
37181 discrete mathematics

©Murray Elder, UTS
Lecture 21: Rooted trees; bracket-free expressions; planar graphs; Euler’s for-
mula
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plan

• Rooted trees, bracket-free expressions (pre-post-in orders)

• planar graphs

• Euler’s formula
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rooted trees

A rooted tree is a tree which has a special node r called the root.

In a rooted tree, if v is a vertex and u is connected by an edge to v,
such that the path from u to r passes v (a picture would help here),
we call v the parent and u the child.

Rooted trees are very useful as data structures, with efficient search
algorithms. There are many other applications of rooted trees. Here
we consider just one.
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bracket-free expressions

3+ 4(x + y)

2+ 4
x + 2y

3 ∗ 24 + (1+ 3)
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inorder, preorder, postorder traversal

Inorder, preorder, postorder are three different conventions on how
to write the nodes of a rooted binary tree as a string.

useful in computing, efficient to represent (old calculators would use
this for display, input); recursively defined:

pre: parent, left, right

in: left, parent, right

post: left, right, parent
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bracket-free expressions

Recall:
• pre: parent, left, right • in: left, parent, right • post: left, right,

parent

3+ 4(x + y)

2+ 4
x + 2y

3 ∗ 24 + (1+ 3)
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inorder, preorder, postorder traversal
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planar graphs

A graph G is planar if it can be drawn on a piece of paper without any
edges crossing.

This is an example of mathematics being purely visual.

A very cool theorem is that G is planar if and only if it does not
contain K5 or K3,3 as a minor.

See https://en.wikipedia.org/wiki/Wagner%27s_theorem

We will prove one direction only: that K5 and K3,3 are not planar, so if you could draw
G without crossing on a piece of paper, then you can draw all its minors too, so if G is
planar it cannot have K5 or K3,3 as a minor.
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planar graphs

If G is planar, we can draw it on the surface of a balloon without any
edges crossing.

Define a face to be a region bounded by edges of the graph. You
might think at first the number of faces will depend on how we
choose to draw G.
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euler’s formula

Theorem
If G is planar, finite, non-empty, connected then |V| − |E|+ |F| = 2
(for any representation/drawing of G on the plane without edge
crossings.)

Test it out: balloon

Application: K5 cannot be planar. Proof: add up 2 = |V| − |E|+ |F| = 5− 10+ F so
|F| = 7. (Using the formula |E| 12

∑
deg(vi).) But each face is a triangle, so ...

Also, K3,3 cannot be planar. Proof: add up 2 = |V| − |E|+ |F| = 6− 9+ |F| so |F| = 5.
But each face is a square, so ...
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euler’s formula

Theorem
If G is planar, finite, non-empty, connected then |V| − |E|+ |F| = 2
(for any representation/drawing of G on the plane without edge
crossings.)

Proof: induction on number of edges. Trick: either G has a cycle, or it doesn’t.

If |E| = 0 then |V| = 1, |F| = 1 so true (single vertex, outside space is the single face).

Assume true for |E| = k > 1 and consider G planar connected with k+ 1 edges.

If G has a cycle, deleting one edge from this cycle gives a connected graph G′ with k
edges, and is planar since it is a subgraph of G. Let V′, E′, F′ be the vertices, edges and
faces of G′ . Then by inductive assumption |V′| − |E′|+ |F′| = 2. Now V = V′ since we
only deleted an edge and kept the adjacent vertices. |E| = |E′|+ 1 and |F| = F′|+ 1
since when we add the edge back in, we divide one face up into two. Thus
|V| − |E|+ |F| = |V′| − |E′| − 1+ |F′|+ 1 = 2.

Otherwise, if G has no cycles, since G is connected, G is a tree. Then |V| = |E|+ 1 and
|F| = 1 (just the outside).

So |V| − |E|+ |F| = |E|+ 1− |E|+ 1 = 2. �
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end of material

Thanks everyone. Tutorial Wed/Thu/Fri this week, then that’s it.

Final exam covers all topics. Please review all content over StuVac,
and make yourself a summary/formula sheets to be able to quickly
recall definitions and facts during the online exam.
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