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GRAPH THEORY
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GRAPH THEORY
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GRAPH THEORY
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https://www.wired.com/story/opte-internet-map-visualization/

GRAPH THEORY

) @%
C=
~v, &
Definition (Graph)
A graph G = (V,E)isa WE such that each e € E is

associated to some subset {v4,v,} C V of size 1 or 2.
P —_——— —————

The elements of V are called [plural: vertices, singular: ve_rth or

= ===
nodes, and.the elements-of-F-are-called edges or arcs.
= &
\
(U U,
\/ 4 L,

[
\/3 —
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GRAPH THEORY — BASIC DEFINITIONS

Eg: IfV={1,2,3},E= { where e;j; is associated to
{i,j} CVthen G=(V,E)isagraph. WeTan visualise G as a picture,

with a dot for each element of V and a line between v, and v, if
{v1, 2} Is associated to some e € E, so in this case we get

u

\Q\fﬁ_@<
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GRAPH THEORY — BASIC DEFINITIONS

Eg: If V ={1,2,3},E = {e, en, 3,3, e} where ¢; is associated to
{i,j} CVthen G=(V,E)isa graph. We can visualise G as a picture,
with a dot for each element of V and a line between v, and v, if
{v1, 2} Is associated to some e € E, so in this case we get

[

VP
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GRAPH THEORY — BASIC DEFINITIONS

If {v1, 1} Is associated to more than one edge in some graph G,
these edges are called multiple edges or multi-edges and G is

sometimes called a multi-graph.

When each subset {vq,v,} C V of size 1 or 2 is associated to at most
one element of E, we can choose to label each edge by a subset of V
of size 1 or 2, and write E C Z(V).

—
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GRAPH THEORY — BASIC DEFINITIONS

If {v1, 1} Is associated to more than one edge in some graph G,
these edges are called multiple edges or multi-edges and G is
sometimes called a multi-graph.

When each subset {vq,v,} C V of size 1 or 2 is associated to at most
one element of E, we can choose to label each edge by a subset of V
of size 1 or 2, and write E C Z(V).

Ex: dra

V=L \_/7”

A 1/3\
AV
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GRAPH THEORY — BASIC DEFINITIONS

Definition (Directed graph)

A directed graph G = (V, E) is a pair of sets V, E such that eache € E
IS associated to some ordered pair (v4,v,) € V x V. Ie
Y " -

/ °
call u € V the source vertex and v the terminal vertex. \
—7

In this case when we visualise G as a picture, we draw arrows|on
the edges to indicate their direction, from source to terminal.

‘ £
//‘ \5; afefiéﬁ\/t}
i )

V)
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GRAPH THEORY — BASIC DEFINITIONS

Ex: draw the directed graph with
V ={1,2,3},E = {en, e, e, e, e} where ¢; is associated to
/— - —~

(i,)) € V2. T
S
// p)
\
&

3
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GRAPH THEORY — BASIC DEFINITIONS <Z 3 \
/

Ex: draw the directed graph with
V ={1,2,3},E = {en, en, e, e, e} where ¢; is associated to
(i,j) € V2.

Again if more than one edge is associated to the same ordered pair,
we call them Ws If G is directed with no mult| -edges we can
choose to label E by ordered pairs V x V = V?, and we write E C V2.

In our example there are no multi-edges, since (2,3) and (3,2) are
different elements of V2.
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GRAPH THEORY — BASIC DEFINITIONS

1. loop

Lecture 18: 37181 ©Murray Elder, UTS
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GRAPH THEORY — BASIC DEFINITIONS

1. loop: an edge associated to a singleton set {x}

2. multiple edge/multi-edge

Lecture 18: 37181 ©Murray Elder, UTS
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GRAPH THEORY — BASIC DEFINITIONS

1. loop: an edge associated to a singleton set {x}

2. multiple edge/multi-edge:  when more than one edge is associated to

the same set {x,y}

3. simple graph

Lecture 18: 37181 ©Murray Elder, UTS
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GRAPH THEORY — BASIC DEFINITIONS @ec Led /V@

1. loop: an edge associated to a singleton set {x} ﬁ

_
X

2. multiple edge/multi-edge:  when more than one edge is associated to
-

the same set {x,y} O
- J
N

3. Simple graph: agraph with no loops and no multi-edges
> ~

—

—
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GRAPH THEORY — BASIC DEFINITIONS

4. path

Lecture 18: 37181 ©Murray Elder, UTS
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GRAPH THEORY — BASIC DEFINITIONS

4. path: asequence of edges associated to sets {x,v1}, {vi,v2},...,{vn, v}

XG/G\ 7

5. length of a path

Vi
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GRAPH THEORY — BASIC DEFINITIONS

