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Preface 

It is not uncommon to find a special richness and vitality at the boundary 
between mathematical disciplines. With roots in linear algebra, group represen­
tation theory, and combinatorics, multilinear algebra is an important example. 
Serious expeditions into any of these fertile areas require substantial preparation, 
and multilinear algebra is no exception. The first four chapters of this book con­
sist of self -contained introductions to a variety of prerequisite notions. Multilinear 
algebra, proper, begins in Chapter 5 with the development of the tensor product. 
Ironically, it is there, within sight of the goal, that one encounters what is perhaps 
the most formidable obstacle. In order to prevail over what Cartan has described 
as une debauche d'indices, one must slog through an obscuring foliage of super­
scripts and subscripts before reaching the heart. in Chapters 6 and 7, of this elegant 
and beautiful subject. 

Many of the topics developed throughout the book are unified in the final chapter 
by means of the rational representations of the general linear group. Emerging as 
characters afforded by these representations, the classical Schur polynomials are 
one of the keys to the overall unification. 

Throughout the book, some of the easier proofs are left to the exercises and 
some of the more difficult ones to the references. Apart from facilitating the flow 
of material, it is hoped this approach will encourage the reader to become a more 
active participant in exploring the subject. 

Applications of multilinear algebra can be found in many areas of mathematics 
and physical science, some of them well beyond the author's interest or comprehen­
sion. Among those selected for inclusion in the book, graph theoretic applications 
are dominant. This does not reflect any particularly close connection between graph 
theory and multilinear algebra. However, applications to graphs suffice to give the 
flavor of more general combinatorial applications and, by keeping the focus on a 
single topic, one is able to probe a little deeper than might otherwise be possible. 

Despite the book's broad scope, remarkably little prior experience is expected 
from the reader. It suffices to be familiar with the contents of the standard third year 
undergraduate courses in abstract and linear algebra. Ideally suited for a fourth year 

vii 



viii Multilinear Algebra 

'capstone' course, Multilinear Algebra is also an attractive choice for a beginning 
graduate course. 

The book began as a series of handwritten lecture notes for an MPhil course 
at the Quaid-1-Azam University of lslamabad in 1973. A revised typescript was 
prepared later that same year for a seminar at the Instituto de Fisica e Matematica in 
Lisbon. These early versions were designed to supplement a series of lectures given 
to students whose native language was something other than English. Nevertheless, 
the lecture notes were circulated widely by the Institute for the Interdisciplinary 
Applications of Algebra and Combinatorics at the University of California, Santa 
Barbara. The present text is dedicated to the hearty folks who struggled through 
that primitive manuscript without the benefit of the author's lectures. 

That multilinear algebra has flourished in the years since 1973 can be seen 
by browsing through the references. Much of this activity was stimulated by the 
appearance in that year of the first part of Marvin Marcus's monumental Finite 
Dimensional Multi linear Algebra. With the appearance of part ll in 1975, FDMA 
became the standard reference, eclipsing the earlier classics of Bourbaki (1948) 
and Greub (1967), and overshadowing the compact treatises of Amir-Moez ( 1970s) 
and Oliveira (1973). 

Among the individuals who have contributed to the author's scholarly research 
are Jose Dias da Silva, Amelia Fonseca, Bob Grone, Tom Pate, Steve Pierce, 
and Bill Watkins. He is also grateful for the professional competence of editors 
Donald Degenhardt, Katie Emblen, Matt Giarratano, Rebecca Stubbs and Brian 
Wyreweden. 



CHAPTER 1 

Partitions 

The integer 6 is said to be "perfect" because it is the sum of its proper divisors: 
6 = 1 + 2 + 3. In this context, 1 + 2 + 3 is the same as 2 + 3 + 1 but different 
from 4 + 2. In expressing the perfection of 6 what interests us is the unordered 
collection of its proper divisors, the "partition" of 6 whose "parts" are 3, 2, and 1. 

DEFINITioN 1.1 A partition of n of length m is an unordered collection of m 
positive integers that sum ton. The m surnmands are the parts of the partition. 

NarATION 1.2 A partition of n is typically represented by a sequence 1r = 
[1r1, 1rz, •.• , 7rm]. in which the parts of the partition are arranged so that 1r1 :=::: 

1r2 :=::: · · · :=::: Jrm > 0. This convention is expressed by the shorthand notation 
1r 1- n. The length of 1r is denoted L(1r). In the present instance, L(1r) =m. 

In ordinary English usage, arranging the parts of a partition from largest to 
smallest would typically be called "ordering" the parts. This semantic difficulty 
can be the source of some confusion. It is precisely because a partition is unordered 
that we are free to arrange its parts any way we like. 

EXAMPLES 1.3 The partitions of 5 are [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], 
and [1,1,1,1,1]. The partitions of 6 having 3 parts are [4,1,1], [3,2,1], and [2,2,2). 

0 

Already, it seems convenient to introduce another shorthand notation. Rather 
than [3,1,1], [2,2,1], [2,1,1,1], and so on, we will write [3,12], [22,1] and [2,13], 

respectively. The partition [5,5,5,3,3,3,3,2,1,1] is abbreviated [53,34 ,2,12]. In this 
notation superscripts are used, not as exponents, but to denote multiplicities. In 
particular, [53 ,34 ,2,12] is a l~part partition of 31. 
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F([6, 4, 32, 2]) F([52, 4, 2, 12]) 

FIGURE 1.1 

Partitions are frequently illustrated by means of so-called Ferrers diagrams.11f 
1r is a partition of n having m parts, the corresponding Ferrers diagram, F(1r), 
consists of m rows of ''boxes". The number of boxes in row i of F(1r) is 1ri. The 
Ferrers diagrams for [6,4,32,2) and [52,4,2,12] are illustrated in Figure 1.1. 

I>EFINmoN 1.4. Suppose 1r r n. The conjugate of 1r is the partition 1r* whose 
j -th part is the number of boxes in column j of F(7r). (So, F(1r*) is the transpose 
of F(1r).) 

The conjugate of [6,4,32,2) is [52,4,2,12] as can easily be seen by glancing at 
Figure 1.1. The length of 1r* is the largest part of 1r, that is, L(1r*) = 1r1. Finally, 
the number of boxes in the j-th column of F(1r) is equal to the number of rows 
of F(1r) that contain at least j boxes, that is, to the number of parts of 1r that are 
bigger than or equal to j. In other words, the j-th part of 1r* is 

1rj = o({i: 1ri !:: j}), (1.1) 

where o(S) denotes the cardinality of the setS. 

EXAMPLE 1.5 The partition 1r is said to be self conjugate if 1r = 1r*, that is, if 
F(1r) is symmetric. There is just one self conjugate partition of 6, namely, [3,2,1]. 
The self conjugate partitions of 9 are illustrated in Figure 1.2. o 

~DODO §§§ 
FIGURE 1.2 The self conjugate partitions of9. 

1 After Norman Macleod Ferrers (1829-1903). 
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Because 1r; ~ 1ri+l for any 1r 1- n, 

1rj - i ~ 1ri+l - i 

> 1ri+l - (i + 1). 

Thus, the integers 1r1 - 1r; + i, 1 !::: i !::: L(1r), are all different. that is, 
o({1r1 - 1r; + i: 1 !::: i !::: L(1r)}) = L(1r). Similarly, the cardinality of 
{1r1 + 1rj - i + 1: 1 !::: i !::: 1rt} is 1r1. What may not be so obvious is that 
these two sets are disjoint. 

LEMMA 1.6 Suppose 1r 1- n. Ltt N = 1r1 + L(tr). Then {1, 2, •.. , N} is the 
disjoint union of S and T, where S = {1r1 - 1r; + i: 1 !::: i !::: L(1r)} and 
T = {1r1 + trj - i + 1 : 1 !::: i !::: trt}. 

Proof It suffices to show that S n T = ~. Observe that 

1ri -1r; + i = 1rl + trj- j + 1, 

if and only if i + j - 1 = 1r; + trj. To see that this is impossible, suppose 
first that 1r; ~ j. Then, from Equation (l.l),trj = o({k: 1rk ~ j}) ~ i, and 
1r; + trj ~ j + i > i + j - 1. Therefore, we may assume 1r; !::: j - 1, in 
which case, trj = o({k: 1rk ~ j}) < i. But, 1r; !::: j- 1 and 1ri* !::: i- 1 imply 
1r; + trj !::: i + j - 2 < i + j - 1. D 

We now discuss "ordering" the different partitions of n. 

DEFINITION 1.7 Let (a)= (a1,a2, ... ,a,) and (b)= (b!.~ •... ,bs) be two 
sequences of real numbers satisfying a1 ~ az ~ · · · ~ a, ~ 0 and b1 ~ ~ ~ 
· · · ~ bs ~ 0. Then (a) majorizes (b), written (a) >- (b), if 

I I 

I: a; ~ Lb;, 1!::: t!::: r, (1.2) 
i=l i=l 

and 

(1.3) 

ExAMPLE 1.8 Suppose n is a fixed positive integer. If 1r 1- n, then 1r = 
[1r1 1 1r21 ••• I 1rm] is a nonincreasing sequence of positive real numbers. If p = 
[PI. pz, ..• , Pk] is another partition of n, then 1r1 + 1r2 + · · · + 1rm = n = 
PI + P2 + · · · + Pk· and Equation (1.3) is satisfied automatically. 
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Suppose n = 8. If 1r = [5,2,1], and p = [32,12], then 1r > p because 5 ~ 3, 

5 + 2 ~ 3 + 3, 5 + 2 + 1 ~ 3 + 3 + 1, and 5 + 2 + 1 = 3 + 3 + 1 + 1. If 1r = 
[5,2,1] and p = [42], then neither partition majorizes the other. Thus, majorization 

is a partial order. Figure 1.3 exhibits the "Hasse Diagram" for the partitions of 6 

partially ordered by majorization. o 

Of the many conditions equivalent to majorization, one of the most useful 

involves doubly stochastic matrices. 

tEB 

§§ r 

FIGURE 1.3 The partitions of 6 partially ordered by majorization. 
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DEFINITION 1.9 The n-by-n (entrywise) nonnegative matrix S = (S;j) is doubly 
stochastic if its rows and columns all sum to 1, that is, if 

n 

:~:::Sii = 1, 1 ~ i ~ n, 
j=l 

n 

and L:s;j=1, 1~j~n. 
i=l 

THEOREM 1.10 Let (a) = (a1, a2, .•. , an) and (b) = (bt. h2 •... , bn) be two 
sequences of real numbers satisfying a1 2:: a2 2:: • • • 2:: an 2:: 0 and b1 2:: h2 2:: 
• • • 2:: bn 2:: 0. Then (a) majorizes (b) if and only if there is a doubly stochastic 
matrix S such that (b) = (a)S. 

Theorem 1.10 is stated for the case in which both sequences have the same 
length. Because adding zeros to the end of the shorter sequence does not affect 
majorization, this hypothesis does not impose any real restriction. A proof can be 
found in [Hardy, Littlewood & P61ya (1967), pp. 47-49] or [Marshall & Olkin 
(1979), p. 22]. 

ExAMPLE 1.11 We saw in Example 1.8 that [5,2,1] >- [32,12]. As an illustration 
of Theorem 1.10, observe that (3,3,1,1) = (5,2,1,0)5, where 

(
2 3 1 0) 

1 4 0 0 2 
S=6 0 3 1 2 . 

0 0 4 2 

IfS is an n-by-n doubly stochastic matrix then [Birkhoff (1946)] there exist 
permutation matrices P1, ~ •. . . , Pk and positive real numbers 81, ~ •••• , (Jk such 
that81 +~ + .. · +9k = 1 and 

In other words, S is a convex combination (or ''weighted average") of permutation 
matrices. Using these terms, Theorem 1.10 can be restated as follows: (a) majorizes 
(b) if and only if (b) is a convex combination of rearrangements of (a ).In particular, 

1 1 
(3, 3, 1, 1) = 3(2, 5, 0, 1) + 3(5, 1, 0, 2) 

1 1 + 6(2, 5, 1, 0) + 6(2, 1, 5, 0). 

D 

Apart from their intrinsic interest, the partitions of n have a variety of uses, one 
of which involves symmetric polynomials. 
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0EFoonON 1.12 A polynomial /(Xt, X2, ... , Xk) issymmetricinXt, X2, ... , Xk 
if its value is unchanged by any permutation of the k variables, that is, if 
f(xt. x2, ... , Xt) = /(Xa(l)• Xa(2)• ... , Xa(l)), for every permutation a of 
{1, 2, ... 'k}.2 

Perhaps the most natural way to begin a discussion of symmetric polynomials 
is with the notorious "multinomial theorem". 

THE MULTINOMIAL THEOREM 1.13 /fn is a positive integer; then 

(XI + x2 + · · · + Xt)" = ~ ( n ) x~' xi2 
••• x~t, (1.4) 

L.., rt, 7"2, ••• , r1 

where the sum is over all nonnegative integer sequences, (rt, r2, ... , r1 ), satisfying 
rt + r2 + · · · + rt = n, and 

is the corresponding mullinomilll cHJfickllt. 

Proofs can be found in any of the standard books on combinatorics. 3 

ExAMPLE 1.14 The coefficient of b4c2 in (a+ b + c)6 is 

( 
6 ) 6! 6! 

0, 4, 2 = 0!4!2! = 4!2! = 15
• 

Because (a + b + c)6 is symmetric in a, b, and c, the coefficients of a4b2 and 
a2c4 in (a +b+c)6 must be 15 as well. One "piece" of the multinomial expansion 
of (a+ b + c)6 is 15p(x), where 

p(x) = a4~ + a4~ + a2b4 + a2c4 + b4~ + b2c4. (1.5) 

D 

DEFINmoN 1.15 Let k and n be positive integers, and 1r be a partition of n of 
length m~ k. 1be monomial symmetric function 

(1.6) 

where the sum is over all different rearrangements, (rt. r2, ... , rt). of the k-tuple 
(7rt,7r2, ... , tr,., 0, 0, ... , 0), obtained by appending k-m zeros to the end of 1r. 

If m > k, then M"(Xt, x2, ... ,Xk) = 0. 

211is is wby tbe group of all pennutatioDs of {1.2 •... ,1} is called tbe "symmettic" group. 
3See, for example, [Merris (1996)]. 
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If m = 2, le = 3, and 1r = [1rt, 1r2] = [2, 2], then the "different rearrangements" 
of (2,2,0) are 

(2, 2, 0), (2, 0, 2), and (0, 2, 2), 

not the six rearrangements of the different looking symbols rrr, 1r2, and 0. Thus, 

M[2,2J(x, y, .z) = x2y2 +x2.z2 + lz2. 

The "piece" of the multinomial expansion of (a + b + c)6 exhibited in 
Equation (l.S) is 

M[4,2J(a, b, c) = a4b2 + a4~ + a2b4 + a2c4 + b4~ + b2c4• 

Any symmetric polynomial is a linear combination of minimaJJy symmetric pieces, 
namely, the monomial symmetric functions. We shall have more to say about this 
presently. 

ExAMPLE 1.16 There are exactly seven partitions of 6 having three or fewer parts. 
So, there are seven (nonzcro) monomial symmetric functions of degree 6 in the 
three variables a, b, and c. They are 

and 

M[6J(a, b, c) = a6 + b6 + c6 , 

Mrs.l)(a, b, c)= a5b + a5c + ab5 + ac5 + b5c + bc5, 

M[4,2J(a, b, c)= a4b2 +a4c2 +a2b4 +a2c4 + b4~ + b2c4 , 

M13zl(a,b,c) =a3b3 +a3c3 +b3c3, 

M[4,PJ(a, b, c)= a4bc+ab4c +abc4 , 

M[3,2,1J(a, b, c) = a3b2c + a3bc2 + a2b3c + a2bc3 + ab3~ + ab2c3, 

M[2lJ(a, b, c)= a 2b2c2. 

Setting M" = M"(a, b, c) we obtain, from the multinomial theorem, that 

(a+ b + c)6 = M[6J + 6Mrs.l) + 1SM[4,21 + 20M[3zl 

+ 30M14,I2J + 60M[3,2,1J + 90Mrzl1. 

0 
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If 1r = [1r1, 1r2, ••• , 11'111 ] is some fixed but arbitrary partition ofn, define 

( ") n! = I I 1· 
1T 11'! .11'2 • ••• 11',. 

Using this notation, the multinomial theorem can be restated as follows: 

THEOREM 1.17 If n is a positive integer, then 

(XI +x2+· · ·+Xk)11 = L:(:)M1r(X!,X2,···•Xk). (1.7) 
ll'l-11 

We now give special names to the two "extreme" monomial symmetric func­

tions, the ones corresponding to the partitions [n] and [111
]. 

NarAnoN 1.18 Let P,(xt. x2, ... , Xt) = M£,J(Xt, x2, ... , Xk) and 

E,(X!, X2, ... 'Xk) = M[l•J(X!, X2, ...• Xt). 

It is easy to recognize P,; it is the n-th power sum, 

What about E,? 

ExAMPLE 1.19 Let's choose k = 4. Then 

Et(a, b, e, d)= M[IJ(a, b, e, d)= a+ b +e+d; 

E2(a, b, e, d) = M[PJ(a, b, e, d) =ab+ ae +ad+ be+ bd + ed; 

E3(a, b, e, d) = M[PJ(a, b, e, d) = abe + abd + aed +bed; and 

E4(a, b, c, d)= Mu•1(a, b, c, d) =abed. 

Evidently, E,(a, b, c, d) is the sum of all C(4, n) (binomial coefficient ( ~ )> 
products of the x 's taken n at a time. o 

If(r,, r2, ... , rt)issomerearrangementofthesequence(1, 1, ... , 1, 0, 0, ... , 0) 

consisting of n ones followed by k - n zeros, then 

X'•x'2 x'• - x· x · x · 
1 2 • • • k - •• •z • • • •• • 

where i 1 < i2 < · · · < i11 • Summing over the different rearrangements gives 

(1.8) 

where the summation is over all C(k, n) sequences (i,, i2, ... , i 11 ) satisfying 

1 !: ;, < i2 < ... < i, !: k. 
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DEFINmoN 1.20 Denote by f 11 ,k the Set of all functions from {1, 2, ... , n} into 
{1, 2, ... , k}. Let Q,.,k be the subset of r,.,k consisting of the C(k, n) strictly 
increasing functions. 

There is a natural one-to-one correspondence between the functions {3 E r 11 ,~: 

and the integer sequences (it, i2, ... , i,.) satisfying 1 ~ i1 ~ k, 1 ~ t ~ n, 
namely, {3 .... ({3(1), {3(2), ... , {3(n)). We will feel free to abuse the language by 
identifying r ,.,k with a set of sequences. Thus, 

r2,3 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}, 

and Q2,3 = {(1, 2), (1, 3), (2, 3)}. 
Using Definition 1.20, we may rewrite Equation (1.8) as 

E,.(xt,X2, ••. ,x~:) = L Xp(l)XtJ(2) .. . xpc,.>· 
/JEQo.l 

(1.9) 

DEANmoN 1.21 The "extreme" monomial symmetric function, E,. (xt. x2, ••• , Xk) 
is the n-th elementary symmetric function of x1, x2, ... , Xk.lt is useful to define 
Eo(xt, x2, ... , Xk) = 1. 

Elementary symmetric functions are familiar objects. They express the coeffi­
cients of a manic polynomial in terms of its roots. If, for example, a, b, c, and d 
are complex numbers, then (Example 1.19) 

where E,. = E,.(a, b, c, d), 1 ~ n ~ 4. 

FUNDAMENTAL THEOREM OF SYMMETRic FUNCTIONS 1.22 Any polynomial, symme­
tric in the variables Xt, x2, ... , Xk, is a polynomial in the elementary symmetric 
functions E,.(xt, x2, ••• , Xk), I ~ n ~ k. 

Proof Let f = f(xt, x2, ... , x~:) be a symmetric polynomial of (total) degree p. 
Write/= fo+ ft + .. + /p. where/;= /;(xt. x2, ... ,Xk)isthe{homogeneous) 
part of f consisting of all terms of degree i. It will suffice to show that /; is a 
polynomial in the elementary symmetric functions for a fixed but arbitrary i. 

Suppose 

(1.11) 

is one of the monomial terms that occur in /;. Then r1 + r2 + · · · + rk = i. By 
symmetry, we may assume that 

Tl ~ T2 ~ • • • ~ Tt > 0 = Tt+l = '• • = Tk• 
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Among all partitions of i occwring as the sequence of exponents in the monomials 
off;, assume [Tl, T2, ••• , T1] is last in lexicographic (dictionary) order. That is, 
without loss of generality, we may assume T1 is the largest single exponent that 
occurs in any monomial in /;; T2 is the maximum second largest exponent among 
all the monomials that occur in /; and have Tl as their largest exponent; TJ is the 
maximum third largest exponent among all the monomials that occur in /; and 
have T1 and T2 as their two largest exponents; and so on. 

Consider 

(1.12) 

where En = En (xl, x2, ... , Xl), 1 !:: n !:: k. In lexicographic order of its 
exponents the last monomial that occurs in (1.12) is 

We would like to choose s1, s2, s3, and so on, so that 

This requires that 

Tl = Sl + S2 + S3 + • • • +Sic, 
T2 = S2 + S3 + · · ·+Sic, 

(1.13) 

These equations are satisfied when s1c = Tic, Slc-l = Tie-l -Tic, ••• , s2 = T2 - TJ, 

and s1 = Tl - T2. If we make these choices, then either 

~ E81 E-'Z E81 0 Jl- c 1 2 ••• le = . 

or it is a symmetric homogeneous polynomial of degree i, each of whose monomial 
terms comes before (1.11) in lexicographic order. Because dictionary ordering is 
a total order, the result follows by induction. o 

Suppose I = l(xl. x2, ... , x~c) is a symmetric homogeneous polynomial of 
degree n. Then I is, simultaneously, a polynomial in the elementary symmetric 
functions En(Xl, x2, ... , x~c), 1 !:: n !:: k, and a linear combination of the 
monomial symmetric functions M1r (xl, x2, ... , x~c), 1r 1- n. Conversely, if c1r, 
1r 1- n, are constants, then 
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g(xi, Xl, ... , XA:) = L cli'Mli'(XI, Xl, ... , XA:) 
ll'f-11 

defines a symmetric homogeneous polynomial of degree n. If 

11 

for all 1r, then g(xi, xz, ... , Xt) = (XI + xz + · · · + Xt)". What about some other 
choices? An important and interesting example arises when C~r = 1 for all 1r. 

DEFINmoN 1.23 Let XI, Xl, ... , Xk be independent variables. Their n-th homo­
geneous symmetric function is defined by 

H,.(x., Xl, ... , Xt) = L M1r(xi, xz, ... , Xt). (1.14) 
Jrf-n 

It is convenient to define Ho(xi, Xl, ... , Xt) = 1. 

EXAMPLES 1.24 

Hl(a, b, c) = M[lJ(a, b, c)+ Mu2J(a, b, c) 

= Pz(a, b, c)+ El(a, b, c) 

= (al + bl + c2) + (ab + ac +be), 

H3(a, b, c) = M[JJ{a, b, c)+ M[2,IJ(a, b, c)+ MtPJ(a, b, c) 

and 

= (a3 + b3 + c3) + (alb +ale+ abl + acl + blc + ix?) + abc, 
(1.15) 

H4(a, b, c)= M[4J(a, b, c)+ M[3,IJ(a, b, c)+ M[l2J(a, b, c)+ M[l,I2J(a, b, c) 

= (a4 + b4 + c4
) + (a3b + a3c + ab3 + ac3 + b3c + bc3) 

+ (albl + alcl + blcl) + (albc +able+ ab~). 

0 

From the definition, each monomial of (total) degree n in the variables 
XI, Xl, ... , Xk occurs in H,. (XI, Xl, ... , Xt) exactly once. This leads to a formula 
for H,.(xi, Xl, ... , Xt) analogous to Equation (1.9). 
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OEFINmoN 1.25 Denote by G,.,k the subset of r ,.,k consisting of all C (n+k-1, n) 
nondecreasing functions from { 1, 2, ... , n} into { 1, 2, ... , k}. 

For all n and k, Q,.,k C Gn,k· As (lexicographically ordered) sequence sets, 

G2,J = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}, and 

GJ,J = {(1, 1, 1), (1, 1, 2), (1,1, 3), (1, 2, 2), (1, 2, 3), (1, 3, 3), 

(2, 2, 2), (2, 2, 3), (2, 3, 3), (3, 3, 3)}. (1.16) 

Using Definition 1.25, we can rewrite Equation (1.14) as 

H,.(XJ,X2o•••oXk}= L XfJ(l)XfJ(2)•••XfJ(11)• (1.17} 
fJEGo.1 

We now return to the observation that any symmetric polynomial is a linear 

combination of "minimally symmetric pieces". 

OEFINmoN 1.26 Suppose XJ, x2, ... , Xk are independent indeterminates (vari­

ables) over the field C of complex numbers. Denote by C[x1, x2, ... , XA:] the set of 

polynomials in XJ, x2 •... , Xk with complex coefficients. Let SC,.[xJ, x2 •••. , XA:] 

be the subset ofC[xJ, x2 •... , XA:] consisting of the zero polynomial together with 

all symmetric homogeneous polynomials of degree n. 

THEoREM 1.27 The set {M~r(XJ,X2, ... , XA:): 1r 1- n, L(1r) ~ k} is a basisofthe 
vector space SC,. (XJ, X2, ... , XA:). 

Proof Let M~r = M~r (XJ, x2, ... , XA:), 1r 1- n. The only thing remaining to be 

proved is the linear independence of {M": 1r 1- n, L(1r) ~ k}. 

Suppose 

L c1rMtr = 0, 
Jrl-11 

L(1r)~k 

(1.18) 

the zero polynomial. Let p = (pJ, P2, ... , Pr ], r ~ k, be a partition of n. Consider 

the term 

occurring in Equation (1.18). Taking partial derivatives of (1.18) with respect to 

XJ, PI-times, with respect to x2. P2-times, ... , and with respect to x,, p,-times, 

we deduce that 

Pl !P2! ... p,!cp = 0. 

0 
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Application to Graphs 

Let V be a set. Denote the family of its 2-element subsets by v<2>. Then, for 
example, 

{a, b, c}<2> = {{a, b}, {a, c}, {b, c}}; 

{1, 2, 3, 4}(2) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}; 

and {x, y)<2> = {{x, y}}. If o(V) = n, then o(V<2>) = C(n, 2). 

DEflNITioN 1.28 A graph consists of two things, a nonempty finite set V, and a 
(possibly empty) subset E of v<2>. If G = (V, E) is a graph, the elements of V are 
its vertices and the elements of E its edges. When more than one graph is under 
consideration, it may be useful to write V (G) and E (G), respectively, for the sets 
of vertices and edges. If e = {u, v} e E(G), then u and v are adjacent vertices, 
incident with e. Two edges are adjacent if their set -theoretic intersection consists 
of a single vertex. 

EXAMPLE 1.29 If V= {1, 2, 3, 4, 5}, then v<2> has 10 elements and 210 subsets. 
Hence, there are 1024 different graphs with vertex set {1, 2, 3, 4, 5}. 

It is common to draw pictures of graphs in which vertices are represented by 
points and points representing adjacent vertices are joined by line segments (or 
arcs). If E = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}}, then each of the pictures in 
Figure 1.4 illustrates H = (V, E). Note that H is not connected; vertex 5 is an 
"isolated" vertex. o 

0 0 

0\?l 
o-o 

0'>-Sl 
FIGURE 1.4 Pictures of graph H. 

EXAMPLE 1.30 Not only can one graph be illustrated by different pictures, but 
one picture can represent different graphs! If W = {p, q, r, s, t} and F = 
{{q, s}, {q, t}, {r, s}, {r, t}, {s, t}}, then the fourpicturesinFigure 1.4 also illustrate 
K = (W, F). D 

We are not so much interested in different graphs as in nonisomorphic graphs. 
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DEFINmoN 1.31 Let G1 = (V, E) and G2 = (W, F) be graphs. Then G1 is 
isomorphic to G2 if there is a one-to-one function I : V -+ W such that vertices 
u and v are adjacent in G1 if and only if l(u) and l(v} are adjacent in G2, that 
is, such that {u, v} E E if and only if {f(u), l(v)} E F . The function I is an 
isomorphism from G1 onto G2. 

If G 1 and G2 can be illusttated by the same picture, then they are isomorphic. 
To each point of the picture there corresponds a unique vertex v1 of G1 and a 
unique vertex V2 of G2. The function that sends v1 to V2 (for every point of the 
picture) is an isomorphism. It is more challenging to tell when graphs illusttated 
by different pictures are isomorphic. 

EXAMPLE 1.32 The so-called "Petersen" graph, G1, is illusb'ated in Figure 1.5. It 
is isomorphic to the graph G2, pictured in the same figure. The proof that G 1 and 
G2 are isomorphic is "by the numbers". If V(G1) = {0, 1, 2, .. . , 9} = V(G2), 
then l(i) = i, 0!: i !: 9, is an isomorphism. (Check it out: Confirm that i and j 
are adjacent in G1 if and only if they are adjacent in G2.) Such a pair of labeled 
figures may be considered a proof of isomorphism (provided, of course, that it 
"checks out"). o 

2 3 
0 

1 

FIGURE 1.5 The Petersen graph. 

It is an immediate consequence of the definition that isomorphic graphs have the 
same numbers of vertices and edges. Consequently, if G 1 and G2 do not share these 
properties, they cannot be isomorphic. Properties that isomorphic graphs must 
share, are called graph invariants. We now introduce another graph invariant. 

DEFlNmoN 1.33 LetG =(V, E) beagraphwithvertexset V= {v1, Ul •.. ., v,}. 
The degree of v E V, denoted d(v), is the number of edges of G that are incident 
with v (which is equal to the number of vertices of G that are adjacent to v). When 
more than one graph is under consideration, it may be useful to write d ( v) = dG ( v ). 
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The degree sequence is d(G) = (d1, d2, ... , d,.), where d1 ~ d2 ~ · · · ~ d,. ~ 0 
are the degrees of the vertices of G, arranged in nonincreasing order. (We are not 
necessarily assuming that d; = d(v;).) 

THEOREM 1.34 The degree sequence is a graph invariant. 

We can determine from d (G) both n, the number of vertices of G, and m, the 
number of its edges: n is just the length of the sequence d(G), and m is given by 
what has come to be known as the "first theorem" of graph theory. 

THEOREM 1.35 Let G ={V, E) be a graph with vertex set V= (v1, V2 •••• , v,.}. 
/fo{E) =m, then 

" 
Ld(v;) =2m. 
i=l 

Proof By definition, d(v) is the number of edges incident with vertex v. Thus, 
in summing the vertex degrees, each edge is counted twice, once at each of its 
vertices. o 

0 

0/ '-a 
o-o 

FIGURE 1.6 Nonisomorphic graphs with the same degree sequence. 

EXAMPLE 1.36 The nonisomorphic graphs G 1 and G2 in Figure 1.6 share the 
degree sequence {2,2,2,1,1). o 

If G is a graph with n vertices and m edges, it follows from Theorem 1.35 that, 
were it not for isolated vertices (of degree 0), d(G) = (dt, d2, ... , d,.) would be a 
partition of2m. When speaking of the Ferrers diagram of d (G) it will be understood 
that vertices of degree 0 go unrepresented. Similarly, let dj = o((i: d; ~ j}). Then 
the conjugate degree sequence, d*(G) = (dj, di· ... , t/k). is the conjugate of 
the partition of 2m whose parts are the nonzero vertex degrees of G. 

THEOREM 1.37 Let G be a graph with n vertices, m edges, and degree sequence 
d(G). Then d*(G) majorizes d(G). 
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1 

FIGURE 1.7 

Proof Consider the graph G, illustrated in Figure 1. 7, in which the vertices are 
numbered in such a way that d(vi) = di. Figure 1.8(a) exhibits a variation on the 
Ferrers diagram for d(G) = (4, 3, 2, 2, 1) in which the boxes have been replaced 
by numbers. Because vertex 1 has degree 4, there are four 1 's in the first row of the 
diagram. The three 2 's in the second row correspond to the degree of vertex 2, and 
so on. Now, rearrange the numbers, but not the shape, of this "Young Tableau" so 
that row i contains, in increasing order, the numbers of the vertices of G adjacent 
to vertex i. Figure 1.8(b) is the result. 

l l 

2 2 2 

3 3 

4 4 
s 

(a) 

FIGURE 1.8 

2 3 4 s 
l 3 4 

l 2 

2 

(b) 

Note that the first column of variation (b) contains all the 1 's. All the 2's are 
contained in the first two columns, all the 3's in the first three columns, and so on. 
In general, for any graph, the first r columns of the analog of variation (b) contain 
all the 1's, all the 2's, . .. , and all the r's. In particular, the sum of the lengths of 
the first r rows of the analog of variation (a) is at most the sum of the lengths of 
the first r columns of the analog of variation (b). Because the two variations have 
the same shape, the proof is complete. o 

Theorems 1.35 and 1.37 give necessary conditions for a nonincreasing sequence 
of nonnegative integers to be the degree sequence of a graph. 

DEFINITION 1.38 Let m be a positive integer. A partition 1r = [1r1, 1r2, ••• , rr11 ] of 
2m is graphic if there is a graph G such that d(G) = 1r. 
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DEFINITION 1.39 The trace of partition 1r is /(1f) = o({i: 1f; :=::: i}). 

If F(1r) is the Ferrers diagram corresponding to 1r, then j(1r) is the length of 
its main diagonal. 

THEOREM 1.~ Suppose 1f = [1ft, 1r2, •.• , 1f11 ] is a partition of the positive 
integer 2m. Let 1r* = [1rj, 1r2, .•• , 1r;] be its conjugate partition. Then 1r is 
graphic if and only if 

, , 
I: 1r: :::: I::<1fj + 1>. 1 ~ r ~ t<1r>. (1.19) 
i=t i=t 

Proof The proof uses the same variations, (a) and (b), of the Ferrers diagram of 
d(G) that were useful in the proof of Theorem 1.37. (See Figure 1.8.) Because 
no vertex is adjacent to itself, no row in variation (b) contains its own number. In 
particular, the (1,1)-entry is not less than 2. Therefore, in addition to all the 1's, 
the first column of variation (b) contains a number larger than 1, so dj :=::: dt + 1. 

Since the (1,1 )-entry of variation (b) is at least 2, and since the numbers in 
the first row are strictly increasing, the (1,2)-entry must be at least 3. If d2 :=::: 2 
then, because the second vertex is not adjacent to itself, the (2,2)-entry can be no 
less than 3 as well. Therefore, all the 1's, all the 2's, and at least two numbers 
no smaller than 3 occur in the first two columns of variation (b). This means 
dj + d2 :=::: dt + d2 + 2 = (dt + 1) + (d2 + 1). As long as d, :=::: r, we can use the 
same argument to prove that 

thus establishing the necessity of Condition (1.19). 
To prove sufficiency, suppose 1r = [1ft, 1r2, ••. , 1f11 ] is a partition of 2m that 

satisfies Inequalities (1.19). Consider the extreme case in which 1rj = 1f; + 1, 
1 ~ i ~ j(1r). To produce a graph with degree sequence 1r, begin with the vertex 
set V = {1, 2, ... , n}. "Construct" edges from vertex 1 to each of 2, 3, ... , n. 
Because n = 1rj = 1ft + 1, we have produced a graph in which dt = 1ft, and 
d2 = d3 = · · · = d11 = 1. If /(1f) = 1, then 1r2 = 1, and we are finished. 
Otherwise, construct edges from vertex 2 to each of 3, 4, ... , 1r2 + 1. (This is 
possible because we have reserved "room" for 1r2 = 1r2 + 1 vertices of degree 2 
or more.) So far, we have produced a graph in which dt = 1ft and d2 = 1r2. If 
f (1r) = 2, we are finished because F(1r) is completely determined by its first f (1r) 
rows and columns. If 1r3 :=::: 3, draw edges from vertex 3 to each of 4, 5, ... , 1r3 + 1 
(which is possible because 1rj = 1f3 + 1). After three steps, we have dt = 1ft, 

4Wbite this result has been attributed to Hasselbarth [Sierksrna & Hoogeveen (1991)), it seems to 

have been published fint in [Ruch & Gutrnan (1979)). 
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d2 = 1r2, and d3 = 1r3. At the end of /(7r) steps, we will have produced a graph 
satisfying d; = 7r; , 1 ~ i ~ n. 

To complete the proof of sufficiency, two additional facts are required: (1) if 
p is majorized by a graphic partition 1r, then p is graphic; and (2) every partition 
satisfying the inequalities in (1.19) is majorized by one which is extreme in the 
sense that equality holds in each of the inequalities. The details are omitted. o 

EXAMPLE 1.41 Consider the partition 1r = [5, 4, 3, 3, 2, 1], whose Ferrers dia­
gram, F(1r) appears in Figure 1.9. Because 1r is a partition of 18, the first condition 
of Theorem 1.40 is satisfied: m = 9. In this case, the length of the main diagonal of 
F(1r) is 3 = /(7r). Glancing at Figure 1.9, we can write down 1r* = [6, 5, 4, 2, 1]. 
Observe that 1ri = 1r; + 1, fori = 1, 2, 3. 

F([5, 4, 32, 2, 1]) 

FIGURE 1.9 

Draw six points in the plane and label them 1, 2, ... , 6. Construct (draw) edges 
from vertex 1 to vertices 2, 3, 4, 5, and 6, as shown in Figure l.IO(a). This gives 
a vertex of degree 5 and five vertices of degree 1. Now, draw edges connecting 
vertex 2 to vertices 3, 4, and 5. Finally, drawing an edge from vertex 3 to vertex 4, 
one obtains the graph G, illustrated in Figure l.IO(b), having degree sequence 
d(G) = 1r. o 

1 

6oil\o2 5o o3 
0 

4 

(a) 

FIGURE 1.10 

1 

6o2&r 
5o~to3 

0 

4 

(b) 
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Example 1.41 illustrates the "greedy" algorithm used in the proof of Theo­
rem 1.40 to construct a graph whose degree sequence is extreme in the sense that 
equality holds in each of the inequalities in (1.19). We now give a formal name to 
the graphic partitions that are extreme in this sense. 

DEFoonoN 1.42 Let 1r = [1ft, 1r2, ••• , 7rn] be a partition of 2m. Then 1r is a 
maximal(graphic)partitionifrrt = rr;+1, I ::5 i ::5 /(rr).Agraphwhosedegree 
sequence is maximal is a threshold graph. 

1 1 

6o o\'o2 6o?§2 
So »3 sl, 13 

0 0 

4 4 

(a) (b) 

FIGURE 1.11 

EXAMPLE 1.43 Let 1r = [36]. Then rr* = [63] and, while 1r is graphic, it is not 
maximal. Let's see what happens if we try to use the greedy algorithm illustrated 
in Example 1.41 to construct a graph with degree sequence [36]. Begin by drawing 
six points in the plane and labeling them I, 2, ... , 6. Draw edges from vertex I to 
vertices 2, 3, and 4. Now draw edges from vertex 2 to vertices 3 and 4, producing 
two vertices of degree 3, two of degree 2, and two of degree 0. When an edge 
is drawn between vertices 3 and 4, we find ourselves in the position illustrated in 
Figure 1.11(a). Pretty clearly, a graph with degree sequence [36] cannot be obtained 
from this figure by adding more edges. On the other hand, the existence of a graph 
with degree sequence [36] is established by Figure 1.11(b). o 

EXAMPLE 1.44 The connected threshold graphs having 2 ::5 m ::5 6 edges are 
illustrated in Figure 1.12. 

DEFINITION 1.45 Let V beann-elementset. The complete graph Kn =(V, v<2>) 
is the graph in which every pair of vertices is adjacent. 

Strictly speaking, Definition 1.45 defines the complete graph with vertex set V. 
However, because any two complete graphs on n vertices are isomorphic, we will 
abuse the language and speak about the complete graph on n vertices. The complete 
graphs K3 and K4 are illustrated in Figure 1.12(b) and (h), respectively. 
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DEFINITION 1.46 Let G = (V, E) be a graph. The complement of G is the graph 

GC = (V, v<2>\E). 

If G is a graph, then e = {u, v} is an edge of G if and only if e is not an edge 

of Gc. In particular, the complement of K, is the graph consisting of n isolated 

vertices, that is, K~ has no edges at all. 

DEFINmoN 1.47 Let G = (V, E) be a graph. A cycle in G is a sequence of 

distinct vertices Vt, V2 • ••• , v,, n > 2, such that {v;, v;+&} e E, 1 !:: i < n, and 

{vt. v,} e E. A connected graph without cycle is a tree. 

Graphs (a), (b), (e), (h), and (i) in Figure 1.12 are trees. 

0 0 0 

(a) (b) (c) 

! + 
(d) (e) 

<!> ~ + 
(f) (&) (h) 

* 2r 
(i) (j) 

<f> ~ 
(k) (I) 

FIGURE 1.12 The Threshold Graphs with 2 ~ m ~ 6 edges. 
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Exercises 

1. Denote by Pm (n) the number of partitions of n having m parts. Show that 

a. Pn-2(n) = 2, n ::: 4. 

b. Pn-3(11) = 3, n ::: 6. 

c. P2(n) = [n/2], the greatest integer not exceeding n/2. 

d. Pm(n) = Pm-I(n- 1) + Pm(n- m), 1 <m< n. 

e. Construct a table exhibiting Pm(n), 1 =:;m =:; n, 1 =:; n =:; 7. 

f. The number of partitions of n is the partition number 

n 

p(n) = L Pm(n). 
m= I 

Compute p(n), 1 =:; n =:; 7. 

2. Explicitly write down 

a. all 11 partitions of 6. 

b. all 8 partitions of 7 having 3 or fewer parts. 

c. all 8 partitions of 7 whose largest part is at most 3. 

3. Let 1r = [6, 4, 23]. Find 1r* 

a. using Ferrers diagrams. 

b. using Equation (1.1). 

4. Which of the following is a self conjugate partition? 

a. [5,4,3,2,1] 

b. [5,32,12] 

c. [4,32,1] 

d. [5,32,2,12] 

e. [5,42,3,12] 

f. [6,4,3,12] 

5. Find 1r* and use it confirm Lemma 1.6 when 1r = 
a. [5,4,3,2,1] 

b. [5,32,12] 

c. [4,32,1) 

d. [5,32,2,12] 

e. [5,42 ,3,12) 

f. [6,4,3,12] 

6. Find the smallest integer n having three different self conjugate partitions. 
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7. Suppose 1r ~ n. Show that trh1 = trj - o({i: 1r; = j}). 

8. Let 1r = [1r1 I 1r21 ••• 1 1r,.] and p = lP1 1 P21 ••• I Pt] be partitions of n. Show 
that 1r > p only if m ~ A:. 

9. Find all the partitions of 7 that 

a. majorize [5,2]. 

b. are majorized by [22,13]. 

10. Prove that 1r > p if and only if p* > 1r*. 

11. Show that the doubly stochastic matrix S given in Example 1.11 is not unique 
by finding another one that satisfies (3,3,1,1) = (5,2,1,0)5. 

12. Show that there are C(A: + n - 1, n) nonnegative integer solutions to the 

equation rt + r2 + · · · + '" = n. 
13. When (a+ b + c + d)10 is expressed as a linear combination of monomial 

symmetric functions, compute the coefficient of 

a. M1u21(a, b, c, d). 

b. M[7,2,1J(a, b, c, d). 

c. M[42,2J(a, b, c, d). 

d M[32,2,PJ(a, b, c, d). 

14. Write out in full 

a. M[4,tJ(x, y, z). 

b. M[3,2J(x, y, z). 

c. Mu21(x, y, z). 

15. Confirm Equation (1.10) for a = 1, b = 2, c = 3, and d = 4 by 

a. using Example 1.19 to compute E11 (1, 2, 3, 4), 1 ~ n ~ 4. 

b. computing the product (x - 1)(x - 2)(x - 3)(x - 4). 

16. Denote the roots of p(x) = x4 - x2 + 2x + 2 by a, b, c, and d. Compute the 
elementary symmetric functions Er(a, b, c, d), 1 ~ r ~ 4, 

a. from the coefficients of p(x). (Hint: Equation (1.10).) 

b. from the definition of Er . (Hint: (x + 1)2 divides p(x).) 

17. Suppose k is a fixed but arbitrary positive integer. Let P11 = P11 (Xt, x2, .•. , Xk) 
and E11 = E11 (Xt,X2, . •• ,x~c), n ;::: 1, be the n-th power sum and the n-th 
elementary symmetric function, respectively. It was shown by Isaac Newton 
(1642-1727) that, for any n ;::: 1, 

Thus, Pt- Et= 0,1'2- PtEt + 2E2 = 0, P3- P2E1 + P1E2- 3E3 = 0, 
and so on. 
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a. Use Newton's identities to prove that 

b. Use Newton's identities to prove that 

c. Show that the general fonnula for Er as a polynomial in the power sums 
is r!Er = det(Lr). where 

(

PI 
Pz P1 

Lr = 1'3 Pz 

Pr Pr-1 

1 0 0 
2 0 

P1 3 

Pr-2 Pr-3 

(Hint: Use Cramer's rule on the following matrix version of Newton's 
identities: 

0 
0 
3 

P1 

0 ... ) ( E1] ( P1] 0 . . . Ez P:2 
0 .. . E3 = P3 .) 
-4 ... E4 P4 . . . . . . 

d. Prove that any polynomial, symmetric in .K1, .Kz, •.. , .Kt, is a polynomial 
in the power sum functions P,.(.KJ. .Kz, ... , .Kt). 1 ::; n ::; k. 

18. If 2 ::; r ::; k, prove that Er(.KJ,.K2, ... , .Kt) = Er(.KJ,.Kz, .•. ,.Kt-1) + 
.Kt Er-! (.KJ, .Kz, . · ·, .Kt-J). 

19. Use Equation (1.16) to confirm that Equation (1.17) yields Equation (1.15) 
when n = k = 3, .KJ =a, .Kz = b, and .KJ =c. 

20. If r :::: 2, prove that Hr(.KJ, .Kz, •.. , .Kt) = Hr(.KJ, .Kz, ... , .Kt-I) + 
.KtHr-l (.KJ, .Kz, .•• , .Kt). 

21. Use Exercise 18 and mathematical induction to prove that 

11 11 n(.K -a;)= L:<-1)rEr(aJ,az, .•. ,a,.).K"-r. 
i=l r=O 

22. Suppose a e r m, 11 • Prove that a e Gm.11 if and only if au > a for all 
pennutations a e Sm. 
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23. Denote by m;(n) the multiplicity of i in the partition 11", that is, the number 
of times i occurs as a part of 1r. Prove that m; (n) = nj - ni-+1. 

24. Suppose n, p 1- n. Let 1r + p be the partition of2n, the i-th part of which is 
n; + p; (with the convention that n; = 0 if i > L(n)). Denote by 1r Up the 
partition of 2n the parts of which are the parts of 1r together with the parts of 
p. 
a. Prove that (n U p )* = n* + p*. 

b. Is (n + p )* = n* U p*? 

25. Suppose 1r 1- n. Let IJ-i = 11"; - i and v; = nj- i, 1 ~ i ~ /(n). Frobenius 
used {11-lv) to denote the partition 1r. Show that the Frobenius notation for n* 
is (vi~J-). 

26. Among the many results known about elementary symmetric functions is that 
they are Schur concave, that is, E,(a) ~ E,(b) whenever (a) majorizes (b). 

a Show that majorization imposes a linear order on the five partitions of 8 
having 3 parts. 

b. Confirm the Schur concavity of E, by computing E,(n), 1 ~ r ~ 3, for 
each three-part partition of 8. 

27. Among the many results known about homogeneous symmetric functions is 
that they are Schur convex, that is, H,(a) ~ H,(b) whenever (a) majorizes 
(b). 

a Confirm the Schur convexity of H, by computing H,(n), 1 ~ r ~ 3, for 
each three-part partition of 8. 

b. If you were to compute H4(1r) for each partition 1r of 24 having 3 parts, 
which partition would produce the maximum? Which would produce the 

. . ? mmunum. 
28. Let E, = E,(aJ, a2, ..• , a,.), 1 ~ r ~ n. Show that (1 - a1x)(l -

a2x) •.. (1- a,.x) = 1- E1x + E2x2 - • · · + (-1)11 E,.x11
• 

29. Show that the dimension of SC7[x, y, z] is 8. (Hint: Exercise 2b.) 

30. Compute 

a. dim(SC7[X1, x2, ••• , X7 ]). (Hint: Exercise If.) 

b. dim(SC7[X1, X2, ••• , Xg]). 

31. If A is an m-by-n matrix, denote its i-th row and j-th column sums, 
respectively, by r;(A) and Cj(A). Suppose 

R = (rJ, r2, ... , r,.) and C = (cJ, c2, .. . , c,.) 

are integer vectors satisfying r1 ~ r2 ~ · · · ~ r,. ~ 0 and c1 ~ c2 ~ · · · ~ 
c11 ~ 0. Then ([Gale (1957)] and [Ryser (1957)]) there exists an m-by-n, 
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(0,1)-matrixAsuchthatr;(A)=r;, I :;:i :;:m,andcJ(A)=cj. I :;:j :;:n, 
if and only if R* >- S. 

a. Use the Gale-Ryser theorem to prove the existence of a 5-by-4, (0,1)­
matrix A having row sum vector R = (3,2,1,1,1) and column sum vector 
(3,3,1,1). 

b. Write down such a matrix. 

Application Exercises 

32. Draw pictures of the 11 nonisomorphic graphs on four vertices. 

33. Prove Theorem 1.34. 

34. Draw Ferrers diagrams for all the maximal graphic partitions of 6. (Hint: 
Figure 1.3.) 

35. Let 1f = [4, 23 ' 1]. 

a Show that 1f satisfies Criteria (1.19). 

b. Explain why 1f is not graphic. 

36. Prove that 

L(1f) 1fa 

L i1f; = L C(1fi + I, 2). 
i=l i=l 

(Hint: Figure 1.8(a)). 

37. Confirm that the graphs in Figure 1.12 are threshold graphs. 

38. Prove that K" is a threshold graph, n :::: 2. 

39. Prove that, apart from isolated vertices, the complement of a threshold graph 
is a threshold graph. 

40. If T = (V, E) is a tree, prove that it has one fewer edges than vertices. 





CHAPTER 2 

Inner Product Spaces 

The purpose of this chapter is to review the more specialized results and techniques 
from linear algebra that will be needed in Chapters 4-8.1 To begin, suppose V and 
W are finite dimensional vector spaces over the field C of complex numbers. 
Denote by L(V, W) the set of all linear transformations from V into W. Then, 
together with addition and scalar multiplication defined by 

(aS+ bT)(v) = aS(v) + bT(v), (2.1) 

L(V, W) is a vector space. The elements of L(V, V) are called linear operators, 
and the elements of L(V, C) linear functionals. The dual space of V is the vector 
space V'= L(V, C), consisting of all linear functionals on V. 

Suppose B = {e1, e2, .. . , e,.} is a basis of V. For each i e {1, 2, ... , n}, define 
a linear functional/; e V' by 11(e1) = 8;,j. 1 !:: j !:: n, and linear extension.2If 
I is a fixed but arbitrary element of V', then 

11 

I= L l(e;)l;. (2.2) 
i=l 

as can be seen by evaluating both sides on ei• 1 !:: j !:: n. Therefore, B' = 
{fl, /2 •. . .• 1,.} spans V'. 

Suppose 
11 

"La;/; =0, 
i=l 

1 Among the many fine references to the topics of this chapter are [Marcus & Mine (1964)], [Horn 
& Johnson (1985)], and [Fiedler (1986)]. 

z'l'be "Kronecker delta" is defined by "•.J=l, if i=J, and 0, otherwise. 

27 
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the identically zero functional. Evaluating both sides on ei proves that ai = 0, 
1 ~ j ~ n. Therefore, 8' is linearly independent. 

DEFINmoN 2.1 Let 8 = {eJ, e2, ••• , en} be a basis of the vector space V. The set 
8' = {/J, /2 •... , / 11 } oflinearfunctionals defined by /;(ej) = 8;,jo 1 ~ j ~ n, 
and linear extension, is called the basis of V' dual to 8. 

Because V' is a vector space, it too must have a dual. 

THEOREM 2.2 Suppose u e V. Let u: V' ~ C be defined by 

u(f) = /(u), I E V'. (2.3) 

Then u is a linearjimctional on V'. Moreover, theftmction \11: V ~ (V')' defined 
by \ll(u) = u, u e V, is a vector space isomorphism. 3 

Because of Theorem 2.2, we will ignore the distinction between V and (V')'. 

DEFINmoN 2.3 An inner product on V is a complex valued function (u, v) of 
two vector variables that satisfies the following three conditions: 

(a) (u, v) = (v, u), for all u, v e V. 

(b) (au + bv, w) = a(u, w) + b(v, w), for all a, be C, and u, v, w e V. 
(c) (u, u) > 0 for all nonzero vectors u e V. 

A vector space endowed with a fixed inner product is called an inner product 
space. 

DEFINmoN 2.4 Denote by en = { (XJ, X2, ••• , Xn): X; E C, 1 ~ i ~ n} the 
vector space of n-tuples of complex numbers, and by C,.,n the vector space of 
m-by-n complex matrices. H A = (a;i) e C,.,n. denote its conjugate transpose 
by A*. That is, A* is then-by-m matrix whose (i, j)-entry is 'iiji· 

ExAMPLE 2.5 If V= Cn,n• then the trace function, 

n 

tr (A)= Eaii, 
i=l 

A = (a;i) e Cn,n, is a linear functional on V. 
Suppose V = en. If C), C2, •••• Cn are positive numbers, then 

n 

(u, v) = Ec;x;y;, 
i=l 

(2.4) 

where u = (XJ, x2, ... , x11 ) and v = (yJ, J2, ... , Yn) e V, defines an inner 
product on V. When CJ = c2 = · · · = c11 = 1, it is called the standard inner 

31bat is, an invertible transfonnation from V onto (V')'. 
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product or dot product. When V = Cm,", the standard inner product can be 
written (A, B)= tr (B*A). o 

DEFINJTioN 2.6 Let u and v be vectors in an inner product space V. If (u, v) = 0, 
then u and v are said to be orthogonal. A nonempty subset S c V is orthogonal 
if the vectors in S are pairwise orthogonal. Finally, S is orthononnal (or o.n.) 
provided it is orthogonal and (u, u) = 1 for all u e S. 

Note that 0 is orthogonal to every vector and that an orthonormal set of vectors 
is necessarily linearly independent. 

DEFINJTION 2.7 Let v be a vector in an inner product space V. The norm of v, 
written Uvll, is the nonnegative square root of (v, v). If llvll = 1, then vis a unit 
vector. 

EXAMPLE 2.8 Let v be a nonzero vector in the inner product space V. Let u = cv, 
where c = 1/llvll. Then 

llull=~ 

= J(cv,cv) 

=cllvll 

= 1, 

that is, u = vfllvll is a unit vector. 0 

Suppose that B = {vt. tJ:2, ••• , v"} is a basis of the inner product space V. 
We are going to describe an algorithm, called the Gram-Schmidt process, for 
transforming B into an orthonormal basis of V. This is how it works: Let 

Vt 

"
1 

= Uvdl' 

V:2- (tJ:2, UJ)UJ 
U2 = , 

IIV:2- (V:2, UJ)udl 

and so on. In general, 
k-l 

Wk = Vk- L(Vk, Uj)Uj, 
i=l 
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and Ilk = WA:/IIwkll· Now, Wk is not zero because {v1, 112 •••• , VA:} is linearly 
independent. Thus, Ilk is a unit vector, for all k. Moreover, 

(112, u1) = (W2, u1)/llw2ll 

= ((112, Ill)- (112, UI)(ul, Ul))/llw211 

=0, 

because u1 is a unit vector. Thus, {111, 112} in orthonormal. Given that 
{u1, 112, ••• , IIA:-d is orthonormal, 

=0, 

j < k, that is, {111, 112, ••• , IIA:} is orthonormal. Finally, note that (v1, 112 •••• , VA:), 
the subspace of V spanned by the first k basis vectors, is equal to (u 1, u2, ••• , ut), 
1 ~ k ~ n. 

THEOREM 2.9 Let V be an inner product space of dimension n. Then V has an 
ortlwnormal basis. Mo~over, ifS is an ortlwnormal set of vectors in V, then S 
can be extended to an o.n. basis of V. 

Proof The existence of an o.n. basis follows from the Gram-Schmidt process. 
IfS = {u1, 112, • • • , IIA:} is an orthonormal set, then it is linearly independent. 
Therefore, S can be extended to a basis, {111, 112, ••• , ut. VA:+l• ••• , v,.} of V. 
Applying the Gram-Schmidt process to this basis does not change any of its first 
k vectors. o 

DEFoonoN 2.10 Let W be a subspace of the inner product space V. The orthog­
onal complement of W is 

W.L = {v E V: (w, v) = 0 for all w E W}. 

THEOREM 2.11 If W is a sub space of the inner product space V, then W .l is a 
subspace. Mo~over, dim(W.l) + dim(W) = dim(V). 
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REPRESENTATIONTHEOREMPORLINEARFUNCTIONALS 2.12 Let V beaninnerproduct 
space. If f: V ~ C is a linear functional, then there exists a unique vector w e V 
such that f(v) = (v, w),forall v e V. 

Proof Let {u1, u2, ... , u11 } be an orthononnal basis of V. Define 

11 

w = L f(u;)u;. 
i=l 

lfv = I:a;u; e V, then a;= (v, u;),l!::: i!::: n. Hence, 

(v, w) = (v. t /(u;)u;) 
•=I 

11 

= Lf(u;)(v,u;) 
i=l 

11 

= I:a;/(u;) 
i=l 

= /(v). 

(2.5) 

lf(v, w1) = (v, w2)forallv e V, then(v, w1-w2) = O,forall V e V. Choosing 
v = w1 - w2 produces (Definition 2.3(c)) w1 - w2 = 0. o 

Note that the vector w in Equation (2.5) depends on f. If, for example, 
{/!, /2, ... , / 11 } is the basis of V' dual to {u1, u2, ... , u11 }, then /j(v) = (v, Uj) 

for all v e V. Hence, the w that works for fJ is u i. 

CAUCHY-ScnwARZINEQuALITY 2.13 Let V beaninnerproductspace./fu, v E V, 
then l(u, v)l !::: llullllvll, with equality if and only ifu and v are linearly dependent. 

Proof If u = 0, there is nothing to prove. Otherwise, let 

Then, because (w, u) = 0, 

(v, u) 
w = v- llull2 u. 

0 !::: (w, w) 

= (w, v) 

(v, u) 
= (v, v)- Uull2 (u, v). 

(2.6) 

This completes the proof because (v, u)(u, v) = l(u, v)l2, and w = 0 if and only 
if {u, v} is linearly dependent. o 
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PARSBVAL'S IDB!mTY 2.14 Let (ult u2, ••• , Un} be an orthonormal basis of the 
inner product space V. If v, w E V, then 

n 
(v, w) = L(v, u;)(u;, w). 

i=l 

Proof Let v = Ea;u; and w = Ebi"i· Then 

n n 
= L La;bj(U;, uj) 

i=l j=l 

n 
= I:<v. u;)(u;, w). 

i=l 

0 

Bessa·s INBQuAUTY 2.15 Let (UJ, u2 •••• , Uk} be an orthonormal set of vectors 
in the inner product space V. If v e V, then 

k 

llvll2 ::: L l(v, Uj)l2• 

i=l 

with equality if and only if v e (u 1. u2, ••. , Uk). the subspace of V spanned by 
{UJ, U2, • • ·, Uk}. 

THEOREM 2.16 Let V be an inner product space and suppose T e L(V, V). 
Then there exists a unique Se L(V, V) such that (T(v), w) = (v, S(w)),forall 
v,w E V. 
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Proof Let {u1, u2, •.• , u,.} be an orthonormal basis of V. Define a function 
S: V-+ V by 

" S(w) = L:<w. T(u;))u;, wE V. 
i=l 

Then, by Definition 2.3(b), SE L(V, V). Let v = a1u1 +a2u2 + · · · +a,.u,. be a 
fixed but arbitrary vector in V. Then, because a; = (v, u;), 

(v, S(w)) = ( v, t.(w, T(u;))u;) 

" = L (w, T(u;))(v, u;) 
i=l 

" 
= L(T(u;), w)a;, 

i=l 

= (ta;T(u;), w) 
1=1 

= (T(v), w). 

Uniqueness is a consequence of the following lemma. D 

LEMMA 2.17 Let V be an inner product space. Suppose T1, T2 E L(V, V). If 
(T1 (v), w) = (T2(v), w),for all v, w E V, then T1 = h 

DEFINITioN 2.18 Let V be an inner product space and suppose T e L(V, V). The 
unique S e L(V, V) guaranteed by Theorem 2.16 is denoted T* and called the 
adjoint of T. 

EXAMPLE 2.19 Let 8 = {u1, u2, ... , u,.} be an orthonormal basis of the inner 
product space V. If T E L(V, V), then T is completely (and uniquely) determined 
by its action on the basis 8, that is, by the coefficients a;i in the equations 

" T(uj) = L:a;jU;, I~ j ~ n. (2.7) 
i=l 

Denote the matrix representation ofT with respect to the basis 8 by [T] = (a;i ). 
Because 8 is orthonormal, it follows from Equation (2.7) that a;i = (T(uj). u;). 
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Therefore, 

'iijt = (T(u;), UJ) 

= (u;, T*(uj}} 

= (T*(uj). u;), 

Multilinear Algebra 

the (i, j)-entry of the matrix representation ofT*. Evidently, [T*] = [T]*. With 
respect to an orthonormal basis, the matrix representation of T* is the conjugate 
transpose of the matrix representation of T. o 

l>EFINmoN 2.20 Let w, and W2 be subspaces of an inner product space V. Their 
sum is W1 + W2 = {w1 + w2: w, e w, and w2 e W2}; if w, n W2 = {0}, the 
sum is direct, and is written w, $ w2. If w, c w:f. then the sum is orthogonal 
direct. and is written w, .l Wz. 

EXAMPLE 2.21 Let T be a linear operator on the inner product space V. If 
T = T2, the composition of T with itself, then T is called a projection. Denote 
by Iv e L(V, V) theidentityoperatoron V, that is, Iv(u) = u, for all u e V. If 
S = Iv-Tthen,becauseS2 = (Iv-T)(lv-T) = lv-T-T+T2 = Iv-T. 
S is another projection. Denote the image of T by T(V) = {T(v): v e V}. 
Because T2 = T, T(w) = w for all w E T(V). Similarly, S(w) = w for all 
w e S(V). It follows from v = T(v) + (lv - T)(v) = T(v) + S(v) that V is 
the sum T(V) + S(V). Because w = S(w) = w - T(w) = w - w = 0, for all 
w e T(V) n S(V), V is the direct sum T(V) $ S(V). o 

l>EFINmoN 2.22 Let V be an inner product space and suppose· T e L(V, V). 
If T* = T, then T is hennitian (or self adjoint). A hermitian projection is an 
orthogonal projection. The matrix A e C,.,,. is hennitian if A* = A. 

EXAMPLE 2.23 Suppose T is an orthogonal projection on the inner product space 
V. LetS= lv- T. For a fixed but arbitrary v E V,let VI = T(v) and Vz = S(v). 
Because T* = T = T2, 

(v,, Vz) = (T(v), v- T(v)) 

= (v, T(v) - T2(v)) 

= (v, 0) 

=0. 

It follows that V = T(V) .l S(V). 0 
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Let V be an inner product space and suppose T e L(V, V). Define [v, w] = 
(T(v), w), for all v, w e V. Under what conditions is [,]an inner product on 
V? Of the three conditions in Definition 2.3, [au + bv, w] = a[u, w] + b[v, w] is 
always satisfied. However, 

[v, u] = (T(v), u) 

= (v, T*(u)) 

= (T*(u), v), 

whereas, (u, v] = (T{u), v). Evidently, [v, u] = [u, v], for all u, v E V, if and 
only if (T*(u), v) = (T(u), v), for all u, v e V, if and only if (Lemma 2.17) 
T = T*, that is, if and only if T is hermitian. 

DEFINmoN 2.24 Let T be a linear operator on the inner product space V. If 
(T(v), v) > 0 for every nonzero vector v e V, then T is positive definite. If 
(T(v), v) ~ 0 for all v e V, then T is positive semidefinite. The notation T ~ 0 
indicates that T is positive semidefinite hermitian. 

We have shown that [u, v] = (T(u), v) defines an inner product on V if and 
only if T is a positive definite hermitian operator. In fact. as we now see, every 
inner product on V arises in this way. 

THEOREM 2.25 Suppose V is an inner product space. Let [ , ] be a second inner 
product on V. Then there exists a unique (positive definite hennitian) operator 
T E L(V, V) such that [u, v] = (T(u), v),Jor all u, v e V. 

Proof Let {ut, u2, ... , un} be a basis of V that is orthonormal with respect to 
the inner product (,).Define T e L(V, V) by 

n 

T(u) = L)u, u;]u;, 
i=l 

n n 

(T(u), v) = L ~:)u, u;]aj(U;, Uj) 
i=l j=l 

n 

= L:a;[u, u;] 
i=l 

= [u, v]. 

Because [ , ] is an inner product, T is positive definite hermitian. Uniqueness 
follows from Lemma 2.17. o 

The matrix version of Definition 2.24 is this: 
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OEFINmoN 2.26 Let A e C11 ,11 be hennitian. If x• Ax > 0 for every nonzero 
x e C,.,., then A is positive definite. If x• Ax ~ 0 for all x e C.,t, then A is 
positive semidefinite. The notation A ~ 0 indicates that A is positive semidefinite 
hennitian. 

Observe that A is positive definite if and only if it is positive semidefinite and 
invertible. 

LEMMA 2.27 Let 8 be an orthonormal basis of the inner product space V. Suppose 
T e L(V, V). Then T ~ 0 if and only if [T] ~ 0, where [T) is the matrix 
representation ofT with respect to B. 

OEFINmoN 2.28 A linear operator T on an inner product space V is unitary if 
T*T = Iv, that is, if T is invertible and T-1 = T* . A matrix U e C,.,,. is unitary 
if it is invertible and u-1 = u·. the conjugate transpose of u. 
SoruR·s liuANOliLARIZATION THEOREM 2.29 Let A e C11, 11• Then A is unitarily 
similar to an upper triangular matrix. 

Proof The proof is by induction on n. Because every 1-by-1 matrix is upper 
triangular, the n = 1 case is trivial. Assume n > 1. Let A. be an eigenvalue of A 
afforded by the eigenvector x e C,.,,. Because x =F 0, we may assume Uxll = 1 
(with respect to the standard inner product (y, z) = z• y on C,.,, ). By Theorem 2.9, 
{x} can be extended to an orthonormal basis {x, )'2, •• • , y,.} of C,., 1• Let U be the 
matrix whose first column is x and whose j-th column is Yi· 1 < j ::5 n. Then 
U*U = / 11 , the n-by-n identity matrix. Moreover, the first column of u• AU is 
u· Ax = l.U* X = l.C ,, where c I is the first column of 1,, that is, 

where At is an (n -1)-by-(n -1) matrix, and the #'s stand for unspecified entries. 

It follows from the induction hypothesis that there is an (n- I)-square unitary 
matrix Ut such that Uj At Ut is upper triangular. Let L = (1) E9 U1, that is, 

( ~ o o ol 
L= 0 Ut . 

0 
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Then 

(

A. # 

(UL).A(UL) ~ r 
# 

is upper triangular. Because it is a product of unitary matrices, U L is unitary, and 
the proof is complete. o 

SPECTRAL THEOREM 2.30 Let A e C11,11 • Then A is unitarily similar to a diagonal 
matrix if and only if A* A= AA*. 

Proof Let U be a unitary matrix such that U* AU = D is diagonal. Then A* A = 
(UD*U*)(UDU*) = U(D*D)U* = U(DD*)U* = (UDU*)(UD*U*) =AA*. 
Conversely (Exercise 34), there is a unitary matrix U such that U* A U and U* A* U 
are both upper triangular. Because U* A* U is upper triangular, its conjugate 
transpose, U* A U, must be lower triangular. Therefore, u• A U is both upper and 
lower triangular. o 

DEFlNmoN 2.31 A square matrix A (linear operator T) is normal if A* A = AA* 
(T*T =TT*). 

If A = (aij) is a hermitian matrix, then au = a;; is real. Because hermitian 
matrices are normal, there exists a unitary matrix U such that U* AU = D, a 
diagonal matrix whose main diagonal entries are the eigenvalues of A. Because 
D* = (U* AU)* = U*A*U = U* AU = D, the eigenvalues of A are all real as 
well. 

The next result is a restatement of the Spectral Theorem for linear operators. 

CoROLLARY 2.32 Let T be a linear operator on an inner product space V. Then 
T is normal if and only if there exists an orthonormal basis of V consisting of 
eigenvectors for T . 

DEFINmoN 2.33 Let A e C11 ,11 • The field of values or numerical range of A is 
F(A) = {x*Ax: x e C,.,l and Uxll = 1}. 

One may view F(A) as the set of those complex numbers that can occur as the 
{1,1)-entry of a matrix unitarily similar to A. 

LetS = {c1. c2 • ... , c,.} be a set of complex numbers. The convex hull of S is 
the set 

consisting of all convex combinations of the elements of S. 
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THEOREM 2.34 If A e C,.,,. is normal, tMn F(A) is tM convex hull of its 
eigenvalues. In particular, if A is Mrmitian with eigenvalues A. 1 ~ A.2 ~ • • · ~ A.,., 
t~n F(A) = [l.,., l.I]. 
Proof Sketch Suppose A e C,.,,.. It follows from Schur's Triangularization 
Theorem that the eigenvalues of A are elements of F(A). By a theorem ofToeplitz 
and Hausdorff,4 F(A) contains the convex hull of each of its finite subsets. 
Therefore, normal or not. the numerical range of A contains the convex hull of its 
eigenvalues. 

With respect to the dot product. V = C11, t is an inner product space. If A e C,.,,., 
then A" -+ AA' defines a linear operator on V. If A is normal, there is an orthonormal 
basis B = {.Kt, A"2, ••• , A"11 } of V consisting of eigenvectors of A, say, AA'; = A.; Xt, 

1 ::5 i ::5 n. If x = Ea;x; e V, then 

n 
x* AA'= LA.;Ia;l2. 

i=l 
(2.8) 

If x is a unit vector, then L la; 12 = 1. This proves that the numerical range of A 
is contained in the convex hull of its eigenvalues. s o 

Let A be a hermitian matrix with eigenvalues A.t ~ A.2 ~ • • • ~A.,.. Then, from 
Theorem 2.34, 

and 

A.1 = max u*Au 
luft=l 

A.,. = min u* Au, 
lul=l 

(2.9) 

(2.10) 

where the maximum and minimum are over the unit vectors u e V = C,., 1• This 
proves the following: 

CoROLLARY 2.35 Let A e C,.,,. be Mrmitian. Then A ~ 0 if and only if its 
eigenvalues are all nonnegative. 

In fact. Equations (2.9) and (2.1 0) are but the simplest examples of the following 
elegant result [Fischer (1905)]. (A generalization to a wider class of operators can 
be found in [Courant & Hilbert (1953)].) 

4111e convexity of F(.4), .4eC,,., was proved independently by [Toeplitz (1918)) and [Hausdorff 

(1919)]. For a discussion of why the theorem is lnle, see [Davis (1971)]. 
5Related results can be found in [Fiedler (1981)], [Grone, Jobnson, Sa & Wolkowicz (1987)], and 

[Jobnson (1976)]. 
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CoURANT-FISHER THEOREM 2.36 Let A e C11 ,11 be a hermitian matrix with 
eigenvalues A.t ~ A.2 ~ ···~A.,.. Then 

Ak = min max u* Au, 
W uew.1. 

lul=l 

(2.11) 

where the minimum is over the (k - I)-dimensional :rub:rpace:r W of V = Cn,l· 

Alternatively, 
Ak = max min u*Au, 

W uew.1. 
Hul=l 

where the maximum is over the (n- k)-dimensional :rubspaces of V. 

