
37181 discrete mathematics

©Murray Elder, UTS
Lecture 11: Big O, complexity of algorithms

Lecture 11: 37181 ©Murray Elder, UTS 1

plan

• Big O
• comparing speed of algorithms

Lecture 11: 37181 ©Murray Elder, UTS 2

comparing speeds of algorithms

power_slow(a real; n positive integer)
x = 1.0
for i = 1 to n do

x = x*a
return x

power_slow(3,6):

i x

Lecture 11: 37181 ©Murray Elder, UTS 3

comparing speeds of algorithms

power_slow(a real; n positive integer)
x = 1.0
for i = 1 to n do

x = x*a
return x

power_slow(3,6):

i x

Lecture 11: 37181 ©Murray Elder, UTS 4

comparing speeds of algorithms

power_slow(a real; n positive integer)
x = 1.0
for i = 1 to n do

x = x*a
return x

power_slow(3,100):

i x

Lecture 11: 37181 ©Murray Elder, UTS 5

comparing speeds of algorithms

power_fast(a real; n positive integer)
x = 1.0
i = n
while i > 0 do

if i is odd then
x = x*a

i = floor(i/2)
if i > 0 then

a = a*a
return x

power_fast(3,6):

i x a

Lecture 11: 37181 ©Murray Elder, UTS 6

comparing speeds of algorithms

power_fast(a real; n positive integer)
x = 1.0
i = n
while i > 0 do

if i is odd then
x = x*a

i = floor(i/2)
if i > 0 then

a = a*a
return x

power_fast(3,6):

i x a

Lecture 11: 37181 ©Murray Elder, UTS 7

comparing speeds of algorithms

power_fast(a real; n positive integer)
x = 1.0
i = n
while i > 0 do

if i is odd then
x = x*a

i = floor(i/2)
if i > 0 then

a = a*a
return x

power_fast(3,100):

i x a

Lecture 11: 37181 ©Murray Elder, UTS 8

comparing speeds of algorithms

How can we formally capture the idea that the second algorithm is
faster? Can we estimate that on input of size n, the algorithm will
take roughly some function of n steps?

Look back at the two algorithms and try to roughly guess a function
for each one.

Lecture 11: 37181 ©Murray Elder, UTS 9

comparing speeds of algorithms

Luckily, someone already thought of how to capture the idea of
algorithm speed/complexity, using this definition.

Definition
Let f ,g : N+ → R. We say that g dominates f if there exist
constants m ∈ R+ and k ∈ N+ such that

|f (n)| 6 m|g(n)|

for all n ∈ N,n > k.

We use the notation f ∈ O(g) and read this as “f is in Big O of g”.

O(g) is the set of all functions from N+ to R which are dominated by
g.

Lecture 11: 37181 ©Murray Elder, UTS 10

comparing speeds of algorithms

Luckily, someone already thought of how to capture the idea of
algorithm speed/complexity, using this definition.

Definition
Let f ,g : N+ → R. We say that g dominates f if there exist
constants m ∈ R+ and k ∈ N+ such that

|f (n)| 6 m|g(n)|

for all n ∈ N,n > k.

We use the notation f ∈ O(g) and read this as “f is in Big O of g”.

O(g) is the set of all functions from N+ to R which are dominated by
g.

Lecture 11: 37181 ©Murray Elder, UTS 11

comparing speeds of algorithms

Luckily, someone already thought of how to capture the idea of
algorithm speed/complexity, using this definition.

Definition
Let f ,g : N+ → R. We say that g dominates f if there exist
constants m ∈ R+ and k ∈ N+ such that

|f (n)| 6 m|g(n)|

for all n ∈ N,n > k.

We use the notation f ∈ O(g) and read this as “f is in Big O of g”.

O(g) is the set of all functions from N+ to R which are dominated by
g.

Lecture 11: 37181 ©Murray Elder, UTS 12

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Ex: who dominates who: f (n) = log2 n+ 5 versus g(n) = n:

Lecture 11: 37181 ©Murray Elder, UTS 13

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Ex: who dominates who: f (n) = log2 n+ 5 versus g(n) = n:

Here is my prepared solution in case my “live” one is too messy:

Claim 1: n 6 2n. Let P(n) be the statement n 6 2n. P(1) true. Assume
P(k) then n+ 1 6 n+ n = 2n 6 2.2n = 2n+1 so P(k+ 1) is implies, so
by PMI true for all n > 1.

Take log2 both sides gives log2 n 6 n, so

log2 n+ 5 6 n+ 5 6 n+ n

(if n > 5)
= 2n

so m = 2, k = 5 gives the result.

Lecture 11: 37181 ©Murray Elder, UTS 14

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Some careful analysis of the two algorithms above shows that, up to
some constants, power_fast takes about log2 n steps (because each
step divides i by 2, roughly) and power_slow takes n steps.

Because of Big O, if you count steps slightly differently, and/or count
the initial and final lines of the code, the time complexity function
changes a bit but is the same up to Big O.

