B Grobner bases

A symmetric function f : R*> — R is a function satisfying f(X,Y) = f(¥, X)
forevery (X, Y) € R?. Simple examples of symmetric functions are s;(X, Y) =
X 4+ Y and 55(X, Y) = XY. Polynomials in X and Y are functions built from
addition and multiplication of the variables X and Y, suchas f(X,Y) = XY +
X + Y. The polynomial f(X,Y)= X?+ Y? is an example of a polynomial
that is a symmetric function. We call it a symmetric polynomial. A special
case of a classical result due to Newton (1643—1727) says that every symmetric
polynomial is a polynomial in s and s;. For example,

X2+ Y =(X+Y) —2XY =57 — 25,
and
X+ =(X+7) -3(X+ V)XY =57 —3s15,.

You may want to continue the list with X* + Y* or to wait until you have
digested the rudiments of the theory of Grobner bases and can understand
“Newton revisited” (Section 5.5). In this chapter we will develop the theory of
Grobner bases in polynomial rings in several variables. The original impetus for
this recent development of algebra was the desire to solve equations. Systems
of linear equations such as

Sx+y+z=17,
x+y—z=1,
x+y+z=9

can be solved using Gaussian elimination. However, many problems lead to
systems of non-linear equations, such as

yz—x3+x=0,
y3—x2:0,
186
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where the variables occur with powers greater than 1. The theory of Grobner
bases is a far-reaching generalization of Gaussian elimination. It can be
applied for solving systems of non-linear (polynomial) equations such as
above. Grobner bases were invented independently by Buchberger (1942—) and
Hironaka (1931-) in the sixties. Hironaka used the term ‘“‘standard bases” in
connection with his work on resolution of singularities in algebraic geometry
(1964). Buchberger used the term Grobner bases in his Ph.D. thesis (1966),
in honor of his advisor W. Grobner (1899-1980) . In accordance with most
modern mathematical literature we will use this term. Grobner bases have some
remarkable (mathematical) properties and turn out to be useful also in areas not
confined to the world of mathematics, for example in optimization, robotics
and theoretical computer science.

5.1 Polynomials in several variables

So far we have only encountered and defined polynomials in one variable. We
need to define formally polynomials in more than one variable. Fortunately it
is very easy to modify our formal construction of polynomials in one variable.
Recall that the ring of polynomials R[X] with coefficients in a (commutative)
ring R was defined as

RIX]=RINI={f:N—>R| f() =0, n>>0)

with obvious addition and not so obvious multiplication (see Section 4.1). A
polynomial f € R[X] in one variable can be expressed in the usual notation
as

f=a, X"+ -+ a1 X + ay, a; € R,

and addition and multiplication coincide with well known operations (but with
coefficients in an arbitrary ring). Polynomials in several variables should cor-
respond to algebraic expressions like X? + XY + Y + Y3 + X (in the case of
two variables X and Y). We define the polynomial ring R[X, ..., X,] inn
variables X, ..., X, as

R[Xy,...,Xa]=RIN"]={f:N"— R | f(v) =0, |[v] > 0},

where v = (vy,...,v,) € N and |v|=v; +- -+ v,. A polynomial f €
R[X1, ..., X,]1is the same as a function f : N* — R that is non-zero for only
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188 5 Groébner bases

finitely many v € N". We let X” € R[N"] denote the function given by
1 ifv=w,
0 if v+#w.

With this notation, every polynomial f € R[N"] can be written as a (finite) sum

f= Z a,X’,

veN”

XY (w) =

where a, € R (an element r € R is identified with the function mapping the
zero vector to r and everything elseto O € R).If f, g € R[N"] we define f + g
by (f + g)(v) = f(v) + g(v) and fg by the (finite) sum

(fOw) = Y fgw).

v+v=v

where vy, v; € N”. The complete proof that R[N"] is a ring with these com-
positions is left to the reader (see Exercise 5.1), as it is very similar to the
one-variable case. We note that O € R is the neutral element for + and that the
function X ©00 mapping the zero vectorin N to 1 € R and everything else
to 0, is the neutral element for multiplication. In the notation R[X}, ..., X,]
for R[N"], X, refers to X100 X, to X©.1.0.--0 " "and X,, to X©--0.D,

A term is a polynomial » X" € R[N"], where r € R \ {0} is called the coef-
ficient.

Example 5.1.1 The formal definition of polynomials in several variables
is a precise mathematical model for polynomial expressions in variables

X,Y,Z,....Be sure that you understand how to go from the formal expres-
sions to the “real-world” expressions in X, Y, Z, ... and back. As an example,
let

f — 2x(0,0,0) + Zx(],0,3) + X(2,],0) _ X(O,l,l)+3x(l,l,l) e Z[N3]
Translating X to X109y to X©1-9 and Z to X% we get
f=242XZ>+X*Y —YZ+3XYZ cZ[X,Y, Z]

as the corresponding polynomial expression in X, Y and Z. Multiplying poly-
nomials in several variables corresponds to the natural way of multiplying and
collecting terms, e.g.

(X+2Y —2)X+Y —-2Z)=X>+ XY — XZ+2XY +2Y>-2YZ
—XZ—-YZ+Z*=X*+3XY —2XZ+2Y>-3YZ+ Z°.
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5.1.1 Term orderings

In one variable it is natural that a term like X is bigger than X?3. In more than
one variable there is no obvious way of ordering the individual terms. In two
variables, how should we compare terms like X 2y and X3? This is formalized
in the notion of a term ordering. The price we pay for comparing terms in
more than one variable is that there are infinitely many natural ways of doing
it (see Remark 5.1.4). Before reading on, you should consult Appendix A for
the definitions of a partial and a total ordering on a set.

Definition 5.1.2 The set N” of n-tuples of natural numbers carries a natural
component-wise addition + with zero vector 0 = (0, . .., 0). A partial ordering
< on N" is called a term ordering if

(i) <is atotal ordering,
(i) 0 < v,
i) M <vm=vi+v=<uv+v

for every v, vy, v, € N".

Example 5.1.3 We will give a few examples of term orderings.

(1) A term ordering on N = N' has to be the usual total ordering on N (why?).
(2) Define the lexicographic ordering <iex on N” by

(vlv'-'1vl’l) <lex (wl, ---’wn)

if one of the following applies:

(v1 < wy) or

(vi =wy) and (v < wy) or

(vy =wy) and (v, =wy) and (v3 < w3) or ...
(vp=wy) and (v, =wp) and ... and (v, = w,).

This is nothing but “alphabetic” ordering on tuples of natural numbers; for
example, (1, 2, 3) >« (1, 1,3)since2 > land (4,5, 1) <ix (4, 5, 3) since

1<3.
3) Let |v|=v; 4+ vy 4+ -+ v,, where v = (vy,...,v,) € N'. Define the
graded lexicographic ordering by v <giex w if |v| < |w| or |[v| = |w]

and v <j,x w. Notice that, for example, (1,2,3) >gex (2,1,1) (since
14243>24+14+1)but(1,2,3) <ix 2,1, 1).
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190 5 Groébner bases

You should check immediately that <jex and <gex are partial orderings and that
they satisfy the three rules defining a term ordering (see Exercise 5.7).

A fruitful way of studying term orderings is through a little geometry. For a
vector v € R” of real numbers > 0 one can construct a term ordering <, on N”
defined as u; <, u, if and only if

VU <U-Up or (v-u; =v-up and uy <jex u7), 5.1

where uy, u; € N" and - refers to the usual inner product on R” (see Exercise
5.8).

Remark 5.1.4 There is a fundamental difference between N and N2, On
N there is only one term ordering. On N? there are infinitely many (in fact
uncountably many). Let <, denote the term ordering on N? given by the vector
(1, r) as in (5.1), where r is a positive real number. If s 7 r is another positive
real number, we may find v € Z? such that (1,7) - v > Oand (1, s) - v < 0. You
can see this by drawing the lines through (0, 0) orthogonal to (1, 7) and (1, ).
Any point with integer coordinates between the two diagonal lines will do.

A vector in Z? can always be written as the difference of two vectors in N?
(e.g.(1, =) =(1,00—(0, D, (=1, -1) =(0,0) — (1, Dand (1, ) = (1, 1) —
(0, 0)). Write v = v; — v, where vy, v, € N2. Then v; >, v, but v; <, vs.

Thus for every positive real number r we have defined a term ordering <, such
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that if s is another positive real number then <, # <;. This shows that there are
infinitely (uncountably) many term orderings on NZ.
For a given vector v € N" we let

v+ N ={v+w|weN}

We will need the following crucial result, known as Dickson’s lemma
(L. E. Dickson (1874-1954)). It originally appeared in a paper on number
theory ([7], Lemma A).