(2.12) 

Proof When k = 1 or k = n, Equation (2.11) follows from Equations 
(2.9)-{2.10). Suppose n > k > 1. Let Ut. u2, .•. , u,. be an orthonormal 
family of eigenvectors of A that afford A.t. l.2, •.. ,A.,., respectively. If U is a 
unitary matrix whose first k - 1 columns are u1, u2, ... , Uk-1· then U*A = 
diag (l.1,l.2, ... ,l.t-1) e B, where the spectrum of B is l.1 ~ Al+t ~ · · · ~A.,.. 
It follows from Equation (2.9) that 

Al = max v*Bv 
llvU=l 

= maxu*Au, 

where the second maximum is over the unit vectors u in the orthogonal complement 
of W = (ut, u2, ... , Uk-1)· In other words, there exists a (k- I)-dimensional 
subspace W of V such that l.1 is equal to the maximum value of u* Au over the 
unit vectors in W .L. Therefore, Al is at least as large as the minimum of this 
maximum over all (k- I)-dimensional subspaces. That is, Al ~ min max u* Au. 

If U is the n-by-n matrix whose i-th column is the eigenvector Uj, 1 ~ i ~ n, 
then U*AU = D, where D = diag (A.t,A.2, .•• ,A.,.). Let Wbeafixedbutarbitrary 
(k - I)-dimensional subspace of V, and set 

M= max u*Au 
ueW.l. 
lul=l 

= max u*Du, 
weX.l. 
Uul=l 

where X = {U*w: w e W}. If Mt is the maximum of u*Du over the unit 
vectors u e X .L whose last n - k components are zero, then M ~ M l· If 
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v = (a1, a2, ... , ak, 0, 0, ... , 0)1, is such a unit vector (which must exist because 
dim(XJ.) = n- k + 1), then 

k 

= LAilail2 

i=l 

k 

~ AkLiail2 

i=l 

because vis a unit vector. Therefore, M ~ Ak. Because W was arbitrary, the 
minimum of all such M's cannot be less than Ak, that is, min max u* Au ~ Ak· 
This completes the proof of Equation (2.11). The proof of Equation (2.12) is 
similar. o 

DEFINrnoN 2.37 Suppose A and B are hermitian n-by-n matrices, or hermitian 
operators on an inner product space V. If A - B ~ 0, then A dominates B, written 
A~B. 

If A ~ B, then u*Au ~ u*Bu for every unit vector u E ea .•. Therefore 
(Equation (2.11) ), the k -th largest eigenvalue of A, 

(2.13) 

the k-th largest eigenvalue of B. 
If A e C,.,,. is hermitian, let d(A) be the n-tuple consisting of the main diagonal 

entries of A (multiplicities included) arranged in nonincreasing order, and denote 
by s(A) the n-tuple consisting of the eigenvalues of A (multiplicities included) 
arranged in nonincreasing order. 

THEOREM 2.38 If A = (aiJ) ~ 0, then s(A) majorizes d(A). 

Proof Let P be a permutation matrix such that the main diagonal of P* A P is 
d(A). Let U = (uiJ) be a unitary matrix such that U*(P* AP)U = D, where 
D = diag (s(A)). Then P* AP = U DU*. Comparing the (i, i)-entries of these 
(equal) matrices, we see that 
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11 

(P* AP);; = L u;/A/iiii 
j=l 

Because U is unitary, 

1 :=:: i ~ n. Similarly, 

n 

= L luij 12lj, 1 :=:: i :=:: n. 
j=l 

11 

(UU*);; = L IUijl
2 

j=l 

= 1, 

n 

LIUijl
2 = 1, 

i=l 

41 

(2.14) 

1 :=:: i :=:: n. Therefore, Q = (qij) defined by q;j = lu;il2, is doubly stochastic. 
Because Equations (2.14) can be written in the form d(A) = s(A)Q1, the result 
follows from Theorem 1.10. o 

COROLLARY 2.39 Let A = (a;j) E C,.,11 be a hermitian matrix with eigen­
values lt ;:: l2 ;:: · · · ;:: A.,. and nonincreasing diagonal sequence d(A) = 
(bt. ~ •. . . , b,.). Then 

k k 
LA.;:::: Lb;, 1 :=:: k :=:: n. (2.15) 
i=l i=l 

Proof By Corollary 2.35, H = A - A.,. I,. :::: 0. By Theorem 2.38, 

s(H) = (lt -A.,., l2- A.,., ... , A.,. -A.,.) 

>- (bt -A.,.,~ -A.,., ... ,b,. -A.,.) 

=d(H). 

0 



42 Multilinear Algebro 

Corollary 2.39 was first proved in [Schur ( 1923) ]. The following lovely converse 
appeared in [Horn (1954)]: Let (a)= (at, a1, ... , a 11 ) and (b)= (bt, hl •... , bn) 
be nonincreasing sequences of real numbers. If 

k. k. 

Lai~Lb;, l~k~n. 
i=t i=t 

with equality when k = n, then there exists a real, symmetric, n-by-n matrix A 
with eigenvalues at, a1, ... , an and diagonal entries bt. hl, ... , bn. (An excellent 
reference for these and related results is [Marshall & Olkin (1979)].) 

0EF1NlTlON 2.40 Hadamard 's function is defined by 

11 

h(A) =IT a;;, A= (a;J) e C11 ,11 • 

i=l 

HADAMARD'S THEOREM 2.41 If A ~ 0, then h(A) ~ det(A), with equality if and 
only if A has a zero row and column, or A is diagonal. 

Proof Sketch In the same (1923) paper that contained Corollary 2.39, Schur 
proved that the elementary symmetric functions are what we now call Schur 
concave: H (a) = (at, a1, ... , a11 ) and (b) = (bt, hl, ... , bn) are nonincreasing 
sequences of positive real numbers such that (a) > (b), then E,(a) ~ E,(b), 
1 < r ~ n, with equality if and only if (a) = (b). Applying the r = n case of this 
result to s(A) > d(A), we obtain 

11 

det(A) = IT A.; 
i=t 

11 

<ITa·· - 11 

i=l 

= h(A), 

with equality if and only if A.; = a;; for all i (if and only if A is diagonal), or 
a;; = 0 for some i (in which case every entry in row and column i of A is 0). o 

Theorem 2.41 was proved in [Hadamard (1893)].6We shall have more to say 
about Hadamard's Theorem in Chapter 7. 

61n 1944, Jacques Hadamard bad this to say about 'lbeorcm 2.4t: "To continue about my failures, 
I shall mention one which I particularly regret. It concerns the celebrated Dirichlet problem which I, 
for years, tried to solve in the same initial dim:tion as Fredholm did ... [In] t893, I bad been attracted 
by a question in algebra (on determinants). When solving it, I had no suspicions of any definite use it 
might have, only feeling that it deserved interest; then in 1900 appeared Fredholm 's tbcory, for which 
the result obtained in t893 happens to be essential." 
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THE INTEiu.ACING INEQuALITIES 2.42 Let A E C11 ,11 be a hennitian matrix with 
eigenvalues A.1 ~ A.z ~ • • • ~ A.,.. Suppose B is an r-by-r principal submatrix 
of A. If the eigenvalues of B are '11 ~ '72 ~ · · · ~ 'lr· then Ak ~ 'lk ~ An+k-r• 
1 !:: le !:: r. 

Proof If r = n, equality holds for all le. If r = 1, the result follows from 
Theorem 2.34. Thus, we may proceed under the assumption that 2 !:: r !:: n - 1. 
Because the eigenvalues of A are unchanged by a permutation similarity, we 
may assume that B is the leading r-by-r principal submatrix of A (the submatrix 
obtained by deleting rows and columns r + 1, r + 2, ... , n). From Equation (2.9), 
A.1 is the maximum of u• Au over all unit vectors u E C11,1, while '71 is the maximum 
of v* Bv over all unit vectors v E Cr,l· That is '71 is the maximum of u* Au over 
all unit vectors u e C11,1 the last n - r components of which are zero. Therefore, 
A. 1 ~ '71· If le > 1, a similar argument based on Equation (2.11) shows that Ak ~ 'lk, 
r~le~2. 

Thrning to the inequalities 'lk ~ An+k-r• we may continue to assume that B is 
the leading r-by-r principal submatrix of A. Consider the case r = n- I, so that 
the inequalities become 'lk ~ Ak+l• 1 ~le~ n - 1. From Equation (2.12), 

A.t+l = max min u• Au 
W uEW.L 

lluH=l 

!:: max min u* Au, 
W ueW.L 

luH=l 
u.J.E. 

where the maxima are over the subspaces W of C,., 1 of dimension n - (le + 1), 
and E,. e Cn,l is the column vector whose only nonzero entry is a 1 in row n. If 
u .l E,., then u• Au = v• Bv, where v E Cn-1,1 is the column vector obtained 
from u by deleting the 0 from row n. 

If W is a fixed but arbitrary (n -le - I)-dimensional subspace of C11,J, then 
dim({u e C,.,l: u e w.J. and u .l E,.}) is either le+ 1 or le depending on whether 
or not E,. E W. Because every (le + 1 )-dimensional subs pace of Cn-1, 1 contains 
le-dimensional subspaces, 

max min u*Au < max min v*Bv 
W uEW.L - V veV.L 

lul=l lvl=l 
u.J.E. 

where V ranges over the subspaces ofCn-1.1 of dimension (n- 1)- le. 
Hr < n -1, then B is a principal submatrix of an (n- 1)-by-(n- 1) principal 

submatrix of A and the result follows by induction. o 
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LEMMA 2.43 Suppos~ A E C11, 11 • Then A ~ 0 if and only if there exists a matrix 
B E C,.,,. such that A = B* B. 
Proof Suppose A= B* B. Then A*= A. If x E C11,J, then x*Ax = x* B* Bx = 
IIB(x)U2 ~ 0. Conversely, suppose A ~ 0. By the Spectral Theorem, there is a 
unitary matrix U such that 

UAU* = diag (A.1, A.z, ••. , A.,.). 

By Corollary 2.3S, the A.'s are all nonnegative. Let B = CU, where C = 
diag C+.Ji"1. +J'i"z, ... , +.Ji",.). Then A= B* B. o 

CoROlLARY 2.44 Let A E C11,11 be a hermitian matrix. Then A ~ 0 if and only if 
the determinants of its principal submatrices are all nonnegative, and A is positive 
definite if and only if the determinants of its leading principal submatrices are all 
positive. 

Proof It follows from Corollary 2.35 and the interlacing inequalities that each 
principal submatrix of a positive (semi)definite hermitian matrix is positive 
(semi)definite. Because det(B* B) = 1 det(B)I2, the necessity of the conditions 
is a consequence Lemma 2.43. Sufficiency can be proved using the interlacing 
inequalities, Corollary 2.35, and mathematical induction. o 

Suppose A e C,.,,.. If A ~ 0 then, as in the proof of Lemma 2.43, there is a 
unitary matrix U such that U AU* = diag (A.1, A.z, ... , A.,.). If r is any positive 
real number, define the positive semidefinite matrix 

A' = U* diag (A.}, A.2, ... , A.~)U. (2.16) 

Application to Graphs 

The next definition opens the way for these ideas and techniques to be applied in 
the study of graphs. 

DEANmoN 2.45 LetG =(V, E) beagraphwithvertexset V= {VJ, Vz, ... , v11 }. 

Define 

if {v;, Vj} E E, 
otherwise. 

The adjacency matrix of G is the n-by-n matrix A(G) = (a;j). If D(G) = 
diag (d(v1), d(Vz}, ... , d(v,.)) is the diagonal matrix of vertex degrees, then the 
Laplacian matrix of G is L(G) = D(G) - A(G). 
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FIGURE 2.1 

EXAMPLE 2.46 Let G be the graph illustrated in Figure 2.1. Then 

L(G) = ( ~ j -! 
0 0 -1 

-1 -1 -1 

J =:). 
2 -1 

-1 4 

45 

D 

Let Yn E C,,I be the column n-tuple, each of whose entries is 1. Then 
L(G)Yn = 0 expresses the fact that every row sum of L(G) is zero. It also means 
that L(G) is singular; for any graph G, 

det(L(G)) = 0. (2.17) 

THEOREM 2.47 /fG is a graph, then L(G) ~ 0. 

Proof It is clear from the definitions that both A(G) and L(G) are symmetric 
and, therefore, hermitian. The proof that L(G) is positive semidefinite is left to 
the exercises. o 

Observe (Definition 2.45) that L(G) depends not only on G =(V, E), but on 
the numbering of the vertex set V= {vJ, 112 •... , vn}· If L1 is the version of L{G) 
based on one numbering of the vertices and L2 is the version based on another, 
then there exists an n-by-n permutation matrix P such that 

(2.18) 

where, of course, p-I = P* = P'. In fact, more is true. 

THEOREM 2.48 Let G1 and G2 be graphs. Then G1 is isomorphic to G2 if and 
only if there is a permutation matrix P such that L(Gz) =p-I L(G1)P. 

It follows from Theorem 2.48 that G1 and G2 are isomorphic only if L(GJ) and 
L(G2) are (unitarily) similar. By the Spectral Theorem, two hermitian matrices 
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are unitarily similar if and only if they have the same eigenvalues. Evidently, the 
multiset of eigenvalues of L(G) is a graph invariant. 

If G is a graph on n vertices, let 

be the eigenvalues of L(G). Define s(G) = (l.1, l.2, ... , A11-J), the (n- 1)-tuple 
obtained from s(L(G)) by deleting A.,. = 0. Then G1 is isomorphic to G2 only if 
s(Gt) = s(G2). 

THEOREM 2.49 /fG is a graph, thens(G) >- d(G), that is, thespectrumofL(G) 
majorizes the degree sequence ofG.1 

Proof This is an immediate consequence of Theorem 2.38 and the definitions. o 

EXAMPLE 2.50 Let G be the graph in Figure 2.1. Then d(G) = (4, 3, 2, 2, 1), 
s(L(G)) = (5, 4, 2, I, 0), and s(G) = (5, 4, 2, 1). Observe that 

5 :::::4, 

5+4 ::::;4+3, 

5 + 4 + 2 ::::: 4 + 3 + 2, 

5 + 4 + 2 + 1 ::::: 4 + 3 + 2 + 2, 

and5+4+2+1 =4+3+2+2+1. 0 

Recall (Theorem 1.37) that the conjugate degree sequence, d*(G), also ma­
jorizes d(G). In fact, there is some empirical evidence for the following: 

CoNJECJlJRE 2.51 Let G be a graph. Then d*(G) >- s(G), that is, the conjugate 
degree sequence majorizes the Laplacian spectrum. 

In Example 2.50, d(G) = (4, 3, 2, 2, 1). Therefore, d*(G) = (5, 4, 2, l) = 
s(G), affording a case of equality in Conjecture 2.51. As we now see, this is no 
coincidence. If follows from the fact that d(G) is a maximal graphic partition. 

THEOREM 2.528 Let G be a connected graph. Then d*(G) = s(G) if and only if 
G is a threshold graph. 

7 An improvement of this result can be found in [Grone (1995)). 
8Tbeorem 2.52 was first proved in [Merris (1994a)]. Threshold graphs were introduced indepen­

dently by [OivMal & Hammer (1977)) and [Henderson & Zalcstein (1979)). Consult [Arikati & Peled 
(1994)), [Golumbic (1978)), [Hammer, Ibaraki & Simeone (1981)), [Orlin (1977)], [Peled (1980)). and 
[Rucb & Gutman (1979)) for more about tbese "maximal" graphs. 
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Exercises 

1. Prove that u : V' -+ C, defined by Equation (2.3), is a linear functional on 
V'. 

2. Prove that the mapping \11 in Theorem 2.2 is a vector space isomorphism. 

3. Let ( , ) be an inner product on V. Let W be a subspace of V. Explain why 
the restriction of ( , ) to W is an inner product on W. 

4. Prove that Equation (2.4) defines an inner product on C". 

5. Let V be a (complex) vector space of dimension n. Explain how Example 2.5 
can be used to construct an inner product on V. (Hint: Start with a fixed but 
arbitrary basis of V.) 

6. Suppose that S = {v,, t12 •••• , Vk} is an orthogonal set of nonzero vectors. 
Prove that S is linearly independent. 

7. Prove Theorem 2.11. 

8. H W is a subspace of the inner product space V, show that (W l. ).l. = W. 

9. Exhibit the orthonormal basis of C3 obtained by applying the Gram-Schmidt 
process to the basis {(0, 1, 1), (1, 0, 1), (1, 1, 0)}. 

10. What is the result of applying the Gram-Schmidt process to the linearly 
dependentset{(1,0),(0, 1),(1, 1)}? 

11. Let w be the vector defined in Equation (2.6). Prove that (w, u) = 0. 

12. Let v and u :f. 0 be linearly dependent vectors in an inner product space V. 
Prove that 

(v,u) 
v = llull2 u. 

13. Prove Bessel's Inequality. 

14. Prove that tr (A*A) tr (B* B):::: I tr (A* B)l2, for all A, Be C,.,,.. 

15. Let V be an inner product space of dimension n. Suppose A= (a;j) e C11,11 • 

Prove that there exist vectors v,, t12 •••• , v,. and w,, w2, ... , w,. such that 
Dij =(V;, Wj). 

16. Let Vbeaninnerproductspace.H S, T e L(V, V),provethat(ST)* = T*S*. 

17. Let T be a projection on V. Prove thatdim(T(V)) = tr (T). (Since the trace 
of a matrix is preserved under similarity, we can unambiguously define the 
trace of T to be the trace of the matrix representation of T with respect to any 
fixed basis B of V. Another approach would be to define the trace of T to be 
the sum of its eigenvalues.) 
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18. Let W be a subspace of the inner product space V. 

a. Prove that there exists an orthogonal projection P e L(V, V) such that 
W = P(V). 

b. Let T e L(V, V). HT commutes with P, show that T holds W invariant, 
that is, T(w) e W for all w e W. 

c. Suppose T holds W invariant. Must T commute with P? 

19. Suppose V = Wt + W2. Prove that V = Wt Ea W2 if and only if dim(V) = 
dim(Wt) + dim(W2). 

20. Let B = { Vt, V2, ... , v,.} be a basis of the inner product space V. Suppose 
S, T e L(V, V). H (T(v;}, Vj) = (v;, S(vj)). 1 =: i, j =: n, prove that 
S= T*. 

21. Let T be a linear operator on the inner product space V. Prove (T*)* = T, 
that is, prove (T*(v), w) = (v, T(w}}, for all v, w e V. 

22. Let B = { Vt, V2, ... , v,.} be a basis of V. Prove that there is an inner product 
on V with respect to which B is orthonormal. 

23. Prove Lemma 2.17. 

24. Let B = {ut. u2, ... , u,.} be an o.n. basis of the inner product space V. H 
v = Ea;u;,let [v) e Cn.t be the column vector whose i-th entry is a;, that 
is, [v) is the coordinate representation of v with respect to B. 

a. H T e L(V, V), prove that (T(u), v) = [v]*[T][u], where [T] is the 
matrix representation of T with respect to B (Example 2.19). 

b. Prove Lemma 2.27. 

25. Prove that T e L(V, V) is positive definite hermitian if and only if it is 
positive semidefinite hermitian and invertible. 

26. Show that every orthogonal projection is positive semidefinite. 

27. Suppose A e C2,2· 

a. H x* Ax ~ 0 for all x e C2,1. prove that A is hermitian. 

b. HA is real and x* Ax ~ 0 for all real 2-by-1 matrices x, must A be 
symmetric? 

28. Let {ut, u2, ... , u,.} be an orthonormal basis of the inner product space V. 
Exhibit a hermitian operator T e L(V, V) that satisfies (T(u;), u;) > 0, 
1 =: i =: n, but such that T is not positive semidefinite. 

29. Prove that U e C,.,,. is unitary if and only if its columns are orthonormal with 
respect to the standard inner product of C". 

30. Let B be an o.n. basis of the inner product space V. Let [T] be the matrix 
representation ofT E L(V, V) with respect to B. Prove that T is unitary if 
and only if [T) is unitary. 
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31. Let T be a unitary operator on the inner product space V. Suppose 
{ u 1 , u2, •.• , u,.} is an orthonormal set of vectors in V. Prove that 
{T(ut), T(u2) •...• T(u,.)} is orthonormal. 

32. Let T be a linear operator on the inner product space V. Prove that there exists 
an orthonormal basis of V with respect to which the matrix representation of 
T is upper triangular. 

33. Prove Corollary 2.32. 

34. Let A, B e C,.,11 be a pair of commuting matrices (that is, AB = BA). Prove 
that there exists a unitary matrix U e C11,11 such that U* AU and U* BU are 
both upper triangular. (Hint: Prove that A and B have a common eigenvector.) 

35. Give a proof of the Spectral Theorem that does not rely on Exercise 34. (Hint: 
If A is normal and U is unitary, show that U* AU is normal. Then prove that 
a normal, upper triangular matrix is diagonal.) 

36. Prove that a normal matrix is hermitian if and only if its eigenvalues are real. 

37. Let T be a hermitian operator on the inner product space V. If the eigenvalues 
ofT are (all) nonnegative, prove that T is positive semidefinite. 

38. Prove that a normal matrix is unitary if and only if its eigenvalues all have 
absolute value 1. 

39. Let T be a linear operator on the inner product space V. Prove that T ~ 0 if 
and only if there exists an S e L(V. V) such that T = S* S. 

40. Let V be an inner product space. Suppose T e L(V, V). If (T(v), v) ~ 0 
for all v e V, show that T = T*. (Thus, the phrase "positive semidefinite 
hermitian" is redundant.) 

41. Let VJ, V2 ••••• v,. be vectors in an inner product space V. Define aij = 
(v;, Vj). 1 :::; i, j :::; n. Then A = (a;j) is the Gram matrix based on 
VJ,V2, ••• ,v,.. 
a. Show that A ~ 0 if and only if A is a gram matrix. 

b. Show that A is positive definite hermitian if and only if it is a gram matrix 
based on linearly independent vectors. 

42. Let k be a positive integer. Suppose r = 1/ k. Show that 

a. (Ar)l =A. 

b. (A1Y =A. 

43. Prove that A e C11•11 is positive semidefinite hermitian if and only if there is 
a lower triangular matrix B such that A = B* B. 

44. Prove that A e C11,11 is positive semidefinite hermitian if and only if there is 
an upper triangular matrix B such that A = B* B. 
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45. Suppose A = (aij) e C,.,,. is positive definite hermitian. Define d; = 
(a;;)-112, 1 ~ i ~ n, D = diag (d1, d2, ... , d,.), and B =DAD. 

a. Show that (det(A))1111 ~ ( tr (A))/n. (Hint: Use eigenvalues and the 
arithmetic-geometric mean inequality.) 

b. Show that the "correlation matrix" B = DAD is positive definite hermi­
tian. 

c. Show that det(A) ~ h(A) if and only if det(B) ~ 1. 

d. Show that det(B) ~ 1. 

46. Suppose A = (a;1) ~ 0. Prove that 

a. a;; ~ 0, 1 ~ i ~ n. 

b. a;;aJi ~ la;il2, 1 ~ i, j ~ n. 

c. if a;; = 0, then every entry in the i-th row and column of A is zero. 

47. LetS, T e L(V, V) be orthogonal projections. Show that S ~ T if and only 
if ST = T. 

48. Let A.1 ~ A.2 ~ • • • ~A.,. be the eigenvalues of a hermitian matrix A e C,.,,.. 
Show that A-1/11 - A~ 0 and A- A.,.I,. ~ 0. 

49. Suppose A~ B.lf tr (A)= tr (B), prove that A= B. 

50. Let A= ( ~ i )·Show that F(A) is not the convex hull of the eigenvalues 

of A. 

51. Suppose A e C,.,,. and a e Qm,ll· Denote by A[ala] the principal m-by-m 
submatrix of A whose (i, i)-entry is the (a(i), aU))-entry of A. Prove that 
(A* A)[ala] ~ A[ala]* A[ala]. 

52. Suppose 0 < E < ../2- 1. Let A = diag (1 + £, I + s-1 
). 

a. Prove that A ~ J, the 2-by-2 matrix each of whose entries is 1. 

b. Prove that A2 'i. 1 2• (Necessary and sufficient conditions for A1 ~ B1 to 
hold for all positive integers k are given in [Kwong (1977)].) 

c. Prove that A 1/ 2 ~ Jlf2• (More generally, it is known [Au-Yeung (1973)] 
that A~ B implies A9 ~ B9 whenever 0 < 8 < 1.) 

53. Suppose A e Cm,m and B e Cm,,.. If A ~ 0, prove that B* AB ~ 0. 

54. Suppose A e C,.,,. is partitioned as 

A=(~ ~). 
where P and S are square and P is invertible. Then the Schur Complement 
of Pin A is A/P = S- RP-1Q. 
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a. Prove that9 det(A) = det(P) det(A/ P). (Hint: Compute XAY, where 

X= ( -R~-l ~) and Y = ( ~ -P;IQ) .) 
b. If A 2:: 0, prove that A/ P 2:: 0. (Hint: If A :::: 0, then R = Q*; use part (a) 

and Exercise 53.) 

Application Exercises 

55. LetG =(V, E) be a graph with vertex set V= {VI, 112 • ... , v11 } andLaplacian 
matrix L(G). 

a. Prove that x L( G)x* = E lx; - Xj 12, where the sum is over the edges of 
G, that is, over those ordered pairs (i, j) such that i < j and { v;, Vj} e E. 

b. Prove that L(G) 2:: 0. 

56. Let G be the graph in Example 2.50 (Figure 2.1). Confirm that s(G) = 
(5, 4, 2, 1). 

57. Prove Theorem 2.48. 

58. Confirm that s(G) majorizes d(G) if G is the graph 

a. b. c. 

59. Let G be a graph with vertex set V = {vi, 112 • . .. , v11 } and edge set 
E = {e1, e2, ... , em}· For each edge ei = {v;, VA:}. choose one of v;, VA: 
to be the ''positive end" of ei, and the other to be the "negative end". Thus, G 
is given an orientation. For a fixed but arbitrary orientation of G, define the 
n-by-m matrix Q = Q(G) = (q;j) by 

if v; is the positive end of ei , 
if it is the negative end, and 
otherwise. 

9Tbis identity appeared in [Scbur (1917)]. The name "Scbur Complement" was introduced in 

[Haynsworth (1968)]. Also see [Cottle (1974)]. 
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Then Q is an oriented vertex-edge incidence matrix for the graph G. 

a. Prove that Q Q' = L( G), independently of the orientation. 

b. Prove that L(G) ~ 0. 

60. Confirm the sufficiency part of Theorem 2.52 for the graphs in Figure 1.12. 

61. Let G be a graph. Show that L(G) commutes with L(Gc). 

62. Suppose s(G) = (A.,, A.2, ••• , A-11-t) and s(Gc) = (JLJ, JL2, ••• , JL11-t). Show 
that A.; + JL11-; = n, 1 ~ i < n. (Hint: Exercises 34 and 61.) 



CHAPTER 3 

Permutation Groups 

A permutation of degree n is a one-to-one function from { 1, 2, ... , n} onto itself. 
The set of all n! permutations of degree n is denoted S,.. Under the operation of 
function composition, S,. is a group, the symmetric group of degree n. The identity 
of this group is the permutation e,. defined by e,.(x) = x for all x E {1, 2, ... , n}. 
When n is understood from the context, e may be used in place of e,.. 1 

Let x E {1, 2, ... , n} and u E S,. be fixed but arbitrary. If u(x) = x, then xis 
a fixed point of u. More generally, let x = x1 and define Xi+ 1 = u (x;) = O'i (x ), 
i ::: 1. If k is the smallest positive integer such that uk(x) = x, then 

is the cycle of u containing x. The integer k is the length of Ca(x), and Ca(x) is 
sometimes called a k-cycle. Thus, x is a fixed point of u if and only if the length of 
Ca(x) is 1. If j = i +I orifi = k andj = 1, thent = Xj is said tofollows = x; 
in Ca(x). Cycles Ca(x) and C-r(Y) are equivalent if they have the same length and 
the same integers in the same (cyclical) order. So, the phrase "Ca(x) and C-r(Y) are 
equivalent" means that t follows s in Ca (x) if and only if t follows s in C-r (y ), for 
every choice of sand tin {1, 2, . .. , n}. If {ui(x): i::: 1} n {Ti(y): i ::: 1} = 0, 
then the cycles Ca(x) and C-r(Y) are disjoint. 

EXAMPLE 3.1 Let u E .% be the permutation defined by u(1) = 5, u(2) = 4, 
u(3) = I, u(4) = 2, u(5) = 3, and u(6) = 6. Then 6 is a fixed point of u, and 
Ca(6) = (6). While Ca(l) = (153), Ca(3) = (315), and Ca(5) = (531) are 

1Tbe letter~ has already been used to denote an edge of a graph; e. will be used later to denote the 
n-th vector in a basis. It is to be hoped that the context will eliminate any confusion these notational 

abuses might otherwise cause. 
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equivalent to each other, they are not equivalent to (135). Finally, C,(2) = (24) 
and C,(4) = (42) are equivalent to each other and disjoint from C,(x) when 

2~x~~ 0 

LEMMA 3.2 Suppose x, yE {1, 2, ... , n} and u, t" E S,.. Then 

(a) either C,(x) and C,(y) are disjoint or they are equivalent; and 
(b) either C,(x) and CT(x) are identical or they are inequivalent. 

Dm:oonoN 3.3 Let C,(x}, C,(y}, ... , C,(z}, be the inequivalent cycles of u E 
S,.. Then the disjoint cyde factorization2of u is C,(x)C,(y) ... C,(z). 

Suppose that u is the permutation in Example 3.1. Because there are three 
(equivalent) ways to express the 3-cycle, two ways to express (24) = (42), and 
because the three cycles can be written in any order, there are 3 x 2 x (3 !) = 
36 different looking ways to express its disjoint cycle factorization. (Some 
examples are: (153)(24}(6), (315)(6)(24), (42)(531)(6}, and so on.) Apart from 
equivalence and the order in which the cycles are written, however, the disjoint 
cycle factorization of a permutation is unique. Moreover, it is customary when 
expressing permutations using disjoint cycle notation to suppress the cycles of 
length 1 (corresponding to fixed points). In particular, the permutation from 
Example 3.1 is typically written u = (153)(24). 

Dm:oonoN 3.4 The cyde type of u E S,. is the partition of n whose parts are the 
lengths of the cycles in its disjoint cycle factorization. Two permutations are said 
to have the same cyde structure if their cycle types are the same. 

ExAMPLE 3.5 Consider the permutation u = (1357)(246) E S7 with cycle type 
[4,3]. As we know, (1357)(246) is just one of 4 x 3 x 2 = 24 different looking 
ways to express the disjoint cycle factorization of u . We now consider a different 
question, namely, the number of permutations in s-, that have cycle type (4,3]. 
Any such permutation can be written in the form t" = (abcd)(xyz). While 
7 x 6 x 5 x 4 = 840 is the number of ways to "fill up" the 4-cycle (abed), 
it is not the number of ways to choose the 4-cycle; it is too big. We have not 
taken equivalence into account. Because (abed) = (bcda) = (cdab) = (dabc), 
there are only 840/4 = 210 different 4-cycles. Once the 4-cycle is chosen, three 
numbers remain to play the roles of x, y, and z. These can be arranged in 3-cycles 
in 3 x 2 x 1/3 = 2 inequivalent ways (namely (xyz) or (xzy)). Therefore, s-, 
contains a total of2l0 x 2 = 420 permutations of type [4,3]. o 

Note that the 420 permutations enumerated in Example 3.5 have the same cycle 

2Despite the fact that the binary operation of S. is function composition, we will adopt the generic 
language and speak of it as a "product". 
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structure as (abc)(wxyz). Indeed, 

7x6x5x4 3x2x1 7x6x5 4x3x2x1 
4 X 3 = 3 X 4 

ExAMPLE 3.6 One of the 77 partitions of 12 is [32 , 231. How many permutations 
in S12 have cycle type [3,3,2,2,21? The generic permutation with this cycle type 
may be written 

u = (abc)(xyz)(pq)(rs)(tu). 

There are 12 x 11 x 10/3 = 440 ways to choose the first 3-cycle. Once it has 
been chosen, there are 9 x 8 x 7/3 = 168 ways to choose the second. So, 
440 x 168 = 73, 920 is the number of ways to choose a sequence of two 3-cycles. 
There is a subtle point here that did not arise in our previous discussion: We have 
double counted the pairs of 3-cycles that could occur in our generic u, once in the 
form (abc)(xyz) and again as (xyz)(abc). Compensatingforthisdoublecounting, 
we conclude that the pair of 3-cycles can be chosen in 73,9W/2 = 36,960 different 
ways. (While it is true that (abcd)(xyz) = (xyz)(abcd), we never counted these 
expressions as different in Example 3.5.) 

No matter which six numbers are used in the two 3-cycles, six numbers remain 
to be distributed among the three 2-cycles. We may choose (pq) in 6 x 5/2 = 15 
ways; (rs) in 4 x 3/2 = 6 ways; and (tu) in 2 x 1/2 = I way. There would be 
15 x 6 x 1 = 90 ways to choose the three 2-cycles if, for example, (pq)(rs)(tu) 
were different from (rs)(pq)(tu). Because the order in which the 2-cycles are 
written does not matter, we have counted each triple of 2-cycles 3! = 6 times. Once 
the two 3-cycles have been chosen, there are only 90/6 = 15 ways to choose the 
three 2-cycles. Hence, the number of permutations in S12 of cycle type [32, 231 is 
36,960 x 15 = 554,400. (So, fewer than 0 .12% of the 479,001,600 permutations 
in S12 have cycle type [32, 231.) o 

The evident generalization of these examples involves permutations of cycle 
type 1r = [n'•, . . . , 3'3 , 2'2 , l'• 1 t- n, an awkward thing to write down. To simplify 
such expressions, we will sometimes abuse the language and reverse the (usual 
decreasing) order of the parts, writing instead 1r = [1'•, 2'2 , • • • 1 t- n. 

THEOREM 3. 7 Let 1r = [1 ' 1, 2'2 , •• • 1 t- n. Then the number of peT71U4tations in 
Sn of cycle type 1r is 

Recall that the length of the cycle Ca (x) is the smallest positive integer k such 
that u" (x) = x. In this context. x is fixed, and k depends on x. We are now interested 
in the smallest positive integer k such that u" (x) = x, for all x e { 1, 2, ... , n}. 
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DI!FINJTioN 3.8 Let u e S,.. The smallest positive integer k such that u 1 = e, is 
called the order of u, denoted o(u). 

ExAMPLE 3.9 Let u = (123)(45) e Ss. Then u 2 = (132), u3 = (45), 
u 4 = (123), u 5 = (132)(45), and u 6 = es. The degree of u is 5 and its order is 6. 

0 

THEOREM 3.10 The order of u E S, is the least common multiple of the lengths 
of the cycles in its disjoint cycle factorization. 

DmNmoN 3.11 A transposition is a permutation of cycle type [2, 1''-2] (or 
[ln-2, 2]). 

THEOREM 3.12 Every per71Wtation u E S, can be wrinen as a product of 
(not necessarily disjoint) transpositions. (The factorization into a prod~~et of 
transpositions may not be unique.) 

Proof It suffices to show that a k-cycle can be expressed as a product of 
transpositions: Observe that 

(XtX2 •. • XJ:) = (XtX2)(X2X3) .•• (XJ:-IXJ:) 

= (XtXJ:)(XtXJ:-1) ••. (XtX2). (3.1) 

0 

THEOREM 3.13 Let 0'1, 0'2, ••• , Ur and Tt, 't2, ••• , Ts be transpositions. 
q Ut 0'2 ••• O'r = Tt 't2 ••• Ts, then ( -1 Y = ( -l)s, that is, r and s are either both 
odd or both even. 

Proof Because (Theorem 3.10) the order of a transposition is 2, every transposi­
tion is its own inverse. If O'J u2 ••• O'r = TJ -r2 ••• Ts, then the identity permutation 

is a product of r + s transpositions. Suppose r + s is odd. Let t be minimal such 
that t is odd, and the identity can be written as e = J.LIJ.L2 ••• J.Lt. a product of 
t transpositions. Evidently, t > 1. Suppose J.Lt = (xy). Let m be the largest 
integer less than t such that J.Lm = (xz). (Such an m must exist. Otherwise, 
e(y) = J.LIJ.L2 ••• J.L,(y) = J.LIJ.L2 ••• J.Lt- 1 (x) = x.) If m < t -l,let J.Lm+l = (pq), 
where p '1- x '1- q. If p '1- Z '1- q, then J.LmJ.Lm+l = J.Lm+IJ.I.m· If p = z, 
then J.LmJ.Lm+l = (xz)(zq) = (zq)(xq). Thus, without loss of generality we may 
assume 

where x is fixed by J.L 1. J.L2, ••• , J.Lk . 
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Now, there is an integer m < t - k such that Ym = Yt-k· Otherwise, x is 
sent by the identity to J.L1J.L2 .•• J.Lt<Yt-A:). which cannot be x because x is fixed 
by J.Ll, J.L2, ••• , J.Lk· Let m be maximal such that Ym = Yt-k· H m+ 1 < t- k, 
then (XYmHXYm+l) = <YmYm+l)(xym). Therefore, after some more rearranging, 
we may assume 

e = JL1JL2 ••• J.Lt-2(xy)(xy) 

= J.LIJ.L2 • • · J.Lt-2· 

This is a contradiction because t - 2 is odd and less than t. 0 

DEFINITION 3.14 A permutation u e S, that can be written as a product of an 
even number of transpositions is said to be even. H u is not even, then it is odd. 
The alternating character of S, is defined by 

s(u) = { _! if u is even 
ifuisodd. 

Observe that s: S, -+ C is a homomorphism. Its kernel, A,. is the alternating 
group of degree n. Thus, A, is a normal subgroup of S, consisting of all the even 
permutations. 

DEFINITION 3.15 Let c1(u) be the number of cycles oflength t, and 

" 
c(u) = L c1(u) 

t=l 

the total number of cycles in the disjoint cycle factorization of u e S,. 

Using the notation introduced in Definition 3.15, the cycle type of u is 
[lc•(a), 2cz(a), ... ]. In particular, 

" 
Etc1(u) = n. (3.2) 
t=l 

Note that Ci (u) (not to be confused with Ca(l)) is the number of fixed points of u. 

THEOREM 3.16 Ifu e S,, then s(u) = (-1)"-c(a). 

Proof From Equation (3.1), each k-cycle of u is the product of k- 1 transposi­
tions. Summing the numbers of transpositions over all c(u) cycles of u (including 
the cycles of length 1 ), we deduce that u is the product of n - c( u) transpositions. 
Combined with Theorem 3.13 and Definition 3.14, this completes the proof. o 
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EXAMPLE 3.17 If u = (12345)(6789}, then 

(24)u(24) = (14325)(6789) 

and 
(27)u(27) = (17345)(6289). 

0 

THEOREM 3.18 1Wo permutations, u, 1J. e S,. have the same cycle structure if and 
only if they are conjugate inS,., that is, if and only if there is a permutation r: e S,. 
such that r: -I 0' r: = IJ.. 

Proof As in Example 3.17, (xy)u(xy) is the permutation obtained from u by 
interchanging the positions of x and y in its disjoint cycle factorization. Now, u 
and #L have the same cycle structure if and only if IJ. can be obtained from u by 
a sequence of interchanges, if and only if there exist transpositions T:t, 1:2, ••• , T:r 

such that 

if and only if r:-1ur: = IJ., where r: = Tt 1:2 ••• T:r. The result follows from 
Theorem 3.12. o 

DEFINITION 3.19 A permutation group of degree n is a subgroup of S,.. 

DEFINITioN 3.20 Let G be permutation group of degree n. Then x, y e 
{ 1, 2, . .. , n} are equivalent modulo G, written x = y (mod G), if there exists a 
u e G such that u(x) = y. 

THEOREM 3.21 For any subgroup G of S,., equivalence modulo G is an equiva­
lence relation. 

It follows from Theorem 3.21, and the general theory of equivalence relations, 
that equivalence modulo G partitions {I, 2, ... , n} into a disjoint union of equiv­
alence classes. 

DEFINITioN 3.22 The equivalence classes of {1, 2, ... , n} modulo G are called 
orbits of G. The orbit of G to which x belongs is Ox = {u(x) : u e G}. If x = y 
(mod G) for all x, ye {1, 2, ... , n}, that is, if G has just one orbit, then G is said 
to be transitive. 

EXAMPLE 3.23 Evidently,S,.istransitiveforalln.IfG = {e4, (12)(34), (13)(24), 
(14)(23)} and H = {e4, (12), (34), (12)(34)}, then G and H are isomorphic 
groups. However, G is transitive but H is not; the orbits of H are Ot = { 1, 2} = 02 
and 03 = {3, 4} = 04. This shows that transitivity is not a group invariant. o 
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DEFlNITioN 3.24 Let G be a subgroup of S,.. For each x e {1, 2, ... , n}, the 
stabilizer subgroup Gx = {u e G: u(x) = x}. 

EXAMPLE 3.25 Let G = {(12)(345)) = {e~. (12)(345), (354), (12), (345), 
(12)(354)},thecyclicgroupgeneratedby(l2)(345). ThenG2 = {e~. (345), (354)} 
= {(345)). Note that Ox is a set of numbers while Gx is a set of permutations. In 
this case, 02 = {u(2): u e G} = {2,1,2,1,2,1},and 03 = {u(3): u e G} = 
{3, 4, 5, 3, 4, 5}, multiplicities included. o 

LEMMA 3.26 Let G be a permutation group of degree n./f x e { 1, 2, ... , n} then 
o( 0 x) = o( G)/ o( G x ). That is, the cardinality of the orbit of x is the index of its 
stabilizer subgroup. 

Proof As in Example 3.25, Ox = {u(x): u e G} contains o(G) elements, 
multiplicities included. By definition, x occurs in Ox with multiplicity o(Gx). If 
y e Ox, then there exists a permutation r e G such that r(x) = y. It follows 
that u(x) = y for all u in the coset rGx = {r#£: #1- e Gx}. Conversely, if 
u(x) = y = r(x), then r-1u(x) = x, in which case r-1u e Gx, and u e rGx. 
In other words, {u E G: u(x) = y} = rGx.It follows that y occurs in Ox with 
multiplicity o(rGx) = o(Gx). Evidently, every element of Ox = {u(x): u E G} 
occurs with the same multiplicity. Therefore, o(Ox) = o(G)fo(Gx). o 

DEFlNITioN 3.27 Denote by F(u) the number of fixed points of the permuta­
tion u. 

Evidently, F(u) = Ct (u), the number of cycles of length one in the disjoint 
cycle factorization of u. However, simplifying some of the expressions that come 
later is worth a little notational redundancy. 

BVRNsme·s LEMMA 3.28 Let G be a permutation group of degree n, affording 
t orbits. Then t is the average of the numbers of fixed points of the pemwtations 
in G, that is, 

1 
-LF(u)=t. 
o(G) aeG 

Proof Consider the setS= {(u, x): u(x) = x}. Of the ordered pairs inS, F(u) 
begin with u and o( G x) end with x. Thus, counting S in two different ways, we 
obtain 

,. 
L F(u} = Lo(Gx). 
aeG x=l 
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Applying Lemma 3.26 to the right-hand side of this equation produces 

11 L F(u) = o(G) L lfo(Ox). 
ueG x=l 

1f Z is a system of distinct representatives for the orbits of G, then o(Z) = t and 

L F(u) = o(G) L L lfo(Ox) 
ueG yeZxeO, 

=o(G) L 1 
yeZ 

=to( G). 

0 

EXAMPLES 3.29 Suppose H = {e4, (12), (34), (12)(34)}. Averaging the numbers 
of fixed points over the permutations in H, we obtain (4 + 2 + 2 + 0)/4 = 2, 
confirming Example 3.23. 

Because sll is transitive it must be that, OD the average, permutations in sll have 
one fixed point. o 

COROLLARY 3.30 Let G be a permutation group of degree n. Then 

1 
o(G) L F(u) :::; 1, 

ueG 

with equality if and only if G is transitive. 

Proof This is an immediate consequence of Burnside's Lemma; t = 1 if and 
only if G is transitive. o 

There is a surprising analog of Corollary 3.30 for doubly transitive groups. 

DEFINmoN 3.31 Let G be a permutation group of degree n. Then G is doubly 

transitive if, for all x1, xz, Yl· Y2 e {1, 2, ... , n} satisfying Xl :/:- xz and Yl :/:- yZ, 

there exists a permutation u e G such that u(xl) = Yl and u(x2) = Y2· 

THEOREM 3.32 Let G be a permutation group of degree n > 1. Then 

1 - L F(u)2 
:::; 2, 

o(G) ueG 

with equality if and only if G is doubly transitive. 

(3.3) 
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Proof Because the result is trivial when n = 2, we may assume n ~ 3. As in 
the proof of Burnside's Lemma, we count a certain set S two different ways. This 
time, S = {(u, x, y): u(x) = x and u(y) = y}. Of the 3-tuples inS, F(u)2 begin 
with u. On the other hand, any 3-tuple that ends with y must begin with a u e G,. 
Moreover, for any such ending and beginning, there will be F(u) middle entries. 
Therefore, 

n L F(u)2 = L L F(u). (3.4) 
aeG y=laeG, 

Every u e Gy has at least one fixed point. namely y. Therefore, F(u) ~ 1 for 
all u e G,. Let F,(u) = F(u) - 1, u E G,. Then F,(u) is the number of fixed 
points of the restriction of u to 

{1, 2, ... , n}\y = {1, 2, ... , y- 1, y + 1, ... , n}. 

Substituting for Fin the right-hand side of Equation (3.4) and applying Burnside's 
Lemma, we obtain 

11 L F(u)2 = L L (F,(u) + 1). 
aeG y=laeG, 

= t (o(Gy) + L Fy(u)) 
y=l oeG, 

11 

~2Eo<G,>. 
y=l 

with equality if and only if Gy is transitive on {1, 2, . . . , n}\y for all y E 

{1, 2, ... , n}. As in the proof ofBurnside's Lemma, 

11 11 

Eo(Gy) = o(G) L 1/o(Oy) 
y=l y=l 

=to( G), 

where t is the number of orbits of G. Because doubly transitive groups are transitive, 

it remains to prove (for n ~ 3) that G is doubly transitive if and only if G, 
is transitive on {1, 2, ... , n) \y for all y E { 1, 2, ... , n}, and this is left to the 
exercises. o 
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Cycle type of 1r [5) [4,1] [3,2] [3,12] [22,1] [2,13] [l~] 

n(7r) 24 30 20 20 15 10 1 

FIGURE 3.1 

ExAMPLE 3.33 Of the permutations ins~. there are 24 with cycle type [5], 30 with 
cycle type [4,1], 20 with cycle type [3,2], and so on. The numbers of permutations 
of each cycle type appear in Figure 3.1. When G = Ss, Inequality (3.3) becomes 

1 1 
120 LG F(r1)

2 = 120 (24 X 0 + 30 X 1 + 20 X 0 + 20 X 4 + 15 X 1 
<7E 

+ 10 X 9 + 1 X 25) 

=2, 

confirming that Ss is doubly transitive.3 0 

Which abstract finite groups have manifestations (isomorphic images) as 
transitive permutation groups. The answer is easy: All of them. To see why, it 
suffices to examine the proof of the following classical result: 

CAYU!Y'S THEOREM 3.34 Let G be a finite group. Then G is isomorphic to a 
transitive permutation group. 

Proof We have defined a permutation of degree n to be a one-to-one function 
from A = { 1, 2, . . . , n} onto A. It does not matter, of course, whether the elements 
of A are expressed in the Hindu-Arabic numeration system, Roman Numerals, 
binary, hexadecimal, or any other numeration system. In fact, the elements of A 
don't have to be numbers at all. What matters is that A is a set of cardinality n. 
For most purposes the elements 1, 2, ... , n are as good as any. However, in the 
present instance it makes things easier to permute, not the first n positive integers, 
but the elements of G = {r11, r12, • • • , r1,.}. 

For each t' e G, define~: G -+ G by ~(r1j) = t'r1j, 1 :::; j :::; n. Since 
t'r1j = t'r1fc if and only if j = k, ~is a permutation of G. Similarly,~~ = ~2 if and 

3For a classification of finite doubly transitive groups, see [Kantor (198~)}. 
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only if 'l'I = t'2, so the correspondence 'l' -+ 'f is one-to-one. Because 

= ('E'I t'2)0' 

= 'l'I t'2(u), 

63 

for all u e G, G = {'f: 'l' e G} is a group under function compostion, and 'l' -+ 'f 
is an isomorphism from G onto G. Finally, for any pair, i and j, there exists a 
'l' e G, namely 'l' = O'tu1-

1, such that t'(O'J) = u;. Hence, G is transitive. o 

Consider S3, a transitive permutation group of degree 3 and order 6. The proof of 
Theorem 3.34 produces a transitive isomorphic image, S3, of degree 6. (While it is 
true that s3 may be viewed as the subgroup of s6 consisting of those permutations 
that fix 4, 5, and 6, this subgroup is not the same as the transitive subgroup S3.) 
Evidently, S3 has (at least) two genuinely different manifestations as transitive 
permutation groups. In fact, given a finite group G, it is surprisingly easy to 
determine all of its transitive homomorphic images. 

Suppose His a subgroup of G. Let G = u1HUu2HU· · ·UurH. r = [G: H), 
be the left coset decomposition of H in G. The idea is to use the elements of 
G to permute A = {u;H: 1 ~ i ~ r}. For each 'l' e G, define i: A -+ A 
by i(u;H) = (t'u;)H, 1 ~ i ~ r. As in the proof of Cayley's Theorem, the 
mappin~ 'l' -+ i is a homomorphism from G onto ~e transitive permutation 
group G = {i: 'l' e G}. Indeed, if H = {e}, then G = G. When H :/; {e}, 
however, the mapping need not be one-to-one. 

Observe that i(uH) = uH, if and only if (t'u)H = uH, if and only 
if u - I 'l' u e H, if and only if 'l' e u H u -I . Therefore, the kernel of the 
homomorphism 'l' -+ i is 

K = {t' e G: i(uH) = uH, u e G} 

= n uHu-1
, 

aeG 

the largest normal subgroup of G contained in H. In particular, 'l' -+ i is one-to­
one if and only if {e} is the only subgroup of H that is normal in G. 

DEFINITION 3.35 Let H be a subgroup of the finite group G. The transitive 
homomorphic manifestation of G arising from its action on the left cosets of 
H is said to correspond to H. 
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Suppose, conversely, that G is a permutation group acting transitively on 
A = {a1, a2, ... , am}. Let a = a1 and take H = Ga. the stabilizer subgroup 
of a. By Lemma 3.26, m = [G : Ga] = [G : H). Moreover, because G is 
transitive, there exist e12, CTJ, ••• , CTm e G such that CT;(a) =a;, 2 ~ i ~m. Thus, 
a; -. CT; H establishes a natural one-to-one correspondence between A and the set 
{H, e12H, ••• , CTmH} consisting of the distinct left cosets of H in G. It is easily 
verified that the action of G on A is carried over by this correspondence to the 
action of G on the cosets. Thus, the transitive action of G on A corresponds to 
H = G a. These observations are summarized in the following. 

THEOREM 3.36 Let rp: G -. G be a homomorphism from the finite group G onto 
a permutation group G that acts transitively on a set A. Then the action of G 
on A is identical to the action of G on the left cosets of one of its subgroups H. 
Moreover, rp is an isomorphism if and only if K = {e} is the only subgroup of H 
that is normal in G. 

Applications to Symmetry 

Permutation groups arise naturally in discussions of geometric symmetry. Con­
sider, for example, the square in Figure 3.2(a). Imagine that it has been reproduced 
on an overhead projection transparency. If the transparency square were aligned 
on top of the original, then only a single square would be visible. If you were to 
place the point of a needle at the intersection of the diagonals of the square and 
rotate (just the transparency) 28 degrees in the clockwise direction, you would see 
not one square, but two. Therefore, a 28° rotation is not a symmetry of the square. 
If the transparency were rotated 90°, the squares would again be superimposed; 
again only one square would be visible. A 90° clockwise rotation is a symmetry 
of the square. In order to discuss all the different symmetries we must be a little 
more precise about what is meant by a "symmetry", and much more precise about 
what is meant by "different". 

1 2 u LI 
3 4 

(a) (b) 

FIGURE 3.2 
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Suppose the vertices of the square are numbered as shown in Figure 3.2(b). 
(Never mind that a 90° rotation is not a symmetry of the labeled figure. The labels 
are only there to facilitate discussion. While they rotate with the square, they are 
not part of iL) A 90° clockwise rotation acts as a permutation of the vertices. 
Vertex 1 is sent to the position formerly occupied by vertex 2, vertex 2 goes to 
the place previously held by vertex 4, and so on. It is natural to associate the 
vertex permutation u = (1243) with a 90° clockwise rotation. What about a 90° 
counterclockwise rotation? That corresponds to (1342) = o--1• Notice that a 90° 
counterclockwise rotation and a 270° clockwise rotation correspond to the same 
permutation. What matters in discussions of symmetry is where the figure winds 
up, not the route it took getting there. Two symmetries are the same if and only 
if they afford the same permutation. A 90° counterclockwise rotation and a 270° 
clockwise rotation are different geometric routes to the same symmetry. 

Each symmetry of the square corresponds to a unique permutation of its vertices. 
This suggests that we may as well use permutations as convenient descriptive 
names for symmetries. (Be careful, however. This discussion is taking place in the 
context of some fixed but arbitrary numbering of the vertices. While the symmetries 
do not depend on these numbers, their descriptive names do.) 

There are just four symmetries that arise from rotating the square around a 
vertical axis through its center. They are (1243), (1342), (14)(23), and e4. Four 
more symmetries arise from rotations about axes that lie in the plane of the square. 
The set of all eight symmetries is 

D4 = {e4, (1243), (1342), (14)(23), (14), (23), (12)(34), (13)(24)}. (3.5) 

Evidently, only a third of the 24 permutations in S4 are symmetries. (Pause for 
a minute and think about the effect of applying the permutation (12) to the square 
in Figure 3.2(b}.} Observe that D4 is a group. Indeed, if u, t' e D4, the combined 
symmetry, u followed by -c, is the symmetry u -c; the function mapping a symmetry 
to its name is a one-to-one group homomorpbism. 

DEFINmoN 3.37 Let G be a subgroup of S,.. Suppose it is possible to label some 
geometric figure F in such a way that every element of G is a symmetry of F. 
Then G is a symmetry group. 

Among the symmetries of the square are those that satisfy the additional 
constraint that the transparency must remain fiat on top of the original; a plane 
symmetry is one that can be accomplished entirely within the two-dimensional 
plane. The plane symmetries of the square comprise a symmetry group, namely 
the cyclic group generated by (1243). Somewhat ironically, the plane symmetries 
of the square are described by means of rotations about an axis perpendicular to 
the plane, while the nonplanar symmetries can be construed as rotations about axes 
in the plane. The nonplanar symmetries can also be visualized as reflections. 

Consider another example, the cube. In the "real world", it is conventional 
to number not the vertices, but the faces of cubes. The standard way to number 
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dice is illustrated in Figure 3.3. How many symmetries does a cube have? Let's 
begin with an analogy. The square is a two-dimensional figure. It lies in the plane. 
It seemed natural to divide the symmetries of the square into two types, planar 
and nonplanar. The cube is a three-dimensional figure; its symmetries can be 
divided naturally between those that can be accomplished entirely within three­
dimensional space, and those that cannot. The three-dimensional symmetries are 
all rotations (of the kind that take place 24 hours a day in Nevada gambling casinos). 
While the remaining symmetries can be construed as rotations through the fourth 
dimension, it may be easier to visualize them as reflections. 

FIGURE 3.3 The numbered faces of a die. 

To count the rotations of the cube, observe first that any of the six numbered faces 
can be rotated to the top. Once the top (and bottom) faces have been determined, 
any one of the four "equitorial" faces can be rotated to the front Thus, there 
are 6 x 4 = 24 rotational symmetries of the cube. With respect to the standard 
numbering of dice, they are listed in Figure 3.4. 

(1265) 
(1364) 
(1463) 
(1562) 
(2354) 
(2453) 

(12)(34)(56) 
(13)(25)(46) 
(14)(25)(36) 
(15)(26)(34) 
(16)(23)(45) 
(16)(24 )(35) 

(123)(465) 
(124)(365) 
(132)(456) 
(135)(264) 
(142)(356) 
(145)(263) 

FIGURE 3.4 The rotational symmetries of the cube. 

(153)(246) 
(154)(236) 

(16)(25) 
(16)(34) 
(25)(34) 

e6 

Perhaps it is inconsistent to have described the symmetries of a square as 
permutations of its vertices and the symmetries of a cube as permutations of its 
faces. Why not look upon the symmetries of a cube as vertex permutations? What 
difference would it make? The symmetries themselves are independent of whether 
we describe them in terms of faces or vertices, or edges, for that matter. A practical 
sort of difference is that as permutations of faces, the symmetries of the cube are 
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elements of~- As permutations of its vertices, they are elements of Ss, and as 
permutations of the edges, they form a subgroup of S12· Suppose we number the 
vertices of the cube as follows: 

1 = {1, 2, 3}, 2 = {1, 2, 4}, 3 = {1, 3, 5}, 4 = {1, 4, 5}, 

s = {2, 3, 6}, 6 = {2, 4, 6}, 7 = {3, 5, 6}, 8 = {4, 5, 6} 
(3.6) 

Then, for example, "6 = {2, 4, 6}" means that we are going to assign (vertex 
number) 6 to the vertex at the intersection of the even numbered faces. Consider 
the symmetry Cl = (1265), manifested as a permutation of the faces. Where does Cl 

send vertex 17 The action of Cl on the faces induces a natural action on the vertices, 
namely, 

1 = {1, 2, 3} ~ {C1(l), C1(2), C1(3)} = {2, 6, 3} = s. (3.7) 

Let's write u for this induced action of Cl, that is, 

U({X, y, z}) = {C1(X), Cl{y), CI(Z)}. 

Then, from (3.7), u(1) = S. Okay, what about u(S)? Well, 

u(S) = u({2, 3, 6}) = {C1(2), C1(3), C1(6)} = {6, 3, 5} = 1. 

So, u(S) = 7. Continuing in this way, we obtain u = (1573)(2684). Figure 3.5 
tabulates Cl and the corresponding induced permutation, u, for all 24 rotational 
symmetries of the cube. (Observe that u and i may have the same cycle structure 
even when Cl and ~ do not.) 

Whatever its manifestation, the group G exhibited in Figure 3.5 comprises only 
some of the symmetries of the cube- the 24 rotations. What about reflections? 
Imagine a die placed on a mirrored table. Suppose face I is on top (so face 6 
is touching the table), and face 2 is in front. If the reflection could be raised up 
and superimposed on the die, then faces 1 and 6 would be interchanged. As a 
permutation of the faces, this reflection is~ = (16). Given one reflection, it is easy 
to generate more. If Cl e G, then 1-L = Cl~ is a symmetry of the cube. Might it be a 
rotation? If 1-L E G, then ~ = Cl -l,., e G, which is a contradiction. Since Cl~ cannot 
be a rotation, it must be another reflection. Indeed, because Clt ~ = C12 ~ if and only 
if Cl! = C12, the coset G~ = {Cit': Cl e G} contains 24 different reflections. On the 
other hand, because the die and its reflected image rotate together, Gr contains all 
possible reflections. In other words, the group of all 48 symmetries of the cube is 
H = GUG~. 



68 Multilinear Algebra 

u q u q 

(1265) (1573)(2684) (12)(34)(56) (12)(36)(45)(78) 
(1364) (1562)(3784) (13)(25)(46) (13)(27)(45)(68) 
(1463) (1265)(3487) (14)(25)(36) (18)(24)(36)(57) 
(1562) (1375)(2486) (15)(26)(34) (18)(27) (34)(56) 
(2354) (1342)(5786) (16)(23)(45) (15)(27)(36)(48) 

(2453) (1243)(5687) (16)(24)(35) (18)(26)(37)( 45) 

(123)(465) (253)(467) (153)(246) (147)(285) 
(124)(365) (164)(358) (154)(236) (176)(238) 
(132)(456) (235)(476) (16)(25) (17)(28)(35)(46) 
(135)(264) (174)(258) (16)(34) (16)(25)(38) ( 47) 
(142)(356) (146)(385) (25)(34) (14)(23)(58)(67) 
(145)(263) (167)(283) e6 es 

flGURE 3.5 Rotations of the cube as vertex permutations. 
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Exercises 

1. Write down the disjoint cycle factorization of u-1 when 

a. u = (1234) 

b. u = (12345) 

c. u = (123) 

d. u = (12) 

2. Find the disjoint cycle factorization of the indicated permutation. 

a. (13X1234X13) 

b. (12X1234)(12) 

c. (13)(12345)(13) 

d. (14)(12345)(14) 

3. Prove Lemma 3.2. 

4. Show that the number of permutations in S12 of cycle type 

a [34] is 246,400. 

b. [43] is 1,247,400. 

c. [62] is 6,652,800. 

d. [26] is 10,395. 
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5. Show that 1624 of the 5040 permutations in S1 have disjoint cycle factoriza­
tions consisting of exactly three cycles. 

6. The Stirling Number of the First Kind, s(n, r), is the number of permuta­
tions in Sn whose disjoint cycle factorizations consist of (exactly) r cycles. 
From Exercise 5, s(1, 3) = 1624. 

a. Show that s(n, n) = 1. (Hint: Don't forget 1-qcles.) 

b. Show that s(n, 1) = (n- 1)1. 

c. If 1 < r :::: n, prove that s(n + 1, r) = s(n, r - 1) + ns(n, r). 

d. Provethats(n, 1)x+s(n, 2)x2+· · ·+s(n, n)xn = x(x+1)(x+2) ... (x+ 
n- 1). 

7. Prove Theorem 3.10. 

8. Prove that o(An) = n!/2, n > 1. 

9. Prove that a k-qcle is even if and only if k is odd. 

10. Write the disjoint cycle factorizations of all permutations in S4 and underline 
those permutations belonging to A4. 

11. Find a permtuation r e S<j such that r- 1ur = p., when 

a. u = (1234)(56789) and I.L = (1324)(58769). 

b. u = (1234)(56789) and I.L = (1432)(59876). 
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c. u = (12)(3456)(789) and J.L = (123)(45)(6789). 

12. Prove that every permutation inS, is conjugate to its inverse. 

13. Let u = (123). 

a. Show that u and u-1 = (132) are not conjugate in A3. 

b. Find all permutations r e S,. such that T-1 (123)r = (132). 

14. Prove Theorem 3.21. 

15. Let G be a subgroup of S,.. Prove that G is transitive if and only if, for all 
y e {1, 2, ... , n}, there exists a u e G such that u(1) = y. 

16. Prove that A,. is transitive for all n ::: 3. 

17. Let G be a subgroup of S,. and suppose y e O:x. Prove that G:x and Gy 
are conjugate, that is, prove there exists a permutation u e G such that 
Gy = u-1G:xu. 

18. Prove that S,. is doubly transitive for all n ::: 2. 

19. Let G be a permutation group of degree n > 2. Prove that G is doubly transitive 
if and only if G y is transitive on {1, 2, ... , n} \Y for all y e {1, 2, ... , n}. 

20. ProvethatD4 = {e4, (1243), (14)(23), (1342), (14), (23), (12)(34), (13)(24)} 
is transitive 

a. by showing that 01 = {1, 2, 3, 4}. 

b. using Corollary 3.30. 

21. Prove that the group D4 from Exercise 20 is not doubly transitive 

a. using Definition 3.31. 

b. using Theorem 3.32. 

22. The Bell numbers are defined by Bo = 1 and 

" 
Bn+l = L C(n, r)B,, 

r=O 

where C{n, r) is the binomial coefficient "n-choose-r". Compute B1 through 
B4. (Hint: Bs = 52.) 

23. Let G be a permutation group of degree n. Then G is r-fold transitive if, 
given any two sequences, (XJ, xz, ... , x,) and {yJ, yZ, ••• , y, ), of distinct 
integers chosen from { 1, 2, ... , n}, there exists a permutation u e G such that 
u(x;) = y;, 1 ~ i ~ r. Prove the following generalization of Theorem 3.32 
from [Merris and Pierce (1972)]: 1f r ~ n, then 

1 "" , o(G) L., F(u) ::: B,, 
aeG 
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the r-th Bell number, with equality if and only if G is r-fold transitive. (Hint: 
Exercise 22.) 

24. Using a direct computation along the lines of Example 3.33, confirm that 

a. ~Lues, F(u)3 = 83, 

b. 14 Lues. F(u)' = B,, 3 ~ r ~ 4. 

(Hint: Exercises 22 and 23.) 

25. Let G = A4, the alternating group of degree 4. 

a. Find the number of orbits of G using Bumside's Lemma. (Hint: Exer­
cise 10.) 

b. Prove that G is doubly transitive. 

c. Is G triply (3-fold) transitive? (Hint: Exercise 23.) 

26. A permutation group G of degree n is semiregular if Gx = {e11 } for all 
x E {1, 2, ... , n}. Suppose G is semiregular. 

a. Prove that o(Ox) = o(G), for all x E {1, 2, ... , n}. 

b. Prove that nfo(G) is an integer, that is, o(G) (exactly) divides n. 

c. If G is semiregular and transitive, prove that o(G) = n. 
27. Let G = s3 and H = A). If G is the transitive homomorphic image of G 

corresponding to H, show that, apart from the objects that it permutes, G is 
identical to Sz. 

28. Let G = s3 and H = {e3. (12)} ~~.Let G be the transitive homomorphic 
image of G corresponding to H. Prove or disprove that, apart from the objects 
that it permutes, G is identical to A3. 

29. Let G = S4 and H1 = {e4, {12){34), (13)(24), (14)(23)}. Let G' be the 
transitive homomorphic image of G corresponding to H1. 
a. What is the degree of G'? 
b. What is o(G')? 

c. Apart from the objects it permutes, to which familiar permutation group 
is G' identical? 

d. Let H2 = {e4, (12), (34), (12)(34)}. Prove that Hz is isomorphic to H1. 
e. If G is the transitive homomorphic image of G corresponding to Hz , what 

is the degree of G? 
f. What is o(G)? 

g. Apart from the objects it permutes, to which familiar permutation group 
is G identical? 

30. Let H be a subgroup of the finite group G. Let G be the transitive homomorphic 
image of G corresponding to H. If G is doubly transitive, prove that 
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a. H = N(H), the normalizer of H in G, or [G: H] = 2. 

b. H is a maximal subgroup of G. 

Application Exercises 

31. Denote by DJ the group of symmetries of the equilateral triangle as permuta­
tions of its vertices. 

a. Show that D3 = S3. 

b. Show that the group of plane symmetries of the equilateral triangle is A3. 

32. Suppose the vertices of a regular pentagon are consecutively numbered 1 
through 5 in clockwise order. Use this numbering to express, as a subgroup 
of Ss, 

a. the group of plane symmetries of the pentagon. 

b. the group of all symmetries of the pentagon. 

33. Denote by D,. the group of all symmetries of the regular n-gon expressed as 
permutations of its vertices. Show that D,. is generated by symmetries u and 
T that satisfy the relations u 11 = T2 = e,. and T-1uf = u-1. 

34. A regular tetrahedron is a pyramid with a triangular base in which each of the 
four triangular faces is equilateral. 

a. Prove that the regular tetrahedron has 12 rotational symmetries. 

b. Express the rotational symmetries of the regular tetrahedron as a permu­
tation group of degree 4. (Hint: Number the faces.) 

c. Express the rotational symmetries of the regular tetrahedron as a permu­
tation group of degree 6. (Hint: Unlike the cube, every pair of faces of the 
tetrahedron meet to form an edge. Using the face numberings from part b, 
number the edges lexicographically, that is, 

1={1,2}, 2={1,3}, 3={1,4}, 

4 = {2, 3}, 5 = {2, 4}, 6 = {3, 4}. 

Let G be the group of rotational symmetries as permutations of the four faces. 
For each u e G, let u be the natural induced action of u on the edges, that is, 
u((x, y}) = (u(x), u(y)}.) 

35. Prove that the group of 24 rotational symmetries of the cube is transitive but 
not doubly transitive. 

36. Let G be the group of 24 rotational symmetries of the cube. As we are about 
to see, G is abstractly isomorphic to S4. This being the case, it follows from 
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Exercise 35 and Theorem 3.36 that G corresponds to the action of S4 on the 
cosets of one of its subgroups, H. 

a. Explain why o(H) must be four. 

b. Nearly everyone's favorite four element subgroup of S4 is K = 
{e4, (12)(34), (13)(24), (14)(23)}. Explain why G couldn't possibly be 
identical to the action of S4 on the cosets of K. 

c. ShowthatGisidenticaltotheactionofS4onH = {e4, (1234), (13)(24), (1432)}. 
(Hint: Number the cosets of H as follows: 

l=H; 

2 = {(12), (1324), (143), (234)}; 

3 = {(123), (1342), (14), (243)}; 

4 = {(1243), (134), (142), (23)}; 

s = {(124), (132), (1423), (34)}; 

6 = {(12)(34), (13), (14)(23), (24)}.} 

37. Let G be the group of 24 rotational symmetries of the cube expressed as 
permutations of its six faces. Then G = {a : u e G} (see Figure 3.5) is an 
isomorphic image of G as a transitive subgroup of Ss. Find a subgroup H of 
G to which this transitive manifestation corresponds. 

38. Write out the 24 reflections of the cube 

a. as permutations of the six faces. 

b. as permutations of the eight vertices. 

39. Let G be the group of a1148 symmetries of the cube expressed as permutations 
of its six faces. Prove that G is not doubly transitive 

a. from geometrical considerations. 

b. using Theorem 3.32. (Hint: Exercise 38a.) 





CHAPTER 4 

Group Representation Theory 

Denote by GL(n, C) the multiplicative group consisting of all invertible matrices 
in C,.,,.. Among the elements of GL(n, C) are then! permutation matrices (the 
(0,1 )-matrices with exactly one 1 in each row and column). 

For each a E S,., let 

A(a) = (&;,au>>• (4.1) 

the n-by-n matrix whose (i, j)-entry is l if a{i) = i, and zero otherwise. If 
a, 't' E S,., then the (i, j)-entry of A(a)A(r) is 

11 

L &;,a(k)&k.~U> = &;,nU>• 
k=l 

precisely the (i, j)-entry of A(ar). Evidently, A: Sn --. GL(n, C) is ahomomor­
phism. In fact, more is true. 

THEOREM 4.1 The multiplicative group of n-by-n permutation matrices is isomor­
phic to S11 • 

Proof Let A be the homomorphism defined in Equation (4.1 ). Then A (a) = A( 't') 

if and only if aU) = rU), 1 !:: j !:: n, if and only if a = r. Therefore, A is one­
to-one. Because there are exactly o(S11 ) = n! permutation matrices in GL(n, C), 
A must be onto. In other words, A is an isomorphism. D 

DEFoonoN 4.2 Let G be a group. A representation of G of degree n is a 
homomorphism A: G --. G L(n, C). If the homomorphism is one-to-one, so that 
G is isomorphic to the image of A, then the representation is faithful. 

