, d} be a metric space. The following statements are equiv-
alent:

(i) X is compact;
(ii) X is sequentially compact;
(iii) every infinite subset of X has a limit point;
(iv) X is complete and totally bounded. �

We conclude this section with one final important topological notion.

Definition 1.2.17 Let {X, T } be a topological space. We say that X is connected
if there do not exist non-empty open sets U and V such that X = U ∪ V and
U ∩ V = ∅. A subset A ⊂ X is said to be connected if there do not exist disjoint
open sets U and V such that A = A ∩ (U ∪ V ), A ∩U 
= ∅, A ∩ V 
= ∅. �

Definition 1.2.18 A non-empty subset A of a topological space is said to be path
connected if given any pair of points x and y in A, there exists a continuous function
γ : [0, 1] → A such that γ(0) = x and γ(1) = y. �

Proposition 1.2.7 (i) Every continuous image of a connected set is connected;
(ii) the product of connected sets is connected;
(iii) every path connected set is connected. �

In particular, every ball in a metric space is path connected, and hence, connected.
The only connected sets in R are intervals.
For a detailed study of topological spaces, the reader is referred to, for instance,

Simmons [2].
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1.3 Measure and Integration

In this section, we will recall basic facts and results of Lebesgue’s theory of measure
and integration.

Definition 1.3.1 Let X be a set. A σ-algebra is a collection S of subsets of X such
that

(i) X ∈ S;
(ii) if A ∈ S, then Ac ∈ S, where Ac denotes the complement of A in X ;
(iii) if Ai ∈ S for i ∈ N, then

∪∞
i=1Ai ∈ S.

The pair (X,S) is then called a measurable space. The members of S are
called measurable sets. �

In other words, a σ-algebra on a set X is collection of subsets of Xcontaining
X and which is closed under the set theoretic operations of complementation and
countable unions.

Definition 1.3.2 Let (X,S) be a measurable space. Let f : X → R be a given func-
tion. It is said to be a measurable function if, for every α ∈ R, we have

f −1((α,∞)) = {x ∈ X | f (x) > α} ∈ S.

A complex valued function is said to be measurable if its real and imaginary parts
are measurable. �

Proposition 1.3.1 Let (X,S) be a measurable space and let f : X → R be a given
function. Then, the following are equivalent:

(i) f −1((α,∞)) ∈ S, for all α ∈ R;
(ii) f −1([α,∞)) ∈ S, for all α ∈ R;
(iii) f −1((−∞,α)) ∈ S, for all α ∈ R;
(iv) f −1((−∞,α]) ∈ S, for all α ∈ R. �

Given any collection of subsets of a set X , there is a smallest σ-algebra containing
the collection and it is called the σ-algebra generated by the given collection of sets.
If (X, T ) is a topological space , then the σ-algebra generated by the open sets is
called the Borel σ-algebra and its members are called Borel sets.

Definition 1.3.3 Let (X,S) be a measurable space. A measure on X is a function
μ : S → [0,∞] such that, if Ai , i ∈ N aremembers ofS which are pairwise disjoint,
i.e. Ai ∩ A j = ∅ if i 
= j , then
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μ(∪∞
i=1Ai ) =

∞∑

i=1

μ(Ai ).

The triple (X,S,μ) is called ameasure space. �

Definition 1.3.4 Let (X,S,μ) be a measure space. If μ(X) < ∞, then μ is said to
be a finite measure. If X can be covered by a countable union of measurable sets,
each with finite measure, then μ is said to be a σ-finite measure. �

Example 1.3.1 Let X be any non-empty set and let S be the collection of all subsets
of X , which is obviously a σ-algebra. If A ⊂ X , define μ(A) to be the number of
elements in A, if A is a finite set and to be ∞, otherwise. This defines a measure and
is called the counting measure on X. �

Example 1.3.2 Let (X,S) be as in the preceding example and let x0 ∈ X be a given
point. let A ⊂ X . Define

μ(A) =
{
1, if x0 ∈ A
0, otherwise.

This defines a measure on X which is called the Dirac measure concentrated at the
point x0. �

The most important example of a measure is the Lebesgue measure defined on
R

N .
Consider the real line R endowed with its usual topology. Then, it is possible

to construct a σ-algebra M on R which contains all the Borel sets and to define
a measure μ such that for any interval of the form [a, b) (or [a, b], (a, b], (a, b)),
where a, b ∈ R, we have

μ([a, b)) = b − a.

This measure also has the following additional properties:

(i) (Completeness) If E ∈ M and μ(E) = 0, then, for any F ⊂ E , we have F ∈
M and, a fortiori, μ(F) = 0;

(ii) (Translation Invariance) If E ∈ M and if a ∈ R, then

a + E = {a + x |x ∈ E} ∈ M

and, further, μ(a + E) = μ(E);
(iii) (Regularity) If E ∈ M, then

μ(E) = inf{μ(W )|E ⊂ W,W open}
= sup{μ(F)|F ⊂ E, F compact}.

Properties (i)–(iii) above determine the measure μ up to a multiplicative constant.
The fact that the measure of an interval is its length determines the measure uniquely
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and it is called the Lebesgue measure on R and the members of M are called
Lebesgue measurable sets.

In the same way, it is possible to construct the Lebesgue measure on RN , N ≥ 1,
with the properties (i)–(iii) and such that for any cell of the form E = �N

i=1[ai , bi ),
we have

μ(E) = �N
i=1(bi − ai ).

Definition 1.3.5 Let (X,S,μ) be a measure space. Let E ∈ S. The characteristic
function of E , denoted χE is defined by

χE (x) =
{
1, ifx ∈ E,

0, ifx /∈ E .

A simple function is a function S : X → R such that

s(x) =
m∑

i=1

αiχAi (x),

where αi ∈ R and Ai ∈ S for 1 ≤ i ≤ m. �

We are now in a position to define the Lebesgue integral. Let (X,S,μ) be a
measure space. The integral of a non-negative simple function s = ∑m

i=1 αiχi is
defined by

∫

X

s dμ
def=

m∑

i=1

αiμ(Ei ).

(Since the Ai may have infinite measure, we insist on the non-negativity of the
function (so that αi ≥ 0 for all 1 ≤ i ≤ m) in order to avoid anomalous situations
where infinite quantities may need to be subtracted from each other.)

Proposition 1.3.2 Let (X,S) be a measurable space and let f : X → R be a non-
negative measurable function. Then there exists a sequence {sn} of non-negative
simple functions such that, for all n,

0 ≤ sn ≤ sn+1 ≤ f

and
lim
n→∞ sn(x) = f (x)

for all x ∈ X. �

In view of the above proposition, we may now define the integral of any non-
negative measurable function as follows:
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∫

X

f dμ
def= sup

⎧
⎨

⎩

∫

X

s dμ|s simple, 0 ≤ s ≤ f

⎫
⎬

⎭
.

In the case of a simple function, it is easy to see that both these definitions coincide.
Now, let f : X → R be any measurable function. Set

f + = max{ f, 0}, and f − = −min{ f, 0}.

Then, f + and f − are non-negative measurable functions and

f = f + − f − and | f | = f + + f −.

Definition 1.3.6 Let (X,S,μ) be a measure space and let f : X → R be a measur-
able function. Then f is said to be integrable if

∫

X

| f | dμ < ∞. �

It is easy to see that

∫

X

| f | dμ =
∫

X

f + dμ +
∫

X

f − dμ

so that, if f is integrable, then both the integrals on the right-hand side of the above
relation are finite. Then, we can unambiguously define the integral of f as follows:

∫

X

f dμ
def=

∫

X

f + dμ −
∫

X

f − dμ.

Integration is a linear operation: if f and g are integrable functions and if α and
β ∈ R, we have ∫

X

(α f + βg) dμ = α

∫

X

f dμ + β

∫

X

g dμ.

Notation: If we wish to specify the variable of integration as well, we will write

∫

X

f (x) dμ(x)

in place of
∫
X f dμ.
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Example 1.3.3 If we define the counting measure on the set of natural numbers N,
then any real-valued function f on N is measurable and can be identified with a
sequence {an}, where f (n) = an . It can be seen that

∫

N

f dμ =
∞∑

n=1

an.

An integrable function corresponds to an absolutely convergent series. �

Example 1.3.4 If X is any non-empty set and if δx0 is theDiracmeasure concentrated
at x0 ∈ X , then ∫

X

f dδx0 = f (x0)

for any function f : X → R. �

We now list some of the main results from the theory of the Lebesgue integral,
which behaves very nicely with respect to limit processes.

Theorem 1.3.1 (Monotone Convergence Theorem) Let (X,S,μ) be a measure
space. let { fn} be an increasing sequence of non-negative measurable functions
on X. Let fn(x) → f (x) for all x ∈ X. Then f is measurable and

lim
n→∞

∫

X

fn dμ →
∫

X

f dμ. (1.3.1)

�

Theorem 1.3.2 (Fatou’s Lemma) Let (X,S,μ) be a measure space. Let { fn} be a
sequence of non-negative measurable functions on X. Then

∫

X

lim inf
n→∞ fn dμ ≤ lim inf

n→∞

∫

X

fn dμ.

�

Theorem 1.3.3 (Dominated Convergence Theorem) Let (X,S,μ) be a measure
space and let { fn} be a sequence of measurable functions such that fn(x) → f (x)
for all x ∈ X. Assume that | fn| ≤ g for all n, where g is integrable. Then, f is also
integrable and

lim
n→∞

∫

X

| fn − f | dμ = 0.

In particular, (1.3.1) holds. �



1.3 Measure and Integration 21

A property is said to hold almost everywhere (abbreviated as a.e.) in a measure
space if it holds on the complement of a set of measure zero. The above results are
valid even if we replace convergence for all x ∈ X by convergence a.e. for the given
sequences of functions.

Let (X,S,μ) and (Y, T ,λ) be two measure spaces. Consider the product set X ×
Y . Ameasurable rectangle is a subset of the product set of the form A × B, where A ∈
S and B ∈ T . An elementary set is a finite disjoint union of measurable rectangles.
The product σ-algebra S × T on X × Y is the smallest σ-algebra generated by
elementary sets.

Definition 1.3.7 Let Q ⊂ X × Y . Then the x-section of Q is the subset of Y defined
by

Qx = {y ∈ Y |(x, y) ∈ Q}.

Similarly, the y-section of Q is a subset of X and is given by

Qy = {x ∈ X |(x, y) ∈ Q}.

If f : X × Y → R is a function, then its x- and y-sections are functions fx : Y → R

and f y : X → R, respectively, given by

fx (y) = f (x, y) = f y(x)

for all x ∈ X and y ∈ Y. �

Proposition 1.3.3 (i) If Q ∈ S × T , then, for every x ∈ X and y ∈ Y , we have
Qx ∈ T and Qy ∈ S;

(ii) if f : X × Y → Y is a S × T -measurable function, then, for every x ∈ X and
y ∈ Y , we have that fx is T -measurable on Y and f y is S-measurable on X.

Theorem 1.3.4 Let (X,S,μ) and (Y, T ,λ) be σ-finite measure spaces. Let Q ∈
S × T . For x ∈ X and y ∈ Y , define

ϕ(x) = λ(Qx ), and ψ(y) = μ(Qy).

Then ϕ is S-measurable, ψ is T -measurable and, further,

∫

X

ϕ dμ =
∫

Y

ψ dλ. (1.3.2)

�

We can now use the above theorem to define the measure on the product of two
σ-finite measure spaces.

Definition 1.3.8 Let (X,S,μ) and (Y, T ,λ) be two σ-finite measure spaces. The
product measure μ × λ on X × Y is defined by
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(μ × λ)(Q) =
∫

X

λ(Qx ) dμ(x) =
∫

Y

μ(Qy) dλ(y)

for every Q ∈ S × T . �
The following result helps us to evaluate integrals over the product space via

iterated integrals and is very useful.

Theorem 1.3.5 (Fubini’s Theorem) Let (X,S,μ) and (Y, T ,λ) be σ-finite measure
spaces. Let f : X × Y → R be S × T -measurable.

(i) Let f be non-negative. Set

ϕ(x) =
∫

Y

fx dλ and ψ(y) =
∫

X

f y dμ (1.3.3)

for x ∈ X and y ∈ Y . Then ϕ is S-measurable, ψ is T -measurable and

∫

X

ϕ dμ =
∫

Y

ψ dλ; (1.3.4)

(ii) if f is an arbitrary measurable function such that

ϕ(x)
def=

∫

Y

| f |x dλ

verifies ∫

X

ϕ dμ < ∞,

then f is integrable with respect to μ × λ;

(iii) let f be integrable with respect to μ × λ. Then fx is integrable with respect
to λ for almost every x ∈ X; similarly f y is integrable with respect to μ for
almost every y ∈ Y ; the functions ϕ and ψ defined by (1.3.3) are integrable
with respect to μ and λ, respectively, and (1.3.4) holds.

Remark 1.3.1 The σ-finiteness of the measures is essential. �

Remark 1.3.2 The relation (1.3.4) may be written in the form of iterated integrals
as follows:

∫

X

⎛

⎝
∫

Y

f (x, y) dλ(y)

⎞

⎠ dμ(x) =
∫

Y

⎛

⎝
∫

X

f (x, y) dμ(x)

⎞

⎠ dλ(y)
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and the common value is equal to
∫
X×Y f d(μ × λ) whenever Fubini’s theorem is

applicable. �

Remark 1.3.3 In (ii), f is integrable if the analogous result for the y-section of | f |
holds. Thus, if either of the iterated integrals for | f | is finite, then f is integrable
over the product space and (1.3.4) will hold. �

For further details, the reader is referred to Halmos [3], Royden [4] or Rudin [5].
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Chapter 2
Normed Linear Spaces

2.1 The Norm Topology

In order to do analysis on vector spaces, we need to endow these spaces with a
topological structure which is compatible with the linear structure. This is made
precise in the following definition.

Definition 2.1.1 A topological vector space is a vector space V that is endowed
with a Hausdorff topology such that the maps

(x, y) ∈ V × V �→ x + y ∈ V and (α, x) ∈ F × V �→ αx ∈ V

are continuous, each product space being endowed with the appropriate product
topology using the given topology of V and the usual topology on the scalar field
F(= R or C). �

Wewill restrict our attention to a class of topological vector spaces called normed
linear spaces, which we now proceed to define. Recall that the base field F will
always be R or C.

Definition 2.1.2 A norm on a vector space V is a function ‖ · ‖ : V → [0,∞) such
that

(i) ‖x‖ = 0 if, and only if, x = 0;
(ii) ‖αx‖ = |α|‖x‖ for every α ∈ F and every x ∈ V ;
(iii) (Triangle Inequality) for every x and y in V , we have

‖x + y‖ ≤ ‖x‖ + ‖y‖. (2.1.1)

�
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Associated to a norm on a vector space V, we have a metric defined by

d(x, y) = ‖x − y‖.

It is immediate to verify that this defines a metric. The triangle inequality (2.1.1)
yields the inequality (1.2.1) (which is also called by the same name) via the relation

x − z = (x − y) + (y − z).

(Thus, the norm of a vector is its distance from the origin and is a generalization of
the notion of the length of a vector, as we know it, in Euclidean space.)

Thus, V is endowed with a metric topology. In this topology, a sequence {xn}
converges to x in V if, and only if

‖xn − x‖ → 0.

Now if {xn} and {yn} are sequences in V and {αn} a sequence in F, we have, for
x, y ∈ V and α ∈ F,

‖(xn + yn) − (x + y)‖ ≤ ‖xn − x‖ + ‖yn − y‖,
‖αnxn − αx‖ ≤ |αn|‖xn − x‖ + |αn − α|‖x‖.

Thus, if xn → x, yn → y in V and if αn → α in F, it immediately follows that
xn + yn → x + y and that αnxn → αx in V . Thus addition and scalar multiplication
are continuous and soV becomes a topological vector spacewith thismetric topology.

Definition 2.1.3 A normed linear space is a vector space V endowed with a norm.
The metric topology induced by the norm is called its norm topology. �

The norm itself is a continuous function with respect to this topology. Indeed, if
x and y are in V , then, since x = (x − y) + y, the triangle inequality yields

‖x‖ ≤ ‖x − y‖ + ‖y‖

which we rewrite as
‖x‖ − ‖y‖ ≤ ‖x − y‖.

Interchanging the roles of x and y we finally obtain

| ‖x‖ − ‖y‖ | ≤ ‖x − y‖

from which the continuity of the function x ∈ V �→ ‖x‖ ∈ R follows.

Definition 2.1.4 Anormed linear space is said to be aBanach space if it is complete
under the norm topology. �
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2.2 Examples

We will now look at several examples of normed linear spaces. Essentially, they can
be classified into three groups - finite dimensional spaces, sequence spaces and func-
tion spaces. In the examples that follow, we will set F = R. The reader can easily
make the necessary changes to cover the case when R is replaced by C.

Example 2.2.1 We can consider R as a vector space over itself. The map x ∈ R �→
|x | is easily seen to define a norm which generates the usual topology on R. Since R
is complete, it thus becomes a Banach space. �

Example 2.2.2 Let 1 ≤ p < ∞. For x = (x1, x2, . . . , xN ) ∈ R
N , define

‖x‖p =
(

N∑
i=1

|xi |p
) 1

p

.

It is easy to see that conditions (i)–(ii) of Definition 2.1.2 are verified. We will
presently prove the triangle inequality, and thusRN with the norm ‖ · ‖p will become
a normed linear space. It is, again, immediate to see that a sequence {x (n)} in R

N

converges in this norm to x ∈ R
N if, and only if, for every 1 ≤ i ≤ N , we have

x (n)
i → xi . Similarly, {x (n)} isCauchy in this norm if, andonly if, for every1 ≤ i ≤ N ,
the sequences {x (n)

i } are Cauchy inR. Since R is complete, it now follows thatRN is
also complete with respect to each of the norms ‖ · ‖p defined above. Thus for each
of these norms, RN is a Banach space. �

We now proceed to prove the triangle inequality for each of the norms ‖.‖p for
1 ≤ p < ∞.

Definition 2.2.1 Let 1 ≤ p ≤ ∞. If p = 1, set p∗ = ∞ and vice versa. Otherwise,
let 1 < p∗ < ∞ be such that

1

p
+ 1

p∗ = 1 (2.2.1)

The number p∗ defined thus is called the conjugate exponent of p. �

Lemma 2.2.1 Let 1 < p < ∞. Let p∗ be its conjugate exponent. Then, if a and b
are non-negative real numbers, we have

a1/pb1/p
∗ ≤ a

p
+ b

p∗ . (2.2.2)

Proof Let t ≥ 1 and consider the function

f (t) = k(t − 1) − t k + 1



28 2 Normed Linear Spaces

for some k ∈ (0, 1). Then f ′(t) = k(1 − t k−1) ≥ 0 since k < 1.Thus, f is an increas-
ing function on [1,∞) and, since f (1) = 0, we immediately deduce that

t k ≤ k(t − 1) + 1 (2.2.3)

for t ≥ 1 and 0 < k < 1.
Now, if a or b is zero, then (2.2.2) is obviously true. So let us assume that a ≥

b > 0.
The inequality (2.2.2) now follows by setting t = a/b and k = 1/p in (2.2.3) and

using the definition of p∗. �

Lemma 2.2.2 (Hölder’s inequality) Let 1 < p < ∞. Let p∗ be its conjugate expo-
nent. Then, for x, y ∈ R

N ,

N∑
i=1

|xi yi | ≤ ‖x‖p‖y‖p∗ . (2.2.4)

Proof Since the result is trivially true for x = 0 or y = 0, we can assume, without
loss of generality, that both x and y are non-zero vectors. Then, set

a = |xi |p
‖x‖p

p
and b = |yi |p∗

‖y‖p∗
p∗

for a fixed 1 ≤ i ≤ N . Then (2.2.2) yields

|xi yi |
‖x‖p‖y‖p∗

≤ 1

p

|xi |p
‖x‖p

p
+ 1

p∗
|yi |p∗

‖y‖p∗
p∗

.

Summing over the range of the index i , we get

∑N
i=1 |xi yi |

‖x‖p‖y‖p∗
≤ 1

p
+ 1

p∗ = 1

which proves (2.2.4). �

Lemma 2.2.3 (Minkowski’s Inequality) Let 1 ≤ p < ∞. Let x, y ∈ R
N . Then

‖x + y‖p ≤ ‖x‖p + ‖y‖p. (2.2.5)

Proof The proof is obvious if p = 1. Let us, therefore, assume that 1 < p < ∞. Let
p∗ be the conjugate exponent. Then,
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N∑
i=1

|xi + yi |p ≤
N∑
i=1

|xi + yi |p−1|xi | +
N∑
i=1

|xi + yi |p−1|yi |

≤ (‖x‖p + ‖y‖p)

(
N∑
i=1

|xi + yi |(p−1)p∗
) 1

p∗

by a simple application of Hölder’s inequality (2.2.4). But (p − 1)p∗ = p by defi-
nition and so,

‖x + y‖p
p ≤ (‖x‖p + ‖y‖p)‖x + y‖p/p∗

p .

Since the result is obviously true when x + y = 0, we can assume, without loss of
generality, that x + y �= 0 and so, dividing both sides of the above inequality by
‖x + y‖p/p∗

and using, once again, the definition of p∗, we get (2.2.5). �

SinceMinkowski’s inequality is exactly the triangle inequality for the norm ‖ · ‖p,
our proof that RN is a Banach space for each of these norms is complete.

Remark 2.2.1 The inequalities ofHölder andMinkowski are clearly truewhen x and
y ∈ C

N and soCN is also aBanach space for each of the norms‖ · ‖p, 1 ≤ p < ∞. �

Remark 2.2.2 When p = 2, we have p∗ = 2 aswell. In this caseHölder’s inequality
is known as the Cauchy-Schwarz inequality. The inequality (2.2.2), in this case,
turns out to be the familiar inequality relating the arithmetic and geometric means of
two positive real numbers. The norm ‖ · ‖2 is also called the Euclidean norm since
it corresponds to the usual Euclidean distance in RN . �

Example 2.2.3 For x = (x1, . . . , xN ) ∈ R
N , define

‖x‖∞ = max
1≤i≤N

|xi |.

It is easy to verify that this also defines a norm on R
N . Again convergence and the

Cauchy criterion hold if and only if they hold componentwise and soRN is a Banach
space for this norm as well. Again all these assertions hold for CN as well. It is
immediate to see that Hölder’s inequality is true when p = 1 as well. �

Remark 2.2.3 The spacesRN (orCN when the base field isC) with the norm ‖ · ‖p,
where 1 ≤ p ≤ ∞ are usually denoted by �Np in the literature. �

Example 2.2.4 The notation ‖ · ‖∞ for the norm defined in Example 2.2.3 can be
‘justified’ as follows. Let x ∈ R

N . Assume that the maximum for |xi | is attained for
a single index, say, i0. Then,

‖x‖p = |xi0 |
⎡
⎣1 +

∑
i �=i0

( |xi |
|xi0 |

)p
⎤
⎦

1
p

.
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Thus, since |xi |/|xi0 | < 1 for i �= i0, we get that

‖x‖p → ‖x‖∞

when p → ∞. �
Remark 2.2.4 We now consider sets of real (or complex) sequences

x = (x1, x2, . . . , xi , . . .).

Let 1 ≤ p < ∞. We define the space

�p =
{
x |

∞∑
i=1

|xi |p < ∞
}

.

We define vector addition and scalar multiplication (over the corresponding field)
componentwise, i.e. if x = (xi ) and y = (yi ) are sequences in �p and if α is a scalar,
we set

x + y = (xi + yi ) and αx = (αxi ).

We also define

‖x‖p =
( ∞∑

i=1

|xi |p
) 1

p

.

We will prove the triangle inequality for ‖.‖p (which will also simultaneously show
that �p is closed under vector addition and hence that it is a vector space). Since
properties (i) and (ii) of Definition 2.1.2 are obvious, it will follow that ‖ · ‖p defines
a norm on �p.

Let x, y ∈ �p. Then, for any positive integer N , we have

N∑
i=1

|xi + yi |p ≤
[(

N∑
i=1

|xi |p
) 1

p

+
(

N∑
i=1

|yi |p
) 1

p
]p

≤ [‖x‖p + ‖y‖p
]p

using Minkowski’s inequality (2.2.5) for the integer N . Thus, since N was arbitrary,
we deduce that ∞∑

i=1

|xi + yi |p ≤ [‖x‖p + ‖y‖p
]p

< ∞

which shows that x + y ∈ �p and also proves the triangle inequality for ‖ · ‖p. �

Remark 2.2.5 The triangle inequality

‖x + y‖p ≤ ‖x‖p + ‖y‖p
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for x and y in �p is again referred to as Minkowski’s inequality. We can also prove
Hölder’s inequality: if x ∈ �p and y ∈ �p∗ where p∗ is the conjugate exponent, then

∞∑
i=1

|xi yi | ≤ ‖x‖p‖y‖p∗ . �

Proposition 2.2.1 Let 1 ≤ p < ∞. Then �p is a Banach space.

Proof We just need to prove the completeness of the space. Let {x (n)} be a Cauchy
sequence in �p, i.e. given ε > 0, there exists N such that

∞∑
i=1

|x (m)
i − x (l)

i |p < ε (2.2.6)

for all m ≥ N , l ≥ N . Thus, it is clear that for each fixed subscript i , the sequence
{x (n)

i } is Cauchy in R (or C, as the case may be). Thus, there exists xi such that
x (n)
i → xi for each i . Set

x = (x1, x2, . . . , xi , . . .).

We will first show that x ∈ �p. Since {x (n)} is a Cauchy sequence, it is bounded.
Thus, there exists a C > 0 such that

‖x (n)‖p
p ≤ C, for all n.

Let k be any fixed positive integer. Then,

k∑
i=1

|x (n)
i |p ≤ C

which implies that
k∑

i=1

|xi |p ≤ C.

Since k is arbitrary, this shows that

∞∑
i=1

|xi |p ≤ C < ∞.

This shows that x ∈ �p.
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Now, for any positive integer k and all m, l ≥ N , it follows from (2.2.6) that

k∑
i=1

|x (m)
i − x (l)

i |p < ε.

Passing to the limit as l → ∞, we get that for any m ≥ N and for any k,

k∑
i=1

|x (m)
i − xi |p ≤ ε.

Since k is arbitrary, we deduce that for m ≥ N ,

‖x (m) − x‖p
p ≤ ε,

i.e. x (n) → x in �p. This completes the proof. �

Example 2.2.5 Set

�∞ =
{
x = (xi )| sup

1≤i<∞
|xi | < +∞

}
,

i.e. the space of all bounded real (or complex) sequences. This is clearly a vector
space under componentwise addition and scalar multiplication. Define

‖x‖∞ = sup
1≤i<∞

|xi |.

This makes �∞ a Banach space (check!). �

Remark 2.2.6 Once again, Hölder’s inequality holds for p = 1 as well. �

Remark 2.2.7 For those readers who are acquainted with measure theory, the spaces
�Np and �p, for 1 ≤ p ≤ ∞ are particular cases of the Lebesgue spaces L p(μ) where
{X,S,μ} is a measure space. In the case of �Np , we have X = {1, 2, . . . , N } and in
the case of �p we have X = N, the set of all natural numbers. In either case, the
σ-algebra is the collection of all subsets of X and the measure μ is the counting
measure. We will study L p spaces in detail in Chap.6. �

Our final example is that of a function space.

Example 2.2.6 Let C[0, 1] denote the set of all continuous real-valued functions
on the closed interval [0, 1]. This becomes a vector space under the operations of
addition and scalar multiplications defined pointwise, i.e.

( f + g)(x) = f (x) + g(x) and (α f )(x) = α f (x)
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for f and g in C[0, 1],α ∈ R and for x ∈ [0, 1]. Define

‖ f ‖ = sup
x∈[0,1]

| f (x)|
(

= max
x∈[0,1] | f (x)|

)
.

This is well defined since [0, 1] is compact and so every continuous function is
bounded and attains its maximum. The verification that this defines a norm on C[0, 1]
is routine and is left to the reader.

Let { fn} be a Cauchy sequence in C[0, 1]. This implies that for every ε > 0, there
exists a positive integer N such that, for all x ∈ [0, 1] and for all n ≥ N andm ≥ N ,
we have

| fn(x) − fm(x)| < ε. (2.2.7)

Thus the pointwise sequences { fn(x)} are all Cauchy and hence convergent. Define

f (x) = lim
n→∞ fn(x).

We will show that the function f thus defined is in C[0, 1] and that ‖ fn − f ‖ → 0.
This will show that C[0, 1], with the given norm, is a Banach space.

Let ε and N be as above. Then, keeping n ≥ N fixed and passing to the limit as
m → ∞ in (2.2.7), we get

| fn(x) − f (x)| ≤ ε (2.2.8)

for all n ≥ N and for all x ∈ [0, 1]. Fix a point x0 ∈ [0, 1]. Since fN is continuous,
there exists δ > 0 such that for all |x0 − y| < δ, we have

| fN (x0) − fN (y)| < ε.

Thus, if |x0 − y| < δ, we get, using the above inequality and also the inequality
(2.2.8),

| f (x0) − f (y)| ≤ | f (x0) − fN (x0)| + | fN (x0) − fN (y)| + | fN (y) − f (y)| ≤ 3ε.

This proves that f is continuous and from (2.2.8), we see that ‖ fn − f ‖ → 0. �

Remark 2.2.8 The convergence described in the preceding example iswhat is known
in the literature as uniform convergence. The norm is often referred to as the ‘sup-
norm’. �

We conclude this section by showing a standardmethod of producing new normed
linear spaces from existing ones. Let V be a normed linear space and letW be a closed
subspace of V , i.e.W is a linear subspace of V and is closed under the norm topology.
We define an equivalence relation on V by

x ∼ y ⇔ x − y ∈ W.
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The equivalence class containing a vector x ∈ V is called a coset and is denoted
as x + W . It consists of all elements of the form x + w where w ∈ W . The set of
all cosets is called the quotient space and is denoted V/W . Addition and scalar
multiplication on V/W are defined by

(x + W ) + (y + W ) = (x + y) + W and α(x + W ) = αx + W.

If x ∼ x ′ and y ∼ y′, then, clearly, x + y ∼ x ′ + y′ and αx ∼ αx ′, since W is a
linear subspace of V . Thus, addition and scalar multiplication are well defined. Thus
the quotient space becomes a vector space. On this, we define

‖x + W‖V/W = inf
w∈W ‖x + w‖.

In other words, the ‘norm’ defined above is the infimum of the norms of all the
elements in the coset and so, clearly, it is well defined.

Proposition 2.2.2 Let V be a normed linear space and let W be a closed subspace.
Then, ‖ · ‖V/W defined above is a norm on the quotient space V/W. Further, if V is
a Banach space, so is V/W.

Proof Clearly ‖x + W‖V/W ≥ 0 for all x ∈ V . If x + W = 0 + W inV/W , we have
x ∈ W ; then −x ∈ W and so 0 ≤ ‖x + W‖V/W ≤ ‖x + (−x)‖ = 0 and so ‖x +
W‖V/W = 0. Conversely, if ‖x + W‖V/W = 0, then, by definition, there exists a
sequence {wn} in W such that ‖x + wn‖ → 0. This means that wn → −x in V and,
since W is closed, it follows that −x ∈ W and so x ∈ W as well. This means that
x ∼ 0, i.e. x + W is the zero element of V/W .

If α �= 0, then αx + w = α(x + w′)wherew′ = α−1w ∈ W . From this it is easy
to see that ‖αx + W‖V/W = |α|‖x + W‖V/W . The case α = 0 is obvious.

Finally, we prove the triangle inequality.

‖x + y + W‖V/W = inf{‖x + y + w‖|w ∈ W }
= inf{‖x + y + w + w′‖|w,w′ ∈ W }
≤ inf{‖x + w‖ + ‖y + w′‖|w,w′ ∈ W }
= inf{‖x + w‖|w ∈ W } + inf{‖y + w′‖|w′ ∈ W }
= ‖x + W‖V/W + ‖y + W‖V/W .

Thus, V/W is a normed linear space. Now assume that V is complete. Let {xn +
W } be a Cauchy sequence in V/W . Then, we can find a subsequence such that

‖(xnk + W ) − (xnk+1 + W )‖V/W <
1

2k
.(why?)

Now choose yk ∈ xnk + W such that ‖yk − yk+1‖ < 1/2k . Then the sequence {yk}
is Cauchy (why?) and so, since V is complete, yk → y in V . Thus

‖(xnk + W ) − (y + W )‖V/W ≤ ‖yk − y‖ → 0.



2.3 Continuous Linear Transformations 35

Thus, the Cauchy sequence {xn + W } has a convergent subsequence {xnk + W } and
so the Cauchy sequence itself must be convergent and converge to the same limit
(why?). Hence V/W is complete. �

2.3 Continuous Linear Transformations

An important aspect of functional analysis is to study mappings between normed
linear spaces which ‘respect’ the linear and topological structures. We make this
notion precise in the following definition.

Definition 2.3.1 Let V and W be normed linear spaces. A linear transformation
T : V → W is said to be a continuous linear transformation or, a continuous
linear operator, if it is continuous as a map between the topological spaces V and
W (endowed with their norm topologies). If W is the base field, then a continuous
linear transformation is called a continuous linear functional. �

Definition 2.3.2 A subset of a normed linear space is bounded if it can be contained
in a ball. �

The followingproposition gives an important characterization of continuous linear
transformations.

Proposition 2.3.1 Let V and W be normed linear spaces and let T : V → W be a
linear transformation. The following are equivalent:

(i) T is continuous;
(ii) T is continuous at 0;
(iii) there exists a constant K > 0 such that, for all x ∈ V ,

‖T (x)‖W ≤ K‖x‖V (2.3.1)

where ‖ · ‖V and ‖ · ‖W denote the respective norms in the spaces V and W;
(iv) if B = {x ∈ V |‖x‖V ≤ 1} is the (closed) unit ball in V , then T (B) is a bounded

set in W.

Proof (i) ⇔ (ii) If T is continuous, then, clearly, it is continuous at 0 ∈ V . Con-
versely, let T be continuous at 0 ∈ V . Let x ∈ V be arbitrary and let xn → x in V .
Then xn − x → 0 in V and so, T (xn − x) → 0 inW , i.e. T (xn) → T (x) inW . Thus,
T is continuous.
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(ii) ⇔ (iii) If T is continuous at 0 ∈ V , there exists a δ > 0 such that ‖x‖V < δ
implies that ‖T (x)‖W < 1. For any x ∈ X , set y = δ

2‖x‖V x so that ‖y‖V = δ/2 < δ
and so ‖T (y)‖W < 1. By linearity, it follows that

‖T (x)‖V ≤ 2

δ
‖x‖V

which proves (2.3.1) with K = 2/δ. Conversely, if (2.3.1) is true, then whenever
xn → 0 in V , it follows that T (xn) → 0 in W , i.e. T is continuous at 0.

(iii) ⇔ (iv) By virtue of (2.3.1), it follows that ‖T (x)‖W ≤ K for all x ∈ B. Thus,
T (B) is bounded in W . Conversely, if T (B) is bounded in W , there exists a K > 0
such that ‖T (x)‖W ≤ K for all x ∈ B. Now, if 0 �= x ∈ V is arbitrary, set y = x/‖x‖.
Then ‖T (y)‖W ≤ K from which (2.3.1) follows, by linearity. �

Remark 2.3.1 Continuous linear transformations are also known as bounded linear
transformations since they map bounded sets into bounded sets. �

The above proposition inspires the following definition.

Definition 2.3.3 Let V and W be normed linear spaces and let T : V → W be a
continuous linear transformation. Let B be the closed unit ball in V . The norm of
T , denoted ‖T ‖, is given by

‖T ‖ = sup
x∈B

‖T (x)‖W . (2.3.2)

�

The following proposition gives alternative characterizations of the norm of a
continuous linear transformation.

Proposition 2.3.2 Let V and W be normed linear spaces and let T : V → W be a
continuous linear transformation. Then

‖T ‖ = sup{‖T (x)‖W |‖x‖V = 1}
= sup{‖T (x)‖W/‖x‖V |0 �= x ∈ V }
= inf{K > 0|‖T (x)‖W ≤ K‖x‖V for all x ∈ V }.

Proof Let us set

α = sup{‖T (x)‖W |‖x‖V = 1},
β = sup{‖T (x)‖W/‖x‖V |0 �= x ∈ V }and
γ = inf{K > 0|‖T (x)‖W ≤ K‖x‖V for all x ∈ V }.

Clearly, α ≤ β. If x is a non-zero vector in V , then x/‖x‖V has unit norm and
‖T (x)‖W/‖x‖V = ‖T (x/‖x‖V )‖W . This shows that we also have β ≤ α. If K > 0
is any number in the set defining γ, then it follows immediately that β ≤ K and so,
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a fortiori, we have β ≤ γ. Now, we also have that ‖T (x)‖W ≤ β‖x‖V for all x ∈ V
and so, by definition, γ ≤ β. Thus, we have

α = β = γ.

Clearly ‖T ‖ ≥ α by definition. If K is in the set defining γ, then, for all x ∈ V
such that ‖x‖V ≤ 1, we have ‖T (x)‖W ≤ K and so ‖T ‖ ≤ K . Thus, we get that
‖T ‖ ≤ γ = α. Thus we get that

‖T ‖ = α = β = γ. �
Corollary 2.3.1 If V and W are normed linear spaces and if T : V → W is a
continuous linear transformation, then

‖T (x)‖W ≤ ‖T ‖‖x‖V (2.3.3)

for all x ∈ V . �
Let V and W be normed linear spaces. Let us denote by L(V,W ), the set of all

continuous linear maps from V into W . If T1 and T2 are such maps, let us define
T1 + T2 by

(T1 + T2)(x) = T1(x) + T2(x)

for all x ∈ V . Clearly, T1 + T2 is also a linear transformation. Now,

‖(T1 + T2)(x)‖W ≤ ‖T1(x)‖W + ‖T2(x)‖W ≤ (‖T1‖ + ‖T2‖)‖x‖V
by virtue of the triangle inequality and the above corollary. Thus, it follows that
T1 + T2 is also a continuous linear transformation and that

‖T1 + T2‖ ≤ ‖T1‖ + ‖T2‖.

Similarly, if T is a continuous linear transformation and if α is a scalar, we define

(αT )(x) = αT (x)

for all x ∈ V . It is then easy to see that αT is also continuous and that

‖αT ‖ = |α|‖T ‖.

The zero element of L(V,W ) is the trivial map which maps every element of V
into the null vector of W . The element −T is defined by (−T )(x) = −T (x). Thus,
L(V,W ) is a vector space; in fact, it is a normed linear space for the norm of a
continuous linear transformation defined above.

Proposition 2.3.3 Let V and W be normed linear spaces. If W is complete, then
L(V,W ) is also complete.
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Proof Let {Tn} be a Cauchy sequence in L(V,W ). Then, given ε > 0, we can find
a positive integer N such that, for all m and n ≥ N , we have

‖Tn − Tm‖ < ε.

Let x ∈ V . Then,
‖Tn(x) − Tm(x)‖W ≤ ‖Tn − Tm‖‖x‖V

and so it follows that the sequence {Tn(x)} is Cauchy in W . Since W is complete,
this sequence is convergent. Let us define

T (x) = lim
n→∞ Tn(x).

Clearly, the map x �→ T (x) is linear. We will show that it is continuous and that
‖Tn − T ‖ → 0. This will complete the proof.

Since the sequence {Tn} is Cauchy, it is bounded, i.e. there existsM > 0 such that,
for all positive integers n, we have ‖Tn‖ ≤ M . Now, since for any x ∈ V , we have
‖Tn(x)‖W ≤ ‖Tn‖‖x‖V ≤ M‖x‖V , it follows, on passing to the limit as n → ∞,
that, for all x ∈ V ,

‖T (x)‖W ≤ M‖x‖V .

Thus, T is continuous and so T ∈ L(V,W ).
Let ε > 0 and let N be as defined earlier by the Cauchy property of the given

sequence. Let B be the closed unit ball in V . For all x ∈ B, we have

‖Tn(x) − Tm(x)‖W ≤ ‖Tn − Tm‖ < ε.

Keeping n fixed and letting m tend to infinity, we get

‖Tn(x) − T (x)‖W ≤ ε

for all x ∈ B. This shows that, for n ≥ N , we have ‖Tn − T ‖ ≤ ε, i.e. Tn → T in
L(V,W ). This completes the proof. �

In particular, since the scalar field is a Banach space over itself (cf. Example
2.2.1), the set of all continuous linear functionals L(V,R) (or, L(V,C), as the case
may be) is always a Banach space.

Definition 2.3.4 Let V be a normed linear space. The space of all continuous linear
functionals on V is a Banach space and is called the dual space of V . It is denoted
by V ∗. �
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Another particular case is when W = V . In this case we write L(V ) for the
space of all continuous linear operators instead of L(V, V ). This space is Banach
if V is Banach. On this space, we have a third operation (after addition and scalar
multiplication), namely composition of operators: if T1 and T2 are continuous linear
operators, we define T1T2 by

(T1T2)(x) = T1(T2(x)).

Now, for any x ∈ V , we have

‖(T1T2)(x)‖V ≤ ‖T1‖‖T2(x)‖V ≤ ‖T1‖‖T2‖‖x‖V .

Thus, T1T2 is also a continuous linear operator and, further,

‖T1T2‖ ≤ ‖T1‖‖T2‖. (2.3.4)

Further, multiplication is a continuous operation. Indeed, if Tn → T and T ′
n → T ′

in L(V ), we have

‖TnT ′
n − T T ′‖ ≤ ‖Tn‖‖T ′

n − T ′‖ + ‖T ′‖‖Tn − T ‖.

Since ‖Tn‖ is bounded independent of n, it follows that TnT ′
n → T T ′. Finally, if I is

the identity mapping, i.e. I (x) = x for all x ∈ V , we have

‖I‖ = 1.

Definition 2.3.5 A Banach space V on which we have a multiplication operation
(x, y) ∈ V × V �→ xy ∈ V such that addition and multiplication make it a ring and
such that

‖xy‖ ≤ ‖x‖‖y‖ and ‖1‖ = 1

where 1 is the multiplicative identity in V , is called a Banach algebra. �

Thus, L(V ), where V is a Banach space, is a Banach algebra.

Let us now study various examples of continuous linear transformations.

Example 2.3.1 Any linear transformation T : RN → R
M is given by an M × N

matrix. Assume thatRN is the space �N1 . Then, for any norm onRM , any linear trans-
formation is continuous. Let {e1, . . . , eN } be the standard basis of RN (cf. Example
1.1.2). If x = (x1, . . . , xN ) ∈ R

N , then x = ∑N
i=1 xiei . Then T (x) = ∑N

i=1 xi T (ei ).
Thus,
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‖T (x)‖RM ≤ K
N∑
i=1

|xi | = K‖x‖1

where
K = max

1≤i≤N
‖T (ei )‖RM . �

Example 2.3.2 Let a1, ..., aN be scalars. For x = (x1, . . . , xN ) ∈ R
N , define

f (x) =
N∑
i=1

ai xi .

Then f is a linear functional on R
N which is continuous if RN = �N1 . �

We will see later that these transformations and functionals are continuous for
any norm defined on R

N .

Example 2.3.3 Let x = (xi ) ∈ �2. Define

T (x) =
( x1
1

,
x2
2

, . . . ,
xi
i

, . . .
)

.

Then, since
∞∑
i=1

∣∣∣ xi
i

∣∣∣2 ≤
∞∑
i=1

|xi |2 < ∞,

we have that T is a continuous linear operator on �2 and that ‖T ‖ ≤ 1. The map T
is not onto. In fact, the range of T consists of all square summable sequences (yi )
such that ∞∑

i=1

i2|yi |2 < ∞.
�

Example 2.3.4 Let 1 ≤ p ≤ ∞ and let p∗ be its conjugate exponent. For x ∈ �p

and y ∈ �p∗ , define

fy(x) =
∞∑
i=1

xi yi .

Then, by Hölder’s inequality, we have

| fy(x)| ≤
∞∑
i=1

|xi yi | ≤ ‖x‖p‖y‖p∗ .
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Thus fy defines a continuous linear functional on �p and

‖ fy‖ ≤ ‖y‖p∗ .

We will see later that, when 1 ≤ p < ∞, all continuous linear functionals on �p

occur only in this way and that the last inequality is, in fact, an equality. �

Example 2.3.5 Consider an infinite matrix (ai j )∞i, j=1. This can be used to define a
linear mapping on �p as follows. Let x = (xi ) ∈ �p. Define a sequence A(x) by

A(x)i =
∞∑
j=1

ai j x j .

Showing that A defines a continuous linearmap of �p into itself is usually a non-trivial
problem and some examples are given in the exercises at the end of this chapter. We
now give an example (due to Schur).

Assume that ai j ≥ 0 for all i and j . Assume further there exists a sequence {pi }
of positive real numbers and β > 0 and γ > 0 such that

∞∑
i=1

ai j pi ≤ β p j

for all j ∈ N and also such that

∞∑
j=1

ai j p j ≤ γ pi

for all i ∈ N. Then A ∈ L(�2) and ‖A‖2 ≤ βγ.
To see this, let x = (xi ) ∈ �2. We write

∞∑
j=1

ai j x j =
∞∑
j=1

√
ai j

√
p j

√
ai j x j√
p j

.

Applying the Cauchy-Schwarz inequality, this yields

|A(x)i |2 ≤
⎛
⎝ ∞∑

j=1

ai j p j

⎞
⎠
⎛
⎝ ∞∑

j=1

ai j |x j |2
p j

⎞
⎠ .

It follows from the hypotheses that
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∞∑
i=1

|A(x)i |2 ≤
∞∑
i=1

γ pi
∞∑
j=1

ai j |x j |2
p j

= γ
∞∑
j=1

|x j |2
p j

∞∑
i=1

ai j pi

≤ γ
∞∑
j=1

|x j |2
p j

β p j

= βγ‖x‖22
which establishes the claim.

An interesting particular case is that of the Hilbert matrix. Set

ai j = 1

i + j + 1

for 0 ≤ i, j ≤ ∞. Set pi = 1/
√
i + 1

2 . Since the matrix is symmetric, it suffices to
check one of the two conditions. Now,

∞∑
i=0

ai j pi =
∞∑
i=0

1

(i+ 1
2 + j+ 1

2 )
√

i+ 1
2

<

∞∫
0

dx

(x + j + 1
2 )

√
x

= 2

∞∫
0

dt

t2 + j + 1
2

= π√
j+ 1

2

.

Thus, by Schur’s test, the matrix defines a continuous linear operator A on �2 whose
norm is less than, or equal to π. (In fact, it has been shown by Hardy, Littlewood and
Polya that the norm is exactly π). �

Example 2.3.6 (Cesàro Operator) Let x = (xi ) ∈ �p where 1 < p < ∞. Define

(T (x))n = x1 + · · · + xn
n

.

We show that T ∈ L(�p) and that

‖T ‖ ≤ p

p − 1
.

Indeed,

|T (x)n| ≤ |x1| + · · · + |xn|
n

.
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Set An = |x1| + · · · + |xn| and αn = An/n, for n ≥ 1 and set x0 = A0 = 0. Then

α
p
n − p

p−1α
p−1
n |xn| = α

p
n − p

p−1α
p−1
n (nαn − (n − 1)αn−1)

=
(
1 − np

p−1

)
α

p
n + (n−1)p

p−1 α
p−1
n αn−1

=
(
1 − np

p−1

)
α

p
n + (n−1)p

p−1 (α
p
n )

p−1
p (α

p
n−1)

1
p .

Recall that p/(p − 1) = p∗, the conjugate exponent of p. Thus by Lemma 2.2.1, we
get

α
p
n − p

p−1α
p−1
n |xn| ≤

(
1 − np

p−1

)
α

p
n + (n−1)p

p−1

(
p−1
p α

p
n + 1

pα
p
n−1

)

= 1
p−1 [(n − 1)αp

n−1 − nα
p
n ].

Fix a positive integer N . Then summing both sides over n running between 1 and
N , and noticing that the right-hand side is a telescoping sum, we get

N∑
n=1

αp
n − p

p − 1

N∑
n=1

αp−1
n |xn| ≤ − N

p − 1
α

p
N ≤ 0.

By an application of Hölder’s inequality, we now deduce that

N∑
n=1

αp
n ≤ p

p − 1

N∑
n=1

αp−1
n |xn| ≤ p

p − 1

(
N∑

n=1

αp
n

) p−1
p
(

N∑
n=1

|xn|p
) 1

p

.

Dividing both sides by (
N∑

n=1
α

p
n )((p−1)/p), which is strictly positive for non-zero x , we

get (
N∑

n=1

αp
n

) 1
p

≤ p

p − 1

(
N∑

n=1

|xn|p
) 1

p

.

Since N was arbitrarily chosen, we deduce that

‖T (x)‖p ≤ p

p − 1
‖x‖p

which establishes our claim. (In fact, Hardy, Littlewood and Polya also show that
‖T ‖ = p/(p − 1).) �

Example 2.3.7 (Volterra integral operator) Let K : [0, 1] × [0, 1] → R be a contin-
uous function. For f ∈ C[0, 1] and s ∈ [0, 1], define
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T ( f )(s) =
s∫

0

K (s, t) f (t)dt.

Since K is continuous on the compact set [0, 1] × [0, 1], it is bounded and uniformly
continuous. Assume that, for all s and t in [0, 1], we have

|K (s, t)| ≤ κ.

Further, given ε > 0, there exists δ > 0 such that, whenever |s1 − s2| < δ, we have

|K (s1, t) − K (s2, t)| < ε

for all t ∈ [0, 1], by virtue of the uniform continuity. Without loss of generality, we
can assume that δ ≤ ε. Thus,

T ( f )(s1) − T ( f )(s2) =
s1∫
0

(K (s1, t) − K (s2, t)) f (t)dt +
s1∫

s2

K (s2, t) f (t)dt.

If ‖ f ‖ denotes the norm of f ∈ C[0, 1] as defined in Example 2.2.6, we have

|T ( f )(s1) − T ( f )(s2)| ≤ ε‖ f ‖s1 + δκ‖ f ‖ < (1 + κ)‖ f ‖ε

whenever |s1 − s2| < δ. This shows that T ( f ) is a continuous function. As the map-
ping T being clearly linear, it thus defines a linear operator on C[0, 1]. Further,

|T ( f )(s)| ≤ κ‖ f ‖s ≤ κ‖ f ‖.

Thus T is a continuous linear operator on C[0, 1] and ‖T ‖ ≤ κ. �

So far, we have been seeing examples of continuous linear transformations. We
now give an example of a linear transformation which is not continuous.

Example 2.3.8 Consider the space C1[0, 1] of continuous functions on [0, 1] which
are continuously differentiable on (0, 1) and whose derivatives can be extended con-
tinuously to [0, 1]. This is a subspace of C[0, 1]. Let both these spaces be endowed
with the ‘sup-norm’ (cf. Example 2.2.6). Then, the map T : C1[0, 1] → C[0, 1]
defined by T ( f ) = f ′, where f ′ denotes the derivative of f , is not continuous.
To see this, consider the sequence of functions { fn} defined by fn(t) = tn for n ≥ 1.
Then, it is easy to see that ‖ f ′

n‖ = n while ‖ fn‖ = 1. Hence there can be no constant
C > 0 such that ‖T ( f )‖ ≤ C‖ f ‖ for all f ∈ C1[0, 1]. Thus, T is not continuous. �

Definition 2.3.6 Let V be a normed linear space and let T ∈ L(V ) be a bijection.
If T−1 is also continuous, then T is said to invertible or an isomorphism. �



2.3 Continuous Linear Transformations 45

Note:When dealing with normed linear spaces, the word isomorphism is understood
in the topological sense: not only is it an isomorphism in the usual algebraic sense,
i.e. it is linear and is a bijection, but it also implies that both the mapping and its
inverse are continuous.

Definition 2.3.7 Two norms defined on the same vector space are said to be equiv-
alent if the topologies induced by these two norms coincide. �

Proposition 2.3.4 Let V be a vector space and let ‖ · ‖(1) and ‖ · ‖(2) be two norms
defined on it. The two norms are equivalent if, and only if, there exist two constants
C1 > 0 and C2 > 0 such that, for all x ∈ V , we have

C1‖x‖(1) ≤ ‖x‖(2) ≤ C2‖x‖(1).

Proof The topologies induced by the two norms coincide if, and only if, the identity
mapping

I : {V, ‖ · ‖(1)} → {V, ‖ · ‖(2)}

is an isomorphism. This is equivalent to saying that there exist two constants K1 > 0
and K2 > 0 such that

‖x‖(2) ≤ K2‖x‖(1) and ‖x‖(1) ≤ K1‖x‖(2)

for all x ∈ V . This proves the proposition on setting C1 = K−1
1 and C2 = K2. �

Example 2.3.9 Let x = (x1, . . . , xN ) ∈ R
N (or CN ). Then, clearly,

‖x‖∞ ≤ ‖x‖1 ≤ N‖x‖∞.

Thus these two norms are equivalent and the topologies induced onRN (respectively,
C

N ) by the norms ‖ · ‖1 and ‖ · ‖∞ coincide. It is a simple matter to check that
the topology induced by ‖ · ‖∞ is none other than the product topology on R

N

(respectively C
N ) when R (respectively C) is given its usual topology for every

component.
Since (|x1|2 + · · · + |xN |2) ≤ (|x1| + · · · + |xN |)2, we have that ‖x‖2 ≤ ‖x‖1.

An application of the Cauchy-Schwarz inequality shows that, on the other hand,
‖x‖1 ≤ √

N‖x‖2. Thus, for every x ∈ R
N , we have that

‖x‖2 ≤ ‖x‖1 ≤ √
N‖x‖2.

It is also very easy to see that

‖x‖∞ ≤ ‖x‖2 ≤ √
N‖x‖∞.

Thus all the three norms ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ are equivalent and the corresponding
topology on R

N , in each case, is the usual topology. �
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We will, in fact, now prove a much stronger result.

Proposition 2.3.5 Any two norms on a finite dimensional vector space are equiva-
lent.

Proof Let V be a finite dimensional normed linear space with dimension N . We
will show that V is isomorphic to the space �N1 . Thus, given two norms on V , it
will be isomorphic to �N1 for each of those norms, and from this we will deduce the
equivalence of the norms.

Step 1. Let {e1, . . . , eN } be the standard basis of �N1 . Fix a basis {v1, . . . , vN } for V .
Define T : �N1 → V by setting T (ei ) = vi for all 1 ≤ i ≤ N and then extending T
linearly to all of �N1 . Clearly T is a bijection and an identical argument as in Example
2.3.1 shows that T is continuous.

Step 2. Assume, if possible, that T−1 is not continuous. Then the continuity must
fail at 0 and so we can find a sequence {yn} in V and a real number ε > 0 such that
‖T−1(yn)‖1 ≥ ε > 0 while yn → 0. Set zn = yn/‖T−1(yn)‖1. Then, zn → 0 and
‖T−1(zn)‖1 = 1. Now, the set

B = {x ∈ �N1 |‖x‖1 ≤ 1}

is compact. To see this, observe that B is a closed and bounded set and, as we saw
above, the topology on �N1 is the same as the usual topology on R

N . Consequently,
it is also sequentially compact, and so, there exists a subsequence {znk } such that
{T−1(znk )} is convergent. Let T−1(znk ) → x , where ‖x‖1 = 1. Since T is continu-
ous, we then deduce that znk → T (x) which then implies that T (x) = 0. But T is a
one-one map and ‖x‖1 = 1 implies that x �= 0 which shows that T (x) �= 0 as well.
This gives us a contradiction. Hence T−1 must also be continuous.

Step 3. Thus, whatever be the norm on V , the same map T is always an isomorphism
between �N1 and V which implies in turn that the identity map on V , considered as
a map of normed linear spaces when V is provided with two different norms, must
be an isomorphism as well. Hence any two norms on V are equivalent. �

Remark 2.3.2 Wementioned in Proposition 1.2.5 that a set inRN (orCN ) is compact
if, and only if, it is closed and bounded. However, the topology given there is the
‘usual’ topology, viz. that of �N2 . However, thanks to the preceding proposition, we
now know that the topology is the same for all the spaces �Np or, for any other norm
on R

N (respectively, CN ) and so a subset thereof will be compact if, and only if, it
is bounded and closed. �
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Corollary 2.3.2 Any finite dimensional normed linear space is complete. In partic-
ular, any finite dimensional subspace of a normed linear space is closed. �
Example 2.3.10 Let f ∈ C[0, 1]. Define

‖ f ‖1 =
1∫

0

| f (t)| dt.

It is simple to check that this defines a norm on C[0, 1]. Consider the sequence { fn}
defined by

fn(x) =
{
1 − nx, for 0 ≤ x ≤ 1

n
0, for 1

n ≤ x ≤ 1.

Clearly, ‖ fn‖ = 1 for all n (where ‖ · ‖ denotes the usual ‘sup’ norm) while ‖ fn‖1 =∫ 1
0 fn(t) dt = 1/2nwhich tends to zero as n tends to infinity. Thus it is clear that these
two norms cannot be equivalent. Thus in infinite dimensional spaces, two norms are
not, in general, equivalent. �

Since all norms on R
N (respectively, CN ) generate the same topology, it is now

clear that anymatrix generates a continuous linear transformation, whatever the norm
on that space may be. Thus, if T is an N × N matrix and if ‖ · ‖ is a norm on R

N

(respectively, CN ), we can define

‖T‖ = sup
‖x‖≤1,x �=0

‖Tx‖
‖x‖ (2.3.5)

or, via any of the other equivalent formulations as in Proposition 2.3.2. Since the unit
ball (and hence the unit sphere) is compact, the ‘sup’ above is, in fact, a ‘max’. IfT and
S are matrices of order N , then TS represents the composition of the corresponding
linear transformations and so we also have

‖TS‖ ≤ ‖T‖.‖S‖. (2.3.6)

LetMN denote the set of all matrices of order N with entries from the corresponding
field. This itself (under the operations of matrix addition and scalar multiplication)
is a vector space (of dimension N 2). Any norm on this space which satisfies (2.3.6)
is called a matrix norm. If such a norm were induced by a vector norm on R

N

(respectively, CN ) via (2.3.5), then we always have

‖I‖ = 1

for the identity matrix I.
In particular, for the vector norms ‖ · ‖p defining the spaces �Np for 1 ≤ p ≤ ∞,

we denote the induced matrix norms by ‖ · ‖p,N .
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Example 2.3.11 SinceMN is a vector space of dimension N 2 over the correspond-
ing field, we can string out its rows to form a vector of that dimension and define the
usual Euclidean norm. Thus, if T = (ti j ), then define

‖T‖E =
⎛
⎝ N∑

i, j=1

|ti j |2
⎞
⎠

1
2

= √
tr(T∗T).

This obviously defines a norm on MN . It is also a matrix norm. For this, we only
need to check the validity of (2.3.6). It T = (ti j ) and S = (si j ), then

‖TS‖2E =
N∑

i, j=1

∣∣∣∣ N∑
k=1

tiksk j

∣∣∣∣
2

≤
N∑

i, j=1

(
N∑

k=1
|tik |2

)(
N∑

k=1

∣∣sk j ∣∣2
)

by the Cauchy-Schwarz inequality. Thus,we get

‖TS‖2E ≤
N∑

i,k=1

|tik |2
N∑

k, j=1

∣∣sk j ∣∣2 = ‖T‖2E‖S‖2E

which shows that ‖ · ‖E is indeed a matrix norm. This is also known as the Hilbert-
Schmidt norm.

However, notice that this norm is not induced by any vector norm when N ≥ 2.
Indeed to see this, observe that ‖I‖E = √

N �= 1. �

The proof of the Proposition 2.3.5 depended crucially on the fact that the unit
ball in a finite dimensional space is compact. In fact this property characterizes finite
dimensional spaces, which we now proceed to show. We begin with a very useful
technical result.

Let V be a normed linear space. If E ⊂ V , we define the distance of a vector
x ∈ V from E as

d(x, E) = inf
y∈E ‖x − y‖.

This is the same notion of the distance of a point from a subset in a metric space if
we look at V as a metric space for the metric d(x, y) = ‖x − y‖.
Lemma 2.3.1 (Riesz) Let V be a normed linear space and let W ⊂ V be a closed
and proper subspace. Then, for every ε > 0, we can find a vector u ∈ V (depending
on ε) such that

‖u‖ = 1 and d(u,W ) ≥ 1 − ε.

Proof SinceW is a proper subspace, there existsv ∈ V \W , so that δ = d(v,W ) > 0.
Now, choose w ∈ W such that
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δ ≤ ‖v − w‖ ≤ δ

1 − ε
.

Set u = (v − w)/‖v − w‖ so that ‖u‖ = 1. Let z ∈ W be an arbitrary element. Then

‖u − z‖ = ‖v − (w + ‖v − w‖z)‖/‖v − w‖ ≥ δ/(δ/(1 − ε)) = 1 − ε

by the definition of δ (sincew + ‖v − w‖z ∈ W ) and the choice ofw. This completes
the proof. �

Proposition 2.3.6 A normed linear space V is finite dimensional if, and only if, the
closed unit ball in V , i.e. the set

B = {x ∈ V |‖x‖ ≤ 1},

is compact.

