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Preface

It is not uncommon to find a special richness and vitality at the boundary
between mathematical disciplines. With roots in linear algebra, group represen-
tation theory, and combinatorics, multilinear algebra is an important example.
Serious expeditions into any of these fertile areas require substantial preparation,
and multilinear algebra is no exception. The first four chapters of this book con-
sist of self-contained introductions to a variety of prerequisite notions. Multilinear
algebra, proper, begins in Chapter 5 with the development of the tensor product.
Ironically, it is there, within sight of the goal, that one encounters what is perhaps
the most formidable obstacle. In order to prevail over what Cartan has described
as une débauche d’indices, one must slog through an obscuring foliage of super-
scripts and subscripts before reaching the heart, in Chapters 6 and 7, of this elegant
and beautiful subject.

Many of the topics developed throughout the book are unified in the final chapter
by means of the rational representations of the general linear group. Emerging as
characters afforded by these representations, the classical Schur polynomials are
one of the keys to the overall unification.

Throughout the book, some of the easier proofs are left to the exercises and
some of the more difficult ones to the references. Apart from facilitating the flow
of material, it is hoped this approach will encourage the reader to become a more
active participant in exploring the subject.

Applications of multilinear algebra can be found in many areas of mathematics
and physical science, some of them well beyond the author’s interest or comprehen-
sion. Among those selected for inclusion in the book, graph theoretic applications
are dominant. This does not reflect any particularly close connection between graph
theory and multilinear algebra. However, applications to graphs suffice to give the
flavor of more general combinatorial applications and, by keeping the focus on a
single topic, one is able to probe a little deeper than might otherwise be possible.

Despite the book’s broad scope, remarkably little prior experience is expected
from the reader. It suffices to be familiar with the contents of the standard third year
undergraduate courses in abstract and linear algebra. Ideally suited for a fourth year
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viii Mudltilinear Algebra

‘capstone’ course, Multilinear Algebra is also an attractive choice for a beginning
graduate course.

The book began as a series of handwritten lecture notes for an MPhil course
at the Quaid-I-Azam University of Islamabad in 1973. A revised typescript was
prepared later that same year for a seminar at the Instituto de Fisica e Matemética in
Lisbon. These early versions were designed to supplement a series of lectures given
to students whose native language was something other than English. Nevertheless,
the lecture notes were circulated widely by the Institute for the Interdisciplinary
Applications of Algebra and Combinatorics at the University of California, Santa
Barbara. The present text is dedicated to the hearty folks who struggled through
that primitive manuscript without the benefit of the author’s lectures.

That multilinear algebra has flourished in the years since 1973 can be seen
by browsing through the references. Much of this activity was stimulated by the
appearance in that year of the first part of Marvin Marcus’s monumental Finite
Dimensional Multilinear Algebra. With the appearance of part II in 1975, FDMA
became the standard reference, eclipsing the earlier classics of Bourbaki (1948)
and Greub (1967), and overshadowing the compact treatises of Amir-Moez (1970s)
and Oliveira (1973).

Among the individuals who have contributed to the author’s scholarly research
are José Dias da Silva, Amélia Fonseca, Bob Grone, Tom Pate, Steve Pierce,
and Bill Watkins. He is also grateful for the professional competence of editors
Donald Degenhardt, Katie Emblen, Matt Giarratano, Rebecca Stubbs and Brian
Wyreweden.



CHAPTER 1

Partitions

The integer 6 is said to be “perfect” because it is the sum of its proper divisors:
6 = 1+ 2 + 3. In this context, 1 + 2 + 3 is the same as 2 + 3 + 1 but different
from 4 + 2. In expressing the perfection of 6 what interests us is the unordered
collection of its proper divisors, the “partition™ of 6 whose “parts” are 3, 2, and 1.

DerINITION 1.1 A partition of n of length m is an unordered collection of m
positive integers that sum to n. The m summands are the parts of the partition.

Noration 1.2 A partition of n is typically represented by a sequence &
[m1, w2, ..., Tm], in which the parts of the partition are arranged so that m;
7 > --- > 7w, > 0. This convention is expressed by the shorthand notation
7t  n. The length of 7 is denoted L(x). In the present instance, L(7) = m.

vl

In ordinary English usage, arranging the parts of a partition from largest to
smallest would typically be called “ordering™ the parts. This semantic difficulty
can be the source of some confusion. It is precisely because a partition is unordered
that we are free to arrange its parts any way we like.

ExampLes 1.3 The partitions of S are [5], [4,1], [3,2], [3,1,1), [2,2,1], [2,1,1,1],
and (1,1,1,1,1]. The partitions of 6 having 3 parts are [4,1,1], [3,2,1], and [2,2,2].
O

Already, it seems convenient to introduce another shorthand notation. Rather
than [3,1,1], [2,2,1], [2,1,1,1], and so on, we will write [3,12), [22,1] and [2,13],
respectively. The partition [5,5,5,3,3,3,3,2,1,1] is abbreviated [5%,3%,2,12]. In this
notation superscripts are used, not as exponents, but to denote multiplicities. In
particular, [53,34,2,12] is a 10-part partition of 31.

1



2 Multilinear Algebra
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FIGURE 1.1

Partitions are frequently illustrated by means of so-called Ferrers diagrams.! If
7 is a partition of n having m parts, the corresponding Ferrers diagram, F (),
consists of m rows of “boxes”. The number of boxes in row i of F(ir) is 7r;. The
Ferrers diagrams for [6,4,32,2] and [52,4,2,1?] are illustrated in Figure 1.1.

DerINITION 1.4.  Suppose 7 + n. The conjugate of 7 is the partition #* whose
Jj-th part is the number of boxes in column j of F(x). (So, F(;r*) is the transpose
of F(m).)

The conjugate of [6,4,32,2] is [5%,4,2,12] as can easily be seen by glancing at
Figure 1.1. The length of 7* is the largest part of =, that is, L(r*) = ;. Finally,
the number of boxes in the j-th column of F(rr) is equal to the number of rows
of F(rr) that contain at least j boxes, that is, to the number of parts of n that are
bigger than or equal to j. In other words, the j-th part of #* is

nf =o({i: mi = j}, (1.1)
where o(S) denotes the cardinality of the set S.
ExampLE 1.5 The partition 7 is said to be self conjugate if # = =*, that is, if

F () is symmetric. There is just one self conjugate partition of 6, namely, [3,2,1].
The self conjugate partitions of 9 are illustrated in Figure 1.2. (s]

OO0

LTI

FIGURE 1.2 The self conjugate partitions of 9.

1 After Norman Macleod Ferrers (1829-1903).



Partitions 3
Because m; > m;4) forany « - n,

wi—i > Wiy —i

>mip1 — (@ +1).

Thus, the integers my — m; + i, 1 < i < L(x), are all different, that is,
ofmy —m +i:1 < i < L(m)})) = L(x). Similarly, the cardinality of
{mi+x—i+1:1 <i < m}is m. What may not be so obvious is that
these two sets are disjoint.

Lemma 1.6 Suppose m + n. Let N = my + L(w). Then {1,2,..., N} is the
disjoint union of S and T, where S = {m) —m; +i:1 < i < L(w)} and
T=(m+n'—i+1:1<i<m}

Proof 1t suffices to show that S N T = ¢. Observe that
m-miti=m+na;—j+1,

ifandonlyifi +j—1 = m + 7r;. To see that this is impossible, suppose

first that r; > j. Then, from Equation (1.1), n}' = o({k: mx > j}) = i, and

mi+n' = j+i > i+ j— 1. Therefore, we may assume n; < j — 1, in

which case, nlf' =o({k: mx > j}) <i.But,m; < j—1and nj' < i — 1 imply

mt+n<it+j-2<i+j-1 o
We now discuss “ordering” the different partitions of n.

DerniTioN 1.7 Let (@) = (ay,a2,...,a,) and (b) = (b1, bs, ..., bs) be two
sequences of real numbers satisfyinga; > a; > --- > a, > 0and b; > by >
-+« > by > 0. Then (a) majorizes (b), written (a) > (b), if

t !
a>) b, 1<tz (1.2)
=1 i=1

and
Za.- = Eb,‘. (1-3)

ExampLE 1.8 Suppose n is a fixed positive integer. If ¥ + n, then 7 =
[71, @2, ..., y] is a nonincreasing sequence of positive real numbers. If p =
[p1, P2, ..., px] is another partition of n, then my + M2 + -+ A = n
p1 + p2 + - - - + px, and Equation (1.3) is satisfied automatically.
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Suppose n = 8. If w = [5,2,1], and p = [32,1], then & > p because 5 > 3,
542>3+43,5+2+1>34+3+1,and5+2+1=3+3+1+1Ifn=
[5,2,1] and p = [42], then neither partition majorizes the other. Thus, majorization
is a partial order. Figure 1.3 exhibits the “Hasse Diagram” for the partitions of 6
partially ordered by majorization. u]

Of the many conditions equivalent to majorization, one of the most useful
involves doubly stochastic matrices.

000000
HEDDD
S

1 00
) u
0
L
0
C
]
]
]
(]

FIGURE 1.3 The partitions of 6 partially ordered by majorization.



Partitions 5

DerFintTioN 1.9 The n-by-n (entrywise) nonnegative matrix § = (si;) is doubly
stochastic if its rows and columns all sum to 1, that is, if

THEOREM 1.10 Let (@) = (a1,a2,...,a,) and (b) = (b1, b2, ..., by) be two
sequences of real numbers satisfyinga) > a; > --- > a, > 0and by > by >

- 2> by, = 0. Then (a) majorizes (b) if and only if there is a doubly stochastic
matrix S such that (b) = (a)S.

Theorem 1.10 is stated for the case in which both sequences have the same
length. Because adding zeros to the end of the shorter sequence does not affect
majorization, this hypothesis does not impose any real restriction. A proof can be
found in [Hardy, Littlewood & Pélya (1967), pp. 47-49] or [Marshall & Olkin
(1979), p. 22].

ExampLE 1.11 We saw in Example 1.8 that [5,2,1] > [32,12]. As an illustration
of Theorem 1.10, observe that (3,3,1,1) =(5,2,1,0)S, where

S =

-
SO AN

310
0 0 2
31 2
0 4 2
If S is an n-by-n doubly stochastic matrix then [Birkhoff (1946)] there exist
permutation matrices P), Py, ..., P, and positive real numbers 8y, &, . .., 6; such

that; + & +---+6; =1 and

S=6PL+KhP+ - +6F.
In other words, S is a convex combination (or “weighted average”) of permutation

matrices. Using these terms, Theorem 1.10 can be restated as follows: (a) majorizes
(b) if and only if (b) is a convex combination of rearrangements of (a). In particular,

3G,3,1,1) = %(2. 5,0,1) + %(5. 1,0,2)

1 1
_21 119 Z\& 1,J9,V).
+6( 5 0)+6(2150)

(0]

Apart from their intrinsic interest, the partitions of n have a variety of uses, one
of which involves symmetric polynomials.
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DeriNtTioN 1.12 A polynomial f(xy, x2, ..., i) is symmetric in xy, x2, ..., Xk
if its value is unchanged by any permutation of the k variables, that is, if

f(xl,xz,...,zxk) = f(Xs(1)s X2)» - - - » Xak)), for every permutation o of
{1,2,...,k).

Perhaps the most natural way to begin a discussion of symmetric polynomials
is with the notorious “multinomial theorem”.

THE MuLtiNoMIAL THEOREM 1.13  If n is a positive integer, then

i+t +x)= Z ("1 r n rk)x';‘x;’ . (1.4)

where the sum is over all nonnegative integer sequences, (ry, r2, .. ., ry), satisfying
rn+r2+---+rg=n,and

n n!
T2, etk ) rilral...rg!

is the corresponding multinomial coefficient.
Proofs can be found in any of the standard books on combinatorics.>
ExampLE 1.14 The coefficient of b*c? in (a + b + ¢)® is

6 _ 6 —i—ls
0,4,2) 7 01412t T 412t T

Because (a + b + ¢)® is symmetric in a, b, and ¢, the coefficients of a*b? and
a%c® in (a + b+ ¢)® must be 15 as well. One “piece” of the multinomial expansion
of (@ + b+ c)% is 15p(x), where

p(x) = a*b? +a* A + a®b* + ac* + bc? + bict. (1.5)

o

DerFNimioN 1.15  Let k and n be positive integers, and r be a partition of n of
length m < k. The monomial symmetric function

My(X1,X2,...,%) = Zx;‘x;’ o (1.6)

where the sum is over all different rearrangements, (r, r2, . .., ), of the k-tuple
(m, 72, ..., Tm, 0,0, ...,0), obtained by appending k — m zeros to the end of 7.
If m > k, then My (x1, x2,...,x) =0.

2This is why the group of all permutations of {1,2,...,k} is called the “symmetric” group.
3See. for example, [Merris (1996)].
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Ifm =2,k =3,andn = [m;, m2] = [2, 2], then the “different rearrangements”
of (2,2,0) are

2,2,0), (2,0,2), and (0,2,2),
not the six rearrangements of the different looking symbols 7y, 73, and 0. Thus,
Mp2(x, y,2) = x%y* + 3722 + 222

The “piece” of the multinomial expansion of (@ + b + ¢)® exhibited in
Equation (1.5) is

My 2)(a, b, ¢) = a*b? + a*c? + a®b* + ac® + b*c? + b3t
Any symmetric polynomial is a linear combination of minimally symmetric pieces,

namely, the monomial symmetric functions. We shall have more to say about this
presently.

ExampLE 1.16 There are exactly seven partitions of 6 having three or fewer parts.
So, there are seven (nonzero) monomial symmetric functions of degree 6 in the
three variables a, b, and c. They are

Mg (a,b,c) = ab +b% + c‘,
Mis 11(a,b,c) = a’b+a’c + ab’ +ac’ +bc+ be?,
M 2(a, b, c) = a*b? + a*c? +a*p* +a%ct + b4 + b2t
Mi3(a,b,c) = a’b® +a°c 4 b303,
My4,17)(a, b, c) = a*be + ab®c + abc?,
M3 210, b,c) = a*b*c + a’bc? +a*b’c + a®bc? +ab’2 + abzc:’.
and
My (a, b, c) = a’*b*c?.
Setting M, = My (a, b, c) we obtain, from the multinomial theorem, that
@+ b+ ¢)® = Mig) + 6Mjs 1) + 15Myu 2) + 20M32)
+ 30My4,12; + 60M(3 2,1y + 90M 2.
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If # = [, m2, ..., Tm] is some fixed but arbitrary partition of n, define

n n!
)] mim!...wn!

Using this notation, the multinomial theorem can be restated as follows:
TueoreM 1.17  If n is a positive integer, then

(xn+xz+---+xk)"=Z(;)Mn(xn.x2.-.-.xk)- (1.7

whn

We now give special names to the two “extreme” monomial symmetric func-
tions, the ones corresponding to the partitions [r] and [1"].

NotatioN 1.18 Let Py(x1, X2, . . ., Xk) = Mn)(x1, X2, ..., X¢) and
En(x1,x2, ..., xk) = Mpsj(x1, X2, . .., Xk)-

It is easy to recognize P,; it is the n-th power sum,
Po(x1, X2, ..., %) = X7 +x3 + -+ x;.
What about E,?
ExampLE 1.19 Let’s choose k = 4. Then

Ei(a,b,c,d) = Myy@a,b,c,d) =a+b+c+d;

Ex(a,b,c,d) = M3(a, b, c,d) =ab+ac+ad + bc + bd + cd;
Es(a, b, ¢, d) = My3)(a, b, ¢, d) = abc + abd + acd + bed; and
E4(a, b, c,d) = Mj4(a, b, c,d) = abcd.

Evidently, E,(a, b, ¢, d) is the sum of all C(4, n) (binomial coefficient (:))
products of the x’s taken n at a time. u]

If(ry, r2, . . ., ri) is some rearrangement of the sequence (1, 1, ..., 1,0,0,...,0)
consisting of n ones followed by k — n zeros, then

n.r T
x'x3 X = XX . Xy
where i} < iz < -+ < iy. Summing over the different rearrangements gives

En(x1,x2,...,X) = Zx,-,x,-z S (1.8)

where the summation is over all C(k, n) sequences (iy, i2,...,i,) satisfying
1<ij<izg<:---<ip<k.
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DerintTioN 1.20  Denote by I'y & the set of all functions from {1, 2, ..., n} into
{1,2,...,k}). Let O, be the subset of I', & consisting of the C(k, n) strictly
increasing functions.

There is a natural one-to-one correspondence between the functions 8 € I'y &
and the integer sequences (i1, i2,...,i,) satisfying 1 < i, < k,1 <t <n,
namely, 8 & (B(1), B(2),..., B(n)). We will feel free to abuse the language by
identifying I', ¢ with a set of sequences. Thus,

3 =1{(1,1),01,2),(1,3),2,1,(22),(2,3),3,1),3,2), 3, 3)},

and 0> 3 = {(1,2), (1, 3), (2,3)}.
Using Definition 1.20, we may rewrite Equation (1.8) as

Ep(x1,x2,...,X) = E XB(1)XB(2) - - - XB(n)- (1.9
BEQns

DeriNtTiON 1.21  The “extreme’” monomial symmetric function, E, (xy, x2, ..., Xk)
is the n-th elementary symmetric function of x;, x2, ..., x¢. It is useful to define
Eo(x1, x2,...,x¢) = 1.

Elementary symmetric functions are familiar objects. They express the coeffi-
cients of a monic polynomial in terms of its roots. If, for example, a, b, ¢, and d
are complex numbers, then (Example 1.19)

x—a)(x =b)(x —c)(x —d) = x* — E;x® + Egx? — E3x + Es,  (1.10)

where E, = E,(a,b,c,d), 1 <n <4,

FunDAMENTAL THEOREM OF SYMMETRIC FUNCTIONS 1.22  Any polynomial, symme-
tric in the variables x), X2, . . ., Xk, is a polynomial in the elementary symmetric
Junctions Ep(x1,x2,...,%k), 1 <n <k

Proof Let f = f(x),x2,...,x;) beasymmetric polynomial of (total) degree p.
Write f = fo+ fi+: - -+ fp, Where f; = fi(x1, x2, ..., xi) is the (homogeneous)
part of f consisting of all terms of degree i. It will suffice to show that f; is a
polynomial in the elementary symmetric functions for a fixed but arbitrary i.

Suppose
oA S 1.11)

is one of the monomial terms that occur in f;. Thenry + 72 +--- 4+ r;y = i. By
symmetry, we may assume that

nzrnz--2n>0=rny==r.
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Among all partitions of i occurring as the sequence of exponents in the monomials
of f;, assume [ry, r2, ..., 1] is last in lexicographic (dictionary) order. That is,
without loss of generality, we may assume r, is the largest single exponent that
occurs in any monomial in f;; r; is the maximum second largest exponent among
all the monomials that occur in f; and have r; as their largest exponent; r3 is the
maximum third largest exponent among all the monomials that occur in f; and
have r) and r; as their two largest exponents; and so on.
Consider

ENEY...EYF, (1.12)

where E, = E,(x1,x2,...,%), 1 < n < k. In lexicographic order of its
exponents the last monomial that occurs in (1.12) is

x;' (x1x2)"2(x1x2x3)" ... (x1x2 ... xK)™. (1.13)
We would like to choose sy, 52, 53, and so on, so that
x]' (x1x2) 2 (x1x2x3)™ . (xax2 .o xe)™ = XL X
This requires that
n=s1+s2+s3+---+ s,

r2= s2+ s34+ ---+ 5k,
r3 = s34+ .-+ s,
Ty = Sk.

These equations are satisfied when sy = rg, Sk—1 = rg—1 — 1k, ..., 82 =rz —r3,
and 51 = r; — r2. If we make these choices, then either

fi—cEVES ...ER =0,

or it is a symmetric homogeneous polynomial of degree i, each of whose monomial
terms comes before (1.11) in lexicographic order. Because dictionary ordering is
a total order, the result follows by induction. (u]

Suppose f = f(x1, x2,...,X) is a symmetric homogeneous polynomial of
degree n. Then f is, simultaneously, a polynomial in the elementary symmetric
functions E,(xi,x2,...,Xk), 1 < n < k, and a linear combination of the
monomial symmetric functions My (x1, x2,...,x¢), ®  n. Conversely, if ¢y,
n b n, are constants, then
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g(xlvxZ’--"xk) = ZCnMn(xl.xZ’---vxk)

nkn

defines a symmetric homogeneous polynomial of degree n. If

(2

for all m, then g(x1, x2, ..., x) = (x1 + X2 + - - - + xz)". What about some other
choices? An important and interesting example arises when ¢, = 1 for all .

DeFNTION 1.23  Let x1, x2, ..., x; be independent variables. Their n-th homo-
geneous symmetric function is defined by

Ha(x1, %2, x0) = ) Mu(x1, 22, ..., X). (1.14)

ntn
It is convenient to define Ho(xy, x2,...,x;) = 1.
ExampLEs 1.24
Hi(a, b, c) = Mpz)(a, b, ¢) + Mjyz(a, b, ¢)
= Py(a, b, ¢) + Ez(a, b, c)
= (@ + b% + c2) + (ab + ac + bc),
Hi(a, b, ¢) = Mp3)(a, b, ¢) + M(2,1)(a, b, ¢) + My3)(a, b, ¢)

= (a3 +b+ c3) - (a2b +a%c +ab* +ac® + b*c + bcz) + abc,
(1.15)

and
Hy(a, b, c) = My(a, b, ¢) + M3 1)(a, b, ©) + Mpzx(a, b, ¢) + M3,17(a, b, c)
=@ +b*+ 4+ @b +a*c+ab®+acd +bc+ bc)

+ @*b? + a*c* + b*c?) + (@®bc + ab®c + abcz).

u]
From the definition, each monomial of (total) degree n in the variables
X1, X2, ..., Xk occurs in H,(x1, x2, ..., xx) exactly once. This leads to a formula

for H,(x1, x2, ..., xx) analogous to Equation (1.9).
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DerintTioN 1.25  Denote by G i the subset of 'y & consisting of all C(n+k—1, n)
nondecreasing functions from {1, 2, ..., n} into {1,2,...,k}.

For all n and k, Qnk C Gnk. As (lexicographically ordered) sequence sets,
G23=1{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}, and

G33=1{(1,1,1),(1,1,2),(,1,3),(1,2,2),(1,2,3),(1,3,3),
2,2,2),(2,2,3),(2,3,3),(3,3,3)}. (1.16)

Using Definition 1.25, we can rewrite Equation (1.14) as

Hp(x1, X2, .0y Xk) = z XB(1)XB(2) - - - XP(n)- (1.17)
ﬂEG.,&

We now return to the observation that any symmetric polynomial is a linear
combination of “minimally symmetric pieces”.

DerNiTION 1.26  Suppose xj, X2, ..., X¢ are independent indeterminates (vari-
ables) over the field C of complex numbers. Denote by C[x1, x2, . . ., Xi] the set of
polynomials in x1, x2, . .., xx with complex coefficients. Let SCy[x1, x2, . .., Xk]
be the subset of C[x;, x2, . .., X¢] consisting of the zero polynomial together with
all symmetric homogeneous polynomials of degree n.

TueoreM 1.27 The set {My(x1, X2, ..., Xk): @ F n, L(w) < k} is a basis of the
vector space SCp[x1,x2, ..., Xk].

Proof Let My = Mgy (xy,x2,...,%), ® = n. The only thing remaining to be
proved is the linear independence of {My : & - n, L(w) < k}.

Suppose
Y oMy =0, (1.18)

nkn
L(m)<k

the zero polynomial. Let p = [py, p2, ..., prl,7 < k, be a partition of n. Consider
the term

R e W
occurring in Equation (1.18). Taking partial derivatives of (1.18) with respect to
x1, p1-times, with respect to x2, pz-times, ..., and with respect to x,, p,-times,
we deduce that

mim!...plc, =0.
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Application to Graphs

Let V be a set. Denote the family of its 2-element subsets by V. Then, for
example,

{a,b,c)? = {{a, b}, (a, c}, (b, c}});

{1,2,3,4)? ={{1,2}, (1,3}, (1,4}, {2, 3}, {2, 4}, (3, 4));

and {x, )@ = {{x, y}}. If o(V) = n, then o(V?®) = C(n, 2).

DerFINTION 1.28 A graph consists of two things, a nonempty finite set V, and a
(possibly empty) subset E of V®_If G = (V, E) is a graph, the elements of V are
its vertices and the elements of E its edges. When more than one graph is under
consideration, it may be useful to write V(G) and E (G), respectively, for the sets
of vertices and edges. If e = {u, v} € E(G), then u and v are adjacent vertices,
incident with e. Two edges are adjacent if their set-theoretic intersection consists
of a single vertex.

ExampLe 129 IfV = (1,2, 3, 4, 5}, then V@ has 10 elements and 2!? subsets.
Hence, there are 1024 different graphs with vertex set {1, 2, 3, 4, 5}.

It is common to draw pictures of graphs in which vertices are represented by
points and points representing adjacent vertices are joined by line segments (or
arcs). If E = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}}, then each of the pictures in
Figure 1.4 illustrates H = (V, E). Note that H is not connected; vertex 5 is an
“isolated” vertex. o

OOO Oo Oo\
=

FIGURE 1.4 Pictures of graph H.

ExampLE 1.30 Not only can one graph be illustrated by different pictures, but
one picture can represent different graphs! If W = {p,q,r,s,t} and F =
{{q, s}, {q, t}, {r, 5}, {r, t}, {5, t}}, then the four pictures in Figure 1.4 also illustrate
K = (W, F). a

We are not so much interested in different graphs as in nonisomorphic graphs.
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DeriniTioN 1.31 Let Gy = (V, E) and G, = (W, F) be graphs. Then G, is
isomorphic to G if there is a one-to-one function f: V — W such that vertices
u and v are adjacent in G, if and only if () and f(v) are adjacent in G, that
is, such that {u, v} € E if and only if { f(u), f(v)} € F. The function f is an
isomorphism from G, onto G3.

If G and G can be illustrated by the same picture, then they are isomorphic.
To each point of the picture there corresponds a unique vertex v; of G and a
unique vertex v, of G2. The function that sends v; to v; (for every point of the
picture) is an isomorphism. It is more challenging to tell when graphs illustrated
by different pictures are isomorphic.

ExampLE 1.32 The so-called “Petersen” graph, G, is illustrated in Figure 1.5. It
is isomorphic to the graph G, pictured in the same figure. The proof that G; and
G, are isomorphic is “by the numbers”. If V(Gy) = {0, 1,2,...,9} = V(G2),
then f(i) =i, 0 <i <9, is an isomorphism. (Check it out: Confirm that i and j
are adjacent in G if and only if they are adjacent in G3.) Such a pair of labeled
figures may be considered a proof of isomorphism (provided, of course, that it
“checks out™). a]

FIGURE 1.5 The Petersen graph.

Itis an immediate consequence of the definition that isomorphic graphs have the
same numbers of vertices and edges. Consequently, if G and G do not share these
properties, they cannot be isomorphic. Properties that isomorphic graphs must
share, are called graph invariants. We now introduce another graph invariant.

DerFiNTioN 1.33  Let G = (V, E) beagraph with vertexset V = {vy, v, ..., v,).
The degree of v € V, denoted d(v), is the number of edges of G that are incident
with v (which is equal to the number of vertices of G that are adjacent to v). When
more than one graph is under consideration, it may be useful to write d(v) = dg (v).
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The degree sequence is d(G) = (dy, da, ...,d,), whered; > dy > --->d, >0
are the degrees of the vertices of G, arranged in nonincreasing order. (We are not
necessarily assuming that d; = d(v;).)

THEOREM 1.34  The degree sequence is a graph invariant.

We can determine from d(G) both n, the number of vertices of G, and m, the
number of its edges: n is just the length of the sequence d(G), and m is given by
what has come to be known as the “first theorem” of graph theory.

TueoreM 1.35 Let G = (V, E) be a graph with vertex set V = {vy, v2, ..., Up}.
If o(E) = m, then

id(v,’) =2m.
i=1

Proof By definition, d(v) is the number of edges incident with vertex v. Thus,
in summing the vertex degrees, each edge is counted twice, once at each of its
vertices. D

LN AN
v

[o2 " " e)

Gy Gy

FIGURE 1.6 Nonisomorphic graphs with the same degree sequence.

ExampLE 1.36 The nonisomorphic graphs G; and G, in Figure 1.6 share the
degree sequence (2,2,2,1,1). u}

If G is a graph with n vertices and m edges, it follows from Theorem 1.35 that,
were it not for isolated vertices (of degree 0), d(G) = (d;,d>, ..., d,) would be a
partition of 2m. When speaking of the Ferrers diagram of d(G) it will be understood
that vertices of degree 0 go unrepresented. Similarly, let dJ" =o({i: d; = j}).Then
the conjugate degree sequence, d*(G) = (4}, d;, ..., d}), is the conjugate of
the partition of 2m whose parts are the nonzero vertex degrees of G.

THeOREM 1.37 Let G be a graph with n vertices, m edges, and degree sequence
d(G). Then d*(G) majorizes d(G).
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Proof Consider the graph G, illustrated in Figure 1.7, in which the vertices are
numbered in such a way that d(v;) = d;. Figure 1.8(a) exhibits a variation on the
Ferrers diagram for d(G) = (4, 3, 2, 2, 1) in which the boxes have been replaced
by numbers. Because vertex 1 has degree 4, there are four 1°s in the first row of the
diagram. The three 2’s in the second row correspond to the degree of vertex 2, and
so on. Now, rearrange the numbers, but not the shape, of this “Young Tableau” so
that row i contains, in increasing order, the numbers of the vertices of G adjacent
to vertex i. Figure 1.8(b) is the result.

1 1 11 2 3 4 5
2 2 2 1 3 4
3 3 1 2
4 4 1 2
5 1

(a) ®)

FIGURE 1.8

Note that the first column of variation (b) contains all the 1’s. All the 2’s are
contained in the first two columns, all the 3’s in the first three columns, and so on.
In general, for any graph, the first r columns of the analog of variation (b) contain
all the 1’s, all the 2, ..., and all the r’s. In particular, the sum of the lengths of
the first r rows of the analog of variation (a) is at most the sum of the lengths of
the first » columns of the analog of variation (b). Because the two variations have
the same shape, the proof is complete. m]

Theorems 1.35 and 1.37 give necessary conditions for a nonincreasing sequence
of nonnegative integers to be the degree sequence of a graph.

DerintTion 1.38  Let m be a positive integer. A partition & = [, 72, ..., &,] of
2m is graphic if there is a graph G such that d(G) = n.
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DerFNtTiON 1.39  The trace of partition 7 is () = o({i: m; = i}).

If F(xr) is the Ferrers diagram corresponding to 7, then f(xr) is the length of
its main diagonal.

TueoReM 1.40*  Suppose ®1 = [my, 72, ..., Ta] is a partition of the positive
integer 2m. Let n* = [n{,m;,..., ;] be its conjugate partition. Then & is
graphic if and only if

Yoar=) i+, 1=<r=f(. (1.19)
i=1

i=1

Proof The proof uses the same variations, (a) and (b), of the Ferrers diagram of
d(G) that were useful in the proof of Theorem 1.37. (See Figure 1.8.) Because
no vertex is adjacent to itself, no row in variation (b) contains its own number. In
particular, the (1,1)-entry is not less than 2. Therefore, in addition to all the 1’s,
the first column of variation (b) contains a number larger than 1, so dj > d) + 1.

Since the (1,1)-entry of variation (b) is at least 2, and since the numbers in
the first row are strictly increasing, the (1,2)-entry must be at least 3. If dp > 2
then, because the second vertex is not adjacent to itself, the (2,2)-entry can be no
less than 3 as well. Therefore, all the 1’s, all the 2’s, and at least two numbers
no smaller than 3 occur in the first two columns of variation (b). This means
di +d; >dy+dy+2=(d1 + 1)+ (d2 + 1). As long as d, > r, we can use the
same argument to prove that

thus establishing the necessity of Condition (1.19).

To prove sufficiency, suppose m = [y, 72, ..., ] is a partition of 2m that
satisfies Inequalities (1.19). Consider the extreme case in which n} = m; + 1,
1 <i < f(x). To produce a graph with degree sequence =, begin with the vertex
set V = {1,2,...,n}. “Construct” edges from vertex 1 to each of 2, 3,...,n.
Because n = nf = m + 1, we have produced a graph in which d, = 7y, and
d =dy=---=d, = 1.If f(#) = 1, then m» = 1, and we are finished.
Otherwise, construct edges from vertex 2 to each of 3,4, ..., + 1. (This is
possible because we have reserved “room” for 7; = m; + 1 vertices of degree 2
or more.) So far, we have produced a graph in which di = m; and d; = m;. If
f () = 2, we are finished because F () is completely determined by its first f (;r)
rows and columns. If 73 > 3, draw edges from vertex 3 to each of 4, 5, ..., 73+ 1
(which is possible because w3 = w3 + 1). After three steps, we have d; = m,

4While this result has been attributed to Hasselbarth [Sierksma & Hoogeveen (1991)], it seems to
have been published first in [Ruch & Gutman (1979)].
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dy = my, and d3 = m3. At the end of f() steps, we will have produced a graph
satisfyingd; = m;, 1 <i <n.

To complete the proof of sufficiency, two additional facts are required: (1) if
p is majorized by a graphic partition r, then p is graphic; and (2) every partition
satisfying the inequalities in (1.19) is majorized by one which is extreme in the
sense that equality holds in each of the inequalities. The details are omitted. O

ExampLE 141 Consider the partition # = [§, 4, 3, 3, 2, 1], whose Ferrers dia-
gram, F () appears in Figure 1.9. Because 7 is a partition of 18, the first condition
of Theorem 1.40 is satisfied: m = 9. In this case, the length of the main diagonal of
F(m)is 3 = f(m). Glancing at Figure 1.9, we can write down n* = [6, §5, 4, 2, 1].
Observe that ' = m; + 1,fori = 1,2, 3.

U
|

F([5,4,3%,2,1)

FIGURE 1.9

Draw six points in the plane and label them 1, 2, . .., 6. Construct (draw) edges
from vertex 1 to vertices 2, 3, 4, 5, and 6, as shown in Figure 1.10(a). This gives
a vertex of degree 5 and five vertices of degree 1. Now, draw edges connecting
vertex 2 to vertices 3, 4, and 5. Finally, drawing an edge from vertex 3 to vertex 4,
one obtains the graph G, illustrated in Figure 1.10(b), having degree sequence

d(G) = m. D

1 1
o o

607?02 607 \>No2

50 o3 5Ye) <l>3
o o~
4 4
(a) (b)

FIGURE 1.10
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Example 1.41 illustrates the “greedy” algorithm used in the proof of Theo-
rem 1.40 to construct a graph whose degree sequence is extreme in the sense that
equality holds in each of the inequalities in (1.19). We now give a formal name to
the graphic partitions that are extreme in this sense.

DerFNITION 142 Let #1 = [m, 73, ..., ,] be a partition of 2m. Then 7 is a
maximal (graphic) partitionif 7 = m; +1,1 <i < f (). A graph whose degree
sequence is maximal is a threshold graph.

1 1
O,

60 \<I>2 6c'>/ O\Tz
5o 03 50 3
O/ \O
4 4
(a) (b)
FIGURE 1.11

ExampLe 1.43 Let 7 = [3%). Then r* = [67] and, while 7 is graphic, it is not
maximal. Let’s see what happens if we try to use the greedy algorithm illustrated
in Example 1.41 to construct a graph with degree sequence [3%). Begin by drawing
six points in the plane and labeling them 1, 2, .. ., 6. Draw edges from vertex 1 to
vertices 2, 3, and 4. Now draw edges from vertex 2 to vertices 3 and 4, producing
two vertices of degree 3, two of degree 2, and two of degree 0. When an edge
is drawn between vertices 3 and 4, we find ourselves in the position illustrated in
Figure 1.11(a). Pretty clearly, a graph with degree sequence [36] cannot be obtained
from this figure by adding more edges. On the other hand, the existence of a graph
with degree sequence [39] is established by Figure 1.11(b). a]

ExampLE 1.44 The connected threshold graphs having 2 < m < 6 edges are
illustrated in Figure 1.12.

DeFNITION 1.45  Let V be an n-element set. The complete graph K, = (V, V®)
is the graph in which every pair of vertices is adjacent.

Strictly speaking, Definition 1.45 defines the complete graph with vertex set V.
However, because any two complete graphs on n vertices are isomorphic, we will
abuse the language and speak about the complete graph on n vertices. The complete
graphs K3 and K are illustrated in Figure 1.12(b) and (h), respectively.
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DeriNITION 1.46  Let G = (V, E) be a graph. The complement of G is the graph
G° = (V, VO\E).

If G is a graph, then e = {u, v} is an edge of G if and only if e is not an edge
of G¢. In particular, the complement of K,, is the graph consisting of n isolated
vertices, that is, K has no edges at all.

DernTioN 147 Let G = (V, E) be a graph. A cycle in G is a sequence of
distinct vertices vy, v2, ... , Un, B > 2, such that {v;, v;41} € E,1 <i < n, and
{v1, va} € E. A connected graph without cycle is a tree.

Graphs (a), (b), (e), (h), and (i) in Figure 1.12 are trees.

—— e A

(a) (©)

A T
<I>X°¥

EADS
P @

FIGURE 1.12 The Threshold Graphs with 2 < m < 6 edges.
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Exercises

1. Denote by pm(n) the number of partitions of n having m parts. Show that
Pn—2(n) =2, n > 4.

Pn-3(n)=3,n2>6.

Pp2(n) = [n/2], the greatest integer not exceeding n /2.

Pm(n) = pm—1(n = 1)+ pm(n —m), 1 <m <n.

Construct a table exhibiting p,(n), 1 <m <n, 1<n<7.

The number of partitions of n is the partition number

-0 a0 o

p() =) pm(n).
m=1

Compute p(n), 1 <n <7.
2. Explicitly write down
a. all 11 partitions of 6.
b. all 8 partitions of 7 having 3 or fewer parts.
c. all 8 partitions of 7 whose largest part is at most 3.
3. Letw = [6,4,2%. Find x*
a. using Ferrers diagrams.
b. using Equation (1.1).
4. Which of the following is a self conjugate partition?
[5,4,3,2,1]
[53%1%)
[4,32,1]
33213
[5.4%,3,1%]
[6.4,3,12]
5. Find x* and use it confirm Lemma 1.6 when 7 =
[5,4,3,2,1]
[5.3%,1%]
[4,3%,1]
532,14
[5:4%,3,1%]
[6.4,3,1]
6. Find the smallest integer n having three different self conjugate partitions.

=0 a0 o

=, 0 Qo0 o
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10.
11.

12.

13.

14.

15.

16.

17.

Multilinear Algebra

Suppose 7 = n. Show that nif', , = i —o({i: m = j}).

Letn = [m, 2, ..., 7] and p = [py, p2, . .., pr] be partitions of n. Show
that 7 > p only if m < k.

Find all the partitions of 7 that

a. majorize [5,2].

b. are majorized by [22,1%].

Prove that w > p if and only if p* > 7*.

Show that the doubly stochastic matrix S given in Example 1.11 is not unique
by finding another one that satisfies (3,3,1,1) = (§,2,1,0)S.

Show that there are C(k + n — 1, n) nonnegative integer solutions to the
equationry +ry+ - +rg =n.

When (@a+ b+ c+d)is expressed as a linear combination of monomial
symmetric functions, compute the coefficient of

a. Mgz (a,b,c,d).

b. Mp.21)(a, b, c,d).

c. Mg 2 (a,b,c,d).

d. M3, 12(a, b, c,d).

Write out in full

a. My (x,y,2).

b. M3 2(x, y, 2).

c. Mpy(x,y,2).

Confirm Equation (1.10) fora = 1,b =2,c = 3,andd = 4 by
a. using Example 1.19 to compute E,(1,2,3,4), 1 <n <4.
b. computing the product (x — 1)(x — 2)(x — 3)(x — 4).

Denote the roots of p(x) = x* — x2 +2x + 2 by a, b, ¢, and d. Compute the
elementary symmetric functions E,(a, b,c,d), 1 <r <4,

a. from the coefficients of p(x). (Hint: Equation (1.10).)
b. from the definition of E,. (Hint: (x + 1)2 divides p(x).)

Suppose k is a fixed but arbitrary positive integer. Let P, = P,(x1, X2, ..., Xk)
and E, = E,(x1,x2,...,xk), n = 1, be the n-th power sum and the n-th
elementary symmetric function, respectively. It was shown by Isaac Newton
(1642-1727) that, forany n > 1,

Py — PayE1 + Po2Ey — -+ (=1)" ' P\E,_1 4+ (=1)"nE, =0.

Thus, P — E1 =0, — PIE1+2E;=0,P; — P,E\+ P \E; —3E3 =0,
and so on.
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18.

19.

20.

21.

22,

a. Use Newton’s identities to prove that
Py = E{ — AE}E; + 4E|E; + 2E? — 4E,.
b. Use Newton's identities to prove that
E4= EIZ(P,‘ — 6PP, + 8P\ P; + 3P} — 6Py).

c. Show that the general formula for E, as a polynomial in the power sums
isr!E, = det(L,), where

P 1 0 o ... 0 0
P, P 2 o ... 0 O
L =\P P, Py 3 0 0
P, P, P> P35 ... P, P

(Hint: Use Cramer’s rule on the following matrix version of Newton’s
identities:

1 0 0 o0 ... E, Py
P -2 0 0 ... E; )
P -PL 3 0 ... Ez1=-|Ph|)
P, -, P -4 ... E4 Py

d. Prove that any polynomial, symmetric in x, x2, ..., Xk, is a polynomial
in the power sum functions P,(xy, x2,...,x;), 1 <n <k.

If 2 < r < k, prove that E,(x1,x2,...,x) = E,(x1,%x2,...,%x¢k—1) +

xkE,_1(x1,x2, ..., Xk—1).

Use Equation (1.16) to confirm that Equation (1.17) yields Equation (1.15)

whenn =k =3,x; =a,x; = b,and x3 = c.

If r > 2, prove that H,(x),x2,...,xx) = H,(x1,%2,...,%—1) +

xpHy_y(x1, %2, ..., Xk).

Use Exercise 18 and mathematical induction to prove that

n

[a-a) =Y (-1E (a1, az,...,an)x"".
i=1

r=0

Suppose @ € [y . Prove that @ € Gp , if and only if o > a for all
permutations o € S,,.
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26.

27.

28.

29.
30.

31.
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Denote by m; () the multiplicity of i in the partition =, that is, the number
of times i occurs as a part of 7. Prove that m; () = n/ — n, ;.

. Suppose 7, p - n. Let m + p be the partition of 2n, the i-th part of which is

n; + p; (with the convention that r; = 0 if i > L()). Denote by w U p the
partition of 2n the parts of which are the parts of 7 together with the parts of
p.

a. Prove that (w U p)* = 1* + p*.

b. Is(m + p)* =n* U p*?

. Suppose m - n.Let u; =m; —iandv; = A —i, 1 <i < f(x). Frobenius

used (u|v) to denote the partition . Show that the Frobenius notation for 7*

is (v|u).

Among the many results known about elementary symmetric functions is that

they are Schur concave, that is, E, (a) < E,(b) whenever (a) majorizes (b).

a. Show that majorization imposes a linear order on the five partitions of 8
having 3 parts.

b. Confirm the Schur concavity of E, by computing E, (%), 1 <r < 3, for
each three-part partition of 8.

Among the many results known about homogeneous symmetric functions is

that they are Schur convex, that is, H,(a) > H,(b) whenever (a) majorizes

®).

a. Confirm the Schur convexity of H, by computing H,(x), 1 <r < 3, for
each three-part partition of 8.

b. If you were to compute Hy () for each partition 7 of 24 having 3 parts,
which partition would produce the maximum? Which would produce the
minimum?

Let E, = E,(ay,a2,...,G), 1 < r < n. Show that (1 — a1x)(1 —

a2x)...(1 —apx) = 1 — Eyx + Eax? — .. 4+ (=1)"Epx".
Show that the dimension of SC7[x, y, z] is 8. (Hint: Exercise 2b.)
Compute

a. dim(SCy[x;, x2, ..., x7]). (Hint: Exercise 1f.)

b. dim(SCy[x;, x2, ..., x8]).

If A is an m-by-n matrix, denote its i-th row and j-th column sums,
respectively, by 7; (A) and c;j(A). Suppose

R=(rlvr29---vrm) and C=(cl'c21-~~rcll)

are integer vectors satisfyingr; >ry > .-+ >rp > 0andc; > ¢ > --- >
cn = 0. Then ([Gale (1957)] and [Ryser (1957)]) there exists an m-by-n,
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(0,1)-matrix A such thatr;(A) =r;, 1 <i <m,andcj(A) =cj, 1 < j <n,
if and only if R* > §.

a. Use the Gale-Ryser theorem to prove the existence of a 5-by-4, (0,1)-
matrix A having row sum vector R = (3,2,1,1,1) and column sum vector
(3,3,1,1).

b. Write down such a matrix.

Application Exercises

32. Draw pictures of the 11 nonisomorphic graphs on four vertices.

33. Prove Theorem 1.34.

34. Draw Ferrers diagrams for all the maximal graphic partitions of 6. (Hint:
Figure 1.3.)

35. Letm =[4,23,1].
a. Show that 7 satisfies Criteria (1.19).
b. Explain why 7 is not graphic.

36. Prove that

L(x) m
Y im =) C@t+1,2).
i=1 i=1

(Hint: Figure 1.8(a)).
37. Confirm that the graphs in Figure 1.12 are threshold graphs.
38. Prove that K, is a threshold graph, n > 2.

39. Prove that, apart from isolated vertices, the complement of a threshold graph
is a threshold graph.

40. If T = (V, E) is a tree, prove that it has one fewer edges than vertices.






CHAPTER 2

Inner Product Spaces

The purpose of this chapter is to review the more specialized results and techniques
from linear algebra that will be needed in Chapters 4-8." To begin, suppose V and
W are finite dimensional vector spaces over the field C of complex numbers.
Denote by L(V, W) the set of all linear transformations from V into W. Then,
together with addition and scalar multiplication defined by

@S + bT)(v) = aS(v) + bT (v), (2.1)

L(V, W) is a vector space. The elements of L(V, V) are called linear operators,
and the elements of L(V, C) linear functionals. The dual space of V is the vector
space V' = L(V, C), consisting of all linear functionals on V.

Suppose B = {e;, €2, ..., ey} is abasisof V.Foreachi € {1, 2,..., n}, define
a linear functional f; € V' by fi(ej) = &;,j, 1 < j < n, and linear extension.2If
f is a fixed but arbitrary element of V', then

f=Y fefi 2.2)

i=1

as can be seen by evaluating both sides on ej, 1 < j < n. Therefore, B’ =
{f1, f2,.... fa)} spans V'.
Suppose

iaiﬁ =0,

i=1

1Among the many fine references to the topics of this chapter are [Marcus & Minc (1964)], [Horn
& Johnson (1985)], and [Fiedler (1986)].

2The “Kronecker delta” is defined by & =1, if i=J, and 0, otherwise.

27
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the identically zero functional. Evaluating both sides on e; proves that a; = 0,
1 < j < n. Therefore, B’ is linearly independent.

DerFnNITION 2.1 Let B = {e), €2, ..., €, } be a basis of the vector space V. The set
B’ = {fi, f2, ..., fa) of linear functionals defined by fi(¢;) = &;,j,1 < j <n,
and linear extension, is called the basis of V'’ dual to B.

Because V' is a vector space, it too must have a dual.

TueoreM 2.2 Supposeu € V. Letii: V' — C be defined by

i(f)=fw), feV. (2.3)
Then ii is a linear functional on V'. Moreover, the function WV : V — (V') defined
by W(k) = &, u € V, is a vector space isomorphism.
Because of Theorem 2.2, we will ignore the distinction between V and (V')’.

DerFnITION 2.3 An inner product on V is a complex valued function (u, v) of
two vector variables that satisfies the following three conditions:

(@ (u,v)=(v,u),forallu,veV.

®) (au +bv, w) =a(u, w) + b(v,w),foralla,b € C,and u,v,w e V.

(¢c) (u,u) > O for all nonzero vectorsu € V.

A vector space endowed with a fixed inner product is called an inner product
space.

DerintmioN 2.4 Denote by C* = {(x1,x2,...,%3): xi € C, 1 < i < n} the
vector space of n-tuples of complex numbers, and by C, » the vector space of
m-by-n complex matrices. If A = (a;;) € Cn a, denote its conjugate transpose
by A*. That is, A* is the n-by-m matrix whose (i, j)-entry is a@;.

ExampL 2.5 If V = C, 4, then the trace function,

tr (A) = zn:aﬁ.
i=1

A = (aij) € C,,», is a linear functional on V.
Suppose V =C". If ¢y, c3, ... ., c, are positive numbers, then

n
®,v) =) cxyi, 2.4)

i=1
where u = (x1,x2,...,%,) and v = (y1, ¥2,...,¥n) € V, defines an inner
product on V. When c; = ¢2 = -+- = ¢, = 1, it is called the standard inner

3That is, an invertible transformation from V onto (V).
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product or dot product. When V = C,, ,, the standard inner product can be
written (A, B) = tr (B*A). o

DEFINITION 2.6  Let u and v be vectors in an inner product space V. If (u, v) = 0,
then u and v are said to be orthogonal. A nonempty subset S C V is orthogonal
if the vectors in S are pairwise orthogonal. Finally, S is orthonormal (or o.n.)
provided it is orthogonal and (4, ¥) = 1 forall u € S.

Note that 0 is orthogonal to every vector and that an orthonormal set of vectors
is necessarily linearly independent.

DeriNiTiON 2.7 Let v be a vector in an inner product space V. The norm of v,
written ||v||, is the nonnegative square root of (v, v). If ||v|| = 1, then v is a unit
vector.

ExampLE 2.8 Let v be a nonzero vector in the inner product space V. Letu = cv,
where ¢ = 1/|jv||. Then

lull = v/(u, u)
= /(cv, cv)

=cljvll

that is, = v/||v|| is a unit vector. o

Suppose that B = {v), vy, ..., v,} is a basis of the inner product space V.
We are going to describe an algorithm, called the Gram-Schmidt process, for
transforming B into an orthonormal basis of V. This is how it works: Let

V1
1 = o=y
flogl
vz — (v2, u1)uy
U = ’
llvz — (u2, ur)u ||

_ vz — (3, uy)uy — (v3, u2uz
llvs — (v, u1)uy — (v3, u2)uzlf’

and so on. In general,

k-1
W = vk — ) (ks i),
i=1
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and u;y = wi/|lwi|l. Now, wy is not zero because {v, v, ..., vt} is linearly
independent. Thus, u; is a unit vector, for all k. Moreover,
(uz2, u1) = (wz, u1) /|l w2l
= ((v2, u1) — (v2, u1) (w1, u1))/llw2|l
=0,

because u) is a unit vector. Thus, {u;, 42} in orthonormal. Given that
{uy,uz,...,ux—1} is orthonormal,

(Ui, uj) = (Wi, 4;)/llwell
k-1
. ((Ukv uj) = Y (ks i) (i, u,-)) /lwil
i=1

= ((vk, ;) — (i, 4;))/ llwee|

=0,

J <k, thatis, {u), u2, ..., ux} is orthonormal. Finally, note that (vy, v2, ..., V),
the subspace of V spanned by the first k basis vectors, is equal to (u;, uz, ..., ux),
1<k<n.

THEOREM 2.9 Let V be an inner product space of dimension n. Then V has an
orthonormal basis. Moreover, if S is an orthonormal set of vectors in V, then S
can be extended to an o.n. basis of V.

Proof The existence of an o.n. basis follows from the Gram-Schmidt process.
If § = {u1,u2,...,ux} is an orthonormal set, then it is linearly independent.

Therefore, S can be extended to a basis, {u),u2,..., 4k, Vk41,..., s} of V.
Applying the Gram-Schmidt process to this basis does not change any of its first
k vectors. a

DeriNTioN 2.10  Let W be a subspace of the inner product space V. The orthog-
onal complement of W is

Wi={(veV:(w,v)=0 forall we W).

THEOREM 2.11 If W is a subspace of the inner product space V, then W+ is a
subspace. Moreover, dim(W+) + dim(W) = dim(V).
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REPRESENTATION THEOREM FOR LINEAR FUNCTIONALS 2.12  Let V be an inner product
space. If f : V — Cis alinear functional, then there exists a unique vector w € V
such that f(v) = (v, w), forallv e V.

Proof Let{u;,u2,...,u,} be an orthonormal basis of V. Define

w= )Y Fluu. @5)
i=1

If v=) aju; € V,thena; = (v, u;), 1 <i < n.Hence,

(v, w) = (U, Zmui)

i=1

= ) fi),ui)
i=l1
n
= ) aif(u)
i=1
= f(v).
If (v, w1) = (v, wp) forallv € V,then (v, w; —w7) = 0, forall V € V.Choosing
v = w) — w; produces (Definition 2.3(c)) w; — w2 =0. m]

Note that the vector w in Equation (2.5) depends on f. If, for example,
{f1,» f2, ..., fn) is the basis of V' dual to {uy, u2, ..., un}, then fj(v) = (v, u;)
for all v € V. Hence, the w that works for f; is u;.

CAUCHY-SCHWARZ INEQUALITY 2.13  Let V be an inner product space. Ifu, v € V,
then |(u, v)| < |lu|l||lv]l, with equality if and only if u and v are linearly dependent.

Proof If u = 0, there is nothing to prove. Otherwise, let

(v, u)
llee1?

u. (2.6)

Then, because (w, u) =0,

(v, ¥)
=(v,v) — W(u, v).

This completes the proof because (v, u)(#, v) = |(1, v)|2, and w = 0 if and only
if {u, v} is linearly dependent. o
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PARrsevAL's IDENTITY 2.14 Let {4y, u2, ..., u,} be an orthonormal basis of the
inner product space V. If v, w € V, then

v, w) =Y (v, ui)(wi, ).
i=1

Proof Letv =) ajujandw =) bju;. Then

(v,w) = (z":a,-u,-, ibjuj)
j=1

i=1

= i iaisj(ui. uj)

i=1 j=1

a

BesseL's INEQUALITY 2.15  Let {uy, 2, . .., ux} be an orthonormal set of vectors
in the inner product space V. If v € V, then

k
ol = Y 1w, up)P,
j=1

with equality if and only if v € (uy1, u2, ..., ux), the subspace of V spanned by
{ll], U2, ..., uk}'

THEOREM 2.16 Let V be an inner product space and suppose T € L(V, V).
Then there exists a unique S € L(V, V) such that (T (v), w) = (v, S(w)), for all
vwweV.
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Proof Let {uj,us,...,u,} be an orthonormal basis of V. Define a function
S: V> Vby
n
Sw) =) (w, T@)wi, weV.
i=1

Then, by Definition 2.3(b), S € L(V, V).Letv = aju; +auz +--- +anu, be a
fixed but arbitrary vector in V. Then, because a; = (v, u;),

v, S(w)) =

A

Z(w T(u,))u.)

i=1

3

(w, T (u;))(v, u;)

I
—

(T (4;), w)a;,
1

( a;T(u;), w)
i=1

= (T (v), w).

Uniqueness is a consequence of the following lemma. [u]

LemMA 2.17 Let V be an inner product space. Suppose Ty, T, € L(V, V). If
(T (v), w) = (T2 (v), w), forallv,w € V, thenT) = .

DEerINITION 2.18  Let V be an inner product space and suppose T € L(V, V). The
unique S € L(V, V) guaranteed by Theorem 2.16 is denoted T* and called the
adjoint of T.

ExampLE 2.19 Let B = {u), u3, ..., u,} be an orthonormal basis of the inner
product space V.If T € L(V, V), then T is completely (and uniquely) determined
by its action on the basis B, that is, by the coefficients a;; in the equations

Tw)=) ayui, 1<j<n. @7
=]

Denote the matrix representation of T with respect to the basis Bby [T'] = (a;;).
Because B is orthonormal, it follows from Equation (2.7) that a; j = (T (uj), u;).
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Therefore,
aji = (T'(u;), uj)
= (ui, T°(w7)
- (T'(llj), ui)'

the (i, j)-entry of the matrix representation of 7*. Evidently, [T*] = [T]*. With
respect to an orthonormal basis, the matrix representation of T* is the conjugate
transpose of the matrix representation of T. o

DeriNiTioN 2.20  Let W) and W, be subspaces of an inner product space V. Their
sum is Wy + W, = {w; + wa: w; € W) and wy € Wa}; if W) N Wy = {0}, the
sum is direct, and is written W, @ W2. If W; C Wf‘, then the sum is orthogonal
direct, and is written W; L W5.

ExampLE 2.21 Let T be a linear operator on the inner product space V. If
T = T2, the composition of T with itself, then T is called a projection. Denote
by Iy € L(V, V) the identity operator on V, that is, Iy (u) = u, forallu € V.If
S = Iy —T then, because S2 = (Iy = T)(Iy = T) = ly =T -T+T*=Iy - T,
S is another projection. Denote the image of T by T(V) = {T(v): v € V}.
Because T2 = T, T(w) = w for all w € T(V). Similarly, S(w) = w for all
w € S(V). It follows from v = T(v) + (Iy — T)(v) = T(v) + S(v) that V is
the sum T(V) 4+ S(V).Because w = S(w) = w — T(w) = w — w = 0, for all
w € T(V)NS(V), V is the direct sum T(V) & S(V). o

DEFNITION 2.22 Let V be an inner product space and suppose T € L(V, V).
If T* = T, then T is hermitian (or self adjoint). A hermitian projection is an
orthogonal projection. The matrix A € C, , is hermitian if A* = A.

ExampLE 2.23 Suppose T is an orthogonal projection on the inner product space
V.LetS = Iy — T. For a fixed but arbitrary v € V, letv; = T(v) and v, = S(v).
Because T* =T = T2,

(v, ) = (T (W), v—T(v))
= (v, T() - T*(v))
=(v,0)
=0.

It follows that V = T (V) 1L S(V). o
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Let V be an inner product space and suppose T € L(V, V). Define [v, w] =
(T (v), w), for all v, w € V. Under what conditions is [ , ] an inner product on
V ? Of the three conditions in Definition 2.3, [au + bv, w] = a[u, w] 4+ b[v, w] is
always satisfied. However,

(v, u] = (T (v), u)
= (v, T*())

= (T*(u), v),

whereas, [u, v] = (T (u), v). Evidently, [v, ¥] = [u, v], for all u, v € V, if and
only if (T*(x), v) = (T (u), v), for all u, v € V, if and only if (Lemma 2.17)
T = T*, that s, if and only if T is hermitian.

DerNITION 2.24 Let T be a linear operator on the inner product space V. If
(T(v), v) > 0 for every nonzero vector v € V, then T is positive definite. If
(T(v),v) > 0forall v € V, then T is positive semidefinite. The notation T > 0
indicates that T is positive semidefinite hermitian.

We have shown that [u, v] = (T (u), v) defines an inner product on V if and
only if T is a positive definite hermitian operator. In fact, as we now see, every
inner product on V arises in this way.

THEOREM 2.25 Suppose V is an inner product space. Let [ , ] be a second inner
product on V. Then there exists a unique (positive definite hermitian) operator
T € L(V, V) such that [u, v] = (T (u), v), forallu,v e V.

Proof Let {uj,u3,...,u,)} be a basis of V that is orthonormal with respect to
the inner product (, ). Define T € L(V, V) by
n
T() =Y [u, uilui,
i=1
ueV.Ifv=>) ajuj, then

(T@),v) =YY [u, uilaj(ui, u))

i=] j=1

= ) _ailu,u;)
i=1
= [u, v].
Because [ , ] is an inner product, T is positive definite hermitian. Uniqueness
follows from Lemma 2.17. o

The matrix version of Definition 2.24 is this:
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DerFiNiTION 2.26  Let A € C,, be hermitian. If x*Ax > 0 for every nonzero
x € C,,1, then A is positive definite. If x*Ax > O for all x € C,,;, then A is
positive semidefinite. The notation A > 0 indicates that A is positive semidefinite
hermitian.

Observe that A is positive definite if and only if it is positive semidefinite and
invertible.

LemMa 2.27 Let B be an orthonormal basis of the inner product space V. Suppose
T € L(V,V). Then T > 0 if and only if [T] > O, where [T] is the matrix
representation of T with respect to B.

DeFNTION 2.28 A linear operator T on an inner product space V is unitary if
T*T = Iy, thatis, if T is invertible and T~! = T*. A matrix U € Cp 5 is unitary
if it is invertible and U~! = U*, the conjugate transpose of U.

ScHur's TRIANGULARIZATION THEOREM 2.29 Let A € C, 5. Then A is unitarily
similar to an upper triangular matrix.

Proof The proof is by induction on n. Because every 1-by-1 matrix is upper
triangular, the n = 1 case is trivial. Assume n > 1. Let A be an eigenvalue of A
afforded by the eigenvector x € C, ;. Because x # 0, we may assume |jx|| = 1
(with respect to the standard inner product (y, z) = z*y on C, ;). By Theorem 2.9,
{x} can be extended to an orthonormal basis {x, y2, ..., ya} of Cy 1. Let U be the
matrix whose first column is x and whose j-th column is y;, 1 < j < n. Then
U*U = I, the n-by-n identity matrix. Moreover, the first column of U*AU is
U*Ax = AU*x = AC}, where C} is the first column of I,, that is,

A K # ... #
0

vtAu = | 0 A ,
0

where A; is an (n — 1)-by-(n — 1) matrix, and the #’s stand for unspecified entries.
It follows from the induction hypothesis that there is an (n — 1)-square unitary
matrix U such that U AU, is upper triangular. Let L = (1) @ U}, that is,

1 0 0 ... O
0
0 U
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Then

o O >

(ULY*A(UL) = UrA Uy

0

is upper triangular. Because it is a product of unitary matrices, U L is unitary, and
the proof is complete. m]

SpecTRAL THEOREM 2.30 Let A € C, . Then A is unitarily similar to a diagonal
matrix if and only if A*A = AA*.

Proof LetU be a unitary matrix such that U*AU = D is diagonal. Then A*A =
({UD*U*)(UDU*) = U(D*D)U* = U(DD*)U* = (UDU*)(UD*U*) = AA*.
Conversely (Exercise 34), there is a unitary matrix U such that U*AU and U*A*U
are both upper triangular. Because U*A*U is upper triangular, its conjugate
transpose, U* AU, must be lower triangular. Therefore, U*AU is both upper and
lower triangular. a

DerFintTioN 2.31 A square matrix A (linear operator T) is normal if A*A = AA*
(T*T =TT*).

If A = (a;;) is a hermitian matrix, then @;; = a;; is real. Because hermitian
matrices are normal, there exists a unitary matrix U such that U*AU = D, a
diagonal matrix whose main diagonal entries are the eigenvalues of A. Because
D* = (U*AU)* = U*A*U = U*AU = D, the eigenvalues of A are all real as
well.

The next result is a restatement of the Spectral Theorem for linear operators.

CoroLLARY 2.32 Let T be a linear operator on an inner product space V. Then
T is normal if and only if there exists an orthonormal basis of V consisting of
eigenvectors for T.

DerintTion 2.33  Let A € C, 5. The field of values or numerical range of A is
F(A) = {x*Ax: x € Cy1 and Ix]] = 1}.

One may view F(A) as the set of those complex numbers that can occur as the
(1,1)-entry of a matrix unitarily similar to A.

Let S = {c}, c2, - .., cn} be a set of complex numbers. The convex hull of § is
the set

(bici +62c2+ - +60,cp: 6,20, 1<i<nm, and 61 +6+---+6, =1}

consisting of all convex combinations of the elements of S.
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TueoreM 2.34 If A € C,, is normal, then F(A) is the convex hull of its
eigenvalues. In particular, if A is hermitian with eigenvalues Ay > A3 > --- > Ay,

then F(A) = [An, M1].

Proof Sketch Suppose A € C,,. It follows from Schur’s Triangularization
Theorem that the eigenvalues of A are elements of F(A). By a theorem of Toeplitz
and Hausdorff,* F(A) contains the convex hull of each of its finite subsets.
Therefore, normal or not, the numerical range of A contains the convex hull of its
eigenvalues.

With respect to the dot product, V = C, ) is an inner product space.If A € C, ,,
thenx — Ax defines a linear operator on V. If A is normal, there is an orthonormal
basis B = {x, x2, ..., xp} of V consisting of eigenvectors of A, say, Ax; = A;x;,
l1<i<nlIfx=) ajx; €V, then

x*Ax =) Ailai (238)

i=1

If x is a unit vector, then ) _ |a; {2 = 1. This proves that the numerical range of A
is contained in the convex hull of its eigenvalues.’ o

Let A be a hermitian matrix with eigenvalues A; > A2 > -+ > A,. Then, from
Theorem 2.34,

— *
A= m-a:l u*Au 2.9)

and

An = min u*Au, (2.10)
fufi=1

where the maximum and minimum are over the unit vectors u € V = C, ;. This
proves the following:

CoroLLARY 2.35 Let A € C,, be hermitian. Then A > 0 if and only if its
eigenvalues are all nonnegative.

In fact, Equations (2.9) and (2.10) are but the simplest examples of the following
elegant result [Fischer (1905)]. (A generalization to a wider class of operators can
be found in [Courant & Hilbert (1953)].)

“The convexity of F(A), A€C, ., was proved independently by [Toeplitz (1918)] and [Hausdorff
(1919)]. For a discussion of why the theorem is true, see [Davis (1971)).

5 Related results can be found in [Fiedler (1981)], [Grone, Johnson, Sa & Wolkowicz (1987)], and
[Johnson (1976)).
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CoUrRANT-FisHER THEOREM 2.36 Let A € C,, be a hermitian matrix with
eigenvalues Ay > Ay > - -+ > Ap. Then

Ax = min max u*Au, 2.11)
W ouewt
flul=1

where the minimum is over the (k — 1)-dimensional subspaces W of V = Cp ;.
Alternatively,
Ar = max min u*Au, 2.12)

ueWt
fluf=1

where the maximum is over the (n — k)-dimensional subspaces of V.

