

MATH 37181 FINAL PART B SPRING 2021

INSTRUCTIONS. • If you don't have a printer or tablet:

- write your declaration "I declare that: this is my own work ..." at the start of your blank page for Part B;
- write your answers in the same order and format as this file on blank paper.
- Write your name and student ID on the top of your first page.
- Upload your scan to Canvas Assignments Final Exam Part B as a single PDF file.
- Name your file using your last-name, student ID number and -PartB, eg: Elder12345678-PartB.pdf
- Show all steps and working out. Clearly identify your answers for the multiple choice. (Eg write B1:F, B2:F, B3:F, B4:F, B5:F on your first page, or circle on a printed page.)
- You may use a basic scientific calculator for calculations. For Question B3 only you may also use the powermod website.

Part B has **5 multiple choice** and **2 long answer questions** worth a total of 15 marks. You should spend roughly 1 hour on this part.

I declare that: this is my own work, I have not used Discord/Wechat/Facebook etc or asked anyone anything during the exam, I have not posted screenshots or uploaded anything to an online site, I have not used any phone apps except a basic calculator app and Camscanner or other scanning app to scan my work, and I have not looked at any websites other than Canvas to download/upload, and powermod for Question B3.

(sign your name here)

Date: 16 November 2021.

B1. (1 mark) Let ϕ denote Euler's phi function. The value of $\phi(1739)$ is equal to

A . $1739 - 1$	D . $\phi(37)\phi(47)$
B . $\phi(39)\phi(49)$	E . $37^2 - 37$
C . $\phi(37)\phi(49)$	F . none of (A) – (E) .

B2. (1 mark) Alice constructs an RSA system by choosing n = 1739 and e = 35. Alice's corresponding value for d is

A . $d = 757$	D . $d = 600$
B . $d = 901$	E . $d = 897$
C . $d = 899$	F . none of (A) – (E) .

A . $m = 366$	D . $m = 119$
B . $m = 364$	E . $m = 370$
C . $m = 175$	F . none of (A) – (E) .

¹You may use https://www.mtholyoke.edu/courses/quenell/s2003/ma139/js/powermod.html instead of repeated squaring to save some time for this question.

- B4. (1 mark) Let f_n denote the number of strings of 0, 1 of length $n \in \mathbb{N}$ which avoid the factor² 000. Then for $n \ge 3$, f_n satisfies
 - **A**. $f_n = f_{n-1} + f_{n-2}$ **D**. $f_n = f_{n-1} + f_{n-2} + f_{n-3}$
 - **B**. $f_n = 3n$
 - C. $f_n = f_{n-1} + f_{n-2} + f_{n-3} + f_{n-4}$
- **D**. $f_n = f_{n-1} + f_{n-2} + f_{n-3}$ **E**. $f_n = f_{n-1} + 2f_{n-2}$
- ${\bf F}.$ none of the above.

B5. (1 mark) Define a relation \mathscr{R} on the set of all finite length binary strings by $a\mathscr{R}b$ if - the sum of the digits in a equal to the sum of the digits in b, and - a is obtained from b by deleting zero or more digits from b.

Which of the following is false?

A . \mathscr{R} is reflexive	D . \mathscr{R} is symmetric
B . \mathscr{R} is antisymmetric	E . 11 <i>R</i> 0110
C. \mathscr{R} is transitive	F . none of (A) – (E) .

4

²if w is a string, u is a factor means $w = u_0 u u_1$ where u_0, u, u_1 are strings. For example the string 010 is a factor of 001010 ($u_0 = 0$, $u_1 = 10$ or $u_0 = 001$, $u_1 = \text{empty}$), and 010 is not a factor of 001100.

B6. (5 marks) Let $x, y, n \in \mathbb{N}_+$. (a) Prove that if $\exists \lambda, \mu \in \mathbb{Z}$ so that $1 = \lambda x + \mu y$, then gcd(x, y) = 1.

(b) Prove that if gcd(x, n) = 1 and gcd(y, n) = 1 then gcd(xy, n) = 1.

B7. (5 marks)

(a) A soccer ball has a pattern on it made up of pentagons (5-sided shape) and hexagons (6-sided shape). Three faces (pentagons or hexagons) meet at each vertex.

Using theorems proved in Weeks 11-12, how many pentagons can a soccer ball have? Show all working.

(b) Prove that every connected graph with $n \in \mathbb{N}_+$ vertices has a spanning tree with n-1 edges.

State clearly which proof method(s) you are using and set out correctly.