
4 Polynomials

The set of functions f : R → R is a ring in a very straightforward manner: the
sum of two functions f and g is ( f + g)(x) = f (x) + g(x) and the product
( f g)(x) = f (x)g(x). The subset {a0 + a1x + · · · + an xn | ai ∈ R} of polyno-
mials is a subring of this ring. It is easy to show that the above addition and
multiplication lead to the addition

(a0 + a1x + a2x2 + · · · ) + (b0 + b1x + b2x2 + · · · )

= (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + · · ·

and the multiplication

(a0 + a1x + a2x2 + · · · )(b0 + b1x + b2x2 + · · · )

= (a0b0) + (a1b0 + a0b1)x + (a2b0 + a1b1 + a0b2)x2 + · · ·

of polynomials. The marvelous thing is that this addition and multiplication is
algebraic in nature and makes sense even if we replace the coefficients with
elements in an arbitrary (commutative) ring.

In many ways polynomials form the heart of algebra. In this chapter we begin
by introducing polynomials formally. Straight after the formal introduction we
will give a surprising application of the addition and multiplication of polyno-
mials. We will show how one can easily compute the remainder of a binomial
coefficient divided by a prime number p by computing with polynomials with
coefficients in Fp.

The division algorithm for polynomials is crucial. We give it here in a slightly
modified form (see Proposition 4.2.4) to make clear why the general division
algorithm in several variables (see Proposition 5.3.1) is really a natural exten-
sion. After the important Theorem 4.3.5 we move on to the classical subjects
of cyclotomic polynomials and finite fields. You will miss a golden opportunity
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144 4 Polynomials

if you do not immerse yourself in these topics. It is your ticket to a real under-
standing of this chapter.

As promised in Section 1.11 we give a proof of Gauss’ famous theorem
on quadratic reciprocity. The proof uses Freshman’s Dream (Theorem 3.3.9)
and computations with Gauss sums in a suitable quotient ring of a polynomial
ring. You will have the necessary background to learn a proof of a really deep
theorem in number theory just by knowing basic properties of polynomials.

Freshman’s Dream is also a key player in the odd fact that there are
fast algorithms for factoring polynomials with coefficients in Fp into irre-
ducible polynomials. We go through this by describing the basic steps of
Berlekamp’s algorithm. Notice the stark contrast with the integers Z, where
no one (so far) has come up with a fast algorithm for factoring. Most of the
mathematics in this chapter can be traced back to the seminal work [11] of
Gauss.

4.1 Polynomial rings

We will introduce the polynomial ring formally. It will be important for us to
view polynomials as purely algebraic objects and not as a subring of a ring of
functions (see Exercise 4.1).

Let R be a ring (commutative as usual) and R[N] the set of functions
f : N → R such that f (n) = 0 for n � 0 (here one should think of the
polynomial f (0) + f (1)X + f (2)X2 + · · · ). Given f, g ∈ R[N] we define
their sum as ( f + g)(n) = f (n) + g(n). Inspired by the way “real-world
polynomials” multiply, we define

( f g)(n) =
∑

i+ j=n

f (i)g( j),

where i, j ∈ N. For example ( f g)(3) = f (3)g(0) + f (2)g(1) + f (1)g(2) +
f (3)g(0). We let Xi ∈ R[N] denote the function

Xi (n) =
{

1 if n = i,

0 if n �= i.

Notice that Xi X j = Xi+ j , where i, j ∈ N. We view an element a ∈ R as the
function

a(n) =
{

a if n = 0,

0 if n > 0
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4.1 Polynomial rings 145

in R[N]. So, an element f ∈ R[N] can be written as

f = a0 + a1 X + · · · + an Xn,

where ai = f (i) and f (i) = 0 if i > n. Notice that 1 = X0 is (the) neutral
element for the multiplication. The neutral element for + is 0 ∈ R. Clearly
f g = g f and f (g + h) = f g + f h for f, g, h ∈ R[N]. With these tools it
becomes easy (see Exercise 4.2) to verify the associative rule for the multipli-
cation, i.e. f (gh) = ( f g)h for every f, g, h ∈ R[N], since we may assume that
h = cXm , where c ∈ R and m ∈ N.

Definition 4.1.1 We define the polynomial ring R[X ] in one variable over the
ring R as R[N]. Here X denotes the function X1 ∈ R[N]. A term is a polynomial
of the form aXm , where a ∈ R \ {0}. A polynomial f ∈ R[X ] can be written

a0 + a1 X + a2 X2 + · · · + an Xn,

where a0, . . . , an ∈ R are called the coefficients of f . If an �= 0 we put deg( f ) =
n and call an the leading coefficient of f . In this case deg( f ) is called the degree
of f and adeg( f ) Xdeg( f ) its leading term. A non-zero polynomial is called monic
if its leading coefficient is 1.

Remark 4.1.2 The degree of a polynomial is a function deg : R[X ] \ {0} →
N. It is an extremely useful invariant of a polynomial. The degree of the zero
polynomial is not defined.

Now you have seen the formal definition of R[X ]. When computing with
polynomials it pays to treat them as the usual polynomial expressions that we
know.

Remark 4.1.3 Two polynomials f = am Xm + · · · + a1 X + a0 and g =
bn Xn + · · · + b1 X + b0 in R[X ] are the same if and only if a0 = b0, a1 =
b1, . . . . This is clear when we view the polynomials as functions N → R. Two
functions N → R are the same if and only if they assume the same value for
every n ∈ N.

We have proved that R[X ] really is a ring when R is a ring. This means that all
the concepts from Chapter 3 apply. For example, it makes sense to ask whether
R[X ] is a domain, a Euclidean domain or a unique factorization domain. It also
makes sense to ask whether a polynomial in R[X ] is a unit or a zero divisor.
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146 4 Polynomials

4.1.1 Binomial coefficients modulo a prime number

Let us pause for a while after having introduced polynomials formally. We will
give an example showing that computations with polynomials can be helpful
in reasoning about numbers and congruences. We wish to prove that

7
∣∣ (55

22

)
.

Judging from the size of the binomial coefficient on the right, this may not
be an easy task, unless of course we dig a bit deeper into the structure of the
polynomial ring. If n is a natural number > 1 then every x ∈ N has a unique
n-adic expansion (see Exercise 1.5)

x = a0 + a1n + a2n2 + · · · + ar nr ,

where r ∈ N, ai ∈ N and 0 ≤ ai < n for i = 0, . . . , r . Recall Freshman’s
Dream (Theorem 3.3.9) from Chapter 3: if R is a commutative ring of prime
characteristic p then

(a + b)pr = a pr + bpr

for a, b ∈ R and r ∈ N . This shows that if m is a natural number with the
p-adic expansion

m = a0 + a1 p + · · · + ar pr

then

(1 + X )m = (1 + X )a0 (1 + X p)a1 · · · (1 + X pr
)ar

in the polynomial ring Fp[X ] (which is a commutative ring of characteristic p).
Now let

n = b0 + b1 p + · · · + bs ps

be another natural number and its p-adic expansion. Compare the coefficients
of the left hand side of the previous equation,

(1 + X )m =
m∑

n=0

(
m

n

)
Xn,
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4.2 Division of polynomials 147

with the coefficients of its right hand side,

(1 + X )a0 (1 + X p)a1 · · · (1 + X pr
)ar

=
(

a0∑
b0=0

(
a0

b0

)
Xb0

) (
a1∑

b1=0

(
a1

b1

)
X pb1

)
· · ·

(
ar∑

br =0

(
ar

br

)
X pr br

)
.

A term in the product above is given uniquely as the product of a term from
the first factor, a term from the second factor and so on. This follows from the
uniqueness of the p-adic expansion. Two polynomials are the same if and only
if their coefficients are the same (Remark 4.1.3). This leads to the surprising
identity

(
m

n

)
≡

(
a0

b0

)(
a1

b1

)
· · · (mod p),

where (
r

s

)
= r (r − 1) · · · (r − s + 1)

s(s − 1) · · · 2 · 1
.

Thus p | (m
n

)
if and only if ai < bi for some i . Expanding 7-adically 55 and 22

we get

55 = 6 + 1 · 72,

22 = 1 + 3 · 71.

Thus (
55

22

)
≡

(
6

1

)(
0

3

)(
1

0

)
= 0 (mod 7),

so 7 divides
(55

22

)
.

4.2 Division of polynomials

We move on to describe the important division algorithm for polynomials. First,
we give a few properties of the degree function.

Example 4.2.1 If R = Z/4Z and f = g = 2X + 1 then f g = 1, so that
deg( f g) = 0 but deg( f ) = deg(g) = 1. Remember that when we write 2 in
the ring Z/4Z it really means [2] = 2 + 4Z (see Remark 3.3.4).
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148 4 Polynomials

The above example shows that the formula deg( f g) = deg( f ) + deg(g) for
f, g ∈ R[X ] \ {0} breaks down in general. It can be repaired by imposing some
mild restrictions.

Proposition 4.2.2 Let f, g ∈ R[X ] \ {0}. If the leading coefficient of f or g
is not a zero divisor then

deg( f g) = deg( f ) + deg(g).

Proof. We may write f = am Xm + · · · and g = bn Xn + · · · , where am, bn

are the leading coefficients (thus m = deg( f ) and n = deg(g)). Then

f g = ambn Xm+n + · · · .

Since one of am and bn is not a zero divisor, we must have ambn �= 0. Therefore
deg( f g) = m + n = deg( f ) + deg(g). �

We have seen in Example 4.2.1 that there can be units in R[X ] of
degree > 0. This is rather pathological. In most cases units have degree zero.
A monic polynomial of degree > 0 can never be a unit (why?).

Proposition 4.2.3 Let R be a domain. Then R[X ]∗ = R∗.

Proof. Assume that f ∈ R[X ]∗. Then there exists g ∈ R[X ] such that f g = 1.
Thus deg( f g) = deg( f ) + deg(g) = deg(1) = 0 by Proposition 4.2.2. This
shows that deg( f ) = deg(g) = 0 and f, g ∈ R∗ ⊆ R. Thus R[X ]∗ ⊆ R∗.
Clearly R∗ ⊆ R[X ]∗. �

Now we come to the division algorithm in R[X ]. It can be viewed as an
analogue of division with remainder for the integers (Theorem 1.2.1). We are
rephrasing it a little so that it generalizes naturally to the division algorithm for
polynomials in several variables later. Notice that := means assigment to a vari-
able (we use := to distinguish it from =, which has a well defined mathematical
meaning).