75 
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ExAMPLE 4.3 The mapping a ~ (8;,cru>) is a faithful representation of S,. of 
degree n. In this case, the "degree" of the permutations is equal to the "degree" of 
the representation. On the other hand, the mapping a~ A( a) given by 

(-1 -1) A((23)) = O 1 , 

(-1 -1) A((132)) = 1 O , 

A((12)) = ( ~ ~) , 

A((123)) = ( -~ -!), 
and A((l3)) = ( _! _ ~) , 

isafaithfulrepresentationof S3 ofdegree2. The restriction of A to H = {e3, (13)}, 
namely, 

is what we will eventually call a ''reducible" representation of H. 0 

EXAMPLE 4.4 The mapping a ~ I,., a e G, is a representation of G of degree n. 
When n = 1, it is called the principal representation of G. o 

EXAMPLE 4.5 Let U e GL(n, C) be fixed but arbitrary. Then the mappings 
A ~ u-t AU and A ~ det(A) are representations of GL(n, C) of degrees n 
and 1, respectively. o 

EXAMPLE 4.6 HA is a representation of G of degree n, and 8 is a representation of 
GL(n, C) of degree le, then a ~ 9(A(a)) is a representation of G of degree le. In 
particular, a ~ det(A(a)) isarepresentationofG of degree 1. H A(a) = (8i,crU)). 
a e S,., then det(A(a)) = t(a), the alternating character (Definition 3.14). o 

EXAMPLE 4.7 Suppose A and B are representations of G of degrees m and n, 
respectively. Let C be their direct sum, that is, 

C(a) = diag (A(a), B(a)) 

_ (A(a) 0 ) 
- 0 B(a) · 

Then C is a representation of G of degree m+ n. H U e GL(m + n, C), then 
D(a) = u-1c(a)U, a e G, is another representation. The uniform similarity 
typically obscures the fact that D has been constructed from representations of 
smaller degree. One might think of it as a "cover-up", designed to mask the relative 
simplicity of the underlying structure. One of our goals is to expose such cover-ups. 

0 
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The first example of a representation, Equation ( 4.1 ), is restricted to permutation 
groups. On the other hand, by Cayley's Theorem, every finite group is isomorphic 
to a (transitive) permutation group. Let's have another look at this classical result 
from the perspective of representations. 

CAYLEY'S THEOREM 4.8 Let G be a finite group. Then G is isomorphic to a group 
of permutation matrices. 

Proof Suppose G = {ut, u2, ... , u11 }. For each t' E G, define A(T) = (aij(T)) 
by 

if t'Uj = u; 
otherwise. 

Then A(T) is a permutation matrix. The (i, j)-entry of A(T)A{IL), namely, 
11 

L:a;k(t')akj(#L), 
k=t 

(4.2) 

is zero unless there is a k such that a;A:(t') = akj(#L) = 1. This is equivalent to the 
existence of a k such that ILUj = Uk = T-1u;, because there can be at most one 
suchk, 

if (t'#L)Uj = u;, 
otherwise. 

(4.3) 

The right-hand side of Equation (4.3) is the (i, j}-entry of A(T#L). Therefore, 
A(t'#L) = A(T)A(~t), and A: G -+ GL(n, C) is a representation of G. Because 
the mapping T -+ A(T} is one-to-one, it is a faithful representation. Therefore, G 
is isomorphic to a subgroup of the n-by-n permutation matrices. o 

DEFlNITION 4.9 Let G be a finite group. The representation defined by Equa­
tion (4.2) is a regular representation of G. 

Strictly speaking, the representation defined by Equation (4.2) is a "left" regular 
representation. If G = {ut, u2, ... , U 11 } then, mimicking the proof of Theorem 4.8, 
it can be shown that t" -+ B(T) = (bij(t')), t' E G, where 

{ 
1 if u; t' = Uj 

b;j(t') = o'. otherwise, 

defines a "right" regular representation. Moreover, both A(T) and B(t") depend, 
not only on G, but on the ordering of its elements. It is easy to see, however, that 
if At is a left regular representation corresponding to one ordering of the elements 
of G and A2 is a left regular representation corresponding to another, then there 
exists a fixed permutation matrix P such that 

A2(u) = p-tAt(u}P, u E G. 
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OEFoonoN 4.10 Two representations of G, At and Az, are equivalent if there 
exists an invertible matrix U such that 

Az(u) =u-t At (u)U, u e G. (4.4) 

So, any two left regular representations of the same group G are equivalent. 
What is less obvious, but will follow from subsequent developments, is that 
every left regular representation of G is equivalent to each of its right regular 
representations. 

The effect of Definition 4.10 is to partition the representations of G into a disjoint 
union of equivalence classes. Together with Equation (4.4), a system of distinct 
representatives for these equivalence classes will generate all representations of 
G. This suggests another perspective from which to view representation theory. 

OEFoonoN 4.11 Suppose V is ann-dimensional complex vector space. Denote 
by GL(V) C L(V, V) the group of invertible linear operators on V. 

If [T] is the matrix representation of T e G L(V) with respect to a fixed 
but arbitrary basis of V, then the mapping T -+ [T] is an isomorphism from 
GL(V) onto GL(n, C). We might just as well define a representation of the 
abstract group G to be a homomorphism from G into GL(V). From the usual 
change of basis formula. Definition 4.10 asserts that two matrix representations of 
G are equivalent if and only if the underlying transformation representations are 
identical. While concentrating primarily on matrix representations, we will feel 
free to move back and forth between these two perspectives. 

DEFoonoN 4.12 Let N be a nonempty set and supposeS= {A(v): v e N} is a 
set of n-by-n matrices indexed by N. Then S is reducible if there exists a matrix 
U e GL(n, C) and an integer p such that I < p <nand, for all v eN, 

-t ( B(v) 0 ) 
U A(v)U = C(v) D(v) ' (4.5) 

where B(v) e Cp,p· The set S is fully reducible if U can be chosen so that 
C(v) = 0, for all v e N. Finally, S is irreducible if it is not reducible. The 
representation A of G is reducible, fully reducible, or irreducible if the set of 
matrices {A (u) : u e G} has the corresponding property. 

Observe that the invertible matrix U in Equation (4.5) does not depend on v. If 
a set of matrices is reducible, then the matrices in the set are uniformly similar to 
(the same) block triangular form. 

Consider the matrix 
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Then A is similar to a lower triangular matrix, namely, 

U-tAu--(11 o1)' h u (2 3) were = 12 . 

If A were similar to a diagonal matrix D, then D could only be h Because h 
is similar only to itself, A is not diagonalizable. This simple example makes the 
following result seem even more remarkable. 

MASCHKE'S THEOREM 4.13 Suppose A is a representation of degree n of the finite 
group G. If A is reducible, then it is fully reducible. 

Proof Suppose 1 < p < n and U E G L(n, C) satisfy 

-1 (B(a) 0 ) 
U A(a)U = C(a) D(a) ' 

where B(a) e GL(p, C), a e G. Because A is a representation of G, both Band 
D are representations of G as well. Moreover, 

C(a~) = C(a)B(~) + D(a)C(~). 

Because C(e) = 0, Equation (4.6) implies that 

Define an (n- p)-by-p matrix X by 

1 
X= - L C(~)B(~- 1 ). 

o(G) reG 

(This is why we need G to be finite.) If 

then 

r-1 = ( 1, o ) , 
-X /,._, 

and 

(4.6) 

(4.7) 
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where F(a) = C(a) + D(a)X- XB(a). The proof will be finished if we can 
show that 

XB(a) = C(a) + D(a)X, a e G. 

For a fixed but arbitrary a e G, 

XB(a) = -
1
- L C(l')B(l'-ta) 

o(G) TEG 

= - 1
- L(C(a)- D(l')C(l'-ta)), 

o(G) TeG 

by Equation (4.6). Therefore, 

XB(a) = C(a)- o(~):; D(a#L)C(p.-t) 

= C(a)- D(a) ( o(~):; D(p.)C(#L-t)) 

= C(a) + D(a)X, 

(4.8) 

by Equation (4.7) and the definition of X. This verifies Equation (4.8), completing 
the proof. o 

DmNmoN 4.14 Let A be a representation of G. A reduction of A is a similarity 

u-t A(a)U = diag (At (a), A2(a), .. . , A,(a)), 

(

At(a) 0 .. . 
0 A2(a) .. . 

= 
0 0 

a e G, where At. A2 •... , A, are irreducible representations of G. The positive 
integer r is the length of the reduction. 

THEOREM 4.15 If A is a representation of degree n of the finite group G, then A 
has a reduction. 
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Proof The result follows from Maschke's Theorem by induction on n. o 

If A is a representation of the finite group G, then, from Theorem 4.15, there 
exists an invertible matrix U such that 

A(u) = U[ diag (AI (a), A2(a), ... , Ar(u))]U-1, a e G, 

where A1, A2, ... , Ar are irreducible representations of G. Thus, to generate all 
representations of G it suffices to find a system of distinct representatives for the 
equivalence classes of irreducible representations. We will refer to such a system 
as a complete set of inequivalent irreducible representations of G. 

Suppose (A(v): v e N} is a set of n-by-n matrices. If B is an ordered basis 
of an n-dimensional vector space V then, for all v e N, there exists a linear 
operator T(v) e L(V, V) whose matrix representation with respect to B is A(v). 
If (A(v): v e N} is reducible, then there exists an n-by-n invertible matrix U such 
that 

-I ( B(v) 0 ) 
U A(v)U = C(v) D(v) , 

where B(v) e Cp,p• v eN. Now, u-1 A(v)U is the matrix representationofT(v) 
with respect to another ordered basis B' = ( w1, w2 •... , w" }. Moreover, from the 
block triangular form of u-l A(v)U. it is evident that w = (wl. W2, ...• Wp) is 
an invariant subspace of T ( v) for all v, that is, T ( v )( w) e W for all w e W 
and all v e N. Conversely, if W is a proper subspace of V that is invariant under 
T(v), v e N, then (A(v): v eN} is reducible. (Extend any basis of W to a basis 
B' of V. From this perspective, a reduction of (A(u): a e G} corresponds to a 
decomposition of V into a direct sum, 

where W1, W2, ... , W, areminimalinvariantsubspacesofT(u),u e G.) Finally, 
(A(v): v e N} is irreducible if and only if no proper subspace of V is invariant 
underT(v)forevery v e N.In this case, {T(v): v e N} is saidtobeanirreducible 
subset of L(V, V). 

ScHuR·s LEMMA 4.16 Let N be a set. Let (S(v): v e N} and {T(v): v eN} be 
irreducible subsets of L(V, V) and L(W, W), respectively. Let L e L(V, W) 
be fixed but arbitrary. If LS(v) = T(v)L for all v e N, then L = 0, or 
dim(V) = dim(W) and L is invertible. 

Proof It follows from LS(v) = T(v)L that the image of L is an invariant 
subspace of T(v), and its kernel is an invariant subspace of S(v). o 

This deep Lemma has many important and useful implications. 
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CoROlLARY 4.17 Let {A(v): v E N} be an irreducible set ofn-17y-n matrices. If 
M is a matrix such that M A(v) = A(v)M, for all v e N, then M is a multiple 
of I,.. 

Proof Let A. be an eigenvalue of M. Then M - AI,. is a singular matrix that 
commutes with each A(v). It follows from Schur's Lemma that M- AI,.= 0. o 

CoROILARY4.18 Supposethat{A(a): a E G}and{B(a): a E G}areinequiv­
alent irreducible representations of (the same group) G. If M e C,.,,. satisfies 
A(a)M =M B(a)for all a e G, then M= 0. 

The next application of Schur's Lemma establishes a relation that must hold 
among the elements of irreducible representations. 

THEOREM 4.19 (SchurRelations). Let A(a) = (a;j(a)), a E G, bean irreducible 
representation of degree n of the finite group G. Then 

L a;,(a-1)a,j(O') = &;,j&,,,o(G)fn. 
aeG 

If B(a) = (b;j(a)), a e G, is another irreducible representation ofG, then 

(4.9) 

L ab(u-1)b1j(a) = 0, (4.10) 
aeG 

unless B is equivalent to A. 

Proof Suppose m is the degree of B. Define a function f: C,.,,.. -+- C,.,,.. by 

f(S) = L A(u-1)SB(a). 
aeG 

ThenA('r)/(S) = f(S)B(T),forall T e G. Wewillcompletetheproofbymaking 
special choices forS. Denote by E,, then-by-m matrix whose only nonzero entry 
is a 1 in position (s, t). The (i, j)-entry of f(E,) is 

L a;,(u-1)b1j(u) = 0 
aeG 

(by Corollary 4.18) when A and B are inequivalent. If A = B then (Corollary 4.17), 
f(E,) = c,J,.. Hence, 

c,&;,j = L a1,(u-1)a1j(a) 
aeG 

= L a;,(u)a,j(u-1) 
aeG 
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Thus, Cij = 0 unless i = j, and cu = c is independent of i. Therefore, 

because A(e) = /11 • 

n 

ne= LCii 
i=l 

n 
= L Lait(a-1)a1;(a) 

ueG i=l 

n 
= L Lati(a)ait(a-1

) 
ueG i=l 

= o(G), 
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0 

EXAMPLE 4.20 Let A be the representation of S3 of degree 2 given in Example 4.3. 
As will be shown in Example 4.33, A is irreducible. Observe that 

and 

L at2Ca-1)a21 (a) = a12(e3)a21 (e3) + a12((12))az1 ((12)) 
ueS:I 

+ a!2((23))azt ((23)) + at2((132))a2t ((123)) 

+ a12((123))azJ ((132)) + at2((13))azt ((13)) 

=0x0+1 x 1+(-1) x0+(-1) x (-1) 

+1x1+0x(-1) 

=6/2, 

L au (a-1)a22(a) = 1 x 1 + 0 x 0 + ( -1) x 1 + ( -1) x (-1) 
ueS:I 

+Ox0+1x(-1) 

=0, 

confirming Equation (4.9). 0 
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The Schur Relations can be generalized as follows: 

THEOREM 4.21 Let A(u) = (a;i(u)) and B = (bij(U)) be irreducible represen­
tations of the finite group G. Then 

if A= B; (4.11) 

if A is not equivalent to B. 

where n is the degree of A. 

BURNSIDE"S THEOREM 4.22 Let A(a) = (aij(O')), a E G, be an irreducible 
representation of degree n. Then the n2 functions a;j : G --+ C are linearly 
independent. 

Proof1 Suppose Ctj E C are constants such that 

" L Ctjatj(CT) = 0, 0' E G. (4.12) 
l,j=l 

Multiply both sides of Equation (4.12) by apq(a-1) and sum on a E G. By 
Equation (4.9), the result is o(G)cqp/n = 0. o 

If C = (Ctj) E C"·"' then 

" L 'C;jatj(a) = tr (C* A(a)). 
i,j=l 

In view of Equation (4.12), this means {a;i: 1 ::; i, j::; n} is linearly independent 
if and only if, with respect to the inner product (A, B) = tr (B* A), the orthogonal 
complement of (A(a): a E G) is {0}, if and only if {A(a): a E G} spans 
C11,11 • In particular, if n is the degree of an irreducible representation of G, then 
n2 = dim(Cn,n) ::; o(G). 

Frobenius and Schur obtained the following generalization of Burnside's 
Theorem. 

THEOREM 4.23 Let Ak(a) = (at(a)), a E G, be an irreducible representation 
of G of degree nJ:, 1 ::; k ::; r .If these r representations are pairwise inequivalent, 
then the n~ + n~ + · · · + n~ functions a:i : G --+ C are linearly independent. 

1 Our proof of B~ide's Theorem (not to be confused with Burnside's Lemma) is valid only for 
finite groups. Proofs of Theorems 4.22 and 4.23 valid for infinite groups can be found, e.g., in [Newman 

(1968)]. 
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DEFINITioN 4.24 Suppose A is a representation of the group G. Let x(u) = 
tr (A(u)), u e G. The function x: G-+ C is the character of G afforded by A. 
An irreducible character is a character afforded by an irreducible representation. 
Denote by I (G) the set of irreducible characters of G. 

If the degree of A is 1 then A(u) = (X (u )), u e G, and x is called a linear 
character. In particular, every linear character is irreducible. Among the linear 
characters is x = lG, the character afforded by the principal representation of G. 

Because the trace is preserved under similarity, equivalent representations afford 
the same character. Thus, it makes sense to talk about the character afforded by a 
representation T: G-+ GL(V). 

ThEoREM 4.25 (Orthogonality Relations of the First Kind). Let G be a finite 
group. If X,~ E I (G), then 

{ 
o(G), L x(u-1)~(u) = 

ueG 0, 

if X=~; 
otherwise. 

(4.13) 

Proof Let A(u) = (a;j(u)) and B(u) = (bij(u)) be representations that afford 
x and~. respectively. If n = x(e) and m = ~(e) are the degrees of A and B 
respectively, then 

11 m 
L x(u-1)~(u) = L L L a;;(u-1)bjj(u), 
ueG i=l j=l ueG 

which, by Equation (4.10), is zero if x ::/:-~-If x =~.we may assume A= B, in 
which case the left-hand side of Equation ( 4.13) becomes 

11 11 L 'L:a;;(u-1)ajj(u) = Lo(G)/n 
~j=lcreG i=l 

=o(G), 

by the Schur Relations (Equation (4.9)). 0 

Using Theorem 4.21, the following extension of Equation (4.13) can be proved 
in a similar way. 

THEOREM 4.26 Let G be a finite group. If X, ~ E I (G), then 

"' 1 { o(G)x(r:)/x(e), 
LJ x(u- )~(ut')= 
CT~ ~ otherwise. 

(4.14) 
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THEOREM 4.27 Let X be a character of the finite group G. Then x(u-1) = X(CI), 
Cl E G. 

Proof Let A be a representation of G that affords X· Suppose o(G) = k. If 
u e G is fixed but arbitrary, then/" = A(e) = A(u') = A(u)k, where n = x(e) 
is the degree of A. Hence, the eigenvalues of A(u) are all k-th roots of unity. 
Therefore, A is an eigenvalue of A(u), if and only if A - 1 =I is an eigenvalue of 
A.(u)-1 = A(u-1). o 

DEFoonoN 4.28 Suppose G is a group. Denote by CG the set of all functions 
f: G-+C. 

Observe that CG is a vector space under the usual definitions of addition and 
scalar multiplication of complex valued functions, namely, 

(af + bg)(u) = af(u) + bg(u), 

for all a, be C, and all f, g: G-+ C. 

THEOREM 4.29 lfG is afinite group, then 

1~-
(f, g)G = o(G) feG g(u)f(u), 

defines an inner product on CG. 

f,g e CG, (4.15) 

When speaking of the inner product space CG, we will always have Equa­
tion (4.15) in mind. 

CoROLLAJtY 4.30 Let G be a finite group. Then J(G), the set of irreducible 
characters of G, is an orthonormal set in the inner product space CG. 

Proof The result is immediate from Theorems 4.25, 4.27, and 4.29. o 

It follows from Corollary 4.30 that o(/(G))::; dim(CG)) = o(G). 
Because tr (AB) = tr (BA) for all A E C111," and B e C"·"'' similar matrices 

have the same trace. On the other hand, 

A= (! ~) 

and h have the same trace without being similar. 

THEOREM 4.31 7Wo representations of the finite group G are equivalent if and 
only if they afford the same character. 
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Proof Let a -+ A(u) = (Dtj(u)) and u-+ B(u) = (b;j(u)) be representations 
of G. If A and Bare equivalent then A(u) and B(u) have the same trace, a e G. 

To prove the converse, assume first that A and Bare irreducible. If tr (A(u)) = 
x{a) = tr (B(u)), CT E G, then, from Corollary 4.30, 

1 =(X, X)G 

1 ""' -1 = o(G) £....J x(u )x(u) 
aeG 

where n = x(e) is the degree of both A and B. If A were not equivalent to B then, 
by the Schur Relations (Equation (4.10)) this last expression would be 0. 

In the general case, consider reductions of A and B. Let A;, 1 ::::: i ::::: t, be a 
set of pairwise inequivalent irreducible representations such that every irreducible 
constituent occurring in either reduction is equivalent to one of them. Let X; be 
the character afforded by A;. By what we have proved so far, Xi, 1 ::::: i ::::: t, 
are t different irreducible characters of G. Suppose that A; is equivalent to r; 
constituents in the reduction of A and to s; constituents in the reduction of B. 
Then 

t t 
L:r;x;(u) = x(u) = L:s;x;(u), 
i=l i=l 

for all u e G, implying that 

t 

L:<r; - s;)x; = 0, 
i=l 

(4.16) 

the zero function. Because {X; : 1 ::::: i ::::: t} is an orthonormal set in the inner 
product space CG, it is linearly independenL Therefore, r; = s;, 1 ::::: i ::::: t. 
Thus, there is a one-to-one correspondence between the irreducible constitutents 
of a reduction of A and the irreducible constituents of a reduction of B in which 
corresponding constituents are equivalent. Hence, A and B are equivalent. o 

Suppose x is a fixed but arbitrary character of G. Let A be a representation of 
G affording x. By Theorem 4.15, A has a reduction. Thus, there exist irreducible 
characters Xi and nonnegative integers m;, 1 ::::: i ::::: k, such that x = L m; Xi. 
Because I (G) is orthonormal, 

m;= (X, Xi)G 

(4.17) 
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Therefore, 
k 

<x.x)G = Lmf. (4.18) 
i=l 

In particular, x is irreducible if and only if (X, x )o = 1. 

ExAMPLE 4.32 Let A be a permutation representation of degree n of the finite 
group G. That is, {A(u): u e G} is a set of permutation matrices. 1f x is the 
character afforded by A, then x(u) = F(u), the number of fixed points of the 
"permutation" A(u). Therefore (Corollary 3.30), (x. 1)o ~ 1, with equality if 
and only if the permutation group A (G) = {A ( u) : u e G} is transitive. 1f n > 1, 
it follows that A is reducible and the principal representation is a constituent of its 
reduction. Therefore ~ ( u) = x ( u) -1, u e G, defines a character of G. Moreover, 
from Equation (4.18), ~ is irreducible if and only if (X, x )o = 2. As we have seen 
(Theorem 3.32) 

~2. 

with equality if and only if {A ( u) : u e G} is doubly transitive. Thus, ~ is 
irreducible if and only if A(G) is doubly transitive. o 

ExAMPLE 4.33 Let ~ be the character afforded by the representation in Exam­
ple 4.3. Then ~(u) = F(u)- 1, u e S3, where F(u) is the fixed point character. 
Because S3 is doubly transitive, it follows from Example 4.32 that ~, and hence 
the representation A, is irreducible. o 

EXAMPLE 4.34 Every finite group G has a permutation representation in the sense 
of Example 4.32: 1f G = {ut. u2, ... , u,.} then, from Equation (4.2), the (i, j)­
entry of the corresponding (left) regular representation, A(t'), is 

a;j(T) = { ~ 
1f { is the character afforded by A, then 

11 

if TO'j = O'j, 

otherwise. 

{(T) = I:a;;(T) 
i= l 

= o({i: Tu; = u;)) 

=0, 
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unless t' = e, in which case it is ~(e) = n = o(G). Therefore, 

~(t') _ { o(G) 
- 0 

if t' = e, 
otherwise. 

89 

(4.19) 

(In particular, any two regular representations of G are equivalent.) Because A has 
a reduction, we can write 

where 

~ = L mxx. 
xe/(G) 

mx = (~. X)G 

1 ~ -
= o(G) L x(a l)~(a) 

aeG 

= x(e), (4.20) 

by Equation (4.19). In other words, the multiplicity of x as a constituent of~ is 
equal the degree of x. o 

THEOREM 4.35 /fG is a finite group, then 

L x(e)2 = o(G). 
xe/(G) 

(4.21) 

Proof Let ~ be the character of the regular representation described in Ex­
ample 4.34. From Equation (4.19), (~. nG = o(G). From Equation (4.20), 
(~. ~)G = E x(e)2. o 

Unless every irreducible character of G is linear, Theorem 4.35 strictly improves 
the bound o(I(G)) !: o(G) that emerged from Corollary 4.30. We are about to 
obtain another improvement. 

THEOREM 4.36 Let G be an arbitrary group. If X is a character of G. then 
x(a) = X(t'-1at'), for all a, t' E G. That is, x is constant on the conjugacy 
classes of G. 

DEFINmoN 4.37 Let G be a group. Denote the conjugacy class of G to which a 
belongs by C G (a) = { t' -I at' : t' E G}. The number of different conjugacy classes 
of G is its class number. A function f E CG that is constant on conjugacy classes 
is called a class function. Denote by Z(CG) the subspace ofCG consisting of the 
class functions. 
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Suppose C = Co(u) is a conjugacy classes of G. Define le: G -+ C by 
fc(JL) = 1 if JL e C, and 0 otherwise. Then le e Z(CG) is the characteristic 
function of C. Because the characteristic functions of the conjugacy classes 
comprise a basis for Z(CG), its dimension is equal to the class number of G. By 
Theorem 4.36 and the Orthogonality Relations of the First Kind, the irreducible 
characters of G comprise an orthonormal set in the inner product space Z(CG). 
Therefore, the number of different irreducible characters of G is at most its class 
number. In fact. these two numbers are equal. 

THEOREM 4.38 Let G be a finite group. Then /(G) is an orthonormal basis of 
Z(CG). 

Proof Let {At: 1 !:: k !:: r} be a complete set of inequivalent irreducible 
representations of G. Suppose At(a) = (at(u)), u e G, is a representation 

of degree nt. By Theorems 4.23 and 4.35, the nf + n~ + · · · + n~ = o(G) 
linearly independent functions at comprise a basis of CG. If f: G -+ C is a 

fixed but arbitrary function, there must exist square matrices Bt = <#l;j>• of size 
nt. 1 !:: k !:: r, such that 

, lit 

/(u) = L L bf;at(u), (4.22) 
l=l i.j=l 

for all u e G. Thus, for any u, ~ e G, 

, lit 

/(~-•u-r:) = L L bJ1at(-r:-•u~) 
k=l i,j=l 

, lit lit 

= L L b:; L afs<-r-1)a~1 (u)a~(T) 
l=l i.j=l .r,t=l 

If we assume that f is a class function, it follows from Equations (4.22}-{4.23) 
and the linear independence of the at that 

lit 

b:s = L a~(-r:)bJ;af,(-r-1 ), 
i,j=l 

for all s, t, k, and ~. In other words, Bt = At(~)BtAt(-r:- 1 ), or BtAt(T) = 
At(T)Bt. for all k and ·r. Therefore (Corollary 4.17), Bt = ctl11t. In other words, 
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"J; = &i,JCJ:. Substituting these values into Equation (4.22) yields 

r 

= L:c~cx~c. 
le= I 

91 

where X1c is the character afforded by A~;. We have proved that the orthonormal set 
I (G) spans the inner product space Z (CG). o 

CoROLLARY 4.39 Let G be a finite group. Then G is abelian if and only if each of 
its irreducible npnsentations is linear. 

Proof Because cTT = u1 if and only if -r-1u-r = u, G is abelian if and only if it 
has class numbero(G), if and only if o(/(G)) = o(G). Because x(e) is a positive 
integer for all x e I (G), the result follows from Equation (4.21). o 

THEoREM 4.40 (Orthogonality Relations of the Second Kind). Let u and T be 
elements of the finite group G. Then 

~ 1 { o(G)/o(CG(u)) 
L., x(u- )x(-r) = 

)(E/(G) 0 

if T e Co(u), 

otherwise. 
(4.24) 

Proof Let fc e Z(CG) be the characteristic function of the conjugacy class 
C = CG(u). Because /(G) is an orthonormal basis for Z(CG), 

fc = L (f, X)GX 
)(EI(G) 

I ~ -= (G) L., o(C)x(C)x, 
O )(E/(G) 

where x(C) is the common value of x(J.L), IL e C.lf D = Co(T), then 

8c,D = fc(D) 

= o(C) L x<C>x<D> 
o(G) xe/(G) 

o(C) ~ 1 = (G) £- x(u- )X(T). 0 
xei(G) 

D 
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ExAMPLE 4.41 Let G = A3 = {e3, (123), (132)}, the cyclic group generated by 
(123). It follows from Corollary 4.39 that the irreducible characters of G are all 
linear. (1bere is very little to distinguish an irreducible representation of degree 1 
from its character.) 

The three conjugacy classes of A3 are Ct = {e3}, C2 = {(123)}, and 
C3 = {(132)}. Let /(A3) = {Xt, X2· XJ}. Because 1 = X;(e} = X;((123)3) = 
x;((123))3, x;((123)) is a root ofx3 -1, 1 ~ i ~ 3. The three cube-roots of unity 
are 1, w = ( -1 + i ../3) 12, and w2 = w = ( -1 - i ../3) 12. It is, therefore, a simple 
matter to write down the character table in Figure 4.1. The rows of this table are 
pairwise orthogonal "vectors" of magnitude o(A3), confirming the Orthogonality 
Relations of the First Kind. The columns are pairwise orthogonal and the j-th 
column has length o( G) I o( C1) = 3 I 1, confirming the Orthogonality Relations of 
the Second Kind. o 

XI 

X2 

X3 

1 

1 

1 

1 

(I) 

w 

1 

(I) 

FIGURE 4.1 The character table for A3, where w = ( -1 + i../3)/2. 

ExAMPLE 4.42 Let G = D4 = {e4, (1243), (1342), (14)(23), (14), (23), 
(12)(34), (13)(24)}. After some computations, one discovers that G has five con­
jugacy classes, .namely, Ct = {e4}, C2 = {(14)(23)}, C3 = {(1243), (1342)}, 
C4 = {(14), (23)}, and Cs = {(12)(34), (13)(24)}. So, there are five irreducible 
characters, one of which is the principal character, XI· Suppose the other four 
irreducible characters have degrees n2 ~ n3 ~ n4 ~ ns. Then (1beorem 4.35) 

The only possibility is n2 = n3 = n4 = 1 and ns = 2, that is, X2· X3· and 
X4 are linear characters, while xs(e) = 2. Because the restriction to D4 of the 
alternating character £ : S4 ~ C is different from the principal character, we 
may let X2 = £ . If~ is either XJ or X4 then, because it is a homomorphism, 
~(C2)2 = ~(C4)2 = ~(Cs)2 = 1 = ~(C3)4. Because a is conjugate to a-1, 

a e D4, ~ is real. Therefore, ~(C;) = ±1, 2 ~ i ~ 5. Together with x1 = 1, 
X2 = E, and the Orthogonality Relations of the First Kind, this is enough 
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information to fill in the first four rows of the character table in Figure 4.2 (with 
the understanding that rows three and four could just as well be interchanged.) 

c. c2 C3 c4 Cs 

XI 1 1 1 1 

X2 1 -1 -1 1 

X3 1 -1 1 -1 

X4 1 1 -1 -1 

xs 2 a b c d 

FIGURE 4.2 

From the Orthogonality Relations of the Second Kind, column C 1 is orthogonal 
to column CJ. j ~ 2. Thus, 4 + 2a = 0 = b = c = d, which yields the character 
table in Figure 4.3. o 

c. c2 C3 C4 Cs 

XI 1 1 1 1 1 

X2 -1 -1 1 

X3 -1 1 -1 

X4 1 1 1 -1 -1 

xs 2 -2 0 0 0 

FIGURE 4.3 The character table for D4• 

EXAMPLE 4.43 Recall (Theorem 3.18) that two permutations are conjugate in S11 

if and only if they have the same cycle structure. (Because u and u-1 have the 
same cycle structure, x(u) = x(u-1) = X(CT), u E S11 , that is, the characters of 
S11 are real valued. In fact. as we will see momentarily, they are all integer valued.) 
Denote by C., the conjugacy class of S11 consisting of all permutations of cycle 
type 1f 1- n.2 A formula for n(1r) = o(C:~r) can be found in Theorem 3.7. When 

2So, C.=Cs, (a) for any/every permutation aes. of cycle type 1r. 
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n = 5, these numbers are exhibited in Figure 4.4. Because it has seven conjugacy 
classes, Ss has 7 irreducible characters. 

c7C cu'J q2,P] q21,l] qJ,ll] q3,2] q4,l] qsJ 
n(:IZ') 1 10 15 20 20 30 24 

FIGURE 4.4 Cardinalities of the conjugacy classes of S5• 

Among the 7! = 5040 one-to-one correspondences between partitions of 5 
and conjugacy classes of Ss, 1Z' .,. C1r is the only one that might be called 
natural. While it is not so evident, there is also a natural correspondence between 
partitions of n and irreducible characters of S,.. Anticipating this result, we will 
write I(Ss) = £x1r: 1r r 5}. In this (as yet mysterious) natural correspondence, 
XISJ is the principal character and Xll'J =£,the alternating character. 

Because the equation 
7 

I>~= 120 
i=l 

has many solutions, for example, 

1 + 1 + 1 + 9 + 36 + 36 + 36 = 120, 

1 + 1 +4+4+4+25+81 = 120, 

1 + 1 + 1 + 4 + 4 + 9 + 100 = 120, and 

1 + 1 + 16 + 16 + 25 + 25 + 36 = 120, 

Theorem 4.35 is not so helpful this time. With all the theoretical machinery we 
have developed so far, it is still no small task just to determine the degrees of the 
irreducible characters of Ss, much less construct the character table exhibited in 
Figure 4.5. However, given Figures 4.4 and 4.5, it is not difficult to confirm that 

and 

1 '"' 2 <x.x)G = 
120 

~x(u) 
O'ES, 

= 1, 

L x(C7C)2 = 120/n(K). 
xei<S.> 

0 
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Cu'J C[2,P] C[22,1) q3,12) C[3,2] q4,1] C[sJ 

X(l'J I -1 I I -1 -1 I 
X[2,PJ 4 -2 0 I I 0 -1 
X[22,1J 5 -1 I -1 -1 I 0 
X[3,12J 6 0 -2 0 0 0 I 
X[3,2l 5 I I -1 1 -1 0 
X!4,1J 4 2 0 I -1 0 -1 

XIS I I I 1 I I I I 

FIGURE 4.5 The character table for Ss. 

While ad hoc methods based on the machinery we have developed so far were 
sufficient to construct the character tables in Examples 4.41 and 4.42, it is clear 
from Example 4.43 that additional tools are needed before we will be in a position 
to deal with the symmetric groups. One such tool emerges from the following 
generalization of a previous notion: Suppose H is a subgroup of the finite group 
G. Let 

be the left coset decomposition of H in G. Recall that G has a homomorphic 
image, G, that acts as a transitive permutation group on {a; H: I !:: i !:: r }. Let's 
explore the manifestation of G as a representation of G. For each T e G, define 
the r-by-r permutation matrix A(-r) = (a;j(T)) by 

if TO'jH = a;H 
otherwise. 

(4.25) 

(Compare with Equation (4.2).) Another way to say the same thing is this: Let 11 

be the characteristic function of H in G. That is, I": G -+ {0, I} is defined by 
11(a) = 1, if a EH, and 0 if a E G\H. Then ti;j(T) = 11(0';- ITO'j), that is, 

( 

11 (a1-
1-rat) 11 (a11Ta2) .. . 

A(-r) = 16
(a2

1
TO't) I1 (a2

1
t'a2) .. . 

I1 (a,-1t'O't) 11 (a,-1t'a2) .. . 

11(a11 ~"a,)) 
I1 (a21t'a,) . 

I 1 (a;1-ra,) 

(4.26) 

Just as in the proof of Theorem 4.8, A is a permutation representation of G .In fact, 
the same idea can be used to convert any representation of H into a representation 
of G. If A is a representation of H of degree n, let A 1 be the matrix valued function 
of G defined by 

A1 (a) = {A(~~ ifaeH 
if a e G\H, 
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where On is the n-by-n matrix of zeros. If ~ E G, let A(~) be the nr-by-nr 
partitioned matrix whose (i, j)-block is .A1(tr;-t~t1j). 1 ~ i, j ~ r. (We are still 
taking tTt, t12, ••• , tr, to be a fixed but arbitrary system of representatives for the 
distinct left cosets of H in G.) 1n other words, 

(
A1(trl1 ~u1) A1(u11 ~tr2) .. . A1(tr1 1 ~u,)) 

A(~)= A1(tri1 ~u1) A1(ui1 ~u2) ::: .A1(u21 ~tr,) , 

.A1(tr,-1 ~u1) A1(tr,-1 ~u2) . . . .A1(u,- 1 ~u,) 

(4.27) 

~ e G, is the partitioned matrix whose (i, j)-blockis A(tr;-1 TtTj),if~uiH = u; H, 

and On otherwise. In particular, each row and column of A ( T) contains exactly one 
nonzero block. (Observe that Equation ( 4.26) is the special case of Equation ( 4.27) 
corresponding to the principal representation of H.) 

Using block matrix multiplication, the (i, j)-block of A(~)A{p.) is 

r 
L A"(tT;-1l'tTk)A1 (tTk-1 J.LO'j) = A"(tT;-·~ Jl.O'j). 
k=1 

In other words, A(~)A{p.) = A(~J.t). Because A(e) = lnr• this proves that A is a 
representation of G. 

l>EANmoN 4.44 Suppose H isasubgroupofthefinitegroupG.Letu1, u2, ... , u,, 
r = [G : H), be fixed but arbitrary representatives for the distinct left cosets of 
H. Suppose A is a representation of H that affords the character x. The represen­
tation A of G defined in Equation (4.27) is said to be induced by A. The induced 
character, xG, is the character afforded by A. 

The value of the induced character is given by 

where, as expected, 

r 
xG<~> = L tr (A"(u;- 1 ~u;)) 

i=1 

r 

= L:x'<u;-•~u;) 
i=1 

# -1 { x(a-
1
ra), 

X (tr ~u) = 
0, otherwise. 

(4.28) 

(4.29) 
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While an induced representation depends on the coset representatives, the 
induced character does not. (This is the easy proof that representations of G 
induced from the same representation A of H, but corresponding to different 
coset representatives, are equivalent.) Observe that the degree of XG is 

(4.30) 

where, as usual, [G : H] = o(G)fo(H) is the index of H in G. 

ExAMPLe 4.45 Let G = D4. From Example 4.42, the conjugacy classes of G 
are cl = {e4}, c2 = {(14)(23)}, c3 = {(1243), (1342)}, c4 = {(14), (23}}, and 
Cs = {(12)(34), (13)(24)}. Let H = ((1243)) be the cyclic subgroup generated 
by (1243). The coset decomposition of G is G = H U (14)H, that is, we may 
take a1 = e4 and a2 = (14). Let~ be the character (homomorphism) of H 
defined by ~(e4) = 1 = ~((14)(23)) and ~((1243)) = ~((1342)) = -1. Then 
(Equation (4.30)) ~G(C1) = ~G(e4) = [G : H]~(e4) = 2. Because o(C2) = 1, 
(14)(23) e Z(G}, the center of G. From Equation (4.28), ~G(C2) = 2, 

and 

~G(C3) = ~G((1243)) 

= ~1(a!1(1243)at) + ~1(a21 (1243)a2) 

= ~1((1243)) + ~1((1342)) 
= ~((1243)) + ~((1342)) 
= -2, 

~G(C4) = ~G((14)) 

= ~1(e4(14)e4) + ~1((14)(14)(14)) 

= ~1((14)) + ~1((14)) 
=0+0 

=0, 

~G(Cs) = ~G((12}(34)) 

= ~~ ((12)(34)) + ~1((13)(24)) 
=0. 
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Now that we know the values of ~G it follows from Equation (4.17) that ~G = 
X2 + Xl· where X2 and X3 are among the irreducible characters of D4 exhibited in 

Figure 4.3. D 

FROBENJUS R.EciPROCITY THEOREM 4.46 Let H be a subgroup of G. Let~ be a 
character of Hand X a character of G. Then 

(4.31) 

Proof 

1 ~ ~ -1 # -1 
= (G) (H) L...J L...J X(" )~ (Cl "Cl) 0 0 reGaeG 

1 ~ 1 ~ -1 # 
= (G) L...J (H) L...J x(J.L )~ (J.L) 

O aeG 0 ~LEG 

1 
= (G) L:<~. x>n 0 aeG 

0 

Returning to the irreducible characters of S,., suppose 1r = [1r1, 1r2, ••• , 7r111 ) 

is a partition of n of length m. Of the many sub-groups of S,. isomorphic to S,, 
consider the one consisting of the permutations that fix every integer not contained 

in the set 

(t : 1rO + 1rl +. · • + 1ri-l < t !:: 1rO + 1rl + ... + 1ri}, 

where 1ro = 0. The Young Subgroup3 corresponding to 1r 1- n is the internal 

direct product, 
S, = S,1 X S,2 X • • • X S, •. 

-----------------------3Named for Alfred Young (1873-1940). 
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Denote by 
111' = 1s,. 

the principal (identically 1) character of sll' and by 

the restriction of the alternating character E to S~r. Then, adopting the abbreviation 

(4.32) 

it can be shown that (1~, E~ ),. is the number of double cosets,4 S~rCT Sp. that satisfy 
S~r nCTSpCT-I = {e11 }. This double coset number also occurs in what would appear 
to be a totally different context; it is the number of (0,1)-matrices with row sum 
vector 1r and column sum vector p.5 

It is easy to see that there is exactly one (0,1 )-matrix with row sum vector 1r 
and column sum vector 1r*. If 1r = [5, 3, 1, 1), for example, the unique matrix is 

(

1 1 1 1 1) 
1 1 1 0 0 
1 0 0 0 0 • 
1 0 0 0 0 

where the 1's are crowded into the upper left-hand corner in the shape of F(1r). It 
follows that 

(4.33) 

In other words, there is exactly one irreducible character of S,. that occurs as a 
constituent of both 1~· and e!':.. Let's call it Xft.6 

Two special cases are easily identified. Because Sr11J = S,., 1~1 is the principal 
character; its only irreducible constituent is itself. Therefore, 

X[11] = 1s.. 

If 1r = [111] , then 1~ = {, the character of the regular representation of S,.. 
Because 1r* = [n], S~r· = S,. and E~r• = e. (Since each irreducible character of 
S,. occurs in { with multiplicity equal to its degree, we know, without reference to 
Equation (4.33), that({, e),. = 1.) Thus, 

X[l•] =E. 

4See e.g. [James and K.erber (1981), p. 18]. A discussion of double cosets can be found in 
Exercises 42-44. 

5By the Gale-Ryser Theorem. this number is nonzero if and only if the conjugate partition, p•, 
majorizes 11'. (See Exercise 31, Chapter I . 1be theorem is placed in a more general context by Brualdi 
and Ryser (1991)), [Doubilet, Fox & Rota (1980)], and [James and K.erber (1981)].) 

6 As we discover more about ;c., it will becomeclearthat~r<+x. fulfills thepromiseofExample4.43 
regarding a natural correspondence between partitions of n and irreducible characters of S.. In particular, 

i(S.)= (x. : Jrf-11). 
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THEOREM 4.47 /fH 1- n, then X:~r• = EX:~r• that is, X:~r•(r) = E('r)x:~r('r),forall 
1' E S,.. 

Proof It is not difficult to show7 that£~" = E(I!1 Therefore, E(E~) = I!". 
Because, X:~r is an irreducible constituent of both l:~r and s!'., EX:~r must be an 

irreducible constituent of s(s!'.> = I!'. and £(1~) = £~. By Equation (4.33) 
(since 1r•• = 1r ), the unique such irreducible constituent is X1r•. o 

CoRolLARY 4.48 The partition 1r 1- n is s~lf-conjugat~ if and only if X:~r(u) = 0 
for ev~ry odd permutation u E S,.. 

Proof If 1r is self-conjugate then, by Theorem 4.47, XJr•(O') = s(u)x:~r(u), 
u e S,.. If X:~r(u) = 0 for every odd u E S,. then, by another application of 
Theorem 4.47, X1r• = X:~r·If 1r* ::f:. 1r, we would eventually find that S,. contained 
fewer irreducible characters than conjugacy classes. o 

Because 1~· is a character of S,., there must exist integers, K'K,p• such that 

I!' = L K1C,pX1ro P 1- n. (4.34) 
7rf-n 

DEFt.NmoN 4.49 The numbers K:~r,p = (1;, X:~r ),. in Equation (4.34) are called 
Kostka coefficients. 8 

By the Frobenius Reciprocity Theorem, K1r,p = (Ip. X:~r )s.,. 

EXAMPLE 4.50 If p = [2, I2], it is not difficult to verify that 

I~• = X!4l + 2X[3,1J + X[2lJ + X[2,P]· 

Thus, for example, K[3,1],[2,llJ = 2. 0 

The next result, a mechanical procedure for computing Kost.ka coefficients, is 
commonly known as Young's Rule. In order to state the procedure, we need to use 
a variation of Ferrers diagrams in which the symbols comprising the rows need 
not be identical boxes. 

THEOREM 4.51 Let p = lPt. P2 • ... , Pr] 1- n. Beginning with a F~rrers diagram 
consisting of a single row of length PI, construct all possible Ferrers diagrams that 
can be obtained by adjoining P2 additional symbols (of a second kind), subject to 
the condition that no two of these new symbols are permitted to lie in the same 
column. From each of the compound diagrams so constructed, form all possible 
Ferrers diagrams that can be obtained by adjoining P3 additional symbols (of a 

1 See Exercise 34. 
8See [Kostka (1882)]. 
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third kind) subject to the condition that no two of the new symbols are placed in 
the same column. Continue in this way until Pr symbols (of an r-th kind) have been 
added in all possible ways to each of the previously constructed Fe"ers diagrams, 
subject to the same condition. Then Kn,p is the number of times F(tr) occurs 
among the resulting diagrams. 9 

ExAMPLE 4.52 Suppose p = [3, 3, 1]. Beginning with a single row of Pt = 3 
symbols, XXX, adjoin PJ. = 3 new symbols, in all possible ways, subject to the 
condition that no two of the new symbols may lie in the same column of any of 
the resulting Ferrers diagrams. The four possibilities are 

XXXYYY 

Notice, for example, that 

XXXYY 
y 

XXXY 
y 
y 

XXXY 
yy 

and XXX 
yyy 

is not permitted. Next, construct all possible Ferrers diagrams that can be obtained 
from the four (permissible) compound diagrams by adding an additional symbol 
corresponding to P3 = I. From XXXYYY, we obtain 

XXXYYYZ and XXXYYY 
z 

corresponding to X!71 and X!6.11· Adding Z in all possible ways to 

XXXYY 
y 

yields the three compound diagrams 

XXXYYZ 
y 

XXXYY 
YZ and 

XXXYY 
y 
z 

corresponding to X!6.ll• X[S,2J. and X!S,PJ· Adding Z in all possible ways to 

XXXY 

yields 
XXXYZ 
yy 

yy 

XXXY 
YYZ and 

XXXY 
yy 

z 
9 A Proof can be found, e.g., in [Jamcs & Kerber (1981), §2.8] or [Sagan (1991), §2.11]. 
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corresponding to X[S,2l• X!4,3J• and X(4,2,1J· Finally, adding Z to 

XXX 

in all possible ways produces 

xxxz 
yyy 

yyy 

XXX 
and YYY 

z 
corresponding to X(4,3) and X(J2,tJ· (Notice that 

XXX 
YYYZ 

is not permitted as it is not a Ferrers diagram.) Summarizing, we have that 

1[32,1)'7 = X!71 + 2X(6,11 + 2X(S,21 + X(S,t2] + 2X(4,3) 

+ X!4,2,tl + X(J2,l]· 

So, K[7],(J2,ll = 1, K(6,t],(J2,tl = 2, K[S,2J,(J2,tJ = 2, and so on. 

[4] [3,1] [22] [2,12] [14] 

[4] I I I 1 
[3,1] 0 I 1 2 3 
[22] 0 0 1 1 2 

[2,12] 0 0 0 I 3 
[14] 0 0 0 0 1 

FIGURE 4.6 Table of Kostka Coefficients. 

D 

ExAMPLE 4.53 The table of Kostka coefficients, K1r,p. 1r, p 1- 4, appears in 
Figure 4.6. Observe that the fourth column, corresponding top = [2, 12], confirms 
Example 4.50. Using the notation ( , )11 for the inner product in CS,, the first row 
of the table corresponds to 

K[4J.p = (1;, X!4J)4 

= (1~4,1)4 

= (1, 1)s, 

= 1, 
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by the Frobenius Reciprocity Theorem. Similarly, the last column consists of the 
Kostka coefficients 

K,..,[14J = (1~4 1 • x,..)4 

= (1, X~r)(e} 

= x,..(e), 

the degree of x,... Observe that the entries in row 1r are increasing. This is a 
consequence of the fact that K,.. ,p ::::, K,.., 11 whenever v majorizes p.10 o 

COROlLARY 4.54 The Kostkil coefficient K,...tr = l,forall7r 1- n. 

THEOREM 4.5511 Let p = [p1, P2• •.. , p,] and 7r = [7rt, 1r2, ••• , 7r1 ] be parti­
tions of n. Then x,.. is an i"educible constituent ofl !", that is, the Kostkil coefficient 
K1r ,p ::f:. 0, if and only if 1r majorizes p. In particular, if the partitions indexing its 
rows and columns are a"anged in reverse lexicographic order, the Kostkil matrix 
K = (K1r,p) is upper triangular. 

The proof depends on a technical lemma concerning the relation of partial dom­
inance: Let a = (at. a2, ... , as) and {J = (/Jt. fh., ... , {J,) be two nonincreasing 
sequences of positive integers. Then a 1> {J ifs ~ r, 

k k 

Ea; :::: E {J;. 1 ~ k ~ s. 
i=l i=l 

and at + az +···+as ::::, f3t + fJ2 + · · · + {J,. Thus, partial dominance is a 
weak form of majorization in the sense that a > {J if and only if a 1> fJ and 

at + a2 +···+as = fJt + fJ2 + · · · + {J,. 

LEMMA 4.56 Let a = (at. a2, ... , as) and fJ = (fJt. fh., ... , {J,), r > 1, be 
two noninc~asing sequences of positive integers. Suppose a 1> {J. Then some 
{J, of the columns of the Fe"ers diagram F(a) can be shortened by one box 
each in such a way as to produce a new Ferrers diagram, F(a'), such that 
a' 1> {J' = <fJt. /h., ... , fJ,-1 ). 

Because {J, boxes are being removed from F(a) to produce F(a') and from 
F({J) to produce F({J'), if a majorizes {J in Lemma 4.56, then a' majorizes {J'. 

10See [Liebler & Vitale (1973)], [White (1980a)). or [lames & Kerber (1981), pp. 44). 
11Conjec:tuml in [Snapper (1971)), the sufficiency part of Theorem 4.55 was first proved in [Lam 

(1977)) and [Merris (1977)). 
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Proof The proof is by induction on s. If s = 1, simply remove the last fJr 
boxes from row 1 of F(a). Suppose s > 1. If a, ;::: fJ,, then we may take 
a'= (a1, a2, ••. , a1-I, a, - fJ,). If a, < fJ,, the situation is more complicated 
and we need an intermediate step. 

Temporarily remove the first a, columns from both F(a) and F(fJ). This 
produces aU> = (a1 -a,, a2 -a,, ... , a, -a,), where t is maximal so that 
a1 > a1 , and fJ(l) = <fJ1 -a,, fJ2 -a,, ... , /Jr - a 6 ). Because s ~ r, no more 
boxes have been deleted from F(a) than from F(fJ). In particular, a<1> [> {J(l). 
Therefore, by the induction hypothesis, we can remove fJ, - a, boxes from the 
column ends of F(a<l)), producing F(a<2>), where 

a<2> = (Yl· n .... ' Yq) [> p<2> = <fJI -a,, fJ2- a,, ... ' fJr-I -a,). 

We now restore the detached columns. To the left-hand side of F(a<2>), attach a 
rectangular array of s rows and as columns obtaining F(a<3>). When a rectangular 
array of r rows and as columns is attached to the left-hand side of F(fJ(2>), we 
obtain {J(3) = <fJI, fJ2, ... , /Jr-I, as). More importantly, 

Finally, removing a, boxes from the last row of F(a(3>) and F(fJ<3>), we obtain 
F(a') and F(fJ'), respectively, where 

a' [> fJ' = <fJI, fJ2,. ·., /Jr-1). 

0 

Proof (ofTheo~m 4.55) Suppose X1r occurs among the irreducible constituents 

of 1~·. Because the construction in Theorem 4.51 begins with a row of PI symbols, 
every partition that emerges in the end satisfies 1fi ;::: PI· None of the next P2 
symbols can be put in row 3 without putting two of them in column 1, violating the 
condition that no two of them may occur in the same column. This requires that all 
of these P2 symbols be placed in the first two rows. (Of course, rows 1 and 2 may 
grow longer when subsequent symbols are added.) Therefore, 1fi + 11'2 ;::: PI + P2· 
When the next P3 symbols are added, the condition that no two of them can be 
placed in the same column means that all of them must be placed in the first three 
rows, so 7ri + 1r2 + 11'3 ;::: PI + P2 + PJ. And so on. Because both 1r and pare 
partitions of (the same integer) n, we conclude that 1r >- p. 

Conversely, assume that 1r majorizes p = [Pl, P2 •••• , p, ]. The proof that 1r 

occurs among the partitions built up from pin Theorem 4.51 is by induction on 
r. If r = 1, then 1r = p and the result is clear. If r > 1 then, by Lemma 4.56, 
p, symbols can be removed from the 11'1 symbols constituting the column ends of 
the Ferrers diagram F(1r) in such a way that the result is the Ferrers diagram of a 
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new partition tr', and tr' > p' = [pJ, PJ., •• . , Pr-1J. By the induction hypothesis, 
F(tr') occurs among the Ferrers diagrams constructed from p' via Theorem 4.51. 
Now, add p, symbols to F(tr') to produce F(tr). Because F(tr') was obtained 
from F(tr) by detaching only the ends of columns, no two of these p, symbols lie 
in the same column of F(tr). Thus, Krr,p # 0. 

To prove the upper triangularity of the Kostka matrix, it suffices to show that 1r 

majorizes p, only if p comes before 1r in lexicographic order. If 1r > p, suppose 
k is the smallest positive integer such that 1ft :f:. Pk. Because 

1r1 + 1r2 + · · · + 1fk ~PI+ P2 + · · · + Pk· 

it can only be that Pk < trt. 0 

ExAMPLE 4.57 Because K = (Krr,p) isanintegeruppertriangularmatrix with 1's 
on its diagonal, K-1 is an integer upper triangular matrix with 1's on its diagonal. 
If n = 4 then (Figure 4.6) 

rl 1 1 

~) 0 1 1 2 
K= 0 0 1 I 

0 0 0 1 
0 0 0 0 

and r -1 

0 

-~) 0 1 -1 -I 
K-1 = 0 0 I -I I . 

0 0 0 I -3 
0 0 0 0 I 

It follows from Equation (4.34) that 

Xrr = L(K-1)p,,..l~. 
pi-n 

From the fourth and fifth columns of K-1 we see, for example, that 

Is. Is. Is. + Is. 
X!2.PJ = !41- (3,11- [22] (2.12]' 

and 

0 

In principle, it is now a straight-forward mechanical process to compute 
irreducible characters of sll. The job is typically done with the help of so-called 
Young tableaux.IZ We will omit the details and merely describe the results. 

12See, for example, (lames & Kerber (1981)]. 
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DBFtNmoN 4.58 Let 1r = [1r1, 1r2, ... , 1r,] be a partition of n. To each ordered 
pair (i, j), 1 ~ i ~ r, 1 ~ j ~ 7r;, there corresponds a box, B;j. in the Ferrers 
diagram F(K). Box B;j determines a unique book in F(1r) consisting of B;j itself, 
all the boxes in row i of F(1r) to the right of B;j, and all boxes in column j of 
F(1r) below Bij· The number of boxes in the hook determined by B;j is its length, 
hij = (7r; - i) + (1rj - j) + 1. 

FIGURE 4.7 Hook lengths in F([3, 22]). 

EXAMPLE 4.59 The numbers in the boxes of the Ferrers diagram F([3, 22]), in 
Figure 4.7, are the corresponding hook lengths. For example, h 12 = 4 and h21 = 3. 
(A figure obtained by placing numbers in the boxes of a Ferrers diagram is a Young 
tableau.) o 

THEOREM 4.60 ( F1'fJIM·Robinson-Thrall Hook Length Fomwla). If 1r is a parti­
tion of n, then the degree of the irreducible character of S11 corresponding to 1r 
is 

x,r(e) = nL(lf) n"'l h· . ' 
i=l j=l I} 

n! 

where, recall, L(1r) is the length of7r. 

Beyond [Frame, Robinson & Thrall (1954)], proofs of Theorem 4.60 can be 
found in [Boemer (1970)], [James & .Kerber (1981), p. 56], and [Sagan (1990) & 
(1991)]. 

EXAMPLE 4.61 Let 1r = [3, 22]. Then, from Theorem 4.60 and Figure 4.7, 
XK (e) = 7!/(5 X 4 X 1 X 3 X 2 X 2 X 1) = 21. 

If 1r = [r, 111
-'], then F(1r) consists of a single-hook. We will frequently write 

Xr in place of Xlr,l•...,J• referring to it as a single-book character. Because the 
product of the hook lengths of F([r, 1"-']) is 

"-r+l ~r1 n n h;j = n(r- l)!(n- r)l, 
i=l j=l 
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Xr(e) = C(n - 1, r - 1). If n = 5 then, for example, X3(e) = C(4, 2) = 6, 
confirming the value for x13,121(Cus1) in Figure 4.5. o 

2 1 J 
5 4 3 

7 6 

8 
-

9 
-

FIGURE 4.8 The border of F([S, 4, 2, 12]). 

DEFINITION 4.62 Suppose 1r r n. The border of F(1r) consists of those boxes 
whose right edge, bottom edge, or bottom right vertex belong to the geometric 
boundary of the diagram. A border strip (or regular boundary part) of F(1r) 
is a connected set of border boxes the deletion of which would result in another 
Ferrers diagram. If the boxes of a border strip overlap r rows of F(1r), then the 
height of the strip, h = r - 1, is the number of .. vertical steps" that the border 
strip contains. 

EXAMPLE 4.63 The numbered boxes in Figure 4.8 comprise the border of 
F([5, 4, 2, 12)); its 13 border strips are listed in Figure 4.9. o 

THEOREM 4.64 (Murnaghan-Nalcayama Rule). Suppose Tt, p r n. Let kt, k2, •.. , 
ks be the parts of p arranged in some fixed but arbitrary order. Consider all 
possible ways the Ferrers Diagram F (1r) can be reduced to nothing lTy successively 
deleting border strips of cardinalities kt, k2, ... , ks. /f. altogether, the border strips 
occurring in the t -th way contain a total of v, vertical steps, then 

Xlr(Cp) = L(-1)11
'. 

t 

Apart from [Murnaghan (1937)] and [Nakayama (1940)], proofs of Theo­
rem 4.64 can be found in [Boemer (1970)], [lames & Kerber (1981)], and [Sagan 
(1991)]. 

EXAMPLE 4.65 In actual computations, one takes advantage of the fact that the 
parts of p may be listed in any (fixed) order. If, for example, 1r = [5, 4, 2, 12], 

then (from Example 4.63 and Figure 4.9), no border strip of F (1r) consists of five 
boxes. It follows that Xlr(a) = Oforany permutation a e St3 whose disjoint cycle 
factorization contains a 5-cycle. o 
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border strip height 

{1} 0 

{1,2,3} 1 

{1,2,3,4} 1 

{ 1,2,3,4,5,6} 2 
{1,2,3,4,5,6,7,8,9} 4 

{3} 0 

{3,4} 0 

{3,4,5,6} 1 

{3,4,5,6, 7 ,8,9} 3 

{6} 0 

{6,7,8,9} 2 

{8,9} 1 

{9} 0 

FIGURE 4.9 

Elf (1) g:o (0) § (0) B (0) 
0 

(0) 
(a) ..... ..... ..... ..... ..... 

Elf (1) g:o (1) 
a::IJ 

(0) 
[]] 

(0) 
0 

(0) 
(b) ..... ..... ..... ..... 

Elf (0) E£P (0) 
a::IJ 

(0) 
[]] 

(0) 
0 

(0) 
(C) ..... ..... ..... ..... 

FIGURE 4.10 

EXAMPLE 4.66 Let's use the Mumaghan-Nakayama rule to compute 

X(3,2zJ(C[22,JlJ), the value of the irreducible character X!3,22J on the permutations 
ins-, of cycle type [22, 13]. Set k1 = k2 = 2 and k3 = k., = ks = 1. There 
are three ways to annihilate F([3, 22]) by successively deleting border strips of 
cardinalities 2, 2, 1, 1, and 1. They are illustrated in Figure 4.10. The border strips 
in the first way (Figure 4.10(a)) contain 1 + 0 + 0 + 0 + 0 = l vertical steps 
altogether. The (total) number of vertical steps in the second way (Figure 4.10(b)) 

is 1 + 1 + 0 + 0 + 0 = 2. The third way involves no vertical steps at all. Thus, for 

any permutation u e C[22,PJ• 
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What about X[J,22J(C[2l,IJ)? Let k1 = k2 = k3 = 2 and k4 = I. Coincidentally, 
there are again three ways of reducing F([3, 22]) to nothing, this time by 
successively deleting border strips of cardinalities 2, 2, 2, and 1. They are illustrated 
inFigure4.11. The deleted border strips in Figure4.11(a) contain 1 +0+ 1 +0 = 2 
vertical steps altogether; the total number in Figure 4.11 (b) is 1 + 1 + 0 + 0 = 2; 
and in Figure 4.11 (c), there are 0 + 0 + 0 + 0 = 0 vertical steps altogether. Thus, 
X[J,22J(C[2l,IJ) = (-1)2 + (-1)2 + (-1)0 = 3. 0 

Elf (1) ffD (0) § (1) 
0 

(0) 
(a) ..... ..... ..... ..... 

~ 
( 1) 

~ 
(1) 

caJ 
(0) 

0 
(0) 

(b) ..... ..... --+ -+ 

Elf (0) EEP (0) 
ITIJ 

(0) 
0 

(0) 
(c) ...... -+ ...... -+ 

FIGURE 4.11 

Suppose x is an irreducible character of G. If H is a subgroup of G, then 
the restriction of x to H may no longer be irreducible. When G = S,. and 
H = Sr11-I,IJ = Sn-1. the situation is described by the so-called branching 
theorem: 

CoROlLARY 4.67 Suppose Tt = [Ttl, Tt2, ••• , Ttr] is a (nonincreasing) partition of 
n > 1. Upon restriction to S11-1. 

X1r =XI+ X2 + · · · + Xr• 

where Xi = 0 if Tti+l = Tti, and Xi is the irreducible character of 511-1 

corresponding to the partition 

[Tt!, Tt2, ••• t Tti-lt Tt;- 1, Tti+l· ••. 'Tt,], (4.35) 

otherwise. 
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Proof Because we are viewing S,-t as {u e Sn: u(n) = n}, we may begin the 
Mumaghan-Nakayama calculation of x (u) by deleting from F(1r ), in all possible 
ways, a border strip of cardinality 1 (a single box). The results are Ferrers diagrams 
of partitions of n - 1 of the type exhibited in (4.35), where 1r; > 1ri+t· This 
completes the proof because the vertical step contribution from deleting a single 
box is 0. o 

CoROLLARY 4.68 lfu e Sn and x e /(Sn). then x(u) is an integer. 

Proof The result is immediate either from the Murnaghan-Nakayama Rule or the 
fact that the inverse Kostka matrix is integral. o 

Corollary 4.68 does not extend to all finite groups.13 (H x is a linear character 
of G, it is a homomorpbism into the nonzero complex numbers. Thus, x needn't 
be real.) 

THEOREM 4.69 Let G be a finite group. Suppose X e /(G)./f x(e) > 1, there 
exists a u e G such that x(u) = 0. 

Proof If G = Sn, then 1 =(X, X)o is equivalent to 

o(G) = L x(u-1)x(u) 
ueG 

By Corollary 4.68, the right-hand side of this equation is a sum of squares of o( G) 
integers. Because one of them (namely x (e)) is greater than one, they cannot all 
be nonzero. For arbitrary finite groups, the analogous statement is 

o(G) = L lx(u)l2• (4.36) 
ueG 

While x(u) = tr (A(u)) need not be an integer, because it is a sum of roots of 
unity (the eigenvalues of A(u)), it is an "algebraic integer". This, together with 
Equation (4.36) is enough to establish the result. (Details can be found in [Feit 
(1967), p. 36] or [lsaacs (1976), p. 40].) o 

The final theorems of the chapter are useful technical results. 

THEOREM 4.70 Let x be a character of the finite group G. Then x is a afforded 
by a unitary representation. 

13The character table of G is integral if and only if the following condition is satisfied: For all 
u. ~EG, the cyclic subgroup (u) is conjugate to (~) only if u is conjugate to 'I' . 
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Proof Suppose x(e) = n. Let a -+ A(a), a e G, be a representation of G 
affording x. Let 

X= L A(T)A(T)*. 
'CEG 

By Lemma 2.43, X is positive definite hermitian, so there is a unitary matrix U 
such that X = U* DU, where D is a diagonal matrix with positive diagonal 
entries. Let D 112 be the positive definite square-root of D. If H = (D-112)U, then 
(H-1)* = D 112U. Let B(a) = H A(a)H-1, a e G. Then 

B(a)B(a)* = (H A(a)H-1)(H A(a)H-1)* 

= (H A(a)U* D 112)(D112U A(a)* H*) 

= HA(a)XA(a)*H* 

=HX.H* 

=I,., 

because A(a)XA(a)* =X, a e G. D 

THEOREM 4.71 Let X be an irreducible character of the finite group G. Then x(e) 
exactly divides o( G). 

This theorem is a nice illustration of the vitality to be found at the boundary 
between group representation theory and algebraic number theory. Proofs can be 
found in any of the standard books on representation theory. 

There are many applications of group representation theory in physics and 
quantum chemistry. One of them will emerge in Chapter 6. Others can be found, 
for example, in [Hollas (1967)], [James & Liebeck (1993)], [Lomont (1993)], and 
[Schensted (1976)]. 
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Exercises 

1. Write out the permutation matrix A(u) = (8t,crU>) for each u E S3. 

2. LetS = {A(v): v e N} c C,.,,.. SupposeS spans C,.,,.. 

a Prove that S is irreducible. 

b. Prove that GL(n, C) is irreducible. 

3. Use the approach of Exercise 2 to show that the representation of S3 in 
Example 4.3 is irreducible. 

4. Let A be the representation of S3 in Example 4.3. Find an invertible 2-by-2 ma­
trix U such that u-1 A(u)U is diagonal for all u E A3 = {e3, (123), (132)}. 

5. Let G be the multiplicative group of nonzero complex numbers. Then the 
typical element of G is z = x + iy, where x and y are real numbers, not both 
zero. Prove that 

is a faithful irreducible representation of G. 

6. Let {A(v): 11 E N} be a set of pairwise commuting n-by-n matrices. 

a Prove that there exists a matrix U e GL(n, C) such that u-1 A(v)U is 
upper triangular for all 11 E N. (Hint: Corollary 4.17 .) 

b. Prove that the matrix U in part (a) can be chosen to be unitary. (Compare 
with Exercise 34 in Chapter 2.) 

7. In the manner of Example 4.20, 

a. use the representation A in Example 4.3 to confirm Equation (4.9) when 
i = t = 1 and s = j = 2. 

b. use the representation A in Example 4.3 and the representation B(u) = 
(E(tT)), tT E S3 to confirm Equation (4.10) when t = j = 1, for all four 
choices of i and s. 

8. One way to describe finite groups is by means of generators and relations. 
The group of 24 rotational symmetries of the cube, for example, is generated 
by elements x and y with defining relations x2 = y3 = (xy)4 =e. 
a Show that these are the generators and relations for S4. (This gives another 

proof that the group of rotational symmetries of the cube is isomorphic to 
S4.) 

b. Show that X = (-~ ~) and Y = i ( -! =~) satisfy the relations 

X2 = Y3 = (XY)2 = h 
c. Show that X -+ X and y -+ y extends to a representation of s4. 
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d. Is the representation defined in part (c) faithful? 

e. Is the representation defined in part (c) irreducible? 

9. Prove Theorem 4.21. (Hint: Because B is a representation, b,J(CTT) = 
Ebtk(CT)bkj(T).) 

10. Prove the converse of Theorem 4.22: If CT -+ A(u) = (aiJ(u)) is a 
representation in which the n2 functions a;1 : G -+ Care linearly independent, 
then A is irreducible. (Compare with Exercise 2.) 

11. Prove Theorem 4.23 for finite groups. (Hint: Mimic the proof of Burnside's 
Theorem.) 

12. Prove Theorem 4.26. 

13. Prove Theorem 4.29. 

14. Let x be a character of the finite group G. If u, -re G, prove that x(u-r) = 
X(TCT). 

15. Prove Theorem 4.36. (Hint: If A is any representation of G, then A(T-1) = 
A(T)-1, T E G.) 

16. Let A be the (left) regular representation of G = {u1, uz, ... , 0'11 }. Prove that 

11 

LA(u;) = J, 
i=1 

the n-by-n matrix each of whose entries is 1. 

17. Let G be the subset of C11,11 , n > 1, consisting of the invertible lower triangular 
matrices. (A lower triangular matrix is invertible if and only if there are no 
zeros on its main diagonal.) 

a. Show that G is a multiplicative group. 

b. Show that the representation A -+ A, A e G, is reducible but not fully 
reducible. (Explain why this does not violate Maschke's Theorem.) 

c. Show that dim((A: A e G}) < n2, where n is the degree of the 
representation A -+ A, A e G. 

18. Let~ be the character afforded by the representation A of Example 4.3. An 
indirect transitivity argument was used in Example 4.33 to prove that ~ is 
irreducible. 

a. Show by a direct computation that(~. ns3 = l. 
b. Prove that I ( S3) = { 1, t, ~}, where £ is the alternating character and ~ is 

the character in part a. 

19. Let A be a representation of the finite group G. Define B(u) = A(CT-1)•, u e 
G; C(u) = A(CT-1)1, the transpose of A(u-1), u e G; and D(u) = A(e1), 
the complex conjugate of A(e1), u e G. 
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a. Prove that B, C, and D are representations of G. 

b. Prove that B is equivalent to A. 

c. Prove that C is equivalent to D. (Hint: Theorem 4.70.) Representations A 
and Care "contragredienf'. 

20. Let G be a finite group. If u -+ A(u) = (aij(u)) is a representation of G, 
define :EA: G-+ C by 

11 

:EA(O') = L Dij(O'). 
i,j=l 

If A and B are irreducible unitary representations of G, prove that 

(:E :E ) _ { n if A= B has degree n, 
A' 8 G - 0 if A and B are inequivalent . 

21. Prove that GL(n, C) contains a finite irreducible subgroup, n :::: 1. 

22. Letu-+ A(u) = (aij(u))beanirreduciblerepresentationofthefinitegroup 
G. Prove that 

L Dij(r) = 8i,jX(u)o(CG(u))fx(e), 
TECo(a) 

where x is the character afforded by A. 

23. The idea behind this Exercise is to prove Corollary 4.39 from first principles. 
So, let G be a finite group. 

a If G is abelian, use Corollary 4.17 to prove that x(e) = 1 for every 
X E /(G). 

b. If x(e) = lforevery x e /(G), use the fact that the regular representation 
of G is faithful to prove that G is abelian. 

24. Construct the character table for 

a. the cyclic group of order 4. 

b. the noncyclic group of order 4. 

25. Let G = D4 (from Example 4.42). 

a. Show that G = ((1243), (12)(34}), the group generated by (1243) and 
(12)(34). 

b. Showthat 

A((1243)) = ( ~ -~) and A((12)(34)) = ( ~ ~) 

determines an irreducible representation of G that affords the character xs of 
Figure 4.3. 
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26. The "quaternion" group of order 8 is generated by elements x and y that satisfy 
x4 = e,x2 = r. and y-1xy = x 3. Show that, 

a. the quaternion group is not isomorphic to D4. (See Exercise 25.) 
b. (by a judicious choice of names for their conjugacy classes and characters) 

the character tables for the two groups are identical. (Hint: Figure 4.3.) 

27. Find the character table for 

a. the cyclic group of order 8. 

b. the group of order 8 determined by the generators and relations x2 = y4 = 
eandxyx =y. 

c. the group G of order 8 that satisfies 0'2 = e, 0' e G. 

28. Let X be an irreducible character of degree 5 of a finite group G. Prove that 

L X(O') = 0. 
aeG 

29. Let x be an irreducible character of the finite group G. 

a. Prove that IX(O')I ~ x(e) for all (J E G. 

b. Let Zx(G) = {0' e G: IX(O')I = x(e)}. Prove that Z.x(G) is a subgroup 
of G. 

c. Prove that~(O') = X(O')/x(e), 0' e Z;c(G), defines a character of Z.x(G). 

d. Prove that Z(G) c Zx(G), where Z(G) is the center of G. 

e. Prove that 
Z(G) = n Z.x(G). 

;cei(G) 

(Hint: Consider the regular representation of G.) 

