
1 Numbers

This chapter serves as an introduction to the modern theory of algebra through
the natural numbers 0, 1, 2, . . . . The list of natural numbers never ends and
most of them are far beyond everyday use. Gigantic numbers of more than 100
digits are used to protect information transmitted over the internet.

Suppose Alice has to send a message to Bob over the internet and it must be
kept secret. Alice and Bob live far apart and many intermediate computers will
see the message on its way. Alice will have to scramble (encrypt) the message
and send it, but at the same time Bob will have to know how to unscramble
(decrypt) it. How does Alice get this information through to him? She could
call and tell him. But then again someone could be listening in on their phone
call. Is there a way out of this problem?

The answer is an amazing “yes” and it builds on a current paradox of mathe-
matics: the existence of so-called one-way functions f (X ). These are functions
easy to compute given the input X . Once they are computed and only f (X ) is
known, it appears to be exceedingly difficult to recover X unless some secret
information is known.

Here is an example of a one-way function. Fix a natural number N and let
f (X ) = [X3], where [Y ] denotes the remainder of Y after division by N . This
is a function f : M → M , where M = {0, 1, 2, . . . , N − 1}. When N = 15, f
can be tabulated as

X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
f (X ) 0 1 8 12 4 5 6 13 2 9 10 11 3 7 14

Of course we can easily find X given f (X ) by using the above table. But in
general, as N grows the difficulty of finding X given f (X ) seems insurmount-
able unless you know some secret information. In the above example the secret
information is that f ( f (X )) = X (you can see this using the table). In a sense
we are raising a number to the third power and then scrambling things up by
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2 1 Numbers

taking the remainder. So far nobody has found effective methods for finding
cube roots in this setting. In the above example Alice sends the encrypted mes-
sage f (X ) to Bob and Bob decrypts it using f . This is the basic principle
behind the RSA cryptosystem [22], which was the first cryptosystem based on
the groundbreaking idea [8] of using one-way functions (with a trapdoor).

On a more detailed level Bob computes two gigantic prime numbers (usually
100 digits or more) p and q and forms N = pq . He then uses p and q to com-
pute a number e (for encryption) and a number d (for decryption). He makes
the numbers N and e public so that people wishing to write secret messages
to him can use the function f (X ) = [Xe] for encryption, where [Y ] denotes
the remainder of Y after division by N . He keeps the function g(X ) = [Xd ]
secret (the point being that g( f (X )) = X ). In the example above we have
p = 3, q = 5, N = 15, e = 3, d = 3. One way of systematically finding the
secret decryption function g in the RSA system is to find the prime factors
p and q of N (N being available to the general public). The straightforward
method of trial division (dividing with successive primes 2, 3, 5, . . . ) is much
too slow. Mathematicians have tried at least since Gauss’s time (1777–1855)
to find faster methods for factoring numbers. In fact Gauss writes in ([11],
Art. 329)

The problem of distinguishing prime numbers from composite numbers and of
resolving the latter into their prime factors is known to be one of the most important
and useful in arithmetic. It has engaged the industry and wisdom of ancient and
modern geometers to such an extent that it would be superfluous to discuss the
problem at length. Nevertheless we must confess that all methods that have been
proposed thus far are either restricted to very special cases or are so laborious and
prolix that even for numbers that do not exceed the limits of tables constructed by
estimable men, i.e., for numbers that do not yield to artificial methods, they try the
patience of even the practiced calculator. And these methods do not apply at all to
larger numbers.

RSA Labs has put forward several factoring challenges. The hardest unsolved
challenge is called RSA-2048. This is the 2048-bit number (617 digits) N on the
cover of this book. It is known to be the product of two prime numbers p and q.
A computer was instructed to forget p and q after forming N = pq. Given two
candidates p′ and q ′, it is easy to multiply them to see if their product equals
N . This can be done in a small fraction of a second on any modern computer.
Nevertheless, finding p and q knowing only N seems to be a painstakingly slow
process not within the limits of modern computers and algorithms. If you can
find p and q you will be able to claim the $200 000 prize by submitting your fac-
torization via http://www.rsasecurity.com/go/factorization.html. Alternatively,
you could settle for the less ambitious RSA factoring challenges presented at
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1.1 The natural numbers and the integers 3

http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.html. It has
not been proved mathematically that factoring a number is a difficult problem
in a precise sense, so a fast algorithm may exist waiting to be discovered. In a
sense this would disrupt the pillars of the modern information age. The algebraic
reasoning behind the RSA cryptosystem is founded on basic results (more than
300 years old) about the natural numbers.

1.1 The natural numbers and the integers

The natural numbers 1, 2, 3, . . . were handed over to mankind by God (in the
words of Kronecker (1823–91)). Mankind later added the important natural
number 0. We will reserve the symbol N for the natural numbers {0, 1, 2, 3, . . . }.
The need for negative numbers leads us to introduce the set of integers
Z = {. . . , −2, −1, 0, 1, 2, . . . } containing the natural numbers N. We have de-
liberately cut through the red tape of formally defining N and Z here. We
will also take the addition (and subtraction) and multiplication of integers for
granted. This will be the starting point of our study of numbers.

1.1.1 Well ordering and mathematical induction

For X, Y ∈ Z we define X ≤ Y if Y − X ∈ N and X < Y if X �= Y and X ≤ Y .
This leads to the usual way of ordering the integers,

· · · < −3 < −2 < −1 < 0 < 1 < 2 < 3 < · · · .

An element s in a subset S ⊆ Z is said to be a first element in S if s ≤ x for
every x ∈ S. There are many subsets of Z that do not have a first element. If a
subset of Z has a first element then the latter has to be unique (see Exercise 1.1
at the end of the chapter). The basic axiom for starting our investigation of
numbers says that every non-empty subset of N has a first element. We also
say that the set of natural numbers is well ordered.

The property that N is well ordered is equivalent to mathematical induction.
Recall that mathematical induction says that if we are given statements P(n)
for every integer n ≥ 1 such that

(i) P(1) is true and
(ii) P(n) is true implies that P(n + 1) is true

then P(n) is true for every n ≥ 1.
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4 1 Numbers

Example 1.1.1 Let us prove the formula

1 + 2 + · · · + n = n(n + 1)

2
(1.1)

for n ∈ N using mathematical induction. This means that we consider (1.1) as
a statement P(n). Clearly P(1) is true, since 1 · (1 + 1) = 2. Suppose now that
P(n) is true. Then

1 + 2 + · · · + n + (n + 1) = n(n + 1)

2
+ (n + 1).

The right hand side can be rewritten as

n(n + 1)

2
+ (n + 1) = n(n + 1) + 2(n + 1)

2

= (n + 1)(n + 2)

2
.

This is the formula for n + 1. So we have proved that P(n) implies P(n + 1).
By mathematical induction we have proved P(n) for every n ≥ 1.

Of course, having the formal machinery for constructing a proof like this does
not necessarily provide the beauty of a really ingenious mathematical argument.
When Gauss was in school (at the age of seven) his mathematics teacher asked
the class to sum up all numbers from 1 to 100. The students worked furiously
with their small slates. Gauss was the first to give his slate with the number 5050
to the teacher. The teacher replied “Oh, I see, you probably knew the answer.”
“No, no! I just realized that

1 + 100 = 101,

2 + 99 = 101,

3 + 98 = 101,

...

100 + 1 = 101.

Therefore 1 + 2 + · · · + 100 = (100 · 101)/2 = 5050,” Gauss replied.

1.2 Division with remainder

Suppose that you mark all multiples of 3 on the axis of the integers:
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An integer is uniquely given by the closest multiple of 3 to its left
and the remainder you have to walk to the right. Examples are 5 = 3 + 2 =
1 · 3 + 2, 7 = 6 + 1 = 2 · 3 + 1, −2 = −3 + 1 = −1 · 3 + 1 and 6 = 6 + 0 =
2 · 3 + 0. Division with remainder is the generalization of this simple fact.

Theorem 1.2.1 Let d ∈ Z, where d > 0. For every x ∈ Z there is a unique
remainder r ∈ N such that

x = qd + r,

where q ∈ Z and 0 ≤ r < d.

Proof. To prove the uniqueness of r assume that x = q1d + r1 and n = q2d +
r2, where q1, q2, r1, r2 ∈ Z and 0 ≤ r1, r2 < d . Then

(q1 − q2)d = r2 − r1.

If r1 �= r2 we may assume that r2 > r1. This implies that r2 − r1 = md, where
m ≥ 1. But this contradicts the fact that r2 − r1 ≤ r2 < d. To prove the existence
of r , let M = {x − qd | q ∈ Z}. Then M ∩ N �= ∅ (see Exercise 1.2) and
we let r be the first element in the subset M ∩ N of N. Now r = x − qd
for some q and we claim that 0 ≤ r < d . If r ≥ d then r > r − d ≥ 0 and
r − d = x − (q + 1)d ∈ M ∩ N. This contradicts that r is the first element in
M ∩ N. �

Definition 1.2.2 Suppose that a = bc where a, b, c ∈ Z. Then we say that c is
a divisor of a (it divides a). We write this as c | a.

Notice that 1 and −1 divide every integer and that 0 only divides 0.

Definition 1.2.3 If x, d ∈ Z, where d > 0, we let [x]d denote the unique re-
mainder r in Theorem 1.2.1. Sometimes we use the notation [x] when it is clear
which d we are using.

1.3 Congruences

Gauss published his monumental work [11] on numbers when he was 24 years
old. He had begun his deep studies in the theory of numbers at age 18. At the
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6 1 Numbers

start of [11] he introduced the theory of congruences, which turned out to be of
fundamental importance. Congruences form an elegant way of organizing the
integers according to their remainders with respect to a fixed number.

Definition 1.3.1 Let a, b, c ∈ Z. Then a and b are called congruent modulo
c if c divides b − a. This is denoted

a ≡ b (mod c).

This may seem strange at first, but using remainders the definition (for c > 0)
just states that a and b are congruent modulo c if and only if a and b have the
same remainder when divided by c. This is the content of the following:

Proposition 1.3.2 Let c ∈ Z, where c > 0. Then

(i) a ≡ [a]c (mod c),
(ii) a ≡ b (mod c) if and only if [a]c = [b]c,

for a, b ∈ Z.

Proof. We may write a = qc + [a]c for some q ∈ Z, by Theorem 1.2.1.
Therefore c | a − [a]c = qc. This proves (i). Now write b = q ′c + [b]c for
some q ′ ∈ Z. Then a − b = (q − q ′)c + [a]c − [b]c. Therefore c | a − b if
and only if c | [a]c − [b]c. But c | [a]c − [b]c if and only if [a]c = [b]c, since
0 ≤ [a]c, [b]c < c. This proves (ii). �

Example 1.3.3 The integers 24 and 14 can be written 24 = 4 · 5 +
4 and 14 = 2 · 5 + 4. So [24]5 = [14]5 = 4. This means that 24 ≡ 14
(mod 5). Of course this could just as easily have been observed from the fact
that 5 | 24 − 14.

Proposition 1.3.4 Suppose that x1 ≡ x2 (mod d) and y1 ≡ y2 (mod d). Then

(i) x1 + y1 ≡ x2 + y2 (mod d),
(ii) x1 y1 ≡ x2 y2 (mod d)

for x1, x2, y1, y2, d ∈ Z.

Proof. If d divides x1 − x2 and y1 − y2 then it also divides x1 − x2 + y1 −
y2 = x1 + y1 − (x2 + y2). This proves (i). Rearranging, we also get that d
divides x1 y1 − x2 y2 = x1(y1 − y2) + y2(x1 − x2). This proves (ii). �
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1.3 Congruences 7

Proposition 1.3.4 may look innocuous at first. It is surprisingly useful. For one
thing, when you combine it with Proposition 1.3.2, you get (see Exercise 1.3)

[xy] = [[x][y]]. (1.2)

Using (1.2) you can tell in a flash that the remainder of 132003 divided by 4 has
to be 1 (how?). Take a look at the following example.