Proposition 4.2.4 Let d be a non-zero polynomial in R[X ]. Assume that the
leading coefficient of d is not a zero divisor in R. Given f ∈ R[X ], there exist
polynomials q, r ∈ R[X ] such that

f = qd + r

and either r = 0 or none of the terms in r is divisible by the leading term of d.
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4.2 Division of polynomials 149

Proof. Let aXm denote the leading term of d , where a is not a zero divisor in R.
To begin with we have the identity f = qd + (r + s), where q = 0, r = 0 and
s = f . If s = 0 we are done. If not, let bXn denote the leading term of s. If aXm

divides bXn then n ≥ m, b = ca, for a unique c ∈ R, and bXn = cXn−maXm .
We put

q := q + cXn−m,

s := s − cXn−md.

After these assignments we see that the identity f = qd + (r + s) still holds.
If aXm does not divide bXn we put

r := r + bXn,

s := s − bXn.

Again after these assignments the identity f = qd + (r + s) holds. After both
assignments r will only contain terms not divisible by the leading term of d.
Now proceed with the same steps using the new s. If s = 0 the procedure will
stop. If not we know that the degree of s has strictly decreased since it does so
in both steps. After finitely many steps (the degree of f is finite) we will reach
the case s = 0. �

If the leading coefficient of d in Proposition 4.2.4 is invertible then there is
a more appealing way of formulating the division of polynomials. This is the
content of the following corollary.

Corollary 4.2.5 Let d be a non-zero polynomial in R[X ]. Assume that the
leading coefficient of d is invertible in R. Given f ∈ R[X ], there exist unique
polynomials q, r ∈ R[X ] such that

f = qd + r

and either r = 0 or deg(r ) < deg(d).

Proof. An invertible element divides every other element in R. Therefore the
leading term of d divides a term of degree n if and only if deg(d) ≤ n. In this
situation Proposition 4.2.4 may be reformulated as f = qd + r , where r = 0
or deg(r ) < deg(d) if r �= 0.

Assume that f = q1d + r1 = q2d + r2, where q1, r1, q2, r2 ∈ R[X ] and
r1, r2 satisfy the conditions in the corollary. Then (q1 − q2)d = r2 − r1. If
r2 − r1 �= 0 then deg(q1 − q2) + deg(d) = deg(r2 − r1). Since deg(r2 − r1) ≤
max(deg(r1), deg(r2)) (see Exercise 4.3), we get deg(d) ≤ deg(r1) or deg(d) ≤
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150 4 Polynomials

deg(r2). This is a contradiction. It implies that r1 = r2 and thereby that q1 = q2,
proving the uniqueness of q and r . �

The division algorithm for polynomials is illustrated in the following
example.

Example 4.2.6 If f = X4 + X − 1 and d = X − 1 are polynomials in Z[X ],
we may write the algorithm in the proof of Proposition 4.2.4 schematically as

X4 + X − 1 : X − 1 = X3 + X2 + X + 2

X4 − X3

X3 + X − 1

X3 − X2

X2 + X − 1

X2 − X

2X − 1

2X − 2

1

This shows that X4 + X − 1 = (X3 + X2 + X + 2)(X − 1) + 1.

Definition 4.2.7 The polynomial r in Corollary 4.2.5 is called the remainder
of f divided by d .

4.3 Roots of polynomials

The map j : R → R[X ] given by

j(r ) = r + 0X + 0X2 + · · ·
is an injective ring homomorphism. We identify the image j(R) with R and
view R as a subring of R[X ] in this way.

Proposition 4.3.1 Let f = an Xn + · · · + a1 X + a0 ∈ R[X ] and α ∈ R. The
map ϕα : R[X ] → R given by

ϕα( f ) = f (α) = anα
n + · · · + a1α + a0

is a ring homomorphism.
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4.3 Roots of polynomials 151

Proof. This follows from the rules for adding and multiplying in R[X ]. �

This leads us to the crucial concept of a root of a polynomial. Let f ∈ R[X ]
be a polynomial. The element α ∈ R is called a root of f if f (α) = ϕα( f ) = 0.
We let V ( f ) = {α ∈ R | f (α) = 0} denote the set of roots of f ∈ R[X ]. The
following corollary is a stepping stone toward introducing the concept of the
multiplicity of roots in polynomials.

Corollary 4.3.2 Let f ∈ R[X ]. Then α ∈ R is a root of f if and only if X − α

divides f .

Proof. Assume α is a root of f . By Corollary 4.2.5 we may write

f = q(X − α) + r,

where r is a constant (r ∈ R). Substituting α for X on both sides (see Proposition
4.3.1) we get 0 = f (α) = r , which proves r = 0. If X − α divides f then r = 0
and α is a root of f . �

If a monic polynomial q divides a non-zero polynomial f then f = qr for
a unique r (q is not a zero divisor in R[X ]) and deg( f ) = deg(q) + deg(r ) by
Proposition 4.2.2. Thus deg(q) ≤ deg( f ). The multiplicity of α as a root in a
non-zero polynomial f is the largest power n ∈ N such that

(X − α)n | f.

The multiplicity of α in f is denoted να( f ). Notice that να( f ) ≤ deg( f ) and
f = (X − α)να ( f )h, where h(α) �= 0. A multiple root in f is a root α ∈ R with
να( f ) > 1.

The following example shows that one needs to exercise some caution with
regard to roots. There may be too many of them in pathological cases (see also
Exercise 4.6).

Example 4.3.3 Let R = Z/6Z and f = X2 + 3X + 2 ∈ R[X ]. Then f can
have at most six roots (after all there are only six elements in R). Let us tabulate
f (α) for α ∈ R:

α 0 1 2 3 4 5
f (α) 2 0 0 2 0 0

We see that V ( f ) = {1, 2, 4, 5}. In this case f has four roots but the degree of
f is 2. It is not true that f = (X − 1)(X − 2)(X − 4)(X − 5).
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152 4 Polynomials

The usual type of polynomial f ∈ R[X ] \ {0} cannot have more than deg( f )
roots. This is wrong in the general case (Example 4.3.3). However, if R is a
domain we can get the “right” bound on the number of roots for a non-zero
polynomial in R[X ]. The following simple lemma captures the essence.

Lemma 4.3.4 Let R be a domain and f, g ∈ R[X ]. Then V ( f g) = V ( f ) ∪
V (g).

Proof. The inclusion V ( f g) ⊇ V ( f ) ∪ V (g) is true without any assumptions
on R. We will prove that V ( f g) ⊆ V ( f ) ∪ V (g). If α ∈ V ( f g) then ( f g)(α) =
f (α)g(α) = 0. Since R is a domain we get f (α) = 0 or g(α) = 0. Thus α ∈
V ( f ) or α ∈ V (g) and α ∈ V ( f ) ∪ V (g). �

Theorem 4.3.5 Let R be a domain and f ∈ R[X ] \ {0}. If V ( f ) =
{α1, . . . , αr } then

f = q(X − α1)να1 ( f ) · · · (X − αr )ναr ( f ),

where q ∈ R[X ] and V (q) = ∅. The number of roots of f , counted with multi-
plicity, is bounded by the degree of f .

Proof. We prove this using induction on deg( f ). We will show the induction
step and leave the cases deg( f ) = 0 and V ( f ) = ∅ to the reader. If α ∈ V ( f )
then f = (X − α)να ( f )g, where deg(g) < deg( f ) and g(α) �= 0. Thus V ( f ) =
{α} ∪ V (g) by Lemma 4.3.4 and α �∈ V (g). By induction

g = q(X − β1)νβ1 (g) · · · (X − βs)νβs (g),

where V (g) = {β1, . . . , βs} and V (q) = ∅. This gives the desired formula

f = q(X − α)να ( f )(X − β1)νβ1 ( f ) · · · (X − βs)νβs ( f ),

where V ( f ) = {α} ∪ V (g) = {α, β1, . . . , βs} and V (q) = ∅. Now it follows by
Proposition 4.2.2 that

να( f ) + νβ1 ( f ) + · · · + νβs ( f ) ≤ deg( f ),

proving that the number of roots of f counted with multiplicity is bounded by
the degree of f . �

As a first example of the usefulness of Theorem 4.3.5 we give a (natural) proof
of Wilson’s theorem (see Exercise 1.29(ii)), which says that (p − 1)! ≡ −1
(mod p) if p is a prime number.
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4.3 Roots of polynomials 153

Example 4.3.6 Consider the polynomial X p − X ∈ Fp[X ]. Then

V (X p − X ) = {0, 1, . . . , p − 1}
by Fermat’s little theorem, Corollary 1.9.2. It follows by Theorem 4.3.5 that

X p − X = q X (X − 1)(X − 2) · · · (X − (p − 1)),

where q is a polynomial of degree zero (which has to be 1 by comparing the
leading coefficients on both sides). Comparing coefficients of degree one on
the left and right hand sides, we get 1 · 2 · · · (p − 1) = (p − 1)! = −1 in Fp.
This shows that (p − 1)! ≡ −1 (mod p).

We now describe a useful algebraic gadget inspired by differentiation in
analysis. We cannot employ the usual definition of the derivative from analysis,
so we have to be a little more formal.

4.3.1 Differentiation of polynomials

Let R be a ring and f = an Xn + an−1 Xn−1 + · · · + a1 X + a0 ∈ R[X ]. Then

D( f ) = annXn−1 + an−1(n − 1)Xn−2 + · · · + a1

is called the derivative of f . When a polynomial is viewed formally as a map
f : N → R (see Section 4.1), this can be rephrased as D( f )(n − 1) = n f (n)
for n ≥ 1. The following lemma shows that the derivative behaves just as in
ordinary differentiation.

Lemma 4.3.7 Let f, g ∈ R[X ] and λ ∈ R. Then

(i) D( f + g) = D( f ) + D(g),
(ii) D(λ f ) = λD( f ),

(iii) D( f g) = f D(g) + D( f )g.

Proof. We will prove (iii) and leave (i) and (ii) to the reader. Viewing
polynomials formally as maps N → R, (iii) follows from the identity

( f D(g) + D( f )g)(n − 1) =
∑

i+ j=n−1

f (i)D(g)( j) +
∑

i+ j=n−1

D( f )(i)g( j)

=
∑

i+ j=n−1

f (i)( j + 1)g( j + 1)

+
∑

i+ j=n−1

(i + 1) f (i + 1)g( j)
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=
∑

i+ j=n

f (i) jg( j) +
∑

i+ j=n

i f (i)g( j)

= n
∑

i+ j=n

f (i)g( j)

= n( f g)(n) = D( f g)(n − 1),

where n ≥ 1. �

The most useful property of the derivative is the Leibniz rule (Lemma
4.3.7(iii)). We will use the derivative to reason about roots of polynomials,
as shown in the lemma below.

Lemma 4.3.8 Suppose that f, g ∈ R[X ].

(i) If f 2 | g then f | D(g).
(ii) An element α ∈ R is a multiple root of f if and only if α is a root of f and

D( f ).

