
2 Groups

The concept of a group was first formalized by Cayley (1821–95) around 1854,
but many mathematicians computed with group-like structures before that. In
fact one of the main results in introductory group theory (see Theorem 2.2.8
below) was already known to Lagrange (1736–1813) in 1771. At this point
we need to introduce groups in order to have a language that makes life easier.
Dealing with numbers, we have encountered group-like structures several times
already. By introducing the basic notions of group theory we get very simple
(and nice) proofs of Euler’s and Fermat’s theorems on congruences (Theorem
1.7.2 and Corollary 1.9.2). By some mystery you are able to do much more
powerful mathematics by introducing the three simple axioms defining a group.
One point is worth singling out in this chapter: you will increase your level of
abstraction from computing with elements in a set to computing with subsets of
a set. In fact group theory puts the theory of congruences in a natural context and
it will make sense to add and multiply subsets of Z consisting of numbers with
the same remainder with respect to a positive integer. Groups are also useful
outside the world of numbers. Using symmetric and alternating groups we will
give a complete treatment of the 15-puzzle invented by Sam Loyd in 1878. Loyd
offered a 1000-dollar prize for a correct solution. You can understand why this
puzzle usually drives people nuts by reading subsection 2.9.5.

At the end of the chapter we treat actions of groups on sets. This is an
extremely useful notion. We will apply actions of groups to combinatorics and
counting and in the proof of the celebrated Sylow theorems.

2.1 Definition

A composition on a set G is a map ◦ : G × G → G. The composition ◦(g, h)
is often written g ◦ h or gh.
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2.1 Definition 51

Definition 2.1.1 A pair (G, ◦) consisting of a set G and a composition ◦ :
G × G → G is called a group if it satisfies the following three properties.

(i) The composition is associative:

s1 ◦ (s2 ◦ s3) = (s1 ◦ s2) ◦ s3

for every s1, s2, s3 ∈ G.
(ii) There is a neutral element e ∈ G such that

e ◦ s = s and s ◦ e = s

for every s ∈ G.
(iii) For every s ∈ G there is an inverse element t ∈ G such that

s ◦ t = e and t ◦ s = e.

A group G is called abelian if x ◦ y = y ◦ x for every x, y ∈ G. The number
of elements |G| in G is called the order of G.

The first few examples of groups arise in the world of numbers. The set
of natural numbers (N, +) with the composition + is not a group, since the
neutral element would have to be 0, but then 1, for example, would not have an
inverse element (there would not exist x ∈ N such that x + 1 = 0). This defect
is repaired by introducing the set of integers Z, which is an abelian group with
the composition +. The rational numbers (Q, +) and the real numbers (R, +)
are also abelian groups. The sets of non-zero rational numbers (Q \ {0}, ·) and
non-zero real numbers (R \ {0}, ·) are abelian groups with multiplication as
composition.

The axioms defining a group resemble the rules of chess. You can learn them
in a few minutes. To become a skilled player, however, you need to see lots
of examples of groups in many contexts. You have little or no insight in the
concept of a group by just knowing (i)–(iii) above. The first question to ask is,
why do we introduce this abstraction? To begin with let us see how congruences
fit into this framework.

2.1.1 Groups and congruences

A group is a vast generalization of the integers Z with +. The advantage of
working with Z instead of N is that every number x ∈ Z has an inverse y =
−x , so that x + y = 0. In this context 0 is a neutral element for +, in that
x + 0 = x for every x ∈ Z. One very important property is associativity, as
mentioned above. This concept arises as an attempt to give meaning to the
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expression x + y + z, where x, y, z ∈ Z. This expression only makes sense
when we insert parentheses, to give (x + y) + z or x + (y + z), because + is a
map Z × Z → Z. Associativity states that (x + y) + z = x + (y + z) – it does
not matter how you insert the parentheses.

Granting that Z is a group with the composition +, let us see how to build
some new groups tied up with congruence modulo an integer. We will define
addition, +, on subsets of Z given by a + nZ = {a + nx | x ∈ Z}, where a, n ∈
Z. As an example we have

2 + 5Z = {. . . ,−8, −3, 2, 7, . . . }.
When working with numbers it was easy to spot when two elements were
identical. Now, we will work with subsets. Two subsets are identical when they
contain the same elements. You may check for example that 5 + 7Z = 19 + 7Z.
This is a special case of the following proposition.

Proposition 2.1.2 Let a, b, c ∈ Z. Then a + cZ = b + cZ if and only if a ≡
b (mod c). Also (a + cZ) ∩ (b + cZ) = ∅ if and only if a �≡ b (mod c).

Proof. If m ∈ a + cZ then m = a + cx , where x ∈ Z. If a + cZ = b + cZ

then m ∈ b + cZ. This shows that m = a + cx = b + cy for y ∈ Z. Therefore
a − b = c(y − x) and a ≡ b (mod c). However, if a ≡ b (mod c) then a = b +
cx for x ∈ Z. Therefore a + cZ = b + cx + cZ = b + cZ, since cx + cZ =
cZ. If (a + cZ) ∩ (b + cZ) �= ∅, then we may find m, x, y ∈ Z such that m =
a + cx = b + cy. This gives a − b = c(y − x) and therefore a ≡ b (mod c).
This proves that if (a + cZ) ∩ (b + cZ) �= ∅ then a + cZ = b + cZ. �

If c > 0 we have a + cZ = b + cZ if and only if [a]c = [b]c, by Proposition
1.3.2(i). In this context we let [x] denote the subset x + cZ. Then [x] = [[x]c],
so there can be only finitely many different subsets of the form [x]. These are
given by the remainders [0], [1], . . . , [c − 1] after division by c. Denote the set
of these subsets by Z/cZ.

Example 2.1.3 Let c = 3. Then Z/3Z = {[0], [1], [2]}, where

[0] = {. . . , −6, −3, 0, 3, 6, . . . },
[1] = {. . . , −5, −2, 1, 4, 7, . . . },
[2] = {. . . , −4, −1, 2, 5, 8, . . . }.

Armed with these definitions we can add subsets [x], [y] ∈ Z/cZ simply by
defining [x] + [y] = [x + y].
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Notice the problem here! We need to check that if [x] = [x ′] and [y] =
[y′] then [x + y] = [x ′ + y′]. But we have already done that in Proposition
1.3.4(i), where we proved that x ≡ x ′ (mod c) and y ≡ y′ (mod c) implies that
x + y ≡ x ′ + y′ (mod c). So by Proposition 2.1.2, the composition + is well
defined. Make sure you understand that there really is something to be checked
here.

With the composition + constructed in this way, (Z/cZ, +) is a group of
order c. The neutral element is the subset [0] = cZ. The inverse element of [x]
is [−x], and associativity holds because

([x] + [y]) + [z] = [x + y] + [z] = [(x + y) + z] = [x + (y + z)]

= [x] + [y + z] = [x] + ([y] + [z])

for [x], [y], [z] ∈ Z/cZ. Here we have used the fact that associativity holds in
(Z, +). The group (Z/cZ, +) is abelian since [x] + [y] = [x + y] = [y + x] =
[y] + [x] for every [x], [y] ∈ Z/cZ. If c = 0 then x + cZ = {x} and we simply
recover (Z, +) as the group (Z/0Z, +).

2.1.2 The composition table

Definition 2.1.4 When dealing with a finite group ({e, g1, . . . , gr }, ◦), the
composition ◦ is often displayed in a composition table:

◦ e g1 · · · g j · · · gr

e e g1 · · · g j · · · gr

g1 g1 g1 ◦ g1 · · · g1 ◦ g j · · · g1 ◦ gr
...

...
...

. . .
...

. . .
...

gi gi gi ◦ g1 · · · gi ◦ g j · · · gi ◦ gr
...

...
...

. . .
...

. . .
...

gr gr gr ◦ g1 · · · gr ◦ g j · · · gr ◦ gr

Example 2.1.5 The composition table for the finite group (Z/4Z, +) with
elements [0], [1], [2], [3] is

+ [0] [1] [2] [3]
[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

.
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2.1.3 Associativity

Suppose that S is a set with a composition S × S → S, where (x, y) maps to
xy. Assume that x(yz) = (xy)z for every x, y, z ∈ S (the composition is asso-
ciative). Writing an expression like s1s2s3 for s1, s2, s3 ∈ S is clearly nonsense,
since the composition is only defined given two elements from S. We can make
sense of it by (1) first evaluating s1s2 and then composing with s3 or (2) first eval-
uating s2s3 and then composing with s1 (from the left). Associativity says that
these two ways of evaluating give the same result. Similarly, for four elements
s1, s2, s3, s4 of a group, we have five ways of evaluating s1s2s3s4:

s1(s2(s3s4)),

s1((s2s3)s4),

(s1(s2s3))s4,

((s1s2)s3)s4,

(s1s2)(s3s4).

You can use associativity to prove that these five different ways of evaluating
s1s2s3s4 all give the same result. There are 4862 ways1 of evaluating the product
s1s2 · · · s10 of 10 elements. Associativity still proves that these are all the same.
One can prove, using associativity, that any two ways of evaluating a product
s1s2 · · · sn lead to the same result.

In general it is difficult to decide whether a composition on a set is associative.
There is one exceedingly important case for which we have an associative
composition. This is the case where S is the set of maps from a set X to itself
and the composition is the usual composition of maps, in which f g is defined
by ( f g)(x) = f (g(x)) for f, g ∈ S and x ∈ X . In this case f (gh) = ( f g)h,
since ( f (gh))(x) and (( f g)h)(x) are identical for every x ∈ X :

( f (gh))(x) = f ((gh)(x)) = f (g(h(x))),

(( f g)h)(x) = ( f g)(h(x)) = f (g(h(x))).

2.1.4 The first non-abelian group

To show the wide application of groups, we give an example of a non-
abelian group with six elements. You should keep referring to this example

1 Computing the number of ways Cn−1 of evaluating the product of n elements s1s2 · · · sn by
inserting parentheses is a classical problem of combinatorics, referred to as Catalan’s problem.
One may prove that

Cn = 1

n + 1

(
2n

n

)
.
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when new concepts are introduced. It contains all the ingredients of a good
understanding.

Example 2.1.6 Let X = {1, 2, 3} be a set consisting of three elements. Let G
be the set of all bijective maps X → X . Then G is a group with the usual compo-
sition of maps as composition (see the previous subsection). The neutral element
e is the identity map X → X . The element inverse to a given map f : X → X
is the inverse map f −1 : X → X , and the composition of maps is associative
(we saw this in subsection 2.1.3). We can list the elements of G as follows:

e =
(

1 2 3
1 2 3

)
, a =

(
1 2 3
2 1 3

)
, b =

(
1 2 3
1 3 2

)
,

c =
(

1 2 3
3 2 1

)
, d =

(
1 2 3
3 1 2

)
, f =

(
1 2 3
2 3 1

)
.

where for example c : X → X is the bijective map given by
c(1) = 3, c(2) = 2, c(3) = 1. To compute ab you simply find what the
map a ◦ b does to 1, 2, 3. Now ab(1) = a(b(1)) = 2, ab(2) = a(b(2)) = 3
and ab(3) = a(b(3)) = 1. This shows that ab = f . The composition table (see
subsection 2.1.2) is constructed using this reasoning.

◦ e a b c d f
e e a b c d f
a a e f d c b
b b d e f a c
c c f d e b a
d d b c a f e
f f c a b e d

The group G is also known as the symmetric group S3. It is non-abelian since
ab �= ba.

2.1.5 Uniqueness of neutral and inverse elements

There can be only one neutral element in a group G. If e′ ∈ G were another
then e = e′e = e′ by Definition 2.1.1(ii). Also, to every g ∈ G there can be
only one inverse element, h. Suppose that h′ is an element satisfying gh′ = e.
Then e = hg implies that h′ = (hg)h′ = h(gh′) = he = h by Definition 2.1.1
(iii).

Definition 2.1.7 Let g ∈ G be an element of a group. Then we let g−1 ∈ G
denote the unique inverse element of g.
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Example 2.1.8 Finding the inverse element of a product ab in a group is
similar to inverting a product of invertible matrices. In fact,

(ab)(b−1a−1) = a(b(b−1a−1)) = a(ea−1) = aa−1 = e

shows that (ab)−1 = b−1a−1. The computation for (b−1a−1)(ab) is similar.

2.1.6 Multiplication by g ∈ G is bijective

Suppose that G is a group and g ∈ G. Then there is a map ϕ : G → G given by
ϕ(x) = gx . This map is bijective. We can prove this by giving the inverse map
ψ : G → G toϕ. Consider the mapψ(x) = g−1x from G to G. Thenψ(ϕ(x)) =
g−1(gx) = (g−1g)x = ex = x and ϕ(ψ(x)) = g(g−1x) = (gg−1)x = ex = x .
This proves that ψ is the inverse map of ϕ and therefore that ϕ is a bijection.
Notice how all the properties of the group composition in Section 2.1.1 come
into play.

In the same way one can prove that the map ξ : G → G given by ξ (x) = xg
is a bijection (see Exercise 2.1).

Example 2.1.9 What does a group G of order three look like? There must be
a (unique) neutral element e ∈ G and two other elements a, b ∈ G. To describe
the composition ◦ : G × G → G we fill out the composition table:

◦ e a b
e e ◦ e e ◦ a e ◦ b
a a ◦ e a ◦ a a ◦ b
b b ◦ e b ◦ a b ◦ b

We know that e ◦ a = a ◦ e = a and e ◦ b = b ◦ e = b. This gives us the partial
table

◦ e a b
e e a b
a a
b b

An important point is that an element in a group can only occur once in a row (or
a column) of the composition table. The reason is that multiplication by a group
element is bijective. Using this fact, there is only one way to complete the table:

◦ e a b
e e a b
a a b e
b b e a
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We have proved that there is only one way of filling out the composition table
for a group of order three (the same holds for any prime number. We will prove
this in Proposition 2.7.2).

2.1.7 More examples of groups

The only way to understand the concept of a group is to study its many incar-
nations. We give some more important examples in this subsection.

Example 2.1.10 Using matrices we will give an example of an infinite non-
abelian group. Let

GL2(R) =
{(

a b
c d

)
| a, b, c, d ∈ R and det

(
a b
c d

)
= ad − bc �= 0

}

denote the set of 2 × 2 matrices with real entries and non-zero determinant.
The multiplication of matrices gives a composition on GL2(R) as det(AB) =
det(A) det(B) for A, B ∈ GL2(R). One may check that it is associative by
explicit computation (or identify matrix multiplication with the composition
of linear maps). The identity matrix is the neutral element in GL2(R) and
the inverse matrix A−1 is the inverse element of A ∈ GL2(R); recall that
det(A−1) = det(A)−1. This group is called the general linear group, or more
precisely the 2 × 2 general linear group. It is a non-abelian group (can you find
A, B ∈ GL2(R) such that AB �= B A?).

