
5 Gröbner bases

A symmetric function f : R2 → R is a function satisfying f (X, Y ) = f (Y, X )
for every (X, Y ) ∈ R2. Simple examples of symmetric functions are s1(X, Y ) =
X + Y and s2(X, Y ) = XY . Polynomials in X and Y are functions built from
addition and multiplication of the variables X and Y , such as f (X, Y ) = X5Y +
X + Y . The polynomial f (X, Y ) = X2 + Y 2 is an example of a polynomial
that is a symmetric function. We call it a symmetric polynomial. A special
case of a classical result due to Newton (1643–1727) says that every symmetric
polynomial is a polynomial in s1 and s2. For example,

X2 + Y 2 = (X + Y )2 − 2XY = s2
1 − 2s2

and

X3 + Y 3 = (X + Y )3 − 3(X + Y )XY = s3
1 − 3s1s2.

You may want to continue the list with X4 + Y 4 or to wait until you have
digested the rudiments of the theory of Gröbner bases and can understand
“Newton revisited” (Section 5.5). In this chapter we will develop the theory of
Gröbner bases in polynomial rings in several variables. The original impetus for
this recent development of algebra was the desire to solve equations. Systems
of linear equations such as

5x + y + z = 17,

x + y − z = 1,

x + y + z = 9

can be solved using Gaussian elimination. However, many problems lead to
systems of non-linear equations, such as

y2 − x3 + x = 0,

y3 − x2 = 0,
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5.1 Polynomials in several variables 187

where the variables occur with powers greater than 1. The theory of Gröbner
bases is a far-reaching generalization of Gaussian elimination. It can be
applied for solving systems of non-linear (polynomial) equations such as
above. Gröbner bases were invented independently by Buchberger (1942–) and
Hironaka (1931–) in the sixties. Hironaka used the term “standard bases” in
connection with his work on resolution of singularities in algebraic geometry
(1964). Buchberger used the term Gröbner bases in his Ph.D. thesis (1966),
in honor of his advisor W. Gröbner (1899–1980) . In accordance with most
modern mathematical literature we will use this term. Gröbner bases have some
remarkable (mathematical) properties and turn out to be useful also in areas not
confined to the world of mathematics, for example in optimization, robotics
and theoretical computer science.

5.1 Polynomials in several variables

So far we have only encountered and defined polynomials in one variable. We
need to define formally polynomials in more than one variable. Fortunately it
is very easy to modify our formal construction of polynomials in one variable.
Recall that the ring of polynomials R[X ] with coefficients in a (commutative)
ring R was defined as

R[X ] = R[N] = { f : N → R | f (n) = 0, n � 0}

with obvious addition and not so obvious multiplication (see Section 4.1). A
polynomial f ∈ R[X ] in one variable can be expressed in the usual notation
as

f = an Xn + · · · + a1 X + a0, ai ∈ R,

and addition and multiplication coincide with well known operations (but with
coefficients in an arbitrary ring). Polynomials in several variables should cor-
respond to algebraic expressions like X2 + XY + Y + Y 3 + X5 (in the case of
two variables X and Y ). We define the polynomial ring R[X1, . . . , Xn] in n
variables X1, . . . , Xn as

R[X1, . . . , Xn] = R[Nn] = { f : Nn → R | f (v) = 0, |v| � 0},

where v = (v1, . . . , vn) ∈ Nn and |v| = v1 + · · · + vn . A polynomial f ∈
R[X1, . . . , Xn] is the same as a function f : Nn → R that is non-zero for only
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188 5 Gröbner bases

finitely many v ∈ Nn . We let Xv ∈ R[Nn] denote the function given by

Xv(w) =
{

1 if v = w,

0 if v �= w.

With this notation, every polynomial f ∈ R[Nn] can be written as a (finite) sum

f =
∑
v∈Nn

av Xv,

where av ∈ R (an element r ∈ R is identified with the function mapping the
zero vector to r and everything else to 0 ∈ R). If f, g ∈ R[Nn] we define f + g
by ( f + g)(v) = f (v) + g(v) and f g by the (finite) sum

( f g)(v) =
∑

v1+v2=v

f (v1)g(v2),

where v1, v2 ∈ Nn . The complete proof that R[Nn] is a ring with these com-
positions is left to the reader (see Exercise 5.1), as it is very similar to the
one-variable case. We note that 0 ∈ R is the neutral element for + and that the
function X (0,0,...,0), mapping the zero vector in Nn to 1 ∈ R and everything else
to 0, is the neutral element for multiplication. In the notation R[X1, . . . , Xn]
for R[Nn], X1 refers to X (1,0,...,0), X2 to X (0,1,0,...,0), . . . and Xn to X (0,...,0,1).

A term is a polynomial r Xv ∈ R[Nn], where r ∈ R \ {0} is called the coef-
ficient.

Example 5.1.1 The formal definition of polynomials in several variables
is a precise mathematical model for polynomial expressions in variables
X, Y, Z , . . . . Be sure that you understand how to go from the formal expres-
sions to the “real-world” expressions in X, Y, Z , . . . and back. As an example,
let

f = 2X (0,0,0) + 2X (1,0,3) + X (2,1,0) − X (0,1,1) + 3X (1,1,1) ∈ Z[N3].

Translating X to X (1,0,0), Y to X (0,1,0) and Z to X (0,0,1) we get

f = 2 + 2X Z3 + X2Y − Y Z + 3XY Z ∈ Z[X, Y, Z ]

as the corresponding polynomial expression in X, Y and Z . Multiplying poly-
nomials in several variables corresponds to the natural way of multiplying and
collecting terms, e.g.

(X + 2Y − Z )(X + Y − Z ) = X2 + XY − X Z + 2XY + 2Y 2 − 2Y Z

− X Z − Y Z + Z2 = X2 + 3XY − 2X Z + 2Y 2 − 3Y Z + Z2.
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5.1 Polynomials in several variables 189

5.1.1 Term orderings

In one variable it is natural that a term like X5 is bigger than X3. In more than
one variable there is no obvious way of ordering the individual terms. In two
variables, how should we compare terms like X2Y and X3? This is formalized
in the notion of a term ordering. The price we pay for comparing terms in
more than one variable is that there are infinitely many natural ways of doing
it (see Remark 5.1.4). Before reading on, you should consult Appendix A for
the definitions of a partial and a total ordering on a set.

Definition 5.1.2 The set Nn of n-tuples of natural numbers carries a natural
component-wise addition + with zero vector 0 = (0, . . . , 0). A partial ordering
≤ on Nn is called a term ordering if

(i) ≤ is a total ordering,
(ii) 0 ≤ v,

(iii) v1 ≤ v2 ⇒ v1 + v ≤ v2 + v

for every v, v1, v2 ∈ Nn .

Example 5.1.3 We will give a few examples of term orderings.

(1) A term ordering on N = N1 has to be the usual total ordering on N (why?).
(2) Define the lexicographic ordering ≤lex on Nn by

(v1, . . . , vn) ≤lex (w1, . . . , wn)

if one of the following applies:

(v1 < w1) or

(v1 = w1) and (v2 < w2) or

(v1 = w1) and (v2 = w2) and (v3 < w3) or . . .

(v1 = w1) and (v2 = w2) and . . . and (vn = wn).

This is nothing but “alphabetic” ordering on tuples of natural numbers; for
example, (1, 2, 3) ≥lex (1, 1, 3) since 2 > 1 and (4, 5, 1) ≤lex (4, 5, 3) since
1 < 3.

(3) Let |v| = v1 + v2 + · · · + vn , where v = (v1, . . . , vn) ∈ Nn . Define the
graded lexicographic ordering by v ≤grlex w if |v| < |w| or |v| = |w|
and v ≤lex w. Notice that, for example, (1, 2, 3) ≥grlex (2, 1, 1) (since
1 + 2 + 3 > 2 + 1 + 1) but (1, 2, 3) ≤lex (2, 1, 1).

https://doi.org/10.1017/CBO9780511804229.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511804229.006


190 5 Gröbner bases

You should check immediately that ≤lex and ≤grlex are partial orderings and that
they satisfy the three rules defining a term ordering (see Exercise 5.7).

A fruitful way of studying term orderings is through a little geometry. For a
vector v ∈ Rn of real numbers ≥ 0 one can construct a term ordering ≤v on Nn

defined as u1 ≤v u2 if and only if

v · u1 < v · u2 or (v · u1 = v · u2 and u1 ≤lex u2), (5.1)

where u1, u2 ∈ Nn and · refers to the usual inner product on Rn (see Exercise
5.8).

Remark 5.1.4 There is a fundamental difference between N and N2. On
N there is only one term ordering. On N2 there are infinitely many (in fact
uncountably many). Let ≤r denote the term ordering on N2 given by the vector
(1, r ) as in (5.1), where r is a positive real number. If s �= r is another positive
real number, we may find v ∈ Z2 such that (1, r ) · v > 0 and (1, s) · v < 0. You
can see this by drawing the lines through (0, 0) orthogonal to (1, r ) and (1, s).
Any point with integer coordinates between the two diagonal lines will do.
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A vector in Z2 can always be written as the difference of two vectors in N2

(e.g. (1, −1) = (1, 0) − (0, 1), (−1, −1) = (0, 0) − (1, 1) and (1, 1) = (1, 1) −
(0, 0)). Write v = v1 − v2, where v1, v2 ∈ N2. Then v1 ≥r v2 but v1 ≤s v2.
Thus for every positive real number r we have defined a term ordering ≤r such
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5.1 Polynomials in several variables 191

that if s is another positive real number then ≤r �= ≤s . This shows that there are
infinitely (uncountably) many term orderings on N2.

For a given vector v ∈ Nn we let

v + Nn = {v + w | w ∈ Nn}.
We will need the following crucial result, known as Dickson’s lemma
(L. E. Dickson (1874–1954)). It originally appeared in a paper on number
theory ([7], Lemma A).