Proof Assume that V is finite dimensional, with dimension N . Let T : �N1 → V be
the canonical mapping as defined in Proposition 2.3.5. We have seen that T is an
isomorphism. It then follows that T−1(B) is bounded and closed in �N1 and so it is
compact (cf. Remark 2.3.2). Consequently B = T (T−1(B)) is compact as well.

Conversely, let us suppose that B is compact. Then, there exists a positive integer
n and points xi ∈ B, 1 ≤ i ≤ n, such that

B ⊂ ∪n
i=1B(xi , 1/2), (2.3.7)

where B(xi , 1/2) = {x ∈ V |‖x − xi‖ < 1/2} is the open ball centred at xi and of
radius 1/2. SetW = span{x1, ..., xn}. We claim thatW = V and this will prove that
the dimension of V is less than, or equal to, n and so V has to be finite dimensional.
Assume the contrary. Then W will be a proper and closed (since it is finite dimen-
sional) subspace of V . Now, by the preceding lemma of Riesz, we have the existence
of u ∈ V such that ‖u‖ = 1 (and so u ∈ B) and such that d(u,W ) ≥ 2/3. In par-
ticular, it follows that u ∈ B is such that ‖u − xi‖ ≥ 2/3 for all 1 ≤ i ≤ n which
contradicts (2.3.7). This completes the proof. �

Example 2.3.12 Consider the space �2 of all square summable sequences. Consider
the sequence ei ∈ �2 which has its i th component equal to unity and all other com-
ponents equal to zero. Then, since ‖ei‖2 = 1, it belongs to the closed unit ball in that
space. Now, if i �= j , we have

‖ei − e j‖2 = √
2

and so the the sequence {ei } can never have a convergent subsequence. Thus, in the
infinite dimensional space �2, we directly see that the unit ball is not sequentially
compact and hence it is not compact. �
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2.4 Applications to Differential Equations

One of the famous results in analysis is Banach’s contraction mapping theorem (also
known as Banach’s fixed point theorem), which is stated as follows.

Theorem 2.4.1 (ContractionMappingTheorem) Let (X, d) be a complete metric
space and let F : X → X be a contraction, i.e. there exists a constant 0 < c < 1
such that, for all x and y ∈ X, we have

d(F(x), F(y)) ≤ c d(x, y).

Then F has a unique fixed point, i.e. there exists a unique point x∗ ∈ X such that

F(x∗) = x∗.

Further, given any x0 ∈ X, the sequence {xn} defined by

xn+1 = F(xn), n ≥ 0,

converges to x∗. �

Proof Obviously, F is continuous. Let x0 ∈ X and let the xn be as defined in the
statement of the theorem. Then, by hypothesis,

d(xn+1, xn) = d(F(xn), F(xn−1))

≤ cd(xn, xn−1)

and, proceeding recursively, we deduce that

d(xn+1, xn) ≤ cnd(x1, x0).

Thus, if n < m, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

≤ (cn + cn+1 + · · · + cm−1)d(x1, x0)

which can be made arbitrarily small for large n and m since the geometric series∑∞
k=1 c

k is convergent for 0 < c < 1. Thus {xn} is a Cauchy sequence and, since X
is complete, it converges to some x∗ ∈ X . The continuity of F and the definition of
the xn now imply that x∗ = F(x∗).

If there were two distinct fixed points of F , say, x and y, then, we have that

0 < d(x, y) = d(F(x), F(y)) ≤ cd(x, y)
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which is a contradiction, since 0 < c < 1. This completes the proof. �

We now give a well known application of this result.

Theorem 2.4.2 (Picard’s Theorem) Let R be a closed rectangle in the plane R
2

whose sides are parallel to the coordinate axes. Let f : R → R be a function which
is continuous and which is such that ∂ f

∂y exists and is continuous on R. Let (x0, y0)
be a point in the interior of R. Then, there exists h > 0 such that the initial value
problem

dy
dx = f (x, y)

y(x0) = y0

has a unique solution in the interval (x0 − h, x0 + h).

Proof Since R is compact and f and ∂ f
∂y are continuous on R, there exist K > 0 and

M > 0 such that

| f (x, y)| ≤ K and

∣∣∣∣∂ f

∂y
(x, y)

∣∣∣∣ ≤ M

for all (x, y) ∈ R. Then, by the mean value theorem, it follows that, for all (x, y1)
and (x, y2) in R, we have

| f (x, y1) − f (x, y2)| ≤ M |y1 − y2|.

It is easy to see that a function y = y(x) is a solution of the initial value problem
above if, and only if, it satisfies the following:

y(x) = y0 +
x∫

x0

f (t, y(t)) dt

for all x .
Now, choose h > 0 such that Mh < 1. Consider the rectangle R′ defined as fol-

lows:
R′ = {(x, y)||x − x0| ≤ h, |y − y0| ≤ Kh}.

By choosing h small enough, we can ensure that R′ ⊂ R. Now consider

X = {g ∈ C[x0 − h, x0 + h] || g(x) − y0| ≤ Kh for all x}.

Then, we see that X is a closed subspace of C[x0 − h, x0 + h] and so is a complete
metric space (with the distance induced by the ‘sup-norm’). Let g ∈ X . Define

F(g)(x) = y0 +
x∫

x0

f (t, g(t)) dt
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for all x ∈ [x0 − h, x0 + h]. Then, clearly, F(g) is continuous on that interval and

|F(g)(x) − y0| ≤ K |x − x0| ≤ Kh.

Further, if g1 and g2 are in X , we have

|F(g1)(x) − F(g2)(x)| ≤
x∫

x0

| f (t, g1(t)) − f (t, g2(t))| dt

≤ M‖g1 − g2‖|x − x0|

≤ Mh‖g1 − g2‖

from which it follows that ‖F(g1) − F(g2)‖ ≤ Mh‖g1 − g2‖ which shows that F
maps the complete metric space X into itself and is a contraction. Thus F has a
unique fixed point y ∈ X which solves the initial value problem. This completes the
proof. �

We now prove a corollary of the contraction mapping theorem which will also be
useful in proving the existence of solutions to higher order initial value problems.

Corollary 2.4.1 Let (X, d) be a complete metric space and let F : X → X be a
mapping such that, for some positive integer n, themap Fn : X → X is a contraction.
Then F has a unique fixed point.

Proof Since Fn : X → X is a contraction, this mapping has a unique fixed point x∗
by the contraction mapping theorem. Now,

F(x∗) = F(Fn(x∗)) = Fn+1(x∗) = Fn(F(x∗))

and thus, F(x∗) is also a fixed point for Fn . By the uniqueness of the fixed point, it
follows that

F(x∗) = x∗

and so F has a fixed point, viz. x∗.
On the other hand, any fixed point y of F is also a fixed point of Fn since

Fn(y) = Fn−1(F(y)) = Fn−1(y) = · · · = F(y) = y.

Thus F also must have a unique fixed point. �

Example 2.4.1 Consider theVolterra integral operatorT : C[0, 1] → C[0, 1]defined
in Example 2.3.7, viz.

T ( f )(s) =
s∫

0

K (s, t) f (t) dt
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where K : [0, 1] × [0, 1] → R is a continuous function.Consider the followingprob-
lem: find u ∈ C[0, 1] such that

u(s) = w(s) + λ

s∫
0

K (s, t)u(t) dt (2.4.1)

where w ∈ C[0, 1] is a given function and λ ∈ R. The equation (2.4.1) is called a
Volterra integral equation. It is clear that a solution u of (2.4.1) is a fixed point of
the (affine linear) mapping F : C[0, 1] → C[0, 1] defined by

F(u) = w + λT (u).

Now, for any s ∈ [0, 1] and for any u1 and u2 ∈ C[0, 1],

|F(u1)(s) − F(u2)(s)| = |λ
s∫

0

K (s, t)((u1(t) − u2(t)) dt |

≤ |λ|κ‖u1 − u2‖s

where
κ = max[0,1]×[0,1] |K (s, t)|.

Hence, we get
‖F(u1) − F(u2)‖ ≤ |λ|κ‖u1 − u2‖.

Again,

|F2(u1)(s) − F2(u2)(s)| = |λ
s∫

0

K (s, t)(F(u1)(t) − F(u2)(t)) dt |

≤ |λ|κ
s∫

0

|F(u1)(t) − F(u2)(t)| dt

≤ |λ|2κ2‖u1 − u2‖
s∫

0

t dt

= |λ|2κ2‖u1 − u2‖ t2

2

whence we deduce that

‖F2(u1) − F2(u2)‖ ≤ |λ|2κ2

2
‖u1 − u2‖.

Proceeding in this way, we get, for any positive integer n,
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‖Fn(u1) − Fn(u2)‖ ≤ |λ|nκn

n! ‖u1 − u2‖.

Since |λ|nκn/n! is the general term of the convergent exponential series exp(|λ|κ),
it tends to zero as n tends to infinity and so, for sufficiently large n, we have

|λ|nκn

n! < 1

and hence Fn is a contraction. Thus, by the preceding corollary, F has a unique fixed
point. In other words, the Volterra integral equation (2.4.1) has a unique solution. �

We now show that the study of certain differential equations can be reduced to
the study of the Volterra integral equation.

Consider the equation

x ′′(s) + p(s)x ′(s) + q(s)x(s) = f (s) (2.4.2)

for s ∈ (0, 1), where p, q and f are given continuous functions. Consider the initial
conditions

x(0) = α and x ′(0) = β (2.4.3)

where α and β are two given real numbers. Set u(s) = x ′′(s). Then,

x ′(s) = β +
s∫

0

u(t) dt.

Again,

x(s) = α +
s∫

0

x ′(t) dt

= α + βs +
s∫

0

t∫
0

u(τ ) dτ dt

= α + βs +
s∫

0

s∫
τ

u(τ ) dt dτ

= α + βs +
s∫

0

u(τ )(s − τ ) dτ .

Thus, (2.4.2) can be written in the form (2.4.1) with

w(s) = f (s) − [β p(s) + αq(s) + βsq(s)] ,
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λ = 1 and
K (s, t) = − [p(s) + (s − t)q(s)] .

Hence, the initial value problem (2.4.2)–(2.4.3) has a unique solution.

2.5 Exercises

Note: In all the function spaces which occur below, it is assumed that vector addition
and scalar multiplication are defined pointwise.

2.1 Let c denote the space of all (real, or complex) sequences which are convergent,
equipped with the norm ‖ · ‖∞. Let c0 denote the subspace of sequences converging
to zero. Show that these spaces are complete.

2.2 Let c00 denote the space of all sequences such that, except for a finite number
of terms, all other terms are zero. Show that c00 is dense in c0.

2.3 Show that �1 is a dense subspace of c0.

2.4 Let f ∈ C[0, 1]. Define

‖ f ‖p =
⎛
⎝ 1∫

0

| f (t)|p dt
⎞
⎠

1
p

where 1 ≤ p < ∞. Show that this defines a norm on C[0, 1].
2.5 Show that the space C[0, 1]with the norm ‖ · ‖1 defined in the previous exercise
is not complete by producing a Cauchy sequence which is not convergent.

2.6 Let f ∈ C(R). The support of f is the closure of the set of points where f does
not vanish. Let Cc(R) denote the space of all continuous real-valued functions on R
whose support is a compact subset of R. Show that it is a normed linear space with
the ‘sup-norm’ and that it is not complete.

2.7 Let C0(R) denote the space of all continuous real-valued functions on R which
vanish at infinity, i.e. if f ∈ C0(R), then, given any ε > 0, there exists a compact
subset K ⊂ R such that

| f (x)| < ε

for all x ∈ R\K . Show that C0(R) is a Banach space with the ‘sup-norm’. Show also
that the space Cc(R) defined in the previous exercise is dense in C0(R).

2.8 Show that the space BUC(R) of bounded and uniformly continuous real-valued
functions, defined on R, is a Banach space when equipped with the sup-norm.



56 2 Normed Linear Spaces

2.9 Let C1[0, 1] denote the space of all continuous real-valued functions on [0, 1]
which are continuously differentiable on (0, 1) and whose derivatives can be contin-
uously extended to [0, 1]. For f ∈ C1[0, 1], define

‖ f ‖ = max
t∈[0,1]{| f (t)|, | f

′(t)|}

where f ′ denotes the derivative of f . Show that C1[0, 1] is a Banach space for this
norm. State and prove an analogous result for Ck[0, 1], the space of all continuous
real-valued functions on [0, 1]which are k times continuously differentiable on (0, 1)
and all those derivatives possessing continuous extensions to [0, 1].
2.10 Let f ∈ C1[0, 1] and let f ′ denote its derivative. Define

‖ f ‖1 =
⎛
⎝ 1∫

0

(| f (t)|2 + | f ′(t)|2)dt
⎞
⎠

1
2

.

Show that ‖ · ‖1 defines a norm on C1[0, 1]. If we define

| f |1 =
⎛
⎝ 1∫

0

| f ′(t)|2dt
⎞
⎠

1
2

,

does | · |1 define a norm on C1[0, 1]?
2.11 Let

V = { f ∈ C1[0, 1]| f (0) = 0}.

Show that | · |1 defines a norm on V .

2.12 Let V be a Banach space with norm ‖ · ‖V . Set

X = C([0, 1]; V )

to be the space of all continuous functions from [0, 1] into the space V . Define, for
f ∈ X ,

‖ f ‖X = sup
t∈[0,1]

‖ f (t)‖V =
(
max
t∈[0,1] ‖ f (t)‖V

)

Show that ‖ · ‖X is well defined and that it defines a norm on X . Show also that,
under this norm, X is a Banach space.

2.13 Let V be a normed linear space and let W ⊂ V be a closed subspace. Let
π : V → V/W denote the canonical mapping given by π(x) = x + W , for every
x ∈ V . If U ⊂ V is an open set, show that π(U ) is open in V/W .
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2.14 Let V and W be normed linear spaces and let T : V → W be a linear trans-
formation. Show that T is continuous if, and only if, T maps Cauchy sequences in
V into Cauchy sequences in W .

2.15 Let C1[0, 1] be endowed with the norm as in Exercise 2.9 above. Let C[0, 1]
be endowed with the usual ‘sup-norm’. Show that T : C1[0, 1] → C[0, 1] defined by
T ( f ) = f ′ is a continuous linear transformation and that ‖T ‖ = 1.

2.16 Let C[0, 1] be endowed with its usual norm. For f ∈ C[0, 1], define

T ( f )(t) =
t∫

0

f (s) ds, t ∈ [0, 1].

For every positive integer n, show that, in L(C[0, 1]),

‖T n‖ = 1/n!

2.17 Let V = C[0, 1] be equipped with its usual norm. Let W denote the same
space, but equipped with the norm ‖ · ‖2 (cf. Exercise 2.4 above). If T is defined as
in Exercise 2.16 above, compute ‖T ‖ in L(V,W ).

2.18 Consider the space Cc(R) defined in Exercise 2.6 above. For f ∈ Cc(R), define

ϕ( f ) =
∞∫

−∞
f (t) dt.

Show that ϕ is well defined and that it is a linear functional on this space. Is it
continuous?

2.19 Let {ti }ni=1 be given points in the closed interval [0, 1]. Let {ωi }ni=1 be given
real numbers. Let f ∈ C[0, 1]. Define

ϕ( f ) =
n∑

i=1

ωi f (ti ).

Show that ϕ defines a continuous linear functional on C[0, 1] and that

‖ϕ‖ =
n∑

i=1

|ωi |.

2.20 LetMn denote the set of all n × n matrices with complex entries. Let ‖ · ‖p,n

denote the matrix norm induced by the vector norm ‖ · ‖p on Cn , for 1 ≤ p ≤ ∞. If
A = (ai j ) ∈ Mn , show that
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‖A‖1,n = max
1≤ j≤n

{
n∑

i=1

|ai j |
}

.

State and prove an analogous result for ‖A‖∞,n .

2.21 With the notations introduced in the preceding exercise, show that

‖A‖2,n = √
ρ(A∗A)

where ρ(T) denotes the spectral radius of a matrix T. (Hint: Use Proposition 1.1.8).
If A is a normal matrix, show that ‖A‖2,n = ρ(A).

2.22 With the notations introduced above, show that, for any matrix A ∈ Mn , we
have

‖A‖2,n ≤ ‖A‖E ≤ √
n‖A‖2,n

where ‖ · ‖E is the norm introduced in Example 2.3.11.

2.23 Let D be an n × n diagonalmatrixwith diagonal entries given by dii = βi , 1 ≤
i ≤ n. Compute ‖D‖p,n for 1 ≤ p ≤ ∞.

2.24 If ‖ · ‖ defines a matrix norm onMn , show that ρ(A) ≤ ‖A‖ for all A ∈ Mn .

2.25 LetA ∈ Mn be invertible and let ‖ · ‖ be amatrix norm. The condition number
of A is defined as

cond(A) = ‖A‖.‖A−1‖.

Show that

(a) cond(A) ≥ 1 for any invertible matrix A ∈ Mn;
(b) cond(αA) = cond(A) for any invertible matrix A and for any scalar α �= 0;
(c) for any invertible and normal matrix A,

cond2,n(A) = max1≤i≤n |λi (A)|
min1≤i≤n |λi (A)|

where {λi (A)}ni=1 are the eigenvalues ofA and cond2,n(A) denotes the condition
number of A with respect to the norm ‖ · ‖2,n .

2.26 For what class of matrices does cond2,n attain its minimum value?

2.27 Let A = (ai j ) be a 2 × 2 matrix which is invertible. Show that

cond2,2(A) = σ + (σ2 − 1)
1
2

where

σ =
∑2

i, j=1 |ai j |2
2|det(A)| .
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2.28 Let Mn be endowed with the topology generated by any matrix norm. Let
GLn(C) denote the set of all invertible matrices in Mn . Show that GLn(C) is an
open and dense set. Is it connected?

2.29 (a) LetDn be the subset of all n × n matrices with distinct eigenvalues. Show
that Dn is dense inMn (endowed with any matrix norm);

(b) prove the Cayley-Hamilton theorem for any diagonalizablematrix: ‘Every n × n
matrix satisfies its characteristic equation’;

(c) deduce the Cayley-Hamilton theorem for all n × n matrices.

2.30 Let A ∈ Mn be an invertible matrix. Show that

inf
B is singular

‖A − B‖2,n = 1

‖A−1‖2,n .

2.31 Show that the set of all orthogonal matrices in the space of all n × n real
matrices (endowed with any norm topology) is compact.

2.32 Let 1 ≤ p < q ≤ ∞. Show that �p ⊂ �q and that, for all x ∈ �p,

‖x‖q ≤ ‖x‖p.

2.33 Let ω = {ωk}∞k=1 be a bounded sequence. Define Dω : �2 → �2 by

Dω(x) = (ω1x1, . . . ,ωk xk, . . .),

where x = (x1, . . . , xk, . . .) ∈ �2. Show that Dω is continuous and that it is invertible
if, and only if, infk{|ωk |} > 0.

2.34 Consider an infinite matrix (ai j ), i, j ∈ N of scalars. Let x = (xi ) ∈ �p, 1 ≤
p ≤ ∞. Define a sequence A(x) whose i th component is given by

∞∑
j=1

ai j x j .

(a) Assume that

α = sup
j

∞∑
i=1

|ai j | < ∞.

Show that A ∈ L(�1) and that ‖A‖ = α;

(b) assume that

α = sup
i

∞∑
j=1

|ai j | < ∞.
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Show that A ∈ L(�∞) and that ‖A‖ = α;

(c) assume that

α =
∞∑
i=1

∞∑
j=1

|ai j |2 < ∞.

Show that A ∈ L(�2) and that ‖A‖2 ≤ α;

(d) assume that A ∈ L(�p, �q) and that A ∈ L(�p, �r ) where 1 ≤ p, q, r < ∞. Let
θ ∈ (0, 1). Let 1

s = θ
q + 1−θ

r . Show that A ∈ L(�p, �s) and that

‖A‖L(�p,�s ) ≤ ‖A‖θ
L(�p,�q )

‖A‖1−θ
L(�p,�r )

.

2.35 Let {ak}∞k=0 be a sequence of real numbers such that
∑∞

k=0 |ak | < ∞. Consider
the infinite lower triangular matrix

⎡
⎢⎢⎢⎢⎣
a0 0 0 . . . . . .

a1 a0 0 . . . . . .

a2 a1 a0 . . . . . .

a3 a2 a1 . . . . . .

. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎦ .

Let A be the linear map defined on �2 by this matrix (as in the preceding exercise).
Show that A ∈ L(�2) and that

‖A‖ ≤
∞∑
k=0

|ak |.

2.36 Let V be aBanach space. Let {An} be a sequence of continuous linear operators
on V . Let

Sn =
n∑

k=1

Ak .

If {Sn} is a convergent sequence in L(V ), we say that the series

∞∑
k=1

Ak

is convergent and the limit of the sequence {Sn} is called the sum of the series. If∑∞
k=1 ‖Ak‖ < ∞, we say that the series

∑∞
k=1 Ak is absolutely convergent. Show

that any absolutely convergent series in convergent.
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2.37 Let V be a Banach space. If A ∈ L(V ) is such that ‖A‖ < 1, show that the
series

I +
∞∑
k=1

Ak

is convergent and that its sum is (I − A)−1.

2.38 (a) Let V be a Banach space and let A ∈ L(V ). Show that the series

I +
∞∑
k=1

Ak

k!

is convergent. The sum is denoted exp(A);

(b) if A, B ∈ L(V ) are such that AB = BA, show that

exp(A + B) = exp(A) exp(B);

(c) deduce that exp(A) is invertible for any A ∈ L(V );

(d) let

A =
[

α −ω
ω α

]
,

where α and ω are real numbers. Show that, for any t ∈ R,

exp(t A) = eαt

[
cosωt − sinωt
sinωt cosωt

]
.

2.39 Let V be a Banach space. Show that G, the set of invertible linear operators in
L(V ) is an open subset of L(V ) (endowed with its usual norm topology).

2.40 (a) Define T : �2 → �2 and S : �2 → �2 by

T (x) = (0, x1, x2, . . .)
S(x) = (x2, x3, . . .)

where x = (x1, x2, . . .) ∈ �2. Show that T and S define continuous linear oper-
ators on �2 and that ST = I while T S �= I . (Thus, T and S, which are called
the right and left shift operators respectively, are not invertible);

(b) if A is a continuous linear operator on �2 such that ‖A − T ‖ < 1, show that A
is also not invertible. Deduce that, in general, G, defined in Exercise 2.39 above,
is not dense in L(V ), if V is infinite dimensional. (Compare this with the finite
dimensional case, cf. Exercise 2.28).
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2.41 LetP denote the space of all polynomials in one variable with real coefficients.
Let p ∈ P and let p = ∑n

i=1 ai x
i , where ai ∈ R for 1 ≤ i ≤ n. Define

‖p‖1 =
n∑

i=1

|ai | and ‖p‖∞ = max
1≤i≤n

|ai |.

Show that ‖ · ‖1 and ‖ · ‖∞ define norms on P and that they are not equivalent.

2.42 Show that the norms ‖ · ‖1 and ‖ · ‖2 defined on C[0, 1] are not equivalent.
2.43 Let V be a normed linear space and let W be a finite dimensional (and hence,
closed) subspace of V . Let x ∈ V . Show that there exists w ∈ W such that

‖x + W‖ = ‖x + w‖.

2.44 Let V be a normed linear space and let f : V → R be a non-zero linear map.
Assume that its null space (or, kernel)

Z = {x ∈ V | f (x) = 0},

is closed in V . Let x0 ∈ V such that f (x0) �= 0.

(a) Show that, for any x ∈ V ,

‖x + Z‖V/Z = | f (x)|
| f (x0)| ‖x0 + Z‖V/Z ;

(b) deduce that f is continuous;
(c) show that

‖ f ‖ = | f (x0)|
‖x0 + Z‖V/Z

.

2.45 Let Ei beBanach spaces for 1 ≤ i ≤ 3.Let A ∈ L(E1, E2) and B ∈ L(E1, E3).
Assume, further, if K is any bounded set in E1, then B(K ) is compact in E3. Finally,
assume that x ∈ E1 �→ ‖A(x)‖E2 + ‖B(x)‖E3 defines a norm on E1 which is equiv-
alent to the norm ‖.‖E1 .

(a) Show that Ker(A), the kernel of A, is finite dimensional;
(b) let R(A) denote the range of A. Show that the canonical mapping A : E1/

(Ker(A)) → R(A) defined by A(x + Ker(A)) = A(x) for x ∈ E1, is an iso-
morphism;

(c) deduce that R(A) is a closed subspace of E3.

2.46 Let V and Y be Banach spaces and let W be a dense subspace of V . Let
A ∈ L(W,Y ). Show that there exists a unique continuous extension Ã ∈ L(V,Y )

(i.e. Ã|W = A) and that ‖ Ã‖L(V,Y ) = ‖A‖L(W,Y ).
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2.47 (Completion of a normed linear space) Let V be a normed linear space. We
say that two Cauchy sequences {xn} and {yn} in V are equivalent if ‖xn − yn‖ → 0
as n → ∞.

(a) Show that this defines an equivalence relation. Let the set of all equivalence
classes be denoted by V .

(b) let x and y denote the equivalence classes of the Cauchy sequences {xn} and {yn}
respectively. Let 0 denote the equivalence class of the sequence all of whose
terms are zero. Let α be a scalar. Define x + y to be the equivalence class of the
sequence {xn + yn} and αx to be that of the sequence {αxn}. Show that these
operations are well defined and make V a vector space;

(c) with the above notations, define ‖x‖V = limn→∞ ‖xn‖V . Show that this is well
defined and that it defines a norm on V ;

(d) define i : V → V by setting i(x) to be the equivalence class of the sequence all
of whose terms are equal to x , for any x ∈ V . Show that i ∈ L(V, V ) and that it
is an injection. Show also that the image i(V ) is dense in V ;

(e) show that V is complete (and this space is called the completion of V ). (Hint:
Given aCauchy sequence {x (n)} inV , choose xn ∈ V such that‖x (n) − i(xn)‖V <

1/n. Show that {xn} is a Cauchy sequence in V and if x denotes its equivalence
class, show that x (n) → x in V .)

2.48 Let V and W be normed linear spaces and let U ⊂ V be an open subset. Let
J : U → W be a mapping. We say that J is (Fréchet) differentiable at u ∈ U if there
exists T ∈ L(V,W ) such that

lim
h→0

‖J (u + h) − J (u) − T (h)‖
‖h‖ = 0.

(Equivalently,

J (u + h) − J (u) − T (h) = ε(h), lim
h→0

‖ε(h)‖
‖h‖ = 0.)

(a) If such a T exists, show that it is unique. (We say that T is the (Fréchet) derivative
of J at u ∈ U and write T = J ′(u).)

(b) If J is differentiable at u ∈ U , show that J is continuous at u ∈ U .

2.49 Let V and W be normed linear spaces and let U ⊂ V be an open subset. Let
J : U → W be a mapping. We say that J is Gâteau differentiable at u ∈ U along a
vector w ∈ V if

lim
t→0

1

t
(J (u + tv) − J (u))

exists. (We call the limit the Gâteau derivative of J at u along w).
If J is Fréchet differentiable at u ∈ U , show that it is Gâteau differentiable at u

along any vector w ∈ V and that the corresponding Gâteau derivative is given by
J ′(u)w.
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2.50 Let V and W be normed linear spaces and let A ∈ L(V,W ). Let w0 ∈ W be
given. define J : V → W by J (u) = A(u) + w0. Show that J is differentiable at
every u ∈ V and that J ′(u) = A.

2.51 Let U = GLn(C) ⊂ Mn (cf. Exercise 2.28). Define J (A) = A−1 for A ∈ U .
Show that J is differentiable at every A ∈ U and that, if H ∈ Mn , we have

J ′(A)(H) = −A−1HA−1.

2.52 (a) Let A ∈ GLn(C). Show that

det(I + A) = 1 + tr(A) + ε(A)

where

lim
A→0

|ε(A)|
‖A‖ = 0

(for any matrix norm);
(b) deduce that ifwe define J (A) = det(A) forA ∈ GLn(C), then J is differentiable

at all such A and that, if H ∈ Mn , then

J ′(A)(H) = det(A)tr(A−1H).

2.53 (Chain Rule) Let V,W and Z be normed linear spaces and let f : V → W
and g : W → Z be mappings such that f is differentiable at a point v ∈ V and g is
differentiable at f (v) = w ∈ W . Show that the map g ◦ f : V → Z is differentiable
at v ∈ V and that

(g ◦ f )′(v) = g′( f (v)) ◦ f ′(v).

2.54 (a) LetV be a real normed linear space and let J : V → Rbe a givenmapping.
A subset K of V is said to be convex if, for every u and v ∈ K and for every
t ∈ [0, 1], we have that

tu + (1 − t)v ∈ K .

Let K ⊂ V be a closed convex set. Assume that J attains its minimum over K
at u ∈ K . If J is differentiable at u, then show that

J ′(u)(v − u) ≥ 0

for every v ∈ K ;

(b) let K = V . If J attains its minimum at u ∈ V and if J is differentiable at u,
show that J ′(u) = 0.

2.55 Let V be a real normed linear space. A mapping J : V → R is said to be
convex if, for every u and v ∈ V and for every t ∈ [0, 1], we have
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J (tu + (1 − t)v) ≤ t J (u) + (1 − t)J (v).

(a) If J : V → R is convex and differentiable at every point, show that

J (v) − J (u) ≥ J ′(u)(v − u)

for every u and v ∈ V ;

(b) let J : V → R be convex and differentiable at every point of V . Let K ⊂ V be
a closed convex set. Let u ∈ K be such that

J ′(u)(v − u) ≥ 0

for every v ∈ K . Show that

J (u) = min
v∈K J (v);

(c) if J : V → R is convex and differentiable at every point of V , and if u ∈ V is
such that J ′(u) = 0, show that J attains its minimum (over all of V ) at u.

Remark 2.5.1 Exercise 2.54 gave necessary conditions for a differentiable function
J to attain aminimumat a point u. The preceding exercise shows that these conditions
are also sufficient in the case of convex functions. �

2.56 Let m > n. Let A be an m × n matrix and let b ∈ R
m . Consider the linear

system of equations
Ax = b.

This system may not have a solution since the number of equations exceeds the
number of unknowns. A least squares approximate solution is a vector x0 ∈ R

n such
that

‖Ax0 − b‖2 = min
x∈Rn

‖Ax − b‖2.

Show that such a solution must satisfy the linear system

A∗Ax0 = A∗b

and that this system has a unique solution if the rank of A is n.



Chapter 3
Hahn-Banach Theorems

3.1 Analytic Versions

The analytic form of the Hahn-Banach theorem concerns the extension of linear
functionals defined on a subspace of a normed linear space to the entire space,
preserving the norm of the functional. We will prove a slightly more general result
in this direction.

Theorem 3.1.1 (Hahn-Banach) Let V be a vector space over R. Let p : V → R be
a mapping such that

p(αx) = αp(x)
p(x + y) ≤ p(x) + p(y)

}
(3.1.1)

for all x and y in V and for all α > 0 in R. Let W be a subspace of V and let
g : W → R be a linear map such that

g(x) ≤ p(x)

for all x ∈ W. Then, there exists a linear extension f : V → R of g (i.e. f (x) = g(x)
for all x ∈ W) which is such that

f (x) ≤ p(x)

for all x ∈ V .

Proof Step 1. Let P denote the collection of all pairs (Y, h), where Y is a subspace
of V containingW and h : Y → R a linear map which is an extension of g and which
is also such that

h(x) ≤ p(x)
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for all x ∈ Y . Clearly P is non-empty, since (W, g) ∈ P . Consider the partial order
defined on P by

(Y, h) � (Ỹ , h̃)

if Y ⊂ Ỹ and h̃ is a linear extension of h. LetQ = {(Yi , hi ) | i ∈ I } be a chain in P .
Define

Y = ∪i∈I Yi

and let h : Y → R be defined by h(x) = hi (x) if x ∈ Yi . Since Q is a chain, it is
immediate to see that h is well defined and also that it is a linear extension of each of
the hi . Also h(x) ≤ p(x) for all x ∈ Y . Thus, (Y, h) ∈ P and (Yi , hi ) � (Y, h) for
each i ∈ I , and thus every chain has an upper bound. Hence, by Zorn’s lemma, P
has a maximal element (Z , f ).

Step 2. We will show that Z = V , which will complete the proof. Assuming the
contrary, let x0 /∈ Z . Consider the linear subspace of V given by

Y = {x + t x0 | x ∈ Z , t ∈ R}.

We will define a linear extension h : Y → R of f such that (Y, h) ∈ P , thus contra-
dicting the maximality of f . Define

h(x + t x0) = f (x) + αt

where α will be suitably determined. In order that (Y, h) ∈ P , we need that

f (x) + αt ≤ p(x + t x0)

for all x ∈ Z and for all t ∈ R. If t > 0, this reduces to (in view of (3.1.1))

f

(
1

t
x

)
+ α ≤ p

(
1

t
x + x0

)

or, equivalently,
f (x) + α ≤ p(x + x0) (3.1.2)

for all x ∈ Z . Similarly, by considering t < 0, we deduce that

f (x) − α ≤ p(x − x0) (3.1.3)

for all x ∈ Z . In other words, it is necessary that α be chosen such that

sup
x∈Z

[ f (x) − p(x − x0)] ≤ α ≤ inf
x∈Z[p(x + x0) − f (x)]. (3.1.4)
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But, for all x and y in Z , we have

f (x) + f (y) = f (x + y) ≤ p(x + y) ≤ p(x + x0) + p(y − x0)

or, equivalently,
f (y) − p(y − x0) ≤ p(x + x0) − f (x).

Hence, it is possible to choose α such that (3.1.4) is true, giving the desired contra-
diction, which completes the proof. �

Theorem 3.1.2 (Hahn-Banach) Let V be a normed linear space over R. Let W be
a subspace of V and let g : W → R be a continuous linear functional on W. Then
there exists a continuous linear extension f : V → R of g such that

‖ f ‖V ∗ = ‖g‖W ∗ .

Proof Set p(x) = ‖g‖W ∗‖x‖. Then p verifies (3.1.1). Also g(x) ≤ p(x) for all x ∈
W . Thus, there exists a linear extension of g, viz. f : V → R such that, for all x ∈ V ,
f (x) ≤ ‖g‖W ∗‖x‖. This implies that f is continuous and that ‖ f ‖V ∗ ≤ ‖g‖W ∗ . But,
since f = g onW , it follows that we do have equality of the norms of f and g. This
completes the proof. �

We will now prove the same result for complex vector spaces.
If V is a normed linear space overC, and if f ∈ V ∗, then for every x ∈ V , we can

write f (x) = g(x) + ih(x), where g(x) and h(x) are the real and imaginary parts
of f (x), respectively. Then g and h will be real-valued continuous linear functionals
on V , now considered as a real vector space by restricting scalar multiplication to
real scalars only.

Proposition 3.1.1 Let V be a normed linear space over C. Let f : V → C be a
continuous linear functional. Let f = g + ih where g and h are real-valued linear
functionals as described above. Then

f (x) = g(x) − ig(i x)

for all x ∈ V and, further, ‖ f ‖ = ‖g‖.
Proof Let x ∈ V . Then f (i x) = i f (x). Expressing this in terms of the real and
imaginary parts of f , we get

g(i x) + ih(i x) = ig(x) − h(x)

which shows that h(x) = −g(i x). Now, let f (x) = eiθ| f (x)| where θ ∈ [0, 2π).
Then,

| f (x)| = e−iθ f (x) = f (e−iθx) = g(e−iθx)
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since the left extreme of the above relation is real. Thus | f (x)| ≤ ‖g‖ ‖x‖ which
implies that ‖ f ‖ ≤ ‖g‖. On the other hand,

| f (x)|2 = |g(x)|2 + |h(x)|2

which yields |g(x)| ≤ | f (x)| ≤ ‖ f ‖ ‖x‖whencewe get ‖g‖ ≤ ‖ f ‖. This completes
the proof. �

Theorem 3.1.3 (Hahn-Banach) Let V be a normed linear space over C. Let W be
a subspace of V and let g : W → C be a continuous linear functional on W. Then
there exists a continuous linear extension f : V → C of g such that

‖ f ‖V ∗ = ‖g‖W ∗ .

Proof Let g = h(x) − ih(i x) where h is the real part of g. We consider V as a
real normed linear space by restricting ourselves to scalar multiplication by reals
only. Then, there exists h̃ : V → R which is a linear extension of h and such that
‖h̃‖V ∗ = ‖h‖W ∗ . Now set

f (x) = h̃(x) − i h̃(i x)

for all x ∈ V . Then, clearly, f (x + y) = f (x) + f (y) and, for real scalars α,
f (αx) = α f (x). Now,

f (i x) = h̃(i x) − i h̃(−x) = i (̃h(x) − i h̃(i x)) = i f (x)

and thus f is complex linear as well. Further, by the preceding proposition,

‖ f ‖V ∗ = ‖h̃‖V ∗ = ‖h‖W ∗ = ‖g‖W ∗ .

This completes the proof. �

Corollary 3.1.1 Let V be a normed linear space and x0 ∈ V a non-zero vector.
Then, there exists f ∈ V ∗ such that ‖ f ‖ = 1 and f (x0) = ‖x0‖.
Proof LetW be the one-dimensional space spanned by x0. Define g(αx0) = α‖x0‖.
Then ‖g‖W ∗ = 1.Hence, there exists f ∈ V ∗ such that ‖ f ‖V ∗ = 1 andwhich extends
g. Hence f (x0) = g(x0) = ‖x0‖. �

Remark 3.1.1 If V is a normed linear space and if x and y are distinct points in V ,
then, clearly, there exists f ∈ V ∗ such that f (x) 
= f (y) (consider x0 = x − y 
= 0).
We say that V ∗ separates points of V . �

Corollary 3.1.2 Let V be a normed linear space. Let x ∈ V . then

‖x‖ = sup
f ∈V ∗, ‖ f ‖≤1

| f (x)| = max
f ∈V ∗, ‖ f ‖≤1

| f (x)|. (3.1.5)
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Proof Clearly, | f (x)| ≤ ‖ f ‖ ‖x‖ ≤ ‖x‖ when ‖ f ‖ ≤ 1. On the other hand, by the
preceding corollary, there exists f ∈ V ∗ such that ‖ f ‖ = 1 and f (x) = ‖x‖ when
x is non-zero. Thus the result is established for non-zero vectors and is trivially true
for the null vector. �

3.2 Reflexivity

Compare the relation
‖ f ‖ = sup

x∈V, ‖x‖≤1
| f (x)|, (3.2.1)

which is a definition, with the relation (3.1.5), which is a result of the theory. In
the former, the supremum need not be attained, while in the latter the supremum is
always attained and hence is a maximum.

This is the starting point for the investigation of a very nice property of Banach
spaces called reflexivity.

Let x ∈ V and define
Jx ( f ) = f (x)

for f ∈ V ∗. Then, by virtue of (3.1.5), it follows that Jx ∈ (V ∗)∗ = V ∗∗ and that, in
fact,

‖Jx‖V ∗∗ = ‖x‖V .

Thus J : V → V ∗∗ given by x �→ Jx is a norm preserving linear transformation.
Such a map is called an isometry. The map J is clearly injective and maps V
isometrically onto a subspace of V ∗∗.

Definition 3.2.1 ABanach space V is said to be reflexive if the canonical imbedding
J : V → V ∗∗, given above, is surjective. �

Example 3.2.1 Since the canonical map J : V → V ∗∗ is an isometry, it is injective.
Thus, if V is finite dimensional, then dim(V ∗∗) = dim(V ∗) = dim(V ) and so, by
dimension considerations, J has to be surjective as well. Thus, every finite dimen-
sional space is automatically reflexive. �

Since V ∗∗, being a dual space, is always complete, the notion of reflexivity makes
sense only for Banach spaces.

By applying Corollary 3.1.2 to V ∗, it is readily seen that the supremum in (3.2.1)
is attained for reflexive Banach spaces. Consequently, if there exists f ∈ V ∗ such
that the supremum in (3.2.1) is not attained, then the space is not reflexive.

Remark 3.2.1 A deep result due to James is that the converse is also true: if V is a
Banach space such that the supremum is attained in (3.2.1) for all f ∈ V ∗, then V
is reflexive. �
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We will study reflexive spaces in greater detail in Chap. 5. In the remainder of this
section, we will look at several examples.

Example 3.2.2 Let V = C[0, 1], the space of continuous real-valued functions
defined on the interval [0, 1], equipped with the usual ‘sup-norm’. Consider the
linear functional ϕ defined on V by

ϕ( f ) =
1
2∫

0

f (t) dt −
1∫

1
2

f (t) dt,

for every f ∈ V . Clearly |ϕ( f )| ≤ ‖ f ‖∞ and soϕ ∈ V ∗ and ‖ϕ‖ ≤ 1.Now consider
the sequence of functions { fn} in V , where, for each sufficiently large positive integer
n, we have

fn(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+1, if t ∈ [
0, 1

2 − 1
n

]
,

1 + n
(
1
2 − 1

n − x
)
, ift ∈ [

1
2 − 1

n ,
1
2 + 1

n

]
,

−1, if, t ∈ [
1
2 + 1

n , 1
]
.

The graph of fn is given in Fig. 3.1.
We see from this picture (by computing the relevant areas) that ϕ( fn) = 1 − 1

n .
Since ‖ fn‖ = 1 for all n, it follows that ‖ϕ‖ = 1.

We now show that there is no function f ∈ V such that ‖ f ‖ = 1 and such that
ϕ( f ) = ‖ϕ‖ = 1. Indeed if there were such a function, then consider the function g
defined on (0, 1

2 ) ∪ ( 12 , 1) by

g(t) = +1, if t ∈
(
0,

1

2

)
, and g(t) = −1 if t ∈

(
1

2
, 1

)
.

Then

1 =
1
2∫

0

g(t) dt −
1∫

1
2

g(t) dt =
1
2∫

0

f (t) dt −
1∫

1
2

f (t) dt.

Then
1
2∫

0

(g(t) − f (t)) dt =
1∫

1
2

(g(t) − f (t)) dt. (3.2.2)

But | f (t)| ≤ 1, i.e. −1 ≤ f (t) ≤ +1 for all t and so the integrand on the left-hand
side of (3.2.2) is non-negative, while that on the right-hand side is non-positive. Thus
each of the integrals in (3.2.2) is zero. But then, again, since those integrands are of
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Fig. 3.1 The function fn

O 1
2

1
2 − 1

n

1
2 + 1

n 1

constant sign, it follows that f ≡ +1 on (0, 1
2 ) and that f ≡ −1 on ( 12 , 1), which

contradicts the continuity of f .
Thus, ϕ is a continuous linear functional on C[0, 1] for which ‖ϕ‖ is not attained

on the unit sphere and we conclude that C[0, 1] is not reflexive. �

Example 3.2.3 Let 1 < p < ∞. Let p∗ be the conjugate exponent of p (cf. Defini-
tion 2.2.1). Let y ∈ �p∗ . We already saw that (cf. Example 2.3.4) the linear functional
fy defined on �p by

fy(x) =
∞∑
i=1

xi yi

for x = (xi ) ∈ �p, is continuous and that, in fact,

‖ fy‖ ≤ ‖y‖p∗ .

Now, let f ∈ �∗
p. Define

fi = f (ei )

where ei is the sequence whose i th entry is unity and all other entries are zero. Set
f = ( fi ).

Let n be any positive integer. Define

xi =
⎧⎨
⎩
0, if 1 ≤ i ≤ n and fi = 0,
| fi |p∗

/ fi , if 1 ≤ i ≤ n and fi 
= 0,
0, if i > n.

Then, since it is a finite sequence, x = (xi ) ∈ �p and x = ∑n
i=1 xiei . Thus,

f (x) =
n∑

i=1

xi fi =
n∑

i=1

| fi |p∗
.

Consequently
n∑

i=1

| fi |p∗ ≤ ‖ f ‖‖x‖p = ‖ f ‖
n∑

i=1

(| fi |p∗) 1
p
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using the definition of the xi and that of p∗. This yields

(
n∑

i=1

| fi |p∗
) 1

p∗

≤ ‖ f ‖.

Since n was arbitrary, we deduce that f ∈ �p∗ and that ‖f‖p∗ ≤ ‖ f ‖.
For any x = (xi ) ∈ �p, we have

∑n
i=1 xiei → x in �p and so, by the continuity

of f , it follows that

f (x) =
∞∑
i=1

xi fi

or, in other words, f = ff. Hence,

‖f‖p∗ ≤ ‖ f ‖ ≤ ‖f‖p∗

as already observed.
Thus every element of the dual space of �p occurs in this fashion and the map

y �→ fy is an isometry of �p∗ onto �∗
p. Thus, we can write

�∗
p = �p∗

using this isometry.
Similarly, we can write

�∗
p∗ = �p.

It is easy to see that using these identifications of the dual spaces, the canonical
isometry from �p into �∗∗

p = �p is nothing but the identity map, which is onto. Thus,
the spaces �p, for 1 < p < ∞ are all reflexive. �

Remark 3.2.2 Though in the above example, we have not dealt with the case of real
and complex sequence spaces separately, it is customary to identify the dual of the
complex sequence space �p with �p∗ via the following relation: if y ∈ �p∗ , then we
define fy ∈ �∗

p by

fy(x) =
∞∑
i=1

xi yi .

The mapping y ∈ �p∗ �→ fy ∈ �∗
p satisfies fy+z = fy + fz and fαy = α fy . Such

a mapping is called conjugate linear. This identification will be especially use-
ful in the case of �2 which will be made clear when we study Hilbert spaces
(cf. Chap. 7). �

Example 3.2.4 Proceeding in a manner similar to that in the preceding example, we
can show that �∗

1 = �∞. In other words, given any continuous linear functional f on
�1, we have
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f (x) =
∞∑
i=1

xi fi

for all x = (xi ) ∈ �1, where fi = f (ei). Further, setting f = ( fi ), we have

‖f‖∞ = ‖ f ‖.

We now show that there is no similar identification of �∗∞ with �1. Of course, if
y ∈ �1, the functional fy defined by

fy(x) =
∞∑
i=1

xi yi (3.2.3)

for all x = (xi ) ∈ �∞ is continuous and ‖ fy‖ = ‖y‖1. But there exist continuous
linear functionals on �∞ which do not arise this way. So the identity mapping of �1
which is still the canonical imbedding of �1 into �∗∗

1 , is not surjective. Thus the space
�1 is not reflexive.

To see this, let c be the subspace of all convergent sequences in �∞ (cf. Exercise
2.1). For x = (xi ) ∈ c, define

g(x) = lim
i→∞ xi .

Then g : c → R is linear and |g(x)| ≤ ‖x‖∞. Thus, g is continuous as well and so,
by the Hahn-Banach theorem, can be extended to a continuous linear functional f
on �∞, preserving the norm. We claim that this continuous linear functional cannot
be obtained from an element of �1 by the above outlined procedure.

Assume the contrary and let y = (yi ) ∈ �1 be such that f = fy . Consider the
sequence {x (n)} in �∞ given by

x (n) = {0, 0, . . . , 0, 1, 1, 1, . . .}

where the 1’s start from the n-th entry. Then ‖x (n)‖∞ = 1 and x (n) ∈ c. We have

1 = f (x (n)) =
∞∑
i=n

yi

which is impossible since y ∈ �1 implies that

∞∑
i=n

|yi | → 0

as n → ∞. �
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Example 3.2.5 Consider the space c of all real sequenceswhich are convergent. This
is a closed subspace of �∞ (cf. Exercise 2.1). Let y = (y1, y2, . . . , yk, . . .) ∈ �1.
Then, if x = (x1, x2, . . . , xk, . . .) ∈ c, we have that y defines a continuous linear
functional on c, via the action defined by (3.2.3) and it is easy to see that the norm
of this functional is given by ‖y‖1. Assume that the supremum in (3.2.1) is attained
on the unit sphere of c. Without loss of generality, we may assume that there exists
x ∈ c, with ‖x‖∞ = 1, such that < y, x >= ‖y‖1 (why?). Let ‖y‖1 = 1. Thus,

1 = ‖y‖1 =
∞∑
k=1

ykxk .

Since, ‖x‖∞ = 1, it follows that, for each k, ykxk ≤ |ykxk | ≤ |yk |. Then it follows
from the preceding equation that, for each k, we have

|yk | = ykxk .

Now assume that, for each k, yk 
= 0 and that yk = (−1)k |yk |. (Example: yk =
(−1)k( 12 )

k .) Then it follows that xk = (−1)k , which is a contradiction since x /∈ c in
this case. Thus, for all such y ∈ �1, the supremum is not attained in (3.2.1) and so c
is not reflexive. �

Example 3.2.6 Consider the space c0 of all real sequences which converge to zero.
This is a closed subspace of c (cf. Exercise 2.1). One can prove that c∗

0 = �1. If
y ∈ �1 and if x ∈ c0, again, the action of the functional defined by y on x is given by
(3.2.3), where, as in the preceding example, xk and yk are the components of x and y,
respectively. If ‖y‖1 = 1 and if ‖x‖∞ = 1, we have that |xk | < 1 for all k ≥ N , for
some positive integer N . Then it is clear that | < y, x > | < ‖y‖1 = 1. Thus, for no
continuous linear functional on c0 we have that the supremum in (3.2.1) is attained.
Thus, c0 is not reflexive. �

3.3 Geometric Versions

In this section we will study the geometric versions of the Hahn-Banach theorem
which concerns the separation of convex sets by means of hyperplanes.

Definition 3.3.1 Let V be a real normed linear space. An affine hyperplane is a set
of the form

H = {x ∈ V | f (x) = α},

denoted by [ f = α], where f is a non-zero linear functional on V . �

Proposition 3.3.1 A hyperplane [ f = α] is closed if, and only if, f is a continuous
linear functional.
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Proof Clearly, if f is continuous, then [ f = α] is closed. Conversely, assume that
the hyperplane H , given by [ f = α], is closed. Then, its complement Hc is open
and, since f 
≡ 0, it is non-empty.(For, if α 
= 0, then 0 ∈ Hc; if α = 0, and f 
≡ 0,
there exists x ∈ V such that f (x) 
= 0 and so x ∈ Hc.)

Without loss of generality, assume that x0 ∈ Hc is such that f (x0) < α. Since
Hc is open, there exists r > 0 such that the open ball centred at x0 and of radius
2r , denoted B(x0; 2r), is contained in Hc. Now, for all x ∈ B(x0; 2r), we have
f (x) < α. (If not, there exists x1 ∈ B(x0; 2r) such that f (x1) > α. Let

t = f (x0) − α

f (x0) − f (x1)
.

Then 0 < t < 1 and, if xt = t x1 + (1 − t)x0, then f (xt ) = α. But B(x0; 2r) is a
convex set and so xt ∈ B(x0; 2r), which is a contradiction.)

Thus, for any z ∈ V such that ‖z‖ ≤ 1, we get f (x0 + r z) ≤ α or, equivalently,

f (z) ≤ α − f (x0)

r
.

Thus the image of the unit ball is bounded and so f is continuous. �

Proposition 3.3.2 Let C be an open and convex set in a real normed linear space
V such that 0 ∈ C. For x ∈ V , set

p(x) = inf{α > 0 | α−1x ∈ C}.

(The function p is called theMinkowski functional of C.) Then, there exists M > 0
such that

0 ≤ p(x) ≤ M‖x‖ (3.3.1)

for all x ∈ V . We also have

C = {x ∈ V | p(x) < 1}. (3.3.2)

Further, p satisfies (3.1.1).

Proof Since 0 ∈ C and C is open, there exists an open ball B(0; 2r), centred at 0
and of radius 2r , contained in C . Now, if x ∈ V , we have r x/‖x‖ ∈ C and so, by
definition, p(x) ≤ 1

r ‖x‖ which proves (3.3.1).
Let x ∈ C . Since C is open, and since 0 ∈ C , there exists ε > 0 such that (1 +

ε)x ∈ C . Thus, p(x) ≤ (1 + ε)−1 < 1. Conversely, let x ∈ V such that p(x) < 1.
Then, there exists 0 < t < 1 such that 1

t x ∈ C . Then, as C is convex, we also have
t 1t x + (1 − t)0 ∈ C , i.e. x ∈ C . This proves (3.3.2).

If α > 0, it is easy to see that p(αx) = αp(x). This is the first relation in (3.1.1).
Now, let x and y ∈ V . Let ε > 0. Then
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1

p(x) + ε
x ∈ C and

1

p(y) + ε
y ∈ C.

Set

t = p(x) + ε

p(x) + p(y) + 2ε

so that 0 < t < 1. Then, as C is convex,

t
1

p(x) + ε
x + (1 − t)

1

p(y) + ε
y = 1

p(x) + p(y) + 2ε
(x + y) ∈ C

which implies that
p(x + y) ≤ p(x) + p(y) + 2ε

from which the second relation in (3.1.1) follows since ε was chosen arbitrarily. �

Proposition 3.3.3 Let C be a non-empty open convex set in a real normed linear
space V and assume that x0 /∈ C. Then, there exists f ∈ V ∗ such that f (x) < f (x0)
for all x ∈ C.

Proof Without loss of generality, we can assume that 0 ∈ C . (If 0 /∈ C , let x1 ∈ C .
Then we consider the convex set C − {x1} which contains the origin and does not
contain x0 − x1; if f is as in the proposition, we have f (x − x1) < f (x0 − x1) for
all x ∈ C which yields f (x) < f (x0) for all x ∈ C .)

Let W be the one-dimensional space spanned by x0. Define g : W → R by

g(t x0) = t.

By definition of the Minkowski functional, since 1
t t x0 = x0 /∈ C , we have that

g(t x0) = t ≤ p(t x0)

for t > 0. Since the Minkowski functional is non-negative, this inequality holds
trivially for t ≤ 0 as well. Thus, by the Hahn-Banach theorem (cf. Theorem 3.1.1),
there exists a linear extension f of g to the whole of V such that, for all x ∈ V ,

f (x) ≤ p(x) ≤ M‖x‖

(cf. (3.3.1)) which yields | f (x)| ≤ M‖x‖, and so f is continuous as well. Now, if
x ∈ C ,

f (x) ≤ p(x) < 1 = g(x0) = f (x0)

by (3.3.2) and this completes the proof. �

Theorem 3.3.1 (Hahn-Banach) Let A and B be two non-empty and disjoint convex
subsets of a real normed linear space V . Assume that A is open. Then, there exists
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a closed hyperplane which separates A and B, i.e. there exists f ∈ V ∗ and α ∈ R

such that
f (x) ≤ α ≤ f (y)

for all x ∈ A and y ∈ B.

Proof Let C = A − B = {x − y | x ∈ A, y ∈ B}. Since

C = ∪y∈B(A − {y}),

we see immediately thatC is both open and convex. Since A and B are disjoint, it also
follows that 0 /∈ C . Hence, by the preceding proposition, there exists f ∈ V ∗ such
that f (z) < 0 for all z ∈ C = A − B. In other words, f (x) < f (y) for all x ∈ A
and y ∈ B. Choose α ∈ R such that

sup
x∈A

f (x) ≤ α ≤ inf
y∈B f (y).

This completes the proof. �

Theorem 3.3.2 (Hahn-Banach) Let A and B be non-empty and disjoint convex sets
in a real normed linear space V . Assume that A is closed and that B is compact. Then
A and B can be separated strictly by a closed hyperplane, i.e. there exists f ∈ V ∗,
α ∈ R and ε > 0 such that

f (x) ≤ α − ε and f (y) ≥ α + ε

for all x ∈ A and y ∈ B.

Proof Let η > 0. Then, if B(0; η) is the open ball of radius η > 0 centred at 0, then
A + B(0; η) and B + B(0; η) are non-empty, open and convex. Further, if η > 0 is
sufficiently small, the two sets are disjoint as well. If not, there exists a sequence
ηn → 0 and xn ∈ A, yn ∈ B such that ‖xn − yn‖ ≤ 2ηn . Since B is compact, there
exists a subsequence ynk which converges to y ∈ B. This implies then that xnk → y
and, since A is closed, y ∈ A, i.e. y ∈ A ∩ B, which is a contradiction.

Thus, we can choose η > 0 such that A + B(0; η) and B + B(0; η) are disjoint.
Then, by the preceding theorem, there exists f ∈ V ∗ and α ∈ R such that for all
x ∈ A, y ∈ B and z1 and z2 in the closed unit ball, we have

f
(
x + η

2
z1
)

≤ α ≤ f
(
y + η

2
z2
)

.

This implies that

f (x) + η

2
‖ f ‖ ≤ α ≤ f (y) − η

2
‖ f ‖.

This proves the result if we set ε = η
2‖ f ‖. �
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The following corollary is very useful in testing whether a given subspace of a
normed linear space is dense or not.

Corollary 3.3.1 Let W be a subspace of a real normed linear space V . Assume that
W 
= V . Then, there exists f ∈ V ∗ such that f 
≡ 0 and such that f (x) = 0 for all
x ∈ W.

Proof Let x0 ∈ V \W . Let A = W and B = {x0}. Then A is closed, B is compact and
they are non-empty and disjoint convex sets. Thus, there exists f ∈ V ∗ and α ∈ R

such that for all x ∈ W ,
f (x) < α < f (x0).

Since W is a linear subspace, it follows that for all λ ∈ R, we have λ f (x) < α for
all x ∈ W . Now, since 0 ∈ W , we have α > 0. On the other hand, setting λ = n, we
get that, for any x ∈ W ,

f (x) <
α

n

whence we see that f (x) ≤ 0 for all x ∈ W . Again, if x ∈ W , we also have−x ∈ W
and so f (−x) ≤ 0 as well and so f (x) = 0 for all x ∈ W and f (x0) > α > 0. �

Remark 3.3.1 In case of normed linear spaces overC, the conclusions of Theorems
3.3.1 and 3.3.2 hold with f being replaced by Re( f ), the real part of f . This follows
from Proposition 3.1.1. It is now easy to see that Corollary 3.3.1 is also valid for
complex spaces. For another proof of this result, see the exercises at the end of this
chapter. �

Remark 3.3.2 A topological vector space is said to be locally convex if every point
has a local basis made up of convex sets, i.e. every open neighbourhood of each point
contains a convex open neighbourhood of that point.

The proofs of the geometric versions of the Hahn-Banach theorems go through
mutatis mutandis in the case of locally convex spaces. In particular, Corollary 3.3.1
is also true for such spaces. For details, see Rudin [1]. �

3.4 Vector-Valued Integration

In this section we will apply the Hahn-Banach theorem to give a meaning to integra-
tion of vector-valued functions.

Let us consider the unit interval [0, 1] endowed with the Lebesgue measure. Let
V be a normed linear space over R. Let ϕ : [0, 1] → V be a continuous mapping.
We would like to give a meaning to the integral

1∫
0

ϕ(t) dt
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as a vector in V in a manner that the familiar properties of integrals are preserved.
Using our experience with the integral of a continuous real-valued function, one

could introduce a partition

0 = x0 < x1 < · · · < xn = 1

and form Riemann sums of the form

n∑
i=1

(xi − xi−1)ϕ(ξi )

where ξi ∈ [xi−1, xi ] for 1 ≤ i ≤ n, and define the integral (if it exists) as a suitable
limit of such sums. Assume that such a limit exists and denote it by y ∈ V . Let
f ∈ V ∗. Then, by the continuity and linearity of f , it will follow that f (y) will be
the limit of the Riemann sums of the form

n∑
i=1

(xi − xi−1) f (ϕ(ξi )).

But since f ◦ ϕ : [0, 1] → R is continuous, the above limit of Riemann sums is none
other than

1∫
0

f (ϕ(t)) dt.

Thus the integral of ϕ must satisfy the relation

f

⎛
⎝

1∫
0

ϕ(t) dt

⎞
⎠ =

1∫
0

f (ϕ(t)) dt (3.4.1)

for all f ∈ V ∗.
Notice that since V ∗ separates points of V (cf. Corollary 3.1.1 and Remark 3.1.1),

such a vector, if it exists, must be unique. We use this to define the integral of a
vector-valued function.

Definition 3.4.1 Let V be a real normed linear space and let ϕ : [0, 1] → R be a
continuous mapping. The integral of ϕ over [0, 1], denoted

1∫
0

ϕ(t) dt,

is that vector in V which satisfies (3.4.1) for all f ∈ V ∗. �
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Proposition 3.4.1 Let ϕ : [0, 1] → V be a continuous mapping into a real Banach
space V . Then the integral of ϕ over [0, 1] exists.
Proof Since [0, 1] is compact, the set H which is the closure (inV ) of the set H which
is the convex hull of ϕ([0, 1]) (i.e. the smallest convex set containing ϕ([0, 1])), is
compact, by the completeness of V .

