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PLAN

- Introduction to set theory notation

- set theory proofs
O ——

- definition of “set” again é—-

- power set

—_—
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SET THEORY

A set Is a well-defined collection of objects.

(Carefully defining what well-defined means will take us beyond the scope of this course, into axiomatic set theory)
E————————

The objects are called elements of the set, or members of the set.
P
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SET THEORY

A set Is a well-defined collection of objects.

(Carefully defining what well-defined means will take us beyond the scope of this course, into axiomatic set theory)

The objects are called elements of the set, or members of the set.

We can represent a set using brackets, for example
A=1{1,2,a,5,¢c,3}

f P
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SET THEORY

A set Is a well-defined collection of objects.

(Carefully defining what well-defined means will take us beyond the scope of this course, into axiomatic set theory)

The objects are called elements of the set, or members of the set.

We can represent a set using brackets, for example
A=1{1,2,a,5,¢c,3}

e

The elements are the six symbols you see listed inside the brackets.
We could also describe a set using variables satisfying some

conditions, for example: ) q &
70,1k /
B = {x \((xeN) A (<X )A(x#)l Vix=a)v(x=0)}.

awd a c
\Svﬂ\ ’d«'o}‘ L2 Y K
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SET THEORY

A set Is a well-defined collection of objects.

(Carefully defining what well-defined means will take us beyond the scope of this course, into axiomatic set theory)

The objects are called elements of the set, or members of the set.

We can represent a set using brackets, for example
A=1{1,2,a,5,¢c,3}

The elements are the six symbols you see listed inside the brackets.
We could also describe a set using variables satisfying some
conditions, for example:

B={x|(xeN)AO<Xx<5)A(Xx#4))V(XxX=a)V(x=0)}.

—

The set B is the same_as the set A, since a set is defined only by the
elements it contains, no matter how they are listed or displayed.

a—

Lecture 5: 37181 ©Murray Elder, UTS



SET THEORY

The notation x € A means x Is an element of A

C—

and x ¢ A means —(x € A).

\—\_/"
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SET THEORY
AN

The notation x € A means x Is an element of A

———

I —

and x ¢ A means —(x € A).

Formally, If A, B are sets we define A =B if

EEE——— =

VX[x € A <> x € B]
— \ |
(F Vl’j a
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SET THEORY

Eg: We sometimes use “comma” instead of A

cA={x|xeQ,x < 0} /Aqa\l\l"“

{yyelR%,yZZ}
~ G— | C— u l'
Test: where does the real number —+v/2 live?

r— —

L,ﬁ,) = 2.

A H 0«/\4,\
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SET THEORY

Eg: We sometimes use “comma” instead of A

- A={x|xeQ,x<0}
*B={y|yeR,y* =2}

Test: where does the real number —+v/2 live?

qV‘A

/

- ANB = {x| x € AA X € B} (intersection)
— [ 4 ——

- AUB = {x|xeAVxe B} (union)

U M feagbe baha
vk Hal

Definition
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SET THEORY

Eg: We sometimes use “comma” instead of A

- A={x|xeQ,x<0}
*B={y|yeR,y* =2}

Test: where does the real number —+v/2 live?

Definition

- ANB = {x|x € AA X € B} (intersection)
- AUB = {x|xeAvVxe B} (union)

Note the similarity of notation for N and A, and U and V. same but difrerent

@—
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SET THEORY tollh tuok gx N, 60\/
o 03

x L
Eg: We sometimes flse “comma” instead of A /
, — fudh
- A=X|xeQ,x<0} -
(elxex <o) Yol
-B={y|lyeRy =2}
e a q,b
. o ; 2 —
Test: where does the real number —v/2 live: & -~ [ — ezl'i
Definition bfb/

- ANB = {x|x € AA X € B} (intersection)

- AUB = {x|xeAvVxe B} (union)
S ———

Note the similarity of notation for Nnand A, and U and V. same but different

InourEg:—{\ﬂE: ¢ 5@”
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YOUR TURN \%‘.P‘jw

e T

Let A = {aq, b,_c)d, e},B={b,d,e},C= {]f_ﬁ,_g}. Find §
1. (AUB)N(AUC) = {a"lrcfl,e} O\ {”‘b“(e‘?[
2. AN(BUC) ~ é oclt C&Ql
3. Au (BN ()

o b de )

{a\')ckfa B CZ&

,I/)
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YOUR TURN

letA={a,b,c,d,e},B={b,d,e},C={f,g,a}. Find

1. (AUB)N(AUC)
2. An(BU ()

