37181 DISCRETE MATHEMATICS

©Murray Elder, UTS Lecture 10: Ackermann's function, bijection, countable/uncountable

- Ackermann's function
- \cdot bijection
- countable/uncountable

$$\begin{array}{rcl} A(0,n) &=& n+1 & n \geq 0, \\ A(m,0) &=& A(m-1,1) & m>0, \\ A(m,n) &=& A(m-1,A(m,n-1)) & m,n>0. \end{array}$$

Define a function $A: \mathbb{N}^2 \to \mathbb{N}$ using the following *recursive* definition.

$$\begin{array}{rcl} A(0,n) &=& n+1 & n \geq 0, \\ A(m,0) &=& A(m-1,1) & m>0, \\ A(m,n) &=& A(m-1,A(m,n-1)) & m,n>0. \end{array}$$

(a) Compute A(1, 3).

Define a function $A : \mathbb{N}^2 \to \mathbb{N}$ using the following *recursive* definition.

$$\begin{array}{rcl} A(0,n) &=& n+1 & n \ge 0, \\ A(m,0) &=& A(m-1,1) & m>0, \\ A(m,n) &=& A(m-1,A(m,n-1)) & m,n>0. \end{array}$$

(a) Compute A(1, 3).

(b) Compute A(2, 3).

$$\begin{array}{rcl} A(0,n) &=& n+1 & n \ge 0, \\ A(m,0) &=& A(m-1,1) & m>0, \\ A(m,n) &=& A(m-1,A(m,n-1)) & m,n>0. \end{array}$$

- (a) Compute A(1, 3).
- (b) Compute A(2, 3).
- (c) Prove that A(1, n) = n + 2 for all $n \in \mathbb{N}$.

$$\begin{array}{rcl} A(0,n) &=& n+1 & n \geq 0, \\ A(m,0) &=& A(m-1,1) & m>0, \\ A(m,n) &=& A(m-1,A(m,n-1)) & m,n>0. \end{array}$$

- (a) Compute A(1,3).
- (b) Compute A(2,3).
- (c) Prove that A(1, n) = n + 2 for all $n \in \mathbb{N}$.
- (d) Prove that A(2, n) = 3 + 2n for all $n \in \mathbb{N}$.

$$\begin{array}{rcl} A(0,n) &=& n+1 & n \geq 0, \\ A(m,0) &=& A(m-1,1) & m>0, \\ A(m,n) &=& A(m-1,A(m,n-1)) & m,n>0. \end{array}$$

- (a) Compute A(1, 3).
- (b) Compute A(2,3).
- (c) Prove that A(1, n) = n + 2 for all $n \in \mathbb{N}$.
- (d) Prove that A(2, n) = 3 + 2n for all $n \in \mathbb{N}$.

(e) Prove that
$$A(3, n) = 2^{n+3} - 3$$
 for all $n \in \mathbb{N}$.

Definition

A function $f : A \rightarrow B$ is a *bijection* if it is both 1-1 and onto.

Eg: $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 5x + 3 is a bijection.

We think if two sets are in bijection, they are the same size (you can match them up by pairs of elements).

Claim: \mathbb{N} and $2\mathbb{N}$ are in bijection.

We think if two sets are in bijection, they are the same size (you can match them up by pairs of elements).

Claim: \mathbb{N} and \mathbb{Z} are in bijection.

We think if two sets are in bijection, they are the same size (you can match them up by pairs of elements).

Claim: \mathbb{N} and \mathbb{Q}_+ are in bijection.

COUNTABLE

Definition: if a set X is in bijection with a finite set or \mathbb{N} then we say it is *countable*.

COUNTABLE

Definition: if a set X is in bijection with a finite set or \mathbb{N} then we say it is *countable*.

So, $\{1, 2, 3, 4\}$, $\mathbb{Z}, \mathbb{Q}_+, 2\mathbb{N}$ are countable.

COUNTABLE

Definition: if a set X is in bijection with a finite set or \mathbb{N} then we say it is *countable*.

So, $\{1, 2, 3, 4\}$, $\mathbb{Z}, \mathbb{Q}_+, 2\mathbb{N}$ are countable.

Definition: if a set X is in bijection with \mathbb{N} then we also say it is countably infinite.

Is there any set that is "bigger" than \mathbb{N} ?

Claim: $\mathbb N$ and $\mathbb R$ are not in bijection. That is, $\mathbb R$ is "strictly bigger" than $\mathbb N.$

Claim: $\mathbb N$ and $\mathbb R$ are not in bijection. That is, $\mathbb R$ is "strictly bigger" than $\mathbb N.$

(If an infinite set is not in bijection with \mathbb{N} , we call it *uncountable*.)

Proof:

Suppose (for contradiction) that \mathbb{R} is the same size as \mathbb{N} .

This means that there is some bijection from one set to the other.

Let's suppose this bijection is $f : \mathbb{N} \to \mathbb{R}$, and write $f(0), f(1), f(2), \ldots$

Suppose (for contradiction) that \mathbb{R} is the same size as \mathbb{N} .

This means that there is some bijection from one set to the other.

Let's suppose this bijection is $f : \mathbb{N} \to \mathbb{R}$, and write $f(0), f(1), f(2), \ldots$ for example

 $\begin{array}{rcl} f(0) &=& 376.72333...\\ f(1) &=& -0.1111111...\\ f(2) &=& -0.5432100...\\ f(3) &=& 17.0000000... \end{array}$

Now I will tell you a real number that *f* has missed. So *f* is not onto. (Contradiction).

Here is my real number. It is the decimal number $0.x_0x_1x_2x_3x_4...$ where I have to tell you what each x_i is.

For each $i \in \mathbb{N}$, I choose x_i to be a digit that is *not* the *i*-th digit in f(i). (Say add 1 to it and reduce mod 10).

Now, tell me where my number is on the list?

This famous proof (due to Cantor) is known as a *diagonalisation argument*.

The same idea is used to prove that the Halting Problem is undecidable (see 41080 Theory of Computing Science).

So we have $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are all countably infinite, and \mathbb{R} is uncountable.

Question: is there any set of size strictly between these?

Claim: For any set A (think infinite), you will prove on the team assignment that A is *not* in bijection with $\mathcal{P}(A)$.

Note, it is possible to think of \mathbb{R} as (in bijection with) $\mathscr{P}(\mathbb{N})$: idea:

Claim: For any set A (think infinite), you will prove on the team assignment that A is *not* in bijection with $\mathcal{P}(A)$.

Note, it is possible to think of \mathbb{R} as (in bijection with) $\mathscr{P}(\mathbb{N})$: idea:

So what your assignment question will imply is quite amazing: there are many different sizes of infinity.

PUT THESE ON YOUR FORMULA SHEET

- ordered pair
- \cdot relation
- reflexive
- symmetric
- antisymmetric
- transitive
- equivalence relation
- partial order
- Hasse diagram

- function
- \cdot one to one
- onto
- bijection
- Ackermann's function
- countable
- countably infinite
- uncountable

Next lecture:

- Big O
- \cdot comparing speed of algorithms