
3 Rings

A ring is an abelian group with a multiplication. The situation is very similar to
the integers Z. We know that (Z,+) is an abelian group, but at the same time
we have multiplication as an additional composition. Rings were introduced
by the German mathematician R. Dedekind (1831–1916), a student of Gauss,
in connection with his studies of algebraic numbers, complex numbers that are
roots of polynomials with integer coefficients. The definition of a ring appears in
Dedekind’s supplements to Dirichlet’s book Zahlentheorie in the late nineteenth
century. The theory of rings forms a wide framework useful in solving equations,
computing with congruences, solving problems in number theory and exploring
quantum mathematics. We will mostly deal with commutative rings (such as
Z), for which factors can be interchanged.

Ideals are certain subgroups of commutative rings that satisfy one crucial
property producing new (quotient) rings, just as normal subgroups give rise to
new (quotient) groups. Ideals were originally born out of failed, but very clever,
attempts to prove Fermat’s last theorem. In order to understand the definitions
and concepts of this chapter it is advisable to be extremely concrete. Each time
you encounter a new definition or a new concept check it with your examples.
The main examples in this chapter are the integers Z, finite quotient rings
Z/nZ of the integers, the Gaussian integers Z[i] = {a + bi | a, b ∈ Z} ⊆ C

and Z[
√−5] = {a + b

√−5 | a, b ∈ Z} ⊆ C.
Using rings and ideals we will prove Fermat’s famous two-square theorem:

a prime number ≡ 1 (mod 4) is the sum of two unique squares (e.g. 13 =
22 + 32). We will also show how computing the two squares given the prime
number is related to quadratic residues and the Euclidean algorithm.

The first part of this chapter is a little on the heavy side concerning new con-
cepts and definitions. Do not despair. None of them is really difficult. Make sure
you study all examples intensively and link them to the concepts. Applications
of the theory begin in subsection 3.5.5.

111
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112 3 Rings

3.1 Definition

A ring is an abelian group (R, +) with an additional composition · : R × R →
R called multiplication. Multiplication satisfies the following for every x, y, z ∈
R:

(i) (x · y) · z = x · (y · z);
(ii) there exists an element 1 ∈ R such that 1 · x = x · 1 = x ;

(iii) x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x .

We will usually leave out · in x · y and simply write xy. The neutral element in
the abelian group (R, +) is denoted 0.

Definition 3.1.1 Below we list some of the most important definitions con-
cerning a ring R.

(i) A subset S ⊆ R of a ring R is called a subring if S is a subgroup of (R, +),
1 ∈ S and xy ∈ S if x, y ∈ S.

(ii) An element x ∈ R \ {0} is called a zero divisor if there exists y ∈ R \ {0}
such that xy = 0 or yx = 0.

(iii) An element x ∈ R is called a unit if there exists y ∈ R such that xy =
yx = 1. In this case y is denoted x−1 and called the inverse of x . The set
of units in R is denoted R∗.

(iv) R is called commutative if xy = yx for every x, y ∈ R.

The multiplication in R makes R∗ into a group. If R �= {0} then 0 �∈ R∗. The
group of units in a commutative ring R is an abelian group.

Example 3.1.2 The integers Z with addition and multiplication form in some
sense the most natural commutative ring (later we will see that there is a
unique ring homomorphism from Z into any commutative ring). Notice that
Z∗ = {−1, 1}. An example of a non-commutative ring is provided by the 2 × 2
matrices

Mat2(R) =
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ R

}

with real entries. Here the addition is the usual addition of matrices
(

a b
c d

)
+

(
a′ b′

c′ d ′

)
=

(
a + a′ b + b′

c + c′ d + d ′

)
,
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3.1 Definition 113

and the multiplication is the usual multiplication of matrices,

(
a b
c d

) (
a′ b′

c′ d ′

)
=

(
aa′ + bc′ ab′ + bd ′

ca′ + dc′ cb′ + dd ′

)
.

The complex numbers C form a ring containing the integers Z as a sub-
ring. Again C is a subring of the ring of quaternions H = {a + bi + cj + dk |
a, b, c, d ∈ R}, where addition is given component-wise and multiplication can
be computed by the relations i2 = j2 = k2 = i jk = −1. Using these relations
one can deduce the composition table

· 1 i j k
1 1 i j k
i i −1 k − j
j j −k −1 i
k k j −i −1

for the multiplication. So H is a non-commutative ring with a highly intricate
multiplication. Its discoverer, William R. Hamilton (1805–65) wrote

Tomorrow will be the fifteenth birthday of the Quaternions. They started into life,
or light, full grown, on the 16th of October, 1843, as I was walking with Lady
Hamilton in Dublin, and came up to Brougham Bridge. That is to say, I then and
there felt the galvanic circuit of thought closed, and the sparks which fell from it
were the fundamental equations between I , J and K ; exactly such as I have used
them ever since. I pulled out, on the spot, a pocketbook, which still exists, and
made an entry, on which, at the very moment, I felt that it might be worth my while
to expend the labour of at least ten (or it might be fifteen) years to come. But then it
is fair to say that this was because I felt a problem to have been at that moment
solved, an intellectual want relieved, which had haunted me for at least fifteen years
before.

Even though non-commutative rings are extremely interesting, we shall limit
ourselves to commutative rings in the rest of this book. So, from this point
onwards a ring will always refer to a commutative ring.

The rational and complex numbers are both examples of rings R satisfying
R∗ = R \ {0}. A ring R with R∗ = R \ {0} is called a field. If K ⊆ L are fields
and K is a subring of L then K is called a subfield of L and L is called an
extension field of K . A domain is a ring R �= {0} with no zero divisors. Let us
record the first basic properties about domains and fields.

Proposition 3.1.3 Let R be a domain and a, x, y ∈ R. If a �= 0 and ax = ay
then x = y.
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114 3 Rings

Proof. If ax = ay then a(x − y) = 0. Since a �= 0, this means that x − y = 0;
thus x = y. �

Proposition 3.1.4 Let F be a field. Then F is a domain.

Proof. Suppose that x, y ∈ F , x �= 0 and xy = 0. We must prove that y = 0.
Since x �= 0, there exists x−1 ∈ F such that x−1x = 1. This means that 0 =
x−10 = x−1(xy) = (x−1x)y = y. �

The set of integers Z is a subring of the rational numbers Q with the usual
addition and multiplication and Z∗ = {1, −1}. So Z is a domain that is not a
field. The ring of rational numbers Q is a field, since every fraction a/b �= 0
can be inverted: (a/b) (b/a) = 1. The ring of rational numbers Q is a subfield
of the real numbers R and the real numbers form a subfield of the complex
numbers C that is an extension field of R.

Example 3.1.5 Consider the subset

Q(i) = {a + bi | a, b ∈ Q}
of C. The usual rules, (a + bi) + (c + di) = (a + c) + (b + d)i and (a + bi)
(c + di) = (ac − bd) + (ad + bc)i , for adding and multiplying complex num-
bers imply that Q(i) is a subring of C. If z = a + bi is a non-zero element of
Q(i) then

1

z
= a − bi

(a + bi)(a − bi)
= a

a2 + b2
− b

a2 + b2
i

and it follows that Q(i) is a field. It is an extension field of Q and a subfield of
C. Recall that |z|2 = zz̄, where |z| is the modulus and z̄ the complex conjugate
of z ∈ C. We call |z|2 the norm of z ∈ C and denote it N (z). Notice that

N (z1z2) = N (z1)N (z2) (3.1)

for z1, z2 ∈ C. If z = a + bi then N (z) = (a + bi)(a − bi) = a2 + b2. Inside
Q(i) we have the subring Z[i] = {a + bi | a, b ∈ Z}, which is called the ring
of Gaussian integers. Note that N (z) ∈ N if z ∈ Z[i]. The property (3.1) of
N implies that an element z ∈ Z[i] is a unit if and only if N (z) = 1: if z is a
unit then there exists y ∈ Z[i] such that zy = 1, and (3.1) gives 1 = N (zy) =
N (z)N (y), so that N (z) = 1. However, if z = a + bi and N (z) = (a + bi)(a −
bi) = a2 + b2 = 1 then zy = 1, where y = a − bi ∈ Z[i] and z is a unit. Using
this characterization of the units one finds that Z[i]∗ = {1, −1, i, −i}.
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3.1 Definition 115

Prime numbers in Z are not necessarily “prime numbers” in Z[i]: for 5, for
example, we have the factorization 5 = (1 + 2i)(1 − 2i) in Z[i]. We will have
a good deal more to say about this phenomenon later in the chapter.