Let L be an arbitrary finite collection of continuous linear functionals on V . Define

EL =
⎧⎨
⎩y ∈ H | f (y) =

1∫
0

f (ϕ(t)) dt for all f ∈ L

⎫⎬
⎭ .

It is immediate to see that EL is a closed set.
Step 1: For any such finite collection L of continuous linear functionals, EL 
= ∅. To
see this, let L = { f1, . . . , fk}. Define A : V → R

k by

A(x) = ( f1(x), . . . , fk(x)).

Then A is a continuous linear transformation and so K = A(H) is a compact and
convex set. If (t1, . . . , tk) /∈ K , then, by the Hahn-Banach theorem (cf. Theorem
3.3.2), we can find constants c1, . . . , ck such that

k∑
i=1

ciui <

k∑
i=1

ci ti

for all (u1, . . . , uk) ∈ K . In particular, for all t ∈ [0, 1], we have
k∑

i=1

ci fi (ϕ(t)) <

k∑
i=1

ci ti .

Integrating this inequality over [0, 1], we get
k∑

i=1

cimi <

k∑
i=1

ci ti

where

mi =
1∫

0

fi (ϕ(t)) dt.

In other words, if (t1, . . . , tk) /∈ K , then (t1, . . . , tk) 
= (m1, . . . ,

mk). Thus, (m1, . . . ,mk) ∈ K . Thus, there exists y ∈ H such that, for 1 ≤ i ≤ k,
we have

mi = fi (y).
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This means that y ∈ EL , i.e. EL is non-empty.
Step 2. Let I be a finite indexing set and let Li be finite collections of elements in
V ∗ for each i ∈ I . Then L = ∪i∈I Li is still finite and further, since it is easy to see
that

∩i∈I ELi = EL ,

it follows from the previous step that the class of closed sets

{EL | L a finite subset of V ∗}

has finite intersection property. Since H is compact, it now follows that

∩L , finite subset of V ∗ EL 
= ∅.

In particular, there exists y such that y ∈ E{ f } for every f ∈ V ∗, i.e. y satisfies

f (y) =
1∫

0

f (ϕ(t)) dt

for every f ∈ V ∗. Thus y = ∫ 1
0 ϕ(t) dt . This completes the proof. �

Proposition 3.4.2 Let V be a real normed linear space and let ϕ : [0, 1] → V be
continuous. Then ∥∥∥∥∥∥

1∫
0

ϕ(t) dt

∥∥∥∥∥∥ ≤
1∫

0

‖ϕ(t)‖ dt. (3.4.2)

Proof By Corollary 3.1.1, there exists f ∈ V ∗ such that ‖ f ‖ = 1 and f (y) = ‖y‖
where

y =
1∫

0

ϕ(t) dt.

Thus,

∥∥∥∥∥∥
1∫

0

ϕ(t) dt

∥∥∥∥∥∥ = f

⎛
⎝

1∫
0

ϕ(t) dt

⎞
⎠ =

1∫
0

f (ϕ(t)) dt

≤
1∫

0

| f (ϕ(t))| dt ≤
1∫

0

‖ϕ(t)‖ dt.

This completes the proof. �
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Remark 3.4.1 Letϕ : [a, b] → V be a continuous mapping. Defineψ : [0, 1] → V
by ψ(t) = ϕ(a + t (b − a)). Then we can define

b∫
a

ϕ(t) dt = (b − a)

1∫
0

ψ(t) dt.

It is easy to verify that for all f ∈ V ∗, we have

f

⎛
⎝

b∫
a

ϕ(t) dt

⎞
⎠ =

b∫
a

f (ϕ(t)) dt.

Again the result of Proposition 3.4.2 remains valid in this case as well.
Assume now that ϕ : [0,∞) → V is continuous. Assume further that the limit

lim
λ→∞

λ∫
0

ϕ(t) dt

exists, i.e. for any sequence λn → ∞ (as n → ∞), we have that the limit

lim
n→∞

λn∫
0

ϕ(t) dt

exists and is independent of the sequence chosen. Then we define

∞∫
0

ϕ(t) dt = lim
λ→∞

λ∫
0

ϕ(t) dt

and again it follows that, for all f ∈ V ∗, we have

f

⎛
⎝

∞∫
0

ϕ(t) dt

⎞
⎠ =

∞∫
0

f (ϕ(t)) dt.

The result of Proposition 3.4.2 continues to hold. We can define integrals over other
infinite intervals, if they exist, in a similar manner. �
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3.5 An Application to Optimization Theory

We conclude this chapter with an application of the Hahn-Banach theorem to opti-
mization theory.

Definition 3.5.1 A cone in a real vector space V is a set C such that:

(i) 0 ∈ C ;

(ii) if x ∈ C and λ ≥ 0, then λx ∈ C. �
Lemma 3.5.1 Let vi , 1 ≤ i ≤ n be elements in a normed linear space V . Define

C =
{

n∑
i=1

λivi | λi ≥ 0, 1 ≤ i ≤ n

}
.

Then C is a closed convex cone.

Proof Step 1. Clearly, C is convex since, for any 0 < t < 1, we have

t
n∑

i=1

λivi + (1 − t)
n∑

i=1

μivi =
n∑

I=1

(tλi + (1 − t)μi )vi

and so, if λi ≥ 0 and μi ≥ 0 for all i , we also have tλi + (1 − t)μi ≥ 0. Also if
x ∈ C , it is obvious that λx ∈ C for any λ ≥ 0. Thus, C is a convex cone.
Step 2. Assume that the vi are linearly independent. Let {wn} be a sequence in C and
assume that wm → w in V . If

W = span{v1, . . . , vn},

thenW is a finite dimensional subspace ofV and is hence closed aswell. Thusw ∈ W .
If wm = ∑n

i=1 λm
i vi with λm

i ≥ 0 for all 1 ≤ i ≤ n and for all m, then λm
i → λi ≥ 0

for each 1 ≤ i ≤ n and w = ∑n
i=1 λivi . Thus w ∈ C and so C is closed.

Step 3. Assume now that the vi are linearly dependent. Then there exists a linear
relation between them and so we can find scalars αi such that

∑n
i=1 αivi = 0 and

such that the set
J = {i | 1 ≤ i ≤ n,αi < 0}

is non-empty.
Let v ∈ C be such that v = ∑n

i=1 λivi with λi ≥ 0 for all 1 ≤ i ≤ n. Then v =∑n
i=1(λi + tαi )vi for any t ∈ R. Define

t = min
i∈J

{
−λi

αi

}
≥ 0.
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Then, for all 1 ≤ i ≤ n, we have λi + tαi ≥ 0 and at least one of them must vanish.
Then

C = ∪ j∈I

⎧⎨
⎩v =

∑
i∈I\{ j}

λivi | λi ≥ 0 for all i ∈ I\{ j}
⎫⎬
⎭

where I = {1, 2, . . . , n}. Each set in the union described on the right-hand side
is a cone but generated by fewer elements from V . Iterating this procedure, we
can ultimately write C as the finite union of cones each generated by a linearly
independent set of vectors and hence, by the preceding step, each of these cones
will be closed as well. Hence C , being the finite union of closed sets, is closed. This
completes the proof. �

Theorem 3.5.1 (Farkas-Minkowski Lemma) Let V be a real reflexive Banach space
and let { f0, f1, . . . , fn} be elements of V ∗ such that if for some x ∈ V we have
fi (x) ≥ 0 for all 1 ≤ i ≤ n, then f0(x) ≥ 0 as well. Then, there exists scalars λi ≥
0, 1 ≤ i ≤ n such that

f0 =
n∑

i=1

λi fi .

Proof Let

C =
{

n∑
i=1

λi fi | λi ≥ 0, 1 ≤ i ≤ n

}

which is a closed convex cone in V ∗ by the preceding lemma. Assume that f0 /∈ C .
Then, by the Hahn-Banach Theorem (cf. Theorem 3.3.2) there exist ϕ ∈ V ∗∗ and
α ∈ R such that

ϕ( f0) < α < ϕ( f )

for all f ∈ C . Since 0 ∈ C , it follows that α < 0. Thus ϕ( f0) < 0 as well.
Now, since V is reflexive, there exists x ∈ V such that ϕ = Jx and so f0(x) < 0.

On the other hand, since C is a cone, for all λ > 0, and for all f ∈ C , we have
λ f ∈ C and so ϕ(λ f ) > α or, ϕ( f ) > α/λ whence we deduce, on letting λ tend to
infinity, that ϕ( f ) ≥ 0, i.e. f (x) ≥ 0 for all f ∈ C . In particular fi (x) ≥ 0 for all
1 ≤ i ≤ n while f0(x) < 0, which is a contradiction. Thus f0 ∈ C and the proof is
complete. �

The Farkas-Minkowski lemma is a key step in the proof of the Kuhn-Tucker
conditions which play the same role in characterizing minima in the presence of
constraints in the form of inequalities as that played by Lagrange multipliers in
characterizing minima in the presence of constraints in the form of equalities. While
the Kuhn-Tucker conditions are necessary in general ‘nonlinear programming’, they
are necessary and sufficient in ‘convex programming’, i.e. when the functional to be
minimized and the constraints are all given by convex functions.
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Let V be a real normed linear space and let J : V → R be a given functional.
Let K ⊂ V be a closed and convex subset. Then, if J attains a minimum over K at
u ∈ K and if J is differentiable at u, a necessary condition is that

J ′(u)(v − u) ≥ 0

for all v ∈ K (cf. Exercise 2.54). We would like to generalize this to sets K which
are not necessarily convex. To this end, we introduce the following definition.

Definition 3.5.2 Let V be a real normed linear space and letU ⊂ V be a non-empty
subset. Let u ∈ U . Then, the tangent cone, denoted C(u), at u is the union of the
origin and the set of all vectors w ∈ V such that

(i) there exists a sequence {uk} in U , uk 
= u for all k ∈ N and limk→∞ uk = u;

(ii)

lim
k→∞

uk − u

‖uk − u‖ = w

‖w‖ . �

Remark 3.5.1 The second condition in the above definition may be written, in an
equivalent fashion, as follows:

uk = u + ‖uk − u‖
(

w

‖w‖ + δk

)

where δk → 0 as k → ∞. �

Remark 3.5.2 It is clear that C(u) is a cone (cf. Definition 3.5.1) since w ∈ C(u)

implies that λw ∈ C(u) as well, for any λ > 0 (with the same associated sequence
{uk}). This is a cone (which is not necessarily convex) with its vertex at the origin.
Its translate

u + C(u) = {u + w | w ∈ C(u)},

is a cone with vertex at u. This translated cone contains the (half) tangents at u of all
curves in U which pass through u, as it is easy to see from the Taylor expansion (at
u) of the function describing the curve. �

Proposition 3.5.1 Let U be a non-empty subset of a real normed linear space V
and let u ∈ U. Then, C(u) is a closed cone.

Proof Let wn ∈ C(u) and let wn → w in V . Without loss of generality, we can
assume that w 
= 0 (since the origin is always in C(u), by definition) and hence that
wn 
= 0 for all n. There exist unk ∈ U such that unk 
= u for all n and such that unk → u
as k → ∞. Further,
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unk = u + ‖unk − u‖
(

wn

‖wn‖ + δnk

)

where δnk → 0 as k → ∞.
Choose a sequence {εn} of positive reals which converges to zero as n → ∞.

Then, we can find positive integers k(n) such that

‖unk(n) − u‖ < εn, and ‖δnk(n)‖ ≤ εn.

Consider the sequence {unk(n)}. Clearly, unk(n) → u and unk(n) 
= u for all n. Further,

unk(n) = u + ‖unk(n) − u‖
[

w

‖w‖ +
(

δnk(n) + wn

‖wn‖ − w

‖w‖
)]

which shows that w ∈ C(u) since

ηn = δnk(n) +
(

wn

‖wn‖ − w

‖w‖
)

→ 0

given that wn → w. This completes the proof. �
Proposition 3.5.2 Let J : U ⊂ V → R be a functional defined on a set U of a real
normed linear space V . Assume that J attains a relative minimum at u ∈ U and that
J is differentiable at u. Then

J ′(u)(v − u) ≥ 0

for all v ∈ u + C(u).

Proof Let v ∈ u + C(u). Then w = v − u ∈ C(u). Let {uk} be a sequence in U
associated to w as in the definition of C(u). Then, since J is differentiable at u, we
have

J (uk) − J (u) = J ′(u)(uk − u) + ‖uk − u‖εk

= ‖uk − u‖
(

1
‖w‖ J

′(u)w + J ′(u)δk + εk

)

where δk → 0 and εk → 0 as k → ∞. Setting ηk = ‖w‖(J ′(u)δk + εk), we see that
ηk → 0 as well. Since J attains a relative minimum at u, it follows that

0 ≤ J (uk) − J (u) = ‖uk − u‖
‖w‖ (J ′(u)w + ηk)

from which it immediately follows that J ′(u)w ≥ 0, which completes the proof. �
The above result can be used to derive optimality conditions when a functional

J is being minimized under constraints. We consider a finite set of functionals ϕi :
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V → R for 1 ≤ i ≤ m and set

U = {v ∈ V | ϕi (u) ≤ 0, 1 ≤ i ≤ m}. (3.5.1)

Of particular interest is the case when the functionals ϕi are affine linear, i.e. there
exist fi ∈ V ∗ and di ∈ R for 1 ≤ i ≤ m such that

ϕi (u) = fi (u) + di (3.5.2)

for 1 ≤ i ≤ m. In this case, we have a simple characterization of the tangent cone.

Proposition 3.5.3 Let U be as given by (3.5.1) and let the constraints ϕi be affine
linear, given by (3.5.2). Then, for any u ∈ U,

C(u) = {w ∈ V | fi (w) ≤ 0, i ∈ I (u)} (3.5.3)

where
I (u) = {i | 1 ≤ i ≤ m, ϕi (u) = 0}.

Proof Notice that (cf. Exercise 2.50) ϕ′
i (u) = fi . If i ∈ I (u), then ϕi attains its

maximum over U at u. Then, by Proposition 3.5.2, ϕ′
i (u)(w) ≤ 0 for all w ∈ C(u).

Conversely, ifw 
= 0 satisfies fi (w) ≤ 0 for all i ∈ I (u), set uk = u + εkwwhere
{εk} is a sequence of positive reals converging to zero. then uk 
= u and uk → u. If
i /∈ I (u), then ϕi (u) < 0, and so, by continuity, ϕi (uk) < 0 for large enough k. If
i ∈ I (u), then ϕi (u) = 0 and so

ϕi (uk) = fi (uk − u) = εk fi (w) ≤ 0.

Thus, for k large enough, we have that uk ∈ U . Finally we see immediately that

uk − u

‖uk − u‖ = w

‖w‖ .

Thus, it follows that w ∈ C(u). This completes the proof. �

Theorem 3.5.2 (Kuhn-Tucker Conditions) Let V be a real, reflexive Banach space.
Let ϕi , 1 ≤ i ≤ m be as in (3.5.2) and let U be as in (3.5.1). Let J : V → R be a
functional which attains a relative minimum at u ∈ U. Assume that J is differentiable
at u. Then, there exist constants λi (u) such that
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J ′(u) +
m∑
i=1

λi (u)ϕ′
i (u) = 0

m∑
i=1

λi (u)ϕi (u) = 0

λi (u) ≥ 0, 1 ≤ i ≤ m.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5.4)

Proof By Propositions 3.5.2 and 3.5.3, we have that for all w such that ϕ′
i (u)w ≤

0, i ∈ I (u), we have J ′(u)w ≥ 0. Thus, by the Farkas-Minkowski lemma, there
exist λi (u) ≥ 0 for i ∈ I (u) such that

J ′(u) = −
∑
i∈I (u)

λi (u)ϕ′
i (u).

Setting λi (u) = 0 for all i /∈ I (u), we get (3.5.4). This completes the proof. �

The above theorem can be generalized to cases when the ϕi are not affine. In this
situation, in addition to differentiability at u, we need to assume another technical
condition of ‘admissibility’ on the constraints at u. In particular, when the constraints
ϕi , 1 ≤ i ≤ m are all convex, the admissibility condition reads as follows:

• either, all the ϕi are affine and the set U given by (3.5.1) is non-empty;
• or, there exists an element v∗ ∈ V such that ϕi (v

∗) ≤ 0 for all 1 ≤ i ≤ m and
ϕi (v

∗) < 0 whenever ϕi is not affine linear.

If J is differentiable at u and the constraints are differentiable and admissible (at
u), then (3.5.4) is a necessary condition for u to be a relative minimum of J at u.
In addition, if J and the constraints ϕi are all convex, then (3.5.4) is both necessary
and sufficient. Interested readers can find further details in the book Introduction à
l’analyse numérique matricielle et à l’optimisation by P.G. Ciarlet (Masson, Paris,
France, 1982; English translation, Cambridge University Press, Cambridge, UK,
1989).

3.6 Exercises

3.1 Give an example to show that the functional whose existence is guaranteed by
Corollary 3.1.1, is not unique.

3.2 A normed linear space V is said to be strictly convex if for x and y ∈ V such
that x 
= y, ‖x‖ = ‖y‖ = 1, we have

∥∥∥∥12 (x + y)

∥∥∥∥ < 1.
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Show that the spaces �1 and �∞ are not strictly convex.

3.3 For x and y in �2, show that

∥∥∥∥12 (x + y)

∥∥∥∥
2

2

+
∥∥∥∥12 (x − y)

∥∥∥∥
2

2

= 1

2

[‖x‖22 + ‖y‖22
]
.

Deduce that the space �2 is strictly convex.

3.4 Show that the space C[0, 1] is not strictly convex.
3.5 If V is a normed linear space such that V ∗ is strictly convex, show that given
a subspace W of V and a continuous linear functional f on W , its Hahn-Banach
extension to all of V is unique. In particular, show also that the functional whose
existence is guaranteed by Corollary 3.1.1, is unique.

3.6 Use Corollary 3.1.1 to prove Corollary 3.2.1. (Hint: consider the quotient space
V/W .)

3.7 Let V be a normed linear space and let W be a subspace of V . Let X be a finite
dimensional space and let T : W → X be a continuous linear transformation. Show
that there exists a continuous linear transformation T̃ : V → X which extends T .

3.8 Let V be a normed linear space and let W be a finite dimensional subspace.
Show that there exists a closed subspace Z of V such that

V = W ⊕ Z .

3.9 (a) Let c0 denote the space of all real sequences which converge to zero,
equipped with the norm ‖.‖∞. Prove that (cf. Example 3.2.6)

c∗
0 = �1.

(b) Show that (cf. Example 3.2.4)
�∗
1 = �∞.

(c) For any positive integer N , show that

(
�N∞
)∗ = �N1 .

3.10 Let y ∈ �1. Given a sequence x = (x1, . . . , xk, . . .), define fy(x) using (3.2.3).
Show that fy ∈ �∗∞ and that fy ∈ c∗. In both cases, show that ‖ fy‖ = ‖y‖1.
3.11 Let

y =
(
0, 1 − 1

2
, 1 − 1

3
, . . . , 1 − 1

n
, . . .

)
∈ �∞.
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Show that the functional fy ∈ �∗
1 does not attain the supremum in (3.2.1). (This gives

another proof of the non-reflexivity of the space �1.)

3.12 Let V be a normed linear space and let C denote the open ball with center at
the origin and of radius r > 0. Compute the Minkowski functional of C .

3.13 Let V be a normed linear space and let W be a subspace of V . Define

W⊥ = {g ∈ V ∗ | g(x) = 0 for all x ∈ W }.

(a) Show that W⊥ is a closed subspace of V ∗.

(b) Let f ∈ V ∗. Show that
d( f,W⊥) = ∥∥ f | W

∥∥
W ∗

where f | W is the restriction of f to W and

d( f,W⊥) = inf
g∈W⊥

‖ f − g‖V ∗ .

(c) Let f ∈ W ∗ and let f̃ ∈ V ∗ be an extension of f preserving its norm. Define
σ : W ∗ → V ∗/W⊥ by

σ( f ) = f̃ + W⊥.

Show that σ is well defined and that it is an isometric isomorphism of W ∗ onto
V ∗/W⊥.

(d) Let W be a closed subspace. Let π : V → V/W be the canonical quotient map
x �→ x + W . For f ∈ (V/W )∗, define τ ( f ) = f ◦ π ∈ V ∗. Show that the range
of τ is equal to W⊥ and that the map τ : (V/W )∗ → W⊥ is an isometric iso-
morphism.

3.14 Let V be a normed linear space and let Z be a subspace of V ∗. Define

Z⊥ = {x ∈ V | g(x) = 0 for all g ∈ Z}.

(a) Show that Z⊥ is a closed subspace of V .

(b) Show that, if W is a subspace of V , then

(
W⊥)⊥ = W .

(c) If Z is a subspace of V ∗, show that

(
Z⊥)⊥ ⊃ Z .
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(d) If V is reflexive and if Z is a subspace of V ∗, show that

(
Z⊥)⊥ = Z .

3.15 Let ϕ and ψ be continuous mappings from [0, 1] into a real normed linear
space V . For arbitrary scalars α and β, show that

1∫
0

(αϕ(t) + βψ(t)) dt = α

1∫
0

ϕ(t) dt + β

1∫
0

ψ(t) dt.

3.16 LetV andW benormed linear spaces and let A ∈ L(V,W ). Letϕ : [0, 1] → V
be a continuous mapping. Show that

A

⎛
⎝

1∫
0

ϕ(t) dt

⎞
⎠ =

1∫
0

A(ϕ(t)) dt.

3.17 Let ϕ : [a, b] → V be a continuous mapping and let c ∈ (a, b). Show that

b∫
a

ϕ(t) dt =
c∫

a

ϕ(t) dt +
b∫

c

ϕ(t) dt.

3.18 Let ϕ : R → V be a continuous mapping. Let a, b, h ∈ R. Show that

b∫
a

ϕ(t) dt =
b+h∫

a+h

ψ(t) dt

where ψ(t) = ϕ(t − h).

3.19 Letϕ : [0, 1] → C[0, 1] be a continuous mapping and let ψ ∈ C[0, 1] be given
by

ψ =
1∫

0

ϕ(t) dt.

(a) Show that for any s ∈ [0, 1], we have

ψ(s) =
1∫

0

ϕ(t)(s) dt.

(b) Let t0 ∈ (0, 1). Show that
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t0∫
0

1∫
0

ϕ(t)(s) dt ds =
1∫

0

t0∫
0

ϕ(t)(s) ds dt.

3.20 Let ϕ : [0, 1] → V be a continuous mapping and let t ∈ [0, 1). Show that

lim
h→0

1

h

t+h∫
t

ϕ(s) ds = ϕ(t).

3.21 Let V be a normed linear space and let T ∈ L(V ) such that ‖T ‖ ≤ 1. Let
λ > 0 and let x ∈ V . Define

R(x) =
∞∫
0

e−λt T (x) dt.

Show that R ∈ L(V ) and that

‖R‖ ≤ 1

λ
.

3.22 (a) Let V be a real Banach space. Let k > 0. Define

X =
{
u ∈ C([0,∞); V ) | sup

t≥0
e−kt‖u(t)‖V < ∞

}
.

Define
‖u‖X = sup

t≥0
e−kt‖u(t)‖V .

Show that X is a Banach space with this norm.

(b) Let f : V → V be a mapping. Assume that there exists L > 0 such that

‖ f (u) − f (v)‖V ≤ L‖u − v‖V
for all u and v ∈ V . For u ∈ X , define

F(u)(t) = u0 +
t∫

0

f (u(s)) ds

where u0 ∈ V is a fixed vector. Show that F(u) ∈ X and that, for any u and
v ∈ X , we have

‖F(u) − F(v)‖X ≤ L

k
‖u − v‖X .
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(c) Deduce that, for any u0 ∈ V , there exists a unique u ∈ C([0,∞); V ) such that

u(t) = u0 +
t∫

0

f (u(s)) ds

which is also the solution of the initial value problem

du
dt (t) = f (u(t)), t > 0
u(0) = u0.

3.23 Let V be any vector space and let f0, f1, . . . , fn be linear functionals on V .
Let Ker( fi ) denote the kernel of fi , 0 ≤ i ≤ n. Assume that

∩n
i=1Ker( fi ) ⊂ Ker( f0).

Show that there exist scalars αi , 1 ≤ i ≤ n such that

f0 =
N∑
i=1

αi fi .

(Hint: Consider the image of the map A as defined in Sect. 3.4 and apply Corollary
3.3.1 to its image.)

3.24 Let V be a real normed linear space and let K ⊂ V be a compact and convex
subset. Let C ⊂ V ∗ be a convex cone. Assume that for each f ∈ C , there exists a
vector x ∈ K (depending on f ), such that f (x) ≥ 0. Show that there exists x ∈ K
such that f (x) ≥ 0 for all f ∈ C . (Hint: For f ∈ C , consider

K f = {x ∈ K | f (x) ≥ 0}

which is a non-empty closed set. Show that this collection of closed sets has finite
intersection property.)

Reference

1. W. Rudin, Functional Analysis (McGraw-Hill, 1973)



Chapter 4
Baire’s Theorem and Applications

4.1 Baire’s Theorem

Baire’s theorem is a result on complete metric spaces which will be used in this
chapter to prove some very important results on Banach spaces.

Theorem 4.1.1 (Baire) Let (X, d) be a complete metric space. Let {Vn}∞n=1 be a
collection of open dense sets. Then

∩∞
n=1Vn

is also dense.

Proof LetW be any non-empty open set in X . We need to show that the intersection
∩nVn has a point in W .

Since V1 is dense, it follows thatW ∩ V1 �= ∅. Thus, we can find a point x1 in this
intersection (which is also an open set). Hence, there exists r1 > 0 such that the open
ball B(x1; r1), with centre at x1 and radius r1, is contained in W ∩ V1. By shrinking
r if necessary, we may also assume that the closure of this ball B(x1; r1) is also a
subset of W ∩ V1 and that 0 < r1 < 1.

If n ≥ 2, assume that we have chosen xn−1 and rn−1 suitably. The denseness of
Vn shows that Vn ∩ B(xn−1; rn−1) �= ∅ and so we can choose xn and rn such that
0 < rn < 1/n and

B(xn; rn) ⊂ Vn ∩ B(xn−1; rn−1).

Thus we now have a sequence of points {xn} in X . If i > n and j > n, it is clear
that both xi and x j both lie in B(xn; rn) and so d(xi , x j ) < 2rn < 2/n and thus, the
sequence {xn} is Cauchy. Since X is complete, it follows that there exists x ∈ X such
that xn → x .

Now, for i > n, it follows that xi ∈ B(xn; rn) and so x ∈ B(xn; rn) for all n and
so x ∈ Vn for all n. Also x ∈ B(x1; r1) and so x ∈ W as well. This completes the
proof. �
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Remark 4.1.1 The main significance of this theorem is that, in particular, the inter-
section of a countable collection of non-empty open dense sets in a (non-empty)
complete metric space is, again, non-empty. �

Remark 4.1.2 An equivalent way of stating this theorem is that a complete metric
space cannot be the countable union of nowhere dense sets. In the literature, countable
unions of nowhere dense sets are said to be of the first category and all other sets are
said to be of the second category. Thus, Baire’s theorem states that every complete
metric space is of second category and so, often in the literature, it is referred to as
the Baire category theorem. �

Acountable intersection of open sets in a topological space is called aGδ set. Since
the countable union of countable sets is again countable, the following corallary is
an immediate consequence of Baire’s theorem.

Corollary 4.1.1 In a complete metric space, the intersection of any countable col-
lection of dense Gδ sets is again a dense Gδ set. �

Corollary 4.1.2 In a complete metric space which has no isolated points, a count-
able dense set can never be a Gδ set. �

Proof Let E = {xk}∞k=1 be a countable dense set in a complete metric space X . If it
is a Gδ set, then, there exist open sets Vn such that

E = ∩∞
n=1Vn.

Clearly, since E ⊂ Vn for each n, each set Vn is dense as well. Set

Wn = Vn\ ∪n
k=1 {xk}.

Then eachWn is also dense and open, since X has no isolated points. But ∩∞
n=1Wn =

∅, which contradicts Baire’s theorem. Hence the result. �

Let V be a normed linear space and let W ⊂ V be a closed and proper subspace.
Then, by a simple scaling argument, it is immediate to see that W cannot contain a
ball of V with centre at the origin and of positive radius. By translation, it now follows
thatW cannot contain any open ball of the form BV (x; r), where BV indicates that it
is a ball in V . Thus, it follows thatW has empty interior and soW is nowhere dense.

Example 4.1.1 Consider the space c00 of all sequences which have at most a finite
number of non-zero terms. In other words, if en is the sequence with one in the n-th
place and zero elsewhere, we have that

c00 = span{en | n ∈ N}.
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Let Wn = span{ek | 1 ≤ k ≤ n}. Then, each Wn is finite dimensional and,

c00 = ∪∞
n=1Wn.

Whatever be the norm on c00, we have that Wn is a closed and proper subspace of
c00 for each n, and hence, by our earlier observation, each Wn is nowhere dense. By
Baire’s theorem it now follows that c00 cannot be complete for any norm. �

4.2 Principle of Uniform Boundedness

As a first application of Baire’s theorem we prove the following result.

Theorem 4.2.1 (Banach-Steinhaus)Let V be aBanach space and let W be a normed
linear space. Let I be an arbitrary indexing set and, for each i ∈ I , let Ti ∈ L(V,W ).
Then, either there exists M > 0 such that

‖Ti‖ ≤ M, for all i ∈ I,

or,
sup
i∈I

‖Ti (x)‖ = ∞

for all x belonging to some dense Gδ set in V .

Proof For each x ∈ V , set
ϕ(x) = sup

i∈I
‖Ti (x)‖.

Let
Vn = {x ∈ V | ϕ(x) > n}.

Since each Ti is continuous and since the norm is a continuous function, it is easy to
see that Vn is open for each n.

Assume now that there exists N such that VN fails to be dense in V . Then, there
exists x0 ∈ V and r > 0 such that x + x0 /∈ VN if ‖x‖ < r . (In other words, there is
an open ball B(x0; r), centred at x0 and of radius r , which does not intersect VN .)
This implies that ϕ(x + x0) ≤ N for all such x and so, for all i ∈ I ,

‖Ti (x + x0)‖ ≤ N .

Thus, if ‖x‖ ≤ r/2, we have, for all i ∈ I ,

‖Ti (x)‖ ≤ ‖Ti (x + x0)‖ + ‖Ti (x0)‖ ≤ 2N .

It follows from this that, for all i ∈ I ,
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‖Ti‖ ≤ 4N

r

and so the first alternative holds with M = 4N/r .
The other possibility is that each Vn is dense, and so, V being complete, by Baire’s

theorem, ∩nVn is a dense Gδ and for each x ∈ ∩nVn , we have that ϕ(x) = ∞. This
completes the proof. �

An immediate consequence of the above result is the following.

Corollary 4.2.1 If V is a Banach space and W is a normed linear space and if
Ti ∈ L(V,W ) for an indexing set I such that

sup
i∈I

‖Ti (x)‖ < ∞

for every x ∈ V , then there exists M > 0 such that

‖Ti‖ ≤ M for each i ∈ I. �

In other words, if the Ti are all pointwise bounded, then they are uniformly
bounded in norm. For this reason, the Banach-Steinhaus theorem is also referred
to as the principle of uniform boundedness.

Corollary 4.2.2 Let V be a Banach space and let W be a normed linear space and
let {Tn} be a sequence of continuous linear transformations from V into W such that,
for each x ∈ V , the sequence {Tnx} is convergent in W. Define

T (x) = lim
n→∞ Tn(x).

Then T ∈ L(V,W ) and
‖T ‖ ≤ lim inf

n→∞ ‖Tn‖. (4.2.1)

Proof It is clear that T is linear. By the Banach-Steinhaus theorem, it follows that
{‖Tn‖} is a bounded sequence. Let ‖Tn‖ ≤ C for all n. Then, for each x ∈ V and for
all n, we have

‖Tn(x)‖ ≤ C‖x‖.

Passing to the limit as n → ∞, we deduce that

‖T (x)‖ ≤ C‖x‖

for each x ∈ V and so T ∈ L(V,W ). The relation (4.2.1) follows from the inequality

‖Tn(x)‖ ≤ ‖Tn‖ ‖x‖
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for each x ∈ V . �

Corollary 4.2.3 Let V be a Banach space and let B ⊂ V be a subset. Assume that

f (B) = { f (x) | x ∈ B}

is a bounded subset of the scalar field for each f ∈ V ∗. Then B is a bounded subset
of V .

Proof For x ∈ B, consider the functional Jx ∈ V ∗∗ defined by Jx ( f ) = f (x) for
f ∈ V ∗. Then, we know that (cf. Corollary 3.1.2)

‖Jx‖V ∗∗ = ‖x‖V .

Taking B as the indexing set and V ∗ as the Banach space, it follows from the Banach-
Steinhaus theorem that ‖Jx‖ is uniformly bounded inV ∗∗, which is the same as saying
that B is bounded in V . �

Remark 4.2.1 To check the boundedness of a set V in a Banach space, it thus suffices
to verify that its image under each continuous linear functional is bounded. In finite
dimensional spaces, this is what we precisely do. We check that the image under
each coordinate projection is bounded and these form a basis for the dual space. In
the language of weak topologies (to be studied later), the conclusion of the preceding
corollary is read as ‘weakly bounded implies bounded’. �

4.3 Application to Fourier Series

Let f : [−π,π] → R be an integrable function.We canwrite its formalFourier series
(in exponential form) as follows:

f (t) ∼
∞∑

n=−∞
f̂ (n) exp(int)

where

f̂ (n) = 1

2π

π∫

−π

f (s) exp(−ins) ds (4.3.1)

are the Fourier coefficients of f . The first question that springs to the mind is ‘in
what sense does the Fourier series of a function represent the function?’ In particular,
does the Fourier series of a continuous 2π-periodic function f converge to f (t) at
every point t ∈ [−π,π]? This is relevant since each term in the Fourier series is a
continuous 2π-periodic function. Unfortunately, the answer is ‘No!’. It was Dirichlet
who first established (around 1829, nearly seven decades after a lengthy controversy
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began in Europe—about the validity of representing a function in terms of sines and
cosines—and raged through the latter half of the eighteenth century) the sufficient
conditions for the Fourier series of a function to converge to its value at a point.
This was later strengthened by Jordan. In fact the study of the validity of Fourier
expansions led to a lot of mathematical development such as making precise the
notion of a function, Cantor’s theory of infinite sets, the theories of integration by
Riemann and by Lebesgue and theories of summability of series.

In this section, wewill use the Banach-Steinhaus theorem to show that there exists
a very large class of continuous 2π-periodic functions whose Fourier series fail to
converge on a very large set of points.

To study the convergence of Fourier series, we need to study its partial sums:

sm( f )(t) =
m∑

n=−m

f̂ (n) exp(int).

Using the formula for the Fourier coefficients (4.3.1), this becomes

sm( f )(t) = 1

2π

π∫

−π

f (s)Dm(t − s) ds (4.3.2)

where

Dm(t) =
m∑

n=−m

exp(int).

The function Dm is called the Dirichlet kernel. If we multiply Dm(t) successively
by exp(i t/2) and exp(−i t/2) and subtract, we see immediately that

Dm(t) =
{

sin(m+ 1
2 )t

sin t
2

, if t �= 2kπ, for some non-negative integer k

2m + 1, if t = 2kπ for some non-negative integer k.

Proposition 4.3.1 We have

lim
n→∞

π∫

−π

|Dn(t)| dt = +∞. (4.3.3)

Proof For t ∈ R, we have | sin t | ≤ |t | and so

π∫

−π

|Dn(t)| dt ≥ 4

π∫

0

| sin(n + 1
2 )t |

t
dt
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= 4

(n+ 1
2 )π∫

0

| sin t |
t

dt

> 4
n∑

k=1

kπ∫

(k−1)π

| sin t |
t

dt

> 4
n∑

k=1

kπ∫

(k−1)π

| sin t |
kπ

dt

= 8

π

n∑

k=1

1

k

from which (4.3.3) follows immediately. �

Proposition 4.3.2 Let V = Cper[−π,π], the space of continuous 2π-periodic func-
tions with the usual sup-norm (denoted ‖ · ‖∞) and define φn: V → R by

φn( f ) = sn( f )(0)

where sn( f ) is the n-th partial sum of the Fourier series of f. Then φn is a continuous
linear functional on V and

‖φn‖ = 1

2π

π∫

−π

|Dn(t)| dt. (4.3.4)

Proof On one hand,

φn( f ) = 1

2π

π∫

−π

f (t)Dn(t) dt

(cf. (4.3.2); Dn is an even function). Thus,

|φn( f )| ≤ ‖ f ‖∞
1

2π

π∫

−π

|Dn(t)| dt

and so

‖φn‖ ≤ 1

2π

π∫

−π

|Dn(t)| dt.
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Now, let En = {t ∈ [−π,π] | Dn(t) ≥ 0}. Define

fm(t) = 1 − md(t, En)

1 + md(t, En)

where d(t, A) = inf{|t − s| | s ∈ A} is the distance of t from a set A. Since d(t, A) is
a continuous function (cf. Proposition 1.2.3), fm ∈ Cper[−π,π], (it is periodic since
Dn is even and so En is a symmetric set about the origin). Also ‖ fm‖∞ ≤ 1 and
fm(t) → 1 if t ∈ En while fm(t) → −1 if t ∈ Ec

n . By the dominated convergence
theorem, it now follows that

φn( fm) → 1

2π

π∫

−π

|Dn(t)| dt

from which (4.3.4) follows. �

Wenowapply theBanach-Steinhaus theorem to theBanach spaceV = Cper[−π,π]
and the collection of continuous linear functionals {φn}. Since, by Propositions 4.3.1
and 4.3.2, we have ‖φn‖ → ∞ as n → ∞, it follows there exists a dense Gδ-set
(of continuous 2π-periodic functions) in V such that the Fourier series of all these
functions diverge at t = 0. We could have very well dealt with any other point in the
interval [−π,π] in the same manner.

By another application of Baire’s theorem, we can strengthen this further.
Let Ex be the dense Gδ-set of continuous 2π-periodic functions in V such that

the Fourier series of these functions diverge at x . Let {xi } be a countable set of points
in [−π,π] and let

E = ∩n
i=1Exi ⊂ V .

Then, by Baire’s theorem, E is also a dense Gδ-set (cf. Corollary 4.1.1). Thus for
each f ∈ E , the Fourier series of f diverges at xi for all 1 ≤ i ≤ ∞. Define

s∗( f ; x) = sup
n

|sn( f )(x)|.

Hence {x | s∗( f ; x) = ∞} is a Gδ-set in (−π,π) for each f . If we choose the xi
above so that {xi } is dense (take all rationals, for instance in (−π,π)) then we have
the following result.

Proposition 4.3.3 The set E ⊂ V is a dense Gδ-set such that for all f ∈ E, the set
Q f ⊂ (−π,π) where its Fourier series diverges, is a dense Gδ-set in (−π,π). �

By virtue of Corollary 4.1.2, it follows that there exist uncountablymany 2π-periodic
continuous functions on [−π,π] whose Fourier series diverge on an uncountable
subset of (−π,π).
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4.4 The Open Mapping and Closed Graph Theorems

In this section, we will study two more important consequences of Baire’s theorem
which will have a lot of applications.

We begin by setting up some notation. If A and B are subsets in a vector space
V , we set

A + B = {x + y | x ∈ A, y ∈ B}.

Similarly, if λ is a scalar, we set

λA = {λx | x ∈ A}.

If A is a convex set, then we have A + A = 2A, for if x ∈ A, then 2x = x + x and so
2A ⊂ A + A. On the other hand, if x and y ∈ A, by convexity, we have 1

2 (x + y) ∈ A
and so x + y ∈ 2A. Thus, A + A ⊂ 2A.

Proposition 4.4.1 Let V and W be Banach spaces. Let T ∈ L(V,W ) be surjective.
Then, there exists a constant c > 0 such that

BW (0; c) ⊂ T (BV (0; 1)). (4.4.1)

where BV and BW denote open balls in the spaces V and W, respectively.

Proof Step 1. We will first show that there exists a constant c > 0 such that

BW (0; 2c) ⊂ T (BV (0; 1)). (4.4.2)

Set Xn = nT (BV (0; 1)). Then each Xn is a closed set. Since T is linear and surjective,
it follows immediately thatW = ∪∞

n=1Xn . Hence,W being complete, it follows from
Baire’s theorem (cf. Remark 4.1.2) that there exists n such that Xn has non-empty
interior. Hence by change of scale, it follows that

(T (BV (0; 1)))◦ �= ∅.

Thus, there exists y0 ∈ W and c > 0 such that

BW (y0; 4c) ⊂ T (BV (0; 1)).

In particular y0 ∈ T (BV (0; 1)) and, by symmetry, so does −y0. Since any element
of BW (y0; 4c) may be written as y0 + z where z ∈ BW (0; 4c), any such z can be
written as z = (y0 + z) + (−y0) and so it follows from the above that

BW (0; 4c) ⊂ T (BV (0; 1)) + T (BV (0; 1)).

But T (BV (0; 1)) is convex and so the set on the right-hand side in the above inclusion
is, in fact, 2T (BV (0; 1)) and so we have (4.4.2).
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Step 2. We now prove (4.4.1). Let y ∈ BW (0; c). We need to find x ∈ BV (0; 1)
such that T (x) = y. Let ε > 0. There exists z ∈ V such that ‖z‖V < 1/2 and ‖y −
T (z)‖W < ε by virtue of (4.4.2) (applied to 2y). Set ε = c/2 and let z1 ∈ V be such
that ‖z1‖V < 1/2 and ‖T (z1) − y‖W < c/2.

We can iterate this procedure. By another application of (4.4.2) ( to 4(T (z1) − y))
we can find z2 ∈ V such that

‖z2‖V <
1

4
, ‖T (z1 + z2) − y‖W <

c

4
.

Thus, we can find, by repeated use of (4.4.2), a sequence {zn} in V such that

‖zn‖V <
1

2n
, ‖T (z1 + · · · + zn) − y‖W <

c

2n
.

Then, it follows that the sequence {z1 + · · · + zn} is Cauchy in V , and, since V is
complete, it will converge to an element z ∈ V such that ‖z‖V < 1 and we will also
have T (z) = y. This completes the proof. �

Remark 4.4.1 Step 1 of the above proof used the completeness ofW to apply Baire’s
theorem. Step 2 used the completeness of the space V . �

Remark 4.4.2 If r > 0, the same arguments can be used to show that there exists
s > 0 such that BW (0; s) ⊂ T (BV (0; r)). �

Theorem 4.4.1 (Open Mapping Theorem) Let V and W be Banach spaces and let
T ∈ L(V,W ) be surjective. Then T is an open map.

Proof We need to show that T maps open sets in V onto open sets inW . Let G be an
open set in V . Let y ∈ T (G). Then, there exists x ∈ G such that y = T (x). Since G
is open, there exists r > 0 such that x + BV (0; r) ⊂ G. Hence, y + T (BV (0; r)) ⊂
T (G). But by the previous proposition, there exists s > 0 such that BW (0; s) ⊂
T (BV (0; r)) and so y + BW (0; s) ⊂ T (G) which means that T (G) is open. �

Corollary 4.4.1 Let V andW beBanach spaces and let T ∈ L(V,W ) be a bijection.
Then T is an isomorphism.

Proof Since T is a continuous bijection, in particular it is onto and so, by the open
mapping theorem, it is an open map, which means that T−1 is also continuous. Thus
T is an isomorphism. �

Corollary 4.4.2 Let V be a Banach space with respect to two norms, ‖ · ‖1 and
‖ · ‖2. Assume that there exists c > 0 such that

‖x‖1 ≤ c‖x‖2
for all x ∈ V . Then, the two norms are equivalent.
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Proof The identitymap I : {V, ‖ · ‖2} → {V, ‖ · ‖1} is a linear bijectionwhich is also
continuous by the given hypothesis. Hence the inverse map is also continuous, and
this means that there exists a constant C > 0 such that

‖x‖2 ≤ C‖x‖1
for all x ∈ V . Hence the norms are equivalent. �

If V and W are normed linear spaces and T : V → W is any mapping define the
graph of T , denoted G(T ) as follows:

G(T ) = {(x, y) | y = T (x)} ⊂ V × W

If V and W are normed linear spaces and T : V → W is continuous, then G(T ) is
closed in V × W . Indeed, if (xn, T (xn)) → (x, y) in V × W , then xn → x in V and
T (xn) → y inW . But, by continuity, T (xn) → T (x) and so y = T (x). Thus (x, y) ∈
G(T ) and soG(T ) is closed. In fact, we have the following general topological result.

Lemma 4.4.1 Let X and Y be topological spaces, with Y being Hausdorff. Let
f : X → Y be a given mapping. Then, if f is continuous, the graph

G( f ) = {(x, y) ∈ X × Y | y = f (x)}

is closed in the product space X × Y .

Proof Let (x, y) ∈ (X × Y )\G( f ). Thus, y �= f (x) and so, since Y is Hausdorff,
there exist open sets U and V in Y such that f (x) ∈ U , y ∈ V and U ∩ V = ∅. Now,
f −1(U) × V is open in X × Y and contains the point (x, y). Further, this set does not
intersectG( f ). (For, if (u, v)were in the intersection, we would have v = f (u), u ∈
f −1(U) and v ∈ V . Thus, f (u) = v ∈ U ∩ V , which is a contradiction.) Thus, the
complement of G( f ) contains an open neighbourhood of each of its points and is
hence open; i.e. G( f ) is closed in X × Y. �

If V and W are Banach spaces and T is linear, then the converse is also true as
the following theorem shows.

Theorem 4.4.2 (Closed Graph Theorem) Let V and W be Banach spaces and let
T : V → W be a linear mapping. Assume that G(T ), the graph of T , is closed in
V × W. Then T is continuous.

Proof For x ∈ V , define

‖x‖1 = ‖x‖V + ‖T (x)‖W .

Then ‖ · ‖1 defines a norm on V . If {xn} is a sequence in V which is Cauchy with
respect to this norm, then evidently it is Cauchy with respect to the norm ‖ · ‖V
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as well. Then, since V is complete for the norm ‖ · ‖V , we have that xn → x in
V (in the topology of the norm ‖ · ‖V ). Again, since {xn} is Cauchy with respect
to the norm ‖ · ‖1, it also follows that {T (xn)} is Cauchy in W and so, since W is
complete, T (xn) → y in W . Since G(T ) is closed, it follows that y = T (x). Thus,
it follows that xn → x in the topology of the norm ‖ · ‖1 as well. Thus {V, ‖ · ‖1} is
also complete. Hence, by the preceding corollary, since ‖x‖V ≤ ‖x‖1 for all x ∈ V ,
it follows that ‖ · ‖V and ‖ · ‖1 are equivalent. Hence, there exists C > 0 such that
‖x‖1 ≤ C‖x‖V for all x ∈ V . In particular, ‖T (x)‖W ≤ C‖x‖V for all x ∈ V and so
T is continuous. �

Remark 4.4.3 The closed graph theorem gives a convenient way for verifying the
continuity of linear maps between Banach spaces V and W . We just have to verify
that if xn → x in V and if T (xn) → y in W , then y = T (x). �

Remark 4.4.4 In the Banach-Steinhaus theorem, it was sufficient that the domain
space V was complete. The range space W could be any normed linear space. In the
case of the open mapping and closed graph theorems, however, it is essential that
both the spaces V and W are complete. �

Remark 4.4.5 One can first prove the closed graph theorem and deduce the open
mapping theorem from it. In fact one can prove that the three theorems—the Banach-
Steinhaus theorem, the openmapping theorem, and the closed graph theorem—are all
equivalent to each other; i.e. each of these statements implies the other two. Further,
one can prove the Banach-Steinhaus theorem without using Baire’s theorem. Thus,
all these theorems can be provedwithout usingBaire’s theorem. (However, the proofs
using Baire’s theorem are simpler and more natural.) The important point is that we
work with complete spaces. For more details on the points mentioned above, the
interested reader is referred to an expository article by the author, entitled The grand
theorems of functional analysis revisited: a Baire-free approach, which appeared in
theMathematics Newsletter of the Ramanujan Mathematical Society, Vol. 31, No. 3,
December 2020–March 2021, pp. 89–93. The article can also be found in the author’s
home page: www.imsc.res.in/~kesh. �

4.5 Annihilators

In the remaining sections of this chapter, we will apply the open mapping theorem
to obtain results about the range and the kernel of linear maps. In order to do this,
we need to introduce an important notion.

Definition 4.5.1 Let V be a Banach space and let W be a subspace of V . Let Z be
a subspace of V ∗. The annihilator of W is the subspace of V ∗ given by

W⊥ = { f ∈ V ∗ | f (x) = 0 for all x ∈ W }.

www.imsc.res.in/~kesh
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The annihilator of Z is the subspace of V given by

Z⊥ = {x ∈ V | f (x) = 0 for all f ∈ Z}. �

It is easy to see that W⊥ is a closed subspace of V ∗ and that Z⊥ is a closed
subspace of V . Further, (

W⊥)⊥ = W (4.5.1)

and (
Z⊥)⊥ ⊃ Z (4.5.2)

(cf. Exercise 3.14). Also, if G and H are subspaces of V such that G ⊂ H , then
H⊥ ⊂ G⊥.

Example 4.5.1 Let V = �1 so that V ∗ = �∞. Consider c00 (cf. Example 4.1.1)
as a subspace of �1. Then if y ∈ c⊥

00, we have that y ∈ �∞ and that, for all
x ∈ c00,

∑∞
k=1 ykxk = 0. In particular, if we take x = en , which is the sequence

with unity in the n-th place and zero elsewhere, we have that yn = 0 for every posi-
tive integer n. Thus c⊥

00 = {0} and so c⊥⊥
00 = �1 = c00, since c00 is dense in �1.

On the other hand, we can also consider c00 as a subspace of V ∗ = �∞. Again,
it is immdeiate to see that c⊥

00 = {0} ⊂ �1 and so c⊥⊥
00 = �∞ which strictly contains

c00 = c0, the space of all sequences converging to zero. �

Proposition 4.5.1 Let G and H be closed subspaces of a Banach space V . Then

G ∩ H = (
G⊥ + H⊥)⊥

(4.5.3)

and
G⊥ ∩ H⊥ = (G + H)⊥. (4.5.4)

Proof Clearly, G ∩ H ⊂ (
G⊥ + H⊥)⊥

. Also, G⊥ ⊂ G⊥ + H⊥ and H⊥ ⊂ G⊥ +
H⊥. Hence, (

G⊥ + H⊥)⊥ ⊂ (
G⊥)⊥ = G = G

using (4.5.1) and the fact that G is closed. Similarly, we have

(
G⊥ + H⊥)⊥ ⊂ H

and (4.5.3) follows immediately. The relation (4.5.4) is obvious. �

Combining the result of the preceding proposition with the relations (4.5.1)–
(4.5.2), we deduce the following corollary.
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Corollary 4.5.1 Let G and H be closed subspaces of a Banach space V . Then

(G ∩ H)⊥ ⊃ G⊥ + H⊥ (4.5.5)

and (
G⊥ ∩ H⊥)⊥ = G + H . (4.5.6)

�
Proposition 4.5.2 Let G and H be two closed subspaces of a Banach space V such
that G + H is also closed. Then, there exists a constant C > 0 such that, for every
z ∈ G + H, there exist x ∈ G and y ∈ H satisfying

z = x + y, ‖x‖ ≤ C‖z‖, ‖y‖ ≤ C‖z‖. (4.5.7)

Proof Consider the product space G × H with the norm

‖(x, y)‖G×H = ‖x‖ + ‖y‖.

This is a Banach space since G and H are closed. Consider the map G × H →
G + H given by (x, y) �→ x + y. This map is clearly continuous, linear and onto.
SinceG + H is a closed subspace of theBanach spaceV , it is also aBanach space and
so, by the openmapping theorem, there exists a constant c > 0 such that if z ∈ G + H
with ‖z‖ < c, then there exists (x, y) ∈ G × H such that z = x + y and such that
‖x‖ + ‖y‖ < 1. Given any z ∈ G + H , by considering, for instance, the vector c

2‖z‖ z
we see immediately that z can be written as z = x + y with x ∈ G, y ∈ H such that

‖x‖ ≤ 2

c
‖z‖, ‖y‖ ≤ 2

c
‖z‖

which proves the result with C = 2/c. �
Corollary 4.5.2 Let G and H be closed subspaces of a Banach space V such that
G + H is also closed.Then, there exists a constant C > 0 such that

d(x,G ∩ H) ≤ C [d(x,G) + d(x, H)] (4.5.8)

for all x ∈ V .

Proof Let x ∈ V and let ε > 0 be arbitrary. Then, there exist a ∈ G and b ∈ H such
that

‖x − a‖ ≤ d(x,G) + ε and ‖x − b‖ ≤ d(x, H) + ε.

set z = a − b ∈ G + H . Then, there exists c > 0 (which depends only onG and H ),
a′ ∈ G and b′ ∈ H such that

a − b = a′ + b′, ‖a′‖ ≤ c‖a − b‖, ‖b′‖ ≤ c‖a − b‖.
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Now, a − a′ = b′ + b ∈ G ∩ H . Thus,

d(x,G ∩ H) ≤ ‖x − a‖ + ‖a′‖
≤ ‖x − a‖ + c‖a − b‖
≤ (1 + c)‖x − a‖ + c‖x − b‖
≤ (1 + c)d(x,G) + cd(x, H) + (1 + 2c)ε
≤ (1 + c)(d(x,G) + d(x, H)) + (1 + 2c)ε

which completes the proof (with C = (1 + c)), since ε is an arbitrarily small
quantity. �

We are now in a position to prove a deeper result on annihilators.

Theorem 4.5.1 Let G and H be closed subspaces of a Banach space V . The fol-
lowing are equivalent:
(i) G + H is closed in V .
(ii) G⊥ + H⊥ is closed in V ∗.
(iii)

G + H = (
G⊥ ∩ H⊥)⊥

.

(iv)
G⊥ + H⊥ = (G ∩ H)⊥.

Proof Since an annihilator is always closed, the implication (iv) ⇒ (ii) is trivial.
The equivalence (i) ⇔ (iii) is an immediate consequence of (4.5.6). To complete the
proof, we need to show that (i) ⇒ (iv) and that (ii) ⇒ (i), which we now proceed
to do.

Step 1. (i) ⇒ (iv). Assume that G + H is closed. Now, by (4.5.5), we already know
that (G ∩ H)⊥ ⊃ G⊥ + H⊥. Hence, to prove (iv), it suffices to prove the reverse
inclusion. Let f ∈ (G ∩ H)⊥. Define a linear functional ϕ on G + H as follows: let
x = a + b ∈ G + H with a ∈ G and b ∈ H ; set

ϕ(x) = f (a).

If x = a′ + b′ is another decomposition of x with a′ ∈ G and b′ ∈ H , it follows
that a − a′ = b′ − b ∈ G ∩ H and so f (a) = f (a′). Thus the definition of ϕ(x) is
independent of the decomposition chosen, and soϕ is awell-defined linear functional.
Further, since G + H is closed, we can choose a decomposition x = a + b such
that ‖a‖ ≤ C‖x‖ (where C depends only on G and H ). Consequently, ‖ϕ(x)‖ ≤
C‖ f ‖ ‖x‖ and it follows that ϕ is a continuous linear functional on G + H . Hence,
we can extend it to a continuous linear functional ϕ̃ on V , by the Hahn-Banach
theorem. Now, f = ϕ = ϕ̃ on G and so f − ϕ̃ ∈ G⊥. Also if x ∈ H , then since
ϕ(x) = 0, it follows that ϕ̃ ∈ H⊥. Hence we have that

f = ( f − ϕ̃) + ϕ̃ ∈ G⊥ + H⊥
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which proves the reverse inclusion that we sought to establish.
Step 2. (ii) ⇒ (i). For any f ∈ V ∗, we have that (cf. Exercise 3.8b)

d( f,G⊥) = ‖ f | G‖ = sup
x∈G, ‖x‖≤1

| f (x)|,

d( f, H⊥) = ‖ f | H ‖ = sup
x∈H, ‖x‖≤1

| f (x)|,

and (in view of (4.5.4)) that

d( f,G⊥ ∩ H⊥) = d( f, (G + H)⊥) = ‖ f |
G+H

‖ = sup
x∈G+H , ‖x‖≤1

| f (x)|.

By Corollary 4.5.2, there exists a constant C > 0 such that, for every f ∈ V ∗,

d( f,G⊥ ∩ H⊥) ≤ C
[
d( f,G⊥) + d( f, H⊥)

]

since we are assuming that G⊥ + H⊥ is closed in V ∗. In other words, we have, for
every f ∈ V ∗,

sup
x∈G+H , ‖x‖≤1

| f (x)| ≤ C

[
sup

x∈G, ‖x‖≤1
| f (x)| + sup

x∈H, ‖x‖≤1
| f (x)|

]
. (4.5.9)

Step 3. We now claim that the above relation implies that

BG(0; 1) + BH (0; 1) ⊃ 1

C
BG+H (0; 1) (4.5.10)

where BG(0; 1) denotes the (open) unit ball in G and so on. If not, let x0 ∈ G + H
with ‖x0‖ < 1/C such that

x0 /∈ BG(0; 1) + BH (0; 1).

Assume that V is a real Banach space. Then, by the Hahn-Banach theorem, there
exists f ∈ V ∗ and a real number α such that, for all z ∈ BG(0; 1) + BH (0; 1), we
have

f (z) < α < f (x0). (4.5.11)

In particular, f (x0) > α > 0. Further, if z = x + y ∈ BG(0; 1) + BH (0; 1), then so
does −z = −x − y. Thus
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supx∈G, ‖x‖≤1 | f (x)| + supx∈H, ‖x‖≤1 | f (x)| ≤ α
< f (x0)

= ‖x0‖ f
(

1
‖x0‖ x0

)

< 1
C f

(
1

‖x0‖ x0
)

≤ 1
C sup x∈G+H‖x‖≤1

| f (x)|

which contradicts (4.5.9). This establishes (4.5.10).
In case V is a complex Banach space, then (4.5.11) holds for the real part of a

continuous linear functional f and the preceding sequence of inequalities hold with
| f (x)| being replaced by |Re( f )(x)|. However (cf. Proposition 3.1.1) since the norm
‖ f ‖ is the same as the norm ‖Re( f )‖ (the latter being considered as a real linear
functional), and since the supremum over the unit ball gives the norm of the func-
tional concerned, the same conclusion holds with | f (x)| as well and so we again get
a contradiction to (4.5.9).

Step 4. Now consider the spaces E = G × H with the norm ‖(x, y)‖E =
max{‖x‖, ‖y‖} and F = G + H with the norm from V . Both are Banach spaces.
Define T : E → F by T ((x, y)) = x + y. Then T is continuous and linear. Further,
in view of (4.5.10), we also have that

T (BE (0; 1)) ⊃ 1

C
BF (0; 1).

Now, this implies that (cf. Step 2 of the proof of Proposition 4.4.1)

T (BE (0; 1)) ⊃ 1

2C
BF (0; 1).

But then, it is now immediate to see that T must be onto. In other words, G + H =
G + H ; i.e. G + H is closed. This completes the proof. �

4.6 Complemented Subspaces

Let V be a vector space. If W is a subspace of V , then by completing a basis of W
to get a basis of V , we can easily produce a subspace Z of V such that V = W ⊕ Z .
The question which we wish to address now is that if W is a closed subspace of a
Banach space V , whether there exists a closed subspace Z as above.

Definition 4.6.1 Let G be a closed subspace of a Banach space V . A closed sub-
space H of V is said to be a complement of G if V = G ⊕ H , i.e. G ∩ H = {0}
and V = G + H. �
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Remark 4.6.1 IfG has a complement H in V , then every x ∈ V has a unique decom-
position z = x + y with x ∈ G and y ∈ H . By Proposition 4.5.2, it follows that the
maps z �→ x and z �→ y are continuous. Thus, we have continuous projections from
V onto G and H . If G and H were not closed, these projections need not be contin-
uous. �

Example 4.6.1 Let G be a finite dimensional subspace of a Banach space V . Then
G has a complement (cf. Exercises 3.7 and 3.8). �

Example 4.6.2 Every closed subspaceG with finite codimension has a complement.
This is trivial since any algebraic complement, i.e. any subspace H such that V =
G ⊕ H , is finite dimensional and is hence closed. �

Remark 4.6.2 Subspaces of finite codimension typically occur in the followingway.
Let Z be a subspace of V ∗ of dimension d. Then its annihilator Z⊥ will be a subspace
of V with codimension d. To see this, let { f1, . . . , fd} be a basis for Z . Define
ϕ: V → R

d by ϕ(x) = ( f1(x), . . . , fd(x)). This map is onto. If not, by the Hahn-
Banach theorem, there exist scalars {α1, . . . ,αd}, not all zero, such that

d∑

i=1

αi fi (x) = 0

for every x ∈ V . But this implies that
∑d

i=1 αi fi = 0 in V ∗, which contradicts the
linear independence of the { fi }. Thus, we can find vectors {e1, . . . , ed} in V such
that

fi (e j ) =
{
1, if i = j,
0, if i �= j.

