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plan

• proof methods:
• direct
• contrapositive
• contradiction
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proofs

Proofs in mathematics or computer science are based on the
argument forms we started to learn last week.

To start with, the main types of proof styles are:

• direct
• contrapositive
• contradiction
• induction

If you do more math or theoretical computer science you will see
more styles.
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divides

Definition
Let a,b 2 Z. We say a divides b if 9s 2 Z such that b = as.

For example, 3 divides �18 since there exists �6 such that
�18 = 3 · (�6)

3 does not divide 14 since for all s 2 Z 14 6= 3s.

Notation: a | b means “a divides b”
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direct

Sometimes it is easy to show step-by-step that p implies q (or using
syllogism (p! r) and (r ! s) and (s! t) and (t ! q)).

Recall that an integer n is even if

2 | n, that is, it can be written as
n = 2d for some d 2 Z.

Lemma
Let n 2 Z. If n is even then n2 is even.

Proof.
By hypothesis, n = 2s for some s 2 Z. Then
n2 = (2s)2 = 4s2 = 2(2s2) is even.
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your turn

Lemma

If n 2 Z is even then n3 is even.

Proof.

By hypothesis, n = 2s for some s 2 Z. Then n3 = (2s)3 = 2(4s3) is
even.
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your turn

Lemma
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your turn

Lemma

Let n 2 Z. If n2 is even then n is even.

Proof.

? direct doesn’t work
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your turn

Lemma

Let n 2 Z. If n2 is even then n is even.

Proof.
? direct doesn’t work
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contrapositive

Recall that p! q is logically equivalent to (has the same truth
values as) ¬q! ¬p.

Check this with a truth table.

Lemma
Let n 2 Z. If n2 is even then n is even.

Instead of trying to prove this directly, we will prove ¬ (n is even)
implies ¬ (n2 is even).

In other words, if n is odd then n2 is odd.
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contrapositive

Lemma
Let n 2 Z. If n2 is even then n is even.

Proof.
If n is odd, then n = 2s+ 1 for some s 2 Z,

so
n2 = 4s2 + 4s+ 1 = 2(2s2 + 2s) + 1 which is an odd number.

Since the statement we have proved (the contrapositive) is logically
equivalent to the original statement to be shown, we are done.
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primes

Definition:
A prime number is an integer p > 1 whose only positive divisors are
itself and 1.

Lemma
Let n 2 Z. If n > 2 and n is prime then n is odd.

Contrapositive is:

Proof.
If n is even then n = 2s so 2 divides n. Then n 6 2 or n > 2, and if
n > 2 it it cannot be prime since it has 2 as a divisor.

Note in my proof, I added a hypothesis q _ ¬q half way!
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primes
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primes

If you start to list prime numbers,

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, . . .

they seem to appear less and less often. So do they run out
eventually?

Theorem (Euclid)
There are infinitely many different primes.

This time we have a statement p = “there are infinitely many primes”,
and we will prove that ¬p implies a contradiction, i.e. use
(¬p! F) ! p.
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proof by contradiction

Theorem (Euclid)
There are infinitely many different primes.

Proof.
Suppose (for contradiction) this is not true. So here are all the
distinct primes:

p1, p2, . . . , pn.

Any other number not on this list is not a prime. Okay, now I will
challenge that. Consider

N = (p1p2 · · ·pn) + 1

Is N prime or not?
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next

Next lecture: more proof practice

• rational and irrational numbers

• first element

• well ordering principle
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