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Lecture 10: Ackermann’s function, bijection, countable/uncountable
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- Ackermann’s function
- bijection

- countable/uncountable

Lecture 10: 37181 ©Murray Elder, UTS 2



ACKERMANN'S FUNCTION ﬂ\\b x N

Define a function A : cl\f_% N using the following recursive definition.

A(0,n) = n+1 nzo0, &
A(m,0) = A(m-—1,1) m > 0,
Alm,n) = A(m—-1Am,n—"1 m,n > 0.
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ACKERMANN’S FUNCTION

Define a function A : N> — N using the following recursive definition.

A(0, n) n+1 - n=o0,
A(m.0) A(m —1,1) m > 0,

Agm,n) A(m —1,A(m,n —1)) m,n > 0.

(a) Computei(1,3).’f§ _ (é) - g
A(h;\ _ A( 0/ A’( ( ’2/\ - /4(0/

A1) = pCo aCy N = A(02) =X
A1) = (o, ACT0))

= A(O) A‘<Oll—)x
:4(0,&) - £ <
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ACKERMANN’S FUNCTION

Define a function A : N> — N using the following recursive definition.

A(0,n) = n+1 nz=a0,

A(m,0) = A(m-—1,1) m > 0,

A(m,n) = A(m—"1A(m,n—1)) m,n > 0.
H

(@) Compute A(1,3).

(b) Compute A(2,3). — E xereire
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ACKERMANN’S FUNCTION

Define a function A : N> — N using the following recursive definition.

e

- @ —
(@) Compute A(1,3).

—

A(0,n) = n+1 n >0,
A(m,0) = A(m_j\,l)_ m > 0,
A(m,n) = A(m—"1A(m,n—=1)) m,n > 0.

(b) Compute A(2,3).

(c) Prove that A(1,n) =n+2forall n e N.

NCR(GHNT ZM”&
Porbi [ PLS be b shmboad ) VO
Hrale JAU,//\\ = u-¥t
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ACKERMANN’S FUNCTION

Define a function A : N> — N using the following recursive definition.

A(0,n) = n+1 n=o,
A(m,0) = A(m-—1,1) m > 0,
A(m,n) = A(m—"1A(m,n—1)) m,n > 0.

(a) Compute A(1,3).
(b) Compute A(2,3). &— Jté = 1.
(c) Prove that A(1,n) =n+2forall n e N.

(d) Prove thatA(2,n) =3 +2nforallneN. —— [M AXLQM\/\

gﬂef C{%e
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ACKERMANN’S FUNCTION

Define a function A : N> — N using the following recursive definition.

A(0,n) = n+1 n=o0,
A(m,0) = A(m—-1,7) m > 0,
A(m,n) = A(m—1A(m,n—1)) m,n > 0.

(@) Compute A(1,3).
(b) Compute A(2,3).

(c) Prove that A(1,n) =n+2foralln e N.

P+
A’( ')'(\\ ) ?,:_/ I~
% (d) Prove that A(2,n) =3 +2nforalln eN.
—
o,

(e) PFOVG that A(3, n) = 2n+3 — 3 for a“ ne N P \/I/l (LM C Jr'
- —_— -
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BIJECTION

Definition
A functionf : A — B s a_bgijection if it is both 1-1 and onto.

Eg: f : R — R defined by f(x) = 5x + 3 is a bijection.

|- pabelR 7 ) = AL

(ree. Gatd Shts
[

P
Fo bk Lo 25(2) 47 = bBr3=
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BIJECTION e, flee T Sore b)jecHve
ab T wep AR

We think if two Sets are in bijection, they are the same size (you can
T S~ — \_/—_—_- —_
match them Up by pairs of elements).

Claim: N and 2N are in bijection.

—‘\ ~
oy 2z 3 ¥ S
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BIJECTION

We think if two sets are in bijection, they are the same size (you can
match them up by pairs of elements).

Claim: N and Z are in bijection.
= N
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BIJECTION

We think if two sets are in bijection, they are the same size (you can
match them up by pairs of elements).

Clai@n@re in b/iJeC;ion. ) ‘ |
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COUNTABLE

Definition: if a set X is in bijection with a finite set or N then we say it
. .. —~~—
IS countable.

co——
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COUNTABLE

Definition: if a set X is in bijection with a finite set or N then we say it
IS countable.

So, {1,2,3,4}, Z,Q,,2N are countable.
—

—_———— — 5
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COUNTABLE

Definition: if a set X is in bijection with a finite set or N then we say it
IS countable.

W

So, {1,2,3,4}, Z,Q,,2N are countable. o |

Definition: if a set X is in bijection with N then we also say it is )
countably infinite. ~ — M b@@lf

—

Is there any set that is “bigger” than N? @ +
—
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BIJECTION

Claim: N and R are not in bijection. That is, R is “strictly bigger” than
- o ~

N. g
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BIJECTION RS UV P S e .
— \ T t \ ! DL | —_

— Q \

Claim: N and R are not in bijection. That is, R is “strictly bigger” than

S

—_—

N. o

(If an infinite set is not in bijection with N, we call it uncountable.)

Proof: Due o @r. ; A;“ﬁaﬂa(f_ffr“% CI.

S& W~ |
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PROOF L/La':'.m 0‘ Qou al‘l. ql& T qp'..lu

Suppose (for contradiction) that R is the same size as N.
This means that there is some bijection from one set to the other.

Let's suppose this bijection is f : N — R, and write f(0),f(1),f(2),...
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PROOF

Suppose (for contradiction) that R is the same size as N.
This means that there is some bijection from one set to the other.

Let’s suppose this bijection is f : N — R, and write f(0),f(1),f(2),...

for example
f(0) = 376(72333... #
f()y = —oamni...
f(2) = —0.5432100...
f(3) 17.0000000 . . .
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PROOF
Now | will tell you a real number that f has missed. So f is not onto.
(Contradiction).

Here is my real number. It is the decimal number 0.Xxpx1X2X3X4 . . .
where | have to tell you what each x; Is.

For each i € N, | choose x; to be a digit that is not the i-th digit in f (/).
(Say add 1to it and reduce mod 10).

Now, tell me where my number is on the list?
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R IS BIGGER THAN N

This famous proof (due to Cantor) is known as a diagonalisation
argument.

The same idea is used to prove that the Halting Problem is
undecidable (see 41080 Theory of Computing Science).

So we have N, Z,Q are all countably infinite, and R is uncountable.

Question: is there any set of size strictly between these?
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P(A) IS BIGGER THAN A 4

Claim: For any set A (think infinite), you will prove on the team
assignment that A is not in bijection with Z(A).

Note, it is possible to think of R as (in bijection with) 2(N): idea:

O r>ou\ é »—0—/ 3/(ér f/ 7/9,/”,’#
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P(A) IS BIGGER THAN A

Claim: For any set A (think infinite), you will prove on the team
assignment that A is not in bijection with Z(A).

Note, it is possible to think of R as (in bijection with) 2(N): idea:

So what your assignment question will imply is quite amazing: there

N 0 (1) \@QM®>

R0
p——
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PUT THESE ON YOUR FORMULA SHEET

M
- ordered pair - function
- reflexive B e
- symmetric L
y - bijection

- antisymmetric

. - Ackermann’s function
- transitive

. equivalence relation + countable

. partial order . COUﬂtably Infinite

- Hasse diagram - uncountable ~/
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Next lecture:

- Big0_

- comparing speed of algorithms

Lecture 10: 37181 ©Murray Elder, UTS 25