Lemma 5.1.5 (Dickson) Let S be a subset of Nn. Then there is a finite set of
vectors v1, . . . , vr ∈ S such that

S ⊆ (v1 + Nn) ∪ · · · ∪ (vr + Nn).

Example 5.1.6 The idea of the proof is really quite simple and comes from
the case of the subsets of N2. In the figure below we show a certain infinite
subset S ⊆ N2 (extended infinitely in the positive x- and y- directions).

�

� � � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � ��

� � � � � � �
� � � � � � ��

� � � � ��
� � ��

The marked points are the interesting points for the subset S, in that

S ⊆ ((2, 5) + N2) ∪ ((3, 3) + N2) ∪ ((5, 2) + N2) ∪ ((7, 1) + N2).
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192 5 Gröbner bases

Proof of Lemma 5.1.5. The proof proceeds by induction on n. If n = 1 and
S ⊆ N is a subset, we let s be the first element in S. Then S ⊆ s + N. Suppose
now for the induction step that n > 1 and we know that Lemma 5.1.5 is true
for m < n. Let π : Nn → Nn−1 denote the map given by

π (x1, x2, . . . , xn) = (x2, . . . , xn).

Using the induction hypothesis on the subset

π (S) = {π (s) | s ∈ S} ⊆ Nn−1

we get the existence of s1, . . . , sr ∈ S such that

π (S) ⊆ (π (s1) + Nn−1) ∪ · · · ∪ (π (sr ) + Nn−1).

It is in general not true that S ⊆ (s1 + Nn) ∪ · · · ∪ (sr + Nn) (you can see this
in Example 5.1.6). We need more vectors in S.

Let M be the largest number occurring as a first coordinate in our vectors
s1, . . . , sr . Define

Si = {s ∈ S | the first coordinate of s = i} for 0 ≤ i < M

and

S≥M = {s ∈ S | the first coordinate of s is ≥ M}.

Then S = S0 ∪ · · · ∪ SM−1 ∪ S≥M and

S≥M ⊆ (s1 + Nn) ∪ · · · ∪ (sr + Nn).

Since the first coordinate of the vectors in Si is fixed, we can identify Si with a
subset of Nn−1 and by induction find finitely many vectors si

1, . . . , si
ri

∈ Si such
that

Si ⊆ (
si

1 + Nn
) ∪ · · · ∪ (

si
ri

+ Nn
)
.

Gathering up these finitely many vectors for S0, . . . , SM−1 and throwing in the
vectors s1, . . . , sr we get the result. �

Make sure you understand how the proof of Lemma 5.1.5 works for the
subset S ⊆ N2 in Example 5.1.6.

Corollary 5.1.7 A term ordering ≤ on Nn is a well ordering.
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5.2 The initial term of a polynomial 193

Proof. Let S ⊆ Nn be a non-empty subset. By Lemma 5.1.5 there are finitely
many elements v1, . . . , vr ∈ S such that

S ⊆ (v1 + Nn) ∪ · · · ∪ (vr + Nn).

If v ∈ vi + Nn then v = vi + w for some w ∈ Nn . This implies that v − vi ∈
Nn . Since v − vi ≥ 0 by Definition 5.1.2(ii), it follows that v = (v − vi ) +
vi ≥ vi by Definition 5.1.2(iii). This means that the smallest element among
v1, . . . , vr will be the smallest element in S, showing that ≤ is a well
ordering. �

5.2 The initial term of a polynomial

Definition 5.2.1 Let

f =
∑
v∈Nn

av Xv

be a non-zero polynomial in R[Nn] and ≤ a term order on Nn . The initial term
of f with respect to ≤ is defined as

in≤( f ) = aw Xw,

where w = max≤{v ∈ Nn | av �= 0} (see Definition A.3.6 for the definition of
max≤). In an abuse of notation we will sometimes compare two terms and write
aXu ≤ bXv if u ≤ v.

Example 5.2.2 Let f = X2 + XY + Y + Y 3 + X5 ∈ Z[X, Y ], where X cor-
responds to X (1,0) and Y to X (0,1) in Z[N2]. This means that

f = X (2,0) + X (1,1) + X (0,1) + X (0,3) + X (5,0) ∈ Z[N2].

Putting ≤ = ≤lex (Example 5.1.3), we obtain

(5, 0) ≥ (2, 0) ≥ (1, 1) ≥ (0, 3) ≥ (0, 1).

In the ordering ≤ one should write f = X5 + X2 + XY + Y 3 + Y . The initial
term of f is therefore in≤( f ) = X5.

Remark 5.2.3 Let R be a domain and f, g non-zero polynomials in
R[X1, . . . , Xn]. Then in≤( f g) = in≤( f ) in≤(g) (see Exercise 5.11). This for-
mula is the analogue of deg( f g) = deg( f ) + deg(g) in one variable (see
Proposition 4.2.2),
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194 5 Gröbner bases

5.3 The division algorithm

In several variables there is an analogue of division with remainder (Proposition
4.2.4). Now everything is with respect to a fixed term ordering (in the case of
one variable, there is only one term ordering; in more than one variable there
are infinitely many (Remark 5.1.4)). The proof of the following proposition
is based on the division algorithm in several variables. This algorithm is very
similar to the one-variable algorithm given in the proof of Proposition 4.2.4.
In order not to separate the algorithm from its mathematical surroundings it is
embedded in the proof. To learn the algorithm and prove its correctness you
will have to read through the proof and immerse yourself in several examples
and exercises. We will assume for the rest of this chapter that R is a domain.

Proposition 5.3.1 (The division algorithm) Fix a term ordering ≤ on Nn.
Let f ∈ R[X1, . . . , Xn] \ {0} and suppose that f1, . . . , fm ∈ R[X1, . . . , Xn]
is a sequence of non-zero polynomials. Then there exist a1, . . . , am, r ∈
R[X1, . . . , Xn] such that

f = a1 f1 + · · · + am fm + r

and either r = 0 or none of the terms in r is divisible by in≤( f1), . . . , in≤( fn).
Furthermore, in≤(ai fi ) ≤ in≤( f ) if ai fi �= 0.

Proof. The proof is basically a correctness proof of the division algorithm
for polynomials in several variables. This algorithm is similar to the algorithm
in one variable as described in the proof of Proposition 4.2.4. You should
compare the two. Here is the division algorithm in several variables. To begin
put a1 := 0, . . . , am := 0, r := 0 and s := f giving

f = a1 f1 + · · · + am fm + (r + s). (5.2)

This expression will serve as an invariant throughout the algorithm. Proceed as
follows in successive steps of the algorithm. If s = 0 we are done. If not, there
are two cases. If in≤(s) is divisible by some in≤( fi ) then pick the smallest i
with this property and let

s := s − in≤(s)

in≤( fi )
fi ,

ai := ai + in≤(s)

in≤( fi )
.

(5.3)

Notice that (5.2) still holds after the assignments in (5.3) – we have simply
subtracted and added the same thing. However, if in≤(s) is not divisible by any
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5.3 The division algorithm 195

in≤( fi ) we add the initial term to r and subtract it from s:

r := r + in≤(s),

s := s − in≤(s).
(5.4)

Of course, after the assignments in (5.4) r + s is unchanged and (5.2) still holds.
If s = 0 we are done. If not, the initial term of s is strictly decreased after the
assignment in (5.3), because in≤(s) t � in≤(s) in≤( fi ) for a term t in fi different
from in≤( fi ). The initial term of s is also strictly decreased after the assignment
in (5.4). In this way the sequence formed by in≤(s) in successive steps of the
algorithm is strictly decreasing with respect to the term ordering ≤. Since ≤ is
a well ordering by Corollary 5.1.7, such a sequence must be finite (see Lemma
A.3.8). Therefore the division algorithm eventually terminates with s = 0. Then
(5.2) is the desired expression. We have seen that in≤(s) ≤ in≤( f ) holds if s �= 0,
since s initially takes the value of f . Since in≤((ai + in≤(s)/in≤( fi )) fi ) =
in≤(ai in≤( fi ) + in≤(s)) ≤ max(in≤(ai fi ), in≤(s)) (see Exercise 5.12) for ai �=
0 we must have in≤(ai fi ) ≤ in≤( f ) after the assignment in (5.3). This proves
that in≤(ai fi ) ≤ in≤( f ) if ai fi �= 0 in (5.2) when reaching s = 0. �

Definition 5.3.2 Suppose that f ∈ R[X1, . . . , Xn] and let F = ( f1, . . . , fm)
be a sequence of non-zero polynomials in R[X1, . . . , Xn]. We let f F denote
the remainder r coming from dividing f by F using the division algorithm.

Example 5.3.3 Let ≤ = ≤lex with Y ≤ X , f = X4 + Y 4, f1 = X2 + Y and
f2 = X2Y + 1. The division algorithm is shown in the diagram below; we
are trying to mimic the diagram for division of polynomials in one variable.
Here, though, the result is represented by not just one polynomial but a set
(a1, a2) of polynomials. The initial terms of f1, f2 and s are underlined. If the
initial term of s is not divisible by either in≤( f1) or in≤( f2) then we transfer
the initial term to the remainder r . This is indicated, for example, as Y 4 +
Y 2 → Y 4.

X4 + Y 4 : (X2 + Y, X2Y + 1) = (X2 − Y, 0)

X4 + X2Y

−X2Y + Y 4

−X2Y − Y 2

Y 4 + Y 2 −→ Y 4

Y 2 −→ Y 4 + Y 2

0
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196 5 Gröbner bases

The division algorithm above shows that

X4 + Y 4 = (X2 − Y ) (X2 + Y ) + Y 4 + Y 2

and (X4 + Y 4)(X2+Y, X2Y+1) = Y 4 + Y 2. However, suppose that we switch f1

and f2 (so that we divide by ( f2, f1) instead of ( f1, f2)). Then

X4 + Y 4 : (X2Y + 1, X2 + Y ) = (−1, X2)

X4 + X2Y

− X2Y + Y 4

−X2Y − 1

Y 4 + 1 −→ Y 4

1 −→ Y 4 + 1

0

This shows that

X4 + Y 4 = X2(X2 + Y ) − (X2Y + 1) + Y 4 + 1

and (X4 + Y 4)(X2Y+1, X2+Y ) = Y 4 + 1.

