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plan

• simple path

• graph isomorphism

• Euler paths

• Hamiltonian circuits
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graph theory – basic definitions

• a path p contains a subpath q if p is the sequence

{v0, v1}, {v1, v2}, . . . , {vn−1, vn}

and q is a path with the sequence

{vi1 , vi2}, {vi2 , vi3}, . . . , {vij−1 , vij}

for ij ∈ {0, 1, . . . ,n}.

In other words, you can delete some edges from p and obtain
another path q.
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graph theory – basic definitions

Theorem
Every path contains a simple path

Proof: by (strong) induction on length of the path.
True for path of length 0. Let p be a path of length k from x to y. If p is simple we are
done. Else there is some vertex v 6= y so that p visits v twice. Delete the subpath
starting and ending at v, this shorter path contains a simple path by inductive
assumption, and is contained in p so we are done.
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graph isomorphism

In the next definition, we assume our graphs don’t have multi-edges,
just to make the statements easier to say.
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graph isomorphism

Definition
Let G = (V1, E1) and H = (V2, E2) be two graphs that do not have
multi-edges, and so we can assume Ei ⊆ P(Vi).

We say G,H are isomorphic if there is a bijection f : V1 → V2 such
that for all x, y ∈ V , we have {x, y} ∈ E1 if and only if
{f (x), f (y)} ∈ E2.

Ex: Decide if these two graphs are isomorphic.
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graph isomorphism

Ex: Decide if these two graphs are isomorphic.
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graph isomorphism

To show non-isomorphic, it is useful to have some invariants. For
example, if the number of vertices is different, you can say No
straight away.

What other things might be preserved by an isomorphism?
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graph isomorphism

Ex: Decide whether these are invariants of a graph under
isomorphism (that is, if you apply an isomorphism map f to G then
f (G) has the same number of these things as G does.)

1. number of loops (at each vertex)

2. number of vertices of degree d

3. number of edges

4. number of cycles of length r
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graph isomorphism

Ex: Decide if these two graphs are isomorphic.
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graph isomorphism

There is some very interesting current research on the complexity of
deciding if two graphs are isomorphic – can it be done in polynomial
time?

https://en.wikipedia.org/wiki/Graph_isomorphism_problem

Note: . . . computationally equivalent to the problem of computing the automorphism
group of a graph – Worksheet 9 triangle question.
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euler paths and circuits

An Euler path in a graph is a path that traverses (uses) every edge
exactly once. An Euler circuit in a graph is an Euler path that starts
and ends at the same point.
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graph theory origin story

Ex: Decide if there is a way to walk around this town crossing every
bridge exactly once (and return to your starting point).

or
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euler paths and circuits

Ex: Decide if these graphs have Euler paths or circuits.
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euler paths and circuits

It turns out it is easy to decide whether or not a graph has an Euler
path or circuit: if a vertex has odd degree, then you cannot cross
every edge of the graph without getting stuck at this vertex. This
becomes the following theorem.

Theorem
A connected graph G = (V, E) has an Euler circuit if and only if every
vertex has even degree. G has an Euler path if either it has exactly 0
or 2 vertices of odd degree.

This gives us a polynomial time algorithm to decide if G has a
circuit/path or not: just compute the degree of each vertex.
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euler paths and circuits

Theorem
A connected graph G = (V, E) has an Euler circuit if and only if every
vertex has even degree. G has an Euler path if and only if either it
has exactly 0 or 2 vertices of odd degree.

Proof:
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euler paths and circuits

Proof: First suppose G has a vertex v of odd degree and has an Euler circuit. Assume
without loss of generality the circuit starts and ends at v. The circuit leaves and
returns to v via different edges since it uses each edge exactly once, and each return
to v occurs after an even number of edges have been used to exit/enter. Since v has
odd degree after it exits v the last time it can never return, contradiction.

Next suppose G has an Euler path, which starts at x and ends at y, and we may assume
x 6= y (if x = y then it is an Euler circuit and the previous argument shows it has 0
vertices of odd degree). If the path exits x n times, then it must enter x n− 1 times, so
the degree of x is odd. If the path enters y n times, then it must exit y n− 1 times, so
the degree of y is odd. Every other vertex is entered and exited the same number of
times, so G has exactly two vertices of odd degree.
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euler paths and circuits

Now to prove the converse by induction.