3.1.1 Ideals

An ideal in a ring R is a subgroup I of (R, +) such that λx ∈ I for every λ ∈ R
and x ∈ I . Notice that R itself is an ideal and that a given ideal I is the whole
ring R if and only if 1 ∈ I (see Exercise 3.4).

Let r1, . . . , rn ∈ R. Then the subset

〈r1, . . . , rn〉 = {λ1r1 + · · · + λnrn | λ1, . . . , λn ∈ R}
is an ideal in R (see Exercise 3.5). If I is an ideal in R and there exist r1, . . . , rn ∈
R such that I = 〈r1, . . . , rn〉, we say that I is (finitely) generated by r1, . . . , rn ∈
R. Notice that 〈r1, . . . , rn〉 ⊆ I if r1, . . . , rn ∈ I (see Exercise 3.6).

Remark 3.1.6 It also makes sense to talk about an ideal generated by infinitely
many elements. One defines this as follows. Let M be any subset of R. Then
the ideal generated by M is

〈 f | f ∈ M〉 = {a1 f1 + · · · + an fn | n ∈ N, a1, . . . , an ∈ R, f1, . . . , fn ∈ M}.

Remark 3.1.7 Let I and J be ideals in a ring R.

(i) Then I ∩ J and I + J = {i + j | i ∈ I, j ∈ J } are also ideals in R.
(ii) The product I J of I and J is defined to be the ideal generated by {i j | i ∈

I, j ∈ J } according to Remark 3.1.6. This has an obvious generalization
to a finite number of ideals. Notice that I J ⊆ I ∩ J .

Remark 3.1.8 An ideal in a field F is either 〈0〉 or F itself. If I �= 〈0〉 is an
ideal in F and a ∈ I \ {0} we can find b ∈ F such that ba = 1. By the definition
of an ideal, 1 = ba ∈ I . This implies that I = F .

An ideal I in R that can be generated by one element is called a principal
ideal. In this case there exists d ∈ R such that I = 〈d〉.

Definition 3.1.9 A domain in which every ideal is a principal ideal is called
a principal ideal domain.

Proposition 3.1.10 The ring Z is a principal ideal domain.
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116 3 Rings

Proof. A subgroup of Z can be written dZ for d ∈ Z (see Proposition 2.2.3).
This shows that every subgroup is a principal ideal. Since an ideal is in particular
a subgroup this finishes the proof. �

Let us study ideals in the ring of Gaussian integers. We have already seen that
the norm function N (a + bi) = a2 + b2 plays a central role. In the following
crucial result we use a special property of the norm function, which will be
formalized later in the notion of a Euclidean domain.

Theorem 3.1.11 The ring of Gaussian integers Z[i] is a principal ideal
domain.

Proof. Let I be a non-zero ideal in Z[i]. Choose among the non-zero elements
in I an element d = a + bi ∈ I such that N (d) = a2 + b2 is minimal. Now
suppose that z ∈ I ; then, computing in C we get z/d = q1 + q2i , where q1, q2 ∈
Q. A point in the complex plane is at most

√
2/2 away from a point with integer

real and imaginary parts (why?). Therefore we may choose an element q =
c + di ∈ Z[i] such that |z/d − q|2 < 1 or, using the norm given in Example
3.1.5,

N (z/d − q) < 1. (3.2)

Multiplying both sides of (3.2) by N (d) we get N (z − qd) < N (d), using (3.1).
Since z − qd ∈ I , we must have that z = qd by the construction of d. Thus
I ⊆ 〈d〉. The other inclusion holds since d ∈ I , so we have proved that I is a
principal ideal. �

However, the ring Z[
√−5] = {x + y

√−5 | x, y ∈ Z} contains ideals that
are not principal. This will be revealed later in this chapter.

3.2 Quotient rings

Let I be an ideal in a ring R. Then I is in particular a subgroup of the abelian
group (R, +), and the set R/I = {[x] | x ∈ R} of left cosets [x] = x + I of
I with respect to + is an abelian group (recall that [x] = [y] if and only if
x − y ∈ I ). We can make R/I into a ring in a very natural way by defining
addition and multiplication as follows:

(i) [x] + [y] = [x + y] for every [x], [y] ∈ R/I ,
(ii) [x][y] = [xy] for every [x], [y] ∈ R/I .
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3.2 Quotient rings 117

It is built into the definition of an ideal that these operations are independent
of the choice of the element in the left coset. Suppose that [x] = [x ′] and
[y] = [y′]. For the definition to be independent of the choice of element, we need
that [x + y] = [x ′ + y′] and [xy] = [x ′y′]. We already know that [x + y] =
[x ′ + y′], since composition in the quotient group (R/I, +) is well defined.
As xy − x ′y′ = x(y − y′) + y′(x − x ′) ∈ I , it follows that xy − x ′y′ ∈ I and
therefore that [xy] = [x ′y′]. Notice how all this is inspired by Proposition 1.3.4.
The new ring R/I is called the quotient ring of R by I and has [0] and [1] playing
the role of 0 and 1. Notice that [x] = 0 in R/I if and only if x ∈ I .

3.2.1 Quotient rings of Z

An ideal in Z is a principal ideal 〈d〉 generated by a natural number d.
Two elements x, y ∈ Z represent the same element [x] = [y] in Z/dZ if and
only if x − y ∈ dZ if and only if d | x − y. One way of thinking of the
elements in Z/dZ is as represented by the remainders by division with d,
{[0], [1], [2], [3], . . . , [d − 1]}.

Example 3.2.1 If d = 6 then Z/6Z = {[0], [1], [2], [3], [4], [5]}. Here we
have [4] + [4] = [2] and [3][4] = [0].

Proposition 3.2.2 Suppose that d is a positive integer. Then the group of units
(Z/dZ)∗ is an abelian group with ϕ(d) elements.

Proof. Let us check that a coset [x] = x + dZ is a unit if and only if
gcd(x, d) = 1. If gcd(x, d) = 1 then we can find λ, µ ∈ Z such that λx + µd =
1. Therefore [λx + µd] = [λx] + [µd] = [λ][x] = [1], so that x is a unit. How-
ever, if [x] is a unit in Z/dZ then there exists an element [λ] ∈ Z/dZ such
that [λ][x] = [λx] = [1]. Thus λx − 1 ∈ dZ and we can find µ ∈ Z such that
λx − 1 = µd. This implies that gcd(x, d) = 1. �

Notice the connection with subsection 2.3.2, where we constructed (Z/dZ)∗

without using the ring structure of Z/dZ.

Proposition 3.2.3 Let n ∈ N. Then Z/nZ is a field if and only if n is a prime
number. If n is a composite number then Z/nZ is not a domain.

Proof. Assume that n > 0. By Proposition 3.2.2 we have |(Z/nZ)∗| = ϕ(n).
Since |Z/nZ| = n, this shows that Z/nZ is a field if and only if ϕ(n) = n − 1.
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118 3 Rings

This last condition holds if and only if n is a prime number. If n is a com-
posite number, we may write n = ab, where 1 < a, b < n. This means that
[a] �= [0] and [b] �= [0] in Z/nZ, but [a][b] = [n] = [0], so that Z/nZ is not a
domain. �

Remark 3.2.4 What happens if n = 0 in Proposition 3.2.3?

Definition 3.2.5 The field Z/pZ is denoted Fp, where p is a prime number.

3.2.2 Prime ideals

Suppose that I is an ideal in a ring R. When is the quotient ring R/I a domain?
When is R/I a field? Suppose that R/I is a domain. Then R/I �= 0 and [x][y] =
0 implies [x] = 0 or [y] = 0 for every [x], [y] ∈ R/I . In terms of the ideal I
this means that

I �= R and xy ∈ I implies x ∈ I or y ∈ I

for every x, y ∈ R. An ideal satisfying this condition is called a prime ideal.
Conversely, if I ⊆ R is a prime ideal then R/I is a domain (see Exercise 3.21).
Thus we end up with the following proposition.

Proposition 3.2.6 An ideal I ⊆ R is a prime ideal if and only if R/I is a
domain.

3.2.3 Maximal ideals

Suppose that R/I is a field. This means that R/I �= 0 and that for every non-zero
element [x] ∈ R/I there exists [y] ∈ R/I such that [x][y] = [xy] = [1].