Example 2.1.11 Recall that the transpose of a 2 × 2 matrix is given by

(
a b
c d

)t

=
(

a c
b d

)
.

A matrix A ∈ GL2(R) is called orthogonal if AAt = I , where I is the identity
matrix. The set of 2 × 2 orthogonal matrices is denoted O2(R). Matrix mul-
tiplication is in fact a composition on O2(R). This follows from the identity
(AB)t = Bt At for A, B ∈ O2(R). Since (A−1)t = (At )−1, O2(R) is a group
with matrix multiplication as composition. It is called the orthogonal group (or
more precisely the 2 × 2 orthogonal group).

Example 2.1.12 An isometry of the plane R2 is a map ϕ : R2 → R2 preserv-
ing the Euclidean distance between any two points in R2:

|ϕ(x) − ϕ(y)| = |x − y|
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for every x, y ∈ R2. One can prove that an isometry fixing the origin (0, 0) is
a linear invertible map (see Exercise 2.8). We call such an isometry linear. The
set L of linear isometries of R2 is a group with respect to the usual composition
of maps. Let us prove this in detail. First we need to see that the composition
ϕ1 ◦ ϕ2 of two linear isometries ϕ1, ϕ2 ∈ L is again a linear isometry. This is to
make sure that ◦ really is a composition on L . Given x, y ∈ R2,

|ϕ1(ϕ2(x)) − ϕ1(ϕ2(y))| = |ϕ2(x) − ϕ2(y)| = |x − y|.
This proves that ϕ1 ◦ ϕ2 is an isometry. Since ϕ1(ϕ2((0, 0))) = ϕ1((0, 0)) =
(0, 0), it must be linear. The neutral element in L with respect to ◦ is the
identity map. Also, if ϕ ∈ L then ϕ−1 ∈ L (we know that ϕ is bijective): we
need to prove that

|ϕ−1(x) − ϕ−1(y)| = |x − y|
for every x, y ∈ R2. But since ϕ is surjective we can find x ′, y′ ∈ R2 such that
x = ϕ(x ′) and y = ϕ(y′). Therefore

|ϕ−1(x) − ϕ−1(y)| = |x ′ − y′| = |ϕ(x ′) − ϕ(y′)| = |x − y|.
This shows that ϕ−1 ∈ L . We know from subsection 2.1.3 that the composition
of maps is associative. Therefore ◦ is associative on L . In total we have proved
that (L , ◦) really is a group. But what are the maps in L? Let us compute the
matrix of a linear isometry ϕ : R2 → R2 in the standard basis e1 = (1, 0) and
e2 = (0, 1) of R2.

We know that |ϕ(e1)| = |ϕ(e1) − ϕ((0, 0))| = |e1| = 1. This implies that
ϕ(e1) = (cos(t), sin(t)) for t ∈ R. However, since |e1 − e2| = |(1, −1)| = √

2,
we get |(cos(t), sin(t)) − ϕ(e2)| = √

2. This gives ϕ(e2) = (− sin(t), cos(t)) =
v1 or ϕ(e2) = (sin(t), − cos(t)) = v2, as seen in the following diagram:

�

���
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So, given a linear isometry ϕ we have two possibilities for its matrix when
ϕ(e1) is determined by ϕ(e1) = (cos(t), sin(t)). The first is represented by the
matrix

(
cos(t) − sin(t)
sin(t) cos(t)

)
;

this corresponds to a rotation. The second one is given by the matrix

(
cos(t) sin(t)
sin(t) − cos(t)

)
;

this corresponds to a reflection in the line L = {(r cos(t/2), r sin(t/2))
| r ∈ R}.

We have demystified the “complicated” term linear isometry and proved that
we are dealing with rotations and reflections of the plane. Since L is a group
the composition of a rotation and a reflection must be a reflection or a rotation.
Which one is it?

If you prefer a more algebraic way of looking at the group L , you may prove
that matrices of linear isometries are orthogonal (see Example 2.1.11). In fact,
as we will see later, in Example 2.4.7, L is, in a specific sense, the same group
as O2(R) from Example 2.1.11.

Example 2.1.13 Consider the subset G ⊂ L of linear isometries (see Example
2.1.12) of R2 mapping an equilateral triangle K centered at (0, 0) to itself.
Thus

G = {ϕ ∈ L | ϕ(K ) = K }.

Let us check that G is a group with respect to the composition of maps. First (as
in Example 2.1.12) we need to check that ϕ1 ◦ ϕ2 ∈ G when ϕ1, ϕ2 ∈ G. This is
definitely true, since ϕ1(ϕ2(K )) = ϕ1(K ) = K when ϕ1, ϕ2 ∈ K . The identity
map is the neutral element in G. If ϕ ∈ G, we need to prove that ϕ−1 ∈ G. This
also holds, since ϕ−1(K ) = ϕ−1(ϕ(K )) = K . Again, we know from subsection
2.1.3 that composition of maps is associative. Therefore ◦ is an associative
composition, just as in Example 2.1.12. We have proved that (G, ◦) is a group.
What are the maps in G? These are the rotations and reflections preserving the
equilateral triangle.
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S

R

T

�
D

The only reflections preserving K are the reflections in the lines R, S and T
above. The only rotations preserving K are I , D, D2, where I is the identity
map, D is a rotation of 2π/3 (depicted above) and E = D2 is a rotation of
4π/3. Now it follows that

G = {I, R, S, T, D, E}

and that this finite subset of L really is a group. The composition table can be
written down through explicit sketching:

◦ I R S T D E
I I R S T D E
R R I D E S T
S S E I D T R
T T D E I R S
D D T R S E I
E E S T R I D

Usually G is denoted D3 and called the dihedral group of order 6. We will see
later, in Example 2.4.6, that it is in a specific sense the same group as the group
S3 from Example 2.1.6 .

2.2 Subgroups and cosets

In Example 2.1.12 we saw an example of a group L containing a subset G that
is a group with respect to the composition of L . Again in Example 2.1.11, the
subset O2(R) of GL2(R) turned out to be a group with respect to the composition
of GL2(R). This leads us to the concept of a subgroup.
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Definition 2.2.1 A subgroup of a group G is a non-empty subset H ⊆ G such
that the composition of G makes H into a group, i.e. H is a subgroup of G if
and only if

(i) e ∈ H ,
(ii) x−1 ∈ H for every x ∈ H ,

(iii) xy ∈ H for every x, y ∈ H .

If you revisit Example 2.1.13, you will see that we actually proved there that
G is a subgroup of L , by verifying steps (i)–(iii) above.

Example 2.2.2 Returning to the group S3 from Example 2.1.6, you can check
that the two subsets {e, a} and {e, f, d} are subgroups by looking at the com-
position table for S3.

2.2.1 Subgroups of Z

We know that (Z, +) is a group. In the language of groups, division with re-
mainder (Theorem 1.2.1) has a very pretty consequence.

Proposition 2.2.3 Let H be a subgroup of (Z, +). Then

H = dZ = {dn | n ∈ Z} = {. . . , −2d, −d, 0, d, 2d, . . . }
for a unique natural number d ∈ N.

Proof. If H = {0} we may put d = 0. Assume that H �= {0}. Then N ∩ H
contains a smallest natural number d > 0 (why?). We claim that H = dZ. It
follows that −d ∈ H , since d ∈ H and H is a subgroup. Again using that H
is a subgroup, we get −d + (−d) = −2d ∈ H and d + d = 2d ∈ H , −2d +
(−d) = −3d ∈ H and 2d + d = 3d , . . . . This shows that nd ∈ H for every
n ∈ Z. Therefore dZ ⊆ H .

Now let m ∈ H . Division with remainder gives m = qd + r , where 0 ≤
r < d. Since H is a subgroup, m ∈ H and d ∈ H , we get −qd ∈ H and r =
m − qd ∈ H . But r ≥ 0 is a natural number < d in H . This means that r = 0,
so that m = qd and H ⊆ dZ. Therefore H = dZ. �

2.2.2 Cosets

Let H be a subgroup of G and g ∈ G. Then the subset

gH = {gh | h ∈ H} ⊆ G
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is called a left coset of H . Similarly we call the subset

Hg = {hg | h ∈ H} ⊆ G

a right coset of H . The set of left cosets of H is denoted G/H . The set of right
cosets of H is denoted H\G.

Example 2.2.4 If G = (Z, +) and H = 3Z then

Z/3Z = {3Z, 1 + 3Z, 2 + 3Z}.
Notice that 1 + 3Z = 4 + 3Z. This illustrates the fact that you can have different
ways of representing the same left coset: if H is a subgroup of G and g1 H =
g2 H then g1 and g2 are not necessarily equal.

Example 2.2.5 Let H denote the subgroup {e, a} of the group S3 from Exam-
ple 2.1.6. Let us list all the left and right cosets of H just using the definitions.
First the left cosets:

eH = {ee, ea} = {e, a},
aH = {ae, aa} = {a, e},
bH = {be, ba} = {b, d},
cH = {ce, ca} = {c, f },
d H = {de, da} = {d, b},
f H = { f e, f a} = { f, c}.

We can already spot some interesting phenomena. It seems that left cosets are
either equal or disjoint. Also, eH = aH , bH = d H and cH = f H . This means
that G/H = {H, bH, cH}. Let us carry out the same computations for the right
cosets:

He = {ee, ae} = {e, a},
Ha = {ea, aa} = {a, e},
Hb = {eb, ab} = {b, f },
Hc = {ec, ac} = {c, d},
Hd = {ed, ad} = {d, c},
H f = {e f, a f } = { f, b}.

Here we have He = Ha, Hb = H f and Hc = Hd. This means that H\G =
{H, Hb, Hc}.
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With this concrete example at hand, the following lemma should make sense,
even though it might appear abstract at a first reading.

Lemma 2.2.6 Let H be a subgroup of a group G and let x, y ∈ G. Then

(i) x ∈ x H,
(ii) x H = y H ⇐⇒ x−1 y ∈ H,

(iii) If x H �= y H then x H ∩ y H = ∅,
(iv) The map ϕ : H → x H given by ϕ(h) = xh is bijective.

Proof. Clearly x ∈ x H , since x = xe and e ∈ H . This proves (i). If x H =
y H then xh = ye = y for some h ∈ H . This implies that x−1 y = h ∈ H . If
x−1 y = h ∈ H then y = xh. Therefore y H ⊆ x H . Since x = yh−1, we get
x H ⊆ y H , so that x H = y H . This proves (ii). Suppose that z ∈ x H ∩ y H .
Then z = xh1 = yh2 for suitable h1, h2 ∈ H . But this shows that x−1 y ∈ H
and thus that x H = y H by (ii). Therefore (iii) holds. Since ϕ is multiplication
by x it follows by from subsection 2.1.6 that ϕ is bijective. It is simply the
multiplication map restricted to the subgroup H . This proves (iv). �

To connect with the theory of numbers, look at the subgroup dZ of Z, where
d ∈ N. In this context Lemma 2.2.6(ii) says that a + dZ = b + dZ if and only
if b − a ∈ dZ. Now b − a ∈ dZ means that d | b − a or a ≡ b (mod d) in the
language of congruences. This is what we obtained in Proposition 2.1.2 without
knowing about cosets.

Corollary 2.2.7 Let H be a subgroup of G. Then

G =
⋃
g∈G

gH,

and if g1 H �= g2 H then g1 H ∩ g2 H = ∅.

Proof. Since g ∈ gH (Lemma 2.2.6(i)) for every g ∈ G, we see that G =
∪g∈G gH . If g1 H �= g2 H then g1 H ∩ g2 H = ∅ by Lemma 2.2.6(iii). �

We are now able to prove the Lagrange index theorem. Lagrange did not
have the concept of an abstract group. He worked in the context of solutions to
algebraic equations.

Theorem 2.2.8 (Lagrange) If H ⊆ G is a subgroup of a finite group G then

|G| = |G/H ||H |.
The order of a subgroup divides the order of the group.
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Proof. Let gH be a coset in G/H . By Lemma 2.2.6(iv) there is a bijection
between gH and H . This shows that gH has the same number of elements
as H . Since G is the union of the cosets and different cosets are disjoint, by
Corollary 2.2.7, the order of G must be the number of cosets times the order of
H . This shows that |G| = |G/H ||H | and that |H | divides |G|. �

Definition 2.2.9 The number of cosets |G/H | is called the index of H in G.
It is denoted [G : H ].

Lagrange’s theorem says that the order of a subgroup H divides the order of
the group G. Suppose that d is a divisor in the order of a finite group G. Does
G contain a subgroup of order d? After having digested Section 2.9 you will
be able to solve Exercise 2.41, which answers this question negatively.

2.3 Normal subgroups

Let H be a subgroup of a group G. In a very important special case it is possible
to make the set of left cosets, G/H , into a group inheriting the composition
of G. What is the natural way of doing this? The set G/H consists of certain
subsets of G called left cosets. We would like to compose two left cosets and
get a new left coset. Why not compose subsets of G? Define

XY = {xy | x ∈ X, y ∈ Y }
for arbitrary subsets X, Y ⊆ G. This is a composition on the set of subsets of
G, which is associative because the composition in G is associative. We would
like this composition on subsets to give a composition on left cosets viewed
as subsets. This is not necessarily so. Take a look back at Example 2.2.5.
Here

(bH )(cH ) = {b, d}{c, f } = {bc, b f, dc, d f } = { f, c, a, e},
which is not a left coset. The key is the following.

Proposition 2.3.1 Let H be a subgroup of a group G. If gH = Hg for every
g ∈ G then

(x H )(y H ) = (xy)H

for every x, y ∈ G.
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Proof. The inclusion (x H )(y H ) ⊇ (xy)H holds without any assumptions on
H : if (xy)h is an element of (xy)H then (xy)h = (xe)(yh) ∈ (x H )(y H ). Let us
show that (x H )(y H ) ⊆ (xy)H . Let (xh1)(yh2) ∈ (x H )(y H ), where h1, h2 ∈
H . It follows that (xh1)(yh2) = x((h1 y)h2) = x((yh3)h2) = (xy)(h3h2) for a
suitable h3 ∈ H , since H y = y H . This shows that (x H )(y H ) ⊆ (xy)H . �

This leads to the following definition.

Definition 2.3.2 A subgroup N of a group G is called normal if

gNg−1 = {gng−1 | n ∈ N } = N

for every g ∈ G.

A normal subgroup N of G satisfies gN = Ng for every g ∈ G (see Exercise
2.13).

Corollary 2.3.3 Let N be a normal subgroup of the group G. Then the com-
position of subsets makes G/N into a group and

(g1 N )(g2 N ) = (g1g2)N

for g1 N , g2 N ∈ G/N.