Proof. Assume that g = q f 2. Then D(g) = D(q) f 2 + 2q D( f ) f = (D(q)
f + 2q D( f )) f by Lemma 4.3.7(iii). This proves (i). If α is a multiple root of f
then (X − α)2 divides f . Therefore X − α divides D( f ) by (i) and α is a root of
D( f ). Now assume that α is a root of f and D( f ). Then f = (X − α)mh, where
m = να( f ) ≥ 1 and h(α) �= 0. If m = 1 we get D( f ) = h + (X − α)D(h). This
leads to D( f )(α) = h(α) �= 0, contradicting that α is a root of D( f ). Therefore
m ≥ 2 and α is a multiple root of f . This proves (ii). �

Remark 4.3.9 If the polynomial ring R[X ] is of prime characteristic p > 0
one encounters many non-constant polynomials with zero derivatives. Take
X p ∈ Fp[X ] as an example. Here

D(X p) = pX p−1 = 0.

In fact D(Xn) = 0 if and only if p divides n when Xn ∈ Fp[X ]. This looks
strange but can be very useful.

4.4 Cyclotomic polynomials

A complex number ξ is called an nth root of unity for a positive integer n if
ξ n = 1. Writing ξ in polar coordinates as reiθ = r (cos θ + i sin θ ), it follows
that r = 1 and θ = k2π i/n for k = 0, . . . , n − 1 if ξ is an nth root of unity.
Of course, n may not be the smallest positive integer with the property ξ n = 1
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4.4 Cyclotomic polynomials 155

(if ξ = i then, ξ 8 = 1 but already ξ 4 = 1). A complex number ζ is called a
primitive nth root of unity if ζ n = 1 and

ζ, ζ 2, . . . , ζ n−1 �= 1,

where n ≥ 1. The eighth roots of unity are plotted below as dots on the unit
circle in the complex plane. The bigger dots represent the primitive eighth roots
of unity.

�

�

�

�

��

� �

Lemma 4.4.1 A complex number ζ is a primitive nth root of unity if and only
if

ζ = ek2π i/n,

where 1 ≤ k ≤ n and gcd(k, n) = 1. If ζ is a primitive nth root of unity and
ζ m = 1 then n | m.

Proof. The nth roots of unity are ek2π i/n , where k = 1, . . . , n. Let ξ = ek2π i/n

be an nth root of unity. If ξm = 1 then mk2π/n is an integer multiple of 2π and
therefore n | mk. Assume that gcd(k, n) = 1. Then n | km implies that n | m
by Corollary 1.5.10. Thus ξ, ξ 2, . . . , ξ n−1 �= 1. Therefore ξ is a primitive nth
root of unity. However, if gcd(k, n) = g > 1 then ξ n/g = 1 and ξ cannot be a
primitive nth root of unity. If ζ is a primitive nth root of unity and ζ m = 1 then
we may write m = qn + r , where 0 ≤ r < n. This shows that ζ m = ζ r and
therefore that r = 0. �
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156 4 Polynomials

The set of all nth roots of unity is a subgroup of C∗. This subgroup is
isomorphic to the cyclic group Z/nZ. Using this and Lemma 4.4.1 you get a
different angle (see Exercise 4.14) on Proposition 2.7.4 that is more in the spirit
of Gauss.

Now we construct a polynomial in C[X ] whose roots are all the primitive
nth roots of unity. Although the reason will not yet be clear, this will lead to
some amazing algebra later.

Definition 4.4.2 Let n ∈ N with n ≥ 1. The nth cyclotomic polynomial is
defined as the polynomial


n(X ) =
∏

1≤k≤n, gcd(k,n)=1

(X − e2π ik/n)

in C[X ].

Notice that deg 
n = ϕ(n). The first four cyclotomic polynomials are


1(X ) = X − 1,


2(X ) = X + 1,


3(X ) = X2 + X + 1,


4(X ) = X2 + 1.

Cyclotomic polynomials are quite complicated. In one version of a manual
for the computer algebra system Maple ([21], p. 242, numtheory[cyclotomic]
(n, var)), it is stated that their coefficients are always ±1. It appears to be so,
when looking at the first 104 cyclotomic polynomials. But


105(X ) = 1 + X + X2 − X5 − X6 − 2 X7 − X8 − X9 + X12

+ X13 + X14 + X15 + X16 + X17 − X20 − X22 − X24 − X26

− X28 + X31 + X32 + X33 + X34 + X35 + X36 − X39 − X40

− 2 X41 − X42 − X43 + X46 + X47 + X48

where the coefficients of X7 and X41 are both −2. I. Schur (1875–1941) proved
that the coefficients of 
n are unbounded when n goes to infinity. In fact the
coefficients of 
n have attracted the attention of researchers all through the
twentieth century. The coefficients of
n are always= ±1 if n is a product of two
distinct prime numbers (notice that 105 = 3 · 5 · 7). Cyclotomic polynomials
have integer coefficients even though they are defined using roots of unity in the
complex plane. This follows from a crucial identity, which turns out to make
sense for polynomials over any ring, not just those with complex coefficients.
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4.5 Primitive roots 157

Proposition 4.4.3 Let n ≥ 1. Then

(i) Xn − 1 = ∏
d|n 
d (X );

(ii) the cyclotomic polynomials have integer coefficients,


n(X ) ∈ Z[X ].

Proof. The roots of the polynomial on the right hand side of the identity in
(i) are the primitive dth roots of unity, where d | n. They are also roots of the
polynomial on the left hand side. However, if ξ = ek2π i/n, where 1 ≤ k ≤ n is
a root of the polynomial on the left hand side, then ξ is a primitive dth root of
unity for some d ≤ n. But ξ n = 1 implies that d | n by Lemma 4.4.1, so that ξ

is also a root of the polynomial on the right hand side. Thus the polynomials on
the left and right hand sides have the same roots. Since they are both monic and
neither has multiple roots, they must be identical by Theorem 4.3.5. To prove
that 
n ∈ Z[X ], we use induction. Clearly 
1 = X − 1 ∈ Z[X ]. Let n > 1 and
f = ∏

d<n, d|n 
d . Then

Xn − 1 = 
n f.

By induction, f is a monic polynomial in Z[X ]. Division of polynomials
(Corollary 4.2.4) gives Xn − 1 = ϕ f + r , where r = 0 or r �= 0, deg(r ) <

deg( f ) and ϕ ∈ Z[X ]. The uniqueness of q and r in Corollary 4.2.5 applied
inside C[X ] to f and Xn − 1 shows that 
n = ϕ and r = 0. Thus 
n = ϕ ∈
Z[X ]. �

Now let R be a ring. The unique ring homomorphism κ : Z → R (see Lemma
3.3.3) gives a ring homomorphism κ ′ : Z[X ] → R[X ] (see Exercise 4.15). In
this way we may view the cyclotomic polynomial 
n ∈ Z[X ] as the polynomial
κ ′(
n) ∈ R[X ]. This leads to the important identity

Xn − 1 =
∏
d|n


d (X ) (4.1)

in R[X ] by applying the ring homomorphism κ ′ to the corresponding identity
in Z[X ] (which comes from Proposition 4.4.3).

4.5 Primitive roots

The definition of a primitive root makes sense not only in the complex numbers
but also in an arbitrary ring. Notice again that we take a classical idea (from
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complex numbers) and bring it to use (in fact a great deal of use) in abstract
algebra.

Definition 4.5.1 Let R be a ring and n a positive natural number. An element
α ∈ R is called a primitive nth root of unity in R if αn = 1 and

α, α2, . . . , αn−1 �= 1.

This leads to the following important lemma.

Lemma 4.5.2 Let α be an element in a domain R. If 
n(α) = 0 and α is
not a multiple root of Xn − 1 ∈ R[X ] then α is a primitive nth root of unity
in R.

Proof. The identity (4.1) in R[X ] gives f 
n = Xn − 1 for f ∈ R[X ]. There-
fore αn − 1 = f (α)
n(α) = 0 and αn = 1. If α is a primitive dth root of
unity for 1 ≤ d < n then d | n, as in the proof of Lemma 4.4.1. In this case
Xd − 1 = ∏

e|d 
e(X ), again by (4.1). Since R is a domain we must have

e(α) = 0 for some e | d . Therefore α is a root in 
n and 
e, where e | n and
e < n. This proves by (4.1) that α is a multiple root of Xn − 1, contradicting
our assumption. �

Having introduced primitive roots in rings and proved Lemma 4.5.2 we can
obtain a simple proof of the following beautiful result due to Gauss.

Theorem 4.5.3 (Gauss) Let F be a field and G ⊆ F∗ a finite subgroup of the
group of the units in F. Then G is cyclic.

Proof. Let N = |G| and consider the polynomial

X N − 1 =
∏
d|N


d ∈ F[X ].

The roots of the polynomial on the left hand side are precisely the elements
of G, since αN = 1 for every α ∈ G by Proposition 2.6.3(ii). There can be no
more than N roots by Theorem 4.3.5 and none of these is a multiple root. This
shows that 
N must have deg 
N = ϕ(N ) roots. These are primitive N th roots
of unity in F by Lemma 4.5.2 and thereby generators of G. �

Theorem 4.5.3 shows in particular that F∗
p is a cyclic group, where p is a

prime number. An integer a such that [a] generates F∗
p is called a primitive root
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modulo p. Thus a primitive root a satisfies

F∗
p = {[1], [a], [a2], . . . , [a p−2]}.

If p = 13 and a = 2 we have

F∗
13 = {[1], [2], [4], [8], [3], [6], [12], [11], [9], [5], [10], [7]}.

So 2 is a primitive root modulo 13. Finding primitive roots modulo a given prime
p is very difficult. There seems to be no other way than trying out elements in
F∗

p and seeing whether they generate F∗
p. In this sense the proof of Theorem

4.5.3 is abstract and nice. It gives the comfort of knowing of the existence of a
generator by appealing to properties of cyclotomic polynomials. But it leaves
no clue as how to find the former. The difficulty of this problem is probably
related to the difficulty of computing ϕ for large integers. Suppose that we pick
a random element a ∈ F∗

p. By Theorem 4.5.3, the probability that a will be a
primitive root is

ϕ(p − 1)

p − 1
,

since there are ϕ(p − 1) generators in a cyclic group of order p − 1 by Proposi-
tion 2.7.4(iii). This number depends heavily on the prime p. Using the Dirich-
let theorem on primes in arithmetic progressions one may show that there are
primes for which this probability is arbitrarily small ([17], Proposition II.1.3).

4.5.1 Decimal expansions and primitive roots

Here is a famous open problem called the Artin conjecture (after E. Artin (1898–
1962)). Given an integer a > 1 that is not a square, is a a primitive root for
infinitely many prime numbers p? For a = 10 this was proved by Gauss. It
amounts to showing that there are infinitely many primes p such that the period
of the decimal expansion of 1/p has length p − 1. Let us give two examples of
this. If p = 7 then

1/p = 0.142857142857 . . . .