1.3.1 Repeated squaring – an example

How does one find the remainder of 1211 divided by 21 efficiently? This problem
confronts a sender of a secret message in the RSA cryptosystem, where the
encryption exponent is the number e = 11 and the possible messages are the
natural numbers less than N = 21. As you may have guessed the trick is to
avoid computing the integer 1211, divide by 21 and find the remainder. First
we write 11 in the binary expansion (11 can be expressed as 1011 in the binary
positional system) as

23 + 2 + 1.

Then using (1.2) twice we see that

[1211] = [
1223

122121
] = [[

1223]
[122][121]

]
.

Again using (1.2) we build a table of remainders for use in the calculation

[121] = 12,

[122] = 18,[
1222] = [(122)2] = [[122][122]] = [18 · 18] = 9,[
1223] = [

(1222
)2

] = [[
1222][

1222]] = [9 · 9] = 18.

Picking out the relevant numbers we get

[1211] = [[18 · 18] · 12]

= [9 · 12]

= 3.

We have reduced the horrendous procedure of computing the remainder of
1211 = 743008370688 divided by 21 to computing the remainders of numbers
less than 212 = 441. The algorithm above is called repeated squaring, because
we constantly use the following consequence of (1.2):

[
a2n ] = [(

a2n−1)2] = [[
a2n−1][

a2n−1]]
,
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8 1 Numbers

for a, n ∈ Z where n ≥ 0 (recall that (ab)c = abc, where a, b, c ∈ Z with
b, c ≥ 0).

1.4 Greatest common divisor

Let

div(n) = {d ∈ N | d | n}
denote the set of natural divisors in n ∈ Z. Notice that div(0) = N and div(n) =
div(−n) for every n ∈ Z.

Example 1.4.1 Let us list a few examples:

(i) div(18) = {1, 2, 3, 6, 9, 18},
(ii) div(24) = {1, 2, 3, 4, 6, 8, 12, 24},

(iii) div(36) = {1, 2, 3, 4, 6, 9, 12, 18, 36}.

From this example we have

div(24) ∩ div(18) = {1, 2, 3, 6} = div(6)

div(24) ∩ div(36) = {1, 2, 3, 4, 6, 12} = div(12).

This indicates a striking fact. Given two integers m, n it seems that the common
divisors div(m) ∩ div(n) of m and n are exactly the divisors div(d) of some third
number. This is not a coincidence. It was discovered by the Greek mathemati-
cian Euclid of Alexandria (325–265bc) and is contained in book seven of his
masterpiece, the Elements.

Lemma 1.4.2 (Euclid) Let m, n ∈ Z. There exists a unique natural number
d ∈ N such that

div(m) ∩ div(n) = div(d).

Proof. The uniqueness follows from the fact that div(d1) = div(d2) if and only
if d1 = d2 assuming that d1, d2 ∈ N. When proving the existence of d we may
assume that m, n ∈ N, since div(x) = div(−x) for x ∈ Z. We proceed using
induction on min(m, n), where min(m, n) = m if m ≤ n and min(m, n) = n
if m > n. If min(m, n) = 0 we may assume that n = 0. Therefore div(m) ∩
div(n) = div(m). This settles the initial step min(m, n) = 0 of the induction.
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1.5 The Euclidean algorithm 9

Now assume that we have proved div(m) ∩ div(n) = div(d) for every m, n ∈
N with min(m, n) < N , where N > 0. Suppose for the induction step that we
are given m, n ∈ N with min(m, n) = N and that m ≥ n = N . Then we may
write m = qn + r , where 0 ≤ r < n by Theorem 1.2.1. But (this is the clever
step)

div(m) ∩ div(n) = div(m − qn) ∩ div(n) = div(r ) ∩ div(n),

since a number divides m and n if and only if it divides m − qn and n.
By induction we know that div(r ) ∩ div(n) = div(d) for some d ∈ N, since
min(r, n) = r < n = N . This completes the proof. �

Definition 1.4.3 The unique number d ∈ N satisfying div(d) = div(m) ∩
div(n) is called the greatest common divisor of m and n. It is denoted
gcd(m, n).

If one of m and n is non-zero there is a finite number of common
natural divisors. The greatest common divisor is really the greatest among
these with respect to the usual ordering of Z (see Exercise 1.9). Notice that
gcd(0, 0) = 0.

1.5 The Euclidean algorithm

As already hinted in the inductive proof of Lemma 1.4.2, there is an algorithm
for finding the greatest common divisor. The inductive step in the proof of
Lemma 1.4.2 can be found in Euclid’s Elements (around 300 bc) even though
Euclid did not have the concept of induction and the rigor of a modern mathe-
matical proof. The idea behind the modern version of Euclid’s algorithm is the
same.

Proposition 1.5.1 Let m, n ∈ Z. Then

(i) gcd(m, 0) = m if m ∈ N.
(ii) gcd(m, n) = gcd(m − qn, n) for every q ∈ Z.

Proof. Since div(0) = N, (i) follows. We get (ii) from the fact that

div(m) ∩ div(n) = div(m − qn) ∩ div(n).

This is a way of saying that a natural number d divides m and n if and only if
d divides m − qn and n, so that gcd(m, n) = gcd(m − qn, n). �
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Suppose that we wish to find the greatest common divisor of m, n ∈ Z. We
may assume that m ≥ n ≥ 0. If n = 0, we are done since gcd(m, 0) = m by
Proposition 1.5.1(i). Assume that n > 0. The basic observation is that if we
divide m by n and write m = qn + r according to Theorem 1.2.1, then

gcd(m, n) = gcd(r, n) = gcd(n, r )

and n > r . This follows from Proposition 1.5.1(ii). An example shows how this
works.

Example 1.5.2 Let m = 34 and n = 13. Then

gcd(34, 13) = gcd(13, 8) = gcd(8, 5)

= gcd(5, 3) = gcd(3, 2) = gcd(2, 1)

= gcd(1, 0) = 1.

This can also be illustrated as a sequence of divisions with remainders:

34 = 2 · 13 + 8,

13 = 1 · 8 + 5,

8 = 1 · 5 + 3,

5 = 1 · 3 + 2,

3 = 1 · 2 + 1,

2 = 2 · 1 + 0.

Now return to the general case m ≥ n ≥ 0. Put r−1 = m and r0 = n. If r0 = 0
then gcd(r−1, r0) = r−1. Otherwise define r1 to be the remainder of r−1 divided
by r0, so that r1 = r−1 − q1r0 for some integer q1. Then we have

gcd(r−1, r0) = gcd(r0, r1)

and r−1 > r0 > r1. Proceeding in this way (if r1 �= 0) we let r2 = r0 − q2r1 be
the remainder of r0 divided by r1. Again we have

gcd(r0, r1) = gcd(r1, r2)

and r−1 > r0 > r1 > r2. Eventually we are forced to the situation rN = 0,
for some step N > 0. This means that gcd(m, n) = gcd(rN−1, 0) = rN−1. The
point is that the Euclidean algorithm gives rise to a strictly decreasing se-
quence of natural numbers r−1 > r0 > r1 > · · · . If we consider the subset
R = {r−1, r0, r1, . . . } as a subset of N, it has a first element rN ∈ R since N

is well ordered. If rN �= 0 we may continue division with remainder and get
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1.5 The Euclidean algorithm 11

rN > rN+1 ≥ 0, contradicting the fact that rN is the first element in R. Therefore
rN = 0 and the Euclidean algorithm terminates in a finite number of steps.

A very important fact is hidden in the Euclidean algorithm: the greatest
common divisor gcd(m, n) can be written as a Z-linear combination of m and n.
There exist integers λ and µ such that

λm + µn = gcd(m, n).

Let us go through the steps in the Euclidean algorithm once more and make a
few adjustments.

Example 1.5.3 We know that gcd(34, 13) = 1. The claim above says that one
can find integers x and y such that 34x + 13y = 1. This is not obvious. We need
an algorithm for computing x and y. The trick is to adjust x and y for each
remainder in the steps of the Euclidean algorithm:

34 = 1 · 34 + 0 · 13,

13 = 0 · 34 + 1 · 13,

8 = 34 − 2 · 13 = (1 · 34 + 0 · 13) − 2 · (0 · 34 + 1 · 13),

= 1 · 34 − 2 · 13,

5 = 13 − 8 = (0 · 34 + 1 · 13) − (1 · 34 − 2 · 13)

= −1 · 34 + 3 · 13,

3 = 8 − 5 = (1 · 34 − 2 · 13) − (−1 · 34 + 3 · 13)

= 2 · 34 − 5 · 13,

2 = 5 − 3 = (−1 · 34 + 3 · 13) − (2 · 34 − 5 · 13)

= −3 · 34 + 8 · 13,

1 = 3 − 2 = (2 · 34 − 5 · 13) − (−3 · 34 + 8 · 13)

= 5 · 34 − 13 · 13.

Attaching these small updates to the Euclidean algorithm we have produced the
identity

5 · 34 − 13 · 13 = 1,

which would have been hard to guess initially.

Definition 1.5.4 The Euclidean algorithm with the above attachment for com-
puting x and y is called the extended Euclidean algorithm.

Let us be a little more formal in the description of the extended Euclidean
algorithm. Define at each step of the algorithm integers ai and bi with the
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property that ai m + bi n = ri . One can start by putting a−1 = 1, b−1 = 0 and
a0 = 0, b0 = 1. The first step of the algorithm is r1 = r−1 − q1r0. The definition
of a1 and b1 leaves no choice: a1 = a−1 − q1a0, b1 = b−1 − q1b0. The i th step
proceeds similarly, as ri = ri−2 − qiri−1 (where ri−2 = qiri−1 + ri according
to Theorem 1.2.1). This means that for i ≥ 1 we put

ai = ai−2 − qi ai−1,

bi = bi−2 − qi bi−1.

Assuming that ai−1m + bi−1n = ri−1 and ai−2m + bi−2n = ri−2 this ensures
that

ai m + bi n = (ai−2 − qi ai−1)m + (bi−2 − qi bi−1)n

= ai−2m + bi−2n − qi (ai−1m + bi−1n)

= ri−2 − qiri−1

= ri .

The extended Euclidean algorithm is conveniently carried out using the table
in the example below.

Example 1.5.5 The greatest common divisor of 13 and 8 is 1. Illustrated in the
table below is the extended Euclidean algorithm, giving −3 · 13 + 5 · 8 = 1.

i −1 0 1 2 3 4
ri 13 8 5 3 2 1
qi 1 1 1 1
ai 1 0 1 −1 2 −3
bi 0 1 −1 2 −3 5

Remark 1.5.6 Which numbers less than a given number result in the max-
imum number of steps in the Euclidean algorithm? To answer this question
we need to define the Fibonacci numbers Fn . They are given by F0 = 1,
F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. The first few Fibonacci numbers
are 1, 1, 2, 3, 5, 8, 13, 21, . . . . These numbers have a surprising relation ([16],
subsection 4.5.3) to the complexity of the Euclidean algorithm: if u > v > 0
are integers, and u is the smallest number such that the Euclidean algorithm for
u and v needs exactly n steps, then u = Fn+1 and v = Fn .

This result dates back to 1845 and is due to Lamé. Knuth [16] writes that
it has the historical claim of being the first practical application of Fibonacci
numbers.
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1.5 The Euclidean algorithm 13

Let us reiterate the very important fact contained in the extended Euclidean
algorithm. It is the basis of almost all the results in the rest of this chapter.

Lemma 1.5.7 Let m, n ∈ Z. Then there are integers λ, µ ∈ Z such that

λm + µn = gcd(m, n).

Proof. Let d = gcd(m, n). The extended Euclidean algorithm gives this result
if m, n ∈ N. In this case we can find λ, µ ∈ Z such that λm + µn = d. No-
tice that (−λ)(−m) + µn = λm + (−µ)(−n) = (−λ)(−m) + (−µ)(−n) = d.
So it is easy to get the result for m, n ∈ Z. �

Definition 1.5.8 Two integers a, b ∈ Z are called relatively prime if

gcd(a, b) = 1.

Remark 1.5.9 Notice that if there are λ, µ ∈ Z such that λa + µb = 1 then
a and b are relatively prime (see Exercise 1.14).

Corollary 1.5.10 Suppose that a | bc, where a, b, c ∈ Z and a and b are
relatively prime. Then a | c.