Proof. We know that composition of subsets is associative and we have verified
the above identity (g1 N )(g2 N ) = (g1g2)N for arbitrary g1, g2 ∈ G in Proposi-
tion 2.3.1. So, the multiplication of subsets of G gives a composition on G/N
(notice once more that it is crucial that N is normal). The neutral element is
the left coset eN = N . The inverse element (gN )−1 is g−1 N for gN ∈ G/N .
Therefore G/N is a group with this composition. �

Definition 2.3.4 Let N be a normal subgroup of G. The group G/N is called
a quotient group.

Example 2.3.5 The subset H = {e, a} ⊆ S3 is a subgroup of S3 (using the
notation of Example 2.1.6). It is not normal, since the left coset bH = {b, ba}
is not equal to the right coset Hb = {b, ab}. This follows from the fact that
ab �= ba as we have already seen. However, K = {e, d, f } is a normal subgroup
of S3.
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A subgroup of an abelian group is normal (see Exercise 2.14). Suppose that
G is a group with the property that every subgroup in it is normal. Is G abelian?
The answer is a somewhat surprising “no.” The smallest non-abelian group for
which every subgroup is normal is the quaternion group with eight elements
(see Exercise 2.17).

Lemma 2.3.6 Let H and K , where H is normal, be subgroups of a group G.
Then H K is a subgroup of G.

Proof. Clearly e ∈ H K . If x ∈ H, y ∈ K then (xy)−1 = (y−1x−1 y)y−1 ∈
H K . If furthermore x ′ ∈ H, y′ ∈ K then (xy)(x ′y′) = (x(yx ′y−1))yy′ ∈ H K .

�

2.3.1 Quotient groups of the integers

Consider the subgroup nZ of Z. This is a normal subgroup since Z is abelian.
The quotient group Z/nZ may appear abstract until you realize that it is exactly
the same group as that defined at the start of subsection 2.1.1. The elements of
Z/nZ have the form [x] = x + nZ, where x ∈ Z. They are composed (here,
added) using the familiar rule [x] + [y] = [x + y]. This is an application of
Corollary 2.3.3.

The elements [a] = a + nZ of Z/nZ, where a ∈ Z, are called residue
classes. If n > 0 the residue classes of Z/nZ are {[0], [1], . . . , [n − 1]} – rep-
resented by the remainders after dividing by n.

2.3.2 The multiplicative group of prime residue classes

Looking at the set Z/nZ, where n > 0, can we multiply residue classes via
[a][b] = [ab] using ordinary multiplication in Z and get a group? We need to
check that this makes sense. It may be possible that [a] = [a′] and [b] = [b′]
but [ab] �= [a′b′]. This would make our definition meaningless. It would mean
that [a][b] has several values depending on the elements you choose in [a]
and [b]. Fortunately it does make sense since [a] = [a′] and [b] = [b′] can be
rewritten as a ≡ a′ (mod d) and b ≡ b′ (mod n). Now Proposition 1.3.4 implies
that ab ≡ a′b′ (mod n) or [ab] = [a′b′]. So we get a well defined composition
on Z/nZ. It is associative with neutral element [1] = 1 + nZ, but not every
element has an inverse. To begin with, [a][0] = [0] for every [a] ∈ nZ, so [0]
cannot have an inverse. Suppose we put G = Z/nZ \ {[0]}. This is still not
good enough. Take the example n = 4; here [2][2] = [0] �∈ G. The answer is to
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look at residue classes [a] = a + nZ with gcd(a, n) = 1. You can easily check
that if a + nZ = b + nZ and gcd(a, n) = 1 then gcd(b, n) = 1. These residue
classes are called prime residue classes. We let

(Z/nZ)∗ = {[a] ∈ Z/nZ | gcd(a, n) = 1}

for n ∈ N. The composition [a][b] = [ab] is a composition on (Z/nZ)∗,
since gcd(a, n) = 1 and gcd(b, n) = 1 implies that gcd(ab, n) = 1 (Corollary
1.5.11). Let [a] ∈ (Z/nZ)∗. Then we can find λ, µ ∈ Z such that λa + µn = 1
by Lemma 1.5.7. In particular this gives gcd(λ, n) = 1 and [λa] = [1], since
[λa + µn] = [λa] + [µn] = [λa] + [0] = [λa]. But then [λ] is the inverse ele-
ment of [a], since [a][λ] = [aλ] = [1]. We have proved that (Z/nZ)∗ is a group
with multiplication of residue classes as composition. The order of (Z/nZ)∗ is
ϕ(n) for n > 0.

Example 2.3.7 Consider the group (Z/34Z)∗. Then [13] ∈ (Z/34Z)∗. In Ex-
ample 1.5.3 we saw using the extended Euclidean algorithm that

5 · 34 − 13 · 13 = 1.

This implies that the inverse element of [13] in (Z/34Z)∗ is [13]−1 = [21]
(why?).

Example 2.3.8 If n = 8 then (Z/nZ)∗ has the composition table

· [1] [3] [5] [7]
[1] [1] [3] [5] [7]
[3] [3] [1] [7] [5]
[5] [5] [7] [1] [3]
[7] [7] [5] [3] [1]

The group (Z/nZ)∗ is a much more subtle abelian group than Z/nZ. For
one thing, the order of (Z/nZ)∗ is ϕ(n), a quantity difficult to compute as we
have seen in Chapter 1. Later (Z/nZ)∗ will appear more elegantly as the group
of units in the ring Z/nZ.

The two groups Z/4Z and (Z/8Z)∗ both have four elements. They are abelian
but quite different. In fact G = (Z/8Z)∗ has the property that g · g = [1] = e
for every g ∈ G. This is not shared by Z/4Z, where [1] + [1] = [2] �= [0] = e.
We require a tool to distinguish groups. We need to study maps between them
that preserve their respective compositions.
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2.4 Group homomorphisms

In what follows we will abuse notation somewhat by not writing the composition
of elements explicitly. As before, we will write e for the neutral element in a
group. It will be clear from the context to which group the composition and the
neutral element refer.

Definition 2.4.1 Let G and K be groups. A map f : G → K is called a group
homomorphism if f (xy) = f (x) f (y) for every x, y ∈ G.

Example 2.4.2 The exponential function ex is a group homomorphism from
(R, +) to (R>0, ·), where R>0 = {x ∈ R | x > 0}. This is the well known rule
ex+y = ex ey for every x, y ∈ R.

Example 2.4.3 The determinant

det : GL2(R) → (R \ {0}, ·)
is a group homomorphism (here · denotes multiplication). This is the well
known rule det(AB) = det(A) det(B) for A, B ∈ GL2(R).

Example 2.4.4 Let N be a normal subgroup of the group G. Then π : G →
G/N given by π (g) = gN is a group homomorphism. This follows from
Corollary 2.3.3.

Definition 2.4.5 The kernel of a group homomorphism f : G → K is

Ker f = {g ∈ G | f (g) = e}.
The image of f is f (G) = { f (g) | g ∈ G} ⊆ K . A bijective group homomor-
phism is called a group isomorphism. A group isomorphism f : G → K is
denoted f : G

∼→ K and we write G ∼= K and say that G and K are isomor-
phic.

Isomorphisms between groups may appear a bit abstract at first. In the world
of groups, isomorphic groups are considered as the same. For all practical
purposes they have the same composition tables.

Example 2.4.6 Recall the groups S3 (Example 2.1.6) and D3 (Example
2.1.13). They are isomorphic. To prove this we give a map f : D3 → S3 and
prove that it is a group isomorphism. We number the corners in the equilateral
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triangle by 1, 2 and 3:

1�

2�

3
�

Given a rotation or a reflection σ ∈ D3 it is easy to see that it must map a
corner to a corner (if you do not believe this, you can go through the elements
I, R, S, T, D, E of D3 and check it). This enables us to construct a homomor-
phism ϕ from D3 to S3 given by

ϕ(σ ) =
(

1 2 3
σ (1) σ (2) σ (3)

)
,

where σ ∈ D3. Since σ is a bijective map R2 → R2 is must also give a bijective
map {1, 2, 3} → {1, 2, 3}. Thus ϕ(σ ) ∈ S3. In order for ϕ to be a homomor-
phism, we must prove that ϕ(σ1 ◦ σ2) = ϕ(σ1) ◦ ϕ(σ2). If you plug in the above
form for ϕ(σ ), you will see that ϕ(σ1 ◦ σ2)(i) = (ϕ(σ1) ◦ ϕ(σ2))(i) = σ1(σ2(i))
for i = 1, 2, 3, so that ϕ really is a group homomorphism. Since a linear
map R2 → R2 is uniquely determined by its values on two linearly indepen-
dent vectors, ϕ must be injective. So we have an injective group homomor-
phism ϕ : D3 → S3. Since D3 and S3 are both of order 6, ϕ must be a group
isomorphism.

Example 2.4.7 Let us prove that the groups L (Example 2.1.12) and O2(R)
(Example 2.1.11) are isomorphic. There is a natural map ϕ : L → O2(R). This
is given simply by defining ϕ( f ) to be the matrix representing f in the nat-
ural basis e1 and e2. So if f (e1) = ae1 + be2 and f (e2) = ce1 + de2, where
a, b, c, d ∈ R, we put

ϕ( f ) =
(

a b
c d

)
.

From linear algebra it is known that ϕ( f ◦ g) = ϕ( f )ϕ(g) – composition of
linear maps corresponds to multiplication of their matrices. So ϕ is a group
homomorphism. From Example 2.1.12 you see that ϕ( f ) ∈ O2(R). Given an
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orthogonal matrix
(

a b
c d

)

we know that a2 + b2 = 1 and ac + bd = 0. Thus the two vectors (a, b) and
(c, d) are orthogonal and (a, b) = (cos(t), sin(t)) for some t ∈ R. This ulti-
mately tells us that an orthogonal matrix is a rotation or a reflection – it rep-
resents a linear isometry. Therefore ϕ is surjective. Since ϕ is also injective
(why?) it follows that it is a group isomorphism.

Example 2.4.8 The exponential function is a group isomorphism from (R, +)
to (R>0, ·). So (R, +) and (R>0, ·) are isomorphic groups. This would have been
impossible to prove without knowledge of the exponential function.

Notice that the kernel of the group homomorphism G → G/N is N and
that the kernel of the determinant homomorphism from GL2(R) to (R \ {0}, ·)
consists of matrices in GL2(R) with determinant 1.

We have the following general result on images and kernels of group homo-
morphisms.

Proposition 2.4.9 Let f : G → K be a group homomorphism.

(i) The image f (G) ⊆ K is a subgroup of K .
(ii) The kernel Ker f ⊆ G is a normal subgroup of G.

(iii) f is injective if and only if Ker ( f ) = {e}.

Proof. First we prove that f (G) = { f (g) | g ∈ G} is a subgroup of K . Since
f (e) = f (ee) = f (e) f (e), it follows that e = f (e) by subsection 2.1.6. This
shows that e ∈ f (G). Let x ∈ G. Then e = f (e) = f (xx−1) = f (x) f (x−1)
and e = f (e) = f (x−1x) = f (x−1) f (x). This shows that f (x−1) = f (x)−1.
Thus if f (x) ∈ f (G) then f (x)−1 ∈ f (G). Finally if f (x), f (y) ∈ f (G) then
f (x) f (y) = f (xy) ∈ f (G). This finishes the proof of (i).

Let us now prove that Ker ( f ) is a normal subgroup. We have already seen that
e ∈ Ker ( f ) since f (e) = e. If x ∈ Ker ( f ) then e = f (x) = f (x)−1 = f (x−1),
showing that x−1 ∈ Ker ( f ). If x, y ∈ Ker ( f ) then f (xy) = f (x) f (y) = ee =
e, showing that xy ∈ Ker ( f ). So Ker ( f ) is a subgroup of G. Let N = Ker ( f ).
For every g ∈ G and x ∈ N we have f ((gx)g−1) = ( f (g) f (x)) f (g−1) =
f (g) f (g)−1 = e. This shows that gNg−1 ⊆ N . The inclusion N ⊆ gNg−1 for
every g ∈ G follows from the fact that we have the inclusion g−1 Ng ⊆ N for
every g ∈ G. This finishes the proof of (ii).
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Finally let us prove (iii). Since f (e) = e it follows that Ker ( f ) = {e} if
f is injective. Conversely, assume that Ker ( f ) = {e} and f (x) = f (y). Then
f (y)−1 f (x) = f (y−1) f (x) = f (y−1x) = e. Therefore y−1x ∈ Ker ( f ). This
implies that y−1x = e or x = y. �

2.5 The isomorphism theorem

Now suppose that N is a normal subgroup of G. How do we find out more about
the quotient group G/N? The answer is that we identify the cosets G/N with
some other known group using what is known as the isomorphism theorem.

Theorem 2.5.1 Let G and K be groups and f : G → K a group homomor-
phism with kernel N = Ker ( f ). Then

f̃ : G/N → f (G)

given by f̃ (gN ) = f (g) is a well defined map and a group isomorphism.

Proof. First notice that f (x) = f (y) if and only if f (y)−1 f (x) = f (y−1x) =
e if and only if y−1x ∈ N for every x, y ∈ G. By Lemma 2.2.6(ii) this im-
plies that f (x) = f (y) if and only if x N = yN . We get thus that f̃ given by
f̃ (gN ) = f (g) is a well defined and injective map. It is a group homomorphism
since

f̃ ((g1 N )(g2 N )) = f̃ ((g1g2)N )

= f (g1g2) = f (g1) f (g2)

= f̃ (g1 N ) f̃ (g2 N )

for g1 N , g2 N ∈ G/N . It is surjective because f is surjective onto f (G). Thus
f̃ is a group isomorphism G/N → f (G). �

One usually understands a quotient group G/N by finding a surjective group
homomorphism f : G → K for a suitable group K such that N = Ker ( f ).
Then Theorem 2.5.1 gives an isomorphism

f̃ : G/N
∼→ K .

Here are two examples of this.

Example 2.5.2 The subgroup N = 2πZ = {2πm | m ∈ Z} of (R, +) is nor-
mal since (R, +) is an abelian group. What is R/N? The strategy is to find
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a surjective group homomorphism f : R → K , with kernel 2πZ, onto some
known group K . Here we can put K = {z ∈ C | |z| = 1}, which is a group
with multiplication as composition and use f (x) = eix as the group homo-
morphism (recall that ei(x+y) = eix eiy). Then Ker f = {x ∈ R | eix = 1}. Since
eix = cos x + i sin x , this means that x = 2πm for some m ∈ Z. Now we can
identify the quotient group R/2πZ with the group of unit vectors in the complex
plane by using the isomorphism

f̃ : R/2πZ
∼→ K

given in Theorem 2.5.1.

Example 2.5.3 Denote by A3 the (normal) subgroup {e, d, f } of S3 (in the
notation of Example 2.1.6). Then

S3/A3
∼= Z/2Z,

since |S3/A3| = |S3|/|A3| = 2 and Z/2Z is the only group of order 2 up to
isomorphism. Can you construct an explicit surjective group homomorphism
sgn : S3 → Z/2Z such that Ker ( f ) = A3?