It is now easy to verify that {e1, . . . , ed} are linearly independent and that their span
(which has dimension d) is a complement to Z⊥. �

Remark 4.6.3 Wewill see later (cf. Chap. 7) that in aHilbert space, every closed sub-
space is complemented. In fact, a deep result of Lindenstrauss and Tzafriri states that
anyBanach spacewhich is not isomorphic to aHilbert spacewill always have uncom-
plemented closed subspaces. Since Hilbert spaces are always reflexive, it follows
that, in particular, non-reflexive spaces will always have uncomplemented closed
subspaces. For example de Vito has shown that the space c0 is uncomplemented in
�∞. �

Definition 4.6.2 LetV andW beBanach spaces and let T ∈ L(V,W ) be surjective.
A linear transformation S ∈ L(W, V ) is said to be a right inverse of T if T ◦ S = IW ,
the identity operator on W. �

Proposition 4.6.1 Let V and W be Banach spaces and let T ∈ L(V,W ) be surjec-
tive. The following are equivalent:
(i) T has a right inverse.
(ii) The subspace N = Ker(T ) is complemented in V .
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Proof Step 1. (i) ⇒ (ii). Let S ∈ L(W, V ) be a right inverse for T . Consider
the image S(W ) ⊂ V of S. Clearly, S(W ) ∩ N = {0}. Also, if x ∈ V , then x −
S(T (x)) ∈ N . ThusV = S(W ) ⊕ N .Wenowshow that S(W ) is closed. Indeed, ifwe
have a sequence {yn} in W such that S(yn) → x in V , then yn = T (S(yn)) → T (x)
in W . Then, it follows that

x = lim
n→∞ S(yn) = S(T (x))

i.e. x ∈ S(W ), which proves that S(W ) is closed. Thus N is complemented in V .

Step 2. (ii) ⇒ (i). Assume that a closed subspace M of V is a complement to N in V .
Then, we have a continuous projection P: V → M . Let y ∈ W . Let x ∈ V such that
T (x) = y (T is surjective). If x ′ ∈ V also satisfies T (x ′) = y, then x − x ′ ∈ N and so
P(x) = P(x ′). Thus, themap y �→ P(x) is well-defined. Define S(y) = P(x). Then
T (S(y)) = T (P(x)) = T (x) = y (since x − P(x) ∈ N and so T (x) = T (P(x))).
Thus T ◦ S = IW . We now show that S is continuous as well. Since T is onto, there
exists a constant C > 0 such that BW (0;C) ⊂ T (BV (0; 1)). Thus, for any y ∈ W ,

C
2‖y‖W y ∈ BW (0;C) and so there exists x ′ ∈ V with ‖x ′‖V < 1 such that

T (x ′) = C

2‖y‖W y.

Hence, if we set x = 2
C ‖y‖W x ′, we get that T (x) = y and that

‖x‖V <
2

C
‖y‖W .

Thus,

‖S(y)‖V = ‖P(x)‖V ≤ ‖P‖‖x‖V ≤ 2

C
‖P‖ ‖y‖W

which proves the continuity of S. Thus S is a right inverse for T . �

Example 4.6.3 Consider the Banach spaces V = C1[0, 1] and W = C[0, 1] with
their usual norms. Consider the map T : V → W given by T ( f ) = f ′, the derivative
of f . By the fundamental theorem of calculus, this is clearly a surjective map and its
kernel is the set of all constant functions, which is a one-dimensional subspace, and
so it is complemented (cf. Example 4.6.1). Hence, T admits a right inverse. Indeed,
we can explicitly define a right-inverse:

S( f )(t) =
t∫

0

f (s) ds, t ∈ [0, 1]. �
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4.7 Unbounded Operators, Adjoints

In this section, we will look at linear transformations between Banach spaces which
are not necessarily defined on all of the space, but only on a subspace. Further, they
may not map bounded sets into bounded sets. Such transformations are said to be
unbounded and bounded linear transformations form a special subclass.

Definition 4.7.1 Let V and W be Banach spaces. An unbounded linear operator
(or, transformation) from V into W is any linear map defined on a subspace of V
taking values in W . The domain of definition of the transformation A is called the
domain of A and is denoted D(A). Thus,

A: D(A) ⊂ V → W.

The image of A is a subspace ofW and is called the range of A and is denotedR(A).
The operator A is said to be bounded if there exists a constant C > 0 such that

‖A(x)‖W ≤ C‖x‖V (4.7.1)

for all x ∈ D(A). The operator A is said to be densely defined if D(A) = V . The
graph of a linear operator A is denoted G(A) and is given by

G(A) = {(x, A(x)) ∈ V × W | x ∈ D(A)}.

The operator A is said to be closed if the graph G(A) is closed in V × W. �

To define a linear operator, we thus need to specify its domain and then its action
on vectors in the domain. Given a linear operator A: D(A) ⊂ V → W , we denote
its kernel by N (A). Thus,

N (A) = {x ∈ D(A) | A(x) = 0}.

Remark 4.7.1 If A: D(A) ⊂ V → W is closed, then N (A) is a closed subspace in
V . �

Example 4.7.1 Let V = W = C[0, 1]. Let D(A) = C1[0, 1]. Define A: D(A) ⊂
V → V by A(u) = u′ where u′ stands for the derivative of the function u. Clearly,
A is densely defined and N (A) is the subspace of all constant functions. It follows
from the fundamental theorem of calculus that A is surjective. If un → u uniformly
and if u′

n → v uniformly, we know that u is differentiable and that u′ = v. Thus, A
is a closed operator. Finally, A is unbounded. This, in fact, is the content of Example
2.3.8. �

Notation: Let V be a Banach space. Let x ∈ V and f ∈ V ∗. We introduce the
duality bracket < f, x >, which will also be denoted< f, x >V ∗,V in case we need
to specify the spaces involved, via the relation
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< f, x >= f (x).

Let V and W be Banach spaces and let A: D(A) ⊂ V → W be a densely defined
linear operator. Let

Z =
{
v ∈ W ∗ | there existsC > 0 such that for all x ∈ D(A)

| < v, A(x) >W ∗,W | ≤ C‖x‖V
}

. (4.7.2)

Note that the constant C mentioned above depends on v. Clearly, Z is a subspace of
W ∗. If v ∈ Z , define, for x ∈ D(A),

g(x) =< v, A(x) >W ∗,W .

By the definition of Z , it follows that g defines a continuous linear functional on
D(A). Hence, by the Hahn-Banach theorem, we can extend it to a continuous linear
functional gv on all of V .Since D(A) is dense in V , such an extension is unique.

To summarize, we have a map v �→ gv from Z into V ∗. It is also easy to see that
this map is linear.

Definition 4.7.2 Let V and W be Banach spaces and let A: D(A) ⊂ V → W be a
densely defined linear operator. Let Z be as defined above and for each v ∈ Z ,
let gv ∈ V ∗ be as defined above. We set D(A∗) = Z and define A∗(v) = gv for
v ∈ D(A∗). The linear operator A∗: D(A∗) ⊂ W ∗ → V ∗ is called the adjoint of the
operator A. �

Thus, the adjoint is defined for densely defined linear operators. Notice that there
is no reason for A∗ to be densely defined. We have the following important duality
relationship: for all u ∈ D(A) and all v ∈ D(A∗), we have

< A∗(v), u >V ∗,V =< v, A(u) >W ∗,W . (4.7.3)

Example 4.7.2 In a finite dimensional space, every subspace is closed. Thus, any
linear transformation is closed; it is densely defined if, and only if, it is defined over
the entire space. Hence, every linear transformation defined on the entire space has
an adjoint and, since every linear transformation is bounded, we also have that the
adjoint is defined on the entire dual space of the range. The dual of Cn is identified
with Cn with the duality product being given by

< y, x >=
n∑

i=1

xi yi

where x = (x1, . . . , xn) is in the base space and y = (y1, . . . , yn) is in the dual space.
If A:Cn → C

m is a linear transformation which is represented by the m × n matrix
A, then we have, for all y ∈ C

m and for all x ∈ C
n ,
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< A∗y, x >=< y, Ax >=
m∑

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ yi =
n∑

j=1

x j

(
m∑

i=1

ai j yi

)

from which it follows that the matrix representing A∗ is none other than the adjoint
matrix A∗ (cf. Definition 1.1.11).

In the same way, if the matrix A represents a linear transformation A fromR
n into

R
m , the adjoint of this transformation will be represented by the transpose matrix

A′. �

Example 4.7.3 Consider the space �2 of square summable real sequences. Then
its dual space can be identified with itself (cf. Example 3.2.3). Consider the linear
operators on �2 given by T (x) = (0, x1, x2, . . .) and S(x) = (x2, x3, . . .) where x =
(x1, x2, . . .) ∈ �2. Then it is easy to check that T ∗ = S and that S∗ = T . �

Proposition 4.7.1 Let V and W be Banach spaces and let A: D(A) ⊂ V → W be
a densely defined linear operator. Then A∗ is closed.

Proof We need to show that G(A∗), the graph of A∗, is closed in W ∗ × V ∗. Let
vn → v in W ∗ and let A∗(vn) → f in V ∗. Let u ∈ D(A). Then

< A∗(vn), u >V ∗,V =< vn, A(u) >W ∗,W .

Passing to the limit as n → ∞, we get

< f, u >V ∗,V =< v, A(u) >W ∗,W (4.7.4)

for all u ∈ D(A). Thus,

| < v, A(u) >W ∗,W | ≤ ‖ f ‖V ∗ ‖u‖V
which shows that v ∈ D(A∗). It also follows from (4.7.4) that f = A∗(v), thus
proving that G(A∗) is closed. �

The graphs of A and A∗ are connected by a simple relation. Let V and W be
Banach spaces. Define

J :W ∗ × V ∗ → V ∗ × W ∗

by
J (v, f ) = (− f, v).

Proposition 4.7.2 Let V and W be Banach spaces and let A: D(A) ⊂ V → W be
a densely defined linear operator. Let J be as defined above. Then

J (G(A∗)) = (G(A))⊥.



4.7 Unbounded Operators, Adjoints 119

Proof Let u ∈ D(A) be an arbitrary element so that (u, A(u)) is an arbitrary element
of G(A).

(v, f ) ∈ G(A∗) ⇔ < f, u >V ∗,V =< v, A(u) >W ∗,W
⇔ < − f, u >V ∗,V + < v, A(u) >W ∗,W= 0
⇔ J (v, f ) ∈ (G(A))⊥

which completes the proof. �

The following result characterizes densely defined and closed operators that are
bounded.

Proposition 4.7.3 Let V and W be Banach spaces and let A: D(A) ⊂ V → W be
a densely defined and closed linear operator. The following are equivalent:
(i) D(A) = V .
(ii) A is bounded.
(iii) D(A∗) = W ∗.
(iv) A∗ is bounded.
In this case, we also have

‖A‖ = ‖A∗‖. (4.7.5)

Proof (i) ⇒ (ii). If D(A) = V and A is closed, then it is continuous by the closed
graph theorem, and hence is bounded.
(ii) ⇒ (iii). If A is bounded, then it follows from the definition of A∗ that D(A∗) =
W ∗.
(iii) ⇒ (iv). Since G(A∗) is always closed, the result again follows from the closed
graph theorem.
(iv) ⇒ (i). First of all, we show that D(A∗) is closed. Indeed, if {vn} is a sequence
in D(A∗) converging to v ∈ W ∗, then,

‖A∗(vn − vm)‖ ≤ C‖vn − vm‖

since A∗ is bounded. Thus, it follows that {A∗(vn)} is Cauchy in V ∗. Let A∗(vn) →
f in V ∗. Since G(A∗) is always closed, it follows then that v ∈ D(A∗) and that
A∗(v) = f . Thus D(A∗) is closed.

Now set G = G(A) ⊂ V × W and H = {0} × W ⊂ V × W . Both are closed
subspaces. Further, G + H = D(A) × W . On the other hand, since (G(A))⊥ =
J (G(A∗)), we have G⊥ + H⊥ = V ∗ × D(A∗), which is closed. Thus, by Theorem
4.5.1, it follows that G + H is closed as well, which implies that D(A) is closed.
Thus, D(A) = D(A) = V .

This proves the equivalence of all the four statements. Under these conditions, we
now prove (4.7.5). For all u ∈ V and for all v ∈ W ∗, we have

< v, A(u) >W ∗,W =< A∗(v), u >V ∗,V (4.7.6)

which yields
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| < v, A(u) >W ∗,W | ≤ ‖A∗‖‖v‖W ∗‖u‖V
whence we deduce that (cf. Corollary 3.1.2)

‖A(u)‖W ≤ ‖A∗‖ ‖u‖V
which implies that ‖A‖ ≤ ‖A∗‖.

Again, by virtue of (4.7.6), it follows that

‖A∗(v)‖V ∗ = sup
u∈V, ‖u‖≤1

| < A∗(v), u >V ∗,V | ≤ ‖A‖ ‖v‖W ∗

which implies that ‖A∗‖ ≤ ‖A‖. This completes the proof. �

Proposition 4.7.4 Let V and W be Banach spaces and let A: D(A) ⊂ V → W be
a densely defined linear operator. Let G = G(A) ⊂ V × W and let H = V × {0} ⊂
V × W. Then
(i) N (A) × {0} = G ∩ H.
(ii) V × R(A) = G + H.
(iii) {0} × N (A∗) = G⊥ ∩ H⊥.
(iv)R(A∗) × W ∗ = G⊥ + H⊥.

Proof The proof is an immediate consequence of the definitions and the relation
G(A)⊥ = J (G(A∗)). The details are left as an exercise. �

Corollary 4.7.1 Let V and W be Banach spaces and let A: D(A) ⊂ V → W be a
closed and densely defined linear operator. Then

N (A) = R(A∗)⊥, (4.7.7)

N (A∗) = R(A)⊥, (4.7.8)

N (A)⊥ ⊃ R(A∗) (4.7.9)

and
N (A∗)⊥ = R(A). (4.7.10)

Proof LetG and H be as in the preceding proposition.We know that (cf. Proposition
4.5.1) G ∩ H = (G⊥ + H⊥)⊥. Thus, we get that

N (A) × {0} = R(A∗)⊥ × {0}.

This proves (4.7.7). Again, by Proposition 4.5.1, we know that G⊥ ∩ H⊥ = (G +
H)⊥ which yields

{0} × N (A∗) = {0} × R(A)⊥
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which proves (4.7.8). The remaining two relations are proved from these two and
applying (4.5.1) and (4.5.2). �

The following example illustrates the above corollary in all its aspects.

Example 4.7.4 Consider the map A ∈ L(�1) defined by

A(x) =
(
x1,

x2
2

, . . . ,
xk
k

, . . .
)

,

where x = (x1, x2 . . . xk, . . .) ∈ �1. Then A∗ ∈ L(�∞) and, by definition of the
adjoint, it is immediate to see that, for y = (y1, y2, . . . , yk, . . .) ∈ �∞, we have

A∗(y) =
(
y1,

y2
2

, . . . ,
yk
k

, . . .
)

.

We now see that N (A) = {0} ⊂ �1 and that N (A∗) = {0} ⊂ �∞.
Now clearly c00 ⊂ R(A) and so �1 = c00 ⊂ R(A) ⊂ �1 and soR(A) = �1. Since

for any subspace W we have that W⊥ = W
⊥
, we see that (4.7.8) and (4.7.10) are

verified.
Again, c00 ⊂ R(A∗). If y ∈ R(A∗), then y ∈ �∞ and, there exists x ∈ �∞ such

that xk = kyk for every positive integer k. This implies that |yk | ≤ ‖x‖/k → 0 as
k → ∞. Consequently, R(A∗) ⊂ c0. Thus,

c00 ⊂ R(A∗) ⊂ c0,

fromwhichwe deduce thatR(A∗) = c0, which is strictly contained in �∞ = N (A)⊥.
Thus, the inclusion in (4.7.9) can be strict. Since c00 ⊂ c0, we have that c⊥

0 ⊂ c⊥
00 =

{0} (cf Example 4.5.1). Thus R(A∗)⊥ = {0} as well and this verifies (4.7.7). �

Theorem 4.7.1 Let V and W be Banach spaces and let A: D(A) ⊂ V → W be a
closed and densely defined linear operator. Then, the following are equivalent:

(i)R(A) is closed in W.
(ii)R(A∗) is closed in V ∗.
(iii)R(A) = N (A∗)⊥.
(iv)R(A∗) = N (A)⊥.

Proof Using the same notations as in the preceding proposiition and its corollary,
we have:

(i) ⇔ G + H is closed in V × W .
(ii) ⇔ G⊥ + H⊥ is closed in V ∗ × W ∗.
(iii) ⇔ G + H = (G⊥ ∩ H⊥)⊥.
(iv) ⇔ G⊥ + H⊥ = (G ∩ H)⊥.

The equivalence of these statements follows from Theorem 4.5.1. �
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Remark 4.7.2 As already remarked (cf. Example 4.7.2), all linear transformations
on finite dimensional spaces are closed and densely defined means defined on all
the space. The statement that R(A) = N (A∗)⊥ is none other than the well-known
Fredhölm alternative (cf. Proposition 1.1.5). �

We conclude with a useful characterization of surjective maps.

Theorem 4.7.2 Let V and W be Banach spaces and let A: D(A) ⊂ V → W be a
closed and densely defined linear operator. The following are equivalent:

(i) A is onto, i.e. R(A) = W.
(ii) There exists a constant C > 0 such that, for all v ∈ D(A∗),

‖v‖W ∗ ≤ C‖A∗(v)‖V ∗ . (4.7.11)

(iii) N (A∗) = {0} and R(A∗) is closed in V ∗.

Proof (i) ⇒ (iii). If A is onto, then R(A) = W and is hence closed. Thus by the
preceding theorem, R(A∗) = N (A)⊥, which is also closed. Further (cf. Corollary
4.7.1), N (A∗) = R(A)⊥ = {0}.
(iii) ⇒ (i). If N (A∗) = {0}, and R(A∗) is closed, it follows from the preceding
theorem that R(A) = N (A∗)⊥ = W . Thus A is onto.

(ii)⇒ (iii). By virtue of (4.7.11), it follows thatN (A∗) = {0}. Let {vn} be a sequence
in D(A∗) such that A∗vn → f in V ∗. Then, again, by (4.7.11), it follows that

‖vn − vm‖W ∗ ≤ C‖A∗(vn) − A∗(vm)‖W ∗

and so {vn} is a Cauchy sequence. Let vn → v in W ∗. Since G(A∗) is closed, it
follows then that v ∈ D(A∗) and that A∗(v) = f . Thus R(A∗) is closed.

(iii) ⇒ (ii). Using the notation established in Proposition 4.7.4, N (A∗) = {0}
implies that G⊥ ∩ H⊥ = {0} and R(A∗) closed implies that G⊥ + H⊥ is closed.
Hence, by Proposition 4.5.2, there exists a constant C > 0 such that for every
z ∈ G⊥ + H⊥ = R(A∗) × W ∗, there exist a ∈ G⊥ and b ∈ H⊥ such that z = a + b,
and ‖a‖V ∗×W ∗ ≤ C‖z‖V ∗×W ∗ and ‖b‖V ∗×W ∗ ≤ C‖z‖V ∗×W ∗ . Further, this decom-
position is unique, since G⊥ ∩ H⊥ = {0}. Let v ∈ D(A∗). Set z = (A∗(v), 0) ∈
R(A∗) × W ∗ = G⊥ + H⊥. Then a = (A∗(v),−v) ∈ G⊥ and b = (0, v) ∈ H⊥ and
a + b = z. The inequality(4.7.11) now follows immediately. �

Remark 4.7.3 A similar result can be stated and proved for the surjectivity of A∗. �

Remark 4.7.4 If V and W are finite dimensional, then the ranges of A and A∗ are
automatically closed. In this case we have:

A onto ⇔ A∗ one − one,
A∗ onto ⇔ A one − one.
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However, in infinite dimensional Banach spaces, if we do not have information on
the range being closed, we can only say:

A onto ⇒ A∗ one − one,
A∗ onto ⇒ A one − one.

For instance, if V = W = �2, and if

A(x) =
(
x1,

x2
2

, . . . ,
xn
n

, . . .
)

,

then A = A∗ (check!) and A is clearly one-one, but not onto (cf. Example 2.3.3). �
Remark 4.7.5 To show that A is onto, we usually use the relation (4.7.11). We
assume that A∗(v) = f and show that ‖v‖W ∗ ≤ C‖ f ‖V ∗ . This is called the method
of a priori estimates.We do not worry about the existence of solutions to the equation
A∗(v) = f , for a given f ; if a solution exists, we obtain estimates for its norm. �
Example 4.7.5 Let V and W be real Banach spaces and assume that W is reflexive.
Let

a(·, ·): V × W → R

be a bilinear form such that:
(i) a(·, ·) is continuous, i.e. there exists M > 0 such that, for all v ∈ V and w ∈ W ,
we have

|a(v,w)| ≤ M‖v‖V ‖w‖W ;

(ii) there exists α > 0 such that, for all w ∈ W ,

sup
v∈V, v �=0

|a(v,w)|
‖v‖V ≥ α‖w‖W ;

(iii) there exists a constant β > 0 such that, for all v ∈ V , we have

sup
w∈W, w �=0

|a(v,w)|
‖w‖W ≥ β‖v‖V .

Then, given f ∈ V ∗ and g ∈ W ∗, there exist unique elements v0 ∈ V and w0 ∈ W
such that

a(v0, w) = < g, w >W ∗,W for all w ∈ W ;
a(v,w0) = < f, v >V ∗,V for all v ∈ V .

To see this, define A: V → W ∗ by< A(v), w >W ∗,W= a(v,w) for allw ∈ W . By
the continuity of the bilinear form, A is a well-defined and bounded linear operator.
SinceW is reflexive, we have A∗:W → V ∗, which is also a bounded linear operator
(cf. Proposition 4.7.3) and it is easy to see that< A∗(w), v >V ∗,V= a(v,w). By (ii),
we have
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‖A∗(w)‖V ∗ ≥ α‖w‖W .

Thus, by Theorem 4.7.2, we deduce that A is onto. By (iii), we have

‖A(v)‖W ∗ ≥ β‖v‖V
whence A is one-one as well. In the same way, A∗ is one-one and onto as well. Thus,
there exist unique solutions to the equations

A(v0) = g, and A∗(w0) = f

which proves the result. �

4.8 Exercises

4.1 Show that a Banach space cannot have a basis whose elements form a countable
set. Deduce that the space P of all polynomials in one variable cannot be complete
for any norm.

4.2 LetMn denote the space of all n × n matrices with complex entries. Show that
the following subsets are nowhere dense:

(a) the set of all singular matrices in Mn;
(b) the set of all matrices in Mn whose trace is zero.

4.3 (a) Let {an} be a sequence of real numbers such that for any given real sequence
{xn} such that xn → 0 as n → ∞, the series

∞∑

n=1

anxn

converges. Show that the series
∑∞

n=1 an is absolutely convergent (Hint: Use Exercise
3.9(a)).
(b) Let 1 < p < ∞. Let {an} be a sequence of real numbers such that for all x =
(xn) ∈ �p, the series

∑∞
n=1 anxn is convergent. Show that a = (an) ∈ �p∗ .

4.4 (Numerical quadrature) Let V = C[0, 1]. For each positive integer n, define

ϕn( f ) =
pn∑

m=0

ωn
m f (xnm)

for all f ∈ V , where {xnm}pnm=0 are given points in [0, 1] and {ωn
m}pnm=0 are real numbers

(called weights). Let
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ϕ( f ) =
1∫

0

f (t)dt

for f ∈ V .

(a) Show that ϕn( f ) → ϕ( f ) for every f ∈ V , as n → ∞, if, and only if, the fol-
lowing conditions are verified:
(i) ϕn( f j ) → ϕ( f j ) as n → ∞, for every integer j ≥ 0, where f j (t) = t j ;
(ii)

sup
n

{
pn∑

m=0

|ωn
m |

}
< ∞.

(cf. Exercise 2.19.)
(b) If ωn

m ≥ 0 for all n and for all 0 ≤ m ≤ pn , show that the condition (ii) above is
redundant.
(c) (Trapezoidal rule) Set pn = n and xnm = m/n for 0 ≤ m ≤ n. Let

ωn
m =

{ 1
n if m �= 0, n
1
2n if m = 0 or n.

Show that ϕn( f ) → ϕ( f ) for all f ∈ V , as n → ∞.

4.5 Let V be a Banach space and let {S(t)}t≥0 be a family of continuous linear
operators on V . Assume that the following conditions hold:

(i) S(0) = I , the identity operator on V .
(ii) For all t1 ≥ 0 and t2 ≥ 0, we have

S(t1 + t2) = S(t1) ◦ S(t2).

(iii) For all x ∈ V ,
lim
t↓0 S(t)(x) = x .

Then, we say that {S(t)}t≥0 is a c0-semigroup of operators on V .

(a) Let A ∈ L(V ). Define S(t) = exp(t A) (cf. Exercise 2.38) for t ≥ 0. Show that
{S(t)}t≥0 forms a c0-semigroup of operators on V .
(b) Let V denote the space of all bounded and uniformly continuous real-valued
functions on R provided with the usual ‘sup-norm’. For t ≥ 0, define S(t) by

S(t)( f )(τ ) = f (t + τ )

for τ ∈ R. Show that S(t) ∈ L(V ) for each t ≥ 0 and that {S(t)}t≥0 is a c0-semigroup
of operators on V .



126 4 Baire’s Theorem and Applications

4.6 Let V be a Banach space and let {S(t)}t≥0 be a c0-semigroup of operators on V .

(a) Show that there exists M > 0 (which, without loss of generality, can be chosen
to be greater than, or equal to, unity) and η > 0 such that, for all 0 ≤ t ≤ η, we have

‖S(t)‖ ≤ M.

(b) Deduce that if ω = η−1 logM ≥ 0, then

‖S(t)‖ ≤ Meωt

for all t ≥ 0.
(c) The semigroup is said to be exponentially stable if we can find M > 0 and ω < 0
such that the preceding inequality is true. Show that a c0-semigroup {S(t)}t≥0 is
exponentially stable if, and only if, there exists a t0 > 0 such that ‖S(t0)‖ < 1.
(d) Prove that for every x ∈ V , fixed, the mapping t �→ S(t)x is continuous from the
interval [0,∞) into V .
(e) Prove that

lim
h↓0

1

h

t+h∫

t

S(τ )(x) dτ = S(t)(x)

for all t ≥ 0 and for every x ∈ V .

4.7 LetV be a realBanach space and leta(·, ·): V × V → Rbe a continuous bilinear
form (cf. Example 4.7.5). Assume that for every x ∈ V , x �= 0,

a(x, x) > 0.

Let T : V → V be a linear map such that, for all x ∈ V and y ∈ V , we have

a(T (x), y) = a(x, T (y)).

Show that T ∈ L(V ).

4.8 Let V and W be Banach spaces and let { fi }i∈I (where I is an indexing set)
be a collection of continuous linear functionals on W which separates points in W .
Let T : V → W be a linear map. If fi ◦ T is continuous for each i ∈ I , show that
T ∈ L(V,W ).

4.9 Let X,Y and Z be Banach spaces. Let T ∈ L(X, Z) and A ∈ L(Y, Z). Assume
that for every x ∈ X , there exists a unique y ∈ Y such that A(y) = T (x). Define
B: X → Y by Bx = y. Show that B ∈ L(X,Y ).

4.10 Let V be a Banach space and letW ⊂ V be a subspace. Show thatW⊥ = W
⊥
.

4.11 Let V be a Banach space and let f ∈ V ∗. Let Z denote the null space (i.e.
kernel) of f . Compute Z⊥.
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4.12 Show that c0 is a complemented subspace of c.

4.13 Let V andW be Banach spaces. let T ∈ L(V,W ). We say that S ∈ L(W, V ) is
a left inverse of T if S ◦ T = IV , where IV is the identity operator on V . Show that T
has a left inverse if, and only if, T is injective andR(A) is closed and complemented
in W .

4.14 (a) Let W be a Banach space and let T : D(T ) ⊂ W → W be a closed and
densely defined linear operator. Set V = D(T ) and define, for x ∈ V ,

‖x‖ = ‖x‖W + ‖T (x)‖W .

Show that V is a Banach space for this norm.
(b) If V is also a Banach space for some other norm ‖.‖V , and if this norm is such
that both the inclusion map of V into W and the map T are in L(V,W ), show that
there exists a constant C > 0 such that, for all x ∈ V ,

‖x‖V ≤ C (‖x‖W + ‖T (x)‖W ) .

4.15 Let V and W be Banach spaces and let T ∈ L(V,W ) be surjective. Show that
T is injective if, and only if, there exists a constant c > 0 such that, for all v ∈ V ,
we have

‖T (v)‖W ≥ c‖v‖V .

4.16 Let V andW be Banach spaces and let T ∈ L(V,W ). Assume that there exists
a constant c > 0 such that, for all v ∈ V ,

‖T (v)‖W ≥ c‖v‖V .

Let Z denote the null space of T . For v ∈ V , define T (v + Z) = T (v). Show that
the mapping T : V/Z → R(T ) is well-defined and that it is an isomorphism.

4.17 Let V andW be Banach spaces and let T ∈ L(V,W ). Show that T is invertible
if, and only if, T ∗ is invertible.

4.18 Let V andW be Banach spaces and let T ∈ L(V,W ). If T and T ∗ are injective,
and ifR(T ) is closed, show that T and T ∗ are invertible.

4.19 Consider c00 with the norm ‖ · ‖∞. Define T : c00 → c00 by

T (x) =
(
x1,

x2
2

, . . . ,
xn
n

, . . .
)

,

where x = (xn) ∈ c00. Show that T is a bijection and that T ∈ L(c00). Show, however,
that T is not an isomorphism. Why does this not contradict Corollary 4.4.1?

4.20 Let V be a Banach space and let {S(t)}t≥0 be a c0-semigroup of operators on
V . Define
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D(A) =
{
x ∈ V | lim

h↓0
1

h
(S(h)(x) − x) exists

}

and, for x ∈ D(A),

A(x) = lim
h↓0

1

h
(S(h)(x) − x).

The operator A: D(A) ⊂ V → V is called the infinitesimal generator of the semi-
group {S(t)}t≥0. If A ∈ L(V ), show that it is the infinitesimal generator of the semi-
group {exp(t A)}t≥0.

4.21 Let V and {S(t)}t≥0 be as in Exercise 4.5(b). Show that the infinitesimal gen-
erator of the semigroup is given by:

D(A) = { f ∈ V | f ′ exists and f ′ ∈ V },

and
A( f ) = f ′

where f ′ denotes the derivative of f .

4.22 Let {S(t)}t≥0 be a c0-semigroup of operators on a Banach space V . Let
A: D(A) ⊂ V → V be its infinitesimal generator. For any x ∈ V , show that

t∫

0

S(τ )(x) dτ ∈ D(A)

and that

A

⎛

⎝
t∫

0

S(τ )(x) dτ

⎞

⎠ = S(t)(x) − x .

4.23 Let {S(t)}t≥0 be a c0-semigroup of operators on a Banach space V . Let
A: D(A) ⊂ V → V be its infinitesimal generator.

(a) Let x ∈ D(A). Show that S(t)(x) ∈ D(A) for all t > 0 and that

d

dt
(S(t)(x)) = A(S(t)(x)) = S(t)(A(x)).

(b) If x ∈ D(A) and if 0 ≤ t2 < t1, show that

S(t1)(x) − S(t2)(x) =
t1∫

t2

S(τ )(A(x)) dτ =
t1∫

t2

A(S(τ )(x)) dτ .
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4.24 Let {S(t)}t≥0 be a c0-semigroup of operators on a Banach space V . Let
A: D(A) ⊂ V → V be its infinitesimal generator. Show that A is densely defined
and closed.

4.25 Let V be a Banach space and let A: D(A) ⊂ V → V be a linear operator. We
say that a map t �→ u(t) from [0,∞) into V is a solution to the initial value problem:

du(t)
dt = A(u(t)), t > 0,

u(0) = x

if u(t) ∈ D(A) for all t > 0 and if it verifies the above equations.
(a) If x ∈ D(A), and if A is the infinitesimal generator of a c0-semigroup of operators
{S(t)}t≥0 on V , show that the only solution to the above initial value problem is
given by u(t) = S(t)(x) for t ≥ 0 (Hint: Clearly u(t) defined thus is a solution by
the Exercise 4.23; to show uniqueness, differentiate the map τ �→ S(t − τ )(u(τ )),
τ ∈ (0,∞).)
(b) If V is a Banach space and if {S1(t)}t≥0 and {S2(t)}t≥0 are two c0-semigroups of
operators on V which have the same infinitesimal generator, show that S1(t) = S2(t)
for all t ≥ 0.
(c) Deduce that the only semigroups on V whose infinitesimal generators are inL(V )

are of the form {exp(t A)}t≥0 with A ∈ L(V ).

4.26 Let {S(t)}t≥0 be a c0-semigroup of operators on a Banach space V . Let
A: D(A) ⊂ V → V be its infinitesimal generator. Assume further that, for all t ≥ 0,
‖S(t)‖ ≤ 1. (Such a semigroup is called a semigroup of contractions.)
(a) Let λ > 0. For x ∈ V , define

R(λ)(x) =
∞∫

0

e−λt S(t)(x) dt

(cf. Exercise 3.21). If x ∈ D(A), show that R(λ)(x) ∈ D(A) for all λ > 0 and that

R(λ)(A(x)) = A(R(λ)(x)).

(b) Show that for all λ > 0,

(λI − A)(R(λ)(x)) = x

for all x ∈ V and that
R(λ)((λI − A)(x)) = x

for all x ∈ D(A), where I is the identity map on V .

Remark 4.8.1 Exercise 4.26 shows that if A is the infinitesimal generator of a semi-
group of contractions, then the (unbounded) linear operator λI − A is invertible
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and that its inverse is R(λ) which is a bounded linear operator defined on V . Thus,
together with Exercise 4.24, we see that in order that an (unbounded) linear operator
A be the infinitesimal generator of a semigroup of contractions, it has to be densely
defined, closed and for all λ > 0, ‖(λI − A)−1‖ ≤ 1/λ. In fact these conditions are
also sufficient for A to be the infinitesimal generator of a semigroup of contractions.
This is the content of the famous Hille-Yosida theorem. Generalizations to other c0-
semigroups also exist. The usefulness of this result stems from the fact that many
partial differential equations of the evolution type (for instance, the heat, wave and
Schrödinger equations) can be cast in the form of an initial value problem as stated
in Exercise 4.25 involving an unbounded linear operator and so the existence of
uniqueness of solutions will follow from the fact that the operator is the infinitesimal
generator of a c0-semigroup. For more details see, for instance Kesavan [1]. �

4.27 Let V and W be Banach spaces and let A: D(A) ⊂ V → W be a closed oper-
ator. Let B ∈ L(V,W ). Show that (A + B): D(A) ⊂ V → W is also closed.

Reference

1. Kesavan, S., Topics in Functional Analysis and Applications (New Age International formerly
Wiley-Eastern, 1989)



Chapter 5
Weak and Weak* Topologies

5.1 The Weak Topology

In this chapter, we will study topologies on Banach spaces which are weaker (i.e.,
coarser) than the norm topology.

Definition 5.1.1 Let V be a Banach space. The weak topology on V is the coarsest
(i.e. smallest) topology such that every element of V ∗ is continuous. Open (respec-
tively, closed) sets in the weak topology will be called weakly open (respectively,
weakly closed) sets. �

We have already encountered the notion of the weak topology on a given set such
that a family of functions is continuous (cf. Definition 1.2.10). The weakly open
sets are precisely the class of all arbitrary unions of finite intersections of sets of the
form f −1(U ) where f ∈ V ∗ andU is an open set in R (or C, in the case of complex
Banach spaces).

A basic neighbourhood system for the weak topology is, therefore, the collection
of sets of the form

U = {x ∈ V | | fi (x − x0)| < ε for all i ∈ I }

where x0 ∈ V, ε > 0, I is a finite indexing set and fi ∈ V ∗ for all i ∈ I . The set
U described above forms a weakly open neighbourhood of the point x0 ∈ V (cf. the
discussion following Definition 1.2.10).

Proposition 5.1.1 The weak topology is Hausdorff.

Proof Let x and y be distinct points in V . Then, since V ∗ separates points in V (cf.
Remark 3.1.1), there exists f ∈ V ∗ such that f (x) �= f (y). Choose disjoint open
neighbourhoods U of f (x) and V of f (y). Then f −1(U ) and f −1(V ) are disjoint
weakly open neighbourhoods of x and y, respectively. This completes the proof. �
Notation: Given a sequence {xn} in V , we write xn → x if the sequence converges
to x ∈ V in the norm topology, i.e., if ‖xn − x‖ → 0 as n → ∞. If the sequence
converges to x in the weak topology, we write xn ⇀ x .
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Proposition 5.1.2 Let V be a Banach space and let {xn} be a sequence in V .

(i) xn ⇀ x in V if, and only if, f (xn) → f (x) for all f ∈ V ∗.
(ii) If xn → x in V , then xn ⇀ x.
(iii) If xn ⇀ x in V , then {‖xn‖} is bounded and

‖x‖ ≤ lim inf
n→∞ ‖xn‖.

(iv) If xn ⇀ x in V and fn → f in V ∗, then fn(xn) → f (x).

Proof (i) This is a direct consequence of the definition of the weak topology.
(ii) Let f ∈ V ∗ be an arbitrary element. Then

| f (xn) − f (x)| ≤ ‖ f ‖ ‖xn − x‖ → 0.

The result now follows from (i).

(iii) This follows from (i) and the Banach-Steinhaus theorem (cf. Corollary 4.2.2
applied to the sequence {Jxn } in V ∗∗).

(iv) We have

| fn(xn) − f (x)| ≤ | fn(xn) − f (xn)| + | f (xn) − f (x)|
≤ ‖ fn − f ‖ ‖xn‖ + | f (xn) − f (x)|.

The first term on the right-hand side tends to zero since ‖xn‖ is bounded (by (iii))
and ‖ fn − f ‖ → 0. The second term also tends to zero (by (i)). This completes the
proof. �
Example 5.1.1 Consider �2 the space of all square summable real sequences. We
can identify �∗

2 with �2 (cf. Example 3.2.3). Consider the sequence {en} ∈ �2. If
x ∈ �2 = �∗

2, with x = (xi ), we have that

< x,en >�∗
2,�2

= xn

which tends to zero since
∑∞

i=1 |xi |2 < ∞. Thus, the sequence {en} convergesweakly
to 0 in �2. Notice that this sequence has no subsequence which converges in the norm
topology since

‖en − em‖2 = √
2

for all n �= m. Thus, while norm convergence implies weak convergence, nothing
can be said about the reverse implication.

We can similarly prove that for all 1 < p < ∞, the sequence {en} converges
weakly to zero in �p. �
Proposition 5.1.3 If V is a finite dimensional space, then the norm andweak topolo-
gies coincide.
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Proof Since the weak topology is coarser than the norm topology, every weakly
open set is also open in the norm topology. We thus have to prove the converse. Let
U be open in the norm topology and let x0 ∈ U . There exists r > 0 such that the open
ball B(x0; r) ⊂ U . Let dim(V ) = n and let {v1, . . . , vn} be a basis for V such that,
without loss of generality, ‖vi‖ = 1 for all 1 ≤ i ≤ n. If x ∈ V , then x = ∑n

i=1 xivi
and define fi to be the i-th coordinate projection, i.e., fi (x) = xi . Then

‖x − x0‖ =
∥
∥
∥
∥
∥

n∑

i=1

fi (x − x0)vi

∥
∥
∥
∥
∥

≤
n∑

i=1

| fi (x − x0)|.

Define
W =

{
x ∈ V | | fi (x − x0)| <

r

n
, 1 ≤ i ≤ n

}
.

Then W is a weakly open neighbourhood of x0, and it is clear from the above
computations thatW ⊂ B(x0; r) ⊂ U . ThusU is open in the weak topology as well,
and this completes the proof. �

Thus, in a finite dimensional space, the weak and norm open (respectively, closed)
sets are the same. However, in infinite dimensional spaces, the weak topology is
strictly coarser than the norm topology. We will presently see examples of norm
closed (respectively, open) sets which are not closed (respectively, open) in the weak
topology (cf. Examples 5.1.2 and 5.1.3). However, for convex sets, the situation is
different.

Proposition 5.1.4 Let C be a convex and (norm) closed subset of a Banach space
V . Then C is also weakly closed. (The converse is always true, even without the
convexity hypothesis.)

Proof Wewill assume that V is a real Banach space, for simplicity. LetC be a closed
and convex set in V and let x0 /∈ C . Then, by the Hahn-Banach theorem, there exists
f ∈ V ∗ and α ∈ R such that f (x0) < α < f (x) for all x ∈ C . Then the set

U = {x ∈ V | f (x) < α}

is a weakly open neighbourhood of x0 which does not meet C . Thus the complement
of C is weakly open and so C is weakly closed. �

Definition 5.1.2 Let X be a topological space and let f : X → R be a given function.
We say that f is lower semicontinuous if, for every α ∈ R, the set

f −1((−∞,α]) = {x ∈ X | f (x) ≤ α}

is closed in X. �

Clearly, every continuous map is lower semicontinuous. If xn → x in X , and if
f : X → R is lower semicontinuous, then
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f (x) ≤ lim inf
n→∞ f (xn). (5.1.1)

For, if α = lim infn→∞ f (xn), then, given any ε > 0, there exists a subsequence xnk
such that f (xnk ) ≤ α + ε for all k. Since f −1((−∞,α + ε]) is closed, it follows that
f (x) ≤ α + ε and since ε > 0 was arbitrarily chosen, (5.1.1) follows.

Corollary 5.1.1 Let V be a Banach space and let ϕ: V → R be convex and lower
semicontinuous (with respect to the norm topology). Then ϕ is also lower semicon-
tinuous with respect to the weak topology. In particular, the map x �→ ‖x‖, being
continuous, is also lower semicontinuous with respect to the weak topology and, if
xn ⇀ x in V , we have

‖x‖ ≤ lim inf
n→∞ ‖xn‖. (5.1.2)

Proof For every α ∈ R, the set ϕ−1((−∞,α]) is closed (in the norm topology) and
is convex. Hence it is weakly closed. This completes the proof. �

Notation: Let V be Banach space. We will use the following notations.

D = {x ∈ V | ‖x‖ < 1} (open unit ball).
B = {x ∈ V | ‖x‖ ≤ 1} (closed unit ball).
S = {x ∈ V | ‖x‖ = 1} (unit sphere).

Example 5.1.2 Let V be an infinite dimensional Banach space. Let S be the unit
sphere in V . Then S is neverweakly closed, though it is closed in the norm topology.
To see this, let x0 ∈ V such that ‖x0‖ < 1. Consider any weakly open neighbourhood
U of x0 of the form

U = {x ∈ V | | fi (x − x0)| < ε, 1 ≤ i ≤ n}

where ε > 0 and fi ∈ V ∗ for 1 ≤ i ≤ n. Consider the map A: V → R
n defined by

A(x) = ( f1(x), . . . , fn(x)).

This map cannot be injective (otherwise, we will have dim(V ) ≤ n, which is a con-
tradiction). Thus, there exists y0 �= 0, such that fi (y0) = 0 for all 1 ≤ i ≤ n. Then
x0 + t y0 ∈ U for all t ∈ R. Set g(t) = ‖x0 + t y0‖. Then g(0) < 1while g(t) → +∞
as t → +∞. Hence, there exists t0 such that g(t0) = 1. Thus, x0 + t0y0 ∈ U ∩ S.
We have thus proved that every weakly open neighbourhood of every point in the
open unit ball, D, intersects the unit sphere, S. Hence the closed unit ball, B, must
lie in the weak closure of S. But B being closed (in the norm topology) and convex,
is itself weakly closed. Thus the weak closure of the unit sphere, S, is the closed unit
ball, B. Thus, S is not weakly closed. �

Example 5.1.3 Let V be an infinite dimensional Banach space. Then the open unit
ball D is not weakly open. As seen in the preceding example, every weakly open
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neighbourhood of a point x0 ∈ D contains an affine subspace of the form {x0 +
t y0 |t ∈ R} where y0 is chosen as before. Thus D cannot contain a weakly open
neighbourhood of any of its points, and hence D cannot be weakly open. �

Thus, in an infinite dimensionalBanach space, theweak topology is strictly coarser
than the norm topology.

Proposition 5.1.5 (Schur’s lemma) In the space �1, a sequence is convergent in
the weak topology if, and only if, it converges in the norm topology.

Proof By Proposition 5.1.2, every sequence which converges in norm, also con-
verges weakly. Conversely, let {xn} be a weakly convergent sequence. Without loss
of generality, assume that xn ⇀ 0. Let

xn = (x1n , x
2
n , . . . , x

k
n , . . .).

Consider the functional fi which is the projection to the i-th coordinate. Then, since
the sequence weakly converges to zero, it follows that fi (xn) → 0, i.e.

lim
n→∞ xin = 0

for very positive integer i . Assume, if possible, that {xn} does not converge to zero
in norm. Then, there exist ε > 0 such that, for infinitely many n,

∞∑

k=1

|xkn | ≥ ε.

Thus, working with a suitable subsequence if necessary, we may assume that this is
true for all n.

Set n0 = m0 = 1. Define, for k ≥ 1, nk and mk inductively as follows.

• nk is the smallest integer greater than nk−1 such that

mk−1∑

j=1

|x j
nk | <

ε

5
.

(This is possible since we know that each coordinate sequence tends to zero.)

• Now choose mk to be the smallest integer greater than mk−1 such that

∞∑

j=mk+1

|x j
nk | <

ε

5
.
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(This is possible since the sequence (xnk ) ∈ �1.)

Now define y = (y j ) ∈ �∞ = �∗
1 as follows:

For mk−1 + 1 ≤ j ≤ mk ,

y j =
⎧
⎨

⎩

0 if x j
nk = 0,

|x j
nk |
x j
nk

otherwise.

By varying k over all positive integers, y j will be defined for all positive integers j .
Clearly ‖y‖∞ = 1. Also

∣
∣
∣
∣
∣
∣

∞∑

j=1

(
x j
nk y

j − |x j
nk |

)
∣
∣
∣
∣
∣
∣

≤ 2
mk−1∑

j=1

|x j
nk | + 2

∞∑

j=mk+1

|x j
nk | ≤ 4ε

5
.

Thus, ∣
∣
∣
∣
∣
∣

∞∑

j=1

x j
nk y

j

∣
∣
∣
∣
∣
∣

≥ ε − 4ε

5
= ε

5

which contradicts the weak convergence of {xnk } to zero. Hence the result. �

Remark 5.1.1 The space �1 being infinite dimensional, the weak and norm topolo-
gies are different. Nevertheless, we see from the preceding proposition that the con-
vergent sequences for these topologies are the same. While two metric spaces which
have the same convergent sequences are equivalent (i.e. their topologies are the same),
two topological spaces with the same convergent sequences need not be the same.
This illustrates the inadequacy of considering just sequences in a general topological
space. We also conclude that the weak topology on �1 is not metrizable. �

Example 5.1.4 Consider the sequence {en} in �1. Since ‖en − em‖1 = 2 for all
n �= m, we see that this sequence is not convergent in the norm topology. In fact
it does not even have a convergent sequence. It cannot have a weakly convergent
subsequence either, since such a subsequence will have to converge in the norm
topology as well, by Schur’s lemma. �

Definition 5.1.3 Let V and W be Banach spaces and let T : V → W be a linear
mapping. We say that T isweakly continuous if T is continuous as a mapping from
V into W , each space being endowed with its weak topology. �

Lemma 5.1.1 Let T : V → W be a linear mapping. Then T is weakly continuous if,
and only if, for every f ∈ W ∗, the map x �→ f (T (x)) is a weakly continuous map
from V into R (or C, in case of complex Banach spaces).
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Proof If T is weakly continuous, then clearly its composition with any f ∈ W ∗ will
also be weakly continuous.

Now let f ∈ W ∗. Let U be open in R (or C). Then f −1(U ) is weakly open in
W , by definition. If f ◦ T is weakly continuous, we also have that T−1( f −1(U ) is
weakly open in V . But by the definition of the weak topology, every weakly open
set in W is the union of finite intersections of sets of the form f −1(U ), where U is
open inR (orC) and f ∈ W ∗. Thus, it follows from the above that the inverse image
of every weakly open set in W is weakly open in V ; i.e. T is weakly continuous. �

Our final result in this section shows that as far as continuity of linear maps is
concerned, the topology really does not matter.

Theorem 5.1.1 Let V and W be Banach spaces and let T : V → W be a linear map.
then T ∈ L(V,W ) if, and only if, T is weakly continuous.

Proof Let T ∈ L(V,W ). If f ∈ W ∗, then the map f ◦ T ∈ V ∗ and so is weakly
continuous as well. Thus by lemma 5.1.1, it follows that T is weakly continuous.

Conversely, if T is weakly continuous, since the weak topology is Hausdorff, it
follows that the graph G(T ) is closed when V × W is given the product topology
induced by the weak topologies (cf. Lemma 4.4.1). But this is clearly the weak
topology of V × W (why?) and so G(T ) is weakly closed in V × W and so is closed
for its norm topology as well. The continuity of T (between the norm topologies of
V and W ) is now a consequence of the closed graph theorem. �

5.2 The Weak* Topology

Let V be a Banach space. Then its dual space, V ∗, has its natural norm topology. It
also is endowed with its weak topology, viz. the coarsest topology such that all the
elements of V ∗∗ are continuous. We now define an even coarser topology on V ∗.

Definition 5.2.1 The weak* topology on V ∗ is the coarsest topology such that
the functionals {Jx | x ∈ V } are all continuous, where J : x �→ Jx is the canonical
imbedding of V into V ∗∗. �

Clearly, the weak* topology is coarser than the weak topology on V ∗. Thus if
S,W andW∗ denote the norm, weak and weak* topologies, respectively, on V ∗, we
have

W∗ ⊂ W ⊂ S.

Remark 5.2.1 It is clear that if V is a reflexive Banach space, then the weak and
weak* topologies on V ∗ coincide. �

Proposition 5.2.1 Let V be aBanach space. Theweak* topology on V ∗ isHausdorff.
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Proof Let f1 and f2 be distinct elements of V ∗. Then, there exists x ∈ V such that
f1(x) �= f2(x). Choose disjoint neighbourhoods U1 of f1(x) and U2 of f2(x) in R

(or C, as the case may be). Then, by definition, the sets

J−1
x (U1) = { f ∈ V ∗ | f (x) ∈ U1} and J−1

x (U2) = { f ∈ V ∗ | f (x) ∈ U2}

are both weak* open sets and are clearly disjoint and contain f1 and f2, respectively.
This completes the proof. �

As in the case of the weak topology, we can describe the weak* open neighbour-
hoods of elements of V ∗ as follows. Let I be a finite indexing set and let xi ∈ V for
i ∈ I . Let ε > 0. Then, a weak* open neighbourhood of f0 ∈ V ∗ can be written as

{ f ∈ V ∗ | |( f − f0)(xi )| < ε, i ∈ I }.

Notation: Let { fn} be a sequence in V ∗. If fn converges to f in V ∗ in the norm
topology, we write fn → f . If it converges to f in the weak topology of V ∗, we will
write, as before, fn ⇀ f . If the sequence converges in the weak* topology of V ∗,
we will write fn

∗
⇀ f .

The proof of the following proposition is easy and is left to the reader as an
exercise.

Proposition 5.2.2 Let V be a Banach space and let { fn} be a sequence in V ∗.

(i) fn
∗

⇀ f in V ∗ if, and only if, fn(x) → f (x) for every x ∈ V .

(ii) fn → f ⇒ fn ⇀ f ⇒ fn
∗

⇀ f .

(iii) If fn
∗

⇀ f in V ∗ and xn → x in V , then fn(xn) → f (x). �

Example 5.2.1 Consider the sequence {en} in �1. We saw that (cf. Example 5.1.4)
that it is not convergent in the norm and weak topologies. Since c∗

0 = �1, if x =
(x1, . . . , xk, . . .) ∈ c0, we have that

< en, x >�1,c0= xn → 0,

as n → ∞. Thus en
∗

⇀ 0 in �1. �

The next proposition shows that the functionals {Jx | x ∈ V } are the only ones
which are continuous with respect to the weak* topology.

Proposition 5.2.3 Let ϕ be a linear functional on V ∗ which is continuous with
respect to the weak* topology. Then, there exists x ∈ V such that ϕ = Jx .

Proof Let D̃ be the open unit ball in R (or C, in case of complex Banach spaces).
Since ϕ is weak* continuous, there exists a weak* neighbourhood of the origin in
V ∗, say, U , such that ϕ(U ) ⊂ D̃. Assume that

U = { f ∈ V ∗ | | f (xi )| < ε, 1 ≤ i ≤ n}
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where ε > 0 and xi ∈ V for 1 ≤ i ≤ n. Thus, for every f ∈ U , we have that

|ϕ( f )| < 1.

Assume that for some f ∈ V ∗, we have f (xi ) = 0 for all 1 ≤ i ≤ n. Then f ∈ U .
Further, for any real number k, we have that k f (xi ) = 0 for all 1 ≤ i ≤ n and so
k f ∈ U as well. Thus, for all positive integers k,

|ϕ( f )| <
1

k

and so ϕ( f ) = 0. It then follows (cf. Exercise 3.23) that there exist scalars αi for
1 ≤ i ≤ n such that

ϕ =
n∑

i=1

αi Jxi .

This proves the result with x = ∑n
i=1 αi xi . �

Corollary 5.2.1 A weak* closed hyperplane must be of the form

H = { f ∈ V ∗ | f (x) = α}

where x ∈ V and α is a scalar.

Proof For simplicity, we will assume that the base field is R. Since H is a weak*
closed hyperplane, it is closed in the norm topology as well and so (cf. Proposition
3.3.1) there exists ϕ ∈ V ∗∗ such that

H = { f ∈ V ∗ | ϕ( f ) = α}

for some real number α. Let f0 ∈ Hc, the complement of H . Since H is weak*
closed, there exists a weak* open neighbourhood of the form

U = { f ∈ V ∗ | |( f − f0)(xi )| < ε, 1 ≤ i ≤ n}

(where ε > 0 and xi ∈ V for 1 ≤ i ≤ n) of f0 contained in Hc. Now, U is a convex
set. Thus, it is easy to see that either ϕ( f ) < α for all f ∈ U or ϕ( f ) > α for
all f ∈ U . Assume the former (the proof in the latter case will be similar). Let
W = U − { f0} = { f − f0 | f ∈ U }. Then,

W = {g ∈ V ∗ | g + f0 ∈ U }

and so g ∈ W if, and only if, −g ∈ W . Thus W = −W . Now, if ϕ( f ) < α for all
f ∈ U , it follows that

ϕ(g) < α − ϕ( f0)
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for all g ∈ W . Since W = −W , it then follows that

|ϕ(g)| < |α − ϕ( f0)|

for all g ∈ W . Since we can always find f0 ∈ Hc such that |α − ϕ( f0)| < η, for
any η > 0, and since W is weak* open, it follows that ϕ is weak* continuous at the
origin, and so, by linearity, weak* continuous everywhere. Then, by the preceding
proposition, ϕ = Jx for some x ∈ V . This completes the proof. �

Since everyfinite dimensional spaceV is reflexive, theweak andweak* topologies
on V ∗ coincide.We have already seen, in Sect. 5.1, that the norm andweak topologies
coincide. Thus, in finite dimensional spaces, all the three topologies are the same.

However, the above corollary shows that, in infinite dimensional and non-
reflexive spaces, the weak* topology is strictly coarser than the weak topology. If
ϕ ∈ V ∗∗\J (V ), then the hyperplane [ϕ = α] is a convex and (norm) closed set and
hence is weakly closed but it is not weak* closed.

One might wonder the purpose of impoverishing the norm topologies on Banach
spaces and their duals to produce the weak and weak* topologies. One important off
shoot of this is process is that by decreasing the number of open sets, we increase
the chances of a set being compact, which is a very useful topological property. We
saw, in Chap. 2, that in infinite dimensional spaces, the closed unit ball cannot be
compact. The ball becomes compact in the weak* topology.

Theorem 5.2.1 (Banach-Alaoglu) Let V be a Banach space. Then, B∗, the closed
unit ball in V ∗, is weak* compact.

Proof Consider the product space

X = �x∈V [−‖x‖, ‖x‖]

with the usual product topology inherited from R. This space is clearly compact
since each bounded and closed interval in R is compact. Let f ∈ B∗. Then, for each
x ∈ V , we have f (x) ∈ [−‖x‖, ‖x‖]. Thus, the map f �→ ϕ( f ) = ( f (x))x∈V is a
bijection from B∗ onto its image in X . If B is endowed with the topology induced
by the weak* topology of V ∗, then the definitions of this topology and the product
topology on X tell us that ϕ is a homeomorphism. We thus just need to show that
ϕ(B∗) is closed in X , which will prove ϕ(B∗), and hence B∗, to be compact.

Let ( fx )x∈V ∈ ϕ(B∗). Define, for x ∈ V , f (x) = fx . The proof will be complete
if we can show that f is linear; since | f (x)| ≤ ‖x‖ for all x ∈ V , it will then follow
that f ∈ B∗, i.e. ϕ(B∗) = ϕ(B∗).

Let ε > 0. Then, given x and y ∈ V , we can find g ∈ B∗ such that

|g(x) − f (x)| <
ε

3
, |g(y) − f (y)| <

ε

3
, |g(x + y) − f (x + y)| <

ε

3
.
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Thus,
| f (x + y) − f (x) − f (y)| < ε

and, since ε was arbitrarily chosen, we deduce that

f (x + y) = f (x) + f (y)

for every x and y ∈ V . Similarly, we can show that if α is a scalar and if x ∈ V ,

f (αx) = α f (x).

Thus f is linear and the proof is complete. �

Lemma 5.2.1 Let V be a Banach space and let fi ∈ V ∗, 1 ≤ i ≤ n. Let αi , 1 ≤
i ≤ n be scalars. Then, the following are equivalent:

(i) For every ε > 0, there exists xε ∈ V with ‖xε‖ ≤ 1 and such that

| fi (xε) − αi | < ε

for all 1 ≤ i ≤ n.
(ii) For all scalars βi , 1 ≤ i ≤ n, we have

∣
∣
∣
∣
∣

n∑

i=1

βiαi

∣
∣
∣
∣
∣

≤
∥
∥
∥
∥
∥

n∑

i=1

βi fi

∥
∥
∥
∥
∥

.

Proof (i) ⇒ (ii). Let s = ∑n
i=1 |βi |. By (i),

∣
∣
∣
∣
∣

n∑

i=1

(βi fi (xε) − βiαi )

∣
∣
∣
∣
∣

< εs

which implies that ∣
∣
∣
∣
∣

n∑

i=1

βiαi

∣
∣
∣
∣
∣

≤ εs +
∥
∥
∥
∥
∥

n∑

i=1

βi fi

∥
∥
∥
∥
∥

from which (ii) follows, since we can choose ε > 0 to be arbitrarily small.

(ii)⇒ (i). Letα = (α1, . . . ,αn) ∈ R
n (the proof when the scalar field isC is similar).

Define A: V → R
n by A(x) = ( f1(x), . . . , fn(x)). We then need to show that α ∈

A(B) where B is the closed unit ball in V . If not, by the Hahn-Banach theorem, we
can find scalars λ and β1, . . . ,βn such that, for every x ∈ B,

n∑

i=1

αiβi > λ >

n∑

i=1

βi fi (x)
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which implies that ∥
∥
∥
∥
∥

n∑

i=1

βi fi

∥
∥
∥
∥
∥

≤ λ <

n∑

i=1

αiβi

which contradicts (ii). This completes the proof. �

Proposition 5.2.4 Let V be a Banach space. Let B be the closed unit ball in V and
B∗∗ the closed unit ball in V ∗∗. Let J : V → V ∗∗ be the canonical imbedding. Then,
B∗∗ is the weak* closure of J (B) in V ∗∗.

Proof Since B∗∗ is weak* compact, it is weak* closed. Let ϕ0 ∈ B∗∗. Consider a
weak* open neighbourhood of ϕ0 of the form

U = {ϕ ∈ V ∗∗ | |(ϕ − ϕ0)( fi )| < ε, 1 ≤ i ≤ n}

where ε > 0 and fi ∈ V ∗, 1 ≤ i ≤ n. Letαi = ϕ0( fi ), 1 ≤ i ≤ n. Then, for scalars
βi , 1 ≤ i ≤ n, we have,

∣
∣
∣
∣
∣

n∑

i=1

βiαi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
ϕ0

(
n∑

i=1

βi fi

)∣
∣
∣
∣
∣

≤
∥
∥
∥
∥
∥

n∑

i=1

βi fi

∥
∥
∥
∥
∥

.