Lecture 11: 37181 ©Murray Elder, UTS 15

recall

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Recall the formula
logb y =

loga y
loga b

. 1

If b = 2 and your calculator only has a button for log10 or loge = ln

then you can use this formula:

log2 n =
loge n
loge 2

.

Since loge 2 ≈ 4.6 is a fixed number, it doesn’t matter which log we
use because of the m in the definition.

1Proof: y = aloga y , so sub this into the LHS.
Lecture 11: 37181 ©Murray Elder, UTS 16

recall

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Recall the formula
logb y =

loga y
loga b

. 1

If b = 2 and your calculator only has a button for log10 or loge = ln

then you can use this formula:

log2 n =
loge n
loge 2

.

Since loge 2 ≈ 4.6 is a fixed number, it doesn’t matter which log we
use because of the m in the definition.

1Proof: y = aloga y , so sub this into the LHS.
Lecture 11: 37181 ©Murray Elder, UTS 17

recall

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Recall the formula
logb y =

loga y
loga b

. 1

If b = 2 and your calculator only has a button for log10 or loge = ln

then you can use this formula:

log2 n =
loge n
loge 2

.

Since loge 2 ≈ 4.6 is a fixed number, it doesn’t matter which log we
use because of the m in the definition.

1Proof: y = aloga y , so sub this into the LHS.
Lecture 11: 37181 ©Murray Elder, UTS 18

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Let f (n) = 6n and g(n) = n2. Show that g dominates f , that is,
6n ∈ O(n2).

Lecture 11: 37181 ©Murray Elder, UTS 19

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Let f (n) = 6n and g(n) = n2. Show that g dominates f , that is,
6n ∈ O(n2).

Here is my prepared solution. It might be different that the one I just
did “live” – many choices for m, k can work.

There exist m = 1, k = 6 so that

6n 6 n.n = n2

for all n > 6.

Lecture 11: 37181 ©Murray Elder, UTS 20

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Show that g(n) = n2 is not dominated by f (n) = 6n. That is,
n2 6∈ O(6n).

We need the negation of the Big O definition.

∀m ∈ R+∀k ∈ N+∃n ∈ N+[(n > k) ∧ (|f (n)| > m|g(n)|)].

Here is my prepared solution.

Given m, k fixed numbers (positive), there is a number
n = max{6m+ 1, k} so that n > 6m so

n2 > m6n.

Lecture 11: 37181 ©Murray Elder, UTS 21

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Show that g(n) = n2 is not dominated by f (n) = 6n. That is,
n2 6∈ O(6n).

We need the negation of the Big O definition.

∀m ∈ R+∀k ∈ N+∃n ∈ N+[(n > k) ∧ (|f (n)| > m|g(n)|)].

Here is my prepared solution.

Given m, k fixed numbers (positive), there is a number
n = max{6m+ 1, k} so that n > 6m so

n2 > m6n.

Lecture 11: 37181 ©Murray Elder, UTS 22

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Show that g(n) = n2 is not dominated by f (n) = 6n. That is,
n2 6∈ O(6n).

We need the negation of the Big O definition.

∀m ∈ R+∀k ∈ N+∃n ∈ N+[(n > k) ∧ (|f (n)| > m|g(n)|)].

Here is my prepared solution.

Given m, k fixed numbers (positive), there is a number
n = max{6m+ 1, k} so that n > 6m so

n2 > m6n.

Lecture 11: 37181 ©Murray Elder, UTS 23

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Show that g(n) = n2 is not dominated by f (n) = 6n. That is,
n2 6∈ O(6n).

We need the negation of the Big O definition.

∀m ∈ R+∀k ∈ N+∃n ∈ N+[(n > k) ∧ (|f (n)| > m|g(n)|)].

Here is my prepared solution.

Given m, k fixed numbers (positive), there is a number
n = max{6m+ 1, k} so that n > 6m so

n2 > m6n.

Lecture 11: 37181 ©Murray Elder, UTS 24

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Let f (n) = 6n2 + 5n+ 2 and g(n) = n2. Show that f ∈ O(g) and
g ∈ O(f). So they are (up to Big O equivalence) the “same”.

Lecture 11: 37181 ©Murray Elder, UTS 25

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Show that f (n) = n3 is dominated en.

My prepared solution:

Let P(n) be the statement n3 6 en. Need to find a value k so that P(k)
is true, then

assume for s > k that P(s) is true, then P(s+ 1):

(n+ 1)3 = n3 + 3n2 + 3n+ 1 6 n3 + n3

(by a Lemma I will prove below)

= 2n3 6 2en < e.en = en+1

since e = 2.7... > 2.

Lemma: 3n2 + 3n+ 1 6 n3 for n big enough.

Lecture 11: 37181 ©Murray Elder, UTS 26

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Show that f (n) = n3 is dominated en.

My prepared solution:

Let P(n) be the statement n3 6 en. Need to find a value k so that P(k)
is true, then

assume for s > k that P(s) is true, then P(s+ 1):

(n+ 1)3 = n3 + 3n2 + 3n+ 1 6 n3 + n3

(by a Lemma I will prove below)

= 2n3 6 2en < e.en = en+1

since e = 2.7... > 2.

