
B Linear algebra

Vector spaces over the real numbers are familiar creatures. But the definition of
a real vector space makes perfect sense when you replace the real numbers R
by an arbitrary field F . The crucial thing is that given a non-zero x ∈ F there
is a y ∈ F such that xy = 1.

Definition B.0.9 A vector space V over a field F is an abelian group (V, +)
with neutral element 0 and a (scalar) multiplication F × V → V denoted
(a, v) �→ av such that

(i) (ab)v = a(bv)
(ii) 1v = v

(iii) (a + b)v = av + bv

(iv) a(v + w) = av + aw

for every a, b ∈ F and every v, w ∈ V .

A subspace of V is a subgroup W ⊆ V such that av ∈ W if a ∈ F and
v ∈ W . A group homomorphism ϕ : V → W between vector spaces V and
W over a field F is called a linear map if ϕ(av) = aϕ(v) where a ∈ F and
v ∈ V .

Letϕ : V → W be a linear map. The subset Ker (ϕ) = {v ∈ V | ϕ(v) = 0} ⊆
V is called the kernel of ϕ and Im(ϕ) = {ϕ(v) | v ∈ V } ⊆ W is called the image
of ϕ. Both are subspaces. Let V ′ ⊆ V be a subspace; then the quotient group
V/V ′ = {v + V ′ | v ∈ V } is a vector space through the (well defined) scalar
multiplication given by a(v + V ′) = av + V ′. By Theorem 2.5.1 we have a
group isomorphism

ϕ̃ : V/Ker (ϕ) → Im(ϕ),

where ϕ : V → W is a linear map. This group isomorphism is also a linear
map.
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A vector space V over a field F is called finitely generated if there exists
a finite set of vectors v1, . . . , vn ∈ V such that every v ∈ V can be written as
a linear combination v = a1v1 + · · · + anvn for suitable a1, . . . , an ∈ F . Such
a set of vectors is called a (finite) generating set for V . We will assume that
vector spaces are finitely generated.

Example B.0.10 Let F be a field. Then

V = Fn = F × · · · × F

is a vector space resembling Rn . The multiplication F × V → V is given by

a(v1, . . . , vn) = (av1, . . . , avn),

where a ∈ V and (v1, . . . , vn) ∈ V . The vectors e1 = (1, 0, . . . , 0), e2 =
(0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1) ∈ V form a generating set for V .

B.1 Linear independence

Definition B.1.1 Let V be a vector space over a field F . A set of vectors
v1, . . . , vn is called linearly independent if

a1v1 + · · · + anvn = 0,

where a1, . . . , an ∈ F implies that a1 = · · · = an = 0.

We now prove what is known as the Steinitz exchange lemma.

Lemma B.1.2 Let V be a vector space over a field F, w1, . . . , wm a lin-
early independent set of vectors and v1, . . . , vn a generating set for V . Then
m ≤ n and w1, . . . , wm, v′

m+1, . . . , v
′
n gives a generating set for V , where

v′
m+1, . . . , v

′
n ∈ {v1, . . . , vn}.

Proof. We may assume by rearranging v1, . . . , vn that w1 = a1v1 + · · · +
anvn , with a1 �= 0. This gives that v1 can be written as a linear combination
of w1, v2, . . . , vn . Therefore w1, v2, . . . , vn is a generating set for V . We con-
tinue this procedure with w2. Write w2 = a1w1 + a2v2 + · · · + anvn . Here we
must have ai �= 0 for some i > 1, otherwise w1 and w2 would not be linearly
independent. Assume that a2 �= 0. In the same way as before w1, w2, v3, . . . , vn
is a generating set. Proceeding like this we cannot exceed the nth vector vn; This
would contradict that w1, . . . , wm is a linearly independent set of vectors. Thus
m ≤ n and in the process we have also shown that w1, . . . , wm, v′

m+1, . . . , v
′
n

is a generating set for V , where v′
m+1, . . . , v

′
n ∈ {v1, . . . , vn}. �

Definition B.1.3 A basis for a vector space V is a linearly independent gene-
rating set for V .
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Proposition B.1.4 A (finitely generated) vector space V over a field F has a
basis. More precisely, a minimal generating set for V is linearly independent.

