37181 DISCRETE MATHEMATICS

©Murray Elder, UTS Lecture 15: Number theory

- Number theory
- Simple encryption
- Repeated squaring
- + Euler's φ function

Recall, we have defined $\mathbb N$ (and $\mathbb Z)$ with + and $\times.$

We defined $a \mid b$ if ...

We defined $a \equiv b \mod d$ if ...

Recall, we have defined \mathbb{N} (and \mathbb{Z}) with + and \times .

We defined $a \mid b$ if ...

We defined $a \equiv b \mod d$ if ...

Define $[a]_d$ to be the remainder $0 \leq r < d$ of a on division by d.

Lemma

 $[[a]_d + [b]_d]_d = [a + b]_d$

Proof:

Lemma

 $[[a]_d[b]_d]_d = [ab]_d$

Proof:

Suppose someone tricks you into believing that

 $233 \cdot 577 = 135441$

Use congruences (*i.e.* mod) to prove them wrong. ¹

¹From Lauritzen, Concrete Abstract Algebra. Do it without a calculator.

APPLICATIONS

Here is a trick to computer $[x]_3$ really fast: if

$$x = a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_1 10 + a_0$$

(that is, as a base-10 number $x = a_n \dots a_0$)

then since $10 = 9 + 1 \equiv 1 \mod 3$, we can simply add up the digits then reduce mod 3.

Proof:

APPLICATIONS

Here is a trick to computer $[x]_3$ really fast: if

$$x = a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_1 10 + a_0$$

(that is, as a base-10 number $x = a_n \dots a_0$)

then since $10 = 9 + 1 \equiv 1 \mod 3$, we can simply add up the digits then reduce mod 3.

Proof:

Same argument works for reducing mod 9.

APPLICATIONS: AFFINE CIPHER (TO SEND SECRET MESSAGES)

Assign numbers $0, \ldots, 25$ to the letters A, \ldots, Z .

Define a function $f : \mathbb{Z}_{26} \to \mathbb{Z}_{26}$ by

 $f(X) = \alpha X + \beta \mod 26$

If you choose α, β wisely (*i.e.* so that *f* is a bijection), the function *f* will have a *decoding function* (inverse)

APPLICATIONS: AFFINE CIPHER (TO SEND SECRET MESSAGES)

Assign numbers $0, \ldots, 25$ to the letters A, \ldots, Z .

Define a function $f : \mathbb{Z}_{26} \to \mathbb{Z}_{26}$ by

 $f(X) = \alpha X + \beta \mod 26$

If you choose α, β wisely (*i.e.* so that *f* is a bijection), the function *f* will have a *decoding function* (inverse)

$$g(X) = \alpha^{-1}(X - \beta) \mod 26$$

Question: what does α^{-1} (multiplicative inverse) mean working mod 26?

APPLICATIONS: AFFINE CIPHER (TO SEND SECRET MESSAGES)

Assign numbers $0, \ldots, 25$ to the letters A, \ldots, Z .

Define a function $f : \mathbb{Z}_{26} \to \mathbb{Z}_{26}$ by

 $f(X) = \alpha X + \beta \mod 26$

If you choose α, β wisely (*i.e.* so that *f* is a bijection), the function *f* will have a *decoding function* (inverse)

$$g(X) = \alpha^{-1}(X - \beta) \mod 26$$

Question: what does α^{-1} (multiplicative inverse) mean working mod 26?

Answer: a number so that when you multiply them, they give 1 (mod 26).

Eg: 25.25 = 625 = 624 + 1 so 25 is the inverse of 25.

Lecture 15: 37181

©Murray Elder, UTS

Recall: gcd(a, b) is the greatest positive integer that divides both a and b.

Recall: gcd(a, b) is the greatest positive integer that divides both a and b.

Formal: d = gcd(a, b) if d > 0, $d \mid a, d \mid b$, and if $c \mid a, c \mid b$ then $c \mid d$.

