37181 DISCRETE MATHEMATICS

©Murray Elder, UTS Lecture 16: Euler's theorem

- Euler's phi function
- Euler's theorem
- Fermat's little theorem 🦯

SOME NOTATION

Let $d \in \mathbb{N}_+$.

Let \mathbb{Z}_d^* denote the following *structure*:

- first of all, a set of numbers $\{x \in \mathbb{N}_+ | \operatorname{gcd}(x, d) = 1, x < d\}$
- $\cdot\,$ second of all, the operation of multiplication mod d

relatively pol.

Let $d \in \mathbb{N}_+$. Let \mathbb{Z}_{d}^{*} denote the following *structure*: • first of all, a set of numbers $\{x \in \mathbb{N}_+ \mid \gcd(x, d) = 1, x < d\}$ second of all, the operation of multiplication mod d Eg: \mathbb{Z}_{26}^* is the set: $\{1, 3, 5, 7, 9, 11, 5, 17, 19, 21, 23, 25\}$. Eq 7.7 = 49= 23 plus multiplication mod 26. Note that every element in this set has a multiplicative inverse mod in the same set. 26.

Let $n \in \mathbb{N}_+$. Define $\varphi(n) = |\{x \in \mathbb{N} \mid 1 \leq x < n, \gcd(x, n) = 1\}$

to be the number of numbers between 0, *n* which are relatively prime to *n*.

Let $n \in \mathbb{N}_+$. Define

$$\varphi(n) = |\{x \in \mathbb{N} \mid 1 \leq x < n, \gcd(x, n) = 1\}$$

to be the number of numbers between 0, *n* which are relatively prime to *n*. In other words, $\varphi(n) = |\mathbb{Z}_n^*|$.

EULER'S PHI FUNCTION

Lemma

If p is prime, then $\varphi(p) = p - 1$.

EULER'S PHI FUNCTION

P19 = 9-3=6 β Lemma If p is prime, then $\varphi(p) = p - 1$. , qcd=1 Lemma If p is prime, then $\varphi(p^2) = ?$. 1-1-1 p+2 p+3 2p+2 2p+3 ·10+1 . 21+1 2 . (p-1)p+1 (p-1)p+2 = (p-1)(+p).=

EULER'S PHI FUNCTION

Lemma

If p is prime, then $\varphi(p) = p - 1$.

Lemma If p is prime, then $\varphi(p^2) = \gamma - \rho$

 $Q(\tilde{p}) = p^{-p}$

We can play around with φ and make some conjectures.

Lemma

If p is prime and $n \in \mathbb{N}_+$ then $\varphi(p^n) =$

We can play around with φ and make some conjectures.

 $\frac{(aim}{for n \in \mathbb{N}} \cdot \mathcal{Y}(p^n) = p^n - p^n$

Lemma

If p is prime and $n \in \mathbb{N}_+$ then $\varphi(p^n) =$

Lemma

If p is prime and $n \in \mathbb{N}_+$ then $\varphi(p^n) = p^n - p^{n-1}$

Lemma If a, b are relatively prime then $\varphi(ab) = \varphi(a)\varphi(b)$ Proof. \mathbb{Z}_{ab}^{*} Define a map *f* $\mathbb{Z}_a^* \times \mathbb{Z}_b^* \text{ by } f([x]_{ab}) = ([x]_a, [x]_b).$ What is the size of each set? $a) \cdot \ell(h)$ (ab) (One-boore: Exercise a o: Exercize Z20 > Z5 ×Z6 Ndre: 16 Lecture 16: 37181

Lemma

If a, b are relatively prime then $\varphi(ab) = \varphi(a)\varphi(b)$

Proof. Define a map $f : \mathbb{Z}_{ab}^* \to \mathbb{Z}_a^* \times \mathbb{Z}_b^*$ by $f([x]_{ab}) = ([x]_a, [x]_b)$.

What is the size of each set?

One-to-one: if $f([x]_{ab}) = f([y]_{ab})$ then

Lemma

If a, b are relatively prime then $\varphi(ab) = \varphi(a)\varphi(b)$

Theorem

Let $a, n \in \mathbb{N}_+$ be relatively prime. Then $a^{\varphi(n)} \equiv 1 \mod n$.

Eg: (from lecture 15) Compute 121¹² mod 13

Proof.

First, let $\mathbb{Z}_n^* = \{x \mid \gcd(x, n) = 1\}$. What is the size of this set? $\mathcal{Y}(n)$ $\downarrow \leq x < n$

Theorem

Let $a, n \in \mathbb{N}_+$ be relatively prime. Then $a^{\varphi(n)} \equiv 1 \mod n$.

Eg: (from lecture 15) Compute 121¹² mod 13

Proof.

First, let $\mathbb{Z}_n^* = \{x \mid \gcd(x, n) = 1\}$. What is the size of this set? $\varphi(n)$

Proof.

First, let $\mathbb{Z}_n^* = \{x \mid gcd(x, n) = 1\}$. What is the size of this set? $\varphi(n)$

Now consider \mathbb{Z}_n^* as a structure with multiplication mod n.

 $\mathbb{Z}_{30}^{*} =$

EG

30) = 8 q(s) e(6) $\mathbb{Z}_{30}^* = \{1, 7, 11, 13, 17, 19, 23, 29\}.$ P(5) P(3) P(2) 7.7 = 49 = 194.2.1 7.11 = 77 = 17 7.13 2 1 7.19 = 3 133 2430 by m number Mult ©Murray Elder, UTS Lecture 16: 37181 24

```
\mathbb{Z}_{30}^* = \{1, 7, 11, 13, 17, 19, 23, 29\}.
```

7.7 =

7.11 =

7.19 =

Look what happens when you multiply everything by one number:

 $\mathbb{Z}_{30}^* = \{1, 7, 11, 13, 17, 19, 23, 29\}.$

7.7 =

7.11 =

7.19 =

Look what happens when you multiply everything by one number:

List the elements of \mathbb{Z}_n^* : $0 < a_1 < a_2 < \cdots < a_{\varphi(n)} < n$.