3. AU(BNC)

A pictorial way to do this exercise is to draw a Venn diagram.

|

o

Lecture 5: 37181 ©Murray Elder, UTS

14



SETMINUS \ Cel pin us

u
/ Y minvg

If A,B are setsthen A\ B={x|x€AAX¢B}.

fg: A= {a,p,c.de},B = {b,d,e},C = {f,g,a}. Find
1.A\B = ? Q,C—s
2. A\C

{ bc.o(C&
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MORE NOTATION C

F
If A, B are sets we say A is a subset of B ifw
/(,y..gA;far-(re*B).lNgtation ACB. | — :
/
o0y Mw\ l‘o

. b
\> x| xek = %el
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MORE NOTATION

If A, B are sets we say A is a subset of B iM

)J,c (x € A) — (x € B). Notation A C B.

The notation A C B means strictly contains:

\7()( (xeA) = (xeB))A(Jyly € BAY & A]).

/~
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MORE NOTATION 7&- C

If A, B are sets we say A is a subset of Bif Vx € A,x € B, or ‘/’
(x € A) — (x € B). Notation A C B.

The notation A C B means strictly contains:
—_—

(xeA)— (xeB))A(yly e BAy € A]).
- pe— ey

\-—f‘wA.S: VY
SO N g Z g Q g . who is the “y" in each case?

T\ c{e>/\<léﬁé>
1 <A > (kg c)

. g
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MORE NOTATION \y\qj =) \neq F

If A, B are sets we say A is a subset of B If ehmee=m0+ &

,‘hﬁ (x € A) = (x € B). Notation A C B. \S\A\‘«(ekn%

The notation A C B means strictly contains:

(xeA)— (xeB))A(yly e BAy € A]).

SO N g Z g Q g ]R who is the “y" in each case?
>F

Let  be some large “universal” set, so we assume all sets we speak

about are subsets of %. Then A=I{x|xgA} = % \A means the set

of elements in % that are not in A. ’ y
|

ﬂ Cawa,’Q MQM‘
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LOGIC VS. SET THEORY UAL ON

There is a strong connection to the propositiorfal logic we covered In
Week 1. We have three operations on sets: N, U,~ which we can use

to build new sets from old ones, and in L6gIc we have three
COﬂﬂeCtlveS /\, \/, —1. actually you only need two
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LOGIC VS. SET THEORY

There is a strong connection to the propositional logic we covered In
Week 1. We have three operations on sets: N, U,~ which we can use
to build new sets from old ones, and in logic we have three
connectives A, V, —. acwally you only need two

Recall thewgi_e_s In logic such as

—|(p/\‘q) < —pVq
" F-
In set theory we could consider sets
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LOGIC VS. SET THEORY

There is a strong connection to the propositional logic we covered In
Week 1. We have three operations on sets: N, U,~ which we can use
to build new sets from old ones, and in logic we have three
connectives A, V, —. acwally you only need two

Recall the tautologies in logic such as

~(PAQ) < —pV g
In set theory we could considersets

How do we show two sets are the same? We show they contain
exactly the same elements.

ang
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LOGIC VS. SET THEORY

There Is a strong connection to the propositional logic we covered In
Week 1. We have three operations on sets: N, U,~ which we can use

to build new sets from old ones, and in logic we have three
COﬂﬂeCtlveS /\, \/, —1. actually you only need two

Recall the tautologies in logic such as

—~(pAQq) < —pV—q
In set theory we could consider sets

ANBand AUB.
- —
How do we show two sets are the same? We show they contain
exactly the same elements.

Formally, if A, B are sets we define A = B if

Vx[x € A <> x € B]
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DE MORGAN (SET VERSION)
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'VV", \Vl /\ hd LA | | W 4 — .

JAR
f Y er tom x &Ah
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DE MORGAN (SET VERSION)

Lemma
ANB=AUB.

The proof goes: pick some arbitrary element of the LHS.

g—

e
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DE MORGAN (SET VERSION)

Lemma
ANB=AUB.

The proof goes: pick some arbitrary element of the LHS.

Show it belongs to the RHS.

T
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DE MORGAN (SET VERSION)

Lemma
ANB=AUB.

The proof goes: pick some arbitrary element of the LHS.

(4
-

Show it belongs to the RHS.

L —

Since we picked an arbitrary thing, this shows everything in the LHS

Is also in the RHS, so LHSCRHS. o
—
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DE MORGAN (SET VERSION)

Lemma
ANB=AUB.

