37181 DISCRETE MATHEMATICS

©Murray Elder, UTS
Lecture 16: Euler's theorem
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- Euler’s phi function
- Euler’'s theorem

- Fermat’s little theorem
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SOME NOTATION

Let d € N,

Let Z} denote the following structure:

- first of all, a set of numbers {x € Ny | gcd(x,d) =1,x < d}
- second of all, the operation of multiplication mod d
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SOME NOTATION

Let d € N,

Let Z} denote the following structure:

- first of all, a set of numbers {x € Ny | gcd(x,d) =1,x < d}
- second of all, the operation of multiplication mod d

Eg: Z3, is the set:

plus multiplication mod 26.

Note that every element in this set has a multiplicative inverse mod
26.
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EULER'S PHI FUNCTION

Let n € N;. Define
p(n) = [{x e N|1<x < n,ged(x,n) =1}

to be the number of numbers between 0, n which are relatively
prime to n.
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EULER'S PHI FUNCTION

Let n € N,. Define
p(n) = [{x e N|1<x < n,ged(x,n) =1}

to be the number of numbers between 0, n which are relatively
prime to n. In other words, ¢(n) = |Z7|.

Ex: o(7) =

Ex: ¢(9) =

Ex: ¢(16) =
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If p is prime, then p(p) =p — 1.
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If p is prime, then p(p) =p — 1.

If p is prime, then (p?) =7.
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EULER'S PHI FUNCTION

Lemma
If p is prime, then ¢(p) =p — 1.

Lemma
If p is prime, then ¢(p?) =7.

1 2 ... p
p+1 p+2 ... 2p
2p 41 2p+2 ... 3p

: (p—1).p

(p=1.p+1 (P1)p+2 ... (p=N)p+p
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PHI FUNCTION

We can play around with ¢ and make some conjectures.

Lemma
If pis prime and n € N4 then ¢(p") =
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PHI FUNCTION

We can play around with ¢ and make some conjectures.

Lemma

If pis prime and n € N4 then ¢(p") =

1 2

p+1 p+2

2p +1 2p +2
(p=1)p+1 (p—"1)p+2
P2+1 p2+2
pP+p+1 p>+p+2

pPP+(p-Np+1 p>+(p—1)p+2

Lecture 16: 37181

©Murray Elder, UTS

2p
3p

p’+p
p? +2p



If pis prime and n € Ny then ¢(p") =
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If pis prime and n € N then ¢(p") = p" — p"~"
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PHI FUNCTION

Lemma
If a,b are relatively prime then ¢(ab) = y(a)e(b)

Proof.
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PHI FUNCTION

Lemma
If a,b are relatively prime then ¢(ab) = y(a)e(b)

Proof.
Define a map f : Z3, — Z; x Zj by f(Ilav) = (Xlas Xlb).
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PHI FUNCTION

Lemma
If a,b are relatively prime then ¢(ab) = y(a)e(b)

Proof.
Define a map f : Zg, — 2 x Z§ by f([xlav) = (Xla, X]y).

What is the size of each set?
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PHI FUNCTION

Lemma
If a,b are relatively prime then ¢(ab) = y(a)e(b)

Proof.
Define a map f : Zg, — 2 x Z§ by f([xlav) = (Xla, X]y).

What is the size of each set?

One-to-one: if f([X]ap) = f([V]ap) then
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PHI FUNCTION

Lemma
If a,b are relatively prime then ¢(ab) = y(a)e(b)

Proof.
Define a map f : Zg, — 2 x Z§ by f([xlav) = (Xla, X]y).

What is the size of each set?

One-to-one: if f([X]ap) = f([V]ap) then

Onto: O
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EULER'S THEOREM

Theorem
Let a,n € N, be relatively prime. Then a®(" =1 mod n.

Eg: (from lecture 15) Compute 121 mod 13
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EULER'S THEOREM

Theorem
Let a,n € N, be relatively prime. Then a®(" =1 mod n.

Eg: (from lecture 15) Compute 121 mod 13

Proof.

First, let Z} = {x | gcd(x,n) = 1}. What is the size of this set?
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EULER'S THEOREM

Theorem
Let a,n € N, be relatively prime. Then a®(" =1 mod n.

Eg: (from lecture 15) Compute 121 mod 13

Proof.

First, let Z} = {x | gcd(x,n) = 1}. What is the size of this set? ¢(n)
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EULER'S THEOREM

Theorem
Let a,n € N, be relatively prime. Then a®(" =1 mod n.

Eg: (from lecture 15) Compute 121 mod 13

Proof.

First, let Z} = {x | gcd(x,n) = 1}. What is the size of this set? ¢(n)

Now consider Z;, as a structure with multiplication mod n.
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*
Z30_
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73, ={1,7,11,13,17,19, 23,29}.
7.7 =
71 =

7.9 =
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EG

Zy, ={1,7,11,13,17,19,23,29}.