Then, by the preceding lemma,there exists x ∈ B such that Jx ∈ U . ThusU intersects
J (B) and this shows that J (B) is weak* dense in B∗∗ which completes the proof. �

Remark 5.2.2 Let V be a Banach space. Since the map J : V → V ∗∗ is an isometry,
it follows that J (B) is closed in the norm topology of V ∗∗. Thus, either J (B) = B∗∗,
which is true if, and only if, V is reflexive, or J (B) is a closed and proper subset
of B∗∗. Thus, in the non-reflexive case, J (B) is not dense in B∗∗ for the norm
topology. �

Example 5.2.2 Let B0 be the closed unit ball in c0. With the usual identifications,
since c∗

0 = �1 and �∗
1 = �∞, we can easily see that the canonicalmapping J : c0 → �∞

is just the inclusion mapping. Thus B0 is closed and weakly closed in �∞. However,
its weak∗ closure in �∞ is B∞, the closed unit ball in �∞. �

5.3 Reflexive Spaces

Let us recall that a Banach space V is said to be reflexive if the canonical imbedding
J : V → V ∗∗ is surjective (cf. Definition 3.1.1). We also saw that the spaces �p for
1 < p < ∞ are examples of reflexive spaces while �1 is not reflexive. In Chap. 7,
we will see that every Hilbert space is reflexive.

In this section, we will study some important properties of reflexive spaces.



5.3 Reflexive Spaces 143

Notation: Given a Banach space V , we will denote the closed unit balls in V, V ∗
and V ∗∗ by B, B∗ and B∗∗, respectively.

Theorem 5.3.1 A Banach space V is reflexive if, and only if, B is weakly compact.

Proof Assume that B is weakly compact. Since J : V → V ∗∗ is an isometry, it is
continuous and hence weakly continuous as well (cf. Theorem 5.1.1) and so J (B)

is weakly compact. Hence it is weak* compact as well. The weak* topology being
Hausdorff, it follows that J (B) is weak* closed. But then (cf. Proposition 5.2.4) it
follows that J (B) = B∗∗. This immediately implies that J is surjective; i.e. V is
reflexive.

Conversely, let V be reflexive. Then the weak and weak* topologies on V ∗ coin-
cide. Hence, by the Banach-Alaoglu theorem, B∗ is weakly compact. Then, by the
preceding arguments, it follows that V ∗ is reflexive. Then, just as we saw earlier, it
follows that B∗∗ is weakly compact. Since V is reflexive, we have B = J−1(B∗∗).
Also, since J−1: V ∗∗ → V is continuous, it is weakly continuous as well and so B
is weakly compact. �

Corollary 5.3.1 Let V and W be Banach spaces and let T : V → W be an isometric
isomorphism. Then, if V is reflexive, so is W.

Proof Let BV and BW be the closed unit balls in V andW , respectively. Since T is an
isometric isomorphism, we have that T (BV ) = BW . Now, T being continuous, it is
weakly continuous as well. Since V is reflexive, we have that BV is weakly compact
and so BW = T (BV ) is also weakly compact, which implies that W is reflexive. �

Corollary 5.3.2 Let V be a reflexive Banach space and let W be a closed subspace
of V . The W is also reflexive.

Proof It is easy to see that the weak topology on W is none other than the topology
induced on W by the weak topology of V (cf. Exercise 5.1). Since V is reflexive,
it follows that B is weakly compact. The unit ball in W is none other than W ∩ B.
But W being a closed subspace, it is weakly closed and since B is weakly com-
pact, it follows that W ∩ B is weakly compact as well. Thus, it follows that W is
reflexive. �

Corollary 5.3.3 Let V be a Banach space. Then, V is reflexive if, and only if, V ∗ is
reflexive.

Proof We already saw in the proof of Theorem 5.3.1 that if V is reflexive, then V ∗
is reflexive.

Conversely, let V ∗ be reflexive. Then, as before, V ∗∗ is reflexive. Now, J (V ) is
a closed subspace of V ∗∗ and so, by the preceding corollary, it follows that J (V ) is
reflexive. But then J−1: J (V ) → V is an isometric isomorphism and so V is reflexive
by Corollary 5.3.1. �
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Example 5.3.1 We can recover many of the results we proved in Sect. 3.2, using
those above. Since we know that �1 is not reflexive, it follows that c0 and �∞ are not
reflexive either, since c∗

0 = �1 and �∗
1 = �∞. Since c0 is a closed subspace of c (the

space of convergent sequences, equipped with the norm ‖ · ‖∞), it follows that c is
not reflexive. �

Corollary 5.3.4 Let V be a reflexive Banach space. Let K ⊂ V be a closed, bounded
and convex subset. Then, K is weakly compact.

Proof Since K is bounded, there exists a positive integer m such that K ⊂ mB.
Then, since K is convex and closed, it is weakly closed and since mB is weakly
compact, it follows that K is weakly compact. �

Example 5.3.2 Consider the spaces V = C1[0, 1] and W = C[0, 1] with their usual
norms. Thenwe saw (cf. Example 4.6.3) that themap T : V → W defined by T ( f ) =
f ′, for every f ∈ V , admits a right inverse S. Let B be the closed unit ball in W .
Then S(B) is a bounded and convex set in V . It is also closed. To see this, let { fn}
be a sequence in B such that S( fn) → g in V . Then, fn = T (S( fn)) → T (g) in W
and so T (g) ∈ B. But then S( fn) → S(T (g)), i.e. g = S(T (g)) ∈ S(B). If V were
reflexive, it would then follow from the above corollary that S(B) is weakly compact
and, since continuous maps are also weakly continuous, we could then deduce that
B = T (S(B)) is weakly compact. But thatwould imply thatW = C[0, 1] is reflexive,
which we know to be false. Thus V = C1[0, 1] is not reflexive.

The same maps can be used between V = Ck[0, 1] and Ck−1[0, 1], where k ≥ 2,
and we can inductively prove that Ck[0, 1] is not reflexive for any positive integer
k. �

Proposition 5.3.1 Let V and W be Banach spaces, with W being reflexive, and
let A: D(A) ⊂ V → W be a linear transformation which is closed and densely
defined. Then A∗ is also densely defined.

Proof Let ϕ ∈ W ∗∗ which vanishes on D(A∗). It suffices to show that ϕ = 0. Since
W is reflexive, there exists y ∈ W such that

< ϕ, v >W ∗∗,W ∗=< v, y >W ∗,W

for all v ∈ W ∗. Thus, we need to show that y = 0 given that < w, y >W ∗,W= 0 for
all w ∈ D(A∗). If not, then (0, y) /∈ G(A), the graph of A. Since G(A) is closed, by
hypothesis, there exists ( f, v) ∈ V ∗ × W ∗ such that

< f, u >V ∗,V + < v, A(u) >W ∗,W= 0 (5.3.1)

for all u ∈ D(A) and such that < v, y >W ∗,W �= 0, by virtue of the Hahn-Banach
theorem (cf. Corollary 3.3.1). It follows from (5.3.1) that v ∈ D(A∗) which then
implies that < v, y >W ∗,W= 0 which is a contradiction. �
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Thus, in the circumstances of the above proposition, we can define the second
adjoint A∗∗ = (A∗)∗ from V ∗∗ into W ∗∗. If we now assume that both V and W are
reflexive, then we can identify V with V ∗∗ and W with W ∗∗ via their respective
canonical imbeddings. In this case, we will then have A∗∗: D(A∗∗) ⊂ V → W .

Theorem 5.3.2 Let V and W be reflexive Banach spaces and let A: D(A) ⊂ V →
W be a closed and densely defined linear transformation. Then, A∗∗ = A.

Proof It suffices to show that the graphs G(A) and G(A∗∗) are the same. Recall
that if we define J :W ∗ × V ∗ → V ∗ × W ∗ by J (v, f ) = (− f, v), we then have
J (G(A∗)) = G(A)⊥ (cf. Proposition 4.7.2). Then (G(A)⊥)⊥ = (J (G(A∗))⊥ ⊂
V × W . Thus, (G(A)⊥)⊥ consists of all (v,w) ∈ V × W such that

< −A∗(ϕ), v >V ∗,V + < ϕ, w >W ∗,W= 0

for allϕ ∈ D(A∗). This is equivalent to saying that v ∈ D(A∗∗) and thatw = A∗∗(v).
Thus,

G(A∗∗) = (G(A)⊥)⊥ = G(A) = G(A)

since G(A) is closed and this completes the proof. �

5.4 Separable Spaces

In this section, we will study the relationship between separable spaces and weak
topologies.

Definition 5.4.1 A topological space is said to be separable if it contains a countable
dense set. �

Proposition 5.4.1 Let V be a Banach space. If V ∗ is separable, then so is V .

Proof Let { fn} be a countable dense set in V ∗. Choose {xn} in V such that

‖xn‖ = 1 and fn(xn) >
1

2
‖ fn‖.

Assume, for simplicity, that the base field isR. LetW be the linear subspace generated
by the sequence {xn} and letW0 be the set of all finite linear combinations of the {xn}
with rational coefficients. Then W0 is countable, and it is dense in W . So it suffices
to show that W is dense in V . Let f ∈ V ∗ which vanishes on W . We need to show
then that f vanishes on all of V (i.e. f is identically zero). Let ε > 0. Then, there
exists fm such that ‖ f − fm‖ < ε, by the density of the { fn}. Since f (xn) = 0 for
all n, we have

1

2
‖ fm‖ < fm(xm) = ( fm − f )(xm) ≤ ‖ fm − f ‖.
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Thus,
‖ f ‖ ≤ ‖ fm − f ‖ + ‖ fm‖ < 3ε

from which it follows that f = 0 since ε was arbitrarily chosen. �

Example 5.4.1 The converse of the above proposition is not true. We know that
�∗
1 = �∞. While �1 is separable (the set of all sequences with only a finite number of
non-zero components, all of which are rational, forms a countable dense set of �1),
�∞ is not separable. To see this, we prove that no countable set in �∞ can be dense.
Indeed, let { fn} be a countable set in �∞ where fn = ( f in ). Define f = ( f i ) by

f i =
{
0, if | f ii | ≥ 1,
2, if | f ii | < 1.

Then f ∈ �∞ and ‖ f − fn‖∞ ≥ 1 for all n. Thus { fn} cannot be dense in �∞. �

Corollary 5.4.1 Let V be a Banach space. Then V is both separable and reflexive
if, and only if, V ∗ is both separable and reflexive.

Proof If V ∗ is both separable and reflexive, then so is V . Conversely, if V is separable
and reflexive, so is J (V ) = V ∗∗, where J is the canonical imbedding of V into V ∗∗.
Thus, it now follows that V ∗ is separable and reflexive. �

Example 5.4.2 It follows, from the above corollary, that if a Banach space V is
separable, and if V ∗ is not separable, then V is not reflexive. Consider the space V =
C[0, 1], with the usual sup-norm. As a consequence of theWeierstrass approximation
theorem, it follows that V is separable (why?). Now, for every x ∈ [0, 1], define
δx ∈ V ∗ by δx ( f ) = f (x), for every f ∈ V . Then, it follows that if x �= y, we have
‖δx − δy‖V ∗ = 2 (why?). Thus if {ϕn} is any countable set in V ∗, it can intersect at
most a countable number of the open balls of the form BV ∗(δx ; 1/2), since all such
balls are mutually disjoint. Thus, no countable set can be dense in V ∗; i.e. the space
V ∗ is not separable. Consequently, we now have a different proof (cf. Example 3.2.2)
of the non-reflexivity of C[0, 1]. �

Theorem 5.4.1 Let V be a Banach space. Then, V is separable if, and only if, the
weak* topology on B∗, the closed unit ball in V ∗, is metrisable.

Proof Assume that V is separable. Let {xn} be a countable dense set in V . We may
assume, without loss of generality, that xn �= 0 for all n (why?). For f and g ∈ B∗,
define

d( f, g) =
∞∑

n=1

1

2n‖xn‖ |( f − g)(xn)|. (5.4.1)

It is easy to check that d(., .) is well-defined and that it defines a metric on B∗. Let
U be a weak* open neighbourhood of f0 ∈ B∗ of the form

U = { f ∈ B∗ | |( f − f0)(yi )| < ε, 1 ≤ i ≤ k}
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where ε > 0 and yi ∈ V for 1 ≤ i ≤ k. Since {xn} is dense, there exists xni such that
‖yi − xni ‖ < ε/4 for each 1 ≤ i ≤ k. Now choose r > 0 such that

r2ni ‖xni ‖ <
ε

2
for all 1 ≤ i ≤ k.

Consider the ball Bd( f0; r) in B∗ provided with the metric defined in (5.4.1). If f
belongs to this ball, i.e. d( f, f0) < r , then for each 1 ≤ i ≤ k, we have

|( f − f0)(yi )| ≤ |( f − f0)(yi − xni )| + |( f − f0)(xni )|
≤ 2. ε

4 + 2ni ‖xni ‖r
< ε.

Thus Bd( f0; r) ⊂ U and so every weak* open set is also open in the metric topology.
On the other hand, consider a ball Bd( f0; r). Consider the weak* open neigh-

bourhood of f0 given by

U ε
k =

{

f ∈ B∗ |
∣
∣
∣
∣( f − f0)

(
1

‖xi‖ xi
)∣

∣
∣
∣ < ε, 1 ≤ i ≤ k

}

.

Choose ε < r/2 and k such that

∞∑

n=k+1

1

2n
= 1

2k
<

r

4
.

If f ∈ U ε
k , then

d( f, f0) = ∑k
n=1

1
2n‖xn‖ |( f − f0)(xn)| + ∑∞

n=k+1
1

2n‖xn‖ |( f − f0)(xn)|
< ε

∑k
n=1

1
2n + 2

∑∞
n=k+1

1
2n

< r
2 + 2 r

4= r.

Thus,U ε
k ⊂ Bd( f0; r)which shows that every open set in the metric topology is also

weak* open. Thus, the weak* and the metric topologies on B∗ are the same.

Conversely, assume that the weak* topology on B∗ is metrisable. Consider, for
each positive integer n, the ball Bd(0; 1

n ), where d is the metric defined on B∗. This
ball then contains a weak* open neighbourhood of zero, sayUn which can be written
in the form

Un = { f ∈ B∗ | | f (x)| < εn, for all x ∈ �n}

where εn > 0 and �n is a finite set in V . The set

D = ∪∞
n=1�n
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is then countable and the set E of all finite rational linear combinations of the
elements of D is a countable set which will be dense in the subspace generated by
D. If f ∈ V ∗ is such that f (x) = 0 for all x in the subspace generated by D, then
clearly, f ∈ Un for each n. Thus,

f ∈ ∩∞
n=1Un ⊂ ∩∞

n=1Bd(0; 1/n) = {0}.

Thus the subspace generated by D is itself dense in V and so the countable set E is
also dense in V and hence V is separable.

This completes the proof. �

Corollary 5.4.2 Let V be a separable Banach space. Then, every bounded sequence
in V ∗ has a weak* convergent subsequence.

Proof Abounded sequence in V ∗ is contained in some ball, which isweak* compact.
Since V is separable, the weak* topology on this ball is metrisable and so the ball is
weak* sequentially compact as well. �

In a metric space compactness and sequential compactness are equivalent (cf.
Proposition 1.2.6); this is not true in a general topological space. Thus a sequence
in a compact topological space may fail to have a convergent subsequence, as the
following example shows.

Example 5.4.3 Consider the space �∞. Define

fn(x) = xn

for x = (xn) ∈ �∞. Then clearly fn ∈ �∗∞ and, further, ‖ fn‖�∗∞ = 1, for all n. The unit
ball in �∗∞ is weak* compact, by the Banach-Alaoglu theorem. Assume, if possible,
that there exists a weak* convergent subsequence { fnk } for this sequence. This, in
view of Proposition 5.2.2 (i), imples that {xnk } is convergent for every x = (xn) ∈ �∞,
which is clearly absurd. Thus { fn} cannot have any weak* convergent subsequence,
eventhough it lies in a weak* compact set. �

Example 5.4.4 We saw that (cf. Example 5.2.1) {en} has no weakly convergent sub-
sequence in �1. But since �1 is separable and so c0 is also separable (cf. Proposition
5.4.1) and, by the preceding corollary, {en} must have a weak* convergent subse-
quence. In fact, we have seen, in the above-mentioned example, that {en} weak*
converges to zero. Thus the weak and weak* convergent sequences in �1 are not the
same (while its norm and weakly convergent sequences are the same). �

Theorem 5.4.2 Let V be a reflexive Banach space. Then every bounded sequence
has a weakly convergent subsequence.

Proof Let {xn} be a bounded sequence in V . Let W = span{{xn}}, i.e. the smallest
closed subspace containing the sequence in question. Then, W is also reflexive and,
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by construction, it is separable (why?). So W ∗ is also reflexive and separable. Then,
every bounded sequence inW ∗∗ has a weak* convergent subsequence and sinceW ∗∗
is also reflexive, the weak and weak* topologies are the same. In particular, {J (xn)}
has a weakly convergent subsequence in W ∗∗, where J :W → W ∗∗ is the canonical
imbedding, and since J−1:W ∗∗ → W is an isometry and hence weakly continuous,
{xn} has a weakly convergent subsequence in W . Since the weak topology in W is
the topology induced on W by the weak topology on V (cf. Exercise 5.1), it follows
that this subsequence converges weakly in V as well. �

Remark 5.4.1 The converse of the above theorem is also true, and it is a deep result
due to Eberlein and Šmulian: If every bounded sequence admits a weakly convergent
subsequence in a Banach space, then the space is reflexive. �

5.5 Uniformly Convex Spaces

We know that the unit ball in a normed linear space is convex. However, the nature
of the boundary of this ball depends on the norm. For instance, in R

2, with the
euclideanmetric (i.e.R2 = �22), the unit ball is a very symmetric object which ‘bulges
uniformly’ in all directions. On the other hand, if we considerR2 as �21 or as �2∞, then
the unit ball will be, the rhombus bounded by the lines (±x1) + (±x2) = 1 or the
unit square, respectively. In both these cases, the boundary has a lot of ‘flat’ portions.
Uniform convexity makes precise the notion of the boundary ‘bulging uniformly’ in
all directions. This is a condition describing the ‘geometry’ of the norm, but has an
important ‘analytic’ consequence, which will be the main theorem of this section. It
also has important consequences in the calculus of variations, which we will see in
the next section.

Definition 5.5.1 A normed linear space is said to be uniformly convex if for every
ε > 0, there exists a δ > 0 such that whenever we have x and y ∈ V satisfying

‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ > ε,

it follows that ∥
∥
∥
∥
1

2
(x + y)

∥
∥
∥
∥ < 1 − δ.

�

In other words, given two points on the boundary which are at a distance of ε
from each other, then, irrespective of the position of these points, the midpoint of the
chord joining them should lie in the interior, at a minimum distance away from the
boundary, the minimum distance being prescribed uniformly.

Uniform convexity is stronger than the notion of strict convexity (cf. Exercise 3.2).
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Example 5.5.1 The spaces �N1 and �N∞ are not uniformly convex. In fact, they are
not even strictly convex. �
Example 5.5.2 The space �N2 is uniformly convex. Let x and y ∈ �N2 . Then it is easy
to verify that

∥
∥
∥
∥
1

2
(x + y)

∥
∥
∥
∥

2

2

+
∥
∥
∥
∥
1

2
(x − y)

∥
∥
∥
∥

2

2

= 1

2
(‖x‖22 + ‖y‖22). (5.5.1)

If ‖x‖2 ≤ 1, ‖y‖2 ≤ 1 and ‖x − y‖2 > ε, with ε sufficiently small, we see that

∥
∥
∥
∥
1

2
(x + y)

∥
∥
∥
∥

2

2

< 1 − ε2

4
= (1 − δ)2

where

δ = 1 −
√

1 − ε2

4
.

�
Remark 5.5.1 When N = 2, the relation (5.5.1) is the familiar parallellogram law
or Apollonius’ theorem in plane geometry. The relation (5.5.1) is also valid for the
space �2 and so �2 is also uniformly convex. In fact, we will see, in Chap. 7, that this
relation is valid in any Hilbert space and so every Hilbert space will be uniformly
convex. �
Remark 5.5.2 We will see in Chap. 6, that a relation similar to (5.5.1) is also valid
for the spaces �Np and �p whenever 2 ≤ p < ∞ (cf. Proposition 6.2.1) and so all
these spaces are uniformly convex. A similar inequality also holds for 1 < p < 2
but the proof is more difficult. Thus, all these spaces are uniformly convex. �
Theorem 5.5.1 Let V be a uniformly convex Banach space. Then V is reflexive.

Proof If J : V → V ∗∗ is the canonical mapping, it is enough to show that the image
of the closed unit ball B in V under J is the closed unit ball B∗∗ in V ∗∗. Since V is
a Banach space, J (B) is a closed set in V ∗∗ and so it suffices to show that it is dense
in B∗∗ (cf. Remark 5.2.2).

Let ϕ ∈ B∗∗. Assume that ‖ϕ‖V ∗∗ = 1. Let ε > 0. We will show that there exists
x ∈ B such that

‖ϕ − J (x)‖V ∗∗ < ε.

The same will then be true for all elements of B∗∗ as well (why?).
Let δ > 0 correspond to ε in the definition of uniform convexity. Choose f ∈ V ∗,

with ‖ f ‖V ∗ = 1 and such that

ϕ( f ) > 1 − δ

2
. (5.5.2)
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Define
U = {ξ ∈ V ∗∗ | |(ξ − ϕ)( f )| < δ/2}.

Then U is a weak* open neighbourhood of ϕ in V ∗∗. Since J (B) is weak* dense in
B∗∗ (cf. Proposition 5.2.4), it follows that there exists x ∈ B such that J (x) ∈ U .

Assume now that ‖J (x) − ϕ‖V ∗∗ > ε. In other words, ϕ /∈ J (x) + εB∗∗. Since
εB∗∗ is weak* compact (by the Banach-Alaoglu theorem), it is weak* closed and
so is its translation by J (x). Thus, there exists a weak* open neighbourhood U1 of
ϕ such that for all ξ ∈ U1, we still have ‖ξ − J (x)‖V ∗∗ > ε. Again, as before, there
exists x1 ∈ B such that J (x1) ∈ U ∩U1 by the weak* density of J (B) in B∗∗. Thus,

|ϕ( f ) − f (x)| < δ
2|ϕ( f ) − f (x1)| < δ
2

and so
2ϕ( f ) < δ + | f (x + x1)| < δ + ‖x + x1‖V .

By virtue of (5.5.2), it follows from the above that

∥
∥
∥
∥
1

2
(x + x1)

∥
∥
∥
∥
V

> 1 − δ

which contradicts the uniform convexity since J (x1) ∈ U1 and so

‖x − x1‖V = ‖J (x) − J (x1)‖V ∗∗ > ε

while ‖x‖V = ‖x1‖V ≤ 1. Thus, it follows that ‖J (x) − ϕ‖V ∗∗ ≤ εwhich shows that
J (B) is dense in B∗∗ as already observed. �

Remark 5.5.3 The converse of this theorem is not true. A reflexive space need not
be uniformly convex. For instance, �N1 is not uniformly convex, but since it is finite
dimensional, it is reflexive. �

Proposition 5.5.1 Let V be a uniformly convex Banach space. Let xn ⇀ x in V .
Assume that

lim sup
n→∞

‖xn‖ ≤ ‖x‖. (5.5.3)

Then xn → x in V .

Proof We already know that (cf. Proposition 5.1.2 (iii))

lim inf
n→∞ ‖xn‖ ≥ ‖x‖. (5.5.4)

Thus, by (5.5.3) and (5.5.4), we deduce that ‖xn‖ → ‖x‖. If x = 0, this completes
the proof. Assume now that x �= 0. Then, from the convergence of the norms, we
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deduce that (for large n), xn �= 0. Set yn = xn/‖xn‖ and y = x/‖x‖. Observe then
that, by hypothesis and the convergence of the norms of xn , it follows that yn ⇀ y
in V . The proof will be complete if we show that yn → y.

Since yn ⇀ y, we have

1 = ‖y‖ ≤ lim inf
n→∞

∥
∥
∥
∥
1

2
(yn + y)

∥
∥
∥
∥ ≤ lim sup

n→∞

∥
∥
∥
∥
1

2
(yn + y)

∥
∥
∥
∥ ≤ 1.

Thus we have

‖yn‖ = ‖y‖ = 1 and

∥
∥
∥
∥
1

2
(yn + y)

∥
∥
∥
∥ → 1.

Hence, by uniform convexity, if ε > 0 is an arbitrary number, we must have ‖yn −
y‖ ≤ ε for n sufficiently large. This proves that yn → y and hence that xn → x in
V as already observed. �

5.6 Application: Calculus of Variations

In this section, we will apply the results of the preceding sections to obtain some
important results in the calculus of variations, which can be described as the theory
of optimization in infinite dimensional spaces.

Proposition 5.6.1 Let V be a reflexive Banach space and let K ⊂ V be a non-empty,
closed and convex subset. Let ϕ : K → R be a convex and lower semicontinuous
function. Assume further that

lim‖x‖→∞ ϕ(x) = +∞. (5.6.1)

Then, ϕ attains a minimum in K .

Proof Since K is convex and closed, it is weakly closed. Let {xn} be a minimizing
sequence in K for ϕ, i.e., ϕ(xn) → inf x∈K ϕ(x). Then, since (5.6.1) implies that the
sequence is bounded and sinceV is reflexive, it has aweakly convergent subsequence,
say, {xnk }, converging weakly to some x ∈ V . But since K is weakly closed, we have
x ∈ K . Further, by the lower semicontinuity and convexity of ϕ, it follows that ϕ is
also weakly lower semicontinuous (cf. Corollary 5.1.1) and so

inf
y∈K ϕ(y) ≤ ϕ(x) ≤ lim inf

k→∞ ϕ(xnk ) = inf
y∈K ϕ(y).

Thus,
ϕ(x) = min

y∈K ϕ(y).

This completes the proof. �
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Remark 5.6.1 The condition (5.6.1) is usually called the condition of coercivity of
the function(al) ϕ. Thus, a coercive, convex and lower semicontinuous functional
defined on a non-empty, closed and convex subset of a reflexive Banch space always
attains a minimum. The method of proof used above is usually known as the direct
method of the calculus of variations. A minimizing sequence is shown to have a
convergent subsequence (in a suitable topology), and the limit is shown to be the
desired minimum. �

Remark 5.6.2 In the proof of the preceding proposition, the coercivity condition
was really needed only when K was not bounded.

In a metric space, the lower semicontinuity of a function ϕ is equivalent to the
condition that if xn → x , then

ϕ(x) ≤ lim inf
n→∞ ϕ(xn). (5.6.2)

However, in a general topological space, the lower semicontinuity implies the above
relation but the converse is not true. A function which satisfies the above relation
for all convergent sequences is called sequentially lower semicontinuous. In the
context of the weak topology, we can thus say thatϕ : V → R isweakly sequentially
lower semicontinuous if whenever xn ⇀ x in V , we have that (5.6.2) is true. Thus,
the preceding proposition holds even when ϕ is only weakly sequentially lower
semicontinuous, since the coercivity condition would imply that every minimizing
sequence is bounded and the rest of the proof follows as before. �

The following result is an immediate consequence of the preceding proposition.

Theorem 5.6.1 Let V be a reflexive Banach space and let K be a closed convex
subset of V . Then, for any x ∈ V , there exists y ∈ K such that

‖x − y‖ = min
z∈K ‖x − z‖. (5.6.3)

Further, if V is also uniformly convex, then such a y is unique.

Proof The functional z �→ ‖x − z‖ is clearly coercive, convex and weakly lower
semicontinuous. Thus the existence of y follows from the preceding proposition.
Assume that V is uniformly convex. Assume that there exist yi ∈ K , i = 1, 2 such
that

α = ‖x − y1‖ = ‖x − y2‖ = min
z∈K ‖x − z‖.

Let us assume that ‖y1 − y2‖ > ε > 0. Then

‖(x − y1) − (x − y2)‖ > ε.

Then, by the uniform convexity, we have that
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∥
∥
∥
∥x − 1

2
(y1 + y2)

∥
∥
∥
∥ =

∥
∥
∥
∥
1

2
[(x − y1) + (x − y2)]

∥
∥
∥
∥ < α(1 − δ) < α

for some δ > 0. Since K is convex,we have 1
2 (y1 + y2) ∈ K and so the above relation

contradicts the minimality of y1 and y2. Thus it follows that y1 = y2, and the proof
of the uniqueness is complete. �

Example 5.6.1 In general we have non-uniqueness of theminimizer for the problem
(5.6.3) if the space is not uniformly convex. Consider the space �21 (which is R

2 with
the norm ‖.‖1). It is reflexive since it is finite dimensional, but it is not uniformly
convex. Consider the set K = B, the closed unit ball in �21, which is a closed and
convex set. Let x = (1, 1). Let y = (a, b) ∈ K . Then,

‖x − y‖1 = |1 − a| + |1 − b|
≥ 1 − |a| + 1 − |b|
= 2 − (|a| + |b|)
≥ 1.

However, if a + b = 1, a ≥ 0, b ≥ 0, then, for all such points y = (a, b), we have

‖x − y‖1 = 1 − a + 1 − b = 1.

Thus we have uncountably many y which satisfy (5.6.3). �

If V were not reflexive, then we can guarantee neither the existence, nor the
uniqueness.

Example 5.6.2 Let V be a non-reflexive Banach space. Let f ∈ V ∗, f �= 0 such that
‖ f ‖ is not attained on the unit sphere (cf. Examples 3.2.2, 3.2.5, 3.2.6 and Exercise
3.11). Without loss of generality, we can assume that ‖ f ‖ = 1. Now define

K = {z ∈ V | f (z) = 1}.

By the continuity and linearity of f , it follows immediately that K is a closed convex
set. Let us take x = 0. If z ∈ K , then

1 = f (z) ≤ ‖ f ‖ ‖z‖.

Thus ‖z‖ ≥ 1 for all z ∈ K . Now, there exists a sequence {xn} such that ‖xn‖ = 1
for all n and such that f (xn) → ‖ f ‖ = 1. Thus f (xn) is non-zero for large enough
n. Define zn = xn/ f (xn) so that zn ∈ K . Further ‖zn‖ → 1. Thus

inf
z∈K ‖z‖ = 1.

But there is no z ∈ K such that ‖z‖ = 1 since ‖ f ‖ is not attained on the unit
sphere. �
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Remark 5.6.3 We have already quoted (cf. Remark 3.2.1) a theorem of James which
assures us that a space is reflexive if, and only if, every continuous linear functional
attains its norm on the unit sphere. Hence, if V is non-reflexive, there always exist
continuous linear functionals which fail to attain their norm on the unit sphere. Thus,
in view of James’ theorem and the preceding example, we deduce that a Banach
space V is reflexive if, and only if, for every closed convex set K ⊂ V , and for every
point x ∈ V , there exists y ∈ K such that (5.6.3) is true. �

A particular case of this optimization problem is that when K = W , a closed
subspace of V . In that case, given x ∈ V and y ∈ W such that (5.6.3) is true, it
follows that ‖x + W‖V/W = ‖x − y‖V . We have seen earlier (cf. Exercise 2.43)
that such a y exists for every x ∈ V if W is finite dimensional. It follows from our
discussion above that such a y will exist for every x ∈ V when V is reflexive and
W is any closed subspace thereof. Our next example shows that there exist closed
subspaces of non-reflexive spaces for which this fails to happen.

Example 5.6.3 Let V be a non-reflexive Banach space and let f be a non-zero
continuous linear functional on V . Let W be the null space of f . Assume that for
some x0 ∈ V \W , there exists w ∈ W such that

‖x0 − w‖ = min
z∈W ‖x0 − z‖ = ‖x0 + W‖V/W .

Then (cf. Exercise 2.44)

‖ f ‖ = | f (x0)|
‖x0 + W‖V/W

= | f (x0 − w)|
‖x0 − w‖ ,

which shows that f attaines its norm for the unit vector (x0 − w)/‖x0 − w‖. Thus,
if W is the null space of a continuous linear functional whose norm is not attained
on the unit sphere, and if x0 is point not in that subspace, such a w cannot exist. �

5.7 Exercises

5.1 Let V be a Banach space and let W be a closed subspace of V . Show that the
weak topology on W is the topology induced on W by the weak topology on V .

5.2 Let V be a Banach space and let W be a subspace of V . Show that the closure
of W under the weak topology coincides with W , the closure of W in the norm
topology.

5.3 Let V be a Banach space and let W be a subspace of V . Show that W⊥ ⊂ V ∗
is weak* closed.
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5.4 Let V be a Banach space. Show that V with its weak topology and V ∗ with
its weak* topology are both locally convex topological vector spaces (cf. Remark
3.3.2).

5.5 Use the preceding exercise and Remark 3.3.2 to show that if V is a Banach space
and ifW is a subspace of V ∗, then the weak* closure ofW is (W⊥)⊥. (Compare this
with Exercise 3.9.)

5.6 Let V be a Banach space.
(a) Show that xn ⇀ x in V if, and only if,
(i) {‖xn‖} is bounded and (ii) f (xn) → f (x) for all f ∈ S, where S is a subset of
V ∗ whose span is dense in V ∗.
(b) Show that fn

∗
⇀ f in V ∗ if, and only if,

(i) {‖ fn‖} is bounded and (ii) fn(x) → f (x) for all x ∈ S, where S is a subset of V
whose span is dense in V .

5.7 Let 1 < p < ∞. Let xn = (x j
n ), 1 ≤ n < ∞, and x = (x j ) be elements of �p.

Show that xn ⇀ x in �p if, and only if, the sequence {xn} is bounded and x j
n → x j

for every positive integer j .

5.8 Let V be a Banach space and let W ⊂ V be a closed subspace. Let {xn} be a
sequence in W . Show that the sequence converges weakly in W if, and only if, it
converges weakly in V .

5.9 Is the sequence {en} weakly convergent in c0? Is it weakly convergent in �∞?

5.10 Let xn = (1, 1/2, 1/3, . . . , 1/n, 0, 0, 0, . . .). In which of the spaces �p, 1 ≤
p ≤ ∞, does this sequence converge weakly?

5.11 Let xn = (0, . . . , 0, 1, 1, 1, . . .), where the first entry equal to unity is in the
n-th place. Does the sequence {xn} converge weakly in c?

5.12 Let V be a Banach space and let xn ⇀ x in V . If ‖xn‖ ≤ ‖x‖ for every n, show
that ‖xn‖ → ‖x‖.
5.13 Let xn = en − e1 ∈ c0. Show that {xn} converges weakly in c0 and that {‖xn‖}
converges to the norm of the weak limit. Show also that {xn} does not converge in
norm.

5.14 Show that if xn ⇀ x in �2 and if ‖xn‖2 → ‖x‖2, then xn → x in �2.

5.15 Let V and W be Banach spaces and let T : V → W be a linear map. Show
that the following are equivalent:
(i) If xn → x in V , then T (xn) → T (x) in W .
(ii) If xn ⇀ x in V , then T (xn) ⇀ T (x) in W .
(iii) If xn → x in V , then T (xn) ⇀ T (x) in W .
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5.16 Let V and W be Banach spaces. Let V be provided with the norm topology
and W with the weak topology. Let T : V → W be a linear map. Show that T is
continuous if, and only if, T ∈ L(V,W ). What happens when the topologies are
interchanged?

5.17 Let V be a Banach space. Show that every weak∗ open neighbourhood of the
origin in V ∗ is unbounded.

5.18 Let {xn} be the sequence defined in Exercise 5.10. Is it weak∗ convergent in
�1?

5.19 Show that en
∗

⇀ 0 in all the spaces �p, 1 ≤ p ≤ ∞.

5.20 Let {xn} be the sequence defined in Exercise 5.11. Is it weak∗ convergent in
�∞?

5.21 Let V be a reflexive space and let T ∈ L(V, �1) be surjective. Show that it
does not admit a right inverse.

5.22 Define T : c0 → �1 as follows: let x = (xn) ∈ c0 and

T (x) =
( xn
n2

)
.

Show that T ∈ L(c0, �1). If B is the closed unit ball in c0, show that T (B) is not
closed in �1.

5.23 Let V be a reflexive Banach space. IfW is a Banach space and if T ∈ L(V,W ),
show that T (B) is closed in W , where B is the closed unit ball in V .

5.24 Show that �1 does not contain an infinite dimensional subspace that is reflexive.

5.25 Let 1 ≤ p < ∞. Show that �p is separable.

5.26 Show that c0 is separable.

5.27 Show that C[0, 1] is separable.
5.28 Let V be a reflexive real Banach space and let a(·, ·) : V × V → R be a contin-
uous bilinear form (cf. Example 4.7.5). Assume that a(·, ·) is V -elliptic (or, coercive);
i.e. there exists α > 0 such that, for all x ∈ V ,

a(x, x) ≥ α‖x‖2.

Let x ∈ V . Define A(x) : V → R by

A(x)(y) = a(x, y).
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(a) Show that A(x) ∈ V ∗ for every x ∈ V .
(b) Show that A ∈ L(V, V ∗).
(c) Show that for every x ∈ V ,

‖A(x)‖ ≥ α‖x‖.

(d) Show that A : V → V ∗ is surjective.
(e) Deduce that, for every f ∈ V ∗, there exists a unique x ∈ V such that

a(x, y) = f (y) (5.7.1)

for all y ∈ V .

5.29 In the preceding exercise, assume further that a(·, ·) is symmetric i.e. a(x, y) =
a(y, x) for all x and y ∈ V . Let f ∈ V ∗. Define, for x ∈ V ,

J (x) = 1

2
a(x, x) − f (x).

(a) For any closed convex subset K ⊂ V , show that there exists x ∈ K such that

J (x) = min
y∈K J (y). (5.7.2)

(b) Show that x ∈ K satisfies (5.7.2) if, and only if,

a(x, y − x) ≥ f (y − x) (5.7.3)

for every y ∈ K .
(c) Show that the solution x ∈ K of (5.7.3) (and hence, that of (5.7.2)) is unique.
(d) If K is a closed convex cone (cf. Definition 3.5.1), show that the solution x ∈ K
of (5.7.3) is characterized by

a(x, x) = f (x) and a(x, y) ≥ f (y)

for all y ∈ K .
(e) If K = V , show that the solution x of (5.7.3) is the solution of (5.7.1).



Chapter 6
L p Spaces

6.1 Basic Properties

The Lebesgue spaces, also known as the L p spaces, constitute a rich source of
examples and counterexamples in functional analysis. They also form an important
class of function spaces when studying the applications of mathematical analysis. In
this chapter,wewill study the important properties of these spaces from the functional
analytic point of view. Let (X,S,μ) be a measure space (cf. Sect. 1.3).

Let f : X → R be a real-valued measurable function defined on X . Let 1 ≤ p <

∞. We define

‖ f ‖p =
⎛
⎝

∫

X

| f |p dμ
⎞
⎠

1
p

(6.1.1)

and we say that f is p-integrable (integrable, if p = 1 and square integrable, if
p = 2) if ‖ f ‖p < ∞. Next, let M > 0. We set

{| f | > M} = {x ∈ X | | f (x)| > M}.

We now define
‖ f ‖∞ = inf{M > 0 | μ({| f | > M}) = 0} (6.1.2)

and we say that f is essentially bounded if ‖ f ‖∞ < ∞.

Proposition 6.1.1 (Hölder’s Inequality) Let 1 ≤ p < ∞ and let p∗ be the conjugate
exponent. If f is p-integrable and g is p∗-integrable (essentially bounded, if p = 1),
then ∫

X

| f g| dμ ≤ ‖ f ‖p‖g‖p∗ . (6.1.3)
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Proof If p = 1, then p∗ = ∞. Then

| f (x)g(x)| ≤ | f (x)|.‖g‖∞

for almost every x ∈ X and then (6.1.3) follows on integrating this inequality over X .
Let us now assume that 1 < p < ∞ so that 1 < p∗ < ∞ as well. The rela-

tion (6.1.3) is trivially true if ‖ f ‖p (respectively, ‖g‖p∗ ) equals zero, for then f
(respectively, g) will be equal to zero almost everywhere. So we assume further that
‖ f ‖p �= 0 and that ‖g‖p∗ �= 0. Then (cf. Lemma 2.2.1)

| f (x)g(x)| ≤ 1

p
| f (x)|p + 1

p∗ |g(x)|p∗

for all x ∈ X . Assume now that ‖ f ‖p = ‖g‖p∗ = 1. Then, integrating the above
inequality over X , we get

∫

X

| f g| dμ ≤ 1

p
+ 1

p∗ = 1.

For the general case, apply the preceding result to the functions f/‖ f ‖p and g/‖g‖p∗

to get (6.1.3). �

Remark 6.1.1 When p = p∗ = 2, once again (6.1.3) is known as the Cauchy-
Schwarz inequality. �

Proposition 6.1.2 (Minkowski’s Inequality) Let 1 ≤ p ≤ ∞. Let f and g be p-
integrable. Then f + g is also p-integrable and

‖ f + g‖p ≤ ‖ f ‖p + ‖g‖p. (6.1.4)

Proof We assume that ‖ f + g‖p �= 0, since, otherwise, the result is trivially true.
Since the function t 	→ |t |p is convex for 1 ≤ p < ∞, we have that

| f (x) + g(x)|p ≤ 2p−1(| f (x)|p + |g(x)|p)

from which it follows that f + g is also p-integrable. Thus, if 1 < p < ∞, we have

∫

X

| f + g|p dμ ≤
∫

X

| f + g|p−1| f | dμ +
∫

X

| f + g|p−1|g| dμ.

We apply Hölder’s inequality to each of the terms on the right-hand side. Notice that
| f (x) + g(x)|(p−1)p∗ = | f (x) + g(x)|p by the definition of p∗. Thus | f + g|p−1 is
p∗-integrable and

‖ | f + g|p−1‖p∗ = ‖ f + g‖
p
p∗
p .
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Thus,

‖ f + g‖p
p ≤ ‖ f + g‖

p
p∗
p (‖ f ‖p + ‖g‖p).

Dividing both sides by ‖ f + g‖
p
p∗
p and using, once again, the definition of p∗, we

get (6.1.4). The cases where p = 1 and p = ∞ follow trivially from the inequality

| f (x) + g(x)| ≤ | f (x)| + |g(x)|.

This completes the proof. �

It is now easy to see that the space of all p-integrable functions (1 ≤ p < ∞) and
that of all essentially bounded functions are vector spaces and that the map f 	→
‖ f ‖p for 1 ≤ p ≤ ∞ verifies all the properties of the norm, except that ‖ f ‖p = 0
does not imply that f = 0, but that f = 0 almost everywhere (a.e.; cf. Sect. 1.3).

Given two measurable functions f and g, we say that f ∼ g if f = g almost
everywhere, i.e. f (x) = g(x) everywhere, except over a subset of measure zero. This
defines an equivalence relation. If f ∼ g, then for 1 ≤ p ≤ ∞, we have that ‖ f ‖p =
‖g‖p. Further the set of all equivalence classes forms a vector space with respect
to pointwise addition and scalar multiplication defined via arbitrary representatives
of equivalence classes. In other words, if f1 ∼ f2 and if g1 ∼ g2, then f1 + g1 ∼
f2 + g2 and, for any scalar α, we also have α f1 ∼ α f2 and so on. Since ‖ · ‖p is
also constant on any equivalence class, we can define the ‘norm’ of an equivalence
class via any representative function of that class. Further, if ‖ f ‖p = 0, then f will
belong to the equivalence class of the function which is identically zero. Thus the
set of all equivalence classes, with ‖ · ‖p, becomes a normed linear space.

Definition 6.1.1 Let (X,S,μ) be a measure space. Let 1 ≤ p < ∞. The space of
all equivalence classes, under the equivalence relation defined by equality of func-
tions almost everywhere, of all p-integrable functions is a normed linear space with
the norm of an equivalence class being the ‖ · ‖p-‘norm’ of any representative of
that class. This space is denoted L p(μ). The space of all equivalence classes of all
essentially bounded functions with the norm of an equivalence class being defined
as the ‖ · ‖∞-‘norm’ of any representative of that class is denoted L∞(μ). �

Whilewemay often talk of ‘L p-functions’wemust keep inmind that we are really
talking about equivalence classes of functions and that we carry out computations
via representatives of those equivalence classes.

NotationWe will denote elements of L p(μ) by lowercase Roman letters in sanserif
font and a generic representative of the equivalence class it represents by the same
lowercase Roman letter in italicized font. Thus if we have f ∈ L p(μ), a generic
representative will be f and so, for instance,
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‖f‖p =
⎛
⎝

∫

X

| f |p dμ
⎞
⎠

1
p

for 1 ≤ p < ∞.
Similarly, the equivalence class of a function f will be denoted by f.

Notation If X = �, an open set ofRn provided with the Lebesgue measure, then the
corresponding spaces L p(μ) will be denoted L p(�). In particular, if R is provided
with the Lebesgue measure and if (a, b) is an interval, where −∞ ≤ a < b ≤ +∞,
then the L p spaces on (a, b) will be denoted L p(a, b).

Example 6.1.1 Let X = {1, 2, . . . , n}. Let S be the collection of all subsets of X
and let μ be the counting measure (cf. Example 1.3.1). Then a measurable function
can be identified with an n-tuple (a1, a2, . . . , an). In this case L p(μ) = �np. Notice
that in this example, equality almost everywhere is the same as equality everywhere
and so every equivalence class is a singleton. �

Example 6.1.2 Let X = N, the set of all natural numbers and let S be the collection
of all subsets of X . Letμ be the countingmeasure. In this case, functions are identified
with real sequences and L p(μ) = �p. Again, in this example, equivalence classes are
just singletons. �

Proposition 6.1.3 Let (X,S,μ) be a finite measure space, i.e. μ(X) < ∞. Then

L p(μ) ⊂ Lq(μ)

with the inclusion being continuous, whenever 1 ≤ q ≤ p.

Proof The result is trivial if p = ∞. Let 1 ≤ q < p < ∞ and let f ∈ L p(μ). Then,
by Hölder’s inequality, we have

∫
| f |q dμ ≤

⎛
⎝

∫

X

(| f |q) p
q dμ

⎞
⎠

q
p
⎛
⎝

∫

X

dμ

⎞
⎠

1− q
p

=
⎛
⎝

∫

X

| f |p dμ
⎞
⎠

q
p

(μ(X))
1− q

p

= ‖f‖qp.(μ(X))
1− q

p

which yields
‖f‖q ≤ C ‖f‖p
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where
C = (μ(X))

1
q − 1

p .

This completes the proof. �

Example 6.1.3 No such inclusions hold in infinite measure spaces. For instance, the
sequence ( 1n ) belongs to �2 but not to �1. �

Example 6.1.4 Nothing can be said about the reverse inclusions. For example, if
f (x) = 1/

√
x , then f ∈ L1(0, 1) but f /∈ L2(0, 1). However, we know that (cf. Exer-

cise 2.32) �p ⊂ �q for all 1 ≤ p < q ≤ ∞. �

Theorem 6.1.1 Let (X,S,μ) be a measure space. Let 1 ≤ p ≤ ∞. Then L p(μ) is
a Banach space.

Proof Case 1. Let 1 ≤ p < ∞. Let {fn} be a Cauchy sequence in L p(μ). It is enough
to show that there exists a convergent subsequence (why?). Choose a subsequence
such that

‖ fnk − fnk+1‖p ≤ 1

2k
.

Set

gn(x) =
n∑

k=1

| fnk+1(x) − fnk (x)|

and

g(x) =
∞∑
k=1

| fnk+1(x) − fnk (x)|.

Then
‖gn‖p ≤ 1.

It follows that gn(x) → g(x) and, by the monotone convergence theorem (cf. The-
orem 1.3.1), we see that ‖g‖p ≤ 1. In particular, g(x) < ∞ almost everywhere.
Further, if k ≥ l ≥ 2, we have

| fnk (x) − fnl (x)| ≤ | fnk (x) − fnk−1(x)| + . . . + | fnl+1(x) − fnl (x)|
≤ g(x) − gl−1(x).

Thus, it follows that, for almost every x ∈ X , { fnk (x)} is a Cauchy sequence and
converges almost everywhere to a finite limit f (x) and that, for such x ,

| f (x) − fnk (x)| ≤ g(x)

for k ≥ 2. Set f = 0 elsewhere, which is a set of measure zero. It then follows that f
is p-integrable. Further, | fnk (x) − f (x)|p → 0 almost everywhere and is bounded
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by |g(x)|p which is integrable. Hence, by the dominated convergence theorem (cf.
Theorem 1.3.3), we deduce that ‖ fnk − f ‖p → 0. Thus we have that

fnk → f

in L p(μ).

Case 2. p = ∞. Let {fn} be Cauchy in L∞(μ). Then, for each k, there exists a positive
integer Nk such that

‖fm − fn‖∞ <
1

k

for all m, n ≥ Nk . Thus, there exists a set Ek of measure zero, such that

| fm(x) − fn(x)| ≤ 1

k

for all m, n ≥ Nk and for all x ∈ X\Ek . Setting E = ∪∞
k=1Ek , we see that E is of

measure zero and for all x ∈ X\E , the sequence { fn(x)} is a Cauchy sequence in R.
Thus, for all such x , fn(x) → f (x). Passing to the limit asm → ∞, we see that, for
all x ∈ X\E , and for all n ≥ Nk ,

| f (x) − fn(x)| ≤ 1

k
.

Hence, it follows that f is essentially bounded and that fn → f in L∞(μ).

This completes the proof. �

Corollary 6.1.1 Let (X,S,μ) be a measure space and let fn → f in L p(μ) for some
1 ≤ p ≤ ∞. Then, there exists a subsequence fnk such that
(i) fnk (x) → f (x) almost everywhere.
(ii) | fnk (x)| ≤ h(x) almost everywhere for some h ∈ L p(μ).

Proof The result is obvious in the case p = ∞. Let 1 ≤ p < ∞. Then, as in the
case of the preceding theorem, we have a subsequence {fnk } which converges to a
function f̃ in L p(μ)and also such that fnk (x) → f̃ (x) almost everywhere. It is then
clear that f̃ = f, i.e. f̃ = f almost everywhere, and this proves (i). To see (ii), take
h = f̃ + g, where g is as in the proof of the preceding theorem. �

6.2 Duals of L p Spaces

In Chap. 3, we identified the dual of the space �p with �p∗ where 1 ≤ p < ∞ and p∗
is the conjugate exponent of p. Similar results are true in more general L p spaces.
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Proposition 6.2.1 (Clarkson’s Inequality) Let (X,S,μ) be a measure space and let
2 ≤ p < ∞. Then if f and g ∈ L p(μ),

∥∥∥∥
1

2
(f + g)

∥∥∥∥
p

p

+
∥∥∥∥
1

2
(f − g)

∥∥∥∥
p

p

≤ 1

2

(‖f‖p
p + ‖g‖p

p

)
. (6.2.1)

Proof Consider the function

ϕ(x) = (x2 + 1)
p
2 − x p − 1

for x ≥ 0. Then it is simple to check that ϕ(0) = 0 and that ϕ′(x) > 0 for x > 0
when p ≥ 2. Thus, it follows that for all x ≥ 0,

(x2 + 1)
p
2 ≥ x p + 1,

when p ≥ 2. Hence, if α and β are positive real numbers, we have

(α2 + β2)
p
2 ≥ αp + β p.

Combining this with the fact that the function t 	→ t
p
2 is convex on the set {t ∈

R | t ≥ 0}, we get, for any x ∈ X and for any f and g ∈ L p(μ),

∣∣∣ f (x)+g(x)
2

∣∣∣
p +

∣∣∣ f (x)−g(x)
2

∣∣∣
p ≤

(∣∣∣ f (x)+g(x)
2

∣∣∣
2 +

∣∣∣ f (x)−g(x)
2

∣∣∣
2
) p

2

=
( | f (x)|2+|g(x)|2

2

) p
2

≤ 1
2 (| f (x)|p + |g(x)|p)

which yields (6.2.1) on integration over X. �

Corollary 6.2.1 Let (X,S,μ) be a measure space. Then, the spaces L p(μ) are
reflexive when 2 ≤ p < ∞.

Proof Arguing as in Example 5.5.2, it is easy to see that (6.2.1) implies that L p(μ)

is uniformly convex when 2 ≤ p < ∞. The reflexivity now follows from Theorem
5.5.1. �

Theorem 6.2.1 (Riesz Representation Theorem) Let (X,S,μ) be a measure space
and let 1 < p < ∞. Let p∗ be the conjugate exponent. Then the dual of L p(μ) is
isometrically isomorphic to L p∗

(μ). In particular, the spaces L p(μ) are reflexive for
all 1 < p < ∞.

Proof Step 1. Let g ∈ L p∗
(μ). Define Tg: L p(μ) → R by

Tg(f) =
∫

X

f g dμ
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for f ∈ L p(μ). Clearly, Tg is a linear functional, and, by Hölder’s inequality, it is
continuous as well. In fact, we have

‖Tg‖ ≤ ‖g‖p∗ .

Now, consider the function

f (x) =
{ |g(x)|p∗−2g(x), if g(x) �= 0
0, if g(x) = 0.

Then | f |p = |g|(p∗−1)p = |g|p∗
so that f is p-integrable. Also

Tg( f ) =
∫

X

|g|p∗
dμ

from which we deduce that
‖Tg‖ = ‖g‖p∗ .

Thus, the map g 	→ Tg is an isometry from L p∗
(μ) into L p(μ)∗. Hence its image is

closed. It is enough now to show that the image is dense.

Step 2. We now show that L p(μ) is reflexive for all 1 < p < ∞. This has already
been proved for 2 ≤ p < ∞. Thus L p(μ)∗ is also reflexive for such p and so is
every closed subspace of this dual space. Thus, by the preceding step, L p∗

(μ) which
is isometrically isomorphic to a closed subspace of the dual of L p(μ) is also reflexive
for 2 ≤ p < ∞. But then 1 < p∗ ≤ 2. This proves that L p(μ) is also reflexive when
1 < p ≤ 2. This establishes the claim.

Step 3. We are now in a position to show that the isometry g 	→ Tg from L p∗
(μ) to

the dual space L p(μ)∗ is onto. As already observed, the image is a closed subspace
and we now show that it is dense. Indeed, let ϕ ∈ L p(μ)∗∗ vanish on the image. We
need to show that ϕ is the zero functional. Since all the L p(μ) are reflexive, this
means that there exists f ∈ L p(μ) such that, for all g ∈ L p∗

(μ), we have

∫

X

f g dμ = 0.

Once again, choosing g = | f |p−2 f (and equal to zero where f vanishes) we deduce
that f = 0. This completes the proof. �

Remark 6.2.1 We have seen earlier that �∗
1 = �∞. In the same way, it is true that

for σ-finite measure spaces, we have L1(μ)∗ = L∞(μ). However, the proof of this
result relies on very measure theoretic arguments and we shall omit it. Nevertheless,
in the next section, we will prove it for a very important class of L1 spaces. �
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Remark 6.2.2 The measure theoretic proof mentioned in the preceding remark cov-
ers completely the cases 1 ≤ p < ∞. However, it works only for σ-finite measure
spaces. The proof that we have presented here shows that the hypothesis of σ-
finiteness is not necessary for the cases 1 < p < ∞, for the Riesz representation
theorem to hold. �

6.3 The Spaces L p(�)

In this section, we will study the properties of a very important class of L p spaces
defined on open sets in the Euclidean spaces RN .

Let � ⊂ R
N be an open set. Consider the Lebesgue measure on this set. Then, as

mentioned in Sect. 6.1, we will denote the corresponding L p spaces by L p(�).
In the sequel, if we say that a certain function space is contained in (respectively,

is dense in), L p(�), we will understand that we are talking about the set of all
equivalence classes of functions in that space being contained in (respectively, being
dense in) L p(�).

Proposition 6.3.1 Let S be the set of all simple functions which vanish outside a set
of finite measure. Then S is dense in L p(�) for 1 ≤ p < ∞.

Proof Let ϕ ∈ S. Since ϕ vanishes outside a set of finite measure, it is automatically
p-integrable for 1 ≤ p < ∞. Let f ≥ 0 be a p-integrable function. Then, there exists
a sequence {ϕn} of non-negative simple functionswhich increase to f (cf. Proposition
1.3.2). Since f is p-integrable, so is ϕn and so ϕn will also vanish outside a set of
finite measure. Further

|ϕn(x) − f (x)|p ≤ 2p| f (x)|p

for x ∈ � and, since | f |p is integrable, it follows from the dominated convergence
theorem that ∫

�

|ϕn − f |p dx → 0

as n → ∞. If f is an arbitrary p-integrable function, then we have sequences {ϕn}
and {ψn} of simple functions vanishing outside sets of finite measure and such that

∫

�

|ϕn − f +|p dx → 0 and
∫

�

|ψn − f −|p dx → 0.

Thusχn = ϕn − ψn is a simple functionwhichvanishes outside a set of finitemeasure
and ∫

�

|χn − f |p dx → 0
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as n → ∞. This proves the result. �

Theorem 6.3.1 Let 1 ≤ p < ∞. Let � ⊂ R
N be open. Then, Cc(�), the space of

all continuous functions with compact support contained in �, is dense in L p(�).

Proof By the preceding proposition, we know that S is dense in L p(�). Thus, given
ϕ ∈ S, it is enough to show that it can be approximated (in the L p-norm) as closely
as we wish by a continuous function with compact support. Indeed, let ε > 0. By
Lusin’s theorem (cf. Royden [1]), we can find a continuous function g, with compact
support, such that g = ϕ except possibly on a set whose measure is less than ε and
also such that |g(x)| ≤ ‖ϕ‖∞. Then

∫

�

|g − ϕ|p dx ≤ 2p‖ϕ‖p
∞ε.

This shows that Cc(�) is dense (with respect to the norm ‖.‖p) in S which, in turn,
is dense in L p(�). This proves the result. �

Remark 6.3.1 In fact it can be shown that the space of infinitely differentiable func-
tions with compact support contained in � is dense in L p(�) for 1 ≤ p < ∞. For
this we need to develop the theory of convolution of functions (cf. Theorem 6.3.3
below). For details, see Kesavan [2]. �

Corollary 6.3.1 Let � ⊂ R
N be an open set. Let 1 ≤ p < ∞. Then, L p(�) is sep-

arable.

Proof Recall that, by theWeierstrass approximation theorem, a continuous functiuon
on a compact set can be uniformly approximated bymeans of a polynomial and hence,
by a polynomial with rational coefficients and such polynomials form a countable
set.

We can write
� = ∪∞

n=1�n

where �n = � ∩ B(0; n); here B(0; n) is the ball centred at the origin and with
radius n in R

N . Notice that �n is bounded and is hence relatively compact; i.e. �n

is compact.
Let ε > 0 and let f be p-integrable over �. Then, by the preceding theorem, we

can find a continuous function g, with compact support such that ‖ f − g‖p < ε.
Since the support of g is compact, its support will lie in some �n . Thus, we can find
a polynomial p with rational coefficients such that, for all x ∈ �n ,

|g(x) − p(x)| <
ε

|�n| 1
p

where |�n| denotes the (Lebesgue)measure of�n . Setting p = 0 outside�n , we then
see that ‖g − p‖p < ε so that ‖ f − p‖p < 2ε. Thus any p-integrable function can
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be approximated in the norm ‖ · ‖p by means of a function which vanishes outside
some �n and is equal to a polynomial with rational coefficients inside �n . The
collection of all such functions being countable, we deduce that L p(�) is separable
for 1 ≤ p < ∞. �

Proposition 6.3.2 Let � ⊂ R
N be an open set. Then, L∞(�) is not separable.

Proof Let x ∈ �. Let r = r(x) > 0 be chosen such that the ball B(x; r) ⊂ �. Define

χx (y) =
{
1, if y ∈ B(x; r)
0, otherwise.

Set
Ux = {f ∈ L∞(�) | ‖f − χx‖∞ < 1/4}.

Then, for each x ∈ �, Ux is a non-empty open subset of L∞(�). If x �= y, then
‖χx − χy‖∞ = 1 (why?). Hence Ux ∩Uy = ∅.

Now let E = {fn} be any countable set in L∞(�). If such a set were dense, then
E ∩Ux �= ∅ for each x ∈ �. However, any fn can belong to at most one such open
setUx since the setsUx are pairwise disjoint. This is a contradiction since the number
of open sets Ux is uncountable. Thus, no countable set in L∞(�) can be dense. �

Remark 6.3.2 In general, if a normed linear space contains an uncountable number
of disjoint open balls, then the space cannot be separable. This idea was already used
in Example 5.4.2. �

Definition 6.3.1 Let � ⊂ R
N be an open set and let f : � → R be a measurable

function. We say that f is locally integrable if
∫
K | f | dx < ∞ for every compact

set K ⊂ �. �

We denote the set of all locally integrable functions on � by L1
loc(�).

Proposition 6.3.3 Let f ∈ L1
loc(�) be such that

∫

�

f g dx = 0

for all g ∈ Cc(�). Then f = 0 almost everywhere in �.