2.6 Order of a group element

In a group G we can compose an element g ∈ G with itself an arbitrary number
of times g, gg, (gg)g, . . . Let us introduce the precise notion of powers of
elements in groups. Define g0 = e, gn = gn−1g for n > 0 and gn = (g−1)−n

for n < 0 and every g ∈ G. Then we have a well defined map fg : Z → G
given by fg(n) = gn .

Proposition 2.6.1 Let G be a group and g ∈ G. The map

fg : Z → G

given by fg(n) = gn is a group homomorphism from (Z, +) to G.

Proof. By the definition of gn , where n ∈ Z, we have fg−1 (−m) = fg(m) for
every g ∈ G, m ∈ Z, along with fg(m + 1) = fg(m) fg(1) and fg(m − 1) =
fg(m) fg(−1) for every g ∈ G, m ≥ 0. This gives the identity fg(m + 1) =
fg(m) fg(1) for every g ∈ G, m ∈ Z. From this we deduce that fg(m +
n) = fg(m) fg(n) for every g ∈ G, m ∈ Z and n ≥ 0. If m < 0 and n <

0 then fg(m + n) = fg−1 (−m + (−n)) = fg−1 (−m) fg−1 (−n) = fg(m) fg(n).
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This completes the proof that fg(m + n) = fg(m) fg(n) for every m, n ∈ Z,
showing that fg is a group homomorphism. �

The image fg(Z) = {gn | n ∈ Z} is denoted 〈g〉. It is an abelian subgroup
of G (see Exercise 2.26). The number of elements in 〈g〉 is called the order
of g. It is denoted ord (g). One usually thinks of the order of an element g as
the smallest positive power of g giving the neutral element. If no such power
exists, g is said to have infinite order.

Example 2.6.2 In the notation of Example 2.1.6, a has order 2 and f has order
3 in S3. This follows from the composition table: a �= e but a2 = e. Similarly
f �= e and f 2 = d �= e but f 3 = f 2 f = d f = e.

The element [2] ∈ Z/8Z has order 4 and [2] ∈ Z/5Z has order 5. However,
the matrix

(
1 1
0 1

)

has infinite order in the group GL2(R).

The following fundamental result turns out to be very useful for later
computations in group theory (with applications to prime numbers and poly-
nomials).

Proposition 2.6.3 Let G be a finite group and let g ∈ G.

(i) The order ord (g) of g divides |G|.
(ii) g|G| = e.

(iii) If gn = e for some n > 0 then ord (g) | n.

Proof. This is an application of Theorem 2.2.8. Let H denote the subgroup
〈g〉 generated by g. Since ord (g) = |H |, we get that |G| = |G/H | ord (g). This
proves (i). In the same way we have

g|G| = gord (g) |G/H | = (
gord (g)

)|G/H | = e|G/H | = e.

This proves (ii). If gn = e then n ∈ Ker ( fg). But Ker ( fg) = ngZ and since
n > 0 it follows that ng > 0 and that g has finite order ord (g) = ng . Since
n ∈ ngZ = ord (g)Z we get that ord (g) | n. This proves (iii). �
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2.7 Cyclic groups

Definition 2.7.1 A cyclic group is a group G containing an element g such that
G = 〈g〉. The element g is called a generator of G (we say that G is generated
by g).

Cyclic groups are very concrete objects. We can easily identify them with
groups we know very well. Let G = 〈g〉 be a cyclic group and consider the
group homomorphism fg : Z → G. The kernel Ker ( fg) is a subgroup of Z.
Thus Ker ( fg) = ngZ for some unique natural number ng ≥ 0 by Proposition
2.2.3. By Theorem 2.5.1 we have a group isomorphism

Z/ngZ
∼→ 〈g〉 = G.

This shows that a cyclic group is isomorphic to Z/nZ for some n ∈ N.
Now we are in a position to illuminate the explicit computation in Example
2.1.9.

Proposition 2.7.2 A group G of prime order |G| = p is isomorphic to the
cyclic group Z/pZ.

Proof. Let g ∈ G be an element in G different from the neutral element e.
Then fg(Z) is a subgroup H of G with more than one element. Since |H |
divides |G| = p (by Theorem 2.2.8) it follows that |H | = |G| and therefore
that H = G. This means that fg : Z → G is a surjective homomorphism. The
kernel of fg is pZ by Proposition 2.6.3. Now the result follows from Theorem
2.5.1. �

Cyclic groups are in some sense the easiest groups to work with. Proposition
2.7.4 below tells almost the whole story about them. Before this let us go through
an illustrative example.

Example 2.7.3 Let [a] = a + 12Z, where a ∈ Z. Then

Z/12Z = {[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]}.

The order of [3] is 4, since 〈[3]〉 = {[0], [3], [6], [9]}. The orders of the elements
in the group (appearing as above) are

1, 12, 6, 4, 3, 12, 2, 12, 3, 4, 6, 12
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respectively. Notice that for every (natural) divisor d of 12, there is a unique
subgroup of order d . This is the subgroup generated by [12/d]. Notice also that
there are ϕ(d) elements of order d .

Proposition 2.7.4 Let G be a cyclic group.

(i) Every subgroup of G is cyclic.
(ii) Suppose that G is finite and that d is a divisor in |G|. Then G contains a

unique subgroup H of order d.
(iii) There are ϕ(d) elements of order d in G. These are the generators

of H.

Proof. If G is infinite then G ∼= Z. We know that every subgroup of Z has the
form dZ for some d ∈ N. Such a subgroup is cyclic and generated by d. Suppose
that G is finite and that |G| = N > 0. We may assume that G = Z/NZ =
{[0], [1], . . . , [N − 1]}. Let H be a subgroup of G. If H �= {[0]} we pick the
smallest natural number d > 0 such that [d] ∈ H . If [n] ∈ H then division
with remainder gives n = qd + r , where 0 ≤ r < d. If r > 0 then [n − qd] =
[r ] ∈ H , contradicting the minimality of d . So r = 0 and H = 〈[d]〉. This
proves (i).

Next, assume that d is a divisor in N . Let m = N/d. Then [m] is an element
of order d in G. If [n] is another element of order d then [dn] = [0]. Thus
N | nd and so m | n. So every element in G of order d is some multiple of
[m]. Since subgroups are cyclic, it follows that the only subgroup of order d is
H = 〈[m]〉. This proves (ii).

Since H is the unique subgroup of order d, the elements of order d
in G must be in one-to-one correspondence with the generators of H . We
write H = {[0], [1], . . . , [d − 1]} since H ∼= Z/dZ. If [a] is a generator of
H then gcd(a, d) = 1, because if gcd(a, d) = s > 1, a = bs, d = cs then we
get ca = cbs = bd . Thus [ca] = [0], where 1 ≤ c < d, contradicting that [a]
is a generator of H . However, if gcd(a, d) = 1, [a] has to be a generator
of H : if [ia] = 0 then d | ia and therefore d | i , since gcd(a, d) = 1. This
proves (iii). �

Remark 2.7.5 In the notation of the proof of Proposition 2.7.4, the ϕ(d) el-
ements of order d in Z/NZ are {[km] | 0 ≤ k < N , gcd(k, N ) = 1}, where
m = N/d.

Using the language of group theory we can now produce a very simple proof
of an identity that seems related only to numbers.
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Corollary 2.7.6 Let N be a positive integer. Then
∑
d|N

ϕ(d) = N ,

where the sum is over d ∈ div(N ).

Proof. Let G be the cyclic group Z/NZ. Then

N =
∑
g∈G

1 =
∑
d|N

∑
g∈G,ord (g)=d

1 =
∑
d|N

ϕ(d)

by Proposition 2.7.4. �

2.8 Groups and numbers

Let us see how Euler’s theorem (Theorem 1.7.2) and the Chinese remainder
theorem (Theorem 1.6.4) fit into the framework of groups.

2.8.1 Euler’s theorem

Recall Euler’s theorem. If a, n are relatively prime integers, where n > 0, then
aϕ(n) ≡ 1 (mod n). In the framework of groups we consider the finite group
G = (Z/nZ)∗ from subsection 2.3.2. The order of G is ϕ(n). The integer a
is relatively prime to n. Therefore [a] ∈ G. Now we can apply Proposition
2.6.3(ii) to obtain

[a]|G| = [a]ϕ(n) = [1].

This means that aϕ(n) − 1 ∈ nZ and therefore that aϕ(n) ≡ 1 (mod n). You
should really compare this with our original proof of Theorem 1.7.2. Where
did all the computations go? The answer is that groups form another level of
abstraction. Proofs become simpler.

Before moving on to the group version of the Chinese remainder theorem
we need to define product groups.

2.8.2 Product groups

If G1, G2, . . . , Gn are groups then the product

G = G1×G2×· · · ×Gn = {(g1, g2, . . . , gn) | g1 ∈ G1, g2 ∈ G2, . . . , gn ∈ Gn}
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has the natural composition

(g1, g2, . . . , gn)(h1, h2, . . . , hn) = (g1h1, g2h2, . . . , gnhn).

You can easily check that this composition is associative (it is associative at
each component). The neutral element is (e, e, . . . , e) and the inverse of the
group element g = (g1, . . . , gn) is g−1 = (g−1

1 , . . . , g−1
n ). So G is a group called

the product group of G1, . . . , Gn . Also, if H is a group and we have group
homomorphisms ϕi : H → Gi , i = 1, . . . , n, then

ϕ(g) = (ϕ1(g), . . . , ϕn(g))

is a group homomorphism from H to G = G1 × · · · × Gn . Before giving the
group version of the Chinese remainder theorem, let us record the following
lemma on product groups.

Lemma 2.8.1 Let M, N be normal subgroups of a group G with M ∩ N =
{e}. Then M N is a subgroup of G and

π : M × N → M N

given by π (x, y) = xy is an isomorphism.

Proof. Lemma 2.3.6 tells us that M N is a subgroup. In order for π to be a
homomorphism we must prove that (xy)(x ′y′) = (xx ′)(yy′), where x, x ′ ∈ M
and y, y′ ∈ N . This is seen by rewriting (xy)(x ′y′) as (xx ′)(x ′−1 yx ′y−1)(yy′)
and noticing that x ′−1 yx ′y−1 ∈ M ∩ N = {e}, since M and N are normal sub-
groups of G. Since the kernel of π is isomorphic to M ∩ N and the image of π

is M N , π has to be bijective and therefore an isomorphism. �

2.8.3 The Chinese remainder theorem

Here is the group version of the Chinese remainder theorem (Theorem 1.6.4).

Proposition 2.8.2 Let n1, . . . , nr ∈ Z be pairwise relative prime integers and
let N = n1 · · · nr . If ϕi denotes the canonical group homomorphism πni Z : Z →
Z/niZ then the map

ϕ̃ : Z/NZ → Z/n1Z × · · · × Z/nr Z

given by ϕ(x + NZ) = (ϕ1(x), . . . , ϕr (x)) is a group isomorphism.
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Proof. The map

ϕ : Z → Z/n1Z × · · · × Z/nr Z

given by ϕ(x) = (ϕ1(x), . . . , ϕr (x)) is a group homomorphism by subsec-
tion 2.8.2. If n ∈ Ker (ϕ) then ϕ1(n) = 0, . . . , ϕr (n) = 0. This means that
n ∈ n1Z, . . . , n ∈ nr Z or that n1 | n, . . . , nr | n. By Corollary 1.5.11 we get
that N = n1 · · · nr | n so that n ∈ NZ. This proves that Ker (ϕ) ⊆ NZ. The
other inclusion is left to the reader. Now Theorem 2.5.1 tells us that we have
an isomorphism

ϕ̃ : Z/NZ → ϕ(Z) ⊆ Z/n1Z × · · · × Z/nr Z.

But since the number of elements in Z/NZ equals the number of elements
in Z/n1Z × · · · × Z/nr Z, we get that ϕ(Z) = Z/n1Z × · · · × Z/nr Z and ϕ̃ is
thus an isomorphism. �

Using the notation of Proposition 2.8.2 we have actually proved that

Z/n1Z × · · · × Z/nr Z

is a cyclic group ∼= Z/NZ.

Example 2.8.3 The product group G = Z/2Z × Z/2Z is not cyclic, since
the maximal order of an element is 2. One may prove that (Z/8Z)∗ ∼= Z/2Z ×
Z/2Z.

2.9 Symmetric and alternating groups

In Example 2.1.6 we constructed the group S3 of bijective maps of a set M of
three elements to itself. The composition in S3 is the composition of maps. The
bijective map given by 1 �→ 2, 2 �→ 3 and 3 �→ 1 was denoted

(
1 2 3
2 3 1

)
.

Of course, the same construction makes sense for a set Mn = {1, 2, . . . , n} with
n elements and this leads to the so-called symmetric group Sn on n elements.
Thus Sn consists of the bijective maps from Mn to itself. It is a group with
composition of maps as the composition, and one may show that |Sn| = n! by
counting permutations of the numbers 1, . . . , n. The elements (bijective maps)
of Sn are called permutations. As in the S3 setting, a bijective map σ ∈ Sn will

https://doi.org/10.1017/CBO9780511804229.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511804229.003


2.9 Symmetric and alternating groups 79

be denoted (
1 2 . . . n

σ (1) σ (2) . . . σ (n)

)
.

Symmetric groups are in general non-abelian. We have for example
(

1 2 3
2 1 3

)
◦

(
1 2 3
1 3 2

)
�=

(
1 2 3
1 3 2

)
◦

(
1 2 3
2 1 3

)
,

since the map on the left hand side assumes the value 3 at 2 and the map on the
right hand side assumes the value 1 at 2. In an important special case one can
actually prove that στ = τσ , where σ, τ are certain permutations in Sn .

Definition 2.9.1 Suppose that σ ∈ Sn . Then we define

Mσ = {x ∈ Mn | σ (x) �= x}.
Permutations σ, τ ∈ Sn are called disjoint if Mσ ∩ Mτ = ∅.

One may say loosely that disjoint permutations move different numbers.
They have the following pleasant property.

Proposition 2.9.2 Let σ, τ ∈ Sn be disjoint permutations in Sn. Then

στ = τσ.

Proof. We must prove that σ (τ (x)) = τ (σ (x)) for every x ∈ Mn . If x �∈ Mσ ∪
Mτ then σ (x) = x and τ (x) = x and both sides are equal to x . If x ∈ Mσ then
σ (x) ∈ Mσ (why?). Therefore we have τ (σ (x)) = σ (x) and similarly σ (τ (x)) =
σ (x). So both sides are equal in this case. The case x ∈ Mτ is treated in the
same way. �

2.9.1 Cycles

Some permutations in Sn deserve special attention. Suppose we are given k
different elements x1, x2, . . . , xk of Mn . A permutation σ ∈ Sn given by

σ (x1) = x2, σ (x2) = x3, . . . , σ (xk−1) = xk, σ (xk) = x1

and σ (x) = x if x �∈ {x1, . . . , xk} is called a k-cycle. It is denoted

σ = (x1 x2 . . . xk)
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to indicate that x2 = σ (x1), . . . , x1 = σ (xk). In this notation σ may be written
in the following k different ways:

(x1 x2 . . . xk−1 xk),

(x2 x3 . . . xk x1),

...