Proof When k = 1 or k = n, Equation (2.11) follows from Equations
(2.9)2.10). Suppose n > k > 1. Let uj,uj,...,u, be an orthonormal
family of eigenvectors of A that afford Aj, Az, ..., A,, respectively. If U is a
unitary matrix whose first k — 1 columns are uj, u2,..., ¥x—1, then U*A =
diag (A1, A2, ..., Ak—1) ® B, where the spectrum of B is Ay > Agyq = -+- = Ap.
It follows from Equation (2.9) that

Ax = max v*Bv
Hvli=1

= max u*Au,

where the second maximum is over the unit vectors u in the orthogonal complement
of W = (uy,u2,...,ux—1). In other words, there exists a (k — 1)-dimensional
subspace W of V such that Ay is equal to the maximum value of u* Au over the
unit vectors in W+. Therefore, Ay is at least as large as the minimum of this
maximum over all (k — 1)-dimensional subspaces. That is, Ay > min max u* Au.

If U is the n-by-n matrix whose i-th column is the eigenvector u;, 1 <i <n,
thenU*AU = D,where D = diag (A, A2, ..., A,).Let W be afixed but arbitrary
(k — 1)-dimensional subspace of V, and set

M = max u*Au

ueWt
Nul=1

= max u*Du,
ueXt
Hulk=1

where X = {U*w: w € W} If M) is the maximum of #* Du over the unit
vectors u € X1 whose last n — k components are zero, then M > M. If
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v=(ay,a,...,a0,0,...,0),is such a unit vector (which must exist because
dim(X+) =n —k + 1), then

M; > v'Dv

k
=Y Ailail?

i=l1

k
> A Z lai [?

i=1
2
= Akllvii

= Ak,

because v is a unit vector. Therefore, M > A;. Because W was arbitrary, the
minimum of all such M’s cannot be less than A;, that is, min max u*Au > A;.
This completes the proof of Equation (2.11). The proof of Equation (2.12) is
similar. (8]

DeriNITION 2.37  Suppose A and B are hermitian n-by-n matrices, or hermitian
operators on an inner product space V.If A— B > 0, then A dominates B, written
A>B.

If A > B, then u*Au > u*Bu for every unit vector u € C,,;. Therefore
(Equation (2.11)), the k-th largest eigenvalue of A,

Ak(A) = A (B), (2.13)

the k-th largest eigenvalue of B.

If A € C, , is hermitian, let d(A) be the n-tuple consisting of the main diagonal
entries of A (multiplicities included) arranged in nonincreasing order, and denote
by s(A) the n-tuple consisting of the eigenvalues of A (multiplicities included)
arranged in nonincreasing order.

TheoreM 2.38 If A = (aij) > O, then s(A) majorizes d(A).

Proof Let P be a permutation matrix such that the main diagonal of P*AP is
d(A). Let U = (u;j) be a unitary matrix such that U*(P*AP)U = D, where
D = diag (s(A)). Then P*AP = UDU"*. Comparing the (i, i)-entries of these
(equal) matrices, we see that



Inner Product Spaces 41

n
(P*AP)ii = ) uijhjj
Jj=1

luiji?rj, 1<i<n. (2.14)

n
=

Because U is unitary,
n
Ui =Y jui;l?
j=1
=1,

1 <i < n. Similarly,

n
Y it =1,
i=1

1 < i < n. Therefore, Q = (qij) defined by ¢;; = |u; j|2, is doubly stochastic.
Because Equations (2.14) can be written in the form d(A) = s(A)Q’, the result
follows from Theorem 1.10. u ]

CoroLLARY 2.39 Let A = (aij) € C,, be a hermitian matrix with eigen-
values Ay > Ay > --- > A, and nonincreasing diagonal sequence d(A) =
(b1, b2, ...,by). Then

k k
M=) b, 1<ks<n. (2.15)

=1 i=1

Proof By Corollary 2.35, H = A — A,I, > 0. By Theorem 2.38,

S(H) =1 — A, A2 —Apy ooy Ap — Ay)
>(b1—Anb2 —Apy ..., bp — Ap)
=d(H).



42 Multilinear Algebra

Corollary 2.39 was first proved in [Schur (1923)]. The following lovely converse
appeared in [Horn (1954)): Let (a) = (a1, a2, ..., a,) and (b) = (b1, b2, ..., ba)
be nonincreasing sequences of real numbers. If

k k
Zai ZZbi, 1<k=<n,
i=1

i=1

with equality when k = n, then there exists a real, symmetric, n-by-n matrix A
with eigenvalues ay, az, . . ., an and diagonal entries by, by, .. ., b,. (An excellent
reference for these and related results is [Marshall & Olkin (1979)].)

DerAniTiON 2.40 Hadamard’s function is defined by

h(A) = I-[aii’ A= (ai}) € Cn'n-

i=1

HApAMARD'S THEOREM 2.41 If A > O, then h(A) > det(A), with equality if and
only if A has a zero row and column, or A is diagonal.

Proof Sketch In the same (1923) paper that contained Corollary 2.39, Schur
proved that the elementary symmetric functions are what we now call Schur
concave: If (@) = (a1, a3, ...,a,) and (b) = (b1, b2, ..., b,) are nonincreasing
sequences of positive real numbers such that (a) > (b), then E,(a) < E,(b),
1 < r < n, with equality if and only if (@) = (b). Applying the r = n case of this
result to s(A) > d(A), we obtain

det(A) = ﬁl,-
i=l

n
= ]—[aii
i=

= h(A),
with equality if and only if A; = a;; for all i (if and only if A is diagonal), or
a;; = 0 for some i (in which case every entry in row and column i of Ais0). O

Theorem 2.41 was proved in [Hadamard (1893)).5We shall have more to say
about Hadamard’s Theorem in Chapter 7.

S 1944, Jacques Hadamard had this to say about Theorem 2.41: “To continue about my failures,
I shall mention one which I particularly regret. It concerns the celebrated Dirichlet problem which I,
for years, tried to solve in the same initial direction as Fredholm did ... [In] 1893, I had been attracted
by a question in algebra (on determinants). When solving it, I had no suspicions of any definite use it
might have, only feeling that it deserved interest; then in 1900 appeared Fredholm’s theory, for which
the result obtained in 1893 happens to be essential.”
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THE INTERLACING INEQUALITIES 2.42 Let A € C, , be a hermitian matrix with
eigenvalues Ay > Az > --- > A,. Suppose B is an r-by-r principal submatrix
of A. If the eigenvalues of B are my > mp > -+ > 0y, then Ax = Nk = Anik—r,
1<k<r.

Proof If r = n, equality holds for all k. If r = 1, the result follows from
Theorem 2.34. Thus, we may proceed under the assumption that2 <r <n — 1.
Because the eigenvalues of A are unchanged by a permutation similarity, we
may assume that B is the leading r-by-r principal submatrix of A (the submatrix
obtained by deleting rows and columns r + 1, r 42, .. ., n). From Equation (2.9),
A1 is the maximum of #* Au over all unit vectors u € Cy,;, while n; is the maximum
of v*Bv over all unit vectors v € C,,;. That is », is the maximum of u* Au over
all unit vectors u € C,; the last n — r components of which are zero. Therefore,
A1 = n.Ifk > 1,asimilar argument based on Equation (2.11) shows that A; > n,
r>k>2.

Turning to the inequalities nx > An4+x—r, We may continue to assume that B is
the leading r-by-r principal submatrix of A. Consider the case r = n — 1, so that
the inequalities become n; > Ag4+1, 1 <k < n — 1. From Equation (2.12),

Ak+1] = max min u*Au
ueW+
=1

< max min u*Au,
W uewt
Hul=1
ulE,

where the maxima are over the subspaces W of C,,; of dimension n — (k + 1),
and E, € C, is the column vector whose only nonzero entry is a 1 in row . If
u L E,, then u*Au = v*Bv, where v € C,_) ) is the column vector obtained
from u by deleting the 0 from row n.

If W is a fixed but arbitrary (n — k — 1)-dimensional subspace of C,,, then
dim({u € Cp1: u € Wiandu L E,}))iseitherk+1ork depending on whether
or not E, € W. Because every (k + 1)-dimensional subspace of C,—1,; contains
k-dimensional subspaces,

max min #*Ax < max min v*Bv
W uew? Vo opev?t

=1 vi=1

ulE,

= Tk
where V ranges over the subspaces of C,_;,1 of dimension (n — 1) — k.

If r < n— 1, then B is a principal submatrix of an (n — 1)-by-(n — 1) principal
submatrix of A and the result follows by induction. o
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LeMMA 2.43  Suppose A € Cp n. Then A > O if and only if there exists a matrix
B € C'l,’l suCh thatA = B.B-

Proof Suppose A = B*B.Then A* = A. If x € C, 1, then x*Ax = x*B*Bx =
(|B(x)}I> > 0. Conversely, suppose A > 0. By the Spectral Theorem, there is a
unitary matrix U such that

UAU* = diag (A1, A2, ..., An).

By Corollary 2.35, the A’s are all nonnegative. Let B = CU, where C =
diag (++/A1, +vA2, ..., +v/As). Then A = B*B. o

COROLLARY 2.44 Let A € C, , be a hermitian matrix. Then A > 0 if and only if
the determinants of its principal submatrices are all nonnegative, and A is positive
definite if and only if the determinants of its leading principal submatrices are all
positive.

Proof It follows from Corollary 2.35 and the interlacing inequalities that each
principal submatrix of a positive (semi)definite hermitian matrix is positive
(semi)definite. Because det(B*B) = |det(B)|?, the necessity of the conditions
is a consequence Lemma 2.43. Sufficiency can be proved using the interlacing
inequalities, Corollary 2.35, and mathematical induction. D

Suppose A € C, 5. If A > O then, as in the proof of Lemma 2.43, there is a
unitary matrix U such that UAU* = diag (A1, A2, ..., As). If r is any positive
real number, define the positive semidefinite matrix

A" = U* diag (A}, A5, ..., ADU. (2.16)

Application to Graphs

The next definition opens the way for these ideas and techniques to be applied in
the study of graphs.

DerFniTION 2.45  Let G = (V, E) be agraph with vertexset V = {v, va, ..., vp}.
Define

Bes = 1 if {vi,v_,-}eE,
710 otherwise.

The adjacency matrix of G is the n-by-n matrix A(G) = (a;;). If D(G) =
diag (d(v1), d(v2), ...,d(v,)) is the diagonal matrix of vertex degrees, then the
Laplacian matrix of G is L(G) = D(G) — A(G).
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FIGURE 2.1

ExampLE 2.46 Let G be the graph illustrated in Figure 2.1. Then

1 0 0 0 -1
0 2 -1 0 -1
L(G) = 0 -1 3 -1 -1
0 0 -1 2 -1
-1 -1 -1 -1 4
(m]

Let Y, € C,, be the column n-tuple, each of whose entries is 1. Then
L(G)Y, = 0 expresses the fact that every row sum of L(G) is zero. It also means
that L(G) is singular; for any graph G,

det(L(G)) =0. 2.17)

THEOREM 2.47 If G is a graph, then L(G) > 0.

Proof 1t is clear from the definitions that both A(G) and L(G) are symmetric
and, therefore, hermitian. The proof that L(G) is positive semidefinite is left to
the exercises. u}

Observe (Definition 2.45) that L(G) depends not only on G = (V, E), but on
the numbering of the vertex set V = {v;, v, ..., v,}. If L) is the version of L(G)
based on one numbering of the vertices and L; is the version based on another,
then there exists an n-by-n permutation matrix P such that

L,=P'L,P, (2.18)

where, of course, P~! = P* = P'. In fact, more is true.

THEOREM 2.48 Let G| and G, be graphs. Then G is isomorphic to G, if and
only if there is a permutation matrix P such that L(G;) = P~'L(G,)P.

It follows from Theorem 2.48 that G and G, are isomorphic only if L(G1) and
L(G_) are (unitarily) similar. By the Spectral Theorem, two hermitian matrices
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are unitarily similar if and only if they have the same eigenvalues. Evidently, the
multiset of eigenvalues of L(G) is a graph invariant.
If G is a graph on n vertices, let

AIEAZZ"'ZAn—IZ():An

be the eigenvalues of L(G). Define s(G) = (A1, A2, ..., Ax—1), the (n — 1)-tuple
obtained from s(L(G)) by deleting A, = 0. Then G, is isomorphic to G, only if
5(G1) = s(G2).

THEOREM 2.49 If G is a graph, then s(G) > d(G), that is, the spectrum of L(G)
majorizes the degree sequence of G."

Proof This is an immediate consequence of Theorem 2.38 and the definitions. O

ExampLE 2.50 Let G be the graph in Figure 2.1. Then d(G) = (4,3,2,2,1),
s(L(G)) =(5,4,2,1,0), and s(G) = (5, 4, 2, 1). Observe that

5 >4,
5+4 =443,
54442 >4+43+2,
5444241 >4434242,

and54+44+24+1=44+34+24+24+1. 8]

Recall (Theorem 1.37) that the conjugate degree sequence, d*(G), also ma-
jorizes d(G). In fact, there is some empirical evidence for the following:

CoNIECTURE 2.51 Let G be a graph. Then d*(G) > s(G), that is, the conjugate
degree sequence majorizes the Laplacian spectrum.

In Example 2.50, d(G) = (4,3, 2, 2, 1). Therefore, d*(G) = (5,4,2,1) =

s(G), affording a case of equality in Conjecture 2.51. As we now see, this is no
coincidence. If follows from the fact that d(G) is a maximal graphic partition.

TreorEM 2.528  Let G be a connected graph. Then d*(G) = s(G) if and only if
G is a threshold graph.

7An improvement of this result can be found in [Grone (1995)].

8 Theorem 2.52 was first proved in [Merris (1994a)). Threshold graphs were introduced indepen-
dently by [Chvétal & Hammer (1977)] and [Henderson & Zalcstein (1979)). Consult [Arikati & Peled
(1994)], [Golumbic (1978)], [Hammer, Ibaraki & Simeone (1981)], [Orlin (1977)}, [Peled (1980)], and

[Ruch & Gutman (1979)] for more about these “maximal” graphs.
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Exercises

1.

10.

11.
12.

13.
14.
15.

16.
17.

Prove that 4: V' — C, defined by Equation (2.3), is a linear functional on
v’

Prove that the mapping W in Theorem 2.2 is a vector space isomorphism.

Let (, ) be an inner product on V. Let W be a subspace of V. Explain why
the restriction of (, ) to W is an inner product on W.

Prove that Equation (2.4) defines an inner product on C".

Let V be a (complex) vector space of dimension n. Explain how Example 2.5
can be used to construct an inner product on V. (Hint: Start with a fixed but
arbitrary basis of V.)

Suppose that § = {v;, v, ..., vt} is an orthogonal set of nonzero vectors.
Prove that § is linearly independent.

Prove Theorem 2.11.

If W is a subspace of the inner product space V, show that (W4)t = W.
Exhibit the orthonormal basis of C> obtained by applying the Gram-Schmidt
process to the basis {(0, 1, 1), (1,0, 1), (1, 1, 0)}.

What is the result of applying the Gram-Schmidt process to the linearly
dependent set {(1, 0), (0, 1), (1, 1)}?

Let w be the vector defined in Equation (2.6). Prove that (w, ) = 0.

Let v and u # 0 be linearly dependent vectors in an inner product space V.
Prove that

_ ()

u.
eI

Prove Bessel’s Inequality.

Prove that tr (A*A) tr (B*B) > | tr (A*B)|?, forall A, B € Cpp».

Let V be an inner product space of dimension n. Suppose A = (a;j) € Cy n.
Prove that there exist vectors vy, v, ..., v, and wy, wy, ..., w, such that
a;j = (vi, wj).

Let V be an inner product space. If S, T € L(V, V), prove that (ST)* = T*S*.
Let T be a projection on V. Prove that dim(7T(V)) = tr (T'). (Since the trace
of a matrix is preserved under similarity, we can unambiguously define the
trace of T to be the trace of the matrix representation of T with respect to any

fixed basis B of V. Another approach would be to define the trace of T to be
the sum of its eigenvalues.)
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18.

19.

20.

21.

22.

23.
24.

25.

26.
27.

28.

29.

30.

Multilinear Algebra

Let W be a subspace of the inner product space V.

a. Prove that there exists an orthogonal projection P € L(V, V) such that
W = P(V).

b. LetT € L(V, V). If T commutes with P, show that T holds W invariant,
thatis, T(w) € W forallw e W.

c. Suppose T holds W invariant. Must T commute with P?

Suppose V = W; + W». Prove that V = W & W; if and only if dim(V) =

dim(W;) + dim(W>).

Let B = {v1, v2,..., un} be a basis of the inner product space V. Suppose

S, T € L(V,V). If T(%),vj) = (i, 8()), 1 < i, j < n, prove that

S=T".

Let T be a linear operator on the inner product space V. Prove (T*)* = T,

that is, prove (T*(v), w) = (v, T(w)), forallv, w € V.

Let B = {v;, v, ..., Uy} be a basis of V. Prove that there is an inner product

on V with respect to which B is orthonormal.

Prove Lemma 2.17.

Let B = {uj, u2,...,u,} be an o.n. basis of the inner product space V. If

v = Y aju;, let [v] € C,, be the column vector whose i-th entry is a;, that

is, [v] is the coordinate representation of v with respect to B.

a. If T € L(V,V), prove that (T (4),v) = [v]*[T][u], where [T] is the
matrix representation of T with respect to B (Example 2.19).

b. Prove Lemma 2.27.

Prove that T € L(V, V) is positive definite hermitian if and only if it is
positive semidefinite hermitian and invertible.

Show that every orthogonal projection is positive semidefinite.

Suppose A € Cy 2.

a. If x*Ax > O for all x € Cy,;, prove that A is hermitian.

b. If A is real and x*Ax > 0 for all real 2-by-1 matrices x, must A be
symmetric?

Let {u;,u2,...,us} be an orthonormal basis of the inner product space V.

Exhibit a hermitian operator T € L(V, V) that satisfies (T (;), u;) > 0,
1 <i < n, but such that T is not positive semidefinite.

Prove that U € C, , is unitary if and only if its columns are orthonormal with
respect to the standard inner product of C".

Let B be an o.n. basis of the inner product space V. Let [T] be the matrix
representation of T € L(V, V) with respect to B. Prove that T is unitary if
and only if [T'] is unitary.
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31.

32.

33.
34.

35.

36.
37.

38.

39.

41.

42,

43.

Let T be a unitary operator on the inner product space V. Suppose
{u1,u2,...,u,} is an orthonormal set of vectors in V. Prove that
{T (u1), T (u3), ..., T(uy)} is orthonormal.

Let T be a linear operator on the inner product space V. Prove that there exists
an orthonormal basis of V with respect to which the matrix representation of
T is upper triangular.
Prove Corollary 2.32.
Let A, B € C, , be a pair of commuting matrices (that is, AB = BA). Prove

that there exists a unitary matrix U € C, , such that U*AU and U*BU are
both upper triangular. (Hint: Prove that A and B have a common eigenvector.)

Give a proof of the Spectral Theorem that does not rely on Exercise 34. (Hint:
If A is normal and U is unitary, show that U* AU is normal. Then prove that
a normal, upper triangular matrix is diagonal.)

Prove that a normal matrix is hermitian if and only if its eigenvalues are real.

Let T be a hermitian operator on the inner product space V. If the eigenvalues
of T are (all) nonnegative, prove that T is positive semidefinite.

Prove that a normal matrix is unitary if and only if its eigenvalues all have
absolute value 1.

Let T be a linear operator on the inner product space V. Prove that T > 0 if
and only if there exists an § € L(V, V) such that T = §*S.

Let V be an inner product space. Suppose T € L(V, V). If (T(v),v) > 0
for all v € V, show that T = T*. (Thus, the phrase “positive semidefinite
hermitian” is redundant.)

Let v, v2,..., v, be vectors in an inner product space V. Define a;; =
(vi,vj), 1 < i, j < n. Then A = (a;;) is the Gram matrix based on

vl’v29°"9v’l-
a. Show that A > 0 if and only if A is a gram matrix.

b. Show that A is positive definite hermitian if and only if it is a gram matrix
based on linearly independent vectors.

Let k be a positive integer. Suppose r = 1/k. Show that
a. (A"t =A.
b. (A% = A.

Prove that A € C, , is positive semidefinite hermitian if and only if there is
a lower triangular matrix B such that A = B*B.

. Prove that A € C, 5 is positive semidefinite hermitian if and only if there is

an upper triangular matrix B such that A = B*B.
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45.

47.

48.

49.
50.

51.

52.

53,
54.

Mudltilinear Algebra

Suppose A = (a;j) € C,,n is positive definite hermitian. Define d; =
@i))~V2,1<i <n,D = diag (di,d2,...,ds),and B = DAD.

a. Show that (det(A))!/" < (tr (A))/n. (Hint: Use eigenvalues and the
arithmetic-geometric mean inequality.)

b. Show that the “correlation matrix” B = DAD is positive definite hermi-
tian.

c. Show that det(A) < h(A) if and only if det(B) < 1.

d. Show that det(B) < 1.

Suppose A = (a;;) > 0. Prove that

a. g;>20,1<i<n.

b. ajiajj = laijI%, 1 <i, j <n.

c. if g;; = 0, then every entry in the i-th row and column of A is zero.

Let S, T € L(V, V) be orthogonal projections. Show that S > T if and only
ifST=T.

LetA; > A2 > --- > A, be the eigenvalues of a hermitian matrix A € C, 5.
Show that A1I, — A>0and A — A1, = 0.

Suppose A > B. If tr (A) = tr (B), prove that A = B.

1 2

LetA=(0 3

of A.

Suppose A € C, , and @ € Q5. Denote by Ala|x] the principal m-by-m
submatrix of A whose (i, j)-entry is the (a(i), a(j))-entry of A. Prove that
(A*A)lala] > Ala|a]*Ale|e).

Suppose 0 < £ < V2-1.LetA= diag (146, 1+¢71).
a. Prove that A > J, the 2-by-2 matrix each of whose entries is 1.

b. Prove that A2 Z J2. (Necessary and sufficient conditions for At > Bk to
hold for all positive integers k are given in [Kwong (1977)].)

c. Prove that A2 > J1/2, (More generally, it is known [Au-Yeung (1973)]
that A > B implies A° > B® whenever0 < 8 < 1.)

Suppose A € Cpy,;y and B € Cppy 5. If A > 0, prove that B*AB > 0.
Suppose A € C, , is partitioned as

_(P @
A—(R s)’

where P and § are square and P is invertible. Then the Schur Complement
of PinAisA/P=S—RP71Q.

). Show that F(A) is not the convex hull of the eigenvalues
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a. Prove that’ det(A) = det(P) det(A/P). (Hint: Compute XAY, where

_ I 0 _ (1 -P7'Q
X—(—RP-l 1) and Y‘(o 1 )‘)

b. If A > 0, prove that A/P > 0. (Hint: If A > 0, then R = Q*; use part (a)
and Exercise 53.)

Application Exercises

55. LetG = (V, E) beagraph with vertex set V = {v, v2, ..., v,} and Laplacian
matrix L(G).

a. Prove that xL(G)x* = }_ |xi — xj [2, where the sum is over the edges of
G, that is, over those ordered pairs (i, j) such thati < j and {v;, vj} € E.

b. Prove that L(G) > 0.

56. Let G be the graph in Example 2.50 (Figure 2.1). Confirm that s(G) =
(5.4.2,1).

57. Prove Theorem 2.48.
58. Confirm that s(G) majorizes d(G) if G is the graph

O, O, O,

O/ \O O/ \O 04—§O
a. | ) b. ' l c. l I
e N K-

O

59. Let G be a graph with vertex set V = {v;,v2,...,v,} and edge set
E = {e1,€2,...,en). For each edge ¢; = {v;, v}, choose one of v;, vk
to be the “positive end” of ¢;, and the other to be the “negative end”. Thus, G
is given an orientation. For a fixed but arbitrary orientation of G, define the
n-by-m matrix 0 = Q(G) = (gi;) by

—1, ifitis the negative end, and

+1, if v; is the positive end of e;,
qij = [
0, otherwise .

This identity appeared in [Schur (1917)). The name “Schur Complement” was introduced in
[Haynsworth (1968)]. Also see [Cottle (1974)).
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61.
62.

Multilinear Algebra

Then Q is an oriented vertex-edge incidence matrix for the graph G.

a. Prove that Q Q' = L(G), independently of the orientation.

b. Prove that L(G) > 0.

Confirm the sufficiency part of Theorem 2.52 for the graphs in Figure 1.12.
Let G be a graph. Show that L(G) commutes with L(G€).

suppose S(G) = (Alv )'Zv ceey A'll—l) and S(Gc) = (”‘lv M2y e0ey ﬂn—l)- Show
that A; + wp—; = n, 1 <i < n. (Hint: Exercises 34 and 61.)



CHAPTER 3

Permutation Groups

A permutation of degree n is a one-to-one function from {1, 2, .. ., n} onto itself.
The set of all n! permutations of degree n is denoted S,. Under the operation of
function composition, S, is a group, the symmetric group of degree n. The identity
of this group is the permutation e, defined by e,(x) = x forall x € {1, 2,...,n}.
When 7 is understood from the context, e may be used in place of e,.!

Letx € {1,2,...,n} and o € S, be fixed but arbitrary. If o (x) = x, then x is
a fixed point of 0. More generally, let x = x; and define x;+; = o(x;) = ol (x),
i > 1. If k is the smallest positive integer such that o*(x) = x, then

Co(x) = (x1x2...x8)

is the cycle of o containing x. The integer k is the length of C, (x), and C, (x) is
sometimes called a k-cycle. Thus, x is a fixed point of o if and only if the length of
Co(x)islL.Ifj=i+1orifi =kand j = 1, thent = x; is said to follow s = x;
in Cq4 (x). Cycles C, (x) and C, (y) are equivalent if they have the same length and
the same integers in the same (cyclical) order. So, the phrase “C, (x) and C, (y) are
equivalent” means that ¢ follows s in C, (x) if and only if ¢ follows s in C; (y), for
every choiceof sand tin {1,2,...,n). if {o'(x): i > 1} N{Ti(y):i > 1} = 0,
then the cycles C, (x) and C;(y) are disjoint.

ExampLE 3.1 Let 0 € Sg be the permutation defined by o (1) = 5, 0 (2) = 4,

c(3)=1,04) =2,0(5) =3,and 0(6) = 6. Then 6 is a fixed point of o, and
Cy(6) = (6). While C,5(1) = (153), C5(3) = (315), and Cs(5) = (531) are

1 The letter e has already been used to denote an edge of a graph; e, will be used later to denote the
n-th vector in a basis. It is to be hoped that the context will eliminate any confusion these notational

abuses might otherwise cause.

53
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equivalent to each other, they are not equivalent to (135). Finally, C,(2) = (24)
and C,(4) = (42) are equivalent to each other and disjoint from C,(x) when
2#x#4. 0

Lemma 3.2 Supposex,y € {1,2,...,n}and o, v € Sy. Then

(a) either C,(x) and C,(y) are disjoint or they are equivalent; and
(b) either Cy(x) and C.(x) are identical or they are inequivalent.

DerntTioN 3.3  Let Cy(x), Co (¥), . . ., Co (2), be the inequivalent cycles of o €
Sn. Then the disjoint cycle factorization?of ¢ is Cy (x)Cy () .. . C (2).

Suppose that o is the permutation in Example 3.1. Because there are three
(equivalent) ways to express the 3-cycle, two ways to express (24) = (42), and
because the three cycles can be written in any order, there are 3 x 2 x (3!) =
36 different looking ways to express its disjoint cycle factorization. (Some
examples are: (153)(24)(6), (315)(6)(24), (42)(531)(6), and so on.) Apart from
equivalence and the order in which the cycles are written, however, the disjoint
cycle factorization of a permutation is unique. Moreover, it is customary when
expressing permutations using disjoint cycle notation to suppress the cycles of
length 1 (corresponding to fixed points). In particular, the permutation from
Example 3.1 is typically written o = (153)(24).

DerINITION 3.4 The cycle type of o € §, is the partition of n whose parts are the
lengths of the cycles in its disjoint cycle factorization. Two permutations are said
to have the same cycle structure if their cycle types are the same.

ExamrLE 3.5 Consider the permutation o0 = (1357)(246) € Sy with cycle type
[4,3]. As we know, (1357)(246) is just one of 4 x 3 x 2 = 24 different looking
ways to express the disjoint cycle factorization of 0. We now consider a different
question, namely, the number of permutations in §7 that have cycle type [4,3].
Any such permutation can be written in the form v = (abcd)(xyz). While
7 x 6 x5 x4 = 840 is the number of ways to “fill up” the 4-cycle (abcd),
it is not the number of ways to choose the 4-cycle; it is too big. We have not
taken equivalence into account. Because (abcd) = (beda) = (cdab) = (dabc),
there are only 840/4 = 210 different 4-cycles. Once the 4-cycle is chosen, three
numbers remain to play the roles of x, y, and z. These can be arranged in 3-cycles
in 3 x 2 x 1/3 = 2 inequivalent ways (namely (xyz) or (xzy)). Therefore, $7
contains a total of 210 x 2 = 420 permutations of type [4,3]. o

Note that the 420 permutations enumerated in Example 3.5 have the same cycle

zDespite the fact that the binary operation of S, is function composition, we will adopt the generic
language and speak of it as a “product”.
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structure as (abc)(wxyz). Indeed,

7x6x5x4x3x2xl_7x6x5x4x3x2xl
4 3 -3 4 ’

ExampLE 3.6 One of the 77 partitions of 12 is {32, 2*]. How many permutations
in S12 have cycle type [3,3,2,2,2]? The generic permutation with this cycle type
may be written

o = (abc)(xyz)(pq)(rs)(tu).

There are 12 x 11 x 10/3 = 440 ways to choose the first 3-cycle. Once it has
been chosen, there are 9 x 8 x 7/3 = 168 ways to choose the second. So,
440 x 168 = 73, 920 is the number of ways to choose a sequence of two 3-cycles.
There is a subtle point here that did not arise in our previous discussion: We have
double counted the pairs of 3-cycles that could occur in our generic o, once in the
form (abc)(xyz) and again as (xyz)(abc). Compensating for this double counting,
we conclude that the pair of 3-cycles can be chosen in 73,920/2 = 36,960 different
ways. (While it is true that (abcd)(xyz) = (xyz)(abcd), we never counted these
expressions as different in Example 3.5.)

No matter which six numbers are used in the two 3-cycles, six numbers remain
to be distributed among the three 2-cycles. We may choose (pg) in 6 x 5/2 = 15
ways; (rs) in4 x 3/2 = 6 ways; and (fu) in 2 x 1/2 = 1 way. There would be
15 x 6 x 1 = 90 ways to choose the three 2-cycles if, for example, (pg)(rs)(tu)
were different from (rs)(pq)(tu). Because the order in which the 2-cycles are
written does not matter, we have counted each triple of 2-cycles 3! = 6 times. Once
the two 3-cycles have been chosen, there are only 90/6 = 15 ways to choose the
three 2-cycles. Hence, the number of permutations in $); of cycle type [32, 23] is
36,960 x 15 = 554,400. (So, fewer than 0.12% of the 479,001,600 permutations
in 812 have cycle type [32, 2%].) o

The evident generalization of these examples involves permutations of cycle
typen = [n"™,..., 3,27, 1] |- n, an awkward thing to write down. To simplify
such expressions, we will sometimes abuse the language and reverse the (usual
decreasing) order of the parts, writing instead 7 = [1",22,...]1F n.

THEOREM 3.7 Let m = [17,27,...] \ n. Then the number of permutations in
Sp of cycle type m is

n!
111 (r1 D272 (r N3 (r3!) ... am(ra!)

n(mr) =

Recall that the length of the cycle C,(x) is the smallest positive integer k such
thato* (x) = x.Inthis context, x is fixed, and k depends on x. We are now interested
in the smallest positive integer k such that ot (x) =x,forallx €{1,2,...,n}.
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DeFINITION 3.8 Let o € S,. The smallest positive integer k such that o* = e, is
called the order of o, denoted o(o).

Examre 3.9 Let 0 = (123)(45) € Ss. Then 02 = (132), 03 = 45),
o4 = (123), 0% = (132)(45), and 0® = es. The degree of o is 5 and its order is 6.
m]

TueoreM 3.10 The order of o € S, is the least common multiple of the lengths
of the cycles in its disjoint cycle factorization.

DerFiNiTION 3.11 A transposition is a permutation of cycle type [2, 1"~2] (or
(=2, 2D).

TueoreM 3.12  Every permutation o € S, can be written as a product of
(not necessarily disjoint) transpositions. (The factorization into a product of
transpositions may not be unique.)

Proof 1t suffices to show that a k-cycle can be expressed as a product of
transpositions: Observe that

(x1x2...x¢) = (x1x2)(x2x3) . . . (Xg—1XK)

= (1 Xk ) (X1 Xk—1) . . . (x1%2). (€N))

u}

THeEOREM 3.13 Let 0y,02,...,0, and 11,72,...,T; be transpositions.
Ifo102...0, = 1172 ... Ts, then (—1) = (=1)°, that is, r and s are either both
odd or both even.

Proof Because (Theorem 3.10) the order of a transposition is 2, every transposi-
tion is its own inverse. If 0102 ...0r = 73172 .. .. 75, then the identity permutation

€ =0102...0,TsT—-1...T}

is a product of r + s transpositions. Suppose r + s is odd. Let ¢ be minimal such
that ¢ is odd, and the identity can be written as e = ujpu2... y, a product of
t transpositions. Evidently, ¢+ > 1. Suppose u; = (xy). Let m be the largest
integer less than ¢ such that u,, = (xz). (Such an m must exist. Otherwise,
e(y) = pipz... e (y) = 2 .. . -1 (x) = x)Ifm < t—1,let ym41 = (pq),
where p # x # q.If p # z # q, then Umpms1 = Pm+1um. f p = 2,
then pmpm+1 = (x2)(zq) = (z29)(xq). Thus, without loss of generality we may
assume

e=pyp... mk(xy1)(xy2) ... (xyrx),

where x is fixed by u1, 2, ..., @x.
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Now, there is an integer m < t — k such that y,, = y;—;. Otherwise, x is
sent by the identity to pus .. . e (y:—x), which cannot be x because x is fixed
by @1, u2, ..., pg. Let m be maximal such that y,, = y,—. f m+1 < ¢t —k,
then (Xym)(XYm+1) = (YmYm+1)(xYm). Therefore, after some more rearranging,
we may assume

e=pip2 ... p—2(xy)(xy)

= QIR .. P2,
This is a contradiction because ¢ — 2 is odd and less than ¢. ]

DeriNTION 3.14 A permutation o € S, that can be written as a product of an
even number of transpositions is said to be even. If o is not even, then it is odd.
The alternating character of S, is defined by

£(o) = 1 if o iseven
" |-1 ifoisodd.

Observe that €: S, — C is a homomorphism. Its kernel, A,, is the alternating
group of degree n. Thus, A, is a normal subgroup of S, consisting of all the even
permutations.

DerFiIntTION 3.15  Let ¢, (o) be the number of cycles of length ¢, and

c(o) = Zc,(a)

=1
the total number of cycles in the disjoint cycle factorization of o € S,.

Using the notation introduced in Definition 3.15, the cycle type of o is
(190, 20(0) ], In particular,

Z tc;(o) =n. 3.2)
y==1

Note that ¢} (o) (not to be confused with C,, (1)) is the number of fixed points of 0.
THEOREM 3.16 Ifo € Sp, then e(o) = (~1)"~°),

Proof From Equation (3.1), each k-cycle of o is the product of k — 1 transposi-
tions. Summing the numbers of transpositions over all c(o) cycles of o (including
the cycles of length 1), we deduce that o is the product of n — ¢(o’) transpositions.
Combined with Theorem 3.13 and Definition 3.14, this completes the proof. O



58 Multilinear Algebra
ExampLe 3.17 If o = (12345)(6789), then
(24)0 (24) = (14325)(6789)

and
(27)o (27) = (17345)(6289).

a

TueoreM 3.18  Two permutations, o, i € S, have the same cycle structure if and
only if they are conjugate in Sy, that is, if and only if there is a permutation t € S,
such that t™'ot = p.

Proof As in Example 3.17, (xy)o(xy) is the permutation obtained from o by
interchanging the positions of x and y in its disjoint cycle factorization. Now, o
and u have the same cycle structure if and only if u can be obtained from o by
a sequence of interchanges, if and only if there exist transpositions 1y, 72, ..., T
such that

@TH-1...)o(n12... %) = u,

if and only if T™'ot = u, where T = 1172...7,. The result follows from
Theorem 3.12. o

DEerINITION 3.19 A permutation group of degree n is a subgroup of S,.

DerFINTiON 3.20 Let G be permutation group of degree m. Then x,y €
{1,2,...,n} are equivalent modulo G, written x = y (mod G), if there exists a
o € Gsuchthato(x) =y.

THeoReM 3.21  For any subgroup G of Sy, equivalence modulo G is an equiva-
lence relation.

It follows from Theorem 3.21, and the general theory of equivalence relations,
that equivalence modulo G partitions {1, 2, ..., n} into a disjoint union of equiv-
alence classes.

DeriNITION 3.22  The equivalence classes of {1,2,...,n} modulo G are called
orbits of G. The orbit of G to which x belongsis Oy = {o(x): 0 € G}.Ifx =y
(mod G) forallx, y € {1, 2,...,n}, that is, if G has just one orbit, then G is said
to be transitive.

ExampLe 3.23 Evidently, S, is transitive foralln. If G = {es4, (12)(34), (13)(24),
(14)(23)} and H = {es, (12), (34), (12)(34)}, then G and H are isomorphic
groups. However, G is transitive but H is not; the orbits of H are Oy = (1,2} = O,
and O3 = {3, 4} = O4. This shows that transitivity is not a group invariant. O
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DerFiniTiON 3.24 Let G be a subgroup of S,. For each x € {1,2,..., n}, the
stabilizer subgroup G, = {0 € G: o(x) = x}.

ExamprLe 325 Let G = ((12)(345)) = {es, (12)(345), (354), (12), (345),
(12)(354)}, the cyclic group generated by (12)(345). Then G, = {es, (345), (354)}
= ((345)). Note that O, is a set of numbers while G is a set of permutations. In
this case, 02 = {0(2): 0 € G} =1{2,1,2,1,2,1},and O3 = {0 (3): 0 € G} =
{3,4,5, 3, 4, 5}, multiplicities included. (]

Lemma 3.26 Let G be a permutation group of degreen. If x € {1,2, ..., n} then
0(0y) = 0(G)/o(Gy). That is, the cardinality of the orbit of x is the index of its
stabilizer subgroup.

Proof As in Example 3.25, O, = {o(x): 0 € G} contains 0o(G) elements,
multiplicities included. By definition, x occurs in O, with multiplicity o(G,). If
y € Ox, then there exists a permutation T € G such that (x) = y. It follows
that 6(x) = y for all o in the coset tG, = {ru: p € G,}. Conversely, if
o(x) =y = t(x), then t™lo'(x) = x, in which case ™10 € G,, and o € TGx.
In other words, {o € G: o(x) = y} = tG;. It follows that y occurs in O, with
multiplicity o(t Gx) = o(G;). Evidently, every element of O, = {o(x): 0 € G}
occurs with the same multiplicity. Therefore, 0(0;) = o(G)/o(Gy). ]

DerntrioN 3.27 Denote by F(o) the number of fixed points of the permuta-
tion o.

Evidently, F(c) = c1(o), the number of cycles of length one in the disjoint
cycle factorization of o. However, simplifying some of the expressions that come
later is worth a little notational redundancy.

BUrNsIDE'Ss LEMMA 3.28 Let G be a pernmutation group of degree n, affording
t orbits. Then t is the average of the numbers of fixed points of the permutations
in G, that is,

1
O(_GSZF(G)=L

o€G

Proof Consider the set S = {(0, x): o (x) = x}. Of the ordered pairs in S, F(o)
begin with o and 0(G,) end with x. Thus, counting § in two different ways, we
obtain

Y F@) =) o(G)).
x=1

oceG
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Applying Lemma 3.26 to the right-hand side of this equation produces

Z F(o) = o(G) Xn: 1/0(0y).

o€eG x=1

If Z is a system of distinct representatives for the orbits of G, then o(Z) = ¢ and

Y F@)=0@® ) Y 1/0(0)

o€G yeZ x€0,

=o(G)Zl

yeZ

=to(G).

(8]

ExampLes 3.29 Suppose H = {es, (12), (34), (12)(34)}. Averaging the numbers
of fixed points over the permutations in H, we obtain (4 +2 + 2 4 0)/4 = 2,

confirming Example 3.23.
Because S, is transitive it must be that, on the average, permutations in S, have
one fixed point. 8]

CoroLLARY 3.30 Let G be a permutation group of degree n. Then

1

75 2 F@rz1,

oeG
with equality if and only if G is transitive.

Proof This is an immediate consequence of Burnside’s Lemma; ¢+ = 1 if and
only if G is transitive. ]

There is a surprising analog of Corollary 3.30 for doubly transitive groups.

DerNITION 3.31 Let G be a permutation group of degree n. Then G is doubly
transitive if, for all x;, x2, y1, y2 € {1, 2,..., n} satisfying x; # x2 and y; # y,
there exists a permutation o € G such that o (x1) = y; and 0 (x2) = y2.

TueoreM 3.32 Let G be a permutation group of degree n > 1. Then

1 2
T aze(; F(o) >2, (3.3)

with equality if and only if G is doubly transitive.
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Proof Because the result is trivial when n = 2, we may assume n > 3. As in
the proof of Burnside’s Lemma, we count a certain set S two different ways. This
time, S = {(0, x, y): 0(x) = x and 6 (y) = y). Of the 3-tuples in S, F(0')? begin
with 0. On the other hand, any 3-tuple that ends with y must begin withao € Gy,.
Moreover, for any such ending and beginning, there will be F (o) middle entries.
Therefore,

n

Y Fe)= Z Z F(o). (3.4)

o€eG y=10€G,

Every o € Gy has at least one fixed point, namely y. Therefore, F(o) > 1 for

allo € Gy. Let Fy(0) = F(0) — 1, 0 € Gy. Then Fy(o) is the number of fixed

points of the restriction of ¢ to
{(L2,....,nM\y=(L2,...,y—-Ly+1,...,n}

Substituting for F in the right-hand side of Equation (3.4) and applying Burnside’s
Lemma, we obtain

Y FeP =3 ¥ (F@+D.

oeG y=10€G,
= (o(G,) + ) F,(a))
y=1 o€G,
>2Y " 0(Gy),
y=1

with equality if and only if Gy is transitive on {1,2,...,n}\y for all y €
{1,2,...,n}. As in the proof of Burnside’s Lemma,

0(Gy) =0(G) Y _1/0(0y)
1 y=1

y=

=10(G),

where ¢ is the number of orbits of G. Because doubly transitive groups are transitive,
it remains to prove (for n > 3) that G is doubly transitive if and only if G,
is transitive on {1,2,...,n}\y for all y € {1,2,...,n}, and this is left to the
exercises. s]
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Cycletypeof | [S] [411 [32]1 [3.13] [241] [21%]1 (19

n(m) 24 30 20 20 15 10 1

FIGURE 3.1

ExampLE 3.33  Of the permutations in Ss, there are 24 with cycle type [5], 30 with
cycle type [4,1], 20 with cycle type [3,2], and so on. The numbers of permutations
of each cycle type appear in Figure 3.1. When G = Ss, Inequality (3.3) becomes

1 g 1
= = — (4 x0+30x1+20x0+20x4
120“265‘(0) g @ X 0+30x 1+20x0+20x4+15x 1

+10x 941 x 25)
=2,

confirming that Ss is doubly transitive.3 a

Which abstract finite groups have manifestations (isomorphic images) as
transitive permutation groups. The answer is easy: All of them. To see why, it
suffices to examine the proof of the following classical resulit:

CavYLEY'Ss THEOREM 3.34 Let G be a finite group. Then G is isomorphic to a
transitive permutation group.

Proof We have defined a permutation of degree n to be a one-to-one function
from A = {1, 2, ..., n} onto A. It does not matter, of course, whether the elements
of A are expressed in the Hindu-Arabic numeration system, Roman Numerals,
binary, hexadecimal, or any other numeration system. In fact, the elements of A
don’t have to be numbers at all. What matters is that A is a set of cardinality n.
For most purposes the elements 1,2,...,n are as good as any. However, in the
present instance it makes things easier to permute, not the first n positive integers,
but the elements of G = {01, 02, ..., 0n}.

For each t € G, define 7: G - G by T(0;) = 10j, 1 < j < n. Since
to; = toy if and only if j = k, T is a permutation of G. Similarly, T) = 73 if and

3For a classification of finite doubly transitive groups, see [Kantor (1985)].
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only if T} = 12, so the correspondence T — T is one-to-one. Because

[T1 0 T2](0) =T1(T2(0))
=T1(r20)
= 11(120)
=(nn)o

=T7112(0),

forallo € G,G = {T: t € G}isa - a group under function compostion, and vt — T
is an isomorphism from G onto G. Finally, for any pair, i and j, there exists a

T € G, namely T = a,a] , ! such that t(oj) = o0;. Hence, G is transitive. ]

Consider S3, a transitive permutation group of degree 3 and order 6. The proof of
Theorem 3.34 produces a transitive isomorphic image, S3, of degree 6. (While it is
true that §3 may be viewed as the subgroup of S consisting of those permutations
that fix 4, 5, and 6, this subgroup is not the same as the transitive subgroup S3.)
Evidently, S3 has (at least) two genuinely different manifestations as transitive
permutation groups. In fact, given a finite group G, it is surprisingly easy to
determine all of its transitive homomorphic images.

Suppose H is asubgroupof G.Let G = o HUooHU .- -Uo,H,r =[G : H],
be the left coset decomposition of H in G. The idea is to use the elements of
Gtopermute A = {o;H:1 <i < r).Foreacht € G, definet: A —> A
by t(0;H) = (ta,)H 1 < i < r. As in the proof of Cayley’s Theorem, the
mapping t — T is a homomorphism from G onto the transitive permutation
group G = {f: v € G}. Indeed, if H = {e}, then G = G. When H # e},
however, the mapping need not be one-to-one.

Observe that (0 H) = oH, if and only if (to)H = oH, if and only
if o-lto € H, if and only if T € oHo™!. Therefore, the kernel of the
homomorphism t — £ is

K

{te€eG:t(cH)=0H, o0 € G}

= n orHa",

o0eG

the largest normal subgroup of G contained in H. In particular, T —  is one-to-
one if and only if {e} is the only subgroup of H that is normal in G.

DeriNTION 3.35  Let H be a subgroup of the finite group G. The transitive
homomorphic manifestation of G arising from its action on the left cosets of
H is said to correspond to H.
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Suppose, conversely, that G is a permutation group acting transitively on
A = {a),a3,...,an). Let a = a) and take H = G, the stabilizer subgroup
of a. By Lemma 326, m = [G : G,] = [G : H]. Moreover, because G is
transitive, there exist 03, 03, ..., 0, € G such that 0;(a) = a;,2 <i < m. Thus,
a; — o; H establishes a natural one-to-one correspondence between A and the set
{H,o02H, ..., 0 H} consisting of the distinct left cosets of H in G. It is easily
verified that the action of G on A is carried over by this correspondence to the
action of G on the cosets. Thus, the transitive action of G on A corresponds to
H = G,. These observations are summarized in the following.

TueoreM 3.36 Letg: G — G be a homomorphism from the finite group G onto
a permutation group G that acts transitively on a set A. Then the action of G
on A is identical to the action of G on the left cosets of one of its subgroups H.
Moreover, ¢ is an isomorphism if and only if K = {e} is the only subgroup of H
that is normal in G.

Applications to Symmetry

Permutation groups arise naturally in discussions of geometric symmetry. Con-
sider, for example, the square in Figure 3.2(a). Imagine that it has been reproduced
on an overhead projection transparency. If the transparency square were aligned
on top of the original, then only a single square would be visible. If you were to
place the point of a needle at the intersection of the diagonals of the square and
rotate (just the transparency) 28 degrees in the clockwise direction, you would see
not one square, but two. Therefore, a 28° rotation is not a symmetry of the square.
If the transparency were rotated 90°, the squares would again be superimposed;
again only one square would be visible. A 90° clockwise rotation is a symmetry
of the square. In order to discuss all the different symmetries we must be a little
more precise about what is meant by a “symmetry”, and much more precise about
what is meant by “different”.

o )

| ||

(a) ()

FIGURE 3.2
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Suppose the vertices of the square are numbered as shown in Figure 3.2(b).
(Never mind that a 90° rotation is not a symmetry of the labeled figure. The labels
are only there to facilitate discussion. While they rotate with the square, they are
not part of it.) A 90° clockwise rotation acts as a permutation of the vertices.
Vertex 1 is sent to the position formerly occupied by vertex 2, vertex 2 goes to
the place previously held by vertex 4, and so on. It is natural to associate the
vertex permutation o = (1243) with a 90° clockwise rotation. What about a 90°
counterclockwise rotation? That corresponds to (1342) = o1, Notice that a 90°
counterclockwise rotation and a 270° clockwise rotation correspond to the same
permutation. What matters in discussions of symmetry is where the figure winds
up, not the route it took getting there. Two symmetries are the same if and only
if they afford the same permutation. A 90° counterclockwise rotation and a 270°
clockwise rotation are different geometric routes to the same symmetry.

Each symmetry of the square corresponds to a unique permutation of its vertices.
This suggests that we may as well use permutations as convenient descriptive
names for symmetries. (Be careful, however. This discussion is taking place in the
context of some fixed but arbitrary numbering of the vertices. While the symmetries
do not depend on these numbers, their descriptive names do.)

There are just four symmetries that arise from rotating the square around a
vertical axis through its center. They are (1243), (1342), (14)(23), and e4. Four
more symmetries arise from rotations about axes that lie in the plane of the square.
The set of all eight symmetries is

D4 = {es4, (1243), (1342), (14)(23), (14), (23), (12)(34), (13)(24)}.  (3.5)

Evidently, only a third of the 24 permutations in S4 are symmetries. (Pause for
a minute and think about the effect of applying the permutation (12) to the square
in Figure 3.2(b).) Observe that Dj is a group. Indeed, if 0, T € D4, the combined
symmetry, o followed by 1, is the symmetry o t; the function mapping a symmetry
to its name is a one-to-one group homomorphism.

DerNiTioN 3.37 Let G be a subgroup of S,. Suppose it is possible to label some
geometric figure F in such a way that every element of G is a symmetry of F.
Then G is a symmetry group.

Among the symmetries of the square are those that satisfy the additional
constraint that the transparency must remain flat on top of the original; a plane
symmetry is one that can be accomplished entirely within the two-dimensional
plane. The plane symmetries of the square comprise a symmetry group, namely
the cyclic group generated by (1243). Somewhat ironically, the plane symmetries
of the square are described by means of rotations about an axis perpendicular to
the plane, while the nonplanar symmetries can be construed as rotations about axes
in the plane. The nonplanar symmetries can also be visualized as reflections.

Consider another example, the cube. In the “real world”, it is conventional
to number not the vertices, but the faces of cubes. The standard way to number
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dice is illustrated in Figure 3.3. How many symmetries does a cube have? Let’s
begin with an analogy. The square is a two-dimensional figure. It lies in the plane.
It seemed natural to divide the symmetries of the square into two types, planar
and nonplanar. The cube is a three-dimensional figure; its symmetries can be
divided naturally between those that can be accomplished entirely within three-
dimensional space, and those that cannot. The three-dimensional symmetries are
all rotations (of the kind that take place 24 hours a day in Nevada gambling casinos).
While the remaining symmetries can be construed as rotations through the fourth
dimension, it may be easier to visualize them as reflections.

[ 4

3 ]

e[

FIGURE 3.3 The numbered faces of a die.

To count the rotations of the cube, observe first that any of the six numbered faces
can be rotated to the top. Once the top (and bottom) faces have been determined,
any one of the four “equitorial” faces can be rotated to the front. Thus, there
are 6 x 4 = 24 rotational symmetries of the cube. With respect to the standard
numbering of dice, they are listed in Figure 3.4.

(1265) (12)(34)(56) (123)(465) (153)(246)
(1364) (13)(25)(46) (124)(365) (154)(236)
(1463) (14)(25)(36) (132)(456) (16)(25)

(1562) (15)(26)(34) (135)(264) (16)(34)

(2354) (16)(23)(45) (142)(356) (25)(34)

(2453) (16)(24)(35) (145)(263) e

FIGURE 3.4 The rotational symmetries of the cube.

Perhaps it is inconsistent to have described the symmetries of a square as
permutations of its vertices and the symmetries of a cube as permutations of its
faces. Why not look upon the symmetries of a cube as vertex permutations? What
difference would it make? The symmetries themselves are independent of whether
we describe them in terms of faces or vertices, or edges, for that matter. A practical
sort of difference is that as permutations of faces, the symmetries of the cube are
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elements of Sg. As permutations of its vertices, they are elements of Sg, and as
permutations of the edges, they form a subgroup of Sj2. Suppose we number the
vertices of the cube as follows:

1={1,2,3}, 2={(1,2,4}, 3=({1,3,5}, 4={1,4,5},
’ 3.6)
5§=1{2,3,6}, 6={2,4,6}, 7=(3,5,6}, 8=1(4,5,6)

Then, for example, “6 = {2, 4, 6}” means that we are going to assign (vertex
number) 6 to the vertex at the intersection of the even numbered faces. Consider
the symmetry o = (1265), manifested as a permutation of the faces. Where does o
send vertex 1? The action of o on the faces induces a natural action on the vertices,
namely,

1={(1,2,3} > {¢(1),0(2),0(3)} = {2,6,3} = 5. 3.7

Let’s write & for this induced action of o, that is,
o({x,y,2)) = {o(x), 0 (¥), 0(2)}.
Then, from (3.7), 6 (1) = 5. Okay, what about & (5)? Well,

6(5)=6(2,3,6)) ={0(2).,0(3),0(6)} =1{6,3,5} =17.

So, (5) = 7. Continuing in this way, we obtain & = (1573)(2684). Figure 3.5
tabulates o and the corresponding induced permutation, &, for all 24 rotational
symmetries of the cube. (Observe that 6 and T may have the same cycle structure
even when o and t do not.)

Whatever its manifestation, the group G exhibited in Figure 3.5 comprises only
some of the symmetries of the cube — the 24 rotations. What about reflections?
Imagine a die placed on a mirrored table. Suppose face 1 is on top (so face 6
is touching the table), and face 2 is in front. If the reflection could be raised up
and superimposed on the die, then faces 1 and 6 would be interchanged. As a
permutation of the faces, this reflection is 7 = (16). Given one reflection, it is easy
to generate more. If o € G, then u = o't is a symmetry of the cube. Might it be a
rotation? If 4 € G,thent = o1 u € G, which is a contradiction. Since o T cannot
be a rotation, it must be another reflection. Indeed, because 037 = o> if and only
if 01 = 02, the coset Gt = {o'T: 0 € G} contains 24 different reflections. On the
other hand, because the die and its reflected image rotate together, Gt contains all
possible reflections. In other words, the group of all 48 symmetries of the cube is
H =GUGT.
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o o o o
(1265) (1573)(2684) (12)(34)(56) (12)(36)(45)(78)
(1364) (1562)(3784) (13)(25)(46) (13)(27)(45)(68)
(1463) (1265)(3487) (14)(25)(36) (18)(24)(36)(S7)
(1562) (1375)(2486) (15)(26)(34) (18)(27)(34)(56)
(2354) (1342)(5786) (16)(23)(45) (15)(27)(36)(48)
(2453) (1243)(5687) (16)(24)(35) (18)(26)(37)(45)
(123)(465) (253)(467) (153)(246) (147)(285)
(124)(365) (164)(358) (154)(236) (176)(238)
(132)(456) (235)(476) (16)(25) (17)(28)(35)(46)
(135)(264) (174)(258) (16)(34) (16)(25)(38)(47)
(142)(356) (146)(385) (25)(34) (14)(23)(58)(67)
(145)(263) (167)(283) ég eg

FIGURE 3.5 Rotations of the cube as vertex permutations.
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Exercises

1.

10.

11.

Write down the disjoint cycle factorization of o ~! when
a. o =(1234)

b. o = (12345)

c. o =(123)

d. o =(12)

Find the disjoint cycle factorization of the indicated permutation.
a. (13)(1234)(13)

b. (12)(1234)(12)

c. (13)(12345)(13)

d. (14)(12345)(14)

Prove Lemma 3.2.

Show that the number of permutations in Sj, of cycle type
a. [3*]is 246,400.

b. [4%]is 1,247,400.

c. [6%]is 6,652,800.

d. [25}is 10,395.

Show that 1624 of the 5040 permutations in S7 have disjoint cycle factoriza-
tions consisting of exactly three cycles.

The Stirling Number of the First Kind, s(n, r), is the number of permuta-
tions in S, whose disjoint cycle factorizations consist of (exactly) r cycles.
From Exercise §, s(7, 3) = 1624.

a. Show that s(n, n) = 1. (Hint: Don’t forget 1-cycles.)
b. Show thats(n, 1) = (n — 1)!.
c. Ifl <r <n,provethats(n+1,r) =sn,r — 1) +ns(n,r).

d. Provethats(n, 1)x+s(n, 2)x2+-- +s(n,n)x" =x(x+1)(x+2)...(x+
n—1).

Prove Theorem 3.10.
Prove that o(A,) =n!/2, n > 1.
Prove that a k-cycle is even if and only if & is odd.

Write the disjoint cycle factorizations of all permutations in S4 and underline
those permutations belonging to Ay.

Find a permtuation t € Sy such that t !0t = u, when
a. o = (1234)(56789) and u = (1324)(58769).
b. o = (1234)(56789) and u = (1432)(59876).
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12.
13.

14.
15.

16.
17.

18.
19.

20.

21.

22.

23.

Multilinear Algebra

c. o = (12)(3456)(789) and u = (123)(45)(6789).

Prove that every permutation in S, is conjugate to its inverse.

Let o = (123).

a. Show that o and ¢~ = (132) are not conjugate in A3.

b. Find all permutations t € S, such that 7=1(123)t = (132).

Prove Theorem 3.21.

Let G be a subgroup of S,. Prove that G is transitive if and only if, for all
ye{l,2,...,n}), there existsao € G such thato (1) = y.

Prove that A, is transitive for all n > 3.

Let G be a subgroup of S, and suppose y € O,. Prove that G, and G,
are conjugate, that is, prove there exists a permutation 0 € G such that
Gy = o~ 1G,o0.

Prove that S, is doubly transitive for all n > 2.

Let G be a permutation group of degree n > 2. Prove that G is doubly transitive
if and only if G, is transitiveon {1,2,...,n}\yforall y € {1, 2,...,n}.
Prove that D4 = {e4, (1243), (14)(23), (1342), (14), (23), (12)(34), (13)(24)}
is transitive

a. by showing that 0; = (1, 2, 3, 4}.

b. using Corollary 3.30.

Prove that the group D4 from Exercise 20 is not doubly transitive

a. using Definition 3.31.

b. using Theorem 3.32.

The Bell numbers are defined by Bp = 1 and

n
Buyi =) C(n,n)B,,
r=0

where C(n, r) is the binomial coefficient “n-choose-r”. Compute B; through
B4. (Hint: Bs = 52.)

Let G be a permutation group of degree n. Then G is r-fold transitive if,
given any two sequences, (X1, x2,...,x,) and (y1, 2, ..., yr), of distinct
integers chosen from {1, 2, .. ., n}, there exists a permutation o € G such that
o(x;) = yi, 1 <i < r.Prove the following generalization of Theorem 3.32
from [Merris and Pierce (1972)]: If r < n, then

1

prre) Y F() =B,

oeG
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25.

26.

27.

28.

29.

30.

the r-th Bell number, with equality if and only if G is r-fold transitive. (Hint:
Exercise 22.)

. Using a direct computation along the lines of Example 3.33, confirm that

a. §Yges, F0) =By,
b. % Y oes, F(0) =B, 3<r<4.
(Hint: Exercises 22 and 23.)
Let G = A4, the alternating group of degree 4.

a. Find the number of orbits of G using Burnside’s Lemma. (Hint: Exer-
cise 10.)

b. Prove that G is doubly transitive.
c. Is G triply (3-fold) transitive? (Hint: Exercise 23.)

A permutation group G of degree n is semiregular if Gx = {e,} for all
x €{1,2,...,n). Suppose G is semiregular.

a. Prove that o(O;) = o(G), forall x € {1, 2,...,n}.
b. Prove that n/o(G) is an integer, that is, 0(G) (exactly) divides n.
c. If G is semiregular and transitive, prove that o(G) = n.

Let G = S3 and H = Aj3. If G is the transitive homomorphic image of G
corresponding to H, show that, apart from the objects that it permutes, G is
identical to S>.

Let G = §3 and H = {e3, (12)} = §,. Let G be the transitive homomorphic
image of G corresponding to H.. Prove or disprove that, apart from the objects
that it permutes, G is identical to A3.

Let G = S4 and H, = {es, (12)(34), (13)(24), (14)(23)}. Let G’ be the
transitive homomorphic image of G corresponding to H.

a. What is the degree of G'?

b. What is o(G")?

c. Apart from the objects it permutes, to which familiar permutation group
is G’ identical?

d. Let H; = {es, (12), (34), (12)(34)}. Prove that H, is isomorphic to Hj.

e. If G isthe transitive homomorphic image of G corresponding to Hz, what
is the degree of G?

f. What is o(G)?

g. Apart from the objects it permutes, to which familiar permutation group
is G identical?

Let H bea subgroup of the finite group G. Let G be the transitive homomorphic

image of G corresponding to H. If G is doubly transitive, prove that
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a. H = N(H), the normalizer of H in G,or [G : H] = 2.
b. H is a maximal subgroup of G.

Application Exercises

31

32.

33.

35.

36.

Denote by Ds the group of symmetries of the equilateral triangle as permuta-

tions of its vertices.

a. Show that D3 = §3.

b. Show that the group of plane symmetries of the equilateral triangle is Aj.

Suppose the vertices of a regular pentagon are consecutively numbered 1

through 5 in clockwise order. Use this numbering to express, as a subgroup

of Ss,

a. the group of plane symmetries of the pentagon.

b. the group of all symmetries of the pentagon.

Denote by D, the group of all symmetries of the regular n-gon expressed as

permutations of its vertices. Show that D, is generated by symmetries o and

7 that satisfy the relations 0" = 12 = e, and v~ lor =01,

A regular tetrahedron is a pyramid with a triangular base in which each of the

four triangular faces is equilateral.

a. Prove that the regular tetrahedron has 12 rotational symmetries.

b. Express the rotational symmetries of the regular tetrahedron as a permu-
tation group of degree 4. (Hint: Number the faces.)

c. Express the rotational symmetries of the regular tetrahedron as a permu-
tation group of degree 6. (Hint: Unlike the cube, every pair of faces of the
tetrahedron meet to form an edge. Using the face numberings from part b,
number the edges lexicographically, that is,

1={1’2}1 2={l!3}' 3={l’4]'
4=1{2,3}, 5=1{2,4}, 6={3,4).

Let G be the group of rotational symmetries as permutations of the four faces.
For each o € G, let & be the natural induced action of o on the edges, that is,
({x,y}) = lo(x),a(»})

Prove that the group of 24 rotational symmetries of the cube is transitive but
not doubly transitive.

Let G be the group of 24 rotational symmetries of the cube. As we are about
to see, G is abstractly isomorphic to S4. This being the case, it follows from



Permutation Groups 73

Exercise 35 and Theorem 3.36 that G corresponds to the action of S4 on the
cosets of one of its subgroups, H.

a. Explain why o(H) must be four.

b. Nearly everyone’s favorite four element subgroup of S4 is K =
{es, (12)(34), (13)(24), (14)(23)}. Explain why G couldn’t possibly be
identical to the action of S4 on the cosets of K.

c. Showthat Gisidentical tothe actionof S4on H = {es, (1234), (13)(24), (1432)}.
(Hint: Number the cosets of H as follows:

1=H;

2 = {(12), (1324), (143), (234)};

3 = {(123), (1342), (14), (243)};

4 = {(1243), (134), (142), (23)};

5§ ={(124), (132), (1423), (34)};

6 = {(12)(34), (13), (14)(23), 24)}.)

37. Let G be the group of 24 rotational symmetries of the cube expressed as
permutations of its six faces. Then G = {6: 0 € G} (see Figure 3.5) is an
isomorphic image of G as a transitive subgroup of Sg. Find a subgroup H of
G to which this transitive manifestation corresponds.

38. Write out the 24 reflections of the cube
a. as permutations of the six faces.
b. as permutations of the eight vertices.

39. Let G be the group of all 48 symmetries of the cube expressed as permutations
of its six faces. Prove that G is not doubly transitive

a. from geometrical considerations.
b. using Theorem 3.32. (Hint: Exercise 38a.)






CHAPTER 4

Group Representation Theory

Denote by GL(n, C) the multiplicative group consisting of all invertible matrices
in C, ». Among the elements of GL(n, C) are the n! permutation matrices (the
(0,1)-matrices with exactly one 1 in each row and column).

For each o € §,, let

A@@) = @io())s @.1

the n-by-n matrix whose (i, j)-entry is 1 if o(j) = i, and zero otherwise. If
0, T € Sy, then the (i, j)-entry of A(0)A(7) is

n
Z 8.0 ()Ok,2(j) = Bi,or(j)s
k=1

precisely the (i, j)-entry of A(ot). Evidently, A: S, =& GL(n, C) is ahomomor-
phism. In fact, more is true.

THeOREM 4.1  The multiplicative group of n-by-n permutation matrices is isomor-
phic to Sp.

Proof Let A be the homomorphism defined in Equation (4.1). Then A(0) = A(7)
if and only if 0 (j) = 7(j), 1 < j < n, if and only if o = 7. Therefore, A is one-
to-one. Because there are exactly o(S,) = n! permutation matrices in GL(n, C),
A must be onto. In other words, A is an isomorphism. o

DerINITION 4.2 Let G be a group. A representation of G of degree n is a
homomorphism A: G — GL(n, C). If the homomorphism is one-to-one, so that
G is isomorphic to the image of A, then the representation is faithful.

75
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ExampLe 43 The mapping 0 — (8;,0(;)) is a faithful representation of §, of
degree n. In this case, the “degree” of the permutations is equal to the “degree” of
the representation. On the other hand, the mapping o — A(o) given by

aen= (5 9). aam= (7 5).