Here the period length is 6. If p = 17 then

1/p = 0.05882352941176470588 . . . .

Here the period length is 16. In general the period length of the fraction 1/p is
of order [10] in F∗

p (see Exercise 4.23). So you can use floating point arithmetic
to determine the order of [10] in F∗

p (pocket calculators have limited display
size, but a small PC easily handles “infinite” precision floating point numbers).
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4.5.2 Primitive roots and public key cryptography

Let us briefly illustrate how the cyclic group G = F∗
p can be used to construct

a public key cryptosystem called the ElGamal cryptosystem. We know from
Chapter 1 how to find a large prime number p. Assume now that the involved
parties have agreed on sharing a common generator g for G.

The secret deciphering key for A is a number 0 < a < p − 1. The public
key for A is then ga . To send a message P ∈ G to A we first generate a random
integer k and then send

(gk, Pgak)

to A. Now A receives a pair (x, y) where x, y ∈ G. Since A knows a, A can
retrieve the original message P by computing x−a y. All these operations can be
done quite effectively using the repeated squaring algorithm and the extended
Euclidean algorithm from Chapter 1.

The security of the cryptosystem relies on the observation that it is difficult
to compute a given ga in G. This problem is known as the discrete logarithm
problem in the group G, since a can be viewed as the “discrete” logarithm
logg(ga) in the finite group G.

The above cryptosystem makes sense for any cyclic group G. One of the
most promising avenues for modern cryptosystems is taking G as a (large)
cyclic subgroup of an elliptic curve over a finite field.

4.5.3 Yet another application of cyclotomic polynomials

Using Gaussian integers we proved in Theorem 3.5.20 that there are infinitely
many prime numbers ≡ 1 (mod 4). Using cyclotomic polynomials we can gen-
eralize this result.

Theorem 4.5.4 There are infinitely many prime numbers ≡ 1 (mod n) for a
natural number n ≥ 2.

Proof. It suffices to prove that there exists a prime number ≡ 1 (mod n) for
every n ≥ 2 (why?). Let n be given. We must find a prime number p ≡ 1
(mod n). Since n ≥ 2 we get |
n(n)| > 1 from Definition 4.4.2. So we may
find a prime number p dividing 
n(n). Now 
n has a constant term = ±1
since |
n(0)| = 1 and 
n(0) ∈ Z. This implies that p � n. Therefore [n] is
not a multiple root of Xn − 1 ∈ Fp[X ] by Lemma 4.3.8. Since 
n([n]) = 0
in Fp, this implies by Lemma 4.5.2 that ord ([n]) = n in F∗

p, and therefore
that n divides |F∗

p| = p − 1 by Proposition 2.6.3(i). This proves that p ≡ 1
(mod n). �
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4.6 Ideals in polynomial rings

When is a polynomial ring a Euclidean domain, a principal ideal domain, a
unique factorization domain? What are the units? The irreducible elements
(polynomials)? How do these concepts relate to roots of polynomials?

In the case of an arbitrary ring these questions cannot be answered easily.
There is one crucial result, once again due to Gauss: if R is a unique factor-
ization domain then R[X ] is a unique factorization domain. We will not prove
this. Our point of departure will be the case where R is a field, which will be
denoted F .

Proposition 4.6.1 The polynomial ring F[X ] is a Euclidean domain, a prin-
cipal ideal domain and a unique factorization domain.

Proof. We will prove that the degree function deg : F[X ] \ {0} → N is a Eu-
clidean function on F[X ] (see subsection 3.5.4). Let d ∈ F[X ] \ {0}. Then
there exists q, r ∈ F[X ] such that

f = qd + r,

where either r = 0 or deg(r ) < deg(d). This is the content of Corollary 4.2.5,
and it follows that deg is a Euclidean function on F[X ]. Thus F[X ] is a
Euclidean domain. This implies by Proposition 3.5.9 that F[X ] is a princi-
pal ideal domain. We obtain that F[X ] is a unique factorization domain by
Theorem 3.5.7. �

Having proved that the degree function on F[X ] is a Euclidean function
F[X ] \ {0} → N, we may now use the Euclidean algorithm (as in subsection
3.5.4). This is illustrated in the following example.

Example 4.6.2 Let us use the Euclidean algorithm to find a greatest common
divisor of X5 + X + 1 and X4 + X3 + X + 1 in F2[X ]. Using the division
algorithm for polynomials we get

X5 + X + 1 = (X + 1)(X4 + X3 + X + 1) + X3 + X2 + X

and

X4 + X3 + X + 1 = X (X3 + X2 + X ) + X2 + X + 1

X3 + X2 + X = X (X2 + X + 1).

This shows that X2 + X + 1 is a greatest common divisor of X5 + X + 1 and
X4 + X3 + X + 1 in F2[X ].
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Now we move on to state some useful facts about the unique factorization
domain F[X ]. Notice that the concepts of units, irreducible elements etc. from
Chapter 3 make perfectly sense for F[X ]. Irreducible elements in F[X ] are
called irreducible polynomials. Before embarking upon the next result, let us
notice how the degree function comes into play. If f ∈ F[X ] and f = f1 f2

then

deg( f ) = deg( f1) + deg( f2).

If f = f1 f2 is an honest factorization of f , i.e. if neither f1 nor f2 is a constant
then 0 < deg( f1), deg( f2) < deg( f ). Polynomials that are units are non-zero
constants (degree zero). So if f is not irreducible there is a factorization f =
f1 f2 such that

0 < deg( f1), deg( f2) < deg( f ).

This gives us a nice way of deducing that some polynomials are irreducible
even if they do not have any roots.

Proposition 4.6.3 Let f ∈ F[X ]. Then we have the following.

(i) The ideal 〈 f 〉 is a maximal ideal if and only if f is irreducible. In this case
the quotient ring

F[X ]/〈 f 〉
is a field.

(ii) If f �= 0 then f is a unit if and only if deg( f ) = 0.
(iii) If deg( f ) = 1 then f is irreducible.
(iv) If f is irreducible and deg( f ) > 1 then f does not have any roots.
(v) If deg( f ) = 2 or deg( f ) = 3 then f is irreducible if and only if it has no

roots.

Proof. (i) This is a consequence of Proposition 3.5.6 and the fact that F[X ] is
a principal ideal domain. If 〈 f 〉 is a maximal ideal then F[X ]/〈 f 〉 is a field by
Proposition 3.2.7.

(ii) Non-zero constants (polynomials of degree 0) are units, since F is a field.
This follows from Proposition 4.2.3.

(iii) If f is not an irreducible polynomial then there is a factorization f =
f1 f2 where 0 < deg( f1), deg( f2) < deg( f ). In particular, if deg( f ) = 1 then
f has to be irreducible.
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(iv) If α ∈ k is a root of f then f (α) = 0 and f = (X − α)h for some h ∈
k[X ], by Corollary 4.3.2. This gives deg( f ) = 1 + deg(h). Since deg( f ) > 1,
f cannot be irreducible if it has a root.

(v) If deg( f ) = 2 or 3 and f is reducible then there is a factorization
f = f1 f2, where either deg( f1) = 1 or deg( f2) = 1, since deg( f1) + deg( f2) =
deg( f ) = 2 or 3. This shows that f is reducible if and only if a polynomial of
degree 1 divides f . This is equivalent to f having a root. �

Example 4.6.4 Consider the polynomial

f = X3 + X + 1 ∈ F5[X ].

The following table shows that f does not have any roots:

x 0 1 2 3 4
f (x) 1 3 1 1 4 .

So we may conclude from Proposition 4.6.3(v) that f is an irreducible polyno-
mial in F5[X ]. What about the polynomial g = X4 + X2 + 1 ∈ F2[X ]? Clearly
g does not have any roots. Can we conclude from Proposition 4.6.3 that g is
irreducible?

Remark 4.6.5 Cyclotomic polynomials are irreducible as polynomials in
Q[X ]. This is classical result due to Gauss. The proof consists of a num-
ber of clever steps (see Exercise 4.45 (HOF)). What about cyclotomic poly-
nomials when viewed as polynomials in Fp[X ]? The cyclotomic polyno-
mial 
8 = X4 + 1 is an example of a polynomial that is reducible in Fp[X ]
for all prime numbers p (see Exercise 4.13). In fact one can prove that

n is irreducible in Fp[X ] if and only if [p] generates the group (Z/nZ)∗

(see Exercise 4.43).

A central example is the polynomial X2 + 1 ∈ R[X ]. This polynomial does
not have any roots in R (since no real number squared equals −1). So by
Proposition 4.6.3(v) it follows that X2 + 1 is an irreducible polynomial in R[X ].
Also, it follows from Proposition 4.6.3(i) that

R[X ]/〈X2 + 1〉
is a field. In fact it is a very well known field. The next section will reveal the
details.
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4.6.1 Polynomial rings modulo ideals

The following situation is extremely common: there is a field F and a polyno-
mial f ∈ F[X ] with no roots in F along with an extension field E ⊃ F such that
there exists α ∈ E with f (α) = 0 (think of F = R, f = X2 + 1 and E = C).
For later use it is important to notice that f (α) makes sense even though α ∈ E
and f ∈ F[X ]. The simple reason is that F[X ] ⊆ E[X ] as a subring. The pur-
pose of this subsection is to describe an algebraic tool for obtaining an extension
field E and a root α ∈ E given F and f ∈ F[X ]. The idea is very clear but
hidden in a few technicalities. Let us begin with a detailed example.

Example 4.6.6 We know that

F = R[X ]/〈X2 + 1〉

is a field, since X2 + 1 is an irreducible polynomial in R[X ]. How do we
describe this field? At this point it is just an abstract quotient ring consisting
of cosets of the ideal 〈X2 + 1〉. If we make a few identifications then things
become much clearer. By definition

F = {[ f ] | f ∈ R[X ]},

where [ f ] is the coset f + 〈X2 + 1〉. Dividing f by X2 + 1 we get

f = q(X2 + 1) + aX + b,

where a, b ∈ R. This is a consequence of Proposition 4.2.4 and a substantial
simplification of [ f ], since

[ f ] = [q(X2 + 1) + aX + b] = [aX + b]

because q(X2 + 1) ∈ 〈X2 + 1〉. So we may write

F = {[aX + b] | a, b ∈ R}.