Claim: multiplying (and reducing mod n) each element by some $a \in \mathbb{Z}_n^*$ simply *permutes* the elements around.

That is, $\{[aa_1]_n, [aa_2]_n, \ldots, [aa_{\varphi(n)}]_n\} \subseteq \mathbb{Z}_n^*$ is exactly the same set.

(ubset

EULER'S THEOREM: PROOF

List the elements of \mathbb{Z}_n^* : $0 < a_1 < a_2 < \cdots < a_{\varphi(n)} < n$. Claim: multiplying (and reducing mod *n*) each element by some $a \in \mathbb{Z}_n^*$ simply permutes the elements around. $gcd(a,n) \ge 1$ That is, $\{[aa_1]_n, [aa_2]_n, \ldots, [aa_{\varphi(n)}]_n\} \subseteq \mathbb{Z}_n^*$ is exactly the same set. Proof. (ontrad) a, ai a; rel. prime to N. Suppose $aa_i \equiv aa_j$, then $a(a_i - a_j) \equiv 0$ which means $n \mid a(a_i - a_j)$. Howework exercise: a rel price bon, and n ab 3 n/b But -hai-a; ric n ((a; -a;))©Murray Elder, UTS Lecture 16: 37181

List the elements of \mathbb{Z}_n^* : $0 < a_1 < a_2 < \cdots < a_{\varphi(n)} < n$.

Claim: multiplying (and reducing mod n) each element by some $a \in \mathbb{Z}_n^*$ simply *permutes* the elements around.

That is, $\{[aa_1]_n, [aa_2]_n, \ldots, [aa_{\varphi(n)}]_n\} \subseteq \mathbb{Z}_n^*$ is exactly the same set.

Proof.

Suppose $aa_i \equiv aa_j$, then $a(a_i - a_j) \equiv 0$ which means $n \mid a(a_i - a_j)$.

But since a is relatively prime to n, this means n divides $a_i - a_j$, but $-n < a_i - a_j < n$ so $a_i - a_j = 0$ so $a_i = a_j$. List the elements of \mathbb{Z}_n^* : $0 < a_1 < a_2 < \cdots < a_{\varphi(n)} < n$.

Claim: multiplying (and reducing mod n) each element by some $a \in \mathbb{Z}_n^*$ simply *permutes* the elements around.

That is, $\{[aa_1]_n, [aa_2]_n, \ldots, [aa_{\varphi(n)}]_n\} \subseteq \mathbb{Z}_n^*$ is exactly the same set.

Proof.

Suppose $aa_i \equiv aa_j$, then $a(a_i - a_j) \equiv 0$ which means $n \mid a(a_i - a_j)$.

But since a is relatively prime to n, this means n divides $a_i - a_j$, but $-n < a_i - a_j < n$ so $a_i - a_j = 0$ so $a_i = a_j$.

So the map $f : \mathbb{Z}_n^* \to \mathbb{Z}_n^*$ defined by $f(a_i) = aa_i$ is one-to-one. It is onto because:

EULER'S THEOREM: PROOF

rel prime hon.
So by Honework exercise

$$n \left[\begin{array}{c} \varphi(n) \\ \alpha \end{array} - 1 \end{array} \right] \stackrel{(w)}{=} 1 = 0$$

 $n \left[\begin{array}{c} \alpha \\ \gamma(n) \end{array} \right] \stackrel{(u)}{=} 1 \\ \gamma(n) \\ \gamma(n) \end{array} \stackrel{(u)}{=} 1 \\ \gamma(n) \\ \gamma(n)$

Now $a^{\varphi(n)} \cdot a_1 \cdot a_2 \cdot \ldots \cdot a_{\varphi(n)} = (aa_1) \cdot (aa_2) \cdot \ldots \cdot (aa_{\varphi(n)})$ $\equiv a_1 \cdot a_2 \cdot \ldots \cdot a_{\varphi(n)} \mod n$

So multiply both sides by the inverses of a_i in \mathbb{Z}_n^* and you get $a^{\varphi(n)} \equiv 1 \mod n$

Now $a^{\varphi(n)} \cdot a_1 \cdot a_2 \cdot \ldots \cdot a_{\varphi(n)} = (aa_1) \cdot (aa_2) \cdot \ldots \cdot (aa_{\varphi(n)})$ $\equiv a_1 \cdot a_2 \cdot \ldots \cdot a_{\varphi(n)} \mod n$

So multiply both sides by the inverses of a_i in \mathbb{Z}_n^* and you get $a^{\varphi(n)} \equiv 1 \mod n$

Using $a^{\varphi(n)} \equiv 1 \mod n$ we can find inverses quickly: Quiz: find inverse of 11 mod 26

 $\varphi(26) = \varphi(2)\varphi(13) = 12$, so $11^{12} \equiv 1 \mod 26$, so $11.(11^{11}) \equiv 1$ so 11^{11} is the inverse.

Using $a^{\varphi(n)} \equiv 1 \mod n$ we can find inverses quickly: Quiz: find inverse of 11 mod 26

 $\varphi(26) = \varphi(2)\varphi(13) = 12$, so $11^{12} \equiv 1 \mod 26$, so $11.(11^{11}) \equiv 1 \mod 11^{11}$ is the inverse.

Repeated squaring to finish. Hmm is that really quicker?

HOW HARD IS IT TO COMPUTE PHI?

Next lecture:

· RSA Cryptosystem.