37181 DISCRETE MATHEMATICS

©Murray Elder, UTS

Lecture 10: Ackermann's function, bijection, countable/uncountable

- Ackermann's function
- bijection
- countable/uncountable

W~×W

Define a function $A : \mathbb{N}^2 \to \mathbb{N}$ using the following *recursive* definition.

$$\begin{array}{rcl} A(0,n) &=& n+1 & n \ge 0, \\ A(m,0) &=& A(m-1,1) & m > 0, \\ A(m,n) &=& A(m-1,A(m,n-1)) & m,n > 0. \end{array}$$

Define a function $A : \mathbb{N}^2 \to \mathbb{N}$ using the following *recursive* definition.

$$A(0,n) = n+1 + n \ge 0,$$

$$A(m,0) = A(m-1,1) + n \ge 0,$$

$$A(m,n) = A(m-1,A(m,n-1)) + n \ge 0,$$
(a) Compute $A(1,3) = 5$

$$A(1,3) = A(0, A(1,2)) = A(0,4) = 5.$$

$$A(1,2) = A(0, A(1,2)) = A(0,3) = 4$$

$$A(1,1) = A(0, A(1,0)) + A(1,0) = A(0,3) = 4$$

$$A(1,1) = A(0, A(1,0)) + A(1,0) + A(1$$

©Murray Elder, UTS

Define a function $A : \mathbb{N}^2 \to \mathbb{N}$ using the following *recursive* definition.

$$\begin{array}{rcl} A(0,n) &=& n+1 & n \ge 0, \\ A(m,0) &=& A(m-1,1) & m > 0, \\ A(m,n) &=& A(m-1,A(m,n-1)) & m,n > 0. \end{array}$$

(a) Compute A(1,3).

(b) Compute A(2,3). - Exercize.

Define a function $A : \mathbb{N}^2 \to \mathbb{N}$ using the following *recursive* definition.

$$\begin{array}{rcl} A(0,n) &=& n+1 & n \ge 0, \\ A(m,0) &=& A(m-1,1) & m > 0, \\ A(m,n) &=& A(m-1,A(m,n-1)) & m,n > 0 \end{array}$$

(a) Compute *A*(1, 3).

(b) Compute A(2,3).

(c) Prove that
$$A(1, n) = n + 2$$
 for all $n \in \mathbb{N}$.
Proof: Let $P(n)$ be the statement Induction.
that $A(1, n) = n + 2$

We have P(8) is true because A(1,0) = A(0,1) = 2=0+2Asive P(h) is true for some 127,0. Tren p(k+1); A(1,k+1) = A(0,A(1,k))= A(0, k+2)= kt3 $\sim (h+1) + 2$ So P(hti) is the. i, by pMJ, p(n) is the far all n>0.

Define a function $A : \mathbb{N}^2 \to \mathbb{N}$ using the following *recursive* definition.

$$\begin{array}{rcl} A(0,n) &=& n+1 & n \ge 0, \\ A(m,0) &=& A(m-1,1) & m > 0, \\ A(m,n) &=& A(m-1,A(m,n-1)) & m,n > 0. \end{array}$$

(a) Compute A(1,3).

(b) Compute A(2,3). $\leftarrow 3+6=9$

(c) Prove that A(1, n) = n + 2 for all $n \in \mathbb{N}$.

(d) Prove that A(2, n) = 3 + 2n for all $n \in \mathbb{N}$. In duct the Exercise

Define a function $A : \mathbb{N}^2 \to \mathbb{N}$ using the following *recursive* definition.

$$\begin{array}{rcl} A(0,n) &=& n+1 & n \ge 0, \\ A(m,0) &=& A(m-1,1) & m > 0, \\ A(m,n) &=& A(m-1,A(m,n-1)) & m,n > 0. \end{array}$$

- (a) Compute A(1,3).
- (b) Compute *A*(2, 3).
- (c) Prove that A(1, n) = n + 2 for all $n \in \mathbb{N}$.

$$A(2,1) = 3+2$$

- Induction

(d) Prove that
$$A(2, n) = 3 + 2n$$
 for all $n \in \mathbb{N}$.

(e) Prove that
$$A(3, n) = 2^{n+3} - 3$$
 for all $n \in \mathbb{N}$.

Proof Lef P(h) be the cholenew
frue
$$A(3, n) = 2^{n+2} - 3$$
.
Then $P(0)$: $A(3, 0)$
 $= A(2, 1) = 5 = 8^{-3}$
 $= 2^{-3}$
Assue $P(h)$ have $h \ge 0$
 $p(h+1)$: $A(3, h+1)$
 $= A(2, A(3, k))$
 $= A(2, 2^{h+3} - 3)$
 $= 3 + 2(2^{h+3} - 3)$
 $= 3 + 2(2^{h+3} - 3)$
 $= 3 + 2^{h+2} - 3 = 2^{h+4} - 3^{h+4} - 3 = 2^{h+4} - 3^{$

BIJECTION

Definition

A function $f : A \rightarrow B$ is a *bijection* if it is both 1-1 and onto.

Eg: $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 5x + 3 is a bijection.