An added bonus is that the elements in F are uniquely given as [aX + b],
where a, b ∈ R. Suppose that [aX + b] = [cX + d], where c, d ∈ R. Then
(aX + b) − (cX + d) = (a − c)X + (b − d) ∈ 〈X2 + 1〉. Thus

(a − c)X + (b − d) = q(X2 + 1)

for some q ∈ R[X ]. Here Proposition 4.2.2 gives that a = c and b = d.
The next step is to realize that R is a subring of F . This is easy: instead of

writing [r ] we simply write r when r ∈ R is a constant polynomial. This is
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allowed, since [r1] = [r2] if and only r1 = r2, when r1, r2 ∈ R. So

F = {a + b[X ] | a, b ∈ R}.
We now have a satisfactory description of the elements in F . Addition and
multiplication in F are given using addition and multiplication in a quotient ring:
thus [g1] + [g2] = [g1 + g2] and [g1][g2] = [g1g2]. In our notation addition is
given by

(a + b[X ]) + (c + d[X ]) = (a + c) + (b + d)[X ].

To do multiplication we obtain initially

(a + b[X ])(c + d[X ]) = ac + (ad + bc)[X ] + bd[X2].

But [X2] does not fit our description of elements in F as given by x + y[X ]
with x, y ∈ R. Fortunately this is easy to repair since [X2] = [−1] = −1 ∈ F .
With this in mind we get

(a + b[X ])(c + d[X ]) = (ac − bd) + (ad + bc)[X ].

Through this algebraic process we have shown that F is the field C of complex
numbers. The role of i = √−1 is played by [X ] ∈ F as [X ]2 = [X2] = −1.

We now return to the general case of coefficients in a ring R. We know that R
is a natural subring (consisting of the constant polynomials) of R[X ]. Let I be
an ideal in R[X ] with R ∩ I = 〈0〉 (0 is the only constant polynomial in I ). If
r1, r2 ∈ R and [r1] = [r2] in R[X ]/I then r1 − r2 ∈ R ∩ I . Therefore r1 = r2.
So if R ∩ I = 〈0〉 then we may use the notation r to denote the element [r ] in
R[X ]/I (where r ∈ R). The details of Example 4.6.6 cover all the steps in the
proof of the following proposition.

Proposition 4.6.7 Let R be a ring and

f = Xn + an−1 Xn−1 + · · · + a1 X + a0 ∈ R[X ]

a monic polynomial of positive degree n. Then R ∩ 〈 f 〉 = 〈0〉. The elements
[g] = g + 〈 f 〉 in the quotient ring R[X ]/〈 f 〉 can be expressed uniquely as
polynomials of degree < n

b0 + b1α + · · · + bn−1α
n−1,

where b0, . . . , bn−1 ∈ R and α = [X ]. In R[X ]/〈 f 〉 we have the identity

αn = −an−1α
n−1 − · · · − a1α − a0.
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Proof. Suppose that r ∈ R ∩ 〈 f 〉. Then there exists q ∈ R[X ] such that r =
q f . If q �= 0 then deg(q) + deg( f ) = deg(q) + n > 0 by Proposition 4.2.2.
This contradicts that r is a constant. So q = 0 and R ∩ 〈 f 〉 = 〈0〉.

Suppose that [g] ∈ R[X ]/〈 f 〉. Write g = q f + r , where r = 0 or r �= 0
and deg(r ) < n = deg( f ) after dividing by f . So [g] = [q f + r ] = [q f ] +
[r ] = [r ]. Suppose that r1, r2 ∈ R[X ] \ {0}, that deg(r1), deg(r2) < n and that
[r1] = [r2]. Then there exists q ∈ R[X ] such that r1 − r2 = q f . By the same
reasoning (using Proposition 4.2.2) as above we see that r1 = r2. So every
non-zero element in the quotient ring can described uniquely as [g], where
deg(g) < n and g ∈ R[X ] \ {0}. Writing this out we obtain

[g] = [b0 + b1 X + · · · + bn−1 Xn−1] = b0 + b1α + · · · + bn−1α
n−1,

where α = [X ] and b0, . . . , bn−1 ∈ R. Since

[ f ] = [Xn + an−1 Xn−1 + · · · + a1 X + a0]

= [Xn] + an−1[Xn−1] + · · · + a1[X ] + a0

= αn + an−1α
n−1 + · · · + a1α + a0 = 0,

we get the desired identity for αn in R[X ]/〈 f 〉. �

Notice that R is a natural subring of R[X ]/〈 f 〉 above. The natural ring
homomorphism ϕ : R → R[X ]/〈 f 〉 given by ϕ(r ) = [r ] is injective.

Remark 4.6.8 If F is a field and f ∈ F[X ] an irreducible polynomial then
〈 f 〉 is a maximal ideal and F[X ]/〈 f 〉 becomes a field extension E of F . Now
α = [X ] ∈ E , and this actually is a root of f ∈ F[X ] ⊆ E[X ] since f (α) = 0
by the identity for αn in Proposition 4.6.7. This is the algebraic way of using
an irreducible polynomial to construct a bigger field where it has a root.

Let us illustrate how the identity for αn in Proposition 4.6.7 completely
determines multiplication in the quotient ring.

Example 4.6.9 Let f = X2 + X + 1 ∈ F2[X ]. Then f is an irreducible poly-
nomial since it has no roots (Proposition 4.6.3). This means that 〈 f 〉 is a maximal
ideal and that the quotient ring F = F2[X ]/〈 f 〉 is a field. Now, by Proposition
4.6.7, F = {a0 + a1α | a0, a1 ∈ F2}, where α = [X ] and the rule α2 = −1 − α

determines the multiplication. Multiplying a + bα by c + dα we get

ac + (ad + bc)α + bdα2 = ac + (ad + bc)α + bd(−1 − α)

= (ac − bd) + (ad + bc − bd)α.

Notice that F is an extension field of F2 with four elements.
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Having proved Proposition 4.6.7 we have the tools for proving one of the
true highlights of number theory.

4.7 Theorema Aureum: the law
of quadratic reciprocity

We now show how a specific quotient of a polynomial ring gives a beautiful
proof of the law of quadratic reciprocity (see Section 1.11). Gauss called the
law of quadratic reciprocity Theorema Aureum, the golden theorem. He gave
six proofs (see [14], Chapter 5) of this theorem during his lifetime. In 1921 there
were 56 known proofs of quadratic reciprocity. Today there could be well over
a hundred. Let us recall the statement of quadratic reciprocity. We are given two
odd prime numbers p and q . Then the Legendre symbols (Definition 1.11.1) of
p and q are related through the breathtaking identity(

p

q

) (
q

p

)
= (−1)(p−1)(q−1)/4.

We will work in the ring

R = Fp[X ]/〈1 + X + · · · + Xq−1〉.
Recall from Proposition 4.6.7 that an element in R can be written uniquely in
terms of ζ = [X ] as

a0 + a1ζ + · · · + aq−2ζ
q−2,

where a0, . . . , aq−2 ∈ Fp.

Lemma 4.7.1 The element ζ is a primitive qth root of unity in R. Let ξ = ζ l

where q � l. Then

1 + ξ + · · · + ξ q−1 = 0

in R.

Proof. It follows from Proposition 4.6.7 that ζ, . . . , ζ q−2 �= 1 and

ζ q−1 = −1 − ζ − · · · − ζ q−2 �= 1.

A small computation now shows that ζ q = ζ ζ q−1 = 1. This proves that
ζ is a primitive qth root of unity. If q � l then gcd(q, l) = 1. Therefore
{1, ζ, . . . , ζ q−1} = {1, ξ, . . . , ξ q−1}. It follows that

�1 + ξ + · · · + ξ q−1 = 1 + ζ + · · · + ζ q−1 = 0.
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Now consider the so-called Gauss sum

G =
q−1∑
j=0

(
j

q

)
ζ j

in R. The individual terms satisfy(
j

q

)
ζ j =

(
j + qm

q

)
ζ j+qm

for every m ∈ Z. This is used heavily in the proof of the following important
lemma.

Lemma 4.7.2 The Gauss sum G ∈ R satisfies the following.

(i) G2 = (−1)(q−1)/2q.

(ii) G is an invertible element in the ring R if p �= q.

Proof. The invertibility of G follows from (i) as q ∈ Fp ⊂ R is invertible in
R since it is invertible in Fp if p �= q . The proof of (i) is fairly straightforward,
but it contains some clever rewritings:

G2 =
(

q−1∑
j=0

(
j

q

)
ζ j

) (
q−1∑
j=0

(
j

q

)
ζ j

)

=
(

q−1∑
i=1

(
i

q

)
ζ i

) (
q−1∑
j=1

(− j

q

)
ζ− j

)
,

since (− j

q

)
ζ− j =

(
q − j

q

)
ζ q− j .

We continue by rewriting the last sum in the expression for G2:

q−1∑
i, j=1

(
i

q

) (− j

q

)
ζ i− j =

(−1

q

) q−1∑
i, j=1

(
i j

q

)
ζ i− j

= (−1)(q−1)/2
q−1∑

i, j=1

(
i2 j

q

)
ζ i(1− j).

Here we have used the formula(−1

q

)
= (−1)(q−1)/2
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from Proposition 1.11.6. We have also replaced j with i j in the terms of the
sum. We may do this because if j runs through 1, . . . , q − 1 then the remain-
ders of i j modulo q run through 1, . . . , q − 1 (though not in the same order).
Since (

i2

q

)
= 1,

we end up with the expression

(−1)(q−1)/2
q−1∑
j=1

(
j

q

) q−1∑
i=1

ζ i(1− j),

which is equal to

(−1)(q−1)/2
q−1∑
j=1

(
j

q

) q−1∑
i=0

ζ i(1− j)

since

q−1∑
j=1

(
j

q

)
= 0

by Proposition 1.11.3. By Lemma 4.7.1 it follows that

q−1∑
i=0

ζ i(1− j)

is non-zero precisely if j = 1. In this case it is equal to q, proving the formula
for G2. �

Raising G to the pth power in R we get the formula

G p = (G2)(p−1)/2G = (−1)(p−1)(q−1)/4q (p−1)/2G

= (−1)(p−1)(q−1)/4

(
q

p

)
G

(4.2)

by Lemma 4.7.2 and Theorem 1.11.4. Computing the left hand side from the
definition and using Freshman’s Dream (Theorem 3.3.9) in the ring R we get

G p =
q−1∑
j=0

(
j

q

)
ζ pj =

q−1∑
j=0

(
p

q

) (
pj

q

)
ζ pj

=
(

p

q

)
G.
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Comparing this expression with (4.2) and using that G is invertible in R (Lemma
4.7.2), we obtain the law of quadratic reciprocity,

(
p

q

)
= (−1)(p−1)(q−1)/4

(
q

p

)
.

4.8 Finite fields

Finite fields are among the most beautiful objects in algebra. We already know
the finite fields Fp, where p is a prime number. But Example 4.6.9 indicated that
this is not the whole story (there we constructed a field with 4 = 22 elements).
In this section we prove that there exists a unique (up to ring isomorphism) finite
field with pn elements, where p is a prime number and n a natural number. We
start out with a lemma showing that a finite field looks exactly like the extension
field we encountered in Example 4.6.9.