In terms of the ideal I , this means that for every x �∈ I there exists y ∈ R
such that xy − 1 ∈ I . Suppose that J is another ideal such that I ⊆ J ⊆ R. If
x ∈ J \ I then we may find y �∈ I such that xy − 1 ∈ I ⊆ J . But since xy is in
J (as x ∈ J ) it follows that 1 = −(xy − 1) + xy ∈ J . This means that J = R.
We have proved that if R/I is a field then I is an ideal satisfying the following:

if I � J then J = R,

where J is an ideal of R. An ideal satisfying this condition is called a maximal
ideal (maximal among the ideals properly contained in R).
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If I ⊆ R is a maximal ideal then R/I is a field. This can be seen as follows. If
[x] ∈ R/I is a non-zero element then x �∈ I . The subset I + Rx = {i + r x | i ∈
I, r ∈ R} is an ideal in R. Since I � I + Rx , we must have that I + Rx = R.
Therefore 1 ∈ I + Rx . So we may write 1 = m + r x for suitable m ∈ I, r ∈ R.
Going to R/I we get [1] = [r ][x], so that [x] is a unit in R/I . We end up with
the following proposition.

Proposition 3.2.7 An ideal I ⊆ R is a maximal ideal if and only if R/I is a
field.

Remark 3.2.8 A maximal ideal is a prime ideal, because a field is a domain
(Proposition 3.1.4).

Example 3.2.9 The ring Z is a principal ideal domain. This means that every
ideal in Z has the form 〈d〉 = dZ for some d ∈ Z. Which of these are maximal?
Suppose that p is a prime number and that 〈p〉 = pZ is contained in another
ideal 〈d〉 = dZ in Z. Then p ∈ 〈d〉. Therefore d divides p and so d = ±1 or
d = ±p. This implies that 〈d〉 = Z or 〈d〉 = pZ, proving that 〈p〉 is a maximal
ideal. The ideal 〈0〉 is a prime ideal that is not a maximal ideal. An ideal 〈m〉
generated by a composite number m = ab, where a, b �= ±1 is not a prime
ideal, since ab ∈ 〈m〉 but a �∈ 〈m〉 and b �∈ 〈m〉.

3.3 Ring homomorphisms

A map f : R → S between two rings R and S is called a ring homomorphism
if it is a group homomorphism from (R, +) to (S, +), f (xy) = f (x) f (y) for
every x, y ∈ R and f (1) = 1. A bijective ring homomorphism is called a
ring isomorphism. If R and S are rings and there exists a ring isomorphism
f : R → S, we say that R and S are isomorphic. This is denoted R ∼= S.

Example 3.3.1 The map R → R/I given by r 
→ [r ] is a (surjective) ring ho-
momorphism. This follows from the way we defined addition and multiplication
in R/I .

The kernel Ker f = {r ∈ R | f (r ) = 0} ⊆ R of f (as a group homomor-
phism) is an ideal of R and the image f (R) is a subring of S (see
Exercise 3.11). The isomorphism theorem for rings follows almost immedi-
ately from the analogue for groups (see Theorem 2.5.1).
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120 3 Rings

Proposition 3.3.2 Let R and S be rings and f : R → S a ring homomorphism
with kernel K = Ker ( f ). Then

f̃ : R/K → f (R)

given by f̃ (r + K ) = f (r ) is a well defined map and a ring isomorphism.

Proof. We already know that f̃ is a well defined map and an isomorphism of
abelian groups by Theorem 2.5.1. It remains to check that it is a ring homomor-
phism. Clearly f̃ (1 + K ) = f (1) = 1. Since

f̃ ((x + K )(y + K )) = f̃ (xy + K )

= f (xy) = f (x) f (y)

= f̃ (x + K ) f̃ (y + K )

for x, y ∈ R, it follows that f̃ is a ring homomorphism. �

3.3.1 The unique ring homomorphism from Z

Lemma 3.3.3 For every ring R, there is a unique ring homomorphism f :
Z → R.

Proof. A ring homomorphism f : Z → R is in particular a group homo-
morphism f : (Z, +) → (R, +) with f (1) = 1. This last condition says that
f = f1 in the notation of Section 2.6. So f is unique. We just need to
show that f = f1 : Z → R is a ring homomorphism. In other words we must
show that f (mn) = f (m) f (n) for m, n ∈ Z. We can assume that m, n > 0,
since f (−m) = f ((−1)m) = f (−1) f (m) = − f (m). Now the result follows if
x(y + z) = xy + xz (x, y, z ∈ R) is applied successively: a sum of m copies
of 1 multiplied by a sum of n copies of 1 is a sum of mn copies of 1 (here
1 ∈ R). �

Remark 3.3.4 Let f : Z → R denote the unique ring homomorphism for a
given ring R. For n ≥ 0, one thinks of f (n) as

f (n) = 1 + 1 + · · · + 1,

a sum of n copies of 1 ∈ R. Given the unique ring homomorphism f : Z → R
it makes sense to view integers as elements in any ring. When n ∈ Z and we
write n ∈ R we are referring to the element f (n) of R.
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Let R be a ring. Let ord (1) denote the order of 1 in (R, +). This turns out
to be a fundamental invariant of R. If ord (1) is infinite then R is said to have
characteristic zero. If ord (1) is finite R is said to have finite characteristic
ord (1). So the characteristic of R is n1, where n1 ∈ N and n1Z = Ker f1 in
the notation of Section 2.6. The characteristic of R is denoted char R. In the
positive-characteristic case one usually thinks of char R as the smallest natural
number n for which 1 + · · · + 1 (n times) = 0 in R.

The ring Z of integers has characteristic zero. The same is true for Q, R. But
char Z/nZ = n for n ∈ N.

Lemma 3.3.5 Let R be a ring. Then there is an injective ring homomorphism

Z/nZ → R,

where n = char R.

Proof. Let f : Z → R be the unique ring homomorphism. Then f (Z) = S is
a subring of R and Ker ( f ) = nZ for n = char R. The isomorphism theorem
for rings (Proposition 3.3.2) says that we have a ring isomorphism

Z/nZ → S.

But this means that we have the desired injective ring homomorphism Z/nZ →
S ⊆ R. �

Remark 3.3.6 In the situation of Lemma 3.3.5 we say that Z/nZ is contained
in R, since it is isomorphic to a subring in R.

Proposition 3.3.7 Let R be a domain. Then char R is either zero or a prime
number. If R is finite then R is a field and char R is a prime number.

Proof. Let n = char R. We know that Z/nZ is a subring of R by Lemma 3.3.5.
This means in particular that Z/nZ is a domain, being a subring of a domain.
In this way n must be zero or a prime number by Proposition 3.2.3. If R is a
finite domain then n > 0 (if n = 0, R would contain Z as a subring) and n must
be a prime number. A finite domain is a field (see Exercise 3.23). �

3.3.2 Freshman’s Dream

The title of this subsection refers to certain beginners’ mistakes in calculus
exercises: for example, that the sine of a sum of two angles sin(x + y) is equal
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to sin(x) + sin(y) or that (x + y)5 is equal to x5 + y5 for x, y ∈ R. Of course,
one has to insert intermediate terms coming from the binomial formula to
evaluate (x + y)5. Let us state a general version of the binomial formula.

Lemma 3.3.8 Let R be a ring and a, b two elements in R. Then

(a + b)n = an +
(

n

1

)
an−1b + · · · +

(
n

n − 1

)
abn−1 + bn

for n ∈ N.

Proof. This can be proved using induction. The case n = 1 is clear. Assume
that

(a + b)n = an +
(

n

1

)
an−1b + · · · +

(
n

n − 1

)
abn−1 + bn;

then (a + b)n+1 = (a + b)n(a + b). Using ab = ba and(
n

i

)
+

(
n

i − 1

)
=

(
n + 1

i

)

for i = 1, . . . , n, the result follows. �

Notice that the binomial coefficients in Lemma 3.3.8 are considered as ele-
ments in the ring R through the unique ring homomorphism Z → R. We will
keep using this convention. Now for the main insight, which looks innocent but
is incredibly powerful.

Theorem 3.3.9 (Freshman’s Dream) Let R be a ring of prime characteristic
p. Then

(x + y)pr = x pr + y pr

for every x, y ∈ R and r ∈ N.

Proof. Since char R = p, the kernel of the unique ring homomorphism Z →
R is pZ. As p divides the binomial coefficients(

p

1

)
,

(
p

2

)
, . . . ,

(
p

p − 1

)
,

by Exercise 1.30(i), it follows that
(p

i

) = 0 in R when i = 1, . . . , p − 1 . Using
Lemma 3.3.8, this shows that (x + y)p = x p + y p in R. Now conclude by
induction for r > 1 that

(x + y)pr = ((x + y)p)pr−1= (x p + y p)pr−1= (x p)pr−1 + (y p)pr−1= x pr + y pr
.