A(23)) = (‘(‘) '}) A((123)) = (_‘1) _})

A((132)) = (‘: ‘(1)), and A((13)) = (_} _(1)),

is a faithful representation of S3 of degree 2. The restriction of A to H = {e3, (13)},
namely,

1 0 1 0
aen=(g ) ma aam=(_} ).
is what we will eventually call a “reducible” representation of H. 0

ExampLE 4.4 The mapping 0 — I,,0 € G, is arepresentation of G of degree n.
When n = 1, it is called the principal representation of G. u]

ExamprLE 4.5 Let U € GL(n,C) be fixed but arbitrary. Then the mappings
A — U 'AU and A — det(A) are representations of GL(n, C) of degrees n
and 1, respectively. o

ExampLE 4.6 If A is arepresentation of G of degree n, and © is a representation of
GL(n, C) of degree k, then 0 — ©(A(0)) is a representation of G of degree k. In
particular, 0 — det(A(0)) is arepresentation of G of degree 1.If A(0) = (8 0(j)),
o € S,, then det(A(0)) = &(0o), the alternating character (Definition 3.14). O

ExampLE 4.7 Suppose A and B are representations of G of degrees m and n,
respectively. Let C be their direct sum, that is,

C(o) = diag (A(0), B(0))
_(A@ 0
=\ o B®)

Then C is a representation of G of degree m + n. If U € GL(m + n, C), then
D(o) = U-IC(0)U, o € G, is another representation. The uniform similarity
typically obscures the fact that D has been constructed from representations of
smaller degree. One might think of it as a “cover-up”, designed to mask the relative
simplicity of the underlying structure. One of our goals is to expose such cover-ups.

a
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The first example of a representation, Equation (4.1), is restricted to permutation
groups. On the other hand, by Cayley’s Theorem, every finite group is isomorphic
to a (transitive) permutation group. Let’s have another look at this classical result
from the perspective of representations.

CavLeY's THEOREM 4.8 Let G be a finite group. Then G is isomorphic to a group
of permutation matrices.

Proof Suppose G = {01, 07, ...,0,). For each v € G, define A(t) = (aij(r))
by

v )1, ifroj=0;
aij(t) = { 0, otherwise.

Then A(7) is a permutation matrix. The (i, j)-entry of A(t)A(x), namely,

“4.2)

Y ain(ar(w),
k=1

is zero unless there is a k such that a;; () = ax;(n) = 1. This is equivalent to the
existence of a k such that uoj = oy = 7~ 10;, because there can be at most one
such k,

> anayw = {4 C9 = 43
k=1 )

The right-hand side of Equation (4.3) is the (i, j)-entry of A(zu). Therefore,
A(tu) = A(r)A(u), and A: G = GL(n, C) is a representation of G. Because
the mapping r — A(r) is one-to-one, it is a faithful representation. Therefore, G
is isomorphic to a subgroup of the n-by-n permutation matrices. o

DerINITION 4.9 Let G be a finite group. The representation defined by Equa-
tion (4.2) is a regular representation of G.

Strictly speaking, the representation defined by Equation (4.2) is a “left” regular
representation. If G = {01, 09, .. ., 0,} then, mimicking the proof of Theorem 4.8,
it can be shown that t — B(z) = (b;; (7)), T € G, where

v _ |1, ifoit=g0;
bij(z) = [O, otherwise ,

defines a “right” regular representation. Moreover, both A(t) and B(t) depend,
not only on G, but on the ordering of its elements. It is easy to see, however, that
if A is a left regular representation corresponding to one ordering of the elements
of G and A; is a left regular representation corresponding to another, then there
exists a fixed permutation matrix P such that

Az(0) = P 'A1(0)P, o €G.
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DerintTion 4.10  Two representations of G, Ay and Az, are equivalent if there
exists an invertible matrix U such that

Ax(0) =U'A1(0)U, o €G. 4.4)

So, any two left regular representations of the same group G are equivalent.
What is less obvious, but will follow from subsequent developments, is that
every left regular representation of G is equivalent to each of its right regular
representations.

The effect of Definition 4.10 is to partition the representations of G into a disjoint
union of equivalence classes. Together with Equation (4.4), a system of distinct
representatives for these equivalence classes will generate all representations of
G. This suggests another perspective from which to view representation theory.

DerNiTION 4.11 - Suppose V is an n-dimensional complex vector space. Denote
by GL(V) C L(V, V) the group of invertible linear operators on V.

If [T] is the matrix representation of T € GL(V) with respect to a fixed
but arbitrary basis of V, then the mapping T — [T] is an isomorphism from
GL(V) onto GL(n,C). We might just as well define a representation of the
abstract group G to be a homomorphism from G into GL(V). From the usual
change of basis formula, Definition 4.10 asserts that two matrix representations of
G are equivalent if and only if the underlying transformation representations are
identical. While concentrating primarily on matrix representations, we will feel
free to move back and forth between these two perspectives.

DerFINITION 4.12  Let N be a nonempty set and suppose S = {A(v): v € N}isa
set of n-by-n matrices indexed by N. Then S is reducible if there exists a matrix
U € GL(n,C) and an integer p suchthat 1 < p < nand, forallv € N,

-1 _ B(v) 0
utaow = (28 poy): @5)
where B(v) € Cp,p. The set S is fully reducible if U can be chosen so that
C(v) = 0, for all v € N. Finally, S is irreducible if it is not reducible. The
representation A of G is reducible, fully reducible, or irreducible if the set of
matrices {A(0): o € G} has the corresponding property.

Observe that the invertible matrix U in Equation (4.5) does not depend on v. If
a set of matrices is reducible, then the matrices in the set are uniformly similar to
(the same) block triangular form.

Consider the matrix
7 -9
a=(1 22)
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Then A is similar to a lower triangular matrix, namely,

-1 (1 0 (2 3
U AU—(1 1). where U--(1 2).

If A were similar to a diagonal matrix D, then D could only be J>. Because I,
is similar only to itself, A is not diagonalizable. This simple example makes the
following result seem even more remarkable.

MascHKE's THEOREM 4.13  Suppose A is a representation of degree n of the finite
group G. If A is reducible, then it is fully reducible.

Proof Suppose 1 < p <nand U € GL(n, C) satisfy

- _(B) ©
U A(or)U_(C(a) D(a)).

where B(o) € GL(p, C), 0 € G. Because A is a representation of G, both B and
D are representations of G as well. Moreover,

C(ot) = C(0)B(tr) + D(o)C(7). (4.6)

Because C(e) = 0, Equation (4.6) implies that

0=C(0)B(c~ )+ D(0)C™), oeG. 4.7

Define an (n — p)-by-p matrix X by

Z C(r)B(z™Y).

1
X=——1
O(G) 1eG

(This is why we need G to be finite.) If
(5 ©
r-(% .,)

a_(L 0
= (% .,)

- _(B@) 0
T-'U A(a)UT—(F(a) D(a)),

and
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where F(o) = C(o) + D(0)X — X B(o). The proof will be finished if we can
show that
XB(oc) =C(o)+ D(o)X, o0€G. 4.8)

For a fixed but arbitrary o € G,

XB(o) = _(E)' Z C(r)B(x'o)
teG

Y (€©) - D)CEa)),

teG

(G)
by Equation (4.6). Therefore,

XB(©) =C(0) - — Y Dew)C(u™)
(G) ieC

=C©)-D(@) | — Y DWCE™)
(G) =

= C(0) + D(0)X,

by Equation (4.7) and the definition of X. This verifies Equation (4.8), completing
the proof. 0

DerFNITION 4.14  Let A be a representation of G. A reduction of A is a similarity

U~'A(0)U = diag (A1(0), A2(0), ..., A (0)),

Ai(o) 0 . 0
— 0 Ax(o) ... 0
0 0 A (o)

o € G, where Ay, Ay, ..., A, are irreducible representations of G. The positive
integer r is the length of the reduction.

THeEoREM 4.15 If A is a representation of degree n of the finite group G, then A
has a reduction.
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Proof The result follows from Maschke’s Theorem by induction on n. o

If A is a representation of the finite group G, then, from Theorem 4.15, there
exists an invertible matrix U such that

A(0) = U[ diag (A1(0), A2(0), ..., A, @D, o €G,

where Ay, Az, ..., A, are irreducible representations of G. Thus, to generate all
representations of G it suffices to find a system of distinct representatives for the
equivalence classes of irreducible representations. We will refer to such a system
as a complete set of inequivalent irreducible representations of G.

Suppose {A(v): v € N} is a set of n-by-n matrices. If B is an ordered basis
of an n-dimensional vector space V then, for all v € N, there exists a linear
operator T'(v) € L(V, V) whose matrix representation with respect to B is A(v).
If {A(v): v € N}isreducible, then there exists an n-by-n invertible matrix U such

that
-1 _( B(v) 0
UTAWU = (C(v) D(v)) ,

where B(v) € Cp p,v € N.Now, U 1 A(v)U is the matrix representation of T (v)
with respect to another ordered basis B’ = {w, w», ..., w,}. Moreover, from the
block triangular form of U-'A(W)U, it is evident that W = (wy, w2,...,wp) is
an invariant subspace of T(v) for all v, that is, T(v)(w) € W forallw € W
and all v € N. Conversely, if W is a proper subspace of V that is invariant under
T(v),v € N, then {A(v): v € N} is reducible. (Extend any basis of W to a basis
B’ of V. From this perspective, a reduction of {A(c'): ¢ € G} corresponds to a
decomposition of V into a direct sum,

V=W oW:&---&W,

where Wy, Wy, ..., W, are minimal invariant subspaces of T (¢), 0 € G.) Finally,
{A(v): v € N} is irreducible if and only if no proper subspace of V is invariant
under T'(v) forevery v € N.Inthiscase, {T(v): v € N}issaidtobeanirreducible
subset of L(V, V).

ScHur's LEMMA 4.16 Let N be a set. Let {S(v): v € N}and {T(v): v € N} be
irreducible subsets of L(V, V) and L(W, W), respectively. Let L € L(V, W)
be fixed but arbitrary. If LS(v) = T()L for allv € N, then L = 0, or
dim(V) = dim(W) and L is invertible.

Proof It follows from LS(v) = T(v)L that the image of L is an invariant
subspace of T (), and its kernel is an invariant subspace of S(v). a

This deep Lemma has many important and useful implications.
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COROLLARY 4.17 Let {A(V) : v € N} be an irreducible set of n-by-n matrices. If
M is a matrix such that MA(v) = A(W)M, for allv € N, then M is a multiple

of I.

Proof Let A be an eigenvalue of M. Then M — AI, is a singular matrix that
commutes with each A(v). It follows from Schur’s Lemma that M — A, = 0. O

COROLLARY 4.18 Suppose that {A(0): o € G} and {B(c): o € G} are inequiv-
alent irreducible representations of (the same group) G. If M € C, , satisfies
A(c)M = MB(o) forallo € G, then M = 0.

The next application of Schur’s Lemma establishes a relation that must hold
among the elements of irreducible representations.

THEOREM 4.19  (Schur Relations). Let A(a) = (a;j(0)), 0 € G, be anirreducible
representation of degree n of the finite group G. Then

Y " ais0™Naj(0) = 8, j85,40(G)/n. “49)
oeG
If B(o) = (bij(0)), o € G, is another irreducible representation of G, then
Y a0 Hbij(o) =0, (4.10)
oeG

unless B is equivalent to A.

Proof Suppose m is the degree of B. Define a function f: Cy n — C, m by

f(9) =3 Al™)5B().

ogeG

Then A(7) f(S) = f(S)B(r),forallt € G. We will complete the proof by making
special choices for S. Denote by Ej; the n-by-m matrix whose only nonzero entry
is a 1 in position (s, ¢). The (i, j)-entry of f(E;,) is

D ais(0™bij(0) =0

oeG

(by Corollary 4.18) when A and B are inequivalent. If A = B then (Corollary 4.17),
f(Est) = ¢s¢I,. Hence,

cadij = D ais(@Varj (o)

o€eG

= Y ais(@)ajc™)

o€G

= cjist”-
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Thus, c;; = O unless i = j, and ¢;; = c is independent of i. Therefore,

n
nc = E Cii

i=l1

=) z’l:au(a“)au(a)

o€G i=1

= Z iaﬁ(a)a,-,(a_')

0€G i=1

= Z ay(e)

oeG
=0(G),
because A(e) = I,. a

ExampLE 4.20 Let A be the representation of S3 of degree 2 given in Example 4.3.
As will be shown in Example 4.33, A is irreducible. Observe that

Y a12(07)a21(0) = ara(es)ar (e3) + ar2((12))ax ((12))
o€ES;

+ a12((23))a21((23)) + a12((132))a21 ((123))
+ a12((123))a21 ((132)) + a12((13))a21((13))

=0x04+1x14+(-1)x0+4+(-1)x(-1)
+1x14+0x(-1)
=6/2,

and

Y ane™an©) =1x140x 0+ (=1) x 1+ (=1) x (1)
oES

+0x0+1x(-1)
=0,

confirming Equation (4.9). u]
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The Schur Relations can be generalized as follows:

Tueorem 4.21 Let A(0) = (aij(0)) and B = (bij(0)) be irreducible represen-
tations of the finite group G. Then

1 8s,aij(v)o(G)/n, if A=B; 4.11)
Y ais(6™bij(o) ={ S :
o€G 0, if A isnotequivalent to B.
where n is the degree of A.

BurnsiDE's THEOREM 4.22 Let A(o) = (aij(0)), 0 € G, be an irreducible
representation of degree n. Then the n* functions aij: G — C are linearly
independent.

Proof'! Suppose ¢;; € C are constants such that

n
Z cijaij(oc) =0, o€G. 4.12)
i,j=1

Multiply both sides of Equation (4.12) by am(a‘l) and sum on 0 € G. By
Equation (4.9), the result is 0(G)cgp/n = 0. (]

IfC = (Cij) € Cn‘", then

Y Gjaij(0) = tr (C*AGo)).

i,j=1

In view of Equation (4.12), this means {a;;: 1 <i, j < n} is linearly independent
if and only if, with respect to the inner product (A, B) = tr (B*A), the orthogonal
complement of (A(g): 0 € G) is {0}, if and only if {A(c): 0 € G} spans
C,,». In particular, if n is the degree of an irreducible representation of G, then
n’= d-im(cn.n) < o(G).

Frobenius and Schur obtained the following generalization of Burnside’s
Theorem.

THeorREM 4.23 Let Ax(0) = (afj(a)). o € G, be an irreducible representation
of G of degree ni, 1 < k < r. If these r representations are pairwise inequivalent,
then the n? + n2 + - - - + n? functions aj;: G — C are linearly independent.

lOur proof of Bumside’s Theorem (not to be confused with Burnside’s Lemma) is valid only for
finite groups. Proofs of Theorems 4.22 and 4.23 valid for infinite groups can be found, e.g., in [Newman

(1968)).
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DerFINITION 4.24  Suppose A is a representation of the group G. Let x(o) =

tr (A(o)), o0 € G. The function x : G — C is the character of G afforded by A.
Anirreducible character is a character afforded by an irreducible representation.
Denote by I(G) the set of irreducible characters of G.

If the degree of A is 1 then A(0) = (x(0)), 0 € G, and yx is called a linear
character. In particular, every linear character is irreducible. Among the linear
characters is x = 1g, the character afforded by the principal representation of G.

Because the trace is preserved under similarity, equivalent representations afford
the same character. Thus, it makes sense to talk about the character afforded by a
representation T': G — GL(V).

THEOREM 4.25 (Orthogonality Relations of the First Kind). Let G be a finite
group. If x, & € I1(G), then

Y x@™ME@) =

oeG

[0(6). if x =& @13)

0, otherwise .

Proof Let A(o) = (a;j(0)) and B(o) = (b;j (o)) be representations that afford
x and &, respectively. If n = x(e) and m = &(e) are the degrees of A and B
respectively, then

Z x(@ HE@) = z": i Z aii (0~ ")bjj(0),

oeG i=1 j=1 o€G

which, by Equation (4.10), is zero if x # &. If x = &, we may assume A = B, in
which case the left-hand side of Equation (4.13) becomes

‘: Y aiile™Najj(e) = Y o(G)/n
i,j=10€G i=1

=0(G),

by the Schur Relations (Equation (4.9)). a

Using Theorem 4.21, the following extension of Equation (4.13) can be proved
in a similar way.

THEOREM 4.26 Let G be a finite group. If x, & € I(G), then

5 e heton = | (KON Tx=5; wi

popr 0, otherwise .
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TueoreM 4.27 Let x be a character of the finite group G. Then x(o~") = x (o),
o €G.

Proof Let A be a representation of G that affords x. Suppose o(G) = k. If
o € G is fixed but arbitrary, then I, = A(e) = A(o*) = A(0)*, where n = x(e)
is the degree of A. Hence, the eigenvalues of A(o) are all k-th roots of unity.
Therefore, A is an eigenvalue of A(0), if and only if A~! = X is an eigenvalue of
A@)'=A@™). o

DerNtTION 4.28 Suppose G is a group. Denote by CG the set of all functions
f:G->C.

Observe that CG is a vector space under the usual definitions of addition and
scalar multiplication of complex valued functions, namely,

(af +bg)(o) =af(o) + bg(o),

foralla,b e C,andall f,g: G - C.
THeoreM 4.29 If G is a finite group, then

1

(£.8)6 = 5z ) _8@)f(@), f.8€CG, (4.15)

oG

defines an inner product on CG.

When speaking of the inner product space CG, we will always have Equa-
tion (4.15) in mind.

CoroLLARY 4.30 Let G be a finite group. Then I(G), the set of irreducible
characters of G, is an orthonormal set in the inner product space CG.

Proof The result is immediate from Theorems 4.25, 4.27, and 4.29. n}

It follows from Corollary 4.30 that o(I (G)) < dim(CG)) = o(G).
Because tr (AB) = tr (BA) forall A € Cy , and B € C, , similar matrices
have the same trace. On the other hand,

1 0
=( 1)
and I have the same trace without being similar.

TueoreM 4.31 Two representations of the finite group G are equivalent if and
only if they afford the same character.
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Proof Leto — A(o) = (aij(0)) and 0 — B(o) = (b;j(o)) be representations
of G.If A and B are equivalent then A(0') and B(c) have the same trace, o € G.

To prove the converse, assume first that A and B are irreducible. If tr (A(0)) =
x (o) = tr (B(0)), o € G, then, from Corollary 4.30,

1=(x,x)c

Y x@Hx@)

oeG

= _17;3 Z Zan(a' )bjj (o),

i,j=10€G

o(G)

where n = x(e) is the degree of both A and B. If A were not equivalent to B then,
by the Schur Relations (Equation (4.10)) this last expression would be 0.

In the general case, consider reductions of A and B.1et A;,1 <i <t,bea
set of pairwise inequivalent irreducible representations such that every irreducible
constituent occurring in either reduction is equivalent to one of them. Let x; be
the character afforded by A;. By what we have proved so far, i, 1 <i <1,
are ¢t different irreducible characters of G. Suppose that A; is equivalent to r;
constituents in the reduction of A and to s; constituents in the reduction of B.
Then

! 4
Y orixi@) =x(0) =) _sixi(@),
i=1 i=1

for all o € G, implying that

t

Y i —sdxi =0, (4.16)

i=l1

the zero function. Because {x;: 1 < i < t} is an orthonormal set in the inner
product space CG, it is linearly independent. Therefore, r; = s;, 1 < i < t.
Thus, there is a one-to-one correspondence between the irreducible constitutents
of a reduction of A and the irreducible constituents of a reduction of B in which
corresponding constituents are equivalent. Hence, A and B are equivalent. n]

Suppose yx is a fixed but arbitrary character of G. Let A be a representation of
G affording x. By Theorem 4.15, A has a reduction. Thus, there exist irreducible
characters x; and nonnegative integers m;, 1 < i < k, such that x = }_ m;x;.
Because I(G) is orthonormal,

m; = (X, Xi)G

Y x@xite™. @.17)

o0eG

o(G)
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Therefore,

k
X, x) =) _mi. 4.18)
i=1

In particular, yx is irreducible if and only if (x, x)¢ = 1.

ExamrLE 4,32 Let A be a permutation representation of degree n of the finite
group G. That is, {A(0): o0 € G} is a set of permutation matrices. If x is the
character afforded by A, then x(c) = F(o), the number of fixed points of the
“permutation” A(c). Therefore (Corollary 3.30), (x, 1)¢ = 1, with equality if
and only if the permutation group A(G) = {A(0): o € G} is transitive. If n > 1,
it follows that A is reducible and the principal representation is a constituent of its
reduction. Therefore £(0) = x(0)—1,0 € G, defines a character of G. Moreover,
from Equation (4.18), £ is irreducible if and only if (x, x)¢ = 2. As we have seen
(Theorem 3.32)

__1 2
06 = 55 gr«r)

>2,
with equality if and only if {A(0): 0 € G} is doubly transitive. Thus, £ is
irreducible if and only if A(G) is doubly transitive. 0

ExampLE 4.33 Let & be the character afforded by the representation in Exam-
ple 4.3. Then £(0) = F(o) — 1, o € S3, where F(o) is the fixed point character.
Because §3 is doubly transitive, it follows from Example 4.32 that £, and hence
the representation A, is irreducible. o

ExamrLE 4.34  Every finite group G has a permutation representation in the sense
of Example 4.32: If G = {0, 02, ..., 0} then, from Equation (4.2), the (i, j)-
entry of the corresponding (left) regular representation, A(t), is

1 if toj =0,
0 otherwise .

a;j(r) = [

If ¢ is the character afforded by A, then
§(@) = ) aii(r)

i=1

=o({i: to; = 0;})

=0,
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unless T = e, in which case it is £(e¢) = n = o(G). Therefore,

o(G) if T =e,

0 otherwise . 4.19)

{(r) = {

(In particular, any two regular representations of G are equivalent.) Because A has
a reduction, we can write

where

my = (C’ X)e

1
~ o(G)

Y x@ i@

oeG

= x(e), (4.20)

by Equation (4.19). In other words, the multiplicity of x as a constituent of ¢ is
equal the degree of x. n}

THEOREM 4.35 If G is a finite group, then

Y x(@?=0(G). 4.21)
x€l(G)

Proof Let ¢ be the character of the regular representation described in Ex-
ample 4.34. From Equation (4.19), ({,¢{)¢ = o(G). From Equation (4.20),
€. 06 =X x(e) o

Unless every irreducible character of G is linear, Theorem 4.35 strictly improves
the bound o(1(G)) < o(G) that emerged from Corollary 4.30. We are about to
obtain another improvement.

THEOREM 4.36 Let G be an arbitrary group. If x is a character of G, then

x(@) = x(r7lor), for all o,t € G. That is, x is constant on the conjugacy
classes of G.

DerFNtTION 4.37  Let G be a group. Denote the conjugacy class of G to which o
belongs by Cg (o) = {t~'ot: t € G}. The number of different conjugacy classes
of G is its class number. A function f € CG that is constant on conjugacy classes
is called a class function. Denote by Z(CG) the subspace of CG consisting of the
class functions.
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Suppose C = Cg(0o) is a conjugacy classes of G. Define fc: G — C by
fc(u) = 1if u € C, and 0 otherwise. Then fc € Z(CG) is the characteristic
function of C. Because the characteristic functions of the conjugacy classes
comprise a basis for Z(CG), its dimension is equal to the class number of G. By
Theorem 4.36 and the Orthogonality Relations of the First Kind, the irreducible
characters of G comprise an orthonormal set in the inner product space Z(CG).
Therefore, the number of different irreducible characters of G is at most its class
number. In fact, these two numbers are equal.

TueoreM 4.38 Let G be a finite group. Then I(G) is an orthonormal basis of
Z(CG).

Proof let {A;:1 <k <r}bea complete set of inequivalent irreducible
representations of G. Suppose Ax(0) = (a (0)),0 € G,is a mpresentanon
of degree nx. By Theorems 4.23 and 4.35, the nl + n2 + - 4 n = o(G)
linearly independent functions afj comprise a basis of CG. If f :G—>Cisa

fixed but arbitrary function, there must exist square matrices By = (bfj), of size
ng, 1 < k <r, such that

flo)= Z 2 baf; (), @22
k=1i,j=1
forall o € G. Thus, forany o, T € G,

falony =Y Y thatrlon)

k=1i,j=1

= Z Z Z au(t—l) 1(‘7)“,}(")

k=1i,j=1 s,t=1

=3 ( Y a (t)b},af,(t")) a4 0).
(4.23)

k=1s,t=1 \i,j=1

If we assume that f is a class function, it follows from Equations (4.22)—(4.23)
and the linear independence of the a" that

= Y d@bhaah,

ij=1

for all s, ¢, k, and 7. In other words, By = Ax(t)BrAx(t™"), or BiAx(z) =
A () By, for all k and 7. Therefore (Corollary 4.17), By = cil,,. In other words,
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b’-‘,. = 8, jc. Substituting these values into Equation (4.22) yields

J
=33 ad

k=1 i=1

r
= ZCkXIu
k=1

where xy is the character afforded by A;. We have proved that the orthonormal set
I(G) spans the inner product space Z(CG). o

CoroLLARY 4.39  Let G be a finite group. Then G is abelian if and only if each of
its irreducible representations is linear.

Proof Because ot = 7o if and only if t~ !0t = o, G is abelian if and only if it
has class number o(G), if and only if o(I (G)) = o(G). Because X (e) is a positive
integer for all x € I(G), the result follows from Equation (4.21). u]

THEOREM 4.40 (Orthogonality Relations of the Second Kind). Let o and t be
elements of the finite group G. Then

Y xe™Hxm =

x€l(G)

IO(G)/O(CG(G)) if r € Cg(0), @24)

0 otherwise .

Proof Let fc € Z(CG) be the characteristic function of the conjugacy class
C = Cg(0). Because I1(G) is an orthonormal basis for Z(CG),

fe= Y (f.x)ex

x€l(G)
Y. oOx©Ox,
x€l(G)
where x (C) is the common value of x (1), u € C.If D = Cg(t), then
5c,p0 = fc(D)

o(C) —_
= x(C)x(D)
o(G) xelz(:G)

" o6)

_o©)

=56 & X,

x€l(G)
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ExampLE 441 Let G = A3 = {e3, (123), (132)}, the cyclic group generated by
(123). It follows from Corollary 4.39 that the irreducible characters of G are all
linear. (There is very little to distinguish an irreducible representation of degree 1
from its character.)

The three conjugacy classes of A3 are C; = {e3}, C2 = {(123)}, and
Cs = {(132)}. Let I(A3) = {x1, x2, x3}. Because 1 = xi(e) = x:((123)) =
xi ((123))3, xi((123)) isaroot of x> — 1, 1 < i < 3. The three cube-roots of unity
are 1,0 = (—1+i+/3)/2, and @® = @ = (1 —i+/3)/2. It is, therefore, a simple
matter to write down the character table in Figure 4.1. The rows of this table are
pairwise orthogonal “vectors” of magnitude 0(A3), confirming the Orthogonality
Relations of the First Kind. The columns are pairwise orthogonal and the j-th
column has length o(G)/o(C;) = 3/1, confirming the Orthogonality Relations of
the Second Kind. o

Ci C G

x| 1 1 1

X2 1 0}
X3 1 7 w

gl

FIGURE 4.1 The character table for A;, where w = (—1 + i/3)/2.

ExamMriE 442 Let G = Dy = {es, (1243), (1342), (14)(23), (14), (23),
(12)(34), (13)(24)}. After some computations, one discovers that G has five con-
jugacy classes,.namely, C; = {es}, C2 = {(14)(23)}, C3 = {(1243), (1342)},
Cs = {(14), (23)}, and Cs = {(12)(34), (13)(24)}. So, there are five irreducible
characters, one of which is the principal character, x;. Suppose the other four
irreducible characters have degrees n; < n3 < n4 < ns. Then (Theorem 4.35)

12+n%+n§+n3+n§=8.

The only possibility is 1 = n3 = n4 = 1 and ns = 2, that is, x», x3, and
X4 are linear characters, while xs5(e) = 2. Because the restriction to D4 of the
alternating character ¢: §4 — C is different from the principal character, we
may let x2 = &. If £ is either x3 or x4 then, because it is a homomorphism,
£(C2)? = £(C4)* = E(Cs5)? = 1 = E(C3)*. Because o is conjugate to o™},
o € Dy, £ is real. Therefore, £(C;) = £1,2 < i < 5. Together with x; = 1,
X2 = &, and the Orthogonality Relations of the First Kind, this is enough
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information to fill in the first four rows of the character table in Figure 4.2 (with
the understanding that rows three and four could just as well be interchanged.)

i G C Cs Cs

X1 1 1 1 1 1

X2 1 1 -1 -1 1

X3 1 1 -1 1 -1

X4 1 1 1 -1 -1

Xs 2 a b c d
FIGURE 4.2

From the Orthogonality Relations of the Second Kind, column C; is orthogonal
to column Cj, j > 2. Thus, 4 4+ 2a = 0 = b = ¢ = d, which yields the character

table in Figure 4.3. m]
Gt C G C4 Gs
a |1 1 1 1 1
x2 | 1 S R 1
X3 1 1 -1 1 -1
xe | 1 1 A G |
X5 2 -2 0 0 0

FIGURE 4.3 The character table for D;.

ExampLE 4.43 Recall (Theorem 3.18) that two permutations are conjugate in S,
if and only if they have the same cycle structure. (Because o and o~! have the
same cycle structure, x (o) = x(6~!) = x(0), 0 € S,, that is, the characters of
Sa are real valued. In fact, as we will see momentarily, they are all integer valued.)
Denote by Cx the conjugacy class of S, consisting of all permutations of cycle
typem n.2 A formula for n(r) = 0(C,) can be found in Theorem 3.7. When

2So. Cy=Cy, (o) for any/every permutation o €S, of cycle type .
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n = 5, these numbers are exhibited in Figure 4.4. Because it has seven conjugacy
classes, S5 has 7 irreducible characters.

Cx [ Cun Com Czyy Cpay Cpy Cuyy  Cps)
nr) | 1 10 15 20 20 30 24

FIGURE 4.4 Cardinalities of the conjugacy classes of Ss.

Among the 7! = 5040 one-to-one correspondences between partitions of §
and conjugacy classes of S5, # <« Cjx is the only one that might be called
natural. While it is not so evident, there is also a natural correspondence between
partitions of n and irreducible characters of S,. Anticipating this result, we will
write 1(Ss) = {xx: m F 5}. In this (as yet mysterious) natural correspondence,
X(5) is the principal character and x()s) = &, the alternating character.

Because the equation

7
D nt=120
i=1

has many solutions, for example,
1414149436436+ 36 =120,

1+1+4+4+4+4+25+81 =120,
1+14+14+4+4+9+100=120, and

14+1416+164 25+ 25+ 36 = 120,

Theorem 4.35 is not so helpful this time. With all the theoretical machinery we
have developed so far, it is still no small task just to determine the degrees of the
irreducible characters of S5, much less construct the character table exhibited in
Figure 4.5. However, given Figures 4.4 and 4.5, it is not difficult to confirm that
1
X6 == ) x(©)

120 fore;

1

T35 2o "X (Ca)*.

rkS

=1,

2 x(Cx)* =120/n(x).
X€l(S)
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Cy Cprm Czn Coiy Cpa Cun G
X |1 ) 1 1 -1 -1 1
X(2.1%) 4 -2 0 1 1 0 -1
X[22,1) 5 -1 1 -1 -1 1 0
XB’]z] 6 0 -2 0 0 0 1
X3.21 5 1 1 -1 1 -1 0
Xa.1] 4 2 0 1 -1 0 -1
Xis) 1 1 1 1 1 1 1

FIGURE 4.5 The character table for Ss.

While ad hoc methods based on the machinery we have developed so far were
sufficient to construct the character tables in Examples 4.41 and 4.42, it is clear
from Example 4.43 that additional tools are needed before we will be in a position
to deal with the symmetric groups. One such tool emerges from the following
generalization of a previous notion: Suppose H is a subgroup of the finite group
G.Let

G=0HUonhHU..-Uo,H, r=[G:H],

be the left coset decomposition of H in G. Recall that G has a homomorphic
image, G, that acts as a transitive permutation group on {o;H: 1 < i <r}. Let’s
explore the manifestation of G as a representation of G. For each t € G, define
the r-by-r permutation matrix A(t) = (@;;(t)) by

a 1, if tojH =0;H
a(r) = {0 :)tl:zvise * )
(Compare with Equation (4.2).) Another way to say the same thing is this: Let 1*
be the characteristic function of H in G. That is, 1¥: G — {0, 1} is defined by
1*(0) = 1,if 0 € H,and 0if ¢ € G\H. Then d;;(t) = 1*(0; 'v0;), that is,

¥ 'ta) %07 't02) ... 1%(0]'v0y)

. #0,—1 #.—1 #, -1

A(x) = 1%(0; "ta1) 1%(0; '102) ... 1%(0y toy) ) (4.26)
1#(0,'t01) 1%(0;'102) ... 1%(0;'t0;)

Just as in the proof of Theorem 4.8, Aisa permutation representation of G. In fact,
the same idea can be used to convert any representation of H into a representation
of G. If A is a representation of H of degree n, let A* be the matrix valued function
of G defined by

A(o) ifoeH

# =
4 (")‘{ 0, if o €G\H,
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where 0, is the n-by-n matrix of zeros. If t e G, let A(t) be the nr-by-nr
partitioned matrix whose (i, j)-block is A'(a 10j), 1 < i, j < r.(We are still
taking 0, 02, ..., 0, to be a fixed but arbitrary system of representatives for the
distinct left cosets of H in G.) In other words,

A‘(al' ltal) A'(a,' l'L'az) A‘(al' l'ta,)
-1 -1 -1
A(t) _ A"'(cr2 t0o1) A"(a2 T02) ... A'(a2 T0,) ’ 4.27)
A‘(or," 1z01) A’(a,‘ lrgy) ... A'(a,’ ]ta,)

T € G, is the partitioned matrix whose (i, j)-block is A(cri'l t10j),ifto; H = o;H,
and O, otherwise. In particular, each row and column of A(t) contains exactly one
nonzero block. (Observe that Equation (4.26) is the special case of Equation (4.27)
corresponding to the principal representation of H.)

Using block matrix multiplication, the (i, j)-block of A(t)A(u) is

r
Z A'(af'tak)A'(a{ A uoj) = A'(ai"tuaj).
k=1

In other words, A(t)ﬁ(p,) = A(tu). Because ﬁ(e) = I,, this proves that Aisa
representation of G.

DerINITION 4.44  Suppose H is a subgroup of the finite group G.Let oy, 03, ..., o,
r = [G : H], be fixed but arbitrary representatives for the distinct left cosets of
H. Suppose A is a representation of H that affords the character x. The represen-
tation A of G deﬁned in Equation (4.27) is said to be induced by A. The induced
character, x©, is the character afforded by A.

The value of the induced character is given by

X6 =) (4% va)
i=1

=Y X' o)
i=1

Y x*@'t0), (4.28)
o€G

o(H )

where, as expected,

P x(@~'t0), ifo~'toeH
X (0" 'to) = [ (4.29)
0, otherwise .
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While an induced representation depends on the coset representatives, the
induced character does not. (This is the easy proof that representations of G
induced from the same representation A of H, but corresponding to different
coset representatives, are equivalent.) Observe that the degree of x © is

x%(e) =[G : Hix(e), (4.30)

where, as usual, [G : H] = o(G)/o(H) is the index of H in G.

ExampLE 445 Let G = D4. From Example 4.42, the conjugacy classes of G
are C1 = {es}, C2 = {(14)(23)), C3 = {(1243), (1342)}, C4 = {(14), (23)}, and
Cs = {(12)(34), (13)(24)}. Let H = ((1243)) be the cyclic subgroup generated
by (1243). The coset decomposition of G is G = H U (14)H, that is, we may
take 0y = e4 and 02 = (14). Let £ be the character (homomorphism) of H
defined by &(es) = 1 = £((14)(23)) and £((1243)) = £((1342)) = —1. Then
(Equation (4.30)) £9(C)) = £%(es) = [G : H)&(es) = 2. Because o(C3) = 1,
(14)(23) € Z(G), the center of G. From Equation (4.28), £9(C,) = 2,

£9(C3) =£6((1243))
=% (0 (1243)01) + £%(0; ' (1243)02)
= £*((1243)) + £7((1342))
= £((1243)) + £((1342))
= -2,

£9(Co) =£°((14)
= §*(ea(14)es) + £7((14)(14)(14))
=£%((14)) + £*(19))
=0+0
=0,

and
£9(Cs) =£9(12)(34))

=1 ((12)(34)) + £¥(13)(24))
=0.
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Now that we know the values of £€ it follows from Equation (4.17) that £G =
X2 + X3, where x2 and x3 are among the irreducible characters of D4 exhibited in

Figure 4.3. u}

FroseNius RectprocTY THEOREM 4.46 Let H be a subgroup of G. Let £ be a
character of H and x a character of G. Then

& xn = ¢% 0. (4.31)
Proof
G - ~1,+G
%, x) (G),;;"“ )&% (r)

- o(G)a(H) —— ) ) x@ e o)

teGoeG

ZZx(a t10)* (07 10)

o€eG teG

o(G)o(H o(G)o(H)

> xw™HEw

ueG

|
2
9 —
P’l

o(H )

3 xwhHEw)

ueH

2
Z@, X)H
€G

—
e o(H)

8]

Returning to the irreducible characters of S,, suppose # = [m), 72, ..., Am]
is a partition of n of length m. Of the many sub-groups of S, isomorphic to S,
consider the one consisting of the permutations that fix every integer not contained
in the set

{t:mo+m+...+mig<t<m+m+...+m}
where mp = 0. The Young Subgroup® corresponding to 7 F n is the internal

direct product,
Sx = Sz, X Spy X -+ X Sp,,.

3 Named for Alfred Young (1873-1940).
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Denote by
1y =15,
the principal (identically 1) character of S, and by
&x = €5,
the restriction of the alternating character £ to S, . Then, adopting the abbreviation
X+ 8)s, = (X; E)n, 4.32)

it can be shown that (l,‘f" , e;f" )a is the number of double cosets,* Sz 0 Sp, that satisfy
Sx N a’Spa‘l = {ex}. This double coset number also occurs in what would appear
to be a totally different context; it is the number of (0,1)-matrices with row sum
vector 7 and column sum vector p.’
It is easy to see that there is exactly one (0,1)-matrix with row sum vector 7
and column sum vector *. If # = [5, 3, 1, 1], for example, the unique matrix is
1 1111
11100
1 000 O0f°
1 00 00O
where the 1’s are crowded into the upper left-hand corner in the shape of F(rr). It
follows that

% edy =1, nkn 4.33)
In other words, there is exactly one irreducible character of S, that occurs as a
constituent of both 13* and s,f‘:. Let’s call it x,.8
Two special cases are easily identified. Because Sjy) = Sa, lig;] is the principal
character; its only irreducible constituent is itself. Therefore,
X = 1s,-

If # = [1*)], then l,s," = ¢, the character of the regular representation of S,.
Because n* = [n], Sz« = S, and &, = &. (Since each irreducible character of
Sn occurs in ¢ with multiplicity equal to its degree, we know, without reference to
Equation (4.33), that (¢, £), = 1.) Thus,

X[1=) = €.

4See e.g. [James and Kerber (1981), p. 18]. A discussion of double cosets can be found in
Exercises 4244,

s By the Gale-Ryser Theorem, this number is nonzero if and only if the conjugate partition, p*,
majorizes x. (See Exercise 31, Chapter 1. The theorem is placed in a more general context by Brualdi
and Ryser (1991)], [Doubilet, Fox & Rota (1980)), and [James and Kerber (1981)).)

6As we discover more about x,, it will become clear that & «» x, fulfills the promise of Example 4.43
regarding a natural correspondence between partitions of n and irreducible characters of S,. In particular,
1(5:)={xx: xkn).
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THeoREM 4.47 If w & n, then Xz« = X5, that is, Xx-(t) = &(T) xx (z), for all
T € §,.

Proof 1t is not difficult to show” that 3* = £(13*). Therefore, £(s3*) = 13",
Because, x, is an irreducible constituent of both 1 and s,f‘:, €Xn must be an
irreducible constituent of £(e2) = 13 and (1) = £5. By Equation (4.33)
(since w** = x), the unique such irreducible constituent is Xy-. a

CoROLLARY 4.48 The partition - n is self-conjugate if and only if xx(0) =0
for every odd permutation o € S,.

Proof If & is self-conjugate then, by Theorem 4.47, xx-(0) = €(0)xx(0),
o € 8. If xo(6) = O for every odd o € S, then, by another application of
Theorem 4.47, )n+ = Xn. If 7* # 7, we would eventually find that S, contained
fewer irreducible characters than conjugacy classes. u]

Because lﬁ' is a character of S,, there must exist integers, Ky, ,, such that

15 =3 Kepoxxs phn 4.34)

nkn

DerINITION 4.49  The numbers Ky , = (1,5,-. Xn)n in Equation (4.34) are called
Kostka coefficients.?

By the Frobenius Reciprocity Theorem, Kx,, = (15, Xx)s,-
ExamrLE 4.50 If p = [2, 12}, it is not difficult to verify that

lg‘ = x4 + 2x3,11 + X2 + X12.12)-

Thus, for example, K3 13,12,12) = 2. (]

The next result, a mechanical procedure for computing Kostka coefficients, is
commonly known as Young’s Rule. In order to state the procedure, we need to use
a variation of Ferrers diagrams in which the symbols comprising the rows need
not be identical boxes.

THeoreM 4.51 Let p = [p1, p2, ..., pr] - n. Beginning with a Ferrers diagram
consisting of a single row of length py, construct all possible Ferrers diagrams that
can be obtained by adjoining p, additional symbols (of a second kind), subject to
the condition that no two of these new symbols are permitted to lie in the same
column. From each of the compound diagrams so constructed, form all possible
Ferrers diagrams that can be obtained by adjoining p3 additional symbols (of a

TSee Exercise 34.
8See [Kostka (1882)].
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third kind) subject to the condition that no two of the new symbols are placed in
the same column. Continue in this way until p, symbols (of an r-th kind) have been
added in all possible ways to each of the previously constructed Ferrers diagrams,
subject to the same condition. Then Ky , is the number of times F(x) occurs
among the resulting diagrams.®

ExampLE 4.52 Suppose p = [3, 3, 1]. Beginning with a single row of p; = 3
symbols, XXX, adjoin p = 3 new symbols, in all possible ways, subject to the
condition that no two of the new symbols may lie in the same column of any of
the resulting Ferrers diagrams. The four possibilities are

XXXYYY XXXYY XXXY and XXX
Y YY YYY

Notice, for example, that
XXXY
Y
Y

is not permitted. Next, construct all possible Ferrers diagrams that can be obtained
from the four (permissible) compound diagrams by adding an additional symbol
corresponding to p3 = 1. From XXXYYY, we obtain

XXXYYYZ and XXXYYY
z

corresponding to x(7; and x(6,1}. Adding Z in all possible ways to

XXXYY
Y
yields the three compound diagrams
XXXYYZ XXXYY XXXYY
Y YZ and Y

Z

corresponding to x6,1), X(5,2}» and x(s,12). Adding Z in all possible ways to

XXXY
YY
yields
XXXYZ  XXXY XXXY
YY YYZ and YY

z

9A Proof can be found, e.g., in [James & Kerber (1981), §2.8] or [Sagan (1991), §2.l 1]



102 Multilinear Algebra

corresponding to x(s,2), X(4,3)» and X(s,2,1)- Finally, adding Z to

XXX
YYY
in all possible ways produces
XXX7Z XXX
YYY and YYY
Y/
corresponding to xqs,3) and xq32,1). (Notice that
XXX
YYYZ

is not permitted as it is not a Ferrers diagram.) Summarizing, we have that

I = X + 2xi6.11 + 215,21 + X15.12) + 2X14,3)

+ X1a.2,1) + X132,1)-

SO, Km'[y']] = l, K[6||“3:.1] = 2, K[S.Z].[Z!’,l] = 2, and so on. 8]
4 B Rh 1) 04
[4] 1 1 1 1 1
[3,1] 0 1 1 2 3
22] 0 0 1 1 2
2123 | 0 0 0 1 3
11| o 0 0 0 1

FIGURE 4.6 Table of Kostka Coefficients.

ExampLE 4.53 The table of Kostka coefficients, K, 7, p F 4, appears in
Figure 4.6. Observe that the fourth column, corresponding to p = [2, 12], confirms
Example 4.50. Using the notation (, ), for the inner product in CS,,, the first row
of the table corresponds to
Kuayo = (13, x4

=13 Da

=(1,1)s,

=1,
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by the Frobenius Reciprocity Theorem. Similarly, the last column consists of the
Kostka coefficients

Kx,[l‘] = (lfl“]' Xn)a
= (lv Xﬂ)(e)

= xﬂ (e)v

the degree of xr. Observe that the entries in row 7 are increasing. This is a
consequence of the fact that Ky , > Ky,, whenever v majorizes p.!° o

COROLLARY 4.54 The Kostka coefficient Kz x = 1, forall w - n.

THEOREM 4.55'!  Let p = [p1, p2,...,pr) and m = [my, M2, ..., 7,] be parti-
tions of n. Then x is an irreducible constituent of lﬁ', that is, the Kostka coefficient
Kx,p # 0, if and only if ® majorizes p. In particular, if the partitions indexing its
rows and columns are arranged in reverse lexicographic order, the Kostka matrix
K = (Kx,p) is upper triangular.

The proof depends on a technical lemma concerning the relation of partial dom-
inance: Leta = (a1, a2, ..., a;) and B = (B4, B2, .. ., Br) be two nonincreasing
sequences of positive integers. Thena > B if s <r,

k k
Y i) B, 1<k<s
i=1

i=1

and oy + a2 +---+a; > B + B2 + --- + B,. Thus, partial dominance is a
weak form of majorization in the sense that « > B if and only if @ > B and
ajtaz+--tas=p+h+---+5.

LemMma 4.56 Leta = (a1,02,...,a5)and B = (B1,B2,.-.,Br) r > 1, be
two nonincreasing sequences of positive integers. Suppose a > B. Then some
B, of the columns of the Ferrers diagram F(a) can be shortened by one box
each in such a way as to produce a new Ferrers diagram, F(a'), such that

albﬁ’-:(ﬂhﬁb---vpr—l)

Because B, boxes are being removed from F(a) to produce F(a’) and from
F(B) to produce F(B'), if « majorizes B in Lemma 4.56, then o’ majorizes f'.

105ee [Liebler & Vitale (1973)], [White (1980a)], or [James & Kerber (1981), pp. 44).
“Conjecuned in [Snapper (1971)), the sufficiency part of Theorem 4.55 was first proved in [Lam
(1977)] and [Merris (1977)].
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Proof The proof is by induction on s. If s = 1, simply remove the last 8,
boxes from row 1 of F(x). Suppose s > 1. If @ > B;, then we may take
a = (ay,a2,...,0-1, — B,). If s < By, the situation is more complicated
and we need an intermediate step.

Temporarily remove the first a; columns from both F(«) and F(8). This
produces e = (@) — a5, a2 — ay, ..., @ — a5), where ¢ is maximal so that
a; > as, and NV = (B — as, B2 — s, ..., Br — @s). Because s < r, no more
boxes have been deleted from F(a) than from F(B). In particular, &V’ > g0,
Therefore, by the induction hypothesis, we can remove 8, — a; boxes from the
column ends of F(a"), producing F(a®), where

@ =12 1) > BP = (Br—as, B2y e Bt — ).

We now restore the detached columns. To the left-hand side of F(a‘®), attach a
rectangular array of s rows and a; columns obtaining F @®). Whena rectangular
array of r rows and o columns is attached to the left-hand side of F(8?®), we
obtain B® = (81, B2, . .., Br—1, @;). More importantly,

a® =M ‘a5, 2 +as,..., ¥ +oas, 05, ..., 05) > By, B2, .. ., Br—1, as).

Finally, removing o, boxes from the last row of F(a‘®) and F(8®), we obtain
F(c’) and F(8'), respectively, where

a’Dﬂ’= (ﬁl'h""lﬂ'-l)'
a

Proof (of Theorem 4.55) Suppose x» occurs among the irreducible constituents
of 12-. Because the construction in Theorem 4.51 begins with a row of p; symbols,
every partition that emerges in the end satisfies 71 > p;. None of the next p;
symbols can be put in row 3 without putting two of them in column 1, violating the
condition that no two of them may occur in the same column. This requires that all
of these p; symbols be placed in the first two rows. (Of course, rows 1 and 2 may
grow longer when subsequent symbols are added.) Therefore, ) + 12 > p1 + p2.
When the next p3 symbols are added, the condition that no two of them can be
placed in the same column means that all of them must be placed in the first three
TOWS, SO ] + 72 + M3 = p; + p2 + p3. And so on. Because both 7 and p are
partitions of (the same integer) n, we conclude that 7 > p.

Conversely, assume that & majorizes p = [p1, 02, ..., pr]. The proof that &
occurs among the partitions built up from p in Theorem 4.51 is by induction on
r.If r = 1, then # = p and the result is clear. If » > 1 then, by Lemma 4.56,
pr symbols can be removed from the 7} symbols constituting the column ends of
the Ferrers diagram F (;r) in such a way that the result is the Ferrers diagram of a
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new partition n’, and n’ > p’ = [p1, 02, ..., Pr—1]. By the induction hypothesis,
F(n’) occurs among the Ferrers diagrams constructed from p’ via Theorem 4.51.
Now, add p, symbols to F(x’) to produce F (). Because F(n’) was obtained
from F (;r) by detaching only the ends of columns, no two of these p, symbols lie
in the same column of F(rr). Thus, Kx , # 0.

To prove the upper triangularity of the Kostka matrix, it suffices to show that 7
majorizes p, only if p comes before 7 in lexicographic order. If m > p, suppose
k is the smallest positive integer such that 7y # px. Because

mtymt-tm2pt+p2+cc+ i,

it can only be that p; < m. o
ExampLE 4.57 Because K = (Kp, ) is an integer upper triangular matrix with 1°’s

on its diagonal, K ~! is an integer upper triangular matrix with 1’s on its diagonal.
If n = 4 then (Figure 4.6)

11111
01123

k={o0011 2

0001 3

0000 1

and 1 -1 0 1 -1
0 1 -1 -1 2

K'=]0 0 1 -1 1

0 0 0 1 -3

0 0 0 0 1

It follows from Equation (4.34) that
Xe =3 (K pxlf.
pFn

From the fourth and fifth columns of K~! we see, for example, that

S. S, S, S,
X0 =g — 15 ) = 1y + 15 12

and
Sa S, S. S. A
£=Xp4 = —1(4] +2x l[g'” + 1[2‘,] -3x 1[2"121 s 1[1‘1'
O

In principle, it is now a straight-forward mechanical process to compute
irreducible characters of S,. The job is typically done with the help of so-called
Young tableaux.!Z We will omit the details and merely describe the results.

12gee. for example, [James & Kerber (1981)].
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DeFINITION 4.58 Let m = [my, 2, ..., 7, ] be a partition of n. To each ordered
pair (i, j),1 < i <r,1 < j < m, there corresponds a box, B;j, in the Ferrers
diagram F(n). Box B;; determines a unique hook in F () consisting of B;; itself,
all the boxes in row i of F(x) to the right of B;;, and all boxes in column j of
F(rr) below B;;. The number of boxes in the hook determined by B;; is its length,
hij = (mi — i)+ (@] = j)+ 1.

FIGURE 4.7 Hook lengths in F ({3, 2%]).

ExampLE 4.59 The numbers in the boxes of the Ferrers diagram F([3, 22)), in
Figure 4.7, are the corresponding hook lengths. For example, k2 = 4 and hy; = 3.
(A figure obtained by placing numbers in the boxes of a Ferrers diagram is a Young
tableau.) n}

THEOREM 4.60 (Frame-Robinson-Thrall Hook Length Formula). If « is a parti-
tion of n, then the degree of the irreducible character of S, corresponding to n
is

© n!
Xnle) = — S 1
H.-ff’ ;‘=1 hij

where, recall, L(rt) is the length of 7.

Beyond [Frame, Robinson & Thrall (1954)), proofs of Theorem 4.60 can be
found in [Boerner (1970)], [James & Kerber (1981), p. 56], and [Sagan (1990) &
(1991)).

ExampLE 4.61 Let w1 = [3,22). Then, from Theorem 4.60 and Figure 4.7,
Xx(@=7/(5x4x1x3x2x2x1)=21

If # = [r, 1*7"], then F (&) consists of a single-hook. We will frequently write
xr in place of xj,1s—), referring to it as a single-hook character. Because the
product of the hook lengths of F([r, 1*77]) is

n=r+l1 m
[T [ 14 =ne -1t -r,

i=1 j=1
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xr(€) = Cm—1,r — 1). If n = 5 then, for example, x3(¢) = C(4,2) = 6,

confirming the value for x(3,12;(Cy15;) in Figure 4.5. n]
211
4 |3

FIGURE 4.8 The border of F([5, 4, 2, 12]).

DeriNiTiON 4.62  Suppose n  n. The border of F () consists of those boxes
whose right edge, bottom edge, or bottom right vertex belong to the geometric
boundary of the diagram. A border strip (or regular boundary part) of F(r)
is a connected set of border boxes the deletion of which would result in another
Ferrers diagram. If the boxes of a border strip overlap r rows of F(rr), then the
height of the strip, » = r — 1, is the number of “vertical steps” that the border
strip contains.

ExampLE 4.63 The numbered boxes in Figure 4.8 comprise the border of
F([5, 4, 2, 12)); its 13 border strips are listed in Figure 4.9. o

THEOREM 4.64 (Murnaghan-Nakayama Rule). Supposert, p - n. Letky, ka, . . .,
ks be the parts of p arranged in some fixed but arbitrary order. Consider all
possible ways the Ferrers Diagram F (r) can be reduced to nothing by successively
deleting border strips of cardinalities k), k2, . . . , ks. If, altogether, the border strips
occurring in the t-th way contain a total of v, vertical steps, then

Xxx(Cp) = Y (-1
t

Apart from [Mumaghan (1937)] and [Nakayama (1940)], proofs of Theo-
rem 4.64 can be found in [Boerner (1970)], [James & Kerber (1981)], and [Sagan
(1991)].

ExampLE 4.65 In actual computations, one takes advantage of the fact that the
parts of p may be listed in any (fixed) order. If, for example, = [5, 4, 2, 12],
then (from Example 4.63 and Figure 4.9), no border strip of F(rr) consists of five
boxes. It follows that x» (o) = O for any permutation o € ;3 whose disjoint cycle
factorization contains a S-cycle. u]
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border strip height

{1}
{1,2.3)
(1,234}
{1,2,3,4,5,6)
(1,2,3,4,5,6,7,8,9)
3
3.4}
{3.4,5,6)
{3.4,5,6,7,8,9}
{6}
(6,7,8.9)
{8.9)

%}

FIGURE 4.9

(=)

O = N O W = O O & N = =

(1) 1l (o) (0) ) (0)

1 () | INIS §)
—t —

1

(b) s oo Y m 9 o 9

J (o (0) (0) (0) (0)

FIGURE 4.10

ExaMpLE 4.66 Let’s use the Murnaghan-Nakayama rule to compute
X3,221(Cp22,1%), the value of the irreducible character x(3,22) on the permutations
in §; of cycle type [22,13]. Set ky = k; = 2 and k3 = k4 = ks = 1. There
are three ways to annihilate F([3, 22]) by successively deleting border strips of
cardinalities 2, 2, 1, 1, and 1. They are illustrated in Figure 4.10. The border strips
in the first way (Figure 4.10(a)) contain 1 + 0 + 0 4 0 + 0 = 1 vertical steps
altogether. The (total) number of vertical steps in the second way (Figure 4.10(b))
is 1 4 1 40+ 0+ 0 = 2. The third way involves no vertical steps at all. Thus, for
any permutation o € Cp22,15),
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x5.210) = D'+ 1)+ 1) = 1.

What about (3 22)(Ci23,1))? Let ki = k2 = k3 = 2 and k4 = 1. Coincidentally,
there are again three ways of reducing F([3,22]) to nothing, this time by
successively deleting border strips of cardinalities 2, 2, 2, and 1. They are illustrated
in Figure 4.11. The deleted border strips in Figure 4.11(a) contain 1404140 = 2
vertical steps altogether; the total number in Figure 4.11(b)is 14+ 14+04+0=2;
and in Figure 4.11(c), there are 0 + 0 + 0 + 0 = O vertical steps altogether. Thus,

x3.21(C2 1)) = (D2 + (=1)2 + (-1)° = 3. o

1 | Il 0 1 ]

(a) n i.) (_.) a (_.) O (_.)

-

1 ] () (0) (0)

(b) b o oo - o =
1 0 (0 (0) (0)

(C) (—0) %j —0) EED — D —

FIGURE 4.11

Suppose x is an irreducible character of G. If H is a subgroup of G, then
the restriction of x to H may no longer be irreducible. When G = §, and
H = Sp-1,1) = Sp-1, the situation is described by the so-called branching
theorem:

COROLLARY 4.67 Suppose ® = [m), n2, ..., ,] is a (nonincreasing) partition of
n > 1. Upon restriction to Sy,

Xr=x1+x2+---+x,

where xi = 0 if miy1 = mi, and x; is the irreducible character of S,—)
corresponding to the partition

[”Io"Zy---v”l'—lani_Iv”i+l9'--v”r]0 (435)

otherwise.
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Proof Because we are viewing S,—1 as {0 € S,: o(n) = n}, we may begin the
Murnaghan-Nakayama calculation of x (o) by deleting from F (), in all possible
ways, a border strip of cardinality 1 (a single box). The results are Ferrers diagrams
of partitions of n — 1 of the type exhibited in (4.35), where m; > m;41. This
completes the proof because the vertical step contribution from deleting a single
box is 0. o

COROLLARY 4.68 Ifo € S, and x € 1(Sy), then x (o) is an integer.

Proof The result is immediate either from the Murnaghan-Nakayama Rule or the
fact that the inverse Kostka matrix is integral. o

Corollary 4.68 does not extend to all finite groups.!? (If y is a linear character
of G, it is a homomorphism into the nonzero complex numbers. Thus, x needn’t
be real.)

THeOREM 4.69 Let G be a finite group. Suppose x € I1(G). If x(e) > 1, there
existsao € G such that x(o) = 0.

Proof If G = S,,then 1 = (x, x)c is equivalent to

0(G) =Y x(6™Nx(0)

o€eG

=Y x@>

o0€eG

By Corollary 4.68, the right-hand side of this equation is a sum of squares of o(G)
integers. Because one of them (namely x (e)) is greater than one, they cannot all
be nonzero. For arbitrary finite groups, the analogous statement is

o(G) = Y _ Ix@). (4.36)

(L3¢

While x (o) = tr (A(o)) need not be an integer, because it is a sum of roots of
unity (the eigenvalues of A(c)), it is an “algebraic integer”. This, together with
Equation (4.36) is enough to establish the result. (Details can be found in [Feit
(1967), p. 36} or [Isaacs (1976), p. 40].) o

The final theorems of the chapter are useful technical results.

THeoreM 4.70  Let x be a character of the finite group G. Then x is a afforded
by a unitary representation.

13The character table of G is integral if and only if the following condition is satisfied: For all
0,7€G, the cyclic subgroup (o) is conjugate to (r) only if o is conjugate to t.
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Proof Suppose x(e) = n.Let o — A(o), 0 € G, be a representation of G
affording x. Let

X= Z A(T)A(T)*.
teCG

By Lemma 2.43, X is positive definite hermitian, so there is a unitary matrix U
such that X = U*DU, where D is a diagonal matrix with positive diagonal
entries. Let D'/2 be the positive definite square-root of D.If H = (D~V/2)U, then
(H™Y)* = D/2U. Let B(oc) = HA(0)H™!,0 € G. Then

B(0)B(0)" = (HA(o)H™")(HA(0)H™")*
= (HA(o)U*D'?)(D'*U A(o)*H*)
= HA(c)XA(o)"H"
= HXH*
=D ?2uxu*p-172
=D"2pp~12

= I’l’

because A(0)XA(o)* =X, 0 € G. (n]

THeEOREM 4.71 Let x be an irreducible character of the finite group G. Then x (e)
exactly divides o(G).

This theorem is a nice illustration of the vitality to be found at the boundary
between group representation theory and algebraic number theory. Proofs can be
found in any of the standard books on representation theory.

There are many applications of group representation theory in physics and
quantum chemistry. One of them will emerge in Chapter 6. Others can be found,
for example, in [Hollas (1967)], [James & Liebeck (1993)], [Lomont (1993)], and
[Schensted (1976)].
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Exercises

1. Write out the permutation matrix A(0') = (8;,0(;)) for each o € §3.
2. LetS ={A(v): v € N} C Cy 5. Suppose S spans C, 5.

a. Prove that S is irreducible.

b. Prove that GL(n, C) is irreducible.

3. Use the approach of Exercise 2 to show that the representation of S3 in
Example 4.3 is irreducible.

4. Let A bethe representation of S3 in Example 4.3. Find an invertible 2-by-2 ma-
trix U such that U~ A(o)U is diagonal for all o € A3 = {e3, (123), (132)}.

5. Let G be the multiplicative group of nonzero complex numbers. Then the
typical element of G is z = x + iy, where x and y are real numbers, not both

y X

is a faithful irreducible representation of G.
6. Let {A(v): v € N} be a set of pairwise commuting n-by-n matrices.
a. Prove that there exists a matrix U € GL(n, C) such that U"YA(W)U is
upper triangular for all v € N. (Hint: Corollary 4.17.)
b. Prove that the matrix U in part (a) can be chosen to be unitary. (Compare
with Exercise 34 in Chapter 2.)
7. In the manner of Example 4.20,
a. use the representation A in Example 4.3 to confirm Equation (4.9) when
i=t=lands=j=2.
b. use the representation A in Example 4.3 and the representation B(o) =
(e(0)), o € S3 to confirm Equation (4.10) when ¢t = j = 1, for all four
choices of i and s.

8. One way to describe finite groups is by means of generators and relations.
The group of 24 rotational symmetries of the cube, for example, is generated
by elements x and y with defining relations x2 = y? = (xy)* =e.

a. Show that these are the generators and relations for S4. (This gives another
proof that the group of rotational symmetries of the cube is isomorphic to
S4.)

(-1 0 _1f{-2 -3 . .

b. Show that X = ( 0 1) and ¥ = 3 ( 4 _2) satisfy the relations
X2=Y}=(XY? =1

c. Show that x — X and y — Y extends to a representation of Sy4.
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10.

11.

12.
13.
14.

15.

16.

17.

18.

19.

d. Is the representation defined in part (c) faithful?

e. Is the representation defined in part (c) irreducible?

Prove Theorem 4.21. (Hint: Because B is a representation, bsj(ot) =
Y- bu(o)bj(x).)

Prove the converse of Theorem 4.22: If 0 — A(o) = (aij(0)) is a
representation in which the n functions a; j: G = Carelinearly independent,
then A is irreducible. (Compare with Exercise 2.)

Prove Theorem 4.23 for finite groups. (Hint: Mimic the proof of Burnside’s
Theorem.)

Prove Theorem 4.26.

Prove Theorem 4.29.

Let x be a character of the finite group G. If 0, T € G, prove that x(ot) =
x(zo).

Prove Theorem 4.36. (Hint: If A is any representation of G, then A =
A(r) L, 1€G)

Let A be the (left) regular representation of G = {0, 02, ..., 0,}. Prove that

Z":A(Ui) =J,

i=1

the n-by-n matrix each of whose entries is 1.

Let G be the subset of C, ,n > 1, consisting of the invertible lower triangular
matrices. (A lower triangular matrix is invertible if and only if there are no
zeros on its main diagonal.)

a. Show that G is a multiplicative group.

b. Show that the representation A — A, A € G, is reducible but not fully
reducible. (Explain why this does not violate Maschke’s Theorem.)

c. Show that dim((A: A € G)) < n2, where n is the degree of the
representation A - A, A € G.

Let & be the character afforded by the representation A of Example 4.3. An

indirect transitivity argument was used in Example 4.33 to prove that £ is
irreducible.

a. Show by a direct computation that (£, £)s, = 1.

b. Prove that 1(S3) = {1, &, £}, where ¢ is the alternating character and & is
the character in part a.

Let A be a representation of the finite group G. Define B(o') = A(c™)*, 0 €
G; C(o) = A(o™1)!, the transpose of A(c™!), o € G; and D(o) = A(0),
the complex conjugate of A(c),0 € G.
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20.

21.
22.

23.

25.

Multilinear Algebra

a. Prove that B, C, and D are representations of G.
b. Prove that B is equivalent to A.

c. Prove that C is equivalent to D. (Hint: Theorem 4.70.) Representations A
and C are “contragredient”.

Let G be a finite group. If 6 — A(0) = (a;j(0)) is a representation of G,
define £4: G — Cby

Zal0) = ) a;j(0).

i,j=1
If A and B are irreducible unitary representations of G, prove that

n if A =B has degree n,

(24, Tp)G = [ 0 if A and B are inequivalent .

Prove that GL(n, C) contains a finite irreducible subgroup, n > 1.

Leto — A(o) = (aij(0)) be an irreducible representation of the finite group
G. Prove that

Y ai(r) = 8.,;x(0)o(Ca@))/x (€),
!EC@(U)
where yx is the character afforded by A.

The idea behind this Exercise is to prove Corollary 4.39 from first principles.
So, let G be a finite group.

a. If G is abelian, use Corollary 4.17 to prove that x(e) = 1 for every
x € I(G).

b. If x(e) = 1forevery x € I(G), use the fact that the regular representation
of G is faithful to prove that G is abelian.

Construct the character table for
a. the cyclic group of order 4.

b. the noncyclic group of order 4.
Let G = D4 (from Example 4.42).

a. Show that G = ((1243), (12)(34)), the group generated by (1243) and
(12)(34).
b. Show that

A((1243))=((§ _‘,?) and A((lz)(34))=((1’ (’))

determines an irreducible representation of G that affords the character xs of
Figure 4.3.
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26.

21.

28.

29.

30.

31.

The “quaternion” group of order 8 is generated by elements x and y that satisfy

x* = ,x? = y2,and y~lxy = x3. Show that,

a. the quaternion group is not isomorphic to Dy. (See Exercise 25.)

b. (by ajudicious choice of names for their conjugacy classes and characters)
the character tables for the two groups are identical. (Hint: Figure 4.3.)

Find the character table for
a. the cyclic group of order 8.

b. the group of order 8 determined by the generators and relations x2 = y* =
eand xyx = y.

c. the group G of order 8 that satisfies 62 = ¢, 0 € G.