Lemma 4.8.1 Let F be a finite field. Then |F | = pn, where p is a prime
number, n ≥ 1 and there exists an irreducible polynomial f ∈ Fp[X ] of degree
n such that

F ∼= Fp[X ]/〈 f 〉.

Proof. Consider the unique ring homomorphism κ : Z → F . Since F is finite,
κ is not injective. This implies that the characteristic of F is a prime number p,
by Proposition 3.3.7. We may view Fp as a subring of F by Lemma 3.3.5. As
F is finite we obtain from Theorem 4.5.3 that F∗ is a cyclic group. Let γ ∈ F∗

be a generator for F∗. Thus every element in F is either 0 or a power γ n of
γ . Since ϕγ (Xn) = γ n , the ring homomorphism ϕγ : F[X ] → F is surjective.
More than this is true, though. In fact by restricting ϕγ to Fp[X ] ⊆ F[X ] we
get a surjective (Xn ∈ Fp[X ]) ring homomorphism

ϕ : Fp[X ] → F.

The kernel Ker ϕ of ϕ is a principal ideal 〈 f 〉 ⊆ Fp[X ] by Proposition 4.6.1.
By Proposition 3.3.2 we get

Fp[X ]/〈 f 〉 ∼= F,

so that 〈 f 〉 is a maximal ideal by Proposition 3.2.7. This implies that f is an
irreducible polynomial by Proposition 4.6.3(i). By Proposition 4.6.7, |F | = pn ,
where n = deg( f ). This proves the lemma. �
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The main result is the existence and uniqueness up to isomorphism
of the finite fields alluded to in Lemma 4.8.1. Below we state the theo-
rem. The main ingredients in the proof will occupy subsections 4.8.1 and
4.8.2.

Theorem 4.8.2 There exists a unique finite field with pn elements, where p is
a prime number and n ≥ 1. More precisely, we have the following.

(i) There exists an irreducible polynomial in Fp[X ] of degree n.
(ii) Suppose that F and F ′ are finite fields with pn elements. Then there exists

a ring isomorphism F
∼→ F ′.

Proof. Suppose that f is an irreducible polynomial in Fp[X ] of degree n. Then
〈 f 〉 is a maximal ideal by Proposition 4.6.3(i). Therefore Fp[X ]/〈 f 〉 is a field. It
has pn elements by Proposition 4.6.7. The proof of (i) is a surprising application
of cyclotomic polynomials and will be described in subsection 4.8.1. The proof
of (ii) is described in subsection 4.8.2. �

Before entering the finer details of the proof of Theorem 4.8.2 we need a
crucial lemma involving only natural numbers.

Lemma 4.8.3 Let τ, d and n be natural numbers, where τ > 1. Then τ d − 1
divides τ n − 1 if and only if d divides n.

Proof. We may assume that d ≥ 1. By Theorem 1.2.1 we write n = qd + r ,
where 0 ≤ r < d. Then

τ n − 1

τ d − 1
= (τ d )qτ r − 1

τ d − 1

= τ r (τ d )q − 1

τ d − 1
+ τ r − 1

τ d − 1

= τ r (1 + τ d + · · · + (τ d )q−1) + τ r − 1

τ d − 1
.

As 0 ≤ τ r − 1 < τ d − 1 this proves the claim. �

Remark 4.8.4 Theorem 4.8.2 says that there exists a unique field F with pn

elements up to isomorphism. We denote F by Fpn . Informally one may say that
there is only one way to multiply in a finite field with pn elements.
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4.8.1 Existence of finite fields

We know that there are infinitely many irreducible polynomials in Fp[X ] (see
Exercise 4.7), but this does not guarantee that we may find one of each degree.
This is where cyclotomic polynomials enter. If we view them as polynomials
in Fp[X ] they have very interesting properties.

Theorem 4.8.5 There exists an irreducible polynomial in Fp[X ] of degree
n ≥ 1. More precisely, if f is an irreducible polynomial dividing �pn−1 in
Fp[X ] then deg( f ) = n.

Proof. Let d = deg( f ). Then L = Fp[X ]/〈 f 〉 is a field with pd elements
and α = [X ] is a root of f ∈ Fp[X ] ⊆ L[X ] by Remark 4.6.8. Since g f =
�pn−1 for g ∈ Fp[X ] we get �pn−1(α) = g(α) f (α) = 0. The derivative of
X pn−1 − 1 is

D(X pn−1 − 1) = (pn − 1)X pn−2 = −X pn−2.

This shows by Lemma 4.3.8 that α is not a multiple root of X pn−1 − 1 and
therefore that α is a primitive (pn − 1)th root of unity in L by Lemma 4.5.2.
Now, α pd−1 = 1 shows that pn − 1 | pd − 1 by Proposition 2.6.3.

Let R = {ξ ∈ L | ξ pn = ξ}. This is a subring of L by Theorem 3.3.9.
Since α pn−1 = 1 we must have α ∈ R. But since L = {a0 + a1α + · · · +
ad−1α

d−1 | ai ∈ Fp} by Proposition 4.6.7 it follows that R = L (R contains
1, α, α2, . . . and is a subring). By Theorem 4.5.3 there exists a primitive
(pd − 1)th root of unity ζ in L . Since ζ ∈ R we obtain ζ pn−1 = 1. Proposition
2.6.3(iii) gives pd − 1 | pn − 1. Therefore pd − 1 = pn − 1. This shows that
d = n. �

Remark 4.8.6 Theorem 4.8.5 says that if

�pn−1 = f1 · · · fr

is an irreducible factorization of �pn−1 in Fp[X ] then deg( fi ) = n. In particu-
lar, n | ϕ(pn − 1).

4.8.2 Uniqueness of finite fields

Suppose that F and F ′ are finite fields with pn elements. Then F ∼= Fp[X ]/〈 f 〉
for a suitable irreducible polynomial f ∈ Fp[X ] of degree n, by Lemma 4.8.1.
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Furthermore f (α) = 0, where α = [X ] ∈ F by Remark 4.6.8. Notice that
I = {g ∈ Fp[X ] | g(α) = 0} � Fp[X ] is an ideal in Fp[X ]. Now f ∈ I and
therefore 〈 f 〉 ⊆ I . But since 〈 f 〉 is a maximal ideal we must have I = 〈 f 〉. Be-
cause F∗ is a finite group with pn − 1 elements, we obtain ξ pn−1 = 1 for every
ξ ∈ F∗ by Propositon 2.6.3(ii). This implies that X pn − X ∈ I and therefore
that f | X pn − X in Fp[X ]. In F ′[X ] we have the factorization

X pn − X =
∏
α∈F ′

(X − α),

since every β ∈ F ′ satisfies β pn = β by Proposition 2.6.3(ii). Therefore
f ∈ Fp[X ] ⊆ F ′[X ] must have a root α′ in F ′ since it divides X pn − X . Now
look at

ϕα′ : Fp[X ] → F ′.

Obviously 〈 f 〉 ⊆ Ker ϕα′ , but since Ker (ϕα′ ) is a proper ideal and 〈 f 〉 is a
maximal ideal, we must have 〈 f 〉 = Ker (ϕα′ ). Therefore we get an injective
ring homomorphism

Fp[X ]/〈 f 〉 → F ′.

But since F ′ has pn elements, this must be a bijection and thereby an isomor-
phism (of rings). We have proved that two finite fields F and F ′ with the same
number of elements are isomorphic.

4.8.3 A beautiful identity

We already know that

X pn − X = X (X pn−1 − 1) = X
∏

d|pn−1


d

in Fp[X ]. By Theorem 4.8.5, X pn − X is divisible by an irreducible polynomial
of degree n. This is not the entire story. We will compute the complete irreducible
factorization of X pn − X in Fp[X ]. Let us compute this factorization in some
special cases.

Example 4.8.7 In F2[X ] we have

X22 − X = X4 − X = X (X + 1)(X2 + X + 1).
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In F3[X ] we have

X32 − X = X9 − X = X (X + 1)(X + 2)(X2 + 1)(X2 + X + 2)(X2 + 2X + 2).

The general result is the following surprising theorem.

Theorem 4.8.8 The polynomial X pn − X ∈ Fp[X ] is the product

X pn − X = f1 · · · fr

of the monic irreducible polynomials f1, . . . , fr in Fp[X ] of degree d, where
1 ≤ d ≤ n and d | n.

Proof. Let f ∈ Fp[X ] be a monic irreducible polynomial of degree d. Then
L = Fp[X ]/〈 f 〉 is a field (by Proposition 4.6.3(i)) with pd elements (by Propo-
sition 4.6.7). Let α = [X ] in L . Then α pd = α by Proposition 2.6.3(ii). If
d | n then α pn = α. This is seen by raising both sides of α pd = α to the
pd th power q − 1 times, where n = qd. The identity α pn = α in L means
that X pn − X ∈ 〈 f 〉 or that f | X pn − X .

Now assume that f divides X pn − X . We wish to prove that d | n. Consider
the subset

R = {ζ ∈ L | ζ pn = ζ }.
Then R is a subring of L by Theorem 3.3.9. It contains α, as f divides X pn − X .
But since L = {a0 + a1α + · · · + ad−1α

d−1 | ai ∈ Fp}, by Proposition 4.6.7, it
follows that R = L (R contains 1, α, α2, . . . and is a subring). Let γ be a
generator for the cyclic group L∗. The order of γ in the group L∗ is pd − 1,
and γ pn−1 = 1 since γ ∈ R. This implies by Proposition 2.6.3(iii) that pd − 1 |
pn − 1. Finally, we obtain d | n by Lemma 4.8.3.

Let f1, . . . , fr denote the monic irreducible polynomials of degree d | n. We
have proved that

X pn − X = f n1
1 · · · f nr

r ,

where n1, . . . , nr ≥ 1. One thing is still missing in the proof of our identity.
We need to make sure that the multiplicities n1, . . . , nr are all 1. This can be
done by proving that X pn − X is not divisible by the square of an irreducible
polynomial. This follows from Lemma 4.3.8(i), since D(X pn − X ) = pn X pn−1

− 1 = −1. �
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We have the following consequence of Theorem 4.8.8.

Corollary 4.8.9 Let Nd denote the number of monic irreducible polynomials
of degree d in Fp[X ]. Then

pn =
∑
d|n

d Nd .

Proof. This follows by applying the degree function deg to both sides of the
formula in Theorem 4.8.8. �

There are p irreducible monic polynomials of degree 1 in Fp[X ]. These can
be listed as

X, X − 1, X − 2, . . . , X − (p − 1),

showing that N1 = p. If q is a prime number then Corollary 4.8.9 implies that

pq = q Nq + N1 = q Nq + p;

thus

Nq = pq − p

q
.