�
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3.4 Fields of fractions 123

Freshman’s Dream is one of the most useful facts in algebra. Doing math-
ematics in a universe where this kind of linearity is possible is a dream come
true. Already in the following chapter on polynomials, Freshman’s Dream will
become an indispensable tool especially in proving the law of quadratic reci-
procity.

Remark 3.3.10 Notice that if R is a ring of prime characteristic p then The-
orem 3.3.9 shows that the map F : R → R given by F(x) = x p is a ring ho-
momorphism. It is called the Frobenius map after G. Frobenius (1849–1917).

3.4 Fields of fractions

If R is a domain then there is a very natural field Q and an injective ring
homomorphism R → Q. In a precise sense one may say that Q is the “smallest”
field containing R. The field Q consists of fractions with a numerator in R and a
denominator in R \ {0}. The situation is practically identical with the situation
R = Z and Q = Q and the construction the same as in Appendix A.2.2. We let
M = R × (R \ {0}) and define Q = M/∼, where (a, s) ∼ (b, t) if and only if

at = bs. As in Appendix A.2.2 we let
a

s
denote the equivalence class containing

(a, s) ∈ M . Then

a

s

b

t
= ab

st
,

a

s
+ b

t
= at + bs

st
,

are well defined operations and they make Q into a ring, where

0 = 0

a
and 1 = a

a

for every a ∈ R \ {0}. Notice that Q is a field, since

a

s
�= 0

in Q means that a �= 0. In this case

s

a
∈ Q and

a

s

s

a
= as

as
= 1

in Q. Furthermore, Q comes with an injective ring homomorphism i : R → Q
given by

i(a) = a

1
.
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The field Q is called the field of fractions of R. The following proposition states
formally that it is the “smallest” field containing R.

Proposition 3.4.1 Let R be a domain with field of fractions Q, let L be a
field and let ϕ : R → L be an injective ring homomorphism. Then there exists
a unique injective ring homomorphism ϕ̄ : Q → L such that ϕ̄ ◦ i = ϕ.

Proof. If ϕ̄ ◦ i = ϕ then we must have

1 = ϕ̄

(
s

1

1

s

)
= ϕ̄

(
s

1

)
ϕ̄

(
1

s

)
= ϕ(s)ϕ̄

(
1

s

)
,

where s ∈ R \ {0}. So there is only one way of defining ϕ̄, provided that ϕ̄ ◦ i =
ϕ:

ϕ̄

(
a

s

)
= ϕ̄

(
a

1

)
ϕ̄

(
1

s

)
= ϕ(a)ϕ(s)−1.

This is well defined: if

a

s
= b

t

then at = bs. Therefore ϕ(a)ϕ(t) = ϕ(b)ϕ(s) and ϕ(a)ϕ(s)−1 = ϕ(b)ϕ(t)−1.
Let us prove that ϕ̄ really is a ring homomorphism. Proving that ϕ̄ preserves
multiplication is left to the reader. Below we prove that ϕ̄ preserves addition:

ϕ̄

(
a

s
+ b

t

)
= ϕ̄

(
at + bs

st

)

= (ϕ(a)ϕ(t) + ϕ(b)ϕ(s))ϕ(s)−1ϕ(t)−1

= ϕ(a)ϕ(s)−1 + ϕ(b)ϕ(t)−1

= ϕ̄

(
a

s

)
+ ϕ̄

(
b

t

)
.

To prove that ϕ̄ is injective it is enough to show that Ker (ϕ̄) = {0}. Suppose
that

ϕ̄

(
a

s

)
= ϕ(a)ϕ(s)−1 = 0.

Then ϕ(a) = 0 and therefore a = 0 since ϕ is injective. This proves that

a

s
= 0

and therefore that Ker (ϕ̄) = {0}. �
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Corollary 3.4.2 Let R be a domain contained in the field L. The smallest
subfield in L containing R is

K = {as−1 | a ∈ R, s ∈ R \ {0}}.
The field of fractions of R is isomorphic to K .

Proof. Let a, b ∈ R and s, t ∈ R \ {0}. Then (as−1)(bt−1) = (ab)(ts)−1,
as−1 + bt−1 = (at + bs)(ts)−1 and (as−1)−1 = sa−1 if a �= 0. These formulas
imply that K is a subfield of L . Any subfield of L containing R must contain
as−1, where a ∈ R and s ∈ R \ {0}. So K is the smallest subfield containing
R. Let Q be the field of fractions of R. Then the unique injective ring ho-
momorphism ϕ̄ : Q → K of Proposition 3.4.1 is surjective, since it is given
by

ϕ̄

(
a

s

)
= as−1

(notice that ϕ is the inclusion of R into L). It is therefore an isomorphism and
Q becomes isomorphic to K . �

Example 3.4.3 The Gaussian integers Z[i] form a domain whose field
of fractions is isomorphic to Q(i). This follows from Corollary 3.4.2 and
Example 3.1.5.

3.5 Unique factorization

What is the analogue of a prime number in a general commutative ring? Is there
such a thing as unique factorization? Saying that a “general prime number”
should be an element x that cannot be factored except for the factorization
x = ab, where a or b is a unit, is not enough. The key property turns out
to be the generalization of the fact that if a prime number divides a product
of two numbers then it divides one of them (this is Lemma 1.8.3). A unique
factorization domain is a domain like Z, where every non-zero element has a
unique factorization into prime elements. The main result in this section is that
a principal ideal domain is a unique factorization domain (Theorem 3.5.7). The
proof is not difficult once you recall how we proved unique factorization into
prime numbers for Z in Theorem 1.8.5. The only difference is in Lemma 3.5.5,
which in a sense is an abstract version of Lemma 1.8.1. In the following we
will assume that R is a domain.
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3.5.1 Divisibility and greatest common divisor

Suppose that x, y ∈ R. If x = r y for some r ∈ R, we say that y is a divisor of x .
This is denoted y | x . Notice that y | x if and only if 〈x〉 ⊆ 〈y〉. If x = uy, where
u ∈ R∗, then 〈x〉 = 〈y〉. However, if 〈x〉 = 〈y〉 then x = r y and y = sx for
some r, s ∈ R. Therefore x = r (sx) = (rs)x . Since R is a domain we conclude
that rs = 1 by Proposition 3.1.3 (if x �= 0). This means that r, s ∈ R∗. Thus,
〈x〉 = 〈y〉 implies that there exists u ∈ R∗ such that x = uy. In this case we say
that x and y are associated elements of R.

An element d ∈ R is a greatest common divisor of a, b ∈ R if d is a common
divisor of a and b and every common divisor of a and b divides d. Notice
how this generalizes the greatest common divisor definition for the integers
(see Section 1.4).

Let R be a principal ideal domain. For every a, b ∈ R we know that there
exists d ∈ R such that 〈a, b〉 = {xa + yb | x, y ∈ R} = 〈d〉. We claim that d
is a greatest common divisor of a and b. Clearly d is a common divisor of a
and b since 〈a〉 ⊆ 〈d〉 and 〈b〉 ⊆ 〈d〉. If e is a common divisor of a and b then
〈e〉 ⊇ 〈a, b〉 = 〈d〉. Thus e divides d and so d is a greatest common divisor of
a and b.

3.5.2 Irreducible elements

An element r ∈ R \ R∗ is called irreducible if r = ab for a, b ∈ R implies that
either a or b is a unit. Thus if r is an irreducible element and u is a unit then
ur is also an irreducible element. A non-zero element x ∈ R \ R∗ is said to
have a factorization into irreducible elements if there exist irreducible elements
p1, . . . , pr ∈ R such that

x = p1 · · · pr .

Now x is said to have unique factorization into irreducible elements if for any
other irreducible factorization

x = q1 · · · qs,

every pi for i = 1, . . . , r divides q j for some j = 1, . . . , s (this implies that
pi = uq j , where u is a unit). In particular we have r = s by Proposition 3.1.3.
A domain R such that every non-zero element in R \ R∗ has unique factorization
into irreducible elements is called a unique factorization domain.

Example 3.5.1 The irreducible elements in the ring of integers are ±p, where
p is a prime number. So Z is a unique factorization domain by Theorem 1.8.5.
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3.5 Unique factorization 127

We do not know yet whether the ring of Gaussian integers Z[i] is a unique
factorization domain. This will follow once we have proved that a principal
ideal domain is a unique factorization domain.

