Family Name:							Student ID:					
Given Name:												
Tutorial:	Wed	Thur	Fri									
	10am 4:30pm	10:30a n 5pm	am 1	11am	11:30am	12:30am	1pm	$2\mathrm{pm}$	2:30pm	$3 \mathrm{pm}$	3:30pm	4pm
Tutor:	Cahit	Jerry	Jie	e Mur	ray Rou	nani She	rwin T	Tim T	òm			

37181 DISCRETE MATHEMATICS LEARNING PROGRESS CHECK 8

©MURRAY ELDER, UTS AUTUMN 2022

INSTRUCTIONS. 40-60 minutes.

Upload **as a single PDF file** on Canvas/Assignments/LPC8 before 7:59pm Tuesday 2 May 2022. (Recommended: 7:40pm)

Late uploads after 7:59pm will not be accepted by Canvas.

Name your file as LPC8-LastName-StudentID.pdf. Show all relevant working and steps.

You may refer to your personal class notes, and a basic (non-programmable) calculator.

Work on this on your own, do not discuss with anyone or using Discord/WeChat/Whatsapp/any websites including paid homework sites.

1. (1 mark) (a) Compute gcd(119, 16).

(b) Find $p, q \in \mathbb{Z}$ so that 1 = 119p + 16q. ¹ Show steps.

answer: p = q =

Date: Tuesday 3 May 2022.

¹Hint: extended Euclidean algorithm.

2. (1 mark) Let $x, y, \lambda, \mu \in \mathbb{Z}$. Prove that if $1 = \lambda x + \mu y$ then x, y are relatively prime.

3. (1 mark) (a) Find a prime factorization ² for n = 3333.

(b) Compute $\varphi(3333)$ where φ is Euler's phi function. Show your reasoning.

²i.e. write as $p_1^{i_1} p_2^{i_2} \dots p_n^{i_n}$

4. (1 mark) Let \mathscr{R} be the relation

$$x \mathscr{R} y$$
 if $3 \mid (x - y)$

on \mathbb{Z} .

Prove that ${\mathscr R}$ is an equivalence relation.

- 5. (1 mark) Let the universe of discourse be N. Let P(n) be the statement "n² + 5n + 1 is even".
 (a) Which of the following statements is true?
 - **A**. P(n) is true for all $n \ge 3$
 - **B**. $\exists k$ such that P(n) is true for all $n \ge k$
 - **C**. $\forall k$, if P(k) is true then P(k+1) is true
- **D**. $\forall k$, if n > k then P(n) is true
- **E**. P(1) is true
- ue **F**. none of (A)-(E).
- (b) Justify your choice for part (a).