Proof. According to Lemma 1.5.7, we may find λ, µ ∈ Z such that λa +
µb = 1. Multiply this equation by c and get λac + µbc = c. Now a divides
the left hand side, since a divides bc. Therefore a divides c. �

Corollary 1.5.11 Let a, b, c ∈ Z.

(i) If a and b are relatively prime, a | c and b | c then ab | c.
(ii) If a and b are relatively prime and a and c are relatively prime then a and

bc are relatively prime.

Proof. Since gcd(a, b) = 1 we get λa + µb = 1 for suitable λ, µ ∈ Z by
Lemma 1.5.7. Both a and b divide c, so we may write c = ax = by for suitable
x, y ∈ Z. Then

c = c(λa + µb) = cλa + cµb = byλa + axµb = ab(yλ + xµ).

This proves (i). To prove (ii), we again use Lemma 1.5.7. This time we get
two identities λa + µb = 1 and λ1a + µ1c = 1 for suitable λ, µ, λ1, µ1 ∈ Z.

https://doi.org/10.1017/CBO9780511804229.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511804229.002


14 1 Numbers

Multiplying these we get

(λλ1a + λµ1c + λ1µb)a + µµ1bc = 1.

This shows that gcd(a, bc) = 1, so that a and bc must be relatively prime. �

In trying to grasp statements as Corollaries 1.5.10 and 1.5.11, it often pays
to play with small numbers to find counter-examples, such as the simple fact
that 4 | 2 · 2 but 4 � 2. Also, 6 | 12 and 3 | 12 but 6 · 3 = 18 � 12.

1.6 The Chinese remainder theorem

Think of a natural number x less than 30. Let a, b, c respectively denote the
rows (numbered upwards from zero) in the three tables below, in which the
number is located.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0 3 6 9 12 15 18 21 24 27
1 4 7 10 13 16 19 22 25 28
2 5 8 11 14 17 20 23 26 29

0 5 10 15 20 25
1 6 11 16 21 26
2 7 12 17 22 27
3 8 13 18 23 28
4 9 14 19 24 29

For example, if x = 14 then a = 0, b = 2 and c = 4. The real surprise is that one
needs only to know these three row numbers in order to determine the original
number. This is called the 30-riddle. It has impressed many souls unspoiled by
abstract algebra and number theory. The most hard-core algebraists will say it is
trivial, referring to the fundamental isomorphism Z/30 ∼= Z/2 × Z/3 × Z/5.
Let us expand a little on this theme.

Definition 1.6.1 Define

Z/N = {X ∈ N | 0 ≤ X < N },
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1.6 The Chinese remainder theorem 15

for N ∈ N. If N = n1 · · · nt �= 0 is the product of n1, . . . , nt ∈ N we let

r : Z/N → Z/n1 × · · · × Z/nt

be the map given by r (X ) = ([X ]n1 , . . . , [X ]nt ). We call r the remainder
map.

Example 1.6.2 Let N = 2 · 3 · 5 = 30 and x = 14. Then

r (x) = (0, 2, 4).

This corresponds to the fact that 14 is in row 0 of the first table, row 1 of the
second table and row 4 of the third table.

The secret to unlocking the 30-riddle is contained in the following
lemma.

Lemma 1.6.3 Suppose that N = n1 · · · nt , where n1, . . . , nt ∈ N \ {0} and
gcd(ni , n j ) = 1 if i �= j . Then the remainder map

r : Z/N → Z/n1 × · · · × Z/nt

is bijective.

Proof. If r (X ) = r (Y ) then n1 | X − Y, . . . , nt | X − Y by Proposition
1.3.2(i). Repeated application of Corollary 1.5.11 gives N = n1 · · · nt | X − Y .
Since 0 ≤ X, Y < N , the only way that this is possible is if X = Y , so r must
be injective. This implies that r is bijective, since it is an injective map between
two sets with the same number of elements. �

Lemma 1.6.3 explains the 30-riddle in the sense that a natural number less
than 30 is uniquely given by its remainders by division with 2, 3 and 5. The
only practical problem is to find a way to compute the inverse map r−1. This
is the map you need in order to impress your friends by practicing magic
with the 30-riddle. We move on to state and prove the more classical version
of Lemma 1.6.3 known as the Chinese remainder theorem (the theorem can
be traced back to the Chinese mathematicians Sun-Tsu (around 280–473) and
Chin Chiu Shao (1247)). At the end of the proof you will see how to compute the
map r−1.
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16 1 Numbers

Theorem 1.6.4 (Chinese remainder theorem) Suppose that N = n1 · · · nt ,
where n1, . . . , nt ∈ Z \ {0} and gcd(ni , n j ) = 1 for i �= j . Consider the system

X ≡ a1 (mod n1),

X ≡ a2 (mod n2),

...

X ≡ at (mod nt )

(1.3)

of congruences for a1, . . . , at ∈ Z. Then

(i) (1.3) has a solution X ∈ Z.
(ii) If X, Y ∈ Z are solutions of (1.3) then X ≡ Y (mod N ). If X is a solution

of (1.3) and Y ≡ X (mod N ) then Y is a solution of (1.3).

Proof. We will prove (ii) first. If X, Y are two solutions of (1.3) then X ≡ a j

(mod n j ) and Y ≡ a j (mod n j ) for j = 1, . . . , t . Therefore X ≡ Y (mod n j )
(see Exercise 1.11). So n j | X − Y , j = 1, . . . , t and since the n j are relatively
prime, we get (by repeated application of Corollary 1.5.11) that N = n1 · · · nt

divides X − Y or X ≡ Y (mod N ). However, if Y ≡ X (mod N ) then Y ≡ X
(mod n j ) for j = 1, . . . , t . In this case, Y also solves (1.3). This proves (ii).

The proof of (i) comes from the extended Euclidean algorithm (Lemma 1.5.7)
and the fact that n j and N/n j are relatively prime (by repeated application of
Corollary 1.5.11): we can find integers λ j , µ j such that

λ1n1 + µ1 N/n1 = 1,

λ2n2 + µ2 N/n2 = 1,

...

λt nt + µt N/nt = 1.

These identities give the useful numbers A j = µ j (N/n j ) for j = 1, . . . , t .
Notice that A j ≡ 1 (mod n j ) and A j ≡ 0 (mod ni ) if i �= j . We can build a
solution from these by putting

X = a1 A1 + · · · + at At .

You can check immediately that X solves (1.3). �

The following example shows how the map r−1 is computed using the proof
of Theorem 1.6.4(i).

https://doi.org/10.1017/CBO9780511804229.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511804229.002


1.7 Euler’s theorem 17

Example 1.6.5 Let us test our knowledge on the 30-riddle itself. Here n1 = 2,
n2 = 3 and n3 = 5. The first step is to find λi , µi ∈ Z such that

λ1n1 + µ1 N/n1 = 2λ1 + 15µ1 = 1,

λ2n2 + µ2 N/n2 = 3λ2 + 10µ2 = 1,

λ3n3 + µ3 N/n3 = 5λ3 + 6µ3 = 1.

Here we can take λ1 = −7, µ1 = 1, λ2 = −3, µ2 = 1, λ3 = −1, µ3 = 1.
Therefore we get A1 = 15, A2 = 10, A3 = 6 and

X = 15a1 + 10a2 + 6a3

as a solution to the system

X ≡ a1 (mod 2),

X ≡ a2 (mod 3),

X ≡ a3 (mod 5)

of congruences. By taking the remainder of X after division by 30 we get the
number X ′, 0 ≤ X ′ < 30, solving the 30-riddle. If a1 = 0, a2 = 2, a3 = 4, we
get X = 20 + 24 = 44. This gives X ′ = [X ]30 = 14 as expected.

1.7 Euler’s theorem

Let

(Z/N )∗ = {X ∈ Z/N | gcd(X, N ) = 1}

for N ∈ N and define the functionϕ(N ) = |(Z/N )∗|. This function is the famous
Euler ϕ-function. It counts the numbers relatively prime to and smaller than a
given natural number. The beginning of the table of values looks like

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
ϕ(n) 0 1 1 2 2 4 2 6 4 6 4 10 4 12

If you can come up with an effective way of computing ϕ you will have
broken the RSA cryptosystem. The above table was constructed by listing the
numbers less than n and counting the ones relatively prime to n. This is a terribly
slow way of computing ϕ. There is a better way, which is still not good enough.
It is based on factoring the number n and use of the Chinese remainder theorem.
From the table above it is clear that one cannot expect ϕ(mn) = ϕ(m)ϕ(n) for
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general numbers m and n. Once again the key notion is that of relatively prime
numbers.

Proposition 1.7.1 Let m and n be relatively prime natural numbers. Then

ϕ(mn) = ϕ(m)ϕ(n).

Proof. Put N = mn and let r : Z/N → Z/m × Z/n be the remainder map.
We know that r is a bijective map by Lemma 1.6.3. If we can prove that

r ((Z/N )∗) = (Z/m)∗ × (Z/n)∗

then we are done, since r then restricts to give a bijective map from (Z/N )∗

to (Z/m)∗ × (Z/n)∗. Thus we need to prove that gcd(X, N ) = 1 if and only if
gcd([X ]m, m) = 1 and gcd([X ]n, n) = 1.

Recall that gcd(a, c) = gcd(c, [a]c) for a, c ∈ Z with c > 0, by Proposition
1.5.1(ii). So gcd([X ]m, m) = 1 and gcd([X ]n, n) = 1 if and only if gcd(X, m) =
1 and gcd(X, n) = 1. It follows by Corollary 1.5.11 that gcd(X, m) = 1 and
gcd(X, n) = 1 if and only if gcd(X, mn) = 1. This proves that gcd(X, N ) = 1
if and only if gcd([X ]m, m) = 1 and gcd([X ]n, n) = 1. �

Let us state and prove the main theorem, which is due to Euler (1707–83).

Theorem 1.7.2 (Euler) Let a, n ∈ Z be relatively prime integers, where n ∈
N. Then

aϕ(n) ≡ 1(mod n).

Proof. First list the ϕ(n) numbers less than and relatively prime to n:

0 ≤ a1 < a2 < · · · < aϕ(n) < n.

As a key point we will prove that

{[aa1], . . . , [aaϕ(n)]} = {a1, . . . , aϕ(n)}, (1.4)

where we consider remainders with respect to n. Now, [aai ] = [aa j ] im-
plies that aai ≡ aa j (mod n) by Proposition 1.3.2. Therefore n | a(ai − a j ).
Since gcd(n, a) = 1 we have n | ai − a j by Corollary 1.5.10. This is only
possible when ai = a j or i = j . Thus [aai ] �= [aa j ] when i �= j . Notice
that gcd(n, aai ) = 1 by Corollary 1.5.11. This implies that gcd(n, aai ) =
gcd(n, [aai ]) = 1 by Proposition 1.5.1(ii). To sum up, we have ϕ(n) differ-
ent numbers [aa1], . . . , [aaϕ(n)] ∈ Z/n all having greatest common divisor 1
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1.8 Prime numbers 19

with n. The only way this is possible is by having the identity in (1.4). This
identity gives

[aa1][aa2] · · · [aaϕ(n)] = a1a2 · · · aϕ(n).

Since aai ≡ [aai ] (mod n) by Proposition 1.3.2(i), we get

aϕ(n)a1a2 · · · aϕ(n) ≡ a1a2 · · · aϕ(n)(mod n),

so that

n | a1 · · · aϕ(n)
(
aϕ(n) − 1

)
.

By repeated application of Corollary 1.5.11 we get gcd(n, a1 · · · aϕ(n))
= 1. This shows that n | aϕ(n) − 1 by Corollary 1.5.10. Therefore aϕ(n) ≡ 1
(mod n). �

After having learned a little group theory we will be able to give a really
elegant proof of Euler’s theorem. This will be a prime example of how things
become easier once you find the right (abstract) framework.

1.8 Prime numbers

A prime number is a natural number p > 1 that cannot be expressed as a
product of natural numbers strictly less than p. In our notation this means that
div(p) = {1, p}. This is a fundamental definition. The natural number 1 is of
a different nature, since it divides every integer. It is easy to decide whether a
given number x is relatively prime to a prime number p: it happens if and only
if p � x (why?). This implies that ϕ(p) = p − 1. We will compute ϕ for powers
of a prime number in subsection 1.8.3. The list of prime numbers begins

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

and can be generated by a beautiful classical method known as the sieve of
Eratosthenes, as follows. List the natural numbers > 1:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, . . .