5.4 Gröbner bases

In Example 5.3.3 we saw that the remainder coming from the division algorithm
depends on the order of f1, . . . , fm in Proposition 5.3.1. We would like to have
a generating set of an ideal with the property that the remainder coming from
the division algorithm is independent of the order of its elements. This is possi-
ble. Such a set of generators is called a Gröbner basis. In the rest of this chapter
we will assume that R is a field denoted by k, in order to simplify the defi-
nition of a Gröbner basis (the definition for arbitrary domains is a little more
complicated).

Definition 5.4.1 A set of non-zero polynomials

F = ( f1, . . . , fm) ⊆ k[X1, . . . , Xn]

is called a Gröbner basis for an ideal I in k[X1, . . . , Xn] with respect to a term
ordering ≤ if F ⊆ I and, for every f ∈ I \ {0},

in≤( fi ) | in≤( f )
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5.4 Gröbner bases 197

for some i = 1, . . . , m. The set F is called a Gröbner basis with respect to a
term ordering ≤ if it is a Gröbner basis for the ideal 〈 f1, . . . , fm〉 with respect
to ≤.

This definition may seem strange at first. But it is exactly to the point. As
a motivating example consider the ideal I = 〈X2 + Y, X2Y + 1〉 in the poly-
nomial ring Q[X, Y ]. Recall that I consists of all the polynomials you get as
“linear” combinations (see subsection 3.1.1) of X2 + Y and X2Y + 1:

I = {a(X, Y )(X2 + Y ) + b(X, Y )(X2Y + 1) | a(X, Y ), b(X, Y ) ∈ Q[X, Y ]}.
Thus f = X3 − Y + XY − X2Y 2 ∈ I since f = X (X2 + Y ) − Y (X2Y + 1).
In general, how do we decide whether a given polynomial lies in the ideal I ?
Here Gröbner bases and the division algorithm are very helpful.

Proposition 5.4.2 Let G = ( f1, . . . , fm) be a Gröbner basis with respect to
a term ordering ≤. For a polynomial f ∈ k[X1, . . . , Xn] we have

f ∈ I ⇐⇒ f G = 0,

where I = 〈 f1, . . . , fm〉.

Proof. If f G = 0 then f = a1 f1 + · · · + am fm and f ∈ I = 〈 f1, . . . , fm〉.
Let f = a1 f1 + · · · + am fm + f G be the output from the division algorithm.
Taking r = f G this gives an expression for f as in Proposition 5.3.1. Clearly

r = f − a1 f1 − · · · − am fm ∈ I.

If r �= 0 then there is some in≤( fi ) dividing in≤(r ), since ( f1, . . . , fm) was
assumed to be a Gröbner basis for I . This contradicts that r is the remainder
coming from division by G. Thus r = 0. �

Example 5.4.3 Let F = (X2 + Y, X2Y + 1) and fix the lexicographic order-
ing ≤ on terms in k[X, Y ] given by X ≥ Y . Then

Y 2 − 1 = Y (X2 + Y ) − (X2Y + 1)

so that Y 2 − 1 ∈ 〈X2 + Y, X2Y + 1〉. But the remainder from the division al-
gorithm is (Y 2 − 1)F = Y 2 − 1. Using Proposition 5.4.2 we see that F is not
a Gröbner basis for 〈X2 + Y, X2Y + 1〉. Of course this could also be checked
by using the definition of a Gröbner basis. It is not too difficult to show that F
is not a Gröbner basis for any term ordering (see Exercise 5.14).
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198 5 Gröbner bases

Example 5.4.4 A generator ( f ) for a principal ideal I ⊆ R = k[X1, . . . , Xn]
is always a Gröbner basis for I . Consider a polynomial g ∈ I . Since f generates
I we may find a ∈ R such that g = a f . Therefore in≤(g) = in≤(a) in≤( f ) by
Remark 5.2.3 and in≤( f ) divides in≤(g).

Corollary 5.4.5 Let G = ( f1, . . . , fm) ⊆ R = k[X1, . . . , Xn] be a Gröbner
basis for the ideal I ⊆ R with respect to some term ordering. Then I =
〈 f1, . . . , fm〉.

Proof. Since f1, . . . , fm ∈ I we obtain 〈 f1, . . . , fm〉 ⊆ I . However, if f ∈ I
then f G = 0 by Proposition 5.4.2 and f = a1 f1 + · · · + am fm for suitable
a1, . . . , am ∈ k[X1, . . . , Xn] by the division algorithm. This proves that I ⊆
〈 f1, . . . , fm〉. �

Proposition 5.4.6 Let G = ( f1, . . . , fm) be a Gröbner basis in R =
k[X1, . . . , Xn] with respect to a term ordering ≤. Then the remainder r in
f = a1 f1 + · · · + am fm + r as in Proposition 5.3.1 is unique for every f ∈ R.
The remainder from the division algorithm is independent of the order of the
elements f1, . . . , fm in G.

Proof. Let f ∈ R and assume we have two expressions f = a1 f1 + · · · +
am fm + r1 = a′

1 f1 + · · · + a′
m fm + r2, as in Proposition 5.3.1. Then

r2 − r1 = (a1 − a′
1) f1 + · · · + (am − a′

m) fm .

Therefore r2 − r1 ∈ 〈 f1, . . . , fm〉. If r2 − r1 �= 0 then there exists i such that
in≤( fi ) divides in≤(r2 − r1). This implies that in≤( fi ) divides a term in r2 or r1,
which is a contradiction.

A permutation G ′ of the elements in G leads to an expression f = b1 f1

+ · · · + bm fm + f G ′
, as in Proposition 5.3.1. This implies that f G ′ = f G , since

we have just proved that the remainder in Proposition 5.3.1 is unique. �

5.4.1 Hilbert’s basis theorem

We will prove the existence of Gröbner bases for every ideal in k[X1, . . . , Xn].
In the late nineteenth century the German mathematician David Hilbert (1862–
1943) surprised the mathematical community by showing that every ideal in a
polynomial ring k[X1, . . . , Xn] is finitely generated [13]. This is now referred
to as Hilbert’s basis theorem. His proof did not give explicit generators and
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his contemporaries were skeptical. Here is the fascinating history from the
MacTutor History of Mathematics Archive.1

Hilbert’s first work was on invariant theory and, in 1888, he proved his famous
Basis Theorem. Twenty years earlier Gordan had proved the finite basis theorem
for binary forms using a highly computational approach. Attempts to generalise
Gordan’s work to systems with more than two variables failed since the
computational difficulties were too great. Hilbert himself tried at first to follow
Gordan’s approach but soon realised that a new line of attack was necessary. He
discovered a completely new approach which proved the finite basis theorem for
any number of variables but in an entirely abstract way. Although he proved that a
finite basis existed his methods did not construct such a basis. Hilbert submitted a
paper proving the finite basis theorem to Mathematische Annalen. However,
Gordan was the expert on invariant theory for Mathematische Annalen and he
found Hilbert’s revolutionary approach difficult to appreciate. He refereed the paper
and sent his comments to Klein:

The problem lies not with the form . . . but rather much deeper. Hilbert has
scorned to present his thoughts following formal rules, he thinks it suffices that
no one contradict his proof . . . he is content to think that the importance and
correctness of his propositions suffice. . . . for a comprehensive work for the
Annalen this is insufficient.

However, Hilbert had learnt through his friend Hurwitz about Gordan’s letter to
Klein and Hilbert wrote himself to Klein in forceful terms:

. . . I am not prepared to alter or delete anything, and regarding this paper, I say
with all modesty, that this is my last word so long as no definite and irrefutable
objection against my reasoning is raised.

Using the machinery of Gröbner bases, Hilbert’s result follows in a remark-
able way. In fact reading through the proof one tends to forget the controversies
of the late nineteenth century.

Theorem 5.4.7 Let k be a field, ≤ a term ordering and I ⊆ k[X1, . . . , Xn]
an ideal. Then I has a Gröbner basis with respect to ≤.

Proof. Let S = {v ∈ Nn | Xv = in≤( f ) for some f ∈ I } ⊆ Nn . Dickson’s
lemma (Lemma 5.1.5) applied to the subset S of Nn shows that there are finitely
many f1, . . . , fm ∈ I such that

S ⊆ (v1 + Nn) ∪ · · · ∪ (vm + Nn),

where Xvi = in≤( fi ) for i = 1, . . . , m. Suppose that aXw = in≤( f ), where
f ∈ I . Then w = v j + v for a suitable j = 1, . . . , m and v ∈ Nn . This proves
that Xw = Xv j Xv and therefore that in≤( f j ) | in≤( f ). This is exactly the state-
ment that ( f1, . . . , fm) is a Gröbner basis for I . �

1 http://www-groups.dcs.st-and.ac.uk/˜history
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200 5 Gröbner bases

Corollary 5.4.8 (Hilbert) Let I be an arbitrary ideal in k[X1, . . . , Xn]. Then
there are finitely many polynomials f1, . . . , fm ∈ I such that every polynomial
f ∈ I can be written

f = a1 f1 + · · · + am fm

for suitable a1, . . . , am ∈ k[X1, . . . , Xn] (I = 〈 f1, . . . , fm〉).