Proof Step 1. We first assume that f is integrable on � and that |�|, the measure
of �, is finite. Let ε > 0. Then, there exists a continuous function f1, with compact
support, such that ‖ f − f1‖1 < ε (cf. Theorem 6.3.1). Thus, if g ∈ Cc(�), we have

∣∣∣∣∣∣

∫

�

f1g dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

�

( f1 − f )g dx

∣∣∣∣∣∣
≤ ε‖g‖∞. (6.3.1)
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Let
K1 = {x ∈ � | f1(x) ≥ ε}
K2 = {x ∈ � | f1(x) ≤ −ε}.

Then, K1 and K2 are disjoint and compact sets (since f1 is a continuous function with
compact support) and by Urysohn’s lemma, we can construct a continuous function
h, also with compact support such that h ≡ 1 on K1 and h ≡ −1 on K2. Further, we
can also have |h(x)| ≤ 1 for all x ∈ �. Set K = K1 ∪ K2. Then

∫

�

f1h dx =
∫

�\K
f1h dx +

∫

K

f1h dx,

whence, in view of (6.3.1), we have

∫

K

| f1| dx =
∫

K

f1h dx ≤ ε +
∫

�\K
| f1h| dx ≤ ε +

∫

�\K
| f1| dx .

Since | f1(x)| ≤ ε on �\K , we deduce that

∫

�

| f1| dx =
∫

K

| f1| dx +
∫

�\K
| f1| dx

≤ ε + 2
∫

�\K
| f1| dx

≤ ε + 2ε|�|.

Thus,
‖ f ‖1 ≤ ‖ f − f1‖1 + ‖ f1‖1 ≤ 2ε + 2ε|�|.

Since ε is arbitrary, it follows that f (x) = 0 almost everywhere in �.

Step 2. In the general case, we again write � = ∪∞
n=1�n where �n = � ∩ B(0; n).

Then applying the result of Step 1 to the restriction of f to �n , denoted f |�n , we
get that f |�n = 0 almost everywhere in �n from which it immediately follows that
f = 0 almost everywhere in �. �

Let us now turn our attention to the space L1(�).

Theorem 6.3.2 (Riesz Representation Theorem) Let � ⊂ R
N be an open set. The

dual of the space L1(�) is isometrically isomorphic to L∞(�).

Proof Step 1. There exists w ∈ L2(�) such that w(x) ≥ εK > 0 for all x ∈ K for
every compact subset K of �. Indeed, define w(x) = αn > 0 on the set

En = {x ∈ � | n ≤ |x | < n + 1},
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where |x | denotes the Euclidean norm of the vector x ∈ R
N . Now choose the con-

stants αn such that ∞∑
n=0

α2
n|En| < ∞,

where |En| denotes the (Lebesgue) measure of the set En . Then w has the required
properties.

Step 2. Let ϕ ∈ L1(�)∗. Consider the mapping f 	→ ϕ(wf) from L2(�) into R.
Clearly, this defines a linear functional which, by Hölder’s inequality, is also contin-
uous. Thus, by the Riesz representation theorem (cf. Theorem 6.2.1) applied to the
case p = 2, there exists v ∈ L2(�) such that

ϕ(wf) =
∫

�

f v dx

for all f ∈ L2(�). Thus, we have

∣∣∣∣∣∣

∫

�

f v dx

∣∣∣∣∣∣
≤ ‖ϕ‖.‖w f ‖1. (6.3.2)

Step 3. Set u(x) = v(x)/w(x) for x ∈ �. Sincew never vanishes, this is well-defined
and u is measurable. We claim that u ∈ L∞(�) and that ‖u‖∞ ≤ ‖ϕ‖. To see this it
is sufficient to show that, for any constant C > ‖ϕ‖, we have that the set

A = {x ∈ � | |u(x)| > C}

is of measure zero.
Assume the contrary for some such C > ‖ϕ‖.Then, there exists a subset B of A

of finite and positive measure. Consider the function

f (x) =
⎧⎨
⎩

+1, if x ∈ B and u(x) > 0,
−1, if x ∈ B and u(x) < 0,
0, ifx ∈ �\B.

Clearly, f is square integrable (since the measure of B is finite) and we can use it in
(6.3.2). We then get ∫

B

|u|w dx ≤ ‖ϕ‖
∫

B

w dx

and, using the definition of A, which contains B, we get
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C
∫

B

w dx ≤ ‖ϕ‖
∫

B

w dx

which is a contradiction to the choice of C , since
∫
B w dx > 0.

Step 4. Thuswe now have u ∈ L∞(�)with ‖u‖∞ ≤ ‖ϕ‖ such that, for all f ∈ L2(�),

ϕ(wf) =
∫

�

f uw dx .

Let g ∈ Cc(�). Then, by choice of w, f = g/w is square integrable and so, we get,
for all g continuous with compact support in �,

ϕ(g) =
∫

�

ug dx . (6.3.3)

Since Cc(�) is dense in L1(�), the above relation also holds for all g ∈ L1(�).
Further, it follows that

|ϕ(g)| ≤ ‖g‖1‖u‖∞

for all g ∈ L1(�) from which we deduce that ‖ϕ‖ ≤ ‖u‖∞.

Step 5. Thus, for every ϕ ∈ L1(�)∗, we have u ∈ L∞(�) such that ‖ϕ‖ = ‖u‖∞
and such that (6.3.3) holds for all g ∈ L1(�). Such a u is unique as well. Indeed if
we have two essentially bounded functions u1 and u2 such that

∫

�

g(u1 − u2) dx = 0

for all g ∈ L1(�), then it is in particular true for all g ∈ Cc(�) and, since essen-
tially bounded functions are locally integrable, it follows that (cf. Proposition 6.3.3)
u1 − u2 = 0 almost everywhere, i.e. u1 = u2 in L∞(�).

Step 6. If u ∈ L∞(�), then if we define Tu as a linear functional on L1(�) via the
right-hand side of (6.3.3), then we have just seen that u 	→ Tu is surjective and that
it is an isometry between L∞(�) and L1(�)∗. This completes the proof. �

Proposition 6.3.4 Let � ⊂ R
N be an open set. Then, L1(�) is not reflexive.

Proof Without loss of generality, assume that � contains the origin. Let n be suffi-
ciently large so that the ball centred at the origin and of radius 1/n, denoted Bn , is
contained in �. Let αn = |Bn|−1, where, as usual, |Bn| denotes the (Lebesgue) mea-
sure of Bn . Let fn(x) = αn for all x ∈ Bn and let it vanish on�\Bn . Then fn ∈ L1(�)

and ‖fn‖1 = 1 for all n. If L1(�)were reflexive, then the sequence {fn}would contain
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a weakly convergent subsequence (cf. Theorem 5.4.2), say {fnk }. Let f be its weak
limit. Then, for every h ∈ L∞(�) we must have

∫

�

fnk h dx →
∫

�

f h dx . (6.3.4)

Now choose h ∈ Cc(�\{0}). Then, for sufficiently large k, we have that

∫

�

fnk h dx = 0

(since the two functions in the integrand will then have disjoint supports) and so, it
follows that, for all such h, we have

∫
�
f h dx = 0. By Proposition 6.3.3, it then fol-

lows that f (x) = 0 almost everywhere in�\{0} and so f (x) = 0 almost everywhere
on � as well. On the other hand, if we choose h(x) = 1 for all x ∈ � in (6.3.4), we
get

∫
�
f dx = 1, which is a contradiction. Thus, L1(�) is not reflexive. �

Corollary 6.3.2 Let � ⊂ R
N be an open set. Then, L∞(�) is not reflexive.

Proof Since L1(�)∗ ∼= L∞(�), the result follows immediately from the preceding
proposition (cf. Corollary 5.3.3). �

To sum up, we have that L p(�)∗ ∼= L p∗
(�) for 1 ≤ p < ∞. The spaces L p(�)

are separable for 1 ≤ p < ∞ and reflexive for 1 < p < ∞. The space L∞(�) is
neither separable nor reflexive.

We conclude by proving an important inequality.

Theorem 6.3.3 (Young’s Inequality) Let 1 < p < ∞. Let f ∈ L1(RN ) and let g ∈
L p(RN ). Then the map

x 	→
∫

RN

f (y)g(x − y) dy

is well-defined almost everywhere in R
N . The function thus defined is denoted f ∗ g

and is called the convolution of f and g. Further, f ∗ g ∈ L p(RN ) and we also have

‖f ∗ g‖p ≤ ‖f‖1‖g‖p. (6.3.5)

Proof Let h ∈ L p∗
(RN ), where p∗ is the conjugate exponent of p. The function

(x, y) 	→ f (y)g(x − y)h(x) is measurable on RN × R
N ; consider the iterated inte-

gral

I =
∫

RN
x

∫

RN
y

| f (y)g(x − y)h(x)| dy dx .

Since the Lebesgue measure is translation invariant, we get that
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I = ∫
RN

y

| f (y)|
(∫
RN

x

|g(x − y)h(x)| dx
)

dy

≤ ‖g‖p‖h‖p∗
∫
RN

| f (y)| dy
= ‖f‖1‖g‖p‖h‖p∗ < ∞.

Thus by Fubini’s theorem, the integral

∫

RN

f (y)g(x − y)h(x) dy

exists for almost all x ∈ R
N . Let us choose h ∈ L p∗

(RN ) such that h(x) �= 0 for all
x ∈ R

N . For example, we can choose h(x) = exp(−|x |2). Thus, it follows that the
integral ∫

RN

f (y)g(x − y) dy

exists for almost all x ∈ R
N and so the convolution f ∗ g is well-defined. Further, by

the above computation it follows that the map

h 	→
∫

RN

h(x)( f ∗ g)(x) dx

is a continuous linear functional on L p∗
(RN )whose norm is bounded by ‖f‖1‖g‖p. It

follows from the Riesz representation theorem that f ∗ g ∈ L p(RN ) and that (6.3.5)
holds. �

Remark 6.3.3 By a simple change of variable it is easy to see that we can also write
the convolution of f and g as

(f ∗ g)(x) =
∫

RN

f (x − y)g(y) dy.

Remark 6.3.4 The result of Theorem 6.3.3 is valid for the case p = 1 as well. The
proof of this fact is left as an exercise. �

6.4 The Spaces W1, p(a, b)

In this section, we will study a very special case of a class of function spaces called
Sobolev spaces.
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Throughout this section, we assume that (a, b) is a finite interval in R and that
1 ≤ p < ∞.Wewill denote byD(a, b) the space of infinitely differentiable functions
with compact support contained in the interval (a, b). Recall that (cf. Remark 6.3.1)
D(a, b) is dense in L p(a, b) for 1 ≤ p < ∞.

Lemma 6.4.1 Let f ∈ L p(a, b). Assume that there exists g ∈ L p(a, b) such that, for
all ϕ ∈ D(a, b), we have

b∫

a

f ϕ′ dx = −
b∫

a

gϕ dx . (6.4.1)

Then such a g is unique.

Proof If there were two functions g1 and g2 satisfying (6.4.1) for a given f, then

b∫

a

(g1 − g2)ϕ dx = 0

for all ϕ ∈ D(a, b). Since g1 − g2 is locally integrable, it now follows that g1(x) =
g2(x) almost everywhere (cf. Proposition 6.3.3). �

Definition 6.4.1 Let (a, b) ⊂ R be a finite interval and let 1 ≤ p < ∞. The Sobolev
space W 1,p(a, b) is given by

W 1,p(a, b) = {f ∈ L p(a, b) | there exists g ∈ L p(a, b) satisfying (6.4.1)}.

Further, we define
‖f‖1,p = (‖f‖p

p + ‖g‖p
p)

1
p . �

It is a routine verification to see that ‖ · ‖1,p defines a norm on W 1,p(a, b) and
this is left to the reader. Thus, W 1,p(a, b) is a normed linear space.

Example 6.4.1 Let f ∈ C1[a, b]. Clearly f ∈ L p(a, b). If f ′ denotes the derivative
of f , then f ′ ∈ C[a, b] and so f′ ∈ L p(a, b) as well. Further, if ϕ ∈ D(a, b), then
since ϕ(a) = ϕ(b) = 0, we have, by integration by parts,

b∫

a

f ϕ′ dx = −
b∫

a

f ′ϕ dx .

Thus, f ∈ W 1,p(a, b) and it satisfies (6.4.1) with g = f ′. �

Byanalogywith the preceding example, if f ∈ W 1,p(a, b), and ifg is the associated
function as in (6.4.1), then we denote g by f′. In particular, we have
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‖f‖1,p = (‖f‖p
p + ‖f′‖p

p)
1
p .

In the literature, f′ is known as the generalized or distributional derivative of f.

Proposition 6.4.1 Let 1 ≤ p < ∞ and let (a, b) ⊂ R
n be a finite interval. Then,

W 1,p(a, b) is a Banach space.

Proof We just need to prove the completeness. Let {fn} be a Cauchy sequence in
W 1,p(a, b). Then {fn} and {f′n} are both Cauchy sequences in L p(a, b). Let fn → f
and f′n → g in L p(a, b). Now, if ϕ ∈ D(a, b), we have

b∫

a

fnϕ
′ dx = −

b∫

a

f ′
nϕ dx

for all n. Passing to the limit as n → ∞, we deduce that the pair (f,g) satisfies (6.4.1).
Thus f ∈ W 1,p(a, b) and f′ = g. Further, it follows that fn → f in W 1,p(a, b). This
completes the proof. �
Proposition 6.4.2 The space W 1,p(a, b) is reflexive if 1 < p < ∞ and separable if
1 ≤ p < ∞.

Proof Since the space L p(a, b) is reflexive if 1 < p < ∞, so is the space (L p(a, b))2

(why?). Similarly, (L p(a, b))2 is separable if 1 ≤ p < ∞. Now, the spaceW 1,p(a, b)
is isometric to a subspace of (L p(a, b))2 via themapping f 	→ (f, f′). SinceW 1,p(a, b)
is complete, the image is a closed subspace of (L p(a, b))2 and so it inherits the
reflexivity and separability properties from that space. This completes the proof. �

We will now study some finer properties of these Sobolev spaces.

Lemma 6.4.2 Let ϕ ∈ D(a, b). Then, there exists ψ ∈ D(a, b) such that ψ′ = ϕ if,
and only if,

b∫

a

ϕ(t) dt = 0.

Proof Assume that ϕ = ψ′ for some ψ ∈ D(a, b). Then, since ψ(a) = ψ(b) = 0, it
follows that

b∫

a

ϕ(t) dt =
b∫

a

ψ′(t) dt = ψ(b) − ψ(a) = 0.

Conversely, let
b∫
a

ϕ(t) dt = 0. Let the support ofϕ be contained in [c, d] ⊂ (a, b).

Now, define

ψ(t) =
t∫

a

ϕ(s) ds.
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Clearlyψ is infinitely differentiable sinceψ′ = ϕ. Further,ψ vanishes on the interval
(a, c) and, by hypothesis, on the interval (d, b) as well. Thus the support of ψ is also
contained in [c, d] and so ψ ∈ D(a, b). This completes the proof. �

Corollary 6.4.1 Let f ∈ L p(a, b) where 1 ≤ p < ∞. Assume that

b∫

a

f ϕ′ dx = 0

for all ϕ ∈ D(a, b). Then f is equal to a constant almost everywhere in (a, b).

Proof Choose ϕ0 ∈ D(a, b) such that
∫ b
a ϕ0(t) dt = 1. Let ϕ ∈ D(a, b) be an arbi-

trary element. Set

φ = ϕ −
⎛
⎝

b∫

a

ϕ(t) dt

⎞
⎠ϕ0.

Then
∫ b
a φ(t) dt = 0 and so φ = ψ′ for some ψ ∈ D(a, b). Thus,

b∫
a

f φ dt = 0 which

yields
b∫

a

f ϕ =
b∫

a

ϕ dt.

b∫

a

f ϕ0 dt.

Setting c = ∫ b
a f ϕ0 dt , we get

b∫

a

( f − c)ϕ dt = 0

for all ϕ ∈ D(a, b), whence, by Proposition 6.3.3, it follows that f (x) = c almost
everywhere in (a, b). This completes the proof. �

Remark 6.4.1 If ϕ1 were another function in D(a, b) such that
∫ b
a ϕ1(t)dt = 1,

then since
∫ b
a (ϕ0 − ϕ1) dt = 0, it follows that ϕ0 − ϕ1 = ψ′ for some ψ ∈ D(a, b).

Therefore, by hypothesis,
∫ b
a f (ϕ0 − ϕ1) dt = 0. Thus, the constant c defined in

the above proof does not depend on the choice of the function ϕ0 whose integral is
unity. �

Let us denote by C∞[a, b] the space of all functions which are infinitely differen-
tiable in the open interval (a, b) and such that the functions and all their derivatives
possess continuous extensions to [a, b].
Proposition 6.4.3 Let 1 ≤ p < ∞. Then C∞[a, b] is dense in W 1,p(a, b).
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Proof It is clear that if f ∈ C∞[a, b], then f ∈ W 1,p(a, b) and its distributional
derivative is just its classical derivative. Now, let f ∈ W 1,p(a, b). Since f′ ∈ L p(a, b),
choose ϕn ∈ D(a, b) such that ϕn → f′ in L p(a, b). Define

ψn(x) =
x∫

a

ϕn(t) dt.

Then ψn ∈ C∞[a, b]. Further, for x ∈ [a, b],

|ψn(x) − ψm(x)| ≤
b∫

a

|ϕn(t) − ϕm(t)| dt ≤ (b − a)
1
p∗ ‖ϕn − ϕm‖p

by Hölder’s inequality. Thus,

‖ψn − ψm‖p ≤ (b − a)‖ϕn − ϕm‖p.

It then follows that {ψn} is Cauchy in L p(a, b) (since {ϕn}is Cauchy) and so let
ψn → h in L p(a, b). Since ψ′

n = ϕn , it is now easy to verify that h ∈ W 1,p(a, b) and
that h′ = f′. By the preceding corollary, it follows that f − h is equal to a constant,
say c. Thus, if we set χn = ψn + c, then χn ∈ C∞[a, b], χn → f in L p(a, b) and
χ′
n → f′ in L p(a, b). This completes the proof. �

Wenow briefly digress to recall some facts about absolutely continuous functions.

Definition 6.4.2 A function f : [a, b] → R is said to be absolutely continuous on
[a, b] if, for every ε > 0, there exists δ > 0 such that whenever we have a finite
collection of disjoint intervals {(xi , x ′

i )}ni=1 contained in (a, b) satisfying

n∑
i=1

(x ′
i − xi ) < δ,

we have
n∑

i=1

| f (x ′
i ) − f (xi )| < ε.

�

Clearly, any absolutely continuous function is uniformly continuous. It can also
be shown (cf. Royden [1]) that an absolutely continuous function is differentiable
almost everywhere and that its derivative is an integrable function. The following
two results are very important (cf. Royden [1]).
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Theorem 6.4.1 A function f : [a, b] → R can be expressed as an indefinite integral
of an integrable function if, and only if, it is absolutely continuous. In this case we
have

f (x) = f (a) +
x∫

a

f ′(t) dt.
�

Theorem 6.4.2 (Integrationbyparts)Let f and g beabsolutely continuous functions
on [a, b]. Then

b∫

a

f (t)g′(t) dt = f (b)g(b) − f (a)g(a) −
b∫

a

f ′(t)g(t) dt.
�

If f ∈ C1[a, b], then it is absolutely continuous. In particular, if ϕ ∈ D(a, b), it
is absolutely continuous. Consequently, by virtue of intergation by parts, it follows
that if f is absolutely continuous on [a, b] and if ϕ ∈ D(a, b), then

b∫

a

f ϕ′ dt = −
b∫

a

f ′ϕ dt

so that the distributional derivative of f is f ′.

Proposition 6.4.4 Let 1 ≤ p < ∞. Let f ∈ W 1,p(a, b). Then f is absolutely contin-
uous, i.e. f is equal, almost everywhere, to an absolutely continuous function.

Proof Let us define

u(x) =
x∫

a

f ′(t) dt.

Since f′ ∈ L p(a, b) and since p ≥ 1, it follows that f ′ is integrable on (a, b) and so
u is an absolutely continuous function. Further, since integration by parts is valid for
absolutely continuous functions, it follows that for all ϕ ∈ D(a, b), we have

b∫

a

uϕ′ dx = −
b∫

a

f ′ϕ dx .

Thus u ∈ W 1,p(a, b) and u′ = f′. Then, as before, it follows that f − u is equal to a
constant almost everywhere. Thus f (x) = u(x) + c almost everywhere in x and the
latter function is absolutely continuous. �
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The above proposition states that W 1,p(a, b) consists of absolutely continuous
functions (upto equality almost everywhere). In particular, we can say thatW 1,p(a, b)
is contained in C[a, b]; i.e. every element of W 1,p(a, b) is represented by means of
an (absolutely) continuous function. Such a representative must be unique, for, if two
continuous functions are equal almost everywhere, then they are equal everywhere
(why?).

Theorem 6.4.3 (Sobolev) The inclusion map from W 1,p(a, b) into C[a, b] is con-
tinuous.

Proof Let fn, f be in W 1,p(a, b) with absolutely continuous representatives fn, f .
Assume that fn → f inW 1,p(a, b). Then‖ fn − f ‖p → 0 and‖ f ′

n − f ′‖p → 0.Now,
by absolute continuity, we have

fn(x) = fn(a) +
x∫

a

f ′
n(t) dt (6.4.2)

and

f (x) = f (a) +
x∫

a

f ′(t) dt. (6.4.3)

We claim that { fn(a)} is Cauchy. If not, there exists ε > 0 such that, for every N ,
there exist m, n ≥ N satisfying | fm(a) − fn(a)| ≥ ε. Then, it follows from (6.4.2)
that

| fm(x) − fn(x)| ≥ ε − ‖ f ′
m − f ′

n‖p(x − a)
1
p∗

by an application of Hölder’s inequality. Choose N large enough such that, for all
n,m ≥ N , we have

‖ f ′
m − f ′

n‖p(b − a)
1
p∗ <

ε

2
.

Then, for all x ∈ (a, b) we have

| fm(x) − fn(x)| ≥ ε

2

whence it would follow that

‖ fm − fn‖p ≥ (b − a)
1
p
ε

2
> 0

whch contradicts the fact the {fn} is cauchy in L p(a, b).
Thus { fn(a)} is Cauchy and now, for any x ∈ [a, b],

| fm(x) − fn(x)| ≤ | fm(a) − fn(a)| + ‖ f ′
m − f ′

n‖p(b − a)
1
p∗
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by another application of (6.4.2) and Hölder’s inequality. This shows that { fn} is
uniformly Cauchy, and so it converges to a continuous function f̃ on [a, b]. But since
‖ fn − f ‖p → 0, it follows that (cf. Corollary 6.1.1), at least for a subsequence, we
have fnk (x) → f (x) almost everywhere, from which we deduce that f ≡ f̃ . Thus,
fn → f in C[a, b] which completes the proof. �

Theorem 6.4.4 (Rellich) The unit ball in W 1,p(a, b) is relatively compact in
L p(a, b).

Proof The inclusionmapW 1,p(a, b) ⊂ L p(a, b) is the composition of the following
inclusion maps:

W 1,p(a, b) ⊂ C[a, b] ⊂ L p(a, b).

The first inclusion above is continuous by the preceding theorem. The space C[a, b]
is a subspace of L∞(a, b), and the ‘sup-norm’ is the same as ‖.‖∞. Now it follows
that the second inclusion is also continuous by Proposition 6.1.3.

Let B be the unit ball in W 1,p(a, b). Thus, if f ∈ B, then

‖f‖p
p + ‖f′‖p

p ≤ 1.

Then, by the preceding theorem, it follows that B is bounded in C[a, b] as well, since
the inclusion map is continuous (cf. Proposition 2.3.1 (iv)). Further, let x, y ∈ [a, b].
Assume, without loss of generality, that x ≤ y. Then

| f (x) − f (y)| ≤
∣∣∣∣∣∣

y∫

x

f ′(t) dt

∣∣∣∣∣∣
≤ ‖ f ′‖p|y − x | 1

p∗ ≤ |y − x | 1
p∗ .

It now follows immediately that B is equicontinuous as well since for ε > 0, if we
choose δ < εp∗

, then |x − y| < δ implies that | f (x) − f (y)| < ε for all f ∈ B. Thus,
by the theorem of Ascoli, it follows that B is relatively compact in C[a, b].

Thus, any sequence in B will have a subsequence which is convergent in C[a, b],
which will also, a fortiori, converge in L p(a, b). This proves that B is relatively
compact in L p(a, b). �

Definition 6.4.3 Let (a, b) ⊂ R be a finite interval and let 1 ≤ p < ∞. The closure
of D(a, b) in W 1,p(a, b) is denoted W 1,p

0 (a, b). �

Theorem 6.4.5 Let f ∈ W 1,p(a, b)with f absolutely continuous. Then f ∈ W 1,p
0 (a, b)

if, and only if, f (a) = f (b) = 0.

Proof Let f ∈ W 1,p
0 (a, b). Then there exists a sequence {ϕn} in D(a, b) such that

ϕn → f in W 1,p(a, b). Then ϕn → f uniformly on [a, b] and so it follows immedi-
ately that f (a) = f (b) = 0.

Conversely, let f (a) = f (b) = 0. Then (cf. Theorem 6.4.1) we have



182 6 L p Spaces

f (x) =
x∫

a

f ′(t) dt

and so it follows that
∫ b
a f ′(t) dt = 0. Let ϕn ∈ D(a, b) such that ‖ϕn − f ′‖p → 0.

Then ∣∣∣∣∣∣

b∫

a

ϕn dt −
b∫

a

f ′ dt

∣∣∣∣∣∣
≤ ‖ϕn − f ′‖p(b − a)

1
p∗ → 0

and so
b∫

a

ϕn dt → 0.

Let ϕ0 ∈ D(a, b) such that
∫ b
a ϕ0 dt = 1. Then if

ψn = ϕn −
⎛
⎝

b∫

a

ϕn dt

⎞
⎠ϕ0,

we also have that ‖ψn − f ′‖p → 0 and
∫ b
a ψn dt = 0. Thus ψn = χ′

n where χn ∈
D(a, b) as well (cf. Lemma 6.4.2). Since

χn(x) =
x∫

a

ψn dt,

it follows that χn converges to f uniformly and so ‖χn − f ‖p → 0 as well. Thus
χn ∈ D(a, b) and χn → f in W 1,p(a, b). This proves that f ∈ W 1,p

0 (a, b). �

Notice that if f ≡ 1, then f ′ ≡ 0 so that, in W 1,p(a, b), the map f 	→ ‖f′‖p does
not define a norm, but only a seminorm; i.e. while ‖f′‖p = 0 does not imply that
f = 0, all other properties of a norm are satisfied. However, in the space W 1,p

0 (a, b),
we have the following result.

Theorem 6.4.6 (Poincaré’s Inequality) Let f ∈ W 1,p
0 (a, b). Then

‖f‖p ≤ (b − a)‖f′‖p. (6.4.4)

Thus the function f 	→ ‖f′‖p defines a norm on W 1,p
0 (a, b) equivalent to the usual

norm on this space.

Proof Let f be absolutely continuous and represent f. If f ∈ W 1,p
0 (a, b), then, since

f (a) = 0, we have
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f (x) =
x∫

a

f ′(t) dt.

Then, by Hölder’s inequality, we have

| f (x)| ≤ ‖ f ′‖p(b − a)
1
p∗ .

Thus,
‖ f ||p ≤ ‖ f ′‖p(b − a)

1
p + 1

p∗ = (b − a)‖ f ′‖p

which proves (6.4.4).
In particular, if ‖f′‖p = 0, it follows that ‖f‖p = 0 and so f = 0 inW 1,p

0 (a, b). The
other properties of a norm are easily verified. Thuswe have two norms onW 1,p

0 (a, b):

‖f‖1,p and |f|1,p def= ‖f′‖p.

Clearly,
|f|1,p ≤ ‖f‖1,p ≤ [(b − a)p + 1] 1

p |f|1,p.

Thus the two norms are equivalent. �

Sobolev spaces can also be defined when p = ∞. The definition can also be
extended to cover functions defined on arbitrary open sets � ⊂ R

N . It is also pos-
sible to define ‘higher-order distributional derivatives’ and define Sobolev spaces
Wm,p(�), m ∈ N, based on these derivatives. All these spaces have properties sim-
ilar to those proved in this section, with or without additional hypotheses. For a
detailed study of Sobolev spaces, see Kesavan [2]. See also the Exercises 6.25–6.27.

6.5 Exercises

6.1 Let (X,S,μ) be a measure space. Let 1 ≤ p, q, r < ∞ be such that

1

p
+ 1

q
= 1

r
.

If f ∈ L p(μ) and g ∈ Lq(μ), show that fg ∈ Lr (μ) and that

‖fg‖r ≤ ‖f‖p‖g‖q .

6.2 Let (X,S,μ) be a measure space and let 1 ≤ p < ∞. Define, for t > 0,

h f (t) = μ({| f | > t}).
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Show that

‖f‖p
p = p

∞∫

0

t p−1h f (t) dt.

(Hint: Write h f as an integral over a subset of X and apply Fubini’s theorem (cf.
Theorem 1.3.5)).

6.3 (a) Let (X,S,μ) be a measure space. Let fn, gn, f, g be measurable func-
tions such that fn → f and gn → g almost everywhere in X . Assume further that
| fn(x)| ≤ gn(x) for all x ∈ X and that

∫

X

gn dμ →
∫

X

g dμ < ∞

as n → ∞. Show that ∫

X

fn dμ →
∫

X

f dμ

as n → ∞. (Hint: Apply Fatou’s lemma (cf. Theorem 1.3.2) to gn + fn ≥ 0 and to
gn − fn ≥ 0.)
(b) Let 1 ≤ p < ∞. Let fn and f ∈ L p(μ) and assume that fn(x) → f (x) almost
everywhere in X . Show that fn → f in L p(μ) if, and only if, ‖fn‖p → ‖f‖p.

6.4 Let (X,S,μ) be a measure space and let 1 ≤ p < ∞. Let fn → f in L p(μ). Let
gn be a sequence of measurable functions converging to a measurable function g
almost everywhere in X . Assume further that gn and g are all uniformly bounded by
a constant M > 0 in X . Show that fngn → fg in L p(μ).

6.5 Let (X,S,μ) be a measure space. A sequence of measurable functions fn is
said to converge in measure in X to a measurable function f if, for every ε > 0,

lim
n→∞ μ({| fn − f | ≥ ε}) = 0.

In this case, we write fn
μ→ f . If 1 ≤ p < ∞ and if fn → f in L p(μ), show that

fn
μ→ f .

6.6 Let (X,S,μ) be a measure space and let 1 < p < ∞. Let f : X × X → R be
such that for almost every y ∈ X , the section f y (cf. Definition 1.3.7) is p-integrable.
Define, for x ∈ X ,

g(x) =
∫

X

f (x, y) dμ(y).

If
∫
X

‖ f y‖pdμ(y) < ∞, show that g ∈ L p(μ) and that
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‖g‖p ≤
∫

X

‖ f y‖pdμ(y).

6.7 Show that the inclusion Cc(R) ⊂ L1(R) is not continuous.

6.8 Let g ∈ Cc(R). Define ϕ(g) = g(0). Then ϕ can be extended to a continuous
linear functional on L∞(R). Show that there does not exist f ∈ L1(R) such that

ϕ(g) =
∫

R

g f dx

for all g ∈ L∞(R). (This gives another proof that L∞(R) is not reflexive.)

6.9 Let h ∈ R
N . For a (Lebesgue) measurable function f defined on RN , define its

translation by h by
fh(x) = f (x + h).

If f ∈ L p(RN ), show that fh ∈ L p(RN ) and that

‖f − fh‖p → 0

as h → 0 in RN for any 1 ≤ p < ∞.

6.10 Let
fn = χ[n,n+1],

the characteristic function of the closed interval [n, n + 1] for n ∈ N (cf. Definition
1.3.5).
(a) Then {fn} is a bounded sequence in L1(0,∞). Show that it does not have a
weakly convergent subsequence. (In view of Theorem 5.4.2, this gives another proof
that L1(R) is not reflexive.)
(b) Show that {fn} converges weakly in L p(0,∞), for all 1 < p < ∞.
(c) Show that {fn} is weak∗ convergent in L∞(0,∞).

6.11 Let f ∈ C[0, 1] be such that, for all n ≥ 0,

1∫

0

xn f (x) dx = 0.

Show that f ≡ 0.

6.12 (Hardy’s inequality) Let f ∈ L p(0,∞), where 1 < p < ∞. Define

g(x) = 1

x

x∫

0

f (t) dt
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for x ∈ (0,∞). Show that g ∈ L p(0,∞) and that

‖g‖p ≤ p

p − 1
‖f‖p.

(Hint: Prove it first for f ∈ Cc(0,∞), f ≥ 0.)

6.13 A function ϕ: (0,∞) → R is said to be a step function if

ϕ(x) =
n∑
j=1

α jχI j (x)

where I j , 1 ≤ j ≤ n are intervals contained in (0,∞) and, as usual, χE denotes the
characteristic function of a set E . Show that step functions in (0,∞) are dense in
L1(0,∞).

6.14 (Riemann-Lebesgue lemma) Let h be a bounded and measurable function on
(0,∞) such that

lim
c→∞

1

c

c∫

0

h(t) dt = 0.

(a) Let f = χ[c,d], where [c, d] ⊂ (0,∞). Show that

lim
ω→∞

∞∫

0

f (t)h(ωt) dt = 0. (6.5.5)

(b) Deduce that (6.5.5) is true for all f ∈ L1(0,∞).
(c) If f ∈ L1(a, b) where (a, b) ⊂ (0,∞), show that

lim
n→∞

b∫

a

f (t) cos nt dt = lim
n→∞

b∫

a

f (t) sin nt dt = 0.

6.15 (a) Let (a, b) ⊂ (0,∞) be any finite interval. Let fn(t) = cos nt and let
gn(t) = sin nt . Show that fn ⇀ 0 and gn ⇀ 0 in L p(a, b) for any 1 ≤ p < ∞.
(b) What is the weak limit of hn in L p(a, b) for 1 ≤ p < ∞ where hn(t) = cos2 nt?

6.16 (a) Consider the trigonometric series

a0
2

+
∞∑
n=1

(an cos nt + bn sin nt).

Show that it can written in the amplitude-phase form
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a0
2

+ dn cos(nt − φn).

Write down the relations between an, bn and dn,φn .
(b) (Cantor-Lebesgue theorem) Show that if a trigonometric series as in (a) above
converges over a set E whose measure is strictly positive, then an → 0 and bn → 0
as n → ∞. (Hint: Use the amplitude-phase form of the series.)

6.17 If f and g ∈ L1(RN ), show that

(f ∗ g)(x) =
∫

RN

f (y)g(x − y) dy

is well-defined for almost all x ∈ R
N . Show also that f ∗ g ∈ L1(RN ) and that

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

6.18 Let {ρε}ε>0 be a family of C∞ functions in R
N such that for each ε > 0, we

have that ρε(x) ≥ 0 for all x ∈ R
N , the support of ρε is contained in the closed ball

with centre at the origin and radius ε, and

∫

RN

ρε(x) dx = 1.

(a) If f :R → R is continuous, show that ρε ∗ f → f , pointwise, as ε → 0.
(b) If f :R → R is uniformly continuous, show that ρε ∗ f → f , uniformly, as
ε → 0.
(c) Let ϕ ∈ Cc(RN ). Show that ρε ∗ ϕ converges uniformly to ϕ on RN as ε → 0.
(d) Show also that the support of ρε ∗ ϕ is contained in the set

supp(ϕ) + B(0; ε),

where supp(ϕ) denotes the support of ϕ and B(0; ε) is the closed ball in R
N with

centre at the origin and of radius ε.
(e) Deduce that, if u ∈ L p(RN ), 1 ≤ p < ∞, then ρε ∗ u converges to u in L p(RN )

as ε → 0.

6.19 Let {fn} be a bounded sequence in L p(a, b), where (a, b) is an open interval

in R and 1 ≤ p ≤ ∞. Show that fn ⇀ f in L p(a, b) when 1 < p < ∞ and fn
∗

⇀ f in
L∞(a, b) if, and only if, for every ϕ ∈ D(a, b), we have

b∫

a

fnϕ dx →
b∫

a

f ϕ dx .
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6.20 Let f : [0, 1] → R be a continuous function such that f (0) = f (1). Define the
sequence { fn} as follows. Let fn(x) = f (nx) on [0, 1

n ] and extend this periodically

to each subinterval [ k−1
n , k

n ] for 2 ≤ k ≤ n. Let m =
1∫
0
f (t) dt. Show that fn ⇀ f

in L p(0, 1) for 1 < p < ∞ and that fn
∗

⇀ f in L∞(0, 1), where f (t) = m for all
t ∈ [0, 1].
6.21 Let (a, b) ⊂ R be a finite interval and let f : [a, b] → R be a Lipschitz con-
tinuous function i.e. there exists K > 0 such that for all x, y ∈ [a, b], we have

| f (x) − f (y)| ≤ K |x − y|.

Show that f ∈ W 1,p(a, b) for all 1 ≤ p < ∞.

6.22 Let a < c < b in R. Let f : [a, b] → R be continuous. Assume that f ∈
W 1,p(a, c) and that f ∈ W 1,p(c, b). Show that f ∈ W 1,p(a, b).

6.23 Let f : [−1, 1] → R be given by

f (x) =
{
0, if x ∈ [−1, 0)
1, if x ∈ [0, 1]

Show that f /∈ W 1,p(−1, 1) for 1 ≤ p < ∞. (Thus, continuity is essential in the
previous exercise.)

6.24 (a) Let f : [a, b] → R be absolutely continuous and assume that

b∫

a

f (t) dt = 0.

Let 1 ≤ p < ∞. Show that

| f (x)| ≤ (b − a)
1
p∗ ‖ f ′‖p

for all x ∈ [a, b].
(b) (Poincaré-Wirtinger Inequality) Deduce that, for all f ∈ W 1,p(a, b) such that∫ b
a f (t) dt = 0, we have

‖f‖p ≤ (b − a)‖f′‖p.

6.25 (a) DefineW 1,p(R) exactly as in Definition 6.4.1, withR replacing the interval
(a, b) in that definition as well as in relation (6.4.1). Let ζ be a C∞ function on R

with compact support. Show that, if f ∈ W 1,p(R), then ζf ∈ W 1,p(R) as well, where
(ζ f )(x) = ζ(x) f (x).
(b) Let ζ be a C∞ function onRwith compact support contained in [−2, 2] such that
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0 ≤ ζ(x) ≤ 1 for all x ∈ R and such that ζ ≡ 1 on [−1, 1]. Define ζm(x) = ζ(x/m)

for all x ∈ R. Show that if u ∈ W 1,p(R) for 1 ≤ p < ∞, then ζmu → u in W 1,p(R)

as m → ∞.

6.26 Let (a, b) ⊂ R be a finite open interval. Letm > 1 be a positive integer. Define,
for 1 ≤ m < ∞,

Wm,p(a, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
f ∈ L p(a, b) |

there exist gi ∈ L p(a, b), 1 ≤ i ≤ m
such that

b∫
a

f diϕ
dxi dx = (−1)i

b∫
a
giϕ dx

for all ϕ ∈ D(a, b)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

The functions gi are called the generalized successive derivatives of f and we denote
f(i) = gi . Define

‖f‖m,p =
(

‖ f ‖p
p +

m∑
i=1

‖f(i)‖p
p

) 1
p

for f ∈ Wm,p(a, b).
(a) Show that ‖.‖m,p defines a norm on Wm,p(a, b) which makes it into a Banach
space which is separable if 1 ≤ p < ∞ and reflexive if 1 < p < ∞.
(b) Show that if f ∈ Wm,p(a, b), then f ∈ Cm−1[a, b].
6.27 Let Wm,p

0 (a, b) denote the closure of D(a, b) in Wm,p(a, b).
(a) Show that f ∈ Wm,p(a, b) belongs toWm,p

0 (a, b) if, and only if, f (a) = f (b) = 0
and f (i)(a) = f (i)(b) = 0 for all 1 ≤ i ≤ m − 1.
(b) Show that

f 	→ |f|m,p
def= ‖f(m)‖p

defines a norm on Wm,p
0 (a, b) which is equivalent to the usual norm ‖.‖m,p.
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Chapter 7
Hilbert Spaces

7.1 Basic Properties

Hilbert spaces form a special class of Banach spaces with the geometric notion of
orthogonality of vectors, or more generally, the notion of an angle between vectors,
built into them.

Consider the space R
2. If x = (x1, x2) and y = (y1, y2) are vectors in R

2, then
we define the scalar product of these vectors by

x .y = x1y1 + x2y2 = |x |.|y| cos θ

where |x | = ‖x‖2, |y| = ‖y‖2 and θ is the angle between the two vectors. The scalar
product is linear in each of the two variables. It is symmetric in these variables and
x .x = ‖x‖22. It turns out that these properties are crucial and we generalize these to
other vector spaces.

Definition 7.1.1 Let V be a real normed linear space. An inner product on V is a
form (·, ·) : V × V → R such that

(i) it is symmetric, i.e. for all x and y ∈ V ,

(x, y) = (y, x);

(ii) it is bilinear: in particular, if x, y and z ∈ V and if α and β ∈ R, then

(αx + βy, z) = α(x, z) + β(y, z);

(iii) for all x ∈ V ,
(x, x) = ‖x‖2. �
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Remark 7.1.1 The linearity with respect to the second variable is, clearly, a conse-
quence of conditions (i) and (ii) above. �

Remark 7.1.2 In case the base field is C, then the inner product is a sesquilinear
form. If x and y ∈ V , we have

(y, x) = (x, y).

Thus, we have conjugate linearity with respect to the second variable, i.e. if x, y and
z ∈ V and if α and β ∈ C, then

(x,αy + βz) = α(x, y) + β(x, z).

�

In view of condition (iii), we say that the norm comes from the inner product.

Definition 7.1.2 A Hilbert space is a Banach space whose norm comes from an
inner product. �

Example 7.1.1 Consider the spaceRn . For x = (x1, · · · , xn) and y = (y1, · · · , yn),
we define

(x, y) =
n∑

i=1

xi yi .

This defines an inner product and the norm associated to it is the norm ‖.‖2. Thus �n
2

is a Hilbert space. In the case of Cn , the inner product is given by

(x, y) =
n∑

i=1

xi yi .

Again the norm is ‖.‖2. �

Example 7.1.2 Consider the space �2. For x and y ∈ �2, define

(x, y) =
∞∑

i=1

xi yi

where x = (xi ) and y = (yi ) are real sequences. Again, if the base field is C, then
we define

(x, y) =
∞∑

i=1

xi yi .

This makes �2 into a Hilbert space. �
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Aswe have seen in the previous chapter, these are particular cases of the Lebesgue
spaces L2.

Example 7.1.3 Let (X,S,μ) be a measure space. If f and g ∈ L2(μ), and if f and
g represent these classes, respectively, then

(f,g) =
∫

X

f g dμ

defines an inner product which makes L2(μ) as a Hilbert space, in the real case. If
we are in the complex case, then the inner product should read

(f,g) =
∫

X

f g dμ.

�
Example 7.1.4 Let (a, b) ⊂ R be a finite interval. We denote by H 1(a, b) the space
W 1,2(a, b) and by H 1

0 (a, b) the space W 1,2
0 (a, b). Then both these spaces are Hilbert

spaces with the inner product given by

(f,g) =
b∫

a

( f g + f ′g′) dx .

By virtue of the Poincaré inequality (cf. Theorem 6.4.6), the space H 1
0 (a, b) is also

a Hilbert space with the inner product

(f,g)1 =
b∫

a

f ′g′ dx .

�
Let H be a Hilbert space and let x and y ∈ H . Then

‖x + y‖2 = (x + y, x + y) = ‖x‖2 + 2(x, y) + ‖y‖2 (7.1.1)

in the real case; if the field is C, then the middle term on the right will be replaced
by 2Re(x, y), where Re z denotes the real part of a complex number z. Writing a
similar expression for ‖x − y‖2 and adding the two, we get

∥∥∥∥
1

2
(x + y)

∥∥∥∥
2

+
∥∥∥∥
1

2
(x − y)

∥∥∥∥
2

= 1

2
(‖x‖2 + ‖y‖2). (7.1.2)

This is known as the parallelogram identity. In case of R2 = �22, this is the familiar
result from plane geometry which relates the sum of the squares of the lengths of
the diagonals of a parallellogram to that of the sides. It is also known as Apollonius’
theorem.
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Remark 7.1.3 A theorem of Fréchet, Jordan and von Neumann states that a Banach
space whose norm satisfies the parallelogram identity (7.1.2) is a Hilbert space, i.e.
the norm comes from an inner product. �

Example 7.1.5 The space C[−1, 1] cannot be made into a Hilbert space. To see this,
consider the functions

u(x) = min{x, 0}, and v(x) = x

defined on [−1, 1]. Then ‖u‖ = ‖v‖ = 1 while we have

∥∥∥∥
1

2
(u + v)

∥∥∥∥ = 1and

∥∥∥∥
1

2
(u − v)

∥∥∥∥ = 1

2

and the parallelogram identity is not satisfied by this pair of functions. �

Proposition 7.1.1 Every Hilbert space is uniformly convex and hence is reflexive.

Proof The proof is of the uniform convexity follows from the parallelogram iden-
tity (7.1.2) exactly as described in Example 5.5.2; the reflexivity now follows from
Theorem 5.5.1. �

We now prove a fundamental inequality for Hilbert spaces.

Theorem 7.1.1 (Cauchy-Schwarz Inequality) Let H be a Hilbert space and let x
and y ∈ H. Then

|(x, y)| ≤ ‖x‖ ‖y‖. (7.1.3)

Equality occurs in this inequality if, and only if, x and y are scalar multiples of each
other.

Proof Let θ be a complex number such that |θ| = 1 and θ(x, y) = |(x, y)|. Let t ∈ R.
We have

0 ≤ ‖θx − t y‖2
= ‖x‖2 − 2tRe(θx, y) + t2‖y‖2
= ‖x‖2 − 2t |(x, y)| + t2‖y‖2.

Since we have a quadratic polynomial which is always of constant sign, the roots of
this polynomial must be coincident or complex. Thus, we deduce that

4|(x, y)|2 ≤ 4‖x‖2‖y‖2

which yields (7.1.3).
Equality occurs in (7.1.3) if, and only if, the polynomial has two coincident roots.

Thus, there exists t0 such that θx = t0y, or, in other words x = αy where α = θ−1t0.
�
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Corollary 7.1.1 Let H be a Hilbert space. Let y ∈ H. Define

fy(x) = (x, y)

for all x ∈ H. Then fy ∈ H∗ and ‖ fy‖ = ‖y‖.

Proof Clearly fy is a linear functional. By the Cauchy-Schwarz inequality, we have

| fy(x)| ≤ ‖x‖.‖y‖

which shows that fy ∈ H∗ and that ‖ fy‖ ≤ ‖y‖. If y 
= 0, then set x = y/‖y‖. Then
fy(x) = ‖y‖, which shows that ‖ fy‖ = ‖y‖. �

Remark 7.1.4 We will see in the next section that all continuous linear functionals
on a Hilbert space occur in this manner. �

Corollary 7.1.2 Let H be a Hilbert space and let xn ⇀ x and yn → y in H. Then

(xn, yn) → (x, y).

Proof Observe that

|(xn, yn) − (x, y)| ≤ |(xn, yn − y)| + |(xn − x, y)|
≤ ‖xn‖.‖yn − y‖ + | fy(xn − x)|

by the Cauchy-Schwarz inequality and the preceding corollary. Now, since any
weakly converging sequence is bounded and since yn → y, the first term on the
right-hand side tends to zero. The second term also tends to zero by virtue of the
preceding corollary, since xn ⇀ x in H. �

Remark 7.1.5 Since norm convergence implies weak convergence, it follows a for-
tiori that if xn → x and yn → y in H , then (xn, yn) → (x, y). �

Theorem 7.1.2 Let H be a Hilbert space and let K ⊂ H be a closed and convex
subset of H. Then, for every x ∈ H, there exists a unique element PK (x) ∈ K such
that

‖x − PK (x)‖ = min
y∈K

‖x − y‖. (7.1.4)

Further, if H is a real Hilbert space, then PK (x) ∈ K is characterized by the following
relations:

(x − PK (x), y − PK (x)) ≤ 0 (7.1.5)

for every y ∈ K .
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Proof Since H is uniformly convex, the existence and uniqueness of PK (x) has been
proved in Theorem 5.6.1. Let y ∈ K . For any 0 < t < 1, set z = (1 − t)PK (x) + t y
which belongs to K by convexity. Then, by virtue of (7.1.4),

‖x − PK (x)‖ ≤ ‖x − z‖ = ‖(x − PK (x)) − t (y − PK (x))‖.

Squaring both sides, we get

‖x − PK (x)‖2 ≤ ‖x − PK (x)‖2 − 2t (x − PK (x), y − PK (x)) + t2‖y − PK (x)‖2.

Cancelling the common term viz. ‖x − PK (x)‖2, dividing throughout by t and letting
t → 0, we get (7.1.5).

Conversely, if PK (x) ∈ K is an element satisfying (7.1.5), then, for any y ∈ K ,
we have

‖x − PK (x)‖2 = ‖(x − y) + (y − PK (x))‖2
= ‖x − y‖2 + 2(x − y, y − PK (x)) + ‖y − PK (x)‖2
= ‖x − y‖2 + 2(x − PK (x), y − PK (x)) − ‖y − PK (x)‖2
≤ ‖x − y‖2.

Thus PK (x) also satisfies (7.1.4). �

Remark 7.1.6 If H is a complex Hilbert space, then (x − PK (x), y − PK (x)) is
replaced by its real part in (7.1.5). �

Remark 7.1.7 The element PK (x), which is closest to x in K , is called the projection
of x onto K . In general, the mapping x �→ PK (x) is not linear. In R

2, the condition
(7.1.5) means that, for all y ∈ K , the lines joining x to PK (x) and y to PK (x) will
always make an obtuse angle. �

We now study some properties of the mapping PK : H → K .

Proposition 7.1.2 Let H be a Hilbert space and let K be a closed and convex subset
of H. Let PK : H → K be as defined by the preceding theorem. Then, for all x and
y ∈ H, we have

‖PK (x) − PK (y)‖ ≤ ‖x − y‖.

Proof Assume, for simplicity, that H is a real Hilbert space. By virtue of (7.1.5), we
have

(x − PK (x), PK (y) − PK (x)) ≤ 0

and
(y − PK (y), PK (x) − PK (y)) ≤ 0.
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Adding these two inequalities, we get

(x − y, PK (y) − PK (x)) + ‖PK (y) − PK (x)‖2 ≤ 0.

Thus,
‖PK (y) − PK (x)‖2 ≤ (y − x, PK (y) − PK (x))

and the result now follows from the Cauchy-Schwarz inequality being applied to the
term on the right-hand side. �

Corollary 7.1.3 Let M be a closed subspace of a Hilbert space H. Then the projec-
tion PM is a continuous linear mapping. Further, for x ∈ H, the element PM(x) ∈ M
is characterized by

(PM(x), y) = (x, y) (7.1.6)

for every y ∈ M.

Proof If (7.1.6) holds, then (7.1.5) holds trivially. Conversely, if PM(x) ∈ M is
the projection of x onto M , then PM(x) satisfies (7.1.5). Let y ∈ M . Set z = y +
PM(x) ∈ M , since M is a subspace. Then (7.1.5) yields

(x − PM(x), y) ≤ 0

for all y ∈ M . Since we also have −y ∈ M , we get the reverse inequality as well
and this proves (7.1.6). It now follows from (7.1.6) that PM is a linear map and it is
continuous by the preceding proposition. This completes the proof. �

Remark 7.1.8 If M is a closed subspace of a Hilbert space H , the vector x − PM(x)

is orthogonal to every vector in M . Thus, PM is called the orthogonal projection of
H onto M. �

Theorem 7.1.3 Let H be a Hilbert space and let M be a closed subspace. then M
is complemented in H.

Proof Set
M⊥ = {y ∈ H |(x, y) = 0 for all x ∈ M}.

It is immediate to check that M⊥ is a subspace. It is also closed. For, let {yn} be a
sequence in M⊥ and let yn → y in H . If x ∈ M is arbitrary, then since (x, yn) = 0
for all n, we get that (x, y) = 0 as well and so y ∈ M⊥ which establishes our claim.
If x ∈ H , then PM(x) ∈ M and x − PM(x) ∈ M⊥ by the preceding corollary. Thus
H = M + M⊥. Further, if x ∈ M ∩ M⊥, we then have that ‖x‖2 = (x, x) = 0 and
so M ∩ M⊥ = {0}. Thus H = M ⊕ M⊥ and the proof is complete. �
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Remark 7.1.9 The subspace M⊥ consisting of all vectors orthogonal to all elements
of M is called the orthogonal complement of M . The notation is not accidental.
We will see in the next section that (at least in the case of real Hilbert spaces) the
orthogonal complement can be identified with the annihilator of M. �

Remark 7.1.10 If M is a closed subspace of a Hilbert space H , and if PM is the
orthogonal projection on to M , then, clearly, PM (x) = x for every x ∈ M . If x ∈ M⊥,
since x − PM(x) ∈ M⊥ always, we have that PM(x) ∈ M ∩ M⊥ and so PM(x) = 0.
Conversely, if PM(x) = 0, for some x ∈ H , then x = x − PM(x) ∈ M⊥. Thus M⊥
is the null space (or kernel) of PM . �

7.2 The Dual of a Hilbert Space

Earlier, we saw that every vector in a Hilbert space gave rise to a continuous lin-
ear functional. The main result of this section is to show that all continuous linear
functionals arise in this way.

Theorem 7.2.1 (Riesz Representation Theorem) Let H be a Hilbert space. Let
ϕ ∈ H∗. Then, there exists a unique vector y ∈ H such that

ϕ(x) = (x, y) (7.2.1)

for all x ∈ H. Further, ‖ϕ‖ = ‖y‖.

Proof We saw that (cf. Corollary 7.1.1), given y ∈ H , the functional fy defined by

fy(x) = (x, y)

is in H∗ and that ‖ fy‖ = ‖y‖. Thus, the mapping � : H → H∗ defined by �(y) =
fy is an isometry of H into H∗ and so its image is closed in H∗. If we show that the
image is dense in H∗, then it will follow that H∗ = �(H), or, in other words, that
� is onto and this will complete the proof.

Consider a linear functional ϕ on H∗ which vanishes on �(H). Since every
Hilbert space is uniformly convex and hence, reflexive, this means that there exists
x ∈ H such that fy(x) = 0 for all y ∈ H . This implies that (x, y) = 0 for all y ∈ H .
In particular,

‖x‖2 = (x, x) = 0

which shows that x = 0, i.e. ϕ is zero. This shows that �(H) is dense in H∗ and the
proof is complete. �
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Remark 7.2.1 It is also possible to directly prove this theorem without using the
reflexivity of H . This will be outlined in the exercises at the end of this chapter. �

Remark 7.2.2 Let H be a Hilbert space. Then every element of the dual, H∗, can
be represented as fx , where x ∈ H . We can then define an inner product on H∗ by

( fx , fy)∗ = (y, x).

It is easy to see that this defines an inner product which gives rise to the usual norm
on H∗. Thus, H∗ also becomes a Hilbert space in its own right. In the same way, H∗∗
also becomes a Hilbert space. Now, we have two natural mappings from H into H∗∗.
The first is the usual canonical imbedding x �→ J (x). The second is the mapping
x �→ f fx , i.e. the composition of the Riesz map H → H∗ and that of H∗ → H∗∗.
We will show that these are the same. The latter map, by the Riesz representation
theorem, is onto and so J will be onto, giving another proof of the reflexivity of a
Hilbert space, provided we prove the Riesz representation theorem independently,
as suggested in Remark 7.2.1. To see that the maps are the same, observe that if
f = fy ∈ H∗, then

f fx ( f ) = ( f, fx )∗ = ( fy, fx )∗ = (x, y)

J (x)( f ) = f (x) = fy(x) = (x, y).

This establishes the claim. �

Remark 7.2.3 As a consequence of the Riesz representation theorem, the map y �→
fy is an isometry of H onto H∗. It is linear if H is real and conjugate linear if H is
complex. Thus, at least in the real case, we can identify a Hilbert space with its own
dual via the Riesz isometry. �

Remark 7.2.4 In the case of real Hilbert spaces, while we can identify a Hilbert
space with its dual, we have to be careful in doing so and we cannot do it to every
space under consideration at a time. A typical example of such a situation is the
following. Let V and H be real Hilbert spaces. Let V ⊂ H and let V be dense in H .
Let us assume further that there exists a constant C > 0 such that

‖v‖H ≤ C‖v‖V

for every v ∈ V .
Let us now identify H∗ with H via the Riesz representation theorem. Let f ∈ H .

Then the map v �→ (v, f )H defines a continuous linear functional on V since

|(v, f )H | ≤ ‖v‖H‖ f ‖H ≤ C‖v‖V ‖ f ‖H
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for all v ∈ V . Let us denote this linear functional by T ( f ). Thus T ∈ L(H, V ∗) and

‖T ( f )‖L(H,V ∗) ≤ C‖ f ‖H .

If T ( f ) = 0, then (v, f ) = 0 for all v ∈ V and so, by density, we have f = 0. Thus
T is one-one as well. Finally, we claim that the image of T is dense in V ∗. Indeed,
if ϕ ∈ V ∗∗ vanishes on T (H), then, by reflexivity, there exists v ∈ V such that
T ( f )(v) = 0 for all f ∈ H i.e. (v, f ) = 0 for all f ∈ H . Since V ⊂ H , it follows
that (v, v) = 0, i.e. v = 0, which means that ϕ is identically zero, which establishes
the claim.

Thus we have the following scheme:

V ⊂ H ∼= H∗ ⊂ V ∗

where both the inclusions are dense. It would now be clearly absurd for us to identify
V with V ∗ as well. Thus we cannot simultaneously identify V and H with their
respective duals. The space H in this case is called the pivot space and is identified
with its dual, whereas the other spaces, though they are also Hilbert spaces, will
not be identified with their respective duals. This situation typically arises when we
have a parametrized family of Hilbert spaces as in the case of the Sobolev spaces (cf.
Kesavan [1]). In particular, we can set V = H 1

0 (a, b) (cf. Example 7.1.4) and H =
L2(a, b). We identify L2(a, b) with its dual while we denote the dual of H 1

0 (a, b)

by H−1(a, b) and we have the inclusions

H 1
0 (a, b) ⊂ L2(a, b) ∼= (L2(a, b))∗ ⊂ H−1(a, b).

�
Let H be a Hilbert space and let A ∈ L(H). For a fixed y ∈ H , the map x �→

(A(x), y) clearly defines a continuous linear functional on H and so, by the Riesz
representation theorem, this functional can be written as the inner product of x with
a vector (which depends on y). This leads us to the following definition.

Definition 7.2.1 Let H be a Hilbert space and let A ∈ L(H). We define the adjoint
of A as the mapping A∗ : H → H given by

(x, A∗(y)) = (A(x), y) (7.2.2)

for all x and y ∈ H. �
Remark 7.2.5 In the case of real Hilbert spaces, since H and H∗ can be identified
via the Riesz isometry, the map A∗ is just the adjoint in the sense of Definition 4.7.2.

�
The following proposition lists the properties of the adjoint map.

Proposition 7.2.1 Let H be a Hilbert space. Let Ai , i = 1, 2 and A be continuous
linear operators on H. Let α be a scalar. Then



7.2 The Dual of a Hilbert Space 201

(i) ‖A‖ = ‖A∗‖;
(ii) ‖A∗ A‖ = ‖A‖2;

(iii) A∗∗ = A;
(iv) (A1 + A2)

∗ = A∗
1 + A∗

2;
(v) (A1A2)

∗ = A∗
2 A∗

1;
(vi) (αA)∗ = αA∗ (to be interpreted as αA∗ in the real case).

Proof By the Cauchy-Schwarz inequality, we have for any x ∈ H ,

‖x‖ = sup
‖y‖≤1

|(x, y)|.

It then follows that if A ∈ L(H), then

‖A‖ = sup
‖x‖≤1

‖A(x)‖ = sup
‖x‖≤1

sup
‖y‖≤1

|(A(x), y)|.

Then, using (7.2.2) and the Cauchy-Schwarz inequality, we get

‖A‖ = sup
‖x‖≤1

sup
‖y‖≤1

|(A(x), y)| = sup
‖x‖≤1

sup
‖y‖≤1

|(x, A∗(y))| ≤ ‖A∗‖.

Similarly,

‖A∗‖ = sup
‖y‖≤1

sup
‖x‖≤1

|(x, A∗(y))| = sup
‖y‖≤1

sup
‖x‖≤1

|(A(x), y)| ≤ ‖A‖.

This proves (i). Again, if x and y ∈ H , then

|(A∗ A(x), y)| = |(A(x), A(y))| ≤ ‖A‖2‖x‖.‖y‖

from which, we deduce that
‖A∗ A‖ ≤ ‖A‖2.

