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Lecture 14: Binomial theorem; some famous counting sequences; some extra
PHP problem applications
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PLAN

- binomial theorem

- combinatorial proofs

- some famous counting sequences
- Catalan numbers

- more applications of PHP
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BINOMIAL THEOREM

letx,y e Rand n € N,. Then

(x+y)" = i (7>X”"y"

i=0

Eg: (x +y)?

(x+y)
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BINOMIAL THEOREM: COMBINATORIAL PROOF

Letx,y € Rand n € N,. Then

(x+y)' = Xn: (C')X”/y"

i=0

Proof:
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WORKSHEET PROBLEMS

Prove:
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WORKSHEET PROBLEMS

Prove:

Application: Pascal’s triangle
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COUNTING STRINGS

Ex 11: let f, = the number of strings of 1,2 whose digits add up to
n—1.

fo=
fr=
f =

fo =
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COUNTING STRINGS

Ex 11: let f, = the number of strings of 1,2 whose digits add up to
n—1.

General formula: think recursively
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COUNTING PATHS

Ex 12: let ¢, = the number of paths in the xy-plane consisting of 2n
diagonal lines of length v/2 and slope +1, starting at (0,0) and
ending at (2n,0), and never going below the x-axis.

Co =

G =

G =

General formula: think recursively

Lecture 14: 37181 ©Murray Elder, UTS



PATTERN AVOIDING PERMUTATIONS
Sort out-of-order data (permutations) with a stack right-to-left.

32451

ar-

312

231

Which permutations can’t be sorted?
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PATTERN AVOIDING PERMUTATIONS

Theorem (Knuth 1968)
A permutation can be sorted by passing it -right-to-left through an
infinite stack if and only if it avoids 231.

And, they are enumerated by the Catalan numbers.

Proof:
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PHP

We say a sequence of numbers 3,9,2,7,6,1,4,10,5,8 contains a
subsequence if you can remove a few numbers to obtain the
subsequence, for example the above contains 2,6, 4, 8. It contains an
increasing sequence 3,6,10 and a decreasing sequence 9,7, 6, 4.
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PHP

We say a sequence of numbers 3,9,2,7,6,1,4,10,5,8 contains a
subsequence if you can remove a few numbers to obtain the
subsequence, for example the above contains 2,6, 4, 8. It contains an
increasing sequence 3,6,10 and a decreasing sequence 9,7, 6, 4.

Lemma (Erdds and Szekeres 1935)

For each n € N, any sequence of n? + 1 distinct real numbers
contains a decreasing or increasing subsequence of length n + 1.
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PHP

We say a sequence of numbers 3,9,2,7,6,1,4,10,5,8 contains a
subsequence if you can remove a few numbers to obtain the
subsequence, for example the above contains 2,6, 4, 8. It contains an
increasing sequence 3,6,10 and a decreasing sequence 9,7, 6, 4.

Lemma (Erdds and Szekeres 1935)

For each n € N, any sequence of n? + 1 distinct real numbers
contains a decreasing or increasing subsequence of length n + 1.
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PHP

Lemma (Erdds and Szekeres 1935)
For each n € N, any sequence of n?> + 1 distinct real numbers
contains a decreasing or increasing subsequence of length n + 1.

Proof: See Grimaldi — Discrete Math.
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- Number theory
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