Proof. This follows from Theorem 5.4.7 and Corollary 5.4.5. �

5.5 Newton revisited

Let us return to the question in the introduction to this chapter. Is there a
systematic way of writing X4 + Y 4 as a polynomial in X + Y and XY ? The
answer is yes, and it is a nice consequence of the theory of Gröbner bases.
In a more general setting we let f, f1, . . . , fr ∈ k[X1, . . . , Xn]. We wish to
decide whether the polynomial f can be written as P( f1, . . . , fr ), where P ∈
k[T1, . . . , Tr ], and find P if this is the case. Consider the polynomial ring
A = k[X1, . . . , Xn, T1, . . . , Tr ]. If we can write

f = a1(T1 − f1) + · · · + ar (Tr − fr ) + h, (5.5)

where h ∈ k[T1, . . . , Tr ] and a1, . . . , ar ∈ A, then we may put Ti = fi so
that f = h( f1, . . . , fr ) and we can take P = h. Let I ⊆ A be the ideal
〈T1 − f1, . . . , Tr − fr 〉. If f = P( f1, . . . , fr ), where P ∈ k[T1, . . . , Tr ], then
(see Exercise 5.17)

f (X1, . . . , Xn) − P(T1, . . . , Tr ) ∈ I. (5.6)

Therefore

f = a1(T1 − f1) + · · · + ar (Tr − fr ) + P

for suitable a1, . . . , ar ∈ A. How do we find the polynomial P? This is where
the theory of Gröbner bases comes in handy. It gives the following surprising
result.

Theorem 5.5.1 Let f, f1, . . . , fr ∈ k[X1, . . . , Xn]. Let I be the ideal

I = 〈T1 − f1, . . . , Tr − fr 〉
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in the polynomial ring A = k[X1, . . . , Xn, T1, . . . , Tr ] and ≤ the lexicographic
ordering given by

X1 ≥ · · · ≥ Xn ≥ T1 ≥ · · · ≥ Tr .

Let G be a Gröbner basis of I with respect to ≤. Then f can be written as a
polynomial in f1, . . . , fr if and only if

f G ∈ k[T1, . . . , Tr ].

In this case f = f G( f1, . . . , fr ).

Proof. Let G = (g1, . . . , gN ) be a Gröbner basis for I with respect to ≤. Then
the division algorithm gives

f = a′
1g1 + · · · + a′

N gN + f G

for a′
1, . . . , a′

N ∈ A. Since 〈g1, . . . , gN 〉 = I , we can find a1, . . . , ar ∈ A such
that

f = a1(T1 − f1) + · · · + ar (Tr − fr ) + f G .

If f G ∈ k[T1, . . . , Tr ] then it follows that f = f G( f1, . . . , fr ) by (5.5).
If, however, there is a polynomial P ∈ k[T1, . . . , Tr ] such that f =

P( f1, . . . , fr ) then

f = a1(T1 − f1) + · · · + ar (Tr − fr ) + P, (5.7)

where a1, . . . , ar ∈ A, by (5.6). We will prove that f G ∈ k[T1, . . . , Tr ] in this
case. This is done by running through the division algorithm with f and the
Gröbner basis G. We may rewrite (5.7) as

f = b1g1 + · · · + bN gN + P

for suitable b1, . . . , bN ∈ A. Notice that the invariant expression (5.2) of the
division algorithm (Proposition 5.3.1) is satisfied by s = P and r = 0 (us-
ing b1, . . . , bN as values for the coefficients of g1, . . . , gN ). If in≤(g j ) divides
the in≤(s) entering (5.3) of the division algorithm (see the proof of Proposition
5.3.1), then in≤(g j ) ≤ in≤(s). This implies that in≤(g j ) ∈ k[T1, . . . , Tr ]. There-
fore g j ∈ k[T1, . . . , Tr ] if s ∈ k[T1, . . . , Tr ]. Here it is important that the term
ordering is lexicographic with X1 ≥ · · · ≥ Xn ≥ T1 ≥ · · · ≥ Tr . So the assign-
ment in (5.3) satisfies s − (in≤(s)/in≤(g j ))g j ∈ k[T1, . . . , Tr ]. Since we are
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X 4 + Y 4 : (−X − Y + T1, Y 2 − Y T1 + T2)

X 4 + X 3Y − X 3T1

−X 3Y + X 3T1 + Y 4

−X 3Y − X 2Y 2 + X 2Y T1

X 3T1 + X 2Y 2 − X 2Y T1 + Y 4

X 3T1 + X 2Y T1 − X 2T 2
1

X 2Y 2 − 2X 2Y T1 + X 2T 2
1 + Y 4

X 2Y 2 + XY 3 − XY 2T1

−2X 2Y T1 + X 2T 2
1 − XY 3 + XY 2T1 + Y4

−2X 2Y T1 − 2XY 2T1 + 2XY T 2
1

X 2T 2
1 − XY 3 + 3XY 2T1 − 2XY T 2

1 + Y 4

X 2T 2
1 + XY T 2

1 − XT 3
1

−XY 3 + 3XY 2T1 − 3XY T 2
1 + XT 3

1 + Y 4

−XY 3 − Y 4 + Y 3T1

3XY 2T1 − 3XY T 2
1 + XT 3

1 + 2Y 4 − Y 3T1

3XY 2T1 + 3Y 3T1 − 3Y 2T 2
1

−3XY T 2
1 + XT 3

1 + 2Y 4 − 4Y 3T1 + 3Y 2T 2
1

−3XY T 2
1 − 3Y 2T 2

1 + 3Y T 3
1

XT 3
1 + 2Y 4 − 4Y 3T1 + 6Y 2T 2

1 − 3Y T 3
1

XT 3
1 + Y T 3

1 − T 4
1

2Y 4 − 4Y 3T1 + 6Y 2T 2
1 − 4Y T 3

1 + T 4
1

2Y 4 − 2Y 3T1 + 2Y 2T2

−2Y 3T1 + 6Y 2T 2
1 − 2Y 2T2 − 4Y T 3

1 + T 4
1

−2Y 3T1 + 2Y 2T 2
1 − 2Y T1T2

4Y 2T 2
1 − 2Y 2T2 − 4Y T 3

1 + 2Y T1T2 + T 4
1

4Y 2T 2
1 − 4Y T 3

1 + 4T 2
1 T2

−2Y 2T2 + 2Y T1T2 + T 4
1 − 4T 2

1 T2

−2Y 2T2 + 2Y T1T2 − 2T 2
2

T 4
1 − 4T 2

1 T2 + 2T 2
2

Figure 5.1
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moving terms from s to the remainder, in the division algorithm in (5.4), we
will eventually end up with a remainder f G in k[T1, . . . , Tr ]. �

Example 5.5.2 Let us return to the problem of writing X4 + Y 4 as a polyno-
mial in X + Y and XY . Using Theorem 5.5.1 to address this we must find a
Gröbner basis of I = 〈T1 − X − Y, T2 − XY 〉 with respect to the lexicographic
ordering ≤ given by X ≥ Y ≥ T1 ≥ T2. You will see in the next section how
to compute a Gröbner basis using Buchberger’s algorithm. Let me reveal that
a Gröbner basis for I with respect to ≤ is G = (T1 − X − Y, T2 − T1Y + Y 2).
Now we can use the division algorithm to find (X4 + Y 4)G . There are quite a
number of steps, but (miraculously) we end with an expression involving only
T1 and T2 as the remainder. Figure 5.1 shows the computation.

The computation in the figure shows that (X4 + Y 4)G = T 4
1 − 4T 2

1 T2 + 2T 2
2 .

Without looking for clever algebraic tricks we have found a mechanical proce-
dure. In this case the division algorithm shows that

X4 + Y 4 = (X + Y )4 − 4(X + Y )2 XY + 2(XY )2.

Notice that given any symmetric polynomial f (X, Y ) we can use the division
algorithm to find P = f G such that f = P(X + Y, XY ). Theorem 5.5.1 is
useful in that it gives a straightforward algorithm.

5.6 Buchberger’s S-criterion

Theorem 5.4.7 shows the existence of a Gröbner basis for an ideal in a polyno-
mial ring but gives no hint how to find it. There is a very nice (finite) criterion
for a set of polynomials F = ( f1, . . . , fm) to be a Gröbner basis. To a pair of
polynomials f, g we associate the S-polynomial S( f, g), which depends on the
term ordering ≤. The S-polynomial S( f, g) cancels initial terms in f and
g according to the term ordering ≤. For example, S(X2 + Y, Y X + 1) =
Y (X2 + Y ) − X (Y X + 1) = Y 2 − X , where ≤ is the lexicographic ordering
with Y ≤ X . Buchberger’s S-criterion says that F is a Gröbner basis for I if
and only if S( fi , f j )F = 0 for 1 ≤ i < j ≤ m.

This turns out to be very useful in practice. It is also the basis of Buchberger’s
algorithm for finding Gröbner bases. If an S-polynomial S does not give a
remainder SF equal to zero then you simply add the remainder SF to the list
of polynomials and use Buchberger’s S-criterion on this new list. This will
eventually terminate (Buchberger’s criterion will succeed).
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204 5 Gröbner bases

A word of advice: no complicated or abstract mathematics is involved, just
(very) clever calculations with polynomials. As a first approach to understand-
ing Buchberger’s algorithm you can go straight to subsection 5.6.2 after read-
ing the statement of Theorem 5.6.8 and understanding the definition of S-
polynomials (Definition 5.6.5). In the following, a term ordering ≤ is fixed on
R = k[X1, . . . , Xn].

5.6.1 The S-polynomials

Suppose we wish to check whether ( f1, . . . , fm) ⊆ R \ {0} is a Gröbner basis.
Let

f = a1 f1 + · · · + am fm ∈ 〈 f1, . . . , fm〉,
where a1, . . . , am ∈ R. Does in≤( fi ) divide in≤( f ) for some i = 1, . . . , m? Put
aXv = in≤( f ), ci Xui = in≤(ai ) and di Xvi = in≤( fi ) for i = 1, . . . , m. Now
introduce

δ = max ≤{vi + ui | i = 1, . . . m}.
Then it is impossible that v � vi + ui for every i = 1, . . . , m, since the initial
term of f has to be a k-linear combination of the initial terms in≤(ai fi ) for
ai fi �= 0. Therefore v ≤ δ. If δ = v, we may assume that δ = v1 + u1 = · · · =
vr + ur , where r ≤ m and ai fi �= 0 for i = 1, . . . , r . Then

aXv = (c1d1 + · · · + cr dr )Xu1+v1 .