Lemma 5.1.5 (Dickson) Let S be a subset of N". Then there is a finite set of
vectors vy, ..., v, € S such that

SCw+NYU---U(v, + N").
Example 5.1.6 The idea of the proof is really quite simple and comes from

the case of the subsets of N2. In the figure below we show a certain infinite
subset S C N? (extended infinitely in the positive x- and y- directions).

The marked points are the interesting points for the subset S, in that

SC(2,5+NHU(B,3)+NHU((5,2) + NHU((7, 1) + N).

https://doi.org/10.1017/CBO9780511804229.006 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511804229.006

192 5 Groébner bases

Proof of Lemma 5.1.5. The proof proceeds by induction on n. If n = 1 and
S C Nis a subset, we let s be the first element in S. Then S C s + N. Suppose
now for the induction step that » > 1 and we know that Lemma 5.1.5 is true
form < n.Letw : N* — N"~! denote the map given by

(X1, X0,y oy Xp) = (X2, .0y Xp).
Using the induction hypothesis on the subset
7(S) = {m(s) | s € S} S N7
we get the existence of sy, ..., s, € S such that
() S () +N'"HU---U(m(s,) + N1,

It is in general not true that S C (s; + N*) U - - U (s, + N") (you can see this
in Example 5.1.6). We need more vectors in S.

Let M be the largest number occurring as a first coordinate in our vectors
$1, ..., 8. Define

S; = {s € § | the first coordinate of s = i} forO<i<M
and
S>y = {s € §| the first coordinate of s is > M}.
Then S = SoU--- U Sy—; US>y and
Som S (s +NHU---U(s, +N).

Since the first coordinate of the vectors in S; is fixed, we can identify S; with a
subset of N"~! and by induction find finitely many vectors si ey sf’, € S; such
that

SiC(sf+N)U---U (s, +N).

Gathering up these finitely many vectors for Sy, . .., Sy —; and throwing in the
vectors sy, ..., s, we get the result. d

Make sure you understand how the proof of Lemma 5.1.5 works for the
subset § € N? in Example 5.1.6.

Corollary 5.1.7 A term ordering < on N" is a well ordering.
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Proof. Let S C N” be a non-empty subset. By Lemma 5.1.5 there are finitely
many elements vy, ..., v, € S such that

SCw+NYU---U(v, + N".

If v € v; + N" then v = v; + w for some w € N". This implies that v — v; €
N". Since v — v; > 0 by Definition 5.1.2(ii), it follows that v = (v — v;) +
v; > v; by Definition 5.1.2(iii). This means that the smallest element among
Vi, ..., 0, Will be the smallest element in S, showing that < is a well
ordering. O

5.2 The initial term of a polynomial

Definition 5.2.1 Let

f= ZavX”

veN?

be a non-zero polynomial in R[N"] and < a term order on N”. The initial term
of f with respect to < is defined as

inf(f) - anwa

where w = max<{v € N" | a, # 0} (see Definition A.3.6 for the definition of
max<). In an abuse of notation we will sometimes compare two terms and write
aX <bXVifu <w.

Example 5.2.2 Let f = X>+ XY +Y +Y? + X5 € Z[X, Y], where X cor-
responds to X9 and ¥ to XV in Z[N?]. This means that

f=x%0 4 x0b 4 xOD 4 x03) 4 x60 ¢ 7[N?].
Putting < = <|x (Example 5.1.3), we obtain
(5,0)>(2,0)=(1,1) 2 (0,3) = (0, 1).

In the ordering < one should write f = X° + X2 4+ XY + Y3 + Y. The initial
term of £ is therefore in<(f) = X°.

Remark 5.2.3 Let R be a domain and f, g non-zero polynomials in
R[Xi, ..., X,]. Then in<(fg) = in<(f)in<(g) (see Exercise 5.11). This for-
mula is the analogue of deg(fg) = deg(f) + deg(g) in one variable (see
Proposition 4.2.2),
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5.3 The division algorithm

In several variables there is an analogue of division with remainder (Proposition
4.2.4). Now everything is with respect to a fixed term ordering (in the case of
one variable, there is only one term ordering; in more than one variable there
are infinitely many (Remark 5.1.4)). The proof of the following proposition
is based on the division algorithm in several variables. This algorithm is very
similar to the one-variable algorithm given in the proof of Proposition 4.2.4.
In order not to separate the algorithm from its mathematical surroundings it is
embedded in the proof. To learn the algorithm and prove its correctness you
will have to read through the proof and immerse yourself in several examples
and exercises. We will assume for the rest of this chapter that R is a domain.

Proposition 5.3.1 (The division algorithm) Fix a term ordering < on N".
Let f € R[X1, ..., X,]1\ {0} and suppose that fi,..., fu € R[X1,..., X,]
is a sequence of non-zero polynomials. Then there exist ay,...,ay,r €
R[X., ..., X,] such that

f=a1f1+"'+amfm+r

and either r = 0 or none of the terms in r is divisible by in<(f1), ..., in<(fy).
Furthermore, in<(a; f;) < in<(f) if a; fi # 0.

Proof. The proof is basically a correctness proof of the division algorithm
for polynomials in several variables. This algorithm is similar to the algorithm
in one variable as described in the proof of Proposition 4.2.4. You should
compare the two. Here is the division algorithm in several variables. To begin
puta; :=0, ..., a, :=0,r :=0and s := f giving

f=aifi+ - +anfu+@T+s). 5.2)

This expression will serve as an invariant throughout the algorithm. Proceed as
follows in successive steps of the algorithm. If s = 0 we are done. If not, there
are two cases. If in<(s) is divisible by some in<(f;) then pick the smallest i
with this property and let

o ins(s) '
SES T 53
a; :=a; + in(s) .
T ()

Notice that (5.2) still holds after the assignments in (5.3) — we have simply
subtracted and added the same thing. However, if in<(s) is not divisible by any
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in<(f;) we add the initial term to r and subtract it from s:

r ;:r—}-ing(s)’ (5.4)

s =5 —in<(s).
Of course, after the assignments in (5.4) » + s is unchanged and (5.2) still holds.
If s = 0 we are done. If not, the initial term of s is strictly decreased after the
assignmentin (5.3), becausein<(s) r < in<(s) in<(f;) foraterm¢ in f; different
from in<(f;). The initial term of s is also strictly decreased after the assignment
in (5.4). In this way the sequence formed by in(s) in successive steps of the
algorithm is strictly decreasing with respect to the term ordering <. Since < is
a well ordering by Corollary 5.1.7, such a sequence must be finite (see Lemma
A.3.8). Therefore the division algorithm eventually terminates with s = 0. Then
(5.2) is the desired expression. We have seen thatin<(s) < in<(f)holdsifs # 0,
since s initially takes the value of f. Since in<((a; + in<(s)/in<(f;))fi) =
in<(a; in<(f;) +in<(s)) < max(in<(a; f;), in<(s)) (see Exercise 5.12) for a; #
0 we must have in<(a; f;) < in<(f) after the assignment in (5.3). This proves

that in<(a; f;) < in<(f) if a; f; # 01in (5.2) when reaching s = 0. O
Definition 5.3.2 Suppose that f € R[Xy,..., X,]Jandlet F = (f1,..., f)
be a sequence of non-zero polynomials in R[ X1, ..., X, ]. We let f F denote

the remainder r coming from dividing f by F using the division algorithm.

Example 5.3.3 Let<= <, withY <X, f=X*+7Y* fi =X>+7Y and
f> = X?Y + 1. The division algorithm is shown in the diagram below; we
are trying to mimic the diagram for division of polynomials in one variable.
Here, though, the result is represented by not just one polynomial but a set
(ay, ap) of polynomials. The initial terms of f;, f, and s are underlined. If the
initial term of s is not divisible by either in<(f;) or in<(f>) then we transfer
the initial term to the remainder r. This is indicated, for example, as Y 44
Y? > y4
X+ X4y XY+ ) =(X2-7,0)
X+ X%y
-X°Y +v*
Xy —y?
Yr4+v?—vyt
Y2 — vt 472

0
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The division algorithm above shows that
X4y =X*-17X*+7)+Y*+7?

and (X + YHXHY.XY+D — y4 4 y2 However, suppose that we switch f;
and f> (so that we divide by ( f, f1) instead of (f1, f>)). Then
X 4rt (XY +1, X2+ Y)=(-1, X%
X'+ X%y
- X’y +v*
XY -1
vty
1— Y41
0

This shows that
X+ =X2X*+YV) - XY+ D+Y +1

and (X4 + Y4)(X2Y+1,X2+Y) =Y+ 1.