30. Let H be a normal subgroup of the finite group G. Suppose {O'J, 0'2, •• • , O'r }, 
r = [ G : H), is a system of representatives for the distinct cosets of H in G. 
Let A be an irreducible representation of the quotient group G /H. If 0' e G, 
define B(O') = A(O'; H), where u; His the coset of G containing u . 
a. Prove that B is a representation of G. 

b. Prove that every proper normal subgroup of G is contained in the kernel 
of some nonprincipal irreducible representation of G. 

31. Let H be a subgroup of the finite group G. Suppose {0';: 1 ~ i ~ r} 
is a system of representatives for the distinct left cosets of H in G. Let 
JJ.J , JJ-2, • •• , JJ.r be fixed but arbitrary elements of H. If A is a representation 
of H, let A be the representation of G induced by A using {0'; : 1 ~ i ~ r}, 
and A the representation of G induced by A using coset representatives 
{u;JJ.; : 1 ~ i ~ r}.FindaninvertiblematrixU suchthatu-1 A(T)U = A(T), 
T E G. 
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32. Let G be a finite group. If a, r e G, their commutator is CTTCT-IT-1• The 
commutator subgroup of G, denoted G', is the subgroup of G generated by 
its commutators. 

a. Prove that G is abelian if and only if G' ={e). 

b. Prove that G' is a normal subgroup of G. 
c. Prove that GIG' is abelian. 

d. If XI and X2 are different linear characters of GfG', prove that they extend 
(as in Exercise 30a) to different characters of G. 

e. If G has m different linear characters, prove that m ~ [ G : G']. 

f. Suppose x is a linear character of G. Prove that x (a) = 1, a e G'. 

g. Prove that the number of linear characters of G is equal to [ G : G']. 

33. Let K be a subgroup of H and H a subgroup of G. If x is a character of K, 
prove that (x8 )G = xG. 

34. Prove that£~ = £(1~). 
35. Prove that the principal and alternating characters are the only characters of 

S,. of degree 1 

a. using the result in Exercise 32g. 

b. using the Frame-Robinson-Thrall book length formula. 

36. Use the Mumaghan-Nakayama Rule to 

a. show that X!nl is the principle character of S,. . 
b. show that X(l•J = e, the alternating character of S,.. 
c. confirm that X[S,2J([2, Is]) = 6. 

d. confirm that xrs.tzJ([2, 1s]) = Xl4,2.1]([2, ls]). 

e. confirm that X[n-l,lJ(O') = F(a) -1, where F is the fixed point character 
of S,.. 

f. confirm the values in the character table of S4 given in Figure 4.12. 

g. compute the values of X!3,2J(a), a e Ss. (Hint: Use Figure 4.5 to confirm 
your answers.) 

Cu•J Cr2.Jl] Cr22] CrJ.l] Cr4J 

xu•1 1 -1 1 1 -1 

X!2.P] 3 -1 -1 0 1 

X!221 2 0 2 -1 0 
X!J.ll 3 1 -1 0 -1 

Xl41 1 1 1 1 

FIGURE 4.12 The Character Table of S4 • 
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37. Let~ be the restriction of X(3,2J to S4. 

a. Use your results from Exercise 36g and Equation (4.18) to prove that~ is 
reducible. 

b. Use your results from Exercises 36f and 36g to express ~ as a nonnegative 
integral linear combination of the irreducible characters of S4. 

c. Use the branching theorem to express ~ as a nonnegative integral linear 
combination of the irreducible characters of s4. 

38. Use the Frame-Robinson-Thrall hook length formula to confirm the values 
for the character degrees given in Figure 4.5. (Hint: Cus1 = {e}.) 

39. Suppose x is an irreducible character of the finite group G. Let Zx(G) be 
the group defined in Exercise 29b and ~ the character of Z x (G) defined in 
Exercise 29c. 

a. Prove that x (e)2 ~ [G: Zx (G)]. 

b. Prove that equality holds in part (a) if and only if x is the only irreducible 
character of G whose restriction to Zx (G) contains ~ as a component. 
(Hint: Consider ~G.) 

c. Prove that equality holds in part (a) if and only if Zx(G) = {u e 
G: x(u) =F 0}. 

40. Let H be a subgroup of G. Let x be a linear character of H. For each u e G, 
define xa be the character of a Hu-1 defined by xa (al"u-1) = X(l"), l" e H. 
Prove that x G is an irreducible character of G if and only if, for all a e G\ H, 
Xa and X restrict to different characters of H n a Hu-1• 

41. Let G be a finite group. Let V be the complex vector space of all formal 
complex linear combinations of the elements of G, that is, 

V = { L CaO' : Ca E C, a E G I· 
aeG 

a Prove that V is isomorphic to CG. 

b. Prove that V is a ring under the multiplication 

c. Define 

x(e) ""' 
t(G, x> = o(G) i..J x(u)u, 

aeG 

X E /(G). 

If x. ~ E /(G), prove that t(G, x)t(G, ~) = 8x.~t(G, x). 
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d. Prove that t ( G, x) e Z (V), the center of the ring V. (In other words, prove 
that vt(G, x> = t(G, x>v for all V E V.) 

e. Prove that the vector space Z(V) is isomorphic to Z(CG). 

f. Prove that {t(G, x): x e I (G)} is a basis for the vector space Z(V). 

g. Let ~ be the character of Z x (G) defined in Exercise 29c. Prove that 
t(Zx(G), ~) = t(G, x> if and only if [G: Zx(G)] = x(e)2. 

42. Suppose Hand K are subgroups of the finite group G. Define a relation among 
the elements of G as follows: If at, u2 E G, then Ut "" u2 means there exist 
Tt eH and T2 e K such that TtUI = a2T2. 

a. Prove that ""' is an equivalence relation. 

b. Prove that the equivalence class containing a is the double coset Ha K = 
{TtUT2: Tt eH and T2 e K}. 

43. Let H = {e4, (1243), (14)(23), (1342)}, K = {e4, (14), (23), (14)(23)}, and 
G=S4. 

a. Show that the double coset He4K = H U H(14) = D4, the group of 
order 8 in Example 4.42. (See Exercise 42 for the definition of "double 
coset".) 

b. Show that H(12)K = H{12) U H(13) U H(24) U H(34). 

c. Give an example to show that o(HatK) need not equal o(Hu2K). 

44. Let G be a doubly transitive subgroup of S,.. Suppose T e G\Gx for some 
fixed but arbitrary x e {1, 2, ... , n}. Prove that G is the disjoint union of 
the double cosets Gxe,.Gx and GxTGx. (See Exercise 42 for the definition of 
"double coset".) 

45. SupposeCt, C2, ... , C, arethedifferentconjugacyclassesandxi. X2 •... , Xr 
the different irreducible characters of the finite group G. Let U = (uti) be the 
r-by-r matrix whose (i, j)- entry is 

a. Prove that UU* = I, is equivalent to the Orthogonality Relations of the 
First Kind. 

b. Prove that U* U = I, is equivalent to the Orthogonality Relations of the 
Second Kind. 

46. Let G = S3 and H = {e3, (13)}. 

a. Show that Ut = e3, u2 = (12), and u3 = (23) are representatives for the 
different left cosets of H in G. 

b. 1fT= (123), show that TUtH = U3H, Ta2H = UtH, and TU3H = U7H. 

c. If A is the representation of G induced by the principal representation of 
H, show that 
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A((l23)) = G ~ !) . 
d. Express the character 1 ~ as a sum of irreducible characters of S3. 

47. Let G = S4 and H = G4 ~ S3 be the stabilizer subgroup of 4. Let x be the 
irreducible character of H of degree 2. Express x G as a sum of irreducible 
characters of S4. 

48. Let a and T be elements of the finite group G. Prove that x(a) = x(-r), for 
all x e I (G), if and only if a and T are conjugate in G. 

49. Let G be a finite group. Suppose T e G. Prove that x(-r) is real, for all 
x e I (G), if and only if -r is conjugate in G to T-1. 

50. Prove Corollary 4.54. 

51. Prove that the Kostka coefficients satisfy 

o!·. •!·>,. = L:KII,11'KII,p· 
111-n 

52. Knowing that the Kostka matrix is upper-triangular, show how the result of 
Exercise 51 can be used recursively to obtain the table in Figure 4.6. 

53. Let n be fixed but arbitrary. For 1 ~ r ~ n, denote by Xr the single-hook 
character of S,. corresponding to the partition [r, 111-r]. Suppose T e S,. has 
cycle type [n], that is T is a full n-cycle. 

a. If~ e I (S,.), prove that 

if ~ is not a single-hook character. 
if~= Xr 

b. Let p be a partition of n having s = L(p) parts. If 1r = [r, 111-r], prove 
that the Kostka coefficient K1r,p = C(s - 1, n - r). 

54. Let q,.J be the conjugacy class of S,. comprised of those permutations whose 
disjoint cycle factorizations consist of a single cycle of length n. Let f,. be 
the characteristic function of q,.J, that is, f,.(a) = 1, if a e q,.J, and 0, 
otherwise. 

a. Show that 

b. Show that Is = (1- X!4,ll + X[3,12J- X!2.PJ + £)/5. (Hint: Exercise 53.) 
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55. Suppose 1r and v are different partitions of n. Let -r e S,. be a transposition. 

Suppose 1r majorizes v. 
a Prove that X7r(-r)/X7r(e) > Xv(-r)/Xv(e). 

b. Ifv = 1r"', prove that X1r(-r) > 0. 

56. Show bow Theorem 4.71 can be used to eliminate the spurious possibilities 

for the character degrees of S1 in Example 4.43 (page 94). 

57. According to Theorem 4.71, o(S,.)/X7r(e) is an integer, 1r 1- n. Describe a 

formula for this integer in terms of 1r. 



CHAPTER 5 

Tensor Spaces 

Multilinear algebra. proper, begins with the study of tensor spaces. In the most 
general setting, this involves dealing with m vector spaces, each having its 
own basis and its own inner product. Keeping track of it all requires what 
Elie Cartan called ''une debauche d'indices", an intimidating proliferation of 
superscripts and subscripts. The peak of this mountain of notation occurs when 
matrix representations of linear transformations on the various vector spaces are 
assembled to produce the matrix representation of a linear transformation on the 
tensor space. Following the introduction of the induced inner product, the going 
will be enormously simplified by setting all m vector spaces equal. (The reader may 
find it useful to introduce this simplification earlier and rewrite difficult passages 
setting V1 = V2 = • · • = Vm = V.) 

Let v. ' v2' ... ' V m be finite dimensional complex vector spaces. Their Cartesian 
product is the set 

v. X v2 X ••. X Vm ={(VI, V2 •.•. ' Vm): Vj e V;, 1::: i::: m). 

Under componentwise addition and scalar multiplication defined by 

c(v., V2, .•. , Vm) + d(WJ, W2, •.. , Wm) 

Vt X v2 X ••• X V m is a vector space. 

LEMMA 5.1 Suppose vector space l-'i has dimension n;, I ::: i ::: m. Then the 
dimension ofVt X v2 X ••• X Vm is nt + n2 + ... + nm. 

121 
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Proof If {e;j: I ::5: j ::5: ni} is a basis of V;, I ::5: i ::5: m, then 

i-th component 

+ 
{ (0, 0, ... , 0, eij, 0, ... , 0): I ::5: j ::5: n;, I ::5: i ::5: m} 

is a basis of Vt X v2 X ••• X V,.. 0 

DEFINmoN 5.2 Let Vt, V2, ..• ,V,., and Wbevectorspaces.Afunctionj: Vt x 
V2 x · · · x V,. -+ W is m-linear (or multilinear) if f is linear separately in each 
component of v. X v2 X ••• X V,.. Thus, f is m-linear if 

i -th COrnptJMIII 

+ 
f(vt. t/2, ... , cu; + dw;, ... , v,.) 

= cf(vt. t/2, ... , u;, ... , v,.) + df(vt. t/2, ... , w;, ... , v,.), 

c, d e C, 1 ::5: i ::5: m. 
ExAMPLEs 5.3 (i) Let A e C,.,,. be fixed but arbitrary. Define f: Ct,m x C,.,l -+ 
C by f(x, y) = xAy. Then f is 2-linear, (or bllinear). (ii) The determinant 
of an n-by-n matrix is an n-linear function of its rows (or columns). (iii) Let 
f; : V; -+ C be a fixed but arbitrary linear functional on V;, 1 ::5: i ::5: m. (Then 
/; e V;'= L(~. C), the dual space of~.) The function 

8: v. x v2 x ... x v,. ..... c. 
defined by 

m 

8(vt, t/2, •.. , vm) = n /;(v;), 
i=l 

is m-linear. The notation n /; will be used to denote 8. (iV) Let V; E ~ be fixed 
but arbitrary vectors, 1 ::5: i ::5: m. Define 

"': L(Vt. C) X L(V2. C) X ••• X L(Vm. C) ..... c 
by 

m 

\11(/r. h ..... /m)= n /;(v;). 
i=l 

Then"' is m-linear. (v) Suppose j: w. X w2 X ••• X Wm ..... w is m-linear. If 
T; e L(~. W;), is a fixed but arbitrary linear transformation, 1 ::5: i ::5: m, then 
g: Vt X v2 X ••• X Vm ..... W, defined by 

g(vt. t/2, ... , v,.) = f(Tr(vt). T2(t/2), ... , Tm(v,.)), 
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is m-linear. (vi) Let I: VI X v2 X •• • X V,. ...... V be m-linear. If T E L(V, W), 
then Tf: vl X v2 X ••• X V,. ...... w ism-linear. 0 

If T e L(V, W), then T is completely and uniquely determined by its action on 
a basis of V . Indeed, it is common to define a linear transformation by describing 
its action on a basis and saying the magic words, "linear extension". As we now 
see, multilinear functions behave analogously. 

THEOREM 5.4 (Multilinear Extension). Let {e;j: 1 ~ j ~ n;} be a basis of 
vector space V;, 1 ~ i ~ m. Then there is precisely one multilinear function 
I: VI X v2 X ••• X V,. ...... w that takes prescribed values on the elements of 

Note that the n1 x n2 x · · · x n,. vectors in (5.1) typically comprise more than 
a basis of the n1 + n2 + · · · + n,. dimensional vector space V1 x V2 x · · · x V,.. 

Proof Let I: VI X v2 X •• • X V,. ...... w be m-linear. Suppose 

llj 

v; = ~:::aijeij, 1 ~ i ~ m, 
j=l 

are fixed but arbitrary vectors. Then 

f(vJ, V2 •... , v,.) 

111 llz "• 

= L L · · · L a1j1a2.h ... a,.j. I (elj1 , e2h• ••• , e,.j.), (5.2) 
j·=lh=l j.=l 

by m-linearity. Because the coefficients, n a;jl• depend only on VJ, V2 • .. . ' v,., 
we see that f is completely determined by the values 

In particular, if another m-linear function, g: V1 x V2 x · · · x V,. -+ W, agreed 
with f on the vectors in (5.1), then g would necessarily be identical to f. On 
the other hand, if f is an arbitrary function from the set of vectors in (5.1) into 
a vector space W, then f can be extended to a (unique) m-linear function from 
VI X v2 X ••• X V m into w. The value of the extended function on (VI' V2 • . .. ' v,.) 
is obtained from Equation (5.2). o 
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The process of extending a function defined on the elements of (5.1) to an 
m-linear function of Vt x V2 x · · · x V m is called multilinear extension. 

Having found an analogy between linear and multilinear functions, we now 
discuss a dissimilarity. If T e L(V, W), then the image ofT (namely, T(V) = 
{T ( v): v e V}) is a subspace of W. The image of a multilinear function, on the 
other hand, need not be a subspace. 

EXAMPLE 5.5 Let v, = v2 = V be a two-dimensional vector space with basis 
{e1, e2}. Let E;j be the 2-by-2 matrix whose only nonzero entry is a 1 in position 
(i, j). Define 1: V x V-+ C2,2 by l(e;, ej) = E;j. 1 ~ i, j ~ 2, andmultilinear 
extension. Let u = c1 e1 + c2e2 and v = dt e1 + d2e2 be fixed but arbitrary vectors 
in V. Then, from Equation (5.2) and the definition of I, 

Observe that the image of I contains {E;j: 1 ~ i, j ~ 2}, a basis of C2,2. Thus, 
if the image were a subspace, it would be all of C2,2· However, det(l (u, v)) = 0 
for all u, v e V. o 

DmNmoN 5.6 Let I be a multilinear function. The reach of I is the linear 
closure of its image. 

It is natural to wonder how we might use our extensive knowledge of linear 
functions to study multilinear functions. The answer is anticipated by the following. 

DmNmoN 5.7 Let v,, V2, ... , Vm be vector spaces. A vector space 11' and an 
m-linear function ~: Vt x V2 x · · · x V m -+ 11' are said to satisfy the Universal 
Factorization Property if, for every vector space W, and every m-linear function 
I: v, X v2 X ••• X V'" -+ w' there exists a linear function h : 11' -+ w such that 
l=h~. 

If the pair {T, ~) satisfies the Universal Factorization Property for 
v,, v2, ... ' Vm. then any m-linear function of v, X v2 X ••• X V m can be "fac­
tored" as the composition of a linear transformation h (that depends on I and W), 
and a fixed m-linear function ~ (that depends on neither I nor W). The existence 
of such a universal pair effectively reduces the study of m-linear functions to the 
study of the single m-linear function, ~. and the vector space 11'. Definition 5. 7 is 
perhaps best illustrated by means of the commutative diagram in Figure 5.1. 
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FIGURE 5.1 

The existence of universal pairs is easily settled by Theorem 5.4: Let {eij: 1 !:: 
j !:: n;} be a basis of V;, 1 !:: i !:: m. Consider the set 

E = { [ e1j1 , e2h, . •• , emj.] : 1 !:: j; !:: n;, 1 !:: i !:: m} . (5.3) 

Let T be the vector space consisting of all formal linear combinations of elements 
of E, that is, the free vector space generated by E. By definition, E is a basis of 
T. Observe that T is not a subspace of Vt X v2 X ••• X V m; the addition is different. 
Whereas the dimension of Vt X v2 X •• • X V m is "I + 112 + ... + ""'' 

m 

dim(T} = n "j. (5.4) 
i=l 

(This explains the use of square brackets in Equation (5.3); while the elements of 
E are m-tuples of vectors, E is not a subset of the Cartesian product space.) 

Define <1>: Vt X v2 X ••• X Vm-+ T by 

I !:: j; !:: n;, I !:: i !:: m, and multilinear extension. If W is an arbitrary vector 
space, and f : Vt x V2 x · · · x V m -+ W is m-linear, let h e L(T, W) be the 
unique linear transformation defined by 

1 !:: j; !:: n;, 1 !:: i !:: m, and linear extension. By Example 5.3(vi), h<l> is m­
linear and, by the uniqueness part of Theorem 5.4, h<l> =f. Thus, the pair (T. <I>) 
satisfies the Universal Factorization Property for Vt. V2, ... , Vm. Moreover, (by 
Equation (5.5)) the reach of <I> is all ofT. 
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l>EFoonoN 5.8 Suppose (S, \11) and (T, ~) satisfy the Universal Factorization 
Property for V1, V2, ... , V 111 • The pairs are isomorphic if there exists an invertible 
linear transformation T from S onto T such that cl> = T\11. 

THEOREM 5.9 Suppose (S, \11) and (T, ~) satisfy the Universal Factorization 
Property for V1, V2, ..• , Vm. If the nach of \11 (nspectively ~) is all of S 
(respectively T), then (S, \11) and (T, ~)are isomorphic. 

Proof Because (S, \11) and (T, ~) satisfy the Universal Factorization Property, 
there exist k e L(S, T) and h e L(T, S) such that \11 = h~ and~= k\11. (See 
Figure 5.2.) Therefore, \11 = hk\11. In particular (because the reach of \11 is S), hk 
is the identity on S. Similarly, kh is the identity on T. It follows that k = h-1, and 
the proof is complete. o 

s 

FlGURE 5.2 

Let V1, V2, . .. , V111 be vector spaces. It follows from Theorem 5.9 that, up to 
isomorphism, there is a unique pair (T, ~) that satisfies the Universal Factorization 
Property where the reach of~ is all ofT. 

DEFlNITION 5.10 Let T be a vector space and ~: v. X v2 X • • • X Vm -+ T 
a multilinear map whose reach is all of T. If (T, ~) satisfies the Universal 
Factorization Property for V1, V2, .• . , V111 then T is the tensor product of 
V1, V2, . .. , V111 , written 

T = Vt ® V2 ®· · ·®V m. (5.7) 

and ~(v1, V2 • •• • , v111) is a decomposable tensor. 

Let V; be a vector space of dimension n;, 1 ~ i ~ m. Suppose U is an arbitrary 
vector space of dimension n 1 x n2 x · · · x nm. Let T be a fixed but arbitrary 
invertible linear transformations from V1 ® V2 ® · · · ® V111 onto U, and define 
\11 = T~. If W is a vector space, and f: V1 x V2 x · · · x V111 -+ Wan m-linear 
function, then there exists a linear transformation k: U -+ W such that f = k\11, 
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namely, k = hT-1, where h<fl =f. (In other words, the diagram in Figure 5.3 is 
commutative.) In particular, (U, \11) satisfies the Universal Factorization Property. 
Because U is the reach of \If, U is a model for the tensor product Evidently, 
Vt ® V2 ® · · · ® V,. is just a vector space of the right dimension. What makes 
it special are the decomposable tensors, an additional structure afforded by the 
multilinear map. 

~ v. x v2 x .. . x v,. -----+ Vt ® V2® ... ® V,. 
T u 

I l ~ hr-1 

w 

FIGURE 5.3 

This approach affords a rapid, direct proof that the tensor product of vector 
spaces exists and that, up to isomorphism. it is unique. Unfortunately, this way of 
looking at things produces a somewhat sterile abstraction. Let us construct a more 
concrete model. 

DEFlNmoN 5.11 Suppose Vt , V2, . .. , Vm are complex vector spaces. Denote by 
M(Vt, V2, . . . , V,.)thesetofm-linearfunctionsf : Vt x V2 x · · · X V,.-+ C. 

Under the usual ''pointwise" addition and scalar multiplication of functions, 
namely, 

(cf + dg)(vt , V2 • . . . , v,.) 

= cf(vt, V2 •. .. , Vm) + dg(vt, V2 •... , v,.), (5.8) 

M = M(Vt, V2, ... , V,.) is a vector space. We are interested in certain distin­
guished elements of its dual space, M'. 

Let v; e V;, 1 =::; i =::; m. In anticipation of the next few results, denote by 
Vt ® V2 ® · · · ® v,. the mapping from M into C defined by 

(vt ® V2 ® · · · ® v,.)(f) = f(vt , V2 •. . . , v,.). (5.9) 
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(Compare with Equation (2.3).) Because 

(VI ®V'].®·· • ® Vm)(cf + dg) 

= (cf + dg)(VI, IJ2, • • •, VIII) 

= cf(VI, IJ2,. · . ,VIII)+ dg(VI, IJ2, • • • , V,.) 

= C(VI ® V2 ® · · · ® v,.)(f) + d(VI ® V2 ® • · · ® V,.)(g), 

VI ® V2 ® · · · ® v,. is linear. It turns out that these special functionals span M'. In 
fact. more is true. 

THEOREM 5.12 Let 8; = {e;j: 1 ~ j ~ n;} be a basis of V;, 1 ~ i ~m. Then 

8 = {eiJ1 ®e2h ® ··· ®e1111.: 1 ~ j; ~ n;, 1 :5 i ~m} (5.10) 

is a basis of the dual space of M (VI, V2, . .. , V,.). 

Proof Let {/;j: 1 ~ j ~ n;} be the basis of L(V;, C) dual to 8;. Then /;j is 
defined by /;j(e;t) = 8],/c• and linear extension. Let 

,. n /rj, e M(VI, V2, .. . , V,.) 
I= I 

be the m-linear functional defined by 

(fi /rj,) (VI, 1J2, ···,V,.)= fi ftJ,(VI)• 
t=I I=I 

We claim that 

{fJ frJ, : 1 ~ j 1 ~ n,, 1 ~ t ~m I 
t=I 

(5.11) 

is a basis of M= M (VI . V2, . .. , V,.). If g e M then 

111 llz "• m 

g = .E .E ... .E g (eu., e2iz• . .. 'e,.;.) n /r;,. (5.12) 
i1=1 iz=l i.=I t=I 

(Compare with Equation (2.2).) To verify this identity, observe that its right-band 
side is a linear combination of m-linear functions and hence is m-linear. Therefore 
(Theorem 5.4), it suffices to evaluate both sides on (elJ,, e2h• .. . , e111J.): 

g (e11., e2h• . . . , e,.J.) 

111 llz "• m 

= .E .E ... .E g (eli,' e2iz• ••• 'e,.;.) n /r;, (erJ,). 
i1=I i2=I i.=I I= I 
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Because 0 f,;, (etj,) = 0 unless i, = j, 1 !S t !S m, the right-hand side of this 
equation collapses to the left-hand side. Because (5.10) is the dual basis of(5.11), 
the proof is complete. o 

SetT = M', the dual space of M = M(V1, V2, ... , Vm). and define cl> : 
VI X v2 X ••• X Vm .... T byci>(VJ, 112 •.. . , Vm) =V) ®112®· · ·®Vm. If I EM, 
then 

i · th position 

+ 
(VJ ® 112 ® · · · ® [cu +dw] ® · · · ® Vm)(/) 

= I(VJ, 112 • .. . , [cu + dw], . . . , Vm) 

= ci(VJ, 112, · · ., U, •.• , Vm) + di(VJ, 112, ... , W, .•• , Vm) 

= c( VJ ® 112 ® · · · ® u ® · · · ® Vm )(f) 

+d(V! ® 112 ® · • • ® W ® • · • ® Vm)(/), 

by the multilinearity of I. Because I was arbitrary, 

(v1 ® 112 ® · · · ® [cu + dw] ® · · · ® Vm) 

= C(VJ ® 112 ® · · • ® U ® • • • ® Vm) 

+ d(V! ® 112 ® • · • ® W ® · • • ® Vm)• 

Therefore, cl> is m-linear. To prove that (T, cl>), satisfies the Universal Factorization 
Property, let w be a vector space. Suppose that g: v, X v2 X •• • X V m .... w is 
m-linear. Let 8 be the basis of'][' given in Theorem 5.12 and define h : T-+ W by 

1 =s j; =s n;, 1 =si =s m, and linear extension. Then the m-linear functions he!> 
and g agree on 

Therefore (Theorem 5.4), g = he!>, and (T, cl>) is a universal pair. Moreover, by 
Theorem5.12, the reach of cl> is all ofT. In other words, T =V,® V2 ® · · · ® Vm. 

We are now going to adopt the notation, V! ® 112 ® · · ·®V m, from the multilinear 
functional model, for the abstract definition. The notation 
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used in the first construction is to be replaced with 

Because ~(vt, 112 •... , v111 ) = Vt ® 112 ® · · • ® V111 , we no longer have any special 
need for the symbol ~. These notational choices are formalized in the following: 

DEFINmoN 5.13 Henceforth, the generic, abstract, decomposable tensor is de­
noted Vt ® 112 ® • · · ® v111 with the understanding that it may be viewed as a linear 
functional on M {VI, V2, .. . , V111 ) whenever it is useful to do so. 

It is worth emphasizing that 

THEOREM 5.14 Let {eij: l ~ j ~ n;} be a basis of V;, 1 ~ i ~ m.lf 

llj 

V; = L>ijeii• 1 ~ j ~m, 
j=I 

then 

THEOREM 5.15 Let V; E V;, 1 ~ i ~m. Then VI® 112 ® · · · ® V111 = 0 if and only 
if v; = 0 for some i. 

Proof If v; ::1: 0 for all i, there exist /l e L(V;, C) such that /l(v;) = 1, 
1 ~ i ~m. Let I= n /l E M(VI. v2 ....• Vm). Then 

(VI® 112 ® · • • ® Vm){/) = /(Vt, 112, · · ·, Vm) 

m 

= n/l(v;) 
i=I 

= 1, 

so Vt ® 112 ® · · ·®V m is not the zero functional. The converse is left to the exercises. 
0 
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THEOREM 5.16 Suppose v;, w; E V; where w; ¥-0, l ::5 i ::5 m. Then 

V! ® 112 ® · • • ® Vm = Wt ® W2 ® · · • ® Wm 

if and only if there exist m complex numbers c1 , c2 • . .. , c,. such that v; = c;w;, 
1 ;:5 i ;:5 m, and Cl X C2 X • • • X Cm = 1. 

Proof Suppose Vt ® 112 ® · · · ® v,. = Wt ® w2 ® • · · ® w,. ¥- 0. If Vk is not a 
multiple of Wk, for some fixed but arbitrary k, then { Vk , Wk} is linearly independent, 
in which case there exists a linear functional fk e L(Vk. C) such that /k(Vk) = 0 
and /k(Wk) = 1. Choose/; e L(V;, C), i ¥- k, such that /;(w;) = l and set 
I= OJ;. Then 

"' 
(V! ® 112 ® · • · ® v,.)(f) = n f;(v;) 

i=l 

=0 

"' 
= n /;(W;) = (Wt ® W2 ® · · · ® W,.)(f), 

i=l 

contradicting the hypothesis. Therefore, there exist c; e C such that v; = c; w;, 
l ::5 i ::5 m. By multilinearity, 

Wt ® W2 ® • · • ® Wm = V! ® 112 ® • · · ® Vm 

= (n C;) Wt ® W2 ® · · • ® W,.. 
r=l 

Because Wt ® w2 ® · · · ® w,. ¥- 0, Ct x c2 x · · · x c,. = l. The proof of sufficiency 
is left to the exercises. o 

We now consider yet another model for the tensor product space. 

THEOREM 5.17 Suppose 1 ::5 k <m. Then v, ® V2 ® .. · ®V,. is a model/or 
<Vt ® V2 ® · · · ® Vk) ® <VHt ® Vk+2 ® • · · ® V,.) in which 

=Ut® ... ®Uk ®Wt ® .. ·®Wm-k• 
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Proof We need to show the existence of a linear transformation 

such that 

T((v1 ® · · · ® vt) ® (Vk+1 ® · · · ® v,.)) = v1 ® t12 ® · · · ® v,., 

for all v; e V;, 1 ~ i ~ m. Because {v1 ® t12 ® · · · ® v,.: v; e V;} spans 
V1 ® V2 ®···®V,., any such transformation is onto and hence, by a dimension 
argument, one-to-one. 

Let '11 be the unique bilinear function 1 that satisfies 

for all v; e V;, 1 ~ i ~ m. Then the existence ofT is established by the Universal 
Factorization Property (illustrated in Figure 5.4). o 

FIGURE 5.4 

If m = 3 and k = 2, Theorem 5.17 becomes {V1 ® V2) ® V3 ~ V1 ® V2 ® V3. 
Evidently, 

(5.13) 

When V1 = V2 = · · · = V,., Theorem 5.17 is the basis for the theory of tensor 
algebras, a fascinating, but well treated subject about which we will say no more. 
(See [Bourbaki (1948)], [Greub (1967)] or [Marcus (1973)].) 

1 See Exercise 10. 
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ExAMPLE 5.18 Suppose Vt = C1,11 and V2 = Cu. Let cl>: Vt x V2-+ C11,l be 
the bilinear function defined by ci>(X, Y) = X'Y. Let Ei be the 1-by-k matrix 
whose only nonzero entry is a 1 in column j, and E; the 1-by-n matrix whose 
only nonzero entry is a 1 in column i. Then ci>(E;, Ei) = Eij. the n-by-k matrix 
whose only nonzero entry is a 1 in position (i, j). (Compare with Example 5.5.) 
Because {E;j: 1 ~ i ~ n, 1 ~ j ~ k} is a basis of C11,t, the reach of cl> is 
all of C,.,l. 1f W is a vector space and I: Vt x V2 -+ W is bilinear, define 
h: C,.,l -+ W by h(Eij) = I(E;, Ei), 1 ~ i ~ n, I ~ j ~ k, and linear 
extension. From Theorem 5.4, I = h<l>. Therefore, C,.,l is yet another model 
for Vt ® V2, one in which the decomposable tensor X® Y = X'Y. (Because 
<Vt ® V2) ® V3 ~ V1 ® V2 ® V3, this model could be used for an inductive 
construction of V1 ® V2 ® · · · ® Vm.) o 

Now that the study of multilinear functions has been reduced to the study of 
tensor products (including the decomposable tensors), we are going to shift our 
perspective and think of multilinear functions as a means of illuminating tensor 
products. Put another way, we are not so much interested in multilinear functions 
for their own sake as we are in the light they shed on tensor spaces. 

Let V1, V2, •.• , Vm and W1, W2, •.. , Wm be vector spaces, and suppose T; E 

L(V;, W;), I ~ i ~ m. Then the function \11: v. X v2 X ••• X Vm -+ 
W1 ® W2 ® · · · ® Wm defined by 

\ll(v~o V2, ••. , Vm) = TI (VI)® T2(V2) ® · · · ® Tm(Vm) 

is m-linear. (Observe that v1 x V2 x · · · x Vm -+ v1 ® V2 ® · · · ® Vm is m­
linear and apply Example 5.3(v).) Thus, there is a unique linear transformation 
h: V1 ® V2 ® · · · ® V m -+ W1 ® W2 ® · · · ® Wm such that 

for all v; E V;, 1 ~ i ~m. 
OEFoonoN 5.19 Let T; E L(V;, W;), 1 ~ i ~m. The unique hE L(Vt ® V2 ® 
· · · ® Vm, W1 ® W2 ® · · · ® Wm) determined by Equation (5.14) is said to be 
induced by T1 , T2, ••. , T m. The notation for this induced linear transformation is 
h = T1 ® T2 ® · · · ® Tm. 

1f /1 is the identity operator on Vt. 1 ~ k ~ m, then it foUows from 
Equation (5.14), and the fact that the decomposable tensors span, that I) ® h ® 
· · · ® Im is the identity operator on Vt ® V2 ® · · · ® Vm. 

THEOREM 5.20 IfS; E L(U;, V;) and T; e L(V;, W;), I~ i ~m, then 
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CoROLLARY 5.21 Suppose T; E L(V;, W; ), 1 ~ i ~ m. Then T1 ® T2 ® · · · ® Tm 
is invertible if and only if T; is invertible, 1 ~ i ~ m. 

Proof If each T; is invertible then, letting U; = W; and S; = T;- 1 in 
Equation (5.15) establishes the identity 

Conversely, suppose 

is one-to-one and onto. If v; ::F 0, 1 ~ i ~m, then, by Theorem 5.15, 

TI(VI) ® T2(112) ® • • · ® Tm(Vm) 

= (TI ® n ® . .. ® Tm)(VI ® 112 ® ... ® Vm) 

::F 0. 

Therefore, T;(v;) ::F 0, 1 ~ i ~ m, and each T; is nonsingular. It follows from a 
dimension argument that each T; is onto. o 

By now the reader has probably observed a notational ambiguity. How do we 
distinguish 

from 

THEOREM 5.22 The vector space 

is a 1'111Xkl for the tensor product 

in which {TI ® T2 ® · · · ® Tm : T; E L(V;, W;)} is the set of decomposable tensors. 
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h 

FIGURE 5.5 

Proof Let T1 ® T2 ® · · · ® T,. be the induced transformation and, temporarily, let 
T1 0 T2 0 · · · 0 T,. denote the decomposable tensor in L{V1, W1) ® L(V2, W2) ® 
· · · ® L(V,., W,.). Consider the diagram illustrated in Figure 5.5, where L; = 
L(V;, W; ), I !:: i !:: m, 

L = L(V1 ® V2 ®···®V,., W1 ® W2 ® · · · ® W,.), 

and \II(TI, T2, ... , T,.) = T1 ® T2 ® · · · ® T,.. Because we cannot assume that 
T1 ® T2 ® · · · ® T 111 is a decomposable tensor, we are obliged to prove that \11 is 
multilinear. That, however, is an easy consequence of the identity 

(T1 ®···®(eT; +dT;') ® · · · ® T,.)(vl ® V2 ® · · · ® v,.) 

= TI(Vt) ® · · · ® (cT;(v;) + d1j'(v;)) ® · · · ® T,.(v,.), 

because the tensor product of vectors on the right-hand side of this equation is 
multilinear. 

Now that we know \If to be multilinear, we can use the Universal Factorization 
Property to deduce the existence of a (unique) linear transformation 

such that h(Tl 0 T2 0 · · · 0 T,.) = T1 ® T2 ® · · · ® T,.. It remains to prove 
that h is invertible. Suppose n; = dim(V;) and k; = dim(W;), 1 !:: i !:: m. 
Then dim(L;) = n;k;, so dim(L1 ® L2 ® · · · ® L,.) = nn;k;. Because 
dim{L) = (0 n;) (0 k;) is the same, it suffices to show that h is onto. 

Suppose { v;i : 1 !:: i !:: n;} and { W;j : I !:: i !:: k;} are bases of V; and W;, 
respectively, 1 !:: i !:: m. IfS is a fixed but arbitrary linear transformation in L 
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then, by Theorem 5.12, there exist complex coefficients such that 

S ( Vtj1 ® 112.h ® · ' ' ® Vmj.) 

= L C(i., ... ,l.>.u ••••. ,J.)W1i1 ® wuz ® · · · ® w,.;., 
(i) 

1 ~ j; ~ n;, 1 ~ i ~ m, where 

DefineTj,.: V;-+ W; byTj,.(vu) = &j.rW;,.,1 ~ j, t ~ n;,1 ~ r ~ k;,l ~ i ~m, 
and linear extension. Then 

S = "'"' C(,· i) (t •)T.1· ® T.2. ® • •• ® T."'. (5.17) L...J L...J ..... , • • h···•• '•'• tzlz '•'•' 
(i) (t) 

where 

To confirm Equation (5.17), apply both sides to Vtj1 ® V2h ® · · · ® V111J •• Because 

it is a linear combination of things of the form Tt ® Tz ® · · · ® T,., S belongs to 

the image of h. Therefore, h is onto. o 

We turn now to matrix representations of induced linear transformations. 

OI!FoonoN 5.23 Let B; = {e;J : 1 ~ j ~ n;} be an ordered basis of V;, 
1 ~ i ~ m. The basis 

B = {etj1 ® ezh ® .. · ® e,.i.: 1 ~ j; ~ n;, 1 ~ i ~m} (5.18) 

of Vt ® V2 ® · · ·®V,. is said to be induced by Bt.lh ... , B,.. The induced basis 

B is ordered lexicographically by the subscripts. That is, 

provided the first nonzero difference, j, - i, is positive. 

ExAMPLE 5.24 e,,. ®e2r ®e31 comes before eli ®ezj ®e3k in lexicographic order 

if 

(1) r < i; or if 

(2) r = i ands < j; or if 

(3) r = i, s = j, and t < k. 0 
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THEOREM 5.25 Let ( Vij : 1 !:: j !:: n;} be an ordered basis of V;, and ( Wij: 1 !:: 
j !:: k;} be an ordered basis of W;, 1 !:: i !:: m. Let 

E = { VJj. ® V2h ® · · · ® Vmj. : 1 !:: j; !:: n;, 1 !:: i !:: m} 

and 
F = { WJj1 ® Wlh ® · · · ® Wmj. : 1 !:: j; !:: k;, 1 !:: i !:: m} 

be the lexicographically ordered, induced bases of V, ® V2 ® · · · ® V m and 
W1 ® W2 ® · · · ® Wm. respectively. Let Tp e L(Vp, Wp) be defined by 

le, 

Tp(Vpj) = Ea~wp;, 1 !:: j !:: np, 
i=l 

and linear extension (so the matrix representation ofTp, with respect to (Vpr: 1 !:: 
r !:: np} and (Wpr: 1 !:: r !:: kp}. is Ap =(a~).) Then, the 

((iJ, i2, • • •, im), Ut, h, · • • • im)) -entry 

of the matrix representation of T1 ® T2 ® · · • ® Tm with respect to E and F is 

Proof 

m 

na!' .. r,J, 
p=l 

(TJ ® T2 ® · · · ® Tm) (vlj1 ® V2h ® · · · ® Vmj.) 

= T1 (vlj1) ® T2 (V2h) ® · · · ® Tm (vmi.) 

= Eaf.iaa~h .. . a:j.wl;1 ® W2i2 ® · · · ® Wmi.· 
(i) 

(5.19) 

0 

OmNmoN 5.26 Let Ap = (a~) be a kp-by-np matrix, 1 !:: p !:: m. The 

Kronecker product, A1 ® A2 ®···®Am. is a 0 kp- by- 0 np matrix whose 
rows are indexed by the set ((i,, i2, ... , im): 1 !:: ip !:: kp} and whose columns 
are indexed by (Ut, h .... , im): l !:: jp !:: np}. both ordered lexicographically. 
The Wt. i2, ... , im), Ut. h .... , im))-entry of this big matrix is 

m 

na!' .. r,J, 
p=l 

The isomorphism between L(V;, W;) and C~c,,,.,. together with Theorem 5.22, 
yields the expected isomorphism 

Cn 1c,, n ,., ~ C~c.,,.. ® C~c2 ,112 ® .. · ® C~c..,,... (5.20) 



138 MultiliMar Alg~bra 

CoRou.ARY 5.27 If the matrix ~p~sentation of 1i is A; then, with ~spect to 
appropriate induced bases, the matrix ~p~sentation of Tt ® T2 ® · · · ® T111 is 
At ®A2®···®Am. 

Proof In view of Definition 5.26, this is just a restatement of Theorem 5.25. o 

ExAMPLE 5.28 Let At = A = (a;1) e Cp,q and A2 = B = (b,) e C.,,.. 
By Definition 5.26, the ((i, r), U. s))-entry of A ® B e Cpm,q11 is aijb,. In 
lexicographic order, (it, rt) comes before (i2, '2) if it < i2 or if it = i2 and r1 < 
r2. Thus, the first m rows of A® Bare the ones indexed (1, 1), (1, 2), ... , (1, m). 
Similarly, the first n columns are those indexed (1, 1), (1, 2), ... , {1, n). Denote 
by L the submatrix of A® B lying in its first m rows and first n columns. Then the 
(r, s)-entry of Lis the ((1, r), (1, s))-entry of A ® B, namely, aubr.r· Evidently, 
L = au B. What about M, the submatrix of A ® B lying in its first m rows, and 
columns n + 1 through 2n? The (r, s)-entry of M is the ((1, r), (2, s))-entry of 
A® B, namely, a12br.r· That is, M= a12B. More generally, A® B is the block 
partitioned matrix 

{5.21) 

EXAMPLE 5.29 Let m = p and n = q in Example 5.28, so that A, B e Cp,q· 
The Hadamard {or Schur) product of A and B is A · B = (a;1b;1), that 
is, the p-by-q matrix whose (i, j)-entry is a;jbiJ· Observe that A · B is the 
principal submatrix of A® B lying in rows {I, 1), (2, 2), ... , (p, p) and columns 
(1, 1), (2, 2), ... ' (q, q). 0 

EXAMPLE 5.30 Suppose P = {p;J) and Q = (q;j) are n-by-n complex matrices. 
Define T e L(C11,11 , C11,11 ) by T(A) = PAQ. Let's compute the matrix represen­
tation ofT with respect to the basis B = {E;J: 1 !::: i, j !::: n}, where E;1 is the 
n-by-n matrix whose only nonzero entry is a 1 in position (i, j). By definition, 

= (tp;,E; .. ) Q 
r=l 

n 

= L (p;,qsj)Eij· 
l,j=l 
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So, the ((i, j), (r, s))-entry of the matrix representation ofT with respect to 8 is 
p;,qsj, precisely the ((i, j), (r, s ))-entry of P ® Q'. o 

Let 8; = {e;J: 1 ~ j ~ n;} be an orthonormal basis of the inner product space 
V;, 1 ~ i ~ m. Then there exists a unique inner product on V1 ® Vz ® · · · ® V,. 
with respect to which the induced basis 

8 = { elj1 ® e2h ® · · · ® e,.J. : 1 ~ j; ~ n;, 1 ~ i ~ m} 

is orthonormal. Namely, if 

"• llz "• 

V = L L ... L au •. h ..... ).)el)a ® ezh ® ... ® e,.j. 
Ja=lh=l J.,=l 

and 
"' llz "• 

w = L L ... L bu •. }l ..... J.)elia ® e2h ® ... ® e,.i .. • 
ia=lh=l ).,=1 

then their inner product is 

Ill 112 "· 

(u, v) = L L · · · L au.,}l .... ,J.>bu.,h •... ,J.>· (5.22) 
ia=l.h=l j.,=l 

From its derivation, it would seem that the inner product defined in Equation (5.22) 
depends on the orthonormal bases 81, Eh •... , 8,. that were used in its construc­
tion. In fact, this turns out not to be the case. 

THEOREM 5.31 Let ( , ); be an inner product on V;, 1 ~ i ~ m. If ( , ) is the 
inner product defined by Equation (5.22), then 

"' (Vi® VZ ®···®V,., Wi ® Wz ® • • · ® W,.) = n(v;, W;);, (5.23) 
i=l 

v;, w; E V;, 1 ~ i ~m. 

Proof Let 8; = {e;J : 1 ~ j ~ n;} be the orthonormal basis of V; used in the 
derivation of Equation (5.22). Let 

llj 

v; = La;ieii 
J=l 

llj 

and w; = Lb;jeiJ• 
J=l 
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1 ~ i ~ m. Then (Theorem 5.14) 

Vt ®112 ® ·· · ® Vm 

and 

WJ ®w2®···®Wm 

Therefore, by Equation (5.22), 

(Vt ® V2 ® • · · ® Vm, WI ® W2 ® • • • ® Wm) 

= L (Ii a,j,) (fl;;,j,) 
U> t=! t=! 

= L (Ii a,j,btj,) 
U> t=! 

m 

= n<v;, w;);. 
i= ! 

Multilinear Algebra 

0 

Because the decomposable tensors span Vt ® V2 ® · · • ® V m. the inner 
product defined by Equation (5.22) is completely and uniquely determined by 
Equation (5.23). In particular, it is basis independent. Because Equation (5.23) is 
so much simpler and more appealing than Equation (5.22), we may as well use it 
in the formal definition. 
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l>EFINmoN 5.32 Let v •. v2 •...• V m be inner product spaces. (As it will cause no 
confusion, let (, ), without a subscript. denote the inner product in l'i, l !:: i !:: m.) 
The unique inner product on Vt ® V2 ® · · · ® V m that satisfies 

m 

(VI® V2 ® · · • ® Vm, Wi ® W2 ® • • · ® Wm) = n(v;, W;), 
i=i 

v;, w; e V;, 1 !:: i !:: m, is called the induced inner product. 

CoROlLARY 5.33 Let v •. v2 •.••• Vm be inner product spaces. Suppose T; E 
L(\'i, l'i ), 1 !:: i !:: m. Then (with respect to the induced inner product) 

Proof Observe that 

({Tt ® T2 ® · · · ® Tm)(Vl ® 112 ® · · · ® Vm), Wt ® W2 ® · · · ® Wm) 

= (Tt(Vt) ® T2(112) ® · • • ® Tm(Vm). Wt ® W2 ® · • · ® Wm) 

m 

= n(T;(v;), w;) 
i=l 

m 
= O<v;, T;*(w;)) 

i=l 

= (VI® 112 ® ... ® Vm. Tt(wt) ® Ti(w2) ® . .. ® r,:(wm)) 

=(VI® 112 ® · · · ® Vm, (Tt ® Ti ® · · · ® T,:)(wi ® W2 ® · · · ® Wm)). 

This completes the proof because the adjoint is unique and the decomposable 
tensors span Vt ® V2 ® · · · ® Vm. o 

We come at last to the "enormous simplifications" promised at the beginning 
of the chapter. Although it is not always necessary, from now on we are going 
to assume that V 1 = V 2 = · · · = V m = V. This identification makes the notation 
V ® V ® · · · ® V obsolete. 

l>EFINmoN 5.34 The m-th tensor power of V, denoted v®m, is the tensor product 
of m copies of V, that is, v®O = C, V®1 =V, and v®m = Vt ® V2 ® · · · ® Vm. 
m> 1, where V1 = Vz = · · · = Vm =V. 

With the vector spaces all equal, it is no longer necessary to deal with m bases; 
one will do. We can get by with one less subscript. If B = {et. e2, ... , e,} is a 
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basis of V, then 

is the induced basis of v®m. Unfortunately, we are still left with such monstrosities 
as 

n 11 n 
V = E E ... E cu •. iJ •... ,j.)ej. ®eh ® ... ® ej.. (5.25) 

iJ=liJ=l j.=l 

Recall (Definition 1.20) that r m,n is the set of all functions from { 1, 2, ... , m} into 
{1, 2, ... ' n}. Identifying Ut. h •... ' im) with the function a E r m,ll defined by 
a(i) = j;, 1 !: i !: m, allows us to rewrite Equation (5.25) more attractively as 

V= E Caea(l) ® ea(2) ® ... ® ea(m)• 

aer • .• 

DEFoonoN 5.35 If V), V2 •... ' Vm E V and a Er m,n. let 

v: = Va(l) ® Va(2) ® · · · ® Va(m)• 

(5.26) 

If 8 = {et, e2, ••• , e,} is an ordered basis of V then, in the notation of 
Definition 5.35, the induced basis of v®m is 

(5.27) 

which we take to be ordered lexicographically by the subscripts a e r m,11 • We can 
now simplify Equation (5.26) even further and write the generic tensor in v®m as 

v= L Cae:. (5.28) 
aer •.• 

ExAMPLE 5.36 Let Ar = (aji) and Br = (b/i) be n-by-n complex matrices, 
1 !: i !: m. Then the equation 

follows from Theorem 5.20 and Corollary 5.27. However, a direct proof may 
be instructive. From the definition of matrix multiplication, the (a, fJ)-entry of 
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(At ® A2 ® · · · ® Am)(Bt ® B2 ® · · · ® Bm) is 

L (fi a~(r)y(r)) (fi b~(r)~(r)) 
yer.,. r=l r=l 

m 

= E n a~<,>r<r>b~<'>"<'> 
yer ... r=l 

m 

= n (A, B, )a<r>~<r>, 
r=l 

which is the (a, fJ)-entry of AtBt ® A2B2 ® · · · ® AmBm. 
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0 

THEOREM 5.37 Suppose A; e C"·"' 1 ~ i ~ m. If A; ~ 0, 1 ~ i ~ m, then 
At ® A2 ®···®Am :::: 0. 

Proof Suppose A; = s: B;, 1 ~ i ~ m. Then 

At® A2 ®···®Am= (Bj Bt) ® (BiB2) ® · · · ® (B:SBm) 

= (Bj ® B2 ® · · · ® B:SHBt ® B2 ® · · · ® Bm) 

= (Bt ® B2 ® · · · ® Bm)*(Bt ® B2 ® · ·· ® Bm). 

0 

CoROLI.AltY 5.38 Let B; and C; be n-by-n positive semidejinite hermitian matri­
ces. Suppose A;= B; + C;, 1 ~ i ~m. Then 

Proof From the multilinearity of the Kronecker product, 

At ® A2 ®···®Am = (Bt + Ct) ® (B2 + C2) ® · · · ® (Bm +Cm) 

= Bt ® B2 ® ... ® Bm + E +Ct ® c2 ® ... ®Cm. 

where "L" represents the sum of all2"' - 2 terms of the form X 1 ®X 2 ® · · ·®X m 

where each X; is either B; or C;, and at least one of each occurs. By Theorem 5.37, 
each of these 2m - 2 terms is positive semidefinite hermitian. o 
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CORou.ARY 5.39 Let V be an inner product space. IfS;, T; e L(V, V), are 
positive semUkjinite, 1 :::: i :::: m, then S1 ® S2 ® · · · ® S, and T1 ® T2 ® · · · ® T, 
are positive semUkjinite. Moreover, 

Corollary 5.39 is the operator version of Corollary 5.38. Another variation on 
this theme is the following: Let V be an inner product space of dimension n. 
Suppose T e L(V, V) is positive semidefinite. By the Spectral Theorem, there is 
an orthonormal basis {u1, u2, ... , un} of V consisting of eigenvectors ofT, that 
is, T(u;) = J..;u; and A.; ~ 0, 1 :::: i :::: n. If r is a positive real number, define 
Tr ~ Oby 

(5.29) 

and linear extension. (Compare with Equation (2.16).) The following is a special 
case of a much more general result proved in [Lieb (1973)] and [Ando (1979)]: 

THEoREM 5.40 Let V be an n-dimensional inner product space. Suppose S; and 
T; are positive semUkfinite hermitian operators on V, 1 :::: i :::: n. /fO :::: 9 :::: 1, 
then 

(8S1 + (1 - 9)TI)1/n ® (8S2 + (1 - 8)T2)1/n ® · · · ® (9Sn + (1 - 9)Tn)11" 

~ 9 ( s:ln ® S~/11 ® ... ® s~/11) + (1 - 9) ( T/1" ® T11" ® ... ® T,.lfn) . 

DEFoonoN 5.41 If T e L(V, V), denote by T®"' e L(V@m, V®"') the operator 
T ® T ® · · · ® T (m-times). Similarly, if A= (a;j) e C11, 11 , its m-th Kronecker 
poweristhematrixA®"' = A®A®· ··®A (m-times). Thus, A®"' isann"'-by-n"' 
matrix whose rows and columns are indexed by r ,,,..The (a, fJ)-entry of A @m is 

"' 
(A0m)a,IJ = n lla<t>IJ<t>· (5.30) 

t=l 

Combining Theorem 5.40 and Definition 5.41, we obtain the following: If A 
and Bare positive semidefinite hermitian n-by-n matrices and 0:::: 9 :::: 1, then 
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Exercises 

l. Suppose Vt. V2, ... , V m are one-dimensional vector spaces over C, that is, 
Vt = v2 = ... = V m = c. Define I: Vt X v2 X ••• X V m -+ c by 

m 
I(CJ, C2, ••• , Cm)= Il C;. 

i=l 

Prove that I is m-linear. (This is the prototype for all multilinear functions.) 

2. Let Vt = v2 = ... = Vm = C,.,,.. Define 1: Vt X v2 X ••• X Vm-+ c ..... by 

Prove that I is m-linear. 

3. Explicitly write out all the elements of the basis 8 in Equation (5.10) when 
m = 2 = n lt and n2 = 3. 

4. Let {u, v, x, y} be a linear independent set of vectors in a vector space V. 
Show that the tensor u ® v + x ® y e V ® V is not decomposable. 

5. Finish the proof of Theorem 5.15. (Hint: 0 + 0 = 0.) 

6. Finish the proof of Theorem 5.16. 

7. Let {VJ, V2 •••• , Vt} be a linearly independent set of vectors. 

a. Prove that 

k 

L:v; ®u; =0 
i=l 

if and only if U I = U2 = · • · = Uk = 0. 
b. Suppose A= (aij) e Cu satisfies AA'= IJ:. If 

prove that 

8. Prove Theorem 5.14. 

k 

Wj = L:aijV;, I ~j ~k, 
i=l 

k k LV; ®v; = L:w; ®w;. 
i=l i=l 

9. Suppose (T, cl>) is a universal pair for Vt , V2, ... , V 111 • Prove that the following 
conditions are equivalent. 
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(i) The reach of<!> is all of'll'. 

(ii) For every m-linear function f: V1 x V2 x · · · x V m ~ W, there exists a 
unique linear transformation h: T ~ W such that f =he!>. 

10. LetB; ={en, ei2, ... , e;11.} be a basis ofV;,1 ~ i ~m. Suppose 1 ~ k <m. 
Define 

by 

and bilinear extension. Prove that 

\11 ((V! ® 1)2 ® • · · ® Vk), (Vk+! ® Vk+2 ® · • • ® Vm}) =V! ® 1)2 ® · · • ® Vm, 

forallv; e V;, 1 ~;~m. 

11. Let vs be the direct sum of the vector spaces V ®m, m ~ 0. Define a "product" 
on the elments of vs by uv = u ® v, u, v e vs. Prove that 

a. (au)v = u(av) = a(uv) for all a e C and all u, v e vs. 
b. u(v + w) = uv + uw for all u, v, w e vs. 
c. u v = 0 implies u = 0 or v = 0. 

12. Let B = {e~o e2 •...• e,.} be a basis of VI = v2 = ... = V m = V. Suppose 
T; e L(V, V), 1 ~ i ~ m. Define T1 ® T2 ® · · · ® Tm by 

(Tl ® T2 ® · · · ® Tm) (ea(l) ® ea(2) ® · · · ® ea(m)) 

= T1 (ea(l)) ® T2 (ea(2)) ® · · · ® Tm (ea(m)), 

a e r '"·"'and linear extension. Prove directly (using the multilinearity of the 
tensor product, but not the Universal Factorization Property) that 

14. Prove Theorem 5.20. 

15. Using Theorem 5.15 and Definition 5.19 (but not Theorem 5.22), prove 
directly that T1 ® T2 ® · · · ® Tm = 0, the zero transformation, if and only if 
T; = 0 for some i. 
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16. Suppose a e S,.. Prove that there exists a unique invertible linear operator 
P(a-1) e L(V®m, V®m) satisfying 

P(a-1)(V) ® V2 ® ... ® v,.) = Va(l) ® Va(2) ® ... ® Va(m)• 

for all VJ, lJ2, ••• , v,. e V. 

17. Show that the operator P(a-1) from Exercise 16 is not of the form Tt ® T2 ® 
· · · ® T,. unless a= e,., or dim(V) = 1. 

18. Prove that a ~ P(a) is a representation of S,., where P(a-1) is defined 
in Exercise 16. (Hint: Show that P(aT) = P(a)P(-r) and that P(e,.) is the 
identity operator on y®m .) 

19. Explicitly write out the Kronecker product 

a (! ! ) ® /2 b. /2 ® (! ! ) c. (;) ® (3 4) 

20. Let A, B, C e C,,,. 

a Show that A ® (B +C) = A ® B +A ®C. (Hint: What about 
A ® (B +C) ® D ® E?) 

b. Show that (A Ea B) ® C = (A ® C) Ea (B ® C). 

c. Show that. in general, A ® (B Ea C) ::f:. (A ® B) Ea (A ® C). 

21. Let n = pq. Show that there exists a permutation matrix P e C,.,11 such that 
for all A e Cp,p and Be C9,9 , p-1(A ® B)P = B ®A. (See [Hartwig & 
Morris (1975)] and [Lewis (1996)] for interesting perspectives on P.) 

22. If A, B, and Care matrices, prove or disprove that A®(B®C) = (A®B)®C. 

23. Show that the Kronecker product of two permutation matrices is a permutation 
matrix. 

24. Suppose A e Cp,p and B e C9,9 • 

a. Prove that (A® I9 )(Ip ®B)= A® B. 

b. Prove that det(lp ® B) = det(B)P. (Hint: Example 5.28.) 

c. Prove that det(A ® 19 ) = det(A)Il. (Hint: Exercise 21.) 

d. Prove that det(A ®B)= det(A)Il det(B)P. 

25. Let At. A2, ... , A,. be square matrices. If At® A2 ®···®A,. is invertible, 
prove that A; is invertible 1 ::5 i ::5 m. 

26. If A; is similar to B;, 1 ::5 i ::5 m, prove that At ® Az ®···®Am is similar 
to Bt ® B2 ® .. · ® B,.. 

27. Suppose A e Cp,p and Be C9 ,9 . Prove that tr (A® B)= tr (A) tr (B). 
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28. Let G be a group. Suppose that Xi is a character of G afforded by the 
representation A;, 1 ~ i ~m. If 

Prove that 

a. B is a representation of G. 

b. the character afforded by B is given by 

m 

x(er) = n X;(er), er E G. 
i=l 

29. Suppose G1 is a subgroup of S, and G2 a subgroup of S,. Set m= r + t and 
let G be the direct product, G1 Gz. Suppose Xi is a character of G; afforded 
by the representation A;, i = I , 2. 

a. Show that B(er, -r) =At (er)® Az(-r), (er, -r) e G, defines a representation 
of G. 

b. Let ~ be the character of G afforded by B. Show that ~(er, -r) = 
Xl(er)X2(T), (er, T) E G. 

30. Prove that Equation (5.22) defines an inner product on V1 ® V2 ® · · · ® Vm. 
(Hint: Explain why it may be regarded as the dot product.) 

31. Let P(er) e L(V8 "', V8111) bethelinearoperatorfromExercises 16-18. Show 
that, with respect to the induced inner product, P(er)* = P(er-1) = P(er)-1. 

32. Suppose T1 ® T2 ® · · · ® T,. is hermitian with respect to the induced inner 
product. Prove or disprove that T; is hermitian, I !Si !S m. 

33. Suppose T; e L(V;, V;) is normal, I !S i !S m. Prove that T1 ® T2 ® · · · ® Tm 
is normal with respect to the induced inner product. Discuss the converse. 

34. Suppose T; e L(V;, V;) is unitary, 1 !S i !S m. Prove that T1 ® Tz ® · · · ® Tm 
is unitary with respect to the induced inner product. Discuss the converse. 

35. Suppose A and B are positive semidefinite hermitian n-by-n matrices. Prove 
that A· B ~ 0. (Hint: Example 5.29 and Theorem 5.37.) 

36. In the proof of Corollary 5.38, let m = 3 and explictly write out all 6 (mixed) 
terms of the form X1 ® X2 ® X3, where X; = B; or C;, I !Si !S 3. 

37. Suppose A; ~ B;, I !S i ~ m. Prove that A1 ® Az ®···®A,. ~ 
81 ® Bz ® ··· ® Bm. 

38. Let l-1, l-2, ••• , Ap and '11· 1'12· ••• , 'lq be the eigenvalues of A e Cp,p and 
Be Cq,q• respectively. 
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a. Prove that the eigenvalues of A ® B are A.; '1b 1 :5 i :5 p, 1 :5 j :5 q. (Hint: 
Let u; be an eigenvector of A corresponding to A.; and Vj an eigenvector 
of B corresponding to 'li. Prove that u; ® Vj is an eigenvector of A ® B 
corresponding to A.; 'lj .) 

b. Use part (a) to prove that det(A ® B) = det(A)9 det(B)P. 

39. Let lt, l2, ... , lp and 711, '72, •.• , 'lq be the eigenvalues of A e Cp,p and 
B e C11,9 , respectively. Prove that the eigenvalues of A® 111 + lp ®Bare 
A.;+ 'li· 1 :5 i :5 p, 1 :5 j :5 q. 

40. Let X = (Xij) be an n-by-n matrix whose entries are n2 independent 
indetenninates (variables) over the complex numbers. If 

I= l(xu,Xt2.Xt3 • ... ,X;j • ••• ,x,.,.) 

is a monomial of (total) degree m in the n2 variables comprising the entries 
of X, show that I is an entry of X®m. 

41. Suppose G is a subgroup of S,.. Let u --. Q(u) = (8t,uU>>• u e G, be 
the natural representation of G by permutation matrices. Then Q affords 
the fixed point character of G. Let r be a fixed positive integer. Define 
K,(u) = Q(u)®r, the r-th Kronecker power of Q(u). 

a. Show that u--. K,(u), u e G, is a representation of G. 

b. Show that the character of K, is 

F(u)' = L 8y,11y. u E G. 
yer, ... 

c. Define G(y) = {u E G: uy = y}, ye r,,,.. If X e /(G), show that the 
multiplicity of x as an irreducible constituent of F' is 

<x. F')G = L <x.t>G<y>/[G: G(y)], 
yer, .• 

where [G : G(y)] = o(G)fo(G(y)) is the index of G(y) in G. 

d. Show that (X, F')G :5 (X, F'+1)G. 

e. Let x, be the irreducible character of S,. corresponding to 1r 1- n. If 
I :5 r < n, show that 

r 
(x,. F'),. = L S(r, t)(x,, 1),._, 

1=1 

where S(r. t) is the number of ways to partition an r-element set into 
the disjoint union of t nonempty subsets. (These numbers are known as 
Stirling Numbers of the Second Kind.) 
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f. Let XK be the irreducible character of S,. corresponding to 1r 1- n. Let 
k be minimal so that XK is an irreducible constituent of F". Prove that 

<x1f. F">,. = <.u. 1),.-~c. 
g. Let XK be the irreducible character of S,. corresponding to the partition 

1r = [1r1,1r2, •.• , 1r~) ofn. Ifs > 1, prove that the smallest positive integer 
k such that h is an irreducible constituent of F" is k = n - 1r1. (Hint: 
Use part (f) along with several applications of the Branching Theorem.) 

42. Suppose A, B e C,.,,.. Prove that (A· B)*(A ·B) !:: (A* A) · (B* B). (Hint: 
Exercise 51, Chapter 2.) 

43. Suppose A is a real n-by-n matrix. Define 

a. If AB = BA, show that eA+B = eAeB. 
b. Show that eA ® e8 = eA&I+t&B, where I = I,. . 

44. A Hadamard matrix of order n is an n-by-n matrix H, each of whose entries 
is either +1 or -1, that satisfies the condition H H' = nl,.. 

a. Exhibit a Hadamard matrix of order 2. 

b. Prove that there is no Hadamard matrix of order 3. 

c. Prove that there is a Hadamard matrix of order n = 2" for every positive 
integer k. (Hint: If H1 and H2 are Hadamard matrices, prove that H1 ® H2 

is a Hadamard matrix.) 

d. Can you find a Hadamard matrix of order 4 that is not the Kronecker 
product of two Hadamard matrices of order 27 



CHAPTER 6 

Symmetry Classes of Tensors 

For a fixed but arbitrary q e S,., define 

"'times 

\If : V X V X • • • X V -+ V 8"' 

by 

Because Ill is m-linear, there exists a unique1 linear transformation P(q} e 
L(V®m , V®m) such that the diagram in Figure 6.1 is commutative. In other words, 

for all decomposable tensors Vt ® 112 ® · · · ® v,. e V8 "' . 

Observe that 

P('r)P(q}(Vl ® 112 ® · · · ® Vm) 

= P(Tf1)(vt ® 112 ® · · · ® v,.). 

1Uniqueoess is guaranteed by Exercise 9, Chapters. 

lSl 
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V x V x ... x v -+ vem 

FIGURE 6.1 

Therefore (because the decomposable tensors span vem), 

P(T)P(a) = P(-ra), 

for all a, T e S,.. Moreover, P(a) is invertible, and 

so P is a representation of S,. 
With respect to the induced inner product, 

m 

= n<vcr-•(i)• w;) 
i=l 

m 

= n(V;, Wcr(i)) 
i=l 

Multilinear Algebra 

(6.1) 

(6.2) 

for all decomposable tensors VI ® 112 ® · · · ® v, and WI ® w2 ® · · · ® w, in V®"'. 
Because the decomposable tensors span V®"', we conclude2 that 

(6.3) 

2See Exercise 20, Chapter 2. 
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DmNmoN 6.1 Let G be a subgroup of S,.. If x is an irreducible character of G. 
The symmetrizer, T(G, X) e L(VS"', VSWI), is defined by 

x(e) " T(G, X)= o(G) feG x(u)P(u). (6.4) 

LEMMA 6.2 Let G be a subgroup of S,.. Let x be an irreducible character of G. 
/f'C e G is fixed but arbitrary, then P('C)T(G, X) = T(G, x)P('C). 

Proof 

x(e) " P('C)T(G, X)=-(- L- x(u)P('C)P(u) 
0 G) ueG 

x(e) " = o(G) feG x(u)P('Cu) 

x(e) " 1 =---- £-X(t- u)P(u) 
o(G) ueG 

x(e) " -1 = -- L- X(U'C )P(u) 
o(G) ueG 

x(e) " =---- L-x(u)P(u'C) 
o(G) ueG 

x<e> " =---- £-X(u)P(u)P('C) 
o(G) ueG 

= T(G, x)P('C), 

by Equation (6.1) and Exercise 14, Chapter 4. 0 

THEOREM 6.3 Suppose X is an irreducible character of the subgroup G of S,.. If 
V is a vector space of dimension n, then T ( G, x) is an orthogonal projection on 
vSW~. 

Proof We need to show that T(G, x)* = T(G, x) = T(G, x)2• Observe that 

x(e) "----T(G, x)* = o(G) L- x(u)P(u)* 
ueG 

= T(G, x), 
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by Equation (6.3); and 

T(G, x>
2 = X(~~: (E x(u)P(u)) (E x<~>P<~>) 

O ueG TEG 

by Theorem 4.26. 

x(e)2 
= --2 L x(u)x(~)P(u)P(~) 

o(G) O',TEG 

x(e)2 

= --2 L x(u)x(~)P(u~) 
o(G) O',TEG 

= x<e> L x(J.L)P(J.L) 
o(G) J.&EG 

= T(G, X), 

0 

DBFoonoN 6.4 The image of the projection operator T(G, X), denoted Yx(G), 
is called the symmetry class of tensors associated with G and x. 
THEOREM 6.5 Let G be a subgroup of S,.. Suppose X,~ E I (G), the set of 
irreducible characters of G. If~ '1- x. then T(G, ~)T(G, x> = 0. MOI'eover, 

L T(G.x> =I, 
xei(G) 

the identity operator in L(V8m, V8m). 

Proof 

T(G, ~)T(G, x> = ~(e;~)~) (r: ~(u)P(u)) (L x(~)P(~)) 
O ueG TEG 

_ He)x(e) " "'( ) ( )P( ) 
- o(G)2 ~ ., u X ~ u~ 

O',TEG 

=0, 

(6.5) 
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by Theorem 4.26. Moreover, 

l L T(G, x> = o(G) L x(e) L x(cr)P(a) 
)(El(G) )(El(G) ctEG 

= L (o(~) L x(e)x(a)) P(cr) 
ctEG )(El(G) 

= P(e) 

=I, 

by the Orthogonality Relations of the Second Kind (Theorem 4.40). o 

COROLLARY 6.6 If G is a subgroup of S,. , then v®m is the orthogonal direct 
sum of the symmetry classes Vx(G) as X ranges over /(G). In other words, if 
/(G)= {Xt. X2 •... , Xk}, then 

v®m = Vx1 (G) l. Vx1 (G) l. · · · l. Vn (G). 

Proof The result is immediate from Theorems 6.3, 6.5, and the definitions. o 

DEFoonoN 6. 7 Let x be an irreducible character of the subgroup G of S,.. Let 
V be a vector space, and suppose v1. V2 • . .. , v,. e V. Then the decomposable 
symmetrized tensor v1 * V2 * · · · * v,. is defined by 

Vt * V2 * ... * v,. = T(G, xHvt ® V2 ® ... ® v,.). 

This notation does not reflect the important fact that "*" depends on G and x. 
From Corollary 6.6, Vt * V2 * · · · * v,. is the piece of Vt ® V2 ® · · · ® v,. that belongs 
to Vx (G). In particular, Vx (G) is spanned by, but is not generally equal to, the set 
of its decomposable symmetrized tensors. 

ExAMPLE 6.8 Suppose m = 2 and G = 5,.. Then G has two irreducible 
characters, the principal character and the alternating character. If V is a fixed 
but arbitrary vector space, and Vt , V2 e V, let 

Vt • V2 = T(S2, l)(v1 ® V2) 

l 
= l(Vt ® V2 + V2 ®VI) 



156 

and 

v1 A 112 = T(S,, e)(vl ® 112) 

I = 2(Vl ® 112 - 112 ®VI). 

Multili~ar Algebra 

Observe that v1 ® 112 = v1 • 112 + v1 A 112· Moreover, 

I 
(VI • 112, Vl A 112) = 4(Vl ® 112 + 112 ®VI, VI® 112 -112 ® Vt) 

I = 4((Vl ® 112, Vt ® 112)- (VI® 112, 112 ® Vt) 

+ (112 ®VI, VI® 112)- (112 ®VI, 112 ®vi)) 

I = 4((v1, Vt}(112, 112)- (VI, 112}(112, Vt) 

+ (112, v1)(vl, 112)- (112. 112)(v1, vi)) 

=0, 

0 

ExAMPLE 6.9 Let V = C1,,.. Then (Example 5.18) C,.,,. is a model for V@2 = 
V® V in which X® Y = X'Y. In this model, 

X AY= !(X1Y- Y1 X), 
2 

the skew symmetric part of X' Y. Because it is spanned by tensors of this form, 
V6 (S,) c C,.,,. is the space of skew symmetric matrices. Similarly, V1 (S2) is 
spanned by the decomposable symmetrized tensors 

X • Y = ~(X1Y + Y1X), 

from which it follows that V1 (S,) is the space of symmetric matrices. The fact that 
(A, B) = tr (B* A) is zero when A is skew symmetric and B is symmetric can, 

of course, be verified directly. o 
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ExAMPLE 6.10 Let V = Ct,11 • As in Example 6.9 identify ve2 with C,,11 • For 
any fixed A e V82, there exist Xt, X2 •... , X1e and Yt. Y2, ... , Y1e in V such that 

le 

A= LX;®Y; 
i=l 

le 
= Ex:r;. 

i=l 

If u = (12) e Sz. then 

P(u)(A) = P(u) (tx:r;) 
le 

= L P(cr)(X; ® Y;} 
i=l 

le 
= LY;®X; 

i=l 

le 

= EYfX; 
i=l 

=A'. 

