37181 DISCRETE MATHEMATICS

©Murray Elder, UTS Lecture 16: Euler's theorem

- Euler's phi function
- Euler's theorem
- Fermat's little theorem

Let $d \in \mathbb{N}_+$.

Let \mathbb{Z}_d^* denote the following *structure*:

- first of all, a set of numbers $\{x \in \mathbb{N}_+ \mid gcd(x, d) = 1, x < d\}$
- second of all, the operation of *multiplication mod d*

Let $d \in \mathbb{N}_+$.

Let \mathbb{Z}_d^* denote the following *structure*:

- first of all, a set of numbers $\{x \in \mathbb{N}_+ \mid gcd(x, d) = 1, x < d\}$
- $\cdot\,$ second of all, the operation of multiplication mod d

Eg: \mathbb{Z}_{26}^* is the set:

plus multiplication mod 26.

Note that every element in this set has a multiplicative inverse mod 26.

Let $n \in \mathbb{N}_+$. Define

$$\varphi(n) = |\{x \in \mathbb{N} \mid 1 \leq x < n, \gcd(x, n) = 1\}$$

to be the number of numbers between 0, *n* which are relatively prime to *n*.

Let $n \in \mathbb{N}_+$. Define

$$\varphi(n) = |\{x \in \mathbb{N} \mid 1 \leq x < n, \gcd(x, n) = 1\}$$

to be the number of numbers between 0, *n* which are relatively prime to *n*. In other words, $\varphi(n) = |\mathbb{Z}_n^*|$.

Ex: $\varphi(7) =$

Ex: $\varphi(9) =$

Ex: $\varphi(16) =$

EULER'S PHI FUNCTION

Lemma

If p is prime, then $\varphi(p) = p - 1$.

EULER'S PHI FUNCTION

Lemma

If p is prime, then $\varphi(p) = p - 1$.

Lemma

If p is prime, then $\varphi(p^2) = ?$.

EULER'S PHI FUNCTION

Lemma

If p is prime, then $\varphi(p) = p - 1$.

Lemma

If p is prime, then $\varphi(p^2) = ?$.

We can play around with φ and make some conjectures.

Lemma

```
If p is prime and n \in \mathbb{N}_+ then \varphi(p^n) =
```

We can play around with φ and make some conjectures.

Lemma

If p is prime and $n \in \mathbb{N}_+$ then $\varphi(p^n) =$

1	2		р
p + 1	p + 2		2р
2p + 1	2p + 2		3р
		÷	
(p-1)p+1	(p-1)p+2		<i>p</i> ²
$p^2 + 1$	<i>p</i> ² + 2		$p^{2} + p$
$p^2 + p + 1$	$p^2 + p + 2$		$p^{2} + 2p$
		÷	
$p^2 + (p-1)p + 1$	$p^2 + (p-1)p + 2$		$p^{2} + p^{2}$
		÷	

Lemma

If p is prime and $n \in \mathbb{N}_+$ then $\varphi(p^n) =$

Lemma

If p is prime and $n \in \mathbb{N}_+$ then $\varphi(p^n) = p^n - p^{n-1}$

Lemma

If a, b are relatively prime then $\varphi(ab) = \varphi(a)\varphi(b)$

Proof.

Lemma

If a, b are relatively prime then $\varphi(ab) = \varphi(a)\varphi(b)$

Proof.

Define a map $f : \mathbb{Z}_{ab}^* \to \mathbb{Z}_a^* \times \mathbb{Z}_b^*$ by $f([x]_{ab}) = ([x]_a, [x]_b)$.

Lemma

If a, b are relatively prime then $\varphi(ab) = \varphi(a)\varphi(b)$

Proof.

Define a map $f : \mathbb{Z}_{ab}^* \to \mathbb{Z}_a^* \times \mathbb{Z}_b^*$ by $f([x]_{ab}) = ([x]_a, [x]_b)$.

What is the size of each set?

Lemma

If a, b are relatively prime then $\varphi(ab) = \varphi(a)\varphi(b)$

Proof.

Define a map $f : \mathbb{Z}_{ab}^* \to \mathbb{Z}_a^* \times \mathbb{Z}_b^*$ by $f([x]_{ab}) = ([x]_a, [x]_b)$.

What is the size of each set?

