37181 DISCRETE MATHEMATICS

©Murray Elder, UTS Lecture 7: induction principle of mathematical induction

Axiom (Principle of mathematical induction)

Let P(n) be a statement about natural numbers. Let $s \in \mathbb{N}$, eg. s = 0, 1

Axiom (Principle of mathematical induction)

Let P(n) be a statement about natural numbers. Let $s \in \mathbb{N}$, eg. s = 0, 1

lf

1. P(s) is true 2. $P(k) \rightarrow P(k+1)$ is true

P(i) $P(i) \rightarrow P(z)$ $P(z) \rightarrow P(3)$

PMI

```
Axiom (Principle of mathematical induction)Let P(n) be a statement about natural numbers. Let s \in \mathbb{N}, eg.s = 0, 1If1. P(s) is true2. P(k) \rightarrow P(k + 1) is truethen P(n) is true for all n \ge s.
```

(domino picture)

Lemma

For all
$$n \in \mathbb{N}, n \ge 1$$

$$1+2+3+\dots+n = \frac{n(n+1)}{2}$$
Proof Ler P(n) be the statement:
 $1+2+3-\dots+n = \frac{n(n+1)}{2}$
 $1+2+\dots+n = \frac{n(n+1)}{2}$

Assume
$$P(k)$$
 is true for some $k \ge 1$.
To show: $\frac{p(k+1)}{1+2}$:
 $LHS = \frac{k(k+1)}{1+2+3} + \frac{4}{5} + \frac{4}{5} - \frac{k}{5} + \frac{k+1}{5}$
 $= \frac{k(k+1)}{2} + \frac{k}{5} + \frac{4}{5} + \frac{k}{5} + \frac{k+1}{5}$
by Inductive Assumption
 $= (k+1)\left(\frac{k}{2} + 1\right)$
 $= (k+1)\left(\frac{k}{2} + \frac{2}{5}\right)$
 $= (k+1)(k+2)$. $= RHS$.
Hows $P(k) \rightarrow P(k+1)$.
Thus by $P_0 M_0 I_0$, $P(n)$ is true for
 $aM n \ge 1$.

Lemma

Lemma

For all $n \in \mathbb{N}, n \ge 1$

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Proof.

Let *P*(*n*) be the statement that $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$.

Thus by PMI P(n) is true for all $n \ge 1$.

Lemma

Assume
$$P(k) \stackrel{\text{def}}{\Rightarrow}$$
 is true for some $k \ge 1$
To show: $P(k+1)$
 $LHS = 1^2 + 2^2 + \dots + k^2 + (k+1)^2$
 $= \underbrace{k(k+1)(2k+1)}_{6} + (k+1)^2$
 $= (k+1) \underbrace{(\frac{k(2k+1)}{6} + (k+1))}_{6}$
 $= (k+1) \underbrace{(2k^2 + k + 6k + 6k)}_{6}$
 $= (k+1) \underbrace{(k+2)(2k+3)}_{6}$
 $= RHS$
So $P(k) \rightarrow P(k+1)$
So by PMI , $P(n)$ is force for all $n \ge 1$.

Lemma

For all $n \in \mathbb{N}, n \ge 1$ $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

Proof. Let P(n) be the statement that

<

Lemma

For all $n \in \mathbb{N}, n \ge 1$ $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

Proof.

Let P(n) be the statement that

Thus by PMI P(n) is true for all $n \ge 1$.

EG

$$for all n \in \mathbb{N}, 11^n - 4^n is divisible by 7.$$

Let $P(n)$: $7 [(1)^n - 4^n]$.
 $P(0)$: $n=0$, $11^n - 4^n = 11^0 - 4^0 = [-1] = 0$
and $7 [0]$ since $0 = 7.0$
Assume $P(k)$ true.
 $To show$: $P(k+1)$: $so train [1]$

1) - 4 $= || \cdot ||^{k} - 4 \cdot 4^{k}$ $=(7+4)1^{k}-4-4$ $= 7 \cdot 11^{k} + 4(11^{k} - 4^{k})$ divi741e 4, 7 $= 7.11^{k} + 4.75$ $= 7(11^{k}+4s)$ 7) (1^{k+1} + 4^{k+1} SD P(k+)) is prue 50 $S \rightarrow p(k) \rightarrow p(k+1)$ YMI PLUI true u>0. SU by

For all $n \in \mathbb{N}$, $11^n - 4^n$ is divisible by 7.

Proof.

Let P(n) be the statement that

For all $n \in \mathbb{N}$, $11^n - 4^n$ is divisible by 7.

Proof. Let P(n) be the statement that

Thus by PMI P(n) is true for all $n \ge 0$.

Assume P(k) is true. To show: P(L+1): Let A be some set with 1A/=k+1. , aktis Consider all the subsets Pur all subselv do contain Put all the serbrets that 49 don't contain k k Same ar) a, a, h azaz-quit al { azas Q ktl a subset of A contains d, 0/ Eihhe nor

STRONGER VERSION (OR IS IT?)

PMI is equivalent to the following: Let $s \in \mathbb{N}$.

lf

- \cdot *P*(*s*) is true and
- if for all $s \leq i \leq n P(i)$ is true, then P(n + 1) is true,

STRONGER VERSION (OR IS IT?)

PMI is equivalent to the following: Let $s \in \mathbb{N}$.

lf

- *P*(s) is true and
- if for all $s \leq i \leq n P(i)$ is true, then P(n + 1) is true,

then P(n) is true for all $n \in \mathbb{Z}, n \ge s$.

For all $n \in \mathbb{N}$, n > 1 if n is not prime then some prime number p divides n.

Proof.

Let P(n) be the statement that either n is prime or some prime divides n.

by Inductive
Assumption
$$\mathbb{P}$$

 $\geq (1+1) 2^{k-1}$ since
 $\equiv 2 \cdot 2^{k-1} = 2^{k}$
 $\equiv 2 \cdot 2^{k-1} = 2^{k}$
So by PMI , $P(n)$ is brue
for all $n \geq 1$
and We also showed it is
hue for $n \geq 0$,
 $\int P(n)$ is brue for $n \geq 0$.

• {

EG Lemma All horses are black. $n \in N$ IF I have 1001 \$ horses then they are all black. have no horses Which is brue: one horse They are all prat is not black. plack ©Murray Elder, UTS 24 Lecture 7: 37181

All horses are black.

Proof.

Let P(n) be the statement that

Next lecture:

• application of induction: correctness of computer code/algorithms

Important to gets lots of practice doing proofs by induction.