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Lecture 16: Euler's theorem
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PLAN

- Euler’s phi function

—

- Euler's theorem
PR

- Fermat’s little theorem
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SOME NOTATION

let d € N,. -

Let Z; denote the following structure:

- first of all, a set of numbers {x € N, | ged(x,d) = 1,x < d}

- second of all, the operation of multiplication mod d
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SOME NOTATION

Letd € N,.

Let Z; denote the following structure:

- first of all, a set of numbers {x € N, | ged(x,d) = 1,x < d}

- second of all, the operation of multiplication mod d

Eg: 73 is the set: E ( S_ 7 % l \ )
\S“, \7 \ 9, 2\,1?,21“3'
plus multiplication mod 26. Ej 7] = Lf 1= 22

Note that every element in this set has a multiplicative inverse mod
-— ¢ —_—
o 0 TUE Jame sof.
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EULER’S PHI FUNCTION

Let n € N,.. Define
o(n) = {x € N |1 <x < n,ged(x, n) = 1}

to be the number of numbers between 0, n which are relatively
prime to n.
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EULER’S PHI FUNCTION

Let n € N,.. Define
p(n) = {x e N[1<x < n,ged(x,n) =1}

to be the number of numbers between 0, n which are relatively
prime to n. In other words, ¢(n) = |Z}|.

Ex: ¢(7) = 7/I =6

N g ¢
(/Ex:go(9):,é z&[é (/ (Lr ’(g_/ 7’8>
B ()= B T N

— / / r

!
2
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EULER’'S PHI FUNCTION {

Lemma
If p Is prime, then p(p) =p — 1.

-
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EULER’S PHI FUNCTION
PLa)=a-5 =

Lemma

If p Is prime, then p(p) =p — 1.

Lemma
If pis prime, then (p?) =?.
N P B
ptl pte &

gl 2 24+

.<lo~l)[ﬂ('f (/ﬂ)/*l -
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EULER’S PHI FUNCTION
&Meﬁ/{ n n-|

Plp)=r "

Lemma
If p Is prime, then p(p) =p — 1.

Lemma N
If pis prime, then o(p?) :y — }0

1 2 ... D
p—+1 p+2 ... 2p
2p + 1 2p+2 ... 3p

I (p—=1).p

(p=Np+1 (pP)p+2 ... (p=T)p+p

\ 1

4
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PHI FUNCTION

We can play around with ¢ and make some conjectures.

Lemma
If pis prime and n € Ny then ¢(p") =
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PHI FUNCTION

We can play around with ¢ and make some conjectures.

Lemma

If pis prime and n € N, then ¢(p") =

1 2

D41 p+2

2D + 1 2p +2
(p—="Np+1 (p—="Np+2
P2—|—1 p2_|_2
p*+p+1 p*+p+2

pP+(p—-NMp+1 p>+(p—"1)p+2
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If pis prime and n € N4 then ¢(p") =
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If pis prime and n € N, then ¢(p") = p" — p"~

Lecture 16: 37181 ©Murray Elder, UTS 13



PHI FUNCTION

Lemma
If a, b are relatively prime then p(ab) = ¢(a)p(b)

Proof.
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PHI FUNCTION

Lemma
If a, b are relatively prime then p(ab) = (a)p(b)
* —

—

Proof.
Define a map f : 3, — Z4 x Zj by f(IXlab) = ([Xla. [¥]5)

2 . »
: PJA
g Fo B G

Yy ((\l\ — <\)’§'>
F<Zﬁ) — <(F/ g)
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PHI FUNCTION

Lemma
If a, b are relatively prime then p(ab) = (a)p(b)

Proof.

Define a map f :y f(Xlap) = (X]a, [X]p).

What is the;féof each set? l\ < 7( ) 7\>

[ﬁh Hp<0(> \0/10 A 2
¥

One-lree: prerd E

: 7€ Yo
OVlh ) E?(m@(, b » ® >
TNy Zeo? Fe B
. 6 Lel yon (31
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P 12)
PHI FUNCTION U

Lemma
If a, b are relatively prime then p(ab) = (a)p(b)

Proof.
Define a map f : 3, — Z4 x Zj by f(IXlab) = ([Xla. 4]y

What is the size of each set?