The proof goes: pick some arbitrary element of the LHS.

Show it belongs to the RHS.

Since we picked an arbitrary thing, this shows everything in the LHS
Is also in the RHS, so LHSCRHS.

Repeat to get RHSCLHS, then LHS=RHS.

_
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DE MORGAN (SET VERSION)

Proof. Suppose x £ AN B.

Lecture 5: 37181

©Murray Elder, UTS
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DE MORGAN (SET VERSION)

Proof. Suppose x &A N B.

Then x is noin AN B.

Lecture 5: 37181

©Murray Elder, UTS
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DE MORGAN (SET VERSION)

Proof. Suppose x,£ AN B.

Then xisnetin AN B.

Now efher x € A or not. If x € Athen since x € AN B we

Is ngt in B.
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DE MORGAN (SET VERSION)

Now eith hen since x € AN B we m

So sox € AUB.
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DE MORGAN (SET VERSION)

Proof. Suppose x € 4N B.

Then x is not |

Now eithér x € A or not. If x €
Is not /1 B.

Thus

Lecture 5: 37181

then sincex ¢ ANB

©Murray Elder, UTS

must have x
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YOUR TURN

Next, start over and suppase x € AU B.

Since each set is contdined in the other, they are equal.

Lecture 5: 37181 ©Murray Elder, UTS
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YOUR TURN

0})/‘(&' hu R
| .aw
S/ho_thaj: forany setsA,B,.C C %
AN(BUC)=(ANB)U(ANC).
Proél
L ur X EAD (2. C)
C
g\ 'X&A a't/\c)\ *v_,e_/g—u/
? c AN B €2, L
C £ bA“] RS X €

“: b &:{2 (e~ 7<€C' o xeAn C d0 Se?ﬂa
C\&?—x ~ o xC(A/\@uP‘/\




Vow lek x¢ £ane) v CANS

T XE A By X‘éﬂ\
4 Nau) peseidle

frorefare X C‘—ﬁ(\cﬂ‘@



VENN DIAGRAMS ARE NOT PROOFS
‘-—\, S

Note: a Venn diagram can be useful to check if a statement about

i, _—

sets looks correct, or to find a cou nterexamgle.

But drawing a picture of a Venn diagram does not constitutea proof

— you must do the LHS, RHS proof.
4_/\

ooy | L
2 67
i -
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VENN DIAGRAMS ARE NOT PROOFS

Note: a Venn diagram can be useful to check if a statement about
sets looks correct, or to find a counterexample.

But drawing a picture of a Venn diagram does not constitute a proof

— you must do the LHS, RHS proof.
315 p e G"(JQ

Eg: check if you think, AU(BNC) = IS true or.ng
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BACK TO THE DEFINITION OF “SET”

The next exercise explains why well-defined collection of objects s
not quite good enough. )

Lecture 5: 37181 ©Murray Elder, UTS
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BACK TO THE DEFINITION OF “SET”

The next exercise explains why well-defined collection of objects is
not quite good enough.

Let P(S) be the property (of sets) that S does not contain itself.
p— -~ - —
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BACK TO THE DEFINITION OF “SET”

The next exercise explains why well-defined collection of objects is
not quite good enough.

Let P(S) be the property (of sets) that S does not contain itself.

For example, P(N) Is true because N contains numbers, it does not
——
contain sets 5o it cannot contain itself

r 0 (@) p ()
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BACK TO THE DEFINITION OF “SET”

The next exercise explains why well-defined collection of objects is
not quite good enough.

Let P(S) be the property (of sets) that S does not contain itself.

For example, P(N) is true because N contains numbers, it does not
contain sets so it cannot contain itself.

Another example: the empty set () is the set that has no elements,
0 = {}. So it contains nothing so cannot contain itself.

———
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BACK TO THE DEFINITION OF “SET” Y E A 7@

Veanhtined .

The next exercise explains why well-defined collection of objects is

not quite good enough. Al an e[W‘V

Y

Let P(S) be the property (of sets) that S does not contain itself.
———

P e

For example, P(N) is true because N contains numbers, it does not
contain sets so It cannot contain itself. aS$ Ak e/lwmf‘

Dg—

Another example: the empty set ) is the set iat has no elements,
0 = {}. So it contains nothing so cannot coritain itself.
pr

(a) Give some more examples. A — ?5( [ﬂ C }
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BACK TO THE DEFINITION OF “SET”

Consider the set of all abstract concepts. Call it &. Therytcontains

things like art, postmodernism, democracy, imaginary numbers.
— — C-/ v

(g o
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BACK TO THE DEFINITION OF “SET”

Consider the set of all abstract concepts. Call it 7. Then A contains
things like art, postmodernism, democracy, imaginary numbers.