Begin by crossing out all the numbers divisible by 2 (except 2). Move on to
the next available number, which is not crossed out (3), cross out all numbers
divisible by 3 (except 3) and so on. This leads to the sequence

2, 3, ×, 5, ×, 7, ×, ×, ×, 11, ×, 13, ×, ×, ×, 17, ×, 19, ×, ×, ×, 23, . . . ,
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20 1 Numbers

where the numbers left have to be prime numbers. The number

224 036 583 − 1,

discovered on May 15, 2004 is currently the largest prime number known to
man. This is a number with over four million digits. Without the use of a
computer, Lucas (1842–91) proved in 1876 that

2127 − 1 = 170141183460469231731687303715884105727

is a prime number. This was referred to as having a huge number of digits, 39
[18], in 1948. A prime number of the form Mn = 2n − 1 is called a Mersenne
prime number (named after the French monk Marin Mersenne (1588–1648)).
There is hectic activity on the internet searching for new Mersenne prime
numbers (this project is called GIMPS — the Great Internet Mersenne Prime
Search). Skilled programmers developed the settings for the project, in which
you can participate using the idle CPU-seconds on your personal computer.
Currently a $100 000 prize (from the Electronic Frontier Foundation) is offered
to the person(s) discovering the first ten-million-digit prime number. Using the
URL http://www.Mersenne.org/ you may catch up with the current status of
GIMPS.

1.8.1 There are infinitely many prime numbers

It is not known whether there are infinitely many Mersenne prime numbers.
Euclid proved that there are infinitely many prime numbers. This proof is more
than 2000 years old and still breathtaking. First we need a lemma.

Lemma 1.8.1 Every non-zero natural number n is a product of prime
numbers.

Proof. The natural number 1 is the empty product of prime numbers by defi-
nition. We prove the general statement by induction. Assume that every natural
number m < n is a product of prime numbers. Then we have to prove that n is
a product of prime numbers. If n is a prime number then it is a product of prime
numbers (with one factor). If n is not a prime number then

n = n1n2

where n1 and n2 are natural numbers strictly less than n. By induction, n1

and n2 are products of prime numbers. Therefore n is a product of prime
numbers. �
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1.8 Prime numbers 21

Theorem 1.8.2 (Euclid) There are infinitely many prime numbers.

Proof. Suppose that there are only finitely many prime numbers, listed as

p1, p2, . . . , pn.

Now form the integer N = p1 · · · · · pn + 1. By Lemma 1.8.1 we know that
there is a prime number p dividing N (this may or may not be N itself ). But
p cannot be on our list above (a prime number on our list does not divide N –
it leaves a remainder of 1 by Theorem 1.2.1). This means that from any finite
list of prime numbers, we can prove the existence of a prime number not on the
list: so, there are infinitely many prime numbers. �

One may even prove that the sum

1

2
+ 1

3
+ 1

5
+ 1

7
+ 1

11
+ · · ·

of reciprocal prime numbers is infinite (this is one of the many proofs that there
are infinitely many prime numbers). A twin prime is a prime number p such
that p + 2 (or p − 2) is a prime number. Here is a list of the first few twin
primes:

3, 5, 7, 11, 13, 17, 19, 29, 31, . . .

A long-standing conjecture is that there are infinitely many twin primes. In this
connection the Norwegian mathematician V. Brun (1885–1978) proved that the
sum

B = 1

3
+ 1

5
+ 1

5
+ 1

7
+ 1

11
+ 1

13
+ · · ·

of reciprocals of the twin primes is finite! The number B(= 1.90216 · · · ) is
called Brun’s constant. It has been computed to a high degree of accuracy by the
American mathematician T. Nicely. In the latter half of 1994 Nicely discovered
a disagreement between a computed and a published value of π (20 · 1012),
where π (x) is the number of prime numbers ≤ x . After a long-winded process
eliminating all kinds of errors, this led to the discovery1 of the infamous FDIV
bug in Intel’s initial launch of their Pentium processor.

A crucial property of prime numbers (even though it looks strange at the
beginning) is the following lemma.

1 See http://www.trnicely.net/pentbug/pentbug.html
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Lemma 1.8.3 Let p be a prime number and suppose that p | ab, where a, b ∈
Z. Then p | a or p | b.

Proof. If p � a then gcd(p, a) = 1 and therefore p | b by Corollary 1.5.10.
Similarly if p � b then p | a. This shows that p | a or p | b. �

Remark 1.8.4 Lemma 1.8.3 extends to products with more than two factors:
if p is a prime number and p | a1a2 · · · an then p | a1 or p | a2 or . . . or p | an .
Can you prove this?

1.8.2 Unique factorization

We know that every number can be written as a product of prime numbers.
Gauss was the first to see a potential problem hidden in this statement. Can one
have two different collections

p1 ≤ p2 ≤ · · · ≤ pr and q1 ≤ q2 ≤ · · · ≤ qs

of prime numbers such that p1 p2 · · · pr = q1q2 · · · qs? A bit of experimenta-
tion shows that one seems to get different numbers given different collections of
prime numbers (for example 2 · 3 · 11 �= 5 · 13). This is a mathematical state-
ment crying out for a rigorous proof. Many mathematicians before Gauss took
“unique factorization” for granted. Commenting on this Gauss wrote ([11],
Section II)

However, we did not wish to omit it (the proof of unique factorization) because
many modern authors have offered up feeble arguments in place of proof or have
neglected the theorem completely . . .

The idea behind the proof of unique factorization is quite easy. Suppose we
wish to prove that 2 · 3 · 11 �= 5 · 13 without multiplying. Assume that 2 · 3 ·
11 = 5 · 13. Then 2 | 5 · 13. Lemma 1.8.3 implies that 2 | 5 or 2 | 13. This is a
contradiction.

Theorem 1.8.5 Every non-zero natural number n can be factored uniquely
into a product of prime numbers (up to changing the order of the factors):

n = p1 · · · pr .

Proof. We may assume that n > 1 (since 1 factors uniquely into the empty
product of prime numbers). Suppose that

n = p1 · · · pr = q1 · · · qs
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are prime factorizations. If a prime factor p j appears on the right hand side
among q1, . . . , qs , then we divide both sides by p j . We can therefore assume
from the beginning that the left and right hand sides of the above equation
have no prime factors in common. Furthermore, we may assume that r ≥ 1 and
s > 1. But we know that p1 | n and, so by Lemma 1.8.3 (applied s − 1 times),
we get p1 | q1 or p1 | q2 or . . . or p1 | qs . Assume that p1 | q j . The only way
this can happen is if p1 = q j , and this contradicts the fact that every common
prime factor has been cancelled. �

There is a very nice and short proof of unique factorization using that N is
well ordered (see Exercise 1.31). The above proof, however, seems to be the
“natural” one as it carries over to more general settings.

Remark 1.8.6 Suppose that n > 1 is a natural number with the prime factor-
ization

n = pe1
1 · · · per

r ,

where e1, . . . , er ≥ 0. Then Theorem 1.8.5 shows that

div(n) = {
pk1

1 · · · pkr
r | 0 ≤ k1 ≤ e1, . . . , 0 ≤ kr ≤ er

}
.

Suppose that

m = p f1
1 · · · p fr

r ,

where f1, . . . , fr ≥ 0. Then

div(m) = {
pk1

1 · · · pkr
r | 0 ≤ k1 ≤ f1, . . . , 0 ≤ kr ≤ fr

}
and div(m) ∩ div(n) is

{
pl1

1 · · · plr
r | 0 ≤ l1 ≤ e1, 0 ≤ l1 ≤ f1, . . . , 0 ≤ lr ≤ er , 0 ≤ lr ≤ fr

}
= {

pl1
1 · · · plr

r | 0 ≤ l1 ≤ min(e1, f1), . . . , 0 ≤ lr ≤ min(er , fr )
}
.

Therefore

gcd(m, n) = pmin(e1, f1)
1 · · · pmin(er , fr )

r .

Similarly, the smallest natural number having both m and n as divisors must be

pmax(e1, f1)
1 . . . pmax(er , fr )

r .

This number is denoted lcm(m, n) and is called the least common multiple of
m and n. So if you have access to the prime factorizations of m and n it is easy
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to read off the greatest common divisor and the least common multiple. Take
n = 140 and m = 154. Here

n = 22 · 51 · 71 · 110,

m = 21 · 50 · 71 · 111

Therefore gcd(140, 154) = 21 · 71 = 14 and lcm(140, 154) = 22 · 51 · 71 ·
111 = 1540.

1.8.3 How to compute ϕ(n)

So far the most effective way known of computing ϕ(n) for a natural number n
is by way of its prime factorization. By Proposition 1.7.1

ϕ(n) = ϕ
(

pr1
1

) · · · ϕ(
prs

s

)
where n = pr1

1 · · · prs
s is the prime factorization (pi �= p j for i �= j) of n. So

we need to know how to compute ϕ(pm) for a power pm of a prime number p.
Fortunately this is easy. First observe that a number x is relatively prime to pm

if and only if p � x (why?). So the natural numbers less than pm that are not
relatively prime to pm are simply the multiples of p. We list them below:

0, p, 2p, . . . , (p − 1)p, p2, . . . , (p2 − 1)p, p3, . . . , (pm−1 − 1)p.

There are pm−1 natural multiples of p less than pm . This implies that ϕ(pm) =
pm − pm−1. Therefore

ϕ(n) = (
pr1

1 − pr1−1
1

) · · · (prs
s − prs−1

s

) = n

(
1 − 1

p1

)
· · ·

(
1 − 1

ps

)
.

The fact that this is the only efficient way known of computing ϕ gives the
security underlying the RSA cryptosystem.

1.9 RSA explained

Let us return to the setting of the introduction to this chapter, where the RSA
cryptosystem was described. Recall that a person wishing to receive an en-
crypted message must make two natural numbers e and N public. The number
N (the public key) is the product of two distinct prime numbers p and q.
A person wishing to send the number X (0 ≤ X < N ) sends the encrypted
number [Xe]. Now the receiver can read this message because he knows a
secret number d such that [[Xe]d ] = X . Here remainders are with respect to N .
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We will now see how to construct the numbers e and d. By earlier results
(Proposition 1.3.2 and (1.2)) we know that [[Xe]d ] = [Xed ] = X if and only
if X ≡ Xed (mod N ). We also know that ϕ(N ) = ϕ(p)ϕ(q) = (p − 1)(q − 1)
by subsection 1.8.3. The following proposition captures the algebraic essence
of the RSA cryptosystem.

Proposition 1.9.1 Let X be any integer and k a natural number. Then

Xk(p−1)(q−1)+1 ≡ X (mod N ).

Proof. By Corollary 1.5.11(i) it is enough to prove that

Xk(p−1)(q−1)+1 ≡ X (mod p),

Xk(p−1)(q−1)+1 ≡ X (mod q).

We will prove the congruence for p (the proof for q is similar). If p | X then
X ≡ 0 (mod p). Therefore Xk(p−1)(q−1)+1 ≡ 0 (mod p) and Xk(p−1)(q−1)+1 ≡
X (mod p). However, if p � X , then gcd(X, p) = 1. Therefore Theorem 1.7.2
gives Xϕ(p) = X p−1 ≡ 1 (mod p), and then we compute with congruences:

Xk(p−1)(q−1) ≡ (X p−1)k(q−1) ≡ 1 (mod p).

Multiplying the congruence with X , we get the desired result Xk(p−1)(q−1)+1 ≡
X (mod p). �

1.9.1 Encryption and decryption exponents

Now we come to the selection of the encryption exponent. This exponent e is
chosen as a natural number relatively prime to ϕ(N ) = (p − 1)(q − 1). Once e
is chosen the decryption exponent d may be computed as follows. According
to Lemma 1.5.7 we can find integers λ and µ, such that

λ(p − 1)(q − 1) + µe = 1,

where we may assume that 0 < µ < (p − 1)(q − 1) (see Exercise 1.13) and
therefore that λ < 0. The decryption exponent is d = µ. This gives the existence
of natural numbers k and d (k = −λ and d = µ) such that k(p − 1)(q − 1) +
1 = de. By (1.2) we get

[[Xe]d ] = [Xed ] = [
Xk(p−1)(q−1)+1

] = X
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for every natural number 0 ≤ X < N , where the last equality comes from
Propositions 1.9.1 and 1.3.2. This is exactly the statement that the decryption
of the encrypted text recaptures the text.