5.4 Grobner bases

In Example 5.3.3 we saw that the remainder coming from the division algorithm
depends on the order of fi, ..., f,, in Proposition 5.3.1. We would like to have
a generating set of an ideal with the property that the remainder coming from
the division algorithm is independent of the order of its elements. This is possi-
ble. Such a set of generators is called a Grobner basis. In the rest of this chapter
we will assume that R is a field denoted by k, in order to simplify the defi-
nition of a Grobner basis (the definition for arbitrary domains is a little more
complicated).

Definition 5.4.1 A set of non-zero polynomials

F=(fi, ... fm) Sk[X1,..., X,]

is called a Grobner basis for anideal I in k[ X1, . .., X, ] with respect to a term
ordering < if F' C [ and, for every f € I \ {0},

in<(fi) | in<(f)
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for some i = 1,...,m. The set F is called a Grobner basis with respect to a
term ordering < if it is a Grobner basis for the ideal (f1, ..., f») with respect
to <.

This definition may seem strange at first. But it is exactly to the point. As
a motivating example consider the ideal 7 = (X? + Y, X?Y + 1) in the poly-
nomial ring Q[X, Y]. Recall that I consists of all the polynomials you get as
“linear” combinations (see subsection 3.1.1) of X? + ¥ and X?Y + 1:

I ={aX, ") X*+Y)+bX,")X’Y + 1) | a(X,Y),b(X,Y) € QX,Y]}.

Thus f = X3 —Y + XY — X?Y?> e I since f = X(X*+Y) — Y(X?Y + 1.
In general, how do we decide whether a given polynomial lies in the ideal /?
Here Grobner bases and the division algorithm are very helpful.

Proposition 5.4.2 Let G = (fi, ..., fn) be a Grobner basis with respect to
a term ordering <. For a polynomial f € k[ Xy, ..., X,] we have

fel «— f9=0,

where I = (f1,..., fm)-

Proof. If f6=0then f=ajfi+---+anfnand f el ={(f,..., fn).
Let f =aifi + -+ anfn + f© be the output from the division algorithm.
Taking r = f© this gives an expression for f as in Proposition 5.3.1. Clearly

r=f—afi——anfucl.
If r # O then there is some in<(f;) dividing in<(r), since (fi, ..., fm) was
assumed to be a Grébner basis for /. This contradicts that r is the remainder
coming from division by G. Thus r = 0. O

Example 5.4.3 Let F = (X + Y, XY + 1) and fix the lexicographic order-
ing < on terms in k[ X, Y] given by X > Y. Then

Y2 1=Y(X?>+Y)—(X’Y +1)

so that Y2 — 1 € (X?> + Y, XY + 1). But the remainder from the division al-
gorithm is (Y2 — 1) = Y? — 1. Using Proposition 5.4.2 we see that F is not
a Grobner basis for (X% 4+ Y, XY + 1). Of course this could also be checked
by using the definition of a Grobner basis. It is not too difficult to show that F
is not a Grobner basis for any term ordering (see Exercise 5.14).
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Example 5.4.4 A generator (f) for a principalideal / € R = k[X, ..., X,,]
is always a Grobner basis for 7. Consider a polynomial g € 1. Since f generates
I we may find a € R such that g = af. Therefore in<(g) = in<(a) in<(f) by
Remark 5.2.3 and in<(f) divides in<(g).

Corollary 5.4.5 Let G = (f1,..., fu) S R =k[X1, ..., X,] be a Grébner
basis for the ideal I C R with respect to some term ordering. Then I =
(frseoes fm)-

Proof. Since fi, ..., f,, € I weobtain (f1, ..., fiu) € I. However, if f € I
then f¢ =0 by Proposition 5.4.2 and f =a, f| + -+ + a, f. for suitable
ai,...,ay € k[Xy, ..., X,] by the division algorithm. This proves that I €
<flv---vfm)' g

Proposition 54.6 Let G = (fi,..., fu) be a Grobner basis in R =
k[X1, ..., X,] with respect to a term ordering <. Then the remainder r in
f=afi+ -+ ayfm +rasinProposition 5.3.1 is unique for every f € R.
The remainder from the division algorithm is independent of the order of the
elements fi, ..., fm inG.

Proof. Let f € R and assume we have two expressions f =a; fi + -+
Ay fm + 11 = a\ fi + -+ a}, fn + r2, as in Proposition 5.3.1. Then

ro—ri=(a —ap)fi+--+@n—a,)fn.

Therefore r, —ry € (fi,..., fm). If r» —r; # 0 then there exists i such that
in<(f;) divides in<(r, — r1). This implies that in<( f;) divides a term in r, or ry,
which is a contradiction.

A permutation G’ of the elements in G leads to an expression f = by f)
+ -4 by frn + 9, asin Proposition 5.3.1. This implies that f¢" = £9, since
we have just proved that the remainder in Proposition 5.3.1 is unique. O

5.4.1 Hilbert’s basis theorem

We will prove the existence of Grobner bases for every ideal in k[ X1, ..., X, ].
In the late nineteenth century the German mathematician David Hilbert (1862—
1943) surprised the mathematical community by showing that every ideal in a
polynomial ring k[ X, ..., X,] is finitely generated [13]. This is now referred
to as Hilbert’s basis theorem. His proof did not give explicit generators and
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his contemporaries were skeptical. Here is the fascinating history from the
MacTutor History of Mathematics Archive.!

Hilbert’s first work was on invariant theory and, in 1888, he proved his famous
Basis Theorem. Twenty years earlier Gordan had proved the finite basis theorem
for binary forms using a highly computational approach. Attempts to generalise
Gordan’s work to systems with more than two variables failed since the
computational difficulties were too great. Hilbert himself tried at first to follow
Gordan’s approach but soon realised that a new line of attack was necessary. He
discovered a completely new approach which proved the finite basis theorem for
any number of variables but in an entirely abstract way. Although he proved that a
finite basis existed his methods did not construct such a basis. Hilbert submitted a
paper proving the finite basis theorem to Mathematische Annalen. However,
Gordan was the expert on invariant theory for Mathematische Annalen and he
found Hilbert’s revolutionary approach difficult to appreciate. He refereed the paper
and sent his comments to Klein:

The problem lies not with the form . .. but rather much deeper. Hilbert has
scorned to present his thoughts following formal rules, he thinks it suffices that
no one contradict his proof ... he is content to think that the importance and
correctness of his propositions suffice. ... for a comprehensive work for the
Annalen this is insufficient.

However, Hilbert had learnt through his friend Hurwitz about Gordan’s letter to
Klein and Hilbert wrote himself to Klein in forceful terms:

... I am not prepared to alter or delete anything, and regarding this paper, I say
with all modesty, that this is my last word so long as no definite and irrefutable
objection against my reasoning is raised.

Using the machinery of Grobner bases, Hilbert’s result follows in a remark-
able way. In fact reading through the proof one tends to forget the controversies
of the late nineteenth century.

Theorem 5.4.7 Let k be a field, < a term ordering and I C k[Xy, ..., X,]
an ideal. Then I has a Grobner basis with respect to <.

Proof. Let S={veN'|X"=in(f)forsome f € I} € N". Dickson’s
lemma (Lemma 5.1.5) applied to the subset S of N” shows that there are finitely
many fi,..., f,, € I such that

SC+N)YU---U (v, + N,

where XV =in<(f;) for i =1,..., m. Suppose that aX"™ = in-(f), where

f el. Thenw = v; + v forasuitable j = 1,...,m and v € N". This proves
that X* = X% X" and therefore that in<(f;) | in<(f). This is exactly the state-
ment that (fi, ..., f,) is a Grobner basis for 7. a

U http://www-groups.dcs.st-and.ac.uk/ history
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Corollary 5.4.8 (Hilbert) Let I be an arbitraryideal ink[ X, ..., X,]. Then
there are finitely many polynomials f, ..., fin € I such that every polynomial
f € I can be written

f=afi+ -+aufu
for suitable ay, . .., a, € k[ X1, ..., X)) (I = {fi, ..., fu))

Proof. This follows from Theorem 5.4.7 and Corollary 5.4.5. O

5.5 Newton revisited

Let us return to the question in the introduction to this chapter. Is there a
systematic way of writing X* 4+ Y* as a polynomial in X + Y and XY ? The
answer is yes, and it is a nice consequence of the theory of Grobner bases.