(xk x1 . . . xk−2 xk−1).

Notice that Mσ = {x1, x2, . . . , xk} and that the order of a k-cycle in Sn is k.

Example 2.9.3 Consider
(

1 2 3
2 3 1

)
.

This is the 3-cycle (1 2 3) in S3. As an element in the group S3 it has order 3.
Notice that (1 2 3) = (2 3 1) = (3 1 2).

A 1-cycle is literally translated as the identity map. A 2-cycle is called a
transposition. Notice that a transposition is its own inverse in Sn . A transpo-
sition of the form si = (i i + 1), where i = 1, . . . , n − 1, is called a simple
transposition.

Example 2.9.4 In S3 we have

(1 2 3) =
(

1 2 3
2 3 1

)
= s1s2.

This follows by evaluating (1 2 3) and the composition s1s2 on 1, 2 and 3 and
seeing that they give the same result.

It turns out that every permutation can be expressed as a product of disjoint
cycles. Such an expression is useful, for example, in the following proposition.

Proposition 2.9.5 Let σ ∈ Sn be written as a product of disjoint cycles
σ1 · · · σr . Then the order of σ is the least common multiple of the orders of
the cycles σ1, . . . , σr .

Proof. Since σiσ j = σ jσi when i �= j we get σ n = σ n
1 · · · σ n

r for n ∈ N. If
σ n = e then σ n

i = e for i = 1, . . . , r , as σ n
1 , . . . , σ n

r are disjoint permuta-
tions. Therefore n is divisible by the orders of the cycles, by Proposition
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2.6.3(iii). This means that the least common multiple m of the orders of
the cycles is ≤ ord (σ ). However, σ m

i = e for every i = 1, . . . , r . Therefore
ord (σ ) = m. �

We have the following fundamental proposition.

Proposition 2.9.6 Every permutation σ ∈ Sn is a product of unique disjoint
cycles.

Proof. The proof of the existence uses induction on the number of elements in
Mσ . If |Mσ | = 0 then σ is a product of disjoint 1-cycles. Assume that |Mσ | > 0.
Pick x ∈ Mσ . Then x �= σ (x). Form the sequence x = σ 0(x), σ (x), σ 2(x), . . .
of elements in Mn and stop when you encounter the first repetition σ k(x),
where σ k(x) = σ j (x) for some 0 ≤ j < k. Then j = 0 (why?). Define the
cycle τ = (x1 x2 . . . xk) by

x1 = x, x2 = σ (x1), . . . , xk = σ (xk−1) and x1 = σ (xk).

Now Mστ−1 = Mσ \ {x1, . . . , xk}, because if x �∈ {x1, . . . , xk} then τ−1(x) = x .
Such an x will satisfy σ (τ−1(x)) �= x if and only if σ (x) �= x . However, if
x ∈ {x1, . . . , xk} then σ (x) �= x but σ (τ−1(x)) = x , since x can be written τ (y)
for y ∈ {x1, . . . , xk} with σ (y) = x . By induction στ−1 is a product of disjoint
cycles τ1 · · · τr . Since τ must be disjoint from τ1, . . . , τr , it follows that

σ = τ1 · · · τrτ

is a product of disjoint cycles. This proves that a permutation can be written
as a product of disjoint cycles. The uniqueness part can be deduced from the
existence proof. In fact, if σ = σ1 · · · σr is written as a product of disjoint cycles
σ1, . . . , σr then Mσ = Mσ1 ∪ · · · ∪ Mσr and Mσi ∩ Mσ j = ∅ if i �= j , since σi

and σ j are disjoint permutations if i �= j . So, if x ∈ Mσ then x ∈ Mσ j for a
unique j = 1, . . . , r and σ j = (x σ (x) σ 2(x) . . . ) since σ (x) = σ j (x), when
x ∈ Mσ j . In this way the cycles occurring in σ written as a product of disjoint
cycles are uniquely determined by σ . �

Example 2.9.7 The element

σ =
(

1 2 3 4 5 6
6 3 1 5 4 2

)
∈ S6

can be written as the product (1623)(45) of disjoint cycles. One simply mimics
the procedure outlined in the proof of Proposition 2.9.6: σ (1) = 6, σ (6) = 2,
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σ (2) = 3, σ (3) = 1 gives the 4-cycle (1623) and σ (4) = 5, σ (5) = 4 gives the
transposition (45). The order of σ is lcm(2, 4) = 4.

The following lemma will be very important for later computations.

Lemma 2.9.8 Suppose that τ = (i1 i2 . . . ik) is a k-cycle and σ a permutation
in Sn. Then

σ (i1 i2 . . . ik)σ−1 = (σ (i1) σ (i2) . . . σ (ik)).

Proof. Let J = {σ (i1), . . . , σ (ik)}. Then the left and right hand sides assume
the same value on i ∈ J . Since they both map i �∈ J to itself, they must be the
same permutations. �

2.9.2 Simple transpositions and “bubble sort”

Let us describe one of the simplest sorting algorithms (“bubble sort”) for sorting
n numbers a1, . . . , an . You run through the list a1, . . . , an . Each time you en-
counter a neighboring pair ai > ai+1 that is not in (ascending) order, you switch
the two numbers and go back to the beginning. Do this until there are no more
unordered neighboring pairs. Then the sequence has been sorted into ascending
order. How does this relate to permutations? Take a look at the example below.

Example 2.9.9 Suppose that we consider the permutation 631542 of the se-
quence 123456. Using “bubble sort” you can reorder the permuted sequence
by switching neighbors:

631542 361542 316542 136542 135642
135462 134562 134526 134256 132456
123456.

The process of switching neighbors corresponds to the simple transpositions

(12)(23)(12)(34)(45)(34)(56)(45)(34)(23),

where the numbers refer to the positions in the sequence. In the language of
permutations and S6 you may express the first step of the bubble sort as

(
1 2 3 4 5 6
6 3 1 5 4 2

)
(12) =

(
1 2 3 4 5 6
3 6 1 5 4 2

)
.
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In total we have proved that
(

1 2 3 4 5 6
6 3 1 5 4 2

)
(12)(23)(12)(34)(45)(34)(56)(45)(34)(23)

=
(

1 2 3 4 5 6
1 2 3 4 5 6

)

and therefore that(
1 2 3 4 5 6
6 3 1 5 4 2

)
= (23)(34)(45)(56)(34)(45)(34)(12)(23)(12).

You should check this by evaluating the permutations on the left and right hand
side on 1, 2, 3, 4, 5 and 6.

Example 2.9.9 illustrates the result that every permutation is a product of
simple transpositions. What is the minimal number of simple transpositions
needed for writing a permutation σ as a product in this way? Surprisingly, the
answer lies in counting the number of ordered pairs (i, j), i < j , for which
the values σ (i) > σ ( j) are in the wrong order. This is the reasoning behind the
following definition.

Definition 2.9.10 Let σ ∈ Sn be a permutation. A pair of indices (i, j), where
1 ≤ i < j ≤ n, is called an inversion (of σ ) if σ (i) > σ ( j). Let

Iσ = {(i, j) | 1 ≤ i < j ≤ n and σ (i) > σ ( j)}

denote the set of inversions and let n(σ ) = |Iσ | be the number of inversions
of σ .

Example 2.9.11 We have that

n

((
1 2 3
2 3 1

))
= 2,

since (1, 3) and (2, 3) are the only inversions (corresponding to 2 > 1 and
3 > 1). Again counting inversions we find that

n

((
1 2 3 4 5 6
6 3 1 5 4 2

))
= 10.

This agrees with the number of simple transpositions we found in Example
2.9.9.
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Proposition 2.9.12 The permutation σ ∈ Sn is the identity map if and only if
n(σ ) = 0. If σ is not the identity map then there exists i = 1, . . . , n − 1 such
that σ (i) > σ (i + 1).

Proof. If σ is the identity map then it has no inversions. Therefore n(σ ) = 0.
If n(σ ) = 0 and σ is not the identity map then there exists a smallest i ∈ Mn

such that σ (i) > i . The pair (i, σ−1(i)) is an inversion for σ , contradicting that
n(σ ) = 0. If σ is a permutation satisfying σ (1) < σ (2) < · · · < σ (n) then σ

has to be the identity map, since n(σ ) = 0. This proves the last part of the
proposition. �

The following lemma is crucial.

Lemma 2.9.13 Let si ∈ Sn be a simple transposition and σ ∈ Sn. Then

n(σ si ) =
{

n(σ ) + 1 if σ (i) < σ (i + 1),

n(σ ) − 1 if σ (i) > σ (i + 1).

Proof. Assume that σ (i) < σ (i + 1). Since (i, i + 1) is an inversion for σ si

(why?) we only need to establish a bijective map

ϕ : Iσ → Iσ si \ {(i, i + 1)}.

Such a bijective map is given by ϕ((k, l)) = (si (k), si (l)). If (k, l) ∈ Iσ then
si (k) < si (l), because the only way this can fail is if k = i and l = i + 1 and,
by assumption, (i, i + 1) �∈ Iσ . Now (si (k), si (l)) ∈ Iσ si , since (k, l) ∈ Iσ . In the
same way, if (k, l) ∈ Iσ si \ {(i, i + 1)} then (si (k), si (l)) ∈ Iσ . This proves that
ϕ is a bijective map. If σ (i) > σ (i + 1) then we work with the permutation σ si .
In this case we know that (σ si )(i) < (σ si )(i + 1) and therefore it follows that
n((σ si )si ) = n(σ ) = n(σ si ) + 1 by what we have already proved. �

Proposition 2.9.14 Let σ ∈ Sn. Then

(i) σ is a product of n(σ ) simple transpositions.
(ii) n(σ ) is the minimal number of simple transpositions needed in writing σ

as a product of simple transpositions.

Proof. We will use induction on n(σ ) for proving (i). If n(σ ) = 0 then σ

is the identity map by Proposition 2.9.12 and we are done (σ is the empty
product of simple transpositions, which is the identity by definition). If not, we
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may find i = 1, . . . , n − 1 such that σ (i) > σ (i + 1) according to Proposition
2.9.12. Then n(σ si ) = n(σ ) − 1 by Lemma 2.9.13. By induction η = σ si can
be written as a product of n(σ ) − 1 simple transpositions. Then σ = ηsi is a
product of n(σ ) simple transpositions. This proves (i).

Let 	(σ ) denote the minimal number of simple transpositions needed in
writing σ as a product of simple transpositions. Then n(σ ) ≥ 	(σ ) by (i). We will
prove that 	(σ ) = n(σ ) using induction on 	(σ ). The case 	(σ ) = 0 follows as in
the proof of (i). Assume that 	(σ ) > 0. Then we may find a simple transposition
si such that 	(σ si ) = 	(σ ) − 1. Therefore 	(σ si ) = n(σ si ) by induction and
	(σ ) ≥ n(σ ) by Lemma 2.9.13. This proves (ii). �

2.9.3 The alternating group

Definition 2.9.15 The sign of a permutation σ ∈ Sn is

sgn(σ ) = (−1)n(σ ).

A permutation with positive sign is called even. A permutation with negative
sign is called odd.

Proposition 2.9.16 The sign

sgn : Sn → {±1}
of a permutation is a group homomorphism, where the composition in {±1} is
multiplication.

Proof. We must prove that sgn(στ ) = sgn(σ )sgn(τ ), where σ, τ ∈ Sn . Since
τ is a product of simple transpositions we may assume that τ itself is a sim-
ple transposition si . By Lemma 2.9.13 we have n(σ si ) = n(σ ) ± 1, so that
sgn(σ si ) = −sgn(σ ). Thus sgn(σ si ) = sgn(σ )sgn(si ), as n(si ) = 1. �

The set of even permutations in Sn is denoted An and called the alternating
group. It follows by Proposition 2.9.16 that An is a normal subgroup of Sn ,
being the kernel of sgn. By Theorem 2.5.1, we get the group isomorphism

Sn/An
∼→{±1},

showing that |An| = |Sn|/2 = n!/2 for n > 1. Before moving on, let us see
how one can determine sgn(σ ) for a permutation σ ∈ Sn from its disjoint cycle
decomposition (Proposition 2.9.6). Since sgn is a group homomorphism, we
only need to compute the sign of a cycle.
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Proposition 2.9.17 Let n ≥ 2. A transposition τ = (i j) ∈ Sn is an odd per-
mutation. The sign of an r-cycle σ = (x1 x2 . . . xr ) ∈ Sn is (−1)r−1.

Proof. We can find a permutation η ∈ Sn such that η(1) = i and η(2) =
j . This implies that −1 = sgn(1 2) = sgn(η(1 2)η−1) = sgn((η(1) η(2))) =
sgn(τ ). Therefore τ is odd. To see that the sign of σ is (−1)r−1, we simply
write

(x1 x2 . . . xr ) = (x1 x2)(x2 x3) . . . (xr−1xr ).

We have expressed σ as a product of r − 1 transpositions. Therefore sgn(σ ) =
(−1)r−1. �

2.9.4 Simple groups

A group N is called simple if {e} and N are the only normal subgroups of N .
One can prove that any finite group G has a decreasing sequence of subgroups,

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn−1 ⊇ Gn = {e},
such that Gi+1 is a normal subgroup of Gi and the quotient group Gi/Gi+1

is a simple finite group. One may also prove that the simple quotient groups
occurring in such a decreasing sequence are uniquely determined up to isomor-
phism. In this sense the simple finite groups form the building blocks for all
finite groups.

Here we prove the following classical result due to E. Galois (1811–32).
When developed a little further, into Galois theory, it accounts for the miraculous
fact that there is no formula (involving the usual arithmetical operations and
extracting roots) for the solution of a general algebraic equation of degree ≥ 5.
First we need a simple but important lemma.

Lemma 2.9.18 Every permutation in An is a product of 3-cycles if n ≥ 3.

Proof. A permutation in An is a product of an even number of transpositions.
Consider four distinct numbers a, b, c and d . Then (a b)(c d) = (a d c)(a b c)
and (a b)(b c) = (a b c). So we may replace consecutive pairs of transpositions
with products of 3-cycles. This proves the claim. �

Theorem 2.9.19 The alternating group An is simple for n ≥ 5.

Proof. We will prove that
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(i) Given a 3-cycle τ ∈ An , there is a permutation σ ∈ An such that στσ−1 =
(123).

(ii) A non-trivial normal subgroup N of An must contain a 3-cycle.