Let x be an irreducible character of degree 5 of a finite group G. Prove that

> x(@)=0.

o€eG

Let x be an irreducible character of the finite group G.
a. Prove that |x(0)| < x(e) forall o € G.

b. Let Z,(G) = {0 € G: |x(0)| = x(e)}. Prove that Z, (G) is a subgroup

of G.
c. Prove that £(o) = x(0)/x(e), o € Z,(G), defines a character of Z, (G).
d. Prove that Z(G) C Z,(G), where Z(G) is the center of G.
e. Prove that

ZG) = () zx(©G).
x€l(G)

(Hint: Consider the regular representation of G.)
Let H be a normal subgroup of the finite group G. Suppose {01, 02, ..., 0},
r =[G : H], is a system of representatives for the distinct cosets of H in G.
Let A be an irreducible representation of the quotient group G/H.If o € G,
define B(o) = A(o; H), where o; H is the coset of G containing o.
a. Prove that B is a representation of G.

b. Prove that every proper normal subgroup of G is contained in the kernel

of some nonprincipal irreducible representation of G.
Let H be a subgroup of the finite group G. Suppose {0;: 1 < i < r}
is a system of representatives for the distinct left cosets of H in G. Let
1, 42, . .., 4y be fixed but arbitrary elements of H. If A is a representation
of H, let A be the representation of G induced by A using {0;: 1 <i <r},
and A the representation of G induced by A using coset representatives
{ojpi: 1 <i < r}.Find an invertible matrix U such that U~ A(z)U = A(r),
T €G.
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32. Let G be a finite group. If 0, T € G, their commutator is oto~'r~!. The
commutator subgroup of G, denoted G’, is the subgroup of G generated by
its commutators.

a. Prove that G is abelian if and only if G’ = {e}.

b. Prove that G’ is a normal subgroup of G.

c. Prove that G/ G’ is abelian.

d. If x; and x; are different linear characters of G/G’, prove that they extend
(as in Exercise 30a) to different characters of G.

e. If G has m different linear characters, prove that m > [G : G'].
f. Suppose y is a linear character of G. Prove that x(¢) = 1,0 € G'.
g. Prove that the number of linear characters of G is equal to (G : G'].
33. Let K be a subgroup of H and H a subgroup of G. If x is a character of K,
prove that (x #)¢ = x©.
34. Prove that e5* = g(1y").
35. Prove that the principal and alternating characters are the only characters of
Sn of degree 1
a. using the result in Exercise 32g.
b. using the Frame-Robinson-Thrall hook length formula.
36. Use the Murnaghan-Nakayama Rule to
a. show that x(n) is the principle character of S,.
show that x[1=] = &, the alternating character of S,.
confirm that xs2;([2, 1°]) = 6.
confirm that x5 121([2, 1°1) = xqa,2.11((2, 1%)).
confirm that x{»—1,17(¢) = F(0) — 1, where F is the fixed point character
of Sp.
confirm the values in the character table of S4 given in Figure 4.12.

g. compute the values of x(32j(¢), o € Ss. (Hint: Use Figure 4.5 to confirm
your answers.)

e a0

e

Cog Cpiy Cpy Cpay Cu
X[l‘] 1 -1 1 1 -1
X[2_12] 3 -1 -1 0 1
X[22) 2 0 2 -1
X3.1} 3 1 -1 0 -1
X4 1 1 1 1 1

FIGURE 4.12 The Character Table of S;.
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37. Let & be the restriction of x[3,2; to Ss.

a.

Use your results from Exercise 36g and Equation (4.18) to prove that £ is
reducible.

Use your results from Exercises 36f and 36g to express £ as a nonnegative
integral linear combination of the irreducible characters of Sg.

Use the branching theorem to express & as a nonnegative integral linear
combination of the irreducible characters of S4.

38. Use the Frame-Robinson-Thrall hook length formula to confirm the values
for the character degrees given in Figure 4.5. (Hint: Cp;s; = {e}.)
Suppose x is an irreducible character of the finite group G. Let Z, (G) be

the group defined in Exercise 29b and & the character of Z, (G) defined in
Exercise 29c.

39.

41.

a.
b.

Prove that x (e)? < [G: Z,(G)).

Prove that equality holds in part (a) if and only if x is the only irreducible
character of G whose restriction to Z, (G) contains & as a component.
(Hint: Consider £ )

Prove that equality holds in part (a) if and only if Z,(G) = {0 €
G: x(o) #0}.

Let H be a subgroup of G. Let x be a linear character of H. Foreacho € G,
define x° be the character of o Ho ~! defined by x% (vo~!) = x(v),r € H.
Prove that x @ is an irreducible character of G if and only if, forall o € G\H,
x° and x restrict to different characters of H No Ho 1.

Let G be a finite group. Let V be the complex vector space of all formal
complex linear combinations of the elements of G, that is,

V= [Zc.,a:c,ec, aeG].
(3¢

a. Prove that V is isomorphic to CG.

b.

C.

Prove that V is a ring under the multiplication

(ana) (z; d,r) _y (z c,‘,-.d,) "

o€G 1€G ue€G \teG
Define
x(e)
2 X) = — y 1(G).
t(G, x) o(G) Z x(o)o, x €I1(G)

oeG

If x, & € I(G), prove that t (G, x)t(G, §) = 8, ¢t(G, x).
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d. Provethat?(G, x) € Z(V), the center of the ring V. (In other words, prove
that vt (G, x) =t(G, x)vforallv e V.)

e. Prove that the vector space Z(V) is isomorphic to Z(CG).

f. Prove that {t(G, x): x € I(G)} is a basis for the vector space Z(V).

g. Let & be the character of Z,(G) defined in Exercise 29c. Prove that
t(Zx(G), §) =1(G, x) if and only if [G: Z,(G)] = x(e)%.

42. Suppose H and K are subgroups of the finite group G. Define a relation among
the elements of G as follows: If 01, 02 € G, then 61 ~ o2 means there exist
71 € H and r; € K such that 1y01 = o212
a. Prove that ~ is an equivalence relation.

b. Prove that the equivalence class containing o is the double coset Ho K =
{tiocrz: 7y € Hand ; € K}.

43. Let H = {e4, (1243), (14)(23), (1342)}, K = {e4, (14), (23), (14)(23)}, and
G = $4.

a. Show that the double coset HesK = H U H(14) = D;, the group of
order 8 in Example 4.42. (See Exercise 42 for the definition of “double
coset”.)

b. Show that H(12)K = H(12) U H(13) U H(24) U H(34).

c. Give an example to show that o(H o1 K) need not equal o(Ho2K).

44. Let G be a doubly transitive subgroup of S,. Suppose € G\G, for some
fixed but arbitrary x € (1, 2,...,n}. Prove that G is the disjoint union of
the double cosets G e, G and G, Tt G,. (See Exercise 42 for the definition of
“double coset™.)

45. SupposeCy, C3, ..., C, are the different conjugacy classesand x3, x2, ..., Xr
the different irreducible characters of the finite group G. Let U = (u;;) be the
r-by-r matrix whose (i, j)- entry is

uij = x:(Cj)(0(Cj)/o(G)'/2.

a. Prove that UU* = I, is equivalent to the Orthogonality Relations of the
First Kind.
b. Prove that U*U = I, is equivalent to the Orthogonality Relations of the
Second Kind.
46. Let G = S3 and H = {e3, (13)}.

a. Show that 01 = e3, 02 = (12), and o3 = (23) are representatives for the
different left cosets of H in G.

b. If t = (123), show that to1H = 03 H, 102 H = o1H,and to3H = o2 H.

c. If A is the representation of G induced by the principal representation of
H, show that
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47.

48.

49.

50.
51.

52.

53.

54.

) 010
A((123))=(0 0 1).
100

d. Express the character lg as a sum of irreducible characters of §j3.

Let G = S4 and H = G4 = §3 be the stabilizer subgroup of 4. Let x be the
irreducible character of H of degree 2. Express x€ as a sum of irreducible
characters of S4.

Let o and t be elements of the finite group G. Prove that x (o) = x(7), for
all x € I(G), if and only if o and t are conjugate in G.

Let G be a finite group. Suppose 7 € G. Prove that x(t) is real, for all
x € I(G), if and only if 7 is conjugate in G to ™.

Prove Corollary 4.54.

Prove that the Kostka coefficients satisfy

(3,150 =) KyxKup.

vkn

Knowing that the Kostka matrix is upper-triangular, show how the result of
Exercise 51 can be used recursively to obtain the table in Figure 4.6.

Let n be fixed but arbitrary. For 1 < r < n, denote by yx, the single-hook
character of S, corresponding to the partition [r, 1*~"]. Suppose t € S, has
cycle type [n], that is 7 is a full n-cycle.

a. If &€ € I(S,), prove that

£(r) = [ 0, if & is not a single-hook character.
TlEEDT, ifE=y

b. Let p be a partition of n having s = L(p) parts. If 7 = [r, 1*7"], prove
that the Kostka coefficient Ky , = C(s — 1,n —r).

Let Cjn) be the conjugacy class of S, comprised of those permutations whose

disjoint cycle factorizations consist of a single cycle of length n. Let f, be

the characteristic function of Cpnj, that is, fa(c) = 1, if 0 € C, and O,

otherwise.

a. Show that

1
fa= ;l_ Z Xx(c[n])Xn-

b (]

b. Show that fs = (1 — x1a,1] + X3.121 — X(2,1°] + €)/5. (Hint: Exercise 53.)
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55. Suppose 7 and v are different partitions of n. Let T € S, be a transposition.
Suppose 7 majorizes v.
a. Prove that xx (v)/xx(€) > Xv(z)/Xv(e).
b. If v = n*, prove that xx(t) > 0.

56. Show how Theorem 4.71 can be used to eliminate the spurious possibilities
for the character degrees of S in Example 4.43 (page 94).

57. According to Theorem 4.71, o(S,)/xx (€) is an integer, 7 F n. Describe a
formula for this integer in terms of 7.



CHAPTER 5

Tensor Spaces

Multilinear algebra, proper, begins with the study of tensor spaces. In the most
general setting, this involves dealing with m vector spaces, each having its
own basis and its own inner product. Keeping track of it all requires what
Elie Cartan called “une débauche d’indices”, an intimidating proliferation of
superscripts and subscripts. The peak of this mountain of notation occurs when
matrix representations of linear transformations on the various vector spaces are
assembled to produce the matrix representation of a linear transformation on the
tensor space. Following the introduction of the induced inner product, the going
will be enormously simplified by setting all m vector spaces equal. (The reader may
find it useful to introduce this simplification earlier and rewrite difficult passages
setting Vi =V, =-.-=V,=V))

LetVy, Va,..., Vn befinite dimensional complex vector spaces. Their cartesian
product is the set

VixVyx.ooxVm={(W,v2,...,Um): v €V, 1 <i<m).
Under componentwise addition and scalar multiplication defined by

c(vi,v2, ..., vm) +d(wy, w2, ..., wn)

= (cv1 +dwy, cva +dws, ..., com +dwy),

Vi x Vo x --- x Vp is a vector space.

LeEMMA 5.1 Suppose vector space V; has dimension n;, 1 < i < m. Then the
dimensionof Vi X Vo X - X Vipisny +n2 4 --- + np.

121
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Proof If{ejj:1<j <nm;}isabasisof V;,1 <i <m,then

i-th component
{
{(0,0,...,0,e,-j,0,...,0): 1<j<nmn, 1<i<m)
isabasisof Vi Xx Vo X -+ X Vi o

DerINITION 5.2 Let Vi, V3, ..., Vm, and W be vector spaces. A function f: Vj x
Vo %+ -+ X V;y = W is m-linear (or multilinear) if f is linear separately in each
component of V} x V2 x -+ x V. Thus, f is m-linear if

i-th component
{
f(vlt V2y...,Clj +dwis-~-’vm)

=Cf(vl:v2v'--y“i,---,vm)+df(”l:”2n--:wi,--nvm)o
cdeC, 1<i<m.

ExampLes 5.3 (i) Let A € Cpy 5 be fixed but arbitrary. Define f: Cy m x Cy,) —
C by f(x,y) = xAy. Then f is 2-linear, (or bilinear). (ii) The determinant
of an n-by-n matrix is an n-linear function of its rows (or columns). (iii) Let
fi: Vi = C be a fixed but arbitrary linear functional on V;, 1 < i < m. (Then
fi € V! = L(V;, C), the dual space of V;.) The function

O:VixVax--xV,—=>C,
defined by
m
e(vlv ')2’ ecey vﬂl) = l_[ .ﬁ(vi)9
i=1
is m-linear. The notation [] f; will be used to denote ©. (iv) Let v; € V; be fixed
but arbitrary vectors, 1 < i < m. Define
¥: L(V,C) x L(V2,C) x++- x L(Vm,C)=> C
by
m
V(fi, far-oor fm) = [ | fitw).
i=l
Then W is m-linear. (v) Suppose f: Wi x Wp x --- x W,, > W is m-linear. If

T; € L(V;, W;), is a fixed but arbitrary linear transformation, 1 < i < m, then
g:VixVax.ooxVy = W, defined by

g, vz, ..., um) = f(Ti(v1), T2(v2), - .., T;m(Um)),
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is m-linear. (vi) Let f: Vi x Vp X --- x V,, = V be m-linear. If T € L(V, W),
thenTf: Vi x Vo x --- x V, > W is m-linear. n]

IfT € L(V, W), then T is completely and uniquely determined by its action on
a basis of V. Indeed, it is common to define a linear transformation by describing

its action on a basis and saying the magic words, “linear extension”. As we now
see, multilinear functions behave analogously.

TueoreMm 5.4 (Multilinear Extension). Let {e;j: 1 < j < n;} be a basis of
vector space Vi, 1 < i < m. Then there is precisely one multilinear function
f: V1 x Vo x-..x Vy = W that takes prescribed values on the elements of

l(‘ljl,Cij---,ij.)5 lfjiS"iv lsism}- (5'1)

Note that the ny x n3 % - - - X n,, vectors in (5.1) typically comprise more than
a basis of the ny 4 n3 + - - - + n,, dimensional vector space V; X Vp X +++ X Vj,.

Proof Let f: Vi x Va x---x Vi =& W be m-linear. Suppose

L]
v = Zaijeij. 1<i=<m,
j=l

are fixed but arbitrary vectors. Then

f(vl'v27-"»vm)

ny ny L
=f Ealjelj, Zaz,-ezj, cens Za,,.je,,,j
j=1 j=1

j=1

ny ny L™
= ZZ Za”,azh "'a"ljnf(elil'e2iz’""e"li-)' (5.2)
W=lp=l  ju=1

by m-linearity. Because the coefficients, [] a;j,, depend only on vy, vy, ..., Um,
we see that f is completely determined by the values

flerjnezppeinemi), 1<ji<nm, 1<i<m.

In particular, if another m-linear function, g: V; x V x --- x V,, = W, agreed
with f on the vectors in (5.1), then g would necessarily be identical to f. On
the other hand, if f is an arbitrary function from the set of vectors in (5.1) into
a vector space W, then f can be extended to a (unique) m-linear function from
Vi x V3 x - - x Vp, into W. The value of the extended functionon (vy, v2, ..., Um)
is obtained from Equation (5.2). |
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The process of extending a function defined on the elements of (5.1) to an
m-linear function of V; x V X - - - X Vj, is called multilinear extension.

Having found an analogy between linear and multilinear functions, we now
discuss a dissimilarity. If T € L(V, W), then the image of T (namely, T(V) =
{T(v): v € V}) is a subspace of W. The image of a multilinear function, on the
other hand, need not be a subspace.

ExampLe 5.5 Let V) = V2 = V be a two-dimensional vector space with basis
{e1, 2}. Let E;; be the 2-by-2 matrix whose only nonzero entry is a 1 in position
@i, j).Define f: VxV — Cy2by f(ei, ¢;) = E;j, 1 <i, j <2,and multilinear
extension. Let u = cje; + c2e3 and v = d) e} + d2e> be fixed but arbitrary vectors
in V. Then, from Equation (5.2) and the definition of f,

cady cida
cdy cdy )’

S, v)=(

Observe that the image of f contains {E;;j: 1 <1, j < 2}, a basis of C,3. Thus,
if the image were a subspace, it would be all of C; 2. However, det(f (4, v)) =0
forallu,veV. a

DerFINITION 5.6 Let f be a multilinear function. The reach of f is the linear
closure of its image.

It is natural to wonder how we might use our extensive knowledge of linear
functions to study multilinear functions. The answer is anticipated by the following.

DerFNtTION 5.7  Let Vy, Va, ..., V;; be vector spaces. A vector space T and an
m-linear function ®: V; x V3 x «.- x V,,, = T are said to satisfy the Universal
Factorization Property if, for every vector space W, and every m-linear function
f:VixVax--.xV, = W,there exists a linear function h: T — W such that
f=ho.

If the pair (T, ®) satisfies the Universal Factorization Property for
Vi, V2, ..., Vm, then any m-linear function of Vj x V5 x -+ x V,, can be “fac-
tored” as the composition of a linear transformation 4 (that depends on f and W),
and a fixed m-linear function ¢ (that depends on neither f nor W). The existence
of such a universal pair effectively reduces the study of m-linear functions to the
study of the single m-linear function, ®, and the vector space T. Definition 5.7 is
perhaps best illustrated by means of the commutative diagram in Figure 5.1.
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Vi x Vax...x Vy -1)'11‘

W
FIGURE 5.1

The existence of universal pairs is easily settled by Theorem 5.4: Let {e;: 1 <
J <n;}beabasis of V;, 1 <i < m. Consider the set

E = {[elj,,ez,-,,...,e,,,j_]: 1<ji<ni,1<i 5m}. 5.3

Let T be the vector space consisting of all formal linear combinations of elements
of E, that is, the free vector space generated by E. By definition, E is a basis of
T. Observe that T is not a subspace of Vj x V3 X - - - x V;,; the addition is different.
Whereas the dimensionof Vj x Vo X -+« X Vpisny +n2+4---+ np,

dim(T) = l"_l[n.-. 54)

i=1

(This explains the use of square brackets in Equation (5.3); while the elements of
E are m-tuples of vectors, E is not a subset of the Cartesian product space.)
Define®: V; x V2 x +:--x V,, > T by

Q(elj,, €2jsye vs ,e,,.,-_) = [elj,.ez_,-,, ves ,e,,.j_] , 5.5)

1 < ji <ni, 1 <i < m, and multilinear extension. If W is an arbitrary vector
space, and f: V) x V2 X --- X V,, =& W is m-linear, let k € L(T, W) be the
unique linear transformation defined by

h ([elj,,ez,-,, - e,,,,-_]) = f(eljl,ezj,, ...,e,,.j.) " (5.6)

1 < ji <n;, 1 <i < m, and linear extension. By Example 5.3(vi), h® is m-
linear and, by the uniqueness part of Theorem 5.4, h® = f. Thus, the pair (T, ®)
satisfies the Universal Factorization Property for Vi, V3, ..., V. Moreover, (by
Equation (5.5)) the reach of & is all of T.



126 Mudltilinear Algebra

DerNtTION 5.8 Suppose (S, W) and (T, ®) satisfy the Universal Factorization
Property for Vi, V3, ..., V. The pairs are isomorphic if there exists an invertible
linear transformation T from S onto T such that ® = T,

TueoreM 5.9  Suppose (S, V) and (T, ®) satisfy the Universal Factorization
Property for Vi, Va, ..., Vm. If the reach of V (respectively ®) is all of S
(respectively T), then (S, V) and (T, ®) are isomorphic.

Proof Because (S, V) and (T, ®) satisfy the Universal Factorization Property,
there exist k € L(S, T) and h € L(T, S) such that ¥ = h® and ® = kW. (See
Figure 5.2.) Therefore, ¥ = hkW. In particular (because the reach of W is S), Ak
is the identity on S. Similarly, kh is the identity on T. It follows that k = A=, and
the proof is complete. a

Vix Vax...X Vi .8 T

S

FIGURE 5.2

Let V}, V2, ..., Vs be vector spaces. It follows from Theorem 5.9 that, up to
isomorphism, there is a unique pair (T, ®) that satisfies the Universal Factorization
Property where the reach of & is all of T.

DerniTioN 5.10 Let T be a vector space and ®: Vi x V x --- x V,y = T
a multilinear map whose reach is all of T. If (T, ®) satisfies the Universal
Factorization Property for Vj, Va,...,V,, then T is the tensor product of
Vi, Va, ..., Va, written

T=V]®V2®"‘®Vm, (5-7)

and ®(vy, v2, ..., Uy) is a decomposable tensor.

Let V; be a vector space of dimension n;, 1 <i < m. Suppose U is an arbitrary
vector space of dimension ny x nz X -+ x ny,. Let T be a fixed but arbitrary
invertible linear transformations from V; @ V2 ® --- ® V,, onto U, and define
¥ = T®. If W is a vector space,and f: V] x Vp x -+ x Vi = W an m-linear
function, then there exists a linear transformation k: U — W such that f = kW,
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namely, k = hT !, where h® = f. (In other words, the diagram in Figure 5.3 is
commutative.) In particular, (U, W) satisfies the Universal Factorization Property.
Because U is the reach of ¥, U is a model for the tensor product. Evidently,
ViV, ®---® V, is just a vector space of the right dimension. What makes
it special are the decomposable tensors, an additional structure afforded by the
multilinear map.

ViXxVaX...XVp—r Vi@V @...0 Vi ——U

f l h kT
w

—_
>

<
<

FIGURE 5.3

This approach affords a rapid, direct proof that the tensor product of vector
spaces exists and that, up to isomorphism, it is unique. Unfortunately, this way of
looking at things produces a somewhat sterile abstraction. Let us construct a more
concrete model.

DerFINITION 5.11  Suppose Vi, V3, ..., Vi, are complex vector spaces. Denote by
M(Vy, Va, ..., Va) the set of m-linear functions f: V; x V2 X -+« X Vy = C.

Under the usual “pointwise” addition and scalar multiplication of functions,
namely,
(cf +dg)(v1, vz, ..., vm)
=cf(v, v2,...,vm) +dg(v1, v2,..., Um), (5.8)
M = MV}, V,,...,Vy,) is a vector space. We are interested in certain distin-
guished elements of its dual space, M'.

Let v; € V;, 1 < i < m. In anticipation of the next few results, denote by
V1 @ 12 ® - - ® vy, the mapping from M into C defined by

ViIQu® - Buw)(f) = f(v1,v2, ..., Um)- (5.9)
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(Compare with Equation (2.3).) Because
VI ®®®: - @ vm)cf +dg)
= (cf +dg)(v1, v2,...,Um)
=cf(v,v2,...,Um) +dg(v1,v2,...,Vy)
=c@n® - @un)(f)+dV1 @128 - @ Um)(g),

V] ® 12 @ - - - ® vy, is linear. It turns out that these special functionals span M’. In
fact, more is true.

THeOREM 5.12 Let B; = {ejj: 1 < j <n;}beabasisof Vi, 1 <i < m. Then

B={e1;®€2;,® - ®@emj,: 1< ji<ni, 1 <i<m) (5.10)
is a basis of the dual space of M(Vy, Va2, ..., Vu).

Proof Let {fij: 1 < j < n;} be the basis of L(V;, C) dual to B;. Then f;; is
defined by fi;(eix) = 8j,, and linear extension. Let

m
[1£i e MV V2, .., Vi)
=1

be the m-linear functional defined by

(n fij) (l)], V2, 000y Up) = l—l ftj,(vg).
t=1 1=1

We claim that

m
[1fi:1<ii<m, 1sr5ml G.11)

t=1
isabasisof M = M(V}, V2,...,Vy).If g € M then
n; ny Ny m
g=ZZ"'Eg(eli,,ezi,,---.em.‘.)nfu',- (5.12)
i=1i=1 fa=l1 =1

(Compare with Equation (2.2).) To verify this identity, observe that its right-hand
side is a linear combination of m-linear functions and hence is m-linear. Therefore
(Theorem 5.4), it suffices to evaluate both sides on (e1,, €25, .. ., €mj,.):

glerp. @250 - Emj)

- ii f:g(e,,-,,ez,-,,...,e,,..-_)’]'-:!ﬁi, (er)-

h=1i=1 in=1
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Because [] fii, (erj,) = O unless iy = j;, 1 < ¢ < m, the right-hand side of this
equation collapses to the left-hand side. Because (5.10) is the dual basis of (5.11),
the proof is complete. o

Set T = M/, the dual space of M = M(Vy, Va,..., Vin), and define & :
VixVax: XV >Tby®(,v2,...,Un) =01 @0 Q@ - -Quy. If f € M,
then

i-th position

{
Vi ®@u® - -Qlcu+dwl®--- @ vm)(f)

= f(v,v2,...,[cu+dwl, ..., um)

=cfU1,02 ey lye, Um) +df (U1, V2, ..., W, ..., Un)

=N - Qud: @ um)(f)
+dVI@n® - Quw® - ®un)(f),

by the multilinearity of f. Because f was arbitrary,

VN - Qlcu+dw]®@ - @ vm)
=c(1®1® - - QU - B Vp)
+dvi®n® - QW®: - Q@ Un).

Therefore, ® is m-linear. To prove that (T, ®), satisfies the Universal Factorization
Property, let W be a vector space. Suppose that g: Vi x Va x -+« x Vjy = Wiis
m-linear. Let B be the basis of T given in Theorem 5.12 and define & : T — W by

hie, ®e2;, ® - Remj) =g (e1ji 25201 €mj) »

1 < ji <n;, 1 <i < m,and linear extension. Then the m-linear functions h®
and g agree on

((elj,.Cij---,emj.) 01 s ji <ni, 1 < i < m]'
Therefore (Theorem 5.4), g = h®, and (T, ®) is a universal pair. Moreover, by
Theorem 5.12, the reach of ® is all of T. In other words, T= Vi@ V2@ - @ V.

We are now going to adopt the notation, v) @ 12 ® - - - ® vy, from the multilinear
functional model, for the abstract definition. The notation

lerjis €210, -- -5 Emja]
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used in the first construction is to be replaced with
e, ®e)® - Qemj,.

Because ®(vy, v2,...,Un) =V ® 11 ® - - - ® vy, we no longer have any special
need for the symbol ®. These notational choices are formalized in the following:

DerFiNTioN 5.13  Henceforth, the generic, abstract, decomposable tensor is de-
noted v; ® v, ® - - - ® vy, with the understanding that it may be viewed as a linear
functional on M(V}, V3, ..., V,x) whenever it is useful to do so.

It is worth emphasizing that

Vi@ - @Vm# {1 Q@ ---@un: v €V;, 1 <i<m).
THeoreM 5.14 Let{e;j: 1 < j <nm;}beabasisof V;, 1 <i <m.If

L]l
v = Za,-je,-j, 1<j<m,
j=l1

then

VI@N®- - Quy

ny n2

33 (ﬁa,,,)e,,-,@ez,.,@...mmj__

h=lhp=l  ja=1 \t=I

THEOREM 5.15 Letv; € V;, 1 <i <m. Thenvi @, ® - - ® vy = 0 ifand only
if v; = 0 for some i.

Proof 1If v; # O for all i, there exist f; € L(V;,C) such that f;(v;) = 1,
l<i<m.letf=[]fie MW, Va,..., Vm). Then

W®n®: - ®uw)(f) = f(vi,v2,...,Um)

[Trie
i=l

1,

sov; @ ®- - -@ v, is not the zero functional. The converse is left to the exercises.
o
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THEOREM 5.16  Suppose v;, w; € V; where w; 0, 1 <i < m. Then

VIO QUna=w Qu2@- @ Wn

if and only if there exist m complex numbers cy, c3, ..., cm such that v; = c;w;,
1<i<mandci xc3x---xXcm=1

Proof Suppose v @1 @ QUn =w Qw2 ® - @ wy # 0. If g isnota
multiple of w, for some fixed but arbitrary k, then {vk, wy} is linearly independent,
in which case there exists a linear functional fi € L(Vi, C) such that fi(vx) =0
and fi(wx) = 1. Choose f; € L(V;,C), i # k, such that f;(w;) = 1 and set
f =TI fi- Then

M ®ne--@um)(f) =[] fit)
i=1

=0
#1
m
=[] fiw) = w1 ®w2®---® wm)(f).
i=Il
contradicting the hypothesis. Therefore, there exist ¢; € C such that v; = c;w;,
1 <i < m. By multilinearity,
WU - QUm =V Q@O - QUn
=quI@uw2® - Q@ CpwWn
m
= (nci)w1®wz®-~®wm~
i=1

Because w1 @ w2 ®- - - @ wm # 0,¢1 X2 X - - X ¢ = 1. The proof of sufficiency
is left to the exercises. ]

We now consider yet another model for the tensor product space.

THEOREM 5.17 Suppose 1 <k <m.Then Vi ® V2 ® --- @ Vi is a model for
MOV2®---® Vi) ® (Vit1 @ Vi42 ® -+ - ® Vi) in which

@ @uU9-  Qu)Q (W1 QW2 @ Wp—i)

=uU1 @ - QuRUWI @ @ Wy



132 Multilinear Algebra
Proof We need to show the existence of a linear transformation
T:(VideV2®---@V)®(Vi+1®Vis2® @ V) > VI®V2®:-- @V

such that

T(n® - Qu)@W+1® - QUm)) =01 Q1O ® Upm,
forallvy; € V;, 1 <i < m. Because (v @ 12 ® -+ @ vyt v; € V;} spans
Vi® V2 ®--- ® Vp, any such transformation is onto and hence, by a dimension
argument, one-to-one.

Let W be the unique bilinear function' that satisfies
V1@ Qv Uk+1 @ QUn) =01 Q2@ -+ - ® Um,
forall v; € V;, 1 <i < m. Then the existence of T is established by the Universal
Factorization Property (illustrated in Figure 5.4). O

M. Vi) X (V41 ®...8Vm) > (V1®...0 V) ® (Vi1 ®...Q Vi)

4
>» ViV ®...Q Vy,

FIGURE 5.4

If m = 3 and k = 2, Theorem 5.17 becomes (Vi@ V) @ V3 = V; @ V2 ® Va.
Evidently,
MeWn)eV:=V® (V2 Vs). (5.13)

When V} = V = -.. = V,,, Theorem 5.17 is the basis for the theory of tensor
algebras, a fascinating, but well treated subject about which we will say no more.
(See [Bourbaki (1948)], [Greub (1967)] or [Marcus (1973)].)

1See Exercise 10.
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ExaMpLE 5.18 Suppose Vi =Cypand Vo = Cyp. Let &: V) x V2 — Cpx be
the bilinear function defined by ®(X,¥) = X'Y. Let E/ be the 1-by-k matrix
whose only nonzero entry is a 1 in column j, and E; the 1-by-n matrix whose
only nonzero entry is a 1 in column i. Then ®(E;, E/) = E;;, the n-by-k matrix
whose only nonzero entry is a 1 in position (i, j). (Compare with Example 5.5.)
Because {E;j: 1 < i < n,1 < j < k} is a basis of Cp, the reach of ® is
all of C, . If W is a vector space and f: V) x Vo — W is bilinear, define
h: Cax = W by h(E;;) = f(Ei,E)), 1 <i <n,1 < j <k, and linear
extension. From Theorem 5.4, f = h®. Therefore, C,  is yet another model
for V; ® V3, one in which the decomposable tensor X ® ¥ = X'Y. (Because
Vi@V =V, ®V,® Vs, this model could be used for an inductive
constructionof Vi @ V2 ® - - - @ Vp,l) m]

Now that the study of multilinear functions has been reduced to the study of
tensor products (including the decomposable tensors), we are going to shift our
perspective and think of multilinear functions as a means of illuminating tensor
products. Put another way, we are not so much interested in multilinear functions
for their own sake as we are in the light they shed on tensor spaces.

Let V1, Va,..., V, and Wy, W, ..., W, be vector spaces, and suppose T; €
L(V;,W;), 1 < i < m. Then the function ¥: V; x Vo X --- X V, —>

Wi@W,® - - ® W, defined by
Y, v2,...,Um) =T1(W1) @ 2 (12) ® - - @ Trn(Vm)

is m-linear. (Observe that vy X V2 X «+* X Uy = V1 @V @ -+ + ® Uy iS m-
linear and apply Example 5.3(v).) Thus, there is a unique linear transformation
h:ViV® - @V > W1 @ W2 ® .- ® Wy such that

hvi@n® - ®@un) =Ti(V)) @T2(12) ® -+ - ® Tn(Um), (5.14)

forallv;e Vi, 1 <i <m.

DeFINITION 5.19 LetT; € L(V;,W;), 1 <i <m.Theuniqueh € L(Vi® V, ®@
o Q@Vu, W @ W2 ® --- ® Wy,) determined by Equation (5.14) is said to be
induced by T, T3, . .., T,,. The notation for this induced linear transformation is
h=T1®Th®: QT

If Iy is the identity operator on Vg, 1 < k < m, then it follows from
Equation (5.14), and the fact that the decomposable tensors span, that I} ® I ®
- -+ ® Iy is the identity operatoron Vi @ V2 ® - - - @ V.

THeorem 5.20 IfS; € L(U;, V;) and T; € L(V;, W), 1 <i <m, then

TNRT2®: - -@Tn)(51952®- - -@Sm) = (T1SNV(T252)® - -@(TinSm). (5.15)
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CoroLLARY 5.21 SupposeT; € L(V;,W;),1 <i <m.ThenT1 @, ®--- @ T
is invertible if and only if T; is invertible, 1 <i < m.

Proof If each T; is invertible then, letting U; = W; and §; = T,”! in
Equation (5.15) establishes the identity

THeTHe @) =T1ehe - 0T (5.16)
Conversely, suppose
NeNh® @TneclVi®@V:@ - @Vm, W1 @W2Q .- @ Wp)
is one-to-one and onto. If v; # 0, 1 <i < m, then, by Theorem 5.15,

Ti(m)®@ (1)@ ® Tn(vm)
=N - @Tw)Vi®n® - @ Un)
#0.

Therefore, T;(v;) # 0,1 <i < m, and each T; is nonsingular. It follows from a
dimension argument that each T; is onto. 0

By now the reader has probably observed a notational ambiguity. How do we
distinguish

NiENL® - QTreL(Vi®V2® - @V, Wi OW2® - @ Wp)
from

i@ - ®Tm € L(V1, W) QL(V2, W2) ® - ® L(Vim, Wm)?

THEOREM 5.22 The vector space

LViVa®@ - @V, W QW2®--- @ Wp)

is a model for the tensor product

L(Vi,W)®L(V2,W2) ® -+ ® L(Vim, W)

inwhich{' @ T2 ®- - -®Tm: T; € L(V;, W;)} is the set of decomposable tensors.
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LyxLyx...XxLy—>L1®Ly®...QL,

FIGURE 5.5

Proof LetT1 ® T2 ®- - - ® Ty, be the induced transformation and, temporarily, let
Ti ©T2 ©- - - O T,y denote the decomposable tensor in L(V;y, W;) ® L(V2, W2) ®
+++ ® L(Vpn, Wp). Consider the diagram illustrated in Figure 5.5, where L; =
L(V;,W),1<i<m,

L=L(Vi®V2® - @V, W1 QW2 ®:-- Q@ Wp),

and VW(T,13,...,.Tw) =T ®T> ® --- @ T,,,. Because we cannot assume that
T'®T: ®:--® T, is a decomposable tensor, we are obliged to prove that W is
multilinear. That, however, is an easy consequence of the identity

N1® - ®CTi+dI)®--@Tw)(V1 @12 @ -+ ® Um)
=Ti(01) ® -+ ® (cT; (vi) +dT/(i)) @ - - - ® T (vm),

because the tensor product of vectors on the right-hand side of this equation is
multilinear.

Now that we know W to be multilinear, we can use the Universal Factorization
Property to deduce the existence of a (unique) linear transformation

h:Li®L;®---®Ly »> L

suchthat (MM OO OTp) =TH @ T2 ® --- @ Tp. It remains to prove
that h is invertible. Suppose n; = dim(V;) and k; = dim(W;),1 <i < m.
Then dim(L;) = niki, so dim(L; ® L ® --- @ L,) = []niki. Because
dim(L) = (] n,-) (I k,-) is the same, it suffices to show that & is onto.

Suppose {v;j: 1 < i < n;} and {w;j: 1 < i < k;} are bases of V; and W;,
respectively, 1 < i < m. If S is a fixed but arbitrary linear transformation in L
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then, by Theorem 5.12, there exist complex coefficients such that

S (v1j, ®v2;, ® - ® Umj)

@)
1 < j; <nj, 1 <i <m,where
kk k

sgb o E

) h=1ix=1 im=1

Define T}, : Vi - Wiby T}, (vie) = §jwir, 1 S jot <miy1 <r <k, 1 <i<m,
and linear extension. Then

S=YY Clpmimtrim Tty ® T ® - ® T, (5.17)
® ®

where

To confirm Equation (5.17), apply both sides to v1 j, ® v2j, ® - - - ® Umj, . Because
it is a linear combination of things of the form 7} ® T ® - - - @ T, S belongs to
the image of h. Therefore, A is onto. a

We turn now to matrix representations of induced linear transformations.
DeriNmion 5.23 Let B; = {ejj: 1 < j < n;} be an ordered basis of V;,
1 < i < m. The basis

B={e1j ®€2;,® - @emj.: 1 < ji <mi, 1<i <m} (5.18)
of Vi® V2 ® - - - ® Vp is said to be induced by By, B, ..., By. The induced basis
B is ordered lexicographically by the subscripts. That is,

eii, ® €2i, ® - - - @ emi, precedes e)j, @ e2;, @ - @ em;j,

provided the first nonzero difference, j; — i, is positive.
EXAMPLE 5.24 ¢}, ® €25 ® e3; comes before ey; ® €2 ® €3 in lexicographic order
if

(1) r <i;orif

(2 r=iands < j;orif

@B) r=i,s=j,andt <k. n]
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THEOREM 5.25 Let {v;j: 1 < j < n;} be an ordered basis of V;, and {w;j: 1 <
Jj < k;} be an ordered basis of W;, 1 < i < m. Let

E={v; ®v;,® - ®umj,: 1 <ji<ni, 1 <i <m}
and
F={w; @w2;,® - @Wmj,: 1 < ji <ki, 1 <i <m}
be the lexicographically ordered, induced bases of Vi ® V2, ® --- @ V;, and
W1 ® W2 ® - - ® Wp, respectively. Let T, € L(Vp, Wp) be defined by
k’
T,(v,,j) = Eai’}-wp.-, 1 <j=<np,
j=1
and linear extension (so the matrix representation of Tp, with respect to {vp,: 1 <
r <np)and (wp,: 1 <1 < kp), is Ap = (af}).) Then, the
(1,82, ...,im), U1y J2, -+ » jm)) -entry
of the matrix representation of T) @ T ® - - - @ T,, with respect to E and F is

]'[ a,{ i (5.19)
p=1

Proof
N®N® - ®Tn) (v1j, ®v2;® -+ ® Umj,)

=T (v1,) ® T2 (v25,) ® - - ® T (Vm;)

= Za}lha};h @ Wi @ Wi, @ ¢ @ Wiy,
@
u]

DeFINITION 5.26 Let A, = (af}) be a kp-by-n, matrix, 1 < p < m. The
Kronecker product, A] @ A2 ® - -+ ® Ap, is a [ k, -by - [] n, matrix whose
rows are indexed by the set {(iy,i2,...,im): 1 < ip < kp} and whose columns
are indexed by {(ji, j2,...,Jjm): 1 < jp < np}, both ordered lexicographically.
The ((i1, i2, ..., im), (1, J2, - - - » jm))-entry of this big matrix is

P
[14;
p=1
The isomorphism between L(V;, W;) and Cy, »,, together with Theorem 5.22,
yields the expected isomorphism

anf'n n; g Ckl o @ ckz.ﬂz ® e ® Ck.!"ﬂ' (5'20)
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CoroLLARY 5.27 If the matrix representation of T; is A; then, with respect to
appropriate induced bases, the matrix representation of ) ® T, ® +-- @ T, is
Al @Az@"‘@Am-

Proof In view of Definition 5.26, this is just a restatement of Theorem 5.25. O

ExamrLe 528 Let Ay = A = (a;j) € Cpq and A2 = B = (bys) € Cyp.
By Definition 5.26, the ((i, ), (j, s))-entry of A ® B € Cpmgn is aijbys. In
lexicographic order, (i1, rj) comes before (i3, r2) if i}y < iz orifiy =i andr| <
r2. Thus, the first m rows of A ® B are the ones indexed (1, 1), (1, 2), ..., (1, m).
Similarly, the first n columns are those indexed (1, 1), (1, 2), ..., (1, n). Denote
by L the submatrix of A ® B lying in its first m rows and first #n columns. Then the
(r, s)-entry of L is the ((1,r), (1, s))-entry of A ® B, namely, a11b,s. Evidently,
L = aj; B. What about M, the submatrix of A ® B lying in its first m rows, and
columns 7 + 1 through 2n? The (r, s)-entry of M is the ((1, r), (2, s))-entry of
A ® B, namely, aj2b,;. That is, M = a2 B. More generally, A ® B is the block
partitioned matrix

anB apB ... ayB
A®B = anB anB ... ayB (5.21)
ap1B appB ... apgB

ExampLE 529 Letm = p and n = g in Example 5.28, so that A, B € Cp 4.
The Hadamard (or Schur) product of A and B is A - B = (a;jb;j), that
is, the p-by-g matrix whose (i, j)-entry is a;;b;j. Observe that A - B is the
principal submatrix of A ® B lying in rows (1, 1), (2,2), ..., (p, p) and columns
a,1,2,2),...,(4,9). a
ExampLE 5.30 Suppose P = (p;;) and Q = (g;;) are n-by-n complex matrices.
Define T € L(Cp,n, Cn,») by T(A) = PAQ. Let’s compute the matrix represen-
tation of T with respect to the basis B = (E;j: 1 < i, j < n}, where E;; is the
n-by-n matrix whose only nonzero entry is a 1 in position (i, j). By definition,

T(Ers) = PEr.rQ

(£

i=1

g Pir (Z; 4sj E.-,-)

Y (piras)Eij.

i,j=1
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So, the ((i, j), (r, s))-entry of the matrix representation of T with respect to B is
Pirgs;, precisely the ((i, j), (r, s))-entry of P @ Q'. o

Let B; = {eij: 1 < j < n;)} be an orthonormal basis of the inner product space
Vi, 1 < i < m. Then there exists a unique inner producton Vi @ V2 ® - - @ Vjy
with respect to which the induced basis

B={e1,®€;,® - @emj,: 1< ji<n, 1 <i<m}

is orthonormal. Namely, if

ny na L™

v= Z Z wis Z (i javenim)Cljs D €25, B -+ - @ €mj,
a=lp=1l  ja=1

and
ny ny N
w= "’ZbUlJz _____ jn)€lj; ®€2j, ® - @ emj,,
H=1j=1 Jm=1
then their inner product is
n n2 Nm -
(u, v) = Z Z o Z a(jl'j!v"'-j-)b(jl-jlv'--'j-)' (5'22)

h=lh=l  ju=l

From its derivation, it would seem that the inner product defined in Equation (5.22)
depends on the orthonormal bases B, Bs, ..., B, that were used in its construc-
tion. In fact, this turns out not to be the case.

THeOREM 5.31 Let (, ); be an inner producton V;, 1 <i <m. If(, ) is the
inner product defined by Equation (5.22), then

V®n®  ®Un, W QW2 ® - @ wm) = [ [(vi, widi, (5.23)

vi,wi €V, 1<i<m.

Proof LetB; = {eijj: 1 < j < n;} be the orthonormal basis of V; used in the
derivation of Equation (5.22). Let

ny n;
v = Za,-je,-j and w; = Zb,'je,'j,
j=1 j=1
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1 <i < m. Then (Theorem 5.14)
NN - QUn

n  ny N

33 (na,,,)e,,, e @@ e

=1j=1 ja=1
and

WRQUWQ @ wy

= i i i (]']b,,,) e1j, ® €2, @+ ® emj,.

h=1p=1 ja=1 1
Therefore, by Equation (5.22),
VPN QUa, W QuW2Q - @ wy)

3 (0) ()

= n Zaubu(eun Cu):)

i=1

_n Za,,e,,,zb,,,e.k)

k=1

= [ Jwi, wi)i.

i=1
(m]

Because the decomposable tensors span Vi @ V2 ® --- ® Vj, the inner
product defined by Equation (5.22) is completely and uniquely determined by
Equation (5.23). In particular, it is basis independent. Because Equation (5.23) is
so much simpler and more appealing than Equation (5.22), we may as well use it
in the formal definition.
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DerniTiON 5.32  Let V), V3, ..., V), be inner product spaces. (As it will cause no
confusion, let (, ), without a subscript, denote the inner productin V;, 1 <i <m.)
The unique inner producton V; @ V2 ® - - - @ V, that satisfies

m
V@U@ @ Vm, W1 BW2 ® - @ W) = [ [(vi, wi),

i=1
vi, wi € V;, 1 <i < m,is called the induced inner product.
CoroLLARY 5.33 Let Vi, Va,..., V,, be inner product spaces. Suppose T; €
L(V;, Vi), 1 <i < m. Then (with respect to the induced inner product)

(Tl®T2®"'®Tm)*=T;@T;@"'@T;- (5.24)

Proof Observe that

(MEL® - @In)viIdn® - Quu),w Qw2 ® -+ ® Wy)
=(NM)QN1)® @ Tu(Um), w1 Quw2® - ® Wy)

o § (LICHR™
1

=[] T @)
i=1

=®n®  ®Ua (W) (w2)® - QT (Wn))
=WOn® QU (TT T, ® - QT ) (W1 Qw2 ® -+ @ wn)).

This completes the proof because the adjoint is unique and the decomposable
tensors span Vi @ V2 @ - - - @ Vi, a

We come at last to the “enormous simplifications™ promised at the beginning
of the chapter. Although it is not always necessary, from now on we are going
to assume that Vy = V3 = ... = V,, = V. This identification makes the notation
VeV ®---®V obsolete.

DEerFINITION 5.34  The m-th tensor power of V, denoted V®™, is the tensor product
of m copies of V, thatis, V& =C,V® = V,and V®" =V, @ V2, ® - - - ® Vi,
m>1l,whereVj=V,=...=V,=V,

With the vector spaces all equal, it is no longer necessary to deal with m bases;
one will do. We can get by with one less subscript. If B = {e],e2,...,¢e,} is a
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basis of V, then
e, ®e, ®---®ej i 1<ji<n 1<i<m)

is the induced basis of V™, Unfortunately, we are still left with such monstrosities
as

n n n
v= Z Z e g Z €y Fraees Jm) € ®¢j2 ®:-- ®¢j_- (525)

i=lh=l =)

Recall (Definition 1.20) that I',,, , is the set of all functions from {1, 2, ..., m} into
{1,2,...,n). Identifying (ji, j2, ..., jm) With the function @ € I', , defined by
a(i) = ji, | <i < m, allows us to rewrite Equation (5.25) more attractively as

V=) Calat)®€a)® @ am). (5.26)
a€ly .
DeFNITION 5.35 If vy, v,...,vy € Vanda € 'y, 5, let

vf = V(1)  Va(2) ® -+ @ Vg(m)-

If B = {e1,e2,...,6e,} is an ordered basis of V then, in the notation of
Definition 5.35, the induced basis of V®™ is

{(e2: a € Tl (5.27)

which we take to be ordered lexicographically by the subscripts « € ', ,. We can
now simplify Equation (5.26) even further and write the generic tensor in V®™ as

v= Z ca,e?. (5.28)

a€ly,

ExaMPLE 5.36 Let A, = (a,-’j) and B, = (bfj) be n-by-n complex matrices,
1 <i < m. Then the equation

(A1®A2Q - @An)(B1®B,® - ® Bn)
=A1BiI®A2B,® - @ AnBn

follows from Theorem 5.20 and Corollary 5.27. However, a direct proof may
be instructive. From the definition of matrix multiplication, the (a, 8)-entry of
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(Al®A2®"'®Am)(Bl®82®'“®Bm)is

Z ]—[ G(r)r(r)) (]-[ (r)ﬂ(r))

Y€l \r=1
= H %)y By B
Y€lmr=1
= H Z“a(r)l Jﬂ(r))
r=l1
m
== l—[(ArBr)u(r)p(r)v
r=1
which is the (a, 8)-entryof A1B; ® A2B; @ -+ ® ApBnm. =]

THEOREM 5.37 Suppose Ai € Cpp, 1 <i <m.IfA; 20,1 <i <m, then
AI®RA2®---®An = 0.

Proof Suppose A; = B{'B;, 1 <i <m.Then

Al®A2® - ® Am = (B1B1) ® (B}B2) ® --- ® (B, Bm)
=(B{®B;®---®B,)(BI®B,® - ® Bn)

=(B1®B:®:--®Bn)"(B1®B2® - ® Bn).
o

COROLLARY 5.38 Let B; and C; be n-by-n positive semidefinite hermitian matri-
ces. Suppose Aj = Bi + Ci, 1 <i <m. Then

AlI®A® - ®Am2B1®B,® - ®Br+C1Q@C2® - ®Cp.

Proof From the multilinearity of the Kronecker product,

AIRA®---®An=(B1+C1)®(B2+C2)® -+ ® (Bn + Cp)
=BI®B,® - ®Bn+ Y +C1®C28 - ®Cm,

where “Y " represents the sum of all 2™ —2 terms of the form X, 8 X2®- - - @ X
where each X; is either B; or C;, and at least one of each occurs. By Theorem 5.37,
each of these 2™ — 2 terms is positive semidefinite hermitian. O
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COROLLARY 5.39 Let V be an inner product space. If S;, T; € L(V,V), are
positive semidefinite, 1 <i <m,then S;® 2@ @SmandT1 QT2 ®--- Q@ Tn
are positive semidefinite. Moreover,

$14+T)R2+NR)R - @Sn+Th) = 519520 - @Sm+T1 Q@ - @ Ty.

Corollary 5.39 is the operator version of Corollary 5.38. Another variation on
this theme is the following: Let V be an inner product space of dimension n.
Suppose T € L(V, V) is positive semidefinite. By the Spectral Theorem, there is
an orthonormal basis {u;, 42, ..., .} of V consisting of eigenvectors of T, that
is, T(4;) = Aju; and A; > 0,1 < i < n. If r is a positive real number, define
T" > 0by

T (i) =Ai"w;, 1<i<n, (5.29)

and linear extension. (Compare with Equation (2.16).) The following is a special
case of a much more general result proved in [Lieb (1973)] and [Ando (1979)]:

THEOREM 5.40 Let V be an n-dimensional inner product space. Suppose S; and
T; are positive semidefinite hermitian operatorson V, 1 <i <n. [f0 <6 <1,
then

@S +10—-0T)/" @68+ (1 —-0)T)/"®---® (88, + (1 — 6)T,) /"

26(s/"®5"®--®s/")+1-6) (1" e} & @ T}").

DerNmTION 541 If T € L(V, V), denote by T®™ € L(V®™, V®™) the operator
T®T ®:--®T (m-times). Similarly, if A = (a;j) € Cy, 4, its m-th Kronecker
power is the matrix A®™ = AQ A®- - -® A (m-times). Thus, A®™ is an n™-by-n™
matrix whose rows and columns are indexed by I'y, ,. The (o, B)-entry of A®™ is

(A®™)q,p = nau(r)p(:)- (5.30)

=1

Combining Theorem 5.40 and Definition 5.41, we obtain the following: If A
and B are positive semidefinite hermitian n-by-n matrices and 0 < 6 < 1, then

(0A+a-0)B)"")™ > 64" 1+ 1 - 0)(BVme".
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Exercises
1. Suppose Vi, V3, ..., Vi, are one-dimensional vector spaces over C, that is,
Vi=V2=---=Vu=C.Define f: V] x V2 x---xV, > Cby

m
flerc,eoiiom) = nci-
i=l1
Prove that f is m-linear. (This is the prototype for all multilinear functions.)
2. LetVy=Vy=:.. =V, =Cyp.Define f: Vi x Va X -+ X Vjy = Cp . by

f(ChCZ:---'Cm):C1C2...Cm.

Prove that f is m-linear.

3. Explicitly write out all the elements of the basis B in Equation (5.10) when
m=2=n),andny; =3.

4. Let {u, v, x, y} be a linear independent set of vectors in a vector space V.
Show that the tensoru @ v+ x ® y € V ® V is not decomposable.

5. Finish the proof of Theorem 5.15. (Hint: 0 + 0 = 0.)

6. Finish the proof of Theorem 5.16.

7. Let{v, v2,..., v} be a linearly independent set of vectors.
a. Prove that

k
Zw@u: =0
i=1

ifandonlyifu; =us =--- =u =0.
b. Suppose A = (a;;) € Cy satisfies AA" = I;. If

k
wj = Zaijvi: 1<j<k,

prove that

k k
Zvi Rui = Zwi ® w;.
i=1 i=1

8. Prove Theorem 5.14.

9. Suppose (T, ®)is a universal pair for Vi, V3, ..., Viy. Prove that the following
conditions are equivalent.
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(i) The reach of @ is all of T.

(ii) For every m-linear function f: Vj x V3 x - -+ x Vj = W, there exists a
unique linear transformation h: T — W such that f = h®.

10. Let B; = {ei1, €i2, ..., €in ) beabasisof V;,1 <i < m.Suppose 1 <k <m.

11.

12.

14.
15.

Define
Y:(V1®@V28---@Vi) X (Vi41® Vie42®@ - @ Vi) > VI® V2@ --@ Vi
by

W ((eri, ® €2i, ® - - - @ ekiy), (€4 Dinss @ €k42in ® -+ ® €mi))

=e]i| ®e2i1 ®"'®eﬂll‘.v

and bilinear extension. Prove that
Y({(i@n® - Qu),(+1 QVi+2Q - QUn)) =1 Q0@ - @ Un,

forallv; e V;, 1 <i <m.

Let V® be the direct sum of the vector spaces V®™ m > 0. Define a “product”
on the elments of V® by uv = u ® v, 4, v € V®. Prove that

a. (au)v = u(av) = a(uv) foralla € Candallu, v € V®,

b. u(v+w) =uv+uwforallu,v,w e VS,

c. uv=0impliesu =0orv=0.

Let B = {e},€2,...,en} beabasisof V) = Vo = --- = V,, = V. Suppose
T, e L(V,V),1<i<m.DefineT1 ®T2®:--® T, by

NOTR® - ®Tm) (a(t) ® a2 ® - ® eam))
= Ti (ea()) ® T2 (€a@) ® * - - ® T (€aim)) »

a € 'y, n, and linear extension. Prove directly (using the multilinearity of the
tensor product, but not the Universal Factorization Property) that

NN - BTy) (N ®@nQ® - Quy) =T1 (V1)@ T2(12) Q- - - ® Ty (Um).

Prove Theorem 5.20.

Using Theorem 5.15 and Definition 5.19 (but not Theorem 5.22), prove
directly that T) ® T ® + - - ® T, = 0, the zero transformation, if and only if
T; = 0 for some i.
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16.

17.

18.

19.

20.

21.

22.
23.

26.

27.

Suppose o € Sp. Prove that there exists a unique invertible linear operator
P(o~"') € L(V®™, V®™) satisfying

PO M0 ®@n® - ®Un) = Vs1) ® Vo) ® - - ® Us(m)s

forall vy, v2,..., v, € V.

Show that the operator P(o ~!) from Exercise 16 is not of the form T} @ T, ®
<+« ® Ty, unless 0 = ey, or dim(V) = 1.

Prove that 0 — P(o) is a representation of S,,, where P(o~!) is defined
in Exercise 16. (Hint: Show that P(ct) = P(c)P(t) and that P(ep,) is the
identity operator on V&™)

Explicitly write out the Kronecker product

1 2 12 1
a. (3 4)®12 b. 1:@(3 4) c. (2)®(3 4)
Let A, B,C € Cy .

a. Show that A®@ (B+C) = A® B + A ® C. (Hint: What about
AR(B+C)®@DQ®ED

b. Showthat ( A® B)@C=(ARC)D(BR® ().
c. Show that, in genera, AQ (B®C)# (A®B)® (A®C).

Let n = pq. Show that there exists a permutation matrix P € C, , such that
forall A € Cppand B € Cgq, P~1(A® B)P = B ® A. (See [Hartwig &
Morris (1975)] and [Lewis (1996)] for interesting perspectives on P.)

If A, B, and C are matrices, prove or disprove that AQ (B®C) = (A®B)®C.

Show that the Kronecker product of two permutation matrices is a permutation
matrix.

Suppose A € Cp,p and B € Cg 4.

a. Provethat (A® I;)(I, ® B) = A® B.

b. Prove that det(/, ® B) = det(B)”. (Hint: Example 5.28.)
c. Prove that det(A ® I,;) = det(A)?. (Hint: Exercise 21.)
d. Prove that det(A ® B) = det(A)? det(B)P.

. Let Ay, Az, ..., An be square matrices. If A} ® A2 ® - - - ® A, is invertible,

prove that A; is invertible 1 <i < m.

If A; is similarto B;, 1 <i < m, prove that A1 ® A2 ® - -- ® Ap, is similar
0B ®B, Q- ® Bp.

Suppose A € C,,, and B € Cy 4. Prove that tr (A ® B) = tr (A) tr (B).
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28.

29,

30.

31.

32.

33.

34.

35.

36.

37.

38.

Multilinear Algebra

Let G be a group. Suppose that x; is a character of G afforded by the
representation A;, 1 <i <m.If

B(o) = A1(0)® A2(0)® - ® Am(0), 0 €G,

Prove that
a. B is arepresentation of G.
b. the character afforded by B is given by

x©@) =[]xi0), oe€aG.
i=1

Suppose G is a subgroup of S, and G a subgroup of §;. Setm = r + ¢ and

let G be the direct product, G G>. Suppose ; is a character of G; afforded

by the representation A;,i = 1, 2.

a. Show that B(o, t) = Aj(0) ® A2(7), (0, T) € G, defines a representation
of G.

b. Let & be the character of G afforded by B. Show that £(o,7) =
x1(0)x2(v), (0, 7) €G.

Prove that Equation (5.22) defines an inner producton Vi @ V2 @ - - - @ Vip,.

(Hint: Explain why it may be regarded as the dot product.)

Let P(0) € L(V®™, V®™) be the linear operator from Exercises 16-18. Show

that, with respect to the induced inner product, P(0)* = P(¢~!) = P(0)"".

Suppose T} ® T ® - - - ® T, is hermitian with respect to the induced inner

product. Prove or disprove that T; is hermitian, 1 <i < m.

Suppose T; € L(V;,V;)isnormal, 1 <i <m.Provethat 71 @2 ®--- @ T,

is normal with respect to the induced inner product. Discuss the converse.

Suppose T; € L(V;, Vi) isunitary, ] <i <m.ProvethatT1 @ o ®---® T,
is unitary with respect to the induced inner product. Discuss the converse.

Suppose A and B are positive semidefinite hermitian n-by-n matrices. Prove
that A - B > 0. (Hint: Example 5.29 and Theorem 5.37.)

In the proof of Corollary 5.38, let m = 3 and explictly write out all 6 (mixed)
terms of the form X; ® X, ® X3, where X; = B; or C;, 1 <i < 3.
Suppose A; > Bi, 1 <i < m. Provethat Aj® A2 ® ---®@ A, >
BI®B,®:-® Bp.

Let A1,A2,...,Ap and 01, 72, ..., ng be the eigenvalues of A € C,, , and
B € Cg, 4, respectively.
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39.

40.

41.

a. Prove that the eigenvaluesof AQ Bare A;n;,1 <i < p,1 < j < q.(Hint:
Let u; be an eigenvector of A corresponding to A; and v; an eigenvector
of B corresponding to n;. Prove that u; ® v; is an eigenvector of A ® B
corresponding to A;7;.)

b. Use part (a) to prove that det(A ® B) = det(A)? det(B)”.

Let A1,22,...,Ap and 0y, 72, ..., 1, be the eigenvalues of A € Cp , and

B € Cg 4, respectively. Prove that the eigenvalues of A ® I, + I, ® B are

Ai+nj,1<i<p1<j=<gq.

Let X = (x;j) be an n-by-n matrix whose entries are n? independent

indeterminates (variables) over the complex numbers. If

f = f, 12, X13, -+, Xijo oo+, Xnn)
is a monomial of (total) degree m in the n? variables comprising the entries
of X, show that f is an entry of X®™,

Suppose G is a subgroup of S,. Let 0 — Q(0) = (Bi0(j)), 0 € G, be
the natural representation of G by permutation matrices. Then Q affords
the fixed point character of G. Let r be a fixed positive integer. Define
K, (o) = Q(0)®", the r-th Kronecker power of Q(0).

a. Show that o — K,(0), o0 € G, is a representation of G.

b. Show that the character of KX, is

F@) = ) 8oy 0€G.

yelr, .

c. Define G(y) ={oc € G: oy =y}, ¥ € T'rn. If x € I(G), show that the
multiplicity of x as an irreducible constituent of F” is

- Fe= ) (X, Demn/IG : GW),
v€l,.
where [G : G(y)] = 0o(G)/o(G(y)) is the index of G(y) in G.
d. Show that (x, F")g < (x, F"*!)g.

e. Let x, be the irreducible character of S, corresponding to # + n. If
1 <r < n, show that

(s F7), = Y ()t Dt
=1

where S(r, t) is the number of ways to partition an r-element set into
the disjoint union of ¢ nonempty subsets. (These numbers are known as
Stirling Numbers of the Second Kind.)
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42.

43.

Multilinear Algebra

Let x» be the irreducible character of S, corresponding to m  n. Let
k be minimal so that x, is an irreducible constituent of F*. Prove that
(Xns Fk)n = (Xx» Dn—t-

Let xr be the irreducible character of S, corresponding to the partition
n = [m, 2, ..., as]of n. If s > 1, prove that the smallest positive integer
k such that x, is an irreducible constituent of F k isk = n — m;. (Hint:
Use part (f) along with several applications of the Branching Theorem.)

Suppose A, B € C, 5. Prove that (A - B)*(A - B) < (A*A) - (B*B). (Hint:
Exercise 51, Chapter 2.)

Suppose A is a real n-by-n matrix. Define

a.
b.

00
A= EA"/II!.
n=0

If AB = BA, show that eA+2 = ¢4¢B.
Show that eA ® B = A®IH®B where | = I,.

A Hadamard matrix of order n is an n-by-n matrix H, each of whose entries
is either 41 or —1, that satisfies the condition H H' = nl,.

a.
b.
c.

Exhibit a Hadamard matrix of order 2.
Prove that there is no Hadamard matrix of order 3.

Prove that there is a Hadamard matrix of order n = 2* for every positive
integer k. (Hint: If H, and H, are Hadamard matrices, prove that H; @ H,
is a Hadamard matrix.)

Can you find a Hadamard matrix of order 4 that is not the Kronecker
product of two Hadamard matrices of order 2?



CHAPTER 6

Symmetry Classes of Tensors

For a fixed but arbitrary o € Sp,, define
m times
F—ﬁ—_—\
V:VxVx-.-xV— yom
by
\l‘(vlv U2yc00y ”m) = va"(l) ® vd"(Z) ® e ® va—l(m)'

Because W is m-linear, there exists a unique! linear transformation P(c) €
L(V®m_ y®m)such that the diagram in Figure 6.1 is commutative. In other words,

PO)(vi®un® - @ Up) = Vs-1(1) ® VYs-12) @+ * @ Vg-1(m),

for all decomposable tensors v @ V2 ®@ - - - @ vy € VO™,
Observe that

P(D)PE) (11 @2 ® - ® Um)

= P(t)(Vo-1(1) ® Vg-1(2) ® * * * ® Vg-1(m))

= Vo-1(z-1(1) @ Vo-1(z-1(2)) ® * - - ® Vo-1(z-1(m))
=Pro)vi®n® - @ up).

lUniquenees is guaranteed by Exercise 9, Chapter 5.

151
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VxVx..xV—o>Vvem

v P(o)

___,Vem

FIGURE 6.1

Therefore (because the decomposable tensors span V&™),
P(t)P(o) = P(t0),
for all o, T € S,». Moreover, P(o) is invertible, and

P(a)’l = P(a"l), o € Spm,

so P is a representation of Sp.
With respect to the induced inner product,

PO VIO QUn), W QW2+ ® Wm)

= (Vo-1(1) ® Vg-12) ® *** ® Ug-1(m), W1 QW2 B - @ W)

= [[we-1y, w)

i=1
= [T wo)
i=1

=@ ® - @Um P HW1 QW ® - @ wn)),

6.1)

6.2)

for all decomposable tensors v} @ 12 ® -+ - @ Um and W @ W2 ® - + - @ Wy in VE™,

Because the decomposable tensors span V™, we conclude? that

P@)* =P(@c™"), o€ Sn.

2See Exercise 20, Chapter 2.

(6.3)
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DerFiNmmion 6.1 Let G be a subgroup of S,,. If x is an irreducible character of G.
The symmetrizer, T(G, x) € L(V®™, V®™), is defined by

x©

TG, x)= o(G)

Y x@)P(o). (6.4)

ogeG

LeEMMA 6.2 Let G be a subgroup of Sp. Let x be an irreducible character of G.
If t € G is fixed but arbitrary, then P(t)T(G, x) = T(G, x)P(7).

Proof

POTE 0 = X3 3 1)P@)P@)
oeG

_x@
=20y ‘; x(0)P(to)

_x@

2G) 2 X&' P@)

oeG

_ Xx(
~ o(G)

Y xet™HP@©)

oeG

_ X(
~ 0o(G)

Y x(@)P(o7)
oeG
_ X

2(G) 2 X@OP@P(@)

oeG
=T(G, x)P(7),
by Equation (6.1) and Exercise 14, Chapter 4. a

THEOREM 6.3  Suppose x is an irreducible character of the subgroup G of Sm. If
V is a vector space of dimension n, then T (G, x) is an orthogonal projection on
y®m

Proof We need to show that T (G, x)* = T(G, x) = T(G, x)?. Observe that
* __ x_(ez ey *
TG. X' =, & “ZGx(a)P(a)

_x©

o) 2 X@HPE™

o€eG

=T(G, x),
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by Equation (6.3); and

T(G. x)? = "(((‘;))2 (Z x(a)P(a)) (E x(t)P(r))

o0 €G t€G

_ XD S @x(IP@PR)

O(G)z o0,7eG
x(e)?

=27 ,:‘:‘GX(G)W)P(”)
x(e) x(e) -1

=2 A P
e “2; (O(G) Z(;x(c)x(a u)) ™)
x(e)

=23 x(wP®)
o(G) E{‘;

LS T(Gv X)r

by Theorem 4.26. a

DernTioN 6.4 The image of the projection operator T(G, x), denoted V, (G),
is called the symmetry class of tensors associated with G and .