Notice the secret buried in ϕ(N ) = (p − 1)(q − 1). If we can compute ϕ(N ),
we may compute a decryption key, given a public encryption key, using the
Euclidean algorithm as above. Finding ϕ(N ) in this case is just as hard as
factoring N (see Exercise 1.38). Knowledge of N and the exponents e and d
is enough to “guess” the prime numbers p and q. It is therefore not safe to let
different people share the same public key N (see Exercise 1.40 (HOF)).

One very practical question remains. The public key N must be the product
of two enormous prime numbers p and q (more than 100 digits each). How
do we find huge prime numbers with more than 100 digits without factoring
numbers? The answer lies in an old result of Fermat dating back to 1640.

1.9.2 Finding astronomical prime numbers

A corollary of Euler’s theorem (Theorem 1.7.2) says that a prime number
p divides a p − a for all integers a. This result is due to Fermat (1601–65).
In a letter dated 18 October 1640 to Frénicle de Bessy, Fermat writes

It seems to me after this that I should tell you the foundation on which I support the
demonstrations of all which concerns geometric progressions, namely: Every prime
number measures infallibly one of the powers minus unity in any progression, and
the exponent of this power is a divisor of the given prime number minus one; and
after one has found the first power which satisfies the condition, all those whose
exponents are multiples of the first satisfy the condition.

Fermat writes in his letter “ . . . I would send you the demonstration, if I did
not fear its being too long.” The first known proof of Fermat’s result dates back
to Euler in 1736. Later, in 1760, Euler gave his general result, which we proved
in Theorem 1.7.2.

Corollary 1.9.2 (Fermat’s little theorem) Let p be a prime number and a
an integer with gcd(a, p) = 1. Then

a p−1 ≡ 1(mod p).

Proof. This is a consequence of Theorem 1.7.2 since ϕ(p) = p − 1. �

You may wonder what Fermat’s big theorem is. This is known by the name
“Fermat’s last theorem” and goes back to 1647. It says that the equation

Xn + Y n = Zn
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has no solutions X, Y, Z ∈ Z for n > 2 apart from the trivial ones where one
of X, Y, Z is zero (when n = 2 there are infinitely many non trivial solutions).
Fermat conjectured this in his notes in the margin of his copy of Diophantus’s
Arithmetica with the famous remark “For this I have discovered a truly wonder-
ful proof, but the margin is too small to contain it.” As you may know Fermat’s
last theorem haunted mathematicians for more than 300 years before it was
finally proved by A. Wiles in 1994.

It is unlikely that Fermat could have forseen that his little theorem would
play a crucial role in generating large prime numbers for use in the modern
information age. By using congruences it is easy to see (since 5 ≡ −1 (mod 6))
that

55 ≡ 5 �= 1 (mod 6).

Thus by Corollary 1.9.2, 6 is not a prime number. This is of course a complicated
way of proving the latter, but in fact it contains the idea for some beautiful
algorithms for deciding whether a number is composite without ever trying to
factor it. However,

88 ≡ (−1)8 = 1 (mod 9).

Here Corollary 1.9.2 does not tell us that 9 is composite. We are led to the
following definition.

Definition 1.9.3 Let N be a composite natural number and a an integer. Then
N is called a pseudoprime relative to the base a if aN−1 ≡ 1 (mod N ).

Notice that if the base a is not relatively prime to N then N cannot be a pseu-
doprime relative to a (see Exercise 1.41). A natural question is whether there
exist numbers pseudoprime to every relatively prime base. The answer is yes,
and the smallest example is N = 561 = 3 · 11 · 17 (see Exercise 1.45). Num-
bers having this property are called Carmichael numbers (or pseudoprimes). It
was proved recently [1] that there are infinitely many Carmichael numbers.

We are left with the fact that there are composite numbers that are not distin-
guished from prime numbers by Corollary 1.9.2. There is a surprisingly simple
way to improve this situation. The key point is the following lemma.

Lemma 1.9.4 Let p be a prime number and x ∈ Z. If x2 ≡ 1 (mod p) then
x ≡ ±1 (mod p).

Proof. By assumption, p | x2 − 1 = (x + 1)(x − 1). Thus, by Lemma 1.8.3,
p | x + 1 or p | x − 1. This completes the proof. �
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Consider, say, N = 341. Using repeated squaring we compute

2340 ≡ 1 (mod 341).

From this we cannot deduce that 341 is composite. But using Lemma 1.9.4 we
can drag 2 through some more questioning that tell us whether 341 really is
composite. Assuming, then, that 341 is a prime number, Lemma 1.9.4 gives
that

2170 ≡ ±1 (mod 341),

since (2170)2 = 2340. Again one computes that 2170 ≡ 1 (mod 341). Now we
reach the crucial question. Since 2170 = (285)2, Lemma 1.9.4 implies that 285 ≡
±1 (mod 341). In this step, 2 breaks down and tells us that

285 ≡ 32 (mod 341)

and therefore that 341 cannot be a prime number. From this example we get the
following definition.

Definition 1.9.5 An odd composite number N is called a strong pseudoprime
relative to the base a if either aq ≡ 1 (mod N ) or there exists i = 0, . . . , k − 1
such that

a2i q ≡ −1 (mod N ),

where N − 1 = 2kq and 2 � q .

The strong pseudoprimes are precisely the composite numbers, which pass
both tests (Corollary 1.9.2 and Lemma 1.9.4) without getting caught. The fol-
lowing result shows that a number that fails repeated application of Lemma
1.9.4 (as for N = 341 and a = 2) must be a composite number.

Proposition 1.9.6 Let p be an odd prime number and suppose that

p − 1 = 2kq,

where 2 � q. If a ∈ Z and gcd(a, p) = 1 then either aq ≡ 1 (mod p) or there
exists i = 0, . . . , k − 1 such that

a2i q ≡ −1 (mod p).

Proof. Let ai = a2i q , i = 0, . . . , k. Observe that ak ≡ 1 (mod p) by Corol-
lary 1.9.2 and that ai+1 = a2

i for i = 0, . . . , k − 1. Therefore a0 ≡ 1 (mod p)
if and only if ai ≡ 1 (mod p) for every i = 0, . . . , k. So, if a0 �≡ 1 (mod p) then
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there exists ai , i ≥ 0, such that ai �≡ 1 (mod p). Let j be the largest index
with this property. Since j < k and a2

j ≡ a j+1 ≡ 1 (mod p) we get a j ≡ −1
(mod p) by Lemma 1.9.4. �

The reason strong pseudoprimes are extremely useful in real-life primality
testing is the following theorem, due to M. Rabin [20].

Theorem 1.9.7 (Rabin) Suppose that N > 4 is an odd composite integer and
let B be the number of bases a (1 < a < N ) such that N is a strong pseudoprime
relative to a. Then

B < ϕ(N )/4 ≤ (N − 1)/4.

Theorem 1.9.7 shows the strong contrast between a strong pseudoprime and
a pseudoprime to a base a. There are true pseudoprimes (composite numbers
pseudoprime to every relatively prime base). Theorem 1.9.7 states that we can
find many bases revealing that a given composite number is not a prime number!

Suppose that we are given a natural number N and a randomly chosen a,
1 < a < N . If N is composite then the probability that N is a strong pseu-
doprime relative to a is < 1/4 by Theorem 1.9.7. If we have a good method
of generating (uniformly distributed) random numbers,2 then we can try out
a sequence of random bases 1 < a1, . . . , am < N . The upshot is that if N
is a strong pseudoprime relative to the m random bases a1, . . . , am then the
probability that N is composite is less than

(1/4)m .

In fact the probability is usually much smaller. For example, if a number p
of around 180 digits (600 bits) is tested and p is a strong pseudoprime to just
one base then the probability that p is composite is less than (1/2)76. Already
for m ≥ 30 the rough estimate (1/4)m is comparable to the probability of a
hardware error in your computer caused by cosmic radiation (quoting Knuth).
So if a number is a strong pseudoprime relative to more than 30 random bases
then the number tested is a prime number for all practical purposes. This is
basically how one builds huge prime numbers for use in cryptography. Starting
with a random integer x (with more than 100 digits), one searches for the first
probable prime number ≥ x .

2 The best sources of randomness are atmospheric noise from a radio (http://www.random.org) or
radioactive decay (http://www.fourmilab.ch/hotbits/).

https://doi.org/10.1017/CBO9780511804229.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511804229.002


30 1 Numbers

1.10 Algorithms for prime factorization

One way of breaking the RSA encryption is by having effective algorithms for
prime factorization. So far these work only up to 155 digits, and the largest
number took six months to factor using distributed supercomputing over the
internet. In August 1999 RSA-155 was factored. Here is part of the press release
from RSA Labs:

Factoring the 512-binary-bit key, equivalent to 155 decimal digits and called
RSA-155, took the team a total elapsed time of 5.2 months, not including nine
weeks needed for preliminary computations, and was accomplished using 292
individual computers located at 11 different sites in The Netherlands, Canada, the
United Kingdom, France, Australia and the United States. Prior to this, the largest
RSA key length to be factored was 140 decimal digits long in February of this year.
RSA’s recommended key lengths are 230 digits or more. . . . These latest results
were achieved using about 160 175-400-MHz SGI and Sun workstations, eight
250-MHz SGI Origin 2000 processors, 120 300-450-MHz Pentium II PCs and four
500-MHz Digital/Compaq CPUs, and required approximately 8000 MIPS-years of
CPU effort. The specific approach used to determine the prime factors was based
on the work done to solve the RSA-140 Challenge earlier this year.

The statement that every integer can be written as a product of prime numbers
is a typical mathematical statement with a simple proof. Things become much
more complicated when you (inspired by Gauss) ask for a good algorithm for
factoring a given integer N . In a non-trivial factorization N = ab one of the
factors a and b must be ≤ √

N . If N is even, 2 divides it and we have found
a factor. If N is odd we may find a factor of N by starting with 3 and trying
division by odd numbers up to

√
N . This procedure is called trial division. The

number of steps in trial division is proportional to the size of the smallest prime
factor. This is extremely slow. If you want to factor a 100-digit number that is
the product of two 50-digit prime numbers, you must carry out approximately
1050 steps of trial division. If every step takes 10−10 seconds, you will have to
wait for 1040 seconds (or approximately 1032 years). It is not clear, though, that
there are better algorithms. In fact the three faster algorithms we will describe
each contain an ingenious idea. They are all tied to the Euclidean algorithm.
The object is to hunt down a number a ∈ N such that 1 < gcd(a, N ) < N ,
where N is the composite number we wish to factor.

1.10.1 The birthday problem

Suppose that N people are gathered in an auditorium. What is the probability
that two of them share the same birthday? This is a problem easily solved
by elementary probability theory. Consider the “inverse” problem: what is the
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probability, P(N ), that none of them share a birthday? We get, for example,
that

P(2) = 364

365

since there are 364 possible dates left when one is taken. Similarly,

P(3) = 364

365
· 363

365
.

In general,

P(N ) = 365 · 364 · · · (365 − N + 1)

365N
.

At N = 23, P(N ) is already less than 0.5. So if there are more than 23 people
present there is more than a 50% chance that two share the same birthday. If
there are 50 people present there is more than a 97% chance that two share the
same birthday.

The mathematical abstraction is sampling with replacement from a sample
space consisting of N objects. The average number of samplings before a
repetition occurs can be computed as the mean value of a stochastic variable.
When N is big this mean value is close to

√
π N

2
.