3.5.3 Prime elements

A non-zero element p ∈ R \ R∗ is called a prime element if p | xy for x, y ∈ R
implies that p | x or p | y.

Proposition 3.5.2 A prime element is irreducible.

Proof. Let p be a prime element. Suppose that p = ab. By definition of a prime
element we can conclude that p | a or p | b. Suppose that p | a. Then we can
write a = r p for some r ∈ R. This implies that p = r pb. Now Proposition
3.1.3 gives that b is a unit. Thus p is irreducible. �

Proposition 3.5.3 Let R be a ring for which every non-zero element x ∈ R \
R∗ has a factorization into irreducible elements. Every irreducible element is
a prime element in R if and only if R is a unique factorization domain.

Proof. The “only if” part is identical to the proof of unique factorization for
the integers (see Theorem 1.8.5). Suppose that x ∈ R is a non-zero element
with two factorizations:

x = p1· · ·pr = q1· · ·qs .

Now fix an irreducible element pi from the left hand side. Since pi is a prime
element dividing a product q1 · · · qs , it must divide some q j (see Remark 1.8.4).
Let us prove the “if” part. Assume that R is a unique factorization domain
and let p ∈ R be an irreducible element. Suppose that p | ab, where a, b ∈ R.
We must prove that p | a or p | b. Assume that ab �= 0. Then a and b have
factorizations into irreducible elements. Because of unique factorization, one
of these factorizations must contain an irreducible element divisible by p. This
proves the “if” part. �

Remark 3.5.4 The subset Z[
√−5] = {a + b

√−5 | a, b ∈ Z} is a subring of
C. In Z[

√−5] we have two different factorizations of 6:

6 = 2 · 3 = (1 + √−5)(1 − √−5).

https://doi.org/10.1017/CBO9780511804229.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511804229.004


128 3 Rings

Both factorizations turn out to be irreducible, so that in this case the irre-
ducible factorizations are not unique. Let us prove that 2 is an irreducible
element of Z[

√−5] that is not a prime element. From the above we see that
2 | (1 + √−5)(1 − √−5). But 2 does not divide either of these factors. Assume
for example that 2 | 1 + √−5. Then there exists z ∈ Z[

√−5] such that 2z =
1 + √−5. But this would show that

z = 1

2
+ 1

2

√−5 �∈ Z[
√−5].

As in the case of the Gaussian integers (Example 3.1.5) the norm func-
tion N (z) = zz̄ gives a function N : Z[

√−5] → N such that N (z1z2) =
N (z1)N (z2), where z1, z2 ∈ Z[

√−5]. If z = x + y
√−5 then N (x + y

√−5) =
(x + y

√−5)(x − y
√−5) = x2 + 5y2. Again it is easy to show that z ∈

Z[
√−5]∗ if and only if N (z) = 1. This gives that z = x + y

√−5 is a unit
if and only if x = ±1 and y = 0. To prove that 2 is an irreducible element, we
assume that 2 = ab, where a = x + y

√−5 and b = x ′ + y′√−5. The crucial
point is now to use the norm function. This gives N (2) = 4 = N (a)N (b) =
(x2 + 5y2)(x ′12 + 5y′12), where x, y, x ′, y′ ∈ Z. We must have y = y′ = 0
(why?), showing that one of a or b is a unit.

The following lemma is analogous to the statement that every non-zero
integer is a product of prime numbers (Lemma 1.8.1).

Lemma 3.5.5 Let R be a principal ideal domain and r a non-zero element.
Then r has an irreducible factorization.

Proof. An increasing sequence (a chain) of principal ideals 〈a1〉 ⊆ 〈a2〉 ⊆
〈a3〉 ⊆ · · · in R must stabilize: there is a step N ∈ N such that 〈ai 〉 = 〈ai+1〉 =
· · · for i ≥ N . This is proved using that the union

∞⋃
i=1

〈ai 〉

is an ideal I in R (see Exercise 3.9, where you are also asked to show that
the union of two ideals is not necessarily an ideal). From this we get I = 〈d〉,
for some d ∈ R, since every ideal in R is principal. By definition of union, we
must have d ∈ 〈aN 〉 for some N . Thus 〈d〉 ⊆ 〈aN 〉 showing that 〈ai 〉 = 〈d〉 for
i ≥ N .

Suppose that r ∈ R \ R∗ is a non-zero element that is not a product of ir-
reducible elements. Then r is not irreducible. So we can write r = r1s1 where
r1, s1 �∈ R∗. This means that 〈r〉 � 〈r1〉 and 〈r〉 � 〈s1〉. If both r1 and s1 are
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products of irreducible elements then so is r , contradicting our assumption. So,
at least one of r1 and s1 is not a product of irreducible elements. Assume that r1

is not a product of irreducible elements. Again we can write r1 = r2s2, where
r2, s2 �∈ R∗, 〈r1〉 � 〈r2〉 and 〈r1〉 � 〈s2〉. We may assume that r2 is not a product
of irreducible elements. Continuing in this way we obtain the infinite chain

〈r〉 � 〈r1〉 � 〈r2〉 � · · · ,

where no ri is a product of irreducible elements. This is a chain of ideals that
does not stabilize, contradicting the first part of the proof. Thus every non-zero
element r which is not a unit is a product of irreducible elements. �

Proposition 3.5.6 Suppose that R is a principal ideal domain that is not a
field. An ideal 〈x〉 ⊆ R is a maximal ideal if and only if x is an irreducible
element in R.

Proof. If x is irreducible in R and 〈x〉 is contained in another ideal 〈y〉 then
x = ys for some s ∈ R. Since x is irreducible this implies that s or y is a unit.
Thus 〈y〉 = 〈x〉 or 〈y〉 = R, showing that 〈x〉 is a maximal ideal. However, if
〈x〉 is a maximal ideal and x = ys for some y, s ∈ R then one of y and s must
be a unit. If not, then 〈x〉 would be strictly contained in 〈y〉 since s is not a unit.
Since y is not a unit, 〈y〉 must be strictly contained in R contradicting that 〈x〉
is a maximal ideal. �

Theorem 3.5.7 A principal ideal domain R is a unique factorization domain.

Proof. In Lemma 3.5.5 we proved that every non-zero element has an irre-
ducible factorization. The only thing missing is to prove that such a factorization
is unique. This is accomplished, using Proposition 3.5.3, by proving that the
irreducible elements are prime. Let π ∈ R be an irreducible element such that
π | ab and π � a. We will prove that π | b. That π � a implies a �∈ 〈π〉 and
therefore 〈π, a〉 � 〈π〉. Since 〈π〉 is a maximal ideal, by Proposition 3.5.6, it
follows that 〈π, a〉 = R = 〈1〉. So we can find x, y ∈ R such that xπ + ya = 1.
Now multiply both sides by b and get xbπ + yab = b. Since π | ab, this shows
that π | b. You should compare this to the proof of Corollary 1.5.10. They are
practically identical except that here we have a more general framework. �

Remark 3.5.8 The ring Z[
√−5] is not a principal ideal domain since 2 is an

irreducible element that is not a prime element (see Remark 3.5.4). In fact we
can explicitly give an example of an ideal I in Z[

√
5] that is not a principal
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ideal. Let I = 〈2, 1 + √−5〉. By explicit computation and a little rewriting
one may prove that I = {(2a + b) + b

√−5) | a, b ∈ Z}. This implies that 1 �∈
I , so that I �= R. Let us assume that I = 〈d〉 for some d ∈ Z[

√−5]. Recall
that N (x + y

√−5) = x2 + 5y2, where x, y ∈ Z. As d is not a unit, we get
N (d) > 1. Since d divides every element of I , it must divide 2. Therefore
N (d) | N (2) = 4 and we must have N (d) = 4, since N (d) = 2 is impossible.
But N (d) = 4 means that we can assume that d = 2. But 1 + √−5 �∈ 〈2〉, since
2 � 1 + √−5. We have proved that 〈2, 1 + √−5〉 cannot be a principal ideal.

Suppose that we are given two elements a, b in a unique factorization domain.
Suppose furthermore that we have found prime elements p1, . . . , pn such that

a = pr1
1 · · · prn

n ,

b = ps1
1 · · · psn

n ,

where ri , si ≥ 0. Then a greatest common divisor (see subsection 3.5.1) of
a and b is given by

c = pt1
1 · · · ptn

n ,

where ti = min(ri , si ); compare this with Remark 1.8.6. Usually it is very dif-
ficult (as for Z) to compute prime factorizations of elements effectively. So
relying on prime factorizations for finding a greatest common divisor may be a
slow process. The Euclidean algorithm is in general much faster, but it does not
necessarily exist in domains more general than Z. If it does, there is a special
term for the domain, as follows.