In this case d1 Xv1 = in≤( f1) divides aXv = in≤( f ). However, if v < δ there
is cancellation of maximal terms on the right hand side, and in≤( f ) is not
necessarily divisible by in≤( fi ), for i = 1, . . . , m. This is illustrated by the
following example.

Example 5.6.1 Let ≤ be the lexicographic ordering given by X ≥ Y , I =
〈X2 + Y, X2Y + 1〉 ⊆ k[X, Y ] and f = Y 2 − 1 = Y (X2 + Y ) − (X2Y + 1)
∈ I . Then in≤( f ) = Y 2 but X2 � Y 2 and X2Y � Y 2.

Our discussion leads to the following definition and proposition.

Definition 5.6.2 We say that f ∈ R reduces to zero modulo F =
( f1, . . . fm) ⊆ R \ {0} if there exist a1, . . . , am ∈ R such that

f = a1 f1 + · · · + am fm (5.8)
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and in≤(ai fi ) ≤ in≤( f ) if ai fi �= 0. This is denoted

f →F 0.

Remark 5.6.3 Observe that f →F 0 if and only if the maximal initial terms
in the summands on the right hand side of (5.8) do not cancel. Notice also that
f →F 0 if f F = 0. This is the last part of Proposition 5.3.1. However, one may
have f →F 0 even though f F �= 0 (see Exercise 5.18).

Proposition 5.6.4 Let F = ( f1, . . . , fm) and I = 〈 f1, . . . , fm〉. If f →F 0
for every f ∈ I then F is a Gröbner basis for I . If F is a Gröbner basis for I
then f F = 0 if and only if f →F 0 for f ∈ I .

Proof. Let f ∈ I \{0}. The discussion at the beginning of this subsection
shows that if f →F 0 then in≤( f ) is divisible by in≤( f j ) for some f j ∈ F .
So if f →F 0 for every f ∈ I it follows that F is a Gröbner basis for I . We
have seen that f F = 0 implies that f →F 0 by the last part of Proposition
5.3.1. If F is a Gröbner basis for I and f →F 0 then f F = 0 since f ∈ I (this
is Proposition 5.4.2). �

This is really not a useful test for a Gröbner basis. We need to check that
every f ∈ I reduces to zero. Using some clever manipulations one may find
finitely many polynomials S1, . . . , SN ∈ I such that F is a Gröbner basis if
and only if Si →F 0 for i = 1, . . . , N . We can in fact replace Si →F 0 with
SF

i = 0, by Proposition 5.6.4. In this way we have an effective criterion for a
Gröbner basis via the division algorithm provided that we can find S1, . . . , SN .
Let us see how to do this. Suppose that

f = a1 f1 + · · · + am fm ∈ I,

where a1, . . . , am ∈ R. Use the notation from the beginning of this subsection.
Then

f = C + (a1 − in≤(a1)) f1 + · · · +(ar − in≤(ar )) fr + ar+1 fr+1 + · · · + am fm,

where C = in≤(a1) f1 + · · · + in≤(ar ) fr . One crucial point to notice is that f
is the sum of C and certain polynomials all of whose initial terms are � δ. If
on the one hand c1d1 + · · · + cr dr �= 0 then no cancellation among the initial
terms occurs and in≤( f ) is divisible by in≤( fi ) for some i = 1, . . . , m, as we
have already seen.
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Assume on the other hand that c1d1 + · · · + cr dr = 0 (cancellation occurs
among the initial terms). Put gi = Xui fi/di and watch the following nice com-
putational trick evolve:

C = c1d1g1 + · · · + cr dr gr

= c1d1(g1 − g2) + (c1d1 + c2d2)(g2 − g3) + (c1d1 + c2d2 + c3d3)(g3 − g4)

+ · · · + (c1d1 + · · · + cr−1dr−1)(gr−1 − gr ) + (c1d1 + · · · + cr dr )gr .

This shows that C is a linear combination of gi − g j = Xui fi/di − Xu j f j/d j .
From this we get the crucial S-polynomials. Observe that ui + vi = u j + v j as
vectors in Nn (the initial terms of gi and g j cancel). Now define wi j ∈ Nn by
Xwi j = lcm(Xvi , Xv j ). Then

gi − g j = Xui fi

di
− Xv j f j

d j

= X ζ

(
Xwi j

di Xvi
fi − Xwi j

d j Xv j
f j

)
,

where ζ + wi j = ui + vi = u j + v j . Notice the cancellation of the two initial
terms in

Xwi j

di Xvi
fi − Xwi j

d j Xv j
f j .

This naturally leads us to the following definition.

Definition 5.6.5 The S-polynomial of two non-zero polynomials f and g with
respect to a term ordering ≤ is defined as

S( f, g) = Xw

in≤( f )
f − Xw

in≤(g)
g,

where Xw is a least common multiple of in≤( f ) and in≤(g).

The formal definition of S-polynomials may take some time to digest.
Intuitively one just multiplies the initial terms of f and g up to a least common
multiple. The letter S in S-polynomial stands for “syzygy.” This is a concept
from Hilbert’s theory of syzygies for polynomial rings. A syzygy is a term
from astronomy. It refers to a straight-line configuration of three celestial bod-
ies. The moon is in syzygy with the Earth and the Sun when it is new or
full.
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Example 5.6.6 Let ≤ be the lexicographic ordering given by X ≥ Y in
k[X, Y ]. Then lcm(X2, X2Y ) = X2Y , and

S(X2 + Y, X2Y + 1) = X2Y

X2
(X2 + Y ) − X2Y

X2Y
(X2Y + 1)

= Y (X2 + Y ) − (X2Y + 1)

= Y 2 − 1.

We have shown that

C = in≤(a1) f1 + · · · + in≤(ar ) fr

= b1 X ζ1 S( f1, f2) + · · · + br−1 X ζr−1 S( fr−1, fr ) (5.9)

with bi ∈ k and in≤(X ζi S( fi , fi+1)) � δ. This calculation is crucial for the proof
of the following important insight.

Lemma 5.6.7 Let F = ( f1, . . . , fm) and I = 〈 f1, . . . , fm〉. If S( fi , f j ) →F

0 for every i, j = 1, . . . , m then f →F 0 for every f ∈ I .

Proof. Let f = a1 f1 + · · · + am fm ∈ I , where a1, . . . , am ∈ R. Since
S( fi , f j ) →F 0, we have

S( fi , f j ) = e1 f1 + · · · + em fm

for e1, . . . , em ∈ R, where in≤(el fl) ≤ in≤(S( fi , f j )) for l = 1, . . . , m. Recall
that

f = C + (a1 − in≤(a1)) f1 + . . . + (ar − in≤(ar )) fr + ar+1 fr+1 + . . .

+ am fm,

where C = in≤(a1) f1 + · · · + in≤(ar ) fr and in≤(a1 f1), . . . , in(ar fr ) are the
maximal initial terms in the summands a1 f1, . . . , am fm . Now insert the ex-
pression for S( fi , f j ) into (5.9) to get

f = h1 f1 + · · · + hm fm

with max{in≤(hi fi ) | hi fi �= 0, i = 1, . . . , n} � δ. This means that if the maxi-
mal initial terms on the right hand side of an expression f = a1 f1 + · · · + an fn

cancel and S( fi , f j ) →F 0 then there is another expression f = h1 f1 + · · · +
hn fn for which the maximal initial term in the summands on the right hand side
is strictly less than the maximal initial term in the first expression. By Lemma
A.3.8 we will eventually end up with an expression

f = b1 f1 + · · · + bm fm,
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where the maximal initial term δ in the summands on the right hand side is
in≤( f ). This means that f →F 0. �

5.6.2 The S-criterion

Theorem 5.6.8 (Buchberger) A sequence F = ( f1, . . . , fm) of polynomials
is a Gröbner basis if and only if S( fi , f j ) →F 0 for 1 ≤ i < j ≤ m.

Proof. This is a consequence of Proposition 5.6.4 and Lemma 5.6.7. �

Corollary 5.6.9 A sequence F = ( f1, . . . , fm) of polynomials is a Gröbner
basis if and only if S( fi , f j )F = 0 for 1 ≤ i < j ≤ m.

Proof. If S( fi , f j )F = 0 for 1 ≤ i < j ≤ m then S( fi , f j ) →F 0 for
1 ≤ i < j ≤ m and F is a Gröbner basis by Theorem 5.6.8. Conversely, if
F is a Gröbner basis then S( fi , f j )F = 0 by Proposition 5.4.2, since S( fi , f j )
∈ 〈 f1, . . . , fm〉. �

5.7 Buchberger’s algorithm

The Buchberger S-criterion (Corollary 5.6.9) is a systematic way of testing
whether a set of polynomials F = ( f1, . . . , fm) is a Gröbner basis. Compute
the remainders of the S-polynomials S( fi , f j ), where 1 ≤ i < j ≤ m. On the
one hand, if they are all zero then F is a Gröbner basis. On the other hand, if
one S( fi , f j )F �= 0 then we simply add it to F to obtain a new list

F ′ = F ∪ {S( fi , f j )
F } = ( f1, . . . , fm, S( fi , f j )

F ),

hoping that F ′ will turn out to be a Gröbner basis for I = 〈 f1, . . . , fm〉. Notice
that F ′ and F generate the same ideal since S( fi , f j )F ∈ I .

We can continue adding remainders of S-polynomials to our list. This is a
somewhat daring step. We have no guarantee that this procedure will ever stop.
Let us try it out on an example.

