37181 DISCRETE MATHEMATICS

©Murray Elder, UTS

Lecture 21: Rooted trees; bracket-free expressions; planar graphs; Euler’s for-
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PLAN

- Rooted trees, bracket-free expressions (pre-post-in orders)
e ——

- planar graphs

- Euler’'s formula
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ROOTED TREES

A rooted tree is a tree which has a special node r called the root.

= e

In a rooted tree, if v is a vertex and u is connected by an edge to v,
such that the path from u to r passes v (a picture would help here),

we call v the parent and u the child. - v
/ey '
U
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ROOTED TREES

A rooted tree is a tree which has a special node r called the root.

In a rooted tree, if v is a vertex and u is connected by an edge to v,
such that the path from u to r passes v (a picture would help here),
we call v the parent and u the child.

Rooted trees are very useful as data structures, with efficient search
algorithms. There are many other applications of rooted trees. Here
we consider just one.
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BRACKET-FREE EXPRESSIONS

3+ 4(x+Y)

244
X+ 2y
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BRACKET-FREE EXPRESSIONS

3+ 4(x+Y)

244
X+ 2y

3% 2%+ (14 3)
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INORDER, PREORDER, POSTORDER TRAVERSAL

Inorder, preorder, postorder are three different conventions on how
to write the nodes of a rooted binary tree as a string.
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INORDER, PREORDER, POSTORDER TRAVERSAL

Inorder, preorder, postorder are three different conventions on how
to write the nodes of a rooted binary tree as a string.

useful in computing, efficient to represent (old calculators would use
this for display, input); recursively defined:

L

pre: parent, left, right
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INORDER, PREORDER, POSTORDER TRAVERSAL

Inorder, preorder, postorder are three different conventions on how
to write the nodes of a rooted binary tree as a string.

useful in computing, efficient to represent (old calculators would use
this for display, input); recursively defined:

pre: parent, left, right

+ ) In: left, parent, right
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INORDER, PREORDER, POSTORDER TRAVERSAL

Inorder, preorder, postorder are three different conventions on how
to write the nodes of a rooted binary tree as a string.

useful in computing, efficient to represent (old calculators would use
this for display, input); recursively defined:

pre: parent, left, right

'_’/7'__’/

In: left, parent, right
—_  — —

post: left, right, parent

<
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BRACKET-FREE EXPRESSIONS

Recall:
- pre: parent, left, right - in: left, parent, right - post: left, right,
— / P ——————
parent
3+4(Xx+y l
=
ot

+2 R U + 1y
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BRACKET-FREE EXPRESSIONS

Recall:
- pre: parent, left, right - in: left, parent, right - post: left, right,
parent
)
3+ 4(x+Y)
o

X4 2y ,f ¢
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BRACKET-FREE EXPRESSIONS

Recall:
- pre: parent, left, right - In: left, parent, right - post: left, right,

parent
3+ 4(x+VY) /{’
K

iy
/\A \/\3
2 7

3 /\
LY N kI 2L
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INORDER, PREORDER, POSTORDER TRAVERSAL

Preorder Traversal
Inorder Traversal

Postorder Traversal
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Postfix Expression : ab+cd-*

*

Expression Tree

*+ab-cd
a+b * c-d

ab+cd-*
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PLANAR GRAPHS

A graph G is planar if it can be drawn on a piece of paper without any
edges crossing.

This Is an example of mathematics being purely visual.
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https://en.wikipedia.org/wiki/Wagner%27s_theorem

PLANAR GRAPHS -

A graph G is planar if it can be drawn on a pie
edges crossing.

This Is an example of mathematics being purely visual.

R

A very cool theorem is that G is planar if and only if it does not
contain Ks or K3 3 as a minor.

See https://en.wikipedia.org/wiki/Wagner%27s_theorem ’

and

We will prove one direction only: that Ks @y K3 3 are not planar, so if you could draw G , .
without crossing on a piece of paper, then you can draw all its minors too, so if G Is

planar it cannot have Ks or K3 3 as a minor.
—
= ==

[]
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https://en.wikipedia.org/wiki/Wagner%27s_theorem

PLANAR GRAPHS

If G is planar, we can draw it on the surface of a balloon without any
edges crossing.

Define a face to be a region bounded by edges of the graph. You
might think at first the number of faces will depend on how we
choose to draw G.
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EULER'S FORMULA
Jraw on cprate w sl Crasg N~y ed}e,

Theorem

If G is planar, finite, connected then |V| — |E| + |F| = 2 (for any
representation/drawing of G on the plane without edge crossings.)
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EULER'S FORMULA

Theorem

If G is planar, finite, cwc_tgg then |V| — |E| + |F| = 2 (for any
reﬁr?sentation/dravving of G on the plane without edge crossings.)

Test it out: balloon
—

Application: K5 cannot be planar. Proof: add up 2 = [V| — |E[ 4 |[F| =5 —10 +[F/so
|F| = 7. (Using the fo EF 3" deg(v;).) But eachTace is a triangle, so ..
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EULER'S FORMULA

Theorem

If G is planar, finite, connected then |V| — |E| + |F| = 2 (for any

representation/drawing of G on the plane without edge S.)
2

Test it out: balloon
o (7}

Application: Ks cannot be planar. Proof: add up2 = |V| — |[E| + |F| =5—10+ F so
|F| = 7. (Using the formula |E|J 3" deg(v;).) But each face is a triangle, so ..

Suprore tF 3.
Also, K3 3 cannot be planar. Proof: add up 2 = |V| — |E| + |F| =6 — 9+ |F| so |F| = 5.
But each face is a square, so . - - - —

- \(;xeruze _ lead Yo CMW@
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EULER'S FORMULA
Theorem

If G is planar, finite, connected then |V| — |E| + |F| = 2 (for any
representation/drawing of G on the plane without edge crossings.)
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EULER'S FORMULA

Theorem

If G is planar, finite, connected then |V| — |E| + |F| = 2 (for any
representation/drawing of G on the plane without edge crossings.)

Proof: induction on number of edges.

,/(,\4,

_ t\—% < | N~
1) el v
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EULER'S FORMULA

Theorem
If G is planar, finite, connected then |V| — |E| + |F| = 2 (for any
representation/drawing of G on the plane without edge crossings.)

Proof: induction on number of edges. Trick: either G has a cycle, or it
doesn't.

If |E] = 0 then |V| = 1,|F| = 150 true (single vertex, outside space is the single face).
Assume true for |[E| = R > 1 and consider G planar connected with k + 1 edges.

If G has a cycle, deleting one edge from this cycle gives a connected graph G” with k
edges, and is planar since it is a subgraph of G. Let V/, E’, F’ be the vertices, edges and
faces of G’. Then by inductive assumption |V/| — |E’| + |F'| = 2. Now V =V’ since we
only deleted an edge and kept the adjacent vertices. |E| = |E'| +1and |F| = F/| + 1
since when we add the edge back in, we divide one face up into two. Thus

V| —|E|+ |F|=|V'|—|E'| =1+ |F|+1=2

Otherwise, if G has no cycles, since G is connected, G is a tree. Then |V| = |E| 41 and
|F| = 1 (just the outside).

So V| — |E| 4+ |F| = |E|+1—|E| +1=2. 0
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END OF MATERIAL

Thanks everyone. Tutorial Wed/Thu/Fri this week, then that's it.

Final exam covers all topics. Please review all content over StuVac,

and make yourself a summary/formula sheetsto be able to quickly
recall definitions ang’facts during the online exam.

SN2
/%_\
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