THEOREM 6.5 Let G be a subgroup of Sm. Suppose x,& € I(G), the set of
irreducible characters of G. If &€ # x, then T (G, §)T (G, x) = 0. Moreover,
Y 16.0=1 6.5)
x€l(G)
the identity operator in L(V®™, yem),
Proof

TG.OTG, 0 = k) (Ze(o)r(a)) (Zx(z)r(r))
o(G) o€G t€G
§(e)x(e)

=67 2 fOx@PE)

0,1€G

oeG

=0,
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by Theorem 4.26. Moreover,

1
2 TG 0=== Y x) x(©P@)
x€l(G) o6) &) oo

=) (%G) ) x(e)x(a)) P(0)

oeG x€l(G)
= P(e)
=1,
by the Orthogonality Relations of the Second Kind (Theorem 4.40). ]

CoroLLARY 6.6 If G is a subgroup of Sy, then V®™ is the orthogonal direct
sum of the symmetry classes Vy(G) as x ranges over 1(G). In other words, if
1(G) = {x1, X2, - - -+ Xx}, then

VO™ = Vi(G) LV, (G) L --- L Vi (G).

Proof The result is immediate from Theorems 6.3, 6.5, and the definitions. O

DeriNITION 6.7  Let x be an irreducible character of the subgroup G of S,,. Let
V be a vector space, and suppose v, v2, ..., Un € V. Then the decomposable
symmetrized tensor v) * vz * - - - * vy, is defined by

Vikn k- *xUy =T(G, )1 Q120 -+ ® Um).

This notation does not reflect the important fact that “+” depends on G and y.
From Corollary 6.6, v; * v, *- - - x vy, is the piece of v @ v2 ® - - - ® vy, that belongs
to V, (G). In particular, V, (G) is spanned by, but is not generally equal to, the set
of its decomposable symmetrized tensors.

ExampLE 6.8 Suppose m = 2 and G = $,. Then G has two irreducible
characters, the principal character and the alternating character. If V is a fixed
but arbitrary vector space, and vy, v; € V, let

vievy =T (852, 1) (v @ vp)

1
= 5(”1 Quz+1v2 @)
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and
v Avg =T(52,€)(11 @ »2)

Vi ®v2 — 12 @ uy).

N =

Observe that v; ® v2 = v; e v2 + v; A v2. Moreover,

1
(vn-vz.vnsz)=z(v1®vz+vz®v1.vn®vz—vz®v1)

1

= ‘4'((vl v, 1 @) — (V1 @y, O V)
+ (1 ®v, v @n)— (v, V)
1

= z“"" v1)(v2, v2) — (v1, ©)(v2, V1)

+ (v2, vi)(v1, ) — (v2, ©2)(v1, V1))
=0,

confirming that V&2 = V{(S;) L V.(S2). o
Exampe 6.9 Let V = Cj . Then (Example 5.18) C,» is a model for V&2 =

V ® V in which X @ Y = X'Y. In this model,

XAY = %(X‘Y—Y'X),

the skew symmetric part of X’Y. Because it is spanned by tensors of this form,
Ve(82) C C,,p is the space of skew symmetric matrices. Similarly, V;($2) is
spanned by the decomposable symmetrized tensors

1
XeY = E(X‘Y+ Y'X),

from which it follows that V; (S3) is the space of symmetric matrices. The fact that
(A, B) = tr (B*A) is zero when A is skew symmetric and B is symmetric can,
of course, be verified directly. m]
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EXAMPLE 6.10 Let V = Cy,,. As in Example 6.9 identify V®2 with Cy . For
any fixed A € V®2, there exist X1, X2,..., Xy and ¥}, Y3, ..., Y in V such that

If o = (12) € S, then
k
P(0)(A) = P(0) (Z x,!Y,-)
i=1

k
=) PE)X;®Y)
=1

I
.M"'

Y, ®X;
1

Y/ X;

-
1l
—

I
‘M"‘

= A,

In other words, P(o) € L(Cy,», Cp,») is the transpose operator. u]

DeriNITION 6.11  Let x be an irreducible character of the subgroup G of S,.
Suppose ®: V x V x --- x V — W is m-linear. If

x©

O(G) Z X(a—l)q’(vd(])v Vg (2)s+ev» va(m)) = ¢(U|, V2,..0, vm).

o€G

forall vy, vy, ..., um € V, then ® is symmetric with respect to G and .

LEMMA 6.12  Let x be an irreducible character of the subgroup G of Sy,. Let
®:VxVx-..xV— V,(G) be defined by

¢(vl'”2""’”m)=vl*W*"-*v,,..

Then ® is m-linear and symmetric with respect to G and x.
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ExaMmpLE 6.13 Let x be an irreducible character of G. If € G, then
Px ) vz % %vm) = PGHT(G, )11 @ 12 ® -+ @ u)
=TG, )P H01 @12 ® - @ Um)
=T(G, X)) ® Ve 2) ® -+ ® Ve(m))

= Ug(1) * Ur(2) * * ** * Ur(m), (6.6)

by Lemma 6.2. If x(e) = 1, then

Y x@)PEo) 1 ® 12 @ @ u)

1
Ve(t) * Ve@) * o ¥ Veem) = ey
oeG

Y x(z0)P@) @1 @12 ® -+ @ um)

o€G

o(G)

—— Y X @Ox@)PO)1 @12 ® - ® vm)

(G) 0€eG
= x(T)vr % v2 * - -k Up. 6.7)
a

THEOREM 6.14 (Universal Factorization Property for Symmetric Multilinear
Functions). Let V and W be vector spaces. Suppose x € I(G). If ®: V x V x
... x V = W is m-linear and symmetric with respect to G and x, then there exists
a unique linear transformation hy € L(Vy(G), W) such that

hy(i*v2*---xvp) = ®(v1, v2,..., Um),
forallvy,va,...,vn € V.

Theorem 6.14 is perhaps best illustrated by the commutative diagram in
Figure 6.2.

Proof By the (ordinary) Universal Factorization Property, there exists a unique
linear transformation h: V®™ — W such that

h(vi@n® - Qum) =P(v1,v2,...,Um),
for all vy, v2, ..., vy € V. Therefore, for all vj, v2,...,v, € Vandallo € G,

h(vo(1) ® Vo2) ® * ** ® Vo(m)) = PVa(1), Vo2)s -+ - » Vo(m))-
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VxVx...xV—=>V,(G)

® hy

FIGURE 6.2

Multiply both sides of this equation by x(e)x (s ~')/0(G) and sum on o € G.
Because A is linear and @ is symmetric with respect to G and x, we obtain

hT(G, x)(v1 ®v2® - Q vp) = D(v1,v2,..., Um),

that is,
h(vy * v * -+ -k upy) = ®(v1, v2, ..., Um).

Therefore hy = hT (G, x), the restriction of h to V, (G). (u]

Theorem 6.14 illustrates a situation in which V®™ is larger than necessary. To
“factor” a multilinear function that is symmetric with respect to G and x, all we
need is V, (G), a piece of V®™. On the other hand, taking x to be the principal
character on G = {e}, we see that V®™ = V,({e}), itself, is a symmetry class of
tensors.

LemMa 6.15%  Let x be an irreducible character of the subgroup group G of Sm.
Suppose vy, vy, ..., Vpandwy, wa, ..., Wy arevectorsin V. If vy vy %- « -k vy =
Wy kW k- %k Wy 7 0 then (v1,v2,...,U;m) = (W1, W2, ..., Wy).

Proof Let {e),€2,...,e, ) beabasisof W = (vj,v2,...,up). If wp ¢ W for
some K, let e,41 = wi. Extend the linearly independent set {e), €3, ..., &, €41}
to a basis B = {e), €2,...,en} of V. Let {f1, f2, ..., fa) be the basis of V' dual

to B. Because
m
[n fa(!): a € l‘m,nl
=1

3Exﬁeu.sicms of this result can be found in [Merris (1975a)] and [Lim (1976)). We shall have more
to say about equality of decomposable tensors in Chapter 7.
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isabasisof M = M(V,V,..., V), and since v) ¥ vz % --- x v, £ 0 € M’, there
exists an element 8 € I'y, , such that

m
(V1 * V2 %+ %k Uy) (n fp(,)) #0. (6.8)
=1
Because,
x(e) =1
VPR U2k KUy = —— Z X0 ) (1) ®VUs(2) @ - - ® Vg (m)s
(G) o€G

the left-hand side of (6.8) takes the value

(1 *v2%--- % vpm) (H fp(n) o©) Z @™ l—[ Fpn (o).  (69)
r=1

o€G

It follows that 8 € I', , (otherwise the right-hand side of Equation (6.9) would be
0, contradicting (6.8)). Therefore,

=1
= (W) *k wy %k % Wy) (n fﬂ(‘))
=1

x(e) _
=o(0)§; x(@ ’)]_[fp(.,(w.,(,,) (6.10)

Now, fg(o-1k))(wr) = 0 because w; = e,4 and ﬂ(a"l(k)) < r. Therefore, the
right-hand side of Equation (6.10) is zero. This contradiction completes the proof.
n]

Lemma 6.15 may be viewed as a partial analog of Theorem 5.16; the next result
is a partial analog of Theorem 5.15.

LEMMA 6.16  Let x be an irreducible character of the permutation group G C Sp,.
Suppose v1,v2,...,vm € V. If {v1,v2,..., vy} is linearly independent, then
VL RV ke k Uy # O
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Proof If {vi,v2,...,un} is linearly independent, then m < n = dim(V), and
we may regard Sy, as a subset of ', 5. In particular, {v®: 0 € G} is part of an
induced basis of V®™, Therefore,

€ -
UL kU2 Rk Uy =%Zx(ﬂ’ Yot) ® Ve ® -+ ® Va(m)
(3¢
is zero if and only if x (o) = 0 for all 0 € G. However, x(e) # 0. m]

If {e;: 1 <i < n)is abasis of V, then {€2: @ € 'y 4} is a basis of V&,
Therefore,

(e =T (G, x)(2): @ € Ty n) 6.11)

spans Vy (G). In general, however, some of the elements of (6.11) may be zero,
and those that are not generally comprise more than a basis. This raises a number
of interesting issues.

Ifa € 'y pnando € Sy, then the composition@o € Iy »; in sequence notation,
itis obtained by rearranging the entries of « according to the permutation o. That is,
ao = (ao(1),ao(2), ..., ao(m)). Evidently, each permutation o € S,, induces
a permutation of I'y, 5.

DEeFINITION 6.17  For each 0 € Sy, define : Ty — Tma by (a) = @o~!,
a €Ly, n.

Because 7 o T(a) = d(at™)) = at~lo~! = a(or)"! =77(x), @ € T,
o — G is a homomorphism* from S,, into the manifestation of Sy~ as a group of
permutations of I'r, . If G is a subgroup of Sy, let

G={c:0 €G).

Then G is a group of permutations of [y, .

Recall (Definition 3.20) that &, 8 € I', » are equivalent modulo G if there is a
@ € G suchthatF () = B. Because B = ao ! ifand only if« = Bor, equivalence
modulo G can be described entirely in terms of G. Abusing the language somewhat,
we will adopt the following convention.

DerintTiON 6.18  Suppose G is a fixed but arbitrary subgroup of S,,. Let o, 8 €
I'm.n. Then a is equivalent to § modulo G, written « = B (mod G), if there exists
ao € Gsuch thata = fo.

4 n>1, it is an isomorphism.
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ExAMPLE 6.19 Letm = 3 and n = 2. Then

M2=((111,1,12),(1,2,1),(1,2,2),2,11),2,1,2),2,2,1),(2,2,2)}.
There are four equivalence classes of I'3 2 modulo S3, namely,

(a1}

{(1,1,2),(1,2,1),(2, 1,1},
{(1,2,2),(2,1,2),(2,2,1)}, and
{2,2,2)}.

The six equivalence classes modulo G = {e, (13)} are

(@, 1,n},
{1,1,2),2 1,0}
(1,2, D},
{(1,2,2),2,2,1)},
{2,1,2)}, and
{2,2,2)}.

a

DerFNITION 6.20 Let G be a subgroup of Sp,. If @ € [y p, its stabilizer subgroup
isGy ={0 €G: a0 =a}.

Keeping strict faith with Definition 3.24, the stabilizer subgroup should be
denoted G, because it is the G manifestation of G that acts on I'yy, 5.

LemMA 621 Let{e;: 1 < i < n} be an orthonormal basis of the inner product
space V. Then, with respect to the restriction of the induced inner product of V®™
to Vy(G),

0, ifa#pBmod G)

feartal= [ oi(% Yoeg x0), ifa=8.

Notice that Lemma 6.21 is silent about the case in which @ = 8 (mod G), but
a#p.
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Proof Because T (G, x) is hermitian and idempotent,
(€2, €p) = (T(G, x)(€2), T(G, x)(e}))
= (T(G, x)(€D). ).
Substituting for T(G, x), we obtain

=223 x@ ]'[(e..m, s ).

ageG

If @ 3 B (mod G), then every term in this summand is zero. If « = g, then only
the terms corresponding to those o for which @ = ao survive. a}

The first conclusion to be drawn from Lemma 6.21 is that

2 _ x(e)
el = (G).,; x(@)

= x(e)(x, 1)G./[G : Gal. 6.12)

Therefore, e}, # 0, if and only if the restriction of x to G, contains the principal
character as an irreducible constituent. Let

={x € Tmn: (X, Da. #0}. (6.13)

Then {e}: @ € K2} is what remains after the zeros have been deleted from
{ey: @ € ['m a}. In particular, {e; : @ € Q} spans V, (G). (Note that 2 depends on
m,n, G, and x.) If x is the principal character, then Q@ = 'y . If m < n and « is
a one-to-one function (a sequence of distinct integers), then G, = {e}, sox € Q.

LemMa 6.22 Let G be a subgroup of S,, and suppose x € I(G). Then the set Q
defined in Equation (6.13) is a union of equivalence classes of ', n modulo G.
Thatis, « € Q ifand only ifat € , forall T € G.

DerNITION 6.23  For a fixed but arbitrary m, n, and G, let A be the system of
distinct representatives for the equivalence classes of I',y,, modulo G, so chosen
that @ € A if and only if « is first, in lexicographic order, in its equivalence class.

LemMA 6.24 If G = Sp, then A = G p, the subset of 'y n consisting of all
C(n + m — 1, m) nondecreasing functions (sequences).

ExampLE 6.25 Returning to Example 6.19, suppose m = 3 and n = 2.
IfG = §3then A = {(1,1,1),(1,1,2),(1,2,2),(2,2,2)) = G32, con-
firming Lemma 6.24. If G = {e, (13)}, then, in lexicographic order, A =
{1,1,1),01,1,2),(1,2,1),(1,2,2), (2,1, 2), (2,2, 2)}. o
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ExaMPLE 6.26 Let m = 3, n = 2, and G = §3. If # = [2,1], then
xx(0) = F(o) — 1, 0 € 83, where F(o) is the number of fixed points of
o. Let us test the elements of I'; 2 for membership in Q. By Lemma 6.22,
it suffices to test the elements of A. From Lemma 6.24 (or Example 6.25),
A=G32=1{(111),1,1,2),1,22),2,2,2).fa = (1,1,1) or (2,2,2),
then G, = S3, and ()x, 1);3 = 0 by the Orthogonality Relations of the First Kind.
Therefore, neither (1,1,1), nor (2,2,2) belongs to Q. If « = (1, 1, 2) or (1,2,2),
then G, is isomorphic to S2. By the Branching Theorem, the restriction of x, to
S2is 1+ ¢, and

A+&2=>10,1D2+4+ (s 1)2
=140.

Therefore, Q is the union of the equivalence classes represented by (1,1,2) and

(1,2,2), that is,
Q={(112),01,21),2,1,1)}U{(1,2,2),(2,1,2),(2,2,1)}. (6.19
If = = [13], then xr = &. Now, for every a € I'3,2, there exist i 7 j such that
a(i) = a(j). Because G = §3, this means a transposition (ij) € G4. It follows
that the restriction of & to G4 is not identically 1. Therefore, (1, £)g, = 0, for

every a € [y . In other words, Q is empty. Because (e} : @ € Q} spans V, (G),
we conclude that V;(S3) = {0}, for any vector space V of dimension 2. (]

DerNtTiON 6.27  For a fixed but arbitrary subgroup G of S, and x € I(G), let
A =ANQ.Thatis, A = {@ € A: (x, 1)g, # 0}

Like , A depends on m, n, G, and x. Like A, each element of A is first, in
lexicographic order, in the equivalence class modulo G to which it belongs.

ExampLE 628 Let G = S3 and x = x[2,1) then, from Equation (6.14), A =
{1,1,2),(1,2,2)).

It follows from the definitions and Lemma 6.22 that
Q=|Jlao:0 €G). (6.15)

acA

(m]

ExampLE 6.29 Recall that Q,, , is the subset of I', , consisting of all C(n, m)
strictly increasing functions. If @ € Qm », and o € §,, then a comes before ao
in lexicographic order. Therefore, for any subgroup G of Sy, @ comes first in its
equivalence class. That is, @ € A. In fact, more is true. Because « is a one-to-one
function, G, = {e). Therefore, @ € A. In other words, Om. C A, for every
x € 1(G). n]

TheoREM 6.30 IfG = Spand x =&, then A = Qp n.
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Because Qs 7 is empty, it follows from Theorem 6.30 and the definitions that
Ve(S3) = {0} for any vector space V of dimension 2, confirming an observation
already made in Example 6.26.

THeoreM 6.31 Let x be an irreducible character of the subgroup G of Sp. If
B = {e1, e2, ..., ey} is a basis of the vector space X, then Vy (G) is the direct sum
of the subspaces (e, : 0 € G), as a ranges over A.

Proof Because {e;: a € Q} spans V,(G), it follows from Equation (6.15) that
Vy (G) is the sum, over @ € A, of the subspaces (e, : o € G). Consider the inner
product on V with respect to which B is orthonormal. With respect to the induced
inner product (Lemma 6.21), the sum of the subspaces (e}, : 0 € G), @ € A, is
orthogonal. o

CoroLLARY 6.32 IfB = {e), e2,..., ey} is abasis of V, then
{€}: a € A} (6.16)

is alinearly independent setin Vy (G). If B is orthogonal, then (6.16) is orthogonal.
If x(e) = 1, then (6.16) is a basis of Vy(G).

Proof The set (6.16) consists of one (nonzero) vector from each of the direct
summands of Theorem 6.31. If B is orthogonal then, by Lemma 6.21, (6.16) is
orthogonal. (If &, B € A, then @ = B (mod G) if andonly if @ = B.) If x(e) = 1,
it follows from Equation (6.7) that e}, = x(0)e},forallo € Gand alla € ' ».
In this case, the subspaces from Theorem 6.31 each have dimension 1. o

DerntTioN 6.33  Suppose {e, ez, ..., en} is_ a basis of the vector space V. Let
x be an irreducible character of G. If @ € A, then (e3,: 0 € G) is an orbital
subspace of V) (G) corresponding to a. Let s, = dim({e;, : o € G)).

Freese's THEOREM 6.34°  Let x be an irreducible character of G. If a € A, then
sa = x(€)(x, Dg,-

Proof Let G = Gq01 U Ggoz2 U---UGgo,, 7 = [G : G4], be the right coset
decomposition of G4 in G. Then, for any 1 € G,

r

x(e) -
= ;@Z(}: x@ 't 'u)) 2.,

i=1 \r€G,

5'I‘heorem 6.34 appeared first in [Freese (1973)]. Note that it captures the result s,=1, a€l, when
x(e)=1.
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because at = a, T € G,. In particular,
et x - -1_ ()
6 = 55 4 Z Y x@7'zap) ) €8, (6.17)
t€G,

Let C = (c;j) be the r-by-r matrix defined by

_ X(e)
% = 26) t§ x(o;7 10). (6.18)

Because {e&?,,i : 1 <i < r}islinearly independent, it follows from Equations (6.17)
and (6.18) that s, = rank (C). Observe that

2 r
(CYij = :((;))2 Z Z x(o  tor)x (07 00j)
k=11,0€G,

(e)zz Y xeronx(or v o))
~ o(GY? k=1 1,u€G. ! ' !
x(e)
= oG z{; tg;x(tr, x(t " o))

:((ce;))z > ) x@x o uoy)

neG, t€G

o =1 ..
20 z?;,.x(a. 1o;)

= Cijs

by Theorem 4.26. Therefore, C? = C. Because C is a projection, rank (C) =
tr (C). Therefore,

= x(e)(x, Dg,-
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Foreacha € A, the matrix C defined by Equation (6.18) is not only idempotent
but hermitian. It is a positive semidefinite matrix whose nonzero eigenvalues all
equal 1. Using any of a number of matrix-theoretic approaches, one can find an
Sa-by-so principal submatrix of C that is invertible. The row indices of such a
submatrix comprise a subset F, of {@o : o0 € G} such that {e;: B € F,}is abasis
of the orbital subspace (e}, : o € G). Putting these subsets together, we obtain a
set

A= U Fo (6.19)

such that {e}: a € A} is a basis of V, (G). Moreover, because C does not depend
on the basis, B = {¢;: 1 < i < n}, neither does A. (See, [Grone (1977a)], [Marcus
& Chollet (1986)], [Merris (1978)], and [Merris & Pierce ((1973)] for variations
on this theme.)

Suppose B is an orthogonal basis of V. If x(e) = 1, then (Corollary 6.32)
{eg:a € A}is an orthogonal basis of V, (G). If x(e) > 1, can the subsets Fy,
@ € A, be chosen in such a way that {e;: @ € A} is an orthogonal basis of
Vy(G)? When G = Dy, the dihedral group of order 2m, such a A exists for every
x € I(G) if and only if m is a power of 2. (See [Wang & Gong (1991a)] and
[Holmes & Tam (1992)]). On the other hand, every doubly transitive subgroup G
of S,, has an irreducible character for which no such A exists [Holmes (1995)].

An explicit orthonormal basis of (e}, : o € G) not comprised of decomposable
symmetrized tensors was constructed in [Merris (1978)]. Other work on bases of
orbital subspaces can be found in [Dias da Silva (1981)], [Kim, et al. (1987)}, and
[Wang & Gong (1991b)].

From a basis of V, (G) we can determine its dimension:

dim(Vy (G)) = o(A)
=Y s
aeA
= x(e) Y_(x. V.. (6.20)
aeA

a somewhat useless formula, at least in its present form. Another approach to
computing the dimension takes advantage of the fact that V, (G) is the image of
the projection T (G, x). That is,

dim(Vy (G)) = tr (T(G, x))

_x®

=206 E x(o) tr (P(0)). (6.21)

0€eG
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Denote by n the character of the representation P of S,. Since it is integer valued,
n = 7], and Equation (6.21) can be written as

dim(Vy (G)) = x(e)(x, n)c- (6.22)
Because P(c) permutes the elements of the induced basis,
() = o({a € Tmn: P(0)(ed) = €2))
=o({¢ € Tmn: @ =ac})
=o({a €Tmpn:ali) =a(o(@)), 1<i<m)).

Evidently, a is a fixed point of P(o) if and only if @ (i) = a(j) whenevero (i) = j,
if and only if « is constant on the cycles of o. To count the number of fixed points,
we may use the Fundamental Counting Principle. There are ¢(o’) decisions to be
made, namely the value of a on each cycle of o. Because there are n choices for
each decision, n(o) = n®. Therefore, from Equation (6.21),

x(e)

dim(Vy(G) = Jr= D, x(@n. (6.23)
o€G

Another formula for the dimension of V, (G) will emerge from the representa-
tion theory of GL(n, C). (See Corollary 8.19.)
When Y is the principal character of G,

1
dim(Vy(G)) = = nc@, (6.24)
oceG

When x = 1, A = A and dim(V;(G)) = o(A). Therefore, Equation (6.24) can
be viewed as a manifestation of Burnside’s Lemma!

From Definition 6.18, functions o, 8 € I'jy, are equivalent modulo G if
and only if there is a 0 € G such that « = fo, if and only if there is a
& € G = {7: 0 € G) such that (a) = B. Thus,

where F (o) is the number of fixed points of &. As we have just seen, (o) =
F@) = n°©), For future reference, we summarize this observation in the
following.
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THEOREM 6.35 Let G be a subgroup of S,. Let A be a system of distinct
representatives for the equivalence classes of 'y, n modulo G. Then

1
__2: c(o)
O(A)—"(G),ecn .

The next result, an explicit description of 2 when G = S, requires the notion
of a multiplicity partition.

DerNITION 6.36 Leta € I', , be fixed but arbitrary. Foreach y € {1,2,...,n},
o(@”1(y)) = o({x: a(x) = y}) is the multiplicity of y in a. Of these mul-
tiplicities, suppose m is the largest, m, the next largest, and so on. If the im-
age of a contains r integers altogether, then m; > my > --- > m, > 1, and
my+m2+- - -+m, = m.(We are not necessaraily assuming that m; = o(a~1(i)).)
In particular, 4 = u(a) = [m1,mz, ..., m,] is a partition of m called the multi-
plicity partition of «.

Suppose G = S,,. Let u be the multiplicity partition of a fixed but arbitrary
a € ', ». Then Gy is conjugate to the Young Subgroup

s”,=s'n| Xs,,,z X"‘xSm'.

THEOREM 6.37 Suppose G = Sp. Let v be a fixed but arbitrary partition of m and
take x = Xx. Let pu be the multiplicity partition of a fixed but arbitrary « € I'y; 5.
Then e}, # 0 if and only if * majorizes p.

Proof Without loss of generality (Lemma 6.22), we may assume Gy = S,.
Denoting the principal character of S, by 1,, we have, from Equation (6.12), that

[Sm: Sulllez N/ xx(€) = (xx, 1u)s,
=y, Xx)S,.
because the left-hand side is real. By the Frobenius Reciprocity Theorem,

(s Xm)s, = (137, X Im

= K;['“.

By Theorem 4.55, the Kostka coefficient K, # 0 if and only if & > pu. o

CoRroLLARY 0.38 Let V beavector space of dimensionn. Letm = [my, M2, ..., 7]
be a partition of m. Suppose x = xn. Then the symmetry class of tensors
Vy(Sm) # {0} if and only if k < n.
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Proof V,(Sm) # {0} if and only if Q 3 @ if and only if (Theorem 6.37) there is
an a € 'y », whose multiplicity partition, & = [m), m2, ..., m,], is majorized by
. However, # > ponlyif k < r. Because r < n, necessity is proved. Conversely,
if k < n, thereis an @ € 'y, , such that u(a) = 7. Becausen > 71, € Q. 0O

CoroLLARY 6.39 Suppose {e;: 1 < i < n}isabasisof V. Let G = S, and
X = Xn,» Where m = [m1, 72, ..., ;] - m. Suppose a € Ty, n has multiplicity
partition = [my,ma, ..., m,). If my > m, then e = 0.

Proof m cannot majorize a partition whose largest part is greater than ;. a

J.A. Dias da Silva and Amélia Fonseca were able to obtain a generalization of
Theorem 6.37 using the notion of a “multilinearity partition” (not to be confused
with a multiplicity partition).

DerFINITION 6.40 Let G be a subgroup of S,, and suppose & € I(G). The
multilinearity partition, M P(£), is the least upper bound (with respect to
majorization) of the partitions = - m for which (&, xx)G # 0.

ExamrLE 6.41 Suppose H is the subgroup of G = S5 generated by {(12345),
(1325)). Then o(H) = 20, and K = {es} is the only subgroup of H that is normal
in G. By Theorem 3.36, G is isomorphic to a transitive subgroup G of Sg (arising
from the action of G on the left cosets of H).6

Let £ be the irreducible character of S5 corresponding to the partition [2, 13].
Ne\:er mind that §(0) = €(0)(F(o) — 1), 0 € G = Ss. From the perspective
of G C S, & is the irreducible character of degree 4 that takes the value +1 on
6-cycles. The character of Sg induced by § € I (G) is

E% = xay + Xp1) + Xp22.12)-

By the Frobenius Reciprocity Theorem, (§, xx)¢ # O if and only if 7 €
{(4, 12], [3%], [22, 12]}. With respect to majorization, the least upper bound of these
three partitions is [4,2]. (See Figure 1.3.) Therefore, the multilinearity partition
M P(§) = [4, 2]. In this particular example, it turns out that

(Eo Xv)(_“; = 01
when v = M P(€). o

THEOREM 6.42 Let G be a subgroup of Sm and suppose & € I1(G). Let u be the
multiplicity partition of & € T . If e = T(G, §)e® # 0, then M P (§) majorizes
U

A proof of Theorem 6.42 can be found in [Dias da Silva & Fonseca (1987)] and
[Fonseca (1989)]. The following partial converse was obtained in [Dias da Silva
& Fonseca (1990) & (1995)].

61t is G that accounts for the outer automorphisms of Ss. (See, e.g., [Passman (1968), pp. 35-36].)
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THEOREM 6.43  Suppose & is an irreducible character of the subgroup G of Sm. Let
Xv be the irreducible character of S, corresponding to the partition v = M P(§).
Suppose M P (&) majorizes the multiplicity partition of « € T' p. If (&, xv)G # O,
then there exists a permutation 0 € Sy, such that €%, = T(G, £)e&, # 0.

We turn now to another generalization of Theorem 6.37.

DEerINITION 6.44  Suppose V is a vector space. The vectors vy, v2, ..., Uy € V are
said to conform to the partition 7 I m if it is possible to distribute the m vectors
among the m boxes of the Ferrers diagram F (;r) so that the vectors in each column
are linearly independent.

If one of vy, vy, ..., Um is zero, then the vectors conform to no partition of m;
if vi = vy, then any conforming distribution of vectors to boxes must place v; and
vz in different columns.

ExamrLE 6.45 Let({e;, e2} be alinearly independent setin V. Suppose vy = v, =
€1, V3 = V4 = €3, Vs = €] + €2, and vg = e; — e3. Because {vy, 3}, {v2, v4},
and {vs, ve} are all linearly independent, vy, v2, ..., vg conform to = = [3, 3]. If
p b 6 and p majorizes [3,3], then vy, v, ..., v also conform to p. (]

ExampLE 6.46 Suppose B = {ey, €2, ..., €,)} is a basis of the vector space V.
Let u = [m;, my, ..., m,] be the multiplicity partition afforded by some fixed but
arbitrary « € 'y ;. Then the vectors eq(1), €x(2)s - - - » €x(m) conform to 7 if and
only if & majorizes w. a

In view of Example 6.46, Theorem 6.37 can be restated as follows: Suppose
m k- mLetG = S, and X = xx. Then e, # 0 if and only if the vectors
€a(l)s €a(2)s + + - » €a(m) conform to 7.

Gamas's THEOREM 6.47 Suppose m - m. Let G = Sy, and X = Xx. Then the
decomposable symmetrized tensor v| * vy * - - - ¥ v, 3 0 if and only if the vectors
v, ¥2,..., Uy conformto 7.

The original version of Theorem 6.47 appeared in [Gamas (1988)]. Our ap-
proach has followed [Pate (1990)]. Observe that Gamas’s Theorem also gener-
alizes Lemma 6.16 because a linearly independent set of m vectors conforms to
every partition of m. A common generalization of Theorems 6.42, 6.43, and 6.47
appeared in [Dias da Silva & Fonseca (1990)]:

THEOREM 6.48 Let & be an irreducible character of the subgroup G of Sy,. Let
Xv be the irreducible character of S, corresponding to the multilinearity partition

v = M P(&). Suppose (&, xv)G # 0. Then there exists a permutation o € Sy, such
that
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T(G.E)(Wo(1) ®Vs(2) ® - ® Vo(m)) = Vo(l) * Vg(2) * - * * Vo(m)
#0,

if and only if the vectors vy, vy, ..., vy conform to v.

Suppose vy, v2, ..., Uy are nonzero vectors in some vector space V. It was
proved in [Dias da Silva (1990)] (also see [Dias da Silva (1996)]) that, with respect
to majorization, there is a unique minimum partition to which vy, v2,..., Upn
conform.

DerINITION 6.49 Let R = {vy, vy, ..., U} be a multiset of nonzero vectors in V.
The minimum partition to which v, vy, ..., v, conform is the nullity partition
of R, denoted n(R). The rank partition of R is p(R) = n(R)*, the conjugate of
its nullity partition.

In the language of Definition 6.49, Theorem 6.48 can be restated as follows:

THeOREM 6.50 Let & be an irreducible character of the subgroup G of Sp. Let
Xv the irreducible character of Sy corresponding to the partition v = M P(§).
Suppose (&, xv)G # 0. Let R = {v1, v2, ..., Um} be a multiset of nonzero vectors
in V. Then there exists a permutation o € Sy, such that

T(G,8) (o) ®Vo(2) @+ @ Vo(m)) = Vo(l) * Vg(2) * *** * Vo (m)
#0,

if and only if v > n(R).
Among the most important symmetry classes is V®™ itself, occurring when
G = {e} and x = 1. We proceed to discuss another.

DeFINtTION 6.51 The symmetry class V;(Sn), corresponding to the symmetric
group and its alternating character, is called the space of skew-symmetric tensors,
the m-th Grassmann space, or the m-th exterior power of V. The special notation
A™YV is used for V¢(S,), and the decomposable symmetrized tensors are written
VIAVA--AUp.

LeMMA 6.52 Let V be a vector space. Then for all 0 € S, and all
v, 2,...,Un €V,

Vo (1) AVg) A AVo(m) = E(@)WVI AV2 A=+ A Up. (6.25)

In particular, if v; = v; for some pairi # j, thenvi Ava A+ Avy =0.
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If {e;: 1 < i < n} is a basis of V, then (Theorem 6.30 and Corollary 6.32)
{e3: @ € Om,a) is a basis of A™V, where €} = eq(1) A €a2) A -+ A €qm)- In
particular,

dim(A™V) = C(n, m). (6.26)

THEOREM 6.53 Suppose vy, v2,...,Um € V.Thenvi Ava A--- A vy # 0 ifand
only if {vy, v2, ..., Un} is linearly independent.

Proof Recall that ¢ = yxy1=). Because vy, vy, . . ., v,y conform to [1™] if and only
if {v1, v2, ..., um} is linearly independent, the result is an immediate consequence
of Gamas’s Theorem. D

Theorem 6.53 shows that the converse of Lemma 6.16 is valid in A™V. The
next result may be viewed as a partial converse of Lemma 6.15.

THEOREM 6.54 Letvi,v2,...,un € V. If

wj=) avi, 1<j<m,

m
i=1

then wi Awy A -+ A wpy =det(@ij )yt AV2 A~ A Up.

Proof Observe that
(f:anv;) A (ia;zv,-) A+ A (iaimvi)
i=1 i=1 i=1

m
Z (n aa(t)t) Va(1) A Va(2) A+ -+ A Va(m)

a€l, . \t=1

m
Z (H aa(r)t) Vo (1) AVg(2) A+ A Vg(m)
o€S, \1=1

WIAWLA--- AWy

(Z E(G)ﬁaa(z)r) VIAV A A Unm,

O €Sy =1

by multilinearity, Theorem 6.53, and Lemma 6.52. a]

The proof of Theorem 6.54 depended on the following fact: If A = (a;;) is an
m-by-m matrix, then

m

det(4) = Y &(0) [ [ arotn- (6.27)

OES, t=1
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Taking Equation (6.27) as the definition of determinant, the usual expansion
theorem can be derived using multilinear techniques: Suppose dim(V) = m. Let

u € V. Define
(m—1)-times

r——
P:VxVx---xV—o> A"V

by ®(v1,v2,...,Um—1) = V1 AV2 A--- AUpn_1 A u. Then ® is (m — 1)-linear
and symmetric with respect to S,,—) and &. By Theorem 6.14, there is (unique)
hs € L(A™"1V, A™V) such that

Be(VIAVA - AUp_1) =V AVA---AUn_1 AU,

for all vy, v2, ..., Uy—1 € V. Suppose {e1, €2, ..., ey} is a basis of V. Let

m m
vj = aijei, 1< ] <m, and u = Zaimei.
i=1 i=1
Then, by Theorem 6.54,
VIAWVA--AUnp—1 Au=det(A)ey Aes A--- Aep. (6.28)
On the other hand,
'm—1
VIAVA - AUp_1 = z: (H aa(,),) e,’,‘.
a€lp_1m \1=1

> X (ﬁﬂao(m) o

AEQu_1m OESu-1 \I=

m—1
=Y ( Y ) ]'[aa(,,,(,)) eh. (6.29)
=1

A€Qu-1m \TESH 1=

DEeFINITION 6.55 Suppose A € Cp . If i, j € (1,2,...,m), let A(i|j) be the
submatrix of A obtained by deleting its i-th row and j-th column. If @ € Q, n,
denote by a® € Qp—r,m the (increasing) sequence complementary to a.

If, for example, « = (2,4) € Q»5s, then «° = (1,3,5) € Qs3s. If
a = (1,2,3,5) € Q4s5, then a® = (4) € Q),5. (We will feel free to abuse
the notation by writing a¢ = 4 in the latter case.)

In the notation of Definition 6.55, Equation (6.29) becomes

VIAVRA- - AUp_] = Z det A(a|m)e}.
aeQ-—l.-
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Applying the linear transformation A, to this equation produces
he(@IAVZA--Avm)= Y det A(aIm)he(en)

aeQ-—l.ﬂ

= E det A(a‘lm)e.,(]) Aeg2) A Aeam—1) A U.
AEQu-1m (6-30)

By multilinearity,

m
Ca(l) Nea) N - Aeaqm-1) AU = Zaimea(l) Aeg2) A+ Aeapm-1) A€,
i=1

only one term of which survives, namely i = af. Because i = af if and only if
a=(1,2,...,i—1,i+1,...,m) we have, from Lemma 6.52, that
ex()) Neq2) A+ Aegm-1) N & = (—l)m—iel AerA---Aenp.

Therefore, from Equation (6.30),

VIAWA- AUy AU= Z(-l)“""a;,,I det A(ilm)ey Aea A+ Aep.
i=1
Comparing with Equation (6.28) (and using the fact thate; Aez A--- A ey #0),
we obtain m
det(4) = Y (=1)"*"a;p, det Ai|m), (6.31)
i=1
the familiar expansion for det(A) along the last column.

In order to state the next result, we need the following extension of Defini-
tion 6.55.

DerNtTION 6.56  Suppose A = (aij) € Cun. If @ € I'p m and B € T'g 5, then
Ala|B] € Cp 4 is the matrix whose (i, j)-entry is the (a(i), B(j))-entry of A.
Ifa € Qpmand B € Qg n, then A(x|B) = A[a®|B€] is the matrix obtained by
deleting from A the rows whose indices appear in & and the columns whose indices
appear in 8.

LApLACE ExpansioN THEOREM 6.57 Suppose 1 < p < n. Let @« € Qpp. If
A € Cp p, then

det(A) = Z (1) @+ ® det(A[a|B]) det(A(x|B)), 6.32)
BeQ,n

wherer(a) = a(l) + a(2) + - - - + a(p).

While it is understandably more complicated, the proof of Theorem 6.57 is
analogous to the derivation of Equation (6.31).”

TThere is a comparable Laplace Expansion Theorem for permanents (see, ¢.g., [Marcus & Minc
(1964))]). Generalizations to other matrix functions appear in [Marcus & Soules (1967)].
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ExampLE 6.58 Let’s expand the determinant of

A=

NOC &W

1 05
3109
2 2 3
4 2 7
along rows 1 and 3, that is, let « = (1,3). Summing over 8 € Q24 =

{(1,2),(,3),(1,4), 2, 3), (2,4), (3,4}, Equation (6.32) becomes

det(A) = 3 (~1y"P det(A[1, 3B]) det(A(1, 3I8))
BeQr4

= (—1)*2 det(A[1, 3|1, 2]) det(A(1, 3|1, 2))
+ (—=1)'*3 det(A[1, 3|1, 3]) det(A(1, 3|1, 3))
+ (1) det(A[1, 3|1, 4]) det(A(1, 3|1, 4)) +...

31 1 9 30 39
— a3 e} 2) (3 Deu (2 2)
3 5 31 1 0 4 9
= —det(o 3)det(4 2) —det(2 2)dct(2 7)
1 5 4 1 0 5 4 3
= +det(2 3)det(2 2) —det(2 3)det(2 4)

= —-6x(—11)+6x(-15-9%x2-2x10

+ (=7) x 6 — (—10) x (10)

= —4,
(9]
Another important family of examples occurs when G is arbitrary but x = 1is
the principal character. In this case
P(t")(vl Uk K Upy) = Ur(l) ¥ Ug(2) * ** % Ur(m)
=V XU ke Xk Uy, (633)
for all T € G. (See Equations (6.6)«6.7).) Moreover, A = A, and, from
Equation (6.24),

’ 1
dim(V1(G)) = oG n@,
oeG
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LemMa 6.59 Let G be a subgroup of Sy. Ifv € V, then

m-times
pr———
VU :---®v € Vi(G).

THEOREM 6.60° Let & = 1 be the principal character of the subgroup G of Sp,.
Suppose V is an inner product space. In the symmetry class of tensors Vi (G),

(i) vi *xv2 %+ % vy = 0ifand only if v; = O for some i;

(@) ifvy vy * %y =Wy kwy %+ %Wy #0, then there exists a permutation
0 € Sm and constants d; € C such that v; = diw,(), | < i < m, and the
productdy xdy X --- xdp = 1.

Proof If G = {e} part (i) reduces to Theorem 5.15; if G = Sy, it is an easy
consequence of Gamas’s Theorem because & = xpm}, and any collection of m
nonzero vectors conforms to [m]. So, we may assume G is a proper subgroup of
Sm. (If G were normal in S,,, part (i) would follow from Theorem 6.50 and the
invertibility of P(c).)

If v; = O for some i, then vy * v3 * - - - * v, = O by multilinearity. Conversely,
Suppose vy * U2 * - - - x Uy, = 0. Let u € V be fixed but arbitrary. Then

O0=uUQuU®: - QuU, UL %V %% Up)
=uURu® - Qu, TG NONE®: @ vm)
=T G, NuuU - Qu, VI Q® - ® uy)
=uUQu® - Qu, v Qn® - Quy)

m
= [Te ). (6.34)
=1
If {e1, e, ..., €,} is an orthonormal basis of V, there exist constants a; j such that

n
v = Za,-je,-, 1<j<m.
i=1

Letu = x1e1+x2€2+ - - + xn€, where, for the moment, we view the coefficients,

8 Theorem 6.60 first appeared in [Marcus & Newman (1962)).
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X1, X2, ..., Xn, as independent indeterminates. Then

=1

-1 (ia,-,x.-) . (635)

If v, # O for all ¢, the right-hand side of Equation (6.35) is a polynomial in
n variables (the x;) which is not identically zero. On the other hand, according to
Equation (6.34), any substitution for the x; produces a value of 0. This contradiction
establishes that v, = O for some ¢, and part (i) is proved.

If dim(V) = 1, part (ii) is immediate. Thus, we may assume dim(V) > 1.
Because vy * vp * -+ % Uy = W) * W7 * - - - % Wy, We have, as in the derivation of
Equation (6.34), that

Il

[T wo =T, v (6.36)
1=1 =1

For each i, let v; = y; + z;, where y; € (w)) and z; € (w;)*. It follows from
Equation (6.36) that, for all u € (w)t,

0= ﬁ(u, vr)
=1

= ﬁ(u, Z;).
=1

As in the proof of part (i), zx = O for some k, which means that v; = y; € (w;).
In other words, vy = dyw for some d; € C. Substituting in Equation (6.36), we

obtain
0= (u, w1) (]’[(u, w) —di [, w)) : (6.37)

=2 t#k

for all u € V. Because w; # 0, a modification of the previous argument shows
that the second factor on the right-hand side of Equation (6.37) is zero, and the
rest of the proof follows by induction. D

The next example, taken from [Marcus (1973)], shows that the permutation o
in Theorem 6.60, part (ii) need not belong to G.
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ExampLE 6.61 Let G = A3 and x = 1. Suppose {e), e2} is a basis of V. Let
w) = e, Wy = €3, and w3 = e; + e2. Then

w) *xwy x w3 =e) ke *(e) +e7)

=e)*xeyxe| + e xex xep.

Because t = (123) € G, it follows from Equation (6.33) that
P (i *xv*v3) =vy xv3 %)
=V *xW *V3

for any three vectors vy, v2, and v3 € V. In particular, letting v; = e; and
v = v3 = €2, we obtain e; * €3 x e; = €] * €3 * e3. Hence,

W) kWr kw3 =e€) %€y xe] + e %xey xe
=(e1+e)xexxe;
= W3 * W2 * W)

= Wo (1) * Wo(2) * Wo(3)s

where o = (13) ¢ G. o

Next we consider, in some detail, the symmetry class of tensors V;(Sn)
corresponding to G = §,, and x = 1.

DerNITION 6.62 Let V be a vector space. The symmetry class V) (S ) correspond-
ing to the principal character of the symmetric group is the space of completely
symmetric tensors. The decomposable symmetrized tensors in V; (S,,) are written
Viev®:---0 Uy,

It follows from Equation (6.33) that
P Hwievre---evy,) = Vr(l) @ Uz(2) ® - -+ ® Ur(m)

=vViev2 @ -0 Uy,

for all T € S;,. This “complete” symmetry characterizes V;(Spm).

THEOREM 6.63 Let w € V™®, Then w € V| (Sp) if and only if P(t)(w) = w for
allt € S,
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Proof If P(t)(w) = w for all T € Sy, then

w=— Z P(z)(w)

tES..

= T(Sm, 1)(w) € Vi(Sn).

Conversely, if w € Vi(Sn), then
P(r)(w) = P()(T(Sm, 1)(w))
= (P()T(Sm, 1))(w)
=T (Sm, 1)(w)

=w.
0

The next theorem is merely a specialization of previous results to the space of
completely symmetric tensors.

THeOREM 6.64 Let {e1,e2,...,e,} be a basis of the vector space V. Then
{es = €a1) ® €a(2) ® - ® €a(m): @ € Gm,a} is a basis of Vi(Sm). In particular,
dim(Vi(Sp)) =C(n+m —1,m).

Suppose {x1,x2,...,xs} is a set of independent indeterminates over the
complex numbers. Denote by Cp[x1, X2, .. ., 5] the subset of C[xy, x2, ..., x,]
consisting of the zero polynomial together with all homogeneous polynomials
of (total) degree m in the n variables. Then Cp[x), X2, ..., X5] is a vector space
over C.

Lemma 6.65 If x1, x2, ..., X, are independent indeterminates over the complex
numbers, then

[[rer: @ € G,,.,,.] (6.38)

=1
is a basis of Cp[x1, X2, ..., Xn).
The following definition will be useful in the proof of Lemma 6.65.

DernrTioN 6.66 If a € 'y, denote by m; () = o(a~1(r)) the multiplicity of ¢
in the sequence c.

The nonzero integers in the multiset {m,;(a): 1 < t < n} are the parts

of the multiplicity partition u(e). If ¢ = (2,1, 2 ,2) € I's3, for example,
then my(a) = 2, ma(ax) = 3, and m3(a) = Ifg = (,1,1,2,2), then
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m:(B) = m(a), 1 <t < 3. This sharing of multiplicities cannot happen for
two different sequences of Gy . If @, B € Gy, then @« = B if and only if
mi(@) =m(B),1 <t <m?

Proof (of Lemma 6.65). Suppose

) ca lﬂlx,,(,) =0. (6.39)

a€Gy, =1

Let B € Gm,n be fixed but arbitrary. Take the partial derivative of both sides
of Equation (6.39) with respect to xi, a total of m;(8) times. Then take partial
derivatives with respect to x2, a total of m>(8) times, and so on. Finally take
partial derivatives with respect to x,, a total of m,(8) times. The result is

(]‘[ m:(ﬂ)!) cp =0,
r=1

that is, cg = 0. Therefore, B is linearly independent. The proof that B spans
Cmlx1, x2, ..., xa] is left to the exercises. O

LeMMA 6.67 Let V be a vector space of dimension n. Suppose xy, x2, . .. , X are
independent indeterminates over C. Then the vector space V\(S,,) is isomorphic
to Cpy[x1, x2, ..., X

Proof Let{e;,es,...,e,}beabasisof V.DefineT: Vi (Sp) = Cplx1, x2, ..., %s]
by T(e2) = [[Xa@r)» @ € Gm,n, and linear extension. By Theorem 6.64 and
Lemma 6.65, T is a vector space isomorphism. a

Completely ignored in Lemma 6.67, of course, is the “additional structure” that
makes V;(S,) more than a vector space.10

THEOREM 6.68!!  Let (e, €3, ..., e,)} be a basis of V. For each a € Gy, n, define
a vector

y@) =) mae €V.
=1

Let zg = y(@) @ y(@) ® --- ® y(@) € Vi(Sm)- Then {z4: @ € Gmp} is
a basis of Vi(Sm). In particular, V1(S,) is spanned by tensors of the form
VRQUR:---Qu(=veve: --ev).

9If¢!=(l.l.1.2.2) and =(1,1,3,3,3), then u(a)=w(B), but m,(a)#m,(B), 1<1<3.
105ee, c.g., [Grone (1977b)] for a discussion of this issuc.

1 lInititally a conjecture of S. Pierce, Theorem 6.68 was proved in [Marcus & Gordon (1970)]. Our
proof is taken from [Marcus (1973)].
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Proof Let T: Vi(Sm) = Cpulxy, x2, ..., x,] be the isomorphism defined by
T(e3) = [[xa()» @ € Gm,n, and linear extension. Then

T(ze) =T(y(@) e y(@) oo y(a))

= (i m,((x)x,)”l .

=1

Because there are the right number of them, it remains to show that the polynomials

(E mf(a)xl) ’ a € Gm,m
t=1

are linearly independent. Let

R = Zc(al,az, vees@n) (Z a,x,) , (6.40)
=1

where the first summation is over all C(m+n — 1, m) nonnegative integer solutions
toa; +az + -+ a, = m. Setting R = 0, we will prove that the coefficients,
c(ay,ay, ..., ay), are all zero by induction on m + n.

If n = 1, then 0 = R = c(m)(mx;)™ implies c(m) = 0. Thus, we may assume
n>1landm+n =k > 2.Let R = Ry + R, where Ry is the sum of those terms
in Equation (6.40) for which a, = 0, and R) is the sum of the terms with a, > 1.
Of course, 3Rp/dx, = 0. Because R = 0, it follows that

oR;
0=
0xy
o m—1
=m ) anc(ar,ay,...,an) (Zam)
ay+--+a,=m =1
a;20, a,21

=m Y @+ D@1, ...,80-1,80 + D@1x1+ -+ Gnxn + x0)"
ay - +aa=m—1
@20

where the last step is obtained by replacing a, with a,+; and summing overa, > 0.
Next, we are going to substitute x; — x,/m for x;, 1 < i < n. Because the
summation is now overa; +a; +---+a, =m —1,

ai(xy —xp/m) + - - + an(xp — Xn/m) + (X — xn/m)
=aix1+ - +anxn —xp(@+---+a,)/m+x,(m—-1)/m

=ayx; + -+ + anxp.
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This second change of variables results in the identity

O=m 3 (an+Dec(@,....an-1,8n + D@1 +
a+tag=m—1
a0

It follows from the induction hypothesis that
C(al, cees@p-1,an + l) = 01

whenevera; > 0,anda; 4 ---4a, = m — 1, that is,
c(alv ---van—l!all) =0

whenevera; +---+a, =manda, > 1.

...+anxn

183

)m—l.

Setting 0 = R = Ro+ Rj, we established that each of the coefficients appearing
in the summation comprising R is zero. At this point we can apply the induction

hypothesis to

n—1 m
=m Z c(a,az,...,apn-1) (Za,x,)
=1

a4 Ay =m
a;>0

and conclude that the remaining coefficients of R are zero.

a

ExampLE 6.69 It follows from Theorem 6.68 that V;(S2) is spanned by the

decomposable tensors v @ v, v € V. In particular, if {e}, e, ..

.,en)is

a basis

of V, it must be the case that ¢ € (v@® v: v € V), @ € Ga,. Clearly,
cioe, = ¢ ®e € (VOu:v € V), but what about ¢; e ¢; when i # j?

Observe that

20ei=¢;Qe¢+eDe;

=(eitej)@(eit+ej) —ei@ei —e Ve;.

a

Recall (Theorem 5.22) that L(V®™, V®™) is a model for L(V, V)®™ in which

N®T2® - ® Ty is a typical decomposable tensor.
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DeFNITION 670 Let P(o~!): L(V®™, V®™) — L(V®™ VO®™) o € S,
denote the linear operator on the vector space L(V®™, V®™) that satisfies

Poe HTN®L® ®Tm)=To) ®To@) ® -+ ® Tom), (6.41)

forall T}, T2,..., Ty € L(V, V).

LemMa 6.71 Suppose V is a vector space and L € L(V®",V®™). Ifo €
Sm is fixed but arbitrary, then P(o)(L) = P(©)LP(0c™!), where P(c) €
L(vem yom)

Proof Consider

PE HNOL® - @Tn)(V1 ®12® - ® Um)
=Te)®@Te@)®@ O Tom)(Vi @12 @ ® Um)
=To)(v1) ® To2)(¥2) ® -+ - ® Ty (m)(vm)

= P(e ™) (Ti(vo-1(1)) ® T2(05-12)) ® - - ® T (V5-1m)))

=(PO NN OL® @TnPO)V1 Q1@ ® Un).

Because the linear operators, P(c ") (11 ® Th ® - @ Ty) and P(c NT1 @ L ®
«++ @ T;p P(0) agree on all decomposable tensors, v @ v2 @ -+ - @ U, they are
equal. Because

P HYT®NR® - ®Tw) =Pl )N ®T2® - ® TnP(0)

for all decomposable tensors, T} @ T, ® - - - ® Ty, it must be that P(o~)(L) =
P(@~Y)LP(o),forall L € L(V®™, vOm), u}

It follows from Lemma 6.71 that L € L(V®™, V®™) is a fixed point of
P(o) € L(L(V®™, vem) L(V®™, v®m)) if and only if L commutes with
P(o) € L(V®™, v®m),

Dernmion 6.72 Suppose L € L(V®™, V®™), Then L is bisymmetric if it
commutes with P(o), forall o € S,,.

We now deduce a technical result of considerable importance to the determina-
tion of the rational irreducible representations of GL(n, C).

COROLLARY 6.73 Suppose V is a vector space and L is a linear operator on V®™,
Then L is bisymmetric if and only if L belongs to (T®™: T € L(V, V)), the linear
closure of (T®™: T € L(V, V)).
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Proof By Lemma 6.71, P(o0)L = LP(o) if and only if P(o)(L) = L. By
Theorem 6.63, P(o)(L) = L, for all 0 € S, if and only if L belongs to the
symmetry class of L(V®™, V&™) = [L(V, V)]®™ consisting of the completely
symmetric tensors, that is, to [L(V, V)];(Sn»). By Theorem 6.68, this symmetry
class is spanned by (T® T ® ---® T: T € L(V, V)). u]

Because 7®" commutes with P(g) for all & € Sy, it commutes with any
projection of the form T (G, x). Hence, for any subgroup G of S, forall x € I(G),
and for all T € L(V, V), the symmetry class of tensors, V, (G), is an invariant
subspace of T®™,

DerNITION 6.74 Let G be a subgroup of S,, and suppose x € I(G). Let V be
a vector space and suppose T € L(V, V). Denote by K(T) the restriction of
T®m to Vx(G). Then K(T) € L(Vy(G), Vy(G)) is the induced (or associated)
transformation determined by G and .

Understand that K (T') depends on G and x as well as T.

THEOREM 6.75 Let x be an irreducible character of the subgroup G of Sm. Let V
be an inner product space and suppose S, T € L(V, V). If Vy(G) # O, then

(i) K(S)K(T) = K(ST);
(ii) K(S)(v1 * v2 % -« % Up) = S(v1) * S(V2) * - - - % S(Vm);

(1)K (S*) = K(S)*, the adjoint of K(S) with respect to the restriction of the
induced inner product to Vy (G);

(iv)K (S) is invertible for all invertible S;
WVYK(S+T)>K(S)+ K(T) whenever S,T > 0.

Proof For the most part, these results are obtained by restricting S®™ and 7®™
to Vy (G). Part (i) is a consequence of Theorem 5.20. To prove part (ii), observe
that

K@) *v*--xvp)=(E®SQ® - @NT(G, \)v1 @020 - @ Um)
=T(G, x)(S®S® - @SN V1 ®u2® - @ vm)
=T(G, x)(S) @ S(12) ® - ® S(Um))
= S(v1) * S(v2) % - - - % S(Up).

Part (iii) follows from Corollary 5.33, part (iv) from Corollary 5.21, and part (v)
from Corollary 5.39. o
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1 2
3 4
FIGURE 6.3

Applications to the Theory of Enumeration

Suppose we color each vertex of the square in Figure 6.3 either red, white, or blue.
Any such coloring can be described by means of a function f: {1,2,3,4} —
{r, w, b}. To count the different red-white-blue vertex colorings f = (f(1), f(2),
f(3), f(4)), observe that there are four decisions to be made, each having three
choices. By the Fundamental Counting Principle, there are 3* = 81 colorings. The
set C, of all functions f: {1, 2, 3,4} — {r, w, b}, contains 81 elements.

Four of these 81 colorings are illustrated in Figure 6.4. Look at them carefully.
How different will they be after the paint dries and the colored squares are free
to rotate? It seems 81 is the right answer to the wrong question. Let’s formulate
the right question. Say two colorings (functions in C) are equivalent if one can
be obtained from the other by a rotation of the square. This equivalence relation
partitions C into equivalence classes called color patterns. The four colorings
in Figure 6.4 comprise one color pattern. The right question is, how many color
patterns are there?

r > 4 b r w b r w
D D E o ’
1—0
b w w r r r r

b

hHh=(@rb,w) =k, r,w,r) fi=(w,b,r,r) fa= (@, w,rb)

FIGURE 6.4

Let’s begin by figuring out exactly how the functions f; and f> in Figure 6.4
are related. Geometrically, the coloring f, can be obtained from f; by a 90°
clockwise rotation, the symmetry associated with o = (1243) (with respect to the
numbering exhibited in Figure 6.3). However, the function f, # o f).Infact, o f} is
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meaningless. The composition of o and f; makes sense, but only in the order fio.
On the other hand, fio = (r, w, r, b) = f4, not f>. The correct combination of f;,
f2,and o is f, = fio~!. In general, when symmetry o is applied to an f-colored
square, it produces another colored square, the one corresponding to fo—!. This
is interesting. Associated with each symmetry of the square is a permutation of
colored squares. The permutation o € S4 induces an action 3: C — C defined
by 7(f) = fo~!. This induced action is familiar. If we identify C with [y4,3, it
is identical to the action described in Definition 6.17. Evidently, two colorings of
the square are equivalent if and only if the corresponding functions are equivalent
modulo the group G = {e4, (1243), (14)(23), (1342)} of its plane rotations. It
follows that A is a system of distinct representatives for the red-white-blue color
patterns, and the number of inequivalent color patterns may be obtained directly
from Theorem 6.35, that is,

— _l_ c(o)
o(A) = e ;3

=(3*+3+32+3)/4
=24,

Of the 81 different red-white-blue colorings of the square, only 24 are inequivalent
modulo its group of plane rotations. A system of distinct representatives for these
24 color patterns (a “colorful” rendering of A) is exhibited in Figure 6.5.

Suppose it were your task to come up with a system of distinct representatives
like the one illustrated in Figure 6.5. It would, of course, be enormously helpful to
know that there are (only) 24 color patterns. (Once 24 inequivalent colorings are
found, the job is finished.) It would be even more helpful to know, for example,
that there are exactly three inequivalent colorings in which two vertices are red,
one is white, and one blue. Let’s define the weight of such a color pattern to be
r2wb. Then the pattern inventory corresponding to the inequivalent red-white-blue
vertex colorings of the square (Figure 6.5) is

Wor, w,b) = * + w* + 8% + (FPw + 36 + rw? + rb® + Wb + wb?)

-+ 2(r2w2 +ri? + wzbz) + 3(r2wb + rw?b + rwb?).
(6.42)

Note that Wg(1, 1, 1) = 24, reflecting the fact that each pattern contributes one
monomial (its weight) to W (r, w, b). In terms of monomial symmetric functions,

Wg(r, w, b) = M[4](r, w, b)+M{3,|](r, w, b)+2M[221(r, w, b)+3M[2,1z](r, w, b).
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w oW b b
W oW b b
r w b w r b w b
w r w W b b b b r
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w b b w r b b r r w W r

FIGURE 6.5 A system of distinct representatives for the inequivalent red-white-blue
vertex colorings of the square modulo the group G of its plane rotations.

Starting from a system of distinct representatives, as we just did, it is an easy
matter to write down the pattern inventory. The hard part is finding a system
of distinct representatives. What is wanted is an independent way to generate
the pattern inventory so that it can be used to construct a system of distinct
representatives. Let us begin with some formal definitions.

DerFNITION 6.76  Let x), x2, .. ., X, be independent indeterminates over the com-
plex numbers. The weight of @ € I'y,  is

m
w(x) = n Xa(r)-
=]

If B = ao for some o € Sy, then w(a) = w(B). Therefore, w is constant on
the equivalence classes of I', », modulo any/every subgroup G of S,,.
Suppose x is an irreducible character of G. Then

Z w(a) = Zs.,w(a)

acA aeh
= x(e) Y)_(x, Dg,w(@)
a€A
= x(e) Y_(x, Do, w(@), (6.43)
achA

because (x, 1)g, = 0fora € A\A.
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DEerINITION 6.77 Let x be an irreducible character of the subgroup G of Sp. If
X1, X2, ..., X, are independent indeterminates, the character weighted pattern
inventory is defined by

WEG1 %2, 3) = Y (x, Do, w(@)

achA

= Y (x, De,w@).

a€A

When y is the principle character, W (x1, x2, . .., X») is the traditional pattern
inventory, abbreviated

We(x1,x2,...,X0) = Z w(a).

a€A

Suppose G = Sy, and x = x forsomen - m.Ifa € A, then G, isisomorphic
to the Young subgroup S, where u = pu(e) is its multiplicity partition, and
(x, 1)s, is the Kostka coefficient K ,. In this case,

W;_ (x1,x2,..., %) = Z Krr,u(a) l—[xa(t) (6.44)

AEGy t=1

is a so-called Schur polynomial. (We shall have more to say about Schur
polynomials in Chapter 8.)

DeriNTiON 6.78  Suppose x is an irreducible character of the subgroup G of Sp.
Let y1, y2, - - - » ¥m be independent indeterminates over the complex numbers. The
character weighted cycle index polynomial afforded by G and yx is

x(e) = ¢ (o)
Zé(yn.yz,...,ym)=m‘;x(o)gy, .

where, recall, ¢;(o) is the number of cycles of length ¢ in the disjoint cycle
factorization of 0. When x = 1, Zé O'1, ¥2, . - - » ¥m) is the traditional cycle index
polynomial, abbreviated Zg(y1, ¥2, .-+, Ym).

ExampLE 6.79 Let m = 4. The cycle index polynomial of G = {es, (12), (34),
(12)(34)} is

Zc(, y2, y3, y8) = O + 252 + yD) /4
the cycle index polynomial of H = {e4, (12)(34), (13)(24), (14)(23)} is
Zu(, 2, y3, ya) = (f +3y2)/4.
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Observe that neither y3 nor y4 actually appears in either Zg or Zy. Moreover,
while G and H are isomorphic (as abstract groups), they have different cycle
index polynomials. m]

These definitions are brought together in the following result of [Williamson
(1971)], [Merris (1980)], and [White (1980b)].

THEOREM 6.80 Suppose x is an irreducible character of the subgroup G of Sp.
Then

X(EOWERL, X240 s X)) = ZE(P1 Pos o vos Pr)s (6.45)

where P, = Pi(x1,X2,...,%3) = X} + x5 + -+ + x} is the t-th power sum,
1<t<m.

CoroLLARY 6.81 (Pélya’s Theorem). Let G be a permutation group of degree m.
Then the pattern inventory, Wg(xy, X2, . . ., Xn), is obtained from the cycle index

polynomial, Zg(y1, y2, ---,Ym), by the substitution y; = Pi(x1,X2,...,Xn),
1<t<m.

Proof (of Theorem 6.80): Let U be a vector space of dimension n, over the
scalar field of rational functions (ratios of polynomials) in the indeterminates
X1,X2,...,Xn. Let {u1,u2,...,us} be a basis of U. If @ € I'p p, then U® =
(u?,: T € G) is invariant under {P(0): o € G}. Denote by P, (o) the restriction
of P(o) to U‘?, o € G.Following [Williamson (1971)], we define P(o): U®™ &
yem by

P(0) = @acaw(a)Py(0),

and
7 _ X() Y x(@)F
TG, x)= o©G) c’ec)((c:r)P(a). (6.46)

Because U2 is invariant under {P(0): o € G}, it is invariant under T'(G, x).
Denote the restriction of T(G, x) to U,? by To(G, x). Then To(G, x) is a
projection operator on U®, and

T(G, x) = Bacaw(@)Tu(G, ). (6.47)
From Equation (6.47), the trace of i‘(G, Xx) is
Y w@) tr (Ta(G, X)) = ) saw(a).

a€A a€A

From Equation (6.46), the trace of f’(G, X)is

x©
o(G)

PO)

Y x@ w(B) = o

oeG

Y x©@) Y wla) tr (Pu(o)).

oeG a€A
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Therefore,
_ x(e
D saw(@) = "0 D x(0) Y w(@) tr (Pa(o) (6.48)
a€l o(G) oeG acA
For a particular weight
w =TT+~

i=1

(where each k; > 0, and ky + k2 + - - - + k, = m), denote by A,, the sequences in
A of weight w, thatis, A, = {8 € A: w(8) = w}. Then

Y wPa@N [[ratr =D w D w(Pulo)). (6.49)
=1

a€A w a€h,

Summing tr (Py(0)) = o({y € Tma: ¥y = a(mod G) and yo = y} over
a € Ay produces Y tr (Pe(0)) = o(fy € T'ma: w(y) = w and yo = y)).
Substituting this in Equation (6.49) produces

Y w@ tr(Pa@) =) oy €Tma: w(y)=w and yo =yhw.
o<t ) (6.50)

Now, yo = y if and only if y is constant on the cycles of o. The right-hand side
of Equation (6.50) is an inventory of the weights of those y’s that are constant
on the cycles of o. Another way to inventory the same weights is to compute the

product,

Gr4+x++x) 02 4224 4329 P T 42RO,

Substituting this product in the right-hand side of Equation (6.50) and then
substituting the result in the right-hand side of Equation (6.48), we obtain

il - c(o)
D saw(@) = % 2 x@]] (Zx{) :

aeh 0€eG t=1 \i=1
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ExampLE 6.82 Suppose m = 4,n = 3, G = ((1243)) = {es, (1243), (14)(23),
(1342)}, and x = 1. Then

1
Zo(n, y2. 33, y8) = 701 + 25" +)).
Letting x; = r, x = w, and x3 = b, Corollary 6.81 yields
1
We(r, w,b) = 2((r + w+5)* +20* + w* + 5% + (2 + w” +57))
=0*+ v+ b+ Pw+rb +rw’ +rb® + b + wd’)

+ 2(r2w2 + r?b% + w?b?) + 3(r*wb + rw?b + rwbz),
precisely Equation (6.42). u}

ExampLE 6.83 Modulo
Dy = {e4, (1243), (14)(23), (1342), (14), (23), (12)(34), (13)(24)}  (6.51)
the group of all eight symmetries of the square, how many red-white-blue vertex

color patterns are there? Does doubling the symmetry group halve the number of
patterns? Let’s see. By Theorem 6.35,

1
—_ z: (@)
0(A)—§ 366

0504
=(3*+3+32+3+33+33 432438
=21.