One-to-one: if $f([x]_{ab}) = f([y]_{ab})$ then

Lemma

If a, b are relatively prime then $\varphi(ab) = \varphi(a)\varphi(b)$

Proof.

Define a map $f : \mathbb{Z}_{ab}^* \to \mathbb{Z}_a^* \times \mathbb{Z}_b^*$ by $f([x]_{ab}) = ([x]_a, [x]_b)$.

What is the size of each set?

```
One-to-one: if f([x]_{ab}) = f([y]_{ab}) then
```

Onto:

Let $a, n \in \mathbb{N}_+$ be relatively prime. Then $a^{\varphi(n)} \equiv 1 \mod n$.

Eg: (from lecture 15) Compute 121¹² mod 13

Let $a, n \in \mathbb{N}_+$ be relatively prime. Then $a^{\varphi(n)} \equiv 1 \mod n$.

Eg: (from lecture 15) Compute 121¹² mod 13

Proof.

First, let $\mathbb{Z}_n^* = \{x \mid gcd(x, n) = 1\}$. What is the size of this set?

Let $a, n \in \mathbb{N}_+$ be relatively prime. Then $a^{\varphi(n)} \equiv 1 \mod n$.

Eg: (from lecture 15) Compute 121¹² mod 13

Proof.

First, let $\mathbb{Z}_n^* = \{x \mid gcd(x, n) = 1\}$. What is the size of this set? $\varphi(n)$

Let $a, n \in \mathbb{N}_+$ be relatively prime. Then $a^{\varphi(n)} \equiv 1 \mod n$.

Eg: (from lecture 15) Compute 121¹² mod 13

Proof.

First, let $\mathbb{Z}_n^* = \{x \mid gcd(x, n) = 1\}$. What is the size of this set? $\varphi(n)$

Now consider \mathbb{Z}_n^* as a structure with multiplication mod n.

 $\mathbb{Z}_{30}^{*} =$

```
\mathbb{Z}_{30}^* = \{1, 7, 11, 13, 17, 19, 23, 29\}.
```

7.7 =

7.11 =

7.19 =

 $\mathbb{Z}_{30}^* = \{1, 7, 11, 13, 17, 19, 23, 29\}.$

7.7 =

7.11 =

7.19 =

Look what happens when you multiply everything by one number:

```
\mathbb{Z}_{30}^* = \{1, 7, 11, 13, 17, 19, 23, 29\}.
```

7.7 =

7.11 =

7.19 =

Look what happens when you multiply everything by one number:

```
\{7.1, 7.7, 7.11, 7.13, 7.17, 7.19, 7.23, 7.29\} =
```

List the elements of \mathbb{Z}_n^* : $0 < a_1 < a_2 < \cdots < a_{\varphi(n)} < n$.

List the elements of \mathbb{Z}_n^* : $0 < a_1 < a_2 < \cdots < a_{\varphi(n)} < n$.

Claim: multiplying (and reducing mod n) each element by some $a \in \mathbb{Z}_n^*$ simply *permutes* the elements around.

That is, $\{[aa_1]_n, [aa_2]_n, \dots, [aa_{\varphi(n)}]_n\} \subseteq \mathbb{Z}_n^*$ is exactly the same set.

List the elements of \mathbb{Z}_n^* : $0 < a_1 < a_2 < \cdots < a_{\varphi(n)} < n$.

Claim: multiplying (and reducing mod n) each element by some $a \in \mathbb{Z}_n^*$ simply *permutes* the elements around.

That is, $\{[aa_1]_n, [aa_2]_n, \dots, [aa_{\varphi(n)}]_n\} \subseteq \mathbb{Z}_n^*$ is exactly the same set.

Proof.

Suppose $aa_i \equiv aa_j$, then $a(a_i - a_j) \equiv 0$ which means $n \mid a(a_i - a_j)$.

List the elements of \mathbb{Z}_n^* : $0 < a_1 < a_2 < \cdots < a_{\varphi(n)} < n$.

Claim: multiplying (and reducing mod n) each element by some $a \in \mathbb{Z}_n^*$ simply *permutes* the elements around.

That is, $\{[aa_1]_n, [aa_2]_n, \dots, [aa_{\varphi(n)}]_n\} \subseteq \mathbb{Z}_n^*$ is exactly the same set.

Proof.

Suppose $aa_i \equiv aa_j$, then $a(a_i - a_j) \equiv 0$ which means $n \mid a(a_i - a_j)$.