Example 5.7.1 Suppose we have the lexicographic ordering given by X ≥ Y
on k[X, Y ] and F = (X2 + Y, X2Y + 1). Then S(X2 + Y, X2Y + 1) = Y 2 − 1.
This also becomes the remainder in the division algorithm, since none of the
terms Y 2 and −1 is divisible by in≤(X2 + Y ) = X2 or in≤(X2Y + 1) = X2Y .
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Thus

S(X2 + Y, X2Y + 1)F = Y 2 − 1.

Now let

F ′ = F ∪ {Y 2 − 1} = (X2 + Y, X2Y + 1, Y 2 − 1).

To check whether this is a Gröbner basis, we have to compute S(X2 + Y,

Y 2 − 1)F ′
and S(X2Y + 1, Y 2 − 1)F ′

and see whether they are zero. It is not
necessary to compute S(X2 + Y, X2Y + 1)F ′

, as this is zero because S(X2 +
Y, X2Y + 1) = 1 · (Y 2 − 1) + 0. Now

S(X2 + Y, Y 2 − 1) = Y 2(X2 + Y ) − X2(Y 2 − 1) = Y 3 + X2.

The division algorithm gives Y 3 + X2 = 1 · (X2 + Y ) + Y · (Y 2 − 1), so the
remainder is zero. Finally

S(X2Y + 1, Y 2 − 1) = Y (X2Y + 1) − X2(Y 2 − 1) = 1 · (X2 + Y ),

which also has zero remainder. By Corollary 5.6.9,

(X2 + Y, X2Y + 1, Y 2 − 1)

is a Gröbner basis.

The process of continuously adding non-zero remainders of S-polynomials
is called Buchberger’s algorithm. There are numerous ways of implementing
it. The workhorse in the algorithm is the division algorithm and one usually
wants as few divisions as possible. We will not go into implementation details
but simply prove that the algorithm terminates.

Theorem 5.7.2 Buchberger’s algorithm terminates and the output is a
Gröbner basis.

Proof. Let F = ( f1, . . . , fs) be the list of polynomials in a step of
Buchberger’s algorithm. Suppose that 1 ≤ i < j ≤ s and SF �= 0, where
S = S( fi , f j ). Since SF is a remainder coming from the division al-
gorithm with F = ( f1, . . . , fs), no term in SF is divisible by any of
in≤( f1), . . . , in≤( fs). So we may prove that the algorithm terminates by prov-
ing that for any sequence of terms T = (t1, t2, . . . ) there exists a number
N ∈ N such that if i ≥ N then ti is divisible by t j , where j < N . Dickson’s
lemma (Lemma 5.1.5) implies that there are finitely many terms ti1 , . . . , tir ∈ T
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such that every term t ∈ T is divisible by one of ti1 , . . . , tir . Putting N =
max(i1, . . . , ir ) we get the result. �

The following lemma sometimes simplifies the computations in
Buchberger’s algorithm considerably.

Lemma 5.7.3 Let ≤ be a term ordering on R = k[X1, . . . , Xn]. Let f, g ∈ R
and suppose that in≤( f ) and in≤(g) have no common divisors (except con-
stants). Then

S( f, g) →( f,g) 0.

Proof. Put r = f − in≤( f ) and s = g − in≤(g). Then

S( f, g) = (g − s) f − ( f − r )g = rg − s f.

If the initial terms in rg and s f cancel then

in≤(r ) in≤(g) = in≤(s) in≤( f ).

This implies that in≤( f ) | in≤(r ), contradicting that in≤(r ) < in≤( f ). So the
initial terms of rg and s f do not cancel. This shows that S( f, g) →( f,g) 0. �

Example 5.7.4 Let F = (T1 − X − Y, T2 − XY ) ⊆ k[X, Y, T1, T2]. Then F
is already a Gröbner basis with respect to the lexicographic term ordering given
by T1 ≥ T2 ≥ X ≥ Y . This is a consequence of Theorem 5.6.8 and Lemma
5.7.3. However, if the term ordering is given by X ≥ Y ≥ T1 ≥ T2, as in
Example 5.5.2, then

S = S(T1 − X − Y, T2 − XY ) = Y (T1 − X − Y )

− (T2 − XY ) =Y T1 − Y 2 − T2.

Notice that SF = S. Using Corollary 5.6.9 you should check that F ∪ {S} is a
Gröbner basis.

Example 5.7.5 Looking innocent at first, Gröbner bases can be hairy beasts
that are extremely time consuming to compute and very dependent on the term
ordering. Take for example ([23], Example 3.9) the ideal

I = 〈x5 + y3 + z2 − 1, x2 + y2 + z − 1, x6 + y5 + z3 − 1〉
in Q[x, y, z]. A Gröbner basis of I with respect to the lexicographic ordering
z ≥ y ≥ x is the monstrous list of polynomials seen in Figure 5.2.
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(225 x4 + 675 x5 + 705 x6 + 315 x7 + 100 x8 − 555 x9 − 1946 x10 −
1983 x11 − 10 x12 + 1225 x13 + 697 x14 + 195 x15 + 226 x16 +
139 x17 − x18 − 13 x19 + 3 x20 + 2 x21 + x22, 4794799513743465 x4 +
9461645755921935 x5 + 5609230341167770 x6 + 1305539383606500 x7 +
426289252230518 x8 − 12718603398056543 x9 − 28161279400718496 x10 −
13641002940967260 x11 + 13303041747347884 x12 + 12841472514397999 x13 +
1936021990228677 x14 + 2115618449641410 x15 + 2686197967416241 x16 +
266417434391307 x17 − 308399336177560 x18 + 40028515719740 x19 +
22083510506531 x20 + 20898699599882 x21 − 307985585745030 x4 y +
307985585745030 x5 y, 37955678888811405 x4 + 40874650161525720 x5 −
3971051857805515 x6 + 8461551779562300 x7 − 7477091544441736 x8 −
133100833227195819 x9 − 130427012317955273 x10 + 96308769549551000 x11 +
112430217894147542 x12 − 28978302929820573 x13 − 8147851966720744 x14 +
23240432665880855 x15 − 2547153248711687 x16 − 6558796078633904 x17 +
1957860431279775 x18 − 154503618530810 x19 + 226403721396233 x20 −
92968302338769 x21 + 9239567572350900 x2 y − 9239567572350900 x3 y −
9239567572350900 x2 y2 + 9239567572350900 x3 y2, −92395675723509000 x2 +
267932368916755545 x4 + 607600416419937750 x5 + 326949813554222075 x6 −
32115739051910620 x7 − 858543129560584 x8 − 533880675743739115 x9 −
1553067597584776499 x10 − 1058691906621826800 x11 + 691613184599027638 x12 +
932606563955672291 x13 + 151389390751950794 x14 + 95707520810719369 x15 +
185431646079855213 x16 + 30397871204445410 x17 − 24246152848015907 x18 +
2994483268700962 x19 + 1053727522296225 x20 + 1579303619755253 x21 −
92395675723509000 y2 + 92395675723509000 x2 y2 + 92395675723509000 y3,

− 1 + x2 + y2 + z).

Figure 5.2
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212 5 Gröbner bases

Surprisingly, there is a term ordering ≤ such that the Gröbner basis of I with
respect to ≤ is (see Exercise 5.29)

(x5 + y3 + z2 − 1, x2 + y2 + z − 1, x6 + y5 + z3 − 1).

Here Lemma 5.7.3 is very useful.

5.8 The reduced Gröbner basis

In the following, we work with a fixed term ordering ≤ in R = k[X1, . . . , Xn].
A Gröbner basis ( f1, . . . , fm) for an ideal I ⊆ R is not unique. You can
always add another polynomial f ∈ I to the list ( f1, . . . , fn) and it will still be
a Gröbner basis (see Exercise 5.15). We need a more well behaved object that is
unique. We may begin by observing that if we have a Gröbner basis ( f1, . . . , fm)
for the ideal I and in≤( f1) is divisible by one of in≤( f2), . . . , in≤( fm) then
( f2, . . . , fm) is a smaller Gröbner basis for I . Assume that in≤( fi ) | in≤( f1);
then in≤( fi ) | in≤( f ) if in≤( f1) | in≤( f ), where f ∈ I . So ( f2, . . . , fm) is a
Gröbner basis for I and I = 〈 f2, . . . , fm〉 by Corollary 5.4.5. This shows that
an efficient strategy for cutting down on the size of a Gröbner basis is to throw
away generators f whose initial term in≤( f ) is divisible by the initial term of
one of the other generators. This leads to the definition of a minimal Gröbner
basis.

Definition 5.8.1 A minimal Gröbner basis ( f1, . . . , fm) is a Gröbner basis
such that

(i) in≤( fi ) is not divisible by in≤( f j ) for i �= j ,
(ii) the coefficient of in≤( fi ) is 1.

A minimal Gröbner basis is still not unique even though it has the minimal
number of elements! The unique object is the reduced Gröbner basis.

Definition 5.8.2 A reduced Gröbner basis ( f1, . . . , fm) is a minimal Gröbner
basis such that no term (not just the initial term) in fi is divisible by in≤( f j )
for i �= j .

Theorem 5.8.3 Every ideal I ⊆ k[X1, . . . , Xn] has a unique reduced
Gröbner basis.
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Proof. If ( f1, . . . , fm) and (g1, . . . , gm ′ ) are two reduced Gröbner bases of I ,
we must have m = m ′ and

in≤( f1) = in≤(g1),

...

in≤( fm) = in≤(gm),

rearranging g1, . . . , gm if necessary. Here is why. We know that some in≤( f j )
divides in≤(g1). We may assume by rearranging that j = 1. We also know
that some in≤(gi ) divides in≤( f1). Here i = 1, because in≤(g1) is divisible by
in≤(gi ). This gives that in≤( f1) = in≤(g1), since the coefficient in both is 1.
The same argument applies to the other generators, and we end up with m = m ′

identical initial terms.
Now we wish to prove that f1 = g1, . . . , fn = gn in order to prove the

uniqueness of the reduced Gröbner basis. Consider f1 − g1. The initial terms
in f1 and g1 cancel. By definition of a reduced Gröbner basis none of the terms
in f1 − g1 is divisible by any in≤( f1), . . . , in≤( fn) (here we include in≤( f1)
because it has been canceled already in f1 − g1). This means that f1 − g1 is
the remainder after division by f1, . . . , fn . But since f1 − g1 ∈ I we must have
f1 − g1 = 0 by Proposition 5.4.2. The same procedure applies to the other
generators.