1.10.2 Pollard’s ρ-algorithm

How does the birthday problem relate to the factoring of a composite inte-
ger N? Suppose that p is a prime number dividing N and that we are given
two numbers 0 ≤ a, b < N with a ≡ b (mod p). Then p | a − b. Therefore
1 < gcd(a − b, N ) ≤ N and, if a �= b, gcd(a − b, N ) is a non-trivial factor in
N . This innocent observation contains the idea for a much faster factoring algo-
rithm than trial division. Suppose we have a way of generating random integers
X1, X2, . . . with 0 ≤ Xi < N . We know by subsection 1.10.1 that on average
we see

√
(π N )/2 random numbers before a repetition occurs. For factoring

purposes it suffices to have a repetition modulo p, where p is the smallest
prime dividing N : if Xi ≡ X j (mod p) then 1 < gcd(Xi − X j , N ) ≤ N . So it
is sufficient to look at the random integers X1, X2, . . . modulo p. Here we only
see

√
(πp)/2 random numbers, on average, before a repetition occurs.

It is not easy to generate true random numbers in mathematics. Let us rely on
a function that generates a sequence of numbers conjectured to be sufficiently
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random. Consider the function from Z/N to Z/N given by

f (X ) = [X2 + 1]N . (1.5)

Start out with X0 = 0 and let Xi+1 = f (Xi ) in each successive step. This se-
quence will contain repetitions modulo p (there are only p remainders so there
will be a repetition when i ≥ p). How do we check for repetitions modulo p?
The following lemma gives the crux of the algorithm.

Lemma 1.10.1 Let f : M → M be a function where M is a finite set.
Pick x0 ∈ M and generate the sequence x0, x1, x2, . . . , where xi+1 = f (xi )
for i ≥ 0. There exist i, j ∈ N such that i �= j and xi = x j . Furthermore there
exists n > 0 such that xn = x2n. The sequence y0, y1, y2, . . . given by y0 = x0

and yi+1 = f ( f (yi )) for i ≥ 0 equals the sequence x0, x2, x4, . . . .

Proof. We have a map g : N → M given by g(n) = f n(x0). Since M is a
finite set, g cannot be injective. Thus there exist i, j ∈ N with i �= j such that
g(i) = g( j). This shows that xi = x j for i �= j .

Suppose that xi = x j for j > i . If n ≥ i and 2n = n + k( j − i) with k ≥ 0
we must have xn = x2n . So choosing k ≥ 0 such that n = k( j − i) ≥ i gives
the desired n. As xm+2 = f ( f (xm)) it follows that ym = x2m . �

Now we have all the tools for building a factoring algorithm based on rec-
ognizing repetitions modulo p. The key point is the existence of a repetition
modulo p of the form Xn ≡ X2n (mod p), as pointed out in Lemma 1.10.1.

We start out by putting X0 = Y0 = 0. At each step we iterate Xi+1 = f (Xi )
and Yi+1 = f ( f (Yi )) using the function f in (1.5). Then we compute d =
gcd(Yi+1 − Xi+1, N ) using the Euclidean algorithm. If d equals 1 or N we
repeat the process. If not, d must be a non-trivial factor in N and we are done.
An example is given below.

Example 1.10.2 Let N = 11 · 13 = 143. Then

i 0 1 2 3 4 5 6 7 8 9
Xi 0 1 2 5 26 105 15 83 26 105
Yi 0 2 26 15 26 15 26 15 26 15

The Xi -sequence turns into the sequence 0, 1, 2, 5, 4, 6, 4, 6, 4, . . . viewed
modulo 11. At the sixth step above Y6 − X6 = 11 and the factor 11 is found.
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Of course there is a problem with this algorithm if repetition modulo N
coincides with repetition modulo p. This is rather unlikely for large N since the
sequence modulo N repeats after

√
(π N )/2 steps on average compared with√

(πp)/2 steps modulo p on average.
This algorithm for factoring is called Pollard’s ρ-algorithm (because ρ rep-

resents the shape of the sequence repeating itself). It was invented in 1975 by
J. M. Pollard. The Pollard ρ-algorithm needs 4

√
N steps on average for factor-

ing an integer N as compared with
√

N steps for trial division. We move on to
describe another factoring algorithm due to Pollard.

1.10.3 Pollard’s (p − 1)-algorithm

Suppose we wish to factor a composite number N divisible by a prime number
p. If a is an integer and p � a then

a p−1 ≡ 1 (mod p)

by Corollary 1.9.2. If m is a natural number such that p − 1 | m then

am ≡ 1 (mod p). (1.6)

So if we have a and m such that (1.6) holds, we may conclude that gcd(N ,

am − 1) > 1 since p | am − 1. This suggests that a good strategy for finding
a non-trivial factor of N proceeds by systematically trying out a and m in the
hope that they fit (1.6). We can use the Euclidean algorithm to compute

d = gcd(N , am − 1) = gcd(N , [am − 1]N ).

Computing [am − 1]N can be done using repeated squaring, first evaluating
[am]N . If 1 < d < N we have found a non-trivial factor of N . If d = 1 then
we try with a different (bigger) m. If d = N then m might work with a different
a. This is the idea behind Pollard’s (p − 1)-algorithm. This algorithm is very
successful if N contains a prime factor p such that p − 1 is a product of small
primes. In fact one builds up m as a product of primes of increasing size. The
jackpot in the algorithm occurs when we hit an m that is divisible by p − 1,
where p is a prime factor of N .

How do we search systematically through the m-values for a specific a? A
good strategy is to decide on a bound B, considering only the prime numbers
< B dividing m. One then takes the powers of the prime number q < B entering
m as the least integer greater than or equal to logq

√
N ([5], Section 4.3). Again

we will do a toy example that fully explains the basic idea.
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Example 1.10.3 Consider N = 143 = 11 · 13 and a = 2. We consider primes
< B = 5. Thus in this case m = 2433 = 432. Using repeated squaring we find
that

[2432]143 = 92.

Therefore

gcd(143, 2432 − 1) = gcd(143, 91) = 13.

We have found the factor 13 in 143.

To protect a public RSA-key from the Pollard (p − 1)-algorithm one should
choose (secret) prime numbers p and q such that p − 1 and q − 1 are not
products of small prime numbers.

The (hidden group theoretic) idea behind the (p − 1)-algorithm can be used
to construct a much stronger factoring algorithm using arithmetic on elliptic
curves (this was done by Lenstra in 1985).

1.10.4 The Fermat–Kraitchik algorithm

Currently the most effective algorithms for factoring difficult RSA integers
originate in the historic fact that if an integer N can be written as the differ-
ence x2 − y2 between two squares, we have the factorization N = x2 − y2 =
(x + y)(x − y). However, if an odd number N = uv is composite then

N =
(

u + v

2

)2

−
(

u − v

2

)2

.

This method of factoring goes back to Fermat. Suppose we wish to factor N .
Fermat’s method uses the function

S(x) = x2 − N

and a search for x such that S(x) is a square. Usually one runs through
x = [

√
N ], [

√
N ] + 1, . . . , where [

√
N ] denotes the largest integer ≤ √

N .
Putting N = 2491, one finds S(49) = −90, S(50) = 9 = 32. This means that
2491 = (50 + 3)(50 − 3) = 53 · 47. Of course, using this method on a com-
posite number such as 21000 works just as poorly as trial division. There is a
beautiful variation of Fermat’s method, due to M. Kraitchik (1882–1957), using
congruences. The insight is that to find a factor of N it usually suffices that N
divides x2 − y2. If

N | x2 − y2 = (x + y)(x − y)

https://doi.org/10.1017/CBO9780511804229.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511804229.002


1.10 Algorithms for prime factorization 35

and N does not divide either x + y or x − y then we may conclude that
gcd(x + y, N ) > 1 by Corollary 1.5.10 and use the Euclidean algorithm to
find gcd(N , x + y), which is a non-trivial factor of N . So one should look for
integers x , y such that

x2 ≡ y2 (mod N ),

x �≡ ±y (mod N ).

Suppose that we have collected x1, . . . , xn along with the congruences

x2
1 ≡ a1 (mod N ), . . . , x2

n ≡ an (mod N )

for some integers a1, . . . , an . If a subset ai1 , . . . , air of a1, a2, . . . , an satisfies
that ai1 · · · air is a square then

(xi1 · · · xir )2 ≡ ai1 · · · air (mod N )

by Proposition 1.3.4 and we have our congruence x2 ≡ y2 (mod N ). This con-
gruence may or may not satisfy x �≡ ±y (mod N ). To tell whether a number n
is square we factor it,

n = pm1
1 · · · pmr

r ,

using some predefined factor basis P = {p1, . . . , pr } of (small) prime numbers.
In this context, n is a square if and only if all the exponents m1, . . . , mr are
even. Using linear algebra there is a method of systematically finding a subset
{i1, . . . , ir } such that ai1 · · · air is a square (see Exercise 1.49).

Let us apply this algorithm to the numbers we get from the function S(x) =
x2 − N . Notice that x2 ≡ S(x) (mod N ). For N = 2041 (this example is from
[19]) we illustrate this in the table below. The marked entries together indicate
the subset whose product is a square.

x S(x) Factorization Marked
46 75 3 · 52 √
47 168 23 · 3 · 7

√
48 263 263
49 360 23 · 32 · 5

√
50 459 33 · 17
51 560 24 · 5 · 7

√

The above table shows that S(46)S(47)S(49)S(51) = 75 · 168 · 360 · 560 =
(25 · 32 · 52 · 7)2 is a square. Putting u = 25 · 32 · 52 · 7, we get

u2 = 504002 ≡ 14162 (mod 2041).
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Now we know that u2 ≡ v2 (mod 2041) where v = 46 · 47 · 49 · 51 =
5402838 ≡ 311 (mod 2041). Using the Euclidean algorithm one finds the great-
est common divisor of u − v = 1416 − 311 = 1105 and 2041, which is 13.
We have found the factorization 2041 = 13 · 157. Using the original method
of Fermat we would have to wait until x = 85 before S(x) is a square. The
heavy part of the algorithm is factoring S(x) = x2 − N . Around 1982, Pomer-
ance discovered a nice trick that avoids this. His observation was that a prime
power pr divides S(x) if and only if it divides S(x + kpr ), where k ∈ Z. So if
we can locate a number x such that pr | S(x) then we know in advance that
pr | S(x + pr ), S(x + 2pr ), . . . . This is a so-called sieving procedure (like the
sieve of Eratosthenes, which eliminates multiples of prime numbers). It leads to
a factorization algorithm called the quadratic sieve. In [19] you can find a nice
description of this and more advanced sieving methods for factoring. These are
currently the most effective algorithms for the challenges issued by RSA Labs.
In fact RSA-155 was factored using sieving.

1.11 Quadratic residues

In this section we introduce the fundamentals of quadratic residues modulo
a prime number p. Gauss originally developed this theory, starting with the
question whether a number a has a square root modulo p: can one find an
integer x such that x2 ≡ a (mod p)? This question led Gauss to exceptionally
beautiful mathematics (see “Congruences of the second degree,” Section IV in
[11] and be sure to enjoy the clarity of the exposition).

Later, we will use quadratic residues when writing prime numbers ≡ 1
(mod 4) as a sum of two squares.

Definition 1.11.1 Let p be a prime number. If p � a then a is called a quadratic
residue modulo p if it is congruent to a square modulo p (i.e. there exists
x ∈ Z such that a ≡ x2 (mod p)). Otherwise a is called a quadratic non-residue
modulo p. If p | a then a is considered neither a quadratic residue nor a quadratic
non-residue. This definition is contained in the Legendre symbol

(
a

p

)
=




0 if p | a,

1 if a is a quadratic residue modulo p,

−1 if a is a quadratic non-residue modulo p.

If a ≡ x2 (mod p) for some integer x ∈ Z, we may find a y such that 0 ≤
y < p and a ≡ y2 (mod p). We simply put y = [x]p. Then y ≡ x (mod p) and
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therefore y2 ≡ x2 (mod p). Thus the quadratic residues among the numbers
1, 2, . . . , p − 1 are the numbers

[12], [22], [32], . . . , [(p − 1)2],

where the remainder is with respect to p. This is reflected in the Legendre
symbol: (

a

p

)
=

(
a + kp

p

)

where k ∈ Z.

Example 1.11.2 Let p = 7. Since a non-zero square x2 modulo p is always
congruent to one of the squares 12, 22, 32, 42, 52, 62, we may list the quadratic
residues among 1, 2, 3, 4, 5, 6 as

[12] = 1,

[22] = 4,

[32] = 2,

[42] = 2,

[52] = 4,

[62] = 1

by taking the remainder after division by 7. Notice the symmetry above: [32] =
[42], [22] = [52], [12] = [62]. This is a consequence of the fact that x2 ≡
(7 − x)2 (mod 7). There are an equal number of quadratic residues, {1, 2, 4},
and quadratic non-residues, {3, 5, 6}.