7.7 =

711 =

7.19 =

Look what happens when you multiply everything by one number:
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EG

73, ={1,7,11,13,17,19, 23, 29}.

7.7 =

711 =

7.19 =

Look what happens when you multiply everything by one number:

{71, 7.7, 7.1, 7.13, 7.17, 7.19, 7.23, 7.29} =
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EULER'S THEOREM: PROOF

List the elements of Z}:
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EULER'S THEOREM: PROOF

List the elements of Z}: 0 < a1 <@y < -+ < Qy(n) < N.

Claim: multiplying (and reducing mod n) each element by some
a € Z; simply permutes the elements around.

That is, {[aai]n, [aQ2]n, - - ., [aGym]n} € Z; is exactly the same set.
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EULER'S THEOREM: PROOF

List the elements of Z}: 0 < a1 <@y < -+ < Qy(n) < N.

Claim: multiplying (and reducing mod n) each element by some
a € Z; simply permutes the elements around.

That is, {[aai]n, [aQ2]n, - - ., [aGym]n} € Z; is exactly the same set.

Proof.
Suppose aa; = aaj, then a(a; — a;) = 0 which means n | a(a; — a;).
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EULER'S THEOREM: PROOF

List the elements of Z}: 0 < a1 <@y < -+ < Qy(n) < N.

Claim: multiplying (and reducing mod n) each element by some
a € Z; simply permutes the elements around.

That is, {[aai]n, [aQ2]n, - - ., [aGym]n} € Z; is exactly the same set.

Proof.
Suppose aa; = aaj, then a(a; — a;) = 0 which means n | a(a; — a;).

But since a is relatively prime to n, this means n divides a; — a;,
bUt—n<O,‘—O}'<I’)SOG,‘—OJ‘=OSOCI,‘=O}'.
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EULER'S THEOREM: PROOF

List the elements of Z}: 0 < a1 <@y < -+ < Qy(n) < N.

Claim: multiplying (and reducing mod n) each element by some
a € Z; simply permutes the elements around.

That is, {[aai]n, [aQ2]n, - - ., [aGym]n} € Z; is exactly the same set.

Proof.
Suppose aa; = aaj, then a(a; — a;) = 0 which means n | a(a; — a;).

But since a is relatively prime to n, this means n divides a; — a;,
bUt—n<Cl,'—O}'<I’ISOG,‘—CIj=OSOCI,‘=Cl}'.

Sothe map f : Z} — Z; defined by f(a;) = aa; is one-to-one. It is
onto because:
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EULER'S THEOREM: PROOF

Now

a*™M - ay-ay-... Ay
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(aaq) - (aaz) - ... - (aaym))
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EULER'S THEOREM: PROOF

Now
a?M.ay-ay- ... Ay = (am)-(aay)-...- (a0y(m))
= 1+ 0y-...-Aupy modn

So multiply both sides by the inverses of a; in Z* and you get

a?M = 1 modn
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EULER'S THEOREM: PROOF

Now
a?M.ay-ay- ... Ay = (am)-(aay)-...- (a0y(m))
= 1+ 0y-...-Aupy modn

So multiply both sides by the inverses of a; in Z* and you get

a?M = 1 modn
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EULER'S THEOREM

Using a®(™® =1 mod n we can find inverses quickly:

Quiz: find inverse of 11 mod 26
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EULER'S THEOREM

Using a®(™® =1 mod n we can find inverses quickly:

Quiz: find inverse of 11 mod 26

©0(26) = p(2)(13) = 12, 50 11" = 1 mod 26, so 11.(11") = 1s0 11 is
the inverse.
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EULER'S THEOREM

Using a®(™® =1 mod n we can find inverses quickly:

Quiz: find inverse of 11 mod 26

©0(26) = p(2)(13) = 12, 50 11" = 1 mod 26, so 11.(11") = 1s0 11 is
the inverse.

Repeated squaring to finish. Hmm is that really quicker?
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ANOTHER THEOREM

The old version of this course only looked at “Fermat’s little
theorem” which is:

If pis prime and p does not divide a € N, then

aP~"'=1 modp

Prove it.

(Note: for RSA we need Euler’s theorem, not this one)
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HOW HARD IS IT TO COMPUTE PHI?

Lemma

Let p, g be two (secret, large) distinct primes. Let n = pg. Suppose
everybody kRnows n. Then:

You know ¢(n) if and only if you know p, g.

Proof.
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HOW HARD IS IT TO COMPUTE PHI?

Lemma

Let p, g be two (secret, large) distinct primes. Let n = pg. Suppose
everybody kRnows n. Then:

You know ¢(n) if and only if you know p, g.

Proof.
Consider the quadratic equation

X4 (p(n)—n—1DX+n=0.

Find the roots.
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Next lecture:

- RSA
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