But since *a* is relatively prime to *n*, this means *n* divides $a_i - a_j$, but $-n < a_i - a_j < n$ so $a_i - a_j = 0$ so $a_i = a_j$.

List the elements of \mathbb{Z}_n^* : $0 < a_1 < a_2 < \cdots < a_{\varphi(n)} < n$.

Claim: multiplying (and reducing mod n) each element by some $a \in \mathbb{Z}_n^*$ simply *permutes* the elements around.

That is, $\{[aa_1]_n, [aa_2]_n, \dots, [aa_{\varphi(n)}]_n\} \subseteq \mathbb{Z}_n^*$ is exactly the same set.

Proof.

Suppose $aa_i \equiv aa_j$, then $a(a_i - a_j) \equiv 0$ which means $n \mid a(a_i - a_j)$.

But since *a* is relatively prime to *n*, this means *n* divides $a_i - a_j$, but $-n < a_i - a_j < n$ so $a_i - a_j = 0$ so $a_i = a_j$.

So the map $f : \mathbb{Z}_n^* \to \mathbb{Z}_n^*$ defined by $f(a_i) = aa_i$ is one-to-one. It is onto because:

Now $a^{\varphi(n)} \cdot a_1 \cdot a_2 \cdot \ldots \cdot a_{\varphi(n)} = (aa_1) \cdot (aa_2) \cdot \ldots \cdot (aa_{\varphi(n)})$ $\equiv a_1 \cdot a_2 \cdot \ldots \cdot a_{\varphi(n)} \mod n$

Now $a^{\varphi(n)} \cdot a_1 \cdot a_2 \cdot \ldots \cdot a_{\varphi(n)} = (aa_1) \cdot (aa_2) \cdot \ldots \cdot (aa_{\varphi(n)})$ $\equiv a_1 \cdot a_2 \cdot \ldots \cdot a_{\varphi(n)} \mod n$

So multiply both sides by the inverses of a_i in \mathbb{Z}_n^* and you get $a^{\varphi(n)} \equiv 1 \mod n$

Now $a^{\varphi(n)} \cdot a_1 \cdot a_2 \cdot \ldots \cdot a_{\varphi(n)} = (aa_1) \cdot (aa_2) \cdot \ldots \cdot (aa_{\varphi(n)})$ $\equiv a_1 \cdot a_2 \cdot \ldots \cdot a_{\varphi(n)} \mod n$

So multiply both sides by the inverses of a_i in \mathbb{Z}_n^* and you get $a^{\varphi(n)} \equiv 1 \mod n$ Using $a^{\varphi(n)} \equiv 1 \mod n$ we can find inverses quickly: Quiz: find inverse of 11 mod 26 Using $a^{\varphi(n)} \equiv 1 \mod n$ we can find inverses quickly: Quiz: find inverse of 11 mod 26

 $\varphi(26) = \varphi(2)\varphi(13) = 12$, so $11^{12} \equiv 1 \mod 26$, so $11.(11^{11}) \equiv 1$ so 11^{11} is the inverse.

Using $a^{\varphi(n)} \equiv 1 \mod n$ we can find inverses quickly: Quiz: find inverse of 11 mod 26

 $\varphi(26) = \varphi(2)\varphi(13) = 12$, so $11^{12} \equiv 1 \mod 26$, so $11.(11^{11}) \equiv 1 \mod 11^{11}$ is the inverse.

Repeated squaring to finish. Hmm is that really quicker?

The old version of this course only looked at "Fermat's little theorem" which is:

If *p* is prime and *p* does not divide $a \in \mathbb{N}_+$ then

 $a^{p-1} \equiv 1 \mod p$

Prove it.

(Note: for RSA we need Euler's theorem, not this one)

Lemma

Let *p*, *q* be two (secret, large) distinct primes. Let *n* = *pq*. Suppose everybody knows *n*. Then:

You know $\varphi(n)$ if and only if you know p, q.

Proof.

Lemma

Let p,q be two (secret, large) distinct primes. Let n = pq. Suppose everybody knows n. Then:

You know $\varphi(n)$ if and only if you know p, q.

Proof.

Consider the quadratic equation

$$X^{2} + (\varphi(n) - n - 1)X + n = 0.$$

Find the roots.

Next lecture:

• RSA