(b) Which istrue: & € o or of & 77
~ e

[5 l9 MV

Lecture 5: 37181 ©Murray Elder, UTS

44



BACK TO THE DEFINITION OF “SET”

Consider the set of all abstract concepts. Call it o/. Then A contains
things like art, postmodernism, democracy, imaginary numbers.

(b) Which istrue: & € o or of & 77

CEE—————

Let " ={S | P(S)} be the set of all sets that do not contain
theimselves. \w
IS

(och bl
N ed

“S”scr‘«,,h m € jﬁ
[~ A £ 5
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BACK TO THE DEFINITION OF “SET”

Consider the set of all abstract concepts. Call it 7. Then A contains
things like art, postmodernism, democracy, imaginary numbers.

(b) Which istrue: & € o or of & 77

Let ¥ = {S | P(S)} be the set of all sets that do not contain
themselves.

SoNe Yand & ¢ .7.
P — ——

Lecture 5: 37181 ©Murray Elder, UTS
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BACK TO THE DEFINITION OF “SET”

Consider the set of all abstract concepts. Call it &/. Then A contains
things like art, postmodernism, democracy, imaginary numbers.

(b) Which istrue: & € o or of & 77

Let ¥ ={S| P(SZ} be the set of all sets that do not contain
themselves.

SoNe.Yand & ¢ ..

(c) Which istrue: ¥ € S or ¥ ¢ .7
—~ (Um)'g\/’j e fine P(éf) (lhse.
E\te - ‘f)et;“f &S o
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BACK TO THE DEFINITION OF “SET”

Consider the set of all abstract concepts. Call it 7. Then A contains
things like art, postmodernism, democracy, imaginary numbers.

(b) Which istrue: & € o or of & 77

Let ¥ = {S | P(S)} be the set of all sets that do not contain
themselves.

SoNe.Yand & ¢ ..
(c) Which istrue: ¥ € S or ¥ ¢ .7

m& moral of this story: you cannot define a set usirlg_acondition, in
general. i.e. {x | P(x)} may not actually be a well-defined collection

of objects. T —_ —

;
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BACK TO THE DEFINITION OF “SET”

The moral of this story: you cannot define a set using a condition, in

general. 1.e. {x | P(x)} may not actually be a well-defined collection
of objects.

This fact is called Russell’'s paradox, and it lead to the development
of axiomatic set theory.

——

L
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POWER SET

Let A be a set. Then (axiom)

—_— P(n) = (B|BC A}

G

IS a set. Its called the power set of A.

o«
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POWER SET

Let A be a set. Then (axiom)

P(A) = {B| BC A}

Is a set. Its called the power set of A.

Questions:

- is ) e P(A)? v

L )

- ISAe Z(A)? (/

. is P(A) € P(A)?
4

\
79(*0 {fb ?t

223

(2] {3)

(22 ]

sz (r 21



\v“=7 ' e N
POWER SET ﬁ 3

Let A be a set. Then (axiom)

P(A) = {B| BC A}

Is a set. Its called the power set of A.

Questions: Cf} [5 a .fQ}'

. A:e}/—l/@v
~ishe P(A)? ﬁ(ﬂ( 5 _fEO'

- ISAe Z(A)?

. - is P(A) € P(A)? - ( lb)
\ s

Another axiom: ( is a set.
~ “ /
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POWER SET

P (¢esdy
Let A be a set. Therw g (A.> B <4/

P(A) = {B| B C A} s
o
IS a set. Its called the power set of A. ’
®
®
Questions: L .
e
s e Z2(A)?
- ISAe Z(A)?

- is P(A) € 2(A)?
Another axiom: ) is a set.

What can you build with just these two axioms?
—m
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YOUR TURN

- Given A = {1,2,3} is a set, what is 2(A)?

/
(A> {Q (3}

{(2 (23) 18]
{1223



YOUR TURN

+ Given A ={1,2,3} is a set, what is Z(A)?

+ Prove that if Ais a set then A C Z(A) ?

Lecture 5: 37181 ©Murray Elder, UTS
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N

Next lecture:

- Division and remainder lemma
— - N UM}U

- Euclidean algorithm fH/l ? ij .

_—

—

-
Tueduys
( Lp C l/ RuTY %{\;;F -

Lecture 5: 37181 ©Murray Elder, UTS 56