Recall: gcd(a, b) is the greatest positive integer that divides both a and b.

Formal: d = gcd(a, b) if d > 0, $d \mid a, d \mid b$, and if $c \mid a, c \mid b$ then $c \mid d$.

Recall Euclidean algorithm to compute it.

Given x, we want to find y so that $x.y \equiv 1 \mod 26$. So we run Euclid alg backwards.

Eg, if $\alpha = 3$, find $\alpha^{-1} \pmod{26}$.

Eg, if $\alpha =$ 3, find α^{-1} (mod 26).

26 = 8.3 + 23 = 1.2 + 1. Rewrite 1 = ...

Ex: find inverse mod 26 for $\alpha = 11$ and $\alpha = 13$

APPLICATIONS

The following message was encoded using an affine cipher f(X) = 3X + 1.

wniirpraik

Decode it.

APPLICATIONS

The following message was encoded using an affine cipher f(X) = 3X + 1.

wniirpraik

Decode it.

Hint: $g(X) = \alpha^{-1}(X - 1)$. So find "3⁻¹ mod 26".

This	migh	t be ı	usefu	l:														
a	b	С	d	e	f	g	h	i	j	k	l	m	n	0	р	q	r	S
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
t	u	V	W	х	у	Z												
19	20	21	22	23	24	25												

If gcd(a, b) = 1 we say a, b are relatively prime.

Ex: which pairs of numbers are relatively prime out of: 58, 491, 62?

Credit card numbers, ISBN numbers, barcodes contain a check digit.

ISBN numbers (after 2007) are 13 digits long and the rule is:

$$\sum_{j=0}^{6} a_{2j+1} + \sum_{j=1}^{6} 3a_{2j} \equiv 0 \mod 10$$

Credit card numbers, ISBN numbers, barcodes contain a check digit.

ISBN numbers (after 2007) are 13 digits long and the rule is:

$$\sum_{j=0}^{6} a_{2j+1} + \sum_{j=1}^{6} 3a_{2j} \equiv 0 \mod 10$$

Ex: Check the ISBN is correct for Lauritzen: 978 - 0 - 521 - 53410 - 9.

Credit cards use a different formula: see https://en.wikipedia.org/wiki/Luhn_algorithm and the worksheet.

REPEATED SQUARING

Suppose you need to know 3900 mod 34.

Calculator?

Suppose you need to know 3900 mod 34.

Calculator? Hmm. Here is a cool trick.

Suppose you need to know 3900 mod 34.

Calculator? Hmm. Here is a cool trick.

- write 900 base 2 (in binary) as $\sum b_i 2^i$ with $b_i \in \{0, 1\}$.
- Compute $3^{1} =$ $3^{2} =$ $3^{4} = 3^{2} \cdot 3^{2} =$ $3^{8} = 3^{4} \cdot 3^{4} =$ $3^{16} = \dots$ and each time, reduce mod 34.

APPLICATIONS

Ex: Compute 121¹² mod 13

Ex: Compute 2¹⁰⁰⁰ mod 7

Let $n \in \mathbb{N}_+$. Define

$$\varphi(n) = |\{x \in \mathbb{N} \mid 1 \leq x < n, \gcd(x, n) = 1\}$$

to be the number of numbers between 0, *n* which are relatively prime to *n*.

Ex: $\varphi(13) =$

Ex: $\varphi(20) =$

Ex: $\varphi(36) =$

Lemma

If p is prime, then $\varphi(p) = p - 1$.

Lemma

If p is prime, then $\varphi(p) = p - 1$.

Proof.

If $1 \le i < p$ then gcd(i, p) = 1 (if not, $\exists d \in \mathbb{Z}$, $1 < d \le i$ with $d \mid i$ and $d \mid p$ but only 1, p divide p.)

EULER'S PHI FUNCTION

Lemma

If p is prime, then $\varphi(p^2) = ?$.

Next lecture:

- more on Euler's phi function
- Euler's theorem
- Fermat's little theorem