3.5.4 Euclidean domains

A domain R is called Euclidean if there exists a Euclidean function N : R \
{0} → N. A Euclidean function satisfies that for every x ∈ R, d ∈ R \ {0},
there exist q, r ∈ R such that

x = qd + r,

where either r = 0 or N (r ) < N (d).
The ring of integers Z carries the absolute value | · | : Z → N as a Euclidean

function. Using Theorem 1.2.1 it is easy to verify that for every x ∈ Z, d ∈
Z \ {0}, there exist q, r ∈ Z such that

x = qd + r,
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where r = 0 or |r | < |d|. After having seen the proof of Theorem 3.1.11, the
following proposition should come as no surprise.

Proposition 3.5.9 A Euclidean domain R is a principal ideal domain.

Proof. Let I ⊂ R be a non-zero ideal in R and let x ∈ I be a non-zero element
such that N (x) is minimal (compared with every N (y), where y ∈ I \ {0}).
We claim that I = Rx . Suppose that y ∈ I . Then we may find q ∈ R such
that

y = qx + r

where r = 0 or N (r ) < N (x). But as r = y − qx ∈ I , we must have r = 0
since N (x) is minimal among N (z), where z runs through the non-zero elements
of I . This means that y = qx and thus I = Rx . �

Recall the definition in subsection 3.5.1 of a greatest common divisor along
with the description of it in a principal ideal domain. A greatest common divisor
of two elements in a Euclidean domain R can be found using the Euclidean
algorithm (hence the term Euclidean). Here is how this works. Let N : R \
{0} → N be a Euclidean function and suppose that a, b ∈ R. A greatest common
divisor is a generator for the (principal) ideal 〈a, b〉.

If either a or b is zero, we are done. Suppose that both a and b are non-zero and
that N (a) ≥ N (b). Then there exists q ∈ R such that a = qb + r , where either
r = 0 or N (r ) < N (b). We have 〈a, b〉 = 〈b, r〉 since r = a − qb ∈ 〈a, b〉 and
a = qb + r ∈ 〈b, r〉. Continue the procedure with a = b and b = r until one of
a and b is zero. This will eventually happen, since we are strictly decreasing the
maximum value of the norm function of a and b in each step. You should work
out Exercise 3.29 to practice the Euclidean algorithm in the Gaussian integers
with the norm function (you can do that before seeing the proof that Z[i] with
the norm function is a Euclidean domain).

Remark 3.5.10 A principal ideal domain is not a Euclidean domain in general.
The ring R = Z[ξ ] = {x + yξ | x, y ∈ Z} ⊆ C, where ξ = (1 + √−19)/2, is
an example of a principal ideal domain that is not a Euclidean domain. One
may prove that R cannot be a Euclidean domain using R∗ = {±1}. Proving that
R is a principal ideal domain is more difficult.

We will see later that polynomial rings in one variable over a field are
Euclidean domains (using the degree function). A nice fact is that the ring
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of Gaussian integers is a Euclidean domain. This can actually be proved by
drawing circles in the complex plane.

3.5.5 Fermat’s two-square theorem

A beautiful result due to Fermat says that a prime number p ≡ 1 (mod 4) is
the sum of two unique squares (e.g. 13 = 4 + 9). We will prove this result
using unique factorization in the ring of Gaussian integers Z[i]. Recall the
norm function N : Z[i] → N given by N (a + bi) = (a + bi)(a − bi) = |a +
bi |2 = a2 + b2. This function is an invaluable tool in reasoning about Gaussian
integers. Here is an example.

Proposition 3.5.11 Let π = a + bi ∈ Z[i] be a Gaussian integer with
N (π ) = p, where p is a prime number. Then π is a prime element in Z[i].

Proof. It suffices to check that π is an irreducible element by Theorems 3.1.11
and 3.5.7 and Proposition 3.5.3. Assume that π = ab. Then N (π ) = N (a)N (b).
This means that N (a) = p or N (b) = p. If for example N (a) = p then N (b) =
1 and b is a unit (see Example 3.1.5). So π is irreducible. �

We have indicated in the proof of Theorem 3.1.11 that Z[i] is a Euclidean
domain. Let us give some more details. Given x ∈ Z[i] and d ∈ Z[i] \ {0}, we
can form x/d ∈ Q[i].

�
q�

x
d
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The above picture shows that we may find q = q1 + iq2 ∈ Z[i] such that

∣∣∣ x

d
− q

∣∣∣2
< 1.

Multiplying both sides by N (d) and using N (ab) = N (a)N (b) we get
N (x − qd) < N (d), showing that Z[i] is a Euclidean domain and hence a
principal ideal domain and a unique factorization domain. Let us dig a little
deeper into the prime elements in Z[i]. We wish to prove that prime numbers
congruent to 1 modulo 4 fail to be prime elements in Z[i]. This agrees with the
examples 5 = (2 + i)(2 − i) and 13 = (3 + 2i)(3 − 2i). First, a classical result
that deserves to be singled out:

Lemma 3.5.12 (Lagrange) Let p be a prime number. If p ≡ 1 (mod 4) then
the congruence

x2 ≡ −1 (mod p)

can be solved by x = (2n)! where p = 4n + 1.

Proof. This is a consequence of Wilson’s theorem, which says that (4n)! ≡
−1 (mod p) (see Exercise 1.29(ii)). Write (4n)! as

4n(4n − 1) · · · (4n − 2n + 1) 2n(2n − 1) · · · 2 · 1.

Since 4n ≡ −1 (mod p), 4n − 1 ≡ −2 (mod p), . . . , 4n − 2n + 1 ≡ −2n
(mod p) it follows that −1 ≡ (4n)! ≡ ((2n)!)2. Thus x = (2n)! solves the
congruence. �

Remark 3.5.13 There is another proof of Lemma 3.5.12, which in a way is
simpler. It also suggests an effective algorithm for computing a solution to
the congruence x2 ≡ −1 (mod p). Suppose that a is a quadratic non-residue
modulo p (see Section 1.11). Then we know by Theorem 1.11.4 that

a(p−1)/2 ≡ −1 (mod p).

So when p ≡ 1 (mod 4), x = a(p−1)/4 (or its remainder [a(p−1)/4]p, which
can be computed effectively using repeated squaring) is a solution to x2 ≡ −1
(mod p).

Corollary 3.5.14 A prime number p ≡ 1 (mod 4) is not a prime element in
Z[i].
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Proof. By Lemma 3.5.12 we can find an integer x such that x2 ≡ −1
(mod p). Then p | x2 + 1 = (x + i)(x − i). But p � x + i and p � x − i , since
x/p + (1/p)i �∈ Z[i] and x/p − (1/p)i �∈ Z[i]. This shows that p is not a
prime element in Z[i]. �

Let us move on to prove Fermat’s famous two-square theorem.

Theorem 3.5.15 (Fermat) A prime number p ≡ 1 (mod 4) is a sum of two
uniquely determined squares.

Proof. Assume that p = a2 + b2 for some integers a, b ∈ Z. Then x = a + bi
is an element of Z[i] with N (x) = p. So x is a prime element by Propo-
sition 3.5.11. If p = c2 + d2 for some other integers c, d ∈ Z then p =
(c + id)(c − id) = (a + bi)(a − bi) gives two irreducible factorizations of p.
Now the uniqueness of the squares can be deduced from the fact that p has
a unique irreducible factorization and Z[i]∗ = {1, −1, i, −i}. For example, if
c + di | a + bi then a + bi = u(c + di), where u ∈ Z[i]∗. The four units corre-
spond to the following cases: c = a, d = b; c = −a, d = −b; c = b, d = −a;
c = −b, d = −a. These cases show that the squares are unique.

For the existence we need to prove that a prime number p ≡ 1 (mod 4) is a
sum of two squares. We know by Corollary 3.5.14 that p is not a prime element
in Z[i]. Let π = a + bi ∈ Z[i] be a prime element such that p = πx , where
x ∈ Z[i]. Then x is not a unit (if x were a unit then p would be a prime element)
and so N (x) > 1. This means that N (π ) = p, since p2 = N (p) = N (π )N (x).
But then N (π ) = ππ̄ = a2 + b2 = p and we have expressed p as a sum of two
squares. �

3.5.6 The Euclidean algorithm strikes again

We have proved that every prime number p congruent to 1 modulo 4 is a sum
of two squares. So far, trial and error has enabled us to guess identities like
5 = 12 + 22, 13 = 32 + 22, . . . . There is a beautiful algorithm (due to Cornac-
chia, based on a continued-fractions algorithm due to Serret and Hermite) for
finding the two squares that sum up to p.