Every ideal has a minimal Gröbner basis ( f1, . . . , fm) by the reasoning at the
beginning of Section 5.8. The existence of a reduced Gröbner basis is deduced
as follows: replace f1 by the remainder of f1 divided by f2, . . . , fm . With this
new f1, replace f2 by the remainder of f2 divided by f1, f3, . . . , fn . Continue
this procedure until fm is replaced by its remainder divided by f1, . . . , fm−1.
Notice that the initial terms of the original f1, . . . , fm will survive and that we
still have a Gröbner basis. In the end no term of fi is divisible by in≤( f j ) for
i �= j . Thus we end up with a reduced Gröbner basis. �

Example 5.8.4 In Example 5.7.1 we saw that (X2 + Y, X2Y + 1, Y 2 − 1)
is a Gröbner basis for the ideal I = 〈X2 + Y, X2Y + 1〉 with respect to the
lexicographic ordering ≤, where Y ≤ X . It is not minimal, though! The second
generator has initial term X2Y , which is divisible by the initial term X2 of the
first generator. We can thus leave out the middle generator, ending up with

(X2 + Y, Y 2 − 1)

which in fact is the reduced Gröbner basis of I for the term ordering ≤.
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Example 5.8.5 The Gröbner basis

G = (T1 − X − Y, T2 − XY, Y T1 − Y 2 − T2) ⊆ k[X, Y, T1, T2]

from Example 5.7.4 is not minimal. The reason is that in≤(T2 − XY ) = −XY
is divisible by in≤(T1 − X − Y ) = −X . Leaving out the middle generator we
get the Gröbner basis

G ′ = (T1 − X − Y, Y T1 − Y 2 − T2).

This is the Gröbner basis used in Example 5.5.2. You may check that G ′ is the
reduced Gröbner basis when multiplied by −1.

5.9 Solving equations using Gröbner bases

Suppose we are given a set of polynomial equations in n variables over a
field k:

f1(x1, . . . , xn) = 0,

f2(x1, . . . , xn) = 0,

...

fm(x1, . . . , xn) = 0.

Just as in the old days of algebra, we want to find the solutions of these equa-
tions. If n = 1 we have a system of polynomial equations in just one vari-
able x1. This can be solved using the Euclidean algorithm: we know that the
ideal 〈 f1, . . . , fm〉 ⊆ k[x1] generated by f1, . . . , fm ∈ k[x1] is a principal ideal
〈 f 〉, generated by a greatest common divisor f of f1, . . . , fn . It follows that
f1(x) = · · · = fm(x) = 0 if and only if f (x) = 0. So we have reduced to the
case of just one equation. Let V ( f1, . . . , fm) denote

{(a1, . . . , an) ∈ kn | fi (a1, . . . , an) = 0 for every i = 1, . . . , m},
the set of solutions of the system of equations. Then V ( f1, . . . , fm) is also given
by

V (I ) = {(a1, . . . , an) ∈ kn | f (a1, . . . , an) = 0 for every f ∈ I },
where I denotes the ideal generated by f1, . . . , fm (see Exercise 5.31). The
ideal I represents all the equations we can get by “combining” f1, . . . , fm . In
particular, if we have a Gröbner basis (g1, . . . , gr ) of I we get

V ( f1, . . . , fm) = V (g1, . . . , gr ).

https://doi.org/10.1017/CBO9780511804229.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511804229.006


5.9 Solving equations using Gröbner bases 215

The point is that the equations

g1(x1, . . . , xn) = 0,

g2(x1, . . . , xn) = 0,

...

gr (x1, . . . , xn) = 0

are often much easier to solve.
This is the basis for doing “Gaussian” elimination on our system of equa-

tions using Gröbner bases. We wish to eliminate variables by combining some
equations to get equations with fewer variables. The ideal situation is if the sys-
tem of equations consists of some equations containing the variables x1, . . . , xn ,
some equations containing the variables x2, . . . , xn and . . . and some equations
containing only xn . Then we could begin by solving the equations involving
only xn , insert our solutions into the equations involving only xn−1 and xn and
so forth. Thereby we only have to solve equations involving one variable. The
process of eliminating variables can be formulated as that of finding polyno-
mials in I involving only x1, polynomials in I involving only x1, x2 and so on.
Viewing I as the equations that we can deduce by combining f1, . . . , fm we
wish to find

I ∩ k[x1],

I ∩ k[x1, x2],

...

I ∩ k[x1, . . . , xn−1].

The following theorem is almost too good to be true.

Theorem 5.9.1 Let G be a Gröbner basis for an ideal I ⊆ k[X1, . . . , Xn]
with respect to the lexicographic ordering ≤ given by X1 ≤ X2 ≤ · · · ≤ Xn.
Then G ∩ k[X1, . . . , Xi ] is a Gröbner basis for the ideal I ∩ k[X1, . . . , Xi ] in
k[X1, . . . , Xi ] with respect to the lexicographic ordering ≤ for the polynomi-
als in k[X1, . . . , Xi ].

Let G ′ = G ∩ k[X1, . . . , Xi ]. Suppose that f ∈ I ∩ k[X1, . . . , Xi ]. Then
in≤(g) | in≤( f ) for some g ∈ G using Definition 5.4.1. On the other hand
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the terms in g are all smaller than in≤(g) in our lexicographic term ordering.
This tells us (why??) that g ∈ G ′. Therefore G ′ is a Gröbner basis for
I ∩ k[X1, . . . , Xi ] with respect to ≤ for the polynomials in k[X1, . . . , Xi ].

Example 5.9.2 Let us find the solutions to the system of equations

Y 2 − X3 + X = 0,

Y 3 − X2 = 0
(5.10)

in R
2. This corresponds to finding the points of intersection between the curves

shown in Figure 5.3.
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To solve (5.10) we need to transform it to another system of equations
according to Theorem 5.9.1. We will do this by computing a Gröbner basis
for 〈Y 2 − X3 + X, Y 3 − X2〉 with respect to the lexicographic ordering ≤
where X ≥ Y . A straightforward application of Buchbergers algorithm (even
though the algorithm needs a few steps here) gives the Gröbner basis

(Y 2 − X3 + X, Y 3 − X2, −X − Y 2 + XY 3, XY 2 + Y 3 − Y 6,

Y 3 − Y 4 − 2Y 6 + Y 9, −X − Y 2 − Y 4 + Y 7),

where the initial terms are underlined. From this we see that the reduced Gröbner
basis is

(Y 3 − Y 4 − 2Y 6 + Y 9, X + Y 2 + Y 4 − Y 7).

So finding the solutions to (5.10) is equivalent to solving

Y 3 − Y 4 − 2Y 6 + Y 9 = 0,

X + Y 2 + Y 4 − Y 7 = 0.

This is much more manageable than solving the original system (5.10). Now
we can find the solutions to the equation

Y 3 − Y 4 − 2Y 6 + Y 9 = Y 3(1 − Y − 2Y 3 + Y 6) = 0 (5.11)

and plug them into X + Y 2 + Y 4 − Y 7 and get the corresponding X -values.
Using numerical approximations (and a computer) one finds apart from
Y = 0 that Y = 0.605423 and Y = 1.2876 are approximate real solutions to
(5.11). So the real solutions to (5.10) are (0, 0), (−0.471073, 0.605423) and
(1.46109, 1.2876).

Notice that R[Y ] ∩ 〈Y 2 − X3 + X, Y 3 − X2〉 = 〈Y 3 − Y 4 − 2Y 6 + Y 9〉 by
Theorem 5.9.1.

It is worth pointing out that all the clever algebraic tricks one might come
up with solving a system of polynomial equations have been translated into a
precise method using Gröbner bases.

5.10 Exercises

1. In Section 5.1 the set R[Nn] was introduced along with an addition and a
multiplication. Let f, g, h ∈ R[Nn].

(i) Prove that f + g, f g ∈ R[Nn].
(ii) Prove that f g = g f .
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(iii) Prove that f (g + h) = f g + f h.
(iv) Prove that f (gh) = ( f g)h by reducing to the case h = cXv .

2. Prove that the ideal 〈X, Y 〉 ⊆ Q[X, Y ] is not a principal ideal, by
assuming that there exists f ∈ Q[X, Y ] such that 〈X, Y 〉 = 〈 f 〉. Make
use of the degree function in Q[Y ][X ] with respect to X to reach a
contradiction.

3. Give an example of a total ordering that is not a well ordering.
4. Why is a well order a total ordering?
5. Let ≤ be a term ordering on Nn . Show that a + c ≤ b + d if a ≤ b and

c ≤ d, where a, b, c, d ∈ Nn .
6. Suppose that v ∈ R2. Define the relation Rv on N2 by

v1 Rv2 ⇔ v · v1 ≤ v · v2, where · refers to the usual scalar product.
(i) Is R(1,1) a partial ordering?

(ii) Is R(1,
√

2) a partial ordering? Is it a term ordering?
(iii) Is R(−1,

√
2) a term ordering?

7. Prove that ≤ is reflexive, antisymmetric, transitive, total with 0 ≤ v,
v1 ≤ v2 ⇒ (v1 + v) ≤ (v2 + v) for every v, v1, v2 ∈ Nn , where
(i) ≤ = ≤lex,

(ii) ≤ = ≤grlex.
8. Prove that ≤v , defined in (5.1), is a term ordering.
9. Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn . Define the relation R on

Nn by

αRβ

if and only if α = β or
∑n

i=1 αi <
∑n

i=1 βi or
∑n

i=1 αi = ∑n
i=1 βi and

the first coordinates αi , βi from the right that are different satisfy αi > βi .
(i) Show that R is a term ordering (thus R is reflexive, antisymmetric,

transitive, total, with 0Rv, v1 Rv2 ⇒ (v1 + v)R(v2 + v) for every
v, v1, v2 ∈ Nn).