In a more general setting we let f, fi,..., fr € k[X1, ..., X,,]. We wish to
decide whether the polynomial f can be written as P(fi, ..., f.), where P €
k[T, ..., T.], and find P if this is the case. Consider the polynomial ring
A=k[Xy,....,X,, T1,..., T ]. If we can write

f=a(l — f)+-+a(T — f,)+h, (5.5
where h € k[Ty,...,T,] and ay,...,a, € A, then we may put 7; = f; so
that f = h(fi,..., f;) and we can take P =h. Let I C A be the ideal
n-rf,....,T7.— fr). it f = P(f1,..., fr), where P € k[T, ..., T,], then
(see Exercise 5.17)

fXy,....,X,)— P(Ty,...,T,) el (5.6)

Therefore

f=a(lh - fO)+-+a(l, - f)+P
for suitable ay, ..., a, € A. How do we find the polynomial P? This is where
the theory of Grobner bases comes in handy. It gives the following surprising
result.

Theorem 5.5.1 Let f, fi,..., f, € k[X1, ..., X,]. Let I be the ideal

I={T1— fi,.... T, — f;)
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in the polynomial ring A = k[ X1, ..., Xu, T1, ..., T,] and < the lexicographic
ordering given by

X122X;1ZT122Tr

Let G be a Grobner basis of I with respect to <. Then f can be written as a
polynomial in f, ..., f, if and only if

fC ek, ..., T,

In this case f = fC(fi,..., f).

Proof. LetG = (g, ..., gn)be aGrobner basis for I with respect to <. Then
the division algorithm gives

f=dgi+-+aygn+ f©

foraj,...,ay € A.Since (gy,...,gn) =1, wecanfindai, ..., a, € A such
that

f=a(li— f)+--+a(T, — f,)+ f°.

If fG € k[Ty, ..., T,] then it follows that f = fG(fl, ..., fr) by (5.5).

If, however, there is a polynomial P € k[Ty,...,T,] such that f =
P(fi1,..., fr) then
f=a(hh— f)+ - +a — f)+ P, (5.7

where aj, ..., a, € A, by (5.6). We will prove that f¢ e k[T}, ..., T,] in this
case. This is done by running through the division algorithm with f and the
Grobner basis G. We may rewrite (5.7) as

f=bgi+- ---+bygn+P

for suitable by, ..., by € A. Notice that the invariant expression (5.2) of the
division algorithm (Proposition 5.3.1) is satisfied by s = P and r = 0 (us-
ing by, ..., by as values for the coefficients of gy, ..., gn). If in<(g;) divides
the in<(s) entering (5.3) of the division algorithm (see the proof of Proposition
5.3.1),thenin.(g;) < in<(s). This implies thatin-(g;) € k[T, ..., T,]. There-
fore g; € k[Ty, ..., T,]if s € k[T, ..., T,]. Here it is important that the term
ordering is lexicographic with X; > --- > X,, > T} > --- > T,. So the assign-
ment in (5.3) satisfies s — (in<(s)/in<(g;))g; € k[T, ..., T,]. Since we are

https://doi.org/10.1017/CBO9780511804229.006 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511804229.006

202 5 Groébner bases

X4t L (S X—YA4TLY YT+ T)
X+ Xy - X371
Xy +X°1 +v*
—X%Y — X*v? 4+ X*YT,
X*T + X*Y* = X*YT; + Y*
X3 + X*YT, — X*T}?

XY - 2X*YT + X*Tr+ Y*
XY 4+ XY - XY’T
—2X°YT, + X* T} — XY  + XY’Ty + Y,
—2X?YT, — 2X YT, +2XYT}
ﬁ — XY +3XY*T, - 2XYT>+ Y*
X2T2 + XYT? — XT;

—XY? 4 3XY?Ty —3XYT? + XT} + v*
XYY+ VT
3XYPT, = 3XYTY + XT) +2Y* - Y°T
3XY2T, 4+ 3Y°T, — 3Y°T?

—3XYT?+ XT} +2Y* —4Y3T, 4+ 3Y°T}
=3XYT? —3Y*T} +3YT}

XT} +2Y* —4Y°T, + 6Y°T} = 3Y T}
XTP+ YT} - T}
2V —4Y3T + 6YPTE —AY T + T
2Y4 —2Y3T, 4+ 2Y%T,
—2Y°T, 4+ 6Y*T} —2Y*T, —4YT] + T}
—2Y T, +2Y?T? - 2YTi T;

AY2TE —2Y*T, —4YT} +2YT T, + T}
AY2TE —AYT} +4T?T,

—2Y*T, +2Y T\ T, + T} — AT T,
—2Y*T, +2YT\ T, — 2T}
T} — 4T T, + 2T}

Figure 5.1
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moving terms from s to the remainder, in the division algorithm in (5.4), we
will eventually end up with a remainder ¢ in k[T, ..., T,]. d

Example 5.5.2 Let us return to the problem of writing X* + Y as a polyno-
mial in X + Y and XY. Using Theorem 5.5.1 to address this we must find a
Grobnerbasisof I = (T} — X — Y, T, — XY) withrespect to the lexicographic
ordering < given by X > Y > T; > T,. You will see in the next section how
to compute a Grobner basis using Buchberger’s algorithm. Let me reveal that
a Grobner basis for I withrespectto <isG = (T} — X =Y, T» — T\Y + Y?).
Now we can use the division algorithm to find (X* + Y*#)€. There are quite a
number of steps, but (miraculously) we end with an expression involving only
T and T, as the remainder. Figure 5.1 shows the computation.

The computation in the figure shows that (X* + Y*)¢ = T} — 4T2T, + 2T7.
Without looking for clever algebraic tricks we have found a mechanical proce-
dure. In this case the division algorithm shows that

X4V =X +Y) —4X + Y XY +2(XY)%.

Notice that given any symmetric polynomial f(X, Y) we can use the division
algorithm to find P = f¢ such that f = P(X + Y, XY). Theorem 5.5.1 is
useful in that it gives a straightforward algorithm.

5.6 Buchberger’s S-criterion

Theorem 5.4.7 shows the existence of a Grobner basis for an ideal in a polyno-
mial ring but gives no hint how to find it. There is a very nice (finite) criterion
for a set of polynomials F = (fj, ..., fi) to be a Grobner basis. To a pair of
polynomials f, g we associate the S-polynomial S(f, g), which depends on the
term ordering <. The S-polynomial S(f, g) cancels initial terms in f and
g according to the term ordering <. For example, SX?2+Y, YX+1)=
Y(X>+Y)— X(YX +1)=Y?— X, where < is the lexicographic ordering
with ¥ < X. Buchberger’s S-criterion says that F is a Grobner basis for 7 if
and only if S(f;, f))F =0forl <i < j <m.

This turns out to be very useful in practice. It is also the basis of Buchberger’s
algorithm for finding Grobner bases. If an S-polynomial S does not give a
remainder S7 equal to zero then you simply add the remainder S* to the list
of polynomials and use Buchberger’s S-criterion on this new list. This will
eventually terminate (Buchberger’s criterion will succeed).
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A word of advice: no complicated or abstract mathematics is involved, just
(very) clever calculations with polynomials. As a first approach to understand-
ing Buchberger’s algorithm you can go straight to subsection 5.6.2 after read-
ing the statement of Theorem 5.6.8 and understanding the definition of S-
polynomials (Definition 5.6.5). In the following, a term ordering < is fixed on
R =k[Xy,..., X,

5.6.1 The S-polynomials

Suppose we wish to check whether (f, ..., fi») € R\ {0} is a Grobner basis.
Let

f=alfl+"'+amfme(flvnwfin)a

whereay, ..., a, € R.Doesin<(f;)dividein<(f) forsomei =1, ..., m?Put
aX’ =in<(f), ;X" =in<(a;) and d; X" =in(f;) fori =1,..., m. Now
introduce

d=max{vi+u; |i=1,...m}.

Then it is impossible that v > v; + u; forevery i = 1, ..., m, since the initial
term of f has to be a k-linear combination of the initial terms in<(a; f;) for
a; f; # 0. Therefore v < §.If § = v, we may assume that§ = v; +u; =--- =
v, +u,, wherer <manda; f; #0fori =1,...,r. Then

aX’ = (cidy + -+ ¢ d)X"

In this case d;| X" = in<(f}) divides aX” = in<(f). However, if v < § there
is cancellation of maximal terms on the right hand side, and in<(f) is not
necessarily divisible by in<(f;), for i =1, ..., m. This is illustrated by the
following example.