One-to-one: if f([X]ap) = f([V]ap) then
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PHI FUNCTION

Lemma
If a, b are relatively prime then p(ab) = (a)p(b)

Proof.
Define a map f : Zg, — Z5 x Zj by f(ab) = (o, [X]p). -
e A

What is the size of each set? f( ) — Wé{) ’ f/ L/>
5?’7—-»4 7T —

(/One—to—one: It f([x]ap) = f([v]ap) then [ \ ’L\ — Tj Zq

= 47T
.~ Onto: o (/}\‘)Qo\\/\w EXBL J D}
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EULER'S THEOREM

Theorem

Let a,n € N, be relatively prime. Then a?®) =1 mod n.
‘e_‘— -r
Eg: (from lecture 15) Compute 121@ mod 13

Dc&\((“/ 13) =1

(13D = I

: B) (gMLS/I/( WO/%
- [2117’:‘( wod (2,

—
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EULER'S THEOREM

Theorem
Let a,n € N, be relatively prime. Then a¥{" =1 mod n.

Eg: (from lecture 15) Compute 121" mod 13

Proof.

,
First, let Z; = {x | gcd(x,n) =1}. What is the size of this set? Y( Vl>
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EULER'S THEOREM

Theorem
Let a,n € N, be relatively prime. Then a¥(") =1 mod n.

Eg: (from lecture 15) Compute 121" mod 13

Proof.

First, let Z; = {x | gcd(x,n) =1}. What is the size of this set? ¢(n)

Lecture 16: 37181 ©Murray Elder, UTS

21



EULER'S THEOREM

Theorem

Let a,n € N, be relatively prime. Then a*(") =1 mod n.

Eg: (from lecture 15) Compute 121" mod 13

Proof.

First, let Z; = {x | gcd(x,n) =1}. What is the size of this set? ¢(n)

Now consider Z* as a structure with multiplication mod n.

—

~——_ N

Lecture 16: 37181 ©Murray Elder, UTS 22



*
30 —

Lecture 16: 37181 ©Murray Elder, UTS 23



EG (ﬂ;@ = ¢

N p(s) €6)
7% = 23,29},
 =1,7,11,13717,19,23, 29} oL £
7= ¢4 Z 14 CP"'Z‘}
= (7] = | ( 4
_ A |7
719 = \’5 \”2—(3

/ .

Mk 000y powby ™ Za



EG

7%, ={1,7,11,13,17,19, 23, 29}.

=

711 =

7.19 =

Look what happens when you multiply everything by one number:
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EG

7%, ={1,7,11,13,17,19, 23,29},

/.] =

7.1 =

7.19 =

Look what happens when you multiply everything by one number:

{74, 7.7, 7.11, 713, 7.17, 7.19, 7.23, 7.29} =

¢
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EULER'S THEOREM: PROOF
— /\/\/\

List the elements of Z;: 0 <ay <@ <--- < Ay < N.
—

7z - — — — —
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EULER'S THEOREM: PROOF

List the elements of Z;: 0 < ay <@ < -+ < Ay < N.

Claim: multiplying (and reducing mod n) each element by some
.a € Z; simply permutes the elements around.

~—

That is, {[aai]n, [aQ2]n, ..., [aGum)n} C Z; Is exactly the same set.

_— ~ A —
K_/Q. \f “© 27f G/f\ .

—

—
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EULER'S THEOREM: PROOF

List the elements of Z: 0 < ay <@ <--- < Qym) < N.

/L/_——w/

Claim: multiplying (and reducing mod n) each element by some {
%simply permutes the elements around. 3cCQ(a, n) =)
_Jetan—

Thatis, {[aai]y, [aaz]y, - .-, [aa,m)ln} € Z7 Is exactly the same set.

Proof. ((Wda\ a, ai oy rel. prine )2 n.

Suppose aa; = aa;, then a(a; — a;) = 0 which means n | a(a; — a;).
P . — ———

-

Lecture 16: 37181 ©Murray Elder, UTS —W | e



EULER'S THEOREM: PROOF

List the elements of Z;: 0 <ay <@ <--- < Ay < N.