Let P(n) be the statement about n ∈ N that if a connected graph G has n edges and 0
vertices of odd degree then it has an Euler circuit (which is also an Euler path), and if
it has 2 vertices of odd degree then it has an Euler path which starts and ends at the
two odd degree vertices.

P(0): A connected graph with 0 edges is a single vertex. Degree is even (zero) and has
an Euler circuit/path (empty path, sequence of zero edges).
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euler paths and circuits

Assume P(k) is true for k ∈ N and consider a connected graph G with k+ 1 edges.

Case 1: Suppose removing one edge from G makes it disconnected.

If G had 0 vertices of odd degree then the two graphs G1,G2 that result after deleting
the edge will have one vertex of odd degree, and all other vertices even degree, which
contradicts the formula that the sum of degrees of vertices in a graph should be even.

If G has two vertices of odd degree, say v1, v2 , then each G1,G2 should contain exactly
one of these odd degree vertices, or we contradict the formula again. Say G1 contains
v1 and G2 contains v2 . Either v1 is incident to the removed edge, in which case all
vertices in G1 have even degree and G1 contains an Euler circuit (without loss of
generality starting and ending at v1), or v1 is not incident which means G1 contains two
vertices of odd degree, including one which is incident to the removed edge, so by
inductive assumption is has an Euler path ending at the vertex incident to the
removed edge. Same argument applies to G2 , and now you can form an Euler path by
following the path/circuit ending at the vertex incident to the removed edge, crossing
the deleted edge, then following the path/circuit starting at the vertex in G2 incident
to the removed edge.
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euler paths and circuits

Case 2: Now we can assume after deleting an edge, the resulting graph is connected.

If the edge was a loop based at a single vertex, the smaller graph has an Euler
circuit/path by inductive hypothesis, so G has a circuit/path by following the same
circuit and going around the extra loop when you first visit that vertex.

Else suppose G has no loops. If G has 0 vertices of odd degree, deleting one edge
gives two vertices x, y of odd degree and the rest remain even. By inductive
hypothesis the smaller graph has an Euler path from x to y, so follow this path and
then cross the deleted edge to give an Euler circuit in G.

If G has 2 vertices of odd degree, say x, y, then either {x, y} is an edge or not. If it is an
edge, removing it gives a graph with k edges and all vertices even degree, so by
inductive hypothesis it has an Euler circuit. Create an Euler path for G starting at x,
following the circuit back to x, then crossing the deleted edge y to finish.

If it is not an edge, x is joined to a vertex z of even degree. Deleting {x, z} gives a
graph with k edges and now y, z have odd degree and x even. By inductive hypothesis
it has an Euler path from y to z, so create an Euler path for G by starting at y, following
the path to z, then crossing the deleted edge x to finish. �
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hamiltonian paths and circuits

Instead of visiting every edge, how about a path or circuit that visits
every node exactly once. This would be useful if you were a
salesperson who needed to visit a whole bunch of cities and didn’t
want to waste time/money visiting the same city twice.

Definition
A Hamiltonian cycle is a circuit in G that visits every vertex exactly
once. A Hamiltonian path is a path in G that visits every vertex
exactly once.
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hamiltonian paths and circuits

Ex: Decide if these graphs have Hamiltonian paths or cycles.
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hamiltonian paths and circuits

This time, deciding if a graph has a Hamiltonian path is NP-complete.

Recall: this means, in NP which means we can verify in polynomial
time if an alleged solution is correct, AND that if you can solve this
problem in polynomial time then you can solve 3-SAT, and also any
other NP-complete problem.

https://math.stackexchange.com/questions/38106/
proof-hampath-is-np-complete

See the worksheet for this theorem: Suppose G = (V, E) is a simple
connected graph with |V| = n > 3. Suppose that for every pair of
non-adjacent vertices v1 and v2 we have deg(v1) + deg(v2) > n. Then
G has a Hamiltonian cycle.
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next

• Trees
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