In other words, P(u) e L(C11,11 , C11,11) is the transpose operator. 0 

DEfiNmoN 6.11 Let x be an irreducible character of the subgroup G of S,.. 
Suppose cl>: V x V x · · · x V -+ W is m-linear. If 

x(e) "" -1 o{G) !eG X(CT }ci>(Va(l)• Va(2)• ••• , Va(m)} = ci>(VJ, V2, ... , V,.), 

for all VJ, V2 •.. . , v,. e V, then cl> is symmetric with respect to G and x. 
LEMMA 6.12 Let X be an irreducible character of the subgroup G of S,.. Let 
cl>: V x V x ... x V-+ Vx(G)bedefinedby 

4>(vt. V2 •••• , v,.} = Vt * V2 * · · · * v,.. 
Then cl> is m -linear and symmetric with respect to G and x. 
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EXAMPLE 6.13 Let x be an irreducible character of G.lf l' e G, then 

P("-1)(Vt * 112 * ... * Vm) = P("-1)T(G. x)(Vt ® 112 ® ... ® Vm) 

= T(G, x)P("-1)(v1 ® 112 ® ... ® Vm) 

= Vf(l) * Vf(2) * · • · * Vf(lll), (6.6) 

by Lemma 6.2.lf x(e) = 1, then 

1 ~ -1 
Vf(l) * Vf(2) * · · · * Vf(m) = -G £...J X(a)P(T a)(Vt ® 112 ® · · · ® Vm) 

o( ) aeG 

1 
= o(G)!; X(l'a)P(a)(Vt ® 112 ® · · · ® Vm) 

1 = 
0 

G) L X(l')x(a)P(a)(vl ® V2 ® · · · ® Vm) 
( aeG 

= X(T)Vt * 112 * · · · * Vm. (6.7) 

0 

THBOREM 6.14 (Universal Factorization Property for Symmetric Multilinear 
Functions). Let V and W be vector spaces. Suppose x e I (G). If <I>: V x V x 
· · · x V -+ W is m-linear and symmetric with ~spect to G and X, then the~ exists 
a unique linear transformation hx E L(Vx(G), W) such that 

for all Vt, 112 •••• , Vm E V. 

Theorem 6.14 is perhaps best illustrated by the commutative diagram in 
Figure 6.2. 

Proof By the (ordinary) Universal Factorization Property, there exists a unique 
linear transformation h: V~ -+ W such that 

for all Vt,112 •••• , V111 e V. Therefore, for all VJ, 112 •••• , v111 e V and all a e G, 

h(Va(l) ® Va(2) ® • · • ® Va(lll)) = <I>{Va(l)• Va(2)• • • •, Va(m))• 
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V x V x ... x V ~ Vx (G) 

w 

FIGURE 6.2 

Multiply both sides of this equation by x(e)x(u-1)/o(G) and sum on u e G. 
Because h is linear and <!» is symmetric with respect to G and x, we obtain 

hT(G, X)(VJ ® V2 ® · · · ® Vm) = <I»(VJ, V2o ••• , Vm), 

that is, 

Therefore hx = hT(G, x), the restriction of h to Vx(G). 0 

Theorem 6.14 illustrates a situation in which v®m is larger than necessary. To 
"factor" a multilinear function that is symmetric with respect to G and x, all we 
need is Vx (G), a piece of V®m. On the other band, taking x to be the principal 
character on G = {e), we see that v®m = V1 ({e)), itself, is a symmetry class of 
tensors. 

LEMMA 6.153 Let X be an irreducible character of the subgroup group G of Sm. 
Suppose Vt, V2 •••• , Vm and wt. w2, . .. , Wm are vectors in V . .lfvt *V2*· · ·•vm = 
Wt * W2 * · · · * Wm ::f:. 0 then (Vt. Vlo ••• , Vm} = (Wt, W2, ••• , Wm). 

Proof Let {et, e2, ... , e,} be a basis of W = (VJ, V2 •••• , Vm)· If Wk ' W for 
some k, let er+l = Wk. Extend the linearly independent set {et, e2, ... , e,, e,+d 
to a basis 8 ={et. e2, ... , e11 } of V. Let {/J, /2 .... , f 11 } be the basis of V' dual 
to 8. Because 

I fJ fa<t> : a e r "'·" I 
t=t 

3Extensions of this result can be found in [Mcrris {1975a)) and [Lim {1976)]. We shall have more 
to say about equality of decomposable tensors in Chapter 7. 
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is a basis of M= M(V, V, ... , V), and since v1 * vz * · · · * Vm ::1: 0 e M', there 
exists an element fJ e r m,n such that 

(Vt * VZ * · · • * Vm) (D. het)) ::/: 0. (6.8) 

Because, 

x(e) "' -1 Vt * VZ * • • · * Vm = G) L...J X(t1 )Vuel) ® Vue2) ® • · · ® Vuem>• 
o( ueG 

the left-hand side of (6.8) takes the value 

(

m ) X~) m 
(Vt * vz * ... * Vm) n ,,er> = o(G) L x(tr-

1
) n ,,er>(Vuer>>· 

t=l ueG t=l 
(6.9) 

It follows that {J Er m,r (otherwise the right-band side of Equation (6.9) would be 
0, contradicting (6.8)). Therefore, 

0 ::1: (Vt * vz * · · · * Vm) (fi her>) 

= (Wt * w2 * · · · * Wm) (Ii her>) 
r=l 

x(e)"' -1 nm 
= o(G) L...J X(t1 ) /,(I)(Wuer)). 

ueG t=l 
(6.10) 

Now, !,eu-•ekn(wk) = 0 because Wk = er+l and fJ(u-1(k)) =:: r. Therefore, the 
right-hand side of Equation (6.10) is zero. This contradiction completes the proof. 

0 

Lemma 6.15 may be viewed as a partial analog of Theorem 5.16; the next result 
is a partial analog of Theorem 5.15. 

LEMMA 6.16 Let x be an i"educible character of the permutation group G c S,.. 
Suppose Vt, vz, ... , Vm E V. If {v,, vz, ... , Vm} is linearly independent, then 
Vt * VZ * · · • * Vm ::/: 0. 
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Proof If {vJ, 112 •••• , v,.} is linearly independent, then m ~ n = dim(V), and 
we may regardS,. as a subset of r ,.,11 • In particular, {v:: u e G} is part of an 
induced basis of y@m. Therefore, 

x(e) ~ _ 1 
VJ * 112 * • · · * Vm = -- .L.., X(U )Vcr(l) ® Vcr(2) ® · · • ® Va(m) 

o(G) aeG 

is zero if and only if x(u) = 0 for all u e G. However, x(e) ':f:. 0. 0 

If {ei: 1 ~ i ~ n} is a basis of V, then {e~: a e r ,.,11 } is a basis of V@m. 
Therefore, 

(6.11) 

spans Vx(G). In general, however, some of the elements of (6.11) may be zero, 
and those that are not generally comprise more than a basis. This raises a number 
of interesting issues. 

If a E f ,.,11 and u E S,., then the composition au E r ,.,11 ; in sequence notation, 
it is obtained by rearranging the entries of a according to the permutation u. That is, 
au = (au(1), au{2), . .. , au(m)). Evidently, each permutation u e S,. induces 
a permutation of r m,ll• 

DEFINrnoN 6.17 For each u E s,., define (f: r m,ll ~ r m,ll by (f(a) = au-1
' 

a E r,.,11 • 

Because (j 0 'f(a) = (f(a-r- 1) = cn-1u-l = a(uT)- 1 = (f'f{a), a E r m,ll• 

u ~ (f is a homomorphism4 from S,. into the manifestation of S,. as a group of 
permutations of r,. ,11 • If G is a subgroup of S,., let 

G = {(j : u e G}. 

Then G is a group of permutations of r ,.,11 • 

Recall (Definition 3.20) that a, fJ e r m , 11 are equivalent modulo G if there is a 
(f e G such that(f(a) = fJ. Because fJ = au-1 if and only if a = fJu, equivalence 
modulo G can be described entirely in terms of G. Abusing the language somewhat, 
we will adopt the following convention. 

DEFINrnoN 6.18 Suppose G is a fixed but arbitrary subgroup of S,.. Let a, fJ e 
r ,.,11 • Then a is equivalent to fJ modulo G, written a = fJ (mod G), if there exists 
a u e G such that a = fJu . 

41f 11>1, it is an isomorphism. 
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ExAMPLE 6.19 Let m = 3 and n = 2. Then 

r3,2 = {(1, 1, 1), (1, t, 2), (1, 2, 1), (1, 2. 2), (2, 1. 1), (2, 1, 2), (2, 2. n. (2, 2. 2)}. 

There are four equivalence classes of r3,2 modulo s3. namely, 

{{1, 1, 1)}, 

{(1, 1, 2), (1, 2, 1), (2, 1, 1)}, 

{(1, 2, 2), (2, 1, 2), (2, 2, 1)}, and 

{(2, 2, 2)}. 

The six equivalence classes modulo G = {e, (13)} are 

{(1, 1, 1)}, 

{(1, 1, 2), (2, 1, 1)}, 

{(1, 2, 1)}, 

{(1, 2, 2), (2, 2, 1)}, 

{(2, 1, 2)}, and 

{(2, 2, 2)}. 

0 

I>EFoonoN 6.20 Let G be a subgroup of S,.. If a e r "'·", its stabilizer subgroup 
is Ga = {0' E G: aO' =a}. 

Keeping strict faith with Definition 3.24, the stabilizer subgroup should be 
denoted Ga. because it is the G manifestation of G that acts on r m,n· 

LEMMA 6.21 Let {e;: 1 !:: i !:: n} be an orthonormal basis of the inner product 
space V. Then, with respect to the restriction of the induced inner product of V®"' 
to Vx(G), 

I 
0, if a ¥:. fJ (mod G) 

(e~, ep) = x(e) "' ( ) 
o(G) ~treG. X 0' • if a = fJ. 

Notice that Lemma 6.21 is silent about the case in which a = fJ (mod G), but 
a :F {J. 
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Proof Because T ( G, x) is hermitian and idempotent, 

(e!, e~) = (T(G, x)(e:), T(G, x><e1» 
= (T(G, x)(e:). e1>· 

Substituting for T(G, x), we obtain 

(e!, e~) = :(~~ LX (o-) fi (ea(t)• efJa(t)). 
aeG t=l 
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If a ;/= {3 (mod G), then every term in this summand is zero. If a = {3, then only 
the terms corresponding to those u for which a = au survive. 0 

The first conclusion to be drawn from Lemma 6.21 is that 

= x(e)(x, l)o./[G: Gal· (6.12) 

Therefore, e: =F 0, if and only if the restriction of x to Ga contains the principal 
character as an irreducible constituent. Let 

o ={a er,.,,: <x. 1)o. =F 0}. (6.13) 

Then {e:: a e 0} is what remains after the zeros have been deleted from 
{e:: a e r 111,,.}. In particular, {e:: a e 0} spans Vx (G). (Note that 0 depends on 
m, n, G, and x .) If x is the principal character, then 0 = r "'·"· If m ~ n and a is 
a one-to-one function (a sequence of distinct integers), then Ga = {e}, so a e 0. 

LEMMA 6.22 Let G be a subgroup of S,. and suppose X e I (G). Then the set 0 
defined in Equation (6.13) is a union of equivalence classes of r 111,11 modulo G. 
That is, a E 0 if and only if ar: E O,for all r: e G. 

DEFINmoN 6.23 For a fixed but arbitrary m, n, and G, let 11 be the system of 
distinct representatives for the equivalence classes of r "'·" modulo G, so chosen 
that a e 11 if and only if a is first, in lexicographic order, in its equivalence class. 

LEMMA 6.24 If G = s,., then 11 = G,.,,, the subset of r lft,ll consisting of all 
C(n +m- I, m) nondecrt!asingfunctions (sequences). 

EXAMPLE 6.25 Returning to Example 6.19, suppose m = 3 and n = 2. 
If G = S3 then (j. = {(1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2)} = Gu. con­
firming Lemma 6.24. If G = {e, (13)}, then, in lexicographic order, 11 = 
{(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 2), (2, 2, 2)}. 0 
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ExAMPLE 6.26 Let m = 3, n = 2, and G = s3. If 1r = [2, 1), then 
x,r(a) = F(a) - 1, a e S3, where F(a) is the number of fixed points of 
a. Let us test the elements of r3,2 for membership in 0. By Lemma 6.22, 
it suffices to test the elements of A. From Lemma 6.24 (or Example 6.25), 
A = G3,2 = {(1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2)}. If a = (1, 1, 1) or (2,2,2), 
then Ga = S3, and (x,.., 1)3 = 0 by the Orthogonality Relations of the First Kind. 
Therefore, neither (1,1,1), nor (2,2,2) belongs to 0 . If a = (1, 1, 2) or (1,2,2), 
then Ga is isomorphic to Sz. By the Branching Theorem, the restriction of x,.. to 
Sz is I +£,and 

(1 + £, 1)2 = (1, 1)2 + (£, 1)2 

= 1+0. 

Therefore, n is the union of the equivalence classes represented by (1,1,2) and 
(1,2,2), that is, 

g = {(1, 1, 2), (1, 2, 1), (2, 1, 1)} u {(1, 2, 2), (2, 1, 2), (2, 2, 1)}. (6.14) 

If 1r = [13), then x,.. =£.Now, for every a E r3,2• there exist i '# j such that 
a(i) = aU). Because G = S3, this means a transposition (ij) e Ga. It follows 
that the restriction of£ to Ga is not identically 1. Therefore, (1, £)a. = 0, for 
every a er m,n· In other words, n is empty. Because {e;: a e Q} spans Vx(G), 
we conclude that Ve(S3) = {0}, for any vector space V of dimension 2. o 

DEFoonoN 6.27 For a fixed but arbitrary subgroup G of Sm and x E /(G), let 
A= An Q. That is, A= {a EA: (X, 1)a. :f: 0}. 

Like 0, A depends on m, n, G, and X· Like A, each element of A is first, in 
lexicographic order, in the equivalence class modulo G to which it belongs. 

ExAMPLE 6.28 Let G = S3 and X = X!2.1J then, from Equation (6.14), A = 
{{1, 1, 2), (1, 2, 2)}. 0 

It follows from the definitions and Lemma 6.22 that 

Q = U{aa: a e G}. 
ae6 

(6.15) 

EXAMPLE 6.29 Recall that Qm,n is the subset of r m,n consisting of all C(n, m) 
strictly increasing functions. If a E Qm,11 , and a E Sm, then a comes before aa 
in lexicographic order. Therefore, for any subgroup G of Sm, a comes first in its 
equivalence class. That is, a e A. In fact, more is true. Because a is a one-to-one 
function, Ga = {e}. Therefore, a E A. In other words, Qm,n C A, for every 
X E /(G). 0 

THEoREM 6.30 If G = Sm and X = £, then A = Qm,n· 
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Because Q3,2 is empty, it follows from Theorem 6.30 and the definitions that 
V6 (S3) = {0} for any vector space V of dimension 2, confirming an observation 
already made in Example 6.26. 

THEOREM 6.31 Let x be an irreducible character of the subgroup G of S,.. If 
8 = { e1, e2, ... , e,.} is a basis of the vector space V, then V x (G) is the direct sum 
of the subspaces (e!u: u e G), as a ranges over li. 

Proof Because {e!: a e 0} spans Vx(G), it follows from Equation (6.15) that 
Vx(G) is the sum, over a e li, of the subspaces (e!u: u e G). Consider the inner 
product on V with respect to which 8 is orthononnal. With respect to the induced 
inner product (Lemma 6.21), the sum of the subspaces (e!u: u e G), a e li, is 
orthogonal. o 

CoRDU.ARY 6.32 If 8 = {e1, e2, ... , e,.} is a basis of V, then 

(6.16) 

is a linearly independent set in Vx ( G).lf 8 is orthogonal, then ( 6.16) is orthogonaL 
lfx(e) = 1, then(6.16)isabasisofVx(G). 

Proof The set (6.16) consists of one (nonzero) vector from each of the direct 
summands of Theorem 6.3l.lf B is orthogonal then, by Lemma 6.21, (6.16) is 
orthogonal. (If a, {3 e li, then a = {3 (mod G) if and only if a = {3.) If x(e) = 1, 
it follows from Equation ( 6. 7) that e!u = X ( u )e!, for all u E G and all a E r "'·". 
In this case, the subspaces from Theorem 6.31 each have dimension 1. o 

DEF!NmoN 6.33 Suppose {e1, e2, ... , e,.} is a basis of the vector space V. Let 
x be an irreducible character of G. If a e li, then (e!a : u e G) is an orbital 
subspace of Vx(G) corresponding to a. Let sa= dim((e!a: u e G)). 

FREESE'S THEOREM 6.345 Let x be an irreducible characterofG.Ifa e li, then 
Sa= X(e)(X, l)G.· 

Proof Let G = Gau1 U Gau2 U · · · U Gaur, r = [G : Ga]. be the right coset 
decomposition of Gain G. Then, for any 11- e G, 

• x(e) " -1 ® 
eap. = o(G) L..J x(u )eap.u 

ueG 

x<e> " -1 ® = o(G) L..JX(U ~-t)eau 
ueG 

x(e) .f..(" -1 -1 ) ® = o(G) ~ L..J x(u; ~ 1-') eau,• 
1=1 1'EG. 

51beorem 6.34 appeared first in [Freese (1973)]. Note that it captures the result s.=1, ae'X, when 

x(e)=l. 
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because at' = a, t' E Ga. In particular, 

(6.17) 

Let C = (cij) be the r-by-r matrix defined by 

x(e) ~ -1 
C;j = o(G) L.., X(U; t'O'j). 

'I'EG. 

(6.18) 

Because{e:a.: 1!:: i!:: r)islinearlyindependent,itfollowsfromEquatioos(6.17) 
and (6.18) that sa = rank (C). Observe that 

2 x(e)
2 .f. ~ -1 -1 

(C )ij = o(G)2 LJ L.., x(ut l'Ut)x(uk uuJ) 
k=l'l',aEG. 

= CiJ• 

by Theorem 4.26. Therefore, C2 = C. Because C is a projection, rank (C) = 
tr (C). Therefore, 

x(e) ~ .f. -t 
Sa= o(G) L.., ~X(O'; J.I.O'i) 

p.eG. 1=l 

x(e) ~ 
= -(G > LJ x(J.L> 

o a p.eG. 

= x(e)(x. l)G.· 

0 
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For each a e /i, the matrix C defined by Equation ( 6.18) is not only idempotent 
but hermitian. It is a positive semidefinite matrix whose nonzero eigenvalues all 
equal 1. Using any of a number of matrix-theoretic approaches, one can find an 
sa-bY-sa principal submatrix of C that is invertible. The row indices of such a 
submatrix comprise a subset Fa of {aa: a e G} such that {ep: f3 e Fer} is a basis 
of the orbital subspace (e!a: a e G). Putting these subsets together, we obtain a 
set 

(6.19) 

such that {e!: a e ~}is a basis of Vx (G). Moreover, because C does not depend 
on the basis, B = {e;: 1 =::; i =:: n}, neither does~. (See, [Grone (1977a)], [Marcus 
& Chollet (1986)], [Merris (1978)], and [Merris & Pierce ((1973)] for variations 
on this theme.) 

Suppose B is an orthogonal basis of V. If x(e) = 1, then (Corollary 6.32) 
{e!: a e /i} is an orthogontJl basis of Vx (G). If x (e) > 1, can the subsets Fer, 

a e /i, be chosen in such a way that {e!: a e ~} is an orthogonal basis of 

Vx (G)? When G = D,, the dihedral group of order 2m, such a~ exists for every 
x e I (G) if and only if m is a power of 2. (See [Wang & Gong (1991a)] and 
[Holmes & Tam (1992))). On the other hand, every doubly transitive subgroup G 
of S, has an irreducible character for which no such~ exists [Holmes (1995)]. 

An explicit orthonormal basis of (e!a : rr e G) not comprised of decomposable 
symmetrized tensors was constructed in [Merris (1978)). Other work on bases of 
orbital subspaces can be found in [Dias da Silva (1981)], [Kim, et al. (1987)], and 
[Wang & Gong (1991b)]. 

From a basis of Vx(G) we can determine its dimension: 

dim(Vx (G)) = o(~) 

= LSa 
ere A 

= x(e) L<x.I)o •• 
ere A 

(6.20) 

a somewhat useless formula, at least in its present form. Another approach to 
computing the dimension takes advantage of the fact that Vx (G) is the image of 
the projection T(G, x). That is, 

dim(Vx(G)) = tr (T(G, x)) 

= X(Ge) L x(rr) tr (P(rr)). 
o( ) aeG 

(6.21) 
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Denote by 71 the character of the representation P of S,.. Since it is integer valued, 
71 = ij, and Equation (6.21) can be written as 

Because P(cr) permutes the elements of the induced basis, 

71(cr) = o({a E f m,n: P(cr)(e:) = e:}) 
= o({a E f m,n : a = aCT}) 

= o({a E f m,n: a(i) = a(cr(i)), 1 :5 i :5 m}). 

(6.22) 

Evidently, a isafixedpointof P(cr) ifandonlyifa(i) = aU) whenevercr(i) = j, 
if and only if a is constant on the cycles of cr. To count the number of fixed points, 
we may use the Fundamental Counting Principle. There are c(cr) decisions to be 
made, namely the value of a on each cycle of cr. Because there are n choices for 
each decision, 71(cr) = nc(u). Therefore, from Equation (6.21), 

dim(Vx(G)) = x(e) L x(cr)nc(u). 
o(G) ueG 

(6.23) 

Another formula for the dimension of Vx (G) will emerge from the representa­
tion theory of GL(n, C). (See Corollary 8.19.) 

When x is the principal character of G, 

dim(V,(G)) =_I_ Lllc(u>. 
o(G) ueG 

(6.24) 

When x = 1, li = li and dim(V, (G)) = o(li). Therefore, Equation (6.24) can 
be viewed as a manifestation of Bumside's Lemma! 

From Definition 6.18, functions a, {3 E r m,n are equivalent modulo G if 
and only if there is a cr E G such that a = {3cr, if and only if there is a 
u E G = {U: cr E G} such that u(a) = {3. Thus, 

1 
o(li) = --=- L F(U) 

o(G) _ -G 
CJE 

1 
=-I:F(U), 

o(G) ueG 

where F(U) is the number of fixed points of u. As we have just seen, 71(cr) = 
F(U) = ,.c<u>. For future reference, we summarize this observation in the 
following. 
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THEOREM 6.35 Let G be a subgroup of Sm. Let 1::!. be a system of distinct 
representatives/or the equivalence classes ofr m,n modulo G. Then 

1 o<l:!.> = -- L nc<u>. 
o(G) ueG 

The next result, an explicit description of n when G = Sm, requires the notion 
of a multiplicity partition. 

DllFoonoN 6.36 Let a E r m,n be fixed but arbitrary. For each y E {I, 2, ... , n}, 
o(a-1(y)) = o({x: a(x) = y}) is the multiplicity of y in a. Of these mul­
tiplicities, suppose m 1 is the largest, m2 the next largest, and so on. If the im­
age of a contains r integers altogether, then m1 ~ m2 ~ · · · ~ m, ~ 1, and 
m1 +m2+· ··+m, =m. (We are notnecessaraily assuming that m; = o(a-1(i)).) 
In particular, JL = JL(a) = [m 1. m2, ... , m,] is a partition of m called the multi­
plicity partition of a. 

Suppose G = Sm. Let JL be the multiplicity partition of a fixed but arbitrary 
a er m.n· Then Ga is conjugate to the Young Subgroup 

THEOREM 6.37 Suppose G = Sm. Let1r beajixedbutarbitrarypartitionofm and 
take x = X1r· Let JL be the multiplicity partition of a fixed but arbitrary a e r m,n· 
Then e! # 0 if and only if 1r majorizes JL. 

Proof Without loss of generality (Lemma 6.22), we may assume Ga = S,.. 
Denoting the principal character of s,. by 1,. we have, from Equation (6.12), that 

[Sm: S,.]lle!ll2/x1f(e) = ()(1f,l,.)s" 

= (1,., X1r >s" 

because the left-hand side is real. By the Frobenius Reciprocity Theorem, 

By Theorem 4.55, the Kostka coefficient K1f,#J. # 0 if and only if 1r >- JL. o 

CoROLLARY 6.38 Let V be a vectorspaceofdimensionn.Lel1r = [:7rt, 11'2, ••• , 11'k] 

be a partition of m. Suppose x = X1r· Then the symmetry class of tensors 
Vx (Sm) # {0} if and only if k ::::; n. 
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Proof Yx (S,.) -:f. {0} if and only if n -:f. 0 if and only if (Theorem 6.37) there is 
an a E r "'·" whose multiplicity partition, IL = [m 1. m2, ••. , mr ], is majorized by 
1r. However, 1r >- IL only if k ~ r. Because r ~ n, necessity is proved. Conversely, 
if k ~ n, there is an a E f "'·" such that /.L(a) = 1r. Because 1r >- 1r, a E !1. 0 

COROLLARY 6.39 Suppose {e;: 1 ~ i ~ n} is a basis of V. Let G = S,. and 
X = X1r• where tr = [tr1, 1r2, ••• , trt] 1- m. Suppose a E f "'·" has multiplicity 
partition IL = [m1, m2, ••• , mr].lfmi > 1r1, then e! = 0. 

Proof 1r cannot majorize a partition whose largest part is greater than 1r1. o 

J.A. Dias da Silva and Amelia Fonseca were able to obtain a generalization of 
Theorem 6.37 using the notion of a "multilinearity partition" (not to be confused 
with a multiplicity partition). 

DEFoonoN 6.40 Let G be a subgroup of S,. and suppose ~ e /(G). The 
multilinearity partition, MP(~). is the least upper bound (with respect to 
majorization) of the partitions 1r 1- m for which (~, x" )G -:f. 0. 

EXAMPLE 6.41 Suppose His the subgroup of G = Ss generated by {(12345), 
(1325)}. Then o(H) = 20, and K = {es} is the only subgroup of H that is normal 
in G. By Theorem 3.36, G is isomorphic to a transitive subgroup G of S6 (arising 
from the action of G on the left cosets of H).6 

Let ~ be the irreducible character of Ss corresponding to the partition [2, 13]. 

Never mind that ~(a) = s(a)(F(a) - 1), a e G = Ss. From the perspective 
of G c 5(,, ~ is the irreducible character of degree 4 that takes the value + 1 on 
6-cycles. The character of s6 induced by ~ E I (G) is 

~S. = X(4,12J + X(32J + X(22,PJ· 

By the Frobenius Reciprocity Theorem, ( ~, x") {; -:f. 0 if and only if 1r E 

{[ 4, 12], (32], (22, 12]}. With respectto majorization, the least upper bound of these 
three partitions is [4,2]. (See Figure 1.3.) Therefore, the multilinearity partition 
MP(~) = [4, 2]. In this particular example, it turns out that 

<~ . x">a = o. 
when v = MP(~). 0 

THEOREM 6.42 Let G be a subgroup of S,. and suppose ~ E I (G). Let IL be the 
multiplicity partition of a Er ,.,11 ./fe! = T(G, ~)e: -:f. 0, then M P(~)majorizes 
IL· 

A proof of Theorem 6.42 can be found in [Dias da Silva & Fonseca (1987)] and 
[Fonseca (1989)]. The following partial converse was obtained in [Dias da Silva 
& Fonseca (1990) & (1995)]. 

6It is{; that accounts for the outer autornorpbisms of S.. (See, e.g., [Passrnan (1968), pp. 3S-36].) 
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THEoREM 6.43 Suppose~ is an irreducible character oftlu! subgroup G of Sm. Let 
Xv be tlu! irreducible character of Sm corresponding to tlu! partition v = MP(~). 
Suppose MP(~) majorizes tlu! multiplicity partition of a e r m,11 .lf(~. Xv)G :f. 0, 
then there uists a pennutation u E Sm such that e:u = T(G, ~)e:u :f. 0. 

We turn now to another generalization of Theorem 6.37. 

DEFINITION 6.44 Suppose V is a vector space. The vectors VJ, t/2, ••. , Vm E V are 
said to conform to the partition rr 1- m if it is possible to distribute the m vectors 
among the m boxes of the Ferrers diagram F (rr) so that the vectors in each column 
are linearly independent. 

If one of VJ, t/2, . .. , Vm is zero, then the vectors conform to no partition of m; 
if VJ = t/2, then any conforming distribution of vectors to boxes must place VJ and 
v2 in different columns. 

EXAMPLE 6.45 Let {eJ, e2} be a linearly independent set in V. Suppose VJ = 112 = 
et. V3 = V4 = e2, vs =et+ e2, and V6 = e1 - e2. Because {VJ, VJ}, {lJ2, v4}, 
and {vs, V6} are all linearly independent, VJ, t/2, .•. , V6 conform to rr = [3, 3]. If 
p 1- 6 and p majorizes [3,3], then VJ, t/2, ... , V6 also conform to p. o 

EXAMPLE 6.46 Suppose B = {eJ, e2, ... , e11 } is a basis of the vector space V. 
Let J.L = [m J, m2, ... , m,] be the multiplicity partition afforded by some fixed but 
arbitrary a € r m,n• Then the vectors ea(l)t ea(2)· •••• ea(m) conform to 7r if and 
only if rr majorizes J.L. o 

In view of Example 6.46, Theorem 6.37 can be restated as follows: Suppose 
rr 1- m. Let G = Sm and x = X1r· Then e: :f. 0 if and only if the vectors 
ea(J), ea(2), ... , ea(m) conform to rr. 

GAMAS'S THEOREM 6.47 Suppose rr 1- m. Let G = Sm and X = X1r· Then tlu! 
decomposable symmetrized tensor VJ * t12 * · · · * Vm :f. 0 if and only if tlu! vectors 
VJ, t/2, •.• , Vm conform to rr. 

The original version of Theorem 6.47 appeared in [Gamas (1988)]. Our ap­
proach has followed [Pate (1990)]. Observe that Gamas's Theorem also gener­
alizes Lemma 6.16 because a linearly independent set of m vectors conforms to 
every partition of m. A common generalization of Theorems 6.42, 6.43, and 6.47 
appeared in [Dias da Silva & Fonseca (1990)]: 

THEOREM 6.48 Let ~ be an irreducible character of tlu! subgroup G of Sm. Let 
X 11 be the irreducible character of Sm corresponding to tlu! multi linearity partition 
v =MP(~). Suppose(~. Xv)G :f. 0. Thentlu!reexistsapennutationu E Sm such 
that 
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T(G, ~)(Va(l) ® Va(2) ® · · · ® Va(m)) = Va(l) * Va(2) * · · · * Vu(m) 

#0, 

if and only if the vectors VI, V2 •... , v,. conform to v. 

Suppose VI, V2 •... , v,. are nonzero vectors in some vector space V. It was 
proved in [Dias da Silva ( 1990)] (also see [Dias da Silva ( 1996) ]) that, with respect 
to majorization, there is a unique minimum partition to which VI, V2 •... , v,. 
conform. 

DEFoonoN 6.49 Let R = {VI, V2 •... , v,.} be a multiset of nonzero vectors in V. 
The minimum partition to which VI, V2 •... , v,. conform is the nullity partition 
of R, denoted 'l(R). The rank partition of R is p(R) = 'l(R)*, the conjugate of 
its nullity partition. 

In the language of Definition 6.49, Theorem 6.48 can be restated as follows: 

THEOREM 6.50 Let ~ be an irreducible character of the subgroup G of S,.. Let 
X11 the irreducible character of S,. corresponding to the partition v = MP(~). 
Suppose(~. X11)G # 0. Let R ={VI, V2 •... , v,.} be a multisetofnonzero vectors 
in V. Then there exists a permutation a E S,. such that 

T(G, ~)(Va(l) ® Vu(2) ® • • · ® Vu(m)) = Vu(I) * Vu(2) * · • · * Vu(m) 

if and only ifv >- 'l(R). 

Among the most important symmetry classes is v®m itself, occurring when 
G = { e} and x = I. We proceed to discuss another. 

DEFlNTlloN 6.51 The symmetry class VE(S,.), corresponding to the symmetric 
group and its alternating character, is called the space of skew-symmetric tensors, 
the m-th Grassmann space, or the m-th exterior power of V. The special notation 
A 111 V is used for VE(S,.), and the decomposable symmetrized tensors are written 
VI A V2 A··· A V111 • 

LEMMA 6.52 Let V be a vector space. Then for all a E S,. and all 
VI,V2o••••Vm E V, 

Vu(l) A Vu(2) A··· A Vu(m) = E(a)Vt A V2 A··· A Vm• (6.25) 

In particular. if v; = VJ for some pair i # j, then VI A V2 A · · · A v,. = 0. 
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If {e;: 1 ~ i ~ n} is a basis of V, then (Theorem 6.30 and Corollary 6.32) 
{e;: a E Q111 , 11 } is a basis of A"' V, where e; = ea(1) 1\ ea(2) 1\ ···A ea(m)· In 
particular, 

(6.26) 

THEOREM 6.53 Suppose V1, vz, ... , V111 E V. Then V1 1\ VZ 1\ · · · 1\ Vm :f. 0 if and 
only if{v1, vz •... , Vm} is linearly independent. 

Proof Recall that E = xn•J· Because v1, vz •... , v111 conform to [1"'] if and only 
if { v1, vz, ... , v111 } is linearly independent, the result is an immediate consequence 
of Gamas 's Theorem. o 

Theorem 6.53 shows that the converse of Lemma 6.16 is valid in A"' V. The 
next result may be viewed as a partial converse of Lemma 6.15. 

THEOREM 6.54 Let V1, vz, ... , V111 E V./f 

Ill 

Wj = LD;jV;, 1 ~ j ~m, 
i=1 

then w1 1\ w2 1\ · · · 1\ Wm = det(aij)V1 1\ vz 1\ · · · 1\ Vm. 
Proof Observe that 

W11\ Wzl\ ···A Wm = (ta;1v;) 1\ (ta;zv;) A .. ·I\ (ta;mv;) 
1=1 1=1 1=1 

= L (fi aa(l)l) Va(l) 1\ Va(2) 1\ ... 1\ Va(m) 
aer .... 1=1 

= L (fi aa(l)l) Vo-(1) 1\ Vo-(2) 1\ ... 1\ Va(m) 
aes. 1=1 

= ( L E(O') fi aa(l)l) V1 1\ vz 1\ ... 1\ Vm. 
aes. 1=1 

by multilinearity, Theorem 6.53, and Lemma 6.52. 0 

The proof of Theorem 6.54 depended on the following fact: If A = (a;i) is an 
m-by-m matrix, then 

Ill 

det(A) = L E(O') n ala(t)· (6.27) 
aeS. 1=1 
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Taking Equation (6.27) as the definition of determinant, the usual expansion 
theorem can be derived using multilinear techniques: Suppose dim(V) = m. Let 
u e V. Define 

(m-I)-times 

cl>: V X V X ••• X V .... A"' V 

by cl>(vJ, 1J2, ••• , Vm-1) = VJ A t12 A··· A Vm-1 A u. Then cl> is (m- I)-linear 
and symmetric with respect to Sm-1 and£. By Theorem 6.14, there is (unique) 
h6 E L(A"'-l V, t\111 V) such that 

he(VJ A V2 A • • • A Vm-1) =Vi A t/2 A··· A Vm-1 A U, 

for all V1t 1J2, ••. , Vm-1 e V. Suppose {elt e2, ... , e,.} is a basis of V. Let 

Ill m 

Vj = :~:::a;je;, 1 ~ j <m, and u = La;,.e;. 
i=l i=l 

Then, by Theorem 6.54, 

VJ A t'2 A ···A Vm-1 A u = det(A)eJ A e2 A ···A e,.. (6.28) 

On the other hand, 

V) "V2" ... "Vm-1 = L n tla(l)l e:. (
m-1 ) 

aer .. -1.• 1=1 

= ae~~~ a~-1 (D. tlaa(l)l) e:a 

= L ( L £(a) 'fi tla(l)a(l)) e:. (6.29) 
aeQ.,_1~ aeS..-1 1=1 

DEFINmoN 6.55 Suppose A E C111 ,111 • Hi, j E {1, 2, ... , m}, let A(ilj) be the 
submatrix of A obtained by deleting its i-th row and j-th column. Ha e Q,,,., 
denote by ac e Qm-r,m the (increasing) sequence complementary to a. 

H, for example, a = (2, 4) e Q2,s. then ac = (1, 3, 5) e Q3,S· H 
a = (1, 2, 3, 5) e Q4,s. then ac = (4) e Ql,S· (We will feel free to abuse 
the notation by writing ac = 4 in the latter case.) 

In the notation of Definition 6.55, Equation (6.29) becomes 

VJ A t12 A··· A V111-l = L detA(aclm)e:. 
aeQ.-1~ 
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Applying the linear transformation he to this equation produces 

he(V1 1\ 112 1\ · • · 1\ Vm-1) = L det A(aclm)h6 (e:) 

