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Lecture 7: induction
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plan

• principle of mathematical induction
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how to prove

Lemma
For all n 2 N, 11n � 4n is divisible by 7.

?

Lemma
If A is a set of size n 2 N, then P(A) has size 2n.

?
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Axiom (Principle of mathematical induction)
Let P(n) be a statement about natural numbers. Let s 2 N, eg.
s = 0, 1

If

1. P(s) is true
2. P(k) ! P(k+ 1) is true

then P(n) is true for all n > s.

(domino picture)
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pmi

Axiom (Principle of mathematical induction)
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application

Lemma
For all n 2 N,n > 1

1+ 2+ 3+ · · ·+ n =
n(n+ 1)

2

Proof.
Let P(n) be the statement that 1+ 2+ 3+ · · ·+ n = n(n+1)

2 .

Thus by PMI P(n) is true for all n > 1.
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application
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application

Lemma
For all n 2 N,n > 1

12 + 22 + 32 + · · ·+ n2 = n(n+ 1)(2n+ 1)
6

Proof.
Let P(n) be the statement that

Thus by PMI P(n) is true for all n > 1.
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eg

Lemma
For all n 2 N, 11n � 4n is divisible by 7.

Proof.
Let P(n) be the statement that

Thus by PMI P(n) is true for all n > 0.
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eg

Lemma
If A is a set of size n 2 N, then P(A) has size 2n.

Proof.
Let P(n) be the statement that

Thus by PMI P(n) is true for all n > 0.
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all subsets

or Ijf

by Inductive assumption

there are 2k subsets

on the left side
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template – see canvas

Lemma
For all n 2 N, if n > then (some statement).

Proof.

Let P(n) be the statement

Then P( ) is true since

Assume P(k) for k > . Then

Thus by PMI P(n) is true for all n > .
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stronger version (or is it?)

PMI is equivalent to the following: Let s 2 N.

If

• P(s) is true and
• if for all s 6 i 6 n P(i) is true, then P(n+ 1) is true,

then P(n) is true for all n 2 Z,n > s.
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eg

Lemma

For all n 2 N,n > 1 if n is not prime then some prime number p
divides n.

Proof.

Let P(n) be the statement that either n is prime or some prime
divides n.
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eg

Lemma
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eg

Lemma
For all n 2 N, n! > 2n�1

Proof.
Let P(n) be the statement that

(start at 0)
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eg

Consider the statement: For all n 2 N, n! > 3n�1.

Is this true? Is it true for all n >??

Proof.
Let P(n) be the statement that

(start at ??)
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eg

Lemma
All horses are black.

Proof.
Let P(n) be the statement that
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next

Next lecture:

• application of induction: correctness of computer
code/algorithms

• WOP and PMI

Important to gets lots of practice doing proofs by induction.
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