So, going from the group of plane rotations, G, to the full symmetry group, Dj,
reduces the number of patterns from 24 to 21. Take another look at Figure 6.5
and see if you can determine which of the colorings, inequivalent modulo G, are
equivalent modulo Dj. (At the conclusion of this little exercise, you should be able
to use the figure to write out the pattern inventory for Dj.)

From Pélya’s Theorem (Corollary 6.81), the pattern inventory for Dy is

Wp,(row,b) =Zp,r + w+b,r2 + w? + b2, PP + wd + B°, r* + w* + b4

((r + w+b)* +2¢* + w* + b%) + 3% + w? + b)?

OO | =

+2(r + w + b)2(r* + w? + b))
=0*+u* + b+ Pw+r3b +rwd +rb® + b + wbd)

+ 2(r2w2 +r2b* + wzbz) + 2(r2wb +rw?b + rwbz).
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FIGURE 6.6

The Enumeration of Graphs

Pélya’s Theorem can be found in the 1937 paper, “Kombinatorische Anzahlbes-
timmungen fiir Gruppen, Graphen und chemische Verbindungen” (Combinatorial
Enumeration of Groups, Graphs, and Chemical Compounds). To discuss Pélya’s
approach to graph enumeration, let g (7, m) be the number of nonisomorphic graphs
with n vertices and m edges. Define

C(n,2)
fax) =Y gln,mx". (6.52)

m=0

Then fp(x) is a generating function for the numbers of nonisomorphic graphs
having n vertices.

ExampLE 6.84 The 11 nonisimorphic graphs on four vertices are illustrated in
Figure 6.6. Using these pictures, it is easy to produce

fax) =14+ x +2x2 + 323 + 2x* + x5 +x5. (6.53)
a

Because there is a unique graph, namely K, = (V, V(z)), having n vertices and
C(n, 2) edges, g(n, C(n, 2)) = 1, that is, f,(x) is a monic polynomial of degree
C(n, 2).Because G = (V, E) and H = (W, F) are isomorphic if and only if their
complements, G = (V, VP\E) and H® = (W, W®\F), are isomorphic, the
coefficients of f,(x) are symmetric.

If we had a picture, comparable to Figure 6.6, for the 34 non-isomorphic graphs
on five vertices, it would be a simple matter to write down

fs) = x4 x% +2x8 +4x" 4 6x +6x° +6x* +4x3 + 2x2 + x + 1. (6.54)

On the other hand, if it were your job to produce such a picture, it would surely
be useful to know, for example, that the coefficient of x%in fs(x) is 6, in other
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words, that there exactly six nonisomorphic graphs having five vertices and four
edges. Okay, how does one generate f,(x) without any pictures?

To begin, set V = {1,2,...,n}. Then (Definition 1.31) G = (V, E) and
H = (V, F) are isomorphic if and only if there is a permutation o € S, such that

{i, j}€ E ifandonlyif {o(i),0(j)} € F. (6.55)

DerNITION 6.85 For each o € §,, let & be the natural induced action of o on
V@, the 2-element subsets of V = {1, 2, ..., n}, thatis, & ({i, j}) = {0 (i), o (j)}.
{i, j} € V@, The pair group S,(,z) ={0:0 € 8,}).

With respect to this induced action, (6.55) can be expressed as e € E if and
only if 6(e) € F. In other words, G = (V, E) is isomorphic to H = (V, F) if
and only if there is a permutation & in the pair group 52 such that

o(E)=F. (6.56)

There is another way to look at ,(,2). Consider the complete graph K, =

(V, V@), As a geometric object, it has a symmetry group, namely its group of
automorphisms.!2 Let’s call it G. When viewed as permutations of the vertices of
Kn, G = S,. However, when viewed as permutations of the edges of K,, G = S,(.z) A

Let’s color the edges of K, using two colors, say black and white. Any such
coloring corresponds to a partition of V@ into E = {e € V@: e is black } and
VO\E = {e € V@ : ¢ is white }. Moreover, if E is the set of black edges from
one coloring and F the set of black edges from another, the two colorings are
equivalent modulo G if and only if there is a permutation & in the pair group 5@
such that G(E) = F, precisely the criterion of Equation (6.56). In the natural
one-to-one correspondence between graphs on n vertices and black-white edge
colorings of K, two graphs are isomorphic if and only if the corresponding edge
colorings are equivalent modulo S,(,z). Letting x; correspond to white and x; to
black, the pattern inventory for the inequivalent black-white colorings of the edges
of K, is

Wo(x, x2) = Zgo (x1 +x2, 58 + x4, ..., a0 + ), (657

where m = C(n, 2) is the degree of S,(.z). It seems that substituting x; = 1 and
x2 = x in Equation (6.57) proves the following:

THEOREM 6.86  The generating function for the numbers of nonisomorphic graphs
on n vertices is

fr®) = Zgo (1 +x,1+x%...,1 +x°"'-2)). (6.58)

To find f,(x), it remains to compute the cycle index polynomial for S,(.z).

12 An automorphism of G is an isomorphism from G onto G.
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ExampLE 6.87 Ifn =4 then V = {1,2,3,4}, and V@ = ({1,2}, (1,3}, {1,4),
{2, 3}, {2, 4}, {3, 4}}. Numbering the elements of v@ lexicographically, we have

1={12}, 2={(1,3}, 3={1,4}, 4={2,3}, 5={2,4}, 6={3,4}.

Suppose 0 = (1234) € S4. Let’s compute the disjoint cycle factorization of
o€ Ss:

1) =6({1,2) ={o(1),0(2)} ={2,3} =4;

64)=0((2,3) ={0(2),0(3)} = (3,4} = 6;

6(6)=0({3,4) ={c3), o@D} =1{4,1}=3;

@) =6({1,4) ={oc(D), 0D} =1{2,1} =1
Therefore, (1463) is a cycle of 6. Continuing,

0(2)=6({1,3) ={o(1),0c(3)}={2,4} =5;

5(5)=5({2,4) = {0(2), 0@} =3, 1} =2.

Hence, 6 = (1463)(25). Figure 6.7 displays & for all 24 permutations 0 € S5. O
ExampLE 6.88 From Figure 6.7, the cycle index polynomial

1

ZgpOL Y236 = 5 (y? +9y2y? +8y3 + 6yzy4) : (6.59)
o o o o o o
e e (123)  (142)(356) | (1234)  (1463)(25)

(12) (4)(35) | (124) (153)(246) | (1243)  (1562)(34)
(13) (14)(36) | (132) (124)(365) | (1324)  (16)(2453)
a4 (15)26) | (134) (145)(263) | (1342)  (1265)(34)
(23) (12)(56) | (142) (135)(264) | (1423)  (16)(2354)
(24) (13)(46) | (143)  (154)(236) | (1432)  (1364)(25)
G4 (23)45) | (234) (123)@d65) | (1)34) (2534
(13)(24) (16)(34) | (243) (132)(456) | (14)(23)  (16)(25)

FIGURE 6.7
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In view of Theorem 6.86, substituting y; = 1 + x* in Equation (6.59) produces
fo) = (A +25 490+ 0% + 22 +80 +5%2 +6(1 + 5D + x‘)) /24
= ((1 + 6x + 15x% +20x3 + 15x% + x° + x5)
+9(1 4 2x + 3x% + 4x% 4 3x* + 2x° +x5)
+8(1+2x +x%) +6(1 +x2 4+ x* +x°)) /24
=14x+2x2 +3x3 +2x* + x° + x5,

precisely Equation (6.53). a
The generation of cycle index polynomials for the pair group is not as difficult
as Example 6.87 makes it seem:

LEMMA 6.89 Let G and T be the elements of 52 induced by the permutations o
and t of Sy, respectively. If o and T have the same cycle structure, then 6 and T
have the same cycle structure.

ExampLE 6.90 The cycle index polynomial for Ss is easy to obtain from
Figure 4.4, namely,

1
= (yf + 10y} y; + 15y1y3 + 20y2y3 + 20y2y3 + 30y1y4 + 24ys) .

Given this expression and Lemma 6.89, only seven (as opposed to 120) compu-
tations of the type carried out in Example 6.87 suffice to yield the cycle index
polynomial for ng):

g (7% + 10553 + 155258 + 203133 + 20713336 + 30233 + 2457 .
a

COROLLARY 6.91 The total number of nonisomorphic graphs on n vertices (with-
out regard to the number of edges) is

1 -
f) == 329, (6.60)
T O€S,

where c(G) is the total number of cycles, including cycles of length 1, in the disjoint
cycle factorization of G.
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Proof From Theorem 6.86,
() =Z@Q,2,...,2).
Combining Example 6.90 with Corollary 6.91, we see that there are

(2‘°+10x2’+15x26+20x2‘+20x23+30x23+24x22)/120=34

nonisomorphic graphs on 5 vertices (as predicted by Equation (6.54)).

Application to NMR Spectroscopy

We turn now to the character weighted cycle index polynomials.
ExamrLE 6.92 Consider the red-white-blue vertex color patterns of the square,

modulo Dy, in which opposite vertices are colored differently. If x = ¢ then, from
Equation (6.51),
Z5, (1. y2, 3, y8) = (yi‘ —2y4 + 3y} - 2yfyz) /8.
Thus,
Wh, (v w,5) = ((r +w+b)* = 20* + w* + 5% + 3¢ + w? + b2)?
-2 +w+ b +w? + b’)) /8
=2w?+ri? + w?b%) + (FPwb + rw?b + rwb?).

Sure enough, these are the weights of the six inequivalent colorings illustrated
in Figure 6.8. What may not be so obvious is why the alternating character

should “select” precisely those patterns in which opposite vertices are colored
differently.!?

rr bb wwW rr bb LAY
ww rr bb wb rw rb
FIGURE 6.8

l:‘l-l.int: The restriction of & to ((12)(34)) is equal to the principal character while its restrictions to
{(14)) is not.
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ExaMPLE 6.93 From the algebraic perspective of symmetry classes of tensors, A
is the subset of A “selected” by an irreducible character. From the combinatorial
perspective of pattern inventory, the role of the character in “selecting” patterns is
less well understood. Exceptions sometimes occur in instances where characters
are associated with some physical quantity. One example involves high resolution
nuclear magnetic resonance (NMR) spectroscopy, an application that requires a
brief excursion into quantum mechanics. (For a nice overview of this subject, see
[Hollas (1987)] or [Schensted (1976)].)

The quantum mechanical description of the state of a system is given by a
complex valued “wave function”, W(z), of the coordinates z of the system. Wave
functions are governed by the Schriodinger equation

HV = EV, (6.61)

linking the Hamiltonian (differential) operator H with the energy E. Solutions of
Equation (6.61) describe the stationary states of the system. Transitions between
these states correspond to spectral lines. For our purposes, the exact nature of
H is unimportant. What matters is that it is linear,!* so the set of all solutions
corresponding to a fixed (eigenvalue) E comprises a vector space, and that the
Schrodinger equation for an n-particle system is invariant with respect to the
symmetries of the system. It follows from these facts that the eigenspace of each
stationary state corresponds to a representation of G = {0 € S,: Ho = o H}.
In other words, a character of G is associated with each stationary energy E. It
is this natural orrurrence of characters that makes Theorem 6.80 relevant to the
discussion.

Skipping over many details, we come to the work of K. Balasubramanian on
NMR spectroscopy. 15 Nuclear magnetic resonance is produced by a magnetic field
associated with unpaired nuclear spins. The phenomenon is observed by placing
a sample in a steady magnetic field and exposing it to radio waves. The frequency
of the radiation and the strength of the magnetic field are adjusted to produce
absorption of the radio waves.

Among the trinmphs of quantum mechanics is a theoretical insight leading
to predictions associated with these (and other) “spectral lines”. Among its
frustrations is the difficulty of obtaining exact solutions to the Schrodinger
equation. The 1927 Bomn-Oppenheimer approximation leads to a factorization
of the wave function ¥ = ¥,W¥, as a product of an electron part and a nuclear
part. A further splitting of the nuclear part leads to ¥, = W, W, ¥,, where ¥, is a
vibrational part, ¥, arotational piece, and W, a nuclear spin factor. Associated with
the spin factor is a reducible character ;. The key to predicting relative intensities
of the NMR spectral lines is a reduction of ;.

Yrmisisa consequence of the principal of superposition of states, an axiom of quantum mechanics.
155ee [Balasubramanian (1981)—(1985)].
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(a) (b)

FIGURE 6.9

The nuclear spin quantum number, 7, is of the form k/2, for some nonnegative
integer k. Hydrogen (atomic weight 1) has nuclear spin quantum number 1/2. For
carbon-12, I = 0. Nitrogen-14 has quantum number 1 and 7 = 3/2 for chlorene-
35. Corresponding to quantum number /, there are n = 21 + 1 solutions W to the
NMR wave equation.

Consider, for example, the (nonrigid) hydrazine molecule NoHy illustrated in
Figure 6.9(a). We will focus on the “proton nuclear spin species” arising from
the four hydrogen-1 atoms numbered as in Figure 6.9(b). Because I = 1/2, ¥
has n = 2 solutions, ¥; = u and ¥, = &, corresponding to “spin up” and “spin
down”. Let V be the free vector space spanned by these two wave functions and
consider V®4, where m = 4 because we are dealing with four protons. Setting
e; = u and e; = §, the decomposable tensor

LOuB®iRi=e€ Qe1@e2@e;
corresponds to spin up for protons 1 and 2, and spin down for protons 3 and 4.
The nuclear spin character, x;, is the (permutation) character afforded by the
representation 0 — P(0) € L(V®,V®),0 € G.Let A; = {y € A: w(y) =
x;'x; ~'},0 < i < 4, and denote by p; the character of G afforded by the restriction
of Pto (e, : y € Ai, o € G). Then

4
Xs =) pi- (6.62)
i=0

Therefore, it suffices to reduce p;, 0 < i < 4.

Ci Ca C3 Cs Cs
X1 1 1 1 1 1
X2 1 1 -1 -1 1
X3 1 1 -1 1 -1
X4 1 1 1 -1 -1
X5 2 -2 0 0 0

FIGURE 6.10 The character table for Dy.
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n >} B )
N rd N 7
N—N N——N
/ N / N
el s} B d
a= (1,1,2,2) B = (1,2,2,1)

FIGURE 6.11

The symmetry group of nonrigid hydrazine is G = D4. From Example 4.42, the
conjugacy classes of D4 are C; = {e}, C2 = {(14)(23)}, C3 = {(1243), (1342)},
Cs = {(14), (23)}, and Cs = {(12)(34), (13)(24)}; its character table (Figure 4.3)
is reproduced in Figure 6.10. Theorem 6.80, applied to G = D4 and x = x;,
1 <i <5, produces

WX (x1, x2) = x} + x3x2 + 2x2x% + x1%3 + x3;
W(x1,x2) = xfx%;
Wé’ (x1,x2) = x?xz B xfx% + x;xg E
W1, x2) =0;
and (after dividing both sides by xs(e) = 2)
W (x1,x2) = x3x2 4 x3x? 4+ x1x3.

Consider the term fox% in the pattern inventory Wg(x1, x2) = Wé‘ (x1, x2).
Evidently, there are two inequivalent spin species of weight x?x2. In the current
example, the situation is clear. Representatives of the two species are illustrated
in Figure 6.11, and (e$,: y € A2, 0 € G) is the direct sum of the invariant
subspaces

U1=(u@u®ixsieéieudupl®éu®s,sueds®u)
=(e‘?¢,:0' € G),
wherea = (1, 1, 2, 2), and
U=(u®5Q@50u,5Q udu®3s)

=(e§,: 0 €G),
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where 8 = (1,2, 2, 1). Therefore, p» = & + &, where &; is the character of
the restriction of P to U;, i = 1, 2. Because the £; are transitive permutation
characters, they are induced from principal characters of stabilizer subgroups. The
stabilizer subgroup of the spin species eg, for example, is G, = {e, (12)(34)}.
By the Frobenius Reciprocity Theorem, (&1, xj)¢ = (1, xj)G,, and (&2, X)) =
(1, X)G,, 1 < j <5.Thus,

P2, Xj)G = (51 + &, xj)G
= (61, xj)6 + (&2, xj)G
= (1, xj)G. + (1, Xj)G,

= Y (L x)e,-

Y€z

In general,
i, x)6 = ) (L, x))G,
Y€EA;
precisely the coefficient of x‘ix;" in Wé’ (x1, x2). (See Definition 6.77.) Because
5
pi =) (bi, X)6Xj» 0<i<4,

j=0

we can obtain a reduction of p;, by inspection, from the coefficients of x{x;" in

WY (x1,x2), 1 < j < 5. In particular,
PO = X1 = P4,
pPL=x1+ X3+ X5=p3;

and
P2 =2x1+ x2+ x3 + x5-

Substituting these values into Equation (6.62), yields the nuclear spin character

Xs =6)1+ x2+3x3 + 3xs.



202 Multilinear Algebra
Exercises

1. Suppose x isalinearcharacterof G.Prove that P(7)T (G, x) = x(@"HT (G, x).

2. Letm =2,G = 8, and x = ¢. Confirm Equation (6.7) by showing directly
that v * v, = —vp * V1.

3. Mimic Example 6.8 when G = S3.

4. LetAy,Az,...,Ap be the eigenvalues of A € C, , (multiplicities included),
and i, @3, . .., @, the eigenvalues of B € C, 4. Find the eigenvalues of

a. A® B—-BQ®A.
b. A B+ B®A.

5. Let A,B € C,,. If A is skew symmetric and B is symmetric, show that
tr (B*A) =0.

6. Suppose ®: V x V x-.- x V — W is m-linear. Let x be a linear character

of the subgroup G of S,,. Prove that ® is symmetric with respect to G and x
if and only if ®(vs(1), Vo(2)s - - - » Va(m)) = X(@)P(V1,v2,...,Um), 0 €G.

7. Prove Lemma 6.12.
8. Let f1, f2,..., fm € V' = L(V, C). Prove that

m

o= x®[]fo

teG i=1

is multilinear and symmetric with respect to G and y.
9. Prove that equivalence modulo G is an equivalence relation on 'y 5.

10. Prove that the mapping 0 — o, from S, into S,~, indroduced in Defini-
tion 6.17, is one-to-one foralln > 1.

11. Suppose G is a subgroup of Sp. Letar, B € 'y 5.
a. Prove that G, is a subgroup of G.
b. If = B (mod G), prove that their stabilizer subgroups, G, and Gg, are
conjugate in G.
c. Suppose Gy C Gg. If B € Q, prove that o € Q.
12. Prove Lemma 6.22. (Hint: Exercise 11b.)
13. Let x € I(G) and a, B € ' 5, where G is a subgroup of S,,.
a. Prove that

3 x@

o0eG,

0(Gq)

is a nonnegative integer.
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14.
15.

16.

17.

18.

b.

Complete Lemma 6.21: If @« = ft, prove that

. o _ X()
(eas €p =m0§.x(at).

Prove Lemma 6.24.
Let x be an irreducible character of the subgroup G of S,,.

a.
b.

Prove that A = A if and only if x is the principal character.
Prove Theorem 6.30.

Let x be an irreducible character of G. Let X be the character defined by
X(o)=x(o),0 €G.

a.
b.

Prove that ¥ € I(G).

Show that the A set corresponding to G and x is identical to the A set
arising from G and .

Suppose @ € A.If {¢;: 1 <i < n} is an orthonormal basis of V, prove that

a.
b.
c.

d.

x(e) < sa < x(e)%
sa <[G: Gql

equality holds in part (b) if and only if x is the principal character and
Gy =0G.

llezh? = sa/[G : Gal.

Let {e;, €2,...,€,}, n > 1, be a basis of the vector space V. Suppose G is
a permutation group of degree m. For a fixed but arbitrary & € I'yy , define
V2 = (8, : t € G).

a.

Prove that V2 is an invariant subspace of P(c'), 0 € G. That is, show that
P(o)(w) € V@ forallw € V® and allo € G.

Denote by P, (o) the restriction of P(c) to V®, o € G. Prove that P, is
a representation of G.

Show that the action of Py(0) on {¢®.: T € G} is identical to the action
of @ on {at: T € G}, where 7 is defined in Definition 6.17.

Suppose G is a subgroup of S,, and x € I(G). Let @ € A. Show that
Sa, the dimension of the orbital subspace ({e},: T € G}), is x(e)(x, )G,
where £ is the character of G afforded by P,.

e. Show that & = 1C, where 1, is the principal character of G.

8.

Use these facts, along with the Frobenius Reciprocity Theorem, to give
another proof of Freese’s Theorem.

Use part (e) to show that Equations (6.20) and (6.22) are equivalent.

19. Prove Lemma 6.52.
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20. Let x be an irreducible character of the subgroup G of Sy. Suppose @ € 'y
is fixed but arbitrary. Let B = {¢;: 1 < i < n} be a basis of V. Define
G® = {0 € G: there exists a number, £(o), such that e%, = £(c’)e}}. Prove
that

a. G“is a subgroup of G.

£ is a linear character of G*.
G, is a subgroup of G“.
when restricted to Gq, &€ = 1.
G“ does not depend on B.

. (X De, = (X, §)ge-

21. Let {v;: 1 < i < k) be a linearly independent set of vectors in V. Suppose
the vectors uy, U2, ..., ux € V satisfy the identity

k
zv,- Au;=0.
i=1

Prove that u; € (v;,v2,...,%), 1 < i < k. (Compare with Chapter S,
Exercise 7a.)

22. Prove Theorem 6.53 directly, without using Gamas’s Theorem. (Hint:
Lemma 6.16 and Lemma 6.52.)

23. Show how Gamas’s Theorem can be used to prove Lemma 6.16.

- o a0 g

012 3 4
1 012 3
24. letA=]|2 1 0 1 2
32101
4 3210

Write down A[x|B] and A(x|8) when
a. a=(l,2)and B =(4,5)
b a=(2,3)and B = (4,5)
c. a=(2,4)and g = 4,5)
d a=(2,4)and g =(2,4)

25. Letwr = [r,1™7), G = Sm, and X = xx. If {v1,v2,..., Un} is a set of
nonzero vectors in the vector space V, prove that vy * v2 * - - - * v, = 0 if and
only if dim({vy, v2,...,Um)) <m —r+1.

26. Let G = Djy. Use Figure 6.10 to show that the multilinearity partition
a. MP(x1) =[4].
b. MP(x2) = [2,2].
c. MP(x3) =1[3,1).
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27.

28.

29.
30.

31.
32.

d MP(us) =1[2,1,1].

e. MP(xs) =1[3,1].

([Fonseca (1992)]) Let G be a subgroup of S,,. Let f be the function from
I(G) to the partitions of m defined by f(x) = M P(x). Prove that f need be
neither one-to-one nor onto. (Hint: Exercise 26.)

Suppose V is an inner product space of dimension n. Then (Equation (6.26)),
dim(A™V) = C(n,m) = C(n,n — m) = dim(A""™V). Therefore, as
vector spaces, A™V and A"™V are isomorphic. The obvious question is
whether there is some natural isomorphism that preserves decomposable
symmetrized tensors. Let E = {ey, ez, ..., €,} be an ordered orthonormal
basis of V. Define a linear transformation Hg’ A"V 5> ARV by
Hi(eh) = (—1))@el., & € QOmp, and linear extension, where ¢(ax) =
(I+ae())+Q2+a@))+:--+(m+a(m)) anda® € Qp_m,n is the sequence
complementary to a.!6

a. Prove that HE, is invertible.

b. Let V = R3, real three-dimensional space. Let E be the standard ordered
basis of V, that is, ¢; = (1,0,0), e2 = (0,1,0), and e3 = (0,0, 1).
Suppose m = 2. If u, v € V, prove that

Hp(uAv)=uxv,

the cross product of u and v. (Hint: Let u = (u,, u2, u3) = uje;1 +uze2 +
uzez and v = vje; + ne2 + vies. Express u A v in terms of the basis
{el : @ € 02,3} and then apply the linear map H.)

c. Let E be the standard ordered basis of V = R3. If u, v, w € V, prove that
uAvAw = (uo(vxw)e Aex Aes.

d. If u, v, and w are vectors in R, prove that |u o (v x w)| is the volume of
the parallelopiped they determine. (The exterior product, e; Ae2 A« - - Aep,
is sometimes referred to as a volume element.)

e. Suppose u, v, and w are vectors in R3. Without using Hp, prove that
u o (v x w) = 0if and only if {u, v, w} is linearly dependent.

Prove Lemma 6.59.

Let V be a vector space. Prove that V,(S,,) C V;(G), for every subgroup G

of Sp.

Prove Theorem 6.64.

Finish the proof of Lemma 6.65 by explaining why the set B, defined in
Equation (6.38), spans the vector space C,[x1, X2, ..., X5).

165t can be shown that the Hodge star mapping, H, preserves decomposability. (See, e.g., [Marcus

(1975), pp. 21-311)
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33.

35.

36.

Multilinear Algebra

Let V be a vector space and suppose T € L(V, V) has rank r. Let x be a
linear character of the subgroup G of Sp.

a. Prove that rank (K(T)) = o(Tm,» N A).

b. Suppose G = S, and x = &.If r < m, prove that K(T) = 0.

Let V be an inner product space. If T is a unitary operator on V, prove that
K (T) is unitary.

Let V be an inner product space. Suppose S, T € L(V,V).If § > T, prove
that K(S) > K(T).

Let x be a fixed but arbitrary irreducible character of the subgroup G of S,.
Let V be a vector space of dimension n > m.

a. Show that V, (G) is an invariant subspace for P(c),0 € G.

b. Denote by Py(c) the restriction of P(g) to V,(G), 0 € G. Prove that
o — P, (o) is a representation of G.

c. If& € I(G), let

_ x(
L))

Y E(@)Py(0).

oeG
Prove that Z, is the identity operator on Vy (G).

d. Prove that Z is the zero operator on Vy (G) if x # &.

e. Prove that (¢, n)g = 0 if & # X, where 7 is the character of G afforded
by Py.

f. Let A be a representation of G affording X. Prove that P, is equivalent to
the direct sum of A with itself (i, )¢ times.

Applications Exercises

37.

38.

Consider a regular pentagon whose vertices have been numbered consecu-

tively 1-5.

a. Show that, modulo the group G = ((12345)) of its plane rotations, the
pentagon has 51 inequivalent red-white-blue vertex colorings.

b. Show that, modulo the group Ds of all ten symmetries (Exercise 32,
Chapter 3), it has 39 inequivalent red-white-blue vertex colorings.

c. If a fourth color becomes available show that, modulo Ds, there are 136
inequivalent vertex colorings.

Suppose each face of a cube is (uniformly) painted red, white, or blue. There

are 36 = 729 different ways to do it. Let’s consider two red-white-blue colored

cubes to be equivalent if they can be rotated into positions that exhibit the same
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39.

41.

coloring. Use Theorem 6.35 to show that of the 729 different colorings, only
57 are inequivalent. (Hint: Figure 3.4.)

A binary code of length n is a set of n-letter “words” constructed from the
2-letter “alphabet” {0, 1}.

a. Show that there is a natural one-to-one correspondence between the
23 = 8 three-letter binary words and the eight vertices of a cube in three-
dimensional Euclidean space.

b. Show that a binary code of length 3 can be illustrated by means of a black-
white coloring of the vertices of a cube.

c. Show that there are 28 different binary codes of length 3.

d. Twobinary codes of length 3 are equivalent if their black-white illustrations
can be rotated into positions that exhibit the same coloring. How many
inequivalent binary codes of length 3 are there? (Hint: Figure 3.5.)

Supposed = (12...m) € Spisafullm-cycle.LetG = (0) ={of: 1 <i <
m} be the cyclic group generated by o. Prove that the cycle index polynomial

1
ZG(Yl' y21 LERR ym) = ; Z¢(k)y:'/k1
k|m

where ¢(k) is the number of positive integers i < k that are relatively prime
tok.

Recall (Definition 1.23) that the m-th homogeneous symmetric function

Hp(x1, %2, ... 3n) = ) Mx (X1, X2, ..., Xn)

whkm
a. Prove that H,,(x1, x2, ..., X») is the result of substituting
n
Y= ZX:
i=1
in the cycle index polynomial Zs_ (y1, y2, - - - » ¥m)-
b. Prove that

= 1 c(o)
C(m+n—l,m)—;—' Zn ,

T O€ES

where ¢(o) is the total number of cycles, including cycles of length 1, in
the disjoint cycle factorization of .

42. Let G be the group of plane rotations of the regular pentagon (Exercise 37).
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a. Show that Wg(r, w, b) = [(r + w + b)’ + 4(r3 + w® + b))/5.

b. Show that Wg(r, w, b) = M(s) + Ma,1) + 2M[32) + 4M[3 12} + 6M[2 1,
where M, is an abbreviation for the monomial symmetric function
My (r, w, b).

c. Draw a system of distinct representatives for the four color patterns of
weight rw3b.
d. Draw asystem of distinct representatives for the six color patterns of weight
rw?b?.
43. Let Ds be the group of all ten symmetries of the regular pentagon (Exercise 37).
a. Show that

Wp, (r, w, b) = ((r +w+b)* +5(r +w+b)(r2 +w? +b*)2 +4(r° +w’ +b%))/10.

b. Express Wp,(r, w, b) as a linear combination of monomial symmetric
functions.

c. Draw a system of distinct representatives for the two color patterns of
weight rw3b.
d. Draw a system of distinct representatives for the four color patterns of
weight rw?b?,
44. Let G be the group of 12 rotational symmetries of the regular tetrahedron.

a. Express Wg(r, w, b, g) as a linear combination of monomial symmetric
functions when G is viewed as a group of permutations of the faces of the
tetrahedron.

b. Express Wg(w, b) as a linear combination of monomial symmetric func-
tions when G is viewed as a group of permutations of the edges of the
tetrahedron.

45. Consider the group G of 24 rotational symmetries of the cube.
a. If G is expressed as permutations of the faces of the cube, show that

1
Z6On 2030 = 57 (0 + 3913 + 5w + 633 +833)..

b. Show that the pattern inventory for the 57 red-white-blue colorings of the
faces of the cube (Exercise 38) is

Wa(r, w, b) = Mis) + Mis,1) +2M14,2) + 2 M4 121 + 2M 32 + 3M(3,2,1) + 6 M3,
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48.
49.

where M, is an abbreviation for the monomial symmetric function
M, (r, w, b).

c. If G is expressed as permutations of the vertices of the cube, show that
VA - l 8 9 4 6 2 8 2.2
6O Y2000 y6) = o7 (1 +9y; + 655 +8y1y3) -

d. Recall that G is abstractly isomorphic to S4 (Exercise 36, Chapter 3) and,
therefore, to Siz). Compare and contrast your answers to parts (a) and (c)

with Equation (6.59).

. Prove Lemma 6.89.
47.

Consider the nonisomorphic graphs on 5 vertices.

a. Use Example 6.90 with Theorem 6.86 to obtain Equation (6.54).

b. Illustrate the six nonisomorphic graphs having five vertices and six edges.
c. Illustrate the six nonisomorphic graphs having five vertices and five edges.
d. Illustrate the six nonisomorphic graphs having five vertices and four edges.
Confirm Example 6.90.

Let G = Sn. Suppose @ + m. Let x, be the irreducible character of
Sm corresponding to swr. Show that, in the sense of Example 6.92, xx
selects those patterns whose multiplicity partitions are majorized by x. (Hint:
Theorem 6.37.)

C C C3 Cs Cs
X1 1 -1 1 1 -1
X2 3 -1 -1 0 1
X3 2 0 2 -1 0
X4 3 1 -1 0 -1
Xs 1 1 1 1 1

FIGURE 6.12 Character table of the group of rotational symmetries of the cube.

50. Let G be the group of 24 rotational symmetries of the cube. Because G

is abstractly isomorphic to S4 (Exercise 36, Chapter 3), it must have five
conjugacy classes. From Figure 3.4, we see that the elements of G exhibit
five different cycle structures. It must be, therefore, that two elements of G
are conjugate in G if and only if they are conjugate in Ss. So, the conjugacy
classes of G are Cy = {e} = GNCps}, C2 = GNCpp3y, C3 = GNCp2 12,
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Cs=GNCxj,and Cs = GNCq 1. It is now an easy matter to transcribe
the character table of S4 (Exercise 36, Chapter 4) and obtain the character
table of G shown in Figure 6.12.

a. Show that x; = &, the restriction of the alternating character of Se to G.
b. Show that

Z5(n,¥25 -5 ¥6) = [yiS — 6y3 4 3y2y2 4+ 8y3 — syfy4] J24.
(Hint: Exercise 45.)

c. Show that, after substituting y; = r' + w' + b, 1 < i < 6, into
Zg (31, ¥2: - -» Y6), the result is

E w(a) = M 12) + 2M[32; + 3Mp32.1) + 3Mps),

aeh

where M is the monomial symmetric function My (r, w, b).
d. If x = x2, and My = My (r, w, b), show that

Wé (r, w, b) = M(s,1) + Mia 2) + 4Myg 12) + 2M3:) + TM[3,2,1) + M.

e. If x = x3,and M, = My (r, w, b), show that

WX(r, w, b) = Mis,1y + 2Mja2) + 3Mis 12) + 2M32) + 6M3 2,11 + M)

f. If x = x4, and My = M (r, w, b), show that

Wé (r, w, b) = 2M4 2 + 3M(4_lz] 4 2M[32] + 7M[3,2,1] + 12M[23].
51. Prove that 0 — & (Definition 6.85) is an isomorphism from S, onto S,(.z).
52. Derive Corollary 6.91 directly from Theorem 6.35.
53. Denote the cycle index polynomial of S by Z,.
a. Prove that

Zn =) _[lowi /!
i=1



Symmetry Classes of Tensors 211
where the sum is over all nonnegative integer sequences kj, k2, ..., km
satisfying ky + 2k 4+ 3k3 + - - - + mk;, = m.

b. Prove Cauchy’s Identity:
Y (kg 125k! ik )T = 1,

where the sum is over all nonnegative integer sequences ki, k3, ..., kn
satisfying k) 4+ 2k, + 3k3 + - - - + mk,, = 1.






CHAPTER 7

Generalized Matrix Functions

In 1893, J. Hadamard published his celebrated theorem on determinants (Theo-
rem 2.41): If A > 0, then
h(A) > det(A),

where, recall, h(A) is the product of the main diagonal entries of A. Suppose A > 0

is partitioned into blocks,
An Ap
A= " 7.1
(Azl An ) a.h
where A1) and Aj; are square. It follows from Hadamard’s Theorem that
h(A) > det(Ay;)det(A), A>0. (7.2)

In 1907, the first of what has become a glittering array of extensions, generaliza-
tions, and improvements of Hadamard’s Theorem was obtained by E. Fischer:

det(A1) det(Az2) > det(A), A =>0. (7.3)
Incidental to his work on group representation theory, I. Schur introduced the
following notion.

DeriNtmioN 7.1 Suppose x is a character of the subgroup G of S,,. The general-
ized matrix function d, : C,,,» — C is defined by

d(4) =) x©@) [Jawo,
=1

oeG

where A = (a;j). When G = S, and x = x for some n  m, d, is called an
immanant; the cumbersome expression d,,_ is sometimes abbreviated dy .

213
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ExampLE 7.2 The determinant is the immanant afforded by x = ¢. Thus,
det(A) = ds(A) = d=)(A), A € Cy . If G = S,y and x = x{m, the principal
character, then d{,) is the permanent,

per (A) = Y [Jawe-

OES, t=1

When x is the principal character of G = {e}, dy = h, is Hadamard’s function.
Suppose p + g = m, where p and g are positive integers. Let H; = {0 €
Sm:0@)=i,p<i<mland Hy ={0 € Sp:0(i)=1i, 1 <i < p}. Then H;
is easily identified with Sp, and H; is isomorphic to S,. Partition A € Cy » as in
Equation (7.1), where Aj; € Cppand Az € C . If G = H) x Hyand x = ¢,
then
dy (A) = det(A11) det(Az).

If G =H; x Hyand x = 1, then
dy (A) = per (A1) per (A).

D
In 1918, Schur obtained the following dramatic generalization of Fischer’s
Inequality.
ScHur's INeQuaLITY 7.3 Let x be a character of the subgroup G of Sm. If
A € Cp, 1 is positive semidefinite hermitian, then

dy(A) 2 x(e) det(A).

DeriNtTION 7.4 Suppose G is a subgroup of Sy,. Let x be an irreducible character
of G. The corresponding normalized generalized matrix function is defined by
dy(A) = dy(A)/x(e), A € Cp m.

In view of Definition 7.4, and because any character of G is a sum of irreducible
characters, Schur’s Inequality is equivalent to

dy(A) > det(A), A=0. (7.4)

We begin the proof of Schur’s Inequality by placing it in a more general setting.
If c: Sm — Cis a fixed but arbitrary function, define

d.(A) = ) c@) [Jawo,

OES, =1



Generalized Matrix Functions 215

Then the generalized matrix function afforded by G and x is the d. function
corresponding to
_Jx@), ifoeg,
o) = l 0, if o€ Sm\G. S
(Called the “trivial extension” of x to S,,, the c-function defined in Equation (7.5)
typically is not a character of S,,.)

DerNITION 7.5 LetHm = (A € Cpy,m: A > 0}. Denote by C,y, the set of functions
c: Sm = Csuchthatd.(A) > Oforall A € Hp.

Warkins's THEOREM 7.6!  If ¢ € C and A € Hyy, then
d.(A) > c(e)det(A). (7.6)

In other words, if d.(A) > O for all A > 0, then d.(A) > c(e)det(A) for all
A>0.

Proof If A = (a;j) is singular then det(A) = 0, and the conclusion follows from
the definition of C,,. If A is positive definite then, by the interlacing inequalities,
each of its principal submatrices is positive definite. In particular, a,,,, > 0. Denote
by Emm € Cp,m the matrix whose only non zero entry is a 1 in position (m, m).
Let r = det(A)/ det(A(m|m)), where A(m|m) is the matrix obtained from A by
deleting its last row and column. Then (Corollary 2.44), r is the largest positive real
number suchthat A > rE,,,. Let Ao = A —rE,,;; and define Ay = Ao+ xEmm.
If f is the (linear) function defined by

f(x) = dc(Ax) — c(e) det(Ay),

then
f'(x) = d:(A(m|m) & (1)) — c(e) det(A(m|m)).

It follows by induction that f/(x) > 0 for all x > 0. Because f(0) = d.(Ag) >0,
it must be that f(x) > O for all x > 0. In particular, f(r) > 0. This completes the
proof because A, = A. a

In view of Watkins’s Theorem, to prove Schur’s Inequality it suffices to show
that dy (A) > 0, A € H,. We will return to this point later. For the present,
let {e1,€2,...,en} be an orthonormal basis of the inner product space V. Let
W = (e2: 1 € Sp), the subspace of V®™ spanned by the tensors

ey®er2) @ @e€rm), T E Sm.

Because P(a)(e?) = e?a_. ,forallo, T € §,,, W is an invariant subspace of P(c).
Denote by Pw (o) the restriction of P(c) to W.

l'l‘heotem 7.6 first appeared in [Grone, Merris & Watkins (1988)].
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LemMA 7.7 Let R(0) be the matrix representation of Pw (o) with respect to the
lexicographically ordered basis {e?: T € Sp). Then o — R(o) is the (right)
regular representation of Sy,.

For each function c¢: S, = C, define

M. = 2 c(@~HR(0).
OES,

Observe that M, is an m!-by-m! matrix whose rows and columns are indexed by
the permutations of S,,. The (i, t)-entry of M, is

Y cle™8y 0 = ez ). 1.7
OES.

In particular, M, > 0 if and only if

Y. e wx() 20,
U, TESy
forallx: S, — C.
DerintTioN 7.8 The complex valued function ¢ of Sy, is positive semidefinite if

> @' wx() 20,

K,TESy
for all x: S,, = C. Denote by C} the set of all positive semidefinite functions
c: Sy = C.

LemMa 7.9  Let c be a complex valued function of Sw. Then ¢ € C} if and only if
there exists a function b: S, — C such that

c(o) = Z b(D)b(ot), O € Sp. (7.8)
T€ESa

Proof Suppose b is a complex valued function of S,,. Define c: S,, = C by
Equation (7.8). Because R(c) is a permutation matrix, R(¢)* = R(o '), and

M; =) bDR().

TESm
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Therefore,

M;My= Y b(®be " )R(z0)
T,0€S,

Z (Z F(?)b(a-'r)) R(0)

OES, \TES,

Z c(e"HR(o)

TES,

=M,.

Hence, M. > 0, which is equivalent to ¢ € C}.

Conversely, suppose M, > 0. Let U be an m!-by-m! unitary matrix such that
U*R(0)U = diag (R1(0), R2(0), ..., Re(0)), © € Sm,

where each R; is irreducible and R; is equivalent to R; only if R; = R;. Recall
that, up to equivalence, every irreducible representation of S,, occurs among the
R; with multiplicity equal to its degree. Without loss of generality, we may assume
that R;, 1 <i < p, is a complete set of inequivalent irreducible representations of
Sm. Let

§(o) = diag (R1(0), R2(0),..., Rp(d)), O € Sp.

Because {R(0): 0 € Sy} is linearly independent, {U*R(c)U: o € Sp}is
linearly independent. As it merely eliminates redundancies, {S(c): 0 € Sp)
is linearly independent. If the degree of R; is nj, 1 < i < p, then, because
nf +n§ + .- +n,2, = m!, {S(0): o € S,n} must be a basis for the direct sum
Cn..n. ® Cn;,nz B @ Cn,.u,-

Because U*M_ .U > 0, its direct summands

M=) c(@Ri(0) € Hn,

OES,

1 <i sk.SupposeM.- = B;B,',l <i Sk.lfj > pthenRj = R; for
some i < p;set B; = B;.If B = diag (By, By, ..., Bx), then B*B = U*M_U.
Moreover, by our previous remarks, D = diag (By, Ba, ..., Bp) is in the space
spanned by {S(c): o € Sp}, that is, there exists a function b: S, — C such that

D= Z be~1)S(o).

OESn
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It follows that
B=)_ bl )U'R@)U.

OES,
Therefore,

M. =UB*U*UBU"

(Z b(a-‘)R(a)) (Z b(a"l)R(a))

O ES, O ESy

- Z (Z ﬁb(or"r)) R(0).

0€S, \T€ES,

Equation (7.8) now follows by another application of the linear independence of
{R(o): 0 € Sp). o

DerINtTION 7.10  Suppose A = (@i, j) € Cp,m- The Schur Power matrix, I1(A), is
the m!-by-m! matrix whose rows and columns are indexed by the lexicographically
ordered sequences (t(1), 7(2), ..., T(m)), T € S, and whose (u, T)-entry is

m
[Taww.co-
i=l1

Observe that I1(A) is a principal submatrix of A®™. Hence,

A> 0= I(A) > 0.

Theorem 7.11 C} C Cp.

Proof Let A € Hy, be fixed but arbitrary. Then A’ € H,, and [1(A?) € Hpm:.
If ¢ € Ct, then M. € Hpm. Consider the matrix M obtained from M, by
interchanging the rows and columns corresponding to 7 and t~!, T € Sp.
Then the (i, t)-entry of M€ is c(t.!). Moreover, because M¢ is permutation
similar to M, M¢ > 0. It follows from Example 5.29 that the Hadamard product
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MF°€ -TI(A) € Hpm:. If x is the vector of all 1°s, then

0 <x"(M°-TI(A))x

= Y cau™h nau(i).t(i)

K, TESy i=1

=y (X C(m")l—[ai,m—lm)
TESy €Sn i=1

=3 (Z (o) ﬁai.a(i))
TESw \OES, i=1

= m!d.(A).

O

It follows from Theorems 7.6 and 7.11 that d.(A) > c(e)det(A), c € C},
A € H,,.2 An obvious question raised by Theorem 7.11 is whether C,,*, =iCons

ExampLE 7.123 Define ¢: S4 - C by c((12)(34)) = 1, and c(o) = 0, 0 #
(12)(34). If A = (a;j) is a 4-by-4 hermitian matrix, then d.(A) = |ai2|*|ass/?.
Thus, ¢ € C4. Define x: §4 & C by x((12)) = 1, x((34)) = —1,and x(c) = 0,
when (12) # o # (34). Then

2 2w wx() = -2,

H.TES,

soc¢CI. O

ExampLE 7.13 Let G be a subgroup of S,,. Suppose x € I(G). By Theorem 4.70,
there is a unitary representation ¢ — B(0) = (b;j(0)),0 € G, that affords x. Fix
i and let ¢ be the trivial extension of b;; to Sy, that is, ¢: S,, = C is the function

bii(0), if o €gG,
0, otherwise.

c(o) = I

2The case of equality has been analyzed in [Dias da Silva (1979)]. Also see [Chan (1990)].
3This example is taken from [Watkins (1993)].
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Then, for any x: S, = C,

E @\ wx(r) = E x_(llv)(zbij(f-l)bji(ﬂ)) x(t)
i=1

U, TESn n,teG
- Z Z x_([l-)bji(ll—)) (E bji(f)x(t))
j=1 €G teG
m 2
= Z Z x(u)bji (1)
j=1 |ueG
>0.
Therefore, c € C;\. o

CoroLLARY 7.14  Suppose x € I(G). Let 0 — B(o) = (bij(0)) be a unitary
representation of G that affords x. Then, (defining b;;i(0) =0,0 ¢ G)

dp,(A) > det(A), A€ HMHm, (7.9)
1<i<x(e).

Proof This is an immediate consequence of Example 7.13, Theorem 7.11,
Theorem 7.6, and the fact that b;; (e) = 1. u]

Observe that Schur’s Inequality is obtained by summing both sides of Inequality
(7.9) from i = 1 to x(e). In other words, Inequality (7.4) is the statement that the
x (e) inequalities in (7.9) hold on the average.*

Let A € Cpy ;. If £: S, — Cis the alternating character, then the entry in row
pof M(A)e is

Y (M(A)o)e(@) = Y &(r) nau(i),r(i)

TESy TESa i=1

= Z E(T) naj't“-l(‘)
i=1

TESn i=

Z e(ou) 1_[ 8io(i)

OES, i=1

= g(u) det(A).

It seems that det(A) is an eigenvalue of I1(A) corresponding to the eigenvector ¢.

4 partitions of the form [2?,17), 2p+g=m, arise when the Pauli Exclusion Principal is applied to the
quantum mechanical spin functions for a system of electrons [Schensted (1976)]. The corresponding
dy,, functions are called algebrants [Poshusta (1991)] & [Poshusta & Kinghorn (1992)].
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The next result, implicit in [Schur (1918)], was proved explicitly in [Bapat &
Sunder (1986)]. Our proof follows [Pate (1994a)].

THEOREM 7.15 If A > O, then det(A) is the smallest eigenvalue of the Schur
power matrix T1(A).

By Theorem 2.34, it suffices to show that det(A) is the infimum of the numerical
range, F(I1(A)). In view of Theorems 7.6 and 7.11, this is a consequence of the
following.

LEMMA 7.16 Suppose A = (aij) € Hm. Then r € F(I1(A)) if and only if there
exists a function ¢ € C}} such that c(e) = 1 and r = d.(A).

Proof By definition, r € F(I1(A)) if and only if there is a functionx: §,, »> C
such that ||x]] = 1 and

r =x*TI(A)x

= Z :t_(p._)(na,‘(i),z(i)) x(7)

B TESy i=1

E mx(t) (ﬁ ai.tu"’(i))

U, TESn i=1

Z Z x(Wx(o #)) ]—[ai,a(i)
i=1

OESn €Sm

Z (o) ﬁai,a(i)
i=1

OES, i=

=d.(A),
where (Lemma 7.9) ¢ € C}} is defined by
c@) =Y x(Wx(ou), o€ Sn. (7.10)
UESy
n]

In addition to proving Theorem 7.15, Lemma 7.16 has the following interesting
consequence.

Lemma 7.17  Suppose G is a subgroup of Sm. Let 0 — B(6) = (b;j(0)) be an
irreducible unitary representation of G. Fix i and extend b;; to S,, by defining
bii(0) =0, 0 ¢ G. Then dy, (A) lies in the field of values of T1(A).
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Proof By Example 7.13, b;; (extended) is an element of C;}, and b;i(¢) = 1. D

Observe that Lemma 7.17, together with Theorem 7.15 and Theorem 2.34 gives
another proof of Corollary 7.14 and, therefore, of Schur’s Inequality.

By the Toeplitz-Hausdorff Theorem,’ the field of values of any square complex
matrix is a convex set. It follows, therefore, from Lemma 7.17 that any convex
combination of dp, (A) is an element of F(IT(A)). In fact, as we now see, F(IT(A))
is equal to the “convex hull” of dp,(A), 1 < i < deg(B), as B ranges over the
irreducible unitary representations of Sy,.

Tueorem 7.18  Suppose ¢ € C;} satisfies c(e) = 1. Then there exists a complete
set of inequivalent, irreducible, unitary representations of Sm, a — Ri(o) =
(ru(cr)), 1 < k < p, such that c is a convex combination of r“, 1 <i<n,
1 < k < p, where ny is the degree of Ry.

Proof Ifc € C}, then (Lemma 7.9) there exists a function b: S, — C such that
clo) = Z E(?ﬁ(at), o € Sp.

TES,

Let o — Bi(0) = (bf;(0)), 1 < k < p, be a complete set of inequivalent
irreducible representations of S, which, by Theorem 4.70, we may take to be
unitary. Denote the degree of By by ni. Then, by Theorems 4.23 and 4.35, the
n%+n§+---+n2 functionsbf., 1<i,j<n1 <k < p,are a basis for the
vector space of complex valued functions of S,,. Therefore, there exist constants

x, such that
P m
bo) =) Y xkbi(o),

]
k=1i,j=1

o € Sm. Hence,

P m p n,
@)=Y (2 l ,,b},.(r')) (Z ) x,',b;,(az))

k=1i,j= r=1 s,t=1

z (:")b;,(ar))

Il
-
. 3
L
3
C
k
A~

= (m'/nk) Z x % b 0)

- fj 3> K XDubhi©@), o € Sm

k=1 s,i=1

5See [Toeplitz (1918)] and/or [Hausdorff (1919)).
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by the Schur Relations, where X is the ng-by-n; matrix whose (i, j)-entry is
v/m1/n;x;;. Replacing i with j and s with i,

c(o) = Z E c" b" (6), o€ Sn,

k=1i,j=

where C; = (cfj) > 0. Hence, there exists a unitary matrix Uy = (u ) such that
. k—k
= Z“u"t Ujes
=1

where ).f >0, 1 <t < ng, are the eigenvalues of C. Substituting this expression
into the previous equation yields

c(o) = ZZA" Z uf,bf; (o)},

k=1 t= i,j=1

M'u

ZA Uy Be(0)Uiu

k

Il
-
N

Al

L3

= zzxfr,",(a), o€ Sp,

=1 t=1

ol

where ﬁ;Bk(a)ﬁk = Ry(o) = (r:’ (0)).Because c(e) =1 = r,", (e),

m}

Returning to Equations (7.2)—(7.4), one might wonder whether h(A) > Zx (A),
A > 0. In fact,

Y (X(@*/o(Gdx(A) = Y — (G) > x(e)x(a))l'[aw(.)

x€I(G) oeG €l(G)

= h(A), (7.11)
by the Orthogonality Relations of the Second Kind. Because

Y. x@?=0G),

Xel(G)
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Equation (7.11) expresses #(A) as a convex combination of Ex (A) as x ranges
over I(G). Rather than an upper bound, A(A) is a weighted average of Ex (A),
x € I(G).

In 1963, M. Marcus published a Hadamard Theorem for Permanents,snamely,

per (A) > h(A), A € Hp.

The corresponding analog of Fischer’s Inequality was proved three years later by
E.H. Lieb:
per (A) > per (A1) per (A2), A€ Hp, (7.12)

where A is partitioned as in Equation (7.1). These results led to the following
conjecture, first published in [Lieb (1966)).

PERMANENTAL DOMINANCE CONJECTURE 7.19  Let x be an irreducible character of
the subgroup G of Sy,. Then

per (A) > d,(A), A€ Hn. (7.13)

Among the first to suggest a permanental analog of Equation (7.9) was Ralph
Freese.

CoNecTure 7.20  Suppose x is an irreducible character of the subgroup G of Sp,.
Leto — B(o) = (bij(0)) be a unitary representation of G affording x. Then, for
1<i<x(e)

per (A) > dp, (A), A € Hpm. (1.14)

Because it is obtained by averaging the inequalities in (7.14), the permanental
dominance conjecture would follow from Conjecture 7.20. In view of Lemmas 7.16
and 7.17, Theorem 7.18, Theorem 2.34, and Exercise 9 (below), the following is
equivalent to Conjecture 7.20:

SouLes's CoNJECTURE 7.218  If A > O, then per (A) is the largest eigenvalue of
the Schur Power matrix, T1(A).

Following the publication of [Merris & Watkins (1985)] and [James & Liebeck
(1987)], a substantial body of evidence supporting the permanental dominance
conjecture has accumulated. In addition to results indicating that the permanent is
“on top”, a variety of other relations have been discovered. For example, suppose

6Mncus‘s Incquality has since been strengthened, e.g., in [Bapat (1991)] as corrected by [Chan
(1993b)].

7 Also see [Marcus & Minc (1965b)) and [Minc (1978) & (1983)).

8Conjet:t.l.lte 7.21 first appeared in [Soules (1966)). (Also see [Soules (1983) & (1994)].)
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n=[2",1°]Fm,s >2.If G = S,, and x = X, then [Grone, Merris & Watkins
(1986)] _
h(A) > d,(A), A€ Hpm, (7.15)

which, in view of the Hadamard Theorem for Permanents, implies per (A) >
2[2:,1-1(A), A € H,,. From the perspective of Equation (7.11), the normalized
immanants d(ar 11}, s > 2, are “below average”.

Denote by d, the normalized immanant corresponding to the single-hook
character, x, = xir,1=—}. Then d) =detandd,, = per . In (1988), Peter Heyfron
showed that these single-hook immanants form a chain from the determinant to
the permanent.

Hevrron's THEOREM 7.22 If A € Hyp, then
det(A) = d1(A) < d2(A) < --- <dm(A) = per(A), A €Hm. (1.16)

It is natural to wonder where, in Heyfron’s chain of inequalities, Hadamard’s
function might be found. That question was addressed in [Heyfron (1992)]:

TueoreM 7.23 Ifr>1,m>r+2,andm — 1> (r — 1)?, then

h(A) > EI(A)r A€eHn.

In 1992, Tom Pate obtained the following sweeping generalization of several
previous results.

Pate's THEOREM 7.24 Let ®1 = [m,m2,...,m] + m. Suppose ms >
max{ms41, 1}. Let

p= [nlv T2y eveyTWg—1, Mg — 11 Tl ooy Mgy l]'

Then dx(A) > d,(A), A € Hp.

In Pate’s Theorem, the Ferrers diagram F(p) is obtained from F(x) by
removing the last box from column 7y and placing it at the end of column 1.
If r = [7, 52,32, for example, then ¢ = 5. Legitimate values for s are s = 1
corresponding to p = [6, 52,32, 1]; s = 3 corresponding to p = [7, 5, 4, 32. 1];
and 5 = 5 corresponding to p = [7, 52, 3,2, 1].

Among a growing collection of more specialized results are these: If r > s+ 1,
then [Heyfron (1991)] dj, 42.2-11(A) = dj,241(A), A € Hp. If s > 1 and 5 = 2,
then [Pate (1994b)) d,(A) > dx(A), A € Hp, where 1 = [m, 72, ..., 7y, 1]
andv = [m +2,72,..., -1, I'L. If L(w) = s and 2t > m; > t, then [Pate
(1996)] dx(A) > d,(A), A € Hp, where p = [m1,72,..., W1, 1, Ws — 1].
Finally, if p, g, 7, 5, and ¢ are nonnegative integers, then [Pate (1996)]

dip.g.r2.11(A) < per (A), A€ MHp. (7.17)
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Using these results and some ad hoc arguments, for example,

dj3(A) < per (A), A €Hyy, (7.18)

the permanental dominance conjecture has been confirmed for every irreducible
character of S,,, m < 14 [Pate (1996)].

CoNIECTURE 7.25 Suppose the conjugate partition n* # n - m. If * majorizes
nt*, then dy (A) > dr-(A), A € Hp.

Because xx (€) = xx-(e), this conjecture could just as well have been stated for
normalized immanants. It would imply di(n4+1y1(4) = digu+n)(A), A € Hums1)s
which, together with (7.17), would prove (7.18), eliminating the need for ad hoc
arguments.

If v # m*,then the restriction of x, to the alternating group remains irreducible.
Because (Theorem 4.47) xx- = €xx, the generalized matrix function afforded by
G = Ap and ¥ = Xy is the mean of the immanants dx and dx-. Consequently,
in cases where the permanental dominance conjecture has been confirmed for d,
and dy-, it is valid for the alternating group and x, as well.

There has been very little progress on the permanental dominance conjecture
when G # Sp or An. Lieb’s Inequality (7.12) establishes the conjecture when
x is the principal character of a Young subgroup. Another confirming instance
is the following: Suppose A = (A;j) € Cinn is partitioned into k* n-by-n
submatrices A;;. Let B = (b;;) be the k-by-k matrix defined by b;; = per (A;j).
Then per (B) = dy(A), where x is the principal character of an appropriately
chosen subgroup of Sg,. It was proved in [Pate (1982)] that, for each k, there exists
a positive integer n; such that if n > ny, then

per (A) 2 per ( per (Ajj)), (7.19)

for all real, symmetric, positive semidefinite, nk-by-nk matrices A.
We turn now to the intimate relationship between generalized matrix functions
and decomposable symmetrized tensors.

THeOREM 7.26 Let V be an m-dimensional inner product space. Suppose
U1, U2, ..., Um and V|, V2, ..., Uy are vectors in V. Let G be a subgroup of S,
and suppose x € 1(G). If A = (a;j) is the matrix defined by a;j = (u;, v;) then,
with respect to the induced inner product in V,(G),

dx(A)=o;(-((z—))(u1*u2*---*um,vl*Uz*"°*”m)-
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Proof Because T (G, x) is an orthogonal projection,

(Uy *Ug % U, Ul XU %+ % Up)

=QuUu2® - QUnm, TG, X)(V1 Q12 @ - ® Um))

x(€) \~——1
=26 Y x@ gm. Vo1 (n)-

oeCG
x(e) -
=05 E x(@) E(u., Vo (1)
_x@©

= o(G)d" ((ui, vj)).

a

CoROLLARY 7.27 Let V be an m-dimensional inner product space. If A =
(@ij) € Hm, then there exist v1,v2,...,Um € V such that ajj = (vi, vj), and
dy(A) = 0(G)||vy * vz % -+ % vm 1>/ x ().

Proof The existence of vectors vy, vz, ..., Um € V such that a;; = (v;, vj) was
established in Exercise 41, Chapter 2. The rest follows from Theorem 7.26. D

Together with Watkins’s Theorem, Corollary 7.27 gives another proof of Schur’s
Inequality.

CoroLLARY 7.28 Let E = {ey, €2, . .., ém)} be an orthonormal basis of the inner
product space V. Suppose T € L(V, V). If A’ is the matrix representation of T
with respect to E, then

d,(A) = ‘LG)(K(T)(el K€ K- K €y), €] K€ KX ECp),
x(e)

where K (T) € L(Vy(G), Vy(G)) is the induced transformation.

Proof Because the (i, j)-entry of A is a;j = (T(e;), €;), the result follows from
Theorem 7.26 by setting v; = ¢; and u; = T (e;), 1 <i <m. m]

THEOREM 7.29 Suppose x € I1(G). If A, B € Cp m, then

dy(A*A)d, (B*B) > |dy (B*A)%. (7.20)
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Proof Let E = {e;,e,...,en} be an orthonormal basis of the inner product
space V. Then there exist §, T € L(V, V) such that the matrix representation of
S with respect to E is [S]g = A! and [T]g = B’. Thus, [ST1e = [S1:[T)e =
A'B' = (BA)'. By Corollary 7.28,

x(e)
o(G)

dy(BA) = (K(ST)(e1 % €2 %---%ep), €1 €2 % - % €y)

= (K(S)K(T)(ey *e2%---xep), €1 x€2 %+ % €p)

= (K(T)e1*e2%---xem), K(S*)(e1 xe2% -+ - % €m)).

Applying the Cauchy-Schwarz Inequality, we obtain

2
:((é))dx(BA) < IK(T)(e1 % e2 % - % em) |2 K(S*)(e1 % €2 % - - - % em) ||
= (K(T*'T)(er*e2%---*em),e1 k€2 % -~ % &)
X (K(SS*)(e1*e2%---xem), €1 k€2 % % €m)
_x@? -
= S G (BB (A A,
which is equivalent to Inequality (7.20). o

CoroLLARY 7.30 Suppose x € I(G). If A € Cpy m, then

x(e)dy (A*A) > |dy (A)2.

Proof Let B = I, in Equation (7.20). a

Corollary 7.30, together with Watkins’s Theorem, gives yet another proof of
Schur’s Inequality.

CoroLLARY 7.31 Let G be a subgroup of Sy,. Suppose x € I(G). IfA, B € Hp,
then
dy(A + B) > dy(A) +dy(B). (7.21)

Proof LetV be aninner product space of dimension m. If E is a fixed but arbitrary
orthonormal basis of V, there exist unique linear operators S, T € L(V, V) such
that [S]g = A’ and [T)g = B'. By Theorem 6.75(v), K(S+T) > K(S)+ K(T).
Hence, the result is a consequence of Corollary 7.28. O

Because d, is linear in yx, results like (7.21) remain valid for arbitrary characters
of G.
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CoroLLARY 7.32 Let x be an irreducible character of the subgroup G of Sp.
Suppose A, B € H,,.

(i) If A > B, thend,(A) > dy(B); and

(i) If A > B and dy(A) =d,(B) #0, then A = B.

Proof By definition, A > B means there is a C € H,, such that A = B 4+ C. By
Corollary 7.31,d, (A) = dy (B + C) > dy(B) +dy (C). Because (Corollary 7.30)
dy (C) > 0, part (i) is established. Part (ii) was proved in [Chan & Lim (1981)]. O

TueoreM 7.33°  Let x be an irreducible character of the subgroup G of Sm. If
A, B € H,p, then

dy (A + B)'/™) > d, (AV™) + d, (BY/™). (1.22)

Proof LetV be aninner product space of dimension m. If E is a fixed but arbitrary
orthonormal basis of V, there exist unique linear operators S, T € L(V, V) such
that [S)e = A’ and [T)g = B'. Settingn=m, §; = S,and T; =T,1 <i <m,
we have, from Theorem 5.40 and the definition of induced transformations, that

K0S+ (1 —6)TT™) 2 0K (5™ + (1 - O)K(T/™),
whenever 0 < 6 < 1. Therefore (Corollary 7.28),
dy ((0A + (1 — 8)B1Y™) > 6d, (AV™) + (1 — 6)d, (BY/™). (7.23)
The result follows by setting 8 = 1/2. n]
CaucHY-BINET THEOREM 7.34 Let A, B € C, 5. Suppose x is an irreducible
:‘;::':acter of the subgroup G of Sm. If a, B € Q = {y € Tmn: (x, g, # 0},

x(e)
o(G)

dy((AB)[«|B]) = 2 dy (AlalyDdy (Bly|B)). (7.24)

yeR
Before proving Theorem 7.34, let’s look at a special case. If n = m,a = g =
(1,2,...,m), G = Sy, and x = &. Then Equation (7.24) becomes

det(AB) = % Z det(A[(1,2,...,m)|o])det(Bl[o|(1,2,...,m)]), (7.25)
' 0€S,

When G=S, and x=¢, so that d,=det, Theorem 7.33 is the Minkowski Determinant Theorem
[Minkowski (1905)]. When d, = per , it was proved in [Ando (1981)] and, when A and B commute, in

[Marcus & Pierce (1968)]. The version given here is from [Merris (1979)].
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where A[(1,2,...,m)|o] = (@is()), the matrix whose (i, j)-entry is the
(i, o (j))-entry of A. In particular, det(A[(1, 2, ..., m)|o]) = (o) det(A). Simi-
larly, det(B[o|(1, 2, ..., m)]) = e(o) det(B). Thus, Equation (7.25) may be writ-
ten

det(AB) = % Z det(A) det(B)
' 0€ESa

= det(A) det(B). (7.26)

It will follow from the representation theory of the general linear group,
GL(m, C), that the determinant is the only multiplicative generalized matrix
function.'®Thus, the natural generalization of Equation (7.26) is not dy (AB) =
dy (A)dy (B); it is the Cauchy-Binet Theorem.!!

The proof of Theorem 7.34 depends on the following straight-forward extension
of Corollary 7.28.

Lemma 7.35 Suppose x is an irreducible character of the subgroup G of Sy. Let
E = {ey, e2, ..., €,) be an orthonormal basis of the inner product space V. Let
T € L(V, V) be the unique linear operator such that [T1g = A'. Ifa, B € T p,
then

o(G)

dy(Ale|B]) = 2@

(k. 5).