aeQ•-•.-
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= L det A(aclm)ea{l) 1\ ea(2) 1\ • • • 1\ ea(m-1) 1\ u. 

~~~ ~~ 

By multilinearity, 
Ill 

ea(l) 1\ ea(2) 1\ • • • 1\ ea(m-1) 1\ u = L a;rnea(l) 1\ ea(2) 1\ · · • 1\ ea(m-1) 1\ e;, 
i=1 

only one term of which survives, namely i = ac. Because i = ac if and only if 
a= (1, 2, ... , i- 1, i + 1, ... , m) we have, from Lemma 6.52, that 

ea(1) 1\ ea(2) 1\ • · · 1\ ea(m-1) 1\ e; = ( -1)m-i e1 1\ e2 1\ · · • 1\ e"'. 

Therefore, from Equation (6.30), 
m 

V11\tJ21\···I\Vm-1 1\u = L:<-l)i+"'a;rndetA(ilm)ei l\e21\···l\e"'. 
i=1 

Comparing with Equation (6.28) (and using the fact that et 1\ e2 1\ ···A e111 =I= 0), 
we obtain 

m 

det(A) = L(-1)1+"'a;111 detA{ilm), 
i=l 

the familiar expansion for det(A) along the last column. 

(6.31) 

In order to state the next result, we need the following extension of Defini­
tion 6.55. 

DEFINITION 6.56 Suppose A = (aij) E C111 ,11 .1f a E rp,m and ,8 E r 9,11 , then 
A[a1,81 E Cp,q is the matrix whose (i, j)-entry is the (a(i), ,8(j))-entry of A. 
If a E Qp,m and ,8 E Q9 ,,., then A(al,8) = A[acl,8c] is the matrix obtained by 
deleting from A the rows whose indices appear in a and the columns whose indices 
appear in ,8. 

LAPLACE ExPANSION THEOREM 6.57 Suppose I ~ p < n. Let a E Qp,n· If 
A e C11 ,11 , then 

det(A) = L ( -w<ar>+r<fl> det(A[al,8]) det(A(a 1,8)), (6.32) 
~eQ,,. 

where r(a) = a(l) + a(2) + · · · + a(p). 

While it is understandably more complicated, the proof of Theorem 6.57 is 
analogous to the derivation of Equation (6.31).7 

71bere is a comparable Laplace Expansion Theorem for pennanents (see, e.g., [Marcus & Mine 

(1964)]). Generalizations to other matrix functions appear in [Marcus & Soules (1967)). 
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EXAMPLE 6.58 Let's expand the determinant of 

(
3 1 0 5) 

A- 4 3 1 9 
- 0 2 2 3 

2 4 2 7 

along rows 1 and 3, that is, let a = (1, 3). Summing over {3 e Q2,4 = 
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, Equation (6.32) becomes 

det(A) = L (-l)r(JJ) det(A[1, 31,8])det(A(1, 31{3)) 
~EQz.• 

= ( -1)1+2 det(A[1, 311, 2]) det(A(1, 311, 2)) 

+ (-1)1+3 det(A[l, 311, 3]) det(A(1, 311, 3)) 

+ ( -1)1+4 det(A[1, 311, 4]) det(A(l, 311, 4)) + ... 

= -det(~ ~)det(~ ~) +det (~ ~) det (! ~) 
= -det(~ ~)det(! ~)-det(~ ~)det (~ ~) 
= +det (~ ~)det(~ ~) - det(~ ~)det(~ !) 

= -6 X (-11) + 6 X (-15)- 9 X 2-2 X 10 

+ (-7) X 6- (-10) X (10) 

= -4. 
0 

Another important family of examples occurs when G is arbitrary but x = 1 is 
the principal character. In this case 

P(r-
1
)(VJ * V2 * · · · * Vm) = Vr(l) * Vr(2) * · · · * Vr(m) 

= VI * V2 * • · · * Vm, (6.33) 

for all ~ e G. (See Equations (6.6)-{6.7).) Moreover, li = li, and. from 
Equation (6.24), 

dim(VJ (G)) = _1_ L nc(o-) . 
o(G) ueG 
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LEMMA 6.59 Let G be a subgroup of S,.lfv e V, then 

m-times 

V® V® .. ·® V E V1(G). 

THEOREM 6.6()11 Let ~ = 1 be the principal character of the subgroup G of S,. 
Suppose V is an inner product space. In the sy111111etry class of tensors V1 (G), 

(i) VI *V2*'"*Vm =Oifandonlyifv; =Oforsomei; 

(ii) ifvl * v2 * · · · * v, = W! * w2 * · · · * w, ::f: 0, then there exists a permutation 
u E S, and constants d; E C such that v; = d;Wa(i)· 1 ~ i ~ m, and the 
productd1 X d2 X··· X d, = 1. 

Proof If G = {e} part (i) reduces to Theorem 5.15; if G = S,, it is an easy 
consequence of Gamas's Theorem because~ = Xlml• and any collection of m 
nonzero vectors conforms to [m}. So, we may assume G is a proper subgroup of 
S,. (If G were normal inS,, part (i) would follow from Theorem 6.50 and the 
invertibility of P(u).) 

If v; = 0 for some i, then VI * V2 * · · · * v, = 0 by multilinearity. Conversely, 
suppose VI * v2 * · · · * v, = 0. Let u e V be fixed but arbitrary. Then 

0 = (U ® U ® • • • ® U, V! * V2 * · · · * Vm) 

= (u ® u ® .. · ® u, T(G, l)v1 ® V2 ® .. · ® v,) 

= (T(G, l)u ® u ® · · · ® u, V! ® v2 ® · · · ® v,) 

= (u ® u ® · · · ® u, v1 ® 1J2 ® · · · ® v,) 

m 

= O<u. v1) . 
t=l 

(6.34) 

If {e1, e2, . .. , en} is an orthonormal basis of V, there exist constants a;i such that 

n 

Vj = Laiie;, 1 ~j ~m. 
i=l 

ut u = Xt et + X2f2 + · · · + Xnfn where, for the moment, we view the coefficients, 

8Tbcorem 6.60 first appeared in [Marcus & Newman (1962)). 
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x1, x2, ... , x,., as independent indeterminates. Then 

m m ( 11 ) Q<u. v,) = o u, tfa;,e; 
= fi (ta;,(u, e;)) 

t=l i=l 

= fi (t 'iiitXi) • 
t=l i=l 

(6.35) 

If v, :F 0 for all I, the right-hand side of Equation (6.35) is a polynomial in 
n variables (the x;) which is not identically zero. On the other hand, according to 
Equation ( 6.34 }, any substitution for the x; produces a value of 0. This contradiction 
establishes that v, = 0 for some 1, and part (i) is proved. 

If dim(V) = 1, part (ii) is immediate. Thus, we may assume dim(V) > 1. 

Because v1 * V2 * · · · * Vm = w1 * W2 * · · · * Wm we have, as in the derivation of 
Equation (6.34), that 

m m 

O<u. w,) = O<u. v,). (6.36) 
t=l t=l 

For each i, let v; = y; + z;, where y; e (w1) and z; e (w1).1.. It follows from 
Equation (6.36) that. for all u e (w1).1., 

m 

0 = O<u, v,) 
t=l 

m 

= O<u,z,). 
t=l 

As in the proof of part (i}, Zt = 0 for some k, which means that Vk = Yk e (w1). 
In other words, Vt = d1 w1 for some d1 e C. Substituting in Equation (6.36), we 
obtain 

0 = (u, w1) (fi(u, w,) -d1 O<u, v,)), 
t=2 t¥k 

(6.37) 

for all u e V. Because w1 :F 0, a modification of the previous argument shows 
that the second factor on the right-hand side of Equation (6.37) is zero, and the 
rest of the proof follows by induction. o 

The next example, taken from [Marcus (1973)], shows that the permutation a 
in Theorem 6.60, part (ii) need not belong to G. 
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EXAMPLE 6.61 Let G = A3 and x = 1. Suppose {et, e2} is a basis of V. Let 
Wt = e1, w2 = e2, and W3 = e1 + e2. Then 

Because 't' = (123) E G, it follows from Equation (6.33) that 

=Vi* V2 * V3 

for any three vectors v1, V2, and V3 e V. In particular, letting VI = e1 and 
V2 = V3 = e2, we obtain e2 * e2 * e1 = e1 * e2 * e2. Hence, 

= W3 * W2 * Wt 

= Wa(l) * Wa(2) * Wa(3)• 

where u = (13) ~ G. 0 

Next we consider, in some detail, the symmetry class of tensors Vt (Sm) 

corresponding to G = Sm and X = 1. 

DEFINITION 6.62 Let V be a vector space. The symmetry class V1 ( Sm) correspond­
ing to the principal character of the symmetric group is the space of completely 
symmetric tensors. The decomposable symmetrized tensors in V1 (Sm) are written 
Vi • V2 • · ·' • Vm. 

It follows from Equation (6.33) that 

P(T-
1
)(Vi • V2 • • • • • Vm) = Vr(l) • Vr(2) • • • • • Vr(m) 

=Vi • V2 • · · · • Vm, 

for all T E Sm. This "complete" symmetry characterizes V1 (Sm). 

THEOREM 6.63 Letw E V'"®. Then wE Vt(Sm) ifandonlyifP(T)(w) = wfor 
all 't' E Sm . 
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Proof If P('r)(w) = w for all r e Sm, then 

1 
w = - L P(r)(w) 

m! TES• 

Conversely, if w E Yt (Sm). then 

P(r)(w) = P(r)(T(Sm, 1)(w)) 

= (P(r)T(Sm. 1))(w) 

= T(Sm, 1)(w) 

=w. 

Multilinear Alg~bra 

0 

The next theorem is merely a specialization of previous results to the space of 
completely symmetric tensors. 

THEOREM 6.64 Let {et, e2, ... , e,.} be a basis of the vector space V. Then 
{e: = ea(l) • ea(2) • · · · • ea(m): a E Gm,n} is a basis of Yt (Sm). In particular. 
dim(Vt (Sm)) = C(n +m - 1, m). 

Suppose {xt. x2, ... , x,.} is a set of independent indeterminates over the 
complex numbers. Denote by Cm[Xt,X2, ... ,x,.] the subset ofC[xt. x2, ... , x,.] 
consisting of the zero polynomial together with all homogeneous polynomials 
of (total) degree m in the n variables. Then Cm [xt, x2, ... , x,.] is a vector space 
over C. 

LEMMA 6.65 If Xi, X2, ... , x,. are independent indeterminates over the complex 
numbers, then 

B = I fi Xa(t) : a E Gm,n) 
t=i 

(6.38) 

is a basis of Cm [Xi, x2, ... , x,.]. 

The following definition will be useful in the proof of Lemma 6.65. 

DEFINmoN 6.66 If a e r m,,., denote by m1(a) = o(a-1(t)) the multiplicity oft 
in the sequence a. 

The nonzero integers in the multiset {m,(a): 1 ~ t ~ n} are the parts 
of the multiplicity partition JL(a). If a = (2, 1, 2, 1, 2) e rs.J, for example, 
then mt(a) = 2, m2(a) = 3, and m3(a) = 0. If fJ = {2, 1, 1, 2, 2), then 
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m1(/3) = m1(a), 1 :S t :S 3. This sharing of multiplicities cannot happen for 
two different sequences of Gm,n· If a, /3 e Gm,n• then a = /3 if and only if 
m1(a) = m1{/3), 1 :S t :S m.9 

Proof (of Lemma 6.65). Suppose 

m 

L Ca n Xa(l) = 0. 
aeG.,. 1=1 

(6.39) 

Let /3 e G,.,,. be fixed but arbitrary. Take the partial derivative of both sides 
of Equation (6.39) with respect to x1, a total of m 1 (/3) times. Then take partial 
derivatives with respect to x2, a total of m2(/3) times, and so on. Finally take 
partial derivatives with respect to x,., a total of m,. (/3) times. The result is 

(fi m1(/3)!) cp = 0, 
1=1 

that is, cp = 0. Therefore, B is linearly independent. The proof that B spans 
C,. [x1. x2 •... , x,.] is left to the exercises. o 

LEMMA 6.67 Let V be a vector space of dimension n. Suppose x1, x2, ... , x,. are 
independent indeterminates over C. Then the vector space V1 (Sm) is isomorphic 
to Cm[X1, X2, ••• , x,.]. 

Proof Let{et, e2, ... , e,.}beabasisofV.DefineT: Vt(Sm) _.,. Cm[Xt,X2, ... ,x,.] 
by T(e!) = n Xa(l)• a E Gm,no and linear extension. By Theorem 6.64 and 
Lemma 6.65, T is a vector space isomorphism. o 

Completely ignored in Lemma 6.67, of course, is the "additional structure" that 
makes V1 (Sm) more than a vector space. 10 

THEOREM 6.6811 Let {et, e2, ... , e,.} be a basis of V. For each a E G,.,,., define 
a vector 

" y(a) = Lm1(a)e1 e V. 
1=1 

Let Za = y(a) ® y(a) ® · · · ® y(a) E Vt(Sm). Then {Za: a E Gm,n} is 
a basis of Vt (Sm). In particular. Vt (S,.) is spanned by tensors of the form 
V® V® ···®V(= V eVe • • • e V). 

9If a=(l,l,l,2,2) and /J=(l,l,3,3,3), then p.(a)=p.(/J), but m,(a)#m,(/J), 1~1~3. 
IOScc, e.g., [Grooc (1977b)) for a discussion of this issue. 

ll Initially a conjecture of S. Pierce, Theorem 6.68 was proved in [Marcus & Gordon (1970)). Our 

proof is taken from [Marcus (1973)]. 
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Proof Let T: V1(Sm) -+ Cm[Xt,X2, ... ,x11 ] be the isomorphism defined by 
T(e:> = n Xa(t)• a E Gm,ll• and linear extension. Then 

T(.za) = T(y(a) • y(a) • · · · • y(a)) 

= (tm,(a)x,)m 
r=t 

Because there are the right number of them, it remains to show that the polynomials 

(~m,(a)x) m, a E Gm,11 , 

are linearly independent. Let 

R = Lc(at,a2, ... ,a11) (ta1x1)m, 
t=1 

(6.40) 

where the first summation is over all C (m +n -1, m) nonnegative integer solutions 
to at + az + · · · + a11 =m. Setting R = 0, we will prove that the coefficients, 
c(a1, a2, •.. , a11 ), are all zero by induction on m + n. 

If n = 1, then 0 = R = c(m)(mxt)m implies c(m) = 0. Thus, we may assume 
n > 1 and m+ n = k > 2. Let R = Ro + R1, where Ro is the sum of those terms 
in Equation (6.40) for which a11 = 0, and Rt is the sum of the terms with an ;::: 1. 
Of course, CJRo/ihn = 0. Because R = 0, it follows that 

O= aR1 
axil 

=m L a11c(a1, a2, ... , a11) t a,x, ( )

m-t 

a 1+···+o..=m 1=1 
llj~o. a,~1 

=m (an + 1)c(at, ... , an-1. an + 1)(atXt + .. · + anXn + X11 )m-t, 

where the last step is obtained by replacing a11 with a11+J and summing over an ;::: 0. 
Next, we are going to substitute x; - x11 /m for x;, 1 !: i !: n. Because the 
summation is now over at + a2 + · · · +an = m - 1, 

a1 (x1 - X11/m) + · · · + an(xll - X11/m) + (xll - X11/m) 

= atXt + •·· +a11x11 -Xn(at + •· · +a11)/m +x11(m -1)/m 

= a1Xt + · · · +anxll. 
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This second change of variables results in the identity 

O=m (a,+ l)c(at •... , a11-t. a,+ l)(atXt + · · · +a11x11)"'-
1• 

It follows from the induction hypothesis that 

c(at •... , a,_., a,+ 1) = 0, 

whenever a; ~ 0, and a1 + · · · +a, = m - 1, that is, 

c(at •... ,a,_1,a,) =0 

whenever a1 + · · · + a, = m and a, ~ 1. 
Setting 0 = R = Ro + R 1, we established that each of the coefficients appearing 

in the summation comprising Rt is zero. At this point we can apply the induction 
hypothesis to 

and conclude that the remaining coefficients of R are zero. 0 

ExAMPLE 6.69 It follows from Theorem 6.68 that Vt (S2) is spanned by the 
decomposable tensors v ® v, v e V. In particular, if {et, ez, ... , e,} is a basis 
of V, it must be the case that e; e {v ® v: v e V), a e G2,n· Clearly, 
e; • e; = e; ® e; e {v ® v: v e V), but what about e; • ei when i :F j? 
Observe that 

0 

Recall (Theorem 5.22) that L(V~, V®"') is a model for L(V, V)®"' in which 
Tt ® T2 ® · · · ® Tm is a typical decomposable tensor. 
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OEFI:NmoN 6.70 Let 'P(u-1): L(V®m, V®m) __. L(V®m, V®m), u e Sm. 
denote the linear operator on the vector space L(vsm, vsm) that satisfies 

for all T1, T2, •.. , Tm e L(V, V). 

LEMMA 6.71 Suppose V is a vector space and L e L(V®m, vsm). If u e 
Sm is fixed but arbitrary, then 'P(u)(L) = P(u)LP(u-1), where P(u) e 
L(V®m, V®m). 

Proof Consider 

= (Ta(1) ® Ta(2) ® · · · ® Ta(m))(v1 ® V2 ® · · · ® Vm) 

= Ta(l)(V1) ® Ta(2)(V2) ® · · · ® Ta(m)(Vm) 

= P(u-1)(T1(Va-•(t)) ® T2(Va-•(2)) ® · · · ® Tm(Va-•(m))) 

= {P(u-1)T1 ® T2 ® · · · ® TmP(u))(vt ® V2 ® · · · ® Vm). 

Because the linear operators, 'P(u-1 ){T1 ® T2 ® · · · ® Tm) and P(u-1 )T1 ® T2 ® 
· · · ® TmP(u) agree on all decomposable tensors, VJ ® V2 ® · · · ® Vm, they are 
equal. Because 

for all decomposable tensors, Tt ® T2 ® · · · ® Tm. it must be that 'P(u-1)(L) = 
P(u-1 )LP(u), for all L e L(V®m, V®m). o 

It follows from Lemma 6.71 that L e L(V®m, vsm) is a fixed point of 
'P(u) e L(L(V®m, vsm), L(V®m, vsm)) if and only if L commutes with 
P(u) e L(V®m, V®m). 

OEFI:NmoN 6.72 Suppose L e L(V8m, V®m). Then L is bisymmetric if it 
commutes with P(u), for all u e Sm. 

We now deduce a technical result of considerable importance to the determina­
tion of the rational irreducible representations of G L(n, C). 

CoROU.ARY 6. 73 Suppose V is a vector space and L is a linear operator on vsm. 
Then Lis bisymlnetric if and only if L belongs to (T8 m: T e L(V, V)), the linear 
closure of{T®m: T e L(V, V)}. 
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Proof By Lemma 6.71, P(u)L = LP(u) if and only if 'P(u)(L) = L. By 
Theorem 6.63, 'P(u)(L) = L, for all u e S,. if and only if L belongs to the 
symmetry class of L(V8 '", V®m) = [L(V, V)]®'" consisting of the completely 
symmetric tensors, that is, to [L(V, V)h (S,.). By Theorem 6.68, this symmetry 
class is spanned by {T ® T ® .. · ® T: T e L(V, V)}. o 

Because T8 "' commutes with P(u) for all u e S,., it commutes with any 
projection of the form T(G, x). Hence, for any subgroup G of S,., for all x e I (G), 
and for all T e L(V, V), the symmetry class of tensors, Vx (G), is an invariant 
subspace of r®m. 

DEFoonoN 6.74 Let G be a subgroup of S,. and suppose x e l(G). Let V be 
a vector space and suppose T e L(V, V). Denote by K(T) the restriction of 
T 8 '" to Vx(G). Then K(T) E L(Vx(G), Vx(G)) is the induced (or associated) 
transformation determined by G and x. 

Understand that K (T) depends on G and x as well as T. 

THEOREM 6.75 Let x be an irreducible character of the subgroup G of S,.. Let V 
be an inner product space and suppose S, T E L(V, V). If Vx (G) :f. 0, then 

(i) K(S)K(T) = K(ST); 

(ii) K(S)(VI * v2 * · · · * v,.) = S(v1) * S(V2) * · · · * S(v,.); 

(iii)K(S*) = K(S)*, the adjoint of K(S) with respect to the restriction of the 
induced inner product to Vx (G); 

(iv)K (S) is invertible for all invertible S; 

(v) K(S + T)!::: K(S) + K(T) whenever S, T:::: 0. 

Proof For the most part, these results are obtained by restricting S8 "' and T8 "' 

to Vx(G). Part (i) is a consequence of Theorem 5.20. To prove part (ii), observe 
that 

K(S)(vl * V2 * · · · * v,.) = (S ® S ® · · · ® S)T(G, x)(vl ® V2 ® · · · ® v,.) 

= T(G, X)(S ® S ® · · · ® S)(v1 ® V2 ® · · · ® v,.) 

= T(G, x)(S(vi) ® S(V2) ® · · · ® S(v,.)) 

= S(vi) * S(V2) * · · · * S(v,.). 

Part (ill) follows from Corollary 5.33, part (iv) from Corollary 5.21, and part (v) 
from Corollary 5.39. o 
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1 2 

D 
3 4 

AGURE 6.3 

Applications to the Theory of Enumeration 

Suppose we color each vertex of the square in Figure 6.3 either red, white, or blue. 
Any such coloring can be described by means of a function f: { 1, 2, 3, 4) -. 
{r, w, b). To count the different red-white-blue vertex colorings f = (/(1), /(2), 
/(3), /(4)), observe that there are four decisions to be made, each having three 
choices. By the Fundamental Counting Principle, there are 34 = 81 colorings. The 
set C, of all functions f: {1, 2, 3, 4}-. {r, w, b), contains 81 elements. 

Four of these 81 colorings are illustrated in Figure 6.4. Look at them carefully. 
How different will they be after the paint dries and the colored squares are free 
to rotate? It seems 81 is the right answer to the wrong question. Let's formulate 
the right question. Say two colorings (functions in C) are equivalent if one can 
be obtained from the other by a rotation of the square. This equivalence relation 
partitions C into equivalence classes called color patterns. The four colorings 
in Figure 6.4 comprise one color pattern. The right question is, how many color 
patterns are there? 

r r b r w b r w 

bD D D 01 1-o 
w w r r r r b 

/1 = (r, r, b, w) h = (b, r, w, r) /3 = (w, b, r, r) /4 = (r, w, r, b) 

AGURE 6.4 

Let's begin by figuring out exactly how the functions /1 and h in Figure 6.4 
are related. Geometrically, the coloring h can be obtained from /1 by a 90° 
clockwise rotation, the symmetry associated with a = (1243) (with respect to the 
numbering exhibited in Figure 6.3). However, the .function h ::f:. aft· In fact, aft is 
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meaningless. The composition of a and ft makes sense, but only in the order ft a. 
On the other hand, ft a = (r, w, r, b) = /4. not fz. The correct combination of ft, 
f2, and a ish = fta- 1• In general, when symmetry a is applied to an f-colored 
square, it produces another colored square, the one corresponding to fa-1• This 
is interesting. Associated with each symmetry of the square is a permutation of 
colored squares. The permutation a E S4 induces an action (i: C _.,. C defined 
by u(f) = fa- 1• This induced action is familiar. If we identify c with r 4,3. it 
is identical to the action described in Definition 6.17. Evidently, two colorings of 
the square are equivalent if and only if the corresponding functions are equivalent 
modulo the group G = {e4, (1243), (14)(23), (1342)} of its plane rotations. It 
follows that l:!. is a system of distinct representatives for the red-white-blue color 
patterns, and the number of inequivalent color patterns may be obtained directly 
from Theorem 6.35, that is, 

o(ll.) = _1_ L 3c(u) 

o(G) ueG 

=(34 +3+32 +3)/4 

=24. 

Of the 81 different red-white-blue colorings of the square, only 24 are inequivalent 
modulo its group of plane rotations. A system of distinct representatives for these 
24 color patterns (a "colorful" rendering of ll.) is exhibited in Figure 6.5. 

Suppose it were your task to come up with a system of distinct representatives 
like the one illustrated in Figure 6.5.1t would, of course, be enormously helpful to 
know that there are (only) 24 color patterns. (Once 24 inequivalent colorings are 
found, the job is finished.) It would be even more helpful to know, for example, 
that there are exactly three inequivalent colorings in which two vertices are red, 
one is white, and one blue. Let's define the weight of such a color pattern to be 
r2wb. Then the panern inventory corresponding to the inequivalent red-white-blue 
vertex colorings of the square (Figure 6.5) is 

Wa(r, w, b)= (r4 + w4 + b4) + (r3w + r 3b + rw3 + rb3 + w3b + wb3) 

+ 2(r2w2 + r2b2 + w2b2) + 3(r2wb + rw2b + rwb2). 
(6.42) 

Note that Wa(l, I, I) = 24, reflecting the fact that each pattern contributes one 
monomial (its weight) to Wa(r, w, b).In terms of monomial symmetric functions, 

Wa(r, w, b) = M[4J(r, w, b)+M[3,1J(r, w, b)+2M[22J(r, w, b)+3M[2,PJ(r, w, b). 
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r r w w b b 

r r w w b b 

r w w r b w r b w b b r 

w w r r w w b b b b r r 

r r r w w w w b b b b r 

w w w r b b b w r r r b 

r w w b b r 

b r r w w b 

r r r r w w w w b b b b 

w b b w r b b r r w w r 

FIGURE 6.5 A system of distinct representatives for the inequivalent red-white-blue 
vertex colorings of the square modulo the group G of its plane rotations. 

Starting from a system of distinct representatives, as we just did, it is an easy 
matter to write down the pattern inventory. The hard part is finding a system 
of distinct representatives. What is wanted is an independent way to generate 
the pattern inventory so that it can be used to construct a system of distinct 
representatives. Let us begin with some formal definitions. 

DEFINmoN 6. 76 Let x1, x2, ... , x,. be independent indeterminates over the com­
plex numbers. The weight of a e r 111 ,11 is 

m 

w(a) = n Xa(t)• 

t=l 

If {J = au for some u e S,., then w(a) = w({J). Therefore, w is constant on 
the equivalence classes of r "'·"' modulo any/every subgroup G of S,.. 

Suppose x is an irreducible character of G. Then 

L w(a) = Lsaw(a) 
ae.i ae6 

= x<e> E<x. •>o.w<a> 
ae6 

= x<e> E<x.t>o.w<a>. (6.43) 
a ell 

because (X, l)o. = 0 for a e li \li. 
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DEF!NmoN 6.77 Let x be an irreducible character of the subgroup G of S,.. If 
x1, x2, ... , x,. are independent indeterminates, the character weighted pattern 
inventory is defined by 

w~ (XI, X2, .•• 'x,) = L <x' 1)G. w(a) 
a eA 

= 'L:<x. 1)G.w(a). 
a eA 

When xis the principle character, W~(x1, x2, ... , x11 ) is the traditional pattern 
inventory, abbreviated 

WG(XI,X2, ••• ,x,) = L w(a). 
a eA 

Suppose G = S,. and x = X1r for some 1r 1- m. If a E ll., then G a is isomorphic 
to the Young subgroup S11 • where JL = JL(a) is its multiplicity partition, and 
(X, 1)s,. is the Kostka coefficient K"·"'· In this case, 

m w: .. (XI' X2, ••• 'x,) = L K1f,jJ.(a) n Xa(t) (6.44) 
aeG.,,. t=l 

is a so-called Schur polynomial. (We shall have more to say about Schur 
polynomials in Chapter 8.) 

DEFINITION 6. 78 Suppose x is an irreducible character of the subgroup G of S,.. 
Let Yl, J2, ... , y,. be independent indeterminates over the complex numbers. The 
character weighted cycle index polynomial afforded by G and x is 

X ) X(e) "" n"' c,(CJ) ZG(Yl• J2, ... , Ym = o(G) L..., x(u) Yt , 
aeG t=l 

where, recall, c1(u) is the number of cycles of length t in the disjoint cycle 
factorization of u. When X = 1, Z~(y1, n, ... , y,.) is the traditional cycle index 
PC!Iynomial, abbreviated ZG(Yl· J2, ... , y,.). 

EXAMPLE 6.79 Let m = 4. The cycle index polynomial of G = {e4, (12), (34), 
(12)(34)} is 

ZG(Yl· J2, )'3, Y4) = (y: + 2yfn + Y~)/4; 
the cycle index polynomial of H = {e4, (12)(34), (13)(24), (14)(23)} is 

ZH(ylt Y2• )'3, Y4) = <Yt + 3y~)/4. 
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Observe that neither Y3 nor Y4 actually appears in either ZG or ZH. Moreover, 
while G and H are isomorphic (as abstract groups), they have different cycle 
index polynomials. o 

These definitions are brought together in the following result of [W"illiamson 
(1971)], [Merris (1980)], and [White (1980b)]. 

THEOREM 6.80 Suppose x is an irreducible character of the subgroup G of S,.. 
Then 

where P1 = P1(x1, x2, ... , x11 ) = x~ + x~ + · · · + x! is the t -th power sum, 
1 :S t :S m. 

CoRou.ARY 6.81 (Polya's Theorem). Let G be a permutation group of degree m. 
Then the pattern inventory, WG(Xt,X2, ••• , x11 ), is obtained from the cycle index 
polynomia~ ZG (y,, .)'2, • •• , y,. ), by the substitution Yt = P, (x, , x2, ... , X 11 ), 

1 =:: t =::m. 
Proof (of Theorem 6.80): Let U be a vector space of dimension n, over the 
scalar field of rational functions (ratios of polynomials) in the indeterminates 
Xi, X2, •••• XII. Let {u,, "2· ...• ull} be a basis of u. Ha E r tfl , llt then u~ = 
(u: .. : t' E G) is invariant under {P(u): u E G}. Denote by Pa(u) the restriction 
ofP(u)toU~.u E G. Following[W"illiamson(197l)],wedefineP(u): u®m ~ 
U®"'by 

and 

P(u) = E9ae6W(a)Pa(u), 

- x(e) ~ -
T(G, x> = G L... x(u)P(u). 

o( ) aeG 
(6.46) 

Because U~ is invariant under {P(u): u e G}, it is invariant under T(G, x). 
Denote the restriction of T(G, X) to U~ by Ta(G, x). Then Ta(G, X) is a 
projection operator on U~, and 

T(G, x> = E9ae6W(a)Ta(G, x>. (6.47) 

From Equation (6.47), the trace of T(G, x> is 

L w(a) tr (Ta(G, x» = L SaW(a). 
ae6 ae6 

From Equation (6.46), the trace of T(G, x> is 

x(e) ~ - x(e) ~ ~ 
o(G) L... x(u) tr (P(u)) = o(G) L... x(u) L... w(a) tr (Pa(u)). 

aeG aeG ae6 
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Therefore, 

" x(e)" " LJ SaW(a) = 0 G) LJ x(a) LJ w(a) tr (Pa(O')) 
ae6 ( aeG ae6 

(6.48) 

For a particular weight 
n 

w= nx~. 
i=l 

(where each k; ~ 0, and k1 + k2 + · · · + kn =m), denote by ~w the sequences in 
~ of weight w, that is, ~w = {,8 e ~: w(,B) = w }. Then 

m 
L tr (Pa(O')) n Xa(t) = L w L tr (Pa(O')). (6.49) 
ae6 t=l w ae6. 

Summing tr (Pa(a)) = o({y e r m,n: y = a( mod G) and ya = y} over 
a E ~w produces L tr (Pa(O')) = o({y E r m,n: w(y) = wand ya = y}). 
Substituting this in Equation (6.49) produces 

L w(a) tr (Pa(O')) = L o({y E r m,n: w(y) = w and ya = y })w. 
ae6 w 

(6.50) 

Now, ya = y if and only if y is constant on the cycles of a. The right-hand side 
of Equation (6.50) is an inventory of the weights of those y's that are constant 
on the cycles of a . Another way to inventory the same weights is to compute the 
product, 

Substituting this product in the right-hand side of Equation (6.50) and then 
substituting the result in the right-hand side of Equation (6.48), we obtain 

0 
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ExAMPLE 6.82 Suppose m = 4, n = 3, G = ((1243)) = {e4, (1243), (14)(23), 
(1342)}, and x = 1. Then 

1 4 4 2 
ZG(YJ. )'2, )'3, Y4) = 4(y1 + 2y + Y2). 

Letting x1 = r, x2 = w, and X3 = b, Corollary 6.81 yields 
1 

WG(r, w, b)= 4((r + w + b)4 + 2(r4 + w4 + b4
) + (r2 + w2 + b2

)
2
)) 

= (r4 + w4 + b4) + (r3w + r3b + rw3 + rb3 + w3b + wb3) 

+ 2(r2w2 + r 2b2 + w2b2) + 3(r2wb + rw2b + rwb2), 

precisely Equation (6.42). 

ExAMPLE 6.83 Modulo 

0 

D4 = {e4, (1243), (14)(23), (1342), (14), (23), (12)(34), (13)(24)} (6.51) 

the group of all eight symmetries of the square, how many red-white-blue vertex 
color patterns are there? Does doubling the symmetry group halve the number of 
patterns? Let's see. By Theorem 6.35, 

o(d) = ~ L 3c(a) 

aeD. 

= (34 + 3 + 32 + 3 + 33 + 33 + 32 + 32)/8 

= 21. 

So, going from the group of plane rotations, G, to the full symmetry group, D4, 

reduces the number of patterns from 24 to 21. Take another look at Figure 6.5 
and see if you can determine which of the colorings, inequivalent modulo G, are 
equivalent modulo D4. (At the conclusion of this little exercise, you should be able 
to use the figure to write out the pattern inventory for D4.) 

From P6lya's Theorem (Corollary 6.81), the pattern inventory for D4 is 

WD4 (r, w, b)= ZD4 (r + w +b,r2 + w2 +b2,r3 + w3 +b3, r4 + w4 +b4) 

1 
= - ( (r + w + b )4 + 2(r4 + w4 + b4

) + 3(r2 + w2 + b2)2 
8 

+ 2(r + w + b)2(r2 + w2 + b2)) 

= (r4 + w4 + b4
) + (r3w + r3b + rw3 + rb3 + w3b + wb3) 

+ 2(r2w2 + r 2b2 + w2b2) + 2(r2wb + rw2b + rwb2). 
0 
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FIGURE 6.6 

The Enumeration of Graphs 

P6lya's Theorem can be found in the 1937 paper, "Kombinatorische Anzahlbes­
timmungen ftir Gruppen, Graphen und chemische Verbindungen" (Combinatorial 
Enumeration of Groups, Graphs, and Chemical Compounds). To discuss P6lya's 
approach to graph enumeration,letg{n, m) be the number of nonisomorphic graphs 
with n vertices and m edges. Define 

C(11,2) 

/ 11 (x) = L g(n, m)xm. 
m=O 

(6.52) 

Then / 11 (x) is a generating function for the numbers of nonisomorphic graphs 
having n vertices. 

ExAMPLE 6.84 The ll nonisimorphic graphs on four vertices are illustrated in 
Figure 6.6. Using these pictures, it is easy to produce 

j4(x) = l + x + 2x2 + 3x3 + 2x4 + x5 + x6• (6.53) 

0 

Because there is a unique graph, namely K 11 = (V, v<2>), having n vertices and 
C(n, 2) edges, g(n, C(n, 2)) = l , that is, f 11 (x) is a monic polynomial of degree 
C(n, 2). Because G =(V, E) and H = (W, F) are isomorphic if and only if their 
complements, ac = (V, v<2\E) and He = (W, w<2>\F), are isomorphic, the 
coefficients of / 11 (x) are symmetric. 

If we had a picture, comparable to Figure 6.6, for the 34 non-isomorphic graphs 
on five vertices, it would be a simple matter to write down 

fs(x) = x 10 +x9 +2x8 +4x7 +6x6 +6x5 +6x4 +4x3 +2x2 +x + l. (6.54) 

On the other hand, if it were your job to produce such a picture, it would surely 
be useful to know, for example, that the coefficient of x4 in /s (x) is 6, in other 
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words, that there exactly six nonisomorphic graphs having five vertices and four 
edges. Okay, how does one generate f,.(x) without any pictures? 

To begin, set V = {1, 2, ... , n}. Then (Definition 1.31) G = (V, E) and 
H = (V, F) are isomorphic if and only if there is a permutation a e S,. such that 

{i, j} E E if and only if {a(i), aU)} e F. (6.55) 

DEFINlTION 6.85 For each a e S,., let u be the natural induced action of a on 
v<2),the2-elementsubsetsofV = {l,2, ... ,n},thatis,u({i,j}) = {a(i),aU}}, 
{i, j} E v<2). The pair group S~2) = {u: a E S,.}. 

With respect to this induced action, (6.55) can be expressed as e E E if and 
only if u(e) e F. In other words, G = (V, E) is isomorphic to H = (V, F) if 
and only if there is a permutation u in the pair group S~2) such that 

u(E) = F. (6.56) 

There is another way to look at S~2). Consider the complete graph K,. = 
(V, v<2)). As a geometric object, it has a symmetry group, namely its group of 
automorpbisms.12 Let's call it g. When viewed as permutations of the vertices of 

K,., g = S,.. However, when viewed as permutations of the edges of K,., g = S~2). 
Let's color the edges of K,. using two colors, say black and white. Any such 

coloring corresponds to a partition of v<2) into E = {e e v<2): e is black} and 
v<2)\E = {e e v<2): e is white}. Moreover, if E is the set of black edges from 
one coloring and F the set of black edges from another, the two colorings are 

equivalent modulo g if and only if there is a permutation u in the pair group s~2) 
such that u(E) = F, precisely the criterion of Equation (6.56). In the natural 
one-to-one correspondence between graphs on n vertices and black-white edge 
colorings of K,., two graphs are isomorphic if and only if the corresponding edge 

colorings are equivalent modulo S~2). Letting XI correspond to white and x2 to 
black, the pattern inventory for the inequivalent black-white colorings of the edges 
of K,. is 

W,(XI, X2) = Zs;> (XI + X2, xf +X~, ... , xj' +xi), (6.57) 

where m = C(n, 2) is the degree of s!2
). It seems that substituting XI = 1 and 

x2 = x in Equation (6.57) proves the following: 

THEOREM 6.86 The generatingfimctionfor the numbers of nonisomorphic graphs 
on n vertices is 

f,.(x) = Zs;> ( 1 + x, 1 + x2, ... , 1 + XC(n,2)). (6.58) 

To find f,.(x), it remains to compute the cycle index polynomial for S~2). 

I2 An automorpbism of G is an isomorphism from G onto G. 
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EXAMPLE 6.87 If n = 4 then V = {1, 2, 3, 4}, and v<2> = {{1, 2}, {1, 3}, {1, 4}, 
{2, 3}, {2, 4}, {3, 4}}. Numbering the elements of v<2> lexicographically, we have 

1 = {1, 2}, 2 = {1, 3}, 3 = {1, 4}, 4 = {2, 3}, 5 = {2, 4}, 6 = {3, 4}. 

Suppose u = (1234) E S4. Let's compute the disjoint cycle factorization of 
a E S6: 

a(1) = a({1, 2}) = {u(l), u(2)} = {2, 3} = 4; 

a(4) = a({2, 3}) = {u(2), u(3)} = {3, 4} = 6; 

a(6) = a({3, 4}) = {u(3), u(4)} = {4, 1} = 3; 

a(3) = a({1, 4}) = {o-(1), u(4)} = {2, 1} = 1. 

Therefore, (1463) is a cycle of a. Continuing, 

a(2) = a({l, 3}) = {u(l), u(3)} = {2, 4} = 5; 

a(5) = a({2, 4}) = {u(2), u(4)} = {3, 1} = 2. 

Hence, a = (1463)(25). Figure 6.7 displays a for all24 permutations u E S4. o 

EXAMPLE 6.88 From Figure 6.7, the cycle index polynomial 

Zsf,(yl, )'2 , ... , Y6) = 2~ (y~ + 9yhi + 8y~ + 6)'2Y4). (6.59) 

(T ;; (T ;; (T ;; 

e4 e6 (123) (142)(356) (1234) (1463)(25) 

(12) (24)(35) (124) (153)(246) (1243) (1562)(34) 

(13) (14)(36) (132) (124)(365) (1324) (16)(2453) 
(14) (15)(26) (134) (145)(263) (1342) (1265)(34) 

(23) (12)(56) (142) (135)(264) (1423) (16)(2354) 
(24) (13)(46) (143) (154)(236) (1432) (1364)(25) 

(34) (23)(45) (234) (123)(465) (12)(34) (25)(34) 

(13)(24) (16)(34) (243) (132)(456) (14)(23) (16)(25) 

FIGURE 6.7 
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In view of Theorem 6.86, substituting y1 = 1 + x 1 in Equation (6.59) produces 

f4(x) = { (1 + :x)6 + 9(1 + x)2(1 + x2)2 + 8(1 + :x3)2 + 6(1 + x2)(1 + x4)) /24 

= { (1 + 6x + 15x2 + 20x3 + 15x4 + x~ + x6) 

+ 9(1 + 2x + 3x2 + 4x3 + 3x4 + 2x~ + x6) 

+ 8(1 +2x3 +x6) +6(1 +x2 +x4 +x6)) /24 

= 1+x+2x2 +3x3 +2x4 +x~+x6, 

precisely Equation (6.53). 0 

The generation of cycle index polynomials for the pair group is not as difficult 
as Example 6.87 makes it seem: 

LEMMA 6.89 Let u and i be the elements of s!2> induced by the permutations a 
and r of S,., respectively. If a and r have the same cycle structure, then u and i 
have the same cycle structure. 

ExAMPLE 6.90 The cycle index polynomial for Ss is easy to obtain from 
Figure 4.4, namely, 

Given this expression and Lemma 6.89, only seven (as opposed to 120) compu­
tations of the type carried out in Example 6.87 suffice to yield the cycle index 
polynomial for s~2): 

1 ~0 (y:o + 1oytyi + t5y~y~ + 2oY1Yi + 20y1}'3Y6 + 3ony~ + 24y;). 

0 

CoROLLARY 6.91 The total numberofnonisomorphic graphs on n vertices (with­
out regard to the number of edges) is 

f,.(1) = _.!._ L :zc<a>, 
n!aeS. 

(6.60) 

where c( u) is the total number of cycles, including cycles of length 1, in the disjoint 
cycle factorization of u. 
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Proof From Theorem 6.86, 

/,.(1) = Z,s?>(2, 2, ... , 2) . . 
0 

Combining Example 6.90 with Corollary 6.91, we see that there are 

nonisomorphic graphs on 5 vertices (as predicted by Equation (6.54)). 

Application to NMR Spectroscopy 

We turn now to the character weighted cycle index polynomials. 

EXAMPLE 6.92 Consider the red-white-blue vertex color patterns of the square, 
modulo D4, in which opposite vertices are colored differently. If x = E then, from 
Equation (6.51), 

Zn
4 {yJ, }'2, YJ, Y4) = (Yt- 2y4 + 3y~- 2y~}'2) /8. 

Thus, 

W04 (r, w, b)= {<r + w +b)4
- 2(r4 + w4 + b4

) + 3(r2 + w2 + b2
)
2 

- 2(r + w + b)2(r2 + w2 + b2
)) /8 

= (r2w2 + r2b2 + w2b2
) + (r2wb + rw2b + rwb2). 

Sure enough, these are the weights of the six inequivalent colorings illustrated 
in Figure 6.8. What may not be so obvious is why the alternating character 
should "select" precisely those patterns in which opposite vertices are colored 
differently. 13 

r r 
ww 

bb 
r r 

ww 
bb 

r r 
wb 

FIGURE 6.8 

bb 
rw 

ww 
r b 

13Hint: 1be restriction of s to ((12)(34)) is equal to the principal character while its restrictions to 
((14)) is oot. 
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ExAMPLE 6.93 From the algebraic perspective of symmetry classes of tensors, ll. 
is the subset of ll. "selected" by an irreducible character. From the combinatorial 
perspective of pattern inventory, the role of the character in "selecting" patterns is 
less well understood. Exceptions sometimes occur in instances where characters 
are associated with some physical quantity. One example involves high resolution 
nuclear magnetic resonance (NMR) spectroscopy, an application that requires a 
brief excursion into quantum mechanics. (For a nice overview of this subject. see 
[Hollas (1987)] or [Schensted (1976)].) 

The quantum mechanical description of the state of a system is given by a 
complex valued ''wave function", \11 (z), of the coordinates z of the system. Wave 
functions are governed by the SchrOdinger equation 

H\11 = E\11, (6.61) 

linking the Hamiltonian (differential) operator H with the energy E. Solutions of 
Equation (6.61) describe the stationary states of the system. Transitions between 
these states correspond to spectral lines. For our purposes, the exact nature of 
H is unimportant. What matters is that it is linear,14 so the set of all solutions 
corresponding to a fixed (eigenvalue) E comprises a vector space, and that the 
SchrOdinger equation for an n-particle system is invariant with respect to the 
symmetries of the system. It follows from these facts that the eigenspace of each 
stationary state corresponds to a representation of G = {u e Sn : Hu = u H}. 
In other words, a character of G is associated with each stationary energy E. It 
is this natural orrurrence of characters that makes Theorem 6.80 relevant to the 
discussion. 

Skipping over many details, we come to the work of K. Balasubramanian on 
NMR spectroscopy.1s Nuclear magnetic resonance is produced by a magnetic field 
associated with unpaired nuclear spins. The phenomenon is observed by placing 
a sample in a steady magnetic field and exposing it to radio waves. The frequency 
of the radiation and the strength of the magnetic field are adjusted to produce 
absorption of the radio waves. 

Among the triumphs of quantum mechanics is a theoretical insight leading 
to predictions associated with these (and other) "spectral lines". Among its 
frustrations is the difficulty of obtaining exact solutions to the SchrOdinger 
equation. The 1927 Born-Oppenheimer approximation leads to a factorization 
of the wave function \11 = 'ile\1111 as a product of an electron part and a nuclear 
part. A further splitting of the nuclear part leads to '1111 = 'ilv 'ilr 'lis, where 'ilv is a 
vibrational part. 'ilr a rotational piece, and 'lis a nuclear spin factor. Associated with 
the spin factor is a reducible character Xs· The key to predicting relative intensities 
of the NMR spectral lines is a reduction of Xs . 

141bis is a cooscquence of tbc principal of superposition of states, an axiom of quantum mechanics. 
15Sce [Balasubramanian (1981Hl98S)]. 
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The nuclear spin quantum number, I, is of the form k /2, for some nonnegative 
integer k. Hydrogen (atomic weight 1) has nuclear spin quantum number 1/2. For 
carbon-12, I= 0. Nitrogen-14 has quantum number 1 and I = 3/2 for cblorene-
35. Corresponding to quantum number I, there are n = 21 + 1 solutions \11 s to the 
NMR wave equation. 

Consider, for example, the (nonrigid) hydraziDe molecule N2l-4 illustrated in 
Figure 6.9(a). We will focus on the "proton nuclear spin species" arising from 
the four hydrogen-! atoms numbered as in Figure 6.9(b). Because I = 1/2, 'lis 
has n = 2 solutions, 'lis = 1-L and 'lis = 8, corresponding to "spin up" and "spin 
down". Let V be the free vector space spanned by these two wave functions and 
consider y®4. where m = 4 because we are dealing with four protons. Setting 
et = 1-L and e2 = 8, the decomposable tensor 

1-L ® 1-L ® ll ® ll = e1 ® e1 ® e2 ® e2 

corresponds to spin up for protons 1 and 2, and spin down for protons 3 and 4. 
The nuclear spin character, xs. is the (permutation) character afforded by the 

representation a --. P(a) E L(V®4, y®4), a E G. Let di = {y E t.: w(y) = 
x~xi-il, 0 !':: i !':: 4, and denote by Pi the character of G afforded by the restriction 
of P to {e?a: yE di, a E G). Then 

4 

Xs = LPi· 
i=O 

Therefore, it suffices to reduce Pi, 0 !':: i !':: 4. 

Ct c2 

Xl 1 

X2 1 

X3 1 1 

X4 1 1 

Xs 2 -2 

c3 

1 

-1 

-1 

1 

0 

FIGURE 6.10 The character table for D4• 

(6.62) 

c4 Cs 

1 

-1 1 

1 -1 

-1 -1 

0 0 
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p p ' / N--N 

/ ' ~ ~ 

a= (1,1,2,2) 

FIGURE 6.11 

Multilinear Alg~bra 

p ~ 

' / N--N 

/ ' p ~ 

(1,2,2,1) 

The symmetry group of nonrigid hydraziDe is G = D4. From Example 4.42, the 
conjugacy classes of D4 are C1 = {e}, C2 = {(14)(23)}, C3 = {(1243), (1342)}, 
C4 = { (14), (23) }, and Cs = { (12)(34), (13)(24) }; its character table (Figure 4.3) 
is reproduced in Figure 6.10. Theorem 6.80, applied to G = D4 and x = Xi, 
1 !:: i !:: 5, produces 

WXI ( ) 4 + 3 + "-2 2 + 3 + 4. G X}, X2 = x 1 x1x2 ~1 x2 X1X2 x2, 

W~2 (Xl, X2) = X~xi; 

and (after dividing both sides by xs(e) = 2) 

W~'(xt. x2) = xfx2 + x~xi +xtx~. 

Consider the term 2x~xi in the pattern inventory Wa(xt. X2) = w~·(xt. X2). 

Evidently, there are two inequivalent spin species of weight x~ xi. In the current 
example, the situation is clear. Representatives of the two species are illustrated 
in Figure 6.11, and (e?a: y e d2, a e G) is the direct sum of the invariant 
subs paces 

Ut = (JL ® JL ® ~ ® ~. ~ ® ~ ® JL ® p., JL ® ~ ® JL ® 8, ~ ® JL ® ~ ® JL) 

= (e:a: a e G), 

where a= {1, I, 2, 2), and 

u2 = (JL ® ~ ® ~ ® JL, ~ ® JL ® JL ® 8) 

= (efa: a e G), 
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where {J = (1, 2, 2, 1). Therefore, P2 = ~I + ~2. where ~i is the character of 
the restriction of P to Ui, i = 1, 2. Because the ~i are transitive permutation 
characters, they are induced from principal characters of stabilizer subgroups. The 
stabilizer subgroup of the spin species e:, for example, is Ga = {e, (12)(34)}. 
By the Frobenius Reciprocity Theorem, (~I. Xj)G = (1, Xj)G •• and(~. Xj)G = 
(1, Xj)G,. 1 !: j !: 5. Thus, 

In general, 

(P2, Xj)G =(~I+~. Xj)G 

=(~I. Xj)G + (~, Xj)G 

= (1, Xj)G. + (1, Xj)G, 

= L (1, Xj)Gy• 
ye6z 

(p;, Xj)G = L (1, Xj)Gy' 
ye6, 

precisely the coefficient of x~x~-l in W~ (XI, xz). (See Definition 6.77.) Because 

s 
Pi = L(pi, Xj)GXj. 0!: i !: 4, 

j=O 

we can obtain a reduction of Pi, by inspection, from the coefficients of x~ x~-l in 

W~ (xi. xz), 1 !: j !: 5. In particular, 

PI = XI + X3 + Xs = P3; 

and 
P2 = 2XI + X2 + X3 + XS· 

Substituting these values into Equation (6.62), yields the nuclear spin character 

0 
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Exercises 

1. Supposex isalinearcharacterofG.ProvethatP(r)T(G, x) = X(l'-1)T(G, x). 

2. Let m= 2, G = Sz, and x =e. Confirm Equation (6.7) by showing directly 

that Vt * tl2 = -tl2 * Vt. 

3. Mimic Example 6.8 when G = S3. 

4. Let At, A.2, ••. , Ap be the eigenvalues of A e Cp,p (multiplicities included), 
and wt. W2 •.•• , wq the eigenvalues of B e Cq,q· Find the eigenvalues of 

a. A®B- B®A. 
b. A®B+B®A. 

5. Let A, B e C11 ,11 • If A is skew symmetric and B is symmetric, show that 
tr (B*A) = 0. 

6. Suppose cl>: V x V x · · · x V --+ W is m-linear. Let x be a linear character 
of the subgroup G of Sm. Prove that cl> is symmetric with respect to G and x 
if and only if ci>(Vo(l)• Vo(2)· ••• ' Vo(m)) = x(a)c!>(Vt. t/2, ••• ' Vm). a E G. 

7. Prove Lemma 6.12. 

8. Let ft, /2, ... , fm E V'= L(V, C). Prove that 

m 

cl>= r: x('t) n /T(i) 

t:EG i=l 

is multilinear and symmetric with respect to G and x. 
9. Prove that equivalence modulo G is an equivalence relation on r m,n· 

10. Prove that the mapping a --+ a, from Sm into S,..., indroduced in Defini­
tion 6.17, is one-to-one for all n > l. 

11. Suppose G is a subgroup of Sm. Let a, {J e r m,n· 

a. Prove that Ga is a subgroup of G. 
b. If a = {J (mod G), prove that their stabilizer subgroups, Ga and G~, are 

conjugate in G. 

c. Suppose Ga C G~. If {J E f2, prove that a E f2. 

12. Prove Lemma 6.22. (Hint: Exercise l1b.) 

13. Let x E /(G) and a, {J Er m,11 , where G is a subgroup of Sm. 
a. Prove that 

l 
-(G) L x(a) 0 a oeG. 

is a nonnegative integer. 
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b. Complete Lemma 6.21: If a = {Jr, prove that 

14. Prove Lemma 6.24. 

( • *) x(e) "' ( ) 
ea, e/J = o(G) ~ X CTt' • 

ueG. 

15. Let x be an irreducible character of the subgroup G of Sm. 
a. Prove that !1 = !1 if and only if x is the principal character. 

b. Prove Theorem 6.30. 
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16. Let x be an irreducible character of G. Let x be the character defined by 
x(u) = X(u), u E G. 

a. Provethatx e /(G). 

b. Show that the !1 set corresponding to G and x is identical to the !1 set 
arising from G and X· 

17. Suppose a e !i.lf {e;: 1 ~ i ~ n} is an orthonormal basis of V, prove that 

a. X(e) ~Sa~ X(e)2. 

b. Sa ~ [G: Gal· 

c. equality holds in part (b) if and only if x is the principal character and 
Ga=G. 

d. ne: 11
2 = Sa/[G : Gal· 

18. Let {e1, ez, ... , en}, n > 1, be a basis of the vector space V. Suppose G is 
a permutation group of degree m. For a fixed but arbitrary a E r m.n define 
V!= (e:r: t' E G). 

a. Prove that V! is an invariant subspace of P ( u), u e G. That is, show that 
P(u)(w) E Va® for all wE V! and all u E G. 

b. Denote by Pa(u) the restriction of P(u) to V!, u e G. Prove that Pais 
a representation of G. 

c. Show that the action of Pa(u) on {e:r: t' e G} is identical to the action 
ofu on {ar: r e G}, where u is defined in Definition 6.17. 

d. Suppose G is a subgroup of Sm and x e /(G). Let a e !1. Show that 
sa, the dimension of the orbital subspace ({e!r: re G}), is x(e)(x, ~)G, 
where~ is the character of G afforded by Pa. 

e. Show that~ = I~, where la is the principal character of Ga. 
f. Use these facts, along with the Frobenius Reciprocity Theorem, to give 

another proof of Freese's Theorem. 

g. Use part (e) to show that Equations (6.20) and (6.22) are equivalent. 

19. Prove Lemma 6.52. 
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20. Let x be an irreducible character of the subgroup G of S,.. Suppose a e r m,n 

is fixed but arbitrary. Let B = {e;: 1 =:: i =:: n} be a basis of V. Define 

Ga ={a e G: there exists a number, ~(a), such that ~!u =~(a)~!}. Prove 

that 

a. Ga is a subgroup of G. 
b. ~ is a linear character of Ga. 
c. Ga is a subgroup of Ga. 
d. when restricted toGa.~ = 1. 

e. Ga does not depend on B. 

f. <x.I)a. = <x.~>a-. 
21. Let {v;: 1 =:: i =:: k} be a linearly independent set of vectors in V. Suppose 

the vectors UJ, u2, ... , u~,: e V satisfy the identity 

1.: LV; 1\u; = 0. 
i=l 

Prove that u; e (VJ, V2 •••• , v~,:), 1 =:: i =:: k. (Compare with Chapter 5, 
Exercise 7a.) 

22. Prove Theorem 6.53 directly, without using Gamas's Theorem. (Hint: 

Lemma 6.16 and Lemma 6.52.) 

23. Show how Gamas's Theorem can be used to prove Lemma 6.16. 

24. Let A=(! H H). 
3 2 1 0 1 
4 3 2 1 0 

Write down A[al~] and A(al~) when 

a. a= (1,2)and~ = (4,5) 

b. a= {2, 3) and~= (4, 5) 

c. a = (2, 4) and~ = (4, 5) 

d. a = (2, 4) and ~ = (2, 4) 

25. Let 1r = [r, 1'"-r], G = S,., and x = Xtr· If {VJ, V2 •••• , v,.} is a set of 

nonzero vectors in the vector space V, prove that VJ * V2 * · · · * v,. = 0 if and 
only if dim((VJ, V2 .... , v,.)) <m- r + 1. 

26. Let G = D4. Use Figure 6.10 to show that the multilinearity partition 

a. M P(XI) = [4]. 

b. M P(X2) = [2, 2}. 

c. M P(X3) = [3, 1]. 
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d. M P(X4) = [2, 1, 1]. 

e. M P(xs> = [3, 1]. 

27. ([Fonseca (1992)]) Let G be a subgroup of Sm. Let f be the function from 
I (G) to the partitions of m defined by f (X) = M P(x ). Prove that f need be 
neither one-to-one nor onto. (Hint: Exercise 26.) 

28. Suppose V is an inner product space of dimension n. Then (Equation (6.26)), 
dim(AmV) = C(n, m) = C(n, n -m) = dim(A"-mV). Therefore, as 
vector spaces, Am V and A"-m V are isomorphic. The obvious question is 
whether there is some natural isomorphism that preserves decomposable 
symmetrized tensors. Let E = {e1, e2, .•. , e11 } be an ordered orthonormal 
basis of V. Define a linear transformation Hi : A m V ..... An-m V by 
H£(e;) = ( -1)1<a>e;., a e Qm,n. and linear extension, where t(a) = 
(1 +a(1))+(2+a(2))+· · · +(m +a(m)) andac e Q11-m,n is the sequence 
complementary to a .16 

a. Prove that H£ is invertible. 

b. Let V = R3, real three-dimensional space. Let E be the standard ordered 
basis of V, that is, e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). 
Suppose m = 2. 1f u, v e V, prove that 

H£(u A V)= u X V, 

the cross product of u and v. (Hint: Let u = (u 1, u2, u3) = u 1 e1 + u2e2 + 
u3e3 and v = v1e1 + v2e2 + v3e3. Express u A v in terms of the basis 
{e;: a e Q2,3} and then apply the linear map H£.) 

c. Let E be the standard ordered basis of V = JR3 .lf u, v, w e V, prove that 
u A v A w = (u o (v x w))e1 A e2 A e3. 

d. 1f u, v, and ware vectors in R3, prove that lu o (v x w)l is the volume of 
the parallelopiped they determine. (The exterior product, e 1 A e2 A · · · A e,., 
is sometimes referred to as a volume element.) 

e. Suppose u, v, and w are vectors in R.3. Without using H£, prove that 
u o (v x w) = 0 if and only if {u, v, w} is linearly dependent. 

29. Prove Lemma 6.59. 

30. Let V be a vector space. Prove that V1 (Sm) C V1 (G), for every subgroup G 
ofSm. 

31. Prove Theorem 6.64. 

32. Finish the proof of Lemma 6.65 by explaining why the set 8, defined in 
Equation (6.38), spans the vector space Cm[X1, x2, . . . , x,.]. 

16n can be shown that the Hodge star mapping, H£, preserves decomposability. (See, e.g., [Marcus 

(1975), pp. 21-31].) 
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33. Let V be a vector space and suppose T e L(V, V) has rank r. Let x be a 
linear character of the subgroup G of Sm. 
a. Prove that rank (K(T)) = o(r m,r n ~). 
b. Suppose G = Sm and X=£. Ifr <m, prove that K(T) = 0. 

34. Let V be an inner product space. If T is a unitary operator on V, prove that 
K (T) is unitary. 

35. Let V be an inner product space. SupposeS, T e L(V, V). IfS ~ T, prove 
that K(S) ~ K(T). 

36. Let x be a fixed but arbitrary irreducible character of the subgroup G of Sm. 
Let V be a vector space of dimension n ~ m. 

a. Show that Vx(G) is an invariant subspace for P(u), u e G. 

b. Denote by Px(u) the restriction of P(u) to Vx(G), u E G. Prove that 
u ...,. P x ( u) is a representation of G. 

c. If~ E /(G),let 

x(e) "" z~ = G L..J ~(u)Px(CT). 
o( ) oeG 

Prove that Z x is the identity operator on V x (G). 

d. Prove that Z~ is the zero operator on Vx (G) if x ~ ~. 
e. Prove that (~, 71)G = 0 if~ ~ x. where 71 is the character of G afforded 

by Px. 

f. Let A be a representation of G affording X· Prove that Px is equivalent to 
the direct sum of A with itself (X, 71)G times. 

Applications Exercises 

37. Consider a regular pentagon whose vertices have been numbered consecu­
tively 1-5. 

a. Show that. modulo the group G = {(12345)) of its plane rotations, the 
pentagon has 51 inequivalent red-white-blue vertex colorings. 

b. Show that. modulo the group Ds of all ten symmetries (Exercise 32, 
Chapter 3), it has 39 inequivalent red-white-blue vertex colorings. 

c. If a fourth color becomes available show that, modulo Ds, there are 136 
inequivalent vertex colorings. 

38. Suppose each face of a cube is (uniformly) painted red, white, or blue. There 
are 36 = 729 different ways to do it. Let's consider two red-white-blue colored 
cubes to be equivalent if they can be rotated into positions that exhibit the same 
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coloring. Use Theorem 6.35 to show that of the 729 different colorings, only 
57 are inequivalent. (Hint: Figure 3.4.) 

39. A binary code of length n is a set of n-letter ''words" constructed from the 
2-letter "alphabet" {0, 1}. 

a. Show that there is a natural one-to-one correspondence between the 
23 = 8 three-letter binary words and the eight vertices of a cube in three­
dimensional Euclidean space. 

b. Show that a binary code of length 3 can be illustrated by means of a black­
white coloring of the vertices of a cube. 

c. Show that there are 28 different binary codes of length 3. 

d. Two binary codes oflength 3 are equivalent if their black-white illustrations 
can be rotated into positions that exhibit the same coloring. How many 
inequivalent binary codes of length 3 are there? (Hint: Figure 3.5.) 

40. Suppose a = (12 .. . m) e S111 is a full m-cycle. Let G = (a) ={a;: I ::5 i ::5 
m} be the cyclic group generated by u . Prove that the cycle index polynomial 

l "" m/le ZG(Yt. )'2 , •• ·, Ym) = - L..., f)(k)ylc , 
m lclm 

where f'(k) is the number of positive integers i ::5 k that are relatively prime 
tok. 

41. Recall (Definition 1.23) that the m-th homogeneous symmetric function 

Hm (Xt. X2, .. . , Xn) = L M1r (Xt, X2, . . . , Xn) 
11"~111 

a. Prove that Hm (Xt , x2, . •• , Xn) is the result of substituting 

in the cycle index polynomial Zs. (y1, )'2, •.. , Ym). 

b. Prove that 

1 
C(m +n - 1,m) =- L nc<o->, 

m! o-es. 

where c(u) is the total number of cycles, including cycles of length 1, in 
the disjoint cycle factorization of u . 

42. Let G be the group of plane rotations of the regular pentagon (Exercise 37). 
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a Show that WG(r, w, b) = [(r + w + b)5 + 4(r5 + wS + bs)]/5. 

b. Show that WG(r, w, b)= M[s] + M[4,1J + 2M[3,2] +4M[3,P] + 6M122,l]• 
where Mrr is an abbreviation for the monomial symmetric function 
Mrr(r, w, b). 

c. Draw a system of distinct representatives for the four color patterns of 
weight rw3b. 

d. Draw a system of distinct representatives for the six color patterns of weight 
rw2b2• 

43. Let Ds be the group of all ten symmetries of the regular pentagon (Exercise 37). 

a Showthat 

b. Express Wo,(r, w, b) as a linear combination of monomial symmetric 
functions. 

c. Draw a system of distinct representatives for the two color patterns of 
weight rw3 b. 

d. Draw a system of distinct representatives for the four color patterns of 
weight rw2b2• 

44. Let G be the group of 12 rotational symmetries of the regular tetrahedron. 

a Express WG(r, w, b, g) as a linear combination of monomial symmetric 
functions when G is viewed as a group of permutations of the faces of the 
tetrahedron. 

b. Express W G ( w, b) as a linear combination of monomial symmetric func­
tions when G is viewed as a group of permutations of the edges of the 
tetrahedron. 

45. Consider the group G of 24 rotational symmetries of the cube. 

a. If G is expressed as permutations of the faces of the cube, show that 

b. Show that the pattern inventory for the 57 red-white-blue colorings of the 
faces of the cube (Exercise 38) is 
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where M1r is an abbreviation for the monomial symmetric function 
M1r(r, w, b). 

c. If G is expressed as permutations of the vertices of the cube, show that 

d. Recall that G is abstractly isomorphic to S4 (Exercise 36, Chapter 3) and, 
therefore, to s!2>. Compare and contrast your answers to parts (a) and (c) 
with Equation (6.59). 

46. Prove Lemma 6.89. 

47. Consider the nonisomorphic graphs on 5 vertices. 

a. Use Example 6.90 with Theorem 6.86 to obtain Equation (6.54). 

b. lllustrate the six nonisomorphic graphs having five vertices and six edges. 

c. lllustrate the six nonisomorphic graphs having five vertices and five edges. 

d. illustrate the six nonisomorphic graphs having five vertices and four edges. 

48. Confirm Example 6.90. 

49. Let G = Sm. Suppose 1r ~ m. Let X1r be the irreducible character of 
Sm corresponding to 1r. Show that, in the sense of Example 6.92, X1r 
selects those patterns whose multiplicity partitions are majorized by 1r. (Hint: 
Theorem 6.37.) 

c1 c2 C3 c4 Cs 

XI 1 -1 1 1 -1 

Xz 3 -1 -1 0 1 

X3 2 0 2 -1 0 

X4 3 -1 0 -1 

xs 1 1 

AGURE 6.12 Character table of the group of rotational symmetries of the cube. 

50. Let G be the group of 24 rotational symmebies of the cube. Because G 
is abstractly isomorphic to S4 (Exercise 36, Chapter 3), it must have five 
conjugacy classes. From Figure 3.4, we see that the elements of G exhibit 
five different cycle structures. It must be, therefore, that two elements of G 
are conjugate in G if and only if they are conjugate in S(,. So, the conjugacy 
classes of G are C1 = {e} = G n Cu'J• C2 = G n C[2,l• C3 = G n C[22,!2J• 
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C4 = G n ql'J• and Cs = G n q 4,1z1. It is now an easy matter to transcribe 
the character table of S4 (Exercise 36, Chapter 4) and obtain the character 

table of G shown in Figure 6.12. 

a. Show that X I = £. the restriction of the alternating character of s6 to G. 

b. Show that 

(Hint: Exercise 45.) 

c. Show that, after substituting y; = r; + wi + b;, 1 < ~ 6, into 

Z~(Yl· n .... , Y6), the result is 

L w(a) = M[4,12J + 2M[J2J + 3M[3,2,ll + 3M[23J• 
ae'ii 

where Mrr is the monomial symmetric function Mrr(r, w, b). 

d. If X = X2· and Mrr = Mrr(r, w, b), show that 

W~(r, w, b)= M[S,IJ + M[4,2J + 4M[4,PJ + 2Mil'J + 7M[3.2,1J + 9M[2,J· 

e. If X = X3· and Mrr = Mrr(r, w, b), show that 

W~ (r, w, b) = M[S,IJ + 2M[4,2J + 3M[4,PJ + 2M[J2J + 6M[3,2,1J + 9MI2,J· 

f. If X = X4. and Mrr = Mrr(r, w, b), show that 

w~ (r, W, b) = 2M[4,2) + 3M[4,Il) + 2M[J2] + 7 M[3,2,1) + 12M[23]· 

51. Prove that a -. u (Definition 6.85) is an isomorphism from S,. onto S~2>. 

52. Derive Corollary 6.91 directly from Theorem 6.35. 

53. Denote the cycle index polynomial of Sm by Zm. 
a. Prove that 

m 
zm = I:n<Y;fi)t./k;! 

i=l 
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where the sum is over all nonnegative integer sequences k1, k2, ... , k,. 
satisfying k1 + 2k2 + 3kJ + · · · + mk,. = m. 

b. Prove Cauchy's Identity: 

L(lk1kJ!~2k2!. .. mk"'k,.!f
1 = 1, 

where the sum is over all nonnegative integer sequences k1, k2, ... , k,. 
satisfying k1 + 2k2 + 3kJ + · · · + mk,. = 1. 





CHAPTER 7 

Generalized Matrix Functions 

In 1893, J. Hadamard published his celebrated theorem on determinants (Theo­
rem 2.41): If A ~ 0, then 

h(A) ~ det(A), 

where, recall, h(A) is the product of the main diagonal entries of A. Suppose A ~ 0 
is partitioned into blocks, 

A = (An A12), 
A21 A22 

where An and A22 are square. It follows from Hadamard's Theorem that 

h(A) ~ det(Au)det(A22), A~ 0. 

(7.1) 

(7.2) 

In 1907, the first of what has become a glittering array of extensions, generaliza­
tions, and improvements of Hadamard's Theorem was obtained by E. Fischer: 

det(An) det(A22) ~ det(A), A ~ 0. (7.3) 

Incidental to his work on group representation theory, I. Schur introduced the 
following notion. 

DEFINrnoN 7.1 Suppose x is a character of the subgroup G of Sm. The general­
ized matrix function dx.: Cm,m--. C is defined by 

m 

dx.(A) = L x(c:r) n Dta(t)• 

aeG t=l 

where A = (a;j). When G = Sm and x = X1r for some 1r 1- m, dx. is called an 
immanant; the cumbersome expression dx., is sometimes abbreviated d1r. 

213 
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EXAMPLE 7.2 The determinant is the immanant afforded by x = £. Thus, 
det(A) = d6 (A) = du•J(A), A e C111,111· If G = S111 and X = X!111l• the principal 
character, then d[111J is the permanent, 

m 

per (A)= L n ara(t)• 

aeS.. t=l 

When xis the principal character of G = {e}, dx = h, is Hadamard's function. 
Suppose p + q = m, where p and q are positive integers. Let Ht = {a e 

Sm: a(i) = i, p < i ~m} and H2 ={a e S111 : a(i) = i, 1 ~ i ~ p}. Then H, 
is easily identified with Sp, and H2 is isomorphic to S9• Partition A e C111,111 as in 
Equation (7.1), where An e Cp,p and A22 e C9 ,9 • If G = H1 x H2 and x = £, 

then 
dx (A) = det(A n) det(A22). 

If G = H1 x H2 and x = 1, then 

dx (A) = per (An) per (A22). 

0 

In 1918, Schur obtained the following dramatic generalization of Fischer's 
Inequality. 

SaruR·s INEQuALITY 7.3 Let X be a character of the subgroup G of S111 • If 
A e C111,111 is positive semidejinite hermitian, then 

dx (A) ~ X (e) det(A). 

DEFINmoN 7.4 Suppose G is a subgroup of S111 • Let X be an irreducible character 
of G. The corresponding normalized generalized matrix function is defined by 
dx(A) = dx(A)/x(e), A e Cm,m· 

In view of Definition 7 .4, and because any character of G is a sum of irreducible 
characters, Schur's Inequality is equivalent to 

d x (A) ~ det(A), A ~ 0. (7.4) 

We begin the proof of Schur's Inequality by placing it in a more general setting. 
If c : S111 -+ C is a fixed but arbitrary function, define 

m 

dc(A) = L c(a) n ara(t)• 

aes. t=l 
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Then the generalized matrix function afforded by G and x is the de function 
corresponding to 

c(a) = { x(a~: if a E G, 
if a e S,.\G. (7.5) 

(Called the "trivial extension" of x to S,., the c-function defined in Equation (7.5) 
typically is not a character of S,..) 

DEANmoN 7.5 Let7-l,. ={A E C111 ,,.: A~ O}.DenotebyC,.thesetoffunctions 
c: S,. -+ C such that dc(A) ~ 0 for all A E 7-l,.. 

W ATKINS"S THEOREM 7.61 If c E C111 and A E 7-l,., then 

dc;(A) ~ c(e) det(A). (7.6) 

In other words, if dc(A) ~ 0 for all A ~ 0, then dc(A) ~ c(e) det(A) for all 
A~O. 

Proof If A= (a;j) is singular then det(A) = 0, and the conclusion follows from 
the definition of C,.. If A is positive definite then, by the interlacing inequalities, 
each of its principal submatrices is positive definite. In particular, a,.,. > 0. Denote 
byE,.,. E C,.,,. the matrix whose only non zero entry is a 1 in position (m, m). 
Let r = det(A)/ det(A(mlm)), where A(mlm) is the matrix obtained from A by 
deleting its last row and column. Then (Corollary 2.44 ), r is the largest positive real 
number such that A ~ rE,.,.. Let Ao = A - rE,.,. and define A.r = Ao + x E,.,.. 
If f is the (linear) function defined by 

f(x) = dc;(Ax)- c(e) det(Az), 

then 
/'(x) = dc(A(mlm) E9 (1))- c(e)det(A(mlm)). 

It follows by induction that f'(x) ~ 0 for all x ~ 0. Because /(0) = dc(Ao) ~ 0, 
it must be that f(x) ~ 0 for all x ~ 0. In particular, f(r) ~ 0. This completes the 
proof because A,= A. o 

In view ofWatkins's Theorem, to prove Schur's Inequality it suffices to show 
that dx(A) ~ 0, A E 7-l,.. We will return to this point later. For the present, 
let {et. e2, ... , e,.} be an orthonormal basis of the inner product space V. Let 
W = (e~: r E S,.}, the subspace of y@m spanned by the tensors 

Because P(a)(e~) = e~a-., for all a, r E S,., W is an invariant subspace of P(a). 
Denote by Jlw(a) the restriction of P(a) toW. 

1Tbeorem 7.6 first appeued in [Gronc, Merris &: Watkins (1988)]. 
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I....EMMA 7.7 Let R(u) be the matrix representation of Pw(u) with respect to the 
lexicographically ordered basis {e~: -r E Sm}. Then u -+ R(u) is the (right) 
regular representation of Sm. 

For each function c: Sm -+ C, define 

Me= L c(u-1)R(u). 
aeS., 

Observe that Me is an m 1-by-m! matrix whose rows and columns are indexed by 
the permutations of Sm. The (p,, -r)-entry of Me is 

L c(u-1 )cS".~a-• = c(T-1J.L). 
aeS., 

In particular, Me 2::: 0 if and only if 

L x(p,)c(-r-1 J.L)x(-r) ::::: 0, 
"'~es.. 

for all x : Sm -+ C. 

(7.7) 

DEFINmoN 7.8 The complex valued function c of Sm is positive semidefinite if 

L x(p,)c(t-1 J.L)X(T) ::::: 0, 
IJ.,~es.. 

for all x : Sm -+ C. Denote by C;! the set of all positive semidefinite functions 
c: Sm-+ C. 

LEMMA 7.9 Let c be a complex valued function of Sm. Then c E C;! if and only if 
there exists a function b : Sm -+ C such that 

c(u) = L b(T)b(u-r), u E Sm. (7.8) 
~es. 

Proof Suppose b is a complex valued function of Sm. Define c: Sm -+ C by 
Equation (7.8). Because R(u) is a permutation matrix, R(u)* = R(u-1), and 

M; = L b(-r)R(r). 
res .. 
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Therefore, 

M;Mb = L b(t')b(u-1)R('ru) 
~.aeS. 

= L c(u-1)R(u) 
aes. 

Hence, Me ~ 0, which is equivalent to c e C~. 
Conversely, suppose Me~ 0. Let U be an m!-by-m! unitary matrix such that 

U* R(u)U = diag (RI (u), Rz(u), ... , R~.:(u)), a e S,, 

where each Ri is irreducible and Ri is equivalent to Rj only if Ri = Rj. Recall 
that, up to equivalence, every irreducible representation of S,. occurs among the 
Ri with multiplicity equal to its degree. Without loss of generality, we may assume 
that Ri, 1 ::: i ::: p, is a complete set of inequivalent irreducible representations of 
S,.. Let 

S(a) = diag (RI (a), R2(a), ... , Rp(a)), a e S,.. 

Because {R(a): a e S,.} is linearly independent. {U*R(a)U: a e S,.} is 
linearly independent. As it merely eliminates redundancies, {S(u): a e S,.} 
is linearly independent. If the degree of Ri is ni, 1 ::: i ::: p, then, because 
n~ + n~ + · · · + n; =m!, {S(a): a e S,.} must be a basis for the direct sum 
C,..,,.. EB C,.2,,.2 EB • • · EB c.,,,.,. 

Because U* MeU ~ 0, its direct summands 

Mi = L c(a-1)Ri(a) e 'H.,.., 
aes. 

l ::: i ::: k. Suppose Mi = Bi Bi, 1 ::: i ::: k. If j > p then Rj = Ri for 
some i ::;: p; set Bj = Bi. If B = diag (B1, B2, ..• , Bk.), then B* B = U* MeU. 
Moreover, by our previous remarks, D = diag (B1, B2 •... , Bp) is in the space 
spanned by { S (a) : a e S,.}, that is, there exists a function b : S,. ~ C such that 

D = L b(a-1)S(a). 
aeS. 
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It follows that 

B = L b(CT- 1)U*R(CT)U. 
aes. 

Therefore, 

Me= UB*U*UBU* 

Equation (7 .8) now follows by another application of the linear independence of 
{R(a): a e S,}. o 

DEFoonoN 7.10 Suppose A= (a;,j) e C,,,.. TheSchurPowermatrix, TI(A),is 
the m 1-by-m! matrix whose rows and columns are indexed by the lexicographically 
ordered sequences {r{l), r{2), ... , r(m)), r e S,, and whose (p,, r)-entry is 

m n ap.(i),r(i)· 

i=l 

Observe that TI(A) is a principal submatrix of A0 "'. Hence, 

A ::: 0 ~ TI(A) ::: 0. 

THEoREM 1.11 c~ c c,.. 

Proof Let A e 'H., be fixed but arbitrary. Then A1 e 'H., and TI(A1) e 'H.,, . 
If c e c~. then Me e 'H.,,. Consider the matrix MC obtained from Me by 
interchanging the rows and columns corresponding to r and r-1, r e S,. 
Then the (p,, r)-entry of Mc is c(rJL-1). Moreover, because Mc is permutation 
similar to Me, Mc :=:: 0. It follows from Example 5.29 that the Hadamard product 
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Me· ll(A) e ?tm!· If xis the vector of all1 's, then 

0 :=: x*(Mc · ll(A))x 

m 

= L C('t'JL-1) n al'(i);r(i) 

#4,fES. i=l 

= L ( L c(u) Ii a;,u(i)) 
res. ueS. i=l 

= m!dc(A). 

0 

It follows from Theorems 7.6 and 7.11 that dc(A) ~ c(e)det(A), c e C~, 
A e ?tm. 2 An obvious question raised by Theorem 7.11 is whether C~ = Cm. 
ExAMPLE 7.123 Define c: S4 -+ C by c((12)(34)} = 1, and c(u) = 0, 0' :#: 
(12)(34). If A = (a;j) is a 4-by-4 hermitian matrix, then dc(A) = la12l2la34l2• 
Thus, C E C4. Define X: S4 -+ C by x((12)) = 1, x((34)) = -1, and X(O') = 0, 
when (12) ::1: u ::1: (34). Then 

soc~Ct. 

L x{JL)c('t'-IJL)X('t') = -2, 
#4,fES. 

0 

EXAMPLE 7.13 LetG be a subgroup of Sm. Suppose x e /(G). ByTheorem4.70, 
thereisaunitaryrepresentationu-+ B(u) = (bij(u)),u e G,thataffordsx.Fix 
i and let c be the trivial extension of b;; to Sm, that is, c: Sm-+ C is the function 

c(u) = { b;;(u), 
0, 

if u E G, 
otherwise. 

21be case of equality has been analyzcd in [Dias da Silva (1979)). Also see (Chan (1990)]. 
31bis example is taken from (Watkins (1993)]. 
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Then, for any x: Sm -+ C, 

L x(JL)c(~-IIL)x(~) 
IJ.,TES,. 

Therefore, C E C~. 

= t { L x(JL)bj;{JL)) (L: bj;(~)x(~)) 
}=1 ~EG TEG 

= t IL x(JI.)bj;(JI.)I2 
j=1 1-'EG 

;::::0. 

D 

CoROLLARY 7.14 Suppose x e /(G). Let u -+ B(u) = (b;j(u)) be a unitary 
npresentalion of G that affords X. Then, (defining b;; (u) = 0, u ~ G) 

db11 (A) 2::: det(A), A e 'Hm, (7.9) 

1 ~ i ~ x(e). 

Proof This is an immediate consequence of Example 7.13, Theorem 7.11, 
Theorem 7.6, and the fact that bu(e) = 1. o 

Observe that Schur's Inequality is obtained by summing both sides of Inequality 
(7.9) from i = 1 to x(e). In other words, Inequality (7.4) is the statement that the 
x(e) inequalities in (7.9) hold on the average.4 

Let A e C,.,111 • If e : S111 -+ C is the alternating character, then the entry in row 
1L of n (A)e is 

m 
L (n(A),.,.T)e(~) = Le(~) n a,.,.(i),T(i) 
TES. TES. i=1 

m 

= L E(~) n ai,TIJ.-l(i) 

TES. i=l 

m 

= L E(u IL) n Oi,u(i) 

ues. i=l 

= s(JI.) det(A). 

It seems that det(A) is an eigenvalue of n(A) corresponding to the eigenvector £. 

4Partitions of the form [2' ,19 ), 2p+q=m, arise when the PauJi Exclusion Principal is applied to the 
quantum mecbanical spin functions for a system of electrons [Scbensted (1976)]. The corresponding 