Lemma: 3n2 + 3n+ 1 6 n3 for n big enough.

Lecture 11: 37181 ©Murray Elder, UTS 27

challenge question

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Show that f (n) = nc is dominated en where c is any positive integer.

So polynomials are “slower” than exponentials.

Your proof might use the Binomial Theorem:

(x + y)c = xc +
(
c
1

)
xc−1y +

(
c
2

)
xc−2y2 + · · ·+

(
c

c − 1

)
x1yc−1 + yc

(n+ 1)c = nc +
(
c
1

)
nc−1 +

(
c
2

)
nc−2 + · · ·+

(
c

c − 1

)
n+ 1

In your proof, c is a fixed number, so all the
(c
i
)
terms are bounded

above by some fixed number.

Lecture 11: 37181 ©Murray Elder, UTS 28

challenge question

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Show that f (n) = nc is dominated en where c is any positive integer.

So polynomials are “slower” than exponentials.

Your proof might use the Binomial Theorem:

(x + y)c = xc +
(
c
1

)
xc−1y +

(
c
2

)
xc−2y2 + · · ·+

(
c

c − 1

)
x1yc−1 + yc

(n+ 1)c = nc +
(
c
1

)
nc−1 +

(
c
2

)
nc−2 + · · ·+

(
c

c − 1

)
n+ 1

In your proof, c is a fixed number, so all the
(c
i
)
terms are bounded

above by some fixed number.

Lecture 11: 37181 ©Murray Elder, UTS 29

challenge question

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Show that f (n) = nc is dominated en where c is any positive integer.

So polynomials are “slower” than exponentials.

Your proof might use the Binomial Theorem:

(x + y)c = xc +
(
c
1

)
xc−1y +

(
c
2

)
xc−2y2 + · · ·+

(
c

c − 1

)
x1yc−1 + yc

(n+ 1)c = nc +
(
c
1

)
nc−1 +

(
c
2

)
nc−2 + · · ·+

(
c

c − 1

)
n+ 1

In your proof, c is a fixed number, so all the
(c
i
)
terms are bounded

above by some fixed number.

Lecture 11: 37181 ©Murray Elder, UTS 30

eg

Defn: g dominates f if there exist constants m ∈ R+ and k ∈ N+ such that |f (n)| 6 m|g(n)| for all n ∈ N, n > k.

Which is faster (who dominates who?) – exponentials or factorials?

That is, show that one of f (n) = cn, g(n) = n! dominates the other
(for any c ∈ R+ say).

Lecture 11: 37181 ©Murray Elder, UTS 31

complexity of algorithms

If you do more computer science, you will use Big O. You count
(roughly, since constant multiples don’t matter) the number of steps
an algorithm takes on inputs of size n ∈ N.

The algorithm is “fast” if the number of steps is O(n) or maybe
O(n log n), and “bad” if it takes O(cn) or worse steps.

Issues: is it bad if it takes this many steps on all inputs, or some
inputs, or most inputs.

See Worksheet 6 for a table of standard functions and their names
used in time complexity.

Lecture 11: 37181 ©Murray Elder, UTS 32

complexity of algorithms

If you do more computer science, you will use Big O. You count
(roughly, since constant multiples don’t matter) the number of steps
an algorithm takes on inputs of size n ∈ N.

The algorithm is “fast” if the number of steps is O(n) or maybe
O(n log n), and “bad” if it takes O(cn) or worse steps.

Issues: is it bad if it takes this many steps on all inputs, or some
inputs, or most inputs.

See Worksheet 6 for a table of standard functions and their names
used in time complexity.

Lecture 11: 37181 ©Murray Elder, UTS 33

complexity of algorithms

Exercise: prove that the worst case running time for the Euclidean
algorithm is when the input is two of the Fibonacci numbers
(worksheet 3)

Standard exercise in comp sci: compare running times for algorithms
which sort a list of numbers: bubble sort versus merge sort.

Recall from the Canvas “Welcome” page:
https://www.youtube.com/watch?v=kVgy1GSDHG8

And here is another video that mentions Big O:
https://www.youtube.com/watch?v=xFFs9UgOAlE

Lecture 11: 37181 ©Murray Elder, UTS 34

https://www.youtube.com/watch?v=kVgy1GSDHG8
https://www.youtube.com/watch?v=xFFs9UgOAlE

complexity of algorithms

Exercise: prove that the worst case running time for the Euclidean
algorithm is when the input is two of the Fibonacci numbers
(worksheet 3)

Standard exercise in comp sci: compare running times for algorithms
which sort a list of numbers: bubble sort versus merge sort.

Recall from the Canvas “Welcome” page:
https://www.youtube.com/watch?v=kVgy1GSDHG8

And here is another video that mentions Big O:
https://www.youtube.com/watch?v=xFFs9UgOAlE

Lecture 11: 37181 ©Murray Elder, UTS 35

https://www.youtube.com/watch?v=kVgy1GSDHG8
https://www.youtube.com/watch?v=xFFs9UgOAlE

next

Next time:

• pigeonhole principle

Lecture 11: 37181 ©Murray Elder, UTS 36