Example 5.6.1 Let < be the lexicographic ordering given by X > Y, I =
(X247, XY+ 1) Ck[X,Y] and f=Y>—1=Y(X>+Y)—(X*Y +1)
€ I. Thenin.(f) = Y? but X> 1 ¥? and X2Y { Y2.

Our discussion leads to the following definition and proposition.

Definition 5.6.2 We say that f € R reduces to zero modulo F =
(f1s--. fm) S R\ {0} if there exist ay, ..., a, € R such that

f=aifi+-+anfn (5.8)
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and in<(a; f;) < in<(f) if a; f; #0. This is denoted

Remark 5.6.3 Observe that f — r 0 if and only if the maximal initial terms
in the summands on the right hand side of (5.8) do not cancel. Notice also that
f —r 0if fF = 0. This is the last part of Proposition 5.3.1. However, one may
have f — ¢ 0 even though f = 0 (see Exercise 5.18).

Proposition 5.6.4 Let F = (f1,..., fu)and I = {(f1,..., fu). If f > Fr 0
for every f € I then F is a Grobner basis for 1. If F is a Grobner basis for 1
then f¥ =0ifand onlyif f —r Ofor f € .

Proof. Let f e I\{0}. The discussion at the beginning of this subsection
shows that if f — ¢ O then in<(f) is divisible by in<(f;) for some f; € F.
Soif f —F O for every f € I it follows that F is a Grobner basis for 1. We
have seen that f¥ = 0 implies that f — r 0 by the last part of Proposition
5.3.1.If F is a Grobner basis for I and f — r O then f¥ = Osince f € I (this
is Proposition 5.4.2). |

This is really not a useful test for a Grobner basis. We need to check that
every f € I reduces to zero. Using some clever manipulations one may find
finitely many polynomials Sy, ..., Sy € I such that F is a Grobner basis if
and only if §; - O fori =1,..., N. We can in fact replace S; — r 0 with
S = 0, by Proposition 5.6.4. In this way we have an effective criterion for a
Grobner basis via the division algorithm provided that we can find Sy, ..., Sy.
Let us see how to do this. Suppose that

f=a1fl+"'+amfm€]s

where ay, ..., a, € R. Use the notation from the beginning of this subsection.
Then

f=C+(al - ing(al))fl + -+ — ing(ar))fr +ar+1fr+l + .- +amfma

where C = in<(a;) f; + - - - + in<(a,) f;. One crucial point to notice is that f
is the sum of C and certain polynomials all of whose initial terms are < §. If
on the one hand c;d; + - - - + ¢, d, # 0 then no cancellation among the initial
terms occurs and in<(f) is divisible by in<(f;) for some i =1, ...,m, as we
have already seen.
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Assume on the other hand that ¢;d; + - - - + ¢,d, = 0 (cancellation occurs
among the initial terms). Put g; = X" f; /d; and watch the following nice com-
putational trick evolve:

C=cdgi+-+cdg
= c1di(g1 — &2) + (c1dy + c2dr)(g2 — g3) + (c1dy + c2dr + c3d3)(83 — g4)
+-+(adi+ -+ omdeo ) (8o — &)+ (ardy + - -+ o d)gr

This shows that C is a linear combination of g; — g; = X" f; /d; — X"/ f;/d;.
From this we get the crucial S-polynomials. Observe that u; + v; = u; + v; as
vectors in N” (the initial terms of g; and g; cancel). Now define w;; € N" by
XYi = lem(XV, X%). Then

_ X" f; X”ffj
8i —8j = 4 4,
i J
= X¢ X* f; X fi
= din’ i dev,- J )

where ¢ + w;; = u; +v; = u; + v;. Notice the cancellation of the two initial
terms in
Xw,j Xw,‘,’

TR TR

This naturally leads us to the following definition.

Definition 5.6.5 The S-polynomial of two non-zero polynomials f and g with
respect to a term ordering < is defined as
XV XV

SU8=0-h! T in®

where X" is a least common multiple of in<(f) and in<(g).

The formal definition of S-polynomials may take some time to digest.
Intuitively one just multiplies the initial terms of f and g up to a least common
multiple. The letter S in S-polynomial stands for “syzygy.” This is a concept
from Hilbert’s theory of syzygies for polynomial rings. A syzygy is a term
from astronomy. It refers to a straight-line configuration of three celestial bod-
ies. The moon is in syzygy with the Earth and the Sun when it is new or
full.
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Example 5.6.6 Let < be the lexicographic ordering given by X > Y in
k[X, Y]. Then lem(X?, X*Y) = X*Y, and

S(X2+Y, X*’Y+1) = XZY(X2 +7Y) XZY(XZY +1
’ X2 X2y
=Y(X*+Y)—(X’Y + 1)
=Y>—1.

‘We have shown that

C = lns(al)f] +---+ ini(ar)fr
= DiXOS(f1, f) + -+ b XU S(fron, ) (5.9)
withb; € kandin< (X% S(f;, fi+1)) < 8. This calculation is crucial for the proof

of the following important insight.

Lemma 5.6.7 Let F = (fi,..., fw)and I = (f1,..., fu). If S(fi, fj) = F
Oforeveryi,j=1,...,mthen f — ¢ O forevery f € I.

Proof. Let f=a1fi+---+anfu€l, where ay,...,a, € R. Since
S(fi, fj) = r 0, we have

S(fi. f)=efi+---+enfn

forey, ..., e, € R, where in<(e; f7) < in<(S(fi, fj)) forl =1,..., m. Recall
that

f=CH@m—inc@)fi+ ... @ —inc@)fy +arsi frai+ ...

+ am fins
where C =in<(a;)f1 + --- +in<(a,) f, and in<(a, f1), ..., in(a, f;) are the
maximal initial terms in the summands a; fi, ..., @, fn. Now insert the ex-

pression for S(f;, f;) into (5.9) to get

withmax{in<(h; f;) | h; f; # 0, i =1, ..., n} < 8. This means that if the maxi-
mal initial terms on the right hand side of an expression f = a; f1 + - - - + a, f
cancel and S(f;, f;) — r O then there is another expression f = hy fi +--- +
h, fu for which the maximal initial term in the summands on the right hand side
is strictly less than the maximal initial term in the first expression. By Lemma
A.3.8 we will eventually end up with an expression

f=bifi+-+bufn
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where the maximal initial term § in the summands on the right hand side is
in<(f). This means that f — ¢ 0. |

5.6.2 The S-criterion

Theorem 5.6.8 (Buchberger) A sequence F = (f1, ..., fu) of polynomials
is a Grébner basis if and only if S(fi, fj) —>r Ofor1 <i < j <m.

Proof. This is a consequence of Proposition 5.6.4 and Lemma 5.6.7. O

Corollary 5.6.9 A sequence F = (fi1, ..., fn) of polynomials is a Grobner
basis if and only if S(f;, f))F =0for1 <i < j <m.

Proof. If S(fi, f)¥ =0 for 1<i<j<m then S(f;, fj) —>r0 for
1 <i<j<mand F is a Grobner basis by Theorem 5.6.8. Conversely, if
F is a Grobner basis then S(f;, f;)F = 0 by Proposition 5.4.2, since S(f;, f})
€ {(fis s fm) a

5.7 Buchberger’s algorithm

The Buchberger S-criterion (Corollary 5.6.9) is a systematic way of testing
whether a set of polynomials F = (fi, ..., f») is a Grobner basis. Compute
the remainders of the S-polynomials S(f;, f;), where 1 <i < j < m. On the
one hand, if they are all zero then F is a Grobner basis. On the other hand, if
one S(f;, f;,)F # 0 then we simply add it to F to obtain a new list

F'= FU{S(fi, [T} = (fis oo fns SUis [,

hoping that F’ will turn out to be a Grobner basis for I = (f1, ..., f.). Notice
that F’ and F generate the same ideal since S(f;, f j)F el.

We can continue adding remainders of S-polynomials to our list. This is a
somewhat daring step. We have no guarantee that this procedure will ever stop.
Let us try it out on an example.

Example 5.7.1 Suppose we have the lexicographic ordering given by X > Y
onk[X,Y]and F=(X>+Y, X*Y +1).Then S(X>+ Y, X*Y + 1)=Y? — 1.
This also becomes the remainder in the division algorithm, since none of the
terms Y2 and —1 is divisible by inS(X2 +Y)=X?or inE(XzY +1) = X?%Y.
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Thus
SX2+7Y, X’y +1Df =v?—1.
Now let
F=FU{y’>—1}=X>+7Y, X’Y +1, Y2 —1).