t4,1 functions are called algebronts [Posbusta (1991)) & [Posbusta & Kingbom (1992)). 
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The next result. implicit in [Schur (1918)], was proved explicitly in [Bapat & 
Sunder (1986)]. Our proof follows [Pate (1994a)]. 

THEOREM 7.15 If A ~ 0, then det(A) is the smallest eigenvalue of the Schur 
power matrix n (A). 

By Theorem 2.34, it suffices to show that det(A) is the infimum of the numerical 
range, F(n(A)). In view of Theorems 7.6 and 7.11, this is a consequence of the 
following. 

LEMMA 7.16 Suppose A= (aij) e 'Hm. Then r e F(n(A)) if and only if there 
exists a function c e C;! such that c(e) = 1 and r = dc(A). 
Proof By definition, r e F(n(A)) if and only if there is a function x: Sm ....,. C 
such that Ux 11 = 1 and 

r =x*n(A)x 

= L x(JL) (fr a"(i),"r(i)) x(r) 
l'ol"ES., 1=1 

= L { L x(JL)x(CT/-L)) Ii ai,a(i) 
aes .. ~es.. 1=1 

m 

= L c(CT) n ai,a(i) 
aes.. i=1 

= dc(A), 

where (Lemma 7.9) c E C;! is defined by 

c(CT) = L X(/-L)X(CT/-L), u E Sm. 
p.eS.. 

(7.10) 

0 

In addition to proving Theorem 7 .15, Lemma 7.16 has the following interesting 
consequence. 

LEMMA 7.17 Suppose G is a subgroup of Sm. Let CT 4 B(CT) = (bij(CT)) be an 
irreducible unitary representation of G. Fix i and extend b;; to Sm by defining 
bu(CT) = 0, u;. G. Then db11 (A) lies in the .field ofvalues ofn(A). 
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Proof By Example 7.13, b;; (extended) is an element ofC;!, and b;;(e) = 1. o 

Observe that Lemma 7.17, together with Theorem 7.15 and Theorem 2.34 gives 
another proof of Corollary 7.14 and, therefore, of Schur' s Inequality. 

By the Toeplitz-Hausdorff1beorem,5 the field of values of any square complex 
matrix is a convex set. It follows, therefore, from Lemma 7.17 that any convex 
combinationofdb11 (A) is an element of F(n(A)). In fact, as we now see, F(n(A)) 
is equal to the "convex hull" of db11 (A), 1 =:: i =:: deg(B), as B ranges over the 
irreducible unitary representations of Sm. 

THEoREM 7.18 Suppose c e C;! satisfies c(e) = 1. Then there exists a complete 
set of inequivalent, irreducible, unitary representations of Sm. u --+ Rk(u) = 
(r~(u)), 1 =:; k =:; p, such that c is a convex combination of rft, 1 =:; i =:: nk. 
1 =:; k =:: p, where nk is the degree of Rk. 

Proof H c e C;!, then (Lemma 7 .9) there exists a function b: Sm --+ C such that 

c(u) = L b(~)b(u~). u e Sm. 
TES. 

Let u --+ Bk(u) = </1;/u)), 1 =:: k =:: p, be a complete set of inequivalent 
irreducible representations of Sm which, by Theorem 4.70, we may take to be 
unitary. Denote the degree of Bk by nk. Then, by Theorems 4.23 and 4.35, the 
nf + ni + · · · + n~ functions /l;i' 1 =:: i, j =:: nk, 1 =:: k =:: p, are a basis for the 
vector space of complex valued functions of Sm. Therefore, there exist constants 
x~ such that 

u e Sm. Hence, 

p "' = L L (XkXk)6;b~;(u), u e Sm. 
k=l.r.i=l 

SSee [Toeplitz (1918)) and/or [Hausdorff (1919)]. 
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by the Schur Relations, where X1c is the n~c-by-n1c matrix whose (i, j)-entry is 
..fiiifTiiixij. Replacing i with j and s with i, 

p lit 

c(u) = L L ~jb~j(u), u E Sm, 
le= I i,j=l 

where C1c = (~i) 2:: 0. Hence, there exists a unitary matrix U1c = (u~i) such that 

where A.~ :=:: 0, 1 ~ t ~ n1c, are the eigenvalues of C1c. Substituting this expression 
into the previous equation yields 

p lit 

= L I:;A.:(U;B~c(u)Uic)tt 
lc=l t=l 

where u;B~c(u)Uic = R~c(u) = (rt(u)). Because c(e) = 1 = rf,(e}, 

0 

Returning to Equations (7.2)-(7.4), one might wonder whether h(A) 2:: d x (A), 
A :=:: 0. In fact, 

L (x(e)
2
/o(G))dx(A) = L o(~) { L x(e)x(u)) fJ aru(r) 

XEI(G) ueG \xe/(G) t=l 

= h(A), 

by the Orthogonality Relations of the Second Kind. Because 

L x(e)2 = o(G), 
xei(G) 

(7.11) 
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Equation (7.11) expresses h(A) as a convex combination of dx(A) as x ranges 
over /(G). Rather than an upper bound, h(A) is a weighted average ofdx(A), 
X E I(G). 

In 1963, M. Marcus published a Hadamard Theorem for Permanents,6namely, 

per (A) !::: h(A), A E 'H,.. 

The corresponding analog of Fischer's Inequality was proved three years later by 
E.H. Lieb: 

per (A) !::: per (Au) per (A22), A E 'H,., (7.12) 

where A is partitioned as in Equation (7.1). These results led to the following 
conjecture, first published in [Lieb (1966)].7 

Pll.RMANENTAL DoMINANCE CoNJECTURE 7.19 Let x be an irnducible character of 
the subgroup G of S,.. Then 

(7.13) 

Among the first to suggest a permanental analog of Equation (7.9) was Ralph 
Freese. 

CoNJECTURE 7.20 Suppose x is an i"educible character of the subgroup G of S,.. 
Letu -+ B(u) = (bij(u)) be a unitary representation ofG affording X· Then, for 
1~i~x(e), 

per (A)!::: db11 (A), A E 'H,.. (7.14) 

Because it is obtained by averaging the inequalities in (7.14), the permanental 
dominance conjecture would follow from Conjecture 7 .20. In view of Lemmas 7.16 
and 7.17, Theorem 7.18, Theorem 2.34, and Exercise 9 (below), the following is 
equivalent to Conjecture 7.20: 

SOULES'S CONJECI1JRE 7.218 If A :=:: 0, then per (A) is the largest eigenvalue of 
the Schur Power matrix, n (A). 

Following the publication of [Merris & Watkins (1985)] and [James & Liebeck 
(1987)], a substantial body of evidence supporting the permanental dominance 
conjecture has accumulated. In addition to results indicating that the permanent is 
"on top", a variety of other relations have been discovered. For example, suppose 

6Marcus's Inequality has since been strengthened, e.g., in [Bapat {1991)) as corrected by [Cban 
{1993b)). 

1 Also see [Marcus & Mine {1965b)) and [Mine {1978) & (1983)). 
8Coojecture 7.21 first appeared in [Sou1es (1966)) . (Also see [Soules (1983) & (1994)].) 
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1r = [2', 1"] 1- m, s ~ 2. H G = S,. and x = Xtr then [Grone, Merris & Watkins 
(1986)] 

(7.15) 

which, in view of the Hadamard Theorem for Permanents, implies per (A) ~ 
d[2',l'J(A), A E 'H,.. From the perspective of Equation (7.11), the normalized 
immanants d[2',1'1· s ~ 2, are "below average". 

Denote by d, the normalized immanant corresponding to the single-hook 
character, Xr = Xlr,l•-•]· Then d1 = det and d,. = per. In (I988), Peter Heyfron 
showed that these single-hook immanants form a chain from the determinant to 
the permanent. 

IIEYFRON"S THEOREM 7.22 If A E 'H,., then 

det(A) = d1(A) ~ d2(A) ~ · · · ~ d,.(A) = per(A), A e 'H,. . (7.I6) 

It is natural to wonder where, in Heyfron's chain of inequalities, Hadamard's 
function might be found. That question was addressed in [Heyfron (1992)]: 

THEOREM 7.23 Ifr ~ 1, m ~ r + 2, and m- 1 ~ (r- 1)2, then 

In 1992, Tom Pate obtained the following sweeping generalization of several 
previous results. 

PATE'S THEOREM 7.24 Let 1r = [7rJ,7r2, ... ,7r,] 1- m. Suppose Tls > 
max{7r.r+l· I). Let 

P = [7rJ, 1r2, • • •, 1r.r-lo 1r.r - 1, 1r.r+l• • • •, 1rto 1]. 

Then d,(A) ~ dp(A), A E 'H,.. 

In Pate's Theorem, the Ferrers diagram F{p) is obtained from F(1r) by 
removing the last box from column 7r.r and placing it at the end of column 1. 
H 1r = [7, 52, 32], for example, then t = 5. Legitimate values for s are s = 1 
corresponding top = [6, 52, 32, 1]; s = 3 corresponding top = [7, 5, 4, 32, 1]; 
and s = 5 corresponding top= [7, 52, 3, 2, 1]. 

Among a growing collection of more specialized results are these: Hr ~ s + 1, 
then [Heyfron (1991)] d[r+2,2•-•J(A) ~ d[r,2•J(A), A E 'H,.. H s > I and 7r.r = 2, 
then [Pate (1994b)] d11(A) ~ d,(A), A E 'H,., where 1r = [7rJ,7r2, ... ,7r.r, I'] 
and v = [1r1 + 2,1r2, ... ,1r.r-l• I1

]. H L(1r) = sand 2t ~ Tls > t, then [Pate 
(1996)] d1r(A) ~ dp(A), A E 'H,., where p = [7rJ,7r2, ... ,Tl.r-J,t,Tls- t]. 
Finally, if p, q, r, s, and tare nonnegative integers, then [Pate (1996)] 

d[p,q,r,2', l'J(A) ~ per (A), A E 'H,.. (7.17) 
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Using these results and some ad hoc arguments, for example, 

(7.18) 

the permanental dominance conjecture has been confirmed for every irreducible 
character of S,, m < 14 [Pate (1996)]. 

CoNJBCI'lJRE 7.25 Suppose the conjugate partition 1r* '!- 1r 1- m. /f1r majorizes 
1r*, then d~r(A) ~ d~r·(A), A e 'H.,. 

Because X~r (e) = X~r• (e), this conjecture could just as well have been stated for 
normalized immanants.lt would imply d[(11+l)"J(A) ~ d[11<-+tiJ(A), A E 'H.11(11+1)• 
which, together with (7.17), would prove (7.18), eliminating the need for ad hoc 
arguments. 

If 1r '!- 1r*, then the restriction of Xrr to the alternating group remains irreducible. 
Because (Theorem 4.47) Xrr• = e Xrr, the generalized matrix function afforded by 
G = A, and X = Xrr is the mean of the immanants d~r and 4•. Consequently, 
in cases where the permanental dominance conjecture has been confirmed ford" 
and 4·, it is valid for the alternating group and Xtr as well. 

There has been very little progress on the permanental dominance conjecture 
when G '!- S, or A,. Lieb's Inequality (7.12) establishes the conjecture when 
x is the principal character of a Young subgroup. Another confirming instance 
is the following: Suppose A = (A;j) e Cm,kll is partitioned into k2 n-by-n 
submatrices A;j · Let B = (b;j) be the k-by-k matrix defined by b;j = per (A;j). 
Then per (B) = dx (A), where x is the principal character of an appropriately 
chosen subgroup of Sl:JI. It was proved in [Pate (1982)] that, foreachk, there exists 
a positive integer nk such that if n ~ nk, then 

per (A) ~ per (per (Aij)). (7.19) 

for all real, symmetric, positive semidefinite, nk-by-nk matrices A. 
We turn now to the intimate relationship between generalized matrix functions 

and decomposable symmetrized tensors. 

THEOREM 7.26 Let V be an m-dimensional inner product space. Suppose 
Ut, u2, . •• , u, and Vt, V2 • •• • , v, are vectors in V. Let G be a subgroup of S, 
and suppose x E I (G). If A = (a;i) is the matrix defined by a;j = (u;, Vj) then, 
with respect to the induced inner product in Vx (G), 

o(G) 
dx (A) = --) (u 1 * u2 * · · · * u,, Vt * V2 * · · · * v,.). x<e 
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Proof Because T ( G, x) is an orthogonal projection, 

(UJ * U2 * • • • * Um, V) * V2 * • • • * Vm) 

x<e> "_Om = o(G) ~ X(U) (u, Vu-•(r)). 
ueG t=l 

x(e)" nm = o(G) ~ x(u) (u,, Vu(r)). 
aeG t=l 

0 

CoROllARY 7.27 Let V be an m-dimensional inner product space. If A = 

(aij) E 'H.m, then there exist VJ, V2 •... , Vm E V such that a;j = (v;, Vj). and 
dx(A) = o(G)IIvl * V2 * · · · * vmll 2/x(e). 
Proof The existence of vectors VJ, V2 •... , Vm e V such that a;j = (v;, Vj) was 

established in Exercise 41, Chapter 2. The rest follows from Theorem 7 .26. o 

Together with Watkins 's Theorem, Corollary 7.27 gives another proof ofScbur's 

Inequality. 

CoROllARY 7.28 Let E = {e1, e2, ... , em} be an orthonormal basis of the inner 
product space V. Suppose T e L(V, V). If A' is the matrix representation ofT 
with respect to E, then 

where K(T) E L(Vx(G), Vx(G)) is the induced transformation. 

Proof Because the (i, j)-entry of A is a;j = (T(e;), ej). the result follows from 

Theorem 7.26 by setting v; = e; and u; = T(e;), 1 ~ i ~m. o 

THEOREM 7.29 Suppose X E /(G)./f A, BE Cm,m. then 

(7.20) 
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Proof Let E = {~1. ~2 •. . . , ~m} be an orthonormal basis of the inner product 
space V. Then there existS, T e L(V, V) such that the matrix representation of 
S with respect toE is [S]E = A' and [T]E = B'. Thus, [ST)E = [S]E[T)E = 
A' B' = (BA)'. By Corollary 7.28, 

x<~> --dx(BA) = (K(ST)(e, • e2 • · · · • ~m). e, • e2 • · · · • ~m) 
o(G) 

= (K(S)K(T)(~l * ~2 *···*~m). e, * ~2 * ··· *~m) 

= {K(T)(e, * ~2 • · · · *~m), K(S*)(~, * e2 * · ··*~m)) . 

Applying the Cauchy-Schwarz Inequality, we obtain 

= {K(T*T)(el * e2 * ··· *em). e1 * ~2 * ·· ·*em) 

x {K(SS*)(~l * e2 * ··· *~m). e1 * e2 * ··· *em) 

= x(e)
2 

d (BB*)d (A*A) 
o(G)2 X X • 

which is equivalent to Inequality (7 .20). 

CoROllARY 7.30 Suppose X e /(G)./f A e C,.,,., then 

Proof Let B = Im in Equation (7.20). 

0 

0 

Corollary 7.30, together with Watkins's Theorem, gives yet another proof of 
Schur's Inequality. 

COROllARY 7.31 Let G be a subgroup of Sm. Suppose X e /(G)./f A, Be 'Hm. 
then 

dx(A +B)~ dx(A) +dx(B). (7.21) 

Proof Let V be an inner product space of dimension m. 1f E is a fixed but arbitrary 
orthonormal basis of V, there exist unique linear operators S, T e L(V, V) such 
that [S]E =A' and [T]E = B'. ByTheorem6.75(v), K(S+ T) ~ K(S)+ K(T). 
Hence, the result is a consequence of Corollary 7 .28. o 

Because dx is linear in x, results like (7 .21) remain valid for arbitrary characters 
of G. 



Generalized Matrix Function.s 229 

CoROLLARY 7.32 Let X be an irreducible character of the subgroup G of S,. 
Suppose A, B e 'H.,. 

(i) If A ~ B, then dx (A) ~ dx (B); and 

(ii) .lf A ~ Band dx (A) = dx (B) # 0, then A = B. 
Proof By definition, A ~ B means there is a C e 'H., such that A = B + C. By 
Corollary 7.31,dx(A) = dx(B+C) ~ dx(B)+dx(C). Because (Corollary7.30) 
dx(C) ~ 0, part (i) is established. Part (ii) was proved in [Chan & Lim (1981)]. o 

THEOREM 7.339 Let X be an irreducible character of the subgroup G of S,. If 
A, B e 'H.,, then 

(7.22) 

Proof Let V be an inner product space of dimension m. If E is a fixed but arbitrary 
orthononnal basis of V, there exist unique linear operators S, T e L(V, V) such 
that [S)E =A' and [T]E = B'. Setting n =m, Si = S, and T; = T, 1 !:: i !:: m, 
we have, from Theorem 5.40 and the definition of induced transformations, that 

K([9S + (1- 9)T]11"') ~ 9K(S11"') + (1- 9)K(T11"'), 

whenever 0 ::59 ::5 1. Therefore (Corollary 7.28), 

The result follows by setting 9 = 1/2. o 

CAUCHY-BINET THEOREM 7.34 Let A, B E C11,11• Suppose X is an irreducible 
character of the subgroup G of S,. If a, {3 E 0 = {y e r ,,11 : (X, 1)Gr # 0}, 
then 

x(e) '"' dx((AB)[alf3]) = o(G) fet, dx(A[ajy])dx(B[ylf3]). (7.24) 

Before proving Theorem 7.34,let's look at a special case. If n =m, a= {3 = 
(1, 2, ... , m), G = S,, and x =e. Then Equation (7.24) becomes 

l 
det(AB) = 1 L det(A[(1, 2, ... , m)ju])det(B[o-1(1, 2, ... , m))), (7.25) 

m. aeS. 

9Wben G=S. and x=e, so that d1 =det, 'Theorem 7.33 is the Minkowski Determinant Theorem 
[Miokowski (1905)]. When d1 = per, it was proved iD [Ando (1981)) and, when A and B commute, iD 

[Marcus & Pierce (1968)]. The version given here is from [Merris (1979)]. 
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where A[(l, 2, ... , m)lu] = (aiaU>>• the matrix whose (i, j)-entry is the 
(i, uU))-entry of A. In particular, det(A[(l, 2, ... , m)lu]) = s(u) det(A). Simi­
larly, det(B[uj(l, 2, ... , m)])= s(u)det(B). Thus, Equation (7.25) may be writ­
ten 

1 
det(AB) = - L det(A) det(B) 

m! aeS. 

= det(A) det(B). (7.26) 

It will follow from the representation theory of the general linear group, 
GL(m, C), that the determinant is the only multiplicative generalized matrix 
function. 10Thus, the natural generalization of Equation (7.26) is not dx (AB) = 
dx(A)dx(B); it is the Cauchy-Binet Theorem.11 

The proof of Theorem 7.34 depends on the following straight-forward extension 
of Corollary 7 .28. 

LEMMA 7.35 Suppose X is an irreducible character oft~ subgroup G of Sm. Let 
E = {e1, e2, ... , e,.} be an orthonormal basis oft~ inner product space V. Let 
T e L(V, V) be the unique linear operator such that [T]E = A1• If a, fJ e r m,11 , 
then 

o(G) { • •) dx(A[alfJ]) = x(e) K(T)(ea), efJ . 

Proof (of Theorem 7.34): Let E = {e1. e2, ... , e,.} be an ortbonormal basis of 
the inner product space V. Let S and T be linear operators on V whose matrix 
representations with respect to E are A1 and B1

, respectively. Then 

(x(e)/o(G))dx((AB)[alfJ]) = (K(TS)(e;),ep) 

= ( K(S)(e;), K(T*)(ep)) 

= L (K(S)(e;),e~)(e~,K(T*)(ep)), 
yer.,.. (7.27) 

by Lemma 7.35 and Parseval' s Identity. Because T ( G, x) is idempotent, hermitian, 
and commutes with both sm® and Tm®, we may replace e~ with e;. Because 

10See Exercise 2, Chapter 8. 
111be equation d1 (AB)=d1 (A)d1 (B) has received some attention, e.g., in [Bcasley (1969)], 

[Bcas1ey & Cummings (1972), (1973), (1978), (1982), & (1992)], and [Wang (1974)]. 
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e; = 0, y ft 0, another application of Lemma 7.35 yields 

(x(e)fo(G))dx ((AB)[ai.BD = L (x(e)fo(G))2dx (A[alyJ>dx (B*[.Biy]). 
yen 

Because B*[,Biy] = B[yi,B]*, and dx(C*) = dx(C), we obtain 

D 

Our next result is a useful variation on the Cauchy-Binet Theorem, valid when 
x(e) = 1. 

CoROLLARY 7.36 Let x be a linear character of the subgroup G of S,. If 
A, B E C11•11, then 

for all a, .B E f:l.. 

Proof Replacing e~ with e; on the right- hand side of Equation (7.27) produces 

1 
o(G) dx ((AB)[ai.BD 

= L (K(S)(e:),e;)(e;,K(T*)(e~)) 
yer • .• 

= o(G) 4 o(~ ) ( K(S}(e:), e;) (e;, K(T*)(e~>), 
ye~ Y 

by Equation (6.7) and the fact that lx(a)l = 1, a E G. Applying Lemma 7.35 
(with x(e) = 1), we obtain the result. o 
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Having exploited Theorem 7.26 to obtain a variety of results for generalized 
matrix functions, we now reverse course and use generalized matrix functions as 
a tool to study symmetry classes of tensors. Suppose V is a vector space. Let x 
be an irreducible character of the subgroup G of Sm. Suppose UJ, u2, ••• , Um e V 

are fixed but arbitrary vectors, not all zero. Choose a function a e Qr,m such that 
{Ua(k): 1 !: k !: r} is a basis of U = (u;: 1 !: i !: m). Let A = (a;j) E C111,r be 
the unique matrix satisfying 

Then 

U! * U2 * • · • * Um 

r 

u; = L a;jUaU>• 1 !: j !: m. 
i=l 

= L (n a;y(i)) Uay(l) * Uay(2) * ... * Uay(m) 
rer., 1=l 

(7.29) 

x(e) ~ -1 ~ (n"' ) = o(G) L.... X(O' ) L.... . a;y(i) Uayu(l) ® Uayu(2) ® · · · ® Uayu(m) 
ueG rer., 1=l 

x<e> ~ -1 ~ (nm ) = o(G) L.... X(C1 ) L.... . aiyu-•(i) Uay(l) ® Uay(2) ® · · · ® Uay(m) 
ueG rer.... 1=l 

where A[ely] = A£(1, 2, ... , m)ly]. Because {u:r: y e r m,r} is a basis of U®"', 
wededucethatUJ *"2*'. •*Um = Oifandonlyifdx(A[•Iy]) = Oforall yE r m,r• 

If VI, V2 •••• , Vm e U, there exists a unique matrix B = (b;j) e C111,r such that 

r 

v; = LbtjUaU>• 1!: j!: m. 
j=l 

(7.30) 



Generalized Matrix Functions 

By the same arguments, 

x(e) ~ ® 
Vt * v2 * · · · * v,. = o(G) L..... dx(B[•Iy])uay· 

yer., 
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Because (Lemma 6.15) u1 * u2 * · · · * u,. = Vt * 112 * · · · * v,. -::/; 0 only 
if (u~o u2, . . . , u,.) = (vt.112 •••• , v,.), it follows that Ut * u2 * · · · * u,. = 
Vt * 112 * .. . * v,. '# 0 if and only if dx (A[•Iy]) = dx (B[•Iy]), y E r m,r• 
These observations are summarized in the following. 

LEMMA 7.37 Let V be a vector space. Suppose G is a permutation group of 
degree m and X E /(G). Let ut. u2, ... , u,. E V befixedbutarbitraryvectors, not 
all zero. Choose a E Qr,m so that {ua(k): 1 ~ k ~ r} is a basis of(u; : 1 ~ i ~ m). 
Let A E C111 ,r bethematrixdefinedinEquation(7.29)./fvt, 1J2, •.• , v,. E V, then 

U 1 * U2 * • · · * Um = Vt * 112 * • · • * Vm 

ifandonlyifdx(A[•IYD = dx(B[•Iy]), yE r lll,r. where B isthematrixdefinedin 
Equation (7.30)./nparticuklr, Ut *"2 * · · ·•u,. = 0 if and only ifdx(A[•IYD = 0, 
for ally E r m,r· 

Lemma 7.37 does not so much solve the problem of equality of decomposable 
symmetrized tensors as state it in another form. Equivalent to Lemma 7.37, the next 
result seems to illuminate the situation from a somewhat different perspective.12 

THEOREM 7.38 Let V be a vector space. Suppose G is a permutation group of 
degreemandx e /(G).Letu~ou2, .• . ,u,. e Vbefixedbutarbitraryvectors,not 
all zero. Choose a E Qr,m sothat{Ua(k): 1 ~ k ~ r} isabasisof(u; : 1 ~ i ~m). 
Let A E C111 ,r be the matrix defined in Equation (7.29)./fvt . 112 •••• , v,. E V, then 

U I * U2 * • · · * Um = Vt * 112 * · · · * Vm 

if and only ifdx(AX) = dx(BX),forall X E Cr,m• where B is the matrix defined 
in Equation (7.30). In particuklr, u 1 * u2 * · · · * u,. = 0 if and only if dx (AX) = 0 
for all X E Cr,m· 

12Lcmma 7.37 and Thwrem 7.38 are adaptations of more general results from [Marcus & Chollet 
(1983)) and [Oliveira, Santana & Dias da Silva (1983)). Related wort appears in [Marcus & Cbollet 
(1980)], [Oliveira& Dias da Silva (1983) & (1985--86)), [Dias daSilva& Coelbo(l990)], and [Duffner 

(1995)]. 
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Proof If X= (xij) E Cr,m• then 

dx(AX) = E x(u) Ii (ta;,Xra(i)) 
aeG i=l t=l 

= L x(u) fi (taa-•<i>rXr;) 
aeG i=l t=l 

111 m 

= E X(CT) E n aa-l(i)y(l) n Xy(i)i 
aeG yer .,. i=l i=l 

= L (E x(u) Ji a;ya(i)) Ji Xy(i)i 
yer .,. aeG •=I •=I 

Ill 

= E dx(A[•IYD n Xy(i)i· (7.31) 
yer.,. i=l 

Ifu1*"2*· · ·•u,. = Othen,byLemma7.37andEquation(7.3l),dx(AX) = Ofor 
all X E Cr,m· Conversely, suppose dx(AX) = 0 for all X E Cr,m· Let {3 E r m,r 
be fixed but arbitrary. Define Y E Cr,,. to be the matrix whose only nonzero 
entry in column i is a 1 in row {3(i), 1 !:: i !:: m. Then, from Equation (7.31), 
0 = dx(AY) = dx(A£•1{3)), and 0 = u1 * u2 • · · · • u,. by Lemma 7.37. The rest 
is similar. o 

Suppose B = { e1 , e2, ... , en} is an orthonormal basis of the inner product space 
V. If x is a linear character of the subgroup G of S,. then (Corollary 6.32 and 
Equation (6.12)), {[G: Ga]112e:: a E ~}is an orthonormal basis of Vx(G). 

DEFINmoN 7.39 Let 8 = {et, e2, •.. , en} be an ordered orthonormal basis of 
the inner product space V. Suppose G is a subgroup of S,. and x is a linear 
character of G. Denote by B' the lexicographically ordered orthonormal basis 
{[G : Ga]112e:: a e ~}of Vx (G). 

THEOREM 7.40 Let x be a linear character of the subgroup G of S,.. Suppose 
8 = {e1, e2, .•. , en} is an ordered orthonormal basis of the inner product space 
V. Let T E L(V, V). If A = (a;j) is the matrix representation ofT with respect to 
B. then the (a, {3)-entry of the matrix representation of K (T) with respect to B' is 

(o(Ga)o(Gp))-l/ldx(A[alf3]), 

where x(u) = X(CT), CT E G. 
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Proof By definition, 

Therefore, 

11 

T(eJ) = I>ije;, 1 ~ i ~ n. 
i=1 

K(T)([G: Gp]112ep) 

= [G: Gp]112 (T(ep(1)) * T(ep(2)) * · · · * T(ep<m>)) 

= [G: Gp]112 (ta;p(l)e;) * (ta;p(2)e;) * · · · * (ta;p(m)ei) 
1=1 1=1 1=1 

= [G : Gp]
1
'
2 L (n lJa(i)tJ(i)) e: 

crer • .• 1=1 

= [G : Gp]1/2 4 o(~cr) (L x(u-1) n lJa(i)JJa(i)) e: 
cre6 aeG 1=1 

= L (lo(Gcr)o(Gp)r1' 2dx(A[altJ])) [G: Ga]112e:. 
ere X 
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0 

DEFINmoN 7.41 Suppose A E C,.,,.. Let!:;. c r "'·"be the index set associated 
with the linear character x of the subgroup G of S,.. The rows and columns of the 
corresponding induced matrix, K (A), are indexed by 1:!.., ordered lexicographi­
cally. The (a, IJ)-entry of K(A) 

(o(Gcr)o(Gp))-1/2dx(A[altJ]). 

If A is the matrix representation ofT e L(V, V) with respect to the orthonormal 
basis BofV, then K(A) is the matrix representation of K(T) e L(Vx(G), Vx(G)) 
with r:espect to B'. 

CoROu.ARY 7.42 Let x be a linear character of the subgroup G of S,.. If A and 
B e C,.,,., then K(AB) = K(A)K(B). 
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Proof In view of Theorem 7.40 and Definition 7 .41, this is just the matrix version 
of Theorem 6.75(i). o 

Comparing the (a, tJ)-entries of K(AB) and K(A)K(B) yields another proof 
of Corollary 7 .36. 

DEFINmoN 7.43 Let G = Sm. H x = £, K(A) is called the m-th compound of 
A and is denoted Cm(A). H x is the principal character, K(A) is called the m-th 
induced power of A, denoted Pm(A). 

Suppose A e C,.,,.. H G = Sm and X = £,then a = Qm, 11 • Because Ga = {e}, 

a e Qm,11 , and l = £, Cm(A) is the (;)-square matrix whose (a, tJ)-entry is 

det(A[altJ]). When G = Sm and X is the principal character, a = Gm,11 • the 
set consisting of all C(n +m - 1, m) nondecreasing sequences/functionsPH 
a e Gm,11 , then Ga is isomorphic to the Young subgroup Sl'(a)• and o(Ga) is the 
product of the factorials of the multiplicities of the distinct integers appearing in 
a. 

ExAMPLE 7.44 Let x be the principal character of G = ~- H n =m = 2, then 
a= a= G2,2 = {(1, 1), (1, 2), {2, 2)}. Ha= (1, 1) or {2,2), then o(Ga) = 2; 
if a = (1, 2), then o(Ga) = I. Suppose 

is a generic 2-by-2 matrix. Then 

~{A) = ( per {A[altJ]) ) 
.jo(Ga)o(Gp) 

( 

a2 ..fiab 
= ..fiac ad + be 

cl ..tied 
{7.32) 

Suppose m = 2, n = 4, G = S2, and X = £. Then a = Q2,4 = 
{{1, 2), {1, 3), {1, 4), {2, 3), {2, 4), {3, 4)}, and o{Ga) = 1 for all a e a. H 

( 

4 1 

A= I 2 
5 3 

-6 -4 
! !) . 

-4 -5 

13Note that G.,. is a set of sequences, while G and G. are groups. 
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then 
7 I I -5 -5 0 
7 I 5 -5 -4 3 

C2(A) = -10 2 -2 8 7 -3 
-7 -I 0 5 7 I 

(7.33) 

8 2 I -4 -6 -I 
-2 4 5 4 5 0 

0 

OEANrnoN 7.45 Suppose A e C11,11 • The principal submatrix of Pm(A) corre­
sponding to the sequences in Qm,11 is the m-th pennanental compound of A. 
The (n- 1)-st permanental compound is the permanental adjoint of A, denoted 
padj (A). 

The permanental adjoint is an n-by-n matrix, ostensibly indexed by the se­
quences (1, 2, ... , n - 1), (1, 2, ... , n - 2, n), and so on, ordered lexicographi­
cally. In fact. however, it is more conventional to index the rows and columns of 
padj (A) with the integers I, 2, ... , n. Thus, padj (A) is the n-by-n matrix whose 
(i, j)-entry is per (A(ilj)).14 

JACOBI'S IDEN1TI'Y 7.46 Let A e C11,11• Suppose m :::; n. If A is invertible, then 

det(A) det(A - 1 [altJ]) = ( -tt<a>+r<ft) det(A{tJia)), (7.34) 

a, tJ E Qm,11• where r(a) = a(I) + a(2) + · · · + a(m). 

Proof Let J, (A) be the (;,)-by-(;,) matrix whose (a, tJ)-entry is (-w<a>+rUJ> 
det(A{tJia)), a, tJ e Q,,,.. (Up to permutation similarity, })(A) is the classical 
adjoint (or adjugate) of A.) By the Laplace Expansion Theorem, the (a, tJ)-entry 
of C, (A)J, (A) is det(A), when tJ = a, and the determinant of a matrix with two 
equal rows when tJ ::f: a. Therefore, 

1 - 1 
det(A) J,(A) = C,.(A) . 

By Corollary 7.42, C,(A)-1 = C,(A-1). Because inverses are unique, 
det(A)C,(A-1) = J,(A). o 

ExAMPLE 7.47 Suppose n = 3 and m = 2. If A = (a;j) e C3,3 is invertible, then 

1 ( det(A(111)) - det(A(211)) det(A(311))) 
A-1 = d (A) -det(A(l12)) det(A(212)) -det(A(312)) . 

et det(A(l13)) - det(A(213)) det(A(313)) 

14Tbe pennanental adjoint occurs, e.g., in [Ando (1981)], [Cohen (1992)), [Grone, Johnson, Sa, 

& Wolkowicz (1986)), [Lal (1992)) and [Marcus & Merris (1973)]. 
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If a = (1, 2) and {J = (1, 3), then 

-1 1 ( det(A(ljl)) det(A(311))) 
A [ai{J] = det(A) - det(A(112)) - det(A(3j2)) 

and 

det(A) det(A -•ralfJ]) = (- det(A(111)) det(A(312)) 

+ det(A(311)) det{A(112)})/ det(A). 

On the other hand, from Equation (7.34}, 

det(A) det(A -t [ai{J]) = - det(A({Jia)) 

because r(a) + r{{J) = (1 + 2) + (1 + 3) = 7. Therefore, 

-a23 det(A) = - det(A(111)) det(A{312)) + det(A(31l)) det(A(112)). (7.35) 

0 

The careful reader will have observed that K (A) has not been defined in general, 
but only for linear characters. This is because the description of 6 given in Equation 
(6.19) does not lend itself to the kind of approach used to prove Theorem 7 .40. The 
difficulties will become more apparent as we discuss the eigenvalues of K(T). 

Let B = {et. e2 •••• , e,} be an ordered basis of the vector space V, and x a 
fixed but arbitrary irreducible character of the subgroup G of S,. Let a be the 
first element in the lexicographically ordered t:. set. With at = a, choose a set 
{at.a2 •... ,a.~.} from {acr: er e G} such that {e!,: 1 !:: i !:: sa} is a basis 

for (e!: a e G). Execute this procedure for each y e t:.. If {a, {J, ... } is the 
lexicographically ordered t:. set, take 

6 = {at,a2 •... ,a.~ •• /Jt./J2 •... ,{J,_ •... } (7.36) 

to be ordered as indicated. By Theorem 6.31, 

(7.37) 

is an ordered basis of Vx (G). (Because of the latitude in choosing 6 when 
x(e) > 1, B* may not be uniquely determined by m, n, G, and x.) 
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LEMMA 7.48 Let){ be an irreducible clwracteroftM subgroup G ofSm. Suppose 
B = {e1, e2, •.. , en} is an ordered basis oftM vector space V. Let B* be tM basis 
of Vx (G) assembled as in Equation (7.37). If B is an upper triangular basis for 
T E L(V, V) (that is, a basis with respect to which tM matrix representation of 
T is upper triangular), tMn B* is an upper triangular basis for K (T). 

Proof By hypothesis, T(ei) = Alelt and T(e;) = A;e; + u;, where u; E 

(e1, e2, ... , e;-I), l < i ~ n. Set u1 = 0. Suppose w is a fixed but arbitrary 
element of b.. Let t" E G be such that wr E ll.. Then 

K(T)(e!,) = T(e41(1)) * · · · * T(e41(m)) 

(7.38) 

where the sum is over those y e Q such that y(i) ~ w(i), l :5 i :5 m, with at 
least one strict inequality. Fix y and suppose it is equivalent ( mod G) to y' e ll.. 
Because yr(i) ~ wr(i) for all i, with at least one strict inequality, y' comes 
strictly before wt" in lexicographic order. Therefore e; is a linear combination of 
tensors that come strictly before e!, in the ordered basis B*. o 

THEoREM 7.49 Let){ be an irreducible character oftM subgroup G of Sm. Let 
V be a vector space of dimension n. Suppose T E L(V, V) has eigenvalues 
AI, A2, ... , An (multiplicities included). Then tM eigenvalues of K(T) are 

m n ~<•>· wE b.. 
1=1 

Proof By Schur's Triangularization Theorem, there exists an upper triangular 
basis forT. Thus, the eigenvalues of K(T) are visible in Equation (7.38). o 

It follows from Theorem 7.49 that the trace of K (T) is 

m m 

L n Aa(t) =){(e) I:<x. l)G. n Aa(l) 

ae!t=l ae6 1=1 

m 

=){(e) L(){, l)G. n Aa(l)· (7.39) 
aeA 1=1 

If G = Sm. so that){ = )(, for some partition 1r 1- m, then Ga is conjugate to 
the Young subgroups,., where 11. = IJ.(a) is the multiplicity partition of a, and 
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(X, l)s,. is the Kostka coefficient K~r.#· 1n this case, Equation (7.39) becomes 

m 
tr (K(T)) = x(e) L KK,#(«) n A,.(t), (7.40) 

aeG.,. t=l 

the product of the character degree and the "Schur polynomial"1s associated with 
1r.lf G = S, and 1r = [1"'], so that Xtr =£,then li = Q,,,.. Because G,. = {e}, 
a e Q,.,,., it follows from Equation (7 .39) that 

m 

tr (C,(A)) = 2: n Aa(t) 

aeQ.,. t=l 

(7.41) 

the m-th elementary symmetric function of the eigenvalues of A. 1f G = S, and 
1r =[m], so that Xtr is the principal character, then li = li = G,.,,., and 

m 

tr (P,.(A)) = 2: n Aa(t) 

aeG.,. t=l 

(7.42) 

the m-th homogeneous symmetric function of the eigenvalues of A. 

EXAMPI...E 7.50 Returning to Example 7.44, suppose A.1 and A.z are the eigenvalues 
of the 2-by-2 matrix 

A=(: ~)· 
Then the eigenvalues of ~(A) are A.~. A.tA.2, and ~· Therefore, from Equa­
tion (7 .32), 

a 2 +ad+ be+ d 2 = tr (P2(A)) 

= H2(A.1, A.2) 

=A.~+ A.1A.2 +A.~. 

This identity is easy to confirm: A.tA.2 = det(A) = ad - be and A.~ + ~ = 
tr (A2) = a 2 + 2bc + d 2. 

IS See Equation (6.44). 
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The eigenvalues of 

A=U j j J) 
are -1, 1, 2, and 3. Therefore, tr (C2(A)) = E2(-1, 1, 2, 3) = 5. (Compare with 
the value obtained by summing the main diagonal entries of Equation (7.33).) o 

LEMMA 7.51 Suppose x is an irreducible character of the subgroup G of S,. 
Let V be a vector space of dimension n. Suppose T e L(V, V) has eigenvalues 
Al, A2, .•• , A,. (multiplicities included). Then tr (K(T)) is a symmetric function 
ofAl, A2, ...• A,.. 

Recall (Definition 6.66) that m1(a) is the multiplicity of the integer t in the 
sequence a E r ,,11 • In this notation, 

m 11 n Ao(l) = n A~,(fl). 
1=1 t=l 

Let G be a subgroup of S,, and suppose x e J(G). Define 

ei(X) = L m1(a), 
fiE~ 

1 ~ t ~ n. It follows from Lemma 7.51 that el(X) = e2(X) = · · · = e,.(x). 
Denote their common value by e(x). Because m 1 (a) +m2(a) + · · · +m,.(a) =m, 
a e &, it must be that ne(x) = mo(&). 

SYLVESTER-FRANKH THEOREM 7.52 Suppose x is an irreducible character of the 
subgroup G of S,. Let V be ann-dimensional vector space. IfT E L(V, V), then 
det(K(T)) = det(T)e(x), where e(x) = mo(&)jn. 

Proof Denote the eigenvalues ofT by Al, A.2, .•• , A11 (multiplicities included). 
It follows from Theorem 7.49 that 

det(K(T)) = n (fi Aa(1)) 

aet. 1=1 

11 

= n A~r(X) 
1=1 

0 
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ExAMPLE 7.53 Let x be the principal character of G = ~.If n =m = 2, then 
fl. = !::.. = !::.. = G2,2 = {{1, 1), (1, 2), (2, 2)}, and et(X) = 2 + 1 + 0 = 3 = 
0 + 1 + 2 = e2(x). Thus, e(x) = 3 = mo(~)/n. H 

then det(A) =ad- be and, by Theorem 7.52, det(P2(A)) =(ad- bc)3• On the 
other hand, from Equation (7.32), 

det(~(A)) = a2(ad + bc)d2 + 4tJb2c2d- 4tJ2bcd2 - b2(ad + bc)cl 

=(ad- bc)3 • 

0 

Suppose T e L(V, V). Let A be the matrix representation ofT with respect 
to the ordered basis B = {et, e2, .•• , e,.} of V. If x is the principal character of 
S,., then P,.(A) is the matrix representation of K(T) with respect to the lexico­
graphically ordered basis f3# = {[m !/o(Ga)]112e!: a e G111,11 }. The complicating 
factor [ml/o(Ga)]112 is necessary to preserve orthonormality, guaranteeing that 
K (A) will inherit certain desirable properties from A. In some situations, however, 
the complicating factor is unnecessary, or even undesirable. (For example, B may 
not be orthonormal, or one may wish to consider generalizations to fields that do 
not contain square roots.) In these cases, it is sometimes useful to work with the 
alternative induced basis B* = {e!: a e G111,11 } 

DEFJNmoN 7.54 Suppose B is a basis of the vector space V. Let T e L(V, V) 
be fixed but arbitrary. Suppose A is the matrix representation of T with respect to 
B. If x is the principal character of S,., denote by Alml the matrix representation 
of K (T) with respect to B*. 

Of course, Alml is similar (in fact, diagonally similar) to P,.(A). To obtain an 
explicit description of Alml, multiply both sides of 

K(T) (lG : o(GJJ)]112ep) 

= L (lo(Ga)o(GJJ)r112 per (A[aiiJ])) [G: Ga]112e: 
aeG.,. 

by [G : o(GJJ)r112 to obtain 

K(T)(e~) = L o(Ga)-1 per (A[altJ])e:. (7.43) 
aeG.,. 
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Tiris proves the following: 

LEMMA 7.55 Let A E C,.,11 • Then Alml is the C(n +m - 1, m)-square matrix 
whose rows and columns are indexed by Gm,n ordered kxicographically. The 
(a, fJ)-entry of Alml is per (A[alfJ])fv(a), where v(a) = o(SI'(a)) is the product 
of the factorials of the multiplicities of the distinct integers appearing in a. 

Being similar, Pm (A) and A [m) have the same eigenvalues and, hence, the same 
trace. 

EXAMPLE 7.56 If 

A=(: :) 
is a generic 2-by-2 matrix, then 

( 

a2 

Al
2
1 = ~c (7.44) 

Notice that D-1 AI21D = Pz(A), where D = diag (1, ,J2, 1), and P2(A) is given 
by Equation (7.32). o 

Tiris variation on the theme of induced power matrices is an important tool in 
classical nineteenth century invariant theory. 16 

An Excursion Into Invariant Theory 

Let V = C, [xi, x2, ... , x,.], the vector space of homogeneous polynomials of 
degree 1 in the independent indeterminates x,, x2, ... , x,.. Then 

V=ltc;x;:c;eC, 1::::;i::::;n,. 
i=l 

Suppose u -+ A(u) = (a;J(u)), u e G, is a representation of degree n of the 
finite group G. Then A ( u) determines a unique linear operator on V defined by 

11 

A(u) ox)= LaiJ(u)x;, 
i=l 

(7.45) 

161be resurm:tion of invariant theory, due largely to Gian·Carlo Rota and his coauthors (see, e.g .• 
[Doubilet, Rota & Stein (1974)], [Kung & Rota (1984)), [Bamabei, Brini & Rota (1985)), and [Rota & 
Stein (1986) has received added momentum, e .g., from applications in coding theory [Sioane (1979)) 
and connections to Coben-Macaulay algebras [Stanley (1979)). For a nice overview, see [Gardner 

(1980)]. 
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and linear extension. If p = 'L.cixi e V, let [p] e C,.,l be the column n-tuple 
whose i-th entry is c;. Then 

In other words, 

11 

A(u) o p = I::CjA(u) oxi 
j=l 

[A(u) o p] = A(u)[p], 

the product of A(u) and [p]. In particular, 

[A('r) o (A(u) o p)] = (A(T)A(u))[p] 

= [A(TU) o p), 

for all T, u e G and all p e V. 

(7.46) 

This action of the group A (G) = {A ( u) : u e G} can be extended to arbitrary 
polynomials by defining 

(A(u) o f)(x1. x2, ... , x,.) 

= f(A(u) ox1. A(u) ox2, ... , A(u) ox,.), (7.47) 

f e C[x1. x2 • ... , x,.]. If g, h e C[x1. x2 • ... , x,.J and b, c e C, then 

(A(u) o (bg + ch))(x1. x2 •... , x,.) 

= (bg + ch)(A(u) o x1, A(u) o x2, ... , A(u) ox,.) 

= bg(A(u) o x1. A(u) o x2 •... , A(u) ox,.) 

+ ch(A(u) o x1. A(u) o x2 •... , A(u) ox,.) 

= b(A(u) o g)(x1. x2, ... , x,.) + c(A(u) o h)(x1, x2, ... , x,.), 

that is, A(u) o (bg +eh) = b(A(u) o g)+ c(A(u) oh). Thus, A(u) acts linearly 
on C[x1, x2, ... , x,.J, u e G. 
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l>EFINmoN 7.57 Suppose A is a representation of degree n of the finite group 
G. Then I e C[x1, x2, ... , x11 ] is a polynomial invariant of the matrix group 
A(G) = {A(u): u E G} if A(u) o I= 1. for all u e G. 

From the perspective of groups acting on sets, I is a polynomial invariant of 
A(G) if and only if it is a fixed point of A(u), u e G. From the perspective 
of linear operators, the polynomial invariants of A( G) comprise an intersection 
of eigenspaces of A(u), u e G. In particular, they comprise a subspace of 
C[x1, x2, ... , X11]. In fact, more is true. HI and g are invariants of A(G), their 
product. lg, is another. The subspace of polynomial invariants of A(G) is a 
"subalgebra" of C[XJ, x2, . .. , Xnl· 

EXAMPLE 7.58 Suppose A is a representation of degree n of the finite group G. 
For a fixed but arbitrary I E C[x1, x2, ... , x11 ], define 

Then 

- 1 "" I= o(G) f;t; A(u) of. 

- 1 "" A(T) o I= -- L..J A(T) o (A(u) o I> 
o(G) ueG 

1 
=- LA(Tu)ol 

o(G) ueG 

1 
=- LA(u)ol 

o(G) ueG 

=7. 

for all T e G. Hence, 7 is a polynomial invariant of A( G). 

ExAMPLE 7.59 Suppose A(e) = h 
D 

Then u-+ A(u) is a (reducible) representation of the alternating group G = A3. 
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1 2 2 = 3([Xl +xlX2)+[(-X2) +(-X2)(Xl-X2)) 

+ [(-x, +x2)2 + (-x, +x2)(-x1)]) 

= Xf - X(X2 +X~. 

Notice that 

and 

confirming that 7 is a (degree 2, homogeneous) polynomial invariant of 

D 

Returning to the general discussion, suppose f e C[x,, x2 •... , x11 ]. Then 

where Pm E Cm[x,, x2 •... , x,.], the subspace of C[x,, x2, ... , x,.] consisting 
of (0 together with) the homogeneous polynomials of (total) degree m, and 
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all but finitely many of the Pm are zero. It follows from Equation (7.47) that 
A(u) o Pm e Cm[Xlt xz, ... , x11], m ~ 0. Therefore, 

A(u) o / = L A(u) o Pm 
m!!:;O 

=/. 

if and only if A(u) o Pm =Pm for all m ~ 0. It suffices, therefore, to restrict our 
investigation to homogeneous polynomials of degree m. 

If p e Cm [x1, xz, ... , x,.] then (Lemma 6.65) there exist constants CfJ. 

{J e Gm,11 , such that 

m 

p(x,, xz •...• x,.> = I: c~ n x~<r>. 
~eo... r=l 

Replacing Xj with 

yields 

11 

L:a;j(u)x;, 1 ~ j ~ n, 
i=l 

(A(u) o p)(x,, xz, ... , x,.) 

= L c~ Ii (ta;~(r)(u)x;) 
~eo... t=l •=1 

m 

= I: c~ I: n aacr>,<t><u>Xa<t> 
~eo... aer •.• t=l 

= L c~ L v(~) L (Ii tJar(t),(t)(O')) (Ii Xa(t)) 
~eo... aeO.,. reS. t=l t=l 

= L [ L (v(~) L Ii tJa(r)~r(t)(u)) c~J Ii Xa(t) 
aeo... ~eo... reS. t=l t=l 

~ .~J~~~ { v(~) P" (A(u)[aiPD) c,] !] X..<• I• (7.49) 

where v(a) = o(S~&(a))· 
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In lexicographic order, suppose G,.,,. = {/Jt. fh, . . . , IJN}, where N = C(n + 
m- 1, m). If (p] e CN,l is the column vector 

(p) = (CJJpCfJ2, ••• ,CJJN)t, 

then Equation (7 .49) can be expressed as 

[A(u) o p] = A(u)lml[p], (7.50) 

where A(u)lml is the variation of the m-th induced power of A(u) described 
in Definition 7.54 and Lemma 7 .55. (Notice that Equation (7 .50) reduces to 
Equation (7.46) when m = 1.) It follows that pis a homogeneous polynomial 
invariant of A(G) of degree m, if and only if 

A(u)l"'l[p] = [p], u E G, (7.51) 

if and only if, for all u e G, [p] is an eigenvector of A(u)lml, corresponding 
to the eigenvalue A. = 1. In other words, the space of homogeneous polynomial 
invariants of degree m of A (G) is the intersection of the eigenspaces, afforded by 
A.= 1, of A(u)lml, u e G. Because 1!"'1 = Ic,..__1,., and 

A('r)[m] A(u)lml = (A(l')A(u))lm] 

= A(l'u)lml' 

u -+ A(u )lml is a representation of G. It follows that the dimension of the common 
eigenspace is (1, ~,.)G, where ~,.(u) = tr (A(u)l"'l), u e G. These observations 
are summarized in the following. 

THEoREM 7.60 Suppose A is a representation of degree n of the finite group G. 
Denote by d,. the dimension of the space of homogeneous polynomial invariants 
of degree m of A(G). Then 

1 
d,. =-L tr (A(u)l"'l) . 

o(G) aeG 
(7.52) 

For a fixed G and A, let fA be the generating function for these dimensions, 
that is, 

!A (z) = L d,.z"'. 
m~O 

MoLIEN'S THEOREM 7.61 Suppose A is a representation of degree n of the finite 
group G. Then 

1 1 
/A(z) = o(G)]; det(I,.- zA(u))' 
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Proof By Equation (7.52}, it suffices to show that the trace of A(u)I"'J is equal 
to the coefficient of 1!" in 

whereA.1, A.2, ... , A.,. are theeigenvaluesof A(u). Because P,.(A(u)) and A(u)l"'J 
are similar they have the same trace, namely (Equation (7 .42)), 

m 
tr (A(u)l"'1) = L n Afl(t)· (7.53) 

/lEG.,. t=l 

On the other hand, 

}]o- 4A.;)-
1 = }] (~(4A.;)"') 

= L ( L Ii AIJ(t)) t". (7.54) 
m~O /lEG.,. t=l 

0 

EXAMPLE 7.62 Returning to Example 7.59, where G = A3 and 

det(/z- 4A(e)) = (I - 4)2, and det(/z- 4A((123))) = det(/z - 4A((132))) = 
I+ 4 + z2• The "Molien Series" for A(G) is 

!A (4) = ~ [ (1 ~ 4)2 + 1 +: + z2 J 
= [(1 + 24 + 342 + 443 + 544 + ... ) 

+ 2(1- 4 + 43 -44 + 46 -47 + ... ))/3 

= 1 + 42 + 243 + 44 + 2zs + 3z6 + 2z 7 + . . . (7 .55) 

Because dz = 1, every homogeneous polynomial invariant of degree 2 must be a 
multiple of the one we found in Example 7.59, namely, 
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Moreover, there are no homogeneous polynomial invariants of degree 1. (lbis is 
easily seen directly from Equation (7.52): 

1 
dt = - L tr (A(a)) 

3 ueG 

1 
= 3(2- 1 -1) 

=0: 

As the coefficient of z3 in Equation (7.55) is 2, the space of homogeneous 
polynomial invariants of degree 3 has dimension 2. Let's try to find two linearly 
independent invariants of degree 3. Begin with some arbitrary homogeneous 
polynomial of degree 3, say 11 (xt, x2) = x~. As in Example 7 .59, average 
A(u) o /t over A(G) obtaining 

- 2 2 ft(Xt, X2) = XtX2- XtX2. 

If f2(xt. x2) = x~. then 72 = -71, which is useless because we are seeking 
a linearly independent pair. (Evidently, if g(xt, x2) = x~ + x~, then g = 0.) 
However, if /J(xt,X2) = -3xfx2, then 

- 3 2 3 fJ(Xt,X2) =Xt -3XtX2+X2. 

Because 71 and 7 3 are linearly independent, we have found all homogeneous 
polynomial invariants of A(G) of degree 3, namely, the nonzero polynomials in 

{et (xfx2- XtXn + C2 (x~- 3xfx2 +xO: Ct, C2 E c}. 

What about degree 4? We already know that xf - XJ x2 +xi is a homogeneous 
polynomial invariant of degree 2. Because the space of all invariants is an algebra, 
<xf-XtX2 + xi)2 is a homogeneous polynomial invariant of degree 4. Because the 
coefficient of z-. in Equation (7 .55) is 1, every homogeneous polynomial invariant 
of degree 4 must be a nonzero multiple of <xf - XtX2 + xi>2. The degree 5 
case is just as easy. From Equation (7 .55), two linearly independent homogeneous 
invariants of degree 5 are required. From the solutions to the second and third 
degree problems, we obtain 

and 
(xf- XtX2 +xi) (x~- 3xfx2 + x~). 

0 
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Applications to Graphs 

Let H = (V, E) be a graph with vertex set V = {1, 2, ... , n} and edge set 
E = E(H) c v<2>, the two-element subsets of V. Recall (Definition 6.85) that the 
natural action of a e S,. on v<2> is defined by u({i, j}) = {a(i), aU)}. {i, j} e 
v<2>. In particular, a --. u is an isomorphism 17 from S,. onto the pair group, 
S!2> = {u: a e S,.}. Moreover (Equation (6.55)) H = (V, E) is isomorphic to 
K = (V, F) if and only if there is a a e S,. such that u(E) = F. We will abuse 
the language and write this condition as u(H) = K. 

Let X(1,2}• X(l.ll• ••• , X(n-l.n) be C(n, 2) independent indetenninates over C, 
indexed by the elements of v<2>. Define the monomial 

/H (x{1,2)• X(l,3)• • •• , X(n-l,nJ) = n Xe• 
eeE(H) 

(7.56) 

Observe that fn uniquely determines H; if H = (V, E) and K = (V, F), then 
fn =/Kif and only if H = K. Another point to be made about fn is that it is 
"square-free". It is a product of o(E(H)) different variables. 

Define u OX(i,jJ = X(a(i).aU>l· Then, as in the general discussion of polynomial 
invariants, 

(u o /H) (x(l,2}• X(1,3)• •.• , X(n-l,nJ) 

= /H (u OX(l,2)•U OX(l.J), .•• ,U OX(n-l,nJ) 

= /H (xla(l),a(2))• X(a(l),a(3)}• • • ·, X(a(n-l),a(ll)}) 

= /K (x{1,2)• X(l,3}• • • ·, X(11-l,11}), 

where K = u(H). As in Example 7.58, define 

Properties of 7 H are summarized in the following. 

(7.57) 

LEMMA 7.63 Let H = (V, E) and K = (V, F) be graphs on vertex set 
V = {1, 2, ... , n}. Then H and K are isomorphic if and only if7 H = 7 K· 
Moreover, if H = H1, H2, ... , H~: are the different graphs with vertex set V that 
are isomorphic to H, then 

17 One may view a-+il , aeS,., as a faithful permutation representation of de~ C(n,2). 
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Proof H and K are isomorphic if and only if there is a permutation t' e S,. such 
that i(H) = K, in which case, 

- 1" fK=- L..JuofK 
n! aes. 

= _.!.._ "ro- o i1 o fH n' L..J . aes. 

Conversely, if 7 H = 7 K, then fK must be among the summands comprising 7 H, 

that is, there exists a u e S,. such that u o fH = fK and, hence, u(H) = K. 
To prove the "moreover" part, denote the automorphism group of H by 

A(H) = {u e S,.: u(H) = H}. In the summation on the right-hand side 
of Equation (7.57) fH occurs o(A(H)) times. If K is isomorphic to H, then 
{u e S,.: u(H) = K} is a coset of A(H). Therefore, fK also occurs o(A(H)) 
times, andk = n!/o(A(H)). o 

LEMMA 7.64 Let H1 = (V, E1). H2 = (V, E2), ... , Hs = (V, Es) be graphs 
with vertex set V = { 1, 2, ... , n }. Then {/lit : 1 ~ i ~ s} is linearly independent 
if and only if the graphs H1, H2, ... , Hs are pairwise nonisomorphic. 

Proof If H; ~ Hj then (Lemma 7 .63) 7 8 , = 7 81 • Conversely, assume 
H1, H2, ... , Hs are pairwise nonisomorphic. Suppose 

s 
Lci7H, =0. 
i=l 

Because fH, occurs only in 7 8,, its coefficient in this sum is a positive integer 
multiple of c;. Taking successive partial derivatives with respect to Xe, as e ranges 
over E;, yields c; = 0. o 

For a fixed n and m, suppose H1, H2, ... , Hk is a system of distinct repre­
sentatives for the nonisomorphic graphs having n vertices and m edges. With­
out loss of generality, we may assume these k graphs share the vertex set 
V= {1, 2, ... , n}.Let Ubethe''freevectorspace" generated by H1, H2, ... , Hk, 
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that is, {Ht. H2 ••.. , Hk} is a basis of U. Denote by W the space of ho­
mogeneous polynomial invariants of degree m of S~2> in the indeterminates 
X(l,2}• X(t,3}• ••. , X(n-l,n}· Define T E L(U, W) by T(H;) = 7 H,• 1 ~ i ~ k, 
and linear extension. It follows from Lemma 7.64 that T is one-to-one. We claim 
that T is onto the subspace of square-free polynomials in W. To see this, let 
q = q(X(l,2}• X(l,3}· ••• , X(n-1,11)) be a square-free homogeneous polynomial in­

variant of degree m of S~2>. Suppose the monomial M occurs in q with coefficient c. 
Let H =(V, E), o(E) =m, be the unique graph determined by M. Because q is 

an invariant of S~2>, c 7 8 is among its summands. Therefore, q - c 7 8 contains 
strictly fewer monomials than q, and the result follows by induction. 

The main outcome of these observations can be summarized as follows: 

THEOREM 7.6518 The number, g(n, m), ofnonisomorphic graphs having n ver­
tices and m edges is equal to the dimension of the subspace of square-free homo­
geneous polynomial invariants of degree m of S~2> in the C(n, 2) indeterminates 
X(l,2}• X(l,3}o ••• , X(n-l,n}· 

We now investigate another kind of polynomial invariant of graphs. A matrix 
M e C11 ,11 is a monomial matrix if it can be factored as M = PC, where C is 
an invertible diagonal matrix and P is a permutation matrix. It is not difficult to 
prove that the set of monomial matrices comprises a subgroup of GL(n, C). It 
is somewhat harder to show that the monomial group is a maximal subgroup of 
GL(n, C). 19 

LEMMA 7.66 Suppose x e /(S,.). Let A = (aij) be a generic n-by-n matrix. If 
M= PC e C,.,11 isamonomialmatrix, thendx(M-1AM) =dx(A). 

Proof Suppose P = (8;,ru>> and C = diag (et, cz, ... , c,.). If M= PC, then 

n 
dx(M-l AM)= E x(u) n Ca(i)ar(i),ra(i)/C; 

aes. i=l 

= E x(u} (n a;,rur-1(i)) (n Ca(i)/C;) 
aeS. •=I •=I 

n 
= E X(T-IO'T) n aia(i) 

aes. i=l 

=dx(A). 

181bis result is taken from [Merris & Wat.kins (1984)]. 
19See [Friedland (1985)]. 

D 
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THEOREM 7.67 Let Hand K be graphs on n vertices with I.Aplacian matrices 
L(H) and L(K) respectively. If Hand K are isomorphic then dx (xi,.- L(H)) = 
dx(Xln- L(K)),forevery X e /(S,.). 

Proof Because (Theorem 2.48) H and K are isomorphic if and only if L(H) and 
L(K) are permutation similar, the result follows from Lemma 7.66. o 

DEA:NmoN 7.68 If A is an n-by-n matrix and x e /(S,.), the x-th immanantal 
polynomial20of A is dx(xl,. -A). 

The irnmanantal polynomial corresponding to x = e is the characteristic 
polynomial, which is preserved under any similarity. Despite Lemma 7 .66, the 
remaining immanantal polynomials are not similarity invariants. In a perverse 
way, this makes dx (x 1,. - L(H)) more attractive as a graph invariant. Generically 
preserved only under monomial similarities (when x -:/: e), these polynomials 
seem well suited to the condition that graphs H and K are isomorphic if and only 
if L(H) and L(K) are permutation similar. In fact, it is natural to wonder whether, 
taken all together, the Laplacian immanantal polynomials characterize graphs up 
to isomorphism. The answer is, they do not. 

THEOREM 7.69 Let t,. be the number of nonisomorphic trees on n vertices and s,. 
the number of such trees T for which there exists a nonisomorphic tree T' such 
that 

dx(xl,.- L(T)) = dx(xl,.- L(T')), (7.58) 

for every X E /(S,.). Then li.mn-+oosnft,. = 1. 

Theorem 7.69 appeared in [Botti & Merris (1993)]. The proof depends on the 
fact [Schwenk. (1973)] that the probability of finding a fixed finite "limb" on a 
randomly chosen tree goes to 1 as the number of vertices goes to infinity. Because 
of this result, it suffices to exhibit a single pair of trees with certain nice properties. 
Such a pair can be found in [McKay (1977)]. 

DEFl:NmoN 7.70 Two graphs, Hand K,arecoimmanantalifdx(x/,. -L(H)) = 
dx(xl,. - L(K)), for every x E /(S,.). A set of graphs is coimmanantal if its 
elements are pairwise coirnmanantal. 

It follows from Theorem 7.69 that the probability a randomly chosen tree on 
n vertices is part of a coimmanantal pair approaches 1 for large n. This raises the 

201mmananta1 polynomials have been studied in a variety of contexts. See, e.g., [Baxter (1978)], 
[Beasley & Brenner (1968)], [Brenner& Brualdi (1967)], (Engel (1973)], [Friedland (1972) & (1975)], 
[Gibson (1971), (1972) & (1978)], [Honud & Sossa (1995)], [Jobnson, Merris & Pierce (1985-86)], 
[Kriiuter (1987)], [Merris (1975b) & (1994b)], [Oiiveira (1970), (1971) & (1972)], IS' (1981)], and 
[Strok (1990)]. The first appearance of immanantal polynomials in the study of graphs seems to bave 
been in [Turner (1968)]. 
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question whether one can find arbitrarily large coimmanantal families of graphs. 
As the next result shows, there exist coimmanantal families whose numbers grow 
exponentially with n. 

CoROU.ARY 7.71 21 Suppose k is a fixed but arbitrary positive integer. Let n = 
17 nog2(k)l + 1, where r 1 is the ceiling function. Then there exists a coimmanantal 
family of k trees on n vertices. 

It is important not to misconstrue Theorem 7.69 and Corollary 7.71. While it 
is true that, by themselves, Laplacian immanantal polynomials do not distinguish 
all pairs of nonisomorphic graphs, this takes nothing away from the fact that they 
are genuine graph invariants. 

There are some other perspectives from which to view Laplacian immanants 
of graphs. For example, given that the permanental dominance conjecture is so 
difficult, why not try to prove it for some interesting subsets of 'H.,. 1 The first result 
along these lines was obtained by [Chan & Lam (1996)] who proved that 

dx(L(T)) ~ per (L(T)) (7.59) 

whenever T is a tree. Alternatively, an inequality among immanants that holds for 
every A E 'H.,. might well be subject to some improvement when restricted to a 
suitably chosen subset of 'H.,.. It is proved in [Brualdi & Goldwasser (1984)],22 for 
example, that the Hadamard Theorem for Permanents can be improved to 

per (L(K)) 2: 2h(L(K)) (7.60) 

for bipartite K, and in [Chan & Lam (1996)] that, upon restriction to Lapla­
cian matrices of trees, Heyfron's inequalities for single-hook immanants can be 
strengthened to 

(7.61) 

21 CoroUary 7.71 is from [Mcrris (199.5)]. 

22 Also see [Bapat (1986)] and [Vrba (1986a&b)] . Related work can be found in [Balasubramaniam 
(1993)], [Borowiecki & Jozwiak (1982)], [Faria (198.5) & (1996)], [Goldwasser (1986)], [Goulden & 
Jackson (1981) & (1992a)], [Grone & Merris (1988)], and [Merris (1986) & (1994b)] . 
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Exercises 

1. Prove that Hadamard 's Theorem is a consequence of Fischer' s Inequality. 
2. Suppose A= (aij) e C,.,,.. Prove that 

11 11 

I det(A)12 ~ n L laij 12 . 
j=l i=l 

(Hint: Show that this is a variation of Hadamard's Inequality.) 

3. Let G be a permutation group of degree m. H x e /(G), prove that 

a dx(A*) = dx(A), A E C,.,,.. 

b. dx (A') = dx(A), A E C,.,,., where j"(a) = x(a), a E G. 

4. Let B = (bij) e 'H.,. and c e C,. be fixed but arbitrary. Define 

m 

cs(a) = c(a) n b;a(i)• a E S,.. 
i=l 

a Prove that cs E C,.. (Hint: dc.(A) = dc(B ·A).) 

b. Prove that dc(B ·A) ::::; c(e)h(B) det(A), A E 'H.,.. 
c. Prove Oppenheim's lnequality:23 det(B ·A) ::::; h(B) det(A), A, B e 'H.,.. 

5. Prove Lemma 7.7. 

6. Let x be an irreducible character of the subgroup G of S,.. Prove directly that 
X E C;!. (Hint: Mimic Example 7.13.) 

7. Let V be a vector space. A nonempty subset K of V is a cone if cu + dv e K 
for all u, v e K and for all nonnegative real numbers c and d. 

a. Show that C,. is a cone. 

b. Show that 'H.,. is a cone. 

8. Denote the principal character of S,. by 1,. and the alternating character by 
£.Define c: S,. -+ C by c = 1111 -£. 

a. Prove that c e C,.. (Hint: per (A) ::::: det(A), A e 'H.,..) 

b. Prove that£* Me£= -(nt)2• 

c. Explain why c E C,. \C;!. 
d. Show that {c e C,.: c(e) = 0} coincides with the set of functions 

c: S,. -+ C such that dc(A) ::::; 0 for all (not necessarily positive 
semidefinite) hermitian A e C,.,,.. 

23See (Oppenhcim (1930)]. The permanental analog of Oppenhcim's Inequality, namely 
per (B·A)~h(B) per (A), A,Be?t., is an unresolved conjecture. (See [Bapat & Sunder (1986)) and 

[Cbollet (1982)].) 
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9. Prove that per (A) is an eigenvalue of the Schur power matrix fl(A). 

10. Suppose A is a positive definite hermitian matrix, partitioned as in Equa­
tion (7.1), that is, 

A= (Au 
A2I 

AI2) 
A22 ' 

where Au is p-by-p. Recall (Chapter 2, Exercise 54) that the Schur Comple­
ment of Au in A is A/Au = A22- A2IA!l AI2· It was shown in [Bunce 
(1991)] that n(A) =::: n(Au e A/A11). 

a. Use this fact to prove that dc(A) =::: dc(Au EB A/ Au), 1 < p <m, for all 
m-by-m positive definite hermitian A, and all c E C;!. 

b. Can one draw the same conclusion for all c E Cm? (Hint: Let 

Take c to be the function from Example 7.12.) 

11. The matrix A = (aij) E 'Hm is a correlation matrix if au = 1, 1 ~ i ~ m. 
Let x. ~ E /(G). Prove that ifdx (A)=::: d~(A) for every m-by-m correlation 
matrix, then dx(A) =::: d~(A), A E 'Hm. (Thus, it would suffice to prove the 
permanental dominance conjecture for correlation matrices.) 

12. It was shown in [Merris (1983)] that (h(A"')) 11111 =::: d x (A), A E 'Hm. 
a. Use this result to prove the following inequality (that first appeared 

in [Marcus & Mine (1965a)]): If AI, A2, ... , Am are the eigenvalues of 
A E 'Hm then 

1 m 
- LAi =::: per (A). 
m i=l 

(Hint: Use the arithmetic-geometric mean inequality to show that 
tr (A"')/m =::; (h(Am))11"'.)24 

b. Suppose AI =::: A2 =::: 0. Prove that there exists a matrix A e 'H2 having 
eigenvalues AI and A2, and permanent (A~+ A~)/2. (Hint: Look for a real 
symmetric matrix having equal diagonal entries.)25 

24It was conjectured in [Grone & Merris (1987)] that the permanent of a correlation matrix is not 

less than the average of the squares of its eigenvalues (multiplicities included). 
25When m>2, the problem of muimizing per (A) over those Ae1(, with a prescribed spectrum 

is not so easy. See, for example, [Grone, Jobnson, Sa, & Wolkowicz (1986)]. 
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13. (S. Pierce) Let A = 3/3 - h where 13 is the 3-by-3 each of whose entries 
is 1. 

a. Prove that A e 'H3. 

b. If G = A3 and x is the principal character, show that dt (A) = 6. 

c. If G = A3 and x is one of the nonprincipallinear characters of G, show 
that dx (A) = 9. 

d. If x is an irreducible character of the subgroup G of S,., is it always true 
that dt (A) :::; d x (A), A E 'H,.? 

14. Show that d[~.lJ(A) :::; d£3,2,1J(A), A e 'H.,. 

15. Show that d[4,3J(A) :::; d[4,2,1](A), A e 'H7. 

16. Suppose 1r = [rrt, 1r2, ... , 7rk] 1- m. If 1r1 = r, show that d1r(A) :::; dr(A), 
A e 'H,., where dr = d[r,l•-•J· (Hint: Pate's Theorem.) 

17. Suppose rr, p 1- m. Write rr c p if, for all A e 'H,., d1r(A) > 0 =* dp(A) > 
0. 
a. Prove that rr C p if and only if rr is majorized by p. (Hint: Theorems 6.47 

and 7.26.)'NJ 

b. Ifdp(A):::; d1r(A), A e 'H,., prove that p majorizes rr. 

18. (S. Pierce) Let 1,. be the n-by-n matrix each of whose entries is 1. 

a. If A= 12 $ 12, show that d[3,1](A) < dr2z1(A). 

b. If A= 12 $12$ 1t. show that d(3,PJ(A) < dl2z,l](A). 

c. Comment on the following conjecture: "If p majorizes rr, then dp(A) :::; 
d1r (A), A :::; 0." 

19. Suppose dx(A):::; per (A) for all m-square A:::; 0. Prove that G = S,. and 

x=l. 
20. Suppose A e 'H,. is fixed but arbitrary. Let G be a subgroup of S,. and x be 

the principle character of G. Prove that dx (A) = 0 if and only if A has a zero 
row. (Hint: Corollary 7.27.) 

21. Suppose 1r = [rrt. 1r2, ... , 7rr] 1- m. Let X= X1r e /(S,.). 

a. If A e C,.,,. has more than 1r1 equal rows, prove that the immanant 
dx(A) = 0. (Hint: Corollary 7.27.) 

b. What property of determinants is generalized in part (a)? 

22. Suppose rr = [rrt, 1r2, ... , 1rr] 1- m. Let X = X1r e I (S,.). 

a. If the rank of A e C,.,,. is less than r, prove that the immanantdx (A) = 0. 
(Hint: Corollary 7.27.) 

b. What property of determinants is generalized in part (a)? 

'NJ"Singular sets" for generalized matrix functions are discussed in [Beaslcy & Cummings (1983)). 
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23. Suppose A e 'H.,.. Then (Lemma 2.43), there exists a matrix B e C,.,,. such 
that A= B*B. 
a. Prove that there exists an upper triangular matrix C e C,.,,. such that 

A= C*C. 

b. UseTheorem7.29toprovethatdx(A) ~ x(e)ldet(C)I2• 

c. Use part (b) and the fact that I det(C)I2 = det(C*) det(C) to give a proof 
of Schur's Inequality that does not depend on Watkins's Theorem. 

24. Suppose A e 'H.,. . 

a. Prove that h(A) = det(A) if and only if A has a zero row (and column) or 
A is diagonal. 

b. Prove that per (A) = det(A) if and only if A has a zero row (and column) 
or A is diagonal. 

25. [Williamson (1969)]27 Let H be a subgroup of G, where G is a permutation 
group of degree m. Suppose x is an irreducible character of G that remains 
irreducible when restricted to H. 

a. Prove that T(G, x)T(H, X) = T(G, x). (Hint: Use the Schur Relations.) 

b. Prove that Yx(G) C Yx(H), for any vector space V. 

c. Prove that d~(A)/o(G) !:: d: (A)/o(H), A e 'H.,., where, d~ is the 
generalized matrix function based on G and x and d: is the generalized 
matrix function based on H and x. 

26. Let G be a subgroup of S,.. Suppose t' e Z(G), the center of G. If 
A = (a;j) e C,.,,., prove that 

,. 1 n ai'l'(i) = (G) L X(l'-
1
)dx(A). 

i=1 O J(El(G) 

27. Suppose A e 'H.,. is partitioned into blocks, 

A= (An A12) 
A21 A22 ' 

where A 11 is invertible. Prove that 

where (A/ Au) is the Schur complement of Au in A. (See Exercise 10.) 

27 Stated originally for linear characters, Williamson's work has since been extended in several 
ways. (See, for example, [Merris (1976)].) 
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28. Suppose A = (a;i) e 'H11 is positive definite. Denote by A, the leading t-by-t 
principal submatrix of A, and let u, be the vector formed from the first t - 1 
entries of row t of A, that is, u, = (ar,t. ar,2 •••• , ar,r-t) 

a Prove that a,- u,A;-21u7 > 0, t > 1. (Hint: This is a Schur Complement 
problem. See Exercise 10.) 

b. Prove that 

m 
au n (a, - u1A;=!1 u;) = det(A). 

t=2 

c. Compare and contrast part (b) with Hadamard's Inequality. 

d. HA.= A.1 is the largest eigenvalue of A, prove that 

det(A)"" 
h(A)- det(A) ~~f.-! la;il· 

I<J 

(Hint: Show that det(A(tlt)) ~ det(A)/A., and u,A;-21u7 ~ llu, 11/A..) 

29. Let x be an irreducible character of the subgroup G of S,. Suppose A e 'H., 
has maximum eigenvalue A.1 and minimum eigenvalue A.,. 

a Prove that A.T ~ d x (A) ~ A.:::. (Hint: Show that A.1/, ~ A ~A.,/,.) 

b. Show that the right-hand inequality in part (a) is inferior to Schur's 
Inequality. 

c. When xis the principal character of S,, show that the left-hand inequality 
in part (a) is inferior to the inequality in Exercise 12(a). 

30. Recall that an m-by-m matrix A = (aij) is doubly stochastic if a;i ~ 0, for 
all i and j, and if each row and column of A sums to 1. HA e 'H., is doubly 
stochastic, prove that 

a. A ~ ~J,, the m-by-m matrix each of whose entries is 1/m. 

b. per (A)~ mlfm"'. 
31. Prove Lemma 7.35. 

32. Let x be an irreducible character of the subgroup G of S,. Suppose A e C11 ,11 • 

a Prove that dx (A[al~]) = 0 if either a or~ fails to belong to Q. 

b. What well known statement about determinants is generalized in part (a)? 

33. Suppose A, Be 'H.,. 
a Prove that det(A 11"') = [det(A)]I/m. 

b. Prove that Theorem 7.33 is stronger than Corollary 7.31 when G = S, 
and x = £. (Hint: [det(A)11"' + det(B)11111

]
111 = det(A) + det(B) plus a 

sum of terms of the form det(Bsl2m A''"' B•l2m), where s + t =m.) 
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34. Prove that Theorem 7.33 is stronger than Corollary 7.31 when A and B 
commute. 

35. Let x be an irreducible character of the subgroup G of S,.. Fix n and take 
r "'·" to be ordered lexicographically. For each A e C,,,, let R(A) be the 
n"'-by-n"' matrix whose {a, fJ)-entry is 

(x(e)fo(G))dx (A[alfJ]). 

a Prove that R(AB) = R(A)R(B). 

b. Explain why A-+ R(A) is not a representation of GL(n, C). 

36. Let x be a linear character of the subgroup G of S,.. If Vx (G) :f:. {0}, prove 
that A-+ K(A) is a representation of GL(n, C). 

37. Let m = n, G = S,, and X =e. Show that K(A) is the one-by-one matrix 
(det(A)). 

38. Show that Equation (7 .28) is an immediate consequence of Corollary 7.42 and 
the definition of matrix multiplication. 

39. Suppose x is an irreducible character of the subgroup G of Sm. Let A, B e 'H.,, 
and suppose A :::: B. 

a. If xis linear, prove that K(A):::: K(B). 

b. Use part (a) to prove that dx (A[ala]) :::: dx (B[ala]), a e A, when x is 
linear. 

c. Prove that dx(A[a!a]) :::: dx(B[a!a]), a E r m,11 , whether X is linear or 
not. 

40. Suppose A, B e 'H., . If A :::: B, prove that padj (A) :::: padj (B). 

41. The classical adjoint (or adjugate) of A e C,,, is the n-by-n matrix adj (A) 
whose (i, j)-entry is (-t)i+i det(AUii)). 

a Prove that adj (A) and C11-J (A) have the same spectrum, that is, the same 
eigenvalues with the same multiplicities. 

b. Suppose n > 1. Is adj (A) similar to C11-J (A) for all A e C,,,? Justify 
your answer. 

42. Confirm by a direct computation that Equation (7 .35) is valid for a generic 
3-by-3 matrix A = (a;j). 

43. An inversion of a e Sm is an ordered pair (i, j) such that 1 :::: i < j :::: m 
and u(i) > aU). Denote by inv (u) the number of inversions of a. Let 
q E [ -1, 1] be fixed but arbitrary and define c: Sm -+ C by c(a) = q inv (a). 

It was proved in [Bozejko & Speicher (1991)] that c e C,.. Therefore, the 
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so-called .. q-permanent",28definedby per q(A) = dc(A),A e C111, 111 ,satisfies 
perq(A) ~ det(A), A e 'H111 • 

a. Prove that per 1 = per , the permanent function. 

b. Prove that per o = h, Hadamard' s function, provided ffl is defined to be 1. 

c. Prove that per -1 = det, the determinant function. 

44. Finish the proof of Theorem 7 .38. 

45. Prove Lemma 7.51. 

46. 1f A, Be C,.,,., prove that 

a. det(A +B) = Lk=O La,peQa.- ( -1)'(a)+r~) det(A[allm det(B(ai.B)). 

b. per(A +B) = Lk=O La,JJeQa.- per (A[alf.J]) per (B(alf.J)). 

47. Suppose A e 'H111 has eigenvalues At ~ A2 ~ · • · ~ A111 • Let G be a subgroup 
of S,.. and suppose x e /(G). 

a. Prove that minae'A 0~1 Aa<t> =:; dx(A) =:; maxae'A 0~=1 Aa<t>· 
b. Show that the left-hand inequality in part (a) is inferior to Schur's Inequal­

ity. 

c. 1f x is the principal character of S111 , show that the right-hand inequality in 
part (a) is inferior to the inequality in Exercise 12(a). 

48. Suppose A, B e 'H111 are positive definite. HO =:; 8 =:; 1 then (see, for example, 
[Bellman (1953)]) 

det(9A + (1 - 8)B) ~ det(A)9 det(B) 1- 9 • 

Use this fact as the basis for another proof of Hadamard's Inequality. 

49. Suppose x is a linear character of the subgroup G of Sm. Let A e C,.,,.. 
Assume 11 C r "'·" is not empty. 

a. 1f A is invertible, prove that K(A) is invertible. 

b. 1f A is normal, prove that K (A) is normal. 

c. 1f A~ 0, prove that K(A) ~ 0. 

Excursion Exercise 

50. Continuing from Example 7 .62, 

28See [Bapat (1992)) and [Bapat & La1 (1994)], where it is proven that per 1(A)~ 
per 1 (A 11 ) per 1 (A22), when Ae'H. is partitioned as in Equation (7.1) and qe(O,l]; and where it is 
conjectured that for any fixed non-diagonal matrix Ae'H., q-+ per ,(A) is a strictly increasing function 
of q in the interval [-1,1]. (A weaker conjecture is that. for any qe[-1,1], per ,(A)~ per (A), Ae'H •. ) 
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a find three linearly independent homogeneous polynomial invariants of 
A(G) of degree 6. 

b. determine the dimension of the space of homogeneous polynomial invari­
ants of degree 8. 

c. speculate about a generating set for the algebra of polynomial invariants. 

Application Exercises 

51. Find a pair of invertible 2-by-2 matrices A and B such that 

a. per (AB) = per (A) per (B). 

b. per (AB) '# per (A) per (B). 

c. per (ABA-1) '# per (B). 

52. Find a 3-by-3 invertible matrix A such that 

53. The permanental roots of ann-by-n matrix A are the roots of its permanental 
polynomial, p(x) = per (x/n -A). Suppose A E 'Hn. 

a. Show that p(x) is a monic polynomial of degree n. 
b. Show that p(O) = ( -1)" per (A). 

c. Show that the sum of the permanental roots of A is equal to the sum of its 
eigenvalues. 

d. Prove that the real permanental roots of A lie in the closed interval [An, AI], 
where AI ~ A2 ~ · · · ~An are the eigenvalues of A. 

e. Prove or disprove that all permanental roots of A are real. 

54. The star on n > 1 vertices is the unique tree Tn having one vertex of degree 
n - 1 and n - 1 vertices of degree 1. The multiplicity of 1 as a root of 
per (x/n - L(Tn)) is n- 2 [Faria (1985)]. 

a. Find the other two roots if n = 3. 

b. Find the other two roots if n = 4. 

c. Find the other two roots as a function of n. 
d. Prove that the permanental roots of L(Tn). n ~ 7, are all real. 

55. If T is a tree on n vertices, then [Chan, Lam & Tang (1996)] per (L(Tn)) ::: 
per (L(T)) ~ per (L(Pn)). where Tn is the star (see Exercise 54) and Pn is 