Proof (of Theorem 7.34): Let E = {e}, €2, ..., €5} be an orthonormal basis of
the inner product space V. Let S and T be linear operators on V whose matrix
representations with respect to E are A’ and B', respectively. Then

(X(©/0(G)dy (AB)(@IB) = (K(TS)ed). e5)

(XS e, KTe)

X (o) (@ xme),

by Lemma 7.35 and Parseval’s Identity. Because T (G, x) is idempotent, hermitian,
and commutes with both S™® and T™®, we may replace e with e}. Because

10gee Exercise 2, Chapter 8.
ll'I‘he equation d,(AB)=d,(A)d,(B) has received some attention, e.g., in [Beasley (1969)],
[Beasley & Cummings (1972), (1973), (1978), (1982), & (1992)], and [Wang (1974)).
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e; =0, y ¢ Q, another application of Lemma 7.35 yields

(x(€)/0(G))dy (AB)a|B)) = Y (x(e)/o(G))dy (Alrly 1)dy (B*[BI¥D.

YEQ

Because B*[Bly] = B[y|B]", and dy (C*) = d,(C), we obtain

@

dy((AB)[a|B]) = o)

Z dy (AlalyDdy (Bly|BD).

YER

u}

Our next result is a useful variation on the Cauchy-Binet Theorem, valid when
x() =1

CoroLLARY 7.36 Let x be a linear character of the subgroup G of Sy. If
A, B € Cy , then

1
dy ((AB)[«|B)) = 2 O(T)dx (Ala|yDdy (Bly|BD), (7.28)
yeh ¥

foralla, B € A.
Proof Replacing e? with e;‘, on the right- hand side of Equation (7.27) produces

1
——dx((AB)[«|B))

o(G)
= 3 (k€. &) (. kaTep)
Y€ m.n
- iy k000 5 k)
= %2 sty SO0 (K606 (. K 0ep)

=0@ Y 255 (Ko, ) (5. kT)eep).

yeA

by Equation (6.7) and the fact that |x(0)| = 1, 0 € G. Applying Lemma 7.35
(with x(e) = 1), we obtain the result. o
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Having exploited Theorem 7.26 to obtain a variety of results for generalized
matrix functions, we now reverse course and use generalized matrix functions as
a tool to study symmetry classes of tensors. Suppose V is a vector space. Let x
be an irreducible character of the subgroup G of Sy,. Suppose uy, 42, ..., uUm € V
are fixed but arbitrary vectors, not all zero. Choose a function a € Q, , such that
{uay: 1 <k <r)isabasisof U = (ui: 1 <i <m).Let A = (a;j) € Cy,r be
the unique matrix satisfying

r
Ui =Y Gijlayy 1<j<m. (.29
j=1

Then

Uy *UD * - Uy

r r r
m
= Y \[Tare ) uaya *uay@ * - * tayom

y€la, \i=1

e m
= % Z x@™ E (n air(i)) Uaya(l) ® Uaya(2) ® - - ® Uaya(m)
oeG

y€la, \i=l

= :((:-;)) E X(O'_l) 2 (I—I aiya-l(i)) Uay(1) ® Uay(2) R ® Yoy (m)

ceG y€l,, \i=1

= 3" dy(AlelyDug,

where Ale|y] = A[(1, 2, ..., m)|y]. Because {u‘?y: Y € Tm.,}is abasis of U®™,
we deduce that uy *uz*- - -*u,, = Oif and onlyifd, (A[e|y]) = Oforally € [y, ,.
If v, v, ..., Um € U, there exists a unique matrix B = (b;;j) € Cp,, such that

v = b,-jua(j), 1<j<m. (7.30)

r

j=1
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By the same arguments,

_x@
o(G) y

Ul kU %k -k Uy

Y dy(BlelyDug,.

€T,

Because (Lemma 6.15) u) * up * <+« % Uy, = v] * V2 % --- *x Uy, 7# 0 only
if (U, u2,...,4m) = (v1,v2,...,Vp), it follows that u; * uz * -« * up, =
Ul * V2 x -« k Uy # 0 if and only if dy (A[e|y]) = dy(Blely]), ¥y € T'm,.
These observations are summarized in the following.

LemMMA 7.37 Let V be a vector space. Suppose G is a permutation group of
degreemand x € I1(G). Letu), uz, ..., uy € V be fixed but arbitrary vectors, not
allzero. Choosea € Qy m sothat {ugx): 1 < k <r}isabasisof (ui: 1 <i <m).
Let A € C,, , be the matrix defined in Equation (7.29). If vi, v2, ...,V € V, then

UL RUYP Koo KUy = VU] RV %" % Upy

ifandonlyifdy (A[e|y]) = dy(Ble|y)), ¥ € I'm,r, where B is the matrix defined in
Egquation (7.30). In particular, uy xuz *- - - xu,, = 0ifand only ifd, (A[e|y]) =0,
forally € T ;.

Lemma 7.37 does not so much solve the problem of equality of decomposable
symmetrized tensors as state it in another form. Equivalent to Lemma 7.37, the next
result seems to illuminate the situation from a somewhat different perspective.!?

THeEOREM 7.38 Let V be a vector space. Suppose G is a permutation group of
degreemand x € I(G). Letuy,us, ..., un € V befixed but arbitrary vectors, not
all zero. Choosea € Q. m sothat {ugw): 1 <k <r}isabasisof (ui: 1 <i <m).
Let A € C,, ; be the matrix defined in Equation (7.29). If vy, v, ..., vy € V, then

UL kU % kU =V kU2 % % Uy

ifand only ifdy (AX) = d, (BX), for all X € C, ,, where B is the matrix defined
in Equation (7.30). In particular, uy *uz % - - *u, = Qifand only ifd, (AX) =0
forall X € C, .

121 emma 7.37 and Theorem 7.38 arc adaptations of more general results from [Marcus & Chollet
(1983)] and [Oliveira, Santana & Dias da Silva (1983)]. Related work appears in [Marcus & Chollet
(1980)], [Oliveira & Dias da Silva (1983) & (1985-86)], [Dias da Silva & Coelho (1990)], and [Duffner

(1995)].
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Proof If X = (xij) € C;m, then
dy(AX) = )" x(0)

m r
(Z aitxw(i))
o€eG i=1 \t=1
m r
Z x(o) H (Z aa-l(i):xu')
o€G i=1 \t=1

m m
=D x() a5y | [ v
.13¢4 Y€l y, i=1 i=1
m m
= E (Z X(U)naiya(i))nxy(i)i
y€ln, \0€G i=1 i=1
m
= Y dy(AlelyD [ | xyas- (7.31)
Y€l i=1

If uy %uz % - -*uy, = 0then, by Lemma 7.37 and Equation (7.31), dy (AX) = Ofor
all X € C; n. Conversely, suppose dy (AX) =Oforall X € C, . Let B € T,
be fixed but arbitrary. Define ¥ € C,, to be the matrix whose only nonzero
entry in column i is a 1 in row B(i), 1 < i < m. Then, from Equation (7.31),
0 = dy(AY) =d,(Ale|B]), and 0 = u; * u2 * - - - ¥ up, by Lemma 7.37. The rest
is similar. n]

Suppose B = {ey, €2, . . ., €5} is an orthonormal basis of the inner product space
V. If x is a linear character of the subgroup G of Sn then (Corollary 6.32 and
Equation (6.12)), {[G : G4]'/%e%: o € A} is an orthonormal basis of V, (G).

Derntmion 7.39  Let B = {ey, €2, ..., e,} be an ordered orthonormal basis of
the inner product space V. Suppose G is a subgroup of S, and x is a linear
character of G. Denote by B* the lexicographically ordered orthonormal basis
{[G : GalY?e:: @ € A of Vi (G).

Tueorem 7.40 Let x be a linear character of the subgroup G of Sy. Suppose
B = (e1, €2, ..., ey} is an ordered orthonormal basis of the inner product space
V.LetT € L(V, V). If A = (a;j) is the matrix representation of T with respect to
B, then the (, B)-entry of the matrix representation of K (T) with respect to B is

(0(Ga)o(Gp)) ' 2dr(Alal|B)),

where X (0) = m, o€G.
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Proof By definition,
n
T(ej)=2a,-je.', 1<i<n.

Therefore,
K(T)(G : Gp)'%ep)

=[G : Gp1"2 (T(epy) * T(ep)) * - - * T (ep(my))

=[G: G,g]l/2 (Za.'pu)ei) * (Z a.'p(z)e.') LERRR & (Z aiﬂ(m)‘i)

i=1 i=1 i=l1

=[G:Gpl'* ) (H aamp(«))

a€l,, \i=l

1
=(G:Gpl'? )~
achA

Z (ﬂ “aa-'(x)ﬁ(-)) Coo-!

oeG

=[G:Gp)'? ) 0«1; 3 (Z X~ ‘)]_[aa(.)pam)
acA %

o€G

= Z_([o(Ga)o(Gp)]'l/zdy(A[alﬂ])) (G : Ga)2el.

a€A
o

DerFNITION 7.41  Suppose A € C, 5. Let AcC I'm.n be the index set associated
with the linear character x of the subgroup G of S,,. The rows and columns of the
corresponding induced matrix, X (A), are indexed by A, ordered lexicographi-
cally. The (a, B)-entry of K(A)

(0(Ga)o(Gp)) ™ 2dx(Ala| B)).

If A is the matrix representationof T € L(V, V) with respect to the orthonormal
basis B of V, then K (A) is the matrix representation of K (T') € L(Vy(G), V,(G))
with respect to B*.

CoroLLARY 7.42 Let x be a linear character of the subgroup G of Spy. If A and
B € Cy p, then K(AB) = K(A)K(B).
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Proof Inview of Theorem 7.40 and Definition 7.41, this is just the matrix version
of Theorem 6.75(i). o

Comparing the (a, 8)-entries of K(AB) and K (A)K (B) yields another proof
of Corollary 7.36.
DerNITION 7.43  Let G = Sp. If x = &, K(A) is called the m-th compound of
A and is denoted C,, (A). If x is the principal character, K(A) is called the m-th
induced power of A, denoted P, (A).

Suppose A € Cp . If G = Spy and x = &, then A = Qp 5. Because G, = {e},
@ € Qmn and £ = £, Cm(A) is the ( ;)squm matrix whose (a, B)-entry is

det(A[x|B]). When G = S,, and y is the principal character, A = Gm n, the
set consisting of all C(n + m — 1, m) nondecreasing sequences/functions.!>If
a € Gpm,n, then G is isomorphic to the Young subgroup Sy (), and o(Gy) is the
product of the factorials of the multiplicities of the distinct integers appearing in
a.

ExampLE 7.44  Let x be the principal character of G = $;. If n = m = 2, then
A=A=G2={(1,1),(1,2),2,2)}. lfa = (1, 1) or (2,2), then o(Gq) = 2;
if a = (1, 2), then 0(G,) = 1. Suppose

-(22)

is a generic 2-by-2 matrix. Then

— ( Per(A[alﬂ]))

V0(Ga)o(Gp)
a®  J2ab  b?
= (ﬁac ad + bc Jfbd) . (1.32)
2 V2cd &

Suppose m = 2,n = 4,G = S, and x = &. Then A = Q4 =
{(1,2),(1,3),(1,4),(2,3),(2,4), 3,4}, and 0(G,) = 1 forall « € A. If

4 1 3 3
1 2 1 1
5 3 4 s|°

-6 -4 —4 -5

A=

13 Note that Ga.» is a set of sequences, while G and G, are groups.
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then

7 1 1 -5 -5 0
7 1 5 -5 —4 3
aw=|2 22 0 13 o
8 2 1 -4 -6 -1
=2 4 5 4 5 0
[m]

DerNTioN 7.45  Suppose A € Cp . The principal submatrix of P, (A) corre-
sponding to the sequences in Q,, , is the m-th permanental compound of A.
The (n — 1)-st permanental compound is the permanental adjoint of A, denoted
padj (4).

The permanental adjoint is an n-by-n matrix, ostensibly indexed by the se-
quences (1,2,...,n—1),(1,2,...,n — 2, n), and so on, ordered lexicographi-
cally. In fact, however, it is more conventional to index the rows and columns of
padj (A) with the integers 1, 2, ..., n. Thus, padj (A) is the n-by-n matrix whose
(i, j)-entry is per (A(i| ).

Jacosrs IpentiTry 7.46  Let A € C,, . Suppose m < n. If A is invertible, then
det(A) det(A~[a|B]) = (=1)" @+ ®) det(A(Bla)), (1.34)

a, B € Qmn, wherer(a) = a(l) + a(2) + - - - + a(m).

Proof Let Jn(A) be the (7)-by-() matrix whose (a, B)-entry is (—1)" @+ (®)
det(A(B|@)), &, B € Om,n- (Up to permutation similarity, J;(A) is the classical
adjoint (or adjugate) of A.) By the Laplace Expansion Theorem, the (a, 8)-entry
of Cpn(A)Jm (A) is det(A), when 8 = a, and the determinant of a matrix with two
equal rows when B # a. Therefore,

1 _ -1
m-’m(A) =Cn(A)".

By Corollary 7.42, Cn(A)™! = Cn(A~'). Because inverses are unique,
det(A)Cm(A™!) = Jn(A). o

ExampLE 7.47 Supposen =3 and m = 2.1f A = (a;;) € Cs 3 is invertible, then
det(A(1]1)) —det(A(2|1))  det(A(3|1)

A-'.—_d lA (—det(A(l|2)) det(A(2[2)) —det(A(3|2))).
et(A) \  det(A(113)) —det(A(23))  det(A3|3))

14The permanental adjoint occurs, e.g., in [Ando (1981)), [Cohen (1992)], [Grone, Johnson, Sa,
& Wolkowicz (1986)], [Lal (1992)] and [Marcus & Merris (1973)].
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Ifa = (1,2) and B = (1, 3), then

_ 1 det(A(1[1)) det(A(3ll)))
1 PR <
A lelpl = det(A) (—det(A(l|2)) —det(A(312))

and

det(A) det(A ™" [a|B]) = (— det(A(1]1)) det(A(3]2))
+ det(A(3]1)) det(A(1]2)))/ det(A).

On the other hand, from Equation (7.34),

det(A) det(A~[«|B]) = — det(A(Bla))

= —ajs,

because () + r(8) = (1 + 2) + (1 4 3) = 7. Therefore,
—azydet(A) = —det(A(1]1)) det(A(3]2)) + det(A(3]1)) det(A(1]2)). (7.35)

u}

The careful reader will have observed that K (A) has not been defined in general,
but only for linear characters. This is because the description of A given in Equation
(6.19) does not lend itself to the kind of approach used to prove Theorem 7.40. The
difficulties will become more apparent as we discuss the eigenvalues of K (T).

Let B = {ej, e2,..., e,} be an ordered basis of the vector space V, and x a
fixed but arbitrary irreducible character of the subgroup G of S,,. Let o be the
first element in the lexicographically ordered A set. With @; = a, choose a set
{a1,a2,...,0a5) from {do: 0 € G} such that {e“:‘: 1 < i < s4} is a basis
for (¢5: @ € G). Execute this procedure for each y € A. If {a, B,...} is the
lexicographically ordered A set, take

A={ay,02...,00,B1, B2 ..., Bsyy---) (7.36)
to be ordered as indicated. By Theorem 6.31,

B =({e}:y € A) (1.37)

is an ordered basis of Vy(G). (Because of the latitude in choosing A when
x(e) > 1, B* may not be uniquely determined by m, n, G, and x.)
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LeEMMA 7.48 Let x be an irreducible character of the subgroup G of Sm. Suppose
B ={e1, €2, ..., e,) is an ordered basis of the vector space V. Let B* be the basis
of Vy(G) assembled as in Equation (7.37). If B is an upper triangular basis for
T € L(V, V) (that is, a basis with respect to which the matrix representation of
T is upper triangular), then B* is an upper triangular basis for K (T).

Proof By hypothesis, T'(e;j) = Aie1, and T(e;) = Aie; + u;, where u; €
(e1,e2,...  Eim 1), 1 <i <n.Setu; =0. Suppose w is a fixed but arbitrary
element of A. Let 7 € G be such that wt € A. Then

K(T)(e}) = T(ewq)) * - - * T (ewm))

= (Aomeo() + bu@)) * - - - * Aom)Cwim) + bo(m))
m

= (H ;.,,(,,) s+ cyel, (7.38)
=1

where the sum is over those y € Q such that y(i) < w(i), 1 <i < m, with at
least one strict inequality. Fix y and suppose it is equivalent (mod G)toy’ € A.
Because y1(i) < wt(i) for all i, with at least one strict inequality, y’ comes
strictly before wt in lexicographic order. Therefore e}, is a linear combination of
tensors that come strictly before e}, in the ordered basis B*. o

THEOREM 7.49 Let x be an irreducible character of the subgroup G of Sp,. Let
V be a vector space of dimension n. Suppose T € L(V, V) has eigenvalues
A1, A2, - .., Ay (multiplicities included). Then the eigenvalues of K(T') are

m ~
I—IA‘”(')’ weEA.

t=1

Proof By Schur’s Triangularization Theorem, there exists an upper triangular
basis for T. Thus, the eigenvalues of K (T') are visible in Equation (7.38). a

It follows from Theorem 7.49 that the trace of K (T') is

> ]']A..m = x@Y_(x. V. I'[Aam

aeA =1 aeA

=x(@ Y_(x V. ﬂ Xao)- (7.39)

a€A

If G = Spm, so that x = y, for some partition = I m, then G, is conjugate to
the Young subgroup S, where 4 = u(a) is the multiplicity partition of «, and
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(x, 1)s, is the Kostka coefficient Ky, ,. In this case, Equation (7.39) becomes

m
(K@) =x) Y Keuw [[Ral®), (7.40)

Q€Gu, t=1

the product of the character degree and the “Schur _golynomhl"’s associated with
n.If G = Sy and r = [1™], so that x, = ¢, then A = Qp ». Because G, = {e},
a € Qm.a, it follows from Equation (7.39) that

r(Cn(A) = Y [[rw

AEQu, t=1

=En(A1,A2,...,An), (7.41)

the m-th elementary symmetric function of the eigenvalues of A. If G = S, and
7 = [m], so that x is the principal character, then A = A = G5, and

r (Pn(A) = Y [[rew

a€Gy, t=1

= Hn(A1,A2,...,Apn), (7.42)

the m-th homogeneous symmetric function of the eigenvalues of A.
ExampLE 7.50 Returning to Example 7.44, suppose A; and A; are the eigenvalues

of the 2-by-2 matrix
(2 2)
Then the eigenvalues of P,(A) are A2, A1)z, and ).% Therefore, from Equa-
tion (7.32),
a® +ad + bc + d? = tr (P2(A))
= Hy(A1, A2)
=22+ a2+ A5

This identity is easy to confirm: AjA2 = det(A) = ad — bc and A2 + 12 =
tr (A?) = a® + 2bc + d>.

155ee Equation (6.44).
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The eigenvalues of
4 1 3 3
1 2 1 1
4=l s 3 4 5
-6 —4 —4 -5

are —1, 1, 2, and 3. Therefore, tr (C2(A)) = E»(—1,1,2,3) = 5. (Compare with
the value obtained by summing the main diagonal entries of Equation (7.33).) O

LemMa 7.51  Suppose x is an irreducible character of the subgroup G of Sp.
Let V be a vector space of dimension n. Suppose T € L(V, V) has eigenvalues
A1, A2, ..., Ay (multiplicities included). Then tr (K (T)) is a symmetric function
of A, A2, ..., A,

Recall (Definition 6.66) that m, () is the multiplicity of the integer ¢ in the
sequence o € I'y, ,. In this notation,

m n
[[rem =TTAM@.
t=1 t=1
Let G be a subgroup of S, and suppose x € I(G). Define
a(x) =Y ma),

ael

1 <t < n. It follows from Lemma 7.51 that e;(x) = ex(x) = -+ = e,,(x)
Denote their common value by e(x). Because my(a)+ma(a)+-- +m,. (@) =
@ € A, it must be that ne(x) = mo(A)

SYLVESTER-FRANKE THEOREM 7.52 Suppose x is an irreducible character of the
subgroup G of Sy. Let V be an n-dimensionalhvector space. IfT € L(V, V), then
det(K (T)) = det(T)*X), where e(x) = mo(A)/n.

Proof Denote the eigenvalues of T by A, Az, ..., A, (multiplicities included).
It follows from Theorem 7.49 that

det(k (1) = [] (ﬁkam)
t=1

aelA

(X
e

I
-
I B
...:

= det(A)*W,
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ExampLE 7.53 Let x be the principal character of G = $;. If n = m = 2, then
A=A=A=G2={(1,1),(1,2),2,2)},andet(x) =2+14+0=3 =
04 142 = e(x). Thus, e(x) =3 =mo(A)/n. If

a b
4= (c d) ’
then det(A) = ad — bc and, by Theorem 7.52, det(P2(A)) = (ad — bc)3. On the
other hand, from Equation (7.32),

det(Py(A)) = a*(ad + bc)d? + 4ab*c?d — 4a’bcd? — b*(ad + be)c?
= a’d® — 3a*bcd? + 3ab®ctd — b3
= (ad — be)’.
a

Suppose T € L(V, V). Let A be the matrix representation of T with respect
to the ordered basis B = {ey, €2, ..., e,} of V. If x is the principal character of
Sm, then P, (A) is the matrix representation of K (T') with respect to the lexico-
graphically ordered basis B = {[m!/0(G,)1"/2€}: & € Gpm,}. The complicating
factor [m!/0(Gq)]Y/? is necessary to preserve orthonormality, guaranteeing that
K (A) will inherit certain desirable properties from A. In some situations, however,
the complicating factor is unnecessary, or even undesirable. (For example, B may
not be orthonormal, or one may wish to consider generalizations to fields that do
not contain square roots.) In these cases, it is sometimes useful to work with the
alternative induced basis B* = {e};: a € Gp,a)}

DerINITION 7.54  Suppose B is a basis of the vector space V. Let T € L(V, V)
be fixed but arbitrary. Suppose A is the matrix representation of T with respect to
B. If x is the principal character of Sy, denote by A™! the matrix representation
of K(T') with respect to B*.

Of course, A™] is similar (in fact, diagonally similar) to P,,(A). To obtain an
explicit description of A"™], multiply both sides of

K(T) (IG : o(Gp)'/2e3)

= z ([O(Ga)o(Gp)]—IIZ per (A[alﬂ])) [G: Ga]l/Ze;

a€Gpn
by [G : 0(Gp)1~'/? to obtain
K(T)ep)= Y 0(Ga)™" per (Ala|Bes. (7.43)

a€EGua
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1

This proves the following:

LeMMA 7.55 Let A € Cp . Then A™ is the C(n + m — 1, m)-square matrix
whose rows and columns are indexed by Gp, p ordered lexicographically. The
(a, B)-entry of A™ is per (A[a|B])/v(a), where v(a) = 0(Sy(a)) is the product
of the factorials of the multiplicities of the distinct integers appearing in a.

Being similar, P, (A) and A™! have the same eigenvalues and, hence, the same
trace.

ExampLE 7.56 If

is a generic 2-by-2 matrix, then

a ab b?
AP = (Zac ad + bc 2bd) ) (7.44)
c2 cd d?

Notice that D~'A”ID = P,(A), where D = diag (1, 4/2, 1), and P;(A) is given
by Equation (7.32). u}

This variation on the theme of induced power matrices is an important tool in
classical nineteenth century invariant theory.'®

An Excursion Into Invariant Theory

Let V = Cy[x1, x2,...,Xa], the vector space of homogeneous polynomials of
degree 1 in the independent indeterminates xj, x2, ..., X,. Then

V=[Zc.'x,-:c,'eC, ISiSn}-
i=l1

Suppose 0 = A(o) = (aij(0)), o € G, is a representation of degree n of the
finite group G. Then A(o) determines a unique linear operator on V defined by

A@)oxj =) aij(0)xi, (7.45)
i=1

16The resurrection of invariant theory, due largely to Gian-Carlo Rota and his coauthors (see, e.g.,
[Doubilet, Rota & Stein (1974)], [Kung & Rota (1984)], [Barnabei, Brini & Rota (1985)], and [Rota &
Stein (1986] has received added momentum, e.g., from applications in coding theory [Sloane (1979)]
and connections to Cohen-Macaulay algebras (Stanley (1979)]. For a nice overview, see [Gardner
(1980)).
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and linear extension. If p = chx,- € V, let [p] € C,,1 be the column n-tuple
whose i-th entry is ¢;. Then

n
A(@)op= cjA(o) o xj
=1

J

= E Za,-j(a)c_,-) Xi.

i=1 \j=1

In other words,
[A(o) o p] = A(0)[p], (7.46)

the product of A(o’) and [p]. In particular,

[A(7) o (A(0) o p)] = (A(r)A(0))[p]
= [A(zo) 0 p],
forallz,0c e Gandallpe V.
This action of the group A(G) = {A(0): o € G} can be extended to arbitrary
polynomials by defining
(A(0) o f)(x1,x2,...,%n)
= f(A(e)oxy,A(0)oxz,..., A(0) o xp), (7.47)

feClxi,x2,...,x,). If g, h € C[x1,x2,...,x] and b, ¢ € C, then

(A(@) o (bg + ch))(x1,x2, ..., Xn)
= (bg + ch)(A(0) o x1, A(0) 0 X2, ..., A(0) 0 Xp)
= bg(A(o) o x1, A(0) 0 x2,...,A(0) 0 Xp)
+ ch(A(0) ox1, A(0) 0x2,..., A(0) 0 Xp)
= b(A(c) 0 g)(x1, %2, ..., Xn) + c(A(0) 0 B)(x1, X2, ..., Xn),

that is, A(o) o (bg + ch) = b(A(0) o g) + c(A(0) o h). Thus, A(o) acts linearly
on C[x1,x2,...,xs),0 € G.
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DerntTioN 7.57  Suppose A is a representation of degree n of the finite group
G. Then f € C[x},x2,...,X,] is a polynomial invariant of the matrix group
A(G) ={A(0): 0 € G}if A(o)o f = f,forallo € G.

From the perspective of groups acting on sets, f is a polynomial invariant of
A(G) if and only if it is a fixed point of A(c), 0 € G. From the perspective
of linear operators, the polynomial invariants of A(G) comprise an intersection
of eigenspaces of A(c), 0 € G. In particular, they comprise a subspace of
Clxi1, x2, . .., xn). In fact, more is true. If f and g are invariants of A(G), their
product, fg, is another. The subspace of polynomial invariants of A(G) is a
“subalgebra” of C[x,, x2, ..., Xs]).

ExampLE 7.58 Suppose A is a representation of degree n of the finite group G.
For a fixed but arbitrary f € C[x), x2, ..., X,], define

Then

- 1
A@) oF == 3 Ao (4@ 0 f)
oeG

for all T € G. Hence, f is a polynomial invariant of A(G). o
ExampLE 7.59 Suppose A(e) = I,

A((123))=(_(l) _;) and A((132))=(—: _(1)).

Then 0 — A(0) is a (reducible) representation of the alternating group G = As.
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If £(x1,%2) = x + x1x2 € Clx), x2], then

T =3 3 A©) 06 +x13)

o€A;
= %([xf + x1%2] + [(=x2)% + (=x2)(x1 — x2)]
+ [(=x1 + x2)* + (—=x1 + x2)(=x1)])

([xf + x1x2] + [23'% - x1x2]+ [fo -3xnx2+ x%])

W | =

= 112 - X1x2 4+ x%.
Notice that
[A((123)) o F1(x1, x2) = (—x2)% — (—x2)(x1 — X2) + (x1 — x2)?

=xf - X1X2 +x§

= f(x1, x2),
and
[A((132)) o F)(x1, x2) = (=31 + x2)% = (=31 + X2)(=x1) + (—x1)?
=x? —xix2 +x3

= f(x1,x2),

confirming that f is a (degree 2, homogeneous) polynomial invariant of
10 0 1 -1 -1
w0 [( (2 (1) 0w

Returning to the general discussion, suppose f € C[x), x2, ..., xp]. Then

£=Y pm

m>0

where pn € Culxi1, x2,..., x,), the subspace of C[xy, x2, ..., xs] consisting
of (0 together with) the homogeneous polynomials of (total) degree m, and
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all but finitely many of the p,, are zero. It follows from Equation (7.47) that
A(0) o pm € Cylxy, x2,..., %], m > 0. Therefore,

A@)o f =) A(0)° Pm

m>0
=T,

if and only if A(¢’) © pm = pm for all m > 0. It suffices, therefore, to restrict our
investigation to homogeneous polynomials of degree m.

If p € Culx1,x2,...,x,] then (Lemma 6.65) there exist constants cg,
B € Gm g, such that

m
I e SES IR~ | E710)
BEG,, =1
Replacing x; with

Y aij)x, 1<j<n,

yields

(A(a) o p)(xl! x2' seiely x'l)

- 5 ol

BEGn. t=1 \i=Il

m
= Z cp Z l—[aa(x)p(r)(ﬂ)xa(r)

BEGn, a€lg.t=1

=Y o ) % > (lﬂ[aut(t)ﬂ(t)(")) (‘]jxa(r))

BEGy. a€Gn T€Sa \1=1

A€Gu, ‘_ﬂeG.., T€ES, =1

= Z Z (%a) Z Haa(t)ﬂt(r)(a)) Cﬂ] nxa(:)
=1

1 m
= Z Z (m per(A(a)[aIﬂ]))cp ]_[x..(,,, (7.49)

a€Gp, | BEGan t=1

where v(a) = o(Syu())-
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In lexicographic order, suppose Gm,n = {B1, B2,..., By}, where N = C(n +
m — 1,m).If [p] € Cy,; is the column vector

[pl= (Cpl. Clyi vwss CpN)t .
then Equation (7.49) can be expressed as
[A(0) o p] = A(@)™[p], (7.50)

where A(o)™! is the variation of the m-th induced power of A(c) described
in Definition 7.54 and Lemma 7.55. (Notice that Equation (7.50) reduces to
Equation (7.46) when m = 1.) It follows that p is a homogeneous polynomial
invariant of A(G) of degree m, if and only if

A@@)™[pl=[pl, o €G, (1.51)

if and only if, for all o € G, [p] is an eigenvector of A(o')"™], corresponding
to the eigenvalue A = 1. In other words, the space of homogeneous polynomial
invariants of degree m of A(G) is the intersection of the eigenspaces, afforded by
A =1,0f A(©)™), o € G.Because ;™ = Ic,,_ ., and

A(D)™A@)™ = (A(r)A(0))™
= A(to)™,

o — A(o)!™)is arepresentation of G. It follows that the dimension of the common
eigenspace is (1, &y )G, where §(0) = tr (A(0)™), o € G. These observations
are summarized in the following.

THEOREM 7.60 Suppose A is a representation of degree n of the finite group G.
Denote by d,, the dimension of the space of homogeneous polynomial invariants
of degree m of A(G). Then

1

_ [m]
dy = e z tr (A(o)™). (7.52)

oeG

For a fixed G and A, let f4 be the generating function for these dimensions,

that is,
fa@ =) dm™

m>0

MoLien's THEOREM 7.61 Suppose A is a representation of degree n of the finite
group G. Then
1

1
fa@) = o(G) ; det(I, — zA(0))’
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Proof By Equation (7.52), it suffices to show that the trace of A(o)™ is equal
to the coefficient of z™ in

” -1
[det(I, — zA(@)] ™! = [I’[(l ~ zA.-)] ,
i=1

where Ay, Az, ..., A, are the eigenvalues of A(c). Because P,,(A(c)) and A(o’)!™!
are similar they have the same trace, namely (Equation (7.42)),

wA@)™ = Y []rs0- (1.53)

BEGy, t=1

On the other hand,

ﬁ(l—zk;)" = ﬁ Z(zx.-)'")
i=1 i=1 \m>0

-y ( >3 ]ﬂ[xm) . (7.54)

m>0 \ B€G, . t=1

ExampLE 7.62 Returning to Example 7.59, where G = A3 and

A(G)=|((l) (1))(-(1) -:)(—: _tl))]

det(I; — zA(e)) = (1 — 2)%, and det(l; — zA((123))) = det(l; — zA((132))) =
1 4+ z + z2. The “Molien Series” for A(G) is

1f 1 2
fa@ =3 [(1—::)2 * 1+z+z2]

=[1+2z+32+42+5 +...)
+21—z+2 - +85-2"+..))1/3
=14+2422 4+ +2° +35+27 +... (7.55)

Because d; = 1, every homogeneous polynomial invariant of degree 2 must be a
multiple of the one we found in Example 7.59, namely,

x,z —Xx1x2 + x%.
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Moreover, there are no homogeneous polynomial invariants of degree 1. (This is
easily seen directly from Equation (7.52):

1
di=3) t(A@)
oeG
1
= 5(2 -1-1)
=0.

As the coefficient of z3 in Equation (7.55) is 2, the space of homogeneous
polynomial invariants of degree 3 has dimension 2. Let’s try to find two linearly
independent invariants of degree 3. Begin with some arbitrary homogeneous
polynomial of degree 3, say fi(x1,x2) = x?. As in Example 7.59, average
A(o) o f1 over A(G) obtaining

T, (x1,x2) = xlzxz — xlx%.

If fa(x1,x2) = xg, then f, = —f,, which is useless because we are seeking
a linearly independent pair. (Evidently, if g(x1,x2) = x} + x3, then g = 0.
However, if f3(x1, x2) = —3x%x3, then

7 2
Fa(x1,x2) = x3 — 3x}x, +x3.

Because f, and f; are linearly independent, we have found all homogeneous
polynomial invariants of A(G) of degree 3, namely, the nonzero polynomials in

{c1 (xfxz - x1x§) +c2 (x? - 3x12x2 +xg) 1¢1,02 € C] .

What about degree 4?7 We already know that xf —x1x2+ x% is a homogeneous
polynomial invariant of degree 2. Because the space of all invariants is an algebra,
(xf —X1X2 +x§)2 is a homogeneous polynomial invariant of degree 4. Because the
coefficient of z* in Equation (7.55) is 1, every homogeneous polynomial invariant
of degree 4 must be a nonzero multiple of (x? — xyx2 + x2)?. The degree 5
case is just as easy. From Equation (7.55), two linearly independent homogeneous
invariants of degree 5 are required. From the solutions to the second and third
degree problems, we obtain

(xf —x1x2+ x%) (x%xz - xlxg)

and
(Jcl2 — X1X2 +x%) (x? - 3x12x2 + xg) .



Generalized Matrix Functions 251

Applications to Graphs

Let H = (V, E) be a graph with vertex set V = {1,2,...,n} and edge set
E = E(H) C V@, the two-element subsets of V. Recall (Definition 6.85) that the
natural action of o € S, on V@ is defined by & ({i, j}) = {0 (i), o ()}, {i, j} €
V@, In particular, 0 — & is an isomorphism'” from S, onto the pair group,
S\ = {5: 0 € S,). Moreover (Equation (6.55)) H = (V, E) is isomorphic to
K = (V, F) if and only if there is a 0 € S, such that (E) = F. We will abuse
the language and write this condition as 6 (H) = K.

Let x{1,2}, X{1,3}» - - - » X{n—1,n) be C(n, 2) independent indeterminates over C,
indexed by the elements of V), Define the monomial

S (x,2) x(1,3), - - - » X{n—1,n}) = n Xe. (7.56)
ecE(H)

Observe that fy uniquely determines H; if H = (V, E) and K = (V, F), then
fu = fx if and only if H = K. Another point to be made about fy is that it is
“square-free”. It is a product of o(E (H)) different variables.
Define 6 oxy;, jj = X{o(i),0(j)}- Then, as in the general discussion of polynomial

invariants,

@ o fu) (X2 X(1,3}s + - -+ Fne1,m))

= fuy (5’ 0X(1,2},0 ©X{1,3},...,0 0 x|,._1,,.))

= f1 (Xom.o@h Xie )o@} - - -+ Xfo(n=1),0 ()

= fx (01,21 X(1.3)s - - -+ Xu—1,m)) »

where K = 6 (H). As in Example 7.58, define

- 1
H=— ). &ofu (.57

Properties of f;; are summarized in the following.

LemmA 7.63 Let H = (V,E) and K = (V, F) be graphs on vertex set
V = (1,2,...,n). Then H and K are isomorphic if and only ifTH = TK.
Moreover, if H = H\, H,, ..., H are the different graphs with vertex set V that
are isomorphic to H, then
k
Z in‘
i=1

fu=

| -

70ne may view 0 —d, 0 €S,, as a faithful permutation representation of degree C(n,2).
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Proof H and K are isomorphic if and only if there is a permutation T € S, such
that T(H) = K, in which case,

Conversely, if f; = f k. then fx must be among the summands comprising f 5,
that is, there exists a o € S, such that 6 o fy = fx and, hence, 6 (H) = K.

To prove the “moreover” part, denote the automorphism group of H by
A(H) = {0 € Sp: 6(H) = H). In the summation on the right-hand side
of Equation (7.57) fy occurs o(A(H)) times. If K is isomorphic to H, then
{o € Sp: 6(H) = K} is a coset of A(H). Therefore, fx also occurs o(A(H))
times, and k = n!/o(A(H)). a

Lemma 7.64 Let Hy = (V, E1), H = (V, E3), ..., H; = (V, Ey) be graphs
with vertexset V = (1,2, ...,n}. Then {f gy : 1 <i < s} is linearly independent
if and only if the graphs H,, H,, ..., H; are pairwise nonisomorphic.

Proof If H; = Hj then (Lemma 7.63) fy = fp,. Conversely, assume
H,, H, ..., H; are pairwise nonisomorphic. Suppose

E C,'TH‘ =0.
i=1

Because fg, occurs only in 711,’ its coefficient in this sum is a positive integer
multiple of ¢;. Taking successive partial derivatives with respect to x,, as e ranges
over E;, yields ¢c; = 0. u]

For a fixed n and m, suppose Hj, Hy, ..., Hi is a system of distinct repre-
sentatives for the nonisomorphic graphs having n vertices and m edges. With-
out loss of generality, we may assume these k graphs share the vertex set
V ={1,2,...,n}.Let U be the “free vector space” generated by H,, Hp, ..., Hg,
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that is, {Hy, Ha,..., Hi} is a basis of U. Denote by W the space of ho-
mogeneous polynomial invariants of degree m of S,(,z) in the indeterminates
X(1,2)s X{1,3}s - -+ ¥{n~1,n). Define T € LU, W) by T(H;) = fy,1 <i <k,
and linear extension. It follows from Lemma 7.64 that T is one-to-one. We claim
that T is onto the subspace of square-free polynomials in W. To see this, let
q = q(x{1,2), ¥{1,3}, - - - » X{n—1,n)) be a square-free homogeneous polynomial in-
variant of degree m of 5D, Suppose the monomial M occurs in g with coefficient c.
Let H = (V, E), o(E) = m, be the unique graph determined by M. Because g is
an invariant of S,(,z), cf y is among its summands. Therefore, ¢ — ¢ f ; contains
strictly fewer monomials than g, and the result follows by induction.
The main outcome of these observations can be summarized as follows:

THEOREM 7.65'%  The number, g(n, m), of nonisomorphic graphs having n ver-
tices and m edges is equal to the dimension of the subspace of square-free homo-
geneous polynomial invariants of degree m of S,(,z) in the C(n, 2) indeterminates
X{1,2}s X{1,3}s «  « s X{n—1,n}-

We now investigate another kind of polynomial invariant of graphs. A matrix
M € C,, is a monomial matrix if it can be factored as M = PC, where C is
an invertible diagonal matrix and P is a permutation matrix. It is not difficult to
prove that the set of monomial matrices comprises a subgroup of GL(n, C). It
is somewhat harder to show that the monomial group is a maximal subgroup of
GL(n,C)."?

LemMMA 7.66 Suppose x € I(S,). Let A = (a;j) be a generic n-by-n matrix. If
M = PC € C, , is a monomial matrix, then dx(M"'AM) dy (A).

Proof Suppose P = (8;,¢(j)) and C = diag (c1,¢2,...,¢n). f M = PC, then

dy M~ 'AM) Z x(o) l_[ca(x)at(z),w(l)/ci

o€S, i=1

= Z x(o) (H“: m—-m) ('ljca(t)/c‘i)

o€S,

Z x(™ ‘7‘) n Gio (i)

OES,

=dy (A).

18-This result is taken from [Merris & Watkins (1984)).
19Gee [Friedland (1985)].
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TueoreM 7.67 Let H and K be graphs on n vertices with Laplacian matrices
L(H) and L(K) respectively. If H and K are isomorphic thendy (xI, — L(H)) =
dy (xIn — L(K)), for every x € I(Sy)

Proof Because (Theorem 2.48) H and K are isomorphic if and only if L(H) and
L(K) are permutation similar, the result follows from Lemma 7.66. o

DerntTION 7.68  If A is an n-by-n matrix and x € I(S,), the x-th immanantal
polynomial® of A is dy (xI, — A).

The immanantal polynomial corresponding to x = ¢ is the characteristic
polynomial, which is preserved under any similarity. Despite Lemma 7.66, the
remaining immanantal polynomials are not similarity invariants. In a perverse
way, this makes dy (x I, — L (H)) more attractive as a graph invariant. Generically
preserved only under monomial similarities (when x # ¢), these polynomials
seem well suited to the condition that graphs H and K are isomorphic if and only
if L(H) and L(K) are permutation similar. In fact, it is natural to wonder whether,
taken all together, the Laplacian immanantal polynomials characterize graphs up
to isomorphism. The answer is, they do not.

THEOREM 7.69 Let t,, be the number of nonisomorphic trees on n vertices and s,
the number of such trees T for which there exists a nonisomorphic tree T' such
that

dy(xI, — L(T)) = dy(x1I, — L(T")), (7.58)

for every x € I(Sy). Then limp_, 00 Ss/th = 1.

Theorem 7.69 appeared in [Botti & Merris (1993)]. The proof depends on the
fact [Schwenk (1973)] that the probability of finding a fixed finite “limb” on a
randomly chosen tree goes to 1 as the number of vertices goes to infinity. Because
of this result, it suffices to exhibit a single pair of trees with certain nice properties.
Such a pair can be found in [McKay (1977)].

Derntmion 7.70  Two graphs, H and K, are coimmanantal if d, (xI, — L(H)) =
dy(xI, — L(K)), for every x € I(S,). A set of graphs is coimmanantal if its
elements are pairwise coimmanantal.

It follows from Theorem 7.69 that the probability a randomly chosen tree on
n vertices is part of a coimmanantal pair approaches 1 for large n. This raises the

204y manantal polynomials have been studied in a variety of contexts. See, ¢.g., [Baxter (1978)),
[Beasley & Brenner (1968)], [Brenner & Brualdi (1967)], {Engel (1973)], [Friedland (1972) & (1975)],
[Gibson (1971), (1972) & (1978)], [Horaud & Sossa (1995)), [Johnson, Merris & Pierce (1985-86)],
[Kriiuter (1987)], [Merris (1975b) & (1994b)], [Oliveira (1970), (1971) & (1972)], [S4 (1981)], and
[Strok (1990)]. The first appearance of immanantal polynomials in the study of graphs seems to have

been in [Tumer (1968)].
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question whether one can find arbitrarily large coimmanantal families of graphs.
As the next result shows, there exist coimmanantal families whose numbers grow
exponentially with n.

CoroLLARY 7.712!  Suppose k is a fixed but arbitrary positive integer. Let n =
17log, (k)14-1, where [ | is the ceiling function. Then there exists a coimmanantal
family of k trees on n vertices.

It is important not to misconstrue Theorem 7.69 and Corollary 7.71. While it
is true that, by themselves, Laplacian immanantal polynomials do not distinguish
all pairs of nonisomorphic graphs, this takes nothing away from the fact that they
are genuine graph invariants.

There are some other perspectives from which to view Laplacian immanants
of graphs. For example, given that the permanental dominance conjecture is so
difficult, why not try to prove it for some interesting subsets of H, ? The first result
along these lines was obtained by [Chan & Lam (1996)] who proved that

dy(L(T)) < per (L(T)) (1.59)

whenever T is a tree. Alternatively, an inequality among immanants that holds for
every A € H, might well be subject to some improvement when restricted to a
suitably chosen subset of H,. It is proved in [Brualdi & Goldwasser (1984)] 2for
example, that the Hadamard Theorem for Permanents can be improved to

per (L(K)) = 2h(L(K)) (7.60)

for bipartite X, and in [Chan & Lam (1996)] that, upon restriction to Lapla-
cian matrices of trees, Heyfron’s inequalities for single-hook immanants can be
strengthened to

dg-1(L(T)) < :—:—ka(L(T», 2<k=<n. (7.61)

21 corollary 7.71 is from [Merris (1995))].

22 5150 see [Bapat (1986)] and [Vrba (1986a&b)]. Related work can be found in [Balasubramaniam
(1993)), [Borowiecki & Jozwiak (1982)), [Faria (1985) & (1996)], [Goldwasser (1986)], [Goulden &
Jackson (1981) & (1992a)], [Grone & Merris (1988)], and [Merris (1986) & (1994b)].
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Exercises

L
2,

Prove that Hadamard’s Theorem is a consequence of Fischer’s Inequality.
Suppose A = (a;;) € Cp,n. Prove that

n n
|det(A)* < [ D_ laiji*.
j=1i=1

(Hint: Show that this is a variation of Hadamard’s Inequality.)

Let G be a permutation group of degree m. If x € I(G), prove that
a. dy(A*) =d,(A), A € Cpym.

b. dy(A*) = ds(A), A € Cpym, where X(0) = x(0),0 € G.

Let B = (b;j) € Hm and ¢ € Cy, be fixed but arbitrary. Define

cp(o) =c(o) nbia(i). o € Sp.
i=1
a. Prove that cp € Cp. (Hint: d;, (A) = d.(B - A).)
b. Prove thatd.(B - A) > c(e)h(B) det(A), A € Hpm.
c. Prove Oppenheim’s Inequality:2det(B - A) > h(B) det(A), A, B € Hy.
Prove Lemma 7.7.

Let x be an irreducible character of the subgroup G of S,,. Prove directly that
x € C;t. (Hint: Mimic Example 7.13.)

Let V be a vector space. A nonempty subset K of Visaconeif cu +dv € K
for all u, v € K and for all nonnegative real numbers ¢ and d.

a. Show that C,, is a cone.
b. Show that H,, is a cone.

Denote the principal character of S, by 1,, and the alternating character by
.Definec: S > Cbyc=1, —¢.

Prove that ¢ € C,,. (Hint: per (A) > det(A), A € Hym.)

Prove that e*M.e = —(n!)>.

Explain why ¢ € C,\C}.

Show that {¢ € Cn: c(e) = 0} coincides with the set of functions

c: Sm — C such that d.(A) > O for all (not necessarily positive
semidefinite) hermitian A € C,, 1.

o op oo

BSee [Oppenheim (1930)]. The permanental analog of Oppenheim’s Inequality, namely

per (B-A)<h(B) per (A), A,BeH,, is an unresolved conjecture. (See [Bapat & Sunder (1986)] and
[Chollet (1982)].)
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9.

10.

11.

Prove that per (A) is an eigenvalue of the Schur power matrix IT1(A).
Suppose A is a positive definite hermitian matrix, partitioned as in Equa-

tion (7.1), that is,
An Ap
A= i
(Azl An )

where A1) is p-by-p. Recall (Chapter 2, Exercise 54) that the Schur Comple-
ment of Ay; in A is A/Aj} = Ax — A21A7] A, It was shown in [Bunce
(1991)] that T1(A) > (A1 ® A/An).

a. Use this fact to prove that d.(A) > d.(A1) ® A/A11), 1 < p < m,forall
m-by-m positive definite hermitian A, and all ¢ € C}.
b. Can one draw the same conclusion for all ¢ € C,,? (Hint: Let

1 — 2 0
A11=(f 1). A12=((1) (l)) and Azz=(0 3)-

Take c to be the function from Example 7.12.)
The matrix A = (aij) € Hm is a correlation matrix ifa;; = 1,1 <i <m.
Let x, & € 1(G). Prove that if Zx (A) > 25 (A) for every m-by-m correlation
matrix, then dy (A) > d¢(A), A € Hy,. (Thus, it would suffice to prove the
permanental dominance conjecture for correlation matrices.)

12. It was shown in [Merris (1983)] that (h(A™))/™ > d, (A), A € Hp.

a. Use this result to prove the following inequality (that first appeared
in [Marcus & Minc (1965a)]): If Ay, A2, ..., Ay are the eigenvalues of
A € H,, then

m

L Y A > per (A).
m

i=1

(Hint: Use the arithmetic-geometric mean inequality to show that
tr (A™)/m > (h(Am)Y/m A

b. Suppose A; = A2 > 0. Prove that there exists a matrix A € H; having
eigenvalues A1 and A2, and permanent (Af 4 A%) /2. (Hint: Look for a real
symmetric matrix having equal diagonal entries.)?

24lt was conjectured in [Grone & Merris (1987)] that the permanent of a correlation matrix is not

less than the average of the squares of its eigenvalues (multiplicities included).

SWhen m>2, the problem of maximizing per (A) over those Ae’H,, with a prescribed spectrum

is not so easy. See, for example, [Grone, Johnson, Sa, & Wolkowicz (1986)].
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13. (S. Pierce) Let A = 315 — J3, where Jj is the 3-by-3 each of whose entries

14.
15.
16.

17.

18.

19.

20.

21.

22.

is 1.
a. Prove that A € Hj.
b. If G = A3 and  is the principal character, show that dj(A) = 6.

c. If G = A3 and yx is one of the nonprincipal linear characters of G, show
that d, (A) = 9.

d. If x is an irreducible character of the subgroup G of Sn, is it always true
that d1(A) > d,(A), A € Hp?

Show that dis 1)(A) > d3,2,1)(A), A € He.
Show that 2[4'31(11) > 2[4'2'1](1‘), A € Hg.

Suppose 7 = [m1, M2, ..., M) b m. If ;; = r, show that dr (A) > d,(A),
A € Hpm, where d, = dj,1=—). (Hint: Pate’s Theorem.)

Suppose 7, p - m. Write w C p if, forall A € Hp, dx(A) > 0 = d,(A) >
0.

a. Prove that 7 C p if and only if 7 is majorized by p. (Hint: Theorems 6.47
and 7.26.)%

b. Ifd,(A) > dx(A), A € Hp, prove that p majorizes 7.

(S. Pierce) Let J, be the n-by-n matrix each of whose entries is 1.

a. If A = J, ® J,, show that di3,1)(A) < dz)(A).

b. IfA = J, ® J, ® Jy, show that d(3 12)(A) < dpp2,1;(A).

c. Comment on the following conjecture: “If p majorizes , then dy(A) >
dx(A),A=>0"

Suppose d, (A) > per (A) for all m-square A > 0. Prove that G = S,, and

x=1

Suppose A € H,, is fixed but arbitrary. Let G be a subgroup of S, and x be

the principle character of G. Prove that d, (A) = 0 if and only if A has a zero

row. (Hint: Corollary 7.27.)

Suppose w = [my, 72, ..., M ) - m. Let x = xx € I(Sp).

a. If A € C,  has more than m; equal rows, prove that the immanant
dy (A) = 0. (Hint: Corollary 7.27.)

b. What property of determinants is generalized in part (a)?

Suppose 7 = [y, W2, ..., W] m.Let x = xn € I(Sm).

a. Iftherankof A € Cp m is less than r, prove that the immanant dy (A) = 0.
(Hint: Corollary 7.27.)

b. What property of determinants is generalized in part (a)?

26“Singullr sets” for gencralized matrix functions are discussed in [Beasley & Cummings (1983)).
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23.

24.

25.

26.

217.

Suppose A € Hy,. Then (Lemma 2.43), there exists a matrix B € C,, m such
that A = B*B.

a. Prove that there exists an upper triangular matrix C € Cp p such that
A=C*C.

b. Use Theorem 7.29 to prove that d, (4) > x(e)| det(C) 2.

c. Use part (b) and the fact that | det(C)|?> = det(C*) det(C) to give a proof
of Schur’s Inequality that does not depend on Watkins’s Theorem.

Suppose A € H,,.

a. Prove that h(A) = det(A) if and only if A has a zero row (and column) or
A is diagonal.

b. Prove that per (A) = det(A) if and only if A has a zero row (and column)
or A is diagonal.

[Williamson (1969)]' Let H be a subgroup of G, where G is a permutation
group of degree m. Suppose x is an irreducible character of G that remains
irreducible when restricted to H.

a. Prove that T(G, x)T(H, x) = T(G, x). (Hint: Use the Schur Relations.)
b. Prove that V, (G) C V, (H), for any vector space V.
c. Prove that d (A)/o(G) < df/(A)/o(H), A € Hpm, Where, d is the

generalized matrix function based on G and x and d;’ is the generalized
matrix function based on H and x.

Let G be a subgroup of S,. Suppose T € Z(G), the center of G. If
A = (aij) € Cp,m, prove that

[Taico = == Y xGHdx(A).
i=1 o(G) ;&6
Suppose A € H,, is partitioned into blocks,
An An
A= ,
(Azl Azz)
where A is invertible. Prove that

det(Az2) > det((A/A1)) + det(A}, A7 A1),

where (A/A1)) is the Schur complement of A;; in A. (See Exercise 10.)

2T5tated originally for linear characters, Williamson’s work has since been extended in several

ways. (See, for example, [Merris (1976)].)
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28. Suppose A = (a;;) € Hp is positive definite. Denote by A, the leading ¢-by-¢
principal submatrix of A, and let u, be the vector formed from the first ¢ — 1
entries of row ¢ of A, thatis, u, = (a;,1,a:,2, ..., 8¢ e—1)

a. Prove thata, — u,A,"_ll u; > 0,¢ > 1. (Hint: This is a Schur Complement
problem. See Exercise 10.)

b. Prove that

m
an [ [ (@ — ueAZ\u}) = det(a).
=2
c. Compare and contrast part (b) with Hadamard’s Inequality.
d. If A = A is the largest eigenvalue of A, prove that

det(A
hA) — detca) = =50 3" jay

i<j

(Hint: Show that det(A(f|r)) > det(A)/A, and u, A" 4} > lluylI/A.)

29. Let x be an irreducible character of the subgroup G of S,,. Suppose A € H,
has maximum eigenvalue A; and minimum eigenvalue A,,.

a. Prove that AT > Ex (A) > A (Hint: Show that Ay Iy > A = A lp.)

b. Show that the right-hand inequality in part (a) is inferior to Schur’s
Inequality.

c. When y is the principal character of S, show that the left-hand inequality
in part (a) is inferior to the inequality in Exercise 12(a).

30. Recall that an m-by-m matrix A = (a;;) is doubly stochastic if a;; > 0, for
all i and j, and if each row and column of A sums to 1. If A € H,, is doubly
stochastic, prove that

a. A> %J,,., the m-by-m matrix each of whose entries is 1/m.
b. per (A) = m!/m™.
31. Prove Lemma 7.35.
32. Let x be an irreducible character of the subgroup G of Sy,. Suppose A € C, ;.
a. Prove that d, (A[a|B]) = O if either o or B fails to belong to .
b. What well known statement about determinants is generalized in part (a)?
33. Suppose A, B € Hp,.
a. Prove that det(A!/™) = [det(A)]"/™.

b. Prove that Theorem 7.33 is stronger than Corollary 7.31 when G = S,
and x = &. (Hint: [det(A)Y/™ + det(B)!/™}™ = det(A) + det(B) plus a
sum of terms of the form det(B*/2" A'/™ B5/2m) where s + t = m.)
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34.

3s.

36.

37.

38.

39.

41.

42.

43.

Prove that Theorem 7.33 is stronger than Corollary 7.31 when A and B
commute.

Let x be an irreducible character of the subgroup G of S,,. Fix n and take
I'm,» to be ordered lexicographically. For each A € Cy, ,, let R(A) be the
n™-by-n™ matrix whose (@, 8)-entry is

(x(€)/o(G))dy (Ale| B]).

a. Prove that R(AB) = R(A)R(B).
b. Explain why A — R(A) is not a representation of GL(n, C).

Let x be a linear character of the subgroup G of Sy. If V, (G) # {0}, prove
that A — K (A) is a representation of GL(n, C).

Letm = n, G = S, and x = &. Show that K (A) is the one-by-one matrix

(det(A)).

Show that Equation (7.28) is an immediate consequence of Corollary 7.42 and

the definition of matrix multiplication.

Suppose x is an irreducible character of the subgroup G of S,,. Let A, B € H,,

and suppose A > B.

a. If x is linear, prove that K(A) > K(B).

b. Use part (a) to prove that d, (Alx|a]) > d, (Blxja]), a € A, when x is
linear.

c. Prove that dy (A[x|a]) > dy(Bla|a]), « € ' n, whether x is linear or
not.

Suppose A, B € H,. If A > B, prove that padj (A) > padj (B).

The classical adjoint (or adjugate) of A € C,,, is the n-by-n matrix adj (A)

whose (i, j)-entry is (—1)*7 det(A(ji)).

a. Prove that adj (A) and C,,—)(A) have the same spectrum, that is, the same
eigenvalues with the same multiplicities.

b. Suppose n > 1.Is adj (A) similar to C,—;(A) for all A € C, ,? Justify
your answer.

Confirm by a direct computation that Equation (7.35) is valid for a generic
3-by-3 matrix A = (a;;).

An inversion of 0 € Sy, is an ordered pair (i, j) suchthat 1 <i < j <m
and o(i) > o(j). Denote by inv (¢) the number of inversions of o. Let
q € [—1, 1] be fixed but arbitrary and define c: S,, = C by c(0) = ¢ ™ @,
It was proved in [Bozejko & Speicher (1991)] that ¢ € Cp,. Therefore, the
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so-called “q-permanent”,zsdeﬁnedby per ¢g(A) = dc(A), A € Cy m,satisfies
perg(A) > det(A), A € Hpm.

a. Prove that per ; = per, the permanent function.
b. Prove that per o = h, Hadamard's function, provided 0° is defined to be 1.
c. Prove that per _; = det, the determinant function.

44. Finish the proof of Theorem 7.38.

45. Prove Lemma 7.51.

46. If A, B € C, ,, prove that
a. det(A + B) = Tio Y peg,, (—1)" P det(Alx|B]) det(B(alB)).
b. per(A+ B) = Y40 X peg,. Per (AlalB)) per (B(al|B)).

47. Suppose A € H,, has eigenvalues A1 > A2 > - -+ > A,. Let G be a subgroup
of S, and suppose x € I(G).
a. Prove that minaez n;n=l Aar) < zx (4) < max, x n;n=1 Aao)-
b. Show that the left-hand inequality in part (a) is inferior to Schur’s Inequal-
ity.
c. If x is the principal character of S,,, show that the right-hand inequality in
part (a) is inferior to the inequality in Exercise 12(a).

48. Suppose A, B € Hp, are positive definite. If 0 < 6 < 1 then (see, for example,
[Bellman (1953)])

det(0A + (1 — 6)B) > det(A)? det(B)'~*.

Use this fact as the basis for another proof of Hadamard’s Inequality.

49. Suppose X is a linear character of the subgroup G of S,,. Let A € C, ,.
Assume A C I, , is not empty.

a. If A is invertible, prove that K (A) is invertible.
b. If A is normal, prove that K (A) is normal.
c. If A > 0, prove that K(A) > 0.

Excursion Exercise

50. Continuing from Example 7.62,

285ce [Bapat (1992)] and [Bapat & Lal (1994)], where it is proven that per,(A)>
per o (An1) per (Az), when A€M, is partitioned as in Equation (7.1) and ¢€[0,1]; and where it is
conjectured that for any fixed non-diagonal matrix A€M, g—> per ,(A) is a strictly increasing function
of ¢ in the interval [—1,1]. (A weaker conjecture is that, for any ge[—1,1], per ,(A)< per (A), AeH,..)
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a. find three linearly independent homogeneous polynomial invariants of
A(G) of degree 6.

b. determine the dimension of the space of homogeneous polynomial invari-
ants of degree 8.

c. speculate about a generating set for the algebra of polynomial invariants.

Application Exercises

51.

52.

53.

54.

55.

Find a pair of invertible 2-by-2 matrices A and B such that
a. per (AB) = per (A) per (B).

b. per (AB) # per (A) per (B).

c. per (ABA™!) # per (B).

Find a 3-by-3 invertible matrix A such that

per (A) =0 # per (A™").

The permanental roots of an n-by-n matrix A are the roots of its permanental
polynomial, p(x) = per (xI, — A). Suppose A € H,.

a. Show that p(x) is a monic polynomial of degree n.

b. Show that p(0) = (—1)” per (A).

c. Show that the sum of the permanental roots of A is equal to the sum of its
eigenvalues.

d. Prove that the real permanental roots of A lie in the closed interval [A,, A1],
where A; > A2 > .-+ > A, are the eigenvalues of A.

e. Prove or disprove that all permanental roots of A are real.

The star on n > 1 vertices is the unique tree T, having one vertex of degree
n — 1 and n — 1 vertices of degree 1. The multiplicity of 1 as a root of
per (xI, — L(T,)) is n — 2 [Faria (1985)].

a. Find the other two roots if n = 3.

b. Find the other two roots if n = 4.

c. Find the other two roots as a function of n.

d. Prove that the permanental roots of L(T,), n > 7, are all real.

If T is a tree on n vertices, then [Chan, Lam & Tang (1996)] per (L(T,)) <
per (L(T)) < per (L(P,)), where T, is the star (see Exercise 54) and P, is
the path, that is, the unique graph on n > 1 vertices having two vertices of
degree 1 and n — 2 vertices of degree 2. Confirm this result when n = 5.
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56. Letn be a fixed positive integer. Show that there exists a coimmanantal family
of at least k = 2*=1/17 trees on n vertices. (Hint: Corollary 7.71.)

57. Let G = (V, E) be a graph on n > 2 vertices. A hamiltonian path in G is
an arrangement of the n vertices of V into a sequence (vy, v2, ..., Un), Such
that {v;, vis1} € E,1 <i <n.If {v1,va} € E as well, then the hamiltonian
path is a hamiltonian cycle. Prove that the number of hamiltonian cycles in
G is given by the formula

1 n
5 2 (D (LG

r=2

(Hint: Exercises 53 and 54, Chapter 4.)



CHAPTER 8

The Rational Representations
of GL(n, C)

The general linear group (or “full” linear group) is the multiplicative group
GL(n, C) of invertible n-by-n complex matrices. The main thrust of the chapter
concerns representations R: GL(n, C) - GL(r, C) in which the elements of
R(A) are fixed rational functions! (ratios of polynomials) in the elements of A.
Classical Schur polynomials emerge in the role of characters associated with these
representations. These polynomials turn out to be powerful tools in the study of
irreducible characters of symmetric groups and their associated immanants.

We begin with a deep algebraic result, commonly known as Weyl’s Principle
of the Irrelevance of Algebraic Inequalities.?

TueoreM 8.1 Suppose x1,x2, ..., Xm are independent indeterminates over the
complex numbers. Let f, g1,82,...,8p € C[x1,x2,...,Xm], where none of
81, 82, ..., 8p is the zero polynomial. Suppose

fler,c2y...,¢m) =0,
whenever ¢y, ¢, ..., cm € C are such that

g(c1,¢2,...,cm) #0, 1=<t=<p.

Then f is the zero polynomial.

l“Fixed” means the rational functions depends on R but not on A.
2'“)e version presented here is but a special case of Weyl’s Principle.

265
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Proof Define h € C[xy,x2,...,Xm] by

P
h(x1,x2,...,Xm) = f(x1,x2,.. .,x,,.)]_[g,(xl,xz, s s s Xm)s
t=1

Then h(c1,¢2,...,¢cm) = O for all ¢1,¢2,...,cm € C. In other words, A is the

zero polynomial. Because C[x), x2, ..., X»] is an integral domain, it has no zero
divisors. Thus, one of the factors of # must be zero. Because g; #0,1 <t < p,
it must be that f = 0. o

The next result, interesting in its own right, is of critical importance to
subsequent developments.

TueoreM 8.2 Let R: GL(n,C) — GL(1,C) be a polynomial representation
of GL(n,C). Then there is an integer k > 0 such that R(A) = det (A)*,
A € GL(n,C).

Proof Because R is a homomorphism, R(I,) = 1. (We will freely abuse the
language by confusing GL(1, C) with C\{0}.) Therefore, for any A € GL(n, C),

1=R(AATYH

= R(A)R ( adj (A)) . 8.1)

det (A)

Because R(A) is a fixed polynomial in the entries of A, there exists a positive
integer, say g, such that multiplying both sides of Equation (8.1) by det (A)?
produces det (A)? = R(A)g(A), where

g(A) = det (A)?R ( det (A) adj (A))

is a polynomial function of the entries of A. Moreover, neither g nor the integer ¢
depends on A. In other words, if X = (x;;) is an n-by-n matrix whose entries are
n? independent indeterminates over C, then det (X)9 — R(X)g(X) = 0, as long
as det (X) # 0. It follows from Weyl’s Principle that

det (X)? = R(X)g(X), (8.2)

for all X, that is, Equation (8.2) is a polynomial identity. Because det (X) is
an irreducible polynomial (see Lemma 8.3), it follows from Equation (8.2) that
R(X) = c det (X)* for some ¢ € C and some nonnegative integer k. Substituting
I, for X yields c = 1. o
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LemMma 8.3  If X = (xi;) is an n-by-n matrix whose entries are n? independent
indeterminates over C, then det (X) is an irreducible element of the unique
factorization domain C[xy1, x12, . . ., Xnn)-

The next result allows us to focus on polynomial representations.

THeoREM 8.4 Let R: GL(n, C) = GL(r, C) be a rational representation. Then
there exists an integer k and a polynomial representation S: GL(n,C) —
GL(r, C) such that R(A) = det (A)*S(A), A € GL(n,C).

Proof Let X = (x;j) be an n-by-n matrix whose entries are n? independent
indeterminates over C. Denote the (s, #)-entry of R(X) by R, (X). Suppose
g(X) is a least common multiple of the denominators of the rational functions
Ry (X), 1 < s,t < r. (Then g(X) is unique up to multiplication by a nonzero
complex number.) Let p(X) be a greatest common divisor of the r? polynomials
q(X) R (X). Then we may write

p(X)
R(X) = —==8(X), .
(X) q(x)S( ) (8.3)

where the (s, 7)-entry of S(X) is a polynomial in C[xy1, X12,...,Xan], and a
greatest common divisor of the entries of S(X) is 1. (In case r = 1, we may
take S(X) = 1.) Without loss of generality, we may assume p(X) and g(X) are
relatively prime. Replacing p(X) with p(X)/p(I»), ¢(X) with q¢(X)/q(I,), and
S(X) with p(I,)S(X)/q(I,) allows us to assume that p(I,) = q(I,) = 1. Because
R(I,) = I, it follows that S(I,) = I,.