4. path: asequence of edges associated to sets {x,v1}, {vi,v2},...,{vn, v}

5. length of a path :  the number of edges in the path

6. circuit

Lecture 18: 37181 ©Murray Elder, UTS

20



GRAPH THEORY — BASIC DEFINITIONS

4. path: asequence of edges associated to sets {x,v1}, {vi,v2},...,{vn, v}

5. length of a path :  the number of edges in the path

6. circuit: apathwherex =y

Lecture 18: 37181 ©Murray Elder, UTS
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GRAPH THEORY — BASIC DEFINITIONS

7. connected

@/\/

) \_a
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GRAPH THEORY — BASIC DEFINITIONS

7. connected : if every two vertices x, y are joined by a path

8. disconnected

-~
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GRAPH THEORY — BASIC DEFINITIONS

7. connected : if every two vertices x, y are joined by a path

8. disconnected : not connected

- —
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GRAPH THEORY — BASIC DEFINITIONS

9. simple path

Lecture 18: 37181 ©Murray Elder, UTS
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GRAPH THEORY — BASIC DEFINITIONS

9. simple path: apath {x,vi}, {v1,¥5}, ..., {Vn,y} where each v is different
’ —
). =

from all other v; (note x, y are allowed to be the same vertex

and ® W\‘g_j

10. endpoint(s) of an edge

o——2 \QH
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GRAPH THEORY — BASIC DEFINITIONS

9. simple path: apath {x,v1},{v1,v2},...,{vn,y} where each v; is different

from all other v; (note x, y are allowed to be the same vertex).

10. endpoint(s) of an edge : ifeis associated with {x, y} then x, y are called
the endpoints

11. edge incident to a vertex

Lecture 18: 37181 ©Murray Elder, UTS 27



GRAPH THEORY — BASIC DEFINITIONS

9. simple path: apath {x,v1},{v1,v2},...,{vn,y} where each v; is different

from all other v; (note x, y are allowed to be the same vertex).

10. endpoint(s) of an edge :

the endpoints

11. edge incident to a vertex :

12. adjacent vertices

Lecture 18: 37181

if e is associated with {x,y} then x,y are calle

e isincident to v if e is associated to {v, v’}
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GRAPH THEORY — BASIC DEFINITIONS

9. simple path: apath {x,v1},{v1,v2},...,{vn,y} where each v; is different

from all other v; (note x, y are allowed to be the same vertex).

10. endpoint(s) of an edge : ifeis associated with {x, y} then x, y are called

the endpoints

11. edge incident to a vertex : eisincidentto v if e is associated to {v, v’}

12. adjacent vertices: v,V are adjacent if {v, v’} is associated to an edge

Lecture 18: 37181 ©Murray Elder, UTS 29



GRAPH THEORY — BASIC DEFINITIONS

13. degree of a vertex (for undirected graphs), notation deg(v)

Lecture 18: 37181 ©Murray Elder, UTS

30



GRAPH THEORY — BASIC DEFINITIONS Fo) ¢

13. degree of a vertex (for undirected graphs), notation deg(v) :

2 e~ {v}
deg(v) = ) p(e) where p(e) = ¢ 1 e~ {v,w},w # v

— eck 0 e~ {u,wlfu,w#v

14. in-degree and out-degree (for directed graphs)

” P(e)*/(@

(\/fc/} , T
e" c 3 & Q(?g) ‘Xﬂ&)")
L/
3! +D €0

Ce
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GRAPH THEORY — BASIC DEFINITIONS

13. degree of a vertex (for undirected graphs), notation deg(v) :

2 e~ {v}
deg(v) = > p(e) where p(e) = ¢ 1 e~ {v,w},w#v

eck 0 e~A{u,w}u,w#v
14. in-degree and out-degree (for directed graphs) :

15. complete graph K, on n vertices

Lecture 18: 37181 ©Murray Elder, UTS 32



GRAPH THEORY — BASIC DEFINITIONS

13.

4.

15.