It follows from Theorem 4.8.8 that in general

Nn = pn − ∑
d<n, d|n d Nd

n
.

An explicit formula for Nn is given by

Nn = 1

n

∑
d|n

μ
(n

d

)
pd ,

where μ is the Möbius function (given by μ(1) = 1, μ(n) = 0, if n is divisi-
ble by a square > 1, and μ(p1 · · · pl) = (−1)l , where p1, . . . , pl are distinct
primes). Another important consequence of Theorem 4.8.8 is a clever factoring
algorithm for polynomials.
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Suppose that g ∈ Fp[X ] is a monic polynomial, deg(g) = d and

g = g1 · · · gd ,

where gi denotes the product of the (monic) irreducible polynomials of degree
i dividing g. Then it follows from Theorem 4.8.8 that

gcd(g, X pi − X)

is the product of g j for j | i . A straightforward algorithm for finding g1, . . . , gd

is to insert i = 1, 2, . . . in gcd(g, X pi − X) and use the Euclidean algorithm
to compute the greatest common divisor; it is not clear when this algorithm was
first discovered. The remaining problem is how to factor out the irreducible
polynomials of the same degree i from gi . A nice solution to this problem was
found by Cantor and Zassenhaus in 1979 (see [16], subsection 4.6.2, or [6],
subsection 8.4.4). You should prove Lemma 4.8.10 and gain some computa-
tional experience by doing Exercise 4.41.

We will move on to describe a general factoring algorithm for polynomials
over Fp and an easy criterion detecting when a given polynomial is irreducible,
using only linear algebra. For an introduction to linear algebra over arbitrary
fields please consult Appendix B.

4.9 Berlekamp’s algorithm

Let f be a polynomial in Fp[X ]. We have a few ways, but they are very limited,
of deciding whether f is irreducible. If deg( f ) = 2, 3 then Proposition 4.6.3
shows that f is irreducible if and only if f does not have a root. In degree 4 and
above there seems to be no way other than brute force for deciding whether f
is irreducible. Therefore it is quite surprising to find that there is an easy way
of deciding this merely by looking at the matrices of two linear maps.

Since the quotient ring R = Fp[X ]/〈 f 〉 has characteristic p, the Frobenius
map F(v) = v p is a ring homomorphism

F : R → R.

This is just Theorem 3.3.9. But here R is not only a ring, it is also a vector
space over Fp. Since λp = λ for λ ∈ Fp, F : R → R is in fact a linear map of
Fp vector spaces. A simple example will illustrate how linear algebra comes
into play.
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Example 4.9.1 Let f = X5 + X + 1 ∈ F2[X ]. Then R = F2[X ]/〈 f 〉 is a
vector space over F2 with basis 1, α, α2, α3, α4, where α = [X ]. The
element α5 ∈ R is expressed in this basis as α + 1 by Proposition
4.6.7. The Frobenius map F(v) = v2 is an F2-linear map R → R. We
can compute its 5 × 5 matrix with respect to the basis 1, α, α2, α3, α4.
Since F(1) = 1, F(α) = α2, F(α2) = α4, F(α3) = α6 = αα5 = α(α + 1) =
α2 + α and F(α4) = α8 = α3α5 = α3(α + 1) = α4 + α3, the matrix of
F is 



1 0 0 0 0
0 0 0 1 0
0 1 0 1 0
0 0 0 0 1
0 0 1 0 1




.

If Ker (F) �= 0 we can find a non-constant polynomial g ∈ Fp[X ] such that
deg(g) < deg( f ) and [g]p = [0]. This means that f | g p. If π is an irreducible
polynomial dividing f then π divides g. Thus we obtain that gcd( f, g) is a
non-trivial divisor in f (0 < deg(gcd( f, g)) < deg( f )).

If g ∈ Fp[X ] is a polynomial such that 0 < deg(g) < deg( f ) and [g] ∈
Ker (F − I ), where I is the identity map, then [g]p = [g] in R. We have the
crucial factorization

g p − g = g(g − 1) · · · (g − p + 1),

since

X p − X = X (X − 1) · · · (X − p + 1)

in Fp[X ]. Let π be an irreducible polynomial dividing f . Since f | g p − g
we obtain that π divides one of g, g − 1, . . . , g − p + 1. Thus one of
gcd( f, g), gcd( f, g − 1), . . . , gcd( f, g − p + 1) is a non-trivial factor of f ,
since deg(g) < deg( f ).

Example 4.9.2 The matrix for F − I , where F is given in Example 4.9.1, is



0 0 0 0 0
0 1 0 1 0
0 1 1 1 0
0 0 0 1 1
0 0 1 0 0




.
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We see that 


0 0 0 0 0
0 1 0 1 0
0 1 1 1 0
0 0 0 1 1
0 0 1 0 0







1
1
0
1
1




=




0
0
0
0
0




.

This implies that the polynomial g = 1 + X + X3 + X4 satisfies f | g p − g.
By the Euclidean algorithm one obtains (see Example 4.6.2)

gcd(X5 + X + 1, X4 + X3 + X + 1) = X2 + X + 1.

This is a non-trivial factor in X5 + X + 1.

The big surprise is that one needs only to look at the Fp linear maps F and
F − I in order to decide whether f is irreducible. The proof of the following
theorem is due to B. Iversen.

Theorem 4.9.3 Let f ∈ Fp[X ] be a non-constant polynomial and let F denote
the Frobenius map

F : R → R,

where R = Fp[X ]/〈 f 〉. Then f is irreducible if and only if Ker (F) = 0 and
Ker (F − I ) = Fp, where I is the identity map R → R.

Proof. We have seen that Ker (F) = 0 and Ker (F − I ) = Fp if f is irreducible
(if not, we saw how to find a non-trivial factor in f ). Assume now that Ker (F) =
0 and Ker (F − I ) = Fp and let a be a non-zero element of R. We wish to prove
that 1 ∈ Im(ϕ), where ϕ is the linear map ϕ(x) = ax . This will imply that a is
invertible and therefore that R is a field (so that f has to be irreducible). Sup-
pose that x ∈ Ker (ϕ) ∩ Im(ϕ). Then x = ay for a suitable y ∈ R and ax = 0.
This implies that F(x) = a p y p = a p−2 y p−1ax = 0. Therefore x ∈ Ker (F), so
that x = 0 and Ker (ϕ) ∩ Im(ϕ) = 0. If v1, . . . , vr is a basis of Ker (ϕ) and
w1, . . . , ws is a basis of Im(ϕ) then v1, . . . , vr , w1, . . . , ws is a basis of the
subspace Ker (ϕ) + Im(ϕ) of R. This implies that dimFp Ker (ϕ) + Im(ϕ) =
dimFp Ker (ϕ) + dimFp Im(ϕ) = dimFp R, so that

R = Ker (ϕ) + Im(ϕ).
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Notice that if x ∈ Ker (ϕ) then F(x) ∈ Ker (ϕ) (the same holds for Im(ϕ)). Now
write 1 = α + β, where α ∈ Ker (ϕ) and β ∈ Im(ϕ). Then F(1) = 1 = F(α) +
F(β). This means that F(α) = α and F(β) = β. Since Ker (F − I ) = Fp we
must have α ∈ Fp. Therefore α = 0 and β = 1 ∈ Im(ϕ). �

By Theorem 4.9.3 we know that a polynomial is irreducible if and only if the
two conditions Ker (F) = 0 and Ker (F − I ) = Fp are satisfied. If one of these
conditions fails then we have seen how to extract a non-trivial factor in f . This
procedure is called Berlekamp’s algorithm ([3]). For small prime numbers p it
is very efficient for finding non-trivial factors.

Remark 4.9.4 If f is divisible by the square π2 of an irreducible polyno-
mial π ∈ Fp[X ] then one can find a non-trivial factor of f by computing
gcd( f, D( f )). This is a consequence of Lemma 4.3.8.

4.10 Exercises

1. Let R be a commutative ring and let F = F(R, R) be the set of functions
f : R → R. Functions in F can be added and multiplied by borrowing the
operations from R:

( f + g)(x) = f (x) + g(x)

( f g)(x) = f (x)g(x).

(i) Prove that F is a commutative ring.
(ii) Let I denote the identity function I (r ) = r in F . Prove that the map

ϕ : R[X ] → F given by

ϕ(an Xn + · · · + a1 X + a0) = an I n + · · · + a1 I + a0

is a ring homomorphism.
(iii) Give an example showing that ϕ in general is not injective (hint: try

R = F2). Find Ker (ϕ) when R = Fp.
The fact that ϕ is not injective means that one cannot in general view
polynomials in R[X ] as R-valued functions on R.

2. Let f, g, h ∈ R[X ] = R[N].
(i) Prove that f g = g f .

(ii) Prove that f (g + h) = f g + f h.
(iii) Prove that f (gh) = ( f g)h by reducing to the case h = cXm , where

c ∈ R and m ∈ N.
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3. Let f, g ∈ R[X ] \ {0} with f + g �= 0. Prove that

deg( f + g) ≤ max(deg( f ), deg(g)).

4. Prove that a monic polynomial q ∈ R[X ] is not a zero divisor. Prove also
that q f = qg implies f = g, where f, g ∈ R[X ].

5. Prove that R[X ] is a domain if R is a domain.
6. Let R be the ring of functions f : N → Z/2Z. Recall that

( f + g)(n) = f (n) + g(n) and ( f g)(n) = f (n)g(n), where f, g ∈ R.
Prove that the polynomial X2 − X ∈ R[X ] has infinitely many roots.

7. Show that there are infinitely many irreducible polynomials in Fp[X ],
where p is a prime number (hint: look at the proof of Theorem 1.8.2).

8. Let R be a unique factorization domain and K the field of fractions Q(R)
of R. Suppose that α = a/s ∈ K and that a and s have no associated
prime divisors. Prove that s | an and a | a0 if α is a root in the polynomial

an Xn + · · · + a1 X + a0 ∈ K [X ],

where an, . . . , a1, a0 ∈ R. Use this to prove that a real number ζ ∈ R \ Z,
which is a root in a monic polynomial with integer coefficients, cannot be
rational.

9. We let D : R[X ] → R[X ] denote the derivative introduced in subsection
4.3.1.
(i) Prove that D( f + g) = D( f ) + D(g), where f, g ∈ R[X ].

(ii) Prove that D(λ f ) = λD( f ), where λ ∈ R and f ∈ R[X ].
10. Show that 
p(X ) = X p−1 + · · · + X + 1, where p is a prime number.
11. Show that 
pr (X ) = 
p(X pr−1

), where p is a prime number.
12. Prove that 
2n(X ) = 
n(−X ), if n is odd and > 1.
13. Let f = 
8(X ) = X4 + 1.