We now go through these two steps. (i) Let τ = (i jk) be a 3-cycle. We can find a
permutation σ ∈ Sn such that σ (i) = 1, σ ( j) = 2 and σ (k) = 3. Now Lemma
2.9.8 gives

σ (i jk)σ−1 = (123).

We may assume that σ ∈ An by replacing σ with (45)σ in the case σ �∈ An:
((45)(123)(45)−1 = (123)). This proves (i).
(ii) Let N be a non-trivial normal subgroup of An . We need to show that N
contains a 3-cycle τ . Let σ ∈ N denote an element �= e. Write σ as a product
τ1τ2 · · · τr of disjoint cycles. If two of the disjoint cycles are transpositions,
we may assume that τ1 = (12) and τ2 = (34) and thus σ = (12)(34)η for some
η ∈ Sn . Putting τ = (123) we get a new permutation σ1 = τστ−1σ−1 that also
lies in N , since N is a normal subgroup. Composing permutations we get (using
Lemma 2.9.8)

σ1 = τστ−1σ−1 = (13)(24).

Now using the same trick with ρ = (245), we get

σ2 = ρσ1ρ
−1σ−1

1 = (254).

So σ2 is the desired 3-cycle in N . If σ contains a cycle (1234 . . . ) of length at
least 4 we get the 3-cycle

τστ−1σ−1 = (124)

in N , where τ = (123). The only case left is where σ contains a 3-cycle (123)
and another cycle (45 . . . ). In this case we get, using τ = (234), that

τστ−1σ−1 = (14235),

which is a a cycle of length 5. We already know why this implies that N contains
a 3-cycle.
We know that, for every 3-cycle τ , there is an element σ ∈ An such that

στσ−1 = (123).

This means that, given two arbitrary 3-cycles τ1 and τ2, there is a σ ∈ An such
that στ1σ

−1 = τ2. Thus if a normal subgroup N of An contains just one 3-cycle,
it will have to contain all 3-cycles! In this way we have proved that a normal
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subgroup N of An is either {e} or An , as we know that every element of An is
a product of 3-cycles by Lemma 2.9.18. �

One of the milestones of modern group theory is the theorem of Feit and
Thompson. They proved in 1963 that the order of a non-abelian finite simple
group must be even. The proof of this takes up more than 250 pages [9]. Simple
finite groups fall into some well defined families except for 26 finite simple
groups, the sporadic groups. The largest sporadic group is called the monster
group. It has

808017424794512875886459904961710757005754368000000000

= 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

elements. The classification of the finite simple groups was completed in 1980
(but has not yet been written up completely!).

2.9.5 The 15-puzzle

Can you interchange the empty square successively with adjacent squares so
that the configuration on the left gets changed into the “correct” configuration,
the one on the right below?

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

This is the classical 15-puzzle, as published by the American puzzlemaker Sam
Loyd in 1878. He offered a prize of 1000 dollars for the first correct solution to
the problem. He went on to write (see [10])

People became infatuated with the puzzle and ludicrous tales are told of
shopkeepers who neglected to open their stores; of a distinguished clergyman who
stood under a street lamp all through a wintry night trying to recall the way he had
performed the feat. The mysterious feature of the puzzle is that none seem to be
able to remember the sequence of moves whereby they feel sure they succeeded in
solving the puzzle. Pilots are said to have wrecked their ships, and engineers rush
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their trains past stations. A famous Baltimore editor tells how he went for his noon
lunch and was discovered by his frantic staff long past midnight pushing little
pieces of pie around on a plate! Farmers are known to have deserted their plows . . .

The frustrated farmer below appeared in Loyd’s original article on the
puzzle.

Following [2] we will go through a method of analyzing this problem using
symmetric and alternating groups. Each square (including the empty square)
occupies one of the 16 numbered cells below.

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

�
��

� �
��

(2.1)

A configuration C maps to a permutation σC in S15 defined by writing the
squares according to their order along the snake pattern in (2.1) (forgetting the
empty square). For example, the “correct” configuration maps to

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 8 7 6 5 9 10 11 12 15 14 13

)

= (5 8)(6 7)(13 15)
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and the “evil” Loyd configuration maps to

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 8 7 6 5 9 10 11 12 14 15 13

)

= (5 8)(6 7)(13 14 15).

The correct configuration maps to an odd permutation and the “evil” Loyd
configuration maps to an even permutation. We will see shortly that this is the
reason why the original 15-puzzle was unsolvable, so that Loyd was sure never
to lose his 1000 dollars.

The mapping of a configuration to a permutation in S15 using the snake pattern
is not a one-to-one correspondence. The configurations you get by moving the
empty square along the snake all map to the same permutation in S15. If C is
a configuration where the blank square occupies cell b and square i occupies
cell j then

σ−1
C (i) =

{
j if j < b,

j − 1 if j > b.

Suppose that we have a configuration C1 where the empty square occupies
cell i . By moving the empty square (legally) to cell j we get a new configura-
tion C2, where the blank square occupies cell j . Then σC1 and σC2 are related
through a fixed permutation σi, j ∈ S15 via σ−1

C2
= σi, jσ

−1
C1

. The permutations
corresponding to the legal moves can be read off from (2.1). They are

σ1,2, σ2,3, . . . , σ15,16, σ1,8, σ2,7, σ3,6, σ7,10, σ6,11, σ5,12, σ11,14, σ10,15, σ9,16

(2.2)

along with their inverse permutations. It is easy to see that σ1,2 = σ2,3 = · · · =
σ15,16 = 1. These moves do not affect σC for a given configuration C for which
the empty square is positioned in the appropriate cell. Let us have a closer
look at σ1,8. After having done this move, which consists in moving the empty
square from cell 1 to cell 8, the square that was number 1 becomes number
2, the square that was number 2 becomes number 3, . . . , the square that was
number 7 becomes number 1. This proves that

σ1,8 =
(

1 2 3 4 5 6 7
2 3 4 5 6 7 1

)
= (1 2 3 4 5 6 7).

Just as in the σ1,8 case we can easily compute the permutations corresponding
to the other legal moves. Below we list the permutations corresponding to the
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legal moves in (2.2) other than σi,i+1, 1 ≤ i ≤ 15:

σ1,8 = (1 2 3 4 5 6 7),

σ2,7 = (2 3 4 5 6),

σ3,6 = (3 4 5),

σ7,10 = (7 8 9),

σ6,11 = (6 7 8 9 10),

σ5,12 = (5 6 7 8 9 10 11),

σ9,16 = (9 10 11 12 13 14 15),

σ10,15 = (10 11 12 13 14),

σ11,14 = (11 12 13).

The permutations corresponding to the legal moves are all cycles of odd length.
By Proposition 2.9.17 a cycle of odd length is an even permutation. The upshot
is that if we have a configuration C1 and perform a series of legal moves
corresponding to permutations τ1, . . . , τn and finally reaching the configuration
C2 then

σ−1
C2

= τn · · · τ1σ
−1
C1

,

and therefore sgn(σC2 ) = sgn(σC1 ). So unless two configurations map to per-
mutations of the same sign you cannot come from one to the other through a
sequence of legal moves. This proves that the original Loyd puzzle is unsolv-
able. This could have been verified without going through the machinery of
writing legal moves as permutations in A15. Using the permutation description
of the legal moves we can actually prove more, as follows.

A surprising fact is that if two configurations map to permutations of the
same sign then you can come from one to the other using a sequence of legal
moves. We will give a simple proof of this here. First we need a small lemma.
We call a 3-cycle simple if it has the form (k k + 1 k + 2).

Lemma 2.9.20 Every 3-cycle is a product of simple 3-cycles in An if n ≥ 3.

Proof. This is proved by induction. For n = 3 one gets all 3-cycles as powers
of the simple 3-cycle (1 2 3). If n > 3 we may assume by induction that every
3-cycle not containing both 1 and n can be written as a product of simple
3-cycles. Consider the 3-cycle (1 x n) containing both 1 and n. Choose y �∈
{1, x, n}. Then (1 x n) = (1 x y)(x n y) and (1 n x) = (1 x n)2. This proves
by induction that every 3-cycle in An can be written as a product of simple
3-cycles. �

https://doi.org/10.1017/CBO9780511804229.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511804229.003


92 2 Groups

Now we get by Lemma 2.9.18 that every even permutation is a product of
simple 3-cycles. This leads us to the main result:

Theorem 2.9.21 Every permutation in A15 is a product of permutations cor-
responding to legal moves in the 15-puzzle.

Proof. It suffices to prove that all the simple 3-cycles can be written as
products of the legal moves. We will show how to get the simple 3-cycles
(1 2 3), . . . , (5 6 7) and leave the rest to the reader. Consider the two legal
moves τ = (1 2 3 4 5 6 7) and σ = (3 4 5). Then

τστ−1 = (τ (3) τ (4) τ (5)) = (4 5 6)

by Lemma 2.9.8. Similarly τ 2στ−2 = (5 6 7), τ 5στ−5 = (1 2 3) and
τ 6στ−6 = (2 3 4). �

Suppose we have two configurations C1, C2 for which sgn(σC1 ) = sgn(σC2 ).
Then σ−1

C2
σC1 ∈ A15. This means that σ−1

C2
σC1 can be written as a product τ1 · · · τr

of permutations corresponding to legal moves, by Theorem 2.9.21. Thus σ−1
C2

=
τ1 · · · τrσ

−1
C1

. We can translate this back into a sequence of legal moves turning
C1 into C2. This is done by placing the empty square in the appropriate cell
according to each permutation (recall that the permutation does not change
when the empty square is moved along the snake pattern). For example for
τ = σi, j we move the empty square to cell i in order to carry out the move from
cell i to cell j .

2.10 Actions of groups

Groups are very powerful algebraic objects in themselves, but most of the time
it is more interesting to know how they interact with the world around them.
The relevant notion is that of a group acting on a set. In this section we will
apply actions of groups to combinatorics and counting, to conjugacy classes in
the symmetric groups and to the proof of the Sylow theorems.

Definition 2.10.1 Let G be a group and S a set. We will say that G acts (from
the left) on S if there is a map

α : G × S → S,
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denoted α(g, s) = g · s, such that

(i) e · s = s for every s ∈ S,
(ii) (g · h) · s = g · (h · s) for every g, h ∈ G and every s ∈ S.

When no confusion is likely to arise we will leave out the multiplication point
from g · s and just write gs.

Definition 2.10.2 Let α : G × S → S be an action of G on S, X ⊆ S a subset
of S and s ∈ S an element of S. Then G · s = Gs = {gs | g ∈ G} is called the
orbit of s (under the action of G). The set of orbits {Gs | s ∈ S} is denoted
S/G. Let g · X = gX = {gx | x ∈ X}, where g ∈ G. Then

G X = {g ∈ G | gX = X}

is called the stabilizer of X . If X = {x} we denote G X by Gx . A fixed point
for the action is an element s ∈ S such that gs = s for every g ∈ G. The set of
fixed points is denoted SG .

Example 2.10.3 The above definitions may seem abstract, but we have al-
ready seen many examples of them.

(i) The symmetric group Sn acts on the set Mn = {1, 2, . . . , n} in the natural
way σ i = σ (i), where σ ∈ Sn and i ∈ Mn . The stabilizer (Sn)i consists of
the permutations fixing i . Let σ ∈ Sn and let H denote the subgroup 〈σ 〉.
Then we have an action αH : H × S → S (given by σ ni = σ n(i), where
n ∈ N and i ∈ S). The orbits of this action are in one-to-one correspon-
dence with the disjoint cycles of σ (see Proposition 2.9.6).

(ii) Let H be a subgroup of a group G. Then we have an action α : H × G →
G given by

α(h, g) = h · g = gh−1 (why do we need h−1 and not just h?) .

The orbit H · g is the left coset gH . The set of orbits of this action is the
set G/H of left cosets of H . Notice that this action does not have any fixed
points.

(iii) Let L be the group of linear isometries of R2 (Example 2.1.12). Then
there is a natural action α : L × R2 → R2 given by α(ϕ, v) = ϕ(v). The
stabilizer L K of K ⊆ R2 is the group D3, where K is the triangle in
Example 2.1.13. The origin (0, 0) is the only fixed point of this action. The
orbit L(x, y) is the circle centered in the origin with radius

√
x2 + y2.
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We have singled out the following example of a group action, because it is
important in almost all mathematics. We will make use of it later when proving
the Sylow theorems.

Example 2.10.4 Let G be a group and H a subgroup. We may not be able to
make G/H into a group (H is not necessarily normal), but there is an action
α : G × G/H → G/H of G, on the left cosets of H , given by α(g, g′ H ) =
(gg′)H where g, g′ ∈ G. This is an action with only one orbit.

Proposition 2.10.5 Let α : G × S → S be an action.

(i) Let X ⊆ S be a subset of S. Then G X is a subgroup of G.
(ii) The set S is the union of G-orbits

S =
⋃
s∈S

Gs,

where Gs �= Gt implies Gs ∩ Gt = ∅ if s, t ∈ S.
(iii) Let x ∈ S. Then

f̃ : G/Gx → Gx

given by f̃ (gGx ) = gx is a well defined and bijective map between the left
cosets of Gx and the orbit Gx.

Proof. (i) Clearly e ∈ G X , and if g, h ∈ G X then gh ∈ G X . If g ∈ G X then
g−1 X = g−1(gX ) = eX = X , so that g−1 ∈ G X . This shows that G X is a sub-
group of G.

(ii) If s ∈ S then es ∈ S, so that s ∈ Gs. This shows that S = ∪s∈SGs. Let us
prove that Gs �= Gt gives Gs ∩ Gt = ∅. Suppose that z ∈ Gs ∩ Gt �= ∅. Then
we can find g1, g2 ∈ G such that z = g1s = g2t . This implies that s = es =
g−1

1 (g1s) = g−1
1 (g2t) = (g−1

1 g2)t , so that s ∈ Gt and thereby Gs ⊆ Gt . In the
same way we get that Gt ⊆ Gs, so that Gs = Gt .

(iii) Let g1, g2 ∈ G. Then g1x = g2x if and only if x = (g−1
1 g2)x if and only

if g−1
1 g2 ∈ Gx . By Lemma 2.2.6 we get g1x = g2x if and only if g1Gx = g2Gx .