16.

degree of a vertex (for undirected graphs), notation deg(v) :

2 e~ {v}
deg(v) = ) p(e) where p(e) = ¢ 1 e~ {v,w}w#v

ecE 0 e~ {u,whu,w#v
in-degree and out-degree (for directed graphs) :

complete graph K, on n vertices :
=

complete bipartite graph on m + n vertices

*«s
Q/j'ﬂ KB,% n
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GRAPH THEORY — BASIC DEFINITIONS

13. degree of a vertex (for undirected graphs), notation deg(v) :

2 e~ {v}
deg(v) = ) p(e) where p(e) = ¢ 1 e~ {v,w}w#v

ecE 0 e~ {u,whu,w#v
14. in-degree and out-degree (for directed graphs) :
15. complete graph K, on n vertices :

16. complete bipartite graph on m + n vertices :

Lecture 18: 37181 ©Murray Elder, UTS 34



GRAPH THEORY — BASIC DEFINITIONS

Note that all our definitions are given (precisely) in terms of set

theory, rather than some picture-description.
—_—

You should know now that this is important for when it comes time
to proving facts about graphs. If we have imprecise definitions, we
will have trouble in our proofs.

| often use the word node instead of vertex to make the English

o o——

simpler. Remember plural: vertices, singular: vertex.

—
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GRAPH THEORY — BASIC DEFINITIONS

VQ AR
Definition (Adjacency matrix) /
Let G = (V, E) be a graph (directed or undirected). Assume |V| =n
)
and V ={1,2,...,n}.

ot (ot /ected

The adjacency matrix fpr G is a n x n matrix A = (a;) where aj; is
the Wedge vertex I to vey{tex J.

Py, =
l .—\5 a\l\&n /th,]
7/'5 CVM Qn - Ve — \
"5"5\\/ Q(\) ”CQ

L3

(

OO B
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GRAPH THEORY — BASIC DEFINITIONS »\\m/w\ \)6/179‘}4\
{ ( ; :@T\: @'

Definition (Adjacency matrix)
Let G = (V, E) be a graph (direfted or undirected). Assume |V| = n
and V ={1,2,...,n}.

The adjacency matrix for/G is a n x n matrix A = (a;) where aj; Is
the number of edges frgm vertex | to vertex J.

Eg:
1 QO 110
DI & 0 0 1
NC) o 1 1 0
| +

Lecture 18: 37181 ©Murray Elder, UTS 37



GRAPH THEORY — BASIC DEFINITIONS )

(In set notation: V4 = {1,2,3, 4,5}, Ey = {{1,3}, {3,5}, {5, 2}, {2, 4}, {4,1}} and
VZ:{1727374a—5}7E2:{{1a2}a{273}7{334}7{4:5}7{5a1}}') \ O
O

O
OO0l |0 Yol O,
0%% 2‘) [I O\@ )
| S o O 0104
(\9‘( o 0% L0010



GRAPH THEORY — BASIC DEFINITIONS

Now that we have all these definitions, we can prove some theorems.

Theorem
If G=(V,E) is a graph (undirected) and |E| = n then

/
. de (V) = 2n
V [ ke ; :

-~ - — -

[_l¢ zmh
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GRAPH THEORY — BASIC DEFINITIONS

Now that we have all these definitions, we can prove some theorems.

Theorem

If G=(V,E) is a graph (undirected) and |E| = n then
> deg(v) = 2n.
veVv

Do we have our definitions correct? How does degree work with
loops - does a loop count 1 or 2 towards the degree?

Lecture 18: 37181 ©Murray Elder, UTS 40



GRAPH THEORY — BASIC DEFINITIONS

Now that we have all these definitions, we can prove some theorems.

Theorem

If G=(V,E) is a graph (undirected) and |E| = n then
> deg(v) = 2n.
veVv

Do we have our definitions correct? How does degree work with
loops - does a loop count 1 or 2 towards the degree?

Proof.

Imagine drawing a mark on your picture ofG for each pair (v e) &
where v is an endpoint of e (and draw it close to v). Then the
numbmmawn is 3",y deg(v). Now if each edge
has exactly two marks drawn on |t,\vv_e—ﬁé'v_e/oar—fheorem. ]

—
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GRAPH THEORY — BASIC DEFINITIONS

Theorem

If G = (V,E) is a graph (undirected) and |E| = n then
Zdeg(v) = 2n.
veV

Ex: What would be the corresponding statement for directed graphs?
Can you prove it?

pm[/~JZ£i7f€e‘

Nl
A
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GRAPH THEORY — BASIC DEE

Ex: How many e

<

Lecture 18: 37181 ©Murray Elder, UTS 43



RECALL: MATRIX MULTIPLICATION ~—~—" LAg

Ee————— = —=
7\ 0 L’l]
10 2 of .= 3 .
12 0 110 -2
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COUNTING PATHS IN A GRAPH

()‘/Lln'QCI/C'Q

Theorem

= (V,E)isagraphwithV ={1,2,...,s} and s x s adjacency
matr/xA E@ the number ofpaths starting at / and ending atj of K
length?n' 11is the ij-th entry in in A",

i =
) )
% 2" = /4
P (l \ﬁaMJD/ e |
.
5 OZ\'Z ’—U\"VQ ﬁ/
1 n=

’/’EEI/QIW 12 h\?\ \47 &Qﬁ\f\’\“\%"‘ )//
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COUNTING PATHS IN A GRAPH ’L\ A B S A0

Theorem

If G=(V,E)isagraph withV ={1,2,...,s} and s x s adjacency
matrix A, then the number of paths starting at i and ending at j of
length n > 1is the ij-th entry in A",

First of all, check its true (do we have our definitions of paths, and
length of path, correct?)