the path, that is, the unique graph on n > 1 vertices having two vertices of 
degree 1 and n - 2 vertices of degree 2. Confirm this result when n = 5. 
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56. Let n be a fixed positive integer. Show that there exists a coimmanantal family 

of at least k = 2<n-l)/l7 trees on n vertices. (Hint: Corollary 7.71.) 

57. Let G = (V, E) be a graph on n > 2 vertices. A hamiltonian path in G is 

an arrangement of then vertices of V into a sequence (v1, 1J2, ••• , tJ11 ), such 

that {v; , Vi+d E E, I~ i < n. If {v1, tJ11 } e E as well, then the hamiltonian 

path is a hamiltonian cycle. Prove that the number of hamiltonian cycles in 

G is given by the formula 

(Hint: Exercises 53 and 54, Chapter 4.) 



CHAPTER 8 

The Rational Representations 
ofGL(n, C) 

The general linear group (or "full" linear group) is the multiplicative group 
GL(n, C) of invertible n-by-n complex matrices. The main thrust of the chapter 
concerns representations R: GL(n, C) ~ GL(r, C) in which the elements of 
R(A) are fixed rational functions1 (ratios of polynomials) in the elements of A. 
Classical Schur polynomials emerge in the role of characters associated with these 
representations. These polynomials turn out to be powerful tools in the study of 
irreducible characters of symmetric groups and their associated immanants. 

We begin with a deep algebraic result, commonly known as Weyl's Principle 
of the Irrelevance of Algebraic Inequalities. 2 

THEOREM 8.1 Suppose Xt, xz, ... , Xm are independent indetenninates over the 
complex numbers. Let f, 81, 82 •. . . , 8p e C[xt, xz, ... , Xm]. where none of 
81, 82· ... , 8p is the zero polynomial. Suppose 

f(ct, c2, ... , Cm)= 0, 

whenever Ct, cz, .. . , Cm e C are such that 

8r(Ct, cz, ... , Cmh~ 0, I :S. t :S. p. 

Then f is the zero polynomial. 

1"Faxed" means the rational functions depends on R but not on A. 
2Tbc version presented bcrc is but a special case of Wcyl's Principle. 

265 
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Proof Define h E C[x1, x2, ... , Xm] by 

p 

h(Xl, X2, ••• , Xm) = j(Xl, X2, • • ·, Xm) n 8t(Xl, X2, • • ·, Xm). 
t=l 

Then h(cl, Cl • •.. , Cm) = 0 for all c1, c2, .•. , Cm E C. In other words, h is the 
zero polynomial. Because C[x,, x2, ... , Xm] is an integral domain, it has no zero 
divisors. Thus, one of the factors of h must be zero. Because g, :f: 0, 1 :5 t :5 p, 
it must be that f = 0. o 

The next result, interesting in its own right, is of critical importance to 
subsequent developments. 

THEOREM 8.2 Let R: GL(n,C) ~ GL(l,C) be a polynomial representation 
of GL(n, C). Then there is an integer k ::: 0 such that R(A) = det (A)1, 

A e GL(n,C). 

Proof Because R is a homomorphism, R(l") = 1. (We will freely abuse the 
language by confusing GL(1, C) with C\{0}.) Therefore, for any A e GL(n, C), 

1 = R(AA-1) 

= R(A)R ( det\A) adj (A)) . (8.1) 

Because R(A) is a fixed polynomial in the entries of A, there exists a positive 
integer, say q, such that multiplying both sides of Equation (8.1) by det (A)9 
produces det (A)9 = R(A)g(A), where 

g(A) = det (A)q R ( de/ (A) adj (A)) 

is a polynomial function of the entries of A. Moreover, neither g nor the integer q 
depends on A. In other words, if X = (X;j) is an n-by-n matrix whose entries are 
n2 independent indeterminates over C, then det (X)9- R(X)g(X) = 0, as long 
as det (X) :f: 0. It follows from Weyl's Principle that 

det (X)9 = R(X)g(X), (8.2) 

for all X, that is, Equation (8.2) is a polynomial identity. Because det (X) is 
an irreducible polynomial (see Lemma 8.3), it follows from Equation (8.2) that 
R(X) = c det (X)1 for some c e C and some noooegative integer k. Substituting 
111 for X yields c = 1. o 
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LEMMA 8.3 If X = (Xij) is an n-by-n matrix whose entries are n2 independent 
indeterminates over C, then det (X) is an irrt!ducible element of the unique 
factoriztllion domain C[xu, x12 •... , x,.,.). 

The next result allows us to focus on polynomial representations. 

THEOREM 8.4 Let R: GL(n, C)__. GL(r, C) be a rational representation. Then 
there exists an integer k and a polynomial representation S: GL(n, C) __. 
GL(r, C) such that R(A) = det (A}A:S(A), A e GL(n, C). 

Proof Let X = (Xij) be an n-by-n matrix whose entries are n2 independent 
indetermioates over C. Denote the (s, t)-entry of R(X) by Rs1(X). Suppose 
q(X) is a least common multiple of the denominators of the rational functions 
Rs1(X), 1 ::: s, t ::: r. (Then q(X) is unique up to multiplication by a nonzero 
complex number.) Let p(X) be a greatest common divisor of the r 2 polynomials 
q(X)Rs1(X). Then we may write 

R(X) = :~~~ S(X), (8.3) 

where the (s, t)-entry of S(X) is a polynomial in C[xu, Xt2 .... , x,.,.), and a 
greatest common divisor of the entries of S(X) is 1. (In case r = 1, we may 
take S(X) = 1.) Without loss of generality, we may assume p(X) and q(X) are 
relatively prime. Replacing p(X) with p(X)fp(I,.), q(X) with q(X)/q(/,.), and 
S(X) with p(I,.)S(X)/q(I,.) allows us to assume that p(l,) = q(I,.) = 1. Because 
R(I,.) = I,, it follows that S(I,) = I,. 

In view of Theorem 8.2, it remains to show that p, q and S are representations 
of GL(n, C). For any A, B e GL(n, C), R(AB) = R(A)R(B). Substituting 
Equation (8.3) into this identity yields 

p(AB)q(A)q(B)S(AB) - p(A)p(B)q(AB)S(A)S(B) = 0. (8.4) 

This matrix equation is equivalent to r2 equations in which a polynomial function 
in the 2n2 entries of A and B is equal to zero, provided (only) that det (A) ::/: 
0 ::/: det (B). Therefore, from Weyl's Principle, each of the r2 polynomials is 
identically zero. That is, Equation (8.4) is an identity for all n-by-n matrices. In 
particular, if B e GL(n, C) is fixed but arbitrary, and X is an n-by-n matrix of 
indeterminates, then 

p(XB)q(X)q(B)S(XB)S(B)-1 = p(X)p(B)q(XB)S(X). (8.5) 

Because q (X) is a factor of the left-hand side of this equation, it divides each entry 
of the r-by-r matrix on the right-hand side. Since q(X) and p(X) are relatively 
prime, q(X) divides each entry of the matrix q(X B)S(X). Because the entries 
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of S(X) are relatively prime, it must be that q(X) divides q(XB). Because the 
degree of the polynomial q(X B) cannot be larger than the degree of q(X), there 
is a complex number c(B) such that 

q(X B) = q(X)c(B). (8.6) 

Substituting X = /11 we have, because q(/11 ) = 1, c(B) = q(B). It follows that 
q: GL(n, C)-+ GL(1, C) is a representation. In particular (Theorem 8.2), q(X) 
is a nonnegative integral power of det (X). 

Setting A = X and B = x-1 in the polynomial identity (8.4) we have (because 
q(X-1) = q(X)-1, p(/11 ) = 1, and S(/n) = lr) 

(8.7) 

Because x-1 = det (X)-1 adj (X) and the entries of p(X-1) and S(X-1) are 
polynomials in the entries of x-1, there exists a nonnegative integer m such that 

Q(X) = det (X)"' p(X-1)S(X)S(X-1) 

has polynomial entries. Therefore, from Equation {8. 7), 

p(X)Q(X) = det (X)"' Ir. 

It follows from this equation and Lemma 8.3 that p(X) is a nonnegative integral 
power of det (X). Returning to Equation (8.3), we see that 

R(X) = det (X)" S(X), 

for some integer k. Therefore, 

S(AB) = det (AB)-Ic R(AB) 

= [ det (A)-le R(A)][ det (B)-le R(B)] 

= S(A)S(B), 

for all A, Be GL(n, C), that is, S: GL(n, C)-+ GL(r, C) is a representation. o 

THEOREM 8.5 Any polynomial representation P: G L(n, C) -+ G L(r, C) is 
equivalent to a direct sum of homogeneous polynomial rr:presentations. 
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Proof Let y and z; be independent indetenninates over the complex numbers. 
Because P is a polynomial representation, there is a nonnegative integer k, and 
k + 1 matrices Co, Ct •... , C~: E Cr,r such that 

P(yln) = Co + yCt + · · · + y1 C~:. 
Similarly, P(z;l11 ) = EtC;. Consequently, 

k. 
L<YdC; = P(yzln) 
j=() 

= P(yl11 )P(z;ln} 

= (ty'c1) ft,zici) 
,==() \j=() 

k. k. 

= L<YdC1 + LLY1ziC;Ci. (8.8) 
j=() j=() #i 

Comparing coefficients in Equation (8.8), reveals that Co, Ct •... , C~: are annihi­
lating idempotents. Because P(l11 ) = E C; = Ir. it follows that there is a fixed 
U e GL(r, C) such that u-1c;U = B;, 0 ~ i ~ k, where 

B; = Or0 $ · · · $ Or,_1 $ lr, $ Orl+l $ • · • $ Ort• 

r; = rank (C;) and 01 is the t-by-t zero matrix. (H C; = 0, then r; = 0 and 
B; = 0.) Suppose that q of the C;'s are nonzero, say C,.., C,.z, ... , C,.,. 

Let X = (Xij) be an n-by-n matrix such that y together with the Xij are n2 + 1 
independent iodetenninates over C. Partition the matrix u-1 P(X}U = (Ps1(X)), 
where Ps1(X) is r,.,-by-r,.,, 1 ~ s, t ~ q. Because u-1 P(yl11 )U commutes with 
u-1P(X)U, 

y'"• Psr(X) = y'"' Psr(X), 

1 ~ s, t ~ q. It follows that Pst (X) = 0, s :f: t. In other words, 

u-1 P(X)U = Pu(X) E9 P22(X) $ · · · $ P99 (X). 

Therefore, P;;: GL(n, C) -+ GL(r;, C) is a representation. Moreover, because 
the entries of u-1 P(X)U are linear combinations of the elements of P(X), P;; is 
a polynomial representation of GL(n, C). Finally, 

P;;{yX) = P;;(yl11 X) 

= P;;{yl11 )P;;(X). (8.9) 

Because P;;(y/11 ) = y1111 lr,. 1 ~ i ~ q, we obtain P;;(yX) = y'"' P;;(X). In other 
words, the entries of P;;(X) are homogeneous polynomials of degree m; in the 
entries of X. o 
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ExAMPLE 8.6 Let X = (x;j) be an n-by-n matrix of indetenninates. Recall 
(Definition 5.41) that the m-th Kronecker power of X is an nm-by-nm matrix 
whose rows and columns are indexed by r m,rr• The (c:r, fJ)-entry of x®m is 

m 
(X~)cr,IJ = n Xcr(t)IJ(t)· 

1=1 

Observe that every monomial of (total) degree m in the n2 variables xu , Xt2, ••• , x,.,. 
occurs (at least once) as an entry of x®m. o 

Suppose P: G L(n, C) -+ G L(nm, C) is the representation defined by P(A) = 
A ®m. Because P(A) is ann"' -by-nm matrix, the degree of the representation is nm. 
At the same time, the entries of P(A) are monomials of degree m in the entries 
of A. The two different uses of the word "degree" might be confusing. Let us 
agree to understand the phrase "P is a homogeneous polynomial representation 
of degree m" to mean that m is the degree of the polynomial functions and not the 
degree of the representation. 

Because GL(n, C) is an infinite group, Mascbke's Theorem cannot be applied 
to the representation A -+ P(A). Nevertheless (as we will see presently), Pis fully 
reducible. Moreover, for any fixed U e GL(nm, C), the entries of u-t P(A)U are 
linear functions (homogeneous polynomial functions of degree 1) in the entries of 
A ®m and, therefore, homogeneous polynomials of degree m in the entries of A. It 
is useful to look at this situation from another perspective. 

LEMMA 8.7 Let m be a fixed but arbitrary positive integer. Consider g = 
(A®"': A E GL(n, C)}. Then g is a subgroup of GL(n"', C), and the identity 
mapping, A®"'-+ A®"', A®"' E g, is a representationofg.lf F: g-+ GL(r, C) 
is a homogeneous polynomial representation of g of degree 1 in the entries of 
A ®m, then F is fully reducible, and each irreducible constituent ofF is equivalent 
to a constituent of the reduction of A ®m -+ A ®m. 

That the irreducible constituents ofF should be equivalent to constituents of the 
m-th Kronecker power representation, already plausible from Example 8.6, can be 
proved using a dimension argument [Macdonald (1995), p. 162]. The remainder 
of Lemma 8. 7 is a special case of a more general result from the representation 
theory of semi-simple algebras, a proof of which can be found, for example, in 
[Green (1980), pp. 29-30] or [Marcus (1975), pp. 38~395]. 

Let R: GL(n, C) -+ GL(r, C) be a homogeneous polynomial representation 
of degree m. Let g = (A®"': A e GL(n, C)}, and define a function R,: g -+ 
GL{r,C)by 

(8.10) 
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Then 

R,.(A®m B®m) = R,.((AB)®m) 

= R(AB) 
=R(A)R(B) 
= R,.(A®m)R,.(B®m). 
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(8.11) 

Therefore, R,. is a representation of g. Moreover, the entries of R,.(A®m) are 
linear functions of the entries of A ®m. It follows from Lemma 8. 7 that R,. is fully 
reducible and its irreducible constituents are equivalent to irreducible constituents 
of the representation A®m --+- A®m. This means that the (arbitrary) representation 
we started with, namely R: GL{n, C) --+- GL(r, C), is fully reducible, and its 
irreducible constituents are equivalent to irreducible constituents of A --+- A ®m, 

the m-th Kronecker power representation of G L(n, C). 
Let's summarize. Suppose R: GL(n, C)--+- GL(r, C) is a rational representa­

tion of the general linear group G L(n, C). By Theorems 8.4 and 8.5, there exists 
an integer k and homogeneous polynomial representations P;, 1 ~ i ~ q, such 
that R is equivalent to a representation R' defined by 

(

Pt(A) 0 ... 

R'(A) = det (A)k O ~(A) ::: 

0 0 . . . 

(8.12) 

A e GL(n, C). Moreover, as a consequence of Lemma 8.7, for each i, A --+- P; (A) 
is fully reducible and each of its irreducible constituents is equivalent to an 
irreducible constituent of some Kronecker power representation. Therefore, to 
completely comprehend the rational representations of the general linear group, it 
only remains to reduce its Kronecker power representations. (Taken together, the 
Kronecker power representations play a role that is analogous to the role of the 
regular representation in the theory for finite groups.) In determining the irreducible 
constituents of the m-th Kronecker power representation, it will simplify matters 
to replace GL(n, C) with the isomorphic group GL(V) of invertible linear 
operators on a vector space V of dimension n. From the operator perspective, 
constituents of A --+- A ®m correspond to subspaces of y®m that are invariant 
under T®m, T E G L(V), and irreducible constituents correspond to minimal 
invariant subspaces. 

Recall that we have already discovered some invariant subspaces of y®m. 
If x is an irreducible character of the subgroup G of S,., then Vx (G) is an 
invariant subspace of T®m = T ® T ® · · · ® T (m-times). Hence (abusing the 
language), T --+- K (T) is a (not necessarily irreducible) constituent ofT --+- T®m, 
T e GL(V). Because (Corollary 6.6) 

y®m = $xei(G) Vx (G), (8.13) 
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the direct sum of the symmetry classes of tensors afforded by G and its irreducible 
characters, T __. T 8 "' is a "direct sum" of "representations" of the form 
T __. K(T) as x ranges over /(G). Thus, it suffices to find the minimal invariant 
subspaces of Vx (G), that is, to "reduce" T __. K(T), T e GL(V). We begin this 
final step by introducing a refinement of the projection operator T ( G, x ). 
DEANITION 8.8 Let x be an irreducible character of the subgroup G of S,.. 
Suppose u __. A(u) = (a;j(u)) is a representation of G that affords X· For a fixed 
butarbitraryvectorspace V,denoteby T;(G, A) e L(V®"', V®"'), 1::; i::; x(e), 
the operator defined by 

X (e) ""' T;(G, A)= o(G) feG au(u)P(u). 

THEOREM 8.9 Let x be an irreducible character of the subgroup G ofS,.. Suppose 
u __. A(u) = (a;j(O')) is a representation of G that affords x. /f V is a vector 
space, then 

(i) T;(G, A)7j(G, A)= 8;jT;(G, A), 1::; i, j::; x(e); and 

(ii) Lf~~> T;(G, A)= T(G, x). 

If V is an inner product space and A is a unitary representation, then 

(iii)T;(G, A) is hermitian. 

Proof We prove part (i): 

T;(G, A)7j(G, A)= (:(~~ r (E a;;(u)P(u)) (E ajj(t:)P('r)) 
aeG ~eG 

( 
x(e) )

2 
""' = o(G) L..... au(u)ajj(t:)P(ut:) 
a,~eG 

x(e) L =- 8··a··(t:)P(t:) 
o(G) 'J " 

~eG 

by Theorem 4.21. D 
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ExAMPLE 8.10 Consider the representation of S3 from Example 4.3, namely, 

Then 

and 

A(e3) = ( ~ ~) , A((12)) = ( ~ ~) , 

A((23)) = ( -~ -~), A((123)) = ( -~ -~), 

A((132))=(-~ -~). and A((13))=(-~ -~)· 

1 
T1 (S3, A) = '3(P(e3)- P((23))- P((132)) + P((13))), (8.14) 

T2(S3, A) = ~(P(e3) + P((23))- P((123))- P((13))). (8.15) 

0 

DEFINrnoN 8.11 Let x be an irreducible character of the subgroup G of Sm. 
Suppose a -+ A(a) = (a;j(a)) is a representation of G that affords X· For a fixed 
but arbitrary vector space V, denote the image of T;(G, A) by V~(G). 

CoROu.ARY 8.12 Let X be an irreducible character of the subgroup G of S111 • 

Suppose a -+ A (a) = (a;j (a)) is a representation of G that affords x. If V is a 
vector space, then 

(8.16) 

Moreover, if A is unitary and V is an inner product space, then the diner sum in 
Equation (8.16) is orthogonal. 

Proof The result is an immediate consequence of Theorem 8.9 and the definitions. 
0 

Because T®'" commutes with P(a), a e S111 , it commutes with T;(G, A). 
Therefore, V~(G) is an invariant subspace of r®m and, hence, of K(T). Denote 
the restriction of K (T) to V~ (G) by K~ (T), T e L(V, V). 

THEOREM 8.13 Let X be an irreducible character of the subgroup G of S111 • 

Suppose a -+ A(a) = (a;j(a)) is a representation ofG affording X· Let V be 
a vector space. If Vx (G) ;:/: {0}, then K~ and K~ are equivalent repnsentations 
of G L(V), 1 !': i !': j !': x (e). If G = S111, then T -+ K~ (T) is an irreducible 
representation ofGL(V). 

If G = Sm and X = Xtr where 1r = [1r1, 1r2, ••• , 1rr] 1- m, then (Corollary 6.38) 
Vx (S111 ) I: {0} if and only if r !': dim (V). 
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Proof Because (Lemma6.2) P(u) commutes with T(G, x), Vx(G) is an invari­
ant subspace of P(u), u E G. Denote the restriction of P(u) to Vx (G), by Px(u), 
u E G. Then, u -+- P x ( u) is a representation of G, and 

is the identity operator on Vx (G). 
Suppose ~ is an irreducible character of G different from x. Then 

Z = ~(e) L Hu)Px(u) 
o(G) aeG 

is a linear operator on Vx (G). Observe that 

Z = Z o Ivz(G) 

( ~(e) " ) (x(e)" ) = o(G) ~ ~(u)Px(u) o(G) ~ x(-r)Px(-r) 
aeG reG 

=0, 

by Theorem 4.26. Therefore, 0 = tr (Z) =~(e)(~. T/)G, where '1 is the character 
afforded by u -+> Px(u), u E G. Evidently, the restriction of '1 to G contains 
no irreducible character of G different from j". It follows that there exists a basis 
8 of Vx(G) such that the matrix representation of Px(u) with respect to 8 is 
the direct sum of (the contragredient representation) C(u) = A(u- 1)' with itself 
N = (X, T/)G times. In other words, with respect to 8, the matrix representation 
of Px(u) is 

[Px (u)]B =IN® C(u), a E G. (8.17) 

If we abuse the language by confusing T;(G, A) with its restriction to Vx(G), 
then, by Equation (8.17) and the Schur Relations, 

x(e) " [T;(G, A)]B = (G) ~ aii(u)(IN ® C(u)) 
0 aeG 

(8.18) 
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where E;; is the x(e)-by-x(e) matrix whose only nonzero entry is a 1 in position 
(i, i). 

Let T e L(V, V) be a (not necessarily invertible) linear operator on V. Partition 
the matrix [K(T)]B = (K$1) into N 2 blocks, K!, of size x(e)-by-x(e). Because 
[K(T)]s commutes with [P.x(u)]s =IN® C(u), and because C is irreducible, 
Corollary 4.17 implies that K!t is a multiple of I x<e>• 1 ~ s, t ~ N. In other words, 

[K(T)]s = B(T) ® l.x<e> (8.19) 

for some N-by-N matrix B(T). By Exercise 21, Chapter 5, there exists a 
permutation matrix Q such that 

Q1(B ® C)Q = C ® B 

for all B e CN,N. and all C e C.x(e),.x(e)· Similarity by Q merely permutes 
the elements of the ordered basis B into a new ordered basis B'. Thus, from 
Equation (8.18), 

[T;(G, A)]s' = E;; ®IN. 

It follows that the first N elements of B' form a basis Bt of V1(G), the second N 
elements form a basis In of Vl(G), and so on. Applying this observation to 

[K(T)]s' = lx<e> ® B(T), 

we deduce that, with respect to 8;, the matrix representation of K~ (T) is B(T), 

1 ~ i ~ x(e). Therefore, K~ and K~ are equivalent. 
We now consider the case in which G = Sm. Recall (Definition 6.72) that a 

linear operator on v®m is bisymmetric if it commutes with P(u), u e Sm. By 
Corollary 6.73, the space ofbisymmetric operators is (T®m: T e L(V, V)). The 
local versionoftheresultis that (K(T): T e L(V, V)) is thesetoflinearoperators 
that commute with { P .x ( u) : u e Sm}. In matrix terms, 

([K(T)]s = B(T) ® lx<e>: T e L(V, V)) 

is the set of matrices that commute with 

HP.x(u)]s =IN® C(u): u e Sm}. 

However, by Corollary 4.17, the matrices that commute with 

{IN ® C(u): u e Sm} 
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are those of the form C ® lx<e>• C e CN,N· It follows that CN,N = {B(T): T e 
L(V, V)). Therefore, {B(T): T e L(V, V)} is irreducible. Whatweneedtoprove 
is that {B(T): T e GL(V)} is irreducible. This will require one more application 
of Weyl's Principle. Fix an arbitrary basis of V. Denote by [T] the matrix 
representation ofT e L(V, V) with respect to this basis. Then there exists a fixed 
invertible matrix M such that B(T) is a principal submatrix of M-1([T]®"')M, 
T e L(V, V). In particular, the elements of B(T) are homogeneous polynomials of 
degree m in the entries of[T]. Let U e GL(n, C) be fixed but arbitrary. Denote the 
(1, H)-entry of u-1 B(T)U by p([T]), T e L(V, V). Suppose p([T]) = 0 for all 
T e G L(V). Then the polynomial function p([T]) = 0 whenever det ([T]) :F 0. 
By Weyl's Principle, p([T]) = 0 for all T e L(V, V), contradicting the fact that 
{B(T): T e L(V, V)} is irreducible. Because U was arbitrary, it follows that 
{B(T): T e GL(V)} is irreducible. o 

DEFINI110N 8.14 Let X be an irreducible character of the subgroup G of S111 • 

Suppose a -+ A(a) = (a;j(a)) is a representation of G affording X· Let V be a 
vector space. Denote the restriction ofT®"' to Vl(G) by B~(T), T e L(V, V). 

The abbreviation B'; (T) will be used in place of Bf (T). 

The matrix B(T) that occurs, for example, in Equation (8.19) is a matrix 
representation of the linear transformation B~(T) introduced in Definition 8.14. 

It follows from Theorem 8.13 that, as long as Vx(G) :F {0}, the representation 
T -+ K (T), T e G L(V), is equivalent to the direct sum of B~ (T) with itself 
x(e) times. If G = S111 , this direct sum constitutes a reduction ofT -+ K(T). 
(Again, we are guilty of using matrix language in the context of linear operators.) 
Given representations of S111 corresponding to each of its irreducible characters, 
Theorem 8.13 completes the reduction ofT-+ T®"', T e GL(V}, and, therefore, 
the description of the rational representations of G L (n, C). (Explicit constructions 
can be found, for example, in [Boemer (1970)], [Dias da Silva (1981)], [Hamer­
mesh (1962)], [Hunter (1983)], [James & Kerber 1981)], [Littlewood (1958}], 
[Marcus (1975)] and/or [Sagan (1991)].) More remarkable than any of the details 
is the elegant relationship that has emerged between the representations of the 
finite symmetric groups and the homogeneous polynomial representations of the 
infinite group GL(n, C). 

Theorem 8.13 raises new questions even as it answers old ones. For example, 
in order to avoid the awkward step of having to replace GL(n, C) with GL(V), 
we need to know more about induced bases of Vx (G) and V~ (G) when x (e) > 1. 
Another question left unanswered by Theorem 8.13 concerns the reduction of 
T-+ B~(T}, T e GL(V), when G :F S111 • In fact, something can be said about 
this situation. 

THEOREM 8.15 Let~ be an irreducible character of the subgroup G of S111 • 

Suppose V is a vector space of dimension n. Then the representation T -+ Bf (T), 
T e G L(V), is equivalent to a direct sum of irreducible constituents B';, where 
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X ranges over those characters X1r of S,. co1nsponding to partitions :rr 1- m of 
length L(:rr) !::: n. If L(:rr) !::: n, then the multiplicity of B~ as an irreducible 
constituent of Bf is (~, X1r )G. That is, the number of occurrences of B~ in Bf is 
equal to the number of occurrences of~ in the restriction of X1r to G. 

Proof Let u -+ A(u) = (a;j(u)) be an irreducible representation of G that 
affords~- Suppose u -+ R(u) = (r;j(u)) is an irreducible representation of S,. 
that affords x. Without loss of generality, we may assume that the restriction of R 
to G is fully reduced, and that any components of the restriction that afford ~ are 
equal to A. In these terms, the problem is to express the vector space V~ (G) as a 

direct sum of V~(S,.). Observe that 

~(e)x(e) ~ (~ -I ) T;(G, A)7j(S,., R) = o(G)m! LJ LJ a;;(u)rjj(CT T) P(T) 
1'ES. <1EG 

= { 7j(S,., R), 
0, 

if rjjJG = a;; 
otherwise. 

As j runs from I to x(e), the restriction of rii to G will equal a;; exactly(~. X)G 
times. o 

It can happen that Bf = B~, in other words, that Bf is an irreducible 
representation of GL(V) even when G is a proper subgroup of S,.. When m !::: n 
and ~(e) = 1, a complete list of such pairs (G, ~) was obtained in [Djokovic & 
Malzan (1975)]. 

6 4 1 I 
4 2 

3 1 

1 
....____ 

FIGURE 8.1 

Suppose :rr = [:rrt, :rr2, ... , :rr,] 1- m. Recall that to each ordered pair (i, j), 
1 !::: i !::: r, I !::: j !::: :rr;, there corresponds a box, B;j, in the Ferrers diagram 
of F(:rr). Box B;j determines a unique hook in F(:rr) consisting of B;j, all the 
boxes in row i of F(:rr) to the right of B;j. and all boxes in column j of F(:rr) 

below it. The number of boxes in the hook determined by B;i is its hook length, 
h;j(:rr) = 1 + (:rr; - i) + (:rrj - j). By the Frame-Robinson-Thrall hook length 
formula, thedegreeoftheirreduciblecharacter X1r of S,. is X1r(e) =m!/ 0 hij(:rr). 
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lf1r = (3, 22,1], Figure 8.1 illustrates F([3, 22, 1]), its boxes filled with their 
hook lengths. In this case, 

8x7x6x5x4x3x2x1 
Xtr(e) = -----~---=----

6x4x1x4x2x3x1x1 

=70. 

The next result involves filling box B;j of F(1r}, not with numbers but with 
monomials. Figure 8.2 illustrates F([3, 22, 1]) with x - i + j filling box (i, j). 

X x+l x+2 I 
x-1 X 

x-2 x-1 

x-3 

FIGURE 8.2 

DEFlNmoN 8.16 If 11' = [1ft, 11'2, ••• , 11'r] 1- m, let 

r tr, 
ftr(X) = nn(x- i + j}. 

i=lj=l 

Not to be confused with /(11'}, the length of the diagonal of F(1r), /1e(x) is a 
polynomial of degree m. 

EXAMPLE 8.17 If 1r = [3, 22, 1] then, from Figure 8.2, 

ftr(x) = (x- 3)(x- 2)(x- 1)2x2(x + 1)(x + 2). 

0 

THEOREM 8.183 Suppose 1r = [1Z'J,11'2, ••. ,11',] 1- m. Let A-+ A(u) = (a;j(u)) 
be an irreducible representation of S,. that affords the character x = X1e· Suppose 

3Thia "Frame-Robinson-Thrall type" formula emerges from the relationship between the repre­
sentations of S. and the homogeneous polynomial representations of degree m of GL(n,C). Proofs can 
be found, e.g., in [Bocmcr (1970)), [Jamcs & Kerbcr (1981)), [King (1970)), [Uttlewood (19S8)), or 
[Murtaza and Rashid (1973)). Values for dim <Vl<S.» were tabulated by P.H. Butler in his Appendix 

to [Wyboumc (1970)). 
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V is a vector space of dimension n. Then the dimension ofV1(S,.) (and. hence, of 
V!(S,.), 1 ~ k ~ x(e)) is given by the formula 

r "• 
= nn<n-i+j)fh;j(11'). (8.20) 

i=lj=l 

It follows from Definition 8.14 and Theorem 8.18 that the degree of the 
irreducible representation B~ of G L(V) corresponding to x = x, is given by 
Equation (8.20). 

CoROu.AAY 8.19 Suppose V is a vector space of dimension n. Let ~ be an 
irreducible character of the subgroup G of S,.. Then 

dim {V~(G)) = L ~(e)x"(e)(~. x")Gf"(n)fm!. (8.21) 
11'1-m 

Proof Let A be a representation of G affording~· By Corollary 8.12, 

V~(G) = $f!:lV~(G). 

By Theorem 8.13, each of the ~(e) direct summands has the same dimension, 
namely, the degree of Bf. By Theorem 8.15, this dimension is equal to the sum 
over,.. 1- m of(~. x,)G times the degree of B~ (L(1r) ~ n if and only if 
f"(n) =F 0). This degree is given by Equation (8.20). o 

EXAMPLE 8.20 Suppose V is a vector space of dimension n. When G = S,. and 
~ = XP• Equation (8.21) becomes 

(8.22) 

In accordance with Equation (8.16), this is Xp(e) times the dimension of the 
minimal invariant subspace given in Equation (8.20). 

Suppose, for example, that p = [1111
]. Then, K~(T) = K(T) = C,.(T), the 

m-th compound. The degree of the m-th compound is dim (A111 V) = C(n, m). 
Equation (8.22) gives 

dim (V6(S,.)) = fu•J(n)/m! 

= n(n- 1) x · · · x (n-m+ 1)/m! 

= C(n,m). 
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Hp= [m], then K~(T) = K(T) = P,(T), the m-th induced power, the degree 
of which is C(m + n- 1, m). Equation (8.22) gives 

dim <Vt(S,)) = /[mJ(n)/m! 

= n(n + 1) x · · · x (n +m- 1)/m! 

= C(n +m -l,m). 

D 

Other results pertaining to dimensions of symmetry classes of tensors can be 
found in [Chan (1978a&b) & (1979a&b)], [Chan & Lim (1980)], [Chang (1976)], 
[Cummings (1976)], [Cummings & Robinson (1976)], [Marcus & Chollet(1982)], 
and [Westwick (1970)]. 

We turn next to the character of the representation B~. Let A. t. A.2, ••• , A.,. be 
the eigenvalues ofT e GL(V) (multiplicities included). Then (Equation (7.39)) 

"' 
tr (K(T)) = I: n Aa(t) 

ae.it=1 

"' = x(e) L:<x. l)o. n Aa(t) 

aEA t=1 

"' = x(e) L:<x. no. n Aa(t)· (8.23) 
aEA 1=1 

By Theorem 8.13 (and Definition 8.14), T -+ K(T) is equivalent to the direct 
sum of x(e) copies of B~(T). Thus, from Equation (8.23), 

m 

tr (B~ (T)) = L <x' l)o. n Aa(t)· 
aEA 1=1 

H G = Sm, then x = X1r for some 1r r m, and this identity becomes 

"' 
tr (B;(T)) = L K7r.~(a) n Aa(t)• (8.24) 

aEG • .~~ 1=1 

where J.L(a) is the multiplicity partition of a, and the Kostka coefficient K1r,~(a) = 
(x,.., l)~(a)• the number of occurrences of the principal character in the restriction 
of X1r to the Young subgroup S~ca>· 
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De.FoonoN 8.21 Let Xt, xz, ... , x,. be independent indetenninates over C. For 
each 1r 1- m, the corresponding Schur polynomial is defined by 

"' S~r(Xt. xz, ...• x,.) = L K1r,#£(ct) n Xa(t)· (8.25) 
ctEG • .., t=l 

THEOREM 8.22 Let X = X~r be the irreducible character of S,. co~sponding to 
1r 1- m. Suppose V is a vectorspaceofdimensionn :=:: L(Tr). QAt, ').z, ... , ).,. are 
the eigenvaluesofT E L(V, V), then tr (K(T)) = x(e)s~r(At, ').z, ... , ').,.). 

Theorem 8.22 amounts to putting old wine in a new bottle. 

EXAMPLE 8.23 From Example 8.20, B;'(T) = C,.(T) and Bi(T) = P,.(T). 
From Equation (7.41), tr (C,.(T)) = Em(Xt, xz, ... , x,.), the m-th elementary 
symmetric function. Evidently, 

a monomial symmetric function.4 From Equation (7.42), tr (P,.(T)) = 
Hm (xt. xz, ... , x,.), the m-th homogeneous symmetric function. Therefore, 

= L M~r(Xt,xz, ... ,x,.). 
~ri-m 0 

THEOREM 8.24 Let x1. xz, ... , x,. be independent indeterminates over C. If 1r 1-
m, then the Schur polynomial 

s~r(Xt, xz, .. . , x,.) = L K1r,pMp(Xt, xz, ... , x,.), (8.26) 
pi-m 

where Mp(Xt, xz, ... , x,.) is the monomial symmetric function co~sponding to 
p. 

Proof 
m ,. 

E K7r,l£(ct) n Xa(t) = E K1C,p En Xa(l)t 
ctEG.,. t=l pi-m (p) t=l 

4See Definition I.IS. 
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where the final summation on the right-hand side is over those a E G,.," whose 
multiplicity partition IJ.(a) = p, that is, 

m "" n "" k, kz k. L...J Xa(l) = L...J X1 X2 ... X" , 
(p) 1=1 

the sum over all different rearrangements, (kt, k2, ... , A:"), of the n-tuple 
(mt, m2, ... , m,, 0, 0, ... , 0) obtained by appending n - r zeros to the end of 
p. 0 

Already evident from the definition (and/or Lemma 7.51), Equation (8.26) 
shows that sJr(xt. x2, ... , x") is symmetric for all1r 1- m. 

ExAMPLE 8.25 Suppose m = 3 and 1r = [2, 1]. Then K[2,IJ,[3J = 0 because [2,1] 
does not majorize [3], K[2,1].[2,Il = 1 by Corollary 4.54, and K[2,t).[l'J = 2 = 
X!2.1)(4!!). Therefore, 

From M[2.IJ(X, y) = x2y + xy2 and M[PJ(x, y) = E3(x, y) = 0, we obtain the 
explicit formulas12.1J(X, y) = x2y +xy2. When n = 3, 

S[2.1](X, y, z) = x2y + x2z + xl + xz2 + y2z + yz2 + 2xyz. (8.27) 

If V is a vector space of dimension 3 and x = X!2.ll• the li set for Yx (S3) can 
be read off from Equation (8.27): 

li = {(1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3), (1, 3, 3), (2, 2, 3), (2, 3, 3)}. 

From Figure 8.3, /(2,IJ(X) = x3 - X, so (Theorem 8.18) the degree of s; is 
X!2.tJ(4!!)/(2,1](3)/3! = (2 x 24)/6 = 8, a value confirmed by Equation (8.27): 

tr (8;(1))) = S(2,1J(1, 1, 1) 

=8. 

~ 
~ 

FIGURE 8.3 

0 
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Because Mp(Xt, x2 •... , x,.) = 0 whenever L(p) > n, Theorem 8.24 allows us 
to be more casual about the number of variables. In particular, it does little harm 
to express the Schur polynomials as 

sir = L Kir,pMp. 1r 1- m. (8.28) 
pi-m 

From Equations (6.44H6.45), we have the following alternative expression for 

1 "' ( ) nm P.c,(a) Sir = I .t...J XIr CT ' , 
m. aeS.. t=l 

(8.29) 

where, recall, P, = M[rJ(Xt, x2 •... , x,.) = x~ + x~ + · · · + x! is the t-th power 
sum. If 1r = [lm], then XIr =£and sir = Em. Evidently, 

1 m 
Em= m' L £(u) n p,C·<a>. 

· aeS.. t=l 
(8.30) 

From Newton's identities (Exercise 17, Chapter 1), Equation (8.30) can be 
expressed in the form 

1 
E,. = I det (L,.), 

m. 
(8.31) 

where 

Pt 1 0 0 0 
P, Pt 2 0 0 

L,. = P3 P, Pt 3 0 
(8.32) 

Pm-l P111-2 PJII-3 Pm-4 m -1 
P,. PIII-I Pm-2 Pm-3 Pt 

Equations (8.29H8.32) lead to an identity for Schur polynomials in terms of 
immanants. 

THEoREM 8.26 Suppose 1r 1- m. Let x = X1r be the corrt!sponding i"educible 
character of S,.. Then 

(8.33) 
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EXAMPLE 8.27 Suppose 1f = [2, 1] 1- 3. Let X = X~r· Then x(u) = F(u)- l, 
u e S3, where F(u) is the number of fixed points of u. By Equation (8.33), 

l (P1 1 0) 
s~r = 6dx 1'2 Pt 2 

P3 1'2 Pt 

= [2Pl - 2PJ]/6. 

By definition, P3 = M[3J· From the Multinomial Theorem,5 Pl = M[3J + 
3M[2.1J + 6Mu,J· Therefore, S[2,ll = M[2,1J + 2Mu'J• confirming the first part 
of Example 8.25. o 

It follows from Equation (8.30) and the Fundamental Theorem of Symmetric 
Functions that any polynomial, symmetric in the variables XJ, xz, .. . , x,., is a 
polynomial in the power sum functions 

P, = P,(xt. xz, ... , x,.) 

THEoREM 8.28 Let XJ, xz, ... , x,. be n independent indeterminates over the 
complex numbers. Sets1r = s1f(XJ, xz, .. . , x,.), 1f 1- m. Then {s1r: 1f 1- m, L(1f) ~ 
n} is a basis of SC,.[XJ, xz, ... , x,.], the symmetric homogeneous polynomials of 
degree m in XJ, xz, ... , x,.. 
Proof Recall (Theorem 1.27) that dim (SC,.[xt, xz, ... , x,.]) = o({1f 1-
m: L(1f) ~ n)). Because s~r(Xt, xz, ... , x,.) = 0, L(1r) > n, it suffices to show 
that {s,..: 1f 1- m} spans SC,.[xt. xz, ... , x,.]. 

Multiply Equation (8.29) by h ('r) and sum on 1f to obtain 

Since X,..(T-1) = X1r(T), T E S,., it follows from the Orthogonality Relations of 
the Second Kind that 

Ill L X11'(T)S1f = n P,c,(T). (8.34) 
lrl-111 t=l 

5See Theorem 1.13. 
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Because any homogeneous symmetric polynomial of degree m is a polynomial 
in the power sums, it is a linear combination of terms like the one on the right­
hand side of Equation (8.34), l' E S,., and, therefore, a linear combination of the 
elements of {s,..: 1r r m}. o 

Consider the inner product on se,. [XI' X2, .•. 'x,.] with respect to which 
(s,.. : 1r r m} is orthonormal. If l' E S,. is fixed but arbitrary then, from 
Equation (8.34), 

Suppose Xt, x2 • ... , x,. and z are n + 1 independent indeterminates over C. 
Let E, = E,(xt. x2, .•. , x,.), 1 ::: m ::: n. Define the "generating function" 
g(z) = 1 + Etz + E2z2 + E3z3 + · · · + E,.z". 

LEMMA 8.29 The generating function/or the elementary symmetric functions is 
given by the fo1711Ula 

g(z) = (1 + xtz)(1 + x2z) ... (1 + x,.z). (8.35) 

Proof To evaluate the right-hand side of Equation (8.35), choose one element 
from each of the n sets of brackets, and multiply them together. Do this in all 
2" possible ways and add the resulting products. The coefficient of z'" in this 
expression is the sum of the products of the x's taken m at a time, namely, 
E,.(xt,X2, ... , x,.). D 

A similar result holds for the m-th homogeneous symmetric function 

'" 
H,.(xt. X2, ...• x,.) = L n Xa(t)• 

aeG ... t=l 

Define 

wbereH,. = H,.(xt,X2, .. . ,x,.).(BecauseE,.(xt,X2, . . . ,x,.) = Oforallm > n, 
g(z) is a polynomial; h(z), on the other hand, is an infinite series.) 

LllMMA 8.30 Suppose x1, x2, ... , x,. and z are irukpendent indeterminates over 
C. Then 

1 
h(z) = --------­

(1 - XtZ)(1 - X2Z) ... (I - x,.z) 

11 l 

= n (1-x·z>" 
r=l 1 

(8.36) 
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Proof The coefficient of r!" in the product 

(1 + x1z + xlz2 + ... )(1 + x2z + x~z2 + ... ) ... (1 + x,.z + x!z2 + ... ) 

is a surnofterms of the formx~'x;,'2 
•• • x::'•, one for each of the C(m +n -1, m) 

nonnegative integer solutions to the equation m1 + m2 +···+m,.= m. o 

Comparing Equations (8.35) and (8.36), one sees that 

g(-z)h(z) = 1, 

in other words, setting Eo = Ho = 1, 

m 

E<-l)r ErHm-r = 0, m~ 1. 
r=O 

ExAMPLE 8.31 Written out, Equations (8.37) become 

H1-E1 =0, 

H2- E1H1 +E2 =0, 

H3- E1H2 + E2H1- E3 = 0, 

and so on.6This means, for example, that 

E1=HJ, 

E2 =Hl-H2, 

and 

(8.37) 

Let's confirm the last of these equations when n = 3. Substituting x1 = a, 
X2 = b, andXJ = C, 

H1 (a, b, c)3 = (a + b + c)3 

= M[JJ(a, b, c)+ 3M[2,1J(a, b, c)+ 6M[PJ(a, b, c), 

H1(a, b, c)H2(a, b, c)= (a+ b + c)(a2 + b2 +~+ab +ac+ be) 

= M[JJ(a, b, c)+ 2M[2,1J(a, b, c)+ 3M[PJ(a, b, c), 

6Compue with Newton's Identities. 
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and 

H3(a, b, c)= M£3J(a, b, c)+ M[2,tJ{a, b, c)+ MrPJ(a, b, c). 

Therefore, 

H{- 2HtH2 + H3 = MrPJ 

=E). 

287 

0 

THEOREM 8.32 Let Xt, X2, ... , Xn be iruhpendent indeterminates over C. Set 
H, = H,(xt, X2, ..• , Xn) and E, = E,(Xt, x2, ... , Xn) when r ~ 1, Ho = 
Eo = 1, and H, = E, = 0 when r < 0. Suppose H is a k-by-k matrix whose 
(i, j)-entry is Hi-J· Then H is invertible, and its inverse is the k-by-k matrix E 
whose (i, j)-entry is (-1)1+1 EI-J· 

Proof The (i, j)-entry of the product EH is 

i 1-j 

L(-1)1+' E;-,Ht-i = L(-1)' E,Hi-J-r• 
t=j r=O 

if i ~ j, and 0 otherwise. Because Eo = Ho = 1, the result follows from 
Equation (8.37). o 

CoROU.ARY 8.33 Let 1r = [7rt, 1r2, ••• , Hr] be a partition of m. Suppose 
Xt, x2, ... , Xn are independent indeterminates over C. Set H, = H, (Xt, x2, ••• , Xn) 
and E, = E,(xt, X2, ••• , Xn) when r ~ 1, Ho= Eo= 1, and H, = E, = 0 when 
r < 0. Then 

det (H:rr,-I+J) = det (E:rr;-i+J). (8.38) 

The determinant on the left side of Equation (8.38) involves an r-by-r matrix 
and the one on the right a 7rt-bY-7rt matrix. 

EXAMPLE 8.34 Suppose m = 3.1f 1r = [13], then r = 3, 1r1 = 1, 1r* = [3], and 
Equation (8.38) becomes 

that is, E3 = H{- 2Ht H2 + H3, one of the identities from Example 8.31. o 
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Proof (of Corollary 8.33): Lets= L(1r*) = 1r1 and setk = r +s. Let H be the 
k-by-k matrix from Theorem 8.32, whose (i, j)-entry is Hi-J· H 

a= (s + 1, s + 2, ... , s + r) 

and 
{J = (s -1r1 + 1, s- 1r2 + 2, ... , s -1r, + r), 

then a, {J e Qr,r+•• and 
H[ai{J]' = (Hif1-I+J). 

By Theorem 8.32, H = E-1• Because det (E) = 1, Jacobi's Identity (Theo­
rem 7 .46) yields 

det (H[ai{J]1
) = det (H[ai{J]) 

= (-Jt(a)+rV') det (E({Jia)), 

where r({J) = fJ1 + fJz + · · · + {J, = rs -m+ r(r + 1)/2 = r(a)- m, that is, 

(8.39) 

The sequence in Qs,r+• complementary to a isac = (1, 2, ... , s). By Lemma 1.6, 
pc = (1r; + 1, 1r;_1 + 2, ... ,1ri + s). After multiplying row s + 1 - i of 
E({Jia) = E[JJclac] by ( -l)lfi, 1 =:: i =:: s, the resulting s-by-s matrix is 

=t=Eif·-s+2 ±Eif•-s+l) ' ' 
E1r· -Eif·-I . 

2 2 

-Eif;+I E"; 

Because (-1)1f;(-1)~~"2 ... (-1)~~"; = (-1)m, we see from Equation (8.39) that 
det (H[ai{J]) = det (X). Because reversing the order of the rows and columns 

of X has no effect on its determinant, det (H[alfJD = det (Y), where 

-Elf;+• .. . ±Eif;+s-1) 
E,..; . . • =t=Eifi+•-2 . 

=t=E~r•-s+2 E,..: 

Finally, if D = diag (1, -1, 1, -1, ... , (-1)'), then D-1 Y D = (Eifj-I+J)· o 
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THEoREM 8.35 The common value of the two cktenninants in Equation (8.38) is 
the Schur polynomial, s""(xt, x2 •... , x,.).1 

ExAMPLE 8.36 Suppose m = 3. Let 1r = [2, 1] = 1r*. Then 

det (H,..,-i+J) = det (Z~ Z~) 
= H2H1- H3. (8.40) 

Therefore, by Theorem 8.35, 

s1r(x, y, .z) = (x2 + y2 + .z2 + xy +x.z + y.z)(x + y + .z)- H3(x, y, .z) 

= M[3](x, y, .z) + 2M12,tJ(x, y, z) + 3M11,1cx, y, .z) 

- M[3](x, y, .z)- M12,tJ(x, y, z)- M11,1cx. y, .z) 

= M12.1J(x, y, z) + 2M1p 1(x, y, .z) 

= x2y + x2.z + xy2 + X1.2 + y2z + yz2 + 2xyz., 

exactly the value obtained in Equation (8.27). Similarly, 

det (E,..;-i+J) = det ( !~ !~) 
= EzE1- E3, 

so 

s11'(x, y, z) = (xy + xz + y'l.)(x + y + z)- xyz 

= x2y + X2'l. + xyl + X'l.2 + y2z + Y1.2 + 2xyz., 

the same. 0 

7Tbeorem 8.35 is a variation of a result from [Jacobi (1841)]. (Also see [Trudi (1864)].) A recent 
combinatorial proof can be found in [EgecioiJu & Remmel (1990)]. The most complete source of 
infonnation about Schur polynomials is [Macdonald (1995)]. Other useful references are [Doubilet, 
Fox & Rota (1980)], [Garsia & Remmel (1981)), [Littlewood (1958)], [Read (1968)], [Stanley (1971)], 
and [Tbomas (1976a&b)]. The "Jacobi-Trudi malrix" corresponding to,..,,.._,. is 

H(K,p)=( HIII,-IH#j-ll ); 

the "skew Schur" polynomial is defined by s111,= det (H(K,p)). (Because s11=111tp wbcn pis empty, 
skew Schur polynomials are generalizalions of Schur polynomials.) Conjectures of (Goulden & JIICkson 
(1992a)] and [Stembridge (1992)] have led to some interesting work on immanants of Jacobi-Trudi 
matrices. (See, for example, [Greene (1992)], [Haiman (1993)], and [Stanley & Stembridge (1993)).) 
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DI!FINmoN 8.37 Let X!, xz, ... , x,. be independent indeterminates over C. Set 
H, = H,(xl,X2,···•x11), r:::: 1. For each p = lPl•Pl·····PA:] 1- m, define 
Hp = Hp(Xl, xz, ... , x,.) by 

Hp= HPIHP2 ... HPt. 

It follows from Theorem 8.35 that the coefficients cp,1C in the expression 

(8.41) 

can be evaluated by means of the determinant on the left-hand side of Equa­
tion (8.38). Among the interesting implications of this fact is a formula (Corol­
lary 8.41) for X1r in terms of 1r. 

LEMMA 8.38 Let XI, xz, ... , x,. be intleperu:lenl iru:leterminates over C. Suppose 
1r 1- rand p 1- t. s~t m = r + t. Wewing S, as the subgroup of Sm consisting of 
those pe1'1PIUtaJions that fix r + 1, r + 2, .. . , m, and S, as the subgroup consisting 
of those pennulations that fix 1, 2, ... , r, then G = S, x S, is the Young subgroup 
S.r,t)· Let~ be the character ofG defined by ~(u, T) = XIr(u)Xp(T).8Then 

= E<~. Xv)GSv(Xlo xz, .•. 'x,.). 
vrm 

Proof From Equation (8.29), 

1 r I 

~ ~ ( ( n pC,(CJ) n Cj(l') S1rSp = -1- 1 L..., L..., X~r O')Xp 1') 1 pi 
r .t. ., S . I . I CJE,.. l'E , 1= J= 

1 m = __ ~ ~<u. T) n p~·(CJ,l'). 
o(G) L..., 1 

(CJ,'I')EG i=l 

By the same token, 

(8.42) 

L(~, Xv)GSv = (~) L ~(0', 1') L (~ L Xv(O', l')Xv(JL)) fi Pt'<P>, 
vi-m 0 (CJ,l')EG JJ.ES. m. vi-m i=l 

1 m 
= -- E ~<u. T) n Pt'(CJ,l'). 

o(G) (a,l')eG i=l 

by the Orthogonality Relations of the Second Kind. 

8See Exercise 29, ChapterS. 

(8.43) 

0 
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THEOREM 8.39 If p = (p1, />2, ••• , Pk) 1- m, then 

where K 11,p is a Kost/ca coefficient. 

Proof From Example 8.23, Hr = S[r]· Because X!r] = lr, the principal character 
of Sr. it follows from Lemma 8.38 that 

k 

= n S[p,J 
i=l 

= L: (lp. x~~>s,s". 
!If-m 

where lp is the principal character of the Young subgroup Sp. The conclusion 
follows from the Frobenius Reciprocity Theorem and the definition of the Kostka 
coefficients. o 

CoROLLARY 8.40 The matrix of coefficients (cp.•) inEquation(8.41) is the inverse 
of the matrix of Kost/ca coefficients. 

Proof Because (Exercise23){Hp(Xt, x2, •.. , x,.): p 1- m} isabasisofthespace 
SC,.[xt. x2 • ••. , x,.] and (Theorem 8.28) {s.: 1r 1- m} is another, the result is an 
immediate consequence of Theorem 8.39. o 

Corollary 8.40 leads to a family of explicit formulas for irreducible characters 
of symmetric groups. However, the description of these formulas requires a brief 
"suspension of disbelief''. For the present application, let us interpret the formal 
"product" 

[kt ][k2] . .. [kr) 

to be the induced character 1 !·, where p is the partition whose parts are the positive 
integers kt, k2, ... , kr. Define [0) = 1, and interpret [k] to be 0 whenever k < 0. 

CoROLLARY 8.419 Suppose 1r = [1ft,1f2, ..• ,1fr] 1- m. Let A. be the r-by-r 
matrix whose (i, j)-entry is the symbol [1f; - i + i1 then det (A.) = x •. where 
X.1r is the irreducibk character of S,. cornsponding to 1r. 

9Coro1Wy 8.41 comes from [Frobenius (1900)). 
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Proof From the definition of the Kostka coefficients, 

I!- = L K~r.PX1fo p 1- m. 
ll'l-111 

Therefore, from Corollary 8.40, 

x., = Ecp,,l!"', 1r 1-m. 

*"' 
(8.44) 

The mechanical procedure described in the statement of the corollary emerges 
from the computations reflected by the identity 

L Cp,,..Hp = det (H,,-i+J). 

*"' 
D 

ExAMPLE 8.42 Suppose m = 3. Let 1r =[m- 1, 1] 1- m. Then, in the notation 
of Corollary 8.41, 

( 
[1rt] [7rt + I]) 

A,.. = [1r2 - I] [1r2] 

_ ([m- 1] [m]) 
- I [I] ' 

and det (A,) = [m - 1)[I] - [m). Therefore, 

x., = (1[111-l,lJ)s. - (1l•J)s.. (8.45) 

From the definition of induced characters, 

I 
I!"'(T) = -- L I1(0'-1Tu), 

o(Sp) O'ES,. 
(8.46) 

where I' is the characteristic function of SpinS,., that is, I1 (JL) = 1, if J.L e Sp, 
and 0 otherwise. When p = [m- I, 1), 0'-1Tu e Sp = Sm-1 x S~o if and only 
if u (m) is a fixed point of T. Given a T e S,. having ct ( T) fixed points, there 
are c1 (T) x (m - 1)! permutations u e S,. that satisfy this criterion. Because 
o(S[m-1,1J) = (m- 1)1, it follows from Equation (8.46) that 

(1[m-1,1])S.(T) = Ct(T), T E 5111 • (8.47) 

Because (1[•J)S. = 1[mJ is the principal character of S,., Equations (8.45) and 
(8.47) confirm the formula 

Xlm-1,1) = C1 - I, m ~ 2. (8.48) 

D 
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ExAMPLE 8.43 Equation (8.48) may be viewed as the first ofFrobenius 's formulas 
for irreducible characters of symmetric groups. Other examples include 

Xlm-2.2] = CJ (et - 3)/2 + c2, m ~ 4; (8.49) 

X(m-2,12] = (et - 1)(ct - 2)/2 - c2, m ~ 3; (8.50) 

Xlm-3.3] = CJ (et - 1)(ct - 5)/6 +(et - 1)c2 + C3, m ~ 6; (8.51) 

Xlm-3,2,t] =Cl (et - 2)(Ct - 4)/3 - C3, m ~ S; (8.52) 

and 

X(m-3,P] = (et - 1)(ct - 2)(ct - 3)/6- (et - 1)c2 + c3, m ~ 4. (8.53) 

Let's confirm Equation (8.49). 1f 1r = [m - 2, 2] then, in the notation of 
Corollary 8.41, 

A =([m- 2] [m- 1]) 
1r [1) [2] 

and det (A,..)= [m- 2)[2]- [m- l][l].Therefore, 

Xn = (l(m-2.21)S. - (1(111-I.I])S. 

= (l(m-2,21)S. - Ct. 

from Equation (8.47). 
Given T e Sm. there are two ways for u-1Tu to be an element of Sp = 

Sm-2 x S2. It could happen that u(m) and u(m - 1) are fixed points ofT while 
1, 2, . . . , m - 2 are permuted arbitrarily among them selves. There are 

Ct(T)(Ct(T)- 1)(m- 2)! 

u's of this type. Alternatively, there are 2c2(T) ways in which u(m- 1) and u(m) 
can occupy the same 2-cycle of T. For each of them, the remaining integers can 
be permuted in (m- 2)! ways. There are 2c2(T)(m- 2)! permutations u e Sm 
fitting this description. Since o(Sp) = (m - 2)! x 2, 

(l[m-2,2J)S. (T) = CJ(T)(CJ(T) -1)/2 + C2(T). 

Putting it all together, 

X(m-2,2J(T) = Ct (T)(Ct (T) - 1)/2 + C2(T) - Ct (T) 

= CJ (T)(Ct (T)- 3)/2 + C2(T). 

0 

The techniques leading to Corollary 8.41 and the Frobenius formulas can also 
be used to shed new light on immanants. 
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THEOREM 8.44 Suppose 1f ~ m. If A e C111,111, then 

p 

d,(A) = L cp,w L per (A[Nt]) per (A[N2D ... per (A[Nk)). 
prm 

when, for each p = lPt. P'J., ••• , Pk] ~ m, the sum EP is over all ordered 
sequences (Nt. N2, ... , Nk) such that 

{1, 2, ... , m}= Nt U N2 U · · · UNk. 

and o(Ni) =Pi: A[N;] is the principal submatrix of A whose rows and columns 
are indexed by the elements of Ni: and the Cp,w are inverse Kostka coefficients. 

Proof If p = [pt. P'J., ••• , Pk] ~m then 
m 1 m 

I: 1!-<r> n ai .. (i) = (S) I: 1"<CJ-lrCJ> n ai .. (i) 
t'ES. i=l O P t',CJES. i=l 

l m 

= o(S ) L L n au(i),CJt'(l) 
P ues. t'ES, 1=! 

1 k 
= (S) L n per ((Q(CJ-l)AQ(CJ))r pj)), 

0 
P ues. i=l (8.54) 

where Q(a) = (&i,uU)) and (Q(CJ-1)AQ(a))[*pj] is the principal submattix of 

Q(CJ-1)AQ(a) lying in rows and columns <P1 + P2 +···+Pi-!)+ 1 through 

(p1 + P2 +· · ·+Pi-t)+ Pi · As a ranges over Sm, each product, n per (A£Ni)). 
occurs among the terms 

n per ((Q(CJ-1)AQ(a))r pj]) 

with multiplicity o(Sp) = 0 Pi!. Therefore, Equation (8.54) can be rewritten as 

m p k 

L t!-(r) n ait'(i) =:En per (A[N;]). 
t'ES,. i=l i=l 

Multiply both sides of this identity by Cp,w and sum on p ~m to obtain 

.. ~ ~Cp,wl!"'(r)) }]ait'(i) = ~Cp,w t}] per(A[Ni)). 

which, in view of Equation (8.44), is what was to have been proved. o 
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ExAMPLE 8.45 Let 1r = [r, s] where r ~sand r + s =m. Then 

Str = det ( H, Hr+1 ) 
Hs-1 H, 

(8.55) 

Because (Exercise 23) {Hp: p ~m} is a basis of SC111 [.x1, .x2, •.. , .x111], the inverse 
Kostka coefficients 

I 
1, 

Cp,(r,s] = -1, 
0, 

if p = [r,s] 
if p = [r + 1, s - 1] 
otherwise 

are uniquely determined by Equations (8.41) and (8.55). Thus, from Theorem 8.44, 

[r,s] (r+1,.r-1] 
d[r,s](A) = L per (A[Nt]) per (A[N2]) - L per (A[Nt]) per (A[N2)), 

for all A E C111,111 • In particular, setting s = 1, 

m 

d[m-1,1](A) = .L;a;; per (A(ili))- per (A). (8.56) 
i=1 

0 

As illustrated by Example 8.45, Theorem 8.44 is the foundation for a procedure 
to generate identities for immanants: Use Theorem 8.35 to express Str as a sum 
of products of homogeneous symmetric functions. When (each) Hp is replaced 
with the sum of all possible products of permanents of complementary p;-by-p; 
principal submatrices of A, and s1r is replaced by d1r (A), the result is an identity 
expressing dtr(A) in terms of permanents. This procedure illustrates a general 
principle due to Littlewood. 10 

Lrm...EWooo·s THEOREM 8.46 To any homogeneous polynomial relation of total 
degree m among Schur polynomials, there is an analogous relation for immanants 
obtained by replacing the Schur polynomials with the corresponding immanants of 
complementary principal submatrices and summing over all sets of complementary 
principal submatrices. 

10It appears to have been D.E. Littlewood wbo coined the tenn "immanant". Theorem 8.46 is stated 

without proof in [Littlewood (1958)]. A proof can be found. e.g .• in [Goulden & Jackson (1992b)]. 
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ExAMPU! 8.4711 Suppose 1r = [r, 1111-"). Then, from Theorem 8.35, 

(

H,. Hr+l ... 
1 H1 ••• 

S[r,l•-•J = det 0 1 ::: 

0 0 ... 

H. ) H._,. 
H•-r-l · 

H1 

Expanding the determinant down the first column, we find that 

Therefore, from Littlewood's Theorem, the single-hook immanant d,. = d[r,l•-J 
satisfies the identity 

[r,111-r] 

d,.(A) = L dfrJ(A[NJ])du•-•J(A[N2])- d,.+l (A), 

or, equivalently, 

[r,111-r] 
d,.+l (A) = L per (A[Nt]) det (A[N2]) - d,.(A), A e C111,111 . (8.57) 

Starting with d1 (A) = det (A), Equation (8.57) yields, inductively, 

Ill 

d2(A) = La;; det (A(ili))- det (A); 
i=l 

Ill 

d3(A) = L L per (A[i, jli, j]) det (A(i, jli, j))- d2(A); 
i=l j>i 

Ill 

t4(A) = L L L per (A[i, j, kli. j, k)) det (A(i, j, kli, j, k))- d3(A); 
i=l j>i k>j 

and so on. 
These formulas seem to confirm the increasing difficulty of computing d,.(A) 

as one goes from d1 (A) = det (A) to d111 (A) = per (A).12 o 

111bis e:wnple is taken from [Merris & Walkins (1985)]. 
12-n, be more quantitative, if the time to compute an m-by-111 determinant is on the order of m3, 

then tbe time to compute d., using tbese formulas, is on tbc order of ,.•+Z. Interesting work on tbc 
computatiooalcomplexityofimftliNntslppeU'Iin[Barvinok),[Hartman(l98S)],and[Valiant(l979)). 

Related work can be found in [Goulden & Jackson (l992b)) and [Uoyd (1983)). 



The Rational Represenllllioru ofGL(n, C) 

ExAMPLE 8.48 Suppose x = Xp e /(S,.). Then [Merris (1982)] 

dx(A) det (A-1) = dx(A-1) det (A), A e GL(m, C), 

if and only if p is a partition of the form [2P, If], where 2p + q = m. If 
p = [2P, lq], then p* = [p + q, p] is among the partitions considered in 
Example 8.45. From Theorem 8.35, 

sp = det ( Ep+q Ep+q+l ) 
Ep-1 Ep 

= Ep+qEp- Ep+q+1Ep-l · 

Applying Littlewood's Theorem to this identity produces 

(p+q,p) 

dp(A) = L det (A[Nl]) det (A[N2]) 

(p+q+1,p-1) 

L det (A[Nl]) det (A[N2]). 
0 

THEOREM 8.49 (Giambelli's lckntity13).Suppose 1r ~ m. Let r = /(7r) = 
o({i: 'lf; =:: i}). Then the Sclwr polynomial, s11 , is the ckterminant of the r-by-r 
matrix whose (i, j}-entry is the Sclwr polynomial cornsponding to the single-hook 
partition [1r; - i + 1, t•,·-i]. 

EXAMPLE 8.50 If 1r = [4, 3, 1], then 7r* = [3, 22, 1] and the length of the main 
diagonal of F(1r) is r = /(7r) = 2. By Giambelli's Identity, 

s1f = det (S(4.P) S[4))' 
S[2.P) S[2) 

that is, S[4,3,1J = S[4,tZJS[2J- S(4JS[2,PJ· Combining this identity with Littlewood's 
Theorem yields 

d[4,3,1](A) = L t4(A[ala]) per (A(ala)) 
aeQ,1 

- L per (A[JJIIJ])d2(A(fti/J}}, 
fJeQ•.• 

for any 8-by-8 matrix A. 0 

13'1bcomn 8.49 first appeared iD [Giambelli (1903)]. A combinatorial proof can be found iD 
[E!ecio!lu & Remmel (1988)). 
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Application to Graphs 

Let H = (V, E) be a graph with vertex set V = {1, 2, ... , n} and edge 
set E = E(H). One way to describe H is by means of a coloring of the 
m = C(n, 2) edges of the complete graph K,.. An edge of K 11 is colored 1 if 
it is an edge of H and 2 if it is not. Thus, there is a ooe-t<H>ne correspondence 
between the different graphs with vertex set V and the set r 111,2 of all functions 
a: {1,2, ... ,m}--+ {1 , 2}. 

Suppose W is a vector space of dimension 2. Let {e1, e2} be a basis of W. Then 
{e:: a e r 111,2} is a basis of W®111 . Consequently, W®111 must be isomorphic to 
the free vector space generated by the different graphs on n vertices. Moreover, 
a= /3( mod s~2>),ifandonlyifthereisapermutationa e S~2) suchthat/3 = aa, 
if and only if the graph corresponding to a is isomorphic to the graph corresponding 
to f3. Evidently, there is a one-t<H>ne correspondence between the nonisomorphic 
graphs on n vertices and the elements of ll.. Therefore, the free vector space spanned 
by the nonisomorphic graphs on n vertices must be isomorphic to W1 (S!2>). At the 
very least, this means the number of nonisomorphic graphs on n vertices is equal 
to 

dim (W1(S!2>)) = L X~r(e)(l, X~r)sfl/~r(2)/ml. (8.58) 
lr ... lll 

Because /~r(2) = Owhen L(1r) > 2, we may restrict the sum in Equation(8.58) 
to those partitions having at most two parts. If 1( = [p + q, p] ~ m, then 
/1f(2) = (p+q+ 1}!p! and X~r(e) =m!/ 0 hii• wherethehooklengthproductis 
Ohij = pl(p+q+l)!/(q+1). Therefore,x~r(e)/1f(2)fm! = q+1 = m-2p+l. 
This proves the following. 

THEOREM 8.5114 Suppose n is a positive integer. Let m = C(n, 2) and denote 
by ~P the irreducible character of S111 corresponding to the partition [p + q, p ], 
2p + q =m. Then the number ofnonisomorphic graphs on n vertices is given by 
the formula 

[111/2] L (m- 2p + 1)(1, ~p)sfl · 
p=O 

(8.59) 

The missing ingredient in Theorem 8.51 is an analog of Young's Rule for 
computing the number of occurrences of the principal character in the restriction 

(2) 
of ~P = X1111-p,p] to S,. . 

EXAMPLE 8.52 Suppose n = 4. Then m = C{4, 2) = 6. From Examples 8.42 
and 8.43, the characters ~P = X16-p,p]• 0 ~ p ~ 3, are given by the formulas 

14Tbeorem 8.51 first appeared in [Merris & Watkins (1983)]. 
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~0 = 1, 

~1 =Cl-}, 

~2 =Cl (Cl - 3)/2 + C2, 

and 
~3 =Cl (Cl - l)(ct - 5)/6 +(Cl - l)C2 +C). 

The 24 permutations u e s!2> are tabulated in Figure 6.7. A brute-force compu­
tation based on this information yields {1, ~p)£21 = 1, p ::/: 1, and {1, ~1)£2> = 0. 

4 4 
From Equation (8.59), the number of non-isomorphic graphs on 4 vertices is 

7x1+5x0+3xl+lxl=ll. 

0 
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Exercises 

1. Prove Lemma 8.3. 

2. Let x be an irreducible character of G = S,. Suppose dx(AB) = 
dx (A)dx (B), for all A, B e C,.,,. 

a. Prove that x =e. (Hint: Theorem 8.2.) 

b. What can be said if G ::1: S,? 
3. Show that Equation (8.10)defines a function. (Hint: Theorems 5.15 and 5.16.) 

4. Finish the proof of Theorem 8.9 by establishing 

a. part (ii). 

b. part (ill). 

5. Use Equations (8.14), (8.15), and a direct computation to 

a. show that T1(SJ, A)T2(S3, A)= O,thusconfirmingpartofTheorem8.9(i). 

b. show that T1 (SJ, A)2 = T1 (S3, A), thus confirming part of Theorem 8.9(i). 

c. show that T1(SJ, A)+ T2(S3, A) = T(SJ, x), thus confirming Theo­
rem 8.9(ii). 

d. show that T1 (S3, A) is not hermitian. Explain why this does not contradict 
Theorem 8.9(iii). 

6. Let x be an 'irreducible character of the subgroup G of S,. Suppose a -+ 
A(a) = (a;j(u)) isarepresentationofG affording X· Let V be a vector space. 
Prove that dim (V1 (G)) = (X, 'l)G, where 'lis the character of G afforded 
by the restriction of P to Yx(G). 

7. Prove that A -+ P,(A) is an irreducible representation of GL(n, C) for all 
n ~ 1. (Hint: Theorem 8.13.) 

8. Prove that A -+ C,(A) is an irreducible representation of GL(n, C) if and 
only if 1 ~m~ n. (Hint: Theorem 8.13.) 

9. Let~ be a linear character of the subgroup G of S,.. Suppose m ~ n. Prove 
that Bf is an irreducible representation of GL(n, C) if and only if ~s... the 
character of S, induced by ~, is irreducible. 

10. Let G = D4 c S4. Then the irreducible characters of G are given in 
Example 4.42. Suppose ~ is either XJ or X4· 

a. Prove that T-+ Bf(T), T e GL(V), is irreducible for any vector space 
V of dimension n ~ 4. 

b. What about n = 3? 

11. Suppose V is a vector space of dimension n. Let 'l be the character of the 
representation u -+ P(u), u e S,, where P(u) e L(V.,., V8 "') is the 
operator defined by 
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P(u-1)(Vl ® 112 ® · · · ® Vm) = Va(l) ® Va(2) ® · · · ® Va(m)· 

Show that 

'1 = I:<x.(e)f,..(n)/m!)xJf· 
lrl-111 

12. Suppose 1r 1- m. Let S~r(Zl, z2, . .. , z,.) be the corresponding Schur polyno­
mial. 

a. Show that sJr(1, 1, . .. , 1) = X~r(e)/~r(n)/ml . 

b. Use part (a) to prove that s~r(Z!, z2, ... , z,.) = 0 only if n < L(1r). 

13. Prove Theorem 8.26. 

14. Mimic Example 8.27 for the partition v = [2, 2]. 

15. Express H3(z1o z2 •... , z,.) as an explicit polynomial in the elementary 
symmetric functions. (Hint: Example 8.31.) 

16. In the manner of Example 8.31, express E4(Z1, z2, .. . , z,.) as an explicit 
polynomial in the homogeneous symmetric functions. 

17. Prove that E111 (z,, x2, .. . , z,.) can be expressed as a polynomial in the homo­
geneous symmetric functions. (Hint: Argue inductively from Equation (8.37).) 

18. Prove that any polynomial, symmetric in the variables .x,, z2 • . . . , z,., can 
be expressed as a polynomial in the homogeneous symmetric functions 
H111 (Zl, Z2, ... , x,.). (Hint: Exercise 17.) 

19. Use the Murnagban-Nakayama Rule to confirm Equation (8.49). 

20. Confirm that Equations (8.49)-(8.53) are valid for ~ = e, that is, confirm that 
the character degrees afforded by the Frobenius formulas are consistent with 
the Frame-Robinson-Thrall hook length formula. 

21. It follows from Theorem 8.28 that the monomial symmetric functions 
M~r (z1 , z2 •. . . , z,.), 1r 1- m, are linear combinations of Schur Polynomi­
als. Express each of M~r (z,, z2, .. . , z,.), 1r 1- 4, as a linear combination of 
sp(z,, z2 • . .. , z,.), p 1- 4. (Hint: Example 4.57.) 

22. Let 1r = [3, 1) 1- 4. Show, by a direct computation, that 

a. det ( z~ z~) = M(3,1J + M1221 + 2MI2YJ + 3Mu•J· 

b. det (!~ ;~ !;) = M13.11 +M1221 +2MI2,12J +3M(t•J· 
0 Eo Et 

c. S(3, ~(a, b, c, d)= (a3b+a3c+· · ·+cd3)+(a2~+a2c2+· . ·+c2d2)+ 
2(a be + a2bd + · · · + bcd2) + 3abcd. 
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23. Prove that {H"(xt,X2, .•• ,x,.): 1r 1- m} is a basis of the vector space 
SC,.[xt. x2, ..• , x,.]. 

24. Prove that d[m-l,lJ(A) ~ per (A), A E 'H.,.. (Hint: Equations (7.12) and 
(8.56).) 

25. It follows from Exercise 41, Chapter 6, that the substition y, = P, (xt. x2, ... , x,.) 

in the cycle index polynomial Zs. <Yt. )'2, ••• , y,..) produces the m-th homo­
geneous symmetric function H,.(xt. x2 ••.• , x,.). Use this fact to establish 
that 

a. H1 =Pt. 

b. H2 = (Pf + 1'2)/2. 

c. H3 = (P( + 3Pti'2 + 21'))/6. 

d. H4 = <J1 + 6Pf P2 + 8Pt P3 + 6P4 + 3Pf)/24. 

26. Show that the Schur polynomial S[3,1] = (3P: + 6Pfl'l - 6P4 - 3Pf>f24. 
(Hint: Example 8.45 and Exercise 25.) 

27. For any A e C,.,,.., prove that 

m 

t4m-2,P](A) = L La;;Djj per (A(i, jli, j)) 
i=l j~i 

1 m 
- 2 L L per (A[i, jli, j]) per (A(i, jli, j)) 

i=l j~i 

m 

- La;; per (A(i li)) + per (A). 
i=l 

28. For any A e C,.,,., prove that the single-hook immanant 

m 

dm-2(A) = L L per (A(i, jji, j)) det (A[i, jli, j])- d,.-1 (A) 
i=l #i 

a directly from Exercise 27. 

b. as in Example 8.47. 

29. Prove that (m- k- l)dt(A) ~m per (A), A e 'H.,.. 

30. Show that S[6,42,22] = S[6,t•]S[3,PJS[21 + s[6,PJS[J]S[2,1•] + S(6JS(J,l•]S[2.1'J -

S[6,P]S[3,14]S[2)- S[6]S[3,P]S[2,14] - S[6,14]S(J]S[2,ll]· 

31. If X = X!2',1'1• where 2p + q =m, then (Example 8.48) 
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for all invertible A e C,.,,. . Confirm this equation for m = 4, 

a. P = 1. 

b. p=2. 
32. Exhibit a 3-by-3 invertible matrix A such that 

per (A) det (A-1) ::f: per (A-1) det (A). 

33. Suppose A e 'H.,. does not have a zero row. Prove that the single-book 
immanant dk(A) = 0 if and only if rank (A) ::; m - k. 

34. Let x be an irreducible character of the subgroup G of S,.. 

a. H dx (A) ::f: 0 for all A e G L(m, C), prove that dx = det. 

b. H dx (A) = 0 for all singular A e C,.,111 , prove that dx = det. 

35. In the manner of Example 8.43, confirm 

a Equation (8.50). 

b. Equation (8.52). 

36. Use the Murnaghan-Nakayam.a Rule to confirm 

a. Equation (8.50). 

b. Equation (8.52). 

37. Use Equation (8.49) to confirm the values given in Figure 4.5 for 

a. XI3.2J· 

b. X122,IJ· (Hint: Theorem 4.47.) 

38. Use Equation (8.50) to confirm the values given in Figure 4.5 for X[3,i2J· 

39. Confirm the formula s122,1J = M122, 1J + 2M[2,PJ + 5Mil'J using 
a. Equation (8.29) and your answer to Exercise 37b. 

b. the right-hand determinant in Equation (8.38). (Hint: Theorem 8.35.) 

c. Giambelli's Identity. 

40. Compute the Kostka coefficients K122,l],p• p r 5. (Hint: Exercise 39.) 

41. Show that the Kosta coefficient K[3,J2J,(2,PJ = 3. 
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At ®A2® ···®A,. matrix Kronecker product 137 
A®m A ® A ® · · · ® A (m-times) 144 
Aim) variation on P,.(A) 242 
(a)> (b) (a) majorizes (b) 3 
A(altJ) delete rows a and columns tJ 175 
A[altJ] keep rows a and columns tJ 175 
ac sequence complementary to a e Q,,,. 174 

B' induced basis of Vx (G) 234 
Er induced bases of Vx(G) 238 

C,.(A) m-th compound of (matrix) A 236 
C(n,r) binomial coefficient n-choose-r 8, 70 
Ca(u) conjugacy class of u in G 89 
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elf conjugacy class in S,. of cycle type 1r 93 

C17(x) cycle of a containing x 53 

c,(a) number of cycles of length t in a 57 

c(a) total number of cycles in a 57 

c complex numbers 12 

CG set of functions f: G -+ C 86, 117 

e,.,ll complex m-by-n matrices 28 

C" n-tuples of complex numbers 28 

C[xt. x2 •... , x,.] polynomials in Xt, X2, ... , Xra 12 

C,.[xt. x2 •...• x,.] homogeneous polynomials of degree m 180 
c,. {c: S,. -+ Cldc(A) ;::: 0, A E 'H111 } 215 
c+ 

Ill 
{c: S,. -+ Clc is positive semidefinite} 216 

x 'f{a) = x(a), a E G 234 
XG character of G induced by x 96 

X1f irreducible character of S,. 99,291 

Xr single-hook character Xlr.l•-J 106 

D4 symmetry group of the square 65,93 
d(G) degree sequence of graph G 15 
d*{G) conjugate degree sequence 15 
da(v) = d(v) degree of vertex v in G 14 

tb. generalized matrix function 213 

dx dx/x(e) 214 

d1f dx. 213 
/). system of distinct rep.s modulo G 163 
/). distinguished subset of t;. 164 
! distinguished subset of Q 167,238 

8;,j Kronecker delta 27 

e identity permutation 53 
e,. identity permutation of S,. 53 
e,. n-th basis vector 141 
e• a T(G, x){e~) 161 
E,.(xt. x2 •... , Xk) n-th elementary symmetric function 9 
£ alternating character 57 

£1f restriction of £ to s1f 99 

F(A) numerical range of matrix A 37 
F{rr) Ferrers diagram of the partition 1r 2 
/{7r) trace of partition 1r 17 
/K(x) polynomial associated with F{rr) 278 
F(a) number of fixed points of a 59 

g(n,m) number of n-vertex, m-edge graphs 193 
oc complement of graph G 20 
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G,.,a: nondecreasing functions in r lt,A: 12 
Gx stabilizer subgroup 59 
Ga stabilizer subgroup 162 
GL(n,C) invertible matrices in C,.,,. 75 
GL(V) invertible linear operators on V 78 
r,.,a: functioosa: {1,2, ... ,n}-. {1,2, ... ,k} 9, 142 

h(A) Hadamard's matrix function 42 
H,.(xt. x2, ... , x,.) n-th homogeneous symmetric function 11 
H,. Jl,.(Xt,X2, ... ,X,.) 11,207 
Jlp }{PI }{P2 • • • Jlp, 290,291 
'H. m {A e Cm,m : A ~ 0} 215 

I,. n-by-n identity matrix 36 
Iv identity operator on V 34 
/(G) irreducible characters of G 85 

K(A) induced matrix 235 
K(T) induced transformation 185 
K,. complete graph on n vertices 19 
K1r,p Kostka coefficient 100 

L(G) Laplaciao matrix of graph G 44 
L(K) length of the partition 1r 1 
L(V, W) linear transformations from V to W 27 

M(Vt. V2, ... , V,.) m-linear functionals 127 
M1r (Xt. X2, ...• XA:) monomial symmetric function 6 
MP(~) multilinearity partition of~ E I (G) 170 
m,(a) multiplicity of t in a 180 
f.L(a) multiplicity partition of a 169 

(:) a multinomial coefficient 8 

o(S) cardinality of the set S 2 
o(u) order of the element u E S,. 56 
Ox orbit of G containing x 58 
n distinguished subset of r 111,11 163 

padj (A) permaoental adjoint of (matrix) A 237 
per (A) permanent of (matrix) A 214 
P,.(A) m-th induced power of (matrix) A 236 
P,.(xt. x2, ... , xa:) xi+x~+ .. ·+x; 8 
p(n) number of partitions of n 21 
P(u) permutation operator on v0m 151 
1f 1- n 1r is a partition of n 1 
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tr* conjugate of the partition 1r 2 
OJ; product of linear functionals 122 
TI<A) Schur power matrix 218 

Q,.,k increasing functions in r ll ,k 9 

r(a) a(l) + a(2) + · .. + a(p), a E r p,11 175 

s(A) eigenvalues of hermitian A 40 
s(G) largest n- 1 eigenvalues of L(G) 46 
s,. symmetric group of degree n 53 
s!2> pair group 194 
Sa dim((e!a: u E G)) 165 
S~r (XJ, X2, . , . , X,.) Schur polynomial 281 
s" s" (x1, x2, ••• , x,.) 283 
s" Young subgroup 98 
SC,.[XJ, x2, • •• , xk] symmetric homogeneous polynomials 12,284 

[T] matrix representation of T 33 
T* adjointof T 33 
tr(A) trace of A 28 
T(V) image ofT E L(V, W) 34 
T~O T is positive semidefinite hermitian 35 
T1 ®T2® .. ·® T,. induced transformation 133 
rem T ® T ® · · · ® T (m-times) 144 
T(G,x) symmetrizer 153 

V'= L(V,C) dual space of V 27 
v<2> two element subsets of V 13 
Uvll norm of the vector v 29 
(VJ, V2, . • . , VA:} subspace spanned by the indicated vectors 30 
v. x v2 x .. . x v,. cartesian product space 121 
V1 ® V2®···® V,. tensor product space 126 
vem m-th tensor power of V 141 
A"'V m-th exterior power of V 172 
Vx(G) symmetry class of tensors 154 
VJ ®V2 ® .. ·®v,. decomposable tensor 127, 130 
v8 

Ill Va(l) ® Va(2) ® · · · ® Va(m) 142 
Vi* V2 * · · • * V111 decomposable symmetrized tensor 155 
v• 

Ill Va(l) * Va(2) * • • • * Va(m) 161 
V) t\ V2 t\ • • • t\ V111 decomposable element of A"' V 172 
v"' Ill Va(l) A Va(2) A · • • A Va(m) 173 
V) • V2 • · ·· e V111 decomposable element of V1 (S,.) 179 
v• 

Ill Va(l) • Va(2) • • • • • Va(m) 180 
w.L orthogonal complement of W 30 



Index of Notalion 

W1+W2 
w. EB w2 
w • .L w2 
w(a) 
Wa(x•~ x21 .. 'I x,.) 
w~ (XII X21 ••• I x,.) 

x = y(mod G) 

Z(CG) 
Za{yll Y21 ... I Ym) 
Z~(yl1 Y21 · · • 1 Ym) 

sum of subspaces 
direct sum of subspaces 
orthogonal direct sum of subspaces 
weight of a e r "'·" 
pattern inventory 
character weighted pattern inventory 

equivalence modulo G 

conjugacy class functions in CG 
cycle index polynomial 
character weighted cycle index polynomial 
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34 
34 
34 

188 
189 
189 

58 

891 118 
189 
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