We will describe the algorithm but leave out the proof that it works (see [25]
for the proof or do Exercise 3.40 (HOF) on your own – the title of this subsec-
tion is the title of [25]). The key point is to compute x ∈ N such that x2 ≡ −1
(mod p). This can be done effectively using Remark 3.5.13. Pick a num-
ber a = 1, 2, . . . , p − 1 at random. Since the numbers of quadratic residues
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and quadratic non-residues modulo p are the same, the probability that a is a
quadratic non-residue is 1/2. If this is so then a(p−1)/2 ≡ −1 and Remark 3.5.13
gives the solution. If not, try another random a. The probability of not having
encountered a quadratic non-residue after n trials is (1/2)n .

Suppose that x is a solution to the congruence x2 ≡ −1 (mod p). We may
assume that 0 < x < p/2 (why?). Then use the Euclidean algorithm on p and
x . The first two remainders a, b <

√
p satisfy p = a2 + b2. Here are some

examples.

Example 3.5.16 Let p = 41. Then x = 9 satisfies x2 ≡ −1 (mod p). Let us
apply the Euclidean algorithm to 41 and 9 (see Example 1.5.5).

i −1 0 1 2 3 4
ri 41 9 5 4 1 0
qi 4 1 1 4
ai 1 0 1 −1 2 −9
bi 0 1 −4 5 −9 41

The first two remainders <
√

41 are 5 and 4, and 41 = 52 + 42.

Example 3.5.17 Let p = 113. Then x = 15 satisfies x2 ≡ −1 (mod p). Let
us apply the Euclidean algorithm to 113 and 15:

i −1 0 1 2 3 4
ri 113 15 8 7 1 0
qi 7 1 1 7
ai 1 0 1 −1 2 −15
bi 0 1 −7 8 −15 113

The first two remainders <
√

113 are 8 and 7, and 113 = 82 + 72.

There are many patterns in the above examples. If you look at the row with
remainders then it appears backwards, up to a sign in the bottom row. Notice
also that the algorithm seems to stop after an even number of steps n and that
p | r2

j + r2
n− j−2 for j = −2, −1, 0, . . . , n. These facts and the complete proof

that the algorithm works can be found in [25].

3.5.7 Prime numbers congruent to 1 modulo 4

Euclid proved that there are infinitely many prime numbers. His proof can be
extended to the stronger statement that there are infinitely many prime numbers
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congruent to 1 modulo 4. Here we show how the Gaussian integers help us in
proving this statement.

Lemma 3.5.18 A prime number p ≡ 3 (mod 4) is a prime element in Z[i].

Proof. Let π = c + id ∈ Z[i] be a prime element dividing p. Write this as
p = πx for x ∈ Z[i]. Then N (π )N (x) = N (p) = p2. Thus N (π ) = p or
N (π ) = p2. If N (π ) = ππ̄ = c2 + d2 = p then p is the sum of two squares,
but the sum of two squares is not congruent to 3 modulo 4 (see Exercise 3.32).
So we must have N (π ) = p2. Therefore N (x) = 1, x is a unit and p is a prime
element, since it is a unit times a prime element. �

Corollary 3.5.19 If p is an odd prime number dividing x2 + 1 for some x ∈ Z

then p ≡ 1 (mod 4).

Proof. Let p be a prime number dividing x2 + 1. If p ≡ 3 (mod 4) then p is
a prime element in Z[i]. Thus p | (x2 + 1) = (x + i)(x − i), but p does not
divide either x + i or x − i . So we must have p ≡ 1 (mod 4). �

Theorem 3.5.20 There are infinitely many primes congruent to 1 modulo 4.

Proof. Suppose there are only finitely many prime numbers q1, . . . , qs con-
gruent to 1 modulo 4. Then form the number

N = (q1q2 · · · qs)2 + 1.

By Corollary 3.5.19, N is divisible by a prime p ≡ 1 (mod 4). But p �∈
{q1, . . . , qs}, since qi � N for i = 1, . . . , s. �

Remark 3.5.21 A celebrated result of Dirichlet (1805–59) states that an arith-
metic progression

b, b + a, b + 2a, b + 3a, . . .

contains infinitely many primes if a and b are relatively prime. It is one of
the truly deep theorems of number theory (we have just seen that the case
b = 1 and a = 4 is not particularly easy). We will prove that there are infinitely
many primes ≡ 1 (mod n) for every n ≥ 2 after having introduced cyclotomic
polynomials in Chapter 4.

https://doi.org/10.1017/CBO9780511804229.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511804229.004


3.5 Unique factorization 137

3.5.8 Fermat’s last theorem

Suppose we wish to prove Fermat’s last theorem (FLT) for n = 3: x3 + y3 = z3

has no solutions, assuming that x, y and z are non-zero natural numbers. A very
fruitful idea is to view the identity x3 + y3 = z3 in a ring containing not only
the integers but also complex numbers! In fact putting ω = e2π i/3 = − 1

2 +
√

3
2 i ,

we have ω2 + ω + 1 = 0 and

x3 + y3 = (x + y)(x + ωy)(x + ω2 y). (3.3)

This factorization does not make sense in the ring Z, but in the enlarged ring
Z[ω] = {x + yω | x, y ∈ Z}.

One can prove that Z[ω] is a unique factorization domain. A further analysis
[12] of the identity (3.3) in the ring Z[ω] (using the prime element 1 − ω) proves
FLT for n = 3. For any odd prime number p we have the factorization

x p + y p = (x + y)(x + ωy) · · · (x + ωp−1 y)

in the ring Z[ω] = {a0 + a1ω + · · · + ap−2ω
p−2 | a0, . . . , ap−2 ∈ Z}, where

ω = e2π i/p. In 1847 Lamé (1795–1870) announced to the French academy
that he had proved FLT. His “proof” was based on the (wrong) assumption that
Z[ω] is a unique factorization domain for all primes p. A letter from Kummer
(1810–93) pointed out the mistake and introduced “ideal complex numbers”
to restore unique factorization. Kummer proved the remarkable theorem that
FLT holds for an odd prime number p if p does not divide the numerator of
any of the Bernoulli numbers B2, B4, . . . , Bp−3 (such a prime number is called
regular). The Bernoulli numbers are given by the coefficients Bn in the power
series expansion

x

ex − 1
=

∞∑
n=0

Bn
xn

n!

and can be computed using a variant of Newton’s method ([5], Section 4.4).
The first few Bernoulli numbers are

B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0, B6 = 1

42 .

Using Kummer’s result we see that FLT holds for p = 3, 5, 7. The thirty-second
Bernoulli number is

−7709321041217

510
.
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Since 7709321041217 = 37 · 683 · 305065927, this shows that 37 is an irregu-
lar prime number (in fact the first). The Danish mathematician J. L. W. Jensen
(1859–1925) [15] showed in 1915 that there are infinitely many irregular prime
numbers. Analyzing irregular prime numbers, FLT was proved by S. Wagstaff
for all n up to 125000 in 1978.

Kummer’s insights led to an immense amount of important mathematics.
FLT was finally proved in the early morning (EDST) of September 19, 1994 by
the British mathematician Andrew Wiles of Princeton University. Wiles’ proof
[26] utilizes the most advanced techniques of modern mathematics and builds
heavily on results obtained in the late twentieth century.

3.6 Exercises

1. Show that a zero divisor cannot be a unit.
2. We may view the complex numbers C as the real plane R2 with basis 1 and

i . This means that the real plane as an abelian group can be equipped with a
multiplication making it into a field. Can we extend this multiplication to
obtain a ring multiplication on R3? View R3 as a + bi + cj , where
a, b, c ∈ R. Suppose that we have a multiplication on R3, making it into a
ring, such that i i = i2 = −1. Then i j = x + yi + z j for x, y, z ∈ R.
Multiply both sides of this equation by i to show that such a multiplication
cannot exist (however, if you add one more dimension then you can obtain
a multiplication, as we saw in Example 3.1.2).