 $|-|: \forall a, b \in \mathbb{R} \quad \text{if} \quad f(a) = f(b)$ ren 5a+3 = 56+3 q = bJa = 1-3 outs: Hbelk ER So but $f(a) = 5(\frac{b-3}{5}) + 3 = 6 - 3 + 3 = b$

©Murray Elder, UTS

Chech:

$$I-I$$
: $Ha, b \in IN$
 $if f(a) = f(b)$
 $fven 2a = 2b$
 $so a = b$
 $outo: Hb \in 2IN$ (even integers)
 $Ja = \frac{b}{2} \in IN$
 $So trav f(a) = f(\frac{b}{2}) = 2 \cdot \frac{b}{2}$
 v

BIJECTION

We think if two sets are in bijection, they are the same size (you can match them up by pairs of elements).

©Murray Elder, UTS

$$\begin{array}{c} \underbrace{\partial \chi} & f(a) = \begin{cases} \frac{q}{2} & qven \\ -\frac{(a+1)}{2} & a dd \end{cases}$$

$$\begin{array}{c} f(a) = \begin{pmatrix} -\frac{a+1}{2} \\ -\frac{(a+1)}{2} \\ a dd \end{cases}$$

$$\begin{array}{c} f(a) = \begin{pmatrix} -\frac{a+1}{2} \\ -\frac{a+1}{2} \\ a dd \end{cases}$$

$$\begin{array}{c} f(a) = \begin{pmatrix} -\frac{a+1}{2} \\ -\frac{a+1}$$

 $\overline{}$

Onto $\begin{array}{c} y & b \in 2 \\ \hline y & b \in 2 \\ \hline i f & b < 0 \\ \hline i f & b < 77 \\ \end{array}$ tren 3a - -24-1 EIN fren Za=2b So trat f(a)= b $F(u) = -\frac{(0u+1)}{2} = b$ -(a+1) = 2ba+1 = -2ba+1 = -2ba = -1 - 2bE/N

BIJECTION

Definition: if a set X is in bijection with a finite set or \mathbb{N} then we say it is *countable*.

COUNTABLE

Definition: if a set X is in bijection with a finite set or \mathbb{N} then we say it is *countable*.

So, $\{1, 2, 3, 4\}$, \mathbb{Z} , \mathbb{Q}_+ , $2\mathbb{N}$ are countable.

Definition: if a set X is in bijection with a finite set or \mathbb{N} then we say it is *countable*.

So, $\{1, 2, 3, 4\}$, $\mathbb{Z}, \mathbb{Q}_+, 2\mathbb{N}$ are countable.

Definition: if a set X is in bijection with \mathbb{N} then we also say it is countably infinite.

Is there any set that is "bigger" than \mathbb{N} ?

BIJECTION

Claim: \mathbb{N} and \mathbb{R} are not in bijection. That is, \mathbb{R} is "strictly bigger" than \mathbb{N} .

$$f(0) = Q_{1}Q_{2}Q_{3}Q_{3} q_{3} q_{3} q_{3} q_{1}$$

$$f(1) = a_{1} a_{1} a_{1} a_{1} a_{2} q_{3} q_{3} q_{3} q_{3} q_{1}$$

$$f(2) = a_{2} a_{2} a_{2} a_{2} a_{2} a_{2} a_{2} q_{2} q_{3} q_{3} q_{3} q_{4} q_{4}$$

This means that there is some bijection from one set to the other.

Let's suppose this bijection is $f : \mathbb{N} \to \mathbb{R}$, and write $f(0), f(1), f(2), \ldots$

Suppose (for contradiction) that \mathbb{R} is the same size as \mathbb{N} .

This means that there is some bijection from one set to the other.

Let's suppose this bijection is $f : \mathbb{N} \to \mathbb{R}$, and write $f(0), f(1), f(2), \ldots$

Now I will tell you a real number that f has missed. So f is not onto. (Contradiction).

Here is my real number. It is the decimal number $0.x_0x_1x_2x_3x_4...$ where I have to tell you what each x_i is.

For each $i \in \mathbb{N}$, I choose x, to be a digit that is *not* the *i*-th digit in f(i). (Say add 1 to it and reduce mod 10).

Now, tell me where my number is on the list?

This famous proof (due to Cantor) is known as a *diagonalisation argument*.

The same idea is used to prove that the Halting Problem is undecidable (see 41080 Theory of Computing Science).

So we have $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are all countably infinite, and \mathbb{R} is uncountable.

Question: is there any set of size strictly between these?

Claim: For any set A (think infinite), you will prove on the team assignment that A is *not* in bijection with $\mathcal{P}(A)$.

Note, it is possible to think of \mathbb{R} as (in bijection with) $\mathscr{P}(\mathbb{N})$: idea:

Claim: For any set A (think infinite), you will prove on the team assignment that A is *not* in bijection with $\mathcal{P}(A)$.

Note, it is possible to think of \mathbb{R} as (in bijection with) $\mathscr{P}(\mathbb{N})$: idea:

So what your assignment question will imply is quite amazing: there are many different sizes of infinity. M = R = P(R)--P(N)

PUT THESE ON YOUR FORMULA SHEET

- ordered pair
- relation
- reflexive
- symmetric
- antisymmetric
- transitive
- equivalence relation
- partial order
- Hasse diagram

- function
- one to one
- onto
- bijection
- Ackermann's function
- countable
- countably infinite
- uncountable

Next lecture:

- Big O
- comparing speed of algorithms