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Lecture 16: Euler’s theorem
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plan

• Euler’s phi function

• Euler’s theorem

• Fermat’s little theorem
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some notation

Let d ∈ N+.

Let Z∗
d denote the following structure:

• first of all, a set of numbers {x ∈ N+ | gcd(x,d) = 1, x < d}
• second of all, the operation of multiplication mod d

Eg: Z∗
26 is the set:

plus multiplication mod 26.

Note that every element in this set has a multiplicative inverse mod
26.
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euler’s phi function

Let n ∈ N+. Define

ϕ(n) = |{x ∈ N | 1 6 x < n, gcd(x,n) = 1}

to be the number of numbers between 0,n which are relatively
prime to n.

In other words, ϕ(n) = |Z∗
n|.

Ex: ϕ(7) =

Ex: ϕ(9) =

Ex: ϕ(16) =
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euler’s phi function

Lemma
If p is prime, then ϕ(p) = p− 1.

Lemma
If p is prime, then ϕ(p2) =?.

1 2 . . . p
p+ 1 p+ 2 . . . 2p
2p+ 1 2p+ 2 . . . 3p

... (p− 1).p
(p− 1).p+ 1 (p1).p+ 2 . . . (p− 1).p+ p
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phi function

We can play around with ϕ and make some conjectures.

Lemma
If p is prime and n ∈ N+ then ϕ(pn) =

1 2 . . . p
p+ 1 p+ 2 . . . 2p
2p+ 1 2p+ 2 . . . 3p

...
(p− 1)p+ 1 (p− 1)p+ 2 . . . p2

p2 + 1 p2 + 2 . . . p2 + p
p2 + p+ 1 p2 + p+ 2 . . . p2 + 2p

...
p2 + (p− 1)p+ 1 p2 + (p− 1)p+ 2 . . . p2 + p2

...
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phi function

Lemma
If p is prime and n ∈ N+ then ϕ(pn) =

pn − pn−1
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phi function

Lemma
If p is prime and n ∈ N+ then ϕ(pn) = pn − pn−1
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phi function

Lemma
If a,b are relatively prime then ϕ(ab) = ϕ(a)ϕ(b)

Proof.

Define a map f : Z∗
ab → Z∗

a × Z∗
b by f ([x]ab) = ([x]a, [x]b).

What is the size of each set?

One-to-one: if f ([x]ab) = f ([y]ab) then

Onto:
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euler’s theorem

Theorem
Let a,n ∈ N+ be relatively prime. Then aϕ(n) ≡ 1 mod n.

Eg: (from lecture 15) Compute 12112 mod 13

Proof.

First, let Z∗
n = {x | gcd(x,n) = 1}. What is the size of this set? ϕ(n)

Now consider Z∗
n as a structure with multiplication mod n.
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eg

Z∗
30 =

{1, 7, 11, 13, 17, 19, 23, 29}.

7.7 =

7.11 =

7.19 =

Look what happens when you multiply everything by one number:

{7.1, 7.7, 7.11, 7.13, 7.17, 7.19, 7.23, 7.29} =
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euler’s theorem: proof

List the elements of Z∗
n: 0 < a1 < a2 < · · · < aϕ(n) < n.

Claim: multiplying (and reducing mod n) each element by some
a ∈ Z∗

n simply permutes the elements around.

That is, {[aa1]n, [aa2]n, . . . , [aaϕ(n)]n} ⊆ Z∗
n is exactly the same set.

Proof.
Suppose aai ≡ aaj, then a(ai − aj) ≡ 0 which means n | a(ai − aj).

But since a is relatively prime to n, this means n divides ai − aj,
but −n < ai − aj < n so ai − aj = 0 so ai = aj.

So the map f : Z∗
n → Z∗

n defined by f (ai) = aai is one-to-one. It is
onto because:
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euler’s theorem: proof

Now
aϕ(n) · a1 · a2 · . . . · aϕ(n) = (aa1) · (aa2) · . . . · (aaϕ(n))

≡ a1 · a2 · . . . · aϕ(n) mod n

So multiply both sides by the inverses of ai in Z∗
n and you get

aϕ(n) ≡ 1 mod n �
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euler’s theorem

Using aϕ(n) ≡ 1 mod n we can find inverses quickly:

Quiz: find inverse of 11 mod 26

ϕ(26) = ϕ(2)ϕ(13) = 12, so 1112 ≡ 1 mod 26, so 11.(1111) ≡ 1 so 1111 is
the inverse.

Repeated squaring to finish. Hmm is that really quicker?
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another theorem

The old version of this course only looked at “Fermat’s little
theorem” which is:

If p is prime and p does not divide a ∈ N+ then

ap−1 ≡ 1 mod p

Prove it.

(Note: for RSA we need Euler’s theorem, not this one)
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how hard is it to compute phi?

Lemma
Let p,q be two (secret, large) distinct primes. Let n = pq. Suppose
everybody knows n. Then:

You know ϕ(n) if and only if you know p,q.

Proof.

Consider the quadratic equation

X2 + (ϕ(n)− n− 1)X + n = 0.

Find the roots.
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next

Next lecture:

• RSA
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