Family Name:					Student ID:						
Given Name:											
Tutorial:	Wed	Thur	Fri								
	10am 4:30pm	10:30a n 5pm	am 11am 1	11:30am	12:30am	1pm	2pm	2:30pm	$3 \mathrm{pm}$	3:30pm	4pm
Tutor:	Cahit	Jerry	Jie Mu	rray Roui	mani She	rwin T	Tim T	òm			

37181 DISCRETE MATHEMATICS LEARNING PROGRESS CHECK 3

 \bigodot MURRAY ELDER, UTS AUTUMN 2022

INSTRUCTIONS. 40 minutes.

Upload as a single PDF file on Canvas/Assignments/LPC1 before 7:59pm Tuesday 15 March 2022. Name your file as LPC3-LastName-StudentID.pdf. Show all relevant working and steps. You may refer to your personal class notes, and a basic (non-programmable) calculator. Work on this on your own without discussing with anyone or using Discord/WeChat/any websites including paid homework sites. We are checking your learning progress, not somebody else's.

1. (1.5 marks) Your student ID number consists of eight digits $d_1d_2d_3d_4d_5d_6d_7d_8$. Use the Euclidean algorithm to find

$$gcd(d_1d_2d_3d_4, d_5d_6d_7),$$

showing all steps. 1

Date: Tuesday 15 March 2022.

¹For example, if my ID is 12345678 then I need to compute gcd(1234, 567), and if my ID is 34560789 then I need to compute gcd(3456, 78). We are treating the ID as a string of digits, so that each student has a different problem to solve.

2. (1.5 marks) Let A, B, C be sets in some arbitrary universal set \mathscr{U} . Show that

$$\overline{(A \cup C)} \cup B = \overline{(A \cap C)} \cup (B \cup \overline{C})$$

is false in general by giving an example using $\mathscr{U} = \{1, 2, 3, 4, 5\}$.²

3. (1 mark) Prove or disprove: 3

If $A \subseteq B$ then $A \cap \overline{B} = \emptyset$.

²You may find it useful to draw a Venn diagram first, but final answer should be the explicit sets as a counterexample. ³Hint: direct? contrapositive? contradiction? counterexample? Remember a Venn diagram is not a proof, so any proof should look like "let $x \in ...$ ". A counterexample should be some explicit sets $A = \{....\}$

4. (1 mark) Let \mathbb{N}_+ denote the set of positive natural numbers $\{1, 2, 3, 4, ...\}$. Let $x, d \in \mathbb{Z}$ with d > 0.

Define

$$M = \{ x - qd \mid q \in \mathbb{Z} \}.$$

Prove that $M \cap \mathbb{N}_+$ is non-empty. ⁴