Lecture 18: 37181 ©Murray Elder, UTS 46



COUNTING PATHS IN A GRAPH

Theorem

If G=(V,E)isagraph withV ={1,2,...,s} and s x s adjacency
matrix A, then the number of paths starting at i and ending at j of
length n > 1is the ij-th entry in A",

First of all, check its true (do we have our definitions of paths, and
length of path, correct?)

What technique to prove this?

Lecture 18: 37181 ©Murray Elder, UTS
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COUNTING PATHS IN A GRAPH

Theorem

If G=(V,E)isagraph withV ={1,2,...,s} and s x s adjacency
matrix A, then the number of paths starting at i and ending at j of
length n > 1is the ij-th entry in A",

First of all, check its true (do we have our definitions of paths, and
length of path, correct?)

What technique to prove this?

This is a statement about paths of length n € N, so maybe induction
IS appropriate.

Lecture 18: 37181 ©Murray Elder, UTS 48



COUNTING PATHS IN A GRAPH

Proof. Let P(n) be the statement that the number of paths starting at
i and ending at j of length n > 1is the ij-th entry in A",

Lecture 18: 37181 ©Murray Elder, UTS 49



COUNTING PATHS IN A GRAPH

Proof. Let P(n) be the statement that the number of paths starting at
i and ending at j of length n Z# is the ij-th entry in A",

Then P(1) is exactly the definition of adjacency matrix: the number of

paths of length 1from i to j is given by aj. /

Lecture 18: 37181 ©Murray Elder, UTS 50



COUNTING PATHS IN A GRAPH 4 Z \ I

Proof. Let P(n) be the statement that the number of paths starting at
i and ending at j of length n > 1is the ij-th entry in A",

Then P(1) is exactly the definition of adjacency matrix; the number of
paths of length 1 from i toj is given by aj;.

Assume P(R) is true and consider AT = AARIf we write
AR = (bijh<ij<s then by assumonn b,, Is the number of paths from |

to j of length k.

& (@L
N |

©Murray Elder, UTS 51



COUNTING PATHS IN A GRAPH

Assume P(R) is true and consider AR = AARIf we write
AR = (bij)<ij<s then by assumption bj; is the number of paths from |
to j of length k.

Lecture 18: 37181 ©Murray Elder, UTS 52



COUNTING PATHS IN A GRAPH

Assume P(R) is true and consider AR = AARIf we write
AR = (bij)i<ij<s then by assumption bj; is the number of paths from'i
to j of length k.

By the definition of matrix multiplication the jj-th entry of ART = AAR
IS

n
ainbyj + Qibyj + - - - + ajpbp; = Z Qjt by
t=1

which counts paths whose first step goes via some vertex t, So counts
all the paths that start at 1 and make one step to be at vertex t and
then follow a path from t to J.
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COUNTING PATHS IN A GRAPH

Assume P(R) is true and consider AR = AARIf we write
AR = (bij)<ij<s then by assumption bj; is the number of paths from |
to j of length k.

By the definition of matrix multiplication the jj-th entry of ART = AAR
IS

n
ainbyj + Qibyj + - - - + ajpbp; = Z Qjt by
t=1

which counts paths whose first step goes via some vertex t, SO counts
all the paths that start at 1 and make one step to be at vertex t and
then follow a path from t to J.

Since all of these paths are different, we get the correct count. ]
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COUNTING PATHS IN A GRAPH

Ex: What would be the corresponding statement for directed graphs?

Lecture 18: 37181 ©Murray Elder, UTS 55


https://math.stackexchange.com/questions/92555/counting-the-number-of-paths-on-a-graph
https://math.stackexchange.com/questions/92555/counting-the-number-of-paths-on-a-graph

COUNTING PATHS IN A GRAPH

Ex: What would be the corresponding statement for directed graphs?

Application: https://math.stackexchange.com/questions/
92555/counting-the-number-of-paths-on-a-graph
How many different ways are there to unlock an android phone?
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- graph isomorphism
- Eular paths

- Hamiltonian circuits

— [ rees

E—
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