To check whether this is a Grobner basis, we have to compute S(X 24y,
Y2 — D and S(XY + 1, Y2 — )’ and see whether they are zero. It is not
necessary to compute S(X2+7Y, X%Y + D¥, as this is zero because S(X? +
Y, X>’Y +1)=1-(Y>—=1)+0. Now

SX24+Y, Y2-D)=Y*X*+Y)-X>(¥ -1 =Y+ x%

The division algorithm gives Y3 + X2 =1-(X?24+Y)+Y - (Y% — 1), so the
remainder is zero. Finally

SX’Y+1,YP—D)=YXY+ D)X’ -1 =1-(X>+7Y),
which also has zero remainder. By Corollary 5.6.9,
(X2+Y, X2y +1, Y- 1)

is a Grobner basis.

The process of continuously adding non-zero remainders of S-polynomials
is called Buchberger’s algorithm. There are numerous ways of implementing
it. The workhorse in the algorithm is the division algorithm and one usually
wants as few divisions as possible. We will not go into implementation details
but simply prove that the algorithm terminates.

Theorem 5.7.2 Buchberger’s algorithm terminates and the output is a
Grobner basis.

Proof. Let F =(f1,..., f;) be the list of polynomials in a step of
Buchberger’s algorithm. Suppose that 1 <i < j <s and S¥ # 0, where
S = S(fi, f;)- Since ST is a remainder coming from the division al-
gorithm with F = (fi,..., f;), no term in S’ is divisible by any of
in<(f1), ..., n<(fy). So we may prove that the algorithm terminates by prov-
ing that for any sequence of terms T = (¢, », ...) there exists a number
N € N such that if i > N then ¢ is divisible by ¢;, where j < N. Dickson’s
lemma (Lemma 5.1.5) implies that there are finitely many terms ¢;,, ..., 4, € T
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such that every term ¢ € T is divisible by one of #,, ..., . Putting N =
max(iy, ..., i,) we get the result. |

The following lemma sometimes simplifies the computations in
Buchberger’s algorithm considerably.

Lemma 5.7.3 Let < be aterm ordering on R = k[Xy, ..., X,]. Let f,g € R
and suppose that in<(f) and in<(g) have no common divisors (except con-
stants). Then

S(f, g) _>(f,g) 0

Proof. Putr = f —in-(f)ands = g —in<(g). Then

S(f.e)=@=)f—(f —rg=rg—sf.
If the initial terms in rg and sf cancel then
in<(r)in<(g) = in<(s) in<(f).
This implies that in<(f) | in<(r), contradicting that in<(r) < in<(f). So the

initial terms of rg and sf do not cancel. This shows that S(f, g) =1 0. O

Example 5.74 letF =(T'— X -Y, T, — XY) Ck[X,Y, Ti, T»]. Then F
is already a Grobner basis with respect to the lexicographic term ordering given
by T} > T, > X > Y. This is a consequence of Theorem 5.6.8 and Lemma
5.7.3. However, if the term ordering is given by X > Y > T} > T;, as in
Example 5.5.2, then

S=8ST—-X-Y, L—-XY)=Y(T1, —X-7)
— (L, —XY)=YT, —Y*>—T».
Notice that S¥ = S. Using Corollary 5.6.9 you should check that F U {S} is a

Grobner basis.

Example 5.7.5 Looking innocent at first, Grobner bases can be hairy beasts
that are extremely time consuming to compute and very dependent on the term
ordering. Take for example ([23], Example 3.9) the ideal

=@ +y+2 -1, 2+ +z-1, 20+ +25-1)

in Q[x, y, z]. A Grobner basis of I with respect to the lexicographic ordering
z > y > x is the monstrous list of polynomials seen in Figure 5.2.
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(225 x* +675x° +705x° +315x7 + 100 x® — 555x° — 1946 x'0 —

1983 x! — 10x'2 4+ 1225 x13 + 697 x* + 19515 4+ 226 x'¢ +

139x"7 — x'8 — 13 x" 4+ 3x% 4242 4 x%2, 4794799513743465 x* +
9461645755921935 x° 4 5609230341167770 x + 1305539383606500 x +
426289252230518 x® — 12718603398056543 x° — 28161279400718496 x 10 —
13641002940967260 x'! + 13303041747347884 x'? + 12841472514397999 x> +
1936021990228677 x'* 4+ 2115618449641410 x> + 2686197967416241 x'® +
266417434391307 x'7 — 308399336177560 x'® + 40028515719740 x ' +
22083510506531 x%° 4 20898699599882 x2! — 307985585745030 x* y +
307985585745030 x> y, 37955678888811405 x* + 40874650161525720 x> —
3971051857805515 x° 4 8461551779562300 x7 — 7477091544441736 x* —
133100833227195819 x? — 130427012317955273 x'° 4- 96308769549551000 x!! +
112430217894147542 x'2 — 28978302929820573 x'* — 8147851966720744 x'* +
23240432665880855 x5 — 2547153248711687 x'® — 6558796078633904 x'7 +
1957860431279775 x'® — 154503618530810 x'0 + 226403721396233 x2° —
92968302338769 x%' + 9239567572350900 x> y — 9239567572350900 x> y —
9239567572350900 x* y* 4 9239567572350900 x> y2, —92395675723509000 x> +
267932368916755545 x* + 607600416419937750 x° 4 326949813554222075 x° —
32115739051910620 x” — 858543129560584 x8 — 533880675743739115 x° —
1553067597584776499 x'° — 1058691906621826800 x'! + 691613184599027638 x> +
932606563955672291 x'* 4 151389390751950794 x'* + 95707520810719369 x5 +
185431646079855213 x'° 4 30397871204445410 x'7 — 24246152848015907 x '8 +
2994483268700962 x'° + 1053727522296225 x*° + 1579303619755253 x* —
92395675723509000 y2 + 92395675723509000 x2 y2 4+ 92395675723509000 y°,
—1+x>+y*+2).

Figure 5.2
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212 5 Groébner bases

Surprisingly, there is a term ordering < such that the Grobner basis of I with
respect to < is (see Exercise 5.29)

E+y 4+ L+ +z -1 1+ Y+ - 1)

Here Lemma 5.7.3 is very useful.

5.8 The reduced Grobner basis

In the following, we work with a fixed term ordering <in R = k[ X}, ..., X, ].
A Grobner basis (fi,..., fis) for an ideal I € R is not unique. You can
always add another polynomial f € I to the list (fi, ..., f,;) and it will still be
a Grobner basis (see Exercise 5.15). We need a more well behaved object that is
unique. We may begin by observing that if we have a Grobner basis (fi, ..., fi)
for the ideal I and in<(f;) is divisible by one of in<(f3), ..., in<(f,) then
(f2, ..., fw) is a smaller Grobner basis for /. Assume that in<(f;) | in<(f1);
then in<(f;) | in<(f) if in<(f1) | in<(f), where f € I. So (f2,..., fu) is a
Grobner basis for I and I = (f3, ..., fu) by Corollary 5.4.5. This shows that
an efficient strategy for cutting down on the size of a Grobner basis is to throw
away generators f whose initial term in<(f) is divisible by the initial term of
one of the other generators. This leads to the definition of a minimal Grobner
basis.

Definition 5.8.1 A minimal Grobner basis (fi, ..., fn) is a Grobner basis
such that

(i) in<(f;) is not divisible by in<(f;) fori # j,
(i) the coefficient of in<(f;) is 1.

A minimal Grobner basis is still not unique even though it has the minimal
number of elements! The unique object is the reduced Grobner basis.

Definition 5.8.2 A reduced Grobner basis (fi, ..., fn)is aminimal Grobner
basis such that no term (not just the initial term) in f; is divisible by in<(f;)

fori # j.

Theorem 5.8.3 Every ideal I C k[X,,...,X,] has a unique reduced
Grobner basis.
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Proof. If(fi,..., fm)and (g1, ..., gw) are two reduced Grobner bases of 1,
we must have m = m’ and

ins(ﬁ) = inf(gl),

lns(fm) = ins(gm),

rearranging gi, ..., g if necessary. Here is why. We know that some in<(f})
divides in<(g;). We may assume by rearranging that j = 1. We also know
that some in<(g;) divides in<(f}). Here i = 1, because in<(g;) is divisible by
in<(g;). This gives that in<(f;) = in<(g)), since the coefficient in both is 1.
The same argument applies to the other generators, and we end up withm = m’
identical initial terms.