Proposition 1.11.3 Let p denote an odd prime. Half the numbers
1, 2, 3, . . . , p − 1 are quadratic residues; the other half are quadratic non-
residues modulo p. 3

Proof. We already know that the quadratic residues are [12], [22], . . . ,
[(p − 1)2]. But since x2 ≡ (p − x)2 (mod p), we see that the quadratic residues
are given by the first (p − 1)/2 numbers [12], [22], . . . , [((p − 1)/2)2]. These
numbers really are different. If [i2] = [ j2] then i2 ≡ j2 (mod p) and p | i2 −
j2 = (i + j)(i − j). Therefore p | i + j or p | i − j . This is only possible if
i = j , because 0 ≤ i, j ≤ (p − 1)/2. So there are (p − 1)/2 quadratic residues

3 An interesting problem is how the quadratic non-residues are distributed among
1, 2, . . . , p − 1. In particular, how big is the smallest quadratic non-residue a? If a
generalization of the famous Riemann hypothesis is true one can prove that a < 2(log p)2,
where log denotes the natural logarithm.
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and therefore (p − 1) − (p − 1)/2 = (p − 1)/2 quadratic non-residues among
the numbers 1, 2, . . . , p − 1. �

The following important theorem is due to Euler.

Theorem 1.11.4 (Euler) Let p be an odd prime and let a be an integer not
divisible by p. Then (

a

p

)
≡ a(p−1)/2 (mod p).

Proof. If a is a quadratic residue then a ≡ x2 (mod p), where p � x for some
x ∈ Z. Therefore

a(p−1)/2 ≡ (x2)(p−1)/2 = x p−1 ≡ 1 (mod p)

by Corollary 1.9.2. Therefore we have at least (p − 1)/2 incongruent solutions
to the congruence

X (p−1)/2 − 1 ≡ 0 (mod p). (1.7)

What is shown in Exercise 1.50 implies that (1.7) can have at most (p − 1)/2
incongruent solutions. Therefore a quadratic non-residue a cannot be a solution
to (1.7). Thus a(p−1)/2 �≡ 1 (mod p) and therefore a(p−1)/2 ≡ −1 (mod p) by
Lemma 1.9.4. This finishes the proof of Lemma 1.9.4. �

Corollary 1.11.5 Let p be an odd prime. Then the Legendre symbol satisfies(
ab

p

)
=

(
a

p

) (
b

p

)
.

Another very nice consequence of Theorem 1.7.2 is the following.

Proposition 1.11.6 Let p be an odd prime. Then −1 is a quadratic residue
modulo p if p ≡ 1 (mod 4) and a quadratic non-residue if p ≡ 3 (mod 4).

Proof. From Theorem 1.7.2 we get(−1

p

)
= (−1)(p−1)/2.

Now the result follows, since (p − 1)/2 is even if p ≡ 1 (mod 4) and odd if
p ≡ 3 (mod 4). �
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We move on to a celebrated lemma due to Gauss. We give the proof because
it is very similar to the proof of Theorem 1.7.2. First we need some notation.
Let p be an odd prime number. Then every integer a ∈ Z such that p � a is
congruent to precisely one number (its remainder) from

M = {1, 2, 3, . . . , p − 1}.

The clever thing is to break M into two and flip the right hand part below zero.
We do this by replacing x by x − p if x > (p − 1)/2. This means that every
number from M is congruent to precisely one number in the set

S =
{
− p − 1

2
, − p − 3

2
, . . . , −2, −1, 1, 2, . . . ,

p − 3

2
,

p − 1

2

}
.

Consider the list

a, 2a, 3a, . . . ,
p − 1

2
a,

where p � a. None of these numbers is divisible by p (why not?). Also,
they satisfy ia �≡ ± ja (mod p), since p � i − j and p � i + j when i �= j and
0 ≤ i, j ≤ (p − 1)/2. This means that ia is congruent to a unique number in
{1, 2, . . . , (p − 1)/2}, up to a sign.

Definition 1.11.7 Let µ(a) denote the number of elements from the list

a, 2a, 3a, . . . ,
p − 1

2
a

congruent to a negative number in S.

Example 1.11.8 Let p = 11. Then

S = {−5, −4, −3, −2, −1, 1, 2, 3, 4, 5}.

If a = 6 then 6 ≡ −5, 12 ≡ 1, 18 ≡ −4, 24 ≡ 2, 30 ≡ −3 modulo 11. This
means that µ(a) = 3 in this case.

Remark 1.11.9 Notice that µ(a) also is the number of elements in

{[a], [a2], . . . , [a(p − 1)/2]} ∩ {(p + 1)/2, . . . , p − 1}.

Here we count the remainders > (p − 1)/2.
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Lemma 1.11.10 (Gauss) Keep the above notation. Then
(

a

p

)
= (−1)µ(a).

Proof. An element ja, where j = 1, . . . , (p − 1)/2, is congruent to ±m j ,
where 1 ≤ m j ≤ (p − 1)/2. Since ia cannot be congruent to ± ja modulo p,
when i �= j and 1 ≤ i, j ≤ (p − 1)/2 (this amounts to the same argument as
in the proof of Theorem 1.7.2), it follows that

a(p−1)/2

(
p − 1

2

)
! ≡ (−1)µ

(
p − 1

2

)
! (mod p).

Since p � ((p − 1)/2)! we get

a(p−1)/2 ≡ (−1)µ (mod p)

and Theorem 1.11.4 finishes the proof. �

Corollary 1.11.11 Let p be an odd prime. Then 2 is a quadratic residue
modulo p if p ≡ 1, 7 (mod 8) and a quadratic non-residue if p ≡ 3, 5 (mod 8).

Proof. The number µ = µ(2) in Lemma 1.11.10 is the number of elements in
the list

1 · 2, 2 · 2, 3 · 2, . . . ,
p − 1

2
· 2

that are greater than (p − 1)/2. To compute µ we consider two cases. If p ≡
1 (mod 4) then

µ = p − 1

2
− p − 1

4
= p − 1

4
.

If p ≡ 3 (mod 4) then

µ = p − 1

2
− p − 3

4
= p + 1

4
.

Using Lemma 1.11.10 we conclude that

(
2

p

)
=




1 if p ≡ 1 (mod 8),

−1 if p ≡ 3 (mod 8),

−1 if p ≡ 5 (mod 8),

1 if p ≡ 7 (mod 8),
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since (p − 1)/4 is even when p ≡ 1 (mod 8) and odd when p ≡ 5 (mod 8) and
(p + 1)/4 is even when p ≡ 7 (mod 8) and odd when p ≡ 3 (mod 8). �

Now we know how to compute (−1
p ) and ( 2

p ), but we are missing the crucial
insight needed to get our hands on ( a

p ) in general. This insight is one of the
most beautiful results in the history of mathematics. It is known as the law of
quadratic reciprocity (due to Gauss, of course). It states that

(
p

q

) (
q

p

)
= (−1)(p−1)(q−1)/4,

where p and q are odd primes. Put another way,

(
p

q

)
=

(
q

p

)
(−1)(p−1)(q−1)/4 =




−
(

q

p

)
if p ≡ q ≡ 3 (mod 4),

(
q

p

)
otherwise.

Think about it. If you have two odd primes p and q, it is totally unexpected that
the two congruences

x2 ≡ q (mod p) and x2 ≡ p (mod q)

should have any connection. We will give a proof of quadratic reciprocity in
Section 4.7, when we will have access to some more abstract algebra. Let us
give an example showing how the Legendre symbol is computed using these
rules.

Example 1.11.12(
19

43

)
= −

(
43

19

)
= −

(
5

19

)
= −

(
19

5

)
= −

(
4

5

)
= −

(
2

5

) (
2

5

)
= −1.

By the magic of the law of quadratic reciprocity we have proved that x2 ≡
19 (mod 43) has no solutions.

1.12 Exercises

1. Prove that if a subset S ⊆ Z has a first element then the latter has to be
unique.

2. Let x, d ∈ Z, where d > 0. Prove that M ∩ N �= ∅, where
M = {x − qd | q ∈ Z}.
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3. Let a, b, N ∈ Z, where N > 0. Prove that [ab] = [[a][b]], where [x]
denotes the remainder of x after division by N .

4. Verify that the remainder of 2340 after division by 341 is 1, using the
repeated squaring algorithm.

5. Let τ be a natural number > 1. A τ -adic expansion of a number x ∈ N is
the expression

x = a0 + a1τ + · · · + arτ
r ,

where r ∈ N, ai ∈ N and 0 ≤ ai < τ .
(i) Compute a 3-adic expansion of 17.

(ii) Prove that every x ∈ N\{0} can be written as

x = aτ r + b,

where 0 ≤ a < τ , 0 ≤ b < τ r and r = max{s ∈ N | τ s ≤ x}.
(iii) Prove that every natural number has a unique τ -adic expansion.

6. Let a be a number written (in base 10) as

a0 · 100 + a1 · 101 + a2 · 102 + · · · + an · 10n

where 0 ≤ ai < 10.
(i) Prove that 2 divides a if and only if 2 divides a0.

(ii) Prove that 4 divides a if and only if 4 divides a0 + 2a1.
(iii) Prove that 8 divides a if and only if 8 divides a0 + 2a1 + 4a2.
(iv) Prove that 5 divides a if and only if 5 divides a0.
(v) Prove that 9 divides a if and only if 9 divides the sum

a0 + a1 + · · · + an of its digits.
(vi) Prove that 3 divides a if and only if 3 divides the sum of its digits.

(vii) Prove that 11 divides a if and only if 11 divides

a0 − a1 + a2 − · · · .

(viii) What is the rule for divisibility by 7?
7. Suppose that someone tricks you into believing that 233 · 577 = 135441.

Use congruences to prove in a flash that this is wrong. Is there a smart way
of using congruences to double-check computations such as a + b and ab
for integers a and b? Give a few examples.

8. Prove that 3 | 4n − 1, where n ∈ N.
9. Let m, n ∈ Z not both equal zero. Prove that

gcd(m, n) = max div(m) ∩ div(n),

where max(m, n) = m if m ≥ n and max(m, n) = n if m < n.
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10. Let u, v ∈ Z. Show that
(i) 2 | u, v ⇒ gcd(u, v) = 2 gcd(u/2, v/2).

(ii) 2 | u, 2 � v ⇒ gcd(u, v) = gcd(u/2, v).
(iii) Use (i) and (ii) to construct a “new” Euclidean algorithm, where you

also apply the fact that gcd(u, v) = gcd(u − v, v). Give a few
examples.

The “new” Euclidean algorithm alluded to in this exercise is called the
binary Euclidean algorithm. It was discovered in 1961.

11. Let x, y, z, d ∈ Z. Prove the following statements.
(i) x ≡ x (mod d).

(ii) If x ≡ y (mod d) then y ≡ x (mod d).
(iii) If x ≡ y (mod d) and y ≡ z (mod d) then x ≡ z (mod d).

12. Compute λ, µ ∈ Z such that 89λ + 55µ = 1 and find all solutions x ∈ Z

to

89x ≡ 7 (mod 55).

13. Suppose that λN + µM = d , where λ, µ, M, N ∈ Z and N > 0. Prove
that one may find λ′, µ′ ∈ Z such that

λ′N + µ′M = d,

where 0 ≤ µ′ < N .
14. Let m, n ∈ Z and suppose that there exist λ, µ ∈ Z such that

λm + µn = 1. Prove that m and n are relatively prime.
15. Suppose that a, b ∈ Z and gcd(a, b) = 1. Prove that gcd(am, bn) = 1 for

m, n ∈ N.
16. Let m, n ∈ N and let S = {xm + yn | x, y ∈ Z} ⊆ Z. Prove that

(i) q ∈ Z and s, t ∈ S ⇒ qs ∈ S and s + t ∈ S.
(ii) Assume that S �= {0}. Use (i) to prove that S = {ad | a ∈ Z}, where

d is the first element > 0 in S ∩ N.
(iii) Prove that d = gcd(m, n) (again assuming that S �= {0}).
This gives another proof of Lemma 1.5.7.