So f̃ (gGx ) = gx is a well defined and injective map. Since it is also surjective,
it is a bijective map. �

Example 2.10.6 Recall that the group L of linear isometries acts naturally
on R2 via ϕv = ϕ(v), where ϕ ∈ L and v ∈ R2. Suppose that O ⊆ R2 is
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an octagon

�P
R

centered at (0, 0). We consider the set G of linear isometries mapping O to
itself:

G = {ϕ ∈ L | ϕ(O) = O}.
In the language of group actions G is the stabilizer of O , i.e. G = L O . How do
we determine the order |G| of G? Let us first see that |G| is finite. The following
argument is quite general and can be used in many other circumstances. Let the
vertices of O be listed as V = {1, 2, . . . , 8}. If g ∈ G and v ∈ V then gv ∈ V ,
since g is a reflection or a rotation by Example 2.1.12. This shows that G acts on
V and that we have a group homomorphism ϕ : G → S8 given by ϕ(g)(v) = gv.
If gv = v for every v ∈ V then g must be the identity, since g is a linear map
fixing a basis of R2. Therefore ϕ is injective and |G| ≤ 8!. The orbit of the
vertex P is G P = V . Now we can use the formula |G/G P | = |G P| = |V | from
Proposition 2.10.5(iii) to compute the order of G. The stabilizer G P consists
only of the identity and the reflection in the line R. So |G P | = 2. Therefore
|V | = |G/G P | = |G|/2 and thus |G| = 2 · 8 = 16.

The method illustrated in Example 2.10.6 becomes even more useful when
computing orders of “symmetry” groups in R3 (such as stabilizers of the cube
or the regular dodecahedron under the action of the group SO3 of rotations of
R3).

From Proposition 2.10.5 we can also deduce the following important count-
ing formula.

Corollary 2.10.7 Let G × S → S be an action, where S is a finite set. Then

|S| = |SG | +
∑

x

|G/Gx |,

where the summation is done by picking out an element x from each orbit with
more than one element.
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Proof. By Proposition 2.10.5(ii), we may count the number of elements in
S by counting the number of elements in each orbit and adding these. The
formula expresses this, in that we first count the orbits containing one point
(this is the term |SG |) and then the orbits containing two or more points (this
is the summation). In the latter case we use the bijection Gx → G/Gx from
Proposition 2.10.5(iii). �

The following lemma is a very valuable tool for doing combinatorics and
counting. Notice how having two different ways of counting leads to a surprising
formula.

Lemma 2.10.8 (Burnside) Let G × S → S be an action, where G is a finite
group and S a finite set. Then

|S/G| =
∑

g∈G |Sg|
|G|

where Sg = {x ∈ S | gx = x}.

Proof. Define T = {(g, x) ∈ G × S | gx = x}. We will count the elements in
T in two different ways. For every g ∈ G we count the number of x ∈ S fixed
by g. This is the same as for every x ∈ S counting the number of g ∈ G that
fixes x . Thus we have the formula

|T | =
∑
g∈G

|Sg| =
∑
x∈S

|Gx |.

The last sum can be rewritten using Proposition 2.10.5(ii):
∑
x∈S

|Gx | =
∑

orbits Gx

∑
y∈Gx

|G y | =
∑

orbits Gx

|Gx ||Gx | =
∑

orbits Gx

|G| = |S/G| |G|,

since Gy = Gx when y ∈ Gx and therefore |G y | = |Gx |, by Proposition
2.10.5(iii). This gives the desired result. �

Example 2.10.9 Suppose that you color four of the edges of the octagon in
Example 2.10.6 white and four black. You can do this in

(8
4

) = 70 ways, but
some of them can be mapped to each other using reflections and rotations. We
wish to count the number of essentially different colorings. The group G from
Example 2.10.6 acts on the set S of colorings without taking into account that
some of them are the same. So |S| = 70. The colorings in the same orbits of
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this action are considered as the same (two colorings are in the same orbit if
you can reflect or rotate one to the other).

�
��

�

�
� �

�

We wish to find the number of orbits |S/G| using Lemma 2.10.8. Now, G has
16 elements consisting of eight reflections and eight rotations. We need to find
|Sg| for g ∈ G. Let g be a reflection in a line through two opposite vertices
of the octagon. Once we have chosen the colors of two edges of the four on
one side of the line, the colors of the rest of the edges are determined if the
coloring is invariant under g. This means that |Sg| = (4

2

) = 6. Now let g be a
reflection in a line through the midpoints of opposite edges. The color of these
two opposite edges has to be the same for the coloring to be invariant under g.
Therefore |Sg| = 2 · 3 = 6.

Of course, |Se| = 70. If g is a rotation of π/4, 3π/4, 5π/4 or 7π/4 then
|Sg| = 0. If g is a rotation of π/2 or 3π/2 then |Sg| = 2. Finally, if g is a
rotation of π then |Sg| = (4

2

) = 6. Plugging these numbers into Burnside’s
formula gives

|S/G| = 1

16
(6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 70 + 2 + 2 + 6) = 8.

Example 2.10.10 Let us look again at Example 2.10.9 but now consider only
the group G of rotations acting on the set S of colorings. So G consists of
rotations of 2kπ/8, where k = 0, 1, . . . , 7. Two colorings are considered the
same if they are in the same orbit under the action of G. This means that you
can map one to the other using a rotation in G. How many essentially different
colorings are there now? Again this amounts to counting the number of orbits
of G in S. We already have the relevant numbers |Sg| for g ∈ G from Example
2.10.9. Let us plug them into Burnside’s formula and compute

|S/G| = 1

8
(70 + 0 + 2 + 0 + 6 + 0 + 2 + 0) = 10.
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2.10.1 Conjugacy classes

The map α : G × G → G given by α(g, h) = ghg−1 is an action of G on G.
It is called conjugation. The orbit

G · h = C(h) = {ghg−1 | g ∈ G}
is denoted C(h) and called the conjugacy class containing h. The stabilizer Gh

is denoted Z (h) and called the centralizer of h. Notice that

Z (h) = {g ∈ G | gh = hg}.
The set of fixed points

GG = Z (G) = {g ∈ G | gx = xg for every x ∈ G}
is denoted Z (G) and called the center of G. There is at least one fixed point
for the conjugation action, namely e ∈ Z (G). In fact Z (G) is an abelian normal
subgroup of G (see Exercise 2.50). The stabilizer of a subgroup H ⊆ G,

G H = NG(H ) = {g ∈ G | gHg−1 = H},
is denoted NG(H ) and called the normalizer of H in G. Notice that H is a
normal subgroup if and only if NG(H ) = G (see Exercise 2.51). If G is a finite
group then we may write Corollary 2.10.7 as

|G| = |Z (G)| +
∑
h∈G

|G/Z (h)|,

where the last sum is done by picking out one element h from each conjugacy
class with more than one element.

2.10.2 Conjugacy classes in the symmetric group

Conjugacy classes in the symmetric group Sn have a very appealing descrip-
tion. Let σ ∈ Sn and write σ = σ1σ2 · · · σr as a product of disjoint cycles
(Proposition 2.9.6) of increasing length i1 ≤ i2 ≤ · · · ≤ ir . We get for example
that

(3 4) = (1)(2)(3 4)

for (3 4) ∈ S4, so that i1 = i2 = 1 and i3 = 2. The increasing sequence i1 ≤ · · ·
≤ ir is called the cycle type of σ . It follows by Lemma 2.9.8 that the conjugacy
class C(σ ) consists of permutations with the same cycle type as σ . You may
see this by writing on top of each other two permutations σ1, σ2 ∈ Sn with the
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same cycle type. Let τ ∈ Sn be given by mapping the elements on top to the
elements below. Then τσ1τ

−1 = σ2. An example will clarify this.

Example 2.10.11 Let σ1 = (1 2)(3 4) and σ2 = (2 3)(4 1) be permutations in
S4. Then we can write σ1 and σ2 on top of each other as follows:

(1 2) (3 4)

(2 3) (4 1).

Now define τ by
(

1 2 3 4
2 3 4 1

)
.

Then we see that τσ1τ
−1 is given by

τ (1 2)(3 4)τ−1 = τ (1 2)τ−1τ (3 4)τ−1 = (τ (1) τ (2))(τ (3) τ (4)) = σ2.

Counting the number of elements in a conjugacy class is a combinatorial
problem. The number of conjugacy classes in Sn is the number of sequences
1 ≤ i1 ≤ i2 ≤ · · · ≤ ir of integers with

i1 + · · · + ir = n.

For example, there are five conjugacy classes in S4, corresponding to the se-
quences

1 ≤ 1 ≤ 1 ≤ 1,

1 ≤ 1 ≤ 2,

1 ≤ 3,

2 ≤ 2,

4.

The permutation σ = (3 4) lies in the conjugacy class corresponding to 1 ≤
1 ≤ 2. The conjugacy class C(σ ) consists of the elements

{(3 4), (2 4), (2 3), (1 4), (1 3), (1 2)}.
Therefore |Z (σ )| = |S4|/|C(σ )| = 4.

Remark 2.10.12 Counting the number of conjugacy classes in Sn translates
into the problem of counting increasing sequences 1 ≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ n
such that i1 + · · · + ir = n. For example, when n = 6 there are the following
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increasing sequences:

6 = 1 + 1 + 1 + 1 + 1 + 1,

6 = 1 + 1 + 1 + 1 + 2,

6 = 1 + 1 + 2 + 2,

6 = 2 + 2 + 2,

6 = 1 + 1 + 1 + 3,

6 = 1 + 2 + 3,

6 = 3 + 3,

6 = 1 + 1 + 4,

6 = 2 + 4,

6 = 1 + 5,

6 = 6.

This combinatorial problem was studied by Euler in his landmark work In-
troductio in Analysin Infinitorum (1748). Let p(n) be the number of ways in
which an integer n can be written as a sum of natural positive numbers. Note
that p(0) = 1, counting the empty sum as a way of writing 0, and p(n) = 0
if n < 0. We have seen above that p(6) = 11. Euler proved the remarkable
identity

p(n) = p(n − 1) + p(n − 2) − p(n − 5) − p(n − 7) (2.3)

+ p(n − 12) + p(n − 15) − · · ·

where the numbers subtracted from n are 1
2 (3k2 ∓ k), k = 1, 2, . . . .

2.10.3 Groups of order pr

A finite group of order pr , where p is a prime number and r ∈ N, is called a
p-group.

Proposition 2.10.13 Let G be a non-trivial p-group acting on a finite set S.
Then |S| ≡ |SG | (mod p).

Proof. Corollary 2.10.7 gives

|S| = |SG | +
∑
x∈S

|G/Gx |,
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where the summation on the right hand side is done by picking out an element
x from each orbit with more than one element (x is not a fixed point). If
x ∈ S is not a fixed point then Gx is a proper subset of G. Therefore p divides
|G/Gx | = |G|/|Gx |. Thus p divides every term in the summation on the right
hand side. Therefore p divides |S| − |SG |. �

Corollary 2.10.14 Let G be a non-trivial p-group of order pr . Then

|G| ≡ |Z (G)| (mod p)

and |Z (G)| > 1.

Proof. This is done simply by using Proposition 2.10.13 for the conjugation
action. In this case the Z (G) are the fixed points. Since p � pr − 1 we obtain
|Z (G)| > 1. �

Corollary 2.10.15 Let p be a prime number. A group G of order |G| = p2 is
abelian.

Proof. We will prove that |Z (G)| = |G|. By Corollary 2.10.14, we get
|Z (G)| > 1. Since |Z (G)| divides |G|, the only possibilities left are |Z (G)| = p
or |Z (G)| = p2. We wish to exclude |Z (G)| = p. Suppose that this is the case.
Since Z (G) ⊆ G is a normal subgroup, G/Z (G) is a group of order p. There-
fore it has to be cyclic, by Proposition 2.7.2. Let x Z (G) be a generator for
G/Z (G), where x ∈ G. Then every gZ (G) = xn Z (G) for some power n ∈ N.
In particular every element g ∈ G can be written g = xna, where a ∈ Z (G).
But (xma)(xnb) = (xnb)(xma) when a, b ∈ Z (G). This proves that G is abelian,
contradicting |Z (G)| = p < |G|. �

Extending the method in the proof of Corollary 2.10.15 a little, one can
show that Z/p2Z and Z/pZ × Z/pZ are the only groups of order p2 up to
isomorphism. There is also a small modification to the proof that makes it
simpler: if |Z (G)| = p then there must exist g ∈ G \ Z (G). But then Z (G) �

Z (g). This implies that Z (g) = G or that g ∈ Z (G), which is a contradiction.

2.10.4 The Sylow theorems

We now move on to the celebrated Sylow theorems. Sylow (1832–1918) pub-
lished a 10-page paper [24] in Mathematische Annalen in 1872 containing
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three theorems. His three theorems have survived to the present day and are of
fundamental importance.

Definition 2.10.16 Let G be a finite group and p a prime number, and suppose
that |G| = pr m, where p � m. A Sylow p-subgroup is a subgroup H ⊆ G of
order pr .

Theorem 2.10.17 (First Sylow theorem) Let G be a finite group and p a
prime number, and suppose that |G| = pr m, where p � m. Then G contains a
Sylow p-subgroup.

Proof. Define a map α : G × S → S, where S = {X ⊆ G | |X | = pr }, given
by α(g, X ) = {gx | x ∈ X}, where X ∈ S and g ∈ G. It follows from subsec-
tion 2.1.6 that α(g, X ) ∈ S when g ∈ G and X ∈ S. It is easy to see that α is
an action of G on S. The number of subsets with pr elements in a set having
pr m elements is given by the binomial coefficient

|S| =
(

pr m

pr

)
= pr m(pr m − 1) · · · (pr m − pr + 1)

pr (pr − 1) · · · 1
.

Since pr+1 � pr m − i and pr+1 � pr − i for i = 0, . . . , pr − 1, it follows that
the highest power of p dividing pr − i , is the highest power of p dividing
pr m − i , for i = 0, . . . , pr − 1. From this we deduce the important fact that
p � |S|.

By Proposition 2.10.5(ii), there must exist an orbit G · X , where X ∈ S, such
that p � |G · X |. From |G X ||G · X | = |G| (Proposition 2.10.5(iii)), it follows
that pr divides |G X |. We will show that |G X | = pr . To this end we use the
action of G X on X itself. The orbits of this action are the right cosets G X g
of G X . So the orbits each have |G X | elements (why?). Again by Proposition
2.10.5(ii) we get that |G X | divides |X | = pr . This proves that |G X | = pr and
therefore that G X is a Sylow p-subgroup of G. �

Theorem 2.10.18 (Second Sylow theorem) Let G be a finite group and P, Q
two Sylow p-subgroups. Then there exists g ∈ G such that

g Pg−1 = Q.

Furthermore, any p-subgroup H is contained in a Sylow p-subgroup.

Proof. The natural action of G on G/Q (Example 2.10.4) restricts to give an
action of P on G/Q. Since p does not divide |G/Q| = |G|/|Q|, this action has
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a fixed point by Proposition 2.10.13. Thus we can find a left coset x Q, x ∈ G,
such that gx Q = x Q for every g ∈ P . This means that P ⊆ x Qx−1. But since
|P| = |Q| = |x Qx−1|, we must have P = x Qx−1.

