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• pigeonhole principle
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Recall:
Lemma

Let A,B be finite sets. If f : A→ B is

• 1-1 then |A| 6 |B|.
• onto then |B| 6 |A|.

Proof: ?

To prove the 1-1 rigorously, we need another Axiom
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Axiom (Pigeonhole principle)
If m pigeons occupy n pigeonholes and m > n then some
pigeonhole has at least two pigeons in it.

Remember, this is an axiom like well ordering (and induction) – they
seem obvious, but we can’t derive them from other things.
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Axiom (Pigeonhole principle)
If m pigeons occupy n pigeonholes and m > n then some
pigeonhole has at least two pigeons in it.

Out of 13 people, what is the chance two of them have the same
Western Zodiac sign?

Out of 367 people, what is the chance two of them have the same
birthday?
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Axiom (Pigeonhole principle)
If m pigeons occupy n pigeonholes and m > n then some
pigeonhole has at least two pigeons in it.

Out of 13 people, what is the chance two of them have the same
Western Zodiac sign?

Out of 367 people, what is the chance two of them have the same
birthday?
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Axiom (Pigeonhole principle)
If m pigeons occupy n pigeonholes and m > n then some
pigeonhole has at least two pigeons in it.

Out of 145 people, what is the chance two of them have the same
Western Zodiac sign AND Chinese Zodiac?
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Let A ⊆ N+ with |A| = 28. Then A contains at least two elements with
the same remainder mod 27.

Proof: the pigeons are . . .

the pigeonholes (boxes) are . . .

and the rule for placing the pigeons into the boxes is:
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If 11 integers are chosen from {1, 2, 3, . . . 100} then at least two, say x
and y, are such that

|x − y| 6 9

Proof: the pigeons are . . .

the pigeonholes are . . .

and the rule for placing the pigeons into the boxes is:
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If 11 integers are chosen from {1, 2, 3, . . . 100} then at least two, say x
and y, are such that

|x − y| 6 9

Proof: the pigeons are . . .

the pigeonholes are . . .

and the rule for placing the pigeons into the boxes is:
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If 11 integers are chosen from {1, 2, 3, . . . 100} then at least two, say x
and y, are such that

|
√
x −

√
y| < 1

Proof: the pigeons are . . .

the pigeonholes are . . .

and the rule for placing the pigeons into the boxes is:
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Recall:
Lemma

Let A,B be finite sets. If f : A→ B is

• 1-1 then |A| 6 |B|.
• onto then |B| 6 |A|.

Proof:
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Axiom (Pigeonhole principle)
If m pigeons occupy n pigeonholes and m > kn then some
pigeonhole has more than k pigeons in it.
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Ex: Use PHP to show that if S ⊆ N+ and

1. |S| > 3 then S contains two distinct elements x, y such that x + y
is even.
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Ex: Use PHP to show that if S ⊆ N+ and

2. |S| > 6 then S contains three distinct elements x, y, z such that
x + y + z is a multiple of 3.
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• how to count
• inclusion-exclusion
• permutations and combinations
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