(i) Prove that f is reducible in Fp[X ] for p ≡ 1 (mod 4).
(ii) Suppose that p ≡ 3 (mod 8). Prove that we may find a ∈ Fp with

a2 = −2. Prove for this a that f = (X2 + aX − 1)(X2 − aX − 1) in
Fp[X ].

(iii) Suppose that p ≡ 7 (mod 8). Prove that we may find a ∈ Fp with
a2 = 2. Prove for this a that f = (X2 + aX + 1)(X2 − aX + 1) in
Fp[X ].

(iv) Conclude that f is reducible in Fp[X ] for every prime number p.
14. Let n ∈ N with n > 1.

(i) Prove that the set of nth roots of unity is a subgroup of (C∗, ·)
isomorphic to Z/nZ.
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(ii) Use Lemma 4.4.1 to prove that Z/nZ contains ϕ(n) elements of
order n.

15. Let ϕ : R → S be a ring homomorphism. Prove that ϕ′ : R[X ] → S[X ]
given by

ϕ′(a0 + a1 X + · · · + an Xn) = ϕ(a0) + ϕ(a1)X + · · · + ϕ(an)Xn

is a ring homomorphism.
16. Let R be a domain. Prove that a finite subgroup of R∗ is cyclic.
17. Find a generator of the cyclic group F∗

17.
18. Let G be a finite subgroup of C∗. Prove, without using Theorem 4.5.3,

that G is cyclic.
19. Prove that R∗ is not a cyclic group.
20. Prove that a natural number p is a prime number if and only if

a p−1 ≡ 1 (mod p),

a(p−1)/q �≡ 1 (mod p) for every prime q | p − 1

for some integer a.
21. Let p be a prime number �= 2, a ∈ N a primitive root modulo p and

G = (Z/p2Z)∗.
(i) Prove that ord G([a]) = p − 1 or p(p − 1).

(ii) Suppose that a p−1 ≡ 1 (mod p2). Prove that r p−1 = 1 + tp, where
r = a + p and p � t .

(iii) Prove that ord G([a + p]) = p(p − 1) if ord G([a]) = p − 1.
(iv) Conclude that (Z/p2Z)∗ is a cyclic group.
(v) Suppose that a p−1 = 1 + tp, where p � t . Prove that

a pm−1(p−1) = 1 + tm pm

where m > 1 and p � tm .
(vi) Prove that (Z/pmZ)∗ is a cyclic group if m ≥ 1.

22. Let a be a primitive root modulo the prime number p > 2. Show that

a(p−1)/2 ≡ −1 (mod p).

23. Let p be a prime number.
(i) Suppose that s is a non-zero natural number such that p | 10s − 1.

Prove that the period length of 1/p is ≤ s (hint: write
1/p = x/10s + 1/10s · 1/p for a natural number 0 ≤ x < 10s).

(ii) Prove that the period length of 1/p is ≤ p − 1.
(iii) Prove that the period length of 1/p is the order of [10] in F∗

p.
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24. Let p be an odd prime number and let α = [X ] ∈ R = Fp[X ]/〈X4 + 1〉.
(i) Prove that α is a primitive eighth root of unity in R.

(ii) Let y = α + α−1. Prove that y2 = 2 and that y p = α p + α−p.
(iii) Prove that y p = y if p ≡ 1, 7 (mod 8) and that y p = −y if

p ≡ 3, 5 (mod 8).
(iv) Use the facts on y ∈ R developed earlier in this exercise to prove that

( 2
p ) = 1 if p ≡ 1, 7 (mod 8) and ( 2

p ) = −1 if p ≡ 3, 5 (mod 8).

25. Compute a greatest common divisor d of f = X7 + X6 + X2 + X + 1
and g = X7 + X5 + X4 + X2 + 1 in F2[X ] along with λ, µ ∈ F2[X ]
such that λ f + µg = d .

26. Let R = F3[X ].
(i) Show that X2 + 1, X2 + X + 2 and X2 + 2X + 2 are the only monic

irreducible polynomials of degree 2 in R.
(ii) Show that if a polynomial f ∈ R of degree 4 or 5 with no roots is

reducible then there is a monic irreducible polynomial of degree 2
dividing f .

(iii) Show that X5 − X + 1 is an irreducible polynomial in R and that
L = R/〈X5 − X + 1〉 is a field with 243 elements. Let α = [X ].
Find an element γ ∈ L such that αγ = 1 in L .

27. Show that if a polynomial f ∈ C[X ] is irreducible then deg( f ) = 1.
28. Let R = F2[X ].

(i) Show that X5 + X + 1 is not an irreducible polynomial in R.
(ii) Show that X4 + X + 1 is an irreducible polynomial in R.

(iii) Show that L = R/〈X4 + X + 1〉 is a field with 16 elements.
(iv) Show that L∗ is a cyclic group and that L∗ = 〈α〉, where α = [X ].

29. Let L = F2[X ]/〈X3 + X + 1〉.
(i) Show that |L| = 8.

(ii) Write down the seven elements in L∗. Show by explicit computation
that their product is −1.

(iii) Let K be a finite field with N elements. Show that the polynomial

X N−1 − 1 ∈ K [X ]

is a product of N − 1 polynomials of degree 1 with non-zero
constant coefficient.

(iv) Let π be the product of the elements in K ∗. Show that π = −1.
30. Let R = F2[X ]/〈X3 + 1〉 and α = [X ] ∈ R.

(i) Show that (X2 + X + 1)(X + 1) is an irreducible factorization of
X3 + 1 in F2[X ].

(ii) Show that |R| = 8 and (α2 + α + 1)(α + 1) = 0.
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(iii) Show that α2 + α + 1, α + 1, α2 + α, α2 + 1 cannot be units in R.
(iv) Show that R∗ is cyclic of order 3.

31. Let R = F2[X ].
(i) Show that X2 + X + 1 is the only irreducible polynomial of degree 2

in R.
(ii) Show that X3 + X + 1 and X3 + X2 + 1 are the only irreducible

polynomials of degree 3 in R.
(iii) Find two distinct irreducible polynomials f and g of degree 6 in R.
(iv) Use the notation from (iii). Prove that the rings R/〈 f 〉 and R/〈g〉 are

isomorphic.
32. Let R = F2[X ].

(i) Show that X − 1 | X7 − 1 and compute the polynomial
f = (X7 − 1)/(X − 1). Prove that R/〈 f 〉 is a ring with 64 elements.

(ii) List the irreducible polynomials in R of degree 3 and write f as a
product of irreducible polynomials.

(iii) Prove that R/〈 f 〉 is not a field.
33. Construct a field with eight elements.
34. Give an example of an infinite field of characteristic p > 0.
35. List the monic irreducible polynomials of degree 3 in F3[X ].
36. List the monic irreducible polynomials of degree 4 in F2[X ].
37. Suppose that the ring R contains the field F as a subring. Prove that R is a

vector space over F using the multiplication in R (see Appendix B).
38. Let K be a finite field with pn elements and L ⊆ K a subfield with pm

elements
(i) Prove that m | n (see Exercise 4.37).

(ii) Suppose that r | s, where r, s ∈ N. Prove that

X pr − X | X ps − X

in Z[X ].
(iii) Prove that K contains a subfield with pm elements if m | n by

showing explicitly that

{x ∈ K | x pm = x}

is a subfield of K with pm elements.
39. Show that there are 440 monic irreducible polynomials of degree 3 in

F11[X ].
40. Show that there are 804076 monic irreducible polynomials of degree 6 in

F13[X ].
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41. Prove Lemma 4.8.10 and apply it to factor
X5 + X4 + X3 + 2X + 2 ∈ F3[X ].

42. Use Berlekamp’s algorithm to find a prime factorization of
f = X6 + X5 + X4 + X3 + X2 + X + 1 ∈ F2[X ]. Compare with
Exercise 4.32.

43. Consider the nth cyclotomic polynomial 
n in Fp[X ], where p � n. Let π

be an irreducible polynomial of degree d in Fp[X ] that divides 
n . Put
m = ord ([p]) in the group (Z/nZ)∗ and let

α = [X ] ∈ L = Fp[X ]/〈π〉.
(i) Prove that L is a field with pd elements and that α is a primitive nth

root of unity in L . Show that this implies that pd ≡ 1 (mod n).
(ii) Prove that L ′ = {ξ ∈ L | ξ pm = ξ} is a subfield of L . Prove that

α ∈ L ′ and that L ′ = L . Conclude that pd ≤ pm .
(iii) Prove that 
n is a product of distinct irreducible polynomials of

degree m in Fp[X ].
(iv) Prove that 
n is irreducible in Fp[X ] if and only if [p] generates

(Z/nZ)∗.
44. Let f, g ∈ Q[X ] \ {0}. Prove that if f is an irreducible polynomial and

f (z) = g(z) = 0 for some complex number z ∈ C then f | g in Q[X ].
45. (HOF) This exercise is a guided tour of the proof that cyclotomic

polynomials are irreducible as polynomials in Q[X ]. Needless to say, this
result goes back to Gauss. Let n ≥ 1 and f an irreducible monic
polynomial dividing 
n in Q[X ].

(i) Consider f as a polynomial in C[X ]. Prove that f (ζ ) = 0 for some
primitive nth root of unity ζ .

(ii) Prove that the fact that every primitive nth root of unity is a root in f
if f (ζ ) = 0 implies that f (ζ p) = 0, where ζ is a primitive nth root
of unity and p is a prime number not dividing n.

(iii) Let f and g be monic polynomials in Q[X ]. Prove that f, g ∈ Z[X ]
if f g ∈ Z[X ].

(iv) Prove that f | Xn − 1 in Q[X ] and write

Xn − 1 = f (X )g(X ).

Prove that f, g ∈ Z[X ].
(v) Let ζ be a primitive nth root of unity such that f (ζ ) = 0. Suppose

that p is a prime number not dividing n and f (ζ p) �= 0. Prove that ζ

is a root in g(X p) and that f (X ) | g(X p) (see Exercise 4.44).
Write g(X p) = f (X )h(X ) for h(X ) ∈ Q[X ]. Consider the
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corresponding polynomials f̄ , ḡ, h̄ ∈ Fp[X ]. Prove that
ḡ(X p) = ḡ(X )p and that an irreducible polynomial π ∈ Fp[X ]
dividing f̄ must divide ḡ.

(vi) Why is it impossible for f̄ , ḡ ∈ Fp[X ] to have a common prime
divisor when p � n?

(vii) Prove that f (ζ ) = 0 implies that f (ζ p) = 0, where ζ is a primitive
nth root of unity and p � n. Show that this implies that f equals 
n

and therefore that 
n is irreducible.
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