Now we wish to prove that f; = g, ..., f, = g, in order to prove the
uniqueness of the reduced Grobner basis. Consider f; — g;. The initial terms
in f; and g; cancel. By definition of a reduced Grobner basis none of the terms
in f; — g; is divisible by any in<(f}), ..., in<(f,) (here we include in<(f})
because it has been canceled already in f; — g;). This means that f; — g is
the remainder after division by fi, ..., f,. Butsince f; — g; € I we must have
f1 — g1 = 0 by Proposition 5.4.2. The same procedure applies to the other
generators.

Every ideal has a minimal Grobner basis (f1, . . ., fi,) by the reasoning at the
beginning of Section 5.8. The existence of a reduced Grobner basis is deduced
as follows: replace f; by the remainder of f} divided by f5, ..., f,;. With this
new f1, replace f, by the remainder of f, divided by fi, f3, ..., fu. Continue
this procedure until f;, is replaced by its remainder divided by fi, ..., fiu—1-
Notice that the initial terms of the original fi, ..., f,, will survive and that we
still have a Grobner basis. In the end no term of f; is divisible by in<( f;) for
i # j. Thus we end up with a reduced Grobner basis. O

Example 5.8.4 In Example 5.7.1 we saw that (X24+Y, X?Y +1,Y2-1)
is a Grobner basis for the ideal I = (X2 + Y, X2Y + 1) with respect to the
lexicographic ordering <, where ¥ < X. It is not minimal, though! The second
generator has initial term X2Y, which is divisible by the initial term X of the
first generator. We can thus leave out the middle generator, ending up with

X>+Y,Y>=1

which in fact is the reduced Grobner basis of I for the term ordering <.
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Example 5.8.5 The Grobner basis
G=(T1—X—-Y T, —XY, YT, —Y>—Ty)) Ck[X,Y, Ty, T»]

from Example 5.7.4 is not minimal. The reason is that in.(7, — XY) = — XY
is divisible by in-(7; — X — Y) = —X. Leaving out the middle generator we
get the Grobner basis

G = —-X-Y, YT, —Y>—T).

This is the Grobner basis used in Example 5.5.2. You may check that G’ is the
reduced Grobner basis when multiplied by —1.

5.9 Solving equations using Grobner bases

Suppose we are given a set of polynomial equations in n variables over a
field :

Silx, oo, x,) =0,
S, o0, x,) =0,

fm(-xlv'-~q-xn) =0.

Just as in the old days of algebra, we want to find the solutions of these equa-
tions. If n = 1 we have a system of polynomial equations in just one vari-
able x;. This can be solved using the Euclidean algorithm: we know that the
ideal (f1, ..., fin) € k[x|] generated by fi, ..., fi, € k[x;]is a principal ideal

(f), generated by a greatest common divisor f of fi,..., f,. It follows that
filx) =--- = fi,(x) = 0 if and only if f(x) = 0. So we have reduced to the
case of just one equation. Let V(fi, ..., f,,) denote

{(ar,...,a,) €k" | fi(ay,...,a,) =0foreveryi =1,...,m},
the set of solutions of the system of equations. Then V(f1, ..., fi,)isalso given
by

V) ={(a,...,a,) €K"| f(ay,...,a,) =0forevery f € I},

where I denotes the ideal generated by fi, ..., f, (see Exercise 5.31). The
ideal I represents all the equations we can get by “combining” fi, ..., f,. In
particular, if we have a Grobner basis (g1, ..., g-) of I we get

V(fi,.-os f) =V, .-, &)
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The point is that the equations

g1(x1,...,x,) =0,
g2(x1»~--axn) =0’

gx1,...,x) =0

are often much easier to solve.

This is the basis for doing “Gaussian” elimination on our system of equa-
tions using Grobner bases. We wish to eliminate variables by combining some
equations to get equations with fewer variables. The ideal situation is if the sys-
tem of equations consists of some equations containing the variables x1, . . ., X,
some equations containing the variables x, . .., x, and .. . . and some equations
containing only x,. Then we could begin by solving the equations involving
only x,, insert our solutions into the equations involving only x,,_; and x, and
so forth. Thereby we only have to solve equations involving one variable. The
process of eliminating variables can be formulated as that of finding polyno-
mials in / involving only x1, polynomials in / involving only x1, x, and so on.

Viewing [ as the equations that we can deduce by combining fi, ..., f, we
wish to find

I Ok[xp],

I (k[xy, x2],

INklxy,...,xp—1]

The following theorem is almost too good to be true.

Theorem 5.9.1 Let G be a Grébner basis for an ideal 1 C k[X1, ..., X,]
with respect to the lexicographic ordering < given by X1 < Xp <--- < X,,.
Then G Nk[Xy, ..., X;i]is a Grobner basis for the ideal I Nk[Xy, ..., Xi]in
k[X1, ..., Xi] with respect to the lexicographic ordering < for the polynomi-
alsink[Xq, ..., X;i].

Let G'= GNk[Xy,...,X;]. Suppose that f e I Nk[Xy,...,X;]. Then
in<(g) |in<(f) for some g € G using Definition 5.4.1. On the other hand
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Figure 5.3

the terms in g are all smaller than in<(g) in our lexicographic term ordering.
This tells us (why??) that g € G'. Therefore G’ is a Grébner basis for
I Nk[X1, ..., X;] with respect to < for the polynomials in k[ X1, ..., X;].

Example 5.9.2 Let us find the solutions to the system of equations

Y’ - X'+ X=0,

(5.10)
YP-x2=0

in R2. This corresponds to finding the points of intersection between the curves
shown in Figure 5.3.
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To solve (5.10) we need to transform it to another system of equations
according to Theorem 5.9.1. We will do this by computing a Grobner basis
for (Y2 — X? + X, Y? — X?) with respect to the lexicographic ordering <
where X > Y. A straightforward application of Buchbergers algorithm (even
though the algorithm needs a few steps here) gives the Grobner basis

Y2=X34+X, 73— X% —X - Y24 XY, XV?2 4+ 73— v,
Y3yt —2v04+Y°, X -1 -v*47)),

where the initial terms are underlined. From this we see that the reduced Grobner
basis is

Y3 =y =2y 4+ Y%, X +Y24+Yt—Y)
So finding the solutions to (5.10) is equivalent to solving

Y-yt —2vo4+v° =0,
X+Y2+Yv*—Y' =0.

This is much more manageable than solving the original system (5.10). Now
we can find the solutions to the equation

YV oyt —ovo 4y =v¥a-v -2y 4+Y%=0 (5.11)

and plug them into X + Y2 + Y* — Y7 and get the corresponding X-values.
Using numerical approximations (and a computer) one finds apart from
Y =0 that Y = 0.605423 and Y = 1.2876 are approximate real solutions to
(5.11). So the real solutions to (5.10) are (0, 0), (—0.471073, 0.605423) and
(1.46109, 1.2876).

Notice that R[YIN (Y2 —= X3+ X, V3 — X)) = (Y3 —Y* —2Y5 4+ Y% by
Theorem 5.9.1.

It is worth pointing out that all the clever algebraic tricks one might come
up with solving a system of polynomial equations have been translated into a
precise method using Grobner bases.

5.10 Exercises

1. In Section 5.1 the set R[N"] was introduced along with an addition and a
multiplication. Let f, g, h € R[N"].
(i) Prove that f + g, fg € R[N"].
(ii) Prove that fg = gf.
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(iii) Prove that f(g +h) = fg + fh.
(iv) Prove that f(gh) = (fg)h by reducing to the case h = cX".

2. Prove that the ideal (X, Y) € Q[X, Y] is not a principal ideal, by
assuming that there exists f € Q[X, Y] such that (X, Y) = (f). Make
use of the degree function in Q[Y][X] with respect to X to reach a
contradiction.

3. Give an example of a total ordering that is not a well ordering.

4. Why is a well order a total ordering?

5. Let < be a term ordering on N*. Show thata +c¢ < b +d ifa < b and
¢ <d,wherea,b,c,d e N*.

6. Suppose that v € R?. Define the relation R, on N? by
viRvy & v - v < v - vy, where - refers to the usual scalar product.

(1) Is Rq,1y a partial ordering?
(i) Is Ry /5, a partial ordering? Is it a term ordering?
(iii) Is R(fl, J/3) @ term ordering?

