Family Name	Student ID:		
Given Name:			
Tutorial:	Wed Thur Fri		
	10am 10:30am 11am 11:30am 12:30am 1pm 2pm 2:30pm 3pm 3:30pm 4pm 4:30pm 5pm		
Tutor:	Cahit Jerry Jie Murray Roumani Sherwin Tim Tom		

37181 DISCRETE MATHEMATICS LEARNING PROGRESS CHECK 4

©MURRAY ELDER, UTS AUTUMN 2022

INSTRUCTIONS. 40 minutes.

Upload as a single PDF file on Canvas/Assignments/LPC1 before 7:40pm Tuesday 22 March 2022. Late uploads will not be accepted by Canvas.

Name your file as LPC4-LastName-StudentID.pdf. Show all relevant working and steps.

Handwrite on blank paper, printout or tablet (do not type).

You may refer to your personal class notes, and a basic (non-programmable) calculator. Work on this on your own without discussing with anyone or using Discord/WeChat/any websites including paid homework sites.

1. (1.5 marks) Fill in the missing lines of the following proof by induction.

Lemma 1. For all $n \in \mathbb{N}_+$

$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+1)$	n(n+1)(n+2)(n+3)
$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+1)$	$2) \equiv$
<i>Proof.</i> Let $P(n)$ be the statement	
<i>v</i> ()	
Then $P(_)$ is true since $_$	
Assume $P(k)$ for $k \ge $. Then	

Thus by PMI P(n) is true for all integers $n \ge \lfloor$

Date: Tuesday 22 March 2022.

2. (2 marks) Consider the following segment of pseudocode: ¹

(a) Which of the following statements does <u>not</u> satisfy the property that if it is true before one iteration of the while loop, then it is true after one iteration (*i.e.* is a loop invariant)?

A . $n+j$ is even	D . $n+j$ is odd
B . nj is odd	E . $nj > 0$
\mathbf{C} . $n > j$.	F . $j < 50$
	G . none of (A) – (F) .

Explain your reasoning:

(b) Let $d_1d_2d_3d_4d_5d_6d_7d_8$ be your student ID number. Write out the output of the pseudocode given above on input $n = d_1d_2d_3$ and $j = d_7d_8$.²

¹the syntax **n** int, **j** int means the inputs are integers. ²Eg. if your ID is 12300321 then n = 123 and j = 21.

3. (1.5 marks) Let P(n) be the statement

$$5n + 7 \leqslant n^2$$

- (a) Find the smallest value $c \in \mathbb{N}$ so that P(c) is true.
- (b) Prove that P(n) is true for all integers $n \ge c$ for some integer $c \in \mathbb{N}$.³

 $^{^{3}\}mathrm{Hint:}$ use PMI. Set out your proof as per the template.