3. Let R be a ring. Prove that 0 · x = 0 and −x = (−1) · x for every x ∈ R.
4. Prove that an ideal I in a ring R is the whole ring if and only if 1 ∈ I .
5. Let R be a ring and r1, . . . , rn ∈ R. Prove that the subset

〈r1, . . . , rn〉 = {λ1r1 + · · · + λnrn | λ1, . . . , λn ∈ R} is an ideal in R.
6. Let I be an ideal in a ring R. Prove that 〈r1, . . . , rn〉 ⊆ I if r1, . . . , rn ∈ I .
7. Let M be a subset of a ring R. Prove that 〈 f | f ∈ M〉 (see Remark 3.1.6)

is an ideal.
8. Let I and J be ideals in the ring R.

(i) Prove that

I ∩ J

is an ideal in R.
(ii) Prove that

I + J = {a + b | a ∈ I, b ∈ J }
is an ideal in R.
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(iii) Prove that

I J =
{

n∑
i=1

ai bi | n ≥ 1, ai ∈ I, bi ∈ J

}

is an ideal in R.
(iv) Prove that I J ⊆ I ∩ J . Give an example where I J � I ∩ J .
(v) Is {ab | a ∈ I, b ∈ J } an ideal in R?

9. Let

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

be an increasing sequence of ideals in a ring R. Prove that the union of the
ideals is an ideal. Give an example of two ideals I and J such that I ∪ J
is not an ideal.

10. Let R be a ring with the property that every ideal I ⊆ R is finitely
generated i.e. there are finitely many elements r1, . . . , rn ∈ R such that
I = 〈r1, . . . , rn〉 (such a ring is called noetherian).
(i) Prove that an increasing sequence (chain) of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

must stabilize, i.e. there is a natural number N such that
IN = IN+1 = . . .

(ii) Is an ideal J �= R in a noetherian ring contained in a maximal ideal?
11. Prove that the kernel Ker f = {r ∈ R | f (r ) = 0} ⊆ R of a ring

homomorphism f : R → S is an ideal of R and that the image f (R) is a
subring of S.

12. (i) Find integers λ, µ ∈ Z such that

49λ + 13µ = 1,

and show using this that the coset [13] is a unit in Z/49Z.
(ii) In the following R will denote Z/plZ, where p is a prime and l > 0

a natural number. Show that R is not a domain if l > 1.
(iii) Show that the number of non-units in R is pl−1.
(iv) Suppose that r2 = r where r ∈ R . Show that r = [0] or r = [1].

13. Show that the group of units Z[i]∗ in Z[i] is isomorphic to Z/4Z.
14. Let ω = e2π i/p, where p ∈ N and p > 1. Prove that

Z[ω] = {a0 + a1ω + · · · + ap−2ω
p−2 | a0, . . . , ap−2 ∈ Z}

is a subring of C.
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15. (i) Show that Z[
√

2] = {a + b
√

2 | a, b ∈ Z} is a subring of R.
(ii) Show that Z[

√
2]∗ is infinite (hint: consider powers of 1 + √

2).
16. Let R denote the ring Z[i]/〈1 + 3i〉.

(i) Show that i − 3 ∈ 〈1 + 3i〉 and that [i] = [3] in R. Use this to prove
that [10] = [0] in R and that [a + bi] = [a + 3b], where a, b ∈ Z.

(ii) Show that the unique ring homomorphism

ϕ : Z → R

is surjective.
(iii) Show that 1 + 3i is not a unit and that 1 + 3i does not divide 2 and 5

in Z[i]. Conclude that Ker ϕ = 10Z.
(iv) Show that R ∼= Z/10Z.

17. Let R be a commutative ring and let I, J, where I ⊆ J , be ideals in R.
(i) Show that ϕ : R/I → R/J given by ϕ(x + I ) = x + J is a well

defined, surjective ring homomorphism.
(ii) Let R = Z[i]. Consider n ∈ Z \ {0} and the ideal I = Rn in R.

Show that a + bi ∈ I if and only if n|a and n|b. Show that R/I is a
finite ring.

(iii) Use the notation from (ii). Let J �= 0 be an ideal in R. Show that
J ∩ Z is an ideal in Z and that J ∩ Z �= 0.

(iv) Use the notation from (ii) and (iii). Show that R/J is a finite ring.
18. Prove that a ring having characteristic zero contains a subring isomorphic

to Z.
19. Let ϕ : R → S be a ring homomorphism. Show that J = Ker (ϕ) is a

prime ideal if S is a domain. Show that J is a maximal ideal if S is a field
and ϕ is surjective.

20. Let I be an ideal in the ring R and let π : R → R/I denote the canonical
ring homomorphism.

(i) Let J ⊆ R/I be an ideal. Prove that π−1(J ) is an ideal containing I .
(ii) Let I ′ ⊇ I be an ideal containing I . Prove that π (I ′) is an ideal

in R/I .
(iii) Prove that π and π−1 give a one to one correspondence, preserving

⊆, between ideals in R containing I and ideals in R/I . Use this to
prove that R/I is a field if and only if I is a maximal ideal.

(iv) List the (finitely many) ideals in Z/24Z.
21. Let R be a non-zero commutative ring. Prove that R/P is a domain if P is

a prime ideal.
22. Let I and J be ideals and P a prime ideal of R. Prove that if I J ⊆ P then

I ⊆ P or J ⊆ P .
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23. Prove that a finite domain F is a field (hint: consider x ∈ F \ {0} along
with x2, x3, . . . ).

24. What is the fraction field of a field?
25. Prove that every ideal in the quotient ring R/I of a principal ideal domain

R is principal. Give an example of a ring which is not a domain but for
which every ideal is a principal ideal.

26. What are the units in Z/8Z? Give an example of a ring R with an element
x �= 0, 1 such that x2 = x . Is R a domain? Suppose that every x ∈ R
satisfies x2 = x . Show that char R = 2.

27. Let f (z) = z̄ denote the conjugation map for a complex number z ∈ C.
Prove that f is a ring homomorphism Z[i] → Z[i] and that f (π ) is a
prime element if π ∈ Z[i] is a prime element.

28. Is the remainder r in the definition of a Euclidean domain unique?
29. Compute a greatest common divisor d of a = 4 + 5i and b = 7 + 8i in

Z[i] along with λ, µ ∈ Z[i] such that λa + µb = d.
30. Let Z[ω] = {x + ωy | x, y ∈ Z}, where ω2 + ω + 1 = 0. Let

z = x + ωy ∈ Z[ω] and let z̄ denote the complex conjugate of z.
(i) Prove that N (z) = zz̄ = x2 − xy + y2 and that

N (z1z2) = N (z1)N (z2). Show that z ∈ Z[ω] is a unit if and only if
N (z) = 1.

(ii) Prove that z ∈ Z[ω] is irreducible if N (z) is a prime number.
(iii) Prove that Z[ω] is a Euclidean domain.
(iv) Prove that 1 − ω is a prime element in Z[ω].

31. Is Z[
√−3] = {x + y

√−3 | x, y ∈ Z} a Euclidean ring?
32. Prove that the square of a number is either ≡ 0 (mod 4) or ≡ 1

(mod 4).
33. Let π denote a prime element in Z[i] such that π �∈ Z, iZ. Prove that

N (π ) = 2 or N (π ) = p, where p is a prime number ≡ 1 (mod 4). Give a
complete classification of the prime elements in Z[i] using the prime
numbers in Z.

34. Prove that there are infinitely many prime numbers ≡ 3 (mod 4) by
imitating the proof of Theorem 1.8.2 with N = 4p1 · · · pn − 1.

35. How do you write 221 as a sum of two squares using that 17 = 12 + 42

and 13 = 22 + 32?
36. Show that 51 is not a sum of two squares.
37. Write 137 as a sum of two squares using the algorithm outlined in

subsection 3.5.6.
38. How do the points shown in the following diagram relate to the Gaussian

integers?
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39. Let p be a prime number. Define

Z(p) =
{a

s
∈ Q | p � s

}
⊆ Q.

(i) Prove that Z is a subring of Z(p) and that Z(p) is a subring of Q. Show
that the field of fractions of Z(p) is isomorphic to Q.

(ii) Find the units Z∗
(p).

(iii) Show that every non-zero element x ∈ Z(p) can be written uniquely
as upn , where u is a unit and n ≥ 0.

(iv) Let I be a non-zero ideal of Z(p). Show that I = 〈pn〉 for some n ≥ 0.
(v) Show that Z(p) contains only one maximal ideal.

40. (HOF) Prove that the algorithm given in subsection 3.5.6 works without
consulting [25].

41. (HOF) Let R = Z[ξ ] = {x + yξ | x, y ∈ Z} ⊆ C, where
ξ = (1 + √−19)/2. Prove that R is a principal ideal domain that is not a
Euclidean domain.
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