17. What is the smallest odd natural number that leaves a remainder of 2
when divided by 3 and a remainder of 3 when divided by 5?

18. Solve the system ([11][18])

X ≡ 17 (mod 504),

X ≡ −4 (mod 35),

X ≡ 33 (mod 16),

of congruences in X .
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19. Why does the following number game work?

Ask anyone to select a number less than 60. Request him to perform the following
operations. (i) Divide it by 3 and mention the remainder; suppose it to be a. (ii)
Divide it by 4, and mention the remainder; suppose it to be b. (iii) Divide it by 5
and mention the remainder; suppose it to be c. Then the number selected is the
remainder obtained by dividing 40a + 45b + 36c by 60.

20. (Quoted from [18]) An old woman goes to market and a horse steps on
her basket and crushes her eggs. The rider offers to pay for the damages
and asks her how many eggs she had brought. She does not remember the
exact number, but when she had taken them out two at a time, there was
one egg left. The same had happened when she picked them out three,
four, five and six at a time, but when she took them out seven at a time
they came out even (no eggs left). What is the smallest number of eggs
she could have had?

21. On a desert island, five men and a monkey gather coconuts all day, then
they go to sleep. The first man wakes up and takes his share. He divides
the coconuts into five equal shares and gives the monkey the one coconut
left over, hides his share and goes back to sleep. The second man wakes
up, takes his fifth from the remaining pile; he too finds one extra and gives
it to the monkey. Each of the remaining three men does likewise in turn.
Find the minimum number of coconuts that must have been originally
present.

22. Prove that ϕ(n) = ϕ(2n) if n is odd.
23. It seems that ϕ(n) is even when n > 2. Can you prove this without using

the formula in subsection 1.8.3?
24. Suppose that p1, . . . , pN are the first N prime numbers. Is

p1 · · · · · pN + 1 a prime number? (hint: 2 · 3 · 5 · 7 · 11 · 13 · 17 ≡ −1
(mod 19)).

25. Prove that n has to be a prime number if the Mersenne number
Mn = 2n − 1 is a prime number. Is Mn a prime number if n is a prime
number?

26. Prove that if 2n + 1 is a prime then n is a power of 2 (hint: if n = ab,
where b is odd, then 2a + 1 divides 2n + 1). The nth Fermat number Fn is
defined as 22n + 1. Prove that F0, F1, F2, F3, F4 are prime numbers.

27. Prove that Fm and Fn (see the previous exercise) are relatively prime if
m �= n (hint: prove and use that

∏n−1
i=0 Fi = Fn − 2). Use this to prove that

there are infinitely many prime numbers.
28. Find a prime factorization of 2419 in less than 3 minutes.
29. (i) Let p > 3 be a prime number. Prove that for every a, 1 < a < p − 1,

there is a unique b �= a, 1 < b < p − 1, such that ab ≡ 1 (mod p).
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(ii) Let p be a prime number. Prove that (p − 1)! ≡ −1(mod p) (hint:
think in pairs and apply (i)).

(iii) Suppose that (n − 1)! ≡ −1(mod n), where n ≥ 2. Is n a prime
number?

The result in (ii) is called Wilson’s theorem.
30. (i) Let p be a prime number. Prove that

p |
(

p

i

)
for 1 ≤ i ≤ p − 1

using Lemma 1.8.3.
(ii) Prove that

(a + b)p ≡ a p + bp(mod p)

for integers a, b and a prime number p (hint: use (i) or Corollary
1.9.2).

(iii) Suppose that

n |
(

n

i

)
for 1 ≤ i ≤ n − 1.

Is n a prime number?
31. Prove unique factorization using that N is well ordered, by assuming that

M = {n ∈ N \ {0} | n does not have a unique factorization}
is a non-empty subset of N. Let m denote the first element in M . Consider
two different prime factorizations

m = p1 · · · pr ,

m = q1 · · · qs

of m.
(i) Prove that

{p1, . . . , pr } ∩ {q1, . . . , qs} = ∅.

(ii) Assume that p1 < q1. Use the fact that the number

n = p1 · · · pr − p1q2 · · · qs

= (q1 − p1)q2 · · · qs

has a unique factorization to reach a contradiction.
This proof of unique factorization is from the classic text by Courant and
Robbins [4].

32. What is the product of the greatest common divisor and the least common
multiple?
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33. Let n ∈ N \ {0} have the prime factorization

n = pe1
1 · · · pem

m ,

where pi �= p j for i �= j . Let d(n) = |div(n)| and

σ (n) =
∑

d∈div(n)

d

be respectively the number of natural divisors in n and the sum of the
natural divisors in n.
(i) Prove that d(n) = (e1 + 1) · · · (em + 1).

(ii) Prove that

σ (n) = pe1+1
1 − 1

p1 − 1
· · · pem+1

m − 1

pm − 1
.

34. A number n ∈ N is called perfect if σ (n) = 2n. So, a number is perfect if
it is the sum of its natural divisors except itself. Prove that if 2n+1 − 1 is a
prime number then 2n(2n+1 − 1) is perfect.

35. Use GIMPS and a computer to find a perfect number with more than one
million digits.

36. Let n = ps1
1 ps2

2 , where p1 �= p2 are prime numbers. Prove that
ϕ(n) = (ps1

1 − ps1−1
1 )(ps2

2 − ps2−1
2 ) by counting explicitly the number of

natural numbers less than n that are relatively prime to n. If you like
counting and combinatorics you may generalize this to give a proof of the
formula for computing ϕ in subsection 1.8.3.

37. Prove that the fifth Fermat number (see Exercise 1.26) F5 = 232 + 1 is
composite (this was first proved by Euler in 1739, thereby demolishing
the conjecture that every Fn is prime) by using the following hints:
54 + 24 = 1 + 27 · 5 and

F5 = (54 + 24)(27)4 − 54(27)4 + 1.

It is not known whether there is a Fermat number Fn that is prime for
n > 4.

38. Suppose that N = pq is the product of two different prime numbers p
and q. Show that p and q are solutions to the equation

X2 + (ϕ(N ) − N − 1)X + N = 0.

This shows that (given N = pq) finding p and q is just as “difficult” as
finding ϕ(N ).

39. (HOF) Around 1994 the following email circulated (partially quoted):
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We are happy to announce that

RSA-129 = 1143816257578888676692357799761466120102182967212423625625618429 \
35706935245733897830597123563958705058989075147599290026879543541

= 3490529510847650949147849619903898133417764638493387843990820577 *
32769132993266709549961988190834461413177642967992942539798288533

The encoded message published was

968696137546220614771409222543558829057599911245743198746951209308162 \
98225145708356931476622883989628013391990551829945157815154

This number came from an RSA encryption of the ‘secret’ message using the
public exponent 9007.

The symbol \ indicates that the number is continued on the next line. This
email announced that the original 1977 RSA challenge from Martin
Gardner’s Scientific American column had been factored. It also gives the
encoded message using the following encoding: space = 00, A = 01, B =
02, . . . . What was the secret message encrypted in 1977?
The factorization of RSA-129 was a real challenge, involving participants
in every corner of the world:

To find the factorization of RSA-129, we used the double large prime variation of
the multiple polynomial quadratic sieve factoring method. The sieving step took
approximately 5000 mips years, and was carried out in 8 months by about 600
volunteers from more than 20 countries, on all continents except Antarctica.
Combining the partial relations produced a sparse matrix of 569466 rows and
524338 columns. This matrix was reduced to a dense matrix of 188614 rows and
188160 columns using structured Gaussian elimination. Ordinary Gaussian
elimination on this matrix, consisting of 35489610240 bits (4.13 gigabyte), took
45 hours on a 16K MasPar MP-1 massively parallel computer. The first three
dependencies all turned out to be ‘unlucky’ and produced the trivial factor
RSA-129. The fourth dependency produced the above factorization.

We would like to thank everyone who contributed their time and effort to this
project. Without your help this would not have been possible.

Derek Atkins
Michael Graff
Arjen Lenstra
Paul Leyland

40. (HOF) Suppose that you are given e, d and N in the context of the RSA
cryptosystem. The purpose of this exercise is to show that one can deduce
the prime factorization N = pq from this.
(i) Show that the congruence x2 ≡ 1 (mod N ) has four solutions

modulo N (there are two more apart from the obvious x = ±1).
(ii) Show that one of these solutions x satisfies x ≡ −1 (mod p) and

x ≡ 1 (mod q). How can this be used to find p effectively?
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(iii) Using that ϕ(N ) is even, deduce an effective probabilistic algorithm
for finding p and q given e, d and N (you already know that
ϕ(N ) | ed − 1 and that aϕ(N ) ≡ 1 (mod N ) for gcd(a, N ) = 1).

(iv) Why is it not secure to use the same N for different people in the
RSA system?

41. Prove that aN−1 �≡ 1 (mod N ) if gcd(a, N ) > 1, where a, N ∈ Z and
N ≥ 1.

42. Prove that 899 is composite using only Corollary 1.9.2.
43. Prove that 15 is not a strong pseudoprime relative to 11.
44. Prove that 25 is a strong pseudoprime relative to 7.
45. Let n = p1 · · · pr be a product of primes, where pi �= p j , 1 ≤ i < j ≤ r .

Suppose that pi − 1 | n − 1 for i = 1, . . . , r .
(i) Prove that an−1 ≡ 1 (mod n) if gcd(a, n) = 1.

(ii) Prove that 561 is a Carmichael number.
(iii) Give an example of a Carmichael number �= 561.

46. Use Pollard’s ρ-algorithm to factor N = 10403.
47. (HOF) Implement Pollard’s ρ-algorithm using a computer language with

infinite-precision integer arithmetic. Use the polynomial
f (X ) = X2048 + 1 and X0 = Y0 = 3 instead of f (X ) = X2 + 1 and
X0 = 0 to factor the eighth Fermat number

F8 = 228 + 1.

This is a number with 78 digits.
48. Use Pollard’s (p − 1)-algorithm to factor N = 295927.
49. Part (ii) of this exercise uses linear algebra over the finite field F2 with

two elements, which is detailed later in the book (see Chapter 3 and
Appendix B).
(i) Let x = pm1

1 · · · pmr
r be a prime factorization of a positive natural

number. Prove that x is a square if and only if all the exponents
m1, . . . , mr are even.

(ii) Suppose that the prime factorizations of a1, . . . , an over the factor
basis P = {p1, . . . , pr } (assume that all the a factor completely using
primes from P) are

a1 = pm11
1 · · · pm1r

r ,

a2 = pm21
1 · · · pm2r

r ,

...

an = pmn1
1 · · · pmnr

r .
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1.12 Exercises 49

Translate the problem of finding a subset {i1, . . . , is} of {1, 2, . . . , n}
such that ai1 · · · ais is a square into linear algebra over F2.

50. Let f (X ) = an Xn + · · · + a1 X + a0, where ai ∈ Z, n ∈ N and X is a
variable. The degree of f is said to be n modulo N ∈ Z if N � an .

(i) Show that X − a | Xn − an , where X, a ∈ Z and n ∈ N.
(ii) Let a, N ∈ Z. Show that if f has degree n modulo N and f (a) ≡ 0

(mod N ) then f (X ) ≡ (X − a)g(X ) (mod N ), where g has degree
n − 1 modulo N (use (i) and f (X ) ≡ f (X ) − f (a) (mod N )).

(iii) Show that the congruence f (X ) ≡ 0 (mod p) has at most n
incongruent solutions modulo p, if p is a prime and f has degree n
modulo p. What if p is not a prime?

51. Let p be an odd prime.
(i) Prove that the product of two quadratic residues modulo p is a

quadratic residue modulo p.
(ii) Prove that the product of two quadratic non-residues modulo p is a

quadratic residue modulo p.
(iii) Prove that the product of a quadratic residue modulo p and a

quadratic non-residue modulo p is a quadratic non-residue modulo p.
52. Determine the quadratic residues and non-residues modulo 13.
53. Show that 3 is a quadratic residue modulo the prime p if p ≡ 1 (mod 12).
54. Compute (

7

17

)
.
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