Let H be a non-trivial p-subgroup and P a Sylow p-subgroup. As above
H acts on G/P and has a fixed point y P, y ∈ G. This means that hy P = y P
for every h ∈ H and therefore that H ⊆ y Py−1, so that H is contained in the
Sylow p-subgroup y Py−1. �

Theorem 2.10.19 (Third Sylow theorem) Let G denote a finite group of or-
der pr m, where p � m. Let Sylp(G) denote the set of Sylow p-subgroups. Then

(i) |Sylp(G)| divides m,
(ii) |Sylp(G)| ≡ 1 (mod p).

Proof. Let P be a Sylow p-subgroup. Then G acts on Sylp(G) by conjuga-
tion. This action has only one orbit, by the second Sylow theorem. Thus by
Proposition 2.10.5(iii) we get

|Sylp(G)| = |G/NG(P)|,
where P is a Sylow p-subgroup. But since P ⊆ NG(P), it follows that
|G/P| = |G/NG(P)| |NG(P)/P| (see Exercise 2.18). Therefore |Sylp(G)| di-
vides |G/P| = m. This proves (i).

The conjugation action of G on Sylp(G) restricts to give an action of P
on Sylp(G). To prove (ii), it suffices by Proposition 2.10.13 to show that P is
the only fixed point for this action. Suppose that Q ∈ Sylp(G) is a fixed point,
i.e. gQg−1 = Q for every g ∈ P . This means that P ⊆ NG(Q). Now using
the second Sylow theorem on the Sylow p-subgroups P and Q of the group
NG(Q), there must exist g ∈ NG(Q) such that Q = gQg−1 = P . This shows
that P is the only fixed point. �

A typical example of the use of the Sylow theorems is the following (more
examples are found in Exercises 2.52–2.56).

Example 2.10.20 A group G of order 143 must be isomorphic to Z/143Z.
Since 143 = 11 · 13, the third Sylow theorem tells us that

|Syl11(G)| ∈ {1, 13}, |Syl13(G)| ∈ {1, 11}
and

|Syl11(G)| ≡ 1 (mod 11), |Syl13(G)| ≡ 1 (mod 13).

https://doi.org/10.1017/CBO9780511804229.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511804229.003


104 2 Groups

So there is a unique Sylow 11-subgroup P and a unique Sylow 13-subgroup
Q in G. These Sylow subgroups have to be normal (why?). The product P Q
is a subgroup (see Lemma 2.3.6) and it contains P and Q. This implies that
P Q = G, as 11 = |P| divides |P Q| and 13 = |Q| divides |P Q|. Since P ∩ Q
is a proper subgroup of Q, it follows that P ∩ Q = {e} by Theorem 2.2.8. This
implies by Lemma 2.8.1 that

π : P × Q
∼→ G

given by π (p, q) = pq is an isomorphism. So G is isomorphic to Z/11Z ×
Z/13Z, which by the Chinese remainder theorem (Proposition 2.8.2) is iso-
morphic to Z/143Z.

2.11 Exercises

1. Let G be a group and g ∈ G an element of G. Prove that the map
ξ : G → G given by ξ (x) = xg is bijective.

2. Using subsection 2.1.6 construct the possible composition tables for a
group with four elements.

3. Verify the composition table in Example 2.1.6.
4. Let G be a group and H ⊆ G a non-empty subset. Prove that H is a

subgroup if and only if xy−1 ∈ H for all x, y ∈ H .
5. Let H be a non-empty finite subset of a group G. Prove that H is a

subgroup if xy ∈ H for every x, y ∈ H . Give an example where this
breaks down if H is infinite. (Hint: consider e, x, x2, . . . or use the fact
that multiplication by x ∈ H is bijective.)

6. Prove in detail that GL2(R) and O2(R) are groups and that they are
non-abelian.

7. In the notation of Example 2.1.6, show that {e, d, f } is a normal subgroup
of S3. List the subgroups of order 2. Are any of these normal?

8. Let ϕ : R2 → R2 be an isometry such that ϕ((0, 0)) = (0, 0), as in
Example 2.1.12.

(i) Prove that ϕ(v1) · ϕ(v2) = v1 · v2, where v1, v2 ∈ R2 and · denotes
the usual inner product on R2 (use |v1 − v2|2 = |v1|2 + |v2|2−
2v1 · v2).

(ii) Show that ϕ(e1) · ϕ(e2) = 0 and that
ϕ(λe1 + µe2) = λϕ(e1) + µϕ(e2), where e1, e2 is the usual basis of
R2 and λ, µ ∈ R.

(iii) Prove that ϕ is a homomorphism (linear map) of vector spaces, i.e.
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(a) ϕ(λv) = λϕ(v), where λ ∈ R and v ∈ R2,
(b) ϕ(v1 + v2) = ϕ(v1) + ϕ(v2), where v1, v2 ∈ R2.

(iv) Prove that ϕ is invertible by proving that its determinant is non-zero.
9. Let L denote the group of linear isometries (rotations and reflections) of

R2 (see Example 2.1.12). Consider the square K ⊆ R2.

�

�

(i) List the elements of the group G = {ϕ ∈ L | ϕ(K ) = K }.
(ii) Write down the composition table for G.

10. Write down the subgroups of Z/6Z.
11. Why are {[0]} and Z/7Z the only subgroups of Z/7Z?
12. Show that a group G is not the union of two proper subgroups

H1, H2 � G. Can a group be the union of three proper subgroups?
13. Let N be a normal subgroup of a group G. Prove that gN = Ng for every

g ∈ G.
14. Show that every subgroup of an abelian group is normal.
15. Let H be a subgroup of the group G.

(i) Show that H is a right coset and that distinct right cosets of H are
disjoint.

(ii) Show that the map � : G/H → H\G given by �(gH ) = Hg−1 is
well defined. Prove also that it is bijective.

(iii) Prove that if H has index 2 in G (i.e. |G/H | = 2), then H is normal.
Give an example of a subgroup of index 3 that is not normal.

16. Consider the subset H of GL2(C) consisting of the eight matrices
±1, ±i, ±j and ±k, where

1 =
(

1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 i
i 0

)
.

Verify that H is a subgroup by constructing the composition table. This
group is called the quaternion group.
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17. Prove that the quaternion group H from Exercise 2.16 is not abelian, but
that all its subgroups are normal.

18. Let G be a finite group and H ⊇ K subgroups of G. Prove that
|G/K | = |G/H ||H/K |.

19. (i) Compute the inverse of [3] in (Z/8Z)∗.
(ii) Compute the inverse of [5] in (Z/13Z)∗.

20. Prove that the inverse map of a group isomorphism is also a group
homomorphism.

21. Prove that G is abelian if and only if the map f : G → G given by
f (g) = g2 is a group homomorphism.

22. Prove that the exponential function ξ (x) = ex is a group isomorphism
from (R, +) to (R>0, ·).

23. Using the notation of Example 2.1.6, prove that the map
sgn : S3 → Z/2Z, mapping e, d, f to [0] and a, b, c to [1], is a group
homomorphism.

24. Prove that
(

1 1
0 1

)
∈ GL2(R)

has infinite order in the group GL2(R).
25. Let V be a real vector space and W a subspace of V . Show that V is an

abelian group with respect to + and that W is a normal subgroup in V .
Prove that the quotient group V/W is a real vector space with scalar
multiplication λ(v + W ) = λv + W , where λ ∈ R.

26. Let G be an abelian group, K a group and f : G → K a group
homomorphism. Prove that f (G) ⊆ K is an abelian subgroup of K .

27. Let SL2(R) be the subset of GL2(R) (see Example 2.1.10) consisting of
matrices with determinant 1. Show that SL2(R) is a normal subgroup of
GL2(R). Use the isomorphism theorem to determine the group

GL2(R)/SL2(R).

28. Prove that (Z/13Z)∗ is a cyclic group by finding a generator.
29. Let p be a prime number and suppose that q is a prime number such

that q | 2p − 1. Prove that q > p (hint: consider the element
[2] ∈ (Z/qZ)∗). Use this to prove that there are infinitely many prime
numbers.

30. Let π : G → G/N be the canonical group homomorphism where N is a
normal subgroup of G.

(i) Prove that π (K ) is a subgroup of G/N if K is a subgroup of G.
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(ii) Prove that π−1(H ) is a subgroup of G containing N if H is a
subgroup of G/N .

(iii) Prove that π (π−1(H )) = H and π−1(π (K )) = K , where H is a
subgroup of G/N and K is a subgroup of G containing N .

(iv) Let G be a cyclic group and f : G → K a surjective group
homomorphism. Prove that K is a cyclic group.

(v) Let N ∈ N. Prove using the canonical group homomorphism

π : Z → Z/NZ

that a subgroup H of Z/NZ is cyclic.
31. (i) Write down all the elements of order 7 in Z/28Z.

(ii) How many subgroups are there of order 7 in Z/28Z?
32. (i) Prove that the cyclic group Z/15Z is isomorphic to the product group

Z/3 × Z/5Z.
(ii) Prove that the group (Z/15Z)∗ is isomorphic to the product group

Z/2 × Z/4Z. Conclude that (Z/15Z)∗ is not cyclic.
33. Consider Z ⊂ Q as abelian groups with + as composition. Let

[q] = q + Z ∈ Q/Z, where q ∈ Q.

(i) Show that

[
9

4

]
has order 4 in Q/Z.

(ii) Determine the order of
[a

b

]
in Q/Z, where a ∈ Z, b ∈ N \ {0} and

gcd(a, b) = 1. Conclude that every element in Q/Z has finite order
and that there are elements in Q/Z of arbitrary large order.

(iii) Show that Q/Z is an infinite group that is not cyclic.
34. Prove that (Q \ {0}, ·) is not a cyclic group.
35. Give an example of a non-cyclic group of order 8.
36. Let G be a finite group of order N . Let ψ(d) be the number of elements in

G of order d.
(i) Prove that ψ(d) = 0 if d � N and that G is cyclic if and only if

ψ(N ) > 0.
(ii) Prove that ∑

d|N
ψ(d) = N .

(iii) Suppose that for every divisor d in N , there is a unique subgroup
H in G of order d . Prove that ψ(d) ≤ ϕ(d) and that G is a cyclic
group.

37. Prove that an even permutation cannot be the product of an odd number of
transpositions.

38. Prove that the order of a k-cycle in Sn is k.
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39. Let τ ∈ S3 denote the 3-cycle

(1 2 3) =
(

1 2 3
2 3 1

)
.

Show that the subgroup 〈τ 〉 = {τ n | n ∈ Z} is normal in S3.
40. Let σ ∈ S5 denote the 5-cycle

(1 2 3 4 5) =
(

1 2 3 4 5
2 3 4 5 1

)
.

(i) Show that σ is an even permutation and that 〈σ 〉 = {σ n | n ∈ Z} has
order 5 and write down the elements in 〈σ 〉.

(ii) Prove that 〈σ 〉 is not a normal subgroup of S5.
41. (i) Let σ, τ ∈ S4. Show that sgn(τστ−1) = sgn(σ ).

(ii) Write the 3-cycle (1 2 3) as a product of two simple transpositions.
Prove that for a general 3-cycle σ one can find a permutation τ ∈ S4

such that τστ−1 = (1 2 3). Use this to show that 3-cycles in S4 are
even. Prove that a 3-cycle has order 3 in A4.

(iii) Show that the number of 3-cycles in A4 is greater than six. Conclude
that the only subgroup of A4 containing every 3-cycle is A4.

(iv) Let ϕ : A4 → Z/2Z be a group homomorphism. Show that if σ is a
3-cycle then ϕ(σ ) = [0] = 2Z ∈ Z/2Z. Use this to prove that
ϕ(σ ) = [0] for every σ ∈ A4.

(v) Prove that A4 does not contain a subgroup of order 6.
42. If you are more familiar with 3-cycles this is an easier way of doing

Exercise 2.41. Prove that An does not contain a subgroup H of index 2
(hint: consider An/H and deduce that H must contain all 3-cycles).

43. Write

σ =
(

1 2 3 4 5 6
6 5 4 3 2 1

)
∈ S6

as a product of the minimal number of simple transpositions.
44. Prove that there are 45 elements of order 2 in A6.
45. Prove that A3 is a simple group. Prove that A4 is not simple by proving

that the elements of order 2 along with the neutral element form a normal
subgroup.

46. Let K be the equilateral triangle from Example 2.1.13. Suppose that you
color each edge of K using k colors. Show that the number of
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colorings is

1

6
(k3 + 3k2 + 2k),

where two colorings are considered the same if they map to each other
using rotations and reflections.

47. (i) Give a coloring from each orbit in Example 2.10.9.
(ii) Give a coloring from each orbit in Example 2.10.10.

(iii) Comparing Example 2.10.9 with Example 2.10.10, which colorings
are invariant under rotations but not under reflections?

48. In how many ways can you color the 16 squares of a 4 × 4 board when
half of them must be black and the other half white? Now answer the
same question when colorings are considered the same if they map to
each other using rotations and reflections.

49. Consider the permutations σ1 = (1)(2)(345), σ2 = (3)(4)(152) and
τ = (13)(245) in S5.

(i) What is the minimal number of simple transpositions needed in
writing τ as a product of simple transpositions?

(ii) Show that τ �∈ A5 and that

τσ1τ
−1 = σ2.

(iii) Show that σ1, σ2 ∈ A5, τ1 = (34)τ ∈ A5 and τ1σ1τ
−1
1 = σ2.

(iv) Now we know that σ1, σ2 are conjugate via a permutation τ1 in A5.
Show that a permutation of the cycle type (a) 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1,
(b) 1 ≤ 2 ≤ 2, (c) 1 ≤ 1 ≤ 3 or (d) 5 is even. We know that
permutations of the same cycle type are conjugate via a permutation
in S5. Show that two permutations with the same cycle type, (a), (b)
or (c), are conjugate via a permutation in A5.

(v) Give an example of two 5-cycles that cannot be conjugate via a
permutation in A5.

(vi) Show that in general a normal subgroup N in a group G is a disjoint
union of conjugacy classes C(n), n ∈ N (subsection 2.10.1).

(vii) One may prove on further inspection that A5 is the disjoint union of
conjugacy classes with 1, 12, 12, 15 and 20 elements (check that
1 + 12 + 12 + 15 + 20 = 60). Thus show that A5 is a simple
group.

50. Let G be a group. Prove that the center Z (G) of the group is an abelian
normal subgroup of G.
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51. Let H ⊆ G be a subgroup of a group G. Prove that the normalizer NG(H )
is a subgroup of G containing H . Prove that H is normal if and only if
G = NG(H ).

52. Let G be a finite group and p a prime number. Prove that G contains an
element of order p if p divides |G|. (Hint: reduce to the situation where G
is cyclic and of order pr ).

53. Prove that a group of order 15 is cyclic.
54. Does a group of order 14 have to be cyclic?
55. Compute the number of elements of order 5 in a group of order 20.
56. Let p and q be prime numbers. Prove that a finite group G of order pq

cannot be simple.
57. (HOF) Prove using only ideas developed in Chapter 2 that a finite abelian

group is isomorphic to a product of cyclic groups.
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