7. Prove that < is reflexive, antisymmetric, transitive, total with 0 < v,

v < vy = (v +v) < (v + v) for every v, vy, v, € N*, where
(i) <= <tex;
(i) <= Zgex-

8. Prove that <,, defined in (5.1), is a term ordering.

9. Leta = (aq, ..., ), B=(Bi1,..., B € N'. Define the relation R on
N" by

oRB

ifandonlyifa =Bor) i o <> Biord . ja; =y i Biand
the first coordinates «;, B; from the right that are different satisfy o; > ;.
(i) Show that R is a term ordering (thus R is reflexive, antisymmetric,
transitive, total, with ORv, v; Rv, = (v 4+ v)R(v, + v) for every
v, v, v, € N*).
(i) Show without using Lemma 5.1.5 or Corollary 5.1.7 that R is a well
ordering.
The relation R is called the graded reverse lexicographic ordering.
Usually it is the “fastest” term ordering in Grobner basis computations.
10. Show that the graded reverse lexicographic ordering of Exercise 5.9 is the
same as the graded lexicographic ordering <gex on N2. Give an example
showing that the graded reverse lexicographic ordering is not the same as
the graded lexicographic ordering on N3,
11. Let f, g € R[X1, ..., X,]\ {0} where R is a domain and let < be a term
ordering on R. Prove that

in<(fg) = in<(f)in<(g).
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Let f, g € R[Xy, ..., X,,]\ {0} where R is a domain and let < be a term
ordering on R. Prove that

in<(f + g) < max(in<(f), in<(g)).
Compute the remainder /12 where
f=14+X+X+Y + XY + XY +7? +2X%*v* + XY°

and (f1, f») = (X3 4+72 XY + 1), using the division algorithm (and
the lexicographic ordering X > Y).

(i) The same as above, but with ( f>, f1).

(ii) Compute the remainder f/I'/2) assuming that X < Y.

Let F = (X2 +7Y, X%Y + 1) Ck[X, Y], where k is a field and let < be a
term ordering on k[ X, Y]. Show that F' is not a Grobner basis with respect
to <.

Let fel={(fi,.... fm) Ck[X1,...,X,] and suppose that

(f1,- .-, fm) is a Grobner basis (with respect to some term ordering <)
for I. Prove that (fi, ..., fu., f) is also a Grobner basis for /.

LetG =(g1,...,8) Ck[Xy,...,X,]and I = (g1, ..., g ). Prove that
G is a Grobner basis if and only if (f € I <= f¢ = 0)forevery f € I.
Let R be a (commutative) ring and ay, ..., a,, by, ..., b, € R. Show that

ayaz ---ay —blbzn-bn € (a1 —bl, ag—bz, ceey Ay —bn>. (512)

Now assume that f, fi,..., f, € k[X1,..., X,]and that f = P(f1,...,
/) for a suitable polynomial P € k[T, ..., T,]. Apply (5.12) to prove
that

f(X15""Xil)_P(Tl"”7Tr)e17
where [ is the ideal (T} — fi, ..., T, — f,) in the polynomial ring
k[Xy,....,X,, Th,...,T,].

Let F = (X?2+7Y, X?Y +1) C Q[X, Y] and

f = XY + X?Y + X + Y. Consider the lexicographic ordering < with
X>Y.

(i) Prove that f — ¢ O.

(ii) Prove that f¥ # 0 and f7 # 0, where F’ = (X?Y + 1, X> +Y).
Compute the reduced Grobner basis of (X 24Y, X+Y) using the
lexicographic ordering X > Y.

Is (X> 4+ Y, X 4+ Y) already a Grobner basis with respect to some term
ordering?
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21. Decide whether f = X?Y + X3 + X?Y3 — X?Y + XY + X lies in the
ideal I = (X2 +Y, X?Y +1) Ck[X,Y]. Ifso, find a;, a» € k[X, Y]
such that f = a; f1 + az f>.

22. Let I C k[X, Y, Z] denote the ideal (X% — Y, Z3 + ¥Y?) C k[X, Y, Z]. Let
< denote the lexicographic ordering on k[ X, Y, Z] givenby X > Y > Z.

(i) Show that (X2 — Y, Z3 + Y?) is a reduced Grobner basis with respect
to < for 1.
(ii) Show that X3 — XY + Y24+ Z* 4+ ZY?> & I.
23. Let I be the ideal (f1, f>) = (X?>+ Y, X +Y) Ck[X,Y].
(i) Show that f = X> + X*+ X?Y + X3Y — V> + XY? e[
(i) Compute ay, a; € k[X, Y] such that f = a; f1 + a» f>.

24. Let I € Q[X, Y] denote the ideal (X> + Y2, X> + Y3) C Q[X, Y]. Let <

denote the lexicographic ordering on Q[ X, Y] given by X > Y.

(i) Compute the S-polynomials S; = S(X? + Y2, X3 4+ Y?) and

S, = S(X? + Y2, S)) with respect to < and show that §;, S, € I.
Use this to prove that Y* € I.

(i1) Show that the reduced Grobner basis for 1 with respect to < is
(Y*, XY?2—v3, X242,

(iii) Show that (X% + Y2, X3 + Y?3) cannot be a Grobner basis for I for
any term ordering.

25. Let R denote the ring Q[X, Y, S, T'] and < the lexicographic term
ordering on R given by

X>Y>S>T.

Let I denote the ideal R(S — X?) + R(T — XY).
(i) Show that the reduced Grobner basis for I with respect to < is

G=(X*-S8,XY—T, XT —YS, Y’S—T?.

(i) Compute the remainder Q = (X 4 4+2X3Y)%. Show that
Q € Q[S, T] and that X* +2X3Y = Q(X?, XY).
(i) Let f € Q[X, Y] and let Q denote the unique remainder f¢. Show
that f(X,Y) = Q(X?, XY)if Q € Q[S, T].
26. Let ¢ denote the vector (c1, ¢;) € R? and let ¢ - v = c1a + c2b, where
v = (a, b) € R%. Define the relation R. on N? by

ViR V) <= c-v| >cC- v,

where vy, v, € N2
(i) Show that R, is reflexive and transitive.
(ii) Give an example showing that R, is not necessarily antisymmetric.
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(iii) Show that R, is antisymmetric if ¢; /c; € Q, where ¢; # 0.

(iv) Let ¢ = (1, +/2). Show that R, is a term ordering on N?. Compute the
reduced Grobner basis for the ideal (X2 4+ Y, X2Y + 1) with respect
to this term ordering (the term X™Y" is identified with the vector
(m,n) € N?).

(v) Let < € N? x N? denote the lexicographic term ordering on N?
given by (1, 0) > (0, 1). Show that >=# R, for every c € R2.

27. Show that X’Z 4+ Y ¢ (XZ + Y2, X +Y) C Q[X, Y, Z].
28. Let I denote the ideal generated by X2 + Y and XY + 1in Q[X, Y].
(i) Compute a Grobner basis for I with respect to the lexicographic term
ordering <, where ¥ > X.
(ii) Show that Y2 — 1, X* —1 e I.
(iii) Let < be an arbitrary term ordering. Prove that

(X>4+Y, Y>—1, X -1

is a Grobner basis for / with respect to <.
29. Show that the generators

=X +y +22 -1, 2+ +z-1L,x0+y +27-1)

of Example 5.7.5 in fact form a Grobner basis with respect to some term
ordering (hint: construct a suitable weighted term ordering using (5.1)).
30. Let X be any subset of k" =k x - - - x k (n times). Prove that

I(X)={f €kl[Xy,..., Xul| f(a1,...,a,) =0V(ay,...,a,) € X}
is an ideal in k[ X, ..., X,]. Show that V(/(X)) 2 X and that
1(X) = I(V(I(X))).
31. Let f1, ..., fm € k[x1, ..., x,]. Prove that

V(fioooos fn) = V),

where I = (f1,..., fu).

32. Considertheideal ] = Sx +y+z—-17, x+y—z—-1, x +y +
z—9) € R[x, y, z]. Compute a Grobner basis for I with respect to the
lexicographic ordering <, where x > y > z. What is the relation to Gauss
elimination when solving the system

Sx+y+z=17,
x+y—z=1,
x+y+z=9

of linear equations over R?
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33. (HOF) The following problem shows that every ideal has a finite
generating set that is a Grobner basis with respect to all term orderings.
Such a generating set is called a universal Grobner basis. Let
I Ck[Xq,...,X,]be an ideal.

(1) Show that there are only finitely many ideals generated by initial
terms of elements in /. More precisely show that

{in<(/) |< term ordering on k[ X1, ..., X, 1}

is a finite set. Where in<(/) = (in<(f) | f € I\{0}).
(i) Show that every ideal I € k[X7, ..., X,] has a set of generators that
is a Grobner basis for every term ordering.
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