In view of Theorem 8.2, it remains to show that p, g and S are representations
of GL(n,C). For any A, B € GL(n,C), R(AB) = R(A)R(B). Substituting
Equation (8.3) into this identity yields

p(AB)q(A)q(B)S(AB) — p(A)p(B)q(AB)S(A)S(B) =0.  (8.4)

This matrix equation is equivalent to r? equations in which a polynomial function
in the 2n2 entries of A and B is equal to zero, provided (only) that det (A) #
0 # det (B). Therefore, from Weyl’s Principle, each of the r? polynomials is
identically zero. That is, Equation (8.4) is an identity for all n-by-n matrices. In
particular, if B € GL(n, C) is fixed but arbitrary, and X is an n-by-n matrix of
indeterminates, then

p(XB)q(X)q(B)S(XB)S(B)™' = p(X)p(B)g(XB)S(X). (8.5

Because ¢(X) is a factor of the left-hand side of this equation, it divides each entry
of the r-by-r matrix on the right-hand side. Since ¢(X) and p(X) are relatively
prime, g(X) divides each entry of the matrix (X B)S(X). Because the entries
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of S(X) are relatively prime, it must be that ¢(X) divides g(X B). Because the

degree of the polynomial g(X B) cannot be larger than the degree of ¢(X), there
is a complex number ¢(B) such that

q(XB) = q(X)c(B). (8.6)

Substituting X = I, we have, because g(I;) = 1, c¢(B) = q(B). It follows that
q: GL(n,C) - GL(1, C) is a representation. In particular (Theorem 8.2), g(X)
is a nonnegative integral power of det (X).

SettingA = Xand B =X ~1in the polynomial identity (8.4) we have (because
(X~ =q(X)7!, p(l,) = 1, and S(I,) = I;)

L = pX)p(X~NHS(xX)s(x71). 8.7

Because X~! = det (X)~! adj (X) and the entries of p(X~!) and S(X~!) are
polynomials in the entries of X!, there exists a nonnegative integer m such that

Q(X) = det (X)"p(X~HS(X)S(x7")

has polynomial entries. Therefore, from Equation (8.7),

P(X)Q(X) = det (X)"I,.

It follows from this equation and Lemma 8.3 that p(X) is a nonnegative integral
power of det (X). Returning to Equation (8.3), we see that

R(X) = det (X)*S(X),

for some integer k. Therefore,

S(AB) = det (AB) *R(AB)
= [ det (A)"*R(A)][ det (B)*R(B)]
= S(A)S(B),

forall A, B € GL(n,C), thatis, S: GL(n, C) - GL(r, C) is a representation. O

THeoREM 8.5 Any polynomial representation P: GL(n,C) — GL(r,C) is
equivalent to a direct sum of homogeneous polynomial representations.
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Proof Let y and z be independent indeterminates over the complex numbers.
Because P is a polynomial representation, there is a nonnegative integer k, and
k + 1 matrices Cop, Cy, ..., C¢ € C,, such that

P(yl) = Co+ yC1 + -+ - + y*Cy.
Similarly, P(zI,) = Y_ 7' C;. Consequently,

k
Z(yz)iCi = P(yzl,)
i=0

= P(yIx)P(zl»)

- (o) (&)

k k
=Y o2ct+). ) Y. (8.8)
i=0 i=0 j#i
Comparing coefficients in Equation (8.8), reveals that Cy, Cj, ..., Ci are annihi-
lating idempotents. Because P(I,) = Y C; = I,, it follows that there is a fixed
U € GL(r,C) such that U"'C;U = B;,0 < i < k, where
Bi = Oro @ s eor,_l e In @()y“_l ® M QO'A’

r; = rank (C;) and 0O, is the ¢t-by-¢ zero matrix. (If C; = 0, then r; = 0 and
B; = 0.) Suppose that g of the C;’s are nonzero, say Cpm,, Cm,, - - - » Cpm, -

Let X = (x;;) be an n-by-n matrix such that y together with the x;; are n+1
independent indeterminates over C. Partition the matrix U “1p(X)U = (P (X)),
where Py;(X) is rm,-by-rm,, 1 < s,t < q. Because U~ P(yl,)U commutes with
Uu-lpP(x)u,

Y™ Py (X) = y™ Py (X),

1 <s,t < q. It follows that Py, (X) = 0, s # ¢. In other words,
U™'P(X)U = P11(X) ® Pn(X) ® -+ @ Pye(X).
Therefore, P;;: GL(n,C) - GL(r;, C) is a representation. Moreover, because

the entries of U~! P(X)U are linear combinations of the elements of P(X), P;; is
a polynomial representation of GL(n, C). Finally,

Pi(yX) = Pi(yI» X)
= Pii(yIn) Pii (X). (8.9)

Because P;;(yl,) = y™I,,1 <i < q, we obtain P;;(yX) = y™ P,;(X). In other
words, the entries of P;;(X) are homogeneous polynomials of degree m; in the
entries of X. (m]
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ExampLE 8.6 Let X = (x;j) be an n-by-n matrix of indeterminates. Recall
(Definition 5.41) that the m-th Kronecker power of X is an n™-by-n™ matrix
whose rows and columns are indexed by 'y, . The (e, B)-entry of X em s

m
(X®™)ap = ]_[xamp(t)-

=1

Observe that every monomial of (total) degree m in the n? variables x11, X12, - . . » Xnn
occurs (at least once) as an entry of X®™, o

Suppose P: GL(n, C) - GL(n™, C) is the representation defined by P(A) =
A®™ Because P(A) is an n™-by-n™ matrix, the degree of the representation is n™.
At the same time, the entries of P(A) are monomials of degree m in the entries
of A. The two different uses of the word “degree” might be confusing. Let us
agree to understand the phrase “P is a homogeneous polynomial representation
of degree m” to mean that m is the degree of the polynomial functions and not the
degree of the representation.

Because GL(n, C) is an infinite group, Maschke’s Theorem cannot be applied
to the representation A —> P(A). Nevertheless (as we will see presently), P is fully
reducible. Moreover, for any fixed U € GL(n™, C), the entries of U~! P(A)U are
linear functions (homogeneous polynomial functions of degree 1) in the entries of
A®™ and, therefore, homogeneous polynomials of degree m in the entries of A. It
is useful to look at this situation from another perspective.

LeMMmA 8.7 Let m be a fixed but arbitrary positive integer. Consider G =
{A®™: A € GL(n,C)). Then G is a subgroup of GL(n™, C), and the identity
mapping, A®™ — A®™, A®™ ¢ G, is a representation of G. If F: G - GL(r,C)
is a homogeneous polynomial representation of G of degree 1 in the entries of
A®™, then F is fully reducible, and each irreducible constituent of F is equivalent
to a constituent of the reduction of A®™ — A®™,

That the irreducible constituents of F should be equivalent to constituents of the
m-th Kronecker power representation, already plausible from Example 8.6, can be
proved using a dimension argument (Macdonald (1995), p. 162]. The remainder
of Lemma 8.7 is a special case of a more general result from the representation
theory of semi-simple algebras, a proof of which can be found, for example, in
[Green (1980), pp. 29-30] or [Marcus (1975), pp. 386-395].

Let R: GL(n,C) = GL(r, C) be a homogeneous polynomial representation
of degree m. Let G = {A®™: A € GL(n, C)}, and define a function R : G —
GL(r,C) by

Rn(A®™) = R(A). (8.10)
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Then

Rn(A®"B®") = Rn((AB)®™)
= R(AB)
= R(A)R(B)
= Rn(A®™)R,,(B®™). (8.11)

Therefore, R,, is a representation of G. Moreover, the entries of R, (A®™) are
linear functions of the entries of A®™, It follows from Lemma 8.7 that Ry, is fully
reducible and its irreducible constituents are equivalent to irreducible constituents
of the representation A%™ — A®™, This means that the (arbitrary) representation
we started with, namely R: GL(n, C) = GL(r, C), is fully reducible, and its
irreducible constituents are equivalent to irreducible constituents of A — A®™,
the m-th Kronecker power representation of GL(n, C).

Let’s summarize. Suppose R: GL(n, C) — GL(r, C) is a rational representa-
tion of the general linear group GL(n, C). By Theorems 8.4 and 8.5, there exists
an integer k and homogeneous polynomial representations P, 1 < i < g, such
that R is equivalent to a representation R’ defined by

PA) O ... 0
R(A) = deta)| ¢ P ... 0] 8.12)
0 0 ... PyA)

A € GL(n, C). Moreover, as a consequence of Lemma 8.7, foreachi, A — P;(A)
is fully reducible and each of its irreducible constituents is equivalent to an
irreducible constituent of some Kronecker power representation. Therefore, to
completely comprehend the rational representations of the general linear group, it
only remains to reduce its Kronecker power representations. (Taken together, the
Kronecker power representations play a role that is analogous to the role of the
regular representation in the theory for finite groups.) In determining the irreducible
constituents of the m-th Kronecker power representation, it will simplify matters
to replace GL(n, C) with the isomorphic group GL(V) of invertible linear
operators on a vector space V of dimension n. From the operator perspective,
constituents of A — A®™ correspond to subspaces of V®™ that are invariant
under T®™, T € GL(V), and irreducible constituents correspond to minimal
invariant subspaces.

Recall that we have already discovered some invariant subspaces of V®™,
If x is an irreducible character of the subgroup G of S, then V,(G) is an
invariant subspace of T®" = T® T ® --- ® T (m-times). Hence (abusing the
language), T — K (T) is a (not necessarily irreducible) constituent of T — T®™,
T € GL(V). Because (Corollary 6.6)

VO™ = ®ye1(6)Vx (G), (8.13)
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the direct sum of the symmetry classes of tensors afforded by G and its irreducible
characters, T — T®™ is a “direct sum” of “representations” of the form
T — K(T) as x ranges over I (G). Thus, it suffices to find the minimal invariant
subspaces of V, (G), that is, to “reduce” T — K(T), T € GL(V). We begin this
final step by introducing a refinement of the projection operator T (G, x).

DermniTion 8.8 Let x be an irreducible character of the subgroup G of S,,.
Suppose 0 — A(0) = (a;;j(0)) is a representation of G that affords x. For a fixed
but arbitrary vector space V, denote by T; (G, A) € L(V®™, V®™) 1 <i < x(e),
the operator defined by

_x@ .
Ti(G, A) = (G); a;i(0)P(o).

THEOREM 8.9 Let x be an irreducible character of the subgroup G of Sp,. Suppose
o — A(o) = (aij(0)) is a representation of G that affords x. If V is a vector
space, then

() Ti(G, AT;(G, A) = §;;Ti(G, A), 1 <i, j < x(e); and

@) X9 T:(G, 4) = T(G, x).

If V is an inner product space and A is a unitary representation, then
(iii)7; (G, A) is hermitian.

Proof We prove part (i):

>

)

) 2
T;(G, A)T;(G, A) = ( (((‘; ) (Z a.-.-(a)P(a>) (}:a,-,-(r)P(r))

o€G t€G

e’

2
= (%) Z aji(0)a;jj(x)P(o7)

0,t€G

2
- (;(((é))) Z (Z a;; (a)ajj(a‘lt)) P(7)

t€G \0€eG

Y 8ijai (1) P()

teG

=§;;Ti(G, A),

by Theorem 4.21. m]
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ExamrLE 8.10 Consider the representation of S3 from Example 4.3, namely,

A(e3)=((‘, ‘1’) A((12>)=(‘1’ (‘,)

acn = (7 ) A«lzs))=(_‘1’ _i)

A((l32))=(_: ’(1)), and A((l3))=(_} _‘1’).

Then

Ti(S3, A) = %(P(es) — P((23)) - P((132)) + P((13))), (8.19)
and

T(S3, A) = %(P(es) + P((23)) — P((123)) — P((13))). (8.15)

m}

DerINtTION 8.11  Let x be an irreducible character of the subgroup G of Sp,.
Suppose o = A(0) = (aij(0)) is a representation of G that aﬁ‘oxjds x - For a fixed
but arbitrary vector space V, denote the image of T;(G, A) by V,(G).

CoroLLARY 8.12 Let x be an irreducible character of the subgroup G of Sp.
Suppose o — A(0) = (a;;j(0)) is a representation of G that affords x. If V is a
vector space, then

V,(G) = 8X9Vi(G). (8.16)

i=1

Moreover, if A is unitary and V is an inner product space, then the direct sum in
Equation (8.16) is orthogonal.

Proof Theresultis animmediate consequence of Theorem 8.9 and the definitions.

u}

Because 7_‘8"' commutes with P(o), 0 € Sp, it commutes with T;(G, A).

Therefore, V;(G) is an invariant subspace of T®™ and, hence, of K(T). Denote
the restriction of K(T) to V4 (G) by Ki(T), T € L(V, V).

TheoreM 8.13  Let x be an irreducible character of the subgroup G of Sp.
Suppose 0 — A(c) = (a;j(0)) is a representation of G affording x. Let V be
a vector space. If Vy (G) # {0}, then Kf4 and K i are equivalent representations
of GL(V), 1 <i < j< x(e).IfG = Sy, thenT — K";(T) is an irreducible
representation of GL(V).

IfG = Spand x = xr wherew = [m, 712, ..., 7,] F m, then (Corollary 6.38)
Vy(Sm) # {0} if and only if r < dim (V).
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Proof Because (Lemma 6.2) P (o) commutes with T(G, x), Vy (G) is an invari-
ant subspace of P(c0), 0 € G. Denote the restriction of P(a’) to V, (G), by Py (o),
o € G.Then, 0 — Py (o) is a representation of G, and

x(e)

oG Y x(@)Py (@) = Iy,6)s

o€eG

is the identity operator on V, (G).
Suppose & is an irreducible character of G different from x. Then

_§@
g és( )Py ()

is a linear operator on V, (G). Observe that

Z=2Zoly,c)
_ (5@ x(e)
= (O(G) z:ce(a)rx(a)) (O(G) z;;X(t)PX(r))

ueG \oceG
=0,

by Theorem 4.26. Therefore, 0 = tr (Z) = &(e)(%, n)G, where 7 is the character
afforded by 0 — P,(0), o € G. Evidently, the restriction of n to G contains
no irreducible character of G different from . It follows that there exists a basis
B of V,(G) such that the matrix representation of P, (o) with respect to B is
the direct sum of (the contragredient representation) C(0’) = A(o~!)* with itself
N = (X, n)c times. In other words, with respect to B, the matrix representation
of Py(0) is

[Py(@)]ls=INn®C(0), 0 €G. 8.17)

If we abuse the language by confusing T; (G, A) with its restriction to Vy (G),
then, by Equation (8.17) and the Schur Relations,

(G, Mls = XS 3 au(@)tn 8 C))
oeG

=Iv® (g% )3 a.-.-(a)A(a“)‘)

oceG

= Iy ® Ejj, (8.18)
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where E;; is the x (e)-by-x (¢) matrix whose only nonzero entry is a 1 in position
@,i).

LetT € L(V, V) be a(not necessarily invertible) linear operator on V. Partition
the matrix [K (T)]s = (Ks:) into N2 blocks, Ky, of size x (e)-by-x (e). Because
[K(T)]s commutes with [P, (c)]s = Iy ® C(0), and because C is irreducible,
Corollary 4.17 implies that Ky, is a multiple of I,;(), 1 < s,¢ < N.Inother words,

[K(T)]ls = B(T) @ Iy(e) (8.19)

for some N-by-N matrix B(T). By Exercise 21, Chapter 5, there exists a
permutation matrix Q such that

Q'(B®C)Q=C®B

for all B € Cy,n, and all C € Cyy),x(e)- Similarity by Q merely permutes
the elements of the ordered basis B into a new ordered basis B'. Thus, from
Equation (8.18),

[T:(G, A)lg = E;; ® Iy.

It follows that the first N elements of B’ form a basis B of V} (G), the second N
elements form a basis B; of V} (G), and so on. Applying this observation to

[K(TM)]s = Iy @ B(T),

we deduce that, with respect to B;, the matrix representation of K f‘(T) is B(T),
1 <i < x(e). Therefore, K :‘ and K j are equivalent.

We now consider the case in which G = §,,. Recall (Definition 6.72) that a
linear operator on V®™ is bisymmetric if it commutes with P(0), 0 € Sp. By
Corollary 6.73, the space of bisymmetric operators is (T®": T € L(V, V)). The
local version of the resultis that (K (T'): T € L(V, V))is the set of linear operators
that commute with {Py(0): o € Sp}. In matrix terms,

([K(T)]g =B(T)® Iy): T € L(V,V))
is the set of matrices that commute with
{[Py(0)lg =IN ® C(0): 0 € Spm).

However, by Corollary 4.17, the matrices that commute with

{In ® C(0): 0 € Sm})
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are those of the form C ® Iy(), C € Cy n. It follows that Cy y = (B(T): T €
L(V, V)). Therefore, {B(T): T € L(V, V)}isirreducible. What we need to prove
isthat {B(T): T € GL(V)} is irreducible. This will require one more application
of Weyl's Principle. Fix an arbitrary basis of V. Denote by [T] the matrix
representation of T € L(V, V) with respect to this basis. Then there exists a fixed
invertible matrix M such that B(T) is a principal submatrix of M~1([T]®™)M,
T € L(V, V). In particular, the elements of B(T) are homogeneous polynomials of
degree m in the entries of [T]. Let U € GL(n, C) be fixed but arbitrary. Denote the
(1, N)-entry of U~ B(T)U by p([T1), T € L(V, V). Suppose p([T]) = O for all
T € GL(V). Then the polynomial function p([T]) = 0 whenever det ([T']) # 0.
By Weyl’s Principle, p([T]) = 0 for all T € L(V, V), contradicting the fact that
{B(T): T € L(V,V))} is irreducible. Because U was arbitrary, it follows that
{B(T): T € GL(V)} is irreducible. m]

DerFNtTION 8.14 Let x be an irreducible character of the subgroup G of Sp,.
Suppose ¢ — A(0) = (a;j(0)) is a representation of G affording x. Let V be a
vector space. Denote the restriction of 7™ to VA(G) by Bf (T), T € L(V, V).

The abbreviation B;("(T) will be used in place of B,‘f" (7).

The matrix B(T') that occurs, for example, in Equation (8.19) is a matrix
representation of the linear transformation Bf (T) introduced in Definition 8.14.

It follows from Theorem 8.13 that, as long as V, (G) # {0}, the representation
T — K(T), T € GL(V), is equivalent to the direct sum of Bf(T) with itself
x(e) times. If G = S,,, this direct sum constitutes a reduction of T — K(T).
(Again, we are guilty of using matrix language in the context of linear operators.)
Given representations of S,, corresponding to each of its irreducible characters,
Theorem 8.13 completes the reduction of 7 — T®™ T ¢ GL(V), and, therefore,
the description of the rational representations of G L(n, C). (Explicit constructions
can be found, for example, in [Boemer (1970)], [Dias da Silva (1981)], [Hamer-
mesh (1962)], [Hunter (1983)], [James & Kerber 1981)], [Littlewood (1958)],
[Marcus (1975)] and/or [Sagan (1991)].) More remarkable than any of the details
is the elegant relationship that has emerged between the representations of the
finite symmetric groups and the homogeneous polynomial representations of the
infinite group GL(n, C).

Theorem 8.13 raises new questions even as it answers old ones. For example,
in order to avoid the awkward step of having to replace GL(n, C) with GL(V),
we need to know more about induced bases of V, (G) and Vj (G) when x(e) > 1.
Another question left unanswered by Theorem 8.13 concerns the reduction of
T — BY(T), T € GL(V), when G 3 Sp. In fact, something can be said about
this situation.

THeoreM 8.15 Let & be an irreducible character of the subgroup G of Sp.
Suppose V is a vector space of dimension n. Then the representation T — Bf (7),
T € GL(V), is equivalent to a direct sum of irreducible constituents B7', where
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X ranges over those characters Xn of Sm corresponding to partitions * - m of
length L(n) < n. If L(w) < n, then the multiplicity of B;("x as an irreducible
constituent of BEG is (¢, xx)G- That is, the number of occurrences of B;(': in BEG is
equal to the number of occurrences of € in the restriction of xx to G.

Proof Leto — A(o) = (aij(0)) be an irreducible representation of G that
affords &. Suppose 0 — R(o) = (rij(0)) is an irreducible representation of Sp
that affords x. Without loss of generality, we may assume that the restriction of R
to G is fully reduced, and that any components of the restriction that afford & are
equal to A. In these terms, the problem is to express the vector space V,i (G)asa

direct sum of V‘{ (Sm). Observe that

T:(G, A)Tj(Sm, R) = §@x (e Z (Z aii(d)rjj(a_lt)) P(7)

o(G)m! T€Sy \0EG

— | TiSm, B), if rjjic = aii
0, otherwise .

As j runs from 1 to x (e), the restriction of 7;; to G will equal a;; exactly (&, x)¢
times. D

It can happen that Bf = B}, in other words, that BEG is an irreducible
representation of GL(V) even when G is a proper subgroup of S,,. Whenm < n
and &(e) = 1, a complete list of such pairs (G, &) was obtained in [Djokovi¢ &
Malzan (1975)].

6|4 |1
4 |2
3

1
FIGURE 8.1

Suppose ® = [m, 2, ..., ] - m. Recall that to each ordered pair (i, j),
1 <i=<r 1< j< m, there corresponds a box, B;j, in the Ferrers diagram
of F(x). Box B;; determines a unique hook in F(r) consisting of B;;, all the
boxes in row i of F(x) to the right of B;j, and all boxes in column j of F(x)
below it. The number of boxes in the hook determined by B;; is its hook length,
hij(r) = 14+ (m; — i) + (N; — j). By the Frame-Robinson-Thrall hook length
formula, the degree of the irreducible character x of Sy, is xx (€) = m!/ [] hi; (x).
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If # = [3, 22, 1), Figure 8.1 illustrates F([3, 22, 1)), its boxes filled with their
hook lengths. In this case,

8x7Tx6x5%x4x3x2x1
6x4x1x4x2x3x1x1

=170.

xn(e) =

The next result involves filling box B;; of F(xr), not with numbers but with
monomials. Figure 8.2 illustrates F([3, 22, 1]) with x — i + j filling box (i, ).

X x+1 | x+2
x—1 x
x—2 | x-1
x-3
FIGURE 8.2

DerniTioN 8.16 If r = [m), 72, ..., 1 F m, let
r n;
@ =T[[]=-i+.
i=1j=1

Not to be confused with f (), the length of the diagonal of F(r), fx(x) isa
polynomial of degree m.

Exampie 8.17 If w = [3, 22, 1] then, from Figure 8.2,
fr(x) = (@ =3)(x = 2)(x — 1)?x%(x + 1)(x +2).
|}

Tugsorem 8.18%  Suppose w = [my, 72, ..., 7,1 F m. Let A - A(0) = (aij(0))
be an irreducible representation of Sy, that affords the character x = xx. Suppose

3This “Frame-Robinson-Thrall type” formula emerges from the relationship between the repre-
sentations of S, and the homogeneous polynomial representations of degree m of GL(n,C). Proofs can
be found, ¢.g., in [Boerner (1970)], [James & Kerber (1981)), [King (1970)), [Littlewood (1958)], or
[Murtaza and Rashid (1973)]. Values for dim (V}(Sa)) were tabulated by P.H. Butler in his Appendix

to [Wybourmne (1970)].
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V is a vector space of dimension n. Then the dimension of V} (Sm) (and, hence, of
VE(Sm), 1 <k < x(e)) is given by the formula

dim (V,}(sm)) = Xn(€) fx(n)/m!

= ]‘] n(n — i+ j)/hij(m). (8.20)

i=1j=1

It follows from Definition 8.14 and Theorem 8.18 that the degree of the
irreducible representation B} of GL(V) corresponding to x = x» is given by
Equation (8.20).

CoroLLARY 8.19 Suppose V is a vector space of dimension n. Let & be an
irreducible character of the subgroup G of Sp,. Then

dim (V;(G)) = Z E(e)xx (€&, xx)G fx(n)/m!. (8.21)

ntm
Proof Let A be a representation of G affording &. By Corollary 8.12,

Ve(G) = &f“)Vi(G).

By Theorem 8.13, each of the £(e) direct summands has the same dimension,
namely, the degree of BEG . By Theorem 8.15, this dimension is equal to the sum
over 1  m of (€, xx)c times the degree of B (L(r) < n if and only if
fx(n) # 0). This degree is given by Equation (8.20). o
ExampLE 8.20 Suppose V is a vector space of dimension n. When G = §,, and
& = x,, Equation (8.21) becomes

dim (Vy,(Sm)) = x,‘,(e)2 So(n)/ml. (8.22)

In accordance with Equation (8.16), this is x,(e) times the dimension of the
minimal invariant subspace given in Equation (8.20).

Suppose, for example, that p = [1™]. Then, Kf,(T) = K(T) = Cu(T), the
m-th compound. The degree of the m-th compound is dim (A™V) = C(n, m).
Equation (8.22) gives

dim (V,(Sm)) = fi=)(n)/m!
=nn-1)x---x(n—m+1)/m!
=C(n,m).
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= [m], then K f‘ (T) = K(T) = Pn(T), the m-th induced power, the degree
of which is C(m + n — 1, m). Equation (8.22) gives

dim (Vi(Sm)) = fim)(n)/m!
=nr+1)x---x(@n+m-—1)/m!

=Cn+m-—1,m).
a

Other results pertaining to dimensions of symmetry classes of tensors can be
found in [Chan (1978a&b) & (1979a&b)], [Chan & Lim (1980)], [Chang (1976)],
[Cummings (1976)], [Cummings & Robinson (1976)], [Marcus & Chollet (1982)],
and [Westwick (1970)].

We turn next to the character of the representation BS. Let A1, Az, ..., An be
the eigenvalues of T € GL(V) (multiplicities included). Then (Equation (7.39))

o (K@M)= Y[R

acA =1

=x() }_(x. Da. ]'[A..m

a€h =1

= x(e) Y_(x. D, ]'[Acm (8.23)

a€A

By Theorem 8.13 (and Definition 8.14), T — K (T) is equivalent to the direct
sum of x (e) copies of Bf (T). Thus, from Equation (8.23),

r (BS(T) = Y_(x. Ve, l'[xum

a€A t=1

If G = Sp, then x = x for some & I m, and this identity becomes

w BTN = Y. Knuw [ [rew (8.24)
t=1

A€EGy

where u(a) is the multiplicity partition of , and the Kostka coefficient Ky ;o) =
(Xx» 1)u(a), the number of occurrences of the principal character in the restriction
of xx to the Young subgroup S, (q)-



The Rational Representations of GL(n, C) 281

DeFNtTION 8.21  Let xy, x2, ..., x, be independent indeterminates over C. For
each 7 I~ m, the corresponding Schur polynomial is defined by

Se(X1,X2,...,%) = E Kn.u(a) l—lxa(t)- (8.25)

a€Gp, t=1

TueorREM 8.22 Let x = xx be the irreducible character of Sy, corresponding to
7t - m. Suppose V is a vector space of dimensionn > L(x). If A1, A2, ..., Ay are
the eigenvalues of T € L(V, V), then tr (K(T)) = x(€)sx(A1,22, ..., An).

Theorem 8.22 amounts to putting old wine in a new bottle.
ExampLE 8.23 From Example 8.20, B*(T') = Cn(T) and B (T) = Pu(T).
From Equation (7.41), tr (Cu(T)) = En(x1,x2, ..., Xn), the m-th elementary
symmetric function. Evidently,
Sm)(x1, X2, .00y Xp) = Ep (X1, X2, ..., Xn)

= My1=)(x1, X2, ..., Xs),

a monomial symmetric function.®From Equation (7.42), tr (Pn(T)) =
Hp(x1, X2, ..., Xp), the m-th homogeneous symmetric function. Therefore,

S[m](xl.XZ, L] 1xll) = Hm(xlvx21 i -,xn)

— Z My(x1,x2,...,Xpn).

nm o

THEOREM 8.24 Let x1, X2, ..., X, be independent indeterminates over C. If v
m, then the Schur polynomial

Sx (¥, X2, X0) = 3 K pMp(x1, X2, .., %), (8.26)
pm

where My(xy, x2, ..., Xx) is the monomial symmetric function corresponding to
p.
Proof

m m
2 Kruw [[r0 = Kxp Y[ [ 5
=1

a€Gy, prm () t=1

4See Definition 1.15.
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where the final summation on the right-hand side is over those & € G, » whose
multiplicity partition i(a) = p, that is,

ana(,) = th'x;’ o xbe

(o) 1=1

the sum over all different rearrangements, (ki,kz,...,k,), of the n-tuple
(my, ma,...,m;,0,0,...,0) obtained by appending n — r zeros to the end of
p. u]

Already evident from the definition (and/or Lemma 7.51), Equation (8.26)
shows that sy (x1, X2, . .., X») is symmetric for all & - m.

ExampLE 8.25 Supposem = 3 and w = [2, 1]. Then K|2,1,(3) = 0 because [2,1]
does not majorlze 31, K[Z.l].[z.l] =1 by Corollary 4.54, and K[Z.l],[l’] =2 =
Xi2,1)(e). Therefore,

s2.1)(x1, X2, . .., Xn) = Mp2,1)(x1, X2, . . ., Xn) + 2M31(x1, X2, . . ., Xn).

From Mz1)(x, y) = x2y +xy and Mn!](x y) = E3(x, y) = 0, we obtain the
explicit formula sp2,13(x, y) = x2y + xy?. Whenn = 3,

sz, ¥, 2) = X2y +x2 24+ xy  +x2 + Y2+ yP +2xyz. (8.27)

If V is a vector space of dimension 3 and x = xp2,1), the A set for Vy(83) can
be read off from Equation (8.27):

A={(1,1,2,(1,1,3),(1,2,2),1,23),(1,3,3),(2,2,3),(2,3,3).

From Figure 8.3, fi2,1;(x) = x3 — x, so (Theorem 8.18) t.hedcgmeofB"' i
x2.13(e) fiz,11(3)/3! = (2 x 24) /6 = 8, a value confirmed by Equation (8. 27)

tr (BI(B)) = szn(1, 1, 1)

=8.

X x+1

FIGURE 8.3
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Because M, (xy, x2, ..., xs) = O whenever L(p) > n, Theorem 8.24 allows us
to be more casual about the number of variables. In particular, it does little harm
to express the Schur polynomials as

su=) KppM,, mwhm. (8.28)
ptm

From Equations (6.44)—(6.45), we have the following alternative expression for
s;[ H

l m
Se=— 3 xn(a)ﬂ P, (8:29)

' OES,

where, recall, P, = My,)(x1, X2, ..., %) = x{ + x5 + - -+ + x}, is the t-th power
sum. If # = [1™], then x» = € and sy = E,,. Evidently,

1 m
En=— Y e@ ] . (8.30)

O€ES, =1

From Newton’s identities (Exercise 17, Chapter 1), Equation (8.30) can be
expressed in the form

Eny = l det (L), (8.31)
m!

where

A 1 0 0 .. 0
B P 2 0 .. 0
LEE B 0 (8.32)
Pot Pnz Pus Puos ... m—1

Pp, Ppy Py Pm3 ... Py

Equations (8.29)—(8.32) lead to an identity for Schur polynomials in terms of
immanants.

THEOREM 8.26 Suppose w \ m. Let x = x, be the corresponding irreducible
character of Sy,. Then

S = de (Lm). (8.33)
m!
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ExampLE 8.27 Suppose w = [2, 1] I 3. Let x = xx. Then x(o) = F(o) — 1,
o € S3, where F(o) is the number of fixed points of o. By Equation (8.33),

1 P 1 0
Sg = de (Pz Pl 2 )
P P, P
= [2P} - 2P5)/6.

By definition, P; = M{3). From the Multinomial Theorem, P13 = M3z +
3M2,1) + 6M[y3). Therefore, 52,11 = Mi2,1) + 2M[p3), confirming the first part
of Example 8.25. (n]

It follows from Equation (8.30) and the Fundamental Theorem of Symmetric
Functions that any polynomial, symmetric in the variables xj, x2, ..., X,, is a
polynomial in the power sum functions

P! =I’l(xl9x2:"'txll)

=x{+x3+- +x.

Tueorem 8.28 Let x1,x2,...,Xn be n independent indeterminates over the
complex numbers. Setsy = sx(X1,%2,...,%X3), 7+ m.Then{sy: w1 m,L(w) <
n} is a basis of SCi{x1, x2, . . . , X), the symmetric homogeneous polynomials of
degreem in xy,x32, ..., Xn.

Proof Recall (Theorem 1.27) that dim (SCplx1,x2,...,xx]) = o({xw
m: L(x) < n}). Because sy (x1, x2,...,xs) = 0, L() > n, it suffices to show
that {sy : ¥ - m} spans SCp[xy, x2, ..., X5].

Multiply Equation (8.29) by x» (r) and sum on 7 to obtain

’;m Xn(T)sn = Z: (;nl_' Z Xx (z)x”(a)) I‘[P‘c,(a).

OES, " xkm t=1

Since xx (1) = xx(T), T € Sp, it follows from the Orthogonality Relations of
the Second Kind that

Y @ =[] PO (834)

nm =1

5See Theorem 1.13.
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Because any homogeneous symmetric polynomial of degree m is a polynomial
in the power sums, it is a linear combination of terms like the one on the right-
hand side of Equation (8.34), T € S,,, and, therefore, a linear combination of the
elements of (sy: 7w - m}. a

Consider the inner product on SCp[x1, x2, ..., xm] with respect to which
{sx: ® + m} is orthonormal. If 7 € S, is fixed but arbitrary then, from

Equation (8.34),
x”(t) = (n P‘Ct(f)’ Sn) .
t=1

Suppose xy, x2,...,X%, and z are n + 1 independent indeterminates over C.
Let Eyy = Epn(x1,x2,...,%3), 1 < m < n. Define the “generating function”
g@) =1+ Eiz+ E222 + E3z® +--- + Ep2".

LemMa 8.29 The generating function for the elementary symmetric functions is
given by the formula
g8@) =10 +x12)(1 +x22)...(1 + x52). (8.35)

Proof To evaluate the right-hand side of Equation (8.35), choose one element
from each of the n sets of brackets, and multiply them together. Do this in all
2" possible ways and add the resulting products. The coefficient of z™ in this
expression is the sum of the products of the x’s taken m at a time, namely,
Em(x1,x2,...,Xn). o

A similar result holds for the m-th homogeneous symmetric function

Hn(x1,%2,...,%3) = Z ﬁxu(r)~

AEGq, 1=1
Define
h(2) =14+ Hiz+ b + 32 +...,
where H,, = Hpy(x1, X2, . .., xp). (Because E,, (x1, X2, ..., Xy) = Oforallm > n,

£(2) is a polynomial; h(z), on the other hand, is an infinite series.)
Lemma 8.30 Suppose xy, x2, . . . , X, and z are independent indeterminates over
C. Then

1

h(Z) = (l _ x‘z)(l —xzz) ViEe (1 - an)

]'[ 5 _m) (8.36)
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Proof The coefficient of z™ in the product

(1+.m+xfz2+...)(1+xzz+x§zz+...)...(1+x,.z+xfzz+...)

is a sum of terms of the form x7"'x3" ... x5 ", one for each of the C(m +n — 1, m)
nonnegative integer solutions to the equationmy +mz2 +--- +mp =m. D

Comparing Equations (8.35) and (8.36), one sees that
g(—=2)h(z) =1,

in other words, setting Eg = Hp = 1,

Z(—l)’E,H,,,_, =0, m>1. (8.37)
r=0

ExamrLE 8.31 Written out, Equations (8.37) become
H, — E, =0,
H, — E\Hy + E2 =0,
H3 — E\H, + E2Hy — E; =0,
and so on.5This means, for example, that
E,=H,,
E; = HY - Hy,

and
E3; = H|3 —2H\H; + H;.

Let’s confirm the last of these equations when n = 3. Substituting x; = a,
x3 =b,and x3 = c,

Hi(a,b,¢)® =@ +b+c)’
= Mp3(a, b, ¢) + 3M2,1)(a, b, ¢) + 6M[13)(a, b, ©),
Hi(a,b,c)Ha(a, b,c) = (@ + b+ c)(@® + b* + ¢ +ab +ac + bc)
= Mp3(a, b, ©) + 2Mp2,1)(a, b, ) + 3M{py(a, b, ©),

6Compue with Newton’s Identities.
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and
Hj(a, b, ¢) = M3)(a, b, c) + Mp2,1)(a, b, ¢) + M13(a, b, ).

Therefore,

H? —2H\H; + Hy = M3
= Ej.

a

THeoREM 8.32 Let x1,x2,...,Xn be independent indeterminates over C. Set
H, = H,(x1,x2,...,xp) and E, = E,(x1,x2,...,Xa) Wwhenr > 1, Hy =
Eo =1, and H, = E, = 0 when r < 0. Suppose H is a k-by-k matrix whose
(i, j)-entry is H;_j. Then H is invertible, and its inverse is the k-by-k matrix E
whose (i, j)-entry is (—1) E;_;.

Proof The (i, j)-entry of the product EH is
i—j

Z'j(—l)"*‘E.-_,H._,- =Y (-VE Hi_j,
r=0

=j

if i > j, and O otherwise. Because Ep = Hp = 1, the result follows from

Equation (8.37). o
CoRrOLLARY 8.33 Let 1 = [m,m2,...,n,] be a partition of m. Suppose
X1, X2, . .., Xp are independent indeterminates over C. Set H, = H,(x),x2, ..., Xp)

and E, = E,(x1,x2,...,Xp)whenr > 1, Hy = Eo = 1,and H, = E, = O when
r <0. Then

det (H,,,-H.j) = det (E,‘-_H.j). (8.38)

The determinant on the left side of Equation (8.38) involves an r-by-r matrix
and the one on the right a 7r;-by-mr; matrix.

ExampLe 8.34 Suppose m =3.If 7 = [13], thenr =3, m = 1, n* = [3], and

Equation (8.38) becomes
H H H
det (Ho H, Hz) = Ej,
0 Hy H

that is, E3 = H> — 2H; H, + Hs, one of the identities from Example 8.31. o
1
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Proof (of Corollary 8.33): Lets = L(n*) = m andsetk =r + 5. Let H be the
k-by-k matrix from Theorem 8.32, whose (i, j)-entry is H;_;. If

a=E+1,5s4+2,...,547)

and
B=G-m+1l,s—m+2,....5s— 7, +71),

thena, B € Qrr4s, and
Hla|BY = (Hx,—i4j)-

By Theorem 8.32, H = E~!. Because det (E) = 1, Jacobi’s Identity (Theo-
rem 7.46) yields

det (H[«|B]') = det (H[a|B))
= (-1)'@+® det (E(Bla)),
wherer(B) =1+ B2+ -+ B =rs —m+r(r +1)/2 = r(a) — m, that is,

det (H[a|B]) = (—1)™ det (E[B|)). (8.39)

The sequence in Q; ,4s complementary toa isa® = (1,2, ..., s). By Lemma 1.6,
B¢ = (g + 1,m)_; +2,...,77 + s). After multiplying row s + 1 — i of
E(Bla) = E[B|a‘] by (—1)™, 1 <i < s, the resulting s-by-s matrix is

Ex: v FExs42 *Exrs41
X = ves
;EX;‘.‘S—Z ees Ex; —Eﬂ;—l
tExr4s-1 ... —Exn Ey;

Because (—1)*1(—1)™...(-=1)" = (—1)", we see from Equation (8.39) that
det (H[x|B]) = det (X). Because reversing the order of the rows and columns
of X has no effect on its determinant, det (H[x|8]) = det (Y), where

Ex,' —Ex,'+l eee iEx,‘ﬂ—l
Y = —Egx; Eg; oo FExz4s-2
+Ex:—s+1 FEx—s42 ... Ey,

Finally, if D = diag (1, 1,1, —1,..., (~1)%), then D='¥YD = (Ex;_iy;). O



The Rational Representations of GL(n, C) 289

THeorReM 8.35 The common value of the two determinants in Equation (8.38) is
the Schur polynomial, s, (x1, %2, . .., Xn).

ExamrLE 8.36 Suppose m = 3. Let 7 = [2, 1] = nr*. Then
det (Hy,—i4j) = det (Zz gi )
= H>H, — Hs. (8.40)
Therefore, by Theorem 8.35,
se(x, 3, 2) =2+ + 22 +xy +xz2+ yD)(x +y +2) - H3(x,y,2)
= Mp3)(x, y, 2) + 2M 1)(x, ¥, 2) + 3Mp3)(x, ¥, 2)
- Mp3)(x, y,2) — Mp.13(x, y,2) — My (x, y, 2)
= Mp (%, y, 2) + 2Mpi31(x, y, 2)
=x2y + x%2 + xy? + x22 + y’z 4 y22 + 2xyz,
exactly the value obtained in Equation (8.27). Similarly,

E, E3
det (Ex;—i4;) = det ( E, El)

= E;E, — E3,
SO
se(x,y,2) = (xy+xz+yz)(x + y +2) — xyz
=x%y + x2z 4+ xy* + x22 + Y’z + y22 + 2xyz,
the same. o

7Theorem 8.35 is a variation of a result from [Jacobi (1841)]. (Also see [Trudi (1864)].) A recent
combinatorial proof can be found in [Egecioglu & Remmel (1990)]. The most complete source of
information about Schur polynomials is [Macdonald (1995)]. Other useful references are [Doubilet,
Fox & Rota (1980)], [Garsia & Remmel (1981)), [Littlewood (1958)], [Read (1968)], [Stanley (1971)],
and [Thomas (1976a&b)]. The “Jacobi-Trudi matrix” corresponding to x,pb-m is

H(:.ﬂ)=(”a,-:»o,-n)¢

the “skew Schur” polynomial is defined by s,/,= det (H(x,p)). (Because s, =s,/, When p is empty,
skew Schur polynomials are generalizations of Schur polynomials.) Conjectures of [Goulden & Jackson
(1992a)] and [Stembridge (1992)] have led to some interesting work on immanants of Jacobi-Trudi

matrices. (See, for example, [Greene (1992)), [Haiman (1993)), and [Stanley & Stembridge (1993)].)
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DerniTioN 8.37 Let xj, x2, ..., x, be independent indeterminates over C. Set
H, = H,(x{,x2,...,%), r > 1. For each p = [p1,02,..., /] I m, define
H, = Hp(x1,x2,...,%,) by

Hp = Hp,sz .o .Hp..
It follows from Theorem 8.35 that the coefficients c, x in the expression
Sy = Z CP" Hp (8.41)
pm

can be evaluated by means of the determinant on the left-hand side of Equa-
tion (8.38). Among the interesting implications of this fact is a formula (Corol-
lary 8.41) for x5 in terms of x.

Lemma 8.38 Let x1, x2, ..., X, be independent indeterminates over C. Suppose
abrandptt. Setm =r +t. Viewing S, as the subgroup of S, consisting of
those permutations that fixr +1,r +2, ..., m, and S; as the subgroup consisting
of those permutations thatfix 1,2, ...,r, then G = S, x S; is the Young subgroup
Sir.t)- Let & be the character of G defined by §(0, T) = xx(0)X,(t).Then

Sp(X1, X2, .., Xn)Sp(X1, X2, ..., Xn)
= Z(Ev Xv)Gsv(xl, x21 ceey xll)‘
vm

Proof From Bquation (8.29),

Z Z Xx (@) Xp(7) n Pf‘(") n po®

aES, T€S, i=1 j=1
1 - ci(o, 1)
= — o, T P 8.42
e (aéaa )E : (8.42)
By the same token,
1
D Exdes =~ Y Eo.1) ), ( Z x(o, t)xu(u)) [T,
vkm ( ) (o.v)eG HES,
1 4 ci(o,7)
= — LT PV 8.43
o) (‘;Ge(a )E ; (8.43)
by the Orthogonality Relations of the Second Kind. o

8See Exercise 29, Chapter 5.
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Tueorem 8.39 If p = [p1, 02, ..., ] - m, then

H, = Z Ky o850,

viEm
where Ky , is a Kostka coefficient.

Proof From Example 8.23, H, = si,). Because x|, = 1,, the principal character
of §,, it follows from Lemma 8.38 that

k
H, =[] H,

i=l1

k
= [ Tste

i=1

= Z(lps Xv)s,Sv,

vikm

where 1, is the principal character of the Young subgroup S,. The conclusion
follows from the Frobenius Reciprocity Theorem and the definition of the Kostka
coefficients. a

CoroLLARY 8.40 The matrix of coefficients (¢ x ) in Equation (8.41) is the inverse
of the matrix of Kostka coefficients.

Proof Because (Exercise 23) {H,(x1, x2, ..., Xm): p I m}isabasis of the space
SCmlx), x2, ..., Xm] and (Theorem 8.28) {sx : ® I m} is another, the result is an
immediate consequence of Theorem 8.39. a

Corollary 8.40 leads to a family of explicit formulas for irreducible characters
of symmetric groups. However, the description of these formulas requires a brief
“suspension of disbelief”. For the present application, let us interpret the formal
“ptmuct“

[killk2] .- . . k]

to be the induced character lﬁ"' , where p is the partition whose parts are the positive
integers kj, k2, .. ., k,. Define [0] = 1, and interpret [k] to be 0 whenever k < O.

CoroLLARY 8.41°  Suppose m = [m),72,..., 7] & m. Let Ay be the r-by-r
matrix whose (i, j)-entry is the symbol [rt; — i + j), then det (Ax) = Xx, where
X is the irreducible character of S, corresponding to n.

9Corollary 8.41 comes from [Frobenius (1900)].
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Proof From the definition of the Kostka coefficients,
lﬁ. = Z Kx'px', p I- m.

nkm

Therefore, from Corollary 8.40,
Xx = Zcp.xlﬁ', 7 km. (8.44)
pm

The mechanical procedure described in the statement of the corollary emerges
from the computations reflected by the identity

ZCp,pr = det (Hx‘—l'+j).
pm

8]
ExampLE 8.42 Suppose m = 3. Let m = [m — 1, 1] I m. Then, in the notation

of Corollary 8.41,
A = ( m] [+ 1])
i [r2—1]1 [m2]

=(w—u[m)
1 m)’
and det (Ay) = [m — 1](1] — [m]. Therefore,
xe = (tim-11)™ = (1pm) ™. (8.45)

From the definition of induced characters,

Su(z) = # 1
13(x) = (sp)z_s‘:l (07 '10), (8.46)

where 1* is the characteristic function of S,, in Sp, thatis, 1#(u) = 1,if u € Sp,
and O otherwise. When p = [m — 1,1}, 0~ }t0 € Sp = Sm—1 % 81, if and only
if o(m) is a fixed point of r. Given a t € S, having ¢;(t) fixed points, there
are ¢)(tr) x (m — 1)! permutations o € S,, that satisfy this criterion. Because
0(Spm-1,1)) = (m — 1)}, it follows from Equation (8.46) that

Um-1.1)% (1) = c1(x), T € Sp. (8.47)

Because (l[,..])s- = 1pm) is the principal character of S,,, Equations (8.45) and
(8.47) confirm the formula

Xim-111=C—1, m2>2 (8.48)
o
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ExampLE 8.43 Equation (8.48) may be viewed as the first of Frobenius’s formulas
for irreducible characters of symmetric groups. Other examples include

Xim-22) =c1(c1 —3)/2+c2, m=4; (8.49)
Xm-212 = (1 = D1 =2)/2—c2, m=>3; (8.50)
Xim-3,31 =ci1(c1 — 1)(c1 —5)/6+ (c1 — D2+ ¢c3, m=6; (8.51)
Xim-321) =ci1(c1 —2)(c1 —4)/3—c3, m=>5; (8.52)

and
Xim-3,°) = (c1 — D(c1 —=2)(c1 —3)/6 —(c1 — Dc2+c3, m>4. (8.53)
Let’s confirm Equation (8.49). If # = [m — 2, 2] then, in the notation of

Corollary 8.41,
A =([m—2] (m — 1)
g (1] [2]

and det (Ay) = [m — 2][2] — [m — 1]{1]. Therefore,
xr = (lim-22)™ = (m-1.1)™

= (l[m-z.zl)s' —Cly

from Equation (8.47).

Given T € S, there are two ways for o~ 170 to be an element of Sp =
Sm—2 % Sz. It could happen that o (m) and o (m — 1) are fixed points of T while
1,2,...,m — 2 are permuted arbitrarily among them selves. There are

ci(r)(c1(r) — 1)(m — 2)!

o’s of this type. Alternatively, there are 2c,(t) ways in which o(m — 1) and o (m)
can occupy the same 2-cycle of t. For each of them, the remaining integers can
be permuted in (m — 2)! ways. There are 2¢,(t)(m — 2)! permutations o € Sj,
fitting this description. Since o(Sp) = (m — 2)! x 2,

(lim-22)™ (@) = 1 @)@1(@) = D/2+ 2(@).
Putting it all together,
Xim-2,2)(7) = c1(t)(c1(7) — 1)/2 + c2(x) — e1(7)
= c1(r)(e1(r) — 3)/2 + c2(7).
o

The techniques leading to Corollary 8.41 and the Frobenius formulas can also
be used to shed new light on immanants.
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THEOREM 8.44 Suppose w = m. If A € Cp m, then

P
dr(A) = cpx 3 per (AIN1]) per (A[N2]) ... per (ALNkD),
pkm

where, for each p = [p1,p2,..., ] ¥ m, the sum Y° is over all ordered
sequences (N1, Na, ..., Ni) such that

{1,2,...,m} =N UN2U:.-UNp,

and o(N;) = p;; A[N;] is the principal submatrix of A whose rows and columns
are indexed by the elements of N;; and the c, x are inverse Kostka coefficients.

Proof ¥ p=1(p1,p2,. ..,pk]l-mthen

Y 15 ]—[a.r(.) Y 1'(0"16)]!10:':(-')
i=1

€Sy (Sp ) 17,0€8,

O(Sp) Z Z l—[aa(l) at(i)

O€ES, TES, i=1

Y3 I_I(Q(a")AQ(a))n(.)

O€ES, TES, i=

o(S,,)

per ((Q(e~HAQ@N* !,
"(SP) a;s. l:! (8.54)

where Q(0) = (i 0(;)) and (Q(a"')AQ(a))[‘p,?'] is the principal submatrix of
Q(c~1)AQ(o) lying in rows and columns (o} + p2 + - - - + pi—1) + 1 through
(o1 + P2+ -+ + pi—1) + pi. As o ranges over Sy, each product, [ per (A[N:]),
occurs among the terms

[T per (@@ AQ@N0!D)
with multiplicity o(S,) = [] pi!. Therefore, Equation (8.54) can be rewritten as
m p k
Y @[ ]aiew = YT per AN,
T€S i=1 i=1
Multiply both sides of this identity by ¢, » and sum on p k- m to obtain

Z Zcpxl (f)) l_[a(t(l) = Ecpx Zl-[ per (A[N;]),

TES,
which, in view of Equation (8.44), is what was to have been proved. a
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ExampLE 8.45 Letw =[r,s] wherer > sandr 4+ s = m. Then

Sy = det ( Hy H""l)

Hs—l H;
= HrHs = Hr.'.lH‘_.l. (8.55)
Because (Exercise 23) {H,: p - m} is abasis of SCp[x1, x2, ..., Xm], the inverse

Kostka coefficients

l’ if p= [l’, S]
Cp.lrs] = { -1, fp=[r+1s5-1]
0, otherwise

are uniquely determined by Equations (8.41) and (8.55). Thus, from Theorem 8.44,

[r,s] [r+1,5-1]
dirs(A) =), per (AIN\) per (AINz2) — ) per (A[Ni]) per (AIN2D),

for all A € C,, m. In particular, setting s = 1,

dim-1,11(4) = Zaii per (A(i[i)) — per (A). (8.56)

i=1
(W]

As illustrated by Example 8.45, Theorem 8.44 is the foundation for a procedure
to generate identities for immanants: Use Theorem 8.35 to express s, as a sum
of products of homogeneous symmetric functions. When (each) H, is replaced
with the sum of all possible products of permanents of complementary p;-by-p;
principal submatrices of A, and s, is replaced by d, (4), the result is an identity
expressing dx(A) in terms of permanents. This procedure illustrates a general
principle due to Littlewood.!®

LirrLEwoop's THEOREM 8.46 To any homogeneous polynomial relation of total
degree m among Schur polynomials, there is an analogous relation for immanants
obtained by replacing the Schur polynomials with the corresponding immanants of
complementary principal submatrices and summing over all sets of complementary
principal submatrices.

1014 appears to have been D.E. Littlewood who coined the term “immanant”, Theorem 8.46 is stated
without proof in [Littlewood (1958)]. A proof can be found, e.g., in [Goulden & Jackson (1992b)].
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ExampLe 8.47!!  Suppose & = [r, 1™~"]. Then, from Theorem 8.35,

Hr Hr+l cee Hm
1 H ... Hpgp,
Spram—+y = det | O 1 N . S

0 0o ... H
Expanding the determinant down the first column, we find that
Sr,1=r] = H, x S(1=—r] — S{r41,1=-r-1)
= S(r1S(1=—r] = Str41,1=~-1].

Therefore, from Littlewood’s Theorem, the single-hook immanant d, = dj,, =)
satisfies the identity

[r.m—r]

d(A) = Y di(AINDdp-1(AIN:D) — dr41(A),

or, equivalently,

[rym—r]

dr+1(A) = Z per (A[Ny]) det (A[N2]) —dr(A), A€Cum. (857)

Starting with dj (A) = det (A), Equation (8.57) yields, inductively,

d(A) = Y a;; det (A(ili)) — det (A);
i=l1

d3(A)= )Y per (Ali, jli, j)) det (AG, jli, j)) — da(A);

i=1 j>i

ds(A)= )" per (Ali, j, kli, j, kD) det (AG, j, kli, j, k) — d3(A);

i=1 j>i k>j
and so on.
These formulas seem to confirm the increasing difficulty of computing d, (A)
as one goes from dj(A) = det (A) to dy(A) = per (A).12 a)

1L-This example is taken from [Merris & Watkins (1985)].

1215 be more quantitative, if the time to compute an m-by-m determinant is on the order of m?,
then the time to compute d,, using these formulas, is on the order of m"+2. Interesting work on the
computational complexity of immanants appears in [Barvinok], [Hartman (1985)), and [Vnham (1979)).
Related work can be found in [Goulden & Jackson (1992b)] and [Lloyd (1983)).
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ExampLE 8.48 Suppose x = x, € I(Sx). Then [Merris (1982)]

dy(A) det (A™") =dy(A~") det(4), A€ GL(m,C),

if and only if p is a partition of the form [27, 19], where 2p +q = m. If
p = [27,19], then p* = [p + g, p] is among the partitions considered in
Example 8.45. From Theorem 8.35,

sp = det (E”'” E"“"“)
p-1 Ep

= Ep+qEp — Ep+g+1Ep-1.
Applying Littlewood’s Theorem to this identity produces

(p+q,p)
dy(A) = Z det (A[N1]) det (A[N-])

(p+q+1,p-1]
— ) det(A[M)) det (A[N2)).
(]

TueoreM 8.49  (Giambelli’s Identity'?).Suppose 1 + m. Let r = f(n) =
o({i: m; > i})). Then the Schur polynomial, sx, is the determinant of the r-by-r
matrix whose (i, j)-entry is the Schur polynomial corresponding to the single-hook
partition [x; —i + 1, 1%~}

ExamrLE 8.50 If m = [4, 3, 1), then * = [3, 22, 1] and the length of the main
diagonal of F(r) is r = f(w) = 2. By Giambelli’s Identity,

)
S2,12] 512

that is, s(4,3,1) = S(4,12)512) — 5(4)5(2,12)- Combining this identity with Littlewood’s
Theorem yields

dy31(A) = Y da(Alela)) per (Ae|a))

a€Qss

— D per (AIBIBDA(ABIB)),
BEQus

for any 8-by-8 matrix A. o

l?"l‘heonm 8.49 first appeared in [Giambelli (1903)]. A combinatorial proof can be found in
[Egecioglu & Remmel (1988)].
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Application to Graphs

Let H = (V, E) be a graph with vertex set V = {1,2,...,n} and edge
set E = E(H). One way to describe H is by means of a coloring of the
m = C(n,2) edges of the complete graph K,. An edge of K, is colored 1 if
it is an edge of H and 2 if it is not. Thus, there is a one-to-one correspondence
between the different graphs with vertex set V and the set I', 2 of all functions
a:{1,2,...,m} = {1,2}.

Suppose W is a vector space of dimension 2. Let {e), 2} be a basis of W. Then
{€®: a € T2} is a basis of W®™, Consequently, W®™ must be isomorphic to
the free vector space generated by the different graphs on n vertices. Moreover,
a = B(mod S,(,z)), if and only if there is a permutation o € S,(.z) suchthat 8 = a0,
if and only if the graph corresponding to « is isomorphic to the graph corresponding
to B. Evidently, there is a one-to-one correspondence between the nonisomorphic
graphs on n vertices and the elements of A. Therefore, the free vector space spanned
by the nonisomorphic graphs on n vertices must be isomorphic to W (S,(.z) ). Atthe
very least, this means the number of nonisomorphic graphs on n vertices is equal
to

dim (W1(SP)) = Y xx (€)1, Xx) s f (2)/m). (8.58)

nm

Because fy(2) = O when L(7) > 2, we may restrict the sum in Equation (8.58)
to those partitions having at most two parts. If 7 = [p + q, p] + m, then
fx(2) = (p+q+1)!p!and xx(e) = m!/[] hij, where the hook length product is
[1hi; = p'(p+q+1)!/(g+1). Therefore, xx (€) fx(2)/m! = g+1 =m—=2p+1.
This proves the following.

ThueoreM 8.51'%  Suppose n is a positive integer. Let m = C(n, 2) and denote

by &, the irreducible character of Sy, corresponding to the partition [p + q, p),
2p + q = m. Then the number of nonisomorphic graphs on n vertices is given by
the formula

m/2]

Y m—2p+1)(, &)50. (8.59)
p=0

The missing ingredient in Theorem 8.51 is an analog of Young’s Rule for
computing the number of occurrences of the principal character in the restriction

of &, = Xm—p.p) tO S,(,Z).

ExampLE 8.52 Suppose n = 4. Then m = C(4,2) = 6. From Examples 8.42
and 8.43, the characters &, = X[6-p,p], 0 < p < 3, are given by the formulas

14-Theorem 8.51 first appeared in [Merris & Watkins (1983)).
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Eo=la
fi=a -1,

& =ci(c1-3)/2+ ¢,

and
& =ci(c1 - 1)(c1 —5)/6+ (c1 — )2 +c3.

The 24 permutations & € S:z) are tabulated in Figure 6.7. A brute-force compu-
tation based on this information yields (1, §p)s:z) =1, p#1,and (1, él)s:n =0.
From Equation (8.59), the number of non-isomorphic graphs on 4 vertices is

Tx1+5x04+3x1+1x1=11
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Exercises

1. Prove Lemma 8.3.

2. Let x be an imeducible character of G = §S,. Suppose d,(AB) =
dy(A)dy(B),forall A, B € Cy 5.

a. Prove that x = ¢. (Hint: Theorem 8.2.)
b. What can be said if G # S,?
3. Show that Equation (8.10) defines a function. (Hint: Theorems 5.15 and 5.16.)
Finish the proof of Theorem 8.9 by establishing
a. part (ii).
b. part (iii).
5. Use Equations (8.14), (8.15), and a direct computation to
a. show that 71 (S3, A)T2(S3, A) = 0, thus confirming part of Theorem 8.9(i).
b. show that T;(S3, A)? = Ti(S3, A), thus confirming part of Theorem 8.9(i).

c. show that Ti(S3, A) + T>(S3, A) = T(S3, x), thus confirming Theo-
rem 8.9(ii).

d. show that T;(S3, A) is not hermitian. Explain why this does not contradict
Theorem 8.9(iii).

6. Let x be an irreducible character of the subgroup G of S,,. Suppose o —
A(0) = (a;j(0)) is arepresentation of G affording x. Let V be a vector space.
Prove that dim (V}(G)) = (X, n)G. Where 7 is the character of G afforded
by the restriction of P to V, (G).

7. Prove that A — P, (A) is an irreducible representation of GL(n, C) for all
n > 1. (Hint: Theorem 8.13.)

8. Prove that A — C,,(A) is an irreducible representation of GL(n, C) if and
only if 1 < m < n. (Hint: Theorem 8.13.)

9. Let & be a linear character of the subgroup G of S,,. Suppose m < n. Prove
that Bf is an irreducible representation of GL(n, C) if and only if 5=, the
character of S, induced by &, is irreducible.

10. Let G = D4y C S4. Then the irreducible characters of G are given in
Example 4.42. Suppose & is either x3 or x4.

a. Provethat T — Bf (T'), T € GL(V), is irreducible for any vector space
V of dimension n > 4.
b. What about n = 3?

11. Suppose V is a vector space of dimension n. Let n be the character of the
representation 0 — P(0), 0 € Sp, where P(0) € L(V®™, V®™) s the
operator defined by
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12.

13.
14.
15.

16.

17.

18.

19.
20.

21.

22.

PO 0 ®@v® - @ vm) =vo1) ® Vo) ® - - ® Vo(m)-

Show that
n=_ (x(€) fr()/m")xx.
ntm
Suppose & - m. Let sx(x1, x2, . .., x») be the corresponding Schur polyno-

mial.

a. Show thatsx(1,1,...,1) = xn(€) fr(n)/m!.

b. Use part (a) to prove that sy (x1, x2, ..., Xp) = Oonly if n < L(rr).
Prove Theorem 8.26.

Mimic Example 8.27 for the partition v = [2, 2].

Express H3(xi,x2,...,X%s) as an explicit polynomial in the elementary
symmetric functions. (Hint: Example 8.31.)

In the manner of Example 8.31, express E4(x), x2,...,X,) as an explicit
polynomial in the homogeneous symmetric functions.

Prove that E,(x1, x2, ..., X,) can be expressed as a polynomial in the homo-
geneous symmetric functions. (Hint: Argue inductively from Equation (8.37).)
Prove that any polynomial, symmetric in the variables x;, x2, ..., X5, can
be expressed as a polynomial in the homogeneous symmetric functions
Hp(x1, x2, ..., Xs). (Hint: Exercise 17.)

Use the Murnaghan-Nakayama Rule to confirm Equation (8.49).

Confirm that Equations (8.49)—(8.53) are valid for T = e, that is, confirm that
the character degrees afforded by the Frobenius formulas are consistent with
the Frame-Robinson-Thrall hook length formula.

It follows from Theorem 8.28 that the monomial symmetric functions
My (x1,x2,...,X5), ® F m, are linear combinations of Schur Polynomi-
als. Express each of My (x), x2,...,Xs), m F 4, as a linear combination of
sp(x1, X2, ..., xp), p - 4. (Hint: Example 4.57.)

Let m = [3, 1] I+ 4. Show, by a direct computation, that

H; H,
a. det (HO Hy ) = Mp3,1) + M) + 2M[3 12 + 3M[y4).

E, E; E4
b. det (Eo E, E2) = Mp3.1) + My + 2M(3 12) + 3M[y4).
0 Ey E
c. sp,(@,b,c,d) = @b+a’c+---+cd®)+(a®b? +a’c? +- - - +Fdh) +
2(a*bc + a®bd + - - - + bed?) + 3abced.
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23. Prove that {H,(x1,X2,...,Xm): ™ F m} is a basis of the vector space
SChlx1,x2, ...y Xm)-

24. Prove that dgm-1,1)(A) < per (A), A € Hp. (Hint: Equations (7.12) and
(8.56).)

25. Itfollows from Exercise 41, Chapter 6, that the substition y, = Py(x1, X2, ..., Xn)
in the cycle index polynomial Zs_(y1, y2, - .., ym) produces the m-th homo-
geneous symmetric function Hp(x1, X2, ..., X). Use this fact to establish
that

a. H =P

b. Hy = (P} + P))/2.

c. Hy= (P} +3P P, +2P3)/6.

d. Hy= (P} +6P?P;+ 8P Ps + 6Py + 3P})/24.

26. Show that the Schur polynomial (3,1} = (3}’,4 -+ 6P,2P2 — 6Py — 3P22) /2A4.
(Hint: Example 8.45 and Exercise 25.)

27. For any A € Cy, m, prove that

dim-2,15(A) = Y _ Y _ aiiaj; per (AG, jli, j))
i=1 j#i
— 533" per (Ali, jli, j)) per (AG, jli, j)
i=1 j##i

[S IR

— ) aii per (AGli) + per (A).

i=1
28. Forany A € Cp, m, prove that the single-hook immanant

m

dm-2(4) = Y_ Y per (AG, jli, j)) det (AL, jli, j1) — dm-1(A)

i=1 jAi

a. directly from Exercise 27.
b. as in Example 8.47.

29. Prove that (m — k — 1)di(A) < m per (A), A € Hp.

30. Show that 56 42 22) = 5(6,14)5(3,11512] + S[6, 115131512, 14] + S(6]5(3,1415(2,1%] —
5[6,1315(3,141512] — S(615(3,1°15[2,14) — 5(6,1415315[2,1°)-

31. If x = xqzr,1¢), Where 2p + g = m, then (Example 8.48)
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32.

33.

35.

36.

37.

38.
39.

dy (A) det (A7) = d, (A7) det (4),

for all invertible A € Cp . Confirm this equation for m = 4,

1 1 01
1 -1 11
A=lo 11 1) =
1 011
a. p=1.
b. p=2.
Exhibit a 3-by-3 invertible matrix A such that

per (A) det (A™!) # per (A™!) det (A).

Suppose A € Hp does not have a zero row. Prove that the single-hook
immanant di (A) = 0 if and only if rank (A) <m —k&,

Let x be an irreducible character of the subgroup G of S,,.

a. Ifdy(A) # Oforall A € GL(m, C), prove that d, = det .

b. Ifdy(A) = O for all singular A € C m, prove thatd, = det.

In the manner of Example 8.43, confirm

a. Equation (8.50).

b. Equation (8.52).

Use the Murnaghan-Nakayama Rule to confirm

a. Equation (8.50).

b. Equation (8.52).

Use Equation (8.49) to confirm the values given in Figure 4.5 for

a. XB.2-

b. x(22,1)- (Hint: Theorem 4.47.)

Use Equation (8.50) to confirm the values given in Figure 4.5 for x(3 12).
Confirm the formula sz 1) = M[22 1) + 2M[3, 13) + 5M|;s) using

a. Equation (8.29) and your answer to Exercise 37b.

b. the right-hand determinant in Equation (8.38). (Hint: Theorem 8.35.)
c. Giambelli’s Identity.

. Compute the Kostka coefficients Kp»: 13 ,, p - 5. (Hint: Exercise 39.)
41.

Show that the Kosta coefficient K3 12)(2,12) = 3.
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