(ii) Show without using Lemma 5.1.5 or Corollary 5.1.7 that R is a well
ordering.

The relation R is called the graded reverse lexicographic ordering.
Usually it is the “fastest” term ordering in Gröbner basis computations.

10. Show that the graded reverse lexicographic ordering of Exercise 5.9 is the
same as the graded lexicographic ordering ≤grlex on N2. Give an example
showing that the graded reverse lexicographic ordering is not the same as
the graded lexicographic ordering on N3.

11. Let f, g ∈ R[X1, . . . , Xn] \ {0} where R is a domain and let ≤ be a term
ordering on R. Prove that

in≤( f g) = in≤( f ) in≤(g).
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12. Let f, g ∈ R[X1, . . . , Xn] \ {0} where R is a domain and let ≤ be a term
ordering on R. Prove that

in≤( f + g) ≤ max(in≤( f ), in≤(g)).

13. Compute the remainder f ( f1, f2), where

f = 1 + X5 + X + Y + X3Y + X4Y + Y 2 + 2X2Y 2 + XY 3

and ( f1, f2) = (X3 + Y 2, X2Y + 1), using the division algorithm (and
the lexicographic ordering X ≥ Y ).
(i) The same as above, but with ( f2, f1).

(ii) Compute the remainder f ( f1, f2) assuming that X ≤ Y .
14. Let F = (X2 + Y, X2Y + 1) ⊆ k[X, Y ], where k is a field and let ≤ be a

term ordering on k[X, Y ]. Show that F is not a Gröbner basis with respect
to ≤.

15. Let f ∈ I = 〈 f1, . . . , fm〉 ⊆ k[X1, . . . , Xn] and suppose that
( f1, . . . , fm) is a Gröbner basis (with respect to some term ordering ≤)
for I . Prove that ( f1, . . . , fm, f ) is also a Gröbner basis for I .

16. Let G = (g1, . . . , gr ) ⊆ k[X1, . . . , Xn] and I = 〈g1, . . . , gr 〉. Prove that
G is a Gröbner basis if and only if ( f ∈ I ⇐⇒ f G = 0) for every f ∈ I .

17. Let R be a (commutative) ring and a1, . . . , an, b1, . . . , bn ∈ R. Show that

a1a2 · · · an − b1b2 · · · bn ∈ 〈a1 − b1, a2 − b2, . . . , an − bn〉. (5.12)

Now assume that f, f1, . . . , fr ∈ k[X1, . . . , Xn] and that f = P( f1, . . . ,

fr ) for a suitable polynomial P ∈ k[T1, . . . , Tr ]. Apply (5.12) to prove
that

f (X1, . . . , Xn) − P(T1, . . . , Tr ) ∈ I,

where I is the ideal 〈T1 − f1, . . . , Tr − fr 〉 in the polynomial ring

k[X1, . . . , Xn, T1, . . . , Tr ].

18. Let F = (X2 + Y, X2Y + 1) ⊆ Q[X, Y ] and
f = X3Y + X2Y + X + Y 2. Consider the lexicographic ordering ≤ with
X ≥ Y .
(i) Prove that f →F 0.

(ii) Prove that f F �= 0 and f F ′ �= 0, where F ′ = (X2Y + 1, X2 + Y ).
19. Compute the reduced Gröbner basis of (X2 + Y, X + Y ) using the

lexicographic ordering X ≥ Y .
20. Is (X2 + Y, X + Y ) already a Gröbner basis with respect to some term

ordering?
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21. Decide whether f = X3Y + X3 + X2Y 3 − X2Y + XY + X lies in the
ideal I = 〈X2 + Y, X2Y + 1〉 ⊆ k[X, Y ]. If so, find a1, a2 ∈ k[X, Y ]
such that f = a1 f1 + a2 f2.

22. Let I ⊆ k[X, Y, Z ] denote the ideal 〈X2 − Y, Z3 + Y 2〉 ⊆ k[X, Y, Z ]. Let
≤ denote the lexicographic ordering on k[X, Y, Z ] given by X ≥ Y ≥ Z .
(i) Show that (X2 − Y, Z3 + Y 2) is a reduced Gröbner basis with respect

to ≤ for I .
(ii) Show that X3 − XY + Y 2 + Z4 + ZY 2 �∈ I .

23. Let I be the ideal ( f1, f2) = (X2 + Y, X + Y ) ⊆ k[X, Y ].
(i) Show that f = X2 + X4 + X2Y + X3Y − Y 2 + XY 2 ∈ I

(ii) Compute a1, a2 ∈ k[X, Y ] such that f = a1 f1 + a2 f2.
24. Let I ⊆ Q[X, Y ] denote the ideal 〈X2 + Y 2, X3 + Y 3〉 ⊆ Q[X, Y ]. Let ≤

denote the lexicographic ordering on Q[X, Y ] given by X ≥ Y .
(i) Compute the S-polynomials S1 = S(X2 + Y 2, X3 + Y 3) and

S2 = S(X2 + Y 2, S1) with respect to ≤ and show that S1, S2 ∈ I .
Use this to prove that Y 4 ∈ I .

(ii) Show that the reduced Gröbner basis for I with respect to ≤ is
(Y 4, XY 2 − Y 3, X2 + Y 2).

(iii) Show that (X2 + Y 2, X3 + Y 3) cannot be a Gröbner basis for I for
any term ordering.

25. Let R denote the ring Q[X, Y, S, T ] and ≤ the lexicographic term
ordering on R given by

X ≥ Y ≥ S ≥ T .

Let I denote the ideal R(S − X2) + R(T − XY ).
(i) Show that the reduced Gröbner basis for I with respect to ≤ is

G = (X2 − S, XY − T, XT − Y S, Y 2S − T 2).

(ii) Compute the remainder Q = (X4 + 2X3Y )G . Show that
Q ∈ Q[S, T ] and that X4 + 2X3Y = Q(X2, XY ).

(iii) Let f ∈ Q[X, Y ] and let Q denote the unique remainder f G . Show
that f (X, Y ) = Q(X2, XY ) if Q ∈ Q[S, T ].

26. Let c denote the vector (c1, c2) ∈ R2 and let c · v = c1a + c2b, where
v = (a, b) ∈ R2. Define the relation Rc on N2 by

v1 Rc v2 ⇐⇒ c · v1 ≥ c · v2,

where v1, v2 ∈ N2.
(i) Show that Rc is reflexive and transitive.

(ii) Give an example showing that Rc is not necessarily antisymmetric.
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(iii) Show that Rc is antisymmetric if c1/c2 �∈ Q, where c2 �= 0.
(iv) Let c = (1,

√
2). Show that Rc is a term ordering on N2. Compute the

reduced Gröbner basis for the ideal 〈X2 + Y, X2Y + 1〉 with respect
to this term ordering (the term XmY n is identified with the vector
(m, n) ∈ N2).

(v) Let ≤ ⊆ N2 × N2 denote the lexicographic term ordering on N2

given by (1, 0) ≥ (0, 1). Show that ≥�= Rc for every c ∈ R2.
27. Show that X2 Z + Y �∈ 〈X Z + Y 2, X + Y 〉 ⊆ Q[X, Y, Z ].
28. Let I denote the ideal generated by X2 + Y and X2Y + 1 in Q[X, Y ].

(i) Compute a Gröbner basis for I with respect to the lexicographic term
ordering ≤, where Y ≥ X .

(ii) Show that Y 2 − 1, X4 − 1 ∈ I .
(iii) Let ≤ be an arbitrary term ordering. Prove that

(X2 + Y, Y 2 − 1, X4 − 1)

is a Gröbner basis for I with respect to ≤.
29. Show that the generators

I = 〈x5 + y3 + z2 − 1, x2 + y2 + z − 1, x6 + y5 + z3 − 1〉
of Example 5.7.5 in fact form a Gröbner basis with respect to some term
ordering (hint: construct a suitable weighted term ordering using (5.1)).

30. Let X be any subset of kn = k × · · · × k (n times). Prove that

I (X ) = { f ∈ k[X1, . . . , Xn] | f (a1, . . . , an) = 0 ∀(a1, . . . , an) ∈ X}
is an ideal in k[X1, . . . , Xn]. Show that V (I (X )) ⊇ X and that
I (X ) = I (V (I (X ))).

31. Let f1, . . . , fm ∈ k[x1, . . . , xn]. Prove that

V ( f1, . . . , fm) = V (I ),

where I = 〈 f1, . . . , fm〉.
32. Consider the ideal I = 〈5x + y + z − 17, x + y − z − 1, x + y +

z − 9〉 ⊆ R[x, y, z]. Compute a Gröbner basis for I with respect to the
lexicographic ordering ≤, where x ≥ y ≥ z. What is the relation to Gauss
elimination when solving the system

5x + y + z = 17,

x + y − z = 1,

x + y + z = 9

of linear equations over R?
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33. (HOF) The following problem shows that every ideal has a finite
generating set that is a Gröbner basis with respect to all term orderings.
Such a generating set is called a universal Gröbner basis. Let
I ⊆ k[X1, . . . , Xn] be an ideal.
(i) Show that there are only finitely many ideals generated by initial

terms of elements in I . More precisely show that

{in≤(I ) |≤ term ordering on k[X1, . . . , Xn]}
is a finite set. Where in≤(I ) = 〈in≤( f ) | f ∈ I\{0}〉.

(ii) Show that every ideal I ⊆ k[X1, . . . , Xn] has a set of generators that
is a Gröbner basis for every term ordering.
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