
DISCRETE MATH 37181 HOMEWORK SHEET 4

©MURRAY ELDER, UTS AUTUMN 2022

Instructions. Try these sometime after your tutorial and before the next lecture. Set aside some time
each week to keep up with the homework. Partial solutions at the end of the PDF.

Confused about how to do an induction proof? There are loads of resources online, and in any
textbook called Discrete Mathematics will have lots of worked examples. In this subject, your induction
proofs should always look like this:

• start: Let P (n) be the statement that . . .

• show that P (1) (or some small value) is true.

• assume P (k) is true and prove that P (k + 1) is true. Usually you start by writing the LHS of
P (k + 1), manipulate, use that P (k) is true half way along, then get to =RHS.

• end: Thus by PMI P (n) is true for all n > 1 (or whatever your small value was)

1. Prove (induction) that

1 + 3 + 5 + · · ·+ (2n− 1) = n2

for all n ∈ N+.

Proof. Let P (n) be the statement

Then P (1) is true since

Assume P (k) for k > 1. Then

Thus by PMI P (n) is true for all n ∈ N+. �
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2. Consider the statement about n ∈ N+:

n−1∑
i=1

i(i + 1) =
n(n− 1)(n + 1)

3

(a) Call this statement P (n). Write out P (1), P (2), P (3). Are they true statements?

(b) Prove (induction) that for all n ∈ N, n > 2

n−1∑
i=1

i(i + 1) =
n(n− 1)(n + 1)

3

3. (a) Prove (induction) that for all integers n > 10 n! > 3n.

(b) What is the smallest number you can replace 10 by so that the statement is still true?

4. Prove that for all n ∈ N+, 22n − 1 is divisible by 3.

5. Prove that for some value of k large enough, n2 < 2n for all integers n > k.

6. A very simple application of the idea of induction is to show that some algorithm (computer
code) is correct. A loop invariant is some statement that, if it is true before one iteration of the
loop, it must be true after one iteration.

(a) Show that “m + n is odd” is a loop invariant for this code.

int uselesscode(int n, int m)

{

while (m> 0 and m< 100)

m:= m+4

n:= n-2

end while

return n

}

(b) Give a different loop invariant involving m and n.
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Brief solutions:

1. Proof. Let P (n) be the statement

that 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

Then P (1) is true since

LHS= 1. RHS= 12 = 1 so P (1) is true.

Assume P (k) for k > 1. Then

for P (k + 1):
LHS = 1 + 3 + · · ·+ (2k − 1) + (2(k + 1)− 1)

= 1 + 3 + · · ·+ (2k − 1) + (2k + 1)
= k2 + (2k + 1) using assumption P (k) is true
= (k + 1)2

= RHS

Thus by PMI P (n) is true for all n > 1. �

2. (a) P (1) LHS is equal to 0 (or you might say is not defined), sum starts at 1 and ends at 0.
RHS equals 0. So P (1) is maybe true, or not defined. Maybe its safer to start at n = 2.

P (2) LHS=
∑1

i=1 i(i + 1) = 1(2) = 2. RHS= 2(1)(3)
3

= 2 so P (2) is true.

P (3) (not needed for an induction proof, but question asks for it)

LHS=
∑2

i=1 i(i + 1) = 1(2) + 2(3) = 2 + 6 = 8. RHS= 3(2)(4)
3

= 8.

(b) Let P (n) be the statement about natural numbers n that

n−1∑
i=1

i(i + 1) =
n(n− 1)(n + 1)

3
.

P (2) is true as shown in part (a).

Assume P (k) is true for some k > 2.

P (k + 1):

LHS =
∑k+1−1

i=1 i(i + 1)

=
∑k

i=1 i(i + 1)
= 1(2) + 2(3) + · · ·+ (k − 1)(k) + k(k + 1)

= k(k−1)(k+1)
3

+ k(k + 1) using P (k) is true

= k(k + 1)
(

(k−1)
3

+ 1
)

= k(k + 1)
(
k−1+3

3

)
= (k+1)k(k+2)

3
= RHS

Thus by PMI P (n) is true for all n > 2.
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3. (a) Let P (n) be the statement that n! > 3n.

P (10): 10! = 3628800, 310 = 59049 so P (10) is true.

Assume P (k) is true for k > 10. Then

(k + 1)! = (k + 1)k!
> (k + 1)3k using P (k) is true
> 3 · 3ksince k + 1 > 11 > 3
= 3k+1

Thus by PMI P (n) is true for all n > 10.

(b) The inductive step of the proof requires k + 1 > 3, so we need k at least 2. But using a
calculator we see we need k > 7 for the base step to work.

4. Let P (n) be the statement that 3 | (22n − 1).

P (1): 22·1 − 1 = 4− 1 = 3 so P (1) is true.

Assume P (k) true. [I added the next bit after I started my proof] This means we can write
22k − 1 = 3p for some p ∈ Z. This means 22k = 3p + 1.

Then 22(k+1)−1 = 22k+2−1 = 2222k−1 = 4 ·22k−1 = 4(3p+1)−1 = 3(4p)+4−1 = 3(4p)+3 =
3(4p + 1) so is divisible by 3.

Thus by PMI P (n) is true for all n > 1.

5. Seems to be true for 1 (and also 0) so we could try proving the statement for all n > 1. But its
false for n = 2 and n = 3: 32 = 9, 23 = 8. Try 42 = 16, 24 = 16, false, 52 = 25, 25 = 32. So we
will try n > 5.

Let P (n) be the statement that n2 < 2n.
P (5) is true since 52 = 25 < 25 = 32.
Assume P (k) is true for some k > 5.
Then P (k + 1) :

LHS = (k + 1)2

= k2 + 2k + 1
6 k2 + k2 since 2k + 1 6 k2 when k > 5. This needs its own proof (see below).
= 2k2

< 2 · 2k using P (k) is true
= 2k+1

= RHS

Thus by PMI P (n) is true for all n > 5.

Now I have to check the claim that 2k + 1 6 k2 when k > 5. I will prove this by induction too
(could also use Calculus!)

Let Q(n) be the statement 2k + 1 6 k2.

Q(5) is true since 11 6 25.

Assume Q(k) is true for k > 5.
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Then show Q(k + 1) :

2(k + 1) + 1 = 2k + 3
= 2k + 1 + 2
6 k2 + 2 using Q(k) is true
= k2 + 1 + 1
< k2 + 2k + 1 since 2k > 1
= (k + 1)2

= RHS

so true for all n > 5 by PMI.

6. (a) If m+n = 2p+1 before going into the loop, then afterwards the value is m+4+n−2 = 2p+1+2
is still odd. Thus “the sum being odd” is a loop invariant.

(b) The sum begin even would also be a loop invariant, as would the sum being positive, etc.