On the other hand,

‖A(x)‖2 = (A(x), A(x)) = (A∗ A(x), x) ≤ ‖A∗ A‖.‖x‖2

by the Cauchy-Schwarz inequality and we deduce that

‖A‖2 ≤ ‖A∗ A‖.

This proves (ii). The other relations follow trivially from (7.2.2). �

Remark 7.2.6 ABanach algebra, B, is said to be a ∗-algebra if there exists amapping
x �→ x∗ from B into itself satisfying the properties analogous to (iii)–(vi) of the above
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proposition. Such a mapping is said to be an involution. If, in addition, properties (i)
and (ii) are also true, it is said to be a B∗-algebra. Thus, if H is a Hilbert space, the
L(H) is a B∗-algebra with the involution being given by the adjoint mapping. �

Definition 7.2.2 Let H be a Hilbert space and let A ∈ L(H). A is said to be self-
adjoint if A∗ = A. It is said to be normal if AA∗ = A∗ A. It is said to be unitary if
AA∗ = A∗ A = I , where I is the identity operator on H. �

Example 7.2.1 Any orthogonal projection in a Hilbert space is self-adjoint. If P :
H → M is the orthogonal projection of a Hilbert space H onto a closed subspace
M , then, for any x and y ∈ H , we have

(P∗(x), y) = (x, P(y)) = (P(x), P(y)) = (P(x), y)

by repeated application of Corollary 7.1.3. Since x and y are arbitrary elements of
H , it follows that P = P∗. �

Example 7.2.2 In �n
2, the operator defined by a hermetian matrix is self-adjoint, that

defined by a normal matrix is normal and that defined by a unitarymatrix (orthogonal
matrix, if the base field is R) is unitary (cf. Definition 1.1.14). �

Remark 7.2.7 If A : D(A) ⊂ H → H is a densely defined linear transformation in
a Hilbert space H , it is easy to see how to define the adjoint A∗ : D(A∗) ⊂ H → H .
Again, we have for u ∈ D(A) and v ∈ D(A∗),

(A(u), v) = (u, A∗(v)).

All the results of Sect. 4.7, in particular, Proposition 4.7.3 and Theorem 4.7.1, are
true. �

Proposition 7.2.2 Let H be a Hilbert space and let P ∈ L(H). Then, P is an orthog-
onal projection if, and only if, P = P2 = P∗.

Proof Let P be an orthogonal projection on to a closed subspace M of H . Then, it
is clear that P = P2 (cf. Remark 7.1.10). Now, let x, y ∈ H be arbitrary elements.
Then, since P is an orthogonal projection, we have

(P∗(x), y) = (x, P(y)) = (P(x), P(y)) = (P(x), y),

by repeated application of Corollary 7.1.3. This proves that P = P∗. Thus, P =
P2 = P∗. �

Conversely, assume that P ∈ L(H) is such that P = P2 = P∗. Let N denote the
null space of P , which is closed. Let M = N⊥, so that M⊥ = N , and M is closed
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as well. Let x ∈ H . If y ∈ N , then (P(x), y) = (x, P∗(y)) = (x, P(y)) = 0, since
P = P∗ and P(y) = 0. Thus, P(x) ∈ M . Further, if x ∈ H , then x − P(x) ∈ N ,
since P = P2. In particular, if x ∈ M , then x − P(x) ∈ M ∩ N and so x = P(x).
Thus, the range of P is M . Now, for any x ∈ H , and for any y ∈ M , we have
(x − P(x), y) = 0, i.e. (x, y) = (Px, y) and so P is the orthogonal projection on to
M (cf. Corollary 7.1.3). �
We conclude this section with a result which is special to complex Hilbert spaces.

Proposition 7.2.3 Let H be a complex Hilbert space and let T ∈ L(H).

(a) If (T (x), x) = 0 for all x ∈ H, then T = 0.
(b) If (T (x), x) ≥ 0 for all x ∈ H, then T = T ∗.

Proof Let x, y ∈ H . Then, (T (x + y), x + y) = (T (x), x) = (T (y), y) = 0. We
deduce from this that

(T (x), y) + (T (y), x) = 0.

Further, (T (x + iy), x + iy) = 0, which yields

i(T (y), x) − i(T (x), y) = 0.

From these two relations we deduce that, for all x, y ∈ H , we have (T (x), y) = 0
which implies that T (x) = 0 for all x ∈ H . This proves (a). �

If (T (x), x) ≥ 0 for all x ∈ H , then

0 ≤ (T (x), x) = (T (x), x) = (x, T (x)) = (T ∗(x), x).

Thus, we get ((T − T ∗)(x), x) = 0 for all x ∈ H and so, by (a), we deduce that
T − T ∗ = 0. This proves (b). �

Example 7.2.3 The above results are not valid on real Hilbert spaces. For instance,
let H = �22, i.e.R2 equipped with the usual euclidean norm ‖ · ‖2. Consider the linear
transformation T given by the matrix

[
0 1

−1 0

]
.

Then (T (x), x) = 0 for every x ∈ R
2, but T is neither zero, nor is it self-adjoint. �

7.3 Application: Variational Inequalities

Let H be a real Hilbert space and let a(·, ·) : H × H → R be a continuous bilinear
form (cf. Example 4.7.5). Let M > 0 such that
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|a(x, y)| ≤ M‖x‖.‖y‖ (7.3.1)

for all x and y ∈ H . Assume further that a(·, ·) is H -elliptic (or, coercive; cf. Exercise
5.28). Let α > 0 such that

a(x, x) ≥ α‖x‖2 (7.3.2)

for all x ∈ H .

Example 7.3.1 The inner product of a real Hilbert space is a symmetric, continuous
and coercive bilinear form. Conversely, if a(·, ·) is a symmetric, continuous and
coercive bilinear form, then

(x, y)a
def= a(x, y)

defines a new inner product on H . The associated norm (cf. Exercise 7.3) is

‖x‖a = √
a(x, x).

Thanks to the continuity and coercivity of the bilinear form, we have

√
α‖x‖ ≤ ‖x‖a ≤ √

M‖x‖.

Thus the two norms on H are equivalent. �

Example 7.3.2 Let H = �n
2. Let A be an n × n matrix. If x and y ∈ R

n = �N
2 are

vectors, define
a(x, y) = y′Ax

where y′ is the transpose of the column vector y. Then a(., .) defines a continuous
bilinear form on �n

2. If A is symmetric, then the bilinear form is symmetric as well.
If A is positive definite, then the bilinear form is coercive. �

Theorem 7.3.1 (Stampacchia’s Theorem) Let H be a real Hilbert space and let
a(·, ·) : H × H → R be a continuous and coercive bilinear form on H (satisfying
(7.3.1) and (7.3.2)). Let K be a closed and convex subset of H. Let f ∈ H. Then,
there exists a unique x ∈ K such that, for all y ∈ K ,

a(x, y − x) ≥ ( f, y − x). (7.3.3)

Proof Let u ∈ H be fixed. Themap v �→ a(u, v) is a continuous linear functional on
H , by the continuity of the bilinear form. Thus, by the Riesz representation theorem,
there exists A(u) ∈ H such that

(A(u), v) = a(u, v)
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for all v ∈ H . Clearly, the map u �→ A(u) is linear. Further, by (7.3.1) and (7.3.2)
we have

‖A(u)‖ ≤ M‖u‖and(A(u), u) ≥ α‖u‖2

for all u ∈ H . Thus A ∈ L(H). Now, (7.3.3) is equivalent to finding x ∈ K such that

(A(x), y − x) ≥ ( f, y − x)

for all y ∈ K . If ρ > 0 is any constant (to be determined suitably), this is equivalent
to finding x ∈ K such that

(−ρA(x) + ρ f + x − x, y − x) ≤ 0

for all y ∈ K . In other words (cf. Theorem 7.1.2),

x = PK (x − ρA(x) + ρ f )
def= S(x).

Thus, we seek a fixed point of the mapping S : K → K . Let x1 and x2 ∈ K . Then,
by Proposition 7.1.2, we have

‖S(x1) − S(x2)‖ ≤ ‖x1 − x2 − ρ(A(x1) − A(x2))‖.

Squaring both sides, we get

‖S(x1) − S(x2)‖2 ≤ ‖x1 − x2‖2 − 2ρ(x1 − x2, A(x1) − A(x2))
+ρ2‖A(x1) − A(x2)‖2

≤ (1 − 2ρα + ρ2M2)‖x1 − x2‖2

using (7.3.1) and (7.3.2). Now, choosing ρ such that

0 < ρ <
2α

M2
,

wehave 1 − 2ρα + ρ2M2 < 1 so that S : K → K is a contraction. Since K is closed,
by the contraction mapping theorem (cf. Theorem 2.4.1) we deduce that there exists
a unique fixed point x ∈ K for S which completes the proof. �

Corollary 7.3.1 (Lax-Milgram Lemma) Let H be a Hilbert space and let a(·, ·) :
H × H → R be a continuous and coercive bilinear form. Let f ∈ H. Then, there
exists a unique x ∈ H such that

a(x, y) = ( f, y)

for every y ∈ H.
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Proof Applying the preceding theorem with K = H , there exists a unique x ∈ H
satisfying (7.3.3). Replacing y by y + x , we get

a(x, y) ≥ ( f, y)

for every y ∈ H . Since −y ∈ H as well, we also get the reverse inequality. Hence
the result. �

Remark 7.3.1 The Lax-Milgram lemma was already proved in Exercise 5.28. If, in
addition a(·, ·) is symmetric, then the preceding results have been proved via Exercise
5.29. In that case, the solution x has a variational characterization, viz. x ∈ K is the
minimizer of the functional

J (y) = 1

2
a(y, y) − ( f, y)

over K . For this reason, (7.3.3) is called a variational inequality. In the terminology
of the calculus of variations, (7.3.3) is the equivalent of theEuler-Lagrange condition
for the minimization of a functional. In the case of unconstrained minimization i.e.
K = H , this becomes an equation instead of an inequality, as seen in the Lax-
Milgram Lemma, and corresponds to the vanishing of the ‘first variation’ of J (cf.
Kesavan [2]).

Indeed, it is easy to see that J is Fréchet differentiable (cf. Exercise 2.48) and that

J ′(x)(y) = a(x, y) − ( f, y)

for any x and y ∈ H . Thus (7.3.3) and the Lax-Milgram lemma are just the results
of Exercise 2.54 when a(·, ·) is symmetric.

The Lax-Milgram lemma forms the basis of a wide class of numerical methods,
known as finite element methods, to solve boundary value problems for elliptic partial
differential equations (cf. Kesavan [1]). �

Remark 7.3.2 In the symmetric case, as explained in Example 7.3.1, a(·, ·) defines
a new inner product whose norm is equivalent to the usual norm. Thus the dual space
remains the same and so the Lax-Milgram lemma is just a restatement of the Riesz
representation theorem. �

Remark 7.3.3 If M is a closed subspace of a Hilbert space H , then we can use
K = M in the proof of Corollary 7.3.1 to prove the existence of a unique u ∈ M
such that

a(u, y) = ( f, y), for everyy ∈ M. �
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7.4 Orthonormal Sets

As mentioned earlier, orthogonality is a very important notion special to Hilbert
spaces. In this section, we will take a closer look at this property.

Definition 7.4.1 Let H be a Hilbert space and let I be an indexing set. A subset
S = {ui ∈ H |i ∈ I} is said to be orthonormal if

‖ui‖ = 1 for all i ∈ I

and
(ui , u j ) = 0 for all i, j ∈ I, i 
= j. �

Remark 7.4.1 If we use the Kronecker symbol, viz. δi j which equals unity if i = j
and equals zero if i 
= j , then the above relations can be written as

(ui , u j ) = δi j

for all i and j ∈ I. �

Remark 7.4.2 An orthonormal set of vectors is automatically linearly independent.
For, if we have a linear relation of the form

n∑

k=1

αkuik = 0,

then, taking the inner product with ui j and using the orthonormality of the vectors,
we get α j = 0 for any 1 ≤ j ≤ n. �

Example 7.4.1 The sequence {en} in �2 (cf. Example 2.3.12) forms an orthonormal
set. Similarly, the standard basis in �n

2 (cf. Example 1.1.2) forms an orthonormal set.
�

Example 7.4.2 Consider the interval X = [0, 1] endowed with the Lebesgue mea-
sure. The corresponding space L2(μ) is denoted L2(0, 1) (cf. Sect. 6.3). The sequence
{fn}where fn is the equivalence class represented by the function fn(t) = √

2 sin nπt ,
forms an orthonormal set. �

Proposition 7.4.1 (Gram-Schmidt Orthogonalization) Let H be a Hilbert space
and let {x1, · · · , xn} be a set of linearly independent vectors in H. Then there exists
an orthonormal set of vectors {e1, · · · , en} in H such that, for each 1 ≤ i ≤ n, the
vector ei is a linear combination of the vectors x1, · · · , xi .
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Proof Clearly, none of the xi can be the null vector. Define

e1 = 1

‖x1‖ x1.

Next, consider the vector x2 − (x2, e1)e1. This vector cannot vanish since x1 and x2
are linearly independent and e1 is a scalar multiple of x1. Thus, we can define

e2 = 1

‖x2 − (x2, e1)e1‖[x2 − (x2, e1)e1].

It is now immediate to check that ‖e1‖ = ‖e2‖ = 1 and that (e1, e2) = 0. Further, e2
is a linear combination of x1 and x2, since e1 is just a scalar multiple of x1.

We can now proceed inductively. Assume that we have constructed the vectors
e1, · · · , ek , for 1 ≤ k ≤ n − 1. We then define

ek+1 = 1

‖xk+1 −∑k
i=1(xk+1, ei )ei‖

[
xk+1 −

k∑

i=1

(xk+1, ei )ei

]
.

It is now easy to verify that the set {e1, · · · , en} verifies the conditions mentioned in
the statement of the proposition. �
In the exercises at the end of this chapter,wewill see important examples of theGram-
Schmidt orthogonalization process leading to various well known special functions
of mathematical physics.

Remark 7.4.3 Consider the spaceRn = �n
2. For any 1 ≤ j ≤ n, the sets {x1, · · · , x j }

and {e1, · · · , e j } span the same subspace. Thus, we can write

x j =
j∑

i=1

ri j ei .

Let A be the matrix whose columns are the x j , andQ the matrix whose columns are
the e j . Let R be the matrix whose entries are the ri j . For any j , we have that ri j = 0
if i > j . Thus, R is an upper triangular matrix. Further, we see that

A = QR.

Since the columns of A are linearly independent, the matrix A is invertible. Since
the columns of Q are orthonormal, the matrix Q is orthogonal. Thus, the Gram-
Schmidt orthogonalization process proves the following result from matrix theory:
every invertible matrix can be decomposed into the product of an orthogonal matrix
and an upper triangular matrix. �



7.4 Orthonormal Sets 209

Remark 7.4.4 The process of producing orthonormal vectors from linearly indepen-
dent ones is quite useful in several contexts. For instance, let us consider a continuous
function on the interval [0, 1]. We wish to approximate it by a polynomial. Amongst
several ways of doing this, one is the least squares approximation. We look for a
polynomial p of degree at most n such that

1∫

0

| f (t) − p(t)|2 dt = min
q∈Pn

1∫

0

| f (t) − q(t)|2 dt

wherePn is the space of all polynomials (in one variable) of degree less than or equal
to n. In other words, we are looking for the projection of f onto the subspace of
polynomials of degree less than , or equal to, n in the space L2(0, 1). We know that
such a p exists uniquely and that it is characterized by (cf. Corollary 7.1.3)

(p,q) = ( f,q)

for all q ∈ Pn . By linearity, it is sufficient to check the above relation for just the basis
elements of Pn . The standard basis of Pn consists of the functions p0,p1, · · · ,pn

where
p0(t) ≡ 1 and pk(t) = t k

for t ∈ [0, 1] and for all 1 ≤ k ≤ n. Writing

p(t) = α0 + α1t + α2t2 + · · · + αntn,

we then derive the following linear system:

Ax = f

where, A = (ai j ) is the (n + 1) × (n + 1) matrix given by

ai j = (p j ,pi ) =
1∫

0

t i+ j dt = 1

i + j + 1
;

x is the (n + 1) × 1 column vector whose components are the unknown coefficients
of p, α0,α1, · · · ,αn; f is the (n + 1) × 1 column vector whose i-th component is

fi = ( f,pi ) =
1∫

0

f (t)t i dt.
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Solving this linear system yields p. However, especially when n is large, the matrix
A is known to be very difficult to invert numerically; it is an example of what is
known as a highly ill-conditioned matrix, i.e. even small errors in the data can lead
to very large errors in the solution of any linear system involving this matrix.

On the other hand, if we replace the standard basis by a basis consisting of
orthonormal polynomials q0,q1, · · · ,qn , then we can write

p =
n∑

j=0

β jq j .

Now,

(p,qi ) =
n∑

j=0

β j (q j ,qi ) =
n∑

j=0

β jδ j i = βi

and so

βi =
1∫

0

f (t)qi (t) dt.

Thus, without solving any linear system, we can directly compute the least squares
approximation. �

Example 7.4.3 Let us compute some of the elements of the orthonormal set obtained
from the standard basis of the space of polynomials of degree at most n in L2(−1, 1).
Recall that pi (t) = t i for 0 ≤ i ≤ n.

‖p0‖2 =
⎛

⎝
1∫

−1

dt

⎞

⎠

1
2

= √
2.

Thus q0(t) = 1/
√
2 for all t ∈ [−1, 1]. Now consider the function

q1(t) = t − 1√
2

⎛

⎝
1∫

−1

t dt

⎞

⎠q0(t) = t.

Then ‖q1‖2 = √
2/

√
3. Thus,

q1(t) =
√
3√
2

t

for all t ∈ [−1, 1]. Next, we consider
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q2(t) = t2 −
√
3√
2

⎛

⎝
1∫

−1

t3 dt

⎞

⎠
√
3√
2

t − 1√
2

⎛

⎝
1∫

−1

t2 dt

⎞

⎠ 1√
2

= t2 − 1

3
.

Then, a straight forward computation yields that ‖q2‖2 = 2
√
2/3

√
5. Thus, for all

t ∈ [−1, 1], we get
q2(t) =

√
5

2
√
2
(3t2 − 1).

Similarly, we can show that

q3(t) =
√
7

2
√
2
(5t3 − 3t)

and so on.
An easier way of computing these polynomials will be seen in the exercises at the

end of this chapter. �
Proposition 7.4.2 Let {e1, · · · , en} be a finite orthonormal set in a Hilbert space
H. Then, for any x ∈ H,

n∑

i=1

|(x, ei )|2 ≤ ‖x‖2. (7.4.1)

Further, x −∑n
i=1(x, ei )ei is orthogonal to e j for all 1 ≤ j ≤ n.

Proof We know that ‖x −∑n
i=1(x, ei )ei‖2 ≥ 0. Expanding this, and using the

orthonormality of the set, we get (7.4.1) immediately. Further,

(
x −

n∑

i=1

(x, ei )ei , e j

)
= (x, e j ) −

n∑

i=1

(x, ei )δi j = (x, e j ) − (x, e j ) = 0.

This completes the proof. �
Proposition 7.4.3 Let H be a Hilbert space. Let I be an indexing set and let {ei |i ∈
I} be an orthonormal set in H. Let x ∈ H. Define

S = {i ∈ I|(x, ei ) 
= 0}. (7.4.2)

Then, S is atmost countable.

Proof Define

Sn =
{

i ∈ I||(x, ei )|2 >
‖x‖2

n

}
.

By (7.4.1), it follows that Sn has at most n − 1 elements for any positive integer n.
Since
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S = ∪∞
n=1Sn,

it follows that S is at most countable. �

The preceding proposition helps us to define (infinite) sums over arbitrary orthonor-
mal sets. Let {ei |i ∈ I} be an orthonormal set in H for an indexing set I. Let x ∈ H .
We wish to define the sum ∑

i∈I
|(x, ei )|2.

Let S be the set defined by (7.4.2). If S = ∅, we define the above sum to be zero. If it
is a finite set, then the above sum is just the finite sum of the corresponding non-zero
terms. If it is countably infinite, then we choose a numbering e1, e2, · · · , en, · · · for
the elements in the orthonormal set whose inner product with x is non-zero. Then
we define the above sum to be ∞∑

n=1

|(x, en)|2.

The sum is independent of the numbering chosen since this is a series of positive
terms and so any rearrangement thereof will yield the same sum.

We are now in a position to generalize (7.4.1).

Theorem 7.4.1 (Bessel’s Inequality) Let H be a Hilbert space and let {ei |i ∈ I}
be an orthonormal set in H, for some indexing set I. Let x ∈ H. Then

∑

i∈I
|(x, ei )|2 ≤ ‖x‖2. (7.4.3)

Proof Let S be defined by (7.4.2). If S is empty, there is nothing to prove. If it
is finite, the result is the same as (7.4.1), which has already been proved. If S is
countably infinite, then, since (7.4.1) establishes the result for all partial sums, (7.4.3)
follows. �

Let {ei |i ∈ I} be an orthonormal set in a Hilbert space H . Given a vector x ∈ H ,
we now try to give a meaning to the sum

∑

i∈I
(x, ei )ei

as a vector in H . Once again, letS be the set defined by (7.4.2). If it is empty,we define
the above sum to be the null vector. If it is finite, thenwe define it to be the (finite) sum
of the corresponding terms.Let us, therefore, assumenow thatS is a countably infinite
set. Let us number the elements E = {ei |i ∈ S} as {e1, e2, · · · , en, · · · }. Define

yn =
n∑

i=1

(x, ei )ei .
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If m > n, then

‖ym − yn‖2 =
m∑

i=n+1

|(x, ei )|2

using the orthonormality of the set. But the sum on the right-hand side can be made
arbitrarily small for large n and m since it is part of the tail of a convergent series
(cf. (7.4.3)). Thus, the sequence {yn} is Cauchy and hence converges to a limit, say,
y in H .

Assume now that the elements of the set E above are rearranged so that

E = {e′
1, e′

2, · · · , e′
n, · · · }

where each e′
i is equal to a unique e j . Once again, we define

y′
n =

n∑

i=1

(x, e′
i )e

′
i .

As before {y′
n} is Cauchy and will converge to an element y′ ∈ H .

We claim that y = y′ so that, whatever the manner in which we number the
elements of E , we get the same limit vector, which we will unambiguously define
as the required infinite vector sum.

Let ε > 0. Choose N sufficiently large such that, for all n ≥ N , we have

‖yn − y‖ < ε, ‖y′
n − y′‖ < ε and

∞∑

i=N+1

|(x, ei )|2 < ε2.

Fix n ≥ N . Then we can find m ≥ N such that

{e1, · · · , en} ⊂ {e′
1, · · · , e′

m}.

Then, the difference y′
m − yn will consist of a finite number of terms of the form

(x, ei )ei where all the i concerned are greater than n(≥ N ). Hence, it follows that

‖y′
m − yn‖2 ≤

∞∑

i=N+1

|(x, ei )|2 < ε2.

Thus,
‖y − y′‖ ≤ ‖y − yn‖ + ‖yn − y′

m‖ + ‖y′
m − y′‖ < 3ε

which proves that y = y′ since ε > 0 can be chosen arbitrarily small.
To sum up, we choose an arbitrary numbering of E and write E = {e1, e2, · · · ,

en, · · · } and define
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∑

i∈I
(x, ei )ei = lim

n→∞

n∑

j=1

(x, e j )e j .

The following result is now an immediate consequence of this definition and of
Proposition 7.4.2.

Proposition 7.4.4 Let H be a Hilbert space and let {ei |i ∈ I} be an orthonormal
set in H. let x ∈ H. Then

x −
∑

i∈I
(x, ei )ei

is orthogonal to every e j , j ∈ I. �

Definition 7.4.2 An orthonormal set in a Hilbert space is said to be complete if it
is maximal with respect to the partial ordering on orthonormal sets induced by set
inclusion. A complete orthonormal set is also called an orthonormal basis. �

Proposition 7.4.5 Every Hilbert space admits an orthonormal basis.

Proof Given any chain (with respect to the partial ordering induced by set inclusion
on orthonormal sets), the union of its members gives an upper bound. Hence, by
Zorn’s lemma, there exists a maximal orthonormal set. �

Theorem 7.4.2 Let H be a Hilbert space and let {ei |i ∈ I} be an orthonormal set
in H. The following are equivalent:

(i) The orthonormal set is complete.
(ii) If x ∈ H is such that (x, ei ) = 0 for all i ∈ I, then x = 0.

(iii) If x ∈ H, then
x =

∑

i∈I
(x, ei )ei . (7.4.4)

(iv) If x ∈ H, then
‖x‖2 =

∑

i∈I
|(x, ei )|2 (7.4.5)

(This is known as Parseval’s identity.)

Proof (i) ⇒ (ii). Assume that the orthonormal set is complete and that (x, ei ) = 0
for all i ∈ I. If x 
= 0, then the set

{ei |i ∈ I} ∪
{

1

‖x‖ x

}

is also an orthonormal set strictly larger than the given set which contradicts the
maximality of the given set. �
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(ii) ⇒ (iii). We know that x −∑i∈I(x, ei )ei is orthogonal to every e j , j ∈ I. This
immediately gives (7.4.4).
(iii)⇒ (iv). Set yn =∑n

i=1(x, ei )ei where {e1, e2, · · · , en · · · } is a numbering of the
elements of the set E explained earlier when defining the sum

∑
i∈I(x, ei )ei . Then

a straight forward computation yields

‖yn‖2 =
n∑

i=1

|(x, ei )|2.

This immediately yields (7.4.5) on passing to the limit as n → ∞.
(iv)⇒ (i). If the given setwas not complete, then there exists e ∈ H such that ‖e‖ = 1
and (e, ei ) = 0 for every i ∈ I. But then, this will contradict (7.4.5) (applied to the
vector e). �

Corollary 7.4.1 Let H be a Hilbert space and let {ei |i ∈ I} be an orthonormal set.
It is complete if, and only if, the subspace of all (finite) linear combinations of the ei

is dense in H.

Proof If the orthonormal set is complete, then by the preceding theorem, every
element of H is the limit of finite linear combinations of the ei by (7.4.4) and so the
subspace spanned by the ei is dense in H .

Conversely, if the subspace spanned by the ei is dense in H , then if x ∈ H is such
that it is orthogonal to all the elements of this subspace, then x = 0. In particular, if
(x, ei ) = 0 for all i ∈ I, then, clearly, x is orthogonal to the subspace spanned by
the ei and so it must vanish. Thus, statement (ii) of the preceding theorem is satisfied
and so the orthonormal set is complete. �

Corollary 7.4.2 Let H be a Hilbert space and let {e1, e2, · · · , en · · · } be a sequence
in H which is also an orthonormal basis for H. Then en ⇀ 0.

Proof Let x ∈ H . Then, by (7.4.5), it follows that (x, en) → 0 as n → ∞. Then, by
the Riesz representation theorem, it follows that en ⇀ 0. �

Remark 7.4.5 Notice that if {en} is an orthonormal sequence which is also complete
in a Hilbert space H , then it weakly converges to the null vector while it does not
have a norm convergent subsequence, since

‖en − em‖ = √
2

for all n 
= m. �

Theorem 7.4.3 An infinite dimensional Hilbert space has a countable orthonormal
basis if, and only if, it is separable.
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Proof For simplicity, assume that the space is a real Hilbert space. If the space has
a countable orthonormal basis {en}, then the set of all finite linear combinations of
the {en} is dense in H , by (7.4.4). The set of all finite linear combinations of the {en}
with rational coefficients then forms a countable dense subset.

Conversely, assume that the space is separable. If {ei |i ∈ I} is an orthonormal set,
then, since ‖ei − e j‖ = √

2 for i 
= j , it follows that the balls B(ei ;
√
2/4), i ∈ I,

are all mutually disjoint. If I were uncountable, then the space cannot be separable
(cf. Remark 6.3.2). Thus, any orthonormal set can be at most countable. In particular,
any orthonormal basis must be countable. �

Example 7.4.4 By virtue of (7.4.5), the orthonormal sets in �2 and �n
2 described in

Example 7.4.1 are orthonormal bases of those spaces. �

Example 7.4.5 (Fourier series) Consider the space L2(−π,π). The set

{f0} ∪ {fn,gn|n ∈ N}

where

f0(t) = 1√
2π

, fn(t) = cos nt√
π

and gn(t) = sin nt√
π

for t ∈ (−π,π), forms an orthonormal set. ByTheorem6.3.1, the space of continuous
functions with compact support contained in (−π,π) is dense in L2(−π,π). Such
functions vanish at the end points of the interval [−π,π] and so they are 2π-periodic
on the interval [−π,π]. Consider the space spanned by the orthonormal setmentioned
above. By an application of the Stone-Weierstrass theorem (cf. Rudin [3]), it follows
that this space is dense in the space of all 2π-periodic continuous functions with
respect to the sup norm, which is nothing but the norm ‖.‖∞. Since the interval
(−π,π) has finite measure, this implies that this space is dense with respect to the
norm ‖.‖2 as well (cf. Proposition 6.1.3). This shows that the space spanned by this
orthonormal set is dense in L2(−π,π) as well and so, by Corollary 7.4.1, it follows
that it is a complete orthonormal set in L2(−π,π).

Thus if f ∈ L2(−π,π), we have that

f (t) =
⎛

⎝
π∫

−π

f (t)
1√
2π

dt

⎞

⎠ 1√
2π

+
∞∑

n=1

⎛

⎝
π∫

−π

f (t)
cos nt√

π
dt

⎞

⎠ cos nt√
π

+
∞∑

n=1

⎛

⎝
π∫

−π

f (t)
sin nt√

π
dt

⎞

⎠ sin nt√
π
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by virtue of (7.4.4). This can be rewritten as

f (t) = a0

2
+

∞∑

n=1

(an cos nt + bn sin nt)

where

a0 = 1

π

π∫

−π

f (t) dt

and

an = 1

π

π∫

−π

f (t) cos nt dt, bn = 1

π

π∫

−π

f (t) sin nt dt.

This is nothing but the classical Fourier series of a function f and the an, n ≥ 0 and
bn, n ≥ 1 are the usual Fourier coefficients of f . The above series expansion means
that the partial sums of the Fourier series converge to f in the ‖.‖2 norm. In other
words if

fN (t) = a0

2
+

N∑

n=1

(an cos nt + bn sin nt),

for t ∈ (−π,π), then
π∫

−π

| fN (t) − f (t)|2 dt → 0

as N → ∞. The analogue of the Parseval identity (7.4.5) reads as follows:

1

π

π∫

−π

| f (t)|2 dt = a2
0

2
+

∞∑

n=1

(|an|2 + |bn|2).

�

Example 7.4.6 (Fourier sine series) Consider the space L2(0,π). Consider the set

{√
2

π
sin nt |n ∈ N

}
.

This is an orthonormal set in L2(0,π) as one can easily verify. Let f ∈ L2(0,π) be
orthogonal to every element of this set. Extend f as an odd function to all the interval
(−π,π). Thus, we set f (x) = − f (−x) if x ∈ [−π, 0). Since f is an odd function,
it follows that
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π∫

−π

f (t) dt =
π∫

−π

f (t) cos nt dt = 0

for all n ∈ N. Since we also have that

π∫

−π

f (t) sin nt dt = 2

π∫

0

f (t) sin nt = 0

for all n ∈ N, it follows that f = 0 in L2(−π,π) and so f = 0 in L2(0,π) as well.
Thus, by Theorem 7.4.2 (ii), it follows that the given set is complete in L2(0,π). In
particular, if f ∈ L2(0,π), we can write the series expansion

f (t) =
∞∑

n=1

bn sin nt

where

bn = 2

π

π∫

0

f (t) sin nt dt.

This is called the Fourier sine series of the function f . �

By analogy, if H is a separableHilbert spacewith an orthonormal basis {en |n ∈ N}
and if x ∈ H , we call

x =
∞∑

n=1

(x, en)en

as its Fourier expansion and the coefficients (x, en) are called its Fourier coefficients.

Remark 7.4.6 Let V be a Banach space and let {en} be a sequence of vectors in V
such that every vector x ∈ V can be written as

x =
∞∑

n=1

αn(x)en = lim
N→∞

N∑

n=1

αn(x)en .

Then {en} is called a Schauder basis for V . Thus, in every separable Hilbert space,
an orthonormal basis forms a Schauder basis. The set {en} in �p (cf. Example 3.1.1)
is a Schauder basis for �p for 1 ≤ p < ∞.

In the literature, a usual basis of the vector space, i.e. a set of linearly independent
elements such that every vector is a finite linear combination of vectors from the
set, is called a Hamel basis. Notice that, by Baire’s theorem (cf. Exercise 4.1), a
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Banach space cannot have a countable Hamel basis, while it may have a (countable)
Schauder basis. �

In the next chapter we will see how orthonormal bases occur very naturally in
Hilbert spaces.

We conclude with the following important result.

Theorem 7.4.4 (Riesz-Fischer) Let H be an infinite dimensional separable Hilbert
space. Then H is isometrically isomorphic to �2.

Proof Since H is separable, it admites a countably infinite orthonormal basis {ek}∞k=1.
If x ∈ H , then we have

‖x‖2 =
∞∑

k=1

|(x, ek)|2.

Thus we can define an isometry T : H → �2 by (T (x))k = (x, ek). We only need to
show that this map is surjective.

Let c = (c1, c2, · · · , ck, · · · ) ∈ �2. Define

xn =
n∑

k=1

ckek ∈ H.

If n > m, then

‖xn − xm‖2 =
n∑

k=m+1

|ck |2.

Since c ∈ �2, it then follows that the sequence {xn} is Cauchy and hence will con-
verge to some x ∈ H . For any fixed k ∈ N, we have, for all n ≥ k, (xn, ek) = ck , by
construction. Passing to the limit, we have (x, ek) = ck . Thus

x =
∞∑

k=1

ckek,

which shows that T (x) = c. This completes the proof. �

7.5 Exercises

7.1 Let V be a real Banach space and assume that the parallelogram identity holds
in V . Define

(u, v) = 1

4
(‖u + v‖2 − ‖u − v‖2).



220 7 Hilbert Spaces

Show that this defines an inner product which induces the given norm and hence that
V is a Hilbert space.

7.2 Let V be a complex Banach space and assume that the parallelogram identity
holds in V . Define

(u, v) = 1

4
[‖u + v‖2 − ‖u − v‖2 + i‖u + iv‖2 − i‖u − iv‖2].

Show that this defines an inner product which induces the given norm and hence that
V is a Hilbert space.

7.3 Let H be a real Hilbert space and let a(·, ·) : H × H → R be a symmetric
and continuous bilinear form such that a(x, x) > 0 for all x ∈ H, x 
= 0. Define
‖x‖a = √

a(x, x), for all x ∈ H .

(a) Show that, for every x, y ∈ H ,

|a(x, y)| ≤ ‖x‖a‖y‖a .

(b) Show that ‖ · ‖a defines a norm on H .

7.4 Let H be a Hilbert space and let M be a non-zero and proper closed subspace of
H . Let P : H → M be the orthogonal projection of H onto M . Show that ‖P‖ = 1.

7.5 Let H = �n
2. Let J be the n × n matrix all of whose entries are equal to 1/n.

Show that
‖J‖2,n = ‖I − J‖2,n = 1

where I is the n × n identity matrix.

7.6 Show that the following matrix defines an orthogonal projection in �32. Find the
range of the projection.

1

3

⎡

⎣
2 −1 −1

−1 2 −1
−1 −1 2

⎤

⎦ .

7.7 Let
K = {(x, y) ∈ R

2|x ≥ 0, y ≥ 0}.

If a < 0 and b < 0, compute PK (z), where z = (a, b).

7.8 Let H be a real Hilbert space and let K be a closed convex cone in H with
vertex at the origin (cf. Definition 3.5.1).

(a) If x, y ∈ K and if α and β are non-negative scalars, show that αx + βy ∈ K .
(b) If x ∈ H , show that PK (x) is characterized by the following relations:

(x, PK (x)) = ‖PK x‖2, and(x − PK (x), y) = 0for everyy ∈ K .
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7.9 Let H = L2(−π,π). Write down, explicitly, the orthogonal projection onto
each of the following closed subspaces:

(a) M = { f ∈ H | f (t) = f (−t), for everyt ∈ (−π,π)}.
(b) M = { f ∈ H |

π∫
−π

f (t) dt = 0}.
(c) M = { f ∈ H | f ≡ 0 on(−π, 0)}.
7.10 (a) Let H be a Hilbert space and let ϕ be a non-zero continuous linear func-

tional on H . Let M = Ker(ϕ). Show that M has codimension one.
(b) Let g ∈ M⊥ be a unit vector such that any y ∈ H can be written as

y = λg + z

where z ∈ M . Define x = ϕ(g)g. Show that x is such that

ϕ(y) = (y, x)

for all y ∈ H . (This gives a direct proof of the Riesz representation theorem.)

7.11 Let H be a Hilbert space and let W ⊂ H be a closed subspace. Let u ∈ H .
Define ϕ(w) = (w, u), for every w ∈ W . Write down the Hahn-Banach (i.e. norm
preserving) extension of ϕ to all of H .

7.12 Let H be a Hilbert space and let xn ⇀ x in H . If ‖xn‖ → ‖x‖, show that
xn → x in H .

7.13 Let x = (x1, x2, · · · , xk, · · · ) ∈ �2. Define

T (x) =
(

x1,
x2
2

, · · · ,
xk

k
, · · ·

)
.

Show that T ∈ L(�2) and that its range is not closed.

7.14 Let H be a Hilbert space and let A ∈ L(H) be such that A = A∗. Let N (A)

and R(A) denote the null space (or kernel) and range of A, respectively. Which of
the following statements are true?

(a) H = N (A) ⊕ R(A).
(b) H = N (A) ⊕ R(A).
(c) Neither of the above need hold.

7.15 Let H be a Hilbert space. Show that if T ∈ L(H, �1) has closed range, then
the range of T is finite-dimensional.

7.16 Let H be a Hilbert space and let U : H → H be a unitary operator. Show that
U is an isometry, i.e. ‖U x‖ = ‖x‖ for all x ∈ H .
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7.17 Let H be a real Hilbert space and let a(·, ·) : H × H → R be a continuous
and H -elliptic bilinear form (cf. Sect. 7.3) with constants M > 0 (for continuity) and
α > 0 (for ellipticity). Let f ∈ H .

(a) Let W ⊂ H be a closed subspace. Show that there exists a unique w ∈ W such
that

a(w, v) = ( f, v) (7.5.1)

for all v ∈ W .
(b) Show that, if w ∈ W is as above, then

‖w‖ ≤ 1

α
‖ f ‖.

(c) Let u ∈ H be the unique vector such that

a(u, v) = ( f, v)

for all v ∈ H . Show that

‖u − w‖ ≤ M

α
inf
v∈W

‖u − v‖.

(d) Let H be separable and let {un}∞n=1 be an orthonormal basis for H . Let Wn =
span{u1, · · · , un}. Let wn be the solution of (7.5.1) when W = Wn . Show that
wn → u as n → ∞.

7.18 Let H be an infinite dimensional separable Hilbert space. Let {ek}∞k=1 be an
orthonormal basis for H . Let Vk = span{e j |1 ≤ j ≤ k}. Let x ∈ H . Compute the
distance of x from Vk .

7.19 Consider the space L2(0, 1). Define r0(t) ≡ 1 and

rn(t) =
2n∑

i=1

(−1)i−1χ[ i−1
2n , i

2n ](t)

where χE denotes the characteristic function of a set E .

(a) Show that
rn(t) = sgn(sin 2nπt), 0 ≤ t ≤ 1

where sgn(t) equals 1 when t ≥ 0 and equals −1 when t < 0.
(b) Show that {rn(t)}∞n=0 is orthonormal in L2(0, 1) but that it is not complete.

7.20 Let (a, b) ⊂ R be a finite interval and let {φn}n∈N be an orthonormal basis for
L2(a, b). Define

�i j (t, s) = φi (t)φ j (s)
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for (t, s) ∈ (a, b) × (a, b). Show that {�i j }(i, j)∈N×N forms an orthonormal basis for
L2((a, b) × (a, b)).

7.21 Show that the sets

{
1√
π

}
∪
{√

2

π
cos nt |n ∈ N

}

is a complete orthonormal set in L2(0,π). (Thus, a function in L2(0,π) can be
expanded as a series of cosines and this is called its Fourier cosine series.)

7.22 Consider L2(−1, 1) and the linearly independent set of functions pn where
pn(t) = tn . Applying the Gram-Schmidt orthogonalization procedure, we obtain an
orthonormal sequence {qn} of polynomials (cf. Example 7.4.3).

(a) Define

Pn(t) =
√

2

2n + 1
qn(t).

These are the Legendre polynomials. Show that Pn(t) consists only of even
powers of t when n is even, and of only odd powers of t , when n is odd.

(b) Show that P0(t) ≡ 1, P1(t) = t and that, for n ≥ 1,

(n + 1)Pn+1(t) = (2n + 1)t Pn(t) − n Pn−1(t)

for t ∈ [−1, 1], given that Pn(1) = 1 for all n ≥ 0. (This gives a simple recursive
formula to compute the Legendre polynomials.)

(c) Prove Rodrigues’ Formula:

Pn(t) = 1

2nn!
dn

dtn
(t2 − 1)n.

7.23 (a) Consider the space

H̃ =
⎧
⎨

⎩ f : R → R|
∞∫

−∞
e−x2 | f (x)|2 dx < ∞

⎫
⎬

⎭

and let H be the space of all equivalence classes (with respect to equality almost
everywhere) of functions in H̃ . Define the inner product

(f,g) = 1√
π

∞∫

−∞
e−x2

f (x)g(x) dx .

Show that H is a Hilbert space.
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(b) Show that if fn(x) = xn , then fn belongs to H for every n ∈ {0} ∪ N.
(c) Apply the Gram-Schmidt process to the linearly independent set {fn} to obtain

an orthonormal set hn . Define

Hn(x) = √
2nn!hn(x).

These are the Hermite polynomials. Compute H0 and H1.
(d) Prove Rodrigues’ Formula:

Hn(x) = (−1)nex2 dn

dxn
e−x2

.

7.24 Let f,g ∈ L2(−π,π) and let their Fourier series be given by

f (t) = a0
2 +

∞∑
n=1

(an cos nt + bn sin nt)

g(t) = c0
2 +

∞∑
n=1

(cn cos nt + dn sin nt).

Show that
1

π

π∫

−π

f (t)g(t) dt = a0c0
2

+
∞∑

n=1

(ancn + bndn).

7.25 Compute the Fourier series of the function:

f (t) =
{−1 −π ≤ t < 0

1 0 < t ≤ π.

7.26 Compute the Fourier cosine series of the function f (t) = sin t on [0,π].
7.27 (a) Compute the Fourier sine series and the Fourier cosine series of the func-

tion f (t) = t on [0,π].
(b) Evaluate:

∞∑

n=1

1

n2
and

∞∑

n=1

1

n4

using Parseval’s identity.

7.28 (a) Let f ∈ L2(−π,π). Let its Fourier series be given by

f (t) = a0

2
+

∞∑

n=1

(an cos nt + bn sin nt).

Extend the function f to all ofR by periodicity, i.e. such that f (t + 2π) = f (t)
for all t ∈ R. Define
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F(t) =
t∫

0

(
f (s) − a0

2

)
ds.

Show that F : R → R is also 2π-periodic.
(b) Show that its Fourier series is given by

F(t) =
∞∑

n=1

bn

n
+

∞∑

n=1

(
an

n
sin nt − bn

n
cos nt

)
.

(c) Show that the above series converges to F uniformly on R.

7.29 Let f ∈ H 1
0 (−π,π). Show that if its Fourier series expansion is given by

f (t) = a0

2
+

∞∑

n=1

(an cos nt + bn sin nt),

then the Fourier series expansion of f′ is given by

f ′(t) =
∞∑

n=1

(nbn cos nt − nan sin nt).

7.30 Let H be an infinite dimensional, seprable Hilbert space. Let {ek}∞k=1 be an
orthonormal basis for H . Let {λk}∞k=1 be a bounded sequence of scalars. For x ∈ H ,
define

A(x) =
∞∑

k=1

λk(x, ek)ek .

Show that A(x) is well-defined for each x ∈ H and that A ∈ L(H).

7.31 Let H be a Hilbert space and let A : D(A) ⊂ H → H be a linear operator. We
say that it is dissipative if (A(u), u) ≤ 0 for all u ∈ D(A). We say that it is maximal
dissipative if, in addition R(I − A) = H , where I denotes the identity operator
on H . Let A be the infinitesimal generator of a c0-semigroup of contractions (cf.
Exercises 4.5, 4.20 and 4.26) on H . Show that it is maximal dissipative.

7.32 Let H be aHilbert space and let A : D(A) ⊂ H → H be amaximal dissipative
operator. Show that if B : D(B) ⊂ H → H is dissipative and is an extension of A,
i.e. D(A) ⊂ D(B) and B|D(A) = A, then D(B) = D(A). (This justifies the adjective
‘maximal’).

7.33 Let H be aHilbert space and let A : D(A) ⊂ H → H be amaximal dissipative
operator. Show that it is closed and densely defined.
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7.34 (a) Let H be a Hilbert space and let A : D(A) ⊂ H → H be a dissipative
operator. Let λ > 0. IfR(λI − A) = H , show that (λI − A)−1 exists in L(H)

and that

‖(λI − A)−1‖ ≤ 1

λ
.

(b) If A is a dissipative operator and if R(λ0 I − A) = H for some λ0 > 0, show
that R(λI − A) = H for all 0 < λ < 2λ0.

(c) Deduce that if A is a maximal dissipative operator, thenR(λI − A) = H for all
λ > 0.

Remark 7.5.1 Comparing the results of the above exercises with the comments
made in Remark 4.8.1, we deduce that an operator A : D(A) ⊂ H → H will be
the infinitesimal generator of a c0-semigroup of contractions if, and only if, it is
maximal dissipative.UnlikeBanach spaces,where theHille-Yosida theorem involves
verification of infinitely many conditions, one for each λ > 0, this is much easier to
verify in Hilbert spaces. The dissipativity is usually very easy to check. Further, it
is enough to verify that the equation (λI − A)x = f has a solution x ∈ D(A) for
every f ∈ H just for one fixed λ > 0. �

7.35 Let Hi , i = 1, 2, 3 be Hilbert spaces with norms ‖ · ‖i , i = 1, 2, 3, respec-
tively. Let T : D(T ) ⊂ H1 → H2 and S : D(S) ⊂ H2 → H3 be closed and densely
defined linear transformations. Assume that R(T ) ⊂ N (S). Assume further, that
there exists a constant C > 0 such that, for all x ∈ D(S) ∩ D(T ∗), we have

‖T ∗x‖21 + ‖Sx‖23 ≥ C‖x‖22.

(a) Let H̃2 = N (S) and let T̃ ∗ denote the adjoint of T : D(T ) ⊂ H1 → H̃2. Show
that T̃ ∗ has closed range.

(b) If P : H2 → N (S) is the orthogonal projection, show that

T ∗(x) = T̃ ∗(Px)

for all x ∈ D(T ∗).
(c) Deduce that T has closed range.
(d) Show that R(T ) = N (S).

7.36 Let H be a Hilbert space and let GL(H) be the set of all invertible continuous
linear operators on H . Then GL(H) is a group with respect to the binary opera-
tion defined via composition of operators. Consider the unit circle S1 ⊂ R

2 with
its usual topology inherited from R

2. Representing a point g ∈ S1 as (cos θ, sin θ)
where θ ∈ [0, 2π), we have that S1 is a group under the operation defined via
(θ1, θ2) �→ (θ1 + θ2)mod(2π). A representation of S1 is a group homomorphism
π̂ : S1 → GL(H)which is also continuous. For simplicity, we will denote the image
of g = (cos θ, sin θ) by π̂(θ).
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(a) Show that every representation is uniformly bounded, i.e. there exists a constant
C > 0 such that

‖π̂(θ)‖ ≤ C

for all θ ∈ [0, 2π).
(b) Define

< u, v >= 1

2π

2π∫

0

(̂π(2π − θ)(u), π̂(2π − θ)(v)) dθ.

Show that < ·, · > defines a new inner product on H whose induced norm is
equivalent to the original norm on H .

(c) With respect to the inner product < ·, · > on H , show that π̂(θ) is a unitary
operator on H for every θ ∈ [0, 2π). (We say that every representation of S1 is
equivalent to a unitary representation.)

7.37 Let V = �N
2 and let {An} be a sequence of N × N matrices such thatAn = A∗

n
for each n. Assume further that, for each v ∈ V , we have that the sequence {(Anv, v)}
is non-negative and decreasing as n → ∞. Show that there exists a matrix A = A∗
such that (Av, v) ≥ 0 for all v ∈ V and such that An → A in L(V ).
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Chapter 8
Compact Operators

8.1 Basic Properties

In this chapter wewill study a special class of linear transformations between Banach
spaces which generalize several properties of linear transformations between finite
dimensional spaces.

Definition 8.1.1 LetV andW beBanach spaces and letT ∈ L(V, W ). If dim(R(T ))

is finite, then we say that T is of finite rank. If the image of every bounded set in V
is relatively compact in W , we say that T is compact. �

Remark 8.1.1 For compactness, it is sufficient to verify that T (B) is relatively com-
pact in W when B is the (closed) unit ball in V . Equivalently, T ∈ L(V, W ) is com-
pact if, and only if, given any bounded sequence {xn} in V , the sequence {T (xn)}
admits a convergent subsequence in W. �

Example 8.1.1 Since any bounded set in a finite dimensional space is relatively
compact, it follows that every continuous linear transformation of finite rank is
compact. �

Example 8.1.2 Let V be finite dimensional. Then any T ∈ L(V, W ), where W is
an arbitrary Banach space, is of finite rank and hence is compact. �

Example 8.1.3 Let V be an infinite dimensional Banach space and let I : V → V
be the identity map. Since the unit ball in V is not compact (cf. Propositon2.3.6), it
follows that the identity map is not compact. �

Example 8.1.4 Let X, Y and Z be Banach spaces and let S ∈ L(X, Y ) and let T ∈
L(Y, Z). If one of these is compact, it is easy to see that their composition is also
compact. In particular, since the identitymap in an infinite dimensional Banach space
cannot be compact, it follows that compact maps on infinite dimensional spaces are
not invertible. �
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Example 8.1.5 Let̂i : C1[0, 1] → C[0, 1] be the canonical inclusion map. Let us
denote the usual norm in C1[0, 1] (cf. Exercise 2.9) by ‖ · ‖1,∞ and the usual norm in
C[0, 1] by ‖ · ‖∞. Consider the set of all f ∈ C1[0, 1] such that ‖ f ‖1,∞ ≤ c. Then,
clearly, ‖ f ‖∞ ≤ c as well. Further, if x and y are points in [0, 1], we have, by the
mean value theorem,

| f (x) − f (y)| ≤ ( sup
t∈[0,1]

| f ′(t)|)|x − y| ≤ c|x − y|.

It follows from this that the set of all functions considered here is uniformly bounded
and equicontinuous inC[0, 1]. Thus, byAscoli’s theorem, the set is relatively compact
and so the inclusion map is compact. �

Example 8.1.6 Let K ∈ C([0, 1] × [0, 1]). Let

κ = sup
(x,y)∈[0,1]×[0,1]

|K (x, y)|.

Let f ∈ C[0, 1]. Define

T ( f )(x) =
1

∫

0

K (x, y) f (y) dy.

Then, it is easy to see that T ( f ) is continuous and that ‖T ( f )‖∞ ≤ κ‖ f ‖∞ for all
f ∈ C[0, 1] and so T is a continuous linear operator on C[0, 1]. Thus, if we look at
the set of all f ∈ C[0, 1] such that ‖ f ‖∞ ≤ c, it follows that the set of all T ( f ) is
uniformly bounded. Further, if x and y are points in [0, 1], we have

|T ( f )(x) − T ( f )(y)| ≤
1

∫

0

K (x, t) − K (y, t)|.| f (t)| dt

≤ c supt∈[0,1] |K (x, t) − K (y, t)|.

Now, since K is uniformly continuous (since [0, 1] × [0, 1] is compact), given ε > 0,
there exists δ > 0 such that, for all t ∈ [0, 1], we have

|K (x, t) − K (y, t)| < ε

whenever |x − y| < δ. This shows that the set of all T ( f ) where ‖ f ‖∞ ≤ c is
equicontinuous and so T is a compact operator. �

Example 8.1.7 By virtue of Rellich’s theorem (cf. Theorem6.4.4), it follows that the
canonical inclusion map̂i : W 1,p(a, b) → L p(a, b) is compact, where (a, b) ⊂ R

is a finite interval and 1 ≤ p < ∞. �



8.1 Basic Properties 231

Example 8.1.8 Let f ∈ L2(a, b) be given. The map v 	→ ∫ 1
0 v f dx is obviously a

continuous linear functional on H 1
0 (0, 1). Since, by Poincaré’s inequality,

(v,w)1 =
1

∫

0

v′w′ dx

defines an inner product on this space (cf. Example 7.1.4), it follows from the Riesz
representation theorem that there exists a unique u ∈ H 1

0 (a, b) such that

1
∫

0

u′v′ dx =
1

∫

0

f v dx

for all v ∈ H 1
0 (0, 1). Further, setting v = u in the above relation and using Poincaré’s

inequality (cf. Theorem 6.4.6), we get

|u|21 def= ‖u′‖22 ≤ ‖f‖2‖u‖2 ≤ ‖f‖2|u|1
from which we get that

|u|1 ≤ ‖f‖2.

Thus, the map

f 	→ u def= Gf

is continuous. Composing this with the canonical inclusion of H 1
0 (0, 1) into L2(0, 1),

we get that f 	→ Gf = u is a compact operator on L2(0, 1). �

Example 8.1.9 This is a generalization of the preceding example. Let α : (0, 1) →
R be a function such that 0 < c ≤ α(x) ≤ C for all x ∈ (0, 1), where c and C are
fixed positive constants. Define a(·, ·) : H 1

0 (0, 1) × H 1
0 (0, 1) → R by

a(v,w) =
1

∫

0

α(x)v′(x)w′(x) dx

for v and w in H 1
0 (0, 1). Then, it is easy to check that a(·, ·) defines a continuous,

symmetric and elliptic bilinear form on H 1
0 (0, 1). Thus, if f ∈ L2(0, 1) is given, there

exists a unique u ∈ H 1
0 (0, 1) such that

a(u, v) =
1

∫

0

f v dx
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for all v ∈ H 1
0 (0, 1), by virtue of the Lax-Milgram lemma (cf. Corollary 7.3.1). Set

u = G( f ). Again, it is easy to check that

|u|1 ≤ 1

c
‖f‖2

and so the mapping G : L2(0, 1) → H 1
0 (0, 1) is continuous. Composing this with

the canonical inclusion of H 1
0 (0, 1) into L2(0, 1), we get that G defines a compact

operator on L2(0, 1). �

Remark 8.1.2 In the preceding example, since u ∈ H 1
0 (0, 1), we see that u(0) =

u(1) = 0 (cf. Theorem 6.4.5). Assuming that u and α are sufficiently smooth, we
get, on integrating by parts, that

1
∫

0

−(α(x)u′(x))′v(x) dx =
1

∫

0

f (x)v(x) dx

for all v ∈ H 1
0 (0, 1). In particular, this is true for all v represented by C∞ functions

with compact support in (0, 1). For this reason, we say that

−(αu′)′ = f

in the sense of distributions (cf. Kesavan [1]) and u is called a weak (or generalized)
solution of the boundary value problem:

− d
dx

(

α du
dx

) = f in (0, 1)
u(0) = u(1) = 0.

The case of Example 8.1.8 corresponds to the case whenα ≡ 1 and so the differential
operator is − d2

dx2 in the above boundary value problem. The operator G mapping the
data f to the solution u is sometimes called the Green’s operator. �

Example 8.1.10 Leta : [0, 1] → Rbe a continuous functionwhich is not identically
zero. Define A : L2(0, 1) → L2(0, 1) by

A(f)(t) = a(t) f (t).

It is easy to verify that A ∈ L(L2(0, 1)). Let a(t0) �= 0 for some t0 ∈ (0, 1). Then,
there exists a compact interval J = [t0 − α, t0 + α] such that

|a(t)| ≥ 1

2
|a(t0)| > 0

for all t ∈ J . Let {˜fn} be an orthonormal basis for L2(J ). Define
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fn(t) =
{

˜fn(t), if t ∈ J
0, if t ∈ [0, 1]\J.

Then ‖fn‖2 = 1 for all n and, if n �= m, we have

‖A(fn) − A(fm)‖22 =
1

∫

0

|a(t)|2| fn(t) − fm(t)|2 dt

≥ |a(t0)|2
4

∫

J
| ˜fn(t) − ˜fm(t)|2 dt

= |a(t0)|2
2

.

Thus the sequence {A(fn)} does not have a convergent subsequence and so A is not
compact. �

Proposition 8.1.1 Let V and W be Banach spaces and let K(V, W ) be the set of
all compact linear operators from V into W . Then, K(V, W ) is a closed subspace
of L(V, W ).

Proof It is immediate to check that a linear combination of compact operators is
compact. Thus K(V, W ) is a subspace of L(V, W ). We thus have to check that if
Tn ∈ K(V, W ) and if Tn → T in L(V, W ), then T ∈ K(V, W ). Let B be a ball in
V . We need to show that its image T (B) in W is relatively compact. Since W is
a complete metric space, it suffices to show that given ε > 0, we can cover T (B)

by a finite number of balls of radius ε (cf. Proposition 1.2.6). Since ‖Tn − T ‖ → 0,
choose n sufficiently large such that ‖Tn − T ‖ < ε/2. Since Tn is compact, we have

Tn(B) ⊂ ∪i∈I BW ( fi ; ε/2)

where I is a finite indexing set and fi ∈ W . (Here BW denotes a ball in W ). We then
have

T (B) ⊂ ∪i∈I BW ( fi ; ε).

Thus, T is compact. �

Corollary 8.1.1 If Tn : V → W are all of finite rank and if ‖Tn − T ‖ → 0, then T
is compact. �

Thus, a continuous linear transformation which can be approximated by transfor-
mations of finite rank is compact. An interesting question is the converse. Can every
compact linear transformation be approximated by those of finite rank. In general,
this is not true. However, we have the following result (see also Exercise 8.15).

Proposition 8.1.2 Let V be an infinite dimensional Banach space and let W be
an infinite dimensional Hilbert space. Let T ∈ K(V, W ). Then T is the limit of
transformations of finite rank.
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Proof Let B be the closed unit ball in V . Let K = T (B), which is compact, by
hypothesis. Let ε > 0 and let fi ∈ W for i ∈ I, a finite indexing set, such that

K ⊂ ∪i∈I BW ( fi ; ε).

Let G = span{ fi : i ∈ I}which is a finite dimensional subspace of W . Let P : W →
G be the orthogonal projection onto G, which exists since W is closed. Then P ◦ T
is of finite rank.

Now, let x ∈ B. Then, there exists fi0 such that ‖T (x) − fi0‖ < ε. Since the norm
of a projection is unity (cf. Exercise 7.4), we have

‖(P ◦ T )(x) − fi0‖ = ‖(P ◦ T )(x) − P( fi0)‖ < ε

which implies that, for all x ∈ B,

‖(P ◦ T )(x) − T (x)‖ < 2ε

i.e. ‖(P ◦ T ) − T ‖ ≤ 2ε. This completes the proof. �

Example 8.1.11 Let k ∈ L2((0, 1) × (0, 1)). For f ∈ L2(0, 1), define

K ( f )(t) =
1

∫

0

k(t, s) f (s) ds.

Then, by an application of the Cauchy-Schwarz inequality,

1
∫

0

K ( f )(t)|2 dt =
1
∫

0

∣

∣

∣

∣

∣

1
∫

0
k(t, s) f (s) ds

∣

∣

∣

∣

∣

2

dt

≤
1

∫

0

⎛

⎝

1
∫

0

|k(t, s)|2 ds

⎞

⎠

⎛

⎝

1
∫

0

| f (s)|2 ds

⎞

⎠ dt

= ‖f‖22
1
∫

0

1
∫

0
|k(t, s)|2 ds dt

which shows that K ∈ L(L2(0, 1)) and that

‖K‖ ≤ ‖k‖L2((0,1)×(0,1)).

Let {φn} be an orthonormal basis for L2(0, 1). Then {�i j }(i, j)∈N×N is an orthonor-
mal basis for L2((0, 1) × (0, 1)) where

�i j (t, s) = φi (t)φ j (s)
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(cf. Exercise 7.20). Thus

k =
∞

∑

i, j=1

(k,�i j )�i j .