Claim: multiplying (and reducing mod n) each element by some

a € Z; simply the elements around.
That is, {[aai]n, [a@2]n, ..., [aaum)]n} C Z; Is exactly the same set.
Proof.

Suppose aa; = aa;, then a(a; — a;) = 0 which means n | a(a; — a;).

But since a is relatively prime to n, this means n divides a; — a;,
bUt—I’I<CI,'—GJ'<I’ISOCI,'—CI]':OSOC1,':CIJ'.
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EULER'S THEOREM: PROOF

List the elements of Z;: 0 <ay <@ <--- < Ay < N.

Claim: multiplying (and reducing mod n) each element by some

a € Z; simply the elements around.
That is, {[aai]n, [a@2]n, ..., [aaum)]n} C Z; Is exactly the same set.
Proof.

Suppose aa; = aa;, then a(a; — a;) = 0 which means n | a(a; — a;).

But since a is relatively prime to n, this means n divides a; — a;,
bUt—I’)<CI,'—GJ'<I’ISOCI,'—CI]':OSOCI,':CIJ'.

Sothe map f : Z; — Z; defined by f(a;) = aaq; is one-to-one. It s
onto because:
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EULER'S THEOREM: PROOF LR

v 008, o
AJH\(\O/ ‘/'J«/V"
Now /
a@(”).01.02 acp(ﬂ) = (aa1)-(aaz)-...-(aa¢(n))
’///\:J : — = a; Gyt Ay modn e
naa-~2 -
Sy (o) = o
Q.. -~-q "/l a, ql” .
4 D7 — ool
)/

)
cg\O % ) a, &, . fO(*PCM) (CZ Kl>
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EULER'S THEOREM: PROOF

Now
a?M.a;-ay-...-Aumy = (aa1)-(aas) ... (adum))
A+ Q- ... QAuny Modn

So multiply both sides by the inverses of a; in Z;} and you get

a?(n = 1 modn
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EULER'S THEOREM: PROOF

Now
a?M.a;-ay-...-Aumy = (aa1)-(aas) ... (adum))
A+ Q- ... QAuny Modn

So multiply both sides by the inverses of a; in Z;} and you get

a?(n = 1 modn ]
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EULER'S THEOREM

Using a¥(™ =1 _mod n we can find inverses quickly:
e e

Quiz: find inverse of 11 mod 26

T W[ 2,6) = Ry

= \ Mao\ 26 . e

.
:XL@ ””]26 Tsl@e
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EULER'S THEOREM

Using a?(" =1 mod n we can find inverses quickly:

Quiz: find inverse of 11 mod 26

©0(26) = p(2)p(13) = 12, s0 11" = 1 mod 26, so 11.(11"") =1s0 MMM is
the inverse. -
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EULER'S THEOREM

Using a?(" =1 mod n we can find inverses quickly:

Quiz: find inverse of 11 mod 26

©0(26) = p(2)p(13) = 12, s0 11" = 1 mod 26, so 11.(11"") =1s0 MMM is
the inverse.

Repeated squaring to finish. Hmm is that really quicker?
_
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ANOTHER THEOREM

The old version of this course only looked at ’
theorem”vhich is: ~—

If pis prime and WCI € N, then
‘_/7
a’ =~ =1 modp P[/)Qg)ﬁ)

Proveit. Ty \se EM@N 2/ Bm.

(Note: for RSA we need Euler's theorem, not this one)
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HOW HARD IS IT TO COMPUTE PHI? W

Lemma

Let p, g be two (s egget arge) d/stmct primes. Let n = pq. Suppose
everybody knows n. Then: —

~

£
You Rnow o(n) Iif and only If you know p, q.
-

Proof.
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HOW HARD IS IT TO COMPUTE PHI?

Lemma

Let p, g be two (secret, large) distinct primes. Let n = pq. Suppose
everybody kRnows n. Then:
ybody gasy

£ =

You Rnow ¢(n) If and only %fyou know p, q.
g ?

~

—_— >

Proof.
Consider the quadratic equation

X2+ (e(n) —n—=1X+n=0.
)
Find the roots,

o — (o) 2 Jene) -
=~ _ D
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Next lecture:

RSA ny,ﬁitj [lem . B

o=
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