Proof. Let v1, . . . , vn ∈ V be a minimal generating set for V . This means that
if we exclude any of v1, . . . , vn we are left with a set of vectors that is not a
generating set. We wish to prove that v1, . . . , vn is a linearly independent set.
If not, we would have a1, . . . , an ∈ F , not all zero, such that

a1v1 + · · · + anvn = 0.

We may assume that a1 �= 0. This means that

v1 = −a−1
1 a2v2 − · · · − a−1

1 anvn.

Therefore v2, . . . , vn is a generating set, contradicting that v1, . . . , vn is a min-
imal generating set. �

Proposition B.1.5 If v1, . . . , vm and w1, . . . , wn are two bases of a vector
space then m = n.

Proof. This follows from Lemma B.1.2. �

B.2 Dimension

Definition B.2.1 Let V be a vector space over a field F . The dimension
dimF V of V over F is the number of elements in a basis of V .

Proposition B.2.2 Let V be a vector space over a field F and W ⊆ V a
subspace of V . If dimF W = dimF V then W = V .

Proof. Let n = dimF W = dimF V . Suppose that w1, . . . , wn is a basis for W
and v1, . . . , vn a basis for V . Then we may use Lemma B.1.2 to conclude that
w1, . . . , wn is also a basis for V . Thus W = V . �

Proposition B.2.3 Let V be a vector space over a field F and W ⊆ V a
subspace of V . Then

(i) dimF V/W = dimF V − dimF W,
(ii) dimF V + W = dimF V + dimF W − dimF V ∩ W,

(iii) dimF Ker (ϕ) + dimF Im(ϕ) = dimF V where ϕ : V → W is a linear
map.

Proof. If w1, . . . , wr is a basis for W and v1, . . . , vn a basis for V then we may
assume that w1, . . . , wr , vr+1, . . . , vn is a basis for V by Lemma B.1.2. It is
easy to verify that vr+1 + W, . . . , vn + W is a basis for V/W . This proves the
first formula. To prove the second formula recall that V + W is the subspace
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defined as {v + w | v ∈ V, w ∈ W } and that V and W are subspaces of V + W .
The composed map

ψ : V → V + W → V + W/W

is given by ψ(v) = v + W . It is linear and surjective and Ker (ψ) = V ∩ W ,
since ψ(v) = v + W = W if and only if v ∈ W . Therefore

V/V ∩ W ∼= V + W/W.

This shows that dimF V/V ∩ W = dimF V + W/W , and (ii) follows from (i).
Use the isomorphism

V/Ker (ϕ) ∼= Im(ϕ)

to deduce the formula in (iii). �

If ϕ : V → W is a linear map, v1, . . . , vm a basis of V and w1, . . . , wn a
basis of W then

ϕ(v1) = a11w1 + · · · + an1wn.

...

ϕ(vm) = a1mw1 + · · · + anmwn,

If v = x1v1 + · · · + xmvm ∈ V , where x1, . . . , xm ∈ V , we see that

ϕ(v) = x1ϕ(v1) + · · · + xmϕ(vm).

Thus 


y1
...

yn


 =




a11 . . . a1m
...

. . .
...

an1 . . . anm







x1
...

xm


 ,

where ϕ(v) = y1w1 + · · · + ynwn .

Example B.2.4 Let F be a field and f = Xn + an−1 Xn−1 + · · · + a1 X +
a0 ∈ F[X ] a polynomial of degree n ≥ 1. Then

R = F[X ]/〈 f 〉
is a vector space over F with basis 1, α, . . . , αn−1, where α = [X ] ∈ R. Mul-
tiplication by α is a linear map ϕ : R → R. The matrix of ϕ with respect to the
basis 1, α, . . . , αn−1 is 



0 0 . . . 0 − a0
1 0 . . . 0 − a1
0 1 . . . 0 − a2
...

...
. . .

...
...

0 0 . . . 1 − an−1


 .

The above facts are consequences of Proposition 4.6.7.
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