If we set

kn(t, s) =
n

∑

i, j=1

(k,�i j )�i j (t, s),

then ‖k − kn‖2 → 0. Consequently, if we define

Kn(f)(t) =
1

∫

0

kn(t, s) f (s) ds

for f ∈ L2(0, 1), we have that ‖Kn − K‖ ≤ ‖kn − k‖2 → 0. Clearly, the image of
Kn is contained in the span of {φ1, · · · ,φn} and so Kn is of finite rank. Hence K
is a compact operator on L2(0, 1). (The operator K is called the Hilbert-Schmidt
operator induced by k.) �

Proposition 8.1.3 Let V and W be Banach spaces and let T ∈ L(V, W ). Then T
is compact if, and only if, T ∗ : W ∗ → V ∗ is compact.

Proof Assume that T is compact. Set K = T (BV ), where BV is the closed unit
ball in V . Then, K is compact and ‖w‖ ≤ ‖T ‖ for all w ∈ K . Now, let {vn} be a
sequence in BW ∗ . Consider the sequence {ϕn} defined byϕn(w) = vn(w) forw ∈ K .
Then, this is a sequence of continuous functions on the compact metric space K . We
have|ϕn(w)| ≤ ‖T ‖ for all w ∈ K . Further |ϕn(w1) − ϕn(w2)| ≤ ‖w1 − w2‖ and
so the sequence {ϕn} is uniformly bounded and equicontinuous in C(K ). By Ascoli’s
theorem, it has a uniformly convergent subsequence{ϕnk }. Thus, in particular

sup
x∈BV

|ϕnk (T (x)) − ϕnl (T (x))|

can be made arbitrarily small for large k and l. In other words,

sup
x∈BV

|T ∗(vnk )(x) − T ∗(vnl )(x)|

can bemade arbitrarily small for large k and l, i.e. the sequence {T ∗(vnk )} is a Cauchy
sequence and is hence convergent. This shows that T ∗ is compact.

Now assume that T ∗ is compact. Then, by the preceding arguments, it follows
that T ∗∗ : V ∗∗ → W ∗∗ is compact. Let JV : V → V ∗∗ and JW : W → W ∗∗ be the
canonical imbeddings. Let x ∈ BV . Then, for any v ∈ W ∗, we have T ∗∗(JV (x))(v) =
JV (x)(T ∗(v)) = T ∗(v)(x) = v(T (x)) = JW (T (x))(v). Thus T ∗∗(JV (BV )) = JW
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(T (BV )). Consequently, JW (T (BV )) is relatively compact in W ∗∗ and since JW

is an isometric isomorphism of W onto JW (W ), it follows that T (BV ) is relatively
compact in W . Thus, T is compact and the proof is complete. �

8.2 Riesz-Fredhölm Theory

In this section we will be interested in operators of the form I − T on a Banach
space V , where I is the identity operator on V and T ∈ L(V ) is a compact operator.
Such operators are called compact perturbations of the identity. Such operators have
properties very similar to those of linear operators on finite dimensional spaces.

Given a continuous linear operator A on a Banach space V , we will denote its
range by R(A) and its kernel (or null space) by N (A).

Theorem 8.2.1 (FredhölmAlternative) Let V be a Banach space and let T : V →
V be compact. Let T ∗ : V ∗ → V ∗ denote its adjoint. Then:

(a) N (I − T ) is finite dimensional;
(b) R(I − T ) is closed and

R(I − T ) = N (I − T ∗)⊥;

(c) N (I − T ) = {0} if, and only if, R(I − T ) = V ;
(d) dim(N (I − T )) = dim(N (I − T ∗)).

Proof (a) Let B1 be the closed unit ball inN (I − T ). If x ∈ B1, then ‖x‖ ≤ 1 and,
further, x = T (x). Thus, B1 ⊂ T (B), where B is the closed unit ball in V . Since T
is compact, it follows that B1 is compact and soN (I − T ) is finite dimensional (cf.
Proposition 2.3.6).

(b) Let fn ∈ R(I − T ) and assume that fn → f in V . Let fn = un − T (un). Since
N (I − T ) is finite dimensional, it follows that there exists vn ∈ N (I − T ) such that

‖un − vn‖ = d(un,N (I − T ))

(cf. Exercise 2.43). We can now write

fn = (un − vn) − T (un − vn).

We now claim that {un − vn} is a bounded sequence in V . If not, for a subsequence,
we have ‖unk − vnk ‖ → ∞. Set

wnk = 1

‖unk − vnk ‖
(unk − vnk ).
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Then ‖wnk ‖ = 1. Further,

wnk − T (wnk ) = 1

‖unk − vnk ‖
fnk

and so it follows that wnk − T (wnk ) → 0. Since T is compact, {wnk } has a subse-
quence {wnkl

} such that T (wnkl
) → z ∈ V . Then, it follows from the preceding argu-

ments thatwnkl
→ z as well. Then T (wnkl

) → T (z) and so we deduce that z = T (z),
i.e. z ∈ N (I − T ).

Now, since vnkl
∈ N (I − T ), it follows that

d(wnkl
,N (I − T )) = d(unkl

,N (I − T ))

‖unkl
− vnkl

‖ = 1.

Thus, on one hand z ∈ N (I − T ), while on the other hand, the above considerations
imply that d(z,N (I − T )) = 1, which is a contradiction. This establishes the claim.

Since {un − vn} is a bounded sequence, and since T is compact, we have that, for
a subsequence, T (unk − vnk ) → g ∈ V . Thus unk − vnk → f + g = h, say. It then
follows that T (h) = T ( f ) + T (g) = g. This implies that

h − T (h) = f

i.e.R(I − T ) is closed. Then, by virtue of Theorem 4.7.1, we deduce that

R(I − T ) = N (I − T ∗)⊥.

(c) Assume thatN (I − T ) = {0}. Assume further that V1 = R(I − T ) �= V . Since
V1 is a closed subspace of V , it is also a Banach space. Further, if x ∈ V , we have

T (x − T (x)) = (I − T )(T (x))

and so T (V1) ⊂ V1. Thus, T : V1 → V1 is also compact and so I − T restricted to V1

also has a closed range. Let V2 = (I − T )(V1). Again, it follows that V2 is a proper
subspace of V1. (If not, for every x ∈ V , it will follow that there exists y ∈ V such
that

(I − T )(x) = (I − T )2(y)

from which it will follow that x = (I − T )y, since I − T is assumed to be injective.
This will then imply that V = V1, contrary to our assumption.) Inductively, we thus
get a decreasing sequence of closed subspaces {Vn} such that Vn = (I − T )n(V ) and
Vn+1 is a proper subspace of Vn for all n. Then, by Riesz’ lemma (cf. Lemma2.3.1),
there exists un ∈ Vn such that ‖un‖ = 1 and d(un, Vn+1) ≥ 1/2.
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Now,
T (um − un) = (un − T (un)) − (um − T (um)) + (um − un).

Assume that n > m. Then un − T (un) ∈ Vn+1, um − T (um) ∈ Vm+1, un ∈ Vn and

Vn+1 ⊂ Vn ⊂ Vm+1 ⊂ Vm .

Thus,
T (um − un) = um − w

where w ∈ Vm+1. Thus, if m �= n, by construction,

‖T (um) − T (un)‖ ≥ 1

2
.

Hence, {T (un)} cannot have a convergent subsequence while {un} is bounded, con-
tradicting the fact that T is compact. Thus, it follows thatR(I − T ) = V .

Conversely, if R(I − T ) = V , then N (I − T ∗) = R(I − T )⊥ = {0}. Since T ∗
is also compact, it now follows that R(I − T ∗) = V ∗. Then, again, N (I − T ) =
R(I − T ∗)⊥ = {0}.

(d) Let d = dim(N (I − T )) and let d∗ = dim(N (I − T ∗)). Assume that d < d∗.
Since N (I − T ) is finite dimensional, it is complemented and so there exists a
continuous projection P : V → N (I − T ). AlsoR(I − T ) = N (I − T ∗)⊥ and so
the range of (I − T ) has finite codimension d∗. Let W be a d∗-dimensional subspace
of V which is a complement toR(I − T ). Since we have assumed that d < d∗, there
exists a linear map � : N (I − T ) → W which is injective but not surjective. Define

S = T + � ◦ P.

Since T is compact and � ◦ P is of finite rank, it follows that S is also compact. Let
u − S(u) = 0. Then

0 = (u − T (u)) + �(P(u))

where the first term belongs to R(I − T ) while the second belongs to its com-
plement, W . Thus u − T (u) = 0 and so u ∈ N (I − T ). Thus, P(u) = u. Further,
0 = �(P(u)) = �(u) and so u = 0 since � is injective. ThusN (I − S) = {0} and
soR(I − S) = V .

Now choose f ∈ W\R(�). Let u ∈ V be such that u − S(u) = f , i.e. (u −
T (u)) − �(P(u)) = f . Since both f and �(P(u)) belong to W , which is the
complement of R(I − T ), it follows that u − T (u) = 0 which implies that f =
−�(P(u)) ∈ R(�), a contradiction. Thus,

d∗ ≤ d.
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Similarly,
dim(N (I − T ∗∗)) ≤ dim(N (I − T ∗)) = d∗.

But, if J : V → V ∗∗ is the canonical imbedding, then it is easy to see that

J (N (I − T )) ⊂ N (I − T ∗∗)

and so d ≤ dim(N (I − T ∗∗)) ≤ d∗. Thus, we deduce that d = d∗ and this completes
the proof. �

Remark 8.2.1 The conclusion (c) holds for all operators on finite dimensional spaces
and is referred to in short as ‘one-one if, and only if, onto’. This property carries
over to compact perturbations of the identity in infinite dimensional Banach spaces.
In general it is not true for a general operator on a Banach space. If x = (xi ) ∈ �2
and we define T ∈ L(�2) by

T (x) = (0, x1, x2, · · · ),

then, clearly T is one-one but not onto. �

Remark 8.2.2 The Fredhölm alternative is stated as follows: let V be a Banach space
and let T ∈ L(V ) be a compact operator. Let f ∈ V . Then

• Either, the equation u − T (u) = 0 has only the zero solution and so the equation
w − T (w) = f has a unique solution for all f ∈ V ,

• Or, the equation u − T (u) = 0 has d linearly independent solutions and the equa-
tionw − T (w) = f will have a solution if, and only if, f satisfies d orthogonality
relations i.e. f ∈ N (I − T ∗)⊥. (In the case of finite dimensional spaces, these are
the familiar consistency conditions to be satisfied by the right-hand side vector in
case of singular matrices.) �

Remark 8.2.3 Theorem 8.2.1 is the starting point of the theory of Fredhölm oper-
ators. A Fredhölm operator A : V → W between Banach spaces V and W is one
which is such that N (A) is finite dimensional and R(A) is closed with finite codi-
mension. The (Fredhölm) index of A is given by

i(A) = dim(N (A)) − codim(R(A)).

Compact perturbations of the identity on a Banach space are thus Fredhölm operators
with index zero. It can be shown that the class of Fredhölm operators is open inL(V )

and that the index is a continuous function in this space. Since it is integer valued,
the index will be constant on connected components of this class. �

We conclude this section by proving a useful result which could be considered as
a generalization of the Lax-Milgram lemma (cf. Corollary 7.3.1).
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Proposition 8.2.1 Let V and H be Hilbert spaces such that V ⊂ H, the inclusion
being dense and compact. Let a(·, ·) : V × V → R be a continuous bilinear form
such that a(v, v) = 0 if, and only if, v = 0. Assume, further, that there exist constants
α > 0 and β > 0 such that, for every v ∈ V ,

a(v, v) ≥ α‖v‖2V − β‖v‖2H . (8.2.1)

Let f ∈ H be given. Then, there exists a unique u ∈ V such that

a(u, v) = ( f, v)H (8.2.2)

for every v ∈ V .

Proof Consider the bilinear form A(·, ·) : V × V → R given by

A(v,w) = a(v,w) + β(v,w)H .

Then, A(·, ·) is clearly continuous and, by virtue of (8.2.1), we have

A(v, v) ≥ α‖v‖2V .

Further, the map v 	→ ( f, v)H is clearly a continuous linear functional on V . Hence,
by the Lax-Milgram lemma, there exists a unique u ∈ V such that

A(u, v) = ( f, v)H

for every v ∈ V . Set u = G( f ). Thus, G ∈ L(H, V ). Since the inclusion of V in H
is compact, we have that G ∈ L(H) is compact.

Now, if u ∈ V is a solution of (8.2.2), then

a(u, v) + β(u, v)H = ( f + βu, v)H

for every v ∈ V , and vice-versa. Thus, u ∈ V satisfies (8.2.2) if, and only if, u =
G( f + βu). This can be rewritten as

z − βG(z) = f, (8.2.3)

where z = f + βu. Thus, (8.2.2) has a unique solution for given f if, and only if,
the same is true for (8.2.3).

Now, I − βG is a compact perturbation of the identity and so, it is surjective if,
and only if, it is injective. Assume that (I − βG)w = 0. Thus, w = G(βw), and
thus, w ∈ V and, for every v ∈ V , we have

a(w, v) + β(w, v)H = (βw, v)H .
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We hence deduce that a(w, v) = 0 for every v ∈ V and so, in particular, we
have a(w,w) = 0, whence, we deduce that w = 0. Thus, I − βG is injective and,
therefore, surjective as well. This completes the proof. �

Example 8.2.1 Let V = H 1(0, 1) and H = L2(0, 1). Let k > 0. Set

a(u, v) =
1

∫

0

u′(x)v′(x) dx + k[u(1)v(1) + u(0)v(0)],

for u and v ∈ H 1(0, 1). If a(v, v) = 0, we see that v′ = 0 and v(1) = v(0) = 0. This
implies that v = 0. Further,

a(v, v) ≥
1

∫

0

|v′(x)|2 dx = ‖v‖21,2 − ‖v‖22

where

‖v‖1,2 =
⎛

⎝

1
∫

0

(|v′(x)|2 + |v(x)|2) dx

⎞

⎠

1
2

is the norm in H 1(0, 1). Thus, all the hypotheses of the preceding proposition are
satisfied and so, given f ∈ L2(0,1),we have a unique solutionu ∈ H1(0,1) satisfying

a(u, v) =
1

∫

0

f (x)v(x) dx (8.2.4)

for every v ∈ H 1(0, 1).
It can be shown that (8.2.4) is the weak formulation (cf. Remark 8.1.2) of the

following boundary value problem:

− d2u
dx2 = f in (0, 1)

ku(0) − u′(0) = ku(1) + u′(1) = 0.
(8.2.5)

The boundary condition in (8.2.5) is called a Robin boundary condition. �

8.3 Spectrum of an Operator

In this section, we will assume that all Banach spaces are complex.
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Definition 8.3.1 Let V be a Banach space and let T ∈ L(V ). The spectrum of T is
the set σ(T ) of scalars defined by

σ(T ) = {λ ∈ C | T − λI is not invertible}.

The resolvent of T is the set ρ(T ) defined by

ρ(T ) = {λ ∈ C | T − λI is invertible}. �

If T ∈ L(V ) is such that ‖T ‖ < 1, then (cf. Exercise 2.37) I − T is invertible
and its inverse is given by the Neumann series

(I − T )−1 = I + T + T 2 + T 3 + · · ·

and, it is easy to see that

‖(I − T )−1‖ ≤ 1

1 − ‖T ‖ .

In particular, if T is any invertible operator on V and if S ∈ L(V ) such that

‖S‖ <
1

‖T −1‖ ,

then it follows that T − S is also invertible. We deduce from this that the set of all
invertible operators is open in L(V ). In particular, if λ ∈ ρ(T ), then λ + δ ∈ ρ(T )

as well, if δ is sufficiently small. Thus, it follows that ρ(T ) is an open subset of C
and so the spectrum is a closed subset of C.

Now assume that |λ| > ‖T ‖. Then

T − λI = −λ(I − λ−1T )

and, since ‖λ−1T ‖ = |λ|−1‖T ‖ < 1, it follows that T − λI is invertible and so λ ∈
ρ(T ). Thus,

σ(T ) ⊂ {λ ∈ C | |λ| ≤ ‖T ‖}.

Thus, the spectrum is a compact subset of the complex plane.

Definition 8.3.2 Let B(0; r) denote the closed ball in the complex plane with centre
at the origin and radius r . Let V be a Banach space and let T ∈ L(V ). The spectral
radius of T , denoted r(T ), is defined by

r(T ) = inf{r > 0 | σ(T ) ⊂ B(0; r)}. �
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We now show that the spectrum of a continuous linear operator on a (complex)
Banach space is always a non-empty set. Let λ ∈ ρ(T ). Set T (λ) = (T − λI )−1.
Since we can write T (λ) = λ−1((1/λ)T − I )−1, it follows that, for |λ| > ‖T ‖, we
have

‖T (λ)‖ ≤ 1

|λ|
1

(

1 − ‖T ‖
|λ|

)

and so ‖T (λ)‖ is bounded and tends to zero as |λ| → ∞.
Now let λ and μ belong to ρ(T ). Then

T (λ) = T (λ)(T − μI )T (μ)

= T (λ)(T − λI + (λ − μ)I )T (μ)

= (I + (λ − μ)T (λ))T (μ)

which implies that
T (λ) − T (μ) = (λ − μ)T (λ)T (μ). (8.3.1)

This is usually known as the resolvent equation.
Now, let f ∈ L(V )∗. Define

ϕ(λ) = f (T (λ))

for λ ∈ ρ(T ). Then,
|ϕ(λ)| ≤ ‖ f ‖.‖T (λ)‖. (8.3.2)

Further, by (8.3.1), it follows that

lim
λ→μ

ϕ(λ) − ϕ(μ)

λ − μ
= f (T (μ)2). (8.3.3)

We conclude from (8.3.2) thatϕ(λ) is bounded and vanishes as λ approaches infinity,
and from (8.3.3) that ϕ is differentiable at every point of ρ(T ). Thus, if ρ(T ) = C,
then ϕ will be a bounded and entire function and hence, by Liouville’s theorem,
a constant. Since it vanishes at infinity, it will follow that ϕ ≡ 0. Since f can be
arbitrarily chosen, it follows then that T (λ) = 0 for all λ ∈ C = ρ(T ) which is
absurd since it is the inverse of the map T − λI . Thus ρ(T ) cannot be equal to
the entire complex plane. In other words, σ(T ) is non-empty.

Thus, the spectrum of a continuous linear operator, T, is a non-empty compact set
of the complex plane lying inside the ball centered at the origin and having a radius
equal to ‖T ‖.

Remark 8.3.1 The non-emptiness of the spectrum is crucially dependent on the fact
that the scalar field is the field of complex numbers. Consider the real Banach space
R

2 (with any norm). Consider the linear operator,T, defined via the matrix
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[

0 1
−1 0

]

.

Then T − λI is not invertible if, and only if λ2 + 1 = 0 which has no real solution.
Thus the spectrum of T is empty, if the space is R2, while it is the set {i,−i} when
the space is C2. �

Definition 8.3.3 An element λ of the spectrum σ(T ) of a continuous linear operator
T on a Banach space V is called an eigenvalue of T ifN (T − λI ) �= {0}. In this case
dim(N (T − λI )) is called the geometric multiplicity of the eigenvalue λ. The non-
zero elements of the space N (T − λI ) are called the eigenvectors of T associated
to the eigenvalue λ. �

Remark 8.3.2 In finite dimensions, the spectrum coincides with the set of all eigen-
values. This need not be the case in infinite dimensions. For example, consider the
(complex) space �2 and the map

x = (xi ) 	→ T (x) = (0, x1, x2, · · · ).

Then, since T is not onto, it is not invertible. Thus 0 ∈ σ(T ). However, since T is
injective, λ = 0 is not an eigenvalue. �

Proposition 8.3.1 Let H be a Hilbert space and let T ∈ L(V ). Then λ ∈ σ(T ) if,
and only if, λ ∈ σ(T ∗).

Proof Observe that the adjoint of T − λI is T ∗ − λI . The result is nowan immediate
consequence of Theorem 4.7.1. �

Example 8.3.1 Let V = �2. Consider the map

x 	→ S(x) = (x2, x3, · · · )

where x = (x1, x2, x3, · · · ) ∈ �2. Then, clearly, ‖S(x)‖2 ≤ ‖x‖2 and so ‖S‖ ≤ 1. (In
fact ‖S‖2 = 1; why?) The operator S is called the left shift operator. Thus,

σ(S) ⊂ {λ ∈ C | |λ| ≤ 1}.

Letλ �= 0 and assume that S(x) = λx . Then, for all i ≥ 1, we have xi+1 = λxi which
yields xi = λi−1x1. Since x ∈ �2, we have that xi → 0 as i → ∞, and so it follows
that |λ| < 1. On the other hand, if 0 < |λ| < 1, the vector

x = (1,λ,λ2,λ3, · · · ) ∈ �2

and, indeed, S(x) = λx . Further, S(e1) = 0. Thus, it follows that every λ such that
|λ| < 1 is an eigenvalue of S and so is in the spectrum of S. Since the spectrum is
closed, it now follows that
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σ(S) = {λ ∈ C | |λ| ≤ 1}.

If |λ| = 1, then though it is in the spectrum, it is not an eigenvalue.
It is now immediate to see that the adjoint of S is the mapping T on �2 given by

T (x) = (0, x1, x2, x3, · · · ).

This is called the right shift operator. By Proposition 8.3.1, it follows that the spec-
trum of T is also the closed unit disc in the complex plane. Now, if T (x) = λx , then
λx1 = 0 and, for all i ≥ 2, we have λxi = xi−1. If λ = 0, then xi = 0 for all i and so
N (T ) = {0}. If λ �= 0, then x1 = 0 and again, it follows that xi = 0 for all i . Thus,
there are no eigenvalues for T . �

Example 8.3.2 Let H be a Hilbert space and let P ∈ L(H) be a non-trivial orthog-
onal projection, i.e. P �= 0, P �= I . For every x in the range of P , we have P(x) = x
and for every y in the null space, we have P(x) = 0. Thus 0 and 1 are eigenvalues
of P . If λ �= 0, 1, then it is a simple matter to check that

1

λ

[

I + 1

λ − 1
P

]

is an inverse for λI − P . Thus σ(P) = {0, 1}. �

We conclude this section by characterising the spectra of some special classes of
operators on a Hilbert space.

Theorem 8.3.1 Let H be a Hilbert space. Let T ∈ L(H).

(a) If T is self-adjoint, then σ(T ) ⊂ R.
(b) If T is such that (T (x), x) ≥ 0 for every x ∈ H, then σ(T ) ⊂ [0,∞) ⊂ R.
(c) If T is unitary, then σ(T ) ⊂ {λ ∈ C | |λ| = 1}.
Proof (a) Let T = T ∗ and let λ ∈ C, such that Im(λ) �= 0. Now, if x ∈ H , then

(T (x), x) = (x, T ∗(x)) = (x, T (x)) = (T (x), x).

Thus (T (x), x) is always a real number. Then

Im((T − λI )(x), x)) = −Im(λ)‖x‖2.

Consequently,
|Im(λ)| ‖x‖2 ≤ ‖(T − λI )(x)‖ ‖x‖,

whence we deduce that, for every x ∈ H ,

‖(T − λI )(x)‖ ≥ |Im(λ)| ‖x‖.
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In particular, this implies that T − λI is injective. In the same way, we have, for
every x ∈ H ,

‖(T − λI )(x)‖ ≥ |Im(λ)| ‖x‖.

Since (T − λI )∗ = T − λI , we deduce that T − λI is surjective (cf. Theorem 4.7.2)
and hence, by the open mapping theorem, it is invertible. Thus λ ∈ ρ(T ) and so
σ(T ) ⊂ R.

(b) If (T (x), x) ≥ 0 for every x ∈ H , it follows that T = T ∗ (cf. Proposition 7.2.3).
Thus, σ(T ) ⊂ R. Let λ < 0. Then

|λ| ‖x‖2 = −λ‖x‖2 ≤ ((T − λI )(x), x) ≤ ‖(T − λI )(x)‖ ‖x‖,

from which we deduce that, for all x ∈ H ,

‖(T − λI )(x)‖ ≥ |λ| ‖x‖.

Since T − λI is now self-adjoint, it again follows, from Theorem 4.7.2, that it is
invertible. This proves that σ(T ) ⊂ [0,∞).

(c) If T is unitary, then ‖T (x)‖ = ‖T ∗(x)‖ = ‖x‖. If |λ| �= 1, then

‖T (x) − λx‖ ≥ | ‖T x‖ − |λ|‖x‖ | = |1 − |λ| |‖x‖,

and
‖T ∗(x) − λx‖ ≥ | ‖T ∗x‖ − |λ|‖x‖ | = |1 − |λ| |‖x‖,

Again, from Theorem 4.7.2, it follows that T − λI is invertible. This completes the
proof. �

8.4 Spectrum of a Compact Operator

In the previous section, we saw from the examples that the spectrum of an operator,
in infinite dimensionl spaces, can be of various kinds. In the case of the left shift
operator, there is a continuum of eigenvalues and a continuum of elements in the
spectrum which are not eigenvalues, while the right shift operator has a spectrum
which is a continuumof complex numbers butwithout any eigenvalues. The spectrum
of an orthogonal projection consists of only two elements, both being eigenvalues.
We will now see that compact operators behave more or less like operators on finite
dimensional spaces.

Theorem 8.4.1 Let V be an infinite dimensional Banach space and let T ∈ L(V )

be a compact operator. Then,
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(a) 0 ∈ σ(T );
(b) Every non-zero element of the spectrum is an eigenvalue of T with finite (geo-

metric) multiplicity;
(c) If {λn} is a sequence of distinct non-zero eigenvalues of T , and if λn → λ, then

λ = 0 (in particular, the non-zero elements of the spectrum are all isolated);
(d) One of the following alternatives holds:

• σ(T ) = {0},
• σ(T )\{0} is finite,
• σ(T )\{0} consists of a sequence of eigenvalues which converges to zero.

Proof (a) We have already seen (cf. Example 8.1.4) that a compact operator is not
invertible. Thus 0 ∈ σ(T ).
(b) Let λ �= 0. Now T − λI = −λ(I − λ−1T ) and the Riesz-Fredhölm theory
applies. Thus, if N (I − λ−1T ) = {0}, then T − λ−1 I is onto as well. Then, by the
open mapping theorem, it is also invertible. Thus, if λ �= 0 is in the spectrum of T ,
it follows that N (T − λI ) = N (I − λ−1T ) �= {0} and that it is finite dimensional
(cf. Theorem 8.2.1).
(c) Since λn is an eigenvalue for each n, let un �= 0 be such that T (un) = λnun . The
set {un} is a linearly independent set. Indeed, assume that the set {u1, · · · , un} is
linearly independent (this is true for n = 1 since u1 �= 0) and that we can write

un+1 =
n

∑

j=1

α j u j .

Then,
n

∑

j=1

α jλn+1u j = λn+1un+1 = T (un+1) =
n

∑

j=1

α jλ j u j .

Since the set {u1, · · · , un} is linearly independent and since λ j �= λn+1 for all such
j , we deduce that α j = 0 for 1 ≤ j ≤ n, whence un+1 = 0, which is a contradic-
tion. This completes the induction and proves the linear independence of the set of
eigenvectors {un}.

Set Vn = span{u1, · · · , un}. Then we have an increasing sequence of subspaces
such that Vn is a proper subspace of Vn+1 for all n. These subspaces are all finite
dimensional and hence, closed. By Riesz’ lemma we can find vn ∈ Vn such that
‖vn‖ = 1 and d(vn, Vn−1) ≥ 1/2 for all n ≥ 2.

Let λn → λ �= 0. Then { 1
λn

vn} is a bounded sequence and so, since T is compact,
the sequence

{

1

λn
T (vn)

}

must have a convergent subsequence. Now, if 2 ≤ m < n, we have

Vm−1 ⊂ Vm ⊂ Vn−1 ⊂ Vn.
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Thus,

1

λn
T (vn) − 1

λm
T (vm) = 1

λn
(T (vn) − λnvn) − 1

λm
(T (vm) − λmvm) + (vn − vm).

Now, T (vn) − λnvn ∈ Vn−1 (why?) and, similarly, T (um) − λmvm ∈ Vm−1. Thus

1

λn
T (vn) − 1

λm
T (vm) = vn − w

where w ∈ Vn−1 and so, by construction,

∥

∥

∥

∥

1

λn
T (vn) − 1

λm
T (vm)

∥

∥

∥

∥

≥ 1

2

which contradicts the fact that the sequence {(1/λn)T (vn)} has a convergent subse-
quence. This proves that λ = 0.
(d) In view of (c) we deduce that, for all positive integrs n, the set

σ(T ) ∩
{

λ ∈ C | |λ| ≥ 1

n

}

is either empty, or finite (since σ(T ) is compact). Thus σ(T )\{0} is empty, finite or
countably infinite. In the last case, by the compactness of σ(T ), every subsequence
of this set has a convergent subsequence which must converge to zero. Hence the
entire sequence in σ(T )\{0} converges to zero. �

Example 8.4.1 If T : V → V is an operator of finite rank, then obviously it can only
have a finite number of eigenvalues. Now, consider the map T : �2 → �2 defined by

T (x) = (0, x1, x2, · · · , xn, 0, 0, · · · )

where x = (x1, x2, · · · ). Then, T n+1(x) = 0 for all x ∈ �2. Then it is clear that the
only eigenvalue of T is zero. �

Example 8.4.2 Let {αn} be a sequence of complex numbers such that αn → 0.
Define T ∈ L(�2) by

T (x) = (α1x1,α2x2, · · · ,αn xn, · · · )

where x = (x1, x2, · · · ). Define

Tn(x) = (α1x1,α2x2, · · · ,αn xn, 0, 0, · · · ).

Then Tn is of finite rank. Further, for any x = (xi ) ∈ �2, we have
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‖T (x) − Tn(x)‖22 =
∞

∑

k=n+1

|αk |2|xk |2 ≤
(

sup
k≥n+1

|αk |2
)

‖x‖2

from which we immediately see that ‖T − Tn‖ → 0. Thus T is compact. Clearly
each αn is an eigenvalue with associated eigenvector en . If αn �= 0 for any n, then
zero is not an eigenvalue of T (since T will then be injective). If a finite number of the
αn are zero, then zero will be an eigenvalue of finite multiplicity. If infinitely many
αn are zero, then zero will be an eigenvalue with infinite multiplicity. Thus while zero
is always in the spectrum of a compact operator, it need not be an eigenvalue or it
could be an eigenvalue offinite or infinitemultiplicity, unlike non-zero elements of the
spectrumwhich are always eigenvalues of finite multiplicity. If all but a finite number
of theαi are zero, σ(T )\{0} is finite. If all theαi are non-zero, then σ(T )\{0} consists
of an infinite sequence of eigenvalues converging to zero. Thus, all the possibilitis
mentioned in the statement of the theorem above can occur. �

Example 8.4.3 Let T : �2 → �2 be given by

T (x) = (α1x1, · · · ,αn xn, · · · )

where x = (x1, x2, · · · ), and where {αn} is a sequence of complex numbers. We
saw that if αn → 0, then T is compact. Conversely, if T is compact, it follows that
αn → 0. Indeed, since αn are all in the spectrum, by Theorem 8.4.1 (c), we deduce
that αn → 0. �

8.5 Compact Self-adjoint Operators

In this section, we will study the spectrum of a compact self-adjoint operator on a
Hilbert space. If H is a Hilbert space and T ∈ L(H) is self-adjoint, recall that

(T (x), y) = (x, T (y))

for all x and y ∈ H .

Example 8.5.1 Consider the operator G : L2(0, 1) → L2(0, 1) defined in Example
8.1.9. Then G is self-adjoint. To see this, let f and g ∈ L2(0, 1). Set u = G(f) and
v = G(g). Then (cf. Example 8.1.9)

(G(f),g) =
1

∫

0

gu dx =
1

∫

0

α(x)v′(x)u′(x) dx =
1

∫

0

f v dx = (f, G(g))
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which establishes our claim. In particular, the operator G considered in Example
8.1.8 is also self-adjoint. Both these are thus examples of compact and self-adjoint
operators on L2(0, 1). �

Let H be a Hilbert space. We saw, in Sect. 8.3, that if T ∈ L(H) is a self-adjoint
operator, then σ(T ) ⊂ R. Thus, if T is a compact self-adjoint operator, all it eigen-
values are real. Further, if T (u) = λu, and T (v) = μv, where λ �= μ and u and v are
non-zero, we have

λ(u, v) = (T (u), v) = (u, T (v)) = μ(u, v).

Hence, it follows that (u, v) = 0. Thus, we have the following result.

Proposition 8.5.1 Let H be a Hilbert space and let T ∈ L(H) be a compact self-
adjoint operator. Then, eigenvectors corrsponding to distinct eigenvalues are orthog-
onal to each other. �

Proposition 8.5.2 Let T : H → H be a self-adjoint compact operator. Set

m = inf
u∈H ;‖u‖=1

(T (u), u) and M = sup
u∈H ;‖u‖=1

(T (u), u).

Then, σ(T ) ⊂ [m, M] and, further, both m and M belong to σ(T ).

Proof Let λ > M . Then, for any u ∈ H , we have

(T (u), u) ≤ M‖u‖2 < λ‖u‖2.

Thus, if we set a(u, v) = (λu − T (u), v), we have

a(u, v) = (u,λv − T (v)) = a(v, u), and a(u, u) ≥ (λ − M)‖u‖2

since λ is real and T is self-adjoint. Thus, a(·, ·) defines a new inner product whose
norm is equivalent to the original one. Hence, by the Riesz representation theorem,
it follows that for any f ∈ H , there exists a unique u ∈ H such that

(λu − T (u), v) = ( f, v)

for all v ∈ H , i.e. λI − T is onto; since it is also one-one (why?) and continuous, it
is invertible, by the open mapping theorem. Thus λ ∈ ρ(T ).

Again, consider a(u, v) = (Mu − T (u), v). This almost defines an inner product
on H ; observe that a(Mu − T (u), u) ≥ 0 for all u ∈ H but this quantity being zero
does not imply that u = 0. Nevertheless, we can still prove the Cauchy-Schwarz
inequality for this ‘inner product’ using the same arguments as in the proof of
Theorem 7.1.1. Thus, we deduce that

|(Mu − T (u), v)| ≤ (Mu − T (u), u)
1
2 (Mv − T (v), v)

1
2



8.5 Compact Self-adjoint Operators 251

for all u and v ∈ H . Thus,

|(Mu − T (u), v)| ≤ ‖M I − T ‖ 1
2 ‖v‖(Mu − T (u), u)

1
2 .

This implies that
‖Mu − T (u)‖ ≤ C(Mu − T (u), u)

1
2

where C = ‖M I − T ‖ 1
2 .

Let {un} be a sequence in H such that ‖un‖ = 1 for all n and such that
(T (un), un) → M as n → ∞. Then, it follows that Mun − T (un) → 0. This proves
that M ∈ σ(T ). (If not, then M I − T would be invertible and we would have

un = (M I − T )−1(Mun − T (un)) → 0

while ‖un‖ = 1, which is a contradiction.)
The results for m will now follow from the above by considering −T instead of

T . �

Corollary 8.5.1 Let T ∈ L(H) be a compact and self-adjoint operator such that
σ(T ) = {0}. Then T = 0.

Proof Let Re(z) and Im(z) stand for the real and imaginary parts of a complex
number z. By the preceding proposition, it follows that (T (u), u) = 0 for all u ∈ H .
Then (cf. Proposition 7.2.3) it follows that T = 0. �

Remark 8.5.1 The above corollary remains true even if H is a real Hilbert space,
thanks to the self-adjointness of T . For, if T (u), u) = 0 for all u ∈ H , then,

0 = (T (x + y), x + y) = (T (x), y) + (T (y), x) = 2(T (x), y),

for arbitrary x and y in H . From this, we deduce that T = 0. �

Theorem 8.5.1 Let H be an infinite dimensional separable Hilbert space and let
T ∈ L(H) be a compact self-adjoint operator on H. Then H admits an orthonormal
basis consisting of eigenvectors of T .

Proof Let σ(T ) = {0} ∪ {λn | n ∈ N}. Set λ0 = 0. The numbers λn for n ∈ N are all
distinct eigenvalues of T . Thus, if we set E0 = N (T ) and En = N (T − λn I ) for
n ∈ N, it follows that

0 ≤ dim(E0) ≤ ∞ and 0 < dim(En) < ∞

for n ∈ N.
The spaces En, n ≥ 0 are all mutually orthogonal (cf. Proposition 8.5.1). Let F

be the linear subspace generated by the En, n ≥ 0. We will show that F is dense in
H . In other words, we will show that F⊥ = {0}.
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Clearly T (F) ⊂ F . If u ∈ F⊥ and v ∈ F , we have

(T (u), v) = (u, T (v)) = 0.

Thus T (F⊥) ⊂ F⊥ as well. Let T0 be the restriction of T to F⊥. Then T0 ∈ L(F⊥) is
compact and self-adjoint. Hence, if T0 has a non-zero element˜λ in its spectrum, then
it must be an eigenvalue. But then, it will mean that there exists u �= 0 in F⊥ such that
˜λu = T0u = T u which implies that u ∈ F , which is impossible. Thus σ(T0) = {0},
whence, by the preceding corollary, T0 = 0. Thus

F⊥ ⊂ N (T ) ⊂ F

i.e. F⊥ = {0}.
Now, if E0 is a non-zero subspace, it is either finite dimensional or is an infinite

dimensional separable subspace of H and so it has an orthonormal basis. Each
En, n ≥ 1, is finite dimensional and admits an orthonormal basis. The union of all
these bases forms an orthonormal basis of H , since F is dense in H (cf. Corollary
7.4.1). �

Remark 8.5.2 In view of Remark 8.5.1, the above result is true for in the case of
infinite dimensional separable real Hilbert spaces as well. �

The above result is known as the spectral theorem for compact self-adjoint oper-
ators on a Hilbert space. We will now present the same result in another form,
completely in terms of operators. Let us denote by Pn , the orthogonal projection of
H onto En, n ≥ 0. Since the eigenvectors of distinct eigenvalues are orthogonal to
each other, it follows that Pn Pm = 0, when n �= m. Let {uk}∞k=1 denote an orthonor-
mal basis of H consisting of eigenvectors of T . Let T (uk) = μkuk , where each μk

is equal to one of the λn . Then, if x ∈ H , we have that

x =
∞

∑

k=1

(x, uk)uk .

Then it follows that

T (x) =
∞

∑

k=1

μk(x, uk)uk .

Let d(n) < +∞ denote the dimension of En, n ≥ 1. Let {uk(1), · · · , uk(d(n))} be those
vectors in the collection {uk}∞k=1 which are in En . Then,

Pn(x) =
d(n)
∑

j=1

(Pn(x), uk( j))uk( j) =
d(n)
∑

j=1

(x, uk( j))uk( j),
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since Pn is an orthogonal projection. Similarly we can write the expansion when
n = 0, to get

x = P0(x) +
∞

∑

n=1

Pn(x).

Then, we get

T (x) =
∞

∑

k=1

λn Pn(x).

Now, for any n, we have

∥

∥

∥

∥

∥

T −
n
∑

j=1
λ j Pj

∥

∥

∥

∥

∥

2

= sup‖x‖=1

∥

∥

∥

∥

∥

T (x) −
n
∑

j=1
λ j Pj (x)

∥

∥

∥

∥

∥

2

= sup‖x‖=1

∞
∑

j=n+1
λ2

j‖Pj x‖2

≤ sup j>n λ2
j → 0.

Thus we can write

T =
∞

∑

n=1

λn Pn.

This is the second form of the spectral theorem.

We now give a variational characterization of the non-zero eigenvalues of a com-
pact self-adjoint operator, T, on a separable Hilbert space, H .

Let us number the non-negative eigenvalues of T in decreasing order ofmagnitude
and the non-positive eigenvalues in increasing order of magnitude. Each eigenvalue
is repeated as many times as its (geometric) multiplicity. Thus, we have

λ+
1 ≥ λ+

2 ≥ · · · ≥ 0
λ−
1 ≤ λ−

2 ≤ · · · ≤ 0.

Let u+
m be a normalized eigenvalue of λ+

m and u−
n a normalized eigenvalue of λ−

n such
that the set of all the u+

m and u−
n form an orthonormal basis of H . Let V +

n be the
finite dimensional space generated by the vectors {u+

1 , · · · , u+
n } and let V0 = {0}.

Similarly we can define V −
n for n ≥ 0. With these notations, we can now prove the

following result.

Theorem 8.5.2 For each m ≥ 1, we have



254 8 Compact Operators

λ+
m = (T (u+

m), u+
m)

= maxv �=0; v⊥V +
m−1

(T (v),v)

‖v‖2

= minV ⊂H ; dim(V )=m−1 maxv �=0; v⊥V
(T (v),v)

‖v‖2 .

Proof Since u+
m is an eigenvector corresponding to the eigenvalue λ+

m , and since
‖u+

m‖ = 1, it follows immediately that

λ+
m = (T (u+

m), u+
m) (8.5.1)

On the other hand, if v ∈ H , we have (cf. Theorem 7.4.2)

v =
∑

k

(v, u+
k )u+

k +
∑

n

(v, u−
n )u−

n

and so
T (v) =

∑

k

λ+
k (v, u+

k )u+
k +

∑

n

λ−
n (v, u−

n )u−
n .

We then deduce that

(T (v), v) =
∑

k

λ+
k |(v, u+

k )|2 +
∑

n

λ−
n |(v, u−

n )|2 ≤
∑

k

λ+
k |(v, u+

k )|2.

If, in addition, v ⊥ Vm−1, then,

(T (v), v) ≤
∑

k≥m

λ+
k |(v, u+

k )|2 ≤ λ+
m

∑

k≥m

|(v, u+
k )|2 ≤ λ+

m‖v‖2

by repeated use of Parseval identity (cf. Theorem 7.4.2). Since u+
m ⊥ Vm−1, the pre-

ceding computation and (8.5.1) imply that

λ+
m = max

v �=0;v⊥Vm−1

(T (v), v)

‖v‖2 . (8.5.2)

Finally, let V be a (m − 1)-dimensional subspace of H . Then, there exists a non-
zero vector u in the m-dimensional space V +

m such that u ⊥ V (why?). Thus

sup
v �=0;v⊥V

(T (v), v)

‖v‖2 ≥ (T (u), u)

‖u‖2 .

But u =
m
∑

i=1
αi u

+
i and so ‖u‖2 =

m
∑

i=1
α2

i ; thus,
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(T (u), u) =
m

∑

i=1

α2
i λ

+
i ≥ λ+

m‖u‖2.

Combining these inequalities, we get

sup
v �=0;v⊥V

(T (v), v)

‖v‖2 ≥ λ+
m .

In fact, since T is compact, the ‘sup’ above is a ‘max’ (why?). Further, in view of
(8.5.2), we deduce that

λ+
m = min

V ⊂H ;dim(V )=m−1
max

v �=0;v⊥V

(T (v), v)

‖v‖2 . (8.5.3)

This completes the proof. �
Remark 8.5.3 We can prove analogous relations for the eigenvalues λ−

n . �
Corollary 8.5.2 With the preceding notations, we have

λ+
1 = max

v �=0;v∈H

(T (v), v)

‖v‖2 .

�
Example 8.5.2 Let us consider, once again, the operator G defined on L2(0, 1)
as in Example 8.1.9 (and also Example 8.5.1). Consider the following ‘eigenvalue
problem’: find (u,λ) ∈ (H 1

0 (0, 1)\{0}) × R such that

a(u, v) = λ(u, v) (8.5.4)

for all v ∈ H 1
0 (0, 1). In view of the definition of G, it follows that

G(λu) = u.

Since a(., .) is coercive, there is no solution corresponding to λ = 0. If λ �= 0, we
can write

G(u) = λ−1u.

Thus the problem reduces tofinding the spectrumofG which is a self-adjoint compact
operator. Since (G(u),u) ≥ 0 for all u ∈ L2(0, 1), it follows that all eigenvalues λ
are strictly positive. Since G has a sequence of eigenvalues μn → 0, the problem
(8.5.4) admits a sequence of eigenvalues λn = μ−1

n which tend to infinity. In view of
the preceding corollary, we get that

λ−1
1 = μ1 = max

u �=0;u∈L2(0,1)

(G(u),u)

‖u‖22
.
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Notice that the equation (8.5.4) is the ‘weak formulation’ (cf. Remark 8.1.2) of
the following two-point boundary value problem:

− d
dx

(

α du
dx

) = λu in(0, 1)
u(0) = u(1) = 0.

Thus, eigenvectors of such boundary value problems generate, in a natural way,
orthonormal bases for Hilbert spaces like L2(0, 1). Several special functions ofmath-
ematical physics are, in fact, eigenvectors of certain boundary value problems for
second order differential equations. For instance, we cite the cases of the Bessel
functions, Legendre polynomials (cf. Exercise 7.22) and the Hermite polynomials
(cf. Exercise 7.23). For details, the reader is referred to Simmons [2]. �

Remark 8.5.4 Notice that, in the preceding example, all the eigenvectors will, in
fact, belong to H 1

0 (0, 1). Using arguments very similar to those in the proof of
Theorem 8.5.2, it can also be shown that if the eigenvalues {λn} are numbered in
increasing order ofmagnitude (taking into account the geometricmultiplicities), then
they can be given the following variational characterization in H 1

0 (0, 1). Let {wn} be
the orthonormal basis of eigenvectors (in L2(0, 1)) with wn corresponding to λn for
each n. Let Vn be the finite dimensional space spanned by {w1, · · · ,wn}. Set

R(v) = a(v, v)
‖v‖22

for v ∈ H 1
0 (0, 1), v �= 0. Then

λn = R(wn)

= maxv �=0; v∈Vn R(v)

= minv �=0; v⊥Vn−1 R(v)

= minV ⊂H 1
0 (0,1); dim(V )=n maxv �=0; v∈V R(v).

In particular, we have
λ1 = min

v �=0; v∈H 1
0 (0,1)

R(v).

For details, see Kesavan [1]. (A proof is outlined in Exercise 8.30 in the next section.)
This result is an infinite dimensional version of the characterization of eigenvalues
of a hermetian positive definite matrix (cf. Proposition 1.1.8). �

Example 8.5.3 A particular case of the preceding example is the case whereα(x) ≡
1. The corresponding differential equation is
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− d2u
dx2 = λu in (0, 1)

u(0) = u(1) = 0.

A simple computation yields that the only possible solutions to this equation are
given by

λn = n2π2; un = An sin nπx

where An is an arbitrary constant. Choosing An = √
2, we get an orthonormal

sequence in L2(0, 1). We have already seen that it is complete (cf. Example 7.4.6).
In particular, we have

λ1 = π2 = min
v �=0; v∈H 1

0 (0,1)

1
∫

0
|∇v|2 dx

1
∫

0
|v|2 dx

.

Thus, for every v ∈ H 1
0 (0, 1), we deduce that

‖v‖2 ≤ 1

π
‖v′‖2.

This is just Poincaré’s inequality (cf. Theorem 6.4.6), except that we have a better
constant in the estimate compared to the inequality (6.4.4). In fact, we have shown
in this case that 1/π is the best possible constant and equality is attained in the above
inequality for the function x 	→ sin πx . �

8.6 Exercises

8.1 Let V and W be Banach spaces and let T ∈ L(V, W ) be compact. Show that if
xn ⇀ x in V , then T (xn) → T (x) in W .

8.2 (a) Let V and W be Banach spaces and let V be reflexive. Let T ∈ L(V, W ).
Assume that whenever xn ⇀ x in V , we have T (xn) → T (x) in W . Show that
T is compact.

(b) Show, by means of an example, that the conclusion is not true, in general, if we
drop the assumption that V is reflexive.

8.3 Let H be an infinite dimensional Hilbert space. Let A and B belong to L(H).
If AB is compact, is it necessary that at least one of A or B is compact?

8.4 (a) Let V be a reflexive Banach space and let T ∈ L(V, �1). Show that T is
compact.

(b) LetW be a reflexiveBanach space and let T ∈ L(c0, W ). Show that T is compact.
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8.5 Let H be an infinite dimensional Hilbert space and let T ∈ L(c0, H). If R(T )

is closed, show that T is not injective.

8.6 Let H be an infinite dimensional Hilbert space. Let T ∈ L(H) be compact. If
the range of T is closed, show that T is of finite rank.

8.7 Let V and W be infinite dimensional Hilbert spaces. Let {v1, · · · , vn} ⊂ V and
{w1, · · · , wn} ⊂ W . For every x ∈ V , define

T (x) =
n

∑

k=1

(x, vk)wk .

Show that T ∈ L(V, W ) and that it is compact.

8.8 Let V and W be infinite dimensional Hilbert spaces and let T ∈ L(V, W ) be an
operator of finite rank, say, n. If {w1, · · · , wn} is an orthonormal basis for the range
of T , show that there exist v1, · · · , vn in V such that, for every x ∈ V ,

T (x) =
n

∑

k=1

(x, vk)wk .

8.9 Let H be an infinite dimensional Hilbert space and let {v1, · · · , vn} ⊂ H . Let
M be the subspace spanned by the set {vk}n

k=1. Let {w1, · · · , wn} be a linearly inde-
pendent set of vectors in M⊥. For x ∈ H , define

T (x) =
n

∑

k=1

(x, vk)wk .

For every scalar α, show that I + αT is invertible.

8.10 Let H be a Hilbert space and let A ∈ L(H) be compact. Assume that
(A(x), x) ≥ 0 for all x ∈ H . Show that there does not exist a constant α > 0 such
that

(A(x), x) ≥ α‖x‖2

for all x ∈ H .

8.11 Let V be a Banach space and let T ∈ L(H) be compact. Show that if S ∈
L(V ), then S(I − T ) = I if, and only if, (I − T )S = I . In this case, deduce that
I − (I − T )−1 is compact.

8.12 Let H be a Hilbert space. Let T ∈ L(H) be compact. Show that

‖T ‖ = max
x∈H ; ‖x‖=1

‖T (x)‖.
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8.13 Let Hi , i = 1, 2, 3 be Hilbert spaces such that

H1 ⊂ H2 ⊂ H3

with continuous inclusions. Assume, further, that the inclusion of H1 in H2 is com-
pact. Show that for every ε > 0, there exists a constant Cε > 0 such that

‖u‖H2 ≤ ε‖u‖H1 + Cε‖u‖H3

for all u ∈ H1.

8.14 Let {a j }∞j=1 be a sequence of numbers such that
∑∞

j=1 |a j | < ∞. Consider the
infinite matrix

⎛

⎜

⎜

⎝

a1 a2 a3 · · ·
a2 a3 a4 · · ·
a3 a4 a5 · · ·
· · · · · · · · · · · ·

⎞

⎟

⎟

⎠

.

Let A be the linear mapping defined on �2 by this matrix (cf. Exercise 2.34). Show
that A ∈ L(�2) and that it is compact.

8.15 (a) Let W be a Banach space. Assume that there exists a sequence of operators
of finite rank, {Pn}, in L(W ) such that Pn(y) → y for all y ∈ W . Show that, if V is
any Banach space, and if T ∈ L(V, W ) is compact, then T is the limit (in L(V, W ))
of operators of finite rank.
(b) Deduce that, if V is any Banach space, and if T ∈ L(V, �p), where 1 ≤ p < ∞,
is compact, then T is the limit of operators of finite rank.

8.16 Let x = (x1, x2, · · · ) ∈ �2. Define

S(x) = (0, x1, x2, · · · )
M(x) = (x1, x2/2, x3/3, · · · ).

Set T = M S. Show that T ∈ L(�2) is compact and compute its spectrum.

8.17 Consider the complex spaace �p, 1 ≤ p < ∞. For x = (x1, · · · , xk, · · · ) ∈
�p, define

T (x) = (β1x1, · · · ,βk xk, · · · ),

where {βk}∞k=1 is a bounded sequence of scalars. Show that T ∈ L(�p) and compute
its spectrum.

8.18 Let V = C[0, 1] equipped with its usual norm. For f ∈ V , define T ( f ) ∈ V
by

T ( f )(t) = t f (t), t ∈ [0, 1].

(a) Show that T ∈ L(V ) and that it is not compact.
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(b) Show that T has no eigenvalues.
(c) Show that σ(T ) = [0, 1].
8.19 Let H = L2(0, 1), considered as a real Hilbert space (of real-valued square
integrable functions on (0, 1)). For f ∈ H , define T ( f ) by

T ( f )(t) = t f (t), t ∈ (0, 1).

Show that T ∈ L(H) is self-adjoint and that it has no eigenvalues.

8.20 Let L2(0, 1) be the space of complex valued square integrable functions. Let
K be the Hilbert-Schmidt operator (cf. Example 8.1.11) defined on this space by the
function ik where

k(t, s) =
{

1 if s ≤ t
−1 if s > t.

Show that all the eigenvalues of K are given by

λk = 2

(2k + 1)π
, k ∈ Z

with corresponding eigenvector t 	→ exp(i(2k + 1)πt).

8.21 Consider the operator K ∈ L(L2(0, 1)) defined by

K (f)(t) =
t

∫

0

f (s) ds.

Show that it is compact and compute its spectrum.

8.22 Let V be a Banach space and let T ∈ L(V ) be compact. Let L and M be closed
subspaces of V such that M is strictly contained in L . Assume that (I − T )L ⊂ M .
Show that there exists x ∈ L such that ‖x‖ = 1 and ‖T (x) − T (y)‖ ≥ 1/2 for all
y ∈ M .

8.23 Let V be a Banach space and let T ∈ L(V ) be compact.

(a) Show that for all n ∈ N, the operator (I − T )n is a compact perturbation of the
identity.

(b) Let Nk = N ((I − T )k) for k ∈ N. Show that Nk is an increasing sequence of
finite dimensional spaces which is stationary, i.e. Nk ⊂ Nk+1 for all k ∈ N and
there exists l ∈ N such that Nk = Nl for all k > l and l is the least positive integer
with that property. (The dimension of Nl is called the algebraic multiplicity of
T .) (Hint: use Exercise 8.13.)

(c) If V is a Hilbert space and if T is self-adjoint, show that l = 1, i.e. the algebraic
and geometric multiplicities coincide.
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(d) Let Fk = R((I − T )k). Show that {Fk} is a decreasing sequence of closed sub-
spaces of V and that Fk = Fl for all k > l.

(e) Show that V = Nl ⊕ Fl .
(f) Show that T (Nl) ⊂ Nl and that T (Fl) ⊂ Fl .
(g) Show that I − T is an isomorphism of Fl onto itself.

8.24 (a) Let V be a Banach space and let T ∈ L(V ) be compact. Let λ �= 0. Show
that the results of the previous exercise are valid when I − T is replaced by
λI − T . (If λ is an eigenvalue of T , then N (λI − T ) is called the eigenspace
associated to λ while the space Nl obtained in section (b) of the preceding
exercise is called the generalized eigenspace associated to λ and is denoted
N (λ). The corresponding complement Fl is denoted F(λ).

(b) Show that if λ and μ are disctinct non-zero eigenvalues of T , then N (μ) ⊂ F(λ).

8.25 (a) Let H be a Hilbert space and let S and T ∈ L(H). Let λ �= 0 be an eigen-
value of ST with eigenvector u. Show that T (u) is an eigenvector of T S.

(b) Show that the non-zero eigenvalues of ST and T S are the same and that

T (N (ST − λI )) = N ((T S − λI ))

for each such eigenvalue λ.

8.26 Let H be a Hilbert space and let T ∈ L(H) be self-adjoint. Show that

‖T ‖ = sup
x∈H ; ‖x‖=1

|(T (x), x)|.

8.27 Let H be a Hilbert space and let T ∈ L(H) be compact and self-adjoint. Show
that either ‖T ‖ or −‖T ‖ is an eigenvalue of T .

8.28 Let H be a Hilbert space and let T ∈ L(H) be self-adjoint. If T 2 is compact,
show that T is compact as well. Generalize this result to the case when T n is compact
for some positive integer n.

8.29 Let H be an infinite dimensional Hilbert space and let {ek}∞k=1 be an orthonor-
mal basis for H . For x ∈ H , define

T (x) =
∞

∑

k=1

(x, e2k+1)e2k .

Show that T ∈ L(H). SHow that T is not compact, while T 2 is compact.

8.30 Let V and H be real Hilbert spaces with inner products (·, ·)V and (·, ·)H ,
respectively; let the corresponding norms be denoted by ‖ · ‖V and ‖ · ‖H . Assume
that V ⊂ H , the inclusion being continuous and compact. Assume, further, that V
is a dense subspace of H . Let a(·, ·) : V × V → R be a continuous, symmetric and
coercive bilinear form
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(a) Let f ∈ H . Show that there exists a unique vector u ∈ V such that

a(u, v) = ( f, v)H

for every v ∈ V .
(b) Define G( f ) = u. Show that G ∈ L(H) and that it is self-adjoint and compact.

Show, further, that
(G(u), u)H > 0

for every u ∈ H, u �= 0.
(c) Show that the image of G is dense in V .
(d) Show that there exists a sequence of positive real numbers {λn} and an orthonor-

mal basis {un} of H such that each un ∈ V and

a(un, v) = λn(un, v)H

for every v ∈ V .
(e) Set vn = (1/

√
λn)un . Show that {vn} forms an orthonormal basis of V (for

the inner product induced on V by the bilinear form a(., .)).
(f) Show that

λ1 = min
v∈V ; v �=0

a(v, v)

‖v‖2H
.

(g) If u ∈ V is such that ‖u‖2H = 1 and a(u, u) = λ1, then show that

a(u, v) = λ1(u, v)H

for every v ∈ V .
(h) Let Vn be the space spanned by {u1, u2, · · · , un}. Set

R(v) = a(v, v)

‖v‖2H
for v ∈ V, v �= 0. Let

V ⊥
n = {v ∈ V | (v,w)H = 0 for allw ∈ Vn}.

Show that
λn = R(un)

= maxv∈Vn; v �=0 R(v)

= minv∈V ⊥
n−1;v �=0 R(v)

= minW⊂V ; dim(W )=n maxv∈W ; v �=0 R(v).
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Remark 8.6.1 Exercise 8.30 above is an abstract version of the situation described
in Remark 8.5.4. In that case we have V = H 1

0 (0, 1) and H = L2(0, 1). �

8.31 Let V and H be as in the preceding exercise. Let a(·, ·) : V × V → R be a
continuous and coercive bilinear form. For g ∈ H , denote by ug ∈ V , the unique
solution such that

a(ug, v) = (g, v)H

for every v ∈ V .

(a) Show that there exists a constant C > 0 such that

‖ug‖V ≤ ‖g‖H .

(b) Let K ⊂ H be a closed convex subset. Let f ∈ H be given. For θ ∈ K , let
u(θ) ∈ V be given by u(θ) = U f +θ = u f + uθ. Show that if θn ⇀ θ weakly in
H , then u(θn) → u(θ) in H (i.e. in norm).

(c) Let, further, u0 ∈ H be given. Define

J (θ) = 1

2
‖u(θ) − u0‖2H + 1

2
‖θ‖2H .

Show that there exists a unique θ∗ ∈ K such that

J (θ∗) = min
θ∈K

J (θ).

(d) Show that J is differentiable; if h ∈ H , show that

J ′(θ)(h) = (p + θ, h)H

where p ∈ V satisfies

a(v, p) = (u(θ) − u0, v)H

for every v ∈ V .
(e) Deduce that if θ∗ minimizes J over K , then

(θ∗ + p∗, θ − θ∗)H ≥ 0

where p∗ ∈ V is the unique solution of the problem

a(v, p∗) = (u(θ∗) − u0, v)H

for every v ∈ V .
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(f) Conversely, if (θ∗, u∗, p∗) ∈ K × V × V satisfies the system:

a(u∗, v) = ( f + θ∗, v)H for every v ∈ V
a(v, p∗) = (u∗ − u0, v)H for every v ∈ V

(θ∗ + p∗, θ − θ∗)H ≥ 0 for every θ ∈ K ,

show that θ∗ minimizes J over K .

Remark 8.6.2 The preceding exercise is an example of an abstract optimal control
problem. The set K is the set of admissible controls and H is the control space. The
equation defining u(θ) is called the state equation and u(θ) is the state corresponding
to the control θ. The state u0 is the desirable state and sowe seek to find a control such
that the corresponding state is as close to the desired state as possible. We thus seek
to minimize J which also takes into account the ‘cost’ of exercising the control. The
minimizer θ∗ is called the optimal control. The corresponding state u∗ is the optimal
state. The element p defined in (d) above is called the adjoint state and the equation
defining it is the adjoint state equation. The system in (f) above, characterizing the
optimal solution, is called the optimality system. �

8.32 Let H be a complex Hilbert space and let u, v ∈ H . Let T ∈ L(H) be defined
by T (x) = (x, u)v, for every x ∈ H . Show that T is self-adjoint if, and only if,
u = αv, where α ∈ R.

8.33 Let H be an infinite dimensionl separable Hilbert space. Let A ∈ L(H) be
a compact and self-adjoint operator all of whose eigenvalues are non-negative. Let
{wk}∞k=1 be an orthonormal basis of eigenvectors for H and let A(wk) = λkwk , for
every k. For every x ∈ H , define

B(x) =
∞

∑

k=1

√

λk(x, wk)wk .

Show that B ∈ L(H) and that it is